N
N

N

HAL

open science

Typed Behavioural Equivalences in the Pi-Calculus

Enguerrand Prebet

» To cite this version:

Enguerrand Prebet. Typed Behavioural Equivalences in the Pi-Calculus. Logic in Computer Science
[cs.LOJ]. ENS de Lyon, 2022. English. NNT: 2022ENSL0017 . tel-03920089v1

HAL Id: tel-03920089
https://hal.science/tel-03920089v1

Submitted on 3 Jan 2023 (v1), last revised 4 Jan 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/tel-03920089v1
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LYON

ENS DE LYON

ElR

Numéro National de Thése : 2022ENSL0017

THESE

en vue de l'obtention du grade de Docteur, délivré par
'TECOLE NORMALE SUPERIEURE DE LYON

en cotutelle avec
Universita di Bologna

Ecole Doctorale N° 512
Nom complet de I'Ecole Doctorale

Discipline : Informatique

Soutenue publiquement le 27/09/2022, par :
Enguerrand PREBET

Typed Behavioural Equivalences in the
Pi-Calculus

Equivalences comportementales typées dans le pi-calcul

Devant le jury composé de :

KOUTAVAS, Vasileios Professeur, Trinity College Rapporteur
MURAWSKI, Andrzej Professeur, University of Oxford Rapporteur
KONIG, Barbara Professeure, Universitat Duisburg-Essen Examinatrice
YOSHIDA, Nobuko Professeure, Imperial College London Examinatrice
HIRSCHKOFF, Daniel Maitre de conférences-HDR, ENS de Lyon Directeur de thése

SANGIORGI, Davide Professeur, Universita di Bologna Co-tuteur de thése

Abstract

In this thesis, I study the notion of program equivalence, i.e. proving that two programs can
be used interchangeably without altering the overall observable behaviour. This definition is highly
dependent on the contexts in which these programs can be used; does the context have exceptions,
parallelism, etc... So proofs also need to be adapted according to the expressiveness of those
contexts. This thesis presents the pi-calculus — a concurrent programming language — under various
typing constraints. Types allow us to impose different disciplines like forcing a sequential execution,
or ensuring linearity, meaning an object can be used once. In each case, the bisimulation, a standard
proof technique for the pi-calculus, needs to be adapted accordingly to obtain a suitable equivalence.
We then test how using the modified bisimulations can be used to reason about a language with
higher-order functions and references, which once translated into the pi-calculus satisfies the typing
constraints.

Résumé

Dans cette these, j’étudie la notion d’équivalences entre programmes, c’est-a-dire prouver que
deux programmes peuvent étre utilisé de facon identique sans modifier le comportement global. Cette
définition dépend beaucoup du contexte dans lequel ces programmes sont exécutés; le contexte a-t-il
acces a des exceptions, du parallélisme, etc... Ainsi, les preuves doivent étre adaptées pour tenir
compte des différents niveaux d’expressivité du contexte. Cette thése s’intéresse au pi-calcul — un
langage de programmation concurrent — sous différentes contraintes de typage. Ces types nous per-
mettent de spécifier différentes disciplines comme imposer une exécution séquentielle du programme,
ou encore assurer un comportement linéaire, c’est-a-dire que les objets ne peuvent étre utilisés qu’une
seule fois. Dans chaque cas, la bisimulation, une technique de preuve standard pour le pi-calcul, doit
étre adapté en conséquence afin d’obtenir une équivalence satisfaisante. Nous testons ensuite com-
ment ces bisimulations modifiées peuvent étre mise en pratique pour raisonner sur un langage avec
des fonctions d’ordre supérieur et des références, langage qui une fois traduit dans le pi-calcul vérifie
les contraintes de typage.

Résumé en francais

Dans cette thése, nous nous intéressons aux équivalences comportementales entre programmes. Cette
notion s’appuie sur 'idée que deux programmes doivent étre considérés comme égaux s’ils se comportent
de facon similaire. Ces programmes peuvent correspondre a différents objets : fonctions, processus, etc.
La principale équivalence comportementale étudiée est I’équivalence contextuelle [36], ot des programmes
équivalents peuvent étre utilisés de maniere interchangeable peu importe le contexte dans lequel ils sont
utilisés, et cela sans altérer le résultat final. Lorsque I'on remplace un programme par un autre plus
efficace, avoir une fagon fiable de montrer que ces deux programmes sont bel et bien équivalents permet
de s’assurer que 'optimisation n’a pas introduit de nouveaux bogues.

Cette notion reste malgré tout tres générale et il y a beaucoup de libertés quant a la définition de quel
comportement peut étre considéré comme observable ou non. Prenons par exemple les deux programmes
suivants :

Pldéfx::z+1;x::x+1 Pgdéfx::z+2

Le programme P; incrémente la valeur de z deux fois, tandis que le second ajoute directement 2 a la valeur
de z. A la fin, la valeur stockée est identique. Doit-on pour autant considérer ces deux programmes
équivalents 7 Comme P, effectue moins d’opérations, on peut affirmer que le temps nécessaire pour
exécuter ces deux programmes est un critére suffisant pour distinguer ces programmes. Dans notre
cas, nous étudions des équivalences dites faibles, c’est-a-dire que le temps d’exécution n’est pas pris en
compte lorsque I'on compare des programmes. Ce type d’équivalences est pratique si I’on souhaite faire
de l'optimisation de programmes. Si I’on prouve que ces deux programmes sont équivalents, il sera alors
toujours possible d’utiliser P, qui est plus rapide, sans pour autant compromettre la fiabilité du reste du
code.

Cependant, méme sans regarder la durée d’exécution, il existe des cas ou P; et P, ne doivent pas
étre considérés comme équivalents. Dans cet exemple, nous n’avons pas précisé quel type de contextes
pouvait interagir avec P; et P». Supposons que nous puissions faire tourner ces deux programmes en
paralléle d’un troisieme qui affiche la valeur de x. Cet affichage peut donc étre effectué a n’importe quel
instant de I'exécution. Ainsi, si on considére que x a initialement la valeur 0, alors avec Ps, la valeur 0
ou 2 sera affichée selon le moment ou l'affichage a lieu. Au contraire, avec P, il est aussi possible que la
valeur 1 soit affichée si I’affichage est effectué entre les deux incrémentations.

Notre approche consiste a étudier I’équivalence comportementale dans le m-calcul, un langage ou les
processus interagissent entre eux via l’envoi et la réception de messages. Il est possible de raisonner
avec d’autres langages en utilisant une traduction, ou encodage, c’est-a-dire une fonction qui transforme
les programmes d’un langage source en programmes d’un langage cible, qui dans notre cas est le m-
calcul. Par exemple, les fonctions sont représentées comme des processus qui se comportent comme un
serveur. Celui-ci attend la réception d’un message, correspondant a un appel a ladite fonction avec ses
arguments, puis exécute le corps de la fonction. En pratique, le message contient, en plus des arguments
de la fonction, un nom additionnel qui est utilisé comme adresse de retour, afin de pouvoir renvoyer le
résultat une fois calculé. 1l est aussi possible de traduire des objets impératifs comme les références. Une
référence est représentée par un message dont le contenu correspond a la donnée stockée dans la référence.
Ainsi, en recevant ce message puis en en réémettant un nouveau sur le méme canal de communication,
un processus peut lire le contenu de la référence mais aussi le modifier.

Une traduction est intéressante lorsque les équivalences du langage source et du langage cible sont
reliées. On parle d’encodage correct quand les programmes traduits (dans le langage cible) sont équivalents
seulement s’ils ’étaient aussi dans le langage source. Cette propriété permet de transporter toutes les
preuves d’équivalence obtenues dans le langage cible, comme le w-calcul, vers le langage source. La
propriété complémentaire, la complétude, garantie a I'inverse que toutes les équivalences valables dans
le langage source sont également vraies pour les traductions des programmes. Comme le 7-calcul est un
langage tres expressif de part la présence de parallélisme, obtenir la complétude pour un encodage vers le
m-calcul est difficile. Pour reprendre ’encodage des références esquissé plus haut, un processus peut tres
bien recevoir un message sans en réémettre un autre immédiatement, cela empéche des communications
futures, chose qui n’est pas possible avec des références. En fait, lorsqu’un encodage est correct, les con-
textes du langage cible peuvent présenter des comportements qui ne correspondent pas a la traduction
de comportements présents dans le langage source.

Dans le m-calcul, les processus peuvent effectuer des actions qui déterminent les processus qu’ils
deviendront. Ces actions correspondent a des envois, des réceptions de message ou des calculs internes.
Nous nous intéressons a la technique de la bisimulation, une équivalence comportementale qui utilise
toutes ces actions afin de distinguer les processus. Intuitivement, si un processus P évolue en un processus
P’ en effectuant une action p, alors n’importe quel processus Q équivalent — ou bisimilaire — doit aussi étre
capable d’effectuer ’action u tout en évoluant vers un processus @’ bisimilaire & P’. Cette équivalence est
comparée a une équivalence contextuelle appelée congruence barbelée. La seconde est souvent considérée
comme une équivalence plus naturelle, les preuves sont plus complexe étant donné qu’il faut prendre en
compte tous les contextes possibles. Heureusement, la bisimulation est correcte, et donc nous pouvons
utiliser la bisimulation, qui est plus souple, afin de prouver la congruence barbelée des processus. La
bisimilarité est aussi complete pour quasiment tous les processus.

Dans cette these, nous étudions comment différents systemes de type affectent les équivalences décrites
précédemment. Les systemes de type permettent d’ajouter des informations aux programmes pour
prévenir les erreurs : ainsi, une fonction qui attend un entier ne doit pas recevoir une chaine de caracteres
a la place. Les types apportent aussi des informations sur le comportement des programmes qui rendent
possible certaines optimisations pour les compilateurs. Par exemple, la linéarité est une discipline qui
indique que 'objet doit étre utilisé une seule fois. Cette information peut étre utilisée pour faciliter le
ramassage de miettes.

Certains résultats d’équivalence ne sont valides que sous certaines conditions, conditions qui peu-
vent étre formulées par une discipline de typage. Par exemple, I’équivalence entre les processus P; et
P, est vraie en ’absence de parallélisme. Dans ce travail, nous définissons un systeme de type pour
la séquentialité ou les processus sont considérés soit comme actifs, soit comme passifs. Garantir une
exécution séquentielle représente alors simplement ’absence de deux processus actifs en méme temps.
Ainsi, I’équivalence entre P; et P est valide lorsque 1’on impose la propriété de séquentialité aux proces-
sus. En plus du systéme de type pour la séquentialité (Chapter [4)), nous avons aussi développé un systeéme
de type pour les références (Chapter [3) et un garantissant une exécution bien-parenthésée (Chapter [5)
dans le m-calcul. Quand le langage est typé, certains contextes sont interdits car ils ne sont pas typables;
comme tous les processus ne sont pas typables, il en va de méme pour les contextes. En conséquence,
la définition de la congruence barbelée devient plus lache. La bisimulation standard non typée peut
toujours étre utilisée mais risque de rater les nouvelles égalités obtenues grace aux contraintes de typage.
Pour récupérer le lien entre la bisimulation et la congruence barbelée, nous devons adapter la bisimu-
lation au systeéme de type utilisé. Nous le faisons pour les différents systemes proposés. Intuitivement,
lorsque ’on définit une bisimulation typée, certaines actions ne doivent pas étre considérées sous certains
typages car il n’existe pas de contexte avec le bon type permettant d’effectuer ’action u. Finalement,
nous présentons un exemple d’application de ces systeémes de type en fournissant un encodage totalement
abstrait, soit correct et complet, pour un langage avec des fonctions d’ordre supérieur et des références
: A¥f (Chapter @ Pour cela, nous partons du systeme de type pour l’exécution bien parenthésée et
la bisimulation correspondante. Elle doit cependant étre adaptée pour tenir compte des termes a diver-
gence différée, des termes bloqués mais qui divergent des qu’ils sont mis en présence d’un contexte. Cela
entraine la définition de la notion de bisimulation avec divergence pour le m-calcul.

Riassunto in italiano

In questa tesi vengono studiate equivalenze comportamentali tra programmi. La nozione di equivalenza
comportamentale si basa sull’idea che due programmi sono equivalenti se agiscono in modo simile. Questi
programmi possono essere di vari tipi: funzioni, processi, ecc. L’equivalenza comportamentale che e
maggiormente studiata ¢ I’equivalenza contestuale [36], in cui due programmi equivalenti possono essere
scambiati in ogni contesto, senza alterare il risultato finale. In una situazione in cui si sostituisce un
programma con un altro programma, piu efficente, si pud dimostrare che una tale ottimizzazione non
introduce nessun bug a patto di poter certificare che i due programmi sono equivalenti.

Partendo dall’idea generale secondo la quale due programmi equivalenti dovrebbero avere lo stesso
comportamento, ci sono tante possibilita per decidere quali comportamenti sono osservabili o meno. Si
possono ad esempio considerare i due programmi seguenti:

Pldéfx::ac—i-l;x::x—i—l Pgdéfx::a:—&—2

P; incrementa due volte il valore di z, mentre il secondo programma aggiunge 2 a . Dopo aver eseguito
questi due programmi, il valore di z dovrebbe essere lo stesso. E quindi lecito considerare che questi due
programmi sono equivalenti? Un punto di vista € di dire che dato che P, effettua meno operazioni, il
tempo di esecuzione puo essere usato per considerare questi due programmi differenti. Le equivalenze
che consideriamo in questo documento sono deboli, il che significa che non dipendono dal tempo: se due
processi sono diversi soltanto perche calcolano lo stesso risultato ma uno e piu lento dell’altro, allora
sono equivalenti. Le equivalenze deboli permettono di analizzare ottimizzazioni. Se si dimostra che i due
programmi qui sopra sono equivalenti, allora si puo sempre usare Ps, che e piu rapido, senza alterare il
comportamento del programma globale.

Anche senza considerare il tempo, P; e P, possono essere considerati diversi. In questo esempio,
non abbiamo spiegato quali contesti possono essere usati per interagire con P; e P,. Supponiamo che
questi programmi vengano eseguiti in parallelo con un programma che stampa il valore di x, in qualsiasi
momento durante 1’esecuzione. Se il valore iniziale di x ¢ 0, allora per P, si puo osservare 0 o 2, mentre
per P;, & anche possibile osservare 1 se il valore di x viene stampato tra le due assegnazioni.

In questo lavoro si studiano equivalenze comportamentali per il m-calculus, un linguaggio in cui i
processi interagiscono tra di loro trasmettendo messaggi. Due linguaggi di programmazione possono
essere messi in relazione tramite una traduzione, che ¢ una funzione da un linguaggio sorgente verso
un linguaggio oggetto. Nel nostro caso, il linguaggio oggetto e il m-calculus. Funzioni, ad esempio,
possono essere rappresentate da un processo che si comporta come un server. Il server aspetta di ricevere
un messaggio, che rappresenta la chiamata alla funzione, e che contiene I'argomento della funzione,
per poi eseguire il corpo della funzione. Il messaggio comporta un secondo argomento, un nome, che
indica su quale canale deve essere mandato il risultato della funzione. Riferimenti, o altri costrutti della
programmazione imperativa, possono anche essere rappresentati nel w-calculus. Un messaggio puo essere
considerato come un dato in memoria. Ricevendo un tale messaggio e rimandandone uno sullo stesso
canale, un processo legge il contenuto del riferimento e lo modifica con un nuovo valore.

Una traduzione e interessante quando le equivalenze nel linguaggio sorgente e nel linguaggio oggetto
possono essere associate usando la traduzione. Quando le traduzioni di due programmi del linguaggio
sorgente sono equivalenti soltanto se sono equivalenti nel linguaggio oggetto, si dice che la traduzione e
corretta. Questa proprieta garantisce che tutte le equivalenze che si possono dimostrare nel linguaggio
oggetto, cioe il m-calculus, sono valide per i programmi del linguaggio sorgente. Viceversa, la completezza
della traduzione significa che tutte le equivalenze nel linguaggio sorgente possono essere dimostrate
traducendo verso il m-calculus, e provando I'equivalenza dei programmi tradotti. Ottenere la completezza
¢ difficile quando si traduce verso il w-calculus, perche si tratta di un linguaggio molto espressivo.

Tornando alla traduzione dei riferimenti, se un processo riceve un messaggio senza rimandarne uno,
le communicazioni su questo canale possono essere bloccate su questo canale, il che non ha senso dal
punto di vista dei riferimenti (nel linguaggio sorgente). Dal punto di vista della correttezza, bisogna tener
conto del fatto che i contesti nel linguaggio oggetto non hanno soltanto comportamenti che vengono dalla
traduzione di un contesto nel linguaggio sorgente.

Nel w-calculus, i processi possono fare certe azioni, determinando quali azioni il processo potra fare
dopo. Queste azioni sono una transizione autonoma, o l’emissione di un messaggio, o la ricezione di

un messaggio. In questa tesi, si studia la tecnica della bisimulazione, che ¢ un equivalenza comporta-
mentale in cui tutte le azioni possono essere usate per fare distinzioni tra processi. Intuitivamente, se
un processo P fa un azione p diventando un processo P’, un processo @) equivalente (o bisimile) deve
essere anche lui capace di fare un azione pu, diventando un processo Q' che deve essere bisimile a P’.
Questa equivalenza viene paragonata ad una equivalenza contestuale, la congruenza barbed. Quest’ultima
si puo generalmente definire in modo piu naturale, imponendo che i processi rimangano equivalenti in
ogni contesto, ma rende le dimostrazioni piu difficili, dato che & necessario fare una dimostrazione per
ogni contesto. Fortunatamente, la bisimulazione € sempre corretta, e piu facile da usare; si puo dunque
usare la bisimulazione per stabilire che due processi sono congruenti barbed. La bisimulazione ¢ anche
completa per quasi tutti i processi.

In questa tesi vengono studiati vari sistemi di tipi che raffinano le equivalenze descritte qui sopra. I
sistemi di tipi aggiungono informazioni ai programmi in modo da evitare errori, ad esempio una funzione
con un argomento intero non puo essere chiamata con una stringa. I tipi possono anche dare informazioni
sul comportamento dei programmi, il che permette ai compilatori di fare piu ottimizzazioni. Ad esempio,
la linearita, che impone di usare ogni oggetto una volta esattamente, puo essere usata per facilitare la
garbage collection.

Certe equivalenze tra processi sono valide sotto certe condizioni, che possono essere formulate usando
un sistema di tipi. E il caso per 'equivalenza dei programmi P; e P», che e valida se si vieta il paral-
lelismo. In questo lavoro definiamo un sistema di tipi per la sequenzialita, in cui i processi sono attivi
o passivi. Per garantire la sequenzialita, si verifica che non si possono mai avere due componenti attivi
contemporaneamente. L’equivalenza tra P; e P, € valida quando si impone la proprieta di sequenzialita.
Oltre al sistema per la squenzialitd (parte [4)), presentiamo anche un sistema per i riferimenti (parte [3))
e uno per un esecuzione well-bracketed nel m-calculus (parte [5). Tramite il tipaggio, certi contesti sono
eliminati, in quanto non tipabili. Di conseguenza, la congruenza barbed diventa meno discriminante.
La bisimulazione standard, non tipata, puo essere usata per stabilire equivalenze, ma non permette di
convalidare certe equivalenze che sono garantite dai vincoli di tipaggio. Per avere la coincidenza tra
bisimulazione e congruenza barbed, ¢ necessario adattare la bisimulazione al sistema di tipi. E quello
che viene fatto in questa tesi per i vari sistemi di tipi che presentiamo. Intuitivamente, nella definizione
della bisimulazione, non si considerano certe azioni u, perché non esiste un contesto tipato che renda
possibile ’azione p.

Infine, si presenta un esempio di applicazione di questi sistemi di tipi, studiando una traduzione
completamente astratta (fully abstract), cio¢ corretta e completa, per un linguaggio con funzioni di
ordine superiore e riferimenti: A ref (parte @ Per ottenere questo risultato, si parte dal sistema di tipi
per il well-bracketing, e dalla bisimulazione definita per questo sistema di tipi. Quest’ultima deve essere
adattata per tener conto dei lambda termini con divergenza ritardata, che sono termini bloccati ma che
generano una divergenza appena sono messi in un contesto. Questo ci porta a introdurre una nozione di
bisimulazione con divergenza nel w-calculus.

Contents

[2

Background]

[2.2.2 Up-to techniques|
P33 Typing and sorting]

[3__References in the r-calculus|

3.1 Asynchronous m-calculus|. L

13.2.1 Types and contextual equivalences with reference names|
13.2.2 Behavioural equivalences with reference names|
8.2.3 Bisimulation with reference namesl oL
3.2.4 Examples|
3.3 Application: a mw-calculus with references|. o0 oL
3.3.1 Syntax and semantics of w*<|
3.3.2 Mapping 7*°* onto the Asynchronous w-calculus|
3.3.3 Behavioural equivalence in 77%: examples|

Sequentiality|

4.1 Typesystem| L e
4.2 Behavioural equivalence| oo o

[A2.1 Sequential bisimilarity] e
4.2.2 Completeness for output-controlled Dames| v v v v
4.2.3 Examples|
4.3 Sequential references| L oL Lo e
4.3.1 Combining sequentiality with the type system for references|.

[E32 Examples]

B

‘Well-Bracketing]

.2 Well-bracketing]
9.2.1 Typesystem| e
p.2.2 The well-bracketing property on traces|.

9.3 Behavioural equivalences|. o
[5.3.1 Typed barbed equivalence, well-bracketed bisimulation and soundness|

B.32 Completeness|

13
13
14
14
17
19

22
22
23
24
26
27
29
30
30
31
32

34
34
37
37
38
43
43
43
44

[6 Full Abstraction for a Higher-Order Language with References

[6.1 Encoding a higher-order language with references in I=|.

6.1.1 Definition of A*** and encoding in Iw|.

6.1.2 References in A*®* and well-bracketing]

6.1.3 Technical results about the encodingf

6.1.4 Additional examples| . . .

6.2.1 Normal form bisimilarity|

6.2.2 A m-calculus characterisation of contextual equivalence in A**|

Up-to techniques for ~4;, in I7, and applications|

Im: up-tobody|

6.3.2 Bxamples of other equivalences i NSE| . . o o oo oo

6.3
6.3.1 A new up-to technique for
[Z_Conclusion

|A" Proofs for Chapter |3|

IA.1 Definitions and results about Aw with referencesl

|A.1.1 T'ype system for output receptiveness: proot of subject reduction|

[AT.2 Proofs about ~:

m

[A.2 Characterisation of =™ using /|

|A.2.2 Completeness|

|A.3 Results and examples for Section

[A-3.T Propertics of the encoding]

A.3.2 Additional material for the examples in Section|3.3.3.

[B_Proofs for Chapter [6|

[B.1 A simplified example with wb-bisimulation (Section[6.T.2)]

58
58
58
61
62
64
65
65
67
69
69
70

72

Chapter 1

Introduction

In this thesis, we study behavioural equivalences between programs. The notion of behavioural equiv-
alence revolves around the idea that two programs should be considered equal if they act in a similar
way. These programs can be of various forms: functions, processes, etc. The most studied behavioural
equivalence is contextual equivalence [36], where equivalent programs could be used interchangeably in
any context, without altering the overall result. When replacing a program by a more efficient one,
having a reliable way to show that both programs are indeed equivalent can ensure that performing this
optimisation will not create bugs.

Based on the general idea that equivalent programs should exhibit the same behaviour, there is still
a lot of freedom with respect to what behaviour should or should not be considered observable. For
instance, considering the following two programs:

Pldéfx:::b—i—l;x::x—i—l Pgdéfx::m—&—Q

Py increments the value of x twice, while the second adds 2 to z. In the end, for both, the value stored
at x should be identical. Should these programs be considered equivalent? One may argue that since
P, does less operations, the time required to run them both could be used to distinguish between the
two programs. However, the equivalences we use in this work are called weak in the sense that they
are time-irrelevant: if the only difference between two processes is that one takes longer to compute the
result, then they are still equivalent. Weak equivalences are suited to work on optimising programs. If
we can prove that the two programs are equivalent, then we can always use P, that is faster, without
the risk of breaking the existing code.

But even without taking time into account, P; and P, may not be equivalent. In this example, we
did not explain what contexts could be used to interact with P; and P,. Suppose that we can run
these programs in parallel with one which prints the value of x. This can occur at any time during the
computation. Suppose z initially has the value 0, then with Ps, either 0 or 2 can be printed depending on
whether the print occurs before or after the assignment. On the other hand, with Py, it is also possible
to print 1 if the print is executed between the two assignments.

Our approach is to study behavioural equivalence in the m-calculus, a language where processes can
interact with each other by sending and receiving messages. Relating programming languages is done
by using a translation, or encoding, i.e. a function from a source language to a target language. In our
case, the target language is the m-calculus. For instance, functions can be represented by a process that
acts as a server. It is waiting to receive a message, modelling a call of the function with its argument
and then executing its body. In the message, there is an additional argument, a name used to know to
which channel the result should be sent once the function has finished computing the result. References
and other imperative constructs can also be translated into the m-calculus. A message that is sent can
be seen as a piece of data. By receiving that message and sending back a new one at the same channel,
a process reads the content of the reference and updates it with a new value.

A translation is interesting when the equivalences for both the source and the target language can
be related using the translation. When processes which are translations of source programs are only
equivalent if they are also equivalent in the source language, we say that the encoding is sound. This
property ensures that all equivalence results obtained in the target language, e.g. the m-calculus, are

correct with respect to the equivalence in the source language. The converse property, i.e. completeness,
guarantees that every equivalence from the source language can be recovered by translating the programs
into the 7-calculus and proving the equivalence there. Obtaining completeness is difficult when encoding
in 7 as the language is very expressive. Regarding the encoding of references sketched earlier, if a
process receives a message without emitting a new one afterwards, this essentially prevents further
communications on that channel which is not possible with references. For a sound encoding, the
contexts in the target language may exhibit behaviours that do not correspond to the translation of a
behaviour in the source language.

In the m-calculus, processes can perform actions which determine what the process becomes next.
Such actions are either an internal computation, sending a message, or receiving a message. We will
be interested in the bisimulation technique, which is a behavioural equivalence that uses all actions to
distinguish between processes. Intuitively, if a process P becomes the process P’ when performing the
action p, any equivalent — or bisimilar — process @ should also be able to perform an action p that
results in a process @ which must be bisimilar to P’. This equivalence is compared to a contextual
equivalence named barbed congruence. While the latter is often a more natural equivalence, as processes
remain equivalent in any context, this makes proofs much harder as we need a proof for every possible
context. Fortunately, bisimulation is always sound, and thus we can use bisimulation, which is more
tractable, to prove that processes are barbed congruent. It is also complete on almost all processes.

In this thesis, we study how various type systems affect the equivalences we have described. Type
systems add information to programs to prevent errors, e.g. a function that awaits an integer should not
receive a string instead. Types can also give information about the behaviour of programs which enables
more optimisations for compilers. For instance, linearity, the discipline for which objects must be used
exactly once, can be used to facilitate garbage collection.

Some equivalences only hold under some conditions, which can be formulated as a typing discipline.
The equivalence between P; and P, is such a case, as it holds in the absence of parallelism. In this
work, we define a type system for sequentiality where processes are considered either active or passive.
Ensuring a sequential execution then simply means that there can never be two active processes at the
same time. The equivalence between P; and P, holds when we impose the sequentiality property on
processes. Along with the type system for sequentiality (Chapter , we also develop a type system for
references (Chapter |3) and one for a well-bracketed execution (Chapter |5 in the m-calculus. When the
language is typed, certain contexts are ruled out as ill-typed; as not all processes can be typed, neither
can all contexts. As a consequence, the definition of barbed congruence becomes coarser. The standard
untyped bisimulation can still be used to prove equivalences but may miss some new equalities created by
typing constraints. To recover the link between bisimulation and barbed congruence, we need to adapt
the bisimulation to the type system used. We do so for the various type systems we present. Intuitively,
when defining the bisimulation, some actions p should not be considered under certain typing as there
exists no context with the correct type that can lead to p being performed.

We begin by presenting the m-calculus in Section[2.1] We will use various subcalculi of the 7-calculus in
this thesis, which will be defined with more details when needed. We introduce the standard equivalences
along with the notion of bisimulation (Section [2.2]) and a general framework explaining how it can be
adapted in the presence of type systems (Sectio

We introduce in Chapter [3| how references can be implemented in the asynchronous variant of m-
calculus, A7 (Section . This is done by first presenting our type system (Section which imposes
constraints on reference mames, a subset of names representing references. Specifically, we design two
bisimulations, reference bisimulation and bisimulation with an inductive predicate. We then show an ap-
plication of this type system by considering a 7-calculus extended with explicit references and imperative
constructs, 77f (Section and show how to encode 7™®* in Am.

With references and full concurrency, contexts are very expressive, and few equivalences can be proved.
Thus, we shift our focus into ensuring a sequential execution in Chapter [l We define a type system
for sequentiality for which the encoding of references can be typed in Section We then study the
corresponding equivalence leading us to the notion of sequential bisimulation in Section [1.2] We briefly
explain how the two systems for sequentiality and references can easily be combined in Section[4.3] Using
sequential bisimulations with inductive predicate, we are able to prove results similar to the equivalence
of P; and P, above.

The notion of well-bracketing is a refinement of sequentiality. It builds upon the distinction of

10

between two kinds of communication: requests (or questions) and answers to those requests. Although
well-bracketing can have a meaning in a concurrent setting, during a sequential execution, it consists
of always answering to the last unanswered request. It is best expressed in the Internal m-calculus,
where all messages sent correspond to private names (Section [5.1)). The type system and corresponding
bisimulation, wb-bisimulation, are given following the same general schema in Sections and

Finally, we look at an application for these type systems by providing a fully abstract encoding of a
A-calculus with references: A** in Chapter 6] The encoding is described in Section Wh-bisimilarity
is still too strong because of deferred divergent terms, stuck terms which are expected to diverge. We
thus have to adapt wb-bisimulation to handle divergence leading to the notion of bisimulation with
divergence (Section [6.2)).

Related Works

Techniques like logical relations have been used to prove properties on programs by defining the relations
inductively on the types of the program considered, including equivalence of programs [40]. Its extension,
Kripke logical relations [39], allows reasoning on programs with state. Relations are indexed by a possible
world, which constrains the heap. This means that programs are related when they behave “the same”
under any heaps satisfying the constraints from the world. By making worlds evolve over time [3], and
by further specifying these evolutions (using private transitions and inconsistent states), a fully abstract
logical relation for a ML-like language was defined [9].

The bisimulation technique has been studied for lambda-calculus and its extensions. Applicative
bisimilarity is fully abstract for the lambda-calculus [I]. However, this method does not extend when
introducing state. By allowing values to be stored and reused multiple times, a full abstraction result
is obtained using environmental bisimulation, the environment storing disclosed values [50]. The open
version of applicative bisimulation for call-by-value, normal form bisimulation [28§], is also too strong
compared to contextual equivalence. It requires both state and control operator, like in the Aup-calculus,
to be fully abstract. Full abstraction can be recovered using environment to store values and also contexts
[6, 26].

A proof of bisimilarity requires a relation which must be a bisimulation. This can become bothersome
when some pairs are easily bisimilar. The use of up-to techniques allows to reduce the size of the relation,
by only requiring the relation to be included in a bisimulation. For instance, using up-to bisimilarity
[33], the processes only need to be bisimilar to processes related by the relation. Up-to techniques have
been studied to know when they are sound and can be combined soundly. One such class of techniques
are safe functions [48]. The use of the companion, the largest such function, allows for a more unified
reasoning [42]. Additionally, some functions that are not sound up-to techniques can still be used in some
cases without leading to unsound reasoning. The same analysis for combining always sound techniques
and the others was done by Biernacki et al. [7]. Hur et al. [19] defines tools to incrementally build the
relation instead of defining it in full first. This parametrised coinduction allows accumulation of pairs of
processes which can be used soundly later after a step has been done. This ensures that the coinduction
hypothesis is only used under a “semantic guard”. The method was refined to enable unguarded use of
the accumulated knowledge if that guard condition was previously fulfilled [55].

The 7-calculus has served as a model for multiple higher order languages. Milner first encoded the
standard A-calculus for both call-by-name and call-by-value [35]. For the former, the equivalence induced
by the bisimilarity in the w-calculus corresponds to the equality of Lévy-Longo trees [30, 49]. On the
other hand, the one for (refined) encoding for call-by-name is normal form bisimilarity [28] extended
to handle n-equality. By introducing types in the m-calculus, Berger et al. [5] obtain a fully abstract
encoding w.r.t contextual equivalence for a functional language, PCF [13]. Similar full abstraction holds
between a linear version System F and a polymorphic session 7-calculus, with two encodings going in each
direction [54]. There are also sound encodings for languages with first-order references and parallelism
with call-by-name, e.g. Concurrent Idealissed ALGOL [8] 44] .

The 7-calculus bears some similarity with operational game semantics [23]. Game semantics is a
denotational semantics where programs are represented by a strategy. For sequential programs, various
capabilities or their absence in programs (like state or control) are modelled by adding constraints on
those strategies (e.g. innocence, well-bracketing) [2]. In particular, game semantics model has been
defined for RefML [37]. On a more operational setting, Laird [27] developed a trace semantics where
transitions resemble actions from game semantics, intuition which was confirmed later [21]. This approach

11

makes it easier to prove equivalences using automated techniques [26] 22].

In typed settings, the bisimulation technique must be adapted, taking the type into account. One
such type system for the m-calculus is I/O-types [38] which separate the input and output capabilities of
a channel. A fully abstract typed bisimilarity for I/O types with subtyping was proposed by Hennessy
[14]. The notion of receptiveness for which an input must be “immediately” available, was formalised
as a type system by Sangiorgi [45] for two cases, if the input appears once (linear receptiveness) or is
replicated (uniform receptiveness). For each, a sound and complete bisimulation is given.

12

Chapter 2

Background

2.1 m-calculus

m-calculus processes are defined using an infinite set of names, ranged over by a,b,.... These names
represent channels that are used by processes to interact with each other, sending and receiving messages
(i.e. other names) via these channels. We use a tilde, like in b, for (possibly empty) tuples of names.
The standard syntax of the 7-calculus for processes, and guarded processes (or summations) is given
below [52]:
PQ == P|Q|VaP|'a P|G
G,G == 0|ab).P|ab).P|7.P|la=bG|G+&

0 stands for the empty process which does nothing. There are three kinds of prefixes: the output
(b) P sends the names b via the channel a before continuing as P; the input a(b) receives names via a
and continues as P with b being distinct placeholders for the names it has received; finally 7. P performs
one step of internal computation before executing the process P. In prefixes a(b). P and a(b). P, name
a is the subject and b are the objects. The matching [a = b]G behaves as G only if the two names are
equal and does nothing otherwise. The process G + G’ behaves as G or G'. For instance, the process
a(b). P + ¢(z). Q may either send b via a and then proceed as P or receive a name via ¢ and proceed as
Q. The parallel composition of P and @, i.e. P | @, allows both processes to be executed and possibly
to interact with each other. The restriction (va)P creates a private name only usable in P. A replicated
input la(b). P behaves as a(b). P in parallel with itself an unbounded number of times. This means that
such process can always receive names at a, each time creating a new copy of P.

Variants of these operators exist. The replication can be generalised to all process '! P’ instead of just
input. The semantics of ! P is more complex as the multiple copies of P may interact with each other.
Nevertheless, this generalisation can be simulated with our calculus as (va)(la(). (P | @().0) | @().0).
One can also add the operator of mismatching [a # b] which acts opposite to the matching. Its addition
would not affect the work done here. The main usage of the matching is for proofs of completeness in
Sections |3 and It does not play a major role otherwise. In Section [5| when the Internal w-calculus
is introduced, it is removed as all names exchanged are private. We work with the polyadic m-calculus:
channels may carry more than one name. This will be needed in Section [5| as we require some channels
(function names) to always carry a continuation name. This can be done easily using polyadicity without
removing the capability to send other names with these channels.

Names b in a(b). P, la(b). P and @ in (rva)P are bound in P. We identify processes up to alpha
conversion with respect to these binders, e.g. we consider (vb)a(c).é(b) and (vd)a(e).€(d) equal.

We write fn(P) the set of free names of P and we write P{b/} for the result of replacing every free
occurrence of name a by b in P in a capture-avoiding way. This may require using alpha-conversion, e.g.

(wb)a(b){Ya} = (ve)aic){Ya} = (ve)b(c).
Notations. We often write a. P and @. P when the object of a prefix is the empty tuple, and a(_). P for

a(b). P with b ¢ fn(P). We also omit 0 after a prefix. We use Yicr Gi (vesp. [[;c; Pr) for Gy, +---+ Gy,
(vesp. Py, | ... | P;,) where I = {i1,...,i,}. We write (va)P for a sequence of such restrictions. Parallel

13

composition and sum have the lowest precedence among operators meaning (va)P | Q is ((va)P) | Q,
a(z). P | Qis (a(z). P) | Q. Also, G+ G' | P is (G + G') | P (the other option is not accepted by the
grammar).

Contexts, ranged over by C', are processes containing a single occurrence of a special constant, the
hole (written [-]), as if it was added to the grammar of P, Q. The static contexts, ranged over by E, have
the form (va)(P | []). We write C[P] for the process obtained by replacing the hole by P in C.

Structural congruence is the smallest equivalence that contains the axioms of Figure and is also
a congruence, i.e. P = @ implies C[P] = C[Q]. It contains standard rules for parallel composition
and sum which are symmetric, associative and admit 0 as neutral element. Structural congruence is
used to define the usual reduction-based semantics of the m-calculus which we do not use. Nevertheless,
structural congruence provides simple laws that are verified for all (reasonable) behavioural equivalences.

Plo=P P|Q=Q|P Pl(QIR=(P|Q|R G+0=G G+G =G +G
G+ (G +G")=(G+G)+G" la(b). P = a(b). P | la(b). P

P | (va)Q = (va)(P | Q) if a ¢ fn(P) (va)(vb)P = (vb)(va)P (rva)0=0 [a=a]lG=G

Figure 2.1: Structural congruence in the w-calculus

Thanks to structural congruence, we can describe static contexts by the following grammar:
E:=[]| (va)E | E|P

The semantics of the m-calculus is given by a Labelled Transition System (LTS) and is presented in
Figure Symmetric rules for PAR, SUM and CoMM have been omitted. Multiple LTS exist for the
m-calculus with their pros and cons. The one we use is often called the early LTS. Statements are of the
form P £ P’ meaning P evolves into P’ by performing the action 1. Actions are defined as follows:

=1 | alb) | (ve)ald)

They represent an internal action (7), the reception of names b at a (a(b)), or the sending of names
b at a, with ¢ being names that were private to the process. By opposition with the 7 action, the others
are called visible actions. As for prefixes, for these input and output actions, we say that a is the subject
and b are the objects.

The LTS allows us to derive the transitions a(b). P+c(x). Q), pand a(b). P+c(x).Q), Q{x},
formalising the informal definition of the sum operator.

In a(b), the notation uses square brackets as in the output to stress the fact that the names are already

chosen, hence the name early for the LTS, and correspond to free names, while in a(b~). P the names b
are bound. The notion of free names is extended to actions as follows: fu(7) = 0, fn(a(b)) = {a} Ub and

f((ve)alb)) ={a} U (b\0).

We will often write — for —. We do not need to define a reduction-based semantics.

Our work focuses on weak equivalence, meaning we consider that internal transitions are not ob-
servable. This leads to the notion of weak transitions which correspond to the initial transitions up to

. . . def . .
internal actions. We define weak transitions as &< == where the weak reductions is defined as
== *. This definition is unsatisfactory for = which still forces at least one internal action. To ensure

that internal transitions cannot be observed, we write A if 1 =7 and £ otherwise. By opposition
to weak transitions, standard transitions defined in Figure 2:2] are also called strong.

2.2 Bisimulations and up-to techniques

2.2.1 Bisimulations

Intuitively, two processes should be considered as equivalent when they have the same behaviour in every
context. In the m-calculus, the reference behavioural equivalence is the context-closure of barbed bisim-

14

OPEN

INP out wayad) .,
p 22, pr -
— e — — - —E—— if d € tn((ve)ad)) \ {a}
a(b). P — P{c/b} alb).P =5 p (vd)p 22222 pr
REP REs PAr
b). PP PP PP
— al)H = m ifa g m(p)Ubn(p) ——————if bn(u)N(Q) =10
la(b). P — P’ |la(b). P (va)P = (va)P’ P|lQ—=P|Q
COMI\; 0 MATCH SuM
p o pr QMQ/,fNQf(P)) PP PP
ifenfn(P) = _ _
PlQ5 Wo)(P|Q) [a =alP L P’ P+Q5 P

Figure 2.2: Early Labelled Transition Semantics for w-calculus

ulation. The definition of barbed bisimulation uses the reduction relation = along with an observation
predicate |}, with @ = a or @ for any name a, which detects the possibility of performing an action along
a.

Definition 1. We write P |, (resp. P |z) when there is an input (resp. output) p with subject a such

that P £ P'.
P |}, and P |z are defined similarly using P £ P’

We say that P has a (weak) barb at & when P |, (resp. P o).
This notion can also be characterised without referring to the LTS using structural congruence.

Lemma 2. P |, iff P = (ug)(a(a Q+G|R) for some Z, ¢ Q,G,R with a ¢ b.
P |z iff P = (vb)(a(c).Q+ G| R) for some b,¢,Q, G, R with a ¢ b.

We prefer however the definition using transitions as this extends naturally to a typed setting.

Definition 3 (Barbed bisimulation). A relation R on processes is a barbed bisimulation if whenever
PRQ:

1. P, implies Q |
2. P — P’ implies that there is Q' such that Q = Q' and P’ R Q’
3. and symmetrically for Q.

Barbed bisimilarity, ~, is the largest barbed bisimulation.

Clause 2. can be represented by the following diagram:

P R Q
Ll
PR

In this definition and the other bisimulations we shall introduce below, the conditions on P in Clause
1. and 2. are given using the strong version of transitions and barbs. This is done so as to simplify proofs
of equivalence between processes. Modifying the two clauses with P |}, and P = P’ does not affect the
notion of barbed bisimulation and thus barbed bisimilarity.

Barbed bisimilarity is a rather coarse equivalence, equating for instance a. P and a. @ for all P, Q, so
we close it with contexts. A relation R is a congruence when it is closed by context, i.e. for any P, Q,C,
P R Q implies C[P] R C[Q).

15

Definition 4. Barbed congruence, noted ~,, is the largest congruence included in barbed bisimilarity,
ie. P~_Q iff for all C, C[P] ~ C|Q].

Barbed equivalence, noted =~ is defined similarly, by restricting the quantification over all static
contexts F instead.

In this document, we focus on barbed equivalence (as opposed to barbed congruence) because it is
simpler. Notably, we do not need to consider issues of closure of the labelled bisimulations under name
substitutions in order .

A variant of barbed equivalence (resp. barbed congruence) is reduction-closed barbed equivalence
(resp. reduction-closed barbed congruence), written = (resp. =), which is the largest relation closed by
all static contexts (resp. congruence) that is itself a barbed bisimulation [I8]. By definition, reduction-
closed barbed equivalence is included in barbed equivalence. These equivalences coincide on “usual
processes”, that is image-finite processes (Definition E[) In the case of the Asynchronous m-calculus
detailed in Chapter [3] they coincide on all processes [12]. In this work, we will use both in different
situations, choosing the one that is more suited. More precisely, reduction-closed barbed equivalence
is used in Chapter [3] while barbed equivalence is used in Chapters [and The former usually leads
to simpler completeness proof, however in Chapters [4] and [5} we would need an equivalent of Lemma
which cannot be typed and so we choose the latter equivalence.

Due to the universal quantification over all contexts, proving that two processes are barbed equivalent
is often difficult. A solution is to use another equivalence, easier to prove, that equates the same
processes. We use a coinductive technique called bisimulation to do so. As we presented the early LTS,
it is sometimes called early bisimulation.

Definition 5 (Bisimulation). A relation R on processes is a bisimulation if whenever P R @ and

P £ P there is Q' such that Q £ Q' and P’ R Q’; and symmetrically on the transitions from Q.
Bisimilarity, noted =2, is the largest bisimulation.

Bisimilarity (and similarly for all the other bisimilarities we define) is well-defined as the union of
all bisimulations is also a bisimulation. As the bisimilarity contains all bisimulations, to prove that two
processes are bisimilar, we simply need to provide a relation R and show that it is a bisimulation. This
is the case for structural congruence.

Lemma 6. If P = (Q, then P = Q.

We can prove this result by showing that = is a bisimulation. This means proving that if P = @ and

P £ P’ then there exists Q" such that Q & Q' and P’ = Q. As structural congruence is symmetric,
the symmetrical conditions on @) are immediate. In fact, it is possible to prove a stronger result and
always take @’ such that Q 2 Q’.

Intuitively, a reduction involving a process and a context is similar to a process performing the
action leading to that reduction. This is the (intuitive) reason why bisimilarity coincides with barbed
equivalence for most processes.

To prove that bisimilarity is included in barbed equivalence, we first observe that bisimilarity is
included in barbed bisimilarity and then show that bisimilarity is a congruence w.r.t static contexts.

Lemma 7. If P ~ Q, then F[P] = F[Q)].

Proof. For this, we prove that the relation R defined by {(E[P], F[Q)]) | VE,P,Q,P =~ Q} is a bisimu-
lation.

Take some processes P,Q with P ~ @ and some static context F = (vb)([] | T). Whenever
E[P] & R, using the rules of Figure we have multiple cases according to whether rule PAR or rule
CoMM (or their symmetric versions) is used.

We present only the case where the rule COMM is used. This means y = 7 and P M) P'. Thus,
there exists T" such that T 2% 7 and E[P] & E'[P'] with E' = (wh,&)([] | T'). As P =~ Q, we
know that @ g Q' and P’ =~ @’. We decompose @ i<-—=b>> Q as Q = Qg M Q1 = Q'. By applying
rule PAR and rule RES, we have that F[Q] = E[Qo] and E'[Q1] = E’[Q']. Similarly, using rule CoMM
and rule RES, we have E[Qo] = E'[Q;]. All in all, E[Q] = E'[Q'] and E'[P'| R E'[Q'].

O

16

These 2 lemmas ensure that bisimilarity is included in reduction-closed barbed equivalence and thus
also included in barbed equivalence, i.e. &~ C = C ~. That barbed equivalence implies bisimilarity is
proved in a different way, depending on the variant of barbed equivalence we work with.

For reduction-closed barbed equivalence, it is required to show that barbed equivalence is also a
bisimulation. The proof relies on the lemma below to handle bound names extruded via an output:

Lemma 8 ([12]). If (va)(P | 5{a)) = (va)(Q | 3(a)) for s fresh, then P = Q.

On the other hand, barbed equivalence in the plain (untyped) 7 can be proved to coincide with early
bisimilarity on image-finite processes (to which most of the processes one would like to write belongs),
exploiting the n-approximants of bisimilarity (Theorem)

Definition 9. The class of image-finite processes is the largest subset Z of processes such that P € 7
implies that, for all u, the set {P’ | P £ P}, quotiented by alpha-conversion, is finite, and that is closed

by transition, i.e. P € Z and P £ P’ implies that P’ € Z.
Definition 10 (Approximants of bisimilarity). We define a sequence (=™),>¢ of relations:
1. P =% Q for all P,Q.

2. For all n, the relation ~ A~ s defined by: P ~"*1 Q if whenever P £ P’ then there is @’ such
that Q £ Q" and P’ " '; and symmetrically on the transitions from Q.
Then P ~“ @Q if P =™ Q for all n.

Notice that ~°D~!'D ... Dx"D ... Dr“D~. On image-finite processes, the last inclusion is an
equality:

Lemma 11 ([52, Section 2.4]). If P,Q are image-finite, then P ~* Q iff P ~ Q.

The proof that ~ is included in = is usually carried by proving the contrapositive. This means that
for all n, if P %™ @Q then there exists a context E such that E[P] # E[Q]. This context is constructed by

induction on n. If P #"*1 Q, then there is some u, P’ such that P £ P and for all Q £ Q', P #" Q.
Thus, intuitively, we take a context of the form [-] | (z.>, 7. (R; +7%;)) +Z. The outputs at z, z; are used
as barbs to monitor the interactions of this process, and the R; correspond to the contexts obtained by
induction, one for each Q' such that Q £ Q' (there is a finite number of such @’ by image-finiteness).

Theorem 12 ([52] Section 2.4]). On image-finite processes, relations ~ and =~ coincide.

There is an asymmetric variant of bisimilarity, called expansion where one process is allowed more
internal actlons than the other Its main use is for up-to techmques (see Section . For this purpose,

we write —> for - U = and —> for £ otherwise. The transition — allows for at most one 7 instead of
exactly one.

Definition 13 (Expansion). We write 2 for the largest relation such that whenever P > Q:
e if P& P’, then there is Q' such that Q LN Q' and P’ > Q';
o if Q % @', then there is P’ such that P £ P’ and P’ > Q'.

Expansion still has some nice properties from bisimilarity, like containing structural congruence and
being closed by static contexts.

2.2.2 Up-to techniques

Up-to techniques are proof techniques for bisimulation developed to reduce the size of the relation used
to reason about equivalence between processes [33].

17

The idea of up-to technique is to replace the condition P’ R @’ in Definition [5| by P’ f(R) Q" where
f is the up-to technique, leading to the following diagram:

P R Q
bl
P f(R) @

This defines a bisimulation up to f.

Definition 14 (Bisimulation up-to). A relation R on processes is a bisimulation up to f if whenever

PR Q and P £ P', then there is Q' such that Q £ Q' and P’ f(R) Q’; and symmetrically on the
transitions from Q.

These functions help to give smaller relations as bisimulation candidates. For instance, given a process
P, to prove that 7. P ~ P using a bisimulation, one can build a relation containing (7. P, P) but also
all pairs (P’, P’) with P’ obtained from P after any sequence of transitions. Having to include all such
pairs in any candidate relation increases their size. Defining refl as refl(R) = {(P, P) for all P}, we
have that {(r. P, P)} is a bisimulation up to refl:

T.P R 7.P R P

I ﬂ i b

P refl(R) P’ refl(R) P’

Not every function can be used. We say that an up-to technique or a function f is sound, if any
bisimulation up to f is included in the bisimilarity. The reasoning above for (7. P, P) is valid because
refl is sound.

A significant class of sound up-to techniques is the class of compatible functions. For this we rely on
the notion of progress.

Definition 15 (Progress). A relation R progresses to a relation S, noted R — S, if whenever P R Q
and P £ P’, then there is Q’ such that Q £ @’ and P’ S Q'; and symmetrically on the transitions from
Q.

Thus, a bisimulation is simply a relation R that progresses to itself, i.e. R — R. Similarly, a
bisimulation up-to f is a relation R such that R »— f(R). We have R »— S when we have the following
diagram (and the symmetric one) for all P R Q:

P R Q
('
P S

Definition 16 (Compatible function). A function f is compatible if f is monotone, i.e. if R C S implies
f(R) C f(5), and R — S implies f(R) — f(5).

We write f U g for the component-wise union of functions, i.e. (f Ug)(x) = f(z) U g(z).

Proposition 17. If f and g are compatible, then f U g and f o g are compatible too.
If f is compatible, then f is a sound up-to technique.

Most standard up-to techniques are compatible. We give some examples of such techniques. refl, ctxt, />

are some up-to techniques called up-to identity, up-to context and up-to expansion respectively.

idR) YR refi(R) ¥ {(P,P)|VP} ctxt(R) € {(E[P], E[Q]) | VE, P,Q s.t. PR Q}

Unfortunately, the function Fr,, with F~(R) 4f R~ is not sound [51]. Take R = {(7.b,7.a@)}. We
have R — F~(R). Indeed, we have the following diagram:

b R T.@

-
b ~ 7.b R 7.a =~ a

However, we have 7.a@ % 7.b. The asymmetry of the expansion ensures that processes in F>(R) are
“slower” than those in R, preventing such unsound reasoning.

Example 18. We prove that la(z). P =~ la(z). P | la(z). P. Without up-to techniques, a bisimulation
containing these two processes can be of the form {(la(z). P | Q, la(z). P | la(z). P | Q) | VQ}. Using
up-to context and up-to expansion, we can reduce the relation to a single pair, namely (la(z). P, la(x). P |

la(x). P). The process la(z). P may only do an input transition, la(z). P o0, P{a} | la(z). P. On the
other hand, the right process can do the input using any of the two replications. However, in both cases,
we have la(z). P | la(z). P oo, P{ba} | la(z). P | 'a(x). P. As = is included in >, we end up with the
following diagram:

la(x). P R la(z). P | la(z). P
a(b) a(b)

~ ~

P{ba} | la(z). P = P{¥a}|la(z).P ctxt(R) P{Ya}|la(z).P |la(z).P <> P’

By taking E = P{ba} | [], we indeed have that P{0a} | la(z). P ctxt(R) P{ba} | la(z). P | la(z). P.

We study in more details the up-to techniques in the w-calculus and some congruence properties in
the note [43] which is not presented in this thesis.

2.3 Typing and sorting

The calculi in this work will be typed. For simplicity we define our type systems as refinements of the
most basic type system for m-calculus, namely Milner’s sorting [32], in which names are partitioned into
a collection of types (or sorts), and a sorting function maps types onto a list of types. If a name type S
is mapped onto the types T, this means that names in S when used as channels may only carry names
inT.

This type system prevents us from writing ill formed processes, like @(b) | a(x,y), where the arity of
the names does not match, even after performing some communications. For instance, while in a(x). T(b) |
a(c). c(y, z), we have a, x that carry one name, and ¢ that carries two, as both and ¢ are used as names
that can be sent/received via a, this leads to an ill-typed process: a(x).Z(b) | a(c). c(y, z) — €(b) | c(y, 2).
Using a sorting, « and ¢ should have the same sort, thus solving this issue.

We assume that there is a sorting system under which all processes we manipulate are well-typed.
For more complex type systems, we always write A - P when process P is well-typed under the typing
A, and similarly for other objects, such as contexts. In this work, the type environment A is a simple
structure, e.g. an integer or a set of names.

Notations. We will often use different names to distinguish between sorts. a,b,c,... always range
over “the most generic names” in a sense that will be specified in each section. In Chapter 3| ¢,¢', ...
range over names representing references. Similarly, in Chapter |5} p,q, 7, ... range over names following
a strict discipline and are called continuation names.

Since we work in a typed setting, equivalences must be adapted too. For instance, the continuation
names in Chapter [5| are linear, meaning they can only appear once in input and once in output. Under
such constraints, there exists no typing A such that A -7 | p | p as p is used twice as input. In
that context, transitions must take into account the constraints imposed by typing. For instance, for

continuation names, the transition p | p 2y should not be allowed as it cannot correspond to an interaction

19

with another process: the context should be able to perform an input at p, while the process p | p already
as the unique input capability.

Much like the typing of the tested processes affects which transitions can be observed, this also affects
the definition of barbs.

Definition 19. We write A E P |}, if A is a typing for P (i.e. A F P holds), there is an output (resp.

input) action p with subject a if « = @ (resp. o = a) s.t. P £ P’ and such a transition is observable
under the typing A.
AE P |, is defined similarly.

The meaning of 'observable under a typing’ will depend on the specific type system adopted; in the
case of the plain sorting, all transitions are observable.

Having typed processes, in the definition of barbed equivalence we may only test processes with
contexts that respect the typing of the processes.

Definition 20. C'is aI'/A context if I' - C can be derived, using the type system for the processes and
HoLE
the extra rule A b [] for the hole.

Similarly, P is a A-process if A+ P. We also write A - P, when both P and @ are A-processes.
The type systems we describe have the additional property that typing is invariant under reduction, i.e.
if A P and P — P’ then A - P’. This property allows us to define a barbed bisimulation for each
type environment:

Definition 21 (Typed barbed bisimulation, equivalence, and congruence). Barbed A-bisimilarity is the

. . A A . .
largest relation ~ on A-processes s.t. P ~ (@ implies:

1. AE P, implies A F Q |,

LA
2. P — P’ implies that there exists ' such that Q = Q" and P’ = @’
3. and symmetrically for Q.

Two A-processes P and Q are barbed equivalent at A, written P ~* @Q, if for each I'/A static context E

it holds that E[P) < E [Q]. Barbed congruence at A, ~2, is defined in the same way but employing all
I'/A contexts (rather than only the static ones).

For reduction-closed barbed equivalence (resp. reduction-closed barbed congruence), we must include
the typing in the relation, i.e. the relation is ternary instead of binary. A typed process relation is a set
of triplets (A, P, Q) with AF P,Q. We write AF PR Q when (A, P,Q) € R.

Another necessary condition for observable transitions is to enable the resulting process to be typed.
However, the typing may differ from the original process when doing transitions other than reductions.
In this work, we will write [A; P] £ [A’; P/l when A + P holds, P £ P’ is a transition observable under
the typing A and A’ - P’ holds. With this notation, we can adapt bisimulation to a typed setting.

Definition 22 (Typed bisimulation). A typed process relation R is a typed bisimulation if whenever A E

PR Q and [A; P] £ [A’; P'], then there is Q' such that Q £ Q' and A’ F P R QQ'; and symmetrically
on the transitions from Q.

For the type systems we present, when we write [A; P] L [A; P’], the type A’ is unique given A
and p. It is also ensured that any process with type A performing action p can be typed with A’, thus
in proofs of typed bisimulation, we do not need to check that A’ - @Q’.

We use various symbols ~,, =, ... to denote the different typed bisimilarities we use throughout this
work. For a typed bisimilarity R, we often write P R® Q when (A, P,Q) € R by analogy with binary
relations such as barbed equivalence at A. Figure [2.3] collects the notions of behavioural equivalence in
the m-calculus that are introduced in this document.

To write examples, we sometimes use basic data values such as integers and booleans. When doing
this, we have to adapt the sorting but this does not raise any additional difficulty.

20

Untyped 7-calculus (Chapter :

"
5.8, 55

Pla, Pl

1R 1R 1R

VR

A+ P
[A; P] = [A'; Pl

Asynchronous 7-calculus and references (Chapter :

Lan, e (n), € x m(n)
Ak, P

~a

Q

a

Arn

r

2R

1p

~ref

Sequentiality (Chapter :
nks P

~"

~"N
g

A;nk, P

~Am
S

I

Well-bracketing (Chapter [5):

p'_Wbpvp':WbP

=~
whb

~ ;.
div

Strong and weak transitions
Strong and weak barb

Structural congruence

Barbed bisimilarity

Barbed equivalence

Barbed congruence
Reduction-based barbed equivalence
Reduction-based barbed congruence
Bisimilarity

Expansion

Typing, generic version
Typed-allowed transition, generic version

Imperative operations (write, read, swap)
Type system for reference names
Asynchronous barbed equivalence
Asynchronous bisimilarity

Reduction-closed barbed equivalence with reference names
Reference bisimilarity
Bisimilarity with inductive predicate

Reduction-closed barbed equivalence in 77¢%
Type system for sequentiality

Sequential barbed equivalence at 7
Sequential bisimilarity at 7

Type system for sequential references

Sequential bisimilarity with inductive predicate

Type system for well-bracketing without/with clean stacks
Well-bracketed barbed equivalence
Wh-bisimilarity

Bisimilarity with divergence (Chapter @

Figure 2.3: List of symbols

21

Chapter 3

References in the m-calculus

To describe how references operate in the m-calculus, we first need to introduce the Asynchronous -
calculus.

3.1 Asynchronous m-calculus

An important subcalculus of 7 is the Asynchronous 7-calculus, A [4]. It is characterised by forcing 0
as the only continuation for an output (which we do not write). Outputs no longer guard processes so
this change is made syntactically explicit in the grammar:

P.Q == alb) ‘~P|Q](Va)P]!a(5).P]G
G,G' == 0|a).P|7.P|la=bG| G+

This has the consequence that outputs cannot be used immediately in a sum or after a matching. In
that context, an output is implicitly sent as soon as it appears unguarded, but stays until it is received.

The behavioural equivalence is adapted in consequence. As outputs do not guard processes, it intu-
itively implies that a process cannot detect if its outputs have been used. Thus an environment cannot
directly detect whether or not an input has been made. To express this distinction in Aw, barbs are
restricted to outputs only (thus of the form P |z). Barbed equivalence (resp. congruence), noted ~*
(resp. ~%), is defined as usual using static contexts (resp. all contexts) from Ax.

One critical example of the impact of this change is the law 0 ~2 a(x).@(z). In standard, synchronous,
m-calculus, even without observing the barb at a, we could distinguish the two by using the context
[] | @(b).e. The output at ¢ becomes observable only if a communication is done at a. This, however,
cannot be done using an asynchronous context, so as the output at a is resent as soon as it is used in the
communication, it is not distinguishable from an internal action. However, synchronous bisimilarity can
distinguish between the two by looking at the input transition. Asynchronous bisimulation was designed
to recover this equivalence.

Definition 23 (Asynchronous Bisimulation). A relation R on processes is an asynchronous bisimulation
if whenever P R Q and P £ P’, then one of these two clauses holds:

1. there is Q' such that @ £ Q' and P' R Q’;

2. p = a(b) and there is Q" such that @ | a{b) = Q" and P’ R Q.

and symmetrically on the transitions from Q.
Asynchronous bisimilarity, =, is the largest bisimulation.

The main distinction is the second clause for input transitions, in which @) is not forced to perform
an input, but does internal actions using the output that should have been used.

Example 24. 0 ~, a(z).a(x).

22

Proof. Take R e {(0,a(z).a(x)), (0 | a(z),a(x)),(0 | 0,0)}. We have that R is an asynchronous

bisimulation.

a(z).a{xy R O 0 | a(b)

The equivalent of Theorem [12] still holds in that setting:

Theorem 25 ([4]). On image-finite asynchronous processes, relations ~* and =, coincide.

3.2 Reference names in An

The m-calculus has been advocated as a model to interpret, and give semantics to, languages with higher-
order features. Often these languages make use of forms of references (and hence viewing a store as set of
references). This therefore requires representations of references using the names of the w-calculus. There
are strong similarities between the names of the m-calculus and the references of imperative languages.
This is evident in the denotational semantics of these languages: the mathematical techniques employed
in modelling the m-calculus (e.g. [53] [II]) were originally developed for the semantic description of
references. Yet names and references behave rather differently: receiving from a name is destructive —
it consumes a value — whereas reading from a reference is not; a reference has a unique location, whereas
a name may be used by several processes both in input and in output; etc. These differences make it
unclear if and how interesting properties of imperative languages can be proved via a translation into
the m-calculus.

Previous implementations of references in the m-calculus model a reference cell as a server accepting
requests on two names, representing reading and writing respectively [44]. In comparison, the Asyn-
chronous 7-calculus allows one to provide a simpler representation of references, where a reference ¢
storing a value n is just an output message Z(n) A process that wishes to access the reference is sup-
posed to make an input at ¢ and then immediately emit a message at ¢ with the new content of the
reference. For instance a process reading on the reference and binding its content to x in the continuation
Pis

U(z). () | P) .

This representation of references in A is interesting because of the asynchronous bisimilarity. To see why
the input clause could be interesting with references, consider a process that performs a useless read on a
reference ¢ and then continues as some process Ps; in a language with references this would be equivalent

to Py itself. When written in An, the process with the useless read becomes P; ef {(z). (¢{x) | P») where
x does not appear in P,. In ordinary bisimilarity, P; is immediately distinguished from Ps, as the latter

cannot answer the input transition P; L, /{n) | P,. However, the answer is possible using the input
clause, as we have £(n) | Py = {(n) | P,. In fact, using reference bisimilarity, we are able to prove the
following law:

{z).(lz) | P) ~, P x¢f(P) (3.1)

r

We are not aware of studies that investigate the faithfulness of the above representation of references
in Aw. To address this issue, we first define in Section [3:2] a type system in A7 to capture the intended
pattern of usage of names representing references, and we establish proof techniques in this typed calculus.
We then consider in Section [3.3] an extension of A7 with explicit references and operators to manipulate
them: 7*%f. We can then show how reference names allow for a faithful representation of references by
translating 77f into A7 and study this translation.

23

The type system in A7 is designed to capture the intended pattern of usage of names that represent
references, called reference names, and in particular the property that there is always a unique output
message available at these names. The type system has linearity features similar to w-calculus type
systems for locks [24] or for receptiveness [45].

The calculus with references, 77t has constructs for reading from a reference, writing on a reference,
and a swap operation for atomically reading on a reference and placing a new value onto it. Modern
computer architectures offer hardware instructions similar to swap, e.g. test-and-set or control-and-swap
constructs, to atomically check and modify the content of a register. These constructs are important to
tame the access to shared resources. In distributed systems, swap can be used to solve the consensus
problem with two parallel processes, whereas simple registers cannot [I5].

The swap construct is also suggested by the translation of references into Aw. The pattern for
accessing a reference £ is £(z). (¢(n) | P). This yields four cases, depending on whether z is used in P
and whether x is equal to n:

n#txr | n=x
z free in P swap | read
z not free in P | write | useless read

We establish an operational correspondence between the behaviour of a process in 7% and its en-

coding in Aw, and from this we establish full abstraction of the translation of 7**f into Am with respect
to barbed equivalence in the two calculi. We then investigate proof techniques for barbed equivalence
in Am, based on two forms of labelled bisimilarities. For one bisimilarity we derive both soundness
and completeness. This bisimilarity is similar to, but not the same as, asynchronous bisimilarity. For
instance, it is defined on ‘reference-closed’ processes (intuitively, processes in which all references are
allocated); therefore inputs on reference names from the tested processes are not visible (because such
inputs are supposed to consume the unique output message at that reference that is present in the tested
processes). The output clause of bisimilarity on reference names is also different, as we have to make
sure that the observer respects the pattern of usage for reference names; thus the observer consuming
the output message on a reference name ¢ should immediately re-install an output on /.

The second bisimilarity is more efficient because it does not require processes to be ‘reference-closed’.
Thus output messages on reference names consumed by the observer need not be immediately re-installed.
However sometimes access to a certain reference is needed by a process in order to answer the bisimulation
challenge from the other process. And depending on the content of such references, further accesses to
other references may be needed. Since we wish to add only the needed references, this introduces an
inductive game, in which a player requires a reference and the other player specifies the content of such
reference, within the coinductive game of bisimulation. We show that the resulting bisimilarity is sound,
and leave completeness as an open problem. Finally, we discuss examples of uses of the bisimilarities.

3.2.1 Types and contextual equivalences with reference names

We use types to formalise the behavioural difference between reference names and plain names in Ar.
The types of the sorting impose a partition on the two sets of names (reference names and plain names).
Thus we assume such a sorting, under which all processes are well-typed. We separate the base type
system (Milner’s sorting) from the typing rules for reference names so as to show the essence of the latter
rules. Accordingly, we only present the additional typing constraints for reference names. For simplicity,
we will consider the language to be monadic, i.e. names may carry only one name.

We write: RefTypes for the set of reference types (i.e. types that contain reference names); Type(n)
is the type of name n; 0bType(n) is the type of the objects of n (i.e. the type of the names that may be
carried at n). For example in well-typed processes such as 7{m) and n(m). P, name m will be of type

ObType(n).

Notations. We use £, ... to range over reference names, a,b, .. over plain names, n,m, ... over the set
of all names. A ranges over finite sets of reference names. We sometimes write A — x as abbreviation
for A —{x}. Moreover Ay WAy is defined only when Ay N Ay =0, in which case it is A1 U As; we write
A,z for AW {x}.

Compared to the notation from Chapter [2| n,m,... are used instead of a,b,... to denote all names.
The type system is presented in Figure[3.1] Judgements have the form A -, P, where P is an A process.

24

RINPN RRESN RPAR RREP

ROUTN 0F, P AF, P AP Ak Q 0F, P
0, a(m) Oty a(z). P Al (va)P AWAH P|Q 0+, la(m). P
RINPR RRESR RSum RMATCH
ROUTR (k. P ALF P 0. Gy Ok, Gy RNIL 0F, G
- £(m) 0 L(z). P Aty (WO)P 0, G+ Gy 0F, 0 OF, [a=bG
RTAU
0F, P
O, 7. P

Figure 3.1: Typing conditions for reference names in A7 processes

Rule ROUTR along with Rule RPAR ensures that every reference name in A appears in the subject of
exactly one unguarded output. Rule RRESR ensures that new reference names are always in A while
Rule RINPR ensures that A is constant after a communication at a reference name (by re-emitting an
output after one has been consumed).

Intuitively, if A b, P, then P must make available the names in A immediately and exzactly once in
output subject position. We say that £ is output receptive in P if there is exactly one unguarded output
at £. Then A+ P holds if

— any £ € A is output receptive in P;
— in any subterm of P of the form (v¢')Q or ¢'(m).Q, name ¢ is output receptive in Q.

This intuition is formalised in Lemma and in Proposition that relates types and operational
semantics.

Typing is important because it allows us to derive the required behavioural equivalences. For instance,
allowing parallel composition with the ill-typed process £(x). 0 would invalidate the barbed equivalence
between the terms in law .

In the remainder, it is assumed that all processes are well typed, meaning that each process P obeys
the underlying sorting system and that there is A s.t. A F, P holds. Two processes P,(Q are type-
compatible if both A . P and A ;. @Q, for some A; we write A . P,Q in this case. In the remainder,
all relations are on pairs of type-compatible processes. Similarly, all compositions (i.e. of a context with
processes) and actions are well-typed.

The type system satisfies standard properties, like uniqueness of typing (A + P and A’ -, P imply
A = A’), and preservation by structural congruence (P = @ and A . P imply A F Q). As claimed
above, if A+ P, then names in A are output receptive:

Lemma 26. If A,/ P then P = (vn)(f{m) | Q), with £ ¢ 71, and there is no unguarded output at £ in
Q.

We can now define the type-allowed transitions on top of the standard ones (Figure [2.2)).

Definition 27 (Type-allowed transitions). When A b, P, we write [A; P] 2 [A/; P/ if P £ P' and
one of the following holds:

1. e {(whalt), tim)} and A’ = A, ¢
2. p=1(m) or p = (wb)l(b) and A',£ = A
3. = (WU) and A, 0 = A, ¢

4. p e {r,alm),alm), (wb)ab)} and A = A",

We can remark that in the case where p = £{m), we must have £ ¢ A, as otherwise the context would
not be able to trigger an input (since, by typing, it could not generate an output on £).

25

Proposition 28 (Subject reduction). If A+, P and [A; P] £ [A’; P'], then A’ -, P'.

Additionally, if [A; P) Lo, [A’; P'] then we have A’ -, P | £(m). This shows that the input clause
found in asynchronous bisimulation is consistent regarding the typing of processes.

3.2.2 Behavioural equivalences with reference names

As usual in typed calculi, the definitions of the barbed relations take typing into account, so that the
composition of a context and a process be well-typed. In the case of reference names, an additional
ingredient has to be taken into account, namely the accessibility of reference names. If a process has the
possibility of accessing a reference, then a context in which the process is tested should guarantee the
availability of that reference. For this, we define the notion of completing context and complete process.
Then, roughly, barbed congruence becomes “barbed congruence under all completing contexts”.

A process P is complete if each reference name that appears free in P is ‘allocated’ in P. We write
fn, (P) for the set of free reference names in P.

Definition 29 (Open references and complete processes). The open references of P such that A + P
are the names in fn,.(P) \ A; similarly the open references of processes Pi,..., P, is the union of the
open references of the P;’s. P is complete if it contains no open reference: i.e. fn,(P) C A and A+, P,
for some A.

A context C'is completing for P if C[P] is complete.

Note that an Aw complete process might have free reference names, if these are not open references;

Lemma 30. P is complete iff () -, ()P where 7 fn, (P).

Completing contexts are the only contexts in which processes should be tested. We constrain the
definitions of typed barbed congruence and equivalence accordingly. The corresponding bisimulation,
reference bisimulation, is also a closure to obtain completing contexts. This makes defining its approx-
imants harder, thus in this section, we use the reduction-closed barbed equivalence as our contextual
equivalence.

Definition 31 (Barbed bisimulation and reduction-closed barbed congruence with reference names).
A relation R on processes is a barbed bisimulation with reference names if whenever P R @ with P, Q
complete:

1. P, implies Q o
2. P — P’ implies that there is Q' such that Q@ = Q' and P’ R Q’

3. and symmetrically for Q.

Reduction-closed barbed congruence, written %f’”"

by contexts, and reduction-closed barbed equivalence, written
that is closed by static contexts.

, is the largest barbed bisimulation that is closed
A s the largest barbed bisimulation

This typed barbed equivalence is the behavioural equivalence we are mainly interested in. The
reference name discipline weakens the requirements on names (by limiting the number of legal contexts),
hence the corresponding typed barbed relation is coarser. We are not aware of existing works in the
literature that study the impact of the reference name discipline on behavioural equivalence.

Lemma 32. For all compatible P, Q, P = @ (and hence also P ~, Q) implies P =4™ Q.

We show in Section [3.2.3| that the inclusion is strict.

26

3.2.3 Bisimulation with reference names

In this section we present proof techniques for barbed equivalence based on the labelled transition
semantics of Ar. For this we introduce two labelled bisimilarities.

The first form of bisimulation, reference bisimilarity, only look at transitions of complete processes;
processes that are not complete have to be made so. Intuitively, in this bisimilarity, processes are
made complete by requiring a closure of the relation with respect to the (well-typed) addition of output
messages at reference names (the ‘closure under allocation’ below). Moreover, when an observer consumes
an output at a reference name, say £(n), then, following the discipline on reference names, he/she has
to immediately provide another such output message, say £(m). This is formalised using transition

notations such as P M P’ which makes a swap on ¢ (reading its original content n and replacing

it with m). As a consequence of the appearance of such swap transitions, ordinary outputs at reference

names are not observed in the bisimulation. Similarly for inputs at reference names: an input P —= Hm) P
from a complete process P is not observed, since it is supposed to interact with the unique output at
¢ contained in P (which exists as P is complete). Finally, an observer should respect the completeness
condition by the processes and should not communicate a fresh reference name — to communicate such
a reference, say ¢, an allocation for ¢ (an output message at £) has first to be added.

A relation R is closed under allocation if P R @ implies P | Z(YR Q | £(n) for any ¢(n) such that

P | #(n) and Q | £(n) are well-typed. We write P ———> Kmbml, it P X" prand PP = P | £{m), for some

P"; similarly for P M P’. Then, as usual, P M P’ holds if P = P” M P" = P’ for

some P P"' and similarly for P $L P B B
We let a range over the actions y plus the aforementioned ‘update actions’ £(n)[m| and (vn)f(n)[m].

We also extend type allowed transitions for update actions as expected, e.g. [A; P] Hn)] [A, ¢, P |

#{m)] when [A; P} [A’ P'] and similarly for (vn)f(n)[m].
Setting m to be the object of an update action, we write A F,. a when: (i) if the object of « is a free
reference name then it is in A, and (ii) « is not an input or an output at a reference name.

Definition 33 (Reference bisimilarity). A relation R closed under allocation is a reference bisimulation
if whenever A F, P R Q with P,Q complete and [A; P] % [A/; P'] with A E, «, then

1. either there exists Q' such that Q 4 Q' and A’ F, P’ R Q' for some Q'
2. or «v is an input a(m) and Q | a{m) = Q' with A" E, P’ R Q' for some Q’.
3. and symmetrically for Q.

Reference bisimilarity, written ~,, is the largest reference bisimulation. We write P ~2 @ when
(A, P,Q) €~,. We often write P ~,) when the typing can be inferred.

Because reference bisimulation is closed by allocation, ensuring that we can add outputs at any time,
it explains why we choose to use reduction-based barbed equivalence which can also add contexts at any
time, rather than the standard barbed equivalence where all the context must be added upfront.

We can now show that ~, coincides with barbed equivalence. The structure of the proof is standard
and is given in Appendix however some care has to be taken to deal with closure under parallel
composition.

Lemma 34. If P~ Q, and @ -, R, then P | R~, Q | R.

Proposition 35 (Substitutivity for active contexts). If P ~2 Q, then E[P] ~!' E[Q)] for any static I'/A
context F.

As barbed bisimilarity is coarser than reference bisimilarity, the soundness of reference bisimilarity
with respect to barbed equivalence follows. To prove the completeness, we need a way to get rid of
restrictions. When doing reductions in barbed equivalence, a bound name cannot become free. As this
can be achieved using transitions, e.g. with an action (vn)a(n), we need the following lemma to mimic
this behaviour using a separate process.

27

Lemma 36. If (vn)(P | 5(n)) =A™ (vn)(Q | 5(n)) with s a fresh plain name for P and Q, then
P ~Arn Q

Then we can prove the completeness by showing that barbed equivalence is a reference bisimulation.
The proof is standard and is given in Appendix

Theorem 37 (Labelled characterisation). P =, @ iff P =4™ Q.

In reference bisimilarity, the tested processes are complete: hence all their references must explicitly
appear as allocated, and when a reference is accessed, an extension of the store is made so to remain
with complete processes (and if such an extension introduces other new references, a further extension is
needed). The goal of the bisimilarity ~;, below is to allow one to work on processes with open references,
and make the extension of the store only when necessary. The definition of the bisimulation exploits an
inductive predicate to accommodate finite extensions of the store, one step at a time. This predicate can
be thought of as an inductive game, in which the ‘verifier’ can choose rule BASE and close the game, or
choose rule EXT and a reference ¢; in the latter case the ‘refuter’ chooses the value of m in the forall
quantification, which corresponds to the value stored in £.

Definition 38 (Inductive predicate). The predicate ok(A, R, P,Q, u) (where A is a set of names, R a
process relation, P, Q) processes, and p an action) holds if it can be proved inductively from the following
two rules:

BASE
Q |Hﬁ<n?> = Q' forp : n{m) P'RQ
Q=0Q otherwise
Ok(A7 R7 P/ﬂ Q? /’L)
ExT

0¢ A Vm : ok((A,0),R, P | {{m),Q | {m),)
Ok(A’ R7 P/’Q,M)

Definition 39 (Bisimilarity with inductive predicate, %ip). A relation R is an ip-bisimulation if when-

ever A E, PR Q and [A; P] £ [A/; P'], we can derive ok(A U A’, R, P',Q, 1), and symmetrically for
the transitions emanating from Q. We write ~;, for the largest ip-bisimulation.

The names in A U A’ are the reference names that appear in output subject position in P’ or Q.
Therefore, when using rule EXT of the inductive predicate, the condition ¢ ¢ A ensures us that the
message at ¢ can be added without breaking typability.

The following up-to technique allows us to erase common messages on reference names along the
bisimulation game.

For this, we use the notation M, where s is a finite list of pairs (¢,m), to describe parallel compositions

of outputs on reference names (i.e. M ef Iemes {m)), and A, F, M, where A, contains all first
components of pairs of s. Intuitively, M represents a chunk of store. An example is given by s =
{(Kl,ml), (fg,mg)} where AS = fl,gg and Ms = €1<m1> | €2<m2>

Definition 40 (ip-bisimulation up to store). An ip-bisimulation up to store is defined like ip-bisimulation
(Definition [39)), using a predicate ok’ (AUA’, R, P/, Q,). This predicate is defined by a modified version
of rule EXT where ok’ is used instead of ok, both in the premise and in the conclusion, and by the following

modified version of the BASE rule:
Base-Up ,
P/:P//|M Q‘ﬁ<m>$EQ ‘Ms foru:n(m)

B ° QL=Q" | M, otherwise

Ok/(Aa Rv P/7 Qa ,u/)

P// R Q/I

Rule BASE-UP makes it possible to erase common store components before checking that the processes
are related by R.

Proposition 41. If R is an ip-bisimulation up to store, then RC ;.

28

Proposition 42 (Soundness of %ip). We have ~;, C ~,.

Intuitively, the inclusion holds because an ip-bisimulation is closed by parallel composition with M
processes. We leave the opposite direction, completeness, as an open issue.

3.2.4 Examples

To present the examples below, we introduce various notations displaying the use of reference names to
implement proper references. This intuition is more formally developed in Section [3.3}

(wl=n)P ¥ wo)(n) | P) tan.P 0. (@n) | P) 05 (m). P o(m). (Fim) | P)

The first represents a local reference ¢ with content n, the second writes the name n at ¢ and the
third reads the content at ¢ and binds it as m. We can see how these read/write operations affects a
local reference by looking at the following transitions: we have (vf = n)f am.P = (vf = m)P and
(vl =n)l>(m). P 5 (vl = n)P{"m}.

We now give examples of uses of the various forms of labelled bisimulation (=2, ~,, Rips Rip Up to
store) for Am to establish equivalences between processes with references. In some cases, we use the
‘up-to structural congruence’ (=) version of the bisimulations — a standard ‘up-to’ technique.

The first example is about a form of commutativity for the write construct.

Example 43. We wish to establish 0 <a. £<ab =A™ 10 <b. f<a. For this, we prove the law 10<a. £ab =A™
W<aa|!W<b, which will be enough to conclude, by commutativity of parallel composition. We write

P00, (Fa) | 0. 20)) and P % (10().%(a)) | (1(). T(b)).

We can derive P &, P», using the singleton relation R et {(P1, P2)}, and showing that R is an asyn-
chronous bisimilarity up-to context and structural congruence [41]. We can then conclude by Lemma

The following example shows some benefits of using ~;, and %, up to store in the proof of a property
that generalises law (3.1)), which involves a ‘useless read’.

Example 44. Suppose () -, Py R Qo, where R is an asynchronous bisimulation, ObType(¢) € RefTypes,
and 7z is a fresh name. Then 0 -, £(x). (Py | £(x)) ~, Qo.

In general, £(z). (Py | #{z)) and Qo are not related by ~, (take Py = Qo = @(n)), thus the inclusion
in Lemma [32] is strict.

Using the notation M, from Definition to prove £(z). (Py | £(z)) =, Qo using a reference bisimu-
lation, we need a relation such as

O {(t(x). (P | Ta)) |) | P, Qo | TE) | Tm)) | for any m}
UA{(t(x). (Po | Kz)) | €0 | €(m) | My, Qo | €€) [€'(m) | My) | for any m, My}
U{P | U) | 0(m) | M, Q | £(¢') | €/(m) | My) | for any m, M,,with P R Q}

and prove that R; UR " (where Ry is the inverse of R;) is a reference bisimulation.
We can simplify the proof and avoid the several quantifications in R4 (in particular on M, whose
size is arbitrary), and prove that Rq is an ip-bisimulation, for

Ry ¥ RU {(P | €¢(m),Q | £(m)), for any m,with P R Q}

U{(l(). (Po | (z)), Qo), (Qo,L(x). (Po | (x)))}-

The last component of Rs is dealt with using rule EXT of the inductive predicate (Definition , and
this brings in the second component (the closure of R under messages on /).

We can simplify the proof further, by removing such second component, and show that Rg3 is an
ip-bisimulation up to store, for

def

R3 = RU{(U(x). (Po | Uz)), Qo), (Qo, l(x). (Po | U)))}-

29

3.3 Application: a m-calculus with references

3.3.1 Syntax and semantics of 7**f

In this section, we introduce 7, the asynchronous m-calculus extended with primitives to interact with
memory locations.
We assume an infinite set Names of names and a distinct infinite set Refs of references. These sets do

not contain the special symbol %, that stands for the constant “unit”. We use a,b,¢,...,p,q,... to range
over Names; ¢,... to range over Refs; and n,m,...,x,y,... to range over A1l 4 Names URefs U {x}.
To make the encoding easier to read, we use 4, ... both for references in 77t and for reference names in

A7 which are a subset of names.

The grammar for the calculus 7¥ef

is the following.

P u= 0la(x).P|an)|'P|P|P| (va)P | [n=m]P
| (wt=n)P | lan.P | l>(2).P|{xn(z).P

The operators in the first line are the standard w-calculus constructs for the inactive process, in-
put, asynchronous output, replication, parallel composition, name restriction, and matching (however
matching here is defined on both names and references). In the second line, we find the operators to
handle references: reference restriction, or allocation (creating a new reference £ with initial value n),
write (setting the content of ¢ to n), read (reading in = the value of ¢), swap (atomically reading on x
and replacing the content of the reference with n). These operations correspond to the notations used
in Section 324 N

We use the same notations as for standard m-calculus, and we write (vL) a sequence of reference
allocations (i.e. a piece of store), using L to represent a single allocation such as £ = n. Given the
binders (va)P and (v¢ = n)P (for a and ¢, respectively), a(x). P, £> (x). P and ¢ x n(z) (for z), we
define bn(0), fu(O) as usual, for the bound and free names of some object O (process, action, etc.) and
similarly for the free and bound references of O (fr(O), br(0O)). The set of names of O is defined as the
union of its free and bound names; and analogously for references.

We shall assume that there is a sorting system under which all processes we manipulate are well-
typed. In the remainder we assume that all objects (processes, contexts, actions, etc.) respect a given
sorting.

The definition of structural congruence, =, is the expected one from the m-calculus, treating the
(v¢ = n) operator like a restriction with n being free:
Plwt=n)Q = (wWl=n)(P|Q)ifl ¢ r(Q) wl=n)va)P = (va)wl=n)Pifa#n
(vl=n)0 = 0 wl=n)wl'=m)P = Wl'=m)(vl=n)Pif{ £#m and V' #n

Contexts, ranged over by C, are process expressions with a hole [-] in it. We write C[P] for the process
obtained by replacing the hole in C' with P. Active (or static) contexts, ranged over by E, are given by:

E u= []|E|P|(wa)E|wl=n)E .

The reduction relation — is presented in Figure [3.2] It uses active contexts to isolate the subpart of
the term that is active in a reduction. We write = for the ‘multistep’ version of —, whereby P = P’
if P may become P’ after a (possibly empty) sequence of reductions. Rules R-READ, R-WRITE and
R-SwAP in Figure describe an interaction between the process and a reference ¢. These rules make
use of a store (vL); this is necessary because there might be references that depend on ¢, and as such
cannot be moved past the restriction on ¢. An example is (v¢ = a)(v¢’ = £) <b. P: the write operation
is executed by applying rule R-WRITE, with (I/E) = (vl' ={), as the restriction on ¢’ cannot be brought
above the restriction on ¢. We recall that br(VZ) are the references bound by the v.

Our behavioural equivalences will be reduction-closed barbed congruence and reduction-closed barbed
equivalence, a form of bisimulation on reduction that uses closure under contexts and simple observables.
In the context closure, however, we make sure that all references mentioned in the tested process have
been allocated. o _

P exhibits a barb at a (so a is in Names), written P |g, if P = (vb)(vL)(@(m) | P’') with a ¢ b. We
write P |z if P = P; and P; |5 for some P;.

30

R-EqQuiv: R-CTXT: R-CoMM:

P=P P = qQ Q=Q PP
P—Q E[P] — E|Q] a(x). P|a(n) — P{n/xz}
R-READ:
¢,n ¢ br(vL)
(vt =n)(WE)(l> (2). P | Q) — (vl = n)wI)(P{"s} | Q)
R-WRITE:
(,n ¢ br(vL)

(vl =m)(wL)({<n.P| Q) — (vl =n)(wL)(P | Q)

R-SwaAP: _
,n,m ¢ br(vL)

(vt =m)(wL)(¢ x n(z). P | Q) = (wt =n)(vL)(P{m/z} | Q)

Figure 3.2: 7%, reduction relation

A process P is reference-closed if fr(P) = (). A context C is closing on the references of a process P
if C[P] is reference-closed; similarly, C is closing on the references of P, @ if it closing on the references
of both P and . Since reductions may only decrease the set of free names of a process, the property of
being reference-closed is preserved by reductions.

The equivalences are then defined in the same way as in Ar (Definition with reference-closed

processes used in place of complete processes. Barbed equivalence (resp. barbed congruence) in 7%t is

written =7 (resp. =7¢f).

The restriction to closing contexts (as opposed to arbitrary contexts) yields laws such as
L (x). P %Zef P,

whenever = ¢ fn(P). Closing contexts ensure that the reading on ¢ is not blocking, and therefore possible
observables in P are visible on both sides.

As the quantification on contexts refers to the free references of the tested processes, transitivity of
barbed congruence and equivalence requires some care. As usual in the w-calculus, barbed equivalence
is not preserved by the input construct.

£

3.3.2 Mapping 7" onto the Asynchronous 7-calculus

We present the encoding of 7¢f into A7, which follows our notations from Section [3.2.4]

Encoding 7**f. The reference names from Section will be used to represent the references of 77°<.

The encoding [-], from 7% to A, is a homomorphism on all operators (thus, e.g. [P | P%] 2 [P] |

[P2], and [a(m). P] def a(m).[P]), except for reference constructs for which we have:

[(wt=m)P] € wO)(@m) | [P]) [€<v.P] € 0. @) | [P]) [¢>(2). P] € (). @) | [P])

[» n(x). P] € ¢(z). (U(n) | [P])

Recall that ¢(_). Q stands for an input whose bound name does not appear in . In the encoding, an
object m stored at reference / is represented as a message £(m). Accordingly, the encoding of a write
¢<v. Pis £(.). (¢(v) | [P]), meaning that the process acquires the current message at ¢ (which is thus not
available any more) and replaces it with an output with the new value. The encoding of a read ¢ (x). P
follows a similar pattern, this time however the same value is received and emitted: ¢(x). (¢{x) | P). The
encoding of swap combines the two patterns.

31

Validating the Encoding. We now show that the two notions of barbed congruence coincide via the
encoding.

Theorem 45 (Operational correspondence). If P — P’ then [P] — [P'].
Conversely, if [P] — Q, then P — P/, with [P'] = Q.

The next lemma shows that, up to asynchronous bisimilarity, we can ‘read back’ well-typed processes
in Am, via the encoding, as processes in 7%%f. And similarly for contexts. For some technical reason, we
need to use simple types; e.g. the sorting is non-recursive (meaning that the graph that represents the
sorting function, in which the nodes are the types, does not contain cycles). It removes processes like
(vl1,05)(€1(ls) | £2(¢1)) that have no equivalent in 77e%.

Lemma 46. If) i, P, then there exists R in 7*f such that [R] =, P.
Theorem [45| and Lemma [46| are the main ingredients to derive the following theorem:
Theorem 47 (Full abstraction). For any P,Q in 77¢f: P = Q iff [P] =A™ [Q];
and similarly P =" Q iff [P] =A™ [Q].
3.3.3 Behavioural equivalence in 77°f: examples

We present a few examples that illustrate some subtleties of behavioural equivalence in 77, The first
example shows that processes may be equivalent even though the store is public and holds different values.
(In the example, the reference ¢ is actually restricted, but the process P underneath the restriction,
representing an observer, is arbitrary).

Example 48. For any P, we have P, =™ Py, for

P (e =a)(P|<aa|llab) P (we=b)(P|l<aa|llab)

In the second example, the assignment on top of P is not blocking, provided that the same assignment
is anyhow possible, and provided that the current value of the store can be recorded.

Proof. Let Ry, Ry be the encodings of P;, P> in the example:

R wo)(@a) | [P]] 10). Ua) | 1) 7))
Ry ' (wo)(2d) | [P] | 16 a) | (). 2(0)

We then have Ry == R and Ry == R, which implies R; =, Ry (where =, is asynchronous bisim-
ilarity), as {(R1, R2)} Uid, where id = {(P, P)} is the identity relation, is an asynchronous bisimulation
up to =. We can then conclude by Theorem O

Example 49. We have P, 2™ P, for

P 0ab. Pl uab| e (2). < P P1ab| s (z). bz

On the left, it would seem that P runs with a store in which ¢ contains b; whereas on the right, P could
also run with the initial store, where ¢ could contain a different value, say a. However the component
> (x). £ <2 allows us to store a in 2 and then write it back later, thus overwriting b.

Proof. Let Ry, Ry be the encodings of P;, P, in the example:

def

Ry C()- (€0 [TPD) 1 1e()- €4b) | (). (¢) | €()- E{))
Ry S [P] M) 10) | 1(w). () |) Ua))
Then for all m, processes £(m) | Ry and ¢(m) | Ry are complete. We define

R Y {(Ry|¥m) | Bx, Ry | %(m) | Bx)} ,

32

where X {z1,...,z,} is a possibly empty finite set of names, and

Bx ¥ o). 0ar) | ... | £0). Uzy)

Then R U id is an ip-bisimulation.
Reusing the same notations, R’ def {(R1 | Bx, Rs | BX)} U id is an ip-bisimulation up to store: this
up-to technique allows us to remove the ¢(m) particles. O

Example 50. We have P, 22" Q,, where

P, (wt)eab. (T t.0aa. (] Lab. (T]) Qs & (it <a. (| t.0ab.(E] Laa. (] 0))

The discriminating context being large, the formal discussion is moved in Appendix [A:3.2] Intuitively,
P, and @, are refinements of the processes in Example in that their initial writes store different
values on the reference ¢, but both processes maintain the capability of writing both values in ¢. The
differences with Example [4§ are the additional inputs and outputs on name ¢, which are generated along
the transitions. These allow an observer to distinguish P, from)5 by exploiting the swap construct. We
informally explain the reason. If the two processes have written the same value, say a, in ¢, then @, has
generated the same number of inputs and outputs on ¢, while P; must have generated an extra output.
An observer can use swap to read the content of ¢, so to check that the value is indeed a, and write back
a fresh name, say e. Now the observer can tell that P; has an extra output on c¢: process Qs cannot add

a further output, because this would require overwriting e in ¢, which can be tested by the observer at
the end.

We have seen in Example two equivalent processes whose initial store (a single reference) is
different. The equivalence holds intuitively because the values that the two processes can store are
the same. Using two references, it is possible to make the example more complex. In Example
the processes are equivalent and yet the pairs of values that may be simultaneously stored in the two
references are different for the two processes. For each reference separately, the set of possible values is
the same. But setting a reference to a certain value implies first having set the other reference to some
specific values. (The processes could be distinguished if an observer had the possibility to simultaneously
read the two references.)

Example 51. Consider two references 1, {s where booleans (represented as 0,1 below) can be stored.
Then for any P, we have P, =™ P,, where

Pyt = 0,6, = 0)(P | (Wt)(| 1. 01 <1. £, 90. 65 2 1. 05 20.7))
Pyt = 0,0, =0)(P | (Ut)(E | 1.0y 1. £y 1.4 <0. 05 <0.7))
P, and P, can write 0 and 1 in references /1 and {5, but not in the same order. By doing so, we see that
if Py loops, the content of ¢; and ¢2 will evolve thus: (0,0) — (1,0) — (0,0) — (0,1) — (0,0), while for
P the loop is different: (0,0) — (1,0) — (1,1) — (0,1) — (0,0).
In particular, P, can always go through the state (1, 1), independently of the transitions of P, while
P cannot, in general, reach this state.

The example above relies on the fact that the domain of possible values for ¢; and ¢5 is finite. A
more sophisticated example, without such assumption, is given in the Appendix [A:3.2]

33

Chapter 4
Sequentiality

In this section we study sequentiality. ‘Sequentiality’ intuitively indicates the existence of a single
thread of computation. Our main objectives are to define a type system ensuring a sequential execution
(Section , and then to examine its impact on behavioural equivalence, by adapting the bisimulation
proof technique to this typed calculus (Section . Finally, in Section we briefly explore how
combining this type system with the one for references from Chapter [3| enables further reasoning and
more interesting examples to be proven equivalent.

4.1 Type system

As mentioned above, intuitively, sequentiality ensures us that at any time at most one interaction can
occur in a system; i.e. there is a single computation thread. A process that holds the thread decides what
the next interaction can be. We say that such a process is active, while a process that does not hold the
thread is inactive. An active process does so by offering a single particle (input or output) that controls
the thread. The process may offer multiple particles, but only one of them may control the thread. The
control on the thread attached to a particle is determined by the subject name of that particle. A given
name may exercise the control on the thread either in output or in input; in the former case we say that
the name is output-controlled, in the latter case the name is input-controlled. For instance, suppose that
x,y, z are output-controlled and wu, v are input-controlled. Then the following process correctly manages
the thread and will indeed be typable in our type system:
Py @|y7) 27|70

The initial particles in P are u, z,7; however only u controls the thread, as z is output-controlled and v
is input-controlled. When the input at u is consumed, the new particles x,y are available, where now
controls the thread, as both names z,y are output-controlled. An external process that consumes the

particle T will acquire the control over the thread. For instance, a process such as @ def 5 | z. Q' initially
does not hold the thread; in the parallel composition P | @, after the two interactions at v and z, the
control on the thread will be acquired by Q’:

PlQ—==(y7|27]7)|Q

Now Q' will decide on the next interaction; for instance, it may offer an output at y or z, or an input at
v. It may offer at most one of these, though it may offer other particles that do not control the thread.

Sequentiality however does not exclude non-determinism. An output particle @(b) that owns the
thread may have the possibility of interacting with different input processes at a (and symmetrically for
input processes owning the thread). Indeed we also admit internal non-determinism (i.e, processes such
as 7. P+ 7. Q that may chose to reduce either to P or to @ without interactions with the environment),
both in active and in inactive processes.

Notations. In the remainder, x,y, 2z range over output-controlled names, u,v,w over input-controlled
names; we recall that a,b, c range over the set of all names.

34

In the m-calculus, programming with output-controlled names is natural. A typical usage of such
names is to activate other processes, like a server waiting for requests. This discipline revolves around
the idea that when a process sends a message, it expects the receiver to act upon reception, fulfilling the
request. In a sequential setting, this also means that the process must wait to receive an answer before
continuing.

On the other hand, being input-controlled requires to be active while receiving, which can seem
counter-intuitive. Input-controlled names are used to model the references names from Chapter 3| which
will be discussed in more details in Section [£.3] We present here some other cases where input-controlled
names naturally appear.

From polyadic to monadic. We recall the main clauses for the translation from polyadic processes
to monadic processes [52, Section 3.1]:
la(bi,...,bn). P] % a(u). u(by).....u(dn).[P] [albr,...,by). P] % (ww)aw).wby).alb,). [P]
Sending multiple names by, ...,b, is simulated by sending a private channel u, which is then used to
send all names in sequence. If we perform this translation in a sequential setting, the private channel u
must be input-controlled, whether the channel used for the original communication a is input-controlled
or not. In the m-calculus, this translation is sound but not complete, as there exist polyadic processes
that are equivalent but whose encodings are not. Restricting the calculus with sequentiality removes
some counter examples, so it could be interesting to see how the addition of sequentiality would affects
the soundness/completeness of the translation.

Milner’s original encoding of the lazy-\-calculus. Milner defined and studied various encod-
ings of the A-calculus in the m-calculus. Our encoding in Chapter [f]is built upon one. Here we present
another one, solely to illustrate the notion of input-controlled name. The encoding is given as follows
[34]:

def _ def def _
[x]. = T(uw) [Ae. M)y = u(x,v). [M], [MN]., = (wo)([M], | (va)@{z,u). lz(w). [N]w)

The encoding is parametrised by a name w. Intuitively, [M], is computing a function, which can then
be called by sending its argument at u. We observe that the encoding of a A-term is a sequential process,
when u, v, w are input-controlled while z is output-controlled. Indeed, in the encoding of the application
MN, as N should not reduce, the process can immediately send the argument to the encoding of M.
The corresponding output at v is inactive, waiting for the computation of M to reduce into a function.

The type system for sequentiality is presented in Figure Judgements are of the form n k¢ P, for
n € {0,1}. A judgement 1 5 P indicates that P owns the thread, i.e. P is active, and 0 k5 P otherwise,
i.e. P is inactive.

We recall that we only present the additional typing constraints given by sequentiality, assuming the
existence of a sorting under which all processes are well-typed.

Some remarks on the rules in Figure 4.1} a rule with a double conclusion is an abbreviation for more
rules with the same premises but separate conclusions. The continuation of an input always owns control
on the thread; the input itself may or may not have the control (rules SINPI and SINPO) (this is a choice
we make, as the dual approach seems less interesting [29]). A 7-prefix is neutral w.r.t. the thread. The
rule for parallel composition makes sure that the control on the thread is granted to only one of the
components; in contrast, in the rule for sum, the control is maintained for both summands. Operators
0 and match cannot own the thread; this makes sure that the thread control is always exercised.

We present some behavioural properties that highlight the meaning of sequentiality. A reduction
P — P’ is an interaction if it has been obtained from a communication between an input and an output
(formally, its derivation in the LTS of Figure uses rule ACoMM). A pair of an unguarded input and
an unguarded output at the same name form an interaction reder. In a sequential system, one may not
find two disjoint interaction redexes.

Proposition 52. Whenever 7 I P, there exist no Py, Py, a such that P = (va)(Py, |) with P, = P
and P, 5 P}, and both these transitions are interactions.

35

SINpPI SINPO SOutO SOuTl SRES SN
1k P 1k P OFs P OFs P nks P L

15 u(a). P 0 ks z(a). P, lz(a). P 1+ T(a). P 0 ks u(a). P n ks (va)P OFs0

SPAR SSum STAu SMAT
nll_sP 772|_SQ nl_sGl nl_sG2 77|_5P 0}_:>G
m+mn <1
m+nts PlQ nks G1+ G2 nks . P 0k [a=b]G

Figure 4.1: The typing rules for sequentiality

An inactive process may not perform interactions:

Proposition 53. If 0 -, P, then P does not have an interaction redex; i.e, there is no P’ with P = P’
and this transition is an interaction.

An inactive process may however perform 7-reductions, notably to resolve internal choices. In other
words such internal choices represent internal matters for a process, orthogonal with respect to the
overall interaction thread. The possibility for inactive processes to accommodate internal choices will
be important in our completeness proof (Section . However, an inactive process may only perform
a finite number of 7-reductions. A process P is 7-divergent if it can perform an infinite sequence of
reductions, i.e. there are Py, Ps,..., with P > P, - Py... P, —

Proposition 54. If 0 -, P then P is not 7-divergent.

In contrast, an active process may be 7-divergent, through sequences of reductions containing in-
finitely many interactions.

Sequentiality imposes constraints on the interactions that a ‘legal’ (i.e. well-typed) context may
undertake with a process. For the definition of barbed bisimulation and equivalence we must therefore
define the meaning of observability. The following definition of type-allowed transitions shows what such
‘legal’ interactions can be.

Definition 55 (Type-allowed transitions). When 7 - P, we write [; P] & [1/; P'] if P £ P" and one
of the following holds:

1. u=7and ' =19

2. p==z(@),andnp=0and n’ =1

3. pu=u(@andn=n =1

4. p= (wa)z(b), and n=1and 5/ =0

5. u= (wa)u(b),and n=n"=0

Note that in Clause 1. above, in the case of an interaction, we necessarily have n = 1.

This definition encompasses both which transitions are allowed and what the resulting type should
be. In fact, omitting the resulting type, we have that transitions are allowed if one of the following
clauses holds:

(a) n=0 (Clauses 2. and 5.)
(b) p=71 (Clause 1.)
(¢) n=1 and p = u(a) for some u,a or p = (va)z(b) for some @, x,b. (Clauses 3. and 4.)

Clause (a) says that all interactions between an inactive process and the context are possible; this
holds because the context is active and may therefore decide on the next interaction with the process.
Clause (b) says that internal reductions may always be performed. Clause (c¢) says that the only visible

36

actions observable in active processes are those carrying the thread; this holds because the observer is
inactive, and it is therefore up to the process to decide on the next interaction.

Similarly, the resulting type n’ only changes when the subject is an output-controlled name. We have
the following:

(a) if u = z(a), then ' =1. (Clause 2.)

(b) if u = (va)z(b), then n’ = 0. (Clause 4.)
(c) otherwise ' =n. (Clauses 1., 3. and 5.)
In all three cases, the resulting process P’ can indeed be typed with 7’.
Theorem 56 (Subject Reduction). If 5 P and [n; P] £ [; P'] then n/ 4 P'.

Weak type-allowed transition are defined as expected, exploiting the invariance of typing under re-
ductions: [; P] £ [/; P'] holds if there are Py, P, with P = Py, [1; Po] % [/; P,] and P, = P’.

4.2 Behavioural equivalence

4.2.1 Sequential bisimilarity

To tune Definition of barbed bisimulation and equivalence to the setting of sequentiality, we have
to specify the meaning of observables. An observable n =, P |, holds if there are P’ and an action p
such that [n; P] £ [/; P'] with a = a if 4 is an input at a and a = @ if p is an output at a. Following
Definition in barbed equivalence, the legal contexts are the n/n’ static contexts. We write barbed
equivalence at n as ~" and sometimes call it sequential barbed equivalence at n. Thus P ~" @ holds if

/

nts P,Q and E[P] &" E[Q], for any 1/ and any 1//n static context E.

About the reduction-closed variant of barbed equivalence. The reason why completeness proofs
for reduction-closed barbed equivalence may be simpler than with standard barbed equivalence is that
the testing context may be incrementally adjusted, after every interaction step with the tested processes.
This however requires the existence of special components in the contexts to handle the fresh names
generated by the tested processes. Specifically, the task of these components is to ensure that new pieces
of contexts, added later, will be able to access such fresh names. Thus, we need to prove lemmas like
Lemma 8] However, these components represent parallel threads, and break the sequentiality disciplines.
For this reason in the section we cannot appeal to reduction-closed forms of barbed equivalence, remaining
within the standard notions and therefore requiring an image-finiteness condition.

We are now ready to define the labelled bisimilarity to be used on sequential processes, which is our
main proof technique for barbed equivalence. A typed process relation is a set of triplets (1, P, Q) with

nts P,Q.
Definition 57 (Sequential Bisimulation). A typed process relation R is a sequential bisimulation if

whenever (1, P,Q) € R and [n;P] £ [if; P'], there is Q" such that Q £ Q' and (n',P,Q") € R.
Moreover, the converse holds on the transitions from (). Processes P and @) are sequentially bisimilar at
n, written P =7 @, if (n, P,Q) € R for some sequential bisimulation R.

Ordinary bisimilarity, restricted to processes having the same typing, is included in the sequential
one. So it is also a proof technique for sequential barbed equivalence at 7. Indeed, from any bisimulation,
we may construct a sequential bisimulation by taking the related pairs of well-typed processes in relation.

Proposition 58. For ks P,Q, if P = @ then also P =7 Q.
The inclusion is strict: all the examples in Section fail to hold for ~.

Theorem 59 (Soundness). If P =7 @, then P ~" Q.

37

As usual, the proof of Theorem [59| relies on the preservation of <! under parallel composition, which
requires some care in order to enforce sequentiality. This is ensured by typability. Theorem [59| allows us
to use the labelled bisimilarity ~7 as a proof technique for typed barbed equivalence.

This proof technique is also complete, assuming only output-controlled names (i.e. the thread may
only be exercised by output particles, not by the input ones), as we show below. The case with input-
controlled names is open.

4.2.2 Completeness for output-controlled names

In this section, we will only consider processes without input-controlled names. For the proof of com-
pleteness, we introduce the notion of singular process. Intuitively, a singular process always keeps the
thread. Formally, the set of singular processes is the largest set 7 of processes such that for all P € T,
we have 1, P and whenever [1; P] % [; P'], then P’ € T.

A simple example of singular process is 0y def (vz)Z, which is an active process without transition.

For processes with only output-controlled names, singular processes can be characterised in various ways:
Lemma 60. For a process P with only output-controlled names, the following clauses are equivalent:
1. P is singular.
2. P~!o0.
3. For all static 1/1 context E, we have E[P] ~! P.
4. 14 P and for all a, 15 P 4.
Proof.

e 1 — 2: Taking 7 the set of singular processes, we have that R = {(1,P,01) | PeT}
is a sequential bisimulation. Indeed, on one side, 0; has no transition. On the other side, if
[n; P] £ [f'; P'], then by definition n = 1 = 1 and P’ € 7. As P only contains output-controlled
names, we must also have that y = 7. We can then conclude as 0; = 0;.

e 2 — 3: Using the above implication, it is sufficient to show that E[01] is singular. Then we have
E[01] ~! 0, and E[P] ~! E[0,] ~! 0; =~! P as ~, is a congruence.

We show that 7 %' {E[04] | E is a 1/1 static context} is a set of singular processes. Writing E as

(va)([-] | T), we have that 0 ¢ T. Thus, when [1; E[0,]] £ [1; Q], by looking at the LTS, we must
have that (va)T £ (va/)T” with Q = (va’)(0; | T'), meaning Q € T. As by Theorem we also
have 1 ¢ @, we can conclude.

e 3 — 4: First, we have 1 -y P. We then reason by contradiction. If P |}, then we