
HAL Id: tel-03927207
https://hal.science/tel-03927207v1

Submitted on 6 Jan 2023 (v1), last revised 5 Jun 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Analysis of Elite Swimming Race Videos
Nicolas Jacquelin

To cite this version:
Nicolas Jacquelin. Automatic Analysis of Elite Swimming Race Videos. Computer Vision and Pattern
Recognition [cs.CV]. Ecole Centrale de Lyon, 2022. English. �NNT : �. �tel-03927207v1�

https://hal.science/tel-03927207v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de

l’École Centrale de Lyon

École Doctorale 512

Informatique et Mathématique de Lyon
(INFOMATHS)

Spécialité
Informatique

Présentée par

Nicolas Jacquelin

Pour obtenir le grade de
DOCTEUR de L’UNIVERSITÉ DE LYON

Sujet de la thèse :

Automatic Analysis of Elite Swimming Race Videos

Analyse Automatique de Vidéos de Course de Natation Elite

Soutenue publiquement le 1
er Décembre 2022, devant le jury composé de :

Jenny Benois-Pineau, Pr. Université Bordeaux 1 Rapporteure
Peter Sturm, DR INRIA, Rhône-Alpes Rapporteur
Serge Miguet, Pr. Université Lyon 2 Examinateur
Albrecht Zimmermann, MCF Université de Caen Normandie Examinateur
Céline Leverrier, PhD Fédération Française de Natation Invitée
Stefan Duffner, MCF, HDR INSA Lyon Directeur
Romain Vuillemot, MCF École Centrale de Lyon Co-Directeur

Nicolas Jacquelin: Automatic Analysis of Elite Swimming Race Videos, © 2022

A B S T R A C T

In top-level sport, where all participants have exceptional physical and technical
skills, as well as deep theoretical knowledge of their field, the gap between
the best results is minimal. The winner is determined by small details that
may seem insignificant to the uneducated eye, but are actually fundamental to
gaining ground on others. In swimming in particular, many finals of important
competitions end up with a difference of less than a tenth of a second between
the leaders. The details bringing victory can be very varied because they concern
the individual physique of the swimmers, their mental and physical preparation,
their understanding of the swimming style of their competitors, and many other
things. Understanding them is crucial to winning: this is the role of the sports
coaches. They will study with finesse what can allow their swimmer to be the
most efficient.

The first step in the analysis of training and races is information extraction. In
this thesis, we are particularly interested in swimming competitions. Our goal is
to generate an automatic race report. This would free up an invaluable amount
of time for coaches, and would also allow for extensive analysis of competitions.
Such technology would also improve the detection of potential talent through the
systematic analysis of all amateur competitions.

We will focus here on video analysis, as sensors and other intrusive acquisition
systems cannot be used during championships. This imposes important con-
straints related to the recording conditions of the videos: our methods must be
robust and general. Computer vision methods will be explored to get the best
out of the videos. We will also explore image analysis in a less data-dependent
way than usual. Indeed, this field has progressed enormously over the last decade
thanks to the development of deep learning, but it depends a lot on the quality
and quantity of data. Our general problem will therefore concern the extraction of
information from swimming race videos using small amounts of data. This task
will be divided into three parts, each one studying a specific type of information.
All results, models, and resulting databases have been published online, accessible
to all.

We will start by focusing on the detection of swimmers in images. This task is
the most obvious to start with, because to study a swimmer on a race, we must
be able to locate him. This chapter will therefore introduce a detection method
specifically adapted to swimmers, as well as a dataset related to the task.

Detecting swimmers on an image is a first step, but it does not give positional
information in the pool. For that, we need to register the image, that is to map
each point of the image to a zone of the pool. A particularly fast and very efficient
method will be explained to answer this task. Another dataset will be presented.

iii

iv abstract

The third part of this thesis will concern the measurement of swimming cycles.
The repetition of the movement being omnipresent during a race, its study is one
of the most useful to perceive the quality of swimming. It is an excellent basis
for measuring a swimmer’s fatigue, efficiency, or technique. A general method to
count cycles on a video will be presented. Specifically for swimming, we will also
describe a way to locate the ends of cycles, in order to measure their individual
duration with precision.

R É S U M É

En sport de niveau international où tous les participants ont des compétences
physiques et techniques exceptionnelle, ainsi que de profondes connaissances
théorique de leur domaine, l’écart entre les meilleurs résultats est minime. Le
vainqueur est déterminé par des petits détails qui peuvent sembler infimes à l’œil
du profane, mais qui sont en réalité fondamentaux pour gagner du terrain sur les
autres. En natation en particulier, plusieurs finales de compétitions importantes
se soldent par un écart inférieur au dixième de seconde entre les premiers. Les
détails apportant la victoire peuvent être très variées car elles concernent le
physique individuel des nageurs, leur préparation mentale et physique, leur
compréhension du style de nage de leurs concurrents, et bien d’autres choses.
Comprendre finement ces différences est donc crucial pour l’emporter : c’est le
rôle des entraîneurs sportifs. Ils vont étudier avec finesse ce qui peut permettre à
leur nageur d’être le plus efficace.

La première étape de l’analyse des entraînements et des courses est l’extraction
d’information. Dans cette thèse, nous nous intéressons particulièrement aux
compétitions de natation. Notre objectif est de générer un compte-rendu de
course automatique. Cela libérerait une quantité de temps inestimable pour les
entraîneurs, et permettrait également l’analyse exhaustive des compétitions. Une
telle technologie permettrait également d’améliorer la détection de potentiels
talents via l’analyse systématique de toutes les compétitions amateures.

Nous nous concentrerons ici sur l’analyse vidéo, les capteurs et autres systèmes
d’acquisition intrusifs ne pouvant être utilisés lors de championnats. Cela impose
des contraintes importantes liées aux conditions d’enregistrement des vidéos : nos
méthodes devront faire preuve de robustesse et de généralisation. Des méthodes
de vision par ordinateur seront explorées afin de tirer le meilleur des vidéos.
Nous explorerons également l’analyse d’image de manière moins dépendante
des données qu’habituellement. En effet, ce domaine a énormément progressé
au cours de la dernière décennie grâce au développement de l’apprentissage
profond, mais il dépend beaucoup de la qualité et quantité des données. Notre
problématique générale concernera donc l’extraction d’informations issues de
vidéos de course de natation en utilisant de faibles quantités de données. Cette
tâche sera divisée en trois parties, chacune étudiant un type d’information précis.
Tous les résultats, modèles, et bases de données qui en découlent ont été publiés
en ligne, accessibles à tous.

Nous commencerons par nous intéresser à la détection des nageurs dans les
images. Cette tâche est la plus évidente à comprendre, car pour étudier un nageur
sur une course, il faut être capable de le localiser. Ce chapitre introduira donc une

v

vi résumé

méthode de détection spécifiquement adaptée aux nageurs, ainsi qu’une base de
données liée à la tâche.

Détecter les nageurs sur une image est une première étape, mais cela ne nous
donne pas d’information de position dans le bassin. Pour cela, il faut recaler
l’image, c’est à dire savoir à quelle zone de la piscine correspond chaque point de
l’image. Une méthode particulièrement rapide et très efficace sera expliquée pour
répondre à cette tâche. Une autre base de données sera présentée.

La troisième partie de cette thèse concernera la mesure de cycles de nage. La
répétition du mouvement étant omniprésente pendant une course, son étude est
l’une des plus utiles pour percevoir la qualité de nage. Il s’agit d’une excellente
base pour mesurer la fatigue d’un nageur, son efficacité, ou sa technique. Une
méthode générale pour compter les cycles sur une vidéo sera donc présentée. Spé-
cifiquement pour la natation, nous décrirons également une manière de localiser
les fins de cycles, dans le but de mesurer leur durée individuelle avec précision.

R E M E R C I E M E N T S

Plusieurs personnes ont permis la bonne tenue de cette thèse, que ce soit
par leurs encouragements ou leurs conseils, qu’ils soient d’ordre techniques,
organisationnel, ou personnels.

Tout d’abord, je salue mes encadrants qui ont fait preuve de compétences
d’accompagnement diverses. Stefan Duffner, mon directeur, a su me guider sur
les pistes techniques de ma thèse. Son expérience en vision par ordinateur m’a
énormément apporté. Merci également à Romain Vuillemot, co-encadrant de la
thèse, qui a mis en place et organisé le projet Neptune et m’a mis en contact avec
la FFN. Ses conseils d’organisation et de planification ont permis une thèse riche
en rencontres et discussions.

Je remercie aussi les membres de la FFN (Fédération Française de Natation) et
particulièrement le pôle performance. Leur rencontre, ainsi que les opportunités
de filmer des compétitions de niveau national, ont grandement amélioré la thèse.
J’ai beaucoup apprécié ces évènements.

Je remercie également mes deux équipes au sein du LIRIS. Tout d’abord, côté
École Centrale, l’équipe Imagine, grâce à laquelle je bois désormais du café [1,
2]. Merci aussi à l’équipe SICAL, qui m’a permis d’écrire ma thèse en 6 mois à
la place de 5 tout en devenant meilleur aux échecs. Les membres de ces deux
équipes auront su à leur façon m’apporter de la motivation et des connaissances
techniques qui ont permis un bon déroulement de la thèse.

Enfin, un remerciement général à ma famille et mes amis qui m’ont apporté
leur soutien et ont toléré ma paresse en leur présence. Promis, c’est parce que je
bossais.

Je remercie pour finir l’invité surprise de la thèse, le covid 19. Il a su signifi-
cativement réduire mon impact carbone durant ces trois années en m’évitant de
prendre l’avion pour aller en conférence.

vii

C O N T E N T S

abstract iii
résumé v
remerciements vii
contents ix
list of figures xiii
list of tables xxiii
acronyms xxv
1 introduction 1

1.1 Choice of Using Videos . 2

1.2 Manual Analysis VS Automatic Analysis 3

1.3 Computer Vision Tasks . 3

1.4 New Challenges We Must Tackle . 5

1.5 Contributions . 6

2 background in computer vision 7

2.1 Previously in Computer Vision . 9

2.1.1 Classic Algorithms . 9

2.1.2 Going Further with Machine Learning 15

2.2 Convolutional Neural Networks . 20

2.2.1 Deep Learning . 20

2.2.2 CNNs Components . 24

2.2.3 CNN Architectures . 26

2.3 Data and Supervision . 31

2.3.1 Computer Vision Datasets . 32

2.3.2 Training: Different Levels of Supervision 34

3 swimmer detection 45

3.1 Introduction . 46

3.2 State Of The Art . 48

3.2.1 General Object Detection . 48

3.2.2 Recent Advances on Swimmer Detection 50

3.3 Proposed Approach . 51

3.3.1 Dataset Creation . 51

3.3.2 Detection Through Segmentation 52

3.3.3 Data Augmentation . 53

3.4 Experimental Results . 55

3.4.1 Metrics . 55

3.4.2 Ablation Study . 56

3.4.3 Comparative Results . 58

3.5 Visual and Qualitative results . 59

ix

x contents

3.5.1 Swimming Races . 59

3.5.2 Other Swimming-Based Activities 61

3.6 Discussions and Perspectives . 62

3.6.1 Improvements and Future Works 63

3.6.2 Generalization to Other Sports 64

3.7 Conclusion . 64

4 pool registration 65

4.1 Introduction . 66

4.2 State Of The Art . 67

4.2.1 Registration Background . 68

4.2.2 Semi-Manual Approaches . 69

4.2.3 Recent Advances in Sport Field Registration 70

4.3 A More Challenging Benchmark . 70

4.4 Registration Method . 72

4.4.1 Template Heatmap . 72

4.4.2 Data Generation and Model Training 73

4.4.3 Matrix Estimation . 74

4.4.4 Post-Processing . 75

4.5 Results . 76

4.5.1 Parameter Study . 76

4.5.2 Comparing to State of the Art 77

4.5.3 Failure Cases . 78

4.6 Discussion on the One-Shot Approach 80

4.7 Conclusion . 80

5 periodicity 81

5.1 Introduction . 82

5.2 Related Work . 84

5.3 Unsupervised Periodicity Counting 86

5.3.1 Latent Representation Learning 86

5.3.2 Cycle Counting . 88

5.4 Experiments and Results . 89

5.4.1 CNN Architecture . 91

5.4.2 Ablation Study . 91

5.4.3 Quantitative Results . 92

5.4.4 Application to 4D videos . 93

5.5 Going Further with Supervision . 94

5.5.1 Supervised Swimmer Strokes Detection 95

5.5.2 Qualitative results . 96

5.6 Discussion and Perspectives . 97

5.7 Conclusion . 98

6 conclusion and perspectives 101

6.1 Summary of the Contributions . 101

contents xi

6.2 Limitations and Proposed Solutions 103

6.2.1 Benefits from Combining the Models 103

6.2.2 Increasing the Acquisition Speed 106

6.3 Perspectives and New Challenges 107

6.3.1 Guided Annotation Tool . 107

6.3.2 Temporal Data for a Better Context Understanding 108

6.3.3 More Data for Better Models 109

6.3.4 Weakly Supervised Learning for a Multitask Model 109

6.3.5 Swimmers Pose Estimation 109

6.3.6 Vision Transformers . 109

6.3.7 Unaddressed Challenges . 110

6.3.8 MediaEval Challenge . 111

6.4 Conclusion . 112

bibliography 113

L I S T O F F I G U R E S

Chapter 1: introduction 1

Figure 1.1 A summary sheet filled-in by the Fédération Française de
Natation (French Swimming Federation) (FFN) performance
division. Frequency (min−1) = #strokes/time, Amplitude
(m) = 50m/#strokes, Tempo (s) = 60s/Frequency. 2

Figure 1.2 How humans understand a pool and use their prior knowl-
edge of the situation to infer data out of the video. These
implicit challenges must explicitly tackled by Computer
Vision (CV) techniques. 3

Figure 1.3 Description of the automatic analysis method we propose.
Each Neural Network (NN) model represents a different
challenge of this thesis. The final objectives are to estimate
the swimmers’ position through time and periodicity. . . . 4

Figure 1.4 Examples of difficult conditions in swimming race videos.
Underwater swimmers are sometimes barely visible (A).
Low camera angles give little view of the farthest swimming
lanes (B). Swimmers of a previous race still in the pool and
referees standing by the start create a difficult subjects of
interest choice (C). Lighting conditions, like outdoor with
bright sun (A), or indoor with back-lighting (B, C) can
obfuscate swimmers. 5

Chapter 2: background in computer vision 7

Figure 2.1 An illustration of the different CV tasks applied to swim-
ming race automatic analysis. 8

Figure 2.2 Illustration of a 2D convolution edge-detection filter. The
"*" symbol represents the convolution, the dot represents
the pixel-wise matrix multiplication (i.e. the local behaviour
of convolution), and the "•" represents element-wise multi-
plication. The 3× 3 Laplacian filter is displayed with the
result of its convolution on the input. At the top, a toy
example displays the filter’s behaviour without texture and
with an edge texture. At the bottom, an application of the
filter on a swimming race image. The line buoys are mostly
well detected, as they are made of simple features with
little texture. The swimmers and waves, however, are more
complex and the filter cannot isolate them. 10

xiii

xiv List of Figures

Figure 2.3 Hough transform illustration. Top: toy examples with 1

point (left) and 1 line (right) with their respective Hough
transform results. Colours are preserved in the example
to map elements of on space to the other. In the point
example, any line crossing the (x, y) position is represented
in the Hough space using the angle (θ) and radius (ρ) as
in the example. A single point thus results in a sinusoid
curve. In the line example, the curves from each point of
the line intersect in a single point corresponding to the
line parameters, which are not directly obtainable from the
image. Bottom: Hough line detection applied to a pool
(after edge detection and thresholding) to detect its buoy
lines. The red line does not represent a line in the image
and appears solely because of noise. 12

Figure 2.4 Scale Invariant Feature Transform (SIFT) descriptors cre-
ation. The local gradient is computed on a 16× 16 region
around the landmark’s position. Their orientation dis-
tribution (among 8 possible angles) is computed and the
dominant one is retained. Then the process is repeated for
smaller 4× 4 regions inside the area. These local orientation
distributions are rotated accordingly to the main orienta-
tion as angle normalization. This results in 4× 4× 8 = 128
values, i.e. the SIFT embedding vector. 14

Figure 2.5 The perceptron and a Multilayer Perceptron (MLP) architec-
ture with 2 hidden layers. 15

Figure 2.6 Illustration of domain definition and data bias. The swim-
mer domain in the data (right) only represents a small por-
tion of the entire swimmer domain (center). For a model
trained on this data, the farther an image is from the train-
ing domain, the less likely it will be identified as a swimmer.
For instance, Superman in swim briefs represented here
will hardly be identified properly if the domain only con-
tains classic images of swimmers. The domain thus needs
to be as wide as possible for a given class. Further, data
biases appear when the classes are unequally represented.
In this example, there are more examples of males than
of females, which causes problems for the future model’s
representation. 18

Figure 2.7 Raw data and explanation of a bad model’s prediction in
the “Husky vs Wolf ” task. From [37] 19

List of Figures xv

Figure 2.8 Stacked convolutional filters forming one layer of a CNN.
The "⊛" symbol represents convolution between the image
and the filters. The red square contains visual features, not
easy to understand for a computer. The corresponding red
vector, on the layer output, contains these information in a
more understandable form for machines. 21

Figure 2.9 Sigmoid (left), hyperbolic tangent (tanh) (center) and Rectified
Liner Unit (ReLU) (rights) activation functions. The two
firsts saturate when moving away from the origin, thus
resulting in a weak gradient as their absolute value gets
bigger. ReLU has a higher derivative for any positive value,
enabling a better gradient back-propagation. Scheme ex-
tracted from [54]. 23

Figure 2.10 A CNN architecture with 2 convolutions, each followed by
a Max Pooling operation, completed by a classification layer
at the end. The task at hand is classifying the swimming
style shown in the input image. 24

Figure 2.11 An encoder-decoder architecture. As the input and output
are the same, it is an autoencoder. The length of a block
represents its number of channels. Remarkably, the bottle-
neck of a linear autoencoder converges into the Principal
Component Analysis (PCA) representation of the data. . . . 27

Figure 2.12 2D PCA visualisation of different autoencoders trained on
MNIST. Colours represent classes. Left: an autoencoder
with a non-continuous manifold in the latent space. Right:
a VAE with a dense continuous manifold. Figure from [72]. 28

Figure 2.13 Elementary residual blocks. Variations can be further ap-
plied to them, but the core feature is the skip connection,
back-propagating the gradient directly from the block out-
put to its input. On the right, an illustration of the linear
bottleneck, useful for deeper networks. The (1× 1) convo-
lutions create depth compression (256-d to 64) and expan-
sion (64-d to 256). In between, a regular feature abstraction
with (3 × 3) convolution is done with only 64 channels
instead of 256. 30

Figure 2.14 The U-Net architecture, from [61]. 31

Figure 2.15 Different views from a classic TV stream. Apart from the
leftmost, they are very different from what coaches are used
to. 33

xvi List of Figures

Figure 2.16 The different levels of supervision. Datasets domains are
represented each with a specific colour. There are different
levels of label, here represented by the cylinders’ edge. Al-
though each type of supervision has a different complexity
of training data, they all aim at performing the detection
task. Note that for transfer learning, the "big" domain is
distinct but close to the target domain. 35

Figure 2.17 An illustration of one-shot learning (i.e. the most extreme
case of few-shot learning) applied to swimmers identifica-
tion, inspired by [99]. The image of the new swimmer is
embedded by the model. Afterwards, each new swimmer
image is compared to the embedding vector of the different
swimmers, including the new one. 37

Figure 2.18 The Class Activation Mapping (CAM) pipeline explained
(figure inspired by [103]). The objective is to detect swim-
mers using a model trained to classify the swimming style.
Such proxy task works because the swimming style can
only be correctly identified by focusing on the swimmers.
Each feature map of the last convolution layer’s output is
weighted by the coefficient it assigns to the freestlye class
(w1, to wn). In our example, the weights to the 2

nd (red)
and nth (green) feature maps are low compared to the 1st

one’s (blue), which roughly segments the swimmers. . . . 38

Figure 2.19 2D PCA of embedding vectors from encoders trained on the
MNIST dataset. The colours represent the different classes.
Left: the model is trained using metric learning. Right: the
model is trained with an additional classification layer with
softmax activation. Extracted from [111]. 39

Figure 2.20 A semi-supervised pipeline applied to detection. Phase 1:
an autoencoder is trained on a big unlabelled image dataset
to create a feature extractor. Phase 2 (transfer learning): the
encoder’s weights are frozen and layers are added on top
of it and trained on a small labelled detection dataset. . . . 41

Chapter 3: swimmer detection 45

Figure 3.1 The swimming race analysis method. The detection part is
tackled in this chapter. It is arguably the most critical bloc,
as both swimmers placement in the pool and periodicity
analysis depend on it. 46

List of Figures xvii

Figure 3.2 Representative examples of the edge fuzziness problem
with the different styles and the diving. Although for
breaststroke the framing is generally well-defined, for other
contexts it is not. The swimmers create waves and splashes
keeping an observer from knowing the exact boxing of their
body. Even with an unexcited water surface, diffraction
deforms the observations and shifts the visible position of
a swimmer from their actual position. 47

Figure 3.3 The Faster Region-Based Convolutional Networks (R-CNN)
algorithm. Left: the entire architecture. The extracted
features are used by the Region Proposal Network (RPN)
and by the classifier. Right: detail of the RPN. It uses the
features both to classify each area as Regions Of Interest
(ROI) or background and to refine its detections. Anchors
refinement generates 4k values (i.e. 4 values per anchor) that
correspond to (width, height, x shift, y shift) × k anchor
boxes. Figure adapted from [134]. 49

Figure 3.4 An illustration of You Only Look Once (YOLO). The output
tensor is only (3× 3) for simplicity. A box colour represents
its class. Objectness score is represented by box thickness.
The model outputs an encoding for each anchor of each
sub-region. Only the ones with an objectness score superior
to a threshold are kept. Non-Maximum Suppression (NMS)
is applied to filter out the redundancies of boxes framing
the same instance. As there are multiple anchor sizes,
multiple objects can be detected in each sub-region. 50

Figure 3.5 Comparison of the classic U-Net architecture and our tiny-
U-Net. The latter is much more compact, each level having
both fewer convolution layers and fewer filters per con-
volution. It is thus significantly faster (5×). Despite this
complexity reduction, Tiny-U-Net is still complex enough
to isolate swimmers. 53

Figure 3.6 The data augmentations used to train the model. From left
to right, top to bottom: original image, blur, contrast and
brightness change, crop, horizontal flip, hue change, side
switch, zoom out. 54

Figure 3.7 Different detection scenarios on the same image. In green
and continuous: boxes with more than 25% IOU with a true
box (i.e. true positives). In red and dashed lines: incorrect
detections (i.e.: false positives). 56

xviii List of Figures

Figure 3.8 The thresholded segmentation output overlaid on the input
image with a size of (256 × 256) pixels. Circled in red are
mistakes to focus on. 59

Figure 3.9 Classic use-case image overlapping with the segmentation
heatmap output by the model with different input sizes.
From left to right, the input sides are 128 pixels, 256 pixels
and 512 pixels. 60

Figure 3.10 Model Segmentation of a water-polo image, slightly out of
the training domain. From left to right, the input sides are
128 pixels, 256 pixels and 512 pixels. 61

Figure 3.11 Segmentation results of persons in a lake, which is signif-
icantly out of the training domain. From left to right, the
input sides are 128 pixels, 256 pixels and 512 pixels. 62

Chapter 4: pool registration 65

Figure 4.1 The swimming race analysis method. The registration part
is tackled in this chapter. It does not depend on any other
method as it directly inputs the raw video frames. Used
with swimmer detection (in the image), it gives their po-
sition in the pool and all the data coming from it (speed,
acceleration, etc.). 66

Figure 4.2 An illustration of the registration. The Dynamic Linear
Transform (DLT) operation uses known matches of positions
(Xi with Yi) to compute the homography matrix. This
matrix can then be used to match a position from one
coordinate system to the other. Therefore, the bounding
box from the image can be positioned in the pool with this
method. 68

Figure 4.3 Local appearance ambiguities comparison of a soccer field
and a swimming pool. A1,2: 4 identical lines at different
places. B: 3 identical lines in the middle. Both A and
B create line mismatch problems. C: the 15m and 35m
markers are identical. D: an example of 2 different camera
view projections on the pool that display the exact same
content, despite being at two completely separate places of
the pool. Best viewed in colour. 71

List of Figures xix

Figure 4.4 Top: data preparation. A generic template with regularly
spaced keypoints is created. The template’s depth encodes
the keypoints’ position in the top-view frame. For each
image in the dataset, a corresponding projection of the
template is created. As a result, the landmarks spatially
refer to their position in the image and semantically encode
their position in the top-view coordinates system. Bottom:
inference. The model generates a heatmap of keypoints.
Using RANSAC, the homography matrix can be estimated,
giving the final projection of the input image in the top-
view frame. Best viewed in colour. 73

Figure 4.5 Smoothing of the 8 parameters of the homography matrix
estimated for a race (the parameter at position (3,3) is al-
ways equal 1). The values are represented through time.
The outliers being orders of magnitude different from the
truth, they have been cut out in the figure’s frame. Blue:
the original signal. Orange: the smoothed signal. 75

Figure 4.6 Examples of failure cases. The results were obtained from
two models trained under different conditions. The Red
squares represent the detected landmarks. Despite the mir-
ror failure looking consistent, its Intersection Over Union
(IOU) with the ground truth is 0. 79

Chapter 5: periodicity 81

Figure 5.1 The swimming race analysis pipeline. The periodicity
counting part is tackled in this chapter. This part is built
on top of swimmer detection because it relies on sub-video
crops around swimmers. It can output the number of cycles
per pool length or the duration of cycles. Both metrics are
used by coaches. 82

xx List of Figures

Figure 5.2 The periodicity counting framework. In Part 1, a Convolutional
Neural Network (CNN) is first trained in an unsupervised
fashion on the test data, as described in section 5.3.1. Then,
it is used to extract an embedding for each image of a video.
(1a) shows an example of the 2D PCA projection of these
embeddings. The last 50 embeddings are linked chrono-
logically (in red), revealing the cyclic path. (1b) shows the
input images whose embeddings correspond to the high-
lighted points. They belong to different swimming cycles
but correspond to the same phase, therefore the points are
close in the latent space. In Part 2, we chronologically stack
the embeddings obtained from the trained network to form
a multi-variate time signal. The PCA’s first component of
the signal reduces it into a uni-variate signal. Finally, our
Max Detector algorithm is used to count the cycles on the
signal, which corresponds to the number of cycles on the
video. 83

Figure 5.3 Unsupervised learning of the pseudo-linear path using the
triplet loss. The anchor is at the center, the positive is on the
smaller circle (not necessarily the same size each time), and
the negative is outside of the bigger circle. a) The anchor is
ϕ(t− 1), so ϕ(t) and ϕ(t + 1) are separated. b) The anchor
is ϕ(t), so ϕ(t) and ϕ(t + 1) are drawn together. When the
training starts, the negative can be on the other side of the
big circle compared to the positive. But this situation is
no longer possible when the constraint is applied to all
the successive frames after convergence, as shown in c):
a pseudo-linear path is naturally formed, as it is the only
way to respect both the attraction and repulsion constraints
imposed by the loss. 86

Figure 5.4 Examples of 1D PCA projections of embeddings chronolog-
ically stacked. The A, B, and C curves show the embedding
results for different cycles duration, from 8 to 50 frames
per cycle (on average). D shows a more complex pattern
containing 2 distinct local maxima. In such cases, our Max
Detector might count 2 cycles per pattern, resulting in a
false result, like mentioned in section 5.4.3. 88

List of Figures xxi

Figure 5.5 Illustration of Max Detector. Starting from the global maxi-
mum’s index tmax, the algorithm shifts by one period T and
finds the maximum’s index t+1 in a window of 10% of T (in
red, exaggerated for a better understanding). This window
makes Max Detector robust to period variations. Starting
from t+1, this is repeated to find t+2, t+3 and so on until
reaching the signal’s end. A first iteration goes from tmax
to the end of the signal and a second from tmax to t = 0. . . 89

Figure 5.6 4D MRI video analyzed by our method. This is a proof of
concept of the method’s generalisation to different input
types. Left: 2D slices of 3D input images (for display
purposes) at different moments. The blood pulses through
the artery. Right: the 1D PCA (blue) and peak detection
of our model (red). As MRI contain very little noise, the
periodic pattern is perfectly smooth. Better seen in colour. 94

Figure 5.7 Value associated to each frame according to their phase in
the cycle. The arrow point at the value v ∈ [−1, 1] taken
by the frame on the sinusoid. Both extremity frames are
associated to 1. 95

Figure 5.8 Crops of a race around a swimmer, analyzed by our pe-
riodicity regression model. Top: the raw output signal.
Bottom, maxima detection by the Max Detector algorithm.
As maxima correspond to cycles extremities, the algorithm
outputs the cycles extremities’ timecodes. 97

Chapter 6: conclusion and perspectives 101

Figure 6.1 A final illustration of our swimming models unified in a
single system. The dotted arrow is a connection that would
no longer exist with the proposed architecture. Following
this idea, the registration result would be part of the de-
tection process, and the smoothing / merging bloc would
improve on the crops extraction. 104

Figure 6.2 Top-views obtained using the same model from a static
camera filming a race. Different types of visible errors
exist. There are also many small shifts, almost indistin-
guishable from the ground truth, causing flickering to
the video. Both the raw projection and the clustered-
based projection (using a unique matrix) of the video are
available at: https://drive.google.com/drive/folders/
1oXKgDIzy3vTd0UHE9TaFjyozOeiR9gTt?usp=sharing. 105

https://drive.google.com/drive/folders/1oXKgDIzy3vTd0UHE9TaFjyozOeiR9gTt?usp=sharing
https://drive.google.com/drive/folders/1oXKgDIzy3vTd0UHE9TaFjyozOeiR9gTt?usp=sharing

xxii List of Figures

Figure 6.3 The detection pipeline proposed in this section. After the
model inference on the right and left videos, there are
4 steps. A: top-view projection and fusion of the raw
heatmaps. B: by-lane threshold, resulting in a position for
each swimmer for a given frame. C: temporal aggregation
of the positions through the entire race. D: position smooth-
ing and gap-filling giving the trajectory of each swimmer
through time. Note that although the probability maximum
of the topmost swimmer’s blob is under 0.45, our by-lane
threshold can detect it. The detection false positives are
transparently discarded thanks to the use of registration. . 106

Figure 6.4 An illustration of the annotation tool we built, with bound-
ing boxes already generates by the model (in red) and
bounding boxes created from scratch by the user (in white).
On the left, different views of the detection. The threshold
slider is at the bottom. 108

L I S T O F TA B L E S

Chapter 1: introduction 1

Chapter 2: background in computer vision 7

Chapter 3: swimmer detection 45

Table 3.1 Detection performance of our model trained with different
swimmer heuristic shape on the target heatmaps. The input
image size is (256 × 256) pixels. * 72 in the original paper,
improved since. 57

Table 3.2 Speed and performances results as a function of input size
(left), and Average Precision (AP)25/Average Recall (AR)25

as a function of the heatmap threshold (right). We tested
the speed with the same set of 1700 images. The different
AP25/AR25 results were evaluated on the Swimm400test set. 58

Table 3.3 Performance comparison for the different detection models.
They are all trained with the same data, except for the first
line. In bold, the best of a category. We observe that the
original U-Net architecture gives significantly worse results
compared to tiny-U-Net, as it overfits on the few data. . . 59

Chapter 4: pool registration 65

Table 4.1 Statistics of the RegiSwim500dataset. The races contain
important lighting, textural, and spatial variations. 72

Table 4.2 Ablation study on the training parameter λ. Best in bold. . 77

Table 4.3 Quantitative results on Soccer World Cup and RegiSwim500datasets.
Best in bold. Real-time methods underlined in the Frames
per Second (FPS) column. 78

Chapter 5: periodicity 81

Table 5.1 Results of different variations of our approach on the QUVA
dataset. Pretrained models did not perform well at embed-
ding the images in a cyclic manner. The same architectures,
trained using our method, give much better results. Differ-
ent architectures do not significantly change the results. . 91

xxiii

xxiv List of Tables

Table 5.2 Results for different methods of periodicity counting meth-
ods. Bold: the best result of a category. Underlined: the
second best. Our unsupervised method reaches compara-
ble performances to the best fully-supervised models. This
proves the overall interest of our method. Q for QUVA
benchmark, C for Countix. 93

Chapter 6: conclusion and perspectives 101

A C R O N Y M S

AP Average Precision

AR Average Recall

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

CAM Class Activation Mapping

CV Computer Vision

DL Deep Learning

DLT Dynamic Linear Transform

DNN Deep Neural Network

DoG Difference of Gaussians

FFN Fédération Française de Natation (French Swimming Federation)

FPS Frames per Second

GAN Generative Adversarial Networks

GPU Graphics Processing Unit

IOU Intersection Over Union

KL div Kullback–Leibler Divergence

mAP mean Average Precision

mAR mean Average Recall

MIL Multiple Instance Learning

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

NMS Non-Maximum Suppression

NN Neural Network

PCA Principal Component Analysis

POV Point of View

R-CNN Region-Based Convolutional Networks

ReLU Rectified Liner Unit

ROI Regions Of Interest

RPN Region Proposal Network

xxv

xxvi acronyms

SGD Stochastic Gradient Descent

SIFT Scale Invariant Feature Transform

SOTA State of the Art

SVM Support Vector Machines

tanh hyperbolic tangent

VAE Variational Autoencoder

YOLO You Only Look Once

C
h

a
p

t
e

r

1
I N T R O D U C T I O N

Contents
1.1 Choice of Using Videos . 2

1.2 Manual Analysis VS Automatic Analysis 3

1.3 Computer Vision Tasks . 3

1.4 New Challenges We Must Tackle 5

1.5 Contributions . 6

At the 2022 French Elite Swimming Championships in Limoges, after Maxime
Grousset and Florent Manaudou finished in respectively first and second place
in 50m butterfly, they were asked by a sports media 1 their feedback on the race.
Maxime Grousset explained how he started strongly with great first 15m, then
how his finish was under-optimal. Such analysis performed intuitively by a top-
level swimmer (silver medal in 100m freestyle at the 2022 World championships)
is extremely valuable. It allows him and his coach to know what is mastered and
what are the areas of improvement.

Grousset explained his personal feelings about the race, but he could not have
provided quantitative data evidence showing how ahead he was initially and how
he slowed down at the end. He also could not always know exactly what lead
him to slow down around the end, such as a bad swimming movement several
seconds sooner.

A quantitative analysis of the sort can only be performed by studying the entire
video footage of the race. Coaches can do it manually using specific tools, but they
tend to focus on the few metrics they prefer. Further, not all swimmers have either
a coach to do it for them or the time and tools at their disposal. Therefore, being
able to automatically generate such a race summary with quantitative metrics and
pixel-wise precision can be of broad interest to the swimming community. If any
swimmer had access to a summary sheet showing how they performed during a
race, it could help them to progress rapidly.

This is the goal of this thesis: to create a swimming race automatic analysis
method. It was made in collaboration with the Fédération Française de Natation

1. By Jonathan Cohen from the FFN https://www.youtube.com/watch?v=Qtr2VttunCQ&t=110

1

https://www.youtube.com/watch?v=Qtr2VttunCQ&t=110

2 introduction

Figure 1.1 – A summary sheet filled-in by the FFN performance division.
Frequency (min−1) = #strokes/time, Amplitude (m) = 50m/#strokes, Tempo (s) =
60s/Frequency.

(French Swimming Federation) (FFN) through the Neptune project 2, which started
in January 2020, just three months after this thesis.

1.1 Choice of Using Videos

We chose videos because coaches heavily rely on them. Cameras are trans-
portable and can be installed next to a pool with no major requirement other than
a dry area. They are also easy to manipulate even by non-experts due to their
presence in our daily life. Videos are good communication tools to explain results
to coaches, swimmers, or teams. Other data can be integrated directly onto them
and visualized, either using tracking methods or simply by putting abstract data
in the spatial or temporal context.

Apart from videos, it is also possible to analyze a race using other data streams
(GPS, inertial sensors, etc.), but they are constraining. They need swimmers
to either equip with intrusive sensors or to perform extensive prior calibration
phases. Body sensors, for instance, are much more constraining although they

2. The Neptune project (Natation et Paranatation: Tous Unis pour Nos Elites) brings academics
and swimming professionals together to prepare for the 2024 Paris Olympics. Members of the FFN

explained what lacked from their current analyses and the researchers focused on these topics.

1.2 manual analysis vs automatic analysis 3

Posi�on:
- virtual line close to be crossed

- 2 buoys on the marker, so 15m or 35m
- memory: beginning of the race, so before 25m
 => 15m

Strokes: right arm soon in the water

Figure 1.2 – How humans understand a pool and use their prior knowledge of the
situation to infer data out of the video. These implicit challenges must explicitly tackled
by CV techniques.

give a precise body position. Finally, intrusive gears are not allowed during
competitions, contrary to filming material.

1.2 Manual Analysis VS Automatic Analysis

The FFN’s performance division uses videos that are closely zoomed to the
swimmers to fill in summary sheets, as shown in Figure 1.1. Their workflow is as
follows: an expert informs the swimmers’ position through time by telling when
they cross each visible landmark. Their strokes are then counted during one pool
length. This enables to automatically compute the other metrics in the summary
sheet. Despite all being inferred from the same two values, they offer different
perspectives of the race to coaches and swimmers.

Although these data contain a lot of valuable information, we argue that
Computer Vision (CV) methods can enhance them. Also, this sheet is only created
for a few races (especially finals and semi-finals) or swimmers with access to
the performance division. With an automatic method, one could fill them in for
each participant. Finally, the bottleneck of these analyses is the human time they
require. If our goal is achieved, we hope to save time for the performance team
over their manual annotation process and analyze a wider range of swimmers
(e.g. foreign races, local league competitions, etc.).

1.3 Computer Vision Tasks

To perform a task using CV, one must first understand the prior knowledge
humans have regarding swimming and the spatial structure of a pool, as illustrated
in Figure 1.2. One must also realize parallax deformation is easily compensated by
our brain, but that an image processing system does not have such prerequisites.
Finally, to count the swimming cycles of a swimmer, one must before know where
the swimmer is in the pool. As CV algorithms do not have such prior knowledge,

4 introduction

Video

Detec�on

Registra�on

Periodicity(�me)

Posi�on(�me)

Crops

Merging

+

Smoothing

Figure 1.3 – Description of the automatic analysis method we propose. Each Neural
Network (NN) model represents a different challenge of this thesis. The final objectives
are to estimate the swimmers’ position through time and periodicity.

they cannot study a race the same way humans do. An automatic swimming
analysis must then do:

• swimmer detection: places the swimmers in the image.
• video spatial calibration: maps a position on the image to a position in the

pool (i.e. removes the perspective).
• periodicity estimation: counts the number of swimming strokes a swimmer

makes during a pool length, which is the coaches’ main analysis metric.
• cameras temporal synchronization: if multiple cameras are used, we must

adjust them so that the race starts at the same time in each.
• swimmer identification: maps a swimming lane with a swimmer.
• swimming phases segmentation: separates diving, normal swimming, and

u-turn. Each has different properties and must be analyzed individually.

In this thesis, we focus on the tasks in bold, the others are left to future
works, although leads are proposed in Future Works (section 6.3.7). We also aim
at working with unconstrained swimming videos to be more general and less
dependent on acquisition conditions. The models must thus adapt to videos that
can be panning to follow the swimmers, fix to continuously film the same part of
the pool, far away or close to the water, etc..

The swimming race analysis method we propose is illustrated in Figure 1.3.
It starts by detecting the swimmers, arguably its most important element. Once
this is done, only half the swimmer’s positioning part is done: depending on the
camera position, the framing, and possible camera movements, mapping pixels
from the image to positions in the pool is not trivial. A camera calibration step is
necessary to resolve this. Combining detection and calibration gives the position
of the swimmers in the pool. Finally, with each swimmer detected, one can crop
a frame around the swimmers in the video and study the periodicity of these
sub-videos.

1.4 new challenges we must tackle 5

A
A B C

Figure 1.4 – Examples of difficult conditions in swimming race videos. Underwater
swimmers are sometimes barely visible (A). Low camera angles give little view of the
farthest swimming lanes (B). Swimmers of a previous race still in the pool and referees
standing by the start create a difficult subjects of interest choice (C). Lighting conditions,
like outdoor with bright sun (A), or indoor with back-lighting (B, C) can obfuscate
swimmers.

1.4 New Challenges We Must Tackle

The CV works directly applied to swimming are rare and no pre-existing model
can be used as an ad hoc solution. A new model specifically addressing these
elements is thus necessary. A robust solution we use in this thesis is Deep
Learning (DL). This type of algorithm relies on dedicated datasets, but none of
the sort exists in swimming, either for detection, registration, or strokes counting.
Further, although a swimmer is a human and the human class appears in many
detection datasets [3, 4], these datasets do not contain examples of humans in the
water. As a result, even powerful object detection models [5, 6, 7] able to detect
any pedestrian, runner, or sitting person, are unable to robustly detect swimmers.

CV results also depend significantly on the video capture conditions. Difficult
lighting, obfuscation, motion blur, and every other perturbation can cause impor-
tant performance drops. Such problems exacerbate in swimming, as examples
showcase it in Figure 1.4. These conditions are extremely frequent, due to the
very nature of this sport. The background is a reflecting object close to giant
bay windows, the waves and bubbles can randomly hide any region of interest,
the swimmers are close to the surface causing diffraction problems, etc.. Camera
placement is another problem, as they can be placed by the coaches on the pool-
side at different places depending on the presence of a public in the stands, the
availability of a filming cell, etc.. Depending on the induced Point of View (POV),
the video quality can vary significantly. A camera that is centered, positioned a
few meters above the ground, and at a good distance from it, gives the best point
of view.

These capture conditions must be best suited for the later analysis. Static
cameras are easy to calibrate but are not zoomed into swimmers. The analysis
is therefore more robust but limited by the digital zoom. On the other hand, a
video following the swimmers (either all of them or just a small group) is closer

6 introduction

to the action and can thus show a better understanding of the race, but this will
be limited by the calibration quality, significantly harder than for fix cameras
(see Chapter 4). As the situation evolved during the project, the answer changed.
This results in different kinds of captured videos that cannot all be studied in the
exact same way due to their very nature (either statics or following a group of
swimmers). This thesis proposes solutions for both.

1.5 Contributions

Three articles have been produced during this PhD. The first, described in
chapter 3, addresses swimmer detection [8]. The proposed method handles the
constraints of swimming, with data augmentation and a model architecture that
are specifically adapted for the task at hand.
Nicolas Jacquelin, Romain Vuillemot, Stefan Duffner. Detecting Swimmers in
Unconstrained Videos with Few Training Data. Machine Learning and Data Mining
for Sports Analytics, Sep 2021, Ghand, Belgium. 〈hal-03358375).

A paper tackling the task of camera calibration, presenter in chapter 4, has
also been produced [9]. Its purpose is to perform registration, that is mapping the
input video to a virtual top-view of known coordinate system. This gives a direct
correspondence of a position (in pixels) in the image with a position (in meters)
in the pool.
Nicolas Jacquelin, Romain Vuillemot, Stefan Duffner. Efficient One-Shot Sports
Field Image Registration with Arbitrary Keypoint Segmentation. IEEE International
Conference on Image Processing, Oct 2022, Bordeaux, France 〈hal-03738153〉.

A third paper, described in chapter 5, addresses strokes counting [10]. It intro-
duces a general periodicity estimation method for videos and complex time-series
such as 4D videos (like IRMs, scanners, etc.) or more abstract signals. It returns
the number of periods in a signal in an unsupervised fashion.
Nicolas Jacquelin, Romain Vuillemot, Stefan Duffner. Periodicity Counting in
Videos with Unsupervised Learning of Cyclic Embeddings. Pattern Recognition Letters,
Elsevier, 2022, (hal-03738161).

In addition to these papers, two datasets have been introduced along them, namely
Swimm400, published in [8], a swimmer detection dataset, and RegiSwim500, pub-
lished in [9], a swimming pool registration dataset. We also published a bench-
mark dataset that groups those tasks along with non-addressed ones at the 2022

MediaEval challenge (detailed in section 6.3.8).

https://hal.archives-ouvertes.fr/hal-03358375
https://hal.archives-ouvertes.fr/hal-03738153
https://hal.archives-ouvertes.fr/hal-03738161v1

C
h

a
p

t
e

r

2
B A C K G R O U N D I N C O M P U T E R V I S I O N

Contents
2.1 Previously in Computer Vision . 9

2.1.1 Classic Algorithms . 9

2.1.2 Going Further with Machine Learning 15

2.2 Convolutional Neural Networks 20
2.2.1 Deep Learning . 20

2.2.2 CNNs Components . 24

2.2.3 CNN Architectures . 26

2.3 Data and Supervision . 31
2.3.1 Computer Vision Datasets 32

2.3.2 Training: Different Levels of Supervision 34

Computer Vision (CV) is the research field we contribute to in order to address
automatic swimming video analysis. This field aims at developing methods to
extract knowledge from input images. It has a long history from signal processing
to data analysis and has been recently revolutionized with deep learning methods.
This chapter will present general background in the domain, explaining different
types of CV algorithms. The next chapters will use them to explain in further
detail the State of the Art (SOTA) in their respective field (detection, registration,
and periodicity counting).

The domains of application of CV are extremely varied and tend to develop
with computation power increase, data accessibility, and new model ideas. The
automation of vision-based tasks is tackled with CV (e.g. pedestrian counting,
action recognition) and frequently paired with online cameras (e.g. video surveil-
lance, plant monitoring, etc.). Monitoring tasks are indeed often addressed using
CV as it gets more and more reliable and cheap. Apart from that, experts can be
assisted by CV models for complex tasks to enhance their decision-making. This
is especially frequent in medical imaging, where small cancer tissues are easy to
miss by a human eye watching the whole scan [11]. Regarding sports analysis, as
for this thesis, it can both be seen as monitoring and experts assisting. Indeed,
analysing swimmers during a race is a monitoring task: once the video is created,
one can wait for the analysis to be over to get a race summary. However, CV can
also help coaches identify anomalies during a race or training. For instance, if

7

8 background in computer vision

Classification

CLASSES:
 - Backstroke
 - Breaststroke
 - Butterfly
 - Freestyle

Input: original image Detection Segmentation Tracking
time

Swimmer #6
frame #t

Figure 2.1 – An illustration of the different CV tasks applied to swimming race automatic
analysis.

the stroke rate suddenly changes for a small period, a coach might analyze the
corresponding video timecode and find out an improvement area for the swimmer.
Here is an overview of common CV tasks related to our work, each illustrated in
Figure 2.1.

• image classification: the content of the image must be identified among
a list of potential classes. It can either concern objects in the image or the
general definition of the scene.

• object detection: objects in the image must be identified and located. Mul-
tiple objects can be present in the same image. The problem is formulated
as the placement and shaping of bounding boxes framing the objects of
interest.

• instance segmentation: this task estimates the probability of each pixel
to belonging to a given set of classes. It can be understood as pixel-wise
classification.

• object tracking: at the start of a video, an object is selected. Tracking is
detecting it on each subsequent frame, even if it moves are changes. This
task uses temporal information from the video to extract information from
each frame.

A task is chosen because it addresses a problem, but said problem usually has
other external constraints. The speed of execution constraint is present in a great
amount of CV applications. Sometimes, as only a few images are to be analyzed
this is not a problem, but in real-time video analysis, for example, the inference
speed is critical. In such conditions, trade-offs such as speed vs precision must
be addressed. Depending on the use cases, one is more important than the other.
Classic older algorithms described in the next section are generally faster as they
are simpler than the newest ones, even with the slower hardware available at
the time. Through time, both hardware and software evolved in parallel, with
heavier new models running on faster new machines. As a consequence, new
Deep Neural Network (DNN) models, orders of magnitude more computationally
expensive than older algorithms, can nowadays run in real-time in the correct
conditions.

Also, classic CV methods do not rely on as much data as the more recent
ones. This is usually seen as the most important difference and the reason why

2.1 previously in computer vision 9

recent methods work better. This data dependency also has drawbacks that older
approaches do not have.

2.1 Previously in Computer Vision

CV techniques have evolved a lot throughout the years. Understanding methods
predating Deep Learning (DL) is required to understand the newest models. We
also have to do it to understand works on automatic swimming race analysis [12,
13] that are based on these algorithms.

2.1.1 Classic Algorithms

In this section, we call classic algorithms any CV algorithm where the user chooses
the different parameters and where the task definition is extremely specific (e.g.:
line detection). Overall, CV was much more limited than today, and as soon as an
application was outside of classic calibrated tasks, it was impossible to manage the
exceptions. By contrast, the majority of the modelling process of recent methods
comes from the data and has better generalisation abilities. The "classic" methods
mostly appeared before Machine Learning (ML), mostly between the 70’s and
the early 2000’s. In this section, we describe in detail a few of them which were
milestones when they were introduced. We will only focus on the ones that were
used or considered for our application.

Convolution Filters

The first family of these algorithms, coming from the signal processing domain,
is the 2D convolution filter. It relies on one important property of images, which
is their spatial coherence: the pixel distribution in local regions contains more
information than individual pixels. Therefore, processing an image as a group
of spatially organized values instead of simply a group of disjointed pixels gives
richer and more meaningful results. Further, as objects can be placed anywhere in
the image, translation-invariant operations are often required for better analysis.

Convolution filters implement both the idea of spatial coherence and translation
invariance. A sliding window (called a filter) convolves through the whole image,
which results in a new image of the same dimensions (if we ignore padding
problems). The values of the filter are key as they define the nature of the output
(i.e. the new resulting image). A wildly used filter is an edge detector named the
Laplacian [14], that is illustrated in Figure 2.2. In the result, extreme pixel values
(i.e. far from 0) represent positions with sharp edges. Such a filter is intuitive
and natural to interpret and understand. Using the same idea, one could create

10 background in computer vision

1

1

11
0 0

00

-4* =

1

1

11
0 0

00

-4 =255 .255 255

255
255255255

255
255

0
1

1

11
0 0

000
0
0

0

-4255 . =
255 255

255
255

-510

Swimming race image Convolution output image Thresholded image

Figure 2.2 – Illustration of a 2D convolution edge-detection filter. The "*" symbol represents
the convolution, the dot represents the pixel-wise matrix multiplication (i.e. the local
behaviour of convolution), and the "•" represents element-wise multiplication. The 3× 3
Laplacian filter is displayed with the result of its convolution on the input. At the top,
a toy example displays the filter’s behaviour without texture and with an edge texture.
At the bottom, an application of the filter on a swimming race image. The line buoys
are mostly well detected, as they are made of simple features with little texture. The
swimmers and waves, however, are more complex and the filter cannot isolate them.

a detector of other specific shapes like that. Increasing the filter sizes allows the
search for more complex patterns covering a larger region.

With 2D filters, it is possible to look for any visual pattern, but if the pattern
is too complex, it becomes scale-dependent. To alleviate that, one can create the
same filter at different scales and window sizes to have better chances to find a
result. However, increasing linearly the kernel size of a filter creates a quadratic
computation increase, due to the 2D nature of filters (a 3× 3 filter has 9 elements,
but a 5× 5 filter has 25). Therefore, being scale-exhaustive is extremely slow,
due to the computation time too big filters require. Filters are also orientation-
dependant. It is possible to rotate their value in the matrix to look for the same
pattern with some rotation, but being exhaustive requires a considerable amount
of filters. It is rarely possible to be exhaustive with these filters, thus one usually
uses only a few well-crafted filters. Edge detection does not have these problems,
as edges are not scale-dependent, so small size kernels generally give acceptable
results, and the Laplacian can detect lines of any orientation.

After a convolution, one can apply a threshold to the output to binarize the
result: either a pixel represents a pattern (an edge for instance) or it does not. This
threshold can be tricky to determine, yet it is extremely important. It depends
heavily on the specific image being analysed and it is frequent to have a different
threshold for different images. Further, these filters are highly noise-sensitive and
patterns can be detected for no good reason sometimes (a sharp shadow on a
wall, a buggy pixel area in the camera matrix...). Some regions of high textures

2.1 previously in computer vision 11

cannot properly be analysed by such a filter, such as the waves as shown in Figure
2.2. Indeed, this method only processes the local pixel regions, but it does not
further interpret their meaning. For these reasons, 2D filters lack generalisation
power. One must adapt the filter’s size, orientation, and threshold depending on
the context (i.e. the scene) that is analysed.

Despite all these problems, convolutional filters are still used nowadays for
simple applications, especially for edge detection or blur (with a Gaussian filter).
Edge detection has been improved with automatic cleaning algorithms, such as
the Canny Filter [15]. Despite being generally more robust, it still has similar
problems as the others, with unintelligible results on highly textured areas and a
need for thresholds.

Hough Transform

Although convolution filters can identify local patterns, the result is still difficult
to grasp for a computer. For instance in Figure 2.2, the lines are not perfectly
continuous due to noise and threshold imperfection. Also, even if some pixels are
identified as edges, corners, or similar local marks, one cannot identify important
wider shapes. An idea that emerged in the early days of computer science (around
1960) was a way to convert certain aspects of an image into equations, much easier
to manipulate than pixels.

The Hough transform [16] was originally a method to detect straight lines on a
"skeletonized" image, i.e. an image of edges, usually obtained with a Laplacian
filter and a threshold. Afterwards, this method can return an equation for any
line in the image, even highly noised or partly obfuscated ones. An illustration of
this method is given in Figure 2.3.

The Hough transform converts pixels in the (x, y) image space into curves in the
(θ, ρ) Hough parametric space. For this operation, each pixel in the original image
is converted into a sinusoid curve, following the method explained in Figure 2.3,
top. If a line L of parameters (θL, ρL) contains NL points on the source image,
the position (θL, ρL) of the parametric space will have a value of NL. One can
threshold the Hough space by N to only keep the lines with N points or more. An
application of the Hough transform to swimming is given in Figure 2.3, bottom.

The Hough transform is easily parallelizable, but it is not necessary as it is
generally very fast. It is, however, difficult to set up: one must first extract the
edges on the image and threshold the result, with all the problems and thresholds
implied. Accidental lines can appear (red line in Figure 2.3), especially in highly
textured areas: if an edge detector outputs noise, many pixels can, by chance, be
aligned. Indeed, the Hough transform does not differentiate a correct line from
points across the whole image which happen to be aligned. Further, one must
choose a threshold corresponding to the minimal length of a line to be considered
(i.e. the threshold in the Hough space). This threshold largely depends on the

12 background in computer vision

(ρL, θL)

ρθLρL

 θ θ

ρ

.
 θ

ρ

(x, y)

image with 1 point hough space

Hough lines detection

hough spaceimage with 1 line

Figure 2.3 – Hough transform illustration. Top: toy examples with 1 point (left) and 1

line (right) with their respective Hough transform results. Colours are preserved in the
example to map elements of on space to the other. In the point example, any line crossing
the (x, y) position is represented in the Hough space using the angle (θ) and radius (ρ)
as in the example. A single point thus results in a sinusoid curve. In the line example,
the curves from each point of the line intersect in a single point corresponding to the
line parameters, which are not directly obtainable from the image. Bottom: Hough line
detection applied to a pool (after edge detection and thresholding) to detect its buoy lines.
The red line does not represent a line in the image and appears solely because of noise.

targeted content and its scale on the image. Finally, as a line has a width, it is
possible to draw multiple mathematical lines from it, with similar parameters.
It is thus common to have multiple highlighted points in the Hough space that
come from the same line. As a result, multiple close (θ, ρ) pairs may exceed the
detection threshold.

Hough transform has similar problems as convolution filters: a lack of overall
generalisation ability due to many context-dependent thresholds. In the past,
when one had to detect lines, engineers were very careful about their image cap-
ture conditions: they avoided unwanted shadows creating lines, put everything at
a calibrated distance to avoid scale problems, and were extra careful about orien-
tation. More recent methods significantly gained robustness. This is especially
the case with videos, where anything can get closer, change its orientation, or cast
shadows. For this, new methods were necessary.

Feature Matching

The two previous methods extract low-level information on the image. Such
features inform on spatial properties of the objects present in the image, but they
cannot provide more complex results, such as object identification. Further, these
techniques have 3 main problems:

2.1 previously in computer vision 13

• scale-sensitivity: the same object zoomed-in can have different representa-
tions

• light-sensitivity: depending on the lighting conditions, these methods can
behave in very different manners

• orientation-sensitivity: the object’s orientation is crucial to any local pattern
description

In the early 2000’s, feature matching methods were developed to overcome
such problems and enable deeper image understanding. Their core idea was
to (i) extract points of interest in images and (ii) give meaning to these points
using a semantic vector. If two vectors were similar, it meant they both represent
similar patterns. If one could match the vectors of enough points like this from
different images, it means the images represent a similar object. A set of vectors
describing an image thus represents high-level semantic information. In general,
transforming an image into a vectorial representation with semantic information is
called an embedding. To perform embeddings, several methods were created (e.g.
SIFT [17], SURF [18], ORB [19] or BRIEF [20], etc.), each with different properties.
The most used is called Scale Invariant Feature Transform (SIFT). It performs
discriminant keypoints detection and feature extraction.

The first step is to detect interest points, also called landmarks. They are special
areas in the image containing valuable information and have a chance to be
unique and discriminant compared to other areas. In practice, the highly textured
regions. SIFT applies a Gaussian blur of different sizes to the image, and computes
the difference between the results: this is the Difference of Gaussians (DoG). A
landmark is a DoG extreme value. The image is downscaled at multiple resolutions
and the process is repeated for each, giving scale-robustness to the landmarks
detection. Pixel neighbourhoods around the landmarks are isolated to study the
region gradient orientation, as in Figure 2.4, left and center.

After the landmark detection, SIFT computes their embedding vector, which can
be considered a canonic representation of the area. This is summarized in Figure
2.4. SIFT extracts a region of 16× 16 pixels around the point coordinates, rotated so
that the keypoint gradient orientation always faces up (to be orientation invariant).
It isolates 16 (4 × 4) grids in it and creates a histogram of gradient direction
for each of them. The gradient’s value is computed on 8 possible angles to
normalize the possible outcomes. SIFT also ignores the magnitude of the gradients,
as it is sensitive to lighting effects. As a result, SIFT obtains 16 histograms of 8

values. They are concatenated to form a 128-dimension vector describing the
landmark’s local area. Although it is not completely context-invariant, it has the
main properties missing from the previous methods, as it is robust to changes in:

• rotation: the main orientation always faces up
• size: the image is scaled to several resolutions during landmark detection
• light: the orientation magnitude is ignored during the embedding vector

creation

14 background in computer vision

Landmark region
gradients

4x4 region gradientsorientations distribution

main orientation

Figure 2.4 – SIFT descriptors creation. The local gradient is computed on a 16× 16 region
around the landmark’s position. Their orientation distribution (among 8 possible angles)
is computed and the dominant one is retained. Then the process is repeated for smaller
4× 4 regions inside the area. These local orientation distributions are rotated accordingly
to the main orientation as angle normalization. This results in 4× 4× 8 = 128 values, i.e.
the SIFT embedding vector.

SIFT outputs detailed local pattern descriptions, but it is still not enough to
describe an entire object or scene. As mentioned before, one must study different
descriptors in images to be sure they represent a given concept. One uses a set of
varied images representing an object and generates SIFT descriptors for each of
them. The most recurring vectors in these images are saved in a list of "words"
representing the object. This is called the "Bag of Words" technique [21]. The
more varied the images are in the set, the more robust the Bag of Words is, as
it contains many orientations, positions, contexts, and general variations of the
object it describes. One creates Bags of Words for different types of objects. Each
time they want to analyse the content of an image, they extract its SIFT descriptors
and compare them with the different existing bags. If one is close enough, the
image likely contains the corresponding object. Not all the words have to be
present to make a match, as each part of the object cannot be present in the image
at the same time.

This combination of descriptors and Bags of Words has been the SOTA in CV
until the early 2010’s. The descriptors are robust to many variations and the bag of
words adds robustness to obfuscation and provides detection. With this technique,
one relies on data to create the description of an image. This idea of aggregating
information from a wide source of examples has proven very effective in the
domain of CV. Although it was used for a long time with histogram analysis or
pixels intensity threshold, data-oriented algorithms gained popularity in the mid
2000’s with this method and others (Support Vector Machines (SVM) for instance).
It is called Machine Learning, and it is the main focus of the current methods in
the domain.

2.1 previously in computer vision 15

w1in1

w2
in2

Σ σ(Σwk*ink)
with σ the non-linear
activation function

in1

θ1 θ2

in2

out

wi
1

wi
2

wi
3

θi=

weights to fit
to the data

Perceptron Multilayer perceptron

Figure 2.5 – The perceptron and a Multilayer Perceptron (MLP) architecture with 2 hidden
layers.

2.1.2 Going Further with Machine Learning

ML can be defined as the algorithms which, given a set of inputs and outputs,
choose the parameters of a model to map them. With ML, an important part of
the intelligence can directly be found in the data. A human could at most create
heuristics biased towards what they focus on, but it is often less comprehensive
than data-driven algorithms.

Contrast and shapes being easier to describe than texture [22], SIFT was con-
ceived to detect these elements. If one generates SIFT descriptors for a face and
studies what they represent [23], the ones centered around the eyes, the mouth,
and other highly textured regions, will be kept, as what they describe seems
important to human vision. However, doing so would miss important descriptors
on the cheeks and the forehead, because our eye is less focused on these regions as
they lack in texture [24]. Using varied object representations and ML can alleviate
these problems.

However, despite having fewer human biases and being more powerful than
many previous algorithms, ML has its problems and biases too [25]. Further, it
depends on data (quantity and quality) to function accurately. Finally, the nature
and complexity of the model itself are determinant of the quality of the results.
In this section, we will detail these aspects, applied to a specific approach of ML,
namely the Neural Network (NN).

Training Neural Networks

In the mid 50’s, Rosenblatt conceptualized the perceptron [26], represented in
Figure 2.5 left, as an elementary processing unit, only performing an addition,
a multiplication, and a non-linear operation. Combining many, organized in
layers, resulted in a MLP architecture, as shown in Figure 2.5 right. The output
is computed layer after layer, each inputting the output of the previous one,
following Equation 2.1:

16 background in computer vision

out(X) = zn(X) = zn(zn−1(...z0(X)...)) , zi(X) = σ(zi−1(X) · θi) , (2.1)

zi and θi being respectively the output and the weights of the ith layer, σ the
activation function. Such model is theoretically able to approximate any function.
The more layers (i.e. the deeper the network), the higher the complexity of the
problems it can solve.

This is the core idea of ML, as it revolves around a key concept in the domain:
the difference between a mathematical model and a heuristics. The former
integrates as many influencing elements as possible, using prior knowledge of
the environment. This results in an explicit formula with highly interpretable
parameters. If the system is not chaotic, estimating each parameters makes it
highly predictable. The number of parameters depends only on the system and the
equations used to manage it. However, a formula is not trivial to find, especially
with high-level notions: mapping an image to an object class is far from being
understood. On the other hand, a heuristics does not result in explicit and limited
parameters. Instead, it gives an approximation on a specific range and can be
made of any number of parameters, often significantly more than the formula.
Most importantly, it can be obtained using learning and data, which we will detail
in this chapter.

Gradient Descent [27] is the algorithm to fit the weights of a model to the data.
Given a set of inputs X, outputs Y, and a NN f , the problem is to find the NN
parameters θ that best map X and Y. With gradient descent, one computes the
error E between Y and Ỹ and changes the weights following the error’s gradient.
This results in a new, less incorrect model, and the operation is repeated until the
error is low enough. There are many existing error functions, which must be (i)
derivable (so must be f) and (ii) decrease as Y and Ỹ get closer. Formally, this
follows:

fθ(X) = Ỹ ̸= Y , E(Y, Ỹ) −−−→
Ỹ→Y

0 , fθ ←− fθ − α× ∂E
∂θ

, (2.2)

with α the learning rate, a coefficient (1e−3, 1e−4...) defining how much the weights
will change from their original value in the gradient direction. Its value must
be carefully chosen. If it is too large, the model might never converge towards a
good solution, the optimal being distant of less than its value. On the other hand,
a too small learning rate can trap the algorithm in a local minimum.

Several variations of the gradient descent algorithm have been proposed, such
as the Stochastic Gradient Descent (SGD) [28] or Adam [29]. SGD provides a faster
gradient computation for little precision loss. Adam adds gradient direction
momentum throughout the steps to increase convergence speed.

Despite being suitable for many ML optimisation problems, gradient descent is
not an ah hoc solution for NN. Although it is straightforward to compute the error

2.1 previously in computer vision 17

for the output layer, there is no direct way to know how changing the weights
of an intermediate layer affects the final output. The solution to alleviate that is
called back-propagation. It was developed in the late 80’s [30] and substantially
improved during the next decade [31, 32]. Back-propagation computes the error’s
gradient through the layers using the chain rule, following Equation 2.3 for the
layer l ∈ [1, n− 1]:

∂E
∂θl

=
∂E
∂θn

(
n−1

∏
k=l

∂zk+1

∂zk

)
∂zl
∂θl

, (2.3)

∂zk+1

∂zk
=

∂zk+1

∂(zk · θk+1)

∂(zk · θk+1)

∂zk
= σ′(zkθk+1) · θk+1 ,

∂zl
∂θl

=
∂σ(zl−1 · θl)

∂θl
= σ′(zl−1 · θl) · zl−1 .

Intermediate layer’s weights θi are optimized using optimizations of layers
i + 1 through n. This explains the name "back-propagation", as the original error
gradient is propagated to each layer from end to start.

Batch Training. Before updating the weights, the gradient of multiple in-
put/output pairs is computed, to parallelize the back-propagation. However,
back-propagating the error of the entire dataset requires a lot of memory and
is not very efficient as it allows only one update of the weights for the whole
dataset. To use data more optimally, the back-propagation is computed by batch
(i.e. subsets of the data), before updating the model. This allows a more frequent
update of the weights, thus faster convergence. Further, using batches reduces
the risk that the individual gradients have opposed values, which would result in
very small or null adjustments. When each batch of the dataset has been used,
one epoch is complete.

The choice of the batch size can be critical according to [33, 34]. On one side,
[33] shows the relationship between batch size and learning rate, proving their
inter-dependency. It concludes by stating that with large learning rates, smaller
batch sizes are the best to obtain the best model. It argues that for a given problem,
it is preferable to start with a low batch size (e.g. 32) and a small learning rate
(< 10−3) and try increasing the batch size until performance decreases. On the
other hand, [34] showcases how batch size influences a training’s speed and
stability. In general, the bigger the batch size, the more stable the training. The
more there are elements in a batch, the less it is subject to data noise. As variance
is reduced with bigger batches, the test model is also more stable by the end of
training between epochs, contrarily to training with small batch sizes. However,
a small batch size allows significantly faster training and fewer epochs to reach
optimal performance. Both works further explain an important aspect of batched
training: it creates a trade-off between the model’s specificity and generality. A

18 background in computer vision

Swimmers Domain Swimmers in the DataOut of domain example

♂ ♀ gender bias♂ ♀

Figure 2.6 – Illustration of domain definition and data bias. The swimmer domain in
the data (right) only represents a small portion of the entire swimmer domain (center).
For a model trained on this data, the farther an image is from the training domain, the
less likely it will be identified as a swimmer. For instance, Superman in swim briefs
represented here will hardly be identified properly if the domain only contains classic
images of swimmers. The domain thus needs to be as wide as possible for a given class.
Further, data biases appear when the classes are unequally represented. In this example,
there are more examples of males than of females, which causes problems for the future
model’s representation.

too specific model can be obtained with too small batch sizes because the gradient
will correspond to only a sub-part of the dataset. Each batch will change the
model in too different ways to adapt each time to too different data. As a result,
the model may never converge to stable optimal weights. A too general gradient
adaptation often results in no strong decision by the model (i.e. all the outputs
have the same probability). Indeed, if the gradient of each input/output pair is
calculated and averaged, it might result in a very small vector, as many elements
may have opposed gradients.

After a pass of the whole dataset, one epoch is complete. It is usual to do
several of them (hundreds, thousands...) to use every bit of information in the
data, even if most information is learned during the first few epochs. The earliest
iterations fit the model to the nature of the data, but the model’s problem-solving
is processed afterwards, with small variations of the weights. Intuitively, it is
because a model needs to understand what an image is before telling what it
contains.

Data: the Solution and the Problem

The weights of a NN are adjusted to fit the data (e.g. an image associated with
the swimmers’ position). Therefore, instead of human vision biases, the models
are based on data biases. The problem’s different possibilities and variations
must, therefore, be present in the data. If one wants a human detector and feeds
only images of men to train a neural network, they cannot expect the model to
detect women [35]. Such bias is obvious, but this is not the case for all. Still for
the same task, one must find images of persons of every age, in every posture,
under every lighting condition, etc.. Similarly, it is also important to have a variety
of non-human objects that look like one, such as statues, photos, and monkeys,
in every variation. This task is not feasible, as there are infinite variations and

2.1 previously in computer vision 19

Figure 2.7 – Raw data and explanation of a bad model’s prediction in the “Husky vs Wolf
” task. From [37]

possibilities. This results in two consequences: data biases and domain definition,
illustrated in Figure 2.6.

The data domain can only represent part of the entire reality. Although models
have generalisation capacities, anything outside of the domain may not fit the end
model, giving unpredictable results. This limit is very important to understand
why sometimes NN work very well in experimental conditions, but not in real
life: their data is not comprehensive enough of reality. Biases, on the other
hand, exist because not all data elements can have the same representation in the
dataset [36], as in Figure 2.6, right, with an over-representation of male images.
In consequence, the data misrepresents female characteristics (size, standing,
hair length, clothes...). During training, the average gradient will be pushed (i.e.
biased) towards male attributes, as there are statistically much more of them in
the batches. The resulting model will be more imprecise with images of females.

False correlations might also appear in the data. In [37], Ribeiro et al. trained a
model to classify huskies and wolves. Figure 2.7 shows how the model considers
the task: it only pays attention to the background, and ifs snow is visible, it
considers it is a wolf. After observation, they understood that in the training
dataset, each wolf image contains a snowy background. This correlation in the
training dataset has no meaning in reality. This is the "shortcut-learning" problem
[38]: if there is an easy-to-detect feature in the training set (usually low-level
features, such as textures and colours), the model does not train further. The
gradient tweaks the weight to get a more accurate precision on this specific feature.
Again, if getting all possible contexts of each and every class was feasible, this
would not happen, as this snow/wolf correlation will not appear in the dataset.
But it is not currently possible.

Data is often considered the most critical part of ML. It always has biases,
whether easy to explain or not, and its domain cannot represent the entire reality.
Effective methods exist to alleviate these problems with domain-specific data

20 background in computer vision

augmentation [39], but the problem cannot be completely ignored. In the end,
it is always important to know the dataset limitations, as they often define the
final model’s. The datasets created during this thesis have limitations that will be
discussed in their corresponding chapters (chapter 3 for Swimm400and chapter 4

for RegiSwim500).

2.2 Convolutional Neural Networks

Images are spatially structured in a way that a model analysing them must be
translation invariant. A MLP that inputs an image, or the same image shifted by
a few pixels, will output different results. This is a problem, as both represent
the same general content. In 1989, inspired by the pioneer work of Fukushima
[40, 41, 42], LeCun et al. [43] proposed to merge 2D filters with NN learning
algorithms to automatically learn the coefficients of a convolution kernel. This
was the first of a whole new type of NN, extremely well fitted for image analysis,
called Convolutional Neural Network (CNN). An example is illustrated in Figure
2.10.

As seen in Section 2.1.1, 2D filters extract features from an image, resulting in
what is called a feature map. For a CNN, a layer is composed of stacked 2D filters
inputting and outputting different feature maps. They represent the manifestation
of the different kernels, at the same spatial position in the image, as shown in
Figure 2.8. The first layers are very similar to handcrafted 2D convolution filters.
They detect low-level features on the image, such as colours, edges, corners,
etc... As the features combine through the layers, more and more abstract visual
characteristics such as complex textures and shapes are extracted. Around the last
layers of a CNN, the expressed features are often understandable by a human, as
they react to the elements composing the object they were trained to understand.
For instance, with human detection, the last feature maps can describe concepts
close to faces, legs, hands, or clothes.

This section explains in more detail the use of deep models applied to CV.
This domain requires specific elements and architectures of networks to perform
optimally. One can select from a toolbox of multiple elements to construct a
model, but they need to correctly manage them to obtain better results. Depth
is also critical. Before recent improvements, it was seen impossible to go "too
deep" and the use of shallow networks was the norm. This section also provides
explanations of how this was alleviated.

2.2.1 Deep Learning

Looking at [43], one of the earliest CNN architectures, there are only 3 hidden
layers. In [31], LeNet-6 architecture has 6. However, 2016’s ResNet-152 [44]

2.2 convolutional neural networks 21

=
line detection filter

line detection result

Layer output tensorInput image
Layer's

convolution filters

∗

Figure 2.8 – Stacked convolutional filters forming one layer of a CNN. The "⊛" symbol
represents convolution between the image and the filters. The red square contains visual
features, not easy to understand for a computer. The corresponding red vector, on the
layer output, contains these information in a more understandable form for machines.

contains 152 layers. Such very deep model is part of what is today called DL,
that is ML applied to deep NN. There is no exact definition for what "deep"
precisely means. However, comparing the number of weights in the models
clearly shows an increasing tendency over the years, up to the recent Natural
Language Processing model GPT-3 [45] and its 175 billion parameters.

This section explains the different challenges regarding depth and NN size.
Data, processing power, and architecture, this question concerns many parts of
the domain.

Better Abstraction

Understanding how CNN convert images into concise, abstract, and meaningful
data is the key to grasping the interest of deep models. Convolution kernels
describe local patterns, so the abstract visual area squared in red in Figure 2.8, left,
is represented by the (quantitative) red vector in the layer output. Suppose the
filter #i corresponds to a vertical edge detector and that the value of channel #i at
position (x, y) is high in the layer output. In this case, the model understands there
is a vertical edge at position (x, y). All the other kernels of the layer represent
a feature and their presence can be quantified by looking at their index in the
vector. This is abstraction: transforming abstract local features on the image into
concrete numbers in a vector. The red vector is an abstract representation of the
image’s red square area.

Going further, suppose at another position in the layer output, no dimension
corresponding to edge detectors contains a high value. On the next layer, a filter
can pay attention (i.e. give high weighting) to these dimensions and be activated
(i.e. output a high value): this would be a "low contrast detector", which is slightly
higher level than edge detectors. This behaviour propagates throughout the layers:
low-level features are combined to compute higher-level ones. As such, each layer
inputs the features collected by the previous layer and extracts more complex and
meaningful features. The more there are layers, the higher level of the feature.

22 background in computer vision

Although the first layers are often texture oriented and the highest revolve
around almost understandable concepts, it is difficult to explain exactly what
happens in the intermediate layers. Visualisation tools [46] can give an intuitive
understanding of the features, but it is not clear yet how depth improves abstrac-
tion. Further, the notion of abstraction is not quantifiable and thus troublesome to
grasp.

Another answer is brought by [47], explaining ML models as Fourier function
approximators. The Fourier transform of any complex function contains high
frequencies. Further, they prove that approximating rapidly oscillating sinu-
soids requires more and more layers with the frequency increase. Therefore,
approximating complex functions requires some depth to be precise enough.

Previous Limitations

As deep CNNs can powerfully abstract images into understandable information
for computers, one can wonder why such models have not been used before.
The general idea of adding layers to increase the representation is present since
at least 1965 with [48], but DL started several decades later. The question has a
multimodal answer concerning data, implementation, and processing power.

Despite having only 3 layers, the first CNN was very slow, as shown on this
early digits identifier model from 1993 [49]. Although the computer was state
of the art and the model very well implemented, several seconds were required
to analyse a handful of numbers. This was due to hardware limitations, as
NN requires powerful processing units to input an image and output a result.
This was already slow and difficult to set up, so no one had the resources to
train significantly deeper models in the 90’s. To alleviate this problem, more
powerful machines offered a solution. However, the bigger revolution came with
the implementation of CNN inference on Graphics Processing Unit (GPU) in [50],
which claimed acceleration of 8 to 17 times. Indeed, a CNN can benefit from a
GPU due to its parallelization power. As filters of a layer are convolved across the
image with no interaction with each other, they can all be processed individually
in the different cores of a GPU. This enabled to speed up drastically training and
inference and is still used and improved upon today.

In principle, the deeper a network, the higher its abstraction powers. However, if
shallow models can be completely trained with few examples, deep ones require
significantly more, with as many labels. As we will see in Section 2.3.2, we
eventually found ways to alleviate this. Though, when NN were not as advanced
as today, this was a problem. One needed to not only assemble a big set of images
but also to give them a label (i.e. an output value) to train a model on them. Even
MNIST dataset [51] (1998, 70,000 images) and Letter Dataset [52] (1991, 20,000

images), which provided tens of thousands of images each, were not big enough
for deep models with the current standard. The situation unlocked in 2009 with

2.2 convolutional neural networks 23

Figure 2.9 – Sigmoid (left), hyperbolic tangent (tanh) (center) and Rectified Liner Unit
(ReLU) (rights) activation functions. The two firsts saturate when moving away from the
origin, thus resulting in a weak gradient as their absolute value gets bigger. ReLU has
a higher derivative for any positive value, enabling a better gradient back-propagation.
Scheme extracted from [54].

the release of Imagenet [53] and its 1.28 million images (back then) and thousands
of classes.

The amount of training data and the speed increase of GPUs are well-known
early limitations of DL. However, one last element has to be considered to finally
enable the effective training of the models used today: the ReLU activation function.
Before 2011, the activation functions (the non-linear function in between layers)
were either the sigmoid or the tanh, illustrated in Figure 2.9 (left). Both these
functions simulated the biological neurons, which pass a tension only if a certain
threshold is reached. Their problem is that except around the origin, their asymp-
totic behaviour results in a very small gradient. Back-propagating it throughout
the layers results in quick gradient vanishing: layers too far from the output could
not be trained efficiently. ReLU [55], introduced in 2011 and illustrated in Figure
2.9 (right), proposed a much better solution for this problem. As the positive part
is completely linear, the gradient is meaningful and is proportional to the error.
The negative part is null, which behaves similarly to biological neurons, which
do not pass tension under a certain threshold. The function is not derivable in 0

which could create problems to compute the gradient, but in practice, if the input
is precisely 0 (very unlikely in float32 precision), one can decide to either apply
the positive or negative behaviour of the function.

In the end, it was the convergence of the GPU implementation (2006), Imagenet
release (2009) and using the ReLU activation function (2011) which enabled the
implementation of AlexNet [56] and its 60 millions parameters over 8 layers (2011-
2012). Further evolution of deep models will be discussed in the next sections, but
the main technical advances allowing the emergence of DL were achieved using
these techniques.

24 background in computer vision

Crawl
Breaststroke
Fly
Backstroke

Figure 2.10 – A CNN architecture with 2 convolutions, each followed by a Max Pooling
operation, completed by a classification layer at the end. The task at hand is classifying
the swimming style shown in the input image.

2.2.2 CNNs Components

Elements with various roles compose a CNN. Their importance is crucial to
understanding how deep architectures are suited for image features extraction.
This section will provide explanations for these elements, detailing what exactly
composes a CNN. Figure 2.10 provides an example showing these different
elements.

Receptive Fields

For computation purposes, the 2D filters present in a given CNN layer all have
the same size. This size is called the receptive field of the layer and it is represented
in blue in Figure 2.10. Having a big receptive field enables one to compute features
on a big part of the input, therefore they contain more information. Following
this logic, LeNet has (5× 5) receptive fields for all its layers, and AlexNet has
(11× 11), (5× 5) and (3× 3), just to cite them. This is especially true around the
beginning of the network, where the features are not complex yet: the bigger the
filter, the more context it can give to a region.

In 2014 however, Simonyan et al. suggested in [57] to limit the receptive fields to
(3× 3) convolutions, which is the smallest size to capture the notion of left/right
up/down and center. They argue that combining 2 successive (3× 3) convolutions
result in a (5× 5) overall receptive field. One can obtain any receptive field size
just using (3× 3) convolutions. As this involves more layers, it also involves more
ReLU activations, which increase the complexity of the representation with non-
linear operations. Moreover, the number of parameters is significantly reduced: 3

successive (3× 3) convolutions contain 27× C parameters for a receptive field of
(7× 7), while a single (7× 7) contains 49× C (C being the number of channels
on the layers). For a given amount of data, the fewer parameters to train, the
more each can be optimized (without considering over or underfitting). The more

2.2 convolutional neural networks 25

layers there are, the more abstraction the network can make. Therefore, increasing
the number of (3× 3) has two very important benefits. Szegedy et al. [58] even
suggest going further, replacing one (3× 3) convolution by a (3× 1) and a (1× 3),
but it did not appear to significantly change the result, and the idea has not been
broadly used.

It is also possible to use (1× 1) convolutions, but they do not provide spatial
understanding. Instead, they are used to linearly combine local features (followed
by the activation), as in [44]. They offer a computation-wise cheap way to increase
the network’s complexity, having only (1× C) parameters. In practice, they are
used around the end of the architecture, once spatial features have been extracted
and all that remains is to combine them for the task at hand. Another use of these
(1× 1) convolutions in [59, 60], is to reduce the number of channels thus reducing
the number of parameters. In the paper, they compare it to "features distillation",
where only the most important features manifold of the previous features is kept.
This is known as linear bottlenecks, as illustrated in 2.13 and further explained in
2.2.3.

The most efficient existing architectures used today [44, 57, 58, 61] follow this
rule of thumb: a big receptive field for the earliest layers (i.e. (5× 5)), then several
classic (3× 3) to complexify the features and bring spatial information to the
representation, then finally (1× 1) filters to assemble these features so that they
are suited for the given task. In Section 2.2.3 this will be nuanced, but the core
idea will remain.

Spatial Sampling and Abstraction Increase

In Figure 2.10, in-between the convolution layers occurs a downsampling oper-
ation: the pooling. It extracts only one value per region (usually the maximum
value, sometimes the average) for each channel. Also, the successive layers have an
increasing number of channels, as in Figure 2.10 where there are 32 channels for
the first layer and 64 for the second. These two parameters (spatial downsampling
and abstraction increase) act together towards the same goal: to only keep the
interesting features of the input.

As the network computes deeper and deeper information throughout its layers,
it is interesting to get as many high-level features as possible for a more pertinent
representation of the input. However, this also increases the data to save in
memory [62]. It is not rare to have hundreds or thousands of channels. With
a (224× 224) pixels input, 1024 output channels, and a computation in float32,
the tensor size is 32× 224× 224× 1024 > 1.6 Go per image. Although recent
GPUs can handle such data, it would be very resource-intensive, especially when
each intermediate layer output has to be kept in memory for gradient estimation.
Furthermore, even with parallel computing such layer takes a long time to be
processed, forbidding real-time analyses [63]. Finally, most data in this support

26 background in computer vision

are in fact either useless (around unimportant areas of the input) or redundant
(each neighbour pixel encoding almost the same information).

Max Pooling downsizes a small region by only keeping its most activated
channel. This prevents the previously mentioned problems by only keeping the
most relevant information. In a small region (usually (2× 2) pixels), knowing
whether a channel is activated or not matters more than knowing which exact
pixel activated it [64]. The same article explains how spatial organization is
important for CV models: the feature’s relative position with each other is the
most important. Further, for global tasks looking for one result in the image
(classification mostly), one does not care about where the elements are, only
if they are present. For spatially precise tasks (detection, segmentation...), the
channels tend to encode the spatial information, so reducing the tensor size does
not change the result in too significant ways, up to a certain limit.

Furthermore, pooling enables a natural receptive field increase of filters [57]:
with a (3× 3) convolution applied just before a (2× 2) downsampling, the surface
described by each spatial element on the support size is doubled. If in the end,
the output is (1× 1×C), each channel encodes something about the whole image,
which is very powerful. Combining pooling and channels increase converts local
pixel distribution into global semantic meaning.

Instead of the Max Pooling operation, it is also possible to do convolutions with
a stride of N > 1. The stride is the step between each convolution operation, so a
stride of 2 for instance means only one of every 2 pixels will ever be the center of
a convolution. This too reduces the output size. This method has some interests,
as the filters will learn to handle downsampling by back-propagating through
them. Further, it is faster, as only part of the input is processed, while some of it is
done for nothing as pooling discards them. Pooling is significantly more frequent,
though, and one can argue it is more powerful as it compares the output of each
position, contrarily to strides longer than 1.

2.2.3 CNN Architectures

CNN components can be combined in different orders, with different parameters,
forming an architecture. Depending on their nature, they can accomplish different
objectives with different performances. To complete a task, one must choose
between them all and eventually adapt them to fit precisely a problem. In this
section, the main architectures used in this thesis will be described.

We also precise that Vision Transformer architectures [65] will not be explained
here. They were not used during the thesis due to their needs in data and the
fact that we aimed at reducing our data needs. More details on the subject are
provided in the perspectives of this manuscript (see section 6.3.6).

2.2 convolutional neural networks 27

Encoder Decoder

Embedding vector

Figure 2.11 – An encoder-decoder architecture. As the input and output are the same, it is
an autoencoder. The length of a block represents its number of channels. Remarkably, the
bottleneck of a linear autoencoder converges into the Principal Component Analysis (PCA)
representation of the data.

Encoder-Decoder Architectures

The encoder-decoder architecture, illustrated in Figure 2.11, can have different
objectives, mostly related to image-to-image translation (out of scope for this
thesis) or unsupervised training with autoencoders.

The first part of an encoder-decoder is the encoder, which has the most basic
use of a CNN: encoding the information, i.e. transforming pixel distributions into
a vector with semantic meaning of smaller size than the input. The resulting
dimension reduction can be used for a broad variety of contexts, as encoders are
usually only the first part of the network. For a classification task, fully-connected
layers or (1× 1) convolutions are added at the encoder’s end to output a vector
the size of the class numbers. For detection tasks, one adds detection layers on
top of the encoder. Note that encoders usually reduce the data width and height,
but this is not always the case, as in [6] where almost no pooling is applied to
preserve as much spatial information as possible.

Encoders convert images into semantic vectors and decoders do the opposite.
They are the architecture to generate images or pixel distributions with CNNs.
They input a semantic vector that is converted into an image. The values present
in the vector entirely define the output image in a similar fashion as the output
vector of an encoder is defined by the input image. The elements composing
decoders are similar to the ones in encoders, but they use upsampling instead of
downsampling. This operation can be achieved in two main ways: either statistical
interpolation algorithms (bilinear, nearest neighbour, etc.) or using transposed
convolution layers. Regular convolution operations input an area of multiple
values and output only one. They can be expressed as matrix multiplication
to speed up the process. Transposed convolutions do the opposite and can be
expressed as the matrix multiplication of the input with a transposed convolution
matrix.

28 background in computer vision

Figure 2.12 – 2D PCA visualisation of different autoencoders trained on MNIST. Colours
represent classes. Left: an autoencoder with a non-continuous manifold in the latent
space. Right: a VAE with a dense continuous manifold. Figure from [72].

An autoencoder [66, 67, 68] is an encoder-decoder architecture where the
output is equal to the input, as illustrated in Figure 2.11. The model is trained to
reconstruct the original image after a data compression [69]: the bottleneck (i.e.:
junction of the encoder and the decoder) contains less data than the input due to
the pooling layers. Different reconstruction losses can be used, mainly the L1 and
the Mean Squared Error (MSE):

MSE =
1
n

n

∑
i
(ϕ(Xi)− Xi)

2 L1 =
1
n

n

∑
i
|ϕ(Xi)− Xi| , (2.4)

Xi being an element of a batch of size n, ϕ being the function representing
the autoencoder, hence ϕ(X) is the reconstructed image. These losses are com-
plementary [70]. The MSE converges faster at first because quadratic functions
penalize more the bigger errors, but give less weight to small errors inferior to 1.
L1 has the opposite behaviour and both can be used at once, the MSE to quickly
reduce important errors, the L1 to make smaller adjustments. Such losses are not
indicators of the quality of an image: a reconstructed image can have a low MSE
compared to the original yet be blurry. The perceptual loss [71] addresses the
problem, weighting high-level features instead of pixel-wise comparison. It relies
on a trained model with frozen weights ψ, which outputs an embedding vector.
One compares (usually with cosine distance) the embedding vector of the original
image and the reconstructed image. Formally, this follows:

Perceptual Loss =
1
n

n

∑
i

cos(ψ(Xi), ψ(ϕ(Xi))) , (2.5)

As it is not possible to reconstruct lost data, the model focuses on encoding and
reconstructing the visual features and colours that are the most represented in
the dataset. As such, an autoencoder model trained on faces will perform poorly

2.2 convolutional neural networks 29

if fed pools, because the specific visual features they contain are not present in
the original dataset. However, even well-reconstructed features can be too broad
for a specific task. Indeed, an autoencoder trained for swimming races will be
likely to reconstruct swimmers, but also spectators, stands, or the poolside, as
they are a significant part of the training images, even if they are not interesting
for race analysis purposes. Further, with distinct subgroups of images (e.g.: X
images of pool A, Y images of pool B, etc.), the autoencoder will separate regions
in the latent space (a distinct region per pool), as in Figure 2.12, left. If the
latent space is sparse and not continuous, the features extracted from new pools
will poorly describe them. A method to circumvent this problem is to use a
Variational Autoencoder (VAE) [73]. Such model forces the continuity in the latent
space by adding a regularization term on the distribution of the latent vectors:
the Kullback–Leibler Divergence (KL div). This function measures the difference
between 2 distributions. It can be used as a loss function to force the distribution
of the bottleneck output at the bottleneck to be close to a multi-variate normal
distribution. The exact implementation of a VAE is out of the scope of this section,
but the result is a dense and continuous manifold at the bottleneck (as illustrated
in Figure 2.12 right), hence a better encoder generalization.

ResNets

One inconvenience of the back-propagation algorithm is that the gradient is less
and less significant after each layer: the output layer has a very precise gradient,
but the input layer’s is diluted and very indirect. As a result, the deeper an
architecture, the less its first layers are trained. This is called vanishing gradient and
it has two major drawbacks: (i) it slows down training by requiring more iterations
to update the first layers enough and (ii) it increases the risks of overfitting, as
shortcuts can be found to overcome the slow learning. To reduce it, it is necessary
to add more and more data, but the needs for data increase too quickly, and very
deep architecture are not feasible. The VGG-19 [57] architecture, with 19 layers,
was considered very deep when it was introduced, and the authors mentioned
the extensive experiments they had to make to reach convergence. Increasing the
amount of data is thus not a scalable way to increase the depth of an architecture.

A solution was proposed by He et al. [44]. They introduced the idea of one
layer connected to multiple parts of the network, at multiple depths. Due to
these "skip connections", part of the gradient is now directly propagated from
one layer to any other. In Figure 2.13 left, the gradient back-propagates from the
output to the input in two ways. First, the long way, through L1 and L2. The
gradient has started fading away arriving at the block input. However, with the
skip connection, the output’s gradient also back-propagates directly to the input
with no fading. Training is therefore more efficient, as even the first layers have a
significant gradient.

30 background in computer vision

Residual block

block output

depth compression

depth expansion

features extrac�on

block input

L2
skip

connec�on

L1

Residual block with
linear bo�leneck

Figure 2.13 – Elementary residual blocks. Variations can be further applied to them, but
the core feature is the skip connection, back-propagating the gradient directly from the
block output to its input. On the right, an illustration of the linear bottleneck, useful for
deeper networks. The (1× 1) convolutions create depth compression (256-d to 64) and
expansion (64-d to 256). In between, a regular feature abstraction with (3× 3) convolution
is done with only 64 channels instead of 256.

This technique enabled very deep architectures. The most efficient way to make
them is using successive feature extraction blocks, as in Figure 2.13. One can stack
several depending on different trade-offs, in particular accuracy/speed, as deeper
architectures are more accurate but slower. Variation of the ResNet architecture
with 18 up to 152 layers [44], and all the other architectures that followed [58, 74,
75, 60, 76], are made of these blocks. Such models have better use of data and
processing power, as showcased in [77]. For the deeper ones (>50 layers), linear
bottlenecks are used to reduce the number of parameters by locally reducing the
number of channels, as explained in 2.13 right.

U-Net

U-Net [61] is the combination of the ResNet and encoder-decoder architectures.
It is composed of an encoder-decoder with a residual connection between blocks
of the same depth at both sides of the network, as shown in Figure 2.14. The
difference with encoder-decoders is that residual connections enable a direct prop-
agation of the image’s spatial content to the output. The architecture presented in
Figure 2.14 is the original U-Net, but as for ResNets, it is possible to create variants
by adding deeper blocks, linear bottlenecks, changing the number of channels in
the layers, etc.. As long as it is an encoder-decoder with skip connections, it can
be considered a U-Net-like architecture.

The encoder extracts deep features describing the image. As the deep tensors
are upsampled in the decoder, they are stacked with slightly lower-lever features
but higher spatial precision. As a result, U-Net is extremely powerful to per-

2.3 data and supervision 31

Figure 2.14 – The U-Net architecture, from [61].

form segmentation tasks, where both semantic meaning and pixel precision are
required.

Such fully convolutional architecture can be trained with small amounts of
data due to the multitude of skip connections. Indeed, usually, the farther
a layer is from the output, the lower the gradient. With U-Net though, the
earliest convolution blocks are directly linked to the latest ones symmetrically.
Therefore, this architecture has a gradient flow which enables fast gradient back-
propagation through each layer. U-Net was originally developed for biomedical
image segmentation, where data is often lacking. It is a standard benchmark for
the segmentation of organs or tumours. Due to its interesting training properties,
this architecture will be used in chapters 3 and 4.

2.3 Data and Supervision

Data is necessary to train a ML model, but its nature and amount depend on
the available resources. Although it is hard to quantify, studies show that data
wrangling in general represents an enormous time of a ML model development
(50-60% in [78, 79]). To obtain the best model out of the available data, different
algorithms have been proposed, each tackling a specific configuration of data. In
this section, different issues around data and training will be discussed, as these
two important aspects of ML are entangled: data serves the training algorithm,
but the training algorithm must fit the nature of data.

32 background in computer vision

2.3.1 Computer Vision Datasets

Data has already been introduced as one of the key elements in the training of
DL models. We already mentioned its possible biases and the limits of its domain.
These paragraphs explore in more detail what data is, how it is obtained, and
exactly how annotation is considered before the training process.

Data for Computer Vision

In the context of CV, a dataset is a collection of images that will be input into a
model to train it. Depending on the context, each image can be associated with a
label. The vast majority of labels are either a set of classes [53, 51, 80], bounding
boxes [3, 4], or segmentation maps [81, 82, 83], because they represent the 3 main
challenges in CV. The first one is a vector the size of the number of classes. Each
present class is at 1, the others at 0 (although specific variations can be made [84,
85]). Bounding boxes can be encoded in several ways depending on the method
itself and they will be presented in detail in Section 3.2.1. Segmentation maps,
finally, are matrices of the shape of the image, each pixel belonging to an object of
interest on the original image set to 1. There can be several classes, represented
by as many different 2D matrices which can overlap (i.e. different matrices can
have the same pixel to 1) or not depending on the task.

Creating these target outputs is a manual, time-consuming process. The shortest
is the classes, the second the bounding boxes, and the slowest is the segmentation.
It is complicated to estimate the annotation duration of each as it depends on
the subject, but it is a different order of magnitude each time. For instance, to
create Figure 2.1, the author needed 5s to create the classes, around 30 to create
the boxes, and 3 minutes for the segmentation. Although it is indicative and
not representative, it showcases how different the annotation time is for each
data, even with the same image. In practice, creating a detailed segmentation
map is very long. The widely used COCO segmentation dataset [3] does not
contain pixel-perfect annotation, but short straight segments defining the edge of
the objects. Such approximation reduces enormously the labelling time without
changing the data significantly.

Data Gathering

The labelling process is very long, but gathering images can be too. With the
Internet [86], it is now easier than ever to create these collections of data. It is
not always straightforward due to many problems (copyrights, modified images,
small resolution, etc.) but it enables fast image collection gathering. In our context
of swimming, this was an issue: although many swimming races (mostly from TV
streams) exist online, they are subject to copyright. Further, TV’s way of filming is
extremely constant, with only a few different shot angles, and only part of them

2.3 data and supervision 33

Figure 2.15 – Different views from a classic TV stream. Apart from the leftmost, they are
very different from what coaches are used to.

exploitable for deep analysis. In Figure 2.15, the shots are from the same race,
where the camera angles change regularly in significant manners, making very
difficult the continuous analysis of a race. These angles are made for TV, with a
huge emphasis on dynamism and individual swimmers (with close-ups) instead
of constrained angles with a wide view, adapted to analysis. As a result, gathering
data from TV streams is not an optimal solution in our case.

In this thesis, we preferred to use videos from an online database of swim-
ming race video and races analyses: https://www.dartfish.tv/ChannelHome?
CR=p153270. The majority of these videos are private and the access was kindly
permitted by the Fédération Française de Natation (French Swimming Federa-
tion) (FFN). The races were filmed in varied conditions and using several camera
positions (due to the pools’ constraints at the time of the competition). There are
all the swimming styles and both genders are represented equally. From these
hundreds of videos, we selected a dozen to represent in similar proportion the
obvious classes (gender and style) to avoid class biases.

Data Cleaning

Once raw data is gathered, it is important to "clean" it. Data cleaning means
removing every element that is not suited for training or testing data [87]. Un-
clean data can comprise multiple occurrences of the same image, modified data
(photomontage or images with marks for instance are omnipresent in the dataset
Pascal-VOC [4]), too small images, unusual ratios (there is a (500x32) pixels image
in Imagenet [53]), etc..

This process is essential to have the best model in the end, as unclean data can
reduce the performance of a model by a significant margin [88]. Indeed, such data
can present unique features towards which the computed gradient will be biased,
during training. If said features are not representative of the final use case, this
part of the gradient will only create divergence, resulting in a less efficient model.
Multiple occurrences of the same image in a dataset also cause biases. An image
presented N times will have N times more weight than the others during training
and the resulting model will be biased towards its specific features. If said image
is rare and contains valuable information, specific weighting can be given to it.
Though, this is rare and such operation is made after data cleaning, with a good
understanding of the usable data at hand.

https://www.dartfish.tv/ChannelHome?CR=p153270
https://www.dartfish.tv/ChannelHome?CR=p153270

34 background in computer vision

Finally, data cleaning is also done after annotation to make sure the labels
correspond to the data. This can be done with visualisation tools [89] or using
crowd-sourcing methods [53] for big datasets, or manually for small ones.

Orders of Magnitude of Computer Vision Datasets

The ability to digest huge amounts of data has not reached the limit of recent
architectures [90, 65] (see the different test sample numbers in [45]). Training with
thousands, tens of thousands or even millions of images is frequent, and it seems
to be generally beneficial to the deeper models. Indeed, before the explosion of
deep models, one of the most used detection datasets was Pascal-VOC [4] which
counts 20,000 images in its 2012 version, with 20 different classes. To train deep
models, this is undersized. It can still be used as a benchmark nowadays, but
it is less considered than other datasets of higher orders of magnitude because
a significant proportion of current methods cannot work with that amount of
data. One of the most used datasets in CV is Imagenet [53] which has 14 million
images, but not all are used for every case. For instance, the most highly used
subset distribution is the 2012-2017 ILSVRC classification and localization dataset,
which contains 1.5 million images "only". It is made of 1000 classes, splittable into
20,000 sub-categories. COCO [3] is also a massively used dataset. It counts 200,000

labelled images with bounding boxes and segmentation masks of 80 classes (91

for COCO-stuff [91] which uses the same images). As an image can show multiple
elements, the total number of annotated objects is 1.5 million. COCO also contains
more than 100,000 images with no labels. These two datasets are representative of
nowadays’ orders of magnitude. State-of-the-art models depend on their size to
function and could often not work with less data.

In our case, no dataset of the sort exists in swimming and it is not possible to
create a comparable set during this thesis (it could be, but this would be outside
of the scope). As such, this thesis will focus on better using few elements of data
rather than over-sizing a model that will have enough data anyways.

2.3.2 Training: Different Levels of Supervision

Training a deep CNN can be done in several ways which give significantly
different results. Classic methods map the input/output pairs in the data, but
such pairs do not always exist. Further, straightforward methods can be improved
with prior or posterior training on other data. For a given task, the optimal
training algorithm depends on the exact nature of the available data and expected
output. Due to external constraints (availability of data, mostly), they can be
different. The following section describes the challenges associated with NN
training in general and how they are associated with data. A scheme illustrating
the relationship between data and training algorithm is shown in Figure 2.16.

2.3 data and supervision 35

WEAK NONE
v

v

FULL

v

Figure 2.16 – The different levels of supervision. Datasets domains are represented each
with a specific colour. There are different levels of label, here represented by the cylinders’
edge. Although each type of supervision has a different complexity of training data, they
all aim at performing the detection task. Note that for transfer learning, the "big" domain
is distinct but close to the target domain.

Supervised Learning

Fully-supervised training is the basic level of supervision. It means the desired
outputs are present in the massively available data. In this condition, learning is
straightforward and no other method or trick is required to optimize the model.

Transfer learning [92, 93, 94] is frequently used when one is limited to a small
dataset that has not enough samples to get acceptable results. With this approach,
one relies on a big dataset to train a first model. The dataset needs to share
similar visual features with the final task at hand. Once the first model is trained,
one freezes the feature extraction layers and uses a smaller specialized dataset
to only train the last layer on it. This is illustrated in Figure 2.20, Phase 2. For
instance, if one wants to classify the swimming style in images, they can gather a
few images of each. However, it can be too limited to train a CNN on this small
dataset. One can use a model pre-trained on another task involving swimmers,
such as detection. One only keeps the encoder of the model, freeze its weights,
and only train classification layers added on top of it. This works because the
features extracted on the initial domain are similar to what the new task needs.
The limit of this method is that the original and end dataset domains must be
close enough. If the features extracted by the encoder are too different from
what the end model needs, it will work poorly. Sadly, a swimming pool is a

36 background in computer vision

very specific environment, with very peculiar features related to how water and
light interact. Our preliminary tests showed that transferring knowledge from a
daily-life dataset (Imagenet, COCO, etc.) brings limited priors and that retraining
all the layers is necessary.

Few-shot learning tackles an even more extreme case of this "annotated data
lacking" problem when one only has a handful of images per class (< 10). In this
case, transfer learning is very limited because this amount of data is not enough
to train the end layers of a model. Few-shot learning uses completely different
techniques from transfer learning [95, 96, 97, 98]. A more formal description of
it is how to create a model given N classes of objects with K samples each if K
is small. Although data is lacking, this is still considered supervised training
as one has a direct mapping of desired inputs and outputs. Indeed, with more
efficient learning algorithms, this would not be different from regular supervised
learning. For instance, one can desire to identify the swimmers in a race. They can
crop images framing only the individual swimmers and train a model to identify
them. If a new swimmer S, never seen before enters a competition, one desires
to find them in other races. However, the swimmer S is not in the dataset, and
there are only a few images of them. In this case, a suitable solution is few-shot
learning. To address few-shot learning, one must create a model with priors on a
general domain. Then, the few elements of data will add knowledge to this before
accomplishing the task. This definition is extremely generic, though, because the
existing methods addressing few-shot learning are very diverse. A widely used
few-shot classification method [99] consists in training a model with a sufficient
amount of data on a wide amount of classes similar to the class one is interested
in. This creates a model producing embedding vectors describing accurately the
new class. The few available images of this class are fed to the model and the
output vectors are kept. Then, one compares the output of new images with these
vectors: if they are close enough (according to a metric and threshold defined by
the user), it means the image features the class of interest. In [95], the authors
compare the result with a dataset they introduce containing 1000 classes, but few
images (hundreds per class), with the results from a model trained on COCO and
its 80 classes (each with dozens of thousands of instances). The results (Figure
8 of [95]) show that the more there are classes in the base dataset to train the
embedding model, the better the model generalizes for new classes. For our task
of identifying swimmers, one can gather images of many of them to train a model
in a fully-supervised fashion. When a new swimmer S, who has never been seen
before, appears, the model can output a vector for one of their images. If the base
dataset contains enough swimmer variations, the resulting vector will describe S
in a discriminant manner. The distance to other swimmers’ embedding vectors
will be large while the distance to the known embedding vectors of S will be small.
This idea is explained with Figure 2.17.

2.3 data and supervision 37

}

Figure 2.17 – An illustration of one-shot learning (i.e. the most extreme case of few-shot
learning) applied to swimmers identification, inspired by [99]. The image of the new
swimmer is embedded by the model. Afterwards, each new swimmer image is compared
to the embedding vector of the different swimmers, including the new one.

Few-shot learning is also addressed by other approaches, such as meta-learning
[97, 98], which proposes to retrain a small model for each new class. This model
outputs a vector that weights the output feature map of a bigger model. In the
resulting feature map, the characteristics of the new class will be highlighted so
that the last layers of the main model identify the class correctly.

Weakly Supervised Learning

The classic tasks of CV (classification, detection, segmentation) can be hierar-
chized by order of complexity, each inferior level being a subpart of the superior.
This complexity can also be measured by the time required to annotate data
accordingly. The challenge of weakly supervised training is to use a level of
annotation during training and to output a higher level [100, 101, 102, 103]. The
main interest for this is annotation time: labelling a classification dataset takes
only a fraction of the time required to label a detection dataset. Likewise for
detection with respect to segmentation. It can also be used for uncertain data. For
instance, rare forms of pathologies exist where doctors are only sure an organ
is malfunctioning, but do not know which cells are responsible for it. In such
conditions, labelling a sick part is not possible but classifying sickness is trivial (as
the patient is sick) so weakly supervised learning is a solution [104, 105]. A huge
variety of methods address this challenge. We will explain one of them which is
massively used: Class Activation Mapping (CAM).

CAM, introduced in [103], proposes detection or segmentation based on image-
level annotation (i.e. class). This method relies on the fact that the features
responsible for a classification result are localized in an image, thus in a feature
map too. A CNN is trained on a classification task, with a global average pooling
layer at the end to spatially reduce the feature map size, succeeded by a fully
connected classification layer. Once training is complete, during inference, the

38 background in computer vision

Figure 2.18 – The CAM pipeline explained (figure inspired by [103]). The objective is to
detect swimmers using a model trained to classify the swimming style. Such proxy task
works because the swimming style can only be correctly identified by focusing on the
swimmers. Each feature map of the last convolution layer’s output is weighted by the
coefficient it assigns to the freestlye class (w1, to wn). In our example, the weights to the
2

nd (red) and nth (green) feature maps are low compared to the 1st one’s (blue), which
roughly segments the swimmers.

architecture is modified. The feature maps before the average pooling are kept and
weighted by the coefficient associating them to a given class in the classification
layer. The mean of the resulting heatmaps highlights the regions responsible
for the classification. In the absence of strong biases, this corresponds to a
segmentation of the class’s instances in the image. This is illustrated in Figure
2.18. It is recommended to have few pooling layers before the final global pooling,
as it reduces the precision of the final segmentation heatmaps. Improvements
have been made on the CAM based algorithms. An NVIDIA team showcased
limitations to the method in [101], and solutions to circumvent them. First, these
algorithms do not separate close instances of the same class, which are merged
into a big unique bounding box. The proposed solution is to use Multiple Instance
Learning (MIL) to divide a region of interest into multiple sub-regions if necessary.
In the article, the authors also highlight the fact that CAM only highlights the
discriminant parts of a class (the head of a dog instead of its entire body, for
instance). They address this problem following [102] which proposes "attention-
based dropout". This method detects the regions responsible for the classification
and replaces them with grey patches to force the model to find other discriminant
areas.

Metric learning is also a way to create an encoder model with weak labels.
Although it does not directly give the expected end result (detection for instance,

2.3 data and supervision 39

Figure 2.19 – 2D PCA of embedding vectors from encoders trained on the MNIST dataset.
The colours represent the different classes. Left: the model is trained using metric learning.
Right: the model is trained with an additional classification layer with softmax activation.
Extracted from [111].

if weak labels are classes), it can generate robust encoders suited to the data. It
relies on a distance loss between embedding vectors. Several losses of the sort
exist, such as the contrastive loss [106] or the magnet loss [107]. In this thesis, we
focus on the Triplet Loss, defined as follows:

Triplet Loss(A, P, N) = max(0, d(A, P)− d(A, N) + α) , (2.6)

where α ∈ R is the margin, d is a distance function (traditionally euclidean or
cosine), A is the anchor, P is the positive and N is the negative. The purpose of
the triplet loss is to make the distance between the embeddings of A and N larger
than the distance between the embeddings of A and P up to a minimum distance
defined by α. The model only learns to position the input in the embedding space
with respect to the other available inputs [108]. The other losses of the same
nature also learn a relative position of the data in the parametric space, hence
the general name "metric learning". With classification labelled data, one extracts
2 images of any class (the positive and the anchor) plus an image of another
class (the negative). The model groups images of similar classes in the latent
space and isolate these groups [109]. As shown in Figure 2.19, training a model
on a classification task using softmax activation [110] in the end creates similar
groups. However, the end distribution is very different: metric learning creates a
dense manifold with smooth frontier between classes, whereas the latent space of
the other is significantly sparser. Being less specific, the first is better-suited for
feature encoding of new similar images.

Weakly-supervised learning applied to swimmers detection has been experi-
mented with during this thesis, using CAM. We used swimming style classification,
which is fast to label as all the frames from a race belong to said class. The results
were promising but quickly became obsolete once we created a labelled detection
dataset (see Section 2.3.2).

40 background in computer vision

Unsupervised Learning

When no labelled data exist, it is still possible to create generic embedding
vectors of input images. To achieve this, unsupervised methods are required.
Contrary to the other levels of supervision, where the model fits a task, unsu-
pervised models are adapted to the input data itself. This means a CNN model
trained in an unsupervised fashion will represent the image in general, without
focusing on task-specific properties. Each information present in a significant
part of the image dataset will be encoded in an embedding model. In practice,
this method has important limits, as it does not directly output information such
as a class, object position, or segmentation maps. However, it is often combined
with other methods (transfer learning, clustering, ...) to finally achieve this. The
following describes two methods of unsupervised learning: autoencoders and
representation learning [112, 113]. Generative Adversarial Networks (GAN) are
also a powerful method of the domain, but they have not been studied further
during this thesis.

By definition, an autoencoder (introduced in section 2.2.3) is an unsupervised
learning model. Its main interest is data reduction and abstraction at its bottleneck.
The encoder part can be used as an embedding model for the type of images it
was trained on [114, 115, 116]. The model can output a feature map with spatial
data, which can be converted into an embedding vector with a global pooling
layer.

Autoencoders can be trained with a noisy input and asked to reconstruct the
denoised image [117]. This helps the model to learn a better representation of the
content featured in the input instead of just reciting the content of an image. Such
added artificial noise can be varied: blur, (small) grey patches, colour changes,
salt and pepper, etc.... One must however be careful with it, as it may learn to
miss relevant information for the end task. For instance with detection, small
regions can be interesting to keep. If the autoencoder is trained to reconstruct too
important blurs, it may dismiss small regions to only focus on the general aspect
of a region. On the other hand, specific augmentations can be used to push the
training in the intended direction, such as zooming out to learn the importance
of small pixel regions. Also, VAE having more densely uniform latent space, they
are generally preferred for unsupervised feature extractions [118, 119]. They offer
more general and adaptable features to further end-tasks.

A specific use-case of metric learning, called representation learning, can also
be applied to unsupervised learning despite the lack of weak labels. To do so,
one creates a pair of anchor and positive using data augmentation on one image
[112, 113]. If said data augmentation does not change the content of the image
in a discriminant manner (for the final end task), both the non-augmented and
augmented images have the same content. The negative can be any other image.
This method forces the model to learn what similarity is in the dataset and how

2.3 data and supervision 41

Figure 2.20 – A semi-supervised pipeline applied to detection. Phase 1: an autoencoder is
trained on a big unlabelled image dataset to create a feature extractor. Phase 2 (transfer
learning): the encoder’s weights are frozen and layers are added on top of it and trained
on a small labelled detection dataset.

to alleviate data augmentation transformation. Therefore, the resulting encoder is
robust to noise and learns a good representation of the dataset. As Figure 2.19

left shows, the embedding space is well covered: there are no major "holes" in
it, contrarily to the right image where most of the space does not represent an
image. This means that although pertinent features are extracted from the images,
no distinct prior classes have been defined: the result can be used for extremely
diverse end tasks.

Semi-Supervised Learning

Semi-supervised learning [120] is the combination of supervised learning and
unsupervised learning, illustrated in Figure 2.20. It uses both labelled and unla-
belled data, the first in a significantly smaller amount than the latter. If the task is
too complex for the small available labels, raw supervised training is not sufficient.
Semi-supervised learning relies on a smoothness assumption [121] stating that if
two elements are in the same cluster in the latent space, their output should have
a close output in the end-task (although the notion of output proximity is complex
to estimate with the detection task). There also is a manifold criterion, stating
that the high dimension data information lies in a lower dimension manifold.
Using unsupervised learning, one can create an encoder to reduce the input data
dimension and still find the required information in the output. Said output being
lower dimension, fewer parameters need to be trained to perform the end-task
starting from it. Therefore, less data is required.

42 background in computer vision

One can train an autoencoder on a given dataset and add layers on top of this
encoder to perform the end task. The latent space of VAE being more convex, it
guarantees a better smoothness assumption than raw autoencoders [122, 73]. It is
possible to separate the unsupervised and supervised learning [118]. Doing so,
the training is in two distinct steps: (i) train the autoencoder without the labelled
data and (ii) use the (few) labelled data to train additional layers for the end-task
in a fully supervised fashion. One can also merge these two steps, using both
labelled and unlabelled data at once [119]. The model trains as a normal VAE
with unlabelled data, but with labelled inputs, the learning is both made of a
reconstruction loss and the end-task loss. It is also possible to fine-tune the entire
network once the layers have satisfying weights, to get a more specific encoder.
These methods using VAE have direct equivalents with GAN instead [123, 124].

Another frequently used approach, named self-training, relies on pseudo-
labels [125]. A model is initially trained in a fully-supervised fashion using the
available data. One then inputs the unlabelled data and keeps some. A new
model is retrained using these pseudo-labels, and so on several times. If one
retrains a model after the first iteration using all the pseudo labels (without
dismissing the uncertain ones), this results in a model of the same precision as
the original one [126]. Instead, it was proposed to use a fixed proportion of
the best new elements [127] to improve results each time. Recently, curriculum
learning (learning strategies starting with easier data to harder data) principles
were used to improve on the idea [128, 129]. Pseudo-labels are also often used in
other domains, such as weakly-supervised learning, as it does not require extra
annotations [112, 113].

Semi-supervised learning has limitations. In [71], it is shown how small spots
of rare colours are never reconstructed by autoencoders with only a reconstruc-
tion loss. Their bottleneck size space being limited, they prioritize the likeliest
distributions. This directly translates in our swimming context, where a swimmer
is small in a pool, and made of a significantly different colour distribution than
water. An autoencoder prioritizes the reconstruction of the water and waves,
as they represent a more important area of the image and thus allow a better
reconstruction loss reduction. The amount of gradient focused on the swimmers
during training is less important than for the uninteresting water. The resulting
encoder is therefore very imperfect to detect swimmers, as it never learnt to
focus on them. Further, training a generative model to use its encoder as basic
for semi-supervised learning is not easy to optimize, as the reconstruction and
the end-task need different feature learning. Indeed, it was shown that a good
semi-supervised learning encoder actually needs a bad generator [130].

2.3 data and supervision 43

Limits

Although the presented methods circumvent the lack of data, they present
important limitations. First, the majority of works about non-fully supervised
learning address classification, as it is significantly easier to train a model for this
task than for detection. In the case of metric learning and few-shot in particular,
the resulting embedding vector describes the image globally. Similarly to CAM, it
is still possible to end the architecture by a global average pooling layer during
training and to remove it afterwards. However, there is no insurance that the
resulting model will highlight the elements one is interested in for the end task.
This is the bet of transfer learning: despite the A and B domains looking similar
to the human eye, a CNN model trained on domain A might not detect similar
features in domain B.

Further, the performance of supervised learning is significantly better than all
the other forms of learning. For instance, the fully-supervised SOTA on the COCO
benchmark reaches an AP-50 of 80.8 [7]. Weakly supervised learning SOTA [101]
reaches only 24.8. With few-shot learning, in 1-shot, the SOTA is only 12.5 and in
30-shot it reaches 35.0 [96]. Finally, whereas the fully supervised mean Average
Precision (mAP) (the AP-50 was not available in the paper) SOTA reaches 63.1,
semi-supervised SOTA [131] reaches 26.1 with 1% of labelled data and up to 34.9
with 10% of labelled data. These SOTA methods are also computationally more
expensive in training than basic supervised learning algorithms such as Faster
R-CNN [132]. Their goal is not to compete against supervised learning, but their
scores show that having more labelled data currently gives better results than any
other method.

C
h

a
p

t
e

r 3
S W I M M E R D E T E C T I O N

Contents
3.1 Introduction . 46
3.2 State Of The Art . 48

3.2.1 General Object Detection 48

3.2.2 Recent Advances on Swimmer Detection 50

3.3 Proposed Approach . 51
3.3.1 Dataset Creation . 51

3.3.2 Detection Through Segmentation 52

3.3.3 Data Augmentation . 53

3.4 Experimental Results . 55
3.4.1 Metrics . 55

3.4.2 Ablation Study . 56

3.4.3 Comparative Results . 58

3.5 Visual and Qualitative results . 59
3.5.1 Swimming Races . 59

3.5.2 Other Swimming-Based Activities 61

3.6 Discussions and Perspectives . 62
3.6.1 Improvements and Future Works 63

3.6.2 Generalization to Other Sports 64

3.7 Conclusion . 64

Chapter abstract

This chapter tackles the problem of detecting swimmers in an image. It aims at
performing accurate detection while relying on few data with unusual features.
It thus does not rely on transfer learning methods, but on a new model trained
from scratch for our purpose. Its results will be evaluated and important
design choices will be explained through different ablation studies.
A dataset for swimmers detection will also be presented. It enables the training
and evaluation of our detection model. The finally acquired amount and nature
of data will be discussed, as it shapes the overall detection model’s properties.

45

46 swimmer detection

Video

Detec�on

Registra�on

Periodicity(�me)

Posi�on(�me)

Crops

Merging

+

Smoothing

Figure 3.1 – The swimming race analysis method. The detection part is tackled in this
chapter. It is arguably the most critical bloc, as both swimmers placement in the pool and
periodicity analysis depend on it.

This chapter mainly concerns the work published in:

Nicolas Jacquelin, Romain Vuillemot, Stefan Duffner. Detecting
Swimmers in Unconstrained Videos with Few Training Data. Machine
Learning and Data Mining for Sports Analytics, Sep 2021, Ghand,
Belgium. 〈hal-03358375).

3.1 Introduction

Swimmer detection is the process of localizing the visible parts of a swim-
mer’s body in a picture. Its role in the general pipeline is defined in Figure 3.1.
Combined with registration (see chapter 4), it gives to know the position of the
swimmers in the pool, thus giving meaningful analysis information. Detecting a
swimmer in an image - and by extension in a video - may seem like a relatively
easy task as state-of-the-art methods reach excellent results for human detection.
However, the visible features in the environment of a pool are very different from
those of daily-life walking and standing persons. A swimmer is mostly under a
surface full of reflections and diffraction, affected by unpredictable waves creating
many local deformations in the image. The light on the water tends to saturate
the camera sensor, or at least obfuscate the swimmers underneath. Their accurate
detection is thus harder than for a normal human. An entirely different model
has to be created to detect swimmers during competitions and training.

Contrarily to daily-life objects, a swimmer does not have well-defined edges.
The extent of this problem depends on the swimming style, but as shown in
Figure 3.2, it is rarely possible to know a swimmer’s perfectly fitted boxing. In
this chapter, we show an architecture and a training method that limits the impact
of this problem.

Apart from that, even recent deep learning methods [5, 6, 133] usually require a
large amount of carefully labelled images. Many datasets of the sort exist [3, 53],

https://hal.archives-ouvertes.fr/hal-03358375

3.1 introduction 47

Crawl Backstroke Bu�erfly

Visible Body

Probable Full Body

Well-defined Boxing

Breaststroke Diving

Figure 3.2 – Representative examples of the edge fuzziness problem with the different
styles and the diving. Although for breaststroke the framing is generally well-defined, for
other contexts it is not. The swimmers create waves and splashes keeping an observer
from knowing the exact boxing of their body. Even with an unexcited water surface,
diffraction deforms the observations and shifts the visible position of a swimmer from
their actual position.

but in our context, they show major drawbacks. First, training a model on such
data collections is computationally expensive and time-consuming, which we
want to avoid. This is one of the main emphases of this thesis: the feasibility and
accessibility of our method. Second, the class "swimmer" is present in no public
datasets. Although the class "person" is very well represented, from a Computer
Vision (CV) perspective, they look rather different. One could simply not use it
for swimmer detection. Third, although fine-tuning a robust generic model may
enable the training of a new well-performing model with few data, it is not suited
here. The same applies to more recent approaches of domain adaptation and
few-shot learning. They work well if the image distribution is not too different
from the daily-life context they were trained on, but this is not the case for
swimming. Due to the many local deformations the pool environment creates,
common existing models perform poorly. Regions Of Interest (ROI) detection and
image embedding models are not suited for this particular situation. Therefore,
the use of small specialized well-crafted datasets gets more and more attention in
many applications, especially if they allow the creation of good detection models.

Our solution gives excellent results and is usable in many different environ-
ments (inside/outside, pool/free water) and for a large variety of acquisition
conditions (see Section 3.4). It also can easily be applied to other swimming-based
sports like water polo (see Figure 3.10). Our main contributions in this chapter
are the following:

• a model for automatic and robust swimmer detection in competition videos,
• an annotated swimmer detection dataset,
• a method to easily train the model which reaches high performance with few

data.

48 swimmer detection

3.2 State Of The Art

This section starts with an overview of modern CV object detection techniques
and then presents recent works applying them to swimmer detection.

3.2.1 General Object Detection

Recent object detection approaches can be divided into two groups: single-shot
and multi-shot. Generally, the first is faster and the second is more accurate.
This section will illustrate them by explaining representative architectures of the
domain. It is also possible to use segmentation as a proxy for detection, which
will be addressed in section 3.3.2.

Multi-Shot Object Detection with R-CNN

Multi-shot object detection algorithms input several times a ROI (i.e. a small
patch of the image). This refinement over an initial detection increases the
precision. Searching at multiple scales and creating several queries individually
analysed is the foundation of multi-shot object detection. We present in detail what
is arguably its most influential architecture: Faster Region-Based Convolutional
Networks (R-CNN). The R-CNN family consists of 3 main elements, illustrated in
Figure 3.3, left: (i) the backbone (i.e. the feature extractor), (ii) the Region Proposal
Network (RPN), and (iii) the classifier.

The objective of the RPN, illustrated in Figure 3.3 right, is to find ROI, and (if it
does) adjust their coordinates around the object they frame. The RPN inputs the
features from the entire image (extracted by the backbone) and outputs a set of
heatmaps, each associated to an anchor box of a given size and aspect ratio. Once
the RPN is trained, the heatmaps activate at the barycenter of the different objects.
More precisely, only the heatmap matching the best the area of a box is activated.
This gives a first rough estimation of the object’s position and dimensions. The
features corresponding to these positions are fed to a refinement layer, regressing
more precise spatial information to fit the found object of interest. These are the
ROI. Finally, patches of the feature map corresponding to the ROI are extracted.
They are separately fed to the classifier, which outputs a probability of presence
for each class inside of the ROI. If none is above a defined threshold, it means the
box is a false positive and it is discarded. If not, we obtain the exact position of a
bounding box and its corresponding class.

Faster R-CNN is a very powerful object detection model. Its small anchors
make it great at detecting small objects, a common problem in object detection.
However, it is very slow, 3-4 Frames per Second (FPS) on average, because of the
many ROI extractions and analysis by the classifier. The backbone inference is also

3.2 state of the art 49

k anchor boxes

Backbone for
feature extrac�on

Feature Maps

Region Proposal
Network

ROI Pooling

Classifier

ROI

k scores 4k scores

Zoom in on the Region Proposal Network

Feature Maps

anchors
classifica�on

anchors
refinement

Figure 3.3 – The Faster R-CNN algorithm. Left: the entire architecture. The extracted
features are used by the RPN and by the classifier. Right: detail of the RPN. It uses
the features both to classify each area as ROI or background and to refine its detections.
Anchors refinement generates 4k values (i.e. 4 values per anchor) that correspond to
(width, height, x shift, y shift) × k anchor boxes. Figure adapted from [134].

heavy: it is better to use big images (600× 1000 pixels in the paper) to have a
higher output resolution for the RPN and thus be more precise.

Single-Shot Object Detection with YOLO

Single-shot detectors input the image once, with no sub-patches division or
multiple refinements over the same area. The two first main algorithms explicit it
in their name: YOLO [135, 136, 5] and SSD (Sing-Shot Detector) [133]. They both
rely on the same underneath technique: a feature extraction backbone, directly
connected to regression and classification layers. Their main difference is in the
architecture, SSD stacking different scales of feature maps to get more precise
results, but at the cost of time. YOLO will be explained in this section, as it is
an extremely popular algorithm. It performs detection and classification at once
using anchor box adjustment.

Its behaviour, illustrated in Figure 3.4, is straightforward. A backbone extracts
features from the image. One can see each tensor cell (i.e. spatial dimension of
the tensor) as a region’s deep representation. For each cell, YOLO regresses k
bounding boxes, each associated with an objectness score (i.e. probability that an
object the size of the anchor is present), a class vector, and positional information
(to place the box exactly around the object). This results in (too many) boxes
one can position on the image, as illustrated in Figure 3.4, "generated bounding
boxes". The anchors with a high enough objectness score are kept. A greedy
NMS is applied to filter the boxes of the same class overlapping too much, likely

50 swimmer detection

Bounding Boxes Encoding

(1 per anchor per tensor cell):

Generated Bounding Boxes Kept Bounding Boxes

Objectness
Threshold

Non-Max

Suppression

Final Result

Shi�: (Δx, Δy)

Offset: (Ox, Oy)
Objectness Score: S
Classes: (0, 0, ...1, ..., 0)

Model Inference

Post-Processing

Figure 3.4 – An illustration of You Only Look Once (YOLO). The output tensor is only
(3× 3) for simplicity. A box colour represents its class. Objectness score is represented
by box thickness. The model outputs an encoding for each anchor of each sub-region.
Only the ones with an objectness score superior to a threshold are kept. Non-Maximum
Suppression (NMS) is applied to filter out the redundancies of boxes framing the same
instance. As there are multiple anchor sizes, multiple objects can be detected in each
sub-region.

representing the same instance. This results in the boxes of interest, as in Figure
3.4, "final result"

YOLO is extremely popular and simple to use. However, its precision is lower
than Faster R-CNN and other slow models. The algorithm is also limited in the
density of its detection as there is a fixed amount of anchors per cell.

3.2.2 Recent Advances on Swimmer Detection

First, we need to mention the work of Benarab et al. [12, 137, 138], who recently
proposed several techniques pursuing the same detection goal as ours. Their
computer vision algorithms are based on low-level techniques and in particular
Joint Transform Correlation. They transform the pool image and swimmer head
reference images into a 2D complex spectrum and use 2D convolution to find
correlations between them. The reference images’ variety and choice are key:
they must be representative of the swimmer’s head domain to work. They repeat
this process at different scales and orientations to be more robust. Although it
allows a faster inference and low computation needs, this choice leads to hand-
crafted, pool-specific thresholds. In the end, they do not provide a model or
metric to compare results. This is surely one of the best solutions without Deep
Learning (DL), but it also illustrates the limitations of these classic techniques. It
can, however, serve as inspiration for posterity.

3.3 proposed approach 51

Woinoski et al. [139] proposed a method based on a swimmer dataset annotated
by themselves on a selection of 35 race videos, collecting about 25 000 images in
the process. Sadly, it was not released before the end of our work, so we could
not use it. However, creating such a data collection is a great milestone for the
community once it is made public. They adapted a Yolo-V3 [5] model, where
classes describe the swimmer state (normal swimming, diving, u-turning...). Their
model reaches an AP25 (Average Precision (AP) definition in Section 3.4) of 0.7.

Hall et al. [140] propose a similar work, with an even larger dataset containing
327 000 images from 249 different races. They used static videos and labelled
each frame. This is tracking data which is comprehensive of time, therefore the
task is different even if the objective is similar. Using a temporally dense 25 FPS
swimmers head annotation, they can use information from previous frames to
make a prediction on the next one. The model they used is a 2-step detection
framework, similar to the R-CNN family. The first step is a rough head detection
over the whole image. The second is fed a crop around this detection and refines
it with a regression model. The tracking part of their method occurs only then,
once detection has been performed. Again, they did not release their dataset or
model, so the comparison is impossible.

3.3 Proposed Approach

The first step in detecting swimmers is to create a dataset for the task. This
section describes the data acquisition and labelling process and explains its
properties. We wanted to focus on a detection model trained from scratch using
few data. This did not allow us to use classic methods such as YOLO [135] or
Faster-RCNN [6]. Instead, we drew our inspiration from medical imaging, where
data is always missing. This is because the images come from costly medical
imaging instruments and each label is made by a specialist. Models have been
developed to address the lack of data. They are designed to be deep enough
to learn complex feature hierarchies and patterns of high variability, but not
too much to overfit on a small dataset. Moreover, they have interesting spatial
properties this section will explain.

3.3.1 Dataset Creation

We selected 12 international-level competitions with openly available race
videos. Each had a different camera position relatively to the pool, which gave
the dataset a great range of angle and size variation. One frame was saved every
3 seconds, resulting in 403 different images with a total of 3121 bounding boxes
(7.7 per image on average). Some competitions were inside, others outside, with
varying lighting conditions. For each competition, races were selected to represent

52 swimmer detection

the 4 main swimming styles and the 2 genders (49% ♂, 51% ♀). The freestlye
style is a bit more represented (30%) and the butterfly is a bit less present (18%).
Breaststroke and backstroke are equally represented (respectively 27 and 25%).
The data from 3 pools out of the 12 was used as test data and the 9 remaining
as training data. The resulting dataset, called Swimm400, is composed of 80 test
images and 323 train images.

3.3.2 Detection Through Segmentation

The segmentation and detection tasks have different objectives, but it is not
their only difference. Their training data is also distinct by nature. However, it is
possible to use heuristics to convert one data type to the other.

Bounding box regression vs. segmentation

Bounding box regression-based approaches [5, 6, 133] transform a part of the
image into a semantic vector, from which the model computes the probability of
presence and position of the objects on the image. This is a very complex task
which requires large amounts of labelled training images to get stable.

On the other hand, fully-convolutional models like U-Net [61] transform each
pixel into a “1” or “0” response according to the objective. This relatively simpler
task brings two main advantages. First, it requires fewer data because the overall
task is not regression (of the bounding boxes), but a binary classification (i.e.
thresholding) extended to the whole image. Second, the conversion of a pixel
into a presence probability amounts to segmentation, which is a task of higher
level than just a bounding box regression. Indeed, according to the object position
and orientation, much space contained inside a bounding box can be background,
but most of a segmentation area designates the searched instance. Therefore,
a segmentation model provides an alternative, more precise description of the
regions of interest, as it excludes the parts of the surrounding background.

Tiny-U-Net

We propose a variant of the well-known U-Net architecture [61] for our swimmer
detection model. The original model is a residual autoencoder with blocs of 3

convolutions layers with the same number of filters before each downsampling (in
the encoder) or upsampling (in the decoder). The following modifications have
been performed: instead of 3 convolution layers between each sampling operation,
only one is performed. The filters are also smaller, increasing from 8 up to 128

instead of 64 to 1024 for the original U-Net. A side-by-side scheme comparison of
both is given in Figure 3.5 We will designate our model by tiny-U-Net. Due to
its shallow architecture and low filters number, it runs at 260 FPS on a GTX 1080

3.3 proposed approach 53

Unet Tiny-Unet

Figure 3.5 – Comparison of the classic U-Net architecture and our tiny-U-Net. The latter
is much more compact, each level having both fewer convolution layers and fewer filters
per convolution. It is thus significantly faster (5×). Despite this complexity reduction,
Tiny-U-Net is still complex enough to isolate swimmers.

NVIDIA GPU with (256 × 256) pixels images, whereas U-Net runs at 50 FPS in
the same conditions. Tiny-U-Net is therefore faster than a real-time detector for
25, 50 or 60 FPS videos, which are standards in the camera industry.

To convert the model’s output heatmap into bounding boxes, a threshold is
applied to said heatmap, and the remaining areas are extracted. A bounding
box is created by finding the circumscribed rectangle around each of them. This
further allows for a fair comparison with the benchmark methods in Section 3.4,
each of them creating bounding boxes.

Box-to-Segmentation-Map Transformation: the U-Net model requires segmen-
tation heatmaps for training. To convert the bounding boxes from Swimm400into
segmented data, an image with black background is created, and “filled” with
white pixels inside the labelled boxes. Therefore, a pixel is 1 or 0 depending on
whether there is or not a swimmer at the pixel. Multiple variants of this approach
have been tested. Whiten inside the full box or only in the inscribed ellipsis; using
binary masks or Gaussian values (close to zero as the pixel is far from the center).
As shown in Table 3.1, the option giving the best result was to use the inscribed
ellipsis with hard edges. As the boxes are reduced to approximate masks, we
noticed that the model can be successfully trained even with mediocre and partly
inconsistent annotation. This allows for a much quicker and less costly annotation
process.

3.3.3 Data Augmentation

Training Tiny-U-Net is direct as it is a simple forward model without hyper-
parameters. To allow batch training, the images were all resized to (256 × 256)

54 swimmer detection

Figure 3.6 – The data augmentations used to train the model. From left to right, top to
bottom: original image, blur, contrast and brightness change, crop, horizontal flip, hue
change, side switch, zoom out.

pixels. Data augmentation is used to increase the trained model’s performance. It
will also compensate for the low quantity of images in Swimm400.

Zoom-in / zoom-out: the main augmentation was the zoom in and out (Fig 3.6,
right column). Image crops are performed during training, such that the subjects
occupy more space. Inversely, a neutral colour could be put around the reduced
image, so that the swimmers look smaller. This helped the model to generalize its
representation of swimmers independently from their size. Swimm400originally
contains swimmers at different distances from the camera, but this data augmen-
tation increased this benefit even more.

Side-switch: another important augmentation was the side-switch, seen in
Figure 3.6, bottom row, third column. This transform is extremely useful to avoid
central overfitting: most images present in Swimm400tend to center the swimmer.
The side-switch puts them on the side, preventing the model from only detecting
instances at the center. For fully-convolutional networks, this is less of a problem
as they are mostly translation invariant.

Others: apart from these two transforms, other more common methods were
used to train the model. The random left-right flip generalizes the swimmer’s
direction to the model, by giving them the same chance to face each side. The
colour change (in HSV format, the hue is rotated by max. 45° so that the water can
have any blue shade plus some green ones) generalizes to many skins, pools and
water colours. The contrast and brightness random variations adapt the model
to the many lighting conditions that can happen during different competitions.
Finally, Gaussian blur increases the overall robustness.

3.4 experimental results 55

Of course, all these augmentations do not require any further annotation, as
they are automatically generated during the training. The probability to trigger
them is 50% each, except for colour variation (30%) and side-switch (10%), as they
both are stronger changes and thus might make the model diverge if used too
much. These trigger probabilities work well for our study case, but may need to
be slightly varied to adapt them to other detection problems.

3.4 Experimental Results

This section shows how we found the best parameters to train our model. We
first compare different variations of our method to find the optimal solution with
our Swimm400dataset, then we compare it to another existing method.

3.4.1 Metrics

The comparison will be made using the AP and Average Recall (AR) 25, defined
as:

AP 25 =
1
N ∑

i

#Good Detectionsi

#Positivesi
, AR 25 =

1
N ∑

i

#Good Detectionsi

#True Positivesi
, (3.1)

on imagei, #Good Detectionsi being the number of detected bounding boxes with
an Intersection Over Union (IOU) of more than 25% with the true box, #Positivesi
being the total number of boxes detected, and #True Positivesi being the total
number of boxes labelled. N is the number of images in the benchmark set.

To get a better idea of what these metrics represent, consider the different
detection scenarios presented in Figure 3.7. A perfect model would return the
results from image A, with the correct number of boxes well enough placed, and
no other boxes. Such a model would have an AP and AR equal to 1. Note that,
as we use the AP/AR 25 metric, the boxes can be imperfectly fitted around the
swimmer as long as their IOU with the annotated ground truth is superior to 0.25.
On image B, all the objects are correctly detected, thus giving an AR of 1, but many
background objects are found as well. As a result, the AP is greatly decreased. On
image C, there is no false positive, resulting in an AP of 1. However, only 1 object
among 3 is detected, which gives a low AR. Finally, image D shows a catastrophic
model, detecting several background objects but none of the swimmers, therefore
both metrics are null. Using these examples, one can conclude that both metrics
have their own interest, depending on the conditions. A good AP means there
are not too many false positives, and a good AR means most of the objects are
detected. For our task, the AP is more suited for this task and will be prioritized,
compared to the AR. Indeed, as in this work there is no discrimination process to
be sure that a detection corresponds to a swimmer, we want to reduce as much as

56 swimmer detection

Image A
AP = 3 / 3
AR = 3 / 3

Image B
AP = 3 / 10
AR = 3 / 3

Image C
AP = 1 / 1
AR = 1 / 3

Image D
AP = 0 / 4
AR = 0 / 3

Figure 3.7 – Different detection scenarios on the same image. In green and continuous:
boxes with more than 25% IOU with a true box (i.e. true positives). In red and dashed
lines: incorrect detections (i.e.: false positives).

possible the false positives. Therefore, both metrics will be used, but the AP will
be considered the most important.

Although both metrics used to be massively used, they are not detection
standards anymore: it is the mean Average Precision (mAP) and mean Average
Recall (mAR) [141], defined as follows:

mAP(dataset) =
1

10

0.95

∑
X=0.5:0.05

AP X(dataset) , (3.2)

which in summary corresponds to the mean of all AP/AR with IOUs between
0.5 and .95 (with a step of 0.05). There is a similar formula for the mAR. This
metric aims for pixel-perfect precision, which is not adapted for swimmers with
blurry edges under the water. AP50 is the standard metric and threshold for
object detection. It considers valid a box at the correct position and with the
correct general size and proportion. In our case, though, the width and height of
a bounding box are fuzzy and imprecise by nature, even during annotation. For
this reason, we chose a smaller threshold of 25. AP25 and AR25 are closer to what
real-world applications seek, such as extracting a sub-region around swimmers,
where estimating the boxes’ barycenter and general size is enough.

3.4.2 Ablation Study

First, we trained our tiny-U-Net model on different variants of the box-to-
segmentation map strategy. The results are shown in Table 3.1.

3.4 experimental results 57

Table 3.1 – Detection performance of our model trained with different swimmer heuristic
shape on the target heatmaps. The input image size is (256 × 256) pixels. * 72 in the
original paper, improved since.

Training Data AP 25 AR 25

Ellipse binary mask 76* 60
Rectangle binary mask 60 28

Ellipse Gaussian mask 21 5

Rectangle Gaussian mask 13 3

This table clearly shows the superiority of shapes with hard edges. Smoothed
ones tend to reduce the model convergence during training. Finally, filling an
ellipse shape is better than filling the whole rectangle bounding box. An intuitive
explanation could be that corner regions are less likely to contain pixels from the
instance. The ellipse mask contains almost only the swimmer, and the remaining
pixels can be understood by the model as regularisation. As the edges of a
swimmer are fuzzy anyway, it probably does not differ much from a precisely-
labelled pixel-perfect mask.

To compare the results of tiny-U-Net with current state-of-the-art methods,
we trained two variants of Yolo on Swimm400. The first version is YoloV3 [5], a
deep model with a 2048 fully-connected layer after the convolutions. The second
is Yolo-tiny, which is shallower. Moreover, it replaces the fully connected layer
with a 1× 1 convolution layer with 56 filters, to drastically reduce the number of
parameters to train. The 3 models are trained with Swimm400dataset. The Adam
optimizer is selected and starts with a learning rate of 10−3 with a decrease of
0.1 if the test loss plateaus more than 10 epochs. As the dataset is quite small,
a batch size of 16 is chosen, and the loss is the Mean-Squared Error (MSE) in
each case. For the Yolo-based models, the λ confidence training trick described in
[135] Section 2.2 is followed. From Table 3.3, it appears that our tiny-U-Net model
outperforms by far the two others. Indeed, Yolo is a great model as long as enough
data is available because of its conversion from feature vectors to output tensors.
On the other hand, tiny-U-Net does not require such a transformation. This result
is confirmed by testing the 3 models on the same videos: the tiny-U-Net gives the
best results. Moreover, on a video, tiny-U-Net appears much more stable between
one frame and the next.

We further explored different domains to get a better knowledge of this model’s
abilities and limits. The first experiment we did was to measure its speed. It is
significantly impacted by the image size, also affecting performance. Table 3.2
displays this trade-off. It shows a peak in the AP at (256 × 256) pixels, and in the
AR at (512 × 512) pixels. Indeed, despite extensive size-focused data augmentation,
smaller images do not have enough pixels per swimmer to get a good detection.
On the other hand, too big images tend to contain many false positives, even if

58 swimmer detection

Table 3.2 – Speed and performances results as a function of input size (left), and
AP25/AR25 as a function of the heatmap threshold (right). We tested the speed with
the same set of 1700 images. The different AP25/AR25 results were evaluated on the
Swimm400test set.

Size FPS AP25/AR25 0.30 0.45 0.60 0.75 0.90

128
2 490 46/13

256
2

260 76/60 69/59 76/60 69/54 65/50 64/50

512
2

80 55/67
1024

2
20 28/63

few swimmers are missed. The (256 × 256) pixels inputs are chosen for further
experiments as they offer the best AP vs AR trade-off, and excellent inference
speed.

We also studied the impact of the threshold on performances, which is often
underestimated. Indeed, if one observes a very thin performance peak around
one optimal threshold, it does not mean the model is optimized for the task, but
mostly for the test dataset. Such a peak is a bad thing for generalization, especially
with small datasets such as Swimm400. In Table 3.2 (rightmost part), we observe
that our optimum is fairly flat between 0.3 and 0.6, which proves the model’s
stability. The optimum value is 0.45.

3.4.3 Comparative Results

Also shown in Table 3.3, the Yolo model trained on 25,000 images by Woinoski
et al. [139] gives results comparable to the tiny-U-Net trained on Swimm400. It
is not measured on the same benchmark though, thus we cannot assure which
model exactly is superior. However, ours seems comparable to theirs with only a
fraction of their amount of data and model size. Our model also performs some
segmentation. Depending on the intended task, both the segmentation heatmap
and the bounding boxes can be used, which is another advantage compared to
the Yolo-based models.

Finally, Tiny-U-Net is extremely efficient in terms of scalability. Being designed
to be trained with small datasets, it is quite shallow and can run extremely fast
(see Table 3.2) with not-so-recent GPUs (GTX 1080 NVIDIA GPU). The experts
we interrogate can determine the position of a swimmer in real-time, but only
one swimmer at a time. With our detection model, we know the position of each
swimmer in a race faster than in real-time, so faster than an expert by a huge
margin.

3.5 visual and qualitative results 59

Table 3.3 – Performance comparison for the different detection models. They are all
trained with the same data, except for the first line. In bold, the best of a category. We
observe that the original U-Net architecture gives significantly worse results compared to
tiny-U-Net, as it overfits on the few data.

Model AP 25 AP 50

Yolo (from [139]) 70 -
Yolo 24 12

Yolo-tiny 31 20

U-Net 39 25

Tiny-U-Net 76 60

Figure 3.8 – The thresholded segmentation output overlaid on the input image with a
size of (256 × 256) pixels. Circled in red are mistakes to focus on.

3.5 Visual and Qualitative results

We also provide a few visual examples of the results. These are not cherry-
picked: they have been selected because they are representative of the global
behaviour of our model.

3.5.1 Swimming Races

First, it is important to study the model in its normal context. Figure 3.8
displays a few of them, illustrating different behaviours of the model. The top-left
image displays the segmentation on a classic swimming segment. The overall
detection quality is very good, each swimmer is well detected and separated from

60 swimmer detection

Figure 3.9 – Classic use-case image overlapping with the segmentation heatmap output
by the model with different input sizes. From left to right, the input sides are 128 pixels,
256 pixels and 512 pixels.

the others. Although one could not state it is precise segmentation, the bounding
boxes we can infer from the segmentation heatmap are of great quality. The
top-right image show both one limit and one unexpected performance. The limit
is the lack of detection of swimmers about to dive, even if a few examples of such
cases are present in the training dataset. This is not really problematic, though,
considering the important swimming phases to detect are inside of the pool, where
detection works correctly. The unexpected result this image shows is the accurate
detection of people in the water who are not swimming. In our dataset, there is
no occurrence of such "objects", so the network has apparently learnt to generalize
enough to detect them. This is a great thing as this means the model is not strictly
limited to professional swimmers in pools (see the water-polo and lake examples
below). The bottom-left image highlights an important problem: segmented blobs
which are too small and too close tend to merge. This is especially common when
swimmers are far from a low camera. Individually, each "sub-blob" is correct,
but they should be separated. This could be addressed by isolating each lane, as
explained in a later chapter (see section 6.2.1). One could also segment the buoy
lines and mask them out of the heatmap to divide the merged blobs. Finally, the
bottom-right image shows the other side of the problem with swimmers too far
from a too low camera: the lack of detection (i.e. false negatives). Usually, this
is caused by a threshold that is too high, but lowering it would thus create false
positives. Again, this will directly be addressed in a later chapter (section 6.2.1):
as the heatmap of each swimming lane is isolated, if no detection is found, one
could reduce the detection threshold until something is finally detected. However,
this is not optimal and it would be preferable to manage these results during
training.

In Table 3.2 is displayed the importance of the input size for the performances.
Further, one can see that the AP and AR optimum do not occur for the same size.
Figures 3.9, 3.10 and 3.11 all highlight this phenomenon on their own domain. The
general observation is that as the input grows, swimmer segmentation improves.
In Figure 3.9, for instance, the blobs shrink as the size increases, but they contain
less water and a bigger part of the swimmer. From detection, the model almost

3.5 visual and qualitative results 61

Figure 3.10 – Model Segmentation of a water-polo image, slightly out of the training
domain. From left to right, the input sides are 128 pixels, 256 pixels and 512 pixels.

achieves segmentation. This is especially interesting considering the original data:
ellipses inscribed inside bounding boxes. This proves that this shape was a good
heuristic, nicely highlighting the athlete. In this case, we can consider a case
of weakly supervised learning, with initial data of lower level than the output.
One could arguably follow this lead to generate great swimmers segmentation
with only bounding box annotation. Increasing the size, though, does come
with compromises. Indeed, as the AR increases, the AP reduces, due to many
false positives appearing between the swimmers. Red markers on swimming
buoys, especially, tend to be confused with humans and are sometimes detected
when they occupy a big enough part of the image. The opposite scenario arises
with smaller images: no false detection, but many swimmers missed (half, here).
Depending on the exact use case, one could prefer one extreme or the other.
The intermediate size, (256 × 256) pixels, seems to be a good compromise for
general-purpose swimmers detection.

3.5.2 Other Swimming-Based Activities

Our model performs great swimmers detection, but it can also be used in
slightly out-of-domain contexts, such as water-polo players detection. Figure 3.10

shows the results on such an image, again with increasing input sizes. In all cases,
the detection is generally good, at least of the same level as with swimmers. Note
that this image is a bit zoomed-in and from a high enough point of view, which is
one of the best video capture situations, for detection.

In this case, the model performs well despite the players generally not being in
a swimming position. They are more vertical and have a big part of their torso
out of the water. This is very encouraging regarding the generalisation power
of our model. Moreover, the segmentation is here even more precise than with
splashing swimmers during a race. The (512 × 512) pixels image, in particular,
shows great segmentation of the player with the ball (at the bottom), with the
whole arm segmented. Underwater limbs are detected for several players.

62 swimmer detection

Figure 3.11 – Segmentation results of persons in a lake, which is significantly out of the
training domain. From left to right, the input sides are 128 pixels, 256 pixels and 512

pixels.

One step can be considered missing, which is the blobs splitting. Indeed,
contrarily to classic swimming races with separated lanes, here, the players can
get very close to each other, which causes detection troubles. Someone focusing
on water-polo could think of a solution or a heuristic to alleviate this problem, but
as this thesis is mainly on swimming races, we did not elaborate further on this.

Finally, 3.11 shows an example result completely out of the training domain,
as the persons are not swimming and not in a pool. This background and
environment are completely new and different from what the model was trained
on. Although the results are generally less precise here, both in low and high
resolution, interesting observations can be made. With low resolution, first, the
group of close-enough persons is essentially well detected, with imprecise edges
and some background water (i.e. false positives) segmentation. With higher
resolution, though, results are more refined, the different blobs follow decently
the persons’ shape. Further, even the farthest group gets detected. This means
such a model could be used for swimmers monitoring on public beaches if we
authorize a high recall. Indeed, the background town is a bit detected too, there
are some false positives. However, for such monitoring tools, it is always better to
have false detection leading to a waste of time (or simply visual checking) than
false negatives, i.e. we do not detect a drowning person.

These qualitative results showed different aspects of the model which were not
expected from the AP and AR studies. The first one is the better segmentation
precision when size increases. This can be very interesting for close-up analyses
and swimming posture extraction - which is not yet resolved. The second point is
the great generalisation performed by the model, which can detect persons in the
water in general, as opposed to simply swimmers in a race. The applications of
such a model are beyond race analyses and could be used to save lives.

3.6 Discussions and Perspectives

The detection method described in this chapter is functional, but a few things
can still be improved or modified to increase the overall performance. Also,

3.6 discussions and perspectives 63

despite having been proposed for swimming analyses, it can be generalized to
other sports with low cost and small annotation time.

3.6.1 Improvements and Future Works

The swimmers’ coordinates output by the model could either be read as a
segmentation area (the raw heatmap) or a bounding box (after the heatmap
processing). The model is currently able to detect the general position of a
swimmer, but it does not detect any body part in particular. This results in an
accurate but not precise position. The barycenter of a blob is always somewhere
on the athlete, but one could not predict exactly which. If the barycenter changes
too much, from the shoulders to the hips, for instance, the local speed cannot
be precisely measured. Depending on the intended application, it can cause
issues, for instance to measure a swimmer’s inter-cycle speed, which just lasts a
second. To alleviate this problem, one could create another small dataset with
only the swimmer head annotated. By training a model to detect the head only,
we will obtain higher robustness. This might be incorporated into a 2-stage
detector similar to Faster-RCNN [6]: the first stage would be the raw detector
described in this paper, the second a head detection on a crop around the extracted
swimmer position. Having this second stage will also potentially remove false
positives. However, it would also reduce inference speed by an important amount
due to image crops resizing and a new model inference. To implement a faster
version, one could have a U-Net-like model with 2 decoder branches, following
ProstAttention-Net ([142]). The first one would be the one described in this
chapter, the resulting heatmap serving as an attention map for the other, detecting
the head.

One recurrent problem, as seen in Figure 3.8, is the merging of different blobs.
Model agnostic ideas have been suggested to solve the problem, but it would
be better to address it directly in the model. One simple idea, that is yet to be
tested, would be the addition of a refinement step. Another model would input
only a crop around the blobs and it would have to segment them following a
Gaussian distribution (instead of the current flat distribution). By only detecting
the local maxima on this second step, instead of a threshold and blobs approach,
we could differentiate the swimmers. As previously mentioned, Gaussian masks
do not perform as well as binary masks for full-image detection. However, this
refinement task is different as there are only a few swimmers to segment in a
close space.

As seen in the previous section, the model also has trouble detecting the
smallest swimmers (i.e. the farther from the camera). Extensive scale-oriented data
augmentation could be used to reduce a bit this problem, but it is also an inherent
part of Tiny-U-Net’s nature. The network is shallow and simple by design, which
inevitably creates this limit. However, this complexity / speed trade-off will

64 swimmer detection

be addressed in a later chapter (section 6.2.1) with all the required CV elements
established.

Overall, the performances could be improved with the creation of a bigger
dataset (and then the use of a bigger model), but the main point of this chapter
is to prove that powerful specific analysis tasks can be achieved at a low cost
without large computational and human resources.

3.6.2 Generalization to Other Sports

The detection process is quite general and easy to handle. For sports with
atypical objects that are not present in usual datasets, our annotation and detection
process can be reused and adapted. Indeed, the low quantity of data is enough
for most detection tasks if the background does not change too much (a pool, a
sports field etc.) as the model will more easily understand what actually matters.
Data augmentation has to be adapted for each case, though, but knowing which
one is pertinent is trivial for an expert.

Further, as we explained, this model can directly be applied to water-polo,
despite the absence of buoy lanes. Small fine-tuning could obviously improve
the precision, as swimmers can be in very different settings than for typical races
(grouped, under one-another, chest out of the water...).

3.7 Conclusion

This chapter proposes a method to detect swimmers in a frame with very few
constraints. Its main advantage is its simplicity: it is easy to recreate for other
sports, as it does not require a lot of data or big pre-trained neural networks.
Peculiar objects (balls, weights, javelins ...) can be quickly detected with a small
dataset, following our methods. Moreover, other swimming-based competitions
(water polo for instance) can directly benefit from the present detection model.

In the end, the detection is done in a fully automated fashion, possibly freeing an
enormous amount of time for coaches who performed this task mostly manually.
It allows them to focus only on the athletic part of their role in a swimmer
formation.

C
h

a
p

t
e

r 4
P O O L R E G I S T R AT I O N

Contents
4.1 Introduction . 66
4.2 State Of The Art . 67

4.2.1 Registration Background 68

4.2.2 Semi-Manual Approaches 69

4.2.3 Recent Advances in Sport Field Registration 70

4.3 A More Challenging Benchmark 70
4.4 Registration Method . 72

4.4.1 Template Heatmap . 72

4.4.2 Data Generation and Model Training 73

4.4.3 Matrix Estimation . 74

4.4.4 Post-Processing . 75

4.5 Results . 76
4.5.1 Parameter Study . 76

4.5.2 Comparing to State of the Art 77

4.5.3 Failure Cases . 78

4.6 Discussion on the One-Shot Approach 80
4.7 Conclusion . 80

Chapter abstract

This chapter presents the problem of pool registration, also named camera
calibration. This task aims at projecting a given image taken with unknown
camera position and orientation parameters to a known 3D coordinate system.
It is complementary with detection to obtain higher-level information like the
position and speed of swimmers. Existing methods usually first create a rough
projection estimation and then use a refinement algorithm to iteratively get
closer to the desired calibration. These different methods will be discussed,
highlighting their strengths and weaknesses. They are usually only compared
in terms of precision on a standard benchmark without considering other met-
rics. In particular, speed is important, mainly in the context of live broadcast

65

66 pool registration

Video

Detec�on

Registra�on

Periodicity(�me)

Posi�on(�me)

Crops

Merging

+

Smoothing

Figure 4.1 – The swimming race analysis method. The registration part is tackled in this
chapter. It does not depend on any other method as it directly inputs the raw video
frames. Used with swimmer detection (in the image), it gives their position in the pool
and all the data coming from it (speed, acceleration, etc.).

TV and sports analysis. A new automatic field registration method is intro-
duced in this chapter, achieving robust performance on the WorldCup Soccer
benchmark, while neither depending on specific visible landmarks nor refine-
ment steps, resulting in a very high execution speed and a good generalization.
Finally, to complement the widely used soccer benchmark, we introduce a new
swimming pool registration benchmark which is more challenging for the task
at hand. This chapter is mainly based upon this contribution:

Nicolas Jacquelin, Romain Vuillemot, Stefan Duffner. Efficient One-
Shot Sports Field Image Registration with Arbitrary Keypoint Segmentation.
IEEE International Conference on Image Processing, Oct 2022, Bor-
deaux, France 〈hal-03738153〉..

4.1 Introduction

Field registration designates the common method to align the visible field
in a frame to a known coordinate system. Its role in the automatic analysis
pipeline is shown in Figure 4.1. As sports fields are planar and we consider lens
distortions negligible, the registration is performed using a linear projection called
homography.

Manual calibration is long (at least a dozen seconds per frame, with training),
thus costly because most video streams come from moving cameras and would
require a frame-by-frame annotation. Although it is theoretically possible to do
so, in practice it takes significantly longer, thus an efficient solution for automatic
field registration is crucial.

Automatic methods [143, 144, 145, 146, 147] tend to decompose the task into a
two-stage process: first getting an initial rough projection, then several refinement
steps to get a more precise result. Both steps are necessary to perform well.

https://hal.archives-ouvertes.fr/hal-03738153

4.2 state of the art 67

The refinement process is similar in many aspects to gradient descent, but the
search space is far from concave. Without a good initial estimation, no refinement
step can find a good solution. However, although this rough initialisation gives
a general idea of the registration solution, it is always improvable, hence the
refinement steps. This second stage takes much longer, 96% of the total processing
time according to [146]. This chapter proposes an automatic field registration
method which does not need this costly refinement step to give accurate results
(see results in Section 4.5.2). A model segments the input image into a map that
highlights a specific (grid-like) pattern corresponding to points on the 3D field
plane (see Figure 4.4, template). Our approach can be applied to any type of
2D sports field with TV streams or side stadium views. While maintaining high
precision on the WorldCup Soccer benchmark [148], it achieves an inference speed
of around 50 Frames per Second (FPS) on rather modest hardware (see Figure 4.3).
This is important as it is critical to calibrate a field in real-time for our application
if we want athletes to get quick feedback on their performance shortly after a race
(the other tasks also have to be quickly ready).

WorldCup Soccer benchmark [148] is the only public dataset that has been
widely used in the literature, although some private datasets have been intro-
duced for registration [145, 146]. However, a soccer field is relatively simple in
appearance as it contains a bi-axial symmetry with many unique visual local pat-
terns. Thus we introduce a more challenging benchmark for Olympic swimming
pool registration. Indeed, a swimming pool contains many repetitive patterns at
different places in the pool (see Figure 4.3) leading to ambiguities in the image
and making the registration difficult. We hope this will push forward the research
on generic and robust sports field registration methods.

In summary, our contributions presented in this chapter are:

• a new benchmark for swimming pool registration with new spatial and
textural challenges,

• a new efficient sports field registration method that can be applied to any
type of sport and reaches high execution speed and State of the Art (SOTA)
precision.

4.2 State Of The Art

This section describes how registration works. It first focuses on the creation of
the homography matrix in practice, then presents manual approaches, and finally
describes the SOTA for sports field registration.

68 pool registration

Y2

Y3

Y4

Y1
X1

X2

X3
X4

Homography

DLT({Xi, Yi} ∀i ∈ [1, 4]) → Homography Matrix

Figure 4.2 – An illustration of the registration. The Dynamic Linear Transform (DLT)
operation uses known matches of positions (Xi with Yi) to compute the homography
matrix. This matrix can then be used to match a position from one coordinate system to
the other. Therefore, the bounding box from the image can be positioned in the pool with
this method.

4.2.1 Registration Background

In the context of registration, a pair of points is defined by a point on the
source image (X) and a point in the absolute 3D coordinate system (Y), linked
by the equation: HX = Y where H is a homography matrix. Combining 4

unaligned pairs (i.e.: forming a quadrilateral on both the source image and the
other coordinate system) allows computing the homography matrix using the DLT
[149], as illustrated in Figure 4.2. However, automatic methods based on pairs
identification can mismatch them (the elements of the pair do not correspond),
which result in a completely false homography matrix. To alleviate that, most
methods presented here identify more than 4 pairs, and use a consensus algorithm
like RANSAC [150] to determine the most likely output.

In the case of homography matrix generation with many pairs, among which
some errors, RANSAC behaves as follows. It randomly selects 4 unaligned pairs
in the whole pairs set and computes the corresponding homography matrix H̃.
All the other pairs are used to compute a loss function measuring the distance
between the source point projected (Ỹ = X × H̃) and the other point (Y). The
average loss is associated to this matrix. If it is bigger than a given threshold, the
matrix is rejected and 4 other points are selected to do the same thing again. If
not, the matrix serves as a basis for the rest. A new (randomly chosen) element is
added to the initial set of pairs, and DLT is used again, this time with 5 elements,
to compute the matrix. The result is again evaluated on the remaining other
points. If the average distance is smaller than previously, the refined matrix
is kept. If not, RANSAC keeps the previous matrix. A new randomly chosen
point is again added to compute the matrix, then the new loss, etc.. This matrix
refinement process is repeated either for a fixed number of iterations or until the

4.2 state of the art 69

resulting average distance is lower than a defined threshold. Despite the presence
of thresholds and the omnipresence of randomness, RANSAC is not very sensitive
to critical threshold values and gives robust and reliable results. Indeed, as it is
very fast, its number of repetitions is often over-dimensioned (thousands), which
increases the robustness of stochastic algorithms as explained in [151].

4.2.2 Semi-Manual Approaches

Although associating pairs of points is a challenging task, associating points
from a similar view is common using Scale Invariant Feature Transform (SIFT) [17]
and other algorithms of the same nature. Applied to the successive frames of a
race video, one can create temporal pairs of points, i.e. points at the same position
in space but (probably) different coordinates in the image. Using RANSAC, it
is possible to estimate the homography matrix between frames. Thus, one can
register a frame with the previous one, projecting it to the coordinate system of
the other. It is therefore possible to perform "relative registration" of race video.
We call it "relative" because although the frames are all in the same reference
frame, they are not associated to any absolute 3D coordinate system.

With this consideration, one can think of a semi-manual registration approach.
This idea was developed in [152, 153] in a similar way. They relied on sparse
human video annotation (e.g. one frame per second of video) and used SIFT to
determine the camera shift between calibrated frames and the others. Using only
one annotation (e.g. on the first frame only) would not suffice, as SIFT does not
create perfect spatial matches and the homography between frames is not perfect.
This results in temporal drifting, with each new registration slightly wronger
than the previous. Regular manual calibrations are thus necessary throughout the
video the reduce this problem by resetting the error frequently.

The aforementioned methods do not use deep learning approaches, but they
would likely benefit from the newest approaches. Instead of relying on SIFT
and RANSAC, newer methods [154, 155] input two subsequent frames and
directly regress the matrix. The framework SuperPoint [156] also proposes an
improvement on SIFT using deep learning to improve general landmarks detection
and matching. These more robust methods would reduce temporal drifting, but
they would probably not remove it entirely, due to sampling approximation. To
our knowledge, no sports field registration method implements these techniques.

We also precise it is not possible to input a frame from a race and a generic
top-view image of a pool to directly regress the homography matrix between them
using [154, 155]: as they are too different, no matching feature appears resulting
in unusable output.

70 pool registration

4.2.3 Recent Advances in Sport Field Registration

The first sports field registration methods [157, 158] relied on lines and circle
detection using Hough Transforms [16]. The detected patterns were used as
keypoints and, combined with RANSAC [150], enabled to compute a homography
giving the absolute position of the camera view on a soccer field.

Using more recent deep learning approaches, fully automated robust methods
appeared. Homayounfar et al. [148] created a segmentation map and used a
Markov Random Field and an SVM to compute the parameters of the cameras,
which determine the homography. Other works [143, 144, 145] used a similar
deep segmentation model approach using synthetic datasets. They generated a
set of synthetic field views with varying camera angles, extracted features from
them, and associated them with their homography (easy to obtain in a synthetic
environment). At inference time, they generated similar features from real images,
which they compared to their database, giving a good initial homography. Then
they adjusted this homography by comparing their input image to their dataset
template. The idea of refining an initial result is present in all recent works of
the domain, with different methods for the initialisation. For instance, Jiang et al.
[147] used a model to directly estimate the image homography. They then used
another one to refine the matrix by comparing the image and a template projected
to the same point of view. Other approaches are based on field keypoint detection.
Citraro et al. [159] used visual landmarks on the field (mostly line intersections).
The main limitation of using visible elements is that the image may not show
enough visual keypoints. Nie et al. [146] directly address this problem, creating a
generic template made of equally distributed points across the whole field, which
is similar to our proposed approach. The key difference is that in [146] each point
is disconnected from the others, despite spatial regularities.

4.3 A More Challenging Benchmark

Compared to a soccer field, a swimming pool contains harder patterns to
correctly identify and associate with a position on a pool. In Figure 4.3, both fields
are shown aside with their distinct features highlighted. Both contain bi-axial
symmetry (not represented on the pool for clarity), but the main differences
are the visual landmarks. For soccer, each landmark is unique because none is
repeated throughout the field. Some of them represent the same things and are in
4 instances (like the ones circled in red), but even in this case, they are distinct
(with 4 different angles here). Further, the Soccer WorldCup dataset contains very
few zoom variations and the camera is always placed close to the edge center.
As such, it is always possible to distinguish enough landmarks to know without
ambiguity the correct projection of the image in the field.

4.3 a more challenging benchmark 71

}
}

}A1

A2

B

DC

Figure 4.3 – Local appearance ambiguities comparison of a soccer field and a swimming
pool. A1,2: 4 identical lines at different places. B: 3 identical lines in the middle. Both A
and B create line mismatch problems. C: the 15m and 35m markers are identical. D: an
example of 2 different camera view projections on the pool that display the exact same
content, despite being at two completely separate places of the pool. Best viewed in
colour.

A pool, however, contains many more challenges (see Figure 4.3, right), namely
positioning along the Y axis (A, B), positioning along the X axis (C, D) - both due
to landmarks repetitions - and unstable background (e.g. wavelets, reflections,
light saturation, etc.). Finally, swimmers occlude part of the landmarks. In a soccer
field, that would not be too important, as they are part of bigger patterns (a corner
can be inferred by only seeing the two lines creating it, despite their intersection
being hidden). In a pool, the majority of the markers are buoys coloured in red
instead of yellow or blue. Although there is one of these markers on each line,
their size, the waves, and the possibility for a swimmer to hide one, make their
detection difficult.

To articulate these challenges, we introduce the RegiSwim500dataset, a swim-
ming pool registration benchmark containing 503 manually annotated images of
international events associated with a corresponding homography matrix. The
source videos are captured by the Fédération Française de Natation (French
Swimming Federation) (FFN) from the stands and their purpose is to frame the
swimmers. They are included in the dataset to enable the use of temporal informa-
tion. Numeric details of the dataset are summarized in Table 4.1. In the dataset, the
level of zoom and distance from the pool also change a lot depending on the com-
petition. This introduces a new challenge in field registration benchmarks, as the
notion of scale is not present in Soccer WorldCup due to its general lack of zoom
variation. There are two train sets: standard and sequential. The first one has been
created in a way similar to WorldCup Soccer and aims to be generic: it contains
frames separated by 3 seconds from different matches. As such, a model tackling
it only inputs one frame and outputs one homography matrix. The second set has
temporally dense annotations (5 annotated frames per second), which can be used
to train models with temporal aspects, inputting information on several successive

72 pool registration

Table 4.1 – Statistics of the RegiSwim500dataset. The races contain important lighting,
textural, and spatial variations.

#images #races images / s
Train Standard 226 6 1/3

Train Sequential 150 4 5

Train Merge 329 6 5 & 1/3

Test 174 3 5

frames (to temporally stabilize the homography output for instance). These two
can be merged to create a bigger, temporally heterogeneous dataset. Finally, the
test set is also densely annotated, as this makes no difference from a standard
benchmark perspective, but it allows also sequential model evaluation. The dataset
is available at https://github.com/njacquelin/sports_field_registration.

4.4 Registration Method

To find the homography transform from a camera view to a standard top view,
our method uses pairs of points with RANSAC. The overall pipeline is explained
in Figure 4.4. The main emphases of this work are computational efficiency and
generalization. Other methods [145] claim a fast inference speed but require
powerful hardware which may not be accessible in practice. Our method uses
a much smaller one-shot model (i.e.: without iterative refinement) such that
real-time registration is possible with modest hardware (1080 GTX with 8GB).
Regarding generalization, it comes from the arbitrary points that are detected
on the image: they do not necessarily need to correspond to visual elements on
the field, although it helps. This is especially visible with soccer field images,
where most landmarks detected by our model are unremarkable, meaningless
grass areas.

4.4.1 Template Heatmap

This work proposes a model that, given a (W × H) input image of a sports field,
outputs a (W × H × D) heatmap of keypoints, D being the keypoints encoding
dimension. The keypoints do not necessarily represent a visual landmark on
the field: they are spread regularly, creating a grid (Figure 4.4, "Grid Template").
One unique aspect of this method is the way it encodes the points. The depth
vector is composed of two subsets: Xt and Yt. They are one-hot vectors whose
maxima index (xt, yt) encode one line/column along the grid axis: a combination
of any value of xt and yt gives a node position in the top-view frame (Figure 4.4,
"Depth").

https://github.com/njacquelin/sports_field_registration

4.4 registration method 73

Indices

}} X t Yt

xt yt
1 1

:
Values :

Input A�er Post-Processing

Data
Prepara�on

Inference
a�er

Training

Homography

Projected TemplateGrid Template

Depth

Raw Output
(flat view)

RANSAC

Projected Result

H-1

U-Net

Figure 4.4 – Top: data preparation. A generic template with regularly spaced keypoints
is created. The template’s depth encodes the keypoints’ position in the top-view frame.
For each image in the dataset, a corresponding projection of the template is created. As a
result, the landmarks spatially refer to their position in the image and semantically encode
their position in the top-view coordinates system. Bottom: inference. The model generates
a heatmap of keypoints. Using RANSAC, the homography matrix can be estimated,
giving the final projection of the input image in the top-view frame. Best viewed in colour.

Compared to having C channels for the C keypoints in the template, as in [146],
this method has speed benefits: it avoids the depth to increase geometrically with
the number of keypoints. A pair of one-hot vectors only linearly increases the
output depth, for the same level of encoding. This improves the speed and scaling
of the solution. For instance, a grid of (15× 7) contains 105 channels in [146] but
only 22 in ours. In addition, as each channel does not only represent one point,
but one line/column in the field, their semantic meaning is more interesting and
enables a better scene understanding.

4.4.2 Data Generation and Model Training

Once the top-view template is created, the data generation can start using a
dataset that contains images with their corresponding homography matrix. The
matrix is used to project the template into the point of view of its image (Figure
4.4, "Projected Template"). With such projection, only semantic information has to
be inferred.

Our approach relies on a U-Net architecture [61], which is widely used for image
segmentation. The cross-entropy loss is used to train the pixel-wise keypoints
one-hot classification. As there is no "background" class (which would be over-
represented in the data), this loss is only applied at the ground truth keypoints
location, using a mask. To ensure that the keypoints are in the correct place, the
binary cross-entropy loss (BCE) is used. To do so, the ground truth (Truth) and
output (Out) heatmaps are flattened with a depth-wise MAX operation. The 2D

74 pool registration

Algorithm 4.1 Fast identification of keypoints on a heatmap. Det returns the
position of the local maxima in the heatmap. The correspondence table Tab
associates each channel to an absolute position in the field template.

Require: Model Output Out, Threshold T, maxima detector Det, Correspondence
Table Tab
Pairs← ∅
Out f lat ← Maxdepth(Out)
Max_List← Det(Out f lat)
for (xm, ym) in Max_List do

if Out f lat[xm, ym] < T : SKIP
depth_vector ← Out[xm, ym]
Xt, Yt ← depth_vector
xm

t ← Tab(argmax(Xt))
ym

t ← Tab(argmax(Yt))
Pairs← Pairs ∪ ((xm, ym), (xm

t , ym
t))

end for
Homography Matrix ← RANSAC(Pairs)
return Homography Matrix

resulting heatmaps are compared, in order to align the estimated "blobs" with the
expected ones. Formally:

Laxis
class = CrossEntropy(Out, Truth) ∗Masktruth

keypoints ,

Lpos = BCE(Maxdepth(Out), Maxdepth(Truth)) ,

Ltotal = Lx
class + Ly

class + λ · Lpos ,

with λ ∈ R being a weighting coefficient.

4.4.3 Matrix Estimation

To extract the keypoints’ absolute position from the heatmap, one could study
each pair of (X, Y) channels to verify if each (x, y) point is represented. This results
in a XG×YG×K complexity (XG and YG being the template grid resolution, and K
the number of keypoints to be found). We propose a much faster algorithm whose
complexity is in (XG + YG)× K (the K operations are parallelizable). A depth-
wise MAX operation is applied to Out, the whole output, resulting in Out f lat, a
2D heatmap (the Max operation is extremely well optimized in processors and
insignificant compared to the rest). Its M local maxima are identified and if they
exceed a certain threshold, their (xm, ym) positions are kept. On Out, the depth
vectors at these (xm, ym) positions are isolated. Their one-hot vectors return the
index of their most activated dimension, (xm

t , ym
t), the position on the top-view

4.4 registration method 75

Figure 4.5 – Smoothing of the 8 parameters of the homography matrix estimated for a race
(the parameter at position (3,3) is always equal 1). The values are represented through
time. The outliers being orders of magnitude different from the truth, they have been cut
out in the figure’s frame. Blue: the original signal. Orange: the smoothed signal.

template. Based on these ((xm, ym), (xm
t , ym

t)) pairs, RANSAC [150] can be used to
compute the homography matrix. This is formally described in the Algorithm 4.1.

4.4.4 Post-Processing

For individual images, the method can be applied directly, but to register an
entire video, no temporal constraint is applied. The method not being perfect,
registration is inconsistent throughout the video. With our model, the projected
top view of a full race video appears shaking. Stabilization methods can be
applied to improve the registration smoothness on videos.

A first straightforward method is temporal averaging of each individual coef-
ficient of the matrix. Each can be taken and plotted through time, as shown in
Figure 4.5. A simple approach is using a sliding window to smooth the matrices
through time. Outliers (i.e. completely wrong matrix estimation) can be easily
identified if a given value is too far from its neighbourhood. They are removed
before the averaging and replaced by the median of a time window around them.
Such smoothing is shown in Figure 4.5. It would also be possible to complexify
the smoothing process using the 2/3 Power Law [160], which describes the human
motor system’s acceleration parameters. One could fit such curve to the matrix
elements’ temporal signal, and use the result instead of the original matrices.

76 pool registration

Instead of smoothing the resulting elements, it is also possible to smooth the
position of the points detected on the different frames through time. A point
corresponding to a given coordinate in the pool should not move too much
between frames. Further, if different distant points are (wrongly) classified as
the same, the corresponding neighbour frames’ point can vote for the one with
the smaller distance to them. This method results in a smaller selection of points
for RANSAC, but they are of better quality and give more temporally consistent
results. However, such an algorithm is much more complex to create and would
require a chapter for itself.

As registration benchmarks do not handle temporal data, a quantitative eval-
uation of the post-processing methods is not possible. However, a qualitative
appreciation of them on different registered videos is possible. Further, visualiza-
tions are presented in Figure 4.5 to showcase the interest of this post-processing.
Imprecision in the homography estimation can be understood as noise on the
parameter’s value through time. In consequence, the stabilization is the smoothed
signal with much less visible noise.

4.5 Results

The model was trained for 150 epochs with Adam optimizer [29]. The learning
rate started at 1e−3 for 50 epochs and was then set to 1e−4 for the remaining
100 epochs, with a batch size of 16. In the literature, the standard metric is the
Intersection Over Union (IOU) between binary masks of the ground truth top view
and the estimated homography. This is either done with only the visible field
(IOUpart) or using the whole field (IOUwhole). The average and median of these
metrics are computed on the test dataset. Results are shown in Table 4.3.

4.5.1 Parameter Study

The parameter λ, weighting the importance of landmarks classification with
respect to their position, is an important parameter of this method. We compared
different orders of magnitude of the value to estimate its importance. We did
not extensively search hyperparameters’ precise values, as this would only fit the
solution to the studied datasets, with no proof of generalization to other contexts.

This parameter is not trivial to weight, as it represents the balance between the
markers’ classification loss and position loss. As the markers mask (serving to the
position loss) is made of the maximum of each channel, it pushes all the channels
to 1 at the places of interest. On the contrary, a unique channel must be activated
for a low classification loss. Antagonist behaviours naturally emerge from them.
It is thus important to know how to balance them.

4.5 results 77

Table 4.2 – Ablation study on the training parameter λ. Best in bold.
λ value 0.5 1 2 5

IOUavg
part 83.6 81.3 83.3 75.0

IOUmed
part 89.54 84.4 94.7 80.4

IOUavg
whole 67.6 66.0 72.6 63.9

IOUmed
whole 82.8 85.0 91.5 81.1

With a value of λ = 2, the results are the best by a significant margin. With
lower values, the results are similar yet less precise, but it seems that with a λ too
big, here 5, there is an important drop. The model gives too much importance to
the mask precision and neglects the points classification, although it intuitively
seems like the most important one, being responsible for the pairs of points
mapping.

4.5.2 Comparing to State of the Art

Although our approach does not quite reach the top results from the literature, it
is still among the best ones, as shown in Table 4.3. This is remarkable, considering
it contains no refinement process while all the other methods do. However, this
impacts the IOUwhole metric, where the slightest shift on the visible side of the
field has big repercussions on the other side. Nonetheless, this second metric
can be considered less interesting for real-world applications, such as placing the
players on a field, as they must be visible on the image to be detected in the first
place. These results might be improved using methods such as self-training on
unlabelled data.

Regarding speed, our model is one of the only two exceeding real-time (> 25

FPS), although it has been tested on the least powerful hardware according to
benchmarks [161, 162]. Looking at the details, one can even argue that our model
is faster than Sha et al. [145] on the same hardware. Indeed, our architecture is a
subset of theirs, to which they add 2 more deep models, a Spatial Transformer
Network, and an exhaustive search among field templates. All these additional
steps have a significant time cost and our method might be faster by up to this
amount. The model’s speed could be increased even more using distillation [163]
to train a more condensed, shallower and faster version of U-Net. However,
registration is far from being the current speed bottleneck of the pipeline, so such
optimization is not necessary.

Naturally, for our more challenging RegiSwim500dataset, the performance is
lower. Our model handles correctly Y-axis challenges (A and B in Figure 4.3) and
lighting problems, mostly because of the grid density and distribution, which
prevents focusing on a single part of the image. The big difference between the

78 pool registration

Table 4.3 – Quantitative results on Soccer World Cup and RegiSwim500datasets. Best in
bold. Real-time methods underlined in the FPS column.

Method Benchmark IOUavg
part IOUmed

part IOUavg
whole IOUmed

whole FPS Memory - GPU
Citraro et al. [159] WorldCup 93.9 95.5 - - 9 NA - Titan RTX
Sha et al. [145] WorldCup 94.2 95.4 83.2 84.6 250 48GB - Titan RTX
Chen et al. [144] WorldCup 94.5 96.1 89.4 93.8 2 16GB - NA
Jiang et al. [147] WorldCup 95.1 96.7 89.8 92.9 0.74 8GB - 1080 GTX
Nie et al. [146] WorldCup 95.9 97.1 91.6 93.4 2 8GB - 1080 GTX
Ours, soccer field WorldCup 94.6 95.9 81.2 86.0 50 8GB - 1080 GTX

Ours, swimming pool RegiSwim500
83.3 94.7 72.6 91.5 50 8GB - 1080 GTX

mean and median results is due to multiple left-right inversions. In this failure
case, the IOU score can drop down to 0, reducing the mean but not the median
as they are in minority. These are quite difficult to prevent in a pool (challenges
C and D in Figure 4.3). This first baseline clearly shows the challenges and
limitations raised by this new benchmark. Calibrating a pool, especially with
different levels of zoom and multiple camera placement, is much more difficult
than the standard Soccer WorldCup benchmark.

4.5.3 Failure Cases

In various situations, our trained model did not perform well. This can be
observed by projecting a video in top view (without temporal smoothing), where
misprojected frames appear obvious. One can also observe this phenomenon with
the benchmarks, by displaying the images with the lowest scores.

Wrong Classification

First, there are frames where a majority of the detected landmarks are not
correctly classified. They are rarely placed at a random position, so it is usually a
classification error more than a segmentation (i.e. landmark placement) problem.
There is a proportion of wrong points from which RANSAC cannot correctly com-
pute a coherent homography matrix anymore. The result of an image projected in
such condition is not exploitable at all. An example is shown in Figure 4.6, center.

Mirror Field

A similar failure case is when part of the landmarks are wrong in a coherent
manner. For instance, all the 15m markers are falsely classified as 35m markers,
as in Figure 4.6, right. Here, the output is a plausible result, but with a left-right
inversion error. This failure is harder to automatically detect than the previous
one, either with a human eye or with a model trained to classify images as possible

4.5 results 79

Unrealistic Result Mirror failureSource image

Figure 4.6 – Examples of failure cases. The results were obtained from two models trained
under different conditions. The Red squares represent the detected landmarks. Despite
the mirror failure looking consistent, its IOU with the ground truth is 0.

results or not, as it appears correct without the original image. It can be the cause
of important errors.

General Geometric Misunderstanding

Both of these failure cases show an important limitation of our method: the
model does not have an understanding of the pool’s spatial disposition. If 5m
and 25m markers are detected with high confidence (and they tend to be, being
easy visual markers), the model should not give a high probability that a 35m
marker is between them. This is not spatially coherent. However, the model
fails to do this logical operation. An idea to solve this problem might involve a
Generative Adversarial Networks (GAN). Indeed, one can easily differentiate a
labelled heatmap and a generated heatmap solely using this geometry criterion.
Adding a discriminator’s loss could force a spatially logical output. However, it is
never simple to use GAN and we leave that to posterity.

Important Zoom

The last type of common failure is when not enough landmarks are detected.
In the majority of cases, this happens when the level of zoom is too high and it is
impossible to see enough markers or to find a scale reference. In these cases, even
a human could not register the image. Using the space between swimming lanes
gives the camera angle from the water surface, the scale of the different elements
gives the level of zoom, but it is not sufficient. One can only say what the camera
does not frame. To circumvent such problem, one must not zoom too much on
the pool, to keep enough spatial context. Temporal information can also help, as
in [146], but a tracking-based registration method is outside of the scope of this
chapter.

80 pool registration

4.6 Discussion on the One-Shot Approach

The advantages of a fast method may seem obvious, especially with good
results as in our case, but one must consider the application first, before judging
it. In Computer Vision (CV), the speed vs precision trade-off is ubiquitous and
sports field registration is no exception. Before developing a method, one should
think about where they want it on this trade-off spectrum in the context of their
application. Further, we announce a given speed using our method. The speed is
in fact entirely dependent on the U-Net model we chose (here, the original one
in [61]). To our knowledge, no extensive studies have been done on precision
losses in function of the model size, in the case of registration. If speed were
a higher constraint, one could reduce its complexity by removing a layer or
reducing the number of filters. On the other hand, it is also possible to increase
the U-Net model’s size to improve the results, if that were more critical than
speed. One could even use a few refinement steps for that purpose, as long as
an inference time is not crossed. For all the presented results in Table 4.3, an
arbitrary refinement limit is chosen. Practically, they correspond to a point where
improvement is too little to be considered worth the time spent.

To create and optimize a tool, one must consider its actual needs in precision
and speed before choosing a registration method. The one presented in this
chapter is fully compatible with any other refinement method, as it can serve as
an initialisation model. Depending on the final use of this work, one could use
any of the many refinements proposed in the related works.

4.7 Conclusion

This work introduces an efficient and precise method for automatic sports field
registration, which reaches very good performance and real-time inference speed.
It is very well suited to online practices, such as live-stream broadcast analysis, or
post-race performance review.

The RegiSwim500 dataset has been introduced and made publicly available in
order to improve the registration challenge. Future works will include ways to
optimize even more the model’s inference speed, and new methods to increase its
precision.

The model, however, is not perfect and cannot handle all the possible video
cases. Several limitations have been listed, with propositions to address them.
Further, it was shown that a simple temporal sliding mean can smooth results
and get rid of many anomalies if the majority of the video is correctly enough
calibrated. Finally, the importance of speed in the context of such method was
discussed. In CV, speed and performance are both important aspects to consider.
Developing a tool, a user must always select which one to prioritize over the other.

C
h

a
p

t
e

r 5
P E R I O D I C I T Y

Contents
5.1 Introduction . 82
5.2 Related Work . 84
5.3 Unsupervised Periodicity Counting 86

5.3.1 Latent Representation Learning 86

5.3.2 Cycle Counting . 88

5.4 Experiments and Results . 89
5.4.1 CNN Architecture . 91

5.4.2 Ablation Study . 91

5.4.3 Quantitative Results . 92

5.4.4 Application to 4D videos 93

5.5 Going Further with Supervision 94
5.5.1 Supervised Swimmer Strokes Detection 95

5.5.2 Qualitative results . 96

5.6 Discussion and Perspectives . 97
5.7 Conclusion . 98

Chapter abstract
Knowing the position of swimmers in a pool allows one to study them specifi-
cally, and in particular to count their swimming strokes. To that extent, this
chapter introduces a context-agnostic unsupervised method to count periodic-
ities in videos. Current methods are limited to a specific type of application
(e.g. repetitive human motion). We propose a novel approach that provides
a powerful generalisation ability since it is not biased towards specific visual
features. It is thus applicable to a range of diverse domains that require no
adaptation, by relying on a Neural Network (NN) model that is trained com-
pletely unsupervised. More specifically, it is trained to transform the periodic
temporal data into a lower-dimensional latent encoding in such a way that it
forms a cyclic path in this latent space. We also introduce a novel algorithm
that reliably detects and counts periods in complex time series. Despite be-
ing unsupervised and facing supervised methods with complex architectures,

81

82 periodicity

Video

Detec�on

Registra�on

Periodicity(�me)

Posi�on(�me)

Crops

Merging

+

Smoothing

Figure 5.1 – The swimming race analysis pipeline. The periodicity counting part is
tackled in this chapter. This part is built on top of swimmer detection because it relies on
sub-video crops around swimmers. It can output the number of cycles per pool length or
the duration of cycles. Both metrics are used by coaches.

our experimental results demonstrate that our approach reaches State of the
Art (SOTA) performance for periodicity counting on the challenging QUVA
video benchmark. Its remaining limits will be addressed by an additional
method based on supervised training and an annotated dataset. This chapter
is based on the work from:

Nicolas Jacquelin, Romain Vuillemot, Stefan Duffner. Periodicity
Counting in Videos with Unsupervised Learning of Cyclic Embeddings. Pat-
tern Recognition Letters, Elsevier, 2022, (hal-03738161).

5.1 Introduction

We define periodicity as any phenomenon that happens multiple times in a
similar way over time. Periodicity is ubiquitous in real-world scenes and occurs at
multiple scales. In elite sports, the tracking of the athletes’ motion is a key issue
and is highly repetitive. In swimming, in particular, the stroke rate (defined in 5.5)
is one of the most important metrics to determine a race quality and infer other
statistics (e.g. stroke amplitude, rate etc.). Combined with the swimmers’ position
in the pool, it provides important analytical data to a coach. In the automatic
swimming races analysis pipeline, it occurs after the detection, as shown in Figure
5.1.

This task is challenging for many reasons. First, two successive repetitions may
significantly differ (e.g. swimming strokes rate and amplitude change during the
race). Second, the precise beginning and end of a cycle are ambiguous. Finally,
there exist other artefacts, such as the different sub-cycles that may be mistakenly
detected as cycles (e.g. the left and right arm strokes for freestlye). Furthermore,
the notion of periodicity is context-dependent: the same event in two different

https://hal.archives-ouvertes.fr/hal-03738161v1

5.1 introduction 83

Time (frames)

Triplets of Successive Images

Triplet Loss
Training

Part 1 : Unsupervised Training

Part 2 : Cycles Counting
1a)

{

1b)

Frequency (1/frames)

FFT
Max Detector

Time (frames)

PCA

Chronological StackingFull Video

Cyclic Embedding Result

Figure 5.2 – The periodicity counting framework. In Part 1, a Convolutional Neural
Network (CNN) is first trained in an unsupervised fashion on the test data, as described
in section 5.3.1. Then, it is used to extract an embedding for each image of a video.
(1a) shows an example of the 2D PCA projection of these embeddings. The last 50

embeddings are linked chronologically (in red), revealing the cyclic path. (1b) shows the
input images whose embeddings correspond to the highlighted points. They belong to
different swimming cycles but correspond to the same phase, therefore the points are
close in the latent space. In Part 2, we chronologically stack the embeddings obtained
from the trained network to form a multi-variate time signal. The PCA’s first component
of the signal reduces it into a uni-variate signal. Finally, our Max Detector algorithm is
used to count the cycles on the signal, which corresponds to the number of cycles on the
video.

sequences might be periodic or not depending on whether it is repeated or not.
Therefore, the signal must be studied globally and not frame-wise.

Estimating periodicity is particularly challenging with videos recorded under
unconstrained conditions. Any spatial shift, background noise or viewpoint
change results in important variations in the captured signal, which often makes
it hard to automatically detect the dominant cycle. Although these problems can
be alleviated with recent Machine Learning (ML) methods based on CNN, those
models often require large amounts of training data [53, 3, 164]. In the case of
swimming periodicity counting, such dataset does not exist. Being able to adapt
to any domain also prevents from using pre-training methods or context-specific
datasets such a Kinetics [165], as many other techniques of the SOTA do [166, 167,
168, 169]. In particular, a NN trained in daily-life context does not transfer well
in the new domain of a pool. Moreover, not all periodicity problems concern
videos of regular human activities: there are other types of complex time series,
like multi-source sensors monitoring air quality or biophysical activities [170, 171,
172], 4D MRI videos (i.e. 3D images through time) of breathing lungs [173], active
brains [174] or beating hearts [175]. For these reasons, it is important to have a
domain-agnostic method.

84 periodicity

This chapter presents a new domain-agnostic training method suited for tem-
poral periodic data in general. With an adapted NN architecture, it could even be
used outside of the video domain to study other types of multi-variate time series.

Our approach is summarized in Figure 5.2. The training is made on the test
video using unsupervised learning. Once trained, the model reduces the video
into a periodic 1D signal and counts its repetitive patterns using a novel peak
detection algorithm based on various signal processing techniques. This counting
process is performed in a single step. It does not require testing different time
scales or using a sliding window through the whole signal to process it completely.
The computational cost is therefore greatly reduced compared to other methods
based on transformer architectures [166] or multimodal fusion models [168].

Further, during this thesis, we kicked off the creation of a labelled dataset for
supervised learning of swimming periodicity. This chapter will explain what
composes it and how to train a model from it. Qualitative results will be shown
and analyzed. Our main contributions in this chapter are the following:

• An unsupervised method to train a NN with the triplet loss to encode any
kind of video showing a periodic phenomenon (section 5.3.1).

• A framework for automatic periodicity counting in videos, based on the
analysis of a learnt embedding (section 5.3.2).

• a swimming periodicity dataset and a method to train a model on it (section
5.5).

5.2 Related Work

To specifically address periodicity counting in daily life videos, Levy and Wolf
[176] proposed a 3D CNN architecture: the input is composed of 20 chronologically
ordered images, each separated by N frames in the timeline. In this way, the
temporal information is integrated into the input. They trained the model in a
supervised way on synthetic data to separate the sequences on their temporal di-
mension. This feature-oriented method is robust to colour and lighting variations,
but one needs to test several timescales (i.e. many different values of N) to obtain
good results. Also, as for supervised trained models, the performance directly
depends on the dataset size and quality.

Similar to our method, other works aim to reduce a video to a one-dimensional
signal. Polana and Nelson [177] detected the pixels responsible for motion, and
considered them as temporal signals varying throughout the video. They extracted
a signal period by detecting the peaks on its Fourier Transform. Yang, Zhang,
and Peng [178] used a method based on pixel-wise joint entropy to estimate
the similarity between a reference image and the other ones, resulting in a 1D
temporal function.

5.2 related work 85

Runia et al. [179], introduced another method to convert a video into a 1D signal.
They studied the main direction of the foreground’s optical flow to create multiple
1D signals from its directional gradient components through a wavelet transform.
Their paper also introduced the QUVA benchmark dataset for periodicity counting
in everyday videos.

More recently, Dwibedi et al. [166] proposed a complex architecture mixing
CNN and transformers [90], trained in a fully-supervised fashion on the Countix
dataset which they introduced. In their experiments, they also trained their
model on a considerable amount of synthetic data obtaining impressive results,
but unfortunately they did not publish this dataset. This method achieves good
results on public benchmarks, but it is by far the most computationally expensive
and data-dependent. Using the Countix dataset, Zhang et al. [168] proposed a
multi-modal approach relying on sound and sight to improve the SOTA on Countix
benchmark. They did no evaluation of it on QUVA, however.

The work of Yin et al. [169] shares some similarities with our work, as it also
extracts periodic features from a video with a learning-based method, reduces
it to a 1D signal, and counts the repetitions with an algorithm relying on the
Fourier transform. However, their approach is not generalizable to other types
of data since it uses a NN that is pre-trained on Kinetics [165], a large annotated
video dataset, in a supervised way. As such, they can only analyze conventional
videos of 2D images and the learnt visual features are domain dependent, which
may not give satisfactory results on other types of videos. In addition, the
signal processing part of their method is quite different from ours. To detect
the dominant frequency, it uses a specific multi-threshold filter in the frequency
domain with several empirically determined thresholds and then detects the
peaks in the reconstructed signal with the inverse Fourier transform. Our model
is trained unsupervised and end-to-end, and our robust peak detection algorithm
operates on the original 1D signal obtained from PCA.

Zhang et al. [167] proposed an approach based on a context-aware model.
However, it is not designed to generalize to unseen domains: the method uses
the Kinetics dataset [165], where a separate model is trained for each sports type
resulting in excellent overall scores on public benchmarks. Finally, the work of
Feirrera et al. [180] is also context-specific: it uses human pose classification to
count repetitions of workout routines. This approach is suited but limited to the
context of human motion repetition counting.

As most of these methods are trained on a human motion video dataset (Countix
being built on top of Kinetics), they are well adapted to human gestures and
actions. However, this makes them (i) specific to videos and not any other type of
input data and (ii) biased towards human motion. On the contrary, we designed
our method to be applicable to any type of periodic data.

86 periodicity

b)a) >margin c)

φ(t+2)

φ(t+3)

φ(t+1)

φ(t)

φ(t-1) φ(t+1)

φ(t)

φ(t)
φ(t+2)

φ(t+1)

>margin

pseudo-linear path

Figure 5.3 – Unsupervised learning of the pseudo-linear path using the triplet loss. The
anchor is at the center, the positive is on the smaller circle (not necessarily the same size
each time), and the negative is outside of the bigger circle. a) The anchor is ϕ(t− 1), so
ϕ(t) and ϕ(t + 1) are separated. b) The anchor is ϕ(t), so ϕ(t) and ϕ(t + 1) are drawn
together. When the training starts, the negative can be on the other side of the big circle
compared to the positive. But this situation is no longer possible when the constraint is
applied to all the successive frames after convergence, as shown in c): a pseudo-linear
path is naturally formed, as it is the only way to respect both the attraction and repulsion
constraints imposed by the loss.

5.3 Unsupervised Periodicity Counting

We introduce a novel unsupervised learning process, illustrated in Figure 5.2
Part 1, to encode a video in a way that highlights its periodic features. For that
purpose, a CNN is trained directly on the video to be analyzed. The resulting video
embedding is a periodic signal that is processed by a novel algorithm to count its
cycles. This new method does not follow the classical training/validation/test
protocol. The different steps of the pipeline are described in detail in this section.

5.3.1 Latent Representation Learning

Before the model can be trained, one needs to group successive frames from
the video. The frame at time index t is grouped with the frames t + 1 and t− 1
forming a triplet. Each frame belongs to 3 different groups (triplets) where it
plays the 3 roles t− 1, t and t + 1, except for the first and last frames (because
there is respectively no frame before it to be t− 1 and no frame after it to be t + 1).
With T frames in the video, there are T − 2 triplets in the end.

The output vector of the image at time index t is called ϕ(t). The images need
to be embedded by the CNN in such a way that, in chronological order, they
form a repetitive pattern in the latent space, i.e. a loop. This is achieved by using
a continuity criterion and a periodicity criterion. The first forces the images’
successive embeddings to be temporally ordered along a pseudo-linear path. The
latter forces this path to contain repetitive patterns.

5.3 unsupervised periodicity counting 87

To guarantee the continuity criterion, the triplet loss is used as the objective
function:

L(A, P, N) = max(0, |ϕ(A)− ϕ(P)| − |ϕ(A)− ϕ(N)|+ α) , (5.1)

where α ∈ R is the margin, A is the anchor, P is the positive and N is the
negative image. The purpose of the triplet loss is to make the distance between
the embeddings of A and N larger than the distance between the ones of A and P
up to a minimum distance defined by α. Our approach defines the image at time
index t− 1 as the anchor, t as the positive and t + 1 as the negative. The overall
consequence of applying this training method to each value of t in the video is
that each ϕ(t) is “pulled towards" its direct neighbors (ϕ(t− 1) and ϕ(t + 1)), and
“pushed away" from its 2nd degree neighbors (ϕ(t− 2) and ϕ(t + 2)). Therefore,
the positive embedding is “placed" between the anchor and the negative one,
with a tolerance of α, as explained in Figure 5.3. This forces the creation of a
pseudo-linear path chronologically aligning the embeddings in the latent space.

To guarantee the periodicity criterion we rely on the property of CNN that two
similar inputs will have similar outputs unless explicitly trained otherwise [38].
With periodic videos, if one cycle has a period T, then the images at time indexes
t and t + T will have the same phase in the cycle and look alike. Therefore, the
images have an embedding close to the other images corresponding to the same
phase in the cycle. This cyclic behavior is illustrated in Figure 5.2, images 1a) and
1b).

The resulting model closely fits the data it was trained on. Therefore, to get
the most adapted latent space representation for a video, a model needs to be
specifically trained on it (and no other videos). This requires some training time,
but, as explained in section 5.4.1, it is not too expensive.

The training process has been presented using frames as a temporal unit, but
it can be enriched by other information. In section 5.4.2, we show that adding
the optical flow to a frame gives better results (i.e. frame t is enriched with the
optical flow between frames t and t + 1). In this case, we concatenate the 3 image
channels (RGB) to the 2 optical flow channels (direction & magnitude) resulting
in 5×W × H temporal unit tensors (W and H being the width and height of the
video). This section presented a way to fit a video into a latent space, but it also
works for other complex time series. Similarly to adding the optical flow, which is
the variation of a frame with respect to the next one, one could add the gradient
between successive temporal vectors to augment the information encoded by the
model.

88 periodicity

0 50 100 150 200 250

0

2

4

0 50 100 150 200 250

2

0

2

0 50 100 150 200 250 300

2

0

2

0 20 40 60 80 100 120 140 160

2

0

2

A

C

B

D

Figure 5.4 – Examples of 1D PCA projections of embeddings chronologically stacked. The
A, B, and C curves show the embedding results for different cycles duration, from 8 to
50 frames per cycle (on average). D shows a more complex pattern containing 2 distinct
local maxima. In such cases, our Max Detector might count 2 cycles per pattern, resulting
in a false result, like mentioned in section 5.4.3.

5.3.2 Cycle Counting

After training, the images in the video are embedded in the latent space in such
a way that they form a cyclic pattern. The next step, illustrated in Figure 5.2, Part
2, is to count these cycles.

To effectively work in the frequency domain and apply common signal pro-
cessing techniques, the model’s output vectors have to be transformed into a
one-dimension signal. To do so, the embedding vectors of the M images are
chronologically “stacked" to form a matrix like in Figure 5.2, 2a). This is, if the
latent space has D dimensions, the resulting matrix is of size D × M. A PCA
projection is applied to the matrix to keep the features combination with the most
importance. By only keeping the 1st element of the PCA, it results in a 1×M
temporal signal S with periodic information, i.e. a recurring pattern like in Figure
5.4, corresponding to a repetition in the video.

The subsequent algorithm uses the Fourier Transform to detect the signal’s F
main frequencies. These candidate frequencies will all be tested by our proposed
algorithm named Max Detector explained in the following.

The main goal of Max Detector is to detect the maximum of each cycle in S and
to save their time indices in a list named MaxList. These maxima will be used to
distinguish and count the cycles. We name fi the current analyzed frequency (one
of the F detected by the Fourier transform), Max Listi its corresponding maxima
list, and Ti its corresponding period. Max Detector starts by finding the signal
S global maximum’s time index, which is added to Max Listi. We suppose the
neighbour cycle maxima are approximately one period away from each other.
Therefore, to find the next maximum, one creates a time window by shifting
of Ti ± 10% from the current maximum. In this window, the local maximum
is located and its time index is added to the list Max Listi. This operation is
performed again from this new local maximum until reaching the signal’s edge.
This procedure is repeated twice, each time starting from the global maximum:

5.4 experiments and results 89

t-1 tmaxtmax-T tmax+T t+1 t+1+T t+2

Time

A
m

p
li

tu
d

e

10% of T
(exaggerated)

Figure 5.5 – Illustration of Max Detector. Starting from the global maximum’s index tmax,
the algorithm shifts by one period T and finds the maximum’s index t+1 in a window
of 10% of T (in red, exaggerated for a better understanding). This window makes Max
Detector robust to period variations. Starting from t+1, this is repeated to find t+2, t+3 and
so on until reaching the signal’s end. A first iteration goes from tmax to the end of the
signal and a second from tmax to t = 0.

once forward towards the end, and once backwards to the beginning of the signal.
This is graphically explained in Figure 5.5 and formally explained in Algorithm
5.1.

Once the F different frequencies have been processed, there are F different
candidate lists Max Listi. Each list is evaluated individually and the best solution
is retained. To evaluate a Max Listi, each of its local maxima will be compared to
its local region accordingly to equation 5.2. This score computes the proportion
of elements in Max Listi that correspond to the local maximum in half a period
centered on them.

Score_i =
1
Li

Max_List_i

∑
k

[
S[k] = max

(
S[k− T

4
: k +

T
4
]

)]
, (5.2)

Li being the number of elements in Max Listi (i.e. its length), k representing the
different local maxima indices. As a result, a list that contains each local maximum
of the signal separated by approximately T has a score of 1. On the contrary, the
more incorrect maxima a list contains, the lower its score is. This is a simple
heuristic, but it proved to be efficient.

The list with the highest score is kept, whose number of elements represents
the number of cycles in the signal and therefore the number of repetitions on the
video.

5.4 Experiments and Results

To compare our method with the current state of the art, we used the QUVA
[179] and Countix [166] benchmarks. QUVA is composed of 100 videos showing
between 4 and 63 repetitions. The videos are very diverse and recorded in real-
life situations, often with camera motion and background variation. Countix
contains a similar visual variety. It is the first large video repetition dataset,

90 periodicity

Algorithm 5.1 Max Detector: creation of candidate lists MaxListm

Require: signal S, fm, m ∈ (1, ..., F)
MaxList = ∅
for m in (1, ..., F) do

MaxListm = ∅
Tm = 1/ fm
tmax
0 = arg max S(t)

MaxListm ← MaxListm ∪ tmax
i

tmax
i = tmax

0
while tmax

i − Tm ≥ 0 do
ti = tmax

i − Tm
Wi = (ti − 0.1 · Tm , ti + 0.1 · Tm)
tmax
i = arg maxt∈Wi

S(t)
MaxListm ← MaxListm ∪ tmax

i
end while
tmax
i = tmax

0
while tmax

i + Tm < length(S) do
ti = tmax

i + Tm
Wi = (ti − 0.1 · Tm , ti + 0.1 · Tm)
tmax
i = arg maxt∈Wi

S(t)
MaxListm ← MaxListm ∪ tmax

i
end while
MaxList← MaxList ∪MaxListm

end for
return MaxList

containing more than 8000 clips showing 2 to 73 repetitions. The metrics used for
performance comparison are the Mean Absolute Error (MAE) and the Off-By-One
Accuracy (OBOA), defined as:

MAE =
1
N

N

∑
i

|ci − ĉi|
ci

OBOA =
1
N

N

∑
i
[|ci − ĉi| ≤ 1] ,

where ci is the true count and ĉi is our model estimation on the same video i and
N is the number of videos in the dataset. The OBOA, introduced in [179], counts
the proportion of correct predictions with a tolerance of 1. This margin serves
to reduce the importance of rounding mistakes, as ambiguous cycle cut-offs can
happen at both ends of the video.

Each model was trained independently on one video at a time. This means that
for a dataset of 100 videos like QUVA, 100 different models have been trained and
evaluated for each experiment (except said otherwise). The following sections
describe the experiments performed on the two benchmarks and the results
obtained with the two metrics.

5.4 experiments and results 91

Table 5.1 – Results of different variations of our approach on the QUVA dataset. Pretrained
models did not perform well at embedding the images in a cyclic manner. The same
architectures, trained using our method, give much better results. Different architectures
do not significantly change the results.

Variations MAE±σ ↓ OBOA ↑
1 img + F=4 0.388± 0.512 0.43

VGG19 (pretrained) + F=4 0.758± 0.812 0.21

VGG11 (pretrained) + F=4 0.783± 0.761 0.17

VGG19 + flow + F=4 0.252± 0.400 0.60

VGG11 + flow + F=4 0.241± 0.367 0.62

flow + F=2 0.291± 0.445 0.59

flow + F=5 0.239± 0.335 0.62

flow + F=7 0.244± 0.328 0.61

flow + F=10 0.378± 0.710 0.57

flow + Scholkmann et al. [182] 0.307± 0.408 0.51

flow + F=4 0.231± 0.326 0.64

5.4.1 CNN Architecture

During our test phase, we did not notice a significant performance difference
using different CNN architectures (we tried VGG19 and VGG11 [57], results shown
in Table 5.1). We also designed a straightforward CNN model with fewer layers
than VGG11 as it would train better on the few images of the video clips. Our
custom model is composed of 6 layers of 3× 3 convolutions with ReLU activation
[55], each layer doubling the number of filters (starting at 4, finishing at 128) and
2× 2 max pooling [181] after each layer, and a final global average pooling giving
a 32 dimensions output vector.

For each study, we trained a model for 30 epochs with a batch size of 16, a
learning rate of 10−3 and the Adam optimizer [29]. Under these conditions, the
training took about 1.1 times the total duration of a video using an NVIDIA GTX
1080 GPU.

5.4.2 Ablation Study

Our initial baseline CNN model just takes one image as input (Variation “1 img"
of Table 5.1). To improve performances, we enriched the input with the optical
flow between two consecutive frames, similar to Zhou et al. [183], as mentioned in
section 5.3.1. The new input is therefore made of an image concatenated with the
optical flow from this image to the next one. This variation is named “flow" in
Table 5.1.

92 periodicity

To show the importance of our training policy, we used common CNN models
trained on Imagenet [53] to do the embedding, with only one image as an input,
as required by these architectures (they were not retrained on the cyclic videos
images). The obtained embeddings did not give easily exploitable cyclic curves,
resulting in bad performance. With our training policy, however, the different
CNN architectures all reached comparable results, our shallow model being better
than the deeper ones. For all lines in Table 5.1 not stating a specific architecture,
we used our custom shallow CNN.

In the Max Detector algorithm, we compare F different frequencies. As shown
in Table 5.1, we studied the performance obtained for different values of F. The
QUVA benchmark does not provide a specific evaluation protocol, so we used
cross-validation on QUVA with 50/30/20 splits (i.e. random splits with said sizes
were created to evaluate different values of the parameter F without changing
anything else, especially the temporal input signal). The results were the same for
the different splits: between 4 and 7, F seems to have little impact on the result,
F = 4 being the optimum. On the other hand, Countix has a training dataset,
which we used to compute the best value for F. The results were similar between
2 and 7 again, obtaining an optimum for F=2.

Finally, we measured the importance of Max Detector, so we used another
automatic peak detection algorithm, described in [182] by Scholkmann et al. It
counts the cycles of the same signal as our Max Detector but performs significantly
worse. This shows the effectiveness of our algorithm and the importance of a
more specialized algorithm for periodicity counting.

5.4.3 Quantitative Results

Table 5.2 shows the results compared to other supervised and unsupervised
methods. On QUVA, our model has the best MAE and OBOA of all the un-
supervised methods. This is achieved with no prior bias or complex model,
which demonstrates the efficiency of our framework. Moreover, even compared to
supervised models, it is outperformed by only one model with a small margin.

Regarding Countix, we would like to highlight a few major weaknesses of
the dataset. First, many clips with only 2 repetitions are cutting out parts of
the periodic actions (at the start or the end of the video), resulting in no fully
repeated movement. Moreover, the shortest video is 0.2s, which corresponds to 6
frames at 30 fps. In our opinion, such video clips are too short to contain distinct
repetitions. In addition, the choice to keep the same train/validation/test splits as
originally in Kinetics seems questionable, each action category being represented
in both the train/validation set and test sets. To create a more context-agnostic
dataset, it would be preferable to have specific test categories missing from the
train/validation split to challenge the generalisation of the method. On Countix,
our unsupervised method gives an OBOA better than Zhang et al. [168] and is

5.4 experiments and results 93

Table 5.2 – Results for different methods of periodicity counting methods. Bold: the best
result of a category. Underlined: the second best. Our unsupervised method reaches
comparable performances to the best fully-supervised models. This proves the overall
interest of our method. Q for QUVA benchmark, C for Countix.

Method Unsupervised Q: MAE±σ ↓ Q: OBOA ↑ C: MAE±σ ↓ C: OBOA ↑
Levy and Wolf [176] 0.482± 0.615 0.45 - -

Yin et al. [169] 0.199 ± 0.335 - - -
Dwibedi et al. [166] 0.322 0.66 0.364 0.697
Zhang et al. [168] - - 0.307 0.511

Pogalin et al [184] ✓ 0.389± 0.376 0.49 - -
Runia et al [179] ✓ 0.232± 0.344 0.62 - -

Our method, F=4 ✓ 0.231± 0.326 0.64 0.495 ± 0.769 0.517

Our method, F=2 ✓ 0.291± 0.445 0.59 0.419 ± 0.496 0.545

only outperformed by Dwibedi et al. [166]. The MAE is slightly worse than the
supervised methods, but not by a big margin. In fact, the difference between our
score and Dwibedi et al.’s equals the difference between them and Zhang et al.

In addition, we observed a behavior in most of the “OBOA failure", that are
where |ci − ĉi| ≥ 2. Our Max Detector sometimes counts 2 repetitions instead of 1

for each cyclic pattern, therefore doubling the prediction compared to the ground
truth. Indeed, a lot of ambiguity in the cycles count exists, the most usual being
the “double action" that can be counted as either one or two periods. For instance,
on a freestyle swimming clip, the annotated ground truth cycle can either be one
“left and right arm movement" or only one “arm movement" depending on the
labeller. Such ambiguity can often not be managed by context-agnostic methods,
which will “guess" the answer between N and 2× N cycles when it occurs. This
partly explains the difference between our score and supervised methods’ score,
which are specifically trained to correctly choose in these ambiguous contexts.
This problem artificially increases the MAE in an “unsymmetrical" way. If the
truth is 10 repetitions, but our model gives 5, MAE = 0.5. If it is the opposite,
MAE = 2. We could use the Normed MAE (NMAE) as a new metric, as it does
not cause this “unsymmetrical" issue:

NMAE =
1
N

N

∑
i

|ci − ĉi|
max(ci, ĉi)

On QUVA and Countix, the NMAE of our method is respectively 0.158 and
0.345.

5.4.4 Application to 4D videos

Many applications in medical imaging deeply rely on 4D videos (i.e. 3D images
through time), acquired with Magnetic Resonance Imaging (MRI) for instance.

94 periodicity

Time

A
m

p
li
tu

d
e

Figure 5.6 – 4D MRI video analyzed by our method. This is a proof of concept of the
method’s generalisation to different input types. Left: 2D slices of 3D input images (for
display purposes) at different moments. The blood pulses through the artery. Right: the
1D PCA (blue) and peak detection of our model (red). As MRI contain very little noise,
the periodic pattern is perfectly smooth. Better seen in colour.

However, SOTA periodicity counting methods cannot analyze them as their model
can only input regular videos with 2D images. They could circumvent the
problem by individually processing each 2D slice of the 3D images, but in doing
so contextual data is lost and many model inferences would be required. In the
end, one count per slice would be obtained and further post-processing methods
would be needed to determine the final result.

On the other hand, our method can perform 4D video analysis with no loss
of context, as the model is created with the data itself. Adapting the CNN
architecture is straightforward in this case: the 2D convolutions are replaced by
3D convolutions. The remaining training method is unchanged and the results
obtained by our approach are as good as for conventional videos. Figure 5.6 gives
an example of a 4D MRI video, from the results of [185], showing a beating heart.
The 1D signal obtained by our method is extremely smooth and easy to interpret.
Although further quantitative evaluation would need to be done, these promising
results represent a proof of concept that the method generalizes well to other
types of data.

5.5 Going Further with Supervision

In our first discussions with the Fédération Française de Natation (French
Swimming Federation) (FFN), race summary sheets were used as examples of
what they expected, where the number of cycles per 50m was a metric. This
metric enabled the coaches to grasp a general quality of swimming. It allowed
studying the periodicity evolution during a long race (e.g.: 1500m) or to compare
swimmers. However, coaches also want the exact beginning and end of each cycle.
This allows them to measure how the distance per cycle evolves through a pool

5.5 going further with supervision 95

Cycle Start Cycle End

�me0

v0=cos(0)
va

vb
vc

vd

vend=cos(2π)

t0 ta tb tc td tend

vi=cos(x2π)ti-t0
tend-t0

Figure 5.7 – Value associated to each frame according to their phase in the cycle. The
arrow point at the value v ∈ [−1, 1] taken by the frame on the sinusoid. Both extremity
frames are associated to 1.

length, to identify possible local problems. Our periodicity counting method was
not tailor-made for this finer-grained metric.

Coaches define the extremities of a cycle using a specific position of the swim-
mer, which depends on the style. For breaststroke, it is when the head is at its
highest, for the others it is when the right arm enters the water (or both arms
for butterfly). These are conventions, which cannot be found in the raw data. As
such, they require some sort of supervision.

5.5.1 Supervised Swimmer Strokes Detection

The supervised method proposed relies on the same basics as the previous one:
the input is a cropped video of one swimmer, and the output is a 1D temporal
signal. It relies on a dataset composed of swimmers cropped, associated with their
"instantaneous phase". To compute this phase, we label each image where a cycle
ends and associate them with the value 1. The intermediate frames are associated
with the values of a sinusoid between successive cycle ends, as explained in Figure
5.7.

The trained model inputs a frame and learns to output the associated value.
The exact input can either be a single frame or two successive frames, or one
frame and the optic flow, as for the unsupervised method. The resulting sinusoid
is then analysed using the Max Detector algorithm. However, as the new model
focuses on swimmers, heuristics can be used. Cycles are bounded by biophysical
limitations and have a duration of around one second. In our dataset, the extreme
values are 0.92 Hz and 1.09 Hz. Therefore, we limit the search for a frequency
maximum to a minimum of 0.85 Hz and a maximum of 1.15 Hz to give a margin.
This prevents the algorithm from finding out-of-bounds false positives.

96 periodicity

The sources from this dataset are competitions which were filmed by members
of the Neptune project. Coaches analyzed the filmed races and we were able
to synchronize their data with our video. It was therefore possible to create a
labelled swimming strokes dataset with no extra annotation. Furthermore, as long
as the FFN keeps analyzing videos filmed by our team, we can incorporate their
data and the dataset keeps growing.

However, the number of championships filmed is fairly small (6 during the
writing of this manuscript). Although dozens of races of each swimming style can
be added to the dataset, they are not very varied, which is a critical flaw, limiting
the generalization ability of the model. The camera point of view and the lighting
conditions are also very similar in the videos, reducing the domain representation.

The videos have varied framerates between 25 and 60. In both cases, the propor-
tion of frames associated with the value 1 is under-represented, despite arguably
being the most important. Indeed, the final goal is to detect the extremities of the
cycles, where the value is equal to 1. As such, confusing intermediate values is
less problematic than confusing an extremity with an intermediate. This problem
was addressed by over-representing extremities in the dataset. A third of the
training images are extremities, and the other two-thirds are regularly spread
intermediate images.

5.5.2 Qualitative results

As this work started at the end of the thesis, only a proof of concept has been
realized. The periodicity regression model is made of 8 sequential convolution
layers with 8 up to 64 filters. This simple model was chosen to increase the
training speed on the one hand, and also because the used training data was
limited due to time constraints during the implementation of the idea. This model
is also close to the one used with the unsupervised method (few straightforward
convolution layers). We trained with videos from only 1 competition and tested
on a race from another one in another pool. Result is shown in Figure 5.8.

Note that we moved values range from v ∈ [−1, 1] to v ∈ [0, 1], which has no
impact on the result. The curves are not perfect sigmoids, but a clear periodic
pattern emerges with distinct peaks at 1. The first detected peak corresponds to
a diving phase, where no cycle has started yet; this is a false positive one can
threshold out by only starting the analysis after the 15m, where the swimmer must
have started swimming. Visual examination showcase that the frames identified
by Max Detector correspond to cycles edges. Quantitative metrics have not been
used as the number of examples is too limited and this is just a proof of concept.
The results of this preliminary work are encouraging and suggest we are heading
in a good direction.

5.6 discussion and perspectives 97

Figure 5.8 – Crops of a race around a swimmer, analyzed by our periodicity regression
model. Top: the raw output signal. Bottom, maxima detection by the Max Detector
algorithm. As maxima correspond to cycles extremities, the algorithm outputs the cycles
extremities’ timecodes.

5.6 Discussion and Perspectives

The methods proposed in this chapter show promising results for our swimming
application, but also for general periodicity counting in videos.

Good Unsupervised Results

Despite being unsupervised and based on a shallow model, our method gives
results comparable to SOTA supervised techniques with complex architectures.
Due to its nature, it can work on any kind of video, even the ones that differ
considerably from daily life (aeronautics, medical, astrophysics etc.). Moreover,
with appropriate NN architecture, it can also perform well on other temporal data,
such as 4D videos, biological sensors, and audio.

Promising Supervised Results

The supervised method shows promising results too to separate cycles when the
swimmers are in precise given positions. From a more applied point of view, this
is hopeful regarding the automatic swimming race analysis tool. The in-progress
creation of the supervised periodicity dataset is also encouraging as it will lead to
better and better results.

Important Limitation to Address

Periodicity counting in the case of swimming, however, has an important
limitation that cannot be addressed by any of the two described methods. It is
the dependency on swimmer detection. If the detection is imprecise, there is

98 periodicity

another level of difficulty added to the task. A shaky detection might introduce
periodicity in the placement of the swimmers inside the cropped videos, which
would not depend on their position. The supervised method could address it by
applying extensive shift-based data augmentation, but by artificially increasing
the problem’s difficulty, a bigger model may be needed. Also, a detection system
centered on the backside of swimmers might give crops with undefinable style
and periodicity. Likewise, if the detection is too wide to the point of framing
multiple swimmers at once, in which case our periodicity counting method would
be lost.

The detection system responsible for crop extraction must be particularly
smooth. This might mean not always centering the same point (the head), which
can be subject to rapid local translations. As such, the detection method for
crop extraction must be a bit different from the one responsible of measuring
the instant position of swimmers in the image. The first might be drawn from
the other using heuristics such as temporal smoothing to improve the method’s
results on the task.

Another limitation of this solution is the need to extract crops from the video.
With 8 swimmers in the race, there must be 8 sub-videos generated. Cropping
and resizing are two long tasks, computation-wise: it is an order of magnitude
slower than a U-Net model inference. As such, periodicity counting based on crop
extraction is the temporal bottleneck of the pipeline.

Possible Solution

All the methods referenced in this chapter, both ours and the ones from the
related works, do the same strong hypothesis: there is only one periodic element
in the video. This causes the two limitations previously mentioned (important
dependency on detection and slow cropping process). A method inputting directly
the uncropped swimming race video and outputting periodicity information for
each swimmer would therefore address the two limitations at once. Although we
did not work on this idea, one could imagine a solution based on (yet another)
U-Net-based model, where each area containing a swimmer would output the
swimming phase. The output could either be a value between 0 and one (phase
regression) or there could also be multiple channels, each associated to a range
of phases (phase classification). We do not have the data to train a model based
on this method, but if the supervised periodicity dataset develops enough, that
might become the case.

5.7 Conclusion

We introduced a framework to count repetitions in periodic videos. This method
is outside of the usual training set - validation set - testing set paradigm, as the

5.7 conclusion 99

training is directly done on the test data. We believe that such an unsupervised
approach may be of increasing importance in the future for different applications,
to reduce the need for big datasets and complex architectures.

C
h

a
p

t
e

r

6
C O N C L U S I O N A N D P E R S P E C T I V E S

Contents
6.1 Summary of the Contributions . 101
6.2 Limitations and Proposed Solutions 103

6.2.1 Benefits from Combining the Models 103

6.2.2 Increasing the Acquisition Speed 106

6.3 Perspectives and New Challenges 107
6.3.1 Guided Annotation Tool 107

6.3.2 Temporal Data for a Better Context Understanding . . . 108

6.3.3 More Data for Better Models 109

6.3.4 Weakly Supervised Learning for a Multitask Model . . . 109

6.3.5 Swimmers Pose Estimation 109

6.3.6 Vision Transformers . 109

6.3.7 Unaddressed Challenges 110

6.3.8 MediaEval Challenge . 111

6.4 Conclusion . 112

Chapter abstract
This chapter sums up the different contributions we presented in this manuscript.
They have their individual limitations that we discuss here. We also describe
an important future work that aims at improving the methods and reducing
their limits by combining them all. This is a proposition of strategy for fully
automating the video analysis. We also address more general perspectives and
limitations of the thesis. Unaddressed challenges are mentioned, with leads to
tackle them.

6.1 Summary of the Contributions

This thesis introduced multiple contributions for automatic analysis of swim-
ming race videos. They brought different domains of Computer Vision (CV)
together, like object detection / segmentation, registration, and unsupervised

101

102 conclusion and perspectives

learning. Two datasets were also introduced to help the community moving
forward and creating new methods.

Swimmer Detection from Unconstrained Videos

The first contribution we made tackled swimmer detection in [8]. The Swimm400

dataset, also presented in the paper, contains 400 labelled images of swimmers
with around 3100 bounding boxes. To the best of our knowledge, no publicly
available swimmer detection dataset existed when Swimm400 was released and we
hope is will push the sports analysis community forward. The dataset is varied,
containing several environment, pools, viewpoints, angles, etc.. It can be used for
swimmer detection without external constraints like camera positioning or type
of pool.

Swimm400is well-crafted, but it is orders of magnitude smaller than the usual
detection datasets [3, 53]. Consequentially, classic object detection techniques [5,
132] do not perform well on it. Swimmer detection is thus addressed using a
variation of the classic segmentation architecture U-Net. Our tiny-U-Net model
is smaller and shallower, in order to manage the training set size. To train it,
we converted the bounding boxes into heatmaps by creating ellipses inscribed
in the boxes. This heuristics worked efficiently to detect swimmers with a good
precision. It is weakly-supervised learning (bounding boxes are at a lower level
than segmentation) and it was shown that a rough segmentation of swimmers is
possible with high enough input image resolution.

Real-Time Pool Registration

Our second contribution addresses automatic sports field registration tech-
niques, in [9]. This task is also fundamental for swimming analysis, as once it is
combined with swimmer detection, it allows the positioning of swimmers in the
pool. Automatically addressing this task gives more adaptability to our analyses,
as we do not have to rely exclusively on static videos that must be manually
calibrated. As such, videos filmed before this thesis can be analyzed, whereas
they could not before due to their panning, zooming, or moving camera.

As the main registration benchmark, Soccer WorldCup, is not about swimming
pools, we again introduced a dataset named RegiSwim500. It contains 500 images
of pools and their corresponding homography matrix to perform a top-view
projection of the pool. Contrarily to the other benchmark, it contains very different
levels of zooms and camera angles, making it more challenging. Thus, it enables
to train more adaptable models, which do not have to rely on specific filming
properties.

The model relies on the U-Net architecture to position landmarks on the image.
Each is associated to a position in the pool, forming a pair of points. Detecting
enough of them (dozens per image in practice) allows us to use a consensus

6.2 limitations and proposed solutions 103

algorithm to estimate the homography matrix. This consensus-based algorithm
gives some robustness to the model which, contrarily to any other sports field
registration method, do not rely on refinement. As such, it is both precise and
fast, even without a state of the art Graphics Processing Unit (GPU).

Periodicity Estimation on Cropped Videos

In this thesis, we also studied periodicity counting and strokes end detection
in chapter 5 and in [10]. This method relies on unsupervised training to create a
model that is able to embed a video to form a cyclic path in a latent space. Using
other signal processing techniques, we can count the number of repetitions in a
video. The idea is to train a model on the test data, without label. Such approach
is original and enables the creation of models specifically fitting a given type of
input (videos, sequences...) and domain (swimmers, daily-life activities...).

Specifically for swimmers, we also trained a model for swimming cycles end’s
detection. It inputs a crop around a swimmer and outputs a value between 0 and
1 describing the swimmer phase. For our specific application, such model is very
important as it enables the coaches to evaluate their swimmers based on their
stroke rate.

6.2 Limitations and Proposed Solutions

The methods we presented in this thesis could be improved, as explained in
their respective chapter. The way the videos are filmed also presents problems for
the later analysis. In this section, we address their limitations and present ideas of
solution.

6.2.1 Benefits from Combining the Models

Some performance limitations of our models could directly be addressed by
putting them together. By integrating them inside of a unified system, we could
maximize their positive interactions in order to increase precision. Figure 6.1
illustrates an idea of such a unification (note that it changed compared to the
previous chapters).

Registration on a Race Video

The current registration model is not accurate enough to give useable results if
the cameras are panning and following the swimmers. Indeed, it needs spatial
context, which can only be obtained by filming at least half of the pool at all time.
For this purpose, the Neptune project uses two static cameras each filming half of

104 conclusion and perspectives

Video

Detec�on

Registra�on

Periodicity(�me)

Posi�on(�me)

Crops

Merging

+

Smoothing

Figure 6.1 – A final illustration of our swimming models unified in a single system. The
dotted arrow is a connection that would no longer exist with the proposed architecture.
Following this idea, the registration result would be part of the detection process, and the
smoothing / merging bloc would improve on the crops extraction.

the pool. However, even then, the model gives different results in function of the
input frame, as shown in Figure 6.2. This is likely due to small variations from
the waves and the reflections that change the local distribution of pixels. This
creates important coherence issues, as the same position on two frames from a
static camera would be mapped to different places in the pool.

We could circumvent the problem by finding a single matrix that is used for
the entire video. To accelerate the process, we could only apply our registration
model on a few frames. The challenge is to find the best homography matrix
among several that would be estimated by the model. We could use DBSCAN
[186] to cluster them. We can assume that although many images can have a
wrong registration, they tend to fail in different ways (see the bottom line of
Figure 6.2). However, as there is only one way to be correct, we could find the
optimal solution by simply selecting the most numerous cluster of homography
matrices. We would thus obtain one group of similar homography matrices (good
regression) and several significantly smaller groups of very different matrices
(failure cases). This would alleviate the weakness of the registration model.
Within the selected group, each parameter could be averaged to get the optimal
homography matrix.

An extra module could also be added to judge the quality of registration. If it is
not satisfying enough according to its criterion, the module could warn a human
user and ask them to perform manual registration. It can be a simple model
fed with top-views videos, trained to output 1 or 0 whether the registration is
precise or not. If the result on a video were below a threshold, this would trigger
a warning addressed to the user. The threshold could be manually defined by the
user depending on the level of precision they want.

6.2 limitations and proposed solutions 105

Original Image Average Projection Ground Truth

Small ShiftUpward ShiftDown & Side Shift

Figure 6.2 – Top-views obtained using the same model from a static camera filming a race.
Different types of visible errors exist. There are also many small shifts, almost indistin-
guishable from the ground truth, causing flickering to the video. Both the raw projection
and the clustered-based projection (using a unique matrix) of the video are available
at: https://drive.google.com/drive/folders/1oXKgDIzy3vTd0UHE9TaFjyozOeiR9gTt?
usp=sharing.

Detection Aided by Registration

We could use a new detection pipeline as illustrated in Figure 6.3, relying on
the top-view to detect the blobs on the heatmap. With this idea, we would first
reconstruct the entire pool using the two camera’s registration, and isolate the
different swimming lanes. In these lanes, we could locate the blob of highest
probability. This would alleviate the weak detection on the top (i.e. farthest) lines,
where a threshold of 0.45 (optimal as shown in chapter 3) is too high for this
specific area. The problem of swimmers’ blobs merging would also be addressed
by the lanes’ separate analysis.

A second-stage swimmer detector could be added to confirm that a given blob
actually contains a swimmer. It could be used to select the best blob of a lane
as an alternate to the heuristic of the blob with highest probability. However,
this would increase computation time significantly, as the blobs’ area should be
extracted and resized, and then fed to the model.

A post-processing step could finally be added to refine the swimmers’ po-
sitioning. With a unique swimmer detected on each frame in each lane, their
position through time becomes obtainable. It could be smoothed out and outliers
could be removed using simple signal processing methods. This would result in
a monotonously growing curve, corresponding to the position of the swimmer
starting at 0m and finishing at 50m.

https://drive.google.com/drive/folders/1oXKgDIzy3vTd0UHE9TaFjyozOeiR9gTt?usp=sharing
https://drive.google.com/drive/folders/1oXKgDIzy3vTd0UHE9TaFjyozOeiR9gTt?usp=sharing

106 conclusion and perspectives

Abis

A B C D

�me

dist

�me

dist

Figure 6.3 – The detection pipeline proposed in this section. After the model inference
on the right and left videos, there are 4 steps. A: top-view projection and fusion of the
raw heatmaps. B: by-lane threshold, resulting in a position for each swimmer for a given
frame. C: temporal aggregation of the positions through the entire race. D: position
smoothing and gap-filling giving the trajectory of each swimmer through time. Note that
although the probability maximum of the topmost swimmer’s blob is under 0.45, our
by-lane threshold can detect it. The detection false positives are transparently discarded
thanks to the use of registration.

Stabler Crops for Periodicity Estimation

A major limitation of periodicity counting is its need for robust swimmer crops
extraction. We could use the smoothed positioning coming from the combination
of detection and registration to extract stable, not shaking sub-videos around each
swimmer. The periodicity model would thus have almost no external perturbation
and could function optimally.

6.2.2 Increasing the Acquisition Speed

Before analyzing a video, one must have access to it, which is slow using
the current way the races are filmed during competitions. It could be changed
to address real-time (or close) constraints, and allow for faster feedback to the
swimmers.

Towards a Real-Time Video Analysis Acquisition Process

Currently, cameras film different races and their memory cards are regularly
switched with empty ones. The full cards are moved to the Fédération Française
de Natation (French Swimming Federation) (FFN) performance division cell and
their content is uploaded to a computer where it can finally be analyzed. In
both cases, there is a delay between a race and the moment an analysis can
be completed. This filming process was initially copied from the performance
division which also films and analyzes videos. However, it is not adapted to our
needs for quick feedback. A better way could be the setting up of live streams
from the cameras to the processing computer. The analysis could thus start during
the race and be over soon after it, as the method can operate fast. It would allow

6.3 perspectives and new challenges 107

for direct feed-backs from the analysis system to the coaches and swimmers, but
also from them to us, to improve our tool. Indeed, such faster speed to obtain
results would encourage both sides to interact more, which is mutually beneficial.

Acquisition Resolution

Races are shot in 4K. However both image loading in memory time and image
resizing time increases with input size. Filming images of lower resolution, such
as 720p, would decrease substantially this time. As the images fed to the models
are resized to (256× 256) pixels anyway (as shown in Table 3.2 in chapter 3), it
would not change the analysis accuracy. For periodicity counting, videos cropped
around a swimmer do not require 4K to perform well. If, in the future, other
models needing a close-up of the swimmer (e.g. for swimmer pose estimation) are
used, higher quality videos may be required. For now though, it is not the case.

6.3 Perspectives and New Challenges

This work proposed different new methods, ideas, models, and datasets. As
such, it unlocked some domains of swimming analysis, that can be explored in
future works. There are also domains we could have explored, that we ended up
not addressing by lack of time. This section describes what these works could be
and what they would have brought.

6.3.1 Guided Annotation Tool

Creating an extensive dataset is time consuming, even with a good labelling
tool. To alleviate this problem, we worked on a tool of our own to help swimmer
annotation, illustrated in Figure 6.4. This tool relies on an already trained detection
model, like the one presented in chapter 3. It works like a regular annotation tool,
but bounding boxes are already placed by the model. The user could quickly
adjust these boxes if they are almost correct, delete the false positive, and create
new boxes. During the conception of this tool, our priority was labelling speed, as
it is the most cumbersome problem of annotation. Other than that, the tool’s key
feature concerned the threshold of the model, which has a different optimum in
function of the level of zoom and other similar variations. With distant swimmers,
it is generally beneficial to have a low threshold. Therefore, while annotating a
race distant from the camera, the user could set the threshold to a low value to
have better suggestions, and adapt it again for the next race.

However, this tool was very incomplete: a lot of interesting features that
could greatly improve the labelling speed were never implemented. For instance,
the user had to fine-tune the detection model with the new bounding boxes

108 conclusion and perspectives

Figure 6.4 – An illustration of the annotation tool we built, with bounding boxes already
generates by the model (in red) and bounding boxes created from scratch by the user (in
white). On the left, different views of the detection. The threshold slider is at the bottom.

themselves, even if it would have been better to automatically do it during the
labelling process: the model would get better and better with each new annotated
image. Likewise, the images order is also an important factor if one wants to
continuously train the model. Rules based on images variety (distance, lighting,
angle...) would have been interesting to explore and create. Finally, a model could
also predict the most interesting threshold depending on the input image, still
enabling the user to adjust it as they wish.

6.3.2 Temporal Data for a Better Context Understanding

In this thesis, detection and registration were based on models performing
frame-by-frame operations, but no temporal data were used. One could enhance
them using either past or future frames to detect the swimmers. Such approach
would probably give significantly better results, as it is not rare that waves
and diffraction temporally occlude swimmers, making them almost impossible
to detect using only one frame. A temporal approach could also be used for
registration. Some points of view lack information to allow for robust and
confident homography estimation. However, using the landmarks visible in the
previous frames would circumvent this problem. Freeing us from the constraint
of static videos would significantly increase the generalisation of the model.

This could be implemented by feeding the models several successive images
stacked together instead of only one. The first layers of the model could be re-
placed with 3D convolutions to better handle this new input. No extra annotation
would be required, as the output could still concern only one frame. However,

6.3 perspectives and new challenges 109

we would have to find the frames preceeding the annotate ones in the videos that
served to create our datasets.

6.3.3 More Data for Better Models

Additional data can be created by labelling fix videos as they are captured
in competition with static cameras. New data are always appreciated by the
community and they can increase substantially the performance on different tasks.
In particular, u-turns and underwater swimmers could be better detected than
they currently are as they are not very frequent in Swimm400. Therefore, the most
interesting images to label are both angles more similar to our use context and
"rare" swimmers positions.

6.3.4 Weakly Supervised Learning for a Multitask Model

The model fed with crops of swimmers giving information on their phase could
be extended using weakly-supervised learning algorithms. Instead of crops, whole
images could be the new input and the model would give phase information
about only the areas with swimmers. If a model like this were created, it would
unify swimmer detection with periodicity analysis. In fact, the three models
could be merged into a single general U-Net architecture outputting registration,
detection, and periodicity information all at once. This would increase speed by
merging the different models and removing the costly crop operations.

6.3.5 Swimmers Pose Estimation

Swimmers pose estimation was not addressed at all during this thesis as
many intermediate works were required before it. However, based on our existing
swimmer detection method and on progresses in the domain, it could be feasible in
the near future. However one must be realistic about the limitation of underwater
joints detection in uncontrolled filming condition. There likely are optimal camera
points of view for this task, but as we barely control the camera placement during
swimming events, this will be a strong constraint.

6.3.6 Vision Transformers

Vision Transformer architectures [65] might give better results for registration
tasks. One could try using them instead of Convolutional Neural Networks (CNNs).
Indeed, this task relies on landmarks that must be identified in context with
the entire image. As transformer models are considered better than CNNs to

110 conclusion and perspectives

study images globally, this could lead to better results. One could also use
transformers to study the videos as sequences and introduce continuity in the
analysis. However, this architecture currently needs significantly more data than
CNNs [187], even though recent advances reduce this limitation [188] (at heavy
computational costs). As the positioning of our works concerns small datasets
and computationally light methods, transformers are incompatible.

6.3.7 Unaddressed Challenges

There are tasks mentioned in the Introduction that were never directly tackled
during the thesis, despite being important for race analysis. Although most could
be addressed without too much additional work, they are not currently part of our
automatic analysis method. These tasks are swimming phase segmentation, swim-
mer identification, and cameras temporal synchronization. They are developed in
this section.

Swimming Phase Segmentation

Phase segmentation consists in knowing what specific action the swimmer
is performing (diving, normal, swimming, u-turning, etc.). Currently, when a
swimmer is detected, we only extract crops to study their periodicity. The model
does not informs if the swimmer is breathing, or if they are touching the edge
of the pool, although these are very important analytics. We could create a new
model that would be fed crops around the swimmers and output the swimming
phase. Transfer learning based on the swimming periodicity model can be used
to train it with few data. This would be a classification task where the states (i.e.
classes) can comprise diving, breathing, touching the edge, the swimming style,
and other aspects of a swimmer that can be extracted from a crop.

Swimmer Identification

Identifying a swimmer during a race is very challenging, especially with videos
that are not particularly zoomed-in on them. Face recognition is irrelevant,
as the swimmer’s head is underwater most of the time. One could however
use classification techniques that would input the entire body. The swimmer
identification would thus not concern only face identification, but the body shape
and general swimming look. This method was illustrated in chapter 2 with Figure
2.17.

Cameras Temporal Synchronization

As we propose to film the pool with two cameras, they must be temporally
synchronized to create consistent analyses. To that extent, we could rely on the

6.3 perspectives and new challenges 111

audio. The soundtracks from the cameras could be correlated with each other: the
highest peack should correspond to the time shift between the two recordings.

6.3.8 MediaEval Challenge

Finally, we wanted to call for the CV community to help with the models.
Combining the ideas from multiple sources, each improving on the others, is a
great improvement perspective. To that extent, we published a swimming image
analysis challenge at the 2022 MediaEval Workshop:

Nicolas Jacquelin, Théo Jaunet, Romain Vuillemot, Stefan Duffner. Swim-
Track: Swimmers and Stroke Rate Detection in Elite Race Videos. Working Notes
Proceedings of the MediaEval 2022 Workshop.

It introduces a dataset created by merging the FFN analysis data with videos we
recorded, manually calibrated, and synchronized. Coaches thus provide analytics
in the pool coordinates system and we project them back into our videos to create
rich annotations. This allows us to create temporal data for swimming detection
and periodicity counting. We also have access to the official times and ranking
of the races. The resulting challenge we created addresses these tasks, listed as
follows:

• Swimmer Tracking: the objective is to find swimmers an image. Contrarily to
the dataset Swimm400, here, the head is labelled and there are temporal data,
thus a tracking model can be used.

• Strokes Detection: the input is a video cropped around a swimmer and the
task is to tell a which the frames the cycles end.

• Pool Registration: using the previously introduced RegiSwim500.
• Score Boards Reading: images of score boards are provided. The purpose is to

read them, that is to output the name, ranking, and time corresponding to each
line.

• Start Buzzer Detection: the audio from different races have been recorded and
the challenge is to detect the start buzzer, which is labelled with a 1/100

th of a
second precision.

Although we already addressed the three first tasks, the new source, nature,
and amount of data offer new opportunities of technical innovation. More in-
formation are available at https://multimediaeval.github.io/editions/2022/
tasks/swimtrack/.

https://multimediaeval.github.io/editions/2022/tasks/swimtrack/
https://multimediaeval.github.io/editions/2022/tasks/swimtrack/

112 conclusion and perspectives

6.4 Conclusion

This thesis tackled the challenge of automatically analyzing swimming races
using videos. The created methods have to be generic enough to be used in
competition situation, where one cannot place sensors on the swimmers and
where even a camera has a constrained position.

To do so, we chose to focus on CV techniques, which seemed the most adapted.
The general method was divided in 3 tasks: detection, registration, and periodicity
counting. This resulted in different models, each with its strengths and weaknesses.
We hope it will be extended and used by swimmers and coaches.

B I B L I O G R A P H Y

[1] Internet. Syndrome de Stokholm. Wikipedia. 2022. url: https://fr.wikipedia.
org/wiki/Syndrome_de_Stockholm (cit. on p. vii).

[2] Internet. Influence Sociale. Wikipedia. 2022. url: https://fr.wikipedia.
org/wiki/Influence_sociale (cit. on p. vii).

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross
Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick,
and Piotr Dollár. Microsoft COCO: Common Objects in Context. 2015. arXiv:
1405.0312 [cs.CV] (cit. on pp. 5, 32, 34, 46, 83, 102).

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
(cit. on pp. 5, 32–34).

[5] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
2018. arXiv: 1804.02767 [cs.CV] (cit. on pp. 5, 46, 49, 51, 52, 57, 102).

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich
Feature Hierarchies for Accurate Object Detection and Semantic Segmenta-
tion”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition.
2014, pp. 580–587 (cit. on pp. 5, 27, 46, 51, 52, 63).

[7] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M.
Ni, and Heung-Yeung Shum. DINO: DETR with Improved DeNoising Anchor
Boxes for End-to-End Object Detection. 2022. url: https://arxiv.org/abs/
2203.03605 (cit. on pp. 5, 43).

[8] Nicolas Jacquelin, Stefan Duffner, and Romain Vuillemot. “Detecting Swim-
mers in Unconstrained Videos with Few Training Data”. In: Machine Learn-
ing and Data Mining for Sports Analytics. Ghand, Belgium, Sept. 2021. url:
https://hal.archives-ouvertes.fr/hal-03358375 (cit. on pp. 6, 102).

[9] Nicolas Jacquelin, Romain Vuillemot, and Stefan Duffner. “Efficient One-
Shot Sports Field Image Registration with Arbitrary Keypoint Segmenta-
tion”. In: IEEE International Conference on Image Processing. Bordeaux, France,
Oct. 2022. url: https://hal.archives-ouvertes.fr/hal-03738153 (cit.
on pp. 6, 102).

[10] Nicolas Jacquelin, Romain Vuillemot, and Stefan Duffner. “Periodicity
Counting in Videos with Unsupervised Learning of Cyclic Embeddings”.
In: Pattern Recognition Letters (2022). url: https://hal.archives-ouvertes.
fr/hal-03738161 (cit. on pp. 6, 103).

113

https://fr.wikipedia.org/wiki/Syndrome_de_Stockholm
https://fr.wikipedia.org/wiki/Syndrome_de_Stockholm
https://fr.wikipedia.org/wiki/Influence_sociale
https://fr.wikipedia.org/wiki/Influence_sociale
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2203.03605
https://arxiv.org/abs/2203.03605
https://hal.archives-ouvertes.fr/hal-03358375
https://hal.archives-ouvertes.fr/hal-03738153
https://hal.archives-ouvertes.fr/hal-03738161
https://hal.archives-ouvertes.fr/hal-03738161

114 bibliography

[11] Mark Hitchman. From AI-assisted imaging to AI-assisted diagnosis. med-
technews. 2022. url: https://www.med-technews.com/medtech-insights/
ai - in - healthcare - insights / from - ai - assisted - imaging - to - ai -
assisted-diagnosis/ (cit. on p. 7).

[12] Djamel Benarab, Thibault Napoléon, Ayman Alfalou, Antoine Verney, and
Philippe Hellard. “Optimized swimmer tracking system based on a novel
multi-related-targets approach”. In: Optics and Lasers in Engineering 89 (May
2016) (cit. on pp. 9, 50).

[13] David Napoleon Simbana Escobar. “Variabilité de la technique de nage
: adaptabilité aux contraintes et performances en natation”. Theses. Nor-
mandie Université, Feb. 2018. url: https://tel.archives-ouvertes.fr/
tel-01793215 (cit. on p. 9).

[14] David Marr and E. Hildreth. “Theory of Edge Detection”. In: Proceedings of
the Royal Society of London Series B 207 (1980), pp. 187–217 (cit. on p. 9).

[15] John Canny. “A Computational Approach to Edge Detection”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986),
pp. 679–698 (cit. on p. 11).

[16] Richard O Duda and Peter E Hart. “Use of the Hough transformation to
detect lines and curves in pictures”. In: Communications of the ACM 15.1
(1972), pp. 11–15 (cit. on pp. 11, 70).

[17] David G Lowe. “Object recognition from local scale-invariant features”.
In: Proceedings of the seventh IEEE international conference on computer vision.
Vol. 2. Ieee. 1999, pp. 1150–1157 (cit. on pp. 13, 69).

[18] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up
Robust Features”. In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis,
Horst Bischof, and Axel Pinz. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 404–417 (cit. on p. 13).

[19] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. “ORB:
An efficient alternative to SIFT or SURF”. In: 2011 International Conference
on Computer Vision. 2011, pp. 2564–2571 (cit. on p. 13).

[20] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
“BRIEF: Binary Robust Independent Elementary Features”. In: Computer
Vision – ECCV 2010. Ed. by Kostas Daniilidis, Petros Maragos, and Nikos
Paragios. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 778–792

(cit. on p. 13).

[21] Jan C. van Gemert, Cor J. Veenman, Arnold W.M. Smeulders, and Jan-Mark
Geusebroek. “Visual Word Ambiguity”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 32.7 (2010), pp. 1271–1283 (cit. on p. 14).

https://www.med-technews.com/medtech-insights/ai-in-healthcare-insights/from-ai-assisted-imaging-to-ai-assisted-diagnosis/
https://www.med-technews.com/medtech-insights/ai-in-healthcare-insights/from-ai-assisted-imaging-to-ai-assisted-diagnosis/
https://www.med-technews.com/medtech-insights/ai-in-healthcare-insights/from-ai-assisted-imaging-to-ai-assisted-diagnosis/
https://tel.archives-ouvertes.fr/tel-01793215
https://tel.archives-ouvertes.fr/tel-01793215

bibliography 115

[22] Marco Mangini and Irving Biederman. “Making the ineffable explicit:
Estimating the information employed for face classifications”. In: Cognitive
Science 28 (Mar. 2004), pp. 209–226 (cit. on p. 15).

[23] Di Liu, Dong-mei Sun, and Zheng-ding Qiu. “Bag-of-Words Vector Quanti-
zation Based Face Identification”. In: 2009 Second International Symposium
on Electronic Commerce and Security. Vol. 2. 2009, pp. 29–33 (cit. on p. 15).

[24] Carl Vondrick, Hamed Pirsiavash, Aude Oliva, and Antonio Torralba.
“Learning visual biases from human imagination”. In: Advances in Neural
Information Processing Systems. Ed. by C. Cortes, N. Lawrence, D. Lee, M.
Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc., 2015 (cit. on
p. 15).

[25] Simone Fabbrizzi, Symeon Papadopoulos, Eirini Ntoutsi, and Ioannis
Kompatsiaris. A Survey on Bias in Visual Datasets. 2021. url: https://
arxiv.org/abs/2107.07919 (cit. on p. 15).

[26] F. Rosenblatt. The perceptron - A perceiving and recognizing automaton. Tech.
rep. 85-460-1. Ithaca, New York: Cornell Aeronautical Laboratory, Jan. 1957

(cit. on p. 15).

[27] CAUCHY A. “Methode generale pour la resolution des systemes d’equations
simultanees”. In: C.R. Acad. Sci. Paris 25 (1847), pp. 536–538 (cit. on p. 16).

[28] J. Kiefer and J. Wolfowitz. “Stochastic Estimation of the Maximum of a
Regression Function”. In: The Annals of Mathematical Statistics 23.3 (1952),
pp. 462 –466 (cit. on p. 16).

[29] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Ed. by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.org/
abs/1412.6980 (cit. on pp. 16, 76, 91).

[30] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
representations by back-propagating errors”. In: Nature 323 (1986), pp. 533–
536 (cit. on p. 17).

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324 (cit. on pp. 17, 20).

[32] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
“Efficient BackProp”. In: Neural Networks: Tricks of the Trade: Second Edition.
Ed. by Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–48 (cit. on p. 17).

https://arxiv.org/abs/2107.07919
https://arxiv.org/abs/2107.07919
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

116 bibliography

[33] Ibrahem Kandel and Mauro Castelli. “The effect of batch size on the
generalizability of the convolutional neural networks on a histopathol-
ogy dataset”. In: ICT Express 6.4 (2020), pp. 312–315. url: https://www.
sciencedirect.com/science/article/pii/S2405959519303455 (cit. on
p. 17).

[34] How to Control the Stability of Training Neural Networks With the Batch
Size. https : / / machinelearningmastery . com / how - to - control - the -
speed-and-stability-of-training-neural-networks-with-gradient-
descent-batch-size/ (cit. on p. 17).

[35] Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente
Ordonez. “Balanced Datasets Are Not Enough: Estimating and Mitigat-
ing Gender Bias in Deep Image Representations”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). Oct. 2019

(cit. on p. 18).

[36] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and
Aram Galstyan. A Survey on Bias and Fairness in Machine Learning. 2019. url:
https://arxiv.org/abs/1908.09635 (cit. on p. 19).

[37] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. 2016. url: https:
//arxiv.org/abs/1602.04938 (cit. on p. 19).

[38] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel,
Wieland Brendel, Matthias Bethge, and Felix A. Wichmann. “Shortcut
learning in deep neural networks”. In: Nature Machine Intelligence 2.11 (Nov.
2020), pp. 665–673. url: https://doi.org/10.1038%2Fs42256-020-00257-
z (cit. on pp. 19, 87).

[39] Suorong Yang, Weikang Xiao, Mengcheng Zhang, Suhan Guo, Jian Zhao,
and Furao Shen. Image Data Augmentation for Deep Learning: A Survey. 2022.
url: https://arxiv.org/abs/2204.08610 (cit. on p. 20).

[40] Sei Miyake and Kunihiko Fukushima. “Self-Organizing Neural Networks
with the Mechanism of Feedback Information Processing”. In: Dynamic In-
teractions in Neural Networks: Models and Data. Berlin, Heidelberg: Springer-
Verlag, 1988, 107–119 (cit. on p. 20).

[41] Kunihiko Fukushima. “Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Pattern Recognition Unaffected by Shift in
Position”. In: Biological Cybernetics 36 (1980), pp. 193–202 (cit. on p. 20).

[42] K. Fukushima. “A Hierarchical Neural Network Model for Selective At-
tention”. In: Neural Computers. Berlin, Heidelberg: Springer-Verlag, 1989,
81–90 (cit. on p. 20).

https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.1038%2Fs42256-020-00257-z
https://doi.org/10.1038%2Fs42256-020-00257-z
https://arxiv.org/abs/2204.08610

bibliography 117

[43] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. “Backpropagation Applied to Handwritten Zip Code
Recognition”. In: Neural Computation 1.4 (1989), pp. 541–551 (cit. on p. 20).

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, pp. 770–778 (cit. on pp. 20, 25,
29, 30).

[45] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
Models are Few-Shot Learners. 2020. url: https://arxiv.org/abs/2005.
14165 (cit. on pp. 21, 34).

[46] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Visu-
alization”. In: Distill (2017). https://distill.pub/2017/feature-visualization
(cit. on p. 22).

[47] Desh Raj. Theory of Deep Learning: Role of Depth. github. 2018. url: https:
//desh2608.github.io/2018-07-28-deep-learning-theory-3/ (cit. on
p. 22).

[48] A G Ivakhnenko and V G Lapa. In: Cybernetic predicting devices. Ed. by New
York: CCM Information Corp. 1965 (cit. on p. 22).

[49] Yann LeCun. Convolutional Network Demo from 1993. Youtube. 2014. url:
https://www.youtube.com/watch?v=FwFduRA_L6Q (cit. on p. 22).

[50] Tze-Yui Ho, Ping-Man Lam, and Chi-Sing Leung. “Parallelization of Cel-
lular Neural Networks on GPU”. In: Pattern Recogn. 41.8 (Aug. 2008),
2684–2692. url: https://doi.org/10.1016/j.patcog.2008.01.018
(cit. on p. 22).

[51] Li Deng. “The mnist database of handwritten digit images for machine
learning research”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–
142 (cit. on pp. 22, 32).

[52] Peter W. Frey and David J. Slate. “Letter Recognition Using Holland-
Style Adaptive Classifiers”. In: Mach. Learn. 6.2 (Mar. 1991), 161–182. url:
https://doi.org/10.1023/A:1022606404104 (cit. on p. 22).

[53] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Ima-
genet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255 (cit. on
pp. 23, 32–34, 46, 83, 92, 102).

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://desh2608.github.io/2018-07-28-deep-learning-theory-3/
https://desh2608.github.io/2018-07-28-deep-learning-theory-3/
https://www.youtube.com/watch?v=FwFduRA_L6Q
https://doi.org/10.1016/j.patcog.2008.01.018
https://doi.org/10.1023/A:1022606404104

118 bibliography

[54] Zhiqiang Teng, Shuai Teng, Jiqiao Zhang, Gongfa Chen, and Fangsen Cui.
“Structural Damage Detection Based on Real-Time Vibration Signal and
Convolutional Neural Network”. In: Applied Sciences 10 (July 2020), p. 4720

(cit. on p. 23).

[55] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Re-
stricted Boltzmann Machines”. In: Proceedings of the 27th International Con-
ference on International Conference on Machine Learning. ICML’10. Madison,
WI, USA: Omnipress, 2010, 807–814 (cit. on pp. 23, 91).

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Proceedings of
the 25th International Conference on Neural Information Processing Systems
- Volume 1. NIPS’12. Red Hook, NY, USA: Curran Associates Inc., 2012,
1097–1105 (cit. on p. 23).

[57] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014. url: https://arxiv.org/abs/1409.
1556 (cit. on pp. 24–26, 29, 91).

[58] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna. Rethinking the Inception Architecture for Computer Vision.
2015. url: https://arxiv.org/abs/1512.00567 (cit. on pp. 25, 30).

[59] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going Deeper with Convolutions. 2014. url: https://arxiv.
org/abs/1409.4842 (cit. on p. 25).

[60] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. “MobileNetV2: Inverted Residuals and Linear
Bottlenecks”. In: (2018). url: https://arxiv.org/abs/1801.04381 (cit. on
pp. 25, 30).

[61] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV]
(cit. on pp. 25, 30, 31, 52, 73, 80).

[62] NVIDIA. GPU Performance Background User’s Guide. NVIDIA. 2020. url:
https://desh2608.github.io/2018-07-28-deep-learning-theory-3/
(cit. on p. 25).

[63] NVIDIA. Memory-Limited Layers User’s Guide. NVIDIA. 2020. url: https:
//desh2608.github.io/2018-07-28-deep-learning-theory-3/ (cit. on
p. 25).

[64] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324 (cit. on p. 26).

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1505.04597
https://desh2608.github.io/2018-07-28-deep-learning-theory-3/
https://desh2608.github.io/2018-07-28-deep-learning-theory-3/
https://desh2608.github.io/2018-07-28-deep-learning-theory-3/

bibliography 119

[65] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. “An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”.
In: CoRR abs/2010.11929 (2020). arXiv: 2010.11929. url: https://arxiv.
org/abs/2010.11929 (cit. on pp. 26, 34, 109).

[66] Matthias Scholz, Martinand Fraunholz, and Joachim Selbig. “Nonlinear
Principal Component Analysis: Neural Network Models and Applications”.
In: Principal Manifolds for Data Visualization and Dimension Reduction. Ed. by
Balázs Gorban Alexander N.and Kégl, Donald C. Wunsch, and Andrei Y.
Zinovyev. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 44–67

(cit. on p. 28).

[67] Geoffrey E. Hinton, David E. Rumelhart, and James L. McClelland. “Learn-
ing Internal Representations by Error Propagation”. In: Parallel Distributed
Processing: Explorations in the Microstructure of Cognition: Foundations. 1987,
pp. 318–362 (cit. on p. 28).

[68] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learn-
ing Algorithm for Deep Belief Nets”. In: Neural Comput. 18.7 (July 2006),
1527–1554. url: https://doi.org/10.1162/neco.2006.18.7.1527 (cit. on
p. 28).

[69] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of
Data with Neural Networks”. In: Science 313.5786 (2006), pp. 504–507.
eprint: https://www.science.org/doi/pdf/10.1126/science.1127647.
url: https://www.science.org/doi/abs/10.1126/science.1127647
(cit. on p. 28).

[70] James A Hanley, Lawrence Joseph, Robert W Platt, Moo K Chung, and
Patrick Belisle. “Visualizing the Median as the Minimum-Deviation Loca-
tion”. In: The American Statistician 55.2 (2001), pp. 150–152. eprint: https:
//doi.org/10.1198/000313001750358482. url: https://doi.org/10.
1198/000313001750358482 (cit. on p. 28).

[71] Gustav Grund Pihlgren, Fredrik Sandin, and Marcus Liwicki. Improving
Image Autoencoder Embeddings with Perceptual Loss. 2020. url: https://
arxiv.org/abs/2001.03444 (cit. on pp. 28, 42).

[72] Jeremy Jordan. Variational autoencoders. https://www.jeremyjordan.me/
variational-autoencoders/ (cit. on p. 28).

[73] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013.
url: https://arxiv.org/abs/1312.6114 (cit. on pp. 29, 42).

[74] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi.
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learn-
ing. 2016. url: https://arxiv.org/abs/1602.07261 (cit. on p. 30).

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://doi.org/10.1162/neco.2006.18.7.1527
https://www.science.org/doi/pdf/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
https://doi.org/10.1198/000313001750358482
https://doi.org/10.1198/000313001750358482
https://doi.org/10.1198/000313001750358482
https://doi.org/10.1198/000313001750358482
https://arxiv.org/abs/2001.03444
https://arxiv.org/abs/2001.03444
https://www.jeremyjordan.me/variational-autoencoders/
https://www.jeremyjordan.me/variational-autoencoders/
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1602.07261

120 bibliography

[75] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mo-
bileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
2017. url: https://arxiv.org/abs/1704.04861 (cit. on p. 30).

[76] Mingxing Tan and Quoc V. Le. “EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks”. In: (2019). url: https://arxiv.org/
abs/1905.11946 (cit. on p. 30).

[77] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis
of Deep Neural Network Models for Practical Applications. 2016. url: https:
//arxiv.org/abs/1605.07678 (cit. on p. 30).

[78] Data Engineering, Preparation, and Labeling for AI 2019. https : / / www .
cognilytica.com/document/report-data-engineering-preparation-
and-labeling-for-ai-2019/ (cit. on p. 31).

[79] Data Scientists Spend Most of Their Time Cleaning Data. https://whatsthebigdata.
com / 2016 / 05 / 01 / data - scientists - spend - most - of - their - time -
cleaning-data/ (cit. on p. 31).

[80] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”.
In: (2009), pp. 32–33. url: https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf (cit. on p. 32).

[81] Sergi Caelles, Jordi Pont-Tuset, Federico Perazzi, Alberto Montes, Kevis-
Kokitsi Maninis, and Luc Van Gool. “The 2019 DAVIS Challenge on VOS:
Unsupervised Multi-Object Segmentation”. In: arXiv:1905.00737 (2019) (cit.
on p. 32).

[82] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for
Autonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2012 (cit. on p. 32).

[83] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
“The Cityscapes Dataset for Semantic Urban Scene Understanding”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2016 (cit. on p. 32).

[84] Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun
Wei, Xiang Bai, and Zicheng Liu. “End-to-End Semi-Supervised Object
Detection with Soft Teacher”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) (2021) (cit. on p. 32).

[85] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. “Knowl-
edge Distillation: A Survey”. In: International Journal of Computer Vision
129.6 (Mar. 2021), 1789–1819. url: http://dx.doi.org/10.1007/s11263-
021-01453-z (cit. on p. 32).

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1605.07678
https://arxiv.org/abs/1605.07678
https://www.cognilytica.com/document/report-data-engineering-preparation-and-labeling-for-ai-2019/
https://www.cognilytica.com/document/report-data-engineering-preparation-and-labeling-for-ai-2019/
https://www.cognilytica.com/document/report-data-engineering-preparation-and-labeling-for-ai-2019/
https://whatsthebigdata.com/2016/05/01/data-scientists-spend-most-of-their-time-cleaning-data/
https://whatsthebigdata.com/2016/05/01/data-scientists-spend-most-of-their-time-cleaning-data/
https://whatsthebigdata.com/2016/05/01/data-scientists-spend-most-of-their-time-cleaning-data/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1007/s11263-021-01453-z

bibliography 121

[86] Welcome to the Internet. https : / / i . kym - cdn . com / entries / icons /
original/000/006/877/707538ef3afa883c1d146b42cf01bac2.jpg (cit.
on p. 32).

[87] Ihab F Ilyas and Xu Chu. Data cleaning. Morgan & Claypool, 2019 (cit. on
p. 33).

[88] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for
Autonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2012 (cit. on p. 33).

[89] Junghoon Chae, Shang Gao, Arvind Ramanthan, Chad A. Steed, and Geor-
gia D. Tourassi. “Visualization for Classification in Deep Neural Networks”.
In: 2017 (cit. on p. 34).

[90] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. “Attention is All
you Need”. In: Advances in Neural Information Processing Systems. Vol. 30.
Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (cit.
on pp. 34, 85).

[91] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. COCO-Stuff: Thing and
Stuff Classes in Context. 2016. url: https://arxiv.org/abs/1612.03716
(cit. on p. 34).

[92] Rich Caruana. “Learning Many Related Tasks at the Same Time with
Backpropagation”. In: Advances in Neural Information Processing Systems.
Ed. by G. Tesauro, D. Touretzky, and T. Leen. Vol. 7. MIT Press, 1994 (cit. on
p. 35).

[93] Yoshua Bengio, Frédéric Bastien, Arnaud Bergeron, Nicolas Boulanger–Lewandowski,
Thomas Breuel, Youssouf Chherawala, Moustapha Cisse, Myriam Côté,
Dumitru Erhan, Jeremy Eustache, Xavier Glorot, Xavier Muller, Sylvain
Pannetier Lebeuf, Razvan Pascanu, Salah Rifai, François Savard, and Guil-
laume Sicard. “Deep Learners Benefit More from Out-of-Distribution Ex-
amples”. In: Proceedings of the Fourteenth International Conference on Arti-
ficial Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson,
and Miroslav Dudík. Vol. 15. Proceedings of Machine Learning Research.
Fort Lauderdale, FL, USA: PMLR, Apr. 2011, pp. 164–172. url: https:
//proceedings.mlr.press/v15/bengio11b.html (cit. on p. 35).

[94] Yoshua Bengio. “Deep Learning of Representations for Unsupervised and
Transfer Learning”. In: Proceedings of ICML Workshop on Unsupervised and
Transfer Learning. Ed. by Isabelle Guyon, Gideon Dror, Vincent Lemaire,
Graham Taylor, and Daniel Silver. Vol. 27. Proceedings of Machine Learning
Research. Bellevue, Washington, USA: PMLR, July 2012, pp. 17–36. url:
https://proceedings.mlr.press/v27/bengio12a.html (cit. on p. 35).

https://i.kym-cdn.com/entries/icons/original/000/006/877/707538ef3afa883c1d146b42cf01bac2.jpg
https://i.kym-cdn.com/entries/icons/original/000/006/877/707538ef3afa883c1d146b42cf01bac2.jpg
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1612.03716
https://proceedings.mlr.press/v15/bengio11b.html
https://proceedings.mlr.press/v15/bengio11b.html
https://proceedings.mlr.press/v27/bengio12a.html

122 bibliography

[95] Qi Fan, Wei Zhuo, Chi-Keung Tang, and Yu-Wing Tai. “Few-Shot Object
Detection with Attention-RPN and Multi-Relation Detector”. In: CVPR.
2020 (cit. on p. 36).

[96] Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, and Shijian Lu. Meta-DETR:
Image-Level Few-Shot Object Detection with Inter-Class Correlation Exploitation.
2021. url: https://arxiv.org/abs/2103.11731 (cit. on pp. 36, 43).

[97] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. 2017. url: https://arxiv.
org/abs/1703.03400 (cit. on pp. 36, 37).

[98] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xiaodan Liang, and
Liang Lin. “Meta r-cnn: Towards general solver for instance-level low-shot
learning”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2019, pp. 9577–9586 (cit. on pp. 36, 37).

[99] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and
Daan Wierstra. “Matching Networks for One Shot Learning”. In: Advances
in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U.
Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc., 2016

(cit. on pp. 36, 37).

[100] Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Yun Fu. “Tell
Me Where to Look: Guided Attention Inference Network”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2018 (cit. on p. 37).

[101] Zhongzheng Ren, Zhiding Yu, Xiaodong Yang, Ming-Yu Liu, Yong Jae
Lee, Alexander G. Schwing, and Jan Kautz. “Instance-Aware, Context-
Focused, and Memory-Efficient Weakly Supervised Object Detection”. In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation
/ IEEE, 2020, pp. 10595–10604. url: https://openaccess.thecvf.com/
content_CVPR_2020/html/Ren_Instance-Aware_Context-Focused\
_and_Memory-Efficient_Weakly_Supervised_Object_Detection\
_CVPR_2020_paper.html (cit. on pp. 37, 38, 43).

[102] Junsuk Choe, Seungho Lee, and Hyunjung Shim. “Attention-Based Dropout
Layer for Weakly Supervised Single Object Localization and Semantic Seg-
mentation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
43.12 (2021), pp. 4256–4271 (cit. on pp. 37, 38).

[103] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Learning Deep Features for Discriminative Localization. 2015. url:
https://arxiv.org/abs/1512.04150 (cit. on pp. 37, 38).

https://arxiv.org/abs/2103.11731
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1703.03400
https://openaccess.thecvf.com/content_CVPR_2020/html/Ren_Instance-Aware_Context-Focused_and_Memory-Efficient_Weakly_Supervised_Object_Detection_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ren_Instance-Aware_Context-Focused_and_Memory-Efficient_Weakly_Supervised_Object_Detection_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ren_Instance-Aware_Context-Focused_and_Memory-Efficient_Weakly_Supervised_Object_Detection_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ren_Instance-Aware_Context-Focused_and_Memory-Efficient_Weakly_Supervised_Object_Detection_CVPR_2020_paper.html
https://arxiv.org/abs/1512.04150

bibliography 123

[104] Yan Xu, Jun-Yan Zhu, I Eric, Chao Chang, Maode Lai, and Zhuowen
Tu. “Weakly supervised histopathology cancer image segmentation and
classification”. In: Medical image analysis 18.3 (2014), pp. 591–604 (cit. on
p. 37).

[105] Gang Xu, Zhigang Song, Zhuo Sun, Calvin Ku, Zhe Yang, Cancheng
Liu, Shuhao Wang, Jianpeng Ma, and Wei Xu. “Camel: A weakly super-
vised learning framework for histopathology image segmentation”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019,
pp. 10682–10691 (cit. on p. 37).

[106] R. Hadsell, S. Chopra, and Y. LeCun. “Dimensionality Reduction by Learn-
ing an Invariant Mapping”. In: 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06). Vol. 2. 2006, pp. 1735–
1742 (cit. on p. 39).

[107] Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir Bourdev. Metric
Learning with Adaptive Density Discrimination. 2015. url: https://arxiv.
org/abs/1511.05939 (cit. on p. 39).

[108] Kilian Q Weinberger and Lawrence K Saul. “Distance metric learning for
large margin nearest neighbor classification.” In: Journal of machine learning
research 10.2 (2009) (cit. on p. 39).

[109] Andrew Zhai and Hao-Yu Wu. “Classification is a strong baseline for deep
metric learning”. In: arXiv preprint arXiv:1811.12649 (2018) (cit. on p. 39).

[110] John Bridle. “Training Stochastic Model Recognition Algorithms as Net-
works can Lead to Maximum Mutual Information Estimation of Parame-
ters”. In: Advances in Neural Information Processing Systems. Ed. by D. Touret-
zky. Vol. 2. Morgan-Kaufmann, 1989. url: https://proceedings.neurips.
cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
(cit. on p. 39).

[111] Shota Horiguchi, Daiki Ikami, and Kiyoharu Aizawa. “Significance of
Softmax-Based Features in Comparison to Distance Metric Learning-Based
Features”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
42.5 (2020), pp. 1279–1285 (cit. on p. 39).

[112] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
“A Simple Framework for Contrastive Learning of Visual Representations”.
In: arXiv preprint arXiv:2002.05709 (2020) (cit. on pp. 40, 42).

[113] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Ge-
offrey E Hinton. “Big Self-Supervised Models are Strong Semi-Supervised
Learners”. In: Advances in Neural Information Processing Systems. Ed. by
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 22243–22255. url: https://proceedings.

https://arxiv.org/abs/1511.05939
https://arxiv.org/abs/1511.05939
https://proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fcbc95ccdd551da181207c0c1400c655-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fcbc95ccdd551da181207c0c1400c655-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fcbc95ccdd551da181207c0c1400c655-Paper.pdf

124 bibliography

neurips . cc / paper / 2020 / file / fcbc95ccdd551da181207c0c1400c655 -
Paper.pdf (cit. on pp. 40, 42).

[114] Garrison W Cottrell. “Extracting features from faces using compression
networks: Face, identity, emotion, and gender recognition using holons”.
In: Connectionist Models. Elsevier, 1991, pp. 328–337 (cit. on p. 40).

[115] Chen Xing, Li Ma, and Xiaoquan Yang. “Stacked denoise autoencoder
based feature extraction and classification for hyperspectral images”. In:
Journal of Sensors 2016 (2016) (cit. on p. 40).

[116] Qinxue Meng, Daniel Catchpoole, David Skillicom, and Paul J Kennedy.
“Relational autoencoder for feature extraction”. In: 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE. 2017, pp. 364–371 (cit. on
p. 40).

[117] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. “Extracting and Composing Robust Features with Denoising Autoen-
coders”. In: Proceedings of the 25th International Conference on Machine Learn-
ing. ICML ’08. New York, NY, USA: Association for Computing Machinery,
2008, 1096–1103. url: https://doi.org/10.1145/1390156.1390294 (cit.
on p. 40).

[118] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic
Backpropagation and Approximate Inference in Deep Generative Models”.
In: Proceedings of the 31st International Conference on Machine Learning. Ed. by
Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning
Research 2. Bejing, China: PMLR, June 2014, pp. 1278–1286. url: https:
//proceedings.mlr.press/v32/rezende14.html (cit. on pp. 40, 42).

[119] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max
Welling. “Semi-supervised Learning with Deep Generative Models”. In:
Advances in Neural Information Processing Systems. Ed. by Z. Ghahramani, M.
Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger. Vol. 27. Curran As-
sociates, Inc., 2014. url: https://proceedings.neurips.cc/paper/2014/
file/d523773c6b194f37b938d340d5d02232-Paper.pdf (cit. on pp. 40, 42).

[120] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol,
Pascal Vincent, and Samy Bengio. “Why Does Unsupervised Pre-training
Help Deep Learning?” In: Journal of Machine Learning Research 11.19 (2010),
pp. 625–660. url: http://jmlr.org/papers/v11/erhan10a.html (cit. on
p. 41).

[121] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised
Learning. 2006 (cit. on p. 41).

[122] Carl Doersch. Tutorial on Variational Autoencoders. 2016. url: https://
arxiv.org/abs/1606.05908 (cit. on p. 42).

https://proceedings.neurips.cc/paper/2020/file/fcbc95ccdd551da181207c0c1400c655-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fcbc95ccdd551da181207c0c1400c655-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fcbc95ccdd551da181207c0c1400c655-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fcbc95ccdd551da181207c0c1400c655-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fcbc95ccdd551da181207c0c1400c655-Paper.pdf
https://doi.org/10.1145/1390156.1390294
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.neurips.cc/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf
http://jmlr.org/papers/v11/erhan10a.html
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908

bibliography 125

[123] Mehran Mehralian and Babak Karasfi. “RDCGAN: Unsupervised Rep-
resentation Learning With Regularized Deep Convolutional Generative
Adversarial Networks”. In: 2018 9th Conference on Artificial Intelligence and
Robotics and 2nd Asia-Pacific International Symposium. 2018, pp. 31–38 (cit. on
p. 42).

[124] Augustus Odena. Semi-Supervised Learning with Generative Adversarial Net-
works. 2016. url: https://arxiv.org/abs/1606.01583 (cit. on p. 42).

[125] S. Fralick. “Learning to recognize patterns without a teacher”. In: IEEE
Transactions on Information Theory 13.1 (1967), pp. 57–64 (cit. on p. 42).

[126] Olivier Chapelle, Alexander Zien, and Bernhard Schölkopf. Semi-supervised
learning. MIT Press, 2006 (cit. on p. 42).

[127] Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, and Vicente Ordonez. Cur-
riculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning. 2020.
url: https://arxiv.org/abs/2001.06001 (cit. on p. 42).

[128] Yang Zou, Zhiding Yu, B.V.K. Vijaya Kumar, and Jinsong Wang. “Unsuper-
vised Domain Adaptation for Semantic Segmentation via Class-Balanced
Self-Training”. In: Proceedings of the European Conference on Computer Vision
(ECCV). Sept. 2018 (cit. on p. 42).

[129] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang,
Manabu Okumura, and Takahiro Shinozaki. “FlexMatch: Boosting Semi-
Supervised Learning with Curriculum Pseudo Labeling”. In: CoRR abs/2110.08263

(2021). url: https://arxiv.org/abs/2110.08263 (cit. on p. 42).

[130] Zihang Dai, Zhilin Yang, Fan Yang, William W. Cohen, and Ruslan Salakhut-
dinov. “Good Semi-Supervised Learning That Requires a Bad GAN”. In:
NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, 6513–6523

(cit. on p. 42).

[131] Fangyuan Zhang, Tianxiang Pan, and Bin Wang. “Semi-supervised Object
Detection with Adaptive Class-Rebalancing Self-Training”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 36.3 (June 2022), pp. 3252–
3261. url: https://ojs.aaai.org/index.php/AAAI/article/view/20234
(cit. on p. 43).

[132] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks”.
In: Advances in Neural Information Processing Systems. Ed. by C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates,
Inc., 2015. url: https://proceedings.neurips.cc/paper/2015/file/
14bfa6bb14875e45bba028a21ed38046-Paper.pdf (cit. on pp. 43, 102).

https://arxiv.org/abs/1606.01583
https://arxiv.org/abs/2001.06001
https://arxiv.org/abs/2110.08263
https://ojs.aaai.org/index.php/AAAI/article/view/20234
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

126 bibliography

[133] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. “SSD: Single Shot MultiBox
Detector”. In: Lecture Notes in Computer Science (2016), 21–37 (cit. on pp. 46,
49, 52).

[134] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. 2015. url:
https://arxiv.org/abs/1506.01497 (cit. on p. 49).

[135] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. 2016. url: http://www.poker-
edge.com/stats.php (cit. on pp. 49, 51, 57).

[136] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 6517–6525 (cit. on p. 49).

[137] Djamel Benarab, Thibault Napoléon, Ayman Alfalou, Antoine Verney, and
Philippe Hellard. “Optimized swimmer tracking system by a dynamic
fusion of correlation and color histogram techniques”. In: Optics Communi-
cations 356 (Dec. 2015), pp. 256–268 (cit. on p. 50).

[138] Djamel Benarab, Thibault Napoléon, Ayman Alfalou, Antoine Verney, and
Philippe Hellard. “A novel multitracking system for the evaluation of
high-level swimmers performances”. In: Baltimore, United States, May
2014 (cit. on p. 50).

[139] Timothy Woinoski and Ivan V. Bajić. Swimmer Stroke Rate Estimation From
Overhead Race Video. 2021. arXiv: 2104.12056 [eess.IV] (cit. on pp. 51, 58,
59).

[140] Ashley Hall, Brandon Victor, Zhen He, Matthias Langer, Marc Elipot, Aiden
Nibali, and Stuart Morgan. “The detection, tracking, and temporal action
localisation of swimmers for automated analysis”. In: Neural Computing
and Applications 33 (June 2021), pp. 1–19 (cit. on p. 51).

[141] COCO. COCO detection metric. 2021. url: https://cocodataset.org/
#detection-eval (cit. on p. 56).

[142] Audrey Duran, Gaspard Dussert, Olivier Rouvière, Tristan Jaouen, Pierre-
Marc Jodoin, and Carole Lartizien. “ProstAttention-Net: A deep atten-
tion model for prostate cancer segmentation by aggressiveness in MRI
scans”. In: Medical Image Analysis 77 (2022), p. 102347. url: https://www.
sciencedirect.com/science/article/pii/S1361841521003923 (cit. on
p. 63).

[143] Rahul Anand Sharma, Bharath Bhat, Vineet Gandhi, and C. V. Jawahar.
“Automated Top View Registration of Broadcast Football Videos”. In: 2018
IEEE Winter Conference on Applications of Computer Vision (WACV). 2018,
pp. 305–313 (cit. on pp. 66, 70).

https://arxiv.org/abs/1506.01497
http://www.poker-edge.com/stats.php
http://www.poker-edge.com/stats.php
https://arxiv.org/abs/2104.12056
https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval
https://www.sciencedirect.com/science/article/pii/S1361841521003923
https://www.sciencedirect.com/science/article/pii/S1361841521003923

bibliography 127

[144] Jianhui Chen and James J. Little. “Sports Camera Calibration via Syn-
thetic Data”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). 2019, pp. 2497–2504 (cit. on pp. 66, 70, 78).

[145] Long Sha, Jennifer Hobbs, Panna Felsen, Xinyu Wei, Patrick Lucey, and
Sujoy Ganguly. “End-to-End Camera Calibration for Broadcast Videos”.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2020, pp. 13624–13633 (cit. on pp. 66, 67, 70, 72, 77, 78).

[146] Xiaohan Nie, Shixing Chen, and Raffay Hamid. “A Robust and Efficient
Framework for Sports-Field Registration”. In: 2021 IEEE Winter Conference
on Applications of Computer Vision (WACV). 2021, pp. 1935–1943 (cit. on
pp. 66, 67, 70, 73, 78, 79).

[147] Wei Jiang, Juan Higuera, Baptiste Angles, Weiwei Sun, Mehrsan Javan
Roshtkhari, and Kwang Yi. “Optimizing Through Learned Errors for Accu-
rate Sports Field Registration”. In: Mar. 2020, pp. 201–210 (cit. on pp. 66,
70, 78).

[148] Namdar Homayounfar, Sanja Fidler, and Raquel Urtasun. “Sports Field
Localization via Deep Structured Models”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 4012–4020 (cit. on
pp. 67, 70).

[149] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Second. Cambridge University Press, ISBN: 0521540518, 2004 (cit. on p. 68).

[150] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography”. In: Commun. ACM 24.6 (June 1981), 381–395.
url: https://doi.org/10.1145/358669.358692 (cit. on pp. 68, 70, 75).

[151] Julius R. Blum. “Approximation Methods which Converge with Probability
one”. In: The Annals of Mathematical Statistics 25.2 (1954), pp. 382 –386. url:
https://doi.org/10.1214/aoms/1177728794 (cit. on p. 69).

[152] Elan Dubrofsky and Robert J. Woodham. “Combining Line and Point
Correspondences for Homography Estimation”. In: Advances in Visual
Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 202–
213 (cit. on p. 69).

[153] Ankur Gupta, James J. Little, and Robert J. Woodham. “Using Line and
Ellipse Features for Rectification of Broadcast Hockey Video”. In: 2011
Canadian Conference on Computer and Robot Vision. 2011, pp. 32–39 (cit. on
p. 69).

[154] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Deep Image
Homography Estimation. 2016. url: https://arxiv.org/abs/1606.03798
(cit. on p. 69).

https://doi.org/10.1145/358669.358692
https://doi.org/10.1214/aoms/1177728794
https://arxiv.org/abs/1606.03798

128 bibliography

[155] Hoang Le, Feng Liu, Shu Zhang, and Aseem Agarwala. “Deep Homogra-
phy Estimation for Dynamic Scenes”. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2020 (cit. on p. 69).

[156] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew
Rabinovich. “SuperGlue: Learning Feature Matching with Graph Neural
Networks”. In: CVPR. 2020. url: https://arxiv.org/abs/1911.11763
(cit. on p. 69).

[157] Fei Wang, Lifeng Sun, Bo Yang, and Shiqiang Yang. “Fast Arc Detection
Algorithm for Play Field Registration in Soccer Video Mining”. In: 2006
IEEE International Conference on Systems, Man and Cybernetics. Vol. 6. 2006,
pp. 4932–4936 (cit. on p. 70).

[158] Hyunwoo Kim and Ki Sang Hong. “Soccer video mosaicing using self-
calibration and line tracking”. In: Proceedings 15th International Conference
on Pattern Recognition. ICPR-2000. Vol. 1. 2000, 592–595 vol.1 (cit. on p. 70).

[159] Leonardo Citraro, Pablo Márquez-Neila, Stefano Savarè, Vivek Jayaram,
Charles Dubout, Félix Renaut, Andrés Hasfura, Horesh Shitrit, and Pascal
Fua. “Real-Time Camera Pose Estimation for Sports Fields”. In: (Mar. 2020)
(cit. on pp. 70, 78).

[160] Francesco Lacquaniti, Carlo Terzuolo, and Paolo Viviani. “The law relating
the kinematic and figural aspects of drawing movements”. In: Acta Psy-
chologica 54.1 (1983), pp. 115–130. url: https://www.sciencedirect.com/
science/article/pii/0001691883900276 (cit. on p. 75).

[161] 1080 Ti vs RTX 2080 Ti vs Titan RTX Deep Learning Benchmarks with Tensor-
Flow - 2018 2019 2020. https://bizon-tech.com/blog/gtx1080ti-titan-
rtx-2080-ti-deep-learning-benchmarks. Accessed: June 2022 (cit. on
p. 77).

[162] Deep Learning GPU Benchmarks 2021. https://www.aime.info/en/blog/
deep- learning- gpu- benchmarks- 2021/. Accessed: June 2022 (cit. on
p. 77).

[163] Geoffrey Hinton, Jeff Dean, and Oriol Vinyals. “Distilling the Knowledge
in a Neural Network”. In: Mar. 2014, pp. 1–9 (cit. on p. 77).

[164] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo
Jun, Hassan Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi
Zhou. Deep Learning Scaling is Predictable, Empirically. 2017. arXiv: 1712.
00409 [cs.LG] (cit. on p. 83).

[165] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier,
Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul
Natsev, Mustafa Suleyman, and Andrew Zisserman. The Kinetics Human
Action Video Dataset. 2017. arXiv: 1705.06950 [cs.CV] (cit. on pp. 83, 85).

https://arxiv.org/abs/1911.11763
https://www.sciencedirect.com/science/article/pii/0001691883900276
https://www.sciencedirect.com/science/article/pii/0001691883900276
https://bizon-tech.com/blog/gtx1080ti-titan-rtx-2080-ti-deep-learning-benchmarks
https://bizon-tech.com/blog/gtx1080ti-titan-rtx-2080-ti-deep-learning-benchmarks
https://www.aime.info/en/blog/deep-learning-gpu-benchmarks-2021/
https://www.aime.info/en/blog/deep-learning-gpu-benchmarks-2021/
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1705.06950

bibliography 129

[166] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and
Andrew Zisserman. “Counting Out Time: Class Agnostic Video Repetition
Counting in the Wild”. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2020 (cit. on pp. 83–85, 89, 93).

[167] Huaidong Zhang, Xuemiao Xu, Guoqiang Han, and Shengfeng He. Context-
aware and Scale-insensitive Temporal Repetition Counting. 2020. arXiv: 2005.
08465 [cs.CV] (cit. on pp. 83, 85).

[168] Yunhua Zhang, Ling Shao, and Cees G. M. Snoek. “Repetitive Activity
Counting by Sight and Sound”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). June 2021, pp. 14070–14079

(cit. on pp. 83–85, 92, 93).

[169] Jianqin Yin, Yanchun Wu, Chaoran Zhu, Zijin Yin, Huaping Liu, Yonghao
Dang, Zhiyi Liu, and Jun Liu. “Energy-Based Periodicity Mining With
Deep Features for Action Repetition Counting in Unconstrained Videos”.
In: IEEE Transactions on Circuits and Systems for Video Technology 31.12 (2021),
pp. 4812–4825 (cit. on pp. 83, 85, 93).

[170] Jan Ubbo van Baardewijk, Sarthak Agarwal, Alex S. Cornelissen, Marloes
J. A. Joosen, Jiska Kentrop, Carolina Varon, and Anne-Marie Brouwer.
“Early Detection of Exposure to Toxic Chemicals Using Continuously
Recorded Multi-Sensor Physiology”. In: Sensors 21.11 (2021). url: https:
//www.mdpi.com/1424-8220/21/11/3616 (cit. on p. 83).

[171] Erik Vavrinsky, Jan Subjak, Martin Donoval, Alexandra Wagner, Tomas
Zavodnik, and Helena Svobodova. “Application of Modern Multi-Sensor
Holter in Diagnosis and Treatment”. In: Sensors 20.9 (2020). url: https:
//www.mdpi.com/1424-8220/20/9/2663 (cit. on p. 83).

[172] Gyorgy Kolumban-Antal, Vladko Lasak, Razvan Bogdan, and Bogdan
Groza. “A Secure and Portable Multi-Sensor Module for Distributed Air
Pollution Monitoring”. In: Sensors 20.2 (2020). url: https://www.mdpi.
com/1424-8220/20/2/403 (cit. on p. 83).

[173] Geoffrey D. Hugo, Elisabeth Weiss, William C. Sleeman, Salim Balik, Paul J.
Keall, Jun Lu, and Jeffrey F Williamson. “Data from 4D Lung Imaging of
NSCLC Patients”. In: (2016) (cit. on p. 83).

[174] Spyridon Bakas, Mauricio Reyes, András Jakab, Stefan Bauer, Markus
Rempfler, Alessandro Crimi, Russell Shinohara, Christoph Berger, Sung
Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John
Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland
Wiest, Jan Kirschke, and Bjoern Menze. “Identifying the Best Machine
Learning Algorithms for Brain Tumor Segmentation, Progression Assess-
ment, and Overall Survival Prediction in the BRATS Challenge”. In: (Mar.
2019), p. 38 (cit. on p. 83).

https://arxiv.org/abs/2005.08465
https://arxiv.org/abs/2005.08465
https://www.mdpi.com/1424-8220/21/11/3616
https://www.mdpi.com/1424-8220/21/11/3616
https://www.mdpi.com/1424-8220/20/9/2663
https://www.mdpi.com/1424-8220/20/9/2663
https://www.mdpi.com/1424-8220/20/2/403
https://www.mdpi.com/1424-8220/20/2/403

130 bibliography

[175] Catalina Tobon-Gomez, Arjan J. Geers, Jochen Peters, Jürgen Weese, Karen
Pinto, Rashed Karim, Mohammed Ammar, Abdelaziz Daoudi, Jan Margeta,
Zulma Sandoval, Birgit Stender, Yefeng Zheng, Maria A. Zuluaga, Julian Be-
tancur, Nicholas Ayache, Mohammed Amine Chikh, Jean-Louis Dillenseger,
B. Michael Kelm, Saïd Mahmoudi, Sébastien Ourselin, Alexander Schlae-
fer, Tobias Schaeffter, Reza Razavi, and Kawal S. Rhode. “Benchmark for
Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets”.
In: IEEE Transactions on Medical Imaging 34.7 (2015), pp. 1460–1473 (cit. on
p. 83).

[176] Ofir Levy and Lior Wolf. “Live Repetition Counting”. In: Proceedings of the
2015 IEEE International Conference on Computer Vision (ICCV). USA: IEEE
Computer Society, 2015, 3020–3028 (cit. on pp. 84, 93).

[177] Ramprasad Polana and Randal Nelson. “Detection and Recognition of
Periodic, Nonrigid Motion”. In: International Journal of Computer Vision 23

(June 1997), pp. 261–282 (cit. on p. 84).

[178] Jing Yang, Hong Zhang, and Guohua Peng. “Time-domain period detection
in short-duration videos”. In: Signal, Image and Video Processing 10 (2016),
pp. 695–702 (cit. on p. 84).

[179] T. F. H. Runia, C. G. M. Snoek, and A. W. M. Smeulders. “Real-World
Repetition Estimation by Div, Grad and Curl”. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2018, pp. 9009–9017 (cit. on
pp. 85, 89, 90, 93).

[180] Bruno Ferreira, Pedro M. Ferreira, Gil Pinheiro, Nelson Figueiredo, Filipe
Carvalho, Paulo Menezes, and Jorge Batista. “Deep learning approaches
for workout repetition counting and validation”. In: Pattern Recognition
Letters 151 (2021), pp. 259–266 (cit. on p. 85).

[181] Dominik Scherer, Andreas Müller, and Sven Behnke. “Evaluation of Pool-
ing Operations in Convolutional Architectures for Object Recognition”. In:
Artificial Neural Networks – ICANN 2010. Ed. by Konstantinos Diamantaras,
Wlodek Duch, and Lazaros S. Iliadis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 92–101 (cit. on p. 91).

[182] Felix Scholkmann, Jens Boss, and Martin Wolf. “An Efficient Algorithm for
Automatic Peak Detection in Noisy Periodic and Quasi-Periodic Signals”.
In: Algorithms 5 (Nov. 2012), pp. 588–603 (cit. on pp. 91, 92).

[183] Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun. “Does computer
vision matter for action?” In: Science Robotics 4.30 (May 2019), eaaw6661.
url: http://dx.doi.org/10.1126/scirobotics.aaw6661 (cit. on p. 91).

[184] E. Pogalin, A. W. M. Smeulders, and A. H. C. Thean. “Visual quasi-
periodicity”. In: 2008 IEEE Conference on Computer Vision and Pattern Recog-
nition. 2008, pp. 1–8 (cit. on p. 93).

http://dx.doi.org/10.1126/scirobotics.aaw6661

bibliography 131

[185] Susanne Schnell, Pegah Entezari, S. Chris Mahadewia Riti J.and Malaisrie,
Patrick M. McCarthy, Jeremy D. Collins, James Carr, and Michael Markl.
“Improved Semiautomated 4D Flow MRI Analysis in the Aorta in Patients
With Congenital Aortic Valve Anomalies Versus Tricuspid Aortic Valves”.
In: Journal of Computer Assisted Tomography 40 (Jan. 2016) (cit. on p. 94).

[186] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. “A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise”. In: Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. KDD’96. Portland, Oregon: AAAI Press, 1996,
226–231 (cit. on p. 104).

[187] Stéphane d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio
Biroli, and Levent Sagun. ConViT: Improving Vision Transformers with Soft
Convolutional Inductive Biases. 2021. url: https://arxiv.org/abs/2103.
10697 (cit. on p. 110).

[188] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexan-
dre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers
amp; distillation through attention. 2020. url: https://arxiv.org/abs/2012.
12877 (cit. on p. 110).

https://arxiv.org/abs/2103.10697
https://arxiv.org/abs/2103.10697
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/2012.12877

	Abstract
	Abstract
	Resume

	Résumé
	Acknowledgments

	Remerciements
	Contents

	Contents
	List of Figures

	List of Figures
	List of Tables

	List of Tables
	Acronyms
	1 Introduction
	1.1 Choice of Using Videos
	1.2 Manual Analysis VS Automatic Analysis
	1.3 Computer Vision Tasks
	1.4 New Challenges We Must Tackle
	1.5 Contributions

	2 Background in Computer Vision
	2.1 Previously in Computer Vision
	2.1.1 Classic Algorithms
	2.1.2 Going Further with Machine Learning

	2.2 Convolutional Neural Networks
	2.2.1 Deep Learning
	2.2.2 CNNs Components
	2.2.3 CNN Architectures

	2.3 Data and Supervision
	2.3.1 Computer Vision Datasets
	2.3.2 Training: Different Levels of Supervision

	3 Swimmer Detection
	3.1 Introduction
	3.2 State Of The Art
	3.2.1 General Object Detection
	3.2.2 Recent Advances on Swimmer Detection

	3.3 Proposed Approach
	3.3.1 Dataset Creation
	3.3.2 Detection Through Segmentation
	3.3.3 Data Augmentation

	3.4 Experimental Results
	3.4.1 Metrics
	3.4.2 Ablation Study
	3.4.3 Comparative Results

	3.5 Visual and Qualitative results
	3.5.1 Swimming Races
	3.5.2 Other Swimming-Based Activities

	3.6 Discussions and Perspectives
	3.6.1 Improvements and Future Works
	3.6.2 Generalization to Other Sports

	3.7 Conclusion

	4 Pool Registration
	4.1 Introduction
	4.2 State Of The Art
	4.2.1 Registration Background
	4.2.2 Semi-Manual Approaches
	4.2.3 Recent Advances in Sport Field Registration

	4.3 A More Challenging Benchmark
	4.4 Registration Method
	4.4.1 Template Heatmap
	4.4.2 Data Generation and Model Training
	4.4.3 Matrix Estimation
	4.4.4 Post-Processing

	4.5 Results
	4.5.1 Parameter Study
	4.5.2 Comparing to State of the Art
	4.5.3 Failure Cases

	4.6 Discussion on the One-Shot Approach
	4.7 Conclusion

	5 Periodicity
	5.1 Introduction
	5.2 Related Work
	5.3 Unsupervised Periodicity Counting
	5.3.1 Latent Representation Learning
	5.3.2 Cycle Counting

	5.4 Experiments and Results
	5.4.1 CNN Architecture
	5.4.2 Ablation Study
	5.4.3 Quantitative Results
	5.4.4 Application to 4D videos

	5.5 Going Further with Supervision
	5.5.1 Supervised Swimmer Strokes Detection
	5.5.2 Qualitative results

	5.6 Discussion and Perspectives
	5.7 Conclusion

	6 Conclusion and Perspectives
	6.1 Summary of the Contributions
	6.2 Limitations and Proposed Solutions
	6.2.1 Benefits from Combining the Models
	6.2.2 Increasing the Acquisition Speed

	6.3 Perspectives and New Challenges
	6.3.1 Guided Annotation Tool
	6.3.2 Temporal Data for a Better Context Understanding
	6.3.3 More Data for Better Models
	6.3.4 Weakly Supervised Learning for a Multitask Model
	6.3.5 Swimmers Pose Estimation
	6.3.6 Vision Transformers
	6.3.7 Unaddressed Challenges
	6.3.8 MediaEval Challenge

	6.4 Conclusion

	Bibliography
	Index

