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Résumé: Nous étudions plusieurs questions d’analyse provenant de la mécanique quan-

tique à plusieurs corps. Plus précisément, nous considérons des équations aux dérivées

partielles non-linéaires ainsi que des inégalités fonctionnelles décrivant un grand nombre de

fermions dans une approximation de champ moyen. Cela mène à l’analyse mathématique des

matrices densités à un corps dont la trace est grande ou infinie, avec un intérêt particulier

pour la distribution spatiale de particules associée. Nous adaptons des outils d’EDPs dis-

persives, d’analyse de Fourier et semi-classique à ce cadre. Dans une première partie, nous

établissons un lien entre plusieurs équations d’évolution qui décrivent de grands systèmes

quantiques (relativistes et non-relativistes) dans certains régimes asymptotiques, en util-

isant des méthodes de compacité ou de convergence forte. Dans une deuxième partie, nous

développons des méthodes d’analyse harmonique qui impliquent des inégalités fonctionnelles

sur des matrices densités que nous appelons fermioniques. Dans une troisième et dernière

partie (sans lien avec la mécanique quantique à plusieurs corps), nous étudions l’existence

de fonctions optimales pour des inégalités d’extension de la transformée de Fourier, à l’aide

de méthodes de compacité.

Abstract: We study several topics in analysis which come from many-body quantum

mechanics. More specifically, we consider nonlinear partial differential equations and func-

tional inequalities that describe a large number of fermions in a mean-field approximation.

This leads to the mathematical analysis of one-body density matrices with large or infinite

trace, with a special emphasis on the associated spatial distribution of particles. We adapt

tools from dispersive PDEs, Fourier and semiclassical analysis to this setting. In a first part,

we relate several evolution equations describing large quantum systems (relativistic and non-

relativistic) in various asymptotic regimes, employing both compactness methods or strong

estimates. In a second part, we develop methods in harmonic analysis that imply functional

inequalities on density matrices that we call fermionic. In a third and last part (unrelated to

many-body quantum mechanics), we study the existence of optimizers for Fourier extension

inequalities by compactness methods.
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Introduction (FR)

Cette thèse est consacrée à la présentation de quelques résultats d’équations aux dérivées

partielles et d’inégalités fonctionnelles, motivés par la mécanique quantique à plusieurs corps.

La mécanique quantique est une théorie physique décrivant la matière à l’échelle micro-

scopique. Sa formulation repose sur la théorie spectrale et les espaces de Hilbert. Lorsque

l’on étudie les propriétés statistiques des systèmes quantiques, on doit considérer un grand

nombre d’objets quantiques individuels interagissant entre eux. Dans ce régime d’un grand

nombre d’objets, d’autres modèles émergent comme limite rigoureuse ou comme approxima-

tion. Ces modèles peuvent impliquer d’autres objets mathématiques comme des fonction-

nelles/équations aux dérivées partielles non-linéaires. On présente certains de ces modèles

non-linéaires et on étudie leurs propriétés. On insistera en particulier sur certains outils

développés pour comprendre ces grands systèmes quantiques dans quelques approximations

non-linéaires. Cette famille d’outils comporte les inégalités fonctionnelles, auxquelles on

consacre une bonne partie de ce manuscrit.

Dans le Chapitre 1, nous présentons quelques EDPs non-linéaires modélisant l’évolution

en temps d’un grand nombre de particules en interaction. Elles partagent la propriété

d’appartenir aux modèles dits de champ moyen, dans lesquels l’interaction entre les par-

ticules est simplifiée d’une telle manière que chaque particule n’interagit pas avec chaque

autre particule individuellement, mais plutôt avec (le potentiel engendré par) la distribu-

tion moyenne des particules. Nous considérons deux modèles de champ moyen, le pre-

mier décrivant des particules non-relativistes dont la spécificité est qu’elles sont réparties

de manière uniforme dans l’espace Rd (ou sont une perturbation locale d’une telle distribu-

tion) et est appelé équation de Hartree à densité positive. Ce modèle a été introduit dans

les articles [95, 94] et la contribution présentée ici est sa relation avec un modèle similaire

décrivant des particules classiques, l’équation de Vlasov non-linéaire, dans un limite semi-

classique. De manière intéressante, cette limite semi-classique permet de mieux comprendre

l’équation classique. Le second modèle que nous présentons concerne la dynamique de par-

ticules relativistes et provient de la physique du noyau, dans laquelle il décrit l’interaction

entre nucléons et mésons. Nous relions une fois de plus deux équations utilisées dans ce

contexte dans un régime asymptotique, les équations de Dirac-Klein-Gordon et de Dirac

non-linéaire. Ces deux parties sont complémentaires dans le sens où elles illustrent deux ap-

proches déterminant l’asymptotique d’EDPs d’évolution: la première utilise des techniques

de compacité et de convergence faible, alors que la seconde utilise des estimées forte et mène

à de la convergence en norme.

Dans le Chapitre 2, nous nous tournons vers le sujet de certaines inégalités fonction-

nelles apparâıssant lorsqu’on étudie des problèmes de champ moyen. Inspirés par les travaux
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8 INTRODUCTION (FR)

fondateurs de Lieb et Thirring, nous étudions plusieurs versions d’inégalités fonctionnelles

connues (Strichartz, Stein-Tomas, Sogge) adaptées au contexte des systèmes quantiques de

champ moyen. De manière informelle, les versions standard de ces inégalités correspondent

au cas d’une seule particule, et on cherche à généraliser ces inégalités à plusieurs particules.

Un point important est de quantifier précisément la dépendance de ces nouvelles estimées

en le nombre de particules, idéalement de manière optimale. C’est particulièrement impor-

tant lorsque l’on considère de grands systèmes, où cette dépendance optimale permet de

traiter plus de cas. Nous insistons sur une méthode développée en collaboration avec Rupert

Frank et basée sur de l’interpolation complexe dans certains espaces d’opérateurs, qui permet

de déduire ces inégalités fonctionnelles ’fermioniques’ à partir d’hypothèses assez générales.

Nous appliquons cette méthode aux inégalités de Stein-Tomas, de Strichartz, de Sobolev

uniforme, et de Sogge. Nous présentons également une application à la descriptions des

valeurs propres non-réelles d’opérateurs de Schrödinger non auto-adjoints. Même si nous ne

l’explicitons pas dans ce manuscrit, les inégalités de Strichartz fermioniques jouent également

un rôle fondamental dans le caractère bien posé des EDPs étudiées dans la première partie.

Ce chapitre contient également une section consacrée aux lois de Weyl ponctuelles et opti-

males, qui ne sont pas des inégalités fermioniques à proprement parler mais y sont fortement

reliées et donnent une description de la distribution spatiale d’un nombre suffisamment grand

de fermions libres.

Le dernier Chapitre 3 est tourné vers une question reliée à quelques estimées présentes

dans la partie précédente, les estimées d’extension de la transformée de Fourier. Nous con-

sidérons la version standard de ces inégalités (pas la version fermionique), et nous présentons

quelques contributions à la détermination de leurs constantes optimales. Notre point de

vue est celui de la compacité, afin de comprendre le comportement des suites de fonctions

approchant le cas d’égalité dans l’inégalité. Nous expliquons comment adapter les outils

développés par Lieb et Lions dans les années 80 pour donner des conditions optimales pour

que ces suites convergent, et par conséquent, pour qu’il existe des fonctions réalisant l’égalité

dans l’inégalité.



Introduction (ENG)

This manuscript is devoted to presenting some results in the fields of partial differential

equations and functional inequalities, with a motivation coming from many-body quantum

mechanics. Quantum mechanics is a physical theory describing matter at the microscopic

scale. Its formulation relies on Hilbert spaces and spectral theory. When studying the

statistical properties of quantum systems, one has to consider a large number of interacting

individual quantum objects. In this regime of a large number of objects, other models arise

either a rigorous limit or as an approximation. These models may involve other mathematical

theories like nonlinear functionals/partial differential equations. We present some of these

nonlinear models and study their properties. A focus will also be made on some tools

developed to understand these large quantum systems in some nonlinear approximations. A

family of such tools is the one of functional inequalities, on which we devote a big part of

this manuscript.

In Chapter 1, we present some nonlinear PDEs which model the time evolution of a large

number of interacting particles. They share the common property of belonging to mean-field

models, where the interaction between particles in simplified in a way that each particle does

not interact with the individual other particles but rather with (the potential generated by)

their average distribution. We consider two mean-field models, the first one describing non-

relativistic particles with the specificity that they are uniformly distributed in the full space

Rd (or are a local perturbation of such a distribution) and usually refered to as the Hartree

equation at positive density. This model was introduced in [95, 94] and the contribution

presented in this thesis is its relation to a similar model describing classical particles, the

nonlinear Vlasov equation, in a semi-classical limit. Interestingly, this semi-classical limit

helps to understand the limiting model. The second model we present is concerned with

the dynamics of relativistic particles and comes from nuclear physics where it describes

the interaction between nucleons and mesons. We also relate two equations used in this

field in a specific asymptotic regime, the Dirac-Klein-Gordon and nonlinear Dirac equations.

These two parts are complementary in the sense that they illustrate two approaches to study

asymptotics of evolutions PDEs: in the first one, we use compactness methods leading to

weak convergence of solutions while in the second one we use strong estimates which lead to

norm convergence.

In Chapter 2, we turn towards the topic of some functional inequalities which appear when

studying mean-field problems. Following the fundamental work of Lieb and Thirring, we

investigate several versions of known functional inequalities (Stricharz, Stein-Tomas, Sogge)

adapted to the context of mean-field quantum systems. Loosely speaking, the standard

version of these inequalities can be seen as describing a single particle, and one asks how to

9



10 INTRODUCTION (ENG)

generalize these inequalities to several particles. An important point is to quantify precisely

how these new estimates depend on the number of particles involved, ideally in an optimal

way. This is particularly important when considering large systems, where this optimal

dependence allow to treat a wider class of infinite systems. We will emphasize a method

that we devised with Rupert Frank, based on complex interpolation in some operator spaces,

which allows to deduce these ’fermionic’ functional inequalities from a general framework.

We applied this method to the setting of Stein-Tomas, Strichartz, uniform Sobolev, and

Sogge inequalities. We also present some applications such as understanding the behaviour

of eigenvalues of non-self-adjoint Schrödinger operators. Even if we do not make it explicit in

this manuscript, the fermionic Strichartz estimates also play a key role in the well-posedness

theory of the PDEs studied in the first chapter. This chapter also contains a section on

sharp pointwise Weyl laws, which are not fermionic inequalities but are both closely related

to them and give a description on the spatial distribution of sufficiently large systems of

non-interacting fermions.

The final Chapter 3 is devoted to a question related to some estimates mentioned in the

previous chapter, the Fourier extension estimates. We consider the standard version of these

inequalities, unrelated to many-body quantum mechanics, and present some contributions

to the study of their optimal constants. Our point of view of is the one of compactness,

understanding the behaviour of sequences of functions approaching the case of equality in

the considered inequality. We explain how to adapt the tools developed by Lieb and Lions in

the 80s to give sharp conditions for the convergence of these sequences which, as a byproduct,

implies the existence of functions realizing the equality in the inequality.
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CHAPTER 1

Around some mean-field dynamics

This chapter is devoted to the study of some nonlinear evolution PDEs arising from mean-

field many-body quantum mechanics, and in particular to their relation to other equations

in some asymptotic regimes. In a first part, we explain the results of [96] concerning the

relation between the Hartree and Vlasov equations in the semi-classical limit, around specific

homogeneous backgrounds. In a second part, we turn to a problem from nuclear physics in

which a convergence of solutions to a Dirac-Klein-Gordon equation to solutions to a nonlinear

Dirac equation is obtained, in a strong coupling regime [90].

Mean-field models have an old history in situations involving interacting quantum parti-

cles. Basically, they amount to replace the full (or first principle) many-body interaction by a

specific one-body interaction where each particle interacts with the classical field (the mean-

field) generated by the density of the other (or more simply, all the) particles. Such models

have a huge success from a computational/simulation perspective, since the full many-body

problem, which is posed in very high dimension, is replaced by a problem posed in a fixed

dimension. The price to pay is that the new Hamiltonian to diagonalize is non-linear (be-

cause the force field now depends on the position of the particles submitted to this force

field). Still, many efficient methods to compute numerically the resulting spectrum or states

are widely used [31, 108].

It is interesting to ask for a mathematical justification of this replacement of the true

many-body interaction by the mean-field one. Historically, one the first instances where it

appeared was Hartree-Fock theory [55, 138], where it is shown that a mean-field model

arises when the many-body wavefunction is assumed to be a Slater determinant (uniquely

determined by a finite-rank orthogonal projection on the one-body Hilbert space). The

Hartree-Fock theory has then been generalized to quantum states that are fully determined

not by a projection, but by any self-adjoint operator between 0 and 1 called the one-body

density matrix of the state (which is relevant for positive temperature systems) [100, 8].

A full presentation of Hartree-Fock theory can be found in [10, 141], including quantum

states (called quasi-free states) which are characterized by a density matrix and also a pairing

matrix (relevant in BCS theory). In all these theories, the complexity of the full many-body

problem is reduced by assuming that the quantum state belongs to a subclass of states

that are fully characterized by a less complex object (either a Slater determinant, a general

density matrix, or a density matrix together with a pairing matrix).

The reduction to this particular subclass of states has been rigorously justified in some

cases. For instance, it is known that the ground state energy of a large, molecular (quasi-

neutral) Hamiltonian is given to leading order by its Hartree-Fock reduction [104, 98, 8]. A

similar result holds in the theory of stellar collapse [107]. These results have been generalized

13



14 1. AROUND SOME MEAN-FIELD DYNAMICS

to include any reasonable many-body Hamiltonian, in a combined semi-classical and mean-

field regime [58]. Notice that in this last work, it is also shown that the mean-field reduction

is correct at the level of the energy but also at the level of states (in a weak sense). Similar

results have been obtained concerning the dynamics of many-body systems: there, the ques-

tion is a bit different since one cannot reasonably expect that any quantum trajectory can be

approximated by a ’reduced’ one (in the same way that one cannot expect that the energy of

arbitrary excited states of the many-body Hamiltonian is related to a ’reduced’ energy, the

above works only show it for the low part of the spectrum). Hence, a more natural question is

to assume that the quantum state belongs (or is close) to the ’mean-field’ subclass at the ini-

tial time, and to ask whether this property is preserved for later times (similarly to the prop-

agation of chaos in kinetic theory). There are many works showing this kind of result, in vari-

ous asymptotic regimes [78, 117, 142, 113, 115, 11, 53, 4, 70, 18, 9, 123, 17, 74, 75, 51].

There, we only mentioned works related to fermionic systems since these are relevant to what

we detail below. The bosonic case has been also extensively treated, but we will not try to

list the corresponding results.

In the following chapters, quantum states of several fermionic particles will thus be

described by a one-body density matrix, which is a self-adjoint operator γ on the underlying

one-body Hilbert space (typically L2(Rd) for a particle moving in Rd) satisfying 0 ⩽ γ ⩽ 1.

The constraint γ ⩽ 1 is typical to fermions and reflects Pauli’s exclusion principle. The way

to associate to γ a unique quantum (quasi-free) state is recalled in [126, Chap. 1, App. C].

For instance, if γ is a projection on the space generated by normalized vectors u1, . . . , uN ,

the quantum state associated to γ is just the Slater determinant u1 ∧ · · · ∧ uN . For such an

operator γ, the number Tr γ ∈ [0,∞] is interpreted as the number of particles of the system.

As we will see below, the density matrix formulation is particularly useful to treat states with

infinitely many particles, since these states are merely described by density matrices γ such

that Tr γ = +∞ (natural examples including translation-invariant operators, see below).

At the full quantum level, such states are not as easily described (for instance, one would

need to define a Slater determinant with infinitely many factors). An important quantity

associated to a one-body density matrix γ is its density ργ : Rd → R which represents its

spatial distribution of particles and is formally defined by ργ(x) = γ(x, x) for all x ∈ Rd,

where γ(·, ·) is the integral kernel of γ. We recall its precise definition in an appendix.

1. From the Hartree equation to the Vlasov equation at positive density

We begin with presenting a result about the Hartree equation in a semi-classical regime{
iℏ∂tγ = [−ℏ2∆+ ℏdw ∗ ργ, γ],
γ|t=0 = γ0,

(1.1)

for which the unknown γ = γ(t) at time t ∈ R is a non-negative, bounded operator on

L2(Rd), w : Rd → R is the interaction potential, and ℏ > 0 is a parameter which plays the

role of Planck’s constant but we will later study what happens to solutions as ℏ → 0. The

small coefficient ℏd in front of the interaction is typical of the mean-field regime [53, 18, 17].

Recall that ργ denotes the density of γ as defined in Proposition 1.5. The equation (1.1) is



1. FROM THE HARTREE EQUATION TO THE VLASOV EQUATION AT POSITIVE DENSITY 15

non-linear since the Hamiltonian −ℏ2∆ + ℏdw ∗ ργ depends on the solution itself. In this

formulation, the Hilbert space L2(Rd) is independent of the number of particles N = Tr γ,

which is not the case in full many-body quantum mechanics where the Hilbert space L2(RdN)

depends on the number of particles.

We study the dynamics of (1.1) in a neighborhood of a specific family of stationary states.

Namely, for any bounded and integrable g : Rd → R+, the density matrix

γref = g(−iℏ∇) (1.2)

is a time-independent solution to 1.1 with a constant density

ργref ≡
1

(2π)d

∫
Rd

g(v) dv.

Indeed, it obviously commutes with −ℏ2∆ since they are both Fourier multipliers while the

non-linear potential w ∗ ργref is constant (since ργref is constant), if w ∈ L1(Rd), so that it

commutes with any operator. Such solutions describe fluid/gaseous phases of matter since

the spatial distribution of particles ργref is homogeneous. Physical examples of such states

include

• the Fermi gas at zero temperature and chemical potential µ > 0,

g(v) = 1(|v|2 ⩽ µ),

• the Fermi gas at temperature T > 0 and chemical potential µ ∈ R,

g(v) =
1

e(|v|2−µ)/T + 1
,

• the Bose gas at temperature T > 0 and chemical potential µ < 0,

g(v) =
1

e(|v|2−µ)/T − 1
,

• the Boltzmann gas at temperature T > 0 and chemical potential µ ∈ R,

g(v) = e−(|v|2−µ)/T .

All these physical examples have a variational interpretation which will be very important

for our purposes. For instance, the Fermi gas at zero temperature is a formal minimizer of

the (kinetic energy) functional

γ 7→ Tr(−ℏ2∆− µ)γ

when γ varies among all the self-adjoint operators with spectrum in [0, 1]. Notice that in our

context, it makes sense to assume that 0 ⩽ γ ⩽ 1 since this condition is preserved along the

flow of (1.1) for reasonable solutions [95, 154]. Similarly, the Fermi, Bose, and Boltzmann

gases at positive temperature are formal minimizers of the (free energy) functional

γ 7→ Tr(−ℏ2∆− µ)γ − T TrS(γ),
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where S is an entropy functional adapted to each case, more precisely

S(x) =


−x log x− (1− x) log(1− x) (Fermi gas),

−x log x+ (1 + x) log(1 + x) (Bose gas),

−x log +x (Boltzmann gas).

We only talked about ’formal’ minimizers because their energy is actually −∞. Below, we

will detail the correct interpretation of the energy in order to ensure that this variational

interpretation is well-defined. This variational property will be key to study the limit ℏ → 0

of solutions to (1.1). We will also explain why these entropy functionals S are special and

how more general S may be considered.

The particular solutions γref all satisfy Tr γref = +∞ (as well as having infinite energy, as

we mentioned above) and hence describe an infinite number of particles. From a mathemati-

cal point of view, this greatly complicates the analysis of the local and global well-posedness

of the equation, as we will detail below.

We also consider another mean-field model for classical interacting particles, called the

Vlasov equation {
∂tm+ 2v · ∇xm−∇x(w ∗ ρm) · ∇vm = 0,

m|t=0 = m0.
(1.3)

There, the unknown m = m(t) at time t ∈ R is a bounded, non-negative function on the

phase-space Rd
x×Rd

v which describes where the classical particles are distributed in position

and velocity. We also denoted by ρm the marginal giving only the position distribution of

the particles,

ρm(x) =
1

(2π)d

∫
Rd

m(x, v) dv, x ∈ Rd

which is the analogue of the density ργ in the quantum case. Similarly to the Hartree

equation, the particular choices

mref(x, v) = g(v), (x, v) ∈ Rd × Rd,

for the same class of g as above, are all stationary solutions to (1.3) describing a spatially

homegeneous distribution of particles. The physical examples of g above are all of interest,

and they have the same variational interpretation for the classical versions of the energies

listed above; that is they are formal minimizers of the functionals

m 7→
∫
Rd

∫
Rd

[
(|v|2 − µ)m(x, v)− TS(m(x, v))

]
dx dv.

Again, they are only ’formal’ minimizers since their energy is actually −∞. We will see

below how to set this property on rigorous grounds. Notice that they also satisfy∫
Rd

∫
Rd

mref(x, v) dx dv = +∞,

meaning again that they describe an infinite number of particles.

The Vlasov equation (1.3) is the classical analogue of the Hartree (1.1) in the sense that

they both describe a system of particles interacting via a mean-field potential. The only
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difference is that in the Vlasov equation, these particles are classical while in the Hartree

equation, the particles are quantum. A relation between the two equations can be made

more precise in the semi-classical limit ℏ → 0. The fact that the Vlasov equation is in some

sense the ’limit’ of the Hartree equation as ℏ → 0 has been understood for a long time

(basically, from the origins of quantum mechanics as illustrated by the work of Wigner [153]

for instance). In this chapter, we explain the results of [96] where we show that this semi-

classical limit still holds in the neighborhood of the special stationary solutions described

above. This can be viewed as an extension of the results of [113], which treats the case of

a finite number of particles. We also explain how to use this semi-classical limit to prove a

global well-posedness result for the Vlasov equation around these stationary states, a result

that seemed to be unknown. In this regard, one can thus interpret the Hartree equation as

a form of regularization of the Vlasov equation.

1.1. Local well-posedness. Let us first comment quickly on the local well-posedness

properties of the Hartree equation around translation-invariant stationary states. Since this

question is independent of the semi-classical limit (in other words, ℏ > 0 is fixed for this

question), we set ℏ = 1 for simplicity here. To discuss it, it is first useful to consider the

question without background (i.e. γref = 0). In this context, the well-posedness theory for

the Hartree equation has been developed in [26, 27, 43, 155] where the natural regularity

of operators considered is the trace-class S1. This class has nice properties with respect to

the equation: i) it is invariant by the linear part i∂tγ = [−∆, γ], ii) the non-linear part also

stabilizes this class under mild assumption on the mean-field potential (because [V, γ] ∈ S1

if γ ∈ S1 and V ∈ L∞ for instance), and iii) it allows to define and control the density

easily (because ργ ∈ L1 if γ ∈ S1). From all these properties, it is not hard to show that the

Hartree equation is locally well-posed in S1 if w ∈ L∞. Interestingly, one can also show that

such solutions are global since the S1-norm is preserved along the flow. Another natural

quantity which is conserved along the flow is the energy (if the interaction potential w is

even),

E(γ) := Tr(−∆)γ +
1

2

∫
Rd

∫
Rd

ργ(x)w(x− y)ργ(y) dy.

One can also show that the Hartree equation is well-posed in a space where the kinetic

energy is well-defined, that is (1 − ∆)γ ∈ S1, and that the energy is indeed conserved for

such solutions. Notice that these solutions are also trace-class, so we already know that they

are global by the preceding argument. It would be interesting to study the equation in energy

space for which (−∆)γ ∈ S1 (notice that such an operator is not necessarily trace-class; it

can even be non-compact due to the spectrum of −∆ close to zero). To our knowledge,

this question has not been treated anywhere. Notice that in this case, the density can be

controlled due to the Lieb-Thirring inequality [105, 106]∫
Rd

ργ(x)
1+2/d dx ⩽ C Tr(−∆)γ,

valid for any operator γ such that 0 ⩽ γ ⩽ 1. Local well-posedness in spaces unrelated to

conserved quantities is also an interesting question; a natural scale of spaces which satisfy
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the properties i) ii) iii) listed above are those such that (1−∆)s/2γ ∈ Sα. While these spaces

are clearly invariant by the free evolution, they are also nice with respect to the control of

the density if s > d/α′ (indeed, one can show that ργ ∈ Lα in this case; see [95, Lemma

1]). Then, it can be shown that these spaces are also invariant by the nonlinear evolution

under suitable assumptions on w (which ensure that w ∗ ργ sends Hs to Hs; since ργ ∈ Lα

this amounts to have w ∈ W s,α′
). Interestingly, all these arguments can be adapted to the

Vlasov equation, the analogue condition being that (1+ |v|2)sm ∈ Lα(Rd×Rd) (which is still

invariant by the free evolution and controls the classical density). The conditions on w are

different however, due to the fact that one wants to define the Newton dynamics associated

to the mean-field potential w ∗ ρm.
Let us now consider a non-trivial stationary state γref = g(−i∇). One wants to know if

the dynamics of (1.1) is well-posed in a neighborhood of γref , at least locally in time. At

initial time (t = 0, say), we thus set γ|t=0 = γref + Q0 for some perturbation operator Q0,

and it is natural to study the dynamics of the perturbation Q(t) := γ(t)−γref which satisfies

the equation

i∂tQ = [−∆+ w ∗ ρQ, Q] + [w ∗ ρQ, γref ]. (1.4)

This equation shares a similar structure with the Hartree equation, the only difference being

the (linear) driving term [w ∗ ρQ, γref ]. Compared to the above discussion of local well-

posedness, we already see that this term introduces some new features. For instance, if one

wants to study the well-posedness of (1.4) in the trace-class, a natural question is to ask

under which assumptions on w, g does the term [w ∗ ρQ, γref ] is also trace-class. An answer

can be provided by the Birman-Solomjak inequality [133, Theorem 4.5], which states that

f(x)g(−i∇) belongs to the trace-class if f, g ∈ ℓ1L2 (that is, ∥f∥L2(z+[0,1)d ∈ ℓ1(Zd)). This

can be shown to hold under suitable assumptions on w. Our point here is that one needs

more assumptions on w than in the case γref = 0 (in which w ∗ ρQ ∈ L∞ was sufficient, while

here we need w ∗ ρQ ∈ ℓ1L2 as well). In this respect, the regularity (1 − ∆)s/2Q ∈ Sα is

a bit nicer when α ⩾ 2, due to the Kato-Seiler-Simon inequality [133, Theorem 4.1] which

states that f(x)g(−i∇) belongs to Sα if f, g ∈ Lα. The setting with α ⩾ 2 thus involves

Lα-norms, contrary to ℓαL2-norms for 1 ⩽ α < 2. With these kind of ideas, one can prove

the local well-posedness of the (1.4) under suitable assumptions on w, g, for Q satisfying

(1−∆)s/2Q ∈ Sα with s > d/α′ [95, Theorem 3].

The main difference between the cases γref = 0 and γref ̸= 0 are related to conserved

quantities; indeed, the conserved quantities mentioned in the case γref = 0 (namely, the

trace norm and the energy) are both infinite for γ(t) = γref +Q(t) with Q(t) in the classes of

well-posedness. There are no general analogue of these quantities for the equation (1.4) on

the perturbation, so that it looks impossible to globalize solutions by using conserved coercive

quantities in this case. However, we explain below that for a special class on backgrounds

γref (namely, the ones which has the variational interpretation mentioned above), one can

still build a notion of relative energy which can be used as a conserved coercive quantity

to globalize solutions. The main difficulty associated to these notions of relative energy are

the fact that they live at a very low regularity scale (essentially, (1 − ∆)1/2Q ∈ S2) which

are too weak to control the density (since the condition s > d/α′ is not satisfied, except for



1. FROM THE HARTREE EQUATION TO THE VLASOV EQUATION AT POSITIVE DENSITY 19

d = 1) and fall outside of the local well-posedness theory mentioned above. In d ⩾ 2, one

thus has to develop a local well-posedness theory at low regularity for which the dispersive

properties of the equation (in the form of Strichartz estimates) are key. Such low regularity

well-posedness results were obtained for d = 2, 3 in [95, Theorem 5 & 6]. The restriction

d ⩽ 3 comes from the fact that the control in the relative energy space of (1−∆)1/2Q ∈ S2

becomes too weak in large dimensions (the number of “derivatives” of Q that we control

being fixed).

1.2. Relative energies and global well-posedness. Let us now explain the concept

of relative energy and why it can be used to globalize solutions to (1.4), as introduced in

[95]. As we mentioned, the main problem is that the standard conserved quantities like the

energy E(γ) are infinite for the class of considered solutions. There are two ideas behind the

concept of relatives energies: i) use only relative quantities, that is measure everything with

respect to the background γref and ii) use a suitable combination of conserved quantities to

obtain something coercive. A simple illustration of point i) is for instance to replace the

trace Tr γ (which is a conserved quantity for (1.1) but infinite for our class of solutions) by

the relative object “Tr γ − Tr γref” which, written in this way, does not make sense since

it is a difference of two +∞. However, the rigorous version of this object is clear; namely

it is Tr(γ − γref) = TrQ which makes perfect sense for trace-class solutions of (1.4) and is

also conserved along the flow since it is the difference between the conserved quantity Tr γ

and the “constant” (thus also conserved) Tr γref . One can apply the same strategy to the

energy, to consider the relative energy “E(γ)− E(γref)” which is also formally conserved. It

is also not hard to see that what should be the rigorous version of this quantity, because one

formally has

E(γ)− E(γref) = Tr(−∆)(γ − γref) +
1

2

∫
Rd

∫
Rd

ργ−γref (x)w(x− y)ργ−γref (y) dy

+ ργref

(∫
w

)
Tr γ,

and the sum of the first two term (the last term being formally conserved) is a good candidate

for the relative energy since only the relative operator γ − γref appears in this expression. It

turns out that this construction (shifted again by a suitable multiple of Tr γ) is enough to

obtain a coercive quantity in the special case of the Fermi gas at zero temperature. However,

we will not detail it here since this case is not relevant for the semi-classical limit. In the

positive temperature case, this functional is in general not coercive, essentially due to the

fact that the kinetic energy term Tr(−∆)(γ − γref) has no sign. The key idea is to replace

the kinetic energy Tr(−∆)γ by the free energy Tr(−∆)γ−TrS(γ) for some suitable function

S : [0, 1] → R. Notice that the quantity TrS(γ) is also formally conserved along the flow

of (1.1) since the spectrum of γ is invariant. Applying the philosophy of i), we obtain the

relative entropy functional

HS(γ, γref) = Tr(−∆)(γ − γref)− TrS(γ) + TrS(γref)

= −Tr
[
S(γ)− S(γref)− (−∆)(γ − γref)

]
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and an easy condition to obtain the non-negativity of HS(γ, γref) is the concavity of the

function S as well as the relation

−∆ = S ′(γref) ⇐⇒ γref = (S ′)−1(−∆).

Defining properly this notion of relative entropy is not an obvious task since the operator

under the trace has no sign in general (even if the function (x, y) 7→ S(x)−S(y)−S ′(y)(x−y)
is non-negative). In [93], we proved that one could define HS(γ, γref) for general 0 ⩽ γ ⩽ 1 if

the function −S is operator monotone, a condition which ensures (and actually is equivalent

to) the monotonicity of relative entropy (meaning that HS(A,B) ⩾ HS(PAP, PBP ) for all

0 ⩽ P ⩽ 1). This condition is natural is one wants to reduce to finite dimensions where the

relative entropy is much easier to define. The condition that −S is operator monotone is

quite stringent (there is a representation theorem of all such functions), but all the physical

examples (Fermi-Dirac, Bose-Einstein, Boltzmann) satisfy this property. Once the relative

entropy is defined, one can show using the strict concavity of S that it indeed controls some

norm on Q = γ − γref , namely

HS(γ, γref) ⩾ C Tr(1−∆)Q2, (1.5)

as we mentioned above. It also leads to the notion of relative free energy

F(γ, γref) := HS(γ, γref) +
1

2

∫
Rd

∫
Rd

ργ−γref (x)w(x− y)ργ−γref (y) dy,

which is formally conserved along the flow and coercive (if for instance ŵ ⩾ 0, so that

the second term is non-negative). Let us mention that the relative entropy also controls

the density in the spirit of the Lieb-Thirring inequality stated above: following the zero-

temperature work [61], we proved a Lieb-Thirring inequality for the relative entropy [95,

Theorem 7] which states that HS(γ, γref) controls the (L2 + Lmin(1+2/d,2))-norm of ργ−γref
(under some integrability conditions on S ′ needed to ensure that ργref is well-defined). To

sum up, the relative free energy is well-defined in the space

KS := {0 ⩽ γ ⩽ 1 : HS(γ, γref) < +∞}, γref = (S ′)−1(−∆),

which is the natural space in which to study the global well-posedness of (1.1). In [95,

Theorem 9], we indeed proved that, for d = 1, 2, 3, the Hartree equation is globally well-

posed in KS with a conserved relative free energy, for a general class of entropy functionals

S.

1.3. Semi-classical limit. The semi-classical limit ℏ → 0 of the Hartree equation

(1.1) around the stationary states γref is based on the global well-posedness results of the

preceding section. Indeed, a first advantage of global solutions is that their maximal interval

of existence is independent of ℏ (while for general solutions it may depend badly on ℏ).
Another nice property of global solutions is the conservation of the coercice relative free

energy which provides bounds on the solution which are uniform in ℏ.
Before going into the details of the semi-classical limit, let us recall the mechanism behind

it. First, let us explain how to relate solutions of the Hartree and Vlasov equations (after all,

they are objects of a different nature). From a one-body density matrix γ, one can define its
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Wigner transform W ℏ
γ for any ℏ → 0. This is a function defined on the phase-space Rd×Rd,

by the formula

∀(x, v) ∈ Rd × Rd, W ℏ
γ (x, v) =

∫
Rd

γ(x+ y/2, x− y/2)e−iv·y/ℏ dy.

In many references, the Wigner transform is defined with an additional factor (2πℏ)−d. Our

choice of normalization is made so that we have W ℏ
γref

(x, v) = g(v). Another way to view the

Wigner transform is via duality, because it satisfies for all φ ∈ S(Rd × Rd)

⟨W ℏ
γ , φ⟩ = (2πℏ)dTr γOpℏ(φ), (1.6)

where Opℏ(φ) denotes the Weyl quantization of φ [157]. As its name suggests, this transform

was invented by Wigner [153] exactly for the purpose of linking quantum and classical

mechanics. Indeed, the relation (1.6) means that the classical ’state’ W ℏ
γ and the quantum

state γ have the same expectation (up to the factor (2πℏ)d) against observables modeled by

the classical symbol φ (recall that Opℏ(φ(x)) = φ(x) and Opℏ(φ(v)) = φ(−iℏ∇)). To capture

all these expectations into a classical state is a powerful property, which is counter-balanced

by the fact that W ℏ
γ is not exactly a classical state simply because it is not non-negative

in general. However, as we will recall below, the limit of W ℏ
γ as ℏ → 0 is non-negative

(formally, this can be seen from the expression of W ℏ
γ (x, v) ∼ℏ→0 (2πℏ)dγ(x, x)δv=0 ⩾ 0).

Another important property of the Wigner transform which is particularly relevant in our

context is the fact that if γ is a solution to the free Schrödinger equation iℏ∂tγ = [−ℏ2∆, γ],
then its Wigner transform is a solution to the free transport equation ∂tW

ℏ
γ +2v ·∇xW

ℏ
γ = 0

for each ℏ > 0. From this point of view, quantum and classical dynamics can be related

at every ℏ > 0! The usefulness of the semi-classical limit ℏ → 0 is apparent when looking

at more complicated dynamics, for instance adding a potential V : Rd → R. Indeed, if

γ is a solution to the equation iℏ∂tγ = [−ℏ2∆ + V, γ] and if W ℏ
γ → W when ℏ → 0 in

a suitable sense (which will be made more explicit below), it can be shown that W solves

the (linear) Vlasov equation ∂tW + 2v · ∇xW −∇xV · ∇vW = 0. This result has been put

on solid mathematical ground for instance by Lions and Paul [113], or it can be seen as a

consequence of Egorov’s theorem [157, Theorem 11.1] in some cases.

In their article, Lions and Paul also treat the non-linear case where the potential V

depends on the solution in a mean-field way like V = w ∗ ργ (this case has simultaneously

been treated in [115]). Since their argument is the basis of our analysis in [96], we provide

some details on the ideas behind it. The first step is to obtain a limit for the Wigner transform

W ℏ
γ(t) as ℏ → 0, for any t ∈ R. A simple way to find a limit is through compactness and

uniform bounds on W ℏ
γ(t) in ℏ. Such bounds can follow for instance from the identity (which

follows from Plancherel’s theorem)

∥W ℏ
γ ∥2L2

x,v
= (2πℏ)d∥γ∥2S2

which relate in a simple way a norm on the Wigner transform and a norm of γ. For the

Hartree equation (1.1), the norm ∥γ∥S2 is invariant so that if (2πℏ)d∥γ∥2S2 is bounded in

ℏ at initial time, it is bounded for all times. By compactness, we obtain in this way a

sequence (hn) converging to 0 and W ∈ L2
x,v such that W ℏn

γ → W weakly in L2
x,v as n→ ∞
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(technically, the sequence (hn) obtained in this could depend on t; a way to obtain a single

sequence is to use compactness in L∞
t L

2
x,v instead). The weak convergence of (W ℏn

γ ) is a

priori not enough to take the limit in the equation satisfies by W ℏ
γ (this equation is called

the Wigner equation), due to the nonlinear term involving the density ργ. One has to first

extract a weak limit on ργ itself, which can be done for instance using the Lieb-Thirring

inequality which in its ℏ-dependent version reads∫
Rd

(ℏdργ(x))1+2/d dx ⩽ CℏdTr(−ℏ2∆)γ.

Notice that the right side can be shown to be uniformly bounded in t and ℏ because it is

controlled by ( the ℏ-dependent version of) the energy E(γ), so that if the energy is bounded

in ℏ at initial time, one gets a uniform bound on ρW ℏ
γ
= ℏdργ in L∞

t L
1+2/d
x . From this uniform

bound, one obtains a weak-∗ limit ν of ρW ℏ
γ
in L∞

t L
1+2/d
x , up to a subsequence of (hn) that

we still denote by (hn). It seems that a weak limit on the couple (W ℏ
γ , ρW ℏ

γ
) is not enough to

take a limit in the nonlinearity (which is a bilinear expression in (γ, ργ)) since weak limits

behave badly under products. However, the mean-field potential Vℏ := ℏdw ∗ ργ = w ∗ ρW ℏ
γ

is better behaved if w is nice enough (here, it means ∇w ∈ L1+d/2), so that Vℏn → w ∗ ν
strongly in L∞

t,x. This strong convergence is enough to take the limit of the Wigner equation,

to find that (W, ν) satisfy the ’decoupled’ Vlasov equation

∂tW + 2v · ∇xW −∇x(w ∗ ν) · ∇vW = 0. (1.7)

Here, we strongly used the regularity of w and let us mention that [113, 115] go beyond this

simple assumption to treat less regular, more realistic potentials (like the Coulomb one for

instance). Let us also mention that the assumptions on the initial data (∥γ∥2S2+Tr(−ℏ2∆)γ ⩽
Cℏ−d) are not void and are satisfied for instance for γ = Opℏ(φ) for any φ ∈ S(Rd × Rd).

For this last example, we have W ℏ
γ = φ.

From these elementary arguments, it remains to understand why we have ν = ρW in

(1.7), where we recall that ν is the weak limit of ρW ℏn
γ

while ρW is the density of W , the

weak limit of W ℏn
γ . Hence, we have to prove that the weak limit of the density is the density

of the weak limit. This property is not automatic, since ν is characterized by the limit∫
Rd

ν(x)ψ(x) dx = lim
n→∞

∫
Rd

ρW ℏn
γ
(x)ψ(x) dx

= lim
n→∞

1

(2π)d

∫
Rd

∫
Rd

W ℏn
γ (x, v) dv ψ(x) dx,

for any test function ψ ∈ S(Rd×Rd). There, the weak limit of W ℏn
γ cannot be used because

the function (x, v) 7→ ψ(x) is not a test function for W ℏn
γ : it has no decay when |v| → ∞.

Notice that the computation above is a bit formal since there is no reason that W ℏn
γ should

be integrable in v to begin with. The way to make it more rigorous is to use the Husimi

transform of γ, defined by

mℏ
γ(x, v) := ⟨χℏ

x,v, γχ
ℏ
x,v⟩, (x, v) ∈ Rd × Rd,
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where χℏx, v(z) := χℏ(z − x)eiv·z/ℏ, χℏz := ℏ−d/4χ(ℏ−1/2z) for all z ∈ Rd (for some fixed

χ ∈ L2(Rd,R) with
∫
χ2 = 1). The states (χℏ

x,v)(x,v)∈Rd×Rd are called coherent states. This

is another way to create a classical object from the quantum state γ, the main advantage

compared to the Wigner transform is that mℏ
γ ⩾ 0 for all ℏ > 0 (since γ ⩾ 0), meaning

that they are ’true’ classical states. Now it can be shown that we also have mℏn
γ → W and

ρmℏn
γ

→ ν as n → ∞ (in the sense of distributions for instance). This proves in particular

that W ⩾ 0. For the Husimi transform, the above computation is rigorous for ψ ∈ C∞
c (Rd)

with ψ ⩾ 0 since it only involves non-negative functions. Hence, we indeed have∫
Rd

ν(x)ψ(x) dx = lim
n→∞

1

(2π)d

∫
Rd

∫
Rd

mℏn
γ (x, v)ψ(x) dx dv.

A sufficient condition to take the limit of the right side is then the following tightness property

of the sequence (mℏn
γ ):

lim
R→+∞

lim sup
n→∞

∫
Rd

∫
Rd

1(|v| ⩾ R)mℏn
γ (x, v) dx dv = 0. (1.8)

Indeed, assuming this property, if we introduce f ∈ C∞
c (Rd) such that f is radially decreas-

ing, f ⩾ 0, f ≡ 1 on B(0, 1), then one can estimate

Rf (n,R) =

∫
Rd

∫
Rd

(1− f(v/R))mℏn
γ (x, v) dx dv ⩽

∫
Rd

∫
Rd

1(|v| ⩾ R)mℏn
γ (x, v) dx dv.

On the other hand, for any R > 0 we have∣∣∣∣∫
Rd

∫
Rd

mℏn
γ (x, v)ψ(x) dx dv −

∫
Rd

∫
Rd

mℏn
γ (x, v)ψ(x)f(v/R) dx dv

∣∣∣∣ ⩽ Rf (n,R)∥ψ∥L∞ ,

so that in the limit n→ ∞ we get∣∣∣∣(2π)d ∫
Rd

ν(x)ψ(x) dx−
∫
Rd

∫
Rd

W (x, v)ψ(x)f(v/R) dx dv

∣∣∣∣ ⩽ lim sup
n→∞

Rf (n,R)∥ψ∥L∞ ,

due to the fact that (x, v) 7→ ψ(x)f(v/R) ∈ C∞
c (Rd ×Rd). In the limit R → +∞, using the

tightness property and monotone convergence, we indeed deduce that

(2π)d
∫
Rd

ν(x)ψ(x) dx =

∫
Rd

∫
Rd

W (x, v)ψ(x) dx dv,

showing that ρW = ν. It remains to explain why the tightness property (1.8) holds. First,

from the conservation of energy we deduce that Tr(−ℏ2∆)γ(t) ⩽ Cℏ−d for a constant C > 0

independent of ℏ and t. Now this quantum kinetic energy can be related to the classical

kinetic energy of mℏ
γ(t) by the identity

1

(2πℏ)d

∫
Rd

∫
Rd

|v|2mℏ
γ(x, v) dx dv = Tr(−ℏ2∆)γ + ℏ∥∇χ∥2L2 Tr γ. (1.9)

If Tr γ (which is also a conserved quantity) is also of the order ℏ−d (which is the case if

γ = Opℏ(φ)), then we obtain ∫
Rd

∫
Rd

|v|2mℏ
γ(t)(x, v) dx dv ⩽ C
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for C > 0 independent of ℏ and t, from which the tightness property follows easily. This

finishes the proof of the semi-classical limit via the Lions-Paul strategy (in a simplified

setting).

The same method can be applied to solutions to the Hartree equation around stationary

states γref (or rather the ℏ-dependent version of (1.4)). Indeed, the compactness step to

obtain weak limits for W ℏ
Q and ℏdρQ can be done in the same way once uniform bounds are

obtained for these objects. Contrary to the case γref = 0, the norm ∥Q∥S2 is not invariant

under the dynamics of (1.4). However, it can be controlled via the only conserved quantity:

the relative free energy. The conservation of the relative free energy implies a global bound

on the relative entropy ℏdHS(γ, γref ) which itself controls ℏd∥Q∥2S2 by (1.5). We may find

a weak limit W on W ℏ
γ = W ℏ

Q + g(v) in this way. Similarly, a global bound on ℏdρQ can

be obtained using the control of the relative entropy and the Lieb-Thirring inequality for

the relative entropy that we mentioned above. We deduce a weak limit ν for the density

ℏdργ = ℏdργref + ℏdρQ. In this way, the same argument as above leads to an equation of the

type (1.7) where the unknown W and the density ν are decoupled. As in the case γref = 0,

all boils down to showing that ρW = ν, which again would follow from the tightness property

(1.8) (which itself follows from a control on the quantum kinetic energy and (1.9)). In the

case γref ̸= 0, we argued that the natural replacement of the kinetic energy was the relative

entropy, which is indeed controlled uniformly. However, no formula as explicit as (1.9)

exists to relate classical and quantum relative entropies. Instead, we rely on Berezin-Lieb

inequalities.

1.4. Berezin-Lieb inequalities and tightness. The idea of Berezin-Lieb inequalities

is to give bounds between classical and quantum quantities. In our context, one has a

quantum object (the one-body density matrix γ) and one tries to obtain bounds on a classical

transform of it (its Husimi transform mℏ
γ). We already saw one instance of such a relation in

the form of the identity (1.9). Berezin-Lieb inequalities [20, 99, 134] have the same flavour,

in the form

TrF (γ) ⩾
∫
Rd

∫
Rd

F (mℏ
γ(x, v))

dx dv

(2πℏ)d
,

where on the left side is the expectation of the quantum observable F (γ) (with F : [0, 1] → R+

a convex function) and on the right side its classical counterpart. Such an inequality follows

from the elementary remark that

F (mℏ
γ(x, v)) = F (⟨χℏ

x,v, γχ
ℏ
x,v⟩) ⩽ ⟨χℏ

x,v, F (γ)χ
ℏ
x,v⟩,

which follows from the spectral decomposition of γ and the convexity of F . Integrating this

relation in (x, v) together with the resolution of the identity∫
Rd

∫
Rd

|⟨χℏ
x,v, f⟩|2

dx dv

(2πℏ)d
= ∥f∥2L2 , f ∈ L2(Rd)

leads to the claimed lower bound on TrF (γ). The situation is less clear when dealing

with relative quantities where two quantum objects (and their two classical counterparts)

appear. In [96, Proposition 4.3], we provide conditions on the entropy functional S so that
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an inequality

HS(γ, γref) ⩾ CHcl
S (m

ℏ
γ,m

ℏ
γref

) (1.10)

holds, where Hcl
S is the classical relative entropy defined by

Hcl
S (m,m0) = −

∫
Rd

∫
Rd

[
S(m(x, v))−S(m0(x, v)−S ′(m0(x, v))(m(x, v)−m0(x, v))

] dx dv

(2πℏ)d
.

This property holds for the von Neumann entropy S(x) = −x log x + x, using the crucial

property that it is monotone under completely positive, trace-preserving maps [97]. This was

already remarked in [92, Lemma 7.2], and using elementary manipulations it is not hard to

prove it also for the Fermi-Dirac and Bose-Einstein entropy functionals. It is an open question

to determine the set of all entropy functionals S for which a relative Berezin-Lieb inequality

(1.10) holds. Let us just emphasize that in our context, while the global well-posedness results

of [94] hold on fairly general assumptions on S (essentially, −S being operator monotone),

this Berezin-Lieb property introduces additional restrictions on S so that we are only able

to treat the Boltzmann, Fermi-Dirac, and Bose-Einstein entropy functionals.

Once a uniform in ℏ control on Hcl
S (m

ℏ
γ,m

ℏ
γref

) is obtained, one has to understand why

it controls large velocities to deduce the tightness property (1.8). Of course, due to the

complicated expression for the classical relative entropy, it is less obvious than for the kinetic

energy
∫
|v|2mdxdv. We proved in [96, Theorem 5.1] that for all R > 0 we have∫

Rd

∫
Rd

1(|v| ⩾ R)mℏn
γ (x, v)|φ(x)| dx dv ⩽ C∥φ∥L∞

Hcl
S (m

ℏ
γ,m

ℏ
γref

)

R

+ C∥φ∥L1

∫
|v|2⩾R/128

(S ′)−1(|v|2) dv,

which provides the desired tightness. Interestingly, this result has a quantum analogue

[94, Theorem 8] which is a key technical component of our proof of global well-posedness

around stationary states (to show that finite energy solutions can be approximated by regular

solutions).

1.5. Uniqueness. Let us sum up the results of the arguments presented above. We fix

an entropy functional S which is either the Boltzmann, Fermi-Dirac, or Bose-Einstein one

(to ensure that the relative entropy associated with S satisfies a Berezin-Lieb inequality).

This defines a quantum background γref = (S ′)−1(−ℏ2∆) for any ℏ > 0 as well as a classical

background mref(x, v) = (S ′)−1(|v|2). We also assume d = 1, 2, 3, which is the condition

under which the global well-posedness of the Hartree equation was obtained in [95]. For

any initial data 0 ⩽ γ0 ⩽ 1 such that ℏdHS(γ0, γref) is bounded as ℏ → 0, we have found a

sequence (hn) converging to zero and W : Rt × Rd
x × Rd

v → [0, 1] a (distributional) solution

to the nonlinear Vlasov equation (1.3) such that W ℏn
γ(t) → W (t), weakly-∗ in L∞

t (mref +L
2
x,v),

where γ(t) is the unique global solution to the Hartree equation (1.1). Additional properties

of this solutionW can be obtained from the proof. First, its time regularity can be improved

to C0
t (L

∞
x,v, ∗) due to the bounds 0 ⩽ W ⩽ 1 and the Vlasov equation which controls ∂tW .

Secondly, we have informations about the density of the solution ρW because we showed that
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it is the weak limit of the quantum density, which satisfies some bounds coming from the

Lieb-Thirring inequality. This implies that ρW ∈ ρmref
+ L∞

t (L2
x + L

min(1+2/d,2)
x ).

The goal of this step is to show that such solutions to the nonlinear Vlasov equation are

unique. This has two motivations: i) to obtain the convergence of W ℏ
γ to W not only up to

a sequence (ℏn) but as ℏ → 0, and ii) to give a first step towards the well-posedness of the

Vlasov equation in this setting. Indeed, the existing results on uniqueness/well-posedness of

the Vlasov equation all concern (to our knowledge) solutions m which are at least L1
x,v (or

finite measures), which is not the case here. Notice also that in order to have uniqueness, the

initial data for the Vlasov equation must be unique so it is natural to furthermore assume

that at initial time, W ℏ
γ0

→ W (0) as ℏ → 0, in the sense of distributions for instance. The

uniqueness is proved in [96, Theorem 6.3], where we follow the method of Loeper [114] based

on optimal transportation techniques. We won’t go too much into details, but let us just

mention that Loeper’s method is based on considering two solutions W1 and W2 with the

above regularity (we also denote by ρ1 and ρ2 their respectives densities) and the goal is to

show thatW1 = W2. To do it, the key is to consider the Wasserstein distance between ρ1 and

ρ2. The interesting point here is that
∫
ρ1 =

∫
ρ2 = +∞, so that ρ1 and ρ2 are infinite-mass

measures. Our point is that the classical results of optimal transportation of Brenier and

McCann (which are stated for finite measures) extend to the case of infinite measures, as

long as their Wasserstein distance is finite. For instance, one has the following result:

Lemma 1.1 (Lemma B.1 in [96]). Let ρ1, ρ2 ∈ L1
loc,+(Rd). Define Γ(ρ1, ρ2) as the set of

all Radon measures on Rd × Rd having marginals ρ1 and ρ2. Define the optimal transport

problem

C(ρ1, ρ2) = inf
Π∈Γ(ρ1,ρ2)

∫
Rd×Rd

|x− y|2 dΠ(x, y).

If C(ρ1, ρ2) < +∞, then the infimum defining C(ρ1, ρ2) is attained.

In the finite-mass setting, the proof of this result is standard [152, Theorem 4.1] and

exploits the fact that the minimizing set Γ(ρ1, ρ2) is compact, so that any sequence has a

convergent subsequence. Interestingly, in the infinite-mass setting one has to use that a

sequence is minimizing to obtain a convergent subsequence. To show that ρ1 and ρ2 are at a

finite Wasserstein distance in our setting, one exploits the fact that ρ1 − ρ2 has some decay

(even if ρ1 and ρ2 do not decay), due to the fact that they both have the same background

ρmref
.

Adding up all the arguments presented above, we deduce the following result on the

semi-classical limit of the Hartree equation around translation-invariant stationary states.

Theorem 1.1 (Theorem 2.24 in [96]). Let d ∈ {1, 2, 3}, ℏ > 0, and assume that either

S(x) =


−x log x− (1− x) log(1− x),

−x log x+ (1 + x) log(1 + x),

−x log +x.

Define γref = (S ′)−1(−ℏ2∆), mref(x, v) := (S ′)−1(|v|2). Let w ∈ (W 2,1 ∩W 2,∞)(Rd) be an

even, real-valued function. Let γ ∈ γref + C0
t (R,S2) be the unique solution to the Hartree
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equation (1.1) associated with an initial condition γ0 satisfying

lim inf
ℏ→0

ℏdHS(γ0, γref) < +∞

and W ℏ
γ0

→ W0 as ℏ → 0 in the sense of distributions on the phase space Rd × Rd. Then,

there exists CS > 0 and

W ∈
{
mref + L∞

t (R, L2
x,v(Rd × Rd))

}
∩ C0

t (R,D′
x,v(Rd × Rd))

such that:

(1) 0 ⩽ W (t) ⩽ 1 for all t ∈ R;
(2) Hcl

S (W (t),mref) ⩽ CS lim infℏ→0 ℏdHS(γ(t), γref) for all t ∈ R;
(3) W ℏ

γ(t) ⇀W (t) as ℏ → 0 in the sense of distributions on R2d, uniformly on compact

sets in t;

(4) ℏdργ − ℏdργref → ρW − ρmref
as ℏ → 0, weakly-∗ in L∞

t (L2 + Lmin(1+2/d,2));

(5) W is the unique solution to the nonlinear Vlasov equation{
∂tW + 2v · ∇xW −∇x(w ∗ ρW ) · ∇vW = 0,

W|t=0 = W0

in
{
mref+L

∞
t (R, L2

x,v(Rd×Rd))
}
∩C0

t (R,D′
x,v(Rd×Rd)) such that Hcl

S (W (t),mref) ∈
L∞
t .

Let us comment on the elements of the theorem which did not appear in our previous

arguments. First, the convergence of W ℏ
γ(t) to W (t) as ℏ → 0 locally uniform in t follows

from Ascoli’s theorem together with bounds on ∂tW
ℏ
γ(t) coming from the equation. More

importantly, the control on the classical relative entropy Hcl
S (W (t),mref) follows from the

Berezin-Lieb inequality (1.10) and the fact that the classical relative entropy decreases under

weak limits (perhaps up to a multiplicative constant). This last fact is not automatic and

can be proved easily if (x, y) 7→ S(x) − S(y) − S ′(y)(x − y) is convex (essentially because

in this case, weak limits can be replaced by a.e. limits for which the decrease follows from

Fatou’s lemma) [96, Lemma 5.3]. This introduces a priori another constraint on the entropy

functional S, which is satisfied by our three options for S. We insist on this control on the

classical relative entropy because if one could achieve a bound of the type Hcl
S (W (t),mref) ⩽

lim infℏ→0 ℏdHS(γ(t), γref), it would be a first step to show that the classical free energy is

preserved along the flow of the nonlinear Vlasov equation (by deducing it from the quantum

case).

1.6. Applications. We can use Theorem 1.1 to deduce a global well-posedness result

about the nonlinear Vlasov equation itself. The idea is to build solutions to the Vlasov

equation as limits of (Wigner transforms of) solutions to the Hartree equation. In this

sense, the quantum equation acts as a regularization of the Vlasov equation. Looking at

Theorem 1.1, if one starts with an initial datum W (0) for the Vlasov equation satisfying

0 ⩽ W (0) ⩽ 1 and Hcl
S (W (0),mref) < +∞, one would like to construct an initial datum γ0

for the Hartree equation such thatW ℏ
γ0

→ W (0) as ℏ → 0 in the distributional sense, and such

that ℏdHS(γ0,mref) is bounded as ℏ → 0. The first property is easy to obtain (just choose
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γ0 = Opℏ(W (0))), but the second property is much harder to obtain due to the complicated

definition of the quantum relative entropy. We show the second property for a particular

class of W (0), namely those who can be written as W (0)(x, v) = (S ′)−1(|v|2 + a(x, v)) for

some a ∈ C∞
c (Rd×Rd). For those, it turns that the choice γ0 = (S ′)−1(−ℏ2∆+Opℏ(a)) can

be shown to satisfy the two desired properties. Then, one can show that this class of W (0)

is dense in the full classical relative energy space to obtain the following result.

Theorem 1.2 (Theorem 2.28 in [96]). Let d ∈ {1, 2, 3} and assume that either

S(x) =


−x log x− (1− x) log(1− x),

−x log x+ (1 + x) log(1 + x),

−x log +x.

Define mref(x, v) := (S ′)−1(|v|2). Let w ∈ (W 2,1∩W 2,∞)(Rd) be an even, real-valued function.

Let W0 ∈ mref + L2
x,v be such that 0 ⩽ W0 ⩽ 1 and such that Hcl

S (W0,mref) < +∞. Then,

there exists a unique

W ∈ (mref + L∞
t (R, L2

x,v)) ∩ C0
t (R,D′

x,v)

such that 0 ⩽ W (t) ⩽ 1 and Hcl
S (W (t),mref) ⩽ C for all t ∈ R, which solves the nonlinear

Vlasov equation {
∂tW + 2v · ∇xW −∇x(w ∗ ρW ) · ∇vW = 0,

W|t=0 = W0.

To our knowledge, Theorem 1.2 is the first result about the existence and uniqueness

of non-perturbative solutions to the nonlinear Vlasov equation around a non-trivial homo-

geneous state mref in Rd, in the energy space. Perturbative solutions with high regularity

have been obtained in [13] in the context of Landau damping, leaving the case of global-

in-time non-perturbative solutions open (see Remark 2.2 in [13]). Of course, our result has

two drawbacks: (i) we consider only nice interaction potentials w and (ii) our assumptions

on the reference state mref coming from the entropies are quite stringent. Relaxing these

assumptions on w and mref is a very interesting challenge. Notice also that it seems hard to

adapt the proof strategy of [95] concerning the global well-posedness of the Hartree equation

to obtain a direct proof of Theorem 1.2, since the quantum result heavily relies on dispersive

tools such as Strichartz estimates. These tools also exist in the classical setting, but it is

not obvious to us how to apply them to obtain local well-posedness results at low regularity

for the Vlasov equation, for instance. Let us finally notice that Theorem 1.2 does not imply

Landau damping (that is, weak convergence of W (t) to mref as t→ +∞, in other words the

asymptotic stability of mref). However, it implies the orbital (or rather Lyapounov, since

the orbit is reduced to a single point) stability of mref in the sense of the relative entropy:

given ε > 0, there exists η > 0 such that for all initial W0 with Hcl
S (W0,mref) < η, then

Hcl
S (W (t),mref) < ε for all t ∈ R.

2. From the Dirac-Klein-Gordon equation to the nonlinear Dirac equation

We next present the work of [90] which is in some sense complementary to the one

presented above, because we also relate two PDEs in some asymptotic regime. While the
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preceding result relied on compactness methods and weak limits, the result below will provide

quantitative estimates and strong limits. This model also has a many-body component, but

we begin with its one-body version which is simpler and which motivates the many-body

strategy.

2.1. The one-body problem. We start from the Dirac-Klein-Gordon equation used in

the relativistic mean-field theory of nuclei [125] and models the interaction between nucleons

(described by the Dirac equation) and mesons (modeled by the Klein-Gordon part). It reads{
i∂tΨ = DΨ+ βSΨ,

(∂2t −∆+M2)S = −g2⟨βΨ,Ψ⟩C4 ,
(1.11)

where Ψ : Rt ×R3
x → C4 is the Dirac spinor (with mass m ⩾ 0) describing the nucleons and

S : Rt × R3
x → R describes (part of) the meson field (with mass M > 0). Here, D denotes

the Dirac operator D := −iα · ∇ + βm where (β,α) are the complex 4 × 4 Dirac matrices

defined by

β =

(
1 0

0 −1

)
, α = (α1, α2, α3) with αk =

(
0 σk
σk 0

)
, (1.12)

for k = 1, 2, 3, and

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ1 =

(
1 0

0 1

)
, (1.13)

the Pauli matrices. We chose a simplified formulation of (1.11) where the meson field S is

scalar-valued; a more realistic model would include a field with 5 (real) components (see [90]

for details). We don’t include the full model here to highlight the mathematical features of

the equations, and because the full model is not significantly harder to treat.

We are interested in the strong coupling regime where g andM are large and of the same

order. We set g = M for simplicity, and we expect formally that in the limit M → +∞,

the second equation of (1.11) implies that S = −⟨βΨ,Ψ⟩C4 , which reinserted into the first

equation of (1.11) leads to the nonlinear Dirac equation

i∂tΨ = DΨ− ⟨βΨ,Ψ⟩C4βΨ. (1.14)

Of course, this argument is purely formal since it relies on the smallness of (∂2t −∆)S which

will typically be wrong due to fast oscillations of S as M → +∞.

A potentially more problematic question concerning the convergence of solutions asM →
+∞ is the question of the time of existence. Indeed, if the maximal time of existence T ∗

M > 0

of solutions to (1.11) vanishes asM → +∞, it becomes hard to make sense of the convergence

of Ψ as M → +∞. This is particularly relevant for such equations which are based on the

Dirac operator, which is neither bounded from above or below (contrary to its non-relativistic

counterpart −∆). This implies that one cannot hope to control the time of existence by

using a conserved quantity like the energy, based on the unsigned relativistic kinetic energy

⟨Ψ, DΨ⟩. Another natural conserved quantity which one could hope to use to obtain global-

in-time solutions is the L2-norm ∥Ψ∥L2 , which has a definite sign and is coercive. The new

problem that arises for this conservation law is the low regularity at which it lives, and for

which well-posedness results are harder to obtain. This being said, global well-posedness
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for the equation (1.11) for Ψ in L2 was obtained in this way in [25] in one space dimension

(see [42] for a related earlier result), and in [77] in two space dimensions. A corresponding

result for the nonlinear Dirac equation in one space dimension is in [49]. To our knowledge,

no such result exists either for the Dirac-Klein-Gordon equation in three space dimensions

or for the nonlinear Dirac equation in two or three space dimensions. This is due to the

fact that the former is L2-critical while the latter is H1/2-critical in 2d and H1-critical in 3d.

Meanwhile, some global well-posedness results exist for these equations for small solutions,

see for instance [16, 15, 14].

Here, we take the opposite point of view of high regularity solutions. At such regularity,

local-in-time well-posedness is very easy to obtain and their time of existence is controlled

by a blow-up criterion, as summed up in the following result.

Lemma 1.2. Let s > 3/2 and (Ψin, Sin, Ṡin) ∈ Hs(R3,C4)×Hs(R3,R)×Hs−1(R3,R).
(i) For all g,M > 0 there exist Tmin, Tmax ∈ (0,+∞] and a unique maximal solution

(Ψ, S) ∈ C0((−Tmin, Tmax), H
s(R3,C4)×Hs(R3,R)) ,

to the Dirac-Klein-Gordon equation (1.11) such that (Ψ, S, ∂tS)|t=0 = (Ψin, Sin, Ṡin).

If Tmax/min < +∞ then

lim sup
t→Tmax/min

∥(Ψ, S)(t)∥L∞ = +∞ . (1.15)

(ii) There exist T nl
min, T

nl
max ∈ (0,+∞] and a unique maximal solution

Ψnl ∈ C0((−T nl
min, T

nl
max), H

s(R3,C4)) ,

to the nonlinear Dirac equation (1.14) such that (Ψnl)|t=0 = Ψin. If T
nl
max/min < +∞

then

lim sup
t→Tnl

max/min

∥Ψnl(t)∥L∞ = +∞ .

Lemma 1.2 can be proved by a fixed point argument on the Duhamel formulations of both

equations. Working in high regularity simplifies things because Hs is an algebra for s > 3/2,

so that the nonlinearities stabilize Hs. An important remark is the blow-up criteria which

are stated for the L∞-norm (and not the Hs-norm), and which follow from the Kato-Ponce

inequality [85, Lemma X.4]

∥uv∥Hs ⩽ C(∥u∥L∞∥v∥Hs + ∥v∥L∞∥u∥Hs) . (1.16)

which holds for any u, v ∈ Hs with s > 3/2. This standard fact about the blow-up criterion

will be important to deal with the limit M → +∞.

Solutions of (1.11) are related to the solutions to (1.14) in the limit M → +∞, as shown

by the following result.

Theorem 1.3 (Theorem 1 in [90]). Let s > 5/2 and (Ψin, Sin, Ṡin) ∈ Hs(R3,C4) ×
Hs(R3,R) × Hs−1(R3,R). Let Ψnl be the maximal solution to (1.14) with initial condition

Ψnl|t=0 = Ψin given by Lemma 1.2. Let M > 0 and let (Ψ, S, ω) be the maximal solution to
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(1.11) with g =M and initial conditions (Ψ, S, ∂tS)|t=0 = (Ψin, Sin, Ṡin) given by Lemma 1.2.

Then, we have

lim inf
M→+∞

Tmin/max ⩾ T nl
min/max (1.17)

and, for all 0 < T1 < T nl
min, 0 < T2 < T nl

max, and all 0 ⩽ s′ < s,

lim
M→+∞

∥Ψ−Ψnl∥L∞([−T1,T2],Hs′ (R3,C4)) = 0. (1.18)

Let us make a few comments on the statement of Theorem 1.3. First, the assumption

that s > 5/2 is stronger than the one of Lemma 1.2 (s > 3/2) due to the method of proof

that we will describe below (essentially, we use a different equation where derivatives appear

in the nonlinearity, so that we need that Hs−1 is also an algebra). Of course, we don’t think

that this assumption is sharp in any way since we already mentioned that these equations are

well-posed for lower values of s, so we expect that the convergence result of Theorem 1.3 can

be extended to the values of s so that the nonlinear Dirac equation is well posed (hence, s > 1

or even the critical exponent s = 1). An interesting related question is what happens for

0 < s < 1, where the Dirac-Klein-Gordon system is well-posed but not the nonlinear Dirac

equation. Another comment we can make is about the convergence (1.18). Notice that it

holds for the Hs′-topology (which is weaker than the Hs topology of the solution). This is

related to the fact that in this weaker topology, we actually obtain a quantitative rate of

convergence (essentially M s′−s), which is important in the argument to control the blow-up

time as in (1.17). This being said, we expect that the convergence (1.18) also holds in the

maximal topology s′ = s, probably without an explicit rate. To illustrate this phenomenon,

if s− 1 < s′ ⩽ s and u ∈ Hs−1, we have

∥(−∆+M2)−1/2u∥Hs′ ⩽M s′−s∥u∥Hs−1

which converges to 0 as M → +∞ if s′ < s with a rate M s′−s, while for s′ = s convergence

to 0 also holds by dominated convergence (with no rate). Last but not least, we want to

emphasize that Theorem 1.3 holds without any assumption on the initial datum for the

meson field (Sin, Ṡin), in particular since it would look natural to assume that Sin is close

to −⟨βΨin,Ψin⟩. That we do not need such an assumption is related to the fact that the

meson field S does not need to be close to −⟨βΨ,Ψ⟩ for the limit (1.18) to hold. Our

proof even shows that S + ⟨βΨ,Ψ⟩ has a (fast) oscillating component which may not vanish

in norm, but which regardless does not influence the dynamics of the Dirac spinor. This

fact has an interesting consequence when Ψin is small enough in some norm to ensure that

T nl
min/max = +∞. Then, (1.17) shows that solutions the Dirac-Klein-Gordon equation exist

for arbitrarily large time if M is chosen large enough, regardless of the size of initial meson

field. This kind of result seems new to us, since global solutions to the Dirac-Klein-Gordon

equation seem to be known to exist only when all the initial data (spinor and field) are small

(see for instance [16]).

Let us now comment on how the proof is made, and let us begin by motivating the

strategy. To simplify notations, assume that Sin = −⟨βΨin,Ψin⟩ and that Ṡin = 0. Then, the

Duhamel formulation for the equation on S implies that for all t in the interval of existence
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we have

S(t) = cos(t
√
−∆+M2)Sin −M2

∫ t

0

sin((t− s)
√
−∆+M2)√

−∆+M2
⟨βΨ(s),Ψ(s)⟩C4 ds.

Using integration by parts, we find that

S(t) + ⟨βΨ(t),Ψ(t)⟩C4 =
−∆

−∆+M2

(
⟨βΨ(t),Ψ(t)⟩C4 − cos(t

√
−∆+M2)⟨βΨin,Ψin⟩C4

)
+

M2

−∆+M2

∫ t

0

cos((t− s)
√
−∆+M2)∂s⟨βΨ(s),Ψ(s)⟩C4 ds,

with a first term that vanishes as M → +∞ if we have uniform bounds on Ψ(t) in Hs for

instance. To see that the integral term vanishes as well, it is natural to do another integration

by parts to obtain∫ t

0

cos((t−s)
√
−∆+M2)∂s⟨βΨ(s),Ψ(s)⟩C4 ds =

sin(t
√
−∆+M2)√

−∆+M2
(∂s)|s=0⟨βΨ(s),Ψ(s)⟩C4

+

∫ t

0

sin((t− s)
√
−∆+M2)√

−∆+M2
∂2s ⟨βΨ(s),Ψ(s)⟩C4 ds

To show that this last term vanishes in Hs as M → +∞, it thus seems natural to try to

control ∂2s ⟨βΨ(s),Ψ(s)⟩C4 in Hs−1 uniformly inM . Using the equation satisfied by Ψ(t), one

finds that

∂2s ⟨βΨ(s),Ψ(s)⟩C4 = 2Re
[
⟨βDΨ, DΨ⟩C4 − ⟨βΨ, D2Ψ⟩C4 − 2⟨Ψ, S(iα · ∇Ψ⟩C4)

]
,

so that a control on ∂2s ⟨βΨ(s),Ψ(s)⟩C4 in Hs−1 would follow from a control on Ψ in Hs+1

(due to the term with two derivatives on Ψ). Using now the Duhamel formulation of the

equation on Ψ,

Ψ(t) = e−itDΨin − i

∫ t

0

e−i(t−s)DβS(s)Ψ(s) ds,

we see that a control on Ψ(t) in Hs+1 would follow from a control of S in Hs+1. We therefore

cannot close the argument in such a way (because we began by trying to control S inHs). Let

us mention also that this strategy appeared in previous works where such loss of derivatives

does not happen (due to a regularizing effect in the nonlinearity) [129, 1, 48, 76, 12].

The solution we proposed to bypass this issue was to rather work on the reduced variable

S(t) = S(t) + ⟨βΨ(t),Ψ(t)⟩C4 ,

and the new system of equations is then{
i∂tΨ = DΨ− ⟨βΨ,Ψ⟩C4βΨ+ βSΨ,

(∂2t −∆+M2)S = (∂2t −∆)⟨βΨ,Ψ⟩C4 .
(1.19)

The key point is that the new nonlinearity (∂2t − ∆)⟨βΨ,Ψ⟩C4 has a hidden regularizing

effect, in the sense that it actually does not lose two derivatives on Ψ: using the equation

on Ψ, one can show that (∂2t − ∆)⟨βΨ,Ψ⟩C4 is actually a polynomial in Ψ, ∇Ψ, and ∇S
that we denote by P (Ψ,∇Ψ,∇S). We will see that this gain of one derivative is enough to

close the argument. Notice that this cancellation of higher order derivatives is not related to
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the particular form of the nonlinearity but rather on the fact that Ψ satisfies a Dirac type

equation, so that to leading order we have (∂2t −∆)Ψ = 0.

Using equation (1.19), we infer the following technical key result.

Lemma 1.3 (Lemma 2.4, 2.6, and Prop. 2.7 in [90]). Let s > 5/2 and (Ψin, Sin, Ṡin) ∈
Hs(R3,C4)×Hs(R3,R)×Hs−1(R3,R). Let T > 0,M ⩾ 1, and (Ψ, S) ∈ C0

t ([0, T ], H
s(R3,C4)×

Hs(R3,R)) be a solution to (1.11) with g = M and initial data (Ψin, Sin, Ṡin). Let Ψnl ∈
C0
t ([0, T ], H

s(R3,C4)) be a solution to (1.14) with initial data Ψin. Define S := S+⟨βΨ,Ψ⟩C4.

Let s′ ∈ [s− 1, s]. Then, for any R > 0 there exists C(R) > 0 independent of M such that

(1)

∥(Ψ, S)∥L∞
t ([0,T ],W 1,∞) ⩽ R =⇒ ∀t ∈ [0, T ], ∥(Ψ, S)(t)∥Hs ⩽ ∥(Ψ, S)(0)∥HseC(R)t,

(2)

∥(Ψ, S)∥L∞
t ([0,T ],Hs) ⩽ R =⇒ ∥S(t)− cos(t

√
−∆+M2)S(0)∥L∞

t ([0,T ],Hs′ ) ⩽ C(R)M s′−s,

(3)

∥(Ψ, S)∥L∞
t ([0,T ],Hs) ⩽ R =⇒ ∥Ψ−Ψnl∥L∞([0,T ],Hs′ ) ⩽ C(R)M s′−s.

Point (1) is a kind of quantitative blowup criterion which is uniform in M : (Ψ, S) does

not blow up in Hs (uniformly in M ⩾ 1) as long as the W 1,∞-norm of (Ψ, S) does not

blow up. It follows from the Duhamel formulation of the reduced equation (1.19), the

Kato-Ponce inequality (we need a control in W 1,∞ since the nonlinearity now involves first

order derivatives of (Ψ, S)), and the Gronwall lemma. Point (2) gives the leading order as

M → +∞ of S(t) as long as one has a control on the Hs-norm of (Ψ, S). It can be proved

using the Duhamel formulation of the equation on S(t) together with the bound (that we

mentioned above) ∥(−∆ +M2)−1/2∥Hs−1→Hs′ ⩽ M s′−s. Finally, point (3) shows that the

desired convergence from Dirac-Klein-Gordon to the nonlinear Dirac equation holds as long

as we have a control on the Hs-norm of (Ψ, S) which is uniform in M . It can be proved

by computing the difference Ψ− Ψnl using the Duhamel formulation of the equations on Ψ

and Ψnl together with point (2) and Gronwall’s lemma. Interestingly, one uses here that the

oscillation in S(t) does not influence the dynamics of Ψ(t): indeed, this leads to a term of

the type ∫ t

0

e−i(t−s)D cos(s
√
−∆+M2)S(0)βΨ(s) ds,

which can be shown to vanish in Hs′ as M → +∞ by integration by parts.

To deduce Theorem 1.3 from Lemma 1.3, we let 0 < T < T nl
max, 5/2 < s′ < s, and we prove

simultaneously that forM large enough we have Tmax > T and that ∥Ψ−Ψnl∥L∞
t ([0,T ],Hs′ ) → 0

as M → +∞. To do so, we let R > ∥(Ψ, S)(0)∥W 1,∞ and define

T ′ = sup{0 < t < min(T, Tmax), ∥(Ψ, S)∥L∞([0,t],W 1,∞) ⩽ R}.

Notice that by the blow-up criterion for (Ψ, S), we have 0 < T ′ < Tmax. To prove that

Tmax > T , we prove that T ′ = T for M large enough and for an appropriate choice of

R (independent of M). Notice that once we know that T = T ′ < Tmax, we deduce that

∥(Ψ, S)∥L∞
t ([0,T ],W 1,∞) ⩽ R by definition of T ′ so that by Lemma 1.3 points (1) and (3), we
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have ∥Ψ − Ψnl∥L∞
t ([0,T ],Hs′ ) → 0 as M → +∞ (with even a rate of convergence). We prove

that T ′ = T by contradiction, assuming that T ′ < T (along a subsequence of M → +∞,

say). Then, using the maximality of T ′ we deduce that ∥(Ψ, S)∥L∞([0,T ′],W 1,∞) = R. From

Lemma 1.3 point (1), we deduce that ∥(Ψ, S)∥L∞([0,T ′],Hs) ⩽ R′ for some R′ > 0 independent

of M and from point (3) we have ∥Ψ−Ψnl∥L∞([0,T ′],Hs′ ) ⩽ C(R′)M s′−s. Using the Duhamel

formulation of the equation on S,

S(t) = cos(t
√
−∆+M2)S(0) +

∫ t

0

sin((t− s)
√
−∆+M2)√

−∆+M2
P (Ψ(s),∇Ψ(s),∇S(s)) ds,

as well as ∥(−∆+M2)−1/2∥Hs−1→Hs′ ⩽M s′−s, we deduce that

∥S∥L∞
t ([0,T ′],Hs′ ) ⩽ ∥S(0)∥Hs′ + CM s′−s

due to the uniform Hs-bound on (Ψ, S). We also have

∥Ψ∥L∞
t ([0,T ′],Hs′ ) ⩽ ∥Ψnl∥L∞

t ([0,T ′],Hs′ ) + ∥Ψ−Ψnl∥L∞
t ([0,T ′],Hs′ ) ⩽ ∥Ψnl∥L∞

t ([0,T ′],Hs′ ) + CM s′−s

and hence since s′ > 5/2,

∥(Ψ, S)∥L∞
t ([0,T ′],W 1,∞) ⩽ C∥(Ψ, S)∥Hs′ ⩽ C(∥S(0)∥Hs′ + ∥Ψnl∥L∞

t ([0,T ′],Hs′ )) + CM s′−s.

Choosing R = 2C(∥S(0)∥Hs′ +∥Ψnl∥L∞
t ([0,T ′],Hs′ )), we deduce that ∥(Ψ, S)∥L∞

t ([0,T ′],W 1,∞) < R

for M large enough, the desired contradiction.

2.2. The many-body problem. In [90], we also considered a many-body version of

(1.11) where several nucleons are considered in a mean-field way. The corresponding equation

is {
i∂tγ = [D + βS, γ],

(∂2t −∆+M2)S = −g2ρβγ,
(1.20)

where γ is the one-body density matrix describing the state of the nucleons (which, in this set-

ting, is a non-negative bounded operator on L2(R3,C4)) and where ρβγ(x) := TrC4(βγ(x, x)).

In the limitM → +∞ with g =M , one expects to recover the following nonlinear many-body

Dirac equation

i∂tγ = [D − βρβγ, γ]. (1.21)

As in the one-body case (which corresponds to the special case where γ is rank-one), it is

first relevant the discuss the well-posedness theory of these equations. A natural extension

of Sobolev spaces to density matrices (that we already encountered in the previous chapter)

are the spaces of γ such that (1 −∆)s/2γ(1 −∆)s/2 ∈ Sα for some α ⩾ 1 (indeed, for γ of

rank-one, it relates to standard Sobolev spaces Hs for any choice of α). For reasons that we

detail below, we can treat the case α = 2, therefore we introduce the notation

Hs := {γ ∈ S2, (1−∆)s/2γ(1−∆)s/2 ∈ S2}

endowed with its natural norm. In the one-body case, the well-posedness theory is easy

because the space Hs is an algebra (implying that the nonlinearity stabilizes Hs). In the
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many-body case, the situation is a bit different due to the more general structure of the

nonlinearity. However, it is still well-behaved due to the estimates valid for all s > 3/2

∥fγ∥Hs + ∥γf∥Hs ⩽ C∥f∥Hs∥γ∥Hs ,

∥ργ∥Hs ⩽ C∥γ∥Hs .

The first one follows from the fact that the multiplication by f is a bounded operator on Hs

if f ∈ Hs since Hs is an algebra, and the second one follows for instance from the fact that

∥γ∥2Hs =

∫
R3

∫
R3

(1 + |p|2)s(1 + |q|2)s|γ̂(p, q)|2 dp dq,

where γ̂(p, q) denotes the integral kernel of FγF∗ (F being the Fourier transform on L2).

While the first bound clearly holds for all α ⩾ 1 (if we replace S2 by Sα in the definition of

Hs), we do not know if the second holds for some α > 2. This is a first reason to consider

α = 2 (in the sense that it is the maximal α for which we know the second estimate).

Using these two estimates, it is easy to show that the equations (1.20) and (1.21) are locally

well-posed in Hs (with S ∈ Hs as well).

As we saw in the one-body case, obtaining well-posedness in Hs in this way is however

not enough: an important part of the argument was that we have a blow-up criterion in L∞

(so that it is controlled by lower Hs′-norms, which are the one for which we have quantitative

convergence). This blow-up criterion in L∞ followed in the one-body case from the Kato-

Ponce inequality. In [90, Lemma 3.3], we proved the following replacement of the Kato-Ponce

inequality for density matrices: for all s > s′ > 3/2, f ∈ Hs, and all non-negative γ ∈ Hs,

we have

∥fγ∥Hs + ∥γf∥Hs ⩽ C(∥f∥L∞∥γ∥Hs + ∥f∥Hs∥γ∥1/2Hs ∥γ∥1/2
Hs′ ),

∥ργ∥Hs ⩽ C∥γ∥1/2Hs ∥γ∥1/2
Hs′ ,

In this inequality, we use a Hs′ for the operator γ since it is not clear what should replace the

L∞ norm which appears in the usual Kato-Ponce inequality. Notice also that we proved this

inequality for non-negative γ, which is actually necessary since we can show that the second

inequality fails for γ which are not non-negative. An important remark is that non-negativity

is preserved along the flow. To show these inequalities, we also used the specificity of the

S2-norm which can be computed using the L2-norm of the integral kernel. Hence, we do not

know whether these inequalities hold for other Schatten exponents α. Using these tools, we

can prove the following result.

Proposition 1.4 (Prop. 3.4 and Lemma 3.5 in [90]). Let s > 3/2 and (γin, Sin, Ṡin) ∈
Hs ×Hs(R3,R)×Hs−1(R3,R) be such that γin ⩾ 0.

(i) For all g,M > 0 there exist Tmin, Tmax ∈ (0,+∞] and a unique maximal solution

(γ, S) ∈ C0((−Tmin, Tmax),H
s ×Hs(R3,R)) ,

to the Dirac-Klein-Gordon equation (1.11) such that (γ, S, ∂tS)|t=0 = (γin, Sin, Ṡin).

If Tmax/min < +∞ then for all 3/2 < s′ < s,

lim sup
t→Tmax/min

∥(γ, S)(t)∥Hs′×Hs′ = +∞ . (1.22)
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(ii) There exist T nl
min, T

nl
max ∈ (0,+∞] and a unique maximal solution

γnl ∈ C0((−T nl
min, T

nl
max),H

s) ,

to the nonlinear Dirac equation (1.14) such that (γnl)|t=0 = γin. If T nl
max/min < +∞

then for all 3/2 < s′ < s,

lim sup
t→Tnl

max/min

∥γnl(t)∥Hs′ = +∞ .

While this result is interesting in its own, it is still not enough to deal with the limit

M → +∞ as in the one-body case. Again, it is useful to use the equation on the reduced

field S := S + ρβγ and it turns out that we have the same regularizing phenomenon for

the equation on S as we have in the one-body case. From this reduced equation and the

estimates listed above, it is not too hard to adapt the one-body strategy to obtain the

following convergence theorem.

Theorem 1.4 (Theorem 2 in [90]). Let s > 5/2, γin ∈ Hs be a non-negative operator,

and (Sin, Ṡin) ∈ Hs(R3,R)×Hs−1(R3,R). Let

γnl ∈ C0((−T nl
min, T

nl
max),H

s)

be the maximal solution to (1.21) with initial condition γnl|t=0 = γin. Let M > 0 and let

(γ, S) ∈ C0((−Tmin, Tmax),H
s ×Hs(R3,R)) ,

be the maximal solution to (1.20) with g =M , and initial conditions

γ|t=0 = γin, (S, ∂tS)|t=0 = (Sin, Ṡin).

Then, we have

lim inf
M→+∞

Tmin/max ⩾ T nl
min/max

and, for all 0 < T1 < T nl
min, 0 < T2 < T nl

max, and all 0 ⩽ s′ < s,

lim
M→+∞

∥γ − γnl∥L∞([−T1,T2],Hs′ ) = 0 .

This result may be a first step towards the “true” many-body problem associated to

relativistic particles, where one has to take into account the Dirac sea filling all negative

energy states. Since this state describes an infinite number of particles with a uniform spatial

distribution, this would extend the theory of the first part to relativistic systems.

Appendix: The density of a non-negative operator

For a density matrix γ, it is a well-known fact that one can define the density ργ if γ is

trace-class (in which case ργ is integrable) or if γ is locally trace-class (in which case ργ is

locally trace-class). The following result shows that the density is always well-defined for a

non-negative operator.
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Proposition 1.5 (Density of an operator).

(1) Let γ be a non-negative bounded operator on L2(Rd). Then, there exists a unique

measurable ργ : Rd → [0,+∞] called its density such that for any Borel set B ⊂ Rd,

we have
∫
B
ργ = Tr

√
γ1B

√
γ = Tr1Bγ1B.

(2) In particular, when γ is trace-class and non-negative, ργ ∈ L1(Rd) and
∫
Rd ργ = Tr γ.

In this case, the map γ ∈ S1 7→ ργ ∈ L1(Rd) can be extended to the whole trace-class

(not assuming non-negativity anymore) in a unique way such that for all Borel sets

B ⊂ Rd,
∫
B
ργ = Tr1Bγ1B = Tr1Bγ = Tr γ1B.

(3) Finally, the map γ ∈ S1 7→ ργ ∈ L1(Rd) can be extended to a map γ ∈ S1
loc 7→ ργ ∈

L1
loc(Rd) (where we recall that S1

loc is the set of all bounded operators γ such that

1Kγ1K is trace-class for any compact set K ⊂ Rd) in a unique way such that for

all bounded Borel sets B ⊂ Rd,
∫
B
ργ = Tr1Bγ1B.

Proof. Let γ be a non-negative bounded operator and B ⊂ Rd be a Borel set. Then, the

operator
√
γ1B

√
γ is also bounded and non-negative so that its trace is always well-defined

in [0,+∞] [137, Thm. 3.6.2]. Furthermore, the map B 7→ Tr
√
γ1B

√
γ is clearly a Borel

measure (it vanishes on the empty set and it is σ-additive by exchanging sums of positive

terms) which is absolutely continuous with respect to the Lebesgue measure (since |B| = 0

implies that 1B is the zero operator), so that the existence and uniqueness of ργ in (1) follows

from the Radon-Nikodym theorem [47, Thm. 4.1.6] (notice that in standard statements of

the Radon-Nikodym theorem, the measures are required to be σ-finite. This is not necessarily

the case here; however for the theorem to hold only the σ-finiteness of the Lebesgue measure

is required, see [47, Exercise 4.1.(3)]). The identity Tr
√
γ1B

√
γ = Tr1Bγ1B holds because

for any bounded operator A, we have TrAA∗ = TrA∗A [137, Thm. 3.6.1]. When γ is

trace-class, then Tr1Bγ1B = Tr1Bγ = Tr γ1B [137, Thm. 3.6.7], and the existence of

the map γ ∈ S1 7→ ργ ∈ L1(Rd) follows from the Radon-Nikodym theorem applied to the

complex measure B 7→ Tr1Bγ which is absolutely continuous with respect to the Lebesgue

measure [47, Thm. 4.2.4]. By the uniqueness part of the Radon-Nikodym theorem, the

two notions of densities from (1) and (2) coincide when γ is non-negative and trace-class.

Finally, when γ is only assumed to be locally trace-class, one can apply point (2) to construct

ρ1Kγ1K
∈ L1(Rd) for any compact K ⊂ Rd. Clearly, ρ1Kγ1K

is supported on K and if

K ⊂ K ′, then ρ1Kγ1K
= ρ1K′γ1K′ a.e. on K. Hence, ργ ∈ L1

loc(Rd) can be uniquely defined by

ργ = ρ1Kγ1K
a.e. onK, for any compactK ⊂ Rd. For any bounded Borel setB, lettingK any

compact such that B ⊂ K, we then have
∫
B
ργ =

∫
B
ρ1Kγ1K

= Tr(1Kγ1K1B) = Tr1Bγ1B.

If γ is trace-class, then this notion of density reduces to the one defined in (2) because in

this case ρ1Kγ1K
= 1Kργ. If γ is non-negative, then the two notions of density defined in (1)

and (3) are also the same because we again have ρ1Kγ1K
= 1Kργ. □

Remark 1.6. Point (1) is useful in situations where we consider operators which are not

necessarily locally trace-class (typically, if it belongs to a Schatten class Sα with α > 1).

For such a non-negative compact operator γ, one can find a sequence (γn) of finite-rank

operators such that 0 ⩽ γn ⩽ γ for all n, converging weakly to γ in the sense of operators,

and such that for any f ∈ L2(Rd), ⟨f, γnf⟩ → ⟨f, γf⟩ as n → ∞ increasingly. This implies
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that
∫
B
ργn →

∫
B
ργ increasingly for all Borel sets B, so that (ργn) converges increasingly to

ργ, almost everywhere. This is useful for density arguments, where one can prove a property

for finite-rank operators and then extend it to a more general class using this approximation.

Remark 1.7. In a similar way, we can define ρAγA∗ where γ is a non-negative operator

on a separable Hilbert space H and A : H → Lp(Rd) for some p ⩾ 2. Indeed, for any finite

measure Borel set B ⊂ Rd, the operator 1BA
√
γ : H → L2(RN) is bounded so the trace

TrL2(Rd) 1BAγA
∗1B = TrH

√
γA∗1BA

√
γ is well-defined.



CHAPTER 2

Fermionic functional inequalities

In their seminal works [105, 106], Lieb and Thirring proved the following inequality: for

any d ⩾ 1 and any (fj)
N
j=1 ⊂ H1(Rd) which are orthonormal in L2(Rd), we have∫
Rd

(
N∑
j=1

|fj|2
)1+2/d

dx ⩽ C
N∑
j=1

∫
Rd

|∇fj|2 dx, (2.1)

for some C > 0 independent of (fj) and of N . Their motivation to introduce such a result was

coming from the stability of matter in many-body quantum mechanics. Indeed, (2.1) gives

a lower bound on the kinetic energy of N fermions occupying the states f1, . . . , fN . Notice

that for N = 1, (2.1) reduces to the Gagliardo-Nirenberg-Sobolev interpolation inequality,

∥f∥L2+4/d(Rd) ⩽ C∥∇f∥d/(d+2)

L2(Rd)
, (2.2)

for any f ∈ H1(Rd) such that ∥f∥L2 = 1. Similarly, one can deduce a version of (2.1)

combining the one-function inequality (2.2) together with the triangle inequality:∫
Rd

(
N∑
j=1

|fj|2
)1+2/d

dx = ∥
N∑
j=1

|fj|2∥1+2/d

L1+2/d

⩽

(
N∑
j=1

∥fj∥2L2+4/d

)(d+2)/d

⩽ C

(
N∑
j=1

∥∇fj∥2d/(d+2)
2

)(d+2)/d

⩽ C

(
N2/(d+2)(

N∑
j=1

∥∇fj∥2L2)d/(d+2)

)(d+2)/d

= CN2/d

N∑
j=1

∫
Rd

|∇fj|2 dx.

Compared to (2.1), this argument leads to an additional N2/d on the right side of the inequal-

ity, which of course behaves badly as N → +∞. One can thus see (2.1) as an improvement

over (2.2), and this improvement is due to the orthogonality condition on the (fj) (indeed, if

this condition was dropped, one could take all the fj’s equal to the same function, in which

case the prefactor N2/d becomes sharp). Many different proofs of (2.1) have been found since

the original work of Lieb and Thirring, and we will give one proof in Section 4 below, where

39
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the usefulness of the orthogonality condition will become apparent. After the works of Lieb

and Thirring, the same kind of result was obtained by Lieb [101] for the Sobolev inequality,

and more recently by Frank, Lewin, Lieb and Seiringer [62] for the Strichartz inequality.

In this chapter, we discuss various extensions of the previous phenomenon which we call

fermionic functional inequalities; in the sense that one generalizes a “one-function” inequality

to systems of orthonormal functions, in such a way that the estimate depends non-trivially

on the number of functions involved. We call these estimates “fermionic” because of the

key orthogonality condition, which is a reflection of Pauli’s exclusion principle stating that

fermions cannot occupy the same quantum state (hence their wavefunctions must be orthog-

onal). The general setting (which is not quite applicable to the Lieb-Thirring inequality

above) can be summed up in the following way. Let H be a Hilbert space, X a measure

space and p ⩾ 2. Let A : H → Lp(X) be a bounded linear operator. The question is then

to find the best C(N) > 0 such that for any orthonormal system (fj)
N
j=1 ⊂ H one has the

bound ∥∥∥∥∥
N∑
j=1

|Afj|2
∥∥∥∥∥
Lp/2(X)

⩽ C(N). (2.3)

Notice that the triangle inequality implies that (2.3) holds with C(N) = N∥A∥2H→Lp , and

one may ask whether the N -dependence of C(N) as N → +∞ can be reduced (to N θ for

some θ ∈ (0, 1), typically). The mechanism behind such an answer was discovered by Lieb

[101], who realized that by introducing the operator γ which is the orthogonal projection

on the space spanned by the (fj), i.e.

γ =
N∑
j=1

|fj⟩⟨fj|,

the estimate (2.3) is equivalent by duality to

C(N)∥V ∥L(p/2)′ (X) ⩾
∫
X

V (x)
N∑
j=1

|Afj|2 dx =
N∑
j=1

⟨Afj, V Afj⟩L2(X) = TrH(A
∗V Aγ)

for all non-negative V . By this argument, (2.3) would follow from the Schatten space estimate

∥A∗V A∥Sα(H) ⩽ C∥V ∥L(p/2)′ (X) (2.4)

for some α ⩾ 1, where we recall that ∥B∥Sα(H) = (TrH |B|α)1/α for any Hilbert space H and

any operator B on H. Indeed, Schatten spaces satisfy the Hölder inequality

TrH(A
∗V Aγ) ⩽ ∥A∗V A∥Sα∥γ∥Sα′ ,

and we also have ∥γ∥Sα′ = N1/α′
(this is the step where the orthogonality of the (fj) is

used!). Notice also that

∥A∗V A∥Sα(H) = ∥
√
V AA∗

√
V ∥Sα(L2(X)) = ∥

√
V A∥2S2α(H→L2(X)),

which provides another interpretation for fermionic inequality: the “one-function” estimate

states that A is bounded from H to Lp(X), which by the Hölder inequality is equivalent to

∥
√
V A∥H→L2(X) ⩽ C∥V ∥L(p/2)′ (X).
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The fermionic version of the “one-function” inequality thus states that one can improve this

H → L2(X) operator bound into a Schatten space bound; meaning that the operator
√
V A

is better than a bounded operator, it is a compact operator with some explicit rate of decay

of its singular values.

We will see below how to obtain such Schatten bounds for some specific operator A, but

let us already give an example where such a principle can be applied. Consider the operator

A = (1 − ∆)−s/2 defined on H = L2(Rd). Then, Sobolev embeddings imply that A is a

bounded operator from L2(Rd) to Lp(Rd), for any p ⩾ 2 such that 1/p ⩾ 1/2 − s/d. This

“one-function” property can be improved to a Schatten bound using the Kato-Seiler-Simon

inequality [133, Theorem 4.1] ,

∥f(x)g(−i∇)∥Sα(L2(Rd)) ⩽ C∥f∥Lα(Rd)∥g∥Lα(Rd),

valid for all α ∈ [2,+∞]. One deduces that

∥
√
V (1−∆)−s/2∥S2(p/2)′ (L2(Rd)) ⩽ C∥V ∥L(p/2)′ (Rd)

for all p ⩾ 2 such that 2s(p/2)′ > d⇐⇒ 1/p > 1/2−s/d. The borderline case 1/p = 1/2−s/d
can also be treated in this way (replacing the Kato-Seiler-Simon bound by the Cwikel-Lieb-

Rozenblum bound, as was actually done by Lieb in [101]), but we will not detail it here.

Finally, let us notice that the Schatten bound (2.4) is not equivalent to (2.3). To find

an equivalent formulation in terms of orthonormal functions, one needs a stronger version of

(2.3), namely ∥∥∥∥∥∑
j

λj|Afj|2
∥∥∥∥∥
Lp/2(X)

⩽ C

(∑
j

|λj|α
′

)1/α′

,

for any orthonormal system (fj) and any coefficients (λj) ⊂ C. One can encode the (λj) and

the (fj) into the density matrix γ =
∑

j λj|fj⟩⟨fj| so that the inequality becomes

∥ρAγA∗∥Lp/2(X) ⩽ C∥γ∥Sα′ , (2.5)

which is equivalent to (2.4). This formulation will be useful later on.

The plan of this chapter is the following. In Section 1, we explain the results of [65] where

we identify a general strategy to prove estimates of the type (2.4), and which we apply to

various cases such as Fourier restriction estimates, Strichartz estimates, and uniform Sobolev

estimates. In Section 2, we apply the same strategy to Sogge’s Lp spectral cluster estimates

and interpret the results in terms of measuring the concentration of orthonormal systems

of quasimodes, investigating their optimality as well. In Section 3, we leave the topic of

fermionic estimates and go to the related question of asymptotics of large fermionic systems

as described pointwise Weyl laws. Finally, we finish by Section 4 where we give a fermionic

version of the Littlewood-Paley theorem and apply it to prove the Lieb-Thirring inequality

(2.1).
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1. Fourier restriction and Strichartz inequalities

We begin with presenting the work of [65] where, motivated by Strichartz and Fourier

restriction inequalities, we found a general framework in which to prove (2.4). We first give

this framework before applying it to several contexts.

1.1. Complex interpolation in Schatten spaces. Many inequalities implying that

a linear operator A : H → Lp(X) is bounded can be proved via complex interpolation.

Using that H is a Hilbert space, it is equivalent to the fact that AA∗ : Lp
′
(X) → Lp(X)

is bounded, and if one can find an analytic family (Tz)z∈S of operators defined on the strip

S = {z ∈ C : 0 ⩽ Re z ⩽ 1} such that

(1) ∃θ ∈ [0, 1], Tθ = AA∗;

(2) ∃a0, C0 > 0, ∀t ∈ R, ∥Tit∥L2→L2 ⩽ C0e
a0|t|,

(3) ∃a1, C1 > 0, ∀t ∈ R, ∥T1+it∥L1→L∞ ⩽ C1e
a1|t|,

then one can apply a theorem of Stein [143] to infer that Tθ = AA∗ is bounded from Lp
′

to Lp with p = 2/(1 − θ). The idea behind these assumptions is that one can deform the

operator AA∗ using a complex parameter z, in such a way that it becomes bounded from

L2 to L2 for Re z = 0 and from L1 to L∞ for Re z = 1. We will see how to perform such

deformation in some explicit cases below. Notice that in the case where z 7→ Tz is constant

(that is, AA∗ is itself bounded from L2 to L2 and from L1 to L∞), one deduces that AA∗ is

bounded from Lp
′
to Lp for all p ∈ [2,+∞], and this special case is called the Riesz-Thorin

theorem [136]. It is interesting to note that both the Stein and Riesz-Thorin follow from

Hadamard’s three line theorem, but noticing that one could consider an analytic dependence

on z in the family of operators Tz as Stein did leads to far more reaching applications.

Our main input is that under the same assumptions on the operator A, one gets auto-

matically a Schatten improvement in the form (2.4) as given by the following result.

Proposition 2.1 (Proposition 1 in [65]). Let d ⩾ 1. Let (Tz) be an analytic family of

operators from (L1 ∩ L∞)(Rd) to (L1 + L∞)(Rd) defined on the strip S = {z ∈ C : 0 ⩽
Re z ⩽ 1}. Assume that we have the bounds

||Tit||L2(Rd)→L2(Rd) ⩽ C0e
a0|t|, ||T1+it||L1(Rd)→L∞(Rd) ⩽ C1e

a1|t|, ∀t ∈ R, (2.6)

for some a0, a1 ⩾ 0 and for some C0, C1 ⩾ 0. Then, for any θ ∈ [0, 1] and for all W1,W2 ∈
L2/θ(Rd,C), the operator W1TθW2 belongs to S2/θ(L2(Rd)) and we have the estimate

||W1TθW2||S2/θ(L2(Rd)) ⩽ C1−θ
0 Cθ

1 ||W1||L2/θ(Rd) ||W2||L2/θ(Rd) . (2.7)

Proposition 2.1 follows from the simple remark that for Re z = 1, knowing that the

operator Tz is bounded from L1 to L∞ actually implies more than the operator W1TzW2 is

bounded from L2 to L2 if W1,W2 ∈ L2. Indeed, the Dunford-Pettis theorem [52, Theorem

2.2.5] implies that Tz has an integral kernel Tz(·, ·) which satisfies

∥Tz(·, ·)∥L∞(Rd×Rd) = ∥Tz∥L1(Rd)→L∞(Rd).
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This implies that for any W1,W2 ∈ L2(Rd) we have

∥W1TzW2∥2S2 =

∫
Rd

∫
Rd

|W1(x)|2|Tz(x, y)|2|W2(y)|2 dx dy ⩽ ∥Tz∥2L1→L∞∥W1∥2L2∥W2∥2L2 .

Here, we used the characterization [133, Theorem 2.11] of Hilbert-Schmidt operators K by

their integral kernel K(·, ·), namely

∥K∥2S2 =

∫
Rd

∫
Rd

|K(x, y)|2 dx dy.

Hence, the operator W1TzW2 is better than bounded from L2 to L2, it is actually Hilbert-

Schmidt. Interpolating this result with the boundedness from L2 to L2 for Re z = 0, one

obtains Proposition 2.1.

1.2. Application to Fourier restriction inequalities. We first apply the principle

of Proposition 2.1 to the Fourier restriction inequalities due to Stein [145], Tomas [151],

and Strichartz [147]. Their setting is the following. Consider an hypersurface S ⊂ RN (with

N ⩾ 2), endowed with a Borel measure σ (in all cases considered, σ is a –possibly singular–

factor m(ξ) of the Hausdorff measure on S). For any f ∈ L1(S, dσ), consider its Fourier

extension ES(f) : RN → C defined by

ES(f)(x) =
∫
S

f(ω)eix·ω dσ(ω), x ∈ RN .

For the same reason as the standard Fourier transform, ES(f) is a bounded continuous

function on RN for any f ∈ L1(S, dσ), with ∥ES(f)∥L∞(RN ) ⩽ ∥f∥L1(S). The general question

asked by Stein is to find other exponents (p, q) for which an inequality of the type

∥ES(f)∥Lq(RN ) ⩽ C∥f∥Lp(S) (2.8)

holds, for all f ∈ (L1 ∩ Lp)(S, dσ). Clearly, if σ(S) is finite, then this property holds for

(q, p) = (∞, p) for any p ⩾ 1. Finding some q < +∞ and p ⩾ 1 for which this holds is

not obvious, and wrong in full generality (if for instance σ is a Dirac measure). Having

q < +∞ means that ES(f) has some decay at infinity, which should be understood from the

fast oscillations of eix·ω as |x| → +∞. Another interpretation of this question comes from its

dual version, which states that ∥F̂|S∥Lp′ (S) ⩽ C∥F∥Lq′ (RN ) for any F ∈ (L1 ∩ Lq′)(RN). This

dual version means that the Fourier transform of a function F ∈ Lq
′
(RN) can be restricted to

S in an Lp
′
(S) sense. This property fails for q = 2 (if the measure σ is the Hausdorff measure

on S for instance) since F̂ can be any function in L2(RN) and thus cannot be restricted to

the zero-measure set S in any sense.

The striking result due to Stein-Tomas [145, 151] is the fact that, in the case where

S is compact with non-vanishing Gauss curvature and σ is the Hausdorff measure on S,

this Fourier extension property holds for p = 2 and q = 2(N + 1)/(N − 1). Furthermore,

this q is the smallest possible exponent for p = 2 (this can be understood from the Knapp

counterexample, which amounts to test the inequality against a function which concentrates

around a point on S). This result has been extended by Strichartz [147] (still with p = 2 but

with some different values of q’s) to some non-compact hypersurfaces S, namely zero sets of

non-degenerate degree two polynomials (for instance, paraboloids, cones, or hyperboloids).
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The case p = 2 is particular because L2(S) is a Hilbert space, so that (2.8) is equivalent

to the boundedness of T = ES(ES)∗ from Lq
′
(RN) to Lq(RN). There are several ways to show

this boundedness, but we focus on the approach of Stein relying on complex interpolation

to make the connection with Proposition 2.1. For this argument, let us assume that S is the

graph

{ξ = (ξ′, ξN) ∈ RN−1 × R : ξN = φ(ξ′)}
of some smooth function φ : RN−1 → R (for a compact S, this can be assumed locally

by reducing to local patches and summing up the estimates, while some quadratic surfaces

like the paraboloid ξN = |ξ′|2 also have this form. We will not mention how to treat other

quadratic surfaces like the cone or the hyperboloid for brevity). In this case, we have for any

f : S → C, ∫
S

f(ξ)dσ(ξ) =

∫
RN−1

f(ξ′, φ(ξ′))χ(ξ′) dξ′

for some χ ∈ C∞(RN−1) (for compact surfaces, χ can be assumed to be compactly supported

and for quadratic surfaces, σ is such that χ ≡ 1. In all cases, χ is a bounded function). Then,

one can deform the operator T by defining Tz the Fourier multiplier by the function

Mz(ξ) = Γ(z + 1)−1(ξN − φ(ξ′))z+χ(ξ
′).

Using the fact that tz+ ∼z→−1 δ0/(z+1) in D′
t(R), we recover our operator T when evaluating

Tz at z = −1. The factor Γ(z + 1)−1 compensates the singularities of the distribution tz+
at negative integers to ensure that (Tz)z∈C is analytic. For Re z = 0, the function ξ 7→
(ξN − φ(ξ′))z+χ(ξ

′) is bounded so Tz is bounded from L2 to L2 if Re z = 0. By complex

interpolation, it thus remains to bound Tz from L1 to L∞, for Re z = λ, for some λ < −1.

Since Tz is a Fourier multiplier, such a bound would follow from estimating M̂z in L
∞(RN).

For any x ∈ RN , M̂z(x) is proportional to∫
RN

(ξN − φ(ξ′))z+χ(ξ
′)e−ix·ξ dξ =

∫
R
(ξN)

z
+e

−ixN ξN
∫
RN−1

χ(ξ′)e−ixNφ(ξ
′)−ix′·ξ′ dξ′.

The first factor is the Fourier transform of the distribution tz+, which is known to be pro-

portional to (xN + i0)−z−1. If λ = Re z < −1, we have Re(−z − 1) > 0 and hence

(xN + i0)−z−1 ∈ L1
loc(R) with |(xN + i0)−z−1| ⩽ C|xN |−λ−1. The second factor can be

estimated using stationary phase estimates if χ ∈ C∞
c (RN−1), or explicit Fourier transform

in the quadratic case (for instance, if φ(ξ′) = |ξ′|2 and χ ≡ 1, this factor is just a complex

Gaussian). In all cases, since the Hessian of φ is non-degenerate (due to the curvature con-

dition for compact surfaces, and always the case for quadratic surfaces) the second factor

can be estimated by∣∣∣∣∫
RN−1

χ(ξ′)e−ixNφ(ξ
′)−ix′·ξ′ dξ′

∣∣∣∣ ⩽ C(1 + |xN |)−(N−1)/2.

We deduce that M̂z is bounded if Re z = λ = −(N+1)/2 (the z-dependence of the constants

can be also explicitly estimated, they are all at most exponential). By complex interpolation

(Proposition 2.1), one deduces a Schatten bound on the operator T (or, Lq
′ → Lq bounds as

in the Stein-Tomas and Strichartz works).
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Theorem 2.1 (Theorem 2 in [65]). Let N ⩾ 2 and S be a compact hypersurface of RN

with non-zero Gauss curvature. Let 1 ⩽ q ⩽ (N + 1)/2. Then, there exists C > 0 such that

for all W1,W2 ∈ L2q(RN), one has

∥W1ES(ES)∗W2∥S(N−1)q/(N−q)(L2(RN )) ⩽ C∥W1∥L2q∥W2∥L2q .

The case q = (N+1)/2 follows from the complex interpolation argument sketched above,

while the other extreme case q = 1 is specific to compact surfaces. In this case, the estimate

states that W1ES(ES)∗W2 is actually trace-class, which may look like a strong property.

However, it just follows from the fact that the operator W1ES is Hilbert-Schmidt as an

operator from L2(S) to L2(RN) when W1 ∈ L2(RN), since its integral kernel is RN × S ∋
(x, ξ) 7→ W1(x)e

ix·ξ and belongs to L2(RN × S) since σ(S) is finite. Let us insist once again

that Theorem 2.1 is a strenghtening of the Stein-Tomas result (which states that the operator

W1ES(ES)∗W2 is merely bounded).

In [65, Theorem 6], we also proved that the Schatten exponent (N − 1)q/(N − q) of

Theorem 2.1 is optimal; that is the inequality cannot hold with a lower Schatten exponent.

To obtain this optimality, we employ the equivalent formulation (2.5) on the test density

matrix on L2(S),

γh :=

∫
RN

1(h|x| ⩽ 1)|ex⟩⟨ex| dx, h > 0,

where ex(ξ) = e−ix·ξ for any ξ ∈ S. To estimate the Schatten norm of γh, we first use

its non-negativity to infer that ∥γh∥S1 = Tr γh = Ch−N . Secondly, we use that for any

f ∈ L2(S),

⟨f, γhf⟩ =
∫
|x|⩽1/h

∣∣∣∣∫
S

f(ξ)eix·ξ dσ(ξ)

∣∣∣∣2 dx ⩽ Ch−1

∫
S

|f(ξ)|2 dσ(ξ)

due to the Agmon-Hörmander bound [2] (which follows from writing S as a graph ξN =

φ(ξ′), estimating 1(h|x| ⩽ 1) ⩽ 1(h|xN | ⩽ 1), and applying Plancherel’s identity in the

x′-integration). We deduce that ∥γh∥L2→L2 ⩽ Ch−1, so by interpolation we have ∥γh∥Sr ⩽
C(h−1)(N−1)/r+1. Meanwhile, we also have for any y ∈ RN ,

ρESγh(ES)∗(y) =

∫
h|x|⩽1

|d̂σ(y − x)|2 dx, d̂σ(y) =

∫
S

eiy·ξ dσ(ξ).

By stationary phase estimates, there is a lower bound |d̂σ(y)| ⩾ c|y|−(N−1)/2 for large |y|, so
that ρESγh(ES)∗(y) ≳ h−1 for |y| ≲ h−1. Hence, ∥ρESγh(ES)∗∥Lq′ ≳ h−1−N/q′ , so that

∥ρESγh(ES)∗∥Lq′

∥γh∥Sr

≳ (h−1)N/q
′−(N−1)/r.

The right side is bounded as h→ 0 only if r ⩽ (N−1)q′/N , that is α = r′ ⩾ (N−1)q/(N−q),
which is exactly the exponent found in Theorem 2.1.
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1.3. Application to Strichartz estimates. We mentioned above that the complex in-

terpolation argument applies to quadratic surfaces as well, with both Schatten and Lebesgue

exponents adapted to the surface (see [65] for details). In the case of the paraboloid

ξN = −|ξ′|2, we found that

∥W1ES(ES)∗W2∥SN+1(L2(RN )) ⩽ C∥W1∥LN+1(RN )∥W2∥LN+1(RN ) (2.9)

First, let us argue why our argument can be refined to lead to a wider range of estimates.

In the complex interpolation, we estimated our deformed operator Tz for Re z = −(N +1)/2

from L1 to L∞ using that the function M̂z is bounded for these z’s. Recall also that this

uniform bound on M̂z implies a Hilbert-Schmidt bound on the operator W1TzW2, which

integral kernel is proportional to (x, y) 7→ W1(x)M̂z(x − y)W2(y) and hence belongs to

L2(RN × RN) if W1,W2 ∈ L2 and M̂z is bounded. We now argue that this estimate can be

made differently, using the bound |M̂z(xN)| ⩽ |xN |−(Re z+(N+1)/2) that we found. Indeed, the

Hardy-Littlewood-Sobolev inequality implies that

∥W1TzW2∥2S2 = c

∫
RN

∫
RN

|W1(x)|2|M̂z(x− y)|2|W2(y)|2 dx dy

⩽ C

∫
R

∫
R

∥W1(·, xN)∥2L2
x′
∥W2(·, yN)∥2L2

y′

|xN |2Re z+N+1
dxN dyN

⩽ C∥W1∥2
L

4
1−N−2Re z
xN

L2
x′

∥W2∥2
L

4
1−N−2Re z
xN

L2
x′

when −(N + 1)/2 ⩽ Re z < −N/2. By complex interpolation, this leads to the following

result.

Theorem 2.2 (Theorem 9 in [65]). Let N ⩾ 2 and S be the paraboloid

S = {(ξ′, ξN) ∈ RN−1 × R : ξN = −|ξ′|2}.

Let p, q ⩾ 2 be two exponents satisfying

2

p
+
N − 1

q
= 2, q >

N

2
.

Then, there exists C > 0 such that for any W1,W2 ∈ L2p
xN
L2q
x′ we have

∥W1ES(ES)∗W2∥S2q(L2(RN )) ⩽ C∥W1∥L2p
xN

L2q

x′
∥W2∥L2p

xN
L2q

x′
. (2.10)

When q = (N +1)/2, we recover the estimate of the previous section. Of course, one can

obtain similar estimates for compact surfaces but in this case, the mixed Lebesgue spaces

L2p
xN
L2q
x′ are less relevant because the xN -direction is not intrinsic to the surface (contrary to

the case of the paraboloid) and depends on the patch in which one is working.

These mixed norms estimates have a very important role which is related to the relation

between the operator ES when S is a paraboloid and solutions to the linear Schrödinger

equation. Indeed, if u ∈ L2(RN−1), then one can define f : S → C by f(ξ′,−|ξ′|2) = û(ξ′)

for any ξ′ ∈ RN−1. In this case, we have for all x = (x′, xN) ∈ RN−1 × R,

ES(f)(x′, xN) =
∫
RN−1

eix
′·ξ′−ixN |ξ′|2û(ξ) dξ = (2π)(N−1)/2(eixN∆x′u)(x′).
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This means that U := (2π)−(N−1)/2ES(f) is the solution to the Schrödinger equation{
i∂xNU = −∆x′U,

U|xN=0 = u.

With this point of view, knowing that ES : L2(S) → Lq(RN) is a bounded operator is the

same as having the Strichartz estimate

∥eixN∆u∥Lq(RN ) ⩽ C∥u∥L2(RN−1),

which is a way to quantify how small eixN∆u is as the “time” xN becomes large, if the initial

condition u is merely in L2(RN−1). In this respect, the mixed norms estimates of Theorem

2.2 imply that

∥eixN∆u∥
L2p′
xN

L2q′
x′ (RN )

⩽ C∥u∥L2(RN−1),

for all p′, q′ ⩾ 2 such that

2

p′
+
N − 1

q′
= N − 1, q′ <

N

N − 2
.

Such mixed norms estimates are very useful to study nonlinear perturbations of the Schrödinger

equation [41, 149]. They are known at least since the works of Ginibre and Velo [73], and

hold for a larger range of exponents (namely, q′ < (N − 1)/(N − 3) for N ⩾ 4) than the

many-body version of Theorem 2.2. In the many-body case, Theorem 2.2 was proved for the

first time by Frank, Lewin, Lieb and Seiringer [62] in the restricted range q ⩾ (N +1)/2, by

a different method than the one we presented. They furthermore proved that the Schatten

exponent 2q in (2.10) is sharp for any value of q, and that (2.10) fails for q = N/2 (at this

endpoint, it is conjectured that (2.10) holds with the Schatten space SN replaced by the

weak Schatten space SN,∞). The complex interpolation argument of [65] that we presented

thus provided the missing range of exponents N/2 < q < (N + 1)/2. As we already men-

tioned, the ’one-body’ version holds for a larger range of exponents, namely q ⩾ (N − 1)/2

for N ⩾ 4. This implies that (2.10) holds for q = (N − 1)/2 with the Schatten norm re-

placed by the operator norm. In [64, Lemma 2], we proved that at this ’Keel-Tao’ endpoint

q = (N − 1)/2, one cannot replace the operator norm by a Schatten norm: the operator is

not even compact for some adequate choice of W ! Finally, interpolating this operator norm

bound at q = (N − 1)/2 with the would-be weak bound at q = N/2, one would deduce a

version of (2.10) in the range (N−1)/2 < q < N/2 with a Schatten exponent 2q/(2q−N+1).

In [64, Proposition 3], we proved that this exponent is the best possible.

The dual version of (2.10) as stated in (2.5) has also a dynamical interpretation; namely

that for any density matrix γ on L2(RN−1) one has

∥ρeixN∆x′ γe−ixN∆x′ ∥Lp′
xN

Lq′
x′
⩽ C∥γ∥(2q)′ . (2.11)

Note here that the operator Γ = eixN∆x′γe−ixN∆x′ is a solution to the equation{
i∂xNΓ = [−∆x′ ,Γ],

Γ|xN=0 = γ
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which is the many-body analogue of the linear Schrödinger equation. The many-body

Strichartz estimates (2.11) can be used in the same fashion as their one-body version to

study some nonlinear mean-field dynamics as the ones of the first chapter, see for instance

[127] for some immediate applications.

Finally, let us mention that from the estimates (2.11) one can recover the Strichartz

estimates of Castella and Perthame [40] for the linear transport equation (see [127, Lemma

9]) with the same exponents, motivating the form of the estimates (2.11).

1.4. Application to uniform Sobolev estimates. The same complex interpolation

strategy can be applied to the ’uniform’ Sobolev estimates of Kenig, Ruiz, and Sogge [87],

to prove the following result.

Theorem 2.3 (Theorem 12 in [65]). Let N ⩾ 2 and assume that{
4/3 ⩽ q ⩽ 3/2 if N = 2;

N/2 ⩽ q ⩽ (N + 1)/2 if N ⩾ 3.

Then, there exists C > 0 such that for all z ∈ C \ [0,∞) and all W1,W2 ∈ L2q(RN) we have

∥W1(−∆− z)−1W2∥S(N−1)q/(N−q)(L2(RN )) ⩽ C|z|−1+N/(2q)∥W1∥L2q∥W2∥L2q .

If the Schatten norm above is replaced by an operator norm, one recovers the estimate of

Kenig, Ruiz, and Sogge. Interestingly, it shows that the resolvent of the laplacian on RN does

not blow up as the spectral parameter approaches (0,+∞) if one looks at it as an operator

from Lp to Lp
′
(with p′ = 2q′ with the notations above). In [87], the estimate is proved

by complex interpolating an L2 → L2 bound with a L1 → L∞ bound so that the Schatten

bound of Theorem 2.3 follows from applying Proposition 2.1. The Schatten exponent found

is actually sharp (notice that it is the same as in the Stein-Tomas bound of Theorem 2.1)

since one can recover the Stein-Tomas operator from the resolvent as the spectral parameter

approaches (0,+∞) (as can be understood from the fact that (t− iη)−1 − (t+ iη)−1 →η→0+

2πiδ0 in D′
t(R)).

In [65, Theorem 13], we gave an application of Theorem 2.3 to a limiting absorption

principle in Schatten spaces, but let us give another application here to estimating the

eigenvalues of Schrödinger operators with complex potentials. For simplicity, let N ⩾ 3

(although the results can be extended N = 1, 2 by appropriately modifying the various

exponents), N/2 ⩽ q < +∞ and V ∈ Lq(RN ,C). Since the operator
√

|V |(1 − ∆)−1/2 is

compact, one can define the Schrödinger operator −∆+V as a m-sectorial operator (see for

instance [60, Section 4]) with essential spectrum [0,+∞) and such that its spectrum outside

of [0,+∞) is discrete and consists of eigenvalues of finite algebraic multiplicities. Notice that

since the potential V may be complex-valued, non-real eigenvalues may appear and since we

are not dealing with a self-adjoint operator, techniques to estimate these eigenvalues such as

the variational principle are not available. In particular, it is possible in principle that some

eigenvalues accumulate at a point in [0,+∞) or even at infinity. In [59], Frank noticed that

one could apply the uniform Sobolev estimates of Kenig, Ruiz, and Sogge to estimate these
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eigenvalues: if λ ∈ σ(−∆+ V ) \ [0,+∞), one has

|λ|q−N/2 ⩽ C

∫
RN

|V (x)|q dx,

if N/2 < q ⩽ (N + 1)/2, which excludes for instance accumulation of eigenvalues at infinity.

For q = N/2, one can only say that for ∥V ∥LN/2 small enough, −∆ + V has no eigenvalue

outside [0,+∞). In this case, one can still exclude accumulation at infinity but the argument

is different. Related to this question, let us mention the article [23] where examples of V

(with q > N) are constructed such that eigenvalues of −∆+ V outside [0,+∞) accumulate

at any point on [0,∞). From the Schatten bound of Theorem 2.3 (which is a many-body

version of the Kenig, Ruiz, Sogge estimate), we can estimate several eigenvalues as the

following result shows.

Theorem 2.4 (Theorem 16 in [65]). Let N ⩾ 3, N/2 ⩽ q ⩽ (N + 1)/2, and V ∈
Lq(RN ,C). Denote by (λj)j∈N the discrete set of eigenvalues outside of [0,+∞) of −∆+ V ,

repeated according to their algebraic multiplicity. Then, we have

• if q > N/2, then ∑
j⩾0

d(λj, [0,+∞))

|λj|1−σ
⩽ Cσ∥V ∥2σq/(2q−N)

Lq ,

with {
σ ⩾ 1/2 if q < N2/(2N − 1),

σ > (N − 1)(2q −N)/(2(N − q)) if q ⩾ N2/(2N − 1).

• if q = N/2, then ∑
j⩾0

Im
√
λj

1 + |λj|
< +∞

where the branch of the square root is chosen to have positive imaginary part.

The estimates of Theorem 2.4 control the possible rate of accumulation of eigenvalues on

[0,∞). In particular, it shows that eigenvalues accumulating at a given point on (0,+∞)

must have imaginary parts that converge sufficiently fast to zero such that they are summa-

ble. This improves earlier results on the question where it was shown that such imaginary

parts must be ℓp for larger p.

The connection between Theorem 2.4 and Theorem 2.3 comes from a method of proof

developed in [24, 50], which states that estimating the eigenvalues of −∆+ V amounts to

estimating the ’zeroes’ of the analytic function

z 7→ A(z) := 1 +
√
V (−∆− z)−1

√
|V |,

where we denoted
√
V := V/

√
|V |. That eigenvalues of −∆+V are related to zero eigenval-

ues of A(z) is well-known and is called the Birman-Schwinger principle (see [60, Prop. 4.1]

for the version adapted to this context). Encoding the z’s for which A(z) has a zero eigen-

value can be done via regularized determinants [60, Lemma 3.2], denoted by detnA(z), which

are well-defined when A(z) − 1 ∈ Sn (similarly to the fact that the standard determinant
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detA is well-defined when A−1 is trace-class). Using this object, estimating the eigenvalues

of −∆ + V amounts to estimating the zeroes of the analytic function z 7→ detnA(z) for

an adequate value of n (actually, the multiplicities also coincide). The other ingredient is

a family of results from complex analysis that relate the accumulation of zeroes of analytic

functions at the boundary of their domains to their possible growth at the boundary; the

oldest of such results is perhaps Jensen’s theorem which states that zeroes (zn) of a bounded

analytic function on the unit disk centered at the origin satisfy
∑

n(1−|zn|) < +∞. Here, the

’growth’ at the boundary (here, the boundedness up to the boundary) has a consequence on

the possible accumulation of |zn| at 1: it must be fast enough so that (1−|zn|) is summable.

Such a result was then vastly generalized to account for various behaviours at the boundary

beside boundedness (like blow-up at several points or uniform blow-up at the boundary) in

[24]. In our setting, the relevant blow-up at the boundary can be estimated using the bound

|detnA(z)| ⩽ C∥A(z)− 1∥nSn ,

which combined with the Schatten bound of Theorem 2.3 explains the idea behind the proof

of Theorem 2.4. Notice that the estimate of Theorem 2.3 blows up only at z = 0.

2. Sogge’s Lp spectral cluster bounds

We give a final application of the complex interpolation in Schatten spaces [66], to the

Lp spectral cluster bounds following Sogge [139, 140]. In this context, the relevant operator

is the spectral projection

Πλ := 1(−∆g ∈ [λ2, (λ+ 1)2)), λ ⩾ 1,

associated to the (non-negative) Laplace-Beltrami operator −∆g on a smooth, compact,

boundaryless Riemannian manifold (M, g) of dimension N ⩾ 2. Sogge proved that for any

p ⩾ 2, one has

∥Πλ∥L2(M)→Lp(M) ⩽ Cλs(p) (2.12)

for all λ ⩾ 1 with C > 0 independent of λ, where

s(p) =

{
N(1

2
− 1

p
)− 1

2
if 2(N+1)

N−1
⩽ p ⩽ +∞,

N−1
2

(1
2
− 1

p
) if 2 ⩽ p ⩽ 2(N+1)

N−1
.

The interpretation of (2.12) is that it gives an estimate on the possible concentration of

functions f ∈ L2(M) satisfying Πλf = f and ∥f∥L2(M) = 1, as λ → +∞. Indeed, since

s(p) > 0 the right side of (2.12) blows up as λ → +∞, and a growth of an Lp-norm for

p > 2 while the L2-norm remains fixed is a manifestation of concentration on small sets.

Functions satisfying Πλf = f , i.e. functions in the spectral cluster Eλ := ΠλL
2(M) are

linear combinations of eigenfunctions of −∆g associated to eigenvalues in [λ2, (λ + 1)2). As

λ→ +∞, these eigenfunctions display a fast oscillating behaviour and linear combinations of

them may concentrate is small regions of −∆g. Furthermore, the different behaviour of the

concentration exponent s(p) according to whether p is larger or lower than 2(N +1)/(N −1)

is a manifestation that different concentration scenarii may happen according to the value

of p. Sogge actually proved that the exponent s(p) is sharp (that is, it cannot be lowered),
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constructing explicit fλ ∈ Eλ such that ∥fλ∥L2 = 1 and ∥fλ∥Lp ⩾ cλs(p). In the case of the

sphere S2, such functions are called Gaussian beams for p ⩽ 6 (they concentrate around an

equator), and zonal spherical harmonics for p > 6 (they concentrate around a point). On

the sphere, it thus turns out that one can find eigenfunctions saturating the bounds while

on any manifold, Sogge showed that such examples can only be found in Eλ.

The link with the themes presented before is that since Πλ is a projection, (2.12) is

equivalent to ∥Πλ∥Lp′→Lp ⩽ Cλ2s(p). Sogge proved such a bound by reduction to an oscillatory

integral operator, which Lp
′ → Lp properties are given by theorems of Carleson-Sjölin [33]

and Stein [145, Theorem 10]. As it turns out, Stein’s proof of these bounds proceed by using

complex interpolation between a L2 → L2 and a L1 → L∞ estimate, so that Proposition 2.1

automatically leads to a many-body version of them:

Theorem 2.5 (Theorem 2 in [66]). Let 2 ⩽ p ⩽ +∞. Then, there exists C > 0 such

that for all λ ⩾ 1 and all density matrix γ we have

∥ρΠλγΠλ
∥Lp/2(M) ⩽ Cλ2s(p)∥γ∥Sα(p) , (2.13)

where

α(p) =

{
p(N−1)

2N
if 2(N+1)

N−1
⩽ p ⩽ +∞,

2p
p+2

if 2 ⩽ p ⩽ 2(N+1)
N−1

.

Of course, Theorem 2.5 reduces to Sogge’s estimate in the case where γ is rank-one. In

particular, this shows that the exponent s(p) is optimal in (2.13). Furthermore, the exponent

α(p) is also sharp, as can be seen by taking γ = Πλ itself. Such a fact follows by the pointwise

Weyl law, which states that

1(−∆g ⩽ λ2)(x, x) = (2π)−N(|SN−1|/N)λN +Oλ→+∞(λN−1), (2.14)

where the remainder in uniform in x ∈ M . Such a strong version of Weyl law was proved

by Avakumovic [7], Levitan [91], and Hörmander [79], and has two important consequences

related to our question:

(1) it implies that ∥ρΠλ
∥L∞(M) ⩽ CλN−1, essentially by taking the difference between

(2.14) for λ+ 1 and (2.14) for λ;

(2) it also implies that

lim sup
λ→+∞

λ−(N−1)∥ρΠλ
∥L1(M) = lim sup

λ→+∞
λ−(N−1) dimEλ > 0.

These two facts imply that all the Lp/2-norms of ρΠλ
are of the same order λN−1, a mani-

festation of delocalization instead of concentration. Using that ∥ρΠλ
∥Lp/2 ⩾ cλN−1 and that

∥Πλ∥Sα ⩽ Cλ(N−1)/α, one verifies easily that α(p) in (2.13) is sharp.

The above discussion allows to interpret (2.13) as measuring the transition between con-

centration (which happens for ’one-particle’, rank γ = 1) and delocalization (which happens

for the maximal number of particles, rank γ = dimEλ ∼ λN−1). In [66], we gave a partial

answer to a stronger version of optimality of the exponents s(p), α(p). Namely, if one fixes an

intermediate number of particlesNλ such that 1 ≪ Nλ ≪ dimEλ, can one construct a projec-

tion γλ with γλ = ΠλγλΠλ such that rank γλ ∼ Nλ and for which ∥ργλ∥Lp/2 ⩾ cλ2s(p)N
1/α(p)
λ ?
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We constructed such optimal ’intermediate’ concentrating objects on S2, using precise asymp-

totics of spherical harmonics [66, Theorem 4].

3. Weyl laws for singular potentials

Let us now switch to a related topic where fermionic inequalities do not appear explicitly.

We mentioned in the previous section the importance of Weyl laws when interpreted as a

manifestation of the delocalization of a sufficient number of particles. The goal of this section

is to present the results of [68] where we study more general version of the Weyl law, adding

a (singular) potential to the Laplacian.

It is a natural question to ask what becomes of (2.14) when −∆g is replaced by −∆g+V ,

when V :M → R is a potential. The first easy answer is that (2.14) is still valid when V is

smooth, since the result of Hörmander [79] actually covers the case of any elliptic pseudo-

differential operator. From this perspective, one can ask whether this property persists when

V is singular. Of course, V must not be too singular since we still want −∆g + V to be

well-defined as a self-adjoint operator (with compact resolvent say, to ensure that it still has

discrete spectrum). For this property, a natural class to consider is V ∈ LN/2(M) (where

we recall that N is the dimension of the manifold) due to Sobolev embeddings. This class is

sharp in the Lp scale and includes all point singularities of the type d(·, x0)−α for all α < 2

(where x0 ∈M is the point of singularity and dg is the Riemannian distance onM), which is

again natural since α = 2 is the known threshold to have a relatively bounded perturbation

of −∆g. Now we remark that (2.14) cannot hold for all V ∈ LN/2(M), for the simple reason

that it may happen that −∆g+V has unbounded eigenfunctions (while (2.14) clearly implies

that all eigenfunctions are L∞(M)). An example given in [135, Sec. A.3] is u(x) = log |x|
(in the flat case, say) for |x| ⩽ ε, which satisfies u /∈ L∞ and V := ∆u/u ∼ (|x|2 log |x|)−1 as

|x| → 0, so that V ∈ LN/2 for N ⩾ 3.

The correct replacement of LN/2 which is still ’critical’ with respect to the Laplacian and

such that eigenfunctions of −∆g + V are bounded is the Kato class, as emphasized in [3].

For N ⩾ 3 (for simplicity), a potential V : M → R belongs to the Kato class if V ∈ L1(M)

and if

lim
r→0

sup
x∈M

∫
dg(x,y)<r

|V (y)|
dg(x, y)N−2

dvg(y) = 0.

Similarly to LN/2, the Kato class contains all Lq spaces for q > N/2 and in particular all point

singularities of the type dg(·, x0)−α with α < 2. However, the Kato class is neither contained

nor contains LN/2. This can be seen already for radial potentials, where being LN/2 means

that
∫ 1

0
|V (r)|N/2rN−1 dr < +∞ while being Kato class means that

∫ 1

0
|V (r)|r dr < +∞.

Hence, V (r) = (r2 log r)−1 belongs to LN/2 but not to the Kato class, while V (r) = (1− r)−α
belongs to the Kato class but not to LN/2 for 2/N < α < 1.

In [68], we investigated whether the Weyl law (2.14) was still valid when a Kato class

potential is added to −∆g. At a similar time, Huang and Sogge [80] answered the weaker

question of the integrated Weyl law and proved that for any Kato class potential V one

indeed has

Tr1(−∆g ⩽ λ2) = (2π)−N(|SN−1|/N)Volg(M)λN +Oλ→+∞(λN−1), (2.15)
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so that adding a Kato class potential does not influence the sharp Weyl law. Let us notice

that they are also able to treat specific manifolds where the remainder O(λN−1) can be

improved (like the torus or negatively curved manifolds). In [68, Theorem 1.3], we noticed

that (2.15) holds when V ∈ LN/2(M) by a simple perturbative argument using the Cwikel-

Lieb-Rosenblum inequality.

The situation of the pointwise Weyl law is less clear than the integrated one. Indeed,

one of the main findings of [68] is that (2.14) is actually wrong for some singular enough V

in the Kato class, and that in order to recover (2.14) one needs stronger assumptions on the

potential. Let us summarize our results.

Theorem 2.6 (Theorems 1.1, 1.2, 1.3 in [68]). Let (M, g) be a three dimensional com-

pact, smooth, Riemannian manifold without boundary. Denote by −∆g the Laplace-Beltrami

operator on M and let V :M → R be a Kato class potential. Then, there exists ε0 > 0 such

that for any ε ∈ (0, ε0) there exists rVε : (0,+∞)×M → R such that

(1) (Sharp pointwise Weyl law with an additional term) As λ→ +∞, we have uniformly

in x ∈M

1(−∆g + V ⩽ λ2)(x, x) =
λ3

6π2
+ λ3rVε (λ, x) +O(ε)(λ2).

(2) (Smallness of the additional term) There exists C > 0 such that for all λ > 0 we

have

sup
x∈M

|rVε (λ, x)| ⩽ C∥V ∥K(ε)

where ∥V ∥K(ε) = supx∈M
∫
dg(x,y)<ε

|V (y)|dg(x, y)−1 dvg(y). In particular, we always

have as λ→ +∞ and uniformly in x ∈M ,

1(−∆g + V ⩽ λ2)(x, x) =
λ3

6π2
+ o(λ3).

(3) (Integrated Weyl law always persists) As λ→ +∞ we have∫
M

rVε (λ, x) dvg(x) = O(ε)(λ−1).

In particular, as λ→ +∞ we have

Tr1(−∆g + V ⩽ λ)2 =
Volg(M)

6π2
λ3 +O(λ2).

(4) (When does the additional term disappear) If V satisfies furthermore for some r > 0

that supx∈M
∫
dg(x,y)<r

|V (y)|dg(x, y)−2 dvg(y), one has

sup
x∈M

|rVε (λ, x)| = Oλ→+∞(λ−1).

(5) (Failure of the sharp Weyl law for specific potentials) Let x0 ∈M , η ∈ (0, 1), γ ∈ R
and assume that for all x ∈M ,

V (x) = γ
χ(dg(x, x0))

dg(x, x0)2−η
,
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for some smooth χ : R → R such that χ(0) = 1 and with support close to the origin.

Then, there exists aη > 0 such that

rVε (λ, x0) ∼λ→+∞ −γaηλ−η.

Point (1) means that adding a potential adds a new term λ3rVε (λ, x) to the Weyl law,

which can be put into the remainder O(λ2) by Point (4) if the potential V is less singular

than Kato class. In general, this term cannot be put into the remainder O(λ2) as shown by

Point (5) where we can compute this additional term for a specific potential with a point

singularity: in this case, it leads to a correction λ3−η to the Weyl law, showing that it may be

arbitrarily close to the main order term λ3 as η → 0+ (which means that the singularity gets

stronger). Meanwhile, this additional term never contributes to the main order as shown

by Point (2). Finally, Point (3) shows that while the additional term may contribute non-

trivially to the pointwise asymptotics, it never contributes to the integrated asymptotics.

Notice that our result holds only in three dimensions, which is due to our method of proof

that we describe below. Some extensions of our result to other dimensions have been since

proved [81, 82]. Let us mention that our proof provides an explicit formula for the additional

term rVε (λ, x) in terms of a series involving the potential V , and the properties listed in the

theorem above follow from estimating this series under various assumptions on V .

Let us now comment on our method of proof. As we already mentioned, the now widely

popular method of Hörmander to obtain such spectral asymptotics seems hard to adapt

to this case of general singular potentials (in particular since for a general potential in the

Kato class, one does not know what kind of singularities it exhibits, where they are located,

etc.). To treat this problem, we rather used the older method of Avakumovic [7] based on

resolvent estimates and Tauberian theorems. His method was obtained in three dimensions

and this is where our dimensional restriction comes from (although one could reasonably

expect that it extends to other dimensions as well, but we do not know how to do it yet).

From a naive perspective, his method seems more suited to include singular potentials since

it relies on resolvent or heat kernels which are regularizing in nature and hence which may

deal better with the singularity of the potential, compared to the wave propagator method

of Levitan/Hörmander which is less regularizing.

The basic idea of Avakumovic’s approach to study the asymptotics of 1(−∆g ⩽ t) as

t → +∞ is to deduce them from the asymptotics of a more regular object, like the heat

kernel et∆g as t → 0+ or powers of the resolvent (−∆g + λ)−k as λ → +∞. These objects

are easier to study because they are solutions to PDEs, and asymptotics can be found using

appropriate approximate solutions. Relating the asymptotics of these transforms (going

from the counting functions to the heat kernel is called the Laplace transform while going

from the counting function to powers of the resolvent is called the Stieltjes transform) to

the asymptotics of the original object is the content of Tauberian theorems. This approach

was originally applied to the prime number theorem, and it was Carleman [32] who had the

idea to apply it to spectral counting. The main contribution of Avakumovic to this story is

to apply this strategy to obtain sharp asymptotics. Indeed, Tauberian theorems typically

only give the main term in the asymptotics. For instance, the famous theorem of Hardy and
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Littlewood states that if a non-negative measure µ on [0,+∞) satisfies∫
[0,+∞)

e−tx dµ(x) ∼t→0+ ct
−a

for some c > 0 and a ⩾ 0, then one has

µ([0, λ]) ∼λ→+∞
c

Γ(a+ 1)
λa.

This result can actually be applied to obtain the main term in the Weyl law (see for instance

[156, Theorem XIII.4.1] for a proof). A natural question is to ask under which conditions

do we have a version of this result with stronger remainder term. The following (which does

not hold in full generality but we state it anyway to give an idea of the philosophy behing

this kind of results) is a result of Freud [69]: if for some remainder r(t) = ot→0+(1) one has∫
[0,+∞)

e−tx dµ(x) = (c+ r(t))t−a,

then one deduces that

µ([0, λ]) =

(
c

Γ(a+ 1)
+Oλ→+∞

(
1

| log r(1/λ)|

))
λa.

This means that one has a logarithmic loss in the remainders of the Tauberian theorem.

Surprisingly, this result is sharp! Applied to our problem where the main term of the Weyl

law is λN and the remainder term is λN−1, this means that we would need an exponentially

small remainder in the asymptotics of the Laplace transform in order to derive such a Weyl

law with remainder. This strategy can be applied to the flat case of the Dirichlet Laplacian

on an open bounded set in the Euclidean space [6], but in the general case of a Riemannian

manifold exponentially small remainder terms in the asymptotics of the heat kernel are wrong

(the correction to the main term is polynomial, see for instance [21, Sec. III.E]). Despite

this fact, Avakumovic managed to apply Tauberian theorems to prove the Weyl law with

sharp remainder term by noticing that exponentially small remainder terms in the Laplace

transform can be obtained up to a structured term which is itself a Laplace transform;

namely he could find a measure µ0 such that∫
[0,+∞)

e−tx dµ(x) = ct−a +

∫
[0,+∞)

e−tx dµ0(x) +Ot→0+(e
−b/t),

for some b > 0, so that a Freud like theorem could be applied to the measure µ− µ0, which

leads to the desired asymptotics if µ0([0, λ]) does not grow too fast as λ→ +∞. Of course,

one has to be precise because such Tauberian theorems typically hold under some assumption

like the non-negativity of the measure µ which would break down when applied to µ − µ0

instead. Thus, Avakumovic’s contributions was twofold: i) provide Tauberian theorems with

weak enough ’monotonicity’ assumptions so that they can be applied to measures of the type

µ− µ0 and ii) explain why an exponentially small remainder term can be obtained up to a

structured term for the heat kernel asymptotics on a Riemannian manifold.
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In [68], we explained how to adapt Avakumovic’s argument to include Kato class poten-

tials, and in particular the two points mentioned above. We first had to prove a Tauberian

theorem with remainders, which is a bit stronger than the one Avakumovic used.

Theorem 2.7 (Theorem 3.1 in [68]). Let A : [0,+∞) → R be such that A(t) =

B0(t)t
3/2 +B1(t) +B2(t) where

(1) ∃C > 0, ∀t ⩾ 0, |B2(t)| ⩽ C(1 + t);

(2) B1 is non-decreasing;

(3) B0 is bounded and such that there exists c > 0 such that for all 0 < u ⩽ v ⩽ u + 1

we have B0(v
2)−B0(u

2) ⩾ −c/u.
(4) There exists ε > 0 such that as λ→ +∞, we have∫ ∞

0

A(t)

(t+ λ)3
dt = O(e−ε

√
λ).

Then, A(t) = O(t) as t→ +∞.

This Tauberian theorem is stated for the Stieltjes transform rather than for the Laplace

transform because the method relies on resolvent estimates rather than on heat kernel esti-

mates. The idea behind it is that the function B1 is the one we want to estimate (like the

counting function Tr1(−∆g + V ⩽ t)), and for which we don’t know anything more than it

is non-decreasing. In Avakumovic’s argument, the function B0 is constant so that B0(t)t
3/2

corresponds to the main term in the asymptotics and its Stieltjes transform is proportional

to λ−1/2. Hence, the way to interpret Theorem 2.7 compared to our previous discussion is

that (still in the case B0 constant) under the assumption∫ ∞

0

B1(t)

(t+ λ)3
dt = cλ−1/2 +

∫ ∞

0

B2(t)

(t+ λ)3
dt+Oλ→+∞(e−ε

√
λ),

we deduce

B1(t) = −B0(t)t
3/2 −B2(t) +Ot→+∞(t),

so that together with the assumption B2(t) = Ot→+∞(t) this implies B1(t) = −B0(t)t
3/2 +

Ot→+∞(t) as desired. When including a Kato class potential, B0 is not constant anymore

(due to the additional term rVε in Theorem 2.6) and one has to use assumption (3) to deal

with it.

The assumptions of Theorem 2.7 in the case B1(t) = 1(−∆g + V ⩽ t)(x, x) for some

fixed x ∈M follow from the following result.

Proposition 2.2 (Proposition 5.1 in [68]). Let V : M → R be a potential in the

Kato class. Then, there exists ε0 > 0 such that for any ε ∈ (0, ε0) there exist functions

rVε , s
V
ε : (0,+∞)×M → R such that

(1) ∃C > 0, ∀t ⩾ 0, ∀x ∈M , |sVε (t, x)| ⩽ C(1 + t);

(2) ∃C > 0, ∀t ⩾ 0, ∀x ∈M , |rVε (t, x)| ⩽ C∥V ∥K(ε);

(3) ∃C > 0, ∀t′ ⩾ t > 0, ∀x ∈M , |rVε (t, x)− rVε (t
′, x)| ⩽ C(

√
t′ −

√
t)/

√
t;
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(4) As λ→ +∞ and uniformly in x ∈M we have

(−∆g + V + λ)−2(x, x) =
1

8π
√
λ
+

∫ ∞

0

t3/2rVε (t, x) + sVε (t, x)

(t+ λ)3
dt+O(e−ε

√
λ/4).

The combination of Proposition 2.2 and Theorem 2.7 lead to Theorem 2.6 by taking

B0(t) = 1/(6π2) + rVε (t, x) and B2(t) = sVε (t, x) (for fixed x ∈M). To ensure the uniformity

in x, we actually prove a more quantitative statement of the Tauberian theorem 2.7 to track

the dependence of the final result on the constant appearing in its assumptions.

Let us explain briefly the ideas behind the resolvent asymptotics of Proposition 2.2, which

we illustrate on the simpler case of the first power of the resolvent

GV
λ := (−∆g + V + λ)−1.

Avakumovic’s idea is to use Hadamard’s parametrix to approximate G0
λ, that is

T 0
λ (x, y) =

e−
√
λdg(x,y)

4πdg(x, y)
U(x, y),

where the first factor is just the resolvent of the Laplacian on R3 with the Euclidean distance

replaced by the Riemannian distance, and the function U is supported close to the diagonal

x = y (actually, supported on dg(x, y) ⩽ ε: this is where the ε-dependence comes from).

The idea behind Hadamard’s parametrix is that for a certain choice of U , defining

R0
λ(x, y) := (−∆g + λ)x(T

0
λ (x, y)−G0

λ(x, y))

we have

|R0
λ(x, y)| ⩽ C

e−
√
λdg(x,y)/2

dg(x, y)
, R0

λ(x, y) =
e−

√
λdg(x,y)

4πdg(x, y)
Ũ(x, y),

where the first relation holds for all x, y while the second relation only holds for dg(x, y) ⩽
ε/2, for some λ-independent function Ũ . This means that despite taking two derivatives of

the singular object T 0
λ , R

0
λ is as singular as T 0

λ due to the choice of the function U . Now the

relation defining R0
λ is equivalent to the fact that, as operators,

G0
λ = T 0

λ −G0
λR

0
λ

and the bounds on R0
λ imply that one can iterate this relation to obtain the series represen-

tation

G0
λ =

∑
n⩾0

(−1)nT 0
λ (R

0
λ)
n.

Now each of the terms T 0
λ (R

0
λ)
n for n ⩾ 1 may be split as a sum of an exponentially small

term (as λ→ +∞) and a structured term which is a Stieltjes transform. Indeed, the integral

kernel of T 0
λ (R

0
λ)
n can be written as an n-fold integral,

T 0
λ (R

0
λ)
n(x, y) =

∫
M

dvg(z1) · · ·
∫
M

dvg(zn)T
0
λ (x, z1)R

0
λ(z1, z2) · · ·R0

λ(zn, y).

Now if all integrals are restricted to the region dg(zk, zk+1) ⩽ ε/2, we are in the region where

the function R0
λ is known explicitly and in particular, the λ-dependence of this term is just

e−
√
λ(dg(x,z1)+dg(z1,z2)+···+dg(zn,y)),
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which is a Stieltjes transform in λ (after all, by definition the resolvent is a Stieltjes transform

and we saw that its λ-dependence is also of the form e−a
√
λ for some a > 0). Hence, this term

where all integrations are taken close to the diagonal is the structured term which is a Stieltjes

transform. For the other term, at least one of the integration domain is dg(zk, zk+1) ⩾ ε/2

and since the function R0
λ is exponentially decaying away from the diagonal, this term is

exponentially small in λ.

All we just discussed did not include the potential V ; this argument is the one given by

Avakumovic in the case V = 0 to obtain the asymptotics of G0
λ when λ → +∞. To include

a potential, we use the same parametrix T 0
λ , which now satisfies

RV
λ := (−∆g + V + λ)x(T

0
λ (x, y)−G0

λ(x, y)) = R0
λ + V T 0

λ ,

which can be rewritten as operators as

GV
λ = T 0

λ −GV
λR

V
λ .

The Kato class property of V can be used to infer that one has the convergent series repre-

sentation

GV
λ =

∑
n⩾0

(−1)nT 0
λ (R

V
λ )

n =
∑
n⩾0

(−1)nT 0
λ (R

0
λ + V T 0

λ )
n.

Now one can use the same idea as above to split each term T 0
λ (R

0
λ + V T 0

λ )
n for n ⩾ 1 as a

sum of a structured term and an exponentially small term, just by splitting the integration

domain in two parts. While in Avakumovic’s argument, the structured term could be shown

to be the Stieltjes transform of a function which is Ot→+∞(t), it is not the case when V ̸= 0

due to the term T 0
λ (V T

0
λ )
n which is the most singular and leads to the additional term in

the Weyl asymptotics when summed over n.

In this sketch of proof, one sees where the restriction of three dimensions comes from: in

this special case, the λ-dependence of the resolvent of the Euclidean Laplacian is particularly

simple (essentially e−
√
λ|x−y|), so that when taking products of it, it remains of the same form

and in particular is still a Stieltjes transform. In other dimensions, products of resolvents

are perhaps still Stieltjes transforms but it is far from obvious. Of course, it would be very

important to understand how to extend this argument to any dimension.

As a concluding remark, let us mention that this method is robust enough to obtain

off-diagonal asymptotics 1(−∆g + V ⩽ t)(x, y) as well [68, Corollary 8.2] and also treat the

case of Kato class perturbations of the Dirichlet Laplacian on a bounded domain in R3 [68,

Prop. 7.6]. This last result is weaker than the one on manifolds due to the boundary of the

domain, at which estimates degenerate. Understanding what happens at the boundary with

a Kato class potential is an interesting challenge, which could also lead to more complicated

questions associated to the semi-classical regime or to confining potentials.

4. Littlewood-Paley decomposition for operator densities

The last topic we want to discuss in the theme of fermionic inequalities is the one pre-

sented in [128] related to the Littlewood-Paley decomposition, that we first recall in the
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one-body setting. Let d ⩾ 1 and ψ ∈ C∞
c (Rd \ {0}) be a non-negative function such that

∀ξ ∈ Rd \ {0},
∑
j∈Z

ψj(ξ) = 1, ψj(ξ) := ψ(2−jξ).

The function ψj should be thought as localizing at the dyadic frequency |ξ| ∼ 2j, through

the Fourier multiplier Pj defined by

∀u ∈ L2(Rd), P̂ju := ψjû.

The classical Littlewood-Paley theorem (see for instance [144, Theorem 8.3]) states that for

any 1 < p < +∞ there exists C > 0 such that for any u ∈ Lp(Rd) one has

C∥u∥Lp ⩽ ∥(
∑
j∈Z

|Pju|2)1/2∥Lp ⩽ (1/C)∥u∥Lp ,

meaning that one can deduce Lp-properties of u from knowing the Lp-properties of the

frequency localized (Pju)j∈Z. This statement has many applications in PDEs for instance,

and let us illustrate its usefulness by deducing from it the Sobolev inequality

∥u∥Lq ⩽ C∥(−∆)s/2u∥L2 (2.16)

where s ∈ [0, d/2) and q = 2d/(d − 2s). We first claim that (2.16) is true for frequency

localized functions. Indeed, if j ∈ Z and u ∈ Ḣs(Rd), we have by the Hausdorff-Young,

Hölder inequalities and by Plancherel’s identity,

∥Pju∥Lq ≲ ∥P̂ju∥L2d/(d+2s) ≲ 2sj∥P̂ju∥L2 ≲ ∥(−∆)s/2Pju∥L2 .

Now using the Littlewood-Paley theorem, we have

∥u∥Lq ≲ (
∑
j∈Z

∥Pju∥2Lq)1/2 ≲ (
∑
j∈Z

∥(−∆)s/2Pju∥2L2)1/2 ≲ ∥(−∆)s/2u∥2L2 ,

which is exactly (2.16).

In [128], we provided a version of the Littlewood-Paley theorem for density matrices.

Lemma 2.3 (Lemma 1 in [128]). Let d ⩾ 1 and 1 < p < +∞. Then, there exists C > 0

such that for any non-negative finite rank operator γ on L2(Rd) we have

C∥ργ∥Lp/2 ⩽ ∥
∑
j∈Z

ρPjγPj
∥Lp/2 ⩽ (1/C)∥ργ∥Lp/2 .

Lemma 2.3 reduces to the Littlewood-Paley theorem when γ is rank-one. Before talking

about the proof of Lemma 2.3, let us discuss an application to the analogue of the Sobolev

embeddings for density matrices that we already discussed at the beginning of this chapter:

the Lieb-Thirring inequality. When rewritten in terms of density matrices, it reads∫
Rd

ργ(x)
1+2/d ≲ Tr

√
γ(−∆)

√
γ,

for any density matrix 0 ⩽ γ ⩽ 1. In the one body setting, it amounts to the subcritical

Sobolev embedding H1(Rd) ↪→ L2+4/d(Rd). If we try to adapt the one-body proof above
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using the Littlewood-Paley theorem to density matrices, we first notice that a frequency-

localized version of the Lieb-Thirring inequality holds; indeed 0 ⩽ γ ⩽ 1 implies that

0 ⩽ ρPjγPj
⩽ ρP 2

j
≲ 2jd, so that

∥ρPjγPj
∥L1+2/d ⩽ ∥ρPjγPj

∥d/(d+2)

L1 ∥ρPjγPj
∥2/(d+2)
L∞

≲ 22jd/(d+2)(Tr
√
γP 2

j

√
γ)d/(d+2)

= (Tr
√
γ22jP 2

j

√
γ)d/(d+2)

≲ (Tr
√
γPj(−∆)Pj

√
γ)d/(d+2),

which is indeed the Lieb-Thirring inequality for the operator PjγPj. Now contrary to the

one-body case, one encounters an issue when trying to sum this inequality over j with the

Littlewood-Paley theorem. Indeed, Lemma 2.3 implies that

∥ργ∥L1+2/d ≲
∑
j∈Z

∥ρPjγPj
∥L1+2/d ≲

∑
j∈Z

(Tr
√
γPj(−∆)Pj

√
γ)d/(d+2),

and the right side cannot be compared to Tr
√
γ(−∆)

√
γ ∼

∑
j Tr

√
γPj(−∆)Pj

√
γ since

d/(d + 2) < 1. Of course, the issue comes from using the crude consequence of Lemma 2.3

and the triangle inequality which is

∥ργ∥L1+2/d ≲
∑
j∈Z

∥ρPjγPj
∥L1+2/d ,

which was enough in the one-body case but not in the many-body case. The way to correct

this argument is to rather estimate from below

Tr
√
γ(−∆)

√
γ ≳

∑
j

22j Tr
√
γP 2

j

√
γ =

∫
Rd

∑
j

22jρPjγPj
(x) dx, (2.17)

and remark that for fixed x ∈ Rd, αj := ρPjγPj
(x) satisfies 0 ⩽ αj ≲ 2jd as we already said,

so that ∑
j∈Z

αj =
∑
j⩽J

αj +
∑
j>J

αj ≲ 2Jd + 2−2J
∑
j

22jαj,

which when optimizing over J leads to∑
j∈Z

αj ≲ (
∑
j

22jαj)
d/(d+2).

Inserted into (2.17) and Lemma 2.3, this leads to

Tr
√
γ(−∆)

√
γ ≳

∫
Rd

(∑
j∈Z

ρPjγPj
(x)

)1+2/d

dx ≳
∫
Rd

ργ(x)
1+2/d dx.

Let us now comment on the proof of Lemma 2.3. In the one-body case, it relies on Khint-

chine’s inequality which states that if 0 < p < +∞ and if (rj) is a sequence of independent
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random variables taking values in ±1 with equal probability 1/2, then there exists C > 0

such that for any complex numbers (aj) ⊂ C one has

C(
∑
j

|aj|2)p/2 ⩽ E

∣∣∣∣∣∑
j

ajrj

∣∣∣∣∣
p

⩽ (1/C)(
∑
j

|aj|2)p/2,

which is an equality for p = 2 due to independence. With this result, one can estimate for

u ∈ Lp(Rd),

∥(
∑
j∈Z

|Pju|2)1/2∥pLp ≲ E
∫
Rd

∣∣∣∣∣∑
j

rj(Pju)(x)

∣∣∣∣∣
p

dx

and then use that the Fourier multiplier
∑

j rjPj is bounded on Lp(Rd) uniformly in the

values of (rj) by the Mikhlin multiplier theorem since Ψ := ξ 7→
∑

j rjψj(ξ) satisfies that

|ξα|∂αΨ is uniformly bounded in ξ and (rj), for all α ∈ Nd.

The proof of the many-body case Lemma 2.3 can be made along the same lines, but let

us give another way to see the proof proposed in [128]. The idea is to use the operator
√
γ

and the relation

ργ(x) =

∫
Rd

|√γ(x, y)|2 dy = ∥√γ(x, ·)∥2L2
y
,

so that

∥ργ∥Lp/2 = ∥√γ(·, ·)∥Lp
xL2

y
, ∥

∑
j∈Z

ρPjγPj
∥Lp/2 = ∥(

∑
j∈Z

∥Pj
√
γ(·, ·)∥2L2

y
)1/2∥Lp

x
.

Hence, Lemma 2.3 may be seen as a one-body Littewood-Paley estimate but applied to

Hilbert space valued functions. That the Littewood-Paley theorem extends to this case

seems to be well-known in the harmonic analysis community, and it can be proved quite

straightforwardly from this slight extension of Khintchine’s inequality which can be found

for instance in [144, Appendix D]:

(
∑
jk

|ajk|2)p/2 ≲ Ejk

∣∣∣∣∣∑
jk

ajkrj ⊗ rk

∣∣∣∣∣
p

.
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Then, for any separable Hilbert space H with Hilbert basis (ek) and for any strongly mea-

surable f : Rd → H, one has

∥(
∑
j∈Z

∥Pjf∥2H)1/2∥
p
Lp
x
=

∫
Rd

(∑
jk

|⟨(Pjf)(x), ek⟩H|2
)p/2

dx

≲ Ejk
∫
Rd

∣∣∣∣∣∑
jk

⟨(Pjf)(x), ek⟩Hrj ⊗ rk

∣∣∣∣∣
p

dx

≲ Ek
∫
Rd

∣∣∣∣∣∑
k

⟨f(x), ek⟩Hrk

∣∣∣∣∣
p

dx

≲
∫
Rd

(∑
k

|⟨f(x), ek⟩H|2
)p/2

dx

≲
∫
Rd

∥f(x)∥pH dx,

where in the third line we used again that the multiplier
∑

j rjPj is bounded on Lp, and in

the fourth line we used the standard Khintchine inequality. The reverse inequality can be

proved in a standard way by duality.

As a final remark, let us notice that the Lieb-Thirring inequality can be proved directly

using this idea of stating it for the operator
√
γ; indeed in this representation it amounts to

∥√γ(·, ·)∥
L
2+4/d
x L2

y
≲ ∥∇x

√
γ(·, ·)∥L2

x,y
,

so that the Lieb-Thirring inequality may be seen as a Sobolev inequality applied to Hilbert

space valued functions, with the following subtlety: the above inequality holds in the one-

body case under the L2-constraint ∥√γ(·, ·)∥L2
x,y

⩽ 1 which at the level of operators would

mean that Tr γ ⩽ 1, which is the wrong constraint: it should be γ ⩽ 1 instead! The

constraint γ ⩽ 1 means at the level of the integral kernel of
√
γ that for all u ∈ L2(Rd) we

have ∫
Rd

∣∣∣∣∫
Rd

√
γ(x, y)u(y) dy

∣∣∣∣2 dx ⩽ ∥u∥2L2 ,

which is of course a weaker assumption than ∥√γ(·, ·)∥L2
x,y

⩽ 1. Hence, the Lieb-Thirring

inequality is rather the following statement.

Proposition 2.4 (Hilbert space valued improved Sobolev inequality). Let d ⩾ 1 and H
be a separable Hilbert space. Then, there exists C > 0 such that for all strongly measurable

f : Rd → H we have∫
Rd

∥f(x)∥2+4/d
H dx ⩽ C

(
sup

∥u∥H=1

∫
Rd

|⟨f(x), u⟩H|2 dx

)2/d ∫
Rd

∥∇xf(x)∥2H dx.

As we explained, this inequality is called ’improved’ because its standard statement would

be the weaker ∫
Rd

∥f(x)∥2+4/d
H dx ⩽ C∥f∥4/dL2

∫
Rd

∥∇xf(x)∥2H dx.
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Interestingly, this proposition can be proved using the Chemin-Xu method [44].

Proof of Proposition 2.4. We first extend the properties of the Fourier transform

to functions taking values in Hilbert spaces. For any f : Rd → H such that∫
Rd

∥f(x)∥H < +∞,

we define its Fourier transform by

∀ξ ∈ Rd, f̂(ξ) :=
1

(2π)d/2

∫
Rd

f(x)e−ix·ξ dx ∈ H.

We clearly have the bound for all ξ ∈ Rd,

∥f̂(ξ)∥H = sup
∥u∥=1

|⟨f̂(ξ), u⟩H|

= sup
∥u∥=1

1

(2π)d/2

∣∣∣∣∫
Rd

⟨f(x), u⟩He−ix·ξ dx
∣∣∣∣

⩽ sup
∥u∥=1

1

(2π)d/2

∫
Rd

|⟨f(x), u⟩H| dx.

Here, we see that we gain compared to the stronger inequality

∥f̂∥L∞H ⩽ (2π)−d/2
∫
Rd

∥f(x)∥H dx,

and this small gain is exactly what we need in the Chemin-Xu proof to go from the Sobolev

inequality to the stronger Lieb-Thirring inequality. Note that we also have the Plancherel

identities∫
Rd

∥f̂(ξ)∥2H dξ = (2π)−d
∫
R3d

⟨f(x), f(x′)⟩He−iξ·(x−x
′) dx dx′ dξ =

∫
Rd

∥f(x)∥2H dx,

∫
Rd

|⟨f̂(ξ), u⟩H|2 dξ = (2π)−d
∫
R3d

⟨f(x), u⟩⟨u, f(x′)⟩He−iξ·(x−x
′) dx dx′ dξ =

∫
Rd

|⟨f(x), u⟩|2 dx,

for all u ∈ H, which the second main ingredient in Chemin-Xu’s proof. To do it, let

q = 2 + 4/d and write∫
Rd

∥f(x)∥qH dx = q

∫ ∞

0

|{x : ∥f(x)∥H ⩾ t}|tq−1 dt.
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For any t > 0, we split f = f> + f<, where f̂<(ξ) := 1(|ξ| ⩽ Rt)f̂(ξ), where Rt is chosen

such that

∥f<∥L∞H ⩽ (2π)−d/2 sup
∥u∥H=1

∫
|ξ|⩽Rt

|⟨f̂(ξ), u⟩| dξ

⩽
R
d/2
t |Sd−1|1/2

d1/2(2π)d/2

(
sup

∥u∥H=1

∫
Rd

|⟨f̂(ξ), u⟩|2 dξ

)1/2

⩽
R
d/2
t |Sd−1|1/2

d1/2(2π)d/2

(
sup

∥u∥H=1

∫
Rd

|⟨f(x), u⟩|2 dx

)1/2

⩽ t/2,

that is

Rd
t :=

t2

4

d(2π)d

|Sd−1|

(
sup

∥u∥H=1

∫
Rd

|⟨f(x), u⟩|2 dx

)−1

.

With this choice of Rt, we deduce that for all t > 0,

|{x : ∥f(x)∥H ⩾ t}| = |{x : ∥f>(x)∥H ⩾ t/2}|

⩽
4

t2

∫
Rd

∥f>(x)∥2H dx

=
4

t2

∫
|ξ|>Rt

∥f̂(ξ)∥2H dξ

and integrating in t we get∫
Rd

∥f(x)∥qH dx ⩽ 4q

∫
Rd

∥f̂(ξ)∥2H
∫ ∞

0

tq−31(Rt ⩽ |ξ|) dt dξ

= (2d+ 4)

(
4|Sd−1|
d(2π)d

)2/d
(

sup
∥u∥H=1

∫
Rd

|⟨f(x), u⟩|2 dx

)2/d ∫
Rd

|ξ|2∥f̂(ξ)∥2H dξ,

which ends the proof. □

It would be very interesting to investigate if this point of view on fermionic inequalities

seen as Hilbert space valued “standard” inequalities can lead to more one-body techniques

being adapted to the many-body setting, like compactness tools that we present in the next

chapter.



CHAPTER 3

Optimizers for restriction inequalities

This last chapter is devoted to the study of the best constants in the restriction inequal-

ities

∥ES(f)∥Lq(RN ) ⩽ C∥f∥Lp(S,dσ)

that we already discussed above. We will focus on the case p = 2 and S being either the

sphere SN−1 or the cubic curve y = x3 in R2. In these cases, we investigate conditions under

which there exist functions realizing the equality in the inequality above, using compactness

methods. Indeed, the best constant can be defined as

SS,σ,q := sup
{
∥ES(f)∥Lq(RN ) : ∥f∥L2(S,dσ) = 1

}
,

and we wish to find functions realizing this supremum by studying the convergence properties

of maximizing sequences, i.e. sequences (fn) ⊂ L2(S, dσ) with ∥fn∥L2(S) = 1 for all n and

∥ES(fn)∥Lq(RN ) → SS,σ,q as n → +∞. Ideally, one would try to show that such sequence

converges (perhaps up to a subsequence) in L2(S) so that the limit would be a maximizer for

SS,σ,q. We will see below that there are major obstacles to this property and the main goal

will be to understand precisely the origin of this loss of compactness. Beside the question of

existence of maximizers, we will also try to describe all maximizing sequences which has an

independent interest. This type of questions has been vastly developed in the 80s for instance

by Lieb [103, 28, 102] and Lions [109, 110, 111, 112] in his works around concentration-

compactness. We extend these ideas to the case of Fourier extension inequalities, with

specific features that we emphasize below.

The question of best constants for Fourier extension inequalities has been treated in

several directions before. Kunze [89] first showed existence of maximizers when S is the

paraboloid in R2 (i.e. we are in the context of the Strichartz inequality, with q = 6) by

concentration-compactness methods and profile decompositions. This result was later gener-

alized to all dimensions by Shao [131]. Their methods also allow to determine the behaviour

of all maximizing sequences. In parallel to these results, Foschi [56] and Hundertmark-

Zharnitsky [84] found the set of maximizers for the paraboloids in R2 and R3: they are

all obtained from Gaussian functions using the symmetries of the inequality (see also [19]).

Then, existence of optimizers for S = S2 and for the endpoint q = 4 was proved by Christ

and Shao [45], a result that was later extended to S = S1 (for the endpoint q = 6) by

Shao [132] (see also [118] for the same result on convex arcs). Notice that the existence of

maximizers in the subcritical cases (i.e. for q which is not the endpoint) in all dimensions is

much easier to obtain [54], due to the fact that the sphere has finite measure. In [57], Foschi

determined the set of maximizers for S = S2: they are all obtained from constant func-

tions, using the symmetries of the inequality. The same result for S = S1 is still open, even

65
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though some progress has been made in this direction [34, 122]. Maximizers have also been

found for some related inequalities (subcritical, restricted set of maximization, weighted)

[36, 38, 121, 35]. Let us also mention very interesting works related to the determination

of best constants and the non-existence of optimizers, typically on hyperboloids or related

surfaces [124, 119, 120, 37, 30, 39]. These techniques were also recently extended to the

harder case p ̸= 2 [146, 22].

The works cited above may be split into two categories: i) those related to the question of

existence of maximizers using compactness techniques (these typically do not say anything

about the exact form of the maximizer, but work in a larger range of cases) and ii) those

who determine precisely the set of maximizers (which typically use a specific structure of the

problem only happening for some exponents or in low dimensions, and are hard to generalize

to other cases). Our approach belongs to the first category, and was greatly inspired by the

work of Christ and Shao [45] on S2.

1. The Stein-Tomas inequality

We begin with our work [63] on the existence of maximizers for the Stein-Tomas inequal-

ity on spheres in any dimension. For N ⩾ 2, let us thus define

RN := sup
f∈L2(SN−1)\{0}

∫
RN |f̌(x)|q dx
∥f∥q

L2(SN−1)

,

where f̌ is the Fourier transform of any function f ∈ L1(SN−1) defined by

∀x ∈ RN , f̌(x) = (2π)−(N−1)/2

∫
SN−1

eix·ωf(ω) dω,

where dω is the standard Hausdorff measure on SN−1. Above, we chose

q =
2(N + 1)

N − 1

to be the endpoint exponent, because as we mentioned above the non-endpoint case is

much easier to treat [54]. We are interested in the question of the existence of maximizers

for RN and in the description of maximizing sequences. Let (fn) ⊂ L2(SN−1) be such a

sequence, that is ∥fn∥L2 = 1 for all n and
∫
RN |f̌n|q → RN as n → ∞. As we mentioned

in the introduction, we would ideally like to extract of subsequence of (fn) which converges

strongly in L2(SN−1), so that its limit is a maximizer for RN . A first reason why such a

hope is vain is the presence of the non-compact symmetry f(ω) → eia·ωf(ω) for any a ∈ RN ,

which clearly preserve the L2-norm of f and the Lq-norm of f̌ . Hence, if (an) ⊂ RN is any

sequence, then (eian·ωfn) is also a maximizing sequence for RN , which may have no strongly

convergent subsequence (for instance, if (fn) is independent of n, equal to a maximizer of

RN — if it exists— and |an| → +∞, then (eian·ωfn) converges weakly to zero in L2(SN−1)

and has fixed non-zero L2-norm, so that it does not converge strongly). This motivates the

following definition.

Definition 3.1. A sequence (fn) ⊂ L2(SN−1) is precompact up to modulations if there

exists (an) ⊂ RN such that (e−ian·ωfn) has a strongly convergent subsequence in L2(SN−1).
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As we explain below, the problem of precompactness (up to modulations) of maximizing

sequences to RN is closely related to the value of the best constant of the Fourier extension

problem on the paraboloid (the Strichartz estimate), which for any d ⩾ 1 is

Sd := sup
ψ∈L2(Rd)\{0}

∫
R

∫
Rd |(eit∆/2ψ)(x)|2+4/d dx dt

∥ψ∥2+4/d

L2(Rd)

.

Our main result is the following.

Theorem 3.1 (Theorem 1.1 in [63]). Let N ⩾ 2. Then, all L2-normalized maximizing

sequences for RN are precompact up to modulations if and only if

RN > aSN−1, a :=
2q/2√
π

Γ
(
q+1
2

)
Γ
(
q+2
2

) . (3.1)

In this case, maximizers for RN exist.

The necessary and sufficient condition (3.1) is reminiscent of Lions’ binding inequality in

this theory of concentration-compactness. Indeed, we will see that the right side of (3.1) can

be interpreted as the maximal ’energy’ (here, energy refers to the quantity we are maximizing)

of a sequence that ’escapes to infinity’ along a certain non-compact transformation (we will

see below that this transformation corresponds to concentration around two antipodal points

on the sphere). From this point of view, Theorem 3.1 states that this is the only possible

source of loss of compactness for maximizing sequences.

A natural question is to ask when (3.1) can be proved. We have the following result in

this direction.

Proposition 3.2 (Proposition 1.3 in [63]). Let N ⩾ 2. If ψ(x) = e−|x|2/2 (x ∈ RN−1) is

a maximizer for SN−1, then (3.1) holds.

It is conjectured that Gaussians indeed maximize Sd for all d ⩾ 1, so that a positive

answer to this conjecture would imply precompactness up to modulations of maximizing

sequences for RN by Theorem 3.1. Foschi [56] proved this fact for d = 1, 2, which was used

by Christ-Shao [46] and Shao [132] to obtain this precompactness and thus existence of

maximizers for R2 and R3.

To understand why Proposition 3.2 holds, one first has to understand how the condition

(3.1) arises in this problem. As we said, our goal amounts to understand the potential ways

that a maximizing sequence fails to be precompact up to modulations. One natural such

loss of compactness could arise from concentration around a point on the sphere. Indeed, a

sequence which concentrates around a point such that its L2-mass remains constant typically

converges weakly to zero and hence cannot converge strongly. Furthermore, modulating such

a sequence does not alter this property: it still cannot converge strongly. One way to rule out

the possibility that a maximizing sequence behaves like that is to compute its energy: if its

energy converges to a number strictly less than RN , it cannot be a maximizing sequence and

hence this source of loss of compactness is ruled out. It is thus instructive to compute the

energy of a sequence of functions concentrating at a point. Since the inequality is invariant
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by rotations, we may assume that this point is the north pole (0, . . . , 0, 1). For ψ ∈ S(RN−1)

such that ψ̂ ∈ C∞
0 (RN−1) and ε > 0, we may thus define fε : SN−1 → C by{

fε(η
′,
√

1− |η′|2) = ε−(N−1)/2ψ̂(η′/ε),

fε(η
′,−
√
1− |η′|2) = 0,

for all η′ ∈ RN−1 with |η′| < 1. The function fε concentrates around the north pole at scale

ε. Then, one has for ε small enough,

∥f∥2L2(SN−1) = ε−(N−1)

∫
RN−1

|ψ̂(η′/ε)|2 dη′√
1− |η′|2

∼ε→0 ∥ψ∥2L2(RN−1),

and also for all x = (x′, xN) ∈ RN−1 × R,

f̌ε(x) =
ε−(N−1)/2

(2π)(N−1)/2

∫
RN−1

eix
′·η′+ixN

√
1−|η′|2ψ̂(η′/ε)

dη′√
1− |η′|2

=
ε(N−1)/2

(2π)(N−1)/2

∫
RN−1

eiεx
′·η′+ixN

√
1−ε2|η′|2ψ̂(η′)

dη′√
1− ε2|η′|2

=
ε(N−1)/2eixN

(2π)(N−1)/2

∫
RN−1

eiεx
′·η′+ixN (

√
1−ε2|η′|2−1)ψ̂(η′)

dη′√
1− ε2|η′|2

∼ε→0 ε
(N−1)/2eixN (eiε

2xN∆ψ)(εx′),

so that ∫
RN

|f̌ε(x)|q dx ∼ε→0

∫
R

∫
RN−1

|(eixN∆ψ)(x′)|q dx′ dxN .

As a conclusion, the ’energy’ of the concentrating sequence (fε) is∫
RN |f̌ε(x)|q dx
∥fε∥qL2(SN−1)

∼ε→0

∫
R

∫
RN−1 |(eixN∆ψ)(x′)|q dx′ dxN

∥ψ∥q
L2(RN−1)

,

whose maximal value is SN−1. The geometric interpretation of this phenomenon is that since

the function concentrates at a point, it only sees the local geometry of the sphere which is

the one of the paraboloid; hence one only sees in the limit the Fourier extension of the

paraboloid which is exactly controlled by Strichartz estimates and the constant SN−1. If

we have RN > SN−1, this means that a maximizing sequence for RN cannot concentrate at

a point and thus this kind of loss of compactness is ruled out. For subcritical q, we have∫
RN |f̌ε(x)|q dx→ 0 as ε→ 0 so this phenomenon does not happen for maximizing sequences.

Let us note that ruling out concentration at a point is the mechanism employed to obtain

solutions for the Brézis-Nirenberg [29] and Yamabe problems [5].

In Theorem 3.1, our assumption is stronger than RN > SN−1: it is RN > aSN−1 where

one can check that a > 1. The reason for that comes from a remark which was first made

by Christ and Shao, namely that there is a bigger enemy than concentration at a point:

concentration at two (antipodal) points! Indeed, if ones defines in a similar way as above

Fε = fε + f̃ε
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where f̃ε is the reflection of fε through the equatorial hyperplane (that is, f̃ε(ω
′, ωN) =

fε(ω
′,−ωN) for all ω = (ω′, ωN) ∈ SN−1, then Fε has half its mass that concentrates at the

north pole and half its mass that concentrates at the south pole. A computation then shows

its energy satisfies ∫
RN |F̌ε(x)|q dx
∥Fε∥qL2(SN−1)

∼ε→0 a

∫
R

∫
RN−1 |(eixN∆ψ)(x′)|q dx′ dxN

∥ψ∥q
L2(RN−1)

,

whose maximal value is aSN−1. Hence, Theorem 3.1 states that concentration at two antipo-

dal points is the only enemy to precompactness of maximizing sequences. This construction

is also the reason behind Proposition 3.2. Indeed, to prove it one considers the sequence Fε
with ψ which is a Gaussian. Since by assumption Gaussians are maximizers for SN−1, the

leading order of the energy of Fε is exactly aSN−1, and the idea is to compute the next order

term in the energy. Luckily, it turns out that this term is strictly positive so that we indeed

have RN > aSN−1. Notice that the same strategy was applied by Aubin [5] in the Yamabe

problem, where he glued a Euclidean Sobolev maximizer on a manifold by concentrating it

around a point, and computed the next order term in the energy which has the good sign.

It is instructive to understand why it is energetically better to concentrate at antipodal

points. Our computation of f̌ε above showed that it lives at scale ε−1 in the direction x′ and

at scale ε−2 in the direction xN . Here, xN is exactly the direction of the north pole which

is the point of concentration of fε. If fε concentrates rather at ω ∈ SN−1, then f̌ε lives at

scale ε−2 in the direction ω and at scale ε−1 in the direction orthogonal to ω. Hence, if Fε
concentrates at two points ω ∈ SN−1 and ω′ ∈ SN−1 (Fε = f

(ω)
ε +f

(ω′)
ε with f

(ω)
ε concentrating

around ω and f
(ω′)
ε concentrating around ω′) and if ω and ω′ are not colinear then f̌ε

(ω)
and

f̌ε
(ω′)

live at different scales so that∫
RN

|F̌ε|q ∼ε→0

∫
RN

|f̌ε
(ω)|q +

∫
RN

|f̌ε
(ω)|q ∼ε→0 2

∫
R

∫
RN−1

|(eixN∆ψ)(x′)|q dx′ dxN ,

while
∫
SN−1 |Fε|2 ∼ε→0 2

∫
RN−1 |ψ|2, so that∫

RN |F̌ε|q

∥Fε∥qL2

∼ε→0 2
1−q/2

∫
R

∫
RN−1 |(eixN∆ψ)(x′)|q dx′ dxN

∥ψ∥q
L2(RN−1)

which is even worse than concentration around one point since 21−q/2 < 1! Notice that this

reasoning fails when ω and ω′ are colinear (thus, equal or antipodal) since then f̌ε
(ω)

and f̌ε
(ω′)

live at the same scale and one cannot infer that
∫
RN |F̌ε|q splits. An explicit computation

then shows that in the antipodal case, some ’constructive interference’ happens which leads

to the best case energetically. Notice that this argument also shows why it is energetically

unfavorable to concentrate at a higher number of points.

Now that we have explained the reasoning behind the statement of Theorem 3.1, let us

comment a bit on its proof. We first used a method invented by Lieb [103] which states

that a maximizing sequence converges in L2(SN−1) if and only it converges weakly to a

non-zero function. Indeed, if (fn) ⊂ L2 is such that ∥fn∥L2 = 1 for all n and such that

fn ⇀ f ̸= 0 in L2,
∫
RN |f̌n|q → RN as n → +∞, we deduce by weak convergence that
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∥fn − f∥2L2 → 1 − ∥f∥2L2 as n → +∞ and that f̌n(x) → f̌(x) as n → +∞ for all x ∈ RN

(since ω 7→ e−ix·ω ∈ L2(SN−1)). By this pointwise convergence and the Brézis-Lieb lemma

[28], we deduce

RN =

∫
RN

|f̌n|q + on→+∞(1)

=

∫
RN

|f̌ |q +
∫
RN

|f̌n − f̌ |q + on→+∞(1)

⩽ RN(∥f∥qL2 + ∥fn − f∥qL2) + on→+∞(1)

which in the limit n→ +∞ leads to

RN ⩽ RN(∥f∥qL2 + (1− ∥f∥2L2)q/2.

Now since RN > 0 and since aq/2 + bq/2 ⩽ (a+ b)q/2 for all a, b ⩾ 0 with equality if and only

if a = 0 or b = 0 due to q > 2, we deduce that ∥f∥L2 = 0 or ∥f∥L2 = 1. Since f ̸= 0, we

deduce ∥f∥L2 = 1 and hence ∥fn − f∥L2 → 0 as n → +∞, proving the claim. Hence, if we

define

R∗
N := sup

{
lim sup
n→+∞

∫
RN

|f̌n|q : ∥fn∥L2 = 1, fn ⇀mod 0
}
,

where fn ⇀mod 0 means that eian·ωfn ⇀ 0 in L2 for all (an), then RN > R∗
N implies that

all normalized maximizing sequences for RN are precompact up to symmetries (because

RN > R∗
N implies that maximizing sequences for RN have a non-zero weak limit up to

modulation). The proof of Theorem 3.1 is thus reduced to proving R∗
N = aSN−1, and more

precisely R∗
N ⩽ aSN−1 since the reverse inequality is true due to our example of functions

concentrating at two antipodal points.

To prove that R∗
N ⩽ aSN−1, we fix a sequence (fn) ⊂ L2(SN−1) with ∥fn∥L2 = 1 and

fn ⇀mod 0. We may also assume lim supn→+∞
∫
RN |f̌n|q ⩾ (1/2)R∗

N ⩾ (a/2)SN−1 > 0 so

that f̌n does not converge to 0 in Lq(RN). The goal is to detect some mass of (fn) that

concentrates around a point. To do so, we consider a family D of dyadic cubes Q covering

the sphere (technically, one starts with cubes on RN−1 centered on (2jZ)N−1 and of side

length 2j for all j ∈ Z, and lift them on the sphere by using a finite number of small enough

patches). The main technical tool is the following refined Stein-Tomas inequality.

Proposition 3.3 (Proposition 5.1 in [63]). There exist C > 0 and θ ∈ (0, 1) such that

for all f ∈ L2(SN−1) we have

∥f̌∥Lq(RN ) ⩽ C

(
sup
Q∈D

|Q|−1/2∥(1Qf)∨∥L∞(RN )

)θ
∥f∥1−θL2 .

Such an inequality is called refined since

∥(1Qf)∨∥L∞(RN ) ⩽ C∥1Qf∥L1(SN−1) ⩽ C|Q|1/2∥f∥L2(SN−1)

and hence it implies the standard Stein-Tomas estimate. Furthermore it has the important

consequence that if (fn) ⊂ L2 is a normalized sequence such that ∥f̌∥Lq(RN ) does not converge
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to zero as n → +∞ (as the previous test sequence (fn) for R∗
N), then there exist c > 0,

(xn) ⊂ RN and (Qn) ⊂ D such that

=

∣∣∣∣|Qn|−1/2

∫
Qn

eixn·ωfn(ω) dω

∣∣∣∣ = (2π)(N−1)/2|(1Qnfn)
∨(xn)| ⩾ c.

This implies that the sequence (fn) ’rescaled around (Qn)’ has a non-zero weak limit (in

L2(RN−1), because we use patches to rescale the sequence). With this method, we found

some non-zero mass concentrating along the sequence of cubes (Qn). Since fn ⇀mod 0, we

have |Qn| → 0 meaning that (fn) indeed has some mass concentrating around a point (the

center of the cube). The end of argument revolves around the idea of proving that all the

mass concentrates in (Qn) and its antipodal version if (fn) is maximizing for R∗
N . We do so

by adapting Lieb’s argument above to this setting of concentrating objects, which requires

several technical tools like a Brézis-Lieb lemma for sequences. In the end, this proves that

R∗
N ⩽ aSN−1.

The proof of Proposition 3.3 is very similar to the one of Tao [150] and Killip-Visan [88]

in the case of the paraboloid, which themselves rely heavily on deep bilinear estimates due to

Tao [148]. Other refinements of the Stein-Tomas exist in the terms of the so-called Xp-spaces

[116, 118, 132], but as emphasized by the above works of Tao and Killip-Visan, a version

with an L∞-norm on the right side is particularly convenient for compactness purposes. In

the context of homogeneous Sobolev spaces, a similar compactness argument has been given

by Gérard [71], where the corresponding refined inequality with an L∞ on the right side is

taken from [72].

2. The Airy-Strichartz inequality

In [67], we applied the same strategy to the Airy-Strichartz inequality [86]:∫
R

(∫
R

∣∣∣|Dx|γ(e−t∂
3
xu)(x)

∣∣∣q)p/q dt ⩽ C∥u∥pL2(R), (3.2)

measuring the space-time decay of v(t, x) := (e−t∂
3
xu)(x) which satisfies the Airy equation

∂tv+∂
3
xv = 0 with initial condition u ∈ L2(R). The inequality (3.2) is valid for all exponents

satisfying

2 ⩽ p, q < +∞, −γ +
3

p
+

1

q
=

1

2
, −1

2
< γ ⩽

1

p
.

The inequality (3.2) may be seen as a kind of Fourier extension inequality, since the space-

time Fourier transform of v is supported on the cubic curve ω = ξ3. We are also interested

in the best constants

Ap := sup
u∈L2(R)\{0}

∫
R

(∫
R

∣∣∣|Dx|1/p(e−t∂
3
xu)(x)

∣∣∣q dx)p/q dt
∥u∥pL2(R)

in the critical case γ = 1/p, for any p > 4 and q such that 2/p + 1/q = 1/2. Again,

an important role is played by the symmetries of the inequality. For any (t0, x0, λ0) ∈
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R× R× (0,+∞), if we define for any u ∈ L2(R),

∀x ∈ R, (gt0,x0,λ0u)(x) = λ
1/2
0 (e−t0∂

3
xu)(λ0x+ x0),

and

G = {gt0,x0,λ0 : (t0, x0, λ0) ∈ R× R× (0,+∞)},
we have

∥gu∥L2 = ∥u∥L2 , ∥Ψp[gu]∥Lp
tL

q
x
= ∥Ψp[u]∥Lp

tL
q
x
,

for all g ∈ G and u ∈ L2(R), where we used the notation

Ψp[u](t, x) := |Dx|1/p(e−t∂
3
xu)(x) =

1√
2π

∫
R
|ξ|1/peixξ+itξ3û(ξ) dξ.

The (t0, x0)-part of the symmetry corresponds to the modulation symmetry of the previous

part, while the λ0-part of the symmetry is the scaling symmetry which is not a symmetry on

the sphere (but is rather the transformation responsible for the arising of the paraboloid by

concentrating functions around points). Since G is not compact, it may also be responsible

for a loss of compactness of maximizing sequences, which motivates the following definition.

Definition 3.4. A sequence (un) ⊂ L2(R) is precompact up to symmetries if there exists

(gn) ⊂ G such that (gnun) has a subsequence which converges strongly in L2(R).

As in the case of the Stein-Tomas inequality on the sphere, the Strichartz inequality for

the paraboloid will also play a role so we define

Sp := sup
u∈L2(R)\{0}

∫
R

(∫
R

∣∣∣(e−3it∂2xu)(x)
∣∣∣q dx)p/q dt

∥u∥pL2(R)
.

Our result in this case is the following.

Theorem 3.2 (Theorem 1 in [67]). Let 4 < p < ∞ and q such that 2/p + 1/q = 1/2.

Then, all normalized maximizing sequences for Ap are precompact up to symmetries if and

only if

Ap > apSp, ap :=
2p/2

πp/(2q)

(
Γ
(
q+1
2

)
Γ
(
q+2
2

))p/q

. (3.3)

In particular, if (3.3) holds, then there is a maximizer for Ap.

Having seen Theorem 3.1, the statement of Theorem (3.2) is not surprising if we under-

stand how the paraboloid arises from the cubic curve. It does so when looking at functions

u such that û concentrates around a non-zero frequency (for instance, ξ = 1). This is not

surprising since the cubic curve is indeed curved (!) away from the origin so it looks like a

paraboloid locally around any of those points. The constant ap > 1 appears when looking

at functions which Fourier transform concentrate at two opposite frequencies. This con-

centration phenomenon appears in the case of the cubic curve due to the non-invariance of

the inequality by translation in Fourier variables, so that it makes sense to look at what

happens to the inequality asymptotically in such a transformation. This problem is in some

sense complementary to what happens on the sphere, where ξ-translations correspond to
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rotations on the sphere which are actual symmetries. On the contrary, the Airy-Strichartz

inequality is scaling invariant while the Stein-Tomas inequality on the sphere is not; and it

is the non-invariance by scaling which leads to the concentration phenomenon.

The proof of Theorem 3.2 follows the same lines as the proof of Theorem 3.1, except that

one has to adapt the tools to include mixed Lebesgue space, which creates some technical

challenges. Interestingly, the refined inequality (which is the main tool to follow the mass)

can be proved in a self-contained manner since we are in one space dimension. While the

Stein-Tomas refined inequality relied on the bilinear estimates of Tao, the bilinear estimates

in the case of the cubic curve have a simple proof using the Hausdorff-Young inequality (see

[67, Lemma 3.7]). This leads to the following refined Airy-Strichartz inequality.

Theorem 3.3 (Theorem 3 in [67]). There exist C > 0 and θ ∈ (0, 1) such that for any

u ∈ L2(R) we have

∥|Dx|1/6e−t∂
3
xu∥L6

t,x
⩽ C

(
sup
I∈D

|c(I)|−1/6|I|−1/2∥|Dx|1/6e−t∂
3
xuI∥L∞

t,x

)θ
∥u∥1−θL2(R),

where D denotes the family of all intervals of the type I = [k, k + 1)2ℓ with k, ℓ ∈ Z, |I|
denotes the length of I, c(I) denotes the center of I, and ûI := 1I û.

Notice the appearance of the center of the dyadic interval explicitly in the estimate,

related to the non-invariance of the estimate by ξ-translations.

Our theorem in the case p = 6 has been stated before in [130], but there was a missing

point in the proof (concentration at antipodal points was not noticed). Since the cubic curve

has infinite measure, one cannot use the result of [54] to infer that subcritical inequalities

always have maximizers. We proved in [67, Theorem 4] that all subcritical inequalities

γ < 1/p have maximizers. The subcritical result corresponding to p = q = 8 was proved

before in [83].

An interesting point is that we have no equivalent of Proposition 3.2 in this case, even

if we know that Gaussians are maximizers of the one-dimensional Strichartz inequality for

p = 6. This is due to the fact that the next order term in the concentration parameter when

using Gaussians is negative, contrary to the Stein-Tomas case, preventing us to show that

(3.3) holds for p = 6. Let us also notice that, to our knowledge, there is no conjecture about

what the maximizers for the Airy-Strichartz look like.

As a conclusion, the topic of optimal constants for extension inequalities remains vastly

open compared to the similar one for Sobolev inequalities, for instance. Even if these ques-

tions have an interest for themselves, it is reasonable to hope that the tools developed to

study them, like the compactness tools of this chapter, could be applicable to other non-local

and/or oscillatory problems.
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Titre : Analyse de quelques inégalités fonctionnelles et équations aux dérivées partielles liées à
de grands systèmes quantiques

Résumé : Nous étudions plusieurs questions
d'analyse  provenant  de  la  mécanique
quantique  à  plusieurs  corps.  Plus
précisément, nous considérons des équations
aux dérivées partielles non-linéaires ainsi que
des  inégalités  fonctionnelles  décrivant  un
grand  nombre  de  fermions  dans  une
approximation de champ moyen. Cela mène
à  l'analyse  mathématique  des  matrices
densités à un corps dont la trace est grande
ou infinie, avec un intérêt particulier pour la
distribution  spatiale  de  particules  associée.
Nous adaptons des outils d'EDPs dispersives,
d'analyse  de  Fourier  et  semi-classique à  ce
cadre. 

Dans une première partie, nous établissons
un  lien  entre  plusieurs  équations
d'évolution  qui  décrivent  de  grands
systèmes  quantiques  (relativistes  et  non-
relativistes)  dans  certains  régimes
asymptotiques,  en  utilisant  des  méthodes
de  compacité  ou  de  convergence  forte.
Dans  une  deuxième  partie,  nous
développons  des  méthodes  d'analyse
harmonique  qui  impliquent  des  inégalités
fonctionnelles  sur  des  matrices  densités
que nous appelons fermioniques. Dans une
troisième et dernière partie (sans lien avec
la mécanique quantique à plusieurs corps),
nous  étudions  l'existence  de  fonctions
optimales  pour  des  inégalités  d'extension
de  la  transformée  de  Fourier,  à  l'aide  de
méthodes de compacité.

Title : Analysis of some functional inequalities and partial differential equations related to large 
quantum systems

Abstract  : We  study  several  topics  in
analysis  which  come  from  many-body
quantum  mechanics.  More  specifically,  we
consider  nonlinear  partial  differential
equations  and  functional  inequalities  that
describe  a  large  number  of  fermions  in  a
mean-field  approximation.  This  leads to  the
mathematical  analysis  of  one-body  density
matrices  with  large or  infinite  trace,  with  a
special  emphasis  on  the  associated  spatial
distribution of particles. We adapt tools from
dispersive  PDEs,  Fourier  and  semiclassical
analysis to this setting.

In a first part,  we relate several  evolution
equations  describing  large  quantum
systems (relativistic and non-relativistic) in
various  asymptotic  regimes,  employing
both  compactness  methods  or  strong
estimates.  In  a  second  part,  we  develop
methods  in  harmonic  analysis  that  imply
functional  inequalities  on density  matrices
that  we call  fermionic.  In  a  third and last
part  (unrelated  to  many-body  quantum
mechanics),  we  study  the  existence  of
optimizers for Fourier extension inequalities
by compactness methods.
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