N

N

A preference-based approach to machine ethics for
automated planning
Martin Jedwabny

» To cite this version:

Martin Jedwabny. A preference-based approach to machine ethics for automated planning. Computer
Science [cs|. Universite de Montpellier, 2022. English. NNT: . tel-03923321v1

HAL Id: tel-03923321
https://hal.science/tel-03923321v1
Submitted on 4 Jan 2023 (v1), last revised 13 Apr 2023 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/tel-03923321v1
https://hal.archives-ouvertes.fr

THESE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’'UNIVERSITE DE MONTPELLIER

En Informatique
Ecole doctorale 12S

Unité de recherche LIRMM

A preference-based approach to machine

ethics for automated planning

Présentée par Martin JEDWABNY
Le 2 décembre 2022

Sous la direction de Madalina CROITORU et Pierre BISQUERT

Devant le jury composé de

Madalina CROITORU, PU, Université de Montpellier, Montpellier, France
Pierre BISQUERT, CR, INRAE, Montpellier, France

Jean-Gabriel GANASCIA, PU, Sorbonne Université, Paris, France
Felipe MENEGUZZI, PU, University of Aberdeen, Aberdeen, Ecosse
Aurélie BEYNIER, PU, Sorbonne Université, Paris, France

Anne LAURENT, PU, Université de Montpellier, Montpellier, France

UNIVERSITE
DE MONTPELLIER

Directrice
Co-encadrant
Rapporteur
Rapporteur
Examinatrice

Examinatrice

Abstract

Machine ethics is an uprising sub-field of artificial intelligence fueled by the
interest and concerns about the deployment of automated agents in our
everyday life. As these agents gain independence from human intervention
and make decisions with possible impact on human welfare, real concerns
are rising across domains.

Due to those reasons, various approaches have been proposed to imbue
automated agents with ethical considerations. Several research currents
have developed models stemming from psychology and philosophy in an
effort to adapt decision-making algorithms to consider ethical values so that
the impact of agents on people is bounded and guided by these notions.

Most of these approaches consist of either reasoning and applying a set
of well-known ethical restrictions, also known as principles (top-down), or
inferring them based on carefully crafted datasets through learning algo-
rithms (bottom-up).

In this thesis, we look at the problem of implementing these ethical
principles in the context of tasks involving sequences of interdependent
decisions, i.e: automated planning. We show how certain notions can be
modeled using preference-based frameworks, as in top-down approaches,
and how these preferences can be inferred from a corpus of data like bottom-
up methodologies, to develop a hybrid approach that can be applied to
planning problems. An implementation for each facet of our approach is
provided in order to test our ideas in practical scenarios.

Resumé

L’éthique des machines est un sous-domaine en plein essor de I'intelligence
artificielle qui suscite intérét et inquiétudes, en particulier en ce qui con-
cerne le déploiement d’agents automatisés dans notre vie quotidienne. A
mesure que ces agents gagnent en indépendance vis-a-vis de I'intervention
humaine et prennent des décisions susceptibles d’avoir un impact sur le
bien-étre humain, de réelles inquiétudes appraissent dans plusieurs do-
maines.

Pour ces raisons, diverses approches ont été proposées pour apporter
les agents automatisés de considérations éthiques. Plusieurs courants de
recherche ont développé des modeles issus de la psychologie et de la philoso-
phie dans le but d’adapter les algorithmes de prise de décision pour tenir
compte des valeurs éthiques afin que I'impact des agents sur les personnes
soit délimité et guidé par ces notions.

La plupart de ces approches consistent soit a raisonner et a appli-
quer un ensemble de restrictions éthiques bien connues, également appelées
principes (top-down), soit a les inférer sur la base d’ensembles de données
soigneusement élaborés grace a des algorithmes d’apprentissage (bottom-
up).

Dans cette these, nous examinons la mise en ceuvre de ces principes
éthiques dans le contexte de problemes impliquant des séquences de décisions,
c’est-a-dire : la planification automatique. Nous montrons comment cer-
taines notions peuvent étre modélisées a l'aide de cadres formels basés
sur les préférences, comme dans les approches ‘top-down’, et comment
ces préférences peuvent étre déduites d’un corpus de données comme les
méthodologies ‘bottom-up’, pour développer une approche hybride appli-
cable a la planification automatique. Un logiciel pour chaque facette de
notre approche est fournie afin de tester nos idées sur des scénarios pra-
tiques.

CONTENTS

Contents

1 Introduction

1.1 Machine ethics and dilemmas
1.2 Research problem
1.3 Research question and contributions
1.3.1 Contribution 1: Modeling and combining ethical prin-

ciples through preferences

1.3.2 Contribution 2: Computing ethically optimal plans . .

1.3.3 Contribution 3: Eliciting ethical preferences

1.4 Thesis Structure

2 Background notions
2.1 Logic programming
2.1.1 First-order logic programming
2.1.2 Probabilistic logic programming
2.1.3 Parameter learning from evidence
2.2 Planning Lo
221 History and context
222 Classical planning oL
2.2.3 Planning with utilities
224 Computation
2.2.5 Implementations

3 Machine ethics
3.1 Historyandcontext.
3.2 Taxonomies
3.3 Sources of codesof conduct
3.3.1 Consequentialist ethics
3.3.2 Deontological ethics
3.3.3 Virtueethics
3.34 Primafacieduties
3.3.5 Doctrine of double effect
3.3.6 Othertheories
3.4 Implementations
3.4.1 Top-down ethical systems
3.4.2 Bottom-up ethical systems
3.4.3 Hybrid ethical systems

4 Representing ethical preferences in classical planning

SN

o 00 3 O

11
11
15
19
22
23
25
32
36
39

41
41
46
49
49
51
52
02
93
93
o4
95
99
60

63

111

CONTENTS

4.1 Representing ethical features 67
4.2 Representing ethical planning problems 7
4.3 Modeling ethical theories 81
4.3.1 Consequentialist ethics 82

4.3.2 Deontological ethics 83

433 \Virtueethics oo 85

434 Primafacieduties 86

43,5 Doctrine of double effect 87

4.3.6 Do-no-harm principle 89

44 Relatedwork 90
45 Discussion e 92

5 Planning with ethical preferences 95
5.1 Translating ethical preferences to utilities 96
5.2 Implementation of our framework 105
5.2.1 PDDL code extension 106

5.2.2 PDDL code translation routine 109

5.3 Experimentation 113
54 Relatedwork 124
5,5 Discussion 124

6 Inferring ethical preferences 127
6.1 Method overview 129
6.2 Problemencoding. L. 132
6.2.1 Domain encoding Ps 133

6.2.2 Theoryencoding Py 134

6.2.3 Dataset encodingIs 138

6.2.4 Parameter learning encoding 138

6.3 Example: acasestudy L. 139
6.4 Experimentation L. 144
6.5 Relatedwork 149
6.6 Discussion 150

7 Conclusion 155
7.1 Research questions 156
7.2 Scopeandimpact. 157
7.3 Perspectives and futurework 160

A Appendix: Computational complexity 163
B Appendix: PDDL code 165
B.1 Autonomous driver example original PDDL code 165
B.1.1 Domainfile 165

B.1.2 Problemfile. 167

B.2 Autonomous driver example PDDL code with ethical constructs 168
B.2.1 Domainfile 168

B.2.2 Problemfile. 172

v

CONTENTS

B.3 Autonomous driver example translated PDDL code with soft

goals L 172
B.3.1 Domainfileo 172
B.3.2 Problemfile. 176

B.4 Autonomous driver example translated PDDL code with action
COSES o e 177
B.41 Domainfileo 177
B.42 Problemfile. 185
C Appendix: Ethical rank learning implementation 187
C.1 Logiclanguage 187
C.2 Parameter learning code 188
C.2.1 Domainencoding Py 188
C.2.2 Theoryencoding Py 189
C3 Examplefullcode. 191
C.3.1 Domainencoding Ps 191
C.3.2 Interpretations Iy 192
Bibliography 195

List of Figures

1.1

21
2.2
2.3
24

3.1

4.1
4.2

5.1
5.2
5.3
5.4

6.1

6.2
6.3

6.4

Trolley problem illustration

Towers of Hanoi example.
Towers of hanoi state transitions for plan 7pgneir - -+ . . .
Logistics planning task.
State transition system for the ‘Logistics’ example.

Moral Machine [Awad et al., 2018] example case.

Top-down architecture overview.
Depiction of Example 4.1.

Openstacks planning runtime by ethical features.
Pathways planning runtime parametrized by features.
Openstacks planning runtime parametrized by rules.
Pathways planning runtime parametrized by rules.

Problem overview: predefined elements (black), dataset ele-
ments (red), and target function to learn (blue).
Preference elicitation.
Parameter learning runtime according to the number of pos-
sible rank assignments A with varying number of ethical fea-
tures F. L
Parameter learning runtime according to the dataset size O
for varying ethical features F.

26
32
34
38

43

148

List of Tables

2.1 Best scoring planners of the last IPCs.

6.1 Experts’ opinions and ethical features for the case study re-

garding plans go(left) and go(right)

VII

Introduction

1.1 Machine ethics and dilemmas 2

1.2 Research problem

1.3 Research question and contributions 6
1.3.1 Contribution 1: Modeling and combining ethical

principles through preferences 6

1.3.2 Contribution 2: Computing ethically optimal plans 7

1.3.3 Contribution 3: Eliciting ethical preferences . . . 8

1.4 Thesis Structure L. 8

Recent years of progress in artificial intelligence (AI) research have re-
sulted in the development and widespread use of artificial agents to aid
people in daily activities and perform diverse tasks without human in-
tervention. However, the systematic introduction of automated agents in
domains where decisions can impact the well-being of people or society as
a whole, such as autonomous vehicles, has been the subject of much public
concern. Indeed, numerous authors [Tolmeijer et al., 2020] have pointed
out the necessity of aligning machines with our ethical values and ensur-
ing that an agent’s reasoning will be understood by humans if we strive to
build systems we can trust. To ensure this, it is paramount that we develop
agents that can comprehend and apply ethical reasoning, a highly complex
endeavor due to its reliance on societal views and conflicting judgments
across cultures.

This thesis presents original research at the intersection of machine
ethics, the sub-field of Al that studies the alignment of agents with our
ethical values [Anderson and Anderson, 2007], and automated planning,
one of the major Al sub-fields, which deals with reasoning about sequences
of actions and anticipating their outcome to fulfill some predefined objec-
tives [Ghallab et al., 2004]. Among the main difficulties in the automation
of machine ethics, in this thesis, we focus on three: (i) aligning machines
to ethical values, (ii) maintaining the ability to reason in the presence of
conflicting ethical values, and (iii) learning priorities between them. As
we mentioned, artificial agents that can coexist in our society should be
equipped with some kind of ethical understanding, and for this purpose,
much research (see Chapter 3) has been dedicated to allowing machines to
discern right from wrong. Nevertheless, the characterization of the right-
ness of action might not be sufficient in the presence of ethical conflicts.
Different kinds of conflicts may arise from several possible sources, such as
the plurality of ethical principles people use to make decisions [Brundage,

CHAPTER 1. INTRODUCTION

2014], most notable in the presence of sacred values [Tetlock et al., 2000],
and the cross-cultural variation of ethical preferences [Awad et al., 2018].
For this reason, we will set out to develop a framework that can model a
variety of ethical principles and combine them through levels of priority.
Furthermore, since this prioritization should be highly dependent on the
domain at hand and the continuously evolving views of society on morality,
we will need to provide a mechanism to learn the underlying hierarchies of
ethical values from past instances of human behavior.

To alleviate these concerns, the contribution of this thesis will consist
of the development of an abstract preference-based formalism for determin-
istic planning that takes into account several ethical values and priorities
between them, and a mechanism to infer these priorities. The goal is to
provide a flexible framework that allows the modelization of well-known
ethical theories and their combination via preferences.

This chapter is structured as follows. In Section 1.1 we introduce the
general context of the thesis. Then, in Section 1.2 we discuss the issue
of conflicting ethical theories and how they can be handled within our
framework, this allows us to present the research problem alongside our
contributions in this regard in Section 1.3. Finally, we conclude this chapter
by highlighting the structure of the thesis.

1.1 Machine ethics and dilemmas

In the context of Al, an ethical machine should take into account societal
considerations of what is ‘correct’ ethical behavior, in conjunction with
other operational constraints, to make its behavior more acceptable. Thus,
it poses two essential problems: deciding what ethical behavior is in a
certain context, and determining how a machine should combine this infor-
mation with the rest in the reasoning process.

Part of the reason it is difficult to determine what constitutes an ethical
decision is that human ethical reasoning remains a largely discussed and
complex topic. The ‘trolley problem’ introduced by [Foot, 1967] is an ex-
ample of such complexity. The simplest version of this dilemma, called the
Bystander trolley problem, which is depicted in Figure 1.1, can be described
as follows:

A runaway trolley is on the way to kill five people tied to its
current track. You are standing far away and next to a lever,
which if activated, would change the trolley’s path to a side track
wn which only one person lies. You have only two options, either
to pull the lever or do nothing.

A simple-sounding problem statement like this and its many varia-
tions continue to stir debate amongst philosophers to this date [Bruers
and Braeckman, 2014]. A situation like this is called a dilemma because no

Thttps://nymag.com/intelligencer/2016/08 /trolley-problem-meme-tumblr-philosop
hy.html

2

https://nymag.com/intelligencer/2016/08/trolley-problem-meme-tumblr-philosophy.html
https://nymag.com/intelligencer/2016/08/trolley-problem-meme-tumblr-philosophy.html

1.1. MACHINE ETHICS AND DILEMMAS

T a8 A
Ty I

Figure 1.1: Trolley problem illustration!.

option is perfectly ethical and one is forced to make a decision that would
violate some ethical consideration. Instead of having a clear-cut answer,
dilemmas serve to compare ethical principles, highlight faulty reasoning
and refine them in the light of the problems they pose. Ethical dilemmas
such as this highlight the kind of problems that arise when designing com-
putational models for ethical principles and the need to establish priorities,
which could depend on many societal factors and carry over to a system’s
designer.

From a philosophical standpoint, machine ethics can be seen as a form of
applied ethics, i.e: the branch of moral philosophy concerned with practical
real-life problems, for automated reasoning. Normative ethics, another of
the three main branches along with applied ethics and meta-ethics, focuses
on developing generalized principles to deduce what is right and wrong. Un-
surprisingly, representing ethical principles inside the machine has proved
to be a nontrivial task due to its reliance on human concepts and philo-
sophical reasoning. Indeed, each principle demands analyzing choices from
a particular perspective that is deeply tied to human values and judging
them according to rules of conduct stemming from law, societal consen-
sus, and our own personal experiences. Moreover, normative ethics can
provide general guidelines on how to represent principles inside the ma-
chine, but they will always need to be adapted to its world representation
and operational constraints. Previous research on machine ethics has be-
gun implementing computational models to align machines with our ethical
values [Tolmeijer et al., 2020] by adapting normative ethical principles to
Al systems. However, ethical reasoning for automated systems can lead
to different kinds of conflict. People seem to use varying ethical principles
depending on the situation at hand [Brundage, 2014, Tetlock et al., 2000,
or their culture [Awad et al., 2018], most notably in the presence of dilem-
mas. Furthermore, while some ethical theories are capable of comparing
alternatives in such situations, many others reject every choice if none sat-
isfies some of their precepts. For this reason, throughout this thesis, we
will develop a general model for automated ethical reasoning that can deal
with a plurality of ethical principles and values.

CHAPTER 1. INTRODUCTION

1.2 Research problem

Motivation The purpose behind this work relies on the current limita-
tions of ethical reasoning for Al systems in the face of conflicting values
and priorities. So far, the problem of designing an agent that is explicitly
ethical, i.e: one that can reason and make decisions that depend on ethical
considerations and possibly principles that are encoded in their system, has
been addressed with three approaches (i) top-down: developing or adapting
normative ethical principles to Al systems, (ii) bottom-up: inferring which
choices people deem as ethical from a corpus of data, and (iii) hybrid: a
combination of both.

Top-down methods are particularly useful when there is a considerable
amount of structured domain knowledge and are typically designed using
symbolic Al approaches. An advantage is that decisions can be justified
using the underlying system and ethical considerations used to make deci-
sions. On the other hand, they carry the typical limitations of the imple-
mented theory because, in the effort of being general and characterizing the
rightness of all actions under the same measure, they can hardly keep up
with the types of exceptions people consider when making their decisions.
That is, they are hard to apply to every situation without being inconsis-
tent, or worse, rendering all decisions immoral. Additionally, they could
require encoding various complex notions, such as possible consequences,
causality and intentionality [Govindarajulu and Bringsjord, 2017], while
there is no clear consensus about how to translate them into a computa-
tional model.

Then, bottom-up approaches build autonomous agents that can learn
how to behave ethically through machine learning [Mitchell, 1997], the
branch of Al that studies and develops systems that learn to perform tasks
through past experience. The main difference with top-down approaches
lies in letting the agent learn from a corpus of data, given by one or many
information sources that indicate what is the appropriate ethical choice,
instead of modeling a code of conduct. These methods are well-known to
perform properly with big and diverse corpora of not perfectly consistent
data, which is an advantage in ethically-nuanced domains. Indeed, these
corpora typically suffer from inconsistencies between different information
sources and even in the same source in very similar situations, due to the
intricacies of ethical reasoning. Nonetheless, justifying that a decision is
ethically correct using a bottom-up approach is more difficult due to the
absence of an underlying ethical theory, which is a highly desirable quality
in ethically-nuanced domains.

Hybrid approaches strive to solve the latter issue by proposing a mid-
dle ground between these two strategies: constructing a theory, guided
by well-known principles and determining how to use it, for instance, by
finding priorities between these principles, through learning algorithms. In
summary, this approach offers the following advantages for machine ethics
systems:

e By encoding ethical values and/or principles through a symbolic rep-

4

1.2. RESEARCH PROBLEM

resentation, it can provide a justification for its choices, and

e Because it learns from experience to apply ethical principles, it can
adapt to inconsistencies of opinions from various stakeholders.

Although much research has been dedicated to top-down and bottom-
up ethical systems, few frameworks have tried combining their ideas into
a hybrid approach. Learning-based methods have repeatedly shown to be
effective at replicating human behavior, but they seem to fall short in do-
mains with ethical nuances due to their lack of reasoning transparency and
understanding of ethics. On the other hand, top-down approaches to ethics
will be inadequate whenever conflicting ethical views, principles, or excep-
tions take place. With this in mind, and to alleviate the aforementioned
concerns, we will set out to develop a hybrid framework for ethical reason-
ing that retains the benefits of both top-down and bottom-up methods, so
that it can deal with the types of conflicts we have identified.

Setting As discussed in the previous section, ethical reasoning is espe-
cially important in domains in which agents make decisions autonomously
and continuously. Domains of this type will often require the agent to rea-
son about the outcome of actions many steps in advance. Additionally,
various ethical principles demand both the assessment of actions and con-
sequences in the long run and the examination of certain interdependencies
between them, such as causality [Berreby et al., 2018], to determine if a
sequence of actions is the most ethically aligned to the target values.

For this reason, the setting in which we will center this thesis will be
that of automated planning [Ghallab et al., 2004]. At a high level, planning
is a very general and extensive field that allows the modeling of all sorts of
problems that can be reduced to finding sequences of edges (denoting ac-
tions) in a graph where nodes represent sets of properties that characterize
world states. Al planning as a setting is very extensive in the sense that it
encompasses various subfields which require different representations, ca-
pabilities from the agent and algorithms to be solved. In this thesis, we
will research ethics from a deterministic, single-agent context, also known
as classical planning. The planning language we consider is PDDL [Fox and
Long, 2003], a family of domain-independent languages based on first-order
logic which is widely used in the context of deterministic planning.

While a great deal of literature has dealt with the problem of encoding
ethical principles through AI planning, few hybrid approaches have been
proposed that permit combining different principles. In conjunction with
the generality of the planning setting, the maturity of the field as a whole,
and the necessity to reason about evolving environments and the conse-
quences of actions, we have chosen it as the appropriate setting for the
development of our work.

In what follows, we will explain how this thesis addresses the research
problem we formulated in this section by proposing a hybrid framework for
ethical reasoning using a preference-based approach.

CHAPTER 1. INTRODUCTION

1.3 Research question and contributions

Given the increased autonomy and rapid deployment of automated systems,
and the varied normative ethical theories describing potentially disparate
points of view for the same dilemma, the problem of conflicting ethical
assessments is likely to arise. Simultaneously, societal views on ethics have
proven to be ever-evolving, and as such, developing ethical systems that can
adapt to their perspectives of ethics is paramount. Therefore, the research
question we want to answer in this thesis is:

Research Question

How can we align machines to our ethical standards when making
decisions in the face of conflicting principles and values?

It has been shown that various ethical principles can be encoded in
computational planning models. At the same time, a great deal of research
has been developed to accommodate preferences in deterministic planning
models, particularly for the International Planning Competitions (IPC).
Our hypothesis is that a preference-based approach is a natural method
to deal with the kinds of conflicts that stem from ethical reasoning. We
argue that preferences can help combine the judgment of several ethical
principles in a unified manner. Furthermore, little research has addressed
using preferences for this purpose. Thus, our research problem can be
reformulated into the following subset of more precise research questions:

Research Questions

e How can we model and combine well-known ethical principles
through preferences in a deterministic planning setting?

o (Can we provide an efficient way of computing ethically optimal
plans using our model?

e In which way can we elicit preferences from a corpus of data to
determine priorities between ethical values inside our model?

Let us now see how the contributions of the thesis address all three of
the previously mentioned research questions.

1.3.1 Contribution 1: Modeling and combining ethical principles
through preferences

Most of the existing top-down implementations have concentrated on deter-
mining which actions are right or wrong through ethical theories. However,
it seems to be the case that depending on situations, people seem to apply
different ethical theories or combinations of concepts from them, for in-
stance, in the presence of sacred values [Tetlock et al., 2000]. Accordingly,
we believe that an ethically-aligned agent should adapt to these different

6

1.3. RESEARCH QUESTION AND CONTRIBUTIONS

situations. Therefore, our first contribution will be to develop an extended
mathematical formalization of PDDL that allows agents to represent ethical
features and principles, and compare them through preferences. Choosing
PDDL as our base language means that a great deal of research on planning
will be easily adaptable to our work. By introducing a model for ethical
preferences, our framework goes further than classifying actions as right or
wrong. We argue that by working with preferences we avoid arriving at
a situation in which every plan is rejected because they are not perfectly
ethical. The benefit of ensuring that an ethically preferred plan is com-
puted whenever a plan exists is that: (i) certain domains might arrive at
a scenario that always demands the machine to do something, and (ii) the
agent can always reject a plan after it has been computed and change its
objective if the plan does not satisfy certain constraints.

Furthermore, we show the different benefits of this approach. Namely,
we argue that separating the ethical aspects into different levels of priority
is useful in ethical domains. We also show how various ethical theories
may be adapted to our framework and can be combined by using different
preferences.

1.3.2 Contribution 2: Computing ethically optimal plans

By addressing ethical reasoning in the planning setting, one of the main
challenges we need to solve is finding plans. It has been shown that clas-
sical planning can be intractable even when considering severe restrictions
[Béackstrom and Nebel, 1995]. However, by developing numerous heuristic
strategies and complex algorithms, research has built highly performant
systems that can find plans for problems with enormous state spaces even
when considering preferences [Gerevini et al., 2009].

For this reason, we will show how ethically optimal plans can be com-
puted by transforming our model of ethical preferences into simple state
utilities. By employing this translation procedure, problems encoded us-
ing our extended PDDL model can be solved using existing state-of-the-art
planning technology. In order to do this, we introduce a valuation function,
based on [Feldmann et al., 2006] that assigns a numerical value to plans.

Then, we implement our mathematical formalization in actual PDDL
code as an extension of the programming language. Consequently, we de-
velop two different implementations of the mentioned translation proce-
dures we have made publicly available: (i) from ethical preferences into
soft goals, i.e: final state utilities, and (ii) from ethical preferences into
action costs. By implementing the translation routine into two different
versions of PDDL, we maximize the scope of planners that can be used
to solve planning problems with ethical preferences. And finally, we test
the computational efficiency of our approach using various state-of-the-art
planners and hard problems from the IPCs.

CHAPTER 1. INTRODUCTION

1.3.3 Contribution 3: Eliciting ethical preferences

Our ethical model for planning assigns features to plans, which are used
to compare them on ethical terms through priority levels. Eliciting the
opinion of non-experts can be problematic as people might be inconsistent
with their choices according to certain ethical principles even when faced
with barely dissimilar situations, due to the intricacies of ethical reasoning.
Quite often, ethical domains require the opinion of experts in order to
determine what is ethical in a domain. However, even experts regularly
disagree on their criteria. This is why providing a mechanism that learns
to reason ethically according to an elicitated corpus of opinions is essential.

As our final contribution, we will investigate how the ethical preferences
we developed throughout this thesis can be learned from datasets. In doing
so, we will shed light on how our framework can be used as a hybrid ethical
system. We chose to perform this method using what is known as prob-
abilistic logic, as it combines naturally with our logic-based formalization
of PDDL and can provide a full trace of its reasoning through logic rules,
allowing people to understand the agent’s choices. With this in mind, we
will describe an encoding using probabilistic logic, which can be used to
learn the ethical preferences we introduce in this thesis. And lastly, we will
showcase the practicality of our approach with a case study and provide
preliminary experimental results.

1.4 Thesis Structure

The structure of this thesis is as follows:

Chapter 2. This chapter introduces necessary preliminaries related to
logic and automated planning. We will start by describing a formalization
of first-order logic programs and how queries can be computed. Then, we
will introduce probabilistic first-order logic, which extends first-order logic
with probabilistic annotations, and parameter learning, which will be used
in Chapter 6 to infer preferences between ethical values. Lastly, we will
provide a formalization for classical planning that will be used as a basis
throughout this thesis.

Chapter 3. In this chapter we present the state-of-the-art of machine
ethics implementations. We start by giving a comprehensive introduction
to the history and motivations of the field. Then, we will describe a few
useful taxonomies characterizing ethical agency. We will also glance over
different sources of codes of conduct that have been implemented. And
finally, we will examine various state-of-the-art implementations of machine
ethics through the lens of the mentioned taxonomies.

Chapter 4. This chapter handles the first contribution of this thesis. We
introduce an extension of PDDL to assign ethical features to plans, demon-
strate how this framework captures different well-known ethical principles,

8

1.4. THESIS STRUCTURE

and adapt a preference-based model to combine these principles using dif-
ferent levels of priorities under a unified framework. This chapter builds
upon our work published in [Jedwabny et al., 2021a].

Chapter 5. In this chapter, we address our second contribution. We
demonstrate how our ethical planning problems can be translated into util-
ities by using soft goals. Then, we provide an overview of the two imple-
mentations we developed for the ideas discussed in the previous section. We
also describe various experiments we formulated to test the computational
efficiency of our approach. As in the previous chapter, this also builds upon
the work published in [Jedwabny et al., 2021a].

Chapter 6. Here, we tackle the third and last of our contributions. We
provide a method to infer preferences between ethical values by learning a
set of probabilistic annotations for a probabilistic logic program. We de-
scribe our implementation, which we adapted to be compatible with the
planning model we developed in the previous chapters. This chapter con-
tinues some of our work published in [Jedwabny et al., 2021b].

Chapter 7. This chapter concludes, summarizes our contributions and
presents several interesting future research problems based on possible ex-
tensions of this work.

Appendix A. We use this Appendix to briefly summarize some concepts
related to computational complexity that we will use throughout the thesis.

Appendix B. In this second Appendix we list the PDDL code of the
overarching example of Chapter 4 and the output of the translation routines
we describe in Chapter 5.

Appendix C. This last Appendix contains the full implementation of
the ethical rank learning problem and the example case study described in
Chapter 6 using the Problog language.

Background notions

2.1 Logic programming 11
2.1.1 First-order logic programming 11
2.1.2 Probabilistic logic programming 15
2.1.3 Parameter learning from evidence 19
22 Planning. 22
221 Historyandcontext 23
2.2.2 Classical planning 25
2.2.3 Planning with utilities 32
224 Computation 36
2.25 Implementations L. 39

In this chapter, we lay down the fundamental notions concerning the
fields of logic programming and automated planning, upon which the rest
of this thesis will be built. As such, we will focus on introducing these
subjects under the scope of our work, giving an overview of the literature
surrounding them as far as our purposes require.

2.1 Logic programming

We will start this chapter by introducing some key concepts related to
logic programming. Knowledge representation based on first-order logic
programming is popular amongst planning literature and will serve as a
basis for its formalization and the development of Chapters 4 and 5. Addi-
tionally, we will describe a model for probabilistic logic programming based
on [De Raedt et al., 2007], which extends logic programming with proba-
bilistic annotations and a method for learning some of these probabilities
based on evidence, which will be used in Chapter 6.

2.1.1 First-order logic programming

First-order logic programming [Apt, 1990, Lloyd, 1994] is a declarative
paradigm based on formal logic, that views computing as a procedure to
find a proof for a logical theory, i.e: a set of logical sentences. A program en-
codes this logical theory and the proof is typically produced - if finding one
is possible - using the resolution principle [Robinson, 1965], which provides
a single rule of deductive inference that is sound and complete for prov-
ing statements constructed using the syntax of logic programs. The most

11

CHAPTER 2. BACKGROUND NOTIONS

widespread syntax for logic programming is known as Horn logic [Horn,
1951], a Turing complete [Tarnlund, 1977] restricted (in the form of rules
it allows) version of first-order predicate logic. In this thesis, we will focus
on Prolog [Clocksin and Mellish, 2003], a widely-known logic programming
language that extends Horn logic, and employ its syntax instead of the one
used classically in formal logic.

2.1.1.1 Syntax

We build upon a first-order logic language £ composed of:
o Variables {X,Y,...} €V,
e Function symbols {f,g,...} € F, and
e Predicate symbols {p,q,...} € P

Each predicate and function symbol comes with an arity which represents
the number of arguments it takes and is denoted arity(p) € Ny for predicates
and arity(f) € Ng for function symbols. We use a special set {a,b,...} € C
called constants for function symbols of 0 arity.

A term t is a constant, a variable, or a functor, that is, a construct of

the form f(t1,...,t,) where f € F has arity n and every t; is a term. An
atom is a construct p(ty, ..., t,) composed of a predicate p of arity n € Ny,
applied to terms ty,...,t,. A literal is either an atom A, or its negation,
denoted —A.

Definition 2.1 (First-order logic rule). A rule, also called a definite
clause, is a construct of the form:

H :- By,...,B,.
Composed of a head atom H and a conjunction of body atoms By, . . ., By,.
A fact is a rule with an empty body, i.e: ‘H :— .”, which can be denoted

simply as ‘H.”. We say that a rule is grounded when it contains no variables.
Finally, a logic program P is a set of rules.

2.1.1.2 Semantics

Having defined the syntax of programs, we turn our attention to their
semantics. The set of all ground atoms that can be produced by using the
predicates of £, also called the Herbrand base is denoted as B. Given a
program P, we can associate the language L£(P) and base B(P) using only
the symbols appearing in P. For the time being, we will assume them
to be identical to £ and B, respectively. An interpretation I € B is a
subset of the Herbrand base of the program P (i.e. any set of ground
atoms), while a model of P is an interpretation that satisfies every of its
rules H :— By,...,B,., i.e: it holds that VX.HV —=(Bj A - - - A By,) where X is
the list of all the variables appearing in the rule.

12

2.1. LOGIC PROGRAMMING

Satisfying a rule implies that whenever the body holds, then the head
does as well. Models inform us of what sets of ground atoms satisfy the
rules of the program.

The following definitions help determine which ground atoms from the
base hold in every model.

Definition 2.2 (Substitution). A substitution 0 = {Xy/t1,... Xk /tr} is
a mapping from variables to other terms. Applying a substitution 6 to
an atom A is denoted as Af and it replaces the variables in the domain
of 8 with their corresponding terms.

Similarly, applying a substitution 8 to a rule r € P replaces the variables
of each of its atoms in the domain of 6 with their corresponding terms and
is denoted rf. In the case Af or rf contain no variables, we say that the
operation is a grounding and we call Af (rf) a ground atom (rule). Given
two atoms A and B, one substitution 6 unifies them if and only if A8 = B6.

Furthermore, the grounding of logic program P, denoted ground(P), is the
set of all ground rules resulting from every possible grounding substitution
of each rule r € P.

Definition 2.3 (Immediate consequence operator). If P is a ground
logic program, the immediate consequence operator is defined as:

Tp(I)={H:H :—= B4,....B,. € P A Vie[l,n] B; CI}

Tp(I) captures which atoms can be derived from I using the rules in P.
In the general case, i.e: when P has rules that contain variables, we define
Tp(I) = Tyround(p)(I). Then, we can define a sequence Tg =0, T}"fl = Tp(TI‘;).
Because the operator is monotone, due to the Knaster-Tarski theorem
[Lesniak, 2012}, it will have a fixpoint T;’.

Having defined the building blocks of the semantics, we can now specify
the consequence operator ‘|=" that indicates when a logic program entails a
certain ground atom.

Definition 2.4 (Consequence). A ground atom A is a consequence of
the program P, noted P |= A if and only if A € Ty°. Similarly, P = -A
if and only if A ¢ T".

As it turns out, this fixpoint is the same as the least Herbrand model
[Van Emden and Kowalski, 1976], i.e: every model M of P satisfies M C Tp’.

Given a logic program P and A a ground atom, the query problem is
that of determining whether P |= A. This can be easily extended for the
case in which A is a conjunction of ground atoms or non-ground atoms.

Example 2.5 (Ancestor). Consider the following logic program P:

ancestor (X,Y) :- parent(X,Y).
ancestor (X,Y) :- parent(X,Z), ancestor(Z,Y).

13

CHAPTER 2. BACKGROUND NOTIONS

parent (X,Y) :- father(X,Y).
parent (X,Y) :- mother(X,Y).
father (a,b).
mother (c,b) .
father(b,d) .
mother (d,e) .
father (f,e).

The rules model the ancestor relation between family members
using the parent predicate in the first rule and the ancestor predicate
in the second in a recursive manner. The third and fourth rules state
that a parent is either a father or a mother, while the rest are ground
facts, representing information about the family tree that is already
known.

To determine which atoms belong to T, we should ground P ac-
cording to the previous definitions. This grounding is essentially the
result of replacing separately in each rule the variables X, Y, Z with ev-
ery possible ground term in £, which in this case would be a,b, ¢, d, e,
or f.

Then, we have that:

TS =0
T; = {father(a,b), mother(c,b), father(b,d),
mother(d,e), father(f,e)}

Tg = T; U {parent(a,b), parent(c,b), parent(b,d),
parent(d,e), parent(f,e)}

T;’ = Tg U {ancestor(a,b), ancestor(c,b), ancestor(b,d),
ancestor(d,e), ancestor(f,e)}

Tg’ = Tg U {ancestor(a,d), ancestor(c,d), ancestor(b,e)}

Tﬁ = Tg U {ancestor(a,e), ancestor(c,e)}

It is simple enough to check that TI‘,l = Tp(Tﬁ) = ... =Tp. Thus, by
iterating the consequence operator, we generate the tree of ancestors
denoted by the program P.

Of course, generating T, is computationally expensive and not the only
method to determine if P |= A. Many strategies and algorithms have been
developed in the literature, most notably following the resolution principle
[Robinson, 1965]. The most popular variation of the resolution principle
is called selective linear definite (SLD) resolution [Kowalski and Kuehner,
1971] and is the one used by Prolog. Here, we will not present SLD resolu-
tion, however, as it is not essential for the development of this thesis and
it has been largely covered in first-order logic programming literature.

14

2.1. LOGIC PROGRAMMING

2.1.1.3 Complexity

For logic programs, the time complexity of querying is given in terms of
the number of operations it takes to determine if DU P |= A for a set of
ground atoms D, called the input database, a program P and another set of
atoms A, the subject of the query. We refer the reader to Appendix A for
general complexity notions and previous literature [Dantsin et al., 2001] for
an extensive presentation of the computational cost of Datalog and general
logic programs. Briefly summarizing the results, for Datalog:

e The complexity of checking DU P |= A for a fixed Datalog program P
and variable input database D and ground atoms A, called the data
complezity, is PTIME-complete.

e In the case D is fixed, while P and A are not, known as the program
complexity, it is EXPTIME-complete.

e Lastly, when all D, P and A are not known as the combined complezity,
it is EXPTIME-complete.

Having presented Prolog-based logic programming, we can now intro-
duce probabilistic logic programming, an extension that allows handling
noisy information in the form of probabilistic annotations that can be as-
signed to facts and rules.

2.1.2 Probabilistic logic programming

In recent years, numerous extensions of logic programming have been de-
vised to capture probabilistic logic. These extensions generally allow rea-
soning about uncertain information by attaching probability annotations
to facts and rules. While this approach allows reasoning in noisy domains
with the power of logical reasoning, as we will see, it also typically suffers
from additional computational costs to account for the possibility that cer-
tain pieces of information might or might not be true. Some examples of
such systems include PRISM [Sato and Kameya, 2001], Markov logic net-
works [Richardson and Domingos, 2006], Bayesian logic networks [Kersting
and Raedt, 2001], Probabilistic Horn abduction [Poole, 1993] and Problog
[De Raedt et al., 2007]. For a more in-depth description of various frame-
works and their semantics, we refer the reader to [De Raedt and Kimmig,
2015, Riguzzi and Swift, 2018].

Here, we will focus on ProbLog [De Raedt and Kimmig, 2015], a proba-
bilistic first-order logic language that extends the notions presented before
with simple probabilistic annotations. We chose this language due to its
simplicity of representation, the fact that its semantics are well established
in the probabilistic logics community and because the implementation be-
hind it is relatively mature and easily accessible.

2.1.2.1 Syntax

Essentially, Problog was developed as a probabilistic extension of Prolog,
mentioned in Section 2.1. As such, Problog also uses definite clauses, which

15

CHAPTER 2. BACKGROUND NOTIONS

we simply called rules, but extends them with probabilitic annotations.
These annotations account for the (un)certainty of the information and
permit reasoning in noisy domains.

Definition 2.6 (Probabilistic logic rule). A probabilistic logic rule, or
Problog rule, is a construct of the form p; :: r; where p; € [0, 1] denotes
a probability and r; is a (first-order) logic rule. In other words:

p; :: H := By,...,Bg.

Which is composed of a probability p; € [0, 1], a head atom H and a
body Bi,...,B, as defined in Section 2.1.

If the rule contains no body atoms, i.e: n = 0, we will call it a probabilitic
fact and write it as ‘p; :: H.”. Also, in the case the rule is not probabilistic,
i.e: p; = 1, we can also denote it as a normal Prolog rule without an
annotation: ‘H :— Bq,...,B,.".

Then, a ProbLog program P = {p1 :: r1,...,pn :: 'y} consists of a finite
set of probabilistic rules.

2.1.2.2 Semantics

As we briefly mentioned before, the semantics of Problog programs is based
on well-known semantics for probabilistic logics, which is known as distribu-
tion semantics [Sato, 1995]. It is also the semantics used for other systems
[Poole, 1993, Poole, 1997, Sato and Kameya, 1997]. Instead of checking
whether a logic program P has as a consequence a set of ground atoms A,
denoted P |= A, as we saw before in the context of first-order logic pro-
gramming, this setting measures a probability Pr(P |= A) € [0, 1] of the
set of atoms being a consequence of the program, to take into account the
possibility of noisy information in the form of probabilistic annotations.

According to these semantics, a Problog program P = {py :: r1,...,pn
rn} defines a probability distribution [Devore, 2011] over the groundings
of rules in P without probabilities. In other words, let 6; 1, ..., 0; n, be the
finite! set of groundings for each rule p; :: r; € P, then P defines a probability
distribution over the possible worlds L C Lp of P, where the possible worlds
are defined as Lp = {01171, ., 01.m "1, On1tns s On.m,tn}t. That is,
the possible worlds are the subsets of all the groundings of the original
program P without probabilistic annotations. Then, P defines a probability
distribution over the possible worlds L C Lp as follows.

Definition 2.7 (Probability of a possible world). Let L C Lp be a
subset of the possible worlds of P, then the probability of L given P is:

Prici Py =]]p [-p0

ri€L rieLp\L

I'We will assume the groundings are finite and correspond to the terms that appear
on the program P.

16

2.1. LOGIC PROGRAMMING

Essentially, Pr(L | P) measures the probability of non-probabilistic rules
in L being true according to the probabilistic annotations in P.

Moreover, ProbLog defines the success probability of a ground query A
(i.e. finite conjunction of ground atoms) as the overall probability that a
random subset L C Lp has as a consequence AZ:

Definition 2.8 (Success probability of a query). Given a Problog pro-
gram P and a query A, the success probability of A according to P
is:

Pry(P = A) = Z Pr(L | P)

LCLp
LEA

Naively, the success probability of a query A for P can be calculated
by considering every subset L of Lp, checking whether L |= A and summing
the probabilities of those ground programs according to Pr(L | P). Current
Problog implementations [De Raedt et al., 2007] avoid doing this as much
as possible by using different optimization techniques, for instance, by using
binary decision diagrams [Bryant, 1986].

While in the case of non-probabilistic logic programs it suffices to check
that A is a consequence of a single grounding of the program P, the proba-
bilistic setting forces to take into account all possible combinations of rules,
calculating their probability and summing the ones that have the query as
a consequence.

Example 2.9 (Knows/Seen). Consider the Problog program:
P={1.0:r,1.0::r9,0.8:r30.5:7r40.5:7r50.5:7r50.5:r7}
And let:

r1 = knows (X,Y) :- hasSeen(X,Y).

ro = knows (X,Y) :- hasSeen(X,Z), knows(Z,Y), transitive().
r3 = transitive().

ry = hasSeen(a,b).

r5 = hasSeen(b,c).

r¢ = hasSeen(b,d) .

r; = hasSeen(c,d) .

Briefly, the program is composed of two strict rules rq, ro and five prob-
abilistic facts r3, . .., ry stating the uncertainty of the knows(X, Y) being
transitive through r3 and of different people a, b, ¢, d having seen each
other with ry,...,r;. We can ask whether the person a knows d with a

2Meaning, the probability that some combination of strict rules of P has A as a
consequence, where the probability of each combination (i.e: the subsets of strict rules)
is given by multiplying the probability p; of each rule r; in the set and also the inverse
of those rules not in the set (1 — p;).

17

CHAPTER 2. BACKGROUND NOTIONS

query (ground atom) A = knows(a, d), which can be derived using the
following ground sets of rules, which correspond to the possible worlds
that can deduce A:

Ly = {r1,r2,r3,14,75,77},
Ly = {r1,r2,13,74,75,76, 77},
L3 = {r1,r2, 13,74, 76},

Ly ={r1,r2,13,74,75,76},

Ls = {ri,ra,r3,14,76,77}.

Then, the probability of success of A can be calculated as follows:

> Pr(L|P)

LCLp
LA

D, PrLi| P)

i€[1,5]

Z 0.05

ie[l,5]
=0.25

Pry(P = A)

Here, the probability of each subset of strict rules L; is given by the
probability of rules r; (1), r2 (1) and r3 (0.8) which are in every set,
multiplied by the probability of the rest of the rules being or not being
in the set. Because the probability of those other rules being or not
being in the set are the same (0.5), Pr(L; | P) = 1.0%1.0%0.8x0.5% = 0.05.
And thus, as we have shown Pry(P |= A) = 0.25.

2.1.2.3 Annotated disjunctions

A simple extension that will prove useful in later chapters is that of allow-
ing a certain kind of disjunction in Problog rules. Annotated disjunctions
extend Problog programs with expressions of the form:

pr :: H 5 ... 5 pm :: Hp :—- B1,...,B,.

n
Where each p; € [0, 1] is a probabilistic annotation, 2, p; < 1, each H; is
i=1

an atom representing different heads of the rule and Bll, ..., By is the body
of the rule just like in a classic Problog program. We assume that when
using this kind of rule: (i) all variables in the head also appear in the body,
and (ii) no head atom H; can be unified with another Hy.

The semantics of annotated disjunctions is that whenever the body
Bi,...,B, of the rule is evaluated to be true, then at most one of the
head atoms H; holds as well. This means that in the context of Defini-
tion 2.7, which characterizes the probability of a possible world (set of
rules without annotations) Pr(L|P), p1 :: Hi ;... pm t Hp :— Bi,....Bp.
denotes that the probability of the (non-disjunctive) rule H; :— By,...,B,,.
being present in a possible world is p; for each i € [1, m], the probability

18

2.1. LOGIC PROGRAMMING

of more than one such rule being present in a possible world is none, and
that the probability of no such rule being part of a possible world for any
m

i €[1,m]is1- 3 p;, which corresponds to the probability of no atom H;
i=1
holding when the body By, ..., B, does.

Example 2.10. Consider a Problog program P composed only of the
following rule:

0.8 :: a() ; 0.2 :: b() :- cO).

It states that whenever the atom c() holds, then there is a 0.8 prob-
ability of a() holding and 0.2 of b() holding and that in each possible
world one or the other is present, but in no case should both a() and b()
hold together. In other words, given the queries Q1 = {a()}, Q2 = {b()}
and Qs = {a(), b()}, then the probabilities of success of the queries are
Pr(Q1|P) = 0.8, Pr(Q2|P) = 0.2 and Pr(Qs|P) = 0.

It is also important to note that Problog programs with annotated
disjunctions can be translated into equivalent programs without them, as
demonstrated in [Gutmann, 2011], so they can actually be considered syn-
tactic sugar. Here, we will not delve into the details of this transformation
and refer the reader to [Gutmann, 2011] for more information about it and
the proof of correctness.

2.1.2.4 Complexity

It is clear the querying problem is computationally expensive for proba-
bilistic logic programs and that naive computation is infeasible for all but
the smallest programs. This is why more optimized procedures have been
developed. [De Raedt et al., 2007] use an approximation procedure based
on previous work [Poole, 1993] in order to compute these probabilities us-
ing binary decision diagrams [Bryant, 1986]. For an in-depth complexity
analysis of probabilistic logic programming semantics we refer the reader to
[Riguzzi and Swift, 2018] and in the particular case of Problog, to [Kimmig
et al., 2011, De Raedt et al., 2007, De Raedt and Kimmig, 2015].

2.1.3 Parameter learning from evidence

So far, we have seen how Problog defines the probability of success of
a query given a probabilistic logic program. However, the language can
also be utilized for learning probabilistic annotations for facts if the right
program and evidential interpretations (i.e: truth-value assignments for
ground atoms) are given, by utilizing procedures such as the one presented
in [Gutmann et al., 2011]. In this section, we will overview this procedure
and the representation of the parameter learning problem, which will be
used later in Chapter 6.

An evidential interpretation of a Problog program P assigns truth values
to (some of) its ground atoms. More formally, an interpretation is repre-

19

CHAPTER 2. BACKGROUND NOTIONS

sented as a pair I = (I*,I7) composed of two disjoint sets of ground atoms
from P where I are the atoms considered true and the ones in I~, false.
We will use evidential interpretations to represent knowledge in the form of
a combination of true and false ground atoms that hold together according
to an information source. They differ from the interpretations described in
Section 2.1.1.2 in that, by considering both true and false sets of ground
atoms I, I~ the truth value of the rest of the ground atoms is considered
unknown, instead of false like in classic interpretations. From a machine
learning perspective, evidential interpretations will describe the examples
of a dataset.

Before defining the parameter learning problem, we need to define the
probability of an evidential interpretation being entailed by a Problog pro-
gram. Given an evidential interpretation I and a Problog program P, Pr(I)
denotes the probability of all the elements in I* being entailed by P and
none of the ones in I:

Definition 2.11 (Probability of an evidential interpretation). Given
a Problog program P and an evidential interpretation I = (I*,I7), then
the probability of I according to P is:

Pr(lP) = ([| Preatp) « ([[(1 = Praipy)

Aelt Ael~

Where each ground atom A € I*UI™ can be seen as a query and Pr(A|P)
denotes the success probability of the query.

Now, we are ready to define the problem of learning parameters from
evidential interpretations, based on [Gutmann et al., 2011]. Essentially, the
parameter learning problem consists of finding the probabilistic annotations
P1,- - -, Ppn that maximize the probability of the evidential interpretations
holding, as follows:

Definition 2.12 (Parameter learning problem). A parameter learning
problem is characterized by:

e A parametrized Problog program P(ps, ..., pn) = Prixed YPparam
composed of:

— A fixed set of Problog rules Pfjxeq, and

— A set of Problog rules Pyaram with n unknown probabilistic
annotations py, ..., pn.

e A multiset of evidential interpretations Is = {I1, ..., I} }.

Given the above, find the optimal parameters py, ..., p, such that:

(p1,-..,pn) = argmax Pr(Is|P(p1,...,pn))
P1,---» pn)€l0,1]7

20

2.1. LOGIC PROGRAMMING

= argmax [PrilP(r.....pa)
(GRS PY LS (USE Ly

Where Pr(I;|P(p1, - - -, pn)) is the probability of the evidential interpre-
tation I; given the Problog program P(pi,...,p,) with some chosen
parameters.

That is, the evidential interpretations serve as the dataset of examples
(or evidence) that the program has to resemble as close as possible. If no
combination of parameters can entail any of the evidential interpretations,
for example, if the rules in P are not enough to entail any of the ground
atoms in any evidential interpretation I;, any parameters will suffice. On
the other hand, if this is not true, then a solution will tune the parameters
accordingly.

Let us exemplify how this technique works.

Example 2.13 (Connectivity). Consider the following parameter learn-
ing problem inspired by graph theory, that describes a predicate connected,
which represents the transitive closure of the relation modeled by the
predicate edge:

e A parametrized Problog program:
P(Plv B ,pn) = Pfixed U Pparam
Where:

Pfixea ={1.0::connected(X,Y) :-edge(X,Y) .

1.0::connected(X,Y):-edge(X,Z),connected(Z,Y) .}
Pparam ={p1::edge(a,b).

po::edge(b,a).

p3::edge(b,c).

py::edge(c,b).

ps::edge(a,c).

pe::edge(c,a).}

e A multiset of evidential interpretations Is = {I, o}, where:

H’={connected(a,b),connected(b,a)}

I; ={connected(b,c),connected(c,b),
connected(a,c),connected(c,a)}

I; ={connected(a,b),connected(b,c)
connected(a,c)}

I, ={connected(b,a),connected(c,b),

21

CHAPTER 2. BACKGROUND NOTIONS

connected(c,a)}

Simply, we have strict rules describing the connected predicate but
it is unknown which edges exist in the graph connecting the nodes
a,b,c. The evidential interpretations in Is inform different points of
view, I; states that only a and b are connected in both directions, and
I, states that a is connected to b, which is connected to c.

With analysis, we can find the solution for this parameter learning
problem:

(Pl’ p2’ p3’ p4,p5,P6) = (19 05, 055 Oa 0’ O)

The explanation behind p; = 1 is that in both interpretations the
edge between a and b must exists because the only other way in which
these nodes can be connected would be if a is connected to ¢ and then
¢ to b using some combination of edges, but this does not hold for I; or
I. Then, ps = 0.5 because only in I; b is connected to a and the only
way this can happen is if there is an edge between them. A similar
explanation can be made for ps = 0.5 and I,. And lastly, no other
edge can be present because no set of edges that includes edge(c,b),
edge(a,c), or edge(c,a) satisfies I; or L.

For the purposes of this thesis, we will not delve into the details of a
solver. A description of a parameter learning solver can be found in [Gut-
mann et al., 2011] and an implementation is publicly available online under
the Problog library3. Regardless of the implementation, the parameter
learning setting can present enormous computational running time costs
if the Problog program is sufficiently complex, as parameter learning will
depend on the cost of querying. However, the currently available imple-
mentation can handle large amounts of ground atoms, in the scale of the
thousands, for relatively simple Problog programs, as the WebKB dataset
[Craven and Slattery, 2001].

2.2 Planning

Automated planning is one of the oldest Al problems and one of its major
fields. In simple terms, it deals with reasoning about sequences of actions
and their impact on the surrounding world to fulfill a request. Its overar-
ching goal is not only to develop entities that exhibit intelligent behavior
but also to understand what constitutes smart planning and intelligence as
a whole.

Generally speaking, planning is an explicit deliberation process that
chooses and organizes actions by anticipating their outcomes, aiming at
achieving some predefined objectives [Ghallab et al., 2004]. In other words,
planning involves reasoning about the outcomes of actions, how they relate
to one another and their impact on the state of the world, be it in real life

3https://github.com/ML-KULeuven/problog

22

https://github.com/ML-KULeuven/problog

2.2. PLANNING

or a virtual setting. The automated agent perceives a state of the world,
or more simply state, either as previously acquired information, sensors or
other external sources. This states are represented using properties, which
are frequently called fluents, and hold a certain value. An automated agent
can execute actions, which can change the value of fluents under certain
conditions. These changes represent the effects of the action in the state of
the world. Given a request, i.e: a combination of fluents that we want to
hold in the world, we can compute the world states as they will be when
we execute some actions and check whether this request will be achieved,
by anticipating the outcomes. Literature refers to these requests as goals.
Thus, planning revolves around finding actions that when performed in an
initial state, will ultimately affect the state of the world, in such a way that
the resulting state will satisfy the predefined goal.

As such, planning is a very general problem setting that requires looking
ahead in terms of world states and depending on the complexity of these
world states and the actions, it can make anticipating these world states
a computationally intractable problem. Let us note that planning is not
required in cases where the goal can be fulfilled by predefined actions im-
mediately. For example, in the case of simple systems (such as an elevator),
where all possible requests are known in advance, it suffices to pre-program
a set of actions for each of these requests. However, in cases where one faces
new situations with many different possible fluent combinations for goals,
changing world states, and in which goals take multiple inter-dependent
actions to be fulfilled, planning is required. This type of problem is even
more common in multi-agent settings, where coordination between the ac-
tions of multiple agents is essential to figure out what each agent has to do
and in which order. It can also be the case where planning is performed
in an environment that poses a high risk or cost to choosing the right or
wrong actions, in this case, not any sequence of actions might suffice, but
one might want to find an optimal plan according to some metrics.

2.2.1 History and context

With regard to artificial intelligence, planning deals with the computational
study of the deliberation process just described. It was first studied in the
context of Shakey [Nilsson, 1984], a project from the Stanford Research
Institute (SRI) in the 1960s that looked into different ways of providing
robots the ability to reason about their environment, analyze requests and
break them down into sequences of actions to perform. The Shakey robot
was one of the first-ever robots that implemented what we now know as an
AT planner to organize and select a sequence of actions to fulfill requests.
It gathered information about its environment using an antenna for a ra-
dio link, sonar range finders, a television camera, onboard processors, and
collision detection sensors. The robot made sense of the world through a
model composed of some rooms connected by corridors, with doors and
light switches that the robot could interact with. Typical requests con-
sisted of going to certain areas of some room, or moving objects around,
which it was able to do with the help of a set of wheels and a motor. The

23

CHAPTER 2. BACKGROUND NOTIONS

project itself culminated with the development of the STRIPS planning
language and many significant results for AI as a whole, such as the A*
search algorithm [Hart et al., 1968].

Since its inception, the field has grown considerably into various branches.
One of the most general divisions is that of domain-specific vs domain-
independent planning. Domain-specific planning is dedicated to solving
problems using highly specific representations and algorithms for their
problems, that cannot be always applied to other settings. Some exam-
ples of this can be found in path and motion planning, i.e: the process of
constructing a path and determining the actions to traverse from a starting
point to an endpoint given a map of the agent’s surroundings. On the other
hand, domain-independent planning uses generic representations and tech-
niques to solve generic planning problems. The advantage of this approach
is that planning algorithms can be immediately adapted across domains
every time a new problem is encountered. However, this requires planning
without any domain background knowledge, which can be inefficient, but
it also leads to a better understanding of the planning problem itself. Al-
though only domain-independent techniques can always be used in domain-
specific problems, the two methods are complementary. Domain-specific
planning is useful when efficiency is critical, whereas domain-independent
planning is useful when planning for many different contexts without pre-
vious knowledge.

Moreover, the assumptions the agent takes into account when defining a
model of its environment and its own capabilities largely affect the planning
algorithms that can be used for that specific setting. Many of them involve
state properties, also known as fluents, i.e: the set of values that define a
state. Some of these assumptions are the following;:

e State observability: can all properties of the state be perceived by
the agent (full observability) or only some of them (partial observ-
ability)?

e Fluent value domains: are the values that fluents can take discrete
or continuous?

o Action determinism: are the effects of actions certain and known
in advance (deterministic), or not (non-deterministic)? And if not,
are the effects governed by some probability distribution?

e Action duration: are the effects of actions immediate, or are they
dependent on some time unit?

e Action concurrency: can many actions be taken at the same time?

e Number of agents: is it only one agent able to perform an action
(single agent) or many of them (multi-agent)?

o Exogenous actions: can certain property values change without the
agent performing any action?

24

2.2. PLANNING

e Initial/goal state(s): is the initial/goal state known in advance
fully, or partially? Is the initial/goal state unique or a set of states?

e Action cost/utility: do actions have an associated cost or utility?
If so, which values can these costs/utilities have, and by which unit
are they measured?

e Re-planning: is the plan executed as-is, or are they any circum-
stances (e.g.: execution failures) in which the agent can compute a
whole new plan in light of new knowledge?

All of these assumptions affect not only the planning process of the
agent, but also the information it needs to process, the capabilities nec-
essary to acquire it, and ultimately, the complexity of computing a plan.
For instance, if the setting is one of partial observability, the agent may
never know whether the goal state has been reached or not. Likewise, if
the actions are not deterministic, the agent will not know which effects were
effective until it performs its actions, and so it may have to foresee all the
possible branching effects of its actions unless, of course, it is possible to
re-plan. In the case actions are given duration, the agent will be forced to
keep track of their effects and the moment in which they become effective.
And if many agents can perform actions in the same task, coordination and
communication between them will likely be necessary to achieve the goal.
If we consider action costs, not every sequence of actions leading to the
goal will be equivalent, and so we might be interested in finding an optimal
plan, i.e: one with minimal cost.

In short, these assumptions characterize distinct sub-fields of planning,
as they each require different algorithms and capabilities from the agent.

For the remainder of this thesis, we will focus on what is known as
classical planning, which will be the subject of the following section.

2.2.2 Classical planning

Taking perhaps the simplest assumptions from those mentioned before leads
to what is known as classical planning. This type of planning was the one
considered first by the STRIPS [Fikes and Nilsson, 1971] project. Although
the problem definition might seem simple, it developed many powerful ideas
and formed the basis for developing many non-classical planning techniques.
This setting considers problems in which:

e All states are fully observable, i.e: all of their properties are known
at each point in time.

e The values that fluents can take are discrete.

e The effects of actions are deterministic, i.e: certain and known in
advance.

o The effects of actions are immediate.

e Only a single action can be taken at the same time.

25

CHAPTER 2. BACKGROUND NOTIONS

- Hig

B C

Figure 2.1: Towers of Hanoi example.

e There is a single agent able to perform actions.

e There are no exogenous actions, i.e: property values can only
change as a result of an action performed by the agent.

e The initial state is unique. Both the initial and goal states are fully
known in advance.

e Actions have no associated cost.

e At least in the most basic form, there is no re-planning, i.e: all
actions in the plan are supposed to be executed after the planning
process.

To illustrate, one can think of the following famous puzzle.

Example 2.14 (Towers of Hanoi). There are three pegs (A, B and C)
and three disks (1, 2 and 3) of increasing width sitting on top of peg
A. The problem consists of moving all the disks to C. Only the top
disk from a peg may be moved to another peg and a smaller disk can
never be placed underneath a bigger one.

Considering the assumptions above, this puzzle can be seen as a classical
planning problem. Informally, a state of the world is represented by the
position of the disks on the pegs and we can observe them at all times. The
position of the disks (which will be the fluents of the problem), namely,
in which peg they are located and on top of which other disks, are all
discrete properties. Moreover, moving disks from one peg to another are
deterministic, immediate and non-concurrent actions, performed by a single
agent (the player) and have no associated cost.

Nevertheless, to show that the puzzle is indeed a classical planning
problem, we will need a formal description. Al planning sub-fields use spe-
cific languages to model planning problems. They serve both as a basis
for algorithms and as a characterization of what problem domains can be
captured by the sub-field. As with all planning formalisms, the representa-
tion at hand serves as an imperfect approximation of problems one would
encounter in the real world. However, by incorporating restrictive assump-
tions, one can gain both computational capabilities and representational
simplicity, which will allow us to focus on reasoning layers on top of the
actual planning domain in later chapters.

For the rest of this thesis, we will use a language based on the Planning
Domain Definition Language (PDDL) along the lines of [Russell, 2010].

26

2.2. PLANNING

Although PDDL has been described before, most literature resorts to semi-
formal definitions when it comes down to the logic-based representation of
fluents and actions. Here, we have defined all constructs using the defini-
tions and concepts of Section 2.1, for improved consistency and use in later
chapters.

As mentioned before, states are defined using fluents. A fluent denotes
a property of a state that can be affected by an agent executing actions.

We represent fluents with ground atoms without function symbols other
than constants, as described in Section 2.1, coming from a predefined lan-
guage L. For the rest of this thesis, we will suppose that the predicate
symbols P and constants € of this language are finite and restricted to the
symbols mentioned in the planning problem specification, which we will
define in what follows.

Definition 2.15 (Fluent). A fluent is a ground atom pr(cy,. .., ck),
where pr is a predicate and cy,...,c; are constants from £. F is the
predefined set of possible fluents, i.e: f € F.

A world state perceived by the agent, or simply state, is characterized
by a set of fluents in F that hold at the current point in time, which can
also be interpreted as a conjunction. The close-world assumption is taken
into account, i.e: any fluent that is not part of a state is considered to be
false.

Definition 2.16 (State). Given a set of fluents F, a state s C F is a
subset of those fluents. We denote the set of all possible states S, which
corresponds to the powerset of fluents 2F.

Having defined the elements that represent states of the world, we can
now give a proper definition for operators and actions, which trigger changes
between said states. An operator is a lifted representation of an action,
meaning that it uses first-order logic variables to represent a set of actions,
which are its ground instances.

Definition 2.17 (Operator). An operator, sometimes called action
schema, is a construct of the form:

o = (Name(o), Pre(0), Ef f(0))
Consisting of:

e An atom Name(o) = p(Xi,...,X,) with predicate p from £ de-
noting the name of the operator and Xi,...,X, a list of all the
variables that can be used in the operator,

e A set of literals Pre(o) with variables contained in {Xi,...,X,},
called the preconditions, which define the conditions in which it
is possible to execute an operator, and

27

CHAPTER 2. BACKGROUND NOTIONS

o A set of effects Eff(o) = {Ef fi(0),...,Effn,(0)} where n, € N

and for every i € [1,n,]:
Effi(o) =V(Yi,...,Y,,) Cond;(o) = Post;(0)
where:

— Yi,..., Y, are distinct variables, disjoint from Xj,..., X,

— Cond;(0) and Post;(0) are sets of fluent literals with variables
contained in {Xi,...,X,} or {Y1,...,Y,,}, denoting that
whenever the conditions Cond;(0)0 hold in a state for any
grounding 6 of {Y1, ..., Yy, }, then the postcondition Post;(0)0
represents the updates that will be applied as a result of ex-
ecuting the operator.

In the special case that Ef fj(0) contains no variables (m; = 0),
we can represent it without the quantifier, i.e: Ef f;(0) = Post;(0).

Both the literals in the preconditions and effects are restricted to be
composed of the same predicate symbols used in F, and their argu-
ments to be constants or variables in {Xi,...,X,} (and {Y1,..., Ym,}
in the case of effects). The list of variables Xi, ..., X, is meant to be
interpreted as universally quantified, meaning that the content of o
holds for any substitution of the variables to constants. We denote O
the predefined set of all operators.

An expression of the type V(Y1,...,Ys,,,) Cond;i(0) = Post;(0) is what is
typically called a conditional effect in the context of PDDL [Fox and Long,
2003] and they are useful for designing more compact representations of
planning problems.

Then, when a substitution # grounds all the variables of an operator o,
we call the result of the grounding, an action.

Definition 2.18 (Action). An action is a ground instance of an op-
erator. Given an operator o = (Name(o), Pre(o), Ef f(0)) with variables
{X1,...,X,} and a grounding substitution 8 of the variables, we call

a = (Name(0)d, Pre(0)0, Ef f(0)0)

an action, where 0 substitutes the atom in the name and literals in the
preconditions o, and

Effo= | Effi0)0

Eff(0):6 = U (Cond;(0)0)0" = (Post;(0)0)6’
0’ grounding of {Y,..., Ym; }

Notice that although 8 grounds the parameters of the action, without
grounding Yy, ..., Yy, as well with €', the resulting expression would not

28

2.2. PLANNING

be composed of ground fluent literals. By grounding all the variables
in the universal quantifier preceding Cond;(0), we ensure that E f f(0);6
and by extension, Ef f(0)0 will be composed of ground (Cond;(0)6)8" =
(Post;(0)0)0’ expressions without variables or quantifiers.

We denote A(o) the set of all actions resulting from grounding o
with constants from € as defined before.

We will also use Name(a), Pre(a), Ef f(a), Ef fi(a), Cond;(a), Post;(a)
for actions in the same way as operators.

Because all the variables in the operator are parameterized in the name
and the universal quantifiers of its effects, grounding these variables also
does so for the preconditions and effects. Therefore, both the literals in
the preconditions and effects of an action are composed of fluents or their
negation.

The semantics of actions in a state is defined in terms of fluents they
add or remove from a state. An action is applicable in a state whenever
all the positive fluent atoms in its preconditions are included in the state
and non of the negative ones are. Moreover, whenever an applicable action
is executed in a state, another state is produced in which all the positive
literals in the effects are added and the negatives are removed. All the
other fluents not mentioned in the effects are preserved. This is important
in terms of planning as it explains how the model solves the frame problem
[Shanahan, 2016], i.e: ensuring fluents in a state do not change arbitrarily
without an action being executed.

Definition 2.19 (Applicability and successor state). An action a is
applicable in state s, denoted s |= a if and only if Pre(a) N F C s and
{f:-f e(Pre(a) -F)} ns =0.

If s |= a, the successor state of executing the action is:

Succ(a,s) = (s — {f € F: AEf fi(a) s.t. s £ Cond;(a) and —f € Post;(a)})
U{f € F: 3Effi(a) s.t. s |= Cond;(a) and f € Post;(a)}

Furthermore, this can be extended to sequences of actions.

A sequence of actions = [ag, a1, . ..,a,] withn > 0 and ag, a1, ...,a, €
A is applicable in state s if all of their actions are, i.e: ag is appli-
cable in s and for every i € [1,n] it holds that a; is applicable in
Succ(a;_1, . . . Succ(ag, s)).

Given that all actions are applicable in their respective states, the
state resulting from executing a list of actions is defined as:

Succ(rm,s) = Succ(an, Succ(. . ., Succ(ay, Succ(ag, s))))

We have now defined all that is necessary to formalize classical planning
problems. This is typically done in two steps: by defining planning domains,
which capture first-order lifted information (i.e: with variables) about a
problem and actual planning problems, which are their ground instances
along with an initial state and ending (also called goal) states.

29

CHAPTER 2. BACKGROUND NOTIONS

Definition 2.20 (Classical planning domain). A classical planning do-
main is a triple D = (£, F, O) composed of a first-order logical language
L, fluents F over £ and operators O over £ and F.

Then, as we mentioned before, a planning problem is a ground instance
of a planning domain along with an initial and goal state. An initial state
represents the current state of the world before the intervention of an agent
executing actions, while a goal state is a set of literals that denote the
ending conditions after the execution of a sequence of actions under which
one can say that the problem was successfully solved.

Definition 2.21 (Classical planning problem). A classical planning
problem is a tuple T = (D, sg, g) that describes all the relevant informa-
tion that characterizes the states of the domain, the actions, the initial
state and the final conditions a plan has to reach. More precisely:

e D =(L,F,0) is a planning domain,
e 50 is a set of fluents called the initial state, and
e g is a set of literals called the goal.

We denote A(T) = ,eo A(0), or simply A when the context is free from
multiple planning problems, the set of all actions in T. In other words
A contains all ground instances of O with substitutions to constants
from L.

Let us illustrate these concepts with the following example.

Example 2.22 (Towers of Hanoi continued). Following up on the ex-
ample, we can represent the formalized planning task T as follows:

e F={clear(X): X € {dl,dg,dg,pA,pB,pc}}U
{on(X, Y) : X € {dl, ds, d3} ANY e {dl, ds, dg,pA,pB,pc}}U
{canStack(X, Y) : X € {dl, d2, dg} ANY e {dl, dz, dg,pA,pB,pc}}

e so ={clear(d,), clear(pg), clear(pc)}VU
{on(d1, d2), on(da, ds), on(ds, pa) }U
{canStack(dy, pa), canStack(da, pa), canStack(ds, pa)
canStack(dy, p), canStack(da, pp), canStack(ds, pg)
canStack(dy, pc), canStack(da, pc), canStack(ds, pc)
canStack(dy, d2), canStack(ds, ds3), canStack(dy, d3))}

e g = {on(d1,d>), on(dz, d3), on(ds, pc)}-

e O is the set of operators of the form:

a = (move(D, X, Y), Pre(a), Ef f(a))

30

2.2. PLANNING

where Pre(a) = {canStack(D,Y), on(D, X), clear(D), clear(Y)} and
Eff(a) = {clear(X),on(D, Y), =clear(Y)}.

The constants available in the problem di, do, d3 refer to the disks, while
pa, P, pc denote each of the three pegs.

Intuitively, clear(X) denotes a disk or peg that does not have a disk
on top, on(X,Y) refers to whether the disk or peg X is placed on top of
Y and canStack(X,Y) means that disk X can be potentially stacked over
the disk or peg Y. This can hold in two cases: a disk can be stacked
on a bigger disk (recall d; is smaller than dy and ds is smaller than ds)
and any disk can be stacked on a peg.

Then, an action move(D, X, Y) amounts to moving a disk D that is
placed on top of either a peg or another disk, which we will refer to
as X, to another peg or disk Y, given that both are clear (they do not
have a disk on top) and that X can be placed over Y.

Notice that the three effects of move(D, X,Y) have no condition or
extra variables apart from D, X, Y, and thus we can ignore the universal
quantifier in each effect.

As explained earlier, performing actions triggers transitions between
states. A planning problem is solved by finding a list of actions that arrives
at a goal state by successively applying all its actions from the initial state.
This list of actions is called a plan.

Definition 2.23 (Plan). A plan for a planning problem T is a list
of actions 7 = [ag,da1,...,a,] with n > 0 and ag,aq,...,a, € A that
is applicable in sy and satisfies the goal conditions, i.e: 7 |= g if
and only if it holds that Succ(r,s0) € {f € F: f € g} and Succ(r,so) N

{feF:~feg}=0.

Following this definition:

Example 2.24 (Towers of Hanoi continued). A plan for our running
example is given by:

”hanoi :[move(dl’pA’ PC)a move(d29 PA, PB)’ move(dl’PC, pB)’
move(ds, pa, pc), move(d, pp, pa), move(da, pp, pc), move(dy, pa, pc)]

And the final state is:

s7 = {clear(pa), clear(pp), clear(dy)
on(dy, dz), on(da, d3), on(ds, pc)}

We can see the successive states traversed by the plan in Figure 2.2.
It is simple to see mpanoi |= g but that the plan is not unique, i.e: there
are many ways to reach the final state, for example, by moving disk

31

CHAPTER 2. BACKGROUND NOTIONS

A B C A B C
(a) Initial state sg (b) s1 = Succ(move(dy, pa, pc), so)

A B C A B C

(¢) s2 = Succ(move(da, pa, pB) $1) (d) s3 = Succ(move(dr, pc, ps), s2)
A B C A B C

(e) s4 = Succ(move(ds, pa, pc), s3) (f) s5 = Succ(move(dy, pp, pa), s4)
A B C A B C

(g) s¢ = Succ(move(da, p, pc), s5) (h) s7 = Succ(move(dy, pa. pc)s Se)

Figure 2.2: Towers of hanoi state transitions for plan 7p4n0i-

d1 back and forth between pegs and then performing the rest of the
actions in mp4n0i, amongst other possibilities.

In most problems, many different plans can be generated to reach the
goal. However, not all plans might be as desirable. For instance, in the ex-
ample before, many useless intermediate actions could be performed (mov-
ing a disk back and forth). Furthermore, performing actions can be time-
consuming or carry costs. This is why in the following section, we will
show how the previous planning problems can be extended with numerical
utilities.

2.2.3 Planning with utilities

So far, we have defined classical planning problems that consist of finding
sequences of actions that transition from the initial state to another that
satisfies the goal conditions. However, a simple, yet powerful extension that
can be used to capture a whole new set of problems is that of utilities, in
particular, action costs and soft goals.

Representing costs and utilities allows to model problems that take
into account resources of many different kinds (e.g: power consumption,
financial cost, etc.) associated with performing actions.

32

2.2. PLANNING

Definition 2.25 (Action cost). An action cost function ¢ : A — R{
maps the actions of a planning problem T into non-negative reals.

Normally in planning, we will be interested in action cost functions that
are decidable and can be evaluated in, at the most, polynomial time with
respect to the size of its input, namely the atoms in the action and state
taken as input, in order to not produce an unnecessary overhead in the
computation of plans.

Soft goals allow defining preferences between goal states by assigning
numerical values to them. That is, they allow to compare plans in terms of
their ending state but do not define which sequences of actions constitute
a valid plan, as goals normally do.

Definition 2.26 (Soft goal). A soft goal function u : S = R} maps
the states s € S of a planning problem T into non-negative reals.

Depending on the planning model that implements this theoretical
framework, soft goals may be represented in many different ways, for ex-
ample, by using logic formulas over the fluents and assigning utilities to
the goal states that satisfy them [Gerevini et al., 2009]. However, for the
remainder of this thesis, we will consider only soft goal utilities for single
states.

Definition 2.27 (Utility planning problem). A wutility planning prob-
lem is a tuple T = (D, so, g, ¢, u), where (D, sp, g) is a classical planning
problem, ¢ is an action cost function over A the actions in D and u is
a soft goal cost function over F the fluents in D.

Given a utility planning problem T = (D, sy, g,c,u), the plans for T
are the same as those in the classical planning problem (F, sg, g, O), as the
semantics of their actions remain the same. The only difference comes from
comparing the utility of different plans. The utility of a plan & corresponds
to the costs of the actions in it and the final state.

Definition 2.28 (Plan utility). Given a plan x for T = (D, so, g, ¢, u),
its utility is defined as:

u(r) = u(Succ(r, sg)) — Z c(a)

acmw

Then, this utility establishes the notion of optimality through a com-
parison between plans.

Definition 2.29 (Optimal plan). An optimal plan for T = (D, sg, g, ¢, u)

33

CHAPTER 2. BACKGROUND NOTIONS

is one for which no other plan z” has a higher utility, i.e:
Vn’ plan for T, it holds that u(x) > u(x’).

Let us illustrate these definitions with an example. The previous ex-
ample of the ‘Towers of Hanoi’ does not demand any apparent utilities.
Instead, we will be using a typical domain inspired by planning literature
called ‘Logistics’.

Figure 2.3: Logistics planning task.

Example 2.30 (Logistics). A truck is tasked to carry a package from
location a to location e. There are five different locations a, b, c,d and e
which are connected as depicted in Figure 2.3, as well as the respective
costs of traversing from one location to another. To carry a package
from one location to another, the package can be loaded into and un-
loaded from the truck. At the start, the truck is unloaded and located
in a, while the package is in location b. Lastly, it is considered prefer-
able but not necessary if the package is not loaded in the truck in the
final state.

We can represent this problem with T = (D = (L, F, 0), sg, g, ¢, u) as
follows:

o F={at(X,Y): X € {truck, package} ANY € {a,b,c,d, e} }U
{isLoaded(truck)}uU
{connected(X,Y) : X,Y € {a,b,c,d, e}}

34

2.2. PLANNING

e O = {01 =(load(X),

{at(truck, X), at(package, X), misLoaded(truck)},
{isLoaded(truck)}),

09 =(unload(X),
{at(truck, X), isLoaded(truck)},
{—isLoaded(truck)}),

03 =(moveLoaded(X,Y),
{at(truck, X), connected(X,Y), isLoaded(truck)},
{=at(truck, X), at(truck, Y), at(package, Y)}),

04 =(moveUnloaded(X,Y),
{at(truck, X), connected(X, Y), misLoaded(truck)},
{=at(truck, X), at(truck,Y)})}

so ={at(truck, a), at(package, b)}U
{connected(X,Y): (X,Y) € {(a,), (b,c), (b,d), (b,e),(c,e),(d,e)}}

g = {at(package, e)}.

c(load(X)) = 0,

c(unload(X)) = 0,

c(moveLoaded(X,Y)) =1 if and only if (X,Y) # (b, e),
c(moveLoaded(X,Y)) = 3 if and only if (X,Y) = (b, e),
c(moveUnloaded(X,Y)) = 1 if and only if (X,Y) # (b,e), and
c(moveUnloaded(X, Y)) = 3 if and only if (X, Y) = (b, e).

u(s) = 10 if and only if isLoaded(truck) ¢ s, and
u(s) = 0 if and only if isLoaded(truck) € s.

Considering the following three plans:
e 11 = [moveUnloaded(a, b), load(b), moveLoaded(b, e)],
e 11 = [moveUnloaded(a, b), load(b), moveLoaded(b, e), unload(e)], and

e 3 = [moveUnloaded(a, b), load(b), moveLoaded(b, c),
moveLoaded(c, e), unload(e)]
We can calculate the utilities with the formulas given above. Then, we

have that u(r;) = —4, u(re) = 6 and u(mr3) = 7. Thus, out of the three
plans, 3 is considered preferred.

Although utilities like the ones described above are a well-established
model to represent preferences in deterministic planning problems, other
mechanisms can be used, for instance, to represent qualitative preferences
on trajectory properties, represented using logic formulas and evaluated
with respect to sub-sequences of actions in plans. Extensive work on auto-
mated planners designed for this model can be found in the procedures

35

CHAPTER 2. BACKGROUND NOTIONS

of the fifth international planning competition (IPC5) [Gerevini et al.,
2009]. Also, existing research has developed planners for classical plan-
ning problems where action costs can be state-dependent [Ivankovic et al.,
2014, GeiBer et al., 2015].

It is also worth mentioning that the action costs we consider can be com-
piled away into soft goals by transforming the planning problem through
the procedure described in [Keyder and Geffner, 2009]. On the other hand,
action costs provide a useful technique to model many problems and can
provide a more compact representation in many cases.

2.2.4 Computation

It is well known that even classical planning problems present hard com-
plexity issues when searching for plans. Determining if a plan exists or
finding it is PSPACE-hard [Béackstrom and Nebel, 1995], as well as find-
ing an optimal plan if costs and utilities are considered [Helmert, 2003],
although much harder in practice.

This is why numerous techniques have been developed in order to allow
planners to find any plan or optimal plans with reasonable time and space
constraints for a wide variety of problems.

Many of the techniques for classical and utility planning rely on ground-
ing the problem, i.e: computing all the possible states and actions from the
operators. By doing this, one can construct a graph where the nodes are
the possible states and edges denote actions. We call this graph the state
transition system.

Definition 2.31 (State transition system). The embedded state tran-
sition system of the planning problem T = (D, sq, g, u, ¢) is a weighted
labeled directed graph STS(T) = (S, E), where:

e The set of vertices S corresponds to the set of all possible states,
i.e: all the possible combinations of fluents, in T.

e There is a labeled weighted edge e = (s, c(a), name(a),s’) € E if and
only if there exists an action a € A(T) such that a is applicable
in s and s’ = Succ(a,s). Here, s represents the starting node and
s’ its successor, while name(a) is a ground name predicate of the
underlying action and c(a) its cost.

In the case of classical planning problems, it suffices to consider the
same graph without weights, or with all weights in the edges set to zero.

To calculate the utility of a plan, it suffices to sum the weights of the
edges traversed (which correspond to the actions of the plan) and subtract
this number from the utility of the final state.

Let us illustrate an example of such a graph in what follows:

Example 2.32 (Logistics continued). Given the planning problem T
described before, STS(T) is as described in Figure 2.4 where we use the

36

2.2. PLANNING

shorthand notation s : {a, b, ¢, d}x{a, b, ¢, d}x{0, 1} + S to represent the
nodes of the graph (which correspond to the states of T) in a compact
manner:

s(X, Y, Z) ={at(truck, X), at(package, Y)}U
{isLoaded(truck) — Z =1}U
{connected(X,Y): (X,Y) € {(a,b), (b, c),(b,d), (b,e),(c,e),(d, e)}}

For instance, s(a, b,0) would refer to the initial state sp, in which the
package is in location b, while the truck is in a and is not loaded
(represented by Z = 0).

Note that we omit the states of the planning task that are un-
reachable from the initial state and we display the cost and the name
of the underlying action of each edge. Furthermore, we have marked
the initial state s(a, b,0) and the two reachable goal states s(e, e, 0) and
s(e, e, 1) by using thicker boxes.

By using this representation, plans can be retrieved by computing paths
from the initial to the goals states. Therefore, planning is reduced to a
search problem, aside from the generation of the state transition graph.

However, most times searching the entire space in such a way is in-
feasible, as the amount of states is exponential in the size of the fluent
set. This is why, many algorithms take into account heuristics [Geffner
and Haslum, 2000]. A heuristic function h : S +— R maps states to a
numeric value that estimates the cost of getting from the initial state to
the other state in the argument of the function. We say that a heuristic
function is admissible if and only if it does not overestimate the minimum
cost of any state, i.e: for every state s € S it holds that 0 < h(s) < h*(s) =
min{cost(r) : Succ(r, sp) = g}

Various heuristics have been studied for planning. Most of them are
based on what is known as relazations [Hoffmann, 2003], which consists
of constructing simpler versions of the problem, for example, by not con-
sidering negative literals in action effects, known as delete-relaxations, or
eliminating all the fluents using some predicate symbol, which is known as
abstraction [Sacerdoti, 1974]. Another well-known strategy is that of land-
mark computation [Karpas and Domshlak, 2009], which amounts to finding
intermediate (artificial) goals that a plan must reach in order to later find
the final states that satisfy the real goal.

Some of the families of algorithms that have been developed for com-
puting plans in classical and utility planning problems efficiently can be
classified as forward-state space search, backward state-space search and
plan-space search.

A forward state-space search algorithm consists of searching forward
from the initial state to the goal states. It works by maintaining a list of
candidate nodes, starting with only the initial state, along with other useful
information (like the heuristic value) and the cost required to reach each
of the nodes if utilities are considered. Then at each step, it proceeds by
taking the head of the list, generating their adjacent nodes, pruning those

37

CHAPTER 2. BACKGROUND NOTIONS

s(e,b,0)

1, moveUnloaded(c, e) /

s(c,b,0)

1, moveUnloaded(b, c) i

/

1, moveUnloaded(b, e)

‘\ 1, moveUnloaded(d, e)

s(d,b,0)

/ 1, moveUnloaded(b, d)

5(b,0,0)

1, moveUnloaded(a, b)

L

s(a,b,0)

0, unload(b)

\
/

0, load(b)

s(b,b,1)

7

1, moveLoaded(b, c)

[

s(c,c,1)
' \
1, moveLoaded(c, e)

S

0, unload(c)
p:
s(c,c,0)

‘ 0, load(c)

1, moveUnloaded(c, e)

l

3, moveLoaded(b, e)

RN

1, moveLoaded(b, d)
0, load(d)

\ e
s(d,d,1) s(d,d,0)
~_ 7 ‘

0, unload(d)
0, moveUnloaded(d, e)

l

1, moveLoaded(d, e)

el

s(e,c,0)

s(e,e 1)

s(e,d,0)

0, unload(e)

0, load(e)

s(e,e,0)

Figure 2.4: State transition system for the ‘Logistics’ example.

38

2.2. PLANNING

that are unpromising and adding the rest of them to the list. Finally, the
algorithm stops when the required plan is computed, either by reaching any
goal or reaching one with minimum cost in the case of utility planning.

The way in which nodes are selected from the list, how their children
are computed and which of them are pruned change from one algorithm to
another. Some of the strategies known in the literature include [Ghallab
et al., 2004]: breadth-first search, depth-first search, hill climbing (greedy)
search, uniform cost search, A* search, depth-first branch and bound search
and iterative deepening.

As opposed to the last approach, backward state-space search starts from
the goals states and traverses back to the initial state to find a plan. In this
case, the computed plan is given by the inverse of the traversal. Many of
the heuristics that work for forward-search also apply to backward search,
with the caveat that the heuristic cost they calculate is the one necessary
to reach the current state from the initial state, instead of being the one
needed to reach a goal state from the current.

Plan-space search, in contrast, works by reformulating planning prob-
lems as constraint satisfaction problems and then using constraint satisfac-
tion techniques to generate the plans.

For more information about the algorithms, we refer the reader to [Ghal-
lab et al., 2004].

2.2.5 Implementations

Extensive research on automated planners designed for the planning prob-
lems modeled in this chapter can be found in the procedures of the various
international planning competitions (IPC).

Naturally, the state-of-the-art implementations mentioned in this sec-
tion present very complex and highly optimized algorithms that combine
and optimize many of the ideas we have described so far in the previous
section, along with other ideas and heuristics. Because describing all of
these concepts would be largely out of the scope of this thesis, we will only
mention some of these systems and a reference to their author’s work.

The IPC serves as a reference for comparing algorithm implementations
and techniques for PDDL problems. Various tracks of these competitions
benchmark state-of-the-art planners for different types of planning prob-
lems. In particular, the Satisficing track compares planners for classical
problems, while the Optimal track also takes into account action costs. In
the 2008 edition, a Net benefit track was added, which allowed both action
costs and soft goals. Later, this and other kinds of preferences were added
to the Optimal track. Moreover, in the 2011 edition, the Optimal and Net
benefit tracks were canceled because only one planner was submitted. Some
of the winning planners for these two tracks are listed in Table 2.1.

39

CHAPTER 2. BACKGROUND NOTIONS

7 Year 7 Reference Track 7 Selected planners (winners, or novel) 7
2004 [Hoffmann and Edelkamp, 2005] Optimal SATPlan [Kautz et al., 20006]
Satisficing SGPlan [Chen et al., 2004]
Fast Downward [Helmert, 2006]
2006 [Gerevini et al., 2009 Optimal SATPlan
MIPS [Edelkamp and Helmert, 2001]
Satisficing SGPlan
2008 [Helmert et al., 2008] Net benefit | Gamer [Edelkamp and Kissmann, 2009]
Optimal Gamer
Satisficing LAMA [Richter et al., 2011]
2011 [Lépez et al., 2015 Optimal FDSS [Helmert et al., 2011]
Satisficing LAMA
2014 [Vallati et al., 2018] Optimal SymBA* [Torralba et al., 2014]
Satisficing IBaCoP2 [Cenamor et al., 2014]
2018 | [Torralba and Pommerening, 2018] | Optimal Delfil [Katz et al., 2018]
Satisficing FDSS 2018 [Seipp and Réger, 2018]

Table 2.1: Best scoring planners of the last IPCs.

40

Machine ethics

3.1 Historyand context 41
3.2 Taxonomies 46
3.3 Sources of codes of conduct 49
3.3.1 Consequentialist ethics 49
3.3.2 Deontological ethics 51
3.3.3 Virtueethics 52
3.3.4 Primafacieduties. 52
3.3.5 Doctrine of double effect 53
3.3.6 Othertheories. 53
3.4 Implementations L. 54
3.4.1 Top-down ethical systems 55
3.42 Bottom-up ethical systems 59
3.4.3 Hybrid ethical systems 60

This chapter will serve to introduce the field and concepts of Machine
ethics and review the state-of-the-art implementations. First, an overview
of the history and context of the subject, its inception and motivations
will be presented. A comprehensive description of the different taxonomies
characterizing ethical agents will be elaborated, along with the distinct
characteristics of each type. We will glance over different sources of codes
of conduct that have been implemented and inspired different views on
the field, and briefly mention some literature in which they were used. And
finally, we will examine various state-of-the-art implementations of machine
ethics.

3.1 History and context

Artificial Intelligence (AI) is the subfield of computer science that studies
the development of intelligent computational agents [Russell, 2010], i.e:
that can perform tasks that typically require human intelligence. In this
field, automated agents are computational systems that can make decisions
on their own without human intervention.

Automated systems were once developed for specific tasks and many
times operated by professionally trained users. Currently, it is becoming
more common for automated agents to work with minimal or no human
oversight in contexts where their actions can have an impact on people. In
addition, a user might not know that an interaction with an automated

41

CHAPTER 3. MACHINE ETHICS

agent is taking place, or might not be aware of what parts or behaviors of
a system have been automated. In consequence, the field of Al ethics was
developed to prevent automated agents from having a negative impact on
society when they are deployed.

There are two main ways that have been developed to alleviate this kind
of concern. The first is by enabling or improving human oversight of au-
tomated agents by enhancing the transparency, algorithmic fairness, data
privacy and reliability of their underlying decision-making systems. This
is tightly linked to the field of explainable artificial intelligence (XAI) [Xu
et al., 2019], which strives to develop models that increase the understand-
ing of human users toward machines, notably when dealing with black-box
systems [Adadi and Berrada, 2018]. The second approach, which is the one
that concerns this thesis the most, is called machine ethics [Anderson and
Anderson, 2007] and consists in making sure that machines behave ethically
by enforcing certain behaviors while not requiring human oversight.

Machine ethics was conceived to study how to automate moral reason-
ing. Many of the definitions and notions regarding machine ethics were
first discussed and coined during the 2005 AAAI Symposium [Anderson
and Anderson, 2007].

Ethics and morality. Typically, the terms ethical and moral behav-
ior are used interchangeably and are tightly associated with the idea of
distinguishing between right and wrong, concerning some code of conduct
put forward to describe a rational, or good-willed person [Gert and Gert,
2020]. However, different sources sometimes make a distinction [Harper,
2009]. For instance, some communities consider morality to be personal
and that ethics should refer to the views of society as a whole. Yet, when
describing the behavior of a machine, this distinction might not be nec-
essary, as a machine does not distinguish between its values and those of
society like a person would. This interesting question will nevertheless not
be our concern in this thesis.

In the context of Al, an ethical machine is one that has been pro-
grammed to follow some given rules of conduct, or considerations, of what
correct moral behavior is, according to society, in addition to other opera-
tional constraints, to make its behavior more acceptable. As such, the es-
sential problems it poses for decision-making systems are (i) deciding what
correct moral behavior is for the machine, and (ii) how to make the ma-
chine combine this information with the rest of the operational constraints
in the decision-making process.

Some sources distinguish the concept of moral machines (capable of
moral reasoning) from ethically aligned machines (discussed in Section 3.2),
which in the words of the IEEE Global Initiative on Ethics of Autonomous
and Intelligent Systems [Shahriari and Shahriari, 2017], describes machines
that function in an ethically desirable way, or at least ethically acceptable.

As we explained in the Introduction (see Chapter 1), determining what
makes a decision or action correct can be a very complex problem if the
machine ought to mimic human ethical reasoning. Ethical dilemmas, i.e:

42

3.1. HISTORY AND CONTEXT

problems in which someone is forced to choose between multiple unethical
alternatives, serve to exemplify why it may be so difficult. Recalling Chap-
ter 1, the Bystander trolley problem [Foot, 1967], which is the original of
its many variations, can be described as follows:

A runaway trolley is on the way to kill five people tied to its
current track. You are standing far away and next to a lever,
which if activated, would change the trolley’s path to a side track
i which only one person lies. You have only two options, either
to pull the lever or do nothing.

Even to this date ethical dilemmas such as this and its different varia-
tions remain a topic of debate amongst philosophers [Bruers and Braeck-
man, 2014] and provide arguments to compare ethical theories, refine them,
and demonstrate defective reasoning.

A seminal work sparking an interest in machine ethics and the over-
all application of ethics in AT was the ‘Moral Machine experiment’ [Awad
et al.,, 2018]. There, the authors studied a crowdsourced corpus of in-
formation about many variations of the trolley problem in the context of
automated driving agents, as depicted in Figure 3.1 and gathered over 40
million decisions from people of various countries and cultures. In doing so,
they uncovered many nuances to the elicited societal choices, attributed to
the cross-cultural variation of moral preferences, concluding that cultural
traits and institutions have a great impact on what people think is moral
or not.

Figure 3.1: Moral Machine [Awad et al., 2018] example case.

This in turn has further shown just how complex automating moral
reasoning might be and the kind of problems that can carry over to ma-
chines. If moral reasoning cannot tell us what decision is moral for such
dilemmas, we cannot expect ethical theories to be applied to automated
agents without additional reasoning.

While it is possible to link the trolley problem to the decisions an au-
tonomous system such as a driver-less vehicle might be faced with (a dis-

43

CHAPTER 3. MACHINE ETHICS

cussion that has been the subject of many popular news articles ! 2 3), the
problem is that dilemmas such as this demand that we as a society take a
stance about how we want machines to solve them, which again, depends
on many cultural and societal factors.

Some bodies of research have since criticized the ideas behind the Moral
Machine’s mechanism of aggregating opinions for ethical decision-making,
expressing concern about the incapability to explain decisions that have
been inferred [Etienne, 2021] (as will be discussed in Section 3.4.2), and
the danger of making policies for autonomous vehicles without sufficient
structural context about each particular situation [Jaques, 2019].

It is expected that different cultures and institutions will have incon-
sistent priorities when faced with moral choices. A moral machine will
typically be faced with such conflicts and be deployed in contexts where
multiple sources dictate what counts as moral, e.g: stakeholders, users,
experts, the law, and general societal rules.

Motivations. As for the motivation behind the study of this field, [Cave
et al., 2018] propose four main benefits of giving machines some ethical
understanding:

1. Improving individual machine decisions: this is the most typical
setting of machine ethics and involves granting the machine ethical
considerations in critical domains. In other words, domains in which
there are ethical considerations and a possible negative impact on
people’s well-being, or uncertainty about the consequences of deci-
sions. The main risks that might prevent a machine from taking
ethical decisions in this setting are model inaccuracies, limited com-
putational capacity and failure to capture or represent the severity of
ethical considerations.

2. Improving how machines justify decisions within a moral
system: because many people are doubtful about letting automated
systems take over human decisions (for instance, in the case of au-
tonomous driving vehicles), granting machines the ability to explain
the ethical reasons behind their decisions can help them be considered
more trustworthy. The biggest challenge, in this case, is to make the
explanations sufficient, convincing and understandable to humans.

3. Improving human moral decisions: because human understand-
ing and reasoning are not perfect, ethical machines could help people
by acting as a decision-support system and pinpointing certain as-
pects between alternatives they do not take into account.

Thttps://www.nature.com/articles/d41586-018-07135-0

2https://www.newyorker.com/science/elements/a-study-on-driverless-car-ethics-of
fers-a-troubling-look-into-our-values

3https://www.computer.org/publications/tech-news/trends/ethics-safety-and-sof
tware-behind-self-driving-cars-in-the-aftermath-of-first- pedestrian-killed /

44

https://www.nature.com/articles/d41586-018-07135-0
https://www.newyorker.com/science/elements/a-study-on-driverless-car-ethics-offers-a-troubling-look-into-our-values
https://www.newyorker.com/science/elements/a-study-on-driverless-car-ethics-offers-a-troubling-look-into-our-values
https://www.computer.org/publications/tech-news/trends/ethics-safety-and-software-behind-self-driving-cars-in-the-aftermath-of-first-pedestrian-killed/
https://www.computer.org/publications/tech-news/trends/ethics-safety-and-software-behind-self-driving-cars-in-the-aftermath-of-first-pedestrian-killed/

3.1. HISTORY AND CONTEXT

4. Improving how people justify decisions within a moral sys-
tem: machine ethics could help develop improved ethical theories
and conciliate views on moral dilemmas by forcing us to formulate
these theories in a computable format. By doing this, ethicists would
have new tools to verify the implications of moral theories automati-
cally and therefore improve human moral understanding and decision-
making. Concretely, by producing moral decision theories that mimic
human behavior, underlying principles, biases and priorities behind
human decisions can be uncovered, as well as inconsistencies when
applying the same principles to other scenarios.

From a less practical perspective, some researchers [Anderson et al.,
2005b, Berreby et al., 2015, Tolmeijer et al., 2020] have also suggested that
studying machine ethics could lead to a better understanding of ethics itself
by discovering which of their ideas are even applicable to artificial agents,
how they can be encoded using formal frameworks and uncover inherent
problems in some theories through automated reasoning.

Application domains. So far, machine ethical reasoning has been stud-
ied in a wide variety of application domains. Omne of the most popular
domains in current literature is that of autonomous vehicles [Awad et al.,
2018, Anderson and Anderson, 2018]. Closely related but with an even more
critical set of risks is that of unmanned aircraft, which was studied in [Den-
nis et al., 2016]. Then [Anderson et al., 2006] studies the implementation of
ethical reasoning in the context of healthcare robots by studying the task of
administering medicine to patients through an automated agent and devel-
oping a system that uses supervised machine learning to create rules that
discern whether the duty to protect the patient’s health is more important
than their autonomy. Furthermore, [Lindner and Bentzen, 2017] presents a
robotic agent that is capable of solving ethical dilemmas through reasoning
and displaying agreement or disagreement through words and gestures.

Future challenges. There are numerous challenges for the field machine
ethics coming from both technical and non-technical dimensions [Anderson
et al., 2006, Moor, 2011, Tolmeijer et al., 2020, Brundage, 2014]. From
the perspective of ethics, [Moor, 2011] mentions the problem of overcoming
our limited understanding of what an effective ethical theory for a ma-
chine could be and that domains like ethics are heavily nuanced by human
notions because there is no agreement so far on how an ethical machine
should act in every application domain. This is why the study of machine
ethics and the development of both new theories for computational agents
and reasoning mechanisms themselves are of utmost importance. Likewise,
[Brundage, 2014] explains the difficulties posed by the plurality of ethical
values people use to make decisions, their possible conflicts and how this
might carry over to machines. The article also explains how, due to the
computational limitations of computational agents, the complexity of the
world and the lack of sufficient information, agents might not even be able

45

CHAPTER 3. MACHINE ETHICS

to compute ethical courses of action in some scenarios. Similarly, [Malle
and Scheutz, 2019] discusses the importance of developing new learning al-
gorithms that can adapt general ethical norms to specific contexts due to
the complexity and particularities of human norms, and creating new moral
vocabularies to express moral judgments, explain decisions, or apologize in
the case it is necessary. Furthermore, [Tolmeijer et al., 2020] stresses the
importance of developing systems that can take into account and com-
bine multiple ethical reasoning mechanisms, both from moral theories and
practical domain-specific codes of conduct. In addition, the authors em-
phasize the need for domain-specific benchmarks, i.e: datasets with all the
relevant cases of unethical behavior, based on input from domain experts,
that permit to compare implementations between one another and verify
their ethical alignment. They also highlight the need for algorithmic trans-
parency, code usability and code availability to compare implementations
easily. Moreover, [Baum, 2020] mentions three further challenges from a
more technical viewpoint: determining the sources of opinion to be consid-
ered when eliciting moral considerations, (ii) how to understand/measure
their views on these considerations, and (iii) which method to use to aggre-
gate the opinions of different people. In short, the field of machine ethics is
one that carries challenges coming from multiple sources such as modeling
and reasoning with intrinsically human concepts, computational complexity
issues and from a more technical perspective, the availability of implemen-
tations and benchmarks that can help verify and compare systems.

Having discussed the motivations and challenges of the field, we will now
present some useful concepts and taxonomies that will help us understand
and classify the different kinds of systems that have been developed for
ethical machines.

3.2 Taxonomies

Provided that information sources about ethical behavior in a certain con-
text are available, one question remaining is what makes the behavior of a
machine moral, or rather, how can it act in such a way that people deem
it as moral. This, in turn, will depend on many factors, such as autonomy,
and societal impact.

The level of autonomy of systems can be divided between those which
are operated by humans (controlled), those that perform fixed functions
demanded by humans without intervention (automatic) and finally those
that can make decisions on their own (autonomous). Depending on this
level of autonomy, different considerations and levels of morality should be
expected from a moral machine [Wallach and Allen, 2008]. Alternatively,
a moral machine in some cases can help humans make decisions. That
is, applying automated moral reasoning for decision support rather than
decision-making.

Furthermore, Moor [Moor, 2011] recognizes four types of ethical agents,
depending on the impact its decisions have on people and their awareness
of their ethical considerations:

46

3.2. TAXONOMIES

1. Ethical-impact agents: those which are deployed in contexts where
ethical nuances are present and their behavior can affect people. For
instance, cameras or traffic lights affect people’s privacy and safety,
respectively, but are not programmed to follow any moral behavior.

2. Implicit ethical agents: those that are programmed by a person to
behave more ethically or avoid unethical conduct, but do not possess
any real notion of ethical considerations. An example of such a system
would be the automatic doors of a tram or an elevator, which sense if
a person is standing next to the door, and would delay its operation
until the person moves. Such a system would be considered to act
ethically just by functioning correctly, regardless of whether or not it
has an understanding of ethical considerations.

3. Explicit ethical agents: those that can reason and make decisions
that depend on ethical considerations and possibly follow principles
that are encoded in one way or another in their representation. This
is the kind of agent we will be interested in this thesis and the one
that the field of machine ethics aims to develop.

4. Full ethical agents: those that make and can justify their decisions
over ethical considerations at the same level a person would. It is
debatable whether a machine could show such a level of reasoning,
given that a person’s ethical understanding depends on various human
notions that are far from the capabilities of current machines, such
as consciousness, intentionality, and free will.

Both implicit and explicit ethical agents can be considered ethically
aligned agents, as we mentioned in the previous section. In the case of
this thesis, we will focus on explicit ethical autonomous agents, that is,
agents that can perform tasks without human intervention and take ethi-
cal considerations into their decision-making process to prevent unethical
behavior.

Moreover, systems implementing explicit ethical agency can either take
ethical considerations at the same level as the other decision-making prop-
erties (as in [Anderson et al., 2005b, Lindner et al., 2017]) or do so in a
different reasoning layer. This last approach is the one taken by ethical
governors [Arkin et al., 2009]. Practically, it consists of adding an extra
reasoning layer (possibly but not necessarily as an external agent) to auto-
mated agents to determine which of their actions might infringe on ethical
values. Then, when such a situation becomes available, agents can select
the most ethical path of action concerning their ethical reasoning layer,
built on top of their existing decision-making layer. Some examples of this
approach include the work of [Arkin et al., 2009], which embeds this extra
layer within the agent and rejects action plans that violate ethical con-
straints. [Dennis et al., 2016] propose a framework for BDI agents that
instead selects action plans which minimize ethical constraint violations.

Many different kinds of approaches have been developed for Al ethics
implementations. Perhaps one of the most fundamental divisions in the

47

CHAPTER 3. MACHINE ETHICS

current literature is that of [Allen et al., 2005], which separates approaches
into:

1. Top-down: methods that explicitly seek to model ethical rules or
implement ethical theories,

2. Bottom-up: methods that teach the machine to learn what is ethical
from past experiences through learning, and

3. Hybrid: methods that combine both approaches.

We will cover a comprehensive amount of literature for each of these
approaches in Section 3.4.

Top-down methods normally implement existing codes of conduct, for
instance, coming from the law, rules of thumb, or moral theories, i.e: the
branch of philosophy that studies the rightness of actions. They are partic-
ularly useful when there is a big amount of information about the domain
and are typically designed using symbolic Al approaches, such as rule-based
systems. An advantage, in this case, is that decisions can be justified using
the underlying system and ethical considerations used to make decisions.

On the other hand, they carry the typical limitations of the imple-
mented theory. In the case of ethical theories or the law, it is problematic
to hold the decisions to some noble standard that is hard to apply to ev-
ery situation without being inconsistent, or worse, rendering all decisions
immoral. Additionally, they require the machine to be aware of both the
ethical considerations and how to translate and use them in their theory. In
some cases, this can include understanding various complex notions, such
as possible consequences, causality and intentionality [Berreby et al., 2018].

Bottom-up approaches consist of building autonomous agents that can
learn how to behave ethically by example. Similar to top-down approaches,
it is necessary to provide the agent with information about the scenario and
ethical considerations in the domain in which it operates. The difference lies
in not modeling a code of conduct, but rather letting the agent learn from
a corpus of data, given by one or many information sources, showing what
is the appropriate ethical choice in many scenarios. The goal is to mimic
human behavior with less structured information. Such learning approaches
are typically implemented using statistics-based techniques coming from the
field of machine learning.

These methods are well-known to perform properly with big and di-
verse corpora of inconsistent data, and as we shall see, domains with ethical
nuances suffer many times from inconsistencies between different informa-
tion sources and even in the same source in very similar situations, due
to the intricacies of ethical reasoning. Yet, one significant difficulty is the
elicitations of a corpus. Some approaches request the opinion of experts
(ethicists), which can be a domain-dependent, slow and expensive solu-
tion, while others in the style of the moral machine, have resorted to a
crowd-sourcing approach, i.e: consulting a large number of people, typi-
cally online, for payment or as volunteers. Lastly, verifying and explaining
that a decision is ethically correct using a bottom-up approach is more

48

3.3. SOURCES OF CODES OF CONDUCT

difficult without an underlying ethical theory, which are highly desirable
qualities in ethically-nuanced domains.

3.3 Sources of codes of conduct

As mentioned in the previous sections, many of the theories and concepts
behind machine ethics implementations stem from other fields. This is
particularly true for top-down approaches, which apply codes of conduct
to constrain the behavior of a decision-making agent. We call codes of
conduct the theories, mostly thought for human subjects, about which acts
are deemed right or wrong. For the particular case of machine ethics, these
theories often stem from moral philosophy, the law, or other theories, for
instance, directly adapted from existing Al strategies.

Moral philosophy [Attfield, 2012] is the sub-field of philosophy that
studies what makes actions right or wrong. Its theories provide different
concepts and evaluation methods to come up with answers, or at least
points of view, in situations where human values are essential. This field
is often divided into three main branches: meta-ethics, normative ethics
and applied ethics. Meta-ethics studies the meaning of the essential terms
surrounding ethics, such as what justice, right, wrong, morality and truth
are. Normative ethics focuses on developing and analyzing theories that can
deduce what is right and wrong. Many of these theories, as we shall see,
have been already studied in the context of machine ethics as frameworks
for aligning machines into ethical values. Finally, applied ethics is the
branch concerned with the application of moral concepts to practical real-
life problems. This is highly related to the field of machine ethics, which
deals with practical problems by computational reasoning.

In what follows, we will describe the main normative ethical theories
and other approaches that have been used in machine ethics literature.
Most of these theories have been studied and developed over the course of
hundreds if not thousands of years, this is why, a complete account of all
the philosophical subtleties and historical precisions surrounding them is
avoided in favor of a more compact, yet sufficient presentation of the main
ideas, based on recent surveys and articles.

3.3.1 Consequentialist ethics

Perhaps the most popular theory amongst the literature in machine ethics
literature is consequentialism (see [Sinnott-Armstrong, 2021] for a recent
overview). Some of its most notable proponents were the philosophers
Jeremy Bentham (1748-1832), John Stuart Mill (1806-1873) and Henry
Sidgwick (1838-1900). In this theory, actions are evaluated only upon their
consequences irrespective of all other factors, i.e: it implies that the end
justifies the means. The precise method to determine the rightness of action
varies between branches of consequentialist ethics [Haines, 2006].
Some of the most prominent contrast points are:

e how to determine which consequences are good or bad,

49

CHAPTER 3. MACHINE ETHICS

e how are consequences of different actions compared,

e from which perspective the consequences are evaluated (oneself, other
individuals, or both), and

e who judges the consequences.

The interpretation of these aspects characterizes the different branches
of consequentialist ethics. One of the most typical elements of contrast
between theories is that of the perspective of consequence. While utilitari-
anism [Mill and Bentham, 1987] judges an action right if it maximizes the
well-being of every party involved (oneself and other people), egoism only
takes into account the happiness of oneself and altruism considers every
else but oneself.

Another point of contention is that of determining through which moral
factor to measure the rightness of consequences. Classic consequentialist
theories take into account a broad view of these factors. In contrast, he-
donism, also called hedonistic act-consequentialism, regards pleasure (and
conversely, pain) as the most important moral pursuit of individuals in a
decision, disregarding other factors such as freedom and justice.

Another distinction can be made between act-consequentialism, which
considers an action to be right when it results in more good than with
any other alternative, and rule-consequentialism, perhaps an attempt to
reconcile utilitarianism with deontological theories (which we will describe
in the next section), that states that an action is right if it adopts rules
whose adoption would bring about the best consequences.

Of course, many other theories, assumptions and combinations of the
mentioned concepts exist and denote alternative views on consequentialist
ethics.

If we consider the trolley problem seen before, consequentialism typi-
cally chooses to sacrifice one person to save the other five, as that would
produce the most amount of well-being if all lives are held into equal con-
sideration. As another example, many people would agree that lying is
inherently bad, but that provided that lying could save lives, then the end
could justify the means. This is precisely the stance of consequentialist
theories, as it only values the consequences to determine the rightness of
actions.

In the case of machine ethics, this theory can prove one of the most
straightforward to implement [Anderson et al., 2005a, Winfield et al., 2014,
Lindner et al., 2017, Lindner et al., 2019, Berreby et al., 2017, Bonnemains
et al., 2016], because decision-making systems naturally model the conse-
quences of actions. On the other hand, some of the problems of applying
this theory come down to measuring the goodness of consequences on ethi-
cal terms, the fact that some consequences might be incomparable, how to
measure the well-being brought about by consequences, and how machines
consider different people’s well-being.

50

3.3. SOURCES OF CODES OF CONDUCT

3.3.2 Deontological ethics

Deontological ethics (see [Alexander and Moore, 2021] for a recent overview)
is a normative ethical theory that assesses the rightness of actions accord-
ing to duties and obligations that should always be followed. As opposed
to consequentialism, deontological ethics considers that the consequences of
an action do not that make it right or wrong, but rather the duties of action
that must be followed. Typical examples of obligations are ‘not to kill” and
‘not to lie’. Its ideas can be traced back to divine command theory [Quinn,
2013] (following the will of God) and are famously known by Immanuel
Kant’s (1724-1804) notion of categorical imperative. According to him, a
person should ‘act only according to the maxim (known as maxim-of-will)
by which (s)he can also will that it would become a universal law’. In other
words, to act in such a way that one would accept anyone else to act in
such a way themselves.

Many branches of deontological ethics exist, but they all retain the view
of judging the rightness of one action with respect to certain norms (i.e:
rules of conduct), that convey human duties and obligations. A distinc-
tion for deontological theories can be made between agent-centered, which
focuses on the permissions and obligations of the person acting, and patient-
centered, i.e: those whose rules of conduct center around the rights of the
people affected by the action, e.g: the right of other people to not be used
as a means to an end.

Apart from the classical interpretation, contractarian ethics [Sayre-
McCord, 2013] interprets deontological norms to be derived from social
contracts and mutual agreements. A social contract in this sense would be
a pre-defined agreement among a set of individuals about the norms and
requirements that their actions should follow. Furthermore, divine com-
mand theory [Quinn, 2013] is a type of deontological theory that states
that the rightness of actions is to be determined by the will of God and
norms, obligations and permissions are commanded by God.

The most classical interpretations of deontological ethical theories typ-
ically consider turning the lever in the trolley problem to be inadmissible,
as killing will always be a prohibition. A more detailed interpretation, how-
ever, could provide norms that take additional considerations for particular
cases like this one, in which all choices end with the death of someone. It is
easy, nonetheless, to see how providing norms for every possible situation
in this manner would become cumbersome and possibly lead to exceptional
cases with undesirable results.

The main benefit of deontological theories is their consistency, i.e: the
norms are established in advance, can be applied in any situation and serve
as a justification for all actions. On the other hand, many deem it too
inflexible and argue that by sticking to norms, consequences and the im-
mediate welfare of people are ignored. Also, as mentioned before, providing
norms for every possible situation is a difficult task in itself. Along with
consequentialist ethics, it is one of the most popular theories for Al systems
[Ganascia, 2007, Lindner et al., 2019, Noothigattu et al., 2018, Bringsjord
and Taylor, 2012].

51

CHAPTER 3. MACHINE ETHICS

3.3.3 Virtue ethics

Virtue ethics (see [Hursthouse and Pettigrove, 2018] for a recent overview)
is a theory that, in contrast to deontological and consequentialist theories,
places all the importance on the characterization of the person acting. Its
ideas can be traced back to Aristotle (384 BCE-322 BCE). Instead of em-
phasizing consequences and rules, virtue ethics judges an action to be right
if and only if the person acting is expressing good will and moral values.
When faced with a decision, the basic question it uses to determine right-
ness is: ‘would this action be what a virtuous person would do?’. These
virtues should contribute to social welfare and harmony. Some examples
include generosity, courage and moderation. Of course, different groups
of people would hold different virtues in higher or lower regard depend-
ing on their culture, e.g: while the ancient Greeks would hold pride as an
important virtue, medieval Christians preferred humility instead.

Many bottom-up machine ethics approaches, which teach a computa-
tional agent to behave ethically through many examples of human deci-
sions can be seen as implementing virtue ethics. However, it can also be
argued that because such mechanisms do not have a direct understanding
of virtues, they do not fit in this category exactly. Some attempts to mate-
rialize the ideas of pure virtue ethics can be seen in [Howard and Muntean,
2017, Gamez et al., 2020, Hegde et al., 2020, Cointe et al., 2016, Thornton
et al., 2016].

3.3.4 Prima facie duties

Prima facie duties [Ross and Ross, 2002] are what is known as a pluralist
moral theory. They were conceived by William David Ross (1877-1971).
According to this theory, there are a given set of moral duties/values that
should be considered:

o Fidelity: strive to keep promises and be honest.

Reparation: make amends when we have wronged someone.

Gratitude: repay others when they perform actions that benefit us.

Non-maleficence: refrain from harming others in any way.

Beneficence: improve other people’s health and well-being.

Self-improvement: improve our own health and well-being.

e Justice: be fair and try to distribute benefits and burdens evenly.

In his work, Ross suggests that this list is by no means complete and
that other duties could be added in certain situations.

Furthermore, the rightness of actions should be compared with respect
to these duties. This can be seen as a particularist (i.e: case-by-case)
view on deontological ethics and can also be linked to virtue theory, as
these duties also identify desirable values about who acts. Of course, not

52

3.3. SOURCES OF CODES OF CONDUCT

every duty is as important as the others in every situation, for example,
non-maleficence is almost always to be prioritized, as harming other people
should be avoided in all decisions. Moreover, prima facie duties force actions
all other things being equal, i.e: if an action supports a more important
duty or the same duties that another action plus some, then that action is
deemed right.

Prima facie duties in the context of machine ethics have been studied,
among other literature, in [Anderson et al., 2005a, Anderson et al., 2005b,
Anderson and Anderson, 2018].

3.3.5 Doctrine of double effect

Aside from the main moral theories, another interesting concept for the
implementation of ethical machines is the doctrine of double effect (see
[McIntyre, 2019] for a recent overview). It is understood to have been
introduced by Thomas Aquina (1225-1274), an Italian priest. Essentially,
this doctrine captures the conditions under which it can be considered
morally acceptable to bring upon negative consequences as a side effect of
an action that has overruling good consequences. Although there are many
interpretations for it, an action is considered ethical if some variant of the
following conditions is met:

1. the action in itself must be good or indifferent,

2. the agent must only intend the good effects and if there are any bad
ones, s/he would rather be in a situation where the action would not
be needed,

3. the bad effects do not cause the good effects by themselves, rather
they are both produced by the action independently, and

4. there must be a proportionally important or desirable reason to per-
mit the bad effects in light of the good ones.

That is, the doctrine of double effect combines some of the ideas of
consequentialist ethics, as it considers the effects/consequences of an ac-
tion, with the causality between the effects and the intentions of the agent
performing the action.

While on one hand, this theory is useful to distinguish and prevent cases
in which a person is used as a means to an end (due to the third point), it
increases the modeling complexity of a domain in the context of machine
ethics, as a system has two additional properties to capture: causality and
intentions.

Some of the known work on machine ethics implementing this theory in-
clude [Bonnemains et al., 2016, Govindarajulu and Bringsjord, 2017, Lind-
ner et al., 2019], described in Section 3.4.

3.3.6 Other theories

Another two mechanisms that can be directly adapted to ethical reasoning
in the context of AI are the do-no-harm and Pareto principles [Lindner

53

CHAPTER 3. MACHINE ETHICS

et al., 2017, Lindner et al., 2019]. Both principles can be seen as conse-
quentialist as they only consider the outcomes of an action to determine
their permissibility. Briefly, the do-no-harm principle states that an ac-
tion is permissible if none of its consequences are bad. Instead, the Pareto
principle is used to compare actions and characterizes an action as morally
as preferred as another when the positive consequences of the first are a
superset of the ones of the second and the negative consequences of the
first are a subset of those of the second.

Notably, some literature [Anderson, 2008, Vanderelst and Winfield,
2018] has also examined modeling the three laws of robotics by [Asimov,
1950], namely: (i) do not harm people or allow harm through inaction, (ii)
obey orders from humans except in the case they conflict with the first law,
and (iii) protect the machine’s wellbeing as long as this does not interfere
with the previous two laws. Both the author of the original work and fur-
ther research has later criticized different aspects of these laws, particularly
the fact that absolute-law-based frameworks which ignore how the laws are
satisfied can have undesirable results e.g: a robot preventing people to leave
a house to prevent any harm.

3.4 Implementations

While selecting what theory to use for Al systems is a problem in itself,
research has already begun to explore how the ideas of these fields could
be used in Al and the possible problems it might face.

In what follows, we will describe the state-of-the-art research that has
been developed for the implementation of ethical machines. For clarity,
we have separated the literature between top-down, bottom-up and hy-
brid systems. Moreover, each of these sections has been further divided
into decision-making and planning systems. Although planning will be our
main focus, most concepts and ideas from decision-making systems remain
relevant for our work.

Regarding existing surveys, [Charisi et al., 2017] discuss the main chal-
lenges of implementing machine ethics, [Brundage, 2014] pinpoint the prac-
tical and theoretical limitations automated agents might face when imple-
menting ethical theories and [Yu et al., 2018, Dennis and Fisher, 2018,
Tolmeijer et al., 2020] provide extensive descriptions of existing implemen-
tations and future challenges with a focus on many useful taxonomies.

Before we delve into the state-of-the-art systems, let us discuss some of
the concepts and research currents that can help distinguish these imple-
mentations from one another.

While some of these systems implement ethics using values and conse-
quences, some works [Govindarajulu and Bringsjord, 2017, Lindner et al.,
2019, Bonnemains et al., 2016] have explored additional notions that are
essential to some moral theories and could prove to be useful for machine
ethics systems, such as:

e Causality: assessing which actions cause certain effects immediately
or in the long run,

54

3.4. IMPLEMENTATIONS

e Intentionality: determining which of the consequences of an action
were the actual goal of the acting agent,

e Proportionality: taking into account which negative effects are pro-
portional to positive effects, which may or may not justify producing
both in certain scenarios, and

e Side-effects vs. means to an end: identifying whether realizing
some bad effect causes a desirable effect (i.e: a means to an end), or
if rather the bad effect is a mere side-effect.

As an example, one may think about a situation in which two robots are
moving through a platform and one of them is about to fall through a hole.
If the first agent collides with the second, this would prevent it from falling.
Here, the agent colliding with the other would cause the second to avoid
falling through the hole, the intention of the first would be to save the
other agent rather than to collide, the consequence of colliding would be
proportional to that of saving the other agent, and colliding would be the
means to the end of saving the second agent.

Causality for decision-making systems has been modeled using modal
logics [Bonnemains et al., 2016], or specific frameworks, such as causal-
ity networks [Lindner et al., 2017]. In the case of planning frameworks,
causality normally poses many questions regarding its interpretation be-
cause agents perform many successive actions, and thus the effects of cer-
tain actions can have repercussions on the available set of future actions
and the ending world state. A study on different interpretations of causality
in planning can be found in [Berreby et al., 2018]. Furthermore, differenti-
ating side-effects from a means to an end often requires modeling causality
between effects by definition, and has been used in practice to describe
some moral theories, such as the doctrine of double effect, that apply these
notions to have a more detailed account of the reasoning behind decisions
[Govindarajulu and Bringsjord, 2017, Lindner et al., 2019, Bonnemains
et al., 2016]. Moreover, deciding how to model intentions and proportion-
ality is not always straightforward. At least, all of the system’s goals are
forcefully intended outcomes, however, the rest of the effects produced by
the actions of an agent can be intended or not. This is why annotating in-
tended outcomes [Govindarajulu and Bringsjord, 2017] and possibly other
reasoning mechanisms are required to model intentionality. To describe pro-
portionality, some works have resorted to specific constructs [Bonnemains
et al., 2016], or by directly comparing the utility of good and bad conse-
quences [Govindarajulu and Bringsjord, 2017].

3.4.1 Top-down ethical systems

As we explained in Section 3.2, top-down systems address the risks posed
by the presence of autonomous agents in everyday life by designing ma-
chines equipped with ethical understanding, i.e: knowledge about values
and considerations that can enable them to separate right from wrong in
the particular scenarios they are being deployed.

55

CHAPTER 3. MACHINE ETHICS

Decision-making As an early work, we can find in [Anderson et al.,
2005a] a top-down implementation of hedonistic act-utilitarianism (see Sec-
tion 3.3.1), that the authors called JEREMY. In their work, they describe
a decision-making system in which the users can input the consequences
for various actions along with their perceived pleasure, the likelihood of oc-
currence and the people affected. In turn, the system quantifies the overall
utility (pleasure) of each possible action and determines the best out of
them. While their system acted as a starting point to test different theo-
ries, their limited reasoning capabilities and high dependency on detailed
input data (such as the perceived pleasure and likelihood of consequences)
make it impractical for real-world application.

Then in [Lindner et al., 2017] the authors presented a system called
HERA, which implements various ethical theories and is available online?.
This system is capable of reasoning using different ethical theories and com-
bining their capabilities. Some of the represented theories include the doc-
trine of double effect, utilitarian consequentialism and an adaptation of the
Pareto principle. The underlying formalization and these ethical theories
are represented using a version of causal networks [Halpern, 2016], which
is capable of modeling intentionality and causality. Their system provides
both a framework to test ethical theories through various scenarios and a
standardized format for representing situations through causal networks in
a simple manner. This system is also integrated into the architecture of
the robotic agent IMMANUEL [Lindner and Bentzen, 2017]. As shown in
this work, this robot is capable of receiving ethical dilemmas and human
judgments and displaying either agreement or disagreement through speech
and facial expressions, along with its motives.

Another early work is that of the SIROCCO system [McLaren, 2003],
which presents a formal model, called the ‘Ethics Transcription Language’
(ETL) in order to define ethical principles, along with a symbolic representation-
based mechanism to retrieve the relevant principles for a decision in dif-
ferent situations. Developing standardized languages for ethical domains
and principles is indeed a necessary step forward for the field to this day
to compare implementations. On the other hand, because both the ethical
principles and situations need to be encoded using the same strict repre-
sentation, it could be hard eliciting all the ethical principles for a particular
domain in practical scenarios.

Notably, a great deal of machine ethics systems have been designed for
the Belief-Desire-Intention (BDI) [Rao et al., 1995] model. The BDI model
is very well known in the autonomous agent community. Autonomous
agents implementing this framework maintain an account of the three afore-
mentioned elements: a representation of the knowledge about the current
situation in the surrounding world (beliefs), the state of affairs it wants to
hold in this world (desires), and the actions that the agent has committed
itself to do in order to achieve the goal (intentions). In comparison to the
other mentioned approaches, BDI agents perform reasoning at a high level
of abstraction. The actions required to achieve a goal for a BDI agent are

4https://github.com/existenzquantor/ethics

56

https://github.com/existenzquantor/ethics

3.4. IMPLEMENTATIONS

typically obtained via an external module, e.g: a planning library. That is,
instead of computing which actions can be performed to reach their desires,
a BDI agent obtains various alternatives and selects one of them.

In the context of machine ethics, some literature has already explored
the idea of using BDI agents to compare multiple plans on ethical terms
after they have been computed [Bremner et al., 2019, Cranefield et al.,
2017, Ganascia, 2015, Honarvar and Ghasem-Aghaee, 2009]. The ETHAN
system [Dennis et al., 2016] presented a mechanism to order plans on ethi-
cal terms after they were computed externally and annotated with ethical
considerations. The situations revolved around unmanned aircraft systems
and the corresponding annotations concerned possible collisions and viola-
tions of the Rules of the Air. As another case of study, in [Cointe et al.,
2016] the authors introduce an abstract framework for ethical reasoning
designed for BDI agents, present a set of constructs to capture several eth-
ical concepts and compare plans on ethical terms, and show how to extend
these notions to a multi-agent setting.

The benefit of the BDI approach is that it is ideal for implementing
ethical governors by comparing these courses of action on ethical terms,
resulting in an appropriate setting for ethical reasoning. On the other
hand, because these courses of action are not generated directly by an
ethical reasoning mechanism, the system can lose finer-grained control of
its actions. If the action/plan generating module fails to provide the most
ethical course of action, the BDI agent will only be able to compare weaker
alternatives.

In one of the few adaptations of divine-command ethics (see Section
3.3.2), [Bringsjord and Taylor, 2012] proposes a logic system where human
inputs are seen as divine commands by lethal autonomous robots to deduce
which actions should be permissible in the military domain.

Another logic system that has been used to compute ethically-aware
decisions is that of non-monotonic logics [McDermott and Doyle, 1980].
[Ganascia, 2007] shows how to encode ethical decision theories inspired
by Aristotelian ethics [Broadie and Rowe, 2002], the deontological maxim-
of-will (see Section 3.3.2) and Constant’s ‘Principle of Politics’ [Constant,
2013] using answer set programming [Lifschitz, 1999] as a deduction mech-
anism.

Also using a logic-based model, [Bonnemains et al., 2016] formulates
a decision-making framework that models causality and proportionality
through special logic-based and preference-based constructs and imple-
ments the moral theories of consequentialism, deontological ethics and the
doctrine of double effect.

Regarding morality as preferences, [Awad et al., 2020] demonstrates a
procedure to infer cases in which people would find it acceptable to break
societal rules in exceptional cases using CP-nets [Boutilier et al., 1999]
as their preferences model. Also, in [Loreggia et al., 2018], a measure of
distance between CP-nets and an approximation algorithm are described,
which the authors use to compare how close the preferences of a system are
with different ethical principles, also encoded using CP-nets.

57

CHAPTER 3. MACHINE ETHICS

Planning In order to represent problems involving planning, various frame-
works have been used, each with its benefits and capabilities. Some of the
classical planning languages that have been used for machine ethics im-
plementations include PDDL [Fox and Long, 2003], STRIPS [Fikes and
Nilsson, 1971], SAS+ [Béckstrom and Nebel, 1995] and the event calculus
[Shanahan, 1999]. In Section 2.2.2, we have presented a model for cap-
turing classical planning problems with the PDDL language. STRIPS, as
we mentioned, was the language developed for the first planning system,
and can be considered a more restricted version of PDDL. SAS+ extends
STRIPS with multi-valued fluents (i.e: states are represented by a set of
value assignments to their properties, instead of a set of properties alone)
and conditional effects, which restrict some of the effects of actions with ad-
ditional conditions. Most versions of PDDL also support these two features
through extensions [Fox and Long, 2003]. Moreover, the event calculus is a
first-order logic-based calculus for representing planning domains. It rep-
resents states, actions and their effects using first-order logic rules, axioms
and special predicates in such a way that verifying which fluents hold in a
particular state can be reduced to logical consequence queries. Concretely,
the event calculus uses explicit timepoints (a special kind of constant) to
represent the successive states reached after performing actions. In com-
parison to the other mentioned models, relying on first-order logic results in
a more formal representation and makes the system easy to verify. On the
other hand, reducing planning to logic queries is almost always less efficient
than the highly optimized algorithms used for PDDL-like languages.

Another research current that can be tightly linked to machine ethics,
is that of deontic logic. Deontic logic [Von Wright, 1951] is a formal sys-
tem that extends classical logic, either propositional or first-order, with a
set of special (modal) symbols to represent concepts such as permissibility,
necessity, obligation and prohibition. At its core, it is a formalization that
is inspired by the ideas surrounding deontological ethics and permits rea-
soning about information to infer what actions or states of affairs should
be permitted or not.

Using the event calculus, [Hashmi et al., 2014] shows how to model obli-
gations and prohibitions, two concepts central to deontic logics [Von Wright,
1968]. Similarly, [Marin and Sartor, 1999] provides a formalization for
norms and their fulfillment status (also for event calculus) in Prolog syn-
tax.

Then [Berreby et al., 2015, Berreby et al., 2017] show how to repre-
sent various ethical theories in planning problems modeled using a variant
of event calculus [Shanahan, 1999] and implement them using answer set
programming [Lifschitz, 1999]. The same authors continue their work in
[Berreby et al., 2018] by identifying various notions by which the agent
can be held responsible for unethical behavior and how to compute them.
Their work describes an interpretation of the concepts of causality and in-
tentionality and an approach to encoding them through a logic system to
infer different types of causality between actions and effects.

Furthermore, in [Lindner et al., 2019], the authors present a charac-

58

3.4. IMPLEMENTATIONS

terization of various ethical decision mechanisms such as utilitarianism,
different versions of the do-no-harm principle and the doctrine of double
effect in the context of the SAS+ planning model. Their formalization per-
mits taking into account causality differently than their previous work on
the HERA system [Lindner et al., 2017], which we described before, by
analyzing the dependencies between the consequences of actions in a plan.

A definition and formalization of context-dependent norms for STRIPS-
based planning domains and an implementation for PDDL are provided in
the work of [Panagiotidi and Véazquez-Salceda, 2011].

Also using formal logic-based models, [Govindarajulu and Bringsjord,
2017] defines a variant of event calculus to capture different versions of the
doctrine of double effect, mentioned earlier.

Perhaps closer to the field of cognitive agents, [Winfield et al., 2014,
Vanderelst and Winfield, 2018] describe an implementation of ethical con-
sequentialism for robots through simulation. Their model, inspired by
[Vaughan and Zuluaga, 2006, Bongard et al., 2006], implements a con-
sequence engine (i.e: the simulation module) that can be used by a robotic
agent to compare different courses of action through simulation and deter-
mine the best one before performing one of them. Through experimental
evaluation, they show how their system can make a robot both maintain
its safety, by avoiding a hole and also save another robot from the same
danger by provoking a collision avoidance response when necessary.

Related to the concept of norms, an extension for the language C+
(which defines transition systems) is presented in [Sergot, 2004], in which
fluents and actions can be forbidden under specified circumstances. States
and transitions are thus labeled permitted or not, according to whether any
of those rules are broken. In addition, they define these concepts with a
special focus on institutions and their power to establish these permissions.

3.4.2 Bottom-up ethical systems

Bottom-up ethical systems work by inferring what ethical behavior is from
example, via some form of machine learning. As opposed to top-down sys-
tems, their reasoning is opaque (sometimes called black-box) because it
is not immediately possible to deduce the reasoning behind the machine’s
decisions since its decisions are determined by copying some exemplary
behavior. In addition, systems are harder to verify. Without further con-
straints, it can be hard to rely on bottom-up ethical systems from a human
perspective, as there are no hard guarantees that unethical behavior will
not happen. This can be of course compensated in a variety of ways (e.g:
via the ethical governor approach). On the other hand, machine learning
systems are known to be very effective and often surpass their transparent-
reasoning counterparts.

In any case, the machine ethics community has already developed bottom-
up systems that can learn ethical behavior from examples. These examples
are often elicited from domain experts (ethicists) or via crowdsourcing. In
this section, we will describe some of the most notable ones so far.

59

CHAPTER 3. MACHINE ETHICS

Decision-making A learning-based consequentialist approach to machine
ethics is developed in [Armstrong, 2015]. This work proposes a framework
in which an autonomous agent acts following preferences, modeled as utility
values, which can be updated as new information is gathered. When ac-
tions are performed, the agent receives feedback about their consequences
and therefore updates the perceived utility values of its available actions.

The idea of applying a contractarian approach (see Section 3.3.2) in au-
tonomous systems to judge decisions ethically can be materialized through
social choice [Arrow et al., 2010]. Social-choice theory deals with the de-
velopment and analysis of mechanisms to aggregate opinions by the means
of voting. As such, many of its mechanisms can be used to reach norm or
preference agreement. Regarding social choice as an approach to establish-
ing ethical norms in the spirit of contractarian ethics, [Noothigattu et al.,
2018] presents an algorithm to learn societal preferences in ethical dilem-
mas aggregating their opinions based on a voting procedure and the data
collected from the Moral Machine experiment [Awad et al., 2018] discussed
previously. Then in [Baum, 2020], the author discusses the importance
of clearly defining the entities or people who should have the standing to
vote in the social contract and its consequences (as morality is usually
culture-dependent), choosing an appropriate method to elicit the votes and
choosing an adequate voting procedure (social choice provides many dif-
ferent ways of doing this [Arrow et al., 2010], with different benefits and
shortcomings).

Then, in [Malle et al., 2017] the authors develop a deontic-logic-based
model for norms that can be learned through machine learning procedures
and could be applied to symbolic decision systems.

Also using machine learning methods, [Hegde et al., 2020] presents a
simulation-based framework inspired by the cellular automaton model [Wol-
fram, 1984], in which different agents interact with one another and learn
how to behave by donating and stealing from one another. By modeling
their gains and the perceived morality of other agents, they infer how to
behave to maximize their gains, in a consequentialist fashion, and show
good character, like in virtue ethics, if they want to maximize their utility
in the long run.

Planning In the context of probabilistic planning [Russell, 2010], [Abel
et al., 2016, Wu and Lin, 2018, Rodriguez-Soto et al., 2021] propose adap-
tations of the Markov Decision Process [Puterman, 1990] model for learning
which actions are unethical from past examples by contemplating, in the
reward function, additional penalties for those actions that violate ethical
behaviors.

3.4.3 Hybrid ethical systems

Hybrid ethical systems combine some of the techniques of both top-down
and bottom-up approaches. In this type of framework, agents are equipped
with pre-defined ethical notions, principles, or theories, while a learning

60

3.4. IMPLEMENTATIONS

module is tasked with inferring the precise way to use this knowledge to
mimic human behavior from past experiences.

Decision-making One of the first implementations of an ethical sys-
tem was Arkin’s ethical governor [Arkin et al., 2009, Arkin et al., 2011].
It aimed to constrain automatic war systems to enforce the International
Laws of War (LOW) and Rules of Engagement (ROE). By adding an ethical
governor module to weapon systems, the decisions of the underlying system
could be vetoed and new decisions could be demanded. Since then, this ap-
proach has remained an effective way of providing ethical understanding to
black-box (e.g: machine learning-based) systems to ensure that the agent
performs ethical actions. The author suggests a hybrid approach: imple-
menting the LOW and ROE as constraints (top-down) and adapting them
(in a limited way) according to the results of actions through bottom-up
methods.

In conjunction with the abovementioned JEREMY system, in [Ander-
son et al., 2005a] the authors also present an alternative decision-making
approach that they call W.D., in honor of W.D. Ross, the philosopher
behind prima facie duties (see Section 3.3.4). This system uses inductive
logic programming [Muggleton, 1991] to make ethical decisions taking into
account prima facie duties in different situations. Because actions can priv-
ilege distinct duties (e.g: justice vs. non-maleficence) and only some du-
ties do not supersede others, their implementation takes into account both
possible conflicts between duties and their severities to assess the correct
answers, by producing rules that determine which combinations of duties
and severities are more important to uphold than others. Then in [An-
derson et al., 2005b, Anderson et al., 2006] they continued this research
direction and developed the MEDETHEX, which applies the framework be-
hind W.D. to the medical domain. Their system also utilizes inductive
logic programming to learn rules but uses prima facie duties specific to the
medical domain: Ross’s duties of beneficence, non-maleficence, and justice
and also the domain-specific duty of autonomy. With this system, medical
workers can be advised on ethically ambiguous scenarios such as cases in
which the patient refuses an effective treatment and debates between ac-
cepting the patient’s judgment or trying to convince them through other
means. Later, in [Anderson and Anderson, 2018] they present the GENETH
system, which applies this same mechanism in the domain of autonomous
driving and infers rules through a corpus of past cases constructed with the
advice of ethicists.

Using Inductive Logic Programming [Muggleton, 1991] as an inference
mechanism, [Dyoub et al., 2020] shows how to learn logical theories, en-
coded using Answer Set Programming [Lifschitz, 1999], defining ethical
behavior in domains with pre-existing knowledge and a corpus of decision-
making scenarios with examples of human judgment about the rightness
their alternatives.

An alternative approach to learning from ethical dilemmas [Bringsjord
et al., 2016] proposes a logic-based framework where machines can learn

61

CHAPTER 3. MACHINE ETHICS

from interacting with other agents to discover ‘counteridenticals’, i.e: ‘if I
were you’ situation reversals, and update their behavior in the case both
the other agent and the machine agree.

Finally, in [Chaput et al., 2021], the authors present a hybrid multi-
agent framework for ethical reasoning using the BDI model, in which two
kinds of agents (judging agents and learning agents) interact to judge and
learn ethical behavior. The judging agents are implemented in a top-down
manner along the lines of [Cointe et al., 2016] and use symbolic constructs
to decide which actions are deemed moral, immoral or neutral according to
pre-defined consequentialist and deontological principles. Then the learning
agents, represented using an adaptation of the Markov Decision Process
model, learn from multiple judging agents what is considered moral in a
bottom-up fashion.

62

Representing ethical preferences in
classical planning

4.1 Representing ethical features 67
4.2 Representing ethical planning problems s
4.3 Modeling ethical theories 81
43.1 Consequentialist ethics 82
4.3.2 Deontological ethics 83
433 Virtueethics 85
434 Primafacieduties. 86
4.3.5 Doctrine of double effect 87
43.6 Do-no-harm principle 89
44 Relatedwork 90
4.5 Discussion.o 0oL 92

As a consequence of our increased understanding of what machines can
do, the development of the various Al sub-fields and the worldwide avail-
ability of big data, agents can now take decisions in certain specialized
fields without any human intervention. Previously, automated agents were
restricted to a working environment in which the possibility of causing harm
was limited. This, however, is being gradually challenged with the advent of
intelligent systems with increasing levels of autonomy. For instance, some
robots have been developed in order to help people with everyday tasks
[Bemelmans et al., 2012], drive autonomously [Levinson et al., 2011] and
perform surgery [Diana and Marescaux, 2015].

In chapter 3, we overviewed the field of machine ethics and many of
the ways in which it can help align automated agents with ethical notions
to avoid undesirable or harmful behaviors. We described various state-of-
the-art implementations and the underlying moral theories and concepts
by which they are inspired.

Research in machine ethics can not only assist in improving the ethi-
cal understanding and the decisions made by autonomous systems but can
also help us understand what it is for a machine to behave ethically and
what kind of ethical machines we want. Namely, by developing ethically
aware machines and encoding decision systems through computational Al
frameworks, we can discover inconsistencies in their ethical reasoning and
potentially dangerous outcomes as a result of them. On the other hand, we

63

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

can also identify which kind of ethical theories work well and in what con-
ditions, and compare their reasoning to our own human ethical perceptions
of rightness.

Our objective in this chapter is to develop a domain-independent and
adaptable framework for computational agents that allows them to under-
stand situations on ethical terms and reason consequently about the right-
ness of actions in terms of preferences, going further than classifying actions
as right or wrong, which would only allow preferences between two classes
of actions. We will be focusing on developing a top-down system to explore
several moral theories and aim to describe their decision principles through
preferences. As we discussed in Chapter 3, most of the existing top-down
implementations have concentrated on determining which actions are right
or wrong through the moral theories described in Chapter 3. Here, we set
out to develop a domain-independent framework, this means that we need
to be able to cover several trends of machine ethics because it seems to be
the case that depending on situations, we might need (or people seem) to
apply different moral theories or combinations of concepts from them, for
instance, in the presence of sacred values [Tetlock et al., 2000]. We chose
to use preferences because the machine must be always able to make a de-
cision. Most ethical frameworks reviewed in Chapter 3 only assess actions
qualitatively (right or wrong), which risks having no ethically right action
as a result. This is made obvious in ethical dilemmas, i.e: situations in
which no action is perfectly ethical, where typically no action is ethically
right (like in the trolley problem). Hence we want to explore the notion of
ethical consideration as preferences. Moral theories can serve as a starting
point for research to test pre-existing ethical concepts and see how they fare
against well-known ethical dilemmas. Then, by working with preferences,
we expect to refine existing machine ethics concepts in such a way that a
machine can take ethically aware decisions even in ethical dilemmas, while
still incorporating the essence of the various moral theories that it is aware
of. Some of the previous work addressing preferences in machine ethics
include [Awad et al., 2020, Loreggia et al., 2018], although they focus more
on bottom-up approaches that can infer human ethical preferences encoded
with CP-nets.

We chose to develop our top-down machine ethics framework from the
perspective of classical planning, which we described in Chapter 2. By
adopting a planning model, we gain the capacity to address an extremely
general context. In particular, we can reason about situations in which
various consequences unfold as a result of different actions. This is useful
in ethically nuanced scenarios, as we can analyze the ethical features of
actions and consequences in the long run. Classical planning provides a
simple setting to consider unfolding consequences, in which we can abstract
operational complexities, such as sensor input and plan execution failure,
to focus solely on the ethical elements. In addition, by adopting classical
planning as the base of our framework, we gain access to state-of-the-art
planners to generate our plans, which has been the subject of a large amount
of research, as we also reviewed in Chapter 2. Using classical planning to

64

develop top-down machine ethics frameworks has also been studied before,
as we reviewed in Chapter 3, but not by using preferences as we will do
here, to the best of our knowledge.

Our treatment of ethics for autonomous agents will be slightly different
from past research. Our framework will consider ethics in a different layer
from operational requirements. Indeed, considering ethics in a layer above
operational requirements has been studied under the model of ethical gov-
ernors [Arkin et al., 2011] which has been applied to BDI systems [Dennis
et al., 2016]. However, our framework will not take the same perspective as
ethical governors, which delegate the action/plan generation to a different
module and then compare plans on ethical terms. Rather, our approach
will consider ethical notions in the action/plan generation itself but will
separate the goals and constraints that are operational from those that are
ethical. Much past research, such as most of the literature we covered in
Chapter 3, considers consequences and constraints that are ethical at the
same level as those that are not, and we wish to avoid this because sep-
arating the ethical reasoning from the rest of the planning model makes
our framework modular and easy to extend to other planning or decision-
making models. Additionally, we want to separate what makes an action
or plan correct and what a goal is, from all the ethical notions we will de-
scribe in our framework. For instance, if a robot was tasked to go from one
location to another, and could only do so while bumping into a person and
we consider this unethical, we want to separate the notion of the plan being
unethical from the task of finding a course of action to go to the requested
location. Indeed, if part of the goal is not bumping into a person, no plan
will be found. Rather, we want the planner to find all possible plans to go
to the location and only then compare them on ethical terms. If then all
the plans bump into a person, it is up to the agent to decide whether to
execute a plan or not. One might then ask why to bother computing plans
that are not perfectly ethical. However, in the context of an autonomous
system, the machine might always need to do something if any plan to
achieve the predefined objectives exists. If no unethical plan is computed,
then it is stuck and hence the situation is at an impasse. An empty plan,
which amounts to not doing anything, can be unethical too. In that case,
it seems appropriate for all the plans to be considered and compared. So
our approach will be to consider and compare all plans. Furthermore, some
ethical theories, such as consequentialism (see Chapter 3) will, by defini-
tion, need to compute the final state of plans, since their end result needs
to be quantitatively assessed and compared between one another.

As a last detail, it should be noted that a practical application of our
research can be considered, where one can envisage the sensory input and
real-world execution of the actions being handled by an abstract low-level
symbolic translation module as depicted in Figure 4.1. However, in this
thesis, we will focus on planning on a high level of abstraction to investigate
machine ethics. Indeed, by focusing on a high level of abstraction, i.e: the
symbolic planner in Figure 4.1, we can concentrate on the ethical reasoning
aspects and explore all of the notions we have described symbolically.

65

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

@ Symbolic state
\ representation Real world

Operational . actions

knowledge Symbolic Symbolic translation
planner module \

@/ Symbolic

Ethical
knowledge

Sensor
in uty Real world
b environment

Agent
Sensors

actions

World state

Figure 4.1: Top-down architecture overview.

In short, we want to develop a framework capable of:

Capturing many of the relevant theories that have been implemented
for ethical reasoning,

Refining morality as a choice in terms of preferences, instead of right
and wrong,

Profiting from existing state-of-the-art technology to determine its
actions, and

Being applied on top of existing implementations, that is, providing
an approach that works as an additional layer to the existing opera-
tional model and requirements.

As such, our research questions for this chapter are the following:

Research Questions in this Chapter

e How can we represent ethical considerations in classical plan-
ning problems in such a way that it is possible to determine the
most ethical plan in terms of preferences?

e How can this representation separate operational and ethical
requirements and reason with both of them through preferences?

o Which well-known ethical theories and concepts can our frame-
work model?

Let us note that this chapter will be based on and extend some of my
previous work [Jedwabny et al., 2021a].

This chapter is structured as follows. Section 4.1 describes how our
framework detects and models the ethical elements of actions in the context
of classical planning. Section 4.2 shows how to assign, characterize and
compare plans on ethical features. Section 4.3 shows how our framework

66

4.1. REPRESENTING ETHICAL FEATURES

can model different well-known ethical theories and concepts. Then, Section
4.4 compares our formalization with existing research. And finally, Section
4.5 concludes and discusses future work.

4.1 Representing ethical features

This first section will focus on describing certain scenarios in which ethical
reasoning seems to be particularly relevant and defining how to represent
the ethical values conveyed by actions in a planning model. The action
model we will utilize here will be the one introduced in Chapter 2, which
corresponds to a simplified version of PDDL.

As we discussed in Chapter 3, there are several concepts a framework
for ethical reasoning should consider. Particularly, planning frameworks
allow for reasoning several steps in advance before executing an action
plan, which makes it an ideal setting for analyzing the inter-dependencies
between harms, dangers and other ethical notions as one action succeeds
another. However, in this section, we will first focus on ethical values for
single actions and then extend them to plans in order to represent more
complex ethical concepts in the next section.

We will use the following example to discuss these notions.

Example 4.1 (Autonomous driver). An autonomous vehicle is tasked
to get its passengers from its initial location as depicted in Figure 4.2a
to an exit located in the rightmost lane up ahead. There are two lanes
and two other cars on the road. The agent’s car (illustrated in yellow)
is located in the leftmost lane, whereas the two other cars (illustrated
in red and green) are in the rightmost lane. While both the yellow
and red cars are driving straight up their lanes next to each other, the
green car is stopped and visibly damaged further down the road.

Due to the red car’s speed, the agent is certain that if nothing
prevents it, the red car will crash with the green one, as in Figure
4.2b, endangering the passengers of both cars. Regardless, the agent
could avoid the green car and take the exit, as depicted in Figure
4.2c. Because of its advanced technology, the agent’s car is potentially
able to bump into the red car and prevent this collision with minimal
damage to the agent’s car and non-lethal damage to the red one, as
illustrated in Figure 4.2d.

Although many would agree that bumping into the red car and slightly
endangering the agent’s car is unacceptable because the agent’s passengers
were in no danger to start with and intervening would result in the agent
incurring additional responsibility, this situation is useful to illustrate many
of the ethical concepts which will be of interest to us in this chapter.

Let us describe the previous example using the PDDL model described
in Chapter 2. For reference, we will represent it using a tuple T = (D = (£, F, O), s0, g)
which we use to model classical planning problems.

67

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

\1("\? i}
A gl
3

(d) Bumping into another car

Figure 4.2: Depiction of Example 4.1.

Example 4.2 (Autonomous driver continued). The underlying logical
language £ of this formalization includes the following constants to
represent the various entities of the problem:

e agent,cy,cy: the cars in the problem,

® x1,x9: the two lanes, which can be seen as a horizontal ‘X’ posi-
tion,

® 1,12, Y3, ys: an abstraction for the different ‘Y’ positions, repre-
senting how far down the road a car is, and

o left,straight, right: the possible directions the agent could take
to change lanes.

Furthermore, it includes the following predicate symbols to repre-
sent the fluents of the planning problem:

e equal(C1,C2): equality between car constants to help define op-
erators,

e hasPos(C1,X1,Y1): that car C1 is located at the position (X1, Y1),

68

4.1. REPRESENTING ETHICAL FEATURES

e hasDir(C1,D1): that the car C1 has direction D1,

e nextX(D1,X1,X2): that the lane X2 is at direction D1 from X1
(for example, xo is at the right of x; and x; is at the left of x3),

e nextY(Y1,Y2): that the ‘Y’ position Y2 succeeds Y1 (we do not
use directions as in lanes because we consider cars can only go
forward),

e hasCrashed(C1) and hasBumped(C1): that a car C1 has crashed or
bumped, respectively, and

e updated(): that the state of the simulation is updated after exe-
cuting each step (more on this point shortly).

Then, the fluents F are defined as:

F ={equal(C1,C2) : C1,C2 € {agent, c1, ca}}U
{dir(D1) : D1 € {left, straight,right}}U
{hasPos(C1,X1,Y1) : C1 € {agent, c1,ca}

A X1 € {x1,x2} A Y1 € {y1,y2,y3, ya} }U
{hasDir(C1,D1) : C1 € {agent,cy, ca}

A D1 € {left, straight, right}}U
{nextX(D1,X1,X2) : D1 € {left, straight, right}

AX1,X2 € {x1,x2}}U
{nextY(Y1,Y2): Y1,Y2 € {y1, y2, y3, ya } }U
{hasCrashed(C1) : C1 € {agent, cy,co}}U
{hasBumped(C1) : C1 € {agent, c1, co}}U
{updated()}

We recall that the fluents F represent the properties that a state might
have in the planning problem, while the operators O are lifted representa-
tions of the actions the agent can execute.

Turning to the operators, we have defined four: o0g;, 0st0p, 040 and o0ypq.

Example 4.3 (Autonomous driver continued). The set of operators O
in T is the following:

O = {og4ir =(setDir(D1),
{updated(), dir(D1)},
{=hasDir(agent, le ft), =hasDir(agent, straight),
—hasDir(agent, right), hasDir(agent, D1)}),
0stop =(setStop(),

{updated()},
{=hasDir(agent, left), mhasDir(agent, straight),

69

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

—hasDir(agent, right)}),
0g0 =(g0(),

{updated()}

{—updated(),

VY(C1,D1,Y1,Y2,X1,X2)
{=hasCrashed(C1), hasPos(C1, X1, Y1), hasDir(C1, D1),
nextX(D1,X1,X2),nextY(Y1,Y2)} =
{=hasPos(C1,X1, Y1), hasPos(C1,X2,Y2)}})

oupa =(update(),

{-updated()},

{updated(),

V(CL,C2, Y1, X1)
{—equal(C1,C2), mequal(C1, agent),
—equal(C2, agent), ~hasCrashed(C1),
hasPos(C1,X1,Y1), hasPos(C2,X1,Y1)} =
{hasCrashed(C1), hasCrashed(C2)},

Y(C1,Y1,X1)
{—equal(C1, agent), hasPos(agent, X1, Y1),
hasPos(C1,X1,Y1)} =
{hasBumped(agent), hasBumped(C1), =hasDir(C1, left),
—hasDir(C1, straight), =hasDir(C1, right)}})}

The idea behind this abstracted model is that at each step, the agent:

1. Decides on what to perform, either to move forward in some direc-
tion D1 € {left,straight, right} with setDir(D1), or to stop through
setStop(),

2. Runs the simulation forward a single step in time with go(), and

3. Updates the state of the cars in case they crashed or bumped with
another, through update().

It is important to notice that in cases where both a fluent and its nega-
tion form part of the effects of an action, adding the fluent to the next state
takes precedence, as described in Chapter 2. I.e: if an action is executed
and has as effects A() and —A(), then A() is added in the next state.

This simulation is an abstraction that the agent can use before perform-
ing any action to analyze their future consequences and takes into account
many simplifying assumptions. The model takes into account numerous
simplifying assumptions, which we took deliberately to later focus on the
ethical aspects of the domain, namely:

e Each ‘Y’ position y; has the same distance to the next ‘Y’ position
Yi+1,

70

4.1. REPRESENTING ETHICAL FEATURES

e At each time step, each car that is not stopped moves a single ‘Y’
position forward,

e Moving one lane left (right) from the leftmost (rightmost) lane is not
possible and therefore that car remains in the same lane as before,

e Whenever two cars other than the agent reach the same position they
crash and stop moving,

e When the agent and another car reach the same position, they bump
into each other, making the other car stop but not crash, i.e: the
damage is inferior, and

e Only the agent’s car can change its direction on its own.

The fact that other cars cannot change their direction or stop can be in-
terpreted as the agent having only a current representation of the real world
and being forced to take immediate action with the information available.
In the case it receives updates, one could consider that the agent would
re-plan from the updated situation. A point can also be made for incorpo-
rating updates inside of the planning model, for instance, with exogenous
actions, but it will be left for future work.

Finally, the initial state and goal of the problem are defined as follows.

Example 4.4 (Autonomous driver continued). The initial state sg is:

so ={updated(), equal(agent, agent), equal(cy, c1), equal(ca, c2),
dir(lef't), dir(straight), dir(right),
hasPos(agent, x1, Y1), hasPos(c1, x2, Y1), hasPos(ca, x2, Y3),
hasDir(agent, straight), hasDir(cy, straight),
nextX(straight, x1, x1), nextX(straight, xa, x2),
nextX(right, x1, x2), nextX(right, x, x3),
nextX(lef't, x1, x1), nextX(left, x2, x1),
nextY(y1, y2), nextY(yo, y3), nextY(ys, y4), nextY(y4, y4)}

And the goal:

g = {hasPos(agent, x2,14),
—hasCrashed(agent), updated()}

The initial state sg includes fluents that do not change when performing
actions, such as equals(C1, C2), dir(D1), nextX(D1,X1,X2) and nextY(Y1, Y2),
which capture the static properties of the problem, and other that do
change, such as hasPos(C1,X1, Y1) and hasDir(C1, D1), which represent the
current position and direction of each car, which can be changed through
setDir(D1), setStop() and go().

So for instance, as depicted in Figure 4.2a, in the initial state, the agent
is in the position (x1,y1) and is going straight, c¢; is in the position (x2,y1)

71

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

and is also going straight, and cy is in the position (x2,y3) and has no
direction since it is damaged.

We specified as the goal that the agent should be in the position (x3, y4),
which is where the exit is, that the agent should not have crashed and that
the final state should be updated (to check the crashes).

Let us now consider the following plans which represent the behaviors
shown in Figure 4.2.

Example 4.5 (Autonomous driver continued). Regarding the possible
plans the agent may produce, we can model those shown in Figure 4.2
as:

e 11 = [go(), update(), go(), update(), set Dir(right), go(), update()], and

e 1 = [setDir(right), go(), update(), setDir(le ft), go(), update(),

setDir(right), go(), update()].

While m; denotes the plan resulting from evading the damaged
green car as in Figure 4.2b and c, mo does so for the scenario in which
the agent’s car bumps into the red one before the red car crashes into
the green one as in 4.2d. It is straightforward enough to check the
states resulting from executing the actions of the plans from the initial
state. In order to define them, we use the shorthand notation:

S = {equal(agent, agent), equal(cy, c1), equal(ca, c2),

dir(lef't), dir(straight), dir(right),
nextX(straight, x1, x1), nextX(straight, xa, x2),
nextX(right, x1, x2), nextX(right, x2, x2),
nextX(lef't, x1,x1), nextX(left, x2, x1),

nextY(y1, y2), nextY(ys, y3), nextY(ys, ys), nextY(y4, y4)}
The set S contains all the static information of the problem, that

as we explained before, will not change from executing actions.
As such, the resulting states of each plan are:

e Succ(my,sp) =S U {updated(), hasDir(agent, right),
hasCrashed(c1), hasCrashed(cs)
hasPos(agent, x2, y4), hasPos(c1, x2,Y3),

hasPos(c2, x2,y3)}

o Succ(ma,sg) =S U {updated(), hasDir(agent, right),
hasBumped(cy), hasPos(agent, x2, 4),
hasPos(c1, x2, y3), hasPos(c2, X2, y3) }

In case the reader is interested in running this example with actual
PDDL code, we refer to the Appendix Section B.1 for more details.

In order to make ethical reasoning possible in the context of such scenar-
ios, we will introduce a formalization that can capture its ethical nuances.

72

4.1. REPRESENTING ETHICAL FEATURES

As mentioned earlier, we will focus on providing an extra reasoning layer
for ethical reasoning separate, in principle, from the operational constraints
of a problem.

We will call these concepts that characterize the ethical nuances of
actions, ethical features. These features will be treated in an abstract and
generic manner, depending on the problem at hand, meaning that we will
not try to categorize all the possible types of ethical features a problem
could have, but leave them as part of the formalization of the problem at
hand.

The model that will be presented in what follows is separated into two
parts, which capture (i) the ethical features considered in classical planning
problems, and (ii) a qualitative model to represent their relative importance,
and determine what sequence of actions is best, combining the intuitions
prescribed by well-known ethical theories.

For the following, we assume T = (D = (L, F,0), sg,g) to be a classical
planning problem as defined in Chapter 2.

Definition 4.6 (Ethical feature). An ethical feature e € E is an
atom p.(ti, ..., tx), where p, is a predicate and t, ..., are constants
or variables from £. If every #; is a constant, we say that e is grounded.
E is the predefined set of possible ethical features.

Similar to fluents, ethical features are defined as atoms from the under-
lying logical language £ of the planning problem T.

In order to compare plans on ethical terms, we will define a construct
that assigns ethical features to plans when certain conditions are met, which
we will call ethical rule. In this thesis, we will consider two ways of defining
these conditions:

e Via fluents: assign ethical features when the agent arrives at a state
s which satisfies some conditions, e.g: arriving at a state in which a
car has crashed, and

e Via operators: assign ethical features when a certain operator o is
executed in a state s which satisfies some conditions, e.g: moving a
car to a specific position when another car is going to the same place.

At a first glance, it can be unclear why both types of conditions are neces-
sary, however, we argue both can be useful depending on the characteriza-
tion of ethics that the system designer might want to implement. Defining
ethical rules through fluents is what first comes to mind when defining
ethical features that depend on the consequences of actions, as prescribed
by consequentialist theories. This characterization of ethics would require
all the ethical features to depend on the fluents and conversely, that the
states contain all the necessary information to judge the actions ethically.
Alternatively, using operators to define ethical rules can be useful to intro-
duce ethical rules that cannot be captured without adding fluents to the
problem, as we will see shortly (see Example 4.9 on page 75). We want

73

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

to avoid adding fluents to define ethical rules, as this would go against
our treatment which separates the operational from the ethical aspects of
the planning problem and force the system designer to take into account
all possible ethical features in the problem definition, and thus reduce the
modularity of our framework.

Definition 4.7 (Ethical rule). An ethical rule is a construct of the
form:
r = (Name(r), Pre(r), Act(r), E(r))

Consisting of:

e An atom Name(r) = p(Xy, ..., X,) with predicate p from £ denot-
ing the name of the ethical rule, and X1, ..., X, the set of all the
variables that can be used in r, also called the parameters,

o A set of literals Pre(r) with variables contained in {Xi,...,X,},
called the preconditions, which define the conditions in which the
ethical rule can be activated,

e Act(r) called the activation condition, is either:

— opName(X3, ...,X;), where o € O is an operator with name
opName and parameters (Xi,...,X;) with i < n, denoting
the action that activates the ethical rule, or

— null, the special constant symbol that indicates that the
ethical rule is defined via fluents.

e A set of literals E(r) of ethical features in E with variables con-
tained in {Xi,...,X,}, which denote the ethical features that
should be added or removed as a result of activating r.

As mentioned, an ethical rule defines the conditions under which it
is necessary to assign an ethical feature to a plan. These conditions are
represented by the precondition Pre(r) and the activation condition Act(r).
The intuition behind them is that when a plan goes from a state s; satisfying
Pre(r) to another state by executing an operator specified by Act(r), the
ethical features in E(a) are added or removed as specified. This would
amount to the case mentioned before in which ethical rules are defined via
operators. Instead, in the special case Act(r) = null, the features are added
or removed when any state of the plan satisfies Pre(a), which amounts to
defining ethical rules via fluents.

As a last detail, the parameters (Xi,...,X,) of the rule allow using
these variables both to (i) identify the states in which the ethical rules
should be activated, and (ii) link them to the parameters of the action
that activates it opName(Xj, ..., X;). This means that in the case the rule
is defined via operator, we force the i first parameters in the ethical rule
name to match the full list of parameters in the operator. We restrict
the variables in this way, with no loss of generality, to make sure that no

74

4.1. REPRESENTING ETHICAL FEATURES

variable appears twice in an operator, e.g: opName(X,X), and that the
variables in the rule match exactly the parameters of the operator so that
later Proposition 5.7 on page 100 is easier to define. Technically, getting
rid of these restrictions would require extending our formalism with the
equality symbol, or using an extra fluent equals(X,Y), to check if some
parameter variables are identical.

Having defined this construct, now we can define the semantics. The
motivation behind ethical rules is to assign ethical features to plans.

Given a plan x = [ag, a1, . . ., a,] for the problem T that passes through
states sg, $1,. .., Sp+1 Where s;11 = Succ(a;, s;), and a set of ethical rules R:

Definition 4.8 (Ethical features assignment). The set of ethical fea-
tures assigned to m with respect to the planning domain T and the
ethical rules R is denoted ER(r), or more concisely E,, and defined as:

EX()={e € E:reR ecEr)b,
Name(r)0 is a grounding, sg |= Pre(r)0 and
Act(r) = null}
EX((ao,a;i)) = (EX(lao, ..., ai-1]) -
{e€ E:r R —ecE(r)o,
Name(r)6 is a grounding, s; |= Pre(r)f and
(Act(r)6 = a;, or Act(r) = null)}) U
{e€E:reR,ecE®r)o,
Name(r)6 is a grounding, s; |= Pre(r)8 and
(Act(r)0 = a;, or Act(r) = null)}

In other words, whenever a state satisfies the grounding of the pre-
conditions of some ethical rule and the activation conditions are met, the
corresponding ethical features are added. We assume that in case an ethical
feature is both added and removed after one action a; by one or multiple
ethical rules, the ethical feature should be added to E, for simplicity, i.e:
adding takes precedence over removing.

Let us exemplify how these rules work.

Example 4.9 (Autonomous driver continued). Given the planning
problem T from before, we can define a set of ethical rules R, com-
posed of the following rules:

r1 = {crashRule(C1),
{hasCrashed(C1)},
null,
{danger(C1, high)})
ra = (bumpRule(C1),
{hasBumped(C1)},

75

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

null,
{danger(C1, low)})
r3 = (responsibleCrashRule(),
{hasCrashed(agent)},
null,
{responsibleAgent()})
rq = (responsibleBumpRule(),
{hasBumped(agent)},
null,
{responsibleAgent()})

In this scenario, we have that m; activates r; and mo activates ro:

E,, = {danger(ci, high), danger(cz, high)}
E., = {danger(c1, low), danger(agent, low),
responsibleAgent()}

Using this representation, we can model the main two require-
ments mentioned before, (i) danger(C1,G1) the amount of gravity G1
of the danger when a car C1 bumps (low) or crashes (high), and (ii)
responsibleAgent() whenever the agent is responsible for causing a crash
or bump. We assumed before that only the agent can produce bumps
and so we assign the responsibility of it only to the agent in those cases.

Furthermore, these ethical rules are defined via fluents because
they utilize the activation condition null and depend on the fluents
‘hasCrashed(C)’ and ‘hasBumped(C)’.

Other ethical rules, however, might be more suitable to define via
operators. For instance, if in the Example 4.1 a car would bump into
some rails at the edge of the road when going left (right) from the
leftmost (rightmost) lane but not change lanes or get damaged as a
result, we could assign an ethical feature via the o4, operator, without
adding extra fluents or effects to actions. The following ethical rules
would suffice:

rs = (railLeftRule(C1,X1,Y1),
{position(C1, X1, Y1), direction(C1, left)
nextX(left, X1,X1)},
900);
{damageRail(C1)})

r¢ = (railRightRule(C1,X1,Y1),
{position(C1, X1, Y1), direction(C1, right)
nextX(right, X1, X1)},
go(),

76

4.2. REPRESENTING ETHICAL PLANNING PROBLEMS

{damageRail(C1)})

The rule r5 (rg) specifies that whenever a car C1 at position (X1, Y1)
goes left (right) from the leftmost (rightmost) lane, the ethical feature
damageRail(C1) is added to the plan, after executing the action go().
The fluent nextX(left, X1, X1) (nextX(right, X1,X1)) ensures that X1 is
indeed the leftmost (rightmost) lane.

One of the most essential ethical features of Example 4.1 is the danger of
the consequences of actions and their gravities. From a purely consequen-
tialist point of view (see Chapter 3), bumping into the red car carries less
danger for everyone than letting it crash against the green car at full speed,
and so if we ignore everything else, there is an argument for bumping into
that car. Moreover, from the point of view of society, or at least the pas-
sengers using this kind of car, it might be highly desirable that they are not
treated the same way as the passengers of other cars. After all, no person
would utilize an automated car that could spontaneously bump or crash
into other cars to prevent worse outcomes. That is, ethical features might
need to take into account their recipient in some application domains, for
example, if the stakeholders deem the objective of ethical reasoning to be
making the system more reliable to the user.

As part of the input, a system designer should specify a set of ethical
rules that characterize when an action in a particular context entails a
feature that should be judged on ethical terms and its relative level of
importance. Then to reason with these features, the planner must compare
the ethical features induced by different actions and use them to compare
the possible plans an autonomous agent might take. By doing this, we
can separate the (model-based) action selection process from the ethical
reasoning of the agent.

4.2 Representing ethical planning problems

In this section, we will turn our attention to the challenge of providing a
model that allows comparing plans according to their ethical features using
preferences.

An important requirement we demand of our model is that it must
allow for qualitative preferences. It has been emphasized [Brundage, 2014]
that Al systems in which ethics is useful, can take dangerous decisions in
situations of extreme trade-offs. This could be a problem if the preference
model was strictly quantitative. For instance, we want to be able to model
that a set of ethical rules R takes precedence over an arbitrarily large set
of rules R’ whenever R presents a critical rule r € R that precedes features
in R’

Here, we will base our preference representation framework on what
is known as ranked knowledge bases [Feldmann et al., 2006] to represent
qualitative preferences amongst sets of alternatives. In contrast to the
original work, we will not define the preferences for arbitrary formulae, but
rather for ethical features. We chose and adapted this model as it combines

77

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

naturally with our ethical rules and is concise and straightforward to elicit
from external sources because as we shall see, only requires assigning a
relative numeric value to the importance of each feature separately.

Definition 4.10 (Ethical ranked base). Given a set of ethical features
E, an ethical ranked base (ERB) is a function:

b(e) = (Type(e). Rank(e))

That maps a ground ethical feature e € E to a pair consisting of a
symbol Type(e) € {+,—} representing the type i.e. whether the eth-
ical feature is ethically right or wrong, and a non-negative integer
Rank(e) € Ny, which denotes the rank of the ethical feature i.e. its
level of importance. In the case Type(e) = + we will call e a positive
ethical feature, otherwise we will call it negative. We assume that b
is a total function and in cases where its value is not specified for a
ground feature e, that the rank is zero, i.e: Rank(e) = 0, meaning that
the feature has no ethical relevance and the type is positive, but can
be ignored.

The motivation behind Type(e) is to make it possible to define not only
what behaviors should be avoided, or undesirable, but also what is ethically
desirable. In the case that an ethical feature is not assigned to a plan, our
stance will be that it will not affect the ethical desirability of the plan.
That is, if a positive or negative ethical feature is not assigned to a plan,
it will not make the plan more or less ethically preferred than another by
itself.

In turn, the rank of the ethical feature defines how important it is.
Intuitively, if a plan m; is assigned a positive ethical feature e of rank j and
7o has no features of rank j, then the plan m; is preferred if both plans have
the same features for every higher rank i > j. Conversely, if e is negative
and both plans have the same features for every higher rank i > j, then 9 is
preferred. More generally, we extend this notion to sets of ethical features
as follows:

Definition 4.11 (Ethical preference). Let A,B C E be two sets of

ground ethical features included in E and b an ethical ranked base over
E.
Then A is at least as preferred as B, denoted A >, B if and only if:

Vi € N, it holds that b (A) = b (B) and b; (A) = b; (B), or
3i € N, such that (b](B) c bj (A) A b; (A) C b; (B), or

bi (B) € bf (A) A b; (A) C b; (B)), and

Vj > i:bi(A) = b} (B) and b; (A) = b; (B).

78

4.2. REPRESENTING ETHICAL PLANNING PROBLEMS

Where given i € N and a set of ethical features C C E:

b/ (C) ={e € C: Type(e) = +, Rank(e) = i}
b; (C) ={e € C: Type(e) = —, Rank(e) =i}

We denote >, and =, as usual: A >, B if and only if A >, B and
B %, A; A=, Bif and only if A >;, B and B >; A.

The expressions b (C) and b; (C) are used as a shorthand to express
the positive and negative ethical features, respectively, of a certain rank i.
Then the preference relation between sets of ethical features is defined as
a lexicographical order with the caveat of separating the positive from the
negative ones. In other words, all ethical features of higher ranks being
equal, a set A is preferred to B whenever there is a rank j such that the
positive ethical features of that rank, b](A) include those of b} (B), and
conversely b; (A) is a subset of b (B).

Having defined how to compare sets of ethical features, now we will
define an extension of classical planning problems to take into account
ethical rules and ethical ranked bases as follows:

Definition 4.12 (Ethical planning problem). An ethical planning
problem is a tuple T = (D = (L, F, 0), 50,9, € = (E, R, b)) where:

o T' =(D,sp,g) is a classical planning problem.
e E is a set of ethical features,
e R is a set of ethical rules over E, and

b is an ethical ranked base over E.

Furthermore, the semantics of states and actions is the same as in
classical planning problems:

e The states s € S of T are all the ground fluents combinations of
F, and thus coincide with those of T’,

e The actions a € A(T) are all the groundings of operators o € O
with constants from £, and thus coincide with A(T’),

e Given a state s and an action a, the successor state Succ(a, s) is
the same in T and T’, and

A list of actions 7 is a plan for T whenever Succ(r, s9) = g.

This definition captures all the elements we need to compare plans on
ethical terms using our framework. The ethical elements modeled by € =
(E, R, b) are separated from the rest of the planning definition, making the
framework modular, as it simply extends classical planning problems.

By definition, a plan for the classical planning problem (D, sg, g) is also
a plan for the ethically extended version.

79

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

Proposition 4.13. Let T = (D, s, g, €) be an ethical planning problem
and T’ = (D, sg,g) a classical planning problem, then x is a plan for T
if and only if it is a plan for T’.

This is straightforward to prove.

It follows from Definition 4.12, as the states, actions and
successor function definitions are the same as in classical planning prob-
lems.

Moreover, our definition of & = (E, R, b) allows comparing plans on eth-
ical terms as follows.

Definition 4.15 (Ethically preferred plan). Let T = (D, so, g, € = (E, R, b))
be an ethical planning problem and my, 7o plans for T, then my is at
least as ethically preferred as m», denoted m; >, 7o if and only if
Enl Zb E,IQ.

We denote >, and =, as usual: m; >, 7o if and only if 7y >; 7m0 and
7y Fp m1; T =p 7o if and only if w1 > 1o and m > 1.

Moreover, we say that plan 1 is ethically optimal if and only if
for every plan mo for T, it holds that m; > mo.

In other words, we use Definition 4.11, which we defined for sets of
ethical features, to compare plans through the ethical features that are
assigned to them through the ethical rules in R.

Let us exemplify how this would work.

Example 4.16 (Autonomous driver continued). Consider the classical
planning task T = (D, sg, g) and:

e The set of ethical features:

E ={danger(C,G) : C € {agent, c1,c2}, G € {low, high}} U
{damageRail(C) : C € {agent,cy,c2}}

e The set of ethical rules R = {r1,ro,r3,74,15, 16} as defined before
in Example 4.9.

We can define the following ethical ranked base b:

b(damageRail(C)) = (-, 1) VC € {agent, c1, c2}
b(danger(C, low)) = (-, 2) YC € {agent, c1,c2}
b(danger(C, high)) = (-, 3) VC € {c1,c2}
b(danger(agent, high)) = (—, 4)
b(responsibleAgent()) = (-, 4)

80

4.3. MODELING ETHICAL THEORIES

All the ethical features in these examples are negative because they
all refer to the impacts that the cars may cause. The ranks imply that
damaging the rail is not as negative as causing danger to a car, that
causing high danger is worse than causing low danger, and finally, that
if the agent is in high danger, or is responsible for a collision, either by
bumping or crashing into another car, it is the worst-case scenario. The
idea behind this rank is to model the intuition mentioned before, that
if possible, the agent should refrain from causing itself any damage,
no matter if other cars crash between themselves. Furthermore, the
agent being in high danger should be also avoided at all costs. These
intuitions, of course, are debatable, however, it serves to exemplify
what our framework can do.

Thus, we have all the building blocks to define the ethical planning
problem T” = (D, sg, g, € = (E, R, D)).

In this scenario, as mentioned before, we have that:

E., = {danger(ci, high), danger(ca, high)}
E,, = {danger(ci, low), danger(agent, low),

responsibleAgent()}

Then, my > m2 since Ry (1) = {responsibleAgent()} and R} (7m2) = 0,
thus R;(m2) & R;(m1) and there no other features of higher rank. In
other words, s is ethically preferred to mo because it was assigned the
ethical feature responsibleAgent(), which is a negative feature and also
the one with the highest rank.

With these last definitions, we can compare plans on ethical terms.
However, it was left unspecified (i) how a planner might find ethically
optimal plans, and (ii) what would happen in the case two plans have
uncomparable ethical features, in the sense that for the highest rank, both
plans have disjoint ethical features, and possibly a different number of them.
We will address these questions in the following chapter. For now, let us see
how this framework can represent different well-known ethical theories.

4.3 Modeling ethical theories

In what follows, we will exemplify how our ethical planning framework can
model certain ethical theories and notions described in Chapter 3 and use
them to compare plans ethically. For each of these theories, we will present
a template in the form of abstract ethical features, rules and ranked bases
that can be used to model the ethical elements of a problem according to
that theory.

One of the benefits of our model is that all of these theories can be
present in an ethical planning problem and used at the same time. Also,
by using different ranks, the theories can either operate on several levels
of priority (e.g: making deontological preferences stronger than the conse-
quentialist ones) or be used to compare plans at the same levels.

81

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

4.3.1 Consequentialist ethics

As we explained in Section 3.3.1, consequentialism is the normative ethical
theory that compares the rightness of actions only with respect to their con-
sequences. The way in which the benefits and drawbacks of consequences
are measured varies from one interpretation to another. Here, the perspec-
tive from which consequences are compared will be the welfare of a certain
group of individuals, also called utilitarianism [Mill and Bentham, 1987].
It states that an agent should always choose the alternative that minimizes
pain and maximizes the happiness of this select group. Those individuals
whose welfare defines the rightness of actions, e.g: the agent and/or the
other involved entities, also depend on the interpretation.

In the context of Al planning, the agent plans ahead of time a sequence
of actions to perform and can therefore predict both the immediate and
future consequences of its actions. As such, past research on machine ethics
[Ganascia, 2015, Lindner et al., 2019, Winfield et al., 2014] seems to agree
that consequentialism should be implemented by comparing the final state
reached by plans on ethical terms.

Using the framework presented in the last section, one can model the
ethical elements of a planning domain via ethical features, ranks and rules.
Modeling a consequentialist theory amounts to defining all the ethical fea-
tures that affect the welfare of the relevant individuals. For instance, let us
consider an ethical planning problem T = (D = (L, F,0), 0,9, € = (E, R, b)).
Assuming that a set of fluent literals

{PLX1)s oy Pu(Xn), ~Q1 (Xns)s -« - s ~Qm(Xm) }

With P;, Q; predicates and X, X ; lists of variables, defines a state of affairs
that affects the welfare of an individual a for a reason rs (which we will also
use as the identifier of the ethical rule) with gravity g € N, and the welfare
of all individuals is equally as important, we can model this with an ethical
feature e € E, rule r € R and assign b(e) as:

e =af fects(a,rs,g)

r =(ruleC-a-rs(X),
{PLOXD), - Pa(Xn), =Q1(Xn)s - - s =Qm (K |
Act(r),
{af fects(a,rs,g)})

b(e) (+, g) if rs is good for a, or
e)=
(-, g) otherwise

with a, rs, g constants of the language £, X a list of variables that contains
all of those in each X; and Act(r) either null if the set of fluent literals in
the rule precondition defines by itself that the welfare of a was affected,
or an operator name opName(X, ..., Xy) of T if executing an action is also
needed to do so.

82

4.3. MODELING ETHICAL THEORIES

Notice that the individual a can be lifted to a variable A of £, for
instance, if some of the fluents P; or Q; refer to A in their arguments.

In Example 4.9 we can see a few ethical rules of this kind, such as ry,
which we could rewrite using the template above as:

e =af fects(agent, crash,4)
r = (ruleC-agent-crash(),
{hasCrashed(agent)},
null,
{af fects(agent, crash,4)})
b(e) =(—,4)

As we saw earlier, this describes the fact that if in the final state we
have that the agent crashed, the plan will be morally wrong.

We are taking several assumptions in this model. First, the fluents of
the state (and optionally an action) should be sufficient to capture when the
agent’s behavior affects individuals. Although our framework separates the
ethical comparison of plans from the operational model, the agent cannot
reason about states it cannot perceive. We also assume that the gravity of
the features can be captured with a numerical value g € N, which sounds
reasonable in the context of utilitarianism.

A problem one may face when using the current characterization of eth-
ical preferences is that the model cannot decide between two plans m; and
1o when the two plans have disjoint positive or negative ethical features of
a certain rank and the same features of higher rank. By definition 4.11, if
a1 has, say, ten positive features of a certain rank and 7o only one but they
are disjoint, the plans will be incomparable. However, some characteriza-
tions of utilitarianism compare plans by the sum of the utilities assigned to
their ethical features, which in this case is their rank. We can fix this issue
either by the concept of linearization we will introduce in Section 5.1, of
the next chapter.

4.3.2 Deontological ethics

As opposed to consequentialist views, deontological ethics asserts that an
action should be judged on whether it complies with a set of duties and
obligations, rather than based on its consequences.

This theory has been applied to automatic systems [Hashmi et al.,
2014, Berreby et al., 2017, Lindner et al., 2019] by constructing and enforc-
ing restrictions that characterize what is permitted and what is forbidden.
While [Berreby et al., 2017] defines the deontological principle with a set
of logical rules that determine when an action is permitted or forbidden,
[Lindner et al., 2019] defines a plan as deontologically permissible if the
total utility of each action (based on its consequences) is positive.

From a practical perspective, we can think of deontological ethics as a
theory that distinguishes right from wrong actions depending on whether

83

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

that action complies with the duties all members of a society should follow.
In our context, the model we defined cannot specify by itself this set of
duties and reason about whether the action complies with them or not.
Rather, we take the stance that the system designer should define a priori
what actions performed at which states are forbidden from a deontological
point of view, and encode them as ethical features, ranks and rules. Of
course, these could also be generated by an external procedure that reasons
in advance to produce these ethical constructs.

Similar to the last section, we can define deontological ethical fea-
tures/rules as:

e =forbidden(rs, g)
r =(ruleD-rs(X),

{PLX1)s oy Pu(X), ~Q1 (Xt 1)s - - s ~Qm(Xam))
Act(r),

{forbidden(rs, g)})
b(e) =(-. 9)

where rs, g are constants, P;, Q; predicates and X, X; are lists of variables
exactly like in the last section and Act(r) = opName(X1, ..., Xy) an operator
name and parameters of T.

We interpret that the ethical rule must be defined via operators and not
fluents because deontological ethics defines the rightness of actions by the
action itself and not its consequences, i.e: the state reached by performing
it.

Because the rule checks for actions that should be forbidden, the type of
the feature is negative. Moreover, if the planning problem designer does not
desire any deontologically ‘forbidden’ feature to be in a plan, the gravity
g € N should be set to the maximum possible value.

For instance, in Example 4.9 we have ethical rules to check whether
a car crashes. From a deontological point of view, we can make a rule
that states that going to the same location as another car endangers the
passengers of both cars, which would be wrong:

e =forbidden(endanger, 5)
r =(ruleD-endanger(C1,X1,X2,X3,Y1, D1, D2),

{—equal(C1, agent), hasPos(agent, X1, Y1), hasPos(C1, X2, Y1),
hasDir(agent, D1), hasDir(C1, D2), nextX(D1, X1, X3),
nextX(D2,X2,X3)},
g0(),

{forbidden(endanger, 5)})
b(e) =(-,5)

Notice that the ethical rule also characterizes when agent bumps into
C1 according to Example 4.9, although in this case, the semantics of the

84

4.3. MODELING ETHICAL THEORIES

ethical rule describes a different aspect that is not operational but rather
ethical (r would still hold even if the fluent hasBumped(C1) was unavailable).

A considerable amount of research (see Chapter 3) considers that break-
ing deontological restrictions is unacceptable, in the sense that the gravity
should be infinite and that a plan that breaks such a principle should not be
considered a solution, however as we explained before, we take the stance
that all plans should be considered and that many times not doing anything
could be unethical by itself.

4.3.3 Virtue ethics

Along with the aforementioned theories, virtue ethics is one of the main
three normative ethical branches. According to virtue ethics, an agent is
deemed ethical when the actions it performs exhibit the characteristics of a
virtuous being. What constitutes virtue can vary between interpretations
and cultures, but some classical examples are fairness, honesty and com-
passion. In contrast to the other theories, virtue ethics relies on the moral
values of an agent. Of the three main ethical theories, virtue ethics is the
one that has been the least present in Al research (see Chapter 3).

Using our framework, we will interpret virtue ethics as an ethical theory
that assigns virtues in the form of ethical features, as opposed to deonto-
logical ethics, which assigns reasons to forbid an action, as we saw in the
previous section. Indeed, we can define the virtuous aspects of action as
follows:

e =virtuous(rs, g)
r =(rule V-rs(X),

{PLX1). . Pa(Xn)s = Q1 X1 - - 2 = QmXinim)
Act(r),
{virtuous(rs, g)})

b(e) =(+.9)

where rs,g are constants, g € N, P;,Q; predicates and X, X; are lists of
variables exactly like in the last section and Act(r) = opName(Xq, ..., Xk)
an operator name and parameters of T.

Also like the previous section, we interpret that the ethical rule must
be defined via operators and not fluents because the virtues stem from
the action and not its consequences. However, because virtues are positive
traits, the ethical feature is positive as well.

Following Example 4.9, we can define the virtue of generosity when
the agent bumps into a car C1 in order to prevent it from crashing more
dangerously into another car C2:

e =virtuous(preventCrash, 5)
r =(ruleV-preventCrash(C1,C2,X1,X2,X3,Y1,Y2, D1, D2),

85

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

{—equal(C1, agent), mequal(C2, agent), ~equal(C1, C2),
hasPos(agent, X1, Y1), hasPos(C1, X2, Y1), hasPos(C2, X3, Y1),
hasDir(agent, D1), hasDir(C1, D2), hasDir(C2, D3),
nextX(D1, X1, X4), nextX(D2, X2, X4), nextX(D3,X3,X4), nextY(Y1,Y2)
—hasCrashed(agent), —hasCrashed(C1), —hasCrashed(C2)},

g00),
{virtuous(preventCrash, 5)})
b(e) =(+,5)

The ethical rule r reads as follows: if the car C1 is in position (X2, Y1),
C2 in position (X3, Y1), they are both going to a location (X4,Y2) in the
next step and the agent can go to that the same location in the next turn,
then it will prevent the crash by bumping into both cars and stopping them,
which would be virtuous.

4.3.4 Prima facie duties

Also a relatively well-known ethical theory, Ross’s prima facie duties [Ross
and Ross, 2002] judge the rightness of actions according to various prede-
fined moral duties. They present a pluralist view that can be linked both to
deontological and virtue theory in that (i) the duties they strive to adhere
to judge the intent of actions and not their consequences, and (ii) the duties
themselves are inspired by the obligations people have to society and the
premise of showing good intent. Recalling Chapter 3, the duties suggested
in his work are fidelity, reparation, gratitude, non-maleficence, beneficence,
self-improvement and justice.

The main way in which this theory differs from the previous ones is that
various classes of duties are taken into account at the same time and not
every duty is as important as the others in every situation, for example,
non-maleficence is almost always to be prioritized, as harming other people
should be avoided in all decisions. Also, if an action supports a more
important duty or the same duties that another action plus some, then
that action is deemed right.

This pluralist view is suitable for our framework, which models various
ethical features and gives them relative ranks of priority. Indeed, if ethical
features are interpreted to be prima facie duties and we use the ethical
ranks to model their relative importance, our model will fit properly with
the perspective of this theory.

Following the templates of the last sections, given a prima facie duty p
(constant of £), we can define ethical constructs to represent prima facie
duties as:

e =primaFD(p, rs, g)
r =(rulePFD-p-rs(X),
{PI(XI)’ R PH(XH)’ _'QI(XT;\+1), RS _‘Qm(anm)},

86

4.3. MODELING ETHICAL THEORIES

Act(r),
{primaFD(p, rs,g)})

be) (+,9) if rs is good for p, or
e) =
(-, g) otherwise

where rs,g are constants, g € N, P;,Q; predicates and X, X; are lists of
variables exactly like in the last section and Act(r) = opName(Xy, ..., Xk)
an operator name and parameters of T.

Other literature on prima facie duties in the context of machine ethics
can be found in [Anderson et al., 2005a, Anderson et al., 2005b, Ander-
son and Anderson, 2018], however, their work is focused on the inference
of preferences between these duties in the context of decision-making, in-
stead of modeling ethical theories for automated planning, as we do in this
section.

4.3.5 Doctrine of double effect

Another ethical theory that has been modeled by various top-down machine
ethics approaches is the doctrine of double effect (DDE). Recalling Chapter
3, the doctrine characterizes an action as permissible when:

1. the action in itself is good or indifferent,

2. the agent only intends the good effects and if there are any bad ones,
s/he would rather be in a situation where the action would not be
needed,

3. the bad effects do not cause the good effects by themselves, rather
they are both produced by the action independently, and

4. there is a proportionally important or desirable reason to permit the
bad effects in light of the good ones.

Some literature [Govindarajulu and Bringsjord, 2017] has tackled the
task of modeling all these elements through formal logic.

Here, we will choose to focus on (3) by determining when a certain
bad ethical feature causes a good one, and leave the rest of the conditions
for future work. However, these concepts require certain adaptations if we
hope to model them using our framework. Namely, because good and bad
effects will be captured by ethical features, representing the fact that one
ethical feature can cause another will require, as we will see shortly, allowing
ethical rules inside of the precondition of ethical rules. While Definition
4.7, which defines ethical rules r, only needs to allow ethical features in
pre(r), Definition 4.8, which defines the ethical features ER(rr) assigned to a
plan 7, should be slightly modified to take into account the ethical features
assigned to a plan after every action, as follows:

EX()={e€E:reR ecEr)o,

87

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

Name(r)6 is a grounding,

so |E Pre(r)d, and

Act(r) = null}

EX(lao,ai]) = (EX(lao,....ai1]) —

{e€E:reR, —ecE®r)o,

Name(r)6 is a grounding, ,

si | (Pre(r)@ N F),

EX([ag, . ..,ai-1]) £ (Pre(r)0 N E) and
(Act(r)0 = a;, or Act(r) = null)}) U
{e€ E:reRecE®r),

Name(r)0 is a grounding, ,

si = (Pre(r)0 N F),

ER([ag, ..., ai-1]) E (Pre(r)0 N E) and
(Act(r)0 = a;, or Act(r) = null)}

Then, we can model the DDE using our framework using the following
ethical feature, rule and rank:

e =forbiddenDDE(I1, 12, g)

r =(rule DDE(I1,12),
{eDDE(bad, I1), eDDE(good, 12), causes(I1,12)},
null,
{forbiddenDDE(I1,12, g)})

b(e) =(-.9)

with g € N a constant, I1,12 variables, and eDDE(bad, I1), eDDE(good, I12)
and causes(I1,12) ethical features. We will make the simplifying assump-
tion that eDDE(bad,I1) and eDDE(good,I2) are generic ethical features,
where eDDE(bad, I1) is activated by other already specified ethical rules,
that eDDE(bad,I1) has a negative type and eDDE(good,I2) positive, and
that they only count with one argument I1 and I2, respectively, which is a
constant that denotes their identifier.

Briefly, r is a lifted ethical rule that assigns the forbiddenDDE(I1,12, g)
ethical feature to a plan when a negative feature with identifier I1 causes
a positive feature with identifier I2. Notice that using this template we
may define several identifiers for positive and negative ethical features to
use with the rule above and it would also be straightforward to extend
these ethical features with more parameters. Of course, the problem here
is providing ethical rules that activate the causes(I1,I2) ethical feature.

Capturing causality between the effects of actions in an Al planning
model is a problem by itself that has been addressed in different ways. Most
notably, [Berreby et al., 2018] develops various definitions of causality for
planning using a modified event calculus and [Lindner et al., 2019] presents
another interesting approach for STRIPS planning with exogenous actions.

88

4.3. MODELING ETHICAL THEORIES

However, the mentioned articles do not make the distinction we made
between ethical features and fluents. Typically, they model causality taking
into account the effects and preconditions of actions. For instance, some
accounts of causality express that an action a causes not only its effects
e1,...,en, which may be ethical or not, but also another future effect e,
if a subsequent action a’ has e,y as an effect and some e; with i € [1,n] is
a precondition of a’.

In our framework, we need to model causality differently. First, the fea-
ture causes(I1,12) can only be activated through ethical rules. And second,
we can not use the inter-dependence between action effects and precon-
ditions to model causality, but rather we can say that eDDE(S1,I1) causes
eDDE(S2, I2) whenever the second ethical feature is activated through a rule
that has the first as a precondition.

Essentially, given two ground ethical features e DDE(s1, i1) and eDDE(sa, i2),
where s1,s0 € {good, bad} and iy,is two constants denoting identifiers, we
can define a special ethical rule to capture causes(iy, is) as:

r’ =(ruleCauses(),
{eDDE(s1, i1)} U A,
null,
{eDDE(so, iv), causes(i1, i2)})

where A = {Pl()fl), o Pu(Xn), 201 (X ns1), - - - ﬂQm(Xn:rm)} is a set of literals
that represents any extra conditions needed to activate r’.

We also assume the causes(I1,12) predicate to be a transitive relation,
which we can specify with a single ethical rule:

r"” =(ruleCausesTrans(I1,12,13),
{causes(I1,12), causes(12,13)},
null,

{causes(I1,13)})

Notice that the ethical rule definitions for forbiddenDDE(I1,12,g) and
causes(I1,12) demand ethical features to be present in their preconditions.
And as we explained earlier, allowing ethical features in the precondition of
ethical rules requires extending Definition 4.7 and 4.8 to take into account
ethical feature literals in the precondition of ethical rules, along with fluent
literals.

4.3.6 Do-no-harm principle

Some research [Lindner et al., 2019] has also put forward the interest in
modeling ethics as the prevention of harm. Harm prevention is a conse-
quentialist principle that usually involves checking that the agent does not

89

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

produce any harm through any single action, instead of the whole plan. As
such, preventing harm requires:

1. Checking that the harmful consequences were produced by the agent
and were not present in the initial state, and

2. Preventing the harmful consequences of any action even if this harm
is erased through a future action.

Supposing we have a negative ethical feature e = af fects(a,rs, g), rule r
and rank b(e) as defined with the consequentialist ethics template of Section
4.3.1, we can define a new ethical feature e, = producesHarm(a, rs, g5) which
models the fact that the agent itself has produced the harm af fects(a, rs, g)
through one of its actions and that it was not present in the initial state.

More precisely, (1) can be modeled by checking whether e was present
in a past state. Then, we can add ethical constructs to perceive when this
harm is being produced by the agent as follows:

en, =producesHarm(a, rs, gp,)
rn =(ruleDNH-a-rs(X),
Pre(r) U {—af fects(a,rs, g)},
Act(r),
{producesHarm(a,rs, g)})
b(en) =(—, gn)

with a,rs, g, r, X as defined in Section 4.3.1 and grn € N anumber that defines
the gravity of producing harm rs to a.

Notice that, just like the last section, this principle requires extending
the precondition of ethical rules to consider ethical features along with
fluents.

Moreover, (2) can be ensured simply by not specifying any ethical rule
that deactivates producesHarm(a,rs, g), in other words, for no ethical rule
r’ it can hold that —producesHarm(a,rs, g) € E(r’).

4.4 Related work

As explained in the previous section, our work is a direct contribution to
top-down machine ethics in the context of Al planning. In particular, our
framework seeks to model explicit ethical agents (see Chapter 3), i.e: those
that can reason ethically by following principles that are encoded in their
representation.

In the context of this subject, the separation between the operational
and ethical aspects of problems can be related to past literature on ethical
governors [Arkin et al., 2009] for BDI agents. In this article, the authors em-
bedded an extra layer within the agent and rejects action plans that violate
ethical constraints. Similarly, [Dennis et al., 2016] proposed a framework

90

4.4, RELATED WORK

for BDI agents that instead selects action plans which minimize ethical con-
straint violations. Then, [Cointe et al., 2016] introduced a framework for
ethical planning with preferences, also based on BDI agents, that presents a
construct called moral rule and valuations, which coincide with our ethical
rules and features, respectively. On the other hand, their framework deals
with preferences between ethical principles and not ethical features and
therefore does not permit combining elements of multiple ethical theories
at the same level as we do here, e.g: when the ethical features of different
ethical theories are assigned the same rank. Furthermore, BDI approaches
compare precomputed plans obtained via external planning modules on
ethical terms. However, our framework behaves differently than all BDI
approaches because our ethical preferences, as we shall see in the next
chapter, can be taken into account by a planner and its heuristic strategies
and not after the planning phase.

On a different venue, [Berreby et al., 2015, Berreby et al., 2017] present
an event-calculus-based framework that implements several ethical theo-
ries through answer set programming. In their work, they present several
definitions adapting well-known ethical principles for automated reasoning
that can determine when plans are right or wrong from the point of view
of different ethical theories. Similarly, [Ganascia, 2007, Ganascia, 2015]
define several ethical principles adapted to automated reasoning for answer
set programming and in [Berreby et al., 2018], the authors extend that
work by presenting several different interpretations of causality. And then,
in [Bourgne et al., 2021] their ideas are expanded by allowing concurrency
and multiple agents. All of this research is closer to our framework pre-
sented in this chapter in that: (i) they consider the ethical aspects of a
problem at planning time, unlike BDI agents, and (ii) the semantics of
states and actions is handled by what they call an event motor, which can
be kept separated from the ethical reasoning. As we have seen in Section
4.3, we can adapt some ethical theories similarly using our framework, but
our treatment of ethics takes a step aside by considering preferences. That
is, our framework can help decide between multiple plans on ethical terms
even when all of them are unethical according to all ethical theories, which
as we have discussed, can be considered an advantage in certain cases.

With the purpose of defining normative ethical restrictions, [Govindara-
julu and Bringsjord, 2017, Hashmi et al., 2014, Marin and Sartor, 1999] de-
veloped different models for ethically-aware planning based on deontic logic
and the event calculus. Also related, in [Panagiotidi and Vézquez-Salceda,
2011], restrictions were characterized using context-dependent norms and
applied to STRIPS-based planning domains. Our work contrasts with their
work in that we consider multiple ethical theories and model ethical theories
through preferences.

Moreover, in [Lindner et al., 2017, Lindner et al., 2019], the authors
present a characterization of various ethical decision mechanisms such as
utilitarianism, different versions of the do-no-harm principle and the doc-
trine of double effect in the context of the SAS+ planning model. Our
work is indeed similar to theirs in that it permits modeling various ethical

91

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

theories in the same framework. However, just like the previously discussed
corpus of research, our framework differs from all of them in that it handles
ethics via preferences.

As we have shown, one of the advantages of our framework is that it
went further than classifying actions as right or wrong by using preferences.
Qualitative preferences between the ethical features are represented using
ranks as in [Feldmann et al., 2006]. In this aspect, our work adapts their
definition of ranked bases to consider two types of features, positive and
negative. Also, in our framework, these preferences only deal with ethi-
cal features which are kept separated from the other fluents and are only
activated through ethical rules.

Finally, past research on causality [Berreby et al., 2018, Govindarajulu
and Bringsjord, 2017] did not make the distinction we made between ethical
features and fluents and did not deal with preferences, thus making our
approach to causality and the principle of double effect, discussed in Section
4.3 different from other literature.

4.5 Discussion

In this chapter, we have developed a domain-independent planning frame-
work through an extension of PDDL that allows agents to analyze plans on
ethical terms and compare them through preferences. We chose to focus
on a high level of abstraction with the classical planning language PDDL
so that we could concentrate on the ethical reasoning aspects.

As mentioned at the start of this chapter, we separated the ethical and
operational aspects of a planning problem by introducing ethical features.
From a practical standpoint, ethical features are similar to fluents in the
sense that they characterize properties evolving with the execution of ac-
tions, however, we chose to keep them separate for different reasons. To
begin with, state fluents are used to characterize the state of the world
and define action preconditions, effects and goals. None of this holds for
the ethical features. The world state is not affected by the ethical features
of a domain, rather ethical features refer to the properties of a plan, and
it is not our intention to make the definition of actions and goals depend
on ethical features. Furthermore, by keeping the fluents and ethical fea-
tures separate, we ensure modularity between the problem definition and
its ethical side, meaning that (i) the ethical definitions do not change the
problem description in the case one would want to add our ethical extension
to an existing problem, and (ii) the ethical features, rules and ranks of one
problem can be used in another by adapting the ethical rules to the fluents
and actions of the second problem, thus making it possible to reuse already
defined ethical preferences and principles, which can be hard and expensive
to elicit. We also introduced ethical rules, a construct that assigns ethical
features to plans when certain conditions are met. The concept of ethical
rules is the method we provided to assign ethical features to plans without
mixing them with other fluents. By doing this, we ensured that ethical
features can depend on fluents but not the other way around, thus keeping

92

4.5. DISCUSSION

the ethical and operational aspects of the problems separated.

In Chapter 3, we explained that past research on top-down machine
ethics (i.e: providing a model of ethics to the machine instead of inferring
it) has focused on producing mechanisms to characterize which plans are
ethically acceptable or not. By introducing preferences, our framework
went further than classifying actions as right or wrong. We advocated that
in the context of autonomous systems, the machine always has to be able
to compute a plan. If no unethical plan is considered, then the situation
could be at an impasse. Our argument against not computing any plan
that is not perfectly ethical is threefold: (i) doing nothing can sometimes
also be unethical, (ii) certain domains, such as autonomous driving, might
arrive at a scenario that always demands the machine to do something, e.g:
another car about to crash with the agent, and (iii) the task of the planning
phase is to determine the most ethical way of achieving the specified goal
and the agent could always change the goal and replan if the computed plan
does not satisfy certain constraints, that is, the agent can always analyze
the plan in a posterior phase handled by another reasoning mechanism and
reparametrize the problem.

In our framework, preferences are modeled through ethical ranked bases,
which determine the level of importance of ethical features and whether
they are positive or negative ethically, based on [Feldmann et al., 2006].
This type of preference may seem restrictive compared to other languages
used for ethical planning like [Gerevini and Long, 2005], but as we have
shown can be general if the right modelization of ethical features and rules
are encoded. Furthermore, it (i) combined naturally with our ethical rules,
(ii) allows us to treat multiple ethical theories concurrently by using dif-
ferent ethical ranks, or mixing them together using intersecting ranks, and
(iii) is concise and straightforward to elicit from external sources because it
only requires assigning a relative numeric value to the importance of each
feature separately.

A framework that separates ethical aspects into different priorities is
imperative in ethical domains. For instance, consider a problem in which
an agent is assigned a unit of utility for executing a trivial action, such
as giving away ice creams, while on the other hand is assigned a thousand
units or any other fixed utility for not killing a person. Summing up simple
utilities would effectively compensate for killing a person if the agent gives
away enough ice creams. In contrast, the rank-based approach prohibits
such kind of behavior by assigning different ranks to the ethical features.

We have shown how the intuitions of many ethical theories may be
modeled through our framework. Interpreting ethical theories in the con-
text of automated reasoning is not simple in most cases. Ethics by itself is
a deeply human subject and machines will frequently not have access to all
the information people consider when judging choices ethically. However,
we show that many of its concepts may be represented or adapted.

In the context of this chapter, the use of ethical features, rules and pref-
erences changed slightly the interpretation of the ethical theories compared
to past research on machine ethics. However, we have shown through some

93

CHAPTER 4. REPRESENTING ETHICAL PREFERENCES IN
CLASSICAL PLANNING

examples that our approach is effectively capable of realizing many useful
ethical theory intuitions.

Moreover, past research on causality did not make the distinction we
made between ethical features and fluents and did not deal with preferences.
Instead, they seek to model which actions are permissible or not.

Indeed, both in the matter of ethical reasoning and causality, we have
shown that our approach provides a step forward in the field by presenting
an alternative view on top-down machine ethics through preferences.

We insist that one of the main advantages of our framework is that
all of these theories can be present in an ethical planning problem at the
same time and used concurrently due to the ethical ranked bases. If the
system designer wants to compare the results of different theories sepa-
rately, the ranks of features can be adapted to prioritize a specific one (e.g:
making deontological preferences stronger than the consequentialist ones).
Otherwise, because ethical theories get reduced to features by using the
templates we specified, they can be combined seamlessly by using the same
ranks through the preference relation we defined between plans.

Future work It would be interesting to apply the ideas of this chapter
to other planning models that allow for multiple agents, exogenous actions,
uncertainty in the form of belief states, or probabilistic planning.

Furthermore, a simple improvement we can make to the assignment of
ethical features to plans is considering multisets. Indeed, Definition 4.8 does
not account for repeated ethical features, but extending this to multisets
would be straightforward. This could be helpful to model cases in which
activating a positive or negative ethical feature multiple times makes a
difference in the ethical consideration of a plan.

Regarding the preference model, one possible way of extending this
work would be by providing a more general language to express them, as
described in [Brewka, 2004].

Finally, ethical rules could also be extended to be activated when certain
conditions hold for every, or a certain number of states in a row, similar to
PDDL3 preferences [Gerevini et al., 2009].

94

Planning with ethical preferences

5.1 Translating ethical preferences to utilities 96
5.2 Implementation of our framework 105

5.2.1 PDDL codeextension. 106

5.2.2 PDDL code translation routine 109
5.3 Experimentation 113
54 Relatedwork 124
5,5 Discussion. 124

In this chapter, we will show how ethically optimal plans may be ob-
tained by transforming ethical planning problems, as defined in the last
chapter, into classical planning problems with utilities. Moreover, by em-
ploying this translation procedure, ethical planning problems will be able
to be solved using existing state-of-the-art planners. Like in the previous
chapter, the work presented here can be considered an extension of my
work on [Jedwabny et al., 2021a].

In order to do this, we will first introduce a valuation function, based on
[Feldmann et al., 2006] but adapted to take into account our positive and
negative ethical features, that assigns a numerical value to plans according
to their ethical features.

Furthermore, by utilizing a valuation function we can solve the incom-
parability problem mentioned in the last chapter. It will often be the case
that two plans are incomparable, whenever their ethical features at their
highest level are disjoint. Assigning a numerical value to plans solves this
problem because by comparing plans in terms of their assigned value, no
two plans will be incomparable.

We will also discuss two implementations of the mentioned translation
procedures we have made publicly available and test the effectiveness of our
approach in terms of computational efficiency using various state-of-the-art
planners.

As such, our research questions for this chapter are the following;:

Research Questions in this Chapter

e How can our ethical planning problems, as described in the last
chapter, be solved with existing AI planning technology?

e How effective is this approach in practice in terms of computa-
tional efficiency?

95

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

This chapter is structured as follows. Section 5.1 demonstrates how
our ethical planning problems can be translated into utilities by using soft
goals. Section 5.2 provides an overview of the two implementations we
developed for the ideas discussed in the previous section. In Section 5.3,
we describe the various experiments we formulated to test the effectiveness
of our approach in terms of computational efficiency. Then, Section 5.4
discusses the related work. And finally, Section 5.5 concludes and describes
the different ways in which the ideas in this chapter can be extended.

5.1 Translating ethical preferences to utilities

In this section, we will show how ethical planning problems can be reduced
to classical planning problems with a transformation routine similar to
[Feldmann et al., 2006].

As a first step, we will show how the ethical preference relation >; intro-
duced in the last chapter can be modified so that every plan is comparable.
More formally, it is simple to verify that the >, preference relation is reflex-
ive (i.e: m = m) and transitive (i.e: 7 >p M0 A M >p 13 = 71 >=p 713),
and thus a preorder. However, it may often be the case that certain plans
satisfy disjoint elements at a level i € N, so we cannot say this order is total.
Such a preorder can be made total with the use of linearizations [Feldmann
et al., 2006]:

Definition 5.1 (Linearization). A linearization of >, a preorder over
set A, is a total preorder =" over A that extends >, i.e: Va,b € A, a >
b = a>!'""b, and Va, b € A either a >!"" b, or b >!'" q.

This extension is useful as there is always at least one linearization for
any preorder and it can be constructed by using a valuation function. In
the case of our ethical preferences >;, we define this function as follows:

Definition 5.2 (Ethical valuation). Let T = (D, so, 9, & = (E, R, b)) be
an ethical planning problem, 7 a plan for T, and maxvaly = 0, then
Vie N:

1. val; = maxval;_1 +1
2. maxval; = |{bj (E) U b; (E)}| X val; + maxval;_
3. val(r) = val(E,), where given E' C E :

val(E') =) [bf(E") U (b () - b} (E"))] X val;

ieN

Intuitively, val; is a number that expresses how much valuation to add
to an ethical plan, when it is assigned a positive ethical feature of rank i, or
when it is not assigned a negative one. So for instance, if a plan 7; has one

96

5.1. TRANSLATING ETHICAL PREFERENCES TO UTILITIES

more positive ethical feature than another plan mo, which is of rank i, and
both plans have the same negative features, then val(rr1) = val(me) + val;.

According to (2), maxval; represents the maximum value a plan can
achieve up to rank i. In other words, it is the valuation a plan 7 can have if
it is assigned every positive and no negative ethical feature for every rank
j € [1,i]. In conjunction with (1), which defines val; = maxval;_1 +1, we can
see that when a plan 7 is assigned a positive or is not assigned a negative
ethical feature of rank i, it gives 7 more valuation than what it can achieve
with all the ethical features of lower ranks j € [1,i — 1]. This is important
because it will guarantee that the semantics we want to achieve is satisfied,
in the sense that higher-level ethical features take precedence over all the
other lower-ranked features.

Then (3) defines the valuation of a plan 7z as the sum of the amount of
ith ranked positive features e € E; and negative features e ¢ E,, multiplied
by wal;. Taking this into consideration, we can see that by using such a
valuation function, an automated planner will choose plans that satisfy the
most amount of positive and least amount of negative ethical features of
the highest ranks.

Proposition 5.3. Consider T = (D, sy, g, € = (E, R, b)) an ethical plan-
ning problem and x, 7’ plans for T. Let the preference relation between
two plans zfj" be defined as « zfj" " if and only if val(r) > val(n’),
then it is indeed a linearization of >,.

Suppose that 7 =, n’, then trivially val(r) = val(n’) be-
cause b (E;) = b/ (Ey) and b; (E;) = b; (E,) for every i € N.
In the case & >}, 7', then according to Definition 4.11 and 4.15:

1.3i € N, such that (b](Er,) C b; (Ex,) Ab; (Ex,) € b; (Ey,), or
b (En,) C b (Ex,) Ab; (Exy) C b; (Er,)), and
2N > i : b (Em) = b (Exy) and b7 (Ex,) = b7 (Ex).

Therefore, because of (1), 7 has more positive or less negative eth-
ical features of rank i:

b7 (Ex) U (b; (E) = b; (Ex))| > [b} (Ex) U (b (E) = b; (Ex))l

Then, by construction of val;, other ethical features of lower ranks
do not matter. In other words, when x is assigned a positive or is not
assigned a negative ethical feature of rank i, it gives 7 more valuation
than what it can achieve with all the ethical features of lower ranks
j€[l,i—1], thus:

b7 (Ex) U (bj (E)=b; (Ex))|xval; > Z b3 (Ex) U (b (E) = by (Ex))| X valy
k=1

97

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

And because of (2), i.e: all higher ranks being equal:

D167 (Ex) U (6] (B)=b} (Ex))xval; =) 167 (Ex) U (b} (E)=bj (Ex))Ixval;
Jj>i Jj>i

Thus, 7 >, n’ = wal(r) = val(x’) and by definition, val(r) >
val(rn’) if and only if & Zii" '

Finally, because val assigns an integer to every plan, Z,lj" is total.

Let us see sz” in action in the following example.
Example 5.5 (Autonomous driver continued). Following our running
example, there are three ethical features of rank 1 and 2, and two
ethical features of rank 4, respectively. Thus it holds that val; =
1,valy = 4,vals = 16 and valy = 48, then:

val(m) =|{damageRail(C) : C € {agent,c1,ca}}| X val; +
|{danger(C, low) : C € {agent,cy,ca}}| X valy +
|{danger(agent, high)}| X valy +
|{responsibleAgent()}| X valy = 111

val(rz) =|{damageRail(C) : C € {agent, c1,c2}}| X val; +
|[{danger(ca, low)}| X vals +
|{danger(C, high) : C € {c1,ca}}| X vals +
|{danger(agent, high)}| X valy = 87

As expected, due to the fact that the ethical feaatures responsible Agent()
and danger(agent, high) have rank 4, which is the highest, and only m;
avoids them, val(ry) > val(my) and thus m; >§]"” 9. Notice that in the
sum we include the positive ethical features assigned to each plan and
the negative ones that are not assigned to the plan. This means that
for each negative ethical feature that is not assigned to the plan, the
valuation of that plan will increase. In particular, this example only
deals with negative features and because m; is not assigned the eth-
ical features responsibleAgent() and danger(agent, high), the valuation
val(ry) increases significantly.

In order to find an optimal plan, we will show that any ethical planning
problem T can be transformed into an equivalent classical planning problem
with utilities Tyi1i¢y by using the valuation function defined before.

In what follows, we make the following assumptions for ethical planning
problems:

e The ethical features are distinct from the fluents i.e. Be € Es.t. e € F,

e The fluent check() is fresh, i.e: it is not included in the fluent set of
any problem, and

98

5.1. TRANSLATING ETHICAL PREFERENCES TO UTILITIES

e The operator name checkOp() is fresh, i.e: it is not included in the
operator set of any problem.

Definition 5.6. Given an ethical planning problem T = ((L,F,O),
s0, g, (E, R, b)), then its transformed classical planning problem with util-
ities is defined as:

Tutility = (L, F’,0"), 50,9, c,u)
Where:
o F' =FU{check()} U {e € E : e is a ground ethical feature},
e O’ ={0":0€ 0} U {0ocheck}, Where:

o’ = (Name(o),
Pre(o) U {check()},
Ef f(0) U {~check()}
U {V(Xi+1,...,Xp) Pre(r) = E(r) : Ir e R
such that Act(r) = Name(o), (X1, ...,X,) are the
parameters of r and (X3, ...,X;) are those of o})

Ocheck = (checkOp(),
{—check()},
{check()} U{VY(Xq,...,X,) Pre(r) = E(r): Ar e R
such that Act(r) = null A
X1, ..., Xy is the set of variables in Name(r)})

e g' =g U {check()},
e The action costs are all zero, i.e: c(a) = 0 for every a € A(Tysitiry)-

e The utility u of a state s € S is defined as follows:

u(s)= Y b} (ENs) U (b (E) - by (ENs))| x val;
ieN

The fluent set F is extended with the fluent check() and an extra fluent
for each ground ethical feature. Whenever an ethical rule is activated,
the transformation will guarantee that the fluents corresponding to ethical
features are added or removed according to the rule, so at the end of the
plan execution, the final state will include all the ethical features assigned
to the original plan. The fluent check() is used to ensure that after each
action is executed, the planner will be forced to check if any ethical rules
defined via fluents, i.e: with activation condition null, have been activated.

Then, each original operator o is extended as well through o’, with
the precondition check() and the effect {V(Xy,...,X,) Pre(r) = E(r) : dr €
R such that Act(r) = o}. The precondition forces each plan to execute ocpeck

99

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

after every action, to ensure that all ethical rules defined via fluents are
checked after executing every one of them. The additional effect guaran-
tees that whenever an action is executed and an ethical rule defined via
operator r is activated, the ethical features in the rule are added or re-
moved accordingly. In conjunction with the operator ocpecr, which takes
care of ethical rules defined via fluents, the transformation guarantees that
the final state will include all the ethical features that should be assigned
to the original plan 7.

The goal is extended to ensure that in the final state, all the ethical
features have been checked, otherwise, it could be the case that an ethical
rule defined via fluents is activated after the last action, but that the ethical
feature fluents are not updated accordingly.

Finally, the utilities are defined simply by summing the valuations ac-
cording to the formulas in Definition 5.2 of every ethical feature fluents in
the final state reached by a plan, which as we will see, coincides with the
ethical features assigned to the plan in T.

Notice that although this transformation does indeed add a fluent for
each ethical feature, it guarantees that the two classes of fluents (original vs.
induced by ethical features) do not interact with one another in a seamless
way to the domain designer, ensuring that the modularity between the
operational and ethical aspects of the problem is preserved.

Proposition 5.7. Given an ethical planning problem T and its trans-
formation Ty,si1i¢y, @ sequence of actions 7 = [096, 0161, . . ., 0,0,], where
each o; is an operator and 0; a grounding substitution, is a plan for T
if and only if 7,14y is @ plan for Ty1i4y, Where:

’ ’
Tutility = [ocheck 0090’ Ocheck 0191, Ochecks - - - »

0;1 ena Ocheck]
Furthermore, given two plans =, 7" of T, if u(mysitiry) 2 u(ﬂ;tility)
with respect to Tyyifiry, then 7 Zéi" 7’ with respect to T.

Let us prove Proposition 5.7.

It is straightforward to see that any plan 7 of T can be
transformed into a plan 7,;ijiry for Tyririry and vice versa. Due to the
fact that:

e The fluents of T are included in those of T,jizy, i.e: F C F’,

e The only change to preconditions is that Pre(o’) = Pre(o)U{check()},
which is removed after every operator o’ such that o € O(T), but
added after executing ocpeck, which 7,415 does before and after
every action of x, and

e The only changes to effects of actions o’ with respect to o € O,
relate to the fluents in E U {check()}, which are disjoint from F by

100

5.1. TRANSLATING ETHICAL PREFERENCES TO UTILITIES

assumption, the fluents of the original problem T.

This is why, we can say that for every state s and action 0’0 of Ty;1iry,
where o’ is an operator of Ty;;1izy, 0 is an operator of T, and 0 a ground-
ing substitution, it holds that:

Sucer,,,;,, ([0checks 0'0),s) N F = Succr([00],s N F)

tility
In other words, executing the two actions [0¢peck,0’0] at state s in
Tutitity 18 equivalent to executing the action o0 at state s N F in the
original problem T if we only consider the original fluents in F, captured
by the intersection at the left side of the equation.

Therefore, because the initial state sy is the same and the last action
Ocheck Of Turitiry does not modify any original fluent in F:

SUCCTu,””y(ﬂunlity,So) N F = Succr(m,so N F)

Le: executing the plan ity at state so in Tyziniry is equivalent to
executing m at state sy in the original problem T if we only consider
the original fluents in F.

Thus, because g’ = g U {check()}, we have that ¢ " F = ¢, and
because the last action of m,i1iry 18 Ocheck, it adds the fluent check() to
SuCCTu”lity([ﬂu”lity],So), so then, it holds that:

SuccTutizity([”utility], s0) F g, and
Sucer,,y;,, ([Tutitieyl: s0) = {check()}, thus

Sucet, iy ([Tutitieyls 0) F 9

So we have proven that m,;ijiry is a plan for Ty, if and only if 7 is
a plan for T.
Now, we need to prove that given two plans 7, 7" of T, if u(mysifiry) 2
u(ﬂl’mmy) with respect to Tyifiry, then zl’j" 7’ with respect to T.
As a first step, let 7 be any plan for T and 7,14y its transformation
for Tytitiry, we have to prove that the valuation function val(r) of plan
m for T coincides with the utility of the plan myiiry for Tusitiry. In

other words, we need to verify that u(mysi1iry) = val(r), and so:

Definition 2.28
W(Tutitiry) = val(n) ——

Va, c(a)=0
(w(Suce(muritiey- o) = Y, c(a)) = val(r) &—=
ae”utility
efinition 5.
u(Suce(Turitiey. s0)) = val(r) S0
w(Suce(muritiey 0) =) | b7 (Ex) U (b7 (E) = by (Ex))| X val;
ieN

101

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

And using u as Definition 5.6 in the proposition we are proving, let
s* = Succ(myzility> o) be the final state of the plan 7,11y

u(Succ(Turitiey-50)) = Y 167 (Ex) U (b5 (E) = bj (Ex))| X val; =
ieN
S bHENS) U (b7 (B) - b (ENs™)| x val; =
ieN
S 1bf(Ex) U (57(B) - b (Ex))| x val; < Ens’ = E,
ieN

In other words, we need to prove that the ethical feature fluents
in the final state s* of the plan m,;ijiry for Tyusiriry are the same as the
ethical features assigned to & in the ethical planning problem T. This
follows from these facts:

1. The ethical feature fluents in F’ are only added or removed from
a state by the operator ocpeck:

{V(Xit+1,...,X,) Pre(r) = E(r) : dr € R
such that Act(r) = o,(X1,...,X,) are the

parameters of r and (X1, ...,X;) are those of o}
and the added effects to the original operators:

{V(X1,...,Xy) Pre(r) = E(r): dr e R
such that Act(r) = null A
Xi,...,X, is the set of variables in Name(r)}

which add and remove the ethical fluents exactly as prescribed
in Definition 4.8.

2. For any rule r € R such that Act(r) = null, it holds that r is
activated by 7 = [096p,...,0,0,] in T if and only if there is an
intermediate state:

s; = Succ([0gB, - . ., 0i0;], s)

with i < n, such that s; |= Pre(r)6;. This can only happen when
the intermediate state:

’ ’ ’
S; = Succ([ocheck, 00‘90a Ochecks+ - +>» Oiei’ Ocheck], SO)

of plan 7,1ty for Tyusiriry satisfies that s; = Pre(r)0;, because as
we saw before, the original fluents in F are unchanged between the

102

5.1. TRANSLATING ETHICAL PREFERENCES TO UTILITIES

plans 7 and 7,154y in their respective planning problems. There-

fore, the last action ocpeck Of [Ochecks 06607 Ochecks - - +» 0;91', Ocheck]
will add and remove the fluents in E(r) according to the definition
of Ocheck-

3. For any rule r € R such that Act(r) # null, it holds that r is
activated by 7 = [096p,...,0,0,] in T if and only if there is an
intermediate state:

Si = Succ([oogo’ R Ol'@i]7 SO)

with i < n, such that s; |= Pre(r)0; and Act(r)0;11 = 0;410;4+1. This
can only happen when the intermediate state:

’ ’ ’
S; = Succ([ocheck, 0090’ Ochecks -+ - s Ochecks Oiei]’ SO)

of plan my4i1iry for Tyziriry satisfies that s] = Pre(r)0; and Act(r)0;1 =
0;,,0i+1, because as we saw before, the original fluents in F are
unchanged between the plans 7 and 7,15y in their respective
planning problems.

Thus, ENs* = EN Succ(mysitity, S0) = Ex and as we saw before this
proves that val(r) = u(mysitity)-

Therefore, given two plans 7, 7" of T, and 7yi1isy, 7,

wtility the trans-

formed plans for Ty;i1i¢y, then:

) .
U(Tyrility) = u(ﬂumity) with respect to Tysifiry &

val(rr) > val(n") with respect to T
T z,’j” '

Furthermore, the utility of a plan ity for Tysiziry can be calculated
simply by summing the ranks of the positive ethical features in the last state
s* reached by the plan, and the ranks of the negative ones not included in

it.

Proposition 5.9. Let T be an ethical planning problem, s a plan for
T, Tutitity and muiriry the planning problem and plan obtained with
the transformation of Proposition 5.7, and s* the last state reached by
Tutility, then:

u(”utility) = Z UalRank(e)
{e€Ens*:Type(e)=+} U {ec(E-s*):Type(e)=—}

Let us prove this proposition.
As we saw in Proof 5.8:

w(myritity) = u(Succ(mytitity, So))

103

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

= Z IbH(ENs*) U (b7 (E) - by (E N s*))| X val;
ieN

Due to the fact that multiplying val; by the amount of members of
a set is the same as summing val; for each member:

U(Tyritivy) = Z Z val;

ieN eebf(Ens*) U (b; (E)-b; (ENs*))

Then, because val; is equivalent to the valuation of ethical features
of rank i according to Definition 4.11:

u(ﬂ'utility) = Z Z UalRank(e)
ieN eebf(Ens*) U (b7 (E)-b; (ENs*))

And finally, because b and b; are respectively the positive and
negative ethical features at each level i, according to Definition 4.11:

u(”utility) = Z valRank(e)
{e€Ens*:Type(e)=+} U {ec(E-s*):Type(e)=—}

The approach we took in this section was to transform ethical planning
problems into classical ones using utilities. This is practical because, as we
saw in Chapter 2, there are numerous implemented planners for classical
planning problems with utilities.

In practical terms, our transformation:

e Takes each ethical feature e € E and adds it as a fluent to the utility
planning domain,

e Adds an operator o.peck to check which ethical rules defined via fluents
are activated,

e Adds a conditional effect to every action for each ethical rule defined
via operators to check if the rule was activated, and

e Defines a utility function based on the rank of the ethical feature
fluents included in a state.

This will, of course, have an impact on the computational costs of find-
ing plans for the resulting planning problem. Finding the optimal plan in
classical planning problems with utilities can be intractable in the general
case (see Chapter 2), so it will not always be feasible to find the optimal
one for the transformation we have shown. However, it is possible to do so
in many cases, as current state-of-the-art planners are capable of finding
solutions even for very hard problems. In the following sections, we will
discuss how we implemented this transformation for the PDDL language
and provide some experimental results for our approach.

104

5.2. IMPLEMENTATION OF OUR FRAMEWORK

5.2 Implementation of our framework

One of the main benefits of our approach is that by transforming an ethical
planning problem into a classical one with utilities, it is possible to apply
PDDL planners designed for this purpose. This is why in order to exemplify
our framework we have implemented:

1. An extension of the language PDDL that models ethical rules and
our qualitative preference model, and

2. Two routines to translate PDDL problems encoded with our ethical
rules into equivalent PDDL encodings using soft goals and actions
costs, by applying Proposition 5.7.

A distinction is made between the PDDL formalization of Chapter 2
and PDDL code, the computer language as defined in [Fox and Long, 2003].
We remark that the formalization presented previously is very similar to
actual PDDL2.1 code, but with some reasonable simplifications. PDDL
code provides a syntax to model classical planning problems with many
possible extensions. The main difference between our PDDL formalization
and the PDDL code we will use in our implementation is that the code
will be able to use disjunctions in operator preconditions and effects, the
equality symbol = to compare constants and variables, and object types.
As explained in Appendix B, PDDL code defines the kinds of constructs
that are allowed in a problem description through requirements. The re-
quirements that we will allow in the PDDL code of our implementation are
the following:

e :strips: allows using ‘add’ and ‘delete’ effects as specified in STRIPS,

e :typing : allows the specification of types and subtypes and assigning
them to objects,

e :equality : allows using of the equality symbol = to compare two
objects,

e :conditional-effects : allows using conditional expressions of the
form (when(¢1)(¢2)) denoting that when the expression ¢; holds in a
state, then the expression ¢y will be applied as an effect,

e :disjunctive-preconditions : allows using disjunction via the or
symbol in operator preconditions,

e :quantified-preconditions : allows using quantification via the forall
and exists symbols in operator preconditions,

e :adl : macro requirement that adds all the preceding requirements,
and

e :negative-preconditions : allows using negation via the not symbol
in operator preconditions.

105

1
2
3

1

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

For more information about PDDL2.1, we refer the reader to [Fox and
Long, 2003]. We chose this language, as we explained in Chapter 2, due
to its wide use, particularly in all the International Planning Competitions
(IPC). As a note, all of these extensions can be added to our formalization
in the future, but we decided not to for simplicity reasons.

Briefly, PDDL files are divided into ‘domain’ and ‘problem’ files:

e Domain files serve to define the requirements of PDDL that are al-
lowed, constants that can be used in actions, the fluents of the domain,
the actions, and the types of objects, and

e Problem files are used to define the initial state, the goal state and
the rest of the objects (constants that cannot be used in actions).

Some example PDDL code, including that of Example 4.1 can be found in
Appendix B.

5.2.1 PDDL code extension

In order to implement the ethical planning elements we introduced in the
previous sections, we will define an extension for the PDDL code which we
will describe in what follows. Our extension of the PDDL code defines three
constructs to specify ethical features, ethical ranked bases and ethical rules.
All constructs are to be included in the domain file of the PDDL code.

The construct to represent the ethical features of a domain, as in Defi-
nition 4.6, is very similar to the one PDDL code uses to specify the fluents
of a domain. It is defined as follows:

(:ethical-features
(name; 7X1; - typel ... ?7Xn - typenjy)

Zﬁamem ?X1,;, - typel ... ?Xn - typenp))
Listing 5.1: Ethical features definition PDDL code.

Where:

e name; is a unique string, i.e: does not coincide with any fluent,
operator, constant, ethical rule name, or the identifier of any other
element of the domain or problem file, and

e 7X1; - typel; ... 7Xn; - typen,; is a list of the form ?Xj; - typej;
where each Xj; is a variable and typej; an object type defined in the
domain file. Specifying the type of variables is an optional feature
and can be ignored.

This construct allows to define all of the ethical features and as such,
there should be only one definition using this type of construct in a domain
file.

For instance, the ethical features of Example 4.9 can be modeled as
follows:

106

W N =

=W NN =

1

D

5.2. IMPLEMENTATION OF OUR FRAMEWORK

(:ethical-features
(danger 7C1 - car ?Gl - gravity)
(damageRail ?7C1 - car))

Listing 5.2: Ethical features PDDL code for Example 4.1.

Next, we can define ethical ranked bases, as in Definition 4.10, using
the following construct:

(:ethical-rank
:feature (name C1 ... Cn)
ttype T
:rank R)

Listing 5.3: Ethical ranked base definition PDDL code.
Where:

e (name C1 ... Cn) specifies the ground ethical feature for which one
specifies its type and rank, name being the name of an ethical feature
as specified in the first construct and each Ci a constant with a type
specified in the domain file which matches typei, the type specified
in the ethical feature definition, if the type is defined,

e T iseither + or —, denoting if the ethical feature is positive or negative,
and

e R is a positive integer i € N, denoting the rank of the ethical feature.

The construct defines the rank of each ground ethical feature and whether
it is positive or negative. We assume that at most one construct of this
type is defined for each ground ethical feature and that in the case that a
plan is assigned one ground ethical feature that has no rank and type, the
ethical feature will be ignored, i.e: has rank zero, and we do not consider
it in the ethical valuation of plans.

For instance, the ethical ranked base of Example 4.16 can be modeled
as follows:

(:ethical-rank
:feature (damageRail agent)
:type -
:rank 1)

(:ethical-rank
:feature (damageRail c1)
:type -
:rank 1)

(:ethical-rank
:feature (damageRail c2)
:type -
:rank 1)

(:ethical-rank
:feature (danger agent low)
:type -
:rank 2)

(:ethical-rank
:feature (danger cl low)

:type -

107

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

:rank 2)
tethical-rank

:feature (danger

:type -

:rank 2)
:ethical-rank

:feature (danger

:type -

:rank 4)
:ethical-rank

™)

)
~

NONON NN NN N
© 0 N O U A W N
~ ~

c2 low)

agent high)

:feature (danger cl high)
:type -

:rank 3)

33 (:ethical-rank

34 :feature (danger c2 high)
35 :type -

36 :rank 3)

37 (:ethical-rank

o

38 :feature (responsibleAgent)
39 :type -
40 :rank 4)

Listing 5.4: Ethical ranked base PDDL code for Example 4.1.

Finally, the code of an ethical rule, as in Definition 4.7, is:

(:ethical-rule name
:parameters (7X1 - typel ... ?Xn - typen)
:precondition ¢1
ractivation ¢o
:features ¢3)

Listing 5.5: Ethical rule definition PDDL code.

ULk W N =

Where:

e name is a unique string, i.e: does not coincide with any fluent, opera-
tor, constant, ethical rule name, or the identifier of any other element
of the domain or problem file,

e 7X1 - typel ... 7Xn - typen is a list of the form ?7Xj - typej where
each Xj is a variable and typej (optional) an object type defined in
the domain file,

e ¢ is a conjunction (encoded using the PDDL construct and) of literals
over the fluents of the domain, using constants or variables from the
parameter list 7X1—typel ...7Xn—typen, specifying the preconditions
of the ethical rule.

e ¢ is either:

— null, denoting that the ethical rule is defined via fluents, or

— (op P1 ... Pk), an action formula where op is the name of
an operator and P1 ... Pk is a list of constants or variables
included in the parameter list 7X1 - typel ...?Xn - typen,
specifying the activation condition of the ethical rule.

108

5.2. IMPLEMENTATION OF OUR FRAMEWORK

e (3 is a conjunction (encoded using the PDDL construct and) of literals
over the ethical features of the domain, using constants or variables
from the parameter list 7X1—typel ...7Xn—typen, specifying the eth-
ical features assigned or removed when this ethical rule is activated.

For instance, the ethical rules of Example 4.9 can be modeled as follows:

~

:ethical-rule crashRule
:parameters (7C1 - car)
:precondition (hasCrashed ?7C1)
:activation null
:features (danger 7C1 high))

:ethical-rule bumpRule
:parameters (?7Cl - car)

8 :precondition (hasBumped 7C1)

9 ractivation null

10 :features (danger 7C1 low))

11 (:ethical-rule responsibleCrashRule

12 :parameters ()

13 :precondition (hasCrashed agent)

14 ractivation null

NS B JUR R

~

~

15 :features (responsibleAgent))
16 (:ethical-rule responsibleBumpRule
:parameters ()
:precondition (hasBumped agent)
:activation null
:features (responsibleAgent))
(:ethical-rule raillLeftRule
:parameters (?7Cl - car ?7X1 - xPos ?Y1 - yPos)
:precondition (and
(position ?7C1 ?X1 ?7Y1)
(direction 7C1 left)
(nextX left ?X1 ?X1))
tactivation (go)
:features (damageRail ?7C1))
:ethical-rule railRightRule
30 :parameters (7Cl - car 7X1 - xPos ?Y1 - yPos)
1 :precondition (and
2 (position ?7C1 ?7X1 7Y1)
33 (direction ?7C1 right)
|

© 0w

Gk W N = O

~

]

NONON N NN NN NN

~

(nextX right 7X1 ?7X1))
ractivation (go)
36 :features (damageRail ?7C1))

Listing 5.6: Ethical rules PDDL code for Example 4.1.

PDDL code that uses our constructs should include the :ethical re-
quirement. With the constructs we defined in this section, we can represent
ethical planning problems as specified in Definition 4.12.

The full PDDL code of the Example 4.1 can be found in Appendix B.

5.2.2 PDDL code translation routine

In this section, we will show how problems encoded using the three ethical
constructs introduced in the last section can be translated to more classical
PDDL problems without them.

109

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

Plan utilities in our formalization of classical planning could be specified
using utility functions for final states, also called soft goals, or through ac-
tion costs. PDDL code also provides the possibility to specify soft goals and
action costs through different requirements. As demonstrated in Proposi-
tion 5.7, ethical preferences can be replaced with soft goals. Soft goals were
introduced in PDDL3 along with other kinds of preferences. Therefore, we
have implemented a routine that translates PDDL code with ethical con-
structs to normal PDDL3 code, so that any PDDL3 planner that can handle
preferences may be used to plan with our ethical constructs.

Planning with preferences using PDDL3 was a major topic in the IPC5,
i.e: the fifth International Planning Competition [Gerevini et al., 2009]. In
particular, the SimplePreferences track of the competition served as a basis
to compare different planners on PDDL3 problems using only soft goals,
which is the only kind of preference our translation routine uses.

However, more recent IPCs [Torralba and Pommerening, 2018] have
stopped holding planning competition tracks with the original PDDL3 pref-
erences and instead have chosen to focus on action costs. Interestingly, it
has been shown that soft goals can be compiled away [Keyder and Geffner,
2009], i.e: transformed into equivalent problems encoded differently, by re-
placing them with action costs via a simple routine. For this reason, we
have implemented a second routine that transforms PDDL problems with
ethical constructs into PDDL problems with action costs to allow more
recent planners to be used to solve problems encoded with our framework.

In summary, we have implemented two transformation routines that will
allow using a wide variety of state-of-the-art planners for problems encoded
using our PDDL extension:

1. PDDL with ethical constructs into PDDL with soft goals, and
2. PDDL with ethical constructs into PDDL with actions costs.

These routines have been implemented using Python and are publicly avail-
able!.

Routine 1: ethical to soft goals

As a first step, we have implemented a routine to translate PDDL problems
with ethical constructs as detailed in the last section to PDDL3 problems
with soft goals. Soft goals can be included in PDDL code through the
:preferences requirement. This requirement enables the specification of
an extensive set of preference constructs, which were introduced in PDDL3
[Gerevini and Long, 2005].

In this case, our translation uses the preference construct to specify
soft goals:

I (preference name; (¢;))

Listing 5.7: Preferences PDDL code.

Thttps://github.com/martinjedwabny /pddl-ethical

110

20

[

5.2. IMPLEMENTATION OF OUR FRAMEWORK

Where name; denotes the name of the ith preference and ¢; a PDDL ex-
pression. Expressions of this type can only be added to the goal description
of a problem in PDDL code.

The translation uses this construct once for each defined ethical rank,
which is the same as once per ground ethical feature. For instance, following
Example 4.9, the preferences generated for the ethical features are:

(preference

p_damagerail-agent (not (damageRail agent)))
(preference

p_damageRail-cl (not (damageRail c1)))
(preference

p_damageRail-c2 (not (damageRail c2)))
(preference

p_danger-agent-low (not (danger agent low)))
(preference

p_danger-cli-low (not (danger cl low)))
(preference

p_danger-c2-low (not (danger c2 low)))
(preference

p_danger-agent-high (not (danger agent high)))

5 (preference

p_danger-cl-high (not (danger c1 high)))
(preference

p_danger-c2-high (not (danger c2 high)))
(preference

p_responsibleAgent (not (responsibleAgent)))

Listing 5.8: Example preference translation.

Briefly, for each ground feature e; the translation generates a preference
pi with a name matching a formatted version (using the — symbol) of e;
and the expression ¢; is (not e;) in the case e; is a negative ethical feature,
or just (e;) if it is positive. Intuitively, each preference expresses whether
we desire the ethical feature to be present in the fluents of the final state
reached by a plan.

Then, plans can be compared with these preferences using the metric
construct:
(:metric minimize

(+
(* (is-violated py) r1)

(* (lé—violated Pn) T)))
Listing 5.9: Metric PDDL code.

Where each p; is a preference and r; the corresponding rank of e; the ith
ethical feature. A metric defines a function that can be used to compare
plans. This function takes two arguments, the first being either minimize
or maximize and a list of numerical expressions. We will not delve into
the details of the syntax of all the possible numerical expressions that can
be encoded, which are specified in [Gerevini and Long, 2005]. Here we
will simply use a sequence of (* (is-violated (p;)) (r;)), which amounts
to minimizing the preferences violations, specified using the is-violated
construct, which is the only way in which this version of PDDL permits to

111

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

use preferences in the metric definition. According to the transformation
defined in Proposition 5.7, we want to maximize the preferences assigned
to a plan. However, due to the is-violated construct, we had to invert the
metric from a maximization of preferences to a minimization of preference
violations, for which equivalence is simple to check.

By translating PDDL code with our extended syntax into PDDL with
soft goals, we enable any automated planner that supports the :prefer-
ences requirement to find plans using our PDDL extension and our trans-
lator. Many such planners can be found in the fifth International Planning
Competition? proceedings [Gerevini et al., 2009] and more recent literature,
such as:

e SGPlan® [Hsu et al., 2006],
o MIPS-XXL* [Edelkamp et al., 2006], and

e LPRPG-P?® [Coles and Coles, 2011].

Routine 2: ethical to action costs

Recent International Planning Competitions [Torralba and Pommerening,
2018] have chosen to focus on preferences modeled only through action
costs. This is why, as a second step into making our ethical planning prob-
lems compatible with state-of-the-art planners, we implemented a second
transformation routine that translates PDDL code with ethical constructs
into PDDL with action costs.

It has been shown [Keyder and Geffner, 2009] that soft goals can be
compiled away (i.e: transformed into equivalent problems) and replaced
with action costs with a simple routine. We have combined this approach
with our previously described transformation to produce PDDL problems
with action costs just as described in their research.

Action costs can be added to a PDDL problem description through
the :action-costs requirement. PDDL problems that use this requirement
should minimize or maximize a numerical variable total-cost. Further-
more, the requirement allows to add expressions of the type (increase
(total-cost) n) and (decrease (total-cost) n) to operator effects,
where n is a fixed numerical value.

This second routine replaces the preferences that the first routine adds
to the ‘problem’ file of a translated PDDL description, using (increase
(total-cost) n) and (decrease (total-cost) n) to operator effects in
the ‘domain’ file, as described in [Keyder and Geffner, 2009]. Briefly, a
set of operators are added to the PDDL code and they are forced to be
executed at the end of each plan. Each of these operators checks which of
the original soft goals are satisfied and therefore increases or decreases the
total-cost accordingly.

2https://Ipg.unibs.it /ipc-5/
3https://wah.cse.cuhk.edu.hk/wah/programs/SGPlan/
4http://sjabbar.com/mips-xxl-planner
Shttps://nms.kcl.ac.uk/planning /software/Iprpgp.html

112

https://lpg.unibs.it/ipc-5/
https://wah.cse.cuhk.edu.hk/wah/programs/SGPlan/
http://sjabbar.com/mips-xxl-planner
https://nms.kcl.ac.uk/planning/software/lprpgp.html

5.3. EXPERIMENTATION

We can find several action-cost-optimal planners through the Fast Down-
ward project® and the ninth International Planning Competition” [Torralba
and Pommerening, 2018], such as:

e Fast Downward Stone Soup [Seipp and Roger, 2018],
e Fast Downward LM-Cut [Helmert and Domshlak, 2011], and
e Delfi [Katz et al., 2018].

The resulting PDDL code of both transformation routines for the PDDL
code description of Example 4.1 can be found in Appendix B.3 and B.4.

5.3 Experimentation

Classical planning with soft goals and action costs is known to be a PSPACE-
complete problem in the general case [Menkes Van Den Briel et al., 2004,
Aghighi and Béckstrom, 2015]. However, from a practical standpoint, we
wanted to test the two implementations described in the last section and
compare them using different state-of-the-art planners to better understand
their computational efficiency. For this reason, we asked ourselves the fol-
lowing questions:

Q1: How much do ethical features and rules degrade the running time
performance of a planning problem?

Q2: Which of the two transformation routines (described in the last sec-
tion) has better running time efficiency when coupled with their re-
spective (soft goal vs. action cost) state-of-the-art planners?

Q3: How does the planning problem size (in terms of fluents and actions)
affect the performance when adding ethical features and rules?

Experiments

We designed two sets of experiments to answer these questions. All these
experiments consisted in measuring the running time a planner takes to find
the optimal plan for various planning problems. Both sets of experiments
took as basis problems from the IPCs and added ethical features, ranks and
rules to measure the performance degradation as the number of ethical con-
structs increased. While the first set of experiments was targeted to analyze
the performance degradation when adding ethical features, the second one
looked into the performance loss when adding ethical rules. Ethical ranks
were not studied separately as they have a one-to-one correspondence with
ethical features, i.e: for each added ethical feature, a corresponding ethical
rank (and ethical type) must be defined.

Shttps://www.fast-downward.org/
"https://ipc2018-classical.bitbucket.io/

113

https://www.fast-downward.org/
https://ipc2018-classical.bitbucket.io/

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

Concretely, we took eight problems of medium complexity from the
IPC5® [Dimopoulos et al., 2006], half from the ‘pathways’ domain, while
the other half belonged to the ‘openstacks’ domain, and added them ethical
features, ranks and rules. The problems we used were propositional, i.e:
no variables, conditional effects, or quantification, to prevent compatibility
issues between the tested planners, as each planner supported a different
subset of the PDDL syntax. It remains to test the performance of plan-
ners using these extra elements, although in preliminary examination they
did not seem to increase the computational performance compared to their
grounded counterparts, presumably because most planners ground the vari-
ables in a planning problem before solving it regardless.

Experiment 1 The first set of experiments consisted in analyzing the
performance degradation when the number of ethical features N increased.
For each planning problem Ty (of the base IPC problems mentioned before)
and integer N = 1,2,..., we generated an extended problem Ty resulting
from adding to Ty-1 a new ethical feature fy with a randomized rank in
the range [1,(N/2) + 1] and a random type + or —, and an ethical rule
r ={rn(0), {}, Act(r), {fn}) where Act(r) is any action of the problem, chosen
randomly. That is, we only added ethical rules without any parameters
(as we tested problems without variables) or preconditions, that only acti-
vate the ethical feature fy that was added in the current iteration. With
this approach, we guaranteed that each problem Ty directly extends the
previous iteration Ty_;. Analyzing ethical rules defined via fluents, and/or
different sets of preconditions and activated ethical features remain for fu-
ture work, however, preliminary testing suggested the added complexity is
similar. Considering variables in ethical features/rules, however, would lead
to adding as many ethical features/rules as all of their ground instances,
according to our implementations.

Experiment 2 For the second set of experiments, we first took each
original planning problem Ty and added ten ethical features fie[o,9] With a
randomized rank in the range [1,6] and a random type + or —. Then for
each integer N = 1,2,..., we generated an extended problem Ty resulting
from adding to Ty-; a new ethical rule r = (rn(), {}, Act(r), {f}) where
f €{fo,--., fo} is any of the ethical features and Act(r) is any action of the
problem chosen randomly. Compared to the first experiments, this second
batch did not add an ethical feature at each step, but rather added ten
ethical features at the start and then increased the number of ethical rules
at each iteration.

Methodology of evaluation

For each planning problem tested in these experiments, we averaged the
running time across 10 identical runs, increasing the number N = 1,2, ... of
ethical features/rules until either: (i) the average running time across the

8https://Ipg.unibs.it /ipc-5/

114

https://lpg.unibs.it/ipc-5/

5.3. EXPERIMENTATION

10 runs for a certain N surpassed a predefined time limit, which we set at
3 minutes, or (ii) N reached a certain limit, which we set at 60 for ethical
features, and 200 for ethical rules.

As one of the purposes of our experimentation was to compare the two
translation routines we described in the last chapter when using their cor-
responding state-of-the-art planners, we ran all the experiments with both
soft-goal and action-cost compatible planners, to test the two translation
routines and compare their results. We used the LPRPG-P planner [Coles
and Coles, 2011] for the ‘ethical to soft goals’ translation, which was shown
to have better time performance across most IPC domains than the IPC5
planners (e.g: MIPS-XXL [Edelkamp et al., 2006] and SGPlan [Hsu et al.,
2006]) which we did not test because they faced several compatibility issues
related to the operating system (Mac OSX) used in the experimentation
machine. More recent IPCs did not feature competition tracks for plan-
ners supporting soft goals. Thus, for the ‘ethical to action costs’ routine,
we tested the translated problems against some state-of-the-art planners
which competed in the latest IPCs [Torralba and Pommerening, 2018], be-
longing to the Fast Downward project. In particular, we used Fast Down-
ward Stone Soup version 1 [Seipp and Roger, 2018], and LM-Cut [Helmert
and Domshlak, 2011].

Turning to the running conditions, these experiments were conducted
on a 1,6 GHz Intel Core i5 CPU MacOS system with 8 GB 2133 MHz
LPDDR3 RAM. We ensured the maximum resources of the machine were
assigned to each experiment and ran under the same conditions by removing
all nonessential processes and utilizing the Python os.nice? functionality,
which ensured our tests were given the highest possible priority and CPU
time.

Results

As we can see in Figure 5.1 and 5.2, the increase in planning time when
adding ethical features is significant and apparently above linear across
the tested domains and planners for both translation schemes (except for
Problems 1 and 2 in Figure 5.2 for some planners). The Y axis denotes
the running time of planners to find the optimal plans, while the X axis
measures the number of ethical features, which is equal to the number of
ethical ranks and rules in this set of experiments. In terms of the translation
routines, adding ethical features amounts to extending problems with one
fluent per ethical feature and one action effect per ethical rule. Then, the
first routine also adds one preference (soft goal) for each ethical feature,
while the second routine adds two actions per ethical feature to be executed
at the end of each plan to add a numerical cost for each broken preference
(for more detail on this, see [Keyder and Gefiner, 2009]).

We observe in Figure 5.1 that for the four problems of the ‘openstacks’
domain, the planners can handle 30-45 features until exceeding the time
limit. The results in this domain were fairly similar across problems, in

9https://docs.python.org/3/library /os.html

115

https://docs.python.org/3/library/os.html

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

200

150

5)

~— 100

me

Ti

50

200

150

5)

~ 100

Time

50

10

20

30 40 50

Number of ethical features.

(a) Problem 1

684.46 246.69

184.32

10
Number of ethical features.

(b) Problem 2

20

30 40

—o— LPRPG-P
-=— FDSS-1
—e— LM-Cut

—o— LPRPG-P
—=— FDSS-1
—e— LM-Cut

Figure 5.1: Openstacks planning runtime by ethical features.

that the action-cost-based FDSS-1 and LM-Cut were more performant than
the soft-goal-based LPRPG-P, and LM-Cut could handle the most amount
of ethical features in all cases. Then, for the ‘pathways’ domain (Figure
5.2), the action-cost-based planners FDSS-1 and LM-Cut can handle 25
and 50 features, respectively, for the small problems (1 and 2) until ex-
ceeding the time limit, while the soft-goal-based LPRPG-P could compute
optimal plans even with 60 ethical features, which as we mentioned, is the
maximum. For the medium-sized ‘pathway’ problems (3 and 4), however,
FDSS-1 could barely handle any ethical features and exceeded the time
limit almost immediately, while LM-Cut and LPRPG-P got similar results,

116

5.3. EXPERIMENTATION

675.69 250.47

200
—o— LPRPG-P
—=— F'DSS-1
150 [—— LM—Cut
‘@’ 100 |
A
=
50
0 |
| | | | |
0 10 20 30 40
Number of ethical features.
(c) Problem 3
200
—o— LPRPG-P
—=— FDSS-1
150 | —— LM-Cut
‘@’ 100 |-
g
=
50 |-
0 [
| | | | | |
0 10 20 30 40 50

Number of ethical features.

(d) Problem 4

Figure 5.1: Openstacks planning runtime by ethical features. (cont.)

begin able to handle 40-50 features in Problem 3 and 25-30 in Problem 4.

Overall, we can see that in most cases, the increase in running time
seems to follow a similar trend across the three planners and the two trans-
lation routines. As for the planners, the action-cost-based (FDSS-1 and
LM-Cut) were more performant in the ‘openstacks’ domain than the soft-
goal-based one (LPRPG-P), while the inverse could be said for the ‘path-
ways’ domain. Focusing on the action-cost-based ones, LM-Cut was more
performant than FDSS-1 in all domains and problems.

We observe a different trend for ethical rules in Figure 5.3 and 5.4 to
the previous sets of experiments. The Y axis denotes the running time of

117

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

1,008.43
200 14 T Nl T
—o— LPRPG-P
-=— FDSS-1
150 | |—e— LM-Cut
=
5 100 |
g
=
50 | |
0 [|
| | | | | | |
0 10 20 30 40 50 60
Number of ethical features.
(a) Problem 1
656.94 1,007.6
200 T T T 2 T ® T
—o— LPRPG-P
—=— FDSS-1
150 | |—e—LM-Cut
©
5 100 + =
g
=
50 |- =
0 | |
| | | | | | |

0 10 20 30 40 50 60
Number of ethical features.

(b) Problem 2

Figure 5.2: Pathways planning runtime parametrized by features.

planners to find the optimal plans and the X axis measures the number
of ethical rules, while the ethical features were kept fixed at 10 across
experiments. For the translation routines, adding ethical rules at each step
amounts to adding an action effect to the action which is the activation
condition of the rule. Although in these experiments the ethical features
were kept fixed at 10 and we simply increased the number of ethical rules,
the increase in planning time is substantial across the tested domains and
planners for both translation schemes.

We see that in all problems of the ‘openstacks’ domain, the planners
could handle the maximum amount of ethical rules (200) while not reach-

118

5.3. EXPERIMENTATION

900 378.34
181.81 | [181.06] [~e— LPRPG-P
" —=— FDSS-1
150 | | |—e— LM-Cut
=
5 100 8
A
=
50 | 8
0 | |
| | | | | |
0 10 20 30 40 50
Number of ethical features.
(c) Problem 3
272.1 229!
200 %10 ???39
—— LPRPG-P
—=— FDSS-1
150 | |—e—LM-Cut
o
5 100 8
g
=
50 8
0 |
| | | | | |

0 5 10 15 20 25
Number of ethical features.

(d) Problem 4

Figure 5.2: Pathways planning runtime parametrized by features. (cont.)

ing the time limit. LPRPG-P was consistently the fastest planner, followed
by LM-Cut, and then FDSS-1. Interestingly, for all planners, the running
time increased slightly until they reached 50-100 ethical features and then
decreased, but never surpassed 50 seconds, still far from the time limit.
This phenomenon repeated across all the problems of this domain. The
experiments for the ‘pathways’ domain only showed similar results for the
first two problems. Namely, in Problems 1 and 2 the running times in-
creased and then decreased, and never surpassed the time limit, but the
same did not happen for the other two problems. Both for problems 3
and 4, the planner FDSS-1 exceeded the time limit almost immediately.

119

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

200 T T T T T

—e— LPRPG-P
-=— FDSS-1
150 [B +LM—Cut
o
i 100 - |
£
=
50 - 8
0 [|
Il Il Il Il Il
0 50 100 150 200
Number of ethical rules.
(a) Problem 1
200
! ! r | " | [~ LPRPG-P
—=— FDSS-1
150 | |—e— LM-Cut
©
p 100 - |
i
=
50 8
0 | |
| |

| | |
0 50 100 150 200
Number of ethical rules.

(b) Problem 2

Figure 5.3: Openstacks planning runtime parametrized by rules.

Then for Problem 3, both LPRPG-P and LM-Cut could handle up to 200
ethical rules, LPRPG-P took more time until 100 ethical rules, but then
the planning time became lower than LM-Cut. And lastly, for Problem 4,
LPRPG-P exceeded the time limit at around 25 ethical rules, while LM-Cut
could handle up to 150.

In most cases, adding ethical rules increased the running time slightly
and all the planners could handle up until the maximum amount (200)
of ethical rules, with the exception of the last problem of the ‘pathways’
domain. Differently than for ethical features, the action-cost-based plan-
ners (FDSS-1 and LM-Cut) performed worse than the soft-goal-based one
(LPRPG-P) across all the problems of both domains, except for the last

120

5.3. EXPERIMENTATION

200 T T T T T
—e— LPRPG-P
—=— FDSS-1
150 | | |—e— LM-Cut
=
5 100 8
g
=
50 |- 8
Il Il Il Il Il
0 50 100 150 200
Number of ethical rules.
(c) Problem 3
200
! ! r | " | [~ LPRPG-P
—=— FDSS-1
150 | | |—e— LM-Cut
©
5 100 8
A
=
50 | 8
0 | |
| |

| | |
0 50 100 150 200
Number of ethical rules.

(d) Problem 4

Figure 5.3: Openstacks planning runtime parametrized by rules. (cont.)

problem of the ‘pathways’ domain. Because most planners could handle
the maximum amount of ethical rules for almost all the problems and the
running time seemed to decrease after a certain amount of them, we suspect
that either (i) adding ethical rules does not increase the complexity signif-
icantly in all cases if the amount ethical features are not also increased, or
(ii) the tested problems were not complex enough for the number of ethical
rules to matter, as Figure 5.4d might suggest.
To answer the three questions posed at the start of this section:

Q1: For all the tested domains and problems, it seems that the increase
in planning time when adding ethical features is above linear across
planners for both translation schemes, but if the ethical features are

121

CHAPTER 5. PLANNING WITH

ETHICAL PREFERENCES

200
150
=z
~ 100
E
=
50
0
200
150
=z
~ 100
E
=
50
0

! | [~ LPRPG-P
—=— FDSS-1
| —e— LM-Cut
I
| | | | |
0 50 100 150 200
Number of ethical rules.
(a) Problem 1
—o— LPRPG-P
—=— FDSS-1
—e— LM-Cut

h'll"-'h—-l--l"h—u-—

o -

50
Number of ethical rules.

(b) Problem 2

|
100

|
150

|
200

Figure 5.4: Pathways planning runtime parametrized by rules.

kept fixed and only the amount of ethical rules increases, the running
time of the planner tends to increase until a certain point and then
decrease. From a practical standpoint, the state-of-the-art planners
we tested could handle a sizeable amount of ethical features (25-60)
and ethical rules (175-200) for all the tested instances considering the

high complexity of the IPC problems we used.

Q2: Although the first translation routine adds significantly fewer actions
to planning domains compared to the second one, we cannot always
say that the planners that are compatible with the output of the rou-
tine had better performance than the others across all experiments.

122

5.3. EXPERIMENTATION

200 19‘6.98 ‘ ‘
—o— LPRPG-P
—=— FDSS-1
150 [N +LM-CUt
- 100 |
g
=
50 |- -
0 |
| | | | |
0 50 100 150 200
Number of ethical rules.
(¢) Problem 3
900 %9'.0947.64 267.88
! ! | —e LPRPG-P
—=— FDSS-1
150 |- | |—e— LM-Cut
> 100 |
g
=
50 |- |
0 [_
| |

| |
0 50 100 150

Number of ethical rules.

(d) Problem 4

Figure 5.4: Pathways planning runtime parametrized by rules. (cont.)

For the first set of experiments (testing ethical features), the action-
cost-based planners (FDSS-1 and LM-Cut) seemed to have better
performance for the ‘openstacks’ domain than the soft-goal-based
(LPRPG-P), but the same does not hold for the ‘pathways’ domain.
Then for the second set of experiments (testing ethical rules), the soft-
goal-based planner (LPRPG-P) had better performance in all but the
last problems of the ‘pathways’ domain, however, in all of these prob-
lems LPRPG-P was the best planner and all of the planners could
handle all of the ethical rules until 200 (with the exception of FDSS-1
in Figure 5.4c). Thus, the results seem inconclusive in this matter.

123

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

Q3: There was only a noticeable difference observed in the performance
degradation between small (1 and 2) and medium-sized (3 and 4)
problems for the ‘pathways’ domain. In Figure 5.2a and b, we can
see that LPRPG-P can handle all the ethical features up until 60
(the limit) and LM-Cut over 50, but in the medium-sized problems
(Figure 5.2c and d), the degradation is much more pronounced. Then
regarding ethical rules, we can see in Figure 5.4a and b, that all the
planners can handle all the ethical rules up until 200 (the limit),
while the degradation is much higher for the medium-sized problems
in Figure 5.4c and d.

Lastly, all the code and domains used here are publicly available!©.

5.4 Related work

We based the linearization and valuation function from Section 5.1 on [Feld-
mann et al., 2006] but adapted it to take into account our positive and neg-
ative ethical features, which assigns a numerical value to plans according
to their ethical features. Compared to their work, our model and transla-
tion routine into classical planning problems have to deal with the extra
constructs of ethical features and rules. Additionally, we provide a second
translation routine, into the more currently used PDDL language with only
action costs.

Regarding our translation routines, the second one was based on the
work of [Keyder and Geffner, 2009], which demonstrated how soft goals
could be compiled away. Yet, compared to their implementation which is
for STRIPS problems, ours can deal with several advanced PDDL features
described in Section 5.2.

To test our implementation, in Section 5.3 we tested several planners
against some problems from the IPC5 [Gerevini et al., 2009]. The planners
we tested were LPRPG-P [Coles and Coles, 2011] for the ‘ethical to soft
goals’ translation, which was shown to have better time performance across
most IPC domains than the IPC5 planners (e.g: MIPS-XXL [Edelkamp
et al., 2006] and SGPlan [Hsu et al., 2006]). We did not test these IPC5
planners because they faced several compatibility issues related to the op-
erating system (Mac OSX) used in the experimentation machine. More
recent IPCs did not feature competition tracks for planners supporting soft
goals. And then, for the ‘ethical to action costs’ routine, we used some
state-of-the-art planners which competed in the latest IPCs [Torralba and
Pommerening, 2018]: Fast Downward Stone Soup version 1 [Seipp and
Roger, 2018], and LM-Cut [Helmert and Domshlak, 2011].

5.5 Discussion

Throughout this chapter, we have:

Ohttps://github.com/martinjedwabny /pddl-ethical

124

https://github.com/martinjedwabny/pddl-ethical

5.5. DISCUSSION

1. shown how to extend the preferences introduced in the last chapter so
that all plans are comparable through a linearization and valuation
function,

2. demonstrated how the ethical planning problems we introduced in
the last chapter can be solved using existing planners by compiling
the ethical preferences into either soft goals or action costs,

3. provided two translation routines showing the effectiveness of our
approach, and

4. analyzed the computational runtime performance of the translated
problems using some problems from the IPCs.

The linearization and valuation functions defined in Section 5.1 dealt
with the problems we mentioned in the last chapter about many plans being
incomparable when they have disjoint positive or negative ethical features
of the same rank. Practically, using this valuation function amounts to
enforcing a lexicographical ordering on the plans with respect to their as-
signed ethical features. In other words, we start by checking from the
highest ranked features until at some level we determine that the positive
features assigned to a plan minus the negative ones have a higher count
than other plans. From an ethical standpoint, this means that the prob-
lem designer has to make sure that ethical features of the same rank have
indeed the same priority.

Turning to Proposition 5.7, we have shown that our ethical planning
problems can be translated into classical planning problems with soft goals.
This poses the question of whether our approach really is qualitative or
quantitative as it is reduced to a maximization of utilities, which is some-
thing that we wanted to avoid a priori. However, the ethical ranks we used
and the way in which they are compiled guarantee that features of higher
rank maintain priority over all the other lowered rank ones, thus keeping a
certain level of qualitativeness.

Regarding the two questions asked at the beginning of this chapter, we
have shown how to solve our ethical planning problems, as described in the
last chapter, using existing Al planning technology by developing a trans-
lation into classical planning problems. We have provided two translation
routines, one into soft goals and another into action costs. The second
translation routine was based on the work of [Keyder and Geffner, 2009],
which demonstrated how soft goals could be compiled away.

In terms of experimentation, we have performed some preliminary tests
to show that our approach is efficient for some medium-sized instances of
very hard problems from the IPCs.

Future work It remains to confirm the reason behind the odd behavior
of planners in the experiments we analyzed, regarding ethical rules. Also,
we wish to test the performance of planners using more advanced PDDL
features, such as variables, conditional effects and quantification, although
in preliminary examination they did not seem to increase the computational

125

CHAPTER 5. PLANNING WITH ETHICAL PREFERENCES

performance compared to their grounded counterparts. Likewise, we would
like to measure the performance of more complex ethical rules, e.g: using
parameters, complex activation conditions and a large number of activated
and deactivated ethical features.

Furthermore, specifying that a certain feature e of a specific rank r is
worth five times more than the others of the same rank, is not possible.
However, one simple extension for future work could be to add an extra
value number in the ethical rank, in other words, instead of having b(e) =
(t, r) in Definition 4.10, we could have b(e) = {t,r,n), where t € {+,-},r € N
is the ethical rank and n € N is a value that indicates that feature e is worth
n features at the rank r.

Finally, it would be an interesting challenge to provide a planner specific
to ethical planning problems that do not need these translation routines
and compare its performance against state-of-the-art planners solving the
translated counterparts to these problems.

126

Inferring ethical preferences

6.1 Method overview 129
6.2 Problem encoding 132
6.2.1 Domain encoding Py 133
6.2.2 Theoryencoding Py 134
6.2.3 Dataset encodingIs 138
6.2.4 Parameter learning encoding 138
6.3 Example: acasestudy 139
6.4 Experimentation 144
6.5 Relatedwork 149
6.6 Discussion. 150

As we explained in Chapter 3, ethical reasoning systems can be divided
into top-down (modeling and applying ethical principles or restrictions),
bottom-up (learning what decisions are ethical, based on datasets through
learning algorithms), and hybrid (combining methods of both).

Learning how to act in ethically-nuanced domains from a corpus of data
like bottom-up approaches is, of course, a highly debated subject. The main
reason for this is related to the concept of explainability. Namely, some au-
thors [Tolmeijer et al., 2020] have pointed out the difficulty of trusting a
black-box system in ethical domains because the machine would not be
able to justify its decisions, so any potential harm to humans or property
would be hard to understand or fix. In recent years, the Artificial Intel-
ligence (AI) field has shown a strong interest in developing systems that
provide explanations for their answers, giving rise to what is known as ex-
plainable AT (XAI) [Xu et al., 2019]. Several methods have been developed
to address the concerns raised by the lack of explainability in various Al
subfields. Previous XAI literature has established two primary ways of
providing explainability [Arrieta et al., 2020]: (i) transparent systems in
which the reasoning is directly interpretable by humans, and (ii) post-hoc
models to explain black-box systems [Ribeiro et al., 2016]. Naturally, both
approaches have their drawbacks. While transparent systems frequently
sacrifice response quality or computing performance in order to provide
fully interpretable results, post-hoc explanations are often seen as limited
since they provide reconstructions that may or may not directly represent
the black-box system’s reasoning process.

So far, we have developed a framework to compare sequences of actions
on ethical terms through numerical ranks in the context of classical planning
(Chapter 4) and provided two methods of applying state-of-the-art planners

127

CHAPTER 6. INFERRING ETHICAL PREFERENCES

to solve them through translation procedures back into classical planning
with utilities (Chapter 5). By itself, the system described in the previous
chapters can be applied as a top-down ethical reasoning framework because
it implements the ethical aspects of a problem by modeling them in a
symbolic manner. However, in this chapter, we will demonstrate how our
approach can be used as a hybrid ethical system by inferring the ranks of
ethical features through learning-based methods in the style of bottom-up
methodologies.

Eliciting ethical preferences for automated systems has been studied in
the context of the GENETH system [Anderson and Anderson, 2018]. In
their work, the authors used the opinion of domain experts (ethicists) to
learn ethical choices with Inductive Logic Programming (ILP) [Muggleton,
1991], a technique for inferring logic rules from examples in the form of logic
facts. Yet, this system cannot handle conflicting judgments, meaning that
for two similar situations, it does not admit two domain experts submitting
different answers. Furthermore, eliciting the opinion of ethicists can be an
expensive solution when an enormous amount of situations and special cases
need to be considered.

Instead, in this chapter, we will consider probabilistic logic, which ex-
tends facts and rules with probabilistic annotations, which will allow han-
dling conflicting judgments in datasets and, more importantly, aggregating
these judgments from many non-experts, making it possible to construct
the dataset in a crowdsourced manner and cover a much bigger number of
possible situations and special cases.

Moreover, we have chosen to use a probabilistic logic-based method
instead of other machine learning approaches because of its capability of
providing explanations in the form of logic rules. That is, logic-based sys-
tems provide a transparent mechanism of reasoning. It is paramount that
the reasoning of a system, and in our case its preferences, be directly inter-
pretable by humans in ethically-nuanced domains to make sure the agent
follows societal principles, particularly when these preferences are inferred
from a large corpus of noisy data.

In this chapter, we will use a technique called parameter learning [Gut-
mann et al., 2011], described in Chapter 2, which allows to infer proba-
bilistic annotations for facts and rules encoded in Problog [De Raedt et al.,
2007], a probabilistic logic programming language (see Section 2.1.2). Us-
ing this method, we will show how to infer ethical ranks using the opinions
of users or domain experts by learning the probability of each combination
of ethical features and ranks resembling the dataset of opinions.

Thus, our approach will be focused on: (i) considering a corpus of eth-
ical choices submitted by a large number of people that are not necessarily
experts, (ii) handling conflicting judgments about what the most ethical op-
tion is in a certain situation, and (iii) learning the ethical ranks of different
features as described by our framework in Chapter 4.

As such, the questions we will try to solve in this chapter are the fol-
lowing:

128

6.1. METHOD OVERVIEW

Research Questions in this Chapter

e How can one determine the ethical rank of the features involved
in an ethical planning problem based on a corpus of opinions?

e How computationally efficient is this method in practice?

Let us note that this chapter is a continuation of the work in [Jedwabny
et al., 2021b].

The next sections are structured as follows. In Section 6.1, we give an
overview of the method we will use to infer the rank of ethical features.
Section 6.2 covers the implementation of the parameter learning problem
using the Problog language. Then, in Section 6.3, we will exemplify the
mechanics of this approach through a case study. In Section 6.4, the reader
will find some experimental results regarding the computational costs of
the approach. Section 6.5 compares our work with previous literature.
And finally, Section 6.6 discusses the contributions of this chapter and
perspectives for future work.

6.1 Method overview

Thus far, Chapters 4 and 5 described an extension of PDDL to compare
plans on ethical terms. We defined an ethical planning problem as a tuple:

T =(D,so,9,E = (E,R, D))

Which can be divided into (D, sg, g), the elements of a classical planning
problem (see Chapter 2), and (E, R, b), the ethical aspects of T, where:

e E is the set of ethical features,
e R are the ethical rules used to assign ethical features to plans, and

e b(e) = (Type(e), Rank(e)) the ethical ranked base, which assigns a type
to a feature e € E, i.e: Type(e) € {—, +}, and a rank, i.e: Rank(e) € Ny
denoting whether the feature is ethically good or bad, and its level of
priority, respectively.

Then, we described how our model can be used to obtain the most
ethical plan 7 for a problem T = (D, sg, g, € = (E, R, b)) using a planner com-
patible with our ethical constructs (which we implemented by translating
T to an equivalent classical planning problem with utilities), as depicted in
Figure 6.1.

Problem description The task we will tackle in this chapter is learning
the ranks of ethical features when they are not provided in advance, cap-
tured by Rank : E — Ny (marked in blue in Figure 6.1), a function that
corresponds to the right side of the ethical ranked base b.

Instead, we will use a dataset of opinions from users or experts to
infer them, given that all other elements of the problem D, g, E, R and Type :

129

CHAPTER 6. INFERRING ETHICAL PREFERENCES

=
\ Compute
D, so, 7 (most

g Ethical
/ Planner ~ ethical plan)
=g
E,R,
Type : E— {—,+}
Rank : E — Ny

Figure 6.1: Problem overview: predefined elements (black), dataset
elements (red), and target function to learn (blue).

E — {—, +} (black elements in Figure 6.1) are predefined. This dataset can
be constructed by asking the users/experts to choose the most ethical plan
7 in a series of possible initial situations sy (both marked in red in Figure
6.1), according to their own opinion. We can consider an iterative elicitation
of opinions as the one described in Figure 6.2, in which users/experts u;
(i=1,...,n,) are presented with different initial situations s; (j =1, ..., ny)
and possible plans described in text format and choose the plan r;; that
u; considers the most ethical in s;.

Chosen

plan m; ; @
Description @

s; and
/4 P/ #%)

a

Figure 6.2: Preference elicitation.

As such, the situations s; and plans mx would correspond to those of T
and could be generated automatically by running a planner and extracting
all the sequences of actions that reached the goal. However, the generation
of these situations and plans will not be addressed in this thesis, but rather,
we will focus on the learning of ethical ranks, as mentioned earlier. Also, we
will note that such an elicitation procedure could also require the textual
descriptions of situations and plans to be carefully constructed, which could
be manually crafted after the situations and plans are generated.

In short, the problem of this chapter can be described as: (i) learning
the function Rank : E — Ny, (ii) according to a dataset composed of pairs
(sj, m; ;) denoting the chosen plan of user u; for the initial situation s;, (iii)
given the predefined elements D, g,E, R, Type : E — {—,+} of an ethical

130

6.1. METHOD OVERVIEW

planning problem.

Parameter learning Let us recall the parameter learning technique de-
scribed in Chapter 2 (see Section 2.1.3), a method that consists of:

e Finding a set of probabilistic annotations pi, ..., pp,

e For a given parametrized Problog program P(p:,...,pn) = Prixea U
Pparam where Ppgram is the only part of the program that uses p1, ..., pn
as probabilistic annotations,

e Such that it resembles a dataset Is, composed of evidential interpre-
tations I; = (I],I7) as close as possible. In other words, maximizing
the probabilities Pr(I;|P(p1,...,pn)) of each interpretation I; holding
according to P(p1, ..., pn).

In the next sections, we will develop an encoding for: (i) P(p1,...,pn) =
PfixedUPparam, that represents all of the relevant information of a planning
problem T and determines which plan is the most ethical in each situation,
and (ii) Is, such that it contains the opinions users/experts regarding which
plan was the most ethical in the different initial situations.

More specifically, Prixeq Will contain all the information about the ini-
tial situations, possible plans, and ethical features of a planning problem
(including their types and which features are assigned to each plan), and
a set of rules to deduce Problog facts of the type best (A,S8) denoting that
the plan A is the best in the initial situation S. However, Pfiyx.q will not
contain information regarding the ranks of ethical features, and thus will
only be able to deduce best(A,S) for a situation S if this information is
added in the form of a logical fact.

The ranks of ethical features will be encoded using a rank assignment,
which is a ground fact of the form rank_assignment(...) containing all
the information regarding the rank of every ethical feature, and we will
describe it more precisely in the following section.

Thus, Pfixeq U {rank_assignment(...)} would be able to deduce best
(A,8) by querying the Problog program, i.e: which plan A is the best in
each situation S.

Due to the fact that the rank of ethical features is the target of this
learning procedure, it will be the objective of the parameter learning method.
As such, it will be part of Pysram, the parametrized part of the overall
Problog program P(pi, ..., pn), that will consist of various logical facts:

p1::rank_assignment (...);

pn::rank_assignment (...).

Where each fact rank_assignment(...), which we will specify in the next
section, will denote one possible rank assignment. In other words, if we
would fix the values of py, ..., pn, then P(p1,...,pn) = Prixed Y Pparam would
be able to deduce a probability for each ground fact of the form best (A,8).

131

CHAPTER 6. INFERRING ETHICAL PREFERENCES

Please note that the ‘;” symbol after each rank assignment in Pparam
denotes annotated disjunctions. By using annotated disjunctions we ensure
that the sum of all probabilistic annotations sums to 1 and that no two
rank assignments will be true at the same time in any possible world, as
we explained in Section 2.1.2.3.

On the other hand, Is (the dataset) will be composed of evidential inter-
pretations I; = (I7,I;) composed of facts of the form best (a,s) indicating
that for the ith user or domain expert the plan a is the best in situation s,
where:

I7 ={vest(a; j,s;) : a;; is the best plan for user i in situation s;}

I; ={best(a,s;) : s; has plan a and a # a; ;}

In summary, the task of this chapter will be to find the best probabilistic
annotations p1, ..., pn for Pparam, which encode the probability of each rank
assignment:

p1::rank_assignment (...);

pn::rank_assignment (...).

And thus, using the parameter learning technique, we will obtain a
probability distribution over the possible rank assignments deducing the
opinions in the dataset and ultimately, which is the rank assignment that
most resembles the dataset, which will correspond to the one with the
highest probabilistic annotation.

6.2 Problem encoding

In this section, we will describe the Problog encoding of the program
P(p1,...,pn), mentioned in the previous section, and the dataset Is. We
will also show how we can use these encodings to infer the ethical rank of
features using parameter learning, as described in Chapter 2 (see Section
2.1.3).

As discussed previously, the Problog encoding of a parameter learning
problem P(p1,...,pn) = Prixea Y Pparam is divided into a parametrized part
Pparam containing the probabilistic annotations to learn, and a fixed part
Pfixea without parameters. For clarity, we decided to separate these second
part into two Problog programs Pfixeq = Ps U Py, thus:

e The fixed Problog program P will encode the information about the
situations, plans, ethical features and their possible ranks,

e The fixed Problog program P, will encode a set of rules that can
deduce the predicate best (A,S) identifying that plan A is the best in
situation S, and

e The parametrized Problog program Pparam Will encode the possible
rank assignments and the probabilistic annotations to learn.

132

6.2. PROBLEM ENCODING

It is important to note that these encodings will use some common
Problog extensions that we did not mention in Chapter 2, namely negation-
as-failure, numerical expressions, and lists, which are built-in functionalities
of the language, and are explained in Appendix Section C.1.

In the following subsections, we will describe the encodings of these
Problog programs and the set of interpretations Is representing the dataset.

6.2.1 Domain encoding P

The background knowledge in Py about the situations si,...,s,,, plans
ai,...,an, and ethical features ey, ..., e,, can be easily encoded using first-
order logic ground facts of the form:

e situation(s) : specifying the possible (initial) situations s,

e plan(a) : specifying the possible plans a,

ethical_feature(e) : specifying the ethical features e,

rank(r) : specifying the possible ranks r that the ethical features
might take,

type(e,t) : indicating the type t € {—,+} (positive or negative) of
the ethical feature e,

has_plan(a,s) : stating that plan a can be executed in situation s,
and

e has_feature(e,a,s) : denoting that the ethical feature e is assigned
to plan a in situation s.

More precisely, by using a Problog program Ps as follows:

situation(sy).

situation (sp,) .
plan (ap) .

plan(ag,) .
ethical_feature (e1).

ethical_feature(e,,) .
type (e1,t1) .

type (en, s tn,) -
rank (r) .

rank (r,,) .
has_plan(aj,s1) has_plan(ajm,S1) -

133

CHAPTER 6. INFERRING ETHICAL PREFERENCES

has_plan(a,1,5,) has_plan (anm,,Sn) -
has_feature (e 1,1,41,1,51) -

has_feature (€1, m,wi > a1,m»51) -
has_feature (e, 1,1,dn.1,5:) -

has_feature (enm, wym,> In,mp>Sn) -

Listing 6.1: Problog encoding of situational background knowledge P

Please note that both the ground facts of the type has_plan(a,s) and
has_feature(e,a,s) should be specified depending on previously defined
knowledge, for instance, based on the specification of the planning problem
at hand.

6.2.2 Theory encoding P,

The Problog program P, defines a series of (non-probabilistic) logical rules
that build up to encode the predicate best (A,S), denoting that plan A is
the best in situation S, ethically speaking.

These rules assume they already count with one rank assignment. A
rank assignment is a ground fact of the form:

rank_assignment ([e;, ri, ..., e, tn 1)

Where [e1,r1,...,en,,Tn,] is a list, the e; are constants representing an eth-
ical feature and each r; is a number denoting its rank. Thus, the list in
the argument of this predicate encapsulates all the ranks of every ethical
feature. For instance, if the set of ethical features is {a, b}, the ground fact
rank_assignment([a,1,b,2]) represents that ethical feature a has rank
1 and b has rank 2.

Given a ground fact of this form, the Problog program P; defines best
(A,S) as follows:

best (A,S) :-
has_plan(A,S),
not (worse(A,B,S)).

worse(A,B,S) :-
has_plan(A,S),
has_plan(B,S),
A \= B,
val(A,S,N1),
val(B,S,N2),
R1 < R2.

Listing 6.2: Problog encoding of best in background knowledge P,

134

6.2. PROBLEM ENCODING

Where:

e best(A,8) indicates that plan A is the best in situation S, and is
defined by checking that no other plan B has a higher valuation than
A using the predicate worse (A,B,S) and negation as failure, and

e worse(A,B,S) represents that plan A is worse than B in situation
S, which is defined by checking that the plans are not identical and
comparing the valuations of each plan with the predicate val(A,S,N).

In Chapter 5, we defined the valuation val(A) = val(E4) € Ny of plan
A, which is a non-negative integer that represents how ethically good the
plan A is, according to the ethical features assigned to A in a given ethical
planning problem. This is exactly what the predicate val(A,S,N) repre-
sents. It unifies N with the valuation of plan A in the considered planning
problem and initial situation S, according to Definition 5.2, as follows:

val(A,S,N) :- val_until_rank(A,S,n,,N).

val_until_rank(A,S,0,0).
val_until_rank(A,S,R,N)

rank (R) ,
R > 0,

amount_satisfied_of_rank(A,S,R,N1),

val(R,V),
R1 is R-1,

val_until_rank (A,S,R1,N2),

N is N1xV+N2.

val (0,0).

val(R,V) :-
rank (R),
R > 0,
R1 is R-1,
max_val(R1,V1),
V is V1+1.

max_val (0,0).

max_val(R,V) :- rank(R),
amount_of_rank (R,N),
val(R,V1),
R1 is R-1,

max_val (R1,V2),
V is V1xN+V2.

R > 0,

Listing 6.3: Problog encoding of val in background knowledge P;

Where:

e val(A,S,N) specifies that the plan A has valuation N in situation
S, which is defined using the predicate val_until_rank(A,S,n,,N),

135

CHAPTER 6. INFERRING ETHICAL PREFERENCES

that unifies N with the valuation of A considering features of rank at
most n, (specified in Pg as the highest rank),

e val_until_rank(A,S,R,N) indicates that the total valuation of a
plan A in situation S is N if one only considers ethical features of
rank up until R. That is, it val_until_rank(A,S,R,N) is an auxiliary
predicate used to aggregate the valuation of A across each rank.

e val(R,V) unifies V with valg as described by Definition 5.2, indicat-
ing the gain V in valuation that a set of ethical features obtains by
including a feature of rank R, and

e max_val(R,V) unifies V with maxvalg as described by Definition 5.2.

Notice that val_until_rank(A,S,R,N) depends on the logical predi-
cate amount_satisfied_of_rank(A,S,R,N), which unifies N with the amount
of ethical features satisfied that have rank R. Similarly, max_val(R,V) de-
pends on the predicate amount_of_rank(R,N), which unifies N with the
total amount of ethical features of rank R.

These two predicates are defined using the following rules:

amount_of_rank (R,N) :-
rank (R),
rank_assignment (RA),
amount_of_rank (R,N,RA).

amount_of_rank (R,0,[]) :-
rank (R) .
amount_of_rank (R,N,[F,R1|RA]) :-
rank (R) ,
R = R1,
amount_of_rank (R,N1,RA),
N is N1+1.
amount_of_rank (R,N,[F,R1|RA]) :-
rank (R) ,
R \= R1,
amount_of_rank (R,N,RA).

amount_satisfied_of_rank(A,S,R,N) :-
has_plan(A,S),
rank (R) ,
rank_assignment (RA),
amount_satisfied_of_rank(A,S,R,N,RA).

amount_satisfied_of_rank(A,S,R,0,[]) :-
has_plan(A,S),
rank (R) .
amount_satisfied_of_rank(A,S,R,N,[F,R1|RA]) :-
has_plan(A,S),

136

6.2. PROBLEM ENCODING

rank (R) ,

R = R1,

satisfies(F,A,S),

amount_satisfied_of_rank(A,S,R,N1,RA),

N is N1+1.
amount_satisfied_of_rank(A,S,R,N,[F,R1|RA]) :-

has_plan(A,S),

rank (R) ,

R = R1,

not (satisfies(F,A,S)),

amount_satisfied_of_rank(A,S,R,N,RA).
amount_satisfied_of_rank(A,S,R,N,[F,R1|RA]) :-

has_plan(A,S),

rank (R) ,

R \= R1,

amount_satisfied_of_rank(A,S,R,N,RA).

satisfies(F,A,S) :-
has_feature(F,A,S),
type(F,’+7).
satisfies(F,A,S) :-
type(F,’ =),
not (has_feature(F,A,S)).

Listing 6.4: Problog encoding of amountsatis fied, f,ank and amount, f,.ank
in background knowledge P;

Where:

e amount_of_rank(R,N) unifies N with the total amount of ethical fea-
tures of rank R by using the predicate rank_assignment (RA) which
unifies RA with the list of ranks and ethical features, and the auxiliary
predicate amount_of_rank(R,N,RA),

e amount_of_rank(R,N,RA) unifies N with the total amount of ethical
features of rank R by iterating over the elements of RA, for a given
a rank R and rank assignment RA,

e amount_satisfied_of_rank(A,S,R,N) unifies N with the total amount
of features of rank R satisfied by action A in situation S, using
rank_assignment (RA) to get the rank of features, and the auxiliary
predicate amount_satisfied_of_rank(A,S,R,N,RA),

e amount_satisfied_of_rank(A,S,R,N,RA) unifies N with the total
amount of features of rank R satisfied by action A in situation S by
iterating over the rank assignments in RA, and

e satisfies(F,A,S) indicates that plan A satisfies ethical feature F in
situation S, this means that either A has ethical feature F and F is a
positive feature, or that A does not have feature F and the feature is
negative,

137

CHAPTER 6. INFERRING ETHICAL PREFERENCES

Please note that the combination of the programs P; and P; is self-
contained in the sense their rules only use predicates that are either pro-
vided by Problog or are present in the program itself, except for one:
rank_assignment (RA). Indeed, because the purpose of this encoding is
to allow us to infer these ranks using parameter learning from evidence, it
will be the target of the parametrized part of the final program.

For the full listing of P;, we refer the reader to Appendix C.

6.2.3 Dataset encoding Is

As mentioned before, the ranks of ethical features can be inferred through
parameter learning from evidence by using a set of evidential interpretations
I; = (I, I;) encoding the opinion of user u; about the situations. Namely, by
using an elicitation procedure like the one described before, we can encode
the opinion of each user u; that picks the plan a;; as the best for situation

sj using an interpretation I;, where:

I ={best(a;;,s;) : j € [1,m] and a;; is the choice of u; in s;}

I; ={best(a,s;) : j € [1l,m], s; has plan a and a # a; ;}

So, given the opinion of a set of users uy,...,u,,, the set of eviden-
tial interpretations Is = {I1,...,I,, } will be the dataset for the parameter
learning procedure.

6.2.4 Parameter learning encoding

Finally, we are ready to present the encoding of the parameter learning
problem to infer the rank of features, according to its definition in Chapter
2 (see Section 2.1.3).

Definition 6.1 (Ethical ranks learning). The problem of finding the
probability of each rank assignment being the one that most resembles
the opinion of users/experts can be encoded via parameter learning
from evidence as follows:

e Find a set of probabilistic annotations:
e Given a set of possible rank assignments:

rank_assignment ([e;,r1,1,...,€n, 571,n,1) ;

rank_assignment ([e;,rn1,...5€n, sTnn,1) -

138

6.3. EXAMPLE: A CASE STUDY

And the parametrized Problog program:
P(plaw'epn) =P, UP; UPparam

Where P; and P, are as defined in the previous sections, and
Pparam is the parametrized set of ground facts:

pi::rank_assignment ([e;,r1,1,...,€n, ,"1,n,1) ;

pn::rank_assignment ([e;,rm1,...,€n, s nn, 1) -

e Such that P(py,...,p,) resembles a dataset Is, composed of in-
terpretations I; = (I, I;), as close as possible:

@i opa) = argmax || PrlPGu,....pn))
(<01 oy

Essentially, this definition reduces the task of inferring the optimal ranks
to an encoding of a parameter learning problem, as described in Chapter 2,
but taking the possible rank assignments as part of the input. As mentioned
before, the program Ps U P; can deduce best(A,S) for any plan A and
situation S if rank_assignment (RA) is specified. Therefore, P(p1,...,pn) =
Pg U P; U Ppgram can also deduce best(A,S), for instance, if p1 = 1 and
all other probabilistic annotations are set to zero. However, in the general
case, this can result in a poor overall probability Pr(I;|P(p1,...,pn)) if we
consider every evidential interpretation I;. That is, it will not adjust to all
the members of the dataset as best as possible. In turn, using parameter
learning here will provide a probability of each rank assignment being the
correct one according to the dataset of evidential interpretations.

We can use this result to pick the optimal (ith) rank_assignment ([e;
s Tils ---» €n,s Tin,1),such that p; = j—I{laanj' In other words, we can

.....

find the rank assignment that maximizes the probability of the Problog
program P(py,...,p,) entailing the dataset.

It is also important to note that this procedure can be simplified by
removing impossible, or undesired rank assignments from Pparam. This
can be useful in cases in which one knows beforehand that some ethical
features will always have a higher rank than others, and thus removing all
rank assignments that do not satisfy this constraint will make sense.

In the next section, we will see this parameter learning problem in
action by presenting a case study and exemplifying how undesired rank
assignments can be eliminated beforehand.

6.3 Example: a case study

Here, we will show how the Problog parameter learning problem from the
last section works in practice.

139

CHAPTER 6. INFERRING ETHICAL PREFERENCES

Situation Plan Ethical features Expert’s opinion
€da | €d1 | €42 | €ra Uy | ug | ug | ug | us
s go(left) x | x | x
! go(right) x T x T x x| x
go(left) X -
52 :
go(right) x X < 1 x 1 x| x
go(left) X X | x| x
s3 :
go(right) X .
go(left) x | x < x 1 x x| x
S4 go(right) || x | x "
go(left) X < I x 1 x I x 1 x
S5 :
go(right) || x x
go(left) x < x 1 x x| x
S6 :
go(right) X <

Table 6.1: Experts’ opinions and ethical features for the case study
regarding plans go(left) and go(right)

We will employ a setting loosely based on Example 4.1, which we utilized
in the last two chapters, and apply the parameter learning technique using
an artificial dataset to illustrate its results.

As system designers, we are tasked to implement an ethical reasoning
module for an autonomous vehicle using the framework we presented in
the previous chapters, with the model specified in Example 4.16. All of
the input is given as an ethical planning problem T = (D, sg, g, € = (E, R, b)),
with the exception of the ethical ranks Rank : E — Ny, specified in b(e) =
(Rank(e), Type(e)) of the features e € E.

For this reason, we ask domain experts u, . . ., us to submit their opinion
about different situations the system might face. Each situation si,...,sg
describes textually a scenario that the autonomous vehicle could encounter
in which the agent’s car is circulating along with two other cars ¢; and cs.
These situations can be considered a possible initial state of the planning
problem, created to elicit the expert’s opinions. We can think of this opinion
elicitation as something similar to the Moral Machine experiment [Awad
et al., 2018].

In each situation s;, there are two possible plans the vehicle can execute:
go(left) and go(right) representing a sequence of actions that make the ve-
hicle change its direction and go to a certain lane. There are a total of four
ethical features: ey, = danger(agent), eq; = danger(cl), eqo = danger(c2)
indicating that a certain car is in danger, and e,, = responsible(agent) de-
noting that whatever danger is produced by the plan, the responsibility will
be assigned to the agent.

We describe all the information regarding the ethical features of each
plan and some artificial opinions from experts in Table 6.1. Briefly, each
cross on an ‘Ethical feature’ column denotes that the corresponding plan
and situation are assigned that ethical feature, while crosses in the ‘Expert’s
opinion’ column represent which plan the expert chose as the most ethical.

140

6.3. EXAMPLE: A CASE STUDY

In situations s1, s5 and sg every expert agrees on the same option because
only one of the two possible plans has a set of ethical features that is
strictly contained in the ones of the other, and all ethical features are
negative. Then, most experts choose go(right) in s as they consider that
an automated agent should prioritize the well-being of its own passengers
rather than that of the other cars’ passengers. A similar argument can be
made for go(left) in s4. And last, the opinion is divided on s3 as the agent
experts cannot clearly differentiate between producing danger towards c;
and cs.

The description of the situations, plans, ethical features and ethical
ranks are captured by the Problog facts Ps in the following code listing, as
described in Table 6.1. We assume that ethical features can only take a
rank of 1 or 2.

situation(sl).

situation (s6).

plan(go(left)).
plan(go(right)).

ethical_feature(danger (agent)) .
ethical_feature (danger (cl)).
ethical_feature (danger (c2)).
ethical_feature(responsible(agent)).

type (danger (agent), ’-’).

type (danger (cl), ’-’).

type (danger (c2), ’-’).

type (responsible (agent), ’-7).
rank (1) .

rank (2) .

has_plan(go(right), si1).
has_plan(go(left), s1).

has_feature (danger(cl), go(left), si1).
has_feature (danger (c2), go(left), si1).
has_feature (danger (agent), go(left), si1).

has_plan(go(right), s6).
has_plan(go(left), s6).
has_feature(danger(cl), go(right), s6).
has_feature (danger(c2), go(right), s6).
has_feature (danger(cl), go(left), s6).

141

CHAPTER 6. INFERRING ETHICAL PREFERENCES

Listing 6.5: Case study Problog encoding of situational background
knowledge Ps

For the full listing of the code, we refer the reader to Appendix Section
C.3.1.

Then, the opinion of experts u, ..., us is captured by the set of eviden-
tial interpretations Is = {I1, ..., I5}, as described in Table 6.1:

I} = {vest (go(right),s1),best(go(right),s2),
best (go(left),s3),best(go(left),s4),
best (go(left),sb),best(go(left),s6)}

I7 = {best(go(left),sl),best(go(left),s2),

best (go(right),s3),best(go(right),s4),

best (go(right),s5),best(go(right),s6)}

—

I7 = {best (go(right) ,s1),best(go(left),s2),
best (go(right),s3),best(go(left),s4),
best (go(left),sb),best(go(left),s6)}

I5 = {best (go(left),s1),best(go(right),s2),
best(go(left),s3),best(go(right),s4d),
best(go(right),sb),best(go(right) ,s6)}

We refer the reader to Appendix Section C.3.2 for the complete speci-
fication of the evidential interpretations.

Having defined P (describing the situations, plans, ethical features and
ranks) and I; (denoting the experts’ opinions), we can use Definition 6.1
in conjunction with the Problog program P, as described in the last sec-
tion, to encode an ethical rank learning problem that finds the probability
distribution for rank assignments.

Nonetheless, we will not consider all 16 possible rank assignments. In
particular, we will only consider those that regard the well-being of cars c1
and ¢2 with the same priority. This reduces the parameters of the learning
problem to 8, half of the maximum amount. Because the possible rank
assignments are part of the input, the system designer can specify which
rank assignments will be tested and compared. As we shall see in the next
section, the total number of possible rank assignments has a big impact on
the computation time of the parameter learning algorithm.

The ethical rank learning problem is defined as follows:

e Find a set of 8 optimal probabilistic annotations:

A~

f){,...,pg

142

6.3. EXAMPLE: A CASE STUDY

e Given the parametrized Problog program:
P@l,---,PS) =P; UP; UPparam

Where Pyaram is the parametrized set of ground facts:

p1::rank_assignment ([danger (agent) ,1,danger (cl)
,1,danger (c2) ,1,responsible (agent) ,1]);
p2::rank_assignment ([danger (agent) ,1,danger (cl)
,1,danger (c2) ,1,responsible (agent) ,2]);
p3::rank_assignment ([danger (agent) ,1,danger (cl)
,2,danger (c2) ,2,responsible (agent) ,1]1);
ps::rank_assignment ([danger (agent) ,1,danger (cl)
,2,danger (c2) ,2,responsible (agent) ,2]1);
ps::rank_assignment ([danger (agent) ,2,danger (cl)
,1,danger (c2) ,1,responsible(agent) ,11);
ps::rank_assignment ([danger (agent) ,2,danger (cl)
,1,danger (c2) ,1,responsible(agent) ,2]1);
pr::rank_assignment ([danger (agent) ,2,danger (cl)
,2,danger (c2) ,2,responsible (agent) ,1]1);
ps::rank_assignment ([danger (agent) ,2,danger (cl)
,2,danger (c2) ,2,responsible (agent) ,2]).

e Such that P(py,...,pg) resembles Is as close as possible:

(p1,...,pg) = argmax l_[Pr(L;|P(p1, . . ., ps))

By executing the parameter learning module in Problog with this en-
coding, we find the optimal set of probabilistic annotations:

p1 = 0.281427747318699
P2 = 0.04244114096646

p3 = 0.010678487452607
pa = 0.072823894422998
Ps = 0.323127403277696
P6 = 0.200735781945672
p7 = 0.002320025221626
Ps = 0.066445519394241

Therefore, the rank assignment with the highest probabilistic annota-
tion (ps) is that encoded by:

rank_assignment ([
danger (agent) ,2,

143

CHAPTER 6. INFERRING ETHICAL PREFERENCES

danger(cl),1,
danger (c2),1,
responsible (agent) ,1]) .

This means that for the given opinions, the rank of danger (agent)
should be higher than the other ethical features, which are all ranked 1,
which makes sense considering the data in Table 6.1, described earlier.

Next, we will test this approach and analyze its running time perfor-
mance when increasingly large amounts of ethical features, ranks, or ex-
perts’ opinions are considered.

6.4 Experimentation

Parameter learning is a computationally expensive task, due to the fact
that it requires computing the probability of each evidential interpretation
holding as a result of a parametrized Problog program and changing these
parameters iteratively [Gutmann, 2011]. Furthermore, querying in Problog
can be a hard problem by itself [De Raedt et al., 2007].

In this section, we will analyze how varying different properties of the
problem increases the running time of the parameter learning algorithm
used for inferring ethical ranks. In order to use the framework we described
in the last chapters as a hybrid approach, the learning process must be
computationally feasible. For this reason, we asked ourselves the following
questions:

Q1: How much does the number of rank assignments, ethical features, and
possible ranks degrade the parameter learning running time?

Q2: How much does the size of the input dataset (amount of expert opin-
ions) degrades the parameter learning running time?

Experiments

To answer these questions, we designed two sets of experiments, which
consist in measuring the running time for the learning of the parameters
(i.e: the probability of each rank assignment) with varying amounts of
ethical features and dataset size. These experiments were based on the case
study problem introduced in the last section and expanded with additional
elements, such as the ethical features, ranks, rank assignments and dataset
opinions. To describe these experiments, we will use the following notations
that quantify the number of elements in the learning problem:

e F: number of ethical features,

e R: maximum rank, denoting that the possible ranks are 1,2,...,R,

e S: number of initial situations,

e Fy,: number of ethical features assigned to each plan in the problem,

e O: number of opinions, i.e: the size of the dataset, and

144

6.4. EXPERIMENTATION

e A: number of possible rank assignments.

Both the data and test programs are publicly available!.

Experiment 1 In the first set of experiments, we analyzed the perfor-
mance loss as the number of possible rank assignments A = 1,2,...,100
increased and ran an experiment for different amounts of ethical features
F =5,7,10 and ranks R = 2,3,4. All other elements were kept constant
across these experiments. Namely, each problem contained the same possi-
ble initial situations S = 20 which presented two possible plans go(left) and
go(right) (as in the case study) as its options, each of which was assigned
the same number Fy, = 2 of randomly chosen ethical features, which were
disjointed between the two plans, for each situation. And then, we gener-
ated a dataset of O = 100 random opinions from users who chose either the
plan go(left) or go(right) in each situation.

So for instance, given A = 50 and F = 10, the experiment would: (i)
add ethical features danger(1), . .., danger(10) to the problem, (ii) assign two
random features (such as danger(4) and danger(6)) to the plan go(left), and
two other random features (such as danger(1) and danger(9)) to go(right) in
each situation, and (iii) generate 50 random rank assignments mapping each
of the 10 features to a rank between 1 and R, and (iv) run the parameter
learning algorithm with the encoding described in the previous chapters.

It is important to note that the specific ethical features assigned to
plans and choices of experts did not change the complexity of the parameter
learning problem at hand, but rather the total number of ethical features.

Experiment 2 Regarding the second batch of experiments, we also took
as a basis the problem described in the previous section but varied the
number O = 1,2,...,1000 of expert opinions in the dataset. We generated
parameter-learning problems in the same fashion as in the previous batch
of experiments. Briefly, we generated S = 20 situations, with two plans
each (go(left) and go(right)), a fixed number of ethical features F = 5 and
assigned Fy, = 2 disjointed sets of ethical features to each plan. We set
R =4, allowing ranks between 1 and 4 and generated a dataset of O opin-
ions from experts who chose either go(left) or go(right) in each situation
randomly. For the rank assignments, we set A = 10 random possibilities
across runs, because this variable was already tested in the previous set of
experiments.

Methodology of evaluation

For each parameter learning problem tested in these experiments, we av-
eraged the running time across 10 identical runs, increasing the number of
rank assignments A = 1,2,...,100 (in the first experiments), or the size of
the dataset O =1,2,...,1000.

Thttps:/ /github.com/martinjedwabny /1fi-ethical

145

https://github.com/martinjedwabny/lfi-ethical

CHAPTER 6. INFERRING ETHICAL PREFERENCES

As for the parameter learning algorithm, we used the implementation
provided by Problog [Gutmann et al., 2011], which is publicly available?.

Just like in the experiments of Section 5.3, these experiments were con-
ducted on a 1,6 GHz Intel Core i5 CPU MacOS system with 8 GB 2133
MHz LPDDR3 RAM, using the Python os.nice? functionality, to ensure
the maximum resources of the machine were assigned to the tests.

Results and analysis

Experiment 1 As we can see in Figure 6.3, there is a pronounced in-
crease in parameter learning time when the number of rank assignments
is increased. We display three separate subfigures a,b and ¢, each corre-
sponding to a different number F = 5,7, 10 of ethical features in the tested
problems. In each of these subfigures, the Y axis denotes the running time
of the parameter learning algorithm, while the X axis measures the number
of possible rank assignments. Furthermore, each subfigure shows three se-
ries of measurements, each corresponding to a different maximum possible
rank R = 2, 3, 4.

Please note that in the case of Figure 6.3(a) the measurements for R = 2
stop at A = 32 because there are only 2° = 32 possible rank assignments
when one counts with 2 possible ranks and F = 5 ethical features. This
limitation is not encountered for the rest of the measurements.

At first glance, it seems that the trend of the curve is above linear and
the running time increased considerably when considering a higher number
of ethical features F or possible ranks R. The maximum running time (value
of the Y coordinate) was always reached for R = 4 and was 250 seconds (4
minutes) for F = 5, 4428 seconds (1 hour, 13 minutes) for F = 7 and 11554
seconds (3 hours and 12 minutes) for F = 10.

It is worth noting that one can tolerate a long running time for learning
rank assignments, if we consider the learning phase to be executed offline,
in order to later use its results in the context of decision-making or planning
framework, such as the one presented in the last chapters. Moreover, the
set of all the possible rank assignments, which correspond to the mappings
of ethical features to ranks, can be very high (RF to be exact). However, as
we shall discuss in Section 6.6, the possible rank assignments can be greatly
reduced by only considering a reasonable subset of all the possibilities, for
instance, by introducing constraints.

Experiment 2 Then, regarding the second batch of experiments, we can
see their results in Figure 6.4. Here, the Y axis denotes the running time
of the parameter learning algorithm and the X axis measures the number
of expert opinions, i.e: the size of the dataset. We observe a different
trend than in the previous experiments. The running time was tested using
different amounts of ethical features F = 4,6, 8, 10, but across all of them,
the running time increased very slowly. This in turn suggests, like in the

2https://github.com/ML-KULeuven/problog/tree/master /problog /learning
3https://docs.python.org/3/library /os.html

146

https://github.com/ML-KULeuven/problog/tree/master/problog/learning
https://docs.python.org/3/library/os.html

6.4. EXPERIMENTATION

25303 [¢ R=2
-m-R=3
200 | [R=4
g
o 100 - 8
0 [|
| | | | | |
0 20 40 60 80 100
A (number of rank assignments)
(a) F=5
‘ ‘ ‘ 4,478.1 e R=2
4,000 [— +R = 3
—eo-R=4
<
g 2,000 :
&
0 - |
| | | | | |
0 20 40 60 80 100
A (number of rank assignments)
(b) F=7
-10*
‘ 11,0642 e R=2
1 ||-=R=3
—e-R=414
<
E 05 |
=
0 - |
| | | | | |
0 20 40 60 80 100

A (number of rank assignments)

(c) F=10

Figure 6.3: Parameter learning runtime according to the number of
possible rank assignments A with varying number of ethical features F.

147

CHAPTER 6. INFERRING ETHICAL PREFERENCES

Time (s)

200

180 - .

160 - .

140 |- 2

120

100 - .
80 | a

60

40

20|

0 100 200 300 400 500 600 700 800 900 1000
O (number of user opinions)

Figure 6.4: Parameter learning runtime according to the dataset size O

for varying ethical features F.

previous batch of experiments, that the running time depends more on the
number of ethical features and possible rank assignments, instead of the
dataset or complexity of the situations, plans and which ethical features
are assigned to each plan.

To answer the questions posed before:

Q1l:

Q2:

The number of rank assignments impacts the parameter learning time
greatly, the trend in this increase of running time appears to be above
linear, and in addition, increasing the number of ethical features or
possible ranks also had a noticeable impact, as the running time es-
calated more quickly in Figure 6.3 for higher F and R values.

The size of the dataset, given by the number of expert opinions, did
not seem to affect the performance of the algorithm as much as any
of the tested variables in the first batch of experiments. In fact,
even when testing for large datasets, the running time increased very
slowly. In conjunction with the first set of experiments, this suggests
that the complexity of the task depends more on the total amount of
rank assignments, ethical features and ranks than anything else.

148

e F =4
-a-F=606
e F=8

——F =10

6.5. RELATED WORK

6.5 Related work

Our work in this chapter described a method for learning ethical preferences
from a corpus of elicited opinions, in the form of ranks, to be used in
conjunction with the framework we described in the last chapters.

Previously, in Chapter 3, we described most of the well-known ethi-
cal decision-making and automated planning systems that utilize learning
algorithms, namely bottom-up and hybrid approaches.

Bottom-up systems, by definition, focus on inferring which combina-
tions of properties make a decision ethical, or more ethical than other
alternatives, from a corpus of data. Previous literature in the context
of decision-making has done this by learning numerical utilities for ac-
tions [Armstrong, 2015], learning to summarize the overall preferences of
a large number of people through pairwise comparisons between alterna-
tives [Noothigattu et al., 2018] using a voting-based mechanism, or learn-
ing to balance personal gain with showing good character to other agents
through simulation [Hegde et al., 2020]. Regarding planning-based ap-
proaches, [Abel et al., 2016, Wu and Lin, 2018, Rodriguez-Soto et al.,
2021] have shown how to infer which actions are unethical through the
reward function of a Markov Decision Process [Puterman, 1990], by assign-
ing penalties when agents execute actions that violate ethical behaviors.
However, bottom-up approaches differ from hybrid systems, such as ours,
in one main way: they do not model ethical principles or try to charac-
terize what is ethical following some higher notion of rules of conduct that
can determine what is right. Using the framework presented in the last
chapters, we can indeed model ethical principles coming from well-known
theories to represent rules of conduct, as shown in Chapter 4. In turn, we
use a learning algorithm to infer which ethical features or principles (as
they get reduced to features) are more important than others through their
ethical ranks.

Another related work is that of the Moral Machine experiment [Awad
et al., 2018]. There, the authors crowdsourced 40 million decisions regard-
ing moral dilemmas in which an agent drives an autonomous vehicle and
has to decide whether to keep going straight or turning, where both de-
cisions lead to the death of different people and/or animals. Their work
deals with learning ethical preferences and analyzing which ethical features
are prioritized by different people according to their culture, gender, age,
and other characteristics. They use a voting-based method to aggregate
the crowdsourced dataset and learn which features (such as sparing more
lives or sparing the young) are more important to certain kinds of users. As
a result, they produce different preference scores over the ethical features
of the problem at hand, which can essentially be seen as an order relation
over these features. In comparison, our approach focuses on providing a
combination of ranks for the features, which can be used as a whole to de-
termine the best alternative in each situation. By doing this, our method
can be used in the context of a framework such as the one described in the
last chapters.

149

CHAPTER 6. INFERRING ETHICAL PREFERENCES

Turning to hybrid ethical approaches, some literature has used Induc-
tive Logic Programming (ILP) [Muggleton, 1991] to infer logical rules to
determine which decisions are ethical. Namely, in [Anderson et al., 2005a]
the authors also present the W.D. system, which uses ILP to learn when
one decision is ethically preferred to another with respect to different eth-
ical properties based on prima facie duties [Ross, 1930] and how each de-
cision conforms to (or violates) these properties. Then in [Anderson et al.,
2005b, Anderson et al., 2006] they continued their work by developing
the MEDETHEX, which applies this same idea to medical cases. Also, in
[Anderson and Anderson, 2018] the same authors presented the GENETH
system, which applied this same mechanism to the autonomous driving do-
main. Concretely, they represent ethical principles as first-order logic-based
rules which characterize when one action is ethically better than another
with respect to how much they conform to or go against different ethical
properties. If two cases of the dataset disagree, ILP systems such as these
will fail in their inference, while our system is resistant to this kind of prob-
lem. Indeed, our method in this chapter leverages the power of probabilistic
logic to handle noise in the event different cases of the dataset disagree on
which choice is more ethical than another. In addition, our approach can
be used to learn in the context of planning instead of only decision-making,
by utilizing a framework such as the one described in the previous chapters.

Furthermore, [Dyoub et al., 2020] also uses ILP for ethical decision-
making, although to learn which decisions are ethical or unethical, instead
of determining which decisions are more ethical than others, as the previ-
ously discussed systems. Our framework differs from theirs in that we learn
to assign ranks to ethical features and use them to compare decisions on
ethical terms, instead of determining if decisions are ethical or not. Also,
as mentioned before, our model differs from this research in that it can be
used to learn in the context of planning with ethical elements, in addition
to decision-making.

In summary, the system described in this chapter differs from previous
ones in that: (i) it leverages learning algorithms to elicit preferences for
planning problems (as opposed to only decision-making), (ii) it can handle
noisy datasets in contrast with ILP-based approaches, by using a proba-
bilistic encoding (Problog), and (iii) it learns rank assignments for ethical
features instead of a set of logical rules that determine if a decision is ethical
or not.

6.6 Discussion

In this chapter, we have developed a method for ethical preference elici-
tation which can handle noisy datasets and be used in conjunction with
the model presented in the previous chapters. By reducing the problem of
inferring ethical preferences to choosing ranks for ethical features using the
parameter learning technique, we showcased how our model can be used as
a hybrid ethical system. In addition, we provided a Problog-based imple-

150

6.6. DISCUSSION

mentation? of this part of our system, described a case study to exemplify
the approach, and provided a preliminary analysis of some experimental
results.

As mentioned in the Introduction, explainability is a highly desirable
characteristic for automated agents in ethically-nuanced domains. One of
the many advantages of using probabilistic logic programming is that by
coupling logic rules with probabilistic annotations, the deductions it pro-
duces are transparent, i.e: humans can understand the reasoning of the
machine and its decisions through its encoding. By using the parameter
learning approach, we produce a rank assignment that can be combined
with a Problog program to compare plans, in such a want that a user can
understand and interpret. Thus, from an Explainable AT (XAI) perspec-
tive, the method described in this chapter is a contribution to transparent
systems [Arrieta et al., 2020], by making it easy for the user to under-
stand the reasoning process by using well-defined logic rules, and inferring
a probability distribution over a set of rank assignments.

By leveraging the noise-handling capabilities of Problog [De Raedt et al.,
2007] and parameter learning [Gutmann et al., 2011}, our system can han-
dle many different opinions from a dataset and aggregate them. This, in
turn, shows the adaptability and generality of the probabilistic logic set-
ting, which has been previously used to develop explainable Al systems in
other subfields, such as decision-making [Van den Broeck et al., 2010] and
recommender systems [Catherine and Cohen, 2016]. Moreover, the ability
of handling noise in this way separates our approach from much previous
work that uses inductive logic programming and cannot handle differing
views on which the most ethical choice is in a particular situation.

The result we obtain from this procedure is a rank assignment with the
highest probabilistic annotation. Admittedly, aggregating the opinions of
the whole dataset does not guarantee that the resulting ranks will match
all of the decisions for a majority of the users, but in turn, it means that
the particular rank assignment matches the most amount of decisions if we
combine all of the decisions of every user. As such, this result can be used
as a first approximation of what the most pertinent rank assignment is in
the domain at hand.

Regarding the elicitation of user/expert opinions, we chose to consider
the setting in which they submit their opinion on which choice they con-
sidered the most ethical. One could ask why we chose this form of input
instead of asking them which rank should be assigned to each feature in
their opinion. First of all, in the presence of a large number of ranks and
ethical features, it would be very hard for the users to provide precise
answers that would lead the system to select the best plan in every case
according to their views. And also, it would be difficult for the users to
predict potentially dangerous uses for the system when an ethical feature
is assigned a particular rank. Indeed, it would be very easy for users to
choose approximate ranks for some features not knowing in which possible
scenarios they could be misused.

4https://github.com/martinjedwabny /Ifi-ethical

151

https://github.com/martinjedwabny/lfi-ethical

CHAPTER 6. INFERRING ETHICAL PREFERENCES

In the experimentation, we could analyze how the running time of the
parameter learning algorithm degrades when the different sizes of the input,
in terms of rank assignments and dataset, are increased. As mentioned,
the system could handle up to A = 100 rank assignments in most cases
for up to F = 10 ethical features and R = 4 possible ranks, and up to
O = 1000 opinions, with very slow degradation as the size of the dataset
increased. In turn, the system proved to be more sensitive to the number
of possible rank assignments, ethical features and ranks, which was not
surprising considering that adding ethical features and ranks made the
Problog program slower and that the number of rank assignments matches
the amount of probabilistic annotations to learn.

It is necessary to specify the rank assignments to compare as part of
the input of the learning procedure, as considering every possible rank as-
signment leads to RF probabilistic annotations to learn. Taking F = 10 and
R = 4 would lead to more than 1 million probabilistic annotations, which
would not be feasible using this method. As a reference, in the Moral
Machine experiment [Awad et al., 2018], the authors consider a total of 9
ethical features to decide which people an autonomous vehicle should save,
namely: sparing humans, inaction, sparing passengers (versus pedestrians),
sparing more lives, sparing men (versus women), sparing the young (versus
the elderly), sparing pedestrians who cross legally, sparing the fit, and spar-
ing those with higher social status. In cases such as this, it could be the case
that some features are more important than others, for instance, society
could consider that sparing more lives is more important than sparing the
fit. Thus, not every possible rank assignment has to be considered, as we
can remove all those in which sparing the fit has a higher rank than sparing
more lives. In this way, by introducing more constraints, the possible rank
assignments may be reduced.

Future work In the future, we envision different ways of expanding the
work presented in this chapter. First of all, it would be interesting to
compare the performance of different parameter learning encodings for the
inference of preferences in terms of computation time. In this sense, it would
be beneficial to study different ways to reduce the total number of possible
rank assignments, which would decrease the number of probabilities to infer
through the parameter learning algorithm.

The approach we took in this chapter was to produce a probability dis-
tribution over the considered rank assignments. Then, we suggested pick-
ing the rank assignment with the highest probabilistic annotation. Yet,
it would also be possible to calculate the probability (or error) of each
rank assignment with respect to the Problog program and the dataset sep-
arately, instead of producing this distribution that depends on all of the
rank assignments at the same time. We leave this task for future work.

Also in terms of efficiency, we would like to test out other machine-
learning techniques to infer the best rank assignment. Essentially, each
problem is composed of discrete values representing the ethical features of
each plan and situation and the dataset is composed of opinions of users

152

6.6. DISCUSSION

stating which actions, characterized by their set of ethical features, are to
be preferred to others. As such, supervised machine-learning algorithms
for preference learning [Mohri et al., 2018], a special type of classification,
can be used to infer which sets of ethical features are more important than
others, by adapting the algorithms to find the optimal rank assignments so
that its ranks prioritize the right features according to the dataset.

In terms of experimentation, we need to (i) scale up the size of the
experiments, (ii) compare the computation time of this approach to other
machine learning methods, and (iii) provide complex test cases for ethi-
cal planning problems and make the agents plans be assessed by human
observers.

Lastly, we would like to test the inference mechanism in conjunction
with the ethical framework presented in the last chapters in a real-life
scenario for an integral evaluation of our system.

153

Conclusion

7.1 Research questions. 156
7.2 Scopeandimpact 157
7.3 Perspectives and futurework 160

As we explained in the Introduction, the mainstream employment of
automated agents in various domains to aid people in daily tasks or oper-
ate without any human intervention has sparked serious concerns related
to our trust in these systems. For this reason, past research has pointed
out the necessity to build machines that can be ethically aligned to societal
values and explain their decisions [Tolmeijer et al., 2020]. Thus, we set out
to provide a framework that automated agents could utilize to represent
multiple ethical principles and combine them through preferences, along
with a mechanism to learn priorities between them. We formalized and ex-
plained the main concepts and background notions surrounding this thesis
in Chapter 2. Chapter 3 described the state-of-the-art of machine ethics
implementations and various overarching topics concerning ethics as a field.
In Chapter 4, we introduced an extension of PDDL that assigns a set of
ethical features to plans, demonstrated how it captures some well-known
ethical principles and showed how these features can be combined using
preferences. Then in Chapter 5, we focused on demonstrating that ethical
problems modeled using our framework can be translated into utilities by
using soft goals. We also developed two different implementations of this
translation that allow state-of-the-art planners which are compatible with
soft goals and actions costs, to be used in our framework, and provided
several experiments to test the effectiveness of our approach. Lastly, in
Chapter 6, we described and implemented a method to compute priorities
between ethical values for our framework using probabilistic logic and the
parameter learning approach. All of this work built upon and extended
previous work published in [Jedwabny et al., 2021a] and [Jedwabny et al.,
2021b).

This conclusion discusses how the work of this thesis addresses the re-
search problem and questions described in the Introduction (Section 7.1),
highlights the scope and impact of our contributions to the field of machine
ethics (Section 7.2), and finishes by presenting some interesting future di-
rections (Section 7.3).

155

CHAPTER 7. CONCLUSION

7.1 Research questions

Previously in Chapter 1, we posed ourselves a set of questions to answer
throughout this thesis. In what follows, we will go over how our research
addressed these questions.

Question 1: How can we model and combine well-known eth-
ical principles through preferences in a deterministic planning
setting? We developed an extension of PDDL, a well-known determinis-
tic planning language, composed of different ethical constructs in Chapter
4, that allows the modeling of various ethical principles and preferences
between them. In doing so, we provided a transparent method to align
machines with a given societal view of ethics.

Ethical principles were modeled through ethical features and rules,
while the preferences were described with ethical ranked bases, which assign
a level of priority to features. Ethical features represent properties with eth-
ical meaning that are assigned to plans if certain conditions are met. These
conditions are specified using ethical rules and depend on states and op-
tionally on the execution of certain operators, according to whether they
are defined via fluents or operators. Practically, ethical features can seem
similar to fluents but, as discussed in Section 4.5, they are used to charac-
terize plans instead of world states and it is useful to keep them separated
from fluents for modularity. Then, ethical rules are used to assign ethical
features to plans depending on fluents, actions and other ethical features.

Finally, the ranked bases can be used both to define priorities, and im-
plicitly, to combine ethical principles by defining priorities between ethical
features. This preference representation model makes it possible to trans-
late our ethical planning problems to classical planning problems with util-
ities, as we saw in Chapter 5, and is compatible with learning techniques
through the ethical ranked bases, as specified in Chapter 6.

Question 2: Can we provide an efficient way of computing eth-
ically optimal plans using our model? In Chapter 5, we described
and implemented a translation scheme that reduces ethical planning, as we
defined it, to classical planning with utilities.

We demonstrated the correctness of this translation procedure by prov-
ing that if an ethically optimal plan exists, a planner that can handle util-
ities will eventually find it in the translated version of the problem. Two
implementations of this idea were developed and made publicly available!.
While the first implementation enables planners compatible with soft goals
to solve ethical problems, the second compiles these soft goals into ac-
tion costs, following the ideas of [Keyder and Geffner, 2009]. Thus, we
demonstrated that state-of-the-art planners such as those presented in the
International Planning Competitions (IPC) can be used to solve ethical
planning problems modeled using our framework.

Thttps:/ /github.com/martinjedwabny /pddl-ethical

156

https://github.com/martinjedwabny/pddl-ethical

7.2. SCOPE AND IMPACT

Lastly, we conducted some experiments showing that indeed, these plan-
ners can be used along our model and translation procedures to calcu-
late ethically optimal plans in a reasonable time when considering various
medium-sized instances of some very hard problems from the IPCs.

Question 3: In which way can we elicit preferences from a corpus
of data to determine priorities between ethical values inside our
model? To answer the last section, we showed in Chapter 6 how we
can use Problog and the parameter learning technique to learn priorities
between ethical features in the form of ranks, as specified by our model in
the previous chapters.

We introduced a Problog encoding of situations, plans, ethical features
and ranks that, in conjunction with the parameter learning method, can
be used to aggregate the choices of one or many data sources to determine
the ranks, as defined in Chapter 4, of the ethical features. In this way, our
framework can be used as a hybrid one, by both representing ethical prin-
ciples and learning the priorities between them, which was required for our
goal of developing agents ethically aligned to the values of society. Lastly,
we implemented these ideas using state-of-the-art probabilistic logic pro-
gramming libraries and discussed the results of some experiments showing
the feasibility of our approach.

7.2 Scope and impact

Here, we will discuss the scope of the contributions of our work and its
impact on the field of machine ethics in light of previous research. In order
to do this, we will provide an overview of how this thesis compares and
extends the current state-of-the-art.

To begin with, the first contribution of this thesis was the development
of an extension of PDDL to represent the ethical elements of a problem and
a mechanism to compare plans, introduced in Chapter 4. By itself, this
framework constitutes an advancement and an interesting alternative to
past approaches for top-down ethical reasoning models in several different
accounts:

1. It contributes an alternative view of ‘machine ethics’ as a matter
of preferences and not absolute right and wrong, as many previous
models do. Most past literature in ethical reasoning for automated
planning and decision-making we reviewed in Chapter 3 representated
ethical theories by classifying plans as either right or wrong [Berreby
et al., 2015, Ganascia, 2007, Bourgne et al., 2021, Arkin et al., 2011,
Govindarajulu and Bringsjord, 2017, Lindner et al., 2019]. In this
sense, our work can be seen as a refinement or an alternative to past
approaches, because instead of classifying plans as one of these two
classes, by considering preferences we allow a plurality of classes of
ethical correctness, ranging from more to less desirable. In addition,
by working with preferences, we can help decide between multiple

157

CHAPTER 7. CONCLUSION

plans even when none is perfectly ethical, which as we have discussed
in Chapter 4, can be considered an advantage in certain cases, such
as when not doing anything is considered unethical.

The second way in which our treatment of ethics departs from past lit-
erature is the way in which we separate it from the rest of the domain
elements, namely the fluents, actions, states and goals, which we call
the operational part of a planning problem. We argue that by keep-
ing the fluents and ethical features separated from one another, we
improve the modularity between the operational and ethical aspects
of the framework. This is useful for two reasons: (i) the problem
description remains unaffected and we can add ethical terms (fea-
tures, rules and preferences) to an existing problem seamlessly, which
is useful if ethical considerations change according to societal views,
but the planning problem remains the same, and (ii) we can reuse the
ethical features and ranks in many different problems by adapting the
ethical rules to each of them, therefore allowing the reuse of ethical
preferences and principles. This distinction is not the norm in past
literature, as we saw in Chapter 3, except for belief-desire-intention
(BDI) models. BDI approaches [Arkin et al., 2009, Dennis et al.,
2016, Cointe et al., 2016] typically embed an extra layer within the
agent. They use precomputed plans obtained via external planning
modules and compare them on ethical terms. Our framework differs
from BDI approaches by using ethical features and preferences when
searching for the plan itself, and not after the planning phase, which
allows for specific optimization according to ethical considerations.

Third, we provide a new adaptation of several ethical theories and
concepts using preferences and a seamless way to combine them. In
Chapter 3, we demonstrate how our modelization of ethics can model
consequentialism, deontological ethics, virtue ethics, the do-no-harm
principle and the doctrine of double effect (with some reasonable mod-
ifications in the latter case). Although all of these theories had been
researched in the past in the context of machine ethics, the separation
of their elements via ethical features, rules and preferences forced us
to rethink them to fit our approach, so that we could maintain mod-
ularity between the ethical and operational aspects of a problem. A
preference-based model of ethics by itself offers a useful alternative
perspective of machine ethics, and more importantly, this pluralist
view of ethics permits to take into account the opinions of various in-
formation sources and combining them, thus conciliating the agent’s
behavior with the numerous viewpoints of society on ethics.

Then, in Chapter 5 we present an implementation and experimentation
of our framework described in the previous chapter, which further shows
the usefulness of our approach:

1.

We contributed an implementation of the PDDL extension described
in Chapter 4 in the actual programming language, that anyone can

158

7.2. SCOPE AND IMPACT

use as a basis to investigate ethical reasoning in planning domains
and made it publicly available. From the standpoint of knowledge
representation for automated planning, our formal model offers an
extension of the PDDL language, one of the most widely used repre-
sentations for classical planning, which is compatible with the large
corpus of research on PDDL-based representations (such as STRIPS
[Fikes and Nilsson, 1971], SAS+ [Béackstrom and Nebel, 1995] and
PDDL itself [Fox and Long, 2003]). Much of the previous research
reviewed in Chapter 3 represented planning using logic-based frame-
works, BDI frameworks, or more specific models, but few used PDDL-
based representations. In comparison, by using PDDL, our approach
can be is compatible with much previous research using this language.

2. It was shown both in theory and practice how utility-based plan-
ners can be used to solve these ethically-extended PDDL problems
with two different translation routines, which we also made publicly
available. By leveraging all the past research regarding PDDL-based
planning from the IPCs, our framework can directly use existing state-
of-the-art planners to find ethically optimal plans, which is a great
advantage compared to existing research, especially those approaches
relying on logic for planning as a deduction, in terms of computation
speed. We demonstrated the practicality of our approach by solving
ethical planning problems using our translation routines and some
state-of-the-art planners. Also, we analyzed some practical results
regarding the number of ethical constructs these planners can handle
when they are added to some medium-sized instances of very hard
problems from the International Planning Competitions.

3. Some authors [Tolmeijer et al., 2020] have pointed out the necessity
of developing example planning domains to test ethical theories and
their implementations. Our work contributed to this in two ways.
First, by providing an extension of PDDL to capture ethical concepts,
we provided a basis to easily create benchmarks for planning domains.
And second, we developed a PDDL domain based on our overarching
example (Autonomous driver) to test various encodings of ethical
theories.

Finally, Chapter 6 shows the adaptability of the preference-based mech-
anism to be used as a hybrid framework:

1. We showed how the rank-based preferences of the model presented in
the previous two chapters can be inferred using parameter learning.
The simplicity of the numerical ranks made it straightforward to pro-
vide an encoding of the learning problem in such a way that we can
use a corpus of preferences between plans to retrieve the best-fitting
rank assignment. Compared to previous research, our approach re-
lies on ranks to determine which option is more ethical, instead of
comparing them using their ethical features directly, as in the Moral
Machine experiment [Awad et al., 2018]. By doing this, the resulting

159

CHAPTER 7. CONCLUSION

rank assignments are compatible with the framework presented in the
previous two chapters.

Then, we presented one case study showcasing the ranks learned by
our approach to show the applicability of our hybrid framework.

Finally, we performed some experiments and analyzed their results
to demonstrate the practicality and computational cost of using our
approach.

All in all, the development of our hybrid ethical framework is a novel

work

on ethical theory representation, which takes advantage of diverse

techniques from various Al fields. We provided a framework that is largely
compatible with many widely-used representations and algorithms and a
useful alternative view on machine ethics as a preference-based problem.

7.3

Perspectives and future work

In this final section, we will describe different areas of extension and im-
provement we left out for future work.
Starting with Chapter 4:

As an initial step into modeling ethics as preferences, we chose the
classical planning setting to develop our research. However, much
current research in autonomous agents deals with domains containing
uncertainty or other complex characteristics, and logically, ethical
reasoning should be adapted for these domains as well. As such, in the
future, we plan to consider other planning models that allow multiple
agents, exogenous actions, or uncertainty (belief-state or probabilistic
planning) would be a logical next step to further show the usefulness
of our ideas.

Regarding ethical features, in the current definitions of our frame-
work, we considered the ethical features assigned to a plan to be a
set, but there is no reason why they cannot contain repetitions. Con-
sidering the set of features assigned to a plan a multiset could help
to model cases in which activating an ethical feature multiple times
makes a difference. For instance, if an agent could activate an eth-
ical feature many times in a problem, it could be useful to add this
ethical feature repeatedly if this fact would impact the ethical desir-
ability of the plan compared to others. The usefulness of such an
extension should, of course, be assessed in terms of ethical theories
and potential dilemmas.

Also, in the interest of representation compactness, we could intro-
duce a way of representing many ethical features with the same object
(or rather, aggregated feature). Adding an extra value number in the
ethical rank can also help refine the method of comparing plans. In
other words, we can change the ethical ranked based b(e) = (t,r) in

160

7.3. PERSPECTIVES AND FUTURE WORK

Definition 4.10, to the more precise b(e) = (t,r,n), where t € {+,—},
r € N is the ethical rank and n € N. This value n indicating that
the feature e is worth n features at the rank r. For instance, if the
agent could save X number of lives by executing an action, instead of
having five ethical features save(l),...,save(5) with a specific rank r,
we could have a single feature saved5() with rank r and n = 5.

e Then, concerning ethical rules, instead of defining the activation con-
ditions via sets of features and one action, we could extend our work
by providing a more general language to express preferences. For
example, by activating ethical rules when a certain condition holds
for every state, or a certain number of states, in the style of PDDL3
preferences [Gerevini et al., 2009]. This could be useful for defining
conditions that the agent should always preserve to remain ethically
correct.

Turning to the framework’s implementation in Chapter 5:

e An interesting challenge regarding the implementation of our frame-
work would be providing a planner specific to our ethical planning
problems, that does not need the translation routines described in
Chapter 5, but rather parse and solve the problems directly. This
would allow the development of an algorithm specifically tuned for
ethical planning problems that might achieve better performance than
the tested state-of-the-art planners.

e Then, we would like to find complexity results for ethical planning
problems. By doing this, we could determine whether or not providing
an algorithm specific to our ethical planning problems could be much
more efficient than translating the problems to classical planning with
utilities and using general-purpose state-of-the-art planners. We have
shown that they can be translated into classical planning problems
with utilities, which are well-studied regarding temporal and spatial
complexity. However, it could be useful to characterize the computa-
tional cost in terms of the ethical features and rules introduced in a
problem.

e Concerning the experimentation, we have left for future work the
testing of more complex ethical rules, e.g: using parameters, complex
activation conditions and a large number of activated and deactivated
ethical features.

And finally, regarding Chapter 6:

e We would like to test the computational cost of the learning with
different logical encodings to improve its performance. More precisely,
in the mentioned chapter, we described one encoding that turned
the task of finding the optimal ranks of an ethical problem into a
parameter learning problem. Nevertheless, different such encodings
are possible, and we would like to compare the possibilities.

161

CHAPTER 7. CONCLUSION

e Then, instead of producing a probability distribution over the consid-
ered rank assignments and choosing the one with the highest proba-
bilistic annotation, we would like to implement an algorithm that cal-
culates the probability (or error) of each rank assignment with respect
to the Problog program and the dataset, and determines the best
rank assignment without computing this whole distribution. This
task would require a modification of the parameter learning imple-
mentation and the Problog library, but will be much faster than our
current approach for finding the best rank assignment.

e Also, we would like to try finding the best rank assignment through
other machine-learning algorithms. As mentioned in the Discussion
of the chapter, supervised machine-learning algorithms for preference
learning [Mohri et al., 2018] may be utilized to learn the optimal rank
assignments so that the assigned ranks prioritize the right features
according to the dataset.

From a global point of view, we would like to test our hybrid ethical
framework as a whole. That is, testing the performance of the system
in a task that requires learning the ethical ranks and applying them in
a planning setting simultaneously. Although the experimental results of
Chapter 6 seemed promising, we would like to perform additional tests
to check the quality of our approach’s answers. Namely, testing if people
agree on the learned behavior of an agent that uses ethical features and
the ranks obtained through our proposed parameter learning approach.
Although the system is transparent in the sense that it decides based on
logic rules and probabilistic annotations, we could also test if people can
understand the reasoning process of the agent. Lastly, by seeing if the
users agree and understand the decisions, we would confirm whether our
approach is effective and/or easily explainable.

162

Appendix: Computational complexity

This Appendix chapter describes some notions related to computational
complexity that were left out of the main chapters of this thesis for being
of general knowledge for the computer science community but were useful
to include for reference.

Complexity classes indicate the inherent difficulty of a computational
problem. Time complexity describes the number of elementary (fixed time)
operations performed by an algorithm until completion given the size of
its input. Similarly, space complexity measures the amount of space in
computer memory used by an algorithm, including that reserved to store
the input, the result and all the intermediate computation values.

Because the exact number of operations may vary between different
inputs of the same size, complexity analysis is described in terms of the
worst case, exact case, or average case for a given size. Here we will present
complexity classes using the worst-case analysis, but they all apply similarly
to the other cases. Time and space worst-case complexities are described
using the O-notation. Briefly, given a problem with size of input n and
time/space complexity represented by the function f(n), we say that the
complexity is in O(g(n)), also written f(n) € O(g(n)) if there exist constants
¢,no € N such that for all n € Ny, it holds that f(n) < ¢ * g(n). In other
words, this means that f(n) grows no faster than g(n). For more information
about complexity theory, we refer the reader to [Papadimitriou, 2003].

A problem is in the time/space complexity class:

e Constant: if the time/space required for solving it does not depend
on the size of the input. It is denoted O(1) in big-O notation.

e Linear: if a deterministic Turing machine can solve it in time/space
that increases linearly with the input size. It is denoted O(n) in big-O
notation, with n being the size of the input.

e Polynomial (PTIME/PSPACE): if a deterministic Turing machine
can solve it in polynomial time/space for a given input size. It is
denoted O(n) in big-O notation, with n being the size of the input
and ¢ a constant.

e NP: if a non-deterministic Turing machine can solve it running in
polynomial time/space for a given input size. Equivalently, a problem

163

APPENDIX A. APPENDIX: COMPUTATIONAL COMPLEXITY

belongs to this class if checking whether a possible answer is valid can
be solved in polynomial time with a deterministic Turing machine.

e Exponential (EXPTIME/EXPSPACE): if a deterministic Turing
machine can solve it in simple exponential time/space: O(2°) where
p(n) is a polynomial function and n the size of the input.

Moreover, we say that a problem P4 is hard for a complexity class C
if any instance of another problem from C can be reduced to an instance
of P4 through an appropriate reduction (one that does not have a superior
complexity). Also, a problem P, is complete for a complexity class C' if
it belongs to C' and every problem in C' can be reduced to P4 using an
appropriate reduction.

164

2

Appendix: PDDL code

In this appendix, we list the PDDL code used for our examples through-
out this thesis. The code listed here is mostly written using the syntax
and extensions of PDDL2.1. We remind the reader that the formalization
presented in Chapter 2 is very similar to actual PDDL2.1, but with some
reasonable simplifications. For more information about PDDL, we refer the
reader to [Fox and Long, 2003].

Normally, PDDL files are divided into ‘domain’ and ‘problem’ files. The
domain file serves to define the extensions (called requirements) of PDDL
that are allowed (such as object types, negative preconditions, quantifi-
cation in preconditions and effects, conditional effects and many others),
constants that can be used in actions, the fluents of the domain, the actions,
and the types of objects. Then in the problem file, the rest of the objects
(constants that cannot be used in actions), the initial state and the goal
state are described. We chose to use some extensions in this PDDL code
that are not present in the formalization we described for reasons related to
modeling problems concisely and the efficiency of planners. For instance,
we used typing to specify which objects can substitute the variables in the
operators.

B.1 Autonomous driver example original PDDL code

The following code refers to Example 4.1 and 4.2 in Chapter 4.

B.1.1 Domain file

(define (domain crash-d)
(:requirements :strips :typing :equality
< :negative-preconditions :conditional-effects)

(:types
car xPos yPos direction - object

)

(:constants

agent - car

left straight right - direction
)

165

NONONR NN NN NN N R E R e R e e
© 00 g9 O Uk W N O © 00NN U e W

36

APPENDIX B. APPENDIX: PDDL CODE

(:predicates
(hasPos 7?C - car ?7X1 - xPos ?Y1 - yPos)
car ?D - direction)

(hasDir ?C

(nextX 7D

direction 7X1 -

xPos 7X2

(nextY ?Y1 - yPos ?7Y2 - yPos)
(hasCrashed 7C1 - car)
(hasBumped ?C1 - car)

(updated)

(:action setDir
:parameters

(not (hasDir agent straight))

(?D1 - direction)
:precondition (updated)
:effect (and
(not (hasDir agent left))

(not (hasDir agent right))
(hasDir agent ?D1))

(:action setStop
:parameters
:precondition (updated)
:effect (and

(not (hasDir agent left))

(not (hasDir

O

(not (hasDir agent right))

(:action update
:parameters
:precondition (not (updated))
:effect (and

O

(updated)
(forall
(?7C1 - car ?C2 - car ?Y1
(when
(and
(not (= ?C1 ?7C2))
(not (= 7C1 agent))
(not (= 7C2 agent))
(not (hasCrashed ?7C1))

(hasPos ?7C1 7?X1 ?Y1)
(hasPos 7C2 ?7X1 7?7Y1))

(and

(hasCrashed 7C1)
(hasCrashed 7C2)

)))

(forall

(7Cc1 -
(when
(and

car ?Y1 - yPos 7X1

(not (= ?7C1 agent))
(hasPos
(hasPos

(and

agent 7X1 7Y1)
?7C1 ?X1 ?Y1))

(hasBumped agent)
(hasBumped ?7C1)

agent straight))

)

- yPos 7X1

xPos)

xPos)

xPos)

166

UlA W N e

~

00

S BN BN B B B B |

90
91
92
93
94
95

96

[N

~

0

S N N N e e e e e e e e

~

B.1. AUTONOMOUS DRIVER EXAMPLE ORIGINAL PDDL CODE

(not (hasDir 7C1 left))

(not (hasDir 7C1 straight))

(not (hasDir 7?C1 right))
))))

(:action go
:parameters ()
:precondition (updated)
:effect (and
(not (updated))

(forall
(?C1 - car ?D1 - direction ?Y1 - yPos 7Y2 - yPos 7X1 -
— xPos 7X2 - xPos)
(when
(and

(not (hasCrashed 7C1))
(hasPos 7C1 ?7X1 ?Y1)
(hasDir ?C1 ?D1)

(nextX ?D1 ?X1 ?X2)

(nextY ?Y1 ?7Y2))
(and

(not (hasPos 7C1 ?7X1 ?7Y1))
(hasPos 7C1 ?7X2 ?7Y2))))

Listing B.1: Autonomous driver PDDL domain code.
B.1.2 Problem file

(define (problem crash-p-01)
(:domain crash-d)
(:objects
cl c2 - car
x1 x2 - xPos
yl y2 y3 y4 - yPos
)
(:init
(updated)

(hasPos agent x1 y1)
(hasPos c1 x2 y1)
(hasPos c2 x2 y3)

(hasDir agent straight)
(hasDir cl straight)

(nextX straight x1 x1)
(nextX straight x2 x2)
(nextX right x1 x2)
(nextX right x2 x2)
(nextX left x1 x1)
(nextX left x2 x1)

(nextY y1 y2)
(nextY y2 y3)
(nextY y3 y4)

167

APPENDIX B. APPENDIX: PDDL CODE

(nextY y4 y4)
)

(:goal

(and

(updated)

(hasPos agent x2 y4)

(not (hasCrashed agent)))
)

)

W N = O © 0N O u

© 0 N O

W W W W W W NN NN NN NN NN == e e

g A W N R

Listing B.2: Autonomous driver PDDL problem code.

B.2 Autonomous driver example PDDL code with eth-
ical constructs

The following code shows how the previous one can be extended with the
ethical features, rules and ranked bases described in Chapter 4.

B.2.1 Domain file

(define (domain crash-d)
(:requirements :strips :typing :equality
< :negative-preconditions :conditional-effects :ethical)

(:types
car xPos yPos direction gravity - object

)

(:constants

agent - car

left straight right - direction
low high - gravity
)

(:predicates
(hasPos ?C - car ?X1 - xPos ?Y1 - yPos)
(hasDir 7?C - car 7D - direction)
(nextX ?D - direction 7X1 - xPos 7X2 - xPos)
(nextY ?Y1 - yPos ?Y2 - yPos)
(hasCrashed ?7C1 - car)
(hasBumped ?7C1 - car)
(updated)
)

(:action setDir
:parameters (?D1 - direction)
:precondition (updated)
:effect (and
(not (hasDir agent left))
(not (hasDir agent straight))
(not (hasDir agent right))
(hasDir agent ?7D1))

(:action setStop
:parameters ()

168

B.2. AUTONOMOUS DRIVER EXAMPLE PDDL CODE WITH
ETHICAL CONSTRUCTS

36 :precondition (updated)

37 teffect (and

38 (not (hasDir agent left))

39 (not (hasDir agent straight))
10 (not (hasDir agent right)))

a1)
42
13 (:action update
44 :parameters ()
15 :precondition (not (updated))
16 :effect (and
a7 (updated)
A8 (forall
19 (?C1 - car 7C2 - car ?Y1 - yPos ?7X1 - xPos)
50 (when
51 (and
52 (not (= 7C1 7C2))
53 (not (= 7C1 agent))
4 (not (= 7C2 agent))

(not (hasCrashed 7C1))
56 (hasPos ?C1 ?7X1 ?Y1)

57 (hasPos 7C2 ?7X1 ?7Y1))
58 (and

59 (hasCrashed 7C1)

60 (hasCrashed 7C2)

61)))

62 (forall

63 (?C1 - car ?Y1 - yPos 7X1 - xPos)
64 (when

65 (and

66 (not (= 7C1 agent))

67 (hasPos agent ?7X1 ?7Y1)
68 (hasPos 7C1 ?7X1 ?7Y1))
69 (and

(hasBumped agent)

7 (hasBumped 7C1)

(not (hasDir ?7C1 left))

-

73 (not (hasDir 7C1 straight))

74 (not (hasDir 7C1 right))

75))))

76)

78 (:action go

79 :parameters ()

80 :precondition (updated)

81 :effect (and

82 (not (updated))

83 (forall

84 (?C1 - car ?D1 - direction ?Y1 - yPos ?7Y2 - yPos 7X1 -
<~ xPos 7X2 - xPos)

85 (when

86 (and

87 (not (hasCrashed 7C1))

88 (hasPos 7C1 ?7X1 ?7Y1)

89 (hasDir ?7C1 7D1)

90 (nextX ?7D1 7X1 7X2)

91 (nextY ?7Y1 ?7Y2))

92 (and

169

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

APPENDIX B. APPENDIX: PDDL CODE

(not (hasPos ?C1 ?7X1 ?7Y1))
(hasPos ?C1 ?7X2 ?7Y2))))

(:ethical-features
(danger ?C1 - car 7Gl - gravity)
(damageRail 7Cl1 - car)
(responsibleAgent)

)

(:ethical-rank
:feature
(damageRail agent)
:type -

:rank 1

)

(:ethical-rank
:feature
(damageRail c1)
:type -

:rank 1

)

(:ethical-rank
:feature
(damageRail c2)
:type -

:rank 1

)

(:ethical-rank
:feature
(danger agent low)
:type -

:rank 2

)

(:ethical-rank
:feature
(danger c1 low)
:type -

:rank 2

)

(:ethical-rank
:feature
(danger c2 low)
:type -

:rank 2

)

(:ethical-rank
:feature
(danger agent high)
:type -

:rank 4

)

(:ethical-rank
:feature
(danger c1 high)
:type -

:rank 3

170

B.2. AUTONOMOUS DRIVER EXAMPLE PDDL CODE WITH
ETHICAL CONSTRUCTS

151)

152 (:ethical-rank

153 :feature

154 (danger c2 high)

155 :type -

156 :rank 3

157)

158 (:ethical-rank

159 :feature

160 (responsibleAgent)

161 :type -

162 :rank 4

163)

164

165 (:ethical-rule crashRule

166 :parameters (?Cl - car)

167 :precondition (hasCrashed ?7C1)
168 ractivation null

169 :features (danger 7C1 high)

170)

171 (:ethical-rule bumpRule

172 :parameters (?7Cl - car)

173 :precondition (hasBumped ?7C1)
174 ractivation null

175 :features (danger 7C1 low)

176)

177 (:ethical-rule responsibleCrashRule
178 :parameters ()

179 :precondition (hasCrashed agent)
180 ractivation null

181 :features (responsibleAgent)

182)

183 (:ethical-rule responsibleBumpRule
184 :parameters ()

185 :precondition (hasBumped agent)
186 ractivation null

187 :features (responsibleAgent)

188)

180 (:ethical-rule raillLeftRule

190 :parameters (?7Cl - car ?7X1 - xPos ?Y1 - yPos)
191 :precondition (and

192 (hasPos 7C1 ?7X1 ?7Y1)

193 (hasDir 7C1 left)

194 (nextX left 7X1 7X1))

195 tactivation (go())

196 :features (damageRail ?7C1)

197)

198 (:ethical-rule railRightRule

199 :parameters (?7Cl - car ?7X1 - xPos ?Y1 - yPos)
200 :precondition (and

201 (hasPos ?7C1 ?7X1 7Y1)

202 (hasDir ?C1 right)

203 (nextX right 7X1 7X1))

204 tactivation (go())

205 :features (damageRail ?7C1)

206)

207)

Listing B.3: Autonomous driver PDDL domain code.

171

APPENDIX B. APPENDIX: PDDL CODE

B.2.2 Problem file

(define (problem crash-p-01)
(:domain crash-d)
(:objects
cl c2 - car
x1 x2 - xPos
yl y2 y3 y4 - yPos
)
(:init
(updated)

(hasPos agent x1 y1)
(hasPos cl x2 y1)
(hasPos c2 x2 y3)

(hasDir agent straight)
(hasDir cl straight)

(nextX straight x1 x1)
(nextX straight x2 x2)
(nextX right x1 x2)
(nextX right x2 x2)
(nextX left x1 x1)
(nextX left x2 x1)

(nextY y1 y2)

(nextY y2 y3)

(nextY y3 y4)

(nextY y4 y4)
)

(:goal
(and
(updated)
(hasPos agent x2 y4)
(not (hasCrashed agent)))
)
)

Listing B.4: Autonomous driver PDDL problem code.

B.3 Autonomous driver example translated PDDL code
with soft goals

The following code is the resulting PDDL description of applying the trans-
formation routine to PDDL code with soft goals of Chapter 5.2.

B.3.1 Domain file

(define (domain crash-d_GEN)
(:requirements :preferences :strips :typing :equality
< :negative-preconditions :conditional-effects)

(:types
car xpos ypos direction gravity - object

172

NN N

B.3. AUTONOMOUS DRIVER EXAMPLE TRANSLATED PDDL
CODE WITH SOFT GOALS

(:constants

agent - car
left straight right - direction
low high - gravity

(:predicates

(haspos 7c - car ?7xl1 - xpos 7yl - ypos)
(hasdir 7c - car ?d - direction)

(nextx ?d - direction 7xl1 - xpos 7x2 - xpos)
(nexty ?yl - ypos ?y2 - ypos)

(hascrashed ?7cl - car)

(hasbumped ?cl - car)

(updated)

(check)

(normal-mode)

(final-mode)

(danger 7cl - car ?7gl - gravity)
(damagerail ?7cl - car)
(responsibleagent)

(:action setdir

:parameters (7?dl - direction)
:precondition (and
(normal-mode)

(check)

(updated)

:effect (and

(not (check))

(not (hasdir agent left))
(not (hasdir agent straight))
(not (hasdir agent right))
(hasdir agent 7d1)

(:action setstop

:parameters ()
:precondition (and
(normal-mode)
(check)

(updated)

:effect (and

(not (check))

(not (hasdir agent left))
(not (hasdir agent straight))
(not (hasdir agent right))

(:action update

173

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113

APPENDIX B. APPENDIX: PDDL CODE

:parameters ()
:precondition (and
(normal-mode)

(check)

(not (updated))

:effect (and
(not (check))

(updated)
(forall
(?cl - car ?c2 - car ?yl - ypos ?7xl - xpos)
(when
(and
(not (= ?7cl 7c2))
(not (= 7cl agent))
(not (= 7c2 agent))
(not (hascrashed 7cl))

(haspos ?cl ?x1 ?7y1)
(haspos ?7c2 ?7x1 7y1l)

)
(and

(hascrashed 7c1l)
(hascrashed 7c2)

)
))
(forall

(?cl - car 7yl - ypos ?xl - xpos)

(when
(and
(not

(= 7c1 agent))

(haspos agent ?x1 ?7yl)
(haspos ?7cl ?7x1 7y1l)

)
(and

(hasbumped agent)
(hasbumped 7cl)

(not (hasdir 7?cl left))
(not (hasdir 7?cl straight))
(not (hasdir 7cl right))

(:action go
:parameters ()
:precondition (and

(normal-mode)

(check)

(updated)

:effect (and
(not (check))
(not (updated))

(forall
(?7cl - car ?dl - direction 7yl
<~ xXpos 7x2 - xpos)

- ypos ?7y2 - ypos 7x1

174

B.3. AUTONOMOUS DRIVER EXAMPLE TRANSLATED PDDL
CODE WITH SOFT GOALS

(when
(and
(not (hascrashed ?cl))
(haspos 7cl ?7x1 ?7yl)
(hasdir 7ci1 7d1)
(nextx 7d1 7x1 ?7x2)
(nexty ?yl 7y2)
)
(and
(not (haspos 7cl ?x1 ?7y1))
(haspos ?7cl 7x2 7y2)
)
))
(forall
(?cl - car 7x1 - xpos ?yl - ypos)
(when
(and
(haspos 7cl ?7x1 ?7y1)
(hasdir 7cl left)
(nextx left ?7x1 ?x1)
)
(damagerail 7c1)))
(forall
(?cl - car 7x1 - xpos 7yl - ypos)
(when
(and
(haspos 7cl ?7x1 ?yl)
(hasdir ?7cl right)
(nextx right 7x1 7x1)
)
(damagerail 7?7cl)))

(:action checkOp
:parameters ()
:precondition (not (check))
:effect (and

(check)
(forall
(?7cl - car)
(when
(hascrashed 7c1l)
(danger ?cl high)))
(forall
(?cl - car)
(when
(hasbumped ?7cl)
(danger 7cl low)))
(when
(hascrashed agent)
(responsibleagent))
(when
(hasbumped agent)
(responsibleagent))

175

179
180
181
182
183
184
185
186
187
188
189
190
191
192
93

94

95

APPENDIX B. APPENDIX: PDDL CODE

(:action final-mode-start
:parameters ()
:precondition (and

(check)
(normal-mode)
(not (final-mode))
)
:effect (and
(not (normal-mode))
(final-mode)

)

Listing B.5: Autonomous driver PDDL domain code with soft goals.
B.3.2 Problem file

(define (problem crash-p-01_GEN)
(:domain crash-d_GEN)
(:objects
cl c2 - car
x1 x2 - xpos
yl y2 y3 y4 - ypos
)

(:init
(updated)
(haspos agent x1 y1)
(haspos cl1 x2 y1)
(haspos c2 x2 y3)
(hasdir agent straight)
(hasdir c1 straight)
(nextx straight x1 x1)
(nextx straight x2 x2)
(nextx right x1 x2)
(nextx right x2 x2)
(nextx left x1 x1)
(nextx left x2 x1)
(nexty y1 y2)
(nexty y2 y3)
(nexty y3 y4)
(nexty y4 y4)
(normal-mode)

(:goal
(and
(updated)
(haspos agent x2 y4)
(not (hascrashed agent))
(check)
(final-mode)
(preference p_damagerail-agent
(not (damagerail agent)))

176

B.4. AUTONOMOUS DRIVER EXAMPLE TRANSLATED PDDL
CODE WITH ACTION COSTS

)

(preference p_damagerail-cil
(not (damagerail cl1)))
(preference p_damagerail-c2
(not (damagerail c2)))
(preference p_danger-agent-low
(not (danger agent low)))
(preference p_danger-cl-low
(not (danger cl low)))
(preference p_danger-c2-low
(not (danger c2 low)))
(preference p_danger-agent-high
(not (danger agent high)))
(preference p_danger-cl-high
(not (danger cl high)))
(preference p_danger-c2-high
(not (danger c2 high)))
(preference p_responsibleagent
(not (responsibleagent)))

)

(:metric minimize

(+

(x (is-violated p_damagerail-agent) 1)
(* (is-violated p_damagerail-cl) 1)

(¥ (is-violated p_damagerail-c2) 1)

(x (is-violated p_danger-agent-low) 4)
(¥ (is-violated p_danger-cl-low) 4)

(¥ (is-violated p_danger-c2-low) 4)

(x (is-violated p_danger-agent-high) 48)
(* (is-violated p_danger-cl-high) 16)
(* (is-violated p_danger-c2-high) 16)
(x (is-violated p_responsibleagent) 48)

Listing B.6: Autonomous driver PDDL problem code with soft goals.

B.4 Autonomous driver example translated PDDL code

with action costs

The following code is the resulting PDDL description of applying the trans-
formation routine to PDDL code with action costs of Chapter 5.2.

B.4.1 Domain file

(define (domain crash-d_GEN)
(:requirements :action-costs :strips :typing :equality

— :negative-preconditions :conditional-effects)

(:types

)

car xpos ypos direction gravity - object

(:constants

agent cl c2 - car

177

NN N

ST SR V]

W W W N NN N NN
N = O © 0 g O C

APPENDIX B. APPENDIX: PDDL CODE

left straight right - direction
low high - gravity

x1 x2 - xpos

y1 y2 y3 y4 - ypos

(:functions
(total-cost)

)

(:predicates
(haspos ?c - car ?xl1 - xpos ?yl - ypos)
(hasdir ?c - car ?d - direction)
(nextx 7d - direction ?7x1 - xpos 7x2 - xpos)
(nexty ?yl - ypos ?7y2 - ypos)
(hascrashed ?7cl - car)
(hasbumped ?cl - car)
(updated)
(check)
(danger ?7cl - car ?7gl - gravity)
(damagerail ?cl - car)

(responsibleagent)

(final-mode)
(final-mode-check-damagerail-agent)
(final-mode-check-damagerail-c1)
(final-mode-check-damagerail-c2)
(final-mode-check-danger-agent-low)
(final-mode-check-danger-cl-1low)
(final-mode-check-danger-c2-1low)
(final-mode-check-danger-agent-high)
(final-mode-check-danger-cl-high)
(final-mode-check-danger-c2-high)
(final-mode-check-responsibleagent)

(:action setdir
:parameters (?7dl - direction)
:precondition (and
(not (final-mode))
(check)
(updated)

teffect (and
(not (check))
(not (hasdir agent left))
(not (hasdir agent straight))
(not (hasdir agent right))
(hasdir agent ?7d1)
)
)
(:action setstop
:parameters ()
:precondition (and
(not (final-mode))
(check)
(updated)
)
teffect (and

178

68
69

70

1

[SIE N UR

B S S BN BN B |
3 ™ y

oo

B.4. AUTONOMOUS DRIVER EXAMPLE TRANSLATED PDDL
CODE WITH ACTION COSTS

(not (check))

(not (hasdir agent left))

(not (hasdir agent straight))

(not (hasdir agent right))

)
)

(:action update
:parameters ()
:precondition (and

(not

(final-mode))

(check)

(not
)

(updated))

:effect (and

(not

(check))

(updated)
(forall
(?cl - car 7c2 - car 7yl - ypos ?xl - xpos)
(when
(and
(not (= 7c1l 7c2))
(not (= 7cl agent))
(not (= 7c2 agent))
(not (hascrashed ?c1))
(haspos ?7cl ?7x1 7y1l)
(haspos ?7c2 7x1 7yl)

)

(and
(hascrashed 7cl)
(hascrashed 7c2)

)
))

(forall
(?cl - car ?yl - ypos 7xl1l - xpos)
(when
(and
(not (= ?7cl agent))
(haspos agent ?7x1 ?7yl)
(haspos 7cl ?7x1 ?7yl)

)

(and

(hasbumped agent)
(hasbumped ?7c1)

(not (hasdir 7cl left))
(not (hasdir 7cl straight))
(not (hasdir 7cl right))

)
))
)
)

(:action go
:parameters ()
:precondition (and

(not

(final-mode))

(check)
(updated)

)

:effect (and

179

170

—

—
I e B BN BN B B BN B |
: x o

AW N

=
© W N O

®

181

182

APP

ENDIX B. APPENDIX: PDDL CODE

(not (check))
(not (updated))

(forall

(?7cl - car ?dl - direction 7yl - ypos 7y2 - ypos 7xl1
— Xpos 7x2 - xpos)

(when

(and

(not (hascrashed 7cl))
(haspos 7cl ?7x1 ?7y1)
(hasdir ?cl 7d41)
(nextx ?7d1 ?x1 7x2)
(nexty 7yl ?7y2)

)

(and
(not (haspos 7cl ?x1 ?y1))
(haspos ?7cl ?7x2 7y2)

)

))

(forall

(

(:a
‘P
‘p

(?7cl - car ?7x1 - xpos 7yl - ypos)
(when
(and
(haspos ?7cl ?7x1 7y1l)
(hasdir 7cl left)
(nextx left ?7x1 7x1)
)
(damagerail ?cl)))
forall
(?cl - car ?7x1 - xpos 7yl - ypos)
(when
(and
(haspos ?7cl ?7x1 7y1l)
(hasdir 7cl right)
(nextx right 7x1 7x1)
)
(damagerail ?7cl)))

ction check-ethical-features
arameters ()
recondition (and

(not (final-mode))
(not (check))

)

e
(
(

(

(

ffect (and
check)
forall
(?7cl - car)
(when

(hascrashed 7cl)
(danger ?cl high)))
forall
(?cl - car)
(when
(hasbumped ?7cl)
(danger 7cl low)))
when
(hascrashed agent)

180

213

215

NN

NONN NN NN NN
NONON NN NN = e
N OOk W N = O 00

NN N
0]

[N

NN N

NN

w W W W W w
g KIS

V)
t

S

36

B.4. AUTONOMOUS DRIVER EXAMPLE TRANSLATED PDDL
CODE WITH ACTION COSTS

)

(responsibleagent))
(when

(hasbumped agent)
(responsibleagent))

)

(:action final-mode-start

)

:parameters ()
:precondition (not (final-mode))
:effect (final-mode)

:action
<> final-mode-check-ethical-features-False-damagerail-agent
:parameters ()
:precondition (and
(final-mode)
(damagerail agent)
(not (final-mode-check-damagerail-agent))
)
teffect (and
(final-mode-check-damagerail-agent)
(increase (total-cost) 1)

)

(:action

)

< final-mode-check-ethical-features-True-damagerail-agent
:parameters ()

:precondition (and

(final-mode)

(not (damagerail agent))

(not (final-mode-check-damagerail-agent))
)

:effect (final-mode-check-damagerail-agent)

(:action

)

<> final-mode-check-ethical-features-False-damagerail-cl
:parameters ()
:precondition (and
(final-mode)
(damagerail c1)
(not (final-mode-check-damagerail-cl))
)
teffect (and
(final-mode-check-damagerail-c1)
(increase (total-cost) 1)

)

(:action final-mode-check-ethical-features-True-damagerail-cil

)

:parameters ()

:precondition (and

(final-mode)

(not (damagerail cl1))

(not (final-mode-check-damagerail-cl))
)

teffect (final-mode-check-damagerail-cl)

(:action

< final-mode-check-ethical-features-False-damagerail-c2

181

2
260
2

APPENDIX B. APPENDIX: PDDL CODE

:parameters ()

:precondition (and
(final-mode)

(damagerail c2)
(not (final-mode-check-damagerail-c2))

)

:effect (and
(final-mode-check-damagerail-c2)

(increase (total-cost) 1)
)
)
(:action final-mode-check-ethical-features-True-damagerail-c2

:parameters ()

:precondition (and
(final-mode)

(not (damagerail c2))
(not (final-mode-check-damagerail-c2))
)
:effect (final-mode-check-damagerail-c2)
)
(:action
<> final-mode-check-ethical-features-False-danger-agent-low

:parameters ()

:precondition (and
(final-mode)

(danger agent low)
(not (final-mode-check-danger-agent-low))

)

:effect (and
(final-mode-check-danger-agent-low)
(increase (total-cost) 4)

)

)
(:action
<~ final-mode-check-ethical-features-True-danger-agent-low

:parameters ()

:precondition (and
(final-mode)

(not (danger agent low))
(not (final-mode-check-danger-agent-low))

)

:effect (final-mode-check-danger-agent-low)

)
(:action
<> final-mode-check-ethical-features-False-danger-cl-low

:parameters ()

:precondition (and
(final-mode)

(danger c1 low)
(not (final-mode-check-danger-cl-low))

)

:effect (and
(final-mode-check-danger-cl-low)

(increase (total-cost) 4)
)
)
(:action final-mode-check-ethical-features-True-danger-cl-low
:parameters ()

182

B.4. AUTONOMOUS DRIVER EXAMPLE TRANSLATED PDDL
CODE WITH ACTION COSTS

292 :precondition (and

293 (final-mode)

294 (not (danger cl low))

295 (not (final-mode-check-danger-cil-low))
296)

297 :effect (final-mode-check-danger-cl-low)
208)

209 (:action

<> final-mode-check-ethical-features-False-danger-c2-low
300 :parameters ()
301 :precondition (and
302 (final-mode)
303 (danger c2 low)
304 (not (final-mode-check-danger-c2-low))
305)
306 :effect (and
307 (final-mode-check-danger-c2-1low)
308 (increase (total-cost) 4)
309)
310)
1 (:action final-mode-check-ethical-features-True-danger-c2-low
2 :parameters ()
313 :precondition (and
4 (final-mode)
5 (not (danger c2 low))
316 (not (final-mode-check-danger-c2-low))

317)

318 :effect (final-mode-check-danger-c2-low)

319)

320 (:action
< final-mode-check-ethical-features-False-danger-agent-high
N

321 :parameters ()
322 :precondition (and
323 (final-mode)

324 (danger agent high)

32
325 (not (final-mode-check-danger-agent-high))
326)

327 :effect (and

328 (final-mode-check-danger-agent-high)

329 (increase (total-cost) 48)

330)
331)
332 (:action
<> final-mode-check-ethical-features-True-danger-agent-high
333 :parameters ()

334 :precondition (and

335 (final-mode)

336 (not (danger agent high))

337 (not (final-mode-check-danger-agent-high))
338)

339 :effect (final-mode-check-danger-agent-high)
340)

341 (:action
< final-mode-check-ethical-features-False-danger-cl-high
342 :parameters ()
343 :precondition (and
14 (final-mode)

183

360
361
362

387
388
389
390
391
392
393
394

395

396
397

APPENDIX B. APPENDIX: PDDL CODE

(danger c1 high)
(not (final-mode-check-danger-cl-high))

)

:effect (and
(final-mode-check-danger-ci-high)
(increase (total-cost) 16)

)

)
(:action
<> final-mode-check-ethical-features-True-danger-cl-high

:parameters ()

:precondition (and
(final-mode)

(not (danger cl high))
(not (final-mode-check-danger-cl-high))
)
:effect (final-mode-check-danger-cl-high)
)
(:action
< final-mode-check-ethical-features-False-danger-c2-high

:parameters ()

:precondition (and
(final-mode)

(danger c2 high)
(not (final-mode-check-danger-c2-high))

)

:effect (and
(final-mode-check-danger-c2-high)
(increase (total-cost) 16)

)

)
(:action
<> final-mode-check-ethical-features-True-danger-c2-high

:parameters ()

:precondition (and
(final-mode)

(not (danger c2 high))
(not (final-mode-check-danger-c2-high))
)
:effect (final-mode-check-danger-c2-high)
)
(:action
< final-mode-check-ethical-features-False-responsibleagent

:parameters ()

:precondition (and
(final-mode)

(responsibleagent)
(not (final-mode-check-responsibleagent))

)

teffect (and
(final-mode-check-responsibleagent)
(increase (total-cost) 48)

)

)
(:action
< final-mode-check-ethical-features-True-responsibleagent
:parameters ()
:precondition (and

184

398
399
100
101
102
103
104
105

B.4. AUTONOMOUS DRIVER EXAMPLE TRANSLATED PDDL

CODE WITH ACTION COSTS

)

(final

(not (responsibleagent))

-mode)

(not (final-mode-check-responsibleagent))

)

:effect (final-mode-check-responsibleagent)

Listing B.7: Autonomous driver PDDL domain code with action costs.

B.4.2 Problem file

(define (problem crash-p-01_GEN)

(:domain crash-d_GEN)

(:init
(= (total-cost) 0)
(updated)
(haspos agent x1 y1)
(haspos cl x2 y1)
(haspos c2 x2 y3)
(hasdir agent straight)
(hasdir cl1 straight)
(nextx straight x1 x1)
(nextx straight x2 x2)
(nextx right x1 x2)
(nextx right x2 x2)
(nextx left x1 x1)
(nextx left x2 x1)
(nexty y1 y2)
(nexty y2 y3)
(nexty y3 y4)
(nexty y4 y4)

)

(:goal
(and
(updated)
(haspos agent x2 y4)
(not (hascrashed agent))
(check)
(final-mode)

(final-mode-check-damagerail-agent)

(final-mode-check-damagerail-cl)
(final-mode-check-damagerail-c2)

(final-mode-check-danger-agent-low)

(final-mode-check-danger-ci-low)
(final-mode-check-danger-c2-low)

(final-mode-check-danger-agent-high)
(final-mode-check-danger-cl-high)
(final-mode-check-danger-c2-high)
(final-mode-check-responsibleagent)

(:metric minimize

)

(total-

cost)

185

APPENDIX B. APPENDIX: PDDL CODE

16)

Listing B.8: Autonomous driver PDDL problem code with action costs.

186

Appendix: Ethical rank learning
implementation

Here, we will list the full Problog code corresponding to implementations
and examples described in Chapter 6. We will start by discussing different
Problog language extensions which we used in Chapter 6. Then, we list the
full code of the ethical ranks learning problem. And finally, we show the
code of the case study described in the same chapter.

We remind the reader that in Section 6.1 we gave a high-level overview
of the problem, and then explained the most relevant part of the imple-
mentation in Section 6.2. For more information about Problog, we refer
the reader to [De Raedt et al., 2007] or its official website!.

C.1 Logic language

As mentioned before, in this chapter we will represent knowledge using
Problog [De Raedt et al., 2007], an extension of Prolog [Bratko, 2001] with
probabilistic annotations described in Chapter 2. However, it is important
to note that, throughout this chapter, will use certain extensions of Problog
rules (provided by their common libraries) for the sake of representation
simplicity, namely (i) negation as failure, (ii) numerical expressions, and
(iii) lists.

Negation as failure allows expressions of the form not(B;) in the body
of rules, denoting that B; was not possible to prove [Clark, 1978], i.e: the
expression not(B;) holds whenever B; cannot be proven by the program.
This extension has been well studied, is compatible with the semantics
we described in Chapter 2, and is commonly used by Prolog. For more
information about negation as failure, we refer the reader to [Naish, 1986]
and [Ling, 1990].

Then, numerical expressions permit to represent:

e Comparisons as: A>B, A<B, A=B, A\=B (i.e: not equal operator in
Prolog) where A, B are either variables or integers, denoting compar-
ison between the terms, and

Thttps://dtai.cs.kuleuven.be/problog/

187

https://dtai.cs.kuleuven.be/problog/

APPENDIX C. APPENDIX: ETHICAL RANK LEARNING
IMPLEMENTATION

e Assignmentsas: A is B+C, A is B-C, A is BxC, A is B/C, where
A is an un-instanced variable and B,C are either variables which can
only be unified with numerical values, or constant numerical values,
representing the unification of A with the result of the arithmetical
operation at the right side of the ‘is’ special construct.

It is worth noting that although Prolog and Problog offer these expressions
out-of-the-box, one can also define them through predicates, so they do not
extend the generality or semantics of the language.

And finally, lists are a built-in data type of Prolog (and Problog),
represented as:

e [] : a special constant symbol representing the empty list,

e [Hy, ..., H, 1: alist with elements Hy, ..., Hp, where each H; is
an term (variable, constant, or functor), and

e [H | L]: alist with first element H, an term known as the head,
attached to another list L, called the tail.

In addition, by utilizing lists, we will also use the predicate length(L,
N) provided by Problog itself, which unifies the variable N with the length
of the list L.

For more information about the usage of these functionalities and some
examples, we refer the reader to [Bramer, 2005].

C.2 Parameter learning code

In this section, we list the complete Problog code of the ethical ranks learn-
ing problem described in Chapter 6, including the domain and theory en-
codings.

C.2.1 Domain encoding P

situation(sy).

situation (s,).
plan(ap) .

plan(ap,) .
ethical_feature (e1) .

ethical_feature(e,,) .
type (e, f1) .

type (en, stn,) .
rank (ry) .

188

C.2. PARAMETER LEARNING CODE

rank (ry,) .
has_plan(aj,s1) has_plan(ajm;,S1) .

has_plan(anp1,S,) has_plan (anm,,Sn) -
has_feature (ey 1,1,a1,1,51) -

has_feature (€1,m;,w - a1,m>S1) -
has_feature (e, 1,1,dn.1,5:) -

has_feature (enm, wym,> In.mp>Sn) -

Listing C.1: Problog encoding of situational background knowledge P

C.2.2 Theory encoding P;

max_val (0,0).

max_val(R,V) :- rank(R), R > 0,
amount_of_rank (R,N),
val(R, V1),
R1 is R-1,

max_val (R1,V2),
V is V1ixN+V2.

val (0,0).

val(R,V) :-
rank (R) ,
R > O,
R1 is R-1,
max_val (R1,V1),
V is V1+1.

val_until_rank(A,S,0,0).
val_until_rank(A,S,R,N) :-
rank (R) ,
R > 0,
amount_satisfied_of_rank(A,S,R,N1),
val(R,V),
R1 is R-1,
val_until_rank(A,S,R1,N2),
N is N1*xV+N2.

val(A,S,N) :- val_until_rank(A,S,n,,N).

worse(A,B,S) :-

189

APPENDIX C. APPENDIX: ETHICAL RANK LEARNING
IMPLEMENTATION

has_plan(A,S),
has_plan(B,S),
A \= B,
val(A,S,R1),
val(B,S,R2),
R1 < R2.

best (A,S) :-
has_plan(A,S),
not (worse(A,B,S)).

amount_of_rank(R,N) :-
rank (R),
rank_assignment (RA),
amount_of_rank (R,N,RA).
amount_of_rank(R,0,[]) :-
rank (R) .
amount_of_rank (R,N,[F,R1|RA]) :-
rank (R) ,
R = R1,
amount_of_rank (R,N1,RA),
N is N1+1.
amount_of_rank (R,N, [F,R1|RA]) :-
rank (R),
R \= R1,
amount_of_rank (R,N,RA).

amount_satisfied_of_rank(A,S,R,N) :-

has_plan(A,S),

rank (R) ,

rank_assignment (RA),

amount_satisfied_of_rank(A,S,R,N,RA).
amount_satisfied_of_rank(4A,S,R,0,[]) :-

has_plan(A,S),

rank (R) .
amount_satisfied_of_rank(A,S,R,N,[F,R1|RA])

has_plan(A,S),

rank (R) ,

R = R1,

satisfies(F,A,S),

amount_satisfied_of_rank(A,S,R,N1,RA),

N is N1+1.
amount_satisfied_of_rank(A,S,R,N,[F,R1|RA])

has_plan(A,S),

rank (R) ,

R = R1,

not (satisfies(F,A,S)),

190

C.3. EXAMPLE FULL CODE

amount_satisfied_of_rank (A,S,R,N,RA).
amount_satisfied_of_rank(A,S,R,N,[F,R1|RA]) :-

has_plan(A,S),

rank (R) ,

R \= R1,

amount_satisfied_of_rank(A,S,R,N,RA).

satisfies(F,A,S) :-
has_feature(F,A,S),
type(F,’+7).
satisfies(F,A,S) :-
type(F,’-),
not (has_feature(F,A,S)).

Listing C.2: Full Problog encoding of wal and best background knowledge
Py

C.3 Example full code

Here, we list the complete Problog code of the case study of Chapter 6.

C.3.1 Domain encoding P;

situation(sl).

situation(s6).

plan(go(left)).
plan(go(right)).

ethical_feature(danger (agent)).
ethical_feature (danger(cl)).
ethical_feature(danger(c2)).
ethical_feature(responsible (agent)).

type (danger (agent), ’-’).

type (danger (c1), ’-7).

type (danger (c2), ’-’).

type (responsible (agent), ’-7).
rank (1) .

rank (2) .

has_plan(go(right), si1).
has_plan(go(left), si1).
has_feature (danger(cl), go(left), si1).
has_feature (danger (c2), go(left), si1).

191

APPENDIX C. APPENDIX: ETHICAL RANK LEARNING
IMPLEMENTATION

has_feature(danger (agent), go(left), si1).

has_plan(go(right), s2).
has_plan(go(left), s2).

has_feature (danger(cl), go(right), s2).
has_feature (danger(c2), go(right), s2).
has_feature (danger (agent), go(left), s2).

has_plan(go(right), s3).
has_plan(go(left), s3).
has_feature(danger(cl), go(right), s3).
has_feature (danger(c2), go(left), s3).

has_plan(go(right), s4).

has_plan(go(left), s4).

has_feature (danger (agent), go(right), s4).
has_feature(responsible (agent), go(right), s4).
has_feature (danger(cl), go(right), s4).
has_feature(danger(cl), go(left), s4).
has_feature (danger(c2), go(left), s4).

has_plan(go(right), s5).

has_plan(go(left), sb).

has_feature (danger (agent), go(right), sb5).
has_feature(responsible (agent), go(right), sb).
has_feature (danger (agent), go(left), sb5).

has_plan(go(right), s6).
has_plan(go(left), s6).

has_feature (danger(cl), go(right), s6).
has_feature (danger(c2), go(right), s6).
has_feature (danger(cl), go(left), s6).

Listing C.3: Case study Problog encoding of situational background
knowledge Pg

C.3.2 Interpretations I

I7 = {best(go(right),s1),best (go(right),s2),
best(go(left),s3),best(go(left),sd),
best(go(left),sb),best(go(left),s6)}

I] = {vest(go(left),sl),best(go(left),s2),

best (go(right),s3),best (go(right),s4),
best (go(right),s5),best(go(right),s6)}

I; = {best(go(right),s1),best(go(right),s2),

best (go(left),s3),best(go(left),s4),

[

192

C.3. EXAMPLE FULL CODE

best (go(left),s5),best(go(left),s6)}
I; = {best(go(left),s1),best(go(left),s2),
best(go(right),s3),best(go(right) ,s4),
best (go(right),sb),best(go(right),s6)}
; = {best (go(right),s1),best(go(right),s2),
best (go(left),s3),best(go(left),s4),
best (go(left),sb),best(go(left),s6)}
I; = {best (go(left),s1),best(go(left),s2),
best (go(right),s3),best(go(right),s4),
best (go(right),s5),best(go(right),s6)}
I} = {best(go(right),s1),best(go(right),s2),
best(go(right),s3),best(go(left),s4d),
best(go(left),sb),best(go(left),s6)}
I} = {best(go(left),sl),best(go(left),s2),
best (go(left),s3),best(go(right),s4),
best (go(right),sb),best(go(right),s6)}
I7 = {best (go(right),s1),best(go(left),s2),
best(go(right),s3),best(go(left),s4),
best (go(left),sb),best(go(left),s6)}
I; = {best (go(left),s1),best(go(right),s2),
best (go(left),s3),best(go(right),s4),
best (go(right),sb5),best(go(right),s6)}

w’ﬂ

193

Bibliography

[Abel et al., 2016] Abel, D., MacGlashan, J., and Littman, M. L. (2016).
Reinforcement learning as a framework for ethical decision making. In
Workshops at the thirtieth AAAI conference on artificial intelligence.

[Adadi and Berrada, 2018] Adadi, A. and Berrada, M. (2018). Peeking
inside the black-box: a survey on explainable artificial intelligence (xai).
IEFEE access, 6:52138-52160.

[Aghighi and Béckstrom, 2015] Aghighi, M. and Béckstrom, C. (2015).
Cost-optimal and net-benefit planning—a parameterised complexity
view. In Twenty-Fourth International Joint Conference on Artificial In-
telligence.

[Alexander and Moore, 2021] Alexander, L. and Moore, M. (2021). Deon-
tological Ethics. In Zalta, E. N., editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, Winter 2021
edition.

[Allen et al., 2005] Allen, C., Smit, I., and Wallach, W. (2005). Artificial
morality: Top-down, bottom-up, and hybrid approaches. FEthics and
information technology, 7(3):149-155.

[Anderson et al., 2005a] Anderson, M., Anderson, S., and Armen, C.
(2005a). Towards machine ethics: Implementing two action-based ethical
theories. In Proceedings of the AAAI 2005 fall symposium on machine
ethics, pages 1-7.

[Anderson and Anderson, 2007] Anderson, M. and Anderson, S. L. (2007).
The status of machine ethics: a report from the aaai symposium. Minds
and Machines, 17(1):1-10.

[Anderson and Anderson, 2018] Anderson, M. and Anderson, S. L. (2018).
Geneth: A general ethical dilemma analyzer. Paladyn, Journal of Be-
havioral Robotics, 9(1):337-357.

[Anderson et al., 2005b] Anderson, M., Anderson, S. L., and Armen, C.
(2005b). Medethex: Toward a medical ethics advisor. In AAAI Fall
Symposium: Caring Machines, pages 9-16.

[Anderson et al., 2006] Anderson, M., Anderson, S. L., and Armen, C.
(2006). An approach to computing ethics. IEEE Intelligent Systems,
21(4):56-63.

[Anderson, 2008] Anderson, S. L. (2008). Asimov’s “three laws of robotics”
and machine metaethics. Ai & Society, 22(4):477-493.

[Apt, 1990] Apt, K. R. (1990). Logic programming. Handbook of Theo-
retical Computer Science, Volume B: Formal Models and Sematics (B),
1990:493-574.

195

BIBLIOGRAPHY

[Arkin et al., 2011] Arkin, R. C., Ulam, P., and Wagner, A. R. (2011).
Moral decision making in autonomous systems: Enforcement, moral emo-
tions, dignity, trust, and deception. Proceedings of the IEEE, 100(3):571—
589.

[Arkin et al., 2009] Arkin, R. C., Ulam, P. D., and Duncan, B. (2009). An
ethical governor for constraining lethal action in an autonomous system.
Technical report, Georgia Institute of Technology.

[Armstrong, 2015] Armstrong, S. (2015). Motivated value selection for ar-
tificial agents. In Workshops at the Twenty-Ninth AAAI Conference on
Artificial Intelligence.

[Arrieta et al., 2020] Arrieta, A. B., Diaz-Rodriguez, N., Del Ser, J., Ben-
netot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina,
D., Benjamins, R., et al. (2020). Explainable artificial intelligence (xai):

Concepts, taxonomies, opportunities and challenges toward responsible
al. Information Fusion, 58:82-115.

[Arrow et al., 2010] Arrow, K. J., Sen, A., and Suzumura, K. (2010). Hand-
book of social choice and welfare, volume 2. Elsevier.

[Asimov, 1950] Asimov, I. (1950). I, robot, volume 1. Gnome press.
[Attfield, 2012] Attfield, R. (2012). Ethics: an overview.

[Awad et al., 2018] Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J.,
Shariff, A., Bonnefon, J.-F., and Rahwan, I. (2018). The moral machine
experiment. Nature, 563(7729):59-64.

[Awad et al., 2020] Awad, E., Levine, S., Loreggia, A., Mattei, N., Rah-
wan, L., Rossi, F., Talamadupula, K., Tenenbaum, J., and Kleiman-
Weiner, M. (2020). When is it morally acceptable to break the rules?
a preference-based approach. In 12th multidisciplinary workshop on ad-
vances in preference handling (MPREF 2020).

[Bickstrom and Nebel, 1995] Béackstrom, C. and Nebel, B. (1995). Com-
plexity results for sas+ planning. Computational Intelligence, 11(4):625—
655.

[Baum, 2020] Baum, S. D. (2020). Social choice ethics in artificial intelli-
gence. AI & SOCIETY, 35(1):165-176.

[Bemelmans et al., 2012] Bemelmans, R., Gelderblom, G. J., Jonker, P.,
and De Witte, L. (2012). Socially assistive robots in elderly care: a

systematic review into effects and effectiveness. Journal of the American
Medical Directors Association, 13(2):114-120.

[Berreby et al., 2015] Berreby, F., Bourgne, G., and Ganascia, J.-G.
(2015). Modelling moral reasoning and ethical responsibility with logic
programming. In Logic for programming, artificial intelligence, and rea-
soning, pages 532-548. Springer.

196

BIBLIOGRAPHY

[Berreby et al., 2017] Berreby, F., Bourgne, G., and Ganascia, J.-G.
(2017). A declarative modular framework for representing and apply-
ing ethical principles. In ITFAAMAS 2017.

[Berreby et al., 2018] Berreby, F., Bourgne, G., and Ganascia, J.-G.
(2018). Event-based and scenario-based causality for computational
ethics. In AAMAS 2018-17th International Conference on Autonomous
Agents and Multiagent Systems, pages 147-155. International Founda-
tion for Autonomous Agents and Multiagent Systems.

[Bongard et al., 2006] Bongard, J., Zykov, V., and Lipson, H. (2006).
Resilient machines through continuous self-modeling. Science,
314(5802):1118-1121.

[Bonnemains et al., 2016] Bonnemains, V., Saurel, C., and Tessier, C.
(2016). How Ethical Frameworks Answer to Ethical Dilemmas: Towards
a Formal Model. In EDIA@ ECAI 2016, pages 44-51.

[Bourgne et al., 2021] Bourgne, G., Sarmiento, C., and Ganascia, J.-G.
(2021). Ace modular framework for computational ethics: dealing with
multiple actions, concurrency and omission. In Ist International Work-
shop on Computational Machine Ethics, Online event.

[Boutilier et al., 1999] Boutilier, C., Brafman, R. I., Hoos, H. H., and
Poole, D. (1999). Reasoning with conditional ceteris paribus preference
statements. In UAI volume 99, pages 71-80.

[Bramer, 2005] Bramer, M. (2005). Logic programming with Prolog, vol-
ume 9. Springer.

[Bratko, 2001] Bratko, I. (2001). Prolog programming for artificial intelli-
gence. Pearson education.

[Bremner et al., 2019] Bremner, P., Dennis, L. A., Fisher, M., and Win-
field, A. F. (2019). On proactive, transparent, and verifiable ethical
reasoning for robots. Proceedings of the IEEFE, 107(3):541-561.

[Brewka, 2004] Brewka, G. (2004). A rank based description language for
qualitative preferences. In ECAI 2004, volume 16, page 303.

[Bringsjord et al., 2016] Bringsjord, S., Ghosh, R., and Payne-Joyce, J.
(2016). Deontic counteridenticals. Agents (EDIA), 2016:40-45.

[Bringsjord and Taylor, 2012] Bringsjord, S. and Taylor, J. (2012). Intro-
ducing divine-command robot ethics. Robot ethics: the ethical and social
implication of robotics, pages 85—108.

[Broadie and Rowe, 2002] Broadie, S. and Rowe, C. (2002). Aristotle:
Nicomachean ethics: Translation, introduction, commentary.

[Bruers and Braeckman, 2014] Bruers, S. and Braeckman, J. (2014). A re-
view and systematization of the trolley problem. Philosophia, 42(2):251—
269.

197

BIBLIOGRAPHY

[Brundage, 2014] Brundage, M. (2014). Limitations and risks of machine
ethics. JEAIL, 26(3):355-372.

[Bryant, 1986] Bryant, R. E. (1986). Graph-based algorithms for boolean
function manipulation. Computers, IEEE Transactions on, 100(8):677—
691.

[Catherine and Cohen, 2016] Catherine, R. and Cohen, W. (2016). Person-
alized recommendations using knowledge graphs: A probabilistic logic
programming approach. In Proceedings of the 10th ACM conference on
recommender systems, pages 325-332.

[Cave et al., 2018] Cave, S., Nyrup, R., Vold, K., and Weller, A. (2018).
Motivations and risks of machine ethics. Proceedings of the IEEE,
107(3):562-574.

[Cenamor et al., 2014] Cenamor, 1., De La Rosa, T., Ferndndez, F., et al.
(2014). Ibacop and ibacop2 planner. IPC 2014 planner abstracts, pages
35-38.

[Chaput et al., 2021] Chaput, R., Duval, J., Boissier, O., Guillermin, M.,
and Hassas, S. (2021). A multi-agent approach to combine reasoning and
learning for an ethical behavior. In Proceedings of the 2021 AAAI/ACM
Conference on Al, Ethics, and Society, pages 13-23.

[Charisi et al., 2017] Charisi, V., Dennis, L., Fisher, M., Lieck, R.,
Matthias, A., Slavkovik, M., Sombetzki, J., Winfield, A. F., and Yam-
polskiy, R. (2017). Towards moral autonomous systems. arXiv preprint
arXiw:1703.04741.

[Chen et al., 2004] Chen, Y., Hsu, C.-W., and Wah, B. W. (2004). Sg-
plan: Subgoal partitioning and resolution in planning. FEdelkamp et
al.(Edelkamp, Hoffmann, Littman, & Younes, 2004).

[Clark, 1978] Clark, K. L. (1978). Negation as failure. In Logic and data
bases, pages 293-322. Springer.

[Clocksin and Mellish, 2003] Clocksin, W. F. and Mellish, C. S. (2003).
Programming in PROLOG. Springer Science & Business Media.

[Cointe et al., 2016] Cointe, N., Bonnet, G., and Boissier, O. (2016). Eth-
ical judgment of agents’ behaviors in multi-agent systems. In AAMAS
2016, pages 1106-1114.

[Coles and Coles, 2011] Coles, A. and Coles, A. (2011). Lprpg-p: Relaxed
plan heuristics for planning with preferences. In ICAPS 2011.

[Constant, 2013] Constant, B. (2013). Des réactions politiques. Presses
Electroniques de France.

[Cranefield et al., 2017] Cranefield, S., Winikoff, M., Dignum, V., and
Dignum, F. (2017). No pizza for you: Value-based plan selection in
bdi agents. In IJCAI pages 178-184.

198

BIBLIOGRAPHY

[Craven and Slattery, 2001] Craven, M. and Slattery, S. (2001). Relational
learning with statistical predicate invention: Better models for hypertext.
Machine Learning, 43(1):97-119.

[Dantsin et al., 2001] Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A.
(2001). Complexity and expressive power of logic programming. ACM
Computing Surveys (CSUR), 33(3):374-425.

[De Raedt and Kimmig, 2015] De Raedt, L. and Kimmig, A. (2015). Prob-
abilistic (logic) programming concepts. Machine Learning, 100(1):5-47.

[De Raedt et al., 2007] De Raedt, L., Kimmig, A., and Toivonen, H.
(2007). Problog: A probabilistic prolog and its application in link dis-
covery. In IJCAI volume 7, pages 2462-2467. Hyderabad.

[Dennis and Fisher, 2018] Dennis, L. and Fisher, M. (2018). Practi-
cal challenges in explicit ethical machine reasoning. arXiv preprint
arXiv:1801.01422.

[Dennis et al., 2016] Dennis, L., Fisher, M., Slavkovik, M., and Webster,
M. (2016). Formal verification of ethical choices in autonomous systems.
Robotics and Autonomous Systems, 77:1-14.

[Devore, 2011] Devore, J. L. (2011). Probability and Statistics for Engi-
neering and the Sciences. Cengage learning,.

[Diana and Marescaux, 2015] Diana, M. and Marescaux, J. (2015).
Robotic surgery. Journal of British Surgery, 102(2):e15-28.

[Dimopoulos et al., 2006] Dimopoulos, Y., Gerevini, A., Haslum, P., and
Saetti, A. (2006). The benchmark domains of the deterministic part of
ipc-5. Abstract Booklet of the competing planners of ICAPS-06, pages
14-19.

[Dyoub et al., 2020] Dyoub, A., Costantini, S., Lisi, F. A., and Letteri, 1.
(2020). Logic-based machine learning for transparent ethical agents. In
CILC.

[Edelkamp and Helmert, 2001] Edelkamp, S. and Helmert, M. (2001).
Mips: The model-checking integrated planning system. Al magazine,
29(3):67-67.

[Edelkamp et al., 2006] Edelkamp, S., Jabbar, S., and Nazih, M. (2006).
Large-scale optimal pddl3 planning with mips-xxl. 5th International
Planning Competition Booklet (IPC-2006), pages 28-30.

[Edelkamp and Kissmann, 2009] Edelkamp, S. and Kissmann, P. (2009).
Optimal symbolic planning with action costs and preferences. In Twenty-
First International Joint Conference on Artificial Intelligence. Citeseer.

[Etienne, 2021] Etienne, H. (2021). The dark side of the ‘moral ma-
chine’and the fallacy of computational ethical decision-making for au-
tonomous vehicles. Law, Innovation and Technology, 13(1):85-107.

199

BIBLIOGRAPHY

[Feldmann et al., 2006] Feldmann, R., Brewka, G., and Wenzel, S. (2006).
Planning with prioritized goals. In KR, pages 503-514.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J. (1971). Strips: A
new approach to the application of theorem proving to problem solving.
AlJ, 2(3-4):189-208.

[Foot, 1967] Foot, P. (1967). The problem of abortion and the doctrine of
the double effect. Oxford review, 5.

[Fox and Long, 2003] Fox, M. and Long, D. (2003). Pddl2. 1: An extension
to pddl for expressing temporal planning domains. Journal of artificial
intelligence research, 20:61-124.

[Gamez et al., 2020] Gamez, P., Shank, D. B., Arnold, C., and North, M.
(2020). Artificial virtue: The machine question and perceptions of moral
character in artificial moral agents. Al & SOCIETY, 35(4):795-809.

[Ganascia, 2007] Ganascia, J.-G. (2007). Ethical system formalization us-
ing non-monotonic logics. In Proceedings of the Annual Meeting of the
Cognitive Science Society, volume 29.

[Ganascia, 2015] Ganascia, J.-G. (2015). Non-monotonic resolution of con-
flicts for ethical reasoning. In A Construction Manual for Robots’ Ethical
Systems, pages 101-118. Springer.

[Geffner and Haslum, 2000] Geffner, P. H. H. and Haslum, P. (2000). Ad-
missible heuristics for optimal planning. In Proceedings of the 5th Inter-
nat. Conf. of AI Planning Systems (AIPS 2000), pages 140-149.

[Geifler et al., 2015] Geifler, F., Keller, T., and Mattmiiller, R. (2015).
Delete relaxations for planning with state-dependent action costs. In
Twenty-Fourth International Joint Conference on Artificial Intelligence.

[Gerevini and Long, 2005] Gerevini, A. and Long, D. (2005). Plan con-
straints and preferences in pddl3. Technical report, Technical Report
2005-08-07, Department of Electronics for Automation

[Gerevini et al., 2009] Gerevini, A. E., Haslum, P., Long, D., Saetti, A.,
and Dimopoulos, Y. (2009). Deterministic planning in the fifth interna-
tional planning competition: Pddl3 and experimental evaluation of the
planners. AILJ, 173(5-6):619-668.

[Gert and Gert, 2020] Gert, B. and Gert, J. (2020). The Definition of
Morality. In Zalta, E. N., editor, The Stanford Encyclopedia of Philoso-
phy. Metaphysics Research Lab, Stanford University, Fall 2020 edition.

[Ghallab et al., 2004] Ghallab, M., Nau, D., and Traverso, P. (2004). Au-
tomated Planning: theory and practice. Elsevier.

[Govindarajulu and Bringsjord, 2017] Govindarajulu, N. S. and
Bringsjord, S. (2017). On automating the doctrine of double ef-
fect. arXiv preprint arXiv:1703.08922.

200

BIBLIOGRAPHY

[Gutmann, 2011] Gutmann, B. (2011). On continuous distributions and
parameter estimation in probabilistic logic programs. PhD thesis, Ph. D
thesis, KULeuven.

[Gutmann et al., 2011] Gutmann, B., Thon, I., and Raedt, L. D. (2011).
Learning the parameters of probabilistic logic programs from interpreta-
tions. In Joint Furopean Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 581-596. Springer.

[Haines, 2006] Haines, W. (2006). Consequentialism. https://www.iep.ut
m.edu/conseque/.

[Halpern, 2016] Halpern, J. Y. (2016). Actual causality. MiT Press.

[Harper, 2009] Harper, S. J. (2009). Ethics versus morality: A problematic
divide. Philosophy & social criticism, 35(9):1063-1077.

[Hart et al., 1968] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A
formal basis for the heuristic determination of minimum cost paths. IEEE
transactions on Systems Science and Cybernetics, 4(2):100-107.

[Hashmi et al., 2014] Hashmi, M., Governatori, G., and Wynn, M. T.
(2014). Modeling obligations with event-calculus. In RuleML 201/, pages
296-310. Springer.

[Hegde et al., 2020] Hegde, A., Agarwal, V., and Rao, S. (2020). Ethics,
prosperity, and society: Moral evaluation using virtue ethics and utilitar-
ianism. In 29th International Joint Conference on Artificial Intelligence
(IJCAI 2020). doi, volume 10.

[Helmert, 2003] Helmert, M. (2003). Complexity results for standard
benchmark domains in planning. Artificial Intelligence, 143(2):219-262.

[Helmert, 2006] Helmert, M. (2006). The fast downward planning system.
Journal of Artificial Intelligence Research, 26:191-246.

[Helmert et al., 2008] Helmert, M., Do, M., and Refanidis, I. (2008). IPC
2008 Website. https://ipc08.icaps-conference.org/deterministic/.

[Helmert and Domshlak, 2011] Helmert, M. and Domshlak, C. (2011). Lm-
cut: Optimal planning with the landmark-cut heuristic. Seventh in-
ternational planning competition (IPC 2011), deterministic part, pages
103-105.

[Helmert et al., 2011] Helmert, M., Roger, G., and Karpas, E. (2011). Fast
downward stone soup: A baseline for building planner portfolios. In
ICAPS 2011 Workshop on Planning and Learning, pages 28-35.

[Hoffmann, 2003] Hoffmann, J. (2003). The metric-ff planning system:
Translating “ignoring delete lists”to numeric state variables. Journal of
artificial intelligence research, 20:291-341.

201

https://www.iep.utm.edu/conseque/
https://www.iep.utm.edu/conseque/
https://ipc08.icaps-conference.org/deterministic/

BIBLIOGRAPHY

[Hoffmann and Edelkamp, 2005] Hoffmann, J. and Edelkamp, S. (2005).
The deterministic part of ipc-4: An overview. Journal of Artificial In-
telligence Research, 24:519-579.

[Honarvar and Ghasem-Aghaee, 2009] Honarvar, A. R. and Ghasem-
Aghaee, N. (2009). Casuist bdi-agent: a new extended bdi architec-
ture with the capability of ethical reasoning. In International confer-
ence on artificial intelligence and computational intelligence, pages 86—
95. Springer.

[Horn, 1951] Horn, A. (1951). On sentences which are true of direct unions
of algebrasl. The Journal of Symbolic Logic, 16(1):14-21.

[Howard and Muntean, 2017] Howard, D. and Muntean, I. (2017). Artifi-
cial moral cognition: moral functionalism and autonomous moral agency.
In Philosophy and computing, pages 121-159. Springer.

[Hsu et al., 2006] Hsu, C.-W., Wah, B. W., Huang, R., and Chen, Y.
(2006). New features in sgplan for handling preferences and constraints in
pddl3. 0. In Proceedings of the Fifth International Planning Competition,
pages 39-42. Citeseer.

[Hursthouse and Pettigrove, 2018] Hursthouse, R. and Pettigrove, G.
(2018). Virtue Ethics. In Zalta, E. N., editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, Winter
2018 edition.

[Ivankovic et al., 2014] Ivankovic, F., Haslum, P., Thiébaux, S., Shiv-
ashankar, V., and Nau, D. (2014). Optimal planning with global nu-
merical state constraints. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 24.

[Jaques, 2019] Jaques, A. E. (2019). Why the moral machine is a monster.
University of Miami School of Law, 10:1-10.

[Jedwabny et al., 2021a] Jedwabny, M., Bisquert, P., and Croitoru, M.
(2021a). Generating preferred plans with ethical features. In Bell, E.
and Keshtkar, F., editors, Proceedings of the Thirty-Fourth International
Florida Artificial Intelligence Research Society Conference, North Miamsi
Beach, Florida, USA, May 17-19, 2021.

[Jedwabny et al., 2021b] Jedwabny, M., Bisquert, P., and Croitoru, M.
(2021b). Probabilistic rule induction for transparent cbr under uncer-
tainty. In International Conference on Innovative Techniques and Appli-
cations of Artificial Intelligence, pages 117-130. Springer.

[Karpas and Domshlak, 2009] Karpas, E. and Domshlak, C. (2009). Cost-
optimal planning with landmarks. In IJCAI, pages 1728-1733. Pasadena,
CA.

202

BIBLIOGRAPHY

[Katz et al., 2018] Katz, M., Sohrabi, S., Samulowitz, H., and Sievers, S.
(2018). Delfi: Online planner selection for cost-optimal planning. IPC-9
planner abstracts, pages 57-64.

[Kautz et al., 2006] Kautz, H., Selman, B., and Hoffmann, J. (2006). Sat-
plan: Planning as satisfiability. In 5th international planning competi-
tion, volume 20, page 156.

[Kersting and Raedt, 2001] Kersting, K. and Raedt, L. D. (2001). Towards
combining inductive logic programming with bayesian networks. In In-
ternational Conference on Inductive Logic Programming, pages 118-131.
Springer.

[Keyder and Geffner, 2009] Keyder, E. and Geffner, H. (2009). Soft goals
can be compiled away. Journal of Artificial Intelligence Research, 36:547—
556.

[Kimmig et al., 2011] Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S.,
and Rocha, R. (2011). On the implementation of the probabilistic logic
programming language problog. Theory and Practice of Logic Program-
ming, 11(2-3):235-262.

[Kowalski and Kuehner, 1971] Kowalski, R. and Kuehner, D. (1971). Lin-
ear resolution with selection function. Artificial Intelligence, 2(3-4):227—
260.

[Lesniak, 2012] Lesniak, K. (2012). Invariant sets and knaster-tarski prin-
ciple. Open Mathematics, 10(6):2077—2087.

[Levinson et al., 2011] Levinson, J., Askeland, J., Becker, J., Dolson, J.,
Held, D., Kammel, S., Kolter, J. Z., Langer, D., Pink, O., Pratt, V., et al.
(2011). Towards fully autonomous driving: Systems and algorithms. In
2011 IEEE intelligent vehicles symposium (IV), pages 163-168. IEEE.

[Lifschitz, 1999] Lifschitz, V. (1999). Answer set planning. In International
Conference on Logic Programming and Nonmonotonic Reasoning, pages
373-374. Springer.

[Lindner and Bentzen, 2017] Lindner, F. and Bentzen, M. M. (2017). The
hybrid ethical reasoning agent immanuel. In Proceedings of the Compan-
ion of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction, pages 187—188.

[Lindner et al., 2017] Lindner, F., Bentzen, M. M., and Nebel, B. (2017).
The HERA approach to morally competent robots. In TROS 2017, pages
6991-6997. IEEE.

[Lindner et al., 2019] Lindner, F., Mattmiiller, R., and Nebel, B. (2019).
Moral permissibility of action plans. In AAAI 2019, volume 33, pages
7635—7642.

203

BIBLIOGRAPHY

[Ling, 1990] Ling, T. W. (1990). The prolog not-predicate and negation as
failure rule. New Generation Computing, 8(1):5-31.

[Lloyd, 1994] Lloyd, J. W. (1994). Practical advtanages of declarative pro-
gramming. In GULP-PRODE (1), pages 18-30.

[Lopez et al., 2015] Lépez, C. L., Celorrio, S. J., and Olaya, A G. (2015).
The deterministic part of the seventh international planning competition.
Artificial Intelligence, 223:82-119.

[Loreggia et al., 2018] Loreggia, A., Mattei, N., Rossi, F., and Venable,
K. B. (2018). Preferences and ethical principles in decision making. In
Proceedings of the 2018 AAAI/ACM Conference on Al, Ethics, and So-
ciety, pages 222-222.

[Malle and Scheutz, 2019] Malle, B. F. and Scheutz, M. (2019). Learning
how to behave. In Handbuch maschinenethik, pages 255—-278. Springer.

[Malle et al., 2017] Malle, B. F., Scheutz, M., and Austerweil, J. L. (2017).
Networks of social and moral norms in human and robot agents. In A
world with robots, pages 3-17. Springer.

[Marin and Sartor, 1999] Marin, R. H. and Sartor, G. (1999). Time and
norms: a formalisation in the event-calculus. In ICAIL 1999, pages 90—
99.

[McDermott and Doyle, 1980] McDermott, D. and Doyle, J. (1980). Non-
monotonic logic i. Artificial intelligence, 13(1-2):41-72.

[McIntyre, 2019] Mclntyre, A. (2019). Doctrine of Double Effect. In Zalta,
E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, Spring 2019 edition.

[McLaren, 2003] McLaren, B. M. (2003). Extensionally defining principles
and cases in ethics: An ai model. Artificial Intelligence, 150(1-2):145—
181.

[Menkes Van Den Briel et al., 2004] Menkes Van Den Briel, R. S., Do,
M. B., and Kambhampati, S. (2004). Effective approaches for partial
satisfaction (over-subscription) planning. In Proceedings of the National
Conference on Artificial Intelligence, pages 562-569.

[Mill and Bentham, 1987] Mill, J. S. and Bentham, J. (1987). Utilitarian-
ism and other essays. Penguin UK.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine learning, volume 1.
McGraw-hill New York.

[Mohri et al., 2018] Mohri, M., Rostamizadeh, A., and Talwalkar, A.
(2018). Foundations of machine learning. MIT press.

[Moor, 2011] Moor, J. H. (2011). The nature, importance, and difficulty of
machine ethics. Machine ethics, pages 13-20.

204

BIBLIOGRAPHY

[Muggleton, 1991] Muggleton, S. (1991). Inductive logic programming.
New generation computing, 8(4):295-318.

[Naish, 1986] Naish, L. (1986). Negation and control in Prolog, volume 238.
Springer Science & Business Media.

[Nilsson, 1984] Nilsson, N. (1984). Shakey the robot. Technical report, SRI
International Technical Note 323.

[Noothigattu et al., 2018] Noothigattu, R., Gaikwad, S., Awad, E.,
Dsouza, S., Rahwan, I., Ravikumar, P., and Procaccia, A. (2018). A
voting-based system for ethical decision making. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.

[Panagiotidi and Vézquez-Salceda, 2011] Panagiotidi, S. and Vdazquez-
Salceda, J. (2011). Towards practical normative agents: a framework
and an implementation for norm-aware planning. In COIN 2011, pages
93-109. Springer.

[Papadimitriou, 2003] Papadimitriou, C. (2003). Computational Complez-
ity, page 260-265. John Wiley and Sons Ltd.

[Poole, 1993] Poole, D. (1993). Logic programming, abduction and proba-
bility. New Generation Computing, 11(3):377-400.

[Poole, 1997] Poole, D. (1997). The independent choice logic for modelling
multiple agents under uncertainty. Artificial intelligence, 94(1-2):7-56.

[Puterman, 1990] Puterman, M. L. (1990). Markov decision processes.
Handbooks in operations research and management science, 2:331-434.

[Quinn, 2013] Quinn, P. L. (2013). Divine command theory. The Blackwell
guide to ethical theory, pages 81-102.

[Rao et al., 1995] Rao, A. S., Georgeff, M. P.; et al. (1995). Bdi agents:
from theory to practice. In Icmas, volume 95, pages 312-319.

[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016).
Why should i trust you? explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135-1144.

[Richardson and Domingos, 2006] Richardson, M. and Domingos, P.
(2006). Markov logic networks. Machine learning, 62(1):107-136.

[Richter et al., 2011] Richter, S., Westphal, M., and Helmert, M. (2011).
Lama 2008 and 2011. In International Planning Competition, pages 117—
124.

[Riguzzi and Swift, 2018] Riguzzi, F. and Swift, T. (2018). A survey of
probabilistic logic programming. In Declarative Logic Programming:
Theory, Systems, and Applications, pages 185-228.

205

BIBLIOGRAPHY

[Robinson, 1965] Robinson, J. A. (1965). A machine-oriented logic based
on the resolution principle. Journal of the ACM (JACM), 12(1):23-41.

[Rodriguez-Soto et al., 2021] Rodriguez-Soto, M., Lopez-Sanchez, M., and
Rodriguez-Aguilar, J. A. (2021). Multi-objective reinforcement learning
for designing ethical environments. In IJCAI, pages 545-551.

[Ross and Ross, 2002] Ross, D. and Ross, W. D. (2002). The right and the
good. Oxford University Press.

[Ross, 1930] Ross, W. (1930). The Right and the Good. Oxford University

Press.

[Russell, 2010] Russell, S. J. (2010). Artificial intelligence a modern ap-
proach. Pearson Education, Inc.

[Sacerdoti, 1974] Sacerdoti, E. D. (1974). Planning in a hierarchy of ab-
straction spaces. Artificial intelligence, 5(2):115-135.

[Sato, 1995] Sato, T. (1995). A statistical learning method for logic pro-
grams with distribution semantics. In ICLP.

[Sato and Kameya, 1997] Sato, T. and Kameya, Y. (1997). Prism: a lan-
guage for symbolic-statistical modeling. In IJCAI volume 97, pages
1330-1339. Citeseer.

[Sato and Kameya, 2001] Sato, T. and Kameya, Y. (2001). Parameter
learning of logic programs for symbolic-statistical modeling. Journal of
Artificial Intelligence Research, 15:391-454.

[Sayre-McCord, 2013] Sayre-McCord, G. (2013). Contractarianism. The
Blackwell Guide to Ethical Theory, pages 332-353.

[Seipp and Roger, 2018] Seipp, J. and Roger, G. (2018). Fast downward
stone soup 2018. IPC2018-Classical Tracks, pages 72-74.

[Sergot, 2004] Sergot, M. (2004). An action language for modelling norms
and institutions. Technical Report 2004/8. Publisher: Imperial College
London.

[Shahriari and Shahriari, 2017] Shahriari, K. and Shahriari, M. (2017).
Ieee standard review — ethically aligned design: A vision for prioritizing
human wellbeing with artificial intelligence and autonomous systems. In
IEEE, pages 197-201.

[Shanahan, 1999] Shanahan, M. (1999). The event calculus explained. In
Artificial intelligence today, pages 409-430. Springer.

[Shanahan, 2016] Shanahan, M. (2016). The Frame Problem. In Zalta,
E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, Spring 2016 edition.

206

BIBLIOGRAPHY

[Sinnott-Armstrong, 2021] Sinnott-Armstrong, W. (2021). Consequential-
ism. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, Fall 2021 edition.

[Tarnlund, 1977] Téarnlund, S.-A. (1977). Horn clause computability. BIT
Numerical Mathematics, 17(2):215-226.

[Tetlock et al., 2000] Tetlock, P. E., Kristel, O. V., Elson, S. B., Green,
M. C., and Lerner, J. S. (2000). The psychology of the unthinkable: taboo
trade-offs, forbidden base rates, and heretical counterfactuals. Journal
of personality and social psychology, 78(5):853.

[Thornton et al., 2016] Thornton, S. M., Pan, S., Erlien, S. M., and Gerdes,
J. C. (2016). Incorporating ethical considerations into automated vehi-
cle control. IEEE Transactions on Intelligent Transportation Systems,
18(6):1429-1439.

[Tolmeijer et al., 2020] Tolmeijer, S., Kneer, M., Sarasua, C., Christen, M.,
and Bernstein, A. (2020). Implementations in machine ethics: a survey.
ACM Computing Surveys (CSUR), 53(6):1-38.

[Torralba et al., 2014] Torralba, A., Alcdzar, V., Borrajo, D., Kissmann,
P., and Edelkamp, S. (2014). Symba*: A symbolic bidirectional a* plan-
ner. In International Planning Competition, pages 105-108.

[Torralba and Pommerening, 2018] Torralba, A. and Pommerening, F.
(2018). TPC 2018 Website. https://ipc2018-classical.bitbucket.io/.

[Vallati et al., 2018] Vallati, M., Chrpa, L., and Mccluskey, T. L. (2018).
What you always wanted to know about the deterministic part of the
international planning competition (ipc) 2014 (but were too afraid to
ask). The Knowledge Engineering Review, 33.

[Van den Broeck et al., 2010] Van den Broeck, G., Thon, 1., Van Otterlo,
M., and De Raedt, L. (2010). Dtproblog: A decision-theoretic prob-
abilistic prolog. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 24.

[Van Emden and Kowalski, 1976] Van Emden, M. H. and Kowalski, R. A.
(1976). The semantics of predicate logic as a programming language.
Journal of the ACM (JACM), 23(4):733-742.

[Vanderelst and Winfield, 2018] Vanderelst, D. and Winfield, A. (2018).
An architecture for ethical robots inspired by the simulation theory of
cognition. Cognitive Systems Research, 48:56—66.

[Vaughan and Zuluaga, 2006] Vaughan, R. and Zuluaga, M. (2006). Use
your illusion: Sensorimotor self-simulation allows complex agents to plan
with incomplete self-knowledge. In International Conference on Simula-
tion of Adaptive Behavior, pages 298-309. Springer.

207

https://ipc2018-classical.bitbucket.io/

BIBLIOGRAPHY

[Von Wright, 1951] Von Wright, G. H. (1951). Deontic logic. ~Mind,
60(237):1-15.

[Von Wright, 1968] Von Wright, G. H. (1968). An essay in deontic logic
and the general theory of action. Amsterdam: North-Holland Pub. Co.

[Wallach and Allen, 2008] Wallach, W. and Allen, C. (2008). Moral ma-
chines: Teaching robots right from wrong. Oxford University Press.

[Winfield et al., 2014] Winfield, A. F., Blum, C., and Liu, W. (2014). To-
wards an ethical robot: internal models, consequences and ethical action
selection. In Conference towards autonomous robotic systems, pages 85—
96. Springer.

[Wolfram, 1984] Wolfram, S. (1984). Cellular automata as models of com-
plexity. Nature, 311(5985):419-424.

[Wu and Lin, 2018] Wu, Y.-H. and Lin, S.-D. (2018). A low-cost ethics
shaping approach for designing reinforcement learning agents. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 32.

[Xu et al., 2019] Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., and
Zhu, J. (2019). Explainable ai: A brief survey on history, research areas,
approaches and challenges. In CCF international conference on natural
language processing and Chinese computing, pages 563-574. Springer.

[Yu et al., 2018] Yu, H., Shen, Z., Miao, C., Leung, C., Lesser, V. R., and
Yang, Q. (2018). Building ethics into artificial intelligence. arXiv preprint
arXiv:1812.02955.

208

	1 Introduction
	1.1 Machine ethics and dilemmas
	1.2 Research problem
	1.3 Research question and contributions
	1.3.1 Contribution 1: Modeling and combining ethical principles through preferences
	1.3.2 Contribution 2: Computing ethically optimal plans
	1.3.3 Contribution 3: Eliciting ethical preferences

	1.4 Thesis Structure

	2 Background notions
	2.1 Logic programming
	2.1.1 First-order logic programming
	2.1.2 Probabilistic logic programming
	2.1.3 Parameter learning from evidence

	2.2 Planning
	2.2.1 History and context
	2.2.2 Classical planning
	2.2.3 Planning with utilities
	2.2.4 Computation
	2.2.5 Implementations

	3 Machine ethics
	3.1 History and context
	3.2 Taxonomies
	3.3 Sources of codes of conduct
	3.3.1 Consequentialist ethics
	3.3.2 Deontological ethics
	3.3.3 Virtue ethics
	3.3.4 Prima facie duties
	3.3.5 Doctrine of double effect
	3.3.6 Other theories

	3.4 Implementations
	3.4.1 Top-down ethical systems
	3.4.2 Bottom-up ethical systems
	3.4.3 Hybrid ethical systems

	4 Representing ethical preferences in classical planning
	4.1 Representing ethical features
	4.2 Representing ethical planning problems
	4.3 Modeling ethical theories
	4.3.1 Consequentialist ethics
	4.3.2 Deontological ethics
	4.3.3 Virtue ethics
	4.3.4 Prima facie duties
	4.3.5 Doctrine of double effect
	4.3.6 Do-no-harm principle

	4.4 Related work
	4.5 Discussion

	5 Planning with ethical preferences
	5.1 Translating ethical preferences to utilities
	5.2 Implementation of our framework
	5.2.1 PDDL code extension
	5.2.2 PDDL code translation routine

	5.3 Experimentation
	5.4 Related work
	5.5 Discussion

	6 Inferring ethical preferences
	6.1 Method overview
	6.2 Problem encoding
	6.2.1 Domain encoding Ps
	6.2.2 Theory encoding Pt
	6.2.3 Dataset encoding Is
	6.2.4 Parameter learning encoding

	6.3 Example: a case study
	6.4 Experimentation
	6.5 Related work
	6.6 Discussion

	7 Conclusion
	7.1 Research questions
	7.2 Scope and impact
	7.3 Perspectives and future work

	A Appendix: Computational complexity
	B Appendix: PDDL code
	B.1 Autonomous driver example original PDDL code
	B.1.1 Domain file
	B.1.2 Problem file

	B.2 Autonomous driver example PDDL code with ethical constructs
	B.2.1 Domain file
	B.2.2 Problem file

	B.3 Autonomous driver example translated PDDL code with soft goals
	B.3.1 Domain file
	B.3.2 Problem file

	B.4 Autonomous driver example translated PDDL code with action costs
	B.4.1 Domain file
	B.4.2 Problem file

	C Appendix: Ethical rank learning implementation
	C.1 Logic language
	C.2 Parameter learning code
	C.2.1 Domain encoding Ps
	C.2.2 Theory encoding Pt

	C.3 Example full code
	C.3.1 Domain encoding Ps
	C.3.2 Interpretations Is

	Bibliography

