
HAL Id: tel-03921970
https://hal.science/tel-03921970

Submitted on 4 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal methods applied to access control policy design,
verification and enforcement

Clara Bertolissi

To cite this version:
Clara Bertolissi. Formal methods applied to access control policy design, verification and enforcement.
Cryptography and Security [cs.CR]. Aix-Marseile Université, France, 2022. �tel-03921970�

https://hal.science/tel-03921970
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER DES RECHERCHES
DE

L’UNIVERSITÉ AIX-MARSEILLE

MÉMOIRE

en vue de l’obtention d’une

HABILITATION À DIRIGER DES RECHERCHES

Spécialité : Informatique

présentée par

Clara BERTOLISSI

Formal methods applied to access control policy design,
verification and enforcement

Soutenue le 25 11 2022 devant le jury composé de :

M. Alessandro ARMANDO Universitá di Genova Rapporteur
Mme Olga KOUCHNARENKO Institut FEMTO-ST Rapporteuse
Mme Maribel FERNANDEZ King’s College London Examinatrice
Mme Alessia MILANI Université Aix-Marseille Examinatrice
M. Benjamin NGUYEN INSA Centre Val de Loire Rapporteur
M. Jean-Marc TALBOT Université Aix-Marseille Examinateur

i

Résumé

L’évolution des systèmes d’information classiques a introduit des nouvelles technologies et des

nouveaux services pour la gestion et le partage d’informations. Avec la diffusion d’Internet, il

est désormais possible de partager facilement de grandes quantités d’informations électroniques

et de ressources informatiques dans des environnements distribués ouverts. Ces environnements

servent de plateforme commune pour des utilisateurs hétérogènes (par exemple, les entreprises,

les particuliers, etc.) en hébergeant des services, des applications utilisateur et des données.

Cette évolution a introduit des nouvelles menaces pour la sécurité de l’information et des

nouveaux défis pour la modélisation du contrôle d’accès. Afin de relever ces défis, de nombreux

travaux de recherche étudient l’extension des modèles traditionnels de contrôle d’accès vers des

modèles conçus pour gérer l’accès aux données et la définition des privilèges dans les systèmes

distribués et dynamiques.

Dans ce manuscrit, nous contribuons à cette ligne de recherche en introduisant un formalisme

pour la spécification de politiques de contrôle d’accès interopérables et développées de manière

autonome dans différents domaines administratifs. La formalisation à base de règles que nous

proposons permet l’analyse et la validation des politiques par la vérification des propriétés

telles que la consistance et l’efficacité, ainsi que la simulation de scénarios d’exécution. Nous

avons également étudié le contrôle d’accès dans le contexte des systèmes avec une prise de

décision collaborative. Nous proposons notamment une solution pour le contrôle d’accès dans

les services web cooperatifs avec des dépendances transitives, ainsi que dans les processus de

fusion de données.

Enfin, nous considérons les politiques d’autorisation et les contraintes liées aux systèmes de

gestion de flux de travail (workflows) et leurs applications. Nous proposons une méthodologie

pour surveiller un workflow et sa politique de contrôle d’accès associée, afin d’en assurer la

terminaison en respectant toutes les contraintes de sécurité ou, si ce n’est pas possible, une

exécution avec une violation minimale de ces contraintes.

ii

Abstract

The evolution of classical information systems has introduced new technologies and services for

information managing and sharing. With the spread of the Internet, it is now possible to easily

share vast amounts of electronic information and computer resources in open distributed envi-

ronments. These environments serve as a common platform for heterogeneous users by hosting

services, user applications and data. This evolution has opened new threats to information

security and new challenges to access control modeling. In order to meet these challenges,

many research works went towards extending traditional access control models towards mod-

els tailored for managing data access and privilege definition within distributed and dynamic

systems.

In this manuscript, we contribute to this line of research by introducing a modular framework

for the specification of interoperable access control policies developed autonomously in different

administrative domains. The rule-based formalisation we propose allows for policy analysis and

validation by verification of policy properties and simulation of execution scenarios. We have

also investigated access control in the context of collaborative decision making systems. In par-

ticular, we propose a solution for controlling access in cooperating web services with transitive

dependencies, as well as in data fusion processes. Finally, we consider authorization policies

and constraints related to workflow management systems and workflow-driven applications.

We propose a methodology to monitor a workflow and its associated access control policy in

order to ensure a successful termination of the workflow or, if not possible, an execution with

a minimal violation of the authorization constraints.

iii

iv

Contents

Résumé i

Abstract iii

1 Introduction 1

2 Preliminary notions 6

2.1 Access control : definition and historical background 6

2.2 Towards new models of access control . 9

2.2.1 Open distributed environments . 9

2.2.2 Collaborating component systems . 11

2.2.3 Business Processes . 13

2.3 Rule-based policy specification and analysis . 14

3 A unified access control meta-model for distributed environments 19

3.1 Synthesis of our approach . 20

3.2 The CBAC meta-model . 24

3.3 Distributed CBAC . 27

v

vi CONTENTS

3.3.1 The CBAC distributed semantics . 29

3.3.2 Policy combining operators . 31

3.4 Rewriting-based analysis of CBAC policies . 33

3.4.1 Policy administration analysis by narrowing 41

3.5 Related work . 43

4 Controlling access in collaborating component systems 47

4.1 Service Oriented Architecture dependencies . 48

4.1.1 Synthesis of our approach . 50

4.1.2 Proposed model . 54

4.1.3 Related Work . 61

4.2 Data Fusion processes . 63

4.2.1 Synthesis of our approach . 64

4.2.2 Proposed model . 66

4.2.3 Related Work . 76

5 Access monitoring in Business Processes 79

5.1 Synthesis of our approach . 80

5.2 Workflow Satisfiability Problem . 81

5.3 Monitoring security-sensitive workflows . 83

5.3.1 Off-line phase . 84

5.3.2 On-line phase . 90

5.4 Weighted Workflow Satisfiability Problem . 95

5.5 Related work . 98

6 Conclusion 102

6.1 Summary and perspectives . 102

6.2 Discussion and future challenges . 106

Bibliography 108

vii

viii

List of Tables

3.1 Rewrite Specification of the Distributed Metamodel: Generic Functions, Specific

Functions, and Combination Rules . 30

4.1 Main predicates in the D-OrBAC model . 54

4.2 Casual dependencies in the provenance graph 68

5.1 Workflow as symbolic transition system . 85

5.2 A run of the monitor program Mn=3 for the security-sensitive workflow in Figure 5.1 94

ix

x

List of Figures

4.1 Access control with a mediation service . 51

4.2 Research center travel authorization management schema 52

4.3 Research center travel authorization transitive calls schema 53

4.4 Delegation graph for the research center . 56

4.5 XACML Architecture with Delegation Graph Handling 60

4.6 Data flow representing the generation of riot reports 64

4.7 Provenance graph corresponding to the motivating example 68

4.8 Architecture of the provenance-based access control mechanism 75

5.1 Workflow in extended BPM notation . 83

5.2 Workflow as an extended Petri net . 84

5.3 Graph-like representation of the set of reachable states for the workflow in Fig-

ure 5.1 . 88

5.4 TRW in BPMN with associated authorization policy TA 95

xi

xii

Chapter 1

Introduction

The challenges of access control and management in traditional information systems have been

resolved through the proposal of several access control models such as Discretionary Access

Control (DAC), Mandatory Access Control (MAC), Role-Based Access Control (RBAC). But

in nowadays society, technological evolution brings new challenges for governing access within

dynamic contexts. The growing complexity of our socio-economic environment produces large

systems, most often dynamic, distributed, large scale and sometimes composed of other systems.

The complexity of interoperable, inter-connected systems lies in the managerial and operational

independence of their components, in their geographical distribution, and in their evolutionary

development.

In [GQ96] two principles were put forward for integrating access control specifications of sep-

arate administrative domains: autonomy - i.e. if an access is permitted within an individual

system, it must also be permitted in the federated system; and security - if an access is not

permitted within an individual system, it must not be permitted in the federated system. Given

the scale and complexity of today distributed systems, satisfying both autonomy and security

is a daunting task requiring to develop

(i) a modular framework for the abstract specification of interoperable access control policies

developed autonomously in different administrative domains,

1

2 Chapter 1. Introduction

(ii) an automated and efficient analysis technique for the validation of access control policies

in various execution scenarios, and

(iii) a sound methodology to enforce access control policies based on standard modules that

can be easily re-used or integrated into existing solutions.

Requirement (i) refers to the expressiveness of the framework which should permit the specifica-

tion of authorization conditions based on attributes of subjects and resources - beyond identity

and role - and on context information such as time and location. Additionally, it is crucial

to provide specification constructs capable of associating access control policies with each co-

operating system as well as supporting their combination with mechanisms guaranteeing the

satisfaction of the principles of autonomy and security.

Testing distributed systems is well-known to be computationally expensive [Gar97]. This ob-

servation justifies requirement (ii) above which, when combined with (i), poses the challenge

of finding the best trade off between expressiveness – i.e. the framework should permit the

specification of the largest set of policies of practical interest – and amenability to analysis –

i.e. the framework should support efficient techniques for the validation of policies so to help

policy designers to gain confidence in their correctness already at design time. Depending on

the context, formal verification uses a wide variety of models and techniques, such as automata,

rewriting systems, type systems, abstract interpretation, constraints, process calculi, to cite a

few. Following the formal methods approach, systems are analyzed from a semantic point

of view (system behavior, properties to ensure, model of the attacker) and guarantees to be

provided are identified.

Moreover, with formal techniques, there is no need to implement a prototype to experiment

with the system behavior, which may be quite difficult in the case of composed systems. The

simulation of an abstract specification of the system does not require the availability of the

environment in which the system will be deployed, it is enough to model those aspects which

are relevant to taking security access decisions and then invoke the available analysis procedure.

Indeed, an approach satisfying requirements (i) and (ii) is only a preliminary step in the direc-

3

tion of building secure systems. In fact, as stipulated by requirement (iii), run-time techniques

for enforcing access policies are essential for the secure deployment of systems and have been

receiving considerable attention from the research community; see, e.g., [BBG06]. Ideally, it

should be possible to refine the abstract and validated specification of the access control policies

into policies that can be readily enforced by an access control mechanism developed on top of

available and well-engineered modules which can be easily combined together.

In this manuscript, I present some contributions that address the three requirements identified

above in different contexts, namely open distributed environments, collaborating systems and

business processes. The manuscript is organised as follows:

Chapter 2 presents the preliminary notions on access control policies and models, as well as

on term rewriting and its application to security policy specification and analysis.

Chapter 3 introduces a rewrite-based unifying framework based on the notion of category

called CBAC. Several access control models can be understood in category-based terms, e.g.

variants of RBAC, including hierarchical, time and location aspects, as well as lattice-based

models. We propose a distributed version of CBAC for modelling (and enforcing) global access

control policies that take into account the local policies specified and maintained by each

component of a distributed system. In particular we ensure the coherence of a global access

control decision w.r.t. local access control requirements by specifying in a tunable way how to

integrate access authorisations resulting from the local policies. The declarative approach we

adopt permits properties of access control policies to be proved in a modular way. We show

how consistency and totality properties of access control policies can be derived from standard

properties of the rewrite framework we use and how narrowing techniques can be used to help

administrators debugging their policies.

Chapter 4 considers access control in the context of cooperative systems. In this setting,

data coming from multiple autonomous sources is processed into new pieces of information

that can be further processed by other entities participating in the cooperation. Controlling

4 Chapter 1. Introduction

the access to such evolving and variegated data, often under the authority of different entities, is

challenging. We present two solutions in the context of web services and data fusion processes.

Web services are a form of distributed cooperating system architecture and seem to become the

preferred implementation technology for realising the integration and interaction between var-

ious systems in the Internet. In this context, a particularly difficult case occurs when a service

invokes another service to satisfy an initial request, leading to indirect authorization errors. To

overcome this problem, we propose a new approach based on a version of ORganization Based

Access Control (OrBAC) extended by a delegation graph to keep track of transitive authoriza-

tion dependencies. We give an axiomatisation of our model and, following the original OrBAC

specification, we choose Datalog as specification language. As a byproduct of choosing Datalog,

our framework supports the automated analysis of execution scenarios through the invocation

of available Datalog engines. We also show how to implement an enforcement mechanism for

our model by extending the standard XACML architecture.

In multi-source cooperative systems, methods for collaborative decision making while ensuring

an appropriate level of control to the different parties involved are needed. In our work, we

identify a set of access control requirements and propose an attribute-based access control model

where provenance information is used to specify access constraints that account for both the

evolution of data objects and the process of data fusion. We also demonstrate the feasibility of

the proposed model by showing how it can be implemented in existing XACML-based access

control frameworks by adding an external module for dealing with Provenance information.

Chapter 5 is dedicated to the security properties of business processes and in particular

to workflow management systems and workflow-driven applications, which need to mediate

access to their resources by enforcing authorization policies and constraints, such as Separation

of Duty. We propose a new methodology to build run-time monitors capable of ensuring

the successful termination of workflows subject to authorization constraints, i.e. capable of

answering user requests to execute tasks in a workflow, in such a way that the policy is not

violated and the workflow instance is guaranteed to terminate. The methodology is based

5

on state-of-the-art Satisfiability Modulo Theories techniques and composed of an off-line pre-

computation phase to generate a reachability graph representing all the possible terminating

executions, and an on-line phase, refining the set of solutions keeping into account the actual

security constraints. An extensive experimental evaluation with an implementation of the

technique shows the scalability of the proposed approach. Among the existing related problems,

such as finding execution scenarios that not only satisfy the workflow but also satisfy other

properties (e.g., that a workflow instance is still satisfiable even in the absence of users), we

have solved the problem of finding the set of solutions minimizing a suitably defined notion of

cost/risk of violating a constraint, when no completely secure executions exists (i.e. executions

satisfying all security constraints).

Chapter6 concludes with a summary of the presented work and the related perspectives. A

discussion on future research directions is also developed.

This manuscript presents some research I have done since the defense of my PhD thesis during

my visiting periods in King’s College London and in FBK Trento and as Mâıtre de Conférences

in Aix-Marseille University, with several co-authors. I refer to the corresponding published

articles in each chapter. Several recent works are not included in this manuscript, namely the

work presenting an administration model for access control policies [BFT20], the definition of a

graph-based language providing a graphical representation of policies [BFT21], and a framework

for modular composition of (administrative) access control policies [BF22].

Chapter 2

Preliminary notions

2.1 Access control : definition and historical background

The access control objective is to control computational resources and digital information to pre-

vent unauthorized disclosure (confidentiality) and improper malicious modifications (integrity),

while ensuring access for authorized entities (availability).

A first step in the development of an access control model is the identification of the objects

o to be protected, the subjects s that execute activities and request access to objects, and the

actions a that can be executed on the objects, and that must be controlled. An authorization

can then be represented as a triple (s, o, a), indicating that authorization subject s can execute

action a over authorization object o.

The implementation of access control is based on three main concepts corresponding to a

conceptual separation between different levels of abstraction [DFJS07, SdV01]

Access control policies define the rules according to which access control must be regulated.

In general, access control policies are dynamic in nature as they have to reflect evolving busi-

ness factors, government regulations, and environmental conditions. Policies are high-level

requirements that specify how access is managed and who may access information under what

circumstances. The definition of access control policies (and their corresponding models) is far

6

2.1. Access control : definition and historical background 7

from being a trivial process. One of the major difficulties lies in the interpretation and appli-

cation of different real world security rules (often complex and sometimes ambiguous) coming,

for example, from practices and organizational regulations. A security policy must capture all

the different rules to be enforced and translate them in well defined and unambiguous rules

enforceable by a computer system.

Access control models provide formal representation of access control security policies. The

formalization allows the proof of the security properties that are provided by the designed

access control system. We will give more details more specifically on rule-based access control

models in Section 2.3.

Access control mechanisms usually come at the low abstraction level where they enforce these

high-level access control policies and translate a user’s access request in terms of a specific

structure that the system provides. Access control models are essential for bridging the ab-

straction gap between access policies and mechanisms. In particular, the separation between

policies and mechanisms introduces an independence between protection requirements to be

enforced and mechanisms enforcing them. This helps discussing protection requirements inde-

pendently of their implementation and allows one to compare different access control policies

as well as different mechanisms that enforce the same policy. Indeed, if a mechanism is tied to

a specific policy, a change in the policy would require changing the whole access control system;

mechanisms able to enforce multiple policies avoid this drawback. The implementation of a

correct mechanism is far from being trivial: mapping access control primitives to a computer

system is a complex task and moreover possible security weaknesses may be due to the imple-

mentation itself. The access control mechanism must work as a reference monitor, that is, a

trusted component intercepting each and every request to the system.

The terminology ”access control” has its origins in the transportation literature of the first half

of the twentieth century [Pre47]. The first form of limited-access roads, also referred to as

”controlled access” highways, such as the Bronx River Parkway, dates back to 1907. By forcing

cars to enter and exit via one-way ramps, controlled access highways reduce the probability of

cross-traffic accidents. The 60s saw access control primarily as a mechanism to ensure availabil-

8 Chapter 2. Preliminary notions

ity of the system. As the multi-user computer systems progressed, confidentiality and integrity

quickly became important, particularly in computer systems within the military and intelligence

services. We see the introduction at that time of the new notion of ”authorization”: the system

restricted access to users who were authorized, meaning that individuals could be sanctioned by

the organization in case of illegal access. The literature of the 1970s reflects an increasing inter-

est in computer security. Government agencies wanted assurances that sensitive data would be

protected from compromise during computation. Early papers of this period use ”protection”

and ”access control” interchangeably. Lampson’s work of 1971, ”Protection” [Lam71], defines

protection as: ”a general term for all the mechanisms that control the access of a program to

other things in the system”, including for instance a supervisor/user mode and access control

by user to file directories. Among the first and most famous access-control models from this

period, there is Mandatory Access Control, or MAC. A multi-level security version of MAC was

described in the Department of Defense Trusted Computer System Evaluation Criteria [oD85].

In MAC systems there is a central policy administrator who defines whether a user is allowed to

access a particular object. The user must first identify her/hisself to the system via authenti-

cation. The access request is mediated by a reference monitor, which queries the authorization

policy defined by the administrator to determine whether the access should be allowed. An

alternative model to MAC, not assuming that the access-control policy is managed by a central

authority, is Discretionary Access Control (or DAC). As Jordan summarized in 1987 [Jor87],

DAC is ”discretionary in the sense that a subject with a certain access permission is capable of

passing that permission (perhaps indirectly) on to any other subject”. After the introduction of

MAC and DAC, the predominant access control Model, introduced in the literature by Sandhu

in 1996, is Role-Based Access Control (RBAC) [SCFY96, FSG+01]. This approach aims to

reduce the overhead necessary for managing permissions for large numbers of users by first

assigning users to one or more roles, and then assigning permissions to those roles (rather than

individual users). At the beginning of the 2000s, the National Institute of Standards and Tech-

nology (NIST) commissioned a study of RBAC and its economic impact [OL10], which found

that it is ”arguably the most important innovation in identity and access management since dis-

cretionary and mandatory access control”. From there, the literature describing extensions to

2.2. Towards new models of access control 9

the basic RBAC model is extensive. Some examples include efforts to model the introduction of

obligations [PS04], and the delegation of privileges [WKB07, ZOS03] as well as the introduction

of the notion of temporal [JBLG05] or geographic [BCDP05] constraints in RBAC policies. Sev-

eral other models, such as task-based access control [TS97], organisation-based access control

[KBB+03], risk-based access control [McG09, dSMS+16], event-based access control [BFB07] or

provenance-based access control [PNS12] have been proposed in the last twenty years, resulting

in a variety of models tailored to the specific needs of particular systems and their applications.

More recently, some research efforts have also been done in defining a comprehensive unifying

framework where different models can be accommodated (see more about his in Chapter 3).

2.2 Towards new models of access control

Traditional access control solutions do not respond adequately to new challenges addressed by

modern computer systems. Today highly-distributed, network-connected, heterogeneous and

open computing environments require fine-grained and flexible models for protecting the access

and usage of digital resources. We describe in this section three settings that we have considered

in our research work.

2.2.1 Open distributed environments

With the development of the Internet, the fundamentals of access control need to be rethought.

Whereas traditional access control systems were based on the identity of the party requesting

a resource, in open environments this approach cannot be applied because often the requestor

and the resource belong to different domains which do not know each other. Therefore, a more

appropriate approach consist of using properties (attributes) of the requestor and of the resource

as a basis for access decision. In the last years, Attribute-based access control [JKS12b, YT05,

HKF15] has been developed and differs from the traditional discretionary access control model

by replacing the subject by a set of attributes and objects by properties associated with them.

10 Chapter 2. Preliminary notions

The use of attributes in access-control policies in the Internet environment is exemplified by

XML-based access control languages, such as WS-Policy [D.03] and the extensible Access Con-

trol Markup Language (XACML) [OAS13]. An important advantage of XML-based access

control languages is the interoperability, that consists in the possibility of exchanging policies

through different systems or services using the same access control language. As reported in

[DDS05], this feature is particularly interesting in an open environment like the Internet, where

a single system, which has to be protected as a single entity, may be distributed over the Net.

Initially, XML-based access control languages were thought only for the protection of resources

that were themselves XML files [DDCdVPS02, GB02, Gab04]. Recent proposals instead use

XML to define languages for expressing protection requirements on any kind of data/resources

[spe03, ADS04]. XACML is the most common XML-based access control language used. It

allows policy-writers to specify arbitrary attributes of users and resources and write rich rules

limiting access based on different combinations of attributes. XACML 1.0 was ratified as an

OASIS standard in 2003 and the latest version 3.0 was ratified in January 2013. The XACML

standard covers three major parts - the reference architecture, the policy language and the

request/response protocol.

The increasing need of new web applications easily accessible over the Internet makes the se-

curity issues even more challenging in such a distributed and heterogeneous world. The most

common technique for developing web applications is the use of web services and web service

composition. In [YT02] the authors propose a semantic approach for access control in web

services and define an XML-based access control language called Semantic Policy Language

(SPL) for the description of access control criteria based on the use of attribute certificates.

SPL is modular, enables the abstraction and reuse of components and the composition of SPL

policies in an unambiguous way. In [BSPM06] the authors define a fine grained access control

systems for web services called Ws-AC. Their model comes with a service with (formally de-

fined) negotiation capabilities and their policies can be translated into the WS-Policy standard.

Focusing on web service composition, in [Yin07] authors propose an access control model de-

fined in a declarative policy specification language which uses pure-past linear temporal logic

(PPL TL). In their approach, past histories of service invocations can be used to make access

2.2. Towards new models of access control 11

control decisions. Moreover, they support parametric access control rules, role hierarchies and

separation of duty constraints.

A different approach which has received some interest in the scientific community is the Usage

Control (UCON) model proposed by R. Sandhu and J. Park in 2002 [PS02] that marks a shift

from access to usage control. UCON main features are mutability of attributes and continuity of

access decisions evaluation, which are especially important for dynamic and open environments

like the Web. The main novelty w.r.t. previous models is in the way access decision are

computed. The access decision taken over particular conditions should be recalculated as soon

as initial conditions change to avoid security breaches in the system. This means that if during

the ongoing access attributes change and the security policy is not satisfied any more, the

UCON authorization system revokes granted rights and terminates the resource usage. The

security policy is enforced via a usage control reference monitor [PHB+08] consisting of three

basic components: an authorizations module, a conditions module and an obligations module.

The access decision is a conjunction of decisions evaluated by every module. Usage control has

been implemented in various environments, e.g operating systems [KB07], GRID computing

and service oriented architectures [BAB+07, PMH07].

2.2.2 Collaborating component systems

Nowadays, enterprises are frequently faced with the demand to integrate different (possibly

heterogeneous) systems which are independently designed and developed. One of the most

challenging issues in federated systems is to find satisfactory answers to the question of how

component systems can efficiently cooperate while preserving their autonomous characteristics.

When considering security, autonomy includes authentication and authorisation [BBG06] for

which several proposals have been put forward under the name of Federated Identity Manage-

ment (FIdM) [Cha09]. Identity Management refers to the policies, processes, and technologies

that establish user identities and enforce rules about access to digital resources. With an en-

terprise/organization identity management system, rather than having separate credentials for

each system, a user can employ a single digital identity to acces all resources to which the user

12 Chapter 2. Preliminary notions

is entitled. FIdM permits extending this approach above the enterprise level, creating a trusted

authority for digital identities across multiple organizations. Many FIdM initiatives have been

developed by major industrial players such as Microsoft, IBM, Sun Microsystems, and Oracle.

In the literature several solutions [BD04, Bha06, BBG06, CB04, GHHF05, MKT05, McA04,

SAS04, WW06, BBG07, LK07, Pha10] have been proposed for both federated authentication

and federated authorization management. However, industrial and academic FIdM solutions

have different levels of maturity when considering authentication or authorization. Authen-

tication has been widely studied and robust implementations based on the Single Sign-On

(SSO) protocol [Hug05, ACCP12] are routinely used in many real-world systems for support-

ing authentication across multiple domains while eliminating the need to maintain distinct user

credentials for separate applications. Authorisation instead is still a problem which is not fully

addressed. Mostly of the authorization models for federated systems use appropriately devel-

oped authorisation policy languages, such as Ponder [DDLS01] or X-FEDERATE [BBG06].

One of the most important challenges is how to compare and evaluate the differences of similar

or dissimilar policies from different domains. The difference in understanding organisational

factors such as roles and positions contributes to the complexity of the challenges. This differ-

ence also leads to certain difficulties in managing constraints in the delegation.

A first issue to be addressed is where the authorization policy should be defined and by whom

it should be administered. In general, following [SdV01], the authorisation policy can be con-

trolled via three approaches: i) by the federation authority [JD94] This approach helps re-

duce the administrative cost but challenges the mandatory security autonomy of the member

domain—, ii) by the member domain authority [Cas97] This approach could lead to incon-

sistency in the authorisation policy between the member domains —, iii) or by both (hybrid

approach) [DCdVS96]. There should be a balance between the power of the federation and the

local authority so that the burden of the authorisation process is not distributed too heavily

on either side.

Moreover, if we take the point of view of data being exchanged and used in the process of

collaboration, another issue is the definition of the access control policies related to these data,

which may be the result of fusing information coming from different entities. A few works

2.2. Towards new models of access control 13

propose a solution to this problem by using policy templates [dHZ16a] or provenance-based

policies [BdHZ19].

2.2.3 Business Processes

Business processes capture the activities that must be performed in a business setting to provide

a service or product. They are modeled by workflows, defined in the Cambridge dictionary as

”the way that a particular type of work is organised, or the order of the stages in a particular

work process”. Workflows thus represent structured collections of tasks to be executed in the

view of completing the desired goal. In contrast with access control policies discussed previously,

here we do not consider atomic isolated actions, but rather actions as part of a more complex

process, where they are organized following an execution (partial) order. Security-related de-

pendencies are specified as authorization policies — which user is entitled to do which task

— and additional authorization constraints (such as Separation of Duties) on the execution of

the various tasks. The enforcement of authorization policies and constraints is fundamental for

security [LRM14], however it may lead to deadlock situations where a workflow instance cannot

be completed because no task can be executed without violating either the authorization policy

or the constraints. Researchers have been addressing this problem under the name of workflow

satisfiability problem (WSP) [WL10]. The WSP is inherently Hard. Several variations of the

WSP and similar problems have been defined in the literature and there are many solution

methods available. A survey of the work done on these problems may be found in [dS17]. In-

deed, the relations between workflows and authorizations are not as obvious as they may seem

at first. A workflow specification spans at least three perspectives: control-flow, data-flow,

and authorization [vdAtHKB03]. Control-flow constrains the execution order of the tasks (e.g.,

sequential, parallel, or alternative execution); the data-flow defines the various data objects

consumed or produced by these tasks; and the authorization specifies the organizational actors

responsible for the execution of the tasks in the form of authorization policies and constraints.

These three dimensions are interconnected, as each one of them influences the others. The

set of behaviors (i.e., possible executions of the workflow) allowed by the control-flow is fur-

14 Chapter 2. Preliminary notions

ther constrained by conditions on the data, as well as by user assignments and constraints in

the authorization perspective. There are several categories of control-flow support: sequen-

tial execution of tasks (e.g. [BFA99]; parallel executions (e.g., [CGGJ16]); and others like

CSP [Hoa85] and Petri nets [Mur89], which add support for conditional branches and loops

(e.g., [BBK11]). There are also several classes of authorization constraints for workflows that

have been identified in the literature, such as counting constraints, entailement constraints and

user-independent constraints. For instance, the SoD constraints are user-independent.

Given the conflicting goals of business compliance (the business processes must follow the work-

flow model and satisfy all the associated constraints) and business continuity (business must

not stop, even in adverse conditions, e.g. no available users) defining good trade-offs has been

a topic of research in the Business Process management and security communities. A common

practice in the analysis of workflow satisfiability is to abstract away from parts of a workflow

specification. For instance, few works take into account the data-flow (some completely disre-

gard it, e.g. [CGGJ16], and some model it with non-deterministic decisions, e.g., [BBK11]). It

is also usual practice to limit the allowed control-flow constructs and supported authorization

constraints.

Some works [CGKW17, BdSR18], address the problem of Weighted WSP where solutions for

minimizing weights, to be interpreted as costs of violating a security constraint, are proposed.

2.3 Rule-based policy specification and analysis

Rule-based policy specifications have the advantage to be concise and easy to maintain for

security administrators. Several rule-based frameworks for access control have been proposed

in the recent years [JSSS01, HW08, KBB+03, BS04], to cite a few. These works propose formal,

rule-based languages for policies. Usually this formal basis is a logic suitable to express the

dynamic access control conditions for a given application domain. PROLOG and Datalog are

often used to obtain answer sets from a database of distributed policies. The negative aspect

is that when using declarative approaches it could be extremely difficult to have a formal

2.3. Rule-based policy specification and analysis 15

”meaning” for every set of access control policies, such that one can compute this meaning and

inspect whether it is the same as the policy author’s intention.

First-order logic has proven to be sufficient for representing historically important access con-

trol models (e.g., an access control matrix can be viewed as a conjunction of propositions).

However, there are access control policy requirements for which classical logic is not sufficient

for specification. Modal logics have been employed by Abadi [Aba03, ABLP93] to reason about

additional features of access control. Other works use deontic logic [CC97], defeasible logic

[LBOG06], description logics [ZHLL05], fibred logic [BBGG09], etc.

Other rule-based approaches use term rewriting. Echahed and Prost in [EP05] used rewrite

rules for the definition of the functions that control the confidentiality level of data, more

specifically by describing how security levels are downgraded. The work concerns concurrent

programs, whose formal model relies on a variant of process calculus. In [BF06], authors

model access control lists and role based access control as term rewrite systems. They give a

rewriting interpretation to the properties of a RBAC policy in the same direction as presented

in [DKKdO07, San08], where in addition a reduction strategy is used for request evaluation.

In [JM06, Mor07], authors propose a formalism to describe security policies as functions on state

transitions. Systems must ensure that a given security predicate defined by the policy is true

along all their execution. In such framework, it is possible to distinguish the policy statement

from its implementation, which is particularly useful for comparing different implementations

of the same policy. A similar approach is taken in [TK06] where authors compare different

approaches following their formal model of policies, including XACML and the logic language

of [HW08].

A natural question is to compare the expressive power of (first-order) rewriting and (first-

order) logic. Since both paradigms are Turing complete, from the theoretical point of view,

decidability results are a concern in both approaches. In the logic-based setting, authors point

out some characterizations of decidable subsets of first order logic, for example in [HW08]. For

term rewriting, there exists several classes of rewrite systems for which important properties

are decidable (see below and e.g. [Ter03]).

16 Chapter 2. Preliminary notions

We believe rewriting is an interesting approach for defining policies in a declarative manner, and

can suitably be viewed as an intermediate language for policies. An advantage of term rewriting

systems is the number of available efficient implementations, which allows fast prototyping,

and the tools and methods that allows one to check properties like termination, for example.

Following such approach, we are able to characterize properties of policies with respect to

the properties of the rewriting systems defining them. Unfortunately, all these properties are

undecidable in general.

A first important property concerns whether a policy will ever return a result for a given access

request. This is an important question, since policy rules often involve some computation or

deduction prior to taking a decision and such process should be finite.

Termination Termination is surely an issue for rewriting based policies when compared to

classic Datalog (without negation or constraints), for which all programs terminate. However,

rewriting provides a lot of flexibility in policy specification, where terms can have a ”deep”

structure, in contrast with Datalog. Quite powerful techniques to check termination for term

rewriting systems are available, such as recursive path orderings [Der87], semantic labeling

[Zan95], dependency pairs [AG00], etc. These and other techniques have been implemented

by several tools that can (statically) verify termination for a large set of rewrite systems: for

example AProVe [GSKT06], TTT [HM05], and CiME [MU04], to cite a few.

Next, we introduce totality, which means that for every access request, there exists a corre-

sponding access decision (e.g. authorization or prohibition).

Totality With the term Totality, we mean the property ensuring that for every access request,

there exists a corresponding access decision. Totality in rewrite-based policies corresponds to

the notion of sufficient completeness of a rewrite system. It states that every ground term eval-

uates to a term exclusively built with constructors (and possibly variables) [Com86, KNRZ91].

Several algorithms have been developed to check sufficient completeness, or to complete a set

of patterns so that this property is satisfied [Bou94]. The soundness and completeness of a

2.3. Rule-based policy specification and analysis 17

policy can be checked using tools like CiME [19], by analysing the normal forms of access

requests. Sufficient completeness is decidable for terminating and confluent term rewriting

systems [BJ12], and the complexity of the decision procedures varies with the kind of rewrite

system in question, ranging from NP-complete for free constructor systems to exp-time on

linear systems [KNRZ91].

Other typical queries relate to the property of policy consistency.

Consistency A security policy is consistent if it computes at most one access decision for a

given input request. This properties corresponds to the confluence of the underlying rewrite

system. For terminating systems, it is sufficient to check confluence locally, by testing the

joinability of critical pairs [KB83]. Interestingly, in this case the process for checking the

consistency of policies can be mechanized via the completion algorithm [KB83]. A left linear

rewrite system which does not have any critical pair is orthogonal. Orthogonal rewrite systems

are not necessarily terminating, but they are always confluent [Hue80].

Besides proving more fundamental properties like consistency, termination and totality, other

policy properties may be of particular interest to policy administrators, such as

• safety: whether a given user can acquire a particular permission in a given situation;

• liveness: whether all resources are protected by some authorisation rule;

• effectiveness: whether there exists principals not assigned to any permission, or there

exists resources which are not accessible.

As for the previous properties, their verification is not always decidable. These properties are

related to the notion of reachability. For verifying a property, one tests for the reachability of

system states representing unwanted situations. If such kind of states cannot be reached by

the set of derivations of a given system, then the security flaw will never occur. A number of

analysis techniques have been developed for user-role reachability analysis of ARBAC [SYRG07,

JLT+08, AR12]. In [DFK06], the authors suggest to perform goal reachability over Datalog

18 Chapter 2. Preliminary notions

programs as a way to compare access control policies. Reachability over term rewriting is a

very general approach which constructs approximations of the set of normal forms with respect

to a rewrite system, see for instance [Gen98].

Given the potentially critical consequences of policy updates, it is also important for adminis-

trators to analyse the effects of a change in the policy, A (sequence of) administrative action(s)

may cause profound transformations in the behaviour of the policy. Change-impact analysis

has previously been studied for instance for firewall policies in [Liu07] and for RBAC policies

using a model checking approach in [FKMT05]. For policies specified as term rewriting systems,

narrowing techniques can be used to perform static analysis of administrative update actions.

In [BTV16], narrowing is used to compute counter-examples to the equivalence of rewrite-based

policies. Narrowing can also be used for executing review queries: an administrator can review

e.g. the capabilities associated with principals, by choosing an appropriate query term and

looking at its narrowing derivation tree.

Access control policy analysis may rely also on a graph-based approach. In [JT01], access control

is defined via binary relations on graphs, creating a model which is basically a derivation of

RBAC. The complexity of the specifications is controlled with the help of some additional

constraint types, such that the safety problem can be verified. Whereas in [KMPP04], safety

is shown decidable for an access control model based on graphs, with some restrictions on

the form of the graph transformation rules. The decidability results rely on existing theorems

for the decidability properties for graph transformations. Authors show the usability of their

approach on RBAC. If a policy is represented as a graph, and policy updates are modelled

using graph rewriting, one could compare the graph before and after the rewriting step. The

formalism proposed in [AF17, BFT21] combines the use of a visual graph formalism to represent

a concrete state of the system, and the use of rewrite rules to model the dynamics of the system.

In [KMPP01], the authors propose a framework based on the theory of graph transformations

for the description of the evolution of a policy and the comparison of different policy models

(i.e. DAC and Lattice-based models).

Chapter 3

A unified access control meta-model

for distributed environments

With the increasing interest in access control over the years, a variety of models and languages

have been proposed. In accessing a given resource, a policy may dictate that a user has a

need-to-know, is appropriately cleared, is competent, has not already performed a different op-

eration on the same resource, is incapable of accessing other enterprise resources, or is capable

of accessing an object while performing a specific task. In this rich context, consisting of a

wide range of different policy models, Atluri and Ferraiolo in [FA08] raised the question on the

prospects for and benefits of a meta-model of access control. As an example of past tentatives,

the authors mention the work in [FGHK05], where NIST had proposed an access control frame-

work, referred to as the Policy Machine (PM) that has been shown to accommodate a wide

variety of access control policies including DAC, MAC, and RBAC. In later work [FAG11], the

PM has been refined for specifying and enforcing a wide variety of attribute-based policies.

At another level, the XACML policy specification language, focusing on the interoperability

among applications, has been growing in recognition and use.

In response to [FA08], the following year Barker in [Bar09], argues that existing access control

models are based on a small number of primitive notions that can often simply be specialized

for domain-specific applications. A similar consideration was made by Landin [Lan66] in the

19

20 Chapter 3. A unified access control meta-model for distributed environments

context of programming languages: rather than developing n special programming languages

for n application areas, it is essential instead to identify a set of programming ”primitives” from

which a specific subset may serve as a basis for deriving a particular language (for a particular

area of application). Similarly, multiple existing access control models can be expressed in

terms of a set of primitive notions, and many ”novel” access control models can potentially be

developed by simply combining the primitives of access control in novel ways.

3.1 Synthesis of our approach

Continuing on this line of research, in [BF10b] we focus on the primitives of access control

models and we propose a formal framework for their representation. The first primitive notion

that we identify as common to access control models is the categorization of principals. In-

formally, a category is a group to which entities may be assigned. Classification types used in

access control, like classifications by role, user attributes, status, clearances, discrete measures

of trust, team membership, location, etc, can be seen as particular instances of the more gen-

eral notion of category. Thus, categorization in our meta-model can be seen as an extension

of the concept of user groups, a feature usually supported even by early approaches of access

control. Like groups, categories of users can be nested and need not be disjoint. Support of

categories greatly simplifies management of authorizations, since a single authorization granted

to a category can be enjoyed by all its members. Categories can be organised into hierarchical

relationships supporting authorization implication and thus clearly simplifying authorization

management.

The other primitive features we consider are methods for describing properties and relationships

between principals, and for specifying modalities like permissions and authorizations. We

formalize in [BF10a] all of the notions that underlie our approach by developing a rewrite-

based framework later extended to distibuted environments [BF11]. The use of a rewrite

specification allows us to ensure a clean and unambiguous semantics; moreover, the possibility

to write policies as modular sets of authorisation rules offers administrators more flexibility and

3.1. Synthesis of our approach 21

simplicity for specifying and combining access control policies [BF08b].

To demonstrate the expressive power of the category-based meta-model, we show how a range

of access control models can be defined as specific instances of the meta-model. In particular,

we show how variants of RBAC, including hierarchical, time and location aspects, as well as

lattice-based models such as the Bell-Lapadula and the McLean models can be specified. We

also describe how a number of novel access control models can be derived as particular cases

of the meta-model.

Traditional access control frameworks generally assume a single monolithic specification of the

entire access control policy. However, in many real world situations, access control needs to

combine requirements independently stated that should be enforced as one, while retaining

their administrative autonomy. Starting from these observations, it is clear the need of a policy

composition framework by which different component policies can be integrated while retaining

their independence. In [BF14] we extend the meta-model to incorporate the notion of com-

ponent policy. We use site identifiers to denote contextual or environmental information e.g.,

IP addresses, times, system states, components identifiers, external states, etc. The notion of

distributed environment that we consider is related to the notion of federation developed in

the context of database systems (see for example [JD94, dVS97], where a federated system

integrates several databases while preserving their autonomy). We propose a formal framework

for modelling (and enforcing) global access control policies that take into account the local

policies specified and maintained by each member of the federation. Our idea of categorisation

applies also to this kind of distributed, federative settings. In a system with dispersed re-

sources, classification of entities may depend on the site to which the entity belongs. Moreover,

permissions associated to categories of entities may also depend on the site where the category

is defined. When multiple policy modules (e.g., for different authorities or different domains)

exist for the specification of access control rules, the access control system should provide a

means for users to specify how the different modules should interact, for example, if their union

(maximum privilege) or their intersection (minimum privilege) should be considered. Using the

techniques introduced in [BF09], we ensure the coherence of a global access control decision

w.r.t. local access control requirements by specifying in a tunable way how to integrate access

22 Chapter 3. A unified access control meta-model for distributed environments

authorisations resulting from the local policies.

In addition to permissions, we define a notion of forbidden operation (or banned action) on

resources. When both permissions and denials can be specified, the problem naturally arises

of how to deal with incompleteness (accesses for which no rule is specified) and inconsistency

(accesses for which both a denial and a permission are specified). A relation ”undeterminate”

can be defined if authorisations and prohibitions are not complete, i.e., if there are access

requests that are neither authorised nor denied (thus producing an undeterminate answer in a

three-valued policy). These notions are essential for integrating partially specified policies, i.e.

policies that may be ”not applicable” to requests on resources that are out of their jurisdiction,

either in a centralised or distributed access control system. Dealing with inconsistencies requires

support for conflict resolution policies.

In the distributed metamodel we can combine evaluations from different sources in a flexible

way by refining the definition of the function evaluating the global authorisation. Many con-

flict resolution techniques can be applied. Standard operators to compose policies, such as

Intersection, Subtraction, Union, Precedence operator can be easily defined in the metamodel.

Moreover, the combination algorithms of the XACML policy language [OAS03, LWQ+09], such

as Permit-overrides, Deny-overrides, First-applicable, Only-one-applicable can be specified in

our framework using recursive rules (for a complete specification see [BF08b]). To facilitate the

declarative definition of more sophisticated operators, it is useful to add higher-order features

to the specification language. In [BF08b, BF14] we describe a higher-order extension of the

language in order to include policy combination operators such as override, closure and scope

restriction (as defined e.g. in [BdCdVS00, WJ03a]) and further policy combination expressions

including such operators. Indeed, different approaches can be taken to deal with conflict res-

olution. If it is true that some solutions may appear more natural than others, none of them

represents ”the perfect solution” applicable in all situations.

The declarative approach we adopt permits properties of access control policies to be proved in a

modular way. In particular, as already presented in Section2.3, we are interested in consistency

and totality properties of policies. These properties guarantee that access requests will be

3.1. Synthesis of our approach 23

treated as expected. We show how consistency and totality properties of access control policies

can be derived from standard properties of the rewrite framework we use. We define a notion

of ”safe” system as sufficient conditions for these properties to hold. The general rules of the

meta-model satisfy these (syntactic) conditions by construction. This means that to ensure

that a policy specification obtained as an instance of the metamodel is consistent and total it

is sufficient to check that the rules defining the functions specific to that instance satisfy the

safeness conditions. This can be done manually or (semi)-automatically by using rewriting tools

such as CiME [CPU+10] or AproVe [GSKT06]. In [BU13a] a prototype is developed allowing

policy designers to specify and test their access control policy. Since the policy implementation

follows the metamodel general schema, the prototype provides an intuitive means of specifying

a wide range of policies. We have developed a banking use case following both a centralised and

a distributed scenario. After having specified the policy, the security administrator can choose

via the interface which security property he wants to test. The translation of the specification

into the rule-based syntax is executed in a transparent way and the tool CiME3 is launched

in order to perform automated analysis. The results obtained on the rewrite systems are then

translated into natural language using security policy terms to ease the readability for the

policy designer. For some properties (such as termination), if the tests are successful, CiME3

is able to provide a formal certification by producing a trace of the proof in the form of a Coq

certificate.

Contributions: summarising, the main contributions of this work are the following.

• a declarative, rewrite-based specification of a distributed, category-based access control

metamodel, where distributed systems are seen as federations in which each component

preserves its autonomy;

• a technique to define combinations of policies, by defining general policy-combining op-

erators;

• a formal operational semantics for access request evaluation in centralised as well as in

distributed contexts where information is shared, including mechanisms for the resolution

24 Chapter 3. A unified access control meta-model for distributed environments

of conflicts between local and global policies;

• a technique to prove totality and consistency of access control policies, based on termi-

nation and confluence properties of the underlying term rewriting system.

This chapter is based on the results published in [BF10a, BF11, BF08a, BF08b, BF09, BF14,

BTV16, BU13b].

3.2 The CBAC meta-model

We briefly describe below the key concepts underlying the category-based metamodel of access

control, henceforth denoted by M. We refer the reader to [Bar09] for a detailed description.

The CBAC metamodel consists of a family E of sets of entities, which are classified into

categories, a family Rel of relationships between entities, and a set Ax of axioms that

specify the properties that the model must satisfy.

Informally, a category is any of several distinct classes or groups to which entities may be

assigned. Entities are denoted uniquely by constants in a many sorted domain of discourse,

including:

• A countable set C of categories, denoted c0, c1, . . .

• A countable set P of principals, denoted p0, p1, . . .

• A countable set A of named actions, denoted a0, a1, . . .

• A countable set R of resource identifiers, denoted r0, r1, . . .

• A finite set Auth of possible answers to access requests.

Additionally, the following sets can be introduced in specific models:

– A countable set E of event identifiers, denoted e0, e1, . . .

– A countable set S of situational identifiers.

3.2. The CBAC meta-model 25

In addition to the different types of entities mentioned above, the metamodel includes the

following relations that are of primary importance for the specification of access control policies:

• Principal-category assignment: PCA ⊆ P × C, such that (p, c) ∈ PCA iff a principal

p ∈ P is assigned to the category c ∈ C.

• Permissions: ARCA ⊆ A ×R × C, such that (a, r, c) ∈ ARCA iff the action a ∈ A on

resource r ∈ R can be performed by principals assigned to the category c ∈ C.

• Authorisations: PAR ⊆ P ×A×R, such that (p, a, r) ∈ PAR iff a principal p ∈ P can

perform the action a ∈ A on the resource r ∈ R.

Thus, PAR defines the set of authorisations that hold according to an access control policy

that specifies PCA and ARCA.

Definition 3.1 (Axioms) The relation PAR satisfies the following core axiom, where we

assume that there exists a reflexive-transitive relation ⊆ between categories; this can simply be

equality, set inclusion (the set of principals assigned to c ∈ C is a subset of the set of principals

assigned to c′ ∈ C), or an application specific relation defining a hierarchy of categories may be

used. If c ⊆ c′ we say that c is above c′, and c′ is below c; for example manager ⊆ employee.

(a1) ∀p ∈ P , ∀a ∈ A, ∀r ∈ R,

(∃c ∈ C,∃c′ ∈ C, (p, c) ∈ PCA ∧ c ⊆ c′ ∧ (a, r, c′) ∈ ARCA)⇔ (p, a, r) ∈ PAR

The category-based metamodel of access control CBAC is based on the core axiom (a1) for

PAR given in Def. 3.1.

Definition 3.2 (Policy) Given a specification of E and Rel, and a set Ax of axioms defining

an access control model M , a policy is a tuple 〈E,Rel〉 that defines the contents of E and Rel

such that E,Rel satisfy all the axioms in Ax.

Operationally, this axiom can be realised through a set of function definitions [BF10a], as

summarised below.

26 Chapter 3. A unified access control meta-model for distributed environments

Definition 3.3 The information contained in the relations PCA and ARCA is modelled by

the functions pca and arca, respectively, where pca returns the list of categories assigned to a

principal, e.g. pca(p) → [c], and arca returns a list of permissions assigned to a category, e.g.

arca(c)→ [(a1, r1), . . . , (an, rn)].

The rewrite-based specification of the axiom (a1) in Def. 3.1 is given by the rewrite rule:

(a2) par(p, a, r) → if (a, r) ∈ arca∗(below(pca(p))) then grant else deny

Briefly, pca returns the list of categories assigned to a principal, e.g. pca(p) → [c], and arca

returns a list of permissions assigned to a category, e.g. arca(c)→ [(a1, r1), . . . , (an, rn)]. As the

function name suggests, below computes the set of categories that are below (w.r.t. the hierarchy

defined by the ⊆ relation) any of the categories given in the list pca(P). For example, for a

given category c, this could be achieved by using a rewrite rule below([c])→ [c, c1, . . . , cn]. The

function ∈ is a membership operator on lists, grant and deny are answers, and arca∗ generalises

the function arca to take into account lists of categories.

An access request by a principal p to perform the action a on the resource r can then be

evaluated simply by rewriting the term par(p, a, r) to normal form.

Note that (a1), and its algebraic version (a2), state that a request by a principal p to perform

the action a on a resource r is authorised only if p belongs to a category c such that for some

category below c (e.g., c itself) the action a is authorised on r, otherwise the request is denied.

Other alternatives (e.g., the possibility of considering undeterminate as answer if there is not

enough information to grant the request, which is quite natural when composing policies both

in centralised and in distributed systems), will be discussed in the next section describing the

distributed version of CBAC.

3.3. Distributed CBAC 27

3.3 Distributed CBAC

We consider the same sets of entities as in M plus a set of situational identifiers will include

identifiers for sites (or locations) which will be associated with resources or policies. For sim-

plicity we will assume that S is just the set of locations that compose the distributed system.

In other words, each s ∈ S identifies one of the components of the distributed system, seen as

a federation. The sets P , C,A,R include, respectively, the principals, categories, actions and

resources in any of the sites of the system.

In addition to the above relations, we define a notion of forbidden operation (or banned action)

on resources, modelled by the relation BARCA, and a notion of non-authorised access, modelled

by the relation BAR:

• Banned actions on resources: BARCA ⊆ A×R×C, such that (a, r, c) ∈ BARCA iff the

action a ∈ A on resource r ∈ R is forbidden for principals assigned to the category c ∈ C.

• Banned access: BAR ⊆ P × A×R, such that (p, a, r) ∈ BAR iff performing the action

a ∈ A on the resource r ∈ R is forbidden for the principal p ∈ P .

Additionally, a relation UNDET ⊆ P × A × R could be defined if PAR and BAR are not

complete, i.e., if there are access requests that are neither authorised nor denied (thus producing

an undeterminate answer).

To take into account the fact that the system may be composed of several sites, with different

policies in place at each site, we consider families of relations PCAs, ARCAs, BARCAs, BARs,

UNDET s and PARs indexed by site identifiers. Intuitively, PARs (resp. BARs) denotes the

authorisations (resp. prohibitions) that are valid in the site s. The relation PAR defining

the global authorisation policy will be obtained by composing the local policies defined by the

relations PARs and BARs as indicated in the next section.

Definition 3.4 (Distributed Axioms) In a distributed environment, the category-based meta-

model is defined by the following core axiom where we assume that there exists a reflexive-

transitive relation ⊆ between categories; this can simply be equality, set inclusion (i.e., the set

28 Chapter 3. A unified access control meta-model for distributed environments

of principals assigned to c ∈ C is a subset of the set of principals assigned to c′ ∈ C), or an

application specific relation may be used.

(b1) ∀p ∈ P , ∀a ∈ A, ∀r ∈ R, ∀s ∈ S

((∃c ∈ C,∃c′ ∈ C, (p, c) ∈ PCAs ∧ c ⊆ c′ ∧ (a, r, c′) ∈ ARCAs)⇔

(p, a, r) ∈ PARs)

Concerning the relation BARCA in a site s, the following axioms should be included:

(c1) ∀p ∈ P , ∀a ∈ A, ∀r ∈ R, ∀s ∈ S

((∃c ∈ C,∃c′ ∈ C, (p, c) ∈ PCAs ∧ c′ ⊆ c ∧ (a, r, c′) ∈ BARCAs)⇔

(p, a, r) ∈ BARs)

(d1) ∀p ∈ P , ∀a ∈ A, ∀r ∈ R, ∀s ∈ S

((p, a, r) 6∈ PARs ∧ (p, a, r) 6∈ BARs)⇔ (p, a, r) ∈ UNDET s

(e1) ∀s ∈ S, PARs ∩ BARs = ∅

Notice that access rights are inherited upwards through the hierarchy defined by the ⊆ relation,

while prohibitions are propagated downwards to the basis of the hierarchy.

Finally, the axioms below describe the global authorisation relation, which is obtained from the

local authorisations and prohibitions defined at each site, by using operators OPpar and OPbar.

(f1) ∀p ∈ P , ∀a ∈ A, ∀r ∈ R,

(p, a, r) ∈ OPpar({PARs,BARs | s ∈ S})⇔ (p, a, r) ∈ PAR

(g1) ∀p ∈ P , ∀a ∈ A, ∀r ∈ R,

(p, a, r) ∈ OPbar({PARs,BARs | s ∈ S})⇔ (p, a, r) ∈ BAR

(h1) PAR ∩ BAR = ∅

According to these axioms, the result of an access request may be different depending on the site

where the request is evaluated, since each site has its own authorisation policy defined by the

local relations PARs and BARs (see axioms (b1) and (c1)). The relation UNDET s ⊆ P×A×R

3.3. Distributed CBAC 29

is such that (p, a, r) ∈ UNDET s iff the action a ∈ A on resource r ∈ R is neither allowed nor

forbidden for the principal p ∈ P at site s ∈ S (see axiom (d1)); this implies that every tuple in

P ×A×R is in PARs ∪ BARs ∪ UNDET s. The axioms (e1) and (h1) preclude inconsistent

specifications (i.e., a request cannot be both authorised and forbidden).

The final authorisation is computed by specialising the definition of the operators OPpar and

OPbar, according to the application requirements (axioms (f1) and (g1)). These operators

take as parameter a set of local answers and combine them in order to produce a final access

decision. They can give priority to positive authorisations, or to undeterminate (or negative)

ones in case of conflict. While most of existing policy languages (e.g. XACML) have a fixed set

of combination algorithms, our metamodel can be used to specify a large range of composition

operators, as described in the next section.

3.3.1 The CBAC distributed semantics

An important aspect of the distributed metamodel is the capability of representing systems

where resources may be dispersed across different sites, and the information needed to decide

whether a user request is granted or denied may also be distributed. An overview of the rules

modeling the distributed operational semantics of CBAC is given in Table 3.1, where barca∗s

generalises the previously mentioned function barcas to take into account lists of categories

instead of a single category. As already mentioned, the authorization and prohibition sets

should satisfy axiom (e1), that is, arca∗s(below(pcas(p)))∩ barca∗s(above(pcas(p))) = ∅, but note

that even if axiom (e1) is not satisfied, the operational semantics defined for par above is

consistent: it gives priority to authorizations.

The axioms (f1) and (g1) are realized by the rewrite rules (f2), (g2) (implementing OPpar and

OPbar through the use of pars; see rule (c2, d2). The axioms (f1) and (g1) can be implemented

in several ways. The version chosen in the definition above corresponds to a very general rewrite

rule that can be used for evaluating an access request in a single central site, if n = 1 and the

operator op is the identity, as well as for evaluating combinations of answers (with a suitable

operator op) from n different local policies. An alternative can be to specify an authorised

30 Chapter 3. A unified access control meta-model for distributed environments

Par s par(p, a, r) → if (a, r)∈ arca∗(below(pca(p))) then grant
else if (a, r)∈ barca∗(above(pca(p))) then deny

else undeterminate
Arca∗ arca∗(cons(c, l)) → append(arca(c), arca∗(l))
Arca∗ arca∗(nil) → nil
Barca∗ barca∗(cons(c, l)) → append(barca(c), barca∗(l))
Barca∗ barca∗(nil) → nil

Pca pca(p) → [c1, . . . , ck] (for each principal p)

Arca arca(c) → [(a1, r1), . . . , (ak, rk)] (for each category c)

Barca barca(c) → [(al, rl), . . . , (at, rt)] (for each category c)

Above above([c]) → [c, c1, . . . , cn] (for each category c)

Below below([c]) → [c, c′1, . . . , c
′
m] (for each category c)

Aut authorised(p, a, r, s1, . . . , sn)→ fauth(op, pars1(p, a, r), . . . , parsn(p, a, r))

Fauth fauth(op, answ1, . . . , answn)→ answ0 (where answi ∈ Auth)

Table 3.1: Rewrite Specification of the Distributed Metamodel: Generic Functions, Specific
Functions, and Combination Rules

rewrite rule for any specific combination operator. For example, if we consider two sites s1 and

s2, for the precedence operator previously mentioned, we may have

authorised(p, a, r, s1, s2) → if pars1(p, a, r) = grant or pars1(p, a, r) = deny

then pars1(p, a, r) else pars2(p, a, r)

In this case priority is given to local evaluation in site s1, evaluation in site s2 being executed only

when the local policy in s1 is not able to give as answer grant or deny. However, when dealing

with policy combinations, it is unlikely to find a unique evaluation strategy that works for

every possible scenario. A suitable policy integration mechanism depends on the requirements

of the application and the involved parties. Evaluation initially takes place in the site where the

request is issued, using the local function authorised (see rule Aut in Table 3.1). The local rule

Aut specifies a number of sites si, i = 1 . . . n, where the request may be passed and evaluated by

the corresponding function parsi . For defining the sites of the evaluation, we may use functions

like e.g. psite(p), which returns the site where the principal p is registered, or rsite(r) which

returns the site where the resource r is located. In this way, access requests can be evaluated

in a predefined central site, or priority can be given to local evaluation, or more elaborated

3.3. Distributed CBAC 31

combinations of access answers can be implemented.

In order to specify a particular policy at a site s, e.g. RBAC, MAC or DEBAC, it is sufficient to

specialize locally the functions arcas, barcas, pcas, aboves, belows. Their definition in Table 3.1

can be adapted to the application we want to consider. Thus, for example, to express a

hierarchical RBAC policy at site s, the function arcas will return the permissions associated

to each defined role and belows will return the roles inferior to a given role, according to the

hierarchy specified in the model (see [BF10a] for more application examples). In the distributed

metamodel, the request can be passed to other sites (with possibly different local policies) and

evaluated in a distributed way. The generic rule (Aut), implementing the axioms defined

in 3.4, is then used to integrate the different local access request answers to provide a final

authorization decision. More precisely, the distributed answers are collected and combined by

using specific rules (Fauth), for a suitable operator op. We can specialize the combination rules

(Aut, Fauth) using a variety of algebraic operators.

3.3.2 Policy combining operators

Standard operators to compose policies, such as Intersection, Subtraction and Union can be

easily defined in the metamodel. We briefly give next some intuition on the semantics of the

above operators, applied to sets of authorisation answers.

• Using the Intersection operator (I), access is authorised (denied) if it is allowed (denied)

by each of the component policies.

• Using the Subtraction operator (−), access is authorised (denied) if it is allowed (denied)

by the first policy, but not by the second one.

• Finally, using the Union operator (U) an access can be authorised if it is allowed by any

of the component policies. Since we have explicit definition of prohibitions as well as

authorisations, conflicts may arise. We consider three union operators, depending on the

conflict-resolution method used: UG (i.e. access can be authorised if it is allowed by any of

32 Chapter 3. A unified access control meta-model for distributed environments

the component policies), UD (i.e. access is denied if it is denied by any of the component

policies) and UU (giving as answer undeterminate in case of conflicting information).

Moreover, the combination algorithms of XACML policy language [OAS03, LWQ+09], such

as Permit-overrides, Deny-overrides, First-applicable, Only-one-applicable can be specified in

our framework using recursive rules (for a complete specification see [BF08b]). One can note

that in the setting of a three-valued policy (as we consider here) the XACML Undeterminate

and NotApplicable results are treated in an equivalent way. We can easily obtain a four-valued

policy by enlarging the set of answers Auth and by modifying the definition of the specific

(Fauth) rule accordingly.

To facilitate the declarative definition of more sophisticated operators, it is useful to add higher-

order features to the specification language. We describe next a higher-order extension of the

language along the lines of [BF08b], in order to include policy combination operators such

as override, closure and scope restriction (as defined e.g. in [BdCdVS00, WJ03a]) and further

policy combination expressions including such operators. Restriction constrains the application

of a policy to the requests satisfying certain conditions. Templates are used to define partially

specified policies, that can be completed by supplying the missing parameters. Override replaces

a part of a policy with a fragment of a second policy. The portion to be replaced is specified

using a third policy.

The override operator can be expressed using a combination of the Union (U), Substraction (−)

and Intersection (I) operators, obtaining an expression of the form (a1−a3)UG(a2Ia3), where ai

is the access control answer returned by the policy i (see [BF08b] for more details). We are able

to model the expression above, and any other expression mixing the mentioned operators, by

introducing in the specification language a (higher-order) function f which encodes the structure

of the policy combinator we want to specify and contains variables that will be instantiated by

the actual policy parameters at run-time (by β-reduction).

Formally, we introduce in the metamodel a rule that we call Ho-Auth:

Ho-Auth hoAuth(f, p, a, r, s1, . . . , sn) → f s1 . . . sn p a r

3.4. Rewriting-based analysis of CBAC policies 33

where the variable f will be instantiated by a λ-abstraction of the form λs′p′a′r′.e: the bound

variables s′ represent the sites s1, . . . , sn involved in the evaluation, p′, a′, r′ are variables to be

instantiated by the actual parameters of the access request, that is the principal, the action

and the resource, and e is a term specifying how the local policies are combined (in order to

evaluate correctly, the term that instantiates f should not have free variables, that is, only

s′, p′, a′, r′ may occur free in e, and when applied to the actual parameters of the access request

it must have as normal form an authorisation answer in Auth).

This additional expressive power allows us to generalise the Aut rule. We recall that in a

completely distributed system, every local policy specifies its own Aut rule as well as the way

combinations with external policies have to be performed. This means that, for a site s, we

may have

authorised(p, a, r, s1, . . . , sn) → fauth(op, pars1(p, a, r), . . . , parsn(p, a, r))

or

→ hoAuth(f, p, a, r, s1, . . . , sn)

For example, to specify the override operator for the policies local to sites s1, s2, s3, we use f =

λs1s2s3p
′a′r′.e where e = fauth(UG, e1, e2) with e1 = fauth(−, pars1(p

′, a′, r′), pars3(p
′, a′, r′)),

and e2 = (fauth(I, pars2(p
′, a′, r′), pars3(p

′, a′, r′)).

More detailed examples can be found in [BF08b].

3.4 Rewriting-based analysis of CBAC policies

Specifying access control policies via term rewriting systems, which have a formal semantics, has

the advantage that this representation admits the possibility of proving properties of policies,

and this is essential for policy acceptability [oD85]. Rewriting properties, such as confluence

(which implies the unicity of normal forms) and termination (which implies the existence of

normal forms for all terms), may be used to demonstrate satisfaction of essential properties of

policies, such as consistency. More specifically, we are interested in the following properties of

34 Chapter 3. A unified access control meta-model for distributed environments

access control policies.

Totality : Each access request from a principal p to perform an action a on a resource r

receives an answer (e.g., grant, deny, undeterminate).

Consistency : For each access request from a principal p to perform an action a on a resource

r at most one result can be obtained.

Soundness and Completeness : For any p ∈ P , a ∈ A, r ∈ R, an access request by p to

perform the action a on r is granted if and only if p belongs to a category c such that c ⊆ c′

and c′ has the permission (a, r).

Totality and consistency can be proved, for policies defined as rewrite systems, by checking

that the rewrite relation generated by the rules used in a specific instance of the metamodel is

confluent and terminating. Termination ensures that all access requests produce a result (e.g. a

result that is not grant or deny is interpreted as undeterminate) and confluence ensures that this

result is unique. The soundness and completeness of a policy can be checked by analysing the

normal forms of access requests. Sufficient completeness of the rewrite rules (a property that

ensures that each operation is defined on all valid inputs) guarantees that the normal forms

are of the right form [HCM05]. In practice, completeness can be easily achieved by assuming

that either an open or closed policy operates as a default, and accordingly access is granted

or denied if no authorization is found for it. Note that the alternative of explicitly requiring

completeness of the authorizations is too heavy and complicates administration.

Confluence and termination of rewriting are undecidable properties in general, but there are

several sufficient conditions for these properties to hold. We define next a condition that will

be used to prove that policy specifications defined as first-order instances of the metamodel

satisfy the properties we are interested in.

Definition 3.5 (Safe system) A rewrite system R is safe if

3.4. Rewriting-based analysis of CBAC policies 35

1. R is non-overlapping;

2. R is a constructor system;

3. if a rewrite rule in R defines a recursive function f, then the right-hand side is built out of

variables, constructors, previously defined functions, or recursive calls to f on arguments

which are smaller (with respect to a well founded ordering, e.g. subterm) than the ones

in its left-hand side.

Conditions 1. and 2. in the definition of safe systems are natural: they require functions to

be defined by cases on data constructors that do not overlap. They are standard conditions

in functional programs. Condition 3. will be used to ensure termination [FJ95]. In [BF14] we

show that to ensure that a policy specification obtained as an instance of the metamodel is

consistent and total it is sufficient to check that the rules defining specific functions satisfy the

safeness conditions.

Theorem 3.1 Assume the rewrite system R defines an access control policy as an instance of

the metamodel, using the rules in Table 3.1 with additional, specific rules satisfying the safeness

conditions. Then, R is terminating and confluent.

Proof 3.2 Termination: First, observe that using the metamodel the full definition of the

policy can be seen as a hierarchical rewrite system, where the basis includes the set of constants

identifying the main entities in the model (e.g., principals, categories, etc.) as well as the set of

auxiliary basic data (such as Booleans and numbers) and functions on them (if-then-else, and).

The next level in the hierarchy includes all the auxiliary functions on lists (such as append)

and the parameter functions of the model, that is, the specific functions pca, arca, barca, above,

below, ∈. The functions arca∗, barca∗, and fauth form the next level, followed by the definition of

the function par. Finally the last level of the hierarchy consists of the definition of the function

authorised.

Several sufficient conditions for termination of rewrite systems defined as a hierarchical union

of rules are available. For instance, we can use the following modularity result: a hierarchical

36 Chapter 3. A unified access control meta-model for distributed environments

term rewriting system is terminating if the basis of the hierarchy is terminating and non-

duplicating (i.e., rules do not duplicate variables in the right-hand side) and in the next levels

of the hierarchy the recursive functions are defined, using previously defined functions, by rules

that satisfy a general scheme of recursion, where recursive calls on the right-hand sides of rules

are made on subterms of the left-hand side and there are no mutually recursive functions [FJ95].

The rules given in Table 3.1 satisfy the required conditions (notice that the functions par and

authorised are not recursive), and the assumption of safeness ensures the latter condition is

satisfied for the additional rules used in a specific instance of the metamodel. We conclude that

the system is terminating.

To prove confluence, first note that the rules defining generic functions in Table 3.1 are non-

overlapping, and the same holds for specific functions by the safeness assumption. Moreover,

since the sets of generic and specific functions are disjoint, and the patterns are constructor

terms, there are no critical pairs in the system, and therefore the system is locally confluent.

Termination and local confluence imply confluence, by Newman’s Lemma [New42].

As a consequence, every term has a unique normal form and this implies that the policy

specification is consistent.

Property 3.3 (Consistency) Assume R defines an access control policy as an instance of

the metamodel, using the generic rules in Table 3.1 and additional, specific rules satisfying the

safeness conditions. It is not possible to derive, from R, both grant and deny for a request

authorised(p, a, r, s1, . . . , sn).

We give next a precise characterization of the normal forms of access requests.

Proposition 3.4 Assuming the specific functions used in an instance of the metamodel (specific

versions of pca, arca, barca, above, below, fauth) are well-defined (i.e., their evaluation produces

a result provided the arguments are valid; for instance, the evaluation of a ground term pca(p)

results in a list of categories for any principal p, above(c) and below(c) produce lists of categories

3.4. Rewriting-based analysis of CBAC policies 37

for any category c, arca(c) and barca(c) produce lists of pairs (a, r), fauth produces a result in

Auth), then the normal form of a ground term authorised(p, a, r, s1, . . . , sn) where p ∈ P, a ∈ A,

r ∈ R, s1, . . . , sn ∈ S, is in Auth.

As a consequence, our specification of the access control policy is total.

Property 3.5 (Totality) Assuming the specific functions used in an instance of the meta-

model (specific versions of pca, arca, barca, above, below, fauth) satisfy the safeness condition

and are well-defined (i.e., the evaluation of a ground term pca(p) results in a category for

any principal p, and similarly for the other functions, as described in Prop. 3.4), each request

authorised(p, a, r, s1, . . . , sn) receives an answer in Auth.

Similar results are shown for the higher-order version of CBAC in [BF14].

Liveness and Effectiveness. A policy is ineffective if there are principals who have not got

any permissions or resources which are not accessible by any principal. These properties can

be analysed for CBAC policies by checking the definitions of the categories of principals and

resources and the relations pca and arca, as follows.

To check that all principals have authorisation to perform at least one operation on a resource

r, it is sufficient to check that for every principal p there is at least one tuple in the relation

pca of the form (p, c) such that c occurs in at least one tuple (a, r, c) of the relation arca,.

To check that all resources are accessible by at least one principal, it is sufficient to check that

for each resource r there is at least one tuple in the relation arca of the form (a, r, c) such that

c occurs in at least one tuple of the relation pca.

Both of these checks are polynomial in time on the size of the policy and can be implemented

after each administrative operation to ensure updates do not produce ineffective policies.

To check the property of liveness (which requires each resource to be protected by the policy),

assuming we have a list of the actions on resources that must be protected, we can simply check

38 Chapter 3. A unified access control meta-model for distributed environments

that each resource r and for each action a that must be protected on r there is at least one tuple

(a, r, c) in the relation arca. Again, this is a polynomial time check that can be implemented

after each administrative operation.

Safety. The property of safety was initially stated for operating systems [HRU76a], to estab-

lish whether or not a given user can obtain a certain right on a certain object, and it was shown

to be undecidable in the general case. Safety was redefined for RBAC systems as checking

whether there exists a sequence of administrative operations that would permit a certain user

to acquire certain roles, even if currently they do not have those roles, and it was shown to be de-

cidable by reducing it to a reachability problem over a finite graph. For dynamic access control

models such as ABAC, the safety property boils down to checking whether a user can acquire

attribute values that grant access to a resource. For the particular case of ABACα [JKS12a]

(where attributes range over finite domains, there is at most one authorisation rule that can

apply to each permission, and only administrators can modify values of attributes) safety has

also been shown to be decidable (see [AS17, MKD19]).

In the case of CBAC, the safety property is not decidable in general, however, we can char-

acterise classes of policies for which safety is decidable. Below we show the undecidability of

safety in general, before defining decidable subclasses of CBAC policies.

Theorem 3.6 (Undecidability of CBAC Safety) The safety problem for CBAC policies is

undecidable in general.

Proof 3.7 First, notice that in the CBAC model category conditions can be arbitrary formu-

las, with the only requirement that satisfiability should be decidable (to ensure that the CBAC

relationships are computable). To solve the safety question, we need to determine if there exists

a combination of operations that may lead to a user acquiring a specific permission (a, r). This

implies that we need to determine if one or more users u1, . . . , un could perform a sequence of

operations that lead to a user belonging to a category which has the permission (a, r).

3.4. Rewriting-based analysis of CBAC policies 39

To prove undecidability of safety, we will show that the Halting Problem can be reduced to the

safety problem. More precisely, we will show that for any Turing machine M and input I, there

exists a CBAC policy that simulates the execution of M on I, such that M halts on I if and

only if the CBAC policy authorises the user us to perform the action as on rs. The CBAC

policy that we use to encode the Halting Problem as a safety problem includes a resource rM

representing M , and two actions read and next, such that the read action inputs I (the input

for the Turing machine M), computes the initial configuration of M on I and stores it in rM ,

and the next action computes the next configuration of the machine (i.e., it implements the

transition function of the Turing machine M). In addition, we define a category c0 such that

(read, rM , c0) ∈ arca and (next, rM , c0) ∈ arca, and such that every user belongs to c0. In this

way, according to the axiom (a1), any user is authorised to execute the read and next actions

on rM . We also define a category cF such that (as, rs, cF) ∈ arca, and specify that (us, cF) ∈ pca

if and only if the current configuration of the machine, stored in rM , is a final configuration

(this is a decidable test). Now, according to (a1), (us, as, rs) ∈ par if and only if M reaches a

final configuration, or equivalently, us obtains the permission to execute as on rs if and only if

M halts on I.

RBAC policies and ABACα policies can be seen as particular classes of CBAC policies, so using

previous results on decidability of safety for these models, we can directly deduce decidability

for the corresponding CBAC classes. However, it is possible to extend the result to cover CBAC

policies that are not RBAC or ABACα, where the reachability problem associated to safety

is still bounded. Below we specify such class, which we call Finitary CBAC, by defining an

operational semantics for policies in the form of a transition system.

Recall that a CBAC policy is a tuple 〈E,Rel〉 that defines the contents of the family of entities

E and relations Rel, i.e., in the tuple there is a component for each set of CBAC entities and

each CBAC relationship, which permits to compute the answer to any access request via the

CBAC axioms.

Definition 3.6 (Finitary CBAC Policies) A CBAC policy transition, written 〈E,Rel〉 →

〈E ′, Rel′〉, is a pair of policy tuples, such that there exists an action that is authorised in 〈E,Rel〉

40 Chapter 3. A unified access control meta-model for distributed environments

and whose execution results in 〈E ′, Rel′〉.

A CBAC policy 〈E,Rel〉 is finitary if there is only a finite number of different policy tuples that

are reachable from 〈E,Rel〉 via policy transitions.

Finitary CBAC policies can be seen as mapping to a finite rewrite relation, for which reachability

is trivially decidable, and as a consequence safety is decidable.

Theorem 3.8 (Decidability of Safety for Finitary CBAC policies) Finitary CBAC poli-

cies have a decidable safety problem.

Proof 3.9 An easy way to decide safety is to generate the full transition relation for the given

policy (i.e., compute the full set of tuples that can be obtained by performing transitions from

the initial policy) and search for a tuple that grants the specific permission sought. Then, the

sequence of transitions from the initial policy to the one that grants the permission indicates the

sequence of operations that needs to be performed for the user to acquire the required permission.

Since the set of policies that can be reached from the initial one is finite by assumption, this is

a decision procedure.

Constraints. In many practical cases, it may be useful to avoid for a user the possibility

of executing conflicting actions (SoD, or Separation of Duties constraint) or, on the contrary,

to ensure the possibility for the same user to execute two related actions (BoD, or Binding of

Duty constraint). These properties can be expressed for CBAC policies at the metamodel level,

by adding the appropriate axioms. For example, given two conflicting (respectively, related)

actions a1 and a2 we may specify

(SoD) ∀p ∈ P , ∀cp ∈ C, ∀r, r′ ∈ R,

((p, cp) ∈ PCA) ∧ ((a1, r, cp) ∈ ARCA)⇒

6 ∃c′ ∈ C, s.t. (a2, r
′, c′) ∈ ARCA ∧ (p, c′) ∈ PCA)

3.4. Rewriting-based analysis of CBAC policies 41

(BoD) ∀p ∈ P , ∀cp ∈ C, ∀r, r′ ∈ R,

((p, cp) ∈ PCA) ∧ ((a1, r, cp) ∈ ARCA)⇒

∃c′ ∈ C, s.t. (a2, r
′, c′) ∈ ARCA ∧ (p, c′) ∈ PCA)

Both of these constraint verifications can be done in polynomial time on the size of the policy.

Note that this implements a strong version of the constraints. Indeed, even if (SoD) or (BoD)

are not satisfied by design, there could be executions that do not violate the principles of

binding or separation of duties, e.g., in (SoD) the category c′ exists but it is not used by the

user in the current execution.

3.4.1 Policy administration analysis by narrowing

Rewriting techniques can also be used to study administrative actions implications on a rewrite-

based policy evolving over time. The administration of access control policies is very important

and must be carefully controlled to ensure the initial policy does not drift away from its orig-

inal objectives. The administration of the category meta-model implies several actions, as for

instance users can be reassigned from one category to another, categories can be granted new

permissions as new applications and systems are incorporated. Permissions can be revoked

from categories as needed. Category hierarchies can be created according to the organizational

setup and can be changed thereafter. A (sequence of) administrative action(s) may cause pro-

found transformations in the behavior of the policy. A possible solution would be to formally

verify again all properties of the policy after each modification. However, this may be a long

and expensive task and, moreover, in the case one of the desired properties is invalidated, often

the administrator has no indication to solve the problem. Therefore, in order to facilitate the

work of policy administrators during the evolution of a security policy, an alternative (and

complementary) approach is to identify examples where the old and the new version of the

policy behave differently. We consider two different cases:

• Preservation: the administrator modifies the implementation of the policy (for instance

by reducing the set of rules defining it) without aiming at modifying the policy behavior,

42 Chapter 3. A unified access control meta-model for distributed environments

• Non-regression: the administrator modifies the implementation of the policy (for instance

by adding or removing users and/or permissions) without aiming at modifying the be-

havior of the policy on the initial set.

In [BTV16] we have developed a technique that we call narrowing differential to identify en-

tities in a policy whose behavior has been (unintendedly) affected by administrative actions,

i.e., saying it in the rewriting phrasing, to identify terms whose reduction changes in the two

rewrite systems representing the two versions of the policy before and after the administrator’s

intervention.

We can use narrowing in order to query an access control policy expressed as a term rewrite

system, in a more broad way than with simple rewriting [KKdO09]. Rewriting enabled us

to resolve access requests encoded as ground terms. Narrowing enables to perform requests

encoded as terms with variables and to enumerate all the solutions for those requests. We can

also easily encode a request of the system administrator as an equation to resolve by narrowing.

We focus on investigating how a modification of the policy reflects on its behavior and how

to represent this behavioral change. In rewriting terms, this issue can be expressed as follows:

given two rewrite systems Ro and Rn (representing the old and the new version of the policy)

we want to identify the (common) terms leading to different derivations in Rn and Ro. Our

approach is developed to deal with the two cases mentioned above, that is

• we have developed the technique of narrowing differential for rewriting systems defined

on the same set of constructors and

• we have proposed an extension of this technique for rewriting systems defined on two sets

of non-disjoint constructors.

For example, let us consider the case where the policy has been re-implemented (e.g. in the

aim of simplifying its set of rules). We want to check that the modifications have introduced

no dangerous side effects on the behavior of the policy. To represent this, we consider two

rewrite systems R1 and R2 with the same set of constructors and two non-disjoint sets of

3.5. Related work 43

operations. We verify the policy behavior by comparing the possible derivations in the two

rewrite systems for a given query, denoted t. If a counter-example is detected, meaning that

security may be compromised, this is exhibited in the set of differentials, denoted DR1,R2(t).

We can also consider different sets of constructors. Intuitively, from the security point of view,

this represents an evolution of the policy where the set of categories, permissions or users have

been changed and the related rules have been modified. In both cases, our technique is shown

to be sound and complete.

We have provided an implementation of our technique for the class of inductively sequential

constructor-based term-rewrite systems where the outermost needed narrowing strategy is used

for computing all the constructor substitutions that are solution of the narrowing equation, i.e.

for enumerating all the different policy behaviors.

3.5 Related work

Term rewriting has been used to model a variety of problems in security, from the analy-

sis of security protocols (see, for example, [BDHdS02, EMM06, Vig05, Bla16]) to the defi-

nition of policies for controlling information leakage [EP05]. On access control specifically,

Koch et al. [KMPP04] use graph transformation rules to formalise RBAC, and more recently,

[BF06, San08, BFB07] use term rewrite rules to express access control policies. In [DKKdO07],

rewriting reduction strategies are used for specifying policy composition. Other formal theories

to define and validate security policies (see, for instance, [BS03]) have used first-order theo-

rem provers, purpose-built logics, or flow-analysis but these approaches have limitations (as

discussed for instance in [JS05]).

Several Access control metamodels have been proposed in recent years, with advanced features

for specifying and enforcing different access control policies. Similarly to our work, the model

presented in [SKAL12] is also based on an extension of the metamodel of access control pro-

posed by Barker [Bar09]. Authors developed UACML, an UML-based modeling framework for

the visual design of hybrid access control policies. They also provide a textual language that

44 Chapter 3. A unified access control meta-model for distributed environments

corresponds to UACML and present a Prolog-based verification tool for detecting errors within

the textual language, so to ensure a correct specification in UACML by repeating verification

and translation cycles. The work in [AA20] presents a higher-order generalisation of ABAC

providing a hierarchical structure over attributes by means of aggregation operations. This

additional level of abstraction w.r.t. the standard ABAC model is similar to the notion of cate-

gorization and category hierarchy that we have defined. Most recent access control metamodels

are tailored to address the problem of data protection in the new networking environments,

such as IoT applications, Cloud computing, or web content and services management [KAAI21].

However, most of these works are specified using the UML language [KAI21, KM16], which lacks

a clear formal semantics, or implementation oriented, e.g. by extending the Spring Security

framework [GNS17].

Concerning administrative actions and the impact of their application on access control policies,

a number of researchers investigated the problem, mainly in the setting of Administrative

RBAC policies [LT06, FMP13, SYSR06]. In particular, a number of analysis techniques have

been developed for user-role reachability analysis of ARBAC [SYRG07, JLT+08, AR12]. The

reachability (or safety) problem asks whether a given user u is a member of a given role r in any

policy reachable from the initial (i.e., current) policy by actions of a given set of administrators.

Some other analysis problems, such as permission-role reachability, user-role availability, and

role-role containment, can be solved by reducing them to the user-role reachability analysis

problem [SYRG07].

Reachability over term rewriting is a very general approach which constructs approximations

of the set of normal forms with respect to a rewrite system, see for instance [Gen98]. This is

done through the use of tree automata. When verifying some security property, one tests for

the reachability of terms representing unwanted situations. This approach has been followed

on the development of static analyzers [BGJLR07]. Narrowing techniques have been used

in [MT07] to solve reachability problems in cryptographic protocols verification. More close

to our work, in [KKdO09] authors use strategic narrowing to solve queries in a rewrite-based

policy specification and give examples of what-if analysis.

3.5. Related work 45

Several policy Datalog-based languages, such as SecPal [BFG10], Binder [DeT02], SD3 [Jim01],

RT [LMW02] and Cassandra [BS04], have been proposed for distributed access control poli-

cies modeling. SecPal, for instance, is a simple yet very expressive language: it can express

many common policy idioms using constraints, controlled delegation, recursive predicates and

negated queries. All these declarative languages, being based on a monotonic semantics, are

not especially well suited for representing dynamically changing distributed policies. Recent

research addressed these limitations by extending Datalog to include notions such as updates

and persistency, but these features have an operational semantics outside Datalog, which may

cause semantic ambiguities and increases the complexity of the language and its interpreta-

tion, [NR09, Mao10]. Dedalus [AMC+11] is an extension of Datalog with an explicit notion of

time for expressing the dynamics of distributed systems. However, dealing with time explicitly

is not always necessary. The framework that we have described is more expressive than any of

these Datalog-based languages, as it can include higher-order features.

Among the languages for distributed access control, we can also also mention XACML [OAS13]

as a general language for access control policy specification. However, we believe a general

access control language should come with a well-defined access control model and a sound

formal semantics. The language designed by Jajodia and colleagues in [JSSS01], known as

Flexible Authorization Framework, FAF, tries to balance expressivity and performance. It allows

users to specify, together with the authorizations, the policy according to which access control

decisions are to be made. A set of conflict resolution operators is proposed, to disambiguate

among conflicting policy decisions.

With respect to policy composition, a number of works have a close relationship with the

formalization presented in this thesis. Policy composition is addressed in [BVS02] through an

algebra of composition operators that is able to define union, intersection, policy templates,

among other operations. The operator definitions can be adapted to several languages and

situations, since their definition is orthogonal to the underlying authorization language. The

work presented in [WJ03b] extended Bonatti et al.’s algebra with negative authorizations and

non-determinism, features that our rewrite-based framework supports naturally . Another

alternative for composing access control policies is implemented by the Polymer system [BLW05]

46 Chapter 3. A unified access control meta-model for distributed environments

which supports the reuse of policies treated as first-class objects in the language. The formal

semantics of Polymer is based on a variant of the lambda calculus and some higher-order

features are supported similarly to our work (Policies may be modified with new actions to be

executed when some security event is triggered, in a sort of higher-order composition).

Dougherty et al. [DFK06] present a model for formal analysis of access-control policies in their

dynamic environments. In particular, they propose a new mathematical model of policies,

their environments, and the interactions between them. Policy analysis is provided using a

combination of relational reasoning and temporal reasoning. A unique feature of their model is

that it separates the (static) policy from its (dynamic) environment and this allows for analysis

applied to the static policy alone.

Elisa Bertino et al [BCFP03] propose a formal framework for reasoning about different access

control models. Their framework is logic-based and can capture discretionary, mandatory, and

role-based access control models. Each instance of the proposed framework corresponds to a

C-Datalog program, interpreted according to the stable model semantics. The authors show

that checking for structural subsumption/equivalence between different access control models

is decidable, however access request equivalence is not.

There are also proposals for analyzing policies based on description [ZHLL05] or modal log-

ics [Mas97]. Both of them provide a formalization of role based access control, and show how

tableau-based decision methods can be used for consistency checking of policies, evaluating

access requests and verifying policies against security properties.

Chapter 4

Controlling access in collaborating

component systems

Although providing clear benefits to users, organizations and society, cooperation introduces

new challenges in the governance of data and especially in the control of its usage. In fact,

information gathered by cooperative systems is distributed, i.e. physically located on different

hosts, and heterogeneous, i.e. coming from sensors and internal databases as well as from public

sources like blogs and social media. Moreover, access control policies are typically managed

independently and maintained by different organizations that might wish to retain control over

their resources. The trust of parties, their willingness to collaborate and thus the added value

of the collaborative system all depend on offering contributors appropriate control over the

resources they share.

We present in this chapter our solutions to two particular problems.

The first concerns the specification of authorizations for inter-operable web services, as de-

scribed in Section 4.1. In this context, a particularly difficult case occurs when a service

invokes another service to satisfy an initial request since, even though the user had the rights

to access the original service, he/she might not have the permissions to access the invoked

services, leading to indirect authorization errors.

47

48 Chapter 4. Controlling access in collaborating component systems

The second problem is related to data coming from multiple, heterogeneous information sources,

which are processed and fused into new pieces of information that can be, in turn, further

processed by other entities participating in the cooperation. Controlling the access to such

evolving and variegated data, often under the authority of different entities, is challenging.

The solution we propose is described in Section 4.2.

4.1 Service Oriented Architecture dependencies

Nowadays organizations increasingly employ distributed systems in order to improve their ser-

vice performance. Web services, which are a form of distributed system architecture, seem to

become the preferred implementation technology for realising the integration and interaction

between various systems in Internet and Intranet environments. They also offer many bene-

fits over other types of distributed computing architectures, such as maximum service sharing,

reuse and interoperability. The reference paradigm as of now is the Service Oriented Archi-

tecture (SOA) [PG03], in which applications can be given a standard interface and stored as

reusable units for composition. SOA does not require the integration of components and code

into one computing environment; instead, it requires the specification of data exchanges so

that the final result can be produced by exploiting the results of the cooperating services. SOA

subsumes all the problems and issues of distributed computing such as non-determinism, com-

munication, or synchronization, while adding a number of additional problems in particular

related to security. Typically, SOA is based on web services standards which use XML as

the communication format. The relevant standard for access control is the Security Assertion

Markup Language (SAML) [Hug05] which provides a mean for exchanging security information

across domain boundaries and can be combined with both SSO solutions for authentication

and the eXtensible Access Control Markup Language (XACML) for authorization. While the

SAML specification is independent of the kind of assertions that can be made, many instances

include the specification of an identity, i.e. an entity authenticated within a given domain in

the federation.

4.1. Service Oriented Architecture dependencies 49

As a consequence of this and as explicitly suggested in [Hug05], most available implementations

of access control enforcement mechanisms based on SOA relate access control decisions to the

identity of the requester. On the one hand, this simplifies accountability since SAML assertions

carry identity information that allow for tracking who is getting access to what. On the other

hand, it complicates the authorization process since the identity information in the SAML

assertion must be used to retrieve the attributes associated to the identity of the requester

which are relevant to the evaluation of the authorization conditions in the access control policies.

This may be very difficult in a federated system because of the authorization problem related

to access dependencies.

Dependability refers to the property of a system by which some trust can be placed on the

delivered service. Since SOA systems are usually obtained by composition of simpler services,

dependability is the result of the capability of the component services to deliver certain results

and the way these results are exchanged among the services. This aspect is particularly im-

portant when security properties come into the picture and authentication or authorization of

users with respect to the integrated services must be enforced.

It is important to notice that specifying authorization conditions across different domains is

significantly more complex than federating identities. To understand why this is the case,

consider the situation in which a service A needs to invoke another service B to complete its

computations. In this situation, even though a subject had the rights to access service A, it

might not have the permissions to access service B. The problem is that, even if the services

belong to the same federation for which the subject has been authenticated, its attributes are

relevant to the evaluation of the access control policies in the domain of service A but they may

be unknown to the domain of service B since the access control policies of the two services were

designed autonomously and expressed in terms of different sets of attributes. This situation is

an instance of the access control problem in presence of transitive dependencies, see e.g., [LK07].

To overcome this problem, a possibility is to give full access rights to services, but this violates

the least privilege principle and allow to circumvent the intent of access policies, thereby paving

the way to security exploits. In addition, when data from service A is stored in service B, it

50 Chapter 4. Controlling access in collaborating component systems

may be possible for users to circumvent the intent of the access control policy of service A

by reading data from service B. In general, this kind of errors are difficult to prevent through

testing once the federated system has been deployed, because of the large number of possible

execution scenarios from which one must select the few that give rise to unsecure situations.

4.1.1 Synthesis of our approach

In our work, we focus on a particular class of federated systems, called Enterprise Information

Portals (EIPs). EIPs enable companies to unlock internally and externally stored information

while providing users with a single access point to personalized information needed to make

informed business decisions [ST98]. One hallmark of enterprise portals is the de-centralized

content contribution and management, which keeps the information always updated. Another

distinguishing characteristic is that they cater for customers, vendors, and others beyond an

organization’s boundaries. This contrasts with a corporate portal which is structured for roles

within an organization. EIPs provide a secure unified access point, often in the form of a

web-based user interface, and are designed to aggregate and personalize information through

application-specific portlets. Roughly, an EIP allows for integrating information, people, and

processes across organizational boundaries in a manner similar to the more general Web Por-

tals. The notion of EIP is a widely adopted solution to the question of how to integrate and

incorporate many different and possibly heterogeneous systems—which are generally indepen-

dently designed and developed—while allowing for seamless access. EIPs are used in all kinds

of companies, from multinationals to Small Enterprises, but also in public organizations such

as governments, schools, and hospitals.

We focus on EIP where the topology of the system (i.e. how the integrated services may invoke

each other) is known and fixed and we pay particular attention to the authorization problem

arising from the presence of transitive dependencies. Our goal is to ensure that the global policy

is consistent with those of the individual services (according to the principles of autonomy

and security discussed above) and to avoid the authorization problem related to transitive

4.1. Service Oriented Architecture dependencies 51

Figure 4.1: Access control with a mediation service

dependencies. Implementations of EIPs adopt the SOA paradigm by using web services;1 we

can thus check the practical applicability of our ideas and implement enforcement mechanisms

following SOA best practices by building on top of available FIdM platforms.

We first develop a framework for the modeling of access control policies for EIPs. Follow-

ing [Bro08], the EIP is the ideal place where to locate the policy enforcement point which,

together with a module for messaging, provides the interface to both users and the different

services protected by their own authorization policy. We call this module mediation service (see,

Figure 4.1). The mediation service can enforce policies governing access to its own interfaces,

since the services do not directly communicate with each other but they communicate via the

interfaces provided by the mediation service. In this way, it can authenticate the component

trying to gain access and check component’s authorization to use the mediation service. It is

the ideal place where to keep track of the selection of the appropriate policy to enforce as well

as to keep track of the transitive dependencies.

To exemplify our approach, we consider a case study based on a research center that has

developed an IT solution for authorization management of its researchers travel orders (hotel

reservation, transportation, and other associated expenses when traveling to a scientific event).

The research center is composed of 4 departments [Figure 4.2]:

• Secretary’s Office (SEC) receives the requests from the researchers, makes an estimation

1G. Phier. “A Portal May Be Your First Step to Leverage SOA.” Available at
https://www.gartner.com/doc/485862/portal-step-leverage-soa.

52 Chapter 4. Controlling access in collaborating component systems

Figure 4.2: Research center travel authorization management schema

of the costs and creates the authorization request;

• Administrative Department (ADD) analyzes and validates the budget requested and ap-

proves the authorization request;

• Accounting Department (ACD) manages the research center’s budget;

• IT Department (ITD) manages historical data of researchers’ travels.

In this setting, a researcher (Subject) who wants to travel to a conference needs to contact

the secretary for the accommodation and travel bookings and the payment of the conference

registration fees. The secretary (Initiator) then creates a costs estimation and generates an

authorization request, which is forwarded to the team leader or the person in charge of the

demanded budget. Before validating an authorization request, the team Leader (Approver)

must check if the researcher has not yet exceeded his quota of traveling by asking the IT

department for his travel history, and check if the estimated costs are not too high by contacting

the accounting department. Once the decision taken (validation or refusal), the answer is

4.1. Service Oriented Architecture dependencies 53

Figure 4.3: Research center travel authorization transitive calls schema

returned to the secretary for notification to the researcher and the updating of the system.

This scenario is illustrated in Figure 4.3.

Technically, we develop our approach by extending the ORganization Based Access Control

(OrBAC) model of [KBB+03]. OrBAC combines concepts like roles, temporal authorizations,

obligations, and recommendations. It introduces a new dimension to policy specification (in

addition to roles and groups) that is useful for the exchange of policies between different entities.

The main concept of the model is the notion of organization, which provides scopes to policies.

Each security policy is defined for and by an organization and the specification of the policies

is parametrized by the organization so that it is possible to handle simultaneously several

security policies associated with different organizations. The model is based on first-order logic

and uses Datalog as specification language. Conflicts are solved by different approaches (see

e.g. [ZZ08, CCBG07, Miè05]): one can adhere to conditions (or guidelines) which help to avoid

conflicts, or priorities can be assigned to decisions.

Even if OrBAC improves the management of the security policy and reduces highly its com-

plexity, it is partly limited since it is not adapted to distributed and interoperable systems. As

security permission rules take a single referring organization as a parameter, it is not possible to

represent rules that involve several organizations. Consequently, OrBAC is not well-adapted for

54 Chapter 4. Controlling access in collaborating component systems

organization(s,org) subject s belongs to organisation org
belong-to(sv, org) service sv belongs to organisation org
permission(org,cat,act,o) category cat can do action act on object o in

organization org
empower(org,s,cat) subject s is assigned to category cat in organization org
authorize(org,cat, act, o) category cat in organization org is allowed to do action

act on object o
is-permitted(s,act,o) subject s requests action act on object o
delegate(org1, cat1, org2,cat2) category cat1 in organisation org is associated to category

cat2 in organisation org2
depends-on(sv1,sv2) service sv1 depends on (uses) service sv2

Table 4.1: Main predicates in the D-OrBAC model

modeling a dynamic, decentralized environment where organizations cooperate while respecting

the authority of each other over its own users and resources.

This Chapter is based on the work published during Worachet Uttha’s PhD thesis in [UBR15,

UBR14, Utt16].

4.1.2 Proposed model

As already mentioned, although the OrBAC model can deal with the specification of policies for

organizations or sub-organizations, the transitive access request is still not solved. In distributed

environments, a subject may be recognized in an organization but it may not be known outside

it. We will introduce the delegation of authority in order to overcome this issue.

OrBAC originally structures subjects into roles as in RBAC: a subject is pre-assigned to a

(set of) roles which in turn are associated with permissions. In order to increase the flexibility

and meet interoperability between organizations, in our approach we structure the subjects

in a general entity called category (as in chapter 3) and the role is considered as a particular

instance of a category. Categories are associated with users on the base of the credentials they

own, and permissions are assigned to each category.

In our extended OrBAC model we have the following main entities:

• Organization and Services : An Organization (denoted org0, org1, . . .) can be seen as

4.1. Service Oriented Architecture dependencies 55

an organized group of activities (in the research center, we may have the administrative

department, the accounting department, etc.) or it can be seen as an organized group of

services (i.e. a web portal). A service inside an organization is denoted by sv0, sv1, . . .

• Subjects and Categories : The entity Subject (denoted s0, s1, . . .) is an active entity,

(i.e. a user or an organization). Subjects that have the same attributes’ value or satisfy

same conditions belong to the same group, called Category (denoted cat0, cat1, . . .) and

have the same permissions.

• Objects and Actions2 : Objects (denoted o0, . . .) are passive entity such as data

files, researcher’s records, etc. Action entities (denoted act0, act1, . . .) contain computer

actions such as ”read”, ”write”, ”send” or ”print”.

The access control policy is modelled using the predicate Permission(org, cat, act, o) that

specifies the permissions between categories, actions and objects, while the evaluation of re-

quests is modelled using the predicate Is permitted(s, act, o) that allows to derive permissions

between subjects, actions and objects. The Subject-Category assignment is modelled using the

predicate Empower(org, s, cat) (see Table 4.1)

In the organization org, a subject s has a permission to perform an action act on an object o if

(i) s is associated to a category cat in the organization org and (ii) the organization org grants

the category cat the permission to perform the action act on the object o, then an request of the

subject s to perform the action act on the object o is accepted. The derivation of permissions

is modelled by the following rule:

∀org, ∀cat, ∀s,∀o, ∀act,

Permission(org, cat, act, o) ∧ Empower(org, s, cat)← Is permitted(s, act, o) (4.1)

Subject, action and object attributes are modelled by a set of binary predicates having the form

attribute name(entity, value). We recall that the subject’s attributes are meaningful in relation

2For easing the notation, we do not consider the abstraction of objects and actions as in the original OrBAC
model, but this can be easily accommodated by adding 2 extra entities and the corresponding relations.

56 Chapter 4. Controlling access in collaborating component systems

Figure 4.4: Delegation graph for the research center

with the organization he/she belongs to, and the same holds for the objects of the system.

We can model the Subject-Category assignment according to the attributes of the subject as

follows:

∀org, ∀cat, ∀s,

Empower(org, s, cat)← org attr1(s, val1) ∗ org attr2(s, val2) ∗ · · · ∗ org attrn(s, valn) (4.2)

where * can be disjunction(∨), conjunction (∧) or a mixture of both.

Delegation or category mapping As our system is distributed across several organizations,

each having a different authorization domain, we have defined a delegation policy specifying

the mapping of categories belonging to different authorization domains. This is formalised by

a delegation graph in the form of Directed Acyclic Graph (DAG) which describes the way a

category may be delegated (see Fig. 4.4). Each node represents a service authorization domain

which can delegate categories (and thus permissions) to another service authorization domain.

This suppose that an agreement on a set of categories that are allowed to be delegated has

been previously reached between the different participants.

In the presented research center scenario, we have restricted ourselves to the simple association

4.1. Service Oriented Architecture dependencies 57

of categories (one-to-one) because of the difficulty in reaching a consensus of the association of

categories (or attributes) between two or more domains. This problem is considered difficult

because organizations may have categories of different names but with the same meaning or

have categories with the same name but not the same meaning. In the related works on the

association of attributes from one domain to another, e.g. [HFK+15, LTL10], this is usually

modeled as a one-to-one association, that is, an attribute to an attribute. In our model, the

association is more general in the sense that a category can be defined as a combination of

attributes and related to a category in a different domain. One could imagine a more generic

delegation graph that models the delegation of multiple categories, that is an association of

a tuple of categories with another tuple of categories. We can also consider logical operators

for the combination of categories in the tuple and thus create a language expressive enough to

specify a wide range of delegations. However, even if theoretically possible, this seems quite

difficult to be used in practice due to the complexity of finding an inter-domain agreement.

We do not take into consideration here the process of reaching this agreement. We assume

that the delegation graph is statically defined beforehand according to a consensus between

the different participants. It will be consulted by the delegation module to decide if the access

request is accepted, after the access control application will have detected that a subject is

invoking a service from another organization.

We model the delegation graph as a DAG since a user could possibly take advantage of cycles

to get more privileges than he/she is allowed to. Moreover, unintended cycles could change

the semantics of system authorization. When a cycle issue exists, we can treat it either at

design-time, i.e. directly in the delegation graph, or at run-time, when the request is executed.

Notice that, even in the presence of a cycle at design-time, this does not mean that the cycle is

necessarily present at run-time, this depends on the access request that is executed. If there is

a run-time cycle, we can specify a delegation tree for each execution path, so that the cycle is

split into several paths and thus broken. Moreover, we can eliminate a cycle by defining more

finely the domains and consider them as clusters of services. In this case, the nodes of the

graph would represent services while the arcs represent category delegations from a service in

a domain to a service in another domain.

58 Chapter 4. Controlling access in collaborating component systems

In addition, in the real world, companies or organizations are often hierarchical (eg military

hierarchy, seniority at work, etc.). We may assume that there is a hierarchy between domains

and authorize the delegation only from the top of the hierarchy downwards, that is a domain

can only delegate attributes to the domains below itself. If a (total) hierarchy is defined, then

no loops are possible in the delegation chain.

The formal representation of the delegation graph is a logical predicate that takes four pa-

rameters Delegate(org1, cat1, org2, cat2) that means the category cat2 from the organization

org2 delegates the category cat1 to the organization org1. The delegation graph is of crucial

importance to determinate access request decisions in the case of transitive service invocation.

The derivation of permissions in the case of a service invoking another service outside of its

organization is modeled by the following rule:

∀org1,∀org2,∀cat1,∀cat2,∀s,∀o,∀act,

Empower(org2, s, cat2) ∧ Permission(org1, cat1, act, o) ∧Delegate(org1, cat1, org2, cat2)

← Is permitted(s, act, o) (4.3)

The rule above means that a subject s has a permission to perform an action act on an object

o if (i) s is associated to a category cat2 in the organization org2, (ii) a category cat2 from

the organization org2 is mapped to the category cat1 in the organization org1 and (iii) the

organization org1 grants the category cat1 the permission to perform the action act on the

object o.

Following the original OrBAC specification, we use Datalog as the specification language in

which to express our model. For evaluating an access request, firstly the system determines

the subject’s organization and evaluates his attributes in order to resolve a category for the

subject. Then, it checks the organization who owns the requested resource. If the subject’s

organization is different from the resource organization, a delegation step is needed in order

to determine her/his permissions. If transitive dependencies are present, the delegation chain

is computed. The query returns True if access rights are correctly propagated through the

4.1. Service Oriented Architecture dependencies 59

chain. It returns False if a denial of access is found somewhere in the path of involved services.

Details on the pyDatalog [Car14] implementation and examples of access queries can be found

in [Utt16, UBR14].

Properties of the model As a consequence of mapping authorization queries to Datalog

queries, we can study the problem of answering authorization queries by reusing well-known

results about Datalog (see [CGT89] for an overview on Datalog and [UBR15] for details on

properties of our model). The main advantages of our analysis technique are two. First,

there is no need to implement a prototype to experiment with the system behavior since it is

possible to perform the simulation of the system from an abstract design before its deployment;

thereby avoiding the difficulties of testing distributed applications and cutting down the costs

of correcting errors on the implementation when the system is already in operation. Second,

sometimes the code of certain integrated services may not be easily accessible or may cost

money to be invoked; it is indeed desirable to be able to build an abstract specification that

can be used to predict (some of) the outcomes of the system without incurring in extra costs

for testing. Additionally, the environment in which the various services will be run may not be

easily accessible; thereby making the testing of the composed system very difficult, if possible

at all.

Proposition 4.1 In our model,

• authorization queries admit only finitely many answers;

• answering authorization queries always terminates in polynomial time.

Further security properties, like the consistency of an access policy modeled through our frame-

work, can be verified by exploiting a rewrite specification (following the ideas of chapter3).

In [Utt16] automated analysis is performed by using well-known rewriting tools such as AproVe [GSKT06]

and CiME [CPU+10] on two case studies, the research center detailed here as well as a medical

center scenario.

60 Chapter 4. Controlling access in collaborating component systems

Policy enforcement: extension of XACML architecture with delegation module In

order to support the enforcement of the access control policies we have defined, we propose an

extension of the XACML architecture. The extension consists in incorporating the construction

of the delegation graph in the policy information point of the XACML architecture for keeping

track of delegated authorization rights in transitive chains of service invocations. We have

implemented the architecture on top of the WSO23.

Figure 4.5: XACML Architecture with Delegation Graph Handling

In the following, we briefly discuss the interactions among the various XACML modules, as

reported in Figure 4.5. The user’s access request is intercepted by the Policy Enforcement Point

(PEP), Step 1. The request and user’s attributes are forwarded to the Policy Decision Point

(PDP), Step 2, which asks the Policy Information Point (PIP) for additional informations about

the subject. If the PDP determines from the policy and request that the user’s organization is

different from the object’s organization, then delegation of category is needed. Then, the PIP

will ask the delegation module, which contains the delegation gaph and the history of previous

delegations, to compute a category for the user in the new organization. The delegation module

first check the history of delegations of the user u making the request. If the category has been

previously delegated to u in this organization, the module returns it to the PDP. Otherwise, it

3http://wso2.com an open source middle-ware platform for developing web service solutions.

4.1. Service Oriented Architecture dependencies 61

will check the mapping of the user’s category in the resource’s organization from the delegation

graph and then return it to PDP (Step 3-5). The PDP loads the XACML policy of the

organization owning the resource from the Policy Administration Point (PAP) corresponding

to the user’s access request (Step 6-8). The PDP makes a decision and returns it to the PEP

(Step 9). If the answer is positive, the PEP forwards the request to the transitively invoked

service, otherwise the PEP throws an access denied exception (Step 10).

Using the presented XACML architecture, we have implemented and tested the case study

described in the previous section as well as a case study on a clinical service management

scenario [UBR15, UBR14].

4.1.3 Related Work

Nowadays, most web services in a SOA implementation use Identification-based access control,

often with Federated Identity Management. This seems a natural solution, however there

are several problems such as manageability, system evolution, transitivity and responsibility

tracking (see [LK07] for a discussion on this). A reason for these difficulties is that FIdM does

not address the federation of access policies which is much harder than federating identities.

In our work, we tackle the transitivity problem and we propose to solve it using an extension

of a well-known standard as XACML. The transitive access problem occurs frequently in Web

Service based collaborative systems since each organization provides various services that are

protected by its own security policy. In [KL10] the authors propose a solution for transitive

access problem by modeling the problem into authoriZation Based Access Control (ZBAC).

Instead of the standard FIdM architecture, where the user identifies using his/her credentials

via an Identity Management System in order to have access to a service, in ZBAC the user

interacts directly with a policy engine which returns the set of authorization concerning the

user upon receiving the his/her identity. Then, the user makes the request of a service including

in the demand the rights he/she wants to exercise. Even if this approach allows one to avoid

the problems associated with distributed identity management, it cannot be deployed using the

most commonly adopted FIdM architecture. Moreover, it shifts at least part of the burden of

62 Chapter 4. Controlling access in collaborating component systems

dealing with (a long list of) authorizations onto the user, who has to present the appropriate

authorization to the server when making a request.

The work in [EBA+07] presents an access control model for SOA and its enforcement via an

authorization verification service which is part of the IAM architecture. Access in the context

of service composition, technically implemented using a BPEL engine, is briefly discussed and

modeled as the sum of the access restrictions of the invoked web service operations. The

solution we provide is at a more abstract level and is independent from the process execution

environment. We develop a standard XACML architecture with an extended PIP, which can

be easily integrated in a classical FIdM framework.

In [CON06] multiple policy domains and dynamic delegation of authority are considered. How-

ever, the authors do not specifically consider the problem of access request evaluation and access

decision making in the case of transitive calls. The work in [SIM+07] addresses the problem

of access control for web service composition. The access policies are specified in Pure-Past

Linear Temporal Logic (PPLTL) that allows to exploit the history of service invocations to

make access control decisions. Unfortunately in practice the specification of policies in PPLTL

is not very friendly for security designers. Their access control model is implemented using a

supply chain management (SCM) application.

[SYTB13] and [MOPB06] also discuss access control in web service composition. Nevertheless,

their approach is different from ours. They consider the issue of service unavailability along

a pathway to a target service, and they solve it by invoking dynamically alternative services

belonging to different domains.

Several extensions of the OrBAC model have been proposed recently in order to specify secu-

rity rules for intra- as well as inter-organizations. For instance [YD09] have proposed a new

access control framework for inter-Organizational Web services (PolyOrBAC). The authors

model permissions, prohibitions and obligations in timed automata to verify properties such

as reachability and correctness. They consider the case of a service requested remotely from

a different organization. In this case, in order to authorize a user from a different domain to

access a service, a particular role is associated to a virtual user, then a specific rule defined

4.2. Data Fusion processes 63

as a circumstance (context relation in OrBAC) is applied. However, they do not address the

transitive access problem for dependent services, nor use requester’s credentials for computing

the rights of access.

4.2 Data Fusion processes

Cooperative systems often require large amounts of information gathered from a variety of

sources, possibly controlled by different authorities, to properly function [CF18, TZG+13].

This information is typically processed and fused to create “new” data objects that can be

further processed and shared to provide new services.

To ensure a high level of both security and business continuity in cooperative systems, fine-

grained access control at the data level is needed. To implement such a level of granularity,

one needs to keep track of (i) the evolution of data in the cooperative system, (ii) the security

requirements and policies on these data, and (iii) past accesses to the data.

Unfortunately, traditional access control models are not expressive enough to cope with the

security needs of multi-source cooperative systems. To address this gap, a range of novel access

control models have been proposed in the last years. On the one hand, we can find history-based

access control models [BDF05, EAC98, KNS08, SS04, TFS18] that account for the execution

history (i.e., past accesses) for access decision making. These models have been further extended

by exploiting provenance information about data objects and, thus, also accounting for their

evolution [CKKT11, LB13, NPS13, SPNS16]. On the other hand, we can find policy frameworks

for data fusion [dHZ16b, ZJW06] that aim to determine which access restrictions should be

imposed on data objects based on the restrictions on the data used for their creation. However,

to date there is no access control model that allows for the specification and enforcement of

access constraints accounting for both the evolution of data objects and access restrictions on

the underlying data fusion processes. Moreover, the aforementioned works usually provide ad-

hoc policy languages to specify provenance-based access constraints. Therefore, these models

are not supported by existing implementations, thus hindering their adoption on a large scale.

64 Chapter 4. Controlling access in collaborating component systems

UAV
images

data
gathering

image
gathering

movement
analysis

riot analysis

sentiment
analysis

movement
reportmotion

data

tweets

blogs

sentiment
report

riot
report

Figure 4.6: Data flow representing the generation of riot reports

4.2.1 Synthesis of our approach

In this work, we address the complex problem of access control for secure data fusion in co-

operative systems. In particular, we present a unified access control framework that relies on

data provenance to account for both the evolution and fusion of data objects.

We illustrates the challenges of regulating access to sensitive resources in cooperative systems

through a running example within the military domain inspired from [dHZ16b].

Our scenario is set in Petros, an unstable country controlled by a military dictatorship. In

recent years, protests against the dictatorial regime governing Petros have considerably grown.

In response to protests, the government has mobilized the army, leading to an escalation of

tension. This situation has attracted the attention of the international community and the

NATO has created a Joint Task Force (JTF), named ALPHA, with the mission to restore peace

in the territory. The JTF is a multinational operation composed of combat and intelligence

units belonging to NATO countries, including the Neverland (NL), Eiseight (EE) and Noway

(NO). As an illustrative scenario, we focus on a “hearts and minds” campaign within the JTF.

A Neverland unit of the JTF is appointed to gather intelligence in a village; before approaching

the village, the team leader of the unit needs information about possible riots in the village.

Figure 4.6 illustrates the process to gather intelligence in order to produce a riot report. The

leader of the Neverland unit contacts an intelligence officer of the Noway army to get intelligence

on the village. The intelligence officer uses an analysis tool to assess the threat of riots in the

mission area using information from different sources. Riots are often characterized by crowds

4.2. Data Fusion processes 65

of people in a certain area. To this end, the intelligence officer requests a movement report

to the Command and Control Centre of the Neverland army. To assess the movement in the

area, the latter requests UAV images and motion data collected by UAV and motion sensors

deployed in the area by the Eiseight army. The intelligence officer also requests a sentiment

report from an OSINT analyst of the Noway army. The OSINT analyst runs crawlers on open

source blogs and tweets concerning the mission area and its inhabitants. The OSINT analyst

provides the intelligence officer the sentiment report. The intelligence officer processes the

collected information and fuses them in a riot report, which is sent to the team leader.

This scenario shows that international cooperation and orchestration is needed to ensure the

success of the mission. In particular, information from heterogeneous sources should be collected

and fused to enable situation awareness. Information sources, however, can be under the control

of different authorities, and each authority might impose constraints on how and by whom its

data can be accessed and processed. For example:

1. The Noway army might require a riot report to be accessed only by users with rank

officer that participate to a certain mission and belong to the army of a country that has

contributed to the creation of the requested report.

2. The Noway army might also require a riot report to be accessed only by users that are

authorized to access all artifacts used for its creation.

3. The Noway army might impose that a riot report is created by a different user from the

one who created the sentiment report used as input for the riot report.

Traditional access control models are not expressive enough to capture the access constraints

above. We need policies that have “knowledge” about the process used for the creation of

the intermediate and final artifacts. To specify those access constraints, we have identified the

following criteria that a multi-source cooperation model should encompass:

C1: Multi-Perspective. Access constraints should not only account for the characteristics of

the user requesting access (e.g., identity, role, rank, mission) but also for the characteris-

66 Chapter 4. Controlling access in collaborating component systems

tics of the object to be accessed (e.g., type, security level), for the action to be performed

and for the relations between these elements (policy 1).

C2: Artifact Evolution. Access constraints should account for the creation and evolution of

objects within the system to determine the access permissions to be granted (policy 1).

This includes the ability to constrain access permissions based on users’ past actions as

well as dynamic Separation and Binding of Duty (SoD/BoD) constraints (policy 3).

C3: Input Objects’ Policies. Access constraints should account for the policies associated

to the object(s) used for the generation of the requested object (policy 2).

In the next section, we present an access control model able to address the criteria above, based

on the work published in [BBU17, BdHZ19].

4.2.2 Proposed model

To model and reason over provenance information, we adopt the Open Provenance model

[MCF+11], which provides a core representation of provenance. Provenance information is

usually represented as a labeled direct graph (called provenance graph) that expresses how a

certain object was derived. A node of a provenance graph can be: an artifact, which is used to

denote an immutable piece of state that can have a physical or digital representation; a process,

which is used to denote the actions performed on an artifact and resulting in a new artifact; or

an agent, which is used to denote the entity controlling or affecting the execution of a process.

Hereafter, we use N , D, P and S to denote the sets of nodes, artifacts, processes and agents,

respectively (with N = D∪P∪S and D,P ,S pairwise disjoint). Moreover, we use R to denote

the set of role labels, which define the function of an agent or an artifact in a process.

The edges of the provenance graphs capture three types of role labeled casual dependencies (top

of Table 4.2): used ⊆ P×D×R captures, for processes, the artifacts they use; wasGeneratedBy ⊆

D × P × R captures which artifacts are generated by which processes; wasControlledBy ⊆

P × S × R captures, for processes, which agents control them. To consider a specific role or

4.2. Data Fusion processes 67

ignore the role label of a casual dependency T , we respectively use T r(n, n′) , T (n, n′, r), where

r is a role label, and T ◦(n, n′) , ∃r ∈ R : T (n, n′, r) (for all n, n′ ∈ N).

The Open Provenance model includes several additional dependencies that can be derived from

a provenance graph by composing dependencies (we use “;” to denote composition of casual de-

pendencies). wasTriggeredBy , used◦;wasGeneratedBy◦ captures that the execution of a process

was triggered by another process and wasDerivedFrom◦ , wasGeneratedBy◦; used◦ captures that

an artifact was derived from another artifact. Transitive closure wasDerivedFrom+ captures,

for an artifact, all artifacts used to derive it, possibly indirectly. Similarly, wasTriggeredBy+

captures, for a process, all its direct and indirect triggering processes. The later is also

helpful to capture indirect use and generation of artifacts: used+ , wasTriggeredBy+; used◦

captures, for a process, all artifacts it indirectly depends on, whereas wasGeneratedBy+ ,

wasGeneratedBy◦;wasTriggeredBy+ captures, for an artifact, all processes leading up to its gen-

eration.

Aiming to use provenance information to specify access requirements, we extend the Open

Provenance model. For an artifact, we want to be able to refer to the role another artifact played

in its creation. We thus label the Open Provenance model relation wasDerivedFrom◦ by making

the role explicit: wasDerivedFromr , wasGeneratedBy◦; usedr (for all r ∈ R). We also introduce

two custom dependencies that use a specific role owner ∈ R to capture artifact owners and

contributors. Following the classic assumption in discretionary access control where subjects

own the objects they create [HRU76b], we say an owner of a process that generates an artifact

owns that artifact: owns , wasGeneratedBy◦; wasControlledByowner. Actors owning any process

indirectly involved in the creation of an artifact are considered contributors: contributedTo ,

wasGeneratedBy+; wasControlledByowner. These relations are formally defined in Table 4.2.

Following the graphical notation defined in [MCF+11, MM13], we represent artifacts using

circles, processes using rectangles and agents using octagons. Edges are annotated with the

type of dependency and the role of artifacts and agents in processes. It is worth noting that the

nodes in a provenance graph represent instances of agents, artifacts and processes. For instance,

Figure 4.7 represents that: motion data md24 have been gathered from motion sensor 1 and

68 Chapter 4. Controlling access in collaborating component systems

EE

Motion
Sensor 2

dg30
(data gathering)

used(sensor)

md24
(motion data)

wasGeneratedBy(data)

UAV1 ig80
(image gathering)

used(sensor) ui68
(uav image) wasGeneratedBy(image)

wasControlledBy(owner)

wasControlledBy(owner)

ma250
(movement analysis)

used(data)

used(image)

mr231
(movement report)

wasGeneratedBy(report)

ra287
(riot analysis)

NL

wasControlledBy(owner)

wasControlledBy(owner)

used(movement)

sr123
(sentiment report)wasGeneratedBy(report)

used(sentiment)

sa152
(Sentiment analysis)

Blogs

Tweets

used(blogs)

used(tweets)

NO

rr124
(riot report)

wasControlledBy(owner)
wasGeneratedBy(report)

Motion
Sensor 1 used(sensor)

AlicewasControlledBy(analyst)

ui67
(uav image) used(image)

wasGeneratedBy(image)

Figure 4.7: Provenance graph corresponding to the motivating example

Basic casual dependencies
used(p : P , d : D, r : R)
wasGeneratedBy(d : D, p : P , r : R)
wasControlledBy(p : P , s : S, r : R)

wasTriggeredBy(p1 : P , p2 : P) , ∃d ∈ D, r1, r2 ∈ R : used(p1, d, r1) ∧ wasGeneratedBy(d, p2, r2)

wasDerivedFrom◦(d1 : D, d2 : D) , ∃p ∈ P , r1, r2 ∈ R : wasGeneratedBy(d1, p, r1) ∧ used(p, d2, r2)
Multi-step casual dependencies

used+(p : P , d : D) , ∃pi ∈ P , r ∈ R : wasTriggeredBy+(p, pi) ∧ used(pi, d, r)

wasGeneratedBy+(d : D, p : P) , ∃pi ∈ P , r ∈ R : wasGeneratedBy(d, pi, r) ∧ wasTriggeredBy+(pi, p)

wasTriggeredBy+(p1 : P , p2 : P) , wasTriggeredBy(p1, p2) ∨ ∃pi ∈ P : wasTriggeredBy(p1, pi) ∧ wasTriggeredBy+(pi, p2)

wasDerivedFrom+(d1 : D, d2 : D) , wasDerivedFrom(d1, d2) ∨ ∃di ∈ D : wasDerivedFrom(d1, di) ∧ wasDerivedFrom+(di, d2)
Custom casual dependencies (not in the Open Provenance model)

wasDerivedFrom(d1 : D, d2 : D, r : R) , ∃p ∈ P , ri ∈ R : wasGeneratedBy(d1, p, ri) ∧ used(p, d2, r)

owns(s : S, d : D) , ∃p ∈ P , r ∈ R : wasGeneratedBy(d, p, r) ∧ wasControlledBy(p, s, ‘owner ’)

contributedTo(s : S, d : D) , ∃p ∈ P : wasGeneratedBy+(d, p) ∧ wasControlledBy(p, s, ‘owner ’)

Table 4.2: Casual dependencies in the provenance graph

motion sensor 2 through the instance of the data gathering process dg30; riot report rr124 has

been generated from movement report mr231 and sentiment report sr123 through the instance

of process riot analysis ra287; and so on. For the sake of clarity, in the figure the type of

artifacts and processes is reported in parenthesis.

Policy representation For representing our scenario access requirements, we rely on the

attribute-based access control (ABAC) paradigm, that we extend with provenance-based access

constraints. In ABAC, policies and access requests are defined in terms of attribute name-value

4.2. Data Fusion processes 69

pairs. A query q = {(a1, v1), . . . , (ak, vk)} is a set of attribute name-value pairs. Formally, let

A = {a1, . . . , an} be a finite set of attributes. Given an attribute a ∈ A, Va denotes the domain

of a. The set of queries QA is defined as℘(
⋃n
i=1 ai×Vai) and a query q = {(a1, v1), . . . , (ak, vk)}

is a set of attribute name-value pairs (ai, vi) such that ai ∈ A and vi ∈ Vai . We also assume an

infinite set of variables. Each variable x has a domain Vx ⊆ N .

Example 1 The access request made by the team leader of the Neverland unit can be modeled

as query

qrr = {(subject id,Paul), (subject rank, officer), (subject army,NL),

(subject mission, alpha), (action, read), (resource id, rr124),

(resource type, riot report)}

This query states that Paul, an officer of the Neverland army participating to mission ALPHA,

wants to read the riot report identified by code rr124.

For policy specification, we adopt a language PolA that provides a compact representation

of XACML [OAS13] with the addition of path conditions. For details the reader can refer

to [BdHZ19]. A path condition can be a casual dependency in the provenance graph (as the ones

defined in Table 4.2), or can be constructed from casual dependencies using logical operators

(e.g., ¬, ∧, ∨). As in XACML, a policy can be a decision, either permit (1) or deny (0), a

target policy (t, pol) where the target t defines the applicability of the policy, or a composite

policy ca(pol1, . . . , poln) with ca a combining algorithm. Here, we consider standard combining

algorithms [OAS13]: permit-overrides (pov), deny-overrides (dov) and first-applicable (fa). We

also define policy references, that are used to retrieve policies associated with objects involved

in the query. A policy reference pol ref is an expression that resolves into a uri pointing at a

policy. We do not detail here how to specify and resolve policy references but we simply assume

that a policy reference pol ref yields a function uri : N k → PolA.

Example 2 Consider a policy involving the entities in the provenance graph of Figure 4.7 that

70 Chapter 4. Controlling access in collaborating component systems

includes policy reference4

dov({uri(x, y) |wasDerivedFrom+(resource id, x) ∧ owns(y, x)})

This policy reference can be resolved with a function

uri(x, y)=uri:policies.alpha.jtf.nato.org?resource id=x&agent= y

which encodes a Uniform Resource Identifier (URI) that identifies the policies applicable to the

nodes in the provenance graph that satisfy the given query. The string after the question mark

(?) represents the query component of the URI.

Given an applicable request {(resource id,mr231), . . .} for movement report mr231 , the policy

reference resolves to

dov({uri(md24 ,EE), uri(ui67 ,EE), uri(ui68 ,EE)})

with uri(md24 ,EE) returning the EE policy applicable to motion data, and uri(ui67 ,EE),

uri(ui68 ,EE) returning the EE policy applicable to its UAV gathered images.

For a request {(resource id, rr124), . . .}, it would also consider the NL policy that applies to

mr231 and the NO policy that applies to sr231 .

The policy language PolA allows the definition of three main types of access constraints:

1. attribute-based constraints that define permissions and prohibitions based on subject,

action and object attributes, thus accounting for multi-perspectives in access decision

making (C1);

2. provenance-based constraints that define permissions and prohibitions based on path con-

ditions over the provenance graph, thus accounting for the evolution of artifacts (C2);

4Note that uri(x1, . . . , xn) is considered to bind variables x1, . . . , xn in path.

4.2. Data Fusion processes 71

3. input-dependent constraints that define permissions and prohibitions based on the policies

of the artifacts and processes used (possibly indirectly) in the generation of new artifacts

(C3). These constraints are modeled using policy references pointing to (external) access

control policies identified via a path condition in the provenance graph.

In the following example, we demonstrate how policy language PolA can be used to model the

access control policies underlying our military scenario.

Example 3 The access control policy prr used in our motivating example to regulate the access

to objects of type riot report (policies 1 & 2) can be formalized as follows:

pol rr = (resource type = riot report , dov(polA, polB))

polA = pov(pol1, pol2, 0)

polB = pov(pol3, 0)

pol1 = (subject rank = officer ∧

subject mission = alpha ∧ action = read , 1)

pol2 = (contributedTo(subject army, resource id) ∧

(action = read ∨ action = download), 1)

pol3 = dov({uri(x) | wasDerivedFrom◦(resource id, x)}

Policy prr combines two composite policies using the deny-overrides combining algorithm, one

(polA) specifying access constraints specific to riot reports and one (polB) used to refer to the

policies of the object(s) used for its creation. In particular, polA comprises two policies, pol1 and

pol2, and a default Deny policy (represented by 0).The first policy pol1 encodes an attribute-based

constraint stating that a subject having rank officer in her/his national army and participating

to mission alpha is allowed to read the riot report. Policy pol2 encodes a provenance-based

constraint stating that access to the report is allowed if the subject belongs to (the army of)

a country that has contributed to the creation of the riot report. The notion of contributedTo

is formalized as a path condition over the provenance graph, meaning that the country has

participated to at least one activity in the whole process leading to the creation of the riot

report.

72 Chapter 4. Controlling access in collaborating component systems

Policy polB comprises policy pol3 (and a Deny default policy). In particular, pol3 specifies

an input-dependent constraint in the form of a reference to the (external) policies polx asso-

ciated with the artifacts used in the creation of the riot report, in our case movement report

mr231 and sentiment report sr123 (Figure 4.7). This reference is defined by a path condition

(wasDerivedFrom) on the provenance graph taking as arguments the id of the resource from

the access query, i.e. rr124, and variable x. The policies associated with the movement and

sentiment reports are combined with the deny-overrides combining algorithm. Accordingly, the

subject is allowed to access the riot report if he can access all artifacts used in the creation of

the report.

Policy evaluation Given a set of policies PolA, a set of queries QA and a set of decisions

D, a policy evaluation function is a function [[·]]P : PolA × QA → D such that, given a query

q and a policy pol , its semantics [[pol]]P (q) represents the decision of evaluating pol against q.

For the sake of simplicity, here we assume D = {Permit ,Deny ,NA} (where NA stands for Not

Applicable) but the provided semantics can be easily extended to deal with the Indeterminate

decision supported by XACML [OAS13].

The formal semantics for policy evaluation is defined in [BdHZ19] and follows standard XACML

semantics. We report here only the interesting cases, related in particular to path evaluations.

We evaluate node expressions to sets of nodes, using the evaluation function [[·]]N . When a

variable is used as a node it should always be bound (e.g. in a path expression). If a free variable

x occurs, we assume that it does not match any node, i.e. [[n]]N(q) = {n} and [[x]]N(q) = ∅.

Node expressions could match multiple nodes, as an attribute a may take multiple values in q.

Specifically, attributes are instantiated to the nodes corresponding to the attribute values in

the query: [[a]]N(q) = {n ∈ Va | (a, n) ∈ q}. Targets evaluate to Booleans using the evaluation

function [[·]]T . Similarly to nodes expressions, for evaluating (a, v), we look for any matching

value of a in the request q: [[op(a, v)]]T (q) is True if ∃v′ ∈ Va : (a, v′) ∈ q ∧ op(v′, v), or False

otherwise.

Path conditions evaluate to Booleans using the evaluation function [[·]]C . In particular, we eval-

4.2. Data Fusion processes 73

uate casual dependencies T◦ and Tr considering any possible values for the node expressions:

[[T ◦(node, node′)]]C(q) =

True if ∃n ∈ [[node]]N(q),

n′ ∈ [[node′]]N(q) : T◦(n, n′)

False otherwise

[[T r(node, node′)]]C(q) =

True if ∃n ∈ [[node]]N(q),

n′ ∈ [[node′]]N(q) : Tr(n, n′)

False otherwise

The logical operators (in paths and targets) have their usual interpretation.

Finally, policies evaluate to a decision in D. Policy (t, pol) is not applicable if t does not

evaluates to True; otherwise its decision is that of pol. Policy ca(pol1, ..., polm) is evaluated

by executing the combining algorithm ca on the decisions [[pol1]]P (q) through [[polm]]P (q). The

semantics of combining algorithms is the same as in standard XACML. For policies containing

a policy reference, we define [[·]]P as follows

[[ca({pol ref (x1, . . . , xk) | path})]]P (q) = ca([[pol1]]P (q), . . . , [[polm]]P (q))

where {pol1 . . . , polm} = {uri(n1, . . . , nk) | n1 ∈ Vx1 , . . . , nk ∈ Vxk , [[path[n1/x1, . . . , nk/xk]]]C(q)

= True}

Thus, to evaluate ca({pol ref (x1, ..., xk) | path}), we find any nodes for x1, . . . , xk that make

the path evaluate to True, get the corresponding policies using the policy reference function uri

and combine the decisions for these policies with ca. Note that the order of the policies does

not matter for the combining algorithms we allow. We give an example of policy evaluation

below.

Example 4 Consider the access control policy polrr defined in Example 3 and the access query

q as defined in Example 1. First of all, we have [[(resource type = riot report)]]T (q) = True, thus

74 Chapter 4. Controlling access in collaborating component systems

the policy polrr is applicable for the query q and we have [[prr]]P (q) = dov([[polA]]P (q), [[polB]]P (q)).

For policy polA it is not difficult to see that we obtain [[polA]]P (q) = Permit. For policy polB

we have [[polB]]P (q) = pov([[pol3]]P (q), [[0]]P (q)) = pov(dov([[pol sr]]P (q), [[polmr]]P (q)),Deny) with

pol sr and polmr the policies associated to the sentiment and the motion reports, respectively.

Supposing [[pol sr]]P (q) = Deny as the Netherlands Army did not participate to the creation

of the sentiment report, we have [[polB]]P (q) = pov(Deny ,Deny) = Deny and thus finally

[[prr]]P (q) = dov(Permit ,Deny) = Deny.

Policy enforcement: extension of XACML architecture with provenance module

The evaluation and enforcement of our framework can be realized within existing access control

mechanisms. Specifically, we conservatively extend the XACML reference architecture as shown

in Figure 4.8: in addition to the XACML architecture components, we introduce a Provenance

Module that encompasses: (i) the provenance graph generated from the system logs, (ii) the

definition of casual dependencies, i.e. capturing Table 4.2, and (iii) a provenance reasoner for

evaluating path queries, which are path conditions in which attributes have been instantiated

to the value they take in the request. The Provenance Module is invoked whenever in the

access control policy there is a path condition to evaluate. If the evaluation of a policy requires

evaluating a path condition, the Policy Decision Point (PDP) asks the Provenance Module

to resolve the corresponding path query (corresponding to steps 9 and 10 in the picture).

Recall that our framework supports two kinds of path conditions: (a) Boolean path conditions

(e.g., contributedTo(subject army, resource id) like in policy pol2) and (b) policy reference path

conditions (e.g., pol3 of our example). In the first case, the Provenance Module takes the path

query as input and returns true if there exists a path in the provenance graph that matches

the path query; otherwise, it returns false. Path queries representing policy references are

resolved through a two-step process: first, the module runs a path matching algorithm to

return all entities that satisfy the path query in the provenance graph, and second the policies

associated to these entities are retrieved and returned for evaluation. We have implemented

the Provenance Module in Prolog [Llo84]. This allows us to benefit from the efficient reasoning

capabilities provided by Prolog solvers for path condition resolution rather than relying on an

4.2. Data Fusion processes 75

PIP	

PDP	

Log	

Provenance		
reasoner	

Causal	
Dependency	
defini7on	

Provenance	Module	

provenance	graph	

9.	Path	query	

10.	Answer	

11.	Access	response	

Figure 4.8: Architecture of the provenance-based access control mechanism

ad-hoc algorithm. In particular, we implemented rules both for constructing the provenance

graph from a given access log and for resolving path queries based on the obtained provenance

graph. Intuitively, the first set of rules are used to infer basic casual dependencies (i.e., used,

wasGeneratedBy and wasControlledBy) from the access log, whereas the latter is used to derive

the other standard and custom casual dependencies as defined in Table 4.2.

Path queries are verified by the Provenance Module through Prolog queries. Upon receiving a

request to resolve a path query from the PDP, the Provenance Module constructs the corre-

sponding Prolog query (i.e., the goal to be proved) and interacts with the underlying Prolog

solver, which uses its knowledge of deduction rules (i.e., the program consisting of the rules

for constructing casual dependencies) to prove or to refute the goal. When a path condition is

used for policy referencing, the correspond query might contain unbounded variables. In this

case, Prolog solvers enumerate all the values of these variables (which correspond to nodes in

76 Chapter 4. Controlling access in collaborating component systems

the provenance graph) that satisfy the query. The answers to the query are used to fetch the

relevant policies from the Policy Administration Point (PAP), which are evaluated by the PDP

to determine whether access should be granted or denied.

4.2.3 Related Work

Our work is related to history-based access control, provenance-based access control and ac-

cess control for data fusion. The past history of the system is at the core of authorization

decision making in our model. This is also the main feature of history-based access control

systems, which can be grouped into two main families: dynamic history-based access control

systems in which programs are monitored at run-time [KNS08, TFS18] and static history-

based access control systems in which one (statically) verifies that (an approximation of) the

program’s behavior will always conform to the policy (using, e.g., type systems [BDF05] or

model checking [SS04]). Our approach is more closely related to the first type as it uses prove-

nance information for decision making. Krukow et al. [KNS08] present a logical framework for

behavior-based decision-making in which policies define access requirements on the past behav-

ior of principals that must be fulfilled in order for an action to be authorized. The framework

comprises a formal model of behavior, based on event structures, a declarative logical lan-

guage for specifying properties of past behavior and an automata-based algorithm for checking

whether a particular behavior satisfies a property expressed in the given language. The notion

of security automata was firstly introduced in [Sch00], where the policy is given in terms of an

automata and safety properties are enforced using a (automata-based) reference monitor that

tracks execution history. Automata are also adopted in [TFS18] where access control policies

prescribe constraints on the order in which permissions should be exercised. These works usu-

ally focus on the principals’ past behavior and do not consider the evolution of the object to

be accessed. On the contrary, our work also exploits information on how and by whom the

object of interest has been generated for access decision making. In this respect, our approach

is closer to provenance-based approaches, discussed next.

A number of works [CKKT11, LB13, NPS13, PY14, SPNS16] propose to exploit provenance

4.2. Data Fusion processes 77

information in access control. Sun et al. [SPNS16] define an access control model that uses

provenance information for access decision making and this is modeled by including provenance

paths in the rules forming a policy. This work was later extended in [NPS13] where dynamic

SoD constraints are supported by adding contextual attribute information in the provenance

graph. A similar model is presented in [LB13] where provenance is combined with RBAC and

applied to a cloud environment. Cadenhead et al. [CKKT11] extend an XML-based language

for the specification of ABAC policies with regular expression and use SPARQL to query the

provenance graph (represented as RDF triples). Similarly to these works, we use provenance

information to express access constraints. However, our work differs from these approaches in

several ways. First, our formalization of provenance-based access constraints can be encoded in

XACML and their evaluation requires minimal changes to existing XACML implementations.

Moreover, we also exploit provenance for referencing external policies in order to support data

fusion (C3), which is a new feature comparing to previous provenance-based access control

models. Pei and Ye [PY14] propose a policy retrieval framework based on provenance. This

framework exhaustively generates candidate policies for each artifact role related to the target

action type by enumerating all possible combinations of dependency type and policy combining

algorithm. Then, each candidate policy is verified against provenance and recorded along with

the corresponding access control decision. These training examples are fed into a decision tree

classifier to derive the provenance-based access control policies to be enforced. Our framework

differs from the one of Pei and Ye in the fact that it uses provenance to identify the policies

applicable to the artifacts used in the creation of the object of interest.

To the best of our knowledge, only few works have proposed to account for the policies associated

to the artifacts used in the generation of the requested object [dHZ16b, ZJW06]. In particular,

den Hartog et al. [dHZ16b] propose a policy framework to regulate data fusion processes and

the artifacts obtained from these processes. This framework makes use of policy templates

to define how the policies of the artifacts used in data fusion processes should be combined.

However, it only considers the direct inputs for an artifact, thus only providing limited support

for C2. Moreover, these policies are static in the sense that they are defined when an object

is created while the link with the input artifacts is not maintained. On the other hand, in

78 Chapter 4. Controlling access in collaborating component systems

our work we exploit the provenance graph to maintain the link between an artifact and the

artifacts used for its creation and use policy references to retrieve the policies of those artifacts

at evaluation time.

Our framework relies on provenance graphs to determine user permissions. The use of graphs

for access decision making can be found also in community-based systems and, in particular, on-

line social networks. In these systems, access decisions are based on interpersonal relationships

between users, which are modeled in a social graph. Several relationships-based access control

(ReBAC) models have been proposed (see [PSZ18, Section 3] for a survey). These models

define permissions in terms of paths in the social graph (e.g., friends, friends of friends) as

well as enable the use of topology policies to specify access restrictions based on topological

properties of the social graph (e.g., degree of separation, k-clique). However, these models

only account for relationships between users and do not consider the relations between users

and objects that is requested. This limitation is addressed by Crampton and Sellwood [CS14],

who propose a generic ReBAC model based on path conditions. A path condition in [CS14]

is modeled as a sequence of relationships, which is used to map the resource requester to a

(set of) authorization principal(s). The subject and resource specified in the access request are

first used to find the set of applicable principals. These principals are then used to determine

whether the action specified in the request should be authorized based on a given authorization

policy. This model, however, only represent a static view of the system and does not account

for processes and, in general, for the creation and evolution of artifacts.

Chapter 5

Access monitoring in Business

Processes

The notions of business process and workflow are tightly interwoven and often represent complex

procedures. Following [WFM96] a business process is ”a set of linked activities which collectively

realise a business objective or policy goal, normally within the context of an organisational

structure defining functional roles and relationships”, and a workflow is the “automation of a

business process, in whole or part, during which documents, information or tasks are passed

from one participant to another for action, according to a set of procedural rules”. These

definitions show that many different concerns contribute to what a business process is and

how it is automated. Usually these aspects are projected along different viewpoints such as

the control flow of a workflow, the resources necessary to its enactment, etc. An additional

dimension is given by security-related dependencies which are specified as additional constraints

on the execution of the various tasks. A workflow task is executed by a user who should be

entitled to do so; e.g., the teller of a bank may create a loan request whereas only a manager may

accept it. Besides, additional authorization constraints are usually imposed on task execution,

such as Separation of Duty (SoD) or Binding of Duty (BoD) whereby two distinct users or the

same user, respectively, must execute two tasks.

The workflow satisfiability problem (WSP for short), as introduced in Section 2.2.3 and detailed

79

80 Chapter 5. Access monitoring in Business Processes

in Section 5.2, is known to be NP-hard already in the presence of one SoD constraint [WL10].

Different solutions to the WSP consider at least two characteristics: if the order of the tasks is

considered and if satisfiability is checked at design-time (before the execution of any instance of

the workflow) or at run-time (during execution). The separation between ordered and unordered

WSP was presented in [CG13b]. A classification of WSP approaches in the design-time/run-

time dimension was done in a recent survey [HAM15]. Design-time techniques ensure the

existence of at least one satisfying assignment, whereas run-time techniques enforce that a

workflow instance follows a satisfying execution. It is possible in principle to use, at run-time,

an algorithm that statically solves the WSP, but this is very inefficient, as it entails solving a

new instance of the problem for each user request. Although there are current solutions to the

problem, they are either not focused on its run-time version which we discuss in this chapter

(see, e.g., [HAM15]) or not precise [Kar15].

5.1 Synthesis of our approach

The idea underlying our approach can be summarized as follows. To solve the WSP, we use

the capability of model checkers to return counterexamples as follows. We formally represent

security-sensitive workflows as symbolic transition systems. A symbolic model checker is then

asked to find a counterexample to the property that the system is not terminating. Indeed,

the returned counterexample (if any) is precisely an execution scenario solving the WSP. Since

we are interested in finding all execution scenarios, we modify the model checker in order to

compute all counterexamples, not just one. We represent a set of counterexample scenarios

by using a reachability graph, i.e., a directed graph whose edges are labeled by task-user pairs

in which users are symbolically represented by variables and whose nodes are labeled by a

symbolic representation (namely, a formula of first-order logic) of the set of states from which

it is possible to reach a state in which the workflow successfully terminates. The graph allows

us to compactly encode all possible interleavings of tasks in a workflow. From the set of

formulae labeling the nodes in the reachability graph we derive a monitor capable of answering

5.2. Workflow Satisfiability Problem 81

positively user requests to execute tasks at run-time iff the user is authorized to do so by the

policy, there is no violation of authorization constraints and the workflow can still terminate

(i.e., the request is part of one of the scenarios computed in the reachability graph). This graph

is refined in [dSRCP15] to find execution scenarios that satisfy properties defined by the user.

The crux of our approach is that the model of the security-sensitive workflow in input to the

symbolic model checker only contains the constraints on the control-flow and the authorization

constraints, while it abstracts away from the authorization policy. In this way, the reachability

graphs computed by the model checker can then be refined with respect to an authorization

policy associated with a particular deployment context.

We also propose a variant of WSP by considering positive weights associated with transitions, if

these are not compliant with the specified authorization policy or constraints. Indeed in certain

situations, business continuity has to be preferred to security requirements, so a methodology

to guarantee the termination of the workflow with ”minimal” violations is needed by security

administrators. Note that is not possible to reuse our solution for the WSP to solve the weighted

version of WSP because the pre-computed reachability graph does not consider constraint

violations.

This chapter describes the results published in [BdSR18, BR13b, BR13a, BdSR15]

5.2 Workflow Satisfiability Problem

The Workflow Satisfiability Problem (WSP) consists in checking if there exists an assignment

of users to tasks such that a security-sensitive workflow successfully terminates while satisfying

all authorization constraints.

To formalize the WSP, we need first to introduce some preliminary notions.

Scenarios and workflows Given a finite set T of tasks and a finite set U of users, an

execution scenario (or, simply, a scenario) is a finite sequence of pairs of the form (t, u)—also

82 Chapter 5. Access monitoring in Business Processes

written as t(u)—for t ∈ T and u ∈ U . The intuitive meaning of a scenario η = t1(u1), . . . , tn(un)

is that task ti is executed before task tj for 1 ≤ i < j ≤ n and that task tk is executed by user

uk for k = 1, . . . , n. Among the scenarios in a workflow, we are interested in those that describe

successfully terminating executions. Since the notion of successful termination depends on the

application, from now on we consider only successfully terminating behaviors scenarios. A

workflow W (T, U) is a (finite) set of scenarios.

Authorization relation Given a workflow W (T, U), an authorization relation TA is a sub-

set of U × T where (u, t) ∈ TA means that u is entitled to execute task t. Following [CHK14],

we call authorized a scenario η of a workflow W (T, U) according to TA iff (u, t) is in TA for

each t(u) in η.

Authorization constraint An authorization constraint over a workflow W (T, U) is a tuple

(t1, t2, ./) where t1, t2 ∈ T and ./ is a sub-set of U ×U . For instance, a SoD constraint between

tasks t and t′ can be formalized as (t, t′, 6=) with 6= being the complement of the identity relation

over U . A scenario η of W (T, U) satisfies the authorization constraint (t1, t2, ./) over W (T, U)

iff for t1(u1) and t2(u2) in η we have that (u1, u2) ∈./. We call eligible (according to a set K

of authorization constraints) a scenario η of a workflow W (T, U) iff η satisfies K (i.e. satisfies

each constraint of K).

Definition 5.1 (Security Sensitive Workflow) Following [AP10], we call security-sensitive

workflow (SSW) the triple (W (T, U),TA, K) where W (T, U) is a workflow, TA an authoriza-

tion relation, and K a (finite) set of authorization constraints.

Definition 5.2 (WSP Problem) Given a SSW (W (T, U),TA, K), the WSP consists of check-

ing whether there exists an execution scenario in W (T, U) which is both authorized and eligible.

Such a problem has been studied in several papers; see, e.g., [WL10, PYL13]. The run-time

version of the WSP consists of answering sequences of user requests at execution time and

5.3. Monitoring security-sensitive workflows 83

ensuring successful termination together with the satisfaction of authorization constraints. This

problem has received less attention and only an approximate solution is available [BBK12a].

5.3 Monitoring security-sensitive workflows

Figure 5.1: Workflow in extended BPM notation

We describe our approach to synthesize run-time monitors for security-sensitive workflows on

a trip request process. The workflow is composed of five tasks—each one indicated by a box

labeled by Trip request (t1), Car rental (t2), Hotel booking (t3), Flight reservation (t4), and Trip

validation (t5)—whose execution is constrained as follows (cf. solid arrows and diamonds labeled

with +): t1 must be executed first, then t2, t3 and t4 can be executed in any order, and when

all have been performed, t5 can be executed, thereby terminating the workflow. Additionally,

each task is executed under the responsibility of a user (indicated by the small icon inside the

boxes corresponding to the various tasks) who has the right to execute it according to some

access control policy—not shown in Figure 5.1—and the five authorization constraints depicted

as dashed lines labeled by the symbol 6= for Separation of Duty (SoD). So, for example, the

authorization constraint connecting the boxes of t1 and t2 requires the user executing t2 to be

distinct from the one that has executed t1, i.e. the user who requests the trip cannot also rent

a car.

Our goal is to synthesize a run-time monitor, capable of ensuring that all execution and au-

thorization constraints are satisfied. Our approach is organized in two phases: off-line and

on-line.

Off-line. We first construct a symbolic transition system S whose executions correspond to

84 Chapter 5. Access monitoring in Business Processes

those of the security-sensitive workflow. Then, we use a symbolic model checker to explore

all possible terminating executions of the workflow which satisfy both the causality and the

authorization constraints. We assume the model checker to be able to return a symbolic repre-

sentation R of the set of all states, called reachable, encountered during the exploration of the

terminating executions of S. We use particular classes of formulae in first-order logic to be the

symbolic representations of S and R.

On-line. We derive a Datalog program M from the formulae R, representing the set of states

reachable in the terminating executions of S and the policy P specifying which user can perform

which task. The Datalog program M derived in this way is the monitor capable of guaranteeing

that any request of a user to execute a task is permitted by P , satisfies the authorization

constraints (such as SoD), and the workflow can terminate its execution.

We illustrate the two phases on the security-sensitive workflow in Figure 5.1.

5.3.1 Off-line phase

First of all, we build the symbolic transition system S in two steps: (i) we adopt the standard

approach (see, e.g., [vdAH03]) of using (extensions of) Petri nets [Mur89] to formalize the

semantics of workflows and (ii) we adapt the well-known translation of Petri nets to symbolic

transition systems (see, e.g., [SSM03]) to the class of extended Petri nets used in this paper.

Figure 5.2: Workflow as an extended Petri net

Figure 5.2 shows the extended Petri net that can be automatically derived from the BPM

notation of Figure 5.1. Tasks are modeled as transitions or events (the boxes in the figure)

5.3. Monitoring security-sensitive workflows 85

whereas places (the circles in the figure) encode their enabling conditions. At the beginning,

there will be just one token in place p0 which enables the execution of transition t1. This

corresponds to the execution constraint that task t1 must be performed before all the others.

The execution of t1 removes the token in p0 and puts a token in p1, another in p2, and yet

another in p3; this enables the execution of t2, t3, and t4. Indeed, this corresponds to the

causality constraint that t2, t3, and t4 can be executed in any order after t1 and before t5.

In fact, the executions of t2, t3, and t4 remove the tokens in p1, p2, p3 and put a token in

p4, p5, and p6 which, in turn, enables the execution of t5. This removes the token in p4, p5,

p6 and put a token in p7 which enables no more transitions. This corresponds to the fact

that t5 is the last task to be executed. The fact that there is at most one token per place is

an invariant of the Petri net. This allows us to symbolically represent the net as follows: we

introduce a Boolean variable per place (named as the places in Figure 5.2) together with a

Boolean variable representing the fact that a task has already been executed (denoted by dt

and if assigned to true implies that task t has been executed). So, for instance, the enabling

condition for the execution constraint on task t1 can be expressed as p0 ∧ ¬dt1 meaning that

the token is in place p0 and transition t1 has not yet been executed. The effect of executing

transition t1 is to assign F (alse) to p0 and T (rue) to p1, p2, p3, and dt1; in symbols, we write

p0, p1, p2, p3, dt1 := F, T, T, T, T . The other transitions are modeled similarly.

Besides the constraints on the execution of tasks, Figure 5.2 shows also the same authorization

constraints of Figure 5.1. These are obtained by taking into consideration both the access

Table 5.1: Workflow as symbolic transition system

event enabled action

CF Auth CF Auth

t1(u) p0 ∧ ¬dt1 at1(u) p0, p1, p2, p3, dt1
:= F, T, T, T, T

ht1(u) := T

t2(u) p1 ∧ ¬dt2 at2(u) ∧ ¬ ht3(u)
∧ ¬ ht1(u)

p1, p4, dt2
:= F, T, T

ht2(u) := T

t3(u) p2 ∧ ¬dt3 at3(u) ∧ ¬ht2(u) p2, p5, dt3
:= F, T, T

ht3(u) := T

t4(u) p3 ∧ ¬dt4 at4(u) ∧ ¬ht1(u) p3, p6, dt4
:= F, T, T

ht4(u) := T

t5(u) p4 ∧ p5 ∧ p6 ∧
¬dt5

at5(u) ∧ ¬ ht3(u) ∧ ¬ ht2(u) p4, p5, p6, p7, dt5
:= F, F, F, T, T

ht5(u) := T

86 Chapter 5. Access monitoring in Business Processes

control policy P granting or denying users the right to execute tasks and the SoD constraints

between pairs of tasks. To formalize these, we introduce two functions at and ht from users

to Boolean, for each task t, which are such that at(u) is true iff u has the right to execute t

according to the policy P and ht(u) is true iff u has executed task t. Notice that at is a function

that behaves as an abstract interface to the policy P whereas ht is a function that evolves over

time and keeps track of which users have executed which tasks. For instance, the enabling

condition for the authorization constraint on task t1 is simply at1(u), i.e. it is required that the

user u has the right to execute t1, and the effect of its execution is to record that u has executed

t1, i.e. ht1(u) := T (notice that this assignment leaves unchanged the value returned by ht1 for

any user u′ distinct from u). Notice that it is useless to take into account the SoD constraints

between t1 and t2, t4 when executing t1 since t2 and t4 will always be executed afterwards. As

another example, let us consider the enabling condition for the authorization constraint on t2:

besides requiring that u has the right to execute t2 (i.e. at2(u)), we also need to require the SoD

constraints with t1 and t3 (not that with t5 since this will be executed afterwards), i.e. that

u has executed neither t1 (i.e. ¬ht1(u)) nor t3 (i.e. ¬ht3(u)). The authorization constraints on

the other tasks are modeled in a similar way.

Table 5.1 shows the formalization of all transitions in the extended Petri net of Figure 5.2. The

first column reports the name of the transition together with the fact that it is dependent on

the user u taking the responsibility of its execution. The second column shows the enabling

condition divided in two parts: CF, pertaining to the execution constraints, and Auth, to the

authorization constraints. The third and last column list the effects of the execution of the

transition again divided in two parts: CF, for the workflow, and Auth, for the authorization.

The initial state of the security-sensitive workflow is described by the initial formula I

p0 ∧
∧

i=1,...,7

¬pi ∧
∧

i=1,...,5

¬dti ∧
∧

i=1,...,5

∀u.¬hti(u) (5.1)

saying that there is just one token in p0, no task has been executed, and indeed no user has

yet executed any of the tasks, whereas a state of a terminating execution of the workflow by

5.3. Monitoring security-sensitive workflows 87

the goal or final formula F

p7 ∧
∧

i=0,...,6

¬pi ∧
∧

i=1,...,5

dti (5.2)

saying that there is just one token in p7 and all the tasks have been executed.

Formally, the way in which we specify the transition systems T corresponding to security-

sensitive workflows can be seen as an extended version of the assertional framework proposed

in [Sha93]. We emphasize that obtaining, from the extended BPM notation of Figure 5.1,

the symbolic representation S of the initial and goal formulae with that of the transitions in

Table 5.1 is a fully automated process.

Exploring the search space. After obtaining the symbolic representation of the initial and

goal states together with the transitions of the security-sensitive workflow, we invoke a symbolic

model checker in order to compute the symbolic representation R of the set of (reachable) states

visited while executing all possible sequences of transitions leading from an initial to a goal

state. A crucial assumption of our approach is that the model checker is able to compute R

for any finite number of users. By doing this, the interface functions at’s can be instantiated

with any policy P , i.e. containing any number of users. As a consequence, changes in the

authorization policy do not imply to re-run the off-line phase. In summary, our goal is to

compute a parametric—in the number n of users—representation of the set of states visited

while executing all possible terminating sequences of transitions. From now on, we write Rn to

emphasize this fact.

Although the computation of Rn seems to be a daunting task, there exist techniques available in

the literature about parameterized model checking (see the seminal paper [ACJT96]) that allow

us to do this. Among those available, we have chosen the Model Checking Modulo Theories

approach proposed in [GR10a] for its use of first-order formulae as symbolic representation of

transition systems and the availability of tools, such as mcmt [GR10b], which are capable of

returning the set of reachable states as a first-order formula.

For instance, Figure 5.3 shows a graph-like representation of the formula Rn for the security-

88 Chapter 5. Access monitoring in Business Processes

0

1

t5(u1)

2

t2(u2)

3

t3(u2)

4

t4(u1)

5

t4(u2)

6

t2(u2)

7

t3(u2)

8

t3(u3)

9

t4(u2)

10

t4(u3)

11

t4(u2)

12

t4(u3)

13

t3(u3)

14

t3(u3)

15

t2(u3)

16

t4(u4)

17

t1(u3)

18

t1(u4)

19

t1(u1)

20

t1(u3)

21

t1(u4)

22

t1(u1)

23

t1(u4)

24

t1(u1)

25

t1(u3)

26

t1(u5)

Figure 5.3: Graph-like representation of the set of reachable states for the workflow in Figure 5.1

sensitive workflow described by the symbolic transition system derived from Figure 5.1. Each

node is associated to a first-order formula: node 0 (bottom of the figure) is labeled by the

goal formula (5.2), nodes 17–26 (top of the figure) are labeled by formulae describing sets of

states that have non-empty intersection with the set of initial states characterized by the initial

formula (5.1), all other nodes (namely, those from 1 to 16) are labeled with formulae describing

sets of states that are visited by executing transitions (labeling the arcs of the graph) belonging

to a terminating sequence of executions of the workflow. For instance, node 1 is labeled by the

formula

¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧

dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5 ∧

(at5(u1) ∧ ¬ht2(u1) ∧ ¬ht3(u1))

5.3. Monitoring security-sensitive workflows 89

describing the set of states from which it is possible to reach a goal state when some user u1

takes the responsibility to execute task t5. The first two lines in the formula above require

that there is a token in places p4, p5, p6 (thereby enabling transition t5), tasks t1, t2, t3, t4

have been executed, and t5 has not yet been performed. The last line requires that user u1 has

the right to execute t5 and that he/she has performed neither t2 nor t3 (because of the SoD

constraints between t5 and t2 or t3). In general, let us consider an arc ν
t(u)−→ ν ′ in the graph of

Figure 5.3: the formula labeling node ν describes the set of states from which it is possible to

reach the set of states described by the formula labeling node ν ′ when user u executes task t.

Thus, the paths starting from one of the nodes 17–26 (labeled by formulae representing states

with non-empty intersection with the set of initial states) and ending in node 0 (labeled by

the goal formula) describe all possible terminating executions of the workflow in Figure 5.1

(although nodes 5, 7, 10 and 12 seem to be exceptions, this is not the case: explaining their

role requires a more precise description of how the graph is built and will be discussed in the

next section). For instance, the sequence of blue nodes describes the terminating sequence

t1, t3, t4, t2, t5 of task executions by the users u3, u3, u2, u2, and u1, respectively. It is easy to

check that this sequence satisfies both the execution and the authorization constraints required

by the workflow in BPM notation of Figure 5.1. In fact, t1 is executed first, t5 is executed

last, and t2, t3, t4 are executed in between; there are three distinct users u1, u2, u3 that can

execute the five tasks without violating any of the SoD constraints. By considering all possible

paths in the graph of Figure 5.3, it is easy to see that there should be at least three distinct

users to be able to terminate the security-sensitive workflow in Figure 5.1. From what we said

above, the formula Rn representing the set of states visited during terminating sequences of

task executions of the security-sensitive workflow in Figure 5.1 can be obtained by taking the

disjunction of the formulae labeling the nodes in the graph of Figure 5.3 except for the one

labeling node 0 since, by construction, no task is enabled in the set of states represented by

that formula. Let rν be the formula labeling node ν, then

Rn :=
∨
ν∈N

rν (5.3)

where N is the set of nodes in the graph (in the case of Figure 5.3, we have N = {1, ..., 26}).

90 Chapter 5. Access monitoring in Business Processes

In [BdSR15] we have defined an algorithm to compute the set of all possible reachable states

of a symbolic security-sensitive workflow. The algorithm takes as input the symbolic security-

sensitive workflow S together with the state formula F defining the set of final states and

returns a labeled graph RG , called reachability graph, whose set of labeled paths is the set of

all transitions of S ending with F . The procedure incrementally builds the reachability graph

RG by updating the set N of nodes, the set E of edges, and a labeling function λ from N to

state formulae (see [BdSR15] for more details and a proof of correctness of the algorithm).

This result implies that starting from an initial state (i.e. one satisfying the initial formula

I) in the reachability graph, it is always possible to reach a final state (i.e. one satisfying

the final formula F). If no event can be enabled infinitely often without being executed—

called strong fairness—then a final state is eventually reached. As observed in [vdAvHtH+11],

the assumption of strong fairness is reasonable in the context of workflow management since

decisions to execute tasks are under the responsibility of applications or humans.

This implies that, if S is in state s and we want to know if a certain user u0 can execute task t0

while guaranteeing that the authorization constraints are satisfied and the workflow terminates,

it is sufficient to find a node of the reachability graph that is satisfied by s and having one

of the outgoing edges labeled by t0. Indeed, this is exactly the task a monitor is supposed to

perform.

5.3.2 On-line phase

Once mcmt has returned the first-order formula Rn describing the set of states visited during

any terminating executions for a (finite but unknown) number n of users, we can derive a

Datalog [CGT89] program which constitutes the run-time monitor of the security-sensitive

workflow formalized by the symbolic transition system used to compute Rn. Then, we can add

the specification of the interface functions at1, ..., at5 for a given value of n.

We have chosen Datalog as the programming paradigm in which to encode monitors for three

main reasons. First, it is well-known [LM03] that a wide variety of access control policies can

5.3. Monitoring security-sensitive workflows 91

be easily expressed in Datalog. Second, Datalog permits efficient computations: the class of

Datalog programs resulting from translating formulae Rn permits to answer queries in LogSpace

(see below for more details). Third, it is possible to further translate the class of Datalog

programs we produce to SQL statements so that run-time monitors can be easily implemented

as database-backed applications. In the rest of this section, we describe how it is possible to

derive Datalog programs from formulae describing the set of reachable states computed by the

model checker and then how to add the definitions of the interface functions at1, ..., at5.

From Rn to Datalog. Recall the form (5.3) of Rn. It is not difficult to see that each rν can be

seen as the conjunction of a formula rCF
ν containing the Boolean functions p0, ..., p7 for places

and dt1, ..., dt5 keeping track of task execution with a formula rAuth
ν of the form

at(u0) ∧ ρAuth
ν (u0, u1, ..., uk)

where u0 identifies the user taking the responsibility to execute task t, ρAuth
ν is a formula

containing the variables u0, u1, ..., uk, the interface functions at1, ..., at5, the history functions

ht1, ..., ht5, and all disequalities between pairwise distinct variables from u0, u1, ..., uk (indeed,

if there are no variables, there is no need to add such disequalities). For instance, formula r1

labeling node 1 in Figure 5.3 is rCF
1 ∧ rAuth

1 where

rCF
1 := ¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧

dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5

rAuth
1 := ρAuth

1 (u1)

ρAuth
ν (u1) := at5(u1) ∧ ¬ht2(u1) ∧ ¬ht3(u1)

with u0 renamed to u1.

In general, each rν in the expression (5.3) for the formula Rn can be written as

rCF
ν ∧ at(u0) ∧ ρAuth

ν (u0, u1, ..., uk) (5.4)

92 Chapter 5. Access monitoring in Business Processes

and describes a set of states in which user u0 executes task t while guaranteeing that the

workflow will terminate since ν is one of the nodes in the graph computed by the model checker

while generating all terminating sequences of tasks. In other words, (5.4) implies that u0

can execute task t or, equivalently written as a Datalog clause: can do(u0, t) ← (5.4), where

can do is a Boolean function returning true iff a user (first argument) is entitled to execute a

task (second argument) while all execution and authorization constraints are satisfied and the

workflow can terminate. Notice that can do(u0, t)← (5.4) is a Datalog clause. So, we generate

the following Datalog clauses

can do(u0, t)← rCF
ν ∧ at(u0) ∧ ρAuth

ν (u0, u1, ..., uk) (5.5)

for each ν ∈ N . In the following, let Dn be the Datalog program composed of all the clauses of

the form (5.5). For instance, the Datalog clause corresponding to node 1 is

can do(u1, t5) ← ¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧

dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5 ∧

at5(u1) ∧ ¬ht2(u1) ∧ ¬ht3(u1) .

It is not difficult to show that can do(u, t) iff there exists a disjunct of the form (5.4) in Rn

for a given number n of users. Finally, observe that clauses of the form (5.5) contain negations

but are non-recursive.

Specifying the policy P . We are left with the problem of specifying the access control policy

P for a given number n of users. As already observed above, there should be at least three

distinct users in the system to be able to terminate the execution of the workflow in Figure 5.1.

So, to illustrate, let U = {a, b, c} be the set of users and use the RBAC model to express the

policy. This means that we have a set R = {r1, r2, r3} of roles which are indirections between

users and (permissions to execute) tasks. Let UA = {(a, r1), (a, r2), (a, r3), (b, r2), (b, r3), (c,

r2)} be the user-role assignments and TA = {(r3, t1), (r2, t2), (r2, t3), (r1, t4), (r2, t5)} be the

role-task assignment. Then, a user u can execute task t iff there exists a role r such that

5.3. Monitoring security-sensitive workflows 93

(u, r) ∈ UA and (r, t) ∈ TA. This can be formalized by the following Datalog clauses:

ua(a, r1) ua(a, r2) ua(a, r3) ua(b, r2) ua(b, r3) ua(c, r2)

pa(r3, t1) pa(r2, t2) pa(r2, t3) pa(r1, t4) pa(r2, t5)

at(u) ← ua(u, r) ∧ pa(r, t) for each t ∈ {t1, ..., t5}

and denoted by DP . By taking the union of the clauses of Dn and DP , we build a Datalog

program Mn=3 allowing us to monitor the security-sensitive workflow of Figure 5.1, i.e. Mn=3

is capable of answering queries of the form can do(u, t) in such a way that all execution and

authorization constraints are satisfied and the workflow execution terminates.

Theorem 5.1 Let SSW be a security-sensitive workflow and S be the corresponding symbolic

transition system. Let Rn be the formula denoting all the reachable states of S as in 5.3.

Additionally, let DP be a Datalog authorization policy over the interface functions at, for all

tasks t in S. A user u ∈ U can execute task t guaranteeing the satisfaction of all authorization

constraints and the termination of the workflow iff the query can do(u, t) is answered positively

by the Datalog program Dn ∪DP .

This result guarantees the correctness of our procedure to synthesize run-time monitors. It is

a consequence of the definition of Datalog authorization policy program and the correctness of

the off-line procedure. Notice that when both Dn and DP are non-recursive (stratified) Datalog

programs, queries can be answered very efficiently in LogSpace and can be translated to SQL

without aggregate operators (such as AVG and COUNT).

An example of a run of the monitor is in Table 5.2, where each line represents a state of the

system; columns CF and Auth describe the values of the variables in that state (“Token in”

shows which places have a token and the various hti hold the name of the user who executed task

ti); can do(u, t) represents user u requesting to execute task t and ‘Resp’ is the corresponding

response returned by the monitor (grant or deny the request). The execution in the table shows

two denied requests, one in line 0 and one in line 2. In line 0, user a requests to execute task t1

but this is not possible since a is the only user authorized to execute t4, and if a executes t1,

94 Chapter 5. Access monitoring in Business Processes

Table 5.2: A run of the monitor program Mn=3 for the security-sensitive workflow in Figure 5.1

CF Auth can do

#
Token

in
ht1 ht2 ht3 ht4 ht5 (u, t) Resp.

0 p0 - - - - - (a, t1) deny
1 p0 - - - - - (b, t1) grant

2
p1, p2,
p3

b - - - - (b, t2) deny

3
p1, p2,
p3

b - - - - (a, t2) grant

4
p4, p2,
p3

b a - - - (c, t3) grant

5
p4, p5,
p3

b a c - - (a, t4) grant

6
p4, p5,
p6

b a c a - (b, t5) grant

7 p7 b a c a b - -

he/she will not be allowed to execute t4 because of the SoD constraint between t1 and t4 (see

Figure 5.1). In line 2, user b requests to execute task t2 but again this is not possible since b

has already executed task t1 and this would violate the SoD constraint between t1 and t2. All

the other requests are granted, as they do not violate execution or authorization constraints.

So far, we have described the key ideas underlying our technique while neglecting efficiency

considerations related to the enumeration of all possible terminating execution sequences of

the security-sensitive workflow. If we want our approach to scale up and handle real-world

workflows, we have to design suitable heuristics as discussed in [dS17]. Note however that an

advantage of our technique is that changes in the policies can be taken into account without re-

running the off-line phase since only an abstract interface to policies is required. The interface

is refined to the concrete policy only in the on-line phase. An extensive experimental evaluation

with an implementation of the technique shows the scalability of our approach on the important

class of hierarchic workflows, as detailed in [BdSR15, dS17].

5.4. Weighted Workflow Satisfiability Problem 95

Figure 5.4: TRW in BPMN with associated authorization policy TA

5.4 Weighted Workflow Satisfiability Problem

Authorization policies and constraints are crucial to ensure the security of workflow systems

and to avoid errors and frauds [LRM14], but they may also lead to situations where a workflow

instance cannot be completed because no task can be executed without violating either the

authorization policy or the constraints. These deadlocks are conflicts between compliance and

continuity which may be resolved by administrators granting additional permissions to users

(thus hindering compliance) or canceling the execution (precluding continuity). Depending

on the scenario, it may be preferable to guarantee either security or continuity. In all cases,

it is desirable to have “minimal” (in some sense) violations. The Multi-Objective Workflow

Satisfiability Problem (MO-WSP), that we considered in [BdSR18], amounts to strike the best

possible trade-off between security and continuity while minimizing the costs of violations

to a policy or constraints. The MO-WSP is inspired by the Valued WSP [CGK15] and its

generalization, the Bi-Objective WSP [CGKW17]. In our work, we define variations of the

MO-WSP and solve them using bounded model checking and optimization modulo theories

solving. Our symbolic solution is also able to handle control-flow patterns [vdAtHKB03], such as

alternative execution, since we can encode these patterns directly in the transition system used

by BMC (instead of splitting a workflow into multiple deterministic instances, as in [CG13a,

CGKW17]). The use of off-the-shelf OMT solvers, instead of custom algorithms, provides

a uniform toolkit to explore different optimization modes (such as Pareto and those based on

linear cost functions), thereby gaining the freedom to evaluate the trade-offs offered by different

optimization strategies.

Let us explain our approach on the example in Figure 5.4:

96 Chapter 5. Access monitoring in Business Processes

Suppose no user is entitled to execute task t2 (they cannot access the TRW for some reason),

then the WSP for the TRW is no more solvable. For the sake of business continuity, it would be

important to understand which users can execute task t2 (despite none being entitled to do so)

to ensure termination while minimizing security issues. This becomes possible as soon as we

define the cost of violating an authorization policy and, in the general case, an authorization

constraint.

Following [CGK15], we introduce a cost function wP such that wP (u, t) = 1 if (u, t) 6∈ TA and

wP (u, t) = 0 if (u, t) ∈ TA. The idea is to associate a cost of one to the situation in which a

user executes tasks which they are not entitled to execute according to the policy TA; instead,

if users are entitled to execute tasks, then the cost is zero since there is no violation of the

policy TA. To measure the cost of the violations to the policy TA over the execution of an

entire scenario, a possibility is to take the sum of the costs of each violation (if any). In the

same spirit, we can introduce an additional cost function wC for the authorization constraints

in K such that wC(η) is equal to the cardinality of the set {k ∈ K | η does not satisfy k} where

K contains the SoD constraints of Figure 5.1. Intuitively, wC counts how many authorization

constraints are violated by the scenario under consideration. We are then interested to find the

scenarios in TRW that minimize both cost functions wP and wC . There are several reasonable

ways to solve this problem. For instance, one can minimize the combined cost of wP and wC

(e.g., by taking their sum) or minimize each one of them. In some situations, it may be unclear

which solutions to consider as optimal. Consider, for instance, the criterion of minimizing

the two cost functions at the same time and the situation in which two scenarios have costs

(1, 2) and (2, 1), respectively. In order to address this kind of questions, we have decided to

define a quantitative version of the WSP, by borrowing some notions from the framework of

Multi-Objective Optimization (MOO) problems [MA04].

Indeed, the main goal of MOO techniques is to simultaneously optimize a collection of cost

functions. In general, for any non-trivial MOO problem, there is no single solution that is

simultaneously optimal for every objective. Instead, there may exist (possibly infinitely) many

solutions that can be considered equally good, called Pareto optimal.

5.4. Weighted Workflow Satisfiability Problem 97

We can formalize the problem as follows:

Definition 5.3 (Multi-Objective WSP) Given a SSW (W (T, U),TA, K) with functions wP

and wC associating scenarios in W (T, U) with the costs of violating the authorization policy TA

and the authorization constraints in K, respectively; the Multi-Objective WSP (MO-WSP)

amounts to

minimize
η

(wP (η), wC(η)) subject to η ∈ S

where S ⊆ W (T, U) is the set of scenarios of interest.

With respect to the Valued WSP [CGK15] and the Bi-Objective WSP [CGKW17], in MO-

WSP the set W (T, U) may contain scenarios of various lengths (because of the presence of

conditionals) whereas the class of workflows for which the cited WSPs are defined give rise

to scenarios with the same length (as they cannot specify conditional executions). Also, the

MO-WSP takes into consideration control-flow constraints whereas the others do not. Indeed,

a solution to the Valued or Bi-Objective WSP is an optimal plan (a function assigning tasks to

users), whereas a solution to the MO-WSP is an optimal execution scenario. In general, there

are valid plans which cannot become valid execution scenarios, as observed in [CG13a].

Following our approach, we encode all the possible executions of the considered SSW as a

SMT bounded model checking (BMC) problem, with an encoding similar to the one used for

the off-line phase described in the previous section. To mechanize this process, we need a

SMT solver, or simply a SAT solver after encoding our first-order formula BMC into a purely

Boolean formula (which is possible because the set U of users is finite). We also define a

symbolic representation of the set S of scenarios of interest, which is conjoint to the BMC

formula. It is important to remark that some of the most important control flow patterns in

BPMN for parallel and non-deterministic/conditional executions can be expressed in the so-

called (1-bounded) casual class of Petri nets; see, e.g., [DDO08]. The advantage of considering

causal nets is a simplified symbolic representation of the set S of the scenarios of interest. In

fact, the conditionals (such as long trip? in our example) can be executed only once. One of

the most important omissions is iteration (as considered in, e.g., [CGW17]), which we do not

98 Chapter 5. Access monitoring in Business Processes

consider for the time being. To solve our problem, we consider an extension of SMT called

OMT (optimization modulo theories) which aims to solve the problem of finding a model for

an input formula which is optimal with respect to one or more objective functions. We use our

BMC formula, together with the cost functions, as input to an OMT solver. We can choose one

optimization mode among the techniques available in the literature (see, e.g., [MA04, ST15,

BPF15]), provided that it is implemented in the OMT solver.

We carried on an evaluation of the proposed solution on real and synthetic workflows by using

PySMT [GM15], and the solvers OptiMathSAT [ST15] and Z3 [BPF15]. Both natively support

Boxed, Lexicographic, and Pareto optimization. The results show that the technique has a good

performance due to an ingenious encoding of the problem that exploits the parallel executions

of tasks in the workflow. Indeed, by exploiting properties of causal Petri nets, we can obtain

the sets of tasks that can be executed in parallel at each transition step by computing the

lattice of maximal anti-chains (see, e.g., [Gar13]) and traversing it breadth-first. The number

of steps becomes thus equal to the number of maximal anti-chains, instead of equal to the

number of tasks in the workflow. After discharging the BMC formula to an OMT solver, the

resulting model is a compact representation of several possible interleaving executions, which

can be linearized. It is not surprising that this parallel encoding has a superior performance

in all the experiments, compared to the standard interleaving encoding. Details about the

implementation and scalability results can be found in [BdSR18].

5.5 Related work

Model Checking Modulo Theories [GR10a] is an approach for the verification of array-based

systems based on the computation of pre-images of a set of states using first-order formulae

and on reducing fix-point checks to SMT solving. This approach is implemented by the model

checker mcmt [GR10b]. In [BR13b], we have made the link between array-based systems and

security-sensitive workflows explicit by means of what we call composed array-based systems.

We have also presented a terminating procedure for the verification of reachability properties

5.5. Related work 99

for this class of systems.

One of the first works about workflow satisfiability is the one by Bertino et al. in [BFA99] where

the authors describe the specification and enforcement of authorization constraints in workflow

management systems, presenting constraints as clauses in a logic program and an exponential

algorithm for assigning users and roles to tasks without violating them, but considering only

linear workflows. Crampton [Cra05] showed another model for specifying constraints, consid-

ering workflows as DAGs, and an algorithm to determine whether there is an assignment of

users to tasks that satisfies the constraints, showing that it can be incorporated into a reference

monitor. [CK08] extended the previous work to consider the effects of delegation on satisfiabil-

ity, showing algorithms to only allow delegations that can still satisfy a workflow. Crampton et

al. [CHK14] used model checking on an NP-complete fragment of linear temporal logic to de-

cide the satisfiability of workflow instances. The authors presented three different encodings in

LTL(F) that can compute a set of solutions, minimal user bases and a safe bound on resiliency.

The synthesis of monitors was left as future work.

Wang and Li [WL10] proposed a role-and-relation based access control model that allows to

describe the relationships between users and thus specify complex authorization constraints.

The authors showed that the WSP is NP-complete in their model and that this intractability is

inherent in authorization systems supporting simple constraints. They showed that with only

equality and inequality relations, using the number of tasks as a parameter renders the WSP

fixed-parameter tractable. They also reduced the problem to SAT. Yang et al. [PYL13] stud-

ied the complexity of several formulations of the WSP, considering the possibility of different

control-flow patterns, and showed that, in general, the problem is intractable.

Basin et al. [BBK12b] considered the problem of choosing authorization policies that allow a

successful workflow execution and an optimal balance between system protection and user em-

powerment. They treat the problem as an optimization problem (finding the cost-minimizing

authorization policy that allows a successful workflow execution) and show that, in the role-

based case, it is NP-complete. They generalize the decision problem of whether a given autho-

rization policy allows a successful workflow execution to the notion of an optimal authorization

100 Chapter 5. Access monitoring in Business Processes

policy that satisfies this property. In a following work, Basin et al. [BBK12a] used the Sep-

aration of Duties Algebra (SoDA) to enforce SoD constraints in a dynamic, service-oriented

enterprise environment. The authors generalized SoDA’s semantics to workflow traces that

satisfy a term and refined it for control-flow and role-based authorizations. Their formaliza-

tion, based on CSP, is the base for provisioning SoD as a Service, with an implementation using

a workflow engine and a SoD enforcement monitor. [BBK12a] is the closest to us in terms of

monitor implementation, but their monitor only verifies if a trace of a workflow satisfies a SoDA

term, being incapable of checking whether there is a future trace that can be concatenated in

order to satisfy the workflow.

On the other hand, Crampton et al. [CGK15, CGKW17] first studied how to find minimal

violating assignments of users to tasks, without changing the policy. They first defined the

Valued WSP [CGK15] and later the BO-WSP [CGKW17], then solved both using a bespoke

algorithm and showed that their solution is superior to a mixed integer programming approach

in terms of performance. The authors also showed how to solve two related problems by

encoding them as cost functions: the quantitative resiliency problem [MMM14], which amounts

to assigning a probability to the successful termination of a workflow even in the absence of

some users; and the Cardinality-constrained Minimum User Problem (CMUP) [RSM+15], which

consists in finding the minimum number of users required to satisfy a workflow instance. The

main difference between our work and Crampton et al. [CGK15, CGKW17] is that we consider

an ordered execution of workflows, whereas they take as solution a valid plan, which is an

unordered assignment of tasks to users. They also considered user-independent constraints

in their experiments, which we did not implement, but can be expressed in the fragment of

first-order logic that we use.

Crampton et al. [CGW17] extended their algorithmic solution to support conditional workflows

with release points—which specify that a constraint may be active only for some scenarios—by

splitting a workflow instance into many deterministic ones. We believe that release points can

also be incorporated in our solution by using an approach similar to [BBK12b]. A challenge is

to adapt the parallel encoding we define to tackle this generalized problem so to have better

scalability. For this, we believe that the techniques in [DJH12] can be useful.

5.5. Related work 101

For a more complete survey on workflow satisfiability approaches the reader can refer to [HAM15,

dSR17].

Chapter 6

Conclusion

6.1 Summary and perspectives

We detail in the following the contributions and perspectives corresponding to each chapter of

this thesis.

Chapter 3 We have described a declarative framework for the specification and analysis

of distributed access control policies based on the metamodel called CBAC. We have given

rewrite-based methodology that can be applied to the verification of security properties such

as consistency and totality for security policies specified in our framework. Moreover, we have

used narrowing techniques to make change-impact analysis of dynamic policies, as a conse-

quence of administrative actions. We think narrowing can contribute to improve the trust of

an administrator with respect to a policy, not only at the design stage, but also whenever a

policy is updated. A further development to this aim would be to consider answering general

queries over rewrite-based policies. For instance, one would ask whether access is always denied

for a given resource. Since narrowing can tell the possible instantiations for a term that will fire

some rule, this may help answer questions of the kind “what rules apply in this situation” or

“what-if” questions, like “what if a given user is assigned an additional category”, also known

as “administrator queries” [JSSS01, KKdO09].

102

6.1. Summary and perspectives 103

The specification of methods to check equivalence, permissiveness and definedness of CBAC

policies would be useful for security administrators. In addition to being useful for conflict

detection, policy comparison methods and algorithms can be used to detect redundancies and

inconsistencies in policies. If two policies are equivalent, they can be used to simplify the pol-

icy specification. For CBAC policies, equivalence can be checked by analysing the category

definitions. CBAC relies on a core axiom to generate policy decisions, based on the categori-

sation of principals and resources. Equivalence of categories is undecidable in general, since

categories can be defined for example via a program and program equivalence is undecidable

in general. However, in standard cases (e.g., the RBAC instance of CBAC or simple ABAC

instances where attributes have finite domains) policy equivalence is decidable. If the policies

are not equivalent, a disagreement set can be computed and we can establish an order between

policies (such as more permissive policy, or more defined policy [BDH07]).

Term rewriting rules provide an executable specification of the access control policy. A first-

order rewriting system can be transformed into a MAUDE program simply by adding type

declarations for the function symbols and variables used and by making minor syntactical

changes [CDE+03, San08]. Policies defined by higher-order rewriting systems can be directly

implemented in a functional language [BF08c]. The next step for catgeory-based policies will be

their practical implementation. It would be interesting to see how aspect-oriented techniques

apply to this case (work in this direction has been reported in [dOWKK07], where the authors

discuss weaving rewrite-based policies into Java programs). In our view, a comprehensive tool

integrating policy specification, administration and analysis exploiting existing rewrite-based

languages and tools (such as [CPU+10, GSKT06, CDE+03] could be of great help to policy

designers and administrators in their policy definition and management tasks. We recently

made a first step in this direction by developing a preliminary prototype with a graphical

interface for defining and analysing CBAC policies 1.

Chapter 4 We have proposed a framework for the specification and enforcement of access

control in presence of transitive dependencies for entreprise portals as well as an implementation

1Prototype available at: https://projectadmincbac.000webhostapp.com

104 Chapter 6. Conclusion

based on the standard XACML architecture extended with a delegation module.

In our work we assume that the topology of the system (i.e. how the integrated services may

invoke each other) is known and fixed. It would be interesting to investigate how to lift our tech-

niques to SOA applications with dynamic topologies, which are particularly useful in practice

to match the rapidly evolving requirements of modern business models. For the performances

of the technique at both design- and run-time, it will be critical to identify situations in which

authorization requests can be efficiently answered as it is the case with a static topology (recall

that answering a query takes polynomial time if we consider only data complexity). Another

aspect that has not been explicitly treated is the administration of the security policies. We can

imagine to develop an administrative model along the lines of the Ad-OrBAC model [CM04],

to control assignments of different entities in our D-OrBAC model. It would also be interesting

to consider issues about trust negotiation [LSWY07]. Since interactions occur between entities

not sharing the same security domain, trust negotiation would help in the process of defining

an agreement between the organisations to converge towards a set of shared delegations.

In Chapter 4 we also considered multi-source cooperative environments and presented an access

control policy framework that takes into account the policies associated to the data used in the

generation of the requested object. Specifically, our framework extend the ABAC paradigm

with the notion of provenance information to keep track of the evolution of objects in the

cooperative system. We have illustrated how provenance-based constraints can be implemented

in existing XACML-based access control frameworks. In this work, we have considered core

provenance information for policy specification. We believe that accounting for contextual

information in the provenance graph would enable the definition of more fined-grained policies.

A possible extension of our work is thus to enrich our policy language and provenance graphs

to accommodate contextual information along the lines of the PROV-DM data model [MM13]

where provenance graphs are augmented with attributes in form of relation annotations. The

use of a standardized provenance model will allow us to reuse provenance graphs generated by

existing systems.

Another interesting line of research is the application of the model to community-centered

6.1. Summary and perspectives 105

collaborative systems. As part of Alba Anton Martinez PhD thesis, we aim to develop a general

framework expressive enough to represent cooperative management of multi-owner information

and allow to determine whether a data disclosure meets the privacy expectations of the different

involved parties. Moreover, it should facilitate transparent access for authorized users and give

support for controlled sharing by means of collaborative decision making. The idea is to focus

on controlled data sharing by applying different sharing strategies producing access decisions

that are more expressive than simple binary policies. As conflicts are inevitable in multi-party

access control, a flexible conflict resolution mechanism needs to be addressed to cope with

authorization and privacy conflicts.

Chapter 5 We have presented an automated technique for monitoring workflows with au-

thorization constraints, provided an implementation and a thorough experimental evaluation.

The main advantages of our work are the specification of the security-sensitive workflows as

array-based systems and the consideration of an off-line and an on-line phase. These character-

istics allow us to efficiently compute all terminating executions of large instances of workflows

for a finite but unbounded number of users and then translate it to a Datalog program that

acts as an efficient run-time monitor. We have also addressed the Multi-objective workflow

satisfiability problem and proposed a methodology for finding a (pareto set of) solutions op-

timal with respect to some given cost functions associated to the violation of authorization

constraints. This may be useful when a trade off is needed between business continuity and

security constraints.

In our work we have considered a few examples of authorization constraints, e.g., SoD and

BoD. These are the most common in practice, however in the fragment of first-order logic we

consider, other constraints such as counting constraints can be easily specified (see [dS17]).

Other, more complex, constraints could also be supported, as for example instance-spanning

constraints [LMRM12]. Instance-spanning constraints restrict what users can do across several

instances of the same workflow (inter-instance), across several instances of different workflows

(inter-process), or across workflows in different organizations (inter-organization). The most

usual case is inter-instance authorization constraints, which have been studied in, e.g., [WA06].

106 Chapter 6. Conclusion

Since in our approach we have one monitor for each instance, support for inter-instance con-

straints would require a global synchronization of the states of each monitor, possibly using a

global execution history stored in a central entity to which each monitor communicates. In this

configuration, each monitor should ask the decision of the central entity before taking the right

decision to avoid the violation of some inter-instance constraint.

Besides the workflow satisfiability problem, other related problems have been studied in the

literature. Workflow Resiliency for instance [WL10] amounts to checking if a workflow can still

be satisfied even in the absence of a certain number of users, while Workflow Feasibility [KF12]

concerns the question of whether there is a possible configuration of the authorization policy

in which the workflow is satisfiable. In [dS17], our solution to WSP is adapted to deal with

resiliency by refining the reachability graph computed by the model checker with a given autho-

rization policy. This approach is inspired by the solution to the Resiliency Checking Problem

in [CGW16]. Compared to other works, our technique has the advantage of reusing the heaviest

part of the computation (i.e., generating the reachability graph) and only refining it during de-

ployment. The algorithm presented as a solution is also capable of finding execution scenarios

that satisfy other constraints, such as a particular user executing a task or using a minimal

number of users. We think the solution can be adapted for quantitative resiliency (i.e. how

likely a workflow instance is to terminate given a user availability model) by assigning weights

representing availability to the edges in the reachability graph, as hinted at in [CGW16]. An-

other interesting related question is, given a workflow specification with costs and a ”budget”,

find all possible workflow instances that have an allocation of users to steps not exceeding the

budget [CGM19].

6.2 Discussion and future challenges

The use of formal methods in many computer science disciplines has improved the quality and

reliability of computer systems. Formal methods have been successfully used to ensure security

properties of e.g., hardware and network architectures, web applications and services, software

6.2. Discussion and future challenges 107

systems [GdHN+08, NRZ+15, RFR+12, TWM+09, KKP+15, FCKV10].

However, as reported in a recent NSF workshop on formal methods for security [CGD+16],

significant challenges must still be overcome. Nowadays, the increasing complexity of our socio-

economic environment produces large distributed systems, with data storage and computation

happening at different sites. These new architectures (cloud computing, Software as a Service

or System of Systems) include new features, such as reconfigurable settings, dynamism of

the environment, evolution of uses, and make new security properties or constraints arise.

A major challenge in the next years will be to make the methods of verification evolve to

take into account these new architectures and the new associated properties, by developing for

instance modular or parametric verification. A first serious difficulty lies in the fact that security

requirements of distributed systems are hard to specify and formalize. Moreover, distributed

systems security is a big problem that involves several aspects and expertise from multiple

research areas: operating systems and networking, programming languages, cryptography, etc.

A real progress on verification of distributed systems security could come from the combination

of the research efforts of all these research communities.

From a user perspective, in this interconnected, dynamic environment, where components and

users may evolve at any time, another important issue concerns privacy-relevant guarantees.

It is important to give users the ability of understanding how their data are managed and

communicated to third parties, as well as the possibility of personalizing their privacy settings.

This is essential for increasing user awareness about security problems. Users frequently do not

understand what a security policy really checks, and hence are unaware of the risks involved in

many common operations. Most users have no specific training in programming nor in formal

logics. We believe adopting a rule-based language is a first step for greater user awareness and

control on policies, since it is flexible enough and at the same time structurally similar to the

way in which policies are expressed by nontechnical users. In addition, it is necessary to provide

user-friendly front-ends that illustrate the policy in a language familiar to the user, such as a

graphical language. In [MS18] for instance the Javascript tool VisABAC for authoring and

editing access control policies is presented. VisABAC proposes the graphical representation of

attribute based access control polices using visualisation techniques (diagrams, colour schemes,

108 Chapter 6. Conclusion

patterns...). Some other research works [BDF+06, MP04] develop explanation mechanisms

in the context of (Semantic-) Web based systems to help the user understand what policies

prescribe and control.

All these issues are related to the more general notion of explainability of a decision making

system. Nowadays, many decision processes that were taken by humans can be performed with

the assistance of, or directly by, an algorithmic autonomous process. This is true in many

contexts, from finance to healtcare, to smart home environments. Decision making system

are often complex systems that are difficult to understand, especially when based on machine

learning algorithms. Be able of explaining why the system arrived at a specific decision becomes

thus a crucial issue. The explanation may be of different nature (operational, logical, causal,...)

One of the options to achieve explainability is the constructive approach, where explainability

requirements are taken into account by design. The quality of explanations is also something

that needs to be considered. So far, there is no systematic method or set of benchmarks

allowing a precise evaluation of explainability. Usually evaluation is carried on by means of

human experiments (e.g. to assess what kinds of explanations are better understood) or field

experiments with the users of the systems. Evaluations that are based on formal definitions

(for example using decision trees or decision rules as explainable models) are less expensive

because they do not require the setting up of experiments but rely on assumptions (the formal

definitions) which have already been validated. A trade-off needs to be found among accuracy,

cost and explainability. The implementation of explainability by design is an open question, but

we believe that rule-based formal specification may help in defining self-explainable policies.

Still, an explanation for a whole process, usually obtained by combining several component

modules, remains challenging as independence and coordination of the modules has to be taken

into account.

Bibliography

[AA20] Mehdi Adda and Linda Aliane. Hobac: fundamentals, principles, and policies.

Journal of Ambient Intelligence and Humanized Computing, 11(12):5927–5941,

2020.

[Aba03] M. Abadi. Logic in access control. In 18th Annual IEEE Symposium of Logic

in Computer Science, 2003. Proceedings., pages 228–233, 2003.

[ABLP93] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A

calculus for access control in distributed systems. 15(4):706–734, 1993.

[ACCP12] A. Armando, R. Carbone, L. Compagna, and G. Pellegrino. Automatic Security

Analysis of SAML-Based Single Sign-On Protocols. In Raj Sharman, Sanjukta

Das Smith, and Manish Gupta, editors, Digital Identity and Access Manage-

ment: Technologies and Frameworks, pages 168–187. IGI Global, Hershey, PA,

USA, 2012.

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability

theorems for infinite-state systems. In Proc. of LICS, pages 313–321, 1996.

[ADS04] C.A. Ardagna, E. Damiani S. De Capitani di Vimercati, and P. Samarati. Xml-

based access control languages. Information Security Technical Report, 9(3):35–

46, July-September 2004.

[AF17] S. Alves and M. Fernández. A graph-based framework for the analysis of access

control policies. Theor. Comput. Sci., 685:3–22, 2017.

109

110 BIBLIOGRAPHY

[AG00] Thomas Arts and Jürgen Giesl. Termination of term rewriting using depen-

dency pairs. Theoretical Computer Science, 236(1):133 – 178, 2000.

[AMC+11] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David

Maier, and Russell Sears. Dedalus: Datalog in time and space. In Oege de Moor,

Georg Gottlob, Tim Furche, and Andrew Sellers, editors, Datalog Reloaded,

pages 262–281, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[AP10] Alessandro Armando and Serena Elisa Ponta. Model checking of security-

sensitive business processes. In Pierpaolo Degano and Joshua D. Guttman,

editors, Formal Aspects in Security and Trust, pages 66–80, Berlin, Heidelberg,

2010. Springer Berlin Heidelberg.

[AR12] Alessandro Armando and Silvio Ranise. Scalable automated symbolic analysis

of administrative role-based access control policies by smt solving. J. Comput.

Secur., 20(4):309–352, July 2012.

[AS17] T. Ahmed and R. Sandhu. Safety of ABACα is decidable. In Network and

System Security - 11th International Conference, NSS 2017, Helsinki, Finland,

August 21-23, 2017, Proceedings, pages 257–272, 2017.

[BAB+07] Agreiter Berthold, Muhammad Alam, Ruth Breu, Michael Hafner, Alexander

Pretschner, Jean-Pierre Seifert, and Xinwen Zhang. A technical architecture

for enforcing usage control requirements in service-oriented architectures. In

Proceedings of the 2007 ACM Workshop on Secure Web Services, SWS ’07,

pages 18–25, New York, NY, USA, 2007. ACM.

[Bar09] Steve Barker. The next 700 access control models or a unifying meta-model? In

Proceedings of the 14th ACM Symposium on Access Control Models and Tech-

nologies, SACMAT ’09, page 187–196, New York, NY, USA, 2009. Association

for Computing Machinery.

BIBLIOGRAPHY 111

[BBG06] R. Bhatti, E. Bertino, and A. Ghafoor. X-FEDERATE: A policy engineering

framework for federated access management. IEEE Transactions on Software

Engineering, 32(5):330–346, 2006.

[BBG07] R. Bhatti, E. Bertino, and A. Ghafoor. An Integrated Approach to Federated

Identity and Privilege Management in Open Systems. Comm. of the ACM,

50(2):81–87, 2007.

[BBGG09] Steve Barker, Guido Boella, Dov M. Gabbay, and Valerio Genovese. A meta-

model of access control in a fibred security language. Studia Logica, 92(3):437–

477, 2009.

[BBK11] D. Basin, S. J. Burri, and G. Karjoth. Obstruction-free authorization enforce-

ment: Aligning security with business objectives. In 2011 IEEE 24th Computer

Security Foundations Symposium, pages 99–113, 2011.

[BBK12a] David Basin, Samuel J. Burri, and Günter Karjoth. Dynamic enforcement

of abstract separation of duty constraints. ACM TISSeC, 15(3):13:1–13:30,

November 2012.

[BBK12b] David Basin, Samuel J. Burri, and Günter Karjoth. Optimal workflow-aware

authorizations. In Proc. of SACMAT ’12, pages 93–102, New York, NY, 2012.

ACM.

[BBU17] Clara Bertolissi, Omar Boucelma, and Worachet Uttha. Enhancing security

in the cloud: When traceability meets access control. In 12th International

Conference for Internet Technology and Secured Transactions, ICITST 2017,

Cambridge, United Kingdom, December 11-14, 2017, pages 365–366. IEEE,

2017.

[BCDP05] Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo Perlasca. Geo-

rbac: A spatially aware rbac. In Proceedings of the Tenth ACM Symposium on

Access Control Models and Technologies, SACMAT ’05, pages 29–37, New York,

NY, USA, 2005. ACM.

112 BIBLIOGRAPHY

[BCFP03] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical

framework for reasoning about access control models. ACM Trans. Inf. Syst.

Secur., 6(1):71–127, 2003.

[BD04] S. Barker and P. Douglas. Protecting federated databases using a practical

implementation of a formal RBAC policy. In Int. Conf. on Information Tech-

nology: Coding and Computing, volume 1, pages 523–527. IEEE Computer

Society, Washington DC, USA, 2004.

[BdCdVS00] P. Bonatti, S. de Capitani di Vimercati, and P. Samarati. A modular approach

to composing access control policies. In CCS’00: Proceedings of the 7th ACM

conference on Computer and communications security, pages 164–173, New

York, NY, USA, 2000. ACM Press.

[BDF05] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. History-based

access control with local policies. In Proceedings of International Conference on

Foundations of Software Science and Computation Structures, pages 316–332.

Springer, 2005.

[BDF+06] P. A. Bonatti, C. Duma, N. Fuchs, W. Nejdl, D. Olmedilla, J. Peer, and

N. Shahmehri. Semantic web policies – a discussion of requirements and re-

search issues. In York Sure and John Domingue, editors, The Semantic Web:

Research and Applications, pages 712–724, Berlin, Heidelberg, 2006. Springer

Berlin Heidelberg.

[BDH07] Glenn Bruns, Daniel S Dantas, and Michael Huth. A simple and expressive se-

mantic framework for policy composition in access control. In Proceedings of the

2007 ACM Workshop on Formal Methods in Security Engineering, FMSE ’07,

page 12–21, New York, NY, USA, 2007. Association for Computing Machinery.

[BDHdS02] G. Barthe, G. Dufay, M. Huisman, and S. Melo de Sousa. Jakarta: a toolset to

reason about the JavaCard platform. In Proceedings of e-SMART’01, number

2140 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

BIBLIOGRAPHY 113

[BdHZ19] Clara Bertolissi, Jerry den Hartog, and Nicola Zannone. Using provenance for

secure data fusion in cooperative systems. In Proceedings of the 24th ACM

Symposium on Access Control Models and Technologies, SACMAT ’19, page

185–194, New York, NY, USA, 2019. Association for Computing Machinery.

[BdSR15] Clara Bertolissi, Daniel Ricardo dos Santos, and Silvio Ranise. Automated

synthesis of run-time monitors to enforce authorization policies in business

processes. In Feng Bao, Steven Miller, Jianying Zhou, and Gail-Joon Ahn,

editors, Proceedings of the 10th ACM Symposium on Information, Computer

and Communications Security, ASIA CCS ’15, Singapore, April 14-17, 2015,

pages 297–308. ACM, 2015.

[BdSR18] Clara Bertolissi, Daniel R. dos Santos, and Silvio Ranise. Solving multi-

objective workflow satisfiability problems with optimization modulo theories

techniques. In Proceedings of the 23nd ACM on Symposium on Access Control

Models and Technologies, SACMAT ’18, page 117–128. Association for Com-

puting Machinery, 2018.

[BF06] S. Barker and M. Fernández. Term rewriting for access control. In Data and

Applications Security. Proceedings of DBSec’2006, Lecture Notes in Computer

Science. Springer-Verlag, 2006.

[BF08a] C. Bertolissi and M. Fernández. An algebraic-functional framework for dis-

tributed access control. In Proceedings of CRISIS 2008, 3rd International Con-

ference on Risk and Security of Internet System, Tozeur, Tunisia, 2008., IEE-

Explore. IEEE, 2008.

[BF08b] C. Bertolissi and M. Fernández. A rewriting framework for the composition of

access control policies. In Proceedings of the 10th ACM-SIGPLAN Symposium

on Principles and Practice of Declarative Programming (PPDP’08), Valencia,

2008. ACM Press, 2008.

114 BIBLIOGRAPHY

[BF08c] C. Bertolissi and M. Fernández. Time and location based services with access

control. In NTMS 2008, 2nd International Conference on New Technologies,

Mobility and Security, 2008, Tangier, Morocco, pages 1–6. IEEE, 2008.

[BF09] C. Bertolissi and M. Fernández. Distributed event-based access control. Inter-

national Journal of Information and Computer Security, Special Issue: selected

papers from Crisis 2008, 3(3–4), 2009.

[BF10a] C. Bertolissi and M. Fernández. Category-based authorisation models: oper-

ational semantics and expressive power. In Proc. of Int. Symposium on En-

gineering Secure Software and Systems, ESSOS 2010, Pisa, number 5965 in

Lecture Notes in Computer Science, pages 140–156. Springer, 2010.

[BF10b] Clara Bertolissi and Maribel Fernandez. Category-based authorisation models:

Operational semantics and expressive power. In Engineering Secure Software

and Systems, volume 5965, pages 140–156. Springer Berlin Heidelberg, 2010.

[BF11] C. Bertolissi and M. Fernández. Rewrite specifications of access control policies

in distributed environments. In Proc. of STM 2010: 6th Workshop on Security

and Trust Management, Athens, Greece, 2010, number 6710 in Lecture Notes

in Computer Science. Springer, 2011.

[BF14] Clara Bertolissi and Maribel Fernández. A metamodel of access control for

distributed environments. Inf. Comput., 238(C):187–207, 2014.

[BF22] Clara Bertolissi and Maribel Fernández. Modular composition of access control

policies: A framework to build multi-site multi-level combinations. In Sven

Dietrich, Omar Chowdhury, and Daniel Takabi, editors, SACMAT ’22: The

27th ACM Symposium on Access Control Models and Technologies, New York,

NY, USA, June 8 - 10, 2022, pages 7–18. ACM, 2022.

[BFA99] Elisa Bertino, Elena Ferrari, and Vijay Atluri. The specification and enforce-

ment of authorization constraints in workflow management systems. ACM

Trans. Inf. Syst. Secur., 2(1):65–104, February 1999.

BIBLIOGRAPHY 115

[BFB07] C. Bertolissi, M. Fernández, and S. Barker. Dynamic Event-based Access Con-

trol as Term Rewriting. In In Proc. DBSEC 2007, LNCS. Springer, 2007.

[BFG10] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Secpal: Design

and semantics of a decentralized authorization language. J. Comput. Secur.,

18(4):619–665, 2010.

[BFT20] Clara Bertolissi, Maribel Fernández, and Bhavani Thuraisingham. Admin-cbac:

An administration model for category-based access control. In Proceedings of

the Tenth ACM Conference on Data and Application Security and Privacy, CO-

DASPY ’20, page 73–84, New York, NY, USA, 2020. Association for Computing

Machinery.

[BFT21] Clara Bertolissi, Maribel Fernández, and Bhavani Thuraisingham. Graph-based

specification of admin-cbac policies. In Proceedings of the ACM Conference on

Data and Application Security and Privacy, CODASPY ’21, page ??–??, New

York, NY, USA, 2021. Association for Computing Machinery.

[BGJLR07] Yohan Boichut, Thomas Genet, Thomas P. Jensen, and Luka Le Roux. Rewrit-

ing Approximations for Fast Prototyping of Static Analyzers. In Rewriting

Techniques and Applications, pages 48–62, France, 2007.

[Bha06] R. Bhatti. A Policy Engineering Framework for Federated Access Management.

PhD thesis, Center for Education and Research in Information Assurance and

Security, Purdue University, 2006.

[BJ12] Adel Bouhoula and Florent Jacquemard. Sufficient completeness verification

for conditional and constrained trs. J. of Applied Logic, 10(1):127–143, 2012.

[Bla16] Bruno Blanchet. Modeling and verifying security protocols with the applied

pi calculus and ProVerif. Foundations and Trends in Privacy and Security,

1(1–2):1–135, 2016.

[BLW05] Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies with

polymer. SIGPLAN Not., 40(6):305–314, 2005.

116 BIBLIOGRAPHY

[Bou94] Adel Bouhoula. Spike: A system for sufficient completeness and parameterized

inductive proofs. In Alan Bundy, editor, Automated Deduction — CADE-12,

pages 836–840, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[BPF15] N. Bjørner, A. Phan, and L. Fleckenstein. νz - an optimizing SMT solver. In

Proc. of TACAS, 2015.

[BR13a] Clara Bertolissi and Silvio Ranise. A methodology to build run-time moni-

tors for security-aware workflows. In 8th International Conference for Internet

Technology and Secured Transactions, ICITST 2013, London, United Kingdom,

December 9-12, 2013, pages 501–502. IEEE, 2013.

[BR13b] Clara Bertolissi and Silvio Ranise. Verification of composed array-based systems

with applications to security-aware workflows. In Pascal Fontaine, Christophe

Ringeissen, and Renate A. Schmidt, editors, Frontiers of Combining Systems,

pages 40–55, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Bro08] P.C. Brown. Implementing SOA: Total Architecture in Practice. TIBCO Press

Series. Addison-Wesley, 2008.

[BS03] P. A. Bonatti and P. Samarati. Logics for authorization and security. In

J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging

Applications of Databases, pages 277–323. Springer, 2003.

[BS04] Moritz Y. Becker and P. Sewell. Cassandra: distributed access control policies

with tunable expressiveness. Proceedings. Fifth IEEE International Workshop

on Policies for Distributed Systems and Networks, 2004. POLICY 2004., pages

159–168, 2004.

[BSPM06] Elisa Bertino, Anna C. Squicciarini, Ivan Paloscia, and Lorenzo Martino. Ws-

ac: A fine grained access control system for web services. World Wide Web,

9(2):143–171, Jun 2006.

[BTV16] Clara Bertolissi, Jean-Marc Talbot, and Didier Villevalois. Analysis of access

control policy updates through narrowing. In Proceedings of the 18th Inter-

BIBLIOGRAPHY 117

national Symposium on Principles and Practice of Declarative Programming,

PPDP ’16, page 62–75. Association for Computing Machinery, 2016.

[BU13a] C. Bertolissi and W. Uttha. Automated analysis of rule-based access control

policies. In Proc. of the 6th workshop on Programming Languages meet Pro-

gram Verification (PLPV’13) affiliated with POPL’13, Rome, Italy, January

22, 2013. ACM, 2013.

[BU13b] C. Bertolissi and W. Uttha. Automated Analysis of Rule-based Access Control

Policies. In Proceedings of the 7th Workshop on Programming Languages Meets

Program Verification, PLPV ’13, pages 47–56, New York, NY, USA, 2013.

ACM.

[BVS02] P. Bonatti, S. Vimercati, and P. Samarati. An algebra for Composing access

control policies. TISSEC, 5(1):1–35, 2002.

[Car14] Pierre Carbonnelle. pyDatalog, 2014.

[Cas97] Silvana Castano. An Approach To Deriving Global Authorizations in Federated

Database Systems, pages 58–75. Springer US, Boston, MA, 1997.

[CB04] B. N. Chun and A. Bavier. Decentralized trust management and accountability

in federated systems. In 37th Annual Hawaii Int. Conf. on System Sciences.

IEEE Computer Society, Washington DC, USA, 2004.

[CC97] Laurence Cholvy and Frederic Cuppens. Analyzing consistency of security poli-

cies. In 1997 IEEE Symposium on Security and Privacy, pages 103–112, Oak-

land, CA, 1997. IEEE Computer Society Press.

[CCBG07] Frédéric Cuppens, Nora Cuppens-Boulahia, and Meriam Ben Ghorbel. High

level conflict management strategies in advanced access control models. Elec-

tronic Notes in Theoretical Computer Science, 186:3 – 26, 2007. Proceedings

of the First Workshop in Information and Computer Security (ICS 2006).

118 BIBLIOGRAPHY

[CDE+03] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and

C. Talcott. The Maude 2.0 system. In Rewriting Techniques and Applications

(RTA 2003), number 2706 in Lecture Notes in Computer Science, pages 76–87.

Springer-Verlag, 2003.

[CF18] Pietro Colombo and Elena Ferrari. Access Control in the Era of Big Data: State

of the Art and Research Directions. In Proceedings of Symposium on Access

Control Models and Technologies, pages 185–192. ACM, 2018.

[CG13a] J. Crampton and G. Gutin. Constraint expressions and workflow satisfiability.

In Proc. of SACMAT, 2013.

[CG13b] Jason Crampton and Gregory Gutin. Constraint expressions and workflow

satisfiability. In Proceedings of the 18th ACM Symposium on Access Control

Models and Technologies, SACMAT ’13, page 73–84, New York, NY, USA,

2013. Association for Computing Machinery.

[CGD+16] Stephen Chong, Joshua Guttman, Anupam Datta, Andrew C. Myers, Ben-

jamin C. Pierce, Patrick Schaumont, Tim Sherwood, and Nickolai Zeldovich.

Report on the NSF workshop on formal methods for security. CoRR,

abs/1608.00678, 2016.

[CGGJ16] Jason Crampton, Andrei V. Gagarin, Gregory Z. Gutin, and Mark Jones. On

the workflow satisfiability problem with class-independent constraints for hier-

archical organizations. TOPS, 19(3):1–29, 2016.

[CGK15] J. Crampton, G. Gutin, and D. Karapetyan. Valued workflow satisfiability

problem. In Proc. of SACMAT, 2015.

[CGKW17] Jason Crampton, Gregory Z. Gutin, Daniel Karapetyan, and Rémi Watrig-

ant. The bi-objective workflow satisfiability problem and workflow resiliency.

Journal of Computer Security, 25:83–115, 2017.

[CGM19] Jason Crampton, Gregory Z. Gutin, and Diptapriyo Majumdar. Bounded

and approximate strong satisfiability in workflows. In Proceedings of the 24th

BIBLIOGRAPHY 119

ACM Symposium on Access Control Models and Technologies, SACMAT 2019,

Toronto, ON, Canada, June 03-06, 2019, pages 179–184. ACM, 2019.

[CGT89] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about

datalog (and never dared to ask). Knowledge and Data Engineering, IEEE

Transactions on, 1(1):146–166, Mar 1989.

[CGW16] Jason Crampton, Gregory Gutin, and Rémi Watrigant. Resiliency policies in

access control revisited. In Proceedings of the 21st ACM on Symposium on

Access Control Models and Technologies, SACMAT ’16, page 101–111, New

York, NY, USA, 2016. Association for Computing Machinery.

[CGW17] Jason Crampton, Gregory Z. Gutin, and Rémi Watrigant. On the satisfiability

of workflows with release points. In Proceedings of the 22nd ACM on Symposium

on Access Control Models and Technologies, SACMAT 2017, Indianapolis, IN,

USA, June 21-23, 2017, pages 207–217, 2017.

[Cha09] DavidW. Chadwick. Federated identity management. In Alessandro Aldini,

Gilles Barthe, and Roberto Gorrieri, editors, Foundations of Security Analysis

and Design V, volume 5705 of Lecture Notes in Computer Science, pages 96–

120. Springer Berlin Heidelberg, 2009.

[CHK14] Jason Crampton, Michael Huth, and JimHuan-Pu Kuo. Authorized workflow

schemas: deciding realizability through ltl(f) model checking. STTT, 16(1):31–

48, 2014.

[CK08] Jason Crampton and Hemanth Khambhammettu. Delegation and satisfiability

in workflow systems. In SACMAT, pages 31–40, New York, NY, USA, 2008.

ACM.

[CKKT11] Tyrone Cadenhead, Vaibhav Khadilkar, Murat Kantarcioglu, and Bhavani Thu-

raisingham. A language for provenance access control. In Proceedings of Con-

ference on Data and Application Security and Privacy, pages 133–144. ACM,

2011.

120 BIBLIOGRAPHY

[CM04] F. Cuppens and A. Miège. Adorbac: an administration model for or-bac. Com-

put. Syst. Sci. Eng., 19, 2004.

[Com86] Hubert Comon. Sufficient completeness, term rewriting systems and ”anti-

unification”. In Jörg H. Siekmann, editor, 8th International Conference on

Automated Deduction, pages 128–140, Berlin, Heidelberg, 1986. Springer Berlin

Heidelberg.

[CON06] DavidW Chadwick, Sassa Otenko, and TuanAnh Nguyen. Adding support to

xacml for dynamic delegation of authority in multiple domains. In Herbert

Leitold and EvangelosP. Markatos, editors, Communications and Multimedia

Security, volume 4237 of Lecture Notes in Computer Science, pages 67–86.

Springer Berlin Heidelberg, 2006.

[CPU+10] É. Contejean, A. Paskevich, X. Urbain, P. Courtieu, O. Pons, and J. Forest.

A3pat, an approach for certified automated termination proofs. In Proc. of the

2010 ACM SIGPLAN workshop on Partial evaluation and program manipula-

tion, PEPM ’10, pages 63–72, New York, NY, USA, 2010. ACM.

[Cra05] J. Crampton. A reference monitor for workflow systems with constrained task

execution. In 10th ACM SACMAT, pages 38–47. ACM, 2005.

[CS14] Jason Crampton and James Sellwood. Path Conditions and Principal Matching:

A New Approach to Access Control. In Proceedings of Symposium on Access

Control Models and Technologies, pages 187–198. ACM, 2014.

[D.03] Box D. Web services policy framework (WS-policy). volume version 1.1.

http://www.oasis-open.org/specs/index.php#ws-secpol, 2003.

[DCdVS96] Sabrina De Capitani di Vimercati and Pierangela Samarati. An authoriza-

tion model for federated systems. In Elisa Bertino, Helmut Kurth, Giancarlo

Martella, and Emilio Montolivo, editors, Computer Security — ESORICS 96,

pages 99–117, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

BIBLIOGRAPHY 121

[DDCdVPS02] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and

Pierangela Samarati. A fine-grained access control system for xml documents.

ACM Trans. Inf. Syst. Secur., 5(2):169–202, May 2002.

[DDLS01] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The

ponder policy specification language. In Morris Sloman, Emil C. Lupu, and

Jorge Lobo, editors, Policies for Distributed Systems and Networks, pages 18–

38, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[DDO08] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis

of business process models in {BPMN}. Inf. and Soft. Tech., 50(12):1281 – 1294,

2008.

[DDS05] E. Damiani, S. De Capitani di Vimercati, and P. Samarati. New paradigms for

access control in open environments. In Proc. of the 5th IEEE International

Symposium on Signal Processing and Information, Athens, Greece, December

2005.

[Der87] Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computa-

tion, 3(1):69 – 115, 1987.

[DeT02] John DeTreville. Binder, a logic-based security language. In Proceedings of the

2002 IEEE Symposium on Security and Privacy, SP ’02, page 105, USA, 2002.

IEEE Computer Society.

[DFJS07] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati. Access

control policies and languages. International Journal of Computational Science

and Engineering (IJCSE), 3(2):94–102, 2007.

[DFK06] D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and reason-

ing about dynamic access-control policies. In Ulrich Furbach and Natarajan

Shankar, editors, Proc. of IJCAR’06, volume 4130 of Lecture Notes in Com-

puter Science, pages 632–646. Springer, 2006.

122 BIBLIOGRAPHY

[dHZ16a] Jerry den Hartog and Nicola Zannone. A policy framework for data fusion and

derived data control. In Proceedings of the 2016 ACM International Workshop

on Attribute Based Access Control, ABAC ’16, page 47–57, New York, NY,

USA, 2016. Association for Computing Machinery.

[dHZ16b] Jerry den Hartog and Nicola Zannone. A policy framework for data fusion and

derived data control. In Proceedings of International Workshop on Attribute

Based Access Control, pages 47–57. ACM, 2016.

[DJH12] J. Dubrovin, T.A. Junttila, and K. Heljanko. Exploiting step semantics for

efficient bounded model checking of asynchronous systems. Sci. Comput. Pro-

gram., 77(10-11):1095–1121, 2012.

[DKKdO07] D. J. Dougherty, C. Kirchner, H. Kirchner, and A. Santana de Oliveira. Modular

access control via strategic rewriting. In Proceedings of 12th European Sympo-

sium On Research In Computer Security, ESORICS, pages 578–593, 2007.

[dOWKK07] A. Santana de Oliveira, E. Ke Wang, C. Kirchner, and H. Kirchner. Weaving

rewrite-based access control policies. In Proceedings of the 2007 ACM workshop

on Formal methods in security engineering, FMSE 2007, Fairfax, VA, USA,

November 2, 2007, pages 71–80. ACM, 2007.

[dS17] Daniel Ricardo dos Santos. Automatic Techniques for the Synthesis and Assisted

Deployment of Security Policies in Workflow-based Applications. PhD thesis,

University of Trento, Italy, 2017.

[dSMS+16] Daniel Ricardo dos Santos, Roberto Marinho, Gustavo Roecker Schmitt,

Carla Merkle Westphall, and Carlos Becker Westphall. A framework and risk

assessment approaches for risk-based access control in the cloud. J. Netw.

Comput. Appl., 74(C):86–97, 2016.

[dSR17] Daniel Ricardo dos Santos and Silvio Ranise. A survey on workflow satisfiability,

resiliency, and related problems. CoRR, abs/1706.07205, 2017.

BIBLIOGRAPHY 123

[dSRCP15] Daniel R. dos Santos, Silvio Ranise, Luca Compagna, and Serena E. Ponta.

Assisting the deployment of security-sensitive workflows by finding execution

scenarios. In Pierangela Samarati, editor, Data and Applications Security and

Privacy XXIX, pages 85–100. Springer International Publishing, 2015.

[dVS97] S. De Capitani di Vimercati and P. Samarati. Authorization specification and

enforcement in federated database systems. J. Comput. Secur., 5:155–188,

March 1997.

[EAC98] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based access

control for mobile code. In Proceedings of Conference on Computer and Com-

munications Security, pages 38–48. ACM, 1998.

[EBA+07] C. Emig, F. Brandt, S. Abeck, J. Biermann, and H. Klarl. An access control

metamodel for web service-oriented architecture. In Software Engineering Ad-

vances, 2007. ICSEA 2007. International Conference on, pages 57–57. IEEE

Computer Society, 2007.

[EMM06] S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference system

for the NRL protocol analyzer and its meta-logical properties. Theor. Comput.

Sci., 367:162–202, November 2006.

[EP05] R. Echahed and F. Prost. Security policy in a declarative style. In Proceedings

of the 7th ACM SIGPLAN International Conference on Principles and Practice

of Declarative Programming, PPDP ’05, page 153–163, New York, NY, USA,

2005. Association for Computing Machinery.

[FA08] David Ferraiolo and Vijay Atluri. A meta model for access control: Why is

it needed and is it even possible to achieve? In Proceedings of the 13th ACM

Symposium on Access Control Models and Technologies, SACMAT ’08, page

153–154, New York, NY, USA, 2008. Association for Computing Machinery.

124 BIBLIOGRAPHY

[FAG11] David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. The policy machine:

A novel architecture and framework for access control policy specification and

enforcement. J. Syst. Archit., 57(4):412–424, 2011.

[FCKV10] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vi-

gna. Toward automated detection of logic vulnerabilities in web applications. In

Proceedings of the 19th USENIX Conference on Security, USENIX Security’10,

page 10, USA, 2010. USENIX Association.

[FGHK05] David F. Ferraiolo, Serban Gavrila, Vincent Hu, and D. Richard Kuhn. Com-

posing and combining policies under the policy machine. In Proceedings of

the Tenth ACM Symposium on Access Control Models and Technologies, SAC-

MAT ’05, page 11–20, New York, NY, USA, 2005. Association for Computing

Machinery.

[FJ95] M. Fernández and J.-P. Jouannaud. Modular termination of term rewriting

systems revisited. In Recent Trends in Data Type Specification. Proc. 10th.

Workshop on Specification of Abstract Data Types (ADT’94), number 906 in

Lecture Notes in Computer Science, Santa Margherita, Italy, 1995.

[FKMT05] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification

and change-impact analysis of access-control policies. In 27th International

Conference on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis,

Missouri, USA, pages 196–205, 2005.

[FMP13] Anna Lisa Ferrara, P Madhusudan, and Gennaro Parlato. Policy analysis for

self-administrated role-based access control. In Tools and Algorithms for the

Construction and Analysis of Systems, pages 432–447. Springer Berlin Heidel-

berg, 2013.

[FSG+01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-

maswamy Chandramouli. Proposed nist standard for role-based access control.

ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

BIBLIOGRAPHY 125

[Gab04] Alban Gabillon. An authorization model for xml databases. In Proceedings of

the 2004 Workshop on Secure Web Service, SWS ’04, pages 16–28, New York,

NY, USA, 2004. ACM.

[Gar97] V. K. Garg. Methods for Observing Global Properties in Distributed Systems.

IEEE Parallel Distrib. Technol., 5(4):69–77, October 1997.

[Gar13] V.K. Garg. Maximal antichain lattice algorithms for distributed computations.

In Proc. of ICDCN, 2013.

[GB02] Alban Gabillon and Emmanuel Bruno. Regulating Access to XML Documents,

pages 299–314. Springer US, Boston, MA, 2002.

[GdHN+08] Patrice Godefroid, Peli de Halleux, Aditya Nori, Sriram Rajamani, Wolfram

Schulte, Nikolai Tillmann, and Michael Y. Levin. Automated software testing

using program analysis. IEEE Software, Special Issue on Software Development

Tools, 2008.

[Gen98] Thomas Genet. Contraintes d’ordre et automates d’arbres pour les preuves de

terminaison. Theses, Université Henri Poincaré - Nancy 1, 1998.

[GHHF05] H. Gomi, M. Hatakeyama, S. Hosono, and S. Fujita. A delegation framework

for federated identity management. In ACM Workshop on Digital Identity

Management, pages 94–103. ACM Press, New York, USA, 2005.

[GM15] M. Gario and A. Micheli. pysmt: a solver-agnostic library for fast prototyping

of smt-based algorithms. In SMT Workshop, 2015.

[GNS17] Ekaterina A. Gorshkova, Boris Novikov, and Manoj Kumar Shukla. A fine-

grained access control model and implementation. Proceedings of the 18th In-

ternational Conference on Computer Systems and Technologies, 2017.

[GQ96] L. Gong and X. Qian. Computational Issues in Secure Interoperation. IEEE

Transactions on Software Engineering, 22(1):43–52, 1996.

126 BIBLIOGRAPHY

[GR10a] S. Ghilardi and S. Ranise. Backward reachability of array-based systems by

SMT solving: Termination and invariant synthesis. In LMCS, Vol. 6, Issue 4,

2010.

[GR10b] S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In

IJCAR, volume 6173 of LNCS, pages 22–29, 2010.

[GSKT06] J. Giesl, P. Schneider-Kamp, and R. Thiemann. Aprove 1.2: Automatic ter-

mination proofs in the dependency pair framework. In Proceedings IJCAR ’06,

LNAI 4130, pages 281–286. Springer, 2006.

[HAM15] Julius Holderer, Rafael Accorsi, and Günter Müller. When four-eyes become

too much: A survey on the interplay of authorization constraints and workflow

resilience. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing, SAC ’15, page 1245–1248, New York, NY, USA, 2015. Association

for Computing Machinery.

[HCM05] J. Hendrix, M. Clavel, and J. Meseguer. A sufficient completeness reasoning tool

for partial specifications. In Proc. of 16th Int. Conference on Term Rewriting

and Applications, RTA 2005, Nara, Japan, 2005, number 3467 in Lecture Notes

in Computer Science, pages 165–174. Springer, 2005.

[HFK+15] V. Hu, D. F. Ferraiolo, D. Kuhn, R. N. Kacker, and Y. Lei. Implementing and

managing policy rules in attribute based access control. In 2015 IEEE Interna-

tional Conference on Information Reuse and Integration (IRI), volume 1, pages

518–525, Los Alamitos, CA, USA, 2015. IEEE Computer Society.

[HKF15] V. C. Hu, D. Kuhn, and D. F. Ferraiolo. Attribute-based access control. Com-

puter, 48(02):85–88, 2015.

[HM05] Nao Hirokawa and Aart Middeldorp. Tyrolean termination tool. In Jürgen

Giesl, editor, Term Rewriting and Applications, pages 175–184, Berlin, Heidel-

berg, 2005. Springer Berlin Heidelberg.

BIBLIOGRAPHY 127

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., USA,

1985.

[HRU76a] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating

systems. Commun. ACM, 19(8):461–471, 1976.

[HRU76b] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in

operating systems. Commun. ACM, 19(8):461–471, 1976.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to

term rewriting systems: Abstract properties and applications to term rewriting

systems. J. ACM, 27(4):797–821, 1980.

[Hug05] et al. Hughes, J. Profiles for the OASIS Security Assertion Markup Language

(SAML) V2.0. OASIS, March 2005. Available at http://docs.oasis-open.

org/security/saml/v2.0/saml-profiles-2.0-os.pdf.

[HW08] Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason about

policies. ACM Trans. Inf. Syst. Secur., 11(4), 2008.

[JBLG05] James B. D. Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A generalized

temporal role-based access control model. IEEE Trans. on Knowl. and Data

Eng., 17(1):4–23, 2005.

[JD94] D. Jonscher and K. R. Dittrich. An approach for building secure database

federations. In Proceedings of the 20th International Conference on Very Large

Data Bases, VLDB ’94, pages 24–35, San Francisco, CA, USA, 1994.

[Jim01] Trevor Jim. Sd3: A trust management system with certified evaluation. In

Proceedings of the 2001 IEEE Symposium on Security and Privacy, SP ’01,

page 106, USA, 2001. IEEE Computer Society.

[JKS12a] X. Jin, R. Krishnan, and R. Sandhu. A unified attribute-based access control

model covering dac, mac and rbac. In N. Cuppens-Boulahia, F. Cuppens, and

128 BIBLIOGRAPHY

J. Garcia-Alfaro, editors, Data and Applications Security and Privacy XXVI,

pages 41–55, Berlin, Heidelberg, 2012. Springer.

[JKS12b] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access

control model covering dac, mac and rbac. In Proceedings of the 26th Annual

IFIP WG 11.3 Conference on Data and Applications Security and Privacy,

DBSec’12, pages 41–55, Berlin, Heidelberg, 2012. Springer-Verlag.

[JLT+08] Somesh Jha, Ninghui Li, Mahesh Tripunitara, Qihua Wang, and William Wins-

borough. Towards formal verification of role-based access control policies. IEEE

Transactions on Dependable and Secure Computing, 5(4):242–255, 2008.

[JM06] Mathieu Jaume and Charles Morisset. A formal approach to implement access

control. Journal of Information Assurance and Security, 1(2):137–148, 2006.

[Jor87] C.S. Jordan. Guide to understanding discretionary access control in trusted

systems, 1987.

[JS05] R. Jagadeesan and V. Saraswat. Timed Constraint Programming: A Declara-

tive Approach to Usage Control. In Proc. 7th ACM-SIGPLAN Symposium on

Principles and Practice of Declarative Programming (PPDP’05). ACM Press,

2005.

[JSSS01] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrah-

manian. Flexible support for multiple access control policies. ACM Trans.

Database Syst., 26(2):214–260, June 2001.

[JT01] Trent Jaeger and Jonathon E. Tidswell. Practical safety in flexible access control

models. ACM Trans. Inf. Syst. Secur., 4(2):158–190, May 2001.

[KAAI21] Nadine Kashmar, Mehdi Adda, Mirna Atieh, and Hussein Ibrahim. A review of

access control metamodels. Procedia Computer Science, 184:445–452, 2021. The

12th International Conference on Ambient Systems, Networks and Technologies

(ANT).

BIBLIOGRAPHY 129

[KAI21] Nadine Kashmar, Mehdi Adda, and Hussein Ibrahim. HEAD metamodel: Hi-

erarchical, extensible, advanced, and dynamic access control metamodel for

dynamic and heterogeneous structures. Sensors, 21(19):6507, 2021.

[Kar15] Günter Karjoth. Aligning security and business objectives for process-aware

information systems. In Proceedings of the 5th ACM Conference on Data and

Application Security and Privacy, CODASPY ’15, page 243, New York, NY,

USA, 2015. Association for Computing Machinery.

[KB83] D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal Algebras,

pages 342–376. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[KB07] David Kyle and José Carlos Brustoloni. Uclinux: A linux security module

for trusted-computing-based usage controls enforcement. In Proceedings of the

2007 ACM Workshop on Scalable Trusted Computing, STC ’07, pages 63–70,

New York, NY, USA, 2007. ACM.

[KBB+03] AAE. Kalam, R.E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,

A Miege, C. Saurel, and G. Trouessin. Organization based access control. In

Policies for Distributed Systems and Networks, 2003. Proceedings. POLICY

2003. IEEE 4th International Workshop on, pages 120–131, 2003.

[KF12] Arif Akram Khan and Philip W. L. Fong. Satisfiability and feasibility in a

relationship-based workflow authorization model. In Sara Foresti, Moti Yung,

and Fabio Martinelli, editors, Computer Security – ESORICS 2012, pages 109–

126, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[KKdO09] Claude Kirchner, Hélène Kirchner, and Anderson Santana de Oliveira. Analysis

of rewrite-based access control policies. Electr. Notes Theor. Comput. Sci.,

234:55–75, 2009.

[KKP+15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and

Boris Yakobowski. Frama-c: A software analysis perspective. Formal Aspects

of Computing, 27(3):573–609, 2015.

130 BIBLIOGRAPHY

[KL10] A.H. Karp and Jun Li. Solving the transitive access problem for the services

oriented architecture. In Availability, Reliability, and Security, 2010. ARES ’10

International Conference on, pages 46–53, Feb 2010.

[KM16] Kyriakos Kritikos and Philippe Massonet. An integrated meta-model for cloud

application security modelling. Procedia Computer Science, 97:84–93, 2016.

[KMPP01] M. Koch, L. V. Mancini, and F. Parisi-Presicce. On the specification and

evolution of access control policies. In Proceedings of the Sixth ACM Symposium

on Access Control Models and Technologies, SACMAT ’01, page 121–130, New

York, NY, USA, 2001. Association for Computing Machinery.

[KMPP04] M. Koch, L. Mancini, and F. Parisi-Presicce. A graph based formalism for

RBAC. In Proc. of SACMAT 2004, 9th ACM Symposium on Access Control

Models and Technologies, New York, USA, 2004, pages 129–187, 2004.

[KNRZ91] Deepak Kapur, Paliath Narendran, Daniel J. Rosenkrantz, and Hantao Zhang.

Sufficient-completeness, ground-reducibility and their complexity. Acta Infor-

matica, 28(4):311–350, 1991.

[KNS08] Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A logical framework

for history-based access control and reputation systems. J. Comput. Secur.,

16(1):63–101, 2008.

[Lam71] Butler W. Lampson. Protection. In 5th Princeton Conference on Information

Sciences and Systems, page 437, 1971.

[Lan66] P. J. Landin. The next 700 programming languages. Commun. ACM,

9(3):157–166, 1966.

[LB13] Julien Lacroix and Omar Boucelma. Provenance-based access control in the

cloud. In Proceedings of International Conference on Services Computing, pages

755–756. IEEE, 2013.

BIBLIOGRAPHY 131

[LBOG06] Adam J. Lee, Jodie P. Boyer, Lars E. Olson, and Carl A. Gunter. Defeasible

security policy composition for web services. In Proceedings of the Fourth ACM

Workshop on Formal Methods in Security, FMSE ’06, page 45–54. Association

for Computing Machinery, 2006.

[Liu07] Alex X. Liu. Change-impact analysis of firewall policies. In Joachim Biskup

and Javier López, editors, Computer Security – ESORICS 2007, pages 155–170,

Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[LK07] Jun Li and Alan H. Karp. Access control for the services oriented architecture.

In Proceedings of the 2007 ACM Workshop on Secure Web Services, SWS ’07,

pages 9–17. ACM, 2007.

[Llo84] J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.

[LM03] N. Li and J. C. Mitchell. Datalog with constraints: a foundation for trust

management languages. In PADL’03, pages 58–73, 2003.

[LMRM12] Maria Leitner, Juergen Mangler, and Stefanie Rinderle-Ma. Definition and

enactment of instance-spanning process constraints. In X. Sean Wang, Isabel

Cruz, Alex Delis, and Guangyan Huang, editors, Web Information Systems

Engineering - WISE 2012, pages 652–658, Berlin, Heidelberg, 2012. Springer

Berlin Heidelberg.

[LMW02] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-

based trust-management framework. In Proceedings of the 2002 IEEE Sympo-

sium on Security and Privacy, SP ’02, page 114, USA, 2002. IEEE Computer

Society.

[LRM14] M. Leitner and S. Rinderle-Ma. A systematic review on security in process-

aware information systems–constitution, challenges, and future directions. Inf.

and Soft. Tech., 56(3):273–293, 2014.

132 BIBLIOGRAPHY

[LSWY07] Adam J. Lee, Kent E. Seamons, Marianne Winslett, and Ting Yu. Automated

Trust Negotiation in Open Systems, pages 217–258. Springer US, Boston, MA,

2007.

[LT06] Ninghui Li and Mahesh V Tripunitara. Security analysis in role-based access

control. ACM Transactions on Information and System Security (TISSEC),

9(4):391–420, 2006.

[LTL10] Y. Long, Z. Tang, and X. Liu. Attribute mapping for cross-domain access

control. In 2010 International Conference on Computer and Information Ap-

plication, volume 1, pages 343–347, 2010.

[LWQ+09] N. Li, Q. Wang, W. H. Qardaji, E. Bertino, P. Rao, J. Lobo, and D. Lin. Access

control policy combining: theory meets practice. In SACMAT 2009, 14th ACM

Symposium on Access Control Models and Technologies, Stresa, Italy, June 3-5,

2009, Proceedings, pages 135–144. ACM, 2009.

[MA04] R.T. Marler and J.S. Arora. Survey of multi-objective optimization methods

for engineering. Structural and Multidisciplinary Optimization, 26(6):369–395,

2004.

[Mao10] Yun Mao. On the declarativity of declarative networking. SIGOPS Oper. Syst.

Rev., 43(4):19–24, January 2010.

[Mas97] Fabio Massacci. Reasoning about security: A logic and a decision method for

role-based access control. In Dov M. Gabbay, Rudolf Kruse, Andreas Nonnen-

gart, and Hans Jürgen Ohlbach, editors, Qualitative and Quantitative Practical

Reasoning, pages 421–435, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[McA04] N. McAllister. Toward a federated future. InfoWorld, 26(36):44–48, 2004.

[MCF+11] Luc Moreau, Ben Cliffor, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth,

Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale,

BIBLIOGRAPHY 133

Yogesh Simmhan, Eric Stephan, and Jan Van den Bussche. The Open Prove-

nance Model core specification (v1.1). Future Generation Computer Systems,

27(6):743–756, 2011.

[McG09] R. McGraw. Risk-adaptable access control (radac). In Proc. of NIST Privilege

(Access) Management Workshop, 2009.

[Miè05] Alexandre Miège. Definition of a formal framework for specifying security poli-

cies. The Or-BAC model and extensions. Theses, Télécom ParisTech, 2005.

[MKD19] M. Marin, T. Kutsia, and B. Dundua. A rule-based approach to the decidability

of safety of abacα. In Proceedings of the 24th ACM Symposium on Access

Control Models and Technologies, SACMAT 2019, Toronto, ON, Canada, June

03-06, 2019, pages 173–178, New York, 2019. ACM Press.

[MKT05] P. Madsen, Y. Koga, and K. Takahashi. Federated identity management for

protecting users from id theft. In ACM Workshop on Digital Identity Manage-

ment, pages 77–83. ACM Press, New York, USA, 2005.

[MM13] Luc Moreau and Paolo Missier. PROV-DM: The PROV Data Model. W3C

Recommendation, W3C, 2013.

[MMM14] J.C. Mace, C. Morisset, and A. Moorsel. Quantitative workflow resiliency. In

Proc. of ESORICS, 2014.

[MOPB06] Massimo Mecella, Mourad Ouzzani, Federica Paci, and Elisa Bertino. Access

control enforcement for conversation-based web services. In Proceedings of the

15th International Conference on World Wide Web, WWW ’06, pages 257–266,

New York, NY, USA, 2006. ACM.

[Mor07] Charles Morisset. Sémantique des systèmes de contrôle d’accès : définition

d’un cadre sémantique pour la spécification, l’implantation et la comparaison

de modèles de contrôle d’accès. PhD thesis, Thèse de doctorat Informatique,

Université Paris 6, 2007.

134 BIBLIOGRAPHY

[MP04] Deborah L. McGuinness and Paulo Pinheiro da Silva. Explaining answers from

the semantic web: the inference web approach. Journal of Web Semantics,

1(4):397 – 413, 2004. International Semantic Web Conference 2003.

[MS18] Charles Morisset and David Sanchez. Visabac: A tool for visualising ABAC

policies. In Paolo Mori, Steven Furnell, and Olivier Camp, editors, Proceedings

of the 4th International Conference on Information Systems Security and Pri-

vacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22-24, 2018., pages

117–126. SciTePress, 2018.

[MT07] José Meseguer and Prasanna Thati. Symbolic Reachability Analysis Using Nar-

rowing and Its Application to Verification of Cryptographic Protocols. Higher

Order Symbol. Comput., 20(1-2):123–160, June 2007.

[MU04] Claude Marché and Xavier Urbain. Modular and incremental proofs of ac-

termination. Journal of Symbolic Computation, 38(1):873 – 897, 2004.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of

the IEEE, 77(4):541–580, 1989.

[New42] M.H.A. Newman. On theories with a combinatorial definition of equivalence.

Annals of Mathematics, 43(2):223–243, 1942.

[NPS13] Dang Nguyen, Jaehong Park, and Ravi S. Sandhu. A provenance-based ac-

cess control model for dynamic separation of duties. In Proceedings of Annual

International Conference on Privacy, Security and Trust. IEEE, 2013.

[NR09] Juan A. Navarro and Andrey Rybalchenko. Operational semantics for declara-

tive networking. In Andy Gill and Terrance Swift, editors, Practical Aspects of

Declarative Languages, pages 76–90, Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg.

[NRZ+15] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and

Michael Deardeuff. How amazon web services uses formal methods. Commun.

ACM, 58(4):66–73, March 2015.

BIBLIOGRAPHY 135

[OAS03] OASIS. eXtensible Access Control Markup language (XACML), 2003.

http://www.oasis-open.org/xacml/docs/.

[OAS13] OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0.

OASIS Standard, 2013.

[oD85] Department of Defense. Trusted computer system evaluation criteria. 5200(28),

1985.

[OL10] Alan C O’Connor and Ross J Loomis. Economic analysis of role-based access

control, 2010.

[PG03] M. P. Papazoglou and D. Georgakopulos. Service Oriented Computing. Comm.

of the ACM, 46(10):25–38, 2003.

[Pha10] Q. Pham. Delegation Framework for Federated Systems. PhD thesis, Informa-

tion Security Institute, Queensland University of Technology, Brisbane, Aus-

tralia, 2010.

[PHB+08] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Walter. Mechanisms

for usage control. In Proceeding ASIACCS ’08 Proceedings of the 2008 ACM

symposium on Information, computer and communications security, pages 240–

244. ACM, New York, 2008.

[PMH07] Alexander Pretschner, Fabio Massacci, and Manuel Hilty. Usage control in

service-oriented architectures. In Costas Lambrinoudakis, Günther Pernul, and

A. Min Tjoa, editors, Trust, Privacy and Security in Digital Business, pages

83–93, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[PNS12] Jaehong Park, Dang Nguyen, and Ravi Sandhu. A provenance-based access con-

trol model. In Proceedings of the 2012 Tenth Annual International Conference

on Privacy, Security and Trust (PST), PST ’12, pages 137–144, Washington,

DC, USA, 2012. IEEE Computer Society.

[Pre47] Associated Press. Bill providing highway access control drafted, 1947.

136 BIBLIOGRAPHY

[PS02] Jaehong Park and Ravi Sandhu. Towards usage control models: Beyond tradi-

tional access control. In Proceedings of the Seventh ACM Symposium on Access

Control Models and Technologies, SACMAT ’02, pages 57–64, New York, NY,

USA, 2002. ACM.

[PS04] Jaehong Park and Ravi Sandhu. The ucon-abc usage control model. ACM

Transactions in Information Systems Security, 7(1):128–174, 2004.

[PSZ18] Federica Paci, Anna Squicciarini, and Nicola Zannone. Survey on access control

for community-centered collaborative systems. ACM Comput. Surv., 51(1):6:1–

6:38, 2018.

[PY14] J. Pei and X. Ye. Towards Policy Retrieval for Provenance Based Access Con-

trol Model. In Proceedings of International Conference on Trust, Security and

Privacy in Computing and Communications, pages 769–776. IEEE, 2014.

[PYL13] I. Ray P. Yang, X. Xie and S. Lu. Satisfiability analysis of workflows with

control-flow patterns and authorization constraints. IEEE TSC, 99, 2013.

[RFR+12] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David

Walker. Abstractions for network update. In Proceedings of the ACM SIG-

COMM 2012 Conference on Applications, Technologies, Architectures, and Pro-

tocols for Computer Communication, SIGCOMM ’12, page 323–334, New York,

NY, USA, 2012. Association for Computing Machinery.

[RSM+15] A. Roy, S. Sural, A.K. Majumdar, J. Vaidya, and V. Atluri. Minimizing or-

ganizational user requirement while meeting security constraints. ACM Trans.

Manage. Inf. Syst., 6(3):12:1–12:25, 2015.

[San08] A. Santana de Oliveira. Réécriture et Modularité pour les Politiques de Sécurité.

PhD thesis, Université Henri Poincaré, Nancy, France, 2008.

[SAS04] D. Shin, G. J. Ahn, and P. Shenoy. Ensuring information assurance in federated

identity management. In IEEE Int. Conf. on Performance, Computing, and

BIBLIOGRAPHY 137

Communications, pages 821–826. IEEE Computer Society, Washington DC,

USA, 2004.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.

Role-based access control models. Computer, 29(2):38–47, February 1996.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,

3(1):30–50, 2000.

[SdV01] Pierangela Samarati and Sabrina Capitani de Vimercati. Access control: Poli-

cies, models, and mechanisms. In Riccardo Focardi and Roberto Gorrieri, edi-

tors, Foundations of Security Analysis and Design, pages 137–196, Berlin, Hei-

delberg, 2001. Springer Berlin Heidelberg.

[Sha93] A. U. Shankar. An Introduction to Assertional Reasoning for Concurrent Sys-

tems. ACM Comput. Surv., 25(3):225–262, September 1993.

[SIM+07] M. Srivatsa, A. Iyengar, T. Mikalsen, I. Rouvellou, and Jian Yin. An access

control system for web service compositions. In Web Services, 2007. ICWS

2007. IEEE International Conference on, pages 1–8, July 2007.

[SKAL12] Bernard Stepien, Hemanth Khambhammettu, Kamel Adi, and Luigi Logrippo.

Catbac: A generic framework for designing and validating hybrid access control

models. 2012 IEEE International Conference on Communications (ICC), pages

6721–6726, 2012.

[spe03] OASIS specifications. Security assertion markup language (saml), 2003.

[SPNS16] L. Sun, J. Park, D. Nguyen, and R. Sandhu. A provenance-aware access con-

trol framework with typed provenance. IEEE Transactions on Dependable and

Secure Computing, 13(4):411–423, 2016.

[SS04] Christian Skalka and Scott Smith. History effects and verification. In Program-

ming Languages and Systems, pages 107–128. Springer, 2004.

138 BIBLIOGRAPHY

[SSM03] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Petri net analysis

using invariant generation. In In Verification: Theory and Practice, LNCS

2772, pages 682–701. Springer Verlag, 2003.

[ST98] C. C. Shilakes and J. Tylman. Enterprise Information Portals. Merrill Lynch,

Inc., New York, NY, 1998.

[ST15] R. Sebastiani and P. Trentin. OptiMathSAT: A Tool for Optimization Modulo

Theories. In Proc. of CAV, 2015.

[SYRG07] Scott D Stoller, Ping Yang, C R Ramakrishnan, and Mikhail I Gofman. Efficient

policy analysis for administrative role based access control. In Proceedings of

the 14th ACM conference on Computer and communications security, pages

445–455. ACM, 2007.

[SYSR06] Amit Sasturkar, Ping Yang, Scott D Stoller, and CR Ramakrishnan. Policy

analysis for administrative role based access control. In Computer Security

Foundations Workshop, 2006. 19th IEEE, pages 13–pp. IEEE, 2006.

[SYTB13] Wei She, I-Ling Yen, B. Thuraisingham, and E. Bertino. Security-aware service

composition with fine-grained information flow control. Services Computing,

IEEE Transactions on, 6(3):330–343, July 2013.

[Ter03] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[TFS18] Lakshya Tandon, Philip W. L. Fong, and Reihaneh Safavi-Naini. HCAP: A

History-Based Capability System for IoT Devices. In Proceedings of Symposium

on Access Control Models and Technologies, pages 247–258. ACM, 2018.

[TK06] Michael Carl Tschantz and Shriram Krishnamurthi. Towards reasonability

properties for access-control policy languages. In Proceedings of the Eleventh

ACM Symposium on Access Control Models and Technologies, SACMAT ’06,

page 160–169, New York, NY, USA, 2006. Association for Computing Machin-

ery.

BIBLIOGRAPHY 139

[TS97] Roshan K. Thomas and Ravi S. Sandhu. Task-based authorization controls

(TBAC): A family of models for active and enterprise-oriented autorization

management. In Database Securty XI: Status and Prospects, IFIP TC11

WG11.3 Eleventh International Conference on Database Security, 10-13 August

1997, Lake Tahoe, California, USA, volume 113 of IFIP Conference Proceed-

ings, pages 166–181, 1997.

[TWM+09] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Fred-

eric T. Chong, and Timothy Sherwood. Complete information flow tracking

from the gates up. In Proceedings of the 14th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, ASP-

LOS XIV, page 109–120, New York, NY, USA, 2009. Association for Computing

Machinery.

[TZG+13] Daniel Trivellato, Nicola Zannone, Maurice Glaundrup, Jacek Skowronek, and

Sandro Etalle. A semantic security framework for systems of systems. Int. J.

Cooperative Inf. Syst., 22(1), 2013.

[UBR14] Worachet Uttha, Clara Bertolissi, and Silvio Ranise. Towards a reference ar-

chitecture for access control in distributed web applications. In Wouter Joosen,

Fabio Martinelli, and Thomas Heyman, editors, Proceedings of the 2014 ESSoS

Doctoral Symposium co-located with the International Symposium on Engineer-

ing Secure Software and Systems (ESSoS 2014), Munich, Germany, February

26, 2014, volume 1298 of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[UBR15] W. Uttha, C. Bertolissi, and S. Ranise. Modeling Authorization Policies for

Web Services in Presence of Transitive Dependencies and their Enforcement

in an Extended IAM Architecture. In SECRYPT 2015 - Proceedings of the

12th International Conference on Security and Cryptography, Colmar, Alsace,

France, 20-22 July, 2015, pages 293–300. SciTePress, 2015.

[Utt16] Worachet Uttha. Etude des politiques de sécurité pour les applications dis-

tribuées : le problème des dépendances transitives : modélisation, vérification

140 BIBLIOGRAPHY

et mise en oeuvre. PhD thesis, Thèse de doctorat Informatique Aix-Marseille

Université 2016, 2016.

[vdAH03] W.M.P. van der Aalst and A. H. M. Ter Hofstede. Yawl: Yet another workflow

language. Inf. Systems, 30:245–275, 2003.

[vdAtHKB03] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.

Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51,

2003.

[vdAvHtH+11] W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova,

H.M.W. Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of workflow nets:

classification, decidability, and analysis. Formal Aspects of Comp., 23(3):333–

363, 2011.

[Vig05] L. Viganò. Automated security protocol analysis with the AVISPA tool. In

Proc. of MFPS’05, volume 155 of ENTCS, pages 61–86. Elsevier, 2005.

[WA06] Janice Warner and Vijayalakshmi Atluri. Inter-instance authorization con-

straints for secure workflow management. In Proceedings of the Eleventh ACM

Symposium on Access Control Models and Technologies, SACMAT ’06, page

190–199, New York, NY, USA, 2006. Association for Computing Machinery.

[WFM96] WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-

TC-1011). Technical report, Workflow Management Coalition, Brussels, 1996.

[WJ03a] D. Wijesekera and S. Jajodia. A propositional policy algebra for access control.

ACM Trans. Inf. Syst. Secur., 6(2):286–325, 2003.

[WJ03b] Duminda Wijesekera and Sushil Jajodia. A propositional policy algebra for

access control. ACM Trans. Inf. Syst. Secur., 6(2):286–325, 2003.

[WKB07] Jacques Wainer, Akhil Kumar, and Paulo Barthelmess. Dw-rbac: A formal

security model of delegation and revocation in workflow systems. Information

Systems, 32(3):365–384, 2007.

BIBLIOGRAPHY 141

[WL10] Q. Wang and N. Li. Satisfiability and resiliency in workflow authorization

systems. TISSeC, 13:40:1–40:35, December 2010.

[WW06] Z. Wu and A. C. Weaver. Requirements of federated trust management for

service-oriented architectures. In 4th Int. Conf. on Privacy, Security, and Trust,

Ontario, Canada, 2006.

[YD09] A. Abou El Kalam Y. Deswarte. Poly-OrBAC: An access control model for

inter-organizational web services. IGI-Global, 2009.

[Yin07] Mudhakar Srivatsa ; Arun Iyengar ; Thomas Mikalsen ; Isabelle Rouvellou

; Jian Yin. An access control system for web service compositions. In IEEE

International Conference on Web Services (ICWS 2007), 2007.

[YT02] M. I. Yagüe and J. M. Troya. A semantic approach for access control in web

services. In Proceedings of the 2002 International Conference on EuroWeb,

EuroWeb’02, pages 3–3, Swindon, UK, 2002. BCS Learning & Development

Ltd.

[YT05] Eric Yuan and Jin Tong. Attributed based access control (abac) for web services.

In Proceedings of the IEEE International Conference on Web Computer Society.

[Zan95] H. Zantema. Termination of term rewriting by semantic labelling. Fundam.

Inf., 24(1–2):89–105, 1995.

[ZHLL05] Chen Zhao, Nuermaimaiti Heilili, Shengping Liu, and Zuoquan Lin. Represen-

tation and reasoning on rbac: A description logic approach. In Dang Van Hung

and Martin Wirsing, editors, Theoretical Aspects of Computing – ICTAC 2005,

pages 381–393, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[ZJW06] Nicola Zannone, Sushil Jajodia, and Duminda Wijesekera. Creating Objects in

the Flexible Authorization Framework. In Data and Applications Security XX,

pages 1–14. Springer, 2006.

142 BIBLIOGRAPHY

[ZOS03] Xinwen Zhang, Sejong Oh, and Ravi Sandhu. Pbdm: A flexible delegation model

in rbac. In Proceedings of the Eighth ACM Symposium on Access Control

Models and Technologies, SACMAT ’03, pages 149–157, New York, NY, USA,

2003. ACM.

[ZZ08] Mingsheng Zhang and Mingyi Zhang. An approach for handling conflicts in

authorization. Wuhan University Journal of Natural Sciences, 13(5):626, 2008.

