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Résumé

Les modèles de détection d'objets dans les images sont des composants importants de sys-

tèmes intelligents comme les véhicules autonomes ou les robots. Ils sont typiquement obtenus

par l'apprentissage supervisé, ce qui nécessite de grands jeux de données annotées à la main. La

construction de tels jeux de données est pourtant coûteuse en temps et en argent, ce qui limite

souvent leur taille et leur diversité et, par conséquent, restreint l'applicabilité des détecteurs

d'objets. A�n d'éviter ces limitations, des alternatives qui demandent moins de données anno-

tées pour la détection d'objets ont été proposées, comprenant l'apprentissage semi-supervisé,

faiblement supervisé, actif ou non-supervisé. L'objectif de cette thèse est de développer de telles

méthodes. En particulier, nous nous concentrons sur le problème de découverte d'objets non-

supervisée (UOD) et une combinaison de l'apprentissage faiblement supervisé et actif pour la

détection d'objets.

Étant donné une collection d'images, la découverte d'objets non-supervisée vise à trouver

les images qui contiennent les objets de la même catégorie, et localiser ces objets. Dans la

première partie de la thèse, nous proposons quatre approches � OSD, rOSD, LOD et LOST �

pour résoudre ce problème. Ces méthodes améliorent graduellement l'e�cacité et l'applicabilité

de l'UOD.

OSD et rOSD supposent qu'il existe une structure de graphe dans les collections d'images

où celles-ci sont les n÷uds et deux images sont connectées si elles contiennent des objets d'une

même catégorie. Elles reformulent l'UOD comme un problème d'optimisation discrète où les

variables binaires décrivent la structure du graphe et les propositions de régions des images. Par

rapport à OSD, rOSD introduit des modi�cations qui réduisent le coût de calcul et améliorent

la performance. Di�érente d'OSD et rOSD, LOD formule l'UOD comme un problème de clas-

sement dans le graphe dont les n÷uds sont les propositions de régions. Cela permet d'utiliser

les méthodes de classement existantes pour trouver des noeuds bien connectés dans les graphes

comme PageRank [Page, 1999]. Ces méthodes sont hautement e�caces et parallélisables, et per-

mettent d'appliquer l'UOD à des jeux de données très grands. Finalement, LOST ne considère

pas de relation entre les images. Elle se base sur la puissance des descripteurs des transfor-

mers auto-supervisés [Caron, 2021] et propose une procédure simple pour trouver un seul objet

dans l'image. Puis, elle se sert des objets trouvés comme pseudo annotation pour entraîner des

détecteurs d'objets qui sont capables de lier les images similaires et trouver plus d'objets par

image.

Il est important d'investiguer les capacités des méthodes non-supervisées mais, dans la pra-

tique, nous avons souvent accès à certaines sources de supervision. Nous considérons dans la

deuxième partie de la thèse un scénario pratique pour entraîner un détecteur d'objets où toutes
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les images d'entraînement possèdent une annotation faible (les catégories de ses objets) et un

petit budget d'annotation additionnel est disponible. Nous entraînons d'abord un détecteur

avec les annotations faibles. Puis, nous nous servons du budget additionnel pour annoter un

petit nombre d'images d'entraînement qui sont choisies avec les stratégies d'apprentissage actif

avec les boites englobantes. Nous peau�nons �nalement le détecteur avec toutes les annotations

disponibles.

En particulier, nous proposons BiB, une stratégie d'apprentissage actif qui choisit un en-

semble divers des images où le détecteur fait le plus d'erreurs. Nous montrons que BiB surpasse

toutes les stratégies d'apprentissage actif conventionnelles. Notre méthode améliore signi�cati-

vement la performance du détecteur faiblement supervisé avec seulement un petit coût d'anno-

tation additionnel (1-10 images par classes). Elle démontre alors un meilleur compromis entre la

performance de détection et le coût d'annotation que l'apprentissage faiblement et complètement

supervisé.

Mots clés : découvert d'objets, détection d'objets, apprentissage non-supervisé, apprentissage

actif, apprentissage faiblement supervisé, optimisation.
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Abstract

Object detectors are important components of intelligent systems such as autonomous vehi-

cles or robots. They are typically obtained with fully-supervised training, which requires large

manually annotated datasets whose construction is time-consuming and costly. This thesis

studies alternatives to fully-supervised object detection that work with less or even no manual

annotation. In particular, we focus on the problem of unsupervised object discovery (UOD),

and a combination of active and weakly-supervised learning for object detection.

Given an image collection without manual annotation, unsupervised object discovery aims

at identifying pairs of images that contain similar objects and localizing these objects. This is a

challenging problem due to the absence of annotation and ambiguities in object de�nition. We

discuss in the �rst part of this thesis several methods to discern these ambiguities and overcome

the challenges, in increasing e�ectiveness and scalability: OSD, rOSD, LOD and LOST.

In OSD, we de�ne objects as visual patterns that appear frequently in the image collection,

and formulate UOD as a discrete optimization problem over a set of binary variables that describe

the relation between images and objects in them. An approximate solution to this problem is

obtained either by solving a convex relaxed problem or applying a greedy block-coordinate ascent

procedure. rOSD extends OSD, introducing several modi�cations that reduce computational

cost and diversify the returned regions. Consequently, it enables the e�ective discovery of

multiple objects per image and the application of UOD on larger datasets. Di�erent from OSD

and rOSD, LOD reformulates UOD as a ranking problem based on the analogy between repetitive

appearing visual patterns in the image collection and well-connected nodes in a graph of region

proposals. This allows the application of existing ranking methods to �nd well-connected nodes

in graphs that are highly e�cient and parallelizable such as PageRank [Page, 1999], enabling

e�ective UOD on very large datasets. Finally, LOST does not consider inter-image similarity.

It relies instead on a simple seed-growing method that exploits features from recent powerful

self-supervised transformers [Caron, 2021] to discover one object in each image. It then uses the

discovered objects as pseudo annotation to train object detectors, in a class-agnostic or class-

aware fashion, that are able to link similar images together and discover more than one object

per image.

Exploring the capacities of unsupervised methods is important, but in practice, we often

have access to certain sources of annotation. We consider in the second part of this thesis a

practical scenario for training an object detector when all training images have weak annotation

(class labels) and an additional small budget for annotation is available. We propose to �rst

train an object detector with the weak annotation. We then use the budget to annotate a small

number of images that are carefully selected by an active learning strategy with bounding boxes.
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Finally, we �ne-tune the detectors with all available annotation. This process is repeated several

times to gradually improve the detector.

In particular, we introduce BiB, an active learning technique that is designed to target

known confusions of weakly-supervised object detectors, e.g., detecting object parts instead of

objects or grouping nearby objects together. We �rst �nd images on which such confusions

occur, then select a diverse set from those selected to be fully annotated. We show that �ne-

tuning weakly-supervised object detectors with full annotation on a few images chosen with BiB

improves their performance, and reduces signi�cantly the performance gap with fully-supervised

object detectors. This demonstrates that our proposed pipeline o�ers a better trade-o� between

annotation cost and e�ectiveness than both weakly- and fully-supervised object detection.

Keywords : object discovery, object detection, unsupervised learning, weakly-supervised lear-

ning, active learning, optimization.
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Chapter 1
Introduction

1.1 Context

Much like the human dreams of �ying and exploring far-away worlds in the universe since

the dawn of humanity, Arti�cial Intelligence (AI) has been a �xation in the mind of computer

scientists and ordinary people alike since the beginning of the computer age, when the �rst au-

tomatic computer was invented nearly a century ago. Although there are some minor variations

in how AI is de�ned, it is commonly thought as the ability of computers or computer-controlled

machines to undertake tasks that are usually done by humans, and at a high level, exercise

human characteristics such as thinking, reasoning, planing, imagining, generalizing, etc. With

such abilities, a functioning AI, at low or high level, would bring transformational changes to

society, from the liberation of humans of ordinary physical tasks, such as household chores,

delivery or driving, to enhancing the quality of life through better health care and education

services. Such bene�ts have encouraged many e�orts in AI research since the 1950s. Early

research brought certains advances which play as groundwork for the �eld such as Multi-Layer

Perceptron [Rosenblatt, 1958], Backpropagation [Kelley, 1960; Bryson, 1961; Dreyfus, 1962;

Rumelhart, 1986a; Rumelhart, 1986b] or Convolutional Neural Networks (CNNs) [Fukushima,

1980; LeCun, 1989; Lecun, 1998] but also su�ered from the cool down of enthusiasm due to

over-hype and the lack of demonstrated practical bene�ts.

It was not until recently did AI start to �nd wide-spread applications in practical aspects of

life such as automation, health care, customer experience or security. Autonomous vehicles are

one of the AI-powered applications that were once futuristic but are coming into reality. It has

attracted the attention and investments from car makers, historical or new such as Daimler and

Tesla, and global automotive suppliers like Valeo, as well as of tech companies such as Google,

numerous start-ups and academic research institutions. Currently at level 3 with a few recent

models, in the six levels (0 to 5) de�ned by the Society of Automotive Engineers, the industry is

pushing for the full driving automation (level 5) in the future. As a world leader in automotive

sensors, Valeo contributes to this e�ort, notably with its unique automotive-grade LiDAR, and

develops autonomous platforms such as Valeo Drive4U (Figure 1.1), the �rst autonomous car to

drive in the crowded streets of Paris in 2018, and Valeo Cruise4U designed for highway driving,

that has taken several long road trips across Europe, Japan and the USA. Health care is another
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Chapter 1. Introduction

Figure 1.1 � Valeo Drive4U is the �rst autonomous car to drive in the crowded streets of Paris.

�eld revolutionized with AI-powered capacities. In particular, advances in medical imaging have

improved the accuracy, e�ectiveness and e�ciency of the diagnosis and treatment of diseases.

These advances of AI come from a combination of factors, including more available and faster

computational resources [Dean, 2012] and the popularity of personal digital devices that generate

the vast amount of data necessary to train large AI models.

Visual perception is an important part of any arti�cial intelligence system which needs to

perceive the surrounding environment in order to interact with it. Computer vision is the scien-

ti�c and engineering �eld that tasks itself with enabling computer understanding and interaction

with the visual world. Early works in the 1970s focused on extracting the three-dimensional

model of visual scenes from two-dimensional images, developing techniques for edge extrac-

tion [Roberts, 1963], line labeling [Hu�man, 1971; Clowes, 1971; Waltz, 1975; Rosenfeld, 1976;

Kanade, 1980] and object representations as an interconnected combination of parts [Fischler,

1973; Hinton, 1977; Marr, 1982]. In the next decades, research on the �eld moved towards more

rigorous mathematical models such as Markov random �elds [Geman, 1984; Dickmanns, 1988;

Matthies, 1989], regularization [Terzopoulos, 1983; Poggio, 1985; Blake, 1987] or contour models

[Kass, 1988], and statistical learning tools were also used to analyze visual data. [Szeliski, 2010]

provides a nice brief overview on the early history of Computer vision.

Recently, data-driven, feature-based models that employ machine learning techniques and

optimization frameworks have been popular in Computer vision. The most common framework,

known as fully-supervised learning, involves building a dataset of input-target pairs, extract-

ing numerical features for the input images then using the features-target pairs to optimize, or

�train�, a machine learning model. An important block in this pipeline is the feature genera-

tion step which produces robust features from images using keypoints or dense histograms of

gradients [Lowe, 2004; Dalal, 2005]. More robust features can be obtained by further applying
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whitening [Hariharan, 2012] or statistical models [Perronnin, 2007; Sanchez, 2013]. These fea-

tures, called hand-crafted features, are carefully designed to capture key informations for visual

perception in images such as edges, corners or blobs. Although great progresses have been made

thanks to these e�orts, this approach has several limitations. First, designing hand-crafted fea-

tures is often hard and involved. Second, these features mostly leverage low-level cues while

reasoning at a more abstract level is necessary for many perception tasks. Finally, they do not

adapt to di�erent data domains and learning tasks due to the separation of the feature extrac-

tion and the training stages. Indeed, domain-speci�c information provides prior knowledge that

is helpful in perception and di�erent tasks could need di�erent types of features.

In the last decade, there has been an almost complete shift from this practice to end-to-end

learning with neural networks, which perform both feature extraction and prediction. Typically,

a neural network consists of a succession of layers, the last of which performs prediction while

the others are responsible for feature extraction. During the training of neural networks, the

parameters of the feature extractor and the predictor are optimized together in order to match

the input data to the expected output. As a result, features are learnt automatically, adapted to

the speci�c learning task and data while also capturing a high level of abstraction. Thanks to its

e�ectiveness, fully-supervised learning with neural networks has become the de facto approach

to solving problems in Computer vision.

Fully-supervised learning requires a target (label) for each sample in the training dataset.

It is, however, not always easy or possible to obtain these labels. Some types of annotations

such as those for medical images require a high level of expertise. Others are simply beyond

human capacities such as drawing depth maps from 2D images or annotating velocity of vehicles

from videos. Even when the acquisition of these annotations is feasible, it is costly both in

time and money. For example, drawing a high-quality bounding box � the canonical label

for training object detectors � around an object takes approximately 35 seconds [Ren, 2020b],

resulting in minutes of annotation time for a single image that depicts multiple objects. The

generation of denser annotations such as masks for segmentation tasks takes much longer. For

instance, a single image in Cityscapes dataset [Cordts, 2016] requires at least 90 minutes for

annotation and quality control of segmentation masks. Typical image annotations are shown

in Figure 1.2. The cost of annotation is particularly high when training neural networks. Due

to their often large number of parameters and the need to learn the feature extractor and

the predictor simultaneously, they require a much larger amount of data than older models

such as Support vector machine [Boser, 1992; Cortes, 1995] to be e�ective. Transfer learning,

which consists of reusing the feature extractor from pre-trained neural networks, can partially

alleviate this problem but introduces a bias toward the data that are used to pre-train the

feature extractor.
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(a) Class labels for images in the ImageNet [Deng, 2009] dataset. It takes about 1 second to label one
image [Ren, 2020b].

(b) Annotation in forms of bounding boxes on PASCAL VOC2007 [Everingham, 2007] dataset. It takes
about 35 seconds to draw one bounding box [Ren, 2020b].

(c) Annotation in forms of segmentation masks on Cityscapes dataset [Cordts, 2016]. It takes more than
90 minutes to annotate each image.

Figure 1.2 � An illustration of typical image annotations: (a) class labels, (b) bounding boxes
and (c) segmentation masks.

An e�ort to �nd alternatives to the annotation-hungry supervised learning has resulted

in a spectrum of other learning paradigms such as semi-supervised, weakly-supervised, self-

supervised, low-shot, active and unsupervised learning.

Semi-supervised learning requires target for only a portion of the dataset and leverages

information extracted from unlabeled data [Belkin, 2004; Kingma, 2014; Laine, 2017; Tarvainen,

2017; Radosavovic, 2018; Wang, 2018a; Jeong, 2019; Miyato, 2019; Berthelot, 2019; Xie, 2020;

Berthelot, 2020; Sohn, 2020a; Li, 2020; Sohn, 2020b; Zoph, 2020; Tang, 2021b; Xu, 2021; Chen,
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2021]. Training often involves producing pseudo labels for unannotated data or enforcing the

consistency between the model predictions on their di�erent perturbed versions.

Weakly-supervised learning requires a weaker form of target for each input, e.g., image labels

instead of bounding boxes for object detection [Bojanowski, 2015; Bilen, 2016; Cinbis, 2017; Jie,

2017a; Tang, 2017; Zeng, 2019; Arun, 2019; Wan, 2019; Gao, 2019b; Ren, 2020a; Huang, 2020;

Chen, 2021] or pixel-wise labels for semantic segmentation [Kolesnikov, 2016; Vernaza, 2017;

Wei, 2018; Ahn, 2018; Ahn, 2019; Lee, 2019; Wang, 2020b; Zhang, 2020c]. Similar to semi-

supervised learning, the model is typically trained using pseudo-labels which, in this case, are

generated for all training images by leveraging the weak labels [Kolesnikov, 2016; Tang, 2017;

Wei, 2018; Ahn, 2019; Ren, 2020a; Huang, 2020; Zhang, 2020c]. There are also some variants

of this seting that combine weak and full supervision [Pan, 2019; Bi�, 2020] or a small amount

of weak supervision and a large amount of unannotated data [Yang, 2021].

Low-shot learning aims to leverage fully labelled training data for a task to other unseen, but

related tasks which have just a few input-target pairs [FeiFei, 2006; Vinyals, 2016; Snell, 2017;

Munkhdalai, 2017; Wang, 2018d; Sung, 2018; Qiao, 2018; Kang, 2019; Fan, 2020; Sun, 2021].

Typical techniques are meta-learning, which involves training a meta-learner that outputs a

model for a new task given as input several training examples of the task [Munkhdalai, 2017;

Ravi, 2017] or metric learning, which attempts to learn an embedding space whose induced

distance approximates well the �sematical distance� between data points [Koch, 2015; Vinyals,

2016; Snell, 2017; Karlinsky, 2019].

Self-supervised learning aims to learn feature extractors that are useful in down-stream

tasks in a transfer learning fashion without requiring any target. Popular approaches often use

proxy tasks [Doersch, 2015; Pathak, 2016; Zhang, 2016; Noroozi, 2016; Zhang, 2017; Noroozi,

2017; Gidaris, 2018a], contrastive learning [Oord, 2018; Hjelm, 2019; Tian, 2020; Bachman,

2019; Chen, 2020b; He, 2020], clustering [Bojanowski, 2017; Caron, 2018; Caron, 2019], student-

teacher models [Grill, 2020; Caron, 2020; Gidaris, 2021; Caron, 2021] or regularization [Zbontar,

2021; Bardes, 2022].

Active learning reduces the annotation cost by selecting and annotating samples that are

most relevant to training the model [Settles, 2009; Geifman, 2017; Sener, 2018; Brust, 2019;

Zhdanov, 2019; Haussmann, 2020; Agarwal, 2020; Siméoni, 2021a; Yuan, 2021b; Choi, 2021].

In this paradigm, learning typically involves multiple cycles in which the model is trained using

the available annotation then used to select new samples for annotation. Samples are typically

chosen to encourage diversity [Geifman, 2017; Sener, 2018; Zhdanov, 2019; Agarwal, 2020], to be

chalenging to the current model [Gal, 2017; Beluch, 2018; Duco�e, 2018], or both [Huang, 2014;

Hsu, 2015; Ash, 2020].

Unsupervised learning aims to extract useful information from data only, without using any

labels [Weber, 2000; Sivic, 2005; Russell, 2006; Grauman, 2006; Arthur, 2007; Kim, 2009; Faktor,

2012; Cho, 2015; Burgess, 2019; Locatello, 2020]. The form of extracted information varies in

the literature, e.g., clusters of images that contain similar objects [Weber, 2000; Grauman,

2006; Faktor, 2012], object locations [Sivic, 2005; Russell, 2006; Cho, 2015], pairs of similar

images [Cho, 2015] or image decomposition into object masks [Burgess, 2019; Locatello, 2020].
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Objects are primitives of visual scenes. In order to comprehend a scene, it is often easier

to break it down into objects and analyze each of them individually before considering them

collectively. For example, an autonomous driving car would divide its visual �eld into vehicles,

pedestrians, buildings, street lanes, etc.; locate each of these components, analyze their behav-

iors, movements and interactions before making its decisions. As a result, perception tasks in

Computer vision typically concern and are de�ned after di�erent properties of objects, such

as their categories, locations, movements, etc. Object classi�cation aims to group images into

di�erent classes based on the categories of objects they contain [Krizhevsky, 2012; Simonyan,

2015a; He, 2016; Huang, 2017; Tan, 2019; Touvron, 2020; Dosovitskiy, 2021]. The design of such

object categories depends on the task and can be coarse or �ne-grained [Lin, 2015; Guo, 2019;

Zhuang, 2020; He, 2021]. Object detection aims to localize and label each object in an image

where the object location is described using a tight bounding box enclosing its extent [Girshick,

2014; Gidaris, 2015; Girshick, 2015; Ren, 2015a; Bell, 2016; Redmon, 2016; Redmon, 2017].

Semantic segmentation decomposes the image into di�erent regions, each containing pixels that

belong to either an object category of interest or �background� [Long, 2015; Chen, 2018a; Chen,

2018b; Vu, 2019; Strudel, 2021; Xie, 2021a]. Instance segmentation is similar to object de-

tection but returns an object mask instead of a bounding box [He, 2017; Huang, 2019; Chen,

2019b; Chen, 2019a; Fang, 2019; Wang, 2020a; Vu, 2021; Cheng, 2022]. Tracking estimates

the object location in subsequent frames given its position in the �rst frame of a video [Wojke,

2017; Bergmann, 2019; Wang, 2020c; Zhang, 2021]. Some tasks are more specialized on certain

classes of objects such as humans [Liu, 2015; Nguyen, 2016; Cao, 2017] or vehicles [Song, 2019;

Ouaknine, 2021]. Action recognition focuses on detection and classi�cation of human activities

[Wang, 2013; Wang, 2016; Hara, 2018; Wang, 2018b; Radford, 2021]. Trajectory prediction aims

to foretell the future movement of vehicles [Lee, 2017; Deo, 2018; Mangalam, 2020; Buhet, 2020].

These tasks require understanding not only individual objects but also their environment and

the interactions between them.

When discussing such tasks, it is important to consider the intrinsic ambiguity of an �object�:

A visual pattern can be considered an object in a scene but not an object in another. In

particular, there is often confusion in the distinction between object parts vs. objects, objects

vs. object groups or foreground objectsvs. background. For example, a wheel standing alone

in a scene is seen as an object but often overlooked and considered as an object part when it

is �gured in a car, which is now considered the object. Also, a banana and a hand of bananas

can both be referred to as objects. This ambiguity is often ignored in supervised settings where

objects are de�ned by examples through manually annotated datasets,i.e. patterns that are

annotated are objects while others are not, even though the latters are considered objects in

common sense. This setting restricts the scope of the applications of visual models solely to

object classes that are labeled. To have an idea of how limited this setting is, it is interesting

to consider Openimages [Krasin, 2017], one of the largest public datasets for object detection.

It has only 600 object classes while an ordinary human can easily recognise thousands. The

restriction to a few �nite lists of categories is mainly due to the costly and time-consuming

process of annotation acquisition which involves the participation of human annotators.
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In this thesis, we focus on the problem of localizing and discovering objects in images with

limited or no supervision. An important part of our work is dedicated to the challenging un-

supervised object discovery (UOD) problem and the other part focuses on the study of active

learning methods for bridging the gap between weakly- and fully-supervised object detection.

1.2 Unsupervised Object Discovery

1.2.1 Motivation

Remarkable progress has been achieved in visual tasks such as image categorization, object

detection, or semantic segmentation, typically using fully-supervised algorithms and vast amount

of manually annotated data [Lazebnik, 2006; Felzenszwalb, 2010; Krizhevsky, 2012; Ren, 2015a;

Russakovsky, 2015; He, 2016; He, 2017]. With the advent of crowd-sourcing, large corporations

and, to a lesser extent, academic units can launch the corresponding massive annotation e�orts

for speci�c projects that may involve millions of images [Russakovsky, 2015]. But handling

Internet-scale repositories of images (or videos) or continuous learning scenarios associated with

digital assistants or autonomous cars demands approaches less hungry for manual annotation.

We have previously discussed several possible alternatives, including weakly-supervised, semi-

supervised, self-supervised and active learning. We address in the �rst part of this thesis the

even more challenging problem of unsupervised object discovery. Given a collection of unlabelled

images, we aim to discover both the structure of the image collection � that is, which images

depict similar objects (or textures, scenes, actions, etc.) � and the objects in question, in

a fully unsupervised setting [Russell, 2006; Sivic, 2008; Lee, 2010; Faktor, 2012; Rubinstein,

2013; Cho, 2015]. Although weakly-, semi-, and self-supervised methods may provide a more

practical foundation for large-scale visual recognition, the fully unsupervised construction of

image models is an important and fundamental scienti�c problem in computer vision. On

the one hand, discovering object concepts and locations in an unsupervised fashion, therefore

bypassing the need for costly annotation acquisition process, has the potential for leveraging a

seemingly unlimited source of image data from the Internet. On the other hand, unsupervised

object discovery has a wide range of applications. A direct application is the automatic labeling

and organization of large image databases where images containing similar objects of potential

interest are linked ahead of time. This would save innumerous hours of human e�ort and enable

more e�cient exploitation of these databases in tasks such as interactive query-based visual

search. The output of unsupervised object discovery � rough object locations and pairwise

image relation � can also be used as noisy annotations which can be leveraged to improve the

e�ciency of models in related problems such as semi- or weakly-supervised object detection.

Moreover, by exploiting the discovered objects and meaningful parts of images, it is possible

to improve the training of recent self-supervised learning methods [Mishra, 2021; Héna�, 2022]

which until recently were only focusing on the global context of images. Last but not least,

industrial entities such as Valeo spend millions of dollars a year on data annotation for object

detection tasks where human operators are asked to label objects and images manually. The

cost of labelling campaigns could be cut signi�cantly by presenting discovered boxes, returned
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by unsupervised object discovery methods, as candidates for annotators to select before scaling

through automatic label propagation.

Unsupervised object discovery is a very challenging task, particularly on natural, in-the-wild

images with the presence of occlusions, intra-class variations and background clutter. Also,

unlike the supervised object detection/localization problems where objects are �de�ned� with

examples in training data, there is no clear �object� de�nition in unsupervised object discovery.

As a result, the task su�ers from the ambiguities of object de�nitions mentioned earlier. Discov-

ering objects therefore involves eliminating, or rather reducing, these ambiguities. We employ a

few tools for this purpose in our approaches.

Figure 1.3 � An illustration of the similarity scores between region proposals in two di�erent
images computed with the PHM algorithm [Cho, 2015]. In the pictures, the score of a region
is its maximum similarity score with a region in the other image. High scores are show in red
and low scores are in blue. The con�dence score (second column) often highlights small parts
of objects (wheels). It is adjusted (third column) to favor whole-object regions that stand out
from the background.

First, following [Cho, 2015], we leverage the information from multiple images and de�ne

objects as visual patterns that appear frequently in the image collection. Objects are ambiguous

in a single image but they can be better de�ned when appearing in di�erent contexts. For

example, it is not clear if a rescue vehicle pulling a car is a single object or two separate objects

from a single image but if there are other images that �gure cars alone and rescue vehicles

alone, we can con�dently say it is the latter case. Similarly, sheep are often captured standing

close, occluding each other, which makes distinguishing them challenging. In this case, matching

di�erent patches of one image to other images that �gure individual sheeps could help. With

this de�nition, we propose to �nd in each image visual patterns (patches) that are similar to

those present in other images and select them as discovered objects.

Second, we use region proposals, generated by o�-the-shelf methods [Uijlings, 2013; Zitnick,

2014] or our own [Vo, 2020] as object priors, and cast �nding objects as the selection of several

good proposals amongst thousands found in each image. Region proposals are typically gener-

ated using low-level cues such as superpixels, edges or color homogeneity, and they generally

concentrate around object areas in the images. We exploit the di�erence in region proposal

density, computing the region similarity score with the probabilistic Hough matching (PHM)
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Figure 1.4 � The implicit graph of images that we exploit in OSD (Chapter 2) and rOSD
(Chapter 3). In this graph, nodes are images and two images are neighbors if they contain
similar objects.

algorithm proposed in [Cho, 2015], to disambiguate between background and foreground. We

also adjust the similarity scores computed with the PHM algorithm to favor regions that stand

out from the background to distinguish objects from object parts. An illustration of region

proposals and the PHM similarity scores is shown in Figure 1.3.

Third, we use certain types of features that are trained for other tasks but may capture some

information about object location in images during traning to represent region proposals or to

directly localize objects. They can be extracted from convolutional neural networks (CNNs)

or transformers that are pre-trained for image classi�cation [Simonyan, 2015a; He, 2016] or

trained in a self-supervised fashion [Gidaris, 2021; Caron, 2021]. Typically, these features con-

tain information that can be leveraged to distinguish objects from background: CNN features

corresponding to objects typically have higher numerical values than those for background while

foreground patches and background are well separated in the feature space of self-supervised

transformers.

1.2.2 Contributions

In this thesis, we discuss several approaches to unsupervised object discovery: Discrete

optimization-based OSD [Vo, 2019] and rOSD [Vo, 2020], ranking-based LOD [Vo, 2021] and

seed-growing-based LOST [Siméoni, 2021b]1. In OSD [Vo, 2019], we consider the implicit graph

1. The code names respectively stand for Object and Structure Discovery, regularized OSD, Large-scale Object
Discovery and Localize Objects with Self-supervised Transformers.

9



Chapter 1. Introduction

structure in image collections where nodes are images, and edges connect two nodes if the

corresponding images contain similar objects (Figure 1.4). Based on this graph structure, we

formulate unsupervised object discovery as a discrete optimization problem, maximizing the total

similarity between objects in neighboring images over the structure of the graph and the choice of

good regions to be objects in each image. An approximate solution to this problem can be found

with convex optimization techniques and/or a greedy block coordinate ascent procedure. Our

following work rOSD [Vo, 2020] improves upon OSD with the introduction of region proposals

that possess a nice intrinsic group structure generated from CNN features, a regularized version

of the OSD optimization formulation, enabled by the structure of the proposals, and a two-stage

algorithm that scales unsupervised object discovery to datasets several times larger than those

considered in OSD.

Figure 1.5 � We consider a graph of regions in LOD (Chapter 4). In this graph, nodes are
region proposals generated by o�-the-shelf methods and edges between every pair of regions are
weighted by their similarity score. In the �gure, thicker edges means higher weights.

In LOD [Vo, 2021], we observe the parallel between our object de�nition - visual patterns

that appear frequently in the image collections - and well-connected nodes in the complete graph

where nodes are regions and edges are weighted by region similarity score (Figure 1.5). Based

on this observation, we reformulate unsupervised object discovery as a ranking problem with

the goal of assigning a score to each region in the graph such that a higher score means the

corresponding region is more likely to be an object. Regions are then selected separately on

each image in decreasing score order. This new formulation enjoys e�cient solutions that can

be implemented in a distributed manner, therefore can leverage large clusters of machines to

scale up unsupervised object discovery to very large datasets.
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Recent advances in self-supervised feature learning have enabled new possibilities to tackle

unsupervised object discovery. In particular, features extracted from DINO [Caron, 2021] have

been shown to contain explicit information about image layout and object locations. Our LOST

algorithm [Siméoni, 2021b] exploits this property and localizes a single object per image with

high precision using a simple seed-growing procedure. We go one step further by using the

output of LOST as pseudo labels to train an object detector in a class-agnostic or class-aware

fashion. The trained class-agnostic object detector is able to discover multiple objects per

image while the class-aware object detector displays performance that is competitive with some

weakly-supervised object detectors.

These works have improved the unsupervised object discovery literature in multiple direc-

tions. First, we have gradually raised the bar for UOD methods, with subsequent works signif-

icantly outperforming their predecessors. Second, we are the �rst to consider the discovery of

multiple objects per image, a more realistic setting on datasets of natural images which often

contain various objects of multiple categories. Third, we have gradually improved the e�ciency

and applicability of unsupervised object discovery methods, increasing the size of the datasets

where they are applicable from a few hundreds to several millions. Finally, we successfully in-

vestigate the use of pre-trained features from neural networks in unsupervised object discovery

which is not trivial and requires special care, as shown in OSD and rOSD.

Finding the optimal evaluation protocol for unsupervised object discovery is not trivial. An-

notation is not required to run UOD methods but it is necessary for their evaluation. In practice,

we show the e�ectiveness of our methods on datasets built for object detection such as PASCAL

VOC [Everingham, 2007; Everingham, 2012], COCO [Lin, 2014] or OpenImages [Krasin, 2017].

Typically, we compare the object locations discovered by the method to the ground-truth anno-

tation and the model's prediction is counted as a true prediction if its overlap with the ground

truths surpasses a certain threshold. This practice is actually common for related tasks such

as image colocalization or object co-segmentation [Rubinstein, 2013; Tang, 2014; Li, 2016; Wei,

2019; Hsu, 2019].

In our evaluation of unsupervised object discovery, we consider di�erent settings, each of

which needing an adapted evaluation metric. Previous works in UOD and image co-localization

consider only the single-object setting where the goal is to �nd only a single object per image.

In this case, the common metric isCorrect Localization (CorLoc), de�ned as the percentage of

images in which at least one object is correctly localized. In the context of unsupervised object

discovery, an object is said to be correctly localized if itsintersection over union measure with

the predicted box is at least 0:5. In most cases, it is desirable to be able to discover multiple

objects per image. In this setting, CorLoc is no longer suitable since, according to this metric,

a model which is able to discover two objects is considered no better than a model discovering

only one object. Following the region proposal literature, one can instead usedetection rate, or

recall, of the predicted boxes when the model returns up tom boxes as the metric. However, this

metric depends on the numberm which complicates the comparison between di�erent methods.

To remedy this issue, we propose a new metric,object discovery Average Precision(odAP),

which is de�ned as the area under the precision-recall curve where precision and recall of the
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predicted boxes are computed at di�erent values ofm.

1.2.3 Related Work

Unsupervised object discovery aims to extract useful information objects in images without

any kind of supervision. The concrete form of the extracted information varies in the litera-

ture. Early works focus on �nding groups of images depicting objects of the same categories,

employing probabilistic models [Weber, 2000; Sivic, 2005; Russell, 2006], non-negative matrix

factorization (NMF) [Tang, 2008] or clustering techniques [Grauman, 2006], see [Tuytelaars,

2010] for a survey. In addition to �nding image groups, some of these approaches, e.g., topic

modeling [Russell, 2006; Sivic, 2005], contour matching [Lee, 2009], multiple instance learning

(MIL) [Zhu, 2012] and graph mining [Zhang, 2015b] also output object locations, but focus on

smaller datasets with only a handful of distinctive object classes. Unsupervised object discov-

ery in large real-world image collections remains challenging due to a high degree of intra-class

variation, occlusion, background clutter and the presence of multiple object categories in one

image. For this challenging setting, [Cho, 2015] proposes an iterative algorithm which alternates

between retrieving image neighbors and localizing salient regions. It also introduces the proba-

bilistic Hough matching algorithm for region similarity score computation which is shown to be

e�ective. Despite promising results, this approach is not formulated as a proper optimization

problem and only addresses the discovery of a single object per image. These limitations are

addressed in Chapters 2 and 3 with OSD and rOSD respectively. Another line of approaches

to unsupervised object discovery focuses on learning object-centric image representations by

decomposing images into objects [Burgess, 2019; Engelcke, 2020; Gre�, 2019; Locatello, 2020;

Monnier, 2021]. These techniques do not scale up (yet) to large natural image collections, and

focus mostly on small datasets containing simple shapes in constrained environments. Contrary

to them, we focus in this thesis on extracting from natural, in-the-wild images object locations

in forms of bounding boxes and identifying pairs of images that contain objects of the same

category.

Image colocalization and object cosegmentation are closely related to unsupervised object

discovery. While the latter does not suppose any prior information on the input images, the

former assumes that all input images contain objects of a single category. The goal of image

colocalization is to �nd bounding boxes around these objects. [Tang, 2014] formulates image

colocalization as an optimization problem, with inspirations from graph cut and discriminative

clustering techniques. [Joulin, 2014] extends this approach to video and solves it with Frank-

Wolfe [Frank, 1956] algorithm for e�ciency. Observing that supervised object detectors often

assign high scores to only a small number of region proposals, [Li, 2016] propose to mimic this

behavior by training a classi�er to minimize the entropy of the scores it gives to region proposals.

[Wei, 2017a; Wei, 2019] localize objects by clustering pixels with high activations in feature maps

from CNNs pre-trained in ImageNet. Since there are not many works on unsupervised object

discovery for in-the-wild images, we use some of these works as baselines in our experiments,

comparing to them in both image colocalization and object discovery tasks. In the former case,
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we run our methods without any modi�cation separately on all classes of the tested dataset

while in the latter case, we run the colocalization baselines without modi�cation on the entire

dataset.

Object cosegmentation aims instead to �nd masks of the common objects. [Rother, 2006]

is the �rst to consider inter-image consistency to �nd foreground object segmentation. This

work and its immediate successors [Mukherjee, 2009; Hochbaum, 2009] consider pairs of images

that �gure the same foreground object as input. Subsequent works [Joulin, 2010; Kim, 2011;

Rubinstein, 2013; Chen, 2014] extend this setting, and consider multiple images, with possibly

some that do not have a common foreground object. These works can be divided into two main

groups: graph-based [Lee, 2015; Quan, 2016a; Jerripothula, 2016] and clustering-based [Joulin,

2010; Kim, 2011]. More recent works [Quan, 2016a; Hsu, 2018a; Li, 2019; Hsu, 2019] propose

to use pre-trained CNN features for image classi�cation to boost co-segmentation performance.

Some of these methods [Quan, 2016a] simply replace hand-crafted features with deep features

while others propose end-to-end pipelines for object co-segmentation [Hsu, 2018a; Li, 2019; Hsu,

2019]. Unsupervised object discovery is arguably more challenging than image colocalization

and object cosegmentation since it does not impose or exploit any assumptions on the input

images.

Weakly-supervised object localization is related to UOD but take advantage of image-

level labels. It considers scenarios where the input dataset contains image-level labels [Choe,

2020]. Most recent weakly-supervised object localization methods typically localize objects by

�ne-tuning a pre-trained neural network with the available labels then exploiting object loca-

tion information in its convolutional features in form of saliency maps [Zhou, 2016; Selvaraju,

2017; Chattopadhay, 2018]. Since CNNs tend to learn category-discriminating features, vari-

ous strategies for improving the quality of features for localization have been proposed such as

adversarial erasing [Zhang, 2018a; Choe, 2019], pseudo supervision [Zhang, 2018b], inter-image

consistency [Zhang, 2020e] or leveraging self-supervised pre-training [Baek, 2020]. Similar to

these works, some of the methods for unsupervised object discovery proposed in this thesis

utilize features pre-trained neural networks but we do not �ne-tune them with additional labels.

1.3 Active learning strategies for Weakly-Supervised Object De-

tection

1.3.1 Motivation

Unsupervised learning is attractive due to its potential for leveraging an unlimited amount

of unlabeled data. However, unsupervised methods often lag far behind supervised ones in

terms of performance. In practice, we often have access to a small amount of full annotation

or a weak form of annotation. In the case of object detection, full annotation includes a tight

bounding box and a class label for each object in the image. While obtaining the bounding

box is often laborious, especially when the image contains multiple objects (crowds of people,

groups of animals, etc.), the label showing the presence of an object class is much easier to
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obtain. Its annotation cost is much lower than the bounding box form (1 second/classvs. 35

seconds/box) and it can even be obtained automatically,e.g., leveraging tags on online photos,

photo captions in media or time-stamped movie scripts. As a result, weakly-supervised object

detection (WSOD), an annotation-e�cient alternative to fully-supervised object detection which

requires only tags about the presence or absence of object classes in the image, has recently

attracted a lot of attention. Several popular methods [Bilen, 2016; Cinbis, 2017; Tang, 2017;

Ren, 2020a] formulate weakly-supevised object detection as a multiple instance learning [Foulds,

2010] problem where images are bags and pre-computed region proposals are instances. During

training, the model learns to classify bags into correct categories using scores aggregated from

the region scores. At inference time, the region scores are used to produce detection results. The

performance of weakly-supervised object detectors has improved over the years, especially after

the introduction of WSDDN [Bilen, 2016], a neural network-based model, recently reaching an

AP50 of 56.8 and 26.4 respectively on VOC2007 and COCO datasets with [Huang, 2020].

Trained with only image tags, which do not contain any information about object position,

weakly-supervised object detectors are often confused about object extent and locations. Often,

they only �nd, and quite naturally, the most discriminative parts of objects instead of the

entire ones since signals from these parts are enough to correctly classify the images in the

multiple instance learner. They also tend to detect groups of objects instead of individual ones

when many of them are close in the images. Finally, they struggle to detect all objects in

the images as �nding one of them is su�cient to solve the classi�cation task. Many e�orts

have attempted to remedy these issues with better pseudo labels [Tang, 2018a; Ren, 2020b],

better region representation [Ren, 2020b; Huang, 2020] and better optimization [Arun, 2019;

Wan, 2019], and they have led to some improvements. However, such confusions remain and

the performance of weakly-supervised object detectors is still far behind their fully-supervised

counterparts. For example, a Fast-RCNN with the same backbone obtains an AP50 of 66.9 and

38.6 respectively on VOC2007 and COCO datasets. Some recent works [Pan, 2019; Bi�, 2020]

propose to narrow this gap and achieve a better trade-o� between annotation cost and detection

performance by annotating a randomly selected set of training images and train with a mixed of

weak and full supervision. We believe that better selection strategies than random can achieve

an even better trade-o� and propose to consider active learning strategies for image selection.

1.3.2 Contributions

In Chapter 6, we proposes to �ne-tune a trained weakly-supervised object detector with

annotated samples selected using active learning techniques [Geifman, 2017; Sener, 2018; Brust,

2019; Choi, 2021]. By carefully choosing images that are most relevant to improving the current

model, we aim to improve the model performance as much as possible while using as little

additional annotation as possible, achieving a better trade-o� between annotation cost and

detection performance than both weakly- and fully-supervised object detection. We begin with a

training set where images have only class annotation and train a detector in a weakly-supervised

manner. Then, we run multiple cycles in which an active learning strategy is used to select

images from the training set that do not have yet bounding-box labels and annotate them with
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a bounding box around each object in the images. After the selection, the weakly-supervised

model is �ne-tuned with all the images in the dataset, using bounding-box annotations when

they are available and image tags otherwise.

We introduce BiB [Vo, 2022], an active learning strategy tailored for this pipeline. It targets

the known modes of confusion of weakly-supervised object detectors: Objectsvs. object parts

and objects vs. groups of objects. In particular, it uses the presence of BiB pairs � pairs of

predictions in the same image such that one iscontained in the other � as an indicator of model

confusion, and selects a diverse set of images amongst those on which the model is confused. We

show that BiB signi�cantly outperforms all other active learning strategies proposed so far in

the setting. More importantly, it boosts the detection performance of weakly-supervised object

detectors signi�cantly, reaching 97% of the performance of fully-supervised Fast RCNN [Girshick,

2015] with only 10% of fully-annotated images on VOC07. On COCO, using on average 10 fully-

annotated images per class, that is about 1% of training images fully-annotated, BiB also cuts

the performance gap (in AP) between weakly-supervised and fully-supervised detectors by over

70%, showing a good trade-o� between performance and data e�ciency.

1.3.3 Related Work

Weakly-supervised object detection is an annotation-e�cient alternative to fully-supervised

object detection which only requires image-level labels (object categories) for training a detec-

tor. It is typically formulated as a multiple instance learning problem [Dietterich, 1997], where

images are bags and region proposals [Uijlings, 2013; Zitnick, 2014] are instances. The model is

trained to classify images using scores aggregated from their region proposals. Through this pro-

cess, it also learns to distinguishobject from non-object regions. Since training involves solving

a non-convex optimization problem, adapted initialization and regularization techniques [De-

selaers, 2010; Kumar, 2010; Song, 2014a; Song, 2014b; Cinbis, 2017] are necessary for good

performance. [Bilen, 2016] proposes WSDDN, a CNN-based model for WSOD, which is further

improved in subsequent works [Diba, 2017; Jie, 2017a; Tang, 2017; Tang, 2018a; Ren, 2020a].

[Tang, 2017] proposes OICR which re�nes WSDDN's output with parallel detector heads in

a self-training fashion. Trained with only image-level labels, weakly-supervised object detec-

tors are often confused between object parts and objects, or between objects and groups of

objects [Ren, 2020a]. Although recent mitigating e�orts with better pseudo labels [Tang, 2018a;

Ren, 2020a], better representations [Ren, 2020a; Huang, 2020] or better optimization [Arun,

2019; Wan, 2019] have achieved some successes, the confusion issues of weakly-supervised de-

tectors remain due to the lack of an operational de�nition of objects and their performance is

still far behind that of fully-supervised counterparts. In this work, we show that �ne-tuning

weakly-supervised detectors with strong annotation ona few carefully selectedimages can al-

leviate these limitations and signi�cantly narrow the gap between weakly- and fully-supervised

object detectors.

Semi-supervised object detection methods exploits a mix of a few fully-annotated and

many unlabelled data. Two dominant strategies have arisen among these methods using consis-
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tency [Jeong, 2019; Tang, 2021b] and pseudo-labeling [Radosavovic, 2018; Wang, 2018a; Zoph,

2020; Li, 2020; Sohn, 2020b; Xu, 2021]. The latter can be further extended with strategies in-

spired by active learning [Wang, 2018a; Li, 2020] for selecting boxes to be annotated by people.

Combining weakly- and semi-supervised object detection. These approaches seek a

better trade-o� between performance and annotation cost than individual strategies. All images

from the training set have weak labels and a subset is also annotated with bounding boxes. This

setup enables the exploration of the utility of additional types of weak labels, e.g., points [Ren,

2020b; Chen, 2021] or scribbles [Ren, 2020b]. Others leverage fully-annotated images to train

detectors that can correct wrong predictions of weakly-supervised detectors [Pan, 2019] or com-

pute more reliable pseudo-boxes [Bi�, 2020]. Similarly to [Pan, 2019; Bi�, 2020], we train a

detector with only a few annotated images, but contrary to them, we focus on how to best select

the images to annotate so as to maximize the performance of the detector.

Active learning for object detection aims at carefully selectingimages to be fully annotated,

in order to minimize human annotation e�orts. Most methods exploit data diversity [Geifman,

2017; Sener, 2018] ormodel uncertainty [Brust, 2019; Choi, 2021] to identify such images. These

strategies, originally designed for generic classi�cation tasks [Settles, 2009], have been recently

adapted to object detection [Yuan, 2021b; Choi, 2021], a complex task involving both classi�ca-

tion (object category) and regression (bounding box). Data diversity can be ensured by selecting

data samples using image features and applying k-means [Zhdanov, 2019], k-means++ initializa-

tion [Haussmann, 2020] or identifying a core-set � arepresentativesubset of a dataset [Geifman,

2017; Sener, 2018; Agarwal, 2020]. Model uncertainty for active learning can be computed

from image-level scores aggregated from class predictions over boxes [Brust, 2019; Haussmann,

2020; Pardo, 2021], comparing predictions of the same image from its di�erent corrupted ver-

sions [Kao, 2018; M, 2020; Elezi, 2021] or from di�erent steps of model training [Roy, 2018;

Huang, 2021], voting over predictions from an ensemble of networks [Beluch, 2018; Chitta, 2019;

Haussmann, 2020], using Bayesian Neural Networks [Gal, 2017; Haussmann, 2020] or single for-

ward networks mimicking an ensemble [Choi, 2021; Yuan, 2021b]. Multiple other strategies have

been proposed for selecting informative, di�cult or confusing samples to annotate by learning to

discriminate between labeled and unlabeled data [Gissin, 2019; Ebrahimi, 2019; Ebrahimi, 2020;

Zhang, 2020a], learning to predict the detection loss [Yoo, 2019], the gradients [Ash, 2020] or

the in�uence of data on gradient [Liu, 2021c]. In contrast to classical active learning methods in

which the initial model is trained in a fully-supervised fashion using a randomly sampled initial

set of images, our initial model is only trained with weakly-annotated data. This is a challenging

setting, but often encountered in practice when new collections of data arrive only with weak

annotations and signi�cant e�ort is required to select which images to annotate manually prior

to active learning.

Combining weak supervision and active learning. Closer to us, [Desai, 2019; Fang, 2020;

Pardo, 2021] investigate how weakly-supervised learning and active learning can be conducted
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together in the context of object detection. [Desai, 2019] proposes to use clicks in the center of the

object as weak labels which include localization information and are stronger than image-level

tags. [Pardo, 2021] also mixes strong supervision, tags and pseudo-labels in an active learning

scenario. Both [Desai, 2019; Pardo, 2021] rely on Faster R-CNN [Ren, 2015a] and [Fang, 2020]

on FPN [Lin, 2017] � detectors that are hard to train only with weak labels. All start with 10%

of the dataset fully labeled, which is more than the total amount of fully annotated data we

ever consider in this work.
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Chapter 2
Unsupervised Image Matching and Object

Discovery as Optimization

Supervised machine learning is a powerful framework but it relies on ever-growing
human annotation e�orts. As a way to mitigate this serious problem, as well as to
serve speci�c applications, unsupervised learning has emerged as an important �eld
of research. In computer vision, unsupervised learning comes in various guises. We
focus here on the unsupervised discovery and matching of object categories among
images in a collection, following the seminal work of [Cho, 2015]. We show that the
original approach can be reformulated and solved as a proper optimization problem.
Experiments on several benchmarks establish the merit of our approach.
This work, done in collaboration with Francis Bach, Minsu Cho, Kai Han, Yann
LeCun, Patrick Pérez and Jean Ponce, has appeared in Proceedings of the IEEE/CVF
Conference in Computer Vision and Pattern Recognition (CVPR) 2019.
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Chapter 2. Unsupervised Image Matching and Object Discovery as Optimization

Figure 2.1 � The proposed optimization-based method automatically discovers links between
images that depict similar objects. This �gure shows two image clusters that emerge as a by-
product of this approach on the VOC_6x2 object recognition dataset that mixes 6 classes under
two viewpoints. See Section 2.4 for details.

2.1 Introduction

We introduce in this chapter an optimization formulation for unsupervised object discov-

ery which leverages the implicit graph structure of image sets. Any collection of images, say,

those found on the Internet, or more modestly, in a dataset such as Pascal VOC2007 [Evering-

ham, 2007], admits a natural graph representation, where nodes are the pictures themselves,

and edges link pairs of images with similar visual content. Insupervisedimage categorization

task [Lazebnik, 2006; Krizhevsky, 2012; Simonyan, 2015a; He, 2016] or object detection [Felzen-

szwalb, 2010; Ren, 2015a; He, 2017], both the graph structure and the visual content are clearly

de�ned: Annotators typically sort the images into �bags�, each one intended to represent some

�object�, �scene� or, say, �action� class (�horse�, �forest�, �playing tennis�, etc.). Two nodes

are linked by an edge when they are associated with the same bag, and each class is empirically

de�ned by the images (or some manually-de�ned axis-aligned rectangular regions within) in the

corresponding connected component of the graph. Inweakly-supervisedcosegmentation [Joulin,

2010; Kim, 2011; Rubinstein, 2013] or colocalization [Deselaers, 2010; Joulin, 2014; Tang, 2014]

tasks, on the other hand, the graph is fully connected, and all images are supposed to contain

instances of a (few) object categories, say, �horse�, �grass�, �sky�, �background�. Manual inter-

vention is reduced to selecting which images to put into each bag, and the visual content, in the

form of regions de�ned by pixel-level symbolic labels or bounding boxes associated with one of

the prede�ned categories, is discovered using a clustering algorithm.1

We address the much more di�cult problem of fully-unsupervisedimage matching and object

discovery, where both the graph structure and a model of visual content in the form of object

bounding boxes must be extracted from the native data without any manual intervention. We

1. In both the cases of supervised image categorization/object detection and weakly-supervised cosegmenta-
tion/colocalization, once the graph structure and the visual content have been identi�ed at training time , these
can be used to learn a model of the di�erent object classes and add nodes, edges, and possibly additional bounding
boxes at test time.
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build directly on the work of [Cho, 2015] (see [Kwak, 2015] for related work): Given an image

and its neighbors, assumed to contain the same object, a robust matching technique exploits

both appearance and geometric consistency constraints to assign con�dence and saliency (�stand-

out�) scores to region proposals in this image. The overall discovery algorithm alternates between

localization steps where the neighbors are �xed and the regions with top saliency scores are

selected as potential objects, andretrieval steps where the con�dence of the regions within

potential objects are used to �nd the nearest neighbors of each image. After a �xed number of

steps, the region with top saliency in each image is declared to be the object it contains ([Cho,

2015] focuses on discovering the single most prominent object of each image). Empirically, this

method has been shown to give good results. However, it does not formulate image matching

and object discovery as a proper optimization problem, and there is no guarantee that successive

iterations will improve some objective measure of performance. The aim of this chapter is to

remedy this situation.

2.2 Proposed Approach

2.2.1 Problem Statement

Let us consider a set ofn images, where imagei contains pi rectangular region proposals,

with i in f 1 : : : ng. We assume that the images are equipped with some implicit graph structure,

where there is a link between two images when the second image contains at least one object

from a category depicted in the �rst one, and our aim is to discover this structure, that is, �nd

the links and the corresponding objects. To this end, we propose in the following the object and

structure discovery, or OSD, formulation. Let us de�ne an indicator variable xk
i , whose value is

1 when region numberk of imagei , itself denoted as(i; k ), corresponds to a �foreground object�

(visible in large part and from a category that occurs multiple times in the image collection),

and 0 otherwise. We collect all the variablesxk
i associated with imagei into an element x i of

f 0; 1gpi , and concatenate all the variablesx i into an element x of f 0; 1g
P n

i =1
pi . Likewise, let us

de�ne an indicator variable eij , whose value is 1 if imagej contains an object also occurring in

image i , with 1 � i; j � n and j 6= i , and 0 otherwise, collect all the variableseij associated

with image i into an element ei of f 0; 1gn , and concatenate all the variablesei into an n � n

matrix e with rows eT
i . Note that we can usee to de�ne a neighborhood for each image in the

set: Image j is a neighbor of the imagei i� eij = 1 . By de�nition, e de�nes an undirected

graph if e is symmetric and a directed one otherwise. Let us also denote bySkl
ij the similarity

between regionsk and l of imagesi and j , which represents the likelihood that the two regions

correspond to objects of the same category, and bySij the pi � pj matrix with entries Skl
ij .

We propose to maximize with respect tox and e the objective function

S(x; e) =
nX

i;j =1
j 6= i

eij
X

1� k� pi
1� l � pj

Skl
ij xk

i x l
j =

nX

i;j =1
j 6= i

xT
i [eij Sij ]x j : (2.1)

Intuitively, maximizing S(x; e) encourages building edges between imagesi and j that contain
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regionsk and l with a strong similarity Skl
ij . Of course we would like to impose certain constraints

on the x and e variables. The following cardinality constraints are rather natural:

� An image should not contain more than a prededined number of objects, say� ,

8 i 2 f 1 : : : ng;
X

k

x ik � �: (2.2)

� An image should not match more than a prede�ned number of other images, say� ,

8 i 2 f 1 : : : ng;
X

j

eij � �: (2.3)

Assumptions. We will suppose from now on that Sij is elementwise nonnegative, but not

necessarily symmetric (the similarity model we explore in Section 3 is asymmetrical). Likewise,

we will assume that the binary matrix e has a zero diagonal but is not necessarily symmetric.

Under these assumptions,S is a supermodular cubic pseudo-Boolean function [Boros, 2002].

Without constraints, this type of functions can be maximized in polynomial time using a max-

�ow algorithm [Billionnet, 1985] (in the case of S(x; e), which does not involve linear and

quadratic terms, the solution is of course trivial without constraints, and amounts to setting all

xk
i and eij with i 6= j to 1). When the cardinality constraints (2.2-2.3) are added, this is not the

case anymore, and we have to resort to a gradient ascent algorithm as explained next.

2.2.2 Relaxing the Problem

Let us �rst note that, for binary variables xk
i , x l

j and eij , S(x; e) can be equivalently rewritten

as

S(x; e) =
nX

i;j =1
j 6= i

X

1� k� pi
1� l � pj

Skl
ij min(eij ; xk

i ; x l
j ); (2.4)

with Skl
ij � 0. Relaxing our problem so all variables are allowed to take values in[0; 1], our

objective becomes a sum of concave functions, and thus is itself a concave function, de�ned over

the convex set (hyperrectangle)[0; 1]N , where N is the total number of variables. This is the

standard tight concave continuous relaxation of supermodular functions.

The Lagrangian associated with our relaxed problem is

K (x; e; �; � ) = S(x; e) �
nX

i =1

[� i (x i � 1pi � � ) + � i (ei � 1n � � )]; (2.5)

where � = ( � 1; : : : ; � n )T and � = ( � 1; : : : ; � n )T are positive Lagrange multipliers. The function

S(x; e) is concave and the primal problem is strictly feasible; hence Slater's conditions [Slater,

1950] hold, and we have the following equivalent primal and dual versions of our problem

(
max(x;e)2 D inf �;� � 0 K (x; e; �; � );

min �;� � 0 sup(x;e)2 D K (x; e; �; � );
(2.6)
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where the domain D is the Cartesian product of [0; 1]
P

i
pi and the space ofn � n matrices

with entries in [0; 1] and a zero diagonal. With slight abuse we denote itD = [0 ; 1]N , with

N =
P

i pi + n(n � 1).

2.2.3 Solving the Dual Problem

We propose to solve the dual problem with a subgradient descent approach. Starting from

some initial values for � 0 and � 0, we use the update rule

(
� t+1

i = [ � t
i + � (x t

i � 1pi � � )]+ ;

� t+1
i = [ � t

i + � (et
i � 1n � � )]+ ;

(2.7)

where [x]+ denotes the positive part of a scalarx, k � 0, � and � are �xed step sizes,x t
i � 1pi � �

and et
i � 1n � � are respectively the negative of the subgradients of the Lagrangian with respect

to � i and � i in � t
i and � t

i , and

(x t ; et ) 2 argmax(x;e)2 [0;1]N K (x; e; � t ; � t ): (2.8)

As shown in Appendix A, for �xed values of � and � , our Lagrangian is a supermodular

pseudo-Boolean function of binary variables setsx and e. This allows us to take advantage of

the following direct corollary of [Bach, 2013, Prop. 3.7].

Proposition 2.2.1. Let f denote some supermodular pseudo-Boolean function ofn variables.

We have

max
x2f 0;1gn

f (x) = max
x2 [0;1]n

f (x); (2.9)

and the set of maximizers off (x) in [0; 1]n is the convex hull of the set of maximizers off on

f 0; 1gn .

In particular, we can take

(x t ; et ) 2 argmax(x;e)2f 0;1gN K (x; e; � t ; � t ): (2.10)

As shown in [Billionnet, 1985; Boros, 2002], the corresponding supermodular cubic pseudo-

Boolean function optimization problem is equivalent to a maximum stable set problem in a

bipartite con�ict graph , which can itself be reduced to a maximum-�ow problem. See Appendix A

for details.

Note that the size of the min-cut/max-�ow problems that have to be solved is conditioned

by the number of nonzeroSkl
ij entries, which is upper-bounded byn2p2 when the matricesSij are

dense (denotingp = max f pi g). This is prohibitively high given that, in practice, p is between

1000 and 4000. To make the computations manageable, we set all but between100 and 1000

(depending on the dataset's size) of the largest entries inSij to zero in our implementation.
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2.2.4 Solving the Primal Problem

Once the dual problem is solved, as argued by [Nedi¢, 2009] and [Bach, 2013], an approximate

solution of the primal problem can be found as a running average of the primal sequence(x t ; et )

generated as a by-product of the sub-gradient method:

x̂ =
1
T

T � 1X

t=0

x t ; ê =
1
T

T � 1X

t=0

et (2.11)

after some numberT of iterations. Note the scalarsx̂k
i and êij lie in [0; 1] but do not necessarily

verify the constraints (2.2) and (2.3). Theoretical guarantees on these values can be found under

additional assumptions in [Nedi¢, 2009; Bach, 2013].

2.2.5 Rounding the Solution and Greedy Ascent

Two problems remain to be solved: The solution(x̂; ê) found now belongs to[0; 1]N instead

of f 0; 1gN , and it may not satisfy the original constraints. Note, however, that given somei in

f 1; : : : ; ng and �xed values for e and all x j with j 6= i , the function S can be rewritten as

S(x; e) =
X

j 6= i

(eij Sij + eji ST
ji )x j + C; (2.12)

where C is a term that does not depend onx i . The maximum value of S in this case, given the

constraints, is therefore obtained by setting to1 exactly the � entries of x i corresponding to the

� largest entries of the vector
P

j 6= i (eij Sij + eji ST
ji )x j . Likewise, given somei in f 1; : : : ; ng and

a �xed value of x, S is rewritten as

S(x; e) =
X

j 6= i

xT
i Sij x j + C; (2.13)

with C is ei -independent. The maximum value ofS is thus reached by setting to1 exactly the �

entries ofei corresponding to the� largest scalarsxT
i Sij x j for j 6= i in f 1 : : : ng. This suggests the

following approach to rounding up the solution, where the variablesx i are updated sequentially

in an order speci�ed by some random permutation � of f 1; : : : ; ng, before the variablesei are

updated in parallel. Given the permutation � , Algorithm 2.1 turns the running average (x̂; ê) of

the primal sequence into a discrete solution(x; e) that satis�es the conditions (2.2) and (2.3).

Note that there is no preferred order for the image indices. This actually suggests repeating

this procedure with di�erent random permutations until the variables x and e do not change

anymore or some limit on the number of iterations is reached. This iterative procedure can

be seen as a greedy ascent procedure over the discrete variables of interest. Note that by

construction the terms in the left and right sides of Equations (2.2) and (2.3) are equal at the

optimum.
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Algorithm 2.1: Greedy block coordinate ascent algorithm.
Input: Number of imagesn, score matrices(Sij )1� i;j � n , parameters � and � , running

average(x̂; ê) from the continuous optimization.
Result: Discrete, feasible solution(x; e).

1 Initialize x = x̂, e = ê.
2 �  rand-perm([1::n]) . Generate a random permutation of[1::n]
3 for i = 1 to n do
4 Cx  

P n
j 6= � (i ) (e� ( i ) j S� ( i ) j + ej� ( i )ST

j� (i ) )x j . Comp. coef. inS(x; e) of elem. ofx � ( i )

5 k1; : : : ; k�  find-max-indices (Cx ; � ) . Find ids of � largest elem. inCx

6 x � ( i )  0 . Re-initialize x � ( i )

7 for t = 1 to � do
8 xkt

� ( i )  1 . Assign elements with indicesk1, . . . , k� to 1

9 end
10 end
11 for i = 1 to n do
12 Ce  [xT

i Si 1x1; xT
i Si 2x2; : : : ; xT

i Sin xn ] . Comp. coef. inS(x; e) of elem. in ei

13 j 1; : : : ; j �  find-max-indices (Ce; � ) . Find ids of � largest elem. inCe

14 ei  0 . Re-initialize ei

15 for t = 1 to � do
16 eij t  1 . Assign elements with indicesj 1, . . . , j � to 1
17 end
18 end
19 Return (x; e).

2.2.6 Ensemble Post Processing

The parameter � can be seen from two di�erent viewpoints: (1) as the maximum number of

objects that may be depicted in an image, or (2) as an upper bound on the total number of object

region candidatesthat are under consideration in a picture. Both viewpoints are equally valid

but, following [Cho, 2015], we focus in the rest of this chapter on the second one, and present

in this section a simple heuristic for selecting one �nal object region among these candidates.

Concretely, since using random permutations during greedy ascent provides a di�erent solution

for each run of our method, we propose to apply anensemble methodto stabilize the results

and boost performance in this selection process, itself viewed as a post-processing stage separate

from the optimization part.

Let us suppose that afterL independent executions of the greedy ascent step, we obtainL

solutions (x(l); e(l )) ; 1 � l � L . We start by combining these solutions into a single discrete

pair (�x; �e) where �x and �e satisfy �xk
i = max

1� l � L
xk

i (l ) and �eij = max
1� l � L

eij (l ). This way of combining

the individual solutions can be seen as amax pooling procedure. We have also triedaverage

pooling but found it less e�ective. Note that after this intermediate step, an image might violate

any of the two constraints (2.2-2.3). This is not a problem in this postprocessing stage of our

method. Indeed, we next show how to use�x and �e to select a single object proposal for each

image.

We choose a single proposal for each image out of those retained in�x (proposals (i; k ) s.t.
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�xk
i = 1 ). To this end, we rank the proposals in imagei according to a scoreuk

i de�ned for each

proposal (i; k ) as

uk
i = �xk

i

X

j 2N (i;k )

max
l j �x l

j =1
Skl

ij ; (2.14)

whereN (i; k ) is composed of the� images represented by the1 entries in �ei that have the largest

similarity to (i; k ) as measured bymaxl j �x l
j =1 Skl

ij . Finally, we choose the proposal in imagei with

maximum scoreuk
i as the �nal object region. Note that the graph of images corresponding to

these �nal object regions can be retrieved by computinge that maximizes the objective function

given the value of x de�ned by these regions as in the greedy ascent. Also, the method above

can be generalized to selecting more than one proposal per image using the de�ned ranking but

following [Cho, 2015], we focus in this chapter on �nding only the most prominent object in

each image.

2.3 Similarity Model

Let us now get back to the de�nition of the similarity score Sij . As advocated by [Cho, 2015],

a rectangular region which is a tight �t for a compact object (the foreground) should better model

this object than a larger region, since it contains lessbackground, or than a smaller region (a

part) since it contains more foreground. [Cho, 2015] only implement the �rst constraint, in

the form of a stand-out score. We discuss in this section how to implement these ideas in the

optimization context of this work.

2.3.1 Con�dence Score

Following [Cho, 2015], the con�dence score between proposalk of image i and proposal l of

image j can be de�ned as

skl
ij = akl

ij

X

o2 O

g(r k
i ; r l

j ; o)
X

1� k0� pi
1� l0� pj

g(r k0

i ; r l0
j ; o)ak0l0

ij ; (2.15)

whereakl
ij is a similarity term based on appearance alone, using the WHO (whiten HOG) descrip-

tor [Dalal, 2005; Hariharan, 2012] in our case;r k
i and r l

j denote the image rectangles associated

with the two proposals; o is a discretized o�set (translation plus a scale factor) taking values

in O; and g(r; s; o) measures the geometric compatibility betweeno and the rectanglesr and s.

Intuitively, skl
ij scales the appearance-only scoreakl

ij by a geometric-consistency term akin to a

generalized Hough transform [Ballard, 1981], see [Cho, 2015] for details.

Note that we can rewrite Equation (2.15) as

skl
ij = bkl

ij � cij ; (2.16)

where bkl
ij is the vector of dimensionjOj with entries akl

ij g(r k
i ; r l

j ; o), and cij =
P p

k0;l 0=1 bk0l0
ij . The

pi pj vectors bkl
ij and the vector cij can be precomputed with time and storage cost ofO(p2jOj).
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2.3. Similarity Model

Each term skl
ij can then be computed inO(jOj) time, and the matrix Sij can thus be computed

with a total time and space complexity of O(p2jOj).

The score skl
ij de�ned by Equation (2.15) depends on the number of region proposals per

images, which may introduce a bias for edges between images that contain many region proposals.

It is thus desirable to normalize this score by de�ning it instead as

skl
ij =

1
pi pj

bkl
ij � cij : (2.17)

2.3.2 Stand-out Score

Let us de�ne P k
i as the set of regions in imagei that are parts of region (i; k ), i.e., a large

percentage of their area is included in region(i; k ). Let us also de�ne B k
i as the set of regions

in image i that form the backgroundfor (i; k ), i.e., a large part of the latter is included in these

regions. With this de�nition, we consider (i; k 0) � (j; l 0) a background match of (i; k ) � (j; l ) if

(i; k 0) 2 B k
i and (j; l 0) 2 B l

j . Let r k
i denote the actual rectangular image region associated with

(i; k ), and let A(r ) denote the area of some rectangler . We de�ne P k
i as

P k
i = f l : A(r k

i \ r l
i ) > �A (r l

i )g; (2.18)

for some suitable value of� , e.g., 0.5. Likewise,B k
i is de�ned as

B k
i = f l : A(r k

i \ r l
i ) > �A (r k

i ) and A(r l
i ) > 
A (r k

i )g; (2.19)

for suitable values of� and 
 , e.g., 0.8 and 2. Following [Cho, 2015], we de�ne thestand-out score

of a match (i; k ) � (j; l ) as the di�erence in con�dence score to its most con�dent background

match

Skl
ij = skl

ij � vkl
ij ; where vkl

ij = max
(k0;l 0)2 B k

i � B l
j

sk0l0
ij : (2.20)

With this de�nition, Skl
ij may be negative. In our implementation, we threshold these scores so

that they are non-negative.

When B k
i and B l

j are large, which is generally the case when the regionsr k
i and r l

j are small,

a brute-force computation of vkl
ij may be very slow. We propose below instead a simple heuristic

that greatly speeds up calculations. LetQij denote the set formed by theq matches(i; k ) � (j; l )

with highest scoresskl
ij , sorted in increasing order, which can be computed inO(p2 logp) with

QuickSort [Hoare, 1961] orO(p2 + qlogq) with Median of Medians [Blum, 1973] then QuickSort.

The stand-out scores can be computed e�ciently by Algorithm 2.2.

The idea is that relatively few high-con�dence matches (i; k 0) � (j; l 0) in Qij can be used

to e�ciently compute many stand-out scores. There is a trade-o� between the cost of this

step, O(
P

(k0;l 0)2 Q ij
jP k0

i j jP l0
j j), and the number of variables vkl

ij it assigns a new value to,

O(j [ (k0;l 0)2 Q ij P k0

i � P l0
j j). In practice, we have found that taking q = 10; 000 is a good compro-

mise, with only about 5% of the stand-out scores being computed in a brute-force manner, and

a signi�cant speed-up factor of over10.
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Algorithm 2.2: Standout score computation.
Input: Top q con�dent matches Qij , con�dence scoresij .
Result: Stand-out score matrix Sij for all matches between regions in imagesi and j .

1 Initialize all vkl
ij to 0

// Quickly compute the most confident background matches for most matches
2 foreach match (i; k 0) � (j; l 0) in Qij do
3 foreach match (i; k ) � (j; l ) in P k0

i � P l0
j do

4 Assign vkl
ij = sk0l0

ij

5 end
6 end

// Compute the most confident background matches for the remaining matches
7 for k = 1 to pi and l = 1 to pj do
8 if skl

ij > 0 and vkl
ij = 0 then

9 vkl
ij = max

(k0;l 0)2 B k
i � B l

j

sk0l0
ij

10 end
11 end

// Compute the stand-out score
12 for k = 1 to pi and l = 1 to pj do
13 Skl

ij = skl
ij � vkl

ij

14 end

2.4 Experiments and Results

Datasets, proposals and metric. For our experiments we use the same datasets (Object-

Discovery [OD], VOC_6x2 and VOC_all) and region proposals (obtained by the randomized

Prim algorithm [RP] [Manen, 2013]) as [Cho, 2015]. OD consists of pictures of three object

classes (airplane, horse and car) with outliers not containing any object instance. There are

100 images per category, with 18, 7 and 11 outliers respectively. VOC_all is a subset of the

PASCAL VOC2007 train + val dataset obtained by eliminating all images containing only objects

marked as di�cult or truncated. Di�cult and truncated objects in remaining images are also

discarded. In total, it has 3550 images containing 6661 objects. Finally, VOC_6x2 is a subset

of VOC_all containing only 463 images of 6 classes �aeroplane, bicycle, boat, bus, horse � and

motorbike from two di�erent views, left and right.

For evaluation, we use the standardCorLoc measure, the percentage of images correctly

localized. It is a proxy metric in the case of unsupervised object discovery. An image is �correctly

localized� when the intersection over union (IoU ) between one of the ground-truth regions and

the predicted one is at least 0.5. Following [Cho, 2015], we evaluate our algorithm in �separate�

and �mixed� settings, which respectively correspond to the colocalization and the true discovery

settings. In the former case, the class-wise performance is averaged over classes. In the latter, a

single performance is computed over all classes jointly. In our experiments, we use� = 5 , � = 10

and standout matrices with 1000 non-zero entries unless mentioned otherwise.
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Separate setting. We �rstly evaluate di�erent con�gurations of our algorithm on the two

smaller datasets, OD and VOC_6x2. The performance is governed by three design choices: (1)

Using the normalized stand-out score (NS) or its unnormalized version, (2) using continuous

optimization ( CO) or variables x and e with all entries equal to one to initialize the greedy

ascent procedure, and (3) using the ensemble method (EM) or not. In total, we thus have eight

con�gurations to test.

Method OD VOC_6x2

[Cho, 2015] 84.2 67.7
[Cho, 2015] (our execution) 84.2 67.6

w/o EM
w/o CO

w/o NS 81.9 � 0.9 65.9� 1.0
w NS 83.1� 0.8 67.2� 1.0

w/ CO
w/o NS 82.9 � 0.8 66.6� 0.7
w/ NS 84.4 � 0.8 68.1� 0.9

w/ EM
w/o CO

w/o NS 84.4 � 0.0 68.8� 0.4
w/ NS 85.6 � 0.3 68.7� 0.5

w/ CO
w/o NS 83.8 � 0.2 67.4� 0.4
w/ NS 85.8 � 0.6 69.4 � 0.3

Table 2.1 � Performance of di�erent con�gurations of our algorithm compared to the results of
[Cho, 2015] on Object Discovery and VOC_6x2 datasets in the separate setting. Best results
are in bold. We observe that both the normalized score (NS) and the ensemble method (EM)
improve the performance. EM also improves the stability of our solution (lower variance). The
combination of ensemble method (EM), continuous optimization (CO) and normalized scores
(NS) produces the best results for OSD.

The results are shown in Table 2.1. We have found a small bug in the publicly available

code of [Cho, 2015], and report both the results from [Cho, 2015] and those we obtained after

correction. We observe that the normalized standout score always gives comparable or better

results than its unnormalized counterpart, while the ensemble method also improves both the

score and the stability (lower variance) of our solution. Combining the normalized standout

score, the ensemble method, and the continuous optimization initialization to the greedy ascent

yields the best performance. Our best results outperform [Cho, 2015] by small but statistically

signi�cant margins: 1.6% for OD and 1.8% for VOC_6x2. Finally, to assess the merit of the

continuous optimization, we have measured its duality gap on OD and VOC_6x2: it ranges from

1.5% to 8.7% of the energy, with an average of 5.2% and 3.9% on the two datasets respectively.

We now evaluate our algorithm on VOC_all. As the complexity of solving the max �ow prob-

lem grows very fast with the number of images, for con�gurations with continuous optimization,

we reduce the number of non-zero entries in each standout matrix such that the total number

of nodes in the graph is around2� 107. These standout matrices are then used in rounding the

continuous solution, but in the greedy ascent procedure we switch to standout matrices with

1000 non-zero entries. For con�gurations without the continuous optimization, we always use

the standout matrices with 1000 non-zero entries. Also, to reduce the memory footprint of our

method, we pre�lter the set of potential neighbors of each image for large classes. Pre-�ltering

is done by marking 100 nearest neighbors of each image in terms of Euclidean distance between
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Method VOC_all

[Cho, 2015] 36.6
[Cho, 2015] (our execution) 37.6

Ours, w/o CO
w/o EM 36.4 � 0.3
w/ EM 39.0 � 0.2

Ours, w/ CO
w/o EM 37.8 � 0.3
w/ EM 39.2 � 0.2

[Li, 2016]y 40.0
[Wei, 2017a]y 46.9

Table 2.2 � Performance on VOC_all in separate setting with di�erent con�gurations of our
method compared to baselines. The combination of continuous optimization (CO) and ensemble
method (EM) yeilds the best results for our method. Note that [Li, 2016] and [Wei, 2017a] use
pre-trained CNN features [Simonyan, 2015a] while [Cho, 2015] and our method use the hand-
crafted WHO [Hariharan, 2012] features.

GIST [Torralba, 2008] descriptors as potential neighbors. In the separate setting, we only apply

the pre-�ltering on the class person which has 1023 images. The other classes are su�ciently

small for not resorting to the pre�ltering procedure.

Table 2.2 shows the CorLoc values obtained by our method with di�erent con�gurations

compared to [Cho, 2015]. We use the normalized score in all of these experiments. It can

be seen that the ensemble postprocessing and the continuous optimization are still helpful on

this dataset. We obtain the best result with the con�guration that includes both of them,

which is 1.6% better than [Cho, 2015]. However, our performance is still inferior to state

of the art in image colocalization [Li, 2016; Wei, 2017a] which employs deep features from

convolutional neural networks trained for image classi�cation and explicitly exploits the single-

class assumption.

Mixed setting. We now compare in Table 2.3 the performance of our algorithm to [Cho,

2015] in the mixed setting (none of the other methods is applicable to this case). It can be

seen that our algorithm without the continuous optimization has the best performance among

those in consideration. Compared to [Cho, 2015], it gives a CorLoc 0.8% better on OD dataset,

4.3% better on VOC_6x2 and 2.3% better on VOC_all. The decrease in performance of our

method when using the continuous optimization is likely due to the fact that we use standout

matrices with only 200 non-zero entries on OD, 100 non-zero entries on VOC_6x2 and VOC_all

(due to the limit on the number of nodes of the bipartite graphs) in the con�guration with the

continuous optimization while we use denser standout matrices (1000 non-zero entries) in the

con�guration without the continuous optimization.

Sensitivity to � . We compare the performance of our method when using di�erent values of

� on the VOC_6x2 dataset. Table 2.4 shows the CorLoc obtained by di�erent con�gurations of

our algorithm, all with normalized standout. The performance consistently increases with the

value of � on this dataset. In all other experiments, however, we set� = 5 to ease comparisons
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Method OD VOC_6x2 VOC_all

[Cho, 2015] - - 37.6
[Cho, 2015] (our execution) 82.2 55.9 37.5

Ours, w/o CO 83.0 � 0.4 60.2� 0.4 39.8� 0.2
Ours, w/ CO 80.8 � 0.5 59.3� 0.4 38.5� 0.2

Table 2.3 � Performance of our method compared to [Cho, 2015] in the mixed setting.

to [Cho, 2015].

Method VOC_6x2

� = 1
w/o CO

w/o EM 63.5 � 1.2
w/ EM 67.7 � 0.8

w/ CO
w/o EM 65.8 � 0.8
w/ EM 68.1 � 0.7

� = 5
w/o CO

w/o EM 67.2 � 1.0
w/ EM 68.7 � 0.5

w/ CO
w/o EM 68.1 � 0.9
w/ EM 69.4 � 0.3

� = 10
w/o CO

w/o EM 68.6 � 1.0
w/ EM 69.1 � 0.3

w/ CO
w/o EM 68.9 � 0.7
w/ EM 70.0 � 0.3

Table 2.4 � Performance of di�erent con�gurations of our algorithm with � = 1 , � = 5 and
� = 10. Larger values of � yield better performance but we use� = 5 in our experiments to
facilitate comparisons to [Cho, 2015].

Using deep features. Since activations from deep neural networks trained for image classi�-

cation (deep features) are known to be better image representations than handcrafted features

in various tasks, we have also experimented with such descriptors. We have replaced WHO [Har-

iharan, 2012] by activations from di�erent layers in VGG16 [Simonyan, 2015a], when computing

the appearance similarity akl
ij between regions. In this case, the appearance similarity between

two regions is simply the scalar product of the corresponding deep features (normalized or not).

As a preliminary experiment to evaluate the e�ectiveness of deep features, we have run our

algorithm without the continuous optimization with the standout score computed using layers

conv4_3, conv5_3 and fc6 in VGG16. Table 2.5 shows the results of these experiments. Sur-

prisingly, most of the tested deep features give worse results than WHO. This may be due to

the fact that our matching task is more akin to image retrieval than classi�cation, for which

deep features are typically trained. Among those tested, only a variant of the features extracted

from the layer conv5_3 of VGG16 gives an improvement (about 2%) compared to the result

obtained by using WHO.
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Features Average

WHO [Hariharan, 2012] 68.8� 0.5

conv4_3
warping + center cropping

unnormalized 64.2� 0.2
normalized 57.1� 0.6

ROI pooling [Girshick, 2015]
unnormalized 63.1� 0.2
normalized 63.4� 0.4

conv5_3
warping + center cropping

unnormalized 64.9� 0.2
normalized 64.1� 0.4

ROI pooling [Girshick, 2015]
unnormalized 70.7 � 0.2
normalized 68.2� 0.3

fc6 warping + center cropping
unnormalized 61.3� 0.2
normalized 61.0� 0.4

Table 2.5 � Performance of our algorithm with deep features on VOC_6x2 in the separate
setting.

Unsupervised initial proposals. It should be noted that, although our algorithm like that

of [Cho, 2015] is totally unsupervised oncegiven the region proposals, the randomized Prim's

algorithm itself is supervised [Manen, 2013]. To study the e�ect of this built-in supervision,

we have also used the unsupervisedselective searchalgorithm [Uijlings, 2013] for generating

region proposals. We have conducted experiments on VOC_6x2 dataset with the three di�erent

settings of selective search (fast, medium and quality). As one might expect, the fast mode gives

the smallest number of proposals and ofpositive ones (proposals whoseIoU with one ground-

truth box is at least 0.5). The quality mode outputs the largest set of proposals and of positive

ones, and themedium mode lies in-between. To compare with [Cho, 2015], we also run their

public software with each mode of selective search.

Proposal algorithm [Cho, 2015] Ours

selective search
fast 23.3 41.4� 0.5

medium 20.6 48.4� 0.5
quality 32.6 62.8� 0.6

randomized Prim 67.6 69.4� 0.4

Table 2.6 � Object discovery on VOC_6x2 with region proposals generated by selective
search [Uijlings, 2013] and randomized Prim [Manen, 2013].

The results are shown in Table 2.6. It can be seen that the performance of both [Cho, 2015]

and our method drop signi�cantly when using selective search. This may be due to the fact

that the percentage of positive proposals found by selective search is much smaller than that of

randomized Prim. However, we see that with thequality mode of selective search, our method

gives results quite close to those of RP, whereas the method in [Cho, 2015] fails badly. This

suggests that our method is more robust.

Visualization. In order to gain insight into the structures discovered by our approach, we

derive from its output a graph of image regions and visualize its main connected components.
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Figure 2.2 � Visualization of VOC_6x2 in the mixed setting. The �gure shows the third compo-
nent in the graph of regions, corresponding roughly to classmotorbike. The two �rst components
are shown in Figure 2.1.

The nodes of this graph are the image regions that have been �nally retained. Two regions(i; k )

and (j; l ) are connected if the images containing them are neighbors in the discovered undirected

image graph (eij or eji = 1 ) and the standout score between them,Skl
ij , is greater than a certain

threshold.

Choosing the threshold to get a su�cient number of large enough components for visual-

ization purpose has proven di�cult. We used instead an iterative procedure: the graph is �rst

constructed with a high threshold to produce a small number of connected components of reason-

able size, which are removed from the graph. On the remaining graph, a new, suitable threshold

is found to get new components of su�cient size. This is repeated until a target number of

components is reached.

When applied to our results in the mixed setting on VOC_6x2 dataset, this visualization pro-

cedure yields clusters that roughly match object categories. In Figure 2.1, we show sub-sampled

graphs (for visualization purpose) of the two �rst components, which roughly correspond to

classesbicycle and aeroplane. The third component is shown in Figure 2.2. Although contain-

ing also images of other classes, it is by far dominated bymotorbike images. The visualization

suggests that our model does extract meaningful semantic structures from the image collections

and regions they contain.
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2.5 Conclusion and Limitations

We have presented an optimization-based approach to fully unsupervised image matching and

object discovery, and demonstrated its promise on several standard benchmarks. In its current

form, the algorithm has some limitations. First, due to high computational and memory cost,

it is limited to relatively small datasets. Second, although OSD works with any type of regions

proposals, it obtains the best results with the supervised randomized Prim proposals while

producing unsatisfactory performance with fast selective search, a type of unsupervised regions

proposals which yields the same computational complexity in OSD. Third, CNN features, which

often boost the performance of other tasks signi�cantly when replacing hand-crafted features,

do not yield similar improvements in our experiments for object discovery. Finally, similar to

[Cho, 2015], OSD discovers only one object per image, limiting its applications on complex,

natural images. In the next chapter, we will address all of these issues.
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Chapter 3
Toward Unsupervised, Multi-Object

Discovery in Large-Scale Image Collections

In this chapter, we build on the optimization approach of OSD in Chapter 2 with
several key novelties : (1) We propose a novel saliency-based region proposal algo-
rithm that achieves signi�cantly higher overlap with ground-truth objects than other
competitive methods. This procedure leverages o�-the-shelf CNN features trained on
classi�cation tasks without any bounding box information, but is otherwise unsuper-
vised. (2) We exploit the inherent hierarchical structure of our region proposals as
an e�ective regularizer for OSD, boosting its performance to signi�cantly improve
over the state of the art on several standard benchmarks, and enabling for the �rst
time (to the best of our knowledge) the discovery of multiple objects per image. (3)
We adopt a two-stage strategy to �rst select promising proposals using small ran-
dom sets of images before using the whole image collection to discover the objects
it depicts, allowing us to tackle datasets with up to 20,000 images, an over �ve-fold
increase compared to OSD, and a �rst step toward true large-scale unsupervised
image interpretation.
This work, done in collaboration with Patrick Pérez and Jean Ponce, has appeared
in Proceedings of the European Conference on Computer Vision (ECCV) 2020.
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Chapter 3. Toward Unsupervised, Multi-Object Discovery in Large-Scale Image Collections

Figure 3.1 � An overview of the di�erent modules of the proposed rOSD method. Given an
image collection, we �rst extract CNN features and generate region proposals for each image
(blue zone). These proposals can be divided into disjoint groups, each corresponding to at most
one object and shown with a di�erent color. We then run rOSD directly on the collection if it
is not too large (orange zone) or run the two-stage large-scale algorithm (red zone) otherwise.

3.1 Introduction

In this chapter, we introduce regularized OSD, or rOSD, a method for unsupervised object

discovery built on the OSD framework introduced in the previous chapter. rOSD aims to

alleviate the limitations of OSD and improves it to e�ectively discover multiple objects in large

image collections. Let us �rst provide a short recap of OSD and discuss its limitations.

Given a collection of n images, possibly containing objects from di�erent categories, each

equipped with p region proposals (which can be obtained using selective search [Uijlings, 2013],

edgeboxes [Zitnick, 2014], randomized Prim [Manen, 2013], etc.) and a set of potential neighbors

for each image, the unsupervised object and structure discovery problem is formalized in OSD as

a discrete optimization problem over a set of variables that describe the structure of the implicit

graph of images. Let us de�ne the variablee as an element off 0; 1gn� n with a zero diagonal,

such that eij = 1 when imagesi and j are linked by a (directional) edge in the implicit graph of

images, andeij = 0 otherwise, and the variablex as an element off 0; 1gn� p, with xk
i = 1 when

region proposal numberk of image i corresponds to visual content shared with its neighbors in

the graph. As noted in Chapter 2, this leads to the following optimization problem:

max
x;e

S(x; e) =
nX

i =1

X

j 2 N (i )

eij xT
i Sij x j ; s.t.

pX

k=1

xk
i � � and

X

j 6= i

eij � � 8i; (3.1)

where N (i ) is the set of potential neighbors of imagei , Sij is a p � p matrix whose entry Skl
ij
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3.1. Introduction

measures the similarity between regionsk and l of imagesi and j , and � and � are prede�ned

constants corresponding respectively to the maximum number of objects present in an image

and to the maximum number of neighbors an image may have. This is a hard combinatorial

optimization problem. As shown in Chapter 2, an approximate solution can be found by (a) a

dual gradient ascent algorithm for a continuous relaxation of Equation (3.1) with exact updates

obtained by maximizing a supermodular cubic pseudo-Boolean function [Bach, 2013; Nedi¢,

2009], (b) a simple greedy scheme, or (c) a combination thereof. Since solving the continuous

relaxation of Equation (3.1) is computationally expensive and may be less e�ective for large

datasets (see Chapter 2), we only consider the version (b) of OSD in our analysis.

OSD has some limitations: (1) Although the algorithm itself is fully unsupervised, it gives by

far its best results with region proposals from randomized Prim [Manen, 2013], a region proposal

algorithm trained with bounding box supervision. (2) Whitened HOG (WHO) [Hariharan, 2012]

is used to represent region proposals in OSD although CNN features work better on the similar

image colocalization problem [Li, 2016; Wei, 2019]. Naively switching to CNN features does not

give consistent improvement on common benchmarks. OSD with CNN features gives a CorLoc

of 82:9, 71:5 and 42:8 compared to87:1, 71:2 and 39:5 given by OSD with WHO 1, respectively on

OD, VOC_6x2 and VOC_all data sets. (3) Finally, due to its high memory cost, the algorithm

cannot be applied to large datasets without compromising its �nal performance. In the next

sections, we describe our approach to addressing these limitations, as well as extending OSD to

solve multi-object discovery.

Our contributions in this chapter can be summarized as follows:

� We propose a simple but e�ective method for generating region proposals directly from

CNN features (themselves trained beforehand on some auxiliary task [Simonyan, 2015a]

without bounding boxes) in an unsupervised way (Section 3.3.1). Our algorithm gives on

average half the number of region proposals per image compared to selective search [Ui-

jlings, 2013], edgeboxes [Zitnick, 2014] or randomized Prim [Manen, 2013], yet signi�cantly

outperforms these o�-the-shelf region proposals in object discovery (Table 3.2).

� Leveraging the intrinsic structure of region proposals generated by our method allows us

to add an additional constraint into the OSD formulation that acts as a regularizer on

its behavior (Section 3.3.2). This new formulation, rOSD, signi�cantly outperforms the

original algorithm and allows us to e�ectively perform multi-object discovery, a setting

never studied before (to the best of our knowledge) in the literature.

� We propose a two-stage algorithm to make rOSD applicable to large image collections

(Section 3.3.3). In the �rst stage, rOSD is used to choose a small set of good region

proposals for each image. In the second stage, these proposals and the full image collection

are fed to rOSD to �nd the objects and the image graph structure.

� We demonstrate that our approach yields signi�cant improvements over the state of the

art in object discovery at the time of its writing (Tables 3.3 and 3.4). We also run our

two-stage algorithm on a new dataset with about 20,000 images, which is much larger than

1. We use here a symmetrized version of the similarity score matrices Sij which yields slightly better results
for OSD than the original results in Chapter 2.
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the VOC_all dataset considered in OSD, and show that it signi�cantly outperforms the

plain OSD in this setting (Table 3.6).

An overview of rOSD is given in Figure 3.1. The only supervisory signal used in our setting

are the image labels used to train CNN features in an auxiliary classi�cation task (see [Li, 2016;

Wei, 2019] for similar approaches in the related colocalization domain). We use CNN features

trained on ImageNet classi�cation [Simonyan, 2015a],without any bounding box information.

Our region proposal and object discovery algorithms are otherwise fully unsupervised.

3.2 Related Work

Region proposals have been used in object detection/discovery to serve as object priors and

reduce the search space. In most cases, they are found either by a bottom-up approach in

which low-level cues are aggregated to rank a large set of boxes obtained with sliding window

approaches [Alexe, 2012; Uijlings, 2013; Zitnick, 2014] and return the top windows as proposals,

or by training a model to classify them (as in randomized Prim [Manen, 2013], see also [Ren,

2015a]), with bounding box supervision. Edgeboxes [Zitnick, 2014] and selective search [Ui-

jlings, 2013] are popular o�-the-shelf algorithms that are used to generate region proposals in

object detection [Girshick, 2014; Girshick, 2015], weakly-supervised object detection [Cinbis,

2017; Tang, 2018a] or image colocalization [Li, 2016]. Note, however, that the features used to

generate proposals in these algorithms and those representing them in the downstream tasks are

generally di�erent in nature: Typically, region proposals are generated from low-level features

such as color and texture [Uijlings, 2013] or edge density [Zitnick, 2014], but CNN features are

used to represent them in downstream tasks. However, the region proposal network in Faster-

RCNN [Ren, 2015a] shows that proposals generated directly from the features used in the object

detection task itself give a signi�cant boost in performance. In the object discovery setting, we

therefore propose a novel approach for generating region proposals in an unsupervised way from

CNN features trained on an auxiliary classi�cation task without bounding box information.

Features from CNNs trained on large-scale image classi�cation have also been used to lo-

calize object in the weakly-supervised setting. [Zhou, 2016] and [Selvaraju, 2017] �ne-tune a

pre-trained CNN to classify images and construct class activation maps, as weighted sums of

convolutional feature maps or their gradient with respect to the classi�cation loss, for localizing

objects in these images. [Tang, 2018b] generates region proposals to perform weakly-supervised

object detection on a set of labelled images by training a proposal network using the image labels

as supervision. Contrary to these works, we generate region proposals using only pre-trained

CNN features without �ne-tuning the feature extractor. Moreover, our region proposals come

with a nice intrinsic structure which can be exploited to boost object discovery performance.
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3.3 Proposed Approach

3.3.1 Region Proposals from CNN Features

We address the limitation of using o�-the-shelf region proposals in OSD with insights gained

from the remarkably e�ective method for image colocalization proposed by [Wei, 2019]: CNN

features pre-trained for an auxiliary task, such as ImageNet classi�cation, give a strong,category-

independentsignal for unsupervised tasks. In retrospect, this insight is not particularly surpris-

ing, and it is implicit in several successful approaches to image retrieval [Zhang, 2015a] or co-

saliency detection [Babenko, 2014; Babenko, 2015; Wei, 2017b; Hsu, 2018b]. [Wei, 2019] uses it

to great e�ect in the image colocalization task. Feeding an image to a pre-trained convolutional

neural network yields a set of feature maps represented as a 3D tensor (e.g., a convolutional

layer of VGG16 [Simonyan, 2015a] or ResNet [He, 2016]). [Wei, 2019] observes that the �im-

age� obtained by simply adding the feature maps gives hints to the locations of the objects it

contains, and identi�es objects by clustering pixels with high activation. Similar but di�erent

from them, we observe that local maxima in the above �images� correspond to salient parts

of objects in the original image and propose to exploit this observation for generating region

proposals directly from CNN features. As we do not make use of any annotated bounding boxes,

our region proposal itself is indeed unsupervised.

Figure 3.2 � Illustration of the unsupervised region proposal generation process. The top row
shows the original image, the global saliency mapsg, local maxima of sg and three local saliency
maps sy from three local maxima (marked by red stars). The next three rows illustrate the
proposal generation process on the local saliency maps: From left to right, we show in green the
connected component formed by pixels with saliency above decreasing thresholds and, in red,
the corresponding region proposals.

Our method consists of the following steps. First, we feed the image to a pre-trained convolu-
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tional neural network to obtain a 3D tensor of size(H � W � D), noted F . Adding elements of the

tensor along its depth dimension yields a(H � W ) 2D saliency map, noted assg (global saliency

map), showing salient locations in the image with each location insg being represented by the

correspondingD-dimensional feature vector fromF . Next, we �nd robust local maxima in the

previous saliency map usingpersistence, a measure used in topological data analysis [Edelsbrun-

ner, 2002; Zomorodian, 2005; Edelsbrunner, 2009; Chazal, 2013; Oudot, 2015] to �nd signi�cant

critical points of a function (see Section 3.4.2 for details). We �nd regions around each local

maximum y using a local saliency mapsy of the same size as the global one. The value at any

location in sy is the dot product between normalized feature vectors at that location and at the

local maximum. By construction, the local saliency map highlights locations that are likely to

belong to the same object as the corresponding local maximum. Finally, for each local saliency

map, we discard all locations with scores below some threshold and the bounding box around

the connected component containing the corresponding local maximum is returned as a region

proposal. By varying the threshold, we can obtain tens of region proposals per local saliency

map. An example illustrating the whole process is shown in Figure 3.2.

3.3.2 Regularized OSD

Due to its greedy nature, the block-coordinate ascent algorithm we use to solve OSD (Al-

gorithm 2.1) is prone to bad local maxima. This problem can be partially resolved by using a

larger value of � in the optimization than the actual number of objects we intend to retrieve

(which is one in OSD) to diversify the set of retained regions in each iteration. Amongst re-

gions retained in each image, a single one is then selected in a post processing step by ranking

these using a new score solely based on their similarity to the retained regions in the image's

neighbors (see Section 2.2.6 in Chapter 2). Increasing� in fact gives limited help in diversifying

the set of retained regions. Since there is redundancy in object proposals with many highly

overlapping regions, the� retained regions are often nearly identical (Figure 3.3, second row).

This phenomenon also prevents OSD from retrieving multiple objects in images. One can use

the ranking in OSD's post processing step with non-maximum suppression to return more than

one region from� retained regions but since� regions are often highly overlapping, this fails to

localize multiple objects.

By construction, proposals produced by our approach also contain many highly overlapping

regions, especially those generated from the same local maximum in the saliency map. However,

they come with a nice intrinsic structure: Proposals in an image can be partitioned into groups

labelled by the local maximum from which they are generated. Naturally, it makes sense to

impose that at most one region in a group is retained in OSD since they are supposed to

correspond to the same object. This additional constraint also conveniently helps to diversify

the set of proposals returned by the block-coordinate ascent procedure by avoiding to retain

highly overlapping regions (Figure 3.3, third row). Concretely, let Gih be the set of region

proposals in imagei generated from theh-th local maximum of its global saliency mapsg, with

1 � g � L i where L i is the number of local maxima in sg; we propose to add the corresponding
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Figure 3.3 � Regions returned by OSD and rOSD. In each column from top to bottom: original
image, image with regions returned by OSD, image with regions returned by rOSD. OSD tends
to returns nearly identical regions around a single object while rOSD selects a more diverse set
of regions.

constraints to Equation (3.1):

max
x;e

S(x; e) =
nX

i =1

X

j 2 N (i )

eij xT
i Sij x j ; s.t.8i

8
>>>>>><

>>>>>>:

pP

k=1
xk

i � �;
P

k2 Gih

xk
i � 1; for all groups h

P

j 6= i
eij � �:

(3.2)

We coin the new formulation regularizedOSD, or rOSD. A solution to rOSD can be obtained by

a greedy block-coordinate ascent algorithm, similar to Algorithm 2.1 in Chapter 2 but slightly

modi�ed to account for the new constraints. Its iterations are illustrated in Algorithm 3.1.

Note that we do not use the convex optimization technique in Chapter 2 to solve rOSD due

to its high computational cost. We will demonstrate the e�ectiveness of rOSD compared to OSD

and the state of the art in Section 3.4.4.

3.3.3 Large-Scale Object Discovery

The optimization algorithm for OSD 2 requires loading all score matricesSij into memory

(they can also be computed on-the-�y but at an unacceptable computational cost). The corre-

sponding memory cost isM = (
P n

i =1 jN (i )j) � K , decided by two main factors: The number

of image pairs considered
P n

i =1 jN (i )j and the number of positive entriesK in matrices Sij . To

reduce the cost on larger datasets, we pre-�lter the neighborhood of each image (jN (i )j � 100

for classes with more than 1000 images) and limitK to 1000. This value of K is approximately

the average number of proposals in each image, and it is intentionally chosen to make sure that

Sij is not too sparse in the sense that approximately every proposal in imagei should have a

2. Since the analysis in this section applies to both OSD and rOSD, we refer to both as OSD for ease of
notation.
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Algorithm 3.1: Block coordinate ascent algorithm for rOSD.
Input: Groups Gi , parameters � and � , score matricesSij , number n of images.
Result: A solution to rOSD.

1 x i  1p 8i , eij  1 8i 6= j . Initialize x and e
2 �  rand-perm([1::n]) . Generate a random permutation of[1::n]
3 for i = 1 to n do
4 Cx  

P n
j 6= � (i ) (e� ( i ) j S� ( i ) j + ej� ( i )ST

j� (i ) )x j . Comp. coef. inS(x; e) of elem. ofx � ( i )

5 I  ;
6 for h = 1; h � L i do
7 r �  arg max

r 2 G ih

Cx (r ) . Find reg. w. greatest score inh-th group

8 I  � I [ f r � g.
9 end

10 k1; : : : ; k�  find-max-indices (Cx ; I ) . Find within I ids of � largest elem. inCx

11 x � ( i )  0 . Re-initialize x � ( i )

12 for t = 1 to � do
13 xkt

� ( i )  1 . Assign elements with indicesk1, . . . , k� to 1

14 end
15 end
16 for i = 1 to n do
17 Ce  [xT

i Si 1x1; xT
i Si 2x2; : : : ; xT

i Sin xn ] . Comp. coef. inS(x; e) of elem. in ei

18 j 1; : : : ; j �  find-max-indices (Ce; � ) . Find ids of � largest elem. inCe

19 ei  0 . Re-initialize ei

20 for t = 1 to � do
21 eij t  1 . Assign elements with indicesj 1, . . . , j � to 1
22 end
23 end

positive match with some proposal in imagej . Further reducing the number of positive entries

in score matrices is likely to hurt the performance (see Table 3.6) while a number of 100 poten-

tial neighbors is already small and can not be signi�cantly lowered. E�ectively scaling up OSD

therefore requires lowering considerably the number of proposals it uses. To this end, we propose

two di�erent interpretations of the image graph G = ( x; e) obtained by solving Equation (3.1)

and exploit both to scale up OSD.

Two di�erent interpretations of the image graph. G can be interpreted as capturing

the �true� structure of the input image collection. In this case, � is typically small (say, 1 to 5)

and the discovered �objects� correspond to maximal cliques ofG, with instances given by active

regions (xk
i = 1 ) associated with nodes in the clique. But it can also be interpreted as aproxy

for that structure. In this case, we typically take � larger (say, 50). The active regions found for

each nodex i of G are interpreted as the most promising regions in the corresponding image and

the active edgeseij link it to other images supporting that choice. We dub this variant proxy

OSD.

For small image collections, it makes sense to run OSD only. For large ones, we propose

instead to split the data into random groups with roughly equal size, run proxy OSD on each
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Figure 3.4 � An illustration of the proposed two-stage algorithm for large-scale unsupervised
object discovery. We �rst run proxy rOSD in parallel on di�erent parts of an partition of the
image collection to select approximately� good regions for each image. In the second stage, we
then run rOSD on the entire image set using only the selected region proposals.

group to select the most promising region proposals in the corresponding images, then run OSD

using these proposals on the entire image collection. Using this two-stage algorithm, we reduce

signi�cantly the number of image pairs in each run of the �rst stage, thus allowing the use of

denser score matrices in these runs. In the second stage, since only a very small number of region

proposals is considered in each image, we need to keep only a few positive entries in each score

matrix and are able to run OSD on the entire image collection. Our approach for large-scale

object discovery is summarized in Figure 3.4 and Algorithm 3.2.

Algorithm 3.2: Large-scale object discovery algorithm.
Input: Dataset D of n images, memory limit M , number of partition k, image

neighborhood sizeNb, parameters � � and � .
1 Partition D into random k parts D1, ..., Dk , each has roughlybn=kc images.
2 Compute the maximum number of positive entries in the score matrices in each part:

K 1  � M=(Nb � b n=kc).
3 Compute the maximum number of positive entries in the score matrices in the whole

dataset: K 2  � M=(Nb � n).
4 for i = 1 to k do
5 Compute score matrices for image pairs inD i with K 1 positive entries.
6 Run proxy OSD on D i with � = K 2.
7 Each image inD i has a new set of region proposals which are those retained by OSD.
8 end
9 Compute score matrices between pairs of images inD with K 2 positive entries.

10 Run OSD on the whole datasetD with � = � � .
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3.4 Experiments

3.4.1 Experimental Setup

Datasets. Other than the three datasets � OD, VOC_6x2 and VOC_all � considered in

OSD, we additionally evaluate rOSD on VOC12 and C20K datasets. VOC12 is a subset of the

PASCAL VOC 2012 dataset [Everingham, 2012] and obtained in the same way as VOC_all:

First, images containing only di�cult or truncated objects are eliminated, then objects marked

asdi�cult or truncated in the remaining images are also dropped. The resulting dataset contains

7838 images and �gures 13957 objects. For large-scale experiments, we randomly choose 20000

images from the training set of COCO [Lin, 2014] and eliminate those containing onlycrowd

bounding boxes as well as bounding boxes marked ascrowd in retained images, resulting in the

C20K dataset, which has 19817 images and 143951 objects.

Evaluation Protocols and Metrics. Di�erent from OSD, we consider in this chapter both

the single-object discovery setting, in which the model returns a single object for each image,

and the multi-object discovery setting where the model returns possibly more than one object

per image. In the single-object setting, similar to OSD, [Cho, 2015] and baselines in colocaliza-

tion [Li, 2016; Wei, 2019], we use CorLoc as the evaluation metric. In the multi-object setting,

since CorLoc does not take into account multiple detections per image, we use insteaddetection

rate at the IoU threshold of 0:5 as measure of performance. Given some threshold� , detection

rate at IoU = � is the percentage of ground-truth bounding boxes that have anIoU with one of

the predicted objects at least� . We evaluate our method in both the colocalization task, where

the algorithm is run separately on each class of the dataset, and the average CorLoc/detection

rate over all classes is computed as the overall performance measure on the dataset, and the

true discovery task where the whole dataset is considered as a single class.

3.4.2 Implementation Details

Features. We test our methods with the pre-trained CNN features from VGG16 and VGG19 [Si-

monyan, 2015a]. For generating region proposals, we apply the algorithm described in Sec-

tion 3.3.1 separately to the layers right before the last two max pooling layers of the networks

(relu4_3 and relu5_3 in VGG16, relu4_4 and relu5_4 in VGG19), then fuse proposals gener-

ated from the two layers as our �nal set of proposals. Note that using CNN features at multiple

layers is important as di�erent layers capture di�erent visual patterns in images [Zeiler, 2014].

One could also use more layers from VGG16 (e.g., layersrelu3_3, relu4_2 or relu5_2 ) but we

only use two for e�ciency. In experiments with OSD and rOSD, we extract features for the

region proposals by applying the region of interest pooling (RoI pooling) operator introduced in

Fast-RCNN [Girshick, 2015] to layer relu5_3 of VGG16 or layer relu5_4 of VGG19.

Region proposal generation process. For �nding robust local maxima of the global saliency

maps sg, we rank its locations using persistence [Chazal, 2013; Edelsbrunner, 2009; Edelsbrun-

ner, 2002; Oudot, 2015; Zomorodian, 2005]. Concretely, we considersg as a 2D image and each
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Figure 3.5 � An illustration of persistence in the 1D case. Left: A 1D function. Right: Its
persistence diagram. Points above the diagonal correspond to its local maxima and the vertical
distance from these points to the diagonal is their persistence. Local maxima with higher
persistence are more robust:B is more robust than A although f (A) > f (B ). Given a chosen
persistence threshold (shown by dash lines in blue), points with persistence higher than some
threshold are selected as robust local maxima. The black horizontal dotted lines show birth and
death time of the local maxima of f .

location in it as a pixel. We associate with each pixel a �birth� time (its own saliency) and

a �death� time, de�ned as the highest value � for which there is a path in the 4-neigborhood

graph of pixels that connects it with another pixel with higher saliency such that the saliency

of all pixels in the path is at least � , or, if no such path exists, the lowest saliency value in the

map. The persistence of a pixel is de�ned as the di�erence between its birth and death times.

A sorted list of pixels in decreasing persistence order is computed, and the local maxima are

chosen as the top pixels in the list. An illustration of this computation for 1D case is illustrated

in Figure 3.5.

For additional robustness, we also apply non-maximum suppression on the list over a3 � 3

neighborhood. Since the saliency map created from CNN feature maps can be very noisy,

we eliminate locations with score in sg below � max sg before computing the persistence to

obtain only good local maxima. When generating proposals from local saliency mapsy , we also

eliminate locations with score smaller than the average score insy and whose score insg is smaller

than � times the average score insg. We choose the value of the pair(�; � ) in f 0:3; 0:5g�f 0:5; 1g

by conducting small-scale object discovery on VOC_6x2. We �nd that (�; � ) = (0 :3; 0:5) yields

the best performance and gives local saliency maps that are not fragmented while eliminating

well irrelevant locations across settings and datasets. We take up to20 local maxima (after

non-maximum suppression) and use50 linearly spaced thresholds between the lowest and the

highest scores in each local saliency map to generate proposals. We study the in�uence of these

parameters in Table 3.1.
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(a) IoU = 0 :5. (b) IoU = 0 :7.

(c) IoU = 0 :9. (d) positive regions.

Figure 3.6 � Quality of proposals by di�erent methods. (a-c): Detection rate by number of pro-
posals at di�erent IoU thresholds of randomized Prim (RP) [Manen, 2013], edgeboxes (EB) [Zit-
nick, 2014], selective search (SS) [Uijlings, 2013] and ours; (d): Percentage of positive proposals
for the four methods.

Object discovery experiments. For single-object colocalization and discovery, following

OSD, we use� = 5 ; � = 10 and apply the post processing of OSD to obtain the �nal result.

For multi-object setting, we use � = 50, � = 10 and apply the post processing with non-

maximum suppression at IoU = 0 :7 to retain at most 5 regions in the �nal result. Similar

to OSD, we report the average performance and its standard deviation from multiple runs for

each experiment. However, we do not use the ensemble method (EM) since it does yield clear

bene�ts (see Table 3.7). On large classes/datasets, we pre-�lter the setN (i ) of neighbors that are

considered in the optimization for each image, using the cosine similarity between features from

the fully connected layer fc6 of the pre-trained network, following [Babenko, 2014]. The number

of potential neighbors of each image is �xed to50 in all experiments where the pre-�ltering is

necessary.
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3.4.3 Region Proposal Evaluation

Following other works on region proposals [Manen, 2013; Uijlings, 2013; Zitnick, 2014], we

evaluate the quality of our proposals on PASCAL VOC 2007 usingdetection rate at various

IoU thresholds. But since we intend to later use our proposals for object discovery, unlike

other works, we evaluate directly our proposals on VOC_all instead of the test set of VOC

2007 to reveal the link between the quality of proposals and the object discovery performance.

Figure 3.6(a-c) shows the performance of di�erent proposals on VOC_all. It can be seen that

our method performs better than others at a very high overlap threshold (0:9) regardless of the

number of proposals allowed. At medium threshold (0:7), our proposals are on par (or better

for fewer than 500 proposals) with those from selective search [Uijlings, 2013] and randomized

Prim [Manen, 2013] and much better than those from edgeboxes [Zitnick, 2014]. At a small

threshold (0:5), our method is still on par with randomized Prim and edgeboxes, but does not

fare as well as selective search. It should be noted that randomized Prim is supervised whereas

the others are unsupervised.

In OSD and rOSD, localizing an object in an image means singling out apositive proposal,

that is, a proposal having an IoU greater than some threshold with object bounding boxes. It

is therefore easier to localize the object if the percentage of positive region proposals is larger.

As shown by Figure 3.6(d), our method performs very well according to this criterion: Over

8% of our proposals are positive at anIoU threshold of 0:5, and over 3% are still positive for

an IoU of 0:7. Also, randomized Prim and our method are by far better than selective search

and edgeboxes, which explains the superior object discovery performance of the former over the

latter (see Chapter 2 and Table 3.2). Note that region proposals with a high percentage of

positive ones could also be used in other tasks, i.e., weakly-supervised object detection, but this

is left for future work.

3.4.4 Object Discovery Performance

Single-object colocalization and discovery. An important component of OSD is the sim-

ilarity model used to compute score matricesSij . We introduce in Chapter 2 two scores,con�-

dencescore andstandout score, but use only the latter for it gives better performance. Since our

new proposals come with di�erent statistics, we test both scores with them. Table 3.1 (left) com-

pares colocalization performance on OD, VOC_6x2 and VOC_all of OSD using the con�dence

and standout scores as well as our proposals. It can be seen that on VOC_6x2 and VOC_all,

the con�dence score does better than the standout score, while on OD, the latter does better.

This is not particularly surprising since images in OD generally contain bigger objects (relative

to image size) than those in the other datasets. In fact, although the standout score is used on

all datasets in [Cho, 2015] and OSD, the parameter
 (see [Cho, 2015]) used in computing the

standout score is adjusted to favor larger regions when running on OD. In all of our experiments

from now on in this chapter, we use the standout score on OD and the con�dence score on other

datasets (VOC_6x2, VOC_all, VOC12 and C20K).

Our proposal generation process introduces a few hyper-parameters. Apart from� and
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Dataset Con�dence Standout

OD 83.7 � 0.4 89.0 � 0.6
VOC_6x2 73.6 � 0.6 64.1 � 0.3
VOC_all 44.7 � 0.3 41.4 � 0.1

(u, v) (20,50) (20,100) (50,50) (50,100)
CorLoc 73.6 � 0.8 73.4� 0.7 73.3� 1.1 74.2� 0.8

p 760 882 1294 1507

Table 3.1 � Left: Colocalization performance with our proposals in di�erent con�gurations of
OSD. Right: Colocalization performance for di�erent values of hyper-parameters.

� , two other important hyper-parameters are the number of local maxima u and the number

of thresholds v which together control the number of proposalsp per image returned by the

process. We study their in�uence on the colocalization performance by conducting experiments

on VOC_6x2 and report the results in Table 3.1 (right). It shows that the colocalization

performance does not depend much on the values of these parameters. Using (u = 50; v = 100)

actually gives the best performance but with twice as many proposals as (u = 20; v = 50). For

e�ciency, we use u = 20 and v = 50 in all of our experiments.

We report in Table 3.2 the performance of OSD and rOSD on OD, VOC_6x2 and VOC_all

with di�erent types of proposals. It can be seen that our proposals give the best results on

all datasets among all types of proposals with signi�cant margins: 6.1%, 2.1% and 3.0% in

colocalization and 5.3%, 0.5% and 4.7% in discovery, respectively. It is also noticeable that our

proposals not only fare much better than the unsupervised ones (selective search [Uijlings, 2013]

and edgeboxes [Zitnick, 2014]) but also outperform those generated by randomized Prim [Manen,

2013], an algorithm trained with bounding box annotation.

Region proposals
Colocalization Discovery

OD VOC_6x2 VOC_all OD VOC_6x2 VOC_all

[Zitnick, 2014] 81.6 � 0.3 54.2� 0.3 29.7� 0.1 81.4� 0.3 55.2� 0.3 32.6� 0.1
[Uijlings, 2013] 82.2� 0.2 54.5� 0.3 30.9� 0.1 81.3� 0.3 57.8� 0.2 33.0� 0.1
[Manen, 2013] 82.9� 0.3 71.5� 0.3 42.8� 0.1 82.5� 0.1 70.6� 0.4 44.5 � 0.1

Ours (OSD) 89.0 � 0.6 73.6 � 0.6 44.7 � 0.3 87.8 � 0.4 69.2 � 0.5 48.7� 0.3
Ours (rOSD) 89.0 � 0.5 73.3 � 0.5 45.8 � 0.3 87.6 � 0.3 71.1 � 0.8 49.2 � 0.2

Table 3.2 � Single-object colocalization and discovery performance of OSD with di�erent types of
proposals. We use VGG16 features [Simonyan, 2015a] to represent regions in these experiments.
Best results are in bold, second best results are underlined.

We compare OSD and rOSD using our region proposals to the state of the art in Table 3.3

(colocalization) and 3.4 (discovery). In these experiments, we use VGG19 features [Simonyan,

2015a] to facilitate comparisons to [Li, 2016] and [Wei, 2019]. It can be seen that our use of CNN

features (for both creating proposals and representing them in OSD) consistently improves the

performance compared to the original OSD. It is also noticeable that rOSD performs signi�cantly

better than OSD on the two large datasets (VOC_all and VOC12) while on the two smaller

ones (OD and VOC_6x2), their performances are comparable. It is due to the fact that images

in OD and VOC_6x2 mostly contain only one well-positioned object thus bad local maxima

are not a big problem in the optimization while images in VOC_all and VOC12 contain much
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more complex scenes and the optimization works better with more regularization. In overall,

we obtain the best results on the two smaller datasets, fare better than [Li, 2016] but are

behind [Wei, 2019] on VOC_all and VOC12 in the colocalization setting. It should be noticed

that while methods for image colocalization [Li, 2016; Wei, 2019] suppose that images in the

collection come from the same category and explicitly exploit this assumption, rOSD is intended

to deal with the much more di�cult and general object discovery task. Indeed, in the discovery

task, rOSD outperforms [Wei, 2019] by a large margin, 5.9% and 4.9% respectively on VOC_all

and VOC12.

Method Features OD VOC_6x2 VOC_all VOC12

[Cho, 2015] WHO 84.2 67.6 37.6 -
OSDy WHO 87.1 � 0.5 71.2� 0.6 39.5� 0.1 -

[Li, 2016] VGG19 - - 41.9 45.6
[Wei, 2019] VGG19 87.9 67.7 48.7 51.1
Ours (OSD) VGG19 90.3 � 0.3 75.3 � 0.7 45.6� 0.3 47.8� 0.2
Ours (rOSD) VGG19 90.2 � 0.3 76.1 � 0.7 46.7 � 0.2 49.2� 0.1

Table 3.3 � Single-object colocalization performance of our approach compared to the state of
the art. Note that [Wei, 2019] outperforms our method on VOC_all and VOC12 in this case,
but the situation is clearly reversed in the much more di�cult discovery setting, as demonstrated
in Table 3.4. OSDy denotes the original OSD in Chapter 2.

Method Features OD VOC_6x2 VOC_all VOC12

[Cho, 2015] WHO 82.2 55.9 37.6 -
OSDy WHO 82.3 � 0.3 62.5� 0.6 40.7� 0.2 -

[Wei, 2019] VGG19 75.0 54.0 43.4 46.3
Ours (OSD) VGG19 89.1 � 0.4 71.9� 0.7 47.9� 0.3 49.2� 0.2
Ours (rOSD) VGG19 89.2 � 0.4 72.5 � 0.5 49.3 � 0.2 51.2 � 0.2

Table 3.4 � Single-object discovery performance on the datasets with our proposals compared
to the state of the art. OSDy denotes the original OSD in Chapter 2.

Multi-Object Colocalization and Discovery. We demonstrate the e�ectiveness of rOSD

in multi-object colocalization and discovery on VOC_all and VOC12 datasets, which contain

images with multiple objects. We compare the performance of OSD and rOSD to [Wei, 2019] in

Table 3.5. Although the latter tackles only the single-object colocalization problem, we modify

their method to have a reasonable baseline for the multi-object colocalization and discovery

problem. Concretely, we take the bounding boxes around the 5 largest connected components of

positive locations in the image'sindicator matrix [Wei, 2019] as the localization results. It can

be seen that our method obtains the best performance with signi�cant margins to the closest

competitor across all datasets and settings. It is also noticeable that rOSD, again, signi�cantly

outperforms OSD in this task. An illustration of multi-object discovery is shown in Figure 3.7.

For a fair comparison, we use high values of� (50) and IoU (0:7) in the multi-object experiments

to make sure that both OSD and rOSD return approximately 5 regions per image.
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Images may of course contain fewer than 5 objects. In such cases, OSD and rOSD usually

return overlapping boxes around the actual objects. We can often eliminate these overlapping

boxes and obtain better qualitative results by using smaller� and IoU threshold values. It can

be seen in Figure 3.7 that with � = 25 and IoU = 0 :3, rOSD is able to return bounding boxes

around objects without many overlapping regions. Note however that the quantitative results

may worsen due to the reduced number of regions returned and the fact that many images

contain objects that highly overlap, e.g., the last two columns of Figure 3.7. In such cases, a

small IoU threshold prevents discovering all of these objects.

Figure 3.7 � Qualitative multi-object discovery results obtained with rOSD. White boxes are
ground-truth objects and red ones are our predictions. Original images are in the �rst row.
Results with � = 50 and IoU = 0 :7 are in the second row. Results with� = 25 and IoU = 0 :3
are in the third row.

Method Features
Colocalization Discovery

VOC_all VOC12 VOC_all VOC12

OSDy WHO 40.7 � 0.1 - 30.7� 0.1 -

Wei et al. [Wei, 2019] VGG19 43.3 45.5 28.1 30.3
Ours (OSD) VGG19 46.8 � 0.1 47.9� 0.0 34.8� 0.0 36.8� 0.0
Ours (rOSD) VGG19 49.4 � 0.1 51.5 � 0.1 37.6 � 0.1 40.4 � 0.1

Table 3.5 � Multi-object colocalization and discovery performance of rOSD compared to com-
petitors on VOC_all and VOC12 datasets. OSDy denotes the original OSD in Chapter 2.

Large-Scale Object Discovery. We apply our large-scale algorithm in the discovery task on

VOC_all, VOC12 and C20K which are randomly partitioned respectively into 5, 10 and 20 parts

of roughly equal sizes. In the �rst stage of all experiments, we pre�lter the initial neighborhood

of images and keep only50 potential neighbors. We choose� = 50 and keep K 1 (which are

250, 500 and 1000 respectively on VOC_all, VOC12 and C20K) positive entries in each score

matrix. In the second stage, we run rOSD (OSD) on the entire datasets with� = 5 , limit the

number of potential neighbors to 50 and use score matrices with only50 positive entries. We

chooseK 1 such that each run in the �rst stage and the OSD run in the second stage have the
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same memory cost, hence the values ofK 1 chosen above. As baselines, we have applied rOSD

(OSD) directly to the datasets, keeping50 positive entries (baseline 1) and1000positive entries

(baseline 2) in score matrices. Table 3.6 shows the object discovery performance on VOC_all,

VOC12 and C20K for our large-scale algorithm compared to the baselines. It can be seen that

our large-scale two-stage rOSD algorithm yields signi�cant performance gains over the baseline

1, obtains an improvement of 6.6%, 9.3% and 4.0% in single-object discovery and 2.9%, 4.0%

and 0.4% in multi-object discovery, respectively on VOC_all, VOC12 and C20K. Interestingly,

large-scale rOSD also outperforms the baseline 2, which has a much higher memory cost, on

VOC_all and VOC12.

Method
Single-object Multi-object

VOC_all VOC12 C20K VOC_all VOC12 C20K

Baseline 1 (OSD) 41.1� 0.3 40.5� 0.2 43.6� 0.2 31.4� 0.1 32.4� 0.0 10.5� 0.0
Baseline 1 (rOSD) 42.8� 0.3 42.6� 0.2 44.5� 0.1 35.4� 0.2 37.2� 0.1 11.6� 0.0

Baseline 2 (OSD) 47.9� 0.3 49.2� 0.2 - 34.8� 0.0 36.8� 0.0 -
Baseline 2 (rOSD) 49.3� 0.2 51.2� 0.2 - 37.6� 0.1 40.4� 0.1 -

Large-scale OSD 45.5� 0.3 46.3� 0.2 46.9� 0.1 34.6� 0.0 36.9� 0.0 11.1� 0.0
Large-scale rOSD 49.4 � 0.1 51.9 � 0.1 48.5 � 0.1 38.3 � 0.0 41.2 � 0.1 12.0 � 0.0

Table 3.6 � Performance of our large-scale algorithm compared to the baselines. Our method
and baseline 1 have the same memory cost, which is much smaller than the cost of baseline 2 .
Also, due to memory limits, we cannot run baseline 2 on C20K.

Results with the ensemble method from OSD In Chapter 2, we use an ensemble method

(EM) to combine several solutions before post processing to stabilize and improve the �nal

performance of OSD. We investigate the in�uence of this procedure on the performance of

OSD and rOSD with our new proposals, and present the result in Tables 3.7 and 3.8. We use

VGG16 features in these experiments. It can be seen that the e�ect of EM is mixed for the

tested datasets. It generally harms the performance on VOC_all and VOC12 and improves the

performance on VOC_6x2 while its e�ect on OD is unclear. We have therefore chosen to omit

EM in our experiments.

Method OD VOC_6x2 VOC_all VOC12

Ours (OSD) w/o EM 89.0 � 0.6 73.6 � 0.6 44.7� 0.3 49.0� 0.2
Ours (OSD) w/ EM 88.2 � 0.2 75.3 � 0.2 44.7 � 0.1 48.7� 0.1

Ours (rOSD) w/o EM 89.0 � 0.5 73.3 � 0.5 45.8 � 0.3 49.7 � 0.1
Ours (rOSD) w/ EM 89.2 � 0.3 74.5 � 0.2 45.5 � 0.1 49.7 � 0.2

Table 3.7 � In�uence of the ensemble method on the colocalization performance of OSD and
rOSD with our proposals.

Evaluating the graph computed by rOSD Following [Cho, 2015], we evaluate the local

graph structure obtained by rOSD using the CorRet measure (`Av.' version). Given the image
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Method OD VOC_6x2 VOC_all VOC12

Ours (OSD) w/o EM 87.8 � 0.4 69.2 � 0.5 48.7� 0.3 51.3 � 0.2
Ours (OSD) w/ EM 87.5 � 0.3 70.9� 0.3 48.6� 0.1 50.7� 0.1

Ours (rOSD) w/o EM 87.6 � 0.3 71.1� 0.8 49.2 � 0.2 52.1 � 0.1
Ours (rOSD) w/ EM 88.7 � 0.3 71.9 � 0.4 48.7 � 0.1 52.0 � 0.1

Table 3.8 � In�uence of the ensemble method on the single-object discovery performance of OSD
and rOSD with our proposals.

neighbors found for images in a class, the class CorRet is de�ned as the average percentage

of the image neighbors that also belong to that class. The �nal CorRet is the average class

CorRet over all classes. As a baseline, we consider the local graph induced by the sets of nearest

neighbors N (i ) computed from the fully connected layer fc6 of the CNN that are used in the

same experiment. Table 3.9 shows the CorRet of local graphs obtained when running rOSD

(OSD) on VOC_all and VOC12 and large-scale rOSD (OSD) on C20K in the mixed setting. It

can be seen that the local image graph returned by our methods has signi�cantly higher CorRet

than the baseline.

Dataset VOC_all VOC12 C20K

Baseline 50.7 56.4 36.8
Ours (OSD) 60.1 � 0.1 63.2 � 0.0 39.8 � 0.0
Ours (rOSD) 59.8 � 0.1 63.0 � 0.0 39.4 � 0.0

Table 3.9 � Quality of the returned local image graph as measured by CorRet.

Execution time. Similar to the original OSD, rOSD requires computing the similarity scores

for a large number of image pairs which makes it computationally costly. It takes in total 478

paralellizable CPU hours, 300 unparallelizable CPU seconds and1 GPU hour to run single-

object discovery on VOC_all with 3550images. This is more costly compared to only812GPU

seconds needed by [Wei, 2019] but is less costly than the original OSD using CNN features.

The latter requires 546paralellizable CPU hours,250unparalellizable CPU seconds and 4 GPU

hours. Note that the unparallelizable computational cost, which comes from the main OSD

algorithm, grows very fast (at least linearly in theory, it takes 2.3 hours on C20K in practice)

with the data set's size and is the time bottleneck in large scale.

3.5 Conclusion and Limitations

We have addressed in this chapter the limitations of OSD. We have presented an unsuper-

vised algorithm for generating region proposals from CNN features trained on an auxiliary and

unrelated task. Our proposals come with an intrinsic structure which can be leveraged as an

additional regularization in the OSD framework. The combination of our new proposals and

regularized OSD gives comparable results to the current state of the art in image colocalization,
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set at the time of the writing of our article [Vo, 2020] a new state-of-the-art single-object discov-

ery and has proven e�ective in the multi-object discovery. We have also successfully extended

OSD to the large-scale case and show that our method yields signi�cantly better performance

than plain OSD.

Although we have scaled unsupervised object discovery to datasets �ve times larger than

those considered in Chapter 2, scaling it further to datasets several orders of magnitude larger is

not trivial since the second stage of our large-scale algorithm still has to run on the entire image

collection. Moreover, while the second loop, the ascent ofe, in Algorithm 3.1 is parallelizable,

the �rst loop, the ascent of x, is inherently sequential. Indeed, the update ofx i depends on

the values of otherx j with j 6= i and a parallel execution of these updates would not guarantee

the improvement of the objective. Running with multiple machines in a distributed manner,

a common solution to overcome the scale issue, is therefore not applicable. Besides, using a

reduced set of region proposals in the second stage of the large-scale rOSD algorithm could

potentially hurt the model's ability to discover many objects per image. In the next chapter, we

will introduce a new formulation to overcome these issues, enabling e�ective unspervised object

discovery on very large datasets.
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Chapter 4
Large-Scale Unsupervised Object Discovery

Existing approaches to unsupervised object discovery do not scale up to large datasets
without approximations that compromise their performance. We propose a novel
formulation of UOD as a ranking problem, amenable to the arsenal of distributed
methods available for eigenvalue problems and link analysis. Through the use of
self-supervised features, we also demonstrate the �rst e�ective fully unsupervised
pipeline for UOD. Extensive experiments on COCO and OpenImages datasets show
that, in the single-object discovery setting where a single prominent object is sought
in each image, the proposed LOD (Large-scale Object Discovery) approach is on par
with, or better than the previous state of the art for medium-scale datasets (up to
120K images), and over 37% better than the only other algorithms capable of scaling
up to 1.7 M images. In the multi-object discovery setting where multiple objects
are sought in each image, the proposed LOD is over 14% better in object discovery
Average Precision (odAP) than all other methods for datasets ranging from 20K to
1.7M images. Using self-supervised features, we also show that the proposed method
obtains state-of-the-art UOD performance on OpenImages.
This work, done in collaboration with Elena Sizikova, Cordelia Schmid, Patrick Pérez
and Jean Ponce, has appeared in Proceedings of the Conference on Neural Informa-
tion Processing Systems (NeurIPS) 2021.
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4.1. Introduction

Figure 4.1 � Sample unsupervised object discovery results obtained by LOD on the OpenImages
dataset [Krasin, 2017] which contains 1.7M images. Ground-truth boxes are shown in yellow,
and predictions are in red. Best viewed in color.

4.1 Introduction

It is natural to cast unsupervised object discovery as the task of �nding repetitive visual

patterns in image collections. In the previous chapters, we have formulated it as a combinatorial

optimization problem in an image graph, selecting simultaneously image pairs that contain

similar objects and region proposals that correspond to objects. This formulation, however,

comes with several computational limitations which hinder its application to very large datasets.

The motivation behind this chapter is to formulate UOD as a simpler graph-theoretical problem

with a more e�cient solution, where objects correspond to well-connected nodes in a graph

whose nodes are region proposals (instead of images in OSD and rOSD), and edges are weighted

by region similarity and �objectness�. In this scenario, identifying the most promising object-

proposal nodes is a ranking problem where the goal is to rank the nodes based on how well they

are connected in the graph. From another perspective, ranking is rather a natural modeling

choice for UOD since, in our context, discovering objects means �nding the most object-like

regions in a set of initial region proposals, which naturally amounts to ranking them according to

their objectness. As a result, a large array of methods available for eigenvalue problems [Landau,

1895] and link analysis [Page, 1999] can be applied to solve UOD on much larger datasets than

previously possible (Figure 4.1). The proposed pipeline for unsupervised object discovery is

illustrated in Figure 4.2.

We consider three variants of this approach: the �rst one re-de�nes the UOD objective of OSD

and rOSD as an eigenvalue problem on the graph of region proposals, the second variant explores

the applicability of PageRank [Brin, 1998; Page, 1999] to UOD, and the �nal one combines the

other two into a hybrid algorithm, dubbed LOD (for Large-scale Object Discovery), which uses

the solution of the eigenvalue problem to personalize PageRank. LOD o�ers a fast, distributed

solution to object discovery on very large datasets. We show in Section 4.4.1 and Table 4.1 that

its performance is comparable or better than the state of the art in the single object discovery

setting for datasets of up to 120K images, and over 37% better than the only algorithms we

are aware of that can handle up to 1.7M images. In the multi-object discovery setting, LOD

signi�cantly outperforms all existing techniques on datasets containing from 20K to 1.7M images.

While LOD does not explicitly address discovering relationships between images (e.g., grouping

them into classes), we demonstrate that categories can be discovered in a post-processing step

(see Section 4.4.2). The best performing approaches to UOD at the time of publication all use
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Figure 4.2 � An overview of the proposed method LOD. It receives as input a collection of
images, each equiped with a set of region proposals. It then builds an undirected weighted
graph where nodes are regions and edge weights re�ect node similarity. Ranking methods are
then applied to obtain for each node-region a score. Finally, the regions with highest scores in
each image are returned as objects.

supervisedregion proposals [OSD] and/or features [Wei, 2019; rOSD]. We also demonstrate for

the �rst time in Section 4.4.1 that self-supervised features can give good UOD performance.

Our main contributions can be summarized as follows:

� We propose a new formulation of UOD as a ranking problem, allowing the application of

parallel and distributed link analysis methods [Landau, 1895; Brin, 1998; Page, 1999].

� We scale UOD up to datasets 87 times larger than those considered in rOSD. Our novel

LOD algorithm outperforms others on medium-size datasets by up to 32%.

� We propose to use self-supervised features for UOD and show that LOD, combined with

these features, o�ers a viable UOD pipeline without any supervision whatsoever.

� We conduct extensive experiments on the COCO [Lin, 2014] and OpenImages [Krasin,

2017] datasets to empirically validate our method. We also demonstrate applications of

our approach to object category discovery and image neighbor retrieval, outperforming

other existing unsupervised baselines on both tasks by a large margin.
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Method
Single-object Multi-object

CorLoc odAP50 odAP[50:95]

C20K C120K Op50K Op1.7M C20K C120K Op50K Op1.7M C20K C120K Op50K Op1.7M

[Zitnick, 2014] 28.8 29.1 32.7 32.8 4.86 4.91 5.465.49 1.41 1.43 1.53 1.53
[Wei, 2019] 38.2 38.3 34.8 34.8 2.41 2.44 1.86 1.86 0.73 0.74 0.6 0.6
[Kim, 2009] 35.1 34.8 37.0 - 3.93 3.93 4.13 - 0.96 0.96 0.98 -
rOSD 48.5 48.5 48.0 47.8 5.18 5.03 4.98 4.88 1.62 1.6 1.58 1.57

LOD+Self [Gidaris, 2021] 41.1 42.449.5 49.4 4.56 4.90 6.37 6.28 1.29 1.37 1.87 1.86
LOD 48.5 48.6 48.1 47.7 6.63 6.64 6.46 6.28 1.98 2.0 1.88 1.83

Table 4.1 � Large-scale object discovery performance and comparison to the state of the art on
COCO [Lin, 2014] (C120K), OpenImages [Krasin, 2017] (Op1.7M) and their respective subsets
C20K and Op50K, in three standard metrics. Using VGG16 features [Simonyan, 2015a], the
proposed method LOD achieves top performance in both single and multi-object discovery, and
scales better to 1.7M images in Op1.7M than rOSD. When running with self-supervised features
(LOD + Self [Gidaris, 2021]), it yields the best results on Op1.7M, showing the �rst e�ective
fully unsupervised pipeline for UOD. See Section 4.4 for more details.

4.2 Problem Statement and Related Work

4.2.1 Problem Statement

The object discovery problem are formulated in the previous chapters as the following com-

binatorial maximization problem:

max
x;e

nX

p=1

X

q2N (p)

epqxT
p Spqxq s.t.

rX

k=1

xk
p � � and

X

q6= p

epq � � 8 1 � p � n; (C)

where Spq 2 Rr � r is a matrix whose entry Sk`
pq � 0 measures the similarity between regionk

of image p and region ` of image q as well as the saliency of the respective regions,N (p) is

a set of potential high-similarity neighbors of image p, and � and � are prede�ned constants

corresponding to the maximum number of objects in an image and the maximum number of its

neighbors, respectively. For the sake of simplicity, we assume in this chapter that all images

have exactly r region proposals. OSD and rOSD solve a convex relaxation of (C) in the dual

domain and/or use block-coordinate ascent on its variablesx and e. The similarity scores Sk`
pq

are typically computed using the Probabilistic Hough Matching (PHM) algorithm from [Cho,

2015], which combines local appearance and global geometric consistency constraints to compare

pairs of regions. A high PHM score between a pair of proposals is an indicator of whether the

corresponding two proposals may correspond to a common foreground object. We follow this

tradition in LOD and also use PHM scores (Section 4.4).

The objective of UOD as formulated in (C) is to �nd both the objects (variables xk
p) and

the edges linking the images that contain them (variablesepq). Its combinatorial nature makes

it hard to scale up to large values ofn and r . rOSD uses a block-coordinate ascent algorithm

to (C), updating variables x and e alternatively to optimize the objective (Algorithm 3.1). It

attempts to scale up (C) with a drastic approximation, running on parts of the image collection

to reducer to only 50 before running on the entire dataset. However, using signi�cantly reduced
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sets of region proposals hinders its ability to discover multiple objects (Table 4.1). Moreover,

the sequential nature of this algorithm (Section 3.5) prevents it from scaling up to datasets

with millions of images. We therefore drop the second objective of UOD, and rely only on

a fully connected, weighted graph of proposals where edge weights encode proposal similarity

(edge weights can be zeros, see Section 4.3). In turn, we can reformulate UOD as a ranking

problem [Landau, 1895; Katz, 1953; Pinski, 1976; Brin, 1998; Kleinberg, 1999], amenable to the

panoply of large-scale distributed tools available for eigenvalue problems and link analysis. We

consider two di�erent ranking formulations: the �rst one (Q) tackles a quadratic optimization

problem, and the second (P) is based on the well-known PageRank algorithm [Brin, 1998; Page,

1999]. We combine these two approaches into a joint formulation (LOD) that gives the best

results on large-scale datasets. See Sections 4.3 and 4.4 for details.

4.2.2 Related Work

Applications of ranking to computer vision. The goal of ranking is to assign a global

importance rating to each item in a set according to some criterion [Page, 1999]. Many computer

vision problems admit a ranking formulation, including image retrieval [Cakir, 2019], object

tracking [Bai, 2012], person re-identi�cation [Loy, 2013], video summarization [Yao, 2016], co-

segmentation [Quan, 2016b] and saliency detection [Li, 2015; Siméoni, 2019]. Several techniques

speci�cally designed for large-scale ranking problems [Kleinberg, 1999; Page, 1999] have been

used to explore large datasets of images [Jing, 2008] and shapes [Funkhouser, 2003]. PageRank-

based approaches in particular have been popular [Jing, 2008; Ren, 2018; Payandeh, 2019]

due to their scalability. [Kim, 2008] proposes an algorithm for object discovery that combines

appearance and geometric consistency with PageRank-based link analysis for category discovery.

However, it does not scale beyond 600 images. A more scalable follow-up work by [Kim, 2009]

discovers regions of interest (RoIs) from images with successive applications of PageRank. This

algorithm includes two main steps. The �rst one attempts to �nd object representatives ( hubs)

from the current RoIs of all images using PageRank. PageRank is then utilized again in the

second step to analyze the links between regions in each image and the hubs, this time to

update the RoIs of the images. Finally, good RoIs are found by repeating these two steps until

convergence. We compare our method to this technique in Section 4.4.1.

4.3 Proposed Approach

4.3.1 Quadratic Formulation

Let us represent region proposals by a graphG with N = nr nodes, wheren is the number of

images andr is the number of proposals in each image. Each node(p; k) corresponds to proposal

k of imagep, and any two nodes(p; k) and (q; `) are linked by an edge with weightSk`
pq. Graph

G is represented by anN � N symmetric adjacency matrix W , consisting of r � r blocks Spq for

p; q = 1 ; : : : n. Spq is de�ned in Section 4.2.1 and is computed by the PHM algorithm [Cho, 2015]

if p 6= q, and the diagonal blocks are taken to be zero since only inter-image region similarity
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matters in our setting. Let yi � 0 denote some measure of importance that we want to estimate

for node i and let y = ( y1; : : : ; yN )T , we de�ne the support of nodei given y aszy(i ) =
P

j Wij yj

so that, taking zy = ( zy(1); : : : ; zy(N ))T , we havezy = Wy. Intuitively, given y, zy(i ) quanti�es

how well i is connected to (or �supported by�) the rest of the nodes j in the graph, taking into

account the similarity Wij betweeni and j as well as the importanceyj of that node. We would

like to �nd the importance scores that rank the nodes as well as possible, so that the order

corresponds to their amount of support. As shown by the following lemma, it turns out that

this �chicken-and-egg� problem admits a simple solution.

Lemma 4.3.1. SupposeW is irreducible (i.e., represents a strongly connected graphG). The

solution y� of the quadratic optimization problem:

y� = arg max
ktk� 1;t � 0

tT Wt (Q)

is the unique unit, non-negative eigenvector ofW associated with its largest eigenvalue.

This is a classic result and can be proved using the Perron-Frobenius theorem [Frobenius,

1912; Perron, 1907]. We include the complete proof in Appendix C. In our context,W is not,

in general, irreducible since some proposal similarities may be zero. Reminiscent of PageR-

ank [Page, 1999], we add a small term1
N 
eeT to W , with e being the vector with all entries

equal to 1 in RN and 
 = 10 � 4, deliberately chosen small so that the added term does not

in�uence the similarity score much, to make W irreducible. This term ensures that the resulting

ranking is unique and serves the same purpose as the similar term in PageRank.

Note: since y� is associated with W 's largest eigenvalue� � , which is positive according

to the Perron-Frobenius theorem, we have� � y� = Wy� = zy � . Hence, the importance scorey�
i

of each node is, up to a positive constant, equal to its support, and can thus be used to rank

the nodes as desired. Notice that (C) and (Q) are closely related problems when the graph of

images in (C) is assumed to be complete, i.e., all images are connected in the graph. In this

case, (C) can be written asmaxx2f 0;1gN xT Wx; s.t., for all p from 1 to n,
P r

k=1 xr (p� 1)+ k � �:

Here, we stackx i (i = 1 ; : : : ; n) into a vector x. (Q) can thus be seen as a continuous relaxation

of (C) where the binary variables are replaced by continuous ones, and the linear constraints

attaching the proposals to their source images are dropped. The order induced by the dominant

eigenvector y� of W on the nodes ofG is reminiscent of the PageRank approach [Brin, 1998;

Page, 1999] to link analysis. This remark leads to a second approach to UOD through ranking,

discussed next.

4.3.2 PageRank Formulation

When de�ning PageRank, [Page, 1999] does not start from an optimization problem like

(Q), but directly formulates ranking as an eigenvalue problem. Following [Langville, 2004], let

A denote the transition matrix of the graph associated with a Markov chain, such that aij � 0

is the probability of moving from node j to node i . In our context, A can be taken asWD � 1

where D is the diagonal matrix with D jj =
P

i Wij . By de�nition [Brin, 1998; Page, 1999], the
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PageRank vectorv associated with the matrix A is the unique non-negative eigenvectorv of the

matrix P, associated with its largest (unit) eigenvalue, whereP is de�ned as:

P = (1 � � )A + �ue T ; (P)

with � is a damping factor. Here, u, the so-called personalized vector, is an element ofRN

such that eT u = 1 . As noted earlier, the second term ensures thatP is irreducible, so that, by

the Perron-Frobenius theorem, the eigenvectorv � 0 is unique [Langville, 2011]. The vectoru

is typically taken equal to 1
N e, but can also be used to �personalize� the ranking by attaching

more importance to certain nodes. This leads to the hybrid formulation proposed in the next

section. (Q) and (P) are closely related, and the vectorv can also be seen as the solution of a

quadratic optimization problem [Mahoney, 2010]. Besides this formal similarity, the goals of the

two formulations are also similar. Quoting [Page, 1999], �a page has a high rank (according to

PageRank) if the sum of the ranks of its backlinks is high�. The solution of both (Q) and (P), as

an eigenvector associated with the largest eigenvalue, provides a ranking based on the support

function and can be found with the power iteration algorithm [Mises, 1929]. This algorithm

involves only matrix-vector multiplications and can be implemented e�ciently in a distributed

way.

4.3.3 Using (Q) to Personalize PageRank

The above discussion suggests combining the two approaches. We thus propose to use the

maximizer of (Q) to generate the personalized vector for (P). (Q) and (P) are two di�erent

optimization problems for ranking region proposals, and combining them may help improve the

�nal performance. Intuitively, region proposals with high scores given by (Q) are reliable and we

should be able to rank the �objectness� of other regions more accurately based on the �feedback�

of these top-scoring proposals. We compute the personalized vector from the solution of (Q) as

follows. Given a factor � , the top region in each image are chosen as candidates, then the top

� percent of regions amongst these candidates are selected. Since only regions that have a high

probability of being correct are bene�cial, we choose� su�ciently small (see Table 4.4) to select

only the regions most likely to be correct. Given the set of selected regions, the personalized

vector u is the L 1-normalized indicator vector with ui = 1=K if proposal i is selected andui = 0

otherwise, whereK is the total number of selected regions. We set the initializationv0 of the

power iteration algorithm (see Algorithm 4.1) to u to further bias (P) toward reliable regions

found by (Q). In what follows, we refer to this hybrid algorithm as Large-Scale Object Discovery

(LOD).

4.4 Experimental Analysis

Datasets. We consider two large public datasets: C120K, a combination of all images in the

training and validation sets of the COCO 2014 dataset [Lin, 2014], except those that contain only

�crowd� objects, with approximately 120,000 images depicting 80 object classes and OpenImages

(Op1.7M) [Krasin, 2017], the largest dataset ever evaluated for UOD so far, with 1.7 million
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images. The latter dataset is 87 times the size of the previous largest dataset evaluated by rOSD.

We resize all images in this dataset so that their largest side does not exceed 512 pixels. To

facilitate ablation studies and comparisons, we also evaluate our methods on C20K, the subset

of C120K containing 19,817 images used by rOSD and Op50K, a subset of Op1.7M containing

50,000 images.

Implementation details. We use the proposal generation method proposed in rOSD since

it gives the best object discovery performance among the unsupervised region proposal extrac-

tion methods (see Chapter 3). We use VGG16 [Simonyan, 2015a], trained with and without

image class labels (Section 4.4.1) on the ImageNet [Deng, 2009] dataset, to both generate (with

the method in rOSD) and represent (extracting with RoiPool [Girshick, 2015]) proposals. We

have also experimented with VGG19 [Simonyan, 2015a] and ResNet101 [He, 2016], but found

they give worse performance, possibly because they are more discriminative and less helpful in

localizing entire objects. We compute the similarity score between proposals with the PHM

algorithm [Cho, 2015] similar to OSD and rOSD. For large datasets, computing all score ma-

trices Spq is intractable. In this case, we only compute the similarity scores for the100 nearest

neighbors of each image, computed based on the Euclidean distance between image features

from the fc6 layer. For optimization, we choose� = 10 � 4 in (P) and � = 10% in LOD, and

discuss LOD's sensitivity to these parameters in Table 4.4. To select objects from ranked pro-

posals in an image, we choose proposali as an object if it has the highest score in the image or

the intersection over union (IoU) between i and each of the previously selected object regions

is at most 0:3. When using proposals from rOSD, which are divided into disjoint groups, we

additionally impose that the newly chosen region must be in a group di�erent from the groups

of the previously selected objects.

Parallel power iterations. We solve (Q), (P), and LOD with a parallel version of the power

iteration method [Mises, 1929]. Since the adjacency matrix in (Q) and the PageRank matrix

in (P) are very large, we divide them into chunks of consecutive rows of approximately equal

size. At iteration t in the optimization, these chunks are loaded in parallel into the memory of

multiple processors for multiplication with the current iterate x t . The results of these operations

are chunks of the new vectorx t+1 which is then assembled from them in the main processor.

We run up to T = 50 iterations of the power method in each experiment. The parallel power

iteration algorithm is summarized in Algorithm 4.1.

Metrics and evaluation settings. Similar to rOSD, we consider two settings: single- and

the multi-object discovery. In the single-object setting, we return m = 1 region per image, which

is the region most likely to be an object. In the multi-object setting, we return up to M regions

per image, whereM is the maximum number of objects in any image in the dataset. Following

[Locatello, 2020], we assumeM is known during evaluation. In a real application, one could use

a rough �budget estimate" of the upper bound on how many objects per image one may try to

detect. Measuring performance of UOD is always a di�cult task due to the ambiguity of the
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Algorithm 4.1: Parallel power iterations for �nding the �rst eigenvector of a matrix A.
Input: Number M of matrix chunks, chunks of rowsA1,. . . ,AM of A, number N of rows

of A, norm L p (p = 1 for (P) and p = 2 for (Q)), number T of iterations.
Result: The �rst eigenvector of A.

1 v0  
1

keN kp
eN . Initialize the iterate

2 for t = 0 to T � 1 do
3 In parallel in multiple processors, do
4 for i = 1 to M do
5 Load matrix chunk A i into memory
6 vt+1 ;i  A i vt . Compute the i -th chunk of the iterate
7 end
8 In the main processor, do

vt+1  [vt+1 ;1; vt+1 ;2; : : : ; vt+1 ;M ] . Assemble the iterate from its chunks

9 vt+1  
1

kvt+1 kp
vt+1 . Normalize the iterate

10 end
11 Return vT .

notion of an object in an unsupervised setting: object partsvs. objects, individual objects vs.

crowd objects, etc. We follow the tradition of [Cho, 2015], OSD and rOSD and consider the

annotated bounding boxes in the tested datasets as the only correct objects and use them to

evaluate our methods. We evaluate UOD results according to two metrics,Correct localization

score(CorLoc) and object discovery Average Precision(odAP). CorLoc is de�ned in the previous

chapters but for convenience, we provide below the de�nitions of both metrics:

1. CorLoc � percentage of images correctly localized, i.e., where the IoU score between one

of the ground-truth regions and the top predicted region is at least � = 0 :5. Note that it

is equivalent to precision of returned regions. This metric is commonly used to evaluate

single-object discovery.

2. odAP � the area under the precision-recall curve with precision and recall computed at each

value of m from 1 to M . A ground-truth object is considered discovered if its intersection

with any predicted region is at least � . This metric is used to evaluate multi-object discovery.

We report odAP50 where � = 50 and odAP[50:95], where we average odAP at 10 equally

spaced values of� from 0:5 to 0:95. These two metrics are similar to AP50 and AP[50:95], the

standard metrics for object detection [Gidaris, 2015; Girshick, 2015; Girshick, 2014; He, 2017;

Redmon, 2016; Redmon, 2017; Ren, 2015a]. Note that odAP is di�erent from thedetection

rate metric for multi-object discovery used in rOSD, which is the object recall at a prede�ned

value of m. This metric depends on the number of selected regions per imagem while odAP

does not. Also, since the precision decreases signi�cantly with increasingm, odAP appears

much smaller than CorLoc.
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4.4.1 Large-scale Object Discovery

In this section, we compare our methods to the state of the art in unsupervised object

discovery [Kim, 2009; Wei, 2019; rOSD]. We also compare to Edgeboxes [Zitnick, 2014], an

unsupervised method which outputs regions with an importance score. Edgeboxes is a baseline

of the type of information bounding boxes alone can provide in our setting. For a fair comparison,

we have re-implemented [Kim, 2009] using supervised VGG16 features [Simonyan, 2015a] and

proposals from rOSD. For [Wei, 2019], we modi�ed the authors' public code, taking bounding

boxes around more than one connected component of positive locations from the imageindicator

matrix to return more regions.

Quantitative evaluation. We evaluate baselines and the proposed method on C20K, C120K,

Op50K and Op1.7M in Table 4.1. Since state-of-the-art approaches to UOD report results using

supervised features [Simonyan, 2015a], we have used these features as well in our comparisons.

We additionally report LOD's performance with self-supervised features [Gidaris, 2021] on these

datasets. Overall, LOD obtains state-of-the-art object discovery performance in all settings and

datasets. Using VGG16 features [Simonyan, 2015a], it outperforms [Kim, 2009], [Wei, 2019]

and Edgeboxes [Zitnick, 2014] by large margins: 26% in single-object discovery and by 14% in

multi-object discovery settings. In comparison to rOSD, LOD performs similarly in the single-

object setting, but outperforms rOSD by at least 19% in the multi-object setting. This is likely

due to the fact that our proposed LOD method considers the full proposal graph and does not

reduce the number of region proposals (see Table 4.5). It is also noteworthy that LOD scales

better than rOSD and runs much faster on the large datasets C120K and Op1.7M (Figure 4.3).

On the Op1.7M dataset, it takes 53.7 hours to run while rOSD needs more than a month to

�nish. It is also interesting that self-supervised features [Gidaris, 2021] works better with LOD

than supervised ones [Simonyan, 2015a], yielding the state-of-the-art performance on Op1.7M

dataset.

Run time. Next, we compare scalability and run times of the proposed technique and of the

baselines. All tested methods [Kim, 2009; Wei, 2019; Zitnick, 2014; rOSD; LOD] use similar

pre-processing steps: Feature extraction, proposal generation and similarity computation, which

are done separately across all images. This is followed in [Kim, 2009], rOSD and LOD by an

optimization stage. The optimization step in rOSD is inherently sequential, but [Kim, 2009]

and LOD can be parallelized. In our experiments, we use 4,000 CPUs for preprocessing for all

methods, and 48 CPUs for the optimization step in [Kim, 2009] and LOD, the maximum possible

with the MatLab parallel toolbox used in our implementation. The timings in Figure 4.3 include

both pre-processing and optimization, when the latter is used. It can be seen that [Kim, 2009;

Wei, 2019; Zitnick, 2014] and LOD scale nearly linearly with the number of images, while rOSD

exhibits a superlinear pattern. Note that [Zitnick, 2014] and [Wei, 2019] are 70 times faster than

LOD, but at a signi�cant decrease in performance. These methods are not initially designed

for object discovery, but serve as good, scalable baselines. Compared to previous top UOD

methods, LOD runs at least 2.8 times faster than [Kim, 2009] on all datasets, at least 2 times
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Figure 4.3 � Comparison of run time as a function of the number of input images. LOD achieves
signi�cant improvement in performance and/or savings in run time compared to previous works.
[Zitnick, 2014] and [Wei, 2019] are linear in the number of images but their run time are very
small compared to other methods and look �at in the �gure.

faster than rOSD on datasets between 120K and 1.7 million images. Here, we evaluate only

the parallel implementation typical for modern computing setups. In a serial implementation,

compute times will be similar between top performing UOD methods [Kim, 2009], rOSD and

LOD, but none of the methods would be able to run on 1.7M images in reasonable time. Note

also that additional computational resources can further speed up processing for both [Kim,

2009] and LOD.

Figure 4.4 � Examples where our method (LOD) succeeds (left) and fails (right) to discover
ground-truth objects in the Op1.7M dataset [Krasin, 2017]. Ground-truth objects are in yellow,
our predictions are in red. Best viewed in color.

Qualitative evaluation. We present sample qualitative multi-object discovery results of LOD

on C120K and Op1.7M in Figure 4.4 (additional Op1.7M results are presented in Figure 4.1).

LOD discovers both the larger objects (people in the �rst and sixth images on the left, food
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items in the second and third images) and the smaller ones (tennis balls and racket in the �rst

image). It may fail of course, and two typical failure cases are shown on the right of Figure 4.4.

In the �rst case, objects are too small and in the second case, LOD returns object parts instead

of entire objects. Note that there is some ambiguity in what parts of the image are labelled

as ground-truth objects. For example, the leaves in the bottom left image are not labelled as

objects, while the �owers are.

Self-supervised vs. supervised features. LOD and all of the optimization-based baselines

[Kim, 2009; Wei, 2019; rOSD] rely on a VGG [Simonyan, 2015a]-based classi�er trained on

ImageNet [Deng, 2009]. In this section, we investigate their performance when the underlying

classi�er is trained with (`Sup') and without (`Self') image labels, i.e., in a self-supervised fash-

ion. To obtain self-supervised features, we use a VGG16 model trained with OBoW [Gidaris,

2021], a recent method which yields state-of-the-art performance in object detection after �ne-

tuning. This model is tested for both the proposal generation and similarity computation steps

in optimization-based methods. The results of several variants of each optimization method,

depending on the proposal generation algorithm ([Zitnick, 2014], rOSD+Self or rOSD+Sup)

and the region proposal representation (Self or Sup) are presented in Table 4.2. rOSD gen-

erates proposals from local maxima of the image's saliency map obtained with CNN features.

To evaluate rOSD+Self and rOSD+Sup for UOD, we assign each proposal a score equal to the

saliency of the local maximum it is generated from. If two regions have the same score, the

larger one is ranked higher so that entire objects instead of object parts are selected. Finally,

when [Zitnick, 2014] proposals are used for rOSD and LOD, we multiply their features with

their Edgeboxes scores before computing their similarity.

In general, variants with supervised features perform better in UOD than those with self-

supervised features, except for [Wei, 2019] and LOD in single-object discovery on Op50K. [Kim,

2009] is the most dependent on supervised features. Its performance drops by at least 63% when

switching to self-supervised features. It is also noteworthy that the performance of rOSD and

LOD with supervised and self-supervised features on Op50K is much closer than on C20K. This

is likely due to the fact that the supervised features [Simonyan, 2015a] are trained on the 1000

ImageNet object classes which contain all of the COCO classes and thus o�er a stronger bias

toward these classes than the self-supervised features. Using self-supervised features, variants

of LOD are the best performer in both single-object discovery (with rOSD+Self proposals)

and multi-object discovery (with Edgeboxes proposals). They yield reasonable results on both

datasets compared to variants with supervised features. In particular, self-supervised object

proposals (from rOSD) and self-supervised features, combined with LOD, give the best results of

all tested methods on Op50K in single-object discovery. These results show that LOD combined

with self-supervised features is a viable option for UOD without any supervision whatsoever.

Comparing ranking formulations. We compare the UOD performance of (Q), (P) and

LOD with di�erent proposals and features in Table 4.3. It can be seen that LOD outperforms

(Q) and (P) in almost all datasets and settings. These results con�rm the merit of our proposed
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Opt. Proposal Feature
Single-object Multi-object

CorLoc odAP50 odAP[50:95]

C20K Op50K C20K Op50K C20K Op50K

None
[Zitnick, 2014]

None
28.8 32.7 4.86 5.46 1.41 1.53

rOSD+Self 29.7 39.8 2.47 3.72 0.61 1.0
rOSD+Sup 23.6 38.1 4.07 4.81 1.03 1.39

[Wei, 2019] None
Self 37.9 42.4 2.53 3.13 0.69 0.9
Sup 38.2 34.8 2.41 1.86 0.73 0.6

[Kim, 2009]
[Zitnick, 2014]

Self 5.5 5.4 0.64 0.79 0.13 0.15
Sup 15.6 20.2 1.96 2.56 0.36 0.47

rOSD+Self Self 4.7 4.6 0.13 0.29 0.02 0.05
rOSD+Sup Sup 35.1 37.0 3.93 4.13 0.96 0.98

rOSD
[Zitnick, 2014]

Self 35.6 43.6 3.34 4.43 0.99 1.39
Sup 40.2 44.0 4.0 4.47 1.21 1.41

rOSD+Self Self 37.8 48.1 2.65 4.19 0.82 1.45
rOSD+Sup Sup 48.5 48.0 5.18 4.98 1.62 1.58

LOD
[Zitnick, 2014]

Self 35.5 39.7 5.87 6.73 1.57 1.76
Sup 38.9 41.3 6.52 7.01 1.76 1.86

rOSD+Self Self 41.1 49.5 4.56 6.37 1.29 1.87
rOSD+Sup Sup 48.5 48.1 6.63 6.46 1.98 1.88

Table 4.2 � UOD performance with supervised [Simonyan, 2015a] (Sup) and self-supervised [Gi-
daris, 2021] (Self) features on C20K and Op50K datasets. Region proposals are generated by
methods from Edgeboxes[Zitnick, 2014] and rOSD with di�erent types of features. LOD with
self-supervised features yields reasonable results compared to supervised features. Variants of
our proposed method LOD yield state-of-the-art performance in all settings.

method, using (Q)'s solution to personalize PageRank.

In�uence of hyper-parameters. The proposed method has two important hyper-parameters,

the damping factor � in PageRank and the scalar� used to select reliable object candidates

in LOD. In practice, � should be small so as not to change much the weight matrixA and �

should also be small since we only want to select a few top-scoring proposals. We have evaluated

PageRank for object discovery on C20K and Op50K datasets with increasing values of� , rang-

ing from 10� 5 to 10� 1, and present the results in Table 4.4 (left). This experiment shows that

the performance of PageRank begins to drop when� becomes larger than10� 3 and deteriorates

signi�cantly when it exceeds 10� 2. It does not depend much on� when this parameter is small

enough (less than10� 3). We choose� = 10 � 4 in our implementation. We have also evaluated

LOD with di�erent values of � , taken in f 0:05; 0:1; 0:15; 0:2g, which amounts to selecting 5%,

10%, 15% and 20% of candidates respectively, and show the results in Table 4.4 (right). As

long as� is reasonably small, its value does not signi�cantly a�ect the performance of LOD. We

choose� = 0 :1 in our implementation.

Varying the number of region proposals. Unlike rOSD, we are able to use in LOD almost

all the regions produced by the proposal algorithm (2000 regions per image at most) thanks to
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Opt. Proposal Feature
Single-object Multi-object

CorLoc odAP50 odAP[50:95]

C20K Op50K C20K Op50K C20K Op50K

(Q)
[Zitnick, 2014]

Self 32.8 40.3 4.15 6.43 1.07 1.67
Sup 36.0 41.1 5.72 6.49 1.47 1.7

rOSD+Self Self 38.7 48.9 4.38 6.39 1.17 1.84
rOSD+Sup Sup 43.8 47.5 6.21 6.66 1.74 1.88

(P)
[Zitnick, 2014]

Self 35.5 39.7 4.91 6.73 1.34 1.75
Sup 38.9 41.3 6.51 6.99 1.76 1.86

[Vo, 2020]+Self Self 41.2 49.5 4.38 6.13 1.24 1.81
[Vo, 2020]+Sup Sup 47.5 47.8 6.25 6.19 1.87 1.81

LOD
[Zitnick, 2014]

Self 35.5 39.7 5.87 6.73 1.57 1.76
Sup 38.9 41.3 6.52 7.01 1.76 1.86

rOSD+Self Self 41.1 49.5 4.56 6.37 1.29 1.87
rOSD+Sup Sup 48.5 48.1 6.63 6.46 1.98 1.88

Table 4.3 � A comparison of di�erent ranking methods for UOD. LOD is better than (Q) and
(P) in most of the cases.

�
Single-object Multi-object

CorLoc odAP50 odAP[50:95]

C20K Op50K C20K Op50K C20K Op50K

10� 5 48.0 47.8 6.3 6.13 1.89 1.8
10� 4 48.0 47.8 6.29 6.19 1.89 1.81
10� 3 47.9 47.7 6.22 6.08 1.87 1.78
10� 2 47.0 47.0 5.82 5.69 1.76 1.68
10� 1 40.0 38.8 4.45 4.14 1.34 1.22

�
Single-object Multi-object

CorLoc odAP50 odAP[50:95]

C20K Op50K C20K Op50K C20K Op50K

0.05 48.4 48.2 6.63 6.5 1.99 1.89
0.10 48.5 48.1 6.63 6.46 1.98 1.88
0.15 48.5 48.2 6.64 6.49 1.99 1.89
0.20 48.5 48.2 6.64 6.48 1.99 1.89

Table 4.4 � In�uence of the damping factor � on PageRank's performance (left) and of the
selection factor � on LOD's performance (right) on the C20K and Op50K datasets.

the good scalability of our formulation. On average, we have 814 and 850 regions per image on

C20K and Op50K, respectively. We have evaluated LOD on C20K and Op50K using di�erent

numbers of proposals and observed in Table 4.5 that its performance improves with additional

region proposals, notably in the multi-object setting. When a subset of only 100 regions is used,

the odAP50 of LOD matches the top performance of rOSD, and increases with more regions.

This observation partly explains our better performance compared to rOSD (which places a

limit on the number of regions for computational reasons) and the bene�t of using all region

proposals.

In�uence of underlying features. We use features from a VGG16 [Simonyan, 2015a] model

trained for image classi�cation on ImageNet [Deng, 2009] in our main experiments. We have also

tested LOD with features from VGG19 [Simonyan, 2015a] and ResNet50 [He, 2016] and present

the results on C20K and Op50K in Table 4.6. Although VGG19 and ResNet50 give better

results in image classi�cation [Simonyan, 2015a; He, 2016], they perform worse than VGG16

in object discovery with LOD. This may be due to the fact that they are more discriminative,
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Num. of regions
C20K Op50K

CorLoc odAP50 odAP[50:95] CorLoc odAP50 odAP[50:95]

50 40.9 4.5 1.22 42.0 4.55 1.31
100 44.0 5.38 1.47 43.4 5.1 1.4
200 46.5 6.13 1.71 45.6 5.83 1.61
400 48.0 6.6 1.91 47.1 6.32 1.77
All 48.5 6.63 1.98 48.1 6.46 1.88

Table 4.5 � The performance of LOD on C20K and Op50K datasets when varying the number
of region proposals per image. Using more regions improves LOD's performance.

focusing mostly on the most prominent object parts thus less helpful in localizing entire objects,

although we do not have a de�nitive answer (yet) for this.

Features
Single-object Multi-object

CorLoc odAP50 odAP[50:95]

C20K Op50K C20K Op50K C20K Op50K

VGG19 47.4 45.1 6.27 5.57 1.84 1.58
ResNet50 35.4 45.9 4.08 5.59 1.05 1.46
VGG16 48.5 48.1 6.63 6.46 1.98 1.88

Table 4.6 � LOD performance with VGG [Simonyan, 2015a] and ResNet50 [He, 2016] features
on C20K and Op50K datasets. Although the latter are more powerful in image classi�cation,
VGG16 features yield the best results in object discovery with LOD.

4.4.2 Category Discovery

Contrary to [Cho, 2015], OSD and rOSD, our work aims speci�cally at localizing objects

in images and omits the discovery of the image graph structure, i.e., identifying image pairs

that contain objects of the same category. However, objects localized by our methods can be

used to perform this task in a post-processing step. To this end, we de�ne similarity between

two images as the maximum similarity between pairs of selected proposals. Similarity is mea-

sured using cosine distance between features extracted from thefc6 layer. We compare LOD to

[Cho, 2015], OSD and rOSD in image neighbor retrieval task on VOC_all, the subset of Pascal

VOC2007 dataset [Everingham, 2007] used as a benchmark in [Cho, 2015] and the previous

chapters. Similar to these works, we retrieve10 nearest neighbors per image. Then, CorRet

(`any' version) [Cho, 2015] � the average percentage of retrieved image neighbors that are actual

neighbors in the ground-truth image graph over all images � is used to compare di�erent meth-

ods. Results are shown in Figure 4.5. LOD outperforms [Cho, 2015], OSD and rOSD. This is

surprising since the other methods are speci�cally formulated to discover image neighbors, while

our method is not. This result highlights that our localized objects can be potentially bene�cial

for other tasks.

To go further, we cluster images into categories using proposals selected by our algorithm.

Imposing that images are represented by their proposal with the highest score, we perform this
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Figure 4.5 � Comparison to prior work on the image neighbor retrieval task using CorRet
measure. Higher is better.

Dataset LOD [Zhang, 2015b] [Zhu, 2012] [Feng, 2011] [Zhang, 2011] [Zhang, 2009] [Kim, 2008] [Kim, 2012]

SIVAL1 97.4 89.0 95.3 80.4 39.3 38.0 27.0 45.0
SIVAL2 99.0 93.2 84.0 71.7 40.0 33.3 35.3 33.3
SIVAL3 88.3 88.4 74.7 62.7 37.3 38.7 26.7 41.3
SIVAL4 97.7 87.8 94.0 86.0 33.0 37.7 27.3 53.0
SIVAL5 94.3 92.7 75.3 70.3 35.3 37.7 25.0 48.3

Average 95.3 90.2 84.7 74.2 37.0 37.1 28.3 44.2

Table 4.7 � Purity ( " ) of our clustering method compared to the state of the art in category
discovery on the SIVAL dataset [Rahmani, 2008]. Following prior work, we perform the task on
a partition of the dataset and report the average purity on its parts as the �nal result. Results
of other methods are from [Zhang, 2015b].

task by applying K -means on theL 2-normalized fc6 features representing these proposals. We

conduct experiments on the SIVAL [Rahmani, 2008] dataset, a popular benchmark for this task.

This dataset consists of25 object categories, each containing about60 images. Following [Zhu,

2012], we partition the 25 object classes into5 groups, named SIVAL1 to SIVAL5, and use purity

(average percentage of the dominant class in the clusters) as an evaluation metric. Intuitively,

purity measures the extent to which a cluster contains images of a single dominant class. A

comparison between our method and other popular object category discovery methods is given

in Table 4.7. It can be seen that our method outperforms the state of the art by a signi�cant

margin, attaining an average purity of 95:3. It is also noteworthy that the performance drops

to 23:7 when the features of entire images are used instead of the representative top proposals.

This �nding shows that our performance gain is in great part due to the object localization

performance of our method.

Since individual images in the SIVAL dataset [Rahmani, 2008] contain only one object, we

conduct a similar experiment on the more challenging VOC_all [Everingham, 2007] dataset. In

this experiment, a histogram is computed for each cluster, showing the score of each ground-

truth object category (a category score is the sum of contributions of all its images). An image
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Figure 4.6 � Confusion matrix revealing links between the object classes and the clusters found
by LOD on VOC_all.

contribution is computed as 1=nc, where c is the number of object categories appearing in the

image andn is the number of images in the cluster. We then match the clusters to the ground-

truth categories by solving a stable marriage problem with the Gale�Shapley algorithm [Gale,

1962] using the preference orders induced by the histograms. The confusion matrix generated by

combining these histograms, revealing the correspondence between the clusters and the classes,

is shown in Figure 4.6. Our method is able to discover 17 categories (which are dominant in at

least one cluster) out of 20 ground-truth categories. As for the three undiscovered categories:

sheepis dominated by similar classcow in cluster 10; sofa is dominated by co-occurring class

chair in cluster 9; dinningtable su�ers from being often largely occluded in images. Interestingly,

it seems that our method might be used to discover pairs of categories that often appear together,

for instance: bicycle and person, horse and person, motorbike and person (clusters 2, 13 and

14 have two corresponding dominating classes each). Quantitatively, using the top extracted

proposals from our method achieves a purity of 68.6 on this dataset, which is better than the

purity of 61.8 obtained when features of entire images are used.
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4.4.3 Discussions

Without a formal de�nition of objects, casting objects as frequently appearing salient visual

patterns is natural. However, �ndings could be biased toward popular object classes and ignore

rare classes in image collections that contain a long-tail distribution of object classes. To have

an insight to this potential bias, we compute LOD's performance by object category on C20K

dataset. Surprisingly, we have observed little correlation between the performance on an object

class and its appearance frequency (the corresponding correlation is only� 0:09, see Figure 4.7).

A possible explanation is that even though we rank all regions in the image collection at once,

we choose objects (based on the ranking) on the image level. Therefore, regions can be selected

as objects if they stand out more from the background and are better connected in the graph

than other regions in the same image, even if they represent objects of a rare class.
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Figure 4.7 � Performance of LOD by object category and category frequency (number of object
occurrences of each category) on the C20K dataset. Results are reported with odAP50, higher
numbers are better. Object categories are indexed in decreasing order of category frequency.
Performance of LOD is not well-correlated (correlation � 0:09) with category frequency.

4.5 Conclusion and Future Work

We have demonstrated a novel formulation of unsupervised object discovery as a ranking

problem, allowing application of e�cient and distributed algorithms used for link analysis and

ranking problems. In particular, we have shown how to apply the personalized PageRank algo-

rithm to derive a solution to UOD, and proposed a new technique based on eigenvector compu-

tation to identify the personalized vector in Pagerank. The proposed LOD algorithm naturally

admits a distributed implementation and allows us to scale up UOD to the OpenImages [Krasin,

2017] dataset (Op1.7M) with 1.7M images, 87 times larger than datasets considered in rOSD,
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and outperforms (in single- and multi-object discovery) all existing algorithms capable of scaling

to this size. In multi-object discovery, LOD is better than all other methods on medium and

large-scale datasets. State-of-the-art solutions to UOD rely on supervised region proposals [Cho,

2015] or features ([Wei, 2019] and rOSD), thus their output requires at least in part some sort of

supervision. We have proposed to combine LOD with self-supervised features, o�ering a solution

to fully unsupervised object discovery. Finally, we have shown that LOD yields state-of-the-art

results in category discovery, which is obtained as a post-processing step.

Similar to OSD and rOSD, in LOD, we de�ne objects as salient visual patterns that appear

in multiple images and �nd them by considering the pairwise similarity between region proposals

in di�erent images. This results in a high computational cost due to the large number of region

pairs to take into account. In the next chapter, we show that we can tackle unsupervised

object discovery without considering pairwise region similarity, thereby avoid its entailed cost,

by exploiting the recent transformer-based self-supervised features DINO [Caron, 2021].
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Chapter 5
Localizing Objects with Self-Supervised

Transformers and no Labels

We propose in this chapter a simple method that leverages the activation features
of a vision transformer pre-trained in a self-supervised manner to localize objects
in images. Our algorithm, LOST, does not require any external object proposal nor
any exploration of the image collection ; it operates on a single image. Yet, LOST
outperforms state-of-the-art object discovery methods by up to 8 CorLoc points on
PASCAL VOC 2012. We also show that training a class-agnostic detector on the
discovered objects boosts results by another 7 points. Moreover, we show promising
results on the unsupervised object detection task.
This work, done in collaboration with Oriane Siméoni, Gilles Puy, Simon Roburin,
Spyros Gidaris, Andrei Bursuc, Renaud Marlet, Patrick Pérez and Jean Ponce, has
appeared in Proceedings of the British Machine Vision Conference (BMVC) 2021.
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Figure 5.1 � Three applications of LOST to unsupervised single-object discovery (left), multi-
object discovery (middle) and object detection (right). In the latter case, objects discovered
by LOST are grouped into clusters, and cluster indices are used to train a classical object
detector. Although large image collections are used as pseudo labels to train the underlying
image representation [Caron, 2021],no annotation is ever used in the pipeline. See Tables 5.1
and 5.3, and Figure 5.3 for more experiments.

5.1 Introduction

We propose in this chapter LOST, a simple approach to localizing objects in an image, that

we then apply to unsupervised object discovery. Our localization method stays at the level of

a single image, rather than exploring inter-image similarity, which makes it linear w.r.t. the

number of images, avoiding the expensive computational cost of OSD, rOSD and LOD. For

this, we leverage high-quality features obtained from DINO, a visual transformer pre-trained

with self-supervision [Caron, 2021]. Concretely, we divide the image of interest into equal-sized

patches and feed it to the DINO model. Instead of focusing on theCLStoken, we propose to

use the key component of the last attention layer for computing the similarities between the

di�erent patches. In doing so, we are able to localize a part of an object by selecting the patch

with the least number of similar patches, here called theseed. The justi�cation for this seed

selection criterion is based on the empirical observation that patches of foreground objects are

less correlated than patches corresponding to background. We add to this initial seed other

patches that are highly correlated to it and thus likely to be part of the same object, a process

akin to query expansion in the retrieval literature, which we call seed expansion. Finally, we

construct a binary object segmentation mask by computing the similarities of each patch to the

selected seed patches and infer a tightly box around the mask's largest connected component

that contains the initial seed. In following this simple method, we not only outperform methods

for region proposals but also those for single-object discovery.

We go further by training an o�-the-self class-agnostic object detector using our localized

boxes as pseudo ground-truth boxes, and are able to derive a much more accurate object localiza-

tion model that is able to discover multiple objects in an image. We call this taskunsupervised

class-agnostic object detection. Finally, by using clustering techniques to group the localized

objects into visually consistent classes, we are able to train class-aware object detectors without

any human supervision, but using instead the predicted object locations and their cluster in-

dices as ground-truth annotations. We call this taskunsupervised (class-aware) object detection.

We show that the predictions of our unsupervised detection model for certain clusters correlate
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very well with labelled semantic classes in the dataset and achieve with them detection results

competitive weakly-supervised object detectors [Bilen, 2016; Tang, 2018c]. Note that our unsu-

pervised class-aware object detector gives the standard output for object detection (rectangular

boxes and their class scores) but, with a score threshold, we can easily transform this output

to the standard format for unsupervised object discovery, i.e., predicted object boxes and image

pairs that contain similar objects. Our main contributions are as follows:

� We show how to extract relevant features from a self-supervised pre-trained vision trans-

former and use the patch correlations within an image to propose a simple single-object

localization method with linear complexity with respect to the dataset size.

� We leverage it to train both class-agnostic and class-aware unsupervised object detectors

that are able to accurately localize multiple objects per image and, in the class-aware case,

group them into semantically-coherent classes.

� We outperform the state of the art in unsupervised object discovery by a signi�cant margin.

5.2 Related Work

Transformers. In this chapter, we leverage transformer representations to address object

discovery. Self-attention layers have been previously integrated into CNNs [Hu, 2018; Wang,

2018c; Carion, 2020], yet transformers for vision are recent [Ramachandran, 2019; Cordonnier,

2020; Chen, 2020a; Dosovitskiy, 2021] and still in an incipient stage. Findings on training

heuristics [Touvron, 2020; Zhai, 2021] and architecture design [Liu, 2021b; Touvron, 2021;

Yuan, 2021a] are released at high pace. Early adaptations of transformers to di�erent tasks (e.g.,

image classi�cation [Dosovitskiy, 2021], retrieval [ElNouby, 2021], object detection [Carion, 2020;

Zhu, 2021; Liu, 2021b] and semantic segmentation [Liu, 2021b; Strudel, 2021; Xie, 2021a] have

demonstrated their utility and potential for vision. Meanwhile, several works attempt to better

understand this new family of models from various perspectives [Caron, 2021; Naseer, 2021;

Tuli, 2021; Bhojanapalli, 2021; Minderer, 2021]. Interestingly, transformers have been shown to

be less biased towards textures than CNNs [Tuli, 2021; Naseer, 2021], hinting that their features

encapsulate more object-aware representations. These �ndings motivate us to study ways of

localizing objects from transformer features.

Self-supervised learning (SSL) is a powerful training scheme to learn useful representations

without human annotations. It does so via a pretext learning task for which the supervision

signal comes from the data itself [Noroozi, 2016; Gidaris, 2018b; Zhang, 2016]. SSL pre-trained

networks have been shown to outperform ImageNet pre-trained networks on several computer

vision tasks, in particular object detection [Gidaris, 2020; He, 2020; Caron, 2020; Grill, 2020;

Gidaris, 2021]. For transformers, SSL methods also work well [Caron, 2021; Xie, 2021b], bringing

a few interesting side-e�ects. In particular, DINO [Caron, 2021] feature activations appear to

contain explicit information about the location of objects in an image. In the same spirit, we

extract another kind of transformer features to build our object localization model.
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Object detection with limited supervision. Region proposal methods [Alexe, 2012; Ui-

jlings, 2013; Zitnick, 2014] generate in an unsupervised way numerous class-agnostic bounding

boxes with high recall but low precision, to speed-up sliding window search. From supervised

pre-trained networks, objects can emerge by masking the input [Bergamo, 2016], interpreting

neurons [Zhou, 2015] or from saliency maps [Selvaraju, 2017]. Weakly-supervised object de-

tection (WSOD) uses image-level labels without bounding boxes [Bilen, 2016; Tang, 2018c] to

learn to detect objects. The di�erent instances of WSOD (each with speci�c assumptions on the

availability and amount of image-level and box-level annotations) are often addressed as semi-

supervised learning [Gao, 2019a; Tang, 2021a] and leverage self-training [Radosavovic, 2017; Jie,

2017b]. Recent work replaces manual annotations with automatic supervision from a di�erent

modality, e.g., LiDAR [Tian, 2021] or audio [Afouras, 2021]. In contrast, we do not use any an-

notations or other modalities at any stage: we extract object candidates from the activations of

a self-supervised pre-trained network, compute pseudo-labels and then train an object detector.

5.3 Proposed Approach

Our method exploits image representations extracted from a vision transformer. In this

section, we �rst recall how such representations are obtained, then present our method.

5.3.1 Transformers for Vision

Input. Vision transformers operate on a sequence of patches of �xed sizeP� P. For a color

image I of spatial sizeH � W , we haveN = HW=P 2 patches of sizeP � P � 3 (we assume for

simplicity that H and W are multiples of P). Each patch is �rst embedded in a d-dimensional

latent space via a trained linear projection layer. An additional, learned vector called the �class

token�, CLS, is adjoined to the patch embeddings, yielding a transformer input inR(N +1) � d.

Self-attention. Transformers consist of a sequence of multi-head self-attention layers and

multi-layer perceptrons (MLPs) [Vaswani, 2017; Dosovitskiy, 2021]. Three di�erent learned

linear transformations are applied to an input X 2 R(N +1) � d of a self-attention layer to produce

a query Q, a key K and a value V , all in R(N +1) � d. The output of the self-attention layer is

Y = softmax
�
d� 1=2 QK >

�
V 2 R(N +1) � d, where softmax is applied row-wise. For simplicity,

we describe here the case of a single-head attention layer, but attention layers usually contain

multiple heads. In this work, we concatenate the keys (or queries, or values) from all heads in

the last self-attention layer to obtain our feature representations.

Features for object localization. We use transformers trained in a self-supervised manner

with DINO [Caron, 2021]. In this work, the authors show that reasonable object segments can

be obtained from the self-attention of the CLSquery produced by the last attention layer. We

adapt this strategy in Section 5.4 to perform object localization, providing a baseline (`DINO-

seg') that produces fair results. However, we found that its does not fully exploit the potential

of the transformer features. We propose a novel and e�ective strategy for localizing objects
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using another way to extract and use features. Our method, called LOST, is constructed by

computing similarities between patches of a single image, using this time patch keyskp 2 Rd,

p = 1 ; : : : ; N , extracted at the last layer of a DINO transformer.

5.3.2 Finding Objects with LOST

Figure 5.2 � Initial seed, patch similarities and patch degrees. Each column corresponds to one
image. The top row shows original images from the Pascal VOC2007 dataset. The images in the
middle row illustrate the initial seed p� (in red) and patches similar to p� (in grey), i.e., patches
q such that f

>

p� fq � 0. The bottom row shows maps of the inverse degree1=dp of all patches
p (yellow corresponds to high inverse degree and blue corresponds to low inverse degree). The
initial seed p� is the patch with the lowest degree. Best viewed in color.

Our method takes as input d-dimensional image featuresF 2 RN � d extracted from a single

image via a neural network, whereN denotes the the number of patches in the image, and

fp 2 Rd is the feature vector of the patch at spatial position p 2 f 1; : : : ; N g. We assume that

there is at least one object in the image and LOST tries to localize one such object given the

input features. To this end, it relies on a selection of patches that are likely to belong to an

object. We call these patches �seeds�.

Initial seed selection. Our seed selection strategy is based on the assumptions that (a) re-

gions/patches within objects correlate more with each other than with background patches and

vice versa, and (b) an individual object covers less area than the background. Consequently,

a patch with little correlation with the rest of the image has a higher chance to belong to an

object.

To compute the patch correlations, we rely on the distinctiveness of self-supervised trans-

former features, which is particularly noticeable when using transformer keys. We empirically

observe that using these tranformer features as patch representation meets assumption (a) in

practice: patches in an object correlate positively with each other but negatively with patches
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in the background. Therefore, based on assumption (b), we pick the patch with the smallest

number of positive correlations with other patches as the initial seedp� .

Concretely, we build a patch similarity graph G for each image, represented by the binary

symmetric adjacency matrix A = ( apq)1� p;q� N 2 f 0; 1gN � N such that

apq =

(
1 if f

>

p fq � 0;

0 otherwise:
(5.1)

In other words, two nodes p; q are connected by an undirected edge if their featuresfp; fq are

not negativelyly correlated. We select the initial seedp� as a patch with the lowest degreedp,

that is:

p� = arg min
p2f 1;:::;N g

dp ; where dp =
NX

q=1

apq: (5.2)

We show in Figure 5.2 examples of seedsp� selected in four di�erent images along with the

degree maps. We remark that the patches with lowest degrees are the most likely to fall in an

object. Finally, we also observe in this �gure that the few patches that correlate positively with

p� are also likely to belong to an object.

Seed expansion. Once the initial seed has been picked, we select other patches that are

correlated with it and likely to belong to an object. Again, we rely on the empirical observations

that pixels within an object tend to be positively correlated and have a small degree inG. The

selection is done by �nding the set S of patches in Dk � the set of k patches with the lowest

degree � whose features correlate positively withfp� :

S = f q j q 2 D k and f
>

q fp� � 0g: (5.3)

In case of patches with equal degrees, we break ties arbitrarily to ensure thatjDk j = k and we

typically use k = 100 in our implementation.

Box extraction. The last step consists in computing a maskm 2 f 0; 1gN by comparing

the features of seeds inS with the features of all other patches. The qth entry of the mask m

satis�es

mq =

(
1 if

P
s2S f

>

q fs � 0;

0 otherwise:
(5.4)

In other words, a patch q is considered as part of an object if, on average, the corresponding fea-

ture fq positively correlates with the features of the patches inS. To remove spurious correlated

patches, we �nally select the connected component inm that contains the initial seed and use

the bounding box of this component as the discovered object. An illustration of the discovered

objects before and after seed expansion is provided in Figure 5.3.
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Figure 5.3 � Objects discovered by LOST on VOC07. The red square represents the seedp� , the
yellow box is the box obtained using onlyp� , and the purple box is the one obtained using all
the seeds inS, collected via seed expandion. Using only the initial seedp� , the returned boxes
tend to focus only on the most discriminative parts of objects. Seed expansion allows returning
larger regions that cover the entire object extent.

5.3.3 Towards Unsupervised Object Detection

We exploit the accurate single-object localization of LOST for training object detectors

without any human supervision. Starting from a set of unlabeled images, each one assumed

to contain at least one prominent object, we extract one bounding box per image using LOST.

Then, we train object detectors using these pseudo-annotated boxes. We explore two scenarios:

class-agnostic and (pseudo) class-aware training of object detectors.

Class-agnostic detection (CAD). A class-agnostic detection model localizes salient objects

in an image without predicting nor caring about their semantic category. We train such a

detector by assigning the same �foreground� category to all the boxes produced by LOST, which

we call �pseudo-boxes� afterwards, as they are obtained automatically without human e�ort.

Unlike LOST, the trained detector can localize multiple objects per image, even if it was trained

on a dataset containing only one pseudo-box annotation per image. The experiments con�rm

that the trained detector can output multiple detections and the quantitative results (Table 5.1)

show that this trained detector is in fact even better than LOST in terms of localization accuracy.

Class-aware detection (OD). We now consider a typical detector that both localizes objects

and recognizes their semantic category. To train such a detector, apart from LOST's pseudo-

boxes, we also need a class label for each of these boxes. In order to remain fully-unsupervised,

we discover visually-consistent object categories using K-means clustering. For each image, we

crop the object detected by LOST, resize the cropped image to224� 224, feed this image in

the DINO pre-trained transformer, and extract the CLStoken at the last layer. The set of CLS

tokens are clustered using K-means and the cluster index is used as a pseudo-label for training

the detector. At evaluation time, we match these pseudo-labels to the ground-truth class labels

using the Hungarian algorithm [Kuhn, 1955], which give names to pseudo-labels.

5.4 Experiments

We explore in this section three variants of the object localization problem, in order of in-

creasing complexity: (1) localizing one salient object in each image (single-object discovery) in
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Section 5.4.2, (2) using the corresponding bounding boxes as ground-truth to train a binary

classi�er for foreground object detection (unsupervised class-agnostic object detection), and (3)

using clustering to capture an unsupervised notion of object categories, and detect the cor-

responding instances (unsupervised object detection). The last two variants are discussed in

Section 5.4.3. None of the building blocks of this pipeline uses any annotation, just a large num-

ber of unlabelled images to sequentially train, in a self-supervised way, the DINO transformer,

the class-agnostic foreground/background classi�er, and �nally the classi�er using the cluster

identi�ers as labels.

5.4.1 Experimental Setup

Backbone networks. Unless otherwise speci�ed, we use the self-supervised ViT-S model

introduced in [Caron, 2021], which follows the architecture of DeiT-S [Touvron, 2020]. It is

trained using DINO [Caron, 2021], with a patch size ofP = 16 and the keys K (without the

entry corresponding to the CLStoken) of the last layer as input features F, with which we

achieve the best results. Results obtained alternatively with the attention, queries and values

are presented and discussed Section 5.4.4. For comparison, we also present results using the

base version of ViT (ViT-B), ViT-S with a patch size of P = 8 , as well as with features of the

last convolutional layer of a dilated ResNet-50 [He, 2016] and of a VGG16 [Simonyan, 2015a]

pre-trained either following DINO, or in a supervised fashion on Imagenet [Deng, 2009].

Datasets. We evaluate the performance of our approach on the three variants of object local-

ization on VOC07 [Everingham, 2007] trainval+test, VOC12 [Everingham, 2012] trainval and

C20K. VOC07 and VOC12 are commonly used benchmarks for object detection [Girshick, 2014;

Girshick, 2015]. C20K is a subset of the COCO2014 trainval dataset [Lin, 2014], consisting of

19817 randomly chosen images, used as a benchmark in rOSD (see Chapter 3). When evaluating

results on the unsupervised object discovery task, we follow a common practice and evaluate

scores on the trainval set of the di�erent datasets. Such an evaluation is possible as the task is

fully unsupervised. We follow the same principle for the unsupervised class-agnostic task: we

generate boxes on VOC07 trainval, VOC12 trainval and C20K, use them to train a class-agnostic

detector, and then evaluate again on these datasets (against ground-truth boxes this time).

For unsupervised class-aware object detection, we generate boxes and train the detector on

VOC07 trainval and/or VOC12 trainval, but evaluate the detector on the VOC07 test set to

facilitate comparisons to weakly-supervised object detection methods. Note that for unsuper-

vised object discovery, in the previous chapters, we have used instead subsets of VOC07 trainval

and VOC12 trainval for evaluation. For completeness, we also present the object discovery

performance of LOST on these smaller subsets in Appendix D.

5.4.2 Single-Object Discovery

Similar to methods for unsupervised single-object discovery, LOST produces one box for

each image. It therefore can be directly evaluated for this task.
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Method VOC07_trainval VOC12_trainval C20K

[Uijlings, 2013] 18.8 20.9 16.0
[Zitnick, 2014] 31.1 31.6 28.8
[Kim, 2009] 43.9 46.4 35.1
[Zhang, 2020d] 46.2 50.5 34.8
[Wei, 2019] 50.2 53.1 38.2
rOSD 54.5 55.3 48.5
LOD 53.6 55.1 48.5

DINO-seg (w. ViT-S/16) 45.8 46.2 42.1
LOST (ours) 61.9 64.0 50.7

rOSD + CAD 58.3 62.3 53.0
LOD + CAD 56.3 61.6 52.7
LOST + CAD 65.7 70.4 57.5

Table 5.1 � Single-object discovery performance in CorLoc on VOC07 trainval, VOC12 trainval
and C20K. We compare LOST to state-of-the-art object discovery methods [Kim, 2009; Wei,
2019; Zhang, 2020, rOSD, LOD] as well as to two object proposal methods [Uijlings, 2013;
Zitnick, 2014]. We also compare to the segmentation method proposed in DINO [Caron, 2021],
denoted by DINO-seg. Additionally, we train a class-agnostic dectector (+ CAD) using as
ground-truth either our pseudo-boxes or the boxes of rOSD or LOD.

Comparison to prior work. In Table 5.1, we present the CorLoc of our method, in com-

parison to state-of-the-art object discovery methods [Kim, 2009; Wei, 2019; Zhang, 2020, rOSD,

LOD] and region proposals [Uijlings, 2013; Zitnick, 2014]. Despite its simplicity, we see that

LOST outperforms the other methods by large margins. We also compare against an adapted

version of the segmentation method proposed in [Caron, 2021]. Concretely, we extract the self-

attention of the CLSquery at the last layer of the transformer, create a binary mask where the

0:6N largest entries of this self-attention are set to1, retrieve the largest spatially-connected

component from this binary mask, and use the bounding box of this component as the discov-

ered object. This method returns one box per self-attention head and we report results obtained

with the best performing head over the entire dataset, noted as DINO-seg. LOST improves over

DINO-seg by 8 to 17 of CorLoc points, demonstrating the e�cacy of our approach for object

localization based on self-supervised pre-trained transformer features.

Finally, we also evaluate our unsupervised class-agnostic detector (denoted by `+ CAD') for

single-object discovery. To this end, we return for each image the box that the detector assigns

the highest score. It can be seen that training a class-agnostic detector on LOST's outputs

further improves the performance by 4 to 7 CorLoc points. In total, our method surpasses the

prior state of the art by at least 10 CorLoc points on each evaluated dataset.

Impact of the backbone architecture. Table 5.2 studies the e�ect of the backbone on

LOST. We see that transformer representations are better suited for our method (best results

with ViT-S/16). In contrast, our performance using the DINO-pre-trained ResNet-50 is signi�-

cantly lower. It indicates that the performance of our method is not only due to the contributions

of self-supervision but also to the property and quality of the speci�c features we extract.
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Backbone pre-training VOC07_trainval VOC12_trainval C20K

VGG16 supervised 42.0 47.2 30.2
ResNet50 supervised 33.5 39.1 25.5

ResNet50 DINO 36.8 42.7 26.5
ViT-S/8 DINO 55.5 57.0 49.5
ViT-S/16 DINO 61.9 64.0 50.7
ViT-B/16 DINO 60.1 63.3 50.0

Table 5.2 � Single-object discovery performance in CorLoc of LOST with features originating
from di�erent backbones: ViT [Dosovitskiy, 2021] small (ViT-S) and base (ViT-B) with patch
size P = 8 or 16, ResNet50 [He, 2016] pre-trained following DINO [Caron, 2021], and VGG16
[Simonyan, 2015a] and ResNet50 trained in a fully-supervised fashion on Imagenet [Deng, 2009].

5.4.3 Unsupervised Object Detection

Here we explore the application of LOST in unsupervised object detection. To that end,

we use LOST's pseudo-boxes to train a Faster R-CNN model [Ren, 2015b] on the datasets.

We measure detection performance using theAverage Precision at IoU 0.5 metric (AP50),

which is commonly used in the PASCAL detection benchmark. As Faster R-CNN backbone,

we use a ResNet50 pre-trained with DINO self-supervision, thus making our training pipeline

fully-unsupervised. We trained the Faster R-CNN models using the detectron2 [Wu, 2019]

implementation (more details in Appendix D).

Pseudo-labels. To generate pseudo-labels for the class-aware detectors, we apply K-means

clustering on DINO-ViT-S tokens using as many clusters as the number of di�erent classes in

the dataset. Since the cluster-based pseudo-labels are �anonymous�, to evaluate the detection

results we must map the clusters to the ground-truth classes. Following prior work in image

clustering [Bautista, 2016; Asano, 2019; Ji, 2019], we use the Hungarian algorithm [Kuhn, 1955]

for that. We stress that this matching is only for reporting evaluation results; we do not use

any human labels during training.

Unsupervised class-aware detection. Table 5.3 provides results of unsupervised class-

aware object detectors trained with LOST (entry `LOST + OD') on VOC07 dataset. An il-

lustration of the objects detected by LOST + OD on COCO are also shown in Figure 5.4. We

are not aware of any prior work that addresses unsupervised object detection on real-world im-

ages of complex scenes, as those in PASCAL, that does not use extra modalities. We could not

compare to [Afouras, 2020; Tian, 2021] as we focus on image-only benchmarks.

We see that, although fully-unsupervised, our method accurately detects several object

classes. For example, detection performance for classesaeroplane, bus, dog, horse and train

is more than 50:0 points, and for cat it reaches 72:2 points. Even more so, for some classes

our method achieves better AP50 than the weakly-supervised methods WSDDN [Bilen, 2016]

and PCL [Tang, 2018c], which require image-level human labels. Although the results are not

entirely comparable due to backbone di�erences between our method and the weakly-supervised

ones (self-supervised ResNet50 vs. supervised VGG16), they still demonstrate the e�cacy of
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our method in unsupervised object detection, which is an extremely hard and ill-posed task. We

also compute AP of the pseudo-boxes generated on VOC07 test by our method (entry `LOST')

using their assigned cluster id as pseudo-labels. As clearly shown by the table, training the

detector on pseudo-boxes leads to a signi�cantly higher AP than just �nding pseudo-boxes.

Finally, switching LOST's pseudo-boxes with those of rOSD for training the detector (adding

pseudo-labels to rOSD pseudo-boxes by clustering DINO features in exactly the same way as in

our method) degrades the performance (entry `rOSD + OD').

Method Sup. aero bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mean
[Bilen, 2016] weak 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
[Tang, 2018c] weak 54.4 9.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5
rOSD + OD none 38.8 44.7 25.2 15.8 0.0 52.9 45.4 38.9 0.0 16.6 24.4 43.3 57.2 51.6 8.2 0.7 0.0 9.1 65.8 9.4 27.4
LOST none 42.8 0.0 16.4 3.9 0.0 32.4 17.1 26.2 0.0 14.2 11.3 28.1 43.9 15.8 2.2 0.0 0.1 5.6 39.9 2.3 15.1
LOST + OD none 57.4 0.0 40.0 19.3 0.0 53.4 41.2 72.2 0.2 24.0 28.1 55.0 57.2 25.0 8.3 1.1 0.9 21.0 61.4 5.6 28.6
LOST + ODy none 62.0 38.5 49.3 23.1 4.2 57.0 41.9 70.4 0.0 3.6 18.9 30.8 52.8 45.5 12.5 0.6 9.1 9.0 67.2 0.829.9

Table 5.3 � Object detection performance (AP50) on VOC07 test. LOST+ OD and rOSD + OD
are trained on VOC07 trainval. LOST + OD y is trained on the union of VOC07 and VOC12
trainval sets.

Figure 5.4 � Examples of predictions obtained by the class-aware detector LOST + OD on COCO
(a di�erent color per class). The actual �person� class is assigned three di�erent pseudo-classes,
illustrating the di�culty to �see� a single category for a �person� in very di�erent con�gurations.

Unsupervised class-agnostic detection. We report in Table 5.4 class-agnostic detection

results obtained using pseudo-boxes from our method (`LOST + CAD') as well as from rOSD

(`rOSD + CAD') and LOD (`LOD + CAD'). Our method leads to signi�cantly better detection

performance. We also report detection results using the selective search [Uijlings, 2013] and

EdgeBox [Zitnick, 2014] proposal algorithms, which perform worse than our method.

Multi-object discovery results. We compare in Table 5.5 the multi-object discovery per-

formance of di�erent methods. Following LOD, we use odAP50 and odAP[50:95] as evaluation

metrics. As LOST only returns one region per image, we only consider here LOST + CAD,
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Training set (when applicable) VOC07 trainval VOC12 trainval C20K
Evaluation set trainval test trainval trainval

[Zitnick, 2014] 3.6 4.4 4.8 1.8
[Uijlings, 2013] 2.9 3.6 4.2 1.6

rOSD + CAD 24.2 25.2 29.0 8.4
LOD + CAD 22.7 23.7 28.4 8.8
LOST + CAD 29.0 29.0 33.5 9.9

Table 5.4 � Class-agnostic unsupervised object detection performance in AP50. Trainings, cor-
responding to m̀ethod + CAD', are performed on the unlabelled images and rely only on the
fully-unsupervised methods rOSD, LOD and LOST (ours). Evaluation of unsupervised object
detection may thus be performed on the same images as those used for unsupervised training
(without manual annotations). The classic methods EdgeBoxes [Zitnick, 2014] and Selective
Search [Uijlings, 2013] do not involve any training.

which is the output of a class-agnostic detector (CAD) trained with LOST boxes, and we com-

pare it to other approaches. It can be seen that LOST + CAD signi�cantlyoutpe rforms all

the previous methods, including the class-agnostic detector trained with LOD boxes (LOD +

CAD).

Method
odAP50 odAP[50:95]

VOC07_trainval VOC12_trainval C20K VOC07_trainval VOC12_trainval C20K
[Kim, 2009] 9.5 11.8 3.93 2.49 3.11 0.96
[Wei, 2019] 8.7 11.1 2.41 3.0 4.1 0.73
rOSD 13.1 15.4 5.18 4.29 5.27 1.62
LOD 13.9 16.1 6.63 4.47 5.34 1.98
LOD + CAD 15.8 20.9 7.26 5.03 7.07 2.28
LOST + CAD 19.8 24.9 7.93 6.71 8.85 2.51

Table 5.5 � Multi-object discovery performance in odAP (average precision for object discovery)
of LOST and the baselines [Kim, 2009; Wei, 2019; rOSD; LOD].

Image nearest neighbor retrieval. Following LOD, we use LOST box descriptors to �nd

images that are similar to each other (image neighbors) in the image collection. To this end, each

image is represented by theCLSdescriptors of its LOST box and the cosine similarity between

these descriptors is used to de�ne a similarity between the images. Then, for each image, the

top � images with the highest similarity are chosen as its neighbors. Similar to LOD, we choose

� = 10 and use CorRet [Cho, 2015] as the evaluation metric, de�ned as the average percentage

of the retrieved image neighbors that are actual neighbors (i.e., that contain objects of the same

category) in the ground-truth image graph over all images. We compare the performance of

our method in this task with rOSD and LOD in Table 5.6. We see that LOST boxes, when

represented by DINO [Caron, 2021] features, yield a better CorRet score than the others. When

VGG16 [Simonyan, 2015a] features are used, LOST is behind LOD but better than rOSD.
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Method Features CorRet (%)

rOSD VGG16 64
LOD VGG16 70
LOST VGG16 68
LOST DINO 72

Table 5.6 � Image neighbor retrieval performance (CorRet) of di�erent methods and features.

5.4.4 Ablation Study

Which transformer features to choose? As explained in Section 5.3.2, we choose to use

the keys kp of the last attention layer as patch features fp in LOST. As we will see here, this

choice provides the best localization performance among the alternatives. Speci�cally, we report

in the �rst section of Table 5.7 the performance of LOST when using as patch featuresfp either

the keyskp, the queriesqp, or the valuesvp of the attention layer. We see that the performance

of LOST when using the queriesqp or the values vp deteriorates by at least 11 CorLoc points

compared to using the keyskp. Note that the better performance of keys compared to values

or queries for localization tasks has also been observed in the more recent work of [Amir, 2021].

Another way to measure the similarity between two patches in a transformer architecture is

to use the scalar product between the queries and the keys. We thus test substituting

~apq =

(
1 if q

>

p kq + k
>

p qq � 0;

0 otherwise;
(5.5)

for apq in Equation (5.1) when selecting the initial seed. Note that this choice of~apq ensures the

symmetry of the adjacency matrix. We test this new choice of similarity matrix when using the

queries, keys or values in the seed expansion step, i.e., inS, and in the box extraction steps,

i.e., in m as de�ned in Equation (5.4).

Finally, we also try changing the de�nition of S to ~S = f q j q 2 D k and q
>

q kp� + k
>

q qp� � 0g

and replacing the de�nition of mq in Equation (5.4) by

~mq =

8
<

:
1 if

P
s2S

�
k

>

q qs + q
>

q ks

�
� 0;

0 otherwise:
(5.6)

Results in Table 5.7 show that all these alternatives using queries and keys yield results that are

not as good as when using the keys as patch features.

Importance of the seed expansion step. We analyse here the importance of the seed

expansion step that is controlled byk. The seed expansion step allows us to enlarge the region

of interest so as to include all the parts of an object and not only the part localized from the initial

seed. The last section of Table 5.7 presents the impact of the parameterk, which corresponds

to the maximum number of patches that can be used to construct the maskm. We notice that,

without seed expansion (i.e.,k = 1 ), there is a drastic drop in localization performance. The

performance improves when increasingk to 100-150 with a slight decrease at200.
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Seed selection Expansion & Box extrac. k CorLoc

apq with f = q in Eq. (5.1) fp = qp in S and mq 100 30.8
apq with f = v in Eq. (5.1) fp = vp in S and mq 100 50.5
apq with f = k in Eq. (5.1) fp = kp in S and mq 100 61.9

~apq de�ned in Eq. (5.5) fp = qp in S and mq 100 30.8
~apq de�ned in Eq. (5.5) fp = vp in S and mq 100 29.9
~apq de�ned in Eq. (5.5) fp = kp in S and mq 100 30.7
~apq de�ned in Eq. (5.5) using ~S and ~mq 100 30.8

apq with f = k in Eq. (5.1) fp = kp in S and mq 1 38.3
apq with f = k in Eq. (5.1) fp = kp in S and mq 50 58.8
apq with f = k in Eq. (5.1) fp = kp in S and mq 150 61.8
apq with f = k in Eq. (5.1) fp = kp in S and mq 200 61.2

Table 5.7 � CorLoc performance on VOC2007 with di�erent choices of transformer features in
the seed selection, expansion and box extraction steps, as well as in�uence on the results of the
parameter k (maximum number of patches with the lowest degree, inDk , for seed expansion).

Visualizations of results with k = 1 and k = 100 are presented in Figure 5.3 in Section 5.3.2

and Figure 5.5. We see that the boxes in yellow obtained withk = 1 are small and localized on

probably what is the most discriminative part of the objects. Increasingk permits us to increase

the size of the box and localize the object better. We also present in Figure 5.6 cases of failure

where the seed expansion step is either insu�cient to localize the whole object or yields a box

containing multiple objects.

Impact of the number of clusters on class-aware detection training. We assume in

our unsupervised class-aware detection experiments that we know the exact number of object

classes present in the used dataset, i.e.,20 in the VOC dataset, and use the same number of

K-means clusters. Here we only assume that we have a rough estimate of the number of classes

and study the impact of the number of clusters on the performance of the unsupervised detector.

To this end, in Table 5.8, we provide the mean AP50 across all the20 VOC classes when using

20, 25, 30 and 40 clusters. When we use more clusters than the20 classes of the VOC dataset,

Hungarian matching, which is used for reporting the AP50 results, maps to the VOC classes

only the 20 best �tted clusters. Thus, when reporting the per-class AP results, we ignore the

detections in these unmatched clusters since they have not been mapped to any ground-truth

class. We observe in Table 5.8 that our unsupervised detector achieves good results for all

the numbers of clusters. Interestingly, for 30 and 40 clusters there is a noticeable performance

improvement. Similar �ndings have been observed on prior clustering work [Ji, 2019; Tian, 2021;

Afouras, 2021].

Impact of the non-determinism of the K-means clustering. We investigate the impact

of the randomness in the K-means clustering on the results of the object detectors. To that end,

we repeat 4 times, using di�erent random seeds, the unsupervised class-aware object detection

experiment LOST + OD y (Table 5.3). We obtain a standard deviation of 0.8 for the AP50

metric, which shows that the method is fairly insensitive to the randomness of the clustering
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Figure 5.5 � An illustration of the e�ect of seed expansion on VOC07. In each image, the red
square represents the seedp� , the yellow box is obtained using onlyp� , and the purple box is
obtained using all the seedsS with k = 100.

method.
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Figure 5.6 � Failure cases of seed expansion on VOC07. In each image, the red square represents
the seedp� , the yellow box is obtained using onlyp� , and the purple box is obtained using all
the seedsS with k = 100.

Number K of clusters 20 25 30 40

Mean AP (%) 29.9 29.4 34.0 32.2

Table 5.8 � Impact of number of clusters in object detection. Results, using the mean AP50 (%)
across all the classes, on VOC07 test. All models are trained using LOST's pseudo-boxes (i.e.,
LOST + OD) on the VOC07 and VOC12 trainval sets. The number of classes in VOC is20.

5.5 Conclusion, Limitations and Future Work

We have presented LOST, a simple, yet e�ective method for localizing objects in images

without any labels, by leveraging self-supervised pre-trained transformer features [Caron, 2021].

Despite its simplicity, LOST outperforms the state-of-the-art methods for object discovery by

large margins. Having high precision, the boxes found by LOST can be used as pseudo ground

truth for training a class-agnostic detector which further improves the object discovery per-

formance. LOST boxes can also be used to train an unsupervised object detector that yields

competitive results compared to weakly-supervised object detectors for several classes.

Despite the good performance of LOST, it exhibits of course some limitations. LOST, as it

stands, can separate same-class instances that do not overlap (as it only keeps the connected

component of the initial seed to create a box), but it is not designed to separate overlapping

instances. This is actually a challenging problem, related to the di�erence between seman-

tic [Long, 2015] and instance [He, 2017] segmentation tasks which, as far as we know, is an

open problem in the absence of any supervision. A potential lead could be to use a matching

algorithm such as probabilistic Hough matching [Cho, 2015] to separate instances within image

regions found in multiple images. Another issue is when an object covers most of the image. It

violates our second assumption for the initial seed selection (expressed in Section 5.3.2) that an
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individual object covers less area than the background, thus possibly causing the seed to fall in

the background instead of a foreground object. Ideally, we would like to �lter out such failure

cases, e.g., by using the attention maps of theCLStoken.

Future work will be dedicated to addressing these limitations and investigating other appli-

cations of LOST boxes,e.g., high-quality region proposals for object detection tasks, and the

power of self-supervised transformer features for unsupervised object segmentation.
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Part II

Annotation-e�cient object detection
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Chapter 6
Active Learning Strategies for

Weakly-Supervised Object Detection

Object detectors trained with weak annotations are a�ordable alternatives to their
fully-supervised counterparts. However, there is still a signi�cant performance gap
between the two. We propose to narrow this gap by �ne-tuning a base pre-trained
weakly-supervised object detector with a few fully-annotated samples automatically
selected from the training set using a novel active learning strategy named �box-in-
box� (BiB) and designed speci�cally to address the well-documented failure modes
of weakly-supervised detectors. Experiments on the VOC07 and COCO benchmarks
show that BiB outperforms other active learning techniques and signi�cantly im-
proves the base weakly-supervised detector's performance with only a few fully-
annotated images per class. BiB reaches 97% of the performance of fully-supervised
Fast RCNN with only 10% of fully-annotated training images on VOC07. On COCO,
using on average 10 fully-annotated images per class, or roughly 1% of the training
set, BiB also reduces the performance gap (in AP) between the weakly-supervised
detector and the fully-supervised Fast RCNN by over 70%, showing a good trade-o�
between performance and data e�ciency.
This work, done in collaboration with Oriane Siméoni, Spyros Gidaris, Andrei Bur-
suc, Patrick Pérez and Jean Ponce, has appeared in Proceedings of the European
Conference on Computer Vision (ECCV) 2022.

Objectives

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2 Active Learning for Weakly-Supervised Learning Object Detection . . . . . . . . . . . 98
6.2.3 BiB : An Active Learning Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.4 Training Detectors with both Weak and Strong Supervision . . . . . . . . . . . . . . . 101

6.3 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 Additional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

95



Chapter 6. Active Learning Strategies for Weakly-Supervised Object Detection

6.1 Introduction

Object detectors are critical components of visual perception systems deployed in real-world

settings such as robotics or surveillance. Many methods have been developed to build object

detectors with high predictive performance [Girshick, 2014; Gidaris, 2015; Girshick, 2015; Ren,

2015a; He, 2017] and fast inference [Redmon, 2016; Redmon, 2017]. They typically train a neu-

ral network in a fully-supervised manner on large datasets annotated manually with bounding

boxes [Everingham, 2007; Everingham, 2012; Lin, 2014]. In practice, the construction of these

datasets is a major bottleneck since it involves large, expensive and time-consuming data acqui-

sition, selection and annotation campaigns. To address this challenge, much e�ort has been put

in devising object detection approaches trained with less (or even no) human annotation. This

includes semi-supervised [Radosavovic, 2018; Wang, 2018a; Jeong, 2019; Zoph, 2020; Li, 2020;

Sohn, 2020b; Tang, 2021b; Xu, 2021], weakly-supervised [Bilen, 2016; Cinbis, 2017; Jie, 2017a;

Tang, 2017; Tang, 2018a; Zeng, 2019; Arun, 2019; Gao, 2019b; Ren, 2020a; Huang, 2020], few-

shot [Karlinsky, 2019; Kang, 2019; Fan, 2020; Sun, 2021], active [Settles, 2009; Geifman, 2017;

Sener, 2018; Zhdanov, 2019; Brust, 2019; Agarwal, 2020; Haussmann, 2020; Yuan, 2021b; Choi,

2021] and unsupervised [Sivic, 2005; Russell, 2006; Tang, 2008; Kim, 2009; Cho, 2015; OSD;

rOSD; LOD; LOST] learning frameworks for object detection.

Figure 6.1 � Overview of our approach. A base weakly-supervised object detector is �rst trained
with image-level tags only, then �ne-tuned in successive stages using fewwell-selectedimages
that are fully-annotated. For their selection, we propose �box-in-box� (BiB), an acquisition
function designed to discover recurring failure cases of the weakly-supervised detector, e.g.,
failure to localize whole objects or to separate distinct instances of the same class.

Weakly-supervised object detection (WSOD) typically only uses image-level category labels

during training [Bilen, 2016; Tang, 2017; Ren, 2020a]. This type of annotation is much cheaper

than bounding boxes and, in some cases, it can even be obtained automatically, e.g., leverag-

ing tags on online photos, photo captions in media or time-stamped movie scripts. WSOD is

thus an a�ordable alternative to fully-supervised object detection in terms of annotation cost.

However, weakly-supervised object detectors often struggle to correctly localize the full extent

of objects [Tang, 2017; Ren, 2020a]. Several recent works [Pan, 2019; Bi�, 2020] show that a

good trade-o� between performance and annotation cost can be achieved by annotating objects

in a small set of randomly selected training images with bounding boxes and training the detec-
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tor with a mix of weak and full supervision. However, there are better alternatives to random

selection. Active learning (AL) methods [Choi, 2021; Yuan, 2021b]select images that should be

the most helpful for the training of an object detection model, given some criterion.

In this work, we propose to combine both worlds, by augmenting the weakly-supervised

framework with an active learning scheme. Our active learning strategy speci�cally targets

the known failure modes of weakly-supervised object detectors. We show that it can be used to

signi�cantly narrow the gap between weakly-supervised detectors and expensive fully-supervised

ones with a few fully-annotated images per class.

We start with a weakly-annotated dataset, e.g., a set of images and their class labels, with

which we train a weakly-supervised object detector. We apply a new active learning strategy that

we call box-in-box (BiB) to iteratively select from the dataset a few images to be fully annotated

at each stage and used to �ne-tune the detector (Figure 6.1). Previous works have attempted to

combine weak supervision with active learning, but they all start with an initial set of hundreds

to thousands of fully-annotated images. As shown in Section 6.3, our approach only requires

a very small number of fully-annotated images (50 � 250 on VOC07 [Everingham, 2007] and

160� 800 on COCO [Lin, 2014]) to signi�cantly improve the performance of weakly-supervised

detectors. Our main contributions are:

� We propose a new approach to improve weakly-supervised object detectors, by using a

few fully-annotated images, carefully selected with the help of active learning. Contrary

to typical active learning approaches, we initiate the learning process without any fully-

annotated data.

� We introduce BiB, an active selection strategy that is tailored to address the limitations

of weakly-supervised detectors.

� We validate our proposed approach with extensive experiments on VOC07 and COCO

datasets. We show that BiB outperforms other active learning strategies on both datasets,

and reduces signi�cantly the performance gap between weakly- and fully-supervised object

detectors.

6.2 Proposed Approach

6.2.1 Problem Statement

We assume that we are givenn imagesI = f I i gi 2f 1:::n g annotated with labels Q = f q i gi 2f 1:::n g.

Here q i 2 f 0; 1gC is a vector encoding the class labels of imageI i , with C being the number

of classes in the dataset. LetM 0 be a weakly-supervised object detector trained using onlyQ.

The goal of our work is to iteratively select a very small set of imagesto fully annotate with

bounding boxes and �ne-tuneM 0 on the same images with both weak and full annotation so as

to maximize its performance. To that end, we propose a novelactive learning method properly

adapted to the aforementioned problem setting.
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6.2.2 Active Learning for Weakly-Supervised Learning Object Detection

As typical in active learning, our approach iterates over several cycles in which an acquisition

function �rst uses the available object detector to select images that are subsequently annotated

by a human with bounding boxes, before the detector is updated with this additional data

(Algorithm 6.1).

Algorithm 6.1: WSOD with Active Learning.
Input: Set I of weakly-labelled images, setQ of weak annotations, numberT of cycles,

budget B per cycle.
Result: Detector M T , bounding box annotations GT .

1 M 0  train (I ; Q) . weakly-supervised pre-training
2 for t = 1 to T do
3 A t  select (W t � 1, M t � 1; I ; Q; B ) . select a batchA t of B images
4 Gt  G t � 1 [ label (I ; A t ) . annotate new selection
5 St  St � 1 [ A t , W t  W t � 1 n A t . update the sets
6 M t  fine-tune (I ; Q; Gt ; M 0) . �ne-tune the model
7 end

Let W t � f 1; : : : ; ng be the set of indices of images with class labels only, andSt � f 1; : : : ; ng

the set with bounding-box annotations at the t-th active learning cycle. The active learning

process starts with W 0 = f 1; : : : ; ng and S0 = ? . At each cycle t > 0, the acquisition function

selects from W t � 1 a set A t of B images to be annotated with bounding boxes, withB the

�xed annotation budget per cycle. By de�nition, we have that A t � W t � 1 and jA t j = B . For

the selection, the acquisition function exploits the detector M t � 1 obtained at the end of the

previous cycle. After selectingA t , the sets of fully and weakly-annotated images are updated

with St = St � 1 [ A t and W t = W t � 1nA t respectively. We de�ne asGt = f G i gi 2 St the bounding-

box annotations for images with indices inSt . Finally, at the end of cycle t, we �ne-tune M 0

on the entire dataset, using the bounding-box annotations for images with indices inSt and the

original image-level annotations for others.

6.2.3 BiB: An Active Learning Strategy

With a very small annotation budget, we aim at selecting the �best� training examples to

��x� the mistakes of the base weakly-supervised object detector. We propose BiB, an acquisition

strategy tailored for this purpose. It �rst discovers (likely) detection mistakes of the weakly-

supervised detector, and then selects diverse set of images containing those. Our selection

strategy is summarized in Algorithm 6.2.

Discovering BiB patterns. Weakly-supervised object detectors often fail to recover the full

extent of the objects in an image, and tend to focus instead on the most discriminative parts

of an object or to group together multiple object instances [Ren, 2020a]. Several examples of

these errors are shown in Figure 6.2. In the �rst column, a predicted box focuses on the most

discriminative part of an object while a bigger one encompasses a much larger portion of the same
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Figure 6.2 � Example of box-in-box (BiB) pairs among the predictions of the weakly-supervised
object detector. The existence of such pairs is an indicator of the detector's failure on those
images. In the images, boxes of di�erent colors are prections of di�erent classes and the numbers
represent the prediction con�dence. Best viewed in color.

object. Another recurring mistake is when two or more distinct objects are grouped together

in a box, but some correct individual predictions are also provided for the same class (second

column). The two kinds of mistakes can also be found in the same image (third column). We

name �box-in-box� (BiB) such detection patterns where a pair of boxes is predicted for a same

object class, the smaller box being �contained� (within some tolerance, see below) in the larger

one. We take BiB pairs as an indicator of detector confusion.

Concretely, let D i be the set of boxes detected in imageI i and let dA and dB be two of

them. We consider that (dA ; dB ) is a BiB pair, which we denote with is-bib(dA ; dB ) = True,

when: (i) dA and dB are predicted for the same class, (ii)dB is at least � times larger than dA

(i.e., Area( dB )
Area( dA ) � � ), and (iii) the intersection of dB and dA over the area ofdA is at least � (i.e.,

Intersection( dA ;dB )
Area( dA ) � � ). Hence, the setPi = f pi;j gjPi j

j =1 of BiB pairs is found in image I i by the

procedure

�nd-bib( D i ) = f (dA ; dB ) 2 D i � D i j is-bib(dA ; dB )g. (6.1)

We observe that in such a BiB pair, it is likely that at least one of the boxes is a detection

mistake (Section 6.3.3). We thus propose to select the images to be fully annotated among those

containing BiB pairs.

Selecting diverse detection mistakes. Given the set of all BiB pairs over I , the acquisition

function considers thediversity of the pairs in order to select images. In particular, we follow

k-means++ initialization [Arthur, 2007] � initially developed to provide a good initialization to

k-means clustering by iteratively selecting as centroids data points that lie further away from

the current set of selected ones. This initialization has previously been applied to image features
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Algorithm 6.2: BiB acquisition strategy.

Input: Budget B , model M t � 1, image setI , index set W t � 1 of weakly-annotated
images, setP̂ of already selected BiB pairs (if empty, see text for initialization)

Result: Set A t of selected images.
1 for i 2 W t � 1 do
2 D i  Detect (I i jM t � 1) . Predict boxes

3 Pi  f pi;j gjPi j
j =1 = �nd-bib( D i ) . Discover BiB patterns

4 end
5 # Select diverse detection mistakes
6 A t  ?
7 while jA t j < B do
8 for p 2 [ i 2 W t � 1nA t Pi do
9 wp  min ~p2 P̂ kF (p) � F (~p)k . Comp. dist. to selected pairs

10 end
11 p� � Prob(f wpgp) . Randomly select a pair
12 i �  get-imid (p) . Get index of the image containingp�

13 P̂  P̂ [ Pi � , A t  A t [ f i � g . Updates
14 end

in the context of active learning for object detection [Haussmann, 2020] or on model's gradients

for active learning applied to image classi�cation [Ash, 2020]. Here we focus and apply the

algorithm to pairs of detected boxes.

We denote with P̂ the set of BiB pairs from the already selected images. For each pairp

not in P̂ , we compute its minimum distancewp to the pairs in P̂ : wp  min ~p2 P̂ kF (p) � F (~p)k,

where F (p) is the feature vector associated withp, i.e., the concatenation of the region features

corresponding to the two boxes inp each extracted using the modelM t � 1. We then randomly

pick a new pair p� , using a weighted probability distribution where a pair p is chosen with

probability proportional to wp. We �nally select the image I i � that contains p� , add its index i �

to A t and its BiB pairs to P̂ . Note that at the beginning of the selection process in each cycle,

P̂ contains the pairs of images selected in the previous cycles and is empty when the �rst cycle

begins. In the latter case, we start by selecting the imageI i � that has the greatest number of

pairs jPi � j 1 and add the pairs in Pi � to P̂ before starting the selection process above.

With this design, BiB selects a diverse set of images that are representative of the dataset

while addressing the known mistakes of the weakly-supervised object detector. We show some

examples selected by BiB and demonstrate its e�ectiveness in boosting the performance of the

weakly-supervised detector in Section 6.3.2. The importance of selectingdiverse BiB pairs is

also discussed in Section 6.3.3.

6.2.4 Training Detectors with both Weak and Strong Supervision

We detail below how the model is �ne-tuned each cycle. For clarity, we drop the image index

i and the cycle indext in this section.

1. In case of a draw, an image is randomly selected.
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Training with weak annotations. We adopt the state-of-the-art weakly-supervised method

MIST [Ren, 2020a] as our base detector. MIST follows [Tang, 2017] which adapts the detection

paradigm of Fast R-CNN [Girshick, 2015] to weak annotations. It leverages (pre-computed)

region proposals extracted from unsupervised proposal algorithms, such as selective search [Ui-

jlings, 2013] and EdgeBoxes [Zitnick, 2014]. In particular, given imageI which has only weak

labels q (class labels) and its set of region proposalsR, simply called regions, the detection

network extracts image features with a CNN backbone and computes for each region a feature

vector using region-wise pooling [Girshick, 2015]. The network head(s) on top of the CNN

backbone process the extracted region features in order to predict for each of them the object

class and modi�ed region coordinates. To build a detector that can be e�ectively trained using

only image-wise labels, MIST has two learning stages,coarse detection with multiple instance

learning and detection re�nement with pseudo-boxes, each implemented with di�erent heads but

trained simultaneously in an online fashion [Tang, 2017].

The multiple instance learner (MIL) head is trained to minimize a multi-label classi�cation

risk L MIL using weak labels and produce classi�cation scores for all regions inR. MIST selects

the regions with the highest scores (with non-maximum suppression) as coarse predictions, which

we denote with D (0) . These predictions are iteratively re�ned using K consecutivere�nement

heads. Each re�nement head k 2 f 1: : : K g predicts for all regions in R their classi�cation scores

for the C + 1 classes (C object classes plus1 background class) and box coordinates per object

class. The re�nement headk is trained by minimizing:

L (k)
w (I ; R ; D (k� 1)) = L (k)

cls (I ; R ; D (k� 1)) + L (k)
reg(I ; R ; D (k� 1)); (6.2)

which combines an adapted instance classi�cation loss,L (k)
cls , and the box regression lossL (k)

reg

of Fast R-CNN [Girshick, 2015], using as targets the pseudo-boxesD (k� 1) generated by MIST

from the region scores of the previous head. The �nal loss for imageI is:

L w = L MIL (I ; R ; q) +
KX

k=1

L (k)
w (I ; R ; D (k� 1)): (6.3)

For more details about MIST, please refer to Appendix E and [Ren, 2020a].

Adding strong annotations. In our approach, we obtain ground-truth bounding boxes for

very few images in the setI . In order to integrate such strong annotations into the weakly-

supervised framework, we simply replace the pseudo-annotations in Equation (6.2) with box

annotations G, now available for imageI . The resulting loss for the re�nement headk reads:

L (k)
s (I ; R ; G) = L (k)

cls (I ; R ; G) + L (k)
reg(I ; R ; G); (6.4)

and the �nal loss on image I in this case is:

L s = L MIL (I ; R ; q) +
KX

k=1

L (k)
s (I ; R ; G): (6.5)
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While �ne tuning the detector M 0, we useL w for images for which only class labels are

available and L s for images provided with bounding boxes.

Di�culty-aware proposal sampling. In this framework, we use thousands of pre-computed

proposals inR for each image. This is necessary when no box annotations are provided. However,

when ground-truth boxes are available, better and faster training can be achieved by sampling

a smaller number of proposals thanks to a stable ratio between negative and positive proposals

[Girshick, 2015; Ren, 2020b]. In particular, we select a subset of512 proposals with 25% of

positive boxes, i.e., those whose IoU with one of the ground-truth boxes exceeds0:5, and 75%

of negative boxes, i.e., those whose IoU with all ground-truth boxes is smaller than0:3. We

have noticed that negative proposals are often over-sampled from the background or appear

uninformative. We thus propose to improve negative proposal sampling by using the network

predictions to select those classi�ed as objects. First, a forward pass is performed and the

average classi�cation scores over theK re�nement heads is computed; we then apply row-wise

softmax and select proposals with the highest class scores, excluding background. We show in

our experiments that this negative proposal sampling method allows better training and yields

better performance.

6.3 Experimental Analysis

In this section, we �rst introduce the general setup of our experiments. We then present an

ablation study to assess the e�ectiveness of di�erent components of BiB before comparing BiB

to di�erent existing active learning strategies. Finally, we compare our method to the state of

the art.

6.3.1 Experimental Setup

Datasets. We evaluate our method on two well-known datasets for object detection, Pascal

VOC2007 [Everingham, 2007] (noted VOC07) and COCO2014 [Lin, 2014] (COCO). Following

previous works [Bi�, 2020; Ren, 2020a], we use thetrainval split of VOC07 for training and

the test split for evaluation. They contain 5011 and 4952 images respectively. On COCO, we

train detectors with the train split (82783 images) and evaluate on thevalidation split (40504

images) following [Bi�, 2020]. We use the average precision metrics AP50 and AP, computed

respectively with an IoU threshold of 0.5 and with thresholds in [0:5 : 0:95]. We report results

corresponding toN -shot experiments � whereN � C images are selected � andN % experiments,

where about N percents of the training set are selected to be fully-annotated.

Architecture. Though BiB can be applied on any weakly-supervised object detector, we use

MIST [Ren, 2020a] as our base weakly-supervised detector for it has public code and has been

shown to be a strong baseline. We modify MIST to account for images containing bounding-

box annotations during training as detailed in Section 6.2.4. Concrete drop block (CDB), the

spatial dropout technique introduced in [Ren, 2020a] to encourage the detector to focus more on
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context instead of the most discriminative object parts, is used in MIST in our experiments on

VOC07 but dropped in COCO experiments to save computational cost. We use our di�culty-

aware proposal sampling in all experiments unless stated otherwise. We train with a batch

size of 8 and a learning rate of 4e� 4 for MIST and 4e� 6 for CDB when the latter is used.

During training, images are drawn from the sets of images with weak and strong annotation

uniformly at random such that the numbers of weakly- and fully-annotated images considered

are asymptotically equal.

Active learning setup. We emulate an active learning setup by ignoring available bounding

box annotations of images considered weakly annotated in our experiments. On both datasets,

we run MIST [Ren, 2020a] three times to account for the training's instability and obtain three

base weakly-supervised object detectors. We �ne-tune each base weakly-supervised detector

twice on VOC07 and once on COCO, giving respectively 6 and 3 repetitions. We always report

the averaged results of these repetitions, and in some cases also the standard deviation. The

number of �ne-tuning iterations is scaled linearly with the number of fully-annotated images in

the experiment. Concretely, the base weakly-supervised detector is �ne-tuned over300iterations

for every 50 fully-annotated images in VOC07 and 1200 iterations for every 160 images on

COCO. If not mentioned otherwise, we set� = 3 and � = 0 :8 in BiB. We provide a study on

their in�uence in Section 6.3.3.

Active learning baselines. We compare BiB to di�erent active learning strategies in our

experiments. We provide here details about them. As described in Algorithm 6.1, a set of

imagesA t of B images is selected at each cyclet. The selection is performed with an active

learning method within the set of imagesW t � 1, possibly using the detectorM t � 1 trained at the

end of the previous cycle and the set of selected imagesSt � 1.

Random. We implement two variants of the random sampling: u-random and b-random. In

u-random, B images are selected uniformly at random fromW t � 1; b-random seeks to have

a balance sampling among the classes. Images are iteratively selected until the budgetB is

reached. At each iteration, an image containing at least an object of the class that is the least

represented2 in St � 1 [ A t is randomly chosen and added toA t .

Diversity-based strategies.The core-set [Sener, 2018] approach attempts to select a representative

subset of a dataset. We employ the greedy version ofcore-setin our experiments. In particular, at

cycle t, let  t � 1(I i ) be the features of imageI i extracted from detector M t � 1, core-setiteratively

selects the imagei � to be added in A t by solving the optimization problem:

i � = argmax
i 2 W t � 1nA t

min
j 2 S[ A t

k t � 1(I i ) �  t � 1(I j )k: (6.6)

In the �rst cycle, the very �rst image is randomly selected.

Selection using model uncertainty.The concept of informativeness has been widely exploited in

the literature [Yoo, 2019; Brust, 2019; Choi, 2021; Yuan, 2021b]. For a classi�cation task, the

2. In case of draw, a class is randomly selected.
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uncertainty can be computed by measuring the entropy over the class predictions of an image.

Here, we �rst compute the entropy over the class predictions of each predicted box in an image,

and then the box-entropy scores of an image are aggregated using thesum and max pooling,

resulting in two strategies, entropy-sum and entropy-max. Concretely, let pi;j 2 RC+1 be the

predicted class scores of the predicted boxj for image I i given by M t � 1, and D i be the set of

all predictions in I i , we compute the uncertainty scoreui of image I i as

ui = max
1� j �j D i j

C+1X

c=1

� pc
i;j log(pc

i;j ) (6.7)

for entropy-max and
X

1� j �j D i j

C+1X

c=1

� pc
i;j log(pc

i;j ) (6.8)

for entropy-sum. Then, the B images with the highest scoresui are selected.

Combining diversity and uncertainty. Following [Haussmann, 2020], we consider a selection

strategy function that incorporates the uncertainty information into core-set by multiplying the

distances between image features with the uncertainty scoreui de�ned above. Speci�cally we

combinecore-setand entropy-max, in a new active learning methodcore-set-entwhich iteratively

selects an imagei � following:

i � = argmax
i 2 W t � 1nA t

min
j 2 S[ A t

ui � k  t � 1(I i ) �  t � 1(I j )k: (6.9)

Selection using losses.[Yoo, 2019] proposes to learn, through an auxiliary module, an object

detection loss predictor which later allows choosing samples that produce the highest losses.

Conveniently, the re�nement heads of MIST produce re�nement losses (L (k)
w with k 2 f 1; 2; 3g)

that are detection losses computed using pseudo-boxes. We therefore propose the active learning

method loss which selects theB images with the highest lossL (3)
w , which yields the best results

amongst the losses produced by di�erent re�nement heads of MIST. We provide results obtained

when considering other losses in Appendix E.

6.3.2 Experimental Results

Ablation studies. We perform in Table 6.1 an ablation study to understand the relative

importance of the di�culty-aware proposal sampling ( DifS ), the selection based on k-means++

initialization, and the use of box-in-box pairs in our method. The second row corresponds

to u-random. We apply the diversity selection (e.g., following k-means++ initialization) on

image-level features, predictions, and BiB pairs. The experiments are conducted on VOC07,

and for each variant of our method, we perform5 active learning cycles with a budget of50

images per cycle. It appears thatDifS signi�cantly improves results over both random and

BiB selection, con�rming that targeting the detector's most confusing regions is helpful. K-

means++ initialization does not help when applied on image-level features but yields signi�cant

performance boosts over random when combined with region-level features. Finally, the use of
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BiB pairs shows consistent improvements overregion, con�rming our choices in BiB's design.

DifS
K selection Number of images annotated

im. reg. BiB 50 100 150 200 250

56.3 � 0.4 58.0 � 0.5 58.9 � 0.4 60.0 � 0.3 60.5 � 0.4

X 56.5 � 0.4 58.4 � 0.4 59.3 � 0.7 60.2 � 0.4 61.1 � 0.5

X X 57.1 � 0.4 58.3 � 0.5 59.3 � 0.6 59.8 � 0.4 60.3 � 0.4

X X 58.4 � 0.4 60.2 � 0.4 61.5 � 0.6 62.6 � 0.4 63.4 � 0.3

X 57.9 � 0.7 60.1 � 0.4 61.2 � 0.5 62.1 � 0.5 62.6 � 0.4

X X 58.5 � 0.8 60.8 � 0.5 61.9 � 0.4 62.9 � 0.5 63.5 � 0.4

Table 6.1 � Ablation study. Results in AP50 on VOC07 with 5 cycles and a budgetB = 50. We
provide averages and standard deviation results over6 repetition. DifS stands for the di�culty-
aware region sampling module. Images are selected by applying k-means++ init. (K selection)
on image-level features (im.), con�dent predictions' features ( reg.) or BiB pairs.

Comparison of active strategies. In order to compare BiB to baselines, we conduct 5 active

learning cycles with a budget ofB = 50 images (1% of the training set) per cycle on VOC07

and of B = 160 images (0.2% of the training set, 2 fully-annotated images per class on average)

on COCO. We present results in Figure 6.3. The detailed numbers are provided in Appendix E.

It can be seen that the ranking of the examined baseline methods based on their detection

performance is di�erent on the two datasets. This is explained by the fact that the two datasets

have di�erent data statistics. COCO dataset contains many cluttered images, with an average of

7:4 objects in an image, and VOC07 depicts simpler scenes, with an average of only2:4 objects.

However, BiB consistently improves over other baselines.

Results on VOC07 (Figure 6.3a) show that BiB and loss signi�cantly outperform every

method in all cycles. BiB also surpassesloss except in the �rst cycle. Entropy and variants

of random perform comparably and slightly better than variants of core-set. Balancing the

classes consistently improves the performance of random strategy, albeit by a small margin.

Interestingly, BiB reaches the performance ofrandom at 10% setting (� 500 images) with only

about 200 fully-annotated images. Similarly, it needs fewer than100 fully-annotated images to

attain random's performance in the 10-shot (� 200 images) setting.

On COCO, BiB again shows consistent improvement over competitors. However, surpris-

ingly, lossfares much worse than BiB and evenrandom. To understand these results, we present

a representative subset of selected images in Figure 6.4. It appears that images selected by

the loss strategy tend to depict complex scenes. Many of them are indoors scenes with lots of

objects (people, food, furnitures, ...). The supervision brought by these images is both redun-

dant (too many images for certain classes) and insu�cient (no or too few images for others).

This result agrees with those obtained in [Choi, 2021; Liu, 2021c] on COCO with the predicted

loss method [Yoo, 2019]. On the other hand, variants of entropy strategy tend to select very

di�cult images that are not representative of the training dataset. They do not perform well

on COCO, especiallyentropy-sum which obtains signi�cantly worse results than other strate-

gies. This observation is similar to that of [Yuan, 2021b]. Diversity-based methods fare better
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(b) Results on COCO.

Figure 6.3 � Detection performances in AP50 of di�erent active learning strategies in our frame-
work on VOC07 [Everingham, 2007] (a) and COCO datasets [Lin, 2014] (b). We perform5
annotation cycles for each strategy with the budget ofB = 50 images per cycle on VOC07
and B = 160 images per cycle on COCO. This corresponds to annotating 1% and 0.2% of the
training set per cycle respectively for the two datasets. Dashed lines in purple and red highlight
results obtained with 10-shot and 10% images selected withu-random. Best viewed in color.

than uncertainty-based methods, with core-set and core-set-ent performing much better than

entropy variants. Among the latter two methods, core-set performs unsurprisingly better than

core-set-ent, given entropy's bad performance. BiB outperforms all other methods. It obtains

signi�cantly better results than random, which other methods fail to do. In addition, BiB at-

tains the same performance asu-random (see dashed line) with only half as many annotated

images, reducing the performance gap (in AP50) between the base weak detector and the fully-

supervised Fast RCNN by nearly 70% with only ten fully-annotated images per class on average.

It can be seen in Figure 6.4 that BiB selects a diverse set of images that re�ect the detector's

confusion on object extent.

Comparison to the state of the art. We compare the 10-shot performance of our method

to the state of the art in Table 6.2. For BiB, we report the performance obtained in the

previous experiments (Figure 6.3) at cycle4 on VOC07 and cycle5 on COCO. All compared

methods use a Fast R-CNN [Girshick, 2015] or Faster R-CNN [Ren, 2015a] architecture with a

VGG16 [Simonyan, 2015b] backbone. Most related to us, OAM [Bi�, 2020] and BCNet [Pan,

2019] also seek to improve the performance of weakly-supervised object detectors with a few

fully-annotated images. We can see that BiB signi�cantly outperforms them in this setting. In

particular, on COCO, we observe from Table 6.2 and Figure 6.3 that BiB obtains comparable

results to 10-shot OAM with only 2 shots (160 images) and signi�cantly better results with 4
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Figure 6.4 � Images selected by BiB,entropy-max and lossstrategies on COCO dataset. Images
selected byloss tend to depict complex scenes, many of which are indoors scenes with lots of
objects (people, food, furnitures, ...). The supervision brought by these images is both redundant
(too many images for certain classes) and insu�cient (no or too few images for others).entropy-
max tends to select very di�cult images that are not representative of the training dataset.
In contrast, BiB selects a diverse set of images that re�ect the detector's confusion on object
extent. As a result, BiB signi�cantly outperforms the others on this dataset.

shots. Similarly, on VOC07, BiB surpasses the performance of OAM with only a half of the

number of fully-annotated images used by the latter.

We also consider the10%setting and compare BiB to other baselines on the VOC07 dataset

(see Table 6.3). In this setting, a random selection following our method (�Ours (u-rand)�)

gives an AP50 of 63.1, outperformed by BiB (�Ours (BiB)�) which achieves an AP50 of 65.1. In

comparison, our main competitors perform worse: OAM (63.3), BCNet (61.8), EHSOD [Fang,

2020] (55.3) and BAOD [Pardo, 2021] (50.9).

Compared to WSOD methods, we obtain signi�cantly better results with a small amount

of full annotations. BiB enables a greater boost over weakly-supervised detectors thanrandom

and signi�cantly narrows the performance gap between weakly-supervised and fully-supervised

detectors. It reduces the gap between the state-of-the-art weakly-supervised object detector

CASD [Huang, 2020] and Fast RCNN [Girshick, 2015] by5:5 times with 10% of the training

images fully annotated on VOC07 and by 3:5 times with only 10 fully-annotated images on

average per class on COCO. This is arguably a better trade-o� between detection performance

and data e�ciency than both weakly- and fully-supervised detection.

Per-class study. Additionally, we present in Table 6.3 the per-class results for di�erent meth-

ods on VOC07. It can be seen that variants of our approach (u-random and BiB) consistently

boost the detection performance on all classes over MIST [Ren, 2020a] (except onaeroplaneand

motorbike where they perform slightly worse than MIST). Notably, BiB yields larger boosts on

hard classes such astable (+23 points w.r.t. our baseline MIST), chair (+17:3), bottle (+23) and

potted plant (+19:2). On those classes, a random selection with our approach is worse than BiB

by more than 7 points. Overall, BiB obtains the best results on most classes.
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Setting Method
VOC07 COCO

AP50 AP50 AP

100%

Fully
supervised

[Girshick, 2015] 66.9 38.6 18.9
[Ren, 2015a] 69.9 41.5 21.2

0%

WSOD

[Bilen, 2016] 34.8 - -
[Tang, 2017] 41.2 - -
[Gao, 2019b] 52.6 21.4 9.6
[Zeng, 2019] 53.6 22.7 10.8
[Ren, 2020a] 54.9 24.3 11.4
[Huang, 2020] 56.8 26.4 12.8

10-shot

Weak &
few strong

[Pan, 2019] 57.1 - -
[Bi�, 2020] 59.7 31.2 14.9
Ours (u-rand) 60.2 32.7 16.4
Ours (BiB) 62.9 34.1 17.2

Table 6.2 � Performance of BiB compared to the state of the art on VOC07 (B = 50) and COCO
(B = 160) datasets. The 10-shot setting corresponds to4 and 5 AL cycles resp. on VOC07 and
COCO. All of the compared methods use VGG16 [Simonyan, 2015b] as the backbone.

Method sup. aero bike bird boat bottl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mean
[Ren, 2020a]* 7 69.0 75.6 57.4 22.5 24.8 71.5 76.1 55.9 27.6 70.3 43.9 37.5 50.875.9 18.5 23.9 60.8 54.7 69.3 68.1 52.7
[Pardo, 2021] 10% 51.6 50.7 52.6 41.7 36.0 52.9 63.7 69.7 34.4 65.4 22.1 66.1 63.9 53.5 59.8 24.5 60.2 43.3 59.7 46.0 50.9
[Pan, 2019] 10% 64.7 73.1 55.2 37.0 39.173.3 74.0 75.4 35.9 69.8 56.374.7 77.6 71.6 66.9 25.4 61.0 61.473.8 69.3 61.8
[Bi�, 2020] 10% 65.6 73.1 59.049.4 42.5 72.5 78.376.4 35.4 72.3 57.6 73.680.0 72.5 71.1 28.3 64.6 55.3 71.4 66.2 63.3
Ours (u-r.) 10%70.5 77.2 62.3 38.5 38.5 72.379.4 73.6 38.6 73.8 55.7 66.5 71.4 75.3 65.5 33.8 65.4 62.7 72.3 69.7 63.1
Ours (BiB) 10% 68.978.1 62.7 41.4 47.8 72.4 79.2 70.3 44.9 74.7 66.2 62.2 72.175.6 69.8 43.1 66.2 65.0 71.4 70.7 65.1

Table 6.3 � Per-class AP50 results on VOC07. BiB yields signi�cant boosts in hard classes such
as bottle, chair, table and potted plant. Results of MIST [Ren, 2020a] are the average of three
runs using the authors' public code and di�er from the numbers in the original paper.

Qualitative results. We show in Figure 6.5 predictions obtained with the weakly-supervised

object detector MIST (top row) and the detector after the �rst cycle of BiB (bottom row) with

B = 50 on VOC07 and B = 160 on COCO. We observe that the failure modes of MIST are

corrected in this case by our BiB detector: objects and parts are not confused (3rd and 4th

images), objects are covered (1st image) and better separated (2nd image).

6.3.3 Additional Analysis

Are diverse samples important? We propose in BiB to �nd diverse images on which the

weakly-supervised object detector fails. We investigate here the importance of sample diversity

in BiB by comparing it to two variants. In the �rst variant, we randomly select images containing

BiB pairs (`U(BiB)') and, in the second variant, we use a mix, with half selected with BiB and

the other half with randomly uniform sampling (`U+BiB'), to be fully annotated. We show the

results in Table 6.4. The fact that U(BiB) is worse than BiB and U+BiB outperforms U(BiB)
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Figure 6.5 � Examples of predictions on the VOC07 and COCO test sets, by MIST [Ren, 2020a]
(�rst row) and BiB after the �rst cycle (second row). Fine-tuning MIST with images selected
by BiB signi�cantly remedies its limitations.

in general shows that diversity sampling is important once BiB patterns have been discovered.

Method Dataset
AL cycles

1 2 3 4 5

u-rand.

VOC

56.5 58.4 59.3 60.2 61.1
U(BiB) 57.6 59.2 60.1 61.2 61.8
U+BiB 57.9 59.4 60.7 61.6 62.4
BiB 58.5 60.8 61.9 62.9 63.5

u-rand

COCO

29.1 30.8 31.7 32.4 33.0
U(BiB) 30.0 31.4 32.3 33.1 33.5
U+BiB 29.7 31.4 32.4 33.2 33.7
BiB 30.6 32.4 33.1 33.8 34.1

Table 6.4 � A comparison between BiB, u-rand and two other variants that combine them. BiB
outperforms the variants, showing that diversity sampling is important to the e�ectiveness of
BiB.

Veri�cation of BiB pairs. BiB pairs are used in this work as an indicator of a detector's

confusion on images. With this design, we argue that at least one box in the pair is likely a wrong

prediction. We verify this assumption on MIST's predictions on VOC07 and COCO. Among

8;758BiB pairs on VOC, there are 8;633pairs (98.6%) with at least one wrong prediction while

99.6% of the854;004 BiB pairs have at least one wrong box on COCO.

Number of BiB pairs reduced with active learning cycles. Intuitively, as the model

becomes more accurate with more active learning cycles, fewer BiB pairs should be found. We

have computed the number of BiB pairs during active learning cycles on VOC07 and COCO

datasets to verify this assumption. As expected, our results show that this number decreases

with iterations. On VOC, it drops from 8801 in cycle 1 to 5170 in cycle 5 with budget B = 50.

On COCO, it decreases from 854k in cycle 1 to 152k in cycle 5 with budgetB = 160.
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In�uence of hyper-parameters. We use two intuitive hyper-parameters in BiB: the area

ratio � between two boxes in a BiB pair and the ratio � of the overlap over the smallest box. By

design, the latter should be close to1 so that the small box is �contained� in the large box, and

it is set to 0:8 in our experiments. For the former, we test BiB on VOC07 when its value varies

in f 2; 3; 4g and report results in Table 6.5. It can be seen that the performance is relatively

insensitive to � . We use� = 3 in our experiments.

Number of fully-annotated images
� 50 100 150 200 250

� = 2 58.5 � 0.5 60.4 � 0.3 61.6 � 0.4 62.4 � 0.3 63.1 � 0.2

� = 3 58.5 � 0.8 60.8 � 0.5 61.9 � 0.4 62.9 � 0.5 63.5 � 0.4

� = 4 58.3 � 0.5 60.6 � 0.3 61.7 � 0.3 62.5 � 0.4 63.3 � 0.2

Table 6.5 � Performance of BiB on VOC07 with di�erent values of the area ratio � in BiB design.
We conducted5 cycles with a budget of50 images per cycle, repeated the experiment six times
for each value of� and report the average and standard deviation of their performance.

6.4 Conclusion and Future Work

We have proposed a new approach to boost the performance of weakly-supervised object

detectors using a few fully-annotated images selected following an active learning process. We

introduce BiB, a new selection method speci�cally designed to tackle failure modes of weakly-

supervised detectors and show a signi�cant improvements over random sampling � BiB requires

less than half the data to achieve the same results. Moreover, BiB is e�ective on both VOC07 and

COCO datasets, narrowing signi�cantly the performance between weakly- and fully-supervised

object detectors, and outperforming all methods mixing many weak and a few strong annotations

in the low annotation regime.

In this work, we have combined weakly-supervised and active learning for reducing human

annotation e�ort for object detectors. There are other types of methods that require no annota-

tion at all, such as the unsupervised object discovery methods presented in the previous chapters

(OSD, rOSD, LOD and LOST) and self-supervised pre-training [Caron, 2021; Chen, 2020c], and

they might help improving di�erent components of our pipeline, e.g., region proposals or the

detection architecture. Future work will be dedicated to improving our approach by following

those directions.
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7.1 Contributions

In this thesis, we have developed several annotation-e�cient approaches to the localization

and detection of objects in images.

We �rst considered the unsupervised object discovery problem which aims to localize objects

in each image of an image collection and link images that contain similar objects without any

annotation available. This is a challenging problem due to the lack of supervision and the

ambiguity of object de�nition. We have discussed several approaches to this problem: OSD,

rOSD, LOD and LOST.

In OSD, we cast unsupervised object discovery as selecting the best region from each image

amongst a set of region proposals generated with o�-the-shelf methods [Uijlings, 2013; Manen,

2013; Zitnick, 2014], and formulated it as a discrete optimization problem. We showed that this

problem can be relaxed into a convex optimization problem and an approximate solution can be

found by solving its dual problem with gradient descent. Alternatively, we can also �nd a solution

with a greedy block-coordinate ascent procedure directly on the original formulation. This

formulation was shown to be more robust to di�erent types of region proposals and signi�cantly

outperforms the previous state of the art [Cho, 2015].

rOSD is built on OSD and addresses its limitations: The reliance on randomized Prim [Ma-

nen, 2013], a type of partially-supervised region proposals for good performance; the unsatis-

factory performance with more powerful CNN features; the limited ability to discover multiple

objects per image due to the presence of nearly-duplicated region proposals; and the high com-

putational cost which limits its application on large datasets. To this end, we have made several

contrbutions in rOSD. We introduced a novel algorithm for generating region proposals directly

from pre-trained CNN features. This algorithm exploits a known observation on pre-trained

CNN features for image classi�cation and produces region proposals with a high rate of positive

ones � those that highly overlap with ground-truth objects � which proves to be important for

good performance in rOSD. These region proposals also have a nice intrinsic group property

that we leveraged as additional regularizers to the original OSD formuation. These regularizers

help to diversify regions returned by rOSD and enable e�ective multi-object discovery. Finally,

we proposed an e�cient two-stage algorithm that allows the applications of unsupervised object
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discovery on datasets several times larger than those previously considered in OSD.

LOD does not follow the formulation of OSD and rOSD. Instead, it observes the analogy

between our de�nition of objects in OSD and rOSD � objects are visual patterns that appear in

multiple images � and the well-connected nodes in the graph of regions where nodes are region

proposals and edges are weighted with region similarity. Finding the latter is thus equivalent

to �nding the former. This enables the application of existing ranking methods for �nding

well-connected nodes in graphs such as PageRank [Brin, 1998; Page, 1999] and eigenvector

centrality [Landau, 1895]. These methods are highly e�cient and parallelizable, permitting to

scale unsupervised object discovery to datasets of millions of images. We also proposed a new

ranking algorithm, that combines the eigenvector centrality and personalized PageRank. We

showed that this algorithm outperforms the two individual ranking methods and yields state-

of-the-art performance for unsupervised object discovery. Running LOD with self-supervised

features [Gidaris, 2021], eliminating the need for supervised region proposals (OSD) or super-

vised pre-trained features for classi�cation (rOSD), we also demonstrated a viable completely

unsupervised pipeline for object discovery.

LOST neither de�nes objects as in OSD, rOSD and LOD nor leverages information from

multiple images. Instead, it relies on the power of the Transformer-based self-supervised features

DINO [Caron, 2021] which are shown to contain explicit object location information. To tackle

unsupervised object discovery, we proposed in LOST to �rst use a simple seed-growing procedure

to �nd for each image an object. We then used these objects as pseudo-labels for training a

class-agnostic or a class-aware object detector. We showed that this simple method outperforms

all the previous methods (OSD, rOSD and LOD). The class-agnostic detector is able to discover

multiple objects per image while the class-aware detector can also group similar images together.

It even competes with weakly-supervised object detectors which are trained with ground-truth

image class labels.

The approaches for unsupervised object discovery in this thesis have pushed its limits gradu-

ally, from discovering only one object to �nding multiple objects per image, from being applicable

only on small datasets of thousands of images to being able to handle collections of millions of im-

ages, and from expensive optimization-based methods to a light-weight algorithm that leverages

recent powerful self-supervised features.

It is important to push the limit of unsupervised methods but, in practice, we often have

access to some form of supervision. We considered in BiB such a practical scenario for training

object detectors where weak labels (image classes) are readily available and a small budget for full

annotation is also available. Weakly-supervised object detection is an attractive alternative to

its fully-supervised counterpart since it requires a much cheaper form of annotation, but weakly-

supervised detectors still lag behind fully-supervised counterparts and su�er some known forms

of confusion [Ren, 2020a]. We proposed to select several images that are then annotated with

bounding boxes and �ne-tune weakly-supervised detectors with the newly acquired annotation.

The selection is done with BiB, an active learning strategy that chooses images on which the

model is most confused, where model confusion is gauged through BiB pairs � pairs of model

predictions, one of which is contained in the other. We showed that repeating this process
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several times, we can improve signi�cantly the weakly-supervised detector's performance while

having only small additional annotation cost.

7.2 Future Work

Our work on unsupervised object discovery in this thesis mainly focuses on images. Lever-

aging additional information from other modalities could improve discovery performance. An

example is motion cues in video, which helps to distinguish moving objects from static ones and

background [Kwak, 2015]. Readily available textual information such as captions for images in

social network is another useful additional information. It can be used to extract similarities

between images,e.g. whether they contain similar objects, which is important in framework

such as OSD or rOSD. Sound has been used to better localize objects in a weakly-supervised

setting [Liu, 2021a]. It is also desirable to use this modality for unsupervised object discovery.

Unsupervised object discovery methods output object-centric regions in images, which can

be used as noisy free annotation for other tasks. They have been used as pseudo-labels to

train models for weakly-supervised object localization [Zhang, 2020b]. It would be interesting

to consider similar applications for related tasks such as weakly- or semi-supervised object

detection. For example, in weakly-supervised object detection, learning often proceeds with

training a multiple instance learning module with ground-truth class labels, then generating

pseudo-labels for re�ning several detector heads. These pseudo-labels are very unreliable at the

beginning and coupling them with the output of unsupervised object discovery would improve

the �nal detector's performance.

Self-supervised feature learning methods often train a feature extractor by comparing the

features of di�erent views of the same image. These views are often obtained with random

cropping [Chen, 2020b; Caron, 2020; Gidaris, 2021]. This practice could lead to the irrelevant

comparisons between semantically unrelated views (two di�erent objects/scenes or backgroud

vs. foreground). It is interesting to explore the use of object-centric patches produced by unsu-

pervised object discovery methods as views of the image in this scenario [Mishra, 2021]. Object

discovery and self-supervised feature learning can also be combined together into a single model

where the object discovery component provides more �ne-grained information for training the

self-supervised feature learning component, which in turns improves object discovery. [Héna�,

2022] has recently explored this direction but more e�ort needs to be invested.

Finally, in this thesis, we have shown that combining active and weakly-supervised learning

is an interesting approach to annotation-e�cient learning, especially since it does not require a

substantial amount of full annotation to begin with. In the case that we have considered, we

leverage weak annotation as a starting point but this can be generalized to the case where no

annotation is required at the beginning. With the rising e�ectiveness of self-supervised features,

it would be interesting to apply active learning on models that are trained in a completely

unsupervised manner by leveraging available information from self-supervised features.
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Appendix

A Unsupervised Image Matching and Object Discovery as Op-

timization

Maximization of supermodular cubic pseudo-Boolean functions. An immediate corol-

lary of [Billionnet, 1985, Lemma 1] is that a cubic pseudo-Boolean function with nonegative

trinary coe�cients and no binary terms is supermodular. For �xed � and � , this is obviously

the case for the LagrangianK in Equation (2.5).

In addition, the unary terms in K are nonpositive, and the Langragian can thus be rewritten,

up to some constant additive term, in the form

f (x1; : : : ; xn ) =
X

i 2 U

ci �x i +
X

(i;j;k )2 T

cijk x i x j xk ; (A.1)

where �x i = 1 � x i (the complementof x i ), U � f 1; : : : ; ng, T � f 1; : : : ; ng3, and all coe�cients ci

and cijk are positive. We specialize in the rest of this section the general maximization method

of [Billionnet, 1985] to functions of this form.

The con�ict graph [Billionnet, 1985; Boros, 2002]G(f ) associated with such a functionf has

as a set of nodesX (f ) = V [ W , where the elements ofV correspond to linear terms, those of

W correspond to cubic terms, and an edge links to nodes when one of the corresponding terms

contains a variable, and the other one its complement. By constructionG(f ) is a bipartite

graph, with edges joining only elements ofV to elements ofW .

As shown in [Billionnet, 1985] maximizing f amounts to �nding a maximum weight stable

set in G(f ), where the nodes ofV are assigned weightsci and the nodes ofW are assigned

weights cijk , which in turn reduces to computing a maximum �ow between nodess and t in

the network deducted from G(f ) by (1) adding a source node and edges with upper capacity

bound ci between s and the corresponding elements ofV ; (2) adding a sink node t and edges

with upper capacity bound cijk between the corresponding elements ofW and t; (3) assigning

to all edges (from V to W ) in G(f ) an upper capacity bound of+ 1 .

Let [A; �A] denote the minimum cut obtained by computing the maximum �ow in this graph,

where s is an element ofA and t is an element of �A = X (f ) n A. The maximum weight stable

set is then S = ( A \ V ) [ ( �A \ W ). The monomials �x i and x i x j xk associated with elements of

S are set to 1, from which the values of all variables are easily deduced.
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B Toward Unsupervised, Multi-Object Discovery in Large-Scale

Image Collections

Full results with both VGG16 and VGG19 features. We present in Tables B.1, B.2

and B.3 our full results in colocalization and object discovery with features from both VGG16

and VGG19. It can be seen that, with VGG16 features, rOSD still signi�cantly outperforms OSD

on the two large datasets and fares comparably to OSD on the smaller two. It is also noticeable

that rOSD signi�cantly outperforms Wei et al. in both colocalization and single-object discovery

on all datasets when VGG16 features are used.

Method Features OD VOc_6x2 VOC_all VOC12

[Cho, 2015] WHO 84.2 67.6 37.6 -
OSDy WHO 87.1 � 0.5 71.2� 0.6 39.5� 0.1 -

[Li, 2016] VGG16 - - 40.0 41.9
[Wei, 2019] VGG16 86.9 66.2 44.7 47.6
Ours (OSD) VGG16 89.0 � 0.6 73.6� 0.6 44.7� 0.3 49.0� 0.2
Ours (rOSD) VGG16 89.0 � 0.5 73.3� 0.5 45.8� 0.3 49.7� 0.1

[Li, 2016] VGG19 - - 41.9 45.6
[Wei, 2019] VGG19 87.9 67.7 48.7 51.1
Ours (OSD) VGG19 90.3 � 0.3 75.3 � 0.7 45.6 � 0.3 47.8� 0.2
Ours (rOSD) VGG19 90.2 � 0.3 76.1 � 0.7 46.7 � 0.2 49.2 � 0.1

Table B.1 � Single-object colocalization performance of our approach compared to the state of
the art. Note that Wei et al. [Wei, 2019] outperform our method on VOC_all and VOC12 with
VGG19 features in this case, but the situation is clearly reversed in the much more di�cult
single-object discovery setting, as demonstrated in Table B.2. OSDy denotes the original OSD
in Chapter 2.

Method Features OD VOC_6x2 VOC_all VOC12

[Cho, 2015] WHO 82.2 55.9 37.6 -
OSDy WHO 82.3 � 0.3 62.5� 0.6 40.7� 0.2 -

[Wei, 2019] VGG16 73.5 66.2 41.9 45.0
Ours (OSD) VGG16 87.8 � 0.4 69.2� 0.5 48.7� 0.3 51.3� 0.2
Ours (rOSD) VGG16 87.6 � 0.3 71.1� 0.8 49.2� 0.2 52.1 � 0.1

[Wei, 2019] VGG19 75.0 54.0 43.4 46.3
Ours (OSD) VGG19 89.1 � 0.4 71.9 � 0.7 47.9 � 0.3 49.2� 0.2
Ours (rOSD) VGG19 89.2 � 0.4 72.5 � 0.5 49.3 � 0.2 51.2 � 0.2

Table B.2 � Single-object discovery performance in the mixed setting on the datasets with our
proposals compared to the state of the art. OSDy denotes the original OSD in Chapter 2.

Multi-object experiments. For a fair comparison to OSD and Weiet al. [Wei, 2019] in multi-

object discovery, we have �xed the number of objects retained in each image by all methods

to 5. We have also modi�ed the method of Wei et al. such that 5 bounding boxes around the

5 largest clusters of positive pixels in their indicator matrix are returned as objects. For OSD
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Method Features
Colocalization Discovery

VOC_all VOC12 VOC_all VOC12

OSDy WHO 40.7 � 0.1 - 30.7� 0.1 -

[Wei, 2019] VGG16 38.3 40.4 25.8 28.2
Ours (OSD) VGG16 45.9 � 0.1 48.1� 0.0 34.9� 0.1 37.6� 0.0
Ours (rOSD) VGG16 48.5 � 0.1 50.7 � 0.1 37.2 � 0.1 40.8 � 0.1

[Wei, 2019] VGG19 43.3 45.5 28.1 30.3
Ours (OSD) VGG19 46.8 � 0.1 47.9� 0.0 34.8� 0.0 36.9� 0.0
Ours (rOSD) VGG19 49.4 � 0.1 51.5 � 0.1 37.6 � 0.1 40.4 � 0.1

Table B.3 � Multi-object colocalization and discovery performance of rOSD compared to com-
petitors on VOC_all and VOC12 datasets. OSDy denotes the original OSD in Chapter 2.

(a) VOC_all (b) VOC12

Figure B.1 � Multi-object discovery performance of rOSD compared to OSD and [Wei, 2019]
when varying the maximum number of returned objects.

and rOSD, we run the corresponding optimization then apply the following post processing on

each image: all� retained regions are ranked in descending order using the score proposed in

Equation (2.14), which is solely based on their similarity to the retained regions in the image's

neighbors; We then iteratively discard all proposals having an IoU score greater than some

threshold with higher-ranked regions; Among remaining regions, we return the 5 highest ranked

as retrieved objects. Since this procedure can eliminate all but a few regions if the regions

highly overlap, we choose a large value of� (50) and a large value ofIoU threshold (0:7) in our

experiments to guarantee that we haveexactly 5 objects. This is, however, just a design choice

and one can choose to retain fewer or more regions. We have conducted experiments with the

number of retrieved objects varied in the interval [2; 10] and observed that rOSD always yields

better performance than OSD and [Wei, 2019] regardless of the number of objects retrieved

(Figure B.1).

To eliminate overlapping boxes and obtain better qualitative results for OSD and rOSD, we

have conducted experiments with� = 25 in the optimization and IoU = 0 :3 for suppression

threshold in the post processing. We have shown the qualitative improvements of this change
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Figure B.2 � Multi-object discovery results. In each column, from top to bottom: original image,
image with predictions of OSD, image with predictions of rOSD. White boxes are ground-truth
objects and red ones are our predictions. There areat most 5 predictions per image.

Method Features
Colocalization Discovery

VOC_all VOC12 VOC_all VOC12

[Wei, 2019] VGG19 43.1 45.3 27.8 30.0
Ours (OSD) VGG19 39.6 � 0.1 41.6� 0.1 29.0� 0.1 31.3 � 0.1
Ours (rOSD) VGG19 47.3 � 0.1 49.3 � 0.1 36.7 � 0.1 39.2 � 0.1

Table B.4 � Multi-object colocalization and discovery performance of rOSD compared to com-
petitors on VOC_all and VOC12 datasets when using smaller values of� (25) and IoU (0:3)
threshold.

in Figure 3.7. We show here in Figure B.2 a qualitative comparison between the two methods.

It can be seen that rOSD fares much better than OSD in localizing multiple objects. We also

compare the quantitative performance of rOSD, OSD and [Wei, 2019] in this case in Table B.4.

For [Wei, 2019], we take as before the bounding boxes around the largest clusters of pixels in

the indicator matrix of each image. The number of clusters in this case is chosen to be the

number of objects returned by rOSD in the same image. The results show that rOSD again

yields by far the best performance. It is also noticeable that while using smaller values of� and

the IoU threshold slightly deteriorates the performance of rOSD, it makes the performance of

OSD drop signi�cantly (compare Tables B.3 and B.4). This is due to the fact that OSD returns

many highly overlapping regions and most of them are eliminated by our procedure. On the

other hand, rOSD returns more diverse regions and consequently more regions are retained. In

practice, we observe that OSD returns on average 1.47 (respectively 1.52) regions while rOSD

returns 3.62 (respectively 3.63) on VOC_all (respectively VOC12). Note, however, that rOSD

still outperforms OSD and [Wei, 2019] even when the latter are allowed to retain exactly 5

regions.

Evaluating the graph computed by OSD. Following [Cho, 2015], we evaluate the local

graph structure obtained by rOSD using the CorRet measure, de�ned as the average percentage
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of returned image neighbors that belong to the same (ground-truth) class as the image itself. As

a baseline, we consider the local graph induced by the sets of nearest neighborsN (i ) computed

from the fully connected layer fc6 of the CNN that are used in the same experiment. Table B.5

shows the CorRet of local graphs obtained when running rOSD (OSD) on VOC_all and VOC12

and large-scale rOSD (OSD) on C20K in the mixed setting. It can be seen that the local image

graphs returned by our methods have higher CorRet than the baseline.

Dataset VOC_all VOC12 C20K

Baseline 50.7 56.4 36.8
Ours (OSD) 60.1 � 0.1 63.2 � 0.0 39.8 � 0.0
Ours (rOSD) 59.8 � 0.1 63.0 � 0.0 39.4 � 0.0

Table B.5 � Quality of the returned local image graph as measured by CorRet.
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C Large-Scale Unsupervised Object Discovery

More qualitative results. We show additional examples on COCO [Lin, 2014] in Figure C.1

and on OpenImages [Krasin, 2017] in Figure C.2 for which LOD successfully discovers objects.

We also present some failure cases in Figure C.3. LOD typically fails to discover objects that

are too small (images 1 to 5) or only discovers the most discriminative object parts instead of

entire objects (images 6 to 8). In some cases, LOD discovers objects that are not annotated:

entrance in image 1, tower in image 2 and �ower branch in image 5.

Figure C.1 � Examples in the COCO [Lin, 2014] dataset where LOD successfully discovers
ground-truth objects. Ground-truth boxes are in yellow and our predictions are in red.

Figure C.2 � Examples in the OpenImages [Krasin, 2017] dataset where LOD successfully dis-
covers ground-truth objects. Ground-truth boxes are in yellow and our predictions are in red.

Multi-object discovery performance according to a detection rate metric. Contrary

to rOSD, we have evaluated the multi-object discovery performance of LOD using object discov-

ery Average Precision (odAP) instead of detection rate (DetRate), which can also be thought of
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Figure C.3 � Examples in the COCO [Lin, 2014] and OpenImages [Krasin, 2017] datasets where
LOD fails to discover ground-truth objects. Ground-truth boxes are in yellow and our predictions
are in red.

recall over ground-truth objects. We argue in Chapter 4 that plain DetRate is not a good met-

ric for multi-object discovery since it depends on the numberm of regions returned per image,

which is pre-de�ned. Beside the fact that there is a priori no optimal choice for m, evaluating

the performance at a single value ofm does not capture the range of possible performances.

odAP, on the other hand, summarizes the performance at di�erent values ofm.

Despite these remarks, we present here for completeness the multi-object discovery perfor-

mance in DetRate for LOD and the baselines in Table C.1. In addition to computing DetRate

at m = 5 as in rOSD, we also considerm = �m where �m is the average number of ground-truth

objects per image in the dataset, which is7 for C20K and C120K, and8 for Op50K and Op1.7M.

The results show that LOD signi�cantly outperforms the baselines in all datasets when detection

rate is computed at m = 5 . It also performs better than the others when detection rate is com-

puted at m = �m, except for Edgeboxes [Zitnick, 2014] on Op1.7M dataset. However, we stress

again that we think odAP is a more appropriate metric for multi-object discovery than DetRate.

We show in Chapter 4 that LOD is signi�cantly and consistently better than all baselines in all

datasets according to odAP.

Method
DetRate (m = 5 ) DetRate (m = �m)

C20K C120K Op50K Op1.7M C20K C120K Op50K Op1.7M

[Zitnick, 2014] 12.0 12.1 12.5 12.5 14.5 14.5 16.0 16.0
[Wei, 2019] 6.8 6.9 5.7 5.7 6.8 6.9 5.7 5.7
[Kim, 2009] 10.5 10.6 10.8 - 12.1 12.2 12.9 -
rOSD 12.3 11.8 11.8 - 13.3 12.7 13.1 -

Ours (LOD) 14.2 14.2 14.0 13.7 15.7 15.7 16.2 15.8

Table C.1 � Large-scale multi-object discovery performance and comparison to the state of the
art on COCO [Lin, 2014], OpenImages [Krasin, 2017] and their respective subsets C20K and
Op50K, as measured by detection rate.

Proof of Lemma 1.

Proof. Since W is symmetric, all its eigenvalues are real and it can be diagonalized by an

orthonormal basis of its eigenvectors. The maximizer oftT Wt in the unit ball is the unit

eigenvector ofW associated with its largest eigenvalue� � . Given that W is irreducible, it has

a unique, unit, non-negative eigenvector associated with its largest eigenvalue, according to the

Perron-Frobenius theorem [Frobenius, 1912; Perron, 1907]. �
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Note: This is a classic result, only included here for completeness.
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D Localizing Objects with Self-Supervised Transformers and no

Labels

Analysis of DINO-seg. In this section, we investigate alternative setups of the baseline

DINO-seg which is based on [Caron, 2021]. They are presented in Table D.1. First, instead of

using the best attention head over the entire dataset (as we did in Chapter 5), we evaluate the

localization accuracy of DINO-seg for each one of the 6 available heads. We �nd out that one

head in particular, namely head 4, captures objects well, whilst results with other heads are

much lower. Due to its superior performance, in Chapter 5 we report DINO-seg using head 4.

We also explore dynamically selecting one box per image among boxes corresponding to the

di�erent heads using some heuristics. We report the two variants that gave the best results.

In the �rst variant, we consider selecting the box corresponding to the head with the biggest

connected component (`DINO-seg BCC'). However, it yields worse results than with head 4.

We also try selecting, over the 6 boxes of the di�erent heads, the box that has the highest

average IoU overlap with the remaining 5 boxes (`DINO-seg HAIoU'). It improves over DINO-

seg [head 4] by 1 point on both VOC07 and VOC12. However, as shown in Table D.1, it still

performs signi�cantly worse than LOST in this single-object discovery task.

Method VOC07_trainval VOC12_trainval C20K

DINO-seg [head 0] 25.9 24.6 30.1
DINO-seg [head 1] 36.2 35.9 35.8
DINO-seg [head 2] 32.1 33.2 31.6
DINO-seg [head 3] 21.6 20.0 26.3
DINO-seg [head 4] 45.8 46.2 42.1
DINO-seg [head 5] 35.5 42.1 26.5
DINO-seg BCC 38.8 45.2 28.8
DINO-seg HAIoU 46.1 47.6 40.8

LOST (ours) 61.9 64.0 50.7

Table D.1 � DINO-seg ablation study. We compare here CorLoc results on datasets
VOC07_trainval, VOC12_trainval and C20K when applying the DINO-seg method to create a
box from the di�erent heads of the attention layer. Also, DINO-seg BCC selects the box/head
that produces the biggest connected component, and DINO-seg HAIoU selects the box/head
that has the highest average IoU with the other 5 boxes. We additionally report results with
our method LOST for comparison.

Results on more datasets used in previous work. For completeness, we present in Ta-

ble D.2 results on the datasets used in [Wei, 2019], OSD and rOSD. In particular, we evaluate

our method on the datasets VOC07_noh and VOC12_noh datasets (also named VOC_all and

VOC12 in rOSD). They are subsets of the trainval set of the well-known PASCAL VOC 2007

and PASCAL VOC 2012 datasets containing 3550 and 7838 images respectively. These subsets

exclude all images containing only objects annotated as �hard� or �truncated� and all boxes

annotated as �hard� or �truncated�.
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Method VOC07_noh VOC12_noh

OSD 40.7 -
[Wei, 2019] 43.4 46.3
rOSD 49.3 51.2
LOD 48.0 50.5
LOST 54.9 57.5

Table D.2 � CorLoc results on the VOC07_noh and VOC12_noh datasets.

Method Features
CorLoc (%)

VOC07_trainval VOC12_trainval C20K

LOD VGG16 53.6 55.1 48.5
LOD DINO 43.2 45.9 33.7
LOST VGG16 42.0 47.2 30.2
LOST DINO 61.9 64.0 50.7

Table D.3 � Single-object discovery performance in CorLoc of LOD and LOST with di�erent
types of features.

Using DINO features for LOD. We are aware that, in Table 5.1, we compare LOST using

a transformer backbone to methods based on a VGG16 pre-trained on ImageNet models. For a

fair comparison, we investigate here LOD when adapted to use the transformers features.

LOD uses the algorithm from rOSD to generate region proposals from CNN features, but

we observe that this algorithm does not yield good proposals with transformer features. We

therefore run LOD with edgeboxes [Zitnick, 2014] and use DINO [Caron, 2021] features, ex-

tracted with RoIPool [Girshick, 2015], to represent these proposals. We present the results on

VOC07_trainval, VOC12_trainval and C20K dataset in Table D.3. Our results in Table 5.2

show that a direct adaption of LOST, designed by analysing the properties of transformers

features, to CNN features yields worse performance. Conversely, as we see in Table D.3 here,

adapting algorithms developed using properties of CNN features to transformer features is also

not direct. Nevertheless, the number of design choices to adapt these algorithms to new types

of features is vast and we do not exclude that some design choices might improve the results

even further, e.g., by exploiting together CNN and transformer features.

Using supervised pre-training. We test LOST but this time using a transformer pre-trained

under full supervision on ImageNet. We use the model provided by DeiT [Touvron, 2020]. With

this model, LOST achieves a CorLoc of16:9% which is signi�cantly worse than the results

obtained with the DINO self-supervised pre-trained model. We remark that a similar observation

was made for DINO [Caron, 2021], where the segmentation performance obtained with the model

trained under full supervision yields signi�cantly worse results than when using DINO's model.

It is unclear, however, if this di�erence of performance can be attributed to the properties of the

self-supervision loss or to the more aggressive data augmentation used during DINO pre-training.
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Training details of the Faster R-CNN detection models. In Chapter 5, we explore

the application of LOST in unsupervised object detection by using its pseudo-boxes as ground

truth for training Faster R-CNN detection models. For the implementation of the Faster R-

CNN detector, we use theR50-C4model of Detectron2 [Wu, 2019] that relies on a ResNet-50

[He, 2016] backbone. In our experiments, this ResNet-50 backbone is pre-trained with DINO

self-supervision. Then, to train the Faster R-CNN model on the considered dataset, we use the

protocol and most hyper-parameters from [He, 2020].

In details, we train with mini-batches of size 16 across8 GPUs using SyncBatchNormto

�netune BatchNorm parameters, as well as adding an extra BatchNorm layer for the RoI head

after conv5, i.e., Res5ROIHeadsExtraNormlayer in Detectron2. During training, the learning

rate is �rst warmed-up for 100 steps to 0:02 and then reduced by a factor of10 after 18K and

22K training steps. We use in total 24K training steps for all the experiments, except when

training class-agnostic detectors on the pseudo-boxes of the VOC07 trainval set, in which case

we use10K steps. For all experiments, during training, we freeze the �rst two convolutional

blocks of ResNet-50, i.e.,conv1 and conv2 in Detectron2.
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E Active Learning Strategies for Weakly-Supervised Object De-

tection

Visualization of BiB pairs. Our selection method relies on the discovery ofbox-in-box (BiB)

patterns. We provide in Figure E.1 more visualization of BiB pairs on images of VOC07 and

COCO.

Figure E.1 � Examples of box-in-box (BiB) pairs on VOC07 (�rst two rows) and COCO (last
two rows) extracted using the MIST [Ren, 2020a] detector.

Detailed results of active learning strategies. For experiments with active learning strate-

gies, we have run each strategy six times on VOC07 and three times on COCO and reported the

average performance in Chapter 6. For completeness, we provide in Tables E.1 and E.2 both

the average and the standard deviation of the detector's performance in these experiments.

Di�erent variants of loss. MIST [Ren, 2020a] is trained with a combination of losses coming

from di�erent heads. The Multiple Instance Learner producesL MIL using the ground-truth class

information while each re�nement head k 2 f 1; 2; 3g produces the re�nement lossL (k)
w using

pseudo objects generated from the previous head. We have tested each of these losses and the

combination of the three re�nement losses
P 3

k=1 L (k)
w in our experiments with lossstrategy. We
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Method
Number of fully-annotated images

50 100 150 200 250

u-random 56.5 � 0.4 58.4 � 0.4 59.3 � 0.7 60.2 � 0.4 61.1 � 0.5

b-random 56.7 � 0.7 58.4 � 0.7 59.7 � 0.8 60.4 � 0.5 61.2 � 0.4

core-set 55.5� 0.6 57.7 � 0.6 58.7 � 0.5 59.5 � 0.4 60.1 � 0.2

core-set-ent 55.5� 0.4 57.6 � 0.4 59.0 � 0.4 60.0 � 0.2 60.5 � 0.2

entropy-max 57.0 � 0.4 58.7 � 0.2 59.6 � 0.4 60.6 � 0.2 60.9 � 0.2

entropy-sum 56.5 � 1.0 58.6 � 0.4 59.8 � 0.3 60.5 � 0.5 61.2 � 0.8

loss 59.7 � 0.2 60.5 � 0.5 61.3 � 0.7 62.0 � 0.5 62.5 � 0.3

BiB 58.5 � 0.8 60.8 � 0.5 61.9 � 0.4 62.9 � 0.5 63.5 � 0.4

Table E.1 � Comparison of active learning strategies on VOC07. For each experiment, we
conducted 5 cycles with a budget of50 images per cycle. We repeated the experiment six times
for each strategy and report the average and standard deviation of their performance (in AP50).
BiB yields signi�cantly better performance than the others. lossperforms well in the �rst cycle
but fares worse than BiB in subsequent cycles. Additionally, it performs much worse, even than
random, on COCO (see Table E.2).

Method
AP AP50

160 320 480 640 800 160 320 480 640 800

u-random 14.1� 0.1 15.1 � 0.2 15.7 � 0.2 16.1 � 0.4 16.5 � 0.3 29.1 � 0.4 30.8 � 0.3 31.7 � 0.4 32.4 � 0.4 33.0 � 0.3

b-random 14.4� 0.4 15.2 � 0.3 15.9 � 0.1 16.2 � 0.2 16.8 � 0.2 29.5 � 0.6 30.8 � 0.4 31.8 � 0.2 32.3 � 0.1 33.3 � 0.2

entropy-sum 12.3� 0.3 12.8 � 0.2 13.3 � 0.3 13.6 � 0.4 13.7 � 0.3 25.6 � 0.4 26.5 � 0.1 27.2 � 0.2 27.7 � 0.5 27.8 � 0.1

entropy-max 12.7� 0.2 13.9 � 0.1 14.5 � 0.5 14.9 � 0.3 15.2 � 0.2 26.9 � 0.2 28.9 � 0.1 29.7 � 0.5 30.4 � 0.3 30.8 � 0.3

loss 13.5� 0.1 14.1 � 0.2 14.5 � 0.2 14.7 � 0.3 14.9 � 0.3 27.8 � 0.1 29.1 � 0.1 29.7 � 0.1 30.1 � 0.3 30.4 � 0.3

core-set 12.9� 0.2 14.5 � 0.3 15.3 � 0.2 15.9 � 0.1 16.4 � 0.3 26.9 � 0.3 29.6 � 0.5 30.9 � 0.2 31.7 � 0.2 32.5 � 0.4

core-set-ent 13.1� 0.0 14.2 � 0.1 15.1 � 0.2 15.5 � 0.3 16.0 � 0.2 27.3 � 0.2 29.2 � 0.1 30.7 � 0.2 31.3 � 0.4 32.1 � 0.2

BiB 14.8 � 0.3 15.9 � 0.2 16.5 � 0.1 16.9 � 0.2 17.2 � 0.2 30.6 � 0.1 32.4 � 0.3 33.1 � 0.2 33.8 � 0.1 34.1 � 0.1

Table E.2 � Comparison of active learning strategies on COCO. For each experiment, we con-
ducted 5 cycles with a budget of160 images per cycle. We repeated the experiment three times
for each strategy and report the average and standard deviation of their performance (in AP50
and AP). BiB signi�cantly outperforms all other methods.

present a summary of the results in Table E.3. For each experiment, we have conducted 5 cycles

with a budget of 50 images per cycle on VOC07. On average,L (3)
w yields the best results on this

dataset and we use it for all experiments with theloss strategy in Chapter 6.

Ablation study on COCO. We have provided an ablation study on di�erent components

of BiB on VOC07 dataset in Chapter 6. For completeness, we report in Table E.4 the averaged

AP50 scores (over 3 repetitions) of the ablation study on COCO. The results are similar to those

obtained on VOC07, except for the di�culty-aware sampling, which helps with the u-random

strategy but not always with BiB.

MIST architecture. We use MIST [Ren, 2020a] as our base weakly-supervised object de-

tector. MIST follows OICR [Tang, 2017] and consists of a Multiple Instance Learner (MIL)

trained to produce coarse detections which are then re�ned with several re�nement heads using

automatically-generated pseudo-boxes. We have given details about the re�nement heads in

Chapter 6 and provide here a description of the MIL head as well as the procedure to gen-
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Number of fully-annotated images
AL method 50 100 150 200 250

L MIL 57.1 � 0.3 57.9 � 0.2 58.4 � 0.5 59.4 � 0.2 60.0 � 0.3

L (1)
w 58.2 � 0.4 58.5 � 0.4 59.6 � 0.7 60.3 � 0.8 61.1 � 0.5

L (2)
w 59.4 � 0.3 60.7 � 0.2 61.4 � 0.3 61.8 � 0.3 62.4 � 0.1

L (3)
w 59.7 � 0.2 60.5 � 0.5 61.3 � 0.7 62.0 � 0.5 62.5 � 0.3

P
k=1 ;2;3 L (k )

w 59.9 � 0.4 60.6 � 0.5 60.9 � 0.5 61.6 � 0.3 62.2 � 0.6

Table E.3 � Performance of the loss strategy with di�erent choices of the detector's loss on
VOC07. For each experiment, we perform5 cycles with a budget of 50 images per cycle. We
have repeated the experiment six times for each strategy and report the average and standard
deviation of their performance.

DifS
K selection AP50

im. reg. BiB 160 320 480 640 800

29.0 30.6 31.4 32.3 32.8
X 29.1 30.8 31.7 32.4 33.0
X X 29.2 30.7 31.6 32.3 32.9
X X 30.5 31.6 32.6 33.5 34.1

X 30.7 32.3 33.2 33.7 34.2
X X 30.6 32.4 33.1 33.8 34.1

Table E.4 � Ablation study on COCO. We show the average and standard deviation results
over several runs in AP50 on COCO with5 cycles and a budgetB = 160. DifS stands for the
di�culty-aware region sampling module. Images are selected by applying k-means++ init. (K
selection) on image-level features (im.), con�dent predictions' features ( reg.) or BiB pairs.

erate the pseudo-boxes. We consider an imageI , its class labelsq 2 f 0; 1gC and the set of

pre-computed region proposalsR = f r1; r2; : : : ; rRg. Please note that we drop here the image

index in order to ease understanding.

Multiple instance learner. MIL receives I and R as input and yields a class probability vector

� 2 RC . It is trained to classify the image with the Binary Cross Entropy (BCE) loss L MIL on

� :

L MIL = �
1
C

CX

c=1

q(c) log(� (c)) + (1 � q(c)) log(1 � � (c)) : (E.1)

In MIST, class probabilities � are obtained by aggregating scores in a region score matrix

s 2 RR� C with c 2 f 1; ::; Cg:

� (c) =
RX

i =1

s(i; c); (E.2)

where s = sc � sd is the point-wise product of a classi�cation score matrix sc 2 RR� C and a

detection score matrix sd 2 RR� C . Matrices sc and sd are built by concatenating projected

regions features extracted with the backbone network for each of the regions inR. Matrix sc

is normalized row-wise with the softmax operation and models the class probabilities of the

region proposals. Matrix sd, which is normalized column-wise, represents the relative objectness

of the proposals with respect to the corresponding classes. Given those interpretations,s(i; c)
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expresses the likelihood that regioni is an object of classc.

Pseudo-boxes generation.MIST [Ren, 2020a] introduces a heuristic to generate the pseudo-boxes

D (k� 1) that are used to train the re�nement heads k. Such boxes are generated either from the

region score matrix s of the MIL (giving D (0) ) or the region classi�cation score matricess(k)

(k = 1 ; 2; 3) of the re�nement heads (giving D (k) ). In particular, for each ground-truth class

c in image I , the corresponding column scores[s(1; c); : : : ; s(R; c)] in s (or s(k) ) are sorted in

descending order. Then, given the top-15% region proposals with the highest scores, we select

all boxes that do not have an IoU� 0:3 with a higher-ranked region. Selected boxes for all

classes are aggregated to construct the �nal set of pseudo-boxes.
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MOTS CLÉS

découvert d'objets, détection d'objets, apprentissage non-supervisé, apprentissage actif, apprentissage fai-

blement supervisé, optimisation.

RÉSUMÉ

Les modèles de détection d'objets dans les images sont des composants importants de systèmes intelligents comme

les véhicules autonomes ou les robots. Ils sont typiquement obtenus par l'apprentissage supervisé, ce qui nécessite de

grands jeux de données annotées à la main. La construction de tels jeux de données est pourtant coûteuse en temps et en

argent, ce qui limite souvent leur taille et leur diversité et, par conséquent, restreint l'applicabilité des détecteurs d'objets.

L'objectif de cette thèse est de développer des alternatives à l'apprentissage supervisé qui demandent moins de données

annotées pour la détection d'objets. Dans la première partie de la thèse, nous nous concentrons sur la découverte d'objets

non-supervisée, qui, étant donné une collection d'images non-annotées, vise à trouver les images qui contiennent les

objets de la même catégorie, et localiser ces objets. Nous introduisons deux méthodes d'optimisation discrète (OSD

et rOSD), une méthode de classement (LOD) et une méthode qui se base sur les descripteurs des transformers auto-

supervisés pour ce problème. Dans la deuxième partie de la thèse, nous considérons un scénario pratique qui combine

l'apprentissage faible et actif pour entraîner un détecteur d'objets, et discutons BiB, une méthode ef�cace pour un tel

scénario. Nous démontrons que BiB offre un meilleur compromis entre la performance de détection et le coût d'annotation

que l'apprentissage faiblement et complètement supervisé.

ABSTRACT

Object detectors are important components of intelligent systems such as autonomous vehicles or robots. They are

typically obtained with fully-supervised training, which requires large manually annotated datasets whose construction

is time-consuming and costly. This thesis studies alternatives to fully-supervised object detection that work with less or

even no manual annotation. We focus in the �rst part of this thesis on the unsupervised object discovery problem, which,

given an image collection without manual annotation, aims at identifying pairs of images that contain similar objects and

localizing these objects. We discuss two optimization-based approaches(OSD and rOSD), a ranking method (LOD) and

a simple seed-growing approach that exploits features from self-supervised transformers (LOST) to this problem. In the

second part of the thesis, we consider a practical scenario which combines weakly-supervised and active learning for

training an object detector, and propose BiB, an active learning strategy tailored for this scenario. We show that our

pipeline offers a better trade-off between annotation cost and effectiveness than both weakly- and fully-supervised object

detection.

KEYWORDS

object discovery, object detection, unsupervised learning, weakly-supervised learning, active learning, opti-

mization.
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