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Introduction

Contexte Dans de nombreux domaines scientifiques, on s'intéresse à la performance d'un système définie par l'espérance mathématique d'une variable aléatoire. Cette variable est souvent le résultat d'un code de simulation potentiellement couteux en temps de calcul, qui est défini par une fonction de performance dépendant de variables extérieures aléatoires et décrivant le comportement du système. L'estimation de l'espérance peut alors être primordiale pour prévoir une éventuelle défaillance du système et éviter un potentiel accident ou simplement pour améliorer sa performance.

Un premier exemple provient de la théorie du signal, où l'on s'intéresse au problème de la localisation d'une cible par un réseau de plusieurs capteurs dont les mesures sont entachées d'une erreur (voir [START_REF] Bugallo | Adaptive Importance Sampling : The past, the present, and the future[END_REF] et [START_REF] Ihler | Nonparametric belief propagation for self-localization of sensor networks[END_REF]). Le but est de retrouver la position de la cible étant donné les mesures observées des différents capteurs. Cette quantité est calculée par une espérance (qui minimise l'erreur quadratique moyenne entre la position réelle et les observations) que l'on cherche alors à estimer. Dans ce cas, les variables extérieures sont les erreurs de mesure sur les observations commises par chaque capteur.

Lorsque l'on s'intéresse à la fiabilité d'un système, la quantité à estimer est une probabilité de défaillance. Un exemple en aéronautique est donné par l'estimation de la probabilité de retombée extrême d'un drone en cas de panne en vol (voir par exemple [START_REF] Morio | Drone ground impact footprints with importance sampling : Estimation and sensitivity analysis[END_REF]). Dans ce cas, la fonction de performance est un code simulant la trajectoire du drone jusqu'à l'impact au sol et mesurant la distance au point de départ. Cette fonction dépend de plusieurs paramètres aléatoires agissant sur la trajectoire du véhicule (comme la vitesse du vent, la hauteur de vol...). La probabilité que le véhicule dépasse une certaine distance est alors importante à estimer afin de déterminer une zone de sécurité autour du drone.

Il existe différentes méthodes pour estimer ces espérances, notamment l'échantillonnage préférentiel qui est un sujet de recherche particulièrement actif ces dernières années et qui est l'objet d'étude principal de cette thèse. L'échantillonnage préférentiel ("Importance Sampling", IS) est une méthode stochastique, basée sur la méthode de Monte-Carlo. [Kahn, 1950] est un des premiers à l'utiliser pour l'estimation d'une probabilité d'événement rare en physique des particules. Le principe est de générer un échantillon selon une loi de probabilité auxiliaire, au lieu de la loi initiale comme dans la méthode de Monte-Carlo, avant de calculer un estimateur faisant intervenir des poids d'importance. Une loi auxiliaire bien choisie permet de réduire la variance de l'estimateur classique de Monte-Carlo, et entraine ainsi une diminution du nombre d'appels au code de calcul, ce dernier pouvant être très couteux. De nombreux algorithmes basés sur l'échantillonnage préférentiel ont alors vu le jour, en particulier dans les domaines de la fiabilité des systèmes et de l'inférence bayésienne, la plupart reposant sur la mise à jour de densités de probabilité paramétriques, et donc des paramètres définissant ces densités, de manière itérative.

Position du problème et objectifs de la thèse Les algorithmes d'échantillonnage préférentiel proposés dans la littérature ont montré leur efficacité lorsque la dimension du problème est petite, ou autrement dit lorsque le nombre de variables extérieures en entrée du code de simulation est assez faible. Dans l'échantillonnage préférentiel paramétrique le nombre de variables d'entrée est généralement lié au nombre de paramètres estimés dans l'algorithme. Cependant, la performance de ces méthodes se dégrade dès lors que la dimension augmente. En effet, dans ce cas, les algorithmes d'IS, et l'échantillonnage préférentiel en général, deviennent imprécis et peuvent entrainer de grandes erreurs dans l'estimation finale de l'espérance. Cette inefficacité est notamment due aux approximations effectuées sur chaque dimension qui entrainent une erreur d'estimation d'autant plus grande que la dimension est élevée.

Des auteurs ont tenté de donner des premières solutions pour améliorer l'efficacité de l'IS en grande dimension. [START_REF] Rubinstein | How to Deal with the Curse of Dimensionality of Likelihood Ratios in Monte Carlo Simulation[END_REF] proposent par exemple de sélectionner les paramètres les plus influents pour n'en mettre à jour qu'un petit nombre à chaque étape de leur algorithme. La diminution du nombre de paramètres estimés entraine bien une réduction de l'erreur d'estimation de l'espérance mais la méthode est inefficace lorsque toutes les variables sont influentes et n'est adaptée qu'à un nombre restreint de problèmes. [START_REF] Wang | Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis[END_REF] et [Papaioannou et al., 2019a] suggèrent quant à eux d'utiliser des densités auxiliaires plus efficaces en grande dimension et impliquant l'estimation d'un nombre réduit de paramètres. Ces méthodes améliorent la précision de l'estimation comparées aux algorithmes d'IS classiques mais peuvent malgré tout nécessiter un important budget de simulation. D'autres techniques, comme celles proposées dans [START_REF] Koblents | A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models[END_REF] ou [START_REF] El-Laham | Robust Covariance Adaptation in Adaptive Importance Sampling[END_REF], préconisent de transformer les poids d'IS apparaissant dans l'estimation des paramètres afin d'éviter les valeurs aberrantes (i.e. particulièrement éloignées de la plupart des autres valeurs) et réduire leur variance, mais elles restent relativement inefficaces pour des dimensions dépassant quelques dizaines. Enfin, [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF] proposent de construire un sous-espace de petite dimension dans lequel mettre à jour les paramètres après avoir appliqué une projection dans ce sous-espace. Cette méthode est particulièrement efficace et précise pour de grandes dimensions mais la construction du sous-espace nécessite l'évaluation du gradient de la fonction de performance, qui peut lui aussi être très couteux à estimer ou même ne pas être disponible.

L'objectif principal de la thèse est alors de proposer de nouvelles méthodes visant à améliorer la précision de l'estimation par échantillonnage préférentiel en grande dimension, en réduisant le nombre de paramètres estimés, tout en gardant un budget de simulation raisonnable. Pour cela, nous privilégions l'utilisation d'une projection dans un sous-espace, sans faire d'hypothèse de régularité sur la fonction de performance et donc sans évaluation du gradient. Enfin, les techniques de projection étudiées sont couplées à un algorithme d'échantillonnage préférentiel adaptatif afin d'estimer une espérance en grande dimension avec un faible budget de simulation.

Plan de la thèse

Ce manuscrit comprend cinq chapitres, les deux premiers étant des chapitres d'état de l'art autour des méthodes d'échantillonnage préférentiel, et les trois suivants présentent les principales contributions de cette thèse pour améliorer l'IS en grande dimension.

Le chapitre 1 définit le problème d'estimation d'une espérance et introduit les notations et hypothèses utilisées dans tout le manuscrit. La question de la résolution de ce type de problèmes est abordée avec la présentation de différentes méthodes d'estimation, en mettant l'accent sur l'échantillonnage préférentiel paramétrique (en particulier dans le cadre gaussien). Nous évoquons ensuite deux domaines de recherche dans lesquels l'IS est largement appliqué. Le premier est celui de la fiabilité des systèmes, dans lequel il est souvent nécessaire d'utiliser l'IS pour estimer des probabilités d'événements rares. Le second domaine d'application est l'inférence bayésienne où l'on cherche à estimer une ou plusieurs espérances dépendant d'une loi a posteriori étant donné des observations. Cette loi n'étant connue qu'à une constante près, l'échantillonnage préférentiel auto-normalisé est alors utile pour estimer ces espérances à l'aide d'une loi auxiliaire. Plusieurs algorithmes d'IS adaptatifs spécifiques aux deux domaines sont décrits.

Dans le chapitre 2, l'inefficacité de l'échantillonnage préférentiel paramétrique en grande dimension est étudiée, en commençant par l'illustration de la dégradation de l'algorithme d'entropie croisée, utilisé en fiabilité. Nous décrivons ensuite deux phénomènes permettant d'expliquer cette dégradation. Le phénomène de dégénérescence des poids dans les algorithmes adaptatifs d'échantillonnage préférentiel est abordé ainsi que le problème de l'estimation de matrices de covariance de grande taille que nous illustrons par la dégradation de la divergence de Kullback-Leibler. Enfin, nous proposons un bref état de l'art des techniques proposées dans la littérature pour remédier à la défaillance de l'échantillonnage préférentiel en grande dimension.

Le chapitre 3 a pour but d'étudier l'effet d'une projection des paramètres dans un sous-espace sur la précision de l'estimation par échantillonnage préférentiel. Un calcul impliquant la divergence de Kullback-Leibler dans un cas simple montre que celle-ci peut être réduite en choisissant une projection pertinente pour estimer les paramètres. Des simulations numériques sont ensuite réalisées pour montrer que l'estimation de la matrice de covariance dans un sous-espace de petite dimension entraine souvent l'amélioration des résultats d'estimation d'intégrales, même lorsque la projection dans le sous-espace est choisie de manière naïve.

Le chapitre 4 est consacré à la recherche de directions de projection pertinentes pour l'estimation de la matrice de covariance, afin d'améliorer les résultats d'estimation observés dans le chapitre 3 avec des projections naïves. La première direction influente identifiée donne une projection dans un sous-espace de dimension 1 dans lequel la variance diminue, notamment dans le cadre des événements rares. Des directions optimales sont ensuite déterminées par minimisation de la divergence Kullback-Leibler. Ces deux contributions sont ensuite testées dans différents exemples d'estimation dans un cadre théorique.

Pour appliquer les techniques de projection du chapitre 4, le dernier chapitre (5) vise à obtenir le couplage d'un algorithme adaptatif d'échantillonnage préférentiel avec ces projections. Plusieurs algorithmes sont mis en place pour l'estimation d'une probabilité d'événement rare. Les algorithmes en question proposent ainsi un couplage de l'algorithme d'entropie croisée avec chacune des deux méthodes de projection du chapitre 4. Ces approches sont ensuite confrontées à différents cas-tests analytiques. 

Chapitre 1

Méthodes d'échantillonnage et d'estimation

φ : X ⊂ R n -→ Y ⊂ R x → y = φ(x).
Cette fonction, appelée fonction d'intérêt, représente un code de calcul, potentiellement couteux, simulant l'évolution du système en question, que ce soit en physique [Kahn, 1950], en ingénierie [Melchers, 1989], ou en finance [Glasserman, 2004] par exemple. L'application φ est une fonction déterministe qui prend en entrée un vecteur x = (x 1 , . . . , x n ) , représentant les paramètres extérieurs agissant sur le système et retourne une sortie y = φ(x) qui est un nombre réel. Elle est aussi considérée comme une boite noire, ce qui signifie en pratique qu'elle n'a pas nécessairement d'expression analytique et que l'utilisateur n'a accès qu'à la sortie y du code, étant donnée une entrée x. De plus, une telle application est souvent couteuse à évaluer (un seul appel à φ pouvant prendre plusieurs heures), et il est donc préférable de minimiser le nombre total d'appels à φ. Pour cette raison, dans tout le manuscrit on désigne par budget de simulation, le nombre d'appels à la fonction φ, toutes les autres applications étant considérées comme peu couteuses comparées à un appel à φ. Par ailleurs, les entrées d'un tel système sont considérées comme étant aléatoires, du fait de l'incertitude des paramètres due à d'éventuelles erreurs de mesure, des approximations numériques ou à des aléas provenant de phénomènes naturels. Ces paramètres d'entrée sont ainsi représentés par un vecteur aléatoire X, à valeurs dans R n . Dans cette thèse, on suppose que la loi de probabilité de X est absolument continue par rapport à la mesure de Lebesgue et possède une densité, notée f , définie sur R n . La sortie est alors elle aussi aléatoire et modélisée par une variable aléatoire réelle Y = φ(X), supposée de variance finie. Différentes quantités d'intérêt peuvent alors être étudiées afin de comprendre le comportement stochastique de Y : les moments de la variable Y , une probabilité de dépassement de seuil de Y , ou même la recherche complète de la fonction de répartition ou de la densité de probabilité de Y .

Dans cette thèse, on s'intéressera en particulier à l'estimation de l'espérance de la sortie et de probabilités de dépassement de seuil. Dans toute la suite, on cherche ainsi à estimer l'intégrale :

E = E f (φ(X)) = R n φ(x)f (x)dx,
(1.1) où φ est supposée être à valeurs dans R + . La fonction φ étant couteuse à évaluer, on s'attachera à garder un budget de simulation modéré pour réaliser l'estimation. La dimension du problème d'estimation est la dimension de l'espace des entrées, notée n. De plus, on suppose que l'on dispose de suffisamment d'informations (voir la section 1.1.2) sur la densité de probabilité f , de sorte que l'on puisse toujours se ramener à une densité gaussienne standard, sauf mention explicite du contraire. Cette hypothèse couramment adoptée (notamment en fiabilité des systèmes, comme évoqué en section 1.3) est justifiée dans le paragraphe suivant 1.1.2.

Transformations isoprobabilistes

Pour estimer une espérance, il est pratique de se ramener à l'espace normal standard, c'est-àdire se ramener au cas où f est la densité de la loi normale N (0, I n ), de vecteur moyenne 0 ∈ R n et de covariance I n , la matrice identité de taille n. Rappelons que cette densité est définie, pour tout x ∈ R n , par :

f (x) = 1 (2π) n/2 exp - 1 2
x 2 , (1.2) où x est la norme euclidienne sur R n , du vecteur x. Pour réaliser ce changement, il existe des transformations isoprobabilistes permettant de transformer un vecteur aléatoire X en un nouveau vecteur U ∼ N (0, I n ). Ces transformations sont définies par un difféomorphisme

T : x ∈ R n → u ∈ R n
tel que U = T (X) suive une loi normale, U ∼ N (0, I n ). Ainsi, quitte à effectuer le changement de variables x = T -1 (u) dans l'intégrale (1.1), et à changer φ en φ • T -1 , on peut supposer que f est la densité gaussienne standard N (0, I n ). Suivant les informations dont on dispose sur la loi de X, on peut appliquer différents types de transformations. La transformation de Nataf, introduite par [Nataf, 1962], puis par [Liu and Der Kiureghian, 1986] dans le cadre fiabiliste, nécessite la connaissance des lois marginales du vecteur X (autrement dit les lois des X 1 , . . . , X n ) ainsi que les coefficients de corrélations entre chaque variable. Chaque composante X i est transformée en une variable gaussienne, grâce notamment aux fonctions de répartition des X i et de la gaussienne univariée, puis le vecteur normal obtenu est réduit en utilisant la matrice des corrélations. Le second type d'applications permettant de se ramener à l'espace normal standard est la transformation de Rosenblatt (développée par [Rosenblatt, 1952] puis [START_REF] Hohenbichler | Non-Normal Dependent Vectors in Structural Safety[END_REF] en fiabilité), applicable dès que la loi jointe du vecteur X est connue, en utilisant les lois conditionnelles en chaque variable. Ces deux applications ne seront pas détaillées dans ce manuscrit mais le lecteur intéressé peut se référer à [Bourinet, 2018] dans lequel elles sont décrites.

Travailler avec un vecteur gaussien centré réduit présente plusieurs avantages. En effet, la mise en oeuvre des calculs théoriques et des simulations numériques est plus aisée avec des vecteurs gaussiens, grâce notamment à l'existence de nombreuses formules explicites, et au fait que toutes les composantes du vecteur sont indépendantes et normalisées (c'est-à-dire de variances toutes égales à 1). C'est pourquoi, dans toute la suite de ce manuscrit, lors de l'estimation d'une espérance, on considèrera que f est la densité de la loi N (0, I n ), sauf mention explicite du contraire.

Méthodes stochastiques d'estimation d'une espérance 1.2.1 La méthode de Monte-Carlo

Dans cette partie, nous abordons des méthodes classiques d'estimation de l'intégrale E (1.1). Les méthodes déterministes pour calculer numériquement une intégrale (typiquement les méthodes de quadrature) sont efficaces en petite dimension et convergent plus rapidement en dimension 1 que la méthode de Monte-Carlo décrite ci-dessous (voir la remarque 1.2.1). En revanche, elles sont contraignantes car elles nécessitent des hypothèses de régularité sur φ et deviennent extrêmement couteuses lorsque la dimension augmente (voir par exemple [START_REF] Hinrichs | The curse of dimensionality for numerical integration of smooth functions ii[END_REF] ou [Dimov, 2008]). En effet, ce phénomène appelé le "fléau de la dimension" ("curse of dimensionality") entraine de grandes imprécisions dans l'approximation de l'intégrale. C'est pourquoi il est préférable d'utiliser des méthodes stochastiques, moins contraignantes et nécessitant souvent un budget de simulation plus faible, comme la méthode de Monte-Carlo.

Cette technique consiste à approcher l'intégrale E en calculant une moyenne empirique à partir d'un échantillon tiré aléatoirement selon la loi de densité f . Ainsi l'estimateur de Monte-Carlo de l'espérance E s'écrit :

ÊMC N = 1 N N i=1 φ(X i ),
(1.3) où X 1 , . . . , X N est un échantillon de N réalisations indépendantes et identiquement distribuées (échantillon i.i.d.) du vecteur aléatoire X de loi de densité f . Cet estimateur est sans biais (E( ÊMC N ) = E), par linéarité de l'espérance, et la loi forte des grands nombres implique qu'il est consistant, c'est-à-dire que ÊMC N tend presque sûrement vers E lorsque la taille de l'échantillon N tend vers +∞. L'avantage de cet estimateur, notamment par rapport aux méthodes de quadrature évoquées ci-dessus, est que son erreur n'est pas affectée par l'augmentation de la dimension. En effet, sa variance est égale à :

Var f ÊMC N = 1 N 2 N i=1 Var f (φ(X i )) = 1 N Var f (φ(X)).
Si Var f (φ(X)) prend de grandes valeurs, il faut alors accroitre la taille de l'échantillon N pour avoir une précision raisonnable, ce qui peut être problématique pour estimer l'intégrale lorsque φ est couteuse. C'est pourquoi des méthodes alternatives permettant de réduire la variance, en gardant une faible taille d'échantillon N , ont été développées. Dans cette thèse, nous nous concentrons sur la méthode d'échantillonnage préférentiel, abordée dans la section 1.2.2.

Remarque 1.2.1. Le théorème central limite assure la convergence en loi de la méthode de Monte-Carlo à une vitesse de 1/ √ N :

√ N ÊMC N -E Var f (φ(X)) -→ N →+∞ N (0, 1).
Notons que les approches déterministes sont en général plus rapides en dimension 1, avec par exemple des vitesses de convergence en 1/N 2 pour la méthode des trapèzes et 1/N 4 pour la méthode de Simpson, si φ est suffisamment régulière. Mais la méthode de Monte-Carlo ne nécessite pas d'hypothèse de régularité de φ et son erreur n'est pas affectée par la dimension contrairement aux méthodes déterministes.

Il est néanmoins possible de réduire cette vitesse de convergence, et donc la variance de l'estimateur, avec les méthodes de type Quasi-Monte-Carlo (QMC) qui offrent des vitesses de convergence de l'ordre de ln(N ) n /N (voir par exemple [Niederreiter, 1992] ou [L' Ecuyer and Lemieux, 2002]). En se ramenant à une loi uniforme sur [0, 1] n , ces approches consistent à choisir une suite, dite à discrépance faible, à la place d'un échantillon aléatoire dans la méthode de Monte-Carlo. Une telle suite permet d'obtenir un échantillon mieux réparti sur [0, 1] n qu'en tirant aléatoirement et d'avoir une convergence plus rapide. Néanmoins, les techniques QMC exigent des conditions de régularité sur φ pouvant être restrictives, et sont moins robustes à la dimension que la méthode de Monte-Carlo.

L'échantillonnage préférentiel pour réduire la variance de l'estimateur

L'échantillonnage préférentiel (Importance Sampling, IS) a été introduit (à l'origine par [Kahn, 1950]) dans le but de réduire la variance de l'estimateur de Monte-Carlo. Il consiste à échantillonner selon une loi auxiliaire qui, si elle est bien choisie, permet de diminuer la variance.

Soit g la densité de la loi auxiliaire, telle que g(x) = 0 ⇒ f (x) = 0, pour tout x ∈ R n (ou autrement dit telle que la loi initiale de densité f soit absolument continue par rapport à la loi de g). L'intégrale E peut être réécrite de la manière suivante :

E = R n φ(x)L(x)g(x)dx = E g (φ(X)L(X)) , où L(x) = f (x) g(x)
est appelé rapport de vraisemblance ("likelihood ratio") ou poids d'importance.

L'estimateur d'échantillonnage préférentiel associé est alors défini par :

ÊN = 1 N N i=1 φ(X i )L(X i ), (1.4)
où X 1 , . . . , X N est un échantillon i.i.d. selon la loi de densité g. Cet estimateur est sans biais et est consistant d'après la loi des grands nombres. La précision de ÊN dépend fortement du choix de g. On peut déjà noter que pour une densité g ayant une queue de distribution plus légère que celle de f (ou autrement dit si g prend des valeurs très petites devant celles de f loin de leurs valeurs centrales), la variance de l'estimateur peut exploser et tendre vers l'infini. La variance de ÊN vaut Var g ÊN = Var g (φ(X)L(X)) /N , donc pour la minimiser (à N fixé), il faut chercher g qui minimise Var g (φ(X)L(X)). La solution de ce problème de minimisation est donnée (dans [START_REF] Robert | Monte Carlo statistical methods[END_REF]) par :

g * (x) = |φ(x)|f (x) |φ(u)|f (u)du ,
et lorsque φ est positive, comme on l'a supposé, on a :

g * (x) = φ(x)f (x) E .
(1. 

Algorithme générique d'échantillonnage préférentiel adaptatif

Nous avons vu que l'efficacité de l'échantillonnage préférentiel reposait sur le choix de la densité auxiliaire d'échantillonnage. En effet, celle-ci doit être proche de la densité théorique optimale (1.5) minimisant la variance de l'estimateur (1.4), pour que l'estimation par IS soit suffisamment précise. Pour atteindre la densité théorique cible, inconnue en pratique, des algorithmes adaptatifs d'échantillonnage préférentiel ("Adaptive Importance Sampling", AIS) ont été développés. Ils permettent de trouver une densité proche de la loi cible en passant par plusieurs densités intermédiaires mises à jour de manière itérative. La procédure générale des algorithmes d'AIS est divisée en trois étapes principales [START_REF] Bugallo | Adaptive Importance Sampling : The past, the present, and the future[END_REF] :

1. génération des échantillons selon une, ou plusieurs, densités auxiliaires connues ("sampling") 2. calcul des poids associés à chaque échantillon ("weighting") 3. mise à jour des nouvelles densités d'échantillonnage ("adapting") Ces trois étapes sont ensuite répétées jusqu'à ce qu'un critère d'arrêt soit vérifié ou qu'un nombre maximal d'itérations soit atteint. En partant d'une densité auxiliaire choisie arbitrairement, la procédure retourne un ensemble d'échantillons pondérés, exploitables pour estimer une espérance.

De nombreux algorithmes, basés sur ces trois étapes, ont été proposés dans la littérature, chacun adaptant de manière différente une ou plusieurs des trois phases. Nous présentons quelques-unes des méthodes d'AIS les plus répandues dans les sections 1.3.3 et 1.4.2. Dans la partie suivante, nous détaillons la méthode paramétrique générale, dans laquelle la densité optimale est approchée par une densité appartenant à une famille paramétrique.

Approximation paramétrique de la densité optimale d'échantillonnage préférentiel

Pour réduire la variance de l'estimateur d'échantillonnage préférentiel, il est important de bien choisir la densité auxiliaire d'IS. Nous avons vu dans la section 1.2.2 que la densité optimale d'échantillonnage préférentiel g * (1.5) n'était pas connue en pratique. Nous expliquons dans les paragraphes suivants comment trouver une approximation de g * par une densité paramétrique.

Cas général

Une méthode classique pour approcher la densité optimale g * est de considérer une famille paramétrique de densités G = {g θ : θ ∈ Θ} (avec Θ ⊂ R m ), et de chercher une densité proche de g * à l'intérieur de cette famille. Un choix naturel de paramètre est le paramètre θ * minimisant la variance de l'estimateur ÊN (1.4) avec g = g θ comme densité auxiliaire :

θ * = arg min θ∈Θ Var g θ ÊN = arg min θ∈Θ Var g θ (φ(X)L θ (X)) (1.6) où L θ = f /g θ .
Mais généralement ce problème n'admet pas de solutions analytiques et doit être résolu par des méthodes numériques [START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF]. C'est pourquoi, il est courant de minimiser une divergence entre g * et la famille G, comme la divergence de Kullback-Leibler très largement utilisée dans la littérature.

La divergence de Kullback-Leibler (KL) [START_REF] Kullback | On information and sufficiency[END_REF] entre deux densités f et g, telles que f soit absolument continue par rapport à g, est définie par :

D(f, g) = E f ln f (X) g(X) = f (x) ln f (x) g(x)
dx.

(1.7)

Cette quantité est toujours positive et est nulle si et seulement si f = g presque partout. La divergence KL est parfois appelée abusivement "distance" de Kullback-Leibler car elle sert à mesurer l'écart entre les deux densités, même si ce n'est pas une distance puisqu'elle n'est pas symétrique. Par ailleurs, [START_REF] Au | Important sampling in high dimensions[END_REF]] montrent que la divergence KL est liée à la variance de l'estimateur ÊN par la relation :

N Var g ( ÊN ) E 2 ≥ exp(D(g * , g)) -1,
pour une densité auxiliaire g. Cela signifie qu'une grande divergence KL entraine une grande variance de l'estimateur. De plus, [START_REF] Chatterjee | The sample size required in importance sampling[END_REF] parviennent à borner l'erreur (en norme L 1 ), E g (| ÊN -E|), en fonction de exp(D(g * , g)), et suggèrent que la taille d'échantillon N , doit être environ égale à N ≈ exp(D(g * , g)) pour avoir une estimation précise. Ces résultats justifient le choix de la divergence de Kullback-Leibler pour mesurer la distance entre deux densités, et trouver une densité auxiliaire approchant la densité cible g * . Ainsi, le problème de minimisation de la variance (1.6) peut être remplacé par le problème de minimisation de la divergence KL pour trouver le paramètre optimal :

θ * = arg min θ∈Θ D(g * , g θ ).
(1.8)

Comme D(g * , g θ ) = E g * (ln (g * (X))) -E g * (ln (g θ (X))), en isolant le terme dépendant de θ, le problème (1.8) revient à maximiser l'entropie croisée ("Cross-Entropy", CE) : E g * (ln (g θ (X))). Ce problème d'optimisation est le problème de maximisation de l'entropie croisée et s'écrit :

θ * = arg max θ∈Θ E f (ln (g θ (X)) φ(X)) , (1.9)
où on a utilisé l'expression de g * = φf /E. L'avantage de cette approche, comparée à la minimisation de la variance (1.6), est qu'elle admet des solutions analytiques lorsque g θ appartient à la famille exponentielle. Dans la suite, nous allons expliciter le cas de la famille gaussienne, qui fait partie de la famille exponentielle, paramétrée par θ = (m, Σ), avec m ∈ R n le vecteur moyenne et Σ ∈ S + n la matrice de covariance appartenant à l'ensemble des matrices symétriques définies positives noté S + n .

Cas Gaussien unimodal

Rappelons tout d'abord que la densité initiale f est supposée être la densité gaussienne standard (1.2). Dans ce cas, un choix courant de famille paramétrique de densités auxiliaires est la famille gaussienne G = {g m,Σ , m ∈ R n , Σ ∈ S + n }, qui contient f , de sorte que f et g m,Σ aient la même queue de distribution.

Notons que ce choix n'est pas adapté lorsque la densité g * visée comporte plusieurs modes. En effet, si g * est multimodale, une densité gaussienne pourrait n'identifier qu'un seul mode et "oublier" les autres, ce qui entrainerait une estimation biaisée de l'espérance. Pour cette raison, dans cette thèse nous nous concentrons uniquement sur des problèmes unimodaux. Concernant les cas multimodaux, des mélanges de densités (gaussiennes ou autres) peuvent être utilisés, comme évoqué dans la remarque 1.3.1.

Rappelons l'expression de la densité gaussienne paramétrée par m et Σ, pour tout x ∈ R n :

g m,Σ (x) = 1 (2π) n/2 det(Σ) 1/2 exp - 1 2 (x -m) Σ -1 (x -m) .
Avec cette famille, le problème de maximisation de l'entropie croisée (1.9) admet comme solution (voir [START_REF] Rubinstein | The Cross-Entropy Method : A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning[END_REF] et [START_REF] Kroese | The Cross-Entropy Method for Estimation[END_REF]) :

m * = E g * (X) et Σ * = E g * ((X -m * )(X -m * ) ).
(1.10)

En pratique, ces deux paramètres ne peuvent pas être calculés explicitement, puisqu'ils dépendent de g * . En revanche, si on dispose d'un échantillon i.i.d. X 1 , . . . , X N généré selon g * , on peut les estimer par : Remarque 1.2.2. L'échantillonnage préférentiel non-paramétrique ("Non-parametric Importance Sampling", NIS) introduit par [Zhang, 1996] peut également être employé pour approcher g * . Le principe est de construire un estimateur à l'aide d'une estimation par noyau pondérée, à partir d'un échantillon i.i.d. X 1 , . . . , X N selon une loi auxiliaire g 0 . L'estimateur de g * s'écrit ainsi :

m * = 1 N N i=1 X i et Σ * = 1 N N i=1 (X i -m * )(X i -m * ) . ( 1 
ĝN (x) = 1 det(H) 1/2 N i=1 wi K H -1/2 (x -X i )
où K : R n → R est un noyau que nous considèrerons gaussien (égal à la densité de la loi normale standard N (0, I n )), H est une matrice symétrique définie positive, appelée matrice des fenêtres, et wi sont les poids normalisés associés aux X i . Ceux-ci sont égaux, pour i = 1, . . . N , à :

wi = w i N k=1 w k avec w i = φ(X i )f (X i ) g 0 (X i ) .
La matrice des fenêtres H est un paramètre de lissage qu'il faut calibrer pour obtenir une estimation suffisamment lisse tout en restant proche de la densité cible. L'intégrale E peut alors être estimée par la formule (1.4), avec ĝN comme densité auxiliaire d'IS. Cette méthode est efficace et suffisamment flexible pour approcher précisément la densité cible lorsque celle-ci est particulièrement complexe, notamment si elle est constituée de plusieurs modes. Cependant, elle est inefficace dès que la dimension devient supérieure à 10, car un grand nombre d'échantillon est nécessaire pour que l'estimation soit suffisamment précise. Le cout de calcul peut alors devenir très élevé et c'est pourquoi les techniques paramétriques sont souvent préférées.

Notons aussi qu'il existe des méthodes semi-paramétriques, comme l'algorithme MCIS ("Markov Chain Importance Sampling") développé dans [START_REF] Botev | Markov chain importance sampling with applications to rare event probability estimation[END_REF] où la densité auxiliaire est supposée être le produit de n densités unidimensionnelles, lesquelles sont apprises grâce à une étape de MCMC pour approcher les marginales de g * . Néanmoins, dans le cadre de cette thèse, nous ne nous intéresserons qu'aux approches paramétriques.

Dans les deux sections qui suivent, nous présentons l'échantillonnage préférentiel dans le contexte de la fiabilité et de l'inférence bayésienne. L'IS est en effet un sujet de recherche important et très actif dans ces deux disciplines.

Estimation en fiabilité

Dans le domaine de la fiabilité des systèmes complexes, on s'intéresse à l'estimation d'une probabilité de défaillance du système considéré, souvent définie comme la probabilité d'un dépassement de seuil d'une fonction de performance (voir par exemple [START_REF] Ditlevsen | Structural Reliability Methods[END_REF]). Dans ce cas, la fonction φ est égale à la fonction indicatrice φ(x) = I {ϕ(x)≥0} , qui vaut 1 lorsque ϕ(x) ≥ 0, et 0 sinon, et où ϕ est une fonction de R n dans R, qui fait office de boite noire. La quantité recherchée s'écrit alors

E = E f (I {ϕ(X)≥0} ) = P f (ϕ(X) ≥ 0),
qui est souvent une probabilité d'événement rare (c'est-à-dire une faible probabilité de l'ordre de 10 -3 ou moins). La fonction ϕ est alors appelée fonction d'état limite ou fonction de performance, l'état limite étant défini par l'ensemble {x ∈ R n | ϕ(x) = 0}, et l'ensemble {x ∈ R n | ϕ(x) ≥ 0} est le domaine de défaillance du système.

Dans cette section, nous présentons quelques méthodes utilisées en fiabilité pour estimer ce type de probabilités, notamment l'algorithme d'entropie croisée (1.3.3) sur lequel nous reviendrons particulièrement tout au long de cette thèse.

L'inefficacité de la méthode de Monte-Carlo

Nous avons déjà évoqué dans la partie 1.2.1, que l'estimateur de Monte-Carlo n'était pas toujours performant, car il pouvait avoir une grande variance. C'est le cas en fiabilité lorsque E est une probabilité d'événement rare. Dans ce cas, la variance de l'estimateur de Monte-Carlo (1.3) vaut :

Var f ÊMC N = 1 N Var f I {ϕ(X)≥0} = E(1 -E) N ≈ E N
puisque la variable I {ϕ(X)≥0} suit une loi de Bernoulli de paramètre E, qui prend de très faibles valeurs (E 1). Ainsi, le coefficient de variation (ou erreur relative) de ÊMC

N est égal à Var f ( ÊMC N ) E f ( ÊMC N ) = √ 1 -E √ N E ≈ 1 √ N E ,
donc pour avoir une erreur d'environ 10%, on doit avoir N ≈ 100/E. Par exemple, si E = 10 -4 , il faut alors générer et évaluer N = 10 6 échantillons, ce qui peut entrainer un temps de calcul excessivement long. Autrement dit, la méthode de Monte-Carlo est inefficace dans ce contexte car une faible proportion des échantillons selon f tombe dans le domaine de défaillance, ce qui induit une grande erreur d'estimation. Différentes méthodes ont été développées pour avoir une plus grande précision, en générant un grand nombre d'échantillons dans la région de défaillance, tout en gardant un budget de simulation raisonnable. L'échantillonnage préférentiel en fait partie et nous décrivons deux algorithmes d'AIS à la fin de cette section. D'autres techniques sont présentées succinctement dans les paragraphes suivants.

Méthodes alternatives à la méthode de Monte-Carlo

FORM/SORM

Les méthodes FORM ("First Order Reliability Methods") et SORM ("Second Order Reliability Methods") [START_REF] Madsen | Methods of Structural Safety[END_REF] servent à estimer une probabilité de défaillance en effectuant une approximation linéaire (pour FORM) ou quadratique (SORM) de la fonction de performance ϕ en un point appelé point de conception. Ces deux techniques supposent d'abord que le vecteur aléatoire X est gaussien centré réduit (autrement dit f est la densité de la loi N (0, I n )), quitte à utiliser les transformations isoprobabilistes évoquées au début de ce chapitre (1.1.2). Ensuite, le point de conception est défini comme le point de défaillance le plus probable (ou MPFP, "Most Probable Failure Point"), c'est-à-dire celui qui minimise la distance entre l'origine et l'hypersurface {ϕ(x) = 0} :

x * = arg min x∈R n x , tel que ϕ(x) = 0.
Ce problème peut être résolu à l'aide d'algorithmes d'optimisation, décrits par exemple dans [Liu and Der Kiureghian, 1991].

Dans le cas de FORM, une approximation linéaire de la fonction d'état limite ϕ est calculée au point x * , en utilisant le développement de Taylor à l'ordre 1 (et donc le gradient de ϕ). Cette approximation permet finalement d'estimer la probabilité par : ÊFORM = F N (x * ), où F N est la fonction de répartition de la loi N (0, 1).

La méthode SORM peut permettre d'améliorer la précision de FORM (notamment lorsque ϕ est fortement non linéaire) en approchant la fonction à l'ordre 2, ce qui nécessite alors le calcul de la matrice Hessienne de ϕ. Une estimation de la probabilité de défaillance est alors donnée par :

ÊSORM = F N (-x * ) n-1 j=1
(1 -κ j x * ) -1/2 , où les κ j sont des coefficients réels de courbure de la fonction ϕ. Il existe d'autres formules d'estimation de la probabilité par SORM, mais nous ne les évoquerons pas ici. Pour plus de détails sur les deux méthodes, nous renvoyons à [Bourinet, 2018] et [Der Kiureghian et al., 2005].

Les techniques FORM et SORM ont l'avantage d'être peu couteuses et simples à mettre en oeuvre. Elles nécessitent néanmoins des hypothèses de régularité sur ϕ pouvant être restrictives et sont peu efficaces lorsque celle-ci est fortement non linéaire ou lorsque la dimension est élevée. De plus, aucun contrôle de l'erreur d'estimation n'est disponible.

Échantillonnage préférentiel basé sur le point de conception

Le point de conception x * déterminé dans les méthodes FORM/SORM peut aussi être utilisé pour trouver une densité auxiliaire pour l'échantillonnage préférentiel. Sous l'hypothèse où f est la densité N (0, I n ), [Melchers, 1989] suggère pour cela d'estimer la probabilité avec un échantillon généré selon la loi N (x * , I n ). L'estimateur est alors simplement l'estimateur d'IS ÊN (1.4) calculé avec un échantillon i.i.d. X 1 , . . . X N selon la densité auxiliaire g = g x * ,In . Cet échantillon a l'avantage d'être autour du domaine de défaillance (par définition de x * ) et on peut s'attendre à ce qu'un assez grand nombre de points tombent effectivement dans ce domaine, ce qui permet d'avoir une précision raisonnable. Une limite de cette méthode survient néanmoins lorsque le point de conception n'est pas unique, dans les cas multimodaux notamment. La recherche de ce point, par la résolution d'un problème d'optimisation sous contrainte non linéaire, peut aussi être une autre difficulté lorsque la dimension augmente.

"Subset Simulation"

Une autre méthode classique et efficace dans le domaine de la fiabilité est celle de "Subset Simulation" [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF], également appelé "Adaptive Splitting" [START_REF] Cérou | Adaptive multilevel splitting for rare event analysis[END_REF]. Le principe est de réécrire la probabilité de défaillance comme un produit de m probabilités en faisant intervenir une suite d'événements emboités contenant le domaine de défaillance. En notant {ϕ(X) ≥ 0} = F m ⊂ • • • ⊂ F 1 , la probabilité est égale à

E = P f (F m ) = m j=2 P f (F j |F j-1 )P f (F 1 ).
Le problème de départ se ramène donc à l'estimation de m probabilités conditionnelles plus grandes que E et ainsi plus simples à estimer. La principale difficulté réside dans la simulation des échantillons selon les lois conditionnelles f (•|F j ). Cette étape est généralement réalisée grâce à un algorithme MCMC. Par ailleurs, les événements intermédiaires sont construits de manière adaptative à l'aide de seuils s 1 < . . . < s m = 0 tels que F j = {ϕ(X) ≥ s j } et de sorte que

P f (F 1 ) = P f (F j |F j-1 ) = p 0 , pour tout j = 2 . . . m -1, où p 0 est une valeur préalablement choisie (usuellement p 0 = 0.1).
Ainsi, à la première étape, on tire un échantillon selon f , avec lequel on détermine le seuil s 1 tel que P f (F 1 ) = p 0 . Dans les étapes j = 2, . . . , m -1, on génère un échantillon selon f (•|F j-1 ) à l'aide d'un algorithme MCMC, et on détermine le seuil s j de sorte que

P f (F j |F j-1 ) = p 0 . La dernière probabilité P f (F m |F m-1 ) est alors estimée par N -1 N i=1 I {ϕ(X i )≥0} , où les X i sont générés selon la loi f (•|F m-1 ) = f I {ϕ(•)≥s m-1 } /P f (F m-1 ).
L'algorithme de "Subset Simulation" permet alors de générer de manière adaptative un échantillon selon la densité conditionnelle f (•|F m-1 ), en partant d'un échantillon selon f , et en s'appuyant sur un algorithme MCMC (Metropolis-Hastings modifié dans [Au and Beck, 2001]). Finalement, l'estimation de E est donnée par :

ÊSS N = p m-1 0 1 N N i=1 I {ϕ(X i )≥0} , où X 1 , . . . , X N est un échantillon généré selon f (•|F m-1
). Cette technique est particulièrement efficace sur des problèmes non linéaires ou en grande dimension mais le temps et le cout de calcul peuvent parfois être élevés, du fait de l'utilisation d'un algorithme MCMC.

Nous avons résumé les méthodes principales d'estimation de probabilités de défaillance. Le lecteur intéressé peut se référer à [START_REF] Morio | A survey of rare event simulation methods for static input-output models[END_REF] pour une présentation de techniques alternatives. Dans la suite, nous nous concentrons sur les algorithmes d'AIS utilisés en fiabilité.

Algorithmes adaptatifs d'échantillonnage préférentiel dans le contexte des événements rares

Dans cette section nous décrivons deux algorithmes d'échantillonnage préférentiel adaptatif pour estimer une probabilité d'événement rare. Dans ce cas, la densité optimale d'échantillonnage préférentiel g * (1.5), décrite dans la section 1.2.2, est :

g * (x) = f (x)I {ϕ(x)≥0} E .
Cette densité est égale à la densité f conditionnée à l'événement rare {ϕ(x) ≥ 0}. Pour approcher g * , il faut donc pouvoir générer suffisamment d'échantillons dans ce domaine de défaillance.

Or sous la loi initiale f , on sait qu'il y a une très faible proportion (égale à E) des échantillons qui seront dans la région de défaillance. C'est pourquoi, certains algorithmes proposent des méthodes adaptatives permettant de générer des échantillons s'approchant de la défaillance progressivement. C'est le cas de l'algorithme d'entropie croisée ("Cross-Entropy", CE) [START_REF] Rubinstein | The Cross-Entropy Method : A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning[END_REF], et d'une version améliorée ("Improved CE", iCE) suggérée par [Papaioannou et al., 2019a], que nous présentons ci-dessous.

L'algorithme d'entropie croisée

L'algorithme d'entropie croisée est une méthode paramétrique d'estimation de probabilités d'événements rares par échantillonnage préférentiel. Il permet d'estimer de manière adaptative les paramètres optimaux d'IS, maximisant l'entropie croisée (1.9). Nous décrivons le principe de la méthode pour des densités gaussiennes g m,Σ .

On rappelle que les paramètres optimaux sont m * et Σ * (définis en (1.10)) et peuvent s'écrire comme suit :

m * = E f (X|ϕ(X) ≥ 0) et Σ * = E f ((X -m * )(X -m * ) |ϕ(X) ≥ 0).
Si on dispose d'un échantillon X 1 , . . . , X N selon une loi auxiliaire g donnée, les paramètres peuvent être estimés par m

* = N i=1 X i wi et Σ * = N i=1 (X i -m * )(X i -m * ) wi (1.12) où w i = I {ϕ(X i )≥0} f (X i )/g(X i ) correspond au poids associé à l'échantillon X i , et wi = w i / k w k .
Comme on l'a déjà dit, la difficulté est de générer suffisamment d'échantillons tels que ϕ(X i ) ≥ 0, pour que les indicatrices ne soient pas toutes nulles. L'algorithme CE y parvient en créant une suite de seuils intermédiaires γ 0 < γ 1 < • Générer un échantillon i.i.d. X 1 , . . . , X N selon g mt,Σt

• Définir γ t comme le ρ-quantile des ϕ(X 1 ), . . . , ϕ(X N ), et estimer les nouveaux paramètres :

m t+1 = N i=1 X i wi et Σ t+1 = N i=1 (X i -m t+1 )(X i -m t+1 ) wi avec w i = I {ϕ(X i )≥γt} f (X i )/g mt,Σt (X i ), et wi = w i / k w k .
L'algorithme est initialisé avec m 0 , Σ 0 , choisis arbitrairement et s'arrête dès qu'un seuil γ τ est supérieur à 0. Avec les derniers paramètres estimés, on peut enfin calculer l'estimation ÊN (1.4) avec g = g mτ ,Στ comme densité auxiliaire. Le détail de la méthode CE est donné dans l'algorithme 1, où les paramètres initiaux sont fixés à m 0 = 0, Σ 0 = I n , pour coïncider avec la loi initiale f . Cet algorithme est souvent appelé algorithme CE "multi-niveau" ("multilevel" CE) du fait de la construction des seuils intermédiaires permettant d'approcher progressivement les paramètres optimaux. Le choix du paramètre ρ joue un rôle important dans la vitesse de convergence et la précision de l'algorithme. Plus il est petit, et plus le critère d'arrêt (γ t ≥ 0) est atteint rapidement. Mais un ρ trop faible peut entrainer une estimation imprécise puisque seulement ρN échantillons sont utilisés dans l'estimation des paramètres à chaque itération (il y a ρN indicatrices non nulles). Un choix classique et efficace, recommandé par les auteurs [START_REF] Rubinstein | The Cross-Entropy Method : A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning[END_REF], est de prendre ρ entre 0.01 et 0.1.

Algorithme 1 : Entropie Croisée (Cross Entropy, CE, [START_REF] Rubinstein | The Cross-Entropy Method : A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning[END_REF]). Données : Paramètre ρ ∈]0, 1[, taille de l'échantillon N par itération Résultat : Estimation ÊN de la probabilité de défaillance E = P f (ϕ(X) ≥ 0) 1 Initialisation : poser t = 0, m t = 0 et Σ t = I n ; 2 Générer X 1 , . . . , X N indépendamment selon g mt,Σt ; 3 Évaluer q i = ϕ(X i ) pour tout i = 1, . . . N ; 4 Ranger les échantillons dans l'ordre croissant : 

q (1) ≤ • • • ≤ q (N ) , et poser γ t = q ( (1-ρ)N ) ; 5 Calculer les poids wi = w i / n j=1 w j avec w i = I {q i ≥γt} L t (X i ) et L t = f /g mt,Σt ; 6 tant que γ t < 0 faire 7 Estimer m t+1 = N i=1 wi X i et Σ t+1 = N i=1 wi (X i -m t+1 )(X i -m
I {q i ≥0} L t (X i ).
Pour mieux utiliser les N échantillons à chaque itération, [Papaioannou et al., 2019a] propose une amélioration de la CE que nous décrivons dans la partie suivante.

Remarque 1.3.1. Si l'algorithme CE (1) a montré son efficacité dans de nombreux exemples (voir [Bourinet, 2018]), il connait des difficultés lorsque la région de défaillance (et donc la densité g * ) est multimodale, car une seule densité est mise à jour au cours de l'algorithme. Pour remédier à ce problème, [START_REF] Kurtz | Cross-entropy-based adaptive importance sampling using Gaussian mixture[END_REF] et [START_REF] Geyer | Cross entropy-based importance sampling using Gaussian densities revisited[END_REF] ont adapté la méthode avec des mélanges de densités (gaussiennes), capables d'identifier plusieurs modes. Plus généralement, il est possible d'appliquer l'échantillonnage préférentiel paramétrique avec des mélanges de plusieurs densités pour traiter des cas multimodaux. Dans cette thèse nous nous concentrons sur des problèmes unimodaux et ne considérons donc pas ces approches. L'extension des méthodes proposées dans ce manuscrit à des problèmes multimodaux constitue une piste intéressante qui est discutée en conclusion.

Remarque 1.3.2. Il existe aussi des méthodes d'AIS non-paramétriques pour estimer des probabilités d'événements rares, qui s'appuient sur l'échantillonnage préférentiel non-paramétrique de [Zhang, 1996], évoqué dans la remarque 1.2.2. Le lecteur intéressé peut se référer aux algorithmes NAIS ("Non-parametric Adaptive Importance Sampling") développés dans [START_REF] Kim | Nonparametric adaptive importance sampling for rare event simulation[END_REF] et [Morio, 2012]. Ces méthodes reprennent l'idée d'adapter des seuils successivement, comme dans l'algorithme CE, tout en approchant la densité optimale g * grâce à des estimations par noyaux gaussiens.

Une amélioration de l'algorithme d'entropie croisée

La méthode iCE développée par [Papaioannou et al., 2019a] reprend les mêmes étapes que la CE mais effectue les estimations des paramètres en remplaçant la fonction indicatrice I {ϕ(•)≥0} par une approximation lisse, ψ(•, σ) vérifiant lim σ→0 ψ(x, σ) = I {ϕ(x)≥0} . Cette modification permet de prendre en compte les N échantillons à chaque étape de l'algorithme, contre ρN dans la CE (avec ρ ∈]0, 1[ potentiellement petit), et donc d'augmenter la précision des estimations intermédiaires. L'approximation choisie par les auteurs est la suivante : ψ(•, σ) = F N (ϕ(•)/σ), où F N est la fonction de répartition de la loi normale centrée réduite, N (0, 1), et σ > 0 est un paramètre de lissage. C'est un choix classique et efficace que nous garderons dans tout le manuscrit, mais le lecteur intéressé pourra trouver d'autres approximations suggérées dans la littérature, par exemple dans [START_REF] Katafygiotis | Estimation of small failure probabilities in high dimensions by adaptive linked importance sampling[END_REF] et [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF]. Avec cette approximation, l'estimation des paramètres gaussiens est donnée par les mêmes formules (1.12) que pour la CE, mais où les poids deviennent : Algorithme 2 : iCE (improved CE method [Papaioannou et al., 2019a]). Données : Paramètre δ, taille de l'échantillon N par itération Résultat : Estimation ÊN de la probabilité de défaillance E = P f (ϕ(X) ≥ 0) 1 Initialisation : poser t = 0, m t = 0, Σ t = I n et σ t = ∞ ; 2 Générer X 1 , . . . , X N indépendamment selon g mt,Σt ; 3 Évaluer q i = ϕ(X i ) pour tout i = 1, . . . N ; 4 Calculer cv le coefficient de variation empirique des 

w i = ψ(X i , σ)f (X i ) g(X i ) pour X 1 , . . . ,
I {q i ≥0} /F N (q i /σ t ) ; 5 tant que cv ≥ δ faire 6 Calculer σ t+1 = arg min δt (σ) -δ 2 où le minimum est évalué sur σ ∈]0, σ t [ et δt (σ) est le coefficient de variation des F N (q i /σ)L t (X i ) avec L t = f /g mt,Σt ; 7 Calculer les poids wi = w i / j w j avec w i = F (q i /σ t+1 )L t (X i ) ; 8 Estimer m t+1 = N i=1 wi X i and Σ t+1 = N i=1 wi (X i -m t+1 )(X i -m
I {q i ≥0} L t (X i ).
Les performances de l'algorithme iCE (2) dépendent du choix du paramètre δ. Si celui-ci est trop petit, alors un grand nombre d'itérations sera nécessaire avant que le critère d'arrêt ne soit satisfait, ce qui entrainerait une augmentation du budget de simulation. En revanche, si δ est trop élevé, la fonction ψ(•, σ) peut donner une approximation imprécise de l'indicatrice et les estimations réalisées seront elles-mêmes imprécises. Les auteurs de [Papaioannou et al., 2019a] suggèrent que δ = 1.5 est un bon compromis pour avoir une estimation finale précise et garder un budget de simulation raisonnable. Avec ce choix, ils montrent sur différents exemples que la variance de l'estimation de la probabilité est nettement réduite avec l'algorithme iCE, par rapport à CE avec un même budget.

Estimation d'intégrales en inférence bayésienne

L'inférence bayésienne est un autre domaine dans lequel l'échantillonnage préférentiel est très utilisé pour estimer une intégrale et où de nombreux algorithmes d'AIS ont été proposés (voir [START_REF] Bugallo | Adaptive Importance Sampling : The past, the present, and the future[END_REF]). Dans ce contexte, le but est d'estimer l'espérance E où la densité f représente la loi a posteriori liée à des observations y ∈ R k , et pouvant être exprimée comme suit :

f (x) = h(x|y) = l(y|x)h 0 (x) c(y) ∝ l(y|x)h 0 (x) = f (x),
où h(x|y) est la densité a posteriori sachant les observations y, l(y|x) la vraisemblance, h 0 (x) la densité a priori, et c(y) = l(y|x)h 0 (x)dx la constante de normalisation pouvant être difficile à calculer. Ce type de problèmes ne permet pas en général de se ramener à une densité N (0, I n ), du fait de la complexité ou du manque d'information sur la loi de f , et l'objectif premier est d'apprendre à échantillonner selon f (ou une autre densité bien choisie) avant d'estimer E. Dans la suite, on considère donc que f = f /c est une densité connue à une constante de normalisation près, où c = R n f (x)dx ∈ R est cette constante, que l'on peut chercher à estimer également.

L'échantillonnage préférentiel auto-normalisé

L'échantillonnage préférentiel peut encore être utilisé pour estimer une espérance dans le cas où on ne connait pas la constante de normalisation c de la densité f = f /c. L'intégrale E doit alors être approchée par l'estimateur d'échantillonnage préférentiel auto-normalisé :

ẼN = 1 N ĉN N i=1 φ(X i ) L(X i ), (1.13)
où X 1 , . . . , X N est un échantillon i.i.d. tiré selon une loi auxiliaire g, L(X i ) = f (X i )/g(X i ) correspond au poids (non normalisé), et ĉN = (1/N ) N i=1 L(X i ) est l'estimation de la constante de normalisation c. L'estimateur ẼN est consistant et, contrairement à ÊN (1.4), il n'est pas sans biais mais asymptotiquement sans biais. Le théorème central limite, avec l'aide du lemme de Slutsky, nous donne la convergence en loi suivante :

√ N ( ẼN -E) = 1 √ N N i=1 L(X i )(φ(X i ) -E) ĉN -→ N →+∞ N 0, σ2 IS , où σ2 IS = Var g L(X)(φ(X) -E) /c 2 ,
en utilisant le fait que ĉN converge presque sûrement vers c. La densité auxiliaire g minimisant la variance asymptotique σ2

IS est alors la densité proportionnelle à |φ -E|f [Hesterberg, 1988]. Mais cette quantité est inconnue et inexploitable facilement étant donné qu'elle dépend de l'espérance E recherchée.

La stratégie couramment adoptée dans le contexte bayésien, où l'on peut s'intéresser à l'estimation de plusieurs espérances sous la loi f , est alors de rechercher une densité auxiliaire qui minimise la variance des poids, ou de manière équivalente la variance de l'estimateur ĉN (voir [START_REF] Bugallo | Adaptive Importance Sampling : The past, the present, and the future[END_REF], [START_REF] Doucet | A tutorial on particle filtering and smoothing : Fifteen years later[END_REF]). En effet, la variance de ĉN est :

Var g (ĉ N ) = 1 N Var g L(X) .
Celle-ci est évidemment nulle lorsque g = f (dans ce cas L ≡ c), ce qui signifie que la densité auxiliaire recherchée doit approcher la densité initiale f . Le problème posé revient alors à un problème d'échantillonnage selon une loi cible, dont la densité est connue à un facteur de normalisation près. Ce cas est en réalité similaire à celui de la partie 1.2.2, où l'on cherche à échantillonner selon la densité optimale g * ∝ φf , avec f connue, pour estimer l'espérance E. Lorsqu'on souhaite échantillonner selon f ∝ f , on cherche la densité d'IS optimale pour estimer la constante de normalisation c = f . Le problème d'échantillonnage selon f est ainsi vu comme un problème d'estimation de l'intégrale c.

Notons enfin que lorsqu'on estime ẼN avec un échantillon pondéré (X 1 , w1 ), . . . , (X N , wN ), où wi = L(X i )/(N ĉN ) sont les poids normalisés, la densité f est approchée par : 

fN (x) = N i=1 wi δ X i (x)

Algorithmes d'échantillonnage préférentiel adaptatif dans le cadre bayésien

Les méthodes présentées dans cette section sont des approches paramétriques mettant à jour un vecteur moyenne m, et dans certains cas, une matrice de covariance Σ associés aux lois auxiliaires d'échantillonnage préférentiel. Nous résumons les algorithmes en considérant que les densités auxiliaires sont gaussiennes (g m,Σ ), mais ils sont évidemment applicables avec d'autres types de lois.

L'algorithme "Population Monte Carlo" et ses variantes

Un premier algorithme d'AIS populaire, ayant engendré plusieurs variantes par la suite, est l'algorithme PMC, ou "Population Monte Carlo", développé dans [START_REF] Cappé | Population Monte Carlo[END_REF]. Le principe de cet algorithme est d'utiliser N densités auxiliaires (paramétriques), g i = g m i ,Σ , pour générer N échantillons X i (Σ est fixée et sera omise dans les notations). Chaque X i est ensuite associé à un poids w i = f (X i ) g i (X i ) , qui est normalisé en wi , de sorte que i wi = 1. On procède ensuite à un ré-échantillonnage de N échantillons avec remise sur les (X 1 , w1 ), . . . , (X N , wN ) de sorte à éliminer les échantillons qui ont un faible poids. Les Xi ainsi générés dans l'étape de ré-échantillonnage déterminent les nouvelles moyennes m i = Xi , utilisées dans l'itération suivante. L'algorithme est initialisé avec N paramètres, en fixant le nombre T d'itérations, et retourne l'estimation de la densité cible : fN (x) = N i=1 wi δ X i (x), permettant d'estimer une intégrale, ou bien l'estimation de la constante de normalisation ĉN = 1 N N i=1 w i . L'algorithme 3 résume les différentes étapes de la méthode PMC de base.

L'algorithme PMC est simple à mettre en oeuvre mais son efficacité dépend beaucoup du choix des paramètres initiaux. De plus, le fait que chaque échantillon soit tiré selon une loi différente peut entrainer une grande variance des poids et fait apparaitre le phénomène de dégénérescence des poids, dans lequel les poids normalisés wi sont presque tous nuls sauf un qui est proche de 1 (voir section 2.1.2). Cela implique alors une mauvaise estimation finale en terme de variance de l'estimateur.

Une première amélioration de cet algorithme, appelée "Mixture PMC" (M-PMC) a été proposée dans [START_REF] Cappé | Adaptive importance sampling in general mixture classes[END_REF] en utilisant des mélanges de J densités, J j=1 α j g m j , où J j=1 α j = 1, au lieu des densités uniques. De plus, les paramètres α j et m j sont mis à jour en minimisant la divergence de Kullback-Leibler avec la densité cible. Les matrices de covariance Σ j peuvent également être mises à jour dans cette version de l'algorithme, et des formules analytiques sont disponibles Algorithme 3 : PMC, "Population Monte Carlo" [START_REF] Cappé | Population Monte Carlo[END_REF] Données : Taille de l'échantillon N , nombre d'itérations T , paramètres initiaux m 0 1 , . . . , m 0 N Résultat : Estimation de la densité f par fN (x) = N i=1 wi δ X i (x) ou de la constante de normalisation ĉN = 1

N N i=1 w i . 1 Initialisation : g 1 = g m 0 1 , . . . , g N = g m 0 N ; 2 pour t = 1 . . . T faire 3 Générer X 1 ∼ g 1 , . . . , X N ∼ g N ; 4
Pour tout i = 1, . . . , N , calculer les poids des X i : 

w i = f (X i )/g i (X i ),
(x) = N i=1 wi δ X i (x) ou ĉN = 1 N N i=1 w i .
pour l'estimation des paramètres, notamment dans le cadre gaussien. Ainsi, les N échantillons X i sont générés selon le mélange J j=1 α j g m j , et les poids sont égaux à w i = f (X i )/ J j=1 α j g m j (X i ). Les paramètres sont ensuite mis à jour à l'aide de ces échantillons pondérés. Contrairement à PMC, il n'y a pas d'étape de ré-échantillonnage dans M-PMC. Cet algorithme est plus robuste que PMC et permet de réduire la variance de l'estimateur. Plus récemment, la méthode "Deterministic Mixture" PMC (DM-PMC) [START_REF] Elvira | Improving Population Monte Carlo : Alternative Weighting and Resampling Schemes[END_REF], reprend le même schéma que l'algorithme PMC d'origine mais en considérant J densités pour générer N échantillons selon chacune des densités : X i,j ∼ g m j pour i = 1, . . . , N et j = 1, . . . , J. Les poids associés sont alors égaux à w i,j = f (X i,j )J/ J k=1 g m k (X i,j ). Un ré-échantillonnage de N valeurs avec remise est ensuite effectué sur les X i,j munis de leurs poids normalisés wi,j . [START_REF] Elvira | Improving Population Monte Carlo : Alternative Weighting and Resampling Schemes[END_REF] montrent théoriquement que cette modification offre une plus grande stabilité et une variance de l'estimateur inférieure à celle de PMC.

L'algorithme "Adaptive Multiple Importance Sampling"

L'algorithme AMIS ("Adaptive Multiple Importance Sampling") développé dans [START_REF] Cornuet | Adaptive Multiple Importance Sampling[END_REF] propose de prendre en compte tous les échantillons et les densités auxiliaires des précédentes itérations dans le calcul des poids. À chaque étape t, il y a de plus une mise à jour des poids des itérations l = 0 à t -1 avec les échantillons nouvellement générés. Les paramètres (moyenne et covariance) sont mis à jour en minimisant la divergence de Kullback-Leibler, avec les échantillons pondérés. L'algorithme 4 présente le déroulement de la méthode AMIS, avec des densités auxiliaires gaussiennes, pour lesquelles il existe des formules analytiques pour l'estimation des paramètres.

Le recyclage de tous les échantillons générés durant l'algorithme permet d'estimer les paramètres avec un plus grand nombre de valeurs et ainsi de gagner en précision, par rapport à un algorithme d'AIS classique. La variance de l'estimateur final est également réduite grâce à ce Algorithme 4 : AMIS : "Adaptive Multiple Importance Sampling" [START_REF] Cornuet | Adaptive Multiple Importance Sampling[END_REF] 

S l i ← S l i + g mt,Σt (X (l) i ) et w l i ← f X (l) i S l i t + 1 ; 6 Estimer m t+1 = t l=0 N i=1 wl i X (l) i et Σ t+1 = t l=0 N i=1 wl i (X (l) i -m t+1 )(X (l) i -m t+1 ) où wl i = w l i / t l=0 N i=1 w l i ; 7 fin 8 Estimer fN (x) = T l=0 N i=1 wl i δ X (l) i (x) ou ĉN = 1 (T +1)N T l=0 N i=1 w l i .
procédé. Cependant, le fait de ne mettre à jour qu'une seule densité auxiliaire rend l'algorithme AMIS moins efficace pour traiter des problèmes multimodaux. Pour y remédier, les auteurs font remarquer qu'il est possible d'utiliser un mélange de densités plutôt qu'une unique densité. Notons enfin qu'une modification de l'algorithme a été apportée par [START_REF] Marin | Consistency of the Adaptive Multiple Importance Sampling[END_REF], où les paramètres sont estimés sans prendre en compte les échantillons des itérations précédentes et seule l'estimation finale bénéficie du recyclage de tous les échantillons. Cette modification a été introduite principalement pour démontrer des résultats de convergence de l'estimateur de l'intégrale.

On termine cette partie en citant la méthode "Adaptive Population Importance Sampling" (APIS) [START_REF] Martino | An adaptive population importance sampler : Learning from uncertainty[END_REF], qui s'appuie également sur le procédé de recyclage des échantillons proposé dans AMIS. L'algorithme reprend ensuite le même schéma que PMC standard en prenant en compte les échantillons de toutes les itérations. Une amélioration a ensuite été proposée avec "Gradient APIS " (GAPIS) [START_REF] Elvira | A gradient adaptive population importance sampler[END_REF], où les paramètres (moyennes et covariances) sont mis à jour à l'aide du gradient et de la matrice hessienne de la fonction f (proportionnelle à la densité cible f ). Ce dernier algorithme est particulièrement robuste mais la nécessité du calcul du gradient est son principal défaut, du fait du cout supplémentaire que cela peut engendrer.

Méthodes d'échantillonnage selon une loi cible

Pour estimer les paramètres optimaux (1.11), il est nécessaire d'avoir un échantillon de loi de densité g * . Dans les paragraphes qui suivent nous décrivons des méthodes utilisées pour obtenir un échantillon selon une loi cible.

La méthode du rejet

La méthode du rejet permet de simuler une variable aléatoire selon une loi cible, que nous appelons toujours g * , à partir d'une loi auxiliaire h avec laquelle on sait échantillonner facilement. Pour cela, on suppose qu'il existe une constante b > 1, telle que g * (x) ≤ b • h(x). Étant donné U une variable uniforme sur [0, 1], et Z une variable de loi h, toutes deux indépendantes, on peut ainsi montrer (voir [START_REF] Robert | Monte Carlo statistical methods[END_REF]) que la loi de g * est la loi conditionnelle de Z sachant l'événement Ω = {(U, Z), b • U h(Z) ≤ g * (Z)}. Ainsi, pour tirer une variable aléatoire selon g * , on applique l'algorithme suivant :

Algorithme 5 : Méthode du rejet 1 Générer Z selon h ; 2 Générer U ∼ U([0, 1]) une variable uniforme sur [0, 1] ; 3 tant que b • U h(Z) > g * (Z) faire 4
Répéter les étapes 1 et 2 ; 5 fin 6 Poser X = Z.

Dans le cas où g * = φf /E est la densité optimale d'IS (1.5), l'algorithme de rejet peut s'appliquer simplement dès que l'on connait un majorant, φ max , de la fonction φ (c'est le cas par exemple lorsque φ est une indicatrice, comme dans la section 1.3). On peut alors poser

b = φ max /E, h = f , et la condition de l'algorithme se réécrit U • φ max > φ(Z).
Le nombre d'itérations T de cet algorithme est aléatoire et suit une loi géométrique de paramètre 1/b, dont l'espérance vaut b. La méthode est donc efficace et peu couteuse si la constante b est suffisamment petite. C'est précisément la difficulté de cet algorithme, à savoir qu'il n'est pas évident de trouver une densité h de sorte que b soit assez petite, d'autant plus lorsque φ n'admet pas d'expression analytique.

Monte-Carlo par chaines de Markov

Les méthodes de Monte-Carlo par chaines de Markov ("Markov Chain Monte Carlo", MCMC) permettent de générer un échantillon selon une approximation d'une densité cible (g * dans notre cas), sans nécessairement connaitre sa constante de normalisation. Elles consistent à construire une chaine de Markov dont la loi stationnaire est la loi cible g * . Nous commençons par décrire le principe de l'algorithme de Metropolis-Hastings (MH), [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF], [Hastings, 1970], qui est une des méthodes MCMC les plus populaires. Il repose principalement sur l'itération de deux étapes : une étape d'exploration de l'espace, et une étape d'acceptation-rejet. La phase d'exploration consiste à générer un nouvel échantillon à l'aide du noyau de transition de la chaine de Markov, étant donné l'état précédent de la chaine. Ce nouvel échantillon est accepté avec une certaine probabilité, la probabilité d'acceptation, dans la phase d'acceptation-rejet. Considérons une densité notée h définissant un noyau de transition de la chaine de Markov, c'est-à-dire qui permet de passer d'un état de la chaine au suivant. Étant donné un état X i de la chaine, les deux phases de l'algorithme MH sont les suivantes :

• Exploration : on génère Y i selon h(u|X i ). • Acceptation-rejet : on pose X i+1 = Y i avec probabilité α(X i , Y i ) = min 1, g * (Y i )h(X i |Y i ) g * (X i )h(Y i |X i ) , et X i+1 = X i avec probabilité 1 -α(X i , Y i ).
La chaine est initialisée à X 0 , tiré selon une loi choisie arbitrairement, avant d'itérer les deux étapes décrites précédemment un certain nombre de fois. La loi des X i ainsi générés converge vers la loi de densité g * , dès que le noyau de transition vérifie les hypothèses d'irréductibilité et d'apériodicité requises dans le théorème ergodique [START_REF] Roberts | Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms[END_REF]. Un choix classique de densités de transition h correspond à une densité vérifiant la propriété de symétrie, h(u|x) = h(x|u), permettant de simplifier la probabilité d'acceptation (α(x, y) = min(1, g * (y)/g * (x))). Un exemple courant est de générer Y i selon la loi normale centrée en X i , N (X i , I n ), ou bien la loi uniforme sur l'hypercube centré en X i (voir [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF], [Bourinet, 2018]). Des choix alternatifs sont discutés dans [START_REF] Chib | Understanding the metropolishastings algorithm[END_REF], notamment en prenant des densités proches de g * , ou en échantillonnant indépendamment de l'état précédent (X i ), l'objectif étant de rendre l'algorithme simple à mettre en oeuvre et rapide à converger.

Les différents états de la chaine de Markov forment alors un échantillon de loi approchant g * , d'après le théorème ergodique, et pouvant servir à estimer les espérances (1.10) avec l'estimateur de Monte-Carlo (1.3). En général, les premiers états de la chaine sont retirés pour effectuer l'estimation puisqu'il faut un certain temps, appelé "temps de chauffe", avant de converger vers la loi cible. L'estimation de la moyenne (1.10) s'écrit alors

1 N N +N 0 i=N 0 +1 X i , où les X i , pour i = N 0 + 1, . . . , N + N 0 , suivent une loi approchant g * .
Une limite de Metropolis-Hastings est son inefficacité en grande dimension car la probabilité d'acceptation s'approche de 0 lorsque la dimension augmente. [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] proposent un algorithme de Metropolis-Hastings modifié où les échantillons sont générés composantes par composantes selon des lois univariées, ce qui le rend plus robuste en grande dimension. Une autre méthode MCMC pouvant être plus efficace en grande dimension est l'échantillonneur de Gibbs [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF], cas particulier de l'algorithme MH, qui génère l'échantillon composante par composante selon les lois conditionnelles de la loi cible, supposées connues. Mais de manière générale, toutes les techniques MCMC peuvent engendrer un temps et un cout de calcul important, notamment car elles nécessitent un "temps de chauffe" avant de converger vers la loi cible, et il n'est pas aisé de savoir à l'avance quand la loi de la chaine est suffisamment proche de la distribution cible.

L'échantillonnage préférentiel pour générer un échantillon selon une loi cible

L'échantillonnage préférentiel est une méthode d'estimation, comme évoqué dans la section 1.2.2, mais il peut aussi être vu comme une méthode d'échantillonnage pour simuler selon une loi donnée. En effet, on a vu (section 1.4.1) que f ∝ f pouvait être approchée par :

fN (x) = N i=1 wi δ X i (x),
(1.15) où wi = w i / N j=1 w j sont les poids normalisés, w i = f (X i )/g(X i ), et X 1 , . . . , X N est un échantillon i.i.d. généré selon une loi auxiliaire donnée g. Ainsi, l'échantillon pondéré (X 1 , w1 ), . . . , (X N , wN ) suit la loi fN qui tend vers la loi cible f . La précision de cette estimation repose bien entendu sur la densité auxiliaire g. La densité qui minimise la variance des poids étant exactement f (voir section 1.4.1), un choix de densité efficace serait de prendre g suffisamment proche de f , suivant les informations que l'on a sur la loi cible. En général, on obtient un échantillon selon fN grâce aux algorithmes d'AIS précédemment décrits, en mettant à jour les densités auxiliaires successivement afin d'estimer une intégrale.

Remarque 1.5.1. Il est également possible d'approcher g * par la même méthode, en prenant w i = ϕ(X i )f (X i )/g(X i ). Cependant, il faut noter qu'un échantillon généré selon g * ne sert pas à estimer directement l'espérance E. En effet, pour pouvoir calculer ÊN (1.4) ou ẼN (1.13), il faut connaitre l'expression de la densité g * , qui dépend elle-même de l'inconnue E et n'est donc pas exploitable.

Dans le chapitre suivant, nous nous intéressons à la performance des méthodes d'échantillonnage préférentiel paramétrique en grande dimension. En effet, tous les algorithmes d'AIS présentés dans ce chapitre connaissent des difficultés et deviennent imprécis lorsque la dimension des paramètres augmentent. Ces problèmes dûs à la dimension apparaissent plus généralement dans la méthode d'échantillonnage préférentiel, lors de l'estimation des paramètres. C'est ce que nous tentons d'expliquer dans la suite. Nous étudions particulièrement les deux algorithmes (CE et iCE) présentés dans cette partie, en choisissant toujours la famille gaussienne comme famille de densités auxiliaires. L'échantillonnage préférentiel est couramment utilisé pour estimer une espérance dans différents domaines, au travers d'algorithmes adaptatifs. Si les nombreuses méthodes d'AIS développées (dont quelques-unes sont décrites dans le chapitre 1) sont performantes lorsque la dimension de l'espace des paramètres est assez petite (inférieure à 10 ou 15 environ), leur efficacité se dégrade dès que la dimension augmente et que le budget de simulation est limité. Dans ce chapitre, nous commençons par illustrer cette dégradation sur des exemples simples, avant d'évoquer deux raisons principales pouvant expliquer l'inefficacité de l'échantillonnage préférentiel en grande dimension. Dans un second temps, nous décrivons plusieurs méthodes mises en place ces dernières années pour améliorer l'échantillonnage préférentiel en grande dimension, en expliquant leurs avantages et leurs limites. En revanche, les techniques de projection permettant de réduire la dimension seront étudiées dans les chapitres suivants.

Chapitre 2

Échantillonnage préférentiel en grande dimension

Dégradation de l'échantillonnage préférentiel en grande dimension

Dégradation d'un algorithme d'échantillonnage préférentiel adaptatif

Dans cette partie, nous commençons par montrer l'inefficacité en grande dimension de l'algorithme d'entropie croisée classique, CE (1), et celui sous sa forme "améliorée", iCE (2), deux algorithmes d'AIS décrits dans le chapitre 1. On cherche à estimer la probabilité d'événement rare E = P f (ϕ 1 (X) ≥ 0) avec ϕ 1 la fonction suivante :

ϕ 1 : x = (x 1 , . . . , x n ) ∈ R n → n j=1 x j -3 √ n. (2.1)
Cette application est un cas-test classique pour tester l'efficacité d'un algorithme en fiabilité, notamment lorsque la dimension varie (voir par exemple [START_REF] Engelund | A benchmark study on importance sampling techniques in structural reliability[END_REF]). La valeur théorique de la probabilité E est indépendante de la dimension n et est égale à E = P(U ≥ 3) 1.35 × 10 -3 , où U suit la loi normale standard sur R. L'espérance E est estimée à l'aide des algorithmes CE et iCE en faisant varier la dimension n de 5 à 60. On rappelle que la famille auxiliaire d'échantillonnage choisie, G, est la famille Gaussienne {g m,Σ }, avec m ∈ R n la moyenne et Σ ∈ S + n la matrice de covariance. Les valeurs optimales (i.e. celles minimisant la divergence de Kullback-Leibler avec la densité d'IS optimale g * (1.5)) de la moyenne m * et de la covariance Σ * données par les formules (1.10), peuvent être calculées explicitement dans cet exemple : dimension n Estimation moyenne

m * = m * • 1 n , avec m * = e -9/2 E √ 2π et 1 n = 1 √ n (1, . . . , 1) ∈ R n , et Σ * = (v * -1)1 n 1 n + I n , où v * = 3m * -(m * ) 2 +
IS avec g m * ,Σ * CE avec G = {g m,Σ } m∈R n ,Σ∈D + n CE avec G = {g m,Σ * } m∈R n CE avec G = {g m,Σ } m∈R n ,Σ∈S + n iCE avec G = {g m,Σ } m∈R n ,Σ∈S + n CE avec G = {g m * ,Σ } Σ∈S + n CE avec G = {g m * ,Σ } Σ∈S + n Figure 2
.1 -Évolution de l'estimation de la probabilité E = P f (ϕ 1 (X) ≥ 0) en fonction de la dimension par différents algorithmes CE et iCE, avec ϕ 1 définie en 2.1. Les paramètres utilisés sont ρ = 0.1 pour la CE, δ = 1.5 pour iCE, et N = 1000 dans les deux méthodes. Chaque valeur est une moyenne sur 100 estimations indépendantes de la probabilité.

Le but est d'estimer la probabilité E à l'aide des algorithmes CE et iCE en faisant varier la dimension n. Les paramètres utilisés sont ρ = 0.1 pour la CE, δ = 1.5 pour iCE, et N = 1000 dans les deux méthodes. L'évolution de l'estimation moyenne de E en fonction de la dimension est représentée figure 2.1. Les algorithmes CE et iCE de base (avec G = {g m,Σ } m∈R n ,Σ∈S + n ) sont représentés par les triangles verts et losanges rouges respectivement. Lorsque la dimension augmente, l'estimation devient de moins en moins précise pour ces deux méthodes. Pour la CE, l'erreur d'estimation est déjà significative à partir de la dimension n ≈ 15, alors qu'iCE est assez précis jusqu'à n ≈ 25, avant de se dégrader fortement. Cette dégradation est due aux erreurs d'estimation des paramètres, comme le montrent les autres courbes de la figure 2.1. En effet, CE et iCE approchent la densité optimale g * d'IS par une densité auxiliaire de la famille {g m,Σ } m∈R n ,Σ∈S + n , en utilisant des techniques de simulation séquentielle pour obtenir des estimateurs, m * et Σ * (1.12), des paramètres optimaux m * et Σ * . On a ainsi n paramètres mis à jour successivement pour estimer m * et n(n + 1)/2 pour estimer Σ * (car Σ * est symétrique de taille n), ce qui donne n(n + 3)/2 paramètres à estimer au total. Ce nombre grandit de manière quadratique avec la dimension n, et l'accumulation de toutes les erreurs commises dans chaque dimension peut entraîner une grande imprécision dans l'estimation finale. En effet, si l'on estime la probabilité par échantillonnage préférentiel avec g m * ,Σ * (en pointillés sur la figure 2.1), c'est-à-dire avec les valeurs théoriques des paramètres optimaux, l'estimation reste très précise quelle que soit la dimension, ce qui indique que l'erreur provient des approximations m * et Σ * . Les quatre autres courbes sont des cas intermédiaires entre l'IS avec g m * ,Σ * comme densité auxiliaire, où aucun paramètre n'est estimé, et la CE avec {g m,Σ } m∈R n ,Σ∈S + n , où n(n + 3)/2 paramètres sont estimés. Dans les cas où la famille est {g m,Σ * } m∈R n ou {g m,Σ } m∈R n ,Σ∈D + n , on estime n et 2n paramètres respectivement (D + n étant l'ensemble des matrices diagonales où tous les coefficients diagonaux sont strictement positifs), et l'estimation finale est à nouveau très précise (courbe en pointillés). Dans le cas {g m * ,Σ } Σ∈S + n (carrés noirs), on a fixé la moyenne à sa valeur théorique, et S + n représente l'ensemble des matrices de S + n où l'on estime 3/4 de la matrice, le dernier quart prenant les valeurs exactes de Σ * . On a ainsi 3n(n + 1)/8 paramètres à estimer et on peut observer une meilleure performance que dans le cas où on estime toute la matrice de covariance, c'est-à-dire n(n + 1)/2 coefficients (cercles bleus), lui-même légèrement meilleur que la CE de base (triangles verts) où n(n + 3)/2 paramètres sont mis à jour.

Finalement, la figure 2.1 montre que la performance de la CE dépend du nombre de paramètres à estimer, autrement dit moins il y a de paramètres et plus la précision de l'algorithme augmente. normalisés wi (définis dans l'algorithme 1) à une même itération de l'algorithme CE dans l'exemple considéré au paragraphe précédent. Les poids représentés sont les poids non nuls (associés aux échantillons situés dans la région de défaillance intermédiaire) lors d'une réalisation de l'algorithme CE, en dimension n = 5, 20, et 50. Les valeurs de ces poids sont assez proches en dimension 5 (entre 0.005 et 0.06 environ). Lorsque la dimension augmente, un échantillon semble dominer tous les autres, et c'est particulièrement flagrant pour n = 50, où l'un des poids vaut presque 1, alors que tous les autres sont quasiment nuls (de l'ordre de 10 -5 ou moins). Cela revient donc à mettre à jour les paramètres suivants avec un échantillon de taille 1, ce qui explique la dégradation de l'algorithme CE. Ce phénomène a été plusieurs fois observé dans la littérature.

C'est le cas par exemple dans le cadre des filtres particulaires avec [START_REF] Bengtsson | Curse-of-dimensionality revisited : Collapse of the particle filter in very large scale systems[END_REF]. Les méthodes de filtres particulaires [START_REF] Doucet | A tutorial on particle filtering and smoothing : Fifteen years later[END_REF], aussi appelées méthodes de Monte-Carlo séquentielles [START_REF] Cérou | Sequential Monte Carlo for rare event estimation[END_REF], sont des techniques d'estimation d'espérances en inférence bayésienne, où l'on souhaite échantillonner selon une loi a posteriori étant donné des observations. Plus précisément, le but est d'estimer une espérance du type :

E(φ(X)|Y) = φ(x) l(Y|x)h 0 (x) c(Y) dx,
où h 0 est la densité a priori, l(Y|x) la vraisemblance des observations Y étant donné x, et c(Y) est la constante de normalisation (égale à l(Y|x )h 0 (x )dx ) de la densité a posteriori l(Y|x)h 0 (x) = h(x|Y). L'espérance peut alors être estimée par N i=1 φ(X i ) wi , avec wi = l(Y|X i )/ j l(Y|X j ), et X i des échantillons générés selon h 0 . En grande dimension [START_REF] Bengtsson | Curse-of-dimensionality revisited : Collapse of the particle filter in very large scale systems[END_REF] montrent dans le cas du filtrage particulaire que max wi ≈ 1 et que tous les autres poids sont presque nuls, si la taille de l'échantillon n'est pas suffisante, comme observé sur le graphique 2.2 en dimension 50 dans le cas de la CE. Par ailleurs, ils prouvent, dans le cas gaussien, que si ln(N )/n tend vers +∞ lorsque la taille de l'échantillon N et la dimension n tendent vers +∞, alors l'estimateur de l'espérance considéré est consistant. Autrement dit, pour éviter l'effondrement des poids et espérer une estimation précise, la taille de l'échantillon doit croître de façon exponentielle avec la dimension, ce qui n'est pas réalisable en pratique puisque cela entrainerait un budget de simulation démesuré.

Dans un contexte fiabiliste, pour l'estimation de probabilités d'événement rare, [START_REF] Katafygiotis | Geometric insight into the challenges of solving high-dimensional reliability problems[END_REF] adoptent un point de vue géométrique pour montrer, lorsque les densités sont gaussiennes, que les rapports de vraisemblance prennent des valeurs très faibles en grande dimension, ce qui entraine une sous-estimation de la probabilité. En effet, les auteurs s'appuient sur le fait que la norme d'un vecteur aléatoire gaussien standard X en dimension n, suit une loi s'approchant d'une distribution gaussienne N ( √ n, 1/2) lorsque n tend vers l'infini. Des considérations géométriques leur permettent ensuite de montrer que les rapports de vraisemblance (L(X i ) = f (X i )/g m,In (X i ), avec X i ∼ g m,In ) sont de l'ordre de e -n/2 si n est grand. Ainsi, plus la dimension est grande, plus ces poids (non normalisés) sont excessivement petits et plus la probabilité, estimée par N -1 N i=1 I {ϕ(X i )≥0} L(X i ), est potentiellement sous-évaluée. Ce phénomène, différent de celui décrit dans [START_REF] Bengtsson | Curse-of-dimensionality revisited : Collapse of the particle filter in very large scale systems[END_REF], permet également d'expliquer l'inefficacité de l'échantillonnage préférentiel en grande dimension.

Plus généralement, la dégénérescence des poids d'échantillonnage préférentiel en grande dimension est liée au fait que la densité auxiliaire peut être très éloignée de la densité initiale (comme illustré dans la section 2.1.3, avec l'augmentation de la divergence de Kullback-Leibler). Lorsque celle-ci est gaussienne standard, [START_REF] Au | Important sampling in high dimensions[END_REF]] préconisent de prendre une densité gaussienne auxiliaire avec une matrice de covariance proche de l'identité afin d'éviter que le coefficient de variation des poids ne tende vers l'infini. Des méthodes ont été proposées dans la littérature pour éviter ce problème, et nous en décrirons quelques-unes dans la section 2.2.

Estimation d'une matrice de covariance de grande dimension avec un échantillon de petite taille et dégradation de la divergence de Kullback-Leibler

Une autre raison pouvant expliquer la dégradation de l'échantillonnage préférentiel en grande dimension est l'inefficacité de l'estimateur empirique de la matrice de covariance (1.11) lorsque l'échantillon est de petite taille. [START_REF] Ledoit | A well-conditioned estimator for largedimensional covariance matrices[END_REF] rappellent par exemple que si la dimension n est plus grande que la taille de l'échantillon observé N , la matrice empirique est un très mauvais estimateur de la covariance (en particulier, elle n'est même pas inversible, son rang étant au maximum égal à N ). Dans le cas où n ≈ N , avec N légèrement supérieur à n, la matrice est encore mal conditionnée et induit une grande erreur d'estimation. Ainsi, si la taille de l'échantillon est insuffisante par rapport à la dimension de la matrice estimée, celle-ci peut très mal approcher la matrice de covariance théorique. Dans l'échantillonnage préférentiel, cela peut impliquer une approximation imprécise de la loi optimale d'IS g * et de ce fait une mauvaise estimation de l'intégrale. Pour obtenir un estimateur plus précis et bien conditionné de la matrice de covariance en grande dimension, des méthodes de "contraction" ("shrinkage") des paramètres sont souvent utilisées dans la littérature. Nous en évoquons quelques-unes dans la section suivante.

Pour illustrer l'impact de la dégradation de la matrice de covariance estimée sur la qualité de l'estimation, nous représentons l'évolution de la divergence de Kullback-Leibler en fonction de la dimension. En effet, nous avons vu qu'une grande divergence KL entrainait une grande variance de l'estimateur d'échantillonnage préférentiel (comme souligné dans la section 1.2.4 et [START_REF] Au | Important sampling in high dimensions[END_REF], [START_REF] Chatterjee | The sample size required in importance sampling[END_REF]).

Nous considérons le problème d'échantillonnage selon une loi cible (que nous appellerons g * dans un premier temps). Il peut s'agir de la densité optimale d'IS (définie en (1.5)) ou d'une distribution quelconque à partir de laquelle on veut générer un échantillon. Dans cette section, on appellera toujours g * la densité que l'on souhaite approcher, et la famille auxiliaire d'échantillonnage préférentiel est la famille de densités gaussiennes {g m,Σ : m ∈ R n , Σ ∈ S + n }. On cherche alors à minimiser la divergence de Kullback-Leibler entre g * et la famille gaussienne :

D(g * , g m,Σ ) = E g * ln g * (X) g m,Σ (X)
. Les paramètres optimaux obtenus sont : m * = E g * (X) et Σ * = Var g * (X) (1.10). Mais en pratique ceux-ci ne sont pas connus et sont estimés par m * et Σ * (définis en (1.11)) qui sont imprécis lorsque la dimension est grande, en particulier Σ * , ce qui implique une augmentation de la divergence KL avec la dimension.

Pour observer cet accroissement, simplifions d'abord l'expression de la divergence de Kullback-Leibler. Minimiser D(g * , g m,Σ ) revient à minimiser la quantité :

D(m, Σ) = ln (det Σ) + E g * (X -m) Σ -1 (X -m) .
Comme les erreurs d'estimation proviennent majoritairement de la matrice de covariance, nous nous concentrons sur celle-ci et nous fixons m à sa valeur optimale m * qui minimise la divergence. On définit alors :

D (Σ) = ln det Σ + E g * (X -m * ) Σ -1 (X -m * ) = ln det Σ + E g * tr (X -m * )(X -m * ) Σ -1 en utilisant l'identité a b = tr(ab ) pour deux vecteurs colonnes a et b de R n , où "tr" représente la trace d'une matrice carrée. Enfin, comme l'espérance et la trace commutent, par linéarité, et comme Σ * = E g * (X -m * )(X -m * ) , on a : D (Σ) = ln det Σ + tr(Σ * Σ -1 ).
(2.2)

Nous allons observer la dégradation de cette divergence de Kullback-Leibler "partielle" D sur un exemple d'échantillonnage selon la loi "banana shape", ou loi "en forme de banane". C'est un castest classique d'échantillonnage utilisé pour tester des algorithmes d'AIS (voir par exemple [START_REF] Cornuet | Adaptive Multiple Importance Sampling[END_REF], [START_REF] Elvira | Generalized Multiple Importance Sampling[END_REF], [START_REF] Martino | Layered adaptive importance sampling[END_REF]). Pour générer une variable aléatoire X, à valeur dans R n , suivant la loi "banana shape", on tire une variable gaussienne de dimension n, U ∼ N (0, C), dont la matrice de covariance est C = diag(σ 2 , 1, . . . , 1) et on transforme la seconde coordonnée [START_REF] Cornuet | Adaptive Multiple Importance Sampling[END_REF]) :

U 2 en X 2 = U 2 -b(U 2 1 -σ 2 ),
π(x 1 , x 2 , . . . , x n ) = g 0,C (x 1 , x 2 + b(x 2 1 -σ 2 ), x 3 , . . . , x n ) (2.3)
où on rappelle que g 0,C est la densité de la loi N (0, C). La fonction π est donc la densité à approcher (autrement dit g * est remplacée par π dans les calculs précédents, ce qui revient à chercher la densité optimale d'IS pour estimer la constante de normalisation de π : π = 1, voir section 1. La divergence augmente bien plus rapidement avec la dimension en prenant la matrice Σ * au lieu de Σ * , ce qui signifie que la densité auxiliaire g m * , Σ * est une moins bonne approximation de la densité cible π que g m * ,Σ * . Cet accroissement est notamment dû aux erreurs d'estimation sur chaque coefficient de la matrice et sont d'autant plus nombreuses que la dimension est grande. Lorsqu'on veut estimer une intégrale, cela peut alors impliquer une estimation moins précise, puisqu'une grande divergence KL entraîne une grande variance de l'estimateur. Nous verrons effectivement dans les chapitres suivants l'impact d'une telle augmentation sur l'erreur d'estimation.

Dans cette thèse, nous nous concentrons sur l'estimation de la matrice de covariance en cherchant à réduire le nombre total de paramètres estimés dans cette matrice. Les idées développées pour y parvenir sont abordées dans les chapitres suivants. La section qui suit résume différentes stratégies utilisées dans la littérature pour éviter ou atténuer les problèmes rencontrés en grande dimension dans les algorithmes d'AIS.

Techniques permettant d'améliorer les algorithmes d'échantillonnage préférentiel en grande dimension 2.2.1 Transformation des poids pour estimer les paramètres d'échantillonnage préférentiel

Une première stratégie pour renforcer l'efficacité de l'échantillonnage préférentiel en grande dimension est de transformer les poids afin d'exclure les valeurs aberrantes et d'éviter qu'ils aient une trop grande variance. Ainsi, [START_REF] Koblents | A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models[END_REF] proposent une amélioration de l'algorithme PMC (1.4.2), nommée Nonlinear PMC (NPMC), en remplaçant les poids (non normalisés) w i par wi = T (w i ), où T : R + → R + est une fonction (non linéaire), choisie de sorte à réduire leur variance. [START_REF] El-Laham | Robust Covariance Adaptation in Adaptive Importance Sampling[END_REF] modifient aussi les poids en particulier pour estimer la matrice de covariance dans un algorithme d'AIS ("Covariance AIS").

Deux types de transformations sont couramment utilisées : les fonctions de "clipping" visant à diminuer la valeur des poids les plus grands, et les fonctions de "tempering" qui atténuent les variations des w i . Le "clipping" (aussi appelé "Truncated Importance Sampling", [Ionides, 2008]) consiste d'abord à classer les poids w i dans l'ordre décroissant, w (1) ≥ • • • ≥ w (N ) , et à choisir une valeur seuil w max = w (N 0 ) (N 0 < N ) qu'on ne pourra pas dépasser. La fonction T à appliquer, dépendant des poids, est alors définie par T (w i ) = min(w i , w max ). Les N 0 plus grands poids prennent alors la valeur maximale w max . [START_REF] Koblents | A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models[END_REF] suggèrent par exemple de modifier un dixième des poids (i.e. N 0 /N = 1/10), ce choix donnant de bons résultats sur de nombreux exemples. [START_REF] El-Laham | Robust Covariance Adaptation in Adaptive Importance Sampling[END_REF] ajoutent qu'il faudrait de plus choisir N 0 supérieur à la dimension n, ce qui peut être contraignant si N n'est pas assez grand.

Les fonctions de "tempering" sont de la forme T (w i ) = (w i ) αt , où α t est un réel compris entre 0 et 1, pouvant dépendre de l'itération t à laquelle les poids sont calculés. [START_REF] Koblents | A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models[END_REF] conseillent en effet d'adapter α t à chaque itération de façon à ce qu'il prenne de petites valeurs lors des premières itérations et qu'il se rapproche de 1 par la suite (par exemple α t = (1 + e -t ) -1 ). [START_REF] El-Laham | Robust Covariance Adaptation in Adaptive Importance Sampling[END_REF] proposent quant à eux d'adapter α t à chaque itération en fonction de la "taille d'échantillon efficace" ou "effective" ("effective sample size", ESS, [START_REF] Kong | Sequential imputations and Bayesian missing data problems[END_REF], [Martino et al., 2017a]). L'ESS donne une indication sur le nombre d'échantillons effectivement "utiles" dans l'estimation et est généralement définie par η = ( N i=1 w i ) 2 /( N i=1 w 2 i ). Ainsi, si les N échantillons ont un poids équivalent (w i = 1/N ), alors η = N , mais si tous les poids sont nuls sauf un alors η = 1. [START_REF] El-Laham | Robust Covariance Adaptation in Adaptive Importance Sampling[END_REF] suggèrent de choisir le coefficient α t afin que η soit proche d'un entier N 0 préalablement fixé.

Cependant toutes ces méthodes ne restent efficaces qu'en dimension modérément grande (de la dizaine à quelques dizaines) et souffrent encore de la dégénérescence des poids et de la mauvaise estimation des paramètres lorsque la dimension est trop élevée.

Une dernière stratégie que l'on peut évoquer, est appliquée dans [START_REF] Chan | Improved cross-entropy method for estimation[END_REF], et consiste à générer directement un échantillon selon la loi optimale d'IS, g * , à l'aide d'une méthode MCMC, afin d'estimer les paramètres optimaux sans rapports de vraisemblance. La dégénérescence des poids est donc évitée dans l'estimation des paramètres, mais ceux-ci sont toujours estimés en grande dimension, ce qui peut entrainer une estimation imprécise de l'espérance. De plus, il peut être difficile de trouver un noyau de transition performant dans un algorithme MCMC, celui-ci pouvant aussi être couteux en budget et en temps de calcul lorsque la dimension est élevée.

Méthodes de contraction des paramètres pour estimer une ma-

trice de covariance de grande taille [START_REF] El-Laham | Recursive Shrinkage Covariance Learning in Adaptive Importance Sampling[END_REF] ont développé un algorithme d'AIS qui combine les techniques de transformations des poids avec des méthodes de "contraction" ("shrinkage") de la matrice de covariance afin d'améliorer la performance en grande dimension. Les techniques de contraction des paramètres consistent à calculer une combinaison de plusieurs estimateurs. Par exemple, dans l'article [START_REF] El-Laham | Recursive Shrinkage Covariance Learning in Adaptive Importance Sampling[END_REF], la matrice de covariance à l'étape t de l'algorithme d'AIS, est estimée par : Plus généralement et indépendamment du cadre de l'échantillonnage préférentiel, les méthodes de contraction sont utilisées dans la littérature pour construire un estimateur de la covariance plus robuste et plus précis que l'estimateur empirique lorsque la dimension n est supérieure ou du même ordre que la taille d'échantillon N . Ces approches considèrent des estimateurs de la forme (1 -µ)u(Σ) + µI n , avec u(Σ) un estimateur de la matrice de covariance Σ d'un vecteur centré X et µ ∈ [0, 1] un réel. Elles reposent sur le choix de l'estimateur u(Σ) et surtout sur l'optimisation du coefficient µ. Par exemple, [START_REF] Ledoit | A well-conditioned estimator for largedimensional covariance matrices[END_REF] proposent un choix optimal de µ en considérant l'estimateur empirique de la matrice de covariance, c'est-à-dire :

Σ t = (1 -β t )Σ t-1 + β t (1 -η t ) Σt + β t η t Σt , où Σ t-
Σ = (1 -µ) Σ + µI n , où Σ = N i=1 X i X i /N est l'estimateur empirique de la covariance de X et µ ∈ [0, 1].
Les auteurs donnent le choix optimal du paramètre µ en minimisant l'erreur quadratique moyenne entre Σ et Σ. L'estimateur Σ améliore significativement l'estimation de Σ par rapport à Σ. D'autres travaux proposent de considérer l'estimateur de Tyler [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF], à la place de l'estimateur empirique, pour des distributions elliptiques, c'est-à-dire :

u(Σ) = tr(Σ) N N i=1 X i X i X i Σ -1 X i ,
où X i = Xi / Xi , et Xi sont des échantillons i.i.d. centrés suivant une distribution elliptique dont la covariance est la matrice Σ que l'on cherche à estimer. L'estimateur de Tyler permet d'atteindre la matrice Σ de manière itérative par un algorithme de point fixe. Un choix optimal du coefficient µ est également obtenu en minimisant l'erreur quadratique moyenne. [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF] montrent sur plusieurs cas-tests que leur estimateur Σ est plus efficace que celui de [START_REF] Ledoit | A well-conditioned estimator for largedimensional covariance matrices[END_REF]. Une généralisation de ces travaux à d'autres estimateurs est proposée dans [START_REF] Ashurbekova | Optimal shrinkage for robust covariance matrix estimators in a small sample size setting[END_REF].

Ces approches permettent d'améliorer la précision de l'estimation des matrices de covariance en grande dimension, mais sont difficilement applicables, voire inefficaces dans le contexte de l'échantillonnage préférentiel car elles ne permettent pas d'éviter la dégénérescence des poids d'importance.

Réduction du nombre de paramètres à estimer

Les exemples de la section 2.1.3 montrent que plus le nombre de paramètres à estimer est grand et plus l'estimation finale de l'espérance est dégradée. C'est pourquoi plusieurs articles proposent de réduire le nombre de coefficients estimés dans les algorithmes d'AIS, en particulier dans l'algorithme CE.

2.2.3.1 Sélection des variables par la méthode de "Screening" [START_REF] Rubinstein | How to Deal with the Curse of Dimensionality of Likelihood Ratios in Monte Carlo Simulation[END_REF] ont mis en place une procédure de sélection de variables ("screening method") combinée avec la CE, afin de construire l'algorithme CE-SCR (CE-Screening algorithm). Pour cela ils considèrent le problème d'estimation de l'espérance E = E f (I {ϕ(X)≥0} ), avec f une densité de probabilité de R n appartenant à la famille exponentielle, paramétrée par le vecteur ν = (ν 1 , . . . , ν n ) ∈ R n et dont les composantes sont indépendantes, c'est à dire s'écrivant sous la forme f (x) = g(x; ν) = n j=1 g j (x j ; ν j ) (par exemple f peut être la densité gaussienne paramétrée par la moyenne et de covariance fixée à l'identité). Les rapports de vraisemblance s'écrivent alors

L(x) = g(x, ν) g(x, θ) = n j=1 g j (x j , ν j ) g j (x j , θ j ) ,
où les densités auxiliaires sont supposées appartenir à la même famille que la densité initiale et où θ = (θ 1 , . . . , θ n ) ∈ R n . De plus, la fonction ϕ est supposée croissante en chacune de ses variables de sorte que le paramètre optimal θ * = arg min θ∈R n D(g * , g(•; θ)) soit tel que pour tout j = 1, . . . , n, on ait θ * j ≥ ν j . L'idée principale de la méthode de "screening" est alors d'identifier et de sélectionner les paramètres importants, c'est-à-dire ceux qui vont le plus contribuer à minimiser la divergence de Kullback-Leibler. Pour ce faire, l'ensemble des paramètres est d'abord séparé en deux sousensembles θ = (θ (b) , θ (nb) ), un ensemble restreint de paramètres influents θ (b) (appelés "bottleneck parameters" dans l'article) et l'ensemble de tous les autres paramètres θ (nb) ("nonbottleneck") considérés comme non influents. L'objectif est ensuite de ne mettre à jour que les paramètres θ (b) et garder θ (nb) = ν (nb) afin que les rapports de vraisemblance ne soient plus que le produit d'un faible nombre de facteurs. Pour sélectionner les paramètres, les auteurs suggèrent de calculer

∆ j = θ0j -ν j ν j
, pour tout j = 1, . . . , n où θ0 est le paramètre estimé après une première itération de l'algorithme CE (si certains ν j sont nuls, on peut prendre ∆ = θ0 -ν). Si ∆ j est inférieur à une constante ∆ * préalablement choisie (par exemple ∆ * = 0.1), alors on pose θ0j = ν j , sinon θ0j est considéré comme un élément influent et on construit ainsi l'ensemble des paramètres influents θ (b) , ce procédé pouvant être répété plusieurs fois. Une fois l'ensemble des éléments influents identifiés, on effectue la suite de l'algorithme CE en ne mettant à jour que les paramètres de cet ensemble. L'avantage de CE-SCR est, d'une part, que l'on peut espérer estimer un petit nombre, disons r < n, de paramètres (sélectionnés dans la phase de screening), et d'autre part, que les poids sont alors égaux au produit de seulement r facteurs, ce qui peut permettre d'éviter la dégénérescence. Néanmoins, cette méthode est inefficace dans les cas où toutes ou une grande partie des variables sont influentes (par exemple avec la fonction somme des coordonnées ϕ 1 (2.1)). De plus, elle ne permet pas de mettre à jour la matrice de covariance (notamment dans le cadre gaussien) et supposer ϕ croissante en chacune de ses variables peut être contraignant et peut restreindre le nombre de cas-tests sur lesquels CE-SCR est efficace.

Utilisation de densités auxiliaires plus efficaces en grande dimension

Une autre stratégie pour améliorer les performances de l'échantillonnage préférentiel en grande dimension est proposée par [START_REF] Wang | Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis[END_REF]. Les auteurs suggèrent d'utiliser les densités de von Mises-Fisher comme famille auxiliaire dans l'algorithme CE, à la place des densités gaussiennes qui sont moins efficaces en grande dimension pour détecter le domaine de défaillance. En effet, ils considèrent le problème d'estimation d'une probabilité de défaillance dans l'espace normal standard de dimension n (i.e. f est la densité N (0, I n )). En se basant sur les résultats de l'article [START_REF] Katafygiotis | Geometric insight into the challenges of solving high-dimensional reliability problems[END_REF], ils utilisent le fait que la norme d'un échantillon gaussien standard se rapproche de la loi N ( √ n, 1/2) quand n grandit, ce qui signifie que la majorité des échantillons se situent autour de l'hypersphère de dimension n -1 et de rayon √ n (dans un "anneau d'importance" ou "importance ring"). Pour générer un vecteur gaussien en grande dimension, sa norme étant d'environ √ n, il suffit de connaitre sa direction, qui peut être générée par la densité de von Mises-Fisher (vMF) : Une autre version de cet algorithme a été développée dans [Papaioannou et al., 2019a], afin d'améliorer ses performances en petite dimension. En effet, approcher la norme d'un vecteur gaussien par une loi du χ(n) est pertinent pour n suffisamment grand. Les auteurs suggèrent alors de remplacer la loi du χ(n) par la loi de Nakagami de densité :

g vMF (x; µ, κ) = c n (κ) exp(κµ x), où x appartient à l'hypersphère, S n-1 ⊂ R n , de dimension n-1 et de rayon 1, µ ∈ R n est
g N (x; p, ω) = 2p p Γ(p)ω p x 2p-1 exp - p ω x 2 ,
pour tout x > 0, et où p ≥ 0.5 est un paramètre de forme, ω > 0 un paramètre de propagation, et Γ est la fonction Gamma. Cette modification améliore l'algorithme pour des dimensions petites ou modérées, avec un nombre de paramètres estimés équivalents (n + 2 au lieu de n dans [START_REF] Wang | Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis[END_REF]).

Ainsi, pour améliorer significativement l'échantillonnage préférentiel en grande dimension, plusieurs articles utilisent des techniques réduisant le nombre de paramètres estimés, soit en sélectionnant des variables, soit en modifiant les densités auxiliaires d'échantillonnage. Alors que les méthodes suggérant de transformer les poids semblent limitées à des dimensions de quelques dizaines, les approches qui réduisent la dimension des paramètres permettent de réaliser des estimations assez précises dans des dimensions supérieures. Cependant, CE-SCR n'est efficace que sur un nombre restreint de cas-tests, et les techniques basées sur la famille de densités de von Mises-Fisher peuvent nécessiter un grand budget de simulation.

Une autre approche pour réduire la dimension des paramètres est d'utiliser une projection dans un sous-espace de petite dimension. C'est la méthode employée dans [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF] pour améliorer l'algorithme CE en grande dimension, en construisant un sous-espace identifiant la structure de petite dimension du problème. Nous détaillons l'algorithme (iCEred, "improved Cross-Entropy method with failure-informed dimension reduction") présenté dans cet article, et la projection utilisée (issue de [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF]) dans les chapitres suivants, dans lesquels nous nous concentrons sur le couplage des techniques de projection avec l'échantillonnage préférentiel. En particulier, l'objectif des prochains chapitres est d'utiliser une projection afin de réduire le nombre de paramètres estimés dans la matrice de covariance qui contribue majoritairement à la dégradation de l'IS. Pour éviter la dégradation de l'estimation par échantillonnage préférentiel, plusieurs approches décrites dans le chapitre 2 ont suggéré de réduire le nombre total de paramètres à estimer afin de diminuer le nombre d'erreurs d'estimation. Cependant, les méthodes développées connaissent des difficultés pour effectivement réduire le nombre de paramètres ou demandent un budget de simulation élevé. Plus récemment, [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF] ont proposé une projection dans un sousespace de petite dimension, pour la résolution de problèmes inverses bayésiens, qui a été reprise dans [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF] pour améliorer l'algorithme CE (1). Cette technique donne des résultats d'une grande précision et c'est pourquoi, dans ce chapitre, nous proposons d'étudier l'influence de la projection des paramètres dans un sous-espace de petite dimension. Nous commençons par analyser l'effet d'une projection sur la divergence de Kullback-Leibler, dans un cadre simple. Nous montrerons ensuite sur des simulations qu'utiliser une projection, même naïve ou non optimale, permet souvent d'améliorer les résultats d'estimation d'une espérance. Enfin, nous présenterons la projection proposée dans [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF] et [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF], afin d'évaluer son efficacité et ses limites sur quelques exemples numériques.

Étude de l'influence d'une projection sur la précision de l'estimation

Réduction potentielle de la divergence de Kullback-Leibler à l'aide d'une projection

La divergence de Kullback-Leibler est liée à l'erreur d'estimation, comme évoqué dans le chapitre 1 (section 1.2.4), et s'assurer que la divergence ne prend pas de grandes valeurs peut permettre d'améliorer la précision de l'estimation. Nous proposons de montrer dans un cas très simple (cas gaussien avec covariance fixée à l'identité) comment une projection des paramètres dans un sousespace de petite dimension peut éviter une forte augmentation de la divergence KL.

On souhaite approcher la densité optimale d'échantillonnage préférentiel g * = φf E (1.5) pour estimer E, par une densité gaussienne g m (x) = g m,In (x) = 1 (2π) n/2 exp (xm 2 /2) (en rappelant également que f = g 0,In ). La divergence KL (à minimiser) entre ces deux densités s'écrit :

D(g * , g m ) = E g * ln g * (X) g m (X) = E g * ln φ(X) exp (-X 2 /2) E exp (-X -m 2 /2) = 1 2 E g * ( X -m 2 ) - 1 2 E g * ( X 2 ) + E g * (ln(φ(X))) -ln(E).
Après avoir développé le terme au carré, et rappelé que m * = E g * (X), on obtient : 

D(g * , g m ) = 1 2 m * -m 2 + D * , ( 3 
m -m * 2 = m -Π Y (m * ) 2 + Π Y (m * ) -m * 2 = m -Π Y (m * ) 2 + m * 2 -Π Y (m * ) 2 .
Comme mY = Π Y ( m * ) ∈ Y, et en utilisant (3.1), on déduit :

D(g * , g mY ) = 1 2 Π Y ( m * -m * ) 2 - 1 2 Π Y (m * ) 2 + E g * (ln(φ(X))) -ln(E). (3.2)
La différence entre les deux divergences donne enfin : 

2D(g * , g mY ) -2D(g * , g m * ) = m * 2 -Π Y (m * ) 2 - 1 N ε 2 -Π Y (ε) 2 . (3.3) Comme ε 2 ≥ Π Y (ε) 2 , il

Approximation de la matrice de covariance optimale

L'estimation des paramètres gaussiens m * et Σ * (1.10) en grande dimension induit de nombreuses erreurs qui dégradent l'estimation finale. C'est particulièrement le cas pour la matrice de covariance dont le nombre de coefficients à estimer (n(n + 1)/2) croît de manière quadratique avec la dimension n. Nous proposons donc de nous concentrer sur cette matrice et de n'en estimer qu'un petit nombre de coefficients.

Pour cela, on suggère d'estimer la matrice :

Σ k = k i=1 (v i -1)d i d i + I n (3.4)
où les d i sont k vecteurs orthonormés, indiquant des directions influentes pour l'estimation de Σ * , et v i > 0 est la variance dans la direction de 

d i , c'est-à-dire v i = d i Σ k d i . Ainsi,
Y = k i=1 v 1/2 i Y i d i + n i=k+1 Y i d i
où les Y i sont des variables gaussiennes standards (N (0, 1)) indépendantes. On peut également montrer que Σ k s'écrit sous la forme : 

Σ k = (R, R ⊥ ) V k 0 0 I n-k R R ⊥ (3.5) où V k = diag(v 1 , . . . ,

Simulations numériques

Pour justifier l'utilisation de la matrice "projetée" Σ k plutôt que la matrice empirique Σ * , commençons par tester la précision de l'estimation lorsqu'on choisit les directions de projection d i de manière naïve. Pour cela nous allons d'abord tirer ces directions aléatoirement. Ensuite, nous testons la projection sur les directions canoniques, ce qui revient à modéliser Σ k comme une matrice diagonale. Nous allons observer numériquement comment l'estimation de l'espérance E par échantillonnage préférentiel est affectée par ces deux choix de directions. Pour cela, on propose de suivre l'algorithme 6, où tous les Pour réaliser les simulations selon ce procédé, on suppose que l'on sait générer un échantillon selon la loi optimale g * , le but étant d'estimer les paramètres m * et Σ * directement (par les formules (1.11)) en évitant d'éventuels problèmes de convergence d'un algorithme adaptatif et l'influence des poids d'importance. En effet, un échantillon tiré selon g * est généralement obtenu de manière itérative par des algorithmes d'AIS (comme ceux décrits dans le chapitre 1) ou par des méthodes MCMC (voir par exemple [START_REF] Chan | Improved cross-entropy method for estimation[END_REF], [START_REF] Grace | Automated State-Dependent Importance Sampling for Markov Jump Processes via Sampling from the Zero-Variance Distribution[END_REF]). Dans les exemples de fiabilité, les échantillons selon g * sont générés par une simple méthode de rejet, avec un budget de simulation potentiellement grand, mais le but premier étant d'étudier l'efficacité des projections sur les d i , on ne prendra pas en compte ce budget. Dans les autres exemples considérés, g * correspond à une loi simple avec laquelle on sait échantillonner directement.

d i , i = 1 . . . n, sont fixés préalablement (et donc k = n).
Pour générer les vecteurs d i aléatoirement, on tire n vecteurs uniformément sur [-1; 1] n , et on orthonormalise la famille, (en utilisant par exemple le procédé d'orthonormalisation de Gram-Schmidt) pour en faire une base orthonormée de R n . D'autre part, pour projeter dans les directions canoniques, on prendra d i = e i , pour i = 1 . . . n, où les e i sont les vecteurs de la base canonique de R n (avec tous les coefficients nuls sauf le i-ème qui est égal à 1), ce qui revient à estimer uniquement les coefficients diagonaux de la matrice Σ * . On compare ensuite l'estimation ÊN obtenue par échantillonnage préférentiel avec g m * ,Σ comme densité auxiliaire, et la divergence de Kullback-Leibler entre g * et g m * ,Σ , où Σ est une des matrices suivantes :

• Σ * la matrice optimale théorique, calculée de manière exacte lorsqu'elle est connue, ou estimée par Monte-Carlo avec un budget de simulation très important.

• Σ * (1.11) l'estimation empirique de Σ * obtenue avec un échantillon selon g * de taille M .

• Σ * rand la matrice de la forme Σ k (3.4), obtenue en projetant Σ * dans n directions d i aléatoires, autrement dit avec

v i = d i Σ * d i , pour i = 1...n.
• Σ * rand la matrice de la forme Σ k (3.4), obtenue en projetant Σ * dans n directions d i aléatoires, autrement dit avec

v i = d i Σ * d i , pour i = 1...n.
• Σ * diag la matrice diagonale issue de Σ * , autrement dit la matrice Σ k avec v i = e i Σ * e i , pour i = 1...n.

• Σ *

diag la matrice diagonale issue de Σ * , autrement dit la matrice Σ k avec v i = e i Σ * e i , pour i = 1...n.

La matrice empirique Σ * correspond à la situation que l'on cherche à améliorer pour s'approcher du cas (gaussien) optimal donné par Σ * . Les matrices Σ * rand et Σ * diag servent à tester la qualité des projections. En effet, si la projection était optimale on aurait des résultats identiques à ceux de la matrice Σ * . Enfin, les matrices Σ * rand et Σ * diag permettent d'évaluer l'éventuelle amélioration apportée par les projections comparé à Σ * .

Les simulations sont réalisées sur 4 cas-tests, et les résultats sont regroupés dans des tableaux où l'on fait apparaître la valeur moyenne de la divergence KL partielle (D définie en (2.2)), l'erreur relative par rapport à la valeur optimale (D (Σ * )), l'estimation moyenne de ÊN , et le coefficient de variation correspondant, et ce pour différentes dimensions. La valeur de la divergence KL indiquée dans les tableaux (D (Σ)) est une valeur moyenne sur 50 répétitions indépendantes de l'algorithme 6, où les tailles d'échantillons sont fixées à M = 500, et N = 2000, sauf mention contraire. L'erreur relative de la divergence KL, pour une matrice Σ, est donnée par :

D (Σ) -D (Σ * ) D (Σ * ) , (3.6)
qui est une quantité positive car D (Σ * ) est la divergence KL partielle minimale. L'estimation moyenne et le coefficient de variation sont définis respectivement par :

1 50

50 i=1 Ê(i) N et 1 E 1 50 50 i=1 Ê(i) N -E 2 , (3.7) où Ê(1) N , . . . , Ê (50) 
N sont 50 estimations indépendantes de E, dont la valeur exacte est estimée par Monte-Carlo avec un budget très important lorsqu'elle n'est pas connue théoriquement. De plus, les vecteurs choisis aléatoirement sont différents à chaque répétition. Les 4 exemples choisis sont deux exemples jouets d'estimation de probabilité d'événement rare (où φ = I {ϕ(•)≥0} ), et deux exemples jouets où l'on cherche à échantillonner selon une loi cible pour estimer une espérance (ici la constante de normalisation de la densité).

Notons enfin que les deux méthodes de projection ont déjà été utilisées dans la littérature pour diminuer le nombre de paramètres. Estimer uniquement la diagonale de Σ * est suggéré par exemple par [Bourinet, 2018] dans l'algorithme d'entropie croisée. D'autre part, l'article [START_REF] Wang | Bayesian Optimization in High Dimensions via Random Embeddings[END_REF] propose de générer une matrice de projection aléatoire pour la résolution de problèmes en optimisation bayésienne (méthode REMBO : Random EMbeddings for Bayesian Optimisation).

Exemple dans le cas événement rare : somme de variables indépendantes

Pour commencer, reprenons la fonction ϕ 1 définie en 2.1 (section 2.1.1) par

ϕ 1 : x = (x 1 , . . . , x n ) ∈ R n → n j=1 x j -3 √ n.
On rappelle que la moyenne et la covariance optimales sont données par : Ce tableau montre en effet la forte dégradation de l'estimation lorsqu'on utilise la matrice empirique Σ * (coefficient de variation de 9.2% en dimension 40, 79% en dimension 100), alors que la matrice optimale obtient toujours des résultats très précis (coefficient de variation toujours autour de 2%). Les matrices Σ * diag et Σ * rand donnent des résultats proches de ceux donnés par Σ * (divergence à moins de 5% de l'optimum en dimension 40, et moins de 2% en dimension 100 ; coefficient de variation toujours inférieur à 5%), ce qui signifie que les directions de projection conviennent. De plus, les matrices Σ * diag et Σ * rand , calculées à partir de Σ * , gardent une divergence KL proche de la valeur optimale pour toutes les dimensions (moins de 5%) et l'estimation est assez précise (coefficient de variation entre 4 et 6%). L'amélioration est donc significative, dans ce cas simple, même avec ces choix naïfs de projection. Cela montre qu'il peut être utile de projeter pour diminuer le nombre de paramètres à estimer et ainsi réduire le nombre d'erreurs d'estimation, même sans connaitre des directions optimales. Ici, on passe de n(n + 1)/2 paramètres pour estimer Σ * , à n pour Σ * rand et Σ * diag (par exemple pour n = 100, on passe de 5050 à 100 paramètres) ce qui est déjà une réduction conséquente. Tableau 3.1 -Comparaison numérique de la divergence D et de l'estimation de E pour différentes matrices de covariance lorsque φ = I ϕ≥0 avec ϕ = ϕ 1 la somme des variables indépendantes (2.1).

m * = m * • 1 n , avec m * = e -9/2 E √ 2π , et 1 n = 1 √ n (1, . . . , 1) ∈ R n , et Σ * = (v * -1)1 n 1 n + I n , où v * = 3m * -(m * ) 2 + 1.
Σ * Σ * Σ * diag Σ * diag Σ *
Néanmoins, ces choix de directions de projection ne prennent pas en compte l'information donnée par la fonction ϕ, ou la forme de la matrice optimale, et ne permettent donc pas d'avoir des estimations finales très précises dans de nombreux exemples. Dans ce premier exemple, la matrice optimale Σ * est assez proche de la matrice identité en grande dimension, ce qui peut expliquer le bon comportement des matrices Σ * diag mais également Σ * rand . En effet, en projetant aléatoirement dans des directions potentiellement peu influentes, les coefficients vi de l'algorithme 6 sont relativement proches de 1 (ou autrement dit des coefficients de variance initiaux, la matrice initiale étant égale à I n ), ce qui implique que Σ * rand est aussi proche de I n . Les exemples suivants montrent que ces deux manières de projeter peuvent facilement être mises en défaut.

Exemple dans le cas événement rare : un polynôme de degré 2

Pour ce deuxième exemple, nous restons dans l'estimation d'une probabilité d'événement rare avec la fonction suivante :

ϕ 2 (x) = x 1 -2(x 1 -x 2 ) 2 -3(x 1 -x 3 ) 2 -1.
(3.8)

Le graphe de cette fonction est tracé figure 3.2 en 3 dimensions, et correspond à l'état limite {ϕ 2 (x) = 0}. respectivement contre 9.2% pour Σ * ), ce qui est lié à une plus grande erreur relative sur la divergence D (29% pour les matrices projetées aléatoirement contre 4.6% pour Σ * ). Les directions de projection semblent donc avoir une plus grande influence ici, ce qui n'est pas surprenant étant donné que la fonction ϕ 2 ne dépend que des trois premières coordonnées, il vaut ainsi mieux projeter dans le sous-espace engendré par (e 1 , e 2 , e 3 ). En estimant la variance dans des directions aléatoires et potentiellement différentes de e 1 , e 2 , ou e 3 , les matrices Σ * rand et Σ * rand sont proches de la matrice identité, comme expliqué dans l'exemple précédent. Elles ne permettent donc pas de détecter les faibles valeurs de variance prises par les trois premières variables. Cependant, dans les dimensions supérieures, la matrice Σ * devient bien moins précise (coefficient de variation entre 43 et 220% et estimation qui s'éloigne de la valeur attendue) que Σ * rand et Σ * rand qui gardent une précision raisonnable (estimation proche de la valeur de référence et coefficient de variation entre 19 et 24%). Si l'on regarde les résultats donnés par les matrices diagonales, on remarque que la divergence D reste proche de la valeur optimale dans toutes les dimensions, comme évoqué figure 3.3, et de ce fait, que l'estimation reste assez précise (coefficient de variation toujours inférieur à 9% pour Σ * diag , et inférieur à 10% pour Σ * diag ). Ainsi, malgré la présence de coefficients de covariance non nuls dans Σ * , ceux-ci sont peu nombreux et prennent de faibles valeurs, ce qui explique que l'estimation de E ne soit pas trop dégradée en ne les prenant pas en compte. Avec Σ * , le coefficient de variation varie entre 3.4 et 6.2%, alors qu'avec Σ * diag , il reste entre 6.5 et 8.6%. On a donc bien une perte de précision mais celle-ci est minime et l'amélioration donnée par Σ * diag par rapport à Σ * est significative et justifie de laisser les coefficients extra-diagonaux de côté pour estimer la matrice de covariance. Néanmoins, nous verrons dans l'exemple 3.1.3.4 que considérer uniquement les coefficients diagonaux peut être insuffisant. Finalement, lorsque la dimension est grande, ce cas suggère que les matrices "projetées" sont toujours plus efficaces que la matrice empirique, comme dans l'exemple précédent. Tableau 3.2 -Comparaison numérique de la divergence D et de l'estimation de E pour différentes matrices de covariance lorsque φ = I ϕ≥0 avec ϕ = ϕ 2 une fonction polynomiale de degré 2 (3.8).

Exemple pour l'échantillonnage selon la loi "banana shape"

On reprend ici l'exemple jouet de la section 2.1.3, où l'on cherche à échantillonner selon la loi en forme de banane, de densité π (2.3). L'intégrale que l'on évaluera par échantillonnage préférentiel ici sera la constante de normalisation de la densité E = π(x)dx, dont la valeur théorique est 1. La densité optimale d'IS g * pour l'estimation de π(x)dx est exactement π. On rappelle que les paramètres gaussiens optimaux sont m * = 0 ∈ R n et Σ * = diag(100, 19, 1, . . . , 1) ∈ S + n . La divergence de Kullback-Leibler partielle (D ) et les résultats d'estimation de E sont regroupés dans le tableau 3.3. On peut voir, comme précédemment, que la divergence de Σ * s'éloigne de la valeur minimale (D (Σ * )) quand la dimension grandit, alors que celle de Σ * diag reste très proche. Cela se traduit par une estimation finale très précise pour Σ * diag , le coefficient de variation étant au maximum égal à 8.7%, alors qu'avec la matrice empirique, le coefficient de variation explose (plus de 900% en dimension 100). En revanche, pour Σ * rand et Σ * rand on remarque que la divergence est toujours éloignée de la valeur optimale, l'erreur relative valant jusqu'à 82% en dimension 40. De ce fait, le coefficient de variation de ÊN est supérieur à 95% dans toutes les dimensions, pour ces deux matrices. L'inefficacité des matrices construites à partir des projections aléatoires s'explique en partie par la mauvaise estimation des deux premiers coefficients diagonaux. En effet, ces deux quantités prennent en théorie de grandes valeurs (Σ Ainsi, comme dans l'exemple précédent, projeter de manière aléatoire ne permet pas de bien approcher la loi cible π et donc de bien estimer l'intégrale E. En revanche, estimer uniquement la diagonale de la matrice de covariance donne de très bons résultats, dans toutes les dimensions considérées, étant donné que la matrice optimale Σ * est elle-même diagonale. L'exemple suivant est un dernier cas jouet montrant les limites des deux choix de projection (aléatoire, et sur les vecteurs canoniques pour obtenir une matrice diagonale). Tableau 3.3 -Comparaison numérique de la divergence D et de l'estimation de E = π(x)dx pour différentes matrices de covariance, où g * est égale la densité de la loi "banana shape" π (2.3).

Σ * = Σ * diag Σ * Σ * diag Σ *

Exemple pour l'échantillonnage selon une loi gaussienne centrée

Dans ce dernier exemple, on considère la loi normale centrée de dimension n, N (0, V 0 ), où V 0 = (1/2)(I n + 1 n 1 n ) est la matrice avec des 1 sur la diagonale, tous les autres coefficients étant égaux à 1 2 , et on veut approcher cette loi par échantillonnage préférentiel. Autrement dit, on a m * = 0 et Σ * = V 0 . On va calculer la divergence de Kullback-Leibler partielle D (Σ) pour les différentes matrices proposées, et estimer E = g 0,V 0 (x)dx(= 1) par échantillonnage préférentiel, toujours selon la méthode décrite par l'algorithme 6. Remarquons que dans ce cas, on a g * = g 0,V 0 et donc que la divergence de Kullback-Leibler D(g * , g m * ,Σ * ) vaut exactement 0, ce qui n'est pas le cas de la divergence partielle D (Σ * ), comme on le voit dans le tableau 3.4. Notons également qu'on ne peut pas estimer E directement par échantillonnage préférentiel avec la loi g m * ,Σ * puisque le rapport de vraisemblance vaut exactement 1 (ce qui revient à calculer : 1 N N i=1 1 = 1 quel que soit l'échantillon). C'est pourquoi les cases correspondantes dans le tableau sont laissées vides.

On lit ainsi dans le tableau 3.4 que toutes les matrices avec une projection donnent une mauvaise approximation de la densité cible, et donc une mauvaise estimation de l'espérance. En dimension 40 et 70, la matrice empirique est même nettement plus efficace que toutes les autres. En effet, la divergence D de Σ * a une erreur relative de 12% en dimension 40 et 25% en dimension 70, alors que les matrices Σ * diag , Σ * rand , Σ * diag , et Σ * rand ont toutes une erreur supérieure à 100%. De même, les estimations sont très imprécises pour ces matrices, au vu de leurs coefficients de variation (supérieurs à 43% en dimension 40 et à 79% en dimension 70) et la valeur de l'espérance est souvent sous-estimée. La matrice Σ * donne une estimation proche de la valeur théorique (1.016 en dimension 40, 0.918 en dimension 70) et un coefficient de variation nettement inférieur à celui des autres matrices (8.6% en dimension 40 et 31% en dimension 70). En dimension 100, la matrice de covariance empirique devient moins précise (coefficient de variation de 120%) mais reste toujours un peu plus performante que les matrices avec projection.

Ainsi, cet exemple met clairement en défaut les deux techniques d'estimation de la covariance proposées. On comprend bien qu'estimer uniquement la diagonale de Σ * , et laisser tous les autres coefficients à zéro, ne donne pas des résultats performants ici, étant donné que tous les coefficients de covariance sont non nuls. De même, les matrices utilisant une projection aléatoire, Σ Tableau 3.4 -Comparaison numérique de la divergence D et de l'estimation de E pour différentes matrices de covariance lorsque g * est la densité gaussienne centrée g 0,V 0 .

sont également proches de la matrice identité (avec des termes bien plus petits que 1/2 hors de la diagonale, comme on peut le voir figure 3.4), et ne permet donc pas d'avoir des résultats précis pour les mêmes raisons.

Conclusion

Les 4 exemples ont montré que l'estimation par échantillonnage préférentiel était souvent plus précise en grande dimension avec les matrices Σ * diag et Σ * rand qu'avec Σ * . Estimer un petit nombre de paramètres de covariance dans des directions préalablement choisies diminue la divergence de Kullback-Leibler et améliore donc l'estimation finale de l'espérance. Lorsque la matrice ciblée, Σ * , est proche de l'identité (exemple 3.1.3.1), les 2 méthodes donnent des résultats similaires et très satisfaisants. Cependant pour des matrices plus complexes, prendre des directions aléatoires atteint vite ses limites (voir 3.1.3.2 et 3.1.3.3), et ne permet pas d'avoir une estimation très précise. En estimant uniquement la diagonale de la matrice optimale, l'exemple 3.1.3.4 a montré que les résultats n'étaient pas toujours performants, si la matrice optimale comportait beaucoup de termes de covariance non nuls qu'il ne fallait pas négliger. Ainsi, si estimer la variance dans un petit nombre de directions permet de diminuer les erreurs d'estimation, le choix de ces directions peut avoir une grande influence sur la qualité de l'approximation de la loi cible et sur la précision de l'estimation finale de l'espérance.

Dans la suite de ce manuscrit, on va chercher des directions particulières de projection, en prenant en compte l'information donnée par la fonction d'intérêt (φ) ou directement par la matrice optimale Σ * . Dans la section suivante, on décrit une méthode proposée dans la littérature pour réduire la dimension dans des problèmes inverses bayésiens [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF], et repris dans le cadre de l'estimation de probabilités d'événements rares pour améliorer l'algorithme d'entropie croisée [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF]. Cette méthode consiste à identifier un sous-espace de petite dimension dans lequel projeter les paramètres d'échantillonnage préférentiel et repose notamment sur un calcul du gradient de la fonction φ (ou d'une approximation). [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF] ont développé une technique de réduction de dimension ("Certified Dimension Reduction") pour la résolution de problèmes inverses bayésiens, en exploitant l'information du gradient du logarithme de la fonction d'intérêt. Cette méthode consiste à projeter l'espace des paramètres dans un sous-espace (nommé "Failure-Informed Subspace" -FIS -dans [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF], dans le contexte des probabilités de défaillance) qui identifie une structure de petite dimension du problème. Ainsi, les paramètres (dans notre cas, m * et Σ * ) sont mis à jour en dimension réduite.

Nous allons décrire cette méthode dans le cadre de ce manuscrit, où l'on veut estimer l'espérance E = E f (φ(X)) par échantillonnage préférentiel. Dans cette section, on considère que la fonction d'intérêt φ est continument différentiable (ou pouvant être approchée par une fonction suffisamment régulière) et vérifie E f ( ∇ ln φ(X) 2 ) < +∞.

L'idée est d'approcher g * = φf /E par une densité g * k n'agissant que sur un sous-espace de petite dimension. En supposant que l'on connaisse un projecteur, P k ∈ R n×n , dans un sous-espace de dimension k < n (en reprenant les notations de la partie 3.1.2, on a en fait P k = RR ), [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF] suggèrent de définir cette approximation par g * k (x) ∝ E f (φ(X)|x k )f (x), où x k = P k x est la projection du vecteur x ∈ R n . D'après les travaux de [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF], l'espérance conditionnelle E f (φ(X)|x k ) est en fait la meilleure approximation de φ selon la divergence de Kullback-Leibler, sur toutes les fonctions mesurables sur le sous-espace de dimension k (défini par P k ). Dans le cas où f est la densité N (0, I n ), la divergence KL entre g * et g * k peut alors être majorée par la borne suivante :

D(g * , g * k ) ≤ 1 2 tr ((I n -P k )H(I n -P k ))
où H est la matrice définie par :

H = R n ∇ ln φ(x)∇ ln φ(x) g * (x)dx = E g * ∇ ln φ(X)∇ ln φ(X) .
(3.9)

Ainsi, [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF] montrent que le projecteur minimisant cette borne est donné par : )) = n j=k+1 λ j . L'approximation peut alors être contrôlée par un seuil de tolérance préalablement choisi ε :

P * k = k j=1 d j d j , ( 3 
D(g * , g * k ) ≤ 1 2 n j=k+1 λ j ≤ ε, (3.11)
et on peut sélectionner la dimension k de l'espace réduit comme le plus petit entier k tel que

n j=k +1 λ j ≤ ε.
Dans le cas où φ = I {ϕ≥0} , [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF] reprennent l'idée de l'algorithme iCE (2) et proposent de remplacer l'indicatrice par une approximation lisse, (par exemple ψ(•, σ) = F N (ϕ(•)/σ), voir section 1.3.3.2). En supposant ϕ continument différentiable, et E f ( ∇ ln ψ(X, σ) 2 ) < +∞, pour tout σ > 0, on peut définir la matrice H (3.9) et le projecteur P * k (3.10), comme précédemment. Dans [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF], le sous-espace de petite dimension engendré par les vecteurs propres d 1 , . . . , d k de H est appelé Failure-Informed Subspace (FIS). Le sous-espace orthogonal au FIS est engendré par les n -k vecteurs propres restants et est appelé Complementary Subspace (CS). Le terme "Failure-Informed Subspace" est particulièrement adapté à l'estimation des probabilités de défaillance, mais nous garderons ce nom même lorsqu'on estime une espérance en général.

Nous proposons maintenant de tester l'efficacité de cette projection sur quelques exemples, en reprenant la procédure 6. On suppose donc que l'on sait échantillonner selon la loi g * comme dans la section précédente 3.1.3. La matrice H (3.9) est alors estimée par :

Ĥ = 1 M M i=1 [∇ ln φ(X i )] [∇ ln φ(X i )] ,
(3.12) avec X 1 , . . . , X M générés indépendamment selon g * . Lorsqu'on se place dans le cadre des probabilités d'événements rares, φ est remplacée par l'approximation de l'indicatrice ψ(•, σ) dans la formule (3.12) (σ > 0 fixé). Enfin, seule la matrice de covariance sera projetée (il est aussi possible de mettre à jour la moyenne avec cette méthode, comme dans [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF]) car comme nous l'avons déjà précisé, la majorité des paramètres estimés provient de cette matrice en grande dimension. Ainsi, l'estimation de E s'effectue grâce à l'algorithme 7. La prochaine section présente des résultats numériques obtenus avec cet algorithme, et permet d'évaluer la performance de la projection sur le FIS. 

Simulations numériques

De la même manière que dans la partie 3.1.3, les tableaux présentés dans la suite font apparaitre la divergence de Kullback-Leibler partielle D , l'erreur relative associée, l'estimation moyenne, et le coefficient de variation pour les matrices Σ * , Σ * , et Σ * FIS . Cette dernière est la matrice obtenue par l'algorithme 7, où les directions de projection sont celles du sous-espace "FIS". Les valeurs sont calculées sur 50 répétitions indépendantes, les tailles d'échantillon sont toujours fixées à M = 500 et N = 2000 et le paramètre ε à 0.01. Notons que dans les cas considérés, le gradient de ln φ est calculable analytiquement et nous utilisons donc son expression exacte pour son évaluation. Cela implique que le FIS estimé est très proche (voire égal) du FIS théorique. De plus, en projetant Σ * dans le FIS (au lieu de Σ * ), la matrice Σ * FIS obtenue serait identique ou très proche de Σ * , de sorte que les résultats d'estimation seraient indiscernables, et c'est pourquoi Σ * FIS n'est pas représentée dans les tableaux suivants.

Exemple jouet dans le cas événement rare : somme de variables indépendantes

Le premier exemple est l'estimation de la probabilité d'événement rare avec la fonction d'état limite ϕ 1 (2.1) et Σ * = (v * -1)1 n 1 n + I n (où 1 n = 1 √ n (1, . . . , 1) ). On rappelle que dans ce cas, la fonction indicatrice I {ϕ 1 ≥0} est remplacée par l'approximation lisse ψ 1 (•, σ) = F N (ϕ 1 /σ) (avec σ = 0.5 dans les simulations). Le gradient de ϕ 1 valant ∇ϕ 1 = (1, . . . , 1) , on a

∇ ln ψ 1 (x, σ) = f (ϕ 1 (x))/σ) σF N (ϕ 1 (x)/σ) (1, . . . , 1) pour tout x ∈ R n et la matrice H est alors égale à H = E g * f (ϕ 1 (X)/σ) 2 σ 2 F N (ϕ 1 (X)/σ) 2 n1 n 1 n .
Les valeurs propres de H sont toutes nulles sauf une, qui vaut nE g * f (ϕ 1 (X)/σ) 2 σ 2 F N (ϕ 1 (X)/σ) 2 > 0, et qui est associée au vecteur propre 1 n . En théorie, le FIS est donc le sous-espace de dimension 1 engendré par 1 n . De plus, le gradient de ϕ 1 étant ici constant, et donc indépendant des échantillons générés, la matrice estimée Ĥ, donnée par est toujours proportionnelle à 1 n 1 n et permet de construire un FIS engendré pas 1 n . La matrice Σ * FIS vaut alors (v 1 -1)1 n 1 n + I n , avec v1 = 1 n Σ * 1 n , et est exactement de la même forme que Σ * , la seule différence étant l'estimation du paramètre v1 . Ce n'est donc pas surprenant de voir que les résultats donnés par cette matrice dans le tableau 3.5, sont presque identiques à ceux de Σ * et largement meilleurs que pour Σ * . En effet, la divergence D de Σ * FIS est toujours à moins de 0.02% de l'optimum et le coefficient de variation de l'estimation de E reste entre 2.3 et 2.7% dans toutes les dimensions (contre 1.9 à 2.2% pour Σ * ). L'amélioration par rapport à Σ * est donc significative.

Ĥ = n1 n 1 n N i=1 f (ϕ 1 (X i )/σ) 2 σ 2 F N (ϕ 1 (X i )/σ) 2 , X i ∼ i.i.d.
Cependant, cette très grande précision est notamment due au fait que le gradient est constant, et que la direction de projection est exacte. Regardons alors ce qu'il se passe lorsque la fonction d'état limite n'est pas linéaire comme dans l'exemple suivant.

Exemple jouet dans le cas événement rare : un polynôme de degré 2

Reprenons la fonction polynomiale ϕ 2 (3.8). La fonction indicatrice, présente dans g * , est approchée par ψ 2 (•, σ) = F N (ϕ 2 /σ) (avec σ = 0.5 dans les simulations), et on cherche à évaluer le gradient ∇ ln ψ 2 (•, σ) pour déterminer la matrice H (3.9). Comme le gradient de ϕ 2 est égal à Les résultats fournis par les matrices Σ * , Σ * et Σ * FIS sont présentés dans le tableau 3.6. On peut observer, comme dans l'exemple précédent, que Σ * FIS est aussi précise que Σ * . En effet, leurs divergences D et leurs coefficients de variation sont quasiment identiques dans toutes les dimensions alors que la matrice Σ * devient très imprécise pour n = 70 et n = 100. Cette grande efficacité vient d'abord de la forme de Σ * FIS qui est la même que celle de la matrice optimale. Ensuite, la fonction ϕ 2 (et son gradient) ne dépendant que des trois premières variables, l'estimation de Ĥ est très précise car seulement six coefficients sont estimés pour l'obtenir. Ainsi, les directions de projection sont bien choisies et les matrices Σ * FIS et Σ * sont presque égales.

∇ϕ 2 (x) = (1 -10x 1 + 4x 2 + 6x 3 , 4x 1 -4x 2 , 6x 1 -6x 3 , 0, . . . ,

Exemple d'estimation d'une espérance : paiement d'une option asiatique

Le dernier cas-test considéré est une application en mathématique financière, tirée de l'article [Kawai, 2018], où l'on cherche à estimer l'espérance d'une variable aléatoire, E = E f (φ 3 (X)), représentant le paiement d'une option asiatique discrétisée, sous le modèle Black-Scholes. La fonction d'intérêt φ 3 est la suivante :

φ 3 : x = (x 1 , . . . , x n ) → e -rT S 0 n n i=1 β i (x) -K + (3.13)
où [y] + = max(y, 0), pour y un nombre réel, et pour tout i = 1 . . . n :

β i (x) = exp   i j=1 r - σ 2 2 T n + σ T n x j   .
Lors des simulations numériques, les constantes sont fixées comme dans [Kawai, 2018], où les auteurs testent la fonction en dimension n = 16 : S 0 = 50, r = 0.05, T = 0.5, σ = 0.1, K = 55. Dans cette partie, on évaluera aussi l'estimation de E en dimension 40 et 100, dont les valeurs de références sont indiquées tableau 3.7. La matrice Σ * n'est pas connue analytiquement et est estimée par Monte-Carlo avec un échantillon de très grande taille. La fonction φ 3 est différentiable sur R n privé de l'ensemble (de mesure nulle) E = { n i=1 β i (x) = nK/S 0 }. Son gradient (au sens faible) est alors donné, pour tout x n'appartenant pas à E, par

∇φ 3 (x) = e -rT S 0 n σ T n n i=1 β i (x), n i=2 β i (x), . . . , β n (x) I n i=1 β i (x)>nK/S 0 .
La matrice Ĥ (3.12) obtenue à l'aide de ce gradient fournit une seule direction de projection quelle que soit la dimension. Une nouvelle fois, cette direction est égale (à moins de 10 -3 près) à la direction donnée par la matrice H (estimée avec un échantillon de très grande taille). Cette dernière est représentée en dimension 16 sur la figure 3.5 (à gauche). Ses valeurs propres sont toutes presque nulles (< 10 -3 ) sauf une qui vaut environ entre 50 et 130 suivant la dimension, c'est pourquoi une seule direction de projection est sélectionnée. Les coordonnées du vecteur propre associé à la plus grande valeur propre sont indiquées à droite de la figure 3.5, toujours pour la dimension 16. Les résultats de simulation de Σ * FIS sont présentés tableau 3.7 avec ceux des matrices optimale et empirique. Si l'estimation avec Σ * est assez précise en dimension 16 (coefficient de variation de 4%), elle ne cesse de se dégrader en dimension 40, puis 100 (coefficients de variation de 27% et 91% respectivement). À l'inverse, la matrice Σ * FIS est performante dans toutes les dimensions, avec une divergence D toujours à moins de 1% de la valeur optimale et un coefficient de variation autour de 2.5%. Ces résultats restent proches de ceux donnés par la matrice optimale Σ * .

Ainsi, dans tous les exemples considérés, la projection sur le FIS permet d'approcher très précisément la matrice optimale et entraine une faible erreur d'estimation en grande dimension. Les résultats donnés par la matrice Σ * FIS sont même similaires à ceux de Σ * . Remarque 3.2.1. Dans le même esprit que cette approche, [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF] suggèrent également d'utiliser d'autres techniques de réduction de dimension basées sur le gradient et notamment la méthode des "Active Subspaces" ou sous-espaces actifs (développée par [Constantine, 2015]). La construction du sous-espace actif d'une fonction φ repose sur le calcul des vecteurs propres de la matrice :

C = R n ∇φ(x)∇φ(x) f (x)dx,
où la densité de probabilité est f alors que c'est la densité optimale g * pour H. [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF] proposent ainsi de calculer l'Active Subspace de la fonction "ln φ" afin de réduire la dimension du problème. Cette méthode permet en effet d'améliorer l'estimation, cependant elle ne garantit pas la minimisation, ou simplement le contrôle de la divergence de Kullback-Leibler, contrairement à l'approche présentée ici.

Conclusion

Dans ce chapitre, nous avons montré que projeter les paramètres dans un sous-espace de petite dimension pouvait diminuer la divergence de Kullback-Leibler et donc l'erreur d'estimation par échantillonnage préférentiel. Les simulations numériques ont montré que choisir des directions de projection aléatoires ou canoniques dans lesquelles estimer la matrice de covariance apportait souvent une amélioration de l'estimation de l'espérance par rapport à la matrice empirique. Il semble donc que même sans connaître les directions optimales de projection, projeter pour réduire la dimension permet d'améliorer la précision de l'estimation. Malgré tout, trouver des directions adaptées à chaque cas-test permettrait d'encore améliorer les performances d'estimation par échantillonnage préférentiel. [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF] et [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF] proposent par exemple des directions de projection assurant le contrôle de la divergence KL, en construisant le Failure-Informed Subspace. Les résultats de simulations obtenus à l'aide du FIS sont très performants mais celui-ci repose sur la connaissance du gradient, qui peut être très couteux à évaluer et limite l'application de cette technique aux fonctions suffisamment régulières. L'objectif du chapitre suivant est donc de proposer une méthode de projection sans hypothèse de différentiabilité, en prenant en compte l'information des paramètres (gaussiens) optimaux d'échantillonnage préférentiel.

Chapitre 4

Identification de directions de projection pour estimer la matrice de covariance Projeter les paramètres dans un sous-espace, ou les estimer uniquement dans un petit nombre de directions, semble donner de meilleurs résultats d'estimation et diminuer la divergence de Kullback-Leibler qu'en estimant la totalité des paramètres, comme le montrent les simulations de la section 3.1.3 du chapitre 3. Cependant, le choix des directions de projection peut aussi avoir une grande influence sur la qualité de l'estimation et il est préférable que ce choix ne soit pas fait de manière totalement aléatoire ou arbitraire, mais qu'il prenne en compte les données du problème disponibles. Un exemple évoqué dans le chapitre 3 est la méthode de projection développée dans [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF] puis [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF] où les projections trouvées proviennent d'une majoration de la divergence KL et reposent sur l'estimation d'une matrice construite à partir du gradient de la fonction d'intérêt. Cette approche est très performante mais elle n'est pas toujours applicable sachant que le gradient n'est pas toujours disponible, peut être couteux à évaluer, ou même ne pas exister. L'objectif de ce chapitre est donc d'abord de déterminer des directions de projection, déduites directement des paramètres et ne nécessitant pas d'hypothèse de différentiabilité, puis de tester numériquement l'efficacité de ces directions sur différents cas-tests analytiques.

Identification de directions de projection pour estimer

la matrice de covariance optimale sans utiliser le gradient

Définition du cadre numérique

Pour commencer, on reprend les notations de la section 3.1.2, où on cherche à estimer une intégrale E, en grande dimension, par échantillonnage préférentiel. Les paramètres gaussiens minimisant la divergence de Kullback-Leibler avec g * (la densité IS optimale théorique) sont notés m * et Σ * , et on souhaite estimer la matrice Comme précédemment, on suppose qu'on sait échantillonner selon g * pour estimer les paramètres optimaux, le but étant avant tout de tester l'efficacité des directions de projection (voir justification section 3.1.3). Le point 2 de l'algorithme 8 est développé dans les sections suivantes, où l'on définira des directions influentes pour l'estimation de la variance.

Σ k = k i=1 (v i -1)d i d i + I n (3.4),

Identification d'une première direction influente : la moyenne optimale

Dans la première idée de projection que nous suggérons, nous nous plaçons dans le cadre d'estimations de probabilités d'événements rares. De plus, nous supposerons que la moyenne optimale m * est non nulle, ajouté à l'hypothèse d'unimodalité déjà évoquée au début du manuscrit.

Une bonne direction dans laquelle estimer des paramètres de variance est une direction où la variance est significativement différente de 1. En effet, si la projection de la matrice de covariance Σ * dans une certaine direction vaut 1, cela signifie que la variance est identique à celle de la densité Ce choix est justifié par la propriété de queue légère de la loi normale. En effet, dans le cadre des événements rares, rappelons que la loi optimale d'échantillonnage préférentiel (de densité g * ) est la loi de X sachant ϕ(X) ≥ 0, avec X supposé de loi normale centrée réduite. Si l'on considère le cas simple de dimension 1, avec X une variable aléatoire N (0, 1) et S un réel positif fixé, la variable conditionnelle X | X ≥ S a une variance qui tend vers 0 lorsque S tend vers l'infini. On peut en effet montrer que cette variance vaut approximativement 1/S 2 pour S grand. Les points défaillants étant loin de l'origine, ils ont une faible variance (du fait de la queue légère de la gaussienne), et comme ils s'éloignent de l'origine dans la direction de m * , leur variance décroit en particulier dans cette direction.

Ainsi, pour estimer une probabilité d'événement rare, une première idée de projection pour l'estimation de la matrice de covariance est donnée par la direction du vecteur moyenne m * . Autrement dit, on suggère ici d'évaluer la matrice Σ k (3.4) avec k = 1 et d 1 = m * / m * . On testera l'efficacité de cette technique en section 4.2 grâce à l'algorithme 8 avec d1 = m * / m * à l'étape 2. On verra également qu'elle peut être appliquée plus généralement à l'estimation d'une espérance, tant que m * = 0.

Cependant, si les résultats numériques 4.2 montrent une nette amélioration de l'estimation, la direction de projection proposée n'est pas optimale. On peut le voir par exemple pour l'estimation de la probabilité P f (ϕ 4 (X) ≥ 0) avec Pour ce type de fonction, la projection selon m * n'est donc pas optimale, et il serait intéressant de pouvoir projeter en plus d'une dimension. Dans la partie suivante, on va donc proposer des directions de projection optimales pour la matrice Σ k , qui de plus, ne nécessitent pas de supposer m * = 0.

ϕ 4 : x = (x 1 , . . . , x n ) ∈ R n → x 1 -25x 2 2 -3 (4.

Identification des directions optimales par minimisation de la divergence de Kullback-Leibler

En voulant approcher Σ * par Σ k (3.4), on modifie la famille paramétrique considérée lorsqu'on veut minimiser la divergence de Kullback-Leibler entre g * et g m * ,Σ . À l'origine, la covariance de la loi normale est mise à jour dans l'espace des matrices symétriques définies positives S + n , alors que les matrices du type Σ k appartiennent au sous-ensemble des matrices de la forme :

L n,k = k i=1 (α i -1) d i d i d i 2 + I n : α 1 , . . . , α k > 0 et les d i ∈ R n sont orthogonaux .
L'espace dans lequel on recherche la matrice optimale est donc réduit, et le nombre de paramètres à estimer passe de n(n + 1)/2 (dans S + n ) à k(n + 1) (dans L n,k ). Dans un premier temps, on considère l'entier k comme fixé préalablement, mais on décrira par la suite une manière de le déterminer en fonction des paramètres. On cherche alors à résoudre le problème de minimisation suivant :

Σ * k = arg min {D(g * , g m * ,Σ ) : Σ ∈ L n,k } (4.2)
en sachant que la moyenne optimale est m * (estimée par m * ). L'expression analytique de la matrice Σ * k est présentée dans le théorème 4.1.1, qui donne les directions optimales de projection de la matrice de covariance. L'énoncé de ce résultat nécessite la définition de la fonction suivante, représentée figure 4.3 : 

: x ∈ R * + → ln(x) -x + 1. (4.3) 0 1 2 3 -1 -0.5 0 
= I n + k i=1 (λ * i -1) d * i (d * i ) d * i 2 .
(4.4)

Démonstration. Comme on l'a déjà évoqué dans le chapitre 2, le problème (4.2) est équivalent au problème de minimisation de D (Σ) pour Σ ∈ L n,k , où D (Σ) = ln det Σ + tr (Σ * Σ -1 ) est défini en (2.2). Dans le reste de la preuve, on considère D comme une fonction de

v = (v 1 , . . . , v k ) ∈ ]0, ∞[ k et d = (d 1 , . . . d k ), matrice de vecteurs orthogonaux, où Σ = k i=1 (v i -1)d i d i / d i 2 + I n .
-1 ère étape : calcul de D (Σ). Le but est de montrer que : 

D (Σ) = D (v, d) = k i=1 ln(v i ) + 1 v i -1 Ψ(d i ) + tr(Σ * ) (4.5) où Ψ(x) = x Σ * x/ x 2 (
Σ) = v 1 • • • v k , et on a la première moitié de l'égalité. D'autre part, tr Σ * Σ -1 = tr Σ * Q∆ -1 Q = tr ∆ -1 Q Σ * Q . Puisque les premières colonnes de Q sont les d i / d i , les premiers coefficients diagonaux de Q Σ * Q valent Ψ(d i ). Ainsi, si d k+1 / d k+1 , . . . , d n / d n complètent les d i / d i , i = 1 . . . k, en une base orthonormale, on obtient tr ∆ -1 Q Σ * Q = k i=1 1 v i Ψ(d i ) + n i=k+1 Ψ(d i ) = k i=1 1 v i -1 Ψ(d i ) + n i=1 Ψ(d i ).
Finalement, comme la dernière somme n i=1 Ψ(d i ) est égale à tr(Q Σ * Q) = tr(Σ * ), on retombe bien sur l'égalité (4.5).

-2 ème étape : minimisation. La dérivée de (4.5) par rapport à v i est : 

∂D ∂v i (v, d) = 1 v i - 1 v 2 i Ψ(d i ) = 1 v 2 i (v i -Ψ(d i )) . Donc à d fixé, D est décroissante en v i pour v i < Ψ(d i ) puis croissante pour v i > Ψ(d i ), ce qui montre que D est minimale en v i = Ψ(d i ). Ainsi, en posant v * = (Ψ(d 1 ), . . . , Ψ(d k )) on obtient D (v * , d) = k i=1 [ln(Ψ(d i )) + 1 -Ψ(d i )] + tr(Σ * ) = k i=1 (Ψ(d i )) + tr(Σ * ). ( 4 
i = (λ i+1 ) -(λ i ) pour i = 1 . . . n -1 ; 2 Déterminer k = arg max δ i , l'indice du maximum des δ i .
On obtient alors l'algorithme 10 qui est une réécriture de l'algorithme 8 en prenant en compte la méthode d'estimation de Σ * k suggérée par le théorème 4.1.1, et le choix de la dimension donné par l'algorithme 9. 

( λ * 1 ) ≤ • • • ≤ ( λ * n ) ; 4 Calculer la matrice Σ * k = k i=1 ( λ * i -1) d * i ( d * i ) + I n avec k obtenu par l'Algorithme 9 avec en entrée ( λ * 1 , . . . , λ * n ) ; 5 Générer un nouvel échantillon X 1 , . . . , X N indépendamment selon g m * , Σ * k ; 6 Estimer ÊN = 1 N N i=1 φ(X i ) f (X i ) ĝ(X i ) où ĝ = g m * , Σ * k .
Cette méthode sera testée section 4.2 et comparée à celle décrite section 4.1.2 sur divers exemples, afin de mesurer l'efficacité de ces directions de projection.

Applications numériques

Cette partie est consacrée aux simulations numériques réalisées pour tester la performance des directions de projection proposées en 4.1.2 avec m * , et 4.1.3 avec les vecteurs propres de Σ * . Pour cela, nous allons comparer l'estimation ÊN et la divergence de Kullback-Leibler, comme dans la section 3.1.3, pour les matrices Σ * et Σ * , ainsi que les quatre autres matrices "projetées", de la forme 

k i=1 (v i -1)d i d i + I n avec v i = d i Σ * d i ,

Exemple jouet dans le cas événement rare : somme de variables indépendantes

Le premier exemple considéré est l'estimation de la probabilité d'événement rare avec la fonction d'état limite ϕ 1 définie en 2.1. Les paramètres optimaux théoriques sont Pour cette dernière, la quantité D reste très proche de la valeur optimale quelle que soit la dimension, alors que la divergence augmente fortement avec la matrice empirique Σ * , comme on l'a déjà évoqué dans les chapitres précédents. Ce graphique suggère donc que l'on aura une meilleure estimation de la probabilité avec Σ * k qu'avec Σ * . La figure 4.4b donne une raison à cette amélioration. En effet, les valeurs propres de Σ * sont assez mal estimées, car toutes les croix rouges (sauf la plus à gauche) sont censées estimer 1, alors qu'elles sont réparties presque uniformément entre 0.4 et 1.8. Cela signifie que les termes de variance dans les directions correspondantes sont mal estimés, et explique pourquoi utiliser Σ * donne une estimation imprécise. Mais la fonction étant assez plate autour de 1, la grande variabilité des valeurs propres est atténuée par l'action de (les images de ces valeurs propres par étant comprises entre -0.4 et 0). De plus, comme croît fortement au voisinage de 0, elle permet clairement de distinguer la plus petite valeur propre estimée des suivantes. Celles-ci donnent malgré tout des résultats proches de la matrice optimale, et améliore significativement les performances obtenues par Σ * . En dimension 100, le coefficient de variation est légèrement supérieur pour les matrices Σ * m et Σ * d (3.7% et 5.1% respectivement) que pour la matrice optimale (2.5%), du fait de cette double estimation (direction + variance), mais reste très inférieur à celui de la matrice empirique (90%).

m * = m * 1 n et Σ * = (v * -1)1 n 1 n + I n ,
On peut également noter que Σ * m est légèrement plus précise que Σ * d quand la dimension grandit (coefficient de variation de 2.4% et 3.4% pour n = 70 respectivement, et de 3.7% contre 5.1% pour n = 100). Nous supposons que cela provient de l'estimation plus précise de m * comparé au vecteur propre d * 1 de Σ * . En effet, pour évaluer m * on a besoin d'estimer n paramètres, alors que Σ * nécessite l'estimation de plus de n 2 /2 paramètres, et le vecteur propre est alors plus bruité que le vecteur moyenne.

Finalement, les deux méthodes proposées permettent une nette amélioration de l'estimation en grande dimension. Dans cet exemple, où une projection en dimension 1 est suffisante, la projection sur le vecteur moyenne m * donne des résultats légèrement plus précis que pour le premier vecteur propre de Σ * . L'exemple suivant montre que projeter en plus d'une dimension peut être plus efficace que la projection sur le sous-espace de dimension 1 engendré par m * .

Exemple jouet dans le cas événement rare : un polynôme de degré 2

Le deuxième exemple jouet correspond à l'estimation de la probabilité d'événement rare avec la fonction d'état limite suivante : En effet, comme ϕ 5 dépend uniquement des trois premières variables et est paire en

ϕ 5 : x = (x 1 , . . . , x n ) ∈ R n → x 1 -25x 2 2 -30x 2 3 -1. ( 4 
x 2 et x 3 , on a m * = m * e 1 avec m * = E(X 1 | X 1 ≥ 25X 2 2 + 30X 2 3 + 1) ≈ 1.9 et Σ * =            λ 1 0 0 0 • • • 0 0 λ 2 0 0 • • • 0 0 0 λ 3 0 • • • 0 0 0 0 1 • • • 0 . . . . . . . . . . . . . . . . . . 0 0 0 0 • • • 1            .
Les coefficients de covariance de la sous-matrice (Σ * ij ) 1≤i,j≤3 sont nuls car ils sont égaux à l'intégrale d'une fonction impaire d'une variable de densité paire avec un conditionnement pair. Par exemple, si F (x) = P(30X 2 3 + 1 ≤ x), alors en conditionnant en (X 1 , X 2 ) on obtient :

Σ * 12 = E (X 1 -m * )X 2 | X 1 -25X 2 2 ≥ 30X 2 3 + 1 = 1 E E (X 1 -m * )E X 2 F (X 1 -25X 2 2 ) |X 1 qui vaut bien 0 puisque x 2 F (x 1 -x 2
2 ) est une fonction impaire de x 2 , pour x 1 fixé, et X 2 a une densité paire. Les valeurs approchées des coefficients diagonaux sont λ 1 ≈ 0.278, λ 2 ≈ 0.009, λ 3 ≈ 0.0075 et correspondent aux 3 plus petites valeurs propres indiquées par les carrés bleus sur la figure 4.5b. Les résultats des simulations présentés dans le tableau 4.3 confirment les observations de la figure 4.5a. L'estimation se dégrade fortement avec la matrice Σ * (84% de coefficient de variation en dimension 100), comme attendu. En revanche, la matrice Σ * d , avec les directions optimales exactes e 2 et e 3 , donne des résultats très précis et presque identiques à la matrice optimale. Ce comportement est lié à l'évolution de la divergence KL, dont l'erreur relative passe de 5.5% en dimension n = 30 à 16.4% lorsque n = 100, pour la matrice Σ * , alors que l'erreur relative reste toujours en dessous de 3% pour Σ * d . De plus, cette dernière donne des résultats bien plus précis qu'en projetant sur m * (coefficient de variation toujours autour de 3% contre environ 25% pour Σ * m ), car la direction donnée par la moyenne (e 1 ) n'est pas optimale. Cependant, on peut noter que ne pas projeter est moins efficace en dimension 100 que projeter sur m * (coefficient de variation de 84% pour Σ * contre 25.1% pour Σ * m ). Enfin, estimer les directions de projection dégrade légèrement la situation par rapport aux directions exactes. Le coefficient de variation passe en effet de 3.1% pour Σ * d à 4.3% pour Σ * d en dimension 30, et de 2.9% à 7.0% en dimension 100. Concernant la matrice Σ * m, les résultats sont assez proches de ceux donnés par Σ * m , il semble donc que l'estimation de m * soit assez précise jusqu'en dimension 100.

Σ * Σ * Σ * d Σ * m Σ * d Σ * m n = 30 D (Σ)
Encore une fois, on a pu constater l'efficacité des matrices du type Σ k (3.4) pour l'estimation en grande dimension, comparé à la matrice empirique Σ * . Toutefois, la projection sur m * n'étant pas optimale dans cet exemple, elle donne des résultats moins précis que lorsqu'on utilise les directions de projection définies dans le théorème 4.1.1, qu'elles soient exactes ou estimées.

Application en finance : probabilité de perte élevée d'un portefeuille

L'exemple qui suit est une application en finance de l'estimation d'événement rare, tirée de [START_REF] Chan | Improved cross-entropy method for estimation[END_REF] et [START_REF] Bassamboo | Portfolio Credit Risk with Extremal Dependence : Asymptotic Analysis and Efficient Simulation[END_REF]. La probabilité recherchée est E = P(L(Z) > 0), avec L la fonction de perte d'un portefeuille ("portfolio loss function") d'options financières, définie par :

L(z) = n j=1 I {z j ≥0.5 √ n} -bn.
où b est choisi ici de sorte que la probabilité soit de l'ordre de 10 -3 (b = 0.45 en dimension n = 30, b = 0.3 pour n = 70 et b = 0.25 pour n = 100). Les variables aléatoires Z j sont dépendantes et données par :

Z j = qU + (1 -q 2 ) 1/2 η j µ -1/2
où U ∼ N (0, 1), η j ∼ N (0, 9), j = 1, . . . , n, µ ∼ Gamma(6, 6) sont des variables indépendantes, et q = 0.25. Chaque Z j est calculée avec la même réalisation de U et µ, c'est pourquoi elles sont dépendantes. Pour rester dans le cadre de variables gaussiennes standards, on pose η j = 3 η j , pour tout j = 1, . . . n et µ = F -1 Γ (F N ( µ)) avec η j , µ des gaussiennes standards indépendantes et F Γ , F N les fonctions de répartition des lois Gamma(6, 6) et N (0, 1) respectivement. De plus, en posant

X 1 = U, X 2 = µ et (X 3 , . . . , X n+2 ) = η ∈ R n , on définit : ϕ 6 (X) = n j=1 I {Ψ(U, µ, η j )≥0.5 √ n} -bn (4.8) avec Ψ(U, µ, η j ) = qU + 3(1 -q 2 ) 1/2 η j F -1 Γ (F N ( µ)) -1/2 .
Ainsi la probabilité de pertes élevées P(L(Z) > 0) peut être réécrite P(ϕ 6 (X) > 0), avec X un vecteur gaussien standard de dimension n + 2. Les valeurs de référence de cette probabilité E sont rappelées dans le tableau 4.4 pour les dimensions n = 30, 70 et 100. Les paramètres optimaux m * et Σ * ne peuvent pas être calculées analytiquement, et sont estimées précisément par Monte-Carlo avec un budget très important. Numériquement, le premier vecteur propre d * 1 de Σ * est indiscernable de la moyenne m * (normalisée), et comme l'algorithme 9 sélectionne toujours une seule direction de projection (k = 1), on a Σ * m = Σ * d . 

Σ * Σ * Σ * m = Σ * d Σ * d Σ * m n = 30 D (Σ)

Exemple jouet pour l'estimation de la constante de normalisation de la loi "banana shape"

On sort maintenant du cadre des événements rares et on revient sur l'exemple 3.1.3.3, où l'on veut échantillonner selon la loi en forme de banane, de densité π (2.3), et estimer sa constante de normalisation. La moyenne optimale étant nulle, on ne peut pas utiliser la méthode de projection sur m * , et on rappelle que la matrice de covariance optimale est Σ * = diag(100, 19, 1, . . . , 1). Avec cette matrice, l'algorithme 9, pour choisir le nombre de directions, ne permet pas de sélectionner le nombre optimal de dimensions. En effet, Σ * a deux grandes valeurs propres ( 100 On peut voir que la projection sur les deux premiers vecteurs propres de Σ * (colonne Σ * d2 ), donne des résultats aussi performants qu'avec la matrice optimale, et projeter sur les estimateurs, d * 1 et d * 2 , permet de garder une bonne précision également. En effet, la divergence de Kullback-Leibler partielle de Σ * d2 est toujours à moins de 0.4% de la valeur optimale et le coefficient de variation est légèrement plus élevé que celui de Σ * (10.6% par exemple en dimension 100, contre 6% pour Σ * ) mais reste assez faible. En revanche, en ne projetant que sur le premier vecteur propre d * 1 , la divergence s'accroit (entre 14 et 32% d'erreur) et l'estimation devient moins précise (coefficient de variation entre 32 et 36%, et la valeur moyenne de ÊN est à environ 15% de la valeur théorique, quelle que soit la dimension). La précision diminue encore avec Σ * d (coefficient de variation de 57% en dimension n = 70, 250% pour n = 100) mais ces deux matrices sont tout de même plus efficaces que Σ * en dimension 100 (qui a un coefficient de variation de plus de 900%). Ainsi, en grande dimension, il semble préférable d'utiliser une seule direction de projection que d'estimer la matrice entière. Malgré tout, on voit que le choix du nombre de directions est important et peut faire une grande différence dans la précision de l'estimation et la qualité de l'échantillonnage. Si l'algorithme 9 est efficace pour sélectionner le nombre de dimensions dans la majorité des cas que nous avons traités, il est ici mis en défaut. D'autres alternatives existent pour faire cette sélection (voir remarque 4.2.1), mais chacune peut devenir inefficace sur des cas particuliers. Nous préconisons donc malgré tout d'utiliser l'algorithme 9 de manière générale.

Remarque 4.2.1. Une alternative pour sélectionner le nombre de directions de projection est de choisir le plus petit entier k de sorte que le ratio

k i=1 (λ i ) n i=1 (λ i )
soit plus grand qu'un réel ρ ∈]0, 1[ (par exemple ρ = 0.9). Cette méthode permet, dans l'exemple 4.2.4 (avec ρ = 0.9), de choisir 2 directions jusqu'en dimension 100, mais dans des dimensions encore plus grandes, la matrice Σ * étant de plus en plus bruitée, le nombre de directions choisi devient trop grand (par exemple k ≈ 100 pour n = 300). Pour rendre cette méthode plus performante, il faudrait adapter le réel ρ pour chaque exemple et chaque dimension.

Application à l'estimation d'une espérance : paiement d'une option asiatique

Le dernier exemple traité correspond à l'estimation de l'espérance E avec la fonction φ 3 définie en 3.13. Les paramètres optimaux m * ( = 0) et Σ * sont estimés par Monte-Carlo et le premier vecteur propre d * 1 de Σ * est numériquement identique à m * / m * . L'algorithme 9 renvoyant toujours k = 1 (une seule direction de projection sélectionnée), on considère encore Σ * Le tableau 4.6 montre l'amélioration apportée par les matrices avec projection par rapport à la matrice empirique, et ce dès la dimension 16. En effet, pour Σ * , la divergence D a une erreur relative de 5.7% alors que toutes les autres matrices ont au maximum 1.2% d'erreur. Cela implique une meilleure précision de l'estimation, avec un coefficient de variation pour Σ * de 6.7%, et de moins de 2.2% pour les autres matrices. Cette amélioration se confirme en dimension 40 et 100, où l'on remarque néanmoins que la projection sur d * 1 donne des résultats un peu moins précis que la projection sur d * 1 = m * / m * ou sur m * , comme précédemment (coefficient de variation de 9.1% contre 2.6 et 2.5% respectivement). On peut enfin noter que la matrice Σ * m est très performante, bien qu'on ne soit pas dans un cas d'estimation d'événement rare.

d = Σ * m . Σ * Σ * Σ * m = Σ * d Σ * d Σ * m n = 16 D (Σ)
Remarque 4.2.2. Dans les exemples 4.2.1, 4.2.2 et 4.2.5, la matrice Σ * FIS définie dans la section 3.2.2 offre des performances équivalentes et même supérieures à celles des matrices considérées ici. En effet, dans ces cas le gradient est calculable facilement et permet d'obtenir les projections optimales très précisément, ce qui entraine des résultats d'estimation avec une faible erreur (proches de ceux donnés par la matrice optimale). En revanche, le sous-espace de projection FIS ne peut être déterminé dans les cas 4.2.3 (ϕ non différentiable) et 4.2.4 (φ ≡ 1 et matrice H nulle), ce qui montre la limite de la méthode.

Conclusion

Les deux techniques de projection évoquées sections 4.1.2 et 4.1.3 ont montré leur efficacité pour construire une matrice de covariance proche de la matrice optimale et ainsi réaliser une estimation par échantillonnage préférentiel plus précise qu'avec la matrice empirique Σ * en grande dimension. Ces projections permettent de réduire le nombre de paramètres de covariance à estimer et ainsi de diminuer les erreurs d'estimation tout en gardant un faible budget de simulation. La projection sur l'espace engendré par m * , ou sa valeur estimée m * , est souvent performante dès que m * = 0. Cette projection est justifiée, dans le cadre des événements rares, par la propriété de queue légère de la loi normale, car les échantillons d'IS optimaux ont une faible variance dans la direction de m * . Elle n'est pas toujours optimale (voir exemple 4.2.2) et ne permet de projeter qu'en dimension 1, mais a l'avantage de rester efficace avec un faible budget de simulation. Les directions optimales de projection ont ensuite été déterminées en minimisant la divergence de Kullback-Leibler entre la densité optimale d'IS g * et la famille de densités gaussiennes avec une matrice de covariance de la forme Σ k (3.4), qui vit dans un sous-espace de S + n de dimension réduite. Ce résultat central est donné dans le théorème 4.1.1, qui affirme que les directions optimales sont des vecteurs propres de la matrice Σ * . Dans tous les cas-tests considérés, projeter dans les directions optimales permet d'obtenir des estimations précises, en choisissant correctement le nombre de directions. Nous avons également noté que le premier vecteur propre d * 1 de Σ * et la moyenne optimale m * étaient souvent proches (comme dans les exemples 4.2.1, 4.2.3, et 4.2.5), mais dans ce cas, la projection sur m * donne des résultats légèrement plus précis qu'avec d * 1 , car l'estimation de ce dernier est plus bruité, comme expliqué dans la section 4.2.1.

Ainsi, les deux méthodes proposées pour réduire le nombre de paramètres estimés donnent des résultats prometteurs pour améliorer l'échantillonnage préférentiel en grande dimension. Cependant, dans ce chapitre, nous avons supposé que l'on savait générer des échantillons selon g * pour estimer m * et Σ * . Or, en pratique cette étape n'est pas toujours aisée et peut être couteuse, et est généralement réalisée par des méthodes MCMC ou par des algorithmes adaptatifs d'échantillonnage préférentiel. L'objectif de la prochaine partie est donc de coupler les méthodes de projection proposées avec des algorithmes d'IS adaptatifs, visant à estimer une espérance. la projection sur la moyenne optimale, expliquée dans la partie 4.1.2, à l'algorithme CE. Les algorithmes adaptatifs ainsi mis en place sont ensuite testés numériquement sur différents exemples d'estimation de probabilités d'événement rare.

L'algorithme iCEred

L'algorithme iCEred ("improved Cross-Entropy method with failure-informed dimension reduction") développé dans [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF] est une méthode récente d'estimation de probabilité d'événements rares en grande dimension, basée sur la méthode d'entropie croisée. L'idée principale est de projeter les échantillons dans le "Failure-Informed Subspace", présenté section 3.2, et de mettre à jour les paramètres de CE dans ce sous-espace de dimension réduite.

La détermination du FIS dans le cadre des probabilités d'événements rares a été détaillée dans la section 3.2.1 du chapitre 3. On rappelle simplement que la fonction indicatrice I ϕ(•)≥0 est approchée par la fonction lisse ψ(•, σ) = F N (ϕ(•)/σ), σ ∈ R * + (comme dans l'algorithme iCE (2)), afin d'évaluer le gradient de ln(ψ(•, σ)) (à σ fixé). On suppose ainsi, dans toute cette section, que la fonction ϕ est continument différentiable et que E f ( ∇ ln ψ(X) 2 ) < +∞. Ce gradient permet d'estimer la matrice H (3.9), dont on détermine les valeurs propres et les vecteurs propres. La méthode générale pour trouver le FIS (et son complémentaire, le "Complementary Subspace", CS) est détaillée section 3.2.1. Ici, on présente l'algorithme iCEred, qui est une amélioration de l'algorithme iCE (2) en grande dimension à l'aide de la projection dans le FIS.

Étant donnés les vecteurs propres d 1 , . . . , d n de la matrice H, on définit la projection dans le FIS 

(de dimension k) R = (d 1 , . . . , d k ) ∈ R k×n , et R ⊥ = (d k+1 , . . . , d n ) ∈ R (n-k)×n
m k ,Σ k (x) = g k m k ,Σ k (x k )f ⊥ (x ⊥ ), avec g k m k ,Σ k la densité gaussienne N (m k , Σ k ) dans R k .
Ainsi, la mise à jour des paramètres de CE se fait dans le sous-espace de dimension k et on obtient les expressions suivantes :

m k * = E f ( Xk ψ(X, σ)) E f (ψ(X, σ)) et Σ k * = E f (( Xk -m k * )( Xk -m k * ) ψ(X, σ)) E f (ψ(X, σ)) (5.1) avec Xk = R X et σ fixé.
En pratique, étant donné un échantillon X 1 , . . . , X N ∼ g m,Σ à une itération t de l'algorithme, des nouvelles matrices de projection (R (t+1) , R (t+1) ⊥

) et σ t+1 le paramètre de lissage mis à jour (voir l'algorithme iCE (2)), les paramètres à l'étape t + 1 sont estimés par échantillonnage préférentiel par : Xk,i , X⊥,i ). D'autre part, pour trouver les sous-espaces FIS et CS, la matrice H est également estimée à chaque itération par : ). Ceux-ci sont donnés par :

mk t+1 = N i=1 Xk,i Lt+1 (X i ) N i=1 Lt+1 (X i ) et Σk t+1 = N i=1 ( Xk,i -mk t+1 )( Xk,i -mk t+1 ) Lt+1 (X i ) N i=1 Lt+1 (X i ) (5.2) avec Lt+1 (X i ) = ψ(X i , σ t+1 ) f ( Xi ) g m,Σ ( Xi ) , et Xi = R (t+1) , R (t+1) ⊥ X i = (
Ĥt+1 = 1 N i=1 Lt+1 (X i ) N i=1 Lt+1 (X i ) [∇ ln ψ(X i , σ t+1 )] [∇ ln ψ(X i , σ t+1 )] (5.3) où Lt+1 (X i ) = ψ(X i , σ t+1 ) f k ( Xk,i ) g k m k t ,
m = R (t+1) , R (t+1) ⊥ R (t) mk t (5.4) Σ = R (t+1) , R (t+1) ⊥ R (t) , R (t) ⊥ Σk t 0 0 I n-k R (t) , R (t) ⊥ R (t+1) , R (t+1) ⊥ (5.5)
En effet, m et Σ sont les paramètres dans la base R (t+1) , R

, alors que dans l'ancienne base

R (t) , R (t) 
⊥ , ces paramètres valaient par définition : (m k t , 0) et

Σk t 0 0 I n-k
. L'algorithme complet est basé sur le même schéma que iCE et est présenté dans l'algorithme 11.

En projetant les échantillons dans un sous-espace de petite dimension (le FIS), et en mettant à jour les paramètres de CE dans ce sous-espace, la méthode iCEred améliore sensiblement les algorithmes CE et iCE en grande dimension, en supposant que le gradient de la fonction d'état limite, ϕ, est disponible ou facile à obtenir. Selon les simulations numériques proposées dans [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF], iCEred permet d'estimer précisément des probabilités d'événement rare où la dimension atteint plusieurs centaines, alors que CE et iCE deviennent incapables de s'attaquer à des problèmes au-delà de la dimension 30, avec un budget de simulation identique.

Dans la suite de ce manuscrit, nous proposons de nouveaux algorithmes adaptatifs d'estimation améliorant la CE en grande dimension, basés sur les méthodes présentées dans le chapitre 4, et qui n'utilisent pas de gradient.

Algorithme 11 : iCEred : improved Cross-Entropy method with failure-informed dimension reduction Données : Dimension de l'espace d'entrée n, coefficient de variation cible δ, seuil de tolérance de l'approximation ε, taille de l'échantillon par itération N , fonction d'état limite ϕ, nombre maximal d'itérations t max Résultat : Estimation ÊN de la probabilité P f (ϕ(X) ≥ 0) 1 Initialisation : itération t = 0, paramètres gaussiens m t = 0, Σ t = I n , densité initiale f = g 0,In et paramètre de lissage σ t = ∞; 2 pour t = 0 . . . t max faire 

3 si t = 0 alors 4 Générer N échantillons indépendants X 1 , . . . , X N ∼ g mt,Σt et poser L t (X i ) =
,i = R (t+1) X i et X⊥,i = R (t+1) ⊥ X i ; si t = 0 alors Prendre Lt+1 (X i ) = ψ(X i , σ t+1 ) fin si t > 0 alors
Calculer les paramètres m (5.4) et Σ (5.5) dans la nouvelle base ;

Calculer les poids associés Lt+1 (X i ) = ψ(X i , σ t+1 )f ( Xi )/g m, Σ( Xi ) où Xi = ( Xk,i , X⊥,i ) ; fin Estimer les nouveaux paramètres réduits mk t+1 et Σk t+1 avec (5.2). fin

Estimer la probabilité : ÊN = 1 N N i=1 I {ϕ(X i )≥0} L t ( Xk,i ).
5.2 Couplage de l'algorithme CE avec la projection sur les vecteurs propres de la matrice de covariance optimale

Mise en place des algorithmes

Dans cette section, nous proposons une amélioration de l'algorithme CE (1) à l'aide de la méthode de projection sur les vecteurs propres de Σ * , définie dans la partie 4.1.3. Nous nous concentrons donc sur l'estimation de probabilités d'événement rare, où la fonction φ est une indicatrice du type I {ϕ(•)≥0} , avec ϕ la fonction d'état limite. L'algorithme CE-P (12) (CE avec projections optimales) mis en place repose ainsi sur la méthode d'entropie croisée dans laquelle la matrice de covariance à estimer est Σ * k (4.4) (et non plus Σ * ). Nous présentons également la méthode iCE-P (13) (iCE avec projections optimales) analogue à CE-P mais basée sur iCE (2).

Algorithme 12 : CE-P : CE avec projections optimales Données : dimension n, paramètre ρ ∈]0, 1[, taille de l'échantillon N , fonction d'état limite ϕ Résultat : Estimation ÊN de la probabilité d'événement rare E = P f (ϕ(X) ≥ 0) 1 Initialisation : Poser t = 0, m t = 0 et Σ t = I n ; 2 Générer X 1 , . . . , X N indépendamment selon g mt,Σt et définir L t = f /g mt,Σt ; 3 Évaluer q i = ϕ(X i ) pour tout i = 1, . . . , N ; 4 Ranger les q i dans l'ordre croissant : 

q (1) ≤ • • • ≤ q (N ) , et poser γ t = q ( (1-ρ)N ) ; 5 Calculer les poids w i = w i / j w j avec w i = I {q i ≥γt} L t (X i ) pour tout i ; 6 tant que γ t < 0 faire 7 Estimer m t+1 = N i=1 w i X i et Σ t+1 = N i=1 w i (X i -m t+1 )(X i -m
Estimer ÊN = 1 N N i=1 I {ϕ(X i )≥0} L t (X i ).
Les principales étapes de ces algorithmes sont les suivantes :

• Générer un échantillon X 1 , . . . , X N indépendamment selon g mt,Σt , la densité à l'étape t.

• Estimer les paramètres avec ces échantillons et les poids associés de CE (ou iCE) : m t+1 et Σ t+1 .

• Calculer les valeurs propres λ 1 , . . . , λ n et les vecteurs propres associés d 1 , . . . , d n de la matrice Σ t+1 , où les λ j sont rangées de sorte que (λ 1 ) ≤ • • • ≤ (λ n ).

• Construire la matrice Σ t+1 = k j=1 (λ j -1)d j d j + I n (sur le modèle de Σ * k ), où k est obtenu par l'algorithme 9 avec en entrée (λ 1 , . . . , λ n ).

Ces étapes sont ensuite répétées jusqu'à ce que le critère d'arrêt soit vérifié. Les méthodes CE-P et iCE-P sont détaillées dans les algorithmes 12 et 13 respectivement.

Lorsque la dimension vaut n, estimer la matrice Σ t+1 à l'étape 9 de l'algorithme 12, entraine la réduction du nombre de paramètres pris en compte à chaque itération en passant de n(n+3)/2 pour CE et iCE, à n(k + 1) pour CE-P et iCE-P (n paramètres dans m t+1 , k valeurs propres de Σ t+1 , et n -1 coefficients pour chacun des k vecteurs propres orthonormés associés). Cela implique une diminution du nombre total d'erreurs d'estimation, et potentiellement, une plus grande précision dans l'estimation finale de la probabilité. Cependant, les vecteurs propres étant obtenus à partir de la matrice Σ t+1 , qui est mal estimée en grande dimension, ils peuvent eux aussi être très imprécis et entrainer de mauvaises estimations. On évaluera numériquement l'efficacité des algorithmes 12 et 13 dans la section suivante.

Algorithme 13 : iCE-P : iCE avec projections optimales.

Données : dimension n, paramètre δ, taille de l'échantillon N , fonction d'état limite ϕ Résultat : Estimation ÊN de la probabilité d'événement rare E = P f (ϕ(X) ≥ 0) 1 Initialisation : poser t = 0, m t = 0, Σ t = I n et σ t = ∞; 2 Générer X 1 , . . . , X N indépendamment selon g mt,Σt et définir L t = f /g mt,Σt ; 3 Calculer q i = ϕ(X i ) pour tout i = 1, . . . , N ; 4 Évaluer cv le coefficient de variation empirique des I {q i ≥0} /F N (q i /σ t ) ; 5 tant que cv ≥ δ faire 6 Calculer σ t+1 = arg min( δt (σ) -δ) 2 où le minimum est évalué sur σ ∈ (0, σ t ) et δt (σ) est le coefficient de variation des F N (q i /σ)L t (X i ) ;
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w i = w i / j w j où w i = F N (q i /σ t+1 )L t (X i ) ; 8 Estimer m t+1 = N i=1 w i X i et Σ t+1 = N i=1 w i (X i -m t+1 )(X i -m
Estimer ÊN = 1 N N i=1 I {ϕ(X i )≥0} L t (X i ).
Remarque 5.2.1. Pour les simulations numériques, les matrices Σ t+1 et Σ t+1 sont mises à jour en y ajoutant le terme εI n , avec ε un réel strictement positif. Cet ajout permet d'éviter l'effondrement de la covariance vers une matrice singulière à cause des erreurs numériques. Cette modification est présente dans les algorithmes CE et iCE disponibles sur le site internet des auteurs [START_REF] Papaioannou | Software tools for reliability analysis : Cross entropy method and improved cross entropy method[END_REF], bien que non mentionnée dans leur article [Papaioannou et al., 2019a]. Dans toutes les simulations, ε est égal à ε = 10 -6 .

Résultats numériques

Nous allons maintenant comparer les algorithmes CE-P et iCE-P à CE et iCE pour différentes dimensions. Dans toutes les simulations, les paramètres d'entrée sont fixés à ρ = 0.1 pour CE et CE-P, δ = 1.5 pour iCE, et δ = 3 pour iCE-P. Ces choix ont été effectués de manière empirique pour CE-P et iCE-P, de sorte que les résultats soient les plus précis possible. Pour CE et iCE, nous avons gardé les paramètres conseillés par les auteurs dans [START_REF] Rubinstein | The Cross-Entropy Method : A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning[END_REF] et [Papaioannou et al., 2019a] Le premier point à souligner est la bonne performance des algorithmes avec projection comparés aux algorithmes de base. En effet, dès la dimension n = 30, CE-P est plus précis que CE (coefficient de variation de 54% pour CE contre 19% pour CE-P et biais relatifs respectifs de -42% et -11%), et dans les dimensions supérieures, CE ne converge plus alors que CE-P donne des résultats raisonnables même s'il n'est pas très précis (biais relatif de -22 à -12% et coefficient de variation inférieur à 35%). D'autre part, iCE et iCE-P sont tous deux très précis en dimension 30 avec un tel budget, vu que leur coefficient de variation ne dépasse pas 2%. Cependant, iCE ne converge plus en dimension 70 et 100, alors que iCE-P garde un coefficient de variation inférieur à 2.5%. Ces résultats montrent que la méthode de projection suggérée par le théorème 4.1.1 permet d'augmenter la précision des algorithmes CE et iCE, en estimant la variance uniquement dans la direction du vecteur propre de Σ t ayant la plus petite valeur propre.

Par ailleurs, notons que iCE-P est nettement plus performant que CE-P dans ce cas (iCE est même meilleur que CE-P en dimension 30). Nous suggérons que cette supériorité est due au fait que iCE-P (et iCE) prend en compte plus d'échantillons que CE-P pour estimer les paramètres à chaque itération, et qu'il nécessite moins d'itérations pour converger (3 pour iCE-P, environ 3.8 en moyenne pour CE-P) donc la taille d'échantillon par itération est aussi plus grande pour iCE-P. Enfin, notons que le budget de simulation (≈ 30000) a été choisi de sorte que l'estimation de la matrice de covariance Σ t soit assez précise et que l'approximation de la direction optimale (1 n ) soit toujours sélectionnée. En effet, jusqu'en dimension 100, CE-P et iCE-P parviennent à bien identifier la plus petite valeur propre de Σ t et son vecteur propre associé. La figure 5.1 montre les images des valeurs propres de Σ t par la fonction (4.3) lors d'une réalisation de l'algorithme CE-P en dimension 100, ainsi que le vecteur propre sélectionné. La valeur minimisant la fonction est la plus petite valeur propre et le vecteur associé est bien une approximation de la direction optimale 1 n .

En revanche, dès que la dimension augmente, la matrice Σ t et donc ses valeurs propres sont de plus en plus mal estimées et le(s) vecteur(s) sélectionné(s) ne correspond(ent) plus à la direction optimale. C'est ce que l'on voit sur la figure 5.2 (tirée d'une réalisation de CE-P en dimension 200), où la valeur propre minimisant est la plus grande (la plus à droite sur le graphique de gauche) et le vecteur propre associé est très différent de la direction optimale. On a le même comportement lorsqu'on diminue le budget de simulation dans les dimensions inférieures ou égales à 100.

Malgré tout, dans ce cas particulier, on a observé dans la section 3.1.3.1 que choisir une direction de projection de manière aléatoire donnait des résultats très précis en grande dimension. En diminuant le budget ou en augmentant encore la dimension (n > 100), les algorithmes CE-P et iCE-P ne projettent pas sur la direction optimale théorique 1 n (ou son approximation), mais ils restent performants (ce qui n'est pas le cas dans l'exemple suivant).

Ainsi, les algorithmes utilisant la méthode de projection définie en 4.1.3, CE-P et iCE-P, permettent de diminuer l'erreur d'estimation de P f (ϕ 1 (X) ≥ 0) en dimension 30, 70 et 100. Néanmoins, pour sélectionner la direction optimale de projection le budget doit être suffisamment élevé, et doit être augmenté si la dimension devient plus grande. Dans cet exemple, ne pas identifier la direction optimale n'a pas d'influence sur la convergence des algorithmes et dégrade assez peu l'estimation mais le cas-test suivant est un cas où le choix de la direction de projection a une grande influence.

Exemple jouet : un polynôme de degré 2

Dans ce second exemple, on considère la fonction ϕ 5 (4.7) pour l'estimation de la probabilité E = P f (ϕ 5 (X) ≥ 0). D'après la figure 4.5b, il y a en théorie deux directions de projection optimales à retenir (k = 2) pour estimer la matrice de covariance et ces deux vecteurs sont e 3 (associé à la plus petite valeur propre de Σ * ) et e 2 (associé à la deuxième plus petite valeur propre). Dans les simulations des algorithmes CE-P et iCE-P réalisées pour obtenir le tableau 5.2, on a toujours k = 2 également, et les deux vecteurs sélectionnés sont des approximations de e 2 et e 3 . Le budget de simulation est fixé à environ 15000 (le budget moyen variant de 15000 à 15500 selon l'algorithme).

On remarque à nouveau que CE-P et iCE-P gardent un faible coefficient de variation (au maximum 12% en dimension 100 pour CE-P, et 3.8% pour iCE-P) et un biais relatif proche de zéro (entre -2.4 et -0.2% pour CE-P et entre -0.4 et 0.1% pour iCE-P), alors qu'avec le même budget, CE et iCE sont moins précis en dimension 30 et ne parviennent plus à estimer correctement la probabilité en dimension 70 et 100. Notons que l'algorithme iCE-P est légèrement plus performant que CE-P, pour les mêmes raisons que l'exemple précédent (une plus grande taille d'échantillon est utilisée pour l'estimation dans iCE).

L'efficacité de ces deux algorithmes est cependant vite dégradée lorsqu'on diminue le budget de simulation ou qu'on augmente la dimension. En effet, en dimension 300 et avec un budget de 15000, CE-P et iCE-P ne convergent plus car les directions optimales ne sont plus identifiées du fait de la mauvaise estimation de la matrice Σ t . La variance n'est alors plus estimée dans les directions influentes (e 2 et e 3 ), et la densité auxiliaire finale (g mt,Σt ) n'est pas assez proche de la densité optimale pour permettre la convergence des algorithmes. De même, si le budget est réduit à 10000 en dimension 100 par exemple, CE-P ne converge pas systématiquement et a un coefficient de variation proche de 100%. Par ailleurs, si on ne met à jour que la diagonale de la matrice de covariance (au lieu de la matrice pleine) dans les algorithmes CE et iCE (comme suggéré dans [Bourinet, 2018]), on aurait des résultats similaires voire parfois meilleurs qu'avec CE-P et iCE-P, avec un budget identique. En effet, comme la matrice de covariance optimale est proche de l'identité en grande dimension dans le premier exemple, et diagonale dans le second, il est pertinent d'estimer uniquement la diagonale pour réduire le nombre de paramètres. Cependant, on a vu que prendre en compte uniquement la diagonale pouvait être facilement mis en défaut (voir section 3.1.3.4), et on verra dans la section suivante que ce n'est pas toujours performant.

Finalement, les deux algorithmes définis dans cette section, CE-P (12) et iCE-P (13), donnent des résultats d'estimation prometteurs avec des coefficients de variation assez faibles en dimension 100 et moins. La projection sur les vecteurs propres de la matrice de covariance, associés aux valeurs propres minimisant , permet d'augmenter la précision de l'estimation en réduisant le nombre de paramètres estimés à chaque étape.

Néanmoins, le budget de simulation doit être suffisant pour que la matrice Σ t et ses éléments propres soient estimés précisément et les deux algorithmes ne convergent pas toujours dans les dimensions supérieures à 100, sans augmenter fortement le budget. Pour améliorer ces deux méthodes, une première piste serait d'estimer Σ t avec d'autres techniques plus efficaces en grande dimension pour estimer des matrices de covariance avec un petit budget (voir par exemple [START_REF] Ledoit | A well-conditioned estimator for largedimensional covariance matrices[END_REF] et [START_REF] Ashurbekova | Optimal shrinkage for robust covariance matrix estimators in a small sample size setting[END_REF]) plutôt que d'utiliser la matrice empirique. Une autre idée serait de déterminer les éléments propres à l'aide de méthodes plus robustes d'estimation des valeurs et vecteurs propres de matrices de covariance de grande dimension (comme dans [Mestre, 2008a], [START_REF] Mestre | On the Asymptotic Behavior of the Sample Estimates of Eigenvalues and Eigenvectors of Covariance Matrices[END_REF], [START_REF] Nadakuditi | Sample Eigenvalue Based Detection of High-Dimensional Signals in White Noise Using Relatively Few Samples[END_REF] et [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF]). Ces deux pistes sont des perspectives d'amélioration intéressantes des algorithmes proposés mais n'ont pas été développées au cours de cette thèse. En revanche, pour éviter que les directions de projection ne dépendent de l'estimation, souvent imprécise, d'une matrice de covariance de grande taille, nous avons proposé d'intégrer la méthode de projection sur la moyenne optimale m * (présentée section 4.1.2) aux algorithmes CE et iCE. Le couplage de ces deux algorithmes avec la projection sur m * est présenté dans la section suivante.

Couplage de l'algorithme CE à la projection dans le

sous-espace engendré par la moyenne Masri et al., 2021], deux algorithmes très simples à mettre en place : CE-m * (14) (CE avec projection dans la direction de m * ) et iCE-m * (15) (iCE avec projection dans la direction de m * ). Ils reposent sur l'itération des étapes suivantes :

• Générer un échantillon X 1 , . . . , X N indépendamment selon g mt,Σt , la densité à l'étape t.

• Estimer la moyenne m t+1 = N i=1 w i X i avec ces échantillons et les poids normalisés wi de CE, ou iCE (définis dans les algorithmes 1 et 2). Le principal avantage des algorithmes CE-m * et iCE-m * est qu'en dimension n, on estime seulement n + 1 paramètres (n coefficients de m t+1 et 1 coefficient de variance v) à chaque itération, contre n(n + 3)/2 dans CE et iCE, et n(k + 1) dans CE-P et iCE-P. De plus, l'estimation de m t à chaque itération reste assez précise pour des dimensions de quelques centaines, contrairement à la matrice de covariance empirique, ce qui permet de projeter efficacement. Ces deux algorithmes sont testés numériquement dans la partie suivante, où ils sont comparés à CE et iCE. Dans chaque exemple, nous appliquons également CE et iCE en ne mettant à jour que la diagonale de la covariance, que nous notons CEd et iCEd respectivement, comme suggéré dans [Bourinet, 2018]. En effet, le graphique 2.1 du chapitre 2 montre que CEd est très performant jusqu'en dimension 60, et c'est aussi le cas pour iCEd. À chaque itération, CEd et iCEd n'estiment que 2n paramètres (n pour la moyenne, et n pour la diagonale de la covariance), ce qui explique leur efficacité lorsque la dimension augmente comparés à CE et iCE, qui mettent à jour la matrice de covariance pleine. En revanche, une limite est l'annulation de tous les coefficients de covariance qui peuvent malgré tout être influents (voir le cas extrême 3.1.3.4). D'autre part, CEd et iCEd estiment à chaque étape n coefficients diagonaux qui ne sont pas tous influents, et leur mise à jour peut rajouter du bruit et dégrader le résultat final. La projection uniquement sur m * permet d'éviter l'estimation Algorithme 14 : CE-m * : CE avec projection dans la direction de m * Données : dimension n, paramètre ρ ∈]0, 1[, taille de l'éachantillon N , fonction d'état limite ϕ Résultat : Estimation ÊN de la probabilité d'événement rare E = P f (ϕ(X) ≥ 0) 1 Initialisation : Poser t = 0, m t = 0 et Σ t = I n ; 2 Générer X 1 , . . . , X N indépendamment selon g mt,Σt et définir L t = f /g mt,Σt ; 3 Évaluer q i = ϕ(X i ) pour tout i = 1, . . . , N ; 4 Ranger les q i dans l'ordre croissant : q (1) ≤ • • • ≤ q (N ) , et poser γ t = q ( (1-ρ)N ) ; 5 Calculer les poids w i = w i / j w j avec w i = I {q i ≥γt} L t (X i ) pour tout i; 

6 tant que γ t < 0 faire 7 Estimer m t+1 = N i=1 w i X i ; 8 Définir d = m t+1 / m t+1 ∈ R 1×n la projection sur Vect(m t+1 ); 9 Projeter les échantillons Y i = d X i et estimer leur variance conditionnelle v = N i=1 w i (Y i -m t+1 ) 2 et poser Σ t+1 = (v - 
Estimer ÊN = 1 N N i=1 I {ϕ(X i )≥0} L t (X i ).
de coefficients "inutiles" (au sens où ils dégraderaient la performance sans apporter d'information supplémentaire) et présente l'avantage d'estimer la variance dans une direction influente. La comparaison de ces six algorithmes est réalisée dans la section 5.3.2.

Remarque 5.3.1. Comme dans la section précédente (voir remarque 5.2.1), les simulations numériques sont réalisées en ajoutant le terme εI n dans la mise à jour de la matrice Σ t+1 afin d'éviter l'effondrement de la covariance. Autrement dit, on a Σ t+1 = (v -1)dd + (1 + ε)I n à l'étape 9 des algorithmes 14 et 15 avec ε = 10 -6 .

Résultats numériques

Dans tous les exemples qui suivent nous comparons la précision des algorithmes CE, iCE, CEd, iCEd, CE-m * , et iCE-m * pour l'estimation de la probabilité d'événement rare E = P f (ϕ(X) ≥ 0) en faisant varier la dimension n. Les paramètres ρ et δ sont fixés à ρ = 0.1 pour les trois méthodes basées sur CE, δ = 1.5 pour iCE, et δ = 3 pour iCEd et iCE-m * . Les simulations sont effectuées de sorte à avoir un budget moyen autour de 8000. Comme dans la partie 5.2.2, nous calculons l'estimation moyenne de la probabilité, le coefficient de variation et le biais relatif sur 100 répétitions indépendantes de chaque algorithme, et ces valeurs sont reportées dans les tableaux avec la taille de l'échantillon par itération N . On rappelle que nous notons "NC" (non convergent) lorsqu'un algorithme n'a pas convergé en moins de 10 itérations.

Exemple jouet : la somme des coordonnées

Nous reprenons la fonction ϕ 1 (2.1) comme premier exemple. La direction donnée par la moyenne optimale théorique, m * , est ici égale à la direction optimale de projection d * 1 = 1 n Algorithme 15 : iCE-m * : iCE avec projection dans la direction de m * Données : dimension n, paramètre δ, taille de l'éachantillon N , fonction d'état limite ϕ Résultat : Estimation ÊN de la probabilité d'événement rare E = P f (ϕ(X) ≥ 0) 1 Initialisation : poser t = 0, m t = 0, Σ t = I n et σ t = ∞; 2 Générer X 1 , . . . , X N indépendamment selon g mt,Σt et définir L t = f /g mt,Σt ; 3 Calculer q i = ϕ(X i ) pour tout i = 1, . . . , N ; 4 Évaluer cv le coefficient de variation empirique des I {q i ≥0} /F N (q i /σ t ); 5 tant que cv ≥ δ faire 6 Calculer σ t+1 = arg min( δt (σ) -δ) 2 où le minimum est évaluer sur σ ∈ (0, σ t ) et δt (σ) est le coefficient de variation des F N (q i /σ)L t (X i );

7

Calculer les poids 

w i = w i / j w j où w i = F N (q i /σ t+1 )L t (X i ); 8 Estimer m t+1 = N i=1 w i X i et poser d = m t+1 / m t+1 ; 9 Projeter les échantillons Y i = d X i et estimer leur variance conditionnelle v = N i=1 w i (Y i -m t+1 ) 2 et poser Σ t+1 = (v - 
Estimer ÊN = 1 N N i=1 I {ϕ(X i )≥0} L t (X i ).
(autrement dit le vecteur propre de Σ * associé à la valeur propre minimisant ). Nous sommes donc ici dans le cas idéal pour appliquer les algorithmes CE-m * et iCE-m * . Le tableau 5.3 regroupe les résultats des six algorithmes dans les dimensions n = 30, 100, et 300. Comme on a pu l'observer précédemment, avec un si faible budget, CE et iCE sont très imprécis en dimension 30 et ne convergent pas lorsque n = 100 et 300, alors que les quatre autres méthodes donnent des résultats très précis. En dimension 30 et 100, le coefficient de variation de ces quatre algorithmes reste inférieur à 7.4% et le biais relatif varie entre -0. 

Application : probabilité de perte élevée d'un portefeuille

Le deuxième exemple est l'application, déjà traitée dans la partie 4.2.3, qui consiste en l'estimation de la probabilité de perte élevée d'un portefeuille d'options financières. La fonction de perte est la fonction ϕ 6 définie en 4.8. Nous évaluons la performance des algorithmes sur cette fonction dans les dimensions n = 30, 100 et 250 (pour n = 250, la constante b dans l'expression de ϕ 6 est égale à 0.3). Ici encore la moyenne optimale a la même direction que le premier vecteur propre de Σ * (voir section 4.2.3). En dimension 30, iCE et CE sont déjà très imprécis alors que les quatre autres algorithmes ont un coefficient de variation inférieur à 10% et un biais relatif inférieur à 2% en valeur absolue. Pour n = 100, CE et iCE ne convergent plus, CE-m * , iCE-m * et iCEd sont toujours très performants (coefficient de variation inférieur 8.5% et biais relatif entre 1 et 3%) et CEd est légèrement moins précis avec un coefficient de variation de 14.4%. Lorsqu'on atteint n = 250, CEd ne converge pas, à cause de la rapide dégénérescence des poids vers 0, et iCEd est très imprécis (-95% de biais relatif). CE-m * et iCE-m * sont assez imprécis également (coefficient de variation de 60% et 110% respectivement) mais donnent malgré tout une estimation proche de la valeur de référence, avec un biais relatif de -5.9% et 1% respectivement. Si les résultats de CE-m * et iCE-m * sont similaires en dimension 30 et 100, pour n = 250, CE-m * est un peu plus précis car son coefficient de variation est presque deux fois plus petit que celui de iCE-m * .

La projection sur le vecteur de la moyenne permet, dans cet exemple aussi, d'améliorer l'efficacité des algorithmes CE et iCE en grande dimension. Il est même préférable de prendre l'estimation de m * comme direction de projection pour estimer la covariance plutôt que d'estimer seulement sa diagonale. En effet, en grande dimension, CEd et iCEd estiment beaucoup de paramètres non influents ce qui induit de nombreuses erreurs d'estimation et peut entrainer une rapide dégénérescence des poids.

Un exemple utilisé en optimisation : la fonction de Ackley modifiée

La fonction de Ackley (voir [START_REF] Surjanovic | Virtual library of simulation experiments : Test functions and datasets[END_REF]) est une fonction non convexe, souvent utilisée pour tester des algorithmes en optimisation, que nous utilisons ici pour évaluer la performance de CE-m * et iCE-m * lorsque la dimension augmente. La fonction considérée ici est la suivante : et 30%. CEd est très proche de CE-m * en dimension n = 30 et 100, et même légèrement plus précis, cependant en dimension 200, CEd a un grand coefficient de variation (120%) et un grand biais relatif (5.7%) alors que CE-m * reste assez précis. Ainsi, CEd semble moins performant que CE-m * en grande dimension car il estime trop de paramètres non influents. Enfin, on peut noter que les méthodes "iCE" sont un peu plus efficaces que les méthodes "CE".

ϕ 7 (x) = 20 exp   -0.2 1 n n j=1 (a j x j -3) 2   + exp   1 n n j=1 cos (2π(a j x j -3))   -c n (5.6)

Exemple où m * n'est pas la direction optimale

Nous terminons cette section avec un exemple où m * n'est pas la direction optimale mais où CE-m * et iCE-m * restent suffisamment robustes pour estimer efficacement la probabilité E en grande dimension. On considère pour cela la fonction C'est ce qu'on peut observer dans les résultats du tableau 5.6. Comme dans les exemples précédents, CE et iCE sont déjà très imprécis en dimension 30, alors que CE-m * et iCE-m * sont très efficaces (coefficient de variation d'environ 11% et biais relatif entre 0.5 et 1%). L'algorithme iCEd est encore plus précis avec coefficient de variation de 5.2% mais CEd est moins performant (37% de coefficient de variation et -11% de biais relatif). En dimension n = 100, iCE-m * et iCEd sont encore très précis car leur coefficient de variation reste entre 7 et 12% alors que celui de CE-m * et CEd est d'environ 28 et 87% respectivement. CEd est particulièrement imprécis car son biais relatif est de -52% alors qu'il est inférieur à 1.3% pour les trois autres algorithmes convergents. Lorsque n = 300, iCEd et CEd ne convergent plus, à cause de la dégénérescence rapide des poids, alors que CE-m * et iCE-m * sont toujours capables d'estimer la probabilité avec un faible biais relatif (-1.5% et 3.5% respectivement) malgré un important coefficient de variation (88% et 29% respectivement), surtout pour CE-m * .

ϕ 8 (x) = x 1 -3x 2 2 -3 ( 5 
Ainsi, même si m * n'est pas la direction optimale, cet exemple montre que CE-m * et iCE-m * sont capables d'estimer efficacement la probabilité en grande dimension alors que CE, iCE, CEd et iCEd n'y parviennent pas.

Remarque 5.3.2. Si on considère une parabole encore plus étroite, comme pour la fonction ϕ 4 (4.1), Remarque 5.3.3. Dans ce dernier exemple, les algorithmes CE-P et iCE-P donnent de meilleurs résultats que CE-m * et iCE-m * en dimension 30 pour le même budget (coefficients de variation entre 5 et 10% environ). Cela s'explique par le meilleur choix de projection effectué dans CE-P et iCE-P, qui projettent sur la direction optimale e 2 . En dimension n = 100, CE-P et iCE-P ont une précision équivalente voire légèrement inférieure à CE-m * et iCE-m * respectivement avec un budget similaire (coefficients de variation autour de 15% pour iCE-P et 35% pour CE-P). La direction optimale est toujours détectée par CE-P et iCE-P, mais ils prennent en compte d'autres directions non influentes du fait de l'estimation imprécise de la matrice de covariance, ce qui contribue à l'augmentation du coefficient de variation. En revanche en dimension 300, avec un budget de simulation d'environ 8000, CE-P et iCE-P ne convergent pas toujours car ils projettent essentiellement dans des directions non influentes. Il faut augmenter suffisamment le budget pour obtenir des résultats précis. Une taille d'échantillon de N = 6000 et un budget total d'environ 20000 garantissent la convergence systématique de l'algorithme iCE-P et un coefficient de variation autour de 10%. Pour CE-P, il est nécessaire d'atteindre un budget d'environ 35000 (et N = 12000) pour obtenir de tels résultats.

Par ailleurs, dans les exemples 5.3.2.1, 5.3.2.3, et 5.3.2.4, l' 

Conclusion

Dans ce chapitre, nous avons proposé d'intégrer les méthodes de projection définies dans le chapitre 4 à des algorithmes adaptatifs, en nous concentrant sur l'algorithme d'entropie croisée pour l'estimation de probabilités d'événement rare. Un tel couplage entre CE et projection dans un sous-espace a déjà été effectué dans l'article [START_REF] Uribe | Crossentropy-based importance sampling with failure-informed dimension reduction for rare event simulation[END_REF], où ils reprennent la projection suggérée dans [START_REF] Zahm | Certified dimension reduction in nonlinear Bayesian inverse problems[END_REF]. L'algorithme iCEred (11) qu'ils ont développé donne des résultats d'estimation très précis en grande dimension, mais nécessite la connaissance du gradient de la fonction d'état limite. Nous avons donc tenté de coupler la méthode (4.1.3) de projection sur les vecteurs propres de la matrice de covariance avec la CE, afin d'éviter d'utiliser le gradient.

Les algorithmes CE-P (12) et iCE-P (13) ainsi construits améliorent les résultats de CE et iCE en grande dimension, mais ils nécessitent un budget de simulation assez grand pour converger, notamment lorsque la dimension dépasse la centaine. En effet, la matrice de covariance devient trop imprécise dès que la dimension augmente, ses vecteurs propres sont donc mal estimés et les directions de projection sont mal choisies. Les méthodes CE-P et iCE-P sont donc prometteuses mais sont efficaces pour des dimensions modérément grandes (entre 20 et 100) ou avec un budget assez grand (plusieurs dizaines de milliers) lorsque la dimension dépasse 100. En revanche, en utilisant la projection sur la moyenne optimale m * , les algorithmes CE-m * (14) et iCE-m * (15) développés dans ce chapitre, améliorent fortement les résultats de CE et iCE, pour de grandes dimensions (jusqu'à environ 300 dans nos exemples) et un petit budget (autour de 8000). Ils sont même souvent plus performants que les algorithmes CEd et iCEd, qui mettent à jour la diagonale de la matrice de covariance. En effet, les résultats suggèrent qu'il vaut parfois mieux projeter dans une seule direction influente (par exemple m * ), même si elle n'est pas optimale, plutôt que de projeter dans de trop nombreuses directions qui ne sont pas influentes et qui dégradent l'estimation. Cependant, projeter dans un sous-espace de dimension 1 est aussi une limite de cette approche, car certaines directions influentes peuvent aussi être omises.

Ainsi, si les quatre algorithmes proposés (CE-P, iCE-P, CE-m * et iCE-m * ) sont généralement moins performants que iCEred, lorsque le gradient de la fonction d'état limite est disponible, ils sont capables d'estimer précisément des probabilités d'événement rare en grande dimension, et sans calcul du gradient.

Conclusion et Perspectives

Résumé des principales contributions L'échantillonnage préférentiel et les algorithmes adaptatifs d'IS sont des outils efficaces pour l'estimation d'espérance et constituent un axe de recherche particulièrement actif ces dernières années, notamment pour les problèmes en grande dimension. En effet, les méthodes basées sur l'IS peuvent devenir inefficaces lorsque la dimension augmente. L'objectif principal de ces travaux de thèse est donc d'améliorer la précision de l'estimation par échantillonnage préférentiel paramétrique en grande dimension, tout en gardant un budget de simulation limité. Pour ce faire, nous proposons d'utiliser des projections dans des sous-espaces de petite dimension afin de réduire le nombre de paramètres (gaussiens) estimés dans l'IS. Comme la majorité des coefficients proviennent de la matrice de covariance, le but est de diminuer le nombre de paramètres estimés dans cette matrice en particulier.

La première contribution de ce manuscrit (chapitre 3) vise ainsi à justifier la pertinence d'une projection dans le cadre de l'échantillonnage préférentiel avec des lois gaussiennes. Nous avons montré dans un cadre simple que projeter les paramètres peut en effet entrainer une diminution de la divergence de Kullback-Leibler et donc potentiellement de l'erreur d'estimation. Ce résultat a été confirmé par des simulations numériques dans lesquelles des directions de projection naïves ont été utilisées pour approcher la matrice de covariance. Ces projections, choisies aléatoirement d'une part ou en prenant les directions canoniques d'autre part, permettent en effet de réduire le nombre de coefficients à estimer dans la matrice. Cela implique systématiquement une diminution de la divergence Kullback-Leibler et de l'erreur d'estimation par rapport à la matrice empirique (où tous les coefficients sont estimés) lorsque la dimension est élevée. Néanmoins, ces choix naïfs ne mènent pas toujours à des résultats très précis et la prise en compte des données du problèmes pour sélectionner des directions adaptées à chaque cas-test semble nécessaire pour améliorer encore les résultats.

La deuxième contribution (chapitre 4) consiste alors à déterminer des directions de projection influentes pour estimer la matrice de covariance. La première idée proposée est d'exploiter la direction donnée par la moyenne de la loi gaussienne pour projeter. Notons que cette suggestion est particulièrement pertinente dans l'estimation de probabilités d'événements rares. En effet dans ce cas, la variance estimée diminue dans la direction indiquée par la moyenne. Ce comportement est lié à la propriété de queue légère de la loi gaussienne. Cette première proposition est néanmoins limitée à une projection en dimension 1, ce qui peut être restrictif dans certains cas. La seconde proposition offre ainsi la possibilité de projeter sur plusieurs directions qui correspondent aux directions optimales déterminées en minimisant la divergence de Kullback-Leibler. Ces directions sont égales aux vecteurs propres de la matrice de covariance qui contribuent le plus à réduire la divergence Kullback-Leibler. Les deux idées de projection ont ensuite été testées numériquement sur des exemples d'estimation dans un cadre théorique. Les résultats de simulation ont montré dans les deux cas une amélioration de l'estimation par IS par rapport aux simulations sans projection ou aux projections naïves du chapitre 3. Cette contribution a fait l'objet d'un article actuellement en cours de révision dans la revue SIAM/ASA Journal on Uncertainty Quantification : El Masri, M., [START_REF] El Masri | Improvement of the crossentropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation[END_REF]. Optimal projection to improve parametric importance sampling in high dimension. arXiv preprint arXiv :2107.06091.

La troisième et dernière contribution (chapitre 5) a consisté à intégrer les méthodes de projection développées à un algorithme adaptatif d'IS. En effet, en pratique il est souvent nécessaire d'estimer les paramètres progressivement, en passant par plusieurs étapes intermédiaires. Les deux méthodes de projection mises en place dans le chapitre 4 ont ainsi été couplées à l'algorithme d'entropie croisée (CE), et sa version améliorée (iCE), pour estimer des probabilités d'événements rares. Quatre algorithmes ont alors été testés numériquement sur des exemples analytiques en grande dimension et comparés aux algorithmes originaux de CE et d'iCE. Toutes les nouvelles méthodes ont donné des résultats d'estimation plus précis que CE et iCE. Cependant, la technique de projection sur les vecteurs propres de la matrice de covariance n'est efficace que pour des dimensions modérément grandes, de plusieurs dizaines environ. Cette limite est due au fait que les vecteurs propres dépendent de l'estimation de la covariance qui est elle-même imprécise lorsque la dimension est trop grande. Les algorithmes couplés à la projection dans le sous-espace engendré par la moyenne restent en revanche très performants dans des dimensions de quelques centaines. Ces résultats sont encourageants et ouvrent des perspectives intéressantes pour l'estimation en grande dimension de probabilités d'événements rares, ou plus généralement d'une espérance quelconque. Cette contribution est liée à l'article de journal suivant :

El Masri, M., [START_REF] El Masri | Improvement of the crossentropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation[END_REF]. Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation. Reliability Engineering & System Safety, 216 :107991.

Perspectives La première piste d'amélioration concerne l'estimation des vecteurs propres de la matrice de covariance. En effet, ceux-ci sont imprécis lorsque la dimension est très grande puisque la covariance est elle-même mal estimée, et l'estimation finale de l'espérance est nettement dégradée. Deux idées principales peuvent être exploitées pour améliorer l'estimation des vecteurs propres. La première consiste à utiliser des estimateurs de la matrice de covariance plus robustes en grande dimension comme ceux évoqués dans la section 2.2, et suggérés dans [START_REF] Ledoit | A well-conditioned estimator for largedimensional covariance matrices[END_REF] et [START_REF] Ashurbekova | Optimal shrinkage for robust covariance matrix estimators in a small sample size setting[END_REF] par exemple. Ces estimateurs, basés sur des techniques de "shrinkage" ou contraction des paramètres, sont plus précis que la matrice empirique lorsqu'elle est de grande taille, ce qui pourrait également augmenter la précision des vecteurs propres. Néanmoins, le comportement de ce type d'estimateurs à l'intérieur d'un algorithme adaptatif d'IS reste à étudier, notamment lorsqu'ils sont calculés avec des poids d'importance et donc potentiellement confrontés au problème de dégénérescence des poids. La seconde idée pour améliorer l'estimation des vecteurs propres de la covariance est de directement faire appel à des méthodes d'estimation des valeurs et vecteurs propres en grande dimension proposées dans [Mestre, 2008a], [START_REF] Nadakuditi | Sample Eigenvalue Based Detection of High-Dimensional Signals in White Noise Using Relatively Few Samples[END_REF] ou [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] par exemple. Ces techniques assurent une estimation efficace des éléments propres d'une matrice de covariance de grande taille et permettraient également d'améliorer la précision de la méthode de projection sur les vecteurs propres optimaux développée dans cette thèse. Comme précédemment, la question du comportement de ces approches à l'intérieur d'un algorithme adaptatif se pose et est à étudier.

Une deuxième piste pour améliorer les algorithmes mis en place dans ce manuscrit est d'étendre nos méthodes à des problèmes multimodaux. Pour ce faire, l'utilisation d'un mélange de plusieurs densités gaussiennes comme densité auxiliaire peut être envisagé. C'est un choix courant dans la littérature d'AIS, notamment dans l'algorithme d'entropie croisée avec [START_REF] Kurtz | Cross-entropy-based adaptive importance sampling using Gaussian mixture[END_REF] et [START_REF] Geyer | Cross entropy-based importance sampling using Gaussian densities revisited[END_REF]. Une difficulté qui apparait dans les problèmes multimodaux est d'abord l'identification des modes et le choix du nombre de densités du mélange. Des méthodes de clustering, ou partitionnement, peuvent être envisagées pour détecter les modes, comme suggéré dans [START_REF] Geyer | Cross entropy-based importance sampling using Gaussian densities revisited[END_REF]. Les techniques de projection proposées dans cette thèse pourraient alors être adaptées pour projeter les paramètres de chaque densité gaussienne du mélange. Avoir des algorithmes capables de résoudre des problèmes d'estimation multimodaux permettrait ainsi de traiter des cas-tests réels plus complexes en ingénierie ou dans d'autres domaines.

Ensuite, il serait intéressant de s'attaquer au problème de dégénérescence des poids en utilisant les techniques de projection. En effet, nous ne traitons pas directement ce problème dans cette thèse même si nos algorithmes semblent atténuer la dégénérescence en estimant une matrice de covariance dans un sous-espace de petite dimension. Une analyse du comportement des poids sous l'effet des projections pourrait permettre de comprendre comment éviter leur dégénérescence.

Enfin, le couplage de techniques de projection avec une méthode d'échantillonnage préférentiel non-paramétrique, inefficace en grande dimension, est une perspective intéressante. En effet, la mise en place d'algorithmes améliorant leur performance permettrait de traiter des problèmes particulièrement complexes, notamment les cas multimodaux et fortement non linéaire, en bénéficiant de la flexibilité des approches non-paramétriques. • Calcul de m * : Par symétrie de f (la densité N (0, I n )) et de ϕ 1 (toutes les variables peuvent être permutées sans modifier la valeur des fonctions), on a déjà m * = m * 1 n , avec 1 n = n -1/2 (1, . . . , 1) et m * = √ nE f (X 1 | ϕ 1 (X) ≥ 0). Cette dernière espérance conditionnelle vaut alors (pour β = 3) :

E f (X 1 | ϕ 1 (X) ≥ 0) = E f X 1 | X 1 ≥ - n i=2 X i + β √ n = 1 E E X 1 I X 1 ≥-Z √ n-1+β √ n ,
où Z est une variable aléatoire de loi N (0, 1), indépendante de X 1 (de loi N (0, 1) également), et où on rappelle que E = P f (ϕ 1 (X) ≥ 0). La constante β est fixée à 3 dans la fonction ϕ 1 pour les applications numériques, mais les calculs théoriques présentés ici sont effectués avec β ∈ R quelconque. En posant s(z) = β √ n -z √ n -1, on a ensuite :

E X 1 I X 1 ≥s(Z) = R +∞ s(z)
x 1 exp(-x 2 1 /2)dx 1 exp(-z 2 /2)

dz 2π = R exp -s(z) 2 /2 exp(-z 2 /2) dz 2π = R exp - 1 2 β 2 n -2βz √ n √ n -1 + z 2 n dz 2π = R exp - 1 2 z √ n -β √ n -1 2 exp - β 2 2 dz 2π = R exp - 1 2 z -β √ n -1 2 exp - β 2 2 dz 2π √ n (en posant z = z √ n) = exp (-β 2 /2) √ 2πn ,
la dernière égalité étant obtenue en utilisant le fait que la fonction : z → exp -1 2 z -β

√ n -1 2 (2π) -1/2
est une densité gaussienne, donc son intégrale vaut 1.

Finalement, on trouve m * = exp (-β 2 /2) E √ 2π .

• Calcul de Σ * : Concernant la matrice Σ * , on a Σ * = E f (XX | ϕ 1 (X) ≥ 0)-m * (m * ) . Par des arguments de symétrie, on peut vérifier que l'espérance conditionnelle E f (XX | ϕ 1 (X) ≥ 0) est une matrice dont tous les coefficients diagonaux sont égaux et les coefficients hors de la diagonale sont égaux entre eux. Il y a ainsi deux quantités à calculer, E f (X 2 1 | ϕ 1 (X) ≥ 0) et E f (X 1 X 2 | ϕ 1 (X) ≥ 0). Pour la première, en reprenant la fonction s posée précédemment, on a :

E f (X 2 1 | ϕ 1 (X) ≥ 0) = E(X 2 1 |X 1 ≥ s(Z)) = 1 E R +∞ s(z)
x 2 1 exp -x 2 1 /2 exp -z 2 /2 dx 1 dz 2π .

L'intégrale par rapport à x 1 se calcule par une intégration par parties et donne :

E f (X 2 1 | ϕ 1 (X) ≥ 0) = 1 E R s(z) exp -s(z) 2 /2 + E exp -z 2 /2 dz 2π = exp(-β 2 /2) E √ 2π R β √ n -z √ n -1 exp - 1 2 z √ n -β √ n -1 2 dz √ 2π + 1 = m * R β √ n - z √ n -1 √ n exp - 1 2 z -β √ n -1 2 dz √ 2πn + 1 = m * β - √ n -1 n E (Z ) + 1.
L'espérance dans la dernière égalité est celle d'une gaussienne N (β √ n -1, 1) et vaut donc β √ n -1.

On obtient finalement E f (X 2 1 | ϕ 1 (X) ≥ 0) = βm * n + 1.

La deuxième espérance à calculer est

E f (X 1 X 2 | ϕ 1 (X) ≥ 0) = E X 1 X 2 | X 1 + X 2 ≥ β √ n - n i=3 X i = 1 E E X 1 X 2 I X 1 +X 2 ≥t(Z) , où t(z) = β √ n -z √ n -2
, et Z suit une loi normale N (0, 1), indépendante de X 1 et X 2 toutes deux gaussiennes standards également. On a ensuite,

E f (X 1 X 2 | ϕ 1 (X) ≥ 0) = 1 E R R +∞ t(z)-x 2 x 1 exp -x 2 1 /2 x 2 exp -x 2 2 /2 exp -z 2 /2 dx 1 dx 2 dz (2π) 3/2 = 1 E R R exp -(t(z) -x 2 ) 2 /2 x 2 exp -x 2 2 /2 exp -z 2 /2 dx 2 dz (2π) 3/2 = 1 E R R x 2 exp   - 1 2 t(z) √ 2 - √ 2x 2 2   exp -t(z) 2 /4 exp -z 2 /2 dx 2 dz (2π) 3/2 = 1 E R R x 2 √ 2 exp   - 1 2 t(z) √ 2 -x 2 2   exp -t(z) 2 /4 exp -z 2 /2 dx 2 dz (2π) 3/2 √ 2 = 1 E R E(X 2 ) exp -t(z) 2 /4 exp -z 2 /2 dz 4π
avec X 2 de loi N t(z) √ 2 , 1 , donc E(X 2 ) = t(z)/ √ 2 et alors :

E f (X 1 X 2 | ϕ 1 (X) ≥ 0) = 1 4E √ π E t(Z) exp -t(Z) 2 /4 .
Enfin, cette dernière espérance vaut : 

E t(Z) exp -t(Z) 2 /4 = R (β √ n -z √ n -2) exp -(β √ n -z √ n -2) 2 /4 exp -z 2 /2 dz √ 2π = R (β √ n -z √ n -2) exp -(β √ n -2 -z √ n) 2 /4 exp -β 2 /2 dz √ 2π = R β √ n -z √ n -2 √ n exp -(β √ n -2 -z ) 2 /
√ 2 β - √ n -2 n E(Z ) avec Z de loi N (β √ n -2, 2), donc E(Z ) = β √ n -2 et alors E t(Z) exp -t(Z) 2 /4 = 2 √ 2 n β exp(-β 2 /2).
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  1 (voir la démonstration en annexe A.1

Figure 2

 2 Figure 2.2 -Valeurs des poids normalisés lors d'une itération de l'algorithme CE en dimension n = 5, 20, et 50, avec une taille d'échantillon par itération N = 1000, et le paramètre ρ = 0.1.

Figure 2

 2 Figure2.3 -Évolution de la divergence KL partielle D , entre la densité de la loi "banana shape" et la densité gaussienne g m * ,Σ , en fonction de la dimension, lorsque Σ est la matrice optimale Σ * (cercles bleus), ou la matrice empirique Σ * (carrés rouges).

  + E g * (ln(φ(X))) -ln(E), la divergence minimale (pour m = m * ). En pratique, m * est approché par m * (1.11) et :D(g * , g m * ) = 1 2N ε 2 + D * ,En gardant N fixe, l'augmentation de la dimension peut entrainer celle de l'erreur ε et donc de la divergence KL. En effet, comme ε 2 = n j=1 ε 2 j , cette somme de termes positifs risque d'augmenter si n grandit. Regardons alors comment une projection pourrait nous aider à réduire cette erreur. Considérons un sous-espace Y ⊂ R n de petite dimension, dans lequel on cherche à minimiser la divergence KL, ou de manière équivalente mm * :m * Y =arg min m∈Y D(g * , g m ) = arg min m∈Y mm * . Lorsque Y = R n , on a bien m * R n = m * . Sinon, le théorème de projection dans un sous-espace de R n donne : m * Y = Π Y (m * ), avec Π Y : R n → R n la projection ortogonale sur Y. En pratique, comme m * est inconnu, on utilise une estimation de m * Y : mY = Π Y ( m * ), où m * est l'estimation de m * . Notons alors que pour m ∈ Y, m -Π Y (m * ) est orthogonal à m * -Π Y (m * ) et donc :

  semble donc possible de rendre la quantité (3.3) négative en faisant en sorte que la différence m * 2 -Π Y (m * ) 2 (qui est positive) ne soit pas trop grande. Autrement dit, si la projection choisie permet d'avoir d'une part Π Y (ε) 2 très petit devant ε 2 et, d'autre part, m * 2 ≈ Π Y (m * ) 2 , on peut alors espérer diminuer la divergence KL en projetant les paramètres. Dans la suite, nous allons reprendre cette idée de projection des paramètres pour tenter de diminuer la divergence de Kullback-Leibler et améliorer la précision de l'estimation.

Algorithme 6 :3

 6 Estimation de E par IS gaussien où la matrice de covariance est de la forme Σ k (3.4) avec k = n et les d i sont fixés à l'avance Données : Tailles des échantillons N et M , vecteurs d 1 , . . . , d n Résultat : Estimation ÊN de l'integrale E 1 Générer un échantillon X 1 , . . . , X M selon g * pour estimer m * et Σ * par m * et Σ * (1.11) ; 2 Calculer les vi = d i Σ * d i , pour i = 1 . . . n, et la matrice Σk définie en (3.4), avec v i = vi . ; Générer un nouvel échantillon X 1 , . . . , X N selon g m * , Σk et estimer E par ÊN (1.4).

Figure 3

 3 Figure 3.1 -Évolution de la divergence KL "partielle" D (2.2), entre la densité g * et la famille {g m * ,Σ }, en fonction de la dimension, avec la matrice optimale Σ * (cercles bleus), la matrice empirique Σ * (carrés rouges), la matrice empirique diagonale Σ * diag , et la matrice empirique projetée aléatoirement Σ * rand (triangles noirs), lorsque φ = I {ϕ≥0} avec ϕ = ϕ 1 (2.1). Observons d'abord l'évolution de la divergence de Kullback-Leibler partielle D (2.2) avec la dimension lorsqu'on considère les matrices Σ * diag et Σ * rand . Les courbes correspondantes sont représentées figure 3.1. Notons que la matrice Σ * est ici estimée avec un échantillon selon g * de taille M = 200. La divergence est bien plus faible pour les matrices "projetées" (triangles noirs, les deux courbes étant confondues) que pour la matrice empirique (carrés rouges) à partir de la dimension 50 environ, et reste proche de la divergence optimale (cercles bleus). Cette diminution de la divergence KL signifie que les densités d'échantillonnage g m * , Σ * diag et g m * , Σ * rand approchent mieux la densité cible g * , que g m * , Σ * , ce qui implique également une meilleure estimation de la probabilité, comme on peut le voir dans le tableau 3.1, regroupant les résultats obtenus selon la procédure expliquée au début de la section 3.1.3.
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 323 Figure 3.2 -Paraboloïde en 3 dimensions correspondant à l'état limite {ϕ 2 (x) = 0}. L'axe des x 1 est en rouge, celui des x 2 en vert, et des x 3 en bleu.

Figure 3

 3 Figure 3.4 -Matrice Σ * = V 0 (à gauche) et une réalisation de Σ * rand (à droite) en dimension 40

Algorithme 7 :5

 7 Algorithme d'estimation de E à l'aide de la projection sur le FIS Données : Taille des échantillons M et N , paramètre ε Résultat : Estimation ÊN de E 1 Générer un échantillon X 1 , . . . , X M selon g * pour estimer m * et Σ * par m * et Σ * ; 2 Évaluer les ∇ ln φ(X i ) pour estimer la matrice Ĥ (3.12), et calculer ses valeurs propres λ 1 ≥ • • • ≥ λ n et ses vecteurs propres d 1 , . . . , d n ; 3 Déterminer le plus petit entier k tel que n j=k+1 λ j ≤ ; 4 Calculer les vi = d i Σ * d i , pour i = 1 . . . k, et la matrice Σk définie en (3.4), avec v i = vi ; Générer un nouvel échantillon X 1 , . . . , X N selon g m, Σk et estimer ÊN (1.4).
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 35 Figure 3.5 -Représentation de la matrice H (3.9) (à gauche) pour la fonction φ 3 en dimension n = 16, et les coordonnées de son vecteur propre (à droite) correspondant à la plus grande valeur propre.
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  à la place de Σ * . La matrice Σ k nécessite l'estimation des coefficients de Σ * uniquement dans certaines directions. La question du choix de ces directions d i , et des coefficients v i se pose alors. Nous allons donc chercher des directions influentes permettant d'approcher Σ * et les tester sur différents cas d'estimation d'une espérance. De manière analogue à l'algorithme 6 de la section 3.1.3, on propose ici de suivre la procédure 8. Algorithme 8 : Estimation de E avec la matrice Σ k où les di sont déduits des paramètres Données : Tailles des échantillons N et M Résultat : Estimation de ÊN de l'integrale E 1 Générer un échantillon X 1 , . . . , X M selon g * pour estimer m * et Σ * par m * et Σ * (1.11) ; 2 Sélectionner k vecteurs d1 , . . . , dk déduits des paramètres estimés ; 3 Calculer les vi = d i Σ * di , pour i = 1 . . . k, et la matrice Σk définie en (3.4), avec v i = vi et d i = di . ; Générer un nouvel échantillon X 1 , . . . , X N selon g m * , Σk et estimer ÊN (1.4).

  initiale dans cette direction et donc qu'elle n'a pas besoin d'être estimée. Dans le cas particulier des événements rares, nous avons remarqué dans divers exemples que la variance diminuait dans la direction donnée par le vecteur m * . Pour illustrer ce phénomène, regardons sur un exemple en deux dimensions, avec la fonction somme des coordonnées (2.1). La figure4.1 représente un échantillon selon la loi d'origine f (gaussienne standard) et un échantillon selon la loi gaussienne optimale g m * ,Σ * . Ce dernier est situé autour de la limite de la zone de défaillance, avec une faible variance dans la direction du vecteur m * (représenté par la flèche noire), alors que dans la direction orthogonale à m * la variance a peu changé par rapport à la variance initiale. C'est pourquoi nous suggérons de mettre à jour la variance dans la direction donnée par m * .

Figure 4

 4 Figure 4.1 -Échantillon généré selon f (cercles bleus), et échantillon généré selon g m * ,Σ * (carrés rouges) pour estimer la probabilité P f (ϕ 1 (X) ≥ 0), avec ϕ 1 la fonction somme des coordonnées (2.1), en dimension n = 2. Le domaine de défaillance est situé au-dessus de la droite (d'équation x 2 = 3 √ 2 -x 1 ) et la flèche représente le vecteur m * .

  1) où m * est colinéaire à e 1 alors qu'il faudrait diminuer la variance selon e 2 avant tout. Les échantillons selon f et selon g m * ,Σ * sont représentés figure 4.2. Le domaine de défaillance étant l'intérieur d'une étroite parabole, la variance des échantillons doit être suffisamment faible selon l'axe x 2 pour qu'il y ait assez de points dans la zone de défaillance. On remarque toutefois que dans la direction de m * la variance a aussi diminué par rapport à la variance initiale, pour les raisons évoquées précédemment.

Figure 4

 4 Figure 4.2 -Échantillon généré selon f (cercles bleus), et échantillon généré selon g m * ,Σ * (carrés rouges) pour estimer la probabilité P f (ϕ 4 (X) ≥ 0), avec ϕ 4 la fonction définie en 4.1, en dimension n = 2. La région de défaillance est l'intérieur de la parabole (d'équation ϕ 4 (x) = 0) et la flèche représente le vecteur m * .
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 43 Figure 4.3 -Graphe de la fonction (x) = ln(x) -x + 1 (4.3).

Algorithme 10 :

 10 Algorithme suggéré par le Théorème 4.1.1. Données : Tailles des échantillones N et M Résultat : Estimation ÊN de l'integrale E 1 Générer un échantillon X 1 , . . . , X M de R n indépendamment selon g * ; 2 Estimer m * et Σ * (1.11) avec cet échantillon ; 3 Calculer les éléments propres ( λ * i , d * i ) de Σ * , et les ranger dans l'ordre suivant :

  et définies comme suit : • Σ * d obtenue en choisissant d i = d * i , vecteurs propres de Σ * , supposés connus exactement. • Σ * d obtenue en choisissant d i = d * i , vecteurs propres de Σ * (estimations des d * i ). • Σ * m obtenue en choisissant d 1 = m * / m * , supposé connu exactement. • Σ * m obtenue en choisissant d 1 = m * / m * , où m * est l'estimation de m * . Ces quatre matrices sont obtenues en projetant sur un des quatre choix suivants : d * i (du théorème 4.1.1) calculés de manière exacte, d * i estimations des d * i , m * (comme suggéré dans la section 4.1.2) calculé de manière exacte, et m * , estimation de m * . Les quatre façons de projeter sont résumées dans le tableau 4.1Les quatre matrices de covariance estimées à l'aide d'une projection et de la forme k i=1 (v i -1)d i d i + I n avec v i = d i Σ * d i . Les directions de projection considérées sont : m * / m * calculée de manière exacte ou estimée, et les vecteurs d * i du théorème 4.1.1 (exacts ou estimés). Pour Σ * d et Σ * d, le nombre de directions k est déterminé par l'algorithme 9, et pour Σ * m et Σ * m, on a toujours k = 1. Lorsque m * et Σ * (et donc ses vecteurs propres d * i ) ne peuvent pas être calculés analytiquement, ils sont estimés par Monte-Carlo avec un budget très important. Les matrices Σ * d et Σ * m estimées à partir des directions théoriques exactes ne sont pas disponibles en pratique et servent avant tout à évaluer l'efficacité de ces directions pour estimer l'intégrale. Les matrices Σ * d et Σ * m permettent de tester l'efficacité des directions approchées et de vérifier l'influence de l'erreur d'estimation de ces directions. Notons enfin que la matrice Σ * d est en fait exactement la matrice Σ * k donnée par l'algorithme 10. Ce changement de notation est effectué pour rester cohérent avec les notations des autres matrices du tableau 4.1. L'efficacité des six matrices est comparée dans les cinq exemples suivants, à travers les valeurs moyennes de la divergence KL partielle D (2.2), et l'estimation de l'intégrale ÊN , regroupées dans les tableaux 4.2 à 4.6. Toutes les valeurs indiquées sont des moyennes calculées sur 50 réalisations des algorithmes 8 et 10 (suivant la matrice considérée), et les tailles d'échantillon sont fixées à M = 500, et N = 2000 (sauf mention explicite du contraire).

  où les valeurs exactes de m * et v * sont données dans la partie 2.1.1. La matrice optimale est déjà de la forme Σ * k (4.4), et ses valeurs propres sont v * < 1 et 1 (de multiplicité n -1). La valeur propre v * est associée au vecteur propre d * 1 = 1 n , et minimise la fonction (voir figure 4.4b), ce qui suggère de prendre théoriquement k = 1. Par ailleurs, m * étant colinéaire à 1 n , on a d * 1 = m * / m * et donc Σ * d = Σ * m . La matrice Σ * d est donnée par l'algorithme 10, où k vaut toujours 1 en pratique (ce qu'on peut déduire de la figure 4.4b en dimension 40), et d * 1 est le vecteur propre associé à la valeur propre de Σ * minimisant . Enfin, la matrice Σ * m vaut (v -1) m * ( m * ) m * 2 + I n , avec v = ( m * ) Σ * m * m * 2 et m * l'estimation de la moyenne optimale m * . Les résultats obtenus avec ces matrices sont donnés tableau 4.2 et figure 4Évolution de la divergence KL partielle D en fonction de la dimension, pour la matrice de covariance optimale Σ * (cercles bleus), la covariance empirique Σ * (carrés rouges), et la matrice avec projection Σ * d(= Σ * k ) (triangles noirs). Images des valeurs propres (λ i ) des matrices Σ * (carrés bleus) et Σ * (croix rouges) en dimension n = 40.

Figure 4 . 4 -

 44 Figure 4.4 -Évolution de la divergence KL partielle et images des valeurs propres (par ) pour l'estimation de la probabilité d'événement rare avec la fonction ϕ 1 (2.1).

  Tableau 4.2 -Comparaison numérique de la divergence D et de l'estimation de E pour les différentes matrices considérées section 4.2 et tableau 4.1, lorsque φ = I {ϕ≥0} avec ϕ = ϕ 1 la somme des variables indépendantes (2.1). En projetant dans la direction optimale théorique (d * 1 = 1 n = m * / m * ), on observe (colonne Σ * m = Σ * d ) que la divergence et l'estimation sont presque égales aux valeurs optimales (colonne Σ * ). Cela vient du fait que les matrices Σ * et Σ * m sont de la même forme, et déterminer Σ * m nécessite uniquement l'estimation d'un paramètre de variance (égal à v = 1 n Σ * 1 n ). Concernant les deux dernières colonnes du tableau, l'estimation de la direction de projection 1n s'ajoute à celle de la variance v, pour le calcul des matrices Σ * d et Σ * m.

  .7) Dans ce cas, la direction donnée par m * est différente de d * 1 et l'algorithme 10 choisit deux directions différentes, ce qui n'était pas le cas dans l'exemple précédent. De ce fait, les matrices Σ * d Évolution de la divergence KL partielle D en fonction de la dimension, pour la matrice de covariance optimale Σ * (cercles bleus), la covariance empirique Σ * (carrés rouges), et les matrices avec projection Σ * d(= Σ * k ) (triangles noirs), et Σ * m (triangles verts). Images des valeurs propres (λ i ) des matrices Σ * (carrés bleus) et Σ * (croix rouges) en dimension n = 30.
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 45 Figure 4.5 -Évolution de la divergence KL partielle et images des valeurs propres (par ) pour l'estimation de la probabilité d'événement rare avec la fonction ϕ 5 (4.7).

Tableau 4. 3 -

 3 Comparaison numérique de la divergence D et de l'estimation de E pour les différentes matrices considérées section 4.2 et tableau 4.1, lorsque φ = I {ϕ≥0} avec ϕ = ϕ 5 la fonction quadratique (4.7). De plus, à l'aide de ce graphe on peut deviner que l'algorithme 9 sélectionne les 2 valeurs propres minimales (en dimension 40 sur la figure 4.5b, mais c'est aussi le cas en dimension 70 et 100). Celles-ci sont associées aux vecteurs propres e 2 et e 3 alors que m * est proportionnelle à e 1 . Les directions suggérées par le théorème 4.1.1 sont donc bien différentes (et même orthogonales) de la moyenne optimale m * . Cette différence se répercute sur la divergence de Kullback-Leibler comme on peut le voir sur la figure 4.5a. En effet, la matrice Σ * d(= Σ * k ) a une divergence très proche de la valeur optimale dans toutes les dimensions alors que D ( Σ * m) est toujours légèrement supérieure. Néanmoins, les deux matrices projetées ont une divergence nettement inférieure à celle de Σ * lorsque la dimension augmente.

  Tableau 4.4 -Comparaison numérique de la divergence D et de l'estimation de E pour les différentes matrices considérées section 4.2 et tableau 4.1, lorsque φ = I {ϕ≥0} avec ϕ = ϕ 6 la fonction perte d'un portefeuille (4.8). Les résultats du tableau 4.4 sont qualitativement similaires à ceux du premier exemple 4.2.1. La projection sur d * 1 = m * / m * améliore significativement l'estimation par rapport à la matrice Σ * (sans projection), avec des coefficients de variation toujours proches de ceux obtenus avec la matrice optimale. Cette amélioration est toujours visible lorsqu'on estime les directions de projection d * 1 et m * , même si en dimension n = 100, Σ * d et Σ * m ont un coefficient de variation légèrement supérieur à Σ * d (respectivement 16.5%, 13.2% et 11.3%). De plus, Σ * m est un peu plus efficace que Σ * d en dimension 100, au vu des coefficients de variation, car m * est un estimateur de m * = d * 1 plus précis que d * 1 , comme expliqué dans l'exemple 4.2.1.

Tableau 4. 6 -

 6 Comparaison numérique de la divergence D et de l'estimation de E pour les différentes matrices considérées section 4.2 et tableau 4.1, lorsque φ = φ 3 la fonction représentant le paiement d'une option asiatique (3.13).

  , la projection dans le CS. Avec ces notations, le projecteur P * k (3.10) est égal à RR . Ainsi, tout vecteur x ∈ R n se décompose de manière unique sur ces deux espaces : x = Rx k + R ⊥ x⊥ , où xk = R x ∈ R k est la projection de x dans le sous-espace réduit, et x⊥ = R ⊥ x ∈ R n-k la projection dans son orthogonal. De même, pour x = (x k , x⊥ ), la densité initiale se décompose en f (x) = f k (x k )f ⊥ (x ⊥ ), où f k est la densité N (0, I k ), et f ⊥ est la densité N (0, I n-k ). La famille auxiliaire d'échantillonnage considérée est alors constituée des densités h
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 51 Figure 5.1 -Images par des valeurs propres de la matrice Σ t (à gauche) à la dernière itération de l'algorithme CE-P en dimension n = 100 et les coordonnées du vecteur propre associé (à droite) à la plus petite valeur propre, ce vecteur étant une estimation de 1 n .
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 52 Figure 5.2 -Images par des valeurs propres de la matrice Σ t (à gauche) à la dernière itération de l'algorithme CE-P en dimension n = 200 et les coordonnées du vecteur propre associé (à droite) à la plus grande valeur propre qui minimise la fonction .

•

  Définir la projection sur m t+1 , d = m t+1 / m t+1 , et projeter les échantillons Y i = d X i . • Estimer leur variance conditionnelle v = N i=1 w i (Y im t+1 ) 2 et construire la matrice Σ t+1 = (v -1)dd + I n . Contrairement aux méthodes CE-P et iCE-P, il n'est pas nécessaire d'estimer la matrice de covariance complète (Σ t+1 dans les algorithmes 12 et 13), c'est pourquoi nous préférons d'abord projeter les échantillons puis estimer la variance v (étape 9 des algorithmes 14 et 15). Remarquons néanmoins que cette variance est bien égale à d Σ t+1 d (car d m t+1 = m t+1 ) et cela reviendrait au même d'estimer Σ t+1 puis de calculer le produit matriciel d Σ t+1 d.

Figure 5 .Figure 5 . 4 -

 554 Figure 5.3 -Fonction de Ackley modifiée (5.6) en dimension 2 (à gauche) et sa projection dans le plan {x 1 = 0} (à droite). La ligne rouge représente le seuil de défaillance.

  moyenne optimale m * est de la forme m * = m * e 1 (avec m * ≈ 3.4, évalué numériquement) et la variance Σ * est une matrice diagonale dont les deux premiers termes diagonaux sont Σ * 11 ≈ 0.095 et Σ * 22 ≈ 0.044, et tous les suivants sont égaux à 1. Comme le domaine de défaillance est assez étroit dans la direction de e 2 , il faudrait diminuer la variance dans cette direction pour que suffisamment d'échantillons tombent dans la zone de défaillance. C'est pourquoi on trouve que e 2 est le vecteur propre d * 1 de Σ * associé à la plus petite valeur propre et la première des deux directions optimales données par la méthode 4.1.3. Mais m * correspond à la seconde direction optimale d * 2 et est donc malgré tout une direction pertinente dans laquelle projeter la variance. Les algorithmes CE-m * et iCE-m * ne tendent donc pas vers la densité optimale, comme on peut le voir sur le graphique de droite de la figure 5.5. Néanmoins, en grande dimension, CE-m * converge et est capable d'estimer la probabilité alors que CE n'y parvient pas à cause de l'effondrement de la matrice de covariance (voir le graphique de gauche de 5.5).
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 55 Figure 5.5 -Projection sur le plan (x 1 , x 2 ) du domaine de défaillance de la fonction ϕ 8 (5.7) et des échantillons de chaque itération de CE (à gauche) et CE-m * (à droite), lorsque la dimension vaut n = 100. Comme ϕ 8 ne dépend pas des autres coordonnées, la zone de défaillance est un cylindre autour de cette parabole.

  des paramètres gaussiens optimaux d'IS sur un exemple jouetDans le cas où la fonction d'intérêt est I {ϕ 1 ≥0} avec ϕ 1 la fonction somme des coordonnées (2.1), les paramètres optimaux, m * et Σ * (1.10), peuvent être calculés explicitement.

Finalement, on

  a E f (X 1 X 2 | ϕ 1 (X) ≥ 0) = β n m * , et l'espérance E f (XX | ϕ 1 (X) ≥ 0) est la matrice βm * 1 n 1 n + I n ,auquel il faut retrancher m * (m * ) = (m * ) 2 1 n 1 n pour avoir Σ * . En notant v * = βm * -(m * ) 2 + 1, on obtient alors Σ * = (v * -1)1 n 1 n + I n (la notation étant choisie de sorte que Σ * soit de la forme Σ k (3.4) du chapitre 3).
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  • • • ≤ 0, de sorte que les événements {ϕ(x) ≥ γ t } soient moins rares mais tendent vers {ϕ(x) ≥ 0} lorsque le nombre d'itérations t grandit. Une suite de paramètres intermédiaires, (m t , Σ t ), est également construite (avec les formules (1.12)), chacun dépendant du seuil γ t , et se rapprochant de (m * , Σ * ). Les seuils γ t sont construits de sorte qu'une proportion ρ ∈]0, 1[, préalablement choisie, des échantillons tirés selon g mt,Σt soit dans le domaine {ϕ(x) ≥ γ t }.

	Ainsi, étant donné un couple de paramètres (m t , Σ t ) à l'instant t, l'algorithme CE repose sur
	la répétition des deux étapes suivantes :

mt,Σt , X i ∼ g mt,Σt et

  δ > 0 fixé. La résolution de ce problème d'optimisation en dimension 1 ne nécessite pas d'évaluation supplémentaire de la fonction boite noire ϕ et n'augmente donc pas le budget de simulation.Les nouveaux paramètres m t+1 et Σ t+1 sont ensuite mis à jour comme indiqué dans l'algorithme 2, décrivant le déroulement de la méthode iCE. Le programme s'arrête lorsque le coefficient de variation empirique des I {ϕ(X i )≥0} /F N (ϕ(X i )/σ t ) devient inférieur à δ, pour un échantillon X i donné à un instant t. Ce critère d'arrêt permet de s'assurer que la fonction F N (ϕ(•)/σ) est suffisamment proche de l'indicatrice.

	X N un échantillon i.i.d. généré selon une loi de densité g, et un paramètre de lis-
	sage σ > 0. Le caractère séquentiel de l'algorithme iCE repose alors sur la définition d'une suite
	décroissante σ 0 > σ 1 > • • • > 0 à la place de la suite des γ t dans la méthode CE. Les paramètres σ t
	sont mis à jour successivement de sorte que le coefficient de variation des poids se rapproche
	d'une valeur δ > 0, choisie au préalable. Autrement dit, étant donné des paramètres σ t , m t , Σ t à
	l'instant t, une nouvelle valeur σ t+1 est définie en résolvant le problème :
	σ t+1 = arg min	δt (σ) -δ
	σ∈]0,σt[	

2

où δt (σ) est le coefficient de variation des F N (ϕ(X i )/σ)L t (X i ), avec L t = f /g
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		puis les
		normaliser wi = w i / N k=1 w k ;
	5	si t<T alors
	6	Rééchantillonner N valeurs avec remise sur l'ensemble {(X 1 , w1 ), . . . , (X N , wN )}, en
		prenant en compte les poids wi , pour former un nouvel échantillon X1 , . . . , XN ;
	7	Mettre à jour les paramètres m t i = Xi et les densités auxiliaires g i = g m t i ;
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  en dimension 2 est tracé en annexe A.2. On peut montrer aisément que la moyenne de cette variable X est nulle, sa covariance est donnée par la matrice diag(σ 2 , 1 + 2b 2 σ 4 , 1, . . . , 1) et sa densité, notée π, est égale à (voir

où σ et b sont des constantes réelles fixées. Un échantillon de cette loi

  1 est la matrice de l'étape précédente, Σt est la matrice empirique estimée à l'étape t, Σt est une estimation de la covariance avec les poids transformés (avec la méthode de clipping ou de tempering, suggérées dans[START_REF] El-Laham | Robust Covariance Adaptation in Adaptive Importance Sampling[END_REF] et évoquées dans la section précédente), et β t , η t sont des coefficients (entre 0 et 1) adaptés à chaque étape de l'algorithme. Cet ajustement permet aux auteurs d'améliorer la performance de l'AIS classique sur des exemples de dimension modérée (≈ 10) mais aucun résultat n'existe pour des dimensions de plusieurs dizaines ou centaines.
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  v k ) est la matrice diagonale de taille k que l'on cherche à estimer, R = (d 1 , . . . , d k ) ∈ R k×n représente la matrice de projection dans un sous-espace influent de dimension k, et R ⊥ = (d k+1 , . . . , d n ) la matrice de projection dans le sous-espace de dimension n -k engendré par les directions supposées non influentes pour estimer Σ * . Le but est donc d'estimer les k paramètres de variances v 1 , . . . , v k au lieu des n(n + 1)/2 de la matrice Σ * (1.11), et ainsi réduire le nombre d'erreurs d'estimation sans augmenter le budget. Nous verrons dans la prochaine section qu'un choix "naïf" des directions de projection d i permet déjà de réduire significativement l'erreur d'estimation de E dans la plupart des cas.

  .10) où les d j sont les vecteurs propres de la matrice H correspondants aux k plus grandes valeurs propres, celles-ci étant rangées dans l'ordre décroissant λ 1 ≥ . . . ≥ λ n . De plus, le minimum de cette borne vaut : tr ((I

n -P * k )H(I n -P * k

  Tableau 3.7 -Comparaison numérique de la divergence D et de l'estimation de E pour les matrices Σ

			Σ *	Σ *	Σ * FIS
	n = 16	D (Σ) Erreur relative (%)	14.2 15.1 14.3 0 5.9 0.4
	E = 2.45 • 10 -2 Estimation moyenne (×10 -2 ) 2.45 2.46 2.45 Coefficient de variation (%) 1.6 4.0 2.7
	n = 40	D (Σ) Erreur relative (%)	38.1 43.6 38.3 0 14.3 0.4
	E = 2.04 • 10 -2 Estimation moyenne (×10 -2 ) 2.03 1.86 2.04 Coefficient de variation (%) 1.5 27 2.4
	n = 100	D (Σ) Erreur relative (%)	97.5 137.8 98.4 0 41 0.9
	E = 1.87 • 10 -2 Estimation moyenne (×10 -2 ) 1.88 0.231 1.88 Coefficient de variation (%) 3.1 91 2.6

* , Σ * , Σ * FIS lorsque φ = φ 3 la fonction représentant le paiement d'une option asiatique (3.13).
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  Ψ est appelé le quotient de Rayleigh de la matrice Σ * ). Pour cela, notons d'abord que Σ = Q∆Q , avec ∆ = diag(v 1 , . . . , v k , 1, . . . , 1) une matrice diagonale et Q une matrice orthogonale dont les k premières colonnes sont les d i / d i , i = 1 . . . k. En effet, on a Σd i = v i d i , et donc d i est un vecteur propre associé à la valeur propre v i . De plus, pour tout d ⊥ dans l'espace orthogonal de Vect(d), on a Σd ⊥ = d ⊥ , si bien que 1 est valeur propre de multiplicité n -k (ou plus si d'autres v i valent 1).On en déduit que det(

  .6) Finalement, pour minimiser D , il faut minimiser la fonction . Cette fonction étant d'abord croissante puis décroissante, sa plus petite valeur est atteinte pour le d i qui soit minimise, soit maximise Ψ (suivant la valeur qui minimise ). D'après la caractérisation variationnelle des valeurs propres (ou le théorème de Courant-Fischer), les solutions d * i de ce problème sont exactement les vecteurs propres de Σ * , et les Ψ(d * i ) sont les valeurs propres associées, qui est le résultat attendu. * 1 est la valeur propre de Σ * minimisant (la plus petite, ou la plus grande), et d * 1 est le vecteur propre associé. En pratique, étant donné Σ * , le théorème suggère alors de calculer ses valeurs propres λ * . Reste à savoir comment choisir le nombre de dimensions retenues, k. S'il est trop proche de n, la matrice Σ * k ressemblera à la matrice Σ * qui est souvent mal estimée et que l'on veut justement améliorer. À l'inverse, toujours prendre k = 1 semble trop restrictif et des directions importantes peuvent être oubliées. Pour le déterminer, on propose une méthode basée sur la valeur de la divergence KL. Étant données les valeurs propres λ *

	Le théorème 4.1.1 nous dit par exemple, pour k = 1, que Σ * 1 = I n + (λ * 1 -1)d * 1 (d * 1 ) / d * 1	2
	où λ i , de les ranger de sorte que ( λ * 1 ) ≤ • • • ≤ ( λ * n ) puis de choisir les k premières valeurs propres, et les vecteurs propres associés d * i , pour construire la matrice Σ * k = k i=1 ( λ *
	i , telles que ( λ * 1 ) ≤ • • • ≤ ( λ * n ), on cherche n )). Le nombre k ainsi choisi permet d'avoir k 1 ), . . . , ( λ * l'écart maximal dans la suite ( ( λ * i=1 ( λ * i ) proche de n i=1 ( λ * i ), qui est égal au minimum de la divergence KL, à une constante près. Cette
	méthode est décrite dans l'algorithme 9.	

i -1) d * i ( d * i ) / d * i 2 + I n Algorithme 9 : Choix du nombre de dimensions k Données : n nombres positifs λ 1 , . . . , λ n tels que (λ 1 ) ≤ • • • ≤ (λ n ) Résultat : Nombre de dimensions sélectionnées k 1 Calculer les écarts δ

  Cela justifie les bonnes performances des matrices Σ *

			Σ *	Σ *	Σ * m = Σ * d	Σ * d	Σ * m
	n = 40	D (Σ) Erreur relative (%)	37.4 39.3 0 5.0	37.4 0.02	37.5 37.4 0.3 0.2
	E = 1.35 • 10 -3 Estimation moyenne (×10 -3 ) 1.35 1.34 Coefficient de variation (%) 2.7 9.4	1.34 2.7	1.34 1.35 2.5 2.0
	n = 70	D (Σ) Erreur relative (%)	67.4 73.8 0 9.5	67.4 0.01	67.6 67.5 0.3 0.2
	E = 1.35 • 10 -3 Estimation moyenne (×10 -3 ) 1.35 1.33 Coefficient de variation (%) 2.0 35	1.34 2.4	1.35 1.35 3.4 2.4
	n = 100	D (Σ) Erreur relative (%)	97.4 111.9 0 15.0	97.4 0.01	97.7 97.6 0.4 0.2
	E = 1.35 • 10 -3 Estimation moyenne (×10 -3 ) 1.34 1.00 Coefficient de variation (%) 2.5 90	1.35 2.3	1.35 1.35 5.1 3.7

d , Σ * d, ainsi que Σ * m , et Σ * m, visibles dans le tableau 4.2.

  1 et d * 2 pour la première, et d * 1 et d * 2 pour la seconde. Les résultats numériques obtenus avec ces deux matrices ont aussi été intégrés dans le tableau 4.5.

			Σ *	Σ *	Σ * d	Σ * d	Σ * d2	Σ * d2
	n = 40	D (Σ) Erreur relative (%)	47.6 0	49.5 4.1	62.6 31.7	62.9 32.4	47.6 0.1	47.7 0.4
	E = 1	Estimation moyenne Coefficient de variation (%)	0.999 1.011 0.841 0.847 0.990 0.996 9.9 38 36 27 9.4 15
	n = 70	D (Σ) Erreur relative (%)	77.6 0	84.0 8.3	92.6 19.4	93.0 19.9	77.6 0.03	77.9 0.4
	E = 1	Estimation moyenne Coefficient de variation (%)	0.982 0.968 0.859 0.887 0.981 0.980 6.8 76 32 57 5.7 8.0
	n = 100	D (Σ) Erreur relative (%)	107.6 122.1 122.6 123.0 107.6 108.0 0 13.6 14.0 14.4 0.02 0.4
	E = 1	Estimation moyenne Coefficient de variation (%)	0.989 1.564 1.170 0.895 0.982 0.973 6.0 940 34 250 7.2 10.6
								et 19) et toutes
	les autres sont égales à 1, donc l'idéal serait d'estimer les deux valeurs maximales. Cependant,
	la différence entre 100 et 19 étant nettement supérieure à celle entre 19 et 1 (et donc (19) -
	(100) est largement plus grand que (1) -(19)), l'algorithme 9 sélectionne toujours une seule
	direction de projection (d * 1 = e 1 , correspondant à la valeur propre 100). Les matrices Σ * d et Σ *

d ne sont donc pas optimales (elles s'approchent de la matrice diag(100, 1, . . . , 1)) mais apportent déjà une amélioration en grande dimension par rapport à Σ * , comme on peut l'observer dans le tableau 4.5. Le choix optimal du nombre de dimension étant k = 2, nous avons également effectué les simulations en imposant k = 2 dans l'algorithme 10 (une autre méthode de sélection est suggérée remarque 4.2.1 pour cet exemple). Les matrices ainsi construites sont notées Σ * d2 et Σ * d2 , et utilisent les directions de projection d * Tableau 4.5 -Comparaison numérique de la divergence D et de l'estimation de E = π(x)dx pour les matrices de covariance Σ * d , Σ * d, et Σ * d2 , Σ * d2 où g * est égale à la densité de la loi "banana shape" π.

  Estimer la matrice Ĥt+1(5.3) à partir du gradient ∇ ln ψ(X i , σ t+1 ) et calculer ses valeurs propres, λ 1 ≥ . . . ≥ λ n , et ses vecteurs propres, d 1 , . . . , d n ; Trouver la dimension réduite k, tel que k soit le plus petit entier vérifiant : n j=k+1 λ j ≤ ε ; Constuire la base du FIS : R (t+1) = (d 1 , . . . , d k ) et du CS : R

				1, pour
		tout i = 1 . . . N	
	5	fin	
	6	sinon	
	7 8	Générer N échantillons indépendants selon la densité réduite Xk,i ∼ g k mk t , Σk t Calculer les poids L t ( Xk,i ) = f k ( Xk,i )/g k m k t t ,Σ k ( Xk,i );	;
	9	Relever les échantillons en dimension n : X i = R (t)	Xk,i + R ⊥ X⊥,i ; (t)
		fin	
		Calculer le coefficient de variation empirique du ratio entre la fonction indicatrice et son
		approximation, à partir des X i : cv t =	Var(I {ϕ(X)≥0} /ψ(X, σ t )) Ê(I {ϕ(X)≥0} /ψ(X, σ t ))	;
		si ( cv Quitter	
		fin	
		Calculer σ t+1 = arg min( δt (σ) -δ) 2 où le minimum est évalué sur σ ∈ (0, σ t ) et δt (σ) est le
		coefficient de variation des ψ(X i , σ)L t ( Xk,i ), i = 1 . . . N ;
		Calculer les poids associés à la nouvelle indicatrice lissée pour tout i :
		Lt+1 (X i ) = L t ( Xk,i )ψ(X i , σ t+1 ) ;	
				(t+1) ⊥	= (d k+1 , . . . , d n ) ;
		Projeter les échantillons : Xk	

t ≤ δ) ou (t ≥ t max ) alors

12 fin 13

  Calculer les valeurs propres λ 1 , . . . , λ n et les vecteurs propres associés d 1 , . . . , d n de la matrice Σ t+1 où les λ j sont rangées de sorte que (λ1 ) ≤ • • • ≤ (λ n ) ;Construire la matrice Σ t+1 = k j=1 (λ j -1)d j d j + I n , où k est obtenu par l'algorithme 9 avec en entrée (λ 1 , . . . , λ n ) ;

	9	
	10	Incrémenter t : t ←-t + 1;
	11	Répéter les étapes 2, 3, 4 et 5 ;

t+1 ) ; 8
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  Calculer les valeurs propres λ 1 , . . . , λ n et les vecteurs propres associés d 1 , . . . , d n de la matrice Σ t+1 où les λ j sont rangées de sorte que (λ 1 ) ≤ • • • ≤ (λ n ) ;

	10	Construire la matrice Σ t+1 = k j=1 (λ j -1)d j d j + I n , où k est obtenu par
		l'algorithme 9 avec en entrée (λ 1 , . . . , λ n ) ;
	11	Incrémenter t : t ←-t + 1 ;
	12	Répéter les étapes 2, 3 et 4 ;

t+1 ) ; 9

1 Exemple jouet : la somme des coordonnées

  . Dans chacun des exemples, le budget de simulation est fixé et est égal à la taille de l'échantillon N multiplié par le nombre d'itérations. Pour obtenir une estimation moyenne de la probabilité E, 100 répétitions indépendantes de chaque algorithme sont effectuées, Le nombre maximal d'itérations a été fixé à 10, et nous considérons donc que l'algorithme n'a pas convergé s'il ne s'est pas arrêté après 10 itérations. Nous avons noté "NC" (non convergent) dans les tableaux lorsque l'algorithme n'a pas convergé.Le premier exemple considéré correspond à la fonction d'état limite ϕ 1 (2.1) déjà testée dans les chapitres précédents. Rappelons que la matrice optimale Σ * est égale à Σ * k (4.4) avec k = 1 et d * 1 = 1 n (voir section 4.2.1). En pratique, dans les simulations de CE-P et iCE-P réalisées ici, le nombre de directions choisi vaut presque toujours k = 1 (il arrive parfois que k = 2), et la direction sélectionnée (ou une des deux lorsque k = 2) est bien une approximation de d * 1 . Pour ce cas-test, nous fixons le budget de simulation à environ 30000 (suivant l'algorithme, le budget moyen sur les 100 simulations peut varier entre 29500 et 30700). Les résultats sont donnés dans le tableau 5.1.

	de façon à obtenir des estimations	Ê(1) N , . . . ,	Ê(100) N	, d'en calculer la moyenne ĒN , ainsi que le biais
	relatif, dans les tableaux 5.1 et 5.2. 5.2.2.CE CE-P ĒN -E E , et le coefficient de variation, 1 100 100 i=1 ( Ê(i) N -E) 2 . Ces valeurs sont regroupées E iCE iCE-P
	n = 30	Estimation moyenne (×10 -3 ) 0.78 Biais relatif (%) -42	1.21 -11	1.35 0.1	1.35 0.1
	E = 1.35 • 10 -3	Coefficient de variation (%) Taille d'échantillon N	54 8000 8000 10000 10000 19 2.0 1.3
	n = 70	Estimation moyenne (×10 -3 ) NC Biais relatif (%) NC	1.05 -22	NC NC	1.35 0.2
	E = 1.35 • 10 -3	Coefficient de variation (%) Taille d'échantillon N	NC NC	35 8000	NC NC	1.7 10000
	n = 100	Estimation moyenne (×10 -3 ) NC Biais relatif (%) NC	1.18 -12	NC NC	1.35 -0.3
	E = 1.35 • 10 -3	Coefficient de variation (%) Taille d'échantillon N	NC NC	34 8000	NC NC	2.5 10000
	Tableau 5.1 -Comparaison des algorithmes CE, iCE, CE-P, et iCE-P pour la fonction d'état
	limite ϕ 1 (2.1). Le budget de simulation pour chaque algorithme est d'environ 30000.

Remarque 5.2.2.

  Dans les deux exemples traités, le gradient de ϕ est connu analytiquement et Comparaison des algorithmes CE, iCE, CE-P, et iCE-P pour la fonction d'état limite ϕ 5 (4.7). Le budget de simulation pour chaque algorithme est d'environ 15000. son évaluation n'est pas très couteuse. L'algorithme iCEred est alors très performant et surpasse CE-P et iCE-P, avec un budget similaire.

			CE	CE-P iCE iCE-P
	n = 30	Estimation moyenne (×10 -3 ) Biais relatif (%)	1.46 -3.2	1.51 -0.2	1.53 1.1	1.51 0.1
	E = 1.51 • 10 -3	Coefficient de variation (%) Taille d'échantillon N	18 5000	2.8 5000 5000 5000 7.2 2.4
	n = 70	Estimation moyenne (×10 -3 ) 3.2 • 10 -4 1.51 Biais relatif (%) -100 -0.2	NC NC	1.50 -0.4
	E = 1.51 • 10 -3	Coefficient de variation (%) Taille d'échantillon N	100 5000	4.6 5000	NC NC	2.6 5000
	n = 100	Estimation moyenne (×10 -3 ) Biais relatif (%)	0 -100	1.47 -2.4	NC NC	1.51 -0.3
	E = 1.51 • 10 -3	Coefficient de variation (%) Taille d'échantillon N	100 5000	12 5000	NC NC	3.8 5000
	Tableau 5.2 -					

5.3.1 Mise en place des algorithmes CE-m

  Les résultats numériques (4.2) du chapitre 4 ont montré que projeter dans la direction de la moyenne optimale m * (dès lors que m * = 0), ou de son approximation m * , améliorait souvent l'estimation de E. C'est particulièrement le cas lorsqu'on estime une probabilité d'événement rare (voir les exemples 4.2.1, 4.2.2, 4.2.3). De plus, quand la direction optimale d * 1 coïncide avec m * , il vaut mieux utiliser l'estimation m * de m * pour projeter que celle de d * 1 , car cette dernière est moins précise puisqu'elle provient de la matrice de covariance empirique Σ * . Nous avons ainsi proposé, dans l'article [El
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  5 et 1.1%. On remarque aussi que CE-m * et iCE-m * sont légèrement plus précis que CEd et iCEd. Cette différence de précision est accrue en dimension 300 car les coefficients de variation de iCE-m * et iCEd sont de 7.3 et 11% respectivement, et celui de CEd est plus de deux fois supérieur à celui de CE-m * (28% contre 13%). Nous suggérons que CE-m * est plus performant que CEd en grande dimension car un plus grand nombre de paramètres est mis à jour dans CEd et la plupart de ces paramètres n'a pas d'influence sur l'estimation. De ce fait, il y a plus d'erreurs d'estimation dans CEd que dans CE-m * qui estime la variance uniquement dans la direction optimale. Par ailleurs, on peut noter que iCE-m * et iCEd sont plus performants que CE-m * et CEd respectivement, en ayant un coefficient de variation et un biais relatif souvent inférieur.Enfin, il faut souligner que ces algorithmes sont très efficaces malgré le faible budget de simulation utilisé. En comparaison, CE-P et iCE-P ne convergent pas avec un tel budget. Les résultats donnés par CE-m * et iCE-m * sont donc très performants, avec un faible budget et jusqu'en dimension 300, dans ce cas particulier où m * est exactement la direction optimale pour estimer la variance.

		iCE iCE-m * iCEd	CE	CE-m * CEd
	Estim. moyenne (×10 -3 ) P = 1.35 • 10 -3 Coefficient de variation (%) n = 30 Biais relatif (%)	0.011 99 -99	1.35 2.6 -0.1	1.36 5.8 • 10 -5 5.1 100 0.9 -100	1.34 4.6 -0.5	1.35 5.8 0.4
	Taille d'échantillon N	1000	2700	3700	1000	2700	3400
	Estim. moyenne (×10 -3 ) P = 1.35 • 10 -3 Coefficient de variation (%) n = 100 Biais relatif (%)	NC NC NC	1.35 4.6 0.1	1.36 6.8 0.9	NC NC NC	1.35 4.4 -0.1	1.37 7.4 1.1
	Taille d'échantillon N	NC	2900	3700	NC	2700	3600
	Estim. moyenne (×10 -3 ) P = 1.35 • 10 -3 Coefficient de variation (%) n = 300 Biais relatif (%)	NC NC NC	1.35 7.3 -0.2	1.36 11 0.6	NC NC NC	1.34 13 -0.8	1.31 28 -3.2
	Taille d'échantillon N	NC	4000	3700	NC	2700	3700
	Tableau 5.3 -Comparaison numérique de l'estimation de la probabilité E avec les six algorithmes
	(CE-m						

* , iCE-m * , CE, iCE, CEd et iCEd) lorsque la fonction d'état limite est la somme des coordonnées ϕ 1 (2.1).

  Comparaison numérique de l'estimation de la probabilité E avec les six algorithmes (CE-m * , iCE-m * , CE, iCE, CEd et iCEd) lorsque la fonction d'état limite est la fonction de Ackley modifiée ϕ 7 (5.6).

	Estim. moyenne (×10 -3 ) P = 1.64 • 10 -3 Coefficient de variation (%) n = 30 Biais relatif (%)	1.23 89 -25	1.62 7.6 -1.1	1.65 0.92 9.0 75 0.6 -44	1.62 13 -1.2	1.66 9.9 0.9
	Taille d'échantillon N	1000	2700	2700 2700	2200	2700
	Estim. moyenne (×10 -3 ) P = 1.18 • 10 -3 Coefficient de variation (%) NC NC n = 100 Biais relatif (%) NC	1.17 13 -1.2	1.19 10 0.9	NC NC NC	1.22 29 3.4	1.20 21 1.6
	Taille d'échantillon N	NC	2700	2700	NC	2200	2700
	Estim. moyenne (×10 -3 ) P = 1.72 • 10 -3 Coefficient de variation (%) NC NC n = 200 Biais relatif (%) NC	1.71 9.1 -0.5	1.69 12 -1.5 NC NC NC	1.72 27 -0.1	1.82 120 5.7
	Taille d'échantillon N	NC	2700	2700	NC	2700	3700
	Tableau 5.5 -						

.7) dont le domaine de défaillance est représenté sur la figure 5.5. On peut montrer facilement que la iCE iCE-m * iCEd CE CE-m * CEd

  algorithme iCEred est plus efficace Tableau 5.6 -Comparaison numérique de l'estimation de la probabilité E avec les six algorithmes (CE-m * , iCE-m * , CE, iCE, CEd et iCEd) lorsque la fonction d'état limite est le polynôme de degré 2, ϕ 8 (5.7).et plus précis que tous les algorithmes proposés dans cette section en grande dimension, le gradient des fonctions considérées étant facile à obtenir. En revanche, l'exemple 5.3.2.2 est un cas où iCEred n'est pas applicable, puisque la fonction n'est pas différentiable, ce qui montre les limites d'une méthode basée sur le gradient.

		iCE	iCE-m * iCEd	CE	CE-m * CEd
	Estim. moyenne (×10 -4 ) P = 2.9 • 10 -4 Coefficient de variation (%) n = 30 Biais relatif (%)	2 • 10 -6 100 -100	2.9 11 1.0	2.9 5.2 0.2	9 • 10 -8 100 -100	2.9 11 0.5	2.6 37 -11
	Taille d'échantillon N	1000	2700	2700	1000	1600	2000
	Estim. moyenne (×10 -4 ) P = 2.9 • 10 -4 Coefficient de variation (%) n = 100 Biais relatif (%)	NC NC NC	2.9 11 1.1	2.9 7.2 -0.3	NC NC NC	3.0 28 1.3	1.4 87 -52
	Taille d'échantillon N	NC	2700	2600	NC	1900	2000
	Estim. moyenne (×10 -4 ) P = 2.9 • 10 -4 Coefficient de variation (%) n = 300 Biais relatif (%)	NC NC NC	3.0 29 3.5	NC NC NC	NC NC NC	2.9 88 -1.5	NC NC NC
	Taille d'échantillon N	NC	2300	NC	NC	2400	NC

Comme la plupart des paramètres sont issus de la matrice de covariance (≈ n 2 /2), cela soulève la question de son estimation en grande dimension, qui est un problème existant en dehors du cadre de l'échantillonnage préférentiel. Nous évoquons ce problème dans la section 2.1.3 et montrons son influence sur la dégradation de la divergence de Kullback-Leibler. Par ailleurs, l'algorithme CE, comme les autres algorithmes AIS, subissent le phénomène de dégénérescence des poids en grande dimension. Notre figure ne permet pas de mesurer ce phénomène mais la dégénérescence des poids peut entrainer la défaillance des méthodes d'échantillonnage préférentiel comme nous l'évoquons dans la partie 2.1.2.2.1.2 Le phénomène de dégénérescence des poids en grande dimensionUne raison souvent mise en avant pour expliquer la dégradation de l'échantillonnage préférentiel, et des algorithmes AIS, en grande dimension est la dégénérescence des poids ("weight degeneracy"). En effet, il arrive que la majorité des poids normalisés s'effondre rapidement vers 0, en particulier lorsque la dimension augmente (voir[START_REF] Cappé | Population Monte Carlo[END_REF],[START_REF] Koblents | A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models[END_REF],[START_REF] Rubinstein | How to Deal with the Curse of Dimensionality of Likelihood Ratios in Monte Carlo Simulation[END_REF]). Ce phénomène est illustré sur la figure 2.2 qui représente la valeur des poids

avec ε = ( m *m * )√ N un vecteur aléatoire de R n représentant l'erreur d'estimation de m * , et N la taille de l'échantillon utilisée pour estimer m * .

avec a = (a 1 , . . . , a n ) = 2 n (0, 1, 2, . . . , n -1) ∈ R n un vecteur fixé et c n une constante réelle dépendant de la dimension et ajustée de sorte que la probabilité soit de l'ordre de 10 -3 . La fonction de Ackley modifiée est tracée sur la figure5.3, avec sa projection dans le plan {x 1 = 0}. Le domaine de défaillance correspond aux points (x 1 , x 2 ) tels que ϕ 7 (x 1 , x 2 ) ≥ 0, c'est-à-dire les valeurs de x 2 telles que la courbe bleue est au-dessus de la ligne rouge sur le graphique de droite de la figure 5.3, puisque la fonction ne dépend pas de x 1 . La fonction de Ackley standard correspond à l'application ϕ 7 avec a i = 1 pour tout i. Dans notre cas, on introduit le paramètre a pour casser la symétrie et éviter que m * soit proportionnel à (1, . . . , 1) comme dans le premier exemple (5.3.2.1). La moyenne optimale m * , obtenue par Monte-Carlo avec un budget très important, est représentée sur la figure5.4, avec le vecteur a (normalisé) en dimension 30. De plus, lorsqu'on calcule les valeurs propres de la matrice Σ * (estimée avec un très grand budget), l'algorithme 9 donne une seule direction de projection optimale d * 1 , également représentée sur la figure 5.4. La moyenne optimale ne semble donc pas être exactement égale au premier vecteur propre d * 1 , qui lui se rapproche de a, mais n'en est pas très éloignée. Cela peut expliquer l'efficacité des algorithmes CE-m * et iCE-m * , dont les résultats de simulation sont donnés dans le tableau 5.5.Ces résultats sont qualitativement similaires à ceux de l'exemple 5.3.2.1 avec la somme des coordonnées. En dimension 30, CE et iCE sont très imprécis (biais relatif d'environ -44 et -25% respectivement) alors que les quatre autres algorithmes donnent une bonne estimation avec un biais relatif de 1% ou moins et un coefficient de variation entre 7 et 13%. Lorsque la dimension augmente, CE et iCE ne convergent pas mais les résultats pour CE-m * , iCE-m * et iCEd sont toujours performants, le biais relatif restant entre 1 et 3%, et le coefficient de variation entre 9
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Abstract

In many scientific fields, an important goal consists in estimating expectations of a function of interest according to a given probability distribution. The function can be considered as a computationally demanding black box function. Importance Sampling (IS) is a well-known method to estimate such integrals with a small simulation budget. It is a stochastic technique which consists in sampling from an auxiliary distribution instead of the initial one. The IS estimator is based on the Monte Carlo estimator with importance weights and converges almost surely to the unknown expectation, according to the law of large numbers. However, its variance, as well as the estimation accuracy, strongly depends on the choice of the auxiliary density. A theoretical optimal IS density, minimising the variance, can be defined but is unknown in practice. Hence, the auxiliary density can be chosen in a parametric family, which allows to easily generate samples, in order to approximate the optimal IS distribution. Adaptive Importance Sampling (AIS) algorithms have been developed to find optimal parameters allowing to approach the theoretical target density, by estimating parameters iteratively. However, when the dimension of the parameters space is growing, the parameters estimation is degrading and AIS algorithms, and IS more generally, become inefficient. Then the final expectation estimation becomes inaccurate, because of the accumulation of the parameters estimation errors.

Thus, the main goal of the thesis is the improvement of the accuracy of high dimensional IS, using projections in low dimensional subspaces to reduce the number of estimated parameters. We focus specifically on finding influential projection directions for the estimation of the covariance matrix in the Gaussian case (updating the mean vector and the covariance). The first suggested idea is the projection on the onedimensional subspace spanned by the optimal mean vector. This direction is relevant in particular in the context of rare event probability estimation, because the variance decreases in this direction. The second projection is the optimal projection found by minimising the Kullback-Leibler divergence with the target density. This proposition allows to project in more than one direction contrary to the first technique, and identifies the most influential directions. We test the efficiency of both projections on various examples of expectation estimation, at first in a theoretical context and without adaptive algorithms. Numerical simulations show the significant improvement of the IS estimation accuracy with the two projection techniques and on all examples. We then implement an improvement of the Cross Entropy method (CE), an AIS algorithm for rare event probability estimation, using both projection methods. We check the efficiency of the proposed algorithms on some examples of rare event estimation with a small simulation budget. The projection on the optimal directions give accurate estimations in moderate dimensions (less than 100). The projection on the mean is still efficient in higher dimensions (a few hundreds) in most examples. In all cases, the numerical results show that our proposed algorithms outperform the classical CE by increasing the accuracy with the same budget.