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Résumé

Ces dernières décennies, la demande en services de communication fixes ou mobiles, de télévision
en direct, de radio numérique ou d’Internet à haut débit a augmenté de manière exponentielle.
Pour y répondre, les opérateurs de satellites de télécommunications doivent accroître conti-
nuellement la capacité de leurs satellites, ce qui engendre une hausse importante du nombre
d’équipements et de connexions au sein des nouvelles charges utiles. Parmi ces connexions,
les guides d’ondes sont des canalisations à section rectangulaire qui transportent des signaux
électro-magnétiques entre deux composants du satellite. Ces signaux subissent des pertes radio-
fréquentielles en ligne lors du parcours des guides d’ondes. Ainsi, la conception du harnais de
guides d’ondes joue un rôle crucial sur les performances du satellite. Cette thèse propose des
méthodes d’optimisation pour le routage détaillé des guides d’ondes permettant de réduire leur
longueur tout en prenant en compte les contraintes de conception du harnais radio-fréquentiel.

Le problème de routage de guide d’ondes étudié, introduit dans la partie I, consiste à connec-
ter une configuration d’entrée à une configuration de sortie en utilisant un guide d’ondes composé
d’une succession de sections droites et de coudes (chapitre 1). Il possède plusieurs caractéris-
tiques non standards pour les approches classiques de routage de canalisations (chapitre 2),
tels que la gestion d’un ensemble de coudes restreint à un catalogue de coudes orthogonaux
et/ou non-orthogonaux, ou bien la gestion d’une canalisation à section rectangulaire, ce qui
rend important la notion d’orientation de cette canalisation.

Dans un premier temps, dans la partie II, toutes les contraintes d’espace de routage sont igno-
rées dans le problème de routage de guide d’ondes en espace libre (chapitre 4) et deux approches
de résolution sont introduites. La première utilise la Programmation Linéaire Mixte (PLM) et est
basée sur l’énumération des orientations possibles pour un segment du guide d’ondes (chapitre
5). Cette approche est néanmoins peu performante sur des instances issues de cas industriels,
c’est pourquoi une autre formulation adaptée aux Algorithmes de Recherche Informés (ARIs)
est proposée en utilisant une notion de plan de routage qui décrit un guide d’ondes partiellement
routé (chapitre 6). La faisabilité d’un plan est évaluée avec de la programmation linéaire tandis
que l’espace des plans est exploré avec des algorithmes comme le A* pondéré ou la recherche en
faisceaux. Pour estimer la distance restante jusqu’à la destination, deux heuristiques utilisant la
distance euclidienne et des combinaisons de coudes minimales sont présentées. Avec la meilleure
heuristique, dont la consistance a été démontrée, cette seconde formulation surpasse l’approche
PLM en résolvant la plupart des instances en moins d’une seconde (chapitre 7).

Dans la partie III, on s’intéresse au problème de routage de guide d’ondes en espace contraint,
qui consiste à router un unique guide d’ondes dans un espace restreint pouvant contenir des
obstacles. Pour modéliser ces contraintes spatiales, l’espace de routage est vu comme un espace
continu en trois dimensions divisé en cellules convexes non régulières qui évitent les obstacles
(chapitre 8). Les deux approches de résolution proposées précédemment pour le problème de
routage de guide d’ondes en espace libre sont étendues à ce nouveau problème. Le choix d’un
canal de cellules devant être traversées est introduit dans le modèle PLM (chapitre 9) et dans la
formulation en problème de recherche. Par ailleurs, plusieurs heuristiques basées sur des pistes
relaxées dans l’espace de routage sont proposées pour améliorer les estimations de distance à
la destination en considérant les contraintes spatiales (chapitre 10). Finalement, si l’approche
PLM testée n’est pas capable de fournir des solutions en un temps raisonnable, les ARIs résolvent
certaines instances industrielles en proposant des guides d’ondes réalistes en quelques minutes
(chapitre 11). Ces approches ont été intégrées dans des outils de conception industrielle des
guides d’onde et ont permis de réduire le temps de conception du harnais radio-fréquentiel.
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Abstract

In recent decades, the demand for fixed and mobile communication services as well as over-the-air
television, digital broadcasting or broadband Internet has raised exponentially. To meet these
growing needs, telecommunication satellite operators must continually increase the capacity of
their satellites, which leads to a significantly higher number of components and connections
inside the new satellite payloads. Among these connections, the waveguides are pipes with a
rectangular section which carry useful electromagnetic signals between two components of the
satellite payload. However, these signals suffer from on-line radio-frequency losses during their
carriage along the waveguides. It results that the design of the waveguide harness plays a crucial
role on the performances of the satellite. This PhD thesis proposes optimisation methods for
the detailed routing of waveguides, reducing their lengths while taking into account the design
constraints of the radio-frequency harness.

The studied Waveguide Routing Problem, introduced in Part I, consists in connecting an
input configuration to an output configuration by using a waveguide composed of a succession of
straight sections and bends (Chapter 1). It considers several non-standard features for classical
Pipe Routing approaches (Chapter 2) such as dealing with a set of bends restricted to a catalogue
that can contain both orthogonal and non-orthogonal bends, or with pipes of rectangular section,
which makes the pipe orientation important.

As a first step, in Part II, all routing space constraints are ignored in the Free Waveguide
Routing Problem (Chapter 4) and two resolution approaches are introduced. The first formu-
lation uses Mixed Integer Linear Programming and is based on the enumeration of the possible
orientations for the waveguide segments (Chapter 5). Because of the poor performances of this
approach on industrial instances, another formulation adapted to the Informed Search Algo-
rithms is proposed using a notion of routing plan that describes a partially routed waveguide
(Chapter 6). The feasibility of a plan is then evaluated using Linear Programming while the
space of plans can be explored with algorithms like Weighted A* or Beam Search. To do so,
two different heuristics are proposed to estimate the distance to the destination using Euclidean
distance and minimal bend combinations. With the best heuristic, which has been shown to
be consistent, this second formulation clearly outperforms the MILP approach, solving most
instances within a second (Chapter 7).

In a second phase, in Part III, the Constrained Waveguide Routing Problem, which consists
in routing a single waveguide within a restricted three-dimensional space that may contain
obstacles, is studied. To model these spatial constraints, the routing space is seen as a three
dimensional continuous space divided into non-regular convex cells that avoid obstacles (Chapter
8). Then, both resolution methods introduced for the Free Waveguide Routing Problem are
extended. The channel of cells to be traversed is first introduced as a set of new decision variables
in the MILP model (Chapter 9) and in the Search Problem formulation. Furthermore, several
heuristics based on relaxed trails in the routing space are proposed to improve the estimations by
considering the space constraints and obstacles (Chapter 10). While the MILP approach tested
is not able to provide solutions in a reasonable time, the Informed Search Algorithms solve small
and medium industrial instances with realistic waveguides within a few minutes (Chapter 11).
These approaches have been integrated into software tools for the industrial design of waveguides
and have successfully reduced the time of design for the radio-frequency harness.
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Chapter 1

General Introduction

In recent decades, the demand for fixed and mobile communication services as well as over-
the-air television, digital broadcasting or broadband Internet has raised exponentially. These
services are now requested in more and more geographical areas, even in the least accessible ones,
like oceans or deserts. To meet these growing needs, telecommunication satellite operators must
continually increase the capacity of their satellites, that are able to reach areas inaccessible by
terrestrial systems. This leads to a significantly higher number of components and connections
inside the new satellite payloads (see Figure 1.1).

Figure 1.1 – Telecommunication satellites.

As a consequence, telecommunication satellite design phases become more complex and time
consuming. To handle this complexity, optimisation methods are used to help engineers au-
tomating repetitive tasks, but also to improve the performances of the satellite and to approve
its design. In particular, these optimisation methods are used all along the internal accom-
modation phase during which the components and the connections between them, including
waveguides, are placed inside the payload. They allow designers to evaluate and optimise the
routes of these connections, the goal being to reach the best performances and to reduce the
manufacturing costs.

In this PhD thesis, the Waveguide Routing Problem (WRP) in a three-dimensional contin-
uous space is studied. This problem has two main purposes. The first one consists in proposing
a route for a waveguide between two components of the payload. The route should satisfy
waveguide design rules as much as possible in order to minimise the modifications afterwards.
The second one is to provide an estimation of the Radio-Frequency Losses (RF-losses) along the
waveguide, which depend directly on the length of the route. This problem is clearly related to
standard Pipe Routing (PR) problems presented in Chapter 2.

In the context of the Industrial Agreement of Training through Research or "Convention
Industrielle de Formation par la REcherche" in French (CIFRE) and of the collaboration be-
tween Airbus Defence and Space (Airbus DS) and the French Aerospace Lab or "Office National
d’Études et de Recherches Aérospatiales" in French (ONERA), the objective of this PhD thesis
is to propose innovative solutions to deal with the Waveguide Routing Problem.
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4 CHAPTER 1. GENERAL INTRODUCTION

1.1 Industrial context
This section provides a basis for understanding the issues related to telecommunication satellite
design.

1.1.1 Telecommunication satellites

A telecommunication satellite is made up of a platform and a payload. The platform ensures the
station-keeping in orbit of the satellite as well as its thermal monitoring, its electric control, and
the interface with the ground segments, that is to say the control centres. On the other hand, the
payload fulfils the mission of the satellite which consists in receiving an electromagnetic signal
from the Earth, amplifying it, and transmitting it to another geographical area. The payload is
the main part of a telecommunication satellite.

A broadband signal is emitted from the Earth and travels about 36000 kilometres to reach a
geostationary telecommunication satellite. The received signal, called upstream signal or forward
signal, is very weak, about 10−10 watts, because of the attenuation along the path to reach the
satellite. So, the signal should be strongly amplified, up to 102 watts, before sending it back to
Earth in an exploitable way. This amplification is preceded by a frequency translation which
avoids the interference phenomenon between the upstream signal and the transmitted signal,
called downstream signal or return signal. Figure 1.2 shows the travel of the signal.

Figure 1.2 – Mission of a telecommunation satellite.

1.1.2 Communication payload

The payload is made up of a huge number of units which are fixed on the walls and panels forming
the structure of the satellite (see Figure 1.3). Each one plays a clear role in the amplification
chain. Most telecommunication satellites have a similar architecture depicted in Figure 1.4. The
classical course of a broadband signal in a satellite can be described as follows.

A wide-band signal is composed of several narrow-band signals called channels. When the
broadband signal is received by the reception antenna, it is amplified a first time with a minimal
noise using a Low Noise Amplifier (LNA). The power of the signal is only a few hundred picowatts
at the input of the LNA and is a few microwatts at its output. In order to minimise losses,
LNAs are placed as close as possible to the reception antenna.
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Figure 1.3 – Structure of a telecommunication satellite.

Then, a frequency down conversion is applied with a Down Converter (D/C). This conversion
makes possible the differentiation between the upstream and downstream signals. In practice,
a signal mixer couples the useful signal of frequency Fu with a signal of frequency FLO to
obtain a useful signal frequency translated with the frequency FLO. For instance, the order of
magnitude of the conversion is a few GHz in the C-band, which is a frequency band widely used
in telecommunication.

The core of the amplification chain consists in amplifying the broadband signal using Trav-
elling Wave Tube Amplifiers (TWTA) (see Figure 1.4). They are the main components of the
payload and consume from 90% to 95% of the electrical power available on the satellite. They
strongly amplify a channel using energy trade with an electron beam. However, a TWTA is
not able to strongly amplify a broadband signal. This is why the broadband signal is split into
channels using an Input Multiplexer (IMUX) before the amplification. The channels are then
recombined using an Output Multiplexer (OMUX) after the TWTAs to form the downstream
signal. So it is necessary to have at least a number of TWTAs equal to the number of channels
in order to process all channels simultaneously.

Figure 1.4 – Amplification chain.

Nevertheless, telecommunication satellites can suffer from component failures during their
lifecycle. To address the breakdowns of TWTAs, designers set up a redundancy mechanism.
Because of the high price of a TWTA (about tens of thousand euros), only one redundant
TWTA is used for 5 or 6 nominal TWTAs. In the case of a failure, a channel can be redirected
to a redundant TWTA by means of two symmetrical switch matrices, called redundancy matrices.
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A switch is a unit that allows redirecting electromagnetic signals inside the payload by linking
an input connector to an output one. Depending on the position of the switch, the signal from
the input connector is propagated into one output or another. The first switch matrix located
between the input channels and the tube amplifiers guarantees the access to any redundant
TWTA if needed, or even to all TWTAs at the same time. The second switch matrix ensures
the redirection of the signals getting out of the TWTAs to the output channels.

Last, a telecommunication satellite can generally cover several geographical areas, thanks
to several antennas. Processing signals coming from several areas simultaneously requires other
switch matrices, called selectivity matrices. These matrices, placed before the first redundancy
matrix and after the second one, provide the possibility to select the channels to process, called
active channels. These active channels define the mission of the satellite.

Thus, the whole architecture of a telecommunication satellite contains an important number
of components traversed by the broadband signal. This implies a huge number of connectors to
carry the signal between these components.

1.1.3 Radio-frequency harness

The set of connectors between the components of the amplification chain is called the Radio-
Frequency Harness (RF-harness). Two kinds of connectors can be distinguished.

The first ones are the coaxial cables. A coaxial cable is a flexible connector which uses
an internal conductor surrounded by insulating layers and a shielded outer layer to keep the
signal-to-noise ratio as low as possible. It can carry digital or analog signals of low or high
frequency.

Figure 1.5 – Gauge of a waveguide.

The other kind of radio-frequency connectors are
the waveguides. A waveguide is a pipe, that means a
rigid and hollow connector, which carries an electro-
magnetic signal. Usually, the cross-section of a waveg-
uide is rectangular and its size (given by its width a
and its height b), also called gauge, depends on the fre-
quency band of the signal (see Figure 1.5). Table 5 on
page 167 in the appendices provides some examples of
common gauges used in telecommunication satellites.

Waveguides are more expensive than coaxial cables. Furthermore, they are more complex
to design and place inside the payload because of their rigidity. However, the main advantages
of the waveguides are their low attenuation of the signal and their strong heat resistance. For
these reasons, waveguides are generally used before the first amplification, between the receiving
antenna and the LNAs to prevent in-line attenuation of the weak upstream signals. They are
also used after the TWTAs where the strongly amplified signals induce high temperatures. Thus,
the coaxial cables are mainly used between the LNAs and the TWTAs as shown on Figure 1.4
on the preceding page.

1.1.4 Payload sizing

During the design of a telecommunication satellite, payload sizing plays a crucial role. Indeed,
the number of components (in particular the number of TWTAs) and their position as well as
the connectors between them define the physical and technical characteristics of the satellite,
like its heat dissipation or its electric power storage capacities. The final design of the payload
results from several iterations. Each iteration consists in approving a proposal with respect to
technical, functional and financial specifications. If it is not compliant, the design is modified
and revalidated until compliance.
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1.2. WAVEGUIDE ROUTING 7

In the case of a telecommunication satellite, the preponderant feature is the amplification
capacity which should be guaranteed in spite of RF-losses encountered all along the amplification
process. These losses appear through the dissipation as heat of the electric power inside the
units. Dissipation occurs during the amplification with a fixed loss and during the carriage of
the signal with the attenuation of the power along waveguides and coaxial cables. It depends
almost linearly on the length of these connectors.

An accurate estimation of these losses is necessary to assert that the payload meets the am-
plification requirements, but, more importantly, their limitation is essential because significant
losses result in the increase in the power or in the number of TWTAs to compensate the power
loss. Such modifications require a greater heat dissipation and electric power storage capacities
in order to face higher dissipation and electric power demand.

The RF-losses can be limited by minimising the lengths of the waveguides and coaxial cables,
but also by optimising the layout of the components in the satellite to reduce the distance
between them. Nevertheless, for an optimal efficiency, each component should be maintained in
a given temperature range. This is a major issue during satellite accommodation, especially for
the highly dissipative units like the TWTAs which dissipate about 60% of the electric power they
consume. The components are placed according to their optimal temperature range into hot or
cold areas created using heatpipes (heat conductors inside and on the panels of the satellite).
Thus, the equipment layout is very constrained and the losses are mainly reduced through the
minimisation of the coaxial cable and waveguide lengths in the RF-harness. This is achieved by
the routing of the connectors.

1.2 Waveguide Routing

This PhD thesis focuses on Waveguide Routing (WR) for the RF-harness of a telecommunication
satellite. It consists in linking pairs of ports that should be connected using a waveguide. The
design of the waveguides in the RF-harness follows three stages:

1. Space Reservation: a first design of the waveguides with non-optimised routes is proposed
to guarantee the feasibility of the RF-harness and to preserve space for the waveguides in
the future iterations with the other design teams;

2. Detailed Routing: the design of each waveguide is optimised by considering the best can-
didate route, reducing the bend radii and saving length and bends as much as possible;

3. Iterative Routing: the waveguides are rerouted during several iterations resulting from
discussions with the other design teams like the mechanical stress team, the thermal team,
or the electrical harness team.

(a) Straight section. (b) Bends. (c) Twist.

Figure 1.6 – Waveguide parts.
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8 CHAPTER 1. GENERAL INTRODUCTION

Figure 1.7 – A bracket grouping several
waveguides.

Furthermore, the routing of a waveguide between
a pair of ports is also a three-step approach. First,
the geometry of the route is created by routing a single
waveguide between both ports. Then, this waveguide is
split into several parts according to the maximal length
for a waveguide (about 1 meter). A flange is placed at
the ends of each section in order to assemble them into
the complete geometry (see Figure 1.6 on the previous
page). Last, the waveguides are fixed to the satellite
walls using posts and brackets as shown on Figure 1.7.
The latter must be regularly placed along each waveg-
uide respecting a maximal distance of 300 millimetres
between two brackets and trying to place them as close
as possible to the flanges for stability reasons.

Waveguide Routing is one of the most complex and time consuming phases of payload de-
sign. With the ever-increasing demand in capacity in telecommunication satellites, the number
of waveguides has exponentially raised inside the payloads, reaching several thousands in the
more recent platforms. Moreover, waveguide designers must deal with an important number of
constraints, presented in Section 1.2.1, to guarantee the manufacturability and the operability
of the RF-harness, but they must also minimise RF-losses (see Section 1.2.2). As a result, the
manual Waveguide Routing methodology requires numerous iterations between the design and
Computer-Aided Design (CAD) teams over a period of 4 to 6 months. An example of waveguide
routing between several switch blocks on Figure 1.8 illustrates the complexity of the task.

Figure 1.8 – Example of a hand-made waveguide routing.

1.2.1 Waveguide Routing rules

The route of a waveguide must satisfy many constraints which can be classified into five types
that are detailed in this section: functional, manufacturing, conflict-avoidance, attachability and
operability constraints.
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1.2. WAVEGUIDE ROUTING 9

Functional constraints

Figure 1.9 – A unit with 3 ports.

First of all, to fulfil its functional mission, a waveguide
should connect an origin to a destination. Both of them
are materialised by ports located on components. Ports
can be located at different heights from the wall of the
satellite, or even on different panels and can also have
distinct orientations as shown on Figure 1.9. Thus, the
starting and ending parts of the waveguide must have
specific orientations, which are usually normal to the
plane that contains the associated port. These con-
straints are called functional constraints.

Manufacturing constraints

Manufacturing constraints guarantee that the waveguide can be produced by a manufacturer.
Today, there are several methods to manufacture waveguides with bends, that means with ori-
entation changes. Traditionally, manufacturers heat a long straight section with the length of
the whole waveguide, then they bend it at the desired angles using pliers. Bends built this way,
called formed bends, require that the straight sections of the waveguide have a length larger than
the width of the pliers. For this reason, any straight section of a waveguide must have a minimal
length (about 5 millimetres).

Another way to build waveguides is to manufacture bends separately using particular pro-
cesses and to solder straight sections and bends together afterwards. This manufacturing method
using machine bends allows generally smaller bend radii than the formed bends.

More recently, with the progress of 3D printing techniques, more complex waveguides can
be built in one piece without any limitation on the straight section length. However, printed
waveguides are not widely used today because of their high RF-losses. The poor quality of the
signal propagation is mainly due to the roughness of the surface obtained by 3D printing.

Thus, the waveguides in the RF-harness use mainly formed and machine bends. The available
ranges of angles and bend radii of these bends are provided by manufacturers and depend on
the gauge. Nevertheless, a set of standard bends has been defined in a catalogue for each gauge
in order to maximise the reuse of similar bends. This reduces RF-harness manufacturing costs
by avoiding to place multiple orders for highly customised waveguides.

These catalogues contain orthogonal bends (90◦) and non-orthogonal ones (45◦, 30◦, or 60◦).
They can also contain a special piece, called twist, which changes the orientation of the cross-
section around the axis of the current segment, as shown on Figure 1.6c on page 7. Twists are
more expansive than a 3-bend combination that performs the same operation, but they save
space in some cases.

The last manufacturing constraint consists in avoiding some sequences of bends because the
resulting waveguide cannot be produced by a manufacturer. In this case, the waveguide is said
to be infeasible.

Conflict-avoidance constraints

A waveguide must also satisfy conflict-avoidance constraints. The most obvious one is that it
must not conflict with an existing component or another waveguide of the payload. This is one
of the hardest aspects of the waveguide designers’ work, because a lot of units and waveguides
are involved (see Figure 1.8).
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10 CHAPTER 1. GENERAL INTRODUCTION

Attachability constraints

Designers must also ensure that each segment of the waveguide can be fixed on the walls or
panels. Indeed, brackets are regularly placed along the geometry to guarantee the robustness
to mechanical stress, especially during the launch of the satellite. To do so, the orientation of
a waveguide section is constrained depending on the panel it is routed on. In concrete terms, a
waveguide segment must have at least one edge of its cross-section orthogonal to the normal of
its fixing wall to be attachable, as illustrated on Figure 1.10.

−→nw

wall w

brackets

−→eo,x

−→eo,y −→eo,x

−→eo,y −→eo,x

−→eo,y

Figure 1.10 – From left to right, two attachable orientations and a non attachable one.

Moreover, the infeasible waveguides mentioned earlier systematically generate non attacha-
bility issues. Indeed, because of the sequence of bends they use, these waveguides always contain
at least one non attachable segment whatever the fixing panels or the origin orientation. So,
two kinds of attachability constraints can be distinguished:

• global attachability constraints that depend only on the sequence of bends used in the
waveguide and are therefore intrinsic constraints;

• wall-dependent attachability constraints that depend on the walls on which the segments
of the waveguide are routed. These constraints are said to be extrinsic.

Operability constraints

Figure 1.11 – Minimal distance be-
tween a flange and a bend.

Last, the operability constraints ensure that the opera-
tors of the Assembly Integration and Test (AIT) team
will be able to mount the waveguides of the RF-harness
during the assembly phase. The main goal of these con-
straints is to guarantee the access to the mounting screws
of the flanges and to preserve sufficient space for the as-
sembly/disassembly operations.

For instance, a minimal distance must be respected
between a flange and the first bend as illustrated on Fig-
ure 1.11. This minimal distance depends on the type of
bend. Usually, bends along the widest side of the waveg-
uide, called H-plane bends, do not block the access to the
screws and a short distance is acceptable (about 15 mil-
limetres). On the opposite, bends along the shortest side,
called E-plane bends, require a bigger clearance distance before the first bend (about 30 mil-
limetres) because they would obstruct the screws of the flange.

Another minimal distance must be respected between two waveguides (about 5 millimetres)
for the same reasons.
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1.2. WAVEGUIDE ROUTING 11

The minimal length of the straight sections can also be seen as an operability constraint.
It is sometimes necessary to ensure a minimal distance between two successive bends to satisfy
the mounting needs. In this case, the minimal distance corresponds to 3 times the width of the
gauge, that is 3a.

1.2.2 Waveguide cost minimisation objective

As explained previously, the main objective in Waveguide Routing is to estimate and minimise
the RF-losses of the RF-harness. The first contribution comes from in-line losses and depends
linearly on the waveguide length which should be minimised. In addition, bends generate fixed
losses according to their type, so the number of bends must be minimised too. In some cases,
this second criterion is contradictory with the in-line criterion because a solution using more
bends can be shorter than a solution with fewer bends (see Figure 1.12).

It can be noticed that the minimisation of the total length has other benefits. Indeed,
reducing the total length makes the RF-harness lighter which saves weight in the satellite and
has a positive impact on launching costs. In the same way, obtaining shorter waveguides that
use fewer bends leads to a cheaper RF-harness in terms of manufacturing costs.

(a) 1-bend solution. (b) 2-bend solution with a shorter length.

Figure 1.12 – Trade-off between saving length and bends.

1.2.3 Existing waveguide routing tool

The Multiple Waveguide Routing Problem (MWRP) in a telecommunication satellite, which
consists in routing several waveguides, has already been studied by Bessaih [9]. They addressed
the problem by uniformly discretising the routable space into regular cells and by defining the
route of a waveguide as a path in the adjacency graph of these cells. The proposed resolution
approach sequentially routes waveguides using first a shortest path algorithm with a large neigh-
bourhood, and then a repairing function that locally corrects conflicts between a waveguide and
the already routed ones.

From this work, a waveguide routing tool has been implemented and integrated in the Airbus
DS software suite in order to help engineers facing the increasing payload complexity (see Figure
1.13). The optimisation method provides very good estimations of the RF-losses and, coupled
with a component positioning tool, significantly reduces the RF-harness design time, especially
during the bid phase when a preliminary design must be proposed to prove the satisfaction of
customer specifications.

However, the routes proposed by this algorithm are hardly ever used by designers as final
routes. Indeed, the generated waveguides suffer from several defects which force engineers to
rebuild them from scratch. The main reason is that several constraints are violated because of
the discretisation. For instance:
• the starting and ending points of the proposed routes do not exactly match with the real
positions of the ports, because the latter are not placed on a regular grid;

• the angles of the orientation changes along the routes are non-standard and can even
correspond to infeasible waveguides;
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12 CHAPTER 1. GENERAL INTRODUCTION

Figure 1.13 – Results of the existing tool on a wall.

• the bend radii are not taken into account, which leads some straight sections to violate
the minimal length constraint after rebuilding the waveguide.

Besides the anomalies due to the discretisation, the approach gives solutions containing a lot of
bends and does not consider the orientation of the cross-section along the route. For all these
reasons, the existing tool provides unrealistic waveguides which are not used by designers, except
to have a general idea of the waveguide paths as well as the order in which they must be routed.

1.3 Contributions
This PhD thesis proposes to deal with the raising complexity of communication payloads by
defining a new optimisation method to route in a detailed manner a single waveguide of the
RF-harness. The main goal is to automatically generate waveguides that are as realistic as
possible in order to minimise modifications afterwards by waveguide designers. In this purpose,
the main existing Pipe Routing techniques are presented in Chapter 2 and a state of the art
about Search Algorithms (SAs), which are widely used to solve the Pipe Routing Problem, is
detailed in Chapter 3. Then, the issue is addressed in two steps of increasing complexity.

First, the Free Waveguide Routing Problem (FWRP) is studied in Part II. It consists in
routing a single waveguide in a three-dimensional continuous space free from any obstacle nor
space constraint (see Chapter 4). The particularity of the proposed approaches is to be able to
deal with non-orthogonal bends defined by a catalogue and with unsymmetrical cross-sections,
the goal being to satisfy all the constraints of the Waveguide Routing Problem. Introduced
algorithms are based on the enumeration of the possible orientations of the waveguide segments
and on Linear Programming (LP). First, an exact method, which theoretically provides optimal
solutions in a finite time, is considered in Chapter 5 using Mixed Integer Linear Programming
(MILP). To challenge this exact method that can be time-consuming, a Search Problem (SP)
formulation is introduced in Chapter 6 by defining the notion of routing plan to describe a
partially routed waveguide. This formulation makes it possible to solve the FWRP using In-
formed Search Algorithms (ISAs), like A*, Weighted A* Search, Beam Search or Steeple Ascent
Hill-Climbing for which a state of the art is presented in Chapter 3. They use heuristic and
evaluation functions to explore the search space of routing plans. Two evaluation methods based
on LP models, Euclidean distances and minimal bend combinations are proposed. Experiments
conducted on instances inspired from an existing satellite and using realistic bend catalogues
clearly show that ISAs can outperform the proposed MILP approach while providing comparable
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1.3. CONTRIBUTIONS 13

guarantees on the solution quality. The most competitive ISA solves each test instance within
a second on a standard laptop.

Secondly, in Part III, the Constrained Waveguide Routing Problem (CWRP), which extends
the FWRP by constraining the waveguide to be contained in a routable space, is addressed. A
methodology is presented in Chapter 8 to build the routable space from the satellite walls as an
adjacency graph of polyhedral traversable cells that avoid obstacles. Then, the MILP and SP
formulations are respectively adapted in Chapter 9 and Chapter 10 to take space constraints
into account by considering the sequence of cells crossed by the waveguide. Since the heuristic
functions proposed for the FWRP ignore space constraints, new heuristics are also introduced.
They are based on a graph of relaxed routes, called trails, which connect each cell to the des-
tination while staying inside the routable space. Thus, the remaining distance as well as the
bend combination to use can be more accurately estimated using the shortest trail for a routing
plan. Both MILP and SP formulations have been experimented on simple cases inspired from
the industry. Again, the MILP method is outperformed by the ISAs. The solutions found are
completely acceptable for waveguide designers even if there is no more guarantee on their quality.
The Weighted A* Search algorithm, which is the fastest method, solves within several minutes
simple cases that can be encountered in an industrial context.

Note that the appendices in Part V contain a description of the experimentation data and a
glossary that lists all the notations used in this thesis.
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Chapter 2

State of the Art about Pipe Routing

Waveguide Routing is a particular case of Pipe Routing which has been widely studied since
the 70’s. Pipe Routing is involved in various industrial contexts like plant layout [79, 85, 35],
aeronautics [95, 96, 97], shipbuilding [45, 71, 5] or Very Large Scale Integration (VLSI), as
shown on Figure 2.1. In this chapter, a pipe may refer to a rigid connection that carries gaz or
liquid (water, fuel, ...), to a metal track between two components of an integrated circuit or to
a waveguide. In most applications, Pipe Routing is used to evaluate the optimality of a layout,
but it is a complex task that is not fully automated. It requires specialized engineers who use
their experience to manage a large number of pipes at cost of a time-consuming design phase.
A lot of research has been carried out to propose approaches that reduce human intervention
during the routing phase.

(a) Aeronautics (b) Plant layout (c) VLSI

Figure 2.1 – Applications of Pipe Routing.

Pipe Routing consists in finding a set of routes for a set of pipes, where each pipe is defined by
a set of terminals that must be interconnected while satisfying various constraints. A terminal is
an area, generally a point, on a component which enables the connection with others components.
Depending on the application, the set of terminals for a pipe may be composed by a source and
a destination, or a source and several destinations. In the same way, the constraints that the
routes must satisfy change according to the application. The objective is to minimise the pipe
length and avoid physical conflicts with components or other pipes. Often, the number of
direction changes along the routes must be minimised too for economical and quality reasons.
For instance, when the pipe is carrying a liquid, bends generally deteriorate the flow rate. The
quality of a piping system can also depend on the number of brackets which are needed to fix the
pipes. In this case, the number of pipes per bracket must be maximised. Then, for safety reasons,
pipes must generally satisfy a minimal distance from particular components. Maintenance and
operability constraints may require providing access to mounting elements (like screws) and
valves, or routing pipes along walls. This list of constraints is not exhaustive.
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In this chapter, four existing approaches to solve the Pipe Routing Problem are presented:
Cell Decomposition Approaches in Section 2.1, Line Search Algorithms in Section 2.3, Skeleton
Approaches in Section 2.2 and Parametric Models in Section 2.4. Finally, Section 2.5 presents
the motivations of this thesis with regards to the existing methods.

2.1 Cell Decomposition Approaches

2.1.1 Principle

The most widely used method to deal with the Pipe Routing Problem is the Cell Decomposition
Approach (CDA). In this approach, the routing environment is discretised into a set of cells C.
In most cases, the decomposition is based on a regular grid and is homogeneous in the sense
that all cells have identical dimensions, as illustrated on Figure 2.2a. So a cell is generally a
rectangle in a 2D-space or a rectangular parallelepiped in a 3D-space. Nevertheless, heteroge-
neous decompositions where cells have different dimensions can be built using a quadtree for
instance (see Figure 2.2b). These decompositions do not depend on obstacle shapes and cells
which overlap with obstacles are labelled as occupied. To reduce the number of cells, it is possi-
ble to use obstacle shapes to create cells such that the union of all cells is exactly the available
routing space, as shown on Figure 2.2c. However, such a decomposition is more complex and
its computation may take a long time. By contrast, obstacle independent decompositions like
regular grids generate simple cells, although the boundary of obstacles is approximated.

(a) Regular grid. (b) Quad tree. (c) Convex decomposition.

Figure 2.2 – Cell Decomposition Approaches.

2.1.2 Maze Routing Algorithms

Figure 2.3 – A routed pipe as a path
in an adjacency graph of cells.

From a decomposition of the routing space, a pipe can be
routed as a path in the adjacency graph of cells G (C, I),
where (c, c′) ∈ I if cells c ∈ C and c′ ∈ C have a common
boundary, as shown on Figure 2.3. Routes are then com-
puted using Maze Routing Algorithms (MRAs) [66, 61].
The most famous one is LEE’s algorithm [59] which has
been proposed to solve 2D routing problems in VLSI.
Pipes are routed in a sequential way, one after the other,
using a procedure similar to DIJKSTRA’s algorithm [24] in
the adjacency graph G (C, I). Starting from the source
cell, the best route for a pipe is computed by exploring
the undiscovered cells in the neighborhood of a frontier until the target is reached. The cost of a
route is defined using a notion of mass associated with each cell and depending on the length of
the path, the number of bends used, the number of crossings with existing pipes or the distance
to obstacles or other pipes.
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2.1. CELL DECOMPOSITION APPROACHES 17

2.1.3 Improved variants

The breadth-first search of initial MRAs can be replaced by more efficient search algorithms
which consume less memory space and/or address pipe routing problems with more complex
constraints. Five of them are described below.

Knowledge Based Engineering

In plant layout and aeronautics (see Figure 2.4), several approaches have been proposed to
apply MRAs in combination with Knowledge Based Engineering (KBE) methods which consist
in identifying and implementing rules and knowledge inspired by the manual routing process.
For instance, in [96], the A* algorithm introduced by HART [37] is used as a routing procedure. It
selects the most promising cell to explore using an evaluation function that estimates the distance
to the target (see Section 3.2.1) but also considers specific constraints through penalisation costs,
like bend radius and safety distance between pipes. Another possibility is to apply rules to define
the order in which pipes are routed [50, 79]. Typically, wider pipes are routed before smaller
ones.

Figure 2.4 – Pipe routing in aeronautics.

Genetic Algorithms

ITO [44, 45, 46] uses a Genetic Algorithm (GA) in a routing space decomposed in homogeneous
rectangular cells. A chromosome represents a candidate route and is defined as a vector of
states with five possible values: a state that corresponds to having reached the destination and
a state for each direction (right, left, up and down). The initial population is generated using
several mechanisms that provide diversified routes. Preferential directions to follow are allocated
to predefined areas and the usage of intermediate waypoints makes it possible to build routes
that differ from the shortest trajectory to the destination. Moreover, when a constraint favours
routes close to obstacles, a potential energy is also assigned to each cell in order to guide the
pipe. A cell near an obstacle has a low value while a cell that contains an obstacle has a high
value. Then, the optimisation process generates new routes with crossover operations that mix
the candidate routes of a generation. The satisfaction of constraints is quantified using a fitness
function. At the end of the algorithm, several routes are proposed to the designers who select
the best one based on their own experience. In a more recent work, KIMURA [55] proposed
an encoding of individuals that describes pipes using the position of their bends and considers
also the position of other components, which makes it possible to simultaneously solve the pipe
routing and component layout problems. In [92] and [69], multi-branch pipe routing where pipes
have more than two terminals is addressed by representing multi-branch pipes as combinations
of several two-point pipes. The route between two connections is generated using a MRA and
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a GA, like Nondominated Sorting Genetic Algorithm II, is used to diversify the multi-branch
pipes based on various genetic operators.

Ant Colony Optimisation

Ant Colony Optimisation (ACO) introduced by DORIGO in 1991 [26] has also been experimented
to solve the Pipe Routing Problem. In [28] which deals with ship pipe routing, the routing space
is decomposed into regular cubic cells and a potential energy is allocated to each cell according
to the presence of obstacles or to the distance from preferred routing areas. Then, ACO is
performed using individual ants that randomly route the pipe in the adjacency graph of cells.
When a solution path is found, a pheromone trail is dropped on its edges depending on the pipe
quality considering its total length, its number of bends and its total energy. The quantity of
pheromones guides the other ants towards the preferred directions. Pheromones progressively
vanish over time and, after a sufficient number of iterations, only the best paths are described
by the remaining pheromone trails. More recently, JIANG [47] used Multi-ACO to solve the
multi-branch ship pipe routing problem. The convergence of this approach has been improved
by launching individual ants from the source and destination cells and by extending the influence
area of pheromone trails to neighbouring cells.

Particle Swarm Optimisation

In [5, 4], authors also solve multi-branch pipe routing design in ships by combining the determin-
istic DIKJSTRA’s algorithm with Particle Swarm Optimisation (PSO) introduced by KENNEDY
and EBERHART [27, 53]. First, the routing space is split into large cells and pipes are routed
using DIKJSTRA’s algorithm without taking other pipes into account (see Figure 2.5a). In a sec-
ond step, processing one pipe at a time, the cells crossed by a pipe are subdivided into new cells
with a size corresponding to the diameter of the current pipe and the next pipes are rerouted
after removing the cells occupied by previous pipes (see Figure 2.5b). Last, multi-branch pipes
for each terminal are connected to routed pipes using the shortest paths given by DIKJSTRA’s
algorithm between terminals and cells used by existing pipes. The routing order of pipes, the
connection order of branch pipes as well as the pipes to preserve or to reroute are defined using
PSO.

(a) Decomposition with large cells. (b) Decomposition adapted to pipe diameters.

Figure 2.5 – A two-step cell decomposition.

c©Airbus Defence and Space SAS - "This document and the information it contains are property of Airbus Defence and
Space. It shall not be used for any purpose other than those for which it was supplied. It shall not be reproduced or
disclosed (in whole or in part) to any third party without Airbus Defence and Space prior written consent. Airbus
Defence and Space – All rights reserved - February 10, 2022".



2.1. CELL DECOMPOSITION APPROACHES 19

Mathematical Programming

Recently, BELOV [7] proposed a Constraint Programming (CP) formulation of the multiple
pipe routing problem. Each pipe is described using variables which represent the position of its
bends in a space discretised with a regular grid. Several complex constraints like safety distances
between pipes are taken into account. Commercial solvers like CPLEX allow the resolution of
instances with more than 20 pipes within dozens of seconds. To deal with hundreds of pipes, the
priority-based search, a multi-agent pathfinding method, has been experimented using BELOV’s
model as single pipe routing algorithm [8].

2.1.4 Limitations

Figure 2.6 – Large neighbourhood.

Most CDAs are based on a grid decomposition of
the routing space with a mesh size restricted to be
bigger than the pipe diameter. Routing pipes as
paths in the adjacency graph of cells assumes that
pipes must have axis-parallel segments and use only
orthogonal bends. However, in some applications,
these assumptions are not acceptable. In particu-
lar, when routing waveguides in a telecommunica-
tion satellite, space and weight are precious and can
be saved by using non orthogonal bends.

To address this issue, BESSAIH [9] and ANDO
[2] proposed a similar idea. It consists in decomposing the routing space with a mesh size
smaller than the waveguide gauge or pipe diameter. A large neighbourhood is then used to
define the possible successors of a cell, allowing to reach distant cells that do not require a
common boundary with the current cell, as illustrated on Figure 2.6. It results that it is possible
to produce non axis-parallel segments and to model non-orthogonal bends depending on the
direction selected from a given cell.

However, using a mesh size smaller than the pipe dimension leads to a more complex defi-
nition of occupied cells. Indeed, a routed pipe not only crosses the cells that are located on its
path in the graph, but it also occupies adjacent cells according to its dimension. In this case,
masks can be used to label the occupied cells before routing other pipes, as proposed in [9] (see
Figure 2.7). Unfortunately, this approach does not allow to use any non-orthogonal bend angles
since each node is still placed on a regular grid. Moreover, some orientation changes generated
this way can be non-standard if bends are restricted to a catalogue.

(a) Paths without using masks. (b) Paths using masks.

Figure 2.7 – Masks for large neighbourhoods.
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2.2 Skeleton Approaches

2.2.1 Principle

Another graph-based pipe routing method called Skeleton Approach (SkA) builds a graph of
possible route candidates. Then, like in CDA, a pipe solution is a path in the discrete graph,
but this time the nodes of the graph are associated with continuous positions that are not forced
to be located on a regular grid. There are several ways to create the graph of candidate routes.
Visibility graph [42] uses the vertices of obstacles as nodes and contains an edge for each pair
of nodes such that the segment connecting them does not intersect any obstacle, as illustrated
on Figure 2.8a. Another possibility is VORONOI’s diagram that defines a set of points which
are equidistant from obstacles [42, 6], as illustrated on Figure 2.8b. Nevertheless, these kinds of
skeleton graphs are not suitable to satisfy the constraints on the orientation changes that are
involved in Pipe Routing. Indeed, bends along a pipe are often restricted to use specific angles.

(a) Visibility graph. (b) VORONOI’s diagram.

Figure 2.8 – Classical skeleton graphs.

2.2.2 Escape graphs

Another approach to create a skeleton graph consists in using the principle of HIGHTOWER’s
algorithm [40] (detailed in Section 2.3) in order to build an escape graph. To do so, the graph is
constructed by extending lines along the horizontal and vertical directions from terminals and
obstacle vertices. When the lines encounter an obstacle, a boundary or another line, resulting
intersections are added as graph vertices, as shown on Figure 2.9. Escape graphs are widely
used in the field of rectilinear path planning [34]. From these graphs, KIM [54] simply proposed
to directly apply DIKJSTRA’s algorithm to solve the single pipe routing problem.

(a) 2D. (b) 3D.

Figure 2.9 – Escape graphs.

In some applications, engineering or safety considerations may require to route pipes close
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2.2. SKELETON APPROACHES 21

to the walls or to keep some distance to some obstacles. In those cases, the notion of potential
energy related to the distance to obstacles introduced by ITO [44, 45, 46] can be used to reduce
the escape graph by deleting nodes with high energy values (see Figure 2.10), that means nodes
far from obstacles or in areas to avoid, like in [63]. In this paper, LIU addressed a multi-
terminal rectilinear pipe routing problem using a multi-objective evolutionary algorithm based
on decomposition and on a representation of individuals with rectilinear STEINER trees. Similar
mechanisms of potential energy can be found in many approaches based on skeleton graphs and
using various resolution algorithms like ACO [76].

(a) Before deletion. (b) After deletion.

Figure 2.10 – Reducing escape graphs using potential energy.

2.2.3 Graphs inspired by design rules

In [35], GUIRARDELLO builds a graph of candidate routes using a knowledge database inspired
by plant layout designers. A node in the graph corresponds to a junction between two portions
of route or between two brackets. Edges represent portions of routes or brackets. Nodes said
to be primal are placed at the front of each terminal and secondary nodes are created between
each pair of primal nodes with perpendicular directions. Then, an edge is added in the skeleton
graph between a node and its closest neighbour. Finally, the shortest pipe routes are computed
using a MILP formulation or DIKJSTRA’s algorithm.

2.2.4 Limitations

Graph-based approaches are widely used to solve the Pipe Routing Problem (PRP) because they
simplify many constraints like conflict avoidance using discretisation. While the Cell Decom-
position Approach discretise the environment and the pipes, algorithms based on the Skeleton
Approach reduce the possible solutions to a finite set. Nevertheless, in both cases, these methods
lead to sub-optimal solutions in the continuous space, which can be restrictive in some industrial
situations.

Furthermore, existing graph-based methods assume that pipes have circular or square sec-
tions. As a consequence, a pipe is viewed as a succession of regular cells in CDA or as a succession
of segments in SkA without considering the pipe cross-section orientation along the route, even
if this is necessary with rectangular cross-sections like in WR.
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2.3 Line Search Algorithms

2.3.1 Principle

Another way to route pipes in a continuous environment is to use Line Search Algorithms (LSAs),
also called Escape Algorithms. This technique, introduced by MIKAMI [65] and HIGHTOWER
[40], alternatively extends lines from the origin and destination points using a set of directions
and repeats this extension each time a line intersects an obstacle or a boundary, as illustrated on
Figure 2.11a. The algorithm terminates as soon as a line from the origin tree meets one coming
from the destination (see Figure 2.11b).

(a) Extension. (b) Termination.

Figure 2.11 – Line Search Algorithm.

This method is particularly adapted to VLSI since it is able to provide paths in a continuous
plane. It can be run in linear time and consumes less memory-space in comparison with MRAs
because it requires to store lines defined by three coordinates rather than working on a grid.
Moreover, origin and destination points do not need to be placed on discretised positions, which
avoids precision issues. However, the LSA does not guarantee to provide a solution, even if one
exists.

2.3.2 Combination with Maze Routing Algorithms

To remedy this drawback, several works proposed to combine the speed of LSAs with the com-
pleteness of MRAs. For instance, in [87], SOUKUP performs a LSA towards the destination and,
as soon as an obstacle is encountered, LEE’s algorithm is applied to circumvent it. Then, the
LSA is resumed and explores the space like depth-first search does. This approach has been
extended to deal with a 3D-space composed of several plane layers [48] or to consider preferential
routing areas like in plant layout [84, 85].

ZHU [104] introduced a similar idea to improve the quality of solutions provided by CDAs.
It consists in applying a CDA to define a routing channel and then computing the detailed
route inside the channel using a projection procedure close to LSA. Before routing a new pipe,
the cells are subdivided around already routed pipes. In case of infeasibility, some routes are
backtracked and a mechanism of route protection allows to keep the best routes by preventing
them from backtracking.

2.3.3 Limitations

The LSA allows dealing with non orthogonal bends but it does not take into account the orien-
tation of pipe sections, which is required in the case of WR. Indeed, the waveguide must reach
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2.4. PARAMETRIC MODELS 23

the destination with the right orientation, that is to say with the right angular position of the
section around the neutral fibre followed by the barycentre of the section along the pipe. This
is not possible with LSAs which only consider the centerline.

2.4 Parametric Models

2.4.1 Principle

The last family of routing methods gathers algorithms based on a parametric description of
pipes. Such representations make it possible to provide solutions in a continuous space taking
complex design constraints into account, like minimal segment length, bend radius or angles
restricted to a catalogue.

2.4.2 Representation as a polyline

Figure 2.12 – A parametric model of
a pipe.

A pipe can be defined by its segment lengths and the se-
quence of angles between the successive segments, as il-
lustrated on Figure 2.12. From this model, routing can
be solved with Mathematical Programming techniques. In
[64], a route is computed using a Constraint Programming
formulation with bend positions in a continuous space as
variables. Conflicts with obstacles are avoided through
non-overlapping constraints between each pipe segment
and obstacles. To reduce the high number of these con-
straints, obstacles are gathered into clusters.

A polyline representation of pipes may also be used in a second routing step in order to
improve the solution quality. For instance, VOGEL [98] starts from a reference route provided
by DIKJSTRA’s algorithm in a grid decomposition of the routing space, and manipulates it
adding, removing and/or changing bends using a simulated annealing optimisation scheme.

2.4.3 Representation as blocks

Another possibility consists in modelling a pipe as a set of parallelepipeds that correspond to the
volume occupied by the pipe in the routing space, as shown on Figure 2.13. In this case, pipe
routing can be addressed simultaneously with component positioning in the spatial packaging
problem. SAKTI [83] solves it with a CP formulation that ensures the succession of connector
boxes through minimal shared surfaces.

(a) Euclidean geometry. (b) Taxicab geometry.

Figure 2.13 – A solution to the spatial packaging problem.

Other methods discretise the set of possible physical pipe components and build pipes it-
eratively by adding components one by one from a catalogue containing bends and straight
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sections of fixed length [31]. However, this method can fail to find feasible solutions since it may
be impossible to reach the target with the parts of the catalogue.

2.4.4 Pattern routing

Last, several approaches construct pipes using predefined patterns with numerical parameters.
In [43], authors address the multiple pipe routing problem with a Genetic Algorithm where
operators modify a pipe by changing its pattern of generation, that is to say its bend combination,
and by increasing or decreasing the lengths of its segments. In this paper, the generated patterns
contain up to 5 bends.

PARK [71] proposed a two-step approach to automate routing in a ship engine room. First,
candidate routes are provided by a cell generation method based on routing patterns. The
routing cells are adapted to the environment and routes are determined during the generation
using basic patterns (Figure 2.14a), obstacle avoidance patterns (Figure 2.14b) and connection
patterns (Figure 2.14c) inspired from designer experience. Then, a tree search allows selecting
the best route for a pipe among several candidates considering additional constraints evaluated
using a fitness function.

(a) Basic patterns. (b) Obstacle avoidance patterns.

(c) Connection patterns.

Figure 2.14 – Routing patterns.

2.5 Motivations of contributions

Most of the previous methods rely on the classical assumptions that the pipe has a circular
section, has axis-parallel segments and/or uses orthogonal bends only. These hypotheses are
not acceptable for the design of waveguides in a telecommunication satellite for several reasons.
Indeed, a satellite payload generally contains many components which make the routing space
congested and non orthogonal bends are precious to save space. Moreover, a waveguide is a pipe
with a rectangular section so the orientation of its cross-section must be taken into account along
the route in order to reach the destination with the right configuration. Furthermore, waveguide
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routing approaches proposed by BESSAIH [9] ignore several aspects of waveguide design like
the usage of standard pieces from a predefined catalogue or the bend radius that is necessary
to change the waveguide orientation. For these reasons, no method from the literature can
be reused to solve the Waveguide Routing Problem in a sufficiently detailed manner to avoid
solution modifications by designers. In this purpose, this thesis introduces new pipe routing
techniques that address the three following challenges:

• optimize pipe cost in a 3D continuous routing space;

• use orthogonal and/or non orthogonal bends from a catalogue;

• take into account unsymmetrical pipe sections.

We consider the routing of a single pipe only. In an industrial context, such a routing problem
must be solved in a few seconds in order to ensure quick iterations during the design phase. The
extended problem which deals with several pipes is left for future work.
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Chapter 3

State of the art about Search
Algorithms

This thesis proposes formulations of the Waveguide Routing Problem as search problems that
are a specific type of computational problems (meaning that a computer might be able to solve
them). A search problem is defined by a search space S, an initial state sori., a boolean goal test
referred to as isGoal (s) which checks whether a state s ∈ S is a target state, and a successor
function referred to as successors (s), also called neighbourhood or transition model, which maps
each state to a set of possible action-successor pairs. The objective of a search problem is to
find a sequence of transitions, that is to say a path in search space S, between the initial state
sori. and a goal state respecting the transition model.

Algorithms that solve this kind of problems are called Search Algorithms (SAs) and are one
of the primary methods in Artificial Intelligence (AI). They explore search space S in order to
find optimal solutions, or good solutions at least, according to a criterion. This criterion is
classically defined by additive action costs γ (s, a, s′) for applying action a ∈ A from state s ∈ S
leading to state s′ ∈ S, so each path in S can be mapped to a numeric cost in R+ to minimise.
These algorithms have many application fields. For instance, they are widely used in robotics
[62] or in video games for dynamic pathfinding [57].

The efficiency of SAs can be compared through four essential properties: completeness,
optimality, time complexity, and space complexity. An algorithm is said to be complete if it
guarantees to return a solution if any exists. If the solution returned is guaranteed to be the best
among all other solutions according to the criterion, then the algorithm is optimal. Last, the
worst-case time complexity describes the maximum computing time needed for an algorithm to
complete its task, while the worst-case space complexity is a measure of the maximum memory
space required at any point during the search.

Generally, SAs are divided into two families detailed below: uninformed and informed search
algorithms. Since a state cannot be generated twice in our application (see Chapter 6 and
Chapter 10), the reader should note that the versions of the algorithms presented in what follows
do not consider the common issue of avoiding duplicate states (typically, no data structure of
already visited states is maintained). Moreover, the complexities exposed here consider searching
in an infinite graph.

3.1 Uninformed Search Algorithms

Uninformed Search Algorithms (USAs) do not use any additional knowledge about search space
S, such as the closeness to the goal. They operate a brute-force search considering only the
initial state sori., the transition model successors (s), and the goal test isGoal (s). For these
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28 CHAPTER 3. STATE OF THE ART ABOUT SEARCH ALGORITHMS

reasons, they are also called Blind Search Algorithms. The main types of USAs are presented
below.

3.1.1 Breadth-First Search

Breadth-First Search (BrFS) is a simple algorithm for searching. It systematically explores the
states of search space S that are reachable from initial state sori.. To do so, the algorithm
expands a boundary between discovered and undiscovered states uniformly across the breadth
of the boundary. In other words, it discovers all states at level k, which are states that can be
reached by applying k actions from sori., before discovering any state at level k + 1 [19]. BrFS
is detailed in Algorithm 1 and can be efficiently implemented using a queue (First-In First-Out
data structure). The algorithm is complete, even if the search space is not finite, but it is
optimal only if all action costs are equal. Its time and space complexities are O

(
bd
)
where d

is the depth of the shallowest goal state and b is the branching factor or, in other words, the
mean number of successors for the states in S. The space requirement of BrFS search is its most
critical drawback. BrFS was first used in 1959 by MOORE [66] to find paths in mazes. LEE
also independently applied the same algorithm in 1961 for wire routing on circuit boards [59] as
cited in Chapter 2.

Algorithm 1: Breadth-First Search
Input:
• Initial state: sori.
• Neighbourhood: successors
• Goal predicate: isGoal

1 Boundary ← [sori.]
2 while Boundary 6= ∅ do
3 Dequeue state s from Boundary
4 if isGoal (s) then
5 return s

6 for (a, s′) ∈ successors (s) do
7 Enqueue state s′ into Boundary

8 return NOT_FOUND

3.1.2 Depth-First Search

Another approach, called Depth-First Search (DFS), consists in always exploring a descendant
of the most recently discovered state that still has unexplored actions until a goal state is reached
or until all states have been discovered. Each time all actions of a state have been explored, the
algorithm backtracks to the exploration of its parent’s actions [20]. A recursive version of DFS
is detailed in Algorithm 2.

The time complexity of the algorithm is O
(
bd
)
where d is the length of the longest path

in the search space. However, its space complexity is only O (bd) because only the states on
the current path (from the initial state sori. to the current state s) and their successors must
be stored. So, it clearly uses less memory than BrFS. Nevertheless, DFS is not complete if the
search space S is infinite because it can get lost in parts of S where there is no goal state and
never terminate. Morever, it is non-optimal since it can generate solution paths with a high cost
to reach a goal state. It has been widely used since the late 1950’s, especially in AI programs.
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Algorithm 2: Depth-First Search
Input:
• Initial state: sori.
• Neighbourhood: successors
• Goal predicate: isGoal

1 return depthF irstSearch (sori.)
Function: depthF irstSearch (s)
Arguments:

• Current state: s

1 if isGoal (s) then
2 return []
3 for (a, s′) ∈ successors (s) do
4 Path← depthF irstSearch (s′)
5 if Path 6= NOT_FOUND then
6 Push action a in Path
7 return Path

8 return NOT_FOUND

3.1.3 Depth-First Iterative Deepening Search

DFS’s space-efficiency and BrFS’s completeness have been combined by KORF in 1985 [58] with
the Depth-First Iterative Deepening Search (DFID). The principle simply consists in performing
successive DFS with a limited depth. First, a DFS is performed up to a maximal depth of 1, then
the expanded states are discarded and a DFS is performed again with an incremented maximal
depth. This process continues until a goal state is reached. So, DFID expands all level k states
before expanding states at level k+ 1, like BrFS. This way, it ensures to find the shortest-length
solution, if it exists, and this solution will be optimal if all action costs are equal. Even if DFID
seems to waste time visiting states multiple times because of restarts, its running time has been
shown to be asymptotically in O

(
bd
)
, where d is the depth of the shallowest goal state [58].

Indeed, most states are in the bottom level. Moreover, like DFS, its space complexity is only
O (bd). DFID can be implemented the same way as Iterative Deepening A* Search (IDA*),
which is introduced later in Section 3.2.2, by using a zero heuristic h (s) = 0, for any state
s ∈ S, and a unit action cost function γ (s, a, s′) = 1, for any action a ∈ A leading from s ∈ S
to state s′ ∈ S (see Algorithm 4).

3.1.4 Uniform Cost Search

It also possible to explore search space S by always expanding the state with the lowest cost
among the ones discovered. This complete approach, called Uniform Cost Search (UCS), is a
generalisation of the well known DIJKSTRA’s algorithm [24] to infinite search spaces, where all
states cannot be enumerated and stored in memory. By definition, the first solution found using
UCS is optimal. Its time and space complexities have been proved to be O

(
b1+
⌊
C∗
ε

⌋)
, where

C∗ is the cost of an optimal solution and ε is a lower bound on the action costs [81]. It appears
that UCS is a particular case of Best-First Search (BFS), described in Section 3.2.1, and its
implementation also follows Algorithm 3 using a zero heuristic h (s) = 0 for all s ∈ S.
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3.1.5 Bi-Directional Search

When there is a single explicit goal state and when actions have inverses, it is possible to apply
Bi-Directional Search (BDS) [75]. However, in many cases, there are several possible goal states
and, even if paths built by backward chaining can be easily defined, the matching between
forward and backward states is not always obvious. For these reasons, BDS is not considered
here.

3.2 Informed Search Algorithms

Unlike USAs, Informed Search Algorithms (ISAs) use available information from the specified
problem and domain knowledge to guide the exploration of search space S. Generally, this
information is translated as a heuristic function h (s) that evaluates the closeness of a state
s ∈ S to the goal. So these algorithms are also called Heuristic Search. They are clearly more
efficient than USAs in terms of resolution speed and, for this reason, they are widely used in AI.
The main families of ISAs are presented in this section.

3.2.1 Best-First Search

The first major family of ISAs, called Best-First Search (BFS), consists in expanding at each
iteration the most promising state according to an evaluation function f . Value f (s) is an
estimation of the cost to reach a goal state from the initial state sori. through state s ∈ S. BFS is
detailed in Algorithm 3 and can be efficiently implemented using a priority queue called open list
that sorts states according to their evaluation. It is a complete algorithm. Its time complexity
depends on the evaluation and/or heuristic functions but the worst-case time complexity is
O
(
bd
)
(if a solution exists). Since it stores all generated states in memory, its space complexity

is O
(
bd
)
which is one of the major drawbacks of BFS.

Algorithm 3: Best-First Search
Input:
• Initial state: sori.
• Neighbourhood: successors
• Goal predicate: isGoal
• Action cost: γ
• Evaluation: f (with optional heuristic h)

1 OpenList← [sori.]
2 while OpenList 6= ∅ do
3 Remove state s with the smallest value f (s) from OpenList
4 if isGoal (s) then
5 return s

6 for (a, s′) ∈ successors (s) do
7 g (s′)← g (s) + γ (s, a, s′)
8 Add s′ in OpenList with value f (s)

9 return NOT_FOUND

In most cases, the evaluation f (s) depends on the best known cost to reach state s from the
initial state, referred to as g (s), and/or on a heuristic value h (s) that estimates the remaining
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cost to reach a goal state from s. BFS is optimal if f is non-decreasing with depth. The
traditional state evaluation function is f (s) = g (s) + h (s) and gives the well known A* Search
(A*) introduced by HART in [37] in cases where a state cannot be visited twice. If heuristic
h (s) is admissible, that is to say if it never overestimates the actual cost to reach a goal state
from state s, then A* is guaranteed to return an optimal solution. When heuristic h satisfies
the triangular inequality h (s) ≤ γ (s, a, s′) + h (s′) for any action a ∈ A leading from s ∈ S to
s′ ∈ S, the heuristic is said to be consistent. With a consistent heuristic, A* is optimal and
never expands states more than once in cases where states can be revisited [23]. In Weighted A*
Search (WA*), the heuristic contribution is accentuated by a weight ε ≥ 1 which tends to reduce
the number of expanded states to find a solution. The solution returned by WA* is guaranteed
to cost no more than ε times the optimal cost [74]. In the extreme case where f (s) = h (s) and
g is completely ignored, called Greedy Best-First Search (Greedy BFS), there is no upper bound
on the quality of the solution found [25].

Many sophisticated variants of BFS have been proposed in the literature. A widely used
idea is to reduce the size of the relevant search space by defining a subset of promising states
and expanding those states only. To do so, the A∗ε algorithm proposed by PEARL [72] uses the
open list sorted by evaluation value to select a subset of states to consider for expansion. This
subset, called focal list, keeps states such that f (s) < εf (smin) where smin is the state having
the minimal evaluation. Then, the focal list is sorted by depth and the state with a minimal
depth is expanded. Window A* Search also uses state depth to reduce the size of the open
list by pruning the current state if the deepest generated state is more than β times deeper
[1]. In [30], FURCY proposed the Multi-State Commitment k-Weighted A* Search (MSC-kwA*)
algorithm which also maintains a set of privileged states with a given size called commit list
[30]. At each iteration, k states from this list are expanded and their children are put back into
the commit list. As soon as the maximum size of the commit list is reached the worst states are
placed in a reserve list. These ones are used to refill the commit list when it is not full. Other
BFS approaches try to use WA* with weights larger than the user’s weight ε in order to reduce
the number of expanded states while guaranteeing that solutions satisfy the user’s upper bound
ε [94, 93]. Nevertheless, in the recent WILT’s study which compares various ISAs [99], WA*
and A∗ε are shown to be the most effective BFS approaches. More generally, BFS approaches
are competitive because of their completeness on problems where goal states cannot be reached
from all states.

In real world problems, resolution time is often limited. In these conditions, it may be
interesting to find a solution quickly and then continually work on improving it until time runs
out. A procedure following this idea is called an anytime algorithm. In this purpose, anytime
versions of some BFS approaches can be implemented. For instance, Anytime A* Search (ATA*)
proposed in [102] applies successive WA* with decreasing weights ε in order to improve the
solution found in the previous executions. LIKHACHEV went further and reused the information
of the previous WA* by identifying states having inconsistent evaluations each time weight is
decreased [62], resulting in the Anytime Repairing A* Search (ARA*).

As previously said, the main drawback of BFS is memory consumption because it requires
an exponential space to store the open list. Several variants have been introduced to tackle
this problem. The first kind of approaches limits the size of the open list and prunes the least
promising states as soon as there is no more available space, like MA* [15], SMA* [82], SMAG*
[49] and its revised version [101]. Another possibility is to not maintain the open list in memory.
To do so, the same states must be expanded multiple times, but the required space becomes
linear with respect to the solution length. Recursive Best-First Search (RBFS) proposed by
KORF applies this strategy through recursive calls using a local cost threshold that enables to
explore states in best-first order. IDA* presented in Section 3.2.2 is also an example of algorithm
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inspired by BFS that does not maintain an open list.

3.2.2 Iterative Deepening A* Search

Iterative Deepening A* Search (IDA*), introduced by KORF in [58], combines the idea of BFS
with the low space requirement of DFS. It does not store the open list and executes succes-
sive DFS, like in DFID, but prunes paths whose f -evaluations exceed a threshold. The initial
threshold is the f -value of the initial node. When the current DFS fails, it updates the boundary
to the smallest value that exceeded the previous threshold. IDA* repeats these steps until it
finds the optimal solution. Like RBFS, its main drawback is the expansion of the same states
multiple times. The process is detailed in Algorithm 4. It only requires to store the states of the
current path and their successors, so its space complexity only depends on the solution length
and is O (bd) like DFS. Similarly to BFS, its time complexity depends on the heuristic used
but is O

(
bd
)
in the worst-case. Several improvements of IDA* have been proposed, like the

exploitation of previously gained state information [77] or the on-line learning of the heuristic
[12].

3.2.3 Hill-Climbing

In Hill-Climbing (HC), actions are committed before the search has completed. Typically, basic
HC expands one state at a time starting from the initial state and selects only one child of the
current state for the next iteration. In Simple Hill-Climbing, the first state closer to the goal
is chosen, whereas in Steeple Ascent Hill-Climbing (SAHC) detailed in Algorithm 5 the closest
state among all neighbours is selected. Both do not make any effort to guarantee solution quality
or completeness. For this reason, HC seems to be extremely competitive in terms of runtime as
well as memory required (no information is stored). In fact, such an algorithm very often fail to
find a solution since it never backtracks on its decisions and therefore it can fall into areas with
no reachable solution, called dead-ends. Therefore, HC algorithms are not complete.

Furthermore, HC can also encounter local extrema where the evaluation of the current state
is better than the one of its neighbours. In this case, more sophisticated approaches called
Enforced Hill-Climbing (EHC) enforce the exploration of worse states in order to find a state
closer to the goal. To do so, Stochastic Hill-Climbing randomly selects a neighbour until a
new decreasing value is found, which might take a while. A better strategy, introduced by
HOFFMANN and NEBEL [41], consists in systematically exploring outwards using BrFS. As soon
as a state better than the current one is found, HC resumes its classic procedure.

Real-Time Search (RTS) can be seen as a kind of Hill-Climbing since actions are committed
before the search has completed. Although RTS algorithms are designed to satisfy time con-
straints to take actions in the real world, they can be used to quickly provide solutions to classic
search problems. With Local Search Space Learning Real-Time A* (LSS-LRTA*), KOENIG pro-
posed to search from the current state using A* for a fixed number of iterations called lookahead,
and to commit the best state of the frontier represented by the open list [57]. Then, DIKJSTRA’s
algorithm is performed to update the heuristic values (this step is not necessary when states
cannot be visited twice) before repeating the whole procedure until a goal state is reached or
until there is no more child to expand. More recently, improvements have been proposed on
LSS-LRTA*, especially to avoid dead-ends [21]. According to WILT’s study [99], LSS-LRTA*
outperforms other EHCs.
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Algorithm 4: Iterative Deepening A* Search
Input:
• Initial state: sori.
• Neighbourhood: successors
• Goal predicate: isGoal
• Action cost: γ
• Heuristic: h

1 Threshold← h (sori.)
2 Path← [sori.]
3 Loop
4 t← search (Path, 0, Threshold)
5 if t = FOUND then
6 return (Path, Threshold)
7 if t =∞ then
8 return NOT_FOUND
9 Threshold← t

Function: search (Path, g, Threshold)
Arguments:

• Current path: Path
• Cost to reach the current state: g
• Current threshold: Threshold

1 s← Path.getLast ()
2 f (s)← g (s) + h (s)
3 if f (s) > Threshold then
4 return f (s)
5 if isGoal (s) then
6 return FOUND

7 min←∞
8 for s′ ∈ successors (s) do
9 if s′ /∈ Path then

10 Push state s′ in Path
11 t← search (Path, g + γ (s, s′) , Threshold)
12 if t = FOUND then
13 return FOUND

14 if t < min then
15 min← t

16 Remove last state from Path

17 return min
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Algorithm 5: Steeple Ascent Hill-Climbing
Input:
• Initial state: sori.
• Neighbourhood: successors
• Goal predicate: isGoal
• Action cost: γ
• Evaluation: f (with optional heuristic h)

1 scur. ← sori.
2 fcur. ←∞
3 while scur. 6= ∅ do
4 if isGoal (scur.) then
5 return scur.

6 scur. ← ∅
7 sbest ← ∅
8 fbest ←∞
9 for (a, s′) ∈ successors (s) do

10 g (s′)← g (s) + γ (s, a, s′)
11 if f (s′) < fbest then
12 sbest ← s′

13 fbest ← f (s′)

14 if fbest < fcur. then
15 scur. ← sbest
16 fcur. ← fbest

17 return NOT_FOUND
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3.2.4 Beam Search

The last ISA family considered here is Beam Search (BS). Two kinds of BSs can be distinguished.
First, Best-First Beam Search (BF-BS) performs a classic Best-First Search except that the open
list has a maximal size [78]. As soon as the size bound is reached, the extra states of lowest quality
are removed from the open list. However, states from different depths may be in competition
in BF-BS. Shallow states may be advantaged by an admissible heuristic, which ensures that
evaluation values f (s) are non-decreasing with depth, although deeper states closer to the goal
should be added in the beam instead. It results that BF-BS performs poorly in comparison with
Breadth-First Beam Search (BrF-BS), the other type of BSs. This other approach performs
a Breadth-First Search except that at each depth only a fixed number of states W , called
beamwidth, are expanded while the rest of the states is pruned [10]. A simple implementation of
BrF-BS is presented in Algorithm 6. It uses a priority queue OpenList to sort the neighbours
at a given depth by order of evaluation. Since the size of a layer is limited to W , the maximal
number of states stored at each iteration corresponds to the maximal size of the open list (in
other words, it corresponds to the maximal number of neighbours for a layer) and is O (bW ).
So beamwidth W allows tuning the amount of memory required by BrF-BS. Moreover, if there
are many paths to reach the goal, BrF-BS only considers the W most promising ones. When
beamwidth W increases, less promising paths are also considered, which makes it possible to
find shallower but potentially more expensive solutions. Last, a larger beam also increases the
algorithm runtime because there are more neighbours to enumerate for each layer.

Because of the arbitrary and inadmissible pruning of states, BSs are not complete. However,
several variants have been proposed to adapt BrF-BS into complete and anytime algorithms.
Typically, it is possible to restart BrF-BS with a wider beam if the previous execution failed, like
Complete Anytime Beam Search introduced in [100]. A better idea is to include backtracking,
which has been proposed with Beam-Stack Search (BSS) in [103] and Beam search Using Limited
discrepancy Backtracking (BULB) in [29]. In practice, a backtrack is translated by selecting
another slice of W states rather the W most promising ones to form a layer. To do so, BULB
uses the principle of limited discrepancy introduced by HARVEY [38] rather than chronologically
backtracking to the parent on the current layer, like Depth-First Beam Search does. This
principle consists in making decisions that do not follow the heuristic, called discrepancies, at
the top of the search tree and iteratively increasing the number of discrepancies while no solution
is found.

In WILT’s study [99], BSs are shown to be more competitive than BFS in massive search
spaces, even if BFS stays more efficient on problems where the goal is not reachable from any
state. Last, if the solution must be found within a time limit, BrF-BS is generally preferred
to complete BSs because these ones, like BULB and BSS, also require a wide beam to find
solutions.
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Algorithm 6: Breadth-First Beam Search
Input:
• Beamwidth: W
• Initial state: sori.
• Neighbourhood: successors
• Goal predicate: isGoal
• Action cost: γ
• Evaluation: f (with optional heuristic h)

1 Layer ← [sori.]
2 while Layer 6= ∅ do
3 OpenList← ∅
4 for s ∈ Layer do
5 if isGoal (s) then
6 return s

7 for (a, s′) ∈ successors (s) do
8 g (s′)← g (s) + γ (s, a, s′)
9 Add state s in OpenList with value f (s′)

10 Layer ← ∅
11 k ← 1
12 while OpenList 6= ∅ and k ≤W do
13 Remove s with the smallest f (s) value from OpenList
14 Add state s in Layer
15 k ← k + 1

16 return NOT_FOUND
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Part II

Waveguide Routing in Free Space
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Chapter 4

Free Waveguide Routing Problem

This chapter presents the Free Waveguide Routing Problem (FWRP) which is an optimisation
problem consisting in routing a single waveguide in a three-dimensional space free from any
obstacle. First, the modelling of a waveguide for the Waveguide Routing Problem (WRP) is
presented in Section 4.1 with a generic model usable for any kind of pipe and a simplified model
for the WRP. Then, the formalisation of the FWRP is introduced in Section 4.2 and describes
the constraints that the waveguide must satisfy as well as the criterion assessing its quality.

4.1 Modelling of a waveguide

The first step in the formalisation of the WRP consists in modelling a waveguide in the three-
dimensional canonical Euclidean space R3. As a reminder, the n-dimensional canonical Eu-
clidean space is the n-dimensional vector or affine real space, that means Rn, provided with the
canonical scalar product. A detailed description of any kind of pipe should allow designers to
validate its layout according to several aspects. In the case of a waveguide, they must check
that it fulfils its function in the RF-harness and that it satisfies some mechanical stress con-
straints. Furthermore, designers must reserve the space required by the waveguide inside the
satellite payload and provide the manufacturing requirements to place order with the waveguide
suppliers. To do so, the description should make the computation of the following elements easy:

• the input and output positions and orientations of the waveguide in order to ensure that
it is connecting the origin and destination ports;

• the volume occupied by the waveguide to check that it does not collide with any other
component of the satellite payload;

• the straight sections and the bends making up the waveguide.

4.1.1 Generic waveguide model

Let Π be the set of the waveguides (or pipes) in R3. Any waveguide π ∈ Π can be described by
the following three mathematical objects defined right after:

• a cross-section Sπ;

• a neutral fibre Fπ;

• an orientation function oπ.
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Definition 1: Cross-section
The cross-section of a waveguide π ∈ Π is a non-empty bounded polyhedron Sπ of
the two-dimensional canonical Euclidean space, that means a non-empty convex
polygon of R2 (see Figure 4.1).

−→ex

−→ey

(a) Square cross-section

−→ex

−→ey

(b) Rectangular cross-section

−→ex

−→ey

(c) Polygonal cross-section

Figure 4.1 – Examples of cross-sections.

As detailed in Chapter 2, in most application fields, the cross-section of the pipes is circu-
lar. This is generally the case for pipes which carry a liquid, like water or oil pipelines (see
Figure 4.2a). These cross-sections can be approximated by a square, like on Figure 4.1a, or a
more complex regular polygon depending on the required accuracy.

(a) Water pipeline parts. (b) Waveguide parts.

Figure 4.2 – Examples of pipe parts.

However, the are many kinds of pipes, like waveguides, with a rectangular cross-section (see
Figure 4.2b) or an even more complex one. Such a cross-section has the particularity to be
oriented, that means it does not have a centre of symmetry. Therefore, the design of this kind
of pipes requires to take the orientation of the cross-section into account.

Definition 2: Neutral fibre
The neutral fibre of a waveguide π ∈ Π is the curve Fπ described by the barycentre
of the cross-section Sπ along the waveguide as shown on Figure 4.3 on the facing
page.

In other words, the neutral fibre Fπ is the trajectory of waveguide π.
From a cross-section Sπ and a neutral fibre Fπ, the last element required to completely

describe a waveguide π ∈ Π is to define the orientation of the cross-section at each point P ∈ Fπ
of the neutral fibre.
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Fπ

Figure 4.3 – Example of neutral fibre Fπ (in blue) for a waveguide π ∈ Π.

Definition 3: Orientation
An orientation is an orthonormal basis o = (−→eo,x,−→eo,y,−→eo,z) of the canonical Eu-
clidean space R3. The set of orientations is referred to asO and oref is the reference
orientation in R3. Moreover, in what follows, Mo is the 3D rotation matrix which
expresses the orientation o in the reference orientation oref .

Definition 4: Orientation function
The orientation function of a waveguide π ∈ Π is the function oπ defined by:

oπ : Fπ → O
P 7→ oπ (P )

such that (see Figure 4.4):
• −−−−→eoπ(P ),z is tangential to the neutral fibre Fπ of waveguide π at point P ;

• the intersection between the plane of normal −−−−→eoπ(P ),z passing through point
P with the volume of waveguide π corresponds to cross-section Sπ expressed
in the frame

(
P,−−−−→eoπ(P ),x,

−−−−→eoπ(P ),y
)
of R2.

Fπ

P

−−−−→eoπ(P ),x

−−−−→eoπ(P ),y

−−−−→eoπ(P ),z

Figure 4.4 – Orientation oπ (P ) at a point P ∈ Fπ of a waveguide π ∈ Π.

When there is a discontinuity on the tangent of neutral fibre Fπ at a break point Pdisc. ∈ Fπ,
only the orientation after the break point is considered:

oπ (Pdisc.) = lim
P→P+

disc.

oπ (P )
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Definition 5: Configuration
A configuration is an orthonormal frame θ = (Pθ,−→eθ,x,−→eθ,y,−→eθ,z) of the canonical
Euclidean space R3 (see Figure 4.5). The set of configurations is referred to as Θ
and θref is the reference configuration in R3.

Definition 6: Configuration function
By analogy with the orientation function, the configuration function of a waveguide
π ∈ Π is the function θπ defined by:

θπ : Fπ → Θ
P 7→ θπ (P ) = (P, oπ (P ))

4.1.2 Simplified waveguide model

Pθ
−→eθ,x

−→eθ,y

−→eθ,z

Figure 4.5 – A configuration θ ∈ Θ.

In practice, engineers design waveguides as a succession
of straight sections and bends. Moreover, this succes-
sion also corresponds to the manufacturing process of
waveguides, as explained in Section 1.2.1. The previous
modelling of a waveguide can be simplified by defining
its straight sections and bends. To do so, the defini-
tions of a translation and a rotation of a configuration
are introduced.

Definition 7: Translation
A translation of length L ∈ R is the function trL defined by:

trL : Θ → Θ
θ = (P, o) 7→ (P + L · −→eo,z, o)

Definition 8: Rotation
A rotation of 3D matrix M is the function rotM defined by:

rotM : Θ → Θ
θ = (P, o) 7→ (P, o′)

where o′ is the orientation defined by the rotation matrix Mo′ = MMo.

Definition 9: Straight section
A straight section is a function u such that there is a positive real Lu ∈ R+, called
length of the straight section, which verifies (see Figure 4.6 on the next page):

u : Θ → Θ
θ 7→ u (θ) = trLu (θ)

The set of straight sections is referred to as U and, for a positive real L ∈ R+, uL
is the straight section of length L.
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For a straight section u ∈ U applied from a configuration θ ∈ Θ, such as θ = (P, o), the
following properties are verified:

• its neutral fibre, referred to as Fu,θ, is segment
[
P, Pu(θ)

]
;

• its orientation function, referred to as ou,θ, is constant with ou,θ (P ′) = o for any point P ′
on neutral fibre Fu,θ.

Lu

θ

u (θ)

Figure 4.6 – A straight section u ∈ U applied from configuration θ ∈ Θ.

Definition 10: Bend
A bend is a function b such that there is a positive real Lb ∈ R+, called half-length
of the bend, and a rotation matrix Mb which verify (see Figure 4.7):

b : Θ → Θ
θ 7→ b (θ) = trLb ◦ rotMb

◦ trLb (θ)

The set of bends is referred to as B.

Lb

Lb

θ
trLb ◦ rotMb

(θ)

b (θ)

αb

Figure 4.7 – A bend b ∈ B applied from configuration θ ∈ Θ.

In pratice, for a bend b ∈ B, rotation matrix Mb corresponds to a rotation around a canonical
axis, that means the axis −→x , −→y or −→z of the local frame. In the case of waveguides, the angle of
the rotation, referred to as αb, is never obtuse, what can be translated as:

αb ∈
[−π

2 ,
π

2

]
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αb

ρb

Lb

Figure 4.8 – Relation between radius ρb,
angle αb and half-length Lb.

This is mainly due to manufacturing constraints.
For instance, it is not possible to bend a straight
section with an obtuse angle in order to create a
formed bend. Furthermore, it is possible to define a
bend radius ρb ∈ R+ such that (see Figure 4.8):

Lb = ρb tan
(
αb
2

)
Then, for a bend b ∈ B applied from a config-

uration θ ∈ Θ, such that θ = (P, o) and o′ ∈ O
is the orientation defined by the rotation matrix
Mo′ = MbMo, the following properties are verified:

• its neutral fibre, referred to as Fb,θ, is the polyline
[
P, PtrLb (θ), Pb(θ)

]
;

• its orientation function, referred to as ob,θ, is piecewise constant with ob,θ (P ′) = o for any
point P ′ ∈

[
P, PtrLb (θ)

[
and ob,θ (P ′) = o′ for any point P ′ ∈

[
PtrLb (θ), Pb(θ)

]
.

From the previous definitions of straight sections and bends, the formalisation of a waveguide
can be simplified.

Definition 11: Waveguide
Let Nπ be a positive integer and Bcat. ⊂ B a subset of bends. A waveguide is
a couple π =

(
θori.π , σπ

)
made up with an origin configuration θori.π ∈ Θ and a

composition σπ alternating straight sections uπ,k ∈ U , for k ∈ J1, NπK, and bends
bπ,k ∈ Bcat., for k ∈ J1, Nπ − 1K (see Figure 4.9 on the facing page). In other
words, the composition σπ of waveguide π can be written as follows:

σπ = uπ,Nπ ◦ bπ,Nπ−1 ◦ uπ,Nπ−1 ◦ ... ◦ uπ,2 ◦ bπ,1 ◦ uπ,1

The set of waveguides using bend catalogue Bcat. (see Section 1.2.1) is referred to
as Π (Bcat.).

So, for a waveguide π ∈ Π, the following properties can be proved by induction:
• its neutral fibre Fπ is a polyline [Pπ,1, ..., Pπ,Nπ+1] composed of Nπ segments;

• its orientation function oπ is piecewise constant: for k ∈ J1, NπK, there is an orienta-
tion oπ,k ∈ O such that oπ (P ) = oπ,k for any point P ∈ [Pπ,k, Pπ,k+1[. By convention,
oπ (Pπ,Nπ+1) = oπ,Nπ .

Thus, the usage of this simplified definition of a waveguide consists in approximating the
neutral fibre of real waveguides, which can have curved parts, by a polyline such that the cross-
section orientation is constant along the segments. Moreover, the transition from an orientation
to the one of the next segment depends on the bend applied at the end of the first segment.

Definition 12: Orientation change
An orientation change is a tuple r =

(
o−r , o

+
r , br

)
where o−r , o+

r ∈ O are orientations
and br ∈ B is a bend which verifies:

o+
r = rotMbr

(
o−r
)

The set of orientation changes is referred to as R.
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Pπ,1
Pπ,2

Pπ,3
Pπ,4

θori.π

θdest.π

Figure 4.9 – A waveguide π ∈ Π.

In what follows, for a waveguide π ∈ Π, the following notations are used:

• by analogy with θori.π , the destination configuration of waveguide π is referred to as θdest.π

and satisfies:
θdest.π = σπ

(
θori.π

)
• `π,k is the length of the kth segment of the neutral fibre Fπ, that is [Pπ,k, Pπ,k+1], for
k ∈ J1, NπK;

• rπ,k is the orientation change applied at the end of the kth segment of the neutral fibre
Fπ, for k ∈ J1, Nπ − 1K.

4.2 Definition of the FWRP

The Free Waveguide Routing Problem (FWRP) consists in routing in a detailed manner a single
waveguide in a free three-dimensional space. In other words, the goal is to find a waveguide π ∈ Π
which connects an origin polyhedron Pori. to a destination polyhedron Pdest. without considering
any obstacle nor routing space restrictions. However, the solution waveguide π must satisfy the
specific constraints presented in Section 4.2.1 coming from the design and manufacturing rules
of the RF-harness (see Section 1.2.1). At the same time, the quality of waveguide π should be
as good as possible, which can be translated as the minimisation of the cost criterion defined in
Section 4.2.2. Finally, Section 4.2.3 sums up the constraints and criterion in order to formulate
the full FWRP problem.

4.2.1 Constraints

Connectivity

First of all, waveguide π ∈ Π must ensure the connection between its origin and destination
ports in order to fulfil its mission inside the RF-harness. To do so, the first and last points of
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its neutral fibre Fπ should be respectively contained in the convex polyhedrons Pori. and Pdest.,
which can be formulated as:

Pπ,1 ∈ Pori. (4.1)

Pπ,Nπ+1 ∈ Pdest. (4.2)

Using polyhedrons Pori. and Pdest. instead of fixed origin and destination points allows keeping
some flexibility in early design phases of the RF-harness. For instance, if a straight section can
connect the origin and destination ports with a small position error δ > 0, it can be relevant to
slightly move the origin or destination point instead of using a complex waveguide that contains
several bends or even a loop to compensate for the position error δ, as shown on Figure 4.10.

θori. θdest.

δ

(a) Without tolerance.

θori. θdest.

δ

(b) With tolerance.

Figure 4.10 – Tolerance δ > 0 on the destination position.

Furthermore, waveguide π has to respect the orientation of the cross-section at each end
to be plugged on the origin and destination ports. So, the orientation of the first segment of
waveguide π is restricted to a unique origin orientation oori., whereas at the destination there
exists a set of possible destination orientations Odest., either because the destination orientation
is still flexible or because some orientations are equivalent from a cross-section point of view
(see Figure 4.11). Thus, the orientation constraints which should be verified are:

oπ,1 = oori. (4.3)

oπ,Nπ ∈ Odest. (4.4)

−→ex

−→ey

−→ex

−→ey

Figure 4.11 – Example of equivalent orientations for a rectangular cross-section.

Bend catalogue

For the manufacturing and economical reasons explained in Section 1.2.1, all bends used in
waveguide π should be taken from a catalogue Bcat. ⊂ B. Recall that, in practice, waveguide
manufacturers generally provide catalogues which define the possible bends according to the
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cross-section Sπ (see Figure 4.12). Moreover, using a bend catalogue maximises the reuse of
each bend type. The catalogue constraint can be written as follows:

π ∈ Π (Bcat.) (4.5)

Figure 4.12 – A bend catalogue with 90◦-bends and 45◦-bends.

Maximum number of bends

Like in most Pipe Routing application fields (see Chapter 2), it is often profitable to minimise
the number of bends used in waveguide π. Indeed, bends generate additional radio-frequency
losses on the electromagnetic signal carried by the waveguide. Therefore, waveguide π has to
use a maximum number of segments NS ≥ 1 in order to limit the impact of bends on the quality
of the waveguide:

Nπ ≤ NS (4.6)

Minimum length of straight sections
Lmin

Figure 4.13 – Minimal straight length Lmin between
two bends.

As presented in Section 1.2.1, there are
two kinds of waveguide bends: the formed
bends and the machine ones. Both require
a straight section with minimal length
Lmin ∈ R+ between two successive bends,
as shown on Figure 4.13. For this reason,
any straight section between two bends of
waveguide π should respect the minimum
length Lmin given by manufacturers:

∀k ∈ J1, NπK Lmin ≤ Luπ,k (4.7)
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Global attachability

Figure 4.14 – An infeasible
waveguide.

As explained in Section 1.2.1, waveguide π must be fixed
on a panel of the satellite. However, when the bend cata-
logue contains non-orthogonal bends, there are some bend
combinations that systematically lead to segments with
unattachable orientations regardless of the wall on which
they are routed (see Figure 4.14). Such waveguides are
said to be infeasible and waveguide designers refrain using
them in order to satisfy the manufacturing and attacha-
bility constraints.

To avoid infeasible waveguides, the orientation of any
segment of waveguide π must have a globally attachable
orientation.

Definition 13: Global attachability
The set of globally attachable orientations is referred to as
Oint. ⊂ O and an orientation o ∈ O is said to be globally attachable if:

o ∈ Oint.

So, for waveguide π, the global attachability constraints can be translated as:

∀k ∈ J1, NπK oπ,k ∈ Oint. (4.8)

In practice, the set of globally attachable orientations depends only on the origin orientation
oori. of waveguide π. Indeed, one can ensure that waveguide π is feasible if all its segments have
an orientation oπ,k such that either −−−→eoπ,k,x or −−−→eoπ,k,y is orthogonal to −−−→eoori.,z, for k ∈ J1, NπK.
Thus, globally attachable orientations can be defined by:

Oint. =
{
o ∈ O |

(−→eo,x · −−−→eoori.,z = 0
)
∨
(−→eo,y · −−−→eoori.,z = 0

)}
(4.9)

Assumption 1:
Is is assumed that the origin orientation and the destination orientations are glob-
ally attachable:

oori. ∈ Oint. Odest. ⊆ Oint.

4.2.2 Criterion

The cost of waveguide π is formulated as a function γπ to be minimised. This cost can represent
several aspects of the RF-harness design, like manufacturing price or radio-frequency losses along
the waveguide. Generally, it depends on the length of waveguide π, given a linear cost µ ∈ R+,
and on the bends used in the waveguide, given that each bend b ∈ B has a unit cost γb ∈ R+.
The lower the cost γπ, the better the quality of waveguide π.
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Definition 14: Cost
The cost of a waveguide π ∈ Π is defined by:

γπ =
Nπ−1∑
k=1

γbπ,k + µ
Nπ∑
k=1

`π,k

where µ ∈ R+ is a linear cost and γb ∈ R+ is the unit cost of bend b ∈ B.

One way to interpret the unit cost γb of a bend b ∈ B relatively to the linear cost µ is that
it is preferable to use bend b if it allows reducing the total waveguide length by at least γb

µ .

4.2.3 Full FWRP model
To sum up, the FWRP is an optimisation problem that can be written as follows:

minimise γπ =
∑Nπ−1
k=1 γbπ,k + µ

∑Nπ
k=1 `π,k

subject to:
Pπ,1 ∈ Pori. Connectivity (position at origin)

Pπ,Nπ+1 ∈ Pdest. Connectivity (position at destination)
oπ,1 = oori. Connectivity (orientation at origin)

oπ,Nπ ∈ Odest. Connectivity (orientation at destination)
π ∈ Π (Bcat.) Bend catalogue
Nπ ≤ NS Maximum number of bends

Lmin ≤ Luπ,k ∀k ∈ J1, NπK Minimal length of straight sections
oπ,k ∈ Oint. ∀k ∈ J1, NπK Global attachability
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Chapter 5

Resolution of the FWRP using
Mixed Integer Linear Programming

The first approach explored to solve the FWRP is Mixed Integer Linear Programming (MILP).
It is an exact or complete method for combinatorial optimisation, that systematically explores
the search space and guarantees the optimality of the solution when it terminates. In order to
reduce the possible orientations of the waveguide segments to a finite set, the orientation space
O requires to be enumerated during a preprocessing step, detailed in Section 5.1. Then, it is
possible to formulate the FWRP as a MILP model presented in Section 5.2. The results of
experiments on test instances are shown in Section 5.3.

5.1 Input preprocessing

The formalisation of the FWRP as a MILP model requires variables characterising the vertices
of neutral fibre Fπ and the length and orientation of each of the NS possible segments of Fπ.
Intuitively, only a subset of orientations from O can be reached from the origin orientation oori.
using exactly k ∈ J1, NS − 1K bends from catalogue Bcat. and satisfying the global attachability
constraints defined by Oint.. So the first step to build a MILP model of the FWRP consists
in enumerating all reachable orientations in the form of a graph G (O∞,R∞) called kernel of
reachable orientations (see Section 5.1.1). Then, using minimal bend combinations introduced
in Section 5.1.2 to reach a destination orientation in Odest., it is possible to reduce the candidate
orientations for each segment by building an directed acyclic graph G

(
ONS1 ,RNS−1

1

)
called space

of candidate orientations (see Section 5.1.3).
In what follows, for a rotation matrix M , rotM refers indistinctly to the rotation of matrix

M in the configuration space Θ or in the orientation space O.

5.1.1 Kernel of reachable orientations

Definition 15: Reachable orientation
A reachable orientation is an orientation o ∈ Oint. which can be reached from the
origin orientation oori. using bends from catalogue Bcat., which can be written as:

∃k ∈ N ∃ (b1, ..., bk) ∈ Bk
cat. o = rotMbk

◦ ... ◦ rotMb1

(
oori.

)
The set of reachable orientations is referred to as O∞.
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Definition 16: Reachable orientation change
A reachable orientation change is an orientation change r ∈ R which verifies:

o−r ∈ O∞ o+
r ∈ O∞ br ∈ Bcat.

The set of reachable orientation changes is referred to as R∞.

By definition, if the instance of the FWRP has a solution, then at least one destination
orientation o ∈ Odest. is a reachable orientation, which can be formally expressed as:

∃o ∈ Odest. o ∈ O∞

Otherwise, there is no bend combination which allows reaching a destination orientation and
the FWRP has no solution.

Global attachability constraints introduced in Section 4.2.1 on page 48 to avoid infeasible
waveguides and ensure attachability are restrictive. It can be empirically shown that the set of
reachable orientations O∞ is finite (see Section 5.3.2 on page 64). In order to enumerate these
orientations, the graph G (O∞,R∞), called kernel of reachable orientations, is generated using
Algorithm 7. It successively applies bends until no more unknown orientation is generated.

Algorithm 7: Generate the kernel of reachable orientations G (O∞,R∞)
Input:
• Origin orientation: oori.

• Bend catalogue: Bcat.

• Global attachable orientations: Oint.

1 O∞ ←
{
oori.

}
2 OpenList←

{
oori.

}
3 while OpenList 6= ∅ do
4 Remove o from OpenList
5 for b ∈ Bcat. do
6 o′ ← rotMb

(o)
7 if o′ ∈ Oint. then
8 if o′ /∈ O∞ then
9 Add node o′ in O∞

10 Add node o′ in OpenList
11 Add edge (o, o′, b) in R∞

12 return G (O∞,R∞)

In the sections that follow, Rinc.∞ (o) and Rout.∞ (o) refer respectively to the incoming and
outgoing reachable orientation changes into/from a reachable orientation o ∈ O∞.

The generation of kernel G (O∞,R∞) is illustrated by a small example that will be reused
later. Let the globally attachable orientations be defined by Oint. = {o1, o2, o3, o4} and the bend
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catalogue by Bcat. = {b1, b2} (see Figure 5.1a) such that:

rotMb1
(o1) = o2

rotMb1
(o2) = o4

rotMb1
(o3) = o1

rotMb1
(o4) = o3

rotMb2
(o1) = o3

rotMb2
(o2) = o1

rotMb2
(o3) = o4

rotMb2
(o4) = o2

Figure 5.1b shows the kernel of reachable orientations G (O∞,R∞) generated for oori. = o1.

b1

b2

(a) Bend catalogue Bcat..

o2

o1 o4

o3

b 1

b 2

b1

b2

b1

b2

b 1

b 2

(b) Reachable orientation kernel G (O∞,R∞).

Figure 5.1 – Reachable orientation kernel G (O∞,R∞) generated by Algorithm 7.

The global attachability constraints are relative to the origin orientation oori. (see Section
4.2.1). For an efficient implementation, the reachable orientation kernel G (O∞,R∞) can be
computed only once for a given catalogue Bcat. and expressed relatively to the reference orien-
tation oref given global attachability constraints Oint.. Then, the kernel G (O∞,R∞) dedicated
to an instance of the FWRP using the same bend catalogue and the same global attachability
constraints is deduced by applying a change of basis from oori. to oref to all the orientations
of the reference reachable orientation kernel. This way, the reuse of the results from previous
instances is maximised.

5.1.2 Minimal bend combinations

o2

1

o12 o4 0

o3

1

b 1

b 2

b1

b2

b1

b2

b 1

b 2

Figure 5.2 – Minimal number of bends to
reach a destination orientation.

From the reachable orientation kernel G (O∞,R∞),
it is possible to evaluate the minimal bend combi-
nation to reach a destination orientation from any
reachable orientation o ∈ O∞ given a cost function
γ (r) defined for any reachable orientation change
r ∈ R∞. To do this, Algorithm 8 on the next page
applies DIJKSTRA’s algorithm [24] from the destina-
tion orientations of Odest. to evaluate the minimal
costs γ (o) needed to reach them from any orienta-
tion o ∈ O∞. So, the minimal numbers of bends
to reach a destination orientation, referred to as
minBends (o) for o ∈ O∞, are computed using Al-
gorithm 8 with γ (r) = 1 for all r ∈ R∞, as illus-
trated on Figure 5.2 with Odest. = {o4}.
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Algorithm 8: Evaluate the minimal costs γ (o) to reach a destination orientation
Input:
• Kernel of reachable orientations: G (O∞,R∞)

• Cost function: γ (o) ∀o ∈ O∞

1 OpenList← ∅
2 for o ∈ Odest. do
3 γ (o)← 0
4 Add node o in OpenList with value γ (o)
5 while OpenList 6= ∅ do
6 Remove o with the smallest value γ (o) from OpenList
7 for r ∈ Rinc.∞ (o) do
8 if o−r was not visited before then
9 γ (o−r )←∞

10 if γ (o−r ) > γ
(
o+
r

)
+ γ (r) then

11 γ (o−r )← γ
(
o+
r

)
+ γ (r)

12 Add node o−r in OpenList with value γ (o−r )

13 return γ (o) for o ∈ O∞

5.1.3 Space of candidate orientations

The candidate orientations for each of the NS possible segments of neutral fibre Fπ are the
reachable orientations which are on a path between the origin and destination orientations in
kernel G (O∞,R∞). These paths should have a maximal length ofNS−1 to satisfy the constraint
on the maximum number of bends (see Section 4.2.1 on page 47).

Definition 17: Candidate orientation
Let k be a positive integer in J1, NSK. A k-candidate orientation is a reachable
orientation o ∈ O∞ which can be reached using exactly k−1 bends from catalogue
Bcat. and from which a destination orientation in Odest. can be reached using at
most NS − k bends from catalogue Bcat., which can be written as:∃ (b1, ..., bk−1) ∈ Bk−1

cat. | o = rotMbk−1
◦ ... ◦ rotMb1

(
oori.

)
minBends (o) ≤ NS − k

The set of k-candidate orientations is referred to as Ok.

Definition 18: Candidate orientation change
Let k be a positive integer in J1, NS − 1K. A k-candidate orientation change is a
reachable orientation change r ∈ R which verifies:

o−r ∈ Ok o+
r ∈ Ok+1

The set of k-candidate orientation changes is referred to as Rk.
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In the following sections, Rinc.k (o) and Rout.k (o) refer respectively to the incoming and out-
going candidate orientation changes into/from a candidate orientation o ∈ Ok, respectively for
k ∈ J2, NSK and k ∈ J1, NS − 1K. The space of candidate orientations can be completely de-
scribed by enumerating the k-candidate orientations Ok, for k ∈ J1, NSK, and the k-candidate
orientation changes Rk, for k ∈ J1, NS − 1K. It can be represented by the directed acyclic graph
G
(
ONS1 ,RNS−1

1

)
shown on Figure 5.3.

o2
1 · · · ok1 ok+1

1 · · · oNS−1
1

...
...

...
... odest.1

oori. o2
i · · · oki ok+1

i
· · · oNS−1

i
...

...
...

...
... odest.i

o2
i′ · · · oki′ ok+1

i′
· · · odest.i

...

...
...

...
...

O1 R1 O2 · · · Ok Rk Ok+1 · · · ONS−1 RNS−1 ONS

b 1

bi

b
i ′

b1

b
i

b 1

bi′

b1

bi

bneu
t.

Figure 5.3 – Form of the space of candidate orientations G
(
ONS1 ,RNS−1

1

)
.

Algorithm 9 on the next page recursively generates Ok+1 and Rk+1 by applying the orienta-
tion changes of kernel G (O∞,R∞) from each k-candidate orientation of Ok only if the distance
from the resulting orientation to a destination orientation is lower than the number of remaining
bends. O1 is initialised with the origin orientation oori.. Furthermore, if a destination orientation
odest. ∈ Odest. is a k-candidate orientation and is contained in Ok, a neutral bend which does not
change the orientation is applied in order to maintain the orientation odest. in the k+1-candidate
orientations of Ok+1. Using this trick, it is possible to solve a unique MILP model to get the
optimal waveguide using up to NS−1 bends from catalogue Bcat., rather than solving NS MILP
models to get the optimal solutions using exactly k bends, for k ∈ J0, NS − 1K.

Definition 19: Neutral bend
A neutral bend is a bend bneut. ∈ B with a zero cost, which does not change the
orientation and merges the length limitations of the previous and next segments.
In other words, bneut. satisfies:

rotMbneut.
= Id γbneut. = 0 Lbneut. = −L

min

2

Figure 5.4 on the following page shows the candidate orientation space G
(
ONS1 ,RNS−1

1

)
for

the previous example with NS = 3.
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Algorithm 9: Generate the free candidate orientation space G
(
ONS1 ,RNS−1

1

)
Input:
• Origin orientation: oori.

• Maximal number of segments: NS

• Kernel of reachable orientations: G (O∞,R∞)

• Minimal number of bends to reach a destination orientation: minBends (o) o ∈ O∞

1 O1 ←
{
oori.

}
2 for k ∈ J1, NS − 1K do
3 Ok+1 ← ∅
4 Rk ← ∅
5 for o ∈ Ok do
6 for r ∈ Rout.∞ (o) do
7 if minBends

(
o+
r

)
≤ NS − k then

8 Add node o+
r in Ok+1

9 Add edge r in Rk

10 if o ∈ Odest. then
11 Add node o in Ok+1
12 Add edge (o, o, bneut.) in Rk

13 return G
(
ONS1 ,RNS−1

1

)

o2

o1 o4 o4

o3

O1 R1 O2 R2 O3 R3 O4

b1

b2

b1

b2

bneut.

Figure 5.4 – Space of candidate orientations G
(
ONS1 ,RNS−1

1

)
generated by Algorithm 9.

5.2 MILP formulation

The FWRP can be formulated as a decision problem which consists in choosing the bends of
waveguide π among the bend catalogue Bcat. and the neutral bend bneut., and defining the lengths
of the straight sections between these bends. The cost γπ of waveguide π must be as low as
possible. In what follows, it is assumed that the reachable orientation space G

(
ONS1 ,RNS−1

1

)
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is not empty. This section presents the MILP model of the FWRP and details its criterion and
its constraints.

5.2.1 Trivial case with NS = 1
Model
When the maximum number of segments NS is equal to 1, the waveguide contains only one
straight section uπ,1 of length `1, as shown on Figure 5.5. The FWRP has a solution only if
oori. ∈ Odest. because no bend can be applied. If this statement is true, the FWRP can be solved
with the following simple LP problem, referred to as LP0, which minimises length `1 and places
the origin p1 and the destination p2 of the neutral fibre Fπ:

minimise µ`1 (5.1)
subject to:
p1 ∈ Pori. (5.2)
p2 ∈ Pdest. (5.3)
`1 ≥ Lmin (5.4)

−−→p1p2 = `1
−−−−→eoori.,z (5.5)

`1 ∈ R+ (5.6)
p1, p2 ∈ R3 (5.7)

Constraints 5.2 and 5.3 respectively state that neutral fibre Fπ must start from the origin
polyhedron and reach the destination polyhedron. Such an inclusion constraint within a convex
polyhedron can be easily expressed as a set of linear constraints. Constraint 5.4 ensures that
the length of the straight section satisfies the minimum length Lmin. Constraint 5.5 defines the
coordinates of the second point of the neutral fibre Fπ from the coordinates of the first point,
the origin orientation oori., and the length of the segment (see Figure 5.5).

θori.

θdest.

`1

Figure 5.5 – Trivial case with NS = 1.

Solutions

If (`∗1, p∗1, p∗2) is a solution of LP0, then an optimal solution of the FWRP is the waveguide
π∗ defined by the origin configuration θori.π∗ =

(
p∗1, o

ori.
)
and the composition σπ∗ = u`∗1 . The

destination configuration of this waveguide is then θdest.π∗ =
(
p∗2, o

ori.
)
.

On the opposite, when LP0 does not have a solution, the FWRP does not have a solution
either.

5.2.2 General case with NS ≥ 2
Model

In the general case with NS ≥ 2, the FWRP cannot be written as a linear program. Indeed,
integer variables must be introduced to choose the bends of waveguide π. So, the FWRP can
be formulated as a MILP model that contains three kinds of variables:
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• bend variables xk,r such that, for k ∈ J1, NS − 1K and r ∈ Rk, integer variable xk,r takes
value 1 if orientation change r is applied at the end point of the kth segment of the neutral
fibre (that means the kth and k+ 1th segments have orientations o−r and o+

r respectively),
0 otherwise;

• length variables `k such that, for k ∈ J1, NSK, real variable `k is the length of the kth
segment of the neutral fibre;

• position variables pk = (pk,x, pk,y, pk,z) such that, for k ∈ J1, NS + 1K, real variable pk,x
(respectively pk,y and pk,z) is the x-coordinate (respectively y-coordinate and z-coordinate)
of the kth point of the neutral fibre.

With these decision variables, a MILP formulation of the FWRP can be written as follows:

minimise
NS−1∑
k=1

∑
r∈Rk

γbrxk,r + µ
NS∑
k=1

`k (5.8)

subject to:∑
r∈Rk

xk,r = 1 ∀k ∈ J1, NS − 1K (5.9)∑
r∈Rout.

k
(o)
xk+1,r =

∑
r∈Rinc.

k
(o)
xk,r ∀k ∈ J1, NS − 2K , ∀o ∈ Ok (5.10)∑

r∈Rk
br=bneut.

xk,r ≤
∑

r∈Rk+1
br=bneut.

xk+1,r ∀k ∈ J1, NS − 2K (5.11)

p1 ∈ Pori. (5.12)
pNS+1 ∈ Pdest. (5.13)
−−→p1p2 = `1

−−−−→eoori.,z (5.14)
`k ≥ Lmin +

∑
r∈Rk−1

Lbrxk−1,r +
∑
r∈Rk

Lbrxk,r ∀k ∈ J1, NSK (5.15)

−−−−→pkpk+1 ≤ `k−−−→eo+
r ,z

+−−−−→Msucc. (1− xk−1,r) ∀k ∈ J2, NSK , ∀r ∈ Rk−1 (5.16)
−−−−→pkpk+1 ≥ `k−−−→eo+

r ,z
−
−−−−→
Msucc. (1− xk−1,r) ∀k ∈ J2, NSK , ∀r ∈ Rk−1 (5.17)

xk,r ∈ {0, 1} ∀k ∈ J1, NS − 1K , ∀r ∈ Rk (5.18)
`k ∈ R+ ∀k ∈ J1, NSK (5.19)
pk ∈ R3 ∀k ∈ J1, NS + 1K (5.20)

Note that−→v ≤
−→
v′ (respectively−→v ≥

−→
v′ ) means (vx ≤ v′x)∧

(
vy ≤ v′y

)
∧(vz ≤ v′z) (respectively

(vx ≥ v′x) ∧
(
vy ≥ v′y

)
∧ (vz ≥ v′z)).

The criterion and constraints of this MILP model are detailed in the following sections.
However, two parts can be identified in the MILP formulation of the FWRP:

• an orientation sub-problem (with Constraints 5.9-5.11) which corresponds to a multiple
target shortest path problem in the space of candidate orientations G

(
ONS1 ,RNS−1

1

)
;

• a 3D-position sub-problem (with Constraints 5.12-5.17) which defines restrictions on the
vertices and lengths of the neutral fibre.

Both sub-problems are coupled through a set of coupling constraints composed of Constraints 5.15-
5.17 that link position, length and bend variables.
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Solutions

If
((
x∗k,r

)
k∈J1,NS−1K, r∈Rk

, (`∗k)k∈J1,NSK , (p
∗
k)k∈J1,NS+1K

)
is a solution of the MILP model, then

an optimal solution waveguide π∗ of the FWRP can be rebuilt using Algorithm 10, after ex-
tracting the sequence of bends (b∗k)k∈J1,NS−1K. In particular, this algorithm subtracts the length
contributions of the bends to each segment length in order to get the actual lengths of the
straight sections (see Figure 5.6 on page 61).

Algorithm 10: Rebuild a waveguide π
Input:
• Origin point: pori.

• Bend sequence: (bk)k∈J1,Nπ−1K

• Segment lengths: (`k)k∈J1,NπK

1 θori.π ←
(
pori., oori.

)
2 σπ ← Id
3 L← 0
4 L− ← 0
5 for k ∈ J1, NS − 1K do
6 L← L+ `k
7 if bk 6= bneut. then
8 σπ ← bk ◦ uL−L−−Lbk ◦ σπ
9 L− ← Lbk

10 L← 0

11 σπ ← uL−L− ◦ σπ
12 return π =

(
θori.π , σπ

)
On the opposite, when the MILP model has no solution, then the FWRP does not have a

solution either.

5.2.3 Orientation sub-problem

Definition

minimise
NS−1∑
k=1

∑
r∈Rk

γbrxk,r

subject to:∑
r∈Rk

xk,r = 1 ∀k ∈ J1, NS − 1K∑
r∈Rout.

k
(o)
xk+1,r =

∑
r∈Rinc.

k
(o)
xk,r ∀k ∈ J1, NS − 2K , ∀o ∈ Ok∑

r∈Rk
br=bneut.

xk,r ≤
∑

r∈Rk+1
br=bneut.

xk+1,r ∀k ∈ J1, NS − 2K

xk,r ∈ {0, 1} ∀k ∈ J1, NS − 1K , ∀r ∈ Rk

The orientation sub-problem aims at finding a bend combination that allows waveguide π to
reach a destination orientation in Odest. from the origin orientation oori.. It is a multiple target
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shortest path problem in the space of candidate orientations G
(
ONS1 ,RNS−1

1

)
. Constraints 5.9

ensure that exactly one orientation change is selected at the end of the kth segment of the neutral
fibre. As the last candidate orientation set ONS contains only destination orientations, these
constraints also ensure that a destination orientation is reached. Then, like the natural linear
programming formulation of the shortest path problem, Constraints 5.10 force each k-candidate
orientation o ∈ Ok to have as many outgoing applied orientation changes as incoming ones,
except for the origin and destination orientations.

Symmetry breaking for neutral bends

∑
r∈Rk

br=bneut.

xk,r ≤
∑

r∈Rk+1
br=bneut.

xk+1,r ∀k ∈ J1, NS − 2K

Due to the introduction of the neutral bend bneut., a solution path in the space of candidate
orientations G

(
ONS1 ,RNS−1

1

)
which contains this neutral bend can be translated into several

sequences of bends. For instance, if sequence [bneut., b1, b2] is a solution, then [b1, bneut., b2] and
[b1, b2, bneut.] are solutions too and have the same cost. Constraints 5.11 break this symmetry by
limiting the neutral bends to be applied at the end. To do so, if a neutral bend is used at step
k ∈ J1, NS − 2K, then a neutral bend must be applied at step k+1. By induction, it can be easily
proved that a neutral bend must also be used at every following step of the bend sequence. In
this case, only [b1, b2, bneut.] is a valid sequence of bends, which reduces the valid search space by
avoiding multiple occurrences of the same waveguide solution. As a consequence, the optimality
of a solution can be proved faster.

5.2.4 3D-position sub-problem and coupling constraints

The 3D-position sub-problem aims at finding a consistent neutral fibre Fπ that connects the
origin polyhedron Pori. to the destination polyhedron Pdest.. The polyline must satisfy a minimal
length constraint on each segment, and must be as short as possible.

Impact on the criterion

minimise
NS−1∑
k=1

∑
r∈Rk

γbrxk,r + µ
NS∑
k=1

`k

From the shortest path problem in G
(
ONS1 ,RNS−1

1

)
, the FWRP adds the contribution

µ
∑NS
k=1 `k to the criterion which corresponds to the linear cost of the waveguide.

Connectivity

p1 ∈ Pori.

pNS+1 ∈ Pdest.

Constraints 5.12 and 5.13 respectively state that the neutral fibre must start from the origin
polyhedron and reach the destination polyhedron.
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Minimum length of straight sections

`k ≥ Lmin +
∑

r∈Rk−1

Lbrxk−1,r +
∑
r∈Rk

Lbrxk,r ∀k ∈ J1, NSK

Constraints 5.15 impose a minimal length on the segments. For the kth segment, this min-
imum length is obtained from the minimal length Lmin of straight sections and the respective
contributions

∑
r∈Rk−1

Lbrxk−1,r and
∑
r∈Rk Lbrxk,r of the previous and next bends (see Fig-

ure 5.6b). The first and last segments of neutral fibre Fπ are particular cases, as shown on
Figure 5.6a and Figure 5.6c (by convention, R0 = RNS = ∅).

Moreover, when neutral bends are applied at the end, Constraints 5.15 and the neutral bend
definition with Lbneut. = −Lmin

2 ensure that the minimum length constraint is applied on the
total length of the segments around the neutral bends rather than on the length of each segment.

Lbπ,1

`π,1

Pπ,1 Pπ,2

(a) First segment.

Pπ,k+1

Lbπ,k−1 Lbπ,k

`π,k

Pπ,k

(b) Intermediate segment.

Lbπ,Nπ−1

`π,N

Pπ,Nπ Pπ,Nπ+1

(c) Last segment.

Figure 5.6 – Portion of a waveguide between two successive break points of the neutral fibre Fπ
(the straight section with variable length is depicted in orange).

Property 1: Succession of neutral bends
Let k ≤ NS − 1 be a positive integer. If a neutral bend is applied at the end of
the k′th segment for k′ ∈ Jk,NS − 1K and if the first neutral bend is applied at
the end of the kth segment, then the lower bound on the total length from the kth
segment to the last segment is defined by:

NS∑
k′=k

`k′ ≥ Lmin +
∑

r∈Rk−1

Lbrxk−1,r

Proof: If neutral bends are applied at the end of the k′th segment for k′ ∈
Jk,NS − 1K, then:

∀k′ ∈ Jk,NS − 1K
∑
r∈Rk′

Lbrxk′,r = Lbneut. = −L
min

2

So, Constraints 5.15 become:
• for the kth segment:

`k ≥
Lmin

2 +
∑

r∈Rk−1

Lbrxk−1,r

• for the k′th segment with k′ ∈ Jk + 1, NS − 1K:

`k′ ≥ 0
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• for the NS
th segment:

`NS ≥
Lmin

2
Thus, the addition of Constraints 5.15 for k′ ∈ Jk,NSK gives:

NS∑
k′=k

`k′ ≥ Lmin +
∑

r∈Rk−1

Lbrxk−1,r

Succession constraints

−−→p1p2 = `1
−−−−→eoori.,z

−−−−→pkpk+1 ≤ `k−−−→eo+
r ,z

+−−−−→Msucc. (1− xk−1,r) ∀k ∈ J2, NSK , ∀r ∈ Rk−1

−−−−→pkpk+1 ≥ `k−−−→eo+
r ,z
−
−−−−→
Msucc. (1− xk−1,r) ∀k ∈ J2, NSK , ∀r ∈ Rk−1

Remind that the notation −→v ≤
−→
v′ (respectively −→v ≥

−→
v′ ) means (vx ≤ v′x) ∧

(
vy ≤ v′y

)
∧

(vz ≤ v′z) (respectively (vx ≥ v′x)∧
(
vy ≥ v′y

)
∧ (vz ≥ v′z)). Constraints 5.14, 5.16 and 5.17 define

the coordinates of the (k+1)th point of neutral fibre Fπ from the coordinates of the kth point and
the orientation and length of the kth segment (see Figure 5.6). To do so, Constraints 5.16 and
5.17 use the big-M technique to linearise the constraints using the bend variables. If xk−1,r = 1
for k ∈ J2, NSK and r ∈ Rk−1, then Constraints 5.16 and 5.17 give −−−−→pkpk+1 = `k

−−→eo+
r ,z

, that
means point pk+1 corresponds to point pk translated along orientation −−→eo+

r ,z
with length `k.

On the opposite if xk−1,r = 0, Constraints 5.16 and 5.17 give −−−−→pkpk+1 ≤ `k
−−→eo+
r ,z

+ −−−−→Msucc. and
−−−−→pkpk+1 ≥ `k−−→eo+

r ,z
−
−−−−→
Msucc. respectively. Since these constraints must be disabled when xk−1,r = 0,

vector −−−−→Msucc. must be chosen in a way that the position of point pk+1 is not limited in this case.
In practice, the instances of the FWRP aim to connect two components in a satellite with

bounded dimensions. So there exists an upper bound LUB such that for any index k ∈ J1, NSK:

‖−−−−→pkpk+1‖ ≤ LUB `k ≤ LUB

Typically, the maximal distance between two points of the satellite can be used as LUB value.

Property 2: Big-M value in succession constraints
Let LUB be an upper bound of the length of a segment for the considered FWRP
instance. For k ∈ J2, NSK and r ∈ Rk−1, if

−−−−→
Msucc. = (2LUB, 2LUB, 2LUB) then

Constraints 5.16 and 5.17 are disabled when xk−1,r = 0 in the sense that they do
not constrain the position of point pk+1.

Proof: Let k be an index in J2, NSK and r be a (k − 1)-candidate orientation
change Rk−1 such that xk−1,r = 0. Constraints 5.16 and 5.17 with −−−−→Msucc. =
(2LUB, 2LUB, 2LUB) give:

`k
−−→eo+
r ,z
− (2LUB, 2LUB, 2LUB) ≤ −−−−→pkpk+1 ≤ `k−−→eo+

r ,z
+ (2LUB, 2LUB, 2LUB)

However, `k ≤ LUB by definition of the upper bound. It results that:

− (LUB, LUB, LUB) ≤ `k−−→eo+
r ,z
≤ (LUB, LUB, LUB)
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Finally:

− (LUB, LUB, LUB) ≤ −−−−→pkpk+1 ≤ (LUB, LUB, LUB)

These last equations are always satisfied since ‖−−−−→pkpk+1‖ ≤ LUB. Q.E.D.

5.3 Experiments on the FWRP

In this section, test instances of the FWRP derived from actual industrial cases are detailed (see
Section 5.3.1) and used to experiment the MILP formulation. First, the dimensions of the kernel
of reachable orientations G (O∞,R∞) and MILP models are respectively studied in Section 5.3.2
and Section 5.3.3. Then, Section 5.3.4 presents the performances of the MILP approach for the
resolution of the test instances.

5.3.1 Instance sets

The MILP formulation as well as all the resolution approaches of the FWRP that will be
introduced later have been experimented on three instance sets corresponding to different bend
catalogues with the widely used gauge WR75. These catalogues are:

• catalogue B90◦
cat. with 90◦-bends around the four sides of the waveguide cross-section;

• catalogue B45◦
cat. with 45◦ and 90◦ bends;

• catalogue B30◦
cat. with 30◦, 45◦, 60◦, and 90◦ bends.

All of them also contain a twist. So bend catalogues B90◦
cat., B45◦

cat. and B30◦
cat. contain 5, 9 and

17 bends respectively. The features of these bends are detailed in Table 11 on page 170 in the
appendices.

For all instance sets, the minimal length is Lmin = 5, the linear cost is unit (µ = 1) and each
bend b ∈ Bcat. of the catalogue has a cost γb = 100, except for the twist which is more expensive
in pratice and has a cost γb = 1000. Remind that the cost γb of a bend b ∈ Bcat. relatively to
the linear cost µ can be interpreted as whether it is preferable to use bend b rather than none if
the total length of the waveguide is reduced by at least γb

µ as explained in Section 4.2.2. Here, it
is preferable to use an additional bend if it reduces the total length of 100 (or 1000 for a twist).

For each bend catalogue Bcat., a set of 100 instances has been generated. To build an
instance, the origin and destination orientations oori. and odest. are randomly drawn among the
kernel of reachable orientations O∞ of catalogue Bcat.. The origin and destination polyhedrons
Pori. and Pdest. are points generated inside a volume which corresponds to the real size of a
satellite. The dimensions of this volume are 2750 × 2650 × 6250 (in millimeters) as detailed
in Table 6 on page 167. The generation of candidate points is performed using BRIDSON’s
algorithm [11], a maximum Poisson-disk sampling method, and then the origin and destination
points are randomly selected among these candidates.

In the results presented in Part II, the instances for each bend catalogue are labelled with
an ID number "#" ordered by cost of the optimal solution found with the MILP approach.
The reader should note that instances with the same ID located in different instance sets are
completely distinct since the orientations are drawn in different kernels of reachable orientations.

The purpose is to find a resolution method that ensures to solve all instances of the three
sets, especially instances using bend catalogue B30◦

cat. which corresponds to a typical catalogue
used in an industrial context. The resolution of such instances will be requested thousands
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of times during the design of the RF-harness. Indeed, a real satellite may contains thousands
of waveguides and the routing of each waveguide can be performed several times by moving
waypoints between each iteration. A waypoint is an intermediate polyhedron through which the
waveguide must pass. As a consequence, a routing instance must be solved as fast as possible,
ideally within a second.

5.3.2 Size of the kernel of reachable orientations

The first step to solve a routing instance is to enumerate the kernel of reachable orientations
G (O∞,R∞) associated with bend catalogue Bcat.. As shown in Table 5.1, this enumeration
is pretty fast, taking only a few seconds even for an industrial catalogue like B30◦

cat.. Remind
that this operation only needs to be performed once per bend catalogue by considering relative
orientations (see Section 5.1.1 on page 51).

Catalogue B90◦
cat. Catalogue B45◦

cat. Catalogue B30◦
cat.

NS |O∞| |R∞|
Runtime
(in ms) |O∞| |R∞|

Runtime
(in ms) |O∞| |R∞|

Runtime
(in ms)

0 1 0 <1 1 0 <1 1 0 <1
1 6 5 1 10 9 <1 18 17 <1
2 17 30 <1 37 74 1 89 210 5
3 24 85 1 94 285 5 382 1129 55
4 24 120 1 112 654 17 830 4350 563
5 24 120 1 112 752 23 1072 8606 1785
6 24 120 1 112 752 24 1104 10800 2723
7 24 120 1 112 752 26 1104 11088 2892
8 24 120 2 112 752 28 1104 11088 3052
9 24 120 2 112 752 29 1104 11088 3199
10 24 120 1 112 752 36 1104 11088 3176

Table 5.1 – Size of the kernel of reachable orientations G (O∞,R∞).

Furthermore, it can be noticed that the number of reachable orientations |O∞| if finite and
reaches a maximal threshold when the maximal number of segments NS increases, as illustrated
on Figure 5.7. This is due to the global attachability constraints which restrict the possible
orientations Oint. to a finite set.
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Figure 5.7 – Threshold on the size of the kernel of reachable orientations G (O∞,R∞).
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5.3.3 MILP model sizes

Figure 5.8 presents the MILP model sizes for the test instances in terms of number of vari-
ables and constraints. It appears that the total number of variables (integer and real) remains
reasonably low although it grows with the number of bends in catalogue Bcat.. Remind that
the number of integer variables corresponds to the number of candidate orientation changes in
G
(
ONS1 ,RNS−1

1

)
.

Catalogue B90◦
cat. Catalogue B45◦

cat. Catalogue B30◦
cat.

Min. Mean Max. Min. Mean Max. Min. Mean Max.
# variables 207 278.84 341 652 851.66 1072 254 1457.36 3549
# constraints 1136 1582.08 1968 3921 5150.5 6509 1457 8924.19 21826
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Figure 5.8 – Size of the FWRP MILP models.

5.3.4 Test instances resolution
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Figure 5.9 – Gaps to the optimal cost
per bend catalogue Bcat. for the first
solution found.

All experiments presented in this thesis have been per-
formed using a single thread on an Intel R© Core i5-6500
CPU 3.20 GHz processor with 23.4 GB of RAM. The
MILP formulation has been implemented in Java us-
ing the Google OR-Tools library (version 9.1.9490) [73]
and instances have been solved using the SCIP solver
(version 7.0.1) [32, 33]. In the results presented in this
section, the maximum number of segments is NS = 7.

Two kinds of resolutions are compared: a resolu-
tion until the optimal solution is reached depending on
the CPU time allowed for each instance and another
one stopped as soon as a first solution is found. Figure
5.10 shows the evolution of the percentage of instances
solved over time, for each catalogue. It clearly appears
that the optimal resolution requires an excessive run-
time: even with the smallest bend catalogue B90◦

cat., more
than 10 seconds are needed to solve the most difficult
instances. The first solutions are found within a sec-
ond for bend catalogue B90◦

cat. only, and less than 50% of the instances have been solved after 10
seconds for the industrial catalogue B30◦

cat.. Furthermore, the risk to obtain a first solution with
a poor quality raises quickly with the size of the bend catalogue (see Figure 5.9). For around
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20% of the first solutions found for catalogue B30◦
cat., the cost is more than twice the cost of an

optimal solution.
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Figure 5.10 – Evolution of the success rates with MILP for the FWRP.

Table 5.2 on the facing page, Table 5.3 on page 68 and Table 5.4 on page 69 present the
results respectively obtained on the B90◦

cat., B45◦
cat. and B30◦

cat. instances. All result tables introduced
in this thesis detail for each instance the cost, linear cost and bend cost of the solutions found,
the gap to the optimal solution, the runtime, and the number of iterations performed. When
the solution is optimal, the details of the result are printed in bold red.

It appears that the solutions found by the MILP formulation are quite realistic for a waveg-
uide designer, as shown on Figure 5.11. Nevertheless, if this approach seems to be attractive
because it guarantees to find optimal solutions, it can only be used in pratice for solving the
FWRP with small catalogues. In order to be able to make a large number of iterations during
the RF-harness design, a faster and more efficient approach is required.

Figure 5.11 – Examples of waveguides routed using MILP for the FWRP.
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Inst. MILP optimal MILP first

# Opti.
cost Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter. Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter.

1 625.4 625.4 0 310.12 300 413 424 965.4 54.365 435.23 500 287 25
2 700.2 700.2 0 280.5 400 1288 2837 2150.2 207.083 620.03 1500 307 5
3 771.85 771.85 0 352.15 400 2604 2457 944.25 22.336 524.55 400 415 459
4 871.89 871.89 0 554.6 300 1978 2479 932.49 6.95 615.2 300 174 7
5 930.71 930.71 0 509 400 5767 4854 1200.71 29.01 566.12 600 415 13
6 1220.12 1220.12 0 1009.26 200 7637 6769 2580.72 111.513 1050.55 1500 311 23
7 1361.62 1361.62 0 835.48 500 2142 1675 2471.62 81.521 1051.92 1400 657 722
8 1598.38 1598.38 0 1072.24 500 2358 2212 1658.98 3.791 1132.84 500 498 657
9 1600.82 1600.82 0 1076.7 500 2664 2834 1680.22 4.96 1150.05 500 350 24
10 1824.45 1824.45 0 1507.15 300 3121 3015 2155.05 18.121 1624.87 500 373 5
11 1844.96 1844.96 0 1527.66 300 3589 3856 2175.56 17.919 1645.39 500 194 27
12 1873.38 1873.38 0 1556.09 300 4266 3889 2115.18 12.907 1589.05 500 405 462
13 1930.45 1930.45 0 1510.75 400 13852 13870 2278.58 18.034 1641.97 600 320 16
14 1955.11 1955.11 0 1637.81 300 3842 3399 2285.71 16.91 1755.53 500 329 8
15 1998.61 1998.61 0 1474.49 500 4332 4188 2078.01 3.973 1547.84 500 343 26
16 2044.85 2044.85 0 1623.13 400 10583 8210 2305.45 12.744 1670.86 600 480 15
17 2093.77 2093.77 0 1672.05 400 14399 14091 2484.97 18.684 1850.37 600 316 21
18 2162.45 2162.45 0 1636.31 500 3759 3763 2241.85 3.672 1711.67 500 343 7
19 2460.45 2460.45 0 2143.15 300 3430 3388 2791.05 13.437 2260.88 500 207 30
20 2460.68 2460.68 0 2038.96 400 13933 10723 2721.28 10.591 2086.69 600 511 21
21 2502.23 2502.23 0 2184.94 300 3477 3010 2832.83 13.212 2302.66 500 197 25
22 2609.89 2609.89 0 2399.03 200 16945 14602 2609.89 0 2399.03 200 293 9
23 2635.01 2635.01 0 2215.31 400 10953 9268 2946.81 11.833 2318.27 600 691 825
24 2707.36 2707.36 0 2392.08 300 3861 3399 2986.76 10.32 2456.59 500 222 23
25 2717.92 2717.92 0 2400.62 300 4642 3336 2778.52 2.23 2461.22 300 174 5
26 2770.42 2770.42 0 2350.72 400 15477 13699 3049.82 10.085 2413.21 600 325 13
27 2781.24 2781.24 0 2359.52 400 15551 15713 3153.64 13.39 2523.08 600 714 670
28 2813.56 2813.56 0 2498.28 300 4322 3853 3153.56 12.084 2623.39 500 349 42
29 2817.31 2817.31 0 2291.17 500 3883 3454 2931.71 4.061 2401.53 500 428 221
30 2825.46 2825.46 0 2614.6 200 19446 17193 2825.46 0 2614.6 200 299 9
31 2835.45 2835.45 0 2520.17 300 4054 3583 3105.45 9.522 2577.3 500 392 15
32 2890.9 2890.9 0 2366.78 500 3642 3758 2970.3 2.747 2440.13 500 360 27
33 2910.48 2910.48 0 2595.2 300 4828 4046 5810.48 99.64 2601.64 3200 302 18
34 3001.61 3001.61 0 2684.31 300 4635 3964 3341.61 11.327 2811.43 500 338 9
35 3022.75 3022.75 0 2496.61 500 3895 3507 3092.75 2.316 2566.61 500 423 401
36 3053.38 3053.38 0 2842.52 200 19553 17157 3663.38 19.978 3026.77 600 299 29
37 3224.51 3224.51 0 2802.8 400 15902 17260 3536.31 9.67 2905.76 600 895 748
38 3290.53 3290.53 0 2764.39 500 3767 3435 3369.93 2.413 2841.77 500 403 23
39 3328.86 3328.86 0 2907.14 400 14744 15173 3570.66 7.264 2940.1 600 773 737
40 3348.99 3348.99 0 2927.27 400 17001 14960 3609.59 7.781 2974.99 600 476 19
41 3423.75 3423.75 0 3212.89 200 17875 16246 3423.75 0 3212.89 200 296 9
42 3432.64 3432.64 0 3117.36 300 3752 3660 3712.04 8.14 3181.86 500 214 24
43 3500.84 3500.84 0 2976.72 500 4050 3709 3580.24 2.268 3052.09 500 390 46
44 3505.7 3505.7 0 3083.98 400 16545 13510 3836.3 9.43 3201.71 600 455 12
45 3520.14 3520.14 0 3204.86 300 3916 3314 3860.14 9.659 3331.99 500 371 5
46 3665.8 3665.8 0 3244.08 400 16523 15735 3926.4 7.109 3291.81 600 418 18
47 3803.65 3803.65 0 3383.95 400 15605 18058 4124.85 8.445 3492.27 600 602 695
48 3815.88 3815.88 0 3605.02 200 21624 19343 3815.88 0 3605.02 200 292 9
49 3823.5 3823.5 0 3399.76 400 15564 15668 4154.1 8.647 3517.49 600 409 11
50 3829.26 3829.26 0 3511.96 300 4203 4010 5129.86 33.965 3710.16 1400 457 566
51 3831.5 3831.5 0 3411.8 400 14317 15369 4110.9 7.292 3474.29 600 315 12
52 3873.21 3873.21 0 3662.35 200 18766 17660 4413.21 13.942 3776.6 600 306 28
53 3908.18 3908.18 0 3590.88 300 4287 3700 4238.78 8.459 3708.6 500 195 40
54 3936.43 3936.43 0 3412.3 500 2875 2901 4006.43 1.778 3478.27 500 357 21
55 3976.19 3976.19 0 3554.47 400 17407 15574 4297.39 8.078 3662.79 600 535 16
56 4026.08 4026.08 0 3604.36 400 17593 18825 4356.68 8.211 3722.08 600 416 13
57 4087.37 4087.37 0 3665.65 400 12855 12270 4389.77 7.398 3759.21 600 846 937
58 4164.02 4164.02 0 3744.32 400 16107 14194 4164.02 0 3744.32 400 413 538
59 4276.56 4276.56 0 3959.26 300 4894 3956 4337.16 1.417 4019.86 300 183 5
60 4290.81 4290.81 0 3975.53 300 4019 3262 4630.81 7.924 4102.65 500 371 8
61 4303.24 4303.24 0 3985.94 300 4950 4017 4643.24 7.901 4113.06 500 345 8
62 4342.91 4342.91 0 3921.19 400 16645 12915 4622.31 6.433 3985.7 600 323 15
63 4360.45 4360.45 0 4045.17 300 4135 3724 6360.45 45.867 4045.17 2300 349 9
64 4390.66 4390.66 0 3970.96 400 17897 19747 4660.66 6.149 4026.06 600 322 15
65 4395.12 4395.12 0 4079.84 300 4124 3464 6395.12 45.505 4079.84 2300 205 6
66 4412.43 4412.43 0 4201.57 200 22365 21485 4412.43 0 4201.57 200 290 10
67 4415.24 4415.24 0 3993.52 400 14833 16360 4666.44 5.689 4035.88 600 922 1023
68 4443.45 4443.45 0 4021.74 400 17239 17187 4774.05 7.44 4139.46 600 415 15
69 4445.35 4445.35 0 4021.62 400 14895 14766 4684.13 5.371 4047.52 600 301 20
70 4567.38 4567.38 0 4041.24 500 3927 3562 4637.38 1.533 4109.22 500 320 22
71 4569.85 4569.85 0 4150.15 400 17013 16513 4909.85 7.44 4273.24 600 307 11
72 4611.59 4611.59 0 4085.45 500 3642 3727 4681.59 1.518 4153.44 500 317 21
73 4686.76 4686.76 0 4265.04 400 18165 16191 5007.96 6.853 4373.37 600 541 22
74 4803.26 4803.26 0 4487.98 300 4321 3931 6803.26 41.638 4487.98 2300 307 17
75 4861.29 4861.29 0 4441.59 400 17319 18328 4870.69 0.193 4446.95 400 326 47
76 4953.41 4953.41 0 4533.71 400 11157 9559 4953.41 0 4533.71 400 450 664
77 5056.52 5056.52 0 4530.38 500 4145 4154 5126.52 1.384 4600.38 500 494 491
78 5064.14 5064.14 0 4748.86 300 5290 4547 7964.14 57.265 4755.3 3200 307 15
79 5129.39 5129.39 0 4707.67 400 16952 14833 5450.59 6.262 4815.99 600 480 28
80 5170.66 5170.66 0 4853.37 300 3525 3210 5501.26 6.394 4971.09 500 365 7
81 5207.62 5207.62 0 4785.9 400 16164 13248 5538.22 6.348 4903.62 600 418 15
82 5211.32 5211.32 0 4687.19 500 3701 3402 5281.32 1.343 4753.16 500 312 20
83 5248.57 5248.57 0 4828.87 400 15153 16085 5527.97 5.323 4893.38 600 353 14
84 5508.9 5508.9 0 5193.62 300 3944 3743 5839.5 6.001 5311.34 500 313 26
85 5564.77 5564.77 0 5249.49 300 4050 3246 5844.17 5.021 5314 500 212 27
86 5567.35 5567.35 0 5145.63 400 16061 13493 5958.55 7.027 5323.96 600 321 22
87 5573.71 5573.71 0 5154.01 400 15464 18430 5834.31 4.676 5205.76 600 701 716
88 5629.91 5629.91 0 5210.21 400 19777 19048 7079.91 25.755 5549.74 1500 350 9
89 5709.24 5709.24 0 5287.53 400 17123 18597 6100.44 6.852 5465.85 600 318 28
90 5945.13 5945.13 0 5418.99 500 3875 3410 6024.53 1.336 5496.37 500 267 32
91 6047.33 6047.33 0 5732.05 300 3837 3994 8467.33 40.018 6152.05 2300 194 18
92 6266.31 6266.31 0 5844.6 400 16843 16343 6536.31 4.309 5901.72 600 433 24
93 6571.93 6571.93 0 6256.65 300 4156 3726 6902.53 5.03 6374.37 500 207 18
94 6600.83 6600.83 0 6179.11 400 16016 18098 6912.63 4.724 6282.07 600 773 693
95 6641.3 6641.3 0 6221.6 400 17248 17574 6911.3 4.065 6274.69 600 311 24
96 6748.17 6748.17 0 6326.45 400 19509 20686 7008.77 3.862 6374.17 600 515 24
97 6814.87 6814.87 0 6395.17 400 16327 16985 7094.27 4.1 6457.66 600 318 16
98 6858.28 6858.28 0 6540.98 300 4047 3652 6858.28 0 6540.98 300 178 2
99 6961.13 6961.13 0 6434.99 500 3806 3523 6979.93 0.27 6451.78 500 219 50
100 7350.81 7350.81 0 6931.11 400 18382 18083 7742.01 5.322 7107.42 600 315 28

Table 5.2 – Results for the FWRP with MILP on B90◦
cat. instances.

c©Airbus Defence and Space SAS - "This document and the information it contains are property of Airbus Defence and
Space. It shall not be used for any purpose other than those for which it was supplied. It shall not be reproduced or
disclosed (in whole or in part) to any third party without Airbus Defence and Space prior written consent. Airbus
Defence and Space – All rights reserved - February 10, 2022".



68 CHAPTER 5. RESOLUTION OF THE FWRP USING MIXED INTEGER LINEAR PROGRAMMING

Inst. MILP optimal MILP first

# Opti.
cost Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter. Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter.

1 678.28 678.28 0 268.15 400 64710 9910 1040.21 53.359 405.61 600 6643 127
2 806.99 806.99 0 405.01 400 43418 9404 832.08 3.109 526.57 300 4001 17
3 875.61 875.61 0 351.44 500 91701 10553 875.61 0 351.44 500 15366 1849
4 878.25 878.25 0 356.09 500 56932 16001 1327.15 51.113 696.53 600 4580 41
5 896.51 896.51 0 482.74 400 214148 25627 896.51 0 482.74 400 12062 1258
6 1140.42 1140.42 0 823.12 300 156223 19820 1140.42 0 823.12 300 8095 11
7 1392.39 1392.39 0 984.42 400 62766 11310 3705.67 166.138 1289.95 2400 3723 14
8 1403 1403 0 989.24 400 178713 21970 1709.06 21.815 1084.03 600 8696 41
9 1434.38 1434.38 0 813.59 600 57100 9142 2799.32 95.159 2188.5 600 4890 1279
10 1512.12 1512.12 0 1099.97 400 199716 24434 1798.01 18.907 1480.72 300 7591 12
11 1518.19 1518.19 0 1106.24 400 66955 8603 4375.34 188.194 1069.83 3300 3121 73
12 1519.8 1519.8 0 906.76 600 330334 29471 1917.62 26.176 1293 600 8498 56
13 1593.18 1593.18 0 1281.87 300 85003 11349 2005.58 25.886 1379 600 4493 112
14 1702.25 1702.25 0 1092.99 600 103847 12757 2159.46 26.859 1542.25 600 4192 19
15 1702.82 1702.82 0 1188.41 500 124005 17981 2081.9 22.262 1451.08 600 4387 65
16 1739.47 1739.47 0 1431.95 300 97108 13699 1739.47 0 1431.95 300 4280 22
17 1924.18 1924.18 0 1510.42 400 279353 44884 2650.46 37.745 2015.87 600 9850 22
18 2046.45 2046.45 0 1526.1 500 335053 39318 3155.04 54.172 1644.67 1500 9357 213
19 2075.62 2075.62 0 1566.8 500 107862 13839 2374.97 14.422 2067.44 300 3448 19
20 2102.73 2102.73 0 1486.12 600 132109 20716 2201.49 4.697 1572.89 600 17750 2711
21 2209.59 2209.59 0 1598.37 600 72060 10998 2684.62 21.499 2059.8 600 3971 22
22 2252.71 2252.71 0 1746.11 500 317640 37351 2547.09 13.068 2030.52 500 8988 50
23 2283.54 2283.54 0 1774.92 500 553678 80581 4051.82 77.436 2519.62 1500 8322 137
24 2306.69 2306.69 0 1888.75 400 142333 21511 3827.59 65.934 2305.22 1500 4771 39
25 2324.48 2324.48 0 1707.27 600 219804 23230 2692.55 15.835 2061.94 600 8437 52
26 2328.74 2328.74 0 1822.15 500 406831 44185 3265.26 40.215 2640.23 600 8753 20
27 2348.52 2348.52 0 1733.47 600 66913 13305 4110.03 75.005 2589.63 1500 3871 27
28 2400.84 2400.84 0 1894.24 500 362514 52570 3420.69 42.479 2786.09 600 5673 23
29 2427 2427 0 1916.42 500 112429 18402 3158.44 30.138 2527.82 600 5333 24
30 2460.66 2460.66 0 2149.36 300 208968 30795 2939.79 19.472 2309.18 600 4145 62
31 2461.95 2461.95 0 2055.99 400 176162 32005 2707.9 9.99 2091.09 600 4463 212
32 2482.31 2482.31 0 1871.29 600 322726 39235 2482.31 0 1871.29 600 6919 436
33 2532.98 2532.98 0 2016.41 500 352336 50522 3573.68 41.086 3053.48 500 9513 518
34 2558.32 2558.32 0 2051.72 500 81876 13024 4888.54 91.084 3368.14 1500 4352 33
35 2739.38 2739.38 0 2236.56 500 165146 19935 2899.61 5.849 2588.1 300 4666 7
36 2757.59 2757.59 0 2254.77 500 141241 16016 3318.48 20.34 3006.97 300 3714 9
37 2790.94 2790.94 0 2274.37 500 85395 14908 2790.94 0 2274.37 500 6880 1971
38 2800.14 2800.14 0 2185.09 600 353331 43665 3738.7 33.518 3112.06 600 8948 13
39 2800.54 2800.54 0 2287.95 500 364335 32860 3989.79 42.465 3374.59 600 8603 44
40 2824.52 2824.52 0 2201.51 600 69686 12692 3492.67 23.655 2867.84 600 13825 3370
41 2844.51 2844.51 0 2223.72 600 75803 14593 5309.02 86.641 4682.38 600 4144 24
42 2846.42 2846.42 0 2338.01 500 94163 14122 3211.42 12.823 2799.48 400 1907 770
43 2864.31 2864.31 0 2249.06 600 77016 13242 3216.8 12.306 2601.55 600 3947 43
44 2870.84 2870.84 0 2458.69 400 397177 53405 5276.16 83.784 3743.97 1500 8389 39
45 2916.82 2916.82 0 2303.78 600 477187 65974 4812.22 64.982 3280.03 1500 7667 37
46 2984.84 2984.84 0 2677.51 300 589316 95773 3748.14 25.573 3537.28 200 8641 24
47 3003.96 3003.96 0 2387.15 600 277073 35346 4430.96 47.504 3809.91 600 6333 83
48 3044.59 3044.59 0 2532 500 263056 28215 3679.19 20.843 3048.57 600 6148 70
49 3048.02 3048.02 0 2437 600 424038 52708 3596.75 18.003 2971.92 600 9696 82
50 3062.17 3062.17 0 2555.57 500 361948 64683 3994.28 30.439 3359.69 600 5783 31
51 3063.97 3063.97 0 2450.93 600 108502 14708 5534.39 80.628 3124.26 2400 3389 66
52 3145.64 3145.64 0 2530.65 600 321551 30505 3886.14 23.54 3253.51 600 12434 10
53 3151.84 3151.84 0 2649.01 500 194627 33190 3471.39 10.139 3159.88 300 4491 19
54 3152.42 3152.42 0 2738.45 400 86276 14876 6972.49 121.179 6347.67 600 4405 65
55 3244.19 3244.19 0 2623.35 600 103476 17838 4259.2 31.287 3630.4 600 5733 144
56 3255.09 3255.09 0 2640.04 600 82160 12181 3655.07 12.288 3028.43 600 4104 15
57 3285.07 3285.07 0 2879.12 400 242683 27503 4665.1 42.009 4050.31 600 6573 56
58 3299.84 3299.84 0 2787.45 500 177472 30129 4399.3 33.319 2875.13 1500 4793 72
59 3314.97 3314.97 0 2705.7 600 158824 23082 4840.78 46.028 3327.98 1500 3566 17
60 3342.01 3342.01 0 2934.04 400 411055 44603 4334.67 29.703 3715.84 600 8187 18
61 3351.18 3351.18 0 2738.35 600 99953 14950 4513.68 34.689 3887.04 600 3420 22
62 3503 3503 0 2986.84 500 551390 80840 4348.94 24.149 3712.33 600 8557 65
63 3533.16 3533.16 0 3127.21 400 122305 21411 10582.32 199.514 8166.4 2400 4853 55
64 3559.74 3559.74 0 3041.56 500 361901 40103 4795.89 34.726 3277.3 1500 9331 29
65 3584.91 3584.91 0 3072.32 500 458204 43902 4571.63 27.524 3952.6 600 14878 1514
66 3609.55 3609.55 0 3203.4 400 232496 35689 8243.92 128.392 7636.48 600 3981 49
67 3612.64 3612.64 0 3003.59 600 167348 31178 4187.36 15.908 3556.74 600 3482 17
68 3706.73 3706.73 0 3097.47 600 158328 22456 6441.47 73.778 4023.53 2400 4458 14
69 3738.02 3738.02 0 3129.17 600 361330 38033 4255.74 13.85 3944.43 300 7283 5
70 3741.47 3741.47 0 3124.66 600 425925 52989 4613.88 23.317 3985.28 600 8242 71
71 3760.72 3760.72 0 3254.12 500 421107 55848 4108.11 9.237 3790.81 300 8523 24
72 3763.18 3763.18 0 3254.56 500 87461 13118 6081.53 61.606 5454.9 600 3921 13
73 3784.22 3784.22 0 3374.09 400 439386 54055 6211.7 64.147 4695.13 1500 9732 158
74 3801.9 3801.9 0 3295.31 500 652578 86666 4931.14 29.702 4720.28 200 7849 7
75 3876.35 3876.35 0 3367.74 500 90751 15853 5824.47 50.256 4304.07 1500 3864 21
76 3930.82 3930.82 0 3524.87 400 207750 31213 4155.47 5.715 3536.64 600 3913 160
77 3982.73 3982.73 0 3369.7 600 335019 56257 5252.14 31.873 4617.54 600 6610 25
78 4104.72 4104.72 0 3491.68 600 472649 65829 6324.45 54.078 5798.31 500 21103 2616
79 4156.4 4156.4 0 3549.16 600 133906 23075 7184.4 72.852 4768.48 2400 4846 13
80 4172.59 4172.59 0 3867.08 300 88513 13339 4172.59 0 3867.08 300 4249 21
81 4209.75 4209.75 0 3908.02 300 92240 13972 4671.93 10.979 4041.32 600 4338 10
82 4320.79 4320.79 0 3704.18 600 155768 25767 4358.47 0.872 3731.88 600 4525 100
83 4421.04 4421.04 0 3918.62 500 298463 30205 5818.83 31.617 5190.03 600 5826 19
84 4463.73 4463.73 0 3951.14 500 145531 25870 7192.84 61.14 4775.1 2400 3776 42
85 4571.23 4571.23 0 4064.64 500 467063 95034 8131.86 77.892 5712.16 2400 2915 53
86 4639.61 4639.61 0 4126.81 500 268985 27442 4741.53 2.197 4133.88 600 8202 22
87 4715 4715 0 4307.03 400 172226 23699 8401.49 78.187 7784.68 600 4145 142
88 4923.06 4923.06 0 4308.01 600 77918 13596 9899.37 101.082 8378.97 1500 4190 20
89 5038.52 5038.52 0 4531.93 500 624324 97728 9449.02 87.535 8824.4 600 8139 70
90 5089.14 5089.14 0 4582.54 500 79070 11595 6104.66 19.955 5479.84 600 3740 17
91 5281.07 5281.07 0 4668.44 600 535420 65532 6548.98 24.008 5935.94 600 8522 56
92 5296.86 5296.86 0 4782.45 500 158814 25621 6693.65 26.37 6062.84 600 4451 33
93 5367.54 5367.54 0 4752.28 600 66215 11698 7949.02 48.094 7322.18 600 9743 1897
94 5565.08 5565.08 0 5058.69 500 95428 13118 7339.28 31.881 5822.91 1500 4150 79
95 5638.65 5638.65 0 5232.7 400 210180 34236 5899.5 4.626 5282.69 600 3905 100
96 5956.85 5956.85 0 5347.99 600 487497 50561 8676.65 45.658 8059.84 600 8444 25
97 6051.83 6051.83 0 5535.46 500 69030 10826 7519.27 24.248 5998.87 1500 4357 15
98 6159.55 6159.55 0 5753.19 400 265469 41499 6368.51 3.392 6057 300 3770 11
99 6513.65 6513.65 0 5898.45 600 478801 51432 9128.98 40.151 7618.6 1500 8854 233
100 6785.52 6785.52 0 6168.71 600 161816 26820 9016.24 32.875 8385.42 600 4859 90

Table 5.3 – Results for the FWRP with MILP on B45◦
cat. instances.
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5.3. EXPERIMENTS ON THE FWRP 69

Inst. MILP optimal MILP first

# Opti.
cost Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter. Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter.

1 775.36 775.36 0 263.23 500 67016 11211 788.21 1.658 276.08 500 8372 731
2 847.69 847.69 0 434.25 400 401721 21244 1662.1 96.073 1035.78 600 23839 46
3 883.95 883.95 0 269.94 600 7112 4898 905.44 2.431 292.2 600 503 38
4 948.57 948.57 0 335.21 600 5992 3832 1867.68 96.895 1251.98 600 3617 3030
5 1091.69 1091.69 0 478.5 600 313999 15675 1108.72 1.561 592.35 500 62482 3647
6 1245.49 1245.49 0 740.53 500 2108995 67903 1441.48 15.736 816.19 600 27440 326
7 1287.26 1287.26 0 777.99 500 9708 5459 1377.86 7.038 773.74 600 651 116
8 1378.31 1378.31 0 872.95 500 1179922 159347 1969.32 42.879 1342.01 600 15008 18
9 1444.21 1444.21 0 1040.25 400 589424 27677 1645.09 13.909 1337.95 300 27399 18
10 1551.37 1551.37 0 1045.35 500 603899 25262 2121.54 36.753 1495.09 600 30410 18
11 1556.78 1556.78 0 1147.44 400 657762 29259 1697.43 9.035 1389.7 300 14137 21
12 1597.2 1597.2 0 981.95 600 10718 4519 9586.15 500.183 8971.48 600 365 23
13 1608.93 1608.93 0 1100.18 500 600079 23396 2842.88 76.694 1321.51 1500 23399 38
14 1708.06 1708.06 0 1192.28 500 548953 30361 2241.56 31.235 1616.09 600 26289 22
15 1858.89 1858.89 0 1241.54 600 97328 14320 8688.29 367.392 8067.04 600 4297 1031
16 1921.79 1921.79 0 1513.11 400 785106 36241 2254.57 17.316 1947.5 300 23496 19
17 1935.98 1935.98 0 1428.02 500 2161292 70203 2088.68 7.887 1474 600 50942 29
18 1947.84 1947.84 0 1432.63 500 2075635 129395 4297.36 120.622 3679.05 600 65972 44
19 2043.34 2043.34 0 1534.27 500 684815 33171 8757.32 328.578 8131 600 27287 19
20 2202.92 2202.92 0 1795.59 400 3590285 143668 2990.14 35.735 2359.84 600 59412 110
21 2210.43 2210.43 0 1600.52 600 135547 17290 2611.36 18.138 1992.33 600 4390 53
22 2238.84 2238.84 0 1723.78 500 148803 14764 2813.31 25.66 2197.28 600 3274 131
23 2257.88 2257.88 0 1645.82 600 582332 24418 2682.97 18.827 2055 600 27245 25
24 2280.01 2280.01 0 1866.89 400 2558593 72960 5180.62 127.22 4568.29 600 87168 18
25 2283.06 2283.06 0 1669.04 600 7839 4995 4783.59 109.526 4171.33 600 318 47
26 2293.67 2293.67 0 1687.57 600 2014911 138780 4231.44 84.484 3612.15 600 62842 68
27 2373.3 2373.3 0 2064.81 300 743371 38296 2373.3 0 2064.81 300 23177 23
28 2384.85 2384.85 0 1872.06 500 3563194 113820 3139.94 31.662 2511.6 600 105648 38
29 2386.1 2386.1 0 1777.56 600 184748 16937 3360.92 40.854 2740.85 600 8955 23
30 2455.93 2455.93 0 1946.15 500 2127950 267007 3927.2 59.906 2410.37 1500 7674 46
31 2477.92 2477.92 0 1857.39 600 115802 16052 2477.92 0 1857.39 600 36719 5224
32 2514.29 2514.29 0 1899.12 600 669340 26893 4225.23 68.049 3598.39 600 6753 150
33 2563.86 2563.86 0 2061.5 500 2888812 246442 3683.1 43.654 3051.82 600 21357 34
34 2566.68 2566.68 0 1956.45 600 75026 12092 3383.78 31.835 2764.29 600 3507 19
35 2592.86 2592.86 0 2081.14 500 4851724 131544 3487.19 34.492 3071.47 400 184429 1442
36 2631.11 2631.11 0 2122.3 500 692365 33123 3310.18 25.809 2683.86 600 27404 24
37 2664.18 2664.18 0 2150.42 500 7166845 230669 3457.29 29.769 2825.5 600 187427 19
38 2715.06 2715.06 0 2311.91 400 2980839 161196 3441.8 26.767 3135.12 300 25052 21
39 2795 2795 0 2285.53 500 10083492 329612 5353.59 91.542 2941.5 2400 22895 36
40 2811.14 2811.14 0 2197.64 600 12447466 354094 6052.6 115.307 5433.62 600 133085 39
41 2835.55 2835.55 0 2228.88 600 130433 15000 3110.15 9.684 2502.05 600 9001 125
42 2854.99 2854.99 0 2444.41 400 883430 36431 5032.16 76.258 4405.18 600 29453 22
43 2857 2857 0 2440.62 400 3246210 183333 3929.82 37.55 3298.54 600 59749 117
44 2887.82 2887.82 0 2278.61 600 993371 46333 4277.47 48.121 3653.42 600 32171 18
45 2913.16 2913.16 0 2305.51 600 125717 16694 20161.93 592.098 19540.23 600 2880 26
46 2923.8 2923.8 0 2311.98 600 901799 40077 5427.32 85.626 4799.35 600 29495 18
47 2930.63 2930.63 0 2314.93 600 9023 4464 3246.9 10.792 2632.23 600 482 56
48 3014.12 3014.12 0 2398.92 600 106140 14233 3061.08 1.558 2441.84 600 11243 50
49 3031.23 3031.23 0 2522.27 500 778854 36693 5735.8 89.224 4215.19 1500 30596 22
50 3069.39 3069.39 0 2553.81 500 66155 11373 3222.44 4.986 2706.86 500 4499 973
51 3107.31 3107.31 0 2496.68 600 811783 41640 4683.3 50.719 4057.83 600 27841 17
52 3138.39 3138.39 0 2513.57 600 671503 29864 3906.52 24.475 3292.31 600 24684 103
53 3147.74 3147.74 0 2539.71 600 131990 17466 3705.33 17.714 3083.82 600 7820 22
54 3216.34 3216.34 0 2708.97 500 229329 17845 3633.94 12.984 3012.44 600 7995 19
55 3334.74 3334.74 0 2724.24 600 7848 4750 6763.54 102.82 6148.87 600 294 23
56 3350.28 3350.28 0 2841.16 500 677749 28588 4110.63 22.695 3485.81 600 23253 39
57 3377.63 3377.63 0 2761.97 600 98414 16426 4330.57 28.213 3711.54 600 3826 15
58 3387.26 3387.26 0 2771.24 600 1254045 91902 10297.95 204.02 9681.61 600 17330 1641
59 3392.41 3392.41 0 2783.47 600 128887 16427 4290.75 26.481 3672.7 600 4749 38
60 3469.1 3469.1 0 2861.07 600 3096415 214517 4324.66 24.662 4010.67 300 71134 21
61 3516.59 3516.59 0 3013.88 500 8319328 281172 4306.48 22.462 3685.36 600 187376 88
62 3566.43 3566.43 0 3056.63 500 151912 18104 4365.12 22.395 3744.96 600 10827 37
63 3590.25 3590.25 0 2977.45 600 773547 34017 4530.67 26.194 3903.37 600 26300 17
64 3602.87 3602.87 0 3091.96 500 1146525 110899 4140.12 14.912 3522.4 600 15510 138
65 3667.43 3667.43 0 3053.58 600 562455 27071 6164.37 68.084 5537.07 600 31928 23
66 3715.52 3715.52 0 3102.74 600 5007359 178855 5539.01 49.078 4913.73 600 27488 139
67 3732.89 3732.89 0 3224.98 500 724207 37603 4942.94 32.416 4318.58 600 26449 17
68 3745.23 3745.23 0 3242.93 500 3788842 106805 4747.63 26.765 4438.6 300 119203 19
69 3756.51 3756.51 0 3145.11 600 779656 37075 4648.85 23.755 4021.55 600 25774 21
70 3774.6 3774.6 0 3265.33 500 11247 5093 3890.15 3.061 3275.48 600 479 20
71 3792.84 3792.84 0 3182.27 600 2831754 125522 3792.84 0 3182.27 600 60724 836
72 3805.93 3805.93 0 3397.75 400 228330 17771 4071.49 6.978 3450.44 600 9410 28
73 3849.32 3849.32 0 3231.33 600 133489 17392 4789.42 24.422 4169.73 600 8851 24
74 3870.37 3870.37 0 3256.76 600 124333 15909 24894.22 543.199 24387.49 500 2906 61
75 4029.74 4029.74 0 3421.22 600 679944 30296 7887.82 95.74 7369.96 500 44850 2308
76 4038.52 4038.52 0 3428.94 600 126029 16375 15687.79 288.454 15066.09 600 4431 32
77 4049.36 4049.36 0 3434.36 600 6305 4315 25832.03 537.929 25219.38 600 741 689
78 4095.89 4095.89 0 3484.21 600 1190491 95442 5516.29 34.679 4891.99 600 6706 30
79 4129.25 4129.25 0 3514.12 600 823788 32530 5483.93 32.807 4858.14 600 32488 43
80 4131.07 4131.07 0 3623.97 500 874254 42736 5265.81 27.468 4642.3 600 33766 249
81 4345.84 4345.84 0 3738.71 600 114030 15082 8020.4 84.553 7398.89 600 6897 22
82 4353.37 4353.37 0 3846.83 500 188243 14486 4941.08 13.5 4320.42 600 3200 22
83 4370.79 4370.79 0 3760.54 600 8121 4359 15172.85 247.142 14561.63 600 488 45
84 4512.67 4512.67 0 4000.07 500 3396180 137266 6676.21 47.944 5154.05 1500 65647 57
85 4560.18 4560.18 0 3947.66 600 91962 13554 24808.2 444.018 24197.11 600 4165 836
86 4702.33 4702.33 0 4094.24 600 622500 31067 5997.58 27.545 4489.61 1500 27324 52
87 4873.87 4873.87 0 4266.74 600 113225 15689 6333.05 29.939 5711.04 600 4112 23
88 4924.57 4924.57 0 4419.61 500 177896 16376 6304.95 28.031 5682.48 600 8698 16
89 4966.52 4966.52 0 4661.47 300 806739 36427 4966.52 0 4661.47 300 23971 20
90 4970.95 4970.95 0 4360.57 600 160311 16357 6771.91 36.23 6152.23 600 8133 20
91 5010.01 5010.01 0 4399.9 600 112070 14787 34541.84 589.456 33925.47 600 6862 1226
92 5228.19 5228.19 0 4617.71 600 1012601 61694 6828.18 30.603 6202.39 600 22651 27
93 5335.97 5335.97 0 4728.58 600 3186101 228707 7207.77 35.079 6577.15 600 55041 22
94 5459.85 5459.85 0 4849.62 600 107125 13948 6471.12 18.522 5851.63 600 4211 50
95 5924.78 5924.78 0 5308.02 600 92189 14126 21188.94 257.633 20566.92 600 16929 2812
96 5926.39 5926.39 0 5315.97 600 124280 14944 7226.59 21.939 6605.54 600 8118 17
97 5974.83 5974.83 0 5468.81 500 9885913 565939 7334.68 22.759 5920.57 1400 22133 43
98 6250.1 6250.1 0 5636.94 600 976954 39952 7644.34 22.307 7018.02 600 28667 23
99 6599.83 6599.83 0 5986.97 600 2437463 98951 8822.9 33.684 8193.64 600 69032 305
100 6798.9 6798.9 0 6182.15 600 98447 14071 22839.28 235.926 22217.26 600 4661 778

Table 5.4 – Results for the FWRP with MILP on B30◦
cat. instances.
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Chapter 6

Resolution of the FWRP using
Informed Search Algorithms

In this chapter, a formulation adapted to ISAs is proposed for the FWRP. This formulation is
based on the notion of routing plan, introduced in Section 6.1, that describes a partially routed
waveguide. The feasibility of a routing plan can be evaluated using Linear Programming (LP)
and its successors easily expressed through routing decisions like the addition of a bend. From
this formulation, the ISAs presented in the state of the art in Section 3 can be used to solve
the FWRP. To do so, two different heuristic evaluation functions are proposed in Section 6.2.
Last, the Search Problem (SP) formulation is experimented in Section 6.3 on the previously
introduced test instances.

6.1 Routing plan formulation

In order to route a waveguide π starting from its origin configuration θori., its neutral fibre Fπ
can be built iteratively by making at each step decisions like adding a new bend from catalogue
Bcat. at the end of the waveguide. To formalise this approach, the concept of routing plan is
introduced to represent the decisions made so far on the waveguide components.

6.1.1 Routing plan

Definition 20: Routing plan (in free space)
In free space, a routing plan s describes, in an abstract way, a neutral fibre Fs
composed of Ns successive segments with, for each segment k ∈ J1, Ns − 1K, the
orientation change rsk ∈ Rk applied at the end point of segment k (see Figure 6.1).
Moreover, a routing plan can be terminated or not, characterised by a boolean
Terms. When routing plan s is terminated, neutral fibre Fs has to reach the
destination polyhedron Pdest..
The set of routing plans is denoted by S.

Several data can be derived from the basic definition of a routing plan s ∈ S. Especially,
bends and orientations of the partial waveguide can be deduced from the sequence of orientation
changes. The bend bsk ∈ Bcat. applied at the end point of the kth segment of neutral fibre Fs is
the bend brs

k
for k ∈ J1, Ns − 1K. In the same way, the orientation osk ∈ O∞ of the kth segment

is the orientation o+
rs
k−1

for k ∈ J2, NsK. The first orientation is os1 = oori..
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Routing plan s
Ns : Size[

rs1, ..., r
s
Ns−1

]
: Orientation changes

Terms : true/false[
bs1, ..., b

s
Ns−1

]
: Bends[

os1, ..., o
s
Ns

]
: Orientations

(a) Description of plan s. (b) Solution of LPLs .

Figure 6.1 – A routing plan s ∈ S.

6.1.2 Feasibility and cost-from-origin

A routing plan s ∈ S is feasible if it is possible to create a neutral fibre following the choices made
in s and satisfying the waveguide routing constraints introduced in Section 4.2.1 on page 45.
This feasibility problem can be formulated as a linear program, referred to as LPLs , that contains
two kinds of variables:

• position variables psk =
(
psk,x, p

s
k,y, p

s
k,z

)
such that, for k ∈ J1, Ns + 1K, real variable psk,x

(respectively psk,y and psk,z) is the x-coordinate (respectively y-coordinate and z-coordinate)
of the kth point of the neutral fibre;

• length variables `sk such that, for k ∈ J1, NsK, real variable `sk is the length of the kth

segment of the neutral fibre, or in other words `sk =
∥∥∥−−−−→pskp

s
k+1

∥∥∥.
Linear program LPLs minimises the cost of the partial neutral fibre which is described by the

constraints of plan s. This cost is called cost-from-origin and is defined by
∑Ns−1
k=1 γbs

k
+µ

∑Ns
k=1 `

s
k.

Thus, linear program LPLs can be formulated as follows:

minimise
∑Ns−1
k=1 γbs

k
+ µ

∑Ns
k=1 `

s
k (6.1)

subject to:
ps1 ∈ Pori. (6.2)

psNs+1 ∈ Pdest. if Terms = true (6.3)
`sk ≥ Lbsk−1

+ Lmin + Lbs
k

∀k ∈ J1, NsK (6.4)
−−−−→
pskp

s
k+1 = `sk

−−→eos
k
,z ∀k ∈ J1, NsK (6.5)

`sk ∈ R+ ∀k ∈ J1, NsK (6.6)
psk ∈ R3 ∀k ∈ J1, Ns + 1K (6.7)

Constraint 6.2 states that the neutral fibre must start from the origin polyhedron. Such an
inclusion constraint within a convex polyhedron can be expressed as a set of linear constraints.
Constraint 6.3 imposes that the neutral fibre must reach the destination polyhedron if plan s
is terminated. Constraints 6.4 impose a minimal length on the segments. For the kth segment,
this minimum length is obtained from the minimal length Lmin of straight sections and from
the respective contributions Lbs

k−1
and Lbs

k
of the previous and next bends (see Figure 6.2).

By convention, it is assumed that Lbs0 = 0 and LbsNs
= 0, since the first and last segments do

not have a previous or a next bend respectively. Constraints 6.5 define the coordinates of the
(k + 1)th point of the neutral fibre from the coordinates of the kth point, the orientation of the
kth segment as specified by routing plan s, and the length of this segment.

If LPLs has a solution, then routing plan s is feasible. In this case, the optimal cost-from-
origin of linear program LPLs is a lower bound of the cost of any waveguide that satisfies the
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Lbs1

`s1

ps1 ps2

(a) First segment.

psk+1

Lbs
k−1 Lbs

k

`sk

psk

(b) Intermediate segment.

LbsNs−1

`sNs

psNs psNs+1

(c) Last segment.

Figure 6.2 – Portion of a waveguide between two successive break points of the neutral fibre Fs
(the straight section with variable length is depicted in orange).

constraints defined by routing plan s. This value, referred to as gL (s), is called the lazy cost-
from-origin because it corresponds to a neutral fibre with a minimal length which somehow
stays as close as possible to the origin. For this reason, LPLs is called lazy linear program in
the remainder of this thesis. When Terms = true, the lazy cost-from-origin corresponds to the
optimal cost of a waveguide which uses the bends of routing plan s. The solution waveguide can
be rebuilt with Algorithm 10 on page 59 using the optimal origin position and segment lengths
found by LPLs , as well as the bends already defined by plan s. On the contrary, when there is
no solution, then routing plan s is not feasible and, by convention, its minimal cost-from-origin
is infinite, that is to say gL (s) =∞.

6.1.3 Neighbourhood

A non-terminated routing plan s ∈ S in free space can be extended using two kinds of decisions
detailed below: add a bend or finish the plan. So the successors of a routing plan are built by
forward chaining.

It is important to note that with these elementary decisions, there is a single way to reach
any routing plan s ∈ S, which is to apply exactly the same sequence of bends and terminate
the plan if needed. So, during an exploration of routing plan space S, it is impossible to visit a
given plan s more than once by starting from an initial plan and taking successive decisions.

Add a bend

Routing plan s′
Ns′ = Ns+1[
rs1, ..., r

s
Ns−1, r

]
false[

bs1, ..., b
s
Ns−1, br

][
os1, ..., o

s
Ns
, o+
r

]
(a) Description of successor s′. (b) Solution of LPLs′ .

Figure 6.3 – Adding an orientation change r ∈ Rout.∞

(
osNs

)
to a plan s ∈ S.

If the maximum number of bends is not reached, that means Ns < NS , and if r ∈ Rout.∞

(
osNs

)
is a reachable orientation change such that Ns+minBends

(
o+
r

)
≤ NS (the maximum number of

segments is not exceeded), then it is possible to apply bend br at the end of the last segment of
routing plan s. Note that such orientation changes are described by the k-candidate orientation
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change set Rout.Ns

(
osNs

)
but, in practice, the enumeration of candidate orientation changes is

avoided when using the ISA formulation. Let s′ ∈ S be the successor routing plan resulting
from the addition of a bend. Formally, adding bend br associated with orientation change r
creates a new segment in the neutral fibre, that is to say Ns′ = Ns+1, and extends the sequence
of orientation changes with r, meaning that rs′k = rsk for k ∈ J1, Ns − 1K and rs

′
Ns

= r. The
successor s′ is described on Figure 6.3a and illustrated on Figure 6.3b on the previous page.

Finish a plan

If a destination orientation has been reached, that is to say osNs ∈ O
dest., then routing plan s

can be terminated as illustrated on Figure 10.5a. Its successor s′ is the same plan but termi-
nated, meaning that Terms′ = true, and it has to reach the destination polyhedron Pdest. (see
Constraint 6.3). Remind that the resulting terminated plan may be infeasible and, in this case,
it is not considered as a valid successor of plan s.

Routing plan s′
Ns′ = Ns[
rs1, ..., r

s
Ns−1

]
true[

bs1, ..., b
s
Ns−1

][
os1, ..., o

s
Ns

]
(a) Description of successor s′. (b) Solution of LPLs′ .

Figure 6.4 – Terminating a plan s ∈ S.

6.1.4 Origin and destination plans

Thanks to the routing plans presented above, the FWRP can be reformulated as finding a
routing plan s ∈ S that connects the origin and destination polyhedrons, satisfies the constraints
introduced in Section 4.2.1 and minimises the waveguide cost presented in Section 4.2.2. Such
a routing plan is called a destination plan. It is a routing plan s ∈ S that is feasible, terminated
and for which the last orientation is a destination orientation, that means osNs ∈ O

dest.. The
set of destination plans is referred to as Sdest.. To explore the space of routing plans S, routing
decisions like the addition of a bend are applied from an origin plan referred to as sori.. For
a FWRP instance, plan sori. starts from the origin orientation oori. and does not contain any
bend, that means Nsori. = 1, as shown on Figure 6.5a. Of course, it is a non-terminated plan.

Routing plan sori.
Ns = 1

∅
false

∅[
oori.

]
(a) Origin plan sori..

Routing plan s
Ns ≤ NS[
rs1, ..., r

s
Ns−1

]
true[

bs1, ..., b
s
Ns−1

][
os1, ..., o

s
Ns

]
with osNs ∈ O

dest.

(b) Destination plan s ∈ Sdest..

Figure 6.5 – Origin and destination plans.
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6.2 Evaluations and heuristics

Section 6.1 described the space of routing plans S, the origin and destination plans sori. and
Sdest., as well as the neighbourhood of a routing plan s ∈ S. However, in order to solve the FWRP
with ISAs, it is necessary to define a heuristic function h (s), which estimates the remaining cost
to reach a destination plan in Sdest. from feasible plan s ∈ S, or an evaluation function f (s),
which estimates the cost of a destination plan in Sdest. extended from feasible plan s ∈ S.

6.2.1 Partial cost-to-destination

As explained in Section 6.1.2, a partial cost-from-origin can be defined using a feasibility problem
for any feasible routing plan s ∈ S. It corresponds to the cost of a partial neutral fibre that must
satisfy the constraints of plan s. Similarly, it is possible to estimate a partial cost-to-destination
of the partial neutral fibre that is not already constrained by plan s. To do so, a relaxed polyline
is built to connect the last point of the current partial neutral fibre to the destination polyhedron
Pdest. by ignoring the orientation constraints on the segments of the polyline.

Two cost-to-destination evaluation methods are proposed depending on the partial neutral
fibre considered. The first approach, presented in Section 6.2.2, reuses the polyline provided
by lazy linear program LPLs which minimises the partial cost-from-origin while the second
method, introduced in Section 6.2.3, is based on a reformulation of the feasibility problem into
a destination-attracted linear program LPDs which minimises the partial cost-to-destination.

In both cases, the partial cost-to-destination can be divided into two parts, similarly to the
cost of a waveguide: the bend cost and the linear cost.

Partial bend cost-to-destination

On the one hand, the partial cost-to-destination must take into account the cost of the bend
combination that must be added to routing plan s in order to reach a destination orientation in
Odest. and the destination polyhedron Pdest.. A lower bound on the remaining bend cost is the
minimal cost of a bend combination that allows reaching a destination orientation in Odest. from
the current orientation osNs in the kernel of reachable orientations G (O∞,R∞). This minimal
bend combination cost, referred to as γmin. (o), can be precomputed for any reachable orientation
o ∈ O∞ by applying Algorithm 8 with the cost function γ (r) = γbr defined for any orientation
change r ∈ R∞. Figure 6.6 illustrates this preprocessing for the example of Figure 5.1 with
Bcat. = {b1, b2}, oori. = o1 and Odest. = {o4}.

Partial linear cost-to-destination

On the other hand, the partial cost-to-destination must also consider the linear cost coming
from the length of the neutral fibre that connects the last point psNs+1 of a feasible routing plan
s ∈ S to the destination polyhedron Pdest.. Since the simplest way to connect two points is to
use a straight line, the partial linear cost-to-destination can be evaluated as the minimal value
of the as the crow flies distance between the last point psNs+1 and the destination polyhedron
Pdest. weighted by linear cost µ.

If destination polyhedron Pdest. is a point P dest, it simply corresponds to µ
∥∥∥∥−−−−−−−→psNs+1P

dest

∥∥∥∥.
Otherwise, finding the minimal distance minp∈Pdest.

∥∥∥−−−−→psNs+1p
∥∥∥ is a quadratic programming prob-

lem which is time-consuming if solved numerous times. In practice, rather than solving this
quadratic program, several points are sampled in destination polyhedron Pdest. and only the
minimal distance to the sampled points is considered.
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o2

γmin. (o2) = γb1

o1γmin. (o1) = 2 min (γb1 , γb2) o4 γmin. (o4) = 0

o3

γmin. (o3) = γb2

b1

b2

b1

b2

b1

b2

b1

b2

Figure 6.6 – Minimal costs to the destination orientations.

6.2.2 Lazy approach

A first way to build the partial neutral fibre Fs for a feasible routing plan s ∈ S is to use the
polyline

[
ps1, ..., p

s
Ns+1

]
provided by lazy linear program LPLs which minimises the cost-from-

origin. As illustrated on Figure 6.7, the partial neutral fibre stays as close as possible to the
origin polyhedron Pori. in order to minimise the cost-from-origin. Therefore, the cost-from-origin
corresponds to the lazy cost gL (s) and the cost-to-destination using the polyline

[
ps1, ..., p

s
Ns+1

]
provided by LPLs can be evaluated with the lazy heuristic hL (s) defined as follows.

Definition 21: Lazy heuristic hL

Let s be a feasible routing plan in S and
[
ps1, ..., p

s
Ns+1

]
the polyline provided by

lazy linear program LPLs which minimises the cost-from-origin. The lazy heuristic
is defined for routing plan s by:

hL (s) =
{
γmin.

(
osNs

)
+ µminp∈Pdest.

∥∥∥−−−−→psNs+1p
∥∥∥ if Terms = false

0 otherwise

Figure 6.7 – Partial neutral fibre and polyline to the destination with the lazy approach.

Optimal solutions of the lazy linear program

When routing plan s ∈ S is not terminated (when Terms = false), it is possible to directly
compute the optimal solution of linear program LPLs without applying the simplex algorithm
by setting each segment of the polyline to its minimal length.
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Property 3: Optimal solution of non-terminated routing plans

Let s be a non-terminated routing plan in S (such that Terms = false) and P ori.
a point in the origin polyhedron Pori.. The segment lengths `sk, for k ∈ J1, NsK,
and positions psk, for k ∈ J1, Ns + 1K, defined as follows form an optimal solution
of lazy linear program LPLs (remind that Lbs0 = 0 by convention):

`sk = Lbs
k−1

+ Lmin + Lbs
k
∀k ∈ J1, NsK

ps1 = P ori.

−−−−→
pskp

s
k+1 = `sk

−−→eos
k
,z ∀k ∈ J1, NsK

Proof: By definition, segment lengths `sk and positions psk defined by Property
3 form a solution that satisfies all the constraints of lazy linear program LPLs .
Assume that segment lengths `s′k and positions ps′k form another solution of LPLs .
Then, for k ∈ J1, NsK, segment length `s′k verifies:

`s
′
k ≥ Lbs

k−1
+ Lmin + Lbs

k

= `sk

It results that:
Ns−1∑
k=1

γbs
k

+ µ
Ns∑
k=1

`s
′
k ≥

Ns−1∑
k=1

γbs
k

+ µ
Ns∑
k=1

`sk

Q.E.D.

As a consequence, a non-terminated plan s ∈ S is always feasible and its lazy cost gL (s) can
be easily computed.

Property 4: Lazy cost of non-terminated routing plans
Let s be a non-terminated routing plan in S. The lazy cost gL (s) of routing plan
s is defined by:

gL (s) = µNsL
min +

Ns−1∑
k=1

(
γbs
k

+ 2µLbs
k

)

Monotonicity of the lazy cost

Property 5: Monotonicity of the segment lengths
Let s be a non-terminated routing plan in S and s′ a descendant of plan s. For
k ∈ J1, NsK, the optimal segment length `s′k provided by LPLs′ satisfies:

`s
′
k ≥ `sk

where `sk is provided by LPLs .
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Proof: Since routing plan s is non-terminated, the optimal segment length `sk
provided by linear program LPLs is Lbs

k−1
+ Lmin + Lbs

k
. By definition of linear

program LPLs′ , the optimal segment length `s′k is lower-bounded by Lbs
k−1

+Lmin +
Lbs

k
. Q.E.D.

Property 6: Monotonicity of the lazy cost gL

Let s be a non-terminated routing plan in S and s′ a descendant of plan s. The
lazy cost function gL is monotonic and verifies:

gL (s) ≤ gL
(
s′
)

Proof: Since plan s′ is a descendant of plan s, then Ns′ ≥ Ns + 1. Using
Property 5 and the positivity of segment lengths, it is shown that:

Ns∑
k=1

`sk ≤
Ns∑
k=1

`s
′
k

≤
Ns′∑
k=1

`s
′
k

Moreover, since plan s′ is a descendant of plan s, the bends of plan s′ satisfy
bs
′
k = bsk, for k ∈ J1, Ns − 1K. Using the positivity of bend costs, it is shown that:

Ns∑
k=1

γbs
k

=
Ns∑
k=1

γ
bs
′
k

≤
Ns′∑
k=1

γ
bs
′
k

Finally, it results that:

µ
Ns∑
k=1

`sk +
Ns∑
k=1

γbs
k
≤ µ

Ns′∑
k=1

`s
′
k +

Ns′∑
k=1

γ
bs
′
k

In other words, gL (s) ≤ gL (s′).
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Consistency of the lazy heuristic

Property 7: Upper bound on the distance to a descendant’s last point
Let s be a non-terminated routing plan in S and s′ a descendant of plan s. The
distance between the last point psNs+1 of plan s and the last point ps′Ns′+1 of plan
s′ is upper bounded by:

∥∥∥∥−−−−−−−−→psNs+1p
s′
Ns′+1

∥∥∥∥ ≤ Ns∑
k=1

(
`s
′
k − `sk

)
+
∥∥∥∥−−→ps1p

s′
1

∥∥∥∥+
Ns′∑

k=Ns+1
`s
′
k

where psk and ps
′
k as well as `sk and `s

′
k are respectively provided by lazy linear

programs LPLs and LPLs′ .

Proof: Using Constraint 6.5, it can be shown by induction that −−−→ps1p
s
k′ =∑k′−1

k=1 `
s
k
−−→eos
k
,z for all s ∈ S and k′ ∈ J1, Ns + 1K. Then, it results that:∥∥∥∥−−−−−−−−→psNs+1p

s′
Ns′+1

∥∥∥∥ =
∥∥∥∥−−−−−→psNs+1p

s
1 +
−−→
ps1p

s′
1 +
−−−−−−→
ps
′

1 p
s′
Ns′+1

∥∥∥∥
=

∥∥∥∥∥∥−
Ns∑
k=1

`sk
−−→eos
k
,z +
−−→
ps1p

s′
1 +

Ns′∑
k=1

`s
′
k
−−→e
os
′
k
,z

∥∥∥∥∥∥
However, since routing plan s′ is a descendant of plan s, the orientations of plan
s′ satisfy os′k = osk for k ∈ J1, NsK. Therefore:

∥∥∥∥−−−−−−−−→psNs+1p
s′
Ns′+1

∥∥∥∥ =

∥∥∥∥∥∥
Ns∑
k=1

(
`s
′
k − `sk

)−−→eos
k
,z +
−−→
ps1p

s′
1 +

Ns′∑
k=Ns+1

`s
′
k
−−→e
os
′
k
,z

∥∥∥∥∥∥
Using the sublinearity of the Euclidean norm, it results that:

∥∥∥∥−−−−−−−−→psNs+1p
s′
Ns′+1

∥∥∥∥ ≤ Ns∑
k=1

∣∣∣`s′k − `sk∣∣∣+ ∥∥∥∥−−→ps1p
s′
1

∥∥∥∥+
Ns′∑

k=Ns+1

∣∣∣`s′k ∣∣∣
Last, using the positivity of the segment lengths and Property 5, it shows that:

∥∥∥∥−−−−−−−−→psNs+1p
s′
Ns′+1

∥∥∥∥ ≤ Ns∑
k=1

(
`s
′
k − `sk

)
+
∥∥∥∥−−→ps1p

s′
1

∥∥∥∥+
Ns′∑

k=Ns+1
`s
′
k

Property 8: Consistency of the lazy heuristic hL

If the origin polyhedron Pori. is a point, then the lazy heuristic hL is consistent,
that is to say hL

(
sdest.

)
= 0 for all destination routing plans sdest. ∈ Sdest., and,

for any non-terminated routing plan s ∈ S and any successor s′ ∈ S, it satisfies
the triangular inequality:

hL (s) ≤ gL
(
s′
)
− gL (s) + hL

(
s′
)
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Proof: By definition, a destination routing plan sdest. ∈ Sdest. is terminated
and hL

(
sdest.

)
= 0. Now, let s be a non-terminated routing plan in S and s′ a

descendant of plan s. So, the bends of plan s′ satisfy bs′k = bsk, for k ∈ J1, Ns − 1K.
Using Property 7, it results that:

gL
(
s′
)
− gL (s) + hL

(
s′
)

=
Ns′−1∑
k=1

γ
bs
′
k

+ µ

Ns′∑
k=1

`s
′
k −

Ns−1∑
k=1

γbs
k
− µ

Ns∑
k=1

`sk

+γmin.
(
os
′
Ns′

)
+ µ min

p∈Pdest.

∥∥∥∥−−−−−→ps
′
Ns′+1p

∥∥∥∥
= µ

Ns∑
k=1

(
`s
′
k − `sk

)
+ µ

Ns′∑
k=Ns+1

`s
′
k

+µ min
p∈Pdest.

∥∥∥∥−−−−−→ps
′
Ns′+1p

∥∥∥∥+
Ns′−1∑
k=Ns

γ
bs
′
k

+ γmin.
(
os
′
Ns′

)
≥ µ

∥∥∥∥−−−−−−−−→psNs+1p
s′
Ns′+1

∥∥∥∥− µ ∥∥∥∥−−→ps1p
s′
1

∥∥∥∥
+µ min

p∈Pdest.

∥∥∥∥−−−−−→ps
′
Ns′+1p

∥∥∥∥+
Ns′−1∑
k=Ns

γ
bs
′
k

+ γmin.
(
os
′
Ns′

)
Applying the triangular inequality, it shows that:

gL
(
s′
)
− gL (s) + hL

(
s′
)
≥ µ min

p∈Pdest.

∥∥∥−−−−→psNs+1p
∥∥∥− µ ∥∥∥∥−−→ps1p

s′
1

∥∥∥∥
+
Ns′−1∑
k=Ns

γ
bs
′
k

+ γmin.
(
os
′
Ns′

)

Moreover,
∑Ns′−1
k=Ns γbs′k

+ γmin.
(
os
′
Ns′

)
is the minimal bend cost of the best bend

combination to reach a destination orientation in Odest. which starts by bends
bs
′
Ns

, ..., bs′Ns′−1. By definition, this cost is lower bounded by the minimal bend
cost γmin.

(
osNs

)
of the best bend combination to reach a destination orientation.

Therefore:

gL
(
s′
)
− gL (s) + hL

(
s′
)
≥ µ min

p∈Pdest.

∥∥∥−−−−→psNs+1p
∥∥∥− µ ∥∥∥∥−−→ps1p

s′
1

∥∥∥∥+ γmin.
(
osNs

)
= hL (s)− µ

∥∥∥∥−−→ps1p
s′
1

∥∥∥∥
Finally, if the origin polyhedron Pori. is a point, then

∥∥∥∥−−→ps1p
s′
1

∥∥∥∥ = 0 and gL (s′) −
gL (s) + hL (s′) ≥ hL (s).

Since the admissibility of a heuristic follows from its consistency, lazy heuristic hL is admis-
sible under the same conditions.
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Property 9: Admissibility of the lazy heuristic hL

If the origin polyhedron Pori. is a point, then the lazy heuristic hL is admissible in
the sense that, for a routing plan s ∈ S, hL (s) never overestimates the remaining
cost to reach a destination plan in Sdest. from plan s.

The classical ISAs introduced in Section 3.2 are now applicable to solve the FWRP by using
lazy cost function gL, which is increasing (see Section 6.1.2), and lazy heuristic function hL.
For instance, Best-First Search approaches, which are complete algorithms, will provide results
with interesting properties that may challenge the MILP formulation. Indeed, because of the
consistency of lazy heuristic hL, the first solution encountered by A* using fL (s) = gL (s)+hL (s)
will be optimal, while the one found by WA* using fL (s) = gL (s) + εhL (s) will be guaranteed
to cost no more than ε times the optimal cost. Furthermore, incomplete approaches like LSS-
LRTA* with fL (s) = gL (s) +hL (s), and BrF-BS or even SAHC with hL (s) are also candidates
to quickly solve the FWRP, even if they provide no guarantee on the solution quality. They will
be tested and compared in Section 6.3.1.

6.2.3 Destination-attracted approach

Another approach consists in building a partial neutral fibre Fs for the feasible routing plan
s ∈ S which gets as close as possible to the destination polyhedron Pdest.. In this case, the
evaluation difference between plans that quickly reach the destination and misleading ones will
be accentuated. To do so, the feasibility problem is reformulated into a destination-attracted
linear program LPDs presented in this section that minimises the Manhattan distance from the
last point psNs+1 to the destination polyhedron Pdest..

As the Manhattan distance requires to compute the absolute value of the coordinate gap
between psNs+1 and a goal point in Pdest. along each axis, the classical absolute value linearisation
technique is used. Typically, if x ∈ R is a real variable whose absolute value |x| must be
minimised in the criterion, |x| can be linearised by introducing two positive real variables x+ ∈
R+ and x− ∈ R+ that respectively correspond to the positive and negative part of x such that
|x| is replaced by x+ + x−. Then, x+ and x− are constrained with x+ ≥ x and x− ≥ −x. Since
the sum x+ +x− is minimised, the constraints enforce one of the two variables x+ and x− to be
equal to |x| and the other to be zero.

Using this linearisation technique, destination-attracted linear program LPDs is written with
the same variables and constraints as lazy linear program LPLs (see Section 6.1.2) but introduces
the following additional variables:

• goal position variables gs =
(
gsx, g

s
y, g

s
z

)
such that real variable gsx (respectively gsy and

gsz) is the x-coordinate (respectively y-coordinate and z-coordinate) of the goal point in
destination polyhedron Pdest.;

• positive distance variables ds+a , for a ∈ {x, y, z}, such that real variable ds+x (respec-
tively ds+y and ds+z ) is the positive part of

∣∣∣psNs+1,x − gsx
∣∣∣ (respectively ∣∣∣psNs+1,y − gsy

∣∣∣ and∣∣∣psNs+1,z − gsz
∣∣∣);

• negative distance variables ds−a , for a ∈ {x, y, z}, such that real variable ds−x (respec-
tively ds−y and ds−z ) is the negative part of

∣∣∣psNs+1,x − gsx
∣∣∣ (respectively ∣∣∣psNs+1,y − gsy

∣∣∣ and∣∣∣psNs+1,z − gsz
∣∣∣).
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Linear program LPDs minimises the Manhattan distance from the last point psNs+1 to the
destination polyhedron Pdest. that corresponds to value ds+x + ds−x + ds+y + ds−y + ds+z + ds−z .
This approximatively minimises the cost-to-destination of the partial neutral fibre in the sense
that the Manhattan distance is minimised rather than the Euclidean distance in order to satisfy
linearity requirements. Finally, linear program LPDs can be formulated as follows:

minimise ds+
x + ds−x + ds+

y + ds−y + ds+
z + ds−z (6.8)

subject to:
ps1 ∈ Pori. (6.9)

psNs+1 ∈ Pdest. if Terms = true (6.10)
gs ∈ Pdest. (6.11)

`sk ≥ Lbsk−1
+ Lmin + Lbs

k
∀k ∈ J1, NsK (6.12)

−−−−→
pskp

s
k+1 = `sk

−−→eos
k
,z ∀k ∈ J1, NsK (6.13)

ds+
a + gsa ≥ psNs+1,a ∀a ∈ {x, y, z} (6.14)
ds−a + psNs+1,a ≥ gsa ∀a ∈ {x, y, z} (6.15)

`sk ∈ R+ ∀k ∈ J1, NsK (6.16)
psNs ∈ R3 ∀k ∈ J1, Ns + 1K (6.17)

ds+
a , ds−a ∈ R+ ∀a ∈ {x, y, z} (6.18)

Contrarily to lazy linear program LPLs which minimises the cost-from-origin, there is no
obvious optimal solution to destination-attracted linear program LPDs and it must be solved to
evaluate each routing plan s ∈ S. The cost-from-origin corresponding to a solution of LPDs ,
called destination-attracted cost and referred to as gD (s) can be evaluated as follows.

Definition 22: Destination-attracted cost gD

Let s be a feasible routing plan in S and `sk, ...,`sNs the segment lengths provided
by destination-attracted linear program LPDs which minimises the partial cost-to-
destination. The destination-attracted cost for routing plan s is defined by:

gD (s) =
Ns−1∑
k=1

γbs
k

+ µ
Ns∑
k=1

`sk (6.19)

Like in the lazy approach, the cost-to-destination for the destination-attracted partial neutral
fibre can be evaluated using the polyline

[
ps1, ..., p

s
Ns+1

]
provided by destination-attracted linear

program LPDs .

Definition 23: Destination-attracted heuristic hD

Let s be a feasible routing plan in S and
[
ps1, ..., p

s
Ns+1

]
the polyline pro-

vided by destination-attracted linear program LPDs which minimises the cost-
to-destination. The destination-attracted heuristic for routing plan s is defined
by:

hD (s) =
{
γmin.

(
osNs

)
+ µminp∈Pdest.

∥∥∥−−−−→psNs+1p
∥∥∥ if Terms = true

0 otherwise
(6.20)
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As illustrated on Figure 6.8, the partial neutral fibre gets as close as possible to the desti-
nation polyhedron Pdest. in order to minimise the cost-to-destination. Consequently, the cost-
from-origin is predominant in the neutral fibre used to evaluate routing plan s ∈ S.

Figure 6.8 – Partial neutral fibre and polyline to the destination with the destination-attracted
approach.

It can be easily proved that destination-attracted heuristic hD is not admissible and then
not consistent. For instance, Figure 6.9 illustrates a case where adding a bend b ∈ Bcat. to a
routing plan s ∈ S clearly reduces the linear cost of the complete neutral fibre in order to reach
the destination polyhedron Pdest.. In this case, if the added bend b has a zero cost γb = 0, then
the estimation gD (s)+hD (s) overestimates the cost of a destination plan which is a descendant
of routing plan s.

(a) Partial neutral fibre and polyline to the des-
tination for a routing plan s ∈ S.

(b) Partial neutral fibre and polyline to the des-
tination for plan s ∈ S extended with a bend
b ∈ Bcat..

Figure 6.9 – Example of non admissibility with the destination-attracted approach.

In the same way, Figure 6.10 shows an example where adding a zero-cost bend b ∈ Bcat. to a
routing plan s ∈ S decreases the cost-from-origin. So, the destination-attracted cost gD is non-
increasing when extending the routing plans. The example also illustrates that the estimation
f = gD + hD is non-increasing.

Pdest.

(a) Partial neutral fibre and polyline to the des-
tination for a routing plan s ∈ S.

Pdest.

(b) Partial neutral fibre and polyline to the des-
tination for plan s ∈ S extended with a bend
b ∈ Bcat..

Figure 6.10 – Example of decreasing destination-attracted cost gD (s).

A*, WA* and more generally BFS approaches are optimal only if the evaluation function f
is non-decreasing. Since fD = gD + hD is not, these algorithms will only provide suboptimal
solutions to the FWRP. However, A* using fD (s) = gD (s) + hD (s) and WA* using fD (s) =
gD (s)+ εhD (s) will be compared with the versions using lazy heuristic hL. Last, like in the lazy
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approach, incomplete approaches like LSS-LRTA* with fD (s) = gD (s) +hD (s), and BrF-BS as
well as SAHC with hD (s) are also studied because the more "aggressive" heuristic hD may find
solutions faster than heuristic hL.

6.3 Experiments on the FWRP

Both introduced evaluation methods, the lazy and destination-attracted approaches, have been
implemented in Java with the following ISAs: A*, WA*, Greedy BFS, SAHC, BrF-BS, and
LSS-LRTA*. Remind that the implementation of these algorithms does not maintain any data
structure of the already visited states since routing plans are built by forward chaining and so
cannot be generated twice. The resolution of the linear programs has been performed using
the Simplex solver of the Apache Commons Math library (version 3.6.1) [3]. Note that, in the
results that follow, the search has been stopped as soon as a solution was found and the runtime
has been limited to 1 minute.

First of all, each kind of algorithm (BFS, BS and HC) is studied separately in order to
select the best parameters to solve the FWRP. Then, the best approaches as well as the MILP
formulation presented in Chapter 5 are compared in Section 6.3.2.

6.3.1 Tuning the different Informed Search Algorithms

Best-First Search

WA* algorithm has been studied for the following weight ε-values: 1.1, 1.2, 1.5, 2, 3, 5 and 8.
A*, which is WA* with ε = 1, and Greedy BFS, which can be seen as WA* with ε = ∞, are
also tested. Figure 6.11 on page 86 and Figure 6.12 on page 87 present the results on the three
instance sets (see Section 5.3.1 on page 63) using respectively the lazy and destination-attracted
approaches.

First, it appears that all solutions found using A* and the lazy approach are optimal, which
is consistent with the admissibility of lazy heuristic hL, proved in Section 6.2.2. By contrast,
the non-admissibility of the destination-attracted heuristic hD is empirically validated by non-
optimal solutions returned by A*. In both cases, all instances are solved since BFS approaches
are complete.

With the lazy approach fL = gL + εhL, the gaps to the optimal solution cost decrease with
weight ε, up to systematically reaching optimal solutions with ε = 1 (see Figure 6.11c). The
behaviour of the resolution time, which is correlated to the number of iterations performed, is
divided into two parts: first, it decreases when weight ε rises, then it starts to increase after
exceeding a threshold value of ε (see Figure 6.11b). Beyond this particular value, the heuristic
contribution becomes misleading. It results that the best ε values are around this threshold
since the runtime is low and the quality of the solution stays acceptable. Here, WA* provides
the best performances on the three instance sets with ε = 1.2, 1.5 and 2.

For the destination-attracted approach fD = gD + εhD, the resolution runtime tends to
decrease when weight ε rises, as illustrated on Figure 6.12b, but at the cost of a poorer solution
quality (see Figure 6.12c). However, although there is no theoretical upper bound on the gap
to the optimal cost when using this approach, it can be noticed that this gap grows slowly with
weight ε and stays generally under 50%. So, this evaluation method can be competitive with
the lazy approach by choosing ε = 2, 3 or 5, which is a good trade-off between resolution speed
and solution quality.

Furthermore, by comparing the number of iterations performed by both evaluation methods
on Figure 6.13, it appears that the destination-attracted approach expands fewer routing plans
and leads more directly to a solution. In particular, this can be verified on instances where
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the origin and destination polyhedrons are distant and the bend costs are low. In these cases,
the cost-to-destination becomes preponderant in the lazy evaluation, since the partial neutral
fibre stays around the origin. Thus, the cost of routing plans from a same level is almost the
same, which results in a high number of expanded plans. Nevertheless, the destination-attracted
approach requires solving a linear program LPDs each time a plan s ∈ S is evaluated. By contrast,
an optimal solution is known for lazy linear program LPLs when a bend is added (see Property
3). So, it is possible to avoid the resolution of linear program LPLs using the simplex algorithm
in most cases and, consequently, to perform many more iterations by time unit. This is the
reason why the lazy approach can be faster even if it expands more routing plans.

Both evaluation methods are compared with their best weight values on Figure 6.14 on
page 89. The lazy approach provides a solution quality comparable to the destination-attracted
approach, but faster than the latter. Moreover, the biggest advantage of the lazy evaluation
fL = gL + εhL is that the gap to the optimal cost is upper bounded because of the consistency
of heuristic hL. Finally, WA* with ε = 1.5 and the lazy approach seems to be the most efficient
BFS method.
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Figure 6.11 – Results with A*/WA* and the lazy approach.
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Figure 6.12 – Results with A*/WA* and the destination-attracted approach.
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Figure 6.13 – Comparison of the number of iterations performed with A*/WA* .
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Figure 6.14 – Best results with A*/WA*.
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Beam Search

BrF-BS has been studied for the following beamwidth W -values: 2, 5, 10, 20, 50, 100, 200 and
500. SAHC, which can be seen as BrF-BS with W = 1, is also tested. Figure 6.15 on the next
page and Figure 6.16 on page 92 present the results on the three instance sets using respectively
the lazy and destination-attracted heuristics hL and hD.

For both heuristics, resolution runtimes grow with beamwidth W . Nevertheless, a large
beamwidth is required with the lazy heuristic hL in order to ensure an acceptable success rate.
Typically, only W values higher than 100 allow solving more than 90% of instances with the
largest catalogue B30◦

cat. (see Figure 6.15a). In comparison, the destination-attracted heuristic
hD reaches equivalent success rates with a thinner beamwidth since hD leads more directly to
a solution, as illustrated on Figure 6.16a. For instance, a 10-beamwidth BrF-BS already solves
more than 90% of instances using B30◦

cat.. In particular, it can be noticed that even SAHC has a
high resolution rate around 75% on B30◦

cat. instances within less than 200 milliseconds. Generally,
using a thinner beamwidth makes BrF-BS faster, but the lazy heuristic hL compensates its
disadvantage by avoiding the resolution of the lazy linear program for each generated routing
plan and stays more efficient than hD, even with larger beamwidths (see Figure 6.15b and Figure
6.16b).

It can also be seen that the solution quality rises with beamwidth W for both heuristics.
However, the destination-attracted heuristic hD provides reasonable gaps to the optimal solution
cost even with small beamwidths (see Figure 6.16c), while heuristic hL requires a minimal
beamwidth to ensure gaps lower than 50% (see Figure 6.15c). Moreover, when beamwidth W is
large, hD still gives slightly better solutions than hL. This may be partially explained by the fact
that lazy heuristic hL can be misleading with BrF-BS, which only considers the remaining cost
h (s) to reach a destination plan. Indeed, lazy heuristic hL enforces the partial neutral fibre to be
close to the origin polyhedron Pori.. It results that, in cases where bend costs are low and bend
catalogue Bcat. contains a twist, there are configurations in which applying a twist reducing the
distance to destination polyhedron Pdest. is more promising than applying another bend, even if
the latter makes it possible to reach the destination at the next step. Therefore, solutions found
with lazy heuristic hL may contain unnecessary twists. In comparison, destination-attracted
heuristic hD favours routing plans that get close to destination polyhedron Pdest., so applying
a twist does not have an impact on the remaining distance to Pdest.. As a result, the quality of
solutions found by hD is generally better.

The smallest W values that ensure acceptable resolution rates are 100, 200 and 500 for
heuristic hL, and 50, 100 and 200 for heuristic hD. By comparing them (see Figure 6.17 on
page 93), it appears that the lazy heuristic hL is clearly faster than hD when using BrF-BS. Since
the solution quality improvement brought by the destination-attracted approach is negligible,
it is preferable to use heuristic hL. Finally, beamwidth value W = 500 and heuristic hL is the
most efficient tuning of BrF-BS to solve all instances.

Hill-Climbing

Figure 6.18a and Figure 6.18b show the evolution of success rates with LSS-LRTA* using re-
spectively lazy and destination-attracted evaluations. Values 1, 2, 5, 10, 20, 50, 100, 200 and
500 have been tested for lookahead L. If this algorithm provides solutions fast in less than one
second, it appears that it has a very poor success rate with both evaluation methods. Indeed, the
success rate is capped to 45% on the largest catalogue B30◦

cat. with the lazy approach. Moreover,
although this rate seems to increase with lookahead L when the destination-attracted evaluation
is used, LSS-LRTA* is outperformed by A* with fL = gL + hL. Consequently, LSS-LRTA* was
not selected among the best candidate algorithms.
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Figure 6.15 – Results with SAHC/BrF-BS and the lazy approach.
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Figure 6.16 – Results with SAHC/BrF-BS and the destination-attracted approach.
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Figure 6.17 – Best results with SAHC/BrF-BS.
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Figure 6.18 – Evolution of success rates with LSS-LRTA*.

6.3.2 Comparison of the best approaches

As previously shown, the best explored ISAs to solve the FWRP are:

• A* using the lazy evaluation fL = gL + hL;

• WA* using ε = 1.5 and the lazy evaluation fL = gL + εhL;

• WA* using ε = 3 and the destination-attracted evaluation fD = gD + εhD;

• BrF-BS using W = 500 and the lazy heuristic hL;

• BrF-BS using W = 100 and the destination-attracted heuristic hD.
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These algorithms, as well as the resolution of the MILP model stopped as soon as a first solution
is found, have been compared on the three instance sets using the maximal numbers of segments
NS = 6 and NS = 10. Results are presented on Figure 6.19 and Figure 6.20 respectively.

It appears that the MILP formulation is outperformed by the ISAs. Indeed, WA* and BrF-
BS provide solutions within runtimes lower by several orders of magnitude compared to MILP
stopped when reaching the first solution, as shown on Figure 6.20b. Moreover, the quality of
these solutions is significantly better with ISAs (see Figure 6.19c) and is acceptable for designers
as illustrated on Figure 6.21. When the maximal number of segments NS is low, even A* reaches
the optimal solution before MILP encounters its first solution, as illustrated on Figure 6.19a.
Furthermore, the MILP approach is very sensitive to the number of segments NS because of the
combinatorial explosion due to a higher number of possible orientation changes. For instance, it
did not provide any solution within a minute on bend catalogue B30◦

cat. with NS = 10 (see Figure
6.20a). In comparison, WA* and BrF-BS are relatively robust when NS rises. This can be
explained by the fact that increasing NS does not impact the depth of destination routing plans
which are reachable with a lower value of NS . To make the MILP formulation less sensitive to
NS , it would be possible to solve a sequence of MILP models without introducing neutral bends
in the space of candidate orientations. This approach has not been explored.

Among ISAs, the best trade-off between resolution speed and solution quality is reached using
WA* with ε = 1.5 and the lazy evaluation fL = gL + εhL. BrF-BS finds more often the optimal
solution, but its runtime is longer and the gap to the optimality is larger in the worst cases.
Moreover, BrF-BS does not provide any guarantee on the solution quality. In contrast, WA*
with the lazy evaluation ensures that the first solution found costs at most ε times the optimal
cost because of the consistency of heuristic hL. Last, if A* always finds the optimal solution,
its resolution speed is not competitive since it explores many more routing plans. Of course,
one of the most important advantages of BFS approaches over BrF-BS is their completeness.
Whatever the ε value, WA* will find a solution if there exists one. Such an assertion does not
hold for BrF-BS which can require a minimal beamwidth W to reach a solution.

With WA*, it is possible to offer the ε value as a tuning parameter to the routing algorithm
user in order to adjust the trade-off between resolution speed and optimality. To do so, the value
domain of ε must be [1, 2] since, as illustrated on Figure 6.11, runtime raises beyond ε = 2. An
ε value closer to 1 improves the optimality of the solution, while an ε value closer to 2 reduces
the resolution speed.
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Figure 6.19 – Results with the best approaches with NS = 6.
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Figure 6.20 – Results with the best approaches with NS = 10.
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Figure 6.21 – Examples of routed waveguides with WA*.
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Chapter 7

Conclusion on the FWRP

7.1 Contributions

In Part II, two formulations have been proposed in order to solve the Free Waveguide Routing
Problem (FWRP): a first one using Mixed Integer Linear Programming (MILP) and another
one as a Search Problem (SP). Both deal with potentially non-orthogonal bends defined in a
catalogue and with unsymmetrical cross-sections, which is necessary to provide solutions that
satisfy all the constraints for Waveguide Routing in the Radio-Frequency Harness of a telecom-
munication satellite. The formulations introduced are based on the enumeration of possible
orientations for the waveguide segments. This is feasible since the number of candidate orien-
tations is not that large thanks to the global attachability constraint. Then, both approaches
use Linear Programming (LP) to route the waveguide in a continuous domain, considering local
constraints on each straight section. It results that the solutions generated are realistic and
can be used without modification by designers in cases where there is no conflict with other
components or existing waveguides. The main ideas of these methods have been presented in
publications at the ICORES 2020 [88] and ROADEF 2020 [89] conferences.

The resolution with the MILP formulation turned out to be too time-consuming, even if
the method is attractive because it guarantees to provide optimal solutions. Indeed, when the
size of the bend catalogue or the maximal number of segments increases, the runtime required
to reach a first solution rises exponentially. It results that, on instances encountered in an
industrial context, the poor performances of the MILP approach do not enable performing fast
and numerous iterations during the design phase.

By contrast, the Informed Search Algorithms (ISAs), that can be used thanks to the SP for-
mulation, are able to quickly provide solutions. These algorithms take full advantage of heuris-
tics evaluating routing plans that define partially routed neutral fibres. Two evaluation methods
have been introduced: the lazy approach, based on a linear program minimising the cost of the
neutral fibre part that is already constrained by the routing plan, and the destination-attracted
approach, which uses a linear program minimising the remaining distance to the destination
polyhedron. Various types of ISAs have been experimented with these evaluation methods,
including A*, WA*, Breadth-First Beam Search, and LSS-LRTA*. Even if the destination-
attracted approach leads more directly to a solution in terms of number of iterations performed,
the lazy approach takes full advantage of straightforward optimal solutions to save many simplex
resolutions and reduce iteration duration. Moreover, the lazy heuristic has been proved to be
consistent, which can provide guarantees on the solution quality depending on the type of ISA
used. In particular, A* with the lazy heuristic finds the optimal solutions even before MILP
encounters its first solutions. More generally, most ISAs clearly outperform the MILP formu-
lation. Among them, WA* with the lazy approach appears to be the most efficient method.
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Indeed, this algorithm is complete and able to solve industrial instances within a few hundred
milliseconds while ensuring an upper bound on the gap to optimality. Furthermore, it offers
the possibility to make a trade-off between resolution speed and solution quality by tuning the
heuristic weight.

As a result of these good performances, the optimisation method designed for the FWRP
has been implemented and integrated in an Airbus DS software suite and provided to waveguide
designers. Even if the proposed routing algorithm does not take conflicts with other units into
account, it is particularly appreciated because its resolution speed enables fast and numerous
iterations during the design of a waveguide. Moreover, it is possible to deal with conflicts by
defining routes from a higher level, via intermediate waypoints, rather than defining in a detailed
manner the sequence of bends and straight sections used to avoid a conflict. This approach has
been applied during the response to the tender phase of an actual telecommunication satellite.
Classically, the RF-harness routing can last up to 18 weeks for a single designer. The waveguide
routing algorithm in free space with the intermediate waypoint approach is estimated to reduce
this duration by half. Furthermore, the usage of a bend catalogue constrains designers to use
classic bend angles, which favours the standardisation of waveguides in the RF-harness.

7.2 Perspectives

The different proposed approaches to solve the FWRP could be further improved in the following
ways. First of all, the introduced LP models suffer from being permissive to self-conflicting
waveguide solutions. Indeed, there is no constraint to avoid a waveguide segment to intersect
with another one. So, in cases where the distance between the origin and destination polyhedrons
is small but greater than the tolerance, a solution using a loop, as illustrated on Figure 7.1, is
valid with the current LP models. Note that, in practice, such self-intersecting solutions are
hardly ever produced.

Figure 7.1 – Example of self-conflicting waveguide.

Then, if it is currently outperformed by ISAs, the MILP formulation may be more competitive
when using a more powerful solver, like CPLEX or GUROBI. In addition, the approach could be
further improved thanks to advanced LP techniques. A column generation formulation may be
used considering the bend sequence sub-problem to enumerate bend combinations as columns
for a master problem which would deal with the 3D-position sub-problem.
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In the same way, the destination-attracted approach may become more efficient than the lazy
one by reducing evaluation duration. To do so, the linear program for a routing plan could be
warm-started by reusing the result basis of the simplex resolution of its parent’s linear program.

Moreover, the simple Breadth-First Beam Search method, that has been used in this thesis,
could be replaced by more advanced Beam Search algorithms, like BULB [29] or Beam-Stack
Search [103] which are complete algorithms. More generally, the SP formulation as well as the
proposed evaluation methods allow using various kinds of ISAs.

Of course, the biggest avenue to explore remains the extension of the proposed approaches
to deal with spatial constraints and obstacles. This is the subject of Part III.
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Part III

Waveguide Routing in Constrained
Space
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Chapter 8

Constrained Waveguide Routing
Problem

This chapter presents the Constrained Waveguide Routing Problem (CWRP) which is an opti-
misation problem consisting in routing a single waveguide within a restricted three-dimensional
space that may contain obstacles. It is an extension of the FWRP with space constraints. First,
the modelling of a routing space is presented in Section 8.1 as well as a methodology to build
it in practical applications. Then, the formalisation of the CWRP is introduced in Section 8.2
that describes the additional constraints the waveguide must satisfy.

8.1 Modelling a routing space

In order to take obstacles and other space constraints into account in the CWRP, it is necessary
to model the routing space in which the waveguide must be contained. In the case of the
RF-harness, waveguides must be fixed using brackets on walls and panels which make up the
structure of the telecommunication satellite, as illustrated on Figure 8.1. To comply with the
bracket maximal height, the routing space is located in the immediate vicinity of these panels.
It results that the available space is naturally divided into several areas. Of course, waveguides
must also avoid the other components that are already placed and fixed on the satellite panels,
which makes the routing space even more complex.

Figure 8.1 – Waveguides fixed on a panel.
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8.1.1 Simplified model

The routing space can be described as a set of convex polyhedrons, called traversable cells, in
which the neutral fibre Fπ of waveguide π must be contained. By definition, these polyhedrons
do not overlap any obstacle in order to avoid conflicts with other components of the satellite
payload. The main purpose of the convexity assumption is to ensure that Linear Programming
will still be applicable in the extension of the formulations already proposed to solve the FWRP
(see Part II).

Definition 24: Traversable cell
A traversable cell c of the routing space describes a non-empty bounded convex
polyhedron Pc in which the neutral fibre Fπ of waveguide π can be routed (see
Figure 8.2).
The set of traversable cells is referred to as C.

c

Figure 8.2 – A traversable cell c ∈ C.

Definition 25: Crossable interface
Let c and c′ be two traversable cells in C which overlap each other, that means
Pc ∩ Pc′ 6= ∅. The crossable interface i from cell c to c′ describes the non-empty
bounded convex polyhedron Pi = Pc ∩ Pc′ that the neutral fibre Fπ of waveguide
π can cross to reach c′ from c (see Figure 8.3).
The set of crossable interfaces is referred to as I. Moreover, in what follows, the
origin and destination traversable cells of a crossable interface i ∈ I are respec-
tively referred to as c−i and c+

i .

c−i

i

c+
i

Figure 8.3 – A crossable interface i ∈ I from traversable cell c−i ∈ C to c+
i ∈ C.

Since traversable cells are convex, it results that crossable interfaces, which are intersections
of cells, are also convex. Futhermore, by definition, for each crossable interface i ∈ I from
traversable cell c−i to c+

i , there exists a reverse crossable interface referred to as reverse (i) ∈ I
that goes out of cell c+

i and reaches cell c−i and is defined by the same polyhedron Pi.
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It is assumed that traversable cells of the routing space have been built such that all inter-
sections between two cells are either empty or 3D-polygons.

Assumption 2: Polygonal crossable interfaces
It is assumed that all crossable interfaces are polygonal (i.e. they correspond to a
surface).

In the sections that follow, Iinc.c and Iout.c refer respectively to the incoming and outgoing
crossable interfaces into/from a traversable cell c ∈ C. Since crossable interfaces are polygonal,
the normal of interface i ∈ I oriented towards its destination traversable cell c+

i is referred to
as −→ni .

Finally, the routing space can be represented by graph G (C, I) such that nodes are the
traversable cells and edges are the existing crossable interfaces between these cells, as shown on
Figure 8.4.

c1

i1

c2

i2

c3

c1 c2 c3

i1

reverse (i1)

i2

reverse (i2)

Figure 8.4 – A routing space G (C, I).

This graph is supposed to contain a path between each pair of cells in C. If not, each
connected component of the routing space must be considered separately. However, in this case,
a solution to an instance of the CWRP exists only if the origin and destination cells are in the
same connected component of G (C, I).

Assumption 3: Strong connectivity of the routing space
It is assumed that the routing space G (C, I) is strongly connected.

8.1.2 Construction of the traversable cells

In practice, a set of traversable cells C that avoids obstacles is not directly available. A method-
ology is proposed here to compute these cells from a satellite panel and the components fixed on
it. Generally, a component is represented by a bounded polyhedron, while a wall is defined by
a 3D-polygonal profile Sw and a normal −→nw. The methodology includes 4 steps detailed below.

1. Projection on the panel: First, for each component, all vertices of the polyhedron are
orthogonally projected on the plane that contains the panel surface. The convex hull of
the projected points, which can be computed using KIRKPATRICK-SEIDEL’s algorithm [56]
or CHAN’s algorithm [16], forms the shadow of the component on the panel (see Figure
8.5a).

2. Constrained triangulation around shadows: Shadows are inflated with a safety dis-
tance depending on the gauge of the waveguide. The goal is to ensure that the waveg-
uide volume will never intersect a component by routing its neutral fibre in the adjacent
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traversable cells. Then, the profile Sw of the wall is triangulated with the inflated shadows
as constrained holes like in the work of [17], as illustrated on Figure 8.5b. Note that it
may be necessary to use boolean operations (intersection, union, exclusion, disjunction)
to merge overlapping or on-edge shadows.

3. Triangle merge: In order to reduce the complexity of the routing space, triangles re-
sulting from the triangulation are merged into convex polygons (see Figure 8.5c). Remind
that cells must be convex to allow using Linear Programming.

4. Extrusion of traversable cells: Last, the resulting convex polygons are inflated using
the thickness of the routing space, providing the traversable cells of C, as shown on Figure
8.5d. Again, the inflation must ensure that the waveguide volume will stay into the
desired area. Moreover, it is also possible to create traversable cells below and above each
component.

Sw

−→nw

(a) Shadow projection.

Sw

(b) Constrained triangulation.

Sw

(c) Triangle merge.

Sw

(d) Cell extrusion.

Figure 8.5 – Construction of traversable cells C.

Nevertheless, in an industrial context, there are many units on each panel of the satellite,
which produces a very high number of traversable cells. So, in order to reduce the size and
complexity of the routing space G (C, I), an iterative approach is used to route a waveguide.
First, the corresponding FWRP instance is solved. If the resulting waveguide is out of the routing
space or if it collides with components, routing space G (C, I) is computed with the previously
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introduced method by considering only the overlapped components. Then, the CWRP is solved,
generating a waveguide that avoids only the considered units. If it collides again with other
components, a new routing space G (C, I) is built by adding these new conflicting units to the
cell decomposition and another CWRP is solved, and so on until there is no more collision.

8.2 Definition of the CWRP
The Constrained Waveguide Routing Problem (CWRP) consists in routing in a detailed manner
a single waveguide within a constrained three-dimensional space defined by a set of traversable
cells. It is clearly an extension of the FWRP with space constraints. So, the waveguide π must
satisfy the same constraints presented in Section 4.2.1 but with additional constraints which are
specific to the CWRP and are introduced in Section 8.2.1 and Section 8.2.2. Then, the quality
of a waveguide π is evaluated the same way as in the FWRP (see Section 4.2.2).

8.2.1 Routing space

The traversable cells of routing space G (C, I) describe the physical space that the neutral fibre
Fπ of waveguide π can cross. This can be translated by constraints on the waveguide segments.
Indeed, each segment must be contained in the union of traversable cells, which can be written
as follows:

[Pπ,k, Pπ,k+1] ⊂
⋃
c∈C
Pc ∀k ∈ J1, NπK (8.1)

8.2.2 Wall-dependent attachability

As explained in Section 1.2.1, each segment of waveguide π must be fixed on the panel or wall
it is routed on. The kth segment is said to be routed on a panel if its neutral fibre [Pπ,k, Pπ,k+1]
intersects at least one of the traversable cells which have been generated on the panel. In order
to ensure that the kth segment can be fixed on the corresponding panel when it crosses a cell
c ∈ C, the orientation oπ,k of the segment must be locally attachable. These constraints are
called wall-dependent attachability and are said to be extrinsic because they depend on the walls
on which the waveguides are routed.

Definition 26: Wall-dependent attachability
Let c be a traversable cell C. The set of locally attachable orientations for cell c is
referred to as Oext.c ⊂ O and an orientation o ∈ O is said to be locally attachable
in cell c if:

o ∈ Oext.c (8.2)

So, for waveguide π, the wall-dependant attachability constraints can be translated as:

[Pπ,k, Pπ,k+1] ∩ Pc 6= ∅ ⇒ oπ,k ∈ Oext.c ∀k ∈ J1, NπK (8.3)

In practice, orientation oπ,k must ensure that at least one edge of the cross-section is orthog-
onal to the normal of the wall that corresponds to traversable cell c ∈ C, as illustrated on Figure
8.6. So, in our case, the locally attachable orientations of cell c generated on a wall with normal
−→nw are defined by:

Oext.c = {o ∈ O | (−→eo,x · −→nw = 0) ∨ (−→eo,y · −→nw = 0)} (8.4)
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−→nw

wall w

brackets

−→eo,x

−→eo,y −→eo,x

−→eo,y −→eo,x

−→eo,y

Figure 8.6 – From left to right, two attachable orientations and a non attachable one.

8.2.3 Connectivity

Last, the connectivity constraints for the origin and destination polyhedrons and orientations,
introduced in Section 4.2.1, are extended. Indeed, waveguide π is assumed to start from a
traversable cell cori. ∈ C and must reach a destination cell in the set Cdest. ⊂ C.

Assumption 4:
It is assumed that the origin and destination orientations are locally attachable:

oori. ∈ Oext.cori. (8.5)

∀o ∈ Odest. ∀c ∈ Cdest. o ∈ Oext.c (8.6)

8.2.4 Full CWRP model
To sum up, the CWRP is an optimisation problem that can be written as follows:

minimise γπ =
∑Nπ−1
k=1 γbπ,k + µ

∑Nπ
k=1 `π,k

subject to:
Pπ,1 ∈ Pori. Connectivity (position at origin)

Pπ,Nπ+1 ∈ Pdest. Connectivity (position at destination)
oπ,1 = oori. Connectivity (orientation at origin)

oπ,Nπ ∈ Odest. Connectivity (orientation at destination)
π ∈ Π (Bcat.) Bend catalogue
Nπ ≤ NS Maximum number of bends

Lmin ≤ Luπ,k ∀k ∈ J1, NπK Minimal length of straight sections
oπ,k ∈ Oint. ∀k ∈ J1, NπK Global attachability

[Pπ,k, Pπ,k+1] ⊂
⋃
c∈C
Pc ∀k ∈ J1, NπK Routing space

[Pπ,k, Pπ,k+1] ∩ Pc 6= ∅ ⇒ oπ,k ∈ Oext.c ∀k ∈ J1, NπK Wall-dependent attachability
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Chapter 9

Resolution of the CWRP using
Mixed Integer Linear Programming

A first way to solve the CWRP is to extend the Mixed Integer Linear Programming (MILP)
formulation introduced in Chapter 5 for the resolution of the FWRP. To do so, the interfaces
to cross inside the routing space are added as new decision steps. This modification requires to
enumerate the candidate crossable interfaces but also has an impact on the possible orientation
changes at each step, as explained in Section 9.1. Then, the proposed MILP model for the
CWRP is presented in Section 9.2, while its experimentation on test instances is detailed in
Section 9.3.

9.1 Input preprocessing
The previously studied FWRP consisted in building a sequence of at most NS − 1 bends that
makes it possible to reach the destination from the origin. By contrast, a solution to the CWRP
defines also a path in the routing space G (C, I), called routing channel, in order to constrain
the neutral fibre Fπ to be inside the available space. A solution is then a sequence of decisions
mixing the addition of bends from catalogue Bcat. and the crossing of interfaces in the routing
space. For instance, the sequence of decisions that consists in applying bend b1 and then in
successively crossing interfaces i2 and i2 allows reaching cell c3 in the routing space presented
on Figure 8.4 on page 107. Therefore, more than NS−1 decision steps are required and, at each
step, either a bend can be applied or an interface crossed. Moreover, the space of candidate
orientations must be modified by using the neutral bend bneut. even if the current orientation
is not a destination one. To limit the size of the model, it is useful to precompute the possible
current cells which can be obtained after k decision steps. Note that, in what follows, the
maximum number of decision steps is fixed and referred to as K and satisfies K ≥ NS − 1.

9.1.1 Candidate orientations

In order to allow crossing an interface without applying a bend at a particular decision step
k ∈ J1,KK, the neutral bend bneut. must be a k-candidate orientation change, even if the current
orientation o is not in Odest.. However, like for the FWRP, applying a neutral bend may lead to
a solution only if a destination orientation in Odest. can be reached using at most K − k bends
from catalogue Bcat.. To do so, Algorithm 9 on page 56 introduced for the FWRP is slightly
modified into Algorithm 11. The latter uses the maximum number of decision steps K instead
of the maximum number of segments NS . The main update, on line 10, consists in adding bneut.
as a k-candidate orientation change when minBends (o) ≤ K − k + 1 rather than o ∈ Odest..
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Algorithm 11: Generate the constrained candidate orientation space G
(
OK+1

1 ,RK1
)

Input:
• Origin orientation: oori.

• Maximum number of decisions: K

• Kernel of reachable orientations: G (O∞,R∞)

• Distance to destination orientation: minBends (o) ∀o ∈ O∞

1 O1 ←
{
oori.

}
2 for k ∈ J1,KK do
3 Ok+1 ← ∅
4 Rk ← ∅
5 for o ∈ Ok do
6 for r ∈ Rout.∞ (o) do
7 if minBends

(
o+
r

)
≤ K − k + 1 then

8 Add node o+
r in Ok+1

9 Add edge r in Rk

10 if minBends (o) ≤ K − k + 1 then
11 Add node o in Ok+1
12 Add edge (o, o, bneut.) in Rk

13 return G
(
OK+1

1 ,RK1
)

9.1.2 Candidate traversable cells

By analogy with the candidate orientation space G
(
OK+1

1 ,RK1
)
, it is also possible to build a

candidate cell space G
(
CK+1

1 , IK1
)
. To this end, Algorithm 11 is applied while replacing:

• the origin orientation oori. by the origin traversable cell cori.;

• the kernel of reachable orientations G (O∞,R∞) by the routing space G (C, I);

• the distance to a destination orientation minBends (o), from an orientation o ∈ O∞, by
the distance to a destination traversable cell minDist (c), from a cell c ∈ C.

This distance can be computed with Algorithm 8 by replacing again the kernel of reachable
orientations G (O∞,R∞) by the routing space G (C, I) and using a cost function defined by
γ (i) = 1 for interface i ∈ I.

Furthermore, the construction of the candidate cell space G
(
CK+1

1 , IK1
)
requires a crossable

interface with a behaviour similar to the neutral bend bneut. in order to allow the addition of a
bend without crossing an interface. This virtual crossable interface, called the neutral interface,
can be defined as follows.
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Definition 27: Neutral crossable interface
Let c be a traversable cell in C. A neutral interface is a crossable interface icneut.
which does not change the traversable cell. In other words, icneut. satisfies:

Picneut. = Pc c−icneut.
= c c+

icneut.
= c

Note that the polyhedron of a neutral interface is not a surface.

9.1.3 Maximum number of decision steps K

It is difficult to predict the number of decision steps required to find an optimal waveguide inside
the routing space. However, it is known that at least minBends

(
oori.

)
bends must be added and

minDist
(
cori.

)
interfaces must be crossed to solve the CWRP. A lower bound of the necessary

number of decision steps is then minBends
(
oori.

)
+minDist

(
cori.

)
. In practice, the optimum is

looked for among solutions that use at most NS − 1 bends, so the maximum number of decision
steps K is generally chosen greater than NS +minDist

(
cori.

)
− 1.

9.2 MILP formulation
The CWRP can be formulated as a MILP problem which consists in choosing the bends of
waveguide π and the interfaces crossed by each of its segments as well as in defining the lengths
of the straight sections between these bends. In what follows, it is assumed that the routing
space G (C, I) is not empty.

9.2.1 Trivial case NC = 1
When there is an only one traversable cell c in the routing space, that means NC = 1, the
CWRP can be solved with the same MILP model as for the FWRP by adding the following
space constraints on the vertices of neutral fibre Fπ:

pk ∈ Pc ∀k ∈ J2, NSK (9.1)

The first and last points are not constrained to be respectively in the origin and destination
traversable cells cori. and Cdest. because there are already constrained by the origin and destina-
tion polyhedrons Pori. and Pdest..

9.2.2 General case with NC ≥ 2
In the general case with NC ≥ 2, the MILP model of the FWRP is not sufficient and must be
extended with space constraints. Indeed, discrete variables must be introduced to choose the
interfaces crossed by each segment of waveguide π. More precisely, the CWRP can be formulated
as a MILP model that contains five kinds of variables:

• bend variables xk,r such that, for k ∈ J1,KK and r ∈ Rk, integer variable xk,r takes value
1 if orientation change r is applied at the end point of the kth segment of neutral fibre Fπ
(that means the kth and k + 1th segments have respectively an orientation o−r and o+

r ), 0
otherwise;

• interface variables yk,i such that, for k ∈ J1,KK and i ∈ Ik, integer variable yk,i takes value
1 if interface i is crossed by the kth segment of neutral fibre Fπ (that means the k + 1th
point of neutral fibre Fπ is on crossable interface i), 0 otherwise;
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• straight section variables zk,k′ such that, for k ∈ J1,K + 1K and k′ ∈ Jk + 1,K + 2K, integer
variable zk,k′ takes value 1 if there is a straight section between the kth and k′th points of
neutral fibre Fπ, that is to say non-neutral bends are applied at these points and neutral
bends are applied between them, 0 otherwise;

• length variables `k such that, for k ∈ J1,K + 1K, real variable `k is the length of the kth
segment of neutral fibre Fπ;

• position variables pk = (pk,x, pk,y, pk,z) such that, for k ∈ J1,K + 2K, real variable pk,x
(respectively pk,y and pk,z) is the x-coordinate (respectively y-coordinate and z-coordinate)
of the kth point of neutral fibre Fπ.

With these decision variables, a MILP formulation of the CWRP can be written as follows:

minimise
K∑
k=1

∑
r∈Rk

γbrxk,r + µ
K+1∑
k=1

`k (9.2)

subject to:∑
r∈Rk

xk,r = 1 ∀k ∈ J1,KK (9.3)∑
r∈Rout.

k
(o)
xk+1,r =

∑
r∈Rinc.

k
(o)
xk,r ∀k ∈ J1,K − 1K , ∀o ∈ Ok (9.4)

K∑
k=1

∑
r∈Rk

br 6=bneut.

xk,r ≤ NS − 1 (9.5)

∑
i∈Ik

yk,i = 1 ∀k ∈ J1,KK (9.6)∑
i∈Iout.

k
(c)
yk+1,i =

∑
i∈Iinc.

k
(c)
yk,i ∀k ∈ J1,K − 1K , ∀c ∈ Ck (9.7)

yk,i + yk+1,reverse(i) ≤ 1 ∀k ∈ J1,K − 1K , ∀i ∈ Ik \ ineut. (9.8)
p1 ∈ Pori. (9.9)

pK+2 ∈ Pdest. (9.10)
−−→p1p2 = `1

−−−−→eoori.,z (9.11)
aqpk+1,x + bqpk+1,y + cqpk+1,z + dq ≤Mq (1− yk,i) ∀k ∈ J1,KK , ∀i ∈ Ik, ∀q ∈ QPi (9.12)

K+2∑
k′=k+1

zk,k′ +
∑

r∈Rk−1
br=bneut.

xk−1,r = 1 ∀k ∈ J1,K + 1K (9.13)

k−1∑
k′=1

zk′,k +
∑

r∈Rk−1
br=bneut.

xk−1,r = 1 ∀k ∈ J2,K + 2K (9.14)

k′−1∑
k′′=k

`k′′ ≥ Lmin +
∑

r∈Rk−1

Lbrxk−1,r ∀k ∈ J1,K + 1K , ∀k′ ∈ Jk + 1,K + 2K

+
∑

r∈Rk′−1

Lbrxk′−1,r −Mlen. (1− zk,k′) (9.15)

−−−−→pkpk+1 ≤ `k−−−→eo+
r ,z

+ (1− xk−1,r)
−−−−→
Msucc. ∀k ∈ J2,K + 1K , ∀r ∈ Rk−1 (9.16)

−−−−→pkpk+1 ≥ `k−−−→eo+
r ,z
− (1− xk−1,r)

−−−−→
Msucc. ∀k ∈ J2,K + 1K , ∀r ∈ Rk−1 (9.17)∑

r∈Rk
br=bneut.

xk,r +
∑
i∈Ik

i=ineut.

yk,i ≥ 1 ∀k ∈ J1,KK (9.18)

∑
r∈Rk

br=bneut.

xk,r +
∑
i∈Ik

i=ineut.

yk,i ≤
∑

r∈Rk+1
br=bneut.

xk+1,r +
∑

i∈Ik+1
i=ineut.

yk+1,i ∀k ∈ J1,K − 1K (9.19)
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xk,r ∈ {0, 1} ∀k ∈ J1,KK , ∀r ∈ Rk (9.20)
yk,i ∈ {0, 1} ∀k ∈ J1,KK , ∀i ∈ Ik (9.21)

zk,k′ ∀k ∈ J1,K + 1K , k′ ∈ Jk + 1,K + 2K (9.22)
`k ∈ R+ ∀k ∈ J1,K + 1K (9.23)
pk ∈ R3 ∀k ∈ J1,K + 2K (9.24)

Most constraints as well as the criterion are the same as in the MILP model proposed for
the FWRP (see Section 5.2). The specific constraints of the CWRP are detailed in the following
sections. In particular, by contrast with the FWRP, a valid formulation of the minimal length
for straight sections requires the introduction of the straight sections variables. Three parts can
be identified in this MILP formulation:

• an orientation sub-problem (with Constraints 9.3-9.5) which corresponds to a multiple
target shortest path problem in the space of candidate orientations G

(
ONS1 ,RNS−1

1

)
;

• a channel sub-problem (with Constraints 9.6-9.8) which corresponds to a multiple target
shortest path problem in the routing space G (C, I);

• a 3D-position sub-problem (with Constraints 9.9-9.19) which defines the restrictions on the
vertices and lengths of the neutral fibre.

The three sub-problems are coupled through a set of coupling constraints composed of Con-
straints 9.12-9.19 that link position, length, bend, interface and straight section variables.

It can be noted that the proposed model can use more than NS segments for the neutral
fibre Fπ since K ≥ NS − 1. However, remind that, at each decision step, either a bend can be
applied or an interface may be crossed, which is ensured by Constraints 9.18. If the addition of
a bend creates a new waveguide segment, on the opposite, the crossing of an interface does not
create one since the orientation is not modified. It results that each time an interface is crossed,
the following segment is only an extension of the previous one. Finally, the number of segments
is limited to NS thanks to Constraints 9.5.

Note that the waveguide π can be rebuilt from a solution of the MILP model in the same
way as for the FWRP, using Algorithm 10 on page 59.

9.2.3 Bend sequence sub-problem
Like for the FWRP, the bend sequence sub-problem aims at finding a bend combination that
allows waveguide π to reach a destination orientation in Odest. from the origin orientation oori..
It can be written as follows:

minimise
K∑
k=1

∑
r∈Rk

γbrxk,r

subject to:∑
r∈Rk

xk,r = 1 ∀k ∈ J1,KK∑
r∈Rout.

k
(o)
xk+1,r =

∑
r∈Rinc.

k
(o)
xk,r ∀k ∈ J1,K − 1K , ∀o ∈ Ok

K∑
k=1

∑
r∈Rk

br 6=bneut.

xk,r ≤ NS − 1

xk,r ∈ {0, 1} ∀k ∈ J1,KK , ∀r ∈ Rk
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It is pretty similar to the bend sequence sub-problem of the FWRP, except that the symmetry
Constraints 5.11 have been replaced by Constraint 9.5 on the maximum number of non-neutral
bends. Indeed, in the CWRP, a neutral bend can be used at each decision step and not only
at the end of the bend sequence. Apart from that, Constraints 9.3 and 9.4 are equivalent to
Constraints 5.9 and 5.10 which have been presented in Section 5.2.3 on page 59.

9.2.4 Channel sub-problem

Definition
The channel sub-problem aims at building a path that allows reaching a destination cell in Cdest.
from the origin cell cori.. It is a multiple target shortest path problem in the graph of orientations
G
(
CK+1

1 , IK1
)
and can be written as follows:∑

i∈Ik
yk,i = 1 ∀k ∈ J1,KK∑

i∈Iout.
k

(c)
yk+1,i =

∑
i∈Iinc.

k
(c)
yk,i ∀k ∈ J1,K − 1K , ∀c ∈ Ck

yk,i + yk+1,reverse(i) ≤ 1 ∀k ∈ J1,K − 1K , ∀i ∈ Ik \ ineut. (9.25)
yk,i ∈ {0, 1} ∀k ∈ J1,KK , ∀i ∈ Ik

It is similar to the bend sequence sub-problem but adapted to the routing space. Con-
straints 9.6 ensure that exactly one interface is crossed by the kth segment of the neutral fibre
Fπ. As the last candidate traversable cell set CK+1 contains only destination cells, they also en-
sure that a destination cell is reached. Then, like in the natural linear programming formulation
of the shortest path problem, Constraints 9.7 enforce each k-candidate cell c ∈ Ck to have as
many outgoing crossed interfaces as incoming ones, except for the origin and destination cells.

Symmetry breaking for directly revisiting traversable cells

yk,i + yk+1,reverse(i) ≤ 1 ∀k ∈ J1,K − 1K , ∀i ∈ Ik | i 6= ineut.

If the routing space contains cramped cells, it may be necessary to visit a traversable cell more
than once to solve the CWRP. Indeed, it is often difficult to place several bends inside a narrow
cell. In this case, a detour by a larger adjacent cell can help reaching the wanted orientation
inside the cramped cell. However, directly revisiting a traversable cell c ∈ C without having
applied any orientation change or visited another cell is useless and only generates symmetry in
the space of solutions. Constraints 9.8 allow to break this symmetry by forbidding the direct
revisit of a traversable cell without having applied an orientation change or visited another cell.

9.2.5 3D-position sub-problem and coupling constraints

Constraints 9.9, 9.10, 9.11, 9.16 and 9.17 are respectively equivalent to Constraints 5.12, 5.13,
5.14, 5.16 and 5.17 which have been presented in Section 5.2.4 on page 60. The following sections
introduce Constraints 9.12-9.15 and Constraints 9.18-9.19 that are new in comparison with the
FWRP.

Interface constraints

aqpk+1,x + bqpk+1,y + cqpk+1,z + dq ≤Mq (1− yk+1,i) ∀k ∈ J1,KK , ∀i ∈ Ik, ∀q ∈ QPi

Constraints 9.12 use the big-M technique on the interfaces variables. These constraints force
the kth point of neutral fibre Fπ to be located inside polyhedron Pi if interface i ∈ Ik is crossed
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(yk+1,i = 1), as shown in Figure 9.1. Note that when the neutral interface icneut. is crossed, the
kth point is inside the polyhedron Pc of the associated traversable cell c ∈ C. On the opposite if
yk+1,i = 0, these constraints must be disabled by choosing big-M parameter Mq in such a way
that the position of point pk+1 is not limited. A valid Mq-value is proposed in Property 10.

pk−1
pk

i

pk+1

`k−1 `k

(a) Non neutral interface.

pk−1
pk

icneut.

pk+1

`k−1 `k

(b) Neutral interface.

Figure 9.1 – Portion of a pipe crossing an interface (the straight section with variable length is
depicted in orange).

Property 10: Big-M value in interface constraints
For k ∈ J1,KK, i ∈ Ik and q ∈ QPi , Constraints 9.12 are disabled when yk+1,i = 0
in the sense that they do not constrain the position of point pk+1 if:

Mq = max
p∈Pi

(aqpx + bqpy + cqpz + dq)

The proposed Mq-values can be easily precomputed using the minimal and maximal values
of coordinates px, py and pz for a point p in each polyhedron Pi.

Straight section constraints

K+2∑
k′=k+1

zk,k′ +
∑

r∈Rk−1
br=bneut.

xk−1,r = 1 ∀k ∈ J1,K + 1K

k−1∑
k′=1

zk′,k +
∑

r∈Rk−1
br=bneut.

xk−1,r = 1 ∀k ∈ J2,K + 2K

Constraints 9.13 and 9.14 ensure that at each decision step either a neutral bend is applied
or exactly one straight section is started and another one is ended, which corresponds to the
application of a non-neutral bend. For the borderline case k = 1, Constraints 9.13 guarantee
that exactly one straight section is started from the first vertex of neutral fibre Fπ since R0 = ∅.
Similarly, for the borderline case k = K+2, Constraints 9.14 guarantee that exactly one straight
section is ended at the last vertex of neutral fibre Fπ since RNS = ∅. Furthermore, when
there is a straight section between the kth and k′th points of neutral fibre Fπ (that is to say
when zk,k′ = 1), these constraints force all intermediate bends to be neutral (a mathematical
demonstration is proposed in the appendices).
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Minimum length of straight sections

k′−1∑
k′′=k

`k′′ ≥ Lmin +
∑

r∈Rk−1

Lbrxk−1,r ∀k ∈ J1,K + 1K , ∀k′ ∈ Jk + 1,K + 2K

+
∑

r∈Rk′−1

Lbrxk′−1,r −Mlen. (1− zk,k′)

Constraints 9.15 impose a minimal length on straight sections. In the FWRP, the expression
of these constraints (see Constraints 5.15) is simple because all neutral bends are applied at the
end of the decision sequence and there is no space constraint on the vertices of neutral fibre
Fπ, except succession constraints. It results that the minimal length of straight sections can
be expressed as a minimal length on each segment by adapting the length contribution Lbneut.
for neutral bends (see Section 5.2.4). However, in the CWRP, these assumptions do not hold
since it is possible to alternate neutral and non-neutral bends, and the vertices are constrained
to be on interfaces. The expression of the minimal length on straight sections should consider
the total length of segments between two non-neutral bends, and not only the length of each
segment. To do so, Constraints 5.15 of the FWRP are reformulated into Constraints 9.15 using
the big-M technique on the straight section variables that define the position of the straight
sections. These constraints force the sum of segment lengths between the kth and k′th points of
neutral fibre Fπ to satisfy the minimal length of straight sections if zk,k′ = 1. On the opposite
if zk,k′ = 0, these constraints must be disabled by choosing big-M parameter Mlen. so that the
total length of the segments between the kth and k′th points is not limited. An obvious valid
Mlen.-value is proposed in Property 11.

Property 11: Big-M value in minimal straight section length constraints
For k ∈ J1,K + 1K and k′ ∈ Jk + 1,K + 2K, Constraints 9.15 are disabled when
zk,k′ = 0 in the sense that they do not constrain the total length of the segments
between the kth and k′th points if:

Mlen. = Lmin + 2 max
b∈Bcat.

(Lb)

Decision unicity

∑
r∈Rk

br=bneut.

xk,r +
∑
i∈Ik

i=ineut.

yk,i ≥ 1 ∀k ∈ J1,KK

Constraints 9.18 ensure that a non-neutral bend cannot be applied at the same decision
step when a non-neutral interface is crossed (and reciprocally). However, a neutral bend can be
applied at the same time when a neutral interface is crossed.

Symmetry breaking for neutral bends and interfaces

∑
r∈Rk

br=bneut.

xk,r +
∑
i∈Ik

i=ineut.

yk,i ≤
∑

r∈Rk+1
br=bneut.

xk+1,r +
∑

i∈Ik+1
i=ineut.

yk+1,i ∀k ∈ J1,K − 1K

Like in Section 5.2.3, due to the introduction of the neutral bend bneut. and of the neutral
interfaces ineut., it is possible to have neutral decision steps where both a neutral bend and a
neutral interface are chosen. A solution decision sequence which contains a neutral decision
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step can be translated into several sequences of decisions. For instance, if the decision sequence
[(b1, ineut.) , (bneut., i1) , (bneut., ineut.)] is a solution, then [(b1, ineut.) , (bneut., ineut.) , (bneut., i1)] and
[(bneut., ineut.) , (b1, ineut.) , (bneut., i1)] are solutions too and have the same cost. Constraints 9.19
break this symmetry by forcing the neutral decision steps to be applied at the end of the decision
sequence. To do so, if a neutral bend and a neutral interface are chosen at step k ∈ J1,K − 1K,
then a neutral bend and a neutral interface must be chosen at step k + 1. By induction, it
can be easily proved that neutral decisions must also be used at all the following steps of the
decision sequence. In this case, only [(b1, ineut.) , (bneut., i1) , (bneut., ineut.)] is a valid sequence of
decisions.

9.3 Experiments on the CWRP

In this Section, the MILP formulation of the CWRP is experimented on the simple test instances
presented in Section 10.3.1. The number of variables and constraints of the corresponding MILP
models are reported in Section 9.3.2. Last, the performances of this approach to solve the CWRP
are studied in Section 9.3.3.

9.3.1 Instance sets

The MILP formulation of the CWRP has been experimented on three instance sets using previ-
ously introduced bend catalogues B90◦

cat., B45◦
cat. and B30◦

cat. (see Section 5.3.1 on page 63). Remind
that these catalogues contain respectively 5, 9 and 17 bends and are detailed in Table 11 in
the appendices. Again, the minimal length is Lmin = 5, the linear cost is unit, µ = 1, and
each bend b ∈ Bcat. of the catalogue has a cost γb = 100, except for the twist which has a cost
γb = 1000. For each bend catalogue Bcat., the instance set contains four instances with gradual
difficulty. All instances use a simple routing space with the traversable cells described in Table 7
on page 168. It is made of 8 cells with 16 interfaces and its dimensions are 1450 × 550 × 550.
Origin and destination configurations are detailed in Table 8 on page 168. All instances share the
same origin configuration θori. but the destination θdest. is different and moving further from the
origin at each following instance making the problem harder to solve. The maximum number of
segments is NS = 11, which corresponds to a sufficient number of bends to make each instance
feasible. An illustration of these instances is given by Figure 9.2.

θori.

θdest.1

θdest.2 θdest.3
θdest.4

Figure 9.2 – Instances of the CWRP for the MILP approach.

These instances are extremely simple and not representative of the complexity of a satellite
payload. However, they are used in order to validate the MILP formulation and to ensure that
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they can be efficiently solved with this approach, especially the ones using the industrial bend
catalogue B30◦

cat.. In practice, such instances must be solved within a few seconds in order to
make an industrial use possible.

9.3.2 MILP model sizes

Figure 9.3 presents the MILP model sizes for the test instances in terms of number of variables
and constraints. The maximum number of decision steps K used for each instance is also re-
ported. By comparison with the FWRP MILP models (see Section 9.3.2), the required number
of variables for the CWRP has grown by several orders of magnitude, which significantly in-
creases the combinatorics. Obviously, this is due to the introduction of variables related to the
interfaces to cross. However, another reason is that the maximum number of decisions steps K
must be sufficiently large to allow crossing enough interfaces to reach the destination but also
applying the bends needed to do so. As a consequence, many more orientation changes from
the kernel G (O∞,R∞) as well as interfaces from the routing space G (C, I) are candidates since
K-length paths are considered (here K = NS +minDist

(
cori.

)
− 1 is used). In comparison, the

FWRP only considers NS − 1 decision steps.

Catalogue B90◦
cat. Catalogue B45◦

cat. Catalogue B30◦
cat.

# K # variables # constraints # variables # constraints # variables # constraints
1 11 1349 7820 5729 34698 51605 314708
2 12 1548 8992 6520 39494 60348 367912
3 14 1921 11145 8333 50463 84817 516801
4 16 2264 13066 10116 61200 109256 665458
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Figure 9.3 – Size of the CWRP MILP models.

9.3.3 Test instances resolution

The experiments exposed here have also been performed using the configuration presented in
Section 5.3.4 on page 65. The resolution has been stopped after 1 hour. Figure 9.4 shows the
evolution of the percentage of instances solved with regards to the runtime, for each catalogue,
and Table 9.1, Table 9.2 and Table 9.3 present the results obtained for catalogues B90◦

cat., B45◦
cat.

and B30◦
cat. respectively.

Like for the FWRP, a resolution stopped when reaching the optimality or the time limit and
another one stopped when meeting the first solution are studied. As expected, the solutions
found with the MILP formulation are acceptable from a designer’s point of view, as illustrated
on Figure 9.5.
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Figure 9.4 – Evolution of success rates with MILP for the CWRP.

Inst. MILP optimal MILP first

# Opti.
cost Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter. Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter.

1 925 925 0 825 100 217558 137616 925 0 825 100 6963 465
2 1800 1800 0 1600 200 2408208 1339183 1800 0 1600 200 8471 2225
3 - - - - - 3600093 2209691 3621.2 - 1921.2 1700 154501 40772
4 - - - - - 3600108 1976226 3660.6 - 2860.6 800 287050 103373

Table 9.1 – Results for the CWRP using MILP on B90◦
cat. instances.

Inst. MILP optimal MILP first

# Opti.
cost Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter. Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter.

1 - - - - - 3600747 177426 925 - 825 100 165218 829
2 - - - - - 3600231 195229 1800 - 1600 200 185713 2491
3 - - - - - 3600367 122637 2200 - 1800 400 1191281 16676
4 - - - - - 3602939 75067 - - - - 3600778 87136

Table 9.2 – Results for the CWRP using MILP on B45◦
cat. instances.

Inst. MILP optimal MILP first

# Opti.
cost Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter. Cost Gap

[%]
Linear
cost

Bend
cost

Runtime
(ms) Iter.

1 - - - - - 3653553 58033 925 - 825 100 121373 3031
2 - - - - - 3779440 29106 - - - - 3710041 29035
3 - - - - - 3772696 34008 - - - - 3608123 65358
4 - - - - - 3620041 23122 - - - - 3603771 46052

Table 9.3 – Results for the CWRP using MILP on B30◦
cat. instances.

However, only a few instances using the simplest catalogue B90◦
cat. can be optimally solved

within the time limit and reaching optimality requires an excessive runtime: even the second
instance requires dozens of minutes to be solved. Moreover, although instances are very simple,
no optimal solution can be found for the cases using the more realistic catalogues B45◦

cat. and
B30◦
cat.. Worse, even finding a first solution requires several minutes. As a consequence, the

CWRP cannot be solved with the current MILP formulation and a more efficient approach
must be proposed.
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Figure 9.5 – Example of waveguide routed with MILP on instance 4.
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Chapter 10

Resolution of the CWRP using
Informed Search Algorithms

A formulation of the CWRP adapted to Search Algorithms (SAs) is proposed in this chapter. It
is based on an extension of the notion of routing plan, introduced in Section 10.1, that describes
a partially routed waveguide inside the routing space. The feasibility of a routing plan is then
evaluated using Linear Programming (LP) while its successors are easily expressed through
routing decisions like the addition of a bend or the crossing of an interface. Heuristic evaluation
functions which take space constraints into account are proposed in Section 10.2, making the use
of ISAs possible to solve the CWRP. Last, the Search Problem (SP) formulation is experimented
in Section 10.3 on various test instances.

10.1 Routing plan formulation

As for the FWRP, a waveguide π can be routed in the routing space G (C, I) by building itera-
tively its neutral fibre Fπ. To do so, the neutral fibre is extended from the origin configuration
θori. inside the origin cell cori. by making at each step decisions like the addition of a bend
from catalogue Bcat. or the crossing of an interface in routing space G (C, I). To formalise the
approach, the concept of routing plan, introduced in Section 6.1 on page 71, is extended with
the space decisions made so far on the waveguide components.

10.1.1 Routing plan

Definition 28: Routing plan (in constrained space)
In constrained space, a routing plan s describes, in an abstract way, a neutral
fibre Fs composed of Ns successive segments with, for each segment k (see Figure
10.1):
• the orientation change rsk ∈ Rk applied at the end point of segment k of

neutral fibre Fs, for k ∈ J1, Ns − 1K;

• the sequence of interfaces Isk ⊆ I crossed by segment k of neutral fibre Fs,
for k ∈ J1, NsK.

Moreover, a routing plan can be terminated or not, characterised by a boolean
Terms. When routing plan s is terminated, neutral fibre Fs has to reach the
destination polyhedron Pdest..
The set of routing plans is denoted by S.
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Several data can be derived from the basic definition of a routing plan:

• the bend bsk ∈ Bcat. applied at the end point of the kth segment can be deduced from the
sequence of orientation changes (see Section 6.1.1), for k ∈ J1, Ns − 1K;

• the orientation osk ∈ O∞ of the kth segment can be deduced from the sequence of orientation
changes (see Section 6.1.1), for k ∈ J2, NsK (remind that the first orientation is os1 = oori.);

• the traversable cell csk ∈ C to which the end point of the kth segment belongs can be
computed from the last interface crossed by segment k, for k ∈ J1, NsK.

Routing plan s
Ns : Size[

rs1, ..., r
s
Ns−1

]
: Orientation changes[

Is1 , ..., IsNs
]

: Set of crossed interfaces
Terms : true/false[

bs1, ..., b
s
Ns−1

]
: Bends[

os1, ..., o
s
Ns

]
: Orientations[

cs1, ..., c
s
Ns

]
: Cells

(a) Description of plan s. (b) Solution of LPCLs .

Figure 10.1 – A routing plan s ∈ S.

10.1.2 Feasibility and cost-from-origin

The feasibility of a routing plan s ∈ S depends now on the possibility to create a neutral fibre
using the selected bends and satisfying the space constraints defined by the interfaces to cross.
This feasibility problem can be formulated by extending the lazy linear program LPLs introduced
in Section 6.1.2 on page 72 into the constrained lazy linear program LPCLs . The new formulation
contains four kinds of variables:

• position variables psk =
(
psk,x, p

s
k,y, p

s
k,z

)
such that, for k ∈ J1, Ns + 1K, real variable psk,x

(respectively psk,y and psk,z) is the x-coordinate (respectively y-coordinate and z-coordinate)
of the kth point of neutral fibre Fs;

• length variables `sk such that, for k ∈ J1, NsK, real variable `sk is the length of the kth

segment of neutral fibre Fs, or in other words `sk =
∥∥∥−−−−→pskp

s
k+1

∥∥∥;
• interface variables qsk,i =

(
qsk,i,x, q

s
k,i,y, q

s
k,i,z

)
such that, for k ∈ J1, NsK and i ∈ Isk, real

variable qsk,i,x (respectively qsk,i,y and qsk,i,z) is the x-coordinate (respectively y-coordinate
and z-coordinate) of the intersection between the kth segment of neutral fibre Fs and an
interface i it has to cross;

• interface distance variables αsk,i such that, for k ∈ J1, NsK and i ∈ Isk, real variable αsk,i is
the distance between the kth point of neutral fibre Fs and the intersection qsk,i with the
interface i ∈ Isk crossed by the kth segment.
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10.1. ROUTING PLAN FORMULATION 125

Linear program LPCLs still minimises the cost-from-origin of the neutral fibre part that must
satisfy the constraints of plan s. Thus, linear program LPCLs can be formulated as follows:

minimise
∑Ns−1
k=1 γbs

k
+ µ

∑Ns
k=1 `

s
k (10.1)

subject to:
ps1 ∈ Pori. (10.2)

psNs+1 ∈ Pdest. if Terms = true (10.3)
psk+1 ∈ csk ∀k ∈ J1, Ns − 1K (10.4)
qsk,i ∈ Pi ∀k ∈ J1, NsK ∀i ∈ Isk (10.5)

`sk ≥ Lbsk−1
+ Lmin + Lbs

k
∀k ∈ J1, NsK (10.6)

−−−−→
pskp

s
k+1 = `sk

−−→eos
k
,z ∀k ∈ J1, NsK (10.7)

−−−→
pskq

s
k,i = αsk,i

−−→eos
k
,z ∀k ∈ J1, NsK ∀i ∈ Isk (10.8)

αsk,i ≤ `sk ∀k ∈ J1, NsK ∀i ∈ Isk (10.9)
`sk ∈ R+ ∀k ∈ J1, NsK (10.10)
αsk,i ∈ R+ ∀k ∈ J1, NsK ∀i ∈ Isk (10.11)
psk ∈ R3 ∀k ∈ J1, Ns + 1K (10.12)
qsk,i ∈ R3 ∀k ∈ J1, NsK ∀i ∈ Isk (10.13)

Most constraints are similar to lazy linear program LPLs introduced in Section 6.1.2. There
are four new kinds of constraints here. Constraints 10.4 force the successive break points of
neutral fibre Fs to belong to the traversable cell to which they are allocated given plan s.
Constraints 10.5, 10.8 and 10.9 impose that the intersection between the kth segment and an
interface i it has to cross must belong both to the interface and to the segment (see Figure 10.2).

psk qsk,i

i

psk+1

αsk,i

`sk

Lbs
k−1

Lbs
k

Figure 10.2 – Portion of a pipe between two successive break points of the neutral fibre (the
straight section with variable length is depicted in orange).

If LPCLs has a solution, then routing plan s is feasible. The optimal cost-from-origin of linear
program LPCLs is called constrained lazy cost and is referred to as gCL (s). The corresponding
waveguide can be rebuilt with Algorithm 10 on page 59. On the contrary, when there is no
solution, routing plan s is not feasible and, by convention, its minimal cost-from-origin is infinite,
that is to say gCL (s) =∞.

By contrast with the lazy linear program LPLs introduced for the FWRP, the constrained lazy
feasibility problem LPCLs can be infeasible because it can be impossible to cross an interface
with a given bend combination. Therefore, there is no obvious solution to constrained lazy
feasibility problem LPCLs for the CWRP because of space constraints.
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10.1.3 Neighbourhood

A feasible and non-terminated routing plan s ∈ S in constrained space can be extended using
three kinds of decisions: add a bend, cross an interface or finish the plan. So, successors are
built by forward chaining. In cases where plan s is infeasible, it cannot be extended.

Remind that there is a single way to reach a routing plan s ∈ S which is to apply exactly
the same sequence of bends and to cross the same sequence of interfaces, and then terminate
the plan if needed. So, it is impossible to visit a plan s more than once.

Add a bend

If the maximum number of bends NS − 1 is not reached, that means Ns < NS , and if r ∈
Rout.∞

(
osNs

)
is a reachable orientation change such thatNs+minBends

(
o+
r

)
≤ NS (the maximum

number of segments is not exceeded), then it is possible to apply bend br at the end of the last
segment of routing plan s. Let s′ ∈ S be the successor resulting from this decision. Formally,
adding bend br associated with orientation change r creates a new segment on the neutral
fibre Fs, that is to say Ns′ = Ns + 1, and extends the sequence of orientation changes with r,
meaning that rs′k = rsk for k ∈ J1, Ns − 1K and rs′Ns = r. Then, the sets of interfaces crossed by
each segment remain unchanged, meaning that Is′k = Isk for k ∈ J1, NsK. Of course, the new
segment does not cross any interface, so Is′Ns′ = []. The successor s′ is described on Figure 10.3a
and illustrated on Figure 10.3b.

Routing plan s′
Ns′ = Ns+1[
rs1, ..., r

s
Ns−1, r

][
Is1 , ..., IsNs , []

]
false[

bs1, ..., b
s
Ns−1, br

][
os1, ..., o

s
Ns
, o+
r

][
cs1, ..., c

s
Ns
, csNs

]
(a) Description of successor s′.

c1

i1

c2

i2

c3

(b) Solution of LPCLs′ .

Figure 10.3 – Adding a bend associated with an orientation change r ∈ Rout.∞

(
osNs

)
to a plan

s ∈ S.

Cross an interface

If i ∈ Iout.csNs
is a crossable interface with a normal −→ni that has a positive dot product −→ni ·−−−→eosNs ,z

≥ 0
with the orientation osNs of the last segment of the neutral fibre Fs, then it is possible to add
interface i to the sequence of interfaces crossed by this last segment. Let s′ ∈ S be the successor
resulting from this decision. Formally, crossing interface i does not modify the number of
segments in neutral fibre Fs nor the sequence of orientation changes, meaning that rs′k = rsk
for k ∈ J1, Ns − 1K. Then, the sets of interfaces crossed by the Ns − 1 first segments remain
unchanged while interface i is added to the sequence of interfaces crossed by the last segment,
meaning that Is′k = Isk for k ∈ J1, Ns − 1K and Is′Ns = IsNs∪{i}. As a consequence, the last vertex
of neutral fibre Fs is allocated in the new traversable cell c+

i . The successor s′ is described on
Figure 10.4a and illustrated on Figure 10.4b on the facing page.

c©Airbus Defence and Space SAS - "This document and the information it contains are property of Airbus Defence and
Space. It shall not be used for any purpose other than those for which it was supplied. It shall not be reproduced or
disclosed (in whole or in part) to any third party without Airbus Defence and Space prior written consent. Airbus
Defence and Space – All rights reserved - February 10, 2022".



10.1. ROUTING PLAN FORMULATION 127

Routing plan s′
Ns′ = Ns[
rs1, ..., r

s
Ns−1

][
Is1 , ..., IsNs−1, IsNs ∪ [i]

]
false[

bs1, ..., b
s
Ns−1

][
os1, ..., o

s
Ns

][
cs1, ..., c

s
Ns−1, c

+
i

]
(a) Description of successor s′.

c1

i1

c2

i2

c3

(b) Solution of LPCLs′ .

Figure 10.4 – Crossing an interface i ∈ Iout.csNs
from a plan s ∈ S.

Finish a plan

If a destination orientation and a traversable cell have been reached, that is to say osNs ∈ O
dest.

and csNs ∈ C
dest., then routing plan s can be terminated. Its successor s′ is the same as plan s

but it is terminated, meaning that Terms = true, and it has to reach the destination polyhedron
Pdest. (see Constraint 10.3).

Routing plan s′
Ns′ = Ns[
rs1, ..., r

s
Ns−1

][
Is1 , ..., IsNs

]
true[

bs1, ..., b
s
Ns−1

][
os1, ..., o

s
Ns

][
cs1, ..., c

s
Ns

]
(a) Description of successor s′.

c1

i1

c2

i2

c3

(b) Solution of LPCLs′ .

Figure 10.5 – Terminating a plan s ∈ S.

10.1.4 Origin and destination plans

The aim is to find a destination plan that is a feasible and terminated routing plan s ∈ S for
which the last orientation is a destination orientation and the last cell is a destination traversable
cell, that means osNs ∈ O

dest. and csNs ∈ C
dest. (see Figure 10.6b). Like for the FWRP, the set

of destination plans is referred to as Sdest.. The exploration of the space of routing plans S
starts from the initial plan, referred to as sori., which has the origin orientation oori., starts in
the origin cell cori., does not contain any bend and does not cross any interface, that means
Nsori. = 1 and Isori.1 = {}, as shown on Figure 10.6a. Of course, it is a non-terminated plan.
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Routing plan sori.
Ns = 1

∅
[{}]
false

∅[
oori.

][
cori.

]
(a) Origin routing plan sori..

Routing plan s
Ns ≤ NS[
rs1, ..., r

s
Ns−1

][
Is1 , ..., IsNs

]
true[

bs1, ..., b
s
Ns−1

][
os1, ..., o

s
Ns

]
with osNs ∈ O

dest.[
cs1, ..., c

s
Ns

]
with csNs ∈ C

dest.

(b) Destination routing plan s ∈ Sdest..

Figure 10.6 – Origin and destination routing plans.

10.2 Evaluations and heuristics

In order to choose the most promising routing plans when using ISAs, a heuristic function h (s)
is necessary to estimate the minimal cost required to extend s ∈ S and reach a feasible and
terminated destination plan in Sdest.. This section proposes three heuristic functions which use
the neutral fibre provided by the constrained lazy linear program LPCLs . The first naive one
consist in using the as the crow flies distance to the destination (see Section 10.2.1). The two
other heuristics, respectively presented in Section 10.2.3 and Section 10.2.4, are more precise
since they take space constraints into account using the notions of candidate trails and extended
plans introduced in Section 10.2.2.

10.2.1 Distance as the crow flies

A first heuristic evaluation of a routing plan s ∈ S is the distance as the crow flies between the
last point psNs+1 and the destination polyhedron Pdest. weighted with linear cost µ, referred to as
hACF (s). It is a naive heuristic since it does not take into account the routing space constraints.

Definition 29: As the crow flies heuristic hACF

Let s be a feasible routing plan in S and
[
ps1, ..., p

s
Ns+1

]
the polyline provided by

constrained lazy linear program LPCLs which minimises the cost-from-origin. The
as the crow flies heuristic is defined for routing plan s by:

hACF (s) =
{
γmin.

(
osNs

)
+ µminp∈Pdest.

∥∥∥−−−−→psNs+1p
∥∥∥ if Terms = false

0 otherwise

By contrast with lazy heuristic hL introduced to solve the FWRP, the as the crow flies
heuristic hACF is not admissible. Figure 10.7 on the next page shows a counter-example in
which a routing plan s ∈ S, resulting from the addition of a 45◦-bend and the crossing of an
interface, is evaluated with constrained lazy linear program LPCLs . Figure 10.7a presents an
optimal solution of LPCLs and the estimation hACF (s) of the as the crow flies distance to reach
the destination. However, as illustrated on Figure 10.7b, it is possible to build a sub-optimal
solution for LPCLs with a lower estimation hACF (s). This sub-optimal solution can match an
optimal neutral fibre Fs that reaches the destination polyhedron Pdest., as shown on Figure
10.7c.
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(a) Optimal solution for linear program LPCLs . (b) Sub-optimal solution for linear program LPCLs .

(c) Optimal solution of the instance.

Figure 10.7 – Non admissibility of the as the crow flies heuristic hACF in constrained space.

10.2.2 Space of candidate trails

To get more accurate estimations of the distance to the destination, the remaining part of the
neutral fibre Fs, that is not constrained to use bends from the catalogue, must consider the space
constraints and avoid obstacles rather than using a straight segment to reach the destination
polyhedron Pdest.. Ideally, this polyline to the destination must be as short as possible. Finding
such a polyline corresponds to the Euclidean Shortest Path Problem (ESPP).

Euclidean Shortest Path Problem

The ESPP in two-dimensional space can be solved in polynomial time. A classical approach
consists in using shortest path algorithms in a visibility graph that has been precomputed from
the obstacles [60, 51, 52]. Is is also possible to propagate a frontier from the source point until
it meets the target point [39]. A simplified version of the 2D-ESPP searches for the geometric
shortest path in a grid that can contain obstacle cells. This case can be solved efficiently with the
Theta* algorithm proposed by NASH [67] which is a variant of A* propagating information along
grid edges without constraining the paths to follow these edges. More recently, an interval-based
search technique, called Anya, has been introduced in [36] and extended to support search over
arbitrary sets of convex polygons [22].

In a three-dimensional space, the ESPP has been proved to be a NP-hard problem [14]. In
this case, the shortest path does not necessarily pass through vertices of the obstacles but it is
shown to pass through their edges [86]. Approximation algorithms have been proposed to solve
the 3D-ESPP in polynomial time. The main idea is to sample points along the edges of the
obstacles in order to build a visibility graph [70, 18]. Then, as for the 2D-ESPP, a shortest path
algorithm is applied (typically DIKJSTRA’s algorithm). Furthermore, it can be noticed that the
Theta* algorithm can be generalised to three-dimensional space by considering a 3D-grid [68].
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Trail

A way of considering the space constraints in the estimation of the remaining distance, inspired
from existing ideas to solve the 3D-ESPP, is to build so-called candidate trails between some
specific points of the routing space. Formally, a trail for a routing plan s ∈ S is a polyline inside
the routing space that connects the end point psNs+1 of s provided by LPCLs to the destination
polyhedron Pdest..

Definition 30: Trail

For a routing plan s ∈ S, a trail t is a polyline
[
mt

1, ...,m
t
Nt+1

]
which connects the last point

psNs+1 to the destination polyhedron Pdest. and stays inside the routing space G (C, I) (see
Figure 10.8), what can be translated as follows:

mt
1 = psNs+1

mt
Nt+1 ∈ Pdest.[

mt
k,m

t
k+1

]
⊂
⋃
c∈C
Pc ∀k ∈ J1, NtK

The set of trails for a routing plan s ∈ S is referred to as Ts.

c1

i1

c2

i2

c3

Figure 10.8 – An example of trail (depicted in red).

In a trail, the constraints expressing that each orientation change of the polyline must cor-
respond to a bend of the catalogue are ignored, the goal being only to estimate the quality of
a routing plan. Furthermore, since a trail t ∈ Ts stays inside the routing space, it is possible to
define the sequence of interfaces, called channel, that are crossed by trail t. In what follows, Kt

refers to the number of interfaces crossed by trail t and itk is the kth interface crossed by trail t.

Generation of candidate trails

ρ

Figure 10.9 – Maximal POISSON-
disk sampling with a radius ρ ∈ R+.

To generate candidate trails, a graph G (M,D) called trail
space is built during a preprocessing step by sampling a set
of points M (i) on each interface i ∈ I using BRIDSON’s
algorithm [11]. It is a maximal POISSON-disk sampling
method which ensures that sampled points are separated
by a sampling radius ρ ∈ R+, such that when ρ decreases,
the density of sampled points increases (see Figure 10.9).
For a point m ∈

⋃
i∈I
M (i), the interface on which point

m has been sampled is referred to as im. A set of points
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M
(
Pdest.

)
is also generated in the destination polyhedron Pdest. and is joined to the sets of

points sampled on interfaces to form the set of nodesM of the trail space. Then, the edges of
graph G (M,D) are built using Algorithm 12. The idea is to propagate a frontier from the points
sampled in the destination polyhedron in order to evaluate the distance Lm from each point m
sampled on an interface i ∈ I to the destination by jumping from a sampled point to another on
a neighbouring interface. Two distinct interfaces i, i′ ∈ I are considered as neighbours if they
involve a common traversable cell c, that is to say i, i′ ∈ I(c). Each point m is connected to the
point m′ of a neighbour interface i′ ∈ I that has the minimal distance Lm′ to the destination.
To do so, Algorithm 12 follows a procedure similar to the DIKJSTRA’s algorithm. Of course, a
point m ∈ M

(
Pdest.

)
sampled in the destination polyhedron satisfies Lm = 0. An example of

trail space G (M,D) is illustrated on Figure 10.10.

θori.
θdest.

c1

i1

c2

i2

c3

Figure 10.10 – Example of G (M,D).

It is important to note that the candidate trails presented here are not guaranteed to be the
3D-shortest paths to the destination polyhedron Pdest. because of the sampling approach used,
even if reducing sampling radius ρ allows getting closer to optimal paths. As a consequence,
the two heuristics introduced in what follows are not necessarily admissible and can clearly
overestimate the real cost required to reach the goal configuration. This remark implies that the
first feasible and terminated routing plan reached by A*-like algorithms with these heuristics is
not necessarily optimal.

10.2.3 Trail length heuristic and extended routing plan

Instead of using the as the crow flies distance, a better estimation of the remaining distance to
reach the destination polyedron Pdest. from a routing plan s ∈ S is the length of the shortest
trail t∗ (s) that can be found in G (M,D), as illustrated on Figure 10.11.

Definition 31: Shortest trail t∗ (s)
Let s be a feasible routing plan in S. The shortest trail t∗ (s) for routing plan s is
the trail passing through the node m∗ (s) that minimises the trail length among
the nodes sampled on the interfaces of the last cell reached by plan s, what can
be written as follows:

m∗ (s) = arg min
m∈M(i)
i∈Iout.

cs
Ns+1

(∥∥∥−−−−−→psNs+1m
∥∥∥+ Lm

)

The estimation can be further improved by trying to get closer to the destination in order
to reach it faster. To do so, it is possible to use the shortest trail t̃ for an extended routing
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Algorithm 12: Generate the trail space G (M,D)
Input:
• Set of destination cells: Cdest.

• Set of points sampled in destination polyhedron: M
(
Pdest.

)
• Sets of points sampled on each interface: M (i) ∀i ∈ I(c)

1 for m ∈M
(
Pdest.

)
do

2 Lm ← 0
3 Add node m inM
4 OpenList← ∅
5 for c ∈ Cdest. do
6 for i ∈ Iinc.c do
7 for m ∈M (i) do
8 if m was not visited before then
9 Lm ←∞

10 for m′ ∈M
(
Pdest.

)
do

11 if
∥∥∥−−→m′m∥∥∥ < Lm then

12 Lm ←
∥∥∥−−→m′m∥∥∥

13 bestParent (m)← m′

14 Add node m in OpenList with value Lm

15 while OpenList 6= ∅ do
16 Remove m with the smallest Lm-value from OpenList
17 if m /∈M then
18 Add node m inM
19 for i ∈ Iinc.

c−im
do

20 for m′ ∈M (i) do
21 if m′ was not visited before then
22 Lm′ ←∞

23 if
∥∥∥−−→mm′∥∥∥ < Lm′ then

24 Lm′ ←
∥∥∥−−→mm′∥∥∥

25 bestParent (m′)← m
26 Add node m′ in OpenList with value Lm′

27 for m ∈
⋃
i∈I
M (i) do

28 Add arc (m, bestParent (m)) in D
29 return G (M,D)
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Figure 10.11 – Trail heuristic on a simple routing case (candidate trails are depicted in green
and the shortest one in red).

plan s̃ ∈ S obtained from plan s by crossing as many interfaces as possible along the channel
of shortest trail t∗ (s) from plan s without adding any bend. The extended plan s̃ of plan s can
be computed using Algorithm 13. The feasibility of the extended plans is evaluated using the
linear programs LPCLs̃ , whose solutions can be reused when the extended plans are expanded in
turn. Finally, the resulting heuristic can be defined as follows.

Definition 32: Trail length heuristic hTL

Let s be a feasible routing plan in S and t̃ its extended plan. Let t̃ be the shortest
trail for extended plan s̃ and

[
ps̃1, ..., p

s̃
Ns̃+1

]
the polyline provided by constrained

lazy linear program LPCLs̃ which minimises the cost-from-origin. The trail length
heuristic is defined for routing plan s by:

hTL (s) =

 γmin.
(
os̃Ns̃

)
+ µ

Nt̃∑
k=1

∥∥∥∥−−−−−→mt̃
km

t̃
k+1

∥∥∥∥ if Terms̃ = false

0 otherwise

Algorithm 13: Compute the extended plan s̃
Input:
• Routing plan: s

• Shortest trail: t∗ (s)

1 s̃← s
2 for k ∈

q
1,Kt∗(s)

y
do

3 Compute plan s′ resulting from crossing interface itk from plan s̃
4 if s′ in feasible then
5 s̃← s′

6 else
7 return s̃

8 Compute plan s′ resulting from terminating plan s̃
9 if s′ in feasible then

10 s̃← s′

11 return s̃
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10.2.4 Trail cost heuristic

Previous heuristics only estimate the minimal bend combination cost γmin. (o) to reach a desti-
nation orientation and the lineic contribution to the cost of a waveguide. However, the polyline[
mt̃

1, ...,m
t̃
Nt̃+1

]
of shortest trail t̃ for extended plan s̃ can also be used to estimate a more

accurate cost of the remaining bends that will be added to the waveguide to reach the destina-
tion while avoiding obstacles (see Figure 10.12). This approach is described in Algorithm 14,
that returns an estimated cost γest. (o, t) of the best bend combination to follow trail t starting
from orientation o ∈ O. This algorithm analyses the successive orientation changes on the trail
and tries to reproduce them with bends from the catalogue. It estimates the bend cost using
a function σ that takes as an input the orientation o of the waveguide and a vector −→u , and
that returns a quantity σ (o,−→u ) = −→eo,z ·

−→u
‖−→u ‖ estimating through a scalar product the angular

proximity between the main direction −→eo,z of orientation o and the direction defined by −→u . The
closer σ (o,−→u ) is to 1, the closer o is from direction −→u . Note that with such an approach, the
orientation of the waveguide section around the neutral fibre is ignored. Moreover, from the last
orientation o reached when following the trail, Algorithm 14 also adds the cost γmin. (o) of the
minimal bend combination that reaches a destination orientation from orientation o. Remind
that this cost is precomputed for any reachable orientation o, before using Algorithm 14.

Algorithm 14: Evaluate γest. (o, t)
Input:
• Orientation: o

• Trail: t

1 o′ ← o
2 γest. (o, t)← 0
3 for k ∈ J1, NtK do
4 do
5 improvement← false

6 b∗ ← argmaxb∈Bcat.
(
σ

(
rotMb

(o) ,
−−−−−→
mt
km

t
k+1

))
7 if σ

(
rotMb∗ (o) ,

−−−−−→
mt
km

t
k+1

)
> σ

(
o,
−−−−−→
mt
km

t
k+1

)
then

8 improvement← true
9 γest. (o, t)← γest. (o, t) + γb∗

10 o← rotMb∗ (o)
11 while improvement = false

12 γest. (o, t)← γest. (o, t) + γmin. (o)
13 return γest. (o, t)

From the estimated cost of the bend combination required to reach the destination avoiding
obstacles, it is possible to build a more accurate trail cost heuristic.
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Figure 10.12 – Estimation of the bend combination needed to follow a trail t ∈ T (s) from plan
s ∈ S.

Definition 33: Trail cost heuristic hTC

Let s be a feasible routing plan in S and s̃ its extended plan. Let t̃ be the shortest
trail for extended plan s̃ and

[
ps̃1, ..., p

s̃
Ns̃+1

]
the polyline provided by constrained

lazy linear program LPCLs̃ which minimises the cost-from-origin. The trail cost
heuristic is defined for routing plan s by:

hTC (s) =

 γest.
(
os̃Ns̃ , t̃

)
+ µ

Nt̃∑
k=1

∥∥∥∥−−−−−→mt̃
km

t̃
k+1

∥∥∥∥ if Terms̃ = false

0 otherwise

10.3 Experiments on the CWRP

The three proposed heuristics, as the crow flies hACF , trail length hTL, and trail cost hTC , have
been implemented in Java with A*, WA*, Greedy BFS, SAHC and BrF-BS. Remind that the
implementation of these algorithms does not require to maintain any closed list of the already
visited states. The Simplex solver of the Apache Commons Math library (version 3.6.1) [3] is
still used to solve the linear programs. In the results that follow, the search has been stopped as
soon as a solution was found and the runtime has been limited to 3 minutes, which corresponds
to the maximal acceptable time to solve the instances in an industrial context.

First, test instances which are more complex than the ones used for the MILP formulation
are presented in Section 10.3.1. Then, the performances of each heuristic are evaluated using A*,
WA* and Greedy BFS in order to select the best parameters to solve the CWRP (see Section
10.3.2). The results obtained using SAHC and BrF-BS are not reported here because of their
poor success rate on the test instances. Last, the impact of the trail space on the resolution
speed and on the solution quality with the trail cost heuristic is studied in Section 10.3.3.
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10.3.1 Instance sets

As previously, the formulation of the CWRP adapted to ISAs has been experimented on three
instance sets corresponding to bend catalogues B90◦

cat., B45◦
cat. and B30◦

cat. (see Table 11 on page 170).
For each bend catalogue Bcat., the instance set contains ten instances with gradual difficulty
built as follows. The first instance uses the routing space with the traversable cells described in
Table 7 and the origin and destination configurations detailed in Table 9 on page 168. Note that
it is identical to instance 4 used for the MILP formulation of the CWRP. Then, other instances
are derived from the first one by taking an increasing number of obstacles into account, which
leads to subdivide traversable cells and results in routing spaces with more cells. The obstacles
considered by each instance are defined in Table 10 on page 169. The ten instances are illustrated
on Figure 10.13 on page 138. All other features, like the linear and bend costs, are the same as
the ones used in Section 9.3.

10.3.2 Tuning the Best-First Search

The WA* algorithm has been studied for the following values of weight ε: 1.1, 1.2, 1.5, 2, 3,
5 and 8. A*, which is WA* with ε = 1, and Greedy BFS, which can be seen as WA* with
ε = ∞, are also tested. Figure 10.14 on page 139, Figure 10.15 on page 140 and Figure 10.16
on page 141 present the results on the three instance sets using respectively the as the crow
flies, trail length, and trail cost approaches with a radius ρ = 10 used for sampling points on
interfaces. Note that the runtimes reported here include the construction of the trail space and
the resolution for the trail heuristics.

As expected, approach fACF = gCL+εhACF which uses the distance as the crow flies does not
succeed in solving instances with the largest catalogues B45◦

cat. and B30◦
cat.. Only the first instances

using the simple catalogue B90◦
cat. can be solved within the available time with large ε-values like

ε = 3 and ε = 5 (see Figure 10.14). This confirms that such a naive approach which does not
consider the topology of the routing space cannot be used on industrial instances.

By contrast, approximating the distance to the destination using the length of the shortest
trail with heuristic hTL allows to solve larger instances with more traversable cells and more
complex bend catalogues, as shown on Figure 10.15. Nevertheless, very few instances are solved
with the industrial catalogue B30◦

cat.. When looking at solution quality, it seems that the first
solution encountered by WA* becomes more expensive when ε increases (see Figure 10.15b).
Here, WA* provides the best performances on the three instance sets with ε = 2 and 3.

Trail cost heuristic hTC outperforms the previous ones when the number of cells increases,
that is to say when there are more obstacles to avoid (see Figure 10.16). Indeed, it nearly
solves all instances within 3 minutes using catalogues B90◦

cat. and B45◦
cat., even with small values

of ε. Moreover, several ε-values provide solutions for half of the instances with the industrial
catalogue B30◦

cat.. Similarly to heuristic hTC , a trend visible on Figure 10.16b shows that smaller
ε-values allow to find better solutions. However, more routing plans are expanded in comparison
with large ε-values, and as a consequence the resolution takes longer. A good trade-off between
resolution speed and solution quality consists in choosing ε = 2 or 3 with this heuristic.

Figure 10.17 on page 142 compares the three heuristics using the best ε-values. In particu-
lar, Figure 10.17c illustrates that heuristic hTC expands fewer plans than heuristic hTL which,
in turn, expands fewer plans than heuristic hACF by an order of magnitude. This confirms
the efficiency of the successive improvements made with the trail approach. A detailed analy-
sis of routing plans expanded by the different heuristics shows that considering only the cost
γmin.

(
osNs

)
of the minimal bend combination to reach a destination orientation in Odest., like

heuristic hACF and hTL, misleads the exploration of the space of routing plans. Indeed, it
favours plans that apply bends to reach a destination orientation as fast as possible rather than
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moving towards a destination cell in Cdest.. It is all the more accentuated when bends have large
costs in comparison with the linear cost µ.

Finally, it appears that trail cost heuristic hTC is clearly more robust to increasing the bend
catalogue and routing space sizes, even if trail length heuristic hTL tends to provide better
solutions for the same value of ε. This better solution quality may be explained by the fact that
the overestimation of heuristic hTC is larger than the one obtained with the trail length heuristic
since hTC approximates the remaining bend cost by generating a sub-optimal bend combination
to follow the shortest trail. Nevertheless, the solutions found by the trail cost heuristic are
competitive and completely acceptable for a waveguide designer, as illustrated on Figure 10.18.

Obviously, the regularity of the solutions depends on the bend costs. The instances used
in this thesis strongly penalise the bends in comparison with the linear cost, which favors the
regularity of the waveguides. Bend costs closer to the linear cost would lead to less regular
optimal waveguides and the approach would provide solutions that might be rejected by designers
because of their high number of bends.
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(a) Instance 1. (b) Instance 2.

(c) Instance 3. (d) Instance 4.

(e) Instance 5. (f) Instance 6.

(g) Instance 7. (h) Instance 8.

(i) Instance 9. (j) Instance 10.

Figure 10.13 – Instances of the CWRP for the ISA approach.
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Figure 10.14 – Results with A*/WA* and the as the crow flies heuristic hACF .
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Figure 10.15 – Results with A*/WA* and the trail length heuristic hTL.
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Figure 10.16 – Results with A*/WA* and the trail cost heuristic hTC .
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Figure 10.17 – Best results with A*/WA*.
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(a) Solution on instance 5.

(b) Solution on instance 10.

Figure 10.18 – Examples of routed waveguides with WA*.

10.3.3 Impact of the sampling radius

In a second series of experiments, the impact of the sampling radius ρ on the resolution perfor-
mances is studied. First, Figure 10.19 on the following page presents the evolution of the trail
space size with the sampling radius ρ for the test instances. The duration required to sample
points on interfaces and to connect them in order to build the trail space is also reported.

Of course, the number of trail nodes raises when sampling radius ρ decreases. As a conse-
quence, there are more nodes sampled on each interface and the evaluation of trail heuristics for
a routing plan becomes more time-consuming since more trails must be compared to find the
shortest one. In return, the estimation of the remaining distance to the destination is improved
because the optimal path can be approximated with a smaller error. So better solutions are ex-
pected to be found when using a smaller sampling radius ρ. However, as shown on Figure 10.19,
reducing the sampling radius on interfaces can significantly increase the trail space generation
time. On the test instances, a ρ-value of 2 requires several minutes to build the trails which
is already too excessive in comparison with the resolution time reached with ρ = 10 in Section
10.3.2.

Then, heuristic hTC has been tested using WA* with ε = 2 and ρ-values of 2, 5, 10, 20 and
50. The results are shown on Figure 10.20. Remind that the reported runtimes include the trail
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Radius 2 5 10 20 50

Instance |M| Runtime
(ms) |M| Runtime

(ms) |M| Runtime
(ms) |M| Runtime

(ms) |M| Runtime
(ms)

1 27182 139261 4499 2418 1200 125 335 16 64 1
2 40359 224952 6719 3541 1797 203 505 15 97 1
3 42793 180446 7156 2808 1924 171 541 16 100 1
4 53043 257339 8889 4025 2365 249 668 16 130 1
5 57944 251370 9727 3775 2619 219 741 15 135 1
6 65746 263306 11046 4149 2965 234 843 32 154 1
7 75974 374992 12759 5336 3422 327 974 31 175 1
8 78442 354586 13204 5709 3554 297 1015 47 173 1
9 88736 473274 14933 6366 4022 390 1149 31 206 1
10 88225 447279 14853 6521 4010 374 1147 47 199 1
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Figure 10.19 – Generation of the trail space.

space generation and the resolution for the trail heuristics. For convenience reasons, resolution
time is limited to 3 minutes.

It appears that using a smaller sampling radius ρ seems to increase the number of visited
routing plans and consequently the resolution time, as illustrated on Figure 10.20c. This can
be explained by the more accurate estimation of the distance to the destination which tends to
reduce the evaluation difference between two nearly similar plans. At the same time, reducing
the sampling radius can improve the solution quality, as it can be verified on Figure 10.20b
with bend catalogues B90◦

cat. and B30◦
cat.. However, there is no guarantee that the solution found

is better than when using a larger ρ-value (see the results with catalogue B45◦
cat.). Actually, the

effect of the high heuristic weight ε = 2 that implies a more greedy exploration of the search
space than pure A* makes the solution quality more random and mitigates the impact of the
sampling radius. Finally, on the test instances, using WA* with ε = 2 and ρ = 10 is the best
trade-off between the solution quality and the whole resolution time including the trail space
generation and best-first search.
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Figure 10.20 – Results with different ρ-values.
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Chapter 11

Conclusion on the CWRP

11.1 Contributions

In Part III, the Constrained Waveguide Routing Problem (CWRP), which extends the Free
Waveguide Routing Problem (FWRP) with spatial constraints like the presence of obstacles,
is addressed. To deal with these spatial constraints, a methodology based on triangulation is
presented to decompose the available space into non-regular convex cells that avoid obstacles.
Then, the Mixed Integer Linear Programming (MILP) and Search Problem (SP) formulations
proposed for the FWRP are adapted to consider the sequence of cells crossed by the waveguide.
Unlike the classical Pipe Routing techniques, these cells are only used to apply local constraints
on the neutral fibre and the waveguide is still routed in a continuous domain using Linear
Programming (LP). Solutions obtained with both formulations satisfy all waveguide design rules
and avoid the obstacles of the routing environment. The SP formulation has been published at
the CPAIOR 2021 [90] and ROADEF 2021 [91] conferences.

Again, solving the CWRP using the MILP formulation is shown to be highly time-consuming,
even on very small instances which are not representative of the complexity of industrial cases.
Indeed, when using a real bend catalogue, several hours may be necessary to find a first solution
and optimality cannot be reached in a reasonable time. So the MILP approach tested is not a
good candidate for an intensive usage during design phases.

In comparison, the resolution of the SP formulation using Informed Search Algorithms (ISAs)
can provide good solutions within a few minutes on more realistic instances. Since the naive
heuristic which consists in ignoring space constraints and using the as the crow flies distance
to the destination performs very poorly, more sophisticated heuristics are introduced. They are
based on a graph of relaxed routes, called trails, which connect each cell to the destination while
staying inside the routing space. Thus, with the trail length heuristic, the remaining distance to
the destination is more accurately estimated using the shortest trail for the evaluated routing
plan. The trail cost heuristic goes further by estimating the cost of the best bend combination
to use in order to follow the trail to the destination. A*, WA* and Greedy BFS have been
experimented with these heuristic functions. It appears that the trail cost heuristic is the most
robust and provides the best performances since it allows to solve realistic instances with an
industrial bend catalogue within a few minutes. However, all these heuristics are not admissible,
so there is no guarantee on the quality of the solutions provided by the ISAs even if, in practice,
they are completely acceptable for waveguide designers.

As previously, the resolution approach of the CWRP based on ISAs has been implemented
and integrated in an Airbus DS software suite and provided to the waveguide designers. If the
proposed optimisation method finds pretty good solutions on simple cases, the resolution speed
is unfortunately not fast enough to be efficiently used in a complete satellite environment.
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11.2 Perspectives
To obtain better performances on the CWRP, several perspectives can be explored to improve
the optimisation methods introduced in this thesis. First, in the SP formulation, the linear
programs that evaluate feasibility and cost are solved from scratch for each generated routing
plan. Warm-starting them using the solution found for the prior plan could significantly boost
the evaluation of routing plans and reduce the resolution time with ISAs.

Furthermore, the evaluation functions might be more accurate by adding to the routing plan
the definition of the next interface that should be crossed. The underlying idea is that the linear
programs could exploit such a specification to generate a better intermediate end point.

Last, the resolution of the CWRP with ISAs suffers from the high branching factor implied
by the bend catalogue size and the decisions to be taken in the routing space. A possible
way to address this issue could be to focus the exploration inside the channel formed by the
shortest trail between the origin and destination configurations. As a consequence, the possible
decisions from a routing plan would be reduced to the addition of bends and the crossing of
the next interface in the channel. Of course, the routing may be infeasible if the channel is too
narrow and, in this case, another channel should be selected. A similar idea could be applied
in the MILP formulation using a column generation technique based on a sub-problem which
generates candidate routing channels. With this advanced LP method, the MILP formulation
might become competitive.
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Part IV

Conclusion
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Chapter 12

General Conclusion

12.1 Contributions

In this thesis, several optimisation methods are proposed to automate the detailed routing of
waveguides in the radio-frequency harness of a telecommunication satellite. The originality of
these approaches, in comparison with classical pipe routing algorithms, is to deal with non-
orthogonal bends defined by a catalogue and with unsymmetrical cross-sections. Indeed, these
aspects are necessary to provide standardised solutions that satisfy all the constraints of waveg-
uide routing in a satellite payload. Moreover, the introduced approaches use linear programming
to route the waveguide in a 3D continuous domain, considering constraints which would be hard
to express in a method based on a graph of candidate routes. Thus, the generated solutions are
more realistic and can be used without modification by waveguide designers.

The waveguide routing problem is addressed in two steps. First, all spatial constraints and
obstacles are ignored in a simplified version of the problem. This one can be solved using mixed
integer linear programming, but this approach does not perform well enough to be applied in
an industrial context. By contrast, a significantly more efficient resolution is proposed using
informed search algorithms, like WA*, with an admissible heuristic that can ensure a bound on
the solution quality. The integration of this last method in a design software noticeably reduced
the duration of the waveguide routing phase for a real satellite.

In a second step, both introduced formulations are extended to deal with spatial constraints
and obstacles. To do so, the available routing space is decomposed into convex cells which
are used to generate local constraints on the waveguide neutral fibre. For this more complex
problem, only the formulation using informed search algorithms is able to provide solutions for
instances that are representative of industrial cases. However, the resolution of such instances
requires several minutes which is not fast enough to make an intensive usage possible during the
numerous iterations performed by designers.

12.2 Perspectives

Although the proposed approach to deal with obstacles can be improved, a more promising idea
may consist in taking advantage of the good performances provided by the routing algorithm
in free space to mimic designers’ operations. Indeed, in practice, they decompose the route of
a waveguide using waypoints in order to manually avoid conflicts with other components before
applying the routing algorithm. So an interesting way to address the waveguide routing problem
can be to generate an initial route without considering conflicts and then to modify it by adding,
deleting or moving waypoints with a simulated annealing or genetic algorithm in order to fix
these conflicts. Each time a waypoint is modified, the proposed routing algorithm in free space
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can be used to compute the new waveguide detailed route. Then a fitness function may evaluate
the quality of a solution depending on the number of conflicts between the waveguide and other
components.

Moreover, the main asset of this method based on waypoints is that it can be easily extended
to address the multiple waveguide routing problem. This one consists in routing several waveg-
uides in a routing space which contains obstacles while avoiding conflicts between waveguides.
Generally, a safety distance must be ensured between waveguides but it is also interesting to
group them locally in order to share common brackets and reduce the cost of the RF-harness.
The classical approach which consists in routing waveguides one at a time considering the previ-
ously routed ones as obstacles leads to suboptimal solutions that depend on the order in which
waveguides are routed. Instead of this sequential approach, initial conflicting routes can be gen-
erated with the routing algorithm in free space and then the previous conflict resolution method
based on waypoints can be used to manipulate the routes of the different waveguides. In this
case, the fitness function must also take conflicts between waveguides into account. Furthermore,
operations that merge waypoints from different waveguides may be proposed to model common
sections shared between several routes.

Last, whatever the routing approach used, the quality of waveguide routes always depends
on the available routing space that results from the position of other components on the satellite
walls. Ideally, the component layout and waveguide routing problems should be solved simul-
taneously in order to improve the quality of the RF-harness. For instance, component moving
operations can be introduced in the proposed conflict resolution method based on waypoints.
However, the joint problem is hard to solve because of the huge research space induced by
the number of waveguides and components in an industrial context. Furthermore, many other
physical constraints involved in the component layout of a satellite payload, like thermal or
electromagnetic constraints which can restrict the position of components to predefined areas or
require minimal or maximal distances between particular kinds of components. It results that
a multi-disciplinary optimization approach would be needed to address the complete payload
design of a telecommunication satellite.
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Part V

Appendix
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Glossary

Abbreviations and acronyms
3D-ESPP 3D Euclidean Shortest Path Problem.

A* A* Search.

ACO Ant Colony Optimisation.

AI Artificial Intelligence.

Airbus DS Airbus Defence and Space.

AIT Assembly Integration and Test.

ARA* Anytime Repairing A* Search.

ATA* Anytime A* Search.

BDS Bi-Directional Search.

BF-BS Best-First Beam Search.

BFS Best-First Search.

BrF-BS Breadth-First Beam Search.

BrFS Breadth-First Search.

BS Beam Search.

BSA Blind Search Algorithm.

BSS Beam-Stack Search.

BULB Beam search Using Limited discrepancy Backtracking.

CABS Complete Anytime Beam Search.

CAD Computer-Aided Design.

CDA Cell Decomposition Approach.

CIFRE Industrial Agreement of Training through Research or "Convention Industrielle de For-
mation par la REcherche" in French.
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156 Abbreviations and acronyms

CP Constraint Programming.

CWRP Constrained Waveguide Routing Problem.

D/C Down Converter.

DF-BS Depth-First Beam Search.

DFBnB Depth-First Branch-and-Bound Search.

DFID Depth-First Iterative Deepening Search.

DFS Depth-First Search.

EA Escape Algorithm.

EHC Enforced Hill-Climbing.

ESPP Euclidean Shortest Path Problem.

FWRP Free Waveguide Routing Problem.

GA Genetic Algorithm.

Greedy Greedy Search.

Greedy BFS Greedy Best-First Search.

HC Hill-Climbing.

HS Heuristic Search.

IDA* Iterative Deepening A* Search.

IMUX Input Multiplexer.

ISA Informed Search Algorithm.

KBE Knowledge Based Engineering.

LNA Low Noise Amplifier.

LP Linear Programming.

LSA Line Search Algorithm.

LSS-LRTA* Local Search Space Learning Real-Time A*.

MILP Mixed Integer Linear Programming.

MP Mathematical Programming.

MRA Maze Routing Algorithm.

MSC-kwA* Multi-State Commitment k-Weighted A* Search.
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MWRP Multiple Waveguide Routing Problem.

OMUX Output Multiplexer.

ONERA French Aerospace Lab or "Office National d’Études et de Recherches Aérospatiales"
in French.

PM Parametric Model.

PR Pipe Routing.

PRP Pipe Routing Problem.

PSO Particle Swarm Optimisation.

RBFS Recursive Best-First Search.

RF-harness Radio-Frequency Harness.

RF-losses Radio-Frequency Losses.

RTS Real-Time Search.

SA Search Algorithm.

SAHC Steeple Ascent Hill-Climbing.

SHC Simple Hill-Climbing.

SkA Skeleton Approach.

SP Search Problem.

StHC Stochastic Hill-Climbing.

TWTA Travelling Wave Tube Amplifier.

UCS Uniform Cost Search.

USA Uninformed Search Algorithm.

WA* Weighted A* Search.

Window A* Window A* Search.

WR Waveguide Routing.

WRP Waveguide Routing Problem.
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Geometrical notations

Spaces

Sign Domain Description

R3 Three-dimensional canonical Euclidean space

R2 Two-dimensional canonical Euclidean space

Vectors

Sign Domain Description
−→ex R3 Reference X-axis vector
−→ey R3 Reference Y-axis vector
−→ez R3 Reference Z-axis vector

Orientations

Sign Domain Description

O Set of orientations of R3

−→eo,x R3 −→ex axis vector of orientation o ∈ O
−→eo,y R3 −→ey axis vector of orientation o ∈ O
−→eo,z R3 −→ez axis vector of orientation o ∈ O

oref O Reference orientation (−→ex,−→ey ,−→ez )

Mo Rotation matrix expressing orientation o ∈ O in ref-
erence orientation oref

Configurations

Sign Domain Description

Θ Set of configurations of R3

Pθ R3 Point of configuration θ ∈ Θ
−→eθ,x R3 −→ex axis vector of configuration θ ∈ Θ
−→eθ,y R3 −→ey axis vector of configuration θ ∈ Θ
−→eθ,z R3 −→ez axis vector of configuration θ ∈ Θ

θref Θ Reference configuration (O,−→ex,−→ey ,−→ez )

Transformations

Sign Domain Description

Id Θ→ Θ Identity
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trL Θ→ Θ Translation of length L ∈ R+

rotM Θ→ Θ Rotation of matrix M

Polyhedrons

Sign Domain Description

P P ⊆ R3 Polyhedron

QP Set of canonical equations of polyhedron P ⊂ R3

aq R+ Coefficient a for equation q ∈ QP of polyhedron P ⊂
R3

bq R+ Coefficient b for equation q ∈ QP of polyhedron P ⊂
R3

cq R+ Coefficient c for equation q ∈ QP of polyhedron P ⊂
R3

dq R+ Coefficient d for equation q ∈ QP of polyhedron P ⊂
R3
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Modelling of a waveguide

Straight sections

Sign Domain Description

U Set of straight sections in R3

Lu R+ Length of straight section u ∈ U

Fu,θ R3 Neutral fibre of straight section u ∈ U applied from
configuration θ ∈ Θ

ou,θ Fu,θ → O Orientation function of straight section u ∈ U applied
from configuration θ ∈ Θ

Bends

Sign Domain Description

B Set of bends in R3

Lb R+ Half-length of bend b ∈ B

Mb Rotation matrix of bend b ∈ B

Fb,θ R3 Neutral fibre of bend b ∈ B applied from configuration
θ ∈ Θ

ob,θ Θ→ Θ Orientation function of bend b ∈ B applied from con-
figuration θ ∈ Θ

αb
[
−π

2 ,
π
2
]

Angle of bend b ∈ B

ρb R+ Radius of bend b ∈ B

bneut. B Neutral bend

Orientation changes

Sign Domain Description

R Set of orientation changes

o−r O Origin orientation of orientation change r ∈ R

o+
r O Destination orientation of orientation change r ∈ R

br B Bend of orientation change r ∈ R

Waveguides

Sign Domain Description

Π Set of waveguides in R3

Sπ R2 Cross-section of waveguide π ∈ Π

c©Airbus Defence and Space SAS - "This document and the information it contains are property of Airbus Defence and
Space. It shall not be used for any purpose other than those for which it was supplied. It shall not be reproduced or
disclosed (in whole or in part) to any third party without Airbus Defence and Space prior written consent. Airbus
Defence and Space – All rights reserved - February 10, 2022".



Modelling of a waveguide 161

Fπ R3 Neutral fibre of waveguide π ∈ Π

oπ Fπ → O Orientation function on neutral fibre Fπ of waveguide
π ∈ Π

θπ Fπ → Θ Configuration function on neutral fibre Fπ of waveg-
uide π ∈ Π

Nπ N∗ Number of segments of neutral fibre Fπ of waveguide
π ∈ Π

Pπ,k R3 kth point on neutral fibre Fπ of waveguide π ∈ Π, for
k ∈ J1, Nπ + 1K

oπ,k O Orientation of the kth segment on neutral fibre Fπ of
waveguide π ∈ Π, for k ∈ J1, NπK

`π,k R+ Length of the kth segment on neutral fibre Fπ of
waveguide π ∈ Π, for k ∈ J1, NπK

uπ,k U kth straight section of waveguide π ∈ Π, for k ∈
J1, NπK

bπ,k B kth bend of waveguide π ∈ Π, for k ∈ J1, Nπ − 1K

rπ,k R kth orientation change of waveguide π ∈ Π, for k ∈
J1, Nπ − 1K
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Problem inputs

Free Waveguide Routing Problem

Sign Domain Description

Pori. R3 Origin polyhedron

oori. O Origin orientation

Pdest. R3 Destination polyhedron

Odest. O Set of possible destination orientations

Bcat. B Catalogue of available bends

NS N∗ Maximum number of segments for the neutral fibre

Lmin R+ Minimum length of straight sections

Oint. O Set of intrinsically attachable orientations

µ R+ Linear cost

γb R+ Cost of bend b ∈ Bcat.
cori. C Origin traversable cell

Cdest. C Set of destination traversable cells

NC N∗ Number of traversable cells

Reachable orientations

Sign Domain Description

O∞ O Set of reachable orientations

R∞ R Set of reachable orientation changes

Rinc.∞ (o) R Set of reachable orientation changes incoming into
reachable orientation o ∈ O∞

Rout.∞ (o) R Set of reachable orientation changes outgoing from
reachable orientation o ∈ O∞

G (O∞,R∞) Kernel of reachable orientations

Candidate orientations

Sign Domain Description

Ok O∞ Set of k-candidate orientations, for k ∈ N∗

Rk R∞ Set of k-candidate orientation changes, for k ∈ N∗

Rinc.k (o) Rk−1 Set of candidate orientation changes incoming into the
candidate orientation o ∈ Ok, for k ∈ J1, NSK

Rout.k (o) Rk Set of candidate orientation changes outgoing from the
candidate orientation o ∈ Ok, for k ∈ J1, NSK
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G
(
ONS1 ,RNS−1

1

)
Space of candidate orientations for the FWRP

G
(
OK+1

1 ,RK1
)

Space of candidate orientations for the CWRP

Routable space

Sign Domain Description

C R3 Set of traversable cells

Pc R3 Polyhedron of traversable cell c ∈ C

I R3 Set of crossable interfaces

Pi R3 Polyhedron of crossable interface i ∈ I
−→ni R3 Normal of crossable interface i ∈ I

reverse (i) R3 Reverse interface of crossable interface i ∈ I

c−i C Origin traversable cell of crossable interface i ∈ I

c+
i C Destination traversable cell of crossable interface i ∈ I

icneut. I Neutral crossable interface staying into traversable cell
c ∈ C with Picneut. = Pc

Iinc.c I Set of crossable interfaces incoming into traversable
cell c ∈ C

Iout.c I Set of crossable interfaces outgoing from traversable
cell c ∈ C

G (C, I) R3 Routable space

Candidate cells

Sign Domain Description

Ck C Set of k-candidate traversable cells, for k ∈ N∗

Ik I Set of k-candidate crossable interfaces, for k ∈ N∗

Iinc.k (o) Ik−1 Set of candidate crossable interfaces incoming into the
candidate traversable cell o ∈ Ok, for k ∈ J1, NSK

Iout.k (o) Ik Set of candidate crossable interfaces outgoing from the
candidate traversable cell o ∈ Ok, for k ∈ J1, NSK

G
(
CK+1

1 , IK1
)

Space of candidate traversable cells
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Algorithms

Mixed Integer Linear Programming

Sign Domain Description

xk,r {0, 1} Boolean variable equal to 1 if orientation change r ∈
R∞k is applied at the end point of the kth segment on
neutral fibre Fπ, 0 otherwise, for k ∈ J1,K − 1K

yk,i {0, 1} Boolean variable equal to 1 if the interface i ∈ Ik
is crossed by the kth segment on neutral fibre Fπ, 0
otherwise, for k ∈ J1,KK

zk,k′ {0, 1} Boolean variable equal to 1 if there is an straight
section between the kth and k′th vertices of neutral
fibre Fπ, 0 otherwise, for k ∈ J1,K + 1K and k′ ∈
Jk + 1,K + 2K

`k R+ Length of the kth segment on neutral fibre Fπ, for
k ∈ J1, NSK

pk R3 Position of the kth vertex on neutral fibre Fπ, for k ∈
J1,K + 1K

Msucc. R+ Big-M value in the succession constraints of the MILP
formulations

Mq R+ Big-M value for equation q ∈ QP of polyhedron P in
the space constraints of the MILP formulations

Mlen. R+ Big-M value in the minimal length constraints of the
MILP formulations

LUB R+ Upper bound of segment lengths on neutral fibre Fπ

Informed Search Algorithms

Sign Domain Description

S Set of routing plans

Ns N∗ Number of segments of routing plan s ∈ S

Fs R3 Neutral fibre of routing plan s ∈ S

psk R3 kth point on neutral fibre Fs of routing plan s ∈ S, for
k ∈ J1, Ns + 1K

`sk R+ Length of the kth segment on neutral fibre Fs of rout-
ing plan s ∈ S, for k ∈ J1, NsK

rsk R Orientation change applied at the end point of the kth
segment on neutral fibre Fs of routing plan s ∈ S, for
k ∈ J1, Ns − 1K
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osk O Orientation of the kth segment on neutral fibre Fs of
routing plan s ∈ S, for k ∈ J1, NsK

bsk B Bend applied at the end point of the kth segment
on neutral fibre Fs of routing plan s ∈ S, for k ∈
J1, Ns − 1K

csk C Traversable cell associated with the end point of the
kth segment on neutral fibre Fs of routing plan s ∈ S,
for k ∈ J1, Ns + 1K

Isk I Sequence of crossable interfaces crossed by the kth seg-
ment on neutral fibre Fs of routing plan s ∈ S, for
k ∈ J1, NsK

qsk,i R3 Intersection between the kth segment on neutral fibre
Fs of routing plan s ∈ S and interface i ∈ Isk it has to
cross, for k ∈ J1, NsK

αsk,i R+ Distance between the kth point on neutral fibre Fs of
routing plan s ∈ S and intersection qsk,i with interface
i ∈ Isk it has to cross, for k ∈ J1, NsK

Search Algorithms

Sign Domain Description

S Search space or set of states

sori. S Initial state

isGoal (s) Goal test which tells whether state s ∈ S is a target
state

A Set of actions

successors (s) S ×A Set of possible action-successor pairs from state s ∈ S

d N Depth of the shallowest goal node

b N Branching factor or mean number of successors for the
states in S

Trails

Sign Domain Description

Ts Set of trails for a routing plan s ∈ S

Nt N∗ Number of nodes in trail t ∈ Ts for a routing plan
s ∈ S

mt
k M kth node of trail t ∈ Ts for a routing plan s ∈ S, for

k ∈ J1, NtK

Kt N∗ Number of interfaces crossed by trail t ∈ Ts for a rout-
ing plan s ∈ S
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itk I kth interface crossed by trail t ∈ Ts for a routing plan
s ∈ S, for k ∈ J1, NtK

Trail space

Sign Domain Description

ρ R+ Sampling radius

M Set of trail nodes

M (i) M Set of trail nodes on interface i ∈ I

M
(
Pdest.

)
M Set of trail nodes in destination polyhedron Pdest.

im I Interface on which trail node m ∈ M has been sam-
pled

Lm R+ Length of the shortest trail in G (M,D) from trail
node m ∈M to destination polyhedron Pdest.

G (M,D) Space of candidate trails
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Experimentation data

Processor and memory
All experiments presented in this report have been performed using a single thread on an Intel R©

Core i5-6500 CPU 3.20 GHz processor with 23.4 GB of RAM.

Libraries
All approaches presented in this report have been implemented in Java. The implementation
of MILP formulations uses the Google OR-Tools library (version 9.1.9490) [73] and the SCIP
solver (version 7.0.1) [32, 33]. The resolution of the LP models has been performed using the
Simplex solver from the Apache Commons Math library (version 3.6.1) [3]

Gauges
Table 5 lists the properties of the main waveguide gauges used in telecommunication satellites.
Note that the width a and the height b presented in the following table correspond to external
dimensions that include the walls of the waveguide.

Gauge a (in mm) b (in mm) Band Frequency range
(in Ghz)

WR229 61.37 32.283 S 3.30–4.90
WR137 38.05 18.999 C 5.85–8.20
WR90 24.13 11.43 X 8.20–12.40
WR75 20.32 10.79 X-Ku 10–15
WR62 17.799 9.89 Ku 12.40–18
WR28 9.112 5.556 Ka 26.50–40

Table 5 – Common gauges in telecommunication satellites.

Instances of the FWRP
The origin and destination points of the FWRP instances used for experimentation are sampled
in a parallelepiped whose dimensions are provided in Table 6.

Width
(in mm)

Depth
(in mm)

Height
(in mm)

2750 2650 6250

Table 6 – Dimensions of the routable space.
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Instances of the CWRP for the MILP approach
The CWRP instances of the experiments on the MILP approach are illustrated on Figure 9.2
on page 119 and use the routing space described on Table 7 and the origin and destination con-
figurations described on Table 8. The rotation angles that define the orientations are expressed
in the roll-pitch-yaw convention.

Cell Xmin Xmax Ymin Ymax Zmin Zmax
1 -25 25 -275 275 -275 275
2 25 575 -275 275 -275 -225
3 575 625 -275 275 -275 275
4 625 775 -25 25 225 275
5 625 775 -25 25 -25 25
6 775 825 -275 275 -275 275
7 825 1375 -275 275 -275 -225
8 1375 1425 -275 275 -275 275

Table 7 – Traversable cells of the routing space for the MILP approach.

Instance Origin Destination
X Y Z Roll Pitch Yaw X Y Z Roll Pitch Yaw

1

0 0 275 −π 0 −π

300 0 -250 0 π
2 0

2 600 0 275 0 0 0
3 800 0 275 0 0 0
4 1400 0 275 0 0 0

Table 8 – Origin and destination configurations for the MILP approach.

Instances of the CWRP for the ISA approach
The CWRP instances of the experiments on the ISA approach are illustrated on Figure 10.13.
They use the routing space described on Table 7 but also take into account the obstacles de-
scribed in Table 10. All instances use the same origin and destination configurations presented
on Table 9. As previously, the rotation angles that define the orientations are expressed in the
roll-pitch-yaw convention.

Instance Origin Destination
X Y Z Roll Pitch Yaw X Y Z Roll Pitch Yaw

1-10 0 0 275 −π 0 −π 1400 0 275 0 0 0

Table 9 – Origin and destination configurations for the ISA approach.
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Obstacle Xmin Xmax Ymin Ymax Zmin Zmax
Instance

1 2 3 4 5 6 7 8 9 10
1 -25 25 -275 -190,38 112,5 162,5 • • • • • • • • •
2 -25 25 -148,08 -21,15 112,5 162,5 • • • • • • • • •
3 -25 25 21,15 148,08 112,5 162,5 • • • • • • • • •
4 -25 25 190,38 275 112,5 162,5 • • • • • • • • •
5 -25 25 -211,54 -126,92 -25 25 • • • • • • • • •
6 -25 25 -84,62 84,62 -25 25 • • • • • • • • •
7 -25 25 126,92 211,54 -25 25 • • • • • • • • •
8 -25 25 -275 -190,38 -162,5 -112,5 • • • • • • • •
9 -25 25 -148,08 -21,15 -162,5 -112,5 • • • • • • • •
10 -25 25 21,15 148,08 -162,5 -112,5 • • • • • • • •
11 -25 25 190,38 275 -162,5 -112,5 • • • • • • • •
12 137,5 187,5 -275 -190,38 -275 -225 • • • • • • • •
13 137,5 187,5 -148,08 -21,15 -275 -225 • • • • • • • •
14 137,5 187,5 21,15 148,08 -275 -225 • • • • • • • •
15 137,5 187,5 190,38 275 -275 -225 • • • • • • • •
16 275 325 -211,54 -126,92 -275 -225 • • • • • • •
17 275 325 -84,62 84,62 -275 -225 • • • • • • •
18 275 325 126,92 211,54 -275 -225 • • • • • • •
19 412,5 462,5 -275 -190,38 -275 -225 • • • • • •
20 412,5 462,5 -148,08 -21,15 -275 -225 • • • • • •
21 412,5 462,5 21,15 148,08 -275 -225 • • • • • •
22 412,5 462,5 190,38 275 -275 -225 • • • • • •
23 575 625 -275 -190,38 -150 -100 • • • • • •
24 575 625 -148,08 -21,15 -150 -100 • • • • • •
25 575 625 21,15 148,08 -150 -100 • • • • • •
26 575 625 190,38 275 -150 -100 • • • • • •
26 575 625 -275 -190,38 100 150 • • • • • •
28 575 625 -137,5 137,5 100 150 • • • • • •
29 575 625 190,38 275 100 150 • • • • • •
30 775 825 -275 -190,38 100 150 • • • • •
31 775 825 -148,08 -21,15 100 150 • • • • •
32 775 825 21,15 148,08 100 150 • • • • •
33 775 825 190,38 275 100 150 • • • • •
33 775 825 -275 -190,38 -150 -100 • • • • •
35 775 825 -137,5 137,5 -150 -100 • • • • •
36 775 825 190,38 275 -150 -100 • • • • •
36 937,5 987,5 -275 -190,38 -275 -225 • • • • •
38 937,5 987,5 -137,5 137,5 -275 -225 • • • • •
39 937,5 987,5 190,38 275 -275 -225 • • • • •
40 1075 1125 -211,54 -126,92 -275 -225 • • • •
41 1075 1125 -84,62 84,62 -275 -225 • • • •
42 1075 1125 126,92 211,54 -275 -225 • • • •
43 1212,5 1262,5 -275 -190,38 -275 -225 • • •
44 1212,5 1262,5 -148,08 -21,15 -275 -225 • • •
45 1212,5 1262,5 21,15 148,08 -275 -225 • • •
46 1212,5 1262,5 190,38 275 -275 -225 • • •
47 1375 1425 -275 -190,38 -162,5 -112,5 • • •
48 1375 1425 -148,08 -21,15 -162,5 -112,5 • • •
49 1375 1425 21,15 148,08 -162,5 -112,5 • • •
50 1375 1425 190,38 275 -162,5 -112,5 • • •
51 1375 1425 -211,54 -126,92 -25 25 • •
52 1375 1425 -84,62 84,62 -25 25 • •
53 1375 1425 126,92 211,54 -25 25 • •
54 1375 1425 -275 -190,38 112,5 162,5 •
55 1375 1425 -148,08 -21,15 112,5 162,5 •
56 1375 1425 21,15 148,08 112,5 162,5 •
57 1375 1425 190,38 275 112,5 162,5 •

Table 10 – Obstacles taken into account for the ISA approach.
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Bend catalogues
The bend catalogues used in the experiments are presented in Table 11.

Axis αb (in ◦) ρb (in mm) Lb (in mm) B90◦
cat. B45◦

cat. B30◦
cat.

X (H-bend)

-90

15.0

15.0 • • •
-60 8.660 •
-45 6.213 • •
-30 4.019 •
30 4.019 •
45 6.213 • •
60 8.660 •
90 15.0 • • •

Y (E-bend)

-90

10.3

10.3 • • •
-60 5.947 •
-45 4.266 • •
-30 2.760 •
30 2.760 •
45 4.266 • •
60 5.947 •
90 10.3 • • •

Z (Twist) 90 NA 50.0 • • •

Table 11 – Bend catalogues for gauge WR75.

Cost coefficients
The waveguide lineic cost and the bend cost used in the experiments are the following:

µ = 1
γb = 100 ∀b ∈ Bcat. | b 6= Twist
γb = 1000 ∀b ∈ Bcat. | b = Twist
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Additional proofs

This chapter provides a mathematical demonstration that Constraints 9.13 and 9.14, introduced
in Section 9.2.2, force all intermediate bends to be neutral when there is a straight section
between the kth and k′th points of neutral fibre Fπ (that is to say when zk,k′ = 1).

Lemma 1:
Let k be an index in J1,K + 1K and k′ be another index in Jk + 1,K + 2K. If
zk,k′ = 1 and if zn,n′ = 0 for all n ∈ J1, k − 1K and n′ ∈ Jk + 1, k′ − 1K, then:∑

r∈Rk′′−1
br=bneut.

xk′′−1,r = 1 ∀k′′ ∈
q
k + 1, k′ − 1

y

Proof: Let n′ be an index in J2,K + 1K. According to Constraints 9.14, a
neutral bend must be applied at the n′th point of neutral fibre Fπ if zn,n′ = 0 for
all n ∈ J1, n′ − 1K.
Lemma 1 is obvious when k′ = k + 1 since there are no intermediate bends. The
case k′ > k + 1 can be proved by induction. Let k be an index in J1,KK and k′
be another index in Jk + 2,K + 2K. Assume that zk,k′ = 1 and zn,n′ = 0 for all
n ∈ J1, k − 1K and n′ ∈ Jk + 1, k′ − 1K. According to Constraint 9.13 for index
k, one can verify zk,n′ = 0 for all n′ ∈ Jk + 1,K + 2K, therefore it results that
zn,n′ = 0 for all n ∈ J1, kK and n′ ∈ Jk + 1, k′ − 1K. As a consequence, a neutral
bend must be applied at the k + 1th point of neutral fibre Fπ.
Now, assume that neutral bends are applied up to the k′′th point, with k + 1 ≤
k′′ < k′ − 1. According to Constraints 9.13, one can verify zn,k′′+1 = 0 for
all n ∈ Jk + 1, k′′K. Using the assumptions of Lemma 1, it can be shown that
zn,k′′+1 = 0 for all n ∈ J1, k′′K. Thus, a neutral bend must also be applied at the
k′′+1th point of neutral fibre Fπ. By induction, all intermediate bends between the
kth and k′th points of neutral fibre Fπ are neutral. In the borderline case where
k′′ = k′ − 1, the condition zn,k′′+1 = 0 for all n ∈ J1, k′′K does not apply since
zk,k′ = 1, which stops the induction.

Property 12: Intermediate neutral bends
Let k be an index in J1,KK and k′ be another index in Jk + 1,K + 2K. If zk,k′ = 1
then: ∑

r∈Rk′′−1
br=bneut.

xk′′−1,r = 1 ∀k′′ ∈
q
k + 1, k′ − 1

y
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Proof: Property 12 is obvious when k′ = k + 1 since there are no intermediate
bends. The case k′ > k + 1 can be proved by induction. Let k′ be an index in
J3,K + 2K. Suppose that z1,k′ = 1. The conditions of Lemma 1 are satisfied
since there is no index n such that n ≤ 0. Therefore, according to Lemma 1, all
intermediate bends between the 1rst and k′th points of neutral fibre Fπ are neutral.
Now, assume that Property 12 holds up to an index k ≥ 1. Let k′ be an index
in Jk + 2,K + 2K. Suppose that zk+1,k′ = 1. Let n be an index in J1, kK and
n′ be another index in Jk + 2, k′ − 1K. Then zn,n′ = 0 as otherwise the initial
assumption, where Property 12 is true for indexes in J1, kK, implies that a neutral
bend is applied at the k + 1th point of neutral fibre Fπ. However, this is not
compatible with zk+1,k′ = 1 and Constraint 9.13 for index k + 1. Finally, using
Lemma 1, all intermediate bends between the k + 1th and k′th points of neutral
fibre Fπ are neutral. By induction, Property 12 holds for any k ∈ J1,KK and
k′ ∈ Jk + 2,K + 2K.
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