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Titre: Contribution au problème du placement partiel des pôles pour certaines classes de systèmes à
retard, avec applications.
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Résumé: Une des questions d’intérêt pour les sys-
tèmes linéaires à retard est de déterminer les con-
ditions sur les paramètres de l’équation qui garan-
tissent la stabilité exponentielle des solutions. En
général, c’est un véritable défi d’établir des condi-
tions sur les paramètres du système afin de garan-
tir une telle stabilité. L’une des approches effi-
caces dans l’analyse de stabilité des systèmes à
retard est l’approche fréquentielle. Dans le do-
maine de Laplace, l’analyse de stabilité revient à
étudier la distribution des racines des fonctions
quasipolynomiales caractéristiques. Une fois la sta-
bilité d’un système à retard prouvée, il est impor-
tant de caractériser le taux de décroissance ex-
ponentielle des solutions de ces systèmes. Dans
le domaine fréquentiel, ce taux de décroissance
correspond à la valeur spectrale dominante. Des
travaux récents ont mis en évidence le lien entre
la multiplicité maximale et les racines dominantes.

En effet, les conditions pour qu’une racine mul-
tiple donnée soit dominante sont étudiées, cette
propriété est connue sous le nom de Multiplicity-
Induced-Dominancy (MID). Dans cette thèse, trois
sujets liés à la propriété MID sont étudiés. Pre-
mièrement, l’effet des racines multiples avec des
multiplicités admissibles présentant, sous des con-
ditions appropriées, la validité de la propriété MID
pour les équations différentielles neutres du second
ordre avec un seul retard est exploré. La stabili-
sation de l’oscillateur classique bénéficie des ré-
sultats obtenus. Deuxièmement, les effets des re-
tards sur la stabilité des véhicules aériens sans pi-
lote (UAV) sont exploités. À cet égard, une appli-
cation symbolique/numérique de la propriété MID
dans le contrôle des drones à rotor avec des retards
est fournie. Enfin, la stabilisation d’une balance à
roulettes par le biais de la propriété MID est con-
sidérée.

Title: Contribution to the partial pole placement problem for some classes of time-delay systems with
applications.
Keywords: Time-delay systems, pole placement, exponential stability, neutral functional differential
equations, Multiplicity-Induced-Dominancy, classical oscillator.

Abstract: One of the questions of ongoing in-
terest for linear time-delay systems is to determine
conditions on the equation’s parameters that guar-
antee the exponential stability of solutions. In gen-
eral, it is quite a challenge to establish conditions
on the parameters of the system in order to guar-
antee such a stability. One of the effective ap-
proaches in the stability analysis of time-delay sys-
tems is the frequency domain approach. In the
Laplace domain, the stability analysis amounts to
study the distribution of characteristic quasipoly-
nomial functions’ roots. Once the stability of a
delay system has been proven, it is important to
characterize the exponential decay rate of the so-
lutions of such systems. In the frequency domain,
this decay rate corresponds to the dominant spec-
tral value. Recent works emphasized the link be-
tween maximal multiplicity and dominant roots.

Indeed, conditions for a given multiple root to be
dominant are investigated, this property is known
as Multiplicity-Induced-Dominancy (MID). In this
dissertation, three topics related to the MID prop-
erty are investigated. Firstly, the effect of multiple
roots with admissible multiplicities exhibiting, un-
der appropriate conditions, the validity of the MID
property for second-order neutral time-delay dif-
ferential equations with a single delay is explored.
The stabilization of the classical oscillator bene-
fits from the obtained results. Secondly, the ef-
fects of time-delays on the stability of Unmanned
Aerial Vehicles (UAVs) is exploited. In this regard,
a symbolic/numeric application of the MID prop-
erty in the control of UAV rotorcrafts featuring
time-delays is provided. Lastly, the stabilization
of a rolling balance board by means of the MID
property is considered.
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Introduction (Version Française)

Les systèmes à retards fournissent des modèles utiles dans un grand nombre
de domaines scientifiques et technologiques tels que la biologie (par exemple, les
interactions entre les neurones), la chimie, l’économie, la physique (par exemple,
les lasers à rétroaction optique) ou l’ingénierie (par exemple, les vibrations des
machines-outils : les machines de découpe et de fraisage), où la présence des re-
tards est inhérente aux phénomènes de propagation, tels que la matière, l’énergie
ou l’information, avec une vitesse de propagation finie. Pour plus de détails sur les
systèmes à retard et leurs applications, voir [1]–[13].

Figure 1: (Gauche) Interaction des neurones. (Droite) Fraiseuse à com-mande numérique.
Deux applications nous intéressent en particulier et seront discutées plus en

détail par la suite. La première concerne la robotique, en particulier la commande
de véhicules aériens sans pilote (UAVs) à rotor avec des retards. Parmi les divers
problèmes qui nuisent aux performances des systèmes aériens, l’étude des effets des
retards reste relativement inexplorée. Dans la pratique, les systèmes de contrôle
des drones fonctionnent en présence de retards provenant du traitement de la
perception, de la prise de décision, des commandes de contrôle et de la dynamique
retardée des actionneurs. En fait, il a été prouvé que les retards induisent des
phénomènes oscillatoires qui rendent le système instable. L’étude de ces systèmes
dynamiques à retard reste un sujet populaire et stimulant au sein de la communauté
scientifique des systèmes de contrôle et de la robotique. La commande de ces
systèmes à retard a beaucoup progressé et a déjà été utile dans de nombreuses
applications.

La deuxième application concerne la bio-mécanique, plus précisément le contrôl
du système nerveux central (CNS). En fait, le déséquilibre peut être dû à une
multitude de déclins associés à l’âge dans la fonction sensorimotrice, notamment
la somatosensation, la fonction vestibulaire, la vision, la cognition et la force [14].
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Figure 2: (Gauche) Équilibre humain sur une planche d’équilibreroulante. (Droite) Véhicule quadrirotor : Drone.

La stabilisation du corps humain et la planche d’équilibre est assurée par un pro-
cessus de contrôle régi par le CNS. Les systèmes visuels, vestibulaires et somatosen-
soriels obtiennent des informations sur l’orientation spatiale du corps humain. Les
informations sont transmises au cerveau, le CNS détermine l’interaction nécessaire
pour maintenir l’équilibre après avoir traité les signaux et envoie une instruction à la
musculature. Le processus décrit ci-dessus nécessite un temps défini appelé temps
de réaction. Par conséquent, le modèle mathématique des tâches d’équilibrage
implique une loi de commande retardée, ici une rétroaction proportionnelle-dérivée
(PD) avec un retard de rétroaction constant [15]–[17], puisque les systèmes vi-
suels et vestibulaires perçoivent respectivement la position et la vitesse. D’autres
modèles de commande neuromusculaire fréquemment utilisés sont par exemple la
rétroaction proportionnelle-dérivée-accélération (PDA) retardée [18], [19], contrôle
intermittent [20]–[25] et la rétroaction du prédicteur [18], [26]. Une question im-
portante pour le contrôle de l’équilibre humain est traitée dans [27] où un contrôleur
à temps discret et un contrôleur PDA retardé à temps continu sont considérés et la
transition entre eux via la semi-discrétisation est établie. Il a été montré dans [28]
et [29] qu’un terme intégral n’améliore pas la stabilisation du système en présence
d’un retard de rétroaction, c’est pourquoi nous nous concentrons ici uniquement
sur la rétroaction PD.

Il existe deux classes différentes de modèles : macroscopique (ou continuum) et
microscopique (ou suivi de voiture). Le premier modèle décrit le trafic en termes de
distributions continues de densité et de vitesse, tandis que le second modèle décrit
le comportement des véhicules individuels. Notez que des retards peuvent égale-
ment être inclus dans les modèles de continuum pour imiter le temps de réaction
du conducteur. Ces retards peuvent modifier considérablement la dynamique du
trafic, entraînant des instabilités pour les systèmes linéaires et non linéaires [30].
En revanche, certains systèmes qui ne sont pas stabilisables sans retard peuvent
être stabilisés avec utilisation d’un retard artificiel dans la rétroaction de sortie
statique (à temps continu) [31], [32].
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Pour les systèmes linéaires à retard invariant dans le temps (LTI), l’une des
idées les plus simples pour contrôler le comportement dynamique du système en
boucle fermée consiste à placer les pôles du système à certains endroits souhaitables
du plan complexe. Une telle méthode est appelée placement de pôles (voir par
exemple [33]). Schématiquement, les principaux ingrédients du placement de pôle
sont :

• la connaissance parfaite des variables d’état,

• certaines hypothèses de contrôlabilité appropriées sur le système, c’est-à-dire
la possibilité de diriger un système dynamique d’un état initial arbitraire à
un état final arbitraire au moyen d’un ensemble approprié de lois de contrôle
admissibles.

Si cette méthode de placement de pôles est facile à comprendre et à appliquer
dans le contrôle des systèmes LTI de dimension finie, son extension aux systèmes
décrits par des équations différentielles à retard (DDEs) semble plus complexe.
Plus précisément, deux questions doivent être abordées :

1. l’introduction d’une notion appropriée de contrôlabilité pour les systèmes à
retard,

2. la compréhension approfondie de l’emplacement des pôles du système en
boucle fermée en fonction des paramètres du contrôleur.

Pour une bonne introduction aux notions de contrôlabilité des systèmes à dimen-
sions finies et infinies, y compris le cas des systèmes dynamiques représentés par des
DDEs, nous renvoyons vers [34]. Une discussion plus approfondie des méthodes ex-
istantes pour caractériser les régions de stabilité dans l’espace des paramètres peut
être trouvée dans [8]. Enfin, même pour certaines classes d’équations aux dérivées
partielles (EDPs), le contrôle retardé a montré une certaine efficacité (voir par
exemple [35], [36] ). D’autre part, des reformulations d’EDPs et le backstepping
ont utilisées pour montrer qu’une loi de commande nominale compense les retards
d’entrée en boucle fermée et fournit une stabilisation exponentielle nominale [37],
[38]; voir également [39] où l’étude de la commande basée sur la prédiction portait
sur des systèmes non linéaires soumis à des retards d’entrée ponctuels et à des
retards d’état (potentiellement) distribués. [39].

À notre connaissance, les premiers résultats sur la localisation du spectre des
systèmes linéaires représentés par des DDEs ont été publiés il y a un siècle. En
effet, à la fin des années 20s, des travaux presque oubliés de [40] et [41] semblent
être les premiers résultats à aborder un tel problème.

À la fin des années 70s, le concept de placement des pôles est apparu dans
la théorie du contrôle sous la forme de Assignation d’un spectre fini (FSA); [42],
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[43], dont le résultat était de contrebalancer l’effet du retard par une prédiction
de l’état sur un intervalle de retard, réduisant ainsi le système en boucle fermée à
un système de dimension finie; nous renvoyons vers [44] pour une vue d’ensemble
des principaux ingrédients et une confrontation avec d’autres méthodes dédiées au
contrôle de systèmes dynamiques présentant des retards dans l’entrée. En fait,
la stratégie a été explorée en profondeur dans un cadre algébrique plus adéquat
par [45] via l’introduction de l’anneau R, c’est-à-dire, l’ensemble de toutes les
fonctions méromorphes dans le plan complexe C représenté génériquement comme
P(s,e−τ s)

Q(s) , où Q est un polynôme en la variable complexe de Laplace s, P est un
polynôme bivarié en s et e−τ s, et τ est un nombre réel positif fixe. La concep-
tion algébrique de contrôleurs des systèmes différentiels à retard invariant dans
le temps consiste en l’investigation algorithmique de l’anneau R. Ces méthodes
algébriques permettent une analyse de stabilité des systèmes à retard. Cependant,
leur limitation a été observée au début des années 2000 dans [46]. Numérique-
ment, la stabilité du système en boucle fermée est très sensible aux incertitudes
infinitésimales. Ce dernier phénomène, connu sous le nom de problème de spillover.

Le placement de pôles des systèmes à retard est plus qu’un problème d’interpo-
lation quasipolynomiale. En fait, dans [47], N pôles du système sont assignés à
certaines positions souhaitées dans le plan complexe par N paramètres de rétroac-
tion de la même manière que dans le cas en dimension finie. Néanmoins, afin
d’éviter l’effet de spillover, il est bien connu qu’une telle interpolation est un place-
ment efficace si, et seulement si, les valeurs spectrales restantes du système en
boucle fermée sont situées à gauche du pôle le plus à droite des pôles assignés;
c’est-à-dire que l’assignation réussit si ces derniers sont dominants. Cependant,
cette caractéristique n’est pas garantie en général, comme le fait remarquer [48];
voir également [49], où l’on ne tente pas de prouver la dominance des pôles placés,
mais où l’on applique plutôt une règle de bon sens par essais et erreurs pour
plusieurs sélections de pôles assignés. Plus récemment, en s’appuyant sur l’effet
des valeurs spectrales multiples sur la stabilité des DDEs, une nouvelle stratégie
analytique de placement des pôles a été conçue dans [50]. Cette propriété a été
évoquée dans [51], bien qu’illustrée par des cas simples d’ordre faible, sans tenta-
tive d’aborder le cas général. À notre connaissance, très peu de travaux ont abordé
cette question de manière systématique jusqu’à récemment; voir [50], [52]–[58].

Considérons l’équation différentielle à retard (générique) :

n

∑
k=0

akx(k)(t)+αkx(k)(t − τ) = 0, (1)
où la fonction inconnue x est à valeurs réelles, ak,αk ∈ R, et le retard τ > 0. Les
systèmes linéaires avec retards sont décrits dans le domaine de Laplace par des
fonctions de transfert impliquant des quasi-polynômes et admettent alors un nom-
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bre infini de pôles. Ces quasi-polynômes ont été largement étudiés dans [59]–[61].
L’étude des propriétés de stabilité des systèmes de type retardés (ils admettent
un nombre fini de pôles dans tout demi-plan droit) est beaucoup plus facile que
l’étude de celles des systèmes de type neutres qui peuvent avoir un nombre infini
de pôles, en chaînes asymptotiques à un axe vertical éventuellement situé dans
le demi-plan droit ouvert ou sur l’axe imaginaire. Ces deux situations empêchent
d’obtenir la stabilité exponentielle pour ces systèmes.

Il existe des études de stabilité des systèmes à retard, notamment des systèmes
à retard constant unique ou multiple (voir par exemple [5]); des systèmes à retards
combinés [62]; des équations aux différences à retard (voir par exemple [63]). Pour
d’autres applications des méthodes spectrales, voir [64]–[66].

Pour effectuer l’analyse de stabilité, des méthodes efficaces ont été proposées
dans le domaine fréquentiel, voir par exemple, [1], [5], [67]–[71]. Même avec
les avancées significatives qui ont été rapportées sur ces sujets, la question de
la détermination des conditions sur les paramètres du système qui garantissent
la stabilité asymptotique des solutions des systèmes LTI à retard reste toujours
ouverte.

Les méthodes spectrales, qui étudient la distribution du spectre des équations
caractéristiques, constituent un outil puissant pour comprendre le comportement
asymptotique des solutions des systèmes LTI à retard.

La fonction caractéristique de l’équation (1) est la fonction quasipolynomiale
∆ : C→ C définie pour s ∈ C par:

∆(s) =
n

∑
k=0

aksk +αkske−τ s. (2)
La multiplicité d’une racine d’un quasi-polynôme est limitée par la borne générique
de Polya et Szegö (notée PSB), qui est égale au degré du quasi-polynôme corre-
spondant, c’est-à-dire la somme des degrés des polynômes impliqués plus le nombre
des retards; voir par exemple [72, Problème 206.2, page 144 et page 347]. Il est
intéressant de mentionner qu’une telle limite a été prouvée en utilisant des matri-
ces structurées dans [73] plutôt que le principe d’argument comme dans [72]. En
particulier, le degré de ∆ dans (2) est degs(∆) = 2n+1.

Pour le comportement exponentiel des solutions de (1), on s’intéresse à l’abscisse
spectrale de la fonction caractéristique correspondante ∆ qui est le nombre réel

ρ = sup{ℜ(s)|s ∈ C,∆(s) = 0}, (3)
lié à la notion de taux de décroissance des solutions des systèmes à retard, voir
[[1], Chapter 1, Theorem 6.2] pour plus de details.
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Du point de vue de la théorie du contrôle, on s’intéresse à une méthodologie
récente de contrôle appelée placement de pôle partiel (PPP) [74], [75] et basée
sur l’assignation du taux de décroissance de la solution dominante en boucle fer-
mée. En effet, il s’avère que, pour les quasi-polynômes caractéristiques de certains
systèmes à retard, les racines réelles de multiplicité maximale sont nécessairement
dominantes (racines avec partie réelle la plus grande), cette propriété est con-
nue sous le nom de "Generic Multiplicity-Induced-Dominancy" (GMID), elle se
réfère à des conditions spéciales sur les paramètres libres du système (typique-
ment les paramètres de contrôle) où une racine caractéristique donnée correspond
à l’abscisse spectrale telle que la valeur spectrale correspondante est dominante;
voir par exemple [50], [76]. Dans le cas des racines multiples avec une multiplicité
strictement intermédiaire, il faut chercher les conditions qui permettent de définir
la région d’assignation admissible, propriété baptisée "Intermediate Multiplicity-
Induced-Dominancy" (IMID); voir [50].

Grâce à cette propriété, une stratégie de contrôle asservi est proposée dans [50],
[77], [78], qui consiste à assigner une racine avec une multiplicité admissible une
fois que les conditions appropriées garantissant sa dominance sont déterminées. En
outre, la propriété Multiplicity-Induced-Dominancy (MID) peut être utilisée pour
régler les contrôleurs standards. Par exemple, dans [78], elle est appliquée au
réglage systématique du contrôleur proportionnel-intégral-dérivé (PID) stabilisa-
teur d’un système du premier ordre.

La propriété MID a été évoquée pour la première fois dans [51] pour certains
cas d’ordre faible sans aucune tentative d’aborder la question générale; voir égale-
ment [79] pour les équations scalaires spécifiques d’ordre 1. Des développements
récents poursuivent l’étude de la propriété MID principalement dans le cas d’un
seul retard, voir par exemple [50], [52]–[57], [78].

À notre connaissance, une preuve analytique de la caractérisation de l’abscisse
spectrale pour l’équation scalaire avec un seul retard a été présentée et discutée
pour la première fois dans les année 50s; voir [79]. La propriété de dominance est
explorée et démontrée analytiquement pour les équations scalaires à retard dans
[52], puis pour les systèmes du second ordre contrôlés par un contrôleur propor-
tionnel retardé dans [53], [80], où son applicabilité à l’amortissement des vibrations
actives pour une poutre piézo-actionnée est prouvée. Voir également [81], [82] qui
présente une preuve analytique de la dominance de la valeur spectrale avec mul-
tiplicité maximale pour les systèmes du second ordre contrôlés par un contrôleur
PD retardé.

Récemment, la propriété MID a été étendue aux équations différentielles neu-
tres, d’abord dans [83] dans le contexte de la conception du contrôleur PID pour
les systèmes retardées du premier ordre, puis dans [56] où la propriété MID ap-
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paraît pour les valeurs spectrales avec une multiplicité maximale des équations
différentielles scalaires génériques de type neutres .

La propriété MID peut être utilisée pour régler les contrôleurs standards. Par
exemple, dans [78], elle est appliquée au réglage systématique du contrôleur PID
stabilisateur d’un système de premier ordre.

Dans [84], on considère la stabilisation par rétroaction PDA retardée et rétroac-
tion prédicteur du pendule inversé, où la longueur critique du pendule qui limite
la stabilisation est obtenue grâce à la propriété MID; voir aussi [85]. On montre
également dans [86] que l’approche basée sur la MID permet d’obtenir le retard
critique, et que les gains de contrôle associés sont facilement déduits de l’équation
caractéristique et de ses dérivées.

Même si la GMID est complètement caractérisé dans [76], en général, la pro-
priété MID reste une question ouverte et des développements supplémentaires sont
nécessaires pour améliorer la compréhension de ses mécanismes et de ses avantages
pour un objectif de contrôle.

Trois pistes principales restent à traiter pour la propriété MID:

1. le cas à plusieurs retards,

2. les valeurs spectrales avec des multiplicités admissibles non maximales,

3. le cas neutre.

À notre connaissance, le cas des retards multiples a été étudié pour la première
fois dans [87], où l’on prouve que la propriété MID existe pour l’équation scalaire
retardée du premier ordre avec deux retards. Ensuite, dans le contexte des valeurs
spectrales avec des multiplicités admissibles strictement intermédiaires, on peut
citer [50] où une MID paramétrique basée sur un discriminant a été étudiée dans
le cas retardé du second ordre avec des valeurs spectrales de codimensions 3 et 4,
et [77] où des conditions suffisantes et nécessaires sont fournies pour que la MID
soit vérifiée pour les systèmes retardés d’ordre arbitraire sous certaines conditions.
En outre, le cas neutre a été abordé dans certains cas particuliers; voir [56], [57],
[78].

En fait, la propriété MID a été entièrement caractérisée, dans le cas où la
multiplicité maximale est atteinte, pour l’équation neutre du premier ordre dans
[56], pour le second ordre dans [57] et pour les systèmes d’ordre arbitraire dans
[76]. Cependant, pour les valeurs spectrales avec des multiplicités admissibles
strictement intermédiaires, la seule contribution est fournie dans [78]. En effet, la
propriété MID est étendue à la codimension 4 pour les systèmes à retard de type
neutre d’ordre 2, et une méthode systématique pour une stabilisation PID pour les
systèmes à retard d’ordre faible est proposée.
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L’objectif dans ce manuscrit est d’explorer l’effet des racines multiples avec des
multiplicités admissibles présentant, sous des conditions appropriées, la validité de
la propriété MID pour les équations différentielles neutres du second ordre avec un
seul retard. Une fois que cela est fait, nous exploitons l’effet du retard sur la sta-
bilité des drones en faisant une application symbolique/numérique de la propriété
MID dans le contrôle des drones à rotor avec des retards. Ensuite, nous cherchons
à assigner des racines réelles multiples dominantes avec des codimensions admis-
sibles et nous utilisons la propriété MID pour le modèle mécanique de l’équilibre
humain sur une planche d’équilibre roulante dans le plan sagittal.

La suite du manuscrit se présente de la manière suivante:
Dans la partie I, le chapitre 1 présente quelques résultats de base et des prélim-

inaires pour les systèmes à retard. Dans le chapitre 2, nous discutons certaines
extensions des méthodes de placement de pôles pour les systèmes linéaires décrits
par des DDEs. Dans la partie II, le chapitre 3, considère la propriété GMID et se
concentre sur les équations différentielles à retard neutres du second ordre avec un
seul retard et avec la présence d’une racine réelle de multiplicité maximale. Ensuite,
le chapitre 4, traite la stabilité exponentielle des systèmes linéaires à retard de type
neutre en explorant l’effet des racines multiples avec des multiplicités admissibles
montrant, sous des conditions appropriées, la validité de la propriété MID pour
les équations différentielles à retard neutres du second ordre avec un seul retard.
Enfin, la partie III représente deux applications de la propriété MID. Le chapitre 5
exploite une application symbolique/numérique de la propriété MID dans la com-
mande retardée de Drone, tandis que le chapitre 6 étudie la stabilisation d’une
planche d’équilibre roulante par le biais de la propriété MID.
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Introduction (English Version)

Systems with time delays provide useful models in a wide range of scientific
and technological domains such as biology (e.g. interactions between neurons),
chemistry, economics, physics (e.g. laser physics: lasers with optical feedback), or
engineering (e.g. machine tool vibrations: cutting and milling machines), where
the presence of the delays is inherent to propagation phenomena, such as of ma-
terial, energy, or information, with a finite propagation speed. For more details on
time-delay systems and their applications, we refer to [1]–[13].

Figure 3: (Left) Neurons’ interaction. (Right) Computer numerical con-trol (CNC) milling.
Two applications in particular, are of interest and will be discussed in more

detail later. The first one deals with robotics, more particularly the control of
Unmanned Aerial Vehicles (UAVs) rotorcrafts featuring time-delays. Among the
variety of issues undermining the aerial systems performance, the study of time-
delay effects remains relatively unexplored. In practice, UAVs’ control systems
operate in presence of time-delays arising from perception processing, decision-
making, control commands and actuators’ delayed dynamics. In fact, it has been
proved that time-delays induce oscillatory phenomena rendering the system unsta-
ble. The study of dynamic systems with delays remains a popular and challenging
subject within the scientific community of control systems and robotics. Control-
ling these delay systems has come a long way and has already been useful in many
applications.

The second application concerns bio-mechanics, specifically the controller of
the central nervous system (CNS). In fact, imbalance may be due to a multitude
of age-associated declines in sensorimotor function, including somatosensation,
vestibular function, vision, cognition and strength. Stabilization of the human
body on the balance board is performed by a control process governed by the
CNS. Visual, vestibular and somatosensory systems obtain information about the
spatial orientation of the human body. The information is delivered to the brain,
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Figure 4: (Left) Human stance on a uniaxial rolling balance board in thesagittal plane. (Right) Quadrotor vehicle: Drone.
CNS determines the necessary interaction to maintain the balance after processing
the signals and sends an instruction to the musculature. The process described
above requires a definite time called reaction time. Consequently, the mathemat-
ical model of balancing tasks involves a delayed control law, here a proportional-
derivative (PD) feedback with constant feedback delay [15]–[17], since the visual
and vestibular system perceive position and velocity, respectively. Other frequently
used neuromuscular control models are for instance delayed proportional-derivative-
acceleration (PDA) feedback [18], [19], intermittent control [20]–[25] and predictor
feedback [18], [26]. An important question for human stance control is treated in
[27] where discrete-time and a continuous-time delayed PDA controller are con-
sidered and the transition between them by means of the semi-discretization is
established. It was shown in [28] and [29] that an integral term does not improve
the stabilizability of the system in the presence of feedback delay, therefore here
we concentrate only on PD feedback.

There exist two different classes of models: macroscopic (or continuum) and
microscopic (or car-following). The first model describes the traffic in terms of
continuous density and velocity distributions, while the second model describes the
behaviour of individual vehicles. Note that time-delays may also be included in
continuum models to mimic driver reaction time. These delays can significantly
alter the traffic dynamics, leading to instabilities for both linear and nonlinear
systems [30]. In contrast, some systems that are not stabilizable without delay
can be stabilized with the use of an artificial delay in the static output-feedback
(continuous-time) [31], [32].

For linear time-invariant (LTI) systems, one of the simplest ideas to control the
dynamical behavior of the closed-loop system is to place the poles of the system in
some desirable loci in the complex plane. Such a method is called pole placement
(e.g., [33]). Roughly speaking, the pole placement’s main ingredients are:

• the perfect knowledge of the state variables,
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• some appropriate controllability assumptions on the system, that is, the
possibility to steer a dynamical system from an arbitrary initial state to an
arbitrary final state by means of an apropos set of admissible control laws.

If the said method is easy to understand and to apply in the control of finite-
dimensional LTI systems, its extension to systems described by delay-differential
equations (DDEs) seems to be more involved. More precisely, two issues need to
be addressed:

1. the introduction of a suitable notion of controllability for delay systems,

2. the in-depth comprehension of the location of the poles of the closed-loop
system in terms of the controller’s parameters.

For a thorough introduction to the controllability notions in finite- and infinite-
dimensional systems, also including the case of dynamical systems represented by
DDEs, we refer to [34]. A deeper discussion of the existing methods to character-
ize the stability regions in the parameter-space can be found in [8]. Finally, even
for some class of partial differential equations (PDEs), delayed control has shown
some effectiveness (see e.g. [35], [36]). On the other, reformulations of PDEs
and backstepping have been used to show that a nominal control law compensates
for the input delays in closed loop and provides nominal exponential stabilization
[37], [38]; see also [39] where the investigation of prediction-based control was for
nonlinear systems subject to both pointwise input- and (potentially) distributed
state-delays.

Up to our knowledge, the first results on the spectrum location of linear systems
represented by DDEs were published one century ago. Indeed, at the end of 1920s,
the almost forgotten works of [40] and [41] seem to be the first results to address
such a problem.

In the late 1970s, the concept of pole-placement emerged in control theory in
the guise of Finite spectrum assignment (FSA); [42], [43], the upshot of which
was to counterbalance the effect of delay by a prediction of the state over a delay
interval, thereby downsizing the closed-loop system to a finite-dimensional plant;
we refer to [44] for an overview of the main ingredients and confrontation with
other methods dedicated to the control of dynamical systems featuring input de-
lays. As a matter of fact, the strategy was thoroughly explored in a more adequate
algebraic framework by [45] via the introduction of the ring R, i.e., the set of all
meromorphic functions in the complex plane C generically represented as P(s,e−τ s)

Q(s) ,
where Q is a polynomial in the Laplace complex variable s, P is a bivariate polyno-
mial in s and e−τ s, and τ is a fixed positive real number. The algebraic design of
controllers of delay differential systems consists in the algorithmic investigation of
the ring R. These algebraic methods enable the stability analysis of delay systems.
However, their limitation was observed in the early 2000s in [46]. Numerically, the
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closed-loop system’s stability is highly sensitive to infinitesimal uncertainties. The
latter phenomenon is known as the spillover problem.

There is more to pole placement for delay systems than a quasipolynomial
interpolation problem. As a matter of fact, in [47], N poles of the system are
assigned to (some) desired positions in the complex plane by N feedback param-
eters in the same fashion as in the finite-dimensional case. Nevertheless, in order
to preclude the spillover effect, it is well-known that such an interpolation is an
efficient placement if, and only if, the remaining spectral values of the closed-loop
system are located to the left of the rightmost of assigned poles; that is, the as-
signment succeeds if the latter poles are dominant. However, this feature is not
ensured in general as remarked in [48]; see also [49], where no attempt at proving
the dominancy of the placed poles is made, rather a trial-and-error commonsense
rule is performed for several selections of assigned poles. More recently, building
upon the effect of multiple spectral values on the stability of DDEs, a novel an-
alytical pole placement strategy was devised in [50]. The property was hinted at
in [51] albeit illustrated by simple low-order cases, with no endeavour to address
the general case. Up to our knowledge, very few works have tackled this issue in
a systematic fashion until recently; see [50], [52]–[58].

Let us consider the generic delay differential equation:

n

∑
k=0

akx(k)(t)+αkx(k)(t − τ) = 0, (4)
where the unknown function x is real-valued, ak,αk ∈ R, and the delay τ > 0.

Linear systems with delays are described in the Laplace domain by transfer
functions involving quasi-polynomials and then admit an infinite number of poles.
These quasipolynomials have been widely studied in [59]–[61]. Studying the sta-
bility properties of retarded systems (they admit a finite number of poles in any
right half-plane) is much easier than studying those of neutral systems which may
exhibit an infinite number of poles, in chains asymptotic to a vertical axis possibly
located in the open right half-plane or clustering the imaginary axis from left or
right. Both situations prevent to get exponential stability for these systems.

Stability studies of time-delay systems exist, among them, systems with single
or multiple constant delays (see for instance [5]); systems with cross-talking delays
[62]; delayed difference systems (see for instance [63]). For more applications of
spectral methods see [64]–[66].

To perform stability analysis, efficient methods have been proposed in frequency-
domain, see, for instance, [1], [5], [67]–[71] and the references therein. Even with
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the significant advances that have been reported on such topics, the question
of determining conditions on the equation parameters that guarantee asymptotic
stability of solutions of linear time-invariant time-delay systems remains still open.

Spectral methods, which investigate the spectrum distribution of the charac-
teristic equations, are a powerful tool for the understanding of the asymptotic
behavior of LTI time-delay system solutions by considering the roots of the corre-
sponding characteristic equation; see [1], [5], [8], [67], [70], [88]–[90] which, for
(4) equation is the quasipolynomial function ∆ : C→ C defined for s ∈ C by

∆(s) =
n

∑
k=0

aksk +αkske−τ s. (5)
More precisely, the exponential behavior of solutions of equation (4) is given

by the real number

ρ = sup{ℜ(s)|s ∈ C,∆(s) = 0}, (6)
called the spectral abscissa of the corresponding characteristic function ∆ and

related to the notion of decay rate of time-delay system solutions, see [[1], Chapter
1, Theorem 6.2] for more details.

The multiplicity of a root of a quasipolynomial is bounded by the generic Polya
and Szegö bound (denoted PSB), which is equal to the degree of the corresponding
quasipolynomial, i.e., the sum of the degrees of the involved polynomials plus the
number of delays; see for instance [72, Problem 206.2, page 144 and page 347].
It is worth mentioning that such a bound was recovered using structured matrices
in [73] rather than the argument principle as in [72]. In particular, the degree of ∆

in (5) is degs(∆) = 2n+1.

From a control theory viewpoint, a recent safe control methodology called par-
tial pole placement (PPP) [74], [75], based on the assignment of the closed-loop
dominant solution’s decay rate was investigated. In fact, it turns out that, for
characteristic quasipolynomials of some time-delay systems, real roots of maximal
multiplicity are necessarily dominant (roots with the largest real part), this prop-
erty is known as “Generic Multiplicity-Induced-Dominancy” (GMID), it refers to
special conditions on the system’s free parameters (typically the control parame-
ters) where a given characteristic root matches the spectral abscissa such that the
corresponding spectral value is dominant; see for instance [50], [76]. In the case of
multiple roots with strictly intermediate multiplicity, one has to seek for conditions
which allow to define the admissible assignment region, this property is baptised
“Intermediate Multiplicity-Induced-Dominancy”(IMID); see [50].

Thanks to this property, an ensued control strategy is proposed in [50], [77],
[78], which consists in assigning a root with an admissible multiplicity once the
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appropriate conditions guaranteeing its dominancy are determined. Furthermore,
the Multiplicity-Induced-Dominancy (MID) property may be used to tune standard
controllers. For instance, in [78] it is applied to the systematic tuning of the sta-
bilizing PID controller of a first order plant.

The MID property has been first hinted at in [51] for some low-order cases
without any attempt to address the general question; see also [79] for the specific
scalar first-order equations. Recent developments pursue the investigation of the
MID property mainly in the single-delay case, see for instance [50], [52]–[57], [78].

Up to our knowledge, an analytical proof of the characterization of the spectral
abscissa for the scalar equation with a single delay was presented and discussed for
the first time in the 50s, see [79]. The dominancy property is further explored and
analytically shown in scalar delay equations in [52], then in second-order systems
controlled by a delayed proportional controller in [53], [80], where its applicability
in damping active vibrations for a piezo-actuated beam is proved. See also [81],
[82] which exhibit an analytical proof for the dominancy of the spectral value with
maximal multiplicity for second-order systems controlled via a delayed PD con-
troller.

Lately, the MID property has been extended to neutral differential equations,
first in [83] in the context of the PID controller design for first-order delayed-plants,
then in [56] where the MID property occurs for spectral values with maximal mul-
tiplicity in generic scalar neutral differential equations.

In [84], the stabilization via delayed PDA feedback and predictor feedback of
the inverted pendulum is considered, where the critical length of the pendulum
that limits stabilization is obtained owing to the MID property; see also [85]. It is
also shown in [86] that the MID-based approach provides the critical delay, and the
associated control gains are easily deduced from the characteristic equation and
its derivatives.

Even though the GMID is completely characterized in [76], in general, the limits
of the MID property remain an open question and further developments are required
to improve the understanding of its mechanisms and benefits for a control purpose.

Three main leads remain to be addressed for the MID property:

1. the multi-delay case,

2. spectral values with non maximal admissible multiplicities,

3. the neutral case.

28



Up to our knowledge, the multi-delay case was first investigated in [87], where
the MID property is proved to hold for the first-order retarded scalar equation
with two delays. Next, in the context of spectral values with strictly intermediate
admissible multiplicities, one may cite [50] where a discriminant-based parametric
MID was investigated in the second-order retarded case with spectral values of
codimensions three and four, and [77] where sufficient and necessary conditions
are provided for the MID to hold in nth-order retarded systems with a finite di-
mensional part corresponding to realrooted plants. Further, the neutral case was
addressed in some particular cases ; see [56], [57], [78].

As a matter of fact, the MID has been fully characterized, in the case where
maximal multiplicity is reached, for the first-order neutral equation in [56], and for
the second-order in [57] and for nth-order systems in [76]. However, for spectral
values with strictly intermediate admissible multiplicities, the only contributions
are provided in [78]. Indeed, the MID property is extended to codimension four
in second-order time-delay neutral systems, and a systematic method for a PID
stabilizing tuning for low-order delayed plants is proposed.

The aim of this manuscript is to explore the effect of multiple roots with ad-
missible multiplicities exhibiting, under appropriate conditions, the validity of the
MID property for second-order neutral time-delay differential equations with a sin-
gle delay. Once that is done, we exploit the effects of time-delays on the stability
of UAVs by doing a symbolic/numeric application of the MID property in the con-
trol of UAVs rotorcrafts featuring time-delays. After that, we aim at assigning
dominant multiple real roots with admissible codimensions and we use the MID
property for the mechanical model of human stance on rolling balance board in the
sagittal plane.

The sequel of the manuscript is outlined as follows.
In Part I, chapter 1 gives some basic results and preliminaries in time delay

systems. We discuss in chapter 2 some of the extensions of the pole placement
methods for linear systems described by DDEs. In Part II, chapter 3, considers the
MID property and focuses on second order neutral time-delay differential equations
with a single delay and with the presence of real root of maximal multiplicity. After
that, chapter 4, addresses the exponential stability of linear time-delay systems of
neutral type by exploring the effect of multiple roots with admissible multiplicities
exhibiting, under appropriate conditions, the validity of the MID property for sec-
ond order neutral time-delay differential equations with a single delay. Finally, Part
III represents two applications of the MID property. Chapter 5 exploits a sym-
bolic/numeric application of the MID property in the control of UAVs rotorcrafts
featuring time-delay, while chapter 6 considers the stabilization of a rolling balance
board by means of the MID property.
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Part I

Prerequisites
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1 - Definitions, prerequisites, and basic re-
sults

1.1 . Linear time-delay systems with single delay and constant
coefficients

Delayed systems can be divided into three classes: retarded systems, neutral
systems and advanced systems. The former have only a finite number of unstable
poles in each right half-plane. The latter have only a finite number of poles in
each left half-plane. Finally, the third ones have an infinite number of poles in a
band around the imaginary axis; see [67] for more details.

Let us consider the functional differential equation in (4), then we classify
equations of the form (4) into several categories.

Definition 1.1.1 An equation of the form (4) is said to be of retarded type if
an ̸= 0 and αn = 0. It is said to be of neutral type if an ̸= 0 and αn ̸= 0. Finally, it
is said to be of advanced type if an = 0 and αn ̸= 0.

Notice that equations of neutral or advanced type are in several ways more
delicate to tackle than equations of retarded type.

In the study of linear systems with delay, we deal with transfer functions in-
volving quasipolynomials, which are defined hereafter.

Definition 1.1.2 A quasipolynomial is a particular entire function ∆ :C→C which
may be written as follows

∆(s) =
k

∑
i=0

Pi(s)e−τi s, (1.1)
where k is a positive integer, τi (i = 0..k) are pairwise distinct non-negative real
numbers and Pi (i = 0..k) are polynomials of degree di ≥ 0. The degree degs(∆) of
the quasipolynomial ∆ is equal the sum of the degrees of the involved polynomials
Pi plus the number of delays, i.e.,

degs(∆) = k+
k

∑
i=0

di. (1.2)
The stability of a quasipolynomial ∆ results in the following way

Definition 1.1.3 A quasipolynomial ∆ (characteristic equation of delay system)
is exponentially stable if there exists a real number σ > 0 such that for all roots sk

of ∆, ℜ(sk)<−σ .
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Figure 1.1: Spectrum distribution of delay equations: retarded, neutraland advanced type.
An important result in the literature, known as Polya-Szegö bound, shows that

there exists a link between the degree of a quasipolynomial and the number of its
roots in horizontal strips of the complex plane.

Proposition 1.1.1 [72, Problem 206.2, page 144 and page 347]. Let ∆ be a
quasipolynomial of degree degs(∆) as in (1.1), and α , β ∈ R be such that α ≤ β .
If M is the number of roots of ∆ contained in the set {s ∈ C |α ≤ ℑ(s) ≤ β}
counting multiplicities, then

(τk − τ0)(β −α)

2π
−degs(∆)≤ M ≤ (τk − τ0)(β −α)

2π
+degs(∆). (1.3)

Furthermore, for a given root s0 ∈ C of a quasipolynomial ∆, one obtains the
following link between the multiplicity of s0 and the degree of ∆.

Corollary 1.1.1 Let ∆ be a quasipolynomial of degree degs(∆). Then, any root
s0 ∈ C of ∆ exhibits a multiplicity at most equal to degs(∆).

Remark 1.1.1 Corollary 1.1.1 is obtained immediately by letting α = β =ℑ(s0) in
Proposition 1.1.1. Notice also that Polya-Szegö bound has been recovered in [73]
using a constructive approach based on functional Birkhoff matrices. Furthermore,
if some coefficients of the polynomials Pi defined in (1.1) vanish, then a sharper
bound for the multiplicity is provided in [73].
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Notice that the roots of a quasipolynomial do not change when its coefficients
are all multiplied by the same nonzero number, and hence one may always assume,
without loss of generality, that one nonzero coefficient of a quasipolynomial is
normalized to 1. In other words, equation (4) may read as

xn(t)+
n−1

∑
k=0

ak x(k)(t)+
n

∑
k=0

αkx(k)(t − τ) = 0, (1.4)
where ak,αk ∈R, and τ is a positive delay. The corresponding characteristic equa-
tion is the following generic quasipolynomial function:

∆(s) = P0(s)+Pτ(s)e−τ s, (1.5)
with 

P0(s) = sn +
n−1

∑
k=0

aksk,

Pτ(s) =
n

∑
k=0

αksk.

(1.6)

Notice that (1.4) is a particular case of the following time-delay system

ξ̇ (t)+Bτ ξ̇ (t − τ) = A0ξ (t)+Aτξ (t − τ), (1.7)
where ξ (t) =

(
x(t), x′(t), . . . ,x(n−1)(t)

)T ∈ Rn is the state vector and A0, Aτ , Bτ ∈
Mn(R) are real-valued matrices which can be easily deduced from (4).

Even though the corresponding characteristic equation admits an infinite num-
ber of roots, it has some very interesting properties. One such property is the
following, which holds for retarded time-delay systems (see [8]).

Proposition 1.1.2 Let consider the time-delay system in (1.7) with Bτ = 0. If
there exists a sequence (sk)k≥1 of characteristic roots of (1.7) such that

lim
k→∞

|sk| →+∞, (1.8)
then

lim
k→∞

ℜ(sk)→−∞. (1.9)
Several general results on the location of roots of (4) can be found in the lit-

erature and, in particular, we refer the interested reader to [96] for a generic result
on the location of the associated spectral values for an arbitrary n.

The next result plays an important role in the spectral theory of time-delay
systems, it allows the construction of an envelope curve around the zeros of the
characteristic equation. It collects two interesting properties, whose proofs can be
found, respectively, in [8] and [97].
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Proposition 1.1.3 Consider the LTI equation (1.4), the associated system (1.7),
and their characteristic quasipolynomial function ∆ given by (1.5)-(1.6).

1. If αn = 0 and s is a characteristic root of system (1.7) with Bτ = 0, then it
satisfies

|s| ≤ ∥A0 +Aτ e−τ s∥2. (1.10)
2. If αn ̸= 0 and lim

|s|→∞

∣∣∣∣Pτ(s)
P0(s)

∣∣∣∣ < 1, then the characteristic equation ∆ defined

by (1.5)-(1.6) has a finite number of unstable roots in the right half-plane.

Remark 1.1.2

1. In order to include all poles of a time-delay system, a new approach in [98]
constructs envelopes for retarded and neutral time-delay systems.

2. Inequality (1.10), combined with the triangular inequality, provides a generic
envelope curve around the characteristic roots corresponding to system (1.7).
In other words, the equality case in (1.10) defines a curve in the complex
plane such that all characteristic roots of ∆ are located to the left of that
curve. We refer to [99] for further insights on spectral envelopes pertaining
to retarded time-delay systems with a single delay.

In LTI systems whose dynamics are represented by DDEs, there exists a par-
ticular interesting property, called Multiplicity-Induced-Dominancy (MID) that, to
the best of the authors’ knowledge, was not sufficiently addressed in the open
literature.

1.2 . The Multiplicity-Induced-Dominancy approach

The MID property consists in determining the conditions under which a given
multiple complex zero of a quasipolynomial is dominant. For instance, in the
generic quasipolynomial case, the real root of maximal multiplicity is necessarily
the dominant (GMID). However, multiple roots with intermediate admissible mul-
tiplicities may be dominant or not. Thanks to this property, an ensued control
strategy is proposed in [50], [77], which consists in assigning a root with an ad-
missible multiplicity once appropriate conditions guaranteeing its dominancy are
established. Furthermore, the MID property may be used to tune standard con-
trollers. For instance, in [78] it is applied to the systematic tuning of the stabilizing
PID controller of a first order plant. Here, we aim at assigning dominant multiple
real roots with admissible codimensions.

In what follows, we give a precise definition of the dominant root.
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Definition 1.2.1 A spectral eigenvalue s0 is said to be a dominant (respectively,
strictly dominant) root of the characteristic function ∆ given by (1.5)-(1.6), if
one has ℜ(s̃)≤ ℜ(s0) (respectively, ℜ(s̃)< ℜ(s0)) for any s̃ ∈ C\{s0}, a distinct
eigenvalue of ∆.

Notice that sufficient conditions for the dominancy of simple spectral values
has been proposed in [100] in the case of first-order scalar neutral equation.

Lemma 1.2.1 [100]. Consider a characteristic equation of the form

Q(s) = s

(
1+

m

∑
l=1

cl e−σl s

)
−a−

k

∑
j=1

b j e−h j s = 0, (1.11)
where a,b j( j = 1, ...,k),cl(l = 1, ...,m) are real numbers and h j( j = 1, ...,k), σl(l =
1, ...,k) are positive real numbers.
Given equation (1.11), we introduce a function V : R→ R, defined by,

V (s) =
m

∑
l=1

|cl|(1+ |s|σl)e−σl s +
k

∑
j=1

|b j|e−h j s, s ∈ R. (1.12)
Suppose that there exists a real zero s0 of equation (1.11). If V (s0)< 1, then s0 is
a real simple dominant zero of (1.11).
Note that the extension of the above result to second-order delay equations remains
a challenging endeavor.

1.2.1 . GMID property for first-order scalar neutral equations
The GMID property consists in determining the conditions under which a given

root of the characteristic function of maximal multiplicity is necessarily dominant.
It is shown in [56] that the GMID property holds for the delay differential algebraic
system {

ẋ(t) = ax(t)+by(t − τ),

y(t) = cx(t)+dy(t − τ),
(1.13)

where x(t) and y(t) are real-valued, and a,b,c,d are real coefficients, and whose
characteristic function is given by

∆(s) = s−a− e−sτ(sd −ad +bc). (1.14)
As a matter of fact, the maximal multiplicity, which is equal to 3, is reached
at s0 ∈ R, and expressions of the coefficients ensuring such a configuration are
determined in terms of s0 and the delay τ . Furthermore, all complex roots of
(1.14) with real-parts equal to s0 are fully characterized.

Theorem 1.2.1 ([56]) Consider the delay differential-algebraic equation in (1.13).
The explicit characteristic quasipolynomial of (1.13) is given by ∆ in (1.14). Let
s0 ∈ R,
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• The real s0 is a root of multiplicity 3 of ∆ if, and only if, the coefficients a,
b, c, d, the root s0, and the delay τ satisfy the relations

a = s0 +
2
τ
,

d =−es0τ ,

bc =− 4
τ
es0τ .

(1.15)

• If (1.15) is satisfied, then s0 is a dominant root of ∆. Moreover, for every
other complex root s of ∆, one has ℜ(s) = s0.

• Let Ξ be the set
Ξ = {ξ ∈ R| tanξ = ξ}. (1.16)

If (1.15) is satisfied, then the set of roots of ∆ is {s0 + i 2
τ
ξ |ξ ∈ Ξ}.

1.2.2 . IMID property for second-order scalar neutral equations
The work in [83] aims at extending such a design approach to time-delay

systems of neutral type occurring in the classical problem of PID stabilizing design
for delayed plants. Namely, consider the following closed-loop plant

M(s) =
(kds2 + kps+ ki)e−sτ

s2 − ps+(kds2 + kps+ ki)e−sτ
, (1.17)

where p is a positive unstable pole of the open-loop plant, kp,ki,kd are real pa-
rameters (gains) and τ is the delay. In [101], it was found that the delay margin is
τPID = 2

p ; see also [102]. Now, the corresponding characteristic function is given
by

∆(s) = s2 − ps+ e−sτ(kds2 + kps+ ki). (1.18)
In [78], it is shown that for arbitrary real parameters kp,ki,kd and arbitrary positive
delay τ , the multiplicity of a given root of (1.18) is bounded by 4. In addition, the
maximal multiplicity 4 is only reached by two roots s± for one set of given values
of the gains. As a result, if τ < τPID, then the root s+ is dominant and guarantees
stability.

1.3 . Partial pole placement via delay action (P3δ)

A pole placement approach has been developed for infinite dimensional sys-
tems, in particular, delay systems and some class of partial differential equations.
This approach extends the properties highlighted some years ago, and called MID
property [50], [55], [76], [78]. A property called Coexisting Real Roots-Induced-
Dominancy (CRRID) which consists in assigning a certain amount of real roots
(typically equally spaced for simplicity) and proving that the rightmost root among
the assigned roots is also the rightmost root of the characteristic quasipolynomial
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[103], [104]. This property opens new prospects for the synthesis of control law.

There exist many applications of this pole placement approach, such as the
modelling of Central Nervous System (CNS), the modelling of human stance in
particular, vibration control along mechanical systems, etc.

We benefit from a methodological advance, called p3δ software of partial pole
placement [74], [75]. It is a Python implementation of recent methods for the
stability analysis and stabilization of linear time-delay systems exploiting the delay
action. Its control design strategy is based on properties of the spectral distribution
of the time-delay system.

For more details on this software, one may visit: https://iboussaa.git
labpages.inria.fr/partial-pole-placement-via-delay-act

ion/P3d-Home.html, where a nice guide is available. The package and its use
are described also. In addition, the user can find additional illustrative examples
as well as short videos prepared to show how the software works.

1.4 . Special functions in control design: Confluent hypergeo-
metric functions

Quasipolynomial functions can be factorized in terms of a confluent hyperge-
ometric function defined hereafter.

Definition 1.4.1 Let a,b ∈C such that b is not a nonpositive integer, Kummer’s
confluent hypergeometric function is the entire function Φ(a,b, ·) : C→C defined
for z ∈ C by the series

Φ(a,b,z) =
∞

∑
k=0

(a)k

(b)k

zk

k!
. (1.19)

where for α ∈C and k ∈N, (α)k is the Pochhammer symbol for the ascending
factorial, defined inductively as (α)0 = 1 and (α)k+1 = (α + k)(α)k, for k ∈ N.

The series in (1.19) converges for every z ∈C and, as presented in [105]–[107],
it satisfies the Kummer differential equation

z
∂ 2Φ

∂ z2 (a,b,z)+(b− z)
∂Φ

∂ z
(a,b,z)−aΦ(a,b,z) = 0. (1.20)

As discussed in [105]–[107], for every a,b,z ∈C such that ℜ(b)> ℜ(a)> 0, Kum-
mer functions also admit the integral representation

Φ(a,b,z) =
Γ(b)

Γ(a)Γ(b−a)

∫ 1

0
eztta−1(1− t)b−a−1dt, (1.21)

where Γ denotes the Gamma function. This integral representation has been ex-
ploited in [55] to characterize the spectrum of some DDEs.
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Kummer functions satisfy some induction relations, often called contiguous
relations, see for instance [107]. In particular, the following relations are of interest.

Lemma 1.4.1 ([107, p. 325]) Let a,b,z ∈ C with a ̸= b, z ̸= 0, and −b /∈ N.
The following relations hold:

Φ(a,b+1,z) =
−b(a+ z) Φ(a,b,z)+abΦ(a+1,b,z)

z(a−b)
,

Φ(a+1,b+1,z) =− −bΦ(a+1,b,z)+bΦ(a,b,z)
z

.

(1.22)

Kummer confluent hypergeometric functions have close links with Whittaker
functions. For k, l ∈C with −2l /∈N∗, the Whittaker function Mk,l is the function
defined for z ∈ C by

Mk,l(z) = e−
z
2 z

1
2+l

Φ(1
2 + l − k,1+2l,z), (1.23)

(see, e.g., [107]). Note that, if 1
2 + l is not an integer, the function Mk,l is a

multi-valued complex function with branch point at z = 0. The nontrivial roots of
Mk,l coincide with those of Φ(1

2 + l − k,1+2l, ·) and Mk,l satisfies the Whittaker
differential equation

ϕ
′′(z) =

(
1
4
− k

z
+

l2 − 1
4

z2

)
ϕ(z). (1.24)

Since Mk,l is a nontrivial solution of the second-order linear differential equa-
tion (1.24), any nontrivial root of Mk,l is necessarily simple.

In [108], Hille studies the distribution of zeros of functions of a complex variable
satisfying linear second-order homogeneous differential equations with variable co-
efficients, as is the case for the degenerate Whittaker function Mk,l , which satisfies
(1.24). Thanks to an integral transformation defined there and called Green–Hille
transformation, and some further conditions on the behavior of the function, Hille
showed how to discard regions in the complex plane in order to preclude complex
roots.

The following result, which is proved in [109] using the Green–Hille transfor-
mation from [108], gives insights on the distribution of the nonasymptotic zeros of
Kummer hypergeometric functions with real arguments a and b.

Proposition 1.4.1 ([109]) Let a, b ∈ R be such that b ≥ 2.

1. If b = 2a, then all nontrivial roots z of Φ(a,b, ·) are purely imaginary.

2. If b > 2a (resp., b < 2a), then all nontrivial roots z of Φ(a,b, ·) satisfy
ℜ(z)> 0 (resp., ℜ(z)< 0).

3. If b ̸= 2a, then all nontrivial roots z of Φ(a,b, ·) satisfy

(b−2a)2
ℑ(z)2 − (4a(b−a)−2b)ℜ(z)2 > 0. (1.25)
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1.5 . Insights on nonlinear time-delay systems

In this section, we recall the basic spectral theory for linear functional differen-
tial equations [1]. Let C = C ([−τ,0],Rn) denote the Banach space of continuous
functions endowed with the supremum norm. For a function x : [−τ,∞)→ Cn, we
denote by xt ∈ C the function xt(θ) = x(t +θ), −τ ≤ θ ≤ 0 and t ≥ 0. Consider
the general autonomous neutral functional differential equations of the form

d
dt

[D(xt)+G(xt)] = Lxt +F(xt), (1.26)
where G represents the nonlinear part of the left-hand side of (1.26) (G does not
contain linear terms). The nonlinear part of the right-hand side of (1.26) consists of
a smooth function F satisfying F(0) = F ′(0) = 0 (F ′ denote the Fréchet derivative
of F). The operator D : C → Cn is continuous, linear and atomic at zero (D is
said to be atomic at α if D is continuous together with its first and second Fréchet
derivatives with respect to the prior data φ ; and Dφ , the derivative with respect
to φ , is atomic at α). The operator L : C →Cn is linear and continuous and both
operators are, owing to the Riesz representation theorem, defined by

Lφ =
∫ 0

−τ

dη(θ)φ(θ), and Dφ = φ(0)−
∫ 0

−τ

dµ(θ)φ(θ), (1.27)
where µ,η ∈ NBV ([−τ,0],Cn×n) are Cn×n matrices the elements of which are of
bounded variation, normalized so that µ is continuous at zero and η(0) = 0; see
Hale and Verduyn Lunel [1] for details.

The linearized equation of (1.26) is an initial value problem for a linear au-
tonomous neutral functional differential equation is given by the following relation{

d
dt DXt = LXt , t ≥ 0,
X0 = φ , φ ∈ C .

(1.28)
It is well-known that for any given initial function at φ , there exists a unique

solution of the initial value problem (1.28); see [110]. Namely, given the solution
x(.,φ) of the initial value problem (1.28), we define the solution operator T (t) :
C → C by the relation

T (t)φ = xt(.;φ), t ≥ 0. (1.29)
Hale and Verduyn Lunel [1] proved that the solution operator is a C0-semigroup
on C , its infinitesimal generator A being{

D(A ) = {φ ∈ C | dφ

dθ
∈ C ,D dφ

dθ
= Lφ},

A φ = dφ

dθ
.

(1.30)
Moreover, σ(A )=Pσ (A ) and s∈σ(A ) if, and only if, s satisfies the characteristic
equation detM(s) = 0, M being the characteristic matrix

M(s) = sI −
∫ 0

−τ

sesθ dµ(θ)−
∫ 0

−τ

esθ dη(θ), (1.31)
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ẋ(t) = Ax(t) ẋ(t) = A0 x(t) + A1 x(t− τ)

Figure 1.2: Initial value problem.
where σ(A ) corresponds to the spectrum of A and Pσ (A ) corresponds to the
point spectrum of A . Two necessary results for a better understanding of the
spectrum of linear time-delay systems, are given next:

• Operator A only has a point spectrum: σ(A ) = Pσ (A ).

• Finitely many characteristic roots in any compact subset of C.

Under these conditions, there exists a decomposition of the solution space as
C = Cc ⊕Cs where Cc is m-dimensional generalized eigenspace spanned by the
generalized eigenfunctions corresponding to the eigenvalues with zero real part of
multiplicity m, Cs is its complement subspace in C .

In the following, we describe the asymptotic behavior by the spectral approach.
Let Φ = row(φ1, ...,φm) denotes the basis of the generalized eigenspace Cc.

Let C ∗ = C ∗([−τ,0],Rn∗). In [1], a bilinear form associated with equation
(1.28) is defined for ψ ∈ C ∗ by

⟨ψ,φ⟩= ψ(0)Dφ −
∫ 0

−τ

∫
θ

0
ψ(s−θ)dη(θ)φ(s)ds+

∫ 0

−τ

∫
θ

0
ψ

′(s−θ)dµ(θ)φ(s)ds,

(1.32)
We can select basis Ψ = col(ψ1, ...,ψm) so as to have ⟨Φ,Ψ⟩= Im×m.

Let s ∈ σ(A ) be an eigenvalue of A . The kernel ker(sI −A ) is called the
eigenspace at s. Let define Ms by the generalized eigenspace associated to s which
is the smallest subspace containing all ker

(
(sI −A )i

)
for i = 1,2, · · ·:

Ms = ker(sI −A )κs , (1.33)
where κs is the order of z = s as a pole of M−1(z).

The definition of the bilinear form defined in [1] allows to establish an efficient
spectral projection procedure; see [111].
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From the spectral theory [1], it follows that the spectral projection onto Ms(A )

along R((sI −A )κs) can be represented by a Dunford integral

Ps =
1

2iπ

∫
Γs

(zI −A )−1dz, (1.34)
where Γs is a small circle such that s is the only singularity of (zI −A )−1 inside.
This spectral projection is an important tool for the investigation of nonlinear
systems. Indeed, Frasson [112] shows that if s0 ∈R is a dominant zero of M(s) of
multiplicity n ≥ 1, then

Ps0φ = 0 =⇒ lim
t→∞

e−ts0x(t) = 0. (1.35)
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2 - Existing pole placement paradigms

This chapter is an extended version of the paper [93].

2.1 . Introduction

Pole placement represents a classical method for controlling finite-dimensional
linear time-invariant (LTI) systems, largely covered in the open literature. Basically,
it consists of placing the poles of the closed-loop system in some predetermined
loci in the complex plane. This chapter discusses some of the extensions of this
method to linear systems described by delay-differential equations. Among oth-
ers, the finite spectrum assignment (FSA), the algebraic pole placement (APP),
the continuous pole placement (CPP) and the partial pole placement (PPP) ap-
proaches are presented and illustrated through some simple low-order dynamical
systems.

Henceforth, this chapter is organized as follows. We first present the first
attempts and existing pole placement paradigms (framework). Next, each section
describes an existing pole placement paradigm where the main idea as well as the
advantages and the drawbacks of each are discussed. Section 2.2 is devoted to
the Finite Spectrum Assignment (FSA). Section 2.3 presents the Algebraic Pole
Placement (APP). Section 2.4 describes the Continuous Pole Placement (CPP).
Section 2.5 centers on the recent Partial Pole Placement (PPP). Finally, several
examples which illustrate the described methods are given in Section 2.6.

Overview of pioneering works on pole placement

Up to our knowledge, the first results devoted to the spectrum location of dynami-
cal systems described by delay-differential equations (DDEs) go back to the 1920s
and are due to Pólya. In point of fact, in [40], the quasipolynomial (transcendental)
entire functions have been extensively studied and the asymptotic distribution of
their zeros has been explored by some simple and elegant geometric approaches1

which, unfortunately, have not been sufficiently exploited and extended to higher-
order equations. Rather than the geometric investigation, in [41], an analytic
treatment of the location of the roots of some low-order transcendental equations
is given in a more precise way. Indeed, under some conditions, the roots are located
in arbitrarily small sectors, and in each of these sectors the roots are additionally
confined in a finite number of strips which are asymptotically of constant width.

1geometric determination of the characteristic roots’ distribution
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Later, in [113], some fundamental results concerning the zeros of quasipoly-
nomials are obtained. In fact, necessary and sufficient conditions are given for all
solutions of the transcendental function P(s,es) to lie in the left half-plane, where
P(s,z) is a polynomial in s,z. Theses results are provided by extending the methods
used to prove the Routh-Hurwitz criterion for the zeros of polynomials in order to
be of negative real part.

Next, in the early 1950s, [79] proposed an efficient way to understand the
asymptotic behaviour of solutions of first-order DDEs including a pointwise delay
through the employment of the spectral method and thanks to a deep investigation
of the zeros of the entire function g : C 7→ C, g(s) := ses −a thereby providing a
complete characterization of the spectrum distribution of such a first-order equa-
tion (see also [114] for further discussions). It should be mentioned that such re-
markable properties appeared to be closely related to the well-known Lambert−W
functions (see, for instance, [115] for some applications in control theory). Later,
the result is generalized to the first-order DDE of neutral type in [90] by forging
simple and direct methods for the computation of the corresponding real spectral
values and for the derivation of the least upper bound of the said spectral abscissa.
More recently, several works exploited Hayes results in control problems such as
in delayed feedback and in stabilization problems. Unfortunately, Hayes’ approach
remains complicated and natural extensions to higher-order retarded or neutral
DDEs do not exist.

Afterwards, a remarkable property of the spectrum distribution of low-order
quasipolynomial functions with multiple spectral values has been hinted at since
the late 50’s in [51]. As a matter of fact, it turns out that for the first and
second-order quasipolynomials, the corresponding spectral abscissa coincides with
the multiple spectral value. Regrettably, despite its pioneering character, Pinney’s
work has made no attempt to address the general question since the employed
approach seems quite difficult to extend to higher-order equations.

A classical and a standard way to count the number of unstable roots is to apply
the well-known argument principle, see for instance [116]. The said count may
also be obtained, in an easier and more elegant way, by the inspection of argument
variation. Actually, the combination of the qualitative behavior of both the real
ℜ and the imaginary ℑ parts (seen as real functions in the crossing frequency) of
the quasipolynomial function, allows a straightforward application of the Stepan-
Hassard formula [70], [117]. In fact, when a characteristic equation corresponding
to a DDE of retarded type has no roots on the imaginary axis, then [118] gives a
new formalism and an easy procedure to characterize the exact number of unstable
roots.
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2.2 . Finite spectrum assignment

In this section we consider the spectrum assignment via feedback for linear sys-
tems with delays, (see [42], [43]). To stabilize the system’s solutions, an approach
called "finite spectrum assignment" (FSA) may be used. The objective is to con-
struct a linear feedback law which yields a finite closed-loop spectrum. Note that
in [119], a reinterpretation of this approach was proposed, modeling ordinary dif-
ferential equations (ODEs) with input delays as PDE-ODE interconnections. This
result has enabled the design of observers, controllers, or parameter estimation
methods for interconnected systems: systems with varying delays [120], cascades
of PDEs [121].

Main idea

Up to our knowledge, the FSA approach is the oldest paradigm, it is based on a
predictor (integral operator) able to transform an infinite dimensional system into
a finite dimensional one (the delay is compensated for by the predictor action),
which is itself a remarkable property. When compared to the well-known Smith-
Predictor, the FSA has the advantage of arbitrarily assigning the closed-loop poles
and therefore can be applied to poorly damped and unstable processes [44], [122].
As a matter of fact, from a theoretical viewpoint, the finite spectrum assignment
is a plausible methodology, however, it has several drawbacks of which the problem
of robustness commented in the sequel. Two classes of systems can be considered
whether the delay appears in the state or in the control.

Description of the method

Consider the following linear system with control delays

ẋ(t) = Ax(t)+B0 u(t)+B1 u(t − τ), (2.1)
where x ∈ Rn, u ∈ Rm and τ is the delay of the system (τ > 0).

In [43] it is proven that the feedback of the following form

u(t) = F x(t)+F
∫ 0

−τ

e−(τ+θ)AB1 u(t +θ)dθ , (2.2)
where F is an m× n matrix, yields a finite spectrum of the closed-loop system.
The location of this spectrum can be completely controlled by the choice of F
under some suitable controllability conditions. This result remains true for the
more general systems governed by

ẋ(t) = Ax(t)+
∫ 0

−τ

dµ(θ)u(t +θ), (2.3)
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where µ is an n×m matrix function of bounded variation and the corresponding
feedback has the following form

u(t) = F x(t)+F
∫ 0

−τ

∫ 0

σ

e(σ−θ)A dµ(σ)u(t +θ)dθ , (2.4)
where σ is the integration variable of the first (outer) integral.
Consider the following linear system

ẋ(t) = Ax(t)+B0 u(t)+B1 u(t − τ), (2.5)
where x ∈ Rn, u ∈ Rm, A ∈, B0,B1 ∈ and τ is the delay of the system (τ > 0).

In [43] it is proven that the following feedback

u(t) = F x(t)+F
∫ 0

−τ

e−(τ+θ)AB1 u(t +θ)dθ , (2.6)
where F is an m×n matrix, yields a finite spectrum of the closed-loop system. The
location of this spectrum can be completely controlled by the choice of F under
some suitable controllability conditions.

A result on spectrum assignment is provided in [43]. Namely, the spectrum
of the closed-loop system (2.3)-(2.4) coincides with the spectrum of the matrix
A+B(A)F where

B(A) =
∫ 0

−τ

eσ A dµ(σ). (2.7)
Moreover, assuming the controllability (respectively, the stabilizability) of the pair
(A,B(A)), the spectrum of the system (2.3)-(2.4) may be placed at any preassigned
self-conjugate set of n points in the complex plane (respectively the unstable eigen-
values of A may be arbitrarily shifted) by a suitable choice of the matrix F .

An alternative way to stabilize the solutions of system (2.3) is the use of a
dynamic feedback [43]:

u̇(t) =F(A−D2)x(t)+(FB(A)+D1)u(t)

+F(A−D2)
∫ 0

−τ

∫ 0

σ

e(σ−θ)A dµ(σ)u(t +θ)dθ , (2.8)
where D1 is an m×m matrix and D2 is an n×n matrix. Moreover, the spectrum of
the closed-loop system (2.3)-(2.8) coincides with the roots of the following equation

det
[
Is−D1

]
det
[
Is−A−B(A)F

]
= 0, (2.9)

if the matrices D1,D2 and F satisfy F D2 = D1 F .
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Moreover, if the pair (A,B(A)) is controllable, then n eigenvalues of the closed-
loop system may be assigned in an arbitrary self-conjugate configuration by a proper
choice of matrix F .

Consider the general system governed by

ẋ(t) =
∫ 0

−τ

dη(θ)x(t +θ)+
∫ 0

−τ

dµ(θ)u(t +θ), (2.10)
with η and µ of bounded variation. A result in [42], states that the following
condition

Rank
[

sIn −
∫ 0

−τ

esθ dη(θ);
∫ 0

−τ

esθ dµ(θ)

]
= n, (2.11)

is a necessary condition for a locally integrable control u(t) satisfying:

|u(t)|= o(e−ε t), (2.12)
and for some small ε > 0:

|x(t)|= o(e−ε t), t → ∞, (2.13)
One can use the dynamic feedback u̇(t) = w(t), with

w(t) =
∫ 0

−τ

[dK1(θ)]x(t +θ)+
∫ 0

−τ

[dK2(θ)]u(t +θ). (2.14)
Hence, condition (2.11) is also sufficient for stabilizability.

Advantages and limitations

From a practical viwpoint, the digitization of the controller generated by the finite
pole assignment is subject to a discritization which unfortunately induces the loss
of the control of the closed-loop spectral values. In other words, one has spec-
tral values that exceed the range that one has assigned (see [46], [123]) yielding
the Spillover phenomena (the numerical controller parameters are not exactly the
same as those computed via the analytical design method). Indeed, this has been
explained by the sensitivity of the design to parameter variations. Accordingly, the
instability of the difference part of the control law leads to the instability of the
closed-loop system’s solution, see for instance [46]. Notice also some concern with
the complexity of calculations compared to other existing methods.

2.3 . Algebraic pole placement

In this section, we consider an algebraic design paradigm proposed and de-
veloped in [45], [124]–[126]. Such an APP approach consists in a compensation
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of unstable poles by stable ones (the assigned poles). This renders the closed-
loop systems’ solutions exponentially stable. Its main ingredient is an appropriate
division in the ring of transfer functions corresponding to pointwise or particular
distributed delays, which yields fractions over R(s, e−τ s).

Main idea

Roughly speaking, the principle of this algebraic approach consists in keeping the
spectral values with a real part below a chosen threshold and removing from the
spectrum some undesired spectral values (typically unstable spectral values) via an
Euclidean-like division. Furthermore, an additional set of spectral values is assigned
to define the exponential decay rate of the closed-loop system’s solution. Even if
the origin of this algebraic approach is inspired from the FSA, its methodology
differs in many ways.

Description of the method

We refer to [45]. Consider the single-input delay system

ẋ(t) =
k

∑
i=0

Ai x(t − iτ)+
k

∑
i=0

bi u(t − iτ), (2.15)
where x ∈ Rn is the state of the system and u ∈ R is the output of the system.
For all i ∈ {0, ...,k}, Ai ∈ Rn×n, bi ∈ Rn×1 and τ > 0 is the delay of the system.
Consider the control law:

u(t) =
∫ N

0

(
f (θ)u(t −θ)+g(θ)x(t −θ)

)
dθ +

M

∑
i=0

pi x(t − iτ), (2.16)
where N ∈R+, f ∈L2([0,N],R), g∈L2([0,N],R1×n); M ∈N and ∀i∈{1, ...,M}, pi ∈
R. Applying the Laplace transform with a zero initial condition to (2.15) and (2.16),
one has, respectively,

sx = Ax+bu and u = F1 u+F2 x, (2.17)
where

A =
k

∑
i=0

Ai e−τ s i; b =
k

∑
i=0

bi e−τ s i, (2.18)
and

F1 =
∫ N

0
f (θ)e−θ s dθ ; F2 =

∫ N

0
g(θ)e−θ s dθ +

M

∑
i=0

pi e−τ s i. (2.19)
In the following, we provide a definition of the finite spectrum assignability in

terms of the characteristic polynomial of the closed-loop system.
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Definition 2.3.1 If there exist F1 and F2 such that

det
[

sIn −A −b
−F2 1−F1

]
=

n

∏
i=1

(s−αi), (2.20)
for any set of n complex numbers αi such that any αi ∈ {α1, ...,αn} with ℑ(αi) ̸= 0
appears in conjugate pair, then the system (2.15) is said to be finite-spectrum-
assignable.

The ring R[s]: is a ring of transfer functions defined as the set of all the
meromorphic functions in the complex plane C that are of the form P(s,e−τ s)

Q(s) , where
Q is a polynomial in the Laplace complex variable s, P is a bivariate polynomial
in s and e−τ s, and τ is a fixed positive real number. We consider the entire
function which is the finite Laplace transform of a distributed delay equation,
called elementary fraction [127] and defined as

θσ (s) =
1− e(−s+σ)τ

s−σ
, σ ∈ C. (2.21)

The effective design of stabilizing compensates for delay-differential systems is
one of the application of Bézout-domain property (see [128]–[130] and references
therein).

Remark 2.3.1 A Bézout domain is an integral domain in which every finitely
generated ideal is principal.

Remark 2.3.2 We say that n(s,z) and d(s,z) over R[s,z] are 2−D factor coprime
if there no common 2−D factor r(s,z) over R[s,z] such that n(s,z) = ñ(s,z) ·
r(s,z), d(s,z) = d̃(s,z) · r(s,z) and degs(r)> 0 or degz(r)> 0.

Bézout-type identities: Consider Q ∈R[s,e−sτ]p×p
, and P ∈R[s,e−sτ]p×m

, D ∈
R[s,e−sτ]m×m

, N ∈ R[s,e−sτ]p×m
which satisfy:

Q−1 ·P = N ·D−1. (2.22)
Matrices Q and P are required to be admissible. We can always find matrices
Q, P, D and N that satisfy such a coprimeness condition (see [131]).

Lemma 2.3.1 ([131], Theorem 5.1) Let Q and P be two 2-D left-factor-coprime
matrices over R[s,e−sτ ]. Then, there exist E a polynomial matrix in s, and two
matrices X ,Y over R[s,e−sτ ] satisfying

Q ·X +P ·Y = E. (2.23)
Theorem 2.3.1 If Rank[Q|P] = p,∀s ∈C, then there exist X ∈R[s]p×p and Y ∈
R[s]m×p such that

Q ·X +P ·Y = Ip. (2.24)
Theorem 2.3.2 ([45]) The system (2.15) is finite-spectrum-assignable if, and only
if, it is spectrally controllable, i.e.,

Rank
[

sIn −A,b
]
= n, ∀s ∈ C. (2.25)
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Advantages and limitations

This kind of algebraic method becomes interesting when one knows beforehand
the number and location of undesired spectral values.

However, in general, standard complex analysis techniques, such as the argu-
ment principle, only provide the number of undesired spectral values. In addition,
the standard numerical methods only produce approximations, so that, in practice,
a considerable symbolic/numeric issue arises, since the method requires their exact
value. Building effective algorithms to overcome the latter symbolic/numeric issue
remains challenging; the reconstruction of a polynomial characterizing an exact
spectral value from a polynomial characterizing its approximation represents an
additional complexity for rendering the approach systematic.

Besides, another challenging question related to this algebraic paradigm is the
design of efficient and algorithmic calculations of the involved objects such as the
ring elements derived from the corresponding Bézout’s identity.

Solving the emphasized issues will surely break new ground for the pole place-
ment algebraic paradigm.

2.4 . Continuous pole placement

To the best of our knowledge, the first “automated” pole placement for re-
tarded time-delay systems is the numerical paradigm known as "continuous pole
placement" (CPP) method introduced in [132].

Main idea

The CPP paradigm consists in defining a function that represents the spectral ab-
scissa and to exploit its dependency on the controller parameters, and the control
strategy can be summarized as follows: “Shift” the unstable characteristic roots
from C+ to C− in a “quasi-continuous” way subject to the strong constraint that,
during this shifting action, stable characteristic roots are not crossing the imaginary
axis from C− to C+. We refer to and references therein for further insights on the
number of controlled characteristic roots (which is related to the available degrees
of freedom induced by the controller structure) as well as the interpretation of CPP
as a local strategy to solve an appropriate optimization problem where the objective
function (rightmost root) is not differentiable. It is worth mentioning that CPP,
initially applied to delay systems of retarded type, was extended to neutral systems
in [133].
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Description of the method

In order to illustrate this method, we consider the investigation of the stability of
the following system

ẋ(t) = Ax(t)+Bu(t − τ), (2.26)
where A ∈ Rn×n, B ∈ Rn×1, x ∈ Rn is the state, u ∈ R is the input and τ is the
positive delay. Let us consider the linear control law that reads

u = KT x, K ∈ Rn×1. (2.27)
This static state feedback controller reveals the link between the CPP method and
the classical pole placement method.

The CPP method consists in applying slight changes to the feedback gain
so as to move the unstable eigenvalues to the left half-plane. The key steps
for this method may be declined as follows. First, the rightmost eigenvalues are
computed; an automatic method for doing so is provided in [134]. Second, the
sensitivity of the rightmost eigenvalues with respect to changes in the feedback
gain is assessed. Next, the rightmost eigenvalues are pushed in the direction of
the left half-plane by applying a slight alteration to the feedback gain, owing to
the aforementioned sensitivities. Lastly, the rightmost uncontrolled eigenvalues are
monitored: if necessary, the number of controlled eigenvalues shall be increased
; stop when stability is reached or when the available degrees of freedom in the
controller do not allow to further reduce supℜ(s) ; otherwise, resume step 2. These
steps are resumed in the fundamental Algorithm 1.

Algorithme 1 : The continuous pole placement method
1 Initialize m = 1.
2 Compute the rightmost eigenvalues for the nominal delay τ .
3 Compute the sensitivity of the m rightmost eigenvalues w.r.t.changes in the feedback gain K
4 Move the m rightmost eigenvalues in the direction of the lefthalf plane by applying a small change to the feedback gain K,using the computed sensitivities.
5 Monitor the rightmost uncontrolled eigenvalues. If necessary,increase the number of controlled eigenvalues, m. Stop whenstability is reached or when the available degrees of freedom inthe controller do not allow to further reduce supℜ(s). In theother case; go to step 2.

Remark 2.4.1 The different steps of CPP method are thoroughly detailed in [132].
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Advantages and Drawbacks

Unlike FSA method, CPP approach does not render the closed-loop system finite-
dimensional, but consists instead of controlling the corresponding rightmost eigen-
values. Such an idea represents a simple generalization of the pole placement for
finite-dimensional systems represented by ordinary differential equations.

2.5 . Partial pole placement

Main idea

The strategy of PPP consists in tuning standard controllers via the aforementioned
MID property. Namely, one needs to determine the conditions under which a given
multiple root of a the characteristic equation is dominant.

Description of the method

The procedure of PPP is carried out in several steps. First, conditions on the
system’s parameters guaranteeing the existence of a multiple root are obtained.
Second, an affine change of variable is required to normalize the characteristic
equation. Next, a bound on the imaginary part of roots of the normalized charac-
teristic equation in the complex right half-plane is derived. In fact, the frequency
bound is the main ingredient for the proof of the dominance, for this purpose, a
pseudo-code listing the instructions to be followed to target a suitable frequency
bound is given in [91]. The idea is to find an adequate truncation order of the
exponential term appearing in the normalized quasipolynomial which depends only
on the real part of its roots. By using a purely polynomial analysis, one is able to
obtain a suitable bound of the imaginary part of the roots. Lastly, a certification
of the dominance of the multiple root is established.

Advantages and Drawbacks

Unlike the APP method, when it comes to the PPP method, a priori knowledge
on the number of unstable roots and/or their location is not required. On the one
hand, it is reported that the PPP is easy to implement and robust to uncertain
delays or the model’s parameters [135] and on the other hand, it applies to retarded
as well as neutral systems [76]. Furthermore, it provides a procedure to assess the
critical delay, see for instance [86]. The main limitation of the PPP is that the
actual knowledge allows to assign the spectral abscissa only on the real axis, aside
from few isolated cases, see for instance [58]), which may not be relevant in some
applications. We have yet to fathom the extent of this property, notwithstanding
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the fact that often small delays are required to perform the MID property which
may again be a drawback in some applications.

2.6 . Illustrative examples

Example 1

In order to illustrate FSA, consider the following system

ẋ(t) = x(t)+u(t −1). (2.28)
The characteristic equation of the open-loop system s− 1 = 0 yields an unstable
pole at s = 1, the open loop-system is then unstable. The feedback proposed in
(2.4) reads in the case of system (2.28) as follows

u(t) = f x(t)+ f z(t), (2.29)
where

z(t) =
∫ 0

−1
e−(1+θ) u(t +θ)dθ . (2.30)

The transfer function of the system (2.30) is

z(s)
u(s)

=
1
e

∫ 0

−1
e(s−1)θ dθ =

e−1 − e−s

s−1
. (2.31)

The pole s = 1 is cancelled by a zero of e−1 − e−s. The Laplace transform of
(2.28)-(2.29) yields the characteristic equation of the closed-loop system(

s−1 −e−s

− f 1− f e−1−e−s

s−1

)(
x(s)
u(s)

)
= 0, (2.32)

Looking for the characteristic roots amounts to computing the zeros of the
determinant of the system, we have

(s−1)
(

1− f
e−1 − e−s

s−1

)
− f e−s = 0, (2.33)

which yields the following zero

s = 1+
f
e
, (2.34)

It is important to note that the spectrum of the closed-loop system is finite,
and that the pole s = 1 is not cancelled by a corresponding zero, but it is shifted
from s = 1 to s = 1+ f

e by the feedback ; see the block diagram of the closed-loop
system in Figure 2.1.
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s−1
s−1− f (e−1−e−s)

e−s

s−1

s−1
s−1− f (e−1−e−s)

Figure 2.1: Block diagram of the closed-loop system.
Example 2

In order to illustrate the APP method, consider the following system

ẋ(t) = A0 x(t)+A1 x(t −1)+b1 u(t −1), (2.35)
where x(t) = (x1(t) x2(t))

T and

A0 =

(
0 0
0 1

)
, A1 =

(
1 −1
0 0

)
, b1 =

(
0
1

)
. (2.36)

The above system is spectrally controllable since Rank
[

sI2 −A,b
]
= 2, where,

in this case

A =

(
e−s −e−s

0 1

)
, b =

(
0

e−s

)
. (2.37)

Therefore, we can assign the poles of the system at −1. To do so, we follow [[45],
proof of Theorem 9]. The condition (sI2 −A)−1 b−N d−1 is satisfied, where

N =

(
−e−2s

(s− e−s) e−s

)
d = (s−1)

(
s− e−s) . (2.38)

There exist X ∈ R[s] and Y ∈ R1×2[s] where

X =
e−s + s+ e−2s

(
2s2 +κ s2 −2s−1

)
s2 (s−1)

, (2.39)
Y =

(
−1+(s−e−2s)(2s2+κ s2−2s−1)

s2 ; 0
)
, (2.40)

with κ =
(
−1− e−s + e−2s

)
e2, such that

(
X Y

)
·
(

d
N

)
= 1. (2.41)

In this example we aim to assign the poles at −1, then we take C = (s+1).
Next, we divide CY by (sI2 −A) on the left to obtain CY = T · (sI2 −A)−F2
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with

T =
(
(2+κ) s2 +(2+2κ) s−3+κ;−(2+κ) se−s − (4+3κ) e−s) , (2.42)

−F2 =
(
−5+θ

(1)
0 −3θ0; −e−s −4κ e−s

)
. (2.43)

Set H =CX +T b which is developed as

H = 1+ e−s
θ
(1)
0 −

(
1+4e−s)

θ0 +4
(
1+(1+ e)e−s)

θ1 (2.44)
As a result, a feedback law which assigns the poles of the system at −1 is

u(t) =5x1(t)+

(
1+

4
(
−1− e−1 + e−2

)
e−2

)
x2(t −1)

+
∫ 1

0

(
(−τ +4−4 (1+ e) eτ) u(t −1− τ)

+(1−4eτ) u(t − τ)+(−τ +3) x1(t − τ)

)
dτ. (2.45)

Example 3

In order to illustrate the CPP method, we consider the system

ẋ(t) = Ax(t)+bu(t − τ), u = KT x(t), (2.46)
where

A =

−0.08 −0.03 0.2
0.2 −0.04 −0.005

−0.06 0.2 −0.07

 , b =

−0.1
−0.2
0.1

 ,τ = 5. (2.47)
The open-loop system is unstable with the feedback u in (2.46) where

K =
(
0.719 1.04 1.29

)T
. (2.48)

The spectral abscissa is shown in Figure 2.2 as a function of the delay τ . Note that
the particular control law achieves stability for τ = 0, the system is unstable for the
nominal delay τ = 5, also, the characteristic roots must cross the imaginary axis
from left to right and this occurs when τcrit = 3.95. Next, we determine the delay
margin, i.e. at what first value of τ , the characteristic roots lie on the imaginary
axis. Let write the characteristic equation of (2.46)-(2.47) under the form

∆(s) = P0(s)+Pτ(s)e−τ s, (2.49)
where

P0(s) =s3 +0.19s2 +0.03s−0.0068, (2.50)
Pτ(s) =0.1509s2 +0.070115s+0.014. (2.51)
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A necessary and sufficient condition is that s = ι̇ ω , with ω ∈ R be a solution of
∆(s) = 0 for some value of τ , in other words,

P0(ι̇ ω)+Pτ(ι̇ ω)e−τ ι̇ ω = 0. (2.52)
Using the fact that if ι̇ ω is a solution of (2.52), then −ι̇ ω satisfies (2.52), i.e.

P0(−ι̇ ω)+Pτ(−ι̇ ω)eτ ι̇ ω = 0. (2.53)
Then

P0(ι̇ ω)P0(−ι̇ ω)−Pτ(ι̇ ω)Pτ(−ι̇ ω) = 0. (2.54)
We define the following polynomial in ω2 = Ω,

P(Ω) =P0(ι̇ ω)P0(−ι̇ ω)−Pτ(ι̇ ω)Pτ(−ι̇ ω)

=Ω
3 −0.047Ω

2 +0.002Ω−0.00016. (2.55)
for which only the positive roots are of interest. Indeed, only the solution ω∗ =

0.227 need be considered. The corresponding delay τcrit is the smallest positive
value satisfying cos(ω τ) = ℜ

(
−P0(ι̇ ω)
Pτ (ι̇ ω)

)
,

sin(ω τ) = ℑ

(
P0(ι̇ ω)
Pτ (ι̇ ω)

)
,

(2.56)

that is {
cos(0.227τ) = 0.62,
sin(0.227τ) = 0.78.

(2.57)
The characteristic roots must cross the imaginary axis from left to right and

this occurs when τcrit ≈ 3.94.

Figure 2.3, illustrates the real parts of the rightmost spectral values of (2.46)-
(2.47) as a function of the delay τ . These figures show how the spectral abscissas
progress towards the minimum for the nominal delay. One remarkable property of
the system is the high sensitivity with respect to the delay changes (or eventually
the change of the other parameters). Executing Algorithm 1 until to attain the
minimum causes this high sensitivity with respect to the delay changes for the
feedback gain. As a matter of fact, at iteration 37 (see Figure 2.3 (left)), the
feedback gain obtained already reach the stability. Notice that the exponential
decay rate of the closed-loop solution is smaller than for the optimum, yet less
sensitive to delay changes.
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Figure 2.2: Rightmost eigenvalues of the system (2.46)–(2.47) as a func-tion of the delay k = [0.7191.041.29]T .
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Figure 2.3: (Left) Rightmost eigenvalues of the system (2.46)–(2.47) as
a function of the delay τ for K =

(
0.712 1.075 0.831

)T at iteration 37.
(Right) K =

(
0.559 0.770 0.694

)T at iteration 110.
Example 4

In order to understand the effect of the admissible multiplicities of spectral values on
stability of the time-delay system and their characterization, Consider the problem
of stabilization of the classical harmonic oscillator, by a proportional-derivative
controller

ẍ(t)+a0 x(t)+b1 ẋ(t − τ)+b0 x(t − τ) = 0, (2.58)
for which the characteristic equation is
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Figure 2.4: Translation of the spectrum distribution of ∆0 according tothe delay change.

∆(s) = s2 +a0 +(b1 s+b0) e−τ s, (2.59)
the multiple spectral value of which is

s± =
1
τ

(
−2+

√
−τ2 a0 +2

)
, (2.60)

and the controllers’ gains of which are

{
b0 =

2(τ2 a0+5τ s±+3)eτ s±

τ2 ,

b1 =
2(τ s±+1)eτ s±

τ
.

(2.61)

Under the previous conditions (2.61), the spectral value s = s+ is necessarily a
dominant root for (2.59), unlike s− which cannot be the spectral abscissa. Indeed,
the multiple spectral value at s− is always dominated by a single real root that we
denote by s0.

By substituting the gains of the controller (2.61) in the characteristic equation
(2.59) where a0 = 1, we obtain
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∆0(s) = s2 +1+

2s
(
−1−

√
−τ2 +2

)
e−2−

√
−τ2+2

τ

+
2
(
−7−5

√
−τ2 +2+ τ2

)
e−2−

√
−τ2+2

τ2

e−τ s. (2.62)

Now, imposing s = 0 to be the real root of ∆0, one is able to obtain numerically
the corresponding delay τ0 ≈ 1.0581 which yields a root on the imaginary axis.

Figure 2.4 presents a spectrum distribution of ∆0 computed using Maple. This
spectrum distribution can also be illustrated using the QPmR toolbox from [136].
The figure distinctly illustrates the effect of the delay on the multiple root. Actually,
for the delay τ = τ0 ≈ 1.0581 the multiple root is at s = 0, then the reduction of
the value of the delay τ pushes the roots continuo usly from the imaginary axis to
the right.

2.7 . Chapter Summary

The existing pole placement paradigms was discussed. A presentation and an
illustration of finite spectrum assignment, algebraic pole placement, continuous
pole placement and the partial pole placement method is given, via some simple
dynamical systems.
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Part II

Partial pole placement
approach
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3 - The GMID property for second order neu-
tral equation

This chapter is an extended version of the paper [57].

3.1 . Introduction

This chapter considers the Generic Multiplicity-Induced-Dominancy (GMID)
property for second order neutral time-delay differential equations. Necessary and
sufficient conditions for the existence of a root of maximal multiplicity are given in
terms of this root and the parameters (including the delay) of the given equation.
Links with dominancy of this root and with the exponential stability property of
the solution of the considered equations are provided. Finally, we illustrate the
obtained results on the classical oscillator control problem.

This chapter is organized as follows: Section 3.2 states a design methodology
exploiting the Multiplicity-Induced-Dominancy (MID) property, the classical steps
leading to the proof are recalled through a comprehensive example, the first-order
neutral equation with a single delay (GMID: codimension 3). The problem setting
is presented in 3.3, while the main result is presented in Section 3.4, where a clas-
sification of admissible multiplicities for second order neutral time-delay differential
equation with a single delay is provided. The proof of the main result is presented
in Section 3.5. Finally, Section 3.6 is dedicated to the exponential stabilization of
an oscillator via delay, as an illustrative example.

3.2 . The MID methodology on a toy model: Codimension 3

The MID property consists of the conditions under which a given multiple com-
plex zero of a quasipolynomial is dominant. It’s proof consists of five steps. First,
we establish conditions on the parameters of the system guaranteeing the exis-
tence of a multiple root. Second, an affine change of variable of the characteristic
equation is performed in order to reduce the said quasipolynomial to a normalized
form; the desired multiple root becomes 0 and the delay 1. Next, under the latter
normalization, the characteristic equation may be easily factorized in terms of an
integral expression. Hence, we derive a bound on the imaginary part of roots of the
normalized quasipolynomial in the complex right half-plane. Lastly, a certification
of the dominance of the multiple root is demonstrated.

The proof methodology of the MID property is resumed in Figure 3.1 and
Algorithm 2 is a pseudo-code listing the instructions to be followed to target an
suitable frequency bound.
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(C): Conditions in
Frequencyparameters guaranteeing

Characteristic

equation: ∆(s) = 0

Delay: τ > 0

Integral
representation

∆̃(z) =
∫ 1
0 q(t)K(z, t)dt

∆
(m−1)(s0) = ... = ∆(s0) = 0

∆̃(z0) = 0

ℜ(z0) > 0, ℑ(z0) > 0

0 < ℑ(z0) < π

s0 : multiple Normalization

Scaling of the spectrum:

Normalization of the delay:

∆̃(z) = τ
n
∆̂( z

τ
)

∆̂(λ) = ∆(s− s0)

Under (C):

root root of multiplicity m: bound
Dominancy

Contradiction
argument

1 2 3 4 5

Figure 3.1: Diagram illustrating the proof methodology of the MIDproperty for a second-order time-delay differential equation
Algorithme 2 : Estimation of the MID frequency bound insecond-order neutral time-delay differential equations
Input : ∆̃(z) = P̃0(z)+ P̃1(z)e−z; // Normalized quasipolynomial// Initialization

1 ord= 0; // ord: order of truncation of the Taylor expansion of
e2x = 1︸︷︷︸ord=0

+2x

︸ ︷︷ ︸ord=1

+2x2 + 4x3

3 + ...;

2 dominance = f alse;
3 ∃z0 = x+ ι̇ω ∈ R∗

++ ι̇R∗
+ s.t. ∆̃(z0) = 0;

4 |P̃0(x+ ι̇ω)|2e2x = |P̃1(x+ ι̇ω)|2;
5 while ∼ dominance do
6 ord =ord+1;
7 F(ω) = |P̃1(x+ ι̇ω)|2 −|P̃0(x+ ι̇ω)|2Tord(e2x)> 0; // Tord(e2x):

Taylor expansion of e2x of order= ord
8 ω2 = Ω;
9 G(Ω) = a(x)Ω2 +b(x)Ω+ c(x); // a(x) ̸= 0, G(Ω) = F(ω)

10 Ω±(x) = −b(x)±
√

b2(x)−4a(x)c(x)
2a(x) ; // Ω±(x) depends on free

parameters denoted by param hereafter
11 if maxx(maxparam(Ω±(x)))< π2 then
12 dominance = true;

Output : Frequency bound ;

To illustrate the proof of the methodology of the MID property described above,
we consider a model of phenomena in the bio-sciences describing the dynamics of
a vector-borne disease. It is based on a simple scalar delay differential equation
with a positive single delay τ . In its linearized version, the infected host population
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x(t) is governed by
ẋ(t)+a0 x(t)+a1 x(t − τ) = u(t), (3.1)

where u is the delayed output-feedback:

u(t) = (a1 −α0)x(t − τ)−α1ẋ(t − τ), (3.2)
with α0, α1 are real coefficients, and a1 > 0 is called the contact rate; it represents
the contact number between infected and uninfected populations. Assume that
the infection of the host recovery proceeds exponentially at a rate of −a0 > 0.
The characteristic equation of (3.1) is the quasipolynomial function defined by

∆(s) = s+a0 +(α1s+α0)e−τ s, (3.3)
of degree degs(∆) = 3, The first-order neutral equation is treated in the context of
delay differential-algebraic systems in [56]. In the following, we shall illustrate the
dominancy proof following the methodology previously described.

• GMID : spectral value of maximal admissible multiplicity (multiplicity
3):

1. Forcing multiplicity: The real s0 is a root of multiplicity 3 of ∆ if, and
only if, the coefficients a0,α0,α1, the root s0 and the delay τ satisfy
the relations below 

a0 =−s0 − 2
τ
,

α0 =
(
−s0 +

2
τ

)
es0τ ,

α1 = eτ s0 .

(3.4)

2. Normalization: Performing the translation and scaling of the spectrum
by the following change of variables

∆̃(z) = τ ∆(
z
τ
+ s0), (3.5)

for z ∈ C, we get the following normalized characteristic equation

∆̃(z) = z+b0 +(β1z+β0)e−z, (3.6)
with relations (3.4) normalized as follows


b0 = τ (a0 + s0) ,

β0 = τ (α1 s0 +α0) e−τ s0 ,

β1 = α1 e−τ s0 .

(3.7)
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3. Integral representation: The real root s0 is a root of multiplicity 3 of
∆ if, and only if, 0 is a root of multiplicity 3 of ∆̃. As a matter of fact,
since ∆̃ is a quasipolynomial of degree degs(∆̃) = 3, zero is a root of
multiplicity 3 of ∆̃ if, and only if,

∆̃(0) = ∆̃
′(0) = ∆̃

′′(0) = 0. (3.8)
The latter identities yield a linear system whose unique solution is
(b0,β0,β1)= (−2,2,1). From relations (3.7), one concludes that s0 is a
root of multiplicity 3 of ∆ if, and only if, relations (3.4) hold. Moreover,
under the latter conditions, the quasipolynomial (3.3) reduces to

∆̃(z) = P̃0(z)+ P̃1(z)e−z, (3.9)
where

P̃0(z) = z−2 and P̃1(z) = z+2. (3.10)
Hence, the quasipolynomial ∆̃ admits the following Fredholm integral
representation

∆̃(z) =
∫ 1

0
q(t)K (z, t)dt, (3.11)

where

q(t) = t (1− t) and K (z, t) = z3e−t z, (3.12)
which is easily verified via an integration by parts.

4. Frequency bound: Assume that z0 = x0 + ι̇ω0 ∈R++ ι̇R+ is a root of
∆̃, so that ∆̃(z0) = 0 if, and only if,

|P̃0(x0 + iω0)|2 e2x0 = |P̃1(x0 + iω0)|2. (3.13)
Considering a truncation of order 1 of the exponential term e2x, the
latter is lower bounded by 1+2x. Next, define

F(x,ω) = |P̃1(x+ iω)|2 − (1+2x) |P̃0(x+ iω)|2, (3.14)
where F > 0 for any x > 0. The zeros of F are characterized by the
first order polynomial

G(Ω = ω
2) =−2xΩ−2x3 +8x2. (3.15)
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The polynomial function G admits a single real root Ω0(x)=−x(x−4),
which reaches a maximum value at x∗ = 2. As a result, Ω0 is bounded
by Ω∗ = 4 < π2. Thus, one obtains the desired frequency bound,

0 < ω ≤ 2 < π. (3.16)
5. Dominancy: The purpose of the frequency bound is to prove the dom-

inancy by a contradiction argument. For this purpose, assume that
there exists z0 ∈ R++ iR+ root of ∆̃. Then, the integral representa-
tion yields ∫ 1

0
t (1− t)e−t z0 dt = 0, (3.17)

the imaginary part of which is

∫ 1

0
t (1− t)e−t x sin(ω t)dt = 0. (3.18)

Now, the frequency bound 0 < ω ≤ π of the previous step entails that
the function

t 7→ t (1− t)e−xt sin(ω t), (3.19)
is strictly positive in (0,1), thereby contradicting the last equality.

3.3 . Problem Setting

A natural question arises. Can one extend the result of Mazanti et al [56] to
second-order neutral differential equations? Does the maximal multiplicity guar-
antee the dominancy for second-order neutral differential equations?

Hence, consider the generic delay differential equation with a single delay as in
(1.4) with n = 2, i.e. second-order neutral delay equation,{

ẍ(t)+a1 ẋ(t)+a0 x(t)+α2 ẍ(t − τ)+α1 ẋ(t − τ)+α0 x(t − τ) = 0,
x(t) = ϕ(t), −τ ≤ t ≤ 0,

(3.20)
where a0,a1,α0,α1,α2 ∈ R,α2 ̸= 0,τ > 0, and ϕ is a given continuously differen-
tiable real-valued history function on the initial interval [−τ,0]. Its characteristic
function is given by the following quasipolynomial

∆(s) = s2 +a1s+a0 +(α2s2 +α1s+α0)e−τs, (3.21)
of degree degs(∆) = 5. In other words, we shall investigate the validity of MID
property for the above class of quasipolynomial functions.
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3.4 . Statement of the main results

The main result we prove in this chapter is the following.

Theorem 3.4.1 Consider the quasipolynomial

∆(s) = s2 +a1s+a0 +(α2s2 +α1s+α0)e−τs. (3.22)
1. The real s0 is a root of multiplicity 5 of ∆ if, and only if, the coefficients

a0,a1,α0,α1,α2, the root s0 and the delay τ satisfy the relations
a1 =−2s0 − 6

τ
, a0 = s2

0 +
6
τ
s0 +

12
τ2 ,

α2 =−eτs0 , α1 =
(
2s0 − 6

τ

)
eτs0 ,

α0 =−
(
s2

0 − 6
τ
s0 +

12
τ2

)
eτs0 .

(3.23)

2. If (3.23) is satisfied, then s0 is a dominant root of ∆. Moreover, for all
s ∈ C, one has

∆(s) = 0 =⇒ ℜ(s) = s0. (3.24)
3. If (3.23) is satisfied and s0 < 0, then the trivial solution of (3.20) is asymp-

totically stable. In addition, if the history function φ = T (ϕ ϕ ′) is chosen in
order for its spectral projection with respect to the generalized s0-eigenspace
to vanish identically

Ps0φ = 0, (3.25)
then, the large-time behaviour of the trivial solution of (3.20) is

lim
t→∞

e−s0 tx(t) = 0. (3.26)

Remark 3.4.1 Note that item 3 of the theorem is obtained as a corollary of the
MID property, unlike (1.35) in Frasson [112] where dominancy is assumed.

Remark 3.4.2 Note that it suffices to let y(t) = x′(t) in (3.20), and set Xt =

(x(t) y(t))T and φ = (ϕ ϕ ′)T to reframe our problem as above:

X ′(t)−BX ′(t − τ) =−A0X(t)+A1X(t − τ), (3.27)
where

B =

(
0 0
0 α2

)
, A0 =

(
0 1
a0 a1

)
, A1 =

(
0 0

α0 α1

)
. (3.28)
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More precisely, as we are dealing with one discrete delay τ > 0 in our case, one has

µ(θ) =

{
−B, θ ≤−τ,
0, θ > τ,

(3.29)

η(θ) =


−A1, θ ≤−τ,

0, −τ < θ < 0,
−A0, θ ≥ 0,

(3.30)

with µ,η ∈ NBV ([−τ,0],Cn×n); see [1].

3.5 . Proof of the main results

The proof of Theorem 3.4.1 is presented in the sequel; it follows the method-
ology already described in detail and applied to the toy model (3.1); see also
Algorithm 2.

Forcing multiplicity and normalization of the characteristic func-
tion

This section covers Step 1 and 2 of the methodology.

The following lemma gives a normalization of the quasipolynomial function ∆

admitting a real root of multiplicity 5, which corresponds to conditions (3.23).
Lemma 3.5.1 Let s0 ∈ R, and consider the quasipolynomial ∆̃ : C→ C obtained
from ∆ by the following change of variables

∆̃(z) = τ
2
∆

( z
τ
+ s0

)
, z ∈ C. (3.31)

Then

∆̃(z) = z2 +M1z+M0 +(N2z2 +N1z+N0)e−z, (3.32)
where 

M1 = τ(2s0 +a1), M0 = τ2(s2
0 +a1s0 +a0),

N2 = α2e−τs0 , N1 = τ(2α2s0 +α1)e−τs0 ,

N0 = τ2(α2s2
0 +α1s0 +α0)e−τs0 .

(3.33)

Remark 3.5.1 Since the expressions of a0,a1,α0,α1 and α2 in (3.23) are singular
with respect to τ as τ → 0, should one be interested in studying the behavior of
the roots of ∆ as τ → 0 when (3.23) is satisfied, the quasipolynomial τ2∆ may be
considered instead as it exhibits the same roots as ∆, albeit with regular coefficients.
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Before proceeding with the proof of the above theorem, it is convenient to normalize
the setting using the affine change of variable z = τ(s− s0). Consequently, the
desired multiple root and the delay reduce to

s0 = 0 and τ = 1. (3.34)

Remark 3.5.2 Note that under (3.34), relations (3.23) reduce to a0 = 12, a1 =

−6, α0 =−12, α1 =−6, α2 =−1, so that the quasipolynomial (3.22) reduces to
(3.35).

Consider the following quasipolynomial function

∆̂(z) = z2 −6z+12− (z2 +6z+12)e−z. (3.35)
Following [56, Lemma 9], one obtains the following identity whose proof is

straightforward.

Lemma 3.5.2 Let ∆̂ be given by (3.35). Then, one has

∆̂(−z) =−ez
∆̂(z), z ∈ C. (3.36)

An immediate consequence of the above identity is the following symmetry
property for the roots of ∆̂.

Corollary 3.5.1 Let ∆̂ be given by (3.35) and assume that it has a root z0 ∈ C.
Then the following equalities hold

∆̂(z0) = ∆̂(−z0) = ∆̂(z̄0) = ∆̂(−z̄0) = 0. (3.37)
Consider ∆̃, the normalized quasipolynomial, it follows immediately from rela-

tion (3.35) that s0 is a root of multiplicity 5 of ∆ if, and only if, 0 is a root of
multiplicity 5 of ∆̃. As a matter of fact, since ∆̃ is a quasipolynomial of degree
degs(∆̃) = 5, zero is a root of multiplicity 5 of ∆̃ if, and only if,

∆̃(0) = ∆̃
′(0) = ∆̃

(2)(0) = ∆̃
(3)(0) = ∆̃

(4)(0) = 0.

The latter identities yield the following Cramer system

M0 +N0 = 0,
M1 +N1 −N0 = 0,
2+2N2 −2N1 +N0 = 0,
−6N2 +3N1 −N0 = 0,
12N2 −4N1 +N0 = 0,

(3.38)

whose unique solution is (M0,M1,N0,N1,N2) = (12,−6,−12,−6,−1) as re-
quired by (3.35), thereby ending the proof of the first item of the theorem. More-
over, note that, under (3.34), one has ∆̂ = ∆̃.
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Factorization of the normalized characteristic function

This section covers Step 3 of the methodology.

The quasipolynomial ∆̃ defined in (3.35) can be factorized as

∆̂(z) =
1
2

z5
∫ 1

0
q(t)e−ztdt, (3.39)

where

q(t) = t2(t −1)2. (3.40)
In our approach, the sign constancy of the polynomial q defined previously in

(3.40) for t ∈ (0,1) is necessary, which is satisfied in this case for t ∈ (0,1).

Frequency bound

This section covers Step 4 of the methodology.

We present now the main technical ingredient for the analysis of the frequency
bound, which achieves Step 4 of the methodology.

Lemma 3.5.3 Let ∆̂ be given by (3.35) and assume that it has a root z0 ∈R∗+ ι̇R.
Then,

0 < ℑ(z0)< π. (3.41)
For ease of reading, the proof of the technical lemma 3.5.3 is presented in the

Appendix A.

Conclusion of the proof of Theorem 3.4.1

This section corresponds to Step 5 of the methodology.

To complete the proof (proof of item 2), it suffices to show that every root
of ∆̂ lies on the imaginary axis. To do so, assume that there exists a root z0 ∈ C
of ∆̂ satisfying ℜ(z0) ̸= 0 and set to obtain a contradiction. Writing z0 = σ + ι̇ω

for σ ,ω ∈ R with σ ̸= 0, one may assume, thanks to Corollary 3.5.1 below, that
σ > 0 and ω > 0. Next, using the fact that z0 is a non-zero root of ∆̂, one infers
from (3.39), by taking the imaginary part, the identity below

∫ 1

0
t2(t −1)2e−σt sin(ωt)dt = 0. (3.42)

Since 0 < ω ≤ π by Lemma 3.5.3, the function
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Quasi-polynomial zeros
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Figure 3.2: Spectrum distribution of the quasipolynomial ∆̂ in (3.35).

t 7→ t2(t −1)2e−σt sin(ωt), (3.43)
is strictly positive in (0,1), which contradicts the above equality as required to

end the proof.
The third item of the main result is a direct consequence of item two and

(1.35); see [112]. ■

The following result gives a description of the spectrum of ∆.

Theorem 3.5.1 Let ∆ be given by (3.35). Let

H = {ξ ∈ R : tanξ =
3ξ

3−ξ 2 }.

If the relations (3.23) are satisfied, then, the set of the roots of characteristic
equation (3.22) is given by

S = {s0 +2 ι̇
ξ

τ
,ξ ∈ H }. (3.44)

In order to prove the previous result, one needs the following lemma for which
the detailed prove is presented in the Appendix.

Lemma 3.5.4 Let ∆ be given by (3.35) and

H = {ξ ∈ R : tanξ =
3ξ

3−ξ 2 }

Let ρ ∈ R, then, ι̇ ρ is a root of ∆̂ if and only if ρ

2 ∈ H .
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Proof[Proof of Theorem 3.5.1] Under the parameter’s conditions (3.35), the
roots of ∆ are defined by z

τ
+s0 with z us root of ∆̂. Let z= ι̇ ξ , such that ∆(ι̇ ξ ) = 0

then by Lemma 3.5.4 , ξ

2 ∈ H , in other words, the zeros of ∆ are

{s0 +
z
2
= s0 +

ι̇ ξ

τ
,
ξ

2
∈ H },

i.e. the zeros of ∆ are given by the set

{s0 +
2ξ ι̇

τ
,ξ ∈ H }.

Remark 3.5.3 The set H of the real roots of the equation tan(ξ ) = 3ξ

3−ξ 2 is
infinite discrete and can be as:

H = {ξk,k ∈ Z}

where ξk is a decreasing sequence of roots of the equation

tan(ξ ) =
3ξ

3−ξ 2

with ξ0 = 0. In particular,

ξk ∈
(
−π

2
+ k π,(k+1)π +

π

2
.
)

3.6 . Illustrative example: exponential stabilization of an oscil-
lator using delay action

Consider the classical oscillator control problem:

ẍ(t)+2ξ ω ẋ(t)+ω
2x(t) = u(t), (3.45)

with u as the delayed output-feedback as proposed in [137]:

u(t) = α2 ẍ(t − τ)+α1 ẋ(t − τ)+α0 x(t − τ), (3.46)
ω is the frequency of the arising vibrations and ξ is the damping factor.
We proceed as in Remark 3.4.2 to reframe the problem as (3.27) with

B =

(
0 0
0 α2

)
, A0 =

(
0 1

ω2 2ξ ω

)
, A1 =

(
0 0

α0 α1

)
. (3.47)

The associated characteristic matrix reads as

M(s)= sI + se−τsB−C−Ee−τs

=

(
s −1

ω2 −α0e−τs s−α2se−τs +ωξ −α1e−τs

)
, (3.48)
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so that the characteristic quasipolynomial function is

∆(s) =
(
−α2s2 −α1s−α0

)
e−τ s + s2 +2ξ ω s+ω

2. (3.49)
Following Theorem 3.4.1, we use the MID stabilizing property by forcing the

multiplicity 5 of the real spectral value at:

s0 =
(
σξ

2 −σ −ξ
)

ω, (3.50)
where

σ(ξ ) =

√
−3 (ξ 2 −1)−1, (3.51)

and setting the delay to τ = σ

ω
. one computes the appropriate gains:


α0 =−ω2

(
4ξ 3σ −4ξ σ +12ξ 2 −13

)
e−(ξ σ+3),

α1 =−2ω

(
2
√

−3(ξ 2 −1)−1
σξ 2 −2σ −ξ

)
e−(ξ σ+3),

α2 = e−(ξ σ+3).

(3.52)

Hence, we compute the spectral projection onto the generalized eigenspace
Ms0 explicitly by the Dumford integral (1.34), following [100, Section 3.2].

Ps0φ = Ress=s0{es
∆
−1(s)K (s0)φ}, (3.53)

where φ = T (ϕ ϕ ′) ∈ C ([−τ,0],C2) is the history function, Res is the residue
and

K (s0)φ =Dφ +
∫ 0

−τ

[s0dµ(θ)+dη(θ)]
∫ −θ

0
e−sz

φ(z+θ)dz. (3.54)
To illustrate the large-time behavior of the trivial solution x(t) of (3.20), we

consider ξ = 1
2 ,ω = 1 and the history function

ϕ(θ) =0.4392434197θ
8 +θ

7 −3.648426084θ
3 −3.338574638θ

2

−0.4144356357θ +0.05592390768, (3.55)
which satisfies Ps0φ = 0 as in Theorem 3.4.1.3.

3.7 . Chapter Summary

By this chapter we extended the Multiplicity-Induced-Dominancy (MID) prop-
erty to the generic (all parameters are free) second-order neutral delay equation
enabling a stabilizing delayed-feedback design. The proposed design strategy has
been employed to exponentially stabilize an oscillator.
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4 - The IMID property for second order neu-
tral equation

This chapter is an extended version of the paper [91]. It also contains a portion
of the paper [94].

4.1 . Introduction

In this chapter we addresse the exponential stability of linear time-delay systems
of neutral type. In general, it is quite a challenge to establish conditions on the
parameters of the system in order to guarantee such a stability. It turns out that,
for the characteristic equations corresponding to delay systems, the real roots of
maximal multiplicity are necessarily dominant. This property is known as Generic
Multiplicity-Induced-Dominancy (GMID for short) and consists in conditions under
which a given real root of maximal multiplicity is necessarily dominant. However,
multiple roots with intermediate admissible multiplicities may be dominant or not.
As for the case of a root of strictly intermediate multiplicity, one must look for
conditions on the free parameters of the system for which the former is dominant,
this property is called Intermediate Multiplicity-Induced-Dominancy (IMID).

The aim of this chapter is to explore the effect of multiple roots with admissi-
ble multiplicities exhibiting, under appropriate conditions, the validity of the MID
property for second-order neutral time-delay differential equations with a single
delay which is a question of interest from an application viewpoint; see [85], [86].
The ensuing control methodology is summarized in a five-steps algorithm that can
be exploited in the design of higher-order systems. The main ingredient of the
proposed method is the dominancy proof for multiple spectral values based on
frequency bounds established via integral equations. As an illustration, the stabi-
lization of the classical oscillator benefits from the obtained results.

The sequel of the chapter is organized as follows. Section 4.2 states a de-
sign methodology exploiting the MID property, the classical steps leading to the
proof are recalled through a comprehensive example, the first-order neutral equa-
tion with a single delay (IMID: codimension 2). Section 4.3 is dedicated to the
problem setting. The main result is presented in Section 4.4, where a classification
of admissible multiplicities for second-order neutral time-delay differential equation
with a single delay is provided. Section 4.5 is dedicated to the proof of the main
result. Section 4.6 is dedicated to the illustration of the obtained results on the
stabilization of the classical oscillator. Finally, further remarks on the MID property
(case of multiplicity 2) are given in Section 4.7.
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4.2 . MID methodology on a toy model: Codimensio 2

Let’s go back to the example considered in Section 3.2 of Chapter 3. Let us
recall the corresponding characteristic quasi-polynomial in (3.3):

∆(s) = s+a0 +(α1s+α0)e−τ s. (4.1)
In the following, we illustrate the MID proof in the case of codimension 2.

• MID : codimension 2:

1. (Forcing multiplicity) The real s0 is a root of multiplicity 2 of ∆ if,
and only if, the coefficients α0,α1, the root s0 and the delay τ satisfy
the relations below{

α0 =
(
τ a0s0 + τ s0

2 −a0
)

eτ s0 ,

α1 = (−τ a0 − τ s0 −1)eτ s0 .
(4.2)

2. (Normalization) The normalized characteristic equation is given by

∆̃(z) = ((−ρ −1)z−ρ)e−z + z+ρ, (4.3)
where ρ = τ (s0 +a0).

3. (Integral representation) The quasipolynomial ∆̃ defined in (4.3) can
be factorized as

∆̃(z) = z2
∫ 1

0
qρ(t)e−tz dt, (4.4)

where
qρ(t) = ρ t +1. (4.5)

In our approach, the sign constancy of the polynomial qρ for t ∈ (0,1)
is necessary. Therefore, the following lemma gives regions in the pa-
rameter space guaranteeing the sign constancy of qρ for t ∈ (0,1).

Lemma 4.2.1 Let qρ be the polynomial with respect to t defined in
(4.109). Then, qρ has a constant sign for t ∈ (0,1) if, and only if,

ρ ∈ [−1,+∞[. (4.6)
Proof The polynomial qρ admits one root given by t0 = − 1

ρ
. Two

cases are to be considered

(a) If ρ = 0: in this case, qρ(t) = 1. As a result, qρ has no roots in
(0,1) which guarantees its sign constancy.
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(b) If ρ ̸= 0: in this case, sub-cases are to be considered with respect
to the sign of ρ .

i. If ρ > 0: in this case, t0 < 0. Then, qρ has no roots in (0,1).

ii. If ρ < 0: in this case, t0 > 0. In this case, we need to look
for conditions guaranteeing that t0 ≥ 1.

t0 ≥ 1 ⇐⇒ − 1
ρ
≥ 1 ⇐⇒ ρ ≥−1, (4.7)

As a conclusion, if ρ < 0, the polynomial qρ has no roots for
t ∈ (0,1) if and only if ρ ∈ [−1,0[.

The announced result is then proved. ■

4. (Frequency bound)

In the following, let z0 = x0 + iω0 ∈ R++ iR+ be a root of

∆̃(z) = P0(z)+P1(z)e−z, (4.8)
as defined in (4.3), where

P0(z) =z+ρ, (4.9)
P1(z) =(−ρ −1)z−ρ. (4.10)

and z0 satisfy the following equality

|P0(x0 + iω0)|2e2x0 = |P1(x0 + iω0)|2. (4.11)
Since e2x > 1+2x for any x∈R+ for truncation order 2 (see Algorithm
2), function

Fρ(x,ω) = |P1(x+ iω)|2 −|P0(x+ iω)|2 (1+2x) , (4.12)
satisfies Fρ(x0,ω0)> 0. Moreover, the zeros of Fρ can be characterized
by the following quadratic polynomial of degree 2 in ω

Gρ(x,ω) = aρ(x)ω
2 + cρ(x), (4.13)

where

aρ =−2x+2ρ +ρ
2, (4.14)

cρ =−2x3 +
(
ρ

2 −2ρ
)

x2. (4.15)
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In order to guarantee the positivity of Gρ , one has to investigate con-
ditions on the signs of aρ as well as the discriminant of Gρ denoted in
the sequel D̃ρ(x) = x2 Dρ(x) where

Dρ(x) =−16x2 +16ρ
2x−4

(
ρ

2 +2ρ
)(

ρ
2 −2ρ

)
, (4.16)

As a matter of fact, let ω1 and ω2 be the two real solutions of
Gρ(x,ω) = 0, then Gρ is positive if, and only if,

– Dρ < 0 and aρ > 0, or
– Dρ > 0 and aρ > 0 and ω ∈ R− (ω1, ω2), or
– Dρ > 0 and aρ < 0 and ω ∈ (ω1, ω2).

Note that in the first and second cases, Gρ is unbounded which is
not of interest in our method. Hence, we only keep the third set of
conditions.

Since the coefficient in front of x in the expression of aρ is negative

and independent of ρ , then aρ is negative for x ∈
(

ρ (ρ+2)
2 ,+∞

)
. The

next lemma provides a characterization of regions in the parameter
space guaranteeing the positivity of Dρ .

Lemma 4.2.2 Let x± = ρ2

2 ±ρ , and Dρ be the parametric polynomial
defined in (4.16). Then, Dρ is positive

– for x ∈ (x+,x−), if ρ ∈ [−1,0),
– for x ∈ (x−,x+), if ρ ∈ [0,+∞).

Proof To investigate the sign of Dρ , we first notice that its leading
coefficient is negative and independent from ρ . Next, consider Dρ ,
as a polynomial in x of degree 2, we analyse its discriminant given by
1024ρ2 and notice that is positive for any value of ρ . One concludes
the announced result.
■

In the sequel we are interested in the parameter region guaranteeing
the sign constancy of qρ , the positivity of Dρ as well as the negativity
of aρ , which corresponds to the candidate regions ρ ∈ [−1,+∞), for
x ∈ (x+,x−).

After having characterized the candidate regions, we present the main
technical ingredient for the analysis of the frequency bound.

Lemma 4.2.3 Let ∆̃= ∆̃ρ be the quasipolynomial given in (4.3). Con-
sider ρ ∈ [−1,ϑ ], with ϑ is a positive number satisfies ϑ ≤ 5

2 . If ∆̃

has a root z0 ∈ R++ ι̇R+, then
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0 < ℑ(z0)< π. (4.17)
In addition, the root z0 may be properly assigned.

Proof We consider two cases

– If ρ ∈ [−1,0]. Since the discriminant of the polynomial function
Gρ defined in (4.13) is positive, then Gρ admits the following two
real roots

ω
±
ρ (x) =∓

√
−(ρ2 +2ρ −2x)(ρ2 −2ρ −2x)x

ρ2 +2ρ −2x
, (4.18)

where ω+
ρ denotes the greater solution (positive signal). Since

ρ ∈ [−1,0] and x > 0, the solution ω+
ρ is upper bounded with

respect to ρ by the parameter-free expression

ω
+(x) =

x
√
−4x2 +3
1+2x

, (4.19)
which reaches a maximum value at x∗ =

√
3

2 . Thus,

ω = ω
+
ρ (x)≤ ω

+(x∗)≈ 0.5899 < π. (4.20)
– If ρ ∈ [0,+∞). Consider ρ ∈ [0,ϑ ], with ϑ > 0 and follow the

same procedure as with the previous region. The table below

ϑ 1 2 2.5 3 3.5 4 10 100
ω+ 1 2 3.125 4.5 6.125 8 50 5000

emphasizes the fact that an interesting frequency bound may be
found only for a positive ϑ satisfying ϑ ≤ 5

2 ; (see Figure 4.1) .

Let ρ ∈
[
0, 5

2

]
. In this case, the solution ω+

ρ is upper bounded
with respect to ρ by the parameter-free expression

ω
+(x) =

1
2

√
−4x2 +25x, (4.21)

which reaches a maximum value at x∗ = 3.125. Thus,

ω = ω
+
ρ (x)≤ ω

+(x∗)≈ 3.125 < π. (4.22)
Unfortunately for ρ ∈

(5
2 ,+∞

)
, the dominancy of s0 cannot be

concluded unless the order of truncation of the exponential term
is increased as in Algorithm 2 in order to obtain an adequate
frequency bound.

■
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Figure 4.1: Plot emphasizes the fact that an interesting frequencybound (0 < ω < π)may be found only for a positive ϑ satisfying ϑ ≤ 5
2 .

5. (Dominancy) By a contradiction argument, assume that there exists
z0 ∈ R++ iR+ root of ∆̃. Then, the integral representation yields

∫ 1

0
(ρ t +1)e−t z0 dt = 0, (4.23)

the imaginary part of which is
∫ 1

0 t (ρ t +1)e−t x sin(ω t)dt = 0. Now,
the frequency bound 0 < ω ≤ π of the previous step entails that the
function

t 7→ t (ρ t +1)e−xt sin(ω t), (4.24)
is strictly positive in (0,1), thereby contradicting the last equality.

To conclude, if relations (4.2) are satisfied and a0 satisfies the lower bound
a0 ≥ ϑ

τ
for a positive ϑ satisfying ϑ ≤ 2.5, then the exponential decay s0 chosen

such that

−a0 −
1
τ
≤ s0 ≤−a0 +

ϑ

τ
, (4.25)

is necessarily negative and dominant.

4.3 . Problem setting

It is commonly accepted that second order linear systems capture the dynamic
behavior of many natural phenomena and have found numerous applications in a
variety of fields, such as vibration and structural analysis. Stabilization of solutions
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to such a reduced order model represents a standard test bench to approve of new
paradigms and methodologies in control design; see for instance [50].

We addresses the effect of the delay action on the behavior of solutions cor-
responding to such second-order dynamical systems. Namely, we investigate the
functional differential equation in (1.4) with n = 2, which extends the study in [50]:

ẍ(t)+a1 ẋ(t)+a0 x(t)+α2 ẍ(t − τ)+α1 ẋ(t − τ)+α0 x(t − τ) = 0, (4.26)
where the unknown function x is real-valued, a0,a1,α0,α1,α2 ∈R,α2 ̸= 0, and

the delay τ > 0. Since the derivative of highest order appears in both, the delayed
term ẍ(t −τ) and the non-delayed term ẍ(t), equation (4.26) is a delay differential
equation of neutral type.

Time-delay systems of neutral type, which may have an infinite number of
unstable poles, are more difficult to tackle than delay systems of retarded type
(i.e. the highest order of derivation is only on the non-delayed function ẍ(t)) which
exhibit only a finite number of poles in any right half-plane, see for instance [50].

The characteristic function of equation (4.26) is the quasipolynomial function
∆ : C→ C defined for s ∈ C by

∆(s) = s2 +a1s+a0 +(α2s2 +α1s+α0)e−τ s. (4.27)
4.4 . Statement of the main result

The main result presents a classification of admissible multiplicities for a given
root of the quasipolynomial (4.27).
Theorem 4.4.1 Consider the quasipolynomial function ∆ defined in (4.27).

1. GMID : spectral value of maximal admissible multiplicity

(a) The real s0 is a root of multiplicity 5 of ∆ if, and only if, the coeffi-
cients a0,a1,α0,α1,α2, the root s0 and the delay τ satisfy the following
relations 

a1 = −2s0 − 6
τ
,

a0 = s2
0 +

6
τ
s0 +

12
τ2 ,

α2 = −eτs0 ,

α1 =
(
2s0 − 6

τ

)
eτs0 ,

α0 = −
(
s2

0 − 6
τ
s0 +

12
τ2

)
eτs0 .

(4.28)
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(b) If relations (4.28) are satisfied then s0 is necessarily a dominant root
of ∆.

2. IMID : codimension 4

(a) Consider the following discriminant:

d = a1
2 −4a0, (4.29)

which corresponds to the discriminant of the finite dimensional part
of the dynamical system defined by ∆. The quasipolynomial function
(4.27) admits a real root at

s± =
1
τ

(
−a1τ

2
−3± 1

2

√
τ2 d +12

)
, (4.30)

of multiplicity 4 if, and only if, the coefficients α0, α1 and α2 satisfy
the following relations


α0 =

((
a1

2τ

2 − τ a0 +6a1 +
42
τ

)
s±

+ τ a0 a1
2 + 3a1

2

2 +8a0 +
30a1

τ
+ 54

τ2

)
eτ s± ,

α1 =
(
(a1τ +12)s±+2τ a0 +8a1 +

18
τ

)
eτ s± ,

α2 =
(
2+ τ

(
s±+ a1

2

))
eτ s± .

(4.31)

(b) If the relations above are satisfied, and a1, a0 satisfy the lower bounds
a0 ≥− 6

τ2 and a1 ≥− 6
τ
, then s+ is a dominant root of ∆.

3. IMID : codimension 3

(a) The real number s0 is a root of multiplicity 3 of ∆ if, and only if, the
following relations hold


α0 =−1

2

(
τ2a1s0

3 + τ2s0
4 + τ2a0 s0

2 +2τ s0
3 −2τ a0 s0 +2a0

)
eτ s0 ,

α1 =
(
τ2a1s0

2 + τ2s0
3 + τ2a0s0 + τ a1 s0 +3τ s0

2 − τ a0 −a1
)

eτ s0 ,

α2 =−1
2

(
τ2a1s0 + τ2s0

2 +a0τ2 +2a1τ +4τ s0 +2
)

eτ s0 . (4.32)
(b) If the relations above hold and a1, a0 satisfy the lower bounds a0 ≥ ε

4τ2

and a1 ≥ 0, where ε = (−10
√

2−16)
√

16
√

2−22+16
√

2+20, then
the real root s0 chosen as follows
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
s0 ∈

(
−a1

2 −
√

d+ ε

τ2

2 ,−a1
2 +

√
d+ ε

τ2

2

)
if d < 0,

s0 ∈

(
−a1

2 −
√

d+ ε

τ2

2 ,−a1
2 −

√
d

2

)
∪

(
−a1

2 +
√

d
2 ,−a1

2 +

√
d+ ε

τ2

2

)
otherwise,

(4.33)
is a dominant root of ∆.

From a control theory viewpoint, if instantaneous access to the state variables
is not available, one option is to consider delayed controllers. In our case, the aim
is to stabilize solutions of the control system

ẍ(t)+a1 ẋ(t)+a0 x(t) = u(t), (4.34)
by using a delayed feedback controller

u(t) =−α2 ẍ(t − τ)−α1 ẋ(t − τ)−α0 x(t − τ). (4.35)
Notice that, such an idea has already been proposed in [50] with controller

u(t) = −α1 ẋ(t − τ)−α0 x(t − τ) by exploiting the MID property for retarded dif-
ferential equation. The above result extends such an idea to neutral equations.
Furthermore, Theorem 4.4.1 offers a certified tuning of the controller’s parame-
ters allowing to assign the closed-loop dominant spectral value based on the MID
strategy with appropriate admissible multiplicity. This can be done by taking into
account the discriminant of the open-loop characteristic function as discussed in
[50], see also [77]. Such a control strategy is part of a more general framework
called partial pole placement, see for instance [75].

Remark 4.4.1 On the one hand, maximal multiplicity may not be reached due
to the sparsity of the involved polynomial in the characteristic equation. In that
case, one has to characterize the MID property in the presence of a spectral value
of multiplicity strictly smaller than the maximal one. On the other hand, lowering
the multiplicity relaxes the constraints on the parameters that can be fixed from
the considered model (a0 and a1 in the case of equation (4.26)).
Remark 4.4.2 The general case of matrix neutral differential equations (in the
case where the system’s coefficients are matrices) is still an unsolved open problem
to the extent of the authors’ knowledge. As a matter of fact, in the general case,
the quasipolynomials involved exhibit multiple commensurate delays (multiples of
the original system’s delay) which is no trivial additional involvement. As such,
only very particular instances may be treated with our approach.
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Remark 4.4.3 In the presence of a small perturbation, we have to deal with
the splitting phenomena. From a robustness viewpoint, thanks to the continuous
dependency of the spectrum distribution on the parameters’ variation, one is able
to estimate the perturbation bound beyond which the dominancy of the split roots
is lost, see for instance [8].

Remark 4.4.4 It is shown analytically that with the MID scheme, a real dominant
closed-loop pole can be assigned precisely, thus guaranteeing the exponential decay
rate of the system response. While achieving such transient performance, the
MID design is also shown to be capable of maintaining a certain level of stability
robustness against an uncertain delay, see for instance [138].

4.5 . Proof of the main result

Note that for ease of reading, proofs of the technical lemmas are presented in
the Appendix A.

Proof of item 1. The proof of item 1 (GMID) in Theorem 4.4.1 is detailed in
chapter 3; see also [57]. The normalization of the characteristic function ∆ gives

∆̃(z) = z2 −6z+12− (z2 +6z+12)e−z. (4.36)
Next, the integral factorization of ∆̃ is computed to be

∆̃(z) =
z5

2

∫ 1

0
t2(t −1)2e−ztdt. (4.37)

The dominance proof is established by providing an adequate frequency bound
(ω0 < π), where the considered truncation is of order 3, to show that a non-zero
root of ∆̃ with non-negative real part cannot exist.

Proof of item 2. Item 2 is well presented in [78]. In a similar way, the
normalization of the characteristic function ∆ provides

∆̃(z) = z2 +(ρ −6)z−3ρ +12+
[(

ρ

2
−1
)

z2 +(2ρ −6)z+3ρ −12
]
e−z, (4.38)

where

ρ =
√

12+(a12 −4a0)τ2. (4.39)
The integral representation of the characteristic function is

∆̃(z) = z4
∫ 1

0
qρ(t)e−tz dt. (4.40)

where
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qρ(t) =
1
2
(t (1− t)(t(ρ −4)+2)) . (4.41)

The dominance of s+ as a root of ∆ is equivalent to the dominance of z = 0
as a root of ∆̃. Consider z0 = x0 + iω0 ∈ R++ iR+ as a root of

∆̃(z) = P̃0(z)+ P̃1(z)e−z, (4.42)
as defined in (4.38), with

P̃0(z) =z2 +(ρ −6)z−3ρ +12, (4.43)
P̃1(z) =

(
ρ

2
−1
)

z2 +(2ρ −6)z+3ρ −12, (4.44)
so that

|P̃0(x0 + iω0)|2e2x0 = |P̃1(x0 + iω0)|2. (4.45)
Now, define the function

Fρ(x,ω) = |P̃1(x+ iω)|2 − (1+2x)|P̃0(x+ iω)|2, (4.46)
where Fρ > 0 since e2x > 1+ 2x for any x > 0; the order of the considered

truncation order in this case is equal to 1. The zeros of Fρ can be characterized
by the quadratic polynomial

Gρ(x,Ω) = aρ(x)Ω
2 +bρ(x)Ω+ cρ(x), (4.47)

where Ω = ω2,

aρ(x) =

(
ρ2 −4ρ −8x

)
4

, (4.48)
bρ(x) =

x2
(
ρ2 −12ρ −8x+48

)
2

, (4.49)
cρ(x) =

−2x5 + x4(ρ −8)(ρ −12)

4+24 (ρ −4)x3 +18 (ρ −4)2 x2
. (4.50)

The discriminant of Gρ is positive under the condition ρ ∈ (2
√

3,4) for x > 0.
The polynomial function Gρ admits two real roots denoted by Ω±

ρ , where Ω+
ρ is the

greater solution (positive signal). Using the fact that ρ ∈ (2
√

3,4), the solution
Ω+

ρ is upper-bounded by

Ω
+(x) =−x2 −3

√
3x+

15
2

x+
√
(−228x+468)

√
3+4x2 +369x−810,
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which depends only on x and reaches its maximum at x∗ ≈ 2.139. Thus, ω2 =

Ω+
ρ (x)< Ω+(x∗)≈ 4.961 < π2, i.e., ω < π.

Proof of item 3. The completion of the proof of Theorem 4.4.1 (item 3) is
presented in the sequel; it follows the methodology already described in detail in
section 3 and applied to the toy model (3.1); see also Algorithm 2.

Forcing multiplicity and normalization of the characteristic func-
tion

This section covers Step 1 and 2 of the general methodology introduced in Section
3.2.

The following lemma gives a normalization of the quasipolynomial function ∆

admitting a triple real root, which corresponds to conditions (4.32).
Lemma 4.5.1 Let s0 ∈ R and consider the quasipolynomial ∆̃ : C→ C obtained
from ∆ in (4.27) by the following change of variables

∆̃(z) = τ
2
∆

( z
τ
+ s0

)
, z ∈ C, (4.51)

then

∆̃(z) =
((

−δ

2
−1−υ

)
z2 +(−δ −υ)z−δ

)
e−z + z2 +υ z+δ , (4.52)

where

δ = τ
2 (s0

2 +a1s0 +a0
)
, and υ = τ (2s0 +a1) . (4.53)

Factorization of the normalized characteristic function

This section covers Step 3 of the general methodology introduced in Section 3.2.

The quasipolynomial ∆̃ defined in (4.52) can be factorized as

∆̃(z) = z3
∫ 1

0
qδ ,υ(t)e−tz dt where qδ ,υ(t) =

δ

2
t2 +υ t +1. (4.54)

In our approach, the sign constancy of the polynomial qδ ,υ defined previously
for t ∈ (0,1) is necessary. Therefore, the following lemma gives regions in the
parameter space guaranteeing the sign constancy of qδ ,υ for t ∈ (0,1); see Figure
4.2.
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Figure 4.2: Plot of the region Rq in terms of the parameters (δ ,υ) asdefined in (4.56), (4.57) and (4.58).
Lemma 4.5.2 Let qδ ,υ be the quadratic polynomial with respect to t defined by
(4.54). Then, qδ ,υ has a constant sign for t ∈ (0,1) if, and only if,

(δ ,υ) ∈ Rq = R1
q ∪R2

q ∪R3
q (4.55)

where

R1
q =

{
(δ ,υ) ∈ R2 : δ > 0,−δ

2
−1 ≤ υ ≤−δ

}
∪
{
(δ ,υ) ∈ R2 : δ > 0,−

√
2δ < υ

}
, (4.56)

R2
q =

{
(δ ,υ) ∈ R2 : δ < 0,υ ≥−1− δ

2

}
, (4.57)

R3
q =
{
(δ ,υ) ∈ R2 : δ = 0,υ ≥−1

}
. (4.58)

Parametric characterization of candidate regions for IMID

Now, we follow Algorithm 2 in order to tackle Step 4 of the general methodology
introduced in Section 3.2.

Let z0 = x0 + iω0 ∈ R++ iR+ be a root of
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∆̃(z) = P̃0(z)+ P̃1(z)e−z, (4.59)
as defined in (4.52), where

P̃0(z) =z2 +υ z+δ , (4.60)
P̃1(z) =

(
−δ

2
−1−υ

)
z2 +(−δ −υ)z−δ . (4.61)

so that z0 satisfies the following equality

|P̃0(x0 + iω0)|2e2x0 = |P̃1(x0 + iω0)|2. (4.62)
Since e2x >Tord(e2x) for any x∈R+ for truncation orders ord ∈{0,1}, function

Fδ ,υ(x,ω) = |P̃1(x+ iω)|2 −|P̃0(x+ iω)|2 Tord(e2x), (4.63)
satisfies Fδ ,υ(x0,ω0)> 0. Moreover, the zeros of Fδ ,υ can be characterized by

the following quadratic polynomial

Gδ ,υ(x,Ω) = aδ ,υ(x)Ω
2 +bδ ,υ(x)Ω+ cδ ,υ(x), (4.64)

of degree degΩ(Gδ ,υ) = 2 in Ω = ω2 where coefficients aδ ,υ ,bδ ,υ ,cδ ,υ depend on
the lower bound Tord provided by the truncation order ord.

The region Rq is plotted in terms of the parameters (δ ,υ) in Figure (4.2), while
the analysis to obtain Rq is summarized in Figure A.5.

Order zero truncation

In this case, T0 = 1, hence the Gδ ,υ coefficients are given by
aδ ,υ = (2υ+δ+4)(2υ+δ )

4 ,

bδ ,υ(x) = 2aδ ,υ x2 +b1,δ ,υ x,
cδ ,υ(x) = aδ ,υ x4 +b1,δ ,υ x3 + c2,δ ,υ x2 + c1,δ ,υ x,

(4.65)

with,

b1,δ ,υ =δ
2 +3υ δ +2υ

2 +2δ , (4.66)
c1,δ ,υ =2δ

2, (4.67)
c2,δ ,υ =2 (2υ +δ )δ . (4.68)

Recall that in our approach, the condition of constancy of the sign of qδ ,υ is
necessary. In addition, we need to guarantee the positivity of Gδ ,υ , i.e., one has
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to investigate conditions on the signs of aδ ,υ as well as the discriminant of Gδ ,υ

which is defined by the following second degree polynomial in x

Dδ ,υ(x) =
(
−4aδ ,υ c2,δ ,υ +b2

1,δ ,υ
)

x2 −
(
4aδ ,υ c1,δ ,υ

)
x. (4.69)

Let define

ϒδ ,υ =−4aδ ,υ c2,δ ,υ +b2
1,δ ,υ . (4.70)

The following lemma provides an analysis of the sign of ϒδ ,υ .

Lemma 4.5.3 Consider ϒδ ,υ given by (4.70), and let

υ1 = δ+− 1
4

√
(α++β+δ )δ , (4.71)

υ2 = δ−− 1
4

√
(α−−β−δ )δ , (4.72)

υ3 = δ−+
1
4

√
(α−−β−δ )δ , (4.73)

υ4 = δ++
1
4

√
(α++β+δ )δ , (4.74)

where

δ1 =−α+

β+
, δ2 =

α−
β−

. (4.75)
and

α± = 16(3±2
√

2), β± = 12
√

2±17, δ± =
δ

4
± δ√

2
. (4.76)

Then,

• ϒδ ,υ > 0 ⇐⇒ (δ ,υ)∈ Rϒ+ = R++
1 ∪R++

2 ∪R++
3 ∪R−+

1 ∪R−+
2 ∪R−+

3 ∪R−+
4 ∪

R−+
5 ∪R−+

6 , where

R++
1 =

{
(δ ,υ) ∈ R2 : δ > 0,υ < υ1

}
, (4.77)

R++
2 =

{
(δ ,υ) ∈ R2 : δ > 0,υ2 < υ < υ3

}
, (4.78)

R++
3 =

{
(δ ,υ) ∈ R2 : δ > 0,υ > υ4

}
, (4.79)

R−+
1 =

{
(δ ,υ) ∈ R2 : δ1 < δ < 0

}
, (4.80)

R−+
2 =

{
(δ ,υ) ∈ R2 : δ2 < δ < δ1,υ > υ4

}
, (4.81)

R−+
3 =

{
(δ ,υ) ∈ R2 : δ2 < δ < δ1,υ < υ1

}
, (4.82)

R−+
4 =

{
(δ ,υ) ∈ R2 : δ < δ2,υ > υ4

}
, (4.83)

R−+
5 =

{
(δ ,υ) ∈ R2 : δ < δ2,υ < υ1

}
, (4.84)

R−+
6 =

{
(δ ,υ) ∈ R2 : δ < δ2,υ2 < υ < υ3

}
. (4.85)
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• ϒδ ,υ < 0 ⇐⇒ (δ ,υ) ∈ Rϒ− = R+−
1 ∪R+−

2 ∪R−−
1 ∪R−−

2 ∪R−−
3 , where

R+−
1 =

{
(δ ,υ) ∈ R2 : δ > 0,υ1 < υ < υ2

}
, (4.86)

R+−
2 =

{
(δ ,υ) ∈ R2 : δ > 0,υ3 < υ < υ4

}
, (4.87)

R−−
1 =

{
(δ ,υ) ∈ R2 : δ2 < δ < δ1,υ1 < υ < υ4

}
, (4.88)

R−−
2 =

{
(δ ,υ) ∈ R2 : δ < δ2,υ3 < υ < υ4

} (4.89)
R−−

3 =
{
(δ ,υ) ∈ R2 : δ < δ2,υ1 < υ < υ2

}
. (4.90)

We are now able to characterize the regions in the parameter space guarantee-
ing the positivity of the discriminant Dδ ,υ .

Lemma 4.5.4 If the expression of ϒδ ,υ defined in (4.70) is negative, then the
discriminant Dδ ,υ defined in (4.69) is positive for

x ∈

(
0,

4aδ ,υ c1,δ ,υ

(−4aδ ,υ c2,δ ,υ +b2
1,δ ,υ)

)
, (4.91)

if, and only if,

(δ ,υ) ∈ R+−
1 . (4.92)

The Figure 4.3 presents the plots of the set RD.

In the sequel, we are interested in the parameter region guaranteeing the sign
constancy of qδ ,υ and the positivity of Dδ ,υ , which corresponds to Rq∩RD+ . More
precisely,

Rq ∩RD+ =
4⋃

i=1

Pi, (4.93)
where



P1 =
{
(δ ,υ) ∈ R2 : δ ∈

(
0, 2

3+2
√

2

]
,υ ∈

(
υ1,υ2

)}
,

P2 =
{
(δ ,υ) ∈ R2 : δ ∈

( 2
3+2

√
2
,2
]
,υ ∈

[
−1− δ

2 ,υ2
)}

,

P3 =
{
(δ ,υ) ∈ R2 : δ ∈

(
2,2+

√
2
]
,υ ∈

(
−
√

2δ ,υ2
)}

,

P4 =

{
(δ ,υ) ∈ R2 : δ ∈

(
2+

√
2,
(√

2−4+
√

16
√

2−22
)2(

3+2
√

2
)

4

)
,

υ ∈
(
−
√

2δ ,υ2

)}
,

(4.94)

where υ1 and υ2 are defined in (4.71) and (4.72) respectively .
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Figure 4.3: Plot represents region RD+ = R+−
1 .

Figure 4.4: Plot shows a zoom on the regions Pi, i = 1..4.
Order one truncation

In this case, T1 = 1+2x (see Algorithm 2), which in turn allows us to define
the quadratic polynomial (4.64) of degree 2 in Ω = ω2, where
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
aδ ,υ(x) = −2x+ (δ+2υ)(δ+2υ+4)

4 ,

bδ ,υ(x) = −4x3 +
(δ 2+4δ υ+4υ2+4δ)x2

2 +δ (δ +3υ +6)x,

cδ ,υ(x) = −2x5 +
(δ 2+4δ υ+4υ2+4δ−8υ)x4

4 +δ (δ +3υ −2)x3 +2δ 2x2.(4.95)
In order to guarantee the positivity of Gδ ,υ , one has to investigate conditions

on the signs of aδ ,υ as well as the discriminant of Gδ ,υ denoted in the sequel
D̃δ ,υ(x) = x2 Dδ ,υ(x) where

Dδ ,υ(x) =−16
(
−υ

2 +4δ
)

x2 +8δ
(
δ

2 +3δυ +υ
2 +6δ +2υ

)
x

−δ
4 −2δ

3
υ +δ

2
υ

2 +4δ
3 +20δ

2
υ +36δ

2. (4.96)
As a matter of fact, let Ω1,2 be the two real solutions of Gδ ,υ(x,Ω) = 0, then

Gδ ,υ is positive if, and only if,

(
Dδ ,υ < 0 and aδ ,υ > 0

)
,

or(
Dδ ,υ > 0 and aδ ,υ > 0 and Ω ∈ R− (Ω1, Ω2)

)
,

or(
Dδ ,υ > 0 and aδ ,υ < 0 and Ω ∈ (Ω1, Ω2)

)
.

Note that in the first and second cases, Gδ ,υ is unbounded which is not of
interest in our method. Hence, we only keep the third set of conditions. Since the
coefficient in front of x in the expression of aδ ,υ is negative and independent of δ

and υ , then aδ ,υ is negative for x ∈ (x∗,+∞), where

x∗ =
(δ +2υ)(δ +2υ +4)

8
. (4.97)

The next lemma provides a characterization of regions in the parameter space
guaranteeing the positivity of Dδ ,υ .

Lemma 4.5.5 Let Dδ ,υ be the parametric polynomial defined in (4.96). Then,
Dδ ,υ is positive

• for x ∈ (−∞,min
δ ,υ

(x−,x+))∪ (max
δ ,υ

(x−,x+),+∞), if (δ ,υ) ∈ Rd+ ∩RA+ ,

• for x ∈ (min
δ ,υ

(x−,x+),max
δ ,υ

(x−,x+)), if (δ ,υ) ∈ Rd+ ∩RA− ,

where

x± =
−8δ

(
δ 2 +3δ υ +υ2 +6δ +2υ

)
±
√

d(δ ,υ)
(32υ2 −128δ )

. (4.98)
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Figure 4.5: Plot represents the region RA+ ∪RA− .
The set of interest here is Rd+ ∩RA− to which we shall add conditions guar-

anteeing the sign constancy of qδ ,υ . Hence, we characterize the intersection
Rq ∩Rd+ ∩RA− as

Rq ∩Rd+ ∩RA− =
3⋃

i=1

P̃i, (4.99)
where


P̃1 =

{
(δ ,υ) ∈ R2 : δ ∈

(
0, 2

3+2
√

2

]
,υ ∈

(
−2

√
δ ,2

√
δ

)}
,

P̃2 =
{
(δ ,υ) ∈ R2 : δ ∈

(
2

3+2
√

2
,2
]
,υ ∈

[
−1− δ

2 ,2
√

δ

)}
,

P̃3 =
{
(δ ,υ) ∈ R2 : δ ∈ (2,+∞] ,υ ∈

(
−
√

2δ ,2
√

δ

)}
.

(4.100)

Frequency bound

This section covers Step 4 of the methodology.

After having characterized the candidate regions, we present the main technical
ingredient for the analysis of the frequency bound, which achieves Step 4 of the
methodology.
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Figure 4.6: Plot represents region Rd+ .

Figure 4.7: Plot represents regions P̃1, P̃2 and P̃3.

Lemma 4.5.6 Let ∆̃ = ∆̃δ ,υ be the quasipolynomial given in (4.52), with (δ ,υ) ∈
P̃1∪ P̃2∪P3∪P4, where the regions P̃1, P̃2, P3 and P4 are given in (4.100) and (4.94)
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Figure 4.8: Plot shows that regions Pi, i = 1..4 obtained for an orderzero truncation have been recovered and enlarged when we increasedthe truncation order.
respectively. If ∆̃ has a root z0 ∈ R++ ι̇R+, then 0 < ℑ(z0)< π. In addition, the
root z0 may be properly assigned.

Remark 4.5.1

1. Our approach gives sufficient conditions for the dominance which are valid
in regions Pi, i = 3,4 and in regions P̃i, i = 1,2 which contain respectively
Pi, i = 1,2. For each of the aforementioned regions, a frequency bound of
interest (ω < π) was obtained. For region P̃3, the truncation order needs to
be increased.

2. Note that the set of conditions guaranteeing the MID obtained with a trun-
cation of order k+ 1 contains the set of conditions guaranteeing the MID
with a truncation of order k. As a result, higher orders of truncation shall
lead to wider ranges on the conditions.

Conclusion of the proof of Theorem 4.4.1 (item 3)

This section corresponds to Step 5 of the general methodology introduced in Sec-
tion 3.2.
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After characterizing regions for which a frequency bound of interest was found,
we can complete the proof of Theorem 4.4.1; this corresponds to Step 5 of the
methodology.

The normalization of ∆ is given by ∆̃ in (4.52), while the factorization of
∆̃ is defined in (4.54). Using relations (A.20), one concludes that s0 is a root
of multiplicity 3 of ∆ if, and only if, relations (4.32) hold, thereby ending the
proof of the item (3a). To show (3b), we use the technical results previously
proved. Consider (δ ,υ) ∈ P̃1 ∪ P̃2 ∪P3 ∪P4, the proof of the dominance is based
on a contradiction. To do so, assume that there exists z0 ∈ C root of ∆̃ satisfying
ℜ(z0)> 0. Write z0 = x0 + iω0 and using the fact that z0 is a non-zero root of ∆̃,
one may infer from (4.54) by taking the imaginary part, that∫ 1

0

(δ

2
t2 + tυ +1

)
sin(t ω0)e−t x0 dt = 0. (4.101)

Since ω0 < π from Lemma 4.5.6, the function

t 7→ (
δ

2
t2 + tυ +1)sin(t ω0). (4.102)

is strictly positive in (0,1), which contradicts the above equality as required to
end the proof.■

4.6 . Illustrative example: classical oscillator

Consider the classical oscillator control problem:

ẍ(t)+2η ω ẋ(t)+ω
2 x(t) = u(t), (4.103)

with u as the delayed output-feedback as proposed in [137]:

u(t) =−α2 ẍ(t − τ)−α1 ẋ(t − τ)−α0 x(t − τ), (4.104)
η is the damping factor such that 0<η < 1, ω describes the natural frequency.

The characteristic equation corresponds to (4.103) is defined by

∆(s) = s2 +2η ω s+ω
2 +(α2 s2 +α1 s+α0)e−τ s. (4.105)

Following item 3 in Theorem 4.4.1, it shows that the real number s0 is a root of
multiplicity 3 of the quasipolynomial function (4.105) if, and only if, the following
relations hold


α0 =−1

2

(
2ω2 +

(
2η ω s0

3 +ω2s0
2 + s0

4
)

τ2 −
(
2ω2s0 −2s0

3
)

τ
)

eτ s0 ,

α1 =
(
−2η ω +

(
2η ω s0

2 +ω2s0 + s0
3
)

τ2 +
(
2η ω s0 −ω2 +3s0

2
)

τ
)

eτ s0 ,

α2 =−1
2

(
2+
(
2η ω s0 +ω2 + s0

2
)

τ2 +(4η ω +4s0)τ
)

eτ s0 . (4.106)
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The normalization and the integral representation of the characteristic function
(4.105) are defined in (4.52) and (4.54) respectively, where in this case

δ = τ
2 (s0

2 +2η ω s0 +ω
2) , and δ = τ

2 ((s0 +η ω)2 +ω
2(1−η

2)
)
> 0.
(4.107)

Indeed,

δ = 2η ω λ0 +ω
2 +λ0

2

= (λ0 +η ω)2 −η
2
ω

2 +ω
2

= (λ0 +η ω)2 +ω
2(1−η

2)> 0.

The integral representation is given by

∆̃(z) = z3
∫ 1

0
qδ ,υ(t)e−tz dt, (4.108)

where

qδ ,υ(t) =
t2δ

2
+υ t +1. (4.109)

Under the expressions of δ and υ , the region in the parameter space guaran-
teeing the sign constancy of the polynomial qδ ,υ is given by R1

q which is defined in
(4.56).

In a similar way, a truncation to order 0 yields the quadratic polynomial G which
is defined as in (4.65), where the region in the parameter space guaranteeing the
positivity of its discriminant is given by

RD = {(δ ,υ) ∈ R2 : δ > 0,υ1 < υ < υ2}, (4.110)
where υ1 and υ2 are given in (4.71) and (4.72) respectively.

The intersection of R1
q and RD is established to be given by

4⋃
i=1

Pi where Pi, for

i = 1..4 are respectively given in (4.94). Notice that the dominance is valid in the
regions P1, P2 and P3. For the region P4, it is necessary to increase the order of
truncation.

For the assignment of the root s0, we detail the case of the region P1, the
analysis for the rest of the regions is analogue.
Considering the region P1. We find from (4.53) that

υ =−2
√

τ2 ω2(η2 −1)+δ , (4.111)
On the other hand, one is able to bound (4.111) such that
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υ1 <−2
√

τ2 ω2(η2 −1)+δ < υ2 ⇐⇒ δ − υ2
1

4
<
(
1−η

2)
ω

2
τ

2 < δ − υ2
2

4
.

(4.112)
Since δ ∈

(
0, 2

3+2
√

2

]
, it is guaranteed that δ − υ2

1
4 < δ − υ2

2
4 .

The inequality (4.112) represents condition on η and ω in order to be able to
assign s0. In the following, assume that (4.112) holds.

0 < δ ≤ 2
3+2

√
2

0 < τ
2 (s0

2 +2η ω s0 +ω
2)≤ 2

3+2
√

2

0 < τ
2 (s0 +η ω)2 + τ

2
ω

2(1−η
2)≤ 2

3+2
√

2

− τ
2

ω
2(1−η

2)< τ
2 (s0 +η ω)2 ≤ 2

3+2
√

2
−ω

2
τ

2 (1−η
2)

It is obvious that −τ2 ω2(1−η2)< 0 since 0 < η < 1, in that case, we are going
to consider only the right inequality, i.e.

τ
2 (s0 +η ω)2 ≤ 2

3+2
√

2
− τ

2
ω

2(1−η
2),

τ |s0 +η ω| ≤

√
2

3+2
√

2
−ω2τ2 (1−η2),

−

√
2

3+2
√

2
− τ2 ω2(1−η2)≤ τ(s0 +η ω)≤

√
2

3+2
√

2
− τ2 ω2(1−η2).

We notice that the term 2
3+2

√
2
− τ2 ω2(1−η2) is positive due to the condition

(4.112) and to the fact of 0 < δ ≤ 2
3+2

√
2
.

Finally, considering the condition on η and ω given in (4.112), we conclude
that if the following condition in term of ω

ω ≥ max

{
δ

τ2 −
υ2

2
4τ2 ,

1
τ

√
2

3+2
√

2

}
, (4.113)

is satisfied, then we are able to assign the root s0 in the interval

−η ω − 1
τ

√
B ≤ s0 ≤−η ω +

1
τ

√
B, (4.114)

with

B =
2

3+2
√

2
− τ

2
ω

2(1−η
2)> 0. (4.115)
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Figure 4.9: For ω = 2, η = 1
9 and τ = 1, the plot exhibits the spectrumdistribution of the quasipolynomial ∆ where the assigned rightmosttriple root at s0 =−3 and the roots with large modulus are asymptoticto a vertical line ℜ(s)≈−1

τ
log |α| ≈ −4.2 ([97]).

The plot in Figure 4.9 illustrates the roots of ∆ computed numerically using
Maple, while the Figure in 4.10 presents a temporal simulation with particular
values of ω and η .

4.7 . Further remarks on the IMID: codimension 2

Consider the quasipolynomial function ∆ defined in (4.27). In Theorem 3.4.1,
the quasipolynomial function ∆ has been treated in the presence of spectral values
of maximal multiplicity 5. The case of intermediate multiplicities 4 and 3 was
studied in Theorem 4.4.1.

The real number s0 is a root of multiplicity 2 of the quasipolynomial function
∆ if, and only if, for α2 = γ2 eτ s0 the following relations hold{

α0 =
(
τ s0

3 +(τ a1 + γ2 +1)s0
2 + τ a0 s0 −a0

)
eτ s0 ,

α1 =
(
−τ s0

2 +(−τ a1 −2γ2 −2)s0 − τ a0 −a1
)

eτ s0 .
(4.116)

The normalized quasipolynomial is given by

∆̃(z) =
(
γ2 z2 − (δ +υ)z−δ

)
e−z + z2 +υ z+δ . (4.117)
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Figure 4.10: Forω = 2, η = 1
9 and τ = 1, the plot illustrates the oscillatorresponse with initial condition taken to be ϕ(t) = 1 for t ∈ [−τ, 0).

Figure 4.11: The plot illustrates forω = 2, η = 0.02 the rightmost doubleroot of ∆ at s0 = −0.5 and the roots with large modulus asymptotic tothe vertical line ℜ(s)≈−1
τ

log |α| ≈ −1.88.
with

δ = τ
2 (s0

2 +a1s0 +a0
)
, and υ = τ (2s0 +a1) . (4.118)
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Figure 4.12: The plot is the time-response of a particular solution of(4.103) with ω = 2, η = 0.02; the initial condition is taken to be ϕ(t) = t3

for t ∈ [−τ, 0).

The integral representation is given by

∆̃(z) = z2
(

1+υ + γ2 +
δ

2
− z

∫ 1

0

(
−δ t2

2
+υ (1− t)+ γ2 +

δ

2

)
e−t z dt

)
, (4.119)

which is not the standard factorization. In fact, it is a more general form as
the one described for instance in [55]. In the case of multiplicity 2, the normalized
polynomial admits 3 free parameters which makes the analytic proof of the MID
property quite delicate. However, we claim that even in in such a case, one is able
to numerically exploit such a property for rightmost spectral value assignment as
is exhibited by the next example.

Consider the classical oscillator control problem (4.103). Let ω = 2 and η =

0.02, we choose s0 = −0.5, τ = 1 and γ2 = −0.25e0.5. Then, α2 ≈ −0.25 and,
owing to relations (4.116), we compute α1 ≈−2.1471 and α0 ≈−3.5891.

The plot in Figure 4.11 illustrates the roots of ∆ and Figure 4.12 represents a
time-response of the oscillator with particular values of ω and η .

4.8 . Some insights on linear combinations of two kummer func-
tions

The following results are in more detail in [94].
Consider the LTI dynamical system described by the DDE
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x(n)(t)+
n−1

∑
k=0

akx(k)(t)+
m

∑
k=0

αkx(k)(t − τ) = 0, (4.120)
where x(·) is the real-valued unknown function, τ > 0 is the delay, and ai, a j

are real coefficients for i = 1, · · ·,n− 1 and j = 1, · · ·,m. Notice that the DDE in
(4.120) is said to be of retarded type if m < n and of neutral type if m = n. The
corresponding characteristic equation is given by the quasipolynomial

∆(s) = sn(t)+
n−1

∑
k=0

aksk +
m

∑
k=0

αksk e−τ s, (4.121)
of degree degs(∆) = n+m+1. In the case of maximal multiplicity of a given

real spectral value s0, it was shown in [55] (case m = n−1) and [76] (general case
m ≤ n) that s0 satisfies the GMID property.

The next lemma provides a partial step towards that goal, by providing a non-
autonomous second-order differential equation having a given linear combination
of Kummer functions as a solution.

Lemma 4.8.1 Let a, b be two complex numbers and α and β two real numbers
and define the parameter vector p⃗ = (a, b, α, β ). Then the complex function F
defined by

F(z, p⃗) = α Φ(a,b,z)+β Φ(a,b+1,z), (4.122)
with z /∈ {0, β (β+α)b2

((a−b)α−βb)α }, satisfies the second-order differential equation

∂ 2F
∂ z2 (z, p⃗)+Q(z, p⃗)

∂F
∂ z

(z, p⃗)+R(z, p⃗)F(z, p⃗) = 0, (4.123)
where

Q(z, p⃗) =−1+
b+1

z
− α (aα −αb−βb)

D(z, p⃗)
, (4.124)

R(z, p⃗) =−N(z, p⃗)
D(z, p⃗)

, (4.125)
with

N(z, p⃗) = a
((
(a−b)α

2 −αbβ
)

z−βb(b+1)α
)
−ab2

β
2,

D(z, p⃗) =
(
(a−b)α

2 −αbβ
)

z−α b2
β −b2

β
2.

Note that Whittaker functions are defined in terms of Kummer functions in
(1.23) by using the multiplicative factor e−

z
2 z

1
2+l , thanks to which the Whittaker

differential equation (1.24) has no first-order term. We now proceed similarly from
Kummer-type functions in order to define Whittaker-type functions. The next
lemma can be shown by straightforward computations.
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Lemma 4.8.2 Let a,b be two complex numbers, α,β be two real numbers, F be
the function defined in (4.122), and Q and R be given by (4.124) and (4.125),
respectively.

Let Q be a primitive of Q
2 and define the function W by

W (z, p⃗) = eQ(z,p⃗)F(z, p⃗). (4.126)
Then W satisfies the second-order differential equation

∂ 2W
∂ z2 (z, p⃗)+G(z, p⃗)W (z, p⃗) = 0, (4.127)

where

G(z, p⃗) = R(z, p⃗)− (Q(z, p⃗))2

4
− 1

2
∂Q
∂ z

(z, p⃗). (4.128)
In the sequel, we refer to functions W of the form (4.126) as Whittaker-type

functions.
In what follow, Necessary and Sufficient Conditions on the parameters of the

dynamical system (4.120) are provided to guarantee the existence of a characteristic
root s0 with intermediate algebraic multiplicity n+m.

Theorem 4.8.1 Let τ > 0, s0 ∈R, and consider the quasipolynomial ∆ in (4.121).
The number s0 is a root of multiplicity at least n+m of ∆ if and only if there exists
A ∈ R such that

∆(s) =
τm(s− s0)

n+m

(m−1)!
·
∫ 1

0
tm−1(1− t)n−1(1−A t)e−tτ(s−s0)dt. (4.129)

From Theorem 4.8.1, we are able to provide some (appropriate) sufficient con-
ditions under which the MID property is valid for characteristic roots of multiplicity
n+m of ∆.

Theorem 4.8.2 Let τ > 0, s0 and A be real numbers, and ∆ be given by (4.121).
Let F and G be defined respectively by (4.122) and (4.128)

Assume that, for every t ∈ (0,1) and every root z of F(·, p⃗) in C−, we have
ℜ[zG(tz, p⃗)] ≥ 0. Then λ0 is a dominant root of ∆, i.e., s0 satisfies the MID
property.

DDEs frequency bound in the right half-plane

The main difficulty when applying Theorem 4.8.2 is to verify the technical as-
sumption ℜ[zG(tz, p⃗)]≥ 0 for every t ∈ (0,1) and every root z of F(·, p⃗) in C− or,
equivalently, to verify that ℜ[zG(−tz, p⃗)] ≤ 0 for every t ∈ (0,1) and every root
z of z 7→ ∆(λ0 +

z
τ
) in C+. For that purpose, a useful technique is to establish a
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priori information on the location of roots of ∆ with real part greater than λ0, and
in particular bounds on their imaginary parts.

To do so, a standard first step is to introduce the normalized quasipolynomial

∆̃(z) = τ
n
∆(λ0 +

z
τ
), (4.130)

which can be written as

∆̃(z) = P̃0(z)+ e−zP̃τ(z), (4.131)
for some suitable polynomials P̃0 and P̃τ of degrees n and m, respectively.

Hence, the problem of studying eventual roots of ∆ with real part greater than λ0

reduces to the study of eventual roots of ∆̃ with positive real part.

A possible strategy to do so is to notice that any root z of ∆̃ satisfies

|P̃0(x+ ι̇ω)|2e2x = |P̃τ(x+ ι̇ω)|2, (4.132)
where x = ℜ(z) and ω = ℑ(z). In particular, if z has nonnegative real part,

then e2x ≥ Tℓ(x), where, for ℓ∈N, the polynomial Tℓ is the truncation of the Taylor
expansion of e2x at order ℓ, i.e., Tℓ(x) = ∑

ℓ
k=0

(2x)ℓ

ℓ! . Hence, any root z = x+ ι̇ω of
∆̃ with nonnegative real part satisfies

F (x,ω)≥ 0, (4.133)
where F is the polynomial given by

F (x,ω) = |P̃τ(x+ ι̇ω)|2 −|P̃0(x+ ι̇ω)|2Tℓ(x). (4.134)
In addition, F only depends on ω through ω2 (which is a consequence of

the fact that P̃0 and P̃τ are polynomials with real coefficients), and one may thus
introduce the variable Ω = ω2 and define the polynomial H by setting H(x,Ω) =

F(x,
√

Ω) for Ω ≥ 0. Hence, any root z = x+ ι̇ω of ∆̃ with nonnegative real part
satisfies

H(x,Ω)≥ 0, (4.135)
where Ω = ω2. One can thus establish a bound on the imaginary parts of roots

of ∆̃ by exploiting the polynomial inequality (4.135). This has been done for some
low-order cases in [57], [91]. In particular, all these works have shown that it is
sufficient to bound the absolute value of the imaginary parts of the roots in the
right half-plane by π, as one can in general easily exclude by other arguments, such
as those from Theorem 4.8.2, the possibility of having roots in the right-half plane
with imaginary part at most π, thus concluding the proof of dominance of λ0.

The procedure described in this subsection is synthetized in Algorithm 2 (see
[91]), in which one increases the order of the Taylor expansion of e2x until a suitable
bound is found.
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4.9 . Chapter Summary

In this chapter, we have treated the Multiplicity-Induced-Dominancy (MID)
property for second order time-delay differential equations of neutral type with
single-delay, i.e., the corresponding characteristic function is a quasipolynomial of
degree 5. We present an algorithm as well as an overview of classification of
admissible multiplicities for this class of equations. First, necessary and sufficient
conditions are established, in which a real root of the characteristic function of
maximal multiplicity 5 is necessarily dominant. Next, necessary and sufficient
conditions have been provided in order to ensure that a given root of multiplicity 4
is the rightmost root of the characteristic function. For the case of multiplicity 3,
we only provide sufficient conditions for the dominance where the number of free
parameters is 2. In the latter case, we used first a truncation of the exponential
function of order 0, which led to some regions where the MID property holds. To
illustrate the use of the proposed algorithm, we further extended the validity area
of the MID property by increasing the truncation up to order one, this allowed
to enlarge the region of validity of the MID obtained with truncation of order
0. Finally, for the multiplicity 2, as the number of free parameters increases (3
free parameters), the computations become quite cumbersome from a symbolic
point of view, but for the time being we used numerical approaches which can give
sufficient conditions for the dominance. The obtained results have been illustrated
through the delayed stabilization of the classical oscillator.
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Part III

Applications
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5 - Applying the MID property in the control
of aerial vehicles

This chapter is a reduced version of the paper [92]. We also refer to [139].

5.1 . Introduction

Several application areas exist, among the actual technological surge, Un-
manned Aerial Vehicles (UAVs) remain as a popular and challenging topic within
the control systems and robotics scientific community. Such attractiveness relies
on their friendly design and controllability criteria that have led to a wide ap-
plication range such as high-precision weather monitoring, precision agriculture,
swarm-based distributed perception, among others [140]–[142].

The capability of UAVs to perform accurate maneuvers is strongly depen-
dent on the efficient synthesis and implementation of control-task-oriented algo-
rithms. Several of these strategies take into consideration quaternion-based mod-
eling approaches [143], image-aimed stabilization, or the well-known proportional-
derivative (PD) and proportional-integral-derivative (PID) controllers [144]–[146].
In addition, robust control techniques [147] and state observers [148] have been
also been used.

Among the variety of issues undermining the aerial systems performance, the
study of time-delay effects remains relatively unexplored. In practice, UAVs’ con-
trol systems operate in presence of time-delays arising from perception processing,
decision-making, control commands and actuators’ delayed dynamics. It has been
proved that time-delays induce oscillatory phenomena rendering the system un-
stable. Nevertheless, some stabilizing effects of time-delays can be exploited to
improve the system’s performance [5], [32].

The stability of aerial vehicles under the influence of time-delays has been stud-
ied in different works. It is worthwhile highlighting that a considerable amount of
prior works focuses on the communication and information exchange processes as
the main sources of time-delays [149], [150]. In this regard, the range of solu-
tions to overcome such an issue goes from delay-optimization approaches [151]
to Backstepping and nonlinear control [152]–[154] yet, a vast variety of different
approaches can be found in the literature, see for instance [2], [8], [32], [86], [155].

Amidst the novel techniques regarding time-delay systems analysis, tracking
the behavior of the roots of the characteristic equation, as in [61], has led to
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an increasing interest on exploiting the MID property. This property has already
been suggested to solve some phenomena described by linear time-delay differential
equations [73], [74], [156]. Nevertheless, the application of such findings on the
domain of aerial robots control, as far as it is concerned to the authors, has not
been specifically considered.

This chapter exploits the effects of time-delays on the stability of Unmanned
Aerial Vehicles (UAVs). In this regard, the main contribution is a symbolic/numeric
application of the Multiplicity-Induced-Dominancy (MID) property in the control
of UAVs rotorcrafts featuring time-delays. The MID property is considered to ad-
dress two of the most representative aerial robotic platforms: a classical quadrotor
vehicle and a quadrotor vehicle endowed with tilting-rotors. The aforementioned
property leads to an effective delayed feedback control design (MID tuning cri-
teria), allowing the system to meet prescribed behavior conditions based on the
placement of the rightmost root of the corresponding closed-loop characteristic
function/quasipolynomial. Lastly, the results of detailed numerical simulations,
including the linear and nonlinear dynamics of the vehicle, are presented and dis-
cussed to validate the proposal.

Here the MID property defines a tuning criteria of the controller gains such that
a non-oscillatory transient response of the vehicle obeys a prescribed decay rate.
This property is used to stabilize two popular rotorcrafts: a classical quadrotor and
a quadrotor endowing 1-Degree-Of-Freedom (DOF) tilting-rotors.

The sequel of the chapter is outlined in the following manner: In Section 5.2,
the dynamics of the quadrotor vehicles is described. Section 5.3 is devoted to the
conception of the controllers that stabilize the typical quadrotor vehicle. On the
other hand, Section 5.4 exposes the control strategy adopted to stabilize the UAV
endowed with 1-DOF tilting-rotors. Section 5.5 provides the results of the detailed
numerical simulations carried out to validate the proposals. Lastly, concluding
remarks are given in Section 5.6.

5.2 . Quadrotor models

Let us consider the quadrotor system be depicted in Figure 5.1. The vision-
based tracking system permits to know the position of the vehicle, ξ = [x y z]T ∈
R3, in a conditioned environment. Such sensing strategy often takes a fraction of
time τ > 0 to be executed; this issue is translated to control terms as a feedback
time-delay.
The dynamics of the vehicle is described w.r.t. an inertial frame OI {xI,yI,zI} and
a body frame Ob {xb,yb,zb} whose origin matches the center of gravity (CoG) of
the UAV. Here xb, yb, zb define the roll, pitch and yaw axes and the corresponding
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Figure 5.1: Quadrotor vehicle and vision-based tracking system(scheme conceived from figures available at freepik.com)
principal axis of inertia which are associated to the Euler angles η = [φ θ ψ ]T ∈R3,
respectively. The motion of the aerial vehicle can be described, according to the
Newton Euler formulation, as:

mrξ̈ +mrg = τξ , (5.1)
Iω̇ +ω × (Iω) = τω , (5.2)

where mr > 0 stands for the mass of the UAV and g = [0 0 g]T ∈ R3 does for the
vector containing the constant of gravity acceleration g > 0. For a given ν ∈ Rn,
the function diag : Rn → Rn×n is defined by

diag(ν) =


ν1 0 . . . 0
0 ν2 . . . 0
...

...
. . . . . .

0 0 . . . νn

 , (5.3)

Here, I = diag([Ix Iy Iz]
T ) ∈ R3×3 is respectively defined by the moments of

inertia about the roll, pitch and yaw axis.
The angular velocity vector ω = [p q r]T ∈ R3 is related to the Euler rates η̇

as follows

ω =Wη η̇ and Wη =

1 0 −S(θ)
0 C(φ) S(φ)C(θ)
0 −S(φ) C(φ)C(θ)

 ∈ R3×3, (5.4)

with C(•) = cos(•) and S(•) = sin(•). Such an abuse of this notation is con-
sidered throughout the sequel of the manuscript.
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The translational motion of the aircraft is driven by the forces comprised in the
vector τξ ∈ R3 which is defined, for the typical quadrotor, by the rotation matrix
Rη ∈ R3×3 and the forces of the propellers fi ≥ 0 (with i = 1,2,3,4), as:

τξ = Rη

 0
0

T = f1 + f2 + f3 + f4

 , (5.5)
and

Rη =

C(θ)C(ψ) S(φ)S(θ)C(ψ)−C(φ)S(ψ) C(φ)S(θ)C(ψ)+S(φ)S(ψ)
C(θ)S(ψ) S(φ)S(θ)S(ψ)+C(φ)C(ψ) C(φ)S(θ)S(ψ)−S(φ)C(ψ)
−S(θ) S(φ)C(θ) C(φ)C(θ)

 ,
For the quadrotor endowed with 1-DOF tilting-rotors, the vector τξ is rewritten in
terms of Rη , fi and the tilt angles α and β ∈ R as:

τξ = Rη

 ( f1 + f3)S(β )
−( f2 + f4)S(α)

( f1 + f3)C(β )+( f2 + f4)C(α)

 , (5.6)
The rotational states of the aircraft are controlled by the torques in the vector
τω ∈ R3 which, for the typical quadrotor structure, is defined as:

τω =

 τφ = ℓ( f2 − f4)/2
τθ = ℓ( f3 − f1)/2

τψ = ε ( f1 − f2 + f3 − f4)

 , (5.7)
where ℓ > 0 denotes the diagonal motor-to-motor distance and ε > 0 is a propor-
tionality constant that relates the force fi to the corresponding free moment τi

such that τi = ε fi.
For the quadrotor vehicle equipped with tilting-rotors, τω reads as:

τω =

ℓ( f2 − f4)C(α)/2+ ε ( f1 + f3)S(β )
ℓ( f3 − f1)C(β )/2− ε ( f2 + f4)S(α)
ε [( f1 + f3)C(β )− ( f2 + f4)C(α)]

 , (5.8)

5.3 . UAV control: The typical quadrotor case

Let the typical quadrotor vehicle be firstly addressed. It is typically assumed
that the vehicle operates at low speeds in a quasi-hover state such that the Coriolis
and Centripetal effects are neglected, at quasi-hovering flight (φ ≈ 0,θ ≈ 0) and,
without loss of generality, ψ = 0 holds ∀t ≥ 0. These considerations lead to a linear
representation of (5.1), (5.2), (5.5), (5.2) and (5.7) of the form:

X(s) =
1

mrs2 θ(s)T (s), Y (s) =− 1
mrs2 φ(s)T (s), Z(s) =

1
mrs2 (T (s)−mrg) ,

φ(s) =
1

Ixs2 τφ (s), θ(s) =
1

Iys2 τθ (s), ψ(s) =
1

Izs2 τψ(s)

(5.9)
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which corresponds to a description of the system in the frequency domain where
s = σ + jω with σ ,ω ∈ R.
From (5.9), it is immediate to observe that the Z(s) and ψ(s) motions are de-
coupled, yet the X(s) dynamics is coupled to that of θ(s) and the Y (s) motion is
related to that of φ(s). In this regard, let the thrust T (s) be used as the control
input to drive the system to a desired height Zd(s) and τψ(s) does the proper to
keep the yaw angle at 0. These control inputs are respectively defined, as:

T (s) = mr (Cz (s)Ez(s)+g) , and τψ(s) = IzCψ (s)Eψ(s), (5.10)
where the z error reads as Ez(s) = Zd(s)−e−τsZ(s) since the translational states of
the quadrotor are subject to a feedback time-delay τ due to the inherent latency of
the vision-based tracking system, and the ψ error stands as Eψ(s) =−ψ(s) since
ψ(s) = 0. The linear controllers Cz(s) and Cψ(s) correspond to PD controllers of
the form:

Cz(s) = kpz + kdzs, and Cψ(s) = kpψ
+ kdψ

s, (5.11)
with kpz ,kpψ

∈R defined as the proportional gains and kdz ,kdψ
∈R standing as the

derivative gains. The aforementioned control gains are tuned, as exposed in the
sequel of the manuscript, by means of the MID property since a time-delay affects
the corresponding dynamics.
Regarding the translational motion of the vehicle, let one consider that, for a large
enough time, T (s) → Tc = mrg as Z(s) → Zd(s) [157]. The latter allows one to
rewrite the equations of motion for X(s) and Y (s) in (5.9) as:

X(s) =
1

mrs2 θ(s)Tc, and Y (s) =− 1
mrs2 φ(s)Tc, (5.12)

It is thus considered that θ(s) and φ(s) act as the control inputs for the corre-
sponding DOF, such that the reference values are defined by linear PD controllers,
Cx(s) and Cy(s), as follows

θd(s) =
mr

Tc
Cx(s)Ex(s), and φd(s) =−mr

Tc
Cy(s)Ey(s), (5.13)

with

Cx(s) = kpx + kdxs, Cy(s) = kpy + kdys, (5.14)
Ex(s) = Xd(s)− e−τsX(s), Ey(s) = Yd(s)− e−τsY (s), (5.15)

where the proportional gains correspond to kpx ,kpy ∈ R, and the derivative gains
are denoted by kdx ,kdy ∈ R. Moreover, the reference values in (5.13) are achieved
by the action of the linear PD controllers:

Cθ (s) = kpθ
+ kdθ

s, and Cφ (s) = kpφ
+ kdφ

s, (5.16)
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Figure 5.2: Block diagram representation of the typical quadrotorclosed-loop system
such that:

τθ (s) = IyCθ (s)Eθ (s), and τφ (s) = IxCφ (s)Eφ (s), (5.17)
with Eθ (s)= θd(s)−θ(s) and Eφ (s)= φd(s)−φ(s). The proportional gains kpθ

,kpφ
∈

R as well as the derivative gains kdθ
,kdφ

∈ R are tuned in such a manner that the
rotational dynamics is stable and faster than that of translation [157].
To synthesize the previous establishments, the X(s), Z(s) and ψ(s) closed-loop
systems are depicted in Figure 5.2 where the dynamics of the plant is highlighted
in red and the inner dynamics is surrounded by a blue dashed box. Notice that the
Y (s) dynamics is omitted since it follows the same structure as that of X(s).

5.3.1 . MID-property-based controllers analysis
According to Figure 5.2, the closed-loop transfer functions of each DOF can

be computed such that the characteristic functions correspond to:

∆x (s) = s2 [s2 +Cθ (s)
]
+ e−τsCx(s)Cθ (s), (5.18)

∆y (s) = s2 [s2 +Cφ (s)
]
+ e−τsCy(s)Cφ (s), (5.19)

∆z (s) = s2 + e−τsCz(s), (5.20)
∆ψ (s) = s2 +Cψ(s), (5.21)

Regarding (5.21), no time-delay effect is present thus, the exponential behavior
of the solutions can be tuned by the proper placement of the roots of the poly-
nomial. In this sense, it is enough that such roots rely on the left-plane of the
complex space, moreover, a non-oscillatory stable system’s response is achieved if
the roots are real, see for instance [157]. The latter is comprised in Proposition
5.3.1 below.
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Proposition 5.3.1 For the closed-loop dynamics described by (5.21), a non-oscillatory
stable system’s response is achieved and guaranteed if the controller’s gains satisfy:

kdψ
= sψ,1 + sψ,2, and kpψ

= sψ,1sψ,2, (5.22)
with sψ,2 > sψ,1 > 0.

Proof The proof is provided by the substitution of the gains given in (5.22) into
(5.21) leading to:

s2 +
(
sψ,1 + sψ,2

)
s+ sψ,1sψ,2 =

(
s+ sψ,1

)(
s+ sψ,2

)
= 0, (5.23)

such that the roots of the system are located at s =−sψ,1 and s =−sψ,2. ■
It must be noticed that Proposition 5.3.1 can be applied to stabilize the inner-loop
dynamics highlighted in blue in Figure 5.2 as the existence of negative real roots
of the characteristic function of the open-loop system is essential to exploit the
MID property.
Regarding the translational dynamics where the time-delay effect is found, the anal-
ysis of the Z(s) dynamics is provided at first place, afterwards, the X(s) dynamics
of the vehicle is studied.
The following result, which is a direct consequence of [50], permits to characterize
an assignable spectral value guaranteeing σ−stability as well as the corresponding
controller’s gains.

Proposition 5.3.2 For the quasipolynomial in (5.20), the following assertions
hold:

1. The multiplicity of any given root of the quasipolynomial function is bounded
by 4.

2. For a positive delay τ , the quasipolynomial in (5.20) admits a real spectral
value at s = s0z with algebraic multiplicity 3 if and only if:

s0z =
−2+

√
2

τ
, (5.24)

and the controller gains satisfy:

kpz = eτs0z s2
0z
(s0zτ +1) , and kdz =−eτs0z s0z (s0zτ +2) . (5.25)

Proof The first statement of the proposition is a direct assimilation of the results
presented at [73]. On the other hand, if s0z is a root with multiplicity at least 2,
it follows that: ∆z(s0z) = ∆′

z(s0z) = 0. By solving these equations for the control
gains, the in (5.25) are obtained. The root s0z reaches a multiplicity 3 if and only
if:

∆
′′
z (s0z) = 2+ e−τs0z

[
τ

2 (kdzs0z + kpz

)
−2τkdz

]
= 0. (5.26)
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The substitution of (5.25) into (5.26) leads to (5.24). To prove that s0z is the
dominant root, one may exploit the result from [50, Theorem 4.2].

■
Let one proceed to study the quasipolynomial in (5.18). In this regard, and

due to the complexity of the expressions, a useful proposition based on a symbol-
ic/numerical analysis is provided next.

5.3.2 . Symbolic/Numeric analysis of the MID-based controller

Firstly, to study the behavior of the system whose characteristic function cor-
responds to the quasipolynomial provided in (5.18), one must ensure that the
delay-free part of the quasipolynomial has only real roots which occurs if:

k2
dθ

> 4kpθ
> 0. (5.27)

This condition over the gains kpθ
and kdθ

is taken into consideration to exploit the
MID property as numerically/symbolically established next.

Proposition 5.3.3 For the quasipolynomial in (5.18), the following assertions
hold:

1. The multiplicity of any given root of the quasipolynomial function is bounded
by 7.

2. For a given positive delay τ , an arbitrary root s0x with algebraic multiplicity
4 is a dominant root of (5.18) if s0x ∈ S, where

S =

{
s0x : − 3

10τ
< s0x < 0

}
, (5.28)

and the controller gains kpθ
, kdθ

, kpx and kdx satisfy:

kpθ
= λ s2

0x
, kdθ

=−s0x

9

(
n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)
, (5.29)

kpx =
s2

0x
eτs0x

C 2
θ
(s0x)

{
Cθ (s0x)(τs0x +1)

[
s2

0x
+Cθ (s0x)

]
+ s2

0x
[Cθ (s0x)+ kpθ

]
}
,

(5.30)
kdx =

−s0xe
τs0x

C 2
θ
(s0x)

{
Cθ (s0x)(τs0x +2)

[
s2

0x
+Cθ (s0x)

]
+ s2

0x
[Cθ (s0x)+ kpθ

]
}
,

(5.31)
where λ is defined as the only positive real root of the following algebraic
equation

p3λ
3 + p2λ

2 + p1λ + p0 = 0, (5.32)
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where

p3 = 27
(
s2

0x
τ

2 +4s0xτ +2
)4
, (5.33)

p2 =−10s9
0x

τ
9 −243s8

0x
τ

8 −2352s7
0x

τ
7 −12090s6

0x
τ

6 −36360s5
0x

τ
5 −65916s4

0x
τ

4 −72288s3
0x

τ
3 −47736s2

0x
τ

2 −17280s0xτ −2592, (5.34)
p1 =

(
s3

0x
τ

3 +12s2
0x

τ
2 +36s0xτ +24

)(
s3

0x
τ

3 +18s2
0x

τ
2 +54s0xτ +24

)(
s4

0x
τ

4 +8s3
0x

τ
3 +24s2

0x
τ

2 +24s0xτ +12
)
, (5.35)

p0 =−
(
s4

0x
τ

4 +8s3
0x

τ
3 +24s2

0x
τ

2 +24s0xτ +12
)(

s3
0x

τ
3 +12s2

0x
τ

2 +36s0xτ

+24)2 . (5.36)
with

n2 = 11s12
0x

τ
12 +309s11

0x
τ

11 +3738s10
0x

τ
10 +25938s9

0x
τ

9 +115452s8
0x

τ
8

+348192s7
0x

τ
7 +731016s6

0x
τ

6 +1077408s5
0x

τ
5 +1105920s4

0x
τ

4 +771120s3
0x

τ
3

+347328s2
0x

τ
2 +90720s0xτ +10368, (5.37)

n1 =
(
s3

0x
τ

3 +12s2
0x

τ
2 +36s0xτ +24

)(
2s6

0x
τ

6 +39s5
0x

τ
5 +249s4

0x
τ

4 +744s3
0x

τ
3

+1116s2
0x

τ
2 +756s0xτ +180

)(
s4

0x
τ

4 +8s3
0x

τ
3 +24s2

0x
τ

2 +24s0xτ +12
)
,(5.38)

n0 = 2
(
s3

0x
τ

3 +6s2
0x

τ
2 +12s0xτ +6

)(
s4

0x
τ

4 +8s3
0x

τ
3 +24s2

0x
τ

2 +24s0xτ +12
)(

s3
0x

τ
3 +12s2

0x
τ

2 +36s0xτ +24
)2
, (5.39)

d2 = 3
(
2s3

0x
τ

3 +9s2
0x

τ
2 +12s0xτ +6

)(
s2

0x
τ

2 +4s0xτ +2
)4
, (5.40)

d1 = (s4
0x

τ
4 +16s3

0x
τ

3 +63s2
0x

τ
2 +84s0xτ +30)(s4

0x
τ

4 +8s3
0x

τ
3 +24s2

0x
τ

2

+24s0xτ +12)(s2
0x

τ
2 +4s0xτ +2)2, (5.41)

d0 = (s0xτ +2)(s3
0x

τ
3 +12s2

0x
τ

2 +36s0xτ +24)(s4
0x

τ
4 +8s3

0x
τ

3 +24s2
0x

τ
2

+24s0xτ +12)(s2
0x

τ
2 +4s0xτ +2)2. (5.42)

Proof The first statement of the proposition is a direct assimilation of the
results presented in [73], see also [55]. Furthermore, (5.29)-(5.31) are found as
in Proposition 5.3.2. In this regard, if s0x is a root with multiplicity at least 2, it
follows that:

∆x(s0x) = s2
0x

(
s2

0x
+ kdθ

s0x + kpθ

)
+ e−τs0x (kdxs0x + kpx)(kdθ

s0x + kpθ
) = 0, (5.43)

∆
′
x(s0x) = s0x

(
4s2

0x
+3kdθ

s0x +2kpθ

)
−e−τs0x [τ (kdxs0x + kpx)(kdθ

s0x + kpθ
)− (2kdθ

kdxs0x + kpxkdθ
+ kpθ

kdx)] = 0. (5.44)
By solving (5.43) and (5.44) for the control gains kpx and kdx , the equality in (5.30)
and the one in (5.31) are obtained. Moreover, the root s0x reaches a multiplicity
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4 if and only if:

∆
′′
x (s0x) = 2

(
6s2

0x
+3kdθ

s0x + kpθ

)
+

e−τs0x
{

τ
2 (kdxs0x + kpx)(kdθ

s0x + kpθ
)−2τ (2kdθ

kdxs0x + kpxkdθ
+ kpθ

kdx)+2kdxkdθ

}
= 0,(5.45)

∆
′′′
x (s0x) = 6(4s0x + kdθ

)−
e−τs0x

{
τ

3 (kdxs0x + kpx)(kdθ
s0x + kpθ

)+3τ
2 (2kdθ

kdxs0x + kpxkdθ
+ kpθ

kdx)

−6τkdxkdθ
}= 0. (5.46)

The substitution of (5.30) and (5.31) into the equations above, and the use of
the routine CellDecomposition from the RootFinding[Parametric]

package of computer algebra system Maple [158], led to (5.29) yet, one must
analyse with detail the results concerning the in (5.29) and (5.32). For these ends,
let one adopt the change of variable ς = s0xτ throughout (5.32)-(5.42) yielding to
rewrite the expressions as follows:

p⋆3λ
3 + p⋆2λ

2 + p⋆1λ + p⋆0 = 0, (5.47)
where

p⋆3 = 27
(
ς

2 +4ς +2
)4
, (5.48)

p⋆2 =−10ς
9 −243ς

8 −2352ς
7 −12090ς

6 −36360ς
5 −65916ς

4 −72288ς
3

−47736ς
2 −17280ς −2592, (5.49)

p⋆1 =
(
ς

3 +12ς
2 +36ς +24

)(
ς

3 +18ς
2 +54ς +24

)(
ς

4 +8ς
3 +24ς

2 +24ς +12
)
,(5.50)

p⋆0 =−
(
ς

4 +8ς
3 +24ς

2 +24ς +12
)(

ς
3 +12ς

2 +36ς +24
)2
, (5.51)

n⋆2 = 11ς
12 +309ς

11 +3738ς
10 +25938ς

9 +115452ς
8 +348192ς

7 +731016ς
6

+1077408ς
5 +1105920ς

4 +771120ς
3 +347328ς

2 +90720ς +10368, (5.52)
n⋆1 =

(
ς

3 +12ς
2 +36ς +24

)(
2ς

6 +39ς
5 +249ς

4 +744ς
3 +1116ς

2 +756ς +180
)(

ς
4 +8ς

3 +24ς
2 +24ς +12

)
, (5.53)

n⋆0 = 2
(
ς

3 +6ς
2 +12ς +6

)(
ς

4 +8ς
3 +24ς

2 +24ς +12
)(

ς
3 +12ς

2 +36ς +24
)2
,(5.54)

d⋆
2 = 3

(
2ς

3 +9ς
2 +12ς +6

)(
ς

2 +4ς +2
)4
, (5.55)

d⋆
1 = (ς4 +16ς

3 +63ς
2 +84ς +30)(ς4 +8ς

3 +24ς
2 +24ς +12)(ς2 +4ς +2)2,(5.56)

d⋆
0 = (ς +2)

(
ς

3 +12ς
2 +36ς +24

)(
ς

4 +8ς
3 +24ς

2 +24ς +12
)(

ς
2 +4ς +2

)2
.(5.57)

As previously mentioned, to exploit the results of [52], [77], the non-delayed
part of the quasipolynomial must have only real roots which is guaranteed if (5.27)
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holds, thus it follows that λ > 0 as s2
0x
> 0 and, from (5.47)-(5.57), that

n⋆2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0
> 18

√
λm (5.58)

To ensure the existence of a given λ satisfying the condition above, some restric-
tions over ς (consequently over τ and s0x) must be established. In this regard, the
analysis of the polynomial in (5.47) can be performed in any mathematical software
that allows the treatment of symbolic and numerical computations. In the current
case of study, Maple and its package RootFinding[Parametric] were used.
The aforementioned Maple package divides the space of parameters into two parts:
the discriminant variety and its complement. The discriminant variety is referred
as a generalization of the discriminant of a univariate polynomial and contains
those parameter values leading to non-generic solutions, meanwhile, its comple-
ment can be expressed as a finite union of open cells such that the number of
real solutions of the system is constant on each cell. In this manner, all parameter
values leading to generic solutions of the system can be described. The underlying
techniques used are Gröbner bases, polynomial real root finding, and cylindrical al-
gebraic decomposition, see for instance [158]–[161]. Further details of the package
and its implementation are available at [162]. Thus, considering (5.58) and the
fact that λ > 0, the cell decomposition of (5.47) provides three ς intervals where
the conditions holds. These intervals are defined by

ϕ1 (ς) = ς
12 −78ς

10 −120ς
9 +2772ς

8 +13824ς
7 +8208ς

6 −105408ς
5

−357696ς
4 −546048ς

3 −456192ς
2 −207360ς −41472 (5.59)

ϕ2 (ς) = ς
2 +4ς +2, ϕ3 (ς) = ς

3 +9ς
2 +18ς +6 (5.60)

and their real roots, such that

ςϕ1,1 ≈−0.8478574488 < ς < ςϕ2,2 ≈−0.5857864376 (5.61)
ςϕ2,2 ≈−0.5857864376 < ς < ςϕ3,3 ≈−0.4157745568 (5.62)

ςϕ3,3 ≈−0.4157745568 < ς < 0 (5.63)
where ςϕi, j denotes the j− th real root of the projection polynomial ϕi (ς) (consid-
ering that the real roots are arranged in increasing order). For instance, only the
conditions over ς that ensure the existence of a proper λ have been given thus,
one shall investigate the dominancy of the corresponding roots within the intervals.
As suggested in [73], [77], if the quasipolynomial in (5.18) possesses a root of mul-
tiplicity at least 4, an integral representation can be adopted. The computation of
the control gains as previously performed, allows one to establish a negative real
root of multiplicity 4 thus, the substitution of (5.29)-(5.31) into (5.18) yields to:

∆x (s;s0x ,τ) = (s− s0x)
4
(

1+
∫ 1

0
e−(s−s0x )τυ τR3,x (s0x ;τυ)

3!
dυ

)
(5.64)
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such that:

R3,x (s0x ;τυ) = s0x

[
s3

0x
τ

3
υ

3 (1+λ

−1
9

n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)
+6s2

0x
τ

2
υ

2
(

2+λ − 1
6

n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)
+

6s0xτυ

(
6+λ − 1

3
n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)
+2
(

12− 1
3

n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)]
(5.65)

The results in [52] provide a necessary and sufficient condition for the dominancy
of a given multiple root (of maximal multiplicity) in the first-order case. The main
idea of the cited work is used in the current case of study to get sufficient conditions
for the dominancy of the quadruple root at s0x , such that if:∣∣∣∣τR3,x (s0x ;τυ)

3!

∣∣∣∣≤ 1 ∀ 0 < υ < 1 (5.66)
holds, s0x is the dominant root of (5.18). Nevertheless, to keep the consistency of
the proof, one may rewrite (5.66) in terms of ς as follows:∣∣R⋆

3,x (ς ;υ)
∣∣≤ 1 ∀ 0 < υ < 1 (5.67)

with

R⋆
3,x (ς ;υ) =

1
6

[
ς

4
υ

3
(

1+λ − 1
9

n⋆2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0

)
+6ς

3
υ

2
(

2+λ − 1
6

n⋆2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0

)
+

6ς
2
υ

(
6+λ − 1

3
n⋆2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0

)
+2ς

(
12− 1

3
n2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0

)]
(5.68)

Due to the high order of the polynomials involved in the definition of R⋆
3,x (ς ;υ), an

analysis of its behavior results complex and computationally expensive. Instead, a
numerical analysis implies less computational resources and can provide enough and
sufficient information to validate the proposal. In this regard, Figure 5.3 exposes
the plots of R⋆

3,x (ς ;υ) for a given ς within each of the intervals in (5.61)-(5.63)
such that υ varies from 0 to 1 in order to verify (5.67).

The results depicted in Figure 5.3 show that for a given ς within the intervals
in (5.61) and (5.62), the condition in (5.67) does not hold. On the other hand,
for a given ς within the interval in (5.63), one can obtain a bound over ς such
that (5.67) holds. By solving R⋆

3,x (ς ;υ = 0) = 1, one finds that the aforementioned
condition is satisfied if 0 > ς >−0.3109805570 which ends the proof. ■

Notice that the numerical study revealed that for any ς within the intervals
in (5.61)-(5.63), the dominancy of s0x holds (as illustrated in Figure 5.4) yet, the
analytic extension of the proof implies a further and more complex analysis that
comprehends the definition of more inequalities and conditions over the integral.
Time-domain representation is given in Figure 5.5.
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Figure 5.3: Behavior of R⋆
3,x(ς ;υ) within the interval 0 < υ < 1. Numer-ical evidence of the dominancy of the root s0x within the intervals in(5.61)-(5.63) with τ = 0.1 [s]

Figure 5.4: Spectral distribution of the roots

5.4 . UAV control: the tilting-rotors case

The analysis of the quadrotor endowed with tilting-rotors takes into consider-
ation the prescribed linearized conditions established in Section 5.3, additionally,
the small-angle approximation is extended to the tilt angles of the rotors β ,α , i.e.
Cβ ≈ 1, Sβ ≈ β , Cα ≈ 1 and Sα ≈ α . In this regard, the dynamic model in (5.1),
(5.2), (5.6) and (5.8) is linearized such that the corresponding representation in
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Figure 5.5: Time-domain solution

the frequency domains reads as:



X(s) =
1

mrs2 ((Fp1(s)+Fp3(s))β (s)) ,

Y (s) =
1

mrs2 (−(Fp2(s)+Fp4(s))α(s))

Z(s) =
1

mrs2 (T (s)−mrg) ,

ψ(s) =
1

Izs2 τψ(s),

φ(s) =
1

Ixs2

(
τφ (s)+ρφ (s)

)
,

θ(s) =
1

Iys2 (τθ (s)+ρθ (s))

(5.69)

It has been assumed that the rotational dynamics is faster than that of translation
such that for a large enough time, φ(s)T (s), θ(s)T (s)→ 0 since φ(s),θ(s),ψ(s)→
0. Additionally, the influence of the free-moments ε (Fp1(s)+Fp3(s))β (s) and
−ε (Fp2(s)+Fp4(s))α(s) is considered as a disturbance and denoted instead as
ρφ (s) and ρθ (s), respectively. In addition, it can be appreciated that the 6 DOFs
of the current quadrotor vehicle are decoupled which permits a separate treatment.
Additionally, the linearization holds if the vehicle operates at φ ,θ ,ψ ≈ 0 thus, the
attitude controllers must keep the vehicle at such operational point.
As in Section 5.3, the Z(s) and ψ(s) dynamics is addressed firstly as they provide
valuable information used in the sequel of the procedure. Thus, let T (s) and τψ(s)
be used as the respective control inputs for Z(s) and ψ(s) in (5.69). Regarding
the φ(s) and θ(s) motions of the vehicle, the corresponding control inputs τφ (s)
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and τθ (s) are defined as

τφ (s) = IxC
∗
φ (s)Eφ (s) and τθ (s) = IyC

∗
θ (s)Eθ (s) (5.70)

where

C ∗
φ (s) = kdφ

s+ kpφ
+

kiφ

s
and C ∗

θ (s) = kdθ
s+ kpθ

+
kiθ
s

(5.71)
correspond to linear PID controllers with gains kpφ

,kpθ
,kdφ

,kdθ
,kiφ ,kiθ > 0 since the

presence of disturbances could be neutralized by the effects of the integral term.
These controllers can be tuned by means of spectral methods.
As in Section 5.3, it is assumed that τψ(s)→ 0 and T (s)→ Tc = mrg thus, from
the in (5.5), (5.2) and (5.7), Fp1(s)+Fp3(s)→ Tc/2 and Fp2(s)+Fp4(s)→ Tc/2.
The latter is translated to (5.69) as follows:

X(s) =
Tc

2mrs2 β (s) and Y (s) =− Tc

2mrs2 α(s) (5.72)
These assumptions lead to define α(s) and β (s) as the control inputs that drive
the translational states of the system such that:

α(s) =−2mr

Tc
Cy(s)Ey(s) and β (s) =

2mr

Tc
Cx(s)Ex(s) (5.73)

with Cx(s), Cy(s), Ex(s) and Ey(s) being linear PD controllers and the error signals
as in (5.14)-(5.15).
The dynamics of the servomotors are neglected since, according to the results
reported in the literature (see for instance [163]–[166]), it is relatively faster than
that of the overall aircraft. Thus, the α(s) and β (s) angles are assumed to be
instantaneously tracked.
Lastly, the X(s) and θ(s) closed-loop dynamics of the quadrotor with tilting-rotors
is depicted as block diagrams in Figure 5.6. The diagram blocks regarding the Z(s)
and ψ(s) dynamics coincide with those of the typical quadrotor vehicle shown in
Figure 5.2.

From Figure 5.6, and recalling that the effect of the time-delay τ affects only
the translational motion, one can find that the characteristic quasipolynomials of
the concerned degrees of freedom are:

∆x(s : kpx ,kdx ,τ) = s2 + e−τsCx(s),
∆y(s : kpy ,kdy ,τ) = s2 + e−τsCy(s),
∆z(s : kpz ,kdz ,τ) = s2 + e−τsCz(s).

(5.74)

Since the three characteristic quasipolynomials above have the form of that in
(5.20), Proposition 5.3.2 is used to tune the controller gains.
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Figure 5.6: Block diagram representation of the quadrotor with tilting-rotors closed-loop system

5.5 . Simulation results

The actual section provides the results validating the proposed control scheme
and tuning criteria. In this regard, a set of detailed numerical simulations, including
the full nonlinear dynamics and the linearized one, was conducted. The parameters

Table 5.1: Parameters of the UAVs
Parameter Nominal value

mr 0.675 kg
Ix, Iy 0.271 kg m2

Iz 0.133 kg m2

ℓ 0.45 m
g 9.81 m/s2

ε 0.34 m

Table 5.2: Control gains: Typical quadrotor
DOF kp kd
x, y 1.658539 1.842677
z 7.91223 4.611587

φ , θ 10.80751 10.65158
ψ 10 15

⋆ x, y 2.8 2.15
⋆ z 8.1 3.64
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of the vehicles are listed in Table 5.1 meanwhile, the translational references to be
achieved and tracked can be found as:

xd(t) =



0 0 ≤ t < 20
20−t

10 20 < t < 30
t−30

5 −1 30 < t < 40
1− t−40

10 40 < t < 50
0 50 < t ≤ 70

yd(t) =



0 0 ≤ t < 10
1 10 < t < 20

1− t−20
5 20 < t < 30

−1 30 < t < 40
t−40

5 −1 40 < t < 50
0 50 < t ≤ 70

zd(t) =


2 0 ≤ t < 30

2− t−30
10 30 < t < 40

1 40 < t < 60
0 60 < t ≤ 70

(5.75)

where xd(t), yd(t) and zd(t) (given in [m]) denote the corresponding references and
t ≥ 0 stands for the time (in seconds [s]).
The study was conducted within the MATLAB/Simulink® 2018b environment,
running on an equipment with an 8GB RAM and an Inter® Core™ i5-8250 CPU
@ 1.60 GHz & 1.80 GHz processor. Finally, the simulations took into consideration
a time-delay τ of 0.1 [s]. Further details concerning the controller gains and the
behavior of each system are provided in the upcoming subsections.

5.5.1 . The typical quadrotor case
With base on Proposition 5.3.2, the controller of the altitude (z) was tuned.

The rightmost root was found to be s0z ≈ −5.85786437. On the other hand, for
the x and y controllers, Proposition 5.3.3 was used such that s0x = s0y =−2. The
results of the tuning criteria led to the control gains summarized in Table 5.2 where
the gains denoted by a ⋆ where computed (for comparison purposes) with base on

Table 5.3: Control gains: Quadrotor endowed with titling rotors
DOF kp kd ki
x, y, z 7.91223 4.611587
φ , θ 10 15 0.5
ψ 10 15

⋆ x, y, z 8.1 3.64
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Figure 5.7: Motion of the typical quadrotor vehicle: Left) Translationalstates. Right) Rotational states.
the results at [167] such that it was considered that σx,y,z = s0x,y,z to apply the
σ -stability criteria. In this matter, it is worth highlighting that with the given con-
trol gains sφ ,1 = sθ ,1 ≈ −9.515844632 and sφ ,2 = sθ ,2 ≈ −1.135739338 such that
sθ ,1 < s0x < sθ ,2 (respectively sφ ,1 < s0y < sφ ,2) thus, the overall dynamics of the
system can be considered to be slightly faster than that of the inner loop but still
bounded. The results of the numerical simulation depicted throughout Figure 5.7
suggest that such difference is acceptable since the UAV achieves and successfully
tracks the desired references.
In Figure 5.7, the left-column results correspond to the vehicle’s translational mo-
tion, while the right-column plots exhibit the UAV’s rotational behavior. In this
regard, the black signals stand for the reference values, the blue noisy signals cor-
respond to the response of the nonlinear system and the orange lines describe the
behavior of the linearized system. The signals in green depict the behavior of the
vehicle whose controllers were tuned with base on the results of [167].

As it can be appreciated in Figure 5.7, the vehicle reaches the desired transla-
tional references, moreover, the performance of the nonlinear system matches that
of the vehicle whose dynamics is provided by the linear model. Nevertheless, one
may pay special attention to the z motion as the behavior of the vehicle differs; in
this sense, the vehicle with nonlinear dynamics experiences some disturbances re-
lated to the real couplings existing due to the inherent nature of the UAV, however,
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the vehicle converges to the reference value in a relatively short time. Regarding the
rotational motion of the quadrotor, depicted in Figure 5.7, it comes to be evident
to relate the corresponding peaks on the signals to the corresponding translation
DOFs at which they are coupled, such that a change in the desired orientation
occurs as the translational desired behavior changes.
In comparison with previous results (see for instance [157], [168]) and the ones
depicted in green in Figure 5.7, the vehicle operates with no overshoot or oscilla-
tion during the transient phase. The latter occurs as the real part of the dominant
roots, for the case depicted in green, is lesser than the corresponding σ yet, these
roots have an imaginary component since it is impossible, to know the exact lo-
cation of the dominant roots meanwhile, the MID tuning criteria allows one to
place the dominant roots exactly over the real axis. A similar behavior can be
appreciated in the response of the quadrotor with tilting rotors.

5.5.2 . The tilting-rotors case
As discussed in Section 5.4, to tune the controllers regarding this quadrotor,

Proposition 5.3.2 was used thus, the control gains in Table 5.3 were found. The
results of the simulation are depicted throughout Figure 5.8 such that the trans-
lational motion is described by the plots at the left, and the plots at the right
column depict the rotational states of the corresponding vehicle. The response of
the servomotors is also depicted in the corresponding figures.

In comparison with the typical quadrotor vehicle, the translational states of
the system seem to follow a similar behavior than that previously obtained, never-
theless, Figure 5.8 shows the existence of a coupling between the three DOFs, in
this sense, one may recall the considerations assumed during the linearization and
controllers conception such that the couplings are related to the tilting-rotors and
the rotational dynamics.
Regarding the rotational motion of the system, depicted in Figure 5.8, it can be
appreciated that the states of the system remain near to 0 [deg] as the servomo-
tors’ action permits to decouple the rotational and translational motions, at some
point and under specific constrains. Nonetheless, the yaw angle seems to present
a large deviation from the desired value due to the influence of the servomotors
actuation which was neglected during the conception of the controllers yet, the
orientation tends to be stabilized with no considerable consequence.

5.6 . Chapter Summary

In this chapter, the MID property has been exploited to tune stabilizing con-
trollers of two representative aerial robotic systems. It has been shown by detailed
numerical simulations that, by means of the MID property, the effects of the time-
delayed feedback that degrade the translational’s motion of the vehicles can be
mitigated since a proper assignment of the rightmost root of the characteristic
function can be performed. As a consequence, the system’s convergence rate is
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Figure 5.8: Motion of the quadrotor vehicle endowedwith tilting-rotors:Left) Translational states. Right) Rotational states.
guaranteed to follow a prescribed behavior such that a fast non-oscillatory response
is appreciated. Specific conditions and their corresponding proofs were introduced
and detailed, leading to the control gains with respect to the time-delay value. The
latter could equally serve as a tuning methodology proposal whether a time-delay
can be induced in the feedback loop.
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6 - Bio-mechanical perspectives: Modeling
the CNS Action

This chapter is an extended version of the paper [95]

6.1 . Introduction

Another area of application exists, such as, human stance. In fact, the compre-
hension of human stance is a subject of growing interest since a principal contributor
to falls among older adults is an age-related decline in balance. As a matter of fact,
in older adults, falls are amongst the most common causes of accidental deaths,
and in non-fatal cases the costs related to the treatment of fall-related sequelae
are increasing as a consequence of the growing age of populations.

The passive biomechanics of human stance are unstable as they are comprised
of interconnected inverted pendulums that are each unstable. The human stance
system is the sensorimotor system that permits us to stand upright, walk, etc. Bal-
ance may be defined as the ability to maintain equilibrium in a gravitational field
by keeping or returning the center of body mass over its base of support [169]. As
such, successfulness of balance may be measured by the ability to perform quiet
stance, compensatory postural reactions and anticipatory postural responses. This
ability is also assessed by reaction time or the controller of the central nervous
system (CNS). Hence, simple balancing tasks may be investigated by a mechanical
analysis. Stick balancing on fingertip [16], [18], quiet standing [25], [170]–[174],
ball and beam balancing [175] and standing on a balance board [176]–[178] have
been deeply researched. Indeed, inquiries are based on the mechanical model of
a single inverted pendulum, more complex tasks require multi-Degree-Of-Freedom
(DOF) models.

The balance board has a configurable geometry: the radius R of the wheels and
the elevation h between the top of the wheel and the board can be adjusted. Pre-
liminary computations and experiments performed by human subjects showed that
the aforementioned parameters highly affect the stabilizability of the associated
mathematical model. Standing on the balance board becomes harder as the wheel
radius and the board elevation decrease. In case of greater radii (R > 100 mm),
balancing subjects use the musculature at the ankle to maintain the equilibrium, so
that the human body can be considered as a single inverted pendulum. In contrast,
hip strategy is dominant for smaller radii, which indicates a double inverted pen-
dulum model for the human body. In this work, greater wheel radii are considered
and therefore a 2-DOF mechanical model is analyzed involving the balance board
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and the human body.

Note that even though reaction delays of different sensory systems are differ-
ent, they are still at the same scale [179]. Consequently, in most of the studies
related to human stance, the delays associated with different sensory organs are
assumed to be the same [17], [176]. In case of quiet stance, the feedback delay is
estimated to be 100-200 ms [20], [180]. Balancing on an unstable, moving surface
such as the balance board or skateboard is a more complicated task, therefore the
reaction time is higher: 150-300 ms [17], [176], [181].

This chapter considers the stabilization of a rolling balance board by means
of the multiplicity-induced-dominancy property. A 2-DOF mechanical model of a
human stance on a rolling balance board is analyzed in the sagittal plane. The
human body is modeled by an inverted pendulum which connects to the balance
board through the ankle joint. The system is stabilized by the ankle torque man-
aged by the central nervous system (CNS). The action of the CNS is modeled
by a delayed full state feedback: a pointwise delay stands for all latencies in the
neuromechanical system (reaction time, neuromechanical lag, etc.). The aim of
the chapter is to achieve a good occurrence in terms of the decay rate, it shows the
links with dominancy and with the exponential stability property of the solution
in other words, we aim at assigning dominant multiple real roots with admissible
codimensions and the MID property is utilized for the mechanical model of human
stance on rolling balance board in the sagittal plane.

The chapter is organized as follows. In Section 6.2, human stance on a rolling
balance board in the sagittal plane model is described. Section 6.3 is devoted to
the mathematical model. The main result is presented in Section 6.4. Finally,
Section 6.5 is dedicated to the illustration of the obtained result.

6.2 . Mechanical model

Human stance on a rolling balance board in the sagittal plane is described by
a 2-DOF mechanical model as shown in Figure 6.1. Similar mechanical models
involving a double inverted pendulum can be found in the corresponding literature
for various human stance tasks [86], [182]–[185]. The human body is modeled as a
homogeneous rigid bar and the balance board is assumed to roll on the horizontal
ground. The mass and the height of the human body are denoted by mh and l
respectively, therefore the mass moment of inertia of the human body becomes
Ih = mhl2/12 for the center of gravity.

The ankle height is denoted by f (see Figure 6.1). The ankle joint is located
on the left side of the symmetry axis of the balance board expressed by distance
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Figure 6.1: 2-DOF mechanical model of human stance on a uniaxialrolling balance board in the sagittal plane.
e. The intrinsic ankle stiffness was considered as a torsional spring of constant
stiffness

st = 0.8mhg
l
2
, (6.1)

following [185]–[187].

Experimental estimation of the passive damping at the ankle joint is more
uncertain than that of the passive stiffness and it also changes with age [174],
[188]. Moreover, in case of a single inverted pendulum model subject to delayed
PD feedback, the effect of passive damping on the critical delay is negligible [189].
Therefore, here, passive damping at the ankle joint is neglected.

The elements of the balance board were made from plywood with 21 mm thick-
ness. The geometry of the balance board was designed so that two parameters,
the wheel radius R and the board elevation h, can be adjusted. The difficulty of
standing on the balance board can be influenced by these two parameters. The
location of the center of gravity lb, the mass mb and the mass moment of inertia
Ib of the balance board were calculated based on the actual set of the adjustable
parameters R and h.

The governing equation of the motion was derived with Lagrange’s equation
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of the second kind and were linearized about the upper unstable equilibrium. The
linearized equation of motion reads

Mq̈(t)+Sq(t) = Q(t), (6.2)
where M is the mass matrix, S is the stiffness matrix, and Q(t) stands for the
vector of generalized forces. The vector of generalized coordinates is

q(t) =
[

ϕ(t)
ϑ(t)

]
(6.3)

where ϕ is the inclination angle of the human body and ϑ is the inclination angle
of the balance board, both measured from the equilibrium position. The vector of
generalized forces reads

Q(t) = HT (t), (6.4)
where

H =

[
1
−1

]
. (6.5)

The operation of the central nervous system (CNS) was modeled as full state
feedback [q(t), q̇(t)]T with a constant lumped delay, which involves all the latencies
(reaction time, neuromuscular lag) in the feedback loop. The control torque acts
at the ankle joint and becomes

T (t) = Pϕϕ(t − τ)+Dϕ ϕ̇(t − τ)+Pϑ ϑ(t − τ)+Dϑ ϑ̇(t − τ) (6.6)
where Pϕ , Pϑ , Dϕ and Dϑ are the proportional and derivative control gains for

ϕ and ϑ ; see [14].

6.3 . Mathematical model

The system can be written in state space form by introducing

x(t) = [q(t), q̇(t)]T (6.7)
Reformulation of (6.2) gives a compact form:

ẋ(t) = Ax(t)+Bu(t), (6.8)
with

u(t) = Kx(t − τ) (6.9)
where

K =
[
Pϕ Pϑ Dϕ Dϑ

]
. (6.10)
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The state matrix is

A =

[
0 I

−M−1S 0

]
(6.11)

where 0 and I stand for the 2× 2 zero and identity matrices and the input
matrix is

B =
[
0 0 (M−1H)T

]T (6.12)
The characteristic equation of (6.8)-(6.9) can be given in the form

det(λ I−A−BKe−sτ) = 0, (6.13)
which reduces to 

∆(s) = P0(s)+Pτ(s)e−sτ , with

P0(s) = s4 +a2s2 +a0, and

Pτ(s) = b3s3 +b2s2 +b1s+b0.

(6.14)

Note that in particular, P0(s) is a polynomial which has either real roots or
complex conjugate roots. It is important to recall that for this type of model, the
approach proposed in [77] does not work since it requires a real-rooted polynomial
P0. Since a0 is typically a negative parameter, the change of variables (s̃ → 4

√
−a0 s)

allows to reduce the analysis to the normalized characteristic function:
∆̃(s) = P̃0(s̃)+ P̃τ(s̃)e−s̃τ̃ with

P̃0(s̃) = s̃4 + ã2s̃2 −1 and

P̃τ(s̃) = b̃3s̃3 + b̃2s̃2 + b̃1s̃+ b̃0,

where


τ̃ = 4

√
−a0 τ,

ã2 = a2/
√
−a0,

b̃k = bk/(−a0)
4−k

4 for k ∈ {0, . . . ,3}.
(6.15)

For the sake of simplicity, the symbol .̃ is omitted. In the sequel, the normalized
quasipolynomial function is studied:

∆(s) = s4 +a2s2 −1+
(
b3s3 +b2s2 +b1s+b0

)
e−sτ (6.16)

where a2 stands for the plant parameter which contains all the stiffness and
inertial terms. Coefficients bk can be considered as control parameters since they
are the linear combination of the control gains:
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b0 =b0(Pϕ ,Pϑ ), (6.17)
b1 =b1(Dϕ ,Dϑ ), (6.18)
b2 =b2(Pϕ ,Pϑ ), (6.19)
b3 =b3(Dϕ ,Dϑ ). (6.20)

Finally, the transformation (6.15) is used to reconstruct the appropriate stabi-
lizing conditions for (6.14).
Remark 6.3.1 It should be mentioned that the particular structure of the system’s
dynamics does not allow the use of any of the existing MID results straightfor-
wardly. Thus, for instance, due to the sparsity of the open-loop transfer function,
the generic MID cannot be reached and the characterization of the generic MID
proposed in [55] does not apply. Moreover, the corresponding plant is not real
rooted but its roots are located on real and imaginary axis and the ideas and the
approach proposed in [77] cannot apply.

6.4 . Main results

Theorem 6.4.1 Let ∆ be the quasipolynomial given in (6.16). If the parameters
a2 and τ are left free, then the maximal multiplicity of a given root s0 of (6.16) is
5.

Proof It is recovered that the admissible multiplicity of a real spectral values
of the characteristic quasipolynomial is bounded by the generic Pólya and Szegő
bound, which is equal to the degree of the corresponding quasipolynomial. In
particular, according to Definition 1.1.2, the degree of ∆ in (6.16) is equal to
degs(∆) = PSB = 8. On the other hand, due to the sparsity of the open-loop
polynomial (P0(s) = s4 +a2s2 −1), such a bound cannot be reached. ■

Theorem 6.4.2 The root s0 of (6.16) has multiplicity 5 if, and only if, the system
parameters satisfy:

bk = es0 τ
τ

k−4 fk(s0,τ), k ∈ J0,3K (6.21)
where fk are polynomials in s0 parametrized in a2 and τ which will be given later,
such that, f0 and f1 are of degree less than or equal to 3 while f2 and f3 are of
degree 3. Moreover, if (6.21) is satisfied then s0 is necessarily dominant).

Proof First, the vanishing of the quasipolynomial ∆ given in (6.16) yields the
elimination of the exponential term as a rational function in s:

e−τ s =−P0(s)
Pτ(s)

(6.22)
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where

P0(s) =s4 +a2s2 −1, (6.23)
Pτ(s) =b3s3 +b2s2 +b1s+b0. (6.24)

Next, to investigate potential roots with algebraic multiplicity 5, one substitutes
the obtained equality (6.22) in the ideal I5 generated by the first four derivatives
of ∆, that is, I5 =< ∂s∆, ∂ 2

s ∆,∂ 3
s ∆, ∂ 4

s ∆ >. This allows to investigate the variety
of four algebraic equations in 7 unknowns a2, s, τ, (bk)k∈J0,3K:

P0 (s)Pτ (s)τ +P′
0 (s)Pτ (s)−P′

τ (s)P0 (s) = 0, (6.25)
−P0 (s)Pτ (s)τ

2 +2P′
τ (s)P0 (s)τ +P(2)

0 (s)Pτ (s)−P(2)
τ (s)P0 (s) = 0, (6.26)

P0 (s)Pτ (s)τ
3 −3P′

τ (s)P0 (s)τ
2 +3P(2)

τ (s)P0 (s)τ +24sPτ (s) = 0, (6.27)
−P0 (s)Pτ (s)τ

4 +4P′
τ (s)P0 (s)τ

3 −6P(2)
τ (s)P0 (s)τ

2 = 0. (6.28)

The obtained system is a linear system in the unknowns (bk)k∈J0,3K. Using
standard elimination techniques, one obtains a set of three solutions; the first one,
asserts that bk = 0 for k ∈ J0,3K, the second one corresponds to s as a root of the
open-loop polynomial (s4 + a2s2 − 1 = 0) with b2 = −s3b1 − s2b0 − sa2b1 − sb3 −
a2b0, which is inconsistent with respect to the transcendental-term elimination
(6.22). So that, these two solutions are discarded. The last solution corresponds to
s = s0 as a real root of an elimination polynomial of degree 4 in s, and bk, k ∈ J0,3K
as rational functions in (s0, τ) given by

bk = es0 τ
τ

k−4 fk(s0,τ), k ∈ J0,3K, (6.29)

with

fk(s0,τ) =
3

∑
j=0

αk, j(τ)τ
j s j, k ∈ J0,3K, (6.30)

The coefficients of the delay-dependent polynomials fk, k ∈ J0,3K are given by:
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α0,3 =−
23P′′

0 (0)τ2

6
+

2348
3

, (6.31)
α0,2 =

(
−
(P′′

0 (0))2

12
− 2

3

)
τ

4 −
5P′′

0 (0)τ2

6
+5268, (6.32)

α0,1 =

(
−

2 (P′′
0 (0))2

3
+

26
3

)
τ

4 +
806P′′

0 (0)τ2

3
+7992, (6.33)

α0,0 =2056+
P′′

0 (0)τ6

6
+

(
−
(
P′′

0 (0)
)2 − 254

3

)
τ

4 +510P′′
0 (0)τ

2, (6.34)
α1,3 =−

P′′
0 (0)τ2

2
+196, α1,2 =

5P′′
0 (0)τ2

2
+1380, (6.35)

α1,1 =2τ
4 +74P′′

0 (0)τ
2 +2136, (6.36)

α1,0 =−22τ
4 +138P′′

0 (0)τ
2 +552, (6.37)

α2,3 =18, (6.38)
α2,2 =

P′′
0 (0)τ2

2
+138, (6.39)

α2,1 =
15P′′

0 (0)τ2

2
+228, (6.40)

α2,0 =
29P′′

0 (0)τ2

2
−2τ

4 +60, (6.41)
α3,3 =

2
3
, (6.42)

α3,2 =6, α3,1 =
P′′

0 (0)τ2

6
+12, (6.43)

α3,0 =
P′′

0 (0)τ2

2
+4, (6.44)

which concludes the announced result.
■

In our approach, we derive a bound on the imaginary part of roots of the
quasipolynomial in the complex right half-plane. In fact, Algorithm 2 gives an
appropriate bound on the imaginary part of the characteristic roots (see [91]).

6.5 . Illustration example

For the sake of simplicity, case e = 0 is analyzed. Consequently, the upper
(unstable) equilibrium becomes q0 = 0. The human mass and height are set to
mh = 70 kg, l = 1.7 m, the wheel radius is R = 0.25 m, the board elevation is ĥ = 0.

Numerical simulations were performed in order to analyze the dynamics of the
human body and the balance board for different combinations of control gains.
First, the delay was fixed to 0.1s [174], [190], [191] and the characteristic root s0
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Figure 6.2: 2-DOF mechanical model of human stance on a uniaxialrolling balance board in the sagittal plane.
Table 6.1: Result of MID-based control design

Parameter Value
Pϕ,MID 2854.4
Pϑ ,MID 1040.34
Dϕ,MID 1082.98
Dϑ ,MID 335.735
s0 -1.63368
a2 7.421572

with multiplicity 5 was determined. Next, the corresponding control parameters
b0,b1,b2,b3 and also the control gains Pϕ , Pϑ , Dϕ , Dϑ were calculated. The results
are summarized in Table 6.1. The control gains obtained by the MID-based control
design are denoted by Pi,MID and Di,MID, where i = ϕ,ϑ . The corresponding time
history of human body and balance board angle were determined by numerical
simulation. Then, numerical simulations determined the control gains Pϕ , Pϑ , and
Dϕ , Dϑ perturbed by ±5%. The numerical results can be seen in Figure 6.2.

The initial function over t ∈ (−τ,0) interval was set to the constant value of
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Figure 6.3: Spectrum distribution of the characteristic equation
0.01 rad both for the human body and the balance board angle. One can observe
in the middle subplot of Figure 6.2 that the fastest decay rate of the solution is
associated with Pϕ,MID, Pϑ ,MID, Dϕ,MID, Dϑ ,MID gains obtained by the intermediate
MID property.

Figure 6.3 shows the characteristic roots in the considered case.

6.6 . Chapter Summary

In this chapter, we extend the validity of the control-oriented MID property.
As a matter of fact, the result in [77] applies only for systems with real-rooted
open-loop characteristic polynomial. Here, we have employed the MID property
to P0(s), a plant not only exhibiting real roots but also complex conjugate roots.
Furthermore, a biomechanical application of the MID is considered. A 2-DOF
mechanical model of a human stance on a rolling balance board is analyzed in
the sagittal plane. The human body is modeled by an inverted pendulum which
connects to the balance board through the ankle joint. The system is stabilized
by the ankle torque managed by the central nervous system (CNS). The action of
the CNS is modeled by a delayed full state feedback.
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7 - Conclusion and Prospects

7.1 . Conclusion

In this dissertation, we considered the problem of exponential stability of linear
time-delay systems of neutral type by means of the Multiplicity-Induced-Dominancy
(MID) approach. Roughly, this spectral property asserts that, in some cases, the
characteristic root with maximal multiplicity is necessarily the rightmost root of
the spectrum, that is, this given root of the characteristic function matches the
spectral abscissa so that the associated spectral value is dominant.

To cite and assess what has been done on the MID property so far, let us
consider the following generic time-delay equation

n

∑
k=0

akx(k)(t)+
m

∑
k=0

αkx(k)(t − τ) = 0, (7.1)
where x is real-valued, ak,αk ∈ R, and the delay τ > 0. The above time-delay
equation in (7.1) is of retarded type if m < n and is of neutral type if n = m.

The MID property proved to be successful in the tackling of the following cases:

1. Time-delay systems of retarded type:

• The case: (n,m)=(2,0) in [53]

• The case: (n,m)=(2,1) in [50], [82]

• The case of ∀n ∈ N and m = n−1 in [55], [156]

2. Time-delay systems of neutral type:

• The case: (n,m)=(1,1) in [56]

Note that there are more published results on the time-delay systems of retarded
type than neutral time-delay systems. In our work, we focus more on the study of
the MID property for neutral time-delay equations. We first extended the result
in [56] to the case of (n,m) = (2,2); see [57]. For spectral values of second-order
neutral time-delay equations with strictly intermediate admissible multiplicities, the
only contributions are provided in [78] where the MID property is extended to codi-
mension 4 i.e. a given root is of intermediate multiplicity equal to 4. We extended
in a second step the result in [78], where we improved the understanding and the
characterization of the MID property for second-order neutral time-delay equations
in the presence of real spectral values with any admissible multiplicity; see [91]. In
fact, we explored the effect of multiple roots with admissible multiplicities exhibit-
ing, under appropriate conditions, the validity of the MID property for second-order
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neutral time-delay differential equations with a single delay. We summarized the
MID methodology in a five-steps algorithm:

1. Forcing multiplicity (maximal or intermediate)

2. Normalization of the characteristic function

3. Factorization of the characteristic function (integral representation)

4. Frequency bound

5. Dominancy

that may be extended to tackle the design of higher-order systems.

More recently, the MID property was shown in the case of arbitrary n ≥ m;
which covers the case of neutral equations; see [76].

As an illustration, we successfully applied this methodology to:

1. Unmanned Aerial Vehicles (UAVs)

2. Human stance control on a rolling balance board

As a matter of fact, we first exploited the effects of time-delays on the stability
of UAVs; see [92]. Namely, we provided a symbolic/numeric application of the
MID property in the control of UAVs rotorcrafts featuring time-delays. Secondly,
we considered the stabilization of a rolling balance board by means of the MID
property; see [95]. We extended the validity of the control-oriented MID prop-
erty and we achieved a good occurrence in terms of decay rate. We also showed
the links with dominancy and with the exponential stability property of the solution.

7.2 . Prospects

In this dissertation, we terminated the study of the stabilization of time-delay
systems of neutral type up to degree 2, and that allows to cover some interesting
applications; see above. However, this does not prevent us from opening up to
other interesting questions which revolves around our approach. Hereafter, some
of these open questions are described.

Real-time implementation: We investigated the effects of time-delays on
the stability of UAVs [92], where symbolic/numeric application of the MID property
is provided. Up to our knowledge, a similar analytical and/or symbolic/numerical
method to accurately determine the gains of the controllers for quadrotors, under
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the conditions herein considered, is not available in current related literature. As
a short-term application, we would like to try in the near future to organize the
experimental validation of the approach for the quadrotors.

Further extensions of the MID property: After having worked on some
extensions of the MID property, we are still curious to look at other extensions.
Several configurations of the MID property are of our interest:

• In the application part of our results, we were interested in human stance
problems. We therefore applied the MID property to stabilize the rolling
balance board. Indeed, the result in [77] applied only for systems with real-
rooted open-loop characteristic polynomial. Relaxing such a requirement to
systems with open-loop characteristic polynomials having not only real roots
but also complex conjugate roots is a further theoretical development that
we would like to investigate.

• In our results, we basically extended the results on the MID property to
second-order time-delay equations. So far, the extensions we have made
suggest to investigate the MID property for higher orders in configurations of
admissible spectral values of strictly intermediate multiplicity. Furthermore,
a more ambitious endeavour would be the extension of the result in [76] to
arbitrary neutral equations. However, this may require an indepth knowledge
of hypergeometric functions.

• Further questions arise. Is it possible to choose the systems’ parameters in
such a way there exist a complex number s0 and its complex conjugate s̄0

multiple characteristics roots ? Under this choice of the systems’ parameters,
do s0 and its complex conjugate s̄0 are necessarily dominants roots ? These
questions are considered in [58] for second order time-delay equation of
retarded type (GMID case). Therefore, another important point in theory
is to extend the MID property to complex conjugate roots of intermediate
multiplicity (IMID case).

MID property for multi-delay (commensurate delays) equations:
As mentioned in the introduction, the MID property has been shown for the case
of a delayed scalar differential equation of retarded type with two delays; see
[87], However, the question of extending the results on the MID property to a
neutral time-delay equation with two (or more) delays remains open. This suggest
to investigate and explore the GMID property for multi-delay equations. In this
regard, let consider the simplest case, generic time-delay scalar equation of neutral
type:

ẋ(t)+a0 x(t)+α1 ẋ(t − τ1)+α0 x(t − τ1)+β1 ẋ(t − τ2)+β0 x(t − τ1) = 0, (7.2)
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where a0 and αi,βi for i= 0,1 are real coefficients and τi for i= 0,1 are positive
delays. The corresponding characteristic equation of (7.2) is given by the following
quasipolynomial function

∆(s) = s+a0 +(α1 s+α0)e−τ1 s +(β1 s+β0)e−τ2 s (7.3)
of degree degs(∆) = 5. Let s0 be a real root of maximal multiplicity 5 (GMID)

of ∆ in (7.3). Then, the quasipolynomial function ∆ can be factorized as follow:

∆(s) = (s− s)5
∫ 1

0

(
q1(t)e−τ1 (s−s0)+q2(t)e−τ2 (s−s0)

)
dt, (7.4)

where q1 and q2 are two polynomials depending in t and in the two parameters
(delays) τ1 and τ2.

The techniques we use in our approach do not apply directly to the system
described above. However, this does not prevent us from writing our quasipolyno-
mial function under the form of a linear combination of hypergeometric functions
which have different arguments. In fact, the quasipolynomial function ∆ can be
written under the following combination:

∆(z) = α Φ(a,b,τ1 z)+β Φ(a,b,τ2 z). (7.5)
Unfortunately there exist no results that give informations about the distribu-

tion of the zeros of this kind of linear combination of hypergeometric functions.
Therefore, thinking about methodologies for analysing the integrals in (7.4) and
finding other ways to generalise is of our interest.

Nonlinear time-delay problems: We could be interested in time-delay
nonlinear problems [192]–[196] which intervene in problems very close to what
we have already investigated until now. For instance, consider the problem of
quenching the oscillations occurring in the Duffing oscillator:

ẍ(t)+2η ω ẋ(t)+ω
2 x(t)+ γ x3(t)+u(t − τ) = 0. (7.6)

where η is the damping factor (0 < η < 1), ω describes the natural frequency,
γ corresponds to the nonlinearity coefficient, α0, α1, and α2 (α2 ̸= 0) are real
coefficients of the delayed external force given by

u(t) = α2 ẍ(t − τ)+α1 ẋ(t − τ)+α0 x(t − τ). (7.7)
The controller structure we consider relies on the knowledge of the position x(t),
the speed ẋ(t) and the acceleration ẍ(t), all of which are delayed. This naturally
yields a neutral functional differential equation. We are interested in exploiting
the MID property in tuning the gains of such a controller to render the linearized
closed-loop system stable, which, in particular, enables the explicit derivation of
the delay margin.
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When the delay reaches the latter critical value, the spectrum is strictly dom-
inated by a multiple root at zero (with geometric multiplicity one) making the
trivial equilibrium point non hyperbolic and of Bogdanov-Takens type. The re-
sulting configuration may be tackled by approximating the local nonlinear infinite
dimensional dynamics by the corresponding finite dimensional dynamics occurring
in the center manifold. Hence, it is important to establish a parametric analysis
on the controller gains to investigate the central dynamics stability.
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A - Proofs of some technical lemmas

Proof[ of Lemma 3.5.3] Let z0 = σ + ι̇ω ∈ R∗+ ι̇R be as in the statement.
Thanks to Corollary 3.5.1, one may assume that σ > 0. Since z0 is a root of ∆̂,
one has

ez0(z2
0 −6z0 +12) = z2

0 +6z0 +12, (A.1)
and therefore, in particular,

|ez0 |2|z2
0 −6z0 +12|2 = |z2

0 +6z0 +12|2, (A.2)
which in turn yields

(ω4 +(2σ
2 −12σ +12)ω2 +σ

4 −12σ
3 +60σ

2 −144σ +144)e2σ = ω
4 +(2σ

2

+12σ +12)ω2 +σ
4 +12σ

3 +60σ
2 +144σ +144. (A.3)

Furthermore, since e2σ is lower bounded by 1+2σ +2σ2 + 4
3 σ3, one deduces

that

(2σ +2σ
2 +

4
3

σ
3)ω4 +((2σ

2 −12σ +12)(1+2σ +2σ
2 +

4
3

σ
3)−2σ

2 −12σ

−12)ω2 +(σ4 −12σ
3 +60σ

2 −144σ +144)(1+2σ +2σ
2 +

4
3

σ
3)

−σ
4 −12σ

3 −60σ
2 −144σ −144 < 0. (A.4)

Now, setting Ω = ω2, we define f : Ω ∈ R → R the following second degree
polynomial

f (Ω) = (2x+2x2 +
4
3

x3)Ω2 +((2x2 −12x+12)(1+2x+2x2 +
4
3

x3)−2x2 −12x

−12)Ω+(x4 −12x3 +60x2 −144x+144)(1+2x+2x2 +
4
3

x3)− x4 −12x3

−60x2 −144x−144, (A.5)
the discriminant of which is given by

D(x) = x5D̃(x), where D̃(x) =−256
3

x3 +256x2 +320x+768. (A.6)
Since x > 0, the sign of the discriminant D is equal to that of D̃, which admits

a unique real root given by
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x0 =
(59+8

√
43)

2
3 +2(59+8

√
43)

1
3 +9

2(59+8
√

43)
1
3

, (A.7)
owing to the Cardan-Tartaglia method. Hence, the discriminant D admits zero

as solution and a unique non-zero real solution x0, on the one hand. On the
other hand, it is negative in the interval (x0,+∞) and tends towards −∞ at ∞.
Consequently, the discriminant D is strictly positive for every x ∈ (0,x0).

In what follows, one is only interested in the latter interval in which the dis-
criminant D is strictly positive. In this case, f must admit two real roots, given
by

Ω±(x) =
(−2x3 +9x2 ±2

√
−12x4 +36x3 +45x2 +108x+3x)x

2x2 +3x+3
. (A.8)

The aim, now, is to determine a bound for the square of the frequency Ω. First,
One may remark that the quantity given by

Ω+(x)−Ω−(x) =
8x
√
−3(x3 −3x2 − 15

4 x−9)x

2x2 +3x+3
(A.9)

is strictly positive for every x ∈ (0,x0), so that Ω+ is the greatest solution.
Therefore, we shall investigate the maximum of the branch Ω+, by studying the
vanishing of its first derivative, i.e.,

Ω
′
+(x) =−

6x(4x4 −15x2 −45x−9)
√

−4x
(
x3 −3x2 − 15

4 x−9
)

(−4x4 +12x3 +15x2 +36x)
1
3 (2x2 +3x+3)2

−
8
√

3x(6x5 +9x4 − 27x3

2 − 297x2

4 −108x− 243
2 )

(−4x4 +12x3 +15x2 +36x)
1
3 (2x2 +3x+3)2

= 0. (A.10)
Or, equivalently, one may investigate the vanishing of its numerator, that is,

− ((24x4 −90x2 −270x−54)

√
−4x(x3 −3x2 − 15

4
x−9)+8

√
3(6x5 +9x4

− 27x3

2
− 297x2

4
−108x− 243

2
))x = 0. (A.11)

By isolating the term
√

−4x(x3 −3x2 − 15
4 x−9)

−48(2x−3)(8x7 −36x6 −18x5 +81x4 +594x3 −243x2 −1188x−2916)

(2x2 +3x+3)2 = 0. (A.12)
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Figure A.1: The discriminant D of f .

Figure A.2: Graph of Ω+ (red) and Ω− (blue).

The polynomial 2x−3 admits one positive root, x∗1 =
3
2 , corresponding to the

point which minimizes the solution Ω−, while the polynomial 2x2+3x+3 is strictly
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positive. Hence, let us investigate the polynomial

P(x) = 8x7 −36x6 −18x5 +81x4 +594x3 −243x2 −1188x−2916. (A.13)
To do so, we need to lower the degree to 4 by computing its third-order

derivative

P(3)(x) = 1680x4 −4320x3 −1080x2 +1944x+3564, (A.14)
the discriminant of which is negative. More precisely, it admits exactly two real

roots denoted by x3,1 and x3,2 and which may be explicitly computed by the Ferrari
method. Furthermore, one may remark that 0 < x3,1 < x3,2 < x0. As a result,
the above polynomial has an alternating sign, which means that the second-order
derivative of P, i.e.,

P
′′
(x) = 336x5 −1080x4 −360x3 +972x2 +3564x−486, (A.15)

has an alternating monotonicity. Namely, it increases from P
′′
(0) < 0 to

P
′′
(x3,1)> 0, it decreases from P

′′
(x3,1) to P

′′
(x3,2)< 0 and by computing its limit

at ∞, one may see that it increases again from P
′′
(x3,2) to ∞. Then, one deduces

that the polynomial given in (A.15) admits three positive roots denoted by x2,1,

x2,2 and x2,3. Approximating these roots by a numerical algorithm, one infers that
x2,1 < x3,1 < x2,2 < x3,2 < x2,3 < x0. Along the same lines, one may deduce that the
derivative of P,

P
′
(x) = 56x6 −216x5 −90x4 +324x3 +1782x2 −486x−1188, (A.16)

admits one positive root, denoted by x1,1 such that x2,1 < x1,1 < x3,1. Then,
with the same analysis, one may also deduce that the polynomial P admits a unique
positive root denoted by x∗2 such that x2,3 < x∗2 < x0.

Using a numerical algorithm, one may approximate this unique solution by
{x∗2 ≈ 2.72}, which corresponds to the point that maximizes the solution Ω+ at
Ω∗

+ ≈ 9.13. As a result, ω is bounded by ω∗ ≈ 3.02, that is, 0 < ω ≤ 3.02 < π as
required.

The spectrum distribution of the characteristic function ∆̂ is represented in
Figure 3.2 which permits to visualize the zero-level curves of the real and imaginary
parts of the quasipolynomial ∆̂ over the complex plane, see for instance [197].
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Figure A.3: Graphs of P (red), P′ (blue), P2 (brown) and P3 (green).

Proof[of lemma 3.5.4]

Note that if ι̇ ρ is a root of ∆̂, then
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∆̂(ι̇ ξ ) = 0 ⇐⇒
(
−ξ

2 +12+ξ
2C(ξ )−6ξ S(ξ )−12C(ξ )

)
+ ι̇
(
−6ξ −ξ

2 S(ξ )−6ξ C(ξ )+12S(ξ )
)
= 0

∆̂(ι̇ ξ ) = 0 ⇐⇒
(
−ξ

2 +12+ξ
2C(ξ )−6ξ S(ξ )−12C(ξ )

)
+ ι̇
(
−6ξ −ξ

2 S(ξ )−6ξ C(ξ )+12S(ξ )
)
= 0

⇐⇒

{
−ξ 2 +12+ξ 2C(ξ )−6ξ S(ξ )−12C(ξ ) = 0
−6ξ −ξ 2 S(ξ )−6ξ C(ξ )+12S(ξ ) = 0

⇐⇒

{
−ξ 2 +12+

(
ξ 2 −12

)
C(ξ )−6ξ S(ξ ) = 0(

−ξ 2 +12
)

S(ξ )−6ξ C(ξ )−6ξ = 0

⇐⇒ R−ξ

(
ξ 2 −12
−6ξ

)
=

(
ξ 2 −12

6ξ

)
⇐⇒ R− ξ

2
R− ξ

2

(
ξ 2 −12
−6ξ

)
=

(
ξ 2 −12

6ξ

)
⇐⇒ R− ξ

2

(
ξ 2 −12
−6ξ

)
= R−1

− ξ

2

(
ξ 2 −12

6ξ

)
⇐⇒ R− ξ

2

(
ξ 2 −12
−6ξ

)
= R ξ

2

(
ξ 2 −12

6ξ

)
⇐⇒ −

(
ξ

2 −12
)

S(
ξ

2
)−6ξ C(

ξ

2
) =

(
ξ

2 −12
)

S(
ξ

2
)+6ξ C(

ξ

2
)

⇐⇒ −2
(
ξ

2 −12
)

S(
ξ

2
) = 12ξ C(

ξ

2
)

⇐⇒
(
12−ξ

2) S(
ξ

2
) = 6ξ C(

ξ

2
)

⇐⇒
(
12−ξ

2) S( ξ

2 )

C( ξ

2 )
= 6ξ

⇐⇒
S( ξ

2 )

C( ξ

2 )
=

6ξ

12−ξ 2

⇐⇒ tan(
ξ

2
) =

6ξ

12−ξ 2

where C(•) = cos(•), S(•) = sin(•) and

Rξ =

(
C(ξ ) −S(ξ )
S(ξ ) C(ξ )

)
(A.17)

such that the following properties hold

R−1
ξ

= Rξ , Rξ1+ξ2 = Rξ1 ·Rξ2 . (A.18)
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Figure A.4: Plot of solutions of the equation tan(ξ ) = 3ξ

3−ξ 2 .

Proof[of lemma 4.5.1] It follows immediately from the normalization that s0

is a root of multiplicity 3 of ∆ if, and only if, 0 is a root of multiplicity 3 of
∆̃. As a matter of fact, zero is a root of multiplicity 3 of ∆̃ if, and only if,
∆̃(0) = ∆̃′(0) = ∆̃(2)(0) = 0. Hence, we obtain the linear system

b0 +β0 =−β0 +β1 +b1 = 2+β0 −2β1 +2β2 = 0 (A.19)
whose solution is (β0,β1,β2) = (−b0,−b0 −b1,−1− b0

2 −b1), where

b0 =
(
s0

2 +a1 s0 +a0
)

τ2,

b1 = 2τ
(
s0 +

1
2 a1
)

β0 = τ2
(
α2 s0

2 +α1 s0 +α0
)

e−s0 τ ,

β1 = 2τ
(
α2 s0 +

1
2 α1

)
e−s0 τ ,

β2 = α2 e−s0 τ ,

(A.20)

which completes the proof. ■
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Proof[ of lemma 4.5.2] The polynomial qδ ,υ admits two roots given by

t± =

(
−υ ±

√
υ2 −2δ

)
δ

. (A.21)
Since, for υ2 − 2δ < 0, the polynomial qδ ,υ does not admit real roots, then

qδ ,υ has a constant sign in (0,1). If υ2 −2δ ≥ 0, then qδ ,υ admits two real roots
t±; sub-cases are to be considered with respect to the sign of δ .

1. If δ > 0, then t− ≤ t+ and the assumption υ2 − 2δ ≥ 0 is equivalent to
υ ≤−

√
2δ or υ ≥

√
2δ . Since δ > 0, one has

δ > 0 ⇐⇒ υ
2 −2δ︸ ︷︷ ︸

≥0 by assumption

< υ
2

⇐⇒
√

υ2 −2δ < |υ |

⇐⇒ 1
δ

(
−|υ |+

√
υ2 −2δ

)
< 0.

The latter inequality is split in two cases.

(a) If υ ≥
√

2δ , then t+ < 0. As a result, qδ ,υ has no roots in (0,1) which
guarantees its sign constancy.

(b) If υ ≤−
√

2δ , then t− > 0. In this case, we need to look for conditions
guaranteeing that t− ≥ 1.

t− ≥ 1 ⇐⇒ 1
δ

(
−υ −

√
υ2 −2δ

)
≥ 1

⇐⇒ −υ −
√

υ2 −2δ ≥ δ (since δ > 0)

⇐⇒
√

υ2 −2δ ≤ −δ −υ︸ ︷︷ ︸
≥0 =⇒−δ≥υ

⇐⇒ υ
2 −2δ ≤ (δ +υ)2

⇐⇒ υ
2 −2δ ≤ δ

2 +2δ υ +υ
2

⇐⇒ −2δ −δ
2 −2δ υ ≤ 0

⇐⇒ 2δ +δ
2 +2δ υ ≥ 0

⇐⇒ δ︸︷︷︸
>0

(2υ +2+δ )≥ 0

⇐⇒ −1− δ

2
≤ υ .

Consequently, t− ≥ 1 if, and only if,

−δ

2
−1 ≤ υ ≤−δ , ∀δ > 0. (A.22)
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As a conclusion, if δ > 0, then the quadratic polynomial qδ ,υ has constant
sign for t ∈ (0,1) if, and only if, (δ ,υ) ∈ R1

q.

2. If δ < 0, then the assumption υ2 −2δ ≥ 0 is obviously satisfied and we can
notice that t− > 0, t+ < 0 and t− > t+. In this case, we need to look for
conditions under which t− ≥ 1.

t− ≥ 1 ⇐⇒ 1
δ

(
−υ −

√
υ2 −2δ

)
≥ 1

⇐⇒
√

υ2 −2δ ≥−δ −υ (A.23)
As a conclusion, the condition under which t− ≥ 1 which is equivalent to√

υ2 −2δ ≥−δ −υ .

Now, consider two cases.

(a) If −δ −υ ≥ 0, then
√

υ2 −2δ ≥−δ −υ is equivalent to

− δ

2
−1 ≤ υ ≤−δ , ∀δ < 0. (A.24)

(b) If −δ −υ < 0, then
√

υ2 −2δ ≥ −δ −υ is immediately satisfied, so
that t− ≥ 1 if

υ >−δ , ∀δ < 0. (A.25)
As a conclusion, if δ < 0, then the quadratic polynomial qδ ,υ has constant
sign for t ∈ (0,1) if, and only if, (δ ,υ) ∈ R2

q.

3. If δ = 0, then the quadratic polynomial reduces to qδ ,υ(t) = υ t + 1 which
reduces to 1 for υ = 0.

Next, if we assume that υ ̸= 0, then qδ ,υ admits one real root given by
t0 =− 1

υ
. As a matter of fact, one has t0 < 0 when υ ≤ 0 and t0 ≥ 1 when

−1 ≤ υ < 0. Hence, qδ ,υ has constant sign for t ∈ (0,1) if, and only if,
(δ ,υ) ∈ R3

q.

The announced result is proved. ■
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The sign constancy of:

Constancy sign of qδ,υ

qδ,υ(t) =
δ

2
t2 + υ t+ 1

The discriminant of qδ,υ:

∆δ,υ = υ
2 − 2δ,

No real roots

for t ∈ (0, 1)

t± = 1

δ

(

−υ ±
√

∆δ,υ

)

Two real roots:

−1− δ

2
< υ < −δ

Condition:

qδ,υ keeps constant sign for t ∈ (0, 1) if and only if:

(δ, υ) ∈ {{(δ, υ) : δ > 0,−1− δ

2
< υ < −δ} ∪ {(δ, υ) : δ > 0,−

√
2 δ < υ}

δ > 0 δ < 0

qδ,υ(t) = υ t+ 1,

One real root:

υ �= 0
t0 = − 1

υ

υ ≥ −1− δ

2

Condition:

−1 ≤ υ < 0

Condition:
υ > 0

Condition:

∪{(δ, υ) : δ < 0, υ ≥ − δ

2
− 1} ∪ {(δ, υ) : δ = 0, υ ≥ −1}}

t0 ≥ 1t0 ≤ 0

t+ < 0t− ≥ 1

t− ≥ 1

υ ≥
√
2δυ ≤ −

√
2δ

∆δ,υ < 0 ∆δ,υ ≥ 0

δ �= 0

δ = 0δ �= 0

Figure A.5: Diagram representing conditions in parameter space guar-anteeing the constancy sign of qδ ,υ .
Proof[of lemma 4.5.3] We compute the expression of ϒδ ,υ in terms of δ and

υ ,

ϒδ ,υ =−2 (2υ +δ +4)(2υ +δ )2
δ +

(
δ

2 +3υ δ +2υ
2 +2δ

)2
. (A.26)

As a fourth-degree polynomial with respect to υ , ϒδ ,υ admits 4 roots.

1. Case δ > 0 : The roots are real such that υ1 < υ2 < υ3 < υ4, see (4.71-4.74),
and

ϒδ ,υ = 4(υ −υ1)(υ −υ2)(υ −υ3)(υ −υ4) . (A.27)
As a result,

• ϒδ ,υ > 0 ⇐⇒ (δ ,υ) ∈ R++
1 ∪R++

2 ∪R++
3 ;
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• ϒδ ,υ < 0 ⇐⇒ (δ ,υ) ∈ R+−
1 ∪R+−

2

2. Case δ < 0 : Consider δ1 and δ2 given in (4.76). In this case, υ1 and
υ4 are well defined for δ ∈ (−∞,δ1), as for υ2 and υ3 are well defined for
δ ∈ (−∞,δ2). Notice that υ1 and υ4 form a parabola of vertex (δ1,δ+), and
that υ2 and υ3 form a parabola of vertex (δ2,δ−), this leads to

• ϒδ ,υ > 0 ⇐⇒ (δ ,υ) ∈ R−+
1 ∪R−+

2 ∪R−+
3 ∪R−+

4 ∪R−+
5 ∪R−+

6 ;

• ϒδ ,υ < 0 ⇐⇒ (δ ,υ) ∈ R−−
1 ∪R−−

2 ∪R−−
3 . ■
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Proof[of lemma 4.5.4] Considering Dδ ,υ as a polynomial of degree 2 with
respect to x, it admits two roots x1 = 0 and

x2 =
4aδ ,υ c1,δ ,υ

−4aδ ,υ c2,δ ,υ +b2
1,δ ,υ

. (A.28)
The term aδ ,υ as a polynomial of degree degυ(aδ ,υ) = 2 with respect to υ ,

admits 2 real roots given by

υ ∈
{
−δ

2
−2,−δ

2

}
, (A.29)

so that aδ ,υ is negative if, and only if,

(δ ,υ) ∈ Ra− =

{
(δ ,υ) ∈ R2 : −δ

2
−2 < υ <−δ

2

}
(A.30)

and positive elsewhere. Note that the region Ra− is of interest in our analysis.
Now, we investigate the sign of x2 taking into account the signs of aδ ,υ and ϒδ ,υ .
Namely, since coefficient c2,δ ,υ > 0, then x2 is positive if, and only if,(

aδ ,υ > 0 and ϒδ ,υ > 0
)

or
(
aδ ,υ < 0 and ϒδ ,υ < 0

)
,

so that x2 is positive if, and only if,

(δ ,υ) ∈ Ra− ∩
{

R+−
1 ∪R+−

2 ∪R−−
1 ∪R−−

2 ∪R−−
3

}
= R+−

1 . (A.31)
If ϒδ ,υ > 0, then Dδ ,υ > 0 for x ∈ (−∞,0)∪ (x2,+∞). As a result, if ϒδ ,υ < 0,

then Dδ ,υ > 0 for x ∈ (0,x2) if, and only if, (δ ,υ) ∈ R+−
1 , as expected. ■
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Proof[ of lemma 4.5.5] To investigate the sign of Dδ ,υ , we first study the sign
of its leading coefficient that we denote by

A(δ ,υ) = 16υ
2 −64δ , (A.32)

a polynomial in δ of degree 1, which admits one positive root at δ = υ2

4 . As
a result, A(δ ,υ) is positive if, and only if,

(δ ,υ) ∈ RA+ =

{
(δ ,υ) ∈ R2 : δ ≤ υ2

4

}
(A.33)

and negative if

(δ ,υ) ∈ RA− = R2 −RA+ . (A.34)
To study the sign of Dδ ,υ , as a polynomial in x of degree degx(Dδ ,υ)2, we

analyse its discriminant which is given by

d(δ ,υ) = 64 (δ +2υ +4)
(
δ

3 +4δ
2
υ +4δ υ

2 +4δ
2 +8δ υ −8υ

2 +36δ
)

δ
2.

(A.35)
Now, consider

d1(δ ,υ) = δ +2υ +4, (A.36)
as a polynomial in δ of degree degδ (d1) = 1, it admits one real root at δ =

−2υ −4. Next, consider

d2(δ ,υ) =
(
δ

3 +4δ
2
υ +4δ υ

2 +4δ
2 +8δ υ −8υ

2 +36δ
)
, (A.37)

as polynomial in δ of degree degδ (d2) = 3, it admits two conjugate roots and,
for υ ∈ (−1−2

√
6,+∞) one real root

δ
∗ =

1
3

Γ− 4
3
(−υ

2 −2υ +23)/Γ, (A.38)
where

Γ =
3
√

8υ3 +132υ2 +600υ +584+12
√

Γ̃, (A.39)
with Γ̃ = 12υ5 + 213υ4 + 1284υ3 + 2988υ2 + 3456υ + 7776. In the sequel,

we shall assume that υ ∈ (−1−2
√

6,+∞) which allows to conclude that d(δ ,υ)
is positive if, (δ ,υ) ∈ Rd+ = R1

d+ ∪R2
d+ ∪R3

d+ where
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R1
d+ =

{
(δ ,υ) ∈ R2 : δ ∈ {(−∞,δ ∗]∪ (−2υ −4,∞)} ,υ ∈

(
−1−2

√
6,−3

]}
,

(A.40)
R1

d+ =
{
(δ ,υ) ∈ R2 : δ ∈ (−∞,−2υ −4],υ ∈ (−3,−2]

}
, (A.41)

R1
d+ =

{
(δ ,υ) ∈ R2 : δ ∈ (δ ∗,∞),υ ∈ (−3,∞)

}
. (A.42)

■
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Proof[ of lemma 4.5.6]
Consider (δ ,υ) ∈ P̃1 ∪ P̃2 ∪P3 ∪P4. Since the discriminant of the polynomial

function Gδ ,υ defined in (4.64-4.65) is positive, then Gδ ,υ admits the following two
real roots

Ω
±
δ ,υ(x) =−

(
δ 2x+4υ xδ +4υ2x+2δ 2 +6δ υ +4δ x−8x2 +12δ

)
x

δ 2 +4δ υ +4υ2 +4δ +8υ −8x

±

√
D̃δ ,υ(x)

δ 2

2 +2δ υ +2υ2 +2δ +4υ −4x,
(A.43)

where Ω
+
δ ,υ denotes the greater solution (positive signal). We deal with each of

the considered regions separately hereafter.

1. Region P̃1. Since υ ∈
(
− 2

√
δ ,2

√
δ
)

and x > 0, the solution Ω
+
δ ,υ is

upper bounded with respect to υ by the parameter expression

Ω
+
δ
(x) =

h1,δ (x)−2x
√

h2,δ (x)
h3,δ (x)

(A.44)
where

h1,δ (x) = 8x3 +
(
−δ

2 +8δ
3
2 −20δ

)
x2 +

(
−2δ

2 +12δ
3
2 −12δ

)
x,

(A.45)
h2,δ (x) = x

(
8δ

3 +48δ
5
2 +80δ

2 +32δ
3
2

)
−δ

4 −4δ
7
2 +8δ

3 +40δ
5
2

(A.46)
+36δ

2, (A.47)
h3,δ (x) =−8x+δ

2 −8δ
3
2 +20δ −16

√
δ . (A.48)

Next, we obtain the following parameter-free upper bound for Ω
+
δ

Ω
+(x) =

8x3

−8x−4
(A.49)

+
2x

8x+4

√√√√√√x
(

111872
√

2+158208
)

(
1+

√
2
)11 +

1989312+1406656
√

2(
1+

√
2
)15 (A.50)

which reaches a maximum value at x∗ ≈ 0.5791. Thus,

ω
2 = Ω

+
δ ,υ(x)≤ Ω

+(x∗)≈ 0.3970 < π
2, (A.51)
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i.e., ω0 < π.
Now, we shall detail the assignment of s0. From (4.53), we infer that

υ =−
√(

a2
1 −4a0

)
τ2 +4δ (A.52)

for which the following condition needs to be satisfied

δ ≥
(

a0 −
a2

1
4

)
τ

2 (A.53)

On the other hand, using the fact of υ ∈
(
−2

√
δ ,2

√
δ

)
, one is able to

bound (A.52) in the following way

−2
√

δ <−
√(

a2
1 −4a0

)
τ2 +4δ < 2

√
δ (A.54)

which is equivalent to

−4δ <
(
a2

1 −4a0
)

τ
2 < 0 (A.55)

The above inequality represents the condition of compatibility in terms of
a1 and a0 for the assignment of s0.

We shall assume henceforth that it holds.

Now, since 0 < δ ≤ 2
3+2

√
2

from (A.55), we get

0 < τ
2 (s0

2 +a1s0 +a0
)
≤ 2

3+2
√

2
. (A.56)

To analyze the previous inequality, we consider each inequality separately
below.

(a) Condition τ2
(
s0

2 +a1s0 +a0
)
> 0. By solving τ2

(
s0

2 +a1s0 +a0
)
=

0 with respect to s0, two roots are obtained:

s±0,A =−a1

2
± 1

2

√
a12 −4a0 (A.57)

So that, two cases are to be considered.

• If a1
2 − 4a0 < 0, then there is no change of the sign, and the

set of solution is then given by R.

• If If a1
2 −4a0 ≥ 0, then

s0 ∈
(
−∞,s−0,A

)
∪
(

s+0,A,+∞

)
. (A.58)
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(b) Condition τ2
(
s0

2 +a1s0 +a0
)
≤ 2

3+2
√

2
. By solving

τ
2 (s0

2 +a1s0 +a0
)
=

2
3+2

√
2

(A.59)
with respect to s0, we obtain two roots:

s±0,B =−a1

2
± 1

2

√
a12 −4a0 +

−16
√

2+24
τ2 . (A.60)

Since δ ≥
(

a0 − a2
1

4

)
τ2 from (A.53), it’s guaranteed that

a1
2 −4a0 +

−16
√

2+24
τ2 ≥ 0 (A.61)

without any additional condition. Indeed, from (A.53), one has

−4δ +24−16
√

2 ≤
(
a2

1 −4a0
)

τ
2 +24−16

√
2. (A.62)

On the other hand, since 0 < δ ≤ 2
3+2

√
2
, one has

0 <− 8
3+2

√
2
+24−16

√
2 ≤−4δ +24−16

√
2 < 24−16

√
2

(A.63)
which guarantee that (A.61) holds. The set of solution in the consid-
ered case is given by

s0 ∈
[
s−0,B,s

+
0,B

]
. (A.64)

Finally, the intersection between the set of solutions obtained for the two
cases is given by

s0 ∈
[
s−0,B,s

+
0,B

]
If a1

2 −4a0 < 0

s0 ∈
{(

−∞,s−0,A
)
∪
(

s+0,A,+∞

)}
∩
[
s−0,B,s

+
0,B

]
otherwise

Now, bearing in mind that

s−0,B < s−0,A < s+0,A < s+0,B (A.65)
In this case, we conclude that

{(
−∞,s−0,A

)
∪
(

s+0,A,+∞

)}
∩
[
s−0,B,s

+
0,B

]
=
[
s−0,B,s

−
0,A

)
∪
(

s+0,A,s
+
0,B

]
.

(A.66)
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It amounts to conclude that


s0 ∈

[
s−0,B,s

+
0,B

]
If a1

2 −4a0 < 0

s0 ∈
[
s−0,B,s

−
0,A

)
∪
(

s+0,A,s
+
0,B

]
otherwise

Finally,for the exponential decay s0 has to be negative, so we impose that
that s+0,A < 0 and s+0,B < 0.

Analysing the sign of s+0,A and s+0,B, we deduce that s+0,A is negative if and
only if

a0 ≥ 0 and a1 ≥ 0 (A.67)
and that s+0,B is negative if and only if

a0 ≥
−4

√
2+6

τ2 and a1 ≥ 0 (A.68)
It turns out that s0 < 0 if and only if a1 ≥ 0 and a0 ≥ −4

√
2+6

τ2 .

Finally, we conclude that if the conditions in term of a1 and a0

a0 ≥
−4

√
2+6

τ2 and a1 ≥ 0 (A.69)
are satisfied, then we are able to assign the root s0 such that

s0 ∈
[
s−0,B,s

+
0,B

]
If a1

2 −4a0 < 0

s0 ∈
[
s−0,B,s

−
0,A

)
∪
(

s+0,A,s
+
0,B

]
otherwise

(A.70)

2. Region P̃2. Since υ ∈
[
− 1− δ/2,2

√
δ
)

and x > 0, the solution Ω
+
δ ,υ is

upper bounded with respect to υ by the parameter expression Ω
+
δ
(x) which

is upper bounded with respect to δ by the parameter-free expression

Ω
+(x) =

1
−8x−4

8x3 +

(
−20−8

√
2
)

x2

3+2
√

2
+

(
−32−24

√
2
)

x(
3+2

√
2
)2 (A.71)

−2x

√
192+ x

(
384+256

√
2
)
+128

√
2

)
(A.72)
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The latter expression of Ω+ depends only in x and reaches a maximum
value on x∗ ≈ 1.9018. Thus, ω2 = Ω

+
δ ,υ(x)< Ω+(x∗)≈ 6.7190 < π2, which

implies ω0 < π. To assign the root s0 in this case, we proceed as with the
previous region P̃1 and conclude that if the following conditions in term of
a1 and a0

a0 ≥
2
τ2 and a1 ≥ 0 (A.73)

are satisfied, then we are able to assign the root s0 such that

s0 ∈
[
s−0,C,s

−
0,B

)
∪
(

s+0,B,s
+
0,C

] (A.74)
where

s±0,C =−a1

2
± 1

2

√
a12 −4a0 +

8
τ2 . (A.75)

3. Region P̃3. Consider δ ∈ (2,ϑ), with ϑ > 0 and follow the same procedure
as with previous regions. The table below

ϑ 2.001 2.2 2.3 2.5
Ω+ 8.7083 9.7402 10.2747 11.3748

emphasizes the fact that an interesting frequency bound may be found
only for a positive δ close to 2, which is not interesting for continuing
the next step. Unfortunately for δ ∈ (2,∞), the dominancy of s0 cannot be
concluded unless the order of truncation of the exponential term is increased
as in Algorithm 2 in order to obtain an adequate frequency bound.

4. Region P3 ∪P4. Since υ ∈
(
−
√

2δ ,υ2
)

and x > 0, the solution Ω
+
δ ,υ

is upper bounded with respect to υ by the parameter expression Ω
+
δ
, a

function the expression of which we have avoided writing because of its
length, this function Ω

+
δ

itself can be upper bounded with respect to δ by
the parameter-free expression

Ω
+(x) =

h1(x)−2x
√

h2(x)
(−8x−4)

(A.76)

where
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h1(x) = 8x3 +

((
−4

√
2+6

)√
41−28

√
2+40

√
2−66

)
x2 −8x,

(A.77)
h2(x) =−64x2 + x

((
−3184

√
2−4512

)√
16

√
2−22+2720

√
2+3680

)
(A.78)

+
(

4016
√

2+5664
)√

16
√

2−22−3104
√

2−4384. (A.79)
The latter expression of Ω+ reaches a maximum value at x∗ ≈ 1.5514.
Thus, ω2 = Ω

+
δ ,υ(x)< Ω+(x∗)≈ 5.1031 < π2, i.e., ω0 < π.

To assign the root s0 in this case, we analyse in a similar way as in the
previous cases and we conclude that if the following conditions in term of
a1 and a0

a0 ≥

(
−10

√
2−16

)√
16

√
2−22+16

√
2+20

4τ2 and a1 ≥ 0 (A.80)
are satisfied, then we are able to assign the root s0 such that

s0 ∈
(

s−0,D,s
−
0,C

)
∪
(

s+0,C,s
+
0,D

) (A.81)
where

s±0,D =−a1

2
± 1

2

√√√√
a12 −4a0 +

(
−10

√
2−16

)√
16

√
2−22+16

√
2+20

τ2 .

(A.82)
The proof is complete. ■
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