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Chapter 1

Introduction

This document presents a synthesis of our research work and describes the main results
obtained since our PhD [Ouerdane, 2009]. They are the results of numerous and long
collaborations with fellow researchers and PhD students.

Our research addresses questions related to knowledge representation and reasoning
in the context of eXplainable AI (XAI) [Gunning, 2017]. Our main motivations are
designing and modeling adaptive decision support systems to construct and support
justified automatic recommendations. Our research lies at the intersection of the fields
of Multi-Criteria Decision Aiding (MCDA) and Artificial Intelligence (knowledge rep-
resentation and reasoning).

Even though we had various opportunities to work on different subjects and domains,
the document mainly deals with the various works done within Multi-Criteria Decision
Aiding (MCDA) field. Moreover, even if our significant contributions are of the order of
formal and theoretical tools, we had several opportunities to be faced with application
and real-world contexts with various industrial partners: Decision Brain1 within the
thesis of Lerouge [(in progress)], Dassault Systèmes within the thesis of Tlili [2022],
Total within the thesis of Mammeri [2017], IBM within the thesis of El Mernissi [2017],
and Place des Leads2 within the thesis of Maamar [2015]. The focus of the document
is mainly on our theoretical contributions. Thus we have not chosen to address these
practical aspects and refer the reader to the various PhD thesis for the details.

1.1 Context and Motivations

We are interested in the problems of recommendations, where an “artificial agent ad-
viser” aims to help a user (a decision-maker) build and understand the recommendations
for a particular decision problem. Decision aiding is thus a situation involving two par-
ties: a user whose preferences may be incompletely defined or difficult to convey, and an
agent, who will have the capabilities to explicitly and accountably represent the reasons
for which it recommends a solution to a user [Tsoukiàs, 2008]. Such recommendations
mainly stem from Multiple Criteria Decision Aiding models that are well founded from
the Decision Theory point of view [Roy, 1996; Bouyssou et al., 2006].

1https://decisionbrain.com/fr/
2Now TimeOne: https://www.timeone.io

https://decisionbrain.com/fr/
https://www.timeone.io
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Multi-Criteria Decision Aiding (MCDA) aims to develop decision models explicitly
based on constructing a set of criteria reflecting the decision-making problem’s relevant
aspects. These n criteria (often conflicting) (N = {1, 2, . . . , n} with n ≥ 2) evaluate a
set of alternatives A = {a, b, c, ...} from different points of view. Several multi-criteria
decision models exist [Bouyssou et al., 2000, 2006]. These models correspond to a
parametric family of functions aggregating the evaluation according to each criterion
into a solution to the decision problem. The MCDA literature considers different de-
cision problems. We distinguish the choice, the sorting, the pairwise comparison, and
the ranking. Unlike formulations of choice, ranking and pairwise comparison problems,
which are comparative, sorting formulates the decision problem in terms of assigning
alternatives to predefined ordered categories C1, C2, ...Cp, where C1 (Cp, resp.) is
the worst (best, resp.) category. The assignment of an alternative to the appropriate
category is based on its intrinsic value and not on its comparison with other alternatives.

In addition, multi-criteria decision aiding results from an interaction between at
least two agents, an analyst and a decision-maker. The analyst’s goal is to guide the
decision-maker (DM) in the construction and understanding of the recommendations of
a particular decision problem [Tsoukiàs, 2008]. Decision theory and Multiple Criteria
Decision Analysis (MCDA) have established the theoretical foundation upon which
many decision support systems have risen. The different approaches (and the formal
tools coming along with them) have focused on how a “solution” should be established
for a long time. But it is clear that the process involves many other aspects that the
analyst handles more or less formally. For instance,

• the problem of accountability of decisions is almost as important as the decision
itself. A proper explanation should convince the decision-maker that the proposed
solution is the best.

• it should be possible for the decision-maker, to refine, or even contradict, a given
recommendation. Indeed, the decision-support process is often constructive be-
cause the DM refines its formulation of the problem when confronted with poten-
tial solutions.

Let’s consider the following situation of decision aiding for illustration. Suppose that
a DM wishes to buy a watch. The problem is that once in the store, the person is faced
with an extensive choice of models with different colors, sizes, and prices. Impressed
and afraid of making mistakes in the selection, he decides to ask for help. Therefore, the
seller (referred here by DA for Decision Aider) tries to understand what his customer
wants and what are his preferences. After a brief discussion, he notes that from a size
point of view, he prefers a small watch to a medium or a big one; he also prefers steel
to leather. For the color, he specifies that he likes white more than red or pink and
that the watch should be fashion than classical or sport. Finally, the model should be
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the less expensive possible. Thus, four models were selected, and their characteristics
are depicted in Table 1.1 below.

Size Material Price Colour Style
a small Steel 450 Red Classical
b big Leather 300 White Fashion
c medium Steel 320 Pink Classical
d small Leather 390 Pink Sport

Table 1.1: Performance table

On the basis of this information, the DA computes a recommendation and submits
it to the DM for a discussion. Such a discussion unfolds as follows:

(1) DA: Given your information, b is the best option.
(2) DM: Why is that the case?
(3) DA: Because b is globally better than all other options
(4) DM: What does that mean?
(5) DA: Well... b is top on a majority of criteria considered: the price, the colour, and
especially the style, it is so trendy!
(6) DM: But, why b is better than c on the price?
(7) DA: Because c is 20 euros more expensive than b.
(8) DM: I agree, but I see that the guarantee is very expensive especially for this watch.
In fact I’m not sure to want the guarantee.
(9) DA : But c remains 5 euros more expensive than b.
(10) DM: I see, but this difference is not significant. And also I changed my mind: I
would rather to have a classical model, I think it’s more convenient for a daily use.
(11) DA: OK. In this case I recommend c as the best choice.
(12) DM: . . .

This made-up scenario involves several aspects that will be discussed in this docu-
ment.

Let us briefly analyse this dialogue. In turn (1), the DA suggests to the client that
b would be the best option for her. The DM challenges this proposition in turn (2) and
asks for a justification given by the DA in turn (3). The rationale is based on the fact
that the option is better than any other one. Not fully satisfied with this explanation,
the DM asks the expert to be more explicit on the reasons motivating his choice. Thus,
the DA, in turn (5) explains that b is ranked first on the majority of criteria considered.
But, in turn (6), The DM seeks clarification that b is better than another option on a
specific criterion. The expert explains that this is since the price of c is more significant
than b. We note that this explanation differs from the one given at turn 5. In fact,
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unlike turn (4) where the DM wanted to know why b was declared the best choice, in
turn (6), he is interested in comparing the model b to another model on a particular
criterion. Thus, in turn (5), the DA highlights more explicitly the set of positive points
in favour of b regarding the set of all options. In the second case, i.e. turn (6), the
DA gave more details on the comparison between two specific models from a particular
point of view. Confronted now with such an explanation, the DM rejects it by indicating
that the comparison is inappropriate because he doesn’t want to include the guarantee
in the price. However, in turn (9), the DA maintains that c cannot be better than b
because its price is still higher than b. In turn (10), DM indicates that the difference
is not significant for her and at the same time, he mentions that he changes her mind
about her preferences on the style of the watch. This need to refine or correct old
information is very common in practice because a decision-maker is never fully aware
of what he wants or prefers at the beginning of the process. Finally, considering the
DM’s remarks, the DA suggests that, now, c is a better choice.

This example dialogue illustrates how different types of explanations can be asked
(and provided) and how the available information may change and be corrected (because
the decision-maker really changes his mind, but also because the expert necessarily
makes some assumptions that only hold by default). This is especially true when the
decision-maker is confronted with explicit justifications because it helps him to identify
relevant questions and possible critics.

1.2 Research Questions and Contributions

Our objective is to design artificial agents able to serve as analysts (like in the previous
example within a recommender system context, for instance) for various meaningful
decision-aiding contexts, capable of initiating and steering a dialogue with a user to
derive a recommendation, alternating between the elicitation of preference information,
and the presentation of complete or partial recommendations. Prompted by the user,
an agent should support its assertions with explanations and would gently steer the
conversation towards the production of a recommendation which is fully agreed upon,
potentially following a non-monotonic path in its representation of the user’s preference
- reconsidering pieces of information or even the preference model in the light of the
user’s responses. Communication with the user should be simple but faithful to the rich
information conveyed and in line with the context of the decision-aiding situation. In
other terms, we aim to handle and take into account the different aspects of a decision-
aiding process by adopting the perspective of an interactive approach whereby:

• Preference elicitation can be done incrementally, taking into account the feedback
of the user (such as contradicting a previous assertion, asking for an explanation,
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etc.) to fit the user’s model as well as possible while minimizing at the same time
the cognitive effort of the user; and

• Justification (or explanation) can be given to the user on the proposed items or
on facts inferred by the adviser during the interaction so that the user can correct
or contradict the relevant information.

Such an interactive approach requires a sufficiently expressive means to convey the
agent’s messages. It is important to note that in our research work, the communica-
tion between the agent and the user will not rely on advanced techniques of natural
language processing, which is, on the other hand, an open door for new research and
future collaborations (see Chapter 5). Instead, the interaction will be guided by a struc-
tured dialogue, designed as a set of rules regulating the interaction [Walton and Krabbe,
1995; Carlson, 1983; Ferguson et al., 1996; McBurney and Parsons, 2003]. Thus, the
communication with the adviser will happen through a set of possible utterances chosen
by the user.

We structured our research lines around two main topics to reach our objectives.

1.2.1 Modeling and generating explanations for recommendations for
complex decision problems.

The question of explaining a decision, recommendation, algorithm outputs, etc., often
associated in the literature with the acronym XAI (eXplainable AI) [Gunning, 2017;
Barredo Arrieta et al., 2020], has become in recent years a crucial element in any
“trusted algorithmic design”. Indeed, for high-stakes AI applications, performance is
not the only criterion to consider. Such applications may require a relative understand-
ing of the logic executed by the system. In this case, the end-user wants an answer to
the question “Why?”. eXplainable Artificial Intelligence (XAI) aims to provide methods
that help empower AIs to answer this question. Even though interest in this question has
exploded with machine learning tools and techniques [Biran and Cotton, 2017; Gilpin
et al., 2018; Guidotti et al., 2019; Mohseni et al., 2018; Barredo Arrieta et al., 2020], it
dates back to expert systems [Swartout, 1983; Gregor and Benbasat, 1999], and since
then, many works have emerged. Various questions are explored, such as: generating
and providing explanations, identifying desirable characteristics of an explanation from
the point of view of its recipient, evaluating the explanation produced by the system,
etc. [Herlocker et al., 2000; Carenini and Moore, 2006; Tintarev, 2007; Nunes et al.,
2014; Doshi-Velez and Kim, 2017; Miller, 2019; Vilone and Longo, 2021]

Our work focuses on designing and implementing tools and algorithms for generating
explanations for recommendations stemming from multi-criteria models which put user
preferences and judgments at the heart of the reasoning. Generating explanations in the
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MCDA context is not a simple task; as different criteria are at stake, the user cannot
fully assess their importance or understand how they interact. Moreover, once the
user is faced with the result and the explanation, he may realize that it is not exactly
what he expected. Therefore, it can make changes or provide new information that
will have effects, for example, on the other phases of the decision-aiding process (e.g.,
the preferences learning step). Thus, beyond making the result acceptable, presenting
an explanation can impact the representation of the user’s reasoning mode, which is
at the base of the construction of the recommendation. Furthermore, the challenge
with this question is that the concept of explanation varies depending on the decision
context/problem and the decision model. Indeed, as the requirements vary significantly
from situation to situation (for instance, depending on the criticality of the stakes and
the time pressure) and from decision-maker to decision-maker, we do not believe in
providing a unique explanation. Indeed, our approach stems from a set of patterns for
different types of explanation (depending on the decision model under use and the user’s
profile), allowing tailored answers to the user. Under such perspectives, our research
work intends to answer the following question:

Given a decision model and a set of preference information, is there a prin-
cipled way to define a simple complete explanation supporting a recommen-
dation/decision?

To answer the previous question, we addressed mainly two MCDA decision models3:
one very widely used model, whether in decision theory or machine learning, namely
the additive model and the other which is the Non-Compensatory Sorting (NCS) model
[Bouyssou and Marchant, 2007a,b]. With the first model, the different contributions
aimed to explore the concept of explanations for pairwise comparisons (why is one op-
tion better than another?) or choice problems (why an option is the best?). In contrast,
in the second, we seek to explain the assignment of an alternative to a given category
(why is an option classified in the worst category? for instance). The following Table 1.2
gathers all our contributions for this topic, and the details are given in Chapter 4.

Decision Problem Model References

Choice Weighted Majority [Labreuche et al., 2011]
Additive Utility [Labreuche et al., 2012]

Pairwises Comparisons Additive Utility [Belahcene et al., 2019], [Belahcene et al., 2017a]
Sorting NCS [Belahcene et al., 2017b], [Belahcene et al., 2018b]

Table 1.2: Our Contributions to the Explainability Topic for MCDA

3We were also interested in other models/systems, for example, rule-based systems (classical and
fuzzy) and optimization models, which are not detailed in this document. We refer the reader to
[El Mernissi, 2017; Baaj, 2022; Lerouge, (in progress)] for more details.
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Our proposals are based on different approaches and techniques: argument schemes
[Walton, 1996] and mathematical programming. In particular, the question of con-
structing explanations comes down to formalizing argument schemes that link premises
(information provided or approved by the user or deduced during the process of pref-
erence learning, and some additional hypotheses on the process of reasoning (from the
assumptions of the model) to a conclusion (e.g. the recommendation). By casting the
reasoning steps under the form of argument schemes, we make explicit assumptions
usually hidden for the decision-maker, hence allowing meaningful explanations.

Finally, in all of our works on constructing and designing explanations, we seek to
follow (when it is possible) some key principles of explanations (see e.g. [Miller, 2019;
Coste-Marquis and Marquis, 2020]):

• Explanation shall be rigorous (important decision)⇝ One shall bring proof (com-
plete explanation)

• Explanation shall be understandable⇝ One shall define a language which relates
directly to the preferential information (e.g. not include the weights). In other
words, we want explanations to be conveyed in an expressive language to the
recipient of this explanation.

• Explanation shall be relevant ⇝ One shall define what could be pertinent to
focus on within the decision situation. For instance, mentioning neutral elements
(that do not influence the decision) may seem irrelevant and should be avoided if
possible.

• Explanation shall be simple⇝ One shall define different levels of complexity. We
want explanations to be “easy to process” by the recipient of the explanation.

1.2.2 Modeling the interaction for constructing adaptive decision sup-
port systems.

At present, when decision-aiding support or recommendation systems (online, for ex-
ample) are in full expansion, an important aspect is that of succeeding in capturing
and integrating the preferences, habits, and reactions of users to try to produce the
most compelling and relevant recommendations from a user perspective. To meet this
objective, we investigated two lines of research.

Setting up efficient preference learning and elicitation mechanisms : Learn-
ing and eliciting preferences is essential in a decision support process. This step aims
to incorporate user judgments (preferences) as faithfully as possible into the decision
model. Developing relevant and reliable recommendations is crucial, and any flawed
process would lead to unsubstantiated advice being provided to users. In addition,
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preferences are essential in many contexts, such as decision-making, machine learning,
recommendation systems, social choice theory, and various sub-fields of Artificial Intel-
ligence (see, for instance, [Jacquet-Lagrèze and Siskos, 2001; Peintner et al., 2008; Kaci,
2011; Furnkranz and Hullermeier, 2011; Hüllermeier, 2014; Pigozzi et al., 2016]). In
this context, the challenge is to build learning algorithms that are both efficient (from
a computational point of view) while keeping humans in the loop to integrate and rep-
resent their expertise and skills knowledge as faithfully as possible.

The basic idea of the multi-criteria decision support methodology is that, given a
decision problem, we collect preferential information from the DM to build an evaluation
model. This model must reflect the point of view (the value system) of the DM and
help him to solve the decision problem. In other words, our research is interested in
implementing efficient algorithms to learn models’ parameters using the information
contained in reference examples–a training set. This is what we call (indirect elicitation
or learning from examples). In this context, we follow an (indirect) approach, close to a
machine learning paradigm [Furnkranz and Hullermeier, 2011], where a set of reference
assignments is given and assumed to describe the decision-maker’s point of view. The
aim is to extend these assignments with this decision model. Thus, we sought to answer
the following question:

For a given decision situation, assuming that a given decision model is rele-
vant to structure the decision maker’s preferences, what should be the param-
eters’ values to fully specify this model that corresponds to the decision-maker
viewpoint?

To answer this question, we worked on different models: the Non-Compensatory
Sorting model, its variant the MR-Sort model [Leroy et al., 2011] and the Ranking
with Multiple Profiles (RMP) method [Rolland, 2013]. The different contributions are
summarized in Table 1.3 below. The different proposals seek to offer tools that, on the
one hand, will provide more efficient devices (in terms of computation time), and on
the other hand, extend the literature to consider new types of preferential information.
More precisely, we rely on logical formalism (Boolean-based) to meet the first need.
Second, we investigate the question of building preference learning tools in the case of
non-monotone preferences (single-peaked [Black, 1958]).

Designing adaptive dialectical system We are interested in a decision-aiding pro-
cess (as illustrated in Section 1.1). In this context, there are at least two distinct actors:
a decision-maker (DM), and an analyst, whom we shall call in what follows a decision
aider (DA). Both play very different roles [Tsoukiàs, 2007]. The DM has some pref-
erences on the decision options and is, in the end, responsible for the decision to be
taken and justifying it. The DA helps him in this task by bringing some methodology
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Approaches
Methods MIP-based Boolean-based

Sorting NCS [Leroy et al., 2011] [Belahcene et al., 2018a]
[Tlili et al., 2022]

MR-sort [Minoungou et al., 2020],
[Minoungou et al., 2022]

Ranking RMP [Liu et al., 2014], [Olteanu
et al., 2021]

[Belahcene et al., 2018c]

Table 1.3: Our Contributions to preference Learning & Elicitation Topic

and rationality. The DA analyses the consistency of the information provided by the
DM, proposes some recommendation based on such information and construct the cor-
responding justifications. A key ingredient of the decision process is how interaction
takes place. In particular, the DA should be able to adapt to the DM’s responses. In
fact, the DM’s preferences are often incomplete or not fixed at the beginning of the
process. Only when confronted with the recommendation and its justification the DM
can react and give relevant feedback. The competence of a human DA is precisely
to integrate this new information, to revise his representation of the profile of the DM
so as to produce a finely adapted recommendation that can be understood and accepted.

Now, there are many different contexts in which decision aiding can take place, and
an artificial agent sometimes plays the role of the DA. Take, for instance, recommender
systems used on commercial websites: the role of the DA is to suggest items that
the DM is likely to buy (travel, books, etc.). Often the product space is vast, and
the DA’s role is to help navigate this catalog. According to [McGinty and Smyth,
2006], “user feedback is a vital component of most recommenders”. Moreover, to take
this feedback into account timely and consistently, some authors argue to maintain a
preference model of the user [Viappiani et al., 2006]. Model-based recommendation
systems are then based on a unique model (e.g. the additive utility) and rely upon the
assumption that all potential users can be represented by this model [Viappiani et al.,
2006]. However, in the case of multi-criteria recommendation, there is a wide variety of
possible preference models, and assuming a fixed model may prove too restrictive. In
other terms, rather than making an assumption that may later be found to be incorrect
(as an example: the weighted mean model is often used in many systems but without an
explicit justification), our idea is to simultaneously reason with several possible models
and let the system decide the one appropriate to the current user. With this assumption,
our research work seeks to answer the following question:

How to equip an artificial agent with adaptive behavior and model the sys-
tem’s reasoning to allow “efficient” interaction with a user within a decision-
aiding situation?
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Setting up such an automatic system to support this interaction raises several ques-
tions. If the agent can choose among several models, is there a principled way to do
so? Would such a method be dependent on the models considered? How do we make
a formal link between the generation of the explanation and the improvement of the
preference learning process? Indeed, faced with an explanation, a user can provide
new information, invalidate old one etc. These reactions strongly contribute to feeding
the learning phase of the preference model. How to adapt classic preference learning
algorithms to manage inconsistent user feedback (inconsistency, erroneous information,
etc.) while automatically adjusting the model to the information provided by the user?

Our research aims to provide a formal language to represent such an interaction,
explain it, communicate its results, and convince the user that what is happening is
theoretically sound and operationally reasonable. Most of the work in this direction
has been initiated within our PhD [Ouerdane, 2009], and the different contributions are
summarized in the following Table 1.4.

Approach References

Argumentation-based interaction [Ouerdane et al., 2011] [Ouerdane, 2009]
[Ouerdane et al., 2010] [Ouerdane et al., 2008]
[Labreuche et al., 2015]

Table 1.4: Our Contributions to the Interaction Topic

In these contributions, we concentrated on some questions : (i) if the DA can choose
among several models, is there a principled way to do so? (ii) would such a method be
dependent of the models considered? And, finally (iii) how, in practice, should such an
interaction be regulated?

We borrow from decision theory and Multiple Criteria Decision Analysis to answer
the first point in the positive. Regarding (ii), we advocate a generic method to account
for this adaptive behavior. Indeed, instead of focusing on a given collection of models,
we adopt an axiomatic approach, and thus characterize which models can be handled in
the way we propose. As for (iii), the actual procedure we put forward takes the form of
a dialogue game between the DM and the DA, and is inspired by recent work in dialec-
tical management and dialogue systems resulting from work in multi-agent systems and
argumentation theory [McBurney and Parsons, 2003; Black et al., 2021]. We proposed
to build and formalize an interaction protocol, which specifies the rules and conditions
under which we can have a “coherent” interaction in a decision support context where
the initiative is sometimes left to the user (e.g. ask for an explanation). The details are
given in Chapter 5.

The other issues, as we shall see in Chapter 5, are a rich source of future works and
collaborations.
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1.3 Structure and Content of the Document

• Chapter 2: MCDA: Concepts and Definitions is devoted to describing the
Multiple Criteria Decision Aiding concepts used in the different contributions. We
will restrict ourselves to addressing only the necessary materials for the following
chapters. More precisely, we describe the components of a preference elicitation
process. Moreover, we present two aggregation methods: the additive model and
the Non-Compensatory Sorting model. Indeed, our different contributions are
mainly related to these two models.

• Chapter 3: Efficient Tools for Preference Learning and Elicitation ex-
poses the different mathematical and computational tools implemented to address
the question of learning the parameters of the NCS model and its variants (UB-
NCS: a unique profile, UC-NCS: a unique set of sufficient coalitions and MR-Sort:
additive coalitions). Concretely, we proposed two formulations based on Boolean
satisfiability to learn the parameters of the Non-Compensatory Sorting model
from perfect preference information, i.e. when the set of reference assignments
can be wholly represented in the model. We also extend the two formulations
to handle inconsistency in the preference information by adopting the Maximum
Satisfiability problem language (MaxSAT). These formulations are described in
the first part of the chapter. The second one extends the literature to consider
new types of preferential information for learning the parameters of the MR-Sort
model, such as the fact that preferences on criteria are not necessarily monotone
but possibly single-peaked (or single-valley) [Black, 1948, 1958].

• Chapter 4: Supporting Decisions: a panel of explainability tools ad-
dresses our developments of explainability tools within the MCDA context. In
this context, our main concern is developing principle-based approaches and cog-
nitively bounded models of explanations. By principle-based approach, we mean
that each explanation is attached to a number of well-understood properties of the
underlying decision model. By cognitively bounded, we suggest that the state-
ments composed of an explanation will be constrained to remain easy to grasp
by the receiver (decision-maker). We investigated different decision models (Ad-
ditive utility, NCS) and various decision problems (Choice, pairwise comparisons
and sorting). In our proposal, we rely on numerous tools from AI (argument
schemes [Walton, 1996]) and mathematical programming to formalize and com-
pute explanations and their contents.

• Chapter 5: Interactive recommendations and explanations. is devoted
to discussing the dialectical perspective that we want to set up to formalize the
interaction between an artificial agent adviser and a user. In this interaction,
elicitation, recommendation and explanation are tightly interleaved. In the first
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part of the chapter, we present our preliminary works in this direction. The second
part describes all the perspectives and the mid and long-term research works that
we plan to have in the following years with different collaborations.

The document is based on a collection of papers available in Appendix C. Many of
these works have also been conducted in the context of some PhD co-supervision. Specif-
ically, designing efficient algorithms for preference elicitation, described in Chapter 3,
have been studied in the PhD of Jinyan Liu (co-supervised with Vincent Mousseau,
MICS, CentraleSupélec), Pegdewedé Stéphane Minoungou (co-supervised with Vincent
Mousseau and Paolo Scotton, IBM Zurich) and Ali Tlili (co-supervised with Vincent
Mousseau and Oumaima Khaled, Dassault Systèmes). The question of constructing
explanations for MCDA addressed in Chapter 4 was the central question studied in
the PhD of Khaled Belahcene (co-supervised with Vincent Mousseau, Nicolas Maudet
– Lip6, Sorbonne univeristé) and Christophe Labreuche –Thales). Finally, Manuel
Amoussou started last year a PhD on this topic by taking this interaction perspective
(co-supervised with Vincent Mousseau and in collaboration with Nicolas Maudet and
Khaled Belahcene, Heudiasyc, Université de Technologie de Compiegne) .



Chapter 2

MCDA: Concepts and Definitions

We devote this chapter to describing and defining the different concepts in Multi-Criteria
Decision Aiding (MCDA) used in our various contributions. We will restrict ourselves
to addressing only the necessary materials for the following chapters. We do not intend
to do a literature review as the present document is dedicated only to summarize our
research work.

2.1 Multiple Criteria Decision Aiding

Decision aiding results from an interaction between an “analyst” (or expert) and a
“client” (or decision-maker – DM). The analyst aims to guide the decision-maker to
find a solution to his problem and to be convinced that this solution is a good one
[Tsoukiàs, 2008; Bouyssou et al., 2006]. Within this context, MCDA is an umbrella
term to describe a collection of formal approaches which seek to take explicit account of
multiple criteria (points of view) in helping individuals or groups explore decisions that
matter. More formally, MCDA accounts for N = {1, 2, . . . , n} points of view (criteria)
evaluating a set of alternatives X = {x, y, z, . . . }.

We assume the points of view provide a sense of the relative performance of alter-
natives, for which two representations could be considered:

• preference profiles, a tuple ⟨≿i⟩i∈N ∈ (X×X)N of total preorders over alternatives
– binary relations that are transitive. This representation is often used in Social
Choice or when representing preferences with an outranking relation1. Exam-
ple 2.1 provides an illustration with a situation detailed in Chapter 4 where each
point of view corresponds to the views of a juror in a juryN = {e1

,e
2
,e

3
,e

4
,e

5}
gathered to assess the performance of a number of candidates {a, b, c, d, e, f} ⊆ X.
Each preference profile details the ordinal preferences of jurors over candidates.
Here we have total orders - there are no ties.

• performance tables, where an alternative x ∈ X is described by a tuple of per-
formance scalars ⟨xi⟩i∈N encoding its performance according to each point of

1An outranking relation naturally provides four outcomes when comparing two alternatives: prefer-
ence for the former, for the latter, indifference, or incomparability; also, it does not enforce transitivity
of preference [Bouyssou, 2009; Roy, 1991]
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view i ∈ N on an ordinal scale (Ki,≥i). Table 2.1 provides an illustration with
alternatives representing cars, situation used to illustrate the functioning of an
aggregation model, see Example 2.3 in this chapter.

Example 2.1(̃Example of preference profiles)

e
1: a ≻1 b ≻1 f ≻1 e ≻1 c ≻1 d

e
2: e ≻2 b ≻2 c ≻2 d ≻2 a ≻2 f

e
3: f ≻3 a ≻3 b ≻3 d ≻3 e ≻3 c

e
4: d ≻4 a ≻4 c ≻4 e ≻4 f ≻4 b

e
5: c ≻5 e ≻5 b ≻5 f ≻5 d ≻5 a

Example 2.2(̃Example of a performance table)

Alternatives mi are car models, described according to cost, acceleration, braking and
road holding. Cost is measured in dollars, acceleration is measured by the time, in
seconds, to reach 100 km/h from full stop—lower is better, braking power and road
holding are both measured on a qualitative scale ranging from 1 (lowest performance)
to 4 (best performance).

car model cost acceleration braking road holding
m1 16 973 29 2.66 2.5
m2 18 342 30.7 2.33 3
m3 15 335 30.2 2 2.5
m4 18 971 28 2.33 2
m5 17 537 28.3 2.33 2.75
m6 15 131 29.7 1.66 1.75

Table 2.1: A performance table for car model evaluation

The basic idea in decision aiding methodology is that, given a decision problem, we
collect preferential information from the decision-maker such that his system of values
is either faithfully represented or critically constructed, in order to build a model which,
when applied, should turn a recommendation for action to the decision-maker. Under
such a perspective, a fundamental step is acquiring preferential information from a
decision-maker, or as it is commonly named preference learning and elicitation process
[Furnkranz and Hullermeier, 2011].
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2.2 Preference Learning and Elicitation Process

Preferences are fundamental to decision processes since the recommendations are mean-
ingful and acceptable only if the decision-makers’ values are considered. Within this
context, a challenging activity is “preference learning and elicitation”, which aims to
capture the DMs’ preferences to specify the decision model parameters accurately. The
challenge is related to the nature of the preferences expressed by the DMs, which can
be imprecise, conflicting, unstable, time-dependent, yet they should be structured and
synthesized. This elicitation process can be implemented in many ways. In this section,
we give a high-level description of it and quickly review its components.

2.2.1 A brief description

The different components of the elicitation process are depicted in Figure 2.1.

Problem type
Model

input :
Preference
Information

output :
Aggregation
procedure

Figure 2.1: The elicitation process.

Preference information. It encompasses any information provided by the decision-
maker to the learning process. The following questions concerning preference informa-
tion organize the elicitation process:

1. What type of preference information should be obtained?

2. How to collect preference information?

3. How preference information should be processed so as to sculpt the aggregation
procedure?

4. How to account for imperfect preference information?

All these questions need to be considered carefully, and there are many different
ways to address each one.
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Type of problem. Different decision problems exist. They are represented in Fig-
ure 2.2:

• sorting problems consist in assigning alternatives to categories, known in advance
and ordered by level of requirement;

• pairwise comparison problems consist in deciding, for each pair of alternatives,
which one is the better;

• choice problems consist in selecting the “best” alternative or a subset of “best”
alternatives among any group;

• ranking problems consist in ordering the group of options from the worst to the
best, with possible ties.

a
b

c
d
e

f

Sorting

⋆ ⋆⋆ ⋆ ⋆ ⋆

ac bdf e

a
b

c
d
e

f

Pairwise
Comparison

{b ≻ a, d ≻ c}

a
b

c
d
e

f

Choice

d

a
b

c
d
e

f

Ranking

e ≻ f ≻ d ≻ c

Figure 2.2: Aggregation procedures.

We note that the points of view, the way the alternatives are described according
to each point of view, and the type of problem are contextual elements that need to
be provided to the elicitation process. They are usually defined in a preliminary phase,
called problem structuring [Bouyssou et al., 2000], which is out of the scope of this work.

Aggregation procedures. The elicitation process is expected to output an aggrega-
tion procedure, whose role is to bring together several (conflicting) points of view into a
single overall judgment. More precisely, the aim is to obtain an aggregation procedure
that: i) reflects the views of the decision-maker and ii) helps him solve his decision
problem.
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2.2.2 The aggregation model

Technically, an aggregation model consists of a parameterized family of aggregation pro-
cedures. Each value of the preference parameter specifies a single aggregation procedure.
For instance, in a weighted sum the preference parameter are the weights corresponding
to the importance of the different criteria involved in the decision problem. Therefore,
the goal of the elicitation process is to interpret the preference information to pinpoint
the values of the preference parameters to yield the corresponding procedure. More-
over, the aggregation models can be sorted into three families [Perny, 2000; Grabisch
and Labreuche, 2010; Rolland, 2013]:

• Aggregate, then compare: the approach aims at computing an overall numeric
score, the value for each alternative, representing the overall performance of an
alternative. Then, the usual ordering of numbers is used to compare alternatives.
An example of a method following this approach is the one of the additive model
(see Section 2.3.1).

• Compare, then aggregate: In this approach the preferences according to each
point of view need to be synthesized into an outranking relation denoting overall
preference. Then, this relation is exploited to yield an answer permitting to sort,
choose or rank alternatives (e.g. NCS and MR-Sort methods, see Section 2.3.2).

• Rule-based systems: Monotonic rules, of the form ‘if an alternative is at least/at
most as good as such alternative according to such point of view, then . . . ’ have
been used to formally describe preferences for a long time (e.g. expert systems
[Waterman, 1986] implementing decision trees). This type of aggregation will not
be discussed in this manuscript.

Moreover, a critical step (decision) in an elicitation process is to select a model.
The selection of which approach to use in a specific decision making context is not a
trivial one, and this choice needs to be based on the particular characteristics of the
problem under analysis (see for guidelines [Guitouni and Martel, 1998; Bouyssou et al.,
2000; Roy and Słowiński, 2013]). This question of choosing/selecting a model is not the
mainstream of the work described in this document. Still, as we shall see in Chapter 5,
we believe that this question can be tightly related to the provision of an explanation
to the decision-maker within the decision-aiding process.

2.2.3 How to specify an aggregation model?

When a model has been chosen, one issue is to assess the model’s parameters. One
way, referred to as elicitation (or direct elicitation), requires the participation of the
DM, whose preferences and values have to be incorporated into the model. Elicitation
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proceeds by asking questions to the DM to set the required parameter values. Note
that by “direct elicitation”, we do not mean questioning the model’s parameters values
directly. It has been abundantly argued in the literature (see [Podinovskii, 1994; Roy
and Mousseau, 1996],Bouyssou et al. [2006, §4.4.1]) that questioning, for instance, about
importance of criteria weighted is bad practice.

Another way is known as learning (or indirect elicitation, or disaggregation paradigm
[Doumpos and Zopounidis, 2011]). The model parameters are inferred based on refer-
ence examples (for instance, in sorting problem, we have assignment examples). This
approach is close to the machine learning paradigm 2. In this approach, preference
information is considered as external data, and the elicitation process has to do with
an input that is limited in length and quality but hopefully meaningful. The idea is to
transform holistic preferences information into information about the parameters gov-
erning the aggregation procedure.

Finally, in a decision-aiding process, the availability of DMs is usually limited.
Therefore, it is important to ask the DM informative questions. This is what is called
“Active Learning” [Benabbou et al., 2017; Kadziński and Ciomek, 2021]. In this set-
ting, a “budget of questions” is available. They should be chosen adequately, either in
sequence or all from the start. Appropriate criteria for selecting questions have to be
studied.

In our work related to building efficient algorithms for learning preferences (see
Chapter 3 ), we adopted the second approach. In our setting, holistic preferences
take the form of either pairwise, ordinal preference statements such as alternative ‘a
is preferred to alternative b’, when considering a pairwise comparison problem, or the
assignment of some alternative to some category, when considering a sorting problem
(see Figure 2.2). Hence, in the first phase, preference statements about alternatives are
translated into statements about parameters; then, we may face different situations,
that is, either the set of parameters compatible with these statements is:

• Empty. Therefore, either the analyst decides to extend the aggregation model,
or he tries to find the parameters’ values that ‘best reflect’ the statements of the
decision-maker by asking more questions; or

• Reduced to a singleton. In this situation, the elicitation is complete (the corre-
sponding model matches the point of view of the decision-maker); or

• Larger (contains more than one element). Thus, either more preference informa-
tion is collected, or specific values of the preference parameters are singled out
from the set of values compatible with the preference information3.

2The interested reader may want to see the interesting review paper by [Doumpos and Zopounidis,
2011]

3Many methods exist to implement a choice function yielding ‘the most representative preference
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2.3 Focus on Some Aggregation Models

In our various contributions, we have considered two families of models: additive models
(aggregate and compare paradigm) and outranking models (compare then aggregate
paradigm). In what follows, we describe the two models on which we constructed our
various contributions.

2.3.1 Additive utility model

A preference relation ≿ follows a value model when a numerical score can measure
the overall desirability of an alternative; the higher, the better. Technically, there is a
numeric function U mapping alternatives to real numbers:

U : X −→ R
x = (x1, . . . , xn) 7−→ ∑n

i=1 ui(xi)

Scores are then compared to derive preferences:

∀x, y ∈ X, x ≿ y ⇐⇒ U(x) ≥ U(y) (2.1)

This way of comparing alternatives produces a preference relation that is both tran-
sitive —i.e. for any alternatives x, y, z ∈ X, if x ≿ y and y ≿ z, then x ≿ z— and
complete—i.e. for any alternatives x, y ∈ X, either x ≿ y, or y ≿ x, or both—in which
case we say x is indifferent or equally preferred to y, and we denote x ∼ y. Recipro-
cally, any binary relation that is transitive and complete can be represented in the value
model, without too much loss of generality.

In MCDA, the role of the additive value model is central. It is the flagship of value
models—those described in the aggregate then compare paradigm (see Section 2.2). It
serves as the basis of very popular methods, such as the multi-attribute value theory
(MAVT) [Keeney and Raiffa, 1976]. It is also used in Machine Learning. Classifiers
are functions that map objects, often described by tuples of features, to categories. If
the features can be interpreted as measuring some desirability, this behavior can be
considered through the prism of the aggregation of evaluations stemming from multiple
points of view.

2.3.2 Non-Compensatory Sorting model

Multi-criteria sorting aims at assigning alternatives to one of the predefined ordered cat-
egories C1 ≺ . . . ≺ Cp. All alternatives are evaluated on n criteria, N = {1, 2, . . . , n};
hence, an alternative a is characterized by its evaluation vector (a1, . . . , an), with ai ∈ Xi

parameters’, hence, the ‘most representative aggregation procedure’. For more details, we refer the
reader, for instance, to [Kadzinski et al., 2012; Siskos et al., 2005; Furnkranz and Hullermeier, 2011].
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denoting its evaluation on criterion i. Each criterion is equipped with a weak preference
relation ≿i defined on Xi. We assume, without loss of generality, that the preference
on each criterion increases with the evaluation (the greater, the better). We denote by
X =

∏
i∈N Xi the Cartesian product of evaluation scales.

We recall in what follows the definitions of an upset and the upper closure of a
subset w.r.t. a binary relation:

Definition 2.1 (Upset and upper closure). Let A be a set and R a binary relation on
A.

• An upset of (A,R) is a subset B ⊆ A such that ∀a ∈ A,∀b ∈ B, aRb⇒ a ∈ B.

• The upper closure clRA(B) of a subset B ⊆ A is the smallest upset of (A,R)

containing it. : ∀B ⊆ A, clRA(B) := {a ∈ A : ∃b ∈ B aRb}.

Non-Compensatory Sorting (NCS) method [Bouyssou and Marchant, 2007a,b] is a
MCDA sorting model originating from the ELECTRE TRI method [Roy, 1991]. NCS
can be intuitively formulated as follows: an alternative is assigned to a category if: i) it
is better than the lower limit of the category on a sufficiently strong subset of criteria,
and ii) this is not the case when comparing the alternative to the upper limit of the
category.

In what follows, we introduce NCS formally considering the case of two categories
and the one with multiple categories.

2.3.2.1 Sorting into two categories

In the Non-Compensatory Sorting model (NCS), limiting profiles defines the boundaries
between categories. Therefore, a single profile corresponds to the case where alternatives
are sorted between two ordered categories that we label as Good and Bad. A pair of
parameters describes a specific sorting procedure:

• a limiting profile b ≡ ⟨bi⟩i∈N that defines, according to each criterion i ∈ N , an
upper set Ai ⊂ Xi of approved values at least as good as bi (and, by contrast, a
lower set X \ Ai ⊂ Xi of disapproved values strictly worse than bi), and

• a set T of sufficient coalitions of criteria, which satisfies monotonicity with respect
to inclusion.

These notions are combined into the following assignment rule:

∀x ∈ X, x ∈ Good ⇐⇒ {i ∈ N : xi ≿i bi} ∈ T (2.2)
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An alternative is considered as Good if, and only if, it is better than the limiting
profile b according to a sufficient coalition of criteria. By considering the approved sets,
the rule can be equivalently written as follows:

∀x ∈ X, x ∈ Good ⇐⇒ {i ∈ N : xi ∈ Ai} ∈ T (2.3)

2.3.2.2 Sorting into multiple categories

With p categories, the parameter space is extended accordingly, with approved sets
⟨Ak

i ⟩i∈N , k∈[2..p] defined by a set of limiting profiles ⟨bki ⟩i∈N , k∈[2..p] and sufficient coali-
tions ⟨T k⟩k∈[2..p] declined per boundary. The ordering of the categories {C1 ≺ . . . ≺ Cp}
translates into a nesting of the sufficient coalitions: ∀k ∈ [2..p], T k is an upset of (2N ,⊆
) and T 2 ⊇ · · · ⊇ T p, and also a nesting of the approved sets: ∀i ∈ N , ∀k ∈ [2..p], Ak

i is
an upset of (Xi,≾i) and A2

i ⊇ · · · ⊇ Ap
i . These tuples of parameters are augmented on

both ends with trivial values: T 1 = P(N ), T p+1 = ∅, and ∀i ∈ N , A2
i = X, Ap+1

i = ∅.

With ω = (⟨ Ak
i ⟩i∈N , k∈[2..p], ⟨ T k ⟩k∈[2..p]), Bouyssou and Marchant [2007b] define

the sorting function NCSω from X to {C1 ≺ . . . ≺ Cp} with the following rule:

NCSω(x) = Ck ⇔
{
∀k′ ≤ k, {i ∈ N : x ∈ Ak′

i } ∈ T k′ and
∀k′ > k, {i ∈ N : x ∈ Ak′

i } /∈ T k′ .
(2.4)

Note that Bouyssou and Marchant [2007a,b] define a broader class of sorting method
which includes vetoes: it is possible for a single criterion to forbid the assignment to a
category. Throughout this document, we only consider NCS without veto; therefore, we
should formally write NCS without veto all along with the document. However, to facil-
itate the reading, we choose to write NCS even if we consider NCS model without a veto.

Example 2.3 illustrates the functioning of the NCS model. It summarizes how we
aggregate the preference information to get an overall assignment of the different car
models. Before applying such a model, we need to set up through an elicitation process
the limiting profiles and the sufficient coalitions of criteria.

Example 2.3. An illustrative example for NCS

A journalist prepares a car review for a forthcoming issue. He considers a number of
popular car models and wants to sort them to present a sample of cars “selected for
you by the editorial board” to the readers. This selection is based on four criteria: cost
(e), acceleration (time, in seconds, to reach 100 km/h from full stop – lower is better),
braking power and road holding, both measured on a qualitative scale ranging from 1
(lowest performance) to 4 (best performance). The performances of the six models are
described in Table 2.2.
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model cost acceleration braking road holding
m1 16 973e 29.0 sec. 2.66 2.5
m2 18 342e 30.7 sec. 2.33 3
m3 15 335e 30.2 sec. 2 2.5
m4 18 971e 28.0 sec. 2.33 2
m5 17 537e 28.3 sec. 2.33 2.75
m6 15 131e 29.7 sec. 1.66 1.75

Table 2.2: Performance table for models of cars.

In order to assign these models to a category among C1⋆ (average) ≺ C2⋆ (good) ≺ C3⋆

(excellent), the journalist considers an NCS model:

• The attributes of each model are sorted between average (⋆/ ■), good (⋆⋆/ ■)
and excellent (⋆ ⋆ ⋆/ ■ ) by comparison to the profiles given in Table 2.3.

Profile cost acceleration braking road holding
b1

⋆

17 250e 30.0 sec. 2.2 1.9
b2

⋆

15 500e 28.8 sec. 2.5 2.6

Table 2.3: Limiting profiles.

The resulting labeling of the six alternatives according to each criterion is depicted in
Figure 2.3 and Table 2.4.

Figure 2.3: Representation of performances w.r.t. category limits.
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model cost acceleration braking road holding
m1 ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆
m2 ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆
m3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆
m4 ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆⋆
m5 ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆
m6 ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆

Table 2.4: Categorization of performances.

• These appreciations are then aggregated by the following rule: an alternative is
categorized good or excellent if it is good or excellent on cost or acceleration, and
good or excellent on braking or road holding. It is categorized excellent if it is
excellent on cost or acceleration, and excellent on braking or road holding. Being
excellent on some criterion does not really help to be considered good overall, as
expected from a Non-Compensatory model. Sufficient coalitions are represented
on Figure 2.4 (where arrows denote coalition strength). Finally, the model yields
the assignment presented in Table 2.5.

Alternatives m1 m2 m3 m4 m5 m6

Assignment ⋆⋆ ⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆

Table 2.5: Alternative assignments.

Figure 2.4: Sufficient (green) and insufficient (red) coalitions of criteria
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2.3.2.3 Variants of the NCS Model

A number of variants of the Non-Compensatory Sorting model can be found in the
literature. On the one hand, as it was mentioned previously, Bouyssou and Marchant
[2007a,b] define the NCS classes of sorting methods, which includes the possibility of
vetoes. On the other hand, there exist variants, without veto, corresponding to simplifi-
cations of the model, with additional assumptions that restrict the parameters—limiting
profiles and sufficient coalitions—either explicitly or implicitly.

Following Bouyssou and Marchant [2007b], one may consider to explicitly restrict
either the sequence of limiting profiles, or the sequence of sufficient coalitions:

• UC-NCS: Non-Compensatory Sorting with a unique set of sufficient coalitions:
T 2 = · · · = T p;

• UB-NCS: Non-Compensatory Sorting with a unique boundary/limiting profile
b2 = · · · = bp or, equivalently, ∀i ∈ N , A2

i = · · · = Ap
i .

It is worth noting that an NCS model which is in UC-NCS and UB-NCS simultane-
ously corresponds necessarily to a model with two categories.

A particular case of NCS corresponds to Majority Rule Sorting (MR-Sort) model
[Leroy et al., 2011]: when the families of sufficient coalitions are all equal F2 = ... =

Fp = F and defined using additive weights attached to criteria, and a threshold: F =

{F ⊆ N :
∑

i∈F
wi ≥ λ}, with wi ≥ 0,

∑

i

wi = 1, and λ ∈ [0, 1]. Moreover, as the

finite set of possible values on criterion i, Xi = [mini,maxi] ⊂ R, the order on R
induces a complete pre-order ≽i on Xi. Hence, the sets of approved values on criterion
i, Ah

i ⊆ Xi (i ∈ N , h = 2...p) are defined by ≽i and bhi ∈ Xi the minimal approved
value in Xi at level h: Ah

i = {xi ∈ Xi : xi ≽i b
h
i }. In this way, bh = (bh1 , . . . , b

h
n)

is interpreted as the frontier between categories Ch−1 and Ch; b1 = (min1, ...,minn)

and bp+1 = (max1, ...,maxn) are the lower frontier of C1 and the upper frontier of Cp,
respectively. Therefore, the MR-Sort rule can be expressed as:

x ∈ Ch iff
∑

i:xi≥bhi

wi ≥ λ and
∑

i:xi≥bh+1
i

wi < λ (2.5)

It should be emphasized that in the above definition of the MR-Sort rule, the ap-
proved sets Ah

i can be defined using bh ∈ X, which are interpreted as frontiers between
consecutive categories, only if preferences ≽i on criterion i are supposed to be monotone.
Thus, a criterion can be either defined as a gain or a cost criterion:

Definition 2.2. A criterion i ∈ N is:

• a gain criterion: when xi ≥ x′i ⇒ xi ≽i x
′
i
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• a cost criterion: when xi ≤ x′i ⇒ xi ≽i x
′
i

Therefore, in case of:

• a gain criterion, we have xi ∈ Ah
i and x′i ≥ xi ⇒ x′i ∈ Ah

i , and xi /∈ Ah
i and xi >

x′i ⇒ x′i /∈ Ah
i . Therefore Ah

i is specified by bhi ∈ Xi: Ah
i = {xi ∈ Xi : xi ≥ bhi }.

• a cost criterion, we have xi ∈ Ah
i and x′i ≤ xi ⇒ x′i ∈ Ah

i , and xi /∈ Ah
i and xi <

x′i ⇒ x′i /∈ Ah
i . Therefore Ah

i is specified by bi ∈ Xi: Ah
i = {xi ∈ Xi : xi ≤ bhi }.

We shall see in the next chapter how we can adapt these definitions to consider new
kinds of preference information. More specifically, we were interested in extending the
literature for preference elicitation to non-monotone data.

2.4 Summary

This chapter introduces the different notations and concepts we shall use in the fol-
lowing chapters. As discussed initially, an essential step in the decision-aiding process
is the preference elicitation process. This activity aims to make the decision maker’s
preferences explicit through a model representing them. In other terms, it consists of
determining plausible values (or ranges of variation) for the parameters of the chosen
model based on the preference information provided by the decision-maker. To do so, it
is necessary to design efficient procedures and algorithms to specify this model and its
parameters. In Chapter 3 we summarized our contributions to this aim, by considering
NCS and MR-Sort models.





Chapter 3

Efficient Tools for Preference
Learning and Elicitation

3.1 Introduction

The subject of “preferences” has gained considerable attention in Artificial Intelligence.
It has become a new interdisciplinary research area closely linked to related fields such
as operations research, social choice theory, and decision theory [Ozturk et al., 2005;
Kaci, 2011; Furnkranz and Hullermeier, 2011]. It is about constructing methods to
learn preference models from implicit or explicit preferences, which are used to capture,
model and predict the preferences of an individual or group of individuals.

Under such a perspective, our work is situated within the Multi-Criteria Decision
Aiding field, where there is a need to structure the decision-aiding process in which
a decision-maker (DM) and an analyst interact to build a multi-criteria preference
model. The expected advantage of this process is to provide insights into the decision
problem and lead to recommendations regarding the decision to be made. Within the
decision-aiding process, the process by which the analyst and the DM interact is called
an elicitation process. This process aims to incorporate the DM’s judgments into the
preference model. Within this context, our works contribute to providing formal tools
for the following question:

“For a given decision situation, assuming that a given decision model is
relevant to structure the decision maker’s preferences, what should be the
parameters’ values to fully specify the model that corresponds to the decision-
maker viewpoint?”

To address this issue, we have carried out several works, with a significant part
dedicated to the Non-Compensatory Sorting (NCS) model and its variants: UB-NCS,
UC-NCS and MR-Sort (see Chapter 2). In this chapter, we trace the landscape, sum-
marized in Table 3.1, of the different mathematical and computational tools that we
have implemented to address the question of learning the parameters of the NCS model
(and its variants).
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Approaches
Methods MIP-based Boolean-based

Sorting NCS [Leroy et al., 2011] [Belahcene et al., 2018a]
[Tlili et al., 2022]

MR-sort [Minoungou et al., 2020],
[Minoungou et al., 2022]

Ranking RMP [Liu et al., 2014], [Olteanu
et al., 2021]

[Belahcène et al., 2023]

Table 3.1: Contributions to preference learning and elicitation

The different proposals seek to offer tools that, on the one hand, will provide more
efficient devices (in terms of computation time) by appealing to logical formalism—on
the other hand, extend the literature to consider new types of preferential information,
such as the fact that preferences on criteria are not necessarily monotone but possibly
single-peaked [Black, 1948, 1958]. Moreover, the set of tools has an important theo-
retical significance. Still, it can also serve as a base for practical applications–see, e.g.
[Belahcene et al., 2018b] for an application in an accountability setting (see Chapter 4
for more details). Finally, in addition to sorting models, we also proposed tools for
learning the parameters of the Ranking with Multiple Profiles Method (RMP) [Rol-
land, 2013]. This work is briefly described at the end of this document. We refer the
interested reader to [Liu et al., 2014; Olteanu et al., 2021; Belahcene et al., 2018c] for
more details.

3.2 Learning NCS Model Parameters

The Non-Compensatory Sorting model aims to assign alternatives evaluated on multi-
ple criteria to one of the predefined ordered categories (see Chapter 2). Two popular
variants of the NCS model are the NCS model with a unique profile (UB-NCS) and
the NCS model with a unique set of sufficient coalitions (UC-NCS). Moreover, another
variant of NCS is the one in which the importance of criteria is additively represented
using weights: the MR-Sort model (see Chapter 2).

Before exposing our contributions, let us recall the problems of learning the param-
eters of the NCS model and its variant MR-Sort, named Inv-NCS and Inv-MR Sort
problems, respectively.

The Inv-NCS problem We define the inverse Non-Compensatory Sorting problem
as a decision problem, where the input is some preference information under the form
of an ordinal performance table concerning a set of reference alternatives and an as-
signment of these reference alternatives to categories (see Example 2.3), that gives a
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positive answer if, and only if, there is a preference parameter of the Non-Compensatory
Sorting model (i.e. a tuple of approved sets and a tuple of approved coalitions satisfying
some monotonicity constraints), which is consistent with this preference information.
Formally,

An instance of the Inv-NCS problem is a sextuple (N ,X, ⟨ ≿i ⟩i∈N , X⋆,

{C1 ≺ . . . ≺ Cp}, α) where:

• N is a set of criteria;

• X is a set of alternatives;

• ⟨≿i ⟩i∈N ∈ X2 are preferences on criterion i, i ∈ N , ≿i⊂ X2 is a total pre-ordering
of alternatives according to this criterion;

• X⋆ ⊂ X is a finite set of reference alternatives;

• {C1 ≺ . . . ≺ Cp} is a finite set of categories totally ordered by exigence level.

• α : X⋆ → {C1 ≺ . . . ≺ Cp} is an assignment of the reference alternatives to
the categories. Therefore, ‘α−1’ is the associated inverse function i.e. for a given
category Ch, α−1(Ch) = {x ∈ X⋆ : x ∈ Ch}.

When referring to an instance, we shorten this sextuple as ‘α’. Thus, a solution of the
instance α of the Inv-NCS problem is a parameter ω = (⟨ Ak

i ⟩i∈N , k∈[2..p], ⟨ T k ⟩k∈[2..p])
of the NCS model (see Section 2.3.2) such that ∀x ∈ X⋆, α(x) = NCSω(x).

The Inv-MR-Sort problem Considering as input a learning set L, which is the
couple (A∗, C), where C = {cat(a),∀a ∈ A∗}; that is each alternative a ∈ A∗ ⊂ X
is assigned to a desired category cat(a) ∈ {1, . . . , p}. Therefore, the Inv-MR-Sort
problem consists in taking as input this learning set L and computes the parame-
ters of the MR-Sort method, namely the weights (w), the majority level (λ) and the
limit profiles (b), that best restore L, i.e. maximizing the number of correct assignments.

3.3 SAT/MaxSAT Formulations for Inv-NCS

For learning the parameters of an NCS model, we follow an (indirect) approach, close
to a machine learning paradigm [Furnkranz and Hullermeier, 2011], where a set of
reference assignments is given and assumed to describe the decision-maker’s point of
view. The aim is to extend these assignments with an NCS model (see Section 2.2.3).
We have shown in [Belahcene et al., 2018b] that Inv-NCS problem is NP-Hard
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Until now, indirect approaches to the elicitation of Non-Compensatory Sorting
models based on mathematical programming ([Leroy et al., 2011]) suffer from poor
computational efficiency, that restrict them to solving toy instances. To cope with
the computation burden, a heuristic approach has been proposed [Sobrie et al.,
2015, 2019] which can handle large datasets, but lose optimality guaranty. To cope
with the computation burden without losing optimality guarantee, we investigated a
novel direction based on Boolean satifiability formulation (SAT). In short, a Boolean
satisfaction problem consists in a set of Boolean variables V and a logical proposition
about these variables f : {0, 1}V → {0, 1}. A solution v⋆ is an assignment of the
variables mapped to 1 by the proposition: f(v⋆) = 1. A binary satisfaction problem for
which there exists at least one solution is satisfiable, else it is unsatisfiable. Without
loss of generality, the proposition f can be assumed to be written in conjunctive normal
form: f =

∧
c∈C c, where each clause c ∈ C is itself a disjunction of literals, which are

variables or their negation ∀c ∈ C, ∃ c+, c− ∈ P(V ) : c =
∨

v∈c+ v ∨
∨

v∈c− ¬v, so that a
solution satisfies at least one condition (either positive or negative) of every clause.

Concretely, we proposed two formulations based on Boolean satisfiability to learn
the parameters of the Non-Compensatory Sorting model from perfect preference infor-
mation, i.e. when the set of reference assignments can be wholly represented in the
model. We also extend the two formulations to handle inconsistency in the preference
information by adopting the Maximum Satisfiability problem language (MaxSAT). We
start by summarizing the contribution in the case of perfect preference information.

3.3.1 SAT-based formulations for Inv-NCS

Hereafter, we summarize two formulations of the Inv-NCS problem in the framework
of Boolean satisfiability. The idea is to reduce the problem of finding the parameters of
an NCS model faithfully reproducing a given assignment of alternatives to categories
to the SAT problem of finding an assignment of Boolean variables that verifies a given
propositional formula written in conjunctive normal form.

We proposed two formulas stem from different representation strategies. One,
described in Section 3.3.1.1, establishes a bijection between the parameter space of the
NCS model and the valuation of the propositional variables. The second detailed in
Section 3.3.1.2 leverages a powerful representation theorem that allows keeping implicit
the set of coalitions by introducing the notion of pairwise separation using pairs of
alternatives given in the assignment..

In other terms, when using the representation strategy based on the explicit repre-
sentation of the set of coalitions of criteria, each solution of the SAT/MaxSAT problem
found by the solver can directly be interpreted in terms of parameters of an NCS model
(either of the UB or the UC subtype). This is not precisely the case with the representa-
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tion strategy based on pairwise separation of alternatives: the SAT/MaxSAT solution
explicitly describes the approved sets of value on each criterion and at each satisfaction
level (i.e. the boundary profiles), but the sets of sufficient coalitions are left implicit.
They are solely described in terms of an upper and a lower bound.

3.3.1.1 SAT formulation based on Coalitions

A first formulation ΦC
α was introduced in [Belahcene et al., 2018a; Belahcene, 2018].

It is based on an explicit representation of the parameter space of the NCS model –
coalitions of points of view ⟨ T k ⟩ and approved sets of alternatives ⟨ Ak

i ⟩, for each
point of view i ∈ N and each level of exigence k ∈ [2..p] – leading to a formulation in
conjunctive normal form with O(2|N | + p× |N |× |X⋆|) variables and O(p× |X⋆| × 2|N |)
clauses, such that N is the set of criteria, X⋆ is the set of assignment examples and p

the number of categories.

We provide here an informal presentation of the approach; formal justification can
be found in [Belahcene et al., 2018a; Tlili et al., 2022]. The explicit representation ΦC

α

involves two families of binary variables.

• The first family (denoted a) defines the approved sets according to the set of
criteria such that for given alternative, level and criterion, the associated variable
equals 1 if and only if the alternative is approved at the considered level according
to the considered criterion.

• The second family (denoted t) of binary variables uniquely specifies the set of
sufficient coalitions for each level i.e. given a coalition of criteria, the associated
variable equals 1 if and only if the coalition is sufficient.

The SAT formulation based on coalitions aims at learning both NCS parameters
(⟨ Ak

i ⟩i∈N , k∈[2..p], ⟨ T k ⟩k∈[2..p]) from a set of assignment examples, thus, two types of
clauses are considered. The first type of clauses (ϕCi

α , i ∈ [1..4], below) defines these
parameters and reproduces the structural conditions i.e.: the monotonocity of scales,
approved sets and sufficient coalitions sets are ordered by inclusion. The second type
of clauses (ϕC5

α and ϕC6
α , below) ensures the restoration of the assignment examples.

Clauses. For a Boolean function written in conjunctive normal form, the clauses
are constraints that must be satisfied simultaneously by any antecedent of 1. The
formulation ΦC

α is built using six types of clauses:

• Clauses ϕC1
α ensure that each approved set Ak

i is an upset of (X⋆,≾i): if for a
criterion i and a satisfaction value k, the value x is approved, then any value
x′ ≿i x must also be approved.
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• Clauses ϕC2
α ensure that approved sets are ordered by a set inclusion according

to their satisfaction level: if an alternative x is approved at satisfaction level k
according to criterion i, it should also be approved at satisfaction level k′ < k.

• Clauses ϕC3
α ensure that each set of sufficient coalitions T is an upset for inclusion:

if a coalition B is deemed sufficient at satisfaction level k, then a stronger coalition
B′ ⊃ B should also be deemed sufficient at this level.

• Clauses ϕC4
α ensure that a set of sufficient coalitions are ordered by inclusion

according to their satisfaction level: if a coalition B is deemed insufficient at
satisfaction level k, it should also be at any level k′ > k.

• Clauses ϕC5
α ensure that each alternative is not approved by a sufficient coalition

of criteria at an satisfaction level above the one corresponding to its assigned
category.

• Clauses ϕC6
α ensure that each alternative is approved by a sufficient coalition of

criteria at a satisfaction level corresponding to its assignment.

Model variants. As discussed in Section 2.3.2.3, the NCS model has many variants.
ΦC
α can easily be modified to account for two popular restrictions of the model, namely

UB-NCS (Unique profiles) and UC-NCS (Unique set of sufficient coalitions), for more
details see [Belahcene et al., 2018a; Tlili et al., 2022] .

3.3.1.2 A compact formulation-based on Pairwise Separation

A second formulation was introduced in [Belahcene et al., 2018b]. It leverages the
fact that the partial inverse problem for NCS where the approved sets are given is
much easier to solve and proposes a characterization of its feasibility based on pairs
of alternatives. This approach leads to a compact formulation of the problem, with
O(p× |N | × |X⋆|2) variables and clauses. In addition, an extension of this formulation
to the case of multiple categories was proposed in [Tlili et al., 2022].

To ease the readability, we expose in this section only the formulation in the case of
two categories. For the case of multiple categories, we refer the reader to [Tlili et al.,
2022].

In the following, we suppose given a set of reference alternatives X⋆, an assignment
α : X⋆ → { Good , Bad }, and a tuple of accepted values ⟨Ai⟩ ∈ P(X)|N | such that,
for each point of view i ∈ N , Ai is an upset of (X,≿i).
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Observably sufficient and insufficient coalitions. Consider the sets of coalitions
defined by

S⟨Ai⟩(α) := cl⊇P(N )

(⋃
g∈α−1( Good )

{
{i ∈ N : g ∈ Ai}

})
, (3.1)

F⟨Ai⟩(α) := cl⊆P(N )

(⋃
b∈α−1( Bad )

{
{i ∈ N : b ∈ Ai}

})
. (3.2)

Any coalition in S⟨Ai⟩(α) is a superset of the set of criteria according to which some
Good alternative is accepted and should, therefore, be accepted. Thus, S⟨Ai⟩(α) is a
lower bound of the set of sufficient coalitions for any solution of Inv-NCS. Conversely,
any coalition in F⟨Ai⟩(α) is a subset of the set of criteria according to which some
Bad alternative is accepted and should, therefore, be rejected. Thus, P(N ) \F⟨Ai⟩(α)

is an upper bound of the set of sufficient coalitions for any solution of Inv-NCS.

Characterization of solutions of Inv-NCS. The parameter (⟨Ai⟩, T ) is a solution
of the instance α of Inv-NCS if and only if:

S⟨Ai⟩(α) ⊆ T ⊆ P(N ) \ F⟨Ai⟩(α) (3.3)

Note that this equation allows characterizing the positive instances of Inv-NCS
without referring to the set of sufficient coalitions of a solution, solely by checking
if the sets T⟨Ai⟩(α) and F⟨Ai⟩(α) are disjoint. This leads to the following efficient
characterization, based on the notion of pairwise separation.

Theorem 3.1. An assignment α of alternatives to categories can be represented in the
Non-Compensatory Sorting model if, and only if, there is a tuple ⟨Ai⟩ ∈ P(X)|N | such
that:

1. (Upset) for each point of view i ∈ N , Ai is an upset of (X,≿i); and

2. (Pairwise separation) for each pair of alternatives (g, b) ∈ α−1( Good ) ×
α−1( Bad ), there is at least one point of view i ∈ N such that g ∈ Ai and
b /∈ Ai.

This theorem provides a polynomial certificate for the positive instances of the
Inv-NCS problem, thus proving its membership to the NP complexity class as a
corollary.

The SAT formulation based on pairwise separation corresponds to the SAT encoding
of both conditions of Theorem 3.1 [Belahcene et al., 2018b]. The first condition which
ensures the monotonocity of scales is represented by a single family of clauses and
operates on the same variables as the SAT formulation based on coalitions. In the second
condition, additional binary variables are defined in order to represent the separation
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between the alternatives. A unique family of logical clauses represents the separation
concept of the theorem and additional clauses and binary variables are required in order
to express this representation in SAT language.

Variables. Similarly to the formulation ΦC
α described in the previous section, the

formulation ΦP
α operates on two types of variables.

• ‘a’ variables, representing the approved sets, with the exact same semantics as
their counterpart in ΦC

α ,

• auxiliary ‘s’ variables, indexed by a criterion i ∈ N , an alternative g assigned to
Good and an alternative b assigned to Bad , assessing if the alternative g is

positively separated from b according to criterion i

Clauses. The formulation ΦP
α is the conjunction of four types of clauses: ϕP1

α

ensuring each Ai is an upset, ϕP2
α ensuring [si,g,b = 1] ⇒ [g ∈ Ai], ϕP3

α ensuring
[si,g,b = 1] ⇒ [b /∈ Ai], and ϕP4

α ensuring each pair (g, b) is positively separated
according to at least one criterion.

It should be noted that, should ϕP
α be satisfiable, the set T of sufficient coalitions

is not uniquely identified by the values of ’a’ and ’s’ variables of one of its models.
Indeed, if ⟨ai,x⟩, ⟨si,g,b⟩ is an antecedent of 1 by ϕP

α, then the parameter ω = (⟨Ai⟩, T )

with accepted sets defined by Ai = {x ∈ X : ai,x = 1} and any upset T of (P(N ),⊆)

of sufficient coalitions containing the upset S⟨Ai⟩(α) and disjoint from the lower set
F⟨Ai⟩(α) is a solution of this instance. Therefore, among the sets of sufficient coalitions
compatible with the values of ’a’ and ’s’ variables, we can identify two specific ones,
Tmax and Tmin.

Model variants. ΦP
α can easily be modified to account for two popular restrictions

of the model, namely UB-NCS (Unique profiles) and UC-NCS (Unique set of sufficient
coalitions), in both cases two and multiple categories. For more details see [Tlili et al.,
2022].

3.3.2 MaxSAT relaxations for Inv-NCS

The previous section introduced mathematical and computational tools addressing the
decision problem: can a given assignment be represented in the Non-Compensatory
Sorting model (or one of its variants)? However, such tools are not suited to the
problem of learning a suitable NCS model from real data, because it does not tolerate
the presence of noise in the data. There are several reasons for the input data not
to reflect perfectly the model, e.g. imperfections in the assessment of performance
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according to some point of view; mistaken assignment of an alternative to a category;
or simply the oversimplification of reality presented by the model.

We addressed this issue by providing a relaxation of the decision formulations:
instead of finding an NCS model restoring all examples of the learning set, we try
to find the model that restores the most. We formulate the relaxed optimization
problem of finding the subset of learning examples (reference alternatives together with
their assignment) correctly restored of maximum cardinality with a soft constraint
approach, using the language of weighted MaxSAT. This framework, derived from
the SAT framework, is based on a conjunction of clauses

∧
ci where each clause ci

is given a non-negative weight wi, and maximizes the total weight of the satisfied clauses.

To translate exactly our problem in this language, we leverage two basic techniques:
we introduce switch variables ‘z’ allowing to precisely monitor the soft clauses we are
ready to see violated, as opposed to hard clauses that remain mandatory; and we use
big-stepped tuples of weights w1, . . . , wk with w1 ≫ · · · ≫ wk allowing to specify
lexicographically ordered goals in an additive framework. The MaxSAT relaxation was
proposed for both approaches: based on coalitions and based on pairwise separation
conditions, and for each model variants (UB-NCS and UC-NCS) as well. We also
generalize the formulation to the case of multiple categories. For more details, we refer
the reader to [Tlili et al., 2022].

3.3.3 SAT/MaxSAT for Inv-NCS: main experimental insights

In addition to the work of formalizing learning algorithms, we were interested in the
question of their efficiency. To account for this, several empirical studies were conducted.
First, we conducted experiments to measure the performance regarding computation
time by the size of the learning set. Second, we made a comparison with the stat of
the art techniques. The experimentation protocol and the detailed results can be found
in [Belahcene et al., 2018a]. Finally, we conducted other experiments to compare the
different formulations [Tlili et al., 2022].

We enumerate eight of them, depicted in Figure 3.1 and specified by three binary
parameters:

• the Non-Compensatory Sorting model of preference sought, either with a unique
boundary/limiting profile (subscript UB), or with a unique set of sufficient coali-
tions (subscript UC) (see NCS variants in Sect. 2);

• the representation strategy adopted, based either on the explicit representation
of the coalitions of criteria (superscript C) or on the pairwise separation of alter-
natives (superscript P); and

• the problem description, either deciding whether an instance can be represented
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Figure 3.1: Approaches for comparing learning algorithms

in the model (D) with a SAT solver, or optimizing the ability of the model to
represent the assignment (O) with a MaxSAT solver.

The details of the experimental protocol and results’ discussions can be found
in [Tlili et al., 2022]. From these experiments, we were able to conclude that the
separation-based representation proposed for learning UB and UC models is at least
as good as the coalition-based one in terms of generalization and for both types of
preference information (perfect and not-so-perfect preferences). The computation time
of the two representations evolves depending on the number of reference alternatives
and the number of criteria; the separation-based representation performs better
when the number of criteria increases, while it is not the case when the number of
reference alternatives increases. Increasing the number of categories penalizes the
separation-based representation proposed for learning the UB model since the number
of clauses depends quadratically on the number of categories.

However, for real-world decision problems, assuming that the number of reference
assignments is ∼100 examples, we can consider two types of applications: an application
that involves a large number of criteria (|N | >∼ 12) and therefore the separation-based
representation seems better as it is faster and generalizes better than the first one, and
an application that involves a limited number of criteria (|N | <∼ 10), in this case, the
coalition-based representation is slightly faster and generalizes less than the separation-
based one. Finally, our work shows that, when learning MCDA models from preference
information, SAT and MaxSAT languages can be relevant and efficient. This is precisely
the case for ordinal MCDA aggregation procedures based on a pairwise comparison of
alternatives (so-called outranking methods, see [Figueira et al., 2005]).
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3.4 Learning NCS Model Parameters: new perspectives

In the previous section, we presented devices for eliciting the parameters of sorting
models indirectly from a set of assignment examples, i.e., a set of alternatives with
corresponding desired categories. To be applied, such preference learning approaches
make some assumptions about the structure of the criteria.

On the one hand, in MCDA, preference elicitation methods require a preference
order on each criterion. Such preference order results from the fact that alterna-
tive evaluations/scores correspond to maximized performances (profit criterion) or
minimized (cost criterion), resulting in monotone preference data. In multicriteria
sorting problems, this boils down to a higher evaluation on a profit criterion (on a cost
criterion, respectively) favors an assignment to a higher category (to a lower category,
respectively). However, there are numerous situations where the criteria evaluation
is not related to category assignment in a monotone way. For instance, consider
Example 3.1 for illustration.

Example 3.1.

A computer-products retail company is distributing a new Windows tablet, and
wants to send targeted marketing emails to clients who might be interested
in this new product. To do so, clients are to be classified into two categories:
potential buyer and not interested. To avoid spamming, only clients in the
former category will receive an email. To sort clients, four characteristics are
considered as criteria, all of them being homogeneous to a currency e.g. e : the
turnover over the last year of (i) Windows PC, (ii) Pack Office, (iii) Linux PC,
and (iv) Dual boot PC.

The aim of the company is to advertise a new Windows tablet. Thus, both first
two criteria are to be maximized (the more a client buys Windows PCs and Pack
Office, the more he is interested in products with a Windows system), and the
third criterion is to be minimized (the more a client buys Linux PCs, the less
he is interested in products with a Windows system). The marketing manager
is convinced that the last criterion should be taken into account, but does not
know whether it should be maximized or minimized; a subset of clients has been
partitioned into not interested/potential buyer.

Considering situations like the one described by Example 3.1, the goal of the learning
task is to simultaneously learn the classifier parameters and the preference direction
(profit or cost) for the last criterion. More generally, the idea is to consider that
the preference order on each criterion is unknown, i.e. the evaluations of alternatives
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induce monotone preferences, but the preference directions on criterion are unknown
(i.e. whether each criterion is maximized or minimized).

The second assumption refers to the fact that the preferences on criteria are not
necessarily monotone but possibly single-peacked (or single-valley). For instance,
consider Example 3.2 for illustration.

Example 3.2.

Consider a veterinary problem in cattle production. A new cattle disease should
be diagnosed based on symptoms: each cattle should be classified as having or
not having the disease. New scientific evidence has indicated that substance A in
the animal’s blood can be predictive in addition to usual symptoms. Still, there
is no clue how the level of substance A should be considered. Does a high, a low
level, or a level between bounds of substance A indicate sick cattle?
The veterinarians’ union has gathered many cases and wants to benefit from this
data to define a sorting model based on usual symptom criteria and the level of
substance A in the animal’s blood. Hence, the sorting model should be inferred
from data, even if the way to account for the substance A level is unknown.

In the previous example, it is unclear to the decision-maker how to account for the
level of substance A in blood in the classification of alternatives (cattle, client). This
example corresponds to a single-peaked criterion, i.e. criterion for which preferences
are defined according to a “peak ” corresponding to the best possible value; on such
a criterion, the preference decreases with the distance to this peak. In other words,
the peak corresponds to a target value below which the criterion is to be maximized,
and above which the criterion is to be minimized. Such criteria are frequent in the
medical domain (getting close to a normal blood sugar level) and chemical applications
(get close to a neutral PH), ... It is also natural to consider the reverse side of the
single-peaked preference that, is the single-valley preference (illustrated by a “V”
curve). In such a case, the bottom is the less preferred value, and the more the values
are far from the bottom, the more preferred they are.

Therefore, in our works, we focus on the MR-Sort model. Our concerns were twofold:
(i) we simultaneously aim to uncover from a learning set the criteria preference directions
and the MR-Sort parameters (criteria weights, limit profiles, majority threshold). Our
proposals to answer this objective are summarized in Section 3.4.1; (ii) dealing with
single-peaked and single-valley preferences no longer fit the scope of monotone pref-
erences. Therefore, we intend to consider a more extensive scope, i.e. non-monotone
preferences, since we want to learn MR-Sort models from possibly single-peaked/ single-
valley preferences. The proposals to account for this are summarized in Section 3.4.2.
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3.4.1 Learning MR-Sort models with latent criteria cirection

To account for the learning of the preference direction in the Inv-MR-Sort problem, we
based our proposal on the heuristic proposed by [Sobrie, 2016; Sobrie et al., 2019]. The
heuristic is an evolutionary population-based algorithm and learns an MR-Sort model
that best matches a learning set composed of assignment examples. Each individual in
the population is an MR-Sort model, i.e., values for limit profiles bh, criteria weights wi,
and the majority level λ; each individual is denoted by (⟨b⟩, w, λ). After an initialization
step that generates the first population, the algorithm proceeds to evolve the population
of MR-Sort models iteratively until a model in the population perfectly restores the
learning set or a maximum number of iterations is reached. Moreover, at each iteration,
the algorithm tries to improve the fitness of each MR-Sort model in the population
(the proportion of correctly restored examples in the learning set) by performing two
consecutive steps: (i) optimize the weights and majority level (limit profiles being fixed)
using linear programming (LP), and (ii) improve heuristically the limit profiles (weights
and majority level being set). The 50% best models are kept in the population for the
next iteration, while 50% new MR-Sort models are randomly generated.

The works of [Sobrie, 2016; Sobrie et al., 2019] assume the monotonicity of criteria
in the MR-Sort model to be learned. More precisely, the definition of the Inv-MR-Sort
problem assumes, without loss of generality, that the decision-maker preferences are
increasing with the criteria performances (the greater, the better). Therefore, within
the thesis of Minoungou [2022], we investigated the possibility of extending the Inv-
MR-Sort problem to the case where preferences are still monotone, but the criteria
preference directions are not known, i.e., we do not know whether the criteria are to be
maximized or minimized. We implemented two approaches:

• The first one, titled duplication-based, relies on the heuristic of [Sobrie, 2016] at
two consecutive phases. The first one is for learning the preference directions, and
the second takes the learned directions as input and mobilizes the heuristic again
for learning the other parameters of the model (profiles, weights and majority
threshold) [Minoungou et al., 2020].

• The second approach, titled mixed-based, extends the heuristic to learn the pref-
erence direction simultaneously with the other MR-sort parameters. It consists
of evolving models with both gain and cost criteria in the population of models
during the learning process.

Although each has advantages and shortcomings, the experiments have demon-
strated that the first method is the most effective. Therefore, we choose to briefly
describe it in what follows.
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3.4.1.1 Duplication-based approach

The first approach to determine the criteria preference directions combines two con-
secutive steps. Each step is based on the heuristic of [Sobrie, 2016], with additional
adjustments. The idea is to start by resolving an MR-Sort problem by duplicating the
subset of criteria Q (Q ⊆ N and |Q| = q) whose preference direction is unknown into
an identical Q′ set, such that the criteria in Q have an increasing preference direction.
Those in Q′ a decreasing one. The intuition behind the duplication is to foster the
algorithm to inhibit the criterion with the “incorrect” preference direction while making
the other criterion influential. Therefore, the main steps of the methodology are as
follows:

1. Learning the q preference directions. It consists in resolving an Inv-MR-Sort
problem with n+q criteria, such that n is the initial number of criteria and q is the
number of criteria whose preference direction is unknown. Solving this problem
with the heuristic will allow us to learn the parameters: b (of dimension n + q),
w (of n+ q criteria) and the threshold λ.

2. Retrieving the preference direction of the q latent criteria. The idea is
given a couple (i, j) of criteria (i ∈ Q, j ∈ Q′ and j is the duplication of i); we
analyze each criterion’s weight to retrieve the right direction. Three situations are
considered: (i) both weights are equal to zero, (ii) both are different to zero, and
(iii) one of them is zero, and the other is not. For instance, in the last situation
(wi = 0 or wj ̸= 0, or vice versa), we keep the direction of the criterion whose
weight is not zero. Situation (ii) is the most tricky one. To fix the preference di-
rection, we ground our analysis on the position of profiles b regarding the endpoint
of the scales Xi and Xj . The intuition is that profiles on criterion i (or j) close to
the endpoints of the scale Xi (or Xj) indicates that criterion i (or j) is “inhibited”.
Therefore, we select the preference direction corresponding to criterion i or j as
the one for which the profile is further away from the endpoints of the scales Xi

and Xj (we refer the reader to [Minoungou et al., 2020] for more details).

3. Learning the standard MR-sort parameters. Once the q preference direction
criteria are fixed from the last step, it consists in resolving a classical Inv-MR-Sort
problem with n criteria. For this, we reduce the problem with n+ q criteria to a
problem with n criteria and resolve this latter with the heuristic in [Sobrie et al.,
2019] to learn the final parameters’ values of the MR-Sort problem.

3.4.1.2 Main experimental insights

To analyze the behavior of the approach, we conducted several experimental analyses
to measure: i) Regarding the computing time, how the algorithm copes with large
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datasets, ii) the ability of the algorithm to restore a dataset when criteria prefer-
ence direction are latent, iii) how many assignment examples should the learning set
contains so that learned model accurately classify new alternatives, iv) How does the al-
gorithm cope with noisy datasets (i.e. alternatives falsely assigned to wrong categories).

The extensive numerical simulations demonstrate the capability of the algorithm
to correctly estimate both preference direction and the other model parameters with
an accuracy of over 90% (for a noise-free learning set of 250 examples). Moreover, the
algorithm showed to be robust in the case of noisy data. Finally, the proposed solution
features a very contained computational complexity both in the training and inference
phases.

3.4.2 Learning MR-Sort models with single-peaked preferences

Another situation in which the current preference learning tools within the MCDA
context are not satisfactory is when the preferences on criteria are not necessarily
monotone. We seek to provide efficient means to solve the Inv-MR-Sort problem with
single-peaked preference criteria.

Indeed, the standard approach in the MCDA literature is to carefully craft the
set of evaluation criteria so that these criteria are to be either maximized (gain
criterion) or minimized (cost criterion). This boils down to the hypothesis that the
data have a monotonic property. Our approach is relaxing this hypothesis allowing the
criteria to be cost, gain, single-peaked or single-valley criteria. Some works account
for the non-monotonicity of preferences in value-based models (see, e.g. [Despotis and
Zopounidis, 1995]). Our work aimed to extend this idea of non-monotone criteria
to outranking methods and, in particular, to the MR-Sort model (see Chapter 2).
Specifically, we tackled the problem of inferring, from a dataset (learning set), an
MR-Sort with possibly non-monotone criteria. The challenge is that this inference
problem is already known to be difficult with monotone criteria, see [Leroy et al., 2011].

Before exposing our contributions, we first describe in what follows how we can
formalize non-monotone criteria in an MCDA context. More precisely, we considered
single-peaked and single-valley criteria.

Let us denote Xi the finite set of possible values on criterion i, i ∈ N = {1, . . . , n};
we suppose w.l.o.g. that Xi = [mini,maxi] ⊂ R. In an MCDA perspective, single-
peaked criteria (and single-valley criteria) can be interpreted as “locally-monotone”
criteria, as they are to be maximized (a cost criterion to be minimized, respectively)
below the peak pi, and as a cost criterion to be minimized (a gain criterion to be
maximized, respectively) above the peak pi (see Def 3.1). We choose to model single-
peaked (single-valley) preferences, as they remain locally monotone and therefore “close”
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to the structured perspective of MCDA. Note also that single-peaked and single-valley
preferences embrace the case of gain and cost criteria: a gain criterion corresponds to
single-peaked preferences when pi = maxi or single-valley preferences with pi = mini,
and a cost criterion corresponds to single-peaked preferences when pi = mini or single-
valley preferences with pi = maxi.

Definition 3.1. Preferences ≽i on criterion i are:

• single-peaked preferences with respect to ≥ iff there exists pi ∈ Xi such that: xi ≤
yi ≤ pi ⇒ pi ≽i yi ≽i xi, and pi ≤ xi ≤ yi ⇒ pi ≽i xi ≽i yi

• single-valley preferences with respect to ≥ iff there exists pi ∈ Xi such that: xi ≤
yi ≤ pi ⇒ pi ≽i xi ≽i yi, and pi ≤ xi ≤ yi ⇒ pi ≽i yi ≽i xi

If we go back to our question, which is about learning MR-Sort parameters with
single-peaked preferences, the first step is to be able to represent a single-peaked prefer-
ence. Indeed, from the previous definition, one can see that the approved sets (Ai) can
not be represented using frontiers between consecutive categories. However, approved
sets should be compatible with preferences, i.e. such that:

{
xi ∈ Ah

i and x′i ≽i xi ⇒ x′i ∈ Ah
i

xi /∈ Ah
i and xi ≽i x

′
i ⇒ x′i /∈ Ah

i

(3.4)

In case of a single-peaked criterion with peak pi, we have:




xi ∈ Ah
i and pi ≤ x′i ≤ xi ⇒ x′i ∈ Ah

i

xi ∈ Ah
i and xi ≤ x′i ≤ pi ⇒ x′i ∈ Ah

i

xi /∈ Ah
i and pi ≤ xi ≤ x′i ⇒ x′i /∈ Ah

i

xi /∈ Ah
i and x′i ≤ xi ≤ pi ⇒ x′i /∈ Ah

i

(3.5)

Therefore it appears that with a single-peaked criterion with peak pi, the approved
sets Ah

i can be specified by two thresholds bhi , b
h
i ∈ Xi with bhi < pi < b

h
i defining an

interval of approved values: Ah
i = [bhi , b

h
i ]. Analogously, for a single-valley criterion

with peak pi, the approved sets Ah
i can be specified using b

h
i , b

h
i ∈ Xi (such that

bhi < pi < b
h
i ) as Ah

i = Xi \ ]bhi , b
h
i [

Given a single-peaked criterion i for which the approved set is defined by the interval

Ah
i = [bhi , b

h
i ], consider the function ϕi : Xi → Xi defined by ϕi(xi) = |xi − b

h
i +bhi
2 |, i.e.,

the absolute value of xi − b
h
i +bhi
2 . Then, the approved set can be conveniently rewritten

as : Ah
i = {xi ∈ Xi : ϕi(xi) ≤ b

h
i −bhi
2 }. In other words, when defining approved sets, a

single-peaked criterion can be re-encoded into a cost criterion, evaluating alternatives
as the distance to the middle of the interval [bhi , b

h
i ], and a frontier corresponding to
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half the width of this interval. Analogously, the same reasoning can be applied to a
single-valley criterion.

With this definition of approved sets, we proposed two approaches for learning the
MR-sort models with single-peaked criteria, described in the following.

An exact approach. We aim to learn the parameters of an MR-Sort model with
potentially single-peaked criteria from assignment examples. Our learning process
consists of the resolution of a Mathematical Integer Program (MIP) based on L, the
set of assignment examples (the learning set). For recall it corresponds to the couple
(A∗, C), where C = {cat(a), ∀a ∈ A∗}; that is each alternative a ∈ A∗ ⊂ X is assigned
to a desired category cat(a) ∈ {1, . . . , p}. Therefore we call the new Inverse MR-Sort
problem Inv-MR-Sort-SP problem since we consider single-peaked/single-valley criteria.

In this problem, we assume not knowing in advance the type of preferences
of criteria involved in the learning process. In addition, as said previously, we
consider single-peaked and single-valley criteria. Moreover, we treat the case with
two categories. Thus, we denote by S the set of single-peaked and single-valley
criteria, and s, s = |S| ≤ n the number of single peaked and single-valley criteria.
We also denote by Q the set of criteria with unknown preference directions, and
q, q = |Q| ≤ n the cardinal of this set. We note IMSSq|n the Inv-MR-Sort-SP
problem with q, the number of criteria with unknown preferences directions, and n

the number of criteria which possibly contains some single-peaked/single-valley criteria.

The resolution process will take as input a learning set containing assignment ex-
amples and computes:

• the nature of each criterion (either cost, gain, single-peaked, or single-valley cri-
terion),

• the weight wi attached to each criterion i ∈ N , and an associated majority level
λ,

• the frontier between category Ch and Ch+1, i.e. the value bhi if criterion i is a
cost or a gain criterion, and the interval [bhi , b

h
i ] if criterion i is a single-peaked or

single-valley criterion.

The technical details of the MIP are described in [Minoungou et al., 2022]. Finally,
experiments on randomly generated instances give us the following insights. Although
exact methods are typically computationally intensive, the computation time is
relatively affordable for medium-sized models (less than 3 minutes for 200 alternatives
in the learning set and up to n = 9 and q = 4 in the model when the timeout is set to
1 hour). The computation time could be reduced as our experiments were performed
with a limited number of threads set to 10. Moreover, the algorithm can restore
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accurately new assignment examples based on the learned models (0.93 on average
up to 9 criteria) and remains relatively efficient regarding the number of criteria with
unknown preference directions. Finally, the restoration rate of criteria preference
direction correlates with such criteria importance in the model. The preference
directions of criteria with importance below 1

2n are the most difficult to restore. These
results are valid with a fixed-size learning set (200).

Our experiments give good results, except they are limited by the model’s size, which
becomes rapidly intractable (200 alternatives, four criteria). Experiments suggest that
the correct restoration of criteria preference directions requires datasets of significant
size. To account for this, we follow a heuristic-based approach which is tractable with
large datasets. See the following point.

A heuristic-based approach. To cope with the tractability problem of the exact
approach, a heuristic approach is proposed, which is an adaptation of the evolutionary
metaheuristic of [Sobrie et al., 2013] (sorting into two categories). The tricky point,
which requires adaptation, is to evolve not the level of the limit profile but the two
extremities of the interval of approved values. In other terms, we assume that the
directions of the criteria (monotonic or non-monotonic) are known in advance, and the
“acceptable” values of the categories are in the form of intervals. The goal is to learn
the values of the profile intervals [bi, bi]).

Two versions are proposed. The first consists of randomly and successively learning
the first and then the second interval value of the profiles of single-peaked criteria.
The second variant consists in learning both interval values of single-peaked criteria
simultaneously. We refer the reader interested to [Minoungou, 2022] for the technical
details.

The result of the experiments (on artificial instances) is that the two variants lead to
approximately equal classification qualities. The second variant leads to computation
times that increase strongly with the size of the learning set. The rest of the experiment
is therefore carried out with the first variant. The results are convincing both on free
noise data and noisy data. The algorithm is also applied to ASA1 data [Lazouni et al.,
2013], where the range of values approved for the “glycaemia” criterion seems to be well
detected. Two real datasets, from the UCI Repository 2 [Cortez et al., 2009], relating
to the assessment of wines by experts are also dealt with; the wines being described
by some of their chemical characteristics. The classification quality of the algorithm
is comparable to that obtained with a Support Vector Machine (SVM) technique (for
expert assessments partitioned into two categories in three different ways). This result
seems encouraging for the rest of our work on non-monotone data.

1ASA stands for “American Society of Anesthesiologists”.
2https://archive.ics.uci.edu/ml/datasets/wine

https://archive.ics.uci.edu/ml/datasets/wine
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3.5 Summary

Preference handling and elicitation are crucial in many computer science domains,
including recommender systems, interface customization and personal assistants [Peint-
ner et al., 2008]. Our research works in this line seek to advance state-of-the-art with
new tools borrowed from AI (Boolean-based formulations) and tackle new problems,
such as learning with non-monotone preferences.

Finally, in addition to NCS and its variants, we have considered other models and
decision problems. Typically, we were interested in a method based on outranking
relations, called Ranking based on Multiple reference Profiles (RMP) [Rolland, 2013].
The RMP model for ranking alternatives by the strength with which they outrank
some underlying reference points or profiles has been introduced in Rolland [2008,
2013]. It has been axiomatically characterized in [Bouyssou and Marchant, 2013].
Real-world applications can be found in [Ferretti et al., 2018] or [Khannoussi et al.,
2019].

More precisely, we contribute by proposing indirect elicitation procedures for the
S-RMP method (where the importance relation on criteria coalitions is determined
by additive weights), such that a decision-maker provides pairwise comparisons of
alternatives from which the S-RMP preference parameters (weights, reference points,
and the lexicographic order on reference points) are inferred.

We have proposed three different approaches. First, in [Liu, 2016] we formulate the
elicitation of an S-RMP model as a Mixed Integer linear optimization problem (MIP).
In this optimization program, the variables are the parameters of the S-RMP method
and additional technical variables, which enable to formulate of the objective function
and the constraints in a linear form. The aim is to minimize the Kemeny distance (see
[Kemeny, 1959]) between the partial Ranking provided by the decision-maker (i.e. the
comparisons) and the S-RMP ranking. The resolution of this optimization program
guarantees that the elicited S-RMP model best matches the pairwise comparisons in
terms of the Kemeny distance between the comparisons provided by the DM and the
S-RMP ranking.

Second, a meta-heuristic was proposed to indirectly elicit an S-RMP model from
pairwise comparisons in [Liu et al., 2014; Liu, 2016]. Unlike the MIP version, this
metaheuristic does not guarantee that the inferred model is the one which minimizes
the Kemeny distance to DM’s statements. Indeed, the perspective is obtaining an
S-RMP model that fits the decision maker’s comparisons “well” within a “reasonable”
computing time. This metaheuristic is based on an evolutionary algorithm in which a
population of S-RMP models is iteratively evolved.

The algorithms mentioned above suffer, however, from limitations:
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• both algorithms only consider an additive representation of the criteria importance
relation, which can be restrictive when the interaction between criteria occurs;

• the MIP-based approach implies computational difficulties in dealing with
datasets whose size corresponds to real-world decision problems

• the heuristic approach is fast but cannot always restore an S-RMP model com-
patible with a set of comparisons whenever it exists.

To circumvent these limitations, we proposed to rely on SAT/MaxSAT formulations
which are computationally efficient to tackle the learning task of the parameters of an
RMP model. Our experimentation has addressed a real case study, showing that the
approach is feasible also when applied to real data sets. This work is not described
in this manuscript. For more detail, we refer the reader to [Belahcene et al., 2018c, 2022]

Now, our ambition is to continue to advance this line of research by deepening
certain questions, exploring new decision models or even looking for new devices by
taking advantage, for example, of the benefits of machine learning techniques in terms
of efficiency and capacity to process large Dataset. See Chapter 5 for a discussion.



Chapter 4

Supporting Decisions: a Panel of
Explainability Tools

In the previous chapter, we addressed and summarized our contributions regarding
providing efficient tools to learn preference models from the learning set to represent
the decision-maker judgment faithfully. Establishing such a model will allow deriving
recommendations to answer the decision-maker’s problem. To enhance the trust of the
DM towards these recommendations, we investigated the question of how and what
supporting evidence to provide to justify such recommendations. One of the difficulties
of this question is that the relevant concept of an explanation may differ depending on
several aspects (for instance, the target audience, the form of the explanations). This
chapter is devoted to summarizing our contributions to this topic.

4.1 Explainable Artificial Intelligence: Positioning

In recent years we have witnessed the emergence of new questions and concerns re-
garding AI-based systems. A new field under the name of “eXplainable AI (XAI)” has
emerged [Gunning, 2017], with the mission of enlightening end-users on the function-
ing of these systems and providing answers to the “why” question. More precisely, the
DARPA, at the origin of this buzz word, gives the following definition:

“provide users with explanations that enable them to understand the sys-
tem’s overall strengths and weaknesses, convey an understanding of how it
will behave in future or different situations, and perhaps permit users to
correct the system’s mistakes”.

Moreover, the increasing need for AI explainability has also prompted governments
to introduce new regulations. The most famous one is the General Data Protection
Regulation (GDPR), which was introduced by the European Union in 2016 and has
been enforced since 20181. Since then different works were dedicated to analyzing
this requirement from a legal point of view [Goodman and Flaxman, 2017; Wachter
et al., 2017]. Finally, even if we are witnessing an explosion of work bearing interest
in this question of explainability, notably in the field of Machine Learning (see, for

1
European Council (2016). The general data protection regulation.
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example, [Biran and Cotton, 2017; Guidotti et al., 2019; Mohseni et al., 2018; Barredo
Arrieta et al., 2020], to cite a few), this question is not entirely new and goes back
to expert systems [Swartout, 1983; Gregor and Benbasat, 1999], and since then many
works have emerged. These works investigate a variety of issues, such as: generating
and providing explanation [Carenini and Moore, 2006; Nunes et al., 2014]; identifying
what the desirable features of an explanation are from the point of view of its recipient
[Herlocker et al., 2000; Tintarev, 2007; Mohseni et al., 2021]. More recently, Miller
[2019] discussed such issues from the point of view of philosophy, psychology, and
cognitive science.

Finally, the concept of explanation in Artificial Intelligence (AI) may be described
according to several key characteristics, including the target audience: end-user,
domain expert, knowledge engineer, etc. [Barredo Arrieta et al., 2020; Mohseni et al.,
2021], the scope: local vs global [Wick and Thompson, 1992; Doshi-Velez and Kim,
2017; Liao et al., 2020; Mohseni et al., 2021], the type: contrastive, counterfactual,
etc. [Lipton, 1990; Miller, 2019; Gupta et al., 2022; Chandrasekaran et al., 1989],
the trigger : action on a graphical interface, asking predefined textual questions,...
[Swartout and Smoliar, 1987; Cashmore et al., 2019] and the form of the explanations:
visual (images, graphs, etc.), verbal (template texts, naturally generated texts, etc.)
[Simonyan et al., 2014; Mohseni et al., 2021; Poli et al., 2021]. It is not our ambition
to make state of the art or discuss XAI’s different works, definitions, or contributions.
We refer the reader interested to the extensive literature on the subject. Our message
is that the concept of explanation cannot be unique, and we cannot claim to have a
generic explanation common to all applications and users.

Our work is part of the ambition of building systems accountable for their deci-
sions. In decision-aiding, the task is difficult because this accountability demand may
require the system to explain an internal reasoning process built during the interac-
tion with the user. In particular, the system may have inferred some preferences of
the user before using a specific model, which is considered adequate. As a result, such
an explanation is prone to be challenged and even contradicted, leading to the revi-
sion of the recommendation rather than a failure of the process (see Chapter 5 for a
discussion on the issues related to revision and challenging an explanation). We investi-
gated the question of explainability within different domains: Multiple Criteria Decision
Aiding [Belahcene, 2018; Amoussou, (in progress); Ouerdane, 2009], Rule-based systems
[El Mernissi, 2017; Baaj, 2022; Baaj et al., 2021] and more recently optimization systems
[Lerouge, (in progress)]. As we have chosen to focus this document on contributions re-
lated to MCDA, we will not detail in this chapter our contributions within the two other
domains (see Chapter 5 for a brief discussion on our ongoing work on explainability for
optimization systems).
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Explainability in MCDA. In this context, our main concern is developing principle-
based approaches and cognitively bounded models of explanations for end-users. By
principle-based approach, we mean that each explanation is attached to a number of
well-understood properties of the underlying decision model. By cognitively bounded,
we mean that the statements composing an explanation will be constrained to remain
easy to grasp by the receiver (decision-maker). More generally, we seek to answer the
following question:

“Given a decision model and a set of preference information, is there a
principled way to define a simple complete explanation for a decision?”

To answer the previous question, in our various works, we essentially consider the
following ingredients:

• The decision problem. We have devoted our work to studying and constructing
explanation patterns for different decision problems: choice, pairwise comparison
and assignment (see Chapter 2). Indeed, as the requirements vary significantly
from situation to situation and from decision-maker to another, we do not be-
lieve in providing a unique type of explanation. Under such a perspective, we
considered different decision models: weighted sum, additive utility, and the Non-
Compensatory Sorting model (see Chapter 2).

• The collected (expressed) Preference Information (PI). Preference information, as
we have seen in Chapter 2, is the essence of the decision problem. It represents the
information provided by the decision-maker and is, therefore, an essential element
both in the specification of the aggregation model and in the construction of the
explanation.

• The explanation language. We aim to provide a formal language and reasoning
machinery to support (explain) the output of a decision model. We build on the
notion of argument schemes, that are stereotypical patterns of reasoning, which
are used as presumptive justification for generating arguments. Each scheme is
associated with a set of critical questions, which allow one to identify potential
attacks on an argument generated by the scheme [Walton, 1996; Atkinson and
Bench-Capon, 2021].

In other terms, we can see a scheme as an operator tying a sequence of statements,
called the premise, satisfying some conditions, into another statement called the
conclusion. As we deal with preferences, argument schemes derive new preferences
from previously established ones. As we shall see, in most of our proposals, an
explanation takes the form of a pair ⟨premises, conclusion⟩, such that the premises
are “minimal” and support the explanation.
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• The approaches or techniques to compute explanations. To identify such
patterns, and depending on the situations, we have used different approaches and
techniques, from mathematical programming to logic-based tools (SAT/MaxSat
formulation, MUS).

Finally, in the different works we have carried out towards the formalization of the
concept of explanation, we have considered various aspects in producing explanations
when possible. More precisely, we were interested in:

• Computation: How difficult is it to produce an explanation? We expect this
question to require notions and tools from the field of Computational Complexity.

• Simplicity: Although they are of a formal nature, the explanations produced
should eventually be presented to humans. Thus, Can we keep the explanations
simple enough? Neither natural language generation nor in vivo experimentation
belong to the scope of our contributions, so the complexity of explanations shall
be assessed through proxies, such as the length or number of elements that make
up the explanation.

• Completeness: Can we explain every ‘true’ result, that can be deducted from the
preference information and the model?

• Soundness: Could we explain ‘false’ results, claiming the impossibility of an
event that could happen or the possibility of an event that cannot happen?

4.2 Explaining Recommendations Stemming from MCDA
Models

While elicitation describes operations that formalize the knowledge of preferences, ex-
planations focus on establishing a relation between the obtained preference model and
the user (decision-maker). This chapter tells the story of our different works on ex-
plainability in the context of multiple criteria decision aiding. The work presented here
results from long collaborations with several colleagues and PhD students [Belahcene,
2018; Amoussou, (in progress)]. Collaborations that go back to my PhD thesis [Ouer-
dane, 2009]2. The results of these different collaborations for different decision problems
and models are summarized in Table 4.1.

In the rest of this chapter, we have chosen to present the various contributions
through examples and limit the technical details to ease the understanding. Readers
interested in the technical details are invited to consult published articles attached to
each contribution (see Appendices C).

2That’s to say that it’s been a long time...!
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Decision Problem Model Reference

Choice Weighted Majority [Labreuche et al., 2011]
Additive Utility [Labreuche et al., 2012]

Pairwise Comparison Additive Utility [Belahcene et al., 2019] [Belahcene et al., 2017a]
Sorting NCS [Belahcene et al., 2018b], [Belahcene et al., 2017b]

Table 4.1: Our contributions for explainable MCDA

4.2.1 Explaining a recommended choice

Our first contributions for explaining recommendations stemming from MCDA model
concern explaining a recommended choice. These works result from collaborations with
Christophe Labreuche (Thales Research and Technology) and Nicolas Maudet (LIP6,
Sorbonne Université).

The decision model we rely on is based on the Weighted Condorcet principle: options
are compared in a pairwise fashion, and an option a is preferred to an option b when
the cumulated support that a is better than b outweighs the opposite conclusion. We
proposed two different approaches for explaining a recommended choice with different
assumptions: (i) a single value for the weight vector (see Section 4.2.1.1), and (ii) a set
of vectors compatible with the PI (see Section 4.2.1.2).

4.2.1.1 Explanation when PI is complete

In this work, we seek to provide simple but complete explanations for the fact
that a given option is a Weighted Condorcet Winner (WCW)3, by considering two
types of PI: (i) the importance of the criteria, and (ii) the ranking of the different
options (linear orders). To illustrate the problem, let us consider the following situation:

Example 4.1. [Labreuche et al., 2011]

There are 6 options {a, b, c, d, e, f} and 5 criteria {1, · · · , 5} with respective
weights as indicated in the following table. The (full) orderings of options must
be read from the top (first rank) to the bottom (last rank).

3Of course, a strong assumption here is that a WCW exists. This assumption is removed in the
next section.
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criteria 1 2 3 4 5

weights 0.32 0.22 0.20 0.13 0.13

ranking c b f d e

a a e f b

e f a b d

d e c a f

b d d c a

f c b e c

In the previous situation, option a is the WCW, but it does not come out as an
obvious winner, hence the need for an explanation. Of course, a possible explanation
is always to explicitly exhibit the computations of every comparison, but even for
a moderate number of options, this may be tedious. Thus, a tentative “natural”
explanation that a is the WCW would be as follows:

Example 4.2. (Ex. 4.1 Cont.)

• First consider criteria 1 and 2, a is ranked higher than e, d, and f in both,
so is certainly better.

• Then, a is preferred over b on criteria 1 and 3 (which is almost as important
as criterion 2).

• Finally, it is true that c is better than a on the most important criterion,
but a is better than c on all the other criteria, which together are more
important

Of course, our aim was not to produce such natural language explanations but to
provide the theoretical background upon which such explanations can later be gener-
ated. Thus, to construct such an explanation, we have considered different ingredients
regarding both the expression of the preferences among options and the weights of crite-
ria. These ingredients correspond to the elementary chunks that we allow being used in
the formulation of the explanation to meet the need for intelligible, relevant and cogni-
tively simple explanations. On the one hand, we need statements to express preferences:
a set of basic preference statements (a preference between two options regarding a given
criterion), a set of factored preference statements (preference of an option over a subset
of options on a given criterion, or preference of an option over a subset of options on a
subset of criteria), and a set of importance statements (to specify the weight of a crite-
rion). Moreover, we may have different types for each preference statement: negative
(against the WCW), positive (in favor of the WCW) and neutral. These different types
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are illustrated in Example 4.3.

Example 4.3. (Ex. 4.1 Cont.)

Basic preference statements: [1 : c ≻ a] (negative), [1 : c ≻ f ] (neutral),
[1 : a ≻ e] (positive).

Factored preference statements: [1 : c ≻ a, e] (negative), [1, 2 : e ≻ d] (neutral),
and [1, 2 : a ≻ d, e, f ] (positive).

On the other hand, we seek for a complete and minimal explanation. By complete,
we mean that if we consider a subset of preference and weight statements, the decision
remains unchanged regardless of how this subset is completed. For simplicity, we have
considered a cost function with different properties (neutrality, monotony, additivity),
in which we try to capture the simplicity of the statement as the easiness for the user
to understand it. Let us consider the example again.

Example 4.4. (Ex. 4.1 Cont.)

A not complete explanation (it does not provide enough evidence that a is pre-
ferred over c):

E1 = [1, 2 : a ≻ d, e, f ], [1, 3 : a ≻ b], [2, 3 : a ≻ c]

A complete explanation:

E2 : [1 : a ≻ e, d, b, f ], [2 : a ≻ f, e, d, c], [3 : a ≻ b, c, d], [4 : a ≻ c, e], [5 : a ≻ c]

In the previous example, one can note that E2 is certainly not minimal since
(for instance) the same explanation without the last statement is also a complete
explanation whose cost is certainly lower (by monotonicity of the cost function). Now
if the cost function is sub-additive, then a minimal explanation cannot contain (for
instance) both [1, 2 : a ≻ d, e] and [1, 2 : a ≻ f ]. This is so because then it would be
possible to factor these statements as [1, 2 : a ≻ d, e, f ], all other things being equal, to
obtain a new explanation with a lower cost.

Among others, an interesting result from this work is that minimal explanations
are free of negative statements, and neutral ones can be ignored. We proposed a
polynomial computation of a minimal element of the explanation with the basic
preference statements. However, the additional expressive power provided by the
factored statements comes at a price when we want to compute minimal explanation,
as it is stated by Proposition 4.1.
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Proposition 4.1. ([Labreuche et al., 2011]) Deciding if (using factored statements)
there exists an explanation of cost at most k is NP-complete. This holds even if criteria
are unweighted and if the cost of any statement is constant.

The previous result shows that no efficient algorithm can determine minimal expla-
nations when the cost function implies minimizing the number of factored statements
(unless P=NP). This is true unless we restrict to specific classes of cost functions; thus,
the problem may turn out to be easy. In this work, we discussed two cases. First, when
the cost function is super-additive, it is sufficient to look for basic statements. Second,
when it is sub-additive, an idea could be to restrict the attention to statements which
exhibit winning coalitions. In this case, the problem can be turned into a weighted set
packing, for which the direct Integer Linear Program formulation would be sufficient for
a reasonable size of options and criteria sets. Finally, enforcing a complete explanation
implies a relatively large number of items in the explanation. However, in most cases,
factored statements allow for obtaining short explanations.

4.2.1.2 Explanations when PI is incomplete

A decision model is specified from some PI provided by the decision-maker during
an interview, related to comparing the options on each criterion and the weights of
the criteria. However, the PI is insufficient to specify the model most of the time. In
particular, some options may be incomparable on some criteria for the decision-maker.
Moreover, the elicitation process (see Figure 2.1) will not result in a single value of the
weight vector but rather in a set of vectors that are compatible with the PI [Greco
et al., 2010]. Then, an option a is said to be necessarily preferred to another one b if
the first option is preferred to the second one (noted a ≻ b) for all weight vectors that
are compatible with the PI and for all ordering of the options on the criteria that are
compatible with the PI [Greco et al., 2010].

Considering this incompleteness of PI, we investigated the question of searching
and defining a simple explanation for a recommended choice. Thus, we are looking to
justify that a given option is a weighted Condorcet winner (WCW), i.e. this option is
necessarily preferred to each other option, whatever the weight vector compatible with
the PI. However, instead of the first case, if the WCW does not exist, we will consider
the Smith set [Fishburn, 1977]. It is the smallest set of alternatives such that all the
elements in this set beat the elements outside it. When the WCW exists, the Smith
set is reduced to the WCW.

As in the previous case, we need information regarding the ranking of options and
the relative strength of coalitions of criteria. For illustration, let us take Example 4.5,
where option a is the WCW and the unique dominating option (that beats all the other
options).
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Example 4.5. [Labreuche et al., 2012]

There are 7 options {a, b, c, d, e, f, g} and 4 criteria {1, 2, 3, 4}. The partial orderings
(noted ≻1,≻2,≻3,≻4) of options over the 4 criteria are depicted in Figure 4.1. The PI
regarding the importance of the criteria is composed of the following three statements:

• 1 together with 3 are more important than 2 and 4 together;

• 2 and 3 together are more important than criterion 1 taken alone;

• 4 is more important than criteria 2 and 3.

c

a

b

d e f

g

≻1

g d

a

fc

b e

≻2

d

a

b

c

f

g

e

≻3

b

a

d

c f

g e

≻4

1 3 ≻ 2 4
2 3 ≻ 1
4 ≻ 2 3

w1 + w3 > w2 + w4

w2 + w3 > w1

w4 > w2 + w3

Figure 4.1: Partial preferences ≻1,≻2,≻3,≻4 over the criteria 1,2,3,4.

Now, the “technical” reasons why a is the WCW are depicted in Ex. 4.6.

Example 4.6. (Ex.4.5. Cont.)

(i) a dominates e and f on all criteria,

(ii) a ≻ b because it is better on the coalition 123,

(iii) a ≻ d because it is better on the coalition 14,

(iv) a ≻ g because it is better on the coalition 134,

(v) a ≻ c because it is better on the coalition 234.

First, to express such explanations, we need two types of statements. First, a set
of preference statements (noted S) (the comparison of an option over another one on
a given criterion). Second, a set of comparative statements (noted V) (stating the
importance among two disjoint subsets of criteria). Therefore a PI is a pair ⟨S, V ⟩ with
S ⊂ S and V ⊂ V.

It is also important to note that expressing a comparative statement (e.g. 13 ≻ 24
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) amounts to expressing a constraint (w1 + w2 > w2 + w4) on the feasible region of
the feasible weight vector attached to the criteria (see Example 4.5). Moreover, the
information provided by the decision-maker is supposed to be “rational”. Specifically,
S constitutes a partial order (reflexive, antisymmetric, transitive, but not complete),
and V is assumed to be consistent4.

Example 4.7. (Ex.4.5. Cont.)

Given the PI of Example. 4.5, V = {[13 ≻ 24], [23 ≻ 1], [4 ≻ 23]}.
We have for instance, [c ≻1 d] ∈ S, [b ≻2 a] /∈ S, and ⟨0.2, 0.1, 0.15, 0.55⟩ is not
a compatible vector of weights (violation of the first constraint).

Second, let us analyze the reasons depicted in Example 4.6. One can notice that
these reasons vary in terms of the effort required to understand them: (i) is trivial,
and (ii), (iii) and (iv) are reinforcement of some statements of the PI. For instance,
(ii) quickly follows from the fact that 1 and 3 are already more important than 2 and
4. On the other hand, the underlying justification for (v) is more complex. How to
deduce from the PI the statement that coalition 34 beats coalition 12? In other terms,
imagine that in the ordering ≻2, c is now preferred to a. Is it true that a ≻ c because
it is supported by the coalition 34?

Therefore, it appears that dominated option can be partitioned into different
classes, capturing the fact that some of them are obviously dominated, some are
clearly dominated, while others are close to a tie with some elements of the dominating
set. These different situations will be called by: unanimous, large majority and weak
majority. The first case does not require any specific explanation. The second is a
clear-cut situation that may need only a rough explanation. In the last case, the
decision is unclear, and a detailed explanation is required. In the following, we will
focus our development mainly on this case (for more details, see [Labreuche et al., 2012]).

To construct the explanation for the weak majority case, we can try to apply the
approach presented in Section 4.2.1.1, where providing an explanation amounts to sim-
plifying the PI provided by the decision-maker (here, the pair ⟨S, V ⟩)) as long as the
same decision holds. However, as we shall see with Example 4.8 it is not enough to
provide a convincing explanation.

4In fact, many works with explanation in AI address the problem of exhibiting subsets of constraints
provoking an inconsistency, see, e.g. [Junker, 2004]
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Example 4.8.

Consider five criteria and four options a, b, c, d. Assume that
V = {[1 ≻ 23], [34 ≻ 15], [2 ≻ 5]} and S = {[a ≻1 b], [a ≻4 b], [a ≻5 b], [a ≻2

c], [a ≻3 c], [a ≻4 c], [a ≻1 d], [a ≻3 d], [a ≻4 d], [b ≻3 d]}.
Let V ′ = {[1 ≻ 23], [34 ≻ 15]} and S′ = S \ {[b ≻3 d]}.

Indeed, in Example 4.8, the pair ⟨S′, V ′⟩ is the minimal complete explanation, in
the sense of set inclusion, justifying that a is the WCW. For instance, in the produced
explanation, we have “a ≻ d because a is better than d on the coalition 134”. However,
from only V ′, it is unclear why 134 is a winning coalition! Nevertheless, it clearly
follows from [13 ≻ 25]. Hence reduction over V does not simplify the explanation!
In other words, we observe that to support a WCW; we may use new comparative
statements (e.g. 134) deduced from the set of comparative statements of the PI.
Therefore, explaining a WCW in this situation amount to not only proving that an
option is certainly a WCW but also being able to explain why the supporting coalition
is indeed a winning one.

Thus, to construct a simple and complete explanation when the PI is incomplete,
we need two components, (i) explaining why an option is a WCW (we build S′ by sim-
plifying S, in the sense of set inclusion) and (ii) explaining why the supporting coalition
is a winning one. For the latter we characterized an operator cl such that cl(V ) is
the set of comparative statements that can be deduced from V . This characterization
shows that all comparative statements deduced from V result from a linear combination
(with integer coefficients) of the constraints in V and of the constraints on the sign of
the weights (we rely on the Farkas Lemma for this characterization). To illustrate this
idea of linear combinations, consider Example 4.9.

Example 4.9.(Ex. 4.8. Cont.)

(i) [14 ≻ 23] ∈ cl(V ) follows from [1 ≻ 23], by monotonicity.

(ii) [4 ≻ 25] ∈ cl(V ) follows from [1 ≻ 23] and [34 ≻ 15], because

w1 > w2 + w3

+ w3 + w4 > w1 + w5

= w1 + w3 + w4 > w1 + w2 + w3 + w5

= ��w1 +��w3 + w4 > ��w1 + w2 +��w3 + w5

Moreover, by examining the elements belonging to cl(V ), we noticed that it was
possible to organize the latter into four nested sets. These sets correspond to difficulty
classes in justifying an element from V . More precisely, we can distinguish, from the
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lowest to the highest complexity, comparative statement: (i) cl0(V ) contained directly
in the PI (no underlying complexity for the user, e.g. [23 ≻ 1] in Ex. 4.5), (ii) cl1(V )
that can be deduced from V only using monotonicity (e.g. [4 ≻ 3]), (iii) cl2(V )
that can be deduced from V only using summation and monotonicity conditions (e.g.
[4 ≻ 1]), and (iv) cl3(V ) that are in cl(V ) (e.g. [34 ≻ 21]). Therefore, the target
is to construct an explanation, when it is possible, with the smallest number of the
last category and to build on the less complex ones. In the end, an efficient algorithm
is provided to compute the minimal explanation by considering mainly three steps:
determining the comparative statements of the different complexity classes (clj(V ),
j ∈ {1, 2, 3}), identifying all the preference statements (S′ ⊂ S) that justify the
WCW such that V(S′) ⊂ cl(V ), and finally determining elements of S′ such that
the explanation is minimal in the sense of the order that depicts the complexity of
understanding why a set of comparative statement derives from V .

To conclude, a distinctive feature of our approach lies in the decision model, taken
together with the fact that the PI may be largely incomplete. In this context, the
precise weights attached to attributes cannot be exhibited, and the challenge is to
provide convincing (complete) explanations despite this constraint.

4.2.2 Explaining pairwise comparisons

We explore the problem of providing explanations for pairwise comparisons based on an
underlying additive model. We follow a step-wise approach and provide explanations
that take the form of a sequence of preference statements. The explanations we
aim for are thus contrastive, in the sense that the decision to be explained compares
two alternatives, and exact (as opposed to heuristic) in the sense that we provide
guarantees that the explanation produced is correct concerning the underlying model.
It is also common to distinguish between local explanations (when they focus on a
specific recommendation) and global explanations (when they deal with the model in
general): our approach is globally faithful to the model and locally relevant to the
pairwise comparison to be explained. Let us consider the following illustrative example
to make things more concrete.

Example 4.10. (Motivating Example)

We consider seven abstract criteria (a, b, c, d, e, f, g), each one described on bi-
levels scales, which facilitate the symbolic representation of alternatives (e.g.
hotels). Each alternative can be represented as its evaluation vector (s1 =

(✗,✗,✓,✓,✓,✓,✓)) or more succinctly by the subset of criteria on which it
is evaluated positively (s1 = {cdefg}). Moreover, for each criterion, the value
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symbolized by ✓ is more desirable than the value symbolized by ✗ (e.g. breakfast
included is better than not).

a b c d e f g

s1 ✗ ✗ ✓ ✓ ✓ ✓ ✓

s2 ✓ ✗ ✗ ✓ ✗ ✗ ✗

The aggregation of criteria is done using an additive score function, assigning
weights to the different criteria. The function is as follows:

w = ⟨128, 126, 77, 59, 52, 41, 37⟩

For example, the score of s1 is thus equal to score(s1) = 77+59+52+41+37 = 276

while that of s2 is: score(s2) = 128 + 59 = 187. It is also useful to encode the
comparison of two alternatives as a vector {−1, 0,+1}n of arguments in favour
(pro) or against (con) s1, or neutral (neu). In our example, pro = {c, e, f, g},
con = {a}, while neu = {b, d}

Explanations can take many different forms. We list different possible explanations
for the fact that s1 is preferred to s2:

(i) the first approach (model disclosure) could be to provide the full score calculation
for both options, as illustrated above. However, noticing that d is a neutral
argument satisfied both by s1 and s2, we could omit it and provide the summation
of pro arguments vs con arguments.

(ii) the counter-factual approach seeks minimal modification in the input that would
change the outcome. For instance, we could state that, if s2 had satisfied b, s2
would instead have been recommended over s1. Or (affecting the other alternative
this time), if s1 had not satisfied cd.

(iii) Following a prime implicant approach, we could produce sufficient arguments to
explain the decision. In our case, two possible explanations could be given: (1)
given that bd are neutral arguments, the pro arguments cef are sufficient to
overcome any set of con arguments. In particular, this shows that the decision
would remain the same even if g was a con argument. Moreover, (2) given that
b is a neutral argument, the pro arguments cefg are sufficient to overcome any
set of con arguments. In particular, this shows that the decision would remain
the same even if d was a con argument.

(iv) following a step-wise approach, we could exhibit a collection of statements aiming
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at proving the decision. For instance, we could state that cdefg is preferred over
ac, and that ac is preferred over ad, so that our conclusion should hold, following
a transitive reasoning. Alternatively, using a different logic, we could state that
cd is preferred over a, while efg is preferred over d, which altogether justifies our
decision.

Our main idea is to break down the recommendation into “simple” statements pre-
sented to the explainee. The whole sequence of statements should formally support
the recommendation. We build on the notion of argument schemes, that is, an op-
erator tying a sequence of statements called premise, satisfying some conditions, into
another statement called the conclusion [Walton, 1996]. As we deal with preferences,
argument schemes are ways of deriving new preferences from previously established
ones. More precisely, we consider a set of items [m], and we abstractly refer to states,
as subsets of items, i.e. elements of 2[m]. A comparative statement is a pair of states
(A,B) ∈ 2[m]× 2[m], interpreted as a preference statement–‘A is preferred to B’. Thus,
our schemes operate on the same set of premises – finite sequences of comparative state-
ments, represented as bracketed lists – and the same set of conclusions. We shall denote
an arbitrary scheme s as:

[(A1, B1), . . . , (Ak, Bk)]
s−→ (A,B)

More precisely, we propose to develop a principle-based and cognitively bounded
model of step-wise explanations. Our view of explanations as cognitively bounded
deductive proofs is reminiscent of the bounded proof systems proposed in the context
of description logic [Horridge et al., 2013; Engström and Abdul Rahim Nizamani,
2014]. Also, a similar step-wise approach has been studied in the context of constraint
satisfaction problems [Bogaerts et al., 2021]. Finally, a close setting the one of
explanations based on axioms have been advocated in computational social choice
[Cailloux and Endriss, 2016; Procaccia, 2019]. In particular, the recent work of [Boixel
et al., 2022] also exploits axioms studied in voting theory to produce explanations for
collective decisions but applied to a different setting (voting) and using different proof
techniques (tableau methods).

As our example illustrates, there can be different ‘logic’ at play when combining
statements. To account for that we proposed a number of argument schemes in the
context of a pairwise comparison based on a weighted sum model (see Figure 4.2, where
an arrow from scheme1 to scheme2 denotes that all instances satisfying scheme2 also
satisfy scheme1, but not the converse.).

By principle-based approach, we mean that each scheme is attached to a number
of well-understood properties of the underlying decision model (see Table 4.2) that we
make explicit. Obviously, an additive preference satisfies both the transitive and cancel-
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decomposition

reduced transitive

III-reduced transitive

covering

transitiveceteris paribus

Figure 4.2: Relationships between argument schemes

lation properties. The resulting calculus is provably correct. By cognitively bounded, we
mean that our statements will be constrained to remain easy to grasp by the explainee.
This has the consequence of making the resulting calculus not complete. However, we
explore this issue in detail and provide several elements showing that our approach is
satisfactory in terms of empirical completeness (see the discussion at the end of this
section).

Requirements for
Scheme Properties correctness

decomposition commutative additive
reduced transitive transitive + cancellation
III-red. transitive III transitive + cancellation

covering commutative, III transitive + cancellation
transitive transitive

ceteris paribus cancellation

Table 4.2: Structural properties of the reasoning schemes.

Moreover, we want an explanation to be “easy to process” by the explainee. Thus,
it requires specifying the relative difficulty of a premise and a conclusion. We introduce
a specific model allowing us to derive the relative difficulty of statements, where this
difficulty is purely syntactic and directly results from the number of items involved
in the comparative statement. Thus, we define what we call difficulty classes of
comparative statements by putting upper bounds on the difficulty: for all integers p, q
from 0 to m, let ∆(p, q) = {(A, B) ∈ 2[m] × 2[m] : |A| ≤ p, |B| ≤ q}. These classes
specify the set of atomic elements considered self-evident and legit to be used as steps
of an explanation for the considered explainee. In the context of explaining preferences
between a subset of desirable items, some values of the pair (p, q) are of specific interest:
∆(m,m) are unrestricted statements; comparative statements in ∆(m, 0) represent
Pareto dominance statements; comparative statements in ∆(1, 1) can be interpreted
as swaps [Hammond et al., 1998], representing the exchange of one criterion against
another; those in ∆(1,m) or in ∆(m, 1) represent a single item stronger or weaker than
a subset of others, respectively considered as a pro or a con argument. For instance,



62 Chapter 4. Supporting Decisions: a Panel of Explainability Tools

in the context of hotel comparisons, an argument in ∆(1, 1) could be “we prefer to
have free breakfast then free wifi access”. An argument in ∆(1, 2) could be “We prefer
to have a swimming pool than free breakfast and wifi”. To appreciate how difficult
it can be to interpret higher-order arguments, consider arguments in ∆(2, 2). These
could correspond to “free breakfast and wifi access are preferable to having a swimming
pool and being close to the city centre”. We investigate how restraining explanation to
use these classes of simple statements affects the production of an explanation. Some
insights later in this section.

To give an overview of this work, we propose briefly describing only two examples
of schemes, namely the decomposition scheme [Belahcene et al., 2019] and the covering
scheme [Belahcene et al., 2017a]. Moreover, when it is possible and not confusing,
we propose skipping the technical details to give only a high-level overview through
illustrative examples. For more details, we refer the reader to [Amoussou et al., 2022]
We draw the attention of the reader that when we have only transitive schemes and
dominance, we are in the situation of [Labreuche et al., 2012] (see 4.2.1.2).

The decomposition Scheme. Introduced in [Belahcene et al., 2019] and imple-
menting cancellation properties of higher order [Krantz et al., 1971; Wakker, 1989], the
decomposition scheme aims at leveraging the assumed additive property of the pref-
erence relation5. When a preference is additive, preference statements translate into
linear comparisons that can be summed up. Then, the scores of items appearing on both
sides cancel out, sometimes allowing to derive new comparisons. In other words, this
scheme operates by interpreting a Farkas certificate as sets of arguments, pros and cons
for a preference statement, then carving the desired conclusion through a cancellative
property. Consider Example 4.11 for illustration.

Example 4.11. (Decomposition Scheme)

Consider the following decomposition scheme:

[(bc, de), (efg, ac)]
dec−−→ (bfg, ad)

Assuming that the preference ≿ is additive, and that both bc ≿ de and
efg ≿ ac. From the first comparison, we deduce that ωb + ωc ≥ ωd + ωe;
from the second that ωe + ωf + ωg ≥ ωa + ωc. By summation, we derive
ωe + ωf + ωg + ωb + ωc ≥ ωd + ωe + ωa + ωc.

5This decomposition scheme is less general than the so-called syntactic cancellative described in
[Belahcene et al., 2019], as it does not allow for repetition of the conclusion. This has been shown to
reduce expressiveness.
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Then, as it is illustrated in the following by cancelling ωe and ωc on both sides
(this is actually an instance of second order cancellation, because it is performed
across two comparative statements), we obtain ωf + ωg + ωb ≥ ωd + ωa, hence
bfg ≻ω ad.

b �c ≻ d �e

�e f g ≻ a �c

b f g ≻ a d

The Covering Scheme. The covering scheme particularizes both the reduced tran-
sitive and decomposition schemes (see Figure 4.2). In this scheme a list of comparative
statements [(A1, B1), . . . , (Ak, Bk)] supports a conclusion (A,B) if, and only if, the
pros A1, . . . , Ak partition A \B and the cons B1, . . . , Bk partition B \A.

Example 4.12. (Covering Scheme)

Consider the conclusion: (bfg, cde). The premise [(fg, c), (b, de)] constitute a
covering scheme:

[(fg, c), (b, de)]
cov−−→ (bfg, cde)

On the one hand, the scheme formalizes a proof, articulating transitive (tr) and
ceteris paribus (cp) derivations that can be presented to the explainee as a diagram,
such as in Example 4.13, or narratively such as in Figure 4.4 (for hotel comparisons for
instance). On the other hand, the premises can be understood as grouping some cons
with some stronger pros so as to “cover" the cons and can be presented visually to the
explainee, such as in Figure 4.3.

Example 4.13 (Three representations of the Covering Scheme).

fg ≻ c
cp−→ bfg ≻ bc

b ≻ de
cp−→ bc ≻ cde

}
tr−→ bfg ≻ cde

Covering Scheme: proof diagram of Ex. 4.12
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b
d
e

f

g
c

≿

≿

Figure 4.3: Covering scheme: a visual representation of Ex. 4.12

“As, all other things being equal, having free
breakfast and wifi access is preferred to having
a swimming pool (fg, c), and being close to the
city is preferred than having a sports hall and a
low tourist tax (b, de), we get that (bfg, cde)”

Figure 4.4: Covering scheme: a narrative representation of Ex. 4.12

We have investigated the relative expressiveness and computational complexity of
explaining with the reduced transitive and the covering schemes, together with the
choice of atomically simple statements. It results that without any restriction on the
set of atomic statements (∆(m,m)), it is difficult (NP-hard) to decide whether an
explanation exists with these schemes. Regarding the other schemes, while ceteris
paribus scheme is easy, we conjuncture the complexity of decomposition and III-reduced
transitive to be intractable.

Now, when we put syntactic restrictions on the sets of atomic elements used,
∆(1, 1), ∆(1,m), ∆(m, 1), among the results, we state that the covering scheme is
transitive. A similar result has been identified in [Belahcene et al., 2017a] with the
restricted ∆(1, 1), where we have proposed an explanation mechanism that produces
an explanation under the form of a chain of transitive statements, restricted to the
expression of trade-offs between at most m points of view. This approach takes its
inspiration in the even swaps interactive elicitation mechanism [Hammond et al., 1998],
then turns it upon its head – assuming the model is known rather than trying to build
it and expressing mere preference statements rather than asking cardinal information
making an alternative indifferent to another. Thanks to the characterization of the
necessary preference relation [Belahcene et al., 2017a], we showed that, with the
additional assumption of using only two levels on every criterion when collecting
preferential information, sequences of preference swaps of order at most two, ∆(1, 1),
have a term by a term structure that ensures they have a short length (at most half
the number of criteria) and they can be efficiently computed. However, when m ≥ 2,
the problem is difficult. Moreover, although the different schemes may correspond to
alternative explanation strategies, we specifically advocate using the covering scheme
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because it meets some desirable properties of explanations. Therefore, we studied the
empirical completeness of atomic statements (∆(1,m), ∆(m, 1)) using the covering
scheme. With this scheme, we can say that a significant majority of the pairs to explain
are explainable. For example, for m = 6, more than 3 pairs out of 4 are explainable
regardless of the additive linear order considered.

Finally, we note that in [Belahcene et al., 2017a], the explanation of pairwise com-
parison is constructed for a necessary preference relation [Greco et al., 2010], which
makes minimal assumptions while handling a collection of compatible utility functions,
which are impossible to exhibit to an end-user. The problem with such an explanation
is that it is not always easy to construct it; even in some situations does not exist.
Therefore, in [Amoussou et al., 2020; Amoussou, (in progress)], we proposed alleviating
some of the preference-swaps explanation constraints to arrive at what we call a mixed
explanation, where the computation of its components is done through the resolution of
a Mixed Integer Linear Program. These elements belong to both necessary and possible
preference swaps. The possible swaps correspond to a subset of additive utility func-
tions compatible with the preference information. One note that providing a sequence
composed of solely necessary swaps guarantees that the recipient of the explanation
will accept and validate each swap without any doubt, which is not the case with the
possible swaps. However, we believe that using possible swaps offers a way to collect
more additional preference information (valuable in a preference elicitation process) and
thus enrich both the preference information and the necessary relation. The idea is to
rely on the statements involved in the explanation to allow the explainee to accept or
contradict these statements and thus benefit from this feedback to enrich the learning
task and validate the model. Indeed, we think that in a decision support situation, at
a given moment, the initiative should be left to the user to express an opinion when
confronted with the explanation. This idea is discussed more in detail in Chapter 5.

4.2.3 Explaining an assignment

This section is devoted to describing how the theoretical and algorithmic tools described
in Section 3.3.1.2 in order to assess the feasibility of the inverse NCS problem can be
used to support a decision process. The technical details of this work can be found in
[Belahcene et al., 2018b].

More precisely, we address the situation described in Example 4.14 where a
committee meets to decide upon sorting several candidates into two categories (e.g.
candidates to accept or not, projects to fund or not). The committee applies a public
decision process; the outcomes are also public. However, the details of the votes are
sensitive and should not be made available. To what extent can we make the committee
accountable for its decisions?
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We are interested in a general sorting model where candidates are sorted by a jury
N . Each juror e ∈ N expresses binary judgements [Laslier and Sanver, 2010], and
candidates are sorted either to the Good or the Bad category, depending on the
fact that the coalitions of jurors supporting this sorting are strong enough, or not, to
win the decision of the jury.

Example 4.14.

We consider a situation with six candidates X := {a, b, c, d, e, f}, assessed by
a jury composed of five jurors N := {e1

, e
2
, e

3
, e

4
, e

5} with the following
preferences

e
1: a ≻1 b ≻1 f ≻1 e ≻1 c ≻1 d

e
2: e ≻2 b ≻2 c ≻2 d ≻2 a ≻2 f

e
3: f ≻3 a ≻3 b ≻3 d ≻3 e ≻3 c

e
4: d ≻4 a ≻4 c ≻4 e ≻4 f ≻4 b

e
5: c ≻5 e ≻5 b ≻5 f ≻5 d ≻5 a

Adopting the primitives of the Non-Compensatory Sorting model: candidates are
alternatives, jurors are points of view, and we are considering two categories { Bad ≺
Good }. For the NCS model to correctly describe the situation, the decision process

needs to be bounded by some assumptions of rationality.

• Static individual stances. From the personal point of view of each juror, alterna-
tives should be completely preordered by preference. This precludes any incom-
parability between candidates nor dynamics in how each juror appreciates the
candidates.

• Indivividual consistency between preferences and vote. Each juror e ∈ N is al-
lowed to express only a binary judgment on each candidate x ∈ X, which is either
‘approved according to e’ or not. The approved subset of candidates A

e
⊆ X

should be an upset for the preference relation ≿
e
. Hence, there is no pair of

candidates x, x′ ∈ X where x is preferred to x′ w.r.t. ≿
e
, x′ is approved by e but

not x.

• Static collective stance. The set of winning coalitions should remain constant
during the whole decision process. This can be seen as a requirement for the
process to be unbiased.

• Consistent collective stance. The set of sufficient coalitions S ⊆ P(N) should
be an upset for inclusion. Hence, if a coalition is sufficient, any superset of this
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coalition is also sufficient (and if a coalition is insufficient, any subset of it is also
insufficient).

• Latent coalition powers. The set of sufficient coalitions is not assumed to have
any particular structure besides being an upset.

Example 4.15.

Suppose the approved sets are as follows:
A

e
1 := {a, b, f}, A

e
2 := {e, b, c}, A

e
3 := {f, a, b}, A

e
4 := {d, a, c},

A
e
5 := {c, e, b}, corresponding to the three best alternatives according to

the respective points of view (3-approval).

Suppose also the points of view are aggregated according to the simple majority
rule, i.e. B ∈ S ⇐⇒ |B| ≥ 3. Then, the corresponding non-compensatory
model assigns a, b, c to the Good category, and d, e, f to the Bad one.
Hence, α := {(a, Good ), (b, Good ), (c, Good ), (d, Bad ), (e, Bad ),

(f, Bad )}.

We note the same assignment α can be obtained with different sorting pa-
rameters, e.g. approved sets A′

e
1 := {a, b, f},A′

e
2 := {e, b, c, d, a},A′

e
3 :=

{},A′
e
4 := {d, a, c},A′

e
5 := {c} and sufficient coalitions S ′ containing the coali-

tions {e1
,e

2}, {e5} and their supersets.

While the jury as a whole has the power to take decisions, we consider a situation
where it has to account for its decisions. This requirement may take several forms, and
we focus our attention on two specific demands:

• Procedural regularity. Kroll et al. [2017] puts forward that a baseline require-
ment for accountable decision-making–and, therefore, a key governance principle
enshrined in law and public policy in many societies6–is procedural regularity :
each participant will know that the same procedure was applied to her and that
the procedure was not designed in a way that disadvantages her specifically.

• Contestability. An attractive normative principle [Pettit, 1997, 2000] is con-
testability: a democratic institutional arrangement should be such that citizens
can effectively challenge public decisions. The control of the governed on the
government is generally two-dimensional: electoral and contestatory. For reasons
of practical feasibility, administrative decisions are typically under contestatory
control. In this context, a candidate (supposedly) unsatisfied with the outcome

6E.g. by the Fourteenth Amendment in the USA.
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of the process regarding his own classification could challenge the committee and
asks for a justification.

A typical way to address procedural regularity is to require transparency and let
an independent audit agency access all the available information. Transparency could
also be an adequate answer to contestability, provided the decision rule is interpretable
(comprehensible by the persons that need to–here, the contestant). In the context of
jury decisions, transparency is out of the question, as it suffers from several drawbacks:

Sensitive information. In this setting, the ‘details of the votes’ cover two aspects:
(i) the approval of jurors at the individual level; and (ii) the winning coalitions at the
jury level.

These details might be worth considering as sensitive information for several reasons:

• Protecting the jurors from external pressure, including threats or retaliation.

• Protecting the jury and jurors from internal pressure: maybe the approval proce-
dure should be made with secret ballots. Maybe revealing the actual balance of
power inside the jury could exacerbate tensions.

• The details of the approval of each candidate might be considered personal infor-
mation belonging to each candidate and should not be disclosed to third parties.

• Revealing dissension among the jurors might weaken the jury’s authority.

• Revealing the decision rule, or publishing much information about it, would create
a feedback effect with some candidates adopting a strategic behavior to game the
output.

Complexity Leaving the burden of proof on the shoulders of the audit agency, or
worse, of a lone plaintiff, may be too demanding. At the same time, it requires access
to much information–possibly the preferences and the assignment of the whole set of
candidates–and to solve complex combinatorial problems that scale poorly with the
number of candidates. Indeed, we have shown that the Inv-NCS problem is NP-hard
[Belahcene et al., 2018b].

In what follows, we describe how to address the procedural regularity and the con-
testability requirements while paying attention to disclosing as little information as
necessary and providing comprehensible explanations by their recipient.

Addressing overall Procedural regularity with Inv-NCS. The question ad-
dressed here is how observers can be assured that each sorting decision was made
according to the same procedure. Because of this demand, what needs to be proven
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is that α is a positive instance for the Inv-NCS problem (see Section 3.2), i.e. the as-
signment α is a possible outcome for NCS, given the preferences of the jurors over the
candidates.

Should the burden of proof be left to the auditor, the audit procedure could require
either:

i) full disclosure of the preference profile ⟨(X,≿i)⟩i∈N , and the auditor solving the
NP-hard Inv-NCS problem, e.g. using a SAT solver and either of the formulations
ΦC
α or ΦP

α described in Chapter 3, or

ii) full disclosure of the approved sets ⟨Ai⟩i∈N , and the auditor solving the
polynomial-time problem Inv-NCS with fixed accepted sets problem as described
in Chapter 3, Equation 3.3.

Note that the entire disclosure of the decision rule is not an option. It would
require revealing the entire parameter specifying the NCS model and, in particular, the
provision of the set of sufficient coalitions. This is impossible, as the ground truth, i.e.
the rule deciding which coalition is sufficient, is oral at best and most likely implicit.
We consider the jury has black-box access to it, and the external auditor can only guess
the contours of this rule through indirect evidence. It is likely that the investigations
made by the audit agency reveal possible parameters that do not correspond to the
ground truth. If we consider putting the burden of proof on the committee, a third
option can be engineered. We propose to leverage Theorem 3.1 to compute and provide
a certificate of feasibility for Inv-NCS(α) that involves the disclosure of less information,
as illustrated below:

Example 4.16. (Ex. 4.15 Cont.)

If the approved sets of the committee are A
e
1 , . . . ,A

e
5 , then it needs to disclose

some information concerning three points of view in order to prove the assignment
α is consistent with an approval procedure, e.g. :

• according to the first juror e
1:

– b is approved;
– a is preferred to b;
– e is not approved;
– e is preferred to d;

therefore, the procedure is able to positively discriminate a, b from d, e;

• according to the second juror e
2:

– c is approved;
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– b is preferred to c;

– d is not approved;

– d is preferred to f ;

therefore, the procedure is able to positively discriminate b, c from d, f ;

• according to e
4:

– c is approved;

– a is preferred to c;

– e is not approved;

– e is preferred to f ;

therefore, the procedure is able to positively discriminate a, c from e, f .

The following table summarizes the jurors known to discriminate each pair:

Bad
d e f

a e
1

e
1

e
4

Good b e
1

e
1

e
2

c e
2

e
4

e
2

As every pair in {a, b, c} × {d, e, f} is positively discriminated by at least one
member of the jury, the procedure is regular: there is, for each juror individually
and for the jury, collectively, a way of proceeding accordingly to the principles
exposed at hte beginning of this section, and deem {a, b, c} Good and {d, e, f}
Bad .

This manner of arguing that a given assignment is indeed a possible outcome of an
approval sorting procedure has been formalized into an argument scheme (described
formally in [Belahcene et al., 2018b] and illustrated in Example 4.17.

Example 4.17.

The explanations given in Example 4.16 are as follows:
〈
(e

1
, b, {a, b}, e, {d, e}),

(e
2
, c, {b, c}, d, {d, f}), (e

4
, c, {a, c}, e, {e, f})⟩
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• according to the first point of view, b is approved (and so is a which is better than
b) whereas e is not (and neither is d which is worse than e),

• according to the second point of view, c is approved (and so is b which is better
than c) whereas d is not (and neither is f which is worse than d)

• according to the fourth point of view, c is approved (and so is a which is better
than c) whereas e is not (and neither is f which is worse than e)

The shift in the burden of proof allows the jury to support its claim (here, the result
of the sorting procedure) with its chosen arguments. The length n of an explanation
offers an indication of its cognitive complexity and the amount of information disclosed
to the auditor. Therefore, we would instead provide the shortest possible explanations
and strive to mention a few points of view as possible. Obviously, an explanation must
reference a specific point of view at most once, so n ≤ |N |. Unfortunately, we showed
that one might require all points of view in a complete explanation, even in situations
with relatively few alternatives.

Auditing conformity. We now wish to justify the committee’s decision on a candi-
date x ∈ X. As we have seen in the previous section, a complete explanation of the
assignment of x implies disclosing much information related to the other candidates,
which might not be acceptable. A possible solution is for a committee to base their
decision on reference cases, an assignment α∗ : X∗ → { Good , Bad }, e.g. compiling
past decisions that are representative of its functioning mode. In order to get rid of the
influence of the other candidates, we are looking for necessary assignments given these
reference cases.

Example 4.18.

We consider the alternatives a, b, c, d, e, f and their assignment α⋆ have a refer-
ence status, and we are interested in deciding on the assignment of two candi-
dates, x, y such that:

a ≻1 f ≻1 b ≻1 e ≻1 c ≻1 y ≻1 d ≻1 x

e ≻2 b ≻2 y ≻2 c ≻2 d ≻2 a ≻2 f ≻2 x

f ≻3 a ≻3 d ≻3 b ≻3 y ≻3 x ≻3 e ≻3 c

d ≻4 a ≻4 c ≻4 e ≻4 x ≻4 y ≻4 f ≻4 b

c ≻5 y ≻5 e ≻5 b ≻5 f ≻5 x ≻5 d ≻5 a

It is not possible to represent the assignment (x, Good ) together with the
reference assignment α. Thus, x is necessarily assigned to Bad Ȯn the contrary,
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both assignments (y, Good ) and (y, Bad ) can be represented together with
α.

Let us discuss in what follows the case of the necessary decision. We refer the reader
to [Belahcene et al., 2018b] for the second case, where y is in an ambivalent situation.

An explanation of the necessity of an assignment is intrinsically more complex
than that for its possibility : one needs to prove that it is not possible to separate
all pairs of Good and Bad candidates on at least one point of view. The proof
relies on some deadlock that needs to be shown. Formally, this situation manifests
itself in the form of an unsatisfiable boolean formula. The unsatisfiability of the
entire formula can be reduced to a ⊆-minimal unsatisfiable subset of clauses (MUS),
commonly used as certificates of infeasibility. It can also be leveraged to produce
explanations (e.g. [Junker, 2004]). In the case of the necessary decisions by approval
sorting with a reference assignment, any MUS pinpoints a set of pairs of alternatives
in (α−1( Good ) ∪ {x}) × α−1( Bad ) that cannot be discriminated simultaneously
according to the points of view.

Example 4.19.

Consider the subset of alternatives c, d, e, f, x, and assume x to be assigned to
Good .

Each pair in GB := {(c, e), (x, d), (x, f)} needs to be discriminated from at least
one point of view in N , but this is not possible simultaneously: i) none of the
pairs in GB can be discriminated neither from the first, the second nor the third
point of view, as the overall Good alternative is deemed worse than the Bad
one. ii) no more than one pair in GB can be discriminated according to each
point of view among {4, 5}, and there are more pairs to discriminate than points
of view.

The pattern of deadlock illustrated by Example 4.19 can be generalized and
formalized into an argument scheme. Such an argument is a sufficient condition for
the infeasibility of representing the given assignment in the non-compensatory model,
which yields the conclusion that the candidate x is necessarily assigned to the other
category.

To conclude, the proposed solutions stem from an original take of the dual notions
of possibility and necessity, often used in so-called robust optimization, decision mak-
ing [Greco et al., 2010] or voting contexts [Boutilier and Rosenschein, 2016] to account
for incomplete information, conveying epistemic stances of skepticism or credulousness.
Instead, we use them to describe the leeway left to the committee in setting its ex-
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pectations: the decisions taken are bound from above by possibility, described as the
feasibility of the Inv-NCS problem related to their decision, and from below by neces-
sity, described as the infeasibility of the Inv-NCS problem simultaneously related to the
reference cases and impossible assignments.

4.3 Summary

In this chapter, we presented our contributions to augment decision-aiding systems with
explanation capabilities by using tailored “explanation schemes”, i.e. argument schemes
[Walton, 1996] dedicated to specific decision models to be used with explanation purpose
in our context of decision-aiding. Just like argument schemes, explanation schemes can
be seen as operators capturing prototypical reasoning patterns, i.e. a specific decision
model in our case. In this context, one specific interest of these schemes is that, by
splitting the reasoning process into smaller grains, they provide a natural building
block (which the user can quickly grasp) for explanation lines. Moreover, providing an
argument scheme along with the result (decision, recommendation) opens the possibility
of discussing or challenging this result. This is made possible through what is called
critical questions [Walton, 1996], a tool associated with argument schemes representing
attacks or criticisms that, if not answered adequately, falsify the argument fitting the
scheme (see Section 5.1). In our setting, the criticism may point out (implicitly or
explicitly) elements perceived as missing or wrong in the reasoning steps. Indeed, the
decision maker (DM) may challenge that a preference between two alternatives is not the
right one. The consequence is that either it is possible to derive a new conclusion with
this new information, or the DM’s statements express conflicting preferences. Thus,
the challenge of finding a principled way to deal with inconsistency in an accountable
manner needs to be addressed (see Section 5.3). Smoothly interleaving explanation and
recommendation calls for mixed-initiative systems (see Section 5.3), where the user may
be active in challenging the system. Finally, the question of how the effectiveness of
such systems should be evaluated (beyond their theoretical properties) remains largely
open (see Chapter 5).





Chapter 5

Interactive Recommendations and
Explanations for Decision Support

5.1 Dialectical Tools for Decision Aiding

In the previous chapters, we presented our contributions for providing efficient and
theoretically well-founded tools for both the preference elicitation task and explaining
or justifying the outputs of the decision-aiding process. For recall, and as illustrated
at the top of Figure 5.1, a decision-aiding process is an interaction between a human
analyst (expert) and a human decision-maker, where the analyst aims to guide the
decision-maker in building and understanding the recommendations of a particular
decision problem.

Figure 5.1: Dialectical vision for MCDA

Nowadays, decision-aiding situations are pervasive: they can occur in situations
where the analyst’s role is taken by a non-expert, even in some extreme cases by an
artificial agent. This means that the artificial agent should ideally handle several
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aspects – such as learning the preferences, structuring the interaction, providing an
explanation, and handling the user feedback, . . . – usually delegated to the human
analyst. Under such perspectives, our long-term research project is to design artificial
agents, as illustrated in the lower half of the Figure 5.1 able to serve as analysts for
various meaningful decision-aiding contexts. These agents will have different capacities
(see red boxes in Figure 5.1). During the last years, we have focused our efforts on
two components, elicitation and explanation engines, seeking to provide tools for each
independently. The “Preference Learning Engine” has the task of setting up the model
assumptions to work with for constructing the recommendation. It uses, for instance,
the different algorithms proposed in Chapter 3 depending on the decision situation and
the preference information (user profile). As we shall see later in this chapter, introduc-
ing explanation capabilities and interactive features with a human user will raise new
issues in designing efficient tools for preference elicitation. On the other hand, the “Ex-
planation Generation Engine” aims to provide the justification (or explanation) given
to the user on the proposed items or facts inferred by the agent during the interaction.
We can rely, for instance, on the different proposals described in Chapter 4. Finally,
even if the Figure 5.1 was conceived with the multi-criteria decision aiding framework
vision, we do not doubt that it can be adapted to any setting where the notion of
preferences (human user) is at stake. Some ideas are discussed in the rest of the chapter.

Therefore, if we are to automate (some part) of the process, it is essential to under-
stand more clearly how the tasks handled by a human analyst can be integrated into
a tool. More precisely, it would be helpful to design and implement formal tools to
support this interaction between the artificial agent and the human user. Our target is
to answer the following question:

How to equip an artificial agent with adaptive behavior and model the sys-
tem’s reasoning to allow “efficient” interaction with a user within a decision-
aiding situation?

Although we have focused most of our work on explainability and preference elicita-
tion, we have conducted the first reflection on the question of designing this interaction
between an artificial agent and a human user (the box “interaction mechanism” in
Figure 5.1). We grounded on dialectic models from the multi-agent systems field,
specifically argumentation-based dialogues [Walton and Krabbe, 1995; Black et al.,
2021]. Our different proposals, summarized in Table 5.1, have been carried out mainly
during our PhD thesis [Ouerdane, 2009] and we intend to continue and extend it in the
coming years. A promising continuation is the one started in the PhD of Amoussou
[(in progress)].

Dialectical interaction models have gained tremendous popularity in recent years
in the multi-agent community. Many protocols have been put forward to tackle
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Approach References

Argumentation-based interaction [Ouerdane et al., 2008] [Ouer-
dane, 2009] [Ouerdane et al.,
2010] [Ouerdane et al., 2011]
[Labreuche et al., 2015]

Table 5.1: Our contributions to adaptive interaction

different types of interaction [Walton and Krabbe, 1995]. It is clear that these
protocols offer greater expressivity than simple feedback (since recommendations can
be challenged and justified). Our work follows this trend of research and studies a
type of interaction whose specifities have seldom been studied. More precisely, we
investigated relying on argumentation-based dialogue to formalize the interaction
between a decision-maker and an artificial analyst within a decision-aiding process.
Argumentation theory is a rich, interdisciplinary area of research across philoso-
phy, communication studies, linguistics and psychology. Its techniques and results
have found a wide range of applications in both theoretical and practical branches
of AI and computer science [Bench-Capon and Dunne, 2007; Simari and Rahwan, 2009].

In recent years, argumentation theory has gained increasing interest in the multi-
agent systems (MAS) research community. It can be used: (i) to specify autonomous
agent reasoning (belief revision, decision making under uncertainty, ...): it provides
a systematic means for resolving conflicts among different arguments and arriving at
consistent, well-supported standpoints; and (ii) as a vehicle for facilitating agent’s
interaction. It naturally provides tools for designing, implementing and analyzing
sophisticated forms of interaction among rational agents [Amgoud et al., 2000; Atkinson
et al., 2005; Charif-Djebbar and Sabouret, 2006; Black et al., 2021]. More recently,
argumentation theory has received particular attention in the XAI field (see [Čyras
et al., 2021; Vassiliades et al., 2021] ) as it naturally provides a means to construct
explanations and justifications.

While the link between decision-making and argumentation has been investigated
over several years [Atkinson et al., 2006; Amgoud and Prade, 2009; Fox and Parsons,
1998; Kakas and Moraitis, 2003; Müller and Hunter, 2012], the decision-aiding setting
itself has been little studied. Fore recall, a decision aiding context implies the existence
of at least two distinct actors (the user and the expert) both playing different roles;
at least two objects, the user’s concern and the expert’s (economic, scientific or other)
interest to contribute; and a set of resources including the user’s domain knowledge,
the expert’s methodological knowledge, money, time... The ultimate objective of this
process is to come up with a consensus between the user and the expert [Tsoukiàs,
2008]. For implementing and formalizing this dialogue, we have put in place several
tools to: i) conduct the interaction, ii) manage the various preference models, and iii)
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allow critics and feedback from the user. These different aspects are discussed in what
follows.

5.1.1 Conducting the interaction though a dialogue game.

A first step towards formalizing such a discussion is our work [Labreuche et al.,
2015], where a dialogue game is proposed to formalize the interaction representing
a decision-aiding situation, involving the exchange of different types of preferential
information, as well as other locutions such as justification. We have two players:
the DA (Decision Aider: the artificial agent) has the aim of constructing a solution
to a given decision problem. The DM (decision-maker: the human user) expresses
his preferences through feedback and has to be convinced by the solution. Moreover,
during the dialogue, the DA constructs a Knowledge Base (KB) composed of the
Preference Information (PI) provided by the DM and the accepted statements. The
protocol for our dialogue model is depicted in Figure 5.2, where grey nodes are for the
DM, white nodes for the DA.

Figure 5.2: Successive speech acts at each iteration

Briefly, each node in this graph is a locution, except for “Update”. This latter
enables the DA to analyze the exchanges made during the last iteration of the dialogue,
update the KB and construct the proposal for the next iteration. The outgoing arcs
from a node indicate the possible following locutions. A dialogue under this protocol
is composed of several iterations. Each iteration starts from the node “update” and is
organized around an assert(ion) or a question made by the DA and the feedback of
the DM. Among the results, we prove that this protocol satisfies desired properties,
in particular termination and efficiency (in the sense that the recommended option is
indeed among the most preferred of the decision-maker).

In this work, we mainly focus on constructing an interaction protocol that spec-
ifies the rules and conditions under which we can have a “coherent” interaction in a
decision-aiding context where the initiative is sometimes left to the user (e.g., ask for
an explanation). Different perspectives are possible besides the assumptions assumed
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to construct this first proposition that can be relaxed. The first one concerns the
preference elicitation process. Indeed, we use default weights and scores to handle in-
complete preference statements instead of relying on a specific technique/algorithm of
elicitation. Thus, it would be interesting to design a protocol that will consider the
elicitation task and generate recommendations supported by explanations. As we shall
see in Section 5.3 interleaving elicitation and explanation raises new questions. An-
other interesting perspective is to go through the implementation of such a protocol
and conduct experiments to validate the approach (see Section 5.3). A further chal-
lenge is exploring how the user’s preference information will be captured and integrated
into the system. Of course, how to present the recommendation and the supporting
explanation is an interesting issue, too (see Section 5.2 for a discussion). Finally, as
we shall see at the end of this document, this question of designing dialogues for an
artificial agent within an XAI context is also challenging for other application domains.

5.1.2 Managing various preference models.

In classic decision theory works, and given a decision situation, a decision analyst first
chooses the model based on the desired properties (axioms satisfied by the model)
and then proceeds to elicitation. This task will aim to set up the model assumptions
to work with for constructing the recommendation. However, in a practical context,
such a preliminary assessment might not be feasible. Thus, rather than making an
assumption that may later be found to be incorrect (as an example: the weighted mean
model is often used in many systems but without an explicit justification), our idea is
to simultaneously reason with several possible models and let the system decide the
one appropriate to the current user.

More precisely, we proposed in [Ouerdane et al., 2010; Labreuche et al., 2015]
an approach that allows the artificial agent to use a variety of decision models (able
to encompass most decision situations) to build its recommendation (as opposed to
adjusting the parameters of a single model). To account for this, an axiomatic approach
is adopted, where the use of a model is triggered by a set of properties that should the
decision maker’s preferences be fulfilled. In other words, to adapt to different DMs,
the DA will use a range of decision models Π, where a set of properties identifies each
model. Such properties correspond to some characteristics of the DM’s preferences,
corresponding to a set of conditions supporting the use of a given model.

For illustration, let us consider the following family Π of models: Simple Majority
model (noted πSM ), Simple Weighted Majority model (πSWM ), Mean model (πM ) and
Weighted Sum model (πWS ). Therefore, we denote by Q the set of properties. For a
given model π ∈ Π, each property can be either satisfied or not. For illustration, we
will consider the set of properties Q that include: (1) Cardinality of the model (car): it
means that the specific difference in performance values makes sense (when this property
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is not satisfied, only the ordering of options is relevant for comparison). (2) Non-
Anonymity of the model (nan): it suggests that criteria are not exchangeable (when this
property is not satisfied, all criteria are exchangeable). With Q = {car ,nan}, we can
describe the four decision models πSM , πSWM , πM , πWS . On top of the two properties,
Cardinality (car) and Non-Anonymity (nan), let us introduce a veto property (vet)
saying that there is a veto criterion. One can readily see that not all combinations
of properties yield a relevant decision model. Figure 5.3 shows the set of relevant
properties. For instance, the “outranking model” (noted πOR) corresponds to property
vector (⊥,⊤,⊤): it is ordinal but uses criteria weights and veto criteria. On the other
hand, property vector (⊥,⊥,⊤) has no relevant corresponding model as it satisfies
only veto. A similar situation arises for (⊤,⊥,⊤) and (⊤,⊤,⊤) as a cardinal model
(weighted sum) able to represent a veto criterion subsumes to a dictatorial rule (only
one criterion counts), which is not very interesting and can be represented by πOR.

πOR (⊥,⊤,⊤) πWS (⊤,⊤,⊥)

πM (⊤,⊥,⊥)πSWM (⊥,⊤,⊥)

πSM (⊥,⊥,⊥)

Figure 5.3: Structure Q with three properties

The set Q is used to guide the navigation among the different models (or associated
subsets of properties), depending on the properties that are currently satisfied or
contradicted.

Let us consider for illustration an excerpt of an exchange between a DA and a DM
as depicted in Example 5.1 (see Chapter 1). This exchange has as input the comparison
of the options over each criterion provided by the DM.

Example 5.1

Let us consider the following situation for illustration. Suppose that a decision-maker
specifies that he has to rank four options {a, b, c, d} (say, bikes to be deployed for sharing
in a big city). Each bike is evaluated on the set {c1, c2, c3, c4, c5} of criteria (say, price,
weight, aesthetic, gears, dimension). The comparison of the options over each criteria
(where x ≻ci y means that option x is strictly preferred to y on criterion ci) is as follows:

c1: d ≻c1 a ≻c1 c ≻c1 b;
c2: d ≻c2 a ≻c2 b ≻c2 c;
c3: b ≻c3 c ≻c3 a ≻c3 d;
c4: c ≻c4 b ≻c4 a ≻c4 d;
c5: b ≻c5 a ≻c5 c ≻c5 d.
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(1) DA: I recommend that b ≻ a ≻ c ≻ d.
(2) DM: Why b ≻ a?
(3) DA: b is better on a majority of criteria (c3, c4, c5).
(4) DM: I see, but still I would prefer a to b
(5) DA: Why?
(6) DM: Because a is better on the price and weight (c1, c2), these are very important.
(7) DA: Fine. I still recommend b over c.
(8) ...

At the first iteration (1), the DA generates a first recommendation from the partial
preferences of the DM and provides a justification at iteration (3). In this iteration (3),
solely based on comparisons provided by the DM and without any other information
(i.e. we do not proceed to the elicitation of more information), the DA assumes that
the model is πSM (in the Figure 5.3 node (⊥,⊥,⊥)). Note that the agent made
this assumption to start the interaction. The idea, as discussed previously, is that
during the dialogue, if we get a piece of additional information and this information
contradicts the assumption, we update the decision model. This is the case at iteration
(7), where the model πSWM is used due to statements [c1 = strong ], [c2 = strong ].
Technically, we move in the Figure 5.3 from node (⊥,⊥,⊥) to the node (⊥,⊤,⊥)

on the basis that c1 and c2 are more important than the other criteria, and thus
the Non-Anonymity (nan) property should be taken into account. Note that the
inference of the comparison among options is consistently constructed even though the
model is changing, thanks to the relation between the models and the related properties.

To navigate among the different nodes based on the responses of the decision-maker
during the interaction, we established a list of “critical responses (questions)” borrowed
from arguments schemes [Walton, 1996] (see the following section). Such responses offer
a way to identify what property is challenged or which should be taken into account.

5.1.3 Allowing critics/feedback through Critical Questions.

During the interaction with the system, it is necessary to provide the decision-
maker means to communicate with the system and express his doubts about the
conclusions and explanations (arguments) presented. Thus, the decision-maker is
involved in developing the recommendation by pointing out those elements that
appear missing or wrong in the reasoning steps assumed by the system. To this end,
we borrowed a tool from argumentation theory named “critical questions”. Indeed,
our first objective by relying on argument (explanation) schemes is a knowledge
representation exercise. By casting the reasoning steps under the form of argument
schemes, we make explicit assumptions usually hidden for the decision-maker, hence
allowing meaningful explanations. The second shows that argumentation tools
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facilitate the revision/update occurring during such a process. Indeed arguments
schemes come along with what we call critical questions. They represent attacks,
challenges or criticisms that, if not answered adequately, falsify the argument fitting
the scheme. Asking such questions throws doubt on the structural link between
the premises and the conclusion. They can be applied when a user is confronted
with the problem of replying to that argument or evaluating it and whether to accept it.

A first attempt to define what critical questions (responses) could be in a decision-
aiding situation is our thesis work [Ouerdane et al., 2010, 2011, 2008]. For illustration,
if we go back to our Example5.1, at the turn (7), the DA generates a recommendation
based on the reaction of the DM at turn (6), which through its response implicitly
modifies the decision model under use. Indeed, the DM’s response puts forward that
Non-Anonymity (nan) property is no longer fulfilled, as he considers precisely two
criteria (very important) in comparing a and b. We have identified the following set of
possible responses that could lead to the assumption that the nan property should be
taken into account:

• the criterion ci is more important than the criterion cj

• option x is better than option y on the coalition of criteria {ci, cj}

• if option x is preferred to y on the criterion ci, it should be the same on the
criterion cj

• x is too bad (or better than anyone else) on the criterion cj

In the Ex.5.1 the turn (6) is assumed to correspond to the second type of response.

Such responses were constructed by respecting the theory and concepts of decision-
aiding methodology. However, we believe that an experimental study aiming at ana-
lyzing the decision-maker’s behavior in a situation of decision support would probably
confirm such responses and allow us to identify other more realistic and practical re-
actions. Such a study could also validate the properties specified in [Labreuche et al.,
2015] and identify other natural features of the decision-maker preferences that we have
not thought about. Moreover, the use of critical questions is not restricted to challeng-
ing the preference aggregation procedure but is a promising tool to elicit preferences
(see Section 5.3).

5.1.4 Next steps

To summarize, the construction of the different components (see Figure5.1) of the
artificial agent depends on the decision situation faced by the user. Such a situation
will clearly impose a particular decision model in the classical setting. However, our
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idea is that rather than making an assumption that may later be found to be incorrect
(as an example: the weighted mean model is often used in many systems but without
an explicit justification), we suggest simultaneously reasoning with several possible
models and let the system decide the one appropriate to the current user. Therefore,
it is clear that elicitation/explanation/interaction (dialogue) algorithms should be
adapted to the considered situation.

A first baseline version of our artificial agent can be the one with: explanation
patterns [Belahcene et al., 2017b] and an elicitation mechanism [Viappiani and
Boutilier, 2009] for the additive utility model, with the interaction model of [Labreuche
et al., 2015], where the aim at the end is to articulate these components to provide an
integrated model. This baseline is still ongoing work, as the integration is not an easy
task, but we hope we can get the first version within Amoussou [(in progress)]’s PhD .

Finally, beyond this basic version, putting together the different pieces to build this
artificial agent for decision support opens up new work areas with new opportunities for
collaboration with new colleagues. These perspectives are discussed in the following.
We want to draw attention to the fact that the rest of the document is not intended to
have an exhaustive state of the art or to detail the contributions, but to give the few
avenues on which we wish to work in the coming years.

5.2 Explanation Schemes: Generation and Evaluation

In our different proposals for providing explanations to justify recommendations (see
Chapter 4), we have concentrated our efforts essentially on two MCDA models: the
additive model and the NCS model. Moreover, neither natural language generation nor
in vivo experimentation were investigated in the different contributions. For instance,
the complexity of explanations was assessed through proxies, such as length or number
of premises. Several perspectives can be envisaged to enrich our work in this perspective
of equipping an artificial agent with explanatory capacity.

5.2.1 New explanation schemes/patterns

In MCDA, various unexplored models remain for which the questions of constructing
explanation schemes are relevant. We aim to enrich our catalog with other explanation
(argument) schemes by considering additional decision models and situations. Such a
catalog will offer the artificial agent the ability to construct the appropriate explanation
according to the decision situation and thus a decision model. Moreover, even if our
research work has long focused on models or methods from the field of multi-criteria
decision aiding, our ambition is to open to methods and models in other areas such as
Operation Research (OR) and Machine Learning (ML).



84 Chapter 5. Interactive Recommendations and Explanations

Explaining outputs of Optimization Systems. In this direction, we have already
started within the PhD of Lerouge [(in progress)] a work in the OR field. In collabora-
tion with Vincent Mousseau (MICS, CentraleSupélec), Celine Giquel (LISN, Université
Paris-Saclay) and Decision Brain1, we investigate the question of explaining solutions
stemming from the Workforce Scheduling and Routing Problem (WSRP), an optimiza-
tion problem, to an end-user. In brief, a WSRP can be described as follows: given a
set of n mobile employees and a set of m geographically dispersed tasks, the problem
consists in building pairs of paths and schedules and in assigning a path-schedule couple
to each employee defining which tasks he should perform, in what order and at what
times. The objective is to design a family of path-schedule couples of minimum cost,
which accommodates as many tasks as possible while satisfying a set of constraints
[Castillo-Salazar et al., 2016]. For our purpose of explainability, the first proposition
was to consider an instance of WSRP and a solution and allow the user to query the so-
lution’s relevance. With the help of our industrial partner, Decision Brain, we identified
a bunch of questions that an end-user may ask. These questions are local - they relate
to a part of the solution - and contrastive [Lipton, 1990]. This reduces the size of the
calculation determining the explanatory content and in fine provides an explanation to
the user in real-time. More precisely, we use polynomial algorithms using tools from
local search or integer linear programming applied to small problems to compute an
explanation. Finally, to be intelligible to the user, the explanation takes the form of
concise text, written in a high-level vocabulary, and graphics (e.g. representations of
the solution, performance indicators of the solution). This is ongoing work, and we
aim to pursue it on different tracks. For instance, as we are dealing with a real-world
case study with an industrial partner, it would be interesting to tackle the evaluation
question. The idea is to conduct experiments with end users to get feedback on the
relevance of the produced explanations. This raises different questions as discussed in
Section 5.2.3.

Explaining outputs of ML models Regarding the ML direction, our first ten-
tative on this subject will be carried out in collaboration with Hopia2, Gianluca
Quercini (LISN, CentraleSupélec), Myriam Tami (MICS, CentraleSupélec) and Paul-
Henry Cournède (MICS, CentraleSupélec). Hopia is a start-up that offers a planning
solution for healthcare institutions. Among the question that Hopia should consider
to setting up optimized planning is to be able to establish the patient flows in a hos-
pital system. To this end, the project aims to investigate data-driven methodologies
that can assist in predicting/analyzing periodic behavior. More precisely, the ambition
is to develop predictive models based on integrating several data on the patient and

1A French company specializing in optimization software development has several client companies
who daily need to solve instances of WSRP https://decisionbrain.com

2https://hopia.eu

https://decisionbrain.com
https://hopia.eu
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the hospital department and considering patient flows between departments. In ad-
dition to predictions, the model will need to incorporate a measure of uncertainty in
the predictions (confidence intervals on the prediction) and accommodate incomplete
data. In this context, different machine learning models will be considered. Therefore,
to respond to the problem of trustworthy AI generated by using ML models and in
a sensitive context such as health, the project will design tools for the interpretability
and explainability of results appropriate to the context. In this perspective, we envisage
adopting an interactive approach where the explanation will be a source of interaction
to allow feedback, corrections and new information from the user (medical staff in this
situation), thus enriching the learning phase. Indeed, as pointed out by [Lindsell et al.,
2020] the successful use of AI tools in the health field depends not only on the progress
of AI algorithms but also on the human in the loop which involves all stakeholders.
This project is already initiated by a six months Master Internship at MICS started
on 2 May 2022, on the subject “AI for predicting Patients Flow” funded by DataIA3,
under our supervision. In the following steps, it is envisaged to construct with Hopia a
PhD subject and look for funding and a PhD Candidate.

5.2.2 Expressing and presenting an explanation?

In this context of generating explanations, another interesting and challenging question
is how to present (communicate) explanations to a user? We believe that a promising
direction is to approach the problem of explanation generation as a problem of planning
[Cawsey, 1993], where the idea is to find the path that leads to the conclusion. Since
our results identified several basic “operators” (under the form of argument schemes),
it is thus tempting to adopt this stance and design an explanation planner for our
decision-aiding setting. Several alternative plans with different explanation strategies
can be represented, which may be triggered depending on the context and user
feedback. This is planning under uncertainty since different user reactions may affect
execution. The user may thus interrupt a line of explanation, for instance, because he
cannot grasp a specific elementary step of the explanation, forcing him to backtrack
to an alternative -hopefully better suited- one. This unified framework could pave the
way for a potentially powerful mixture of approaches (using different types of argument
schemes within the same line of explanation).

Moreover, we did not rely on Natural Language Generation (NLG) tools to express
explanations for our different contributions. We aim to do so. Using the NLG tools
will imply tackling all the aspects of the generation process in a principled way,
from selecting and organizing the content of the explanation to expressing the chosen
content in natural language. Text generation involves two fundamental tasks: a process
that selects and organizes the content of the text (deep generation) and a process

3https://www.dataia.eu

https://www.dataia.eu
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that expresses the selected content in natural language (surface generation) [Reiter
and Dale, 2000]. The challenge is to develop a complete computational model for
generating explanation schemes tailored to the user’s preferences.

Moreover, for the surface generation, the literature [Forrest et al., 2018; Alonso and
Bugarın, 2019; Pierrard et al., 2019; Baaj and Poli, 2019] use mostly surface realizers
like SimpleNLG [Gatt and Reiter, 2009] to produce textual explanations, despite some
drawbacks. For instance, the latter does not easily handle the inclusion of notions or
concepts expressing uncertainty, probabilities or confidence in the text. On the other
hand, the NLG is a separate domain that is not necessarily mastered by the people who
implement XAI systems, which explains why the link between the two is still difficult
to establish, especially when it comes to extracting the relevant information from the
underlying model. We believe that there is a need to build a bridge between the extrac-
tion of the content of the explanation and the construction of the textual representation.

To meet this need, we have the idea to design a semantic representation of the
content of the explanation [Baaj et al., 2019]. Indeed, from our point of view, the ex-
planation generation process can be viewed as a sequence of three main tasks, namely:
(i) content extraction from an instantiated AI model, (ii) semantic representation of
this content and finally, (iii) text generation using NLG techniques [Baaj et al., 2019].
More precisely, content extraction is specific to each AI model (neural networks, expert
systems, etc.): it takes as input the instantiated model, i.e. all the values of the model
for given inputs (e.g. the values of the weights for a neural network, the execution
trace for an expert system, etc.). Conversely, the other components are common to all
models so that the mechanisms can be mutualized. This decomposition of tasks can
also help the evaluation by allowing, for example, to evaluate the content of the expla-
nation without considering the text generation. The ambition is to build a semantic
representation independent of the AI model. Thus, any specialist of an XAI model will
be able to represent his explanation without worrying about the textual part. This
perspective is joint work with Jean-Philippe Poli (CEA List), where our ambition is
to propose a formal structure that explicitly links the concepts (components) of the
explanation to each other and allows the representation of logical and causal relations
between these elements. This requirement has been emphasized by [Chari et al., 2020],
where it is claimed that such a representation can contribute to a better understand-
ing of explanations and be beneficial for constructing AI systems that will help users
through a so-called “distributed cognition” approach [Hollan et al., 2000]. The system
generates explanations aligned with the users’ needs in this context. The first tentative
in this perspective was addressed in [Baaj, 2022], but there is still work to develop a
convincing proposal.
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5.2.3 Evaluating and Assessing explanations

When dealing with systems that emphasize explainability, it is essential to assess
how pertinent explanations are correct. Until now, in our different contributions, the
complexity of explanations was evaluated through proxies, such as the length or the
number of premises.

Different works in psychology have discussed how a human user could evaluate or
perceive an explanation. For instance, [Miller, 2019] reviewed the main factors that
play a role in the human assessment of a “good” explanation. The authors state that
a good explanation needs to be coherent. That means that it must be consistent with
the end-users knowledge [Thagard, 1989]. In [Hoffman et al., 2018] different methods
for evaluating (1) the goodness of explanations, (2) whether users are satisfied by
explanations, (3) how well users understand the AI systems, (4) how curiosity motivates
the search for explanations, (5) whether the user’s trust and reliance on the AI are
appropriate, and finally, (6) how the human-XAI work system performs, are discussed.
On the other hand, Read and Marcus-Newhall [1993] consider that users prefer simpler
explanations (those that cite fewer causes) and more general explanations (those that
explain more events). Also, people do not usually judge an explanation based on its
probability but rather on its usefulness and relevance [McClure, 2002].

Several solutions have been proposed in the XAI literature to assess or evaluate
explanations [Mohseni et al., 2021]. The authors classify them into three methods:
(i) Application-grounded evaluation, where an expert directly evaluates how good an
explanation is, and (ii) Human-grounded evaluation, a human is asked to perform
simple experiments that are still linked to the target. For example, one or several
humans could be asked to select the best explanation among several of them, and
(iii) Functionally-grounded evaluation, where the idea is to assess the explanations of
one model with another model that has been previously validated as an explainable
model. Following the human-grounded evaluation, we have initiated a first work with
Jean-Philippe Poli (CEA List). This work focused on the generation and the evaluation
of the explanation [Poli et al., 2021]. In this proposal, an explanation is a sentence
in natural language dedicated to human users to provide clues about the process that
leads to the decision: the assignment of the label to image parts. We focus on semantic
image annotation with fuzzy logic that has proven to be a helpful framework that
captures both image segmentation imprecision and the vagueness of human spatial
knowledge and vocabulary. In this work, we presented two algorithms for textual
explanation generation of the semantic annotation of image regions. To compare the
two approaches, we evaluated both of them. In this aim, we use the questionnaire
presented in [Baaj and Poli, 2019]: it is based on 17 questions organized into three
categories: natural language, human-computer interaction and content and form. Each
question is evaluated with a Likert scale (from 1 “strongly disagree” to 5 “strongly
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agree”). Our panel consists of 40 respondents, with 20 medical staff members (medical
doctors, surgeons, nurses, radiologists), the other half being computer scientists (6)
and other various non-medical professionals (14). Among the results, the order of the
items inside an explanation seems to be essential for the end-users. conciseness is a
criterion of paramount importance.

Clearly, work still needs to be done to implement the most acceptable way to evaluate
our several explanation schemes. We will take advantage of our previous work and from
both psychology and XAI literature to set up experimental protocols and define criteria
that seem relevant regarding the decision-aiding situation. The goal will be to validate
the relevance of our explanation schemes from the point of view of a human user.

5.3 Interactive explanation and inconsistency management

While the classical incremental elicitation methods already involve an interactive pro-
cess whereby the system asks queries to the user (see for instance, [Benabbou et al.,
2017; Gilbert et al., 2017; Perny et al., 2016; Adam and Destercke, 2021]), there are
new challenges when one wants to integrate explanation facilities.

5.3.1 Mixed-initiative interaction

The current systems equipped with explanation features typically produce justification
at the very end of the process– together with their final recommendation. We
believe that an adequate explanation cannot be one shot and involves an iterative
communication process between humans and artificial agents. As humans can easily
be overwhelmed with too many or too detailed explanations, the interactive commu-
nication process helps understand the user and identify user-specific content for the
explanation. Moreover, cognitive studies [Miller, 2019] have shown that an explana-
tion can only be optimal if it is generated by considering the user’s perception and belief.

Under such a perspective, we think that a mixed-initiative system [Horvitz, 2000]
where elicitation, recommendation and explanation are tightly interleaved, is required.
According to [Horvitz, 2000], mixed-initiative systems refer “broadly to methods that
explicitly support an efficient, natural interleaving of contributions by users and
automated services aimed at converging on solutions to problems”. The management
in such systems is non-trivial, as it must be possible to decide which side should be
granted the initiative during the interaction. This implies carefully designing a protocol
which decides exactly how and when the initiative should be given to the user or kept
by the system and how the different commitments can be agreed upon or challenged.

In our context, one key issue will be identifying when exactly explanations can be
triggered by the system or asked for by the user. A further difficulty is that the nature
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of explanation patterns may vary. Some explanations will require a specific interaction
with the user, others will be planned beforehand, and visual explanation may be part of
the process. A careful analysis of the proposed protocols will guarantee termination or
efficiency properties of the protocol under natural assumptions of the user’s behavior.
Unfortunately, often the user cannot be assumed to respond consistently throughout
the interaction, which leads us to integrate means to manage inconsistency (see the
next point).

Moreover, as discussed in the previous section, an interesting tool for interaction and
getting feedback and new information from the user is the critical questions attached to
an argument scheme. In Chapter 4 we established various argument schemes to support
different types of recommendations (assignments, choices, pairwise comparisons); we
plan to rely on critical questions to evaluate such schemes. This perspective can keep
the user in the loop, which is often essential in a decision situation. Moreover, a thorough
study should be done, theoretically and by experiment, to see to what extent such a
tool could benefit the preference elicitation process.

5.3.2 Modeling and managing inconsistency

To produce a recommendation, the system questions the user to elicit her preferences
and fit them into a model. Based on these preferences, the system can produce a
recommendation. However, because the recommendation itself can be very large (think
of a ranking involving all the options), it is useful to allow incremental partial and/or
factored recommendations to be made throughout the interaction, on which the system
will seek the agreement of the user (e.g. “do we agree that product p is better than any
product which color is red?”, or “ do we agree that subset of options p1, p2, p3 should
not be considered as the product of choice?”). When the system puts it forward, the
user can critique it (preferences may be adjusted, corrected, the option may not be
feasible, or not available anymore, etc.) or asks for a justification, which the system
must provide. As a result, the system must deal with the inherent revision problem
induced by the possibly incoherent statements (either among themselves or with the
user assumed preference model).

More precisely, such “inconsistencies” may occur when, for instance: the DM’s state-
ments express conflicting preferences, the DM’s point of view is evolving during the
interaction process, and the DM’s reasoning is incompatible with the principles and
properties underlying the preference model, etc. Therefore, we aim to investigate mod-
eling and handling inconsistency during an interaction between an artificial system with
a user. Different issues arise: How should the system behave in the presence of inconsis-
tency in the situation where a (family of) model(s) cannot restore the DM’s preferences?
Should we revise the expressed preferences? Should we change the model? Thus, on
what principles? How to conduct the elicitation process by taking into account the in-
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consistency? Actually, on the one hand, neither active learning nor complete elicitation
strategies deal with the question of revising the model. On the other hand, generating
an explanation adds complexity to this question as it becomes legitimate to seek to
find/keep the information that will allow the construction of “good” explanations at the
end. We could rely on different strategies.

• Constructing maximally consistent subsets of statements. For instance, an ap-
proach that identifies minimal inconsistent sets of preference statements was pro-
posed by [Mousseau et al., 2003], i.e., subsets of statements that, when removed,
lead to a consistent system. Identifying such subsets would indicate the reason
for the conflicting information. In the same spirit, we can think of using logical
formulation and try to identify, for instance, a minimal unsatisfiable subset of
clauses (MUS) [Junker, 2004].

• Relying on a numerical estimation of inconsistency, such as a belief function.
Destercke [2018] has proposed a general setting based on evidence theory allow-
ing to deal with inconsistency and uncertainty in user feedback, which seems
attractive from the perspective of revising a model. With this perspective, it will
be an opportunity to collaborate with Sébastien Destercke (Heudiasyc, Université
de technologie de Compiègne, CNRS).

• Relaxing the aggregation model. One way to interpret the inconsistency is that the
actual decision model cannot represent the user’s preferences. We have proposed
a first solution based on an axiomatic approach toward relaxing/changing the
decision model. We envisage continuing to investigate this issue in the future. In
addition to the axiomatic approach, we may consider an automatic incremental
model selection: this is a challenging approach, as the learning process of the
model is intertwined with that of learning the preferences.

• Relying on explanatory dialogue. Finally, an interesting direction to solve incon-
sistency could be the approach described in [Arioua et al., 2016, 2017], where
the authors propose a framework of inconsistency handling through knowledge
acquisition through an explanatory dialogue. More precisely, by relying on
argumentation-based dialogue. The approach is based on interacting with a user
to acquire new knowledge and feedback to remove inconsistencies. This avenue
aligns with our vision of using argumentation and explanation through dialogue.
Thus it could be attractive to see to what extent it could be applied/extended to
our setting.

5.3.3 New perspectives for preference learning and elicitation

The preference elicitation task aims to correctly represent the user’s preferences
through a given model to fit the user’s rationality. As was pointed out by (Boutillier,
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2013): "no decision support system can recommend decisions without some idea of
what are the preferences of the user. This information cannot be coded into the system
in advance and raise the preference bottleneck: how do we get the preferences of the
user into the decision support system?"

Our ambition is to endow the virtual agent with tools to capture incrementally
the user’s preferences and feedback (contradicting a previous assertion, asking for an
explanation, etc.) while minimizing at the same time the cognitive effort of the user.
Under these perspectives, a challenging issue is a computational aspect. In particular,
we want to provide elicitation techniques that can cope with inconsistent or "noisy"
user feedback by automatically adjusting the model to the preference information
provided by the user.

We have already started work in this direction concerning the computational aspect
by proposing new tools based on logical formulations that have shown superior perfor-
mance to those of mathematical programming, a classical formalism in decision theory.
We intend to continue in this direction for other models of multi-criteria decision aiding.
In addition, in the midterm, we would like to investigate if it is possible to build tools
that combine the interpretability of MCDA models and the efficiency of machine learn-
ing algorithms. A trend in AI is the hybridization of the so-called symbolic mechanisms
and those of ML. It will be interesting to see how this hybridization can be designed in
a multi-criteria decision-aiding setting and which mechanisms we can implement. This
perspective will be the occasion to collaborate with some colleagues in ML in the lab.
Concerning the inconsistency part, several tracks were evoked in the previous para-
graph. Investigating how to efficiently couple these tools and the elicitation algorithms
will be a question.

5.3.4 Interaction: validation and evaluation

Designing an artificial agent with explanation features for decision-aiding purposes will
require a validation phase. In other terms, how to experiment and/or practice a decision-
aiding situation with the help of an artificial agent endowed with an explanatory ca-
pacity. Thus, we need to carefully elaborate: (i) what can be “good” indicators or
criteria to assess and validate the results. For instance, one can intuitively assess the
interaction’s convergence by making a compromise between accepting (or not) a recom-
mendation and the time spent to obtain the agreement. However, it is less clear how to
assess the impact of introducing an explanation within a recommendation). Moreover,
(ii) a methodology or a framework of how validation should be implemented. In other
terms, how to experiment and/or practice a decision-aiding situation with the help of
an artificial agent endowed with an explanatory capacity.
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5.4 Towards Decision Aiding for Collective Decision

We have always dealt with decision situations with the hypothesis of a single decision-
maker (end-user). We still have several interesting and rich avenues to explore
with many collaborations in prospect. Besides, in the longer term, we would like
to extend our work to the multi-decision maker, the multi-participant context. An
exception is our work in [Belahcene et al., 2018b]. In this paper, we were interested
in the problem of accountability of decisions issued from a non-compensatory sorting
model (NCS) [Bouyssou and Marchant, 2007a]. Two situations have been mainly
studied. In the first one, a committee must justify its decision as a possible NCS
assignment. The second situation arises when the assignment of a new candidate
is necessarily derived from jurisprudence. In this work, even we have a committee
(a group), but the explanation issue has been treated to account for the com-
mittee’s decision-making process towards an external entity. Therefore, we wish
to deal with the situation where the decision concerns a group of individuals, and
thus we need, for instance, to explain that the solution found is fair for the whole group.

In a collaborative decision problem, one seeks to aggregate different participants/a-
gents’ preferences on given alternatives to reach a joint decision. Examples of such
problems include voting problems such as the election of political representatives or
the choice of projects to be funded in a municipality, resource allocation and fair shar-
ing problems such as the assignment of papers to reviewers in a conference or the
assignment of students to courses, or coalition-building issues such as the assignment of
undergraduates to higher education institutions or the formation of student groups for
projects. The study of collective decision-making falls within the computational social
choice [Brandt et al., 2016], a sub-field of artificial intelligence that aims to analyze col-
lective decision-making from an axiomatic and algorithmic perspective. In this context,
participants can exchange information, oppose other participants, ask for clarification-
s/justifications, revise their views, establish strategies, etc., while having conflicting
opinions, interests and preferences. Different perspectives can be drawn from this set-
ting; we introduce what we think is interesting to do.

• Efficient tools for group preference elicitation. Most of the work on preference
learning in MCDA focuses on representing the preferences of a single decision-
maker (DM). In contrast, several real-world situations involve a group of decision-
makers in the decision process. Therefore, a challenging question could be develop-
ing tools for group preference elicitation, allowing each group member to provide
individual preference information to build a collective preference model accepted
by each decision-maker. Different issues arise, among others: Which formal lan-
guage (mathematical programming, Boolean formulation, etc.) can we rely on
to build efficient algorithms? How to manage inconsistency and revision in this
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setting?

• Multi-party dialogue: In the context of multi-agent systems, argumentation theory
is a means to facilitate multi-agent interaction, as it naturally provides tools to
design, implement and analyze sophisticated forms of interaction between rational
agents. It provides a framework for structuring interaction between agents with
potentially conflicting views while ensuring that the exchange respects certain
principles (e.g., consistency of statements and discussions between participants).
The idea here is to rely on tools of argumentation theory to analyze, structure,
and formalize collective decision-making mechanisms to construct an informed
joint decision [Bisquert et al., 2019]. Several works on multiparty dialogues in
argumentation exist [Bonzon and Maudet, 2011; Dignum and Vreeswijk, 2003].
However, several questions remain open. For example, how to aggregate the
opinions/preferences of participants? Several aggregation tools/models exist; it is
a question of setting up an efficient and effective way of doing so. Another issue is
how to consider the participants’ arguments during the interaction. For example,
participants do not necessarily present all their arguments simultaneously and may
even hide particular arguments for various reasons. They may also form coalitions
or have different roles during the discussion. So, what rules should be put in place
to structure the dialogue? Questions related to aggregating different arguments
from different participants during the dialogue are also an issue [Coste-Marquis
et al., 2007].

• Explainability for Collective Decision: In this case, we want to do the same work
we have done in defining argument schemes for decisions. These schemes took
into account a decision-maker’s preferences and features of the decision model.
We will try to see to what extent we can extend our work to a context with
several participants in the decision process. For instance, how can we ensure
that the participants accept the final decision? For example, it is a question
of extracting sufficient reasons that will support the joint decision, allowing the
adoption of this decision by the participants. Working in this direction will be an
opportunity to collaborate with colleagues in the Social Choice field, especially
Anaëlle Wilczynski (MICS, CentraleSupélec).

5.5 Summary

This chapter has exposed our ambitions for the next years and the research questions
we envisage answering to contribute to the Artificial intelligence and Decision theory
fields. The different questions will offer us great opportunities to collaborate with
various colleagues and future PhD students. We mentioned different possible new
collaborations, but our actual collaborations will continue without any doubt and with
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much pleasure.

We also have other projects that are not detailed in this manuscript. These projects
reflect our desire to, on the one hand, enrich our scientific background and, on the
other hand, to mobilize our knowledge acquired over the last years in new fields and
challenges in collaboration with some colleagues. As examples, we mention the following
two theses, where we will have the chance to participate in the supervision.

• Angélique Yameogo (October 2022). An XAI approach for the characteriza-
tion, Conceptualization and Detection of Fake News. Co-supervision with Régis
Fleurquin (IRISA, UMR CNRS 6074, Université de Bretagne Sud) and Nicolas
Belloir (CREC St-Cyr, IRISA, UMR CNRS 6074, Université de Bretagne Sud).
In collaboration also with Oscar Pastor (PROSS, Universidad Politécnica de Va-
lencia, Spain).

• Dao Thauvin (November 2022). Explanatory dialogue for the interpretation of
visual scenes 4. Co-supervision with Stéphane Herbin (ONERA5, the French
Aerospace Lab) and Céline Hudelot (MICS, CentraleSupélec, Université Paris-
Sacaly).

4In french: Dialogue explicatif pour l’interprétation de scènes visuelles.
5https://www.onera.fr/en/identity

https://www.onera.fr/en/identity
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Multi-Criteria Decision Aiding (MCDA) aims to develop decision models explicitly based on
the construction of a set of criteria reflecting the relevant aspects of the decision-making
problem. These n criteria (often conflicting) (N = {1, 2, . . . , n} with n ≥ 2) evaluate a set
of alternatives A = {a, b, c, ...} from different points of view. Several multi-criteria decision
models exist. These models correspond to a parametric family of functions aggregating the
evaluation according to each criterion into a solution of the decision problem. The MCDA
literature considers different decision problems. We distinguish the choice, the sorting, the
pairwise comparison, and the ranking. Unlike formulations of choice, ranking and pairwise
comparison problems, which are comparative, sorting formulates the decision problem in
terms of assigning alternatives to predefined ordered categories C1, C2, ...Cp, where C1 (Cp,
resp.) is the worst (best, resp.) category. The assignment of an alternative to the appropriate
category is based on its intrinsic value and not on its comparison with other alternatives.

In addition, multi-criteria decision aiding results from an interaction between at least two
agents, an analyst and a decision-maker, where the analyst’s goal is to guide the decision-
maker in the construction and understanding of the recommendations of a particular deci-
sion problem. Decision theory and Multiple Criteria Decision Analysis (MCDA) have estab-
lished the theoretical foundation upon which many decision support systems have risen.
The different approaches (and the formal tools coming along with them) have focused for a
long time on how a “solution” should be established. But it is clear that the process involves
many other aspects that are handled more or less formally by the analyst. For instance,

• the problem of accountability of decisions is almost as important as the decision it-
self. The decision-maker should then be convinced by a proper explanation that the
proposed solution is indeed the best.

• it should be possible, for the decision-maker, to refine, or even contradict, a given
recommendation. Indeed, the decision-support process is often constructive, in the
sense that the DM refines its formulation of the problem when confronted to potential
solutions.

In addition, nowadays, decision support situations are omnipresent: they can arise when
the analyst’s role is assumed by a non-expert or even, in some cases, by an artificial agent.
This means that several aspects - such as learning preferences, structuring the interaction,
providing an explanation, handling user feedback,... - generally delegated to the human
analyst should be ideally managed by the artificial agent. Thus, on the one hand, we need a
formal theory on preferences and, on the other hand, a formal language making it possible
to represent the dialogue and explain and communicate its results to convince the user that
what is happening is both theoretically sound and operationally reasonable. In this context,
the main (complementary) axes of my research work are:

Axis1: Modeling and generating explanations for recommendations for complex decision
problems.

The question of the explanation (explainability/interpretability) of a decision, recommen-
dation, algorithm outputs, etc., often associated in the literature with the acronym XAI
(eXplainable AI), has become in recent years a crucial element in any ”trusted algorithmic
design”. Indeed, for high-stakes AI applications, performance is not the only criterion to
be taken into account. Such applications may require a relative understanding of the logic
executed by the system. In this case, the end-user wants an answer to the question “Why?”.
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eXplainable Artificial Intelligence (XAI) aims to provide methods that help empower AIs to
answer this question. Even though interest in this question has exploded with machine
learning tools and techniques, it dates back to expert systems, and since then, many works
have emerged. Various questions are explored, such as: generating and providing explana-
tions, identifying desirable characteristics of an explanation from the point of view of its
recipient, evaluating the explanation produced by the system, etc.

In general, my work focuses on the implementation of tools and algorithms for generating expla-
nations for recommendations stemming from multicriteria models which put user preferences
and judgments at the heart of the reasoning. Generating explanations in the MCDA con-
text is not a simple task; as different criteria are at stake, the user cannot fully assess their
importance or understand how they interact. Moreover, once the user is faced with the
result and the explanation, he may realize that it is not exactly what he expected. There-
fore, it can make changes or provide new information that will have effects, for example,
on the other phases of the decision aiding process (e.g., preferences learning step, see Axis
2). Thus, beyond making the result acceptable, presenting an explanation can impact the
representation of the user’s reasoning mode, which is at the base of the construction of
the recommendation. Furthermore, the challenge with this question is that the concept
of explanation varies depending on the decision context/problem and the decision model.
In this context, my research work focuses on two decision models: one very widely used
model, whether in decision theory or in machine learning, namely the additive model, and
the other which is Non-Compensatory Sorting model. With the first model, the work aims
to produce explanations for the pairwise comparison. In contrast, in the second, we seek
to explain the assignment of an alternative to a given category. To answer these questions,
different approaches and techniques are considered: argumentation schemes and mathe-
matical programming. In particular, the question of constructing explanations comes down
to formalizing argument (explanations) schemes that link premises (information provided
or approved by the user, or deduced during the process of preference learning, and some
additional hypotheses on the process of reasoning (from the assumptions of the model)) to a
conclusion (e.g. the recommendation) Finally, I am also interested in other models/systems,
for example, rule-based systems (classical, fuzzy) and optimization models.

• Concerned thesis: Manuel Amoussou (in progress), Mathieu Lerouge (in progress),
Ismail Baaj (2022), Khaled Belahcène (2018), Karim El Mernissi (2017).

Axis2: modelling of the interaction and preferences for the construction of adaptive deci-
sion support systems.

At present, when decision aiding support or recommendation systems (online, for example)
are in full expansion, an important aspect is that of succeeding in capturing and integrating
the preferences, habits, and reactions of users to try to produce the most compelling and
relevant recommendations from a user perspective. To meet this objective, I investigated
two lines of research.

• Setting up efficient preference learning mechanisms: learning and eliciting prefer-
ences is an essential step in a decision support process. This step aims to incorporate
user judgments as faithfully as possible into the decision model. It is crucial to develop
relevant and reliable recommendations, and any flawed process would lead to unsub-
stantiated advice being provided to users. In addition, preferences are an essential
object in many contexts, such as decision-making, machine learning, recommendation
systems, social choice theory, and various sub-fields of artificial intelligence. In this
context, the challenge is to build learning algorithms that are both efficient (from
a computational point of view) while keeping humans in the loop to integrate and
represent as faithfully as possible their expertise and their skills Knowledge.

The basic idea of   the multi-criteria decision support methodology is that, given a de-
cision problem, we collect preferential information from the decision-maker to build
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an evaluation model that must reflect the point of view. (the value system) of the
decision-maker and help him solve his decision problem. In other words, my research
is interested in implementing algorithms for the automatic learning of preferences
based on reference examples (a training set). Several models are studied: sorting, clas-
sification and point of reference models. To answer the question, different tools and
methods are used for the formulation of preference learning algorithms: mathematical
programming and logical formulations (SAT / MAxSAT).

– Theses concerned: Ali Tlili (2022), Pegdwendé Stéphane Minoungou (2022), Jinyan
Liu (2016)

• Design of adaptive dialogue protocols: decision support is an interaction between
at least two agents. Setting up an automatic system to support this interaction raises
several questions: how to model the system’s reasoning to allow ”efficient” interaction
with a user; how to make a formal link between the generation of the explanation and
the improvement of the learning process. Indeed, faced with an explanation, a user
can provide new information, invalidate old information, etc. These reactions strongly
contribute to feeding other phases of the decision support process, such as the learning
phase of the preference model. How to adapt classic preference learning algorithms to
manage inconsistent user feedback (inconsistency, erroneous information, etc.) while
automatically adjusting the model to the information provided by the user?

In this context, my research aims to provide a formal language to represent such an
interaction, explain it, communicate its results, and convince the user that what is
happening is both theoretically sound and operationally reasonable. To do this, we
propose to build and formalize an interaction protocol, which specifies the rules and
conditions under which we can have a ”coherent” interaction in a decision support
context where the initiative is sometimes left to the user (e.g. ask for an explanation).
We will rely on dialectical management and dialogue systems resulting from work in
multi-agent systems and argumentation theory.

– Theses concerned: Manuel Amoussou (in progress).

Finally, through the previous axes, our ambition is to obtain solid theoretical frameworks.
Beyond this, we wish to prove the utility and the applicability of the theoretical propositions
through real situations. The objective is to offer algorithmic solutions to real-world problems
by combining multicriteria decision support tools and artificial intelligence.

• Theses concerned: Ali Tlili (2022), Mathieu Lerouge (in progress), Manel Mammar
(2015), Massinissa Mammeri (2017)

Supervision
Thesis in progress

• Dao Thauvin.Explanatory dialogue for the interpretation of visual scenes (Funded AID-
ONERA). Co-supervised with 15% with Stéphane Herbin (ONERA) and Céline Hudelot
(MICS, CentraleSupélec). (Start November 2022).

• Mathieu Lerouge. Designing explanation schemes for recommendations stemming
from Optimization Systems: application to scheduling problems for facility man-
agement (MICS, CentraleSupélec- Decision Brain). Funding PSPC AIDA Project. Co-
supervision 30% with Vincent Mousseau (MICS-CentraleSupélec), Céline Gicquel (LISN,
Université Paris Saclay) (start December 2020).

• Manuel Amoussou. Interactive explanations in Multi-criteria decision aiding: handling
inconsistencies and levels of explanation. (MICS, CentraleSupélec). Funding PSPC AIDA
Project. Co-supervision 50% with Vincent Mousseau (MICS-CentraleSupélec) (start May
2020). Publications: [34].
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Defended Thesis

• Ali Tlili (15/06/2022). Multicriteria Portfolio Management Optimization (MICS, Centrale-
Supélec - Dassault Systèmes). Funding Dassault Systèmes. Co-supervision à 50% with
Vincent Mousseau (MICS, CentraleSupélec), and Khaled Oumeima (Dassault Systèmes2).

– Publications: [3], [4], [38].

– Job: Operational Research Technology Specialist (Dassault Systèmes)

• Pegdwendé Stéphane Minoungou (13/05/2022). Learning an MR-Sort model from non
monotone data (MICS, Centalesupélec -IBM Zurich). Funding IBM. Co-supervision 50%
with Vincent Mousseau (MICS, CentraleSupélec) and Paolo Scoton (IBM Zurich).

– Publications: [2], [33].

– Job: Research Engineer, since 2022 (Anse Technology).

• Ismaïl Baaj (27/01/2022). Explainability of possibilistic and fuzzy rule-based systems.
(LIP6, Sorbonne Université- CEA List - MICS, CentraleSupélec). Funding CEA. Co-
supervision 30% with Nicolas Maudet (LIP6, Sorbonne Université) and Jean-Philippe
Poli (CEA List3).

– Publications: [14], [16], [35].

– Job: Post-Doc Telcome SudParis.

• Khaled Belahcène (05/12/2018). A contribution to accountable decision aiding : explana-
tions for the aggregation of preferences (LGI, CentraleSupélec - LIP6, Sorbonne Univer-
sité). Doctoral School INTERFACES research grant funding. Co-supervision (25%) with
Vincent Mousseau (LGI, CentraleSupélec), Nicolas Maudet (Sorbonne Université) and
Christophe Labreuche (Thales Research and Technology).

–

– Publications: [4], [5], [7], [9], [17], [18], [19], [34], [36], [37], [39].

– Job: Assistant Professor since 2019, Heudiasyc4, UTC.

• Massinissa Mammeri (28/11/2017). Decision aiding methodology for developing the con-
tractual strategy of complex oil and gas projects (LGI, CentraleSupélec - Total). Funding
Total. Co-supervision 50% with Franck Marle (LGI, CentraleSupélec).

– Publications: [22]

– Job: Business Intelligence Consultant since 2017 (SYSTRA).

• Karim El Mernissi (13/12/2017). Generation of explanations in rule-based systems (LIP6-
UPMC, LGI-CentraleSupélec, IBM). Funding IBM. Université Pierre et Marie Curie. Co-
supervision 50% with Nicolas Maudet (LIP6, UPMC) and Pierre Feillet (IBM)

– Publications: [20]

– Job: Data Scientist since 2019 (Orange, paris).

• Jinyan Liu (09/03/2016). Elicitation of preferences for a model based on reference points
(LGI, Ecole Centrale Paris). Funding CSC scholarship. Co-supervision 50% with Vincent
Mousseau (LGI, Ecole Centrale Paris).

– Publications: [8], [25], [40].

– Job: Tech Lead Data Scientist since 2019 (Faurecia, Paris).

2https://www.3ds.com
3http://www-list.cea.fr/en/
4https://www.hds.utc.fr/en.html
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• Manel Maamar (07/12/2015). Multi-criteria modeling and optimization with anticipa-
tion of a Leads marketplace (LGI, Ecole Centrale Paris). Funding Place des Leads. Co-
supervision 50% with Vincent Mousseau (LGI, Ecole Centrale Paris) and Alexandre Aubry
(Place des Leads).

– Publications: [24]

– Job: Machine Learning Consultant since 2019 (Groupe Pact Novation, Paris).

Master Thesis

• Nathan Rougier. Artificial Intelligence methods for prediction and management of
patient flows in hospital departments (MICS, CentraleSupélec). M2 (third year engi-
neering). In collaboration with Gianluca Quercini (LISN, Université Paris Saclay). Su-
pervision 70%. CentraleSupélec, 2021-2022. DataIA Funding.

• Antonin Billet, “Evaluation of a conceptual model of Fake News”. May- july 2022 at
St-Cyr Coëtquidan (M1). (33% with Nicolas Belloir, Saint-Cyr, IRISA and Oscar Pastor,
PROSS, Universidad Politécnica de Valencia, Spain).

• Evan Epivent, “Towards an XAI approach based on a conceptual model of Fake News”.
Stage de M1 à St-Cyr Coëtquidan. June- September 2022 (M1). (33% with Nicolas Belloir,
Saint-Cyr, IRISA and Oscar Pastor, PROSS, Universidad Politécnica de Valencia, Spain).

• Emilien Frugier. “Conceptual Modelling of Fake News”. 2021-2022. Double Diploma
St-Cyr Coëtquidan-CentraleSupélec (M2). (33% with Nicolas Belloir, Saint-Cyr, IRISA and
Oscar Pastor, PROSS, Universidad Politécnica de Valencia, Spain).

• Antonin Duval. Deep reinforcement learning in the multi-agent framework in simu-
lations (Thales Research & Technology). Msc IA5. Supervision 100%. CentraleSupélec,
2019-2020.

• Sanae Chouhani. Optimization of train movement in technicenter (SNCF). Master 2
OSIL. Supervision 100% CentraleSupélec, 2017-2018.

• Rihab Brahim. Improvement of industrial planning processes (LVMH). Master 2OSIL.
Co-supervision (30%) with Yves Dallery. 2016-2017.

• Léonel de la Bretesche. Optimization method from an outsourced warehouse Applica-
tion to the case of the Amazon-SMOBY warehouse (AMAZON). Master 2 OSIL. Supervi-
sion 100%. École Centrale Paris, 2014-2015.

• Massinissa Mammeri. Lead forecasting problem for a marketplace (Place des Leads).
Master 2 MODO (Modélisation, Optimisation, Décision et Organisation). Co-supervision
(25%) avec Denis Bouyssou (Université paris dauphine), Vincent Mousseau (ECP),
Alexandre Aubry (Place des Leads). Université Paris-Dauphine. 2013-2014.

• Lisa JUNGE. Hybridization and electrification of CLAAS tractors: potentials and eco-
nomic prospects, (CLAAS Tractor SAS). Master 2 OSIL. Supervision 100%. Ecole Centrale
Paris, 2012-2013.

• Liu Jinyan. Inference of a multi-criteria multi-decision maker ranking: a method based
on reference points. Research internship. Master 2 OSIL. Co-supervision (50%) with
Vincent Mouseau. Ecole Centrale Paris, 2011-2012.

• Bian Yuan. Multiple criteria models for competence-based project staffing. Research
internship. Master 2 OSIL (Optimisation des Systèmes Industriels et Logistiques), co-
supervision (50%) with Vincent Mousseau. Ecole Centrale Paris, 2011-2012

5https://www.centralesupelec.fr/fr/msc-artificial-intelligence
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Number
Theses in progress 03
Defended Theses 08
Master2 Theses 10
Master1 Theses 10

Table 1: Supervisions summary

Dissemination and Responsibilities
Contracts

• Funding of an M2 internship by the ”M2 2022 internship call” of DataIA6. Subject: Arti-
ficial Intelligence methods for the prediction and management of patient flows in hos-
pital services. In collaboration with Gianluca Quercini (LISN, Unviersité Paris Saclay).

• Scientific coordinator of WP-F (Generation and representation of explanations by the
AIDA System) of the PSPC AIDA (AI for Digital Automation) project carried by IBM (MICS
budget - 320k€). Start January 2020 (48 months).

• Coordination of a proposal in response to the ”Expression of Interest - IBM Research
Collaborations” through DATAIA7. This proposal resulted in the funding (120k€) of a
CIFRE thesis which began in March 2019 in co-supervision with Vincent Mousseau
(MICS, CentraleSupélec) and Paolo Scoton (IBM Zurich).

Prize and Distinction

• RCIS 2022 Best Forum Paper / Poster Award

• Doctoral and Research Supervision Bonus (2020-2024)

• Doctoral and Research Supervision Bonus (2015-2019)

Member of a Jury thesis

• Thesis of Fabien de Lacroix. Title: Dialogue to decide. Proactive expert recommendation
and fair multi-agent decision making. (Université Lille 1, 2015).

• Thesis of Olivier Sobrie. Title: Learning preferences with multiple-criteria models (Uni-
versité de Mons, 2016).

• Thesis of Tasneem Bani-Mustapha. Title: multi-hazards risk aggregation considering
trustworthiness of the assessment (LGI, CentraleSupélec, 2019).

Participation in committees

• Guest Editor pour EURO Journal on Decision Processes (EJDP), Special issue: Supporting
and Explaining Decision Processes by means of Argumentation 2018.

• Reviewer for International Journals : Journal of Autonomous Agents and Multi-Agent
Systems, Multi-Criteria Decision Analysis (JMCDA), Annals of Operations Research, Eu-
ropean Journal of Operation Research (EJOR), Argument and Computation, Operational
Research - An International Journal (ORIJ), The International Journal of Management
Science (OMEGA), Transaction on Fuzzy Systems.

6https://www.dataia.eu/appel-projets/appel-stages
7https://dataia.eu
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• PC international conferences and workshops : AAAI (2021, 2020, 2019), AAMAS (2019),
IJCAI (2022, 2021 (SPC), 2020, 2019, 2018), KR (2018), ECAI (2020), IPMU (2012), DA2PL8

(2020, 2018, 2016, 2012).

• PC national conferences and workshops : JFSMA (2022, 2021, 2020), RJCIA (2018, 2016,
2017), MFI (2013).

Participation, Presentations in conferences and seminars

• Wassila Ouerdane. Title: Generation of Textual Explanations in XAI: the Case of Se-
mantic Annotation. Explicability and symbolic reasoning in AI” seminar for the D2K9

working group, from Data to Knowledge, resumes its meetings. 23 November 2021

• Wassila Ouerdane. Title: The challenges of “intelligent” decision support: from pref-
erence learning to explaining recommendations. Journée “Philosophie des sciences et
Intelligence Artificielle10” (PS & IA 2020). 06 Feverier 2020.

• Wassila Ouerdane. Title: A Dialogue Game for Recommendation with Adaptive Prefer-
ence Models. MICS Seminar. 24 June 2019.

• Wassila Ouerdane et Vincent Mousseau. Title: Interactive Recommendation and Expla-
nation for Multiple Criteria Decision Analysis. Séminaire IRT SystemX11. 11 april 2018.

• Wassila Ouerdane. Title: Justified decisions are better than simple ones: explaining
preferences using even swap sequences. In 26th European Conference on Operational
Research. Rome, Italie. 1-4 July, 2013. Join work with Christophe Labreuche, Nicolas
Maudet and Vincent Mousseau.

Working Groups

• Member of the National French Research Group in IA ’Explainability’ working group
(https://gt-explication.gitlab.io/)

• Member of of the National French Research Group in IA (https://www.gdria.fr).

Teaching
Since my recruitment as a lecturer (assistant professor), I had taught or taught at all uni-
versity levels (Bachelor, Master) in the IT department at CentraleSupélec (when I arrived,
École Centrale Paris). I am also involved in the Master of Science Artificial Intelligence 12

of CentraleSupélec. The summary of the teaching hours is presented in the Table3. I also
supervise a number of end studies internship, gap year and group projects.

The number of hours mentioned in this table count the equivalent hours of tutorials per-
formed, generally distributed in lessons, tutorials and for certain courses in practical work
and project monitoring. I would like to point out that this service was impacted by three
maternity leaves: from January 17, 2011 to May 7, 2011; from October 17, 2014 to February 8,
2015 and from September 19, 2020 to March 18, 2021.

List of Current Courses and activities–2021/2022

• Information retrieval and processing of big data –112 students. Co-leader with Céline
Hudelot (MICS, CentraleSupélec)

8From Multiple Criteria Decision Aid to Preference Learning - https://event.unitn.it/da2pl2020/#home
9https://digicosme.cnrs.fr/event/groupe-de-travail-de-la-donnee-a-la-connaissance/

10https://afia.asso.fr/psia-2020/
11https://www.youtube.com/watch?v=it50bttu4P8
12https://www.centralesupelec.fr/fr/msc-artificial-intelligence
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Period Bachelor Level Master Level Total
2010-2011 85 36 121
2011-2012 67 150 217
2012-2013 130 150 280
2013-2014 67 150 217
2014-2015 85 33 118
2015-2016 120 158 278
2016-2017 125 126 250
2017-2018 112 135 247
2018-2019 112 135 247
2019-2020 200 50 250
2020-2021 78 32 110

Table 2: Summary Teaching hours

• Multi-agent system: architectures and reasoning –Master level, shared with the MSc
Artificial Intelligence, 55 students. Course leader

• Explainability of AI Systems - Master level, 60 students. Co-leader with Jean-Philippe
Poli (CEA List)

• SAFRAN AI Training: ”Multi-agent Systems” (16 participants) 2021 and 2022.

• DGA AI Training: ”Autonomous Agents and Decision Aiding” (10 participants) 2022.
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Appendix B

Publications

Wassila Ouerdane
November 2022

Articles under submission

• Khaled Belahcène, Vincent Mousseau, Wassila Ouerdane, Marc Pirlot, and Olivier
Sobrie. Multiple Criteria Sorting: a model-oriented survey. Submitted to 4OR
(October 2022)

• Manuel Amoussou, Khaled Belahcène, Nicolas Maudet, Vincent Mousseau, and
Wassila Ouerdane. Computing explanations for a multicriteria additive value
based model. Submitted to EJOR (September 2022).

• Mathieu Lerouge, Céline Gicquel, Vincent Mousseaun and Wassila Ouerdane.
Explaining solutions stemming from optimization systems solving the Workforce
Scheduling and Routing Problem to their end-users. Submitted to EJOR (July
2022)

Articles published in international peer-reviewed journals

[1] Khaled Belahcène, Vincent Mousseau, Wassila Ouerdane, Marc Pirlot, Olivier
Sobrie, Ranking with Multiple Reference Points: Efficient SAT-based learning
procedures, Computers & Operations Research, Volume 150, 2023.

[2] Pegdwendé Minoungou, Vincent Mousseau, Wassila Ouerdane, Paolo Scot-
ton. A MIP-based approach to learn MR-Sort models with single-
peaked preferences. Annals of Operations Research, Springer Verlag, 2022.
https://doi.org/10.1007/s10479-022-05007-5

[3] Ali Tlili, Oumaima Khaled, Vincent Mousseau, and Wassila Ouerdane. Inter-
active portfolio selection involving multicriteria sorting models. Ann Oper Res
(2022). https://doi.org/10.1007/s10479-022-04877-z



126 Appendix B. Publications

[4] Ali Tlili, Khaled Belahcène, Oumaima Khaled, Vincent Mousseau, Wassila Ouer-
dane: Learning non-compensatory sorting models using efficient SAT/MaxSAT
formulations. European Journal of Operational Research 298(3): 979-1006 (2022)

[5] Alexandru-Liviu Olteanu, Khaled Belahcène, Vincent Mousseau, Wassila Ouer-
dane, Antoine Rolland, Jun Zheng: Preference elicitation for a ranking method
based on multiple reference profiles. 4OR 20(1): 63-84 (2022) .

[6] Anthony Hunter, Nicolas Maudet, Francesca Toni, Wassila Ouerdane. Foreword
to the Special Issue on supporting and explaining decision processes by means
of argumentation. EURO journal on decision processes, Volume 6, Issue 3–4, pp
235–236, 2018.

[7] Khaled Belahcène, Christophe Labreuche, Nicolas Maudet, Vincent Mousseau,
Wassila Ouerdane. An efficient SAT formulation for learning multiple criteria non-
compensatory sorting rules from examples. Computers and Operations Research,
Elsevier, Volume 97, pp 58-71, 2018.

[8] Valentina Ferretti, Liu Jinyan, Vincent Mousseau, Wassila Ouerdane. Reference-
based ranking procedure for environmental decision making: Insights from an
ex-post analysis. Environmental Modelling and Software, Elsevier, Volume 99,
pp.11-24. 2018.

[9] Khaled Belahcène, Christophe Labreuche, Nicolas Maudet, Vincent Mousseau,
Wassila Ouerdane. Explaining robust additive utility models by sequences of
preference swaps. Theory and Decision, Springer Verlag, Volume 82, Issue 2, pp
151-183, 2017.

[10] Wassila Ouerdane, Yannis Dimopoulos, Konstantinos Liapis, Pavlos Moraitis. To-
wards automating Decision Aiding through Argumentation. Journal of Multicri-
teria Decision Analysis, Volume 18, pp 289-309, 2011.

[11] Wassila Ouerdane. Multiple Criteria Decision Aiding: a Dialectical Perspective.
4OR: A Quarterly Journal of Operations Research, Springer Verlag, Volume 9,
Issue 4, pp 429–432, 2011.

Articles published in international conferences with peer review

[12] Nicolas Belloir, Wassila Ouerdane, and Oscar Pastor. Characterizing Fake News:
A Conceptual Modeling-based Approach. In proceedings of the 41ST internatinal
conference on Conceptual Modeling (ER) 2022. (to appear).
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[13] Nicolas Belloir, Wassila Ouerdane, Oscar Pastor, Emilien Frugier, Louis-Antoine
de Barmon, A Conceptual Characterization of Fake News: A Positioning Paper.
In: Guizzardi, R., Ralyté, J., Franch, X. (eds) Research Challenges in Information
Science. RCIS 2022. Lecture Notes in Business Information Processing, vol 446.pp
662–669. Springer, Cham. 2022. (RCIS 2022 Best Forum Paper / Poster Award).

[14] Ismaïl Baaj, Jean-Philippe Poli, Wassila Ouerdane, Nicolas Maudet. Represen-
tation of Explanations of Possibilistic Inference Decisions. ECSQARU 2021: Eu-
ropean Conference on Symbolic and Quantitative Approaches with Uncertainty,
Sep 2021, Prague, Czech Republic. pp.513-527.

[15] Jean-Philippe Poli, Wassila Ouerdane, Regis Pierrard. Generation of Textual
Explanations in XAI: the Case of Semantic Annotation. 2021 IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE), Jul 2021, Luxembourg, Lux-
embourg. pp.9494589

[16] Ismaïl Baaj, Jean-Philippe Poli, Wassila Ouerdane, Nicolas Maudet. Min-max
inference for Possibilistic Rule-Based System. 2021 IEEE International Con-
ference on Fuzzy Systems (FUZZ-IEEE), Jul 2021, Luxembourg, Luxembourg.
pp.9494506.

[17] Khaled Belahcène, Christophe Labreuche, Nicolas Maudet, Vincent Mousseau,
Wassila Ouerdane. Comparing options with argument schemes powered by can-
cellation. Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI-19), Macao,China. pp 1537-1543, 2019.

[18] Khaled Belahcène, Yann Chevaleyre, Nicolas Maudet, Christophe Labreuche, Vin-
cent Mousseau, and Wassila Ouerdane. Accountable Approval Sorting. Proceed-
ings of 27th International Joint Conference on Artificial Intelligence and 23rd
European Conference on Artificial Intelligence (IJCAI-ECAI 2018). Stockholm,
Sweden. pp 70-76, 2018.

[19] Khaled Belahcène, Christophe Labreuche, Nicolas Maudet, Vincent Mousseau and
Wassila Ouerdane. A Model for Accountable Ordinal Sorting. In proceedings of
the 26th International Joint Conference on Artificial Intelligence (IJCAI-2017),
Melbourne, Australia. pp 814-820, 2017.

[20] Karim El Mernissi, Pierre Feillet, Nicolas Maudet, Wassila Ouerdane. Introducing
Causality in Business Rule-Based Decisions. In proceedings of the 30th Interna-
tional Conference on Industrial Engineering and Other Applications of Applied
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The Non-Compensatory Sorting model aims at assigning alternatives evaluated on multiple criteria to 

one of the predefined ordered categories. Computing parameters of the Non-Compensatory Sorting model 

compatible to a set of reference assignments is computationally demanding. To overcome this problem, 

two formulations based on Boolean satisfiability have recently been proposed to learn the parameters of 

the Non-Compensatory Sorting model from perfect preference information, i.e. when the set of reference 

assignments can be completely represented in the model. In this paper, two popular variants of the Non- 

Compensatory Sorting model are considered, the Non-Compensatory Sorting model with a unique profile 

and the Non-Compensatory Sorting model with a unique set of sufficient coalitions. For each variant, we 

start by extending the formulation based on a separation principle to the multiple category case. More- 

over, we extend the two formulations to handle inconsistency in the preference information using the 

Maximum satisfiability problem language. A computational study is proposed to compare the efficiency 

of both formulations to learn the two Non-Compensatory Sorting models (with a unique profile and with 

a unique set of sufficient coalitions) from noiseless and noisy preference information. 

© 2021 Elsevier B.V. All rights reserved. 

Introduction 

Multiple Criteria Decision Analysis (MCDA) aims at developing 

decision-support models explicitly based on the construction of a 

set of criteria reflecting the relevant aspects of the decision-making 

problem. These n criteria ( N = { 1 , 2 , . . . , n } with n ≥ 2 ) evaluate 

a set of alternatives A = { a, b, c, . . . } under consideration with re- 

spect to different viewpoints. The MCDA literature considers dif- 

ferent problem statements to formulate real-world decision prob- 

lems; Roy (1996) distinguishes three problem statements: choice, 

sorting and ranking. As opposed to choice and ranking problem 

formulations which are comparative in nature, sorting formulates 

the decision problem in terms of the assignment of alternatives 

to one of the predefined ordered categories C 1 , C 2 , . . . C p , where C 1 

( C p , resp.) is the worst (the best, resp.) category. The assignment 

of an alternative to the appropriate category relies on its intrinsic 

value, and not on its comparison with other alternatives 

In this paper, we are interested in a specific sorting proce- 

dure: the Non-Compensatory Sorting (NCS) model ( Bouyssou & 

Marchant, 20 07a; 20 07b ), which corresponds to a generalization 

∗ Corresponding author. 

E-mail address: vincent.mousseau@centralesupelec.fr (V. Mousseau). 

and formal description of the Electre Tri procedure ( Figueira, Greco, 

Roy, & Słowi ́nski, 2010 ). One of its specificity is to account for the 

alternative evaluations in an ordinal perspective avoiding compen- 

sation and enables to deal meaningfully with qualitative data. 

We consider a decision aiding process in which two partici- 

pants are involved to model a sorting problem using NCS: a de- 

cision maker (DM) looking for a recommendation and an analyst 

to support the DM in the search for this recommendation. Thus, 

the role of the analyst is to interact with the DM in order to help 

her to elaborate her preferences which are generally not fully pre- 

defined at the beginning of the decision process. The DM expresses 

preferences from which a specific NCS model is inferred. More 

specifically, the information supplied by the DM in order to specify 

the NCS sorting model are assignment examples (alternatives that 

should be assigned to a category). It should be highlighted that the 

construction of the learning set and the NCS model often results 

from a sequence of interactions between the DM and the analyst 

rather than in a one-step interaction. 

In this perspective, the inverse Non-Compensatory Sorting 

problem (Inv-NCS, see Section 3.1 ) takes as input a set of assign- 

ment examples, and computes (whenever it exists) an NCS sort- 

ing model which is consistent with this preference information. 

In other words, Inv-NCS learns the NCS parameters that perfectly 

match a set of desired outputs (assignment examples). Solving 

https://doi.org/10.1016/j.ejor.2021.08.017 

0377-2217/© 2021 Elsevier B.V. All rights reserved. 
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Inv-NCS problem is computationally difficult and have been proved 

to be NP-hard ( Belahcene et al., 2018b ). Mixed-integer linear for- 

mulations ( Leroy, Mousseau, & Pirlot, 2011; Zheng, Metchebon Tak- 

ougang, Mousseau, & Pirlot, 2014 ) and heuristic resolution ap- 

proaches ( Sobrie, Mousseau, & Pirlot, 2015; 2019 ) have been pro- 

posed for Inv-NCS. 

Recently, Belahcene, Labreuche, Maudet, Mousseau, & Ouerdane 

(2018a) proposed a SAT formulation of this problem which proves 

to be computationally more efficient than previous approaches. 

In this paper, we report a second SAT formulation for Inv-NCS 

( Belahcene et al., 2018b ) described in the context of two cate- 

gories. We extend this second formulation to the multiple category 

case and perform numerical tests to compare the performance of 

these two SAT formulations. Nevertheless, in the SAT problem, it is 

assumed that the set of assignment examples is fully compatible 

with NCS. Therefore, we are interested in extending both SAT for- 

mulations to handle inconsistency in preference information which 

is often the case in real-world decision problems. 

Indeed, in actual case studies, preference expressed by DMs are 

often inconsistent, due to the multiplicity of DMs, the fact that 

their preferences are not necessarily predefined and can evolve 

during the elicitation process. Handling inconsistencies when con- 

sidering a set of preference statements on a set of multicriteria al- 

ternatives has been already tackled in the literature through math- 

ematical programming (see, e.g. Mousseau, Dias, Figueira, Gomes, 

& Clímaco, 2003 ) or the analysis of reciprocal preference relations 

(see, e.g. Herrera-Viedma, Herrera, Chiclana, & Luque, 2004 ). In this 

work, we consider handling inconsistency with MaxSAT language, 

where a SAT formulation is complemented with an implicit objec- 

tive function, so that the number of satisfied clauses is maximal, 

allowing to best satisfy an unsatisfiable instance and consequently 

to best restore the assignment examples set. 

The paper is organized as follows. In the first section, we pro- 

pose an analysis of the recent literature on multicriteria sorting 

methods. Section 2 presents the NCS model. Inv-NCS, the problem 

of learning the parameters of NCS from assignment examples is 

defined in Section 3 . In Section 4 , we present the two SAT for- 

mulations for Inv-NCS. In Section 5 , we extend SAT formulations 

with MaxSAT language, and Section 6 describes the empirical test 

design, the experimental results and a discussion. A final section 

groups conclusions and avenues for further research. 

The main contributions of the paper concern the extension of 

the separation-based SAT formulation to the case of more than two 

categories (the end of Section 4 ), the extension of the SAT formu- 

lations to MaxSAT to account for noisy input ( Section 5 ), and em- 

pirical results providing insights on how our methods behave on 

actual data sets ( Section 6 ). However, we also provide a compre- 

hensive description of the NCS models ( Section 2 ), so as to provide 

a self-contained text, as well as a brief survey of the recent litera- 

ture concerning the elicitation of MCDA sorting models ( Section 1 ). 

1. Recent literature on multiple criteria sorting methods 

Many multicriteria sorting models have been proposed in the 

literature (see Doumpos & Zopounidis, 2002 for an overview). 

These multicriteria sorting models can be distinguished accord- 

ing to the way they model preferences: ( i ) the ones that model 

preferences using a multi-attribute value function (e.g., Corrente, 

Doumpos, Greco, Słowi ́nski, & Zopounidis, 2017; Devaud, Grous- 

saud, & Jacquet-Lagreze, 1980; Köksalan & Ozpeynirci, 2009; 

Marichal, Meyer, & Roubens, 2005; Siskos, Grigoroudis, & Mat- 

satsinis, 2016 ), ( ii ) the ones that model preferences using outrank- 

ing relations (e.g., Almeida-Dias, Figueira, & Roy, 2012; Fernández, 

Figueira, Navarro, & Roy, 2017; Kadzi ́nski, Tervonen, & Figueira, 

2015; Perny, 1998; Roy, 1991 ), and ( iii ) those which represent pref- 

erences using if-then rules (e.g., Błaszczy ́nski, Greco, & Słowi ́nski, 

2007; Greco, Matarazzo, & Slowinski, 2001; Kadzi ́nski, Greco, 

& Słowi ́nski, 2014; Rudin & Ertekin, 2018 ). Recently Kadzinski, 

Ghaderi, & Dabrowski (2020) proposed a method which cor- 

responds to a hybridization of value-based and rule-based ap- 

proaches. 

Learning preference models from preference data to faithfully 

represent the DM’s judgment has been considered since several 

decades in the literature. In the context of MCDA, a well-known 

example of such an approach is the UTA method proposed in 

Jacquet-Lagreze & Siskos (1982) in the case of an additive multicri- 

teria value model. Learning an Electre Tri model (the initial multi- 

criteria sorting procedure from which NCS was formalized, see Roy 

(1991) ) from assignment examples was initially formulated using 

non-linear programming in Mousseau & Słowi ́nski (1998) . 

A significant number of authors did focus on the robustness 

of sorting results. Some approaches are based on robust ordi- 

nal regression, e.g. Greco, Mousseau, & Slowinski (2010) , while 

some others focus on a stochastic approach, e.g. Tervonen, Figueira, 

Lahdelma, Almeida Dias, & Salminen (2009) . Another concern 

which emerged from the literature on sorting methods concerns 

the ability to explain the result to the decision maker in order to 

reinforce her trust (see Belahcene, Labreuche, Maudet, Mousseau, 

& Ouerdane, 2017a; Belahcene et al., 2018b; Labreuche, 2011 ). 

Since one decade, the literature on outranking-based sorting 

has widely expanded: based on the Electre Tri method ( Roy, 1991 ), 

new sorting methods have been proposed defining categories using 

one or several limit profiles (see Fernández, Figueira, & Navarro, 

2019; Fernández et al., 2017 ), one or several central profiles (see 

Almeida-Dias, Figueira, & Roy, 2010; Almeida-Dias et al., 2012; 

Kadzi ́nski et al., 2015 ). In parallel, several theoretical and ax- 

iomatic works have contributed to a better understanding of these 

methods (see Bouyssou & Marchant, 2007a; Bouyssou & Marchant, 

2007b; Bouyssou, Marchant, & Pirlot, 2020 ). 

An additional significant advance in the literature concerns the 

new proposals in incremental elicitation of sorting methods (see 

Benabbou, Perny, & Viappiani, 2016; Benabbou, Perny, & Viappiani, 

2017; Kadzinski & Ciomek, 2021 ). These works propose a strategy 

to iteratively select questions to be asked to the decision maker in 

order to limit the number of questions. 

Several new sorting methods allow to cope with possible inter- 

action between criteria (see e.g. Fallah Tehrani, Cheng, & Hüller- 

meier, 2011; Liu, Kadzinski, Liao, & Mao, 2021 ). The possibility 

to represent preferences in a hierarchical structure of criteria has 

also been considered (see Arcidiacono, Corrente, & Greco, 2021 ). 

Some authors also consider non monotone preferences in sort- 

ing methods (see Liu, Liao, Kadzi ́nski, & Słowi ́nski, 2019; Liu, Liao, 

Mao, Wang, & Kadzinski, 2020; Minoungou, Mousseau, Ouerdane, 

& Scotton, 2020 ). These features enable sorting methods to account 

for more flexible preferences. 

Another important trend in the sorting literature concerns the 

cross-fertilization between the field of MCDA sorting and prefer- 

ence learning ( Furnkranz & Hullermeier, 2011 ). These two com- 

munities have now a common conference DA2PL (from Decision 

Analysis to Preference Learning) which takes place every second 

year since 2012. Among preference learning related work, one can 

cite ( Fallah Tehrani et al., 2011; Liu et al., 2021; Liu et al., 2019; 

Liu et al., 2020; Rudin & Ertekin, 2018; Sobrie, 2016 ). It should 

be noted that in this perspective, medical applications have been 

a fruitful application domain (see e.g Sobrie, Lazouni, Mahmoudi, 

Mousseau, & Pirlot, 2016; Sokolovska, Chevaleyre, & Zucker, 2018; 

Ustun & Rudin, 2016 ). 

Coming back specifically to outranking-based sorting, previous 

works have proposed approaches to learn the parameters of an 

MR-Sort model (specific case of an NCS model in which the set of 

sufficient coalitions of criteria are defined using additive weights) 

based on a learning set. This MIP formulation minimizes the 0/1 

980 
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loss, i.e. searches for a model that is compatible with as many 

examples as possible. Such MIP based exact approach has been 

extended to NCS 2-additive models ( Sobrie et al., 2015 ). How- 

ever, experimental results showed that such MIP approach be- 

comes computationally prohibitive with a large number of assign- 

ments (learning an MR-Sort model with 100 alternatives, 5 criteria 

and 3 categories involve a MIP with 1100 binary variables, and the 

computing time exceeds 100 s). 

To cope with the computational burden, a heuristic approach 

has been proposed to learn an MR-Sort model from assign- 

ment examples by Sobrie (2016) and Sobrie, Mousseau, & Pirlot 

(2019) which can handle large datasets, but losing optimality guar- 

anty. More recently Belahcene et al. (2018a) defined a Boolean sat- 

isfiability formulation of Inv-NCS, which keeps optimality guaran- 

tee while enabling computations even for real-size datasets. In this 

paper, we continue and extend this work. 

2. Non-compensatory sorting models 

This section is devoted to the presentation of the Non- 

Compensatory Sorting model, introduced in Bouyssou & Marchant 

(2007a,b) . 

2.1. Basic notations 

Multicriteria sorting aims at assigning alternatives to one of the 

predefined ordered categories C 1 ≺ . . . ≺ C p . All alternatives in a set 

A are evaluated on n criteria, N = { 1 , 2 , . . . , n } ; hence, an alter- 

native a ∈ A is characterized by its evaluation vector (a 1 , . . . , a n ) , 

with a i ∈ X i denoting its evaluation on criterion i . Each criterion 

is equipped with a weak preference relation � i defined on X i . We 

assume, without loss of generality, that the preference on each cri- 

terion increases with the evaluation (the greater, the better). We 

denote by X = 

∏ 

i ∈N 

X i the cartesian product of evaluation scales. 

We recall the definitions of an upset and the upper closure of a 

subset w.r.t. a binary relation: 

Definition 2.1. (Upset and upper closure). Let A be a set and R 

a binary relation on A . An upset of (A , R ) is a subset B ⊆ A 

such that ∀ a ∈ A , ∀ b ∈ B, a R b ⇒ a ∈ B. The upper closure of a sub- 

set of (A , R ) is the smallest upset of (A , R ) containing it: ∀B ⊆
A , cl R 

A 

(B) := { a ∈ A : ∃ b ∈ B a R b} 

2.2. Sorting into two categories 

In the Non-Compensatory Sorting model (NCS), the boundaries 

between categories are defined by limiting profiles. Therefore, a 

single profile corresponds to the case where alternatives are sorted 

between two ordered categories that we label as Good and Bad . A 

pair of parameters describe a specific sorting procedure: 

• a limiting profile b ≡ 〈 b i 〉 i ∈N 

that defines, according to each cri- 

terion i ∈ N , an upper set A i ⊂ X i of approved values at least 

as good as b i (and, by contrast, a lower set X \ A i ⊂ X i of dis- 

approved values strictly worse than b i ), and 

• a set T of sufficient coalitions of criteria, which satisfies mono- 

tonicity with respect to inclusion. 

These notions are combined into the following assignment 

rule: 

∀ x ∈ X , x ∈ Good ⇐⇒ { i ∈ N : x i � i b i } ∈ T 
An alternative is considered as Good if, and only if, it is better than 

the limiting profile b according to a sufficient coalition of criteria. 

Table 1 

Performance table. 

model cost acceleration braking road holding 

m 1 16 973 € 29.0 sec. 2.66 2.5 

m 2 18 342 € 30.7 sec. 2.33 3 

m 3 15 335 € 30.2 sec. 2 2.5 

m 4 18 971 € 28.0 sec. 2.33 2 

m 5 17 537 € 28.3 sec. 2.33 2.75 

m 6 15 131 € 29.7 sec. 1.66 1.75 

Table 2 

Limiting profiles. 

profile cost acceleration braking road holding 

b 1 
� 

17 250 € 30.0 sec. 2.2 1.9 

b 2 
� 

15 500 € 28.8 sec. 2.5 2.6 

2.3. Sorting into multiple categories 

With p categories, the parameter space is extended accordingly, 

with approved sets 〈A 

k 
i 
〉 i ∈N , k ∈ [2 .p] defined by a set of limiting pro- 

files 〈 b k 
i 
〉 i ∈N , k ∈ [2 .p] and sufficient coalitions 〈T k 〉 k ∈ [2 .p] declined per 

boundary. 

The ordering of the categories { C 1 ≺ . . . ≺ C p } trans- 

lates into a nesting of the sufficient coalitions: ∀ k ∈ [2 .p] , 

T k is an upset of (2 N , ⊆) and T 2 ⊇ · · · ⊇ T p , and also a nest- 

ing of the approved sets: ∀ i ∈ N , ∀ k ∈ [2 .p] , A 

k 
i 

is an upset of 

(X i , � i ) and A 

2 
i 
⊇ · · · ⊇ A 

p 
i 

. 

These tuples of parameters are augmented on both ends with 

trivial values: T 1 = P(N ) , T p+1 = ∅ , and ∀ i ∈ N , A 

1 
i 
= X , A 

p+1 
i 

= 

∅ . With ω = (〈 A 

k 
i 
〉 i ∈N , k ∈ [2 .p] , 〈 T k 〉 k ∈ [2 .p] ) , Bouyssou & Marchant 

(2007b) defines the sorting function NCS ω from X to { C 1 ≺ . . . ≺
C p } with the Non-Compensatory Sorting rule : 

NCS ω (x ) = C k ⇔ 

{{ i ∈ N : x ∈ A 

k 
i 
} ∈ T k 

and { i ∈ N : x ∈ A 

k +1 
i 
} / ∈ T k +1 (1) 

Note that Bouyssou & Marchant (2007a,b) define a broader class 

of sorting method which includes vetoes which makes it possible 

for a single criterion to forbid the assignment to a class. Through- 

out this paper, we only consider NCS without veto; therefore, we 

should formally write NCS without veto all along with the paper. 

However, to facilitate the reading, we choose to write NCS even if 

we consider NCS models without a veto. 

2.4. An illustrative example 

A journalist prepares a car review for a forthcoming issue. She 

considers a number of popular car models and wants to sort them 

to present a sample of cars “selected for you by the editorial 

board” to the readers. This selection is based on four criteria: cost 

( €), acceleration (time, in seconds, to reach 100 km/h from full stop 

– lower is better), braking power and road holding, both measured 

on a qualitative scale ranging from 1 (lowest performance) to 4 

(best performance). The performances of the six models are de- 

scribed in Table 1 . 

In order to assign these models to a category among C 1 
� 

(aver- 

age) ≺ C 2 
� 

(good) ≺ C 3 
� 

(excellent), the journalist considers an NCS 

model: 

• The attributes of each model are sorted between average ( � / 

), good ( �� / ) and excellent ( � � � / ) by comparison to the 

profiles given in Table 2 . The resulting labeling of the six al- 

ternatives according to each criterion is depicted in Fig. 1 and 

Table 3 . 

• These appreciations are then aggregated by the following rule: 

an alternative is categorized good or excellent if it is good or 
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Fig. 1. Representation of performances w.r.t. category limits. 

Table 3 

Categorization of performances. 

model cost acceleration braking road holding 

m 1 �� �� � � � �� 

m 2 � � �� � � � 

m 3 � � � � � �� 

m 4 � � � � �� �� 

m 5 � � � � �� � � � 

m 6 � � � �� � � 

Table 4 

Alternative assignments. 

Alternatives m 1 m 2 m 3 m 4 m 5 m 6 

Assignment �� � �� �� � � � � 

excellent on cost or acceleration, and good or excellent on brak- 

ing or road holding. It is categorized excellent if it is excellent 

on cost or acceleration, and excellent on braking or road hold- 

ing . Being excellent on some criterion does not really help to be 

considered good overall, as expected from a Non-Compensatory 

model. Sufficient coalitions are represented on Fig. 2 . Finally, 

the model yields the assignments presented in Table 4 . 

2.5. Variants of the NCS model 

In this section, we mention a number of variants of the Non- 

Compensatory Sorting model that can be found in the literature. 

Note that Bouyssou & Marchant (2007a,b) define the NCS class of 

sorting method, which includes the possibility of vetoes. In this 

paper, we only consider NCS without veto, but it should be high- 

lighted that the broader class of NCS model can include vetoes, as 

depicted in Fig. 3 . Among NCS models without veto, there exist 

variants corresponding to simplifications of the model, with ad- 

ditional assumptions that restrict the parameters—limiting profiles 

and sufficient coalitions—either explicitly or implicitly. 

The set of preference parameters – all the pairs (〈A〉 , 〈T 〉 ) can 

be considered too wide and too unwieldy for practical use in the 

context of a decision aiding process. Therefore, following Bouyssou 

& Marchant (2007b) , one may consider to explicitly restrict ei- 

ther the sequence of limiting profiles, or the sequence of sufficient 

coalitions: 

Fig. 2. Sufficient (green/thick-bordered) and insufficient (red/thin-bordered) coali- 

tions of criteria. Arrows denote coalition strength. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

• U 

C -NCS: Non-Compensatory Sorting with a unique set of sufficient 

coalitions : T 2 = · · · = T p ; 
• U 

B -NCS: Non-Compensatory Sorting with a unique limiting profile 

b 2 = · · · = b p or, equivalently, ∀ i ∈ N , A 

2 
i 
= · · · = A 

p 
i 

. 

It worth to be noted that an NCS model which is in U 

C -NCS and 

U 

B -NCS simultaneously corresponds necessarily to a model with 

two categories (cf. the intersection colored in blue in Fig. 3 ). 

Another simplifying assumption consists in representing suffi- 

cient coalitions additively in an analogy to a voting setting: each 

criterion i ∈ N is assigned with a voting power w i ≥ 0 so that a 

given coalition of criteria B ⊆ N is deemed sufficient if, and only 

if, its combined voting power 
∑ 

i ∈ B w i is greater than a given 
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Fig. 3. Variants of the NCS model. 

qualification threshold λ. 

∃ λ, 〈 w i 〉 i ∈N 

∈ [0 , 1] : ∀ B ⊆ N , B ∈ T ⇐⇒ 

∑ 

i ∈ B 
w i ≥ λ. (2) 

With this rule, the sufficient coalitions are represented in a com- 

pact form which is more amenable to linear programming. This ad- 

ditive version of U 

C -NCS is frequently called MR-Sort (for majority 

rule sorting ) in the literature (see, e.g. Leroy et al., 2011 ). 

A more general way to describe possible interactions between 

criteria coalitions is to represent these coalitions using a capacity 

μ : 2 N �→ [0 , 1] , with μ(∅ ) = 0 , μ(N ) = 1 , and μ(B ) ≥ μ(A ) , for 

all A ⊆ B ⊆ N . The Möbius transform allows to express a capac- 

ity μ in another form: μ(A ) = 

∑ 

B ⊆A m (B ) , ∀ A ⊆ N with m (B ) = ∑ 

C⊆B (−1) | B |−| C| μ(C) . The value m (B ) can be interpreted as the 

weight that is allocated to B as a whole. A capacity can be de- 

fined directly by its Möbius transform also called Möbius inter- 

action. A Möbius interaction or Möbius mass m is a set function 

m : 2 N �→ [ −1 , 1] satisfying the hereafter conditions which guaran- 

tee that μ is monotone (see Chateauneuf & Jaffray, 1987 ): ∑ 

j ∈ K⊆J∪{ j } 
m (K) ≥ 0 , ∀ j ∈ N , ∀ J ⊆ N \ { j} and 

∑ 

K⊆N 

m (K) = 1 . 

Using such representation, it is possible to consider 2-additive 

(k-additive, resp.) capacities for which all the interactions involv- 

ing more than 2 (k, resp.) criteria are equal to zero. 2-additive and 

k-additive MR-Sort (2-additive and k-additive U 

C -NCS) are repre- 

sented in Fig. 3 (although not depicted, it is also possible to con- 

sider k-additive U 

B -NCS). 

3. Learning an NCS model from data 

For a given decision situation, assuming the NCS model is rel- 

evant to structure the decision maker’s preferences, what should 

be the parameters’ values to fully specify the NCS model that cor- 

responds to the decision-maker (DM) viewpoint? An option would 

be to simply ask the decision-maker to describe, to her best knowl- 

edge, the limit profiles between categories and to enumerate the 

minimal sufficient coalitions. To get this information as quickly and 

reliably as possible, an analyst could make good use of the model- 

based elicitation strategy described in Belahcene, Mousseau, Pirlot, 

& Sobrie (2017b) , as it permits to obtain these parameters by ask- 

ing the decision-maker to only provide holistic preference judg- 

ment – should some (fictitious) alternative be assigned to some 

category – and build the shortest questionnaire. 

We opt for a more indirect setup, close to a machine learning 

paradigm ( Furnkranz & Hullermeier, 2011 ), where a set of reference 

assignments is given and assumed to describe the decision-maker’s 

point of view, and the aim is to extend these assignments with an 

NCS model. In this context, we usually refer to an assignment as a 

function mapping a subset of reference alternatives X 

� ⊂ X to the 

ordered set of categories C 1 ≺ · · · ≺ C p . These reference alternatives 

highlight values of interest on each criterion i ∈ N , X 

� 
i 
= 

⋃ 

x ∈ X � { x i } . 
We refer to the problem of finding suitable preference parameters 

specifying a Non-Compensatory Sorting model by Inv-NCS. 

3.1. NCS and Inv-NCS 

Instances An instance of the Inv-NCS problem is a sextuple 

(N , X , 〈 � i 〉 i ∈N 

, X 

� , { C 1 ≺ . . . ≺ C p } , α) where: 

• N is a set of criteria; 
• X is a set of alternatives ; 
• 〈 � i 〉 i ∈N 

∈ X 

2 are preferences on criterion i , i ∈ N , � i ⊂ X 

2 is a 

total pre-ordering of alternatives according to this criterion; 
• X 

� ⊂ X is a finite set of reference alternatives ; 
• { C 1 ≺ . . . ≺ C p } is a finite set of categories totally ordered by ex- 

igence . We denote C �k (resp. C �k , C �k , C ≺k ) the category interval 

{ C k ≺ · · · ≺ C p } (resp. { C k +1 ≺ · · · ≺ C p } , { C 1 ≺ . . . C k } , { C 1 ≺ · · · ≺
C k −1 } ); 

• α : X 

� → { C 1 ≺ . . . ≺ C p } is an assignment of the reference alter- 

natives to the categories. Therefore, ‘ α−1 ’ is the associated in- 

verse function i.e. for a given category C h , α−1 (C h ) = { x ∈ X 

� : 

x ∈ C h } . For any comparison operator � ∈ {�, �, ≺, �} , we also 

denote α−1 (C �h ) := { x ∈ X 

� : x ∈ C k , C k � C h } . 
When referring to an instance, we often shorten this sextuple as 

‘ α’. 

Parameters Given a context, a parameter ω of the NCS 

model is a couple (〈 A 

k 
i 
〉 i ∈N , k ∈ [2 .p] , 〈 T k 〉 k ∈ [2 .p] ) , where the 

sufficient coalitions satisfy: ∀ k ∈ [2 .p] , T k is an upset of (2 N , ⊆) , 

and T 2 ⊇ · · · ⊇ T p ; and the approved sets satisfy ∀ i ∈ N , ∀ k ∈ 
[2 .p] , A 

k 
i 

is an upset of (X i , � i ) and A 

2 
i 
⊇ · · · ⊇ A 

p 
i 

. 

Sorting rule Given a parameter ω = (〈 A 

k 
i 
〉 i ∈N , k ∈ [2 .p] , 

〈 T k 〉 k ∈ [2 .p] ) , augmented with trivial values T 1 := P(N ) , T p+1 := ∅ , 
∀ i ∈ N , A 

2 
i 
= X , A 

p+1 
i 

= ∅ , NCS ω is the function from X to 

{ C 1 ≺ . . . ≺ C p } satisfying: 

NCS ω (x ) = C k ⇔ 

{∀ k ′ ≤ k, { i ∈ N : x ∈ A 

k ′ 
i 
} ∈ T k ′ and 

∀ k ′ > k, { i ∈ N : x ∈ A 

k ′ 
i 
} / ∈ T k ′ . (3) 

This rule can be equivalently written as follows: 

NCS ω (x ) ∈ C �k ⇔ { i ∈ N : x ∈ A 

k 
i } ∈ T k . (4) 

Solutions Given a context, a solution of the instance α of the Inv- 

NCS problem is a parameter ω of the NCS model such that ∀ x ∈ 
X 

� , α(x ) = NCS ω (x ) . 

3.2. Literature related to Inv-NCS 

Learning preference models from preference data to faithfully 

represent the DM judgment has been considered since several 

decades in the literature. In the context of MCDA, a well-known 

example of such an approach is the UTA method proposed in 

Jacquet-Lagreze & Siskos (1982) in the case of an additive mul- 

ticriteria value model. Learning an Electre Tri model (the initial 

multicriteria sorting procedure from which NCS was formalized, 

see Roy (1991) ) from assignment examples was initially formulated 

using non-linear programming in Mousseau & Słowi ́nski (1998) . 

A mixed-integer linear formulation was proposed by Leroy et al. 

(2011) to learn an additive majority rule sorting model (MR-Sort: 

additive NCS without veto) from a dataset; however, these ap- 

proaches were not able to handle datasets corresponding to real- 

world problems. Recently, Kadzinski & Martyn (2020) proposed an 
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enriched framework to elicit and Electre Tri B model and analyze 

its results. 

To cope with the computational burden, a heuristic approach 

has been proposed to learn an MR-Sort model from assignment ex- 

amples by ( Sobrie, 2016; Sobrie et al., 2019 ) which can handle large 

datasets, but losing optimality guaranty. More recently Belahcene 

et al. (2018a) defined a Boolean satisfiability formulation of Inv- 

NCS, which keeps optimality guarantee while enabling computa- 

tions even for real-size datasets. In this paper, we continue and 

extend this work. 

4. Boolean satisfiability formulations for the Inv-NCS problem 

This section is devoted to the presentation of two formula- 

tions of the inverse Non-Compensatory Sorting problem, first de- 

scribed respectively in Belahcene et al. (2018a) and Belahcene et al. 

(2018b) , in the framework of Boolean satisfiability. They reduce the 

problem of finding the parameters of an NCS model faithfully re- 

producing a given assignment of alternatives to categories to the 

SAT problem of finding an assignment of Boolean variables that 

verify a given propositional formula written in conjunctive normal 

form. 1 

The two formulas stem from different representation strategies. 

One, detailed in Section 4.1 and introduced in Belahcene et al. 

(2018a) , establishes a bijection between the parameter space of the 

NCS model and the valuations of the propositional variables, and 

therefore introduces a number of variables that is exponential in 

the number of criteria. The other is detailed in Section 4.3 and was 

introduced in Belahcene et al. (2018b) . It leverages a powerful rep- 

resentation theorem, detailed in Section 4.2 , that allows keeping 

implicit the set of coalitions, by introducing the notion of pairwise 

separation , formulated using pairs of alternatives given in the as- 

signment. 

Appendix A complements this section by providing previously 

unpublished formulations for the case where there are more than 

two categories, including the variants with a unique profile or a 

unique set of sufficient coalitions described in Section 2.5 . 

4.1. A SAT formulation for Inv-NCS based on coalitions 

This section describes and extends a SAT formulation for Inv- 

NCS initially given in Belahcene et al. (2018a) . We provide here an 

informal presentation of the approach; formal justification can be 

found in Belahcene et al. (2018a) . The formulation �C 
α yielded by 

the encoding presented in this section is based on an explicit rep- 

resentation of the parameter space of the Non-Compensatory Sort- 

ing model—each the pairs are composed of a sequence of approved 

sets and a sequence of sufficient coalitions. 

The explicit representation requires involving two families of bi- 

nary variables. The first family defines the approved sets according 

to the set of criteria such that for a given alternative, level and cri- 

terion, the associated variable equals 1 if and only if the alternative 

is approved at the considered level according to the considered cri- 

terion. The second family of binary variables uniquely specifies the 

set of sufficient coalitions for each level i.e. given a coalition of cri- 

teria, the associated variable equals 1 if and only if the coalition is 

sufficient. The SAT formulation based on coalitions aims at learn- 

ing both NCS parameters (〈 A 

k 
i 
〉 i ∈N , k ∈ [2 .p] , 〈 T k 〉 k ∈ [2 .p] ) from a set 

of assignment examples, thus, two types of clauses are considered. 

The first type of clauses defines these parameters and reproduces 

1 For the convenience of EJOR readers, who might be more accustomed to the 

formalism of Mathematical Programming, we treat SAT as the tiny subset of MP 

where the variables are restricted to the { 0 , 1 } domain, the objective function is 

null, and the constraints are limited to linear forms of the type 
∑ 

i ∈ C + 
j 

x i + 
∑ 

i ∈ C −
j 
(1 −

x i ) ≥ 1 , corresponding to the clause 
∨ 

i ∈ C + 
j 

x i ∨ 
∨ 

i ∈ C −
j 
¬ x i . 

the structural conditions i.e.: the monotony of scales, approved sets 

and sufficient coalitions sets are ordered by inclusion and for each 

level the corresponding set sufficient coalitions is monotone by in- 

clusion. The second type of clauses ensures the restoration of the 

assignment examples. 

Variables The Boolean function �C 
α operates on two types of 

variables: 

• ‘ a ’ variables, indexed by a criterion i ∈ N , an exigence level 

k ∈ [2 .p] and a reference value x ∈ X 

� , represent the ap- 

proved sets A 

k 
i 
, with the following semantic: a i,k,x = 1 ⇔ x ∈ 

A 

k 
i 

i.e. x is approved at level k according to i ;
• ‘ t ’ variables, indexed by a coalition of criteria B ⊆ N and 

an exigence level k ∈ [2 .p] , represent the sufficient coali- 

tions T k , with the following semantic: t B,k = 1 ⇔ B ∈ 
T k i.e. the coalition B is sufficient at level k ;
Clauses For a boolean function written in conjunctive normal 

form, the clauses are constraints that must be satisfied simultane- 

ously by any antecedent of 1. The formulation �C 
α is built using six 

types of clauses: 

• Clauses φC1 
α ensure that each approved set A 

k 
i 

is an upset of 

(X 

� , � i ) : if for a criterion i and an exigence value k , the value x 

is approved, then any value x ′ � i x must also be approved. 
• Clauses φC2 

α ensure that approved sets are ordered by a set 

inclusion according to their exigence level: if an alternative x 

is approved at exigence level k according to the criterion i , it 

should also be approved at exigence level k ′ < k . 
• Clauses φC3 

α ensure that each set of sufficient coalitions T is 

an upset for inclusion: if a coalition B is deemed sufficient at 

exigence level k , then a stronger coalition B ′ ⊃ B should also be 

deemed sufficient at this level. 
• Clauses φC4 

α ensure that a set of sufficient coalitions are ordered 

by inclusion according to their exigence level: if a coalition B is 

deemed insufficient at exigence level k , it should also be at any 

level k ′ > k . 
• Clauses φC5 

α ensure that each alternative is not approved by a 

sufficient coalition of criteria at an exigence level above the one 

corresponding to its assigned category. 
• Clauses φC6 

α ensure that each alternative is approved by a suffi- 

cient coalition of criteria at an exigence level corresponding to 

its assignment. 

Definition 4.1. Given an instance of Inv-NCS with an assignment 

α : X 

� → { C 1 ≺ . . . ≺ C p } , the boolean function �C 
α with variables 

〈 a i,k,x 〉 i ∈N , k ∈ [2 .p] , x ∈ X � and 〈 t B,k 〉 B ⊆N , k ∈ [2 .p] , is defined as the con- 

junction of clauses: 

�C 
α = φC1 

α ∧ φC2 
α ∧ φC3 

α ∧ φC4 
α ∧ φC5 

α ∧ φC6 
α

φC1 
α = 

∧ 

i ∈N , k ∈ [2 .p] 

∧ 

x ′ � i x ∈ X � 
(a i,k,x ′ ∨ ¬ a i,k,x ) 

φC2 
α = 

∧ 

i ∈N , k < k ′ ∈ [2 .p] , x ∈ X � (a i,k,x ∨ ¬ a i,k ′ ,x ) 

φC3 
α = 

∧ 

B ⊂ B ′ ⊆N , k ∈ [2 .p] 
(t B ′ ,k ∨ ¬ t B,k ) 

φC4 
α = 

∧ 

B ⊆N , k < k ′ ∈ [2 .p] 
(t B,k ∨ ¬ t B,k ′ ) 

φC5 
α = 

∧ 

B ⊆N , k ∈ [2 .p] 

∧ 

x ∈ α−1 (C k −1 ) 
( 
∨ 

i ∈ B ¬ a i,k,x ∨ ¬ t B,k ) 

φC6 
α = 

∧ 

B ⊆N , k ∈ [2 .p] 

∧ 

x ∈ α−1 (C k ) 
( 
∨ 

i ∈ B a i,k,x ∨ t N\ B,k ) 

Written as such, clauses of �C 
α are highly redundant, possi- 

bly threatening computational efficiency. 2 Instead, it is sufficient 

2 Even though SAT solvers often perform better on reasonably overconstrained 

problems. 

984 



A. Tlili, K. Belahcène, O. Khaled et al. European Journal of Operational Research 298 (2022) 979–1006 

to consider clauses where ordered elements in a pair are adjacent 

to each other. 

Model variants As discussed in Section 2.5 , the NCS model has 

many variants. �C 
α can easily be modified to account for two pop- 

ular restrictions of the model: 

• U 

B -NCS (Unique profiles): Drop the index k concerning the exi- 

gence level for the ‘ a ’ variables, ignore the conjunction over ex- 

igence levels for clauses φC1 
α , and ignore clauses φC2 

α altogether; 
• U 

C -NCS (Unique set of sufficient coalitions): Drop the index k 

concerning the exigence level for the ‘ t ’ variables, ignore the 

conjunction over exigence levels for clauses φC3 
α and ignore 

clauses, φC4 
α altogether. 

4.2. A characterization based on pairwise separation 

4.2.1. The case of two categories 

The problem of finding simultaneously the sets of accepted val- 

ues of the criteria and the sets of sufficient coalitions has been 

considered computationally difficult from the onset. In this light, 

the assumption of an additive representation of sufficient coali- 

tions with the majority rule can be considered as a convenient way 

to keep the search somewhat tractable 3 Indeed, when the accepted 

values are known, finding the parameters (the voting power of 

each criterion and the qualification threshold) of a suitable major- 

ity rule becomes a mere linear program with continuous variables 

and can be solved in polynomial time. It is possible to represent 

the NCS model with two categories in the MAVT paradigm, using 

full-fledged |N | -ary capacities, but the corresponding linear pro- 

gram requires 2 |N | variables. This approach is deceptively difficult, 

though, and we shall see that, from the viewpoint of Computer 

Theory, Inv-NCS is actually not more difficult than its restriction to 

additive coalitions. This result comes from a simple series of ob- 

servations. In the following, we suppose given a set of reference 

alternatives X 

� , an assignment α : X 

� → { Good , Bad }, and a tuple 

of accepted values 〈A i 〉 ∈ P(X ) |N | such that, for each point of view 

i ∈ N , A i is an upset of (X , � i ) . Observably sufficient and insufficient 

coalitions Consider the sets of coalitions defined by 

S 〈A i 〉 (α) := cl ⊇P(N ) 

(⋃ 

g∈ α−1 ( Good ) 

{ 

{ i ∈ N : g ∈ A i } 
} )

, (5) 

F 〈A i 〉 (α) := cl ⊆P(N ) 

(⋃ 

b∈ α−1 ( Bad ) 

{ 

{ i ∈ N : b ∈ A i } 
} )

. (6) 

Any coalition in S 〈A i 〉 (α) is a superset of the set of criteria ac- 

cording to which some Good alternative is accepted, and should, 

therefore, be accepted. Thus, S 〈A i 〉 (α) is a lower bound of the set 

of sufficient coalitions for any solution of Inv-NCS. Conversely, any 

coalition in F 〈A i 〉 (α) is a subset of the set of criteria according 

to which some Bad alternative is accepted, and should, therefore, 

be rejected. Thus, P(N ) \ F 〈A i 〉 (α) is an upper bound of the set of 

sufficient coalitions for any solution of Inv-NCS. Characterization of 

solutions of Inv-NCS The parameter (〈A i 〉 , T ) is a solution of the 

instance α of Inv-NCS if and only if: 

S 〈A i 〉 (α) ⊆ T ⊆ P(N ) \ F 〈A i 〉 (α) (7) 

Remarkably, this equation allows to characterize the positive in- 

stances of Inv-NCS without referring to the set of sufficient of 

coalitions of a solution, solely by checking if the sets T 〈A i 〉 (α) and 

F 〈A i 〉 (α) are disjoint. This leads to the following elegant and effi- 

cient characterization, based on the notion of pairwise separation . 

Theorem 4.1. An assignment α of alternatives to categories can be 

represented in the Non-Compensatory Sorting model if, and only if, 

there is a tuple 〈A i 〉 ∈ P(X ) |N | such that: 

3 This assumption might also have some relevance w.r.t. intelligibility and parsi- 

mony. 

1. (Upset): for each point of view i ∈ N , A i is an upset of (X , � i ) ; 

and 

2. (Pairwise separation): for each pair of alternatives (g, b) ∈ α−1 (

GOOD ) × α−1 ( BAD ), there is at least one point of view i ∈ N such 

that g ∈ A i and b / ∈ A i . 

This theorem provides a polynomial certificate for the positive 

instances of the Inv-NCS problem, thus proving its membership of 

the NP complexity class as a corollary. Proofs of Theorem 4.1 , and 

of the NP-hardness of Inv-NCS can be found in Belahcene et al. 

(2018b) . The extension of this characterization to any number of 

categories is straightforward and is presented in the following sec- 

tion and Appendix A . 

4.2.2. The case of more than two categories 

The case where there are p > 2 categories { C 1 ≺ . . . ≺ C p } re- 

quires a few adaptations of the formulation. It relies mostly on the 

fact that an NCS model with p categories is, informally, the combi- 

nation of p − 1 NCS models with two categories whose parameters 

satisfy the nesting conditions on the sufficient coalitions of criteria 

and the accepted values. 

Given an assignment α and an exigence level k ∈ [2 .p] , we de- 

fine the set of alternatives assigned to categories better than and 

including C k denoted C �k and the set of alternatives assigned to 

categories worse than C k denoted C ≺k as: 

C �k = 

⋃ 

h ∈ [ k.p] 

C h ; C ≺k = 

⋃ 

h ∈ [2 .k −1] 

C h 

We extend Eqs. (5) and (6) so that, at a given exigence level k , 

observably sufficient coalitions account for “good” alternatives in 

C �k and observably insufficient coalitions account for “bad” alter- 

natives in C ≺k . 

Definition 4.2. (Observed sufficient and insufficient coali- 

tions given approved sets). Given an assignment α : X 

� → 

{ C 1 ≺ . . . ≺ C p } , approved sets 〈 A 

k 
i 
〉 i ∈N , k ∈ [2 .p] such that 

A 

k 
i 

is an upset of (X i , � i ) and A 

2 
i 
⊇ · · · ⊇ A 

p 
i 

, we note, for any 

exigence level k ∈ [2 .p] : 

S 

k 
〈A 

k 
i 
〉 (α) = Cl ⊇P(N ) 

( 
⋃ 

g∈ α−1 (C �k ) 

{ i ∈ N : g ∈ A i } ) 

F 

k 
〈A 

k 
i 
〉 (α) = Cl ⊆P(N ) 

( 
⋃ 

b∈ α−1 (C ≺k ) 

{ i ∈ N : b ∈ A i } ) 

By construction: each set S 2 〈A 

k 
i 
〉 (α) is an upset for inclusion; the 

sets 〈S k 〈A 

k 
i 
〉 (α) 〉 are nested (i.e. S 2 〈A 

k 
i 
〉 (α) ⊆ · · · ⊆ S p 〈A 

k 
i 
〉 (α) ); each set 

F 

k 

〈A 

k 
i 
〉 (α) is a lower set for inclusion; and the sets 〈F 

k 

〈A 

k 
i 
〉 (α) 〉 are 

nested (i.e. F 

p 

〈A 

k 
i 
〉 (α) ⊆ · · · ⊆ F 

2 

〈A 

k 
i 
〉 (α) ). Additionally, having disjoint 

observed sufficient and insufficient coalitions at every exigence 

level, i.e. ∀ k ∈ [2 .p] S k 〈A 

k 
i 
〉 (α) ∩ F 

k 

〈A 

k 
i 
〉 (α) = ∅ is a necessary and 

sufficient condition for the existence of nested sets of coalitions 

〈 T k 〉 k ∈ [2 .p] such that ∀ k ∈ [2 .p] , S k 〈A 

k 
i 
〉 (α) ⊆ T k ⊆ P(N ) \F 

k 

〈A 

k 
i 
〉 (α) . 

Theorem 4.2. (Pairwise formulation of the Non-Compensatory Sort- 

ing model). An assignment α : X 

� → { C 1 ≺ . . . ≺ C p } can be repre- 

sented in the Non-Compensatory Sorting model if, and only if, there 

are tuples 〈 A 

k 
i 
〉 i ∈N , k ∈ [2 .p] such that: 

1. (Upset): for each criterion i ∈ N and for each exigence level k ∈ 
[2 .p] , 〈 A 

k 
i 
〉 is an upset of (X i , � i ) ; and 

2. (Nesting): the approved sets are nested according to their exigence 

level, i.e. for each criterion i ∈ N , A 

2 
i 
⊆ · · · ⊆ A 

p 
i 

(according to a 

given point of view, an alternative approved at some exigence level 

k is also approved at any lower exigence level); and 

985 



A. Tlili, K. Belahcène, O. Khaled et al. European Journal of Operational Research 298 (2022) 979–1006 

3. (Pairwise separation): for any two exigence levels k ≤ k ′ , for each 

pair of alternatives (g, b) ∈ α−1 (C k 
′ 
) × α−1 (C k −1 ) , there is at 

least one point of view i ∈ N such that g ∈ A 

k ′ 
i 

and b / ∈ A 

k 
i 
. 

Proof. [(1 , 2 , 3) ⇒ (NCS)]. Given a set of approved sets 

〈 A 

k 
i 
〉 i ∈N , k ∈ [2 .p] such that for each exigence level k ∈ [2 .p] , 

A 

k 
i 

is an upset of (X i , � i ) satisfying conditions 1, 2 and 3, we con- 

sider the sets of coalitions S k 〈A 

k 
i 
〉 (α) and F 

k 

〈A 

k 
i 
〉 (α) for each exigence 

level k ∈ [2 .p] . According to the remark just above, α can be rep- 

resented in the NCS model iff S k 〈A 

k 
i 
〉 (α) ∩ F 

k 

〈A 

k 
i 
〉 (α) = ∅ , ∀ k ∈ [2 .p] . 

Suppose this intersection is not empty for a given k ∈ [2 .p] , and 

let B ∈ S k 〈A 

k 
i 
〉 (α) ∩ F 

k 

〈A 

k 
i 
〉 (α) . By definition of S k 〈A 

k 
i 
〉 (α) , there is 

an exigence level h ∈ [ k.p] and an alternative g ∈ α−1 (C h ) such 

that { i ∈ N : g ∈ A 

h 
i 
} ⊆ B . By definition of F 

k 

〈A 

k 
i 
〉 (α) , there is an 

exigence level h ′ ∈ [2 .k ] and an alternative b ∈ α−1 (C h −1 ) such 

that B ⊆ { i ∈ N : b ∈ A 

h ′ 
i 
} . Consequently, there is no criterion i ∈ N 

according to which g ∈ A 

h 
i 

and b / ∈ A 

h ′ 
i 

, contradicting condition 3. 

Hence, S k 〈A 

k 
i 
〉 (α) ∩ F 

k 

〈A 

k 
i 
〉 (α) = ∅ . 

[ ¬ (1 , 2 , 3) ⇒ ¬ (NCS)]. It is obvious that condition 1 and con- 

dition 2 are essential to learn an NCS model with nested sat- 

isfactory values (enforced by condition 2) and nested sufficient 

coalitions sets (by construction). Suppose now that condition 1 

and condition 2 are satisfied and let k ∈ [2 .p] , k ′ ∈ [ k.p] a pair 

of exigence levels and (g, b) a pair of alternatives such that g ∈ 
α−1 (C k 

′ 
) , b ∈ α−1 (C k −1 ) and [(k, k ′ ) , (b, g)] falsifies condition 3 i.e. {

i ∈ N : g ∈ A 

k 
i 

}
⊆

{
i ∈ N : b ∈ A 

k ′ 
i 

}
. As g ∈ α−1 (C k 

′ 
) , the coalition 

of criteria 
{

i ∈ N : g ∈ A 

k ′ 
i 

}
is observably sufficient at level k ′ . As 

b ∈ α−1 (C k −1 ) , the coalition of criteria 
{

i ∈ N : b ∈ A 

k 
i 

}
is observ- 

ably insufficient at level k , and even more so at level k ′ ≥ k . Hence 

the intersection S k ′ 〈A 

k 
i 
〉 (α) ∩ F 

k ′ 
〈A 

k 
i 
〉 (α) is nonempty, and α cannot be 

represented in NCS. �

4.3. A SAT formulation for Inv-NCS based on pairwise separation 

conditions 

The Boolean satisfiability formulation for learning an NCS 

model presented in this section, denoted �P 
α , was initially de- 

scribed in Belahcene et al. (2018b) but only focusing on the case 

with two categories C 1 ≡ Bad ≺ C 2 ≡ Good . We extend this formu- 

lation to the multiple categories case to learn NCS, U 

B -NCS and U 

C - 

NCS. 

4.3.1. Learning NCS in the case of two categories 

The SAT formulation based on pairwise separation initially 

given in Belahcene et al. (2018b) corresponds to the SAT encod- 

ing of both conditions of the Theorem 4.1 . First condition which 

ensures the monotony of scales is represented by a single family 

of clauses and operates on the same variables as the SAT formu- 

lation based on coalitions. In the second condition, additional bi- 

nary variables are defined in order to represent the separation be- 

tween the alternatives. A unique family of logical clauses represent 

the separation concept of the theorem and additional clauses and 

binary variables are required in order to express this representa- 

tion in SAT language. Encoding Similarly to the formulation �C 
α de- 

scribed in Section 4.1 , the formulation �P 
α operates on two types 

of variables: 

• ‘ a ’ variables, representing the approved sets, with the exact 

same semantics as their counterpart in �C 
α , i.e. 

a i,x = 

{
1 , if x ∈ A i i.e. x is approved according to i ;
0 , else . 

• auxiliary ‘ s ’ variables, indexed by a criterion i ∈ N , an alterna- 

tive g assigned to Good and an alternative b assigned to Bad , 

assessing if the alternative g is positively separated from b ac- 

cording to the criterion i , i.e. 

s i,g,b = 

{
1 , if g ∈ A i and b / ∈ A i ;
0 , else . 

�P 
α is the conjunction of four types of clauses: φP1 

α ensuring 

each A i is an upset, φP2 
α ensuring [ s i,g,b = 1] ⇒ [ g ∈ A i ] , φ

P3 
α ensur- 

ing [ s i,g,b = 1] ⇒ [ b / ∈ A i ] , and φP4 
α ensuring each pair (g, b) is pos- 

itively separated according to at least one criterion. 

Definition 4.3. Given an instance of Inv-NCS with two cate- 

gories and an assignment α : X 

� → { Bad ≺ Good }, we de- 

fine the Boolean function �P 
α with variables 〈 a i,x 〉 i ∈N , x ∈ X � and 

〈 s i,g,b 〉 i ∈N , g∈ α−1 ( Good ) , b∈ α−1 ( bad ) , as the conjunction of clauses: 

φP 
α = φP1 

α ∧ φP2 
α ∧ φP3 

α ∧ φP4 
α

φP1 
α = 

∧ 

i ∈N 

∧ 

x ′ � i x ∈X � (a i,x ′ ∨ ¬ a i,x ) 

φP2 
α = 

∧ 

i ∈N , g∈ α−1 ( Good ) , b∈ α−1 ( Bad ) (¬ s i,g,b ∨ ¬ a i,b ) 

φP3 
α = 

∧ 

i ∈N , g∈ α−1 ( Good ) , b∈ α−1 ( Bad ) (¬ s i,g,b ∨ a i,g ) 

φP4 
α = 

∧ 

g∈ α−1 ( Good ) , b∈ α−1 ( Bad ) ( 
∨ 

i ∈N 

s i,g,b ) 

The formulation is compact: O (|N | . | X | 2 ) variables, O (|N | . | X | 2 ) 
binary clauses and O (| X | 2 ) |N | -ary clauses, whereas the number 

of ’ t ’ variables in the first formulation increases exponentially with 

the number of criteria. 

Should φP 
α be satisfiable, the set T of sufficient coalitions is 

not uniquely identified by the values of ’ a ’ and ’ s ’ variables of 

one of its models. Indeed, if 〈 a i,x 〉 , 〈 s i,g,b 〉 is an antecedent of 1 by 

φP 
α , then the parameter ω = (〈A i 〉 , T ) with accepted sets defined 

by A i = { x ∈ X : a i,x = 1 } and any upset T of (P(N ) , ⊆) of suffi- 

cient coalitions containing the upset S 〈A i 〉 (α) and disjoint from the 

lower set F 〈A i 〉 (α) is a solution of this instance. Therefore, among 

the sets of sufficient coalitions compatible with the values of ’ a ’ 

and ’ s ’ variables, we can identify two specific ones, T max and T min . 

We will also denote by T rand , a randomly chosen compatible set of 

sufficient coalitions. 

4.3.2. Learning NCS with more than two categories 

When there are more than two categories, the sets of variables 

and clauses need to be extended in order to characterize the NCS 

model. 

• ‘ a ’ variables are also indexed by an exigence level k ∈ [2 .p] , i.e. 

a i,k,x = 

{ 

1 , if x ∈ A 

k 
i 

i.e. x is approved according to i 
at exigence level k ;

0 , else . 

• ‘ s ’ variables are also indexed by a pair of exigence lev- 

els (k, k ′ ) ∈ [2 .p] 2 , k ≤ k ′ , with g ∈ α−1 (C k 
′ 
) , b ∈ α−1 (C k −1 ) , so 

that 

s i,k,k ′ g,b = 

{
1 , if g ∈ A 

k ′ 
i 

and b / ∈ A 

k 
i 
;

0 , else . 

These additional indices do not refer to new variables, but al- 

low to tie the s variables representing pairwise separation to 

the a variables representing acceptance at the proper exigence 

level. 

As it was introduced in Belahcene et al. (2018b) , in the second 

formulation we learn the nested approved sets 〈 A 

k 
i 
〉 i ∈N , k ∈ [2 .p] 
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with which we identify the nested sets of sufficient coalitions 

〈S k 〈A i 〉 (α) 〉 and insufficient coalitions 〈F 

k 〈A i 〉 (α) 〉 . Approved sets 

are constrained so that the intersection between the sets of ob- 

servably sufficient and insufficient coalitions is empty. Leveraging 

Theorem 4.2 , this ensures that the reference assignments are fully 

restored. 

Definition 4.4. Given an instance of Inv-NCS with an assignment 

α : X 

� → { C 1 ≺ . . . ≺ C p } , we define the Boolean function �P ′ 
α with 

variables 〈 a i,k,x 〉 i ∈N , k ∈{ 2 .p} ,x ∈ X � and 

〈 s i,k,k ′ ,g,b 〉 i ∈N , k ∈{ 2 .p} , k ′ ∈{ k.p} , g∈ α(C k 
′ 
) , b∈ α(C k −1 ) 

, as the conjunction 

of clauses: 

�P ′ 
α = φP ′ 1 ∧ φP ′ 2 ∧ φP ′ 3 ∧ φP ′ 4 ∧ φP ′ 5 

φP ′ 1 
α = 

∧ 

i ∈N , k ∈ [2 .p] 

∧ 

x ′ � i x ∈ X � 
(a i,k,x ′ ∨ ¬ a i,k,x ) 

φP ′ 2 
α = 

∧ 

i ∈N , k < k ′ ∈ [2 .p] , x ∈ X � (a i,k,x ∨ ¬ a i,k ′ ,x ) 

φP ′ 3 
α = 

∧ 

i ∈N , k ∈ [2 .p] , k ′ ∈ [ k.p] 

∧ 

g∈ α−1 (C k ′ ) , b∈ α−1 (C k −1 ) 
(¬ s i,k,k ′ ,g,b ∨ ¬ a i,k,b ) 

φP ′ 4 
α = 

∧ 

i ∈N , k ∈ [2 .p] , k ′ ∈ [ k.p] 

∧ 

g∈ α−1 (C k ′ ) , b∈ α−1 (C k −1 ) 
(¬ s i,k,k ′ ,g,b ∨ a i,k ′ ,g ) 

φP ′ 5 
α = 

∧ 

k ∈ [2 .p] , k ′ ∈ [ k.p] 

∧ 

g∈ α−1 (C k ′ ) , b∈ α−1 (C k −1 ) 
( 
∨ 

i ∈N s i,k,k ′ ,g,b ) 

The remarks made about an efficient implementation of �C 
α are 

still valid: many clauses are redundant in φP ′ 1 
α and φP ′ 2 

α and can 

safely be ignored. The remark concerning the non-uniqueness of 

T in the case of two categories also applies for more than two 

categories to T k which are not uniquely defined by �P ′ 
α . 

Corollary 4.1. Given a context, an assignment α : X 

� → { C 1 ≺ . . . ≺
C p } can be represented in the Non-Compensatory Sorting model if, 

and only if �P ′ 
α, NCS 

is satisfiable. 

A specific analysis of how to extend Definition 4.3 to more than 

two categories when learning a U 

B -NCS or a U 

C -NCS model is de- 

tailed in Appendix A . 

5. MaxSAT relaxations for Inv-NCS 

The previous section introduced mathematical and computa- 

tional tools addressing the decision problem: can a given assign- 

ment be represented in the Non-Compensatory Sorting model (or 

one of its variants)? This set of tools has an important theoretical 

significance, and can also serve as a base for practical applications–

see e.g. Belahcene et al. (2018b) for an application in an account- 

ability setting, where the representation theorem ( Theorem 4.1 ) is 

leveraged to provide procedural regularity certificates with good 

properties in terms of computational hardness and privacy preser- 

vation, or jurisprudential explanations, should the outcome of the 

sorting process be contested. Nevertheless, this approach is not 

suited to the problem of learning a suitable NCS model from real 

data, because it does not tolerate the presence of noise in the data. 

There are numerous reasons for the input data not to reflect per- 

fectly the model, e.g.: imperfections in the assessment of perfor- 

mance according to some point of view; mistaken assignment of 

an alternative to a category; or simply the oversimplification of re- 

ality represented by the model. 

In this section, we address this issue by providing a relax- 

ation of the decision formulations: instead of finding an NCS model 

restoring all examples of the learning set (or, probably, die trying), 

we try to find the model that restores the most. This approach is 

similar to the empirical risk minimization approach that is central 

in Machine Learning for supervised classification problems, using 

the 0–1 loss. While it is a common practice in ML to use a con- 

vex surrogate of the 0–1 loss to immensely speed up the learning 

process, we embrace the computationally much more demanding 

exact approach, because we believe the benefits are high in terms 

of accountability–we are absolutely sure no one can challenge the 

output model on the basis of a better restoration of the learning 

set–while the computational cost can be kept low enough–because 

the number of criteria and of learning examples are often low in 

typical applications, and because we propose a computationally ef- 

ficient approach. 

We formulate the relaxed optimization problem of finding the 

subset of learning examples (reference alternatives together with 

their assignment) correctly restored of maximum cardinality with 

a soft constraint approach, using the language of weighted MaxSAT. 

This framework, derived from the SAT framework, is based on a 

conjunction of clauses 
∧ 

c i where each clause c i is given a non- 

negative weight w i , and maximizes the total weight of the satisfied 

clauses. In order to translate exactly our problem in this language, 

we leverage two basic techniques: we introduce switch variables 

‘ z’ allowing to precisely monitor the soft clauses we are ready to 

see violated, as opposed to hard clauses that remain mandatory; 

and we use big-stepped tuples of weights w 1 , . . . , w k with w 1 �
· · · � w k allowing to specify lexicographically ordered goals in an 

additive framework. 

5.1. A MaxSAT relaxation for Inv-NCS based on coalitions 

This section elaborates on the SAT formulation introduced in 

Section 4.1 . The MaxSAT extension of the formulation obtained 

when following a strategy based on the explicit representation of 

coalitions of criteria is based on the specification of the reference 

alternative to relax in order to remove conflicts in the clauses. For 

this purpose, we define the following additional binary variables: 

• ‘ z’ variables, indexed by an alternative x , represent the 

set of alternatives properly classified by the inferred 

model, with the following semantic: z x = 1 ⇔ α−1 (x ) = 

NCS ω (x ) i.e. the alternative x is properly classified 

These variables are introduced in some clauses to serve as 

switches: 

• For any exigence level k ∈ [2 .p] , let B ⊆ N a coalition of crite- 

ria, and x an alternative assigned to C k −1 by α. If z k = 1 and 

B ⊆
{

i ∈ N : x ∈ A 

k 
i 

}
then t B,k = 0 . This leads to the following 

conjunction of clauses: 

φ
˜ C5 
α = 

∧ 

B ⊆N , k ∈ [2 .p] 

∧ 

x ∈ α−1 (C k −1 ) ( 
∨ 

i ∈ B ¬ a i,k,x ∨ ¬ t B,k ∨ ¬ z x ) 

• For any exigence level k ∈ [2 .p] , let B ⊆ N a coalition of cri- 

teria, and x an alternative assigned to C k by α. If z k = 1 and 

B ⊆
{

i ∈ N : x ∈ A 

k 
i 

}
then t N\ B,k = 0 . This leads to the following 

conjunction of clauses: 

φ
˜ C6 
α = 

∧ 

B ⊆N , k ∈ [2 .p] 

∧ 

x ∈ α−1 (C k ) ( 
∨ 

i ∈ B a i,k,x ∨ t N\ B,k ∨ ¬ z x ) 

The objective in the MaxSAT formulation is to maximize the 

portion of alternatives properly classified, this is the subject of the 

following soft clause: 

φgoal 
α = 

∧ 

x ∈ X ∗ z x (8) 

The MaxSAT extension of the first formulation is the conjunc- 

tion of the first four clauses of the SAT formulation given in 

Definition 4.1 and clauses φ
˜ C5 
α , φ

˜ C6 
α and φgoal 

α . 

Clauses composing the conjunctions φC1 
α , φC2 

α , φC3 
α , φC4 

α , φ
˜ C5 
α and 

φ
˜ C6 
α are hard, associated to the weight w max , and we associate to 

φgoal 
α the weight w 1 such that w max > | X 

� | w 1 . 

Model variants Same modifications as in the SAT formulation are 

required to learn U 

B -NCS and U 

C -NCS models with noisy prefer- 

ence information: 
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Fig. 4. The eight approaches considered. 

• U 

B -NCS (Unique profiles): Drop the index k concerning the exi- 

gence level for the ‘ a ’ variables, ignore the conjunction over ex- 

igence levels for clauses φC1 
α , and ignore clauses φC2 

α altogether; 
• U 

C -NCS (Unique set of sufficient coalitions): Drop the index k 

concerning the exigence level for the ‘ t ’ variables, ignore the 

conjunction over exigence levels for clauses φC3 
α and ignore 

clauses φC4 
α altogether. 

5.2. A MaxSAT relaxation for Inv-NCS based on pairwise separation 

conditions 

This section elaborates on the SAT formulation introduced in 

Section 4.3 , following a representation strategy based on the pair- 

wise separation of alternatives. 

In the case of two categories, switch variables ‘ z’ have the same 

indexation and semantics as in the previous section. They are in- 

troduced in the clauses representing the pairwise separation con- 

straints: 

φ
˜ P4 
α = 

∧ 

g∈ α−1 ( Good ) , b∈ α−1 ( Bad ) ( 
∨ 

i ∈N 

s i,g,b ∨ ¬ z b ∨ ¬ z g ) 

They also appear in the clause φgoal 
α (see Eq. (8) ) formulating 

our objective of restoring as many learning examples as we can. 

The weighted MaxSAT relaxation of the SAT formulation ob- 

tained following the representation strategy based on pairwise 

separation of alternatives, in the case of two categories, is the 

conjunction of clauses φP1 
α ∧ φP2 

α ∧ φP3 
α ∧ φ˜ P4 

α , where each clause is 

hard and receives the weight w max , and of the clause φgoal 
α with 

weight w 1 such that w max > | X 

� | w 1 . 

The generalizations of this MaxSAT formulation to the case with 

multiple categories, including adaptations geared towards learn- 

ing U 

B -NCS and U 

C -NCS variants of the Non-Compensatory Sorting 

model, are provided in Appendix B . 

6. Computational study 

In this section, we present an empirical study that evaluates 

the intrinsic and comparative performances of the approaches pre- 

sented in Sections 4 and 5 . There are eight of them, depicted on 

Fig. 4 and specified by three binary parameters: 

• the Non-Compensatory Sorting model of preference sought, ei- 

ther with a unique boundary profile (subscript U 

P ), or with a 

unique set of sufficient coalitions (subscript U 

C ); 

• the representation strategy adopted, based either on the ex- 

plicit representation of the coalitions of criteria (superscript C ) 

or on the pairwise separation of alternatives (superscript P ); 

and 

• the problem description, either deciding whether an instance 

can be represented in the model ( D) with a SAT solver, or opti- 

mizing the ability of the model to represent the assignment ( O) 

with a MaxSAT solver. 

Note that the performances of D 

C 
U C 

for learning U 

C ( Section 4.1 ) 

have already been proved to be superior to MIP approaches by 

Belahcene et al. (2018a) . 

6.1. Experimental design 

The experimental plan consists of generating random instances 

of the Inv-NCS problem, applying one of the eight approaches 

described above, and measuring several performance indicators. 

We detail the instance generator, the implementation of the ap- 

proaches and the indicators in the following sections. 

6.1.1. Instance generation 

Each instance consists of a set of alternatives X 

∗ (described by 

tuples of evaluations on a set of criteria N ), a set of categories 

C 1 ≺ . . . ≺ C p , and the assignment of the former to the latter. We 

set the number of categories p to three. The set of alternatives is 

governed by two parameters –the number of criteria |N | and the 

number of reference alternatives | X 

� | – that we consider exoge- 

nous and we try to assess their respective influence on the per- 

formance indicators. Note that this design is similar to a super- 

vised classification context, where | X 

� | and |N | are respectively the 

number of rows and columns of the dataset. Instances are sampled 

uniformly from the cube [0 , 1] |N | : we have considered the least 

favourable case where all the criteria take continuous values. 

The assignment of alternatives to categories depends on the 

type of model sought and the problem description. In order to en- 

sure that preference data represents a real decision problem, we 

use a decision model to generate it, and, in particular, a model 

compatible to the Non-Compensatory stance we are postulating: 

• In the case of U 

C -NCS, we use an MR-Sort model for generat- 

ing the learning set, a model that particularizes U 

C by postu- 

lating the set of sufficient coalitions has an additive structure 

(see Section 2 ). It is randomly generated using the following 

procedure: a set of limit profiles 〈 b〉 is generated by uniformly 

sampling p − 1 numbers in the interval [0,1] and sorting them 

in ascending order, for all criteria; the voting powers 〈 w 〉 are 

generated by sampling |N | − 1 numbers in the interval [0,1], 

sorted and used as the cumulative sum of weights; the majority 

threshold λ is sampled with uniform probability in the interval 

[0.5,1]. 
• In the case of U 

B -NCS we use a model with a unique profile and 

nested sets of sufficient coalitions of criteria at each exigence 

level, each with an additive structure, i.e., weights attached to 

criteria and and a majority threshold. It is randomly generated 

using the following procedure: a single profile b is generated 

by uniformly sampling a tuple in [0 , 1] N ; the voting weights 

〈 w 〉 are generated by sampling |N | − 1 numbers in the interval 

[0,1], sorted and used as the cumulative sum of weights; the 

majority thresholds 〈 λ〉 are then randomly chosen by sampling 

p − 1 numbers with uniform probability in the interval [0.5,1] 

and sorting them in ascending order. 

Once the ground truth model is generated, which is by design 

compatible to the hypothesis class we are working with, we con- 

sider two ways of assigning alternatives to categories, depending 

on the problem formulation we are considering. 
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• For decision approaches, we directly assign the alternatives 

to categories according to the ground truth. Therefore, these 

approaches should always succeed in finding the parameters of 

a model extending the reference assignment. 
• For optimization approaches, we introduce a proportion μ of 

assignment errors in the learning set. The assignment of a sub- 

set of reference alternatives is randomly replaced, with uniform 

probability, by the successor or predecessor category compared 

to the ground truth assignment. 

6.1.2. Solving the instances 

This experimental study is run on a laptop with Windows 

10 (64 bit) equipped with an Intel(R) Xeon(R) CPU E5-1620 v4 

@3.5GHz and 32 GB of RAM. 

For decision approaches, we translate the assignment into a 

Boolean satisfaction problem, described by sets of variables and 

clauses, for both representation strategies and both preference 

models, as described in Section 4 . The SAT instances are written in 

a file in DIMACS format, and passed to a command line SAT solver 

- CryptoMiniSat 5.0.1. 

For optimization approaches, we translate the assignment into 

a Boolean satisfaction problem, described by sets of variables and 

clauses and an objective function, for both representation strate- 

gies and both preference models, as described in Section 5 . The 

MaxSAT instances are passed to a command line MaxSAT solver 

QmaxSAT in the required format. 

When using the representation strategy based on the explicit 

representation of the set of coalitions of criteria, each solution 

of the SAT/MaxSAT problem found by the solver can directly be 

interpreted in terms of parameters of an NCS model (either of 

the U 

B or the U 

C subtype). This is not exactly the case with the 

representation strategy based on pairwise separation of alterna- 

tives: the SAT/MaxSAT solution explicitly describes the approved 

sets of value on each criterion and at each exigence level (i.e. the 

boundary profiles), but the sets of sufficient coalitions are left im- 

plicit, and are solely described in terms of an upper and a lower 

bound. In the context of this experimental study, we are inter- 

ested in resolute and precise decision models – hence it is nec- 

essary to complete this irresolute (or imprecise) strategy with a 

second strategy for picking a specific (nesting of) upset(s) of suffi- 

cient coalition inside the band of possible sets. We consider three 

such post-processing strategies: i) T = T min , systematically return- 

ing the lower bound, ii) T = T rand , returning a random nesting of 

upsets satisfying the constraints; and iii) T = T max , returning sys- 

tematically the upper bound. 

6.1.3. Performance indicators 

The performance indicators of interest are the computing time, 

the restoration rate (the proportion of the learning set correctly 

represented by the output model), and the generalization index 

measuring the alignment between the output model with the 

ground truth. 

So as to monitor the learning process, we control the level of 

noise in the input data through the parameter μ, and we mea- 

sure the proportion of reference assignments that are correctly re- 

stored by the learning process. This restoration rate should be equal 

to one in the case of approaches addressing the decision problem 

(as there is no noise), and at least equal to 1 −μ for approaches 

addressing the optimization problem. 

The computing performance is measured in practice, by solving 

actual instances of the problem and reporting the computation time 

required by the solver. 

In order to appreciate how “close” a computed model to the 

ground truth from which the assignment examples were gener- 

ated, and thus to monitor potential overfitting, we proceed as fol- 

lows: we sample a large set of n profiles in X = [0 , 1] N and com- 

Table 5 

Computation time in the baseline 

configuration (128 ref. alternatives, 9 

crit., 3 categ.) to learn a U B model. 

D 

C 
U B 

D 

P 
U B 

Max 0 . 169 s 0 . 293 s 

2nd quartile 0 . 141 s 0 . 184 s 

Median 0 . 126 s 0 . 148 s 

1st quartile 0 . 118 s 0 . 111 s 

Min 0 . 108 s 0 . 06 s 

Table 6 

Computation time in the baseline 

configuration (128 ref. alternatives, 9 

crit., 3 categ.) to learn a U C model. 

D 

C 
U C 

D 

P 
U C 

Max 0 . 161 s 0 . 584 s 

2nd quartile 0 . 139 s 0 . 389 s 

Median 0 . 131 s 0 . 337 s 

1st quartile 0 . 123 s 0 . 256 s 

Min 0 . 104 s 0 . 097 s 

pute the assignment of these profiles according to the original and 

computed models. On this basis, we compute the generalization in- 

dex : the proportion of “correct” assignments, i.e. profiles which are 

assigned to the same category by the ground truth and the inferred 

model. 

6.2. Model retrieval with decision approaches 

In this section, we study the behavior of the decision ap- 

proaches, when fed with synthetic data matching the hypothesis 

(i.e. either coming from a specific U 

B or U 

C NCS model). More 

particularly, we monitor the restoration rate (which is expected 

to reach 100%), the computation time and the generalization in- 

dex when applying each strategy (and, concerning the one based 

on the pairwise separation of alternatives, of three specific post- 

processing strategies concerning the choice of the nested sufficient 

coalitions), i.e. for the approaches D 

C 
U B 

, D 

C 
U C 

, D 

P 
U B 

and D 

P 
U C 

, as func- 

tions of the number of reference alternatives | X 

� | and the number 

of criteria |N | . 
We explore a specific subset of the parameter space: we con- 

sider a baseline configuration, with 3 categories, 9 criteria and 128 

reference alternatives, and we consider the configurations deviat- 

ing from the baseline on a single parameter – either | X 

� | = 128 

and |N | ∈ { 3 , 5 , 7 , 11 } , or | X 

∗| ∈ { 32 , 64 , 256 , 512 , 1024 } and |N | = 

9 . For each configuration and for both models U 

C and U 

B , we sam- 

ple 50 instances, then solve each of them according to both strate- 

gies. 

6.2.1. Restoration rate 

As expected, the restoration rate, for every model and strategy, 

is uniformly equal to one. 

6.2.2. Computing time 

For each NCS model ( U 

B and U 

C ), for each strategy under 

scrutiny (coalition based, and pairwise separation based), and for 

the set of considered parameters governing the input, the com- 

putation time ranges from below the tenth of a second to some 

dozens of minutes. Table 5 (respectively Table 6 ) depicts the distri- 

bution of the computation time for the baseline situation (128 ref- 

erence assignments, 9 criteria and 3 categories) of implementing 

each strategy to learn a U 

B model (resp. a U 

C model). In this con- 

figuration, the strategy based on coalitions ( D 

C ) is slightly faster 

than the one based on pairwise separation ( D 

P ) when learning a 

U 

B model and three times faster when learning a U 

C model. The 
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Fig. 5. Computation time by number of ref. assignments (9 crit., 3 categ.) to learn a U B model. 

Fig. 6. Computation time by number of ref. assignments (9 crit., 3 categ.) to learn a U C model. 

distribution of the computing time of each formulation is very 

tight around its center. 

In order to assess the influence of the parameters governing the 

size and complexity of the input, we explore situations differing 

from the baseline on a single parameter: 

• The number of reference assignments | X 

� | : Figs. 5 and 6 indi- 

cate that the distribution of the computing time for both strate- 

gies and for both U 

B and U 

C models remains tightly grouped 

around its central value. It also shows that this value steadily 

increases with the number of reference assignments. For both 

strategies, the log-log plots are all consistent with a linear de- 

pendency between log t and log | X 

� | , indicating the soundness 

of power law t ∝ | X 

� | β . The observed slopes are consistent with 

βC = 1 (i.e. t ∝ | X 

� | ) for the representation strategy based on 

coalitions, and βP = 2 (i.e t ∝ | X 

� | 2 ) for the representation strat- 

egy based on the pairwise separation of alternatives. 
• The number of criteria |N | : Figs. 7 and 8 indicate for each NCS 

variants, the distribution of the computing time for both strate- 

gies. It can be observed that these series remain tightly grouped 

around their central value and this value steadily increases with 

the number of criteria. These observations are consistent with 

the hypotheses t ∝ |N | for the representation strategy based 

on the pairwise separation of alternatives, and t ∝ 2 |N | for the 

strategy based on coalitions of criteria. 
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Fig. 7. Computation time by number of criteria (128 ref. assignments and 3 categ.) to learn a U B model. 

Fig. 8. Computation time by number of criteria (128 ref. assignments and 3 categ.) to learn a U C model. 

6.2.3. Results on the ability of the inferred model to restore the 

original one 

When applied to learn both NCS variants (U 

B and U 

C ), the strat- 

egy based on pairwise separation returns an acceptable nesting of 

upset of sufficient coalitions, defined by lower and upper bounds. 

This strategy needs to be completed by a post-processing phase 

dedicated to pinpoint a single nesting of upsets. While this phase 

has no bearing on the restoration rate, and takes negligible time, it 

has a measurable impact on the generalization index. 

To identify the upset that best restores the simulated sorting 

model ( 1 −U 

B and MR-Sort), we study the three following post- 

processing strategies: T = T min , T = T rand and T = T max . T-Student 

tests ( α = 5% ) show that for U 

B and U 

C the generalization index 

when T = T min is always at least as good as the other two vari- 

ants regardless the number of criteria, alternatives (and even cat- 

egories for p ∈ { 2 , 3 , 4 , 5 } ); see for instance the baseline configura- 

tion Table 7 . Consequently, for ease of presentation, we only plot 

results concerning the post-processing strategy T = T min . 

The first two columns of Table 7 depicts the distribution 

of the proportion of correct assignments (as compared to the 

ground truth) for the baseline situation (128 reference assign- 

ments, 9 criteria and 3 categories). T-Student test ( α = 5% ) 

shows that the difference between the two distributions is not 

significant. 
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Fig. 9. Generalization index by number of reference assignments (9 criteria and 3 categories) to learn a U B model. 

Table 7 

Generalization index for both SAT formulations in the baseline 

configuration (128 reference assignments, 9 criteria and 3 cate- 

gories) to learn a U B model. 

D 

C 
U B 

D 

P 
U B 

T = T min T = T rand T = T max 

Max 96 . 4% 98% 97% 97% 

2nd quartile 92 . 3% 91 . 4% 89% 89% 

Median 89% 90% 85 . 7% 85 . 7% 

1st quartile 83 . 4% 86 . 6% 80 . 8% 80 . 8% 

Min 75 . 4% 79 . 8% 73% 73% 

Figs. 9 and 10 represent the variations of the alignment of the 

models yielded by both formulations with the ground truth with 

respect to the problem settings when learning a U 

B model (respec- 

tively U 

C model) and applying each strategy. The experimental re- 

sults display a tendency towards a degradation of this alignment 

as the number of criteria increases. Conversely, as expected, in- 

creasing the number of reference assignments noticeably enhances 

the generalization index, up to 100%. The implementations of both 

strategies seem to behave in a similar manner with respect to the 

variations of these parameters. 

6.3. Tolerance for error with optimization approaches 

In this section, we study the behavior of the optimization ap- 

proaches, when fed with synthetic data that deviate from the 

model hypothesis (i.e. either coming from a specific U 

B or U 

C NCS 

model) in a controlled manner, through the incorporation of a pro- 

portion μ of noise. More particularly, we monitor the restoration 

rate (which is expected to reach at least 1 −μ), the computation 

time and the generalization index, when applying each strategy, i.e. 

for approaches O 

C 
U B 

, O 

C 
U C 

, O 

P 
U B 

and O 

P 
U C 

, as functions of the number 

of reference alternatives | X 

� | , the number of criteria |N | , and the 

noise rate μ. 

In this paper, the notion of noise on the learning set is de- 

fined as a misclassification of an alternative, i.e., an error from the 

decision maker in the choice of the category. More precisely, the 

assignment of a subset of reference alternatives is randomly re- 

placed, with uniform probability, by the successor or predecessor 

category compared to the ground truth assignment. This is the way 

we have implemented the noise in our experiment. 4 

We explore a specific subset of the parameter space: we con- 

sider a baseline configuration, with 3 categories, 5 criteria, 128 ref- 

erence alternatives and 10% noise rate, and we consider the config- 

urations deviating from the baseline on a single parameter – | X 

� | = 

128 , |N | ∈ { 3 , 7 , 9 , 11 } and μ = 0 . 1 ; or | X 

∗| ∈ { 32 , 64 , 256 } , |N | = 5 

and μ = 0 . 1 ; or | X 

� | = 128 , |N | = 5 and μ ∈ { 0 . 05 , 0 . 15 , 0 . 2 } . For 

each configuration and for both models U 

C and U 

B , we sample 50 

instances, then solve each of them according to both strategies. 

6.3.1. Restoration rate 

Plotting the restoration rate allows to monitor the learning pro- 

cess. The experimental results show that, when learning a given 

subtype of NCS model (either U 

B or U 

C ), the models learned by im- 

plementing both strategies (either based on coalition or pairwise 

separation) reproduce the same portion of the learning set and at 

least (1 −μ) ∗ | X 

∗| assignment examples. This is some experimen- 

tal evidence of the validity of the MaxSAT formulations stemming 

from both representation strategy. 

The results display a tendency towards a degradation of the 

restoration rate distribution as the number of alternatives or the 

noise rate increases. Conversely, increasing the number of criteria 

noticeably enhances the restoration rate. 

4 Note that there exist alternative ways to consider noisy expression of prefer- 

ences. On of these is to consider that the errors in the learning set is related to the 

values/performances of alternatives in the learning set. Such noise is indeed rele- 

vant in applications where the learning set correspond to historical data in which 

performances of examples can be erroneous. 
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Fig. 10. Generalization index by number of criteria (128 reference assignments and 3 categories) to learn a U B model. 

Fig. 11. Restoration rate by number of reference assignments (5 criteria, 3 categories and 10% noise) to learn a U B model. 

• The number of reference assignments | X 

� | : when the num- 

ber of learning points ( Figs. 11 for U 

B and 12 for U 

C ), we ob- 

serve a convergence of the restoration rate towards its lower 

bound (1 −μ) ∗ | X 

∗| % (in this case 0.9): when the learning set 

is small, the computed model is flexible enough to reproduce 

almost all the learning set despite the errors; however, when 

the size of the learning set is large, as the computed model 

is more specific, the proportion of alternatives in the learn- 

ing set whose assignment is not reproduced by the inferred 

model corresponds to the proportion of errors introduced in the 

learning set. Note however that alternatives in the learning set 

that are excluded when inferring the model do not necessarily 

correspond to the errors introduced in the learning set. How- 

ever, the proportion of alternatives excluded when inferring the 

model is at most equal to the proportion of introduced errors. 

Also, it should be noted that the distribution of the restoration 

rate becomes more and more tightly grouped around its central 

value. 
• The number of criteria |N | : Figs. 13 (for U 

B ) and 14 (for U 

C ) 

show the variation of the restoration rate according to the 
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Fig. 12. Restoration rate by number of reference assignments (5 criteria, 3 categories and 10% noise) to learn a U C model. 

Fig. 13. Restoration rate by number of criteria (128 reference assignments, 3 categories and 10% noise) to learn a U B model. 

number of criteria. Increasing the number of criteria makes the 

problem more flexible, and consequently noticeably enhances 

the restoration rate with a convergence towards 100% 

• The noise rate μ: Figs. 15 and 16 indicate that the restoration 

rate decreases linearly with the noise rate. 

6.3.2. Computing time 

Tables 8 and 9 show the distribution of the computation time 

in the baseline configuration (128 reference assignments, 5 crite- 

ria, 3 categories and 10% noise) to learn both NCS models (U 

B 

and U 

C ). When dealing with our baseline, applying the strategy 

based on the explicit representation of coalitions is 20 times faster 

than applying the strategy based on pairwise separation of alter- 

natives, while this advantage was only threefold for the decision 

approaches (see e.g. Figs. 7 and 8 ): the relaxation from SAT to 

MaxSAT seems to favor the strategy based on coalitions. 

We investigate the influence of the parameters describing the 

instance. 
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Fig. 14. Restoration rate by number of criteria (128 reference assignments, 3 categories and 10% noise) to learn a U C model. 

Fig. 15. Restoration rate by noise rate (128 reference assignments, 5 criteria and 3 categories) to learn a U B model. 

• The number of reference assignments X 

∗: Figs. 17 and 18 in- 

dicate that the distribution of the computing time for the 

two MaxSAT-formulations and for both U 

B and U 

C models re- 

mains tightly grouped around its central value. It also shows 

that this value steadily increases with the number of ref- 

erence assignments, consistently with the power laws found 

in Section 6.2.2 , i.e. t ∝ | X 

� | for the representation strat- 

egy based on coalitions of criteria, and t ∝ | X 

� | 2 for the 

representation strategy based on the pairwise separation of 

alternatives. 
• The number of criteria |N | : Figs. 19 and 20 indicates that 

the distribution of the computing time, when applying both 

strategies and learning both models U 

C and U 

B , remains tightly 

grouped around its central value. These results remain con- 

sistent to the models proposed in Section 6.2.2 : t ∝ |N | for 

the representation strategy based on the pairwise separation of 
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Fig. 16. Restoration rate by noise rate (128 reference assignments, 5 criteria and 3 categories) to learn a U C model. 

Fig. 17. Computation time by number of reference assignments (5 criteria, 3 categories, 10% noise) to learn a U B model. 

Table 8 

Computation time to learn a U B 

model in the baseline config. (128 

ref. alt., 5 crit., 3 categ. and 10% 

noise). 

O 

C 
U B 

O 

P 
U B 

Max 0 . 337 s 8 . 690 s 

2nd quartile 0 . 272 s 5 . 492 s 

Median 0 . 222 s 4 . 132 s 

1st quartile 0 . 176 s 3 . 228 s 

Min 0 . 113 s 1 . 195 s 

alternatives, t ∝ 2 |N | for the representation strategy based on 

coalitions of criteria. 
• The noise rate μ: The distribution of the computation time for 

both MaxSAT formulations remains tightly grouped around its 

central value, and log t increases linearly (with a low slope) 

with the noise rate ( Figs. 21 and 22 ). 

6.3.3. Results on the ability of the inferred model to restore the 

original one 

The observations made in Section 7 , concerning the irres- 

oluteness of the approaches implementing the representation 
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Fig. 18. Computation time by number of reference assignments (5 criteria, 3 categories, 10% noise) to learn a U C model. 

Fig. 19. Computation time by number of criteria (128 reference assignments, 3 categories and 10% noise) to learn a U B model. 

strategy based on pairwise separation, remain valid when consid- 

ering MaxSAT relaxations. Adopting the same notations as the SAT 

formulations, T-Student tests show that for both models U 

B and 

U 

C the generalization index when T = T min is always at least as 

good as the other two variants regardless of the number of cri- 

teria, alternatives, categories and the noise rate (see for instance 

the baseline configuration Table 10 ). The rule of thumb proposed 

in Section 7 remains valid when transposed to optimization ap- 

proaches implemented via a MaxSAT solver – the post-processing 

strategy T = T min yields the best results, and is the only one rep- 

resented on the subsequent figures. 

The first two columns of Table 10 depicts the distribution of the 

generalization index for both MaxSAT formulations for the base- 

line situation (128 reference assignments, 5 criteria, 3 categories 

and 10% noise) for learning a U 

B model (respectively a U 

C model). 

For both models, the two distributions are almost the same with a 

slight difference on the median. 

Figs. 23 –26 present the variations of the alignment of the com- 

puted U 

B models (respectively U 

C models) yielded by both MaxSAT 

formulations with the ground truth. For both NCS variants, the ex- 

perimental results display a tendency towards a degradation of this 

alignment as the number of criteria or the number of categories 
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Fig. 20. Computation time by number of criteria (128 reference assignments, 3 categories and 10% noise) to learn a U C model. 

Fig. 21. Computation time by noise rate (128 reference assignments, 5 criteria and 3 categories) to learn a U B model. 

Table 9 

Computation time to learn a U C 

model in the baseline config.(128 ref. 

alt., 5 crit., 3 categ. and 10% noise). 

O 

C 
U C 

O 

P 
U C 

Max 0 . 996 s 18 . 121 s 

2nd quartile 0 . 554 s 11 . 7 s 

Median 0 . 352 s 8 . 161 s 

1st quartile 0 . 242 s 5 . 323 s 

Min 0 . 131 s 1 . 582 s 

Table 10 

Generalization index in the baseline configuration (128 refer- 

ence assignments, 5 criteria, 3 categories and 10% noise) when 

learning a U B model, for both representation strategies and three 

post-processing strategies. 

O 

C 
U B 

O 

P 
U B 

T = T min T = T rand T = T max 

Max 97 . 7% 99 . 2% 98 . 8% 98 . 8% 

2nd quartile 95 . 6% 96 . 5% 95 . 9% 95 . 9% 

Median 94 . 4% 95 . 4% 94 . 6% 94 . 5% 

1st quartile 92 . 2% 93 . 5% 92 . 4% 92 . 6% 

Min 87 . 7% 90% 88 . 2% 88% 
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Fig. 22. Computation time by noise rate (128 reference assignments, 5 criteria and 3 categories) to learn a U C model. 

Fig. 23. Generalization index by number of reference assignments (5 criteria, 3 categories and 10% noise) to learn a U B model. 

increases. Conversely, as expected, increasing the number of ref- 

erence assignments noticeably enhances the generalization index. 

The two formulations seem to behave in a similar manner with 

respect to the modification of these parameters. And finally, the 

generalization rate decreases linearly with the noise rate. 

6.4. Discussion 

In this section, we discuss the influence of input parameters 

(number of criteria, and the size of the learning set) on the com- 

puting time, the ability to restore learning sets, and to generalize 

of both representation strategies (the one based on explicit repre- 

sentation of coalitions, and the one based on pairwise separation 

of alternatives). The discussion focuses on both problem descrip- 

tions: decision (SAT) and optimization (MaxSAT) for learning both 

variants of NCS (U 

B and U 

C ). The results obtained provides (i) the 

empirical confirmation of results which were expected, and (ii) in- 

sights for an analyst who wishes to use the proposed learning al- 

gorithms in an decision-aiding case study. 

6.4.1. Empirical confirmation of expected results 

Computation time : 
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Fig. 24. Generalization index by number of criteria (128 reference assignments, 3 categories and 10% noise) to learn a U B model. 

Fig. 25. Generalization index by number of categories (128 reference assignments, 5 criteria and 10% noise) to learn a U B model. 

On the one hand, for each NCS variants (U 

B and U 

C ) and 

for both SAT and MaxSAT problem descriptions, the number of 

reference assignments impacts linearly the computation time of 

the coalitions-based representation strategy, and quadratically the 

computation time of the pairwise separation representation). On 

the other hand, the coalitions-based representation strategy de- 

pends exponentially on the number of criteria, and this depen- 

dence remains linear for the separation-based representation. 

For a fixed number of criteria, when increasing the number of 

reference assignments, the coalition-based representation becomes 

faster than the separation-based representation (as the size of the 

learning set impacts the computing time linearly for the coalition- 

based representation, and quadratically for the separation-based 

representation). 

Conversely, for a fixed number of reference assignments, when 

increasing the number criteria, the separation-based representa- 

tion becomes faster than the coalition-based representation (as the 

number of criteria impacts the computing time exponentially for 

the coalition-based representation, and linearly for the separation- 

based representation). 
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Fig. 26. Generalization index by noise rate (128 reference assignments, 5 criteria and 3 categories) to learn a U B model. 

Fig. 27. Computation time of SAT problems by number of reference assignments and number of criteria (3 categories) to learn a U B model. 

These two effects leads to distinguish configurations (depending 

on the number of criteria, and size of the learning set) in which 

either of two representations (coalition-based or separation-based) 

is faster. For a decision problem with 3 categories (and 10% noise 

for MaxSAT instances), Figs. 27 and 28 ( Figs. 29 and 30 , respec- 

tively) depicts which of the two representations (coalition-based 

or separation-based) is faster to learn U 

B model (U 

C model, re- 

spectively) depending on the number of alternatives and number 

of criteria (both for SAT and MaxSAT). These Figures offer insights 

to choose the appropriate representation according to the number 

of criteria and the number of alternatives. 

Ability to restore the learning set : 

As expected, all SAT instances (without noise) are able to fully 

restore the learning sets; this result is an experimental valida- 

tion of the theoretical work developed in Section 4 . Moreover, 

when learning a model from noisy learning sets (MaxSAT ex- 

tension), we were able to infer NCS models with a restoration 

rate over 1 − x , where x denotes the noise level in the learning 

set. 

Ability to generalize : 

In terms of generalization (the alignment between the out- 

put model with the ground truth), for both U 

B and U 

C models, 
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Fig. 28. Computation time of MaxSAT problems by number of reference assignments and number of criteria (3 categories and 10% noise) to learn a U B model. 

Fig. 29. Computation time of SAT problems by number of reference assignments and number of criteria (3 categories) to learn a U C model. 

coalition-based and separation-based strategies behave in analo- 

gously: 

• an increase of the size of the learning set induces an improve- 

ment of the generalization index; such improvement occurs 

whatever the noise level (up to 20%). This means that it seems 

always possible to “capture the ground truth” with a sufficiently 

large learning set, 
• an increase in the reference set noise level requires a larger 

learning set to keep the same generalization level. This implies 

that the “quality” of the learning set, have a significant impact 

on the required size of this learning set. 

6.4.2. Insights for the decision analyst 

An interesting aspect of the empirical results lies in the possi- 

bility to derive insights on how to put the proposed learning algo- 

rithms in practice in an decision-aiding case study. 

Defining the size of the learning set for a given number of 

criteria : 

An important question for a decision analyst concerns the num- 

ber of assignment examples to collect in order to accurately cap- 

ture the DM’s preferences. Our experiments provide figures to an- 

swer such questions. In a decision problem involving 3 categories 

and 5 criteria, if the analyst wishes to obtain an U 

B model with 
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Fig. 30. Computation time of MaxSAT problems by number of reference assignments and number of criteria (3 categories and 10% noise) to learn a U C model. 

target level of 90% for the generalization index, and postulates an 

error rate of 10% in the set of assignment examples, Fig. 23 informs 

us that the size of the learning set should be in the interval [64, 

128]. 

Choosing the fastest formulation depending on the number 

of criteria and size of the learning set : 

Another relevant question concerns which of the coalition- 

based or separation-based representation provides the lowest com- 

puting time for a given size of learning set (and number of crite- 

ria). 

For a given number of criteria and for learning a U 

B model, 

Figs. 27 and 28 depict the approximate thresholds in terms of 

number of reference assignments from which the coalition-based 

representation becomes faster than the separation-based one. In 

the case where the preference information is perfect and for less 

than ∼50 examples, the separation-based representation is faster 

than the coalition-based representation, and the generalization 

is equivalent for both representations. For MaxSAT instances, for 

more than ∼50 examples and less than ∼11 criteria, the coalition- 

based representation formulation is faster than the separation- 

based one. However, for a number of criteria exceeding ∼13 or for 

less than ∼50 reference assignments, the separation-based repre- 

sentation is faster. For all configurations, the separation-based rep- 

resentation generalizes better. 

For a given number of criteria and for learning a U 

C model, 

Figs. 29 and 30 depict the approximate thresholds in terms of 

number of reference assignments from which the coalition-based 

representation becomes faster than the separation-based one. In 

the case where the preference information is noiseless and for 

more than ∼14 criteria or for less than ∼64 reference assign- 

ments, the separation-based representation is more efficient than 

the coalition-based one in terms of the computation time and the 

generalization index. 

7. Conclusion 

In this paper, we consider the multiple criteria Non- 

Compensatory Sorting model and its variants with a unique profile 

(U 

B ) and a unique set of sufficient coalitions (U 

C ). Learning this 

model has already been addressed by the literature, and solved 

by the resolution of a MIP ( Leroy et al., 2011 ) or via a specific 

heuristic ( Sobrie, Mousseau, & Pirlot, 2013; 2015 ). Recently, two 

SAT representations (coalition-based, and separation-based) have 

been proposed to learn such a model from perfect preference infor- 

mation and already proved to be superior to other approaches, see 

Belahcene et al. (2018b) . The separation-based representation was 

originally described in Belahcene et al. (2018b) but only focusing 

on the case with two categories. We consider in this work the gen- 

eralization of this formulation to the multiple categories case for 

learning NCS and its variant U 

B -NCS and U 

C -NCS. The separation- 

based representation is more compact than the coalition-based one 

as it handles explicitly a set of sufficient coalitions that lies in the 

power set of the criteria. In order to handle the inconsistency in 

preference information, we extend the two SAT problems using 

MaxSAT language. Thus, for each variant of NCS, we proposed two 

MaxSAT programs to compute the model’s parameters from noisy 

preference information. 

The separation-based representation proposed for learning U 

B 

and U 

C models is at least as good as the coalition-based one in 

terms of generalization and for both types of preference informa- 

tion (perfect and not-so-perfect preferences). Computation time of 

the two representations evolves depending on the number of refer- 

ence alternatives and the number of criteria; the separation-based 

representation performs better when the number of criteria in- 

creases, while it is not the case when the number of reference 

alternatives increases. Increasing the number of categories penal- 

izes the separation-based representation proposed for learning U 

B 

model, since the number of clauses depends quadratically on the 

number of categories. 

However, for real world decision problems, assuming that the 

number of reference assignments is ∼100 examples, we can con- 

sider two types of applications: an application that involves a large 

number of criteria (|N | > ∼ 12) and therefore the separation-based 

representation seems better as it is faster and generalizes better 

than the first one, and an application that involves a limited num- 

ber of criteria (|N | < ∼ 10) , in this case, the coalition-based repre- 
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sentation is slightly faster and generalizes less than the separation- 

based one. 

Finally, our work shows that, when learning MCDA models from 

preference information, SAT and MaxSAT languages can be relevant 

and efficient. This is specifically the case for ordinal MCDA aggre- 

gation procedures based on pairwise comparison of alternatives (so 

called outranking methods, see Figueira, Mousseau, & Roy (2005) ). 

We believe that our work opens avenue for further research to de- 

velop new algorithms to learn outranking models from preference 

statements using SAT/MaxSAT language. 

Appendix A. SAT formulations for NCS variants with more than 

2 categories 

A1. Learning a U 

B -NCS model 

When trying to fit a U 

B -NCS model, neither a variables nor s 

variables are indexed by exigence level; s variables are indexed by 

a criterion i and a pair of alternatives g, b ∈ X 

� such that g is pre- 

ferred to b, i.e. α(g) � α(b) . 

The propositional formula obtained by following the represen- 

tation strategy based on the pairwise separation of alternatives is 

particularly simple and elegant. 

Definition A.1. Given an instance of Inv-NCS with an assignment 

α : X 

� → { C 1 ≺ . . . ≺ C p } , we define the boolean function �P ′ B 
α with 

variables 〈 a i,x 〉 i ∈N , k ∈ [2 .p] ,x ∈ X � and 〈 s i,g,b 〉 i ∈N , α(g) �α(b) , as the con- 

junction of clauses: 

�P ′ B 
α, U B −NCS = φP ′ B 1 

α ∧ φP ′ B 3 
α ∧ φP ′ B 4 

α ∧ φP ′ B 5 
α

φP ′ B 1 
α = 

∧ 

i ∈N 

∧ 

x ′ � i x ∈ X � (a i,x ′ ∨ ¬ a i,x ) 

φP ′ B 3 
α = 

∧ 

i ∈N 

∧ 

α(g) �α(b) (¬ s i,g,b ∨ ¬ a i,b ) 

φP ′ B 4 
α = 

∧ 

i ∈N 

∧ 

α(g) �α(b) (¬ s i,g,b ∨ a i,g ) 

φP ′ B 5 
α = 

∧ 

α(g) �α(b) ( 
∨ 

i ∈N 

s i,g,b ) 

Corollary A.1. Given a contex, an assignment α : X 

� → { C 1 ≺ . . . ≺
C p } can be represented in the Non-Compensatory sorting model with 

unique profile if, and only if �P ′ B 
α is satisfiable. 

This condition is obviously necessary. It is sufficient because the 

sets of observably sufficient and insufficient coalitions are nested 

by construction, even in the case A 

2 
i 
= · · · = A 

p 
i 

. 

A2. Learning a U 

C -NCS model 

We describe here the generalization of the pairwise separation 

formulation �P 
α (see Definition 4.3 ) to the multiple category case 

for fitting a U 

C -NCS (Unique set of sufficient coalitions) model. 

Given a nesting of approved sets 〈A 

h 
i 
〉 , this unique set of sufficient 

coalitions satisfies all the constraints put by the observed sufficient 

and insufficient coalitions of criteria at every exigence level. This 

observation yields the following lower and upper bounds: 

S 〈A 

k 
i 
〉 (α) = Cl ⊇P(N ) 

( 
⋃ 

k ∈ [2 .p] 

⋃ 

g∈ α−1 (C �k ) 

{
i ∈ N : g ∈ A 

k 
i 

}
) 

F 〈A 

k 
i 
〉 (α) = Cl ⊆P(N ) 

( 
⋃ 

k ∈ [2 .p] 

⋃ 

b∈ α−1 (C ≺k ) 

{
i ∈ N : b ∈ A 

k 
i 

}
) 

In turn, this entails a modification of the third condition (pair- 

wise separation) of the representation theorem ( Theorem 4.2 ): 

3C. ( pairwise separation for a unique set of sufficient coalitions ) 

for each exigence levels k ∈ [2 .p] and k ′ ∈ [2 .p] , for each pair 

of alternatives (g, b) ∈ (X 

∗) 2 such that g ∈ α−1 (C �k ′ ) and b ∈ 
α−1 (C ≺k ) , there is at least one point of view i ∈ N such that 

g ∈ A 

k ′ 
i 

and b / ∈ A 

k 
i 
. 

We translate this modified representation theorem into a SAT 

formulation equisatisfiable with Inv-U 

B -NCS, using variables a in- 

dexed by a criterion, an exigence level and a reference alternative, 

as well as variables s indexed by a criterion, a pair of exigence lev- 

els, and a pair of alternatives. 

Definition A.2. Given an instance of Inv-NCS with an assignment 

α : X 

� → { C 1 ≺ . . . ≺ C p } , we define the boolean function �P ′ C 
α with 

variables 〈 a i,k,x 〉 i ∈N , k ∈{ 2 .p} ,x ∈ X � and 

〈 s i,k,k ′ ,g,b 〉 i ∈N , k ∈{ 2 .p} , k ′ ∈{ 2 .p} , g∈ C �k ′ , b / ∈ C �k , as the conjunction of 

clauses: 

�P ′ C 
α = φP ′ 1 ∧ φP ′ 2 ∧ φP ′ C3 ∧ φP ′ C4 ∧ φP ′ C5 

φP ′ C3 
α = 

∧ 

i ∈N , k ∈ [2 .p] , k ′ ∈ [2 .p] 

∧ 

g∈ α−1 (C �k ′ ) , b∈ α−1 (C ≺k ) (¬ s i,k,k ′ ,g,b ∨ ¬ a i,k,b ) 

φP ′ C4 
α = 

∧ 

i ∈N , k ∈ [2 .p] , k ′ ∈ [2 .p] 

∧ 

g∈ α−1 (C �k ′ ) ,b∈ α−1 (C ≺k ) (¬ s i,k,k ′ ,g,b ∨ a i,k ′ ,g ) 
φP ′ C5 

α = 

∧ 

k ∈ [2 .p] , k ′ ∈ [2 .p] 

∧ 

g∈ α−1 (C �k ′ ) , b∈ α−1 (C ≺k ) ( 
∨ 

i ∈N s i,k,k ′ ,g,b ) 

Formulations of φP ′ 1 
α and φP ′ 2 

α can be found in Definition 4.4 . 

Corollary A.2. Given a context, an assignment α : X 

� → { C 1 ≺ . . . ≺
C p } can be represented in the Non-Compensatory sorting model with 

a unique set of sufficient coalitions if, and only if �P ′ C 
α is satisfiable. 

Appendix B. MaxSAT relaxations based on pairwise separation 

conditions for more than two categories 

We provide here extensions of the MaxSAT formulation pre- 

sented in Section 5.2 , to the case with multiple categories. They 

rely on the fact that an NCS model with p categories is informally 

the combination of p − 1 NCS models with two categories whose 

parameters satisfy the nesting conditions on coalitions and satis- 

factory values. The maximization of the restoration in the second 

formulation is equivalent to the simultaneous maximization of the 

restoration in the sub-problems with two categories. On top of the 

‘ z’ variables encoding the correct restoration of a reference alterna- 

tive, we introduce intermediate switches: 

• ‘ y ’ variables, indexed by an alternative x ∈ X 

� and an exigence 

level k ∈ [2 .p] , encode the proper restoration of alternative x by 

the 2-categories NCS model with Good = C �k and Bad = C ≺k . 

These variables are logically tied to the ‘ z’ variables by the fol- 

lowing conjunction of hard clauses: 

φ
˜ P ′ yz 
α = 

∧ 

x ∈ X � 

∧ 

k ∈ [2 .p] 

(y k,x ∨ ¬ z x ) 

While the objective in the MaxSAT formulation is to maximize 

the number of properly classified alternatives, this goal is reached 

by the simultaneous maximization of the restoration rate in each 

sub-problem with two categories, leading to the introduction of a 

number of sub-goals: 

φsubgoals 
α = 

∧ 

k ∈ [2 .p] 

∧ 

x ∈ X � 
y k,x 

The soft clause φgoal 
α is given weight w 1 , and each one of the clause 

appearing in the conjunction φsubgoals 
α is given weight w 2 , while 

the hard clauses are given weight w max . These weights are chosen 

so that w max � w 1 � w 2 , and more precisely : (p − 1) | X 

� | w 2 < w 1 ; 

and | X 

� | w 1 < w max . 

The hard clauses differ according to the target model. 
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B1. Learning an NCS model 

Use the following conjunction of hard clauses: φP ′ 1 
α ∧ φP ′ 2 

α ∧ 
φ

˜ P ′ 3 
α ∧ φ˜ P ′ 4 

α ∧ φ˜ P ′ 5 
α ∧ φ ˜ P ′ yz 

α . 

φ
˜ P ′ 3 
α = 

∧ 

i ∈N , 2 ≤k ≤k ′ ≤p 

∧ 

g∈ α−1 (C �k ′ ) , b∈ α−1 (C ≺k ) (¬ s i,k,k ′ ,g,b ∨ ¬ a i,k,b ) 

φ
˜ P ′ 4 
α = 

∧ 

i ∈N , 2 ≤k ≤k ′ ≤p 

∧ 

g∈ α−1 (C �k ′ ) ,b∈ α−1 (C ≺k ) (¬ s i,k,k ′ ,g,b ∨ a i,k ′ ,g ) 

φ
˜ P ′ 5 
α = 

∧ 

k ∈ [2 .p] , 2 ≤k ≤k ′ ≤p 

∧ 

g∈ α−1 (C �k ′ ) , b∈ α−1 (C ≺k ) 

( 
∨ 

i ∈N 

s i,k,k ′ ,g,b ∨ ¬ y k,b ∨ ¬ y k ′ ,g ) 

Note that the conjunction φ
˜ P ′ 3 
α (resp. φ

˜ P ′ 4 
α ) subsumes the con- 

junction φP ′ 3 
α (resp. φP ′ 4 

α ) introduced in Definition 4.4 , but that, to- 

gether with the constraints φP ′ 2 
α , is equivalent to it. While this re- 

dundancy is not needed in the SAT formulation, it helps formulate 

the subgoals of the MaxSAT formulation. 

B2. Learning a U 

C -NCS model 

Use the following conjunction of hard clauses: φP ′ 1 
α ∧ φP ′ 2 

α ∧ 
φP ′ C3 

α ∧ φ˜ P ′ C4 
α ∧ φ˜ P ′ C5 

α ∧ φ ˜ P ′ yz 
α . 

Formulas φP ′ 1 
α and φP ′ 2 

α are introduced in Definition 4.4 , φP ′ C3 
α

and φP ′ C4 
α are introduced in Definition A.2 , and 

φ
˜ P ′ C5 
α = 

∧ 

k ∈ [2 .p] , k ′ ∈ [2 .p] 

∧ 

g∈ α−1 (C �k ′ ) , b∈ α−1 (C ≺k ) 

×
(∨ 

i ∈N 

s i,k,k ′ ,g,b ∨ ¬ y k,b ∨ ¬ y k ′ ,g 
)
. 

B3. Learning a U 

B -NCS model 

As it is the case when addressing the decision problem, the U 

B - 

NCS model can be learned with a MaxSAT formulation which is 

very close to the one used in the case of two categories, with- 

out using any ‘ y ’ variables. Use the following conjunction of hard 

clauses (each one with weight w max ): φP ′ B 1 
α ∧ φP ′ B 3 

α ∧ φP ′ B 4 
α ∧ φ˜ P ′ B 5 

α , 

together with the soft clause φgoal 
α with weight w 1 < w max / | X 

� | . 
Formulas φP ′ B 1 

α , φP ′ B 3 
α and φP ′ B 4 

α can be found in Definition. A.1 , 

and 

φ
˜ P ′ B 5 
α = 

∧ 

α(g) �α(b) 

(∨ 

i ∈N 

s i,g,b ¬ z b ∨ ¬ z g 
)
. 
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Abstract
Multiple criteria decision aid methodologies support decision makers (DM) facing
decisions involving conflicting objectives. DM’s preferences should be captured to
provide meaningful recommendations. Preference elicitation aims at incorporating
DM’s preferences in decision models. We propose a new preference elicitation tool
for a ranking model based on reference points (RMP—Ranking with Multiple Pro-
files). Our methodology infers an RMP model from a list of pairwise comparisons
provided by the DM. The inference algorithm makes use of a Mixed Integer mathe-
matical programming formulation.We prove the applicability by performing extensive
numerical experiments on datasets whose size corresponds to real-world problem.
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1 Introduction

In the field of Multiple Criteria Decision Aiding (MCDA), real world decision prob-
lems can be modeled using mainly three classes of problems formulations (see for
instance Roy 1996): choice, ranking and sorting. Choice refers to the selection of
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the best alternative(s), ranking seeks to order all the alternatives from the best one to
the worst, whereas sorting aims at assigning each alternative to one of the predefined
ordered categories. In this paper, we consider the ranking problem.

Several aggregation methods have been proposed in the literature to rank a set of
alternatives (see for instance Figueira et al. 2005; Keeney and Raiffa 1976). In this
paper, we are interested in a recently proposed method based on outranking relations,
called Ranking based on Multiple reference Profiles (RMP) (Rolland 2013; Bouyssou
and Marchant 2013), which provides a ranking of alternatives by comparing alterna-
tives to a set of reference profiles. More precisely, we focus on a specific case of this
RMP ranking model in which the importance of criteria is represented by additive
weights. The RMP method is based on pairwise comparisons, but instead of directly
comparing alternatives one to each other, it rather compares each alternative to a set of
predefined external reference profiles. The idea is to construct a preference relation on
the set of alternatives based on the way each alternative compares with the specified
reference profiles.

When used in context with a specific Decision Maker (DM), the RMP ranking
model should be tuned so that it accurately reflects the DM viewpoints. Preference
elicitation is the process by which an analyst and a decision maker interact in order to
set the values for the preference parameters. The direct elicitation approach requires the
DM to give explicitly numerical values for the model parameters, whereas the indirect
approach uses holistic information provided by the decision maker in order to infer
the model parameters (see e.g. Jacquet-Lagrèze and Siskos 2001; Mousseau and Pirlot
2015). The direct elicitation approach is generally considered too difficult to apply in
practice, as the DM has no clear understanding of the link between the parameters
values and the resulting ranking (Bouyssou et al. 2006). The indirect approach, on the
other hand, reduces the cognitive effort required from the DMwho is asked to express
holistic judgments on alternatives only (e.g. pairwise comparisons of alternatives).

In this work we propose an indirect approach to elicit the parameters of the RMP
model from pairwise comparisons expressed by the decision maker. We formulate
the elicitation algorithm as a mixed linear optimization problem. In this optimization
program, the variables are the parameters of theRMPmethod, the constraints represent
the binary comparisons expressed by the decision maker, and the objective function
maximizes the number of restored comparisons.

The paper is structured in the following way: Sect. 2 presents an overview of
multicriteria ranking methods in general and reference-based methods in particular.
Section 3 introduces the reader to the RMP method through a simple example. In
Sect. 4 we provide the technical details on the preference elicitation algorithm in
order to infer an RMP model. Section 5 provides a numerical analysis of the behavior
of the inference algorithm. We end by concluding remarks and perspectives for future
work in Sect. 6.

2 Related literature

MCDA methods are generally classified into two families. The first one concerns
methods based on multi-attribute value theory (MAVT) (see Keeney and Raiffa 1976),
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while the second includes pairwise comparison methods based (so called outranking
methods, see Roy 1991). In this paper, we are interested in a ranking method based
on the construction of an outranking relation.

In outranking methods, a preference relation called outranking relation is built
between pairs of alternatives evaluated on multiple criteria. It is defined as a weak
preference relation, noted �, on the set of alternatives whose meaning is “at least as
good as”. An alternative a outranks another one b, i.e. a � b, if there are strong enough
arguments to declare that a is at least as good as b, and if there is no essential reason
to refute the statement. Outranking methods includes methods like ELECTRE (Roy
1991), PROMETHEE (Brans et al. 1984), TACTIC (Vansnick 1986). The popularity
of such methods lies in their ability to deal with ordinal scales, limited input data
and to represent non-compensatory preferences (Bouyssou et al. 2006; Figueira et al.
2005).

The RMP ranking method is an outranking method which involves the use of
external profiles to rank alternatives. Numerous studies report psychological evidence
that decision makers make decisions based on some references, which can be the
current status or their expectations (see for more details Knetsch 1989; Tversky and
Kahneman 1991; Samuelson and Zeckhauser 1988; Köszegi and Rabin 2006). The
use of reference profiles in preference relations has been already studied in theMCDA
literature. For instance, several multi-criteria optimization methods are based on the
use of an ideal point. The TOPSIS (the Technique forOrder of Preference by Similarity
to Ideal Solution) method (Hwang et al. 1993) evaluates an alternative by maximizing
the distance between the alternative and an anti-ideal point while minimizing the
distance to the ideal point. MACBETH (Bana e Costa and Vansnick 1994) uses two
fictitious reference levels on criteria (“good” and “neutral”) to support the elicitation
of a value based model.

Reference profiles are also used in sorting problems. For instance, the ELECTRE
TRI sorting method (Roy 1991; Figueira et al. 2005) compares alternatives to ordered
reference profileswhich represent the lower and upper bound of categories. The assign-
ment rules of ELECTRE TRI are very similar to the RMP method. However their
output differs; RMP provides a weak ranking of the alternatives while ELECTRE
TRI produces a partition of alternatives into predefined categories. The result can be
more discriminative for RMP than for ELECTRE TRI; indeed, if the assignment of
alternatives to categories is regarded as a partial preorder, the number of equivalent
classes is limited by the number of categories. For instance, in the case of ELEC-
TRE TRI, comparing alternatives to a profile would result in at most two equivalence
classes. In the case of RMP, however, comparing pairs of alternatives to a single profile
could result in as many as 2m , with m being the number of criteria. It should also be
emphasized that the RMP ranking method shares some characteristics with the Non-
Compensatory Sorting method (NCS, an axiomatic variant of ELECTRE TRI, see
Bouyssou and Marchant 2007a, b), and MR-Sort a version in which the importance
of criteria coalitions are represented by additive weights. Indeed, as NCS and MR-
Sort, RMP defines an outranking relation which defines how alternatives compare to
external profiles. Moreover, the mathematical programming formulation of the infer-
ence of RMP model from preference statements share some common features with
the inference of MR-Sort (see Leroy et al. 2011); This is the case in particular with
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Eqs. (4)–(6) in Sect. 4.2 which define how alternatives compare to profiles, and how
the weights of supporting coalitions are defined.

The RPM method is also very strongly related to an ordinal aggregation method
based on reference points proposed in the framework of decision under uncertainty,
see (Perny and Rolland 2006). The elicitation method proposed in this paper could be
useful in this context to reveal the reference points and subjective likelihood attached
to events by the DM.

As pointed by Bouyssou and Marchant (2013), reference based ranking models are
strongly linked with discrete Sugeno integral (Sugeno 1974): a ranking model with a
single reference point that is a weak order always has a representation using a discrete
Sugeno integral. Such observation makes the literature that aims at eliciting Sugeno
integrals of strong interest to our work (see e.g. Prade et al. 2009).

RMP is amethodwhichmakes use of pairwise comparisons to derive a ranking. It is
well known that multicriteria methods which rely on pairwise comparisons to compute
a ranking face a structural difficulty: the presence ofCondorcet cycles in the outranking
relation. Indeed, the preference relation over alternatives resulting from a weighted
majority voting of criteria is not necessarily transitive (see Condorcet 1785). This is
why most ranking methods that rely on an outranking relation transform this relation
into a transitive ranking, using a so-called exploitation procedure (see e.g. Brans et al.
1984; Figueira et al. 2005). To circumvent the issue of Condorcet cycles, the RMP
method proceeds in a slightly different way: pairwise comparisons are not used to
compare alternatives one to each other, but to compare alternatives to external profiles
(as it is done in ELECTRE TRI Figueira et al. 2005). Hence, no outranking relation
is built on the set A of alternatives; the outranking relation � considered in RMP
compares alternatives inA with the reference profiles inP , i.e,� ⊆ A×P ∪P ×A.
As RMP imposes a dominance structure on the profiles (see Sect. 3.2), the relation �
will have no cycles.

Apart from RMP which ranks alternatives based on their comparison to external
profiles, outranking based ranking methods rank (order) alternatives according to the
way each alternative compares to others. For these pairwise comparison methods
the presence or absence of an alternative c can impact the relative rank of two other
alternativesa andb. In otherwords, these outrankingmethods do not fulfill the property
of the Independence of IrrelevantAlternative (IIA), see e.g. for ELECTRE III (Figueira
et al. 2005; Wang and Triantaphyllou 2008). Note that fulfilling the IIA property (or
not) is neither positive nor negative (one can argue that when a is prefered to c, and c
is prefered to b, it grants a comparative advantage of a over b, or not).

This observation has however an important implication concerning indirect pref-
erence elicitation with outranking based ranking methods. Suppose we want to rank
alternatives in a set A using an outranking based ranking method called M ; we would
like to infer the parameters values of this ranking method M from a list of pairwise
comparisons provided by the decision maker. Let us denote A∗ ⊂ A the alternatives
involved in these comparisons, and suppose that two of these alternatives a, b ∈ A∗
are judged by the decision maker such that a is prefered to b. If the IIA property is
not fulfilled by M , there is no formal guaranty that the ranking on A resulting from
the use of the method M using the parameters inferred from the pairwise comparisons
of alternatives in A∗ will rank a better than b. Indeed b could be ranked better than
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Table 1 Data involved in the illustrative example

Price (ke) Confidence in the brand ([0, 100]) Consumption (lit./100km) Acceleration (s)

x 18 95 9 24

y 16 66 6 32

z 13 25 6 22

p1 20 50 10 30

p2 12 75 7 25

Weight 0.25 0.25 0.25 0.25

a, and this would be difficult to understand from the DM’s perspective. This is why it
is usually difficult to use outranking based ranking method using indirect preference
elicitation. A small example illustrating such difficulty is provided in the Appendix.

The RMP method has a unique advantage over the other outranking based ranking
methods, as it is, up to our knowledge, the only outranking based ranking method
which fulfills the IIA property. The RMP ranking method can therefore be used mean-
ingfully be used in an indirect elicitation perspective. In what follows, we propose
a preference elicitation algorithm to learn the parameters of the RMP method from
pairwise comparisons provided by the decision maker.

3 RMP: a rankingmodel based onmultiple profiles

3.1 Illustrative example

In order to provide an overview of how the RMP rankingmethod proceeds, we provide
a small didactic example. Let us consider a decision problem in which cars should be
ranked, based on their attractiveness from a buyer’s perspective. For the sake of the
example, we consider three cars: x , y and z. Each car is evaluated on four criteria: the
price (in ke, to be minimized), the confidence in the brand ([0, 100] scale, the greater
the better), the fuel consumption (liters per 100km, to beminimized), and acceleration
(time in seconds to accelerate from 0 to 100km/h, to be minimized). The performance
of cars are presented in Table 1.

In order to model the judgment of the decision-maker, the RMP method makes
use of the following preference parameters: (1) reference profiles, (2) a lexicographic
order on these profiles and (3) criteria weights.

In our example, we use two reference profiles denoted with p1 and p2 (which are
vectors of evaluations), such that p2j is better that p

1
j on each criterion j . The values

of these two profiles are provided in Table 1. The dominance structure on these two
profiles (p2 dominates p1) allows to define, on each criterion, three segments on the
evaluation scales: better than p2 (which can be interpreted as “good”), between p1

and p2 (which can be interpreted as “intermediate or fair”), and worse than p1 (which
can be interpreted as “insufficient”).
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Fig. 1 Graphical interpretation of Table 1

Table 2 Results of the encoding procedure for the illustrative example

Price Confidence in the brand Consumption Acceleration

x B A B A

y B B A C

z B C A A

In other terms, the reference profiles specify an ordered encoding for each criterion
defined by three ordered intervals of performances (A, B, and C) as illustrated in
Fig. 1, such that:

A performances better than p2 on each criterion are denoted A,
B performances between p1 and p2 on each criterion are denoted B,
C performances worse than p1 on each criterion are denoted C .

The RMP method ranks cars based on how they compare to profiles p1 and p2.
Table 2 shows the encoding of the three cars considered in our example. In addition, a
lexicographic order is considered among the reference profiles; this order defines the
order by which each car is compared to the profiles. In our case, this order can either
be “compare cars to p1 then to p2” or “compare cars to p2 then p1”. We consider in
this example the first one (“compare cars to p1 then to p2”).

To compute a ranking, alternatives are not compared one to each other but each
one is compared to the reference profiles. First, alternatives are compared to the first
profile in the lexicographic order (here p1). Considering two alternatives a and b, a
is prefered to b, denoted (a � b), if the number1 of criteria for which alternative a is

1 In this example, as criteria are equally weighted, we just count the number of criteria, but they could be
weighted differently.
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evaluated A or B (i.e. better than p1) is greater than the number of criteria for which
alternative b is evaluated A or B. If a and b cannot be distinguished with respect to
their comparison to p1, then a and b are compared to p2 (the second reference profile
in the lexicographic order). If the number of criteria for which alternative a is evaluated
A (i.e. better than p2) is greater than the number of criteria for which alternative is
evaluated A, then a is prefered to b, otherwise a and b are indifferent. In our example,
we have thus the following:

• Car x is better than car y because, x is evaluated A or B on all criteria while y is
evaluated A or B on three criteria only (x compares better to p1 than y does).

• Car x is better than car z because, x has evaluations A or B on all criteria while z
has evaluations A or B on three criteria only (x compares better to p1 than z does).

• Car z is better than car y because z and y are both evaluated A or B on three
criteria (they compare equally to p1), but z is evaluated A on two criteria while y
is evaluated A once only (z compares better to p2 than y does).

The final ranking is thus: x is the best car, followed by z and then y.

3.2 The RMP rankingmethod

Let us consider a finite set of alternatives A evaluated on m criteria. We denote M =
{1, 2, . . . , j, . . . ,m} the set of criteria indices, while a j denotes the evaluation of
alternative a ∈ A on criterion j (in what follows we will consider, without loss of
generality, that preferences increase with the evaluation on each criterion, i.e. the
greater the better). Thus, X = ∏

j∈M X j denotes the Cartesian product of evaluations
scales X j . The RMP method makes use of three different types of parameters:

• P = {ph, h = 1, . . . , k} a set of k reference profiles, with ph = {ph1 , . . . , phj , . . . ,
phm}, where phj denotes the evaluation of profile ph on criterion j ; we pose without

loss of generality2 a dominance structure on the set of profiles, i.e, phj ≤ ph+1
j ,

∀h = 1 . . . k − 1, ∀ j ∈ M .
• σ , a lexicographic order on the reference profiles, i.e., a permutation on {1, . . . , k}.
Note that the lexicographic order σ can be any total order on profiles.

• criteria weights w1, w2, . . . , wm , where w j ≥ 0 and
∑

j∈M w j = 1

RMP proceeds by using a three-step procedure:

1. compute C(a, ph) = { j ∈ M : a j ≥ phj } with a ∈ A, h = 1, . . . , k, the set of

criteria on which alternative a is at least as good as profile ph .
2. compare alternatives one to each other in order to define k preference relations

�ph , relative to each reference profile such that a �ph b iff
∑

j∈C(a,ph) w j ≥∑
j∈C(b,ph) w j . In other words, a �ph b holds when a compares at least as good

as to ph than b does. We will denote �ph (∼ph , respectively) the asymmetric part
(the symmetric part, respectively) of the relation �ph .

2 for any RMP model, there exists an equivalent RMP model with a dominance structure on profiles, see
(Rolland 2013).
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3. rank two alternatives a, b ∈ A by sequentially considering the relations �pσ(1)

,�pσ(2) , . . . ,�pσ(k) (according to the lexicographic order σ ); a is prefered to b if
a �pσ(1) b, or if a ∼pσ(1) b and a �pσ(2) b, or …Hence, a and b are indifferent iff
a ∼pσ(h) b, for all h = 1, . . . , k.

4 The preference elicitation algorithm

In order to set the parameters of an aggregation method, it is necessary to interact
with the decision maker, so as to integrate her preferences. A first approach (referred
to as direct elicitation in the literature) assumes that the DM understands very well
the model and is at ease with expressing the values of its parameters. However, such
an approach is not always recommended as the DM does not usually have a clear
understanding of the semantics attached to the preference parameters. Therefore, the
literature frequently proposes indirect elicitation (see e.g. Mousseau and Slowiński
1998; Leroy et al. 2011), in which the decision maker expresses holistic preferences
(i.e. pairwise comparisons on real or fictitious alternatives) from which the values of
the parameters are inferred.

We propose to infer, from pairwise comparisons expressed by the DM, the param-
eters of an RMP model involving:

• the k reference profilesP = {ph, h = 1, . . . , k}, with ph = {ph1 , . . . , phj , . . . phm};
• the criteria weights w j , j ∈ M , where w j ≥ 0 and

∑
j∈M w j = 1;

• the lexicographic order on reference profiles σ .

4.1 Principle

We propose an indirect elicitation procedure for the RMPmodel, in which the decision
maker provides a list BC of binary comparisons of alternatives (a partial ranking),
from which the RMP preference parameters (weights, reference profiles, and the
lexicographic order on reference profiles) are inferred. More precisely, two sets are
consideredBC� andBC∼, such thatBC = BC�∪BC∼ whereBC� represents the pairs
(a, b) for which the decision maker stated that a is preferred to b, while BC∼ includes
the pairs which are indifferent. We will denote A∗ the set of alternatives involved in
BC.

With a given number of profiles k, we examine all the k! possible lexicographic
orders3 to identify the RMP model that best matches BC. Formally, this lexicographic
order on the profiles is a parameter of the model and should be elicited. If the decision
maker can directly provide this order it can be obviously easily taken into account.

Thus, given an order on reference profiles (i.e., for a given lexicographic order σ ),
determining whether an RMPmodel fulfilling the preference relations in BC� and the
indifference relations in BC∼ amounts to solve a Mixed Integer Program (MIP) which
will output the set of criteria weights and the evaluations of the reference profiles. The
formulation of this MIP is presented below.

3 In the RMP ranking model, the number of reference profiles is usually limited to 3 or 4. The analysis of
3! (or 4!) orders on profiles is not computationally prohibitive.
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Table 3 Parameters of the mathematical model

A∗ The set of alternatives (n in total)

M The set of criteria indices (m in total)

k The number of reference profiles

G The alternatives evaluations, or performance table, given as a matrix of size
n × m (with ga, j ∈ [0, 1] containing the evaluation of alternative a ∈ A∗
on criterion j ∈ M)

BC Aset of pairs (a, b) ∈ A∗×A∗ forwhich theDMprovides his/her preference;
BC = BC� ∪ BC∼

BC� A set of pairs (a, b) ∈ A∗ × A∗ where a is preferred to b by the DM

BC∼ A set of pairs (a, b) ∈ A∗ × A∗ where a and b are indifferent to the DM

σ A vector containing a permutation of 1, . . . , k corresponding to a lexico-
graphic order of the reference profiles

γ A small positive constant used to model strict inequalities

4.2 Mathematical Program for the elicitation algorithm

In this section, we define a mathematical formulation for learning, from a given set of
pairwise comparisons provided by the DM, the profiles ph, h = 1 . . . k, and weights
of criteria w j , j = 1 . . .m, for a given lexicographic order on profiles.4 Hence,
the parameters that are considered as data in the proposed mathematical model are
provided in Table 3 above.

We consider, without loss of generality, that the criteria evaluations scales are
defined on the unit interval and that larger values are preferred to smaller ones. In
order to apply the proposed model to real problem instances, a simple transformation
of the criteria scales is required.

The variables considered in the mathematical program correspond to the RMP
parameters that are to be inferred (i.e, criteria weights w j and reference profiles ph),
and additional “technical” variables which are necessary to formulate the constraints.
These variables are listed in Table 4.

Given the previous definitions, we introduce hereafter a Mixed-Integer Linear Pro-
gramming formulation to infer criteria weights w j and reference profiles ph from a
set BC of comparisons provided by the DM:

max
∑

(a,b)∈BC
ta,b (1)

s.t. :
∑m

j=1 w j = 1, with w j ≥ γ

∀ j ∈ M (2)

1 ≥ ph+1
j ≥ phj ≥ 0

∀ j ∈ M,∀h ∈ 1, . . . , k − 1 (3)

4 If this order is unknown, we solve the mathematical program for each possible order; this is reasonable
for RMP models with three (or at most four) profiles, which is a standard use of an RMP model.
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Table 4 Variables of the mathematical model

w j Continuous The criteria weights of the RMP model, ∀ j ∈ M

phj Continuous The performance of the reference profiles of the RMP model ∀ j ∈ M ,
∀h ∈ 1, . . . , k

δha, j Binary 1 if alternative a outranks profile h on criterion j (ga, j ≥ phj ), and 0

otherwise ∀a ∈ A∗, ∀ j ∈ M , ∀h ∈ 1, . . . , k

ωh
a, j Continuous Equal to w j if δha, j = 1 and to 0 otherwise, ∀a ∈ A∗, ∀ j ∈ M ,

∀h ∈ 1, . . . , k

sha,b Binary 1 if alternative a is preferred or indifferent to alternative b w.r.t. profile
h, and 0 otherwise, ∀(a, b) ∈ BC, ∀h ∈ 1, . . . , k

ta,b Binary 1 if the comparison between alternative a and b, as given by the DM, is
enforced, and 0 otherwise, ∀(a, b) ∈ BC

ga, j − phj + 1 ≥ δha, j ≥ ga, j − phj + γ

∀a ∈ A∗,∀ j ∈ M,∀h ∈ 1, . . . , k (4)

w j ≥ ωh
a, j ≥ 0

∀a ∈ A∗,∀ j ∈ M,∀h ∈ 1, . . . , k (5)

δ
j
a, j ≥ ωh

a, j ≥ δ
j
a, j + w j − 1

∀a ∈ A∗,∀ j ∈ M,∀h ∈ 1, . . . , k (6)
m∑

j=1

ω
σ(h)
a, j ≥

m∑

j=1

ω
σ(h)
b, j + γ −

(
1 − sσ(h)

a,b + sσ(h−1)
a,b

)
· (1 + γ )

∀(a, b) ∈ BC,∀h ∈ 2, . . . , k − 1 (7)
m∑

j=1

ω
σ(h)
a, j ≥

m∑

j=1

ω
σ(h)
b, j − sσ(h)

a,b − sσ(h−1)
a,b

∀(a, b) ∈ BC,∀h ∈ 2, . . . , k − 1 (8)
m∑

j=1

ω
σ(h)
a, j ≤

m∑

j=1

ω
σ(h)
b, j + sσ(h)

a,b + sσ(h−1)
a,b

∀(a, b) ∈ BC,∀h ∈ 2, . . . , k − 1 (9)
m∑

j=1

ω
σ(1)
a, j ≥

m∑

j=1

ω
σ(1)
b, j + γ −

(
2 − sσ(1)

a,b − ta,b

)
· (1 + γ )

∀(a, b) ∈ BC (10)
m∑

j=1

ω
σ(1)
a, j ≥

m∑

j=1

ω
σ(1)
b, j − sσ(1)

a,b − (
1 − ta,b

)

∀(a, b) ∈ BC (11)
m∑

j=1

ω
σ(1)
a, j ≤

m∑

j=1

ω
σ(1)
b, j + sσ(1)

a,b + (
1 − ta,b

)

∀(a, b) ∈ BC (12)
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m∑

j=1

ω
σ(k)
a, j ≥

m∑

j=1

ω
σ(k)
b, j + γ − sσ(k−1)

a,b · (1 + γ )

∀(a, b) ∈ BC (13)
m∑

j=1
ωh
a, j ≤

m∑

j=1
ωh
b, j + (

1 − ta,b
)

∀(a, b) ∈ BC∼,∀h ∈ 1, . . . , k (14)
m∑

j=1
ωh
a, j ≥

m∑

j=1
ωh
b, j + (1 − ta,b)

∀(a, b) ∈ BC∼,∀h ∈ 1, . . . , k (15)

The objective function in (1) seeks tomaximize the number of pairwise comparisons
(preference and indifference), provided by the DM, that are correctly reproduced by
the inferred RMP model.

Constraint (2) is needed to normalize criteria weights. A non-zero lower-bound
is added in order to have all the criteria play a role in the pairwise comparisons of
alternatives.

Constraint (3) is used to bound the profiles evaluations in the unit interval and
ensure the dominance structure on the set of profiles. We assume here, without loss of
generality, that the all criteria scales are in the unit interval and that larger evaluations
are preferred to lower ones.

Constraints (4) model δha, j variables such that these binary variables are equal to 1
if the evaluation of alternative a on criterion j is greater or equal than the evaluation
of profile ph (ga, j ≥ phj ), and 0 otherwise.

Constraints (5)–(6) model ωh
a, j variables as the minimum value between w j and

δha, j . Hence, when δha, j = 1 then ωh
a, j = w j and when δha, j = 0 then ωh

a, j = 0. These
variable will be used in order to compute the sum of the weights of criteria on which
an alternative is at least as good as a reference profile:

∑m
j=1 ωh

b, j .
Constraints (7), (8) and (9) model the preference of a over b for each (a, b) ∈ BC,

based on how a and b compare to reference profile pσ(h). We make use of binary
variables sha,b which are equal to 1 if alternative a is preferred to alternative b w.r.t.

profile pσh , and 0 when alternative a is considered indifferent to alternative b w.r.t.
this same profile. The reference profile is indexed here using the lexicographic order
as we consider how a and b compare to the previous profile in the lexicographic order.

Constraint (7) models a strict preference in favor of alternative a over alternative b
w.r.t. profile pσ(h). Constraints (8) and (9)model an indifference between a and bw.r.t.
profile pσ(h). In the case of a strict preference, the sum of the criteria weights on which
alternative a is as least as good as profile pσ(h) needs to be strictly greater than the
sum of the criteria weights on which alternative b is as least as good as profile pσ(h).
If this constraint can be fulfilled, than the binary variable sσ(h)

a,b will be 1. Otherwise,

sσ(h)
a,b will be 0 and result in relaxing the constraint.
If a strict preference between alternatives a and b cannot be modeled using profile

pσ(h), then a and b need to be indifferent w.r.t. this profile. Constraints (8) and (9)
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model this statement, and the binary variable sσ(h)
a,b is used to relax these constraints

when constraint (7) is able to model the strict preference relation.
When a strict preference relation is achieved w.r.t to a reference profile pσ(h), we

relax all constraints on the reference profiles that follow it in the lexicographic order.
For this reason, we include the sσ(h−1)

a,b terms in these three constraints, so that if a
strict preference is modeled using a prior reference profile, all three constraints are
relaxed.

We consider the special case concerning the first profile in the lexicographic order,
in constraints (10), (11) and (12). These constraints are identical to the previous three,
except that the last terms correspond to the binary variables ta,b which are used to
enforce (when ta,b = 1) or relax (when ta,b = 0) the global strict preference relation
between alternatives a and b. By fixing ta,b = 1, the constraints for the first profile
enforce either that alternative a is strictly preferred to alternative bw.r.t. this profile, or
that alternative a is indifferent to alternative bw.r.t. it. In case alternative a is indifferent
to alternative bw.r.t. the first profile in the lexicographic order, than sσ(1)

a,b = 1 therefore
the second profile is constrained to model either a strict preference between alternative
a and alternative b or an indifference, and so on. Constraint (13) is used to stop this
propagation when considering the last profile in the lexicographic order and therefore
enforcing that a strict preference between alternatives a and b is modeled.

Finally, constraints (14) and (15) model the indifference relation between all pairs
of alternatives (a, b) ∈ BC∼. For this, alternatives a and b need to be considered as
indifferent for all reference profiles ph, h ∈ 1, . . . , k. This means that for each profile
ph , the sum of the weights of the criteria on which a is at least as good as ph needs
to be equal to the sum of the weights of the criteria on which b is at least as good as
ph . The binary variable ta,b is used to relax these constraints (when ta,b = 0) if this
relation cannot be modelled.

4.3 Integration into an interactive process

The main aim of an elicitation process is to capture the DMs’ preferences in order
to accurately specify the decision model parameters. It is by definition an interactive
process between an analyst and a decision maker. The proposed elicitation method, in
this paper, can be naturally embedded in an interactive process with a decision maker.
The algorithm can be used in order to provide a first model to be proposed, and thus
ask the decision maker if he/she considers the proposed model as acceptable (values
of the profiles, weights values, etc.). If the DM expresses a disagreement (for instance:
a particular criterion is more important than the others, the value of a profile should
be modified,…), this can be easily implemented by a new constraint in the inference
program. Thus, the elicitation program integrating the new constraint can be solved
to take into account the modification expressed by the decision maker. This makes
it possible to progressively refine the model to account for the DM preferences (an
example of such an approach is the one is described in Dias et al. (2002)). As the main
contribution of the paper is the elicitation method (algorithm), we leave for future
work the designing of the interactive process.
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5 Numerical analysis

We propose in this section to study the performances of the proposed elicitation algo-
rithm for the RMP model. We begin by describing our experimental protocol. Then,
we provide the results concerning (1) the computation time, (2) the ability of the
proposed approach to restore the provided binary comparisons, and (3) its ability to
handle noisy data.

5.1 Experiment design and implementation details

To test our algorithm we follow the experimental design depicted in Fig. 2. We ran-
domly draw an initial RMP model, denoted with Mo:

• the criteria weights are first randomly generated using the method described in
Butler et al. (1997); Zheng et al. (2014),

• the reference profiles are drawn as follows: on each criterion j ∈ M , randomly
we generate ko evaluations in X j and order them. These ordered evaluations on all
criteria are used to specify the ko profiles, so as to respect the dominance structure
on profiles.

• we randomly select a lexicographic order on profiles.

We randomly generate a training set (denoted Atr ) of ntr alternatives defined by
their evaluations on them criteria.We then construct a set of nbc pairwise comparisons,
by randomly selecting pairs of alternatives from Atr (we discard pairs of alternatives
involving dominance); we use Mo in order to extract the preference relations on the
selected pairs.

Then we compute Me, the RMP model that best matches the nbc pairwise com-
parisons, with a fixed number of profiles ke using the algorithm proposed in Sect. 4.
To appreciate the distance between Me and Mo, we randomly generate Ate, a test
set of nte alternatives (Ate is constructed in the same way as Atr ). Ate is used with
both the original model and the elicited one in order to construct two rankings of the
alternatives. Kendall’s rank correlation is then used in order to measure the closeness
between the elicited model Me and the original one Mo.

Fig. 2 Design of experiments
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We have set the following values for the experiments’ parameters (from Fig. 2):
m ∈ {3, 5, 7}, ntr ∈ {10, 20, . . . 100}, ko = 10, ke ∈ {1, 2, 3} and nte = 5000.
We have generated 100 RMP models (Mo) for each combination of values for these
parameters. The experiments have been performedusing the solver IBMILOGCPLEX
12.6.3 on anAMDOpteronTM 6176 SEmachinewith 250GBRAMand the possibility
of launching up to 18 threads in parallel. We have set a 60min timeout for each
computation.

Moreover, when inferring an RMPmodel, in order to remove any bias caused by the
sequence in which the lexicographic orders of profiles were chosen, we have adapted
the approach so that multiple parallel executions are launched, one for each lexico-
graphic order. Therefore, when k = 1 we launch a single instance of the approach,
allowing CPLEX to reach a parallelism of 18, when k = 2 we launch two instances
with a parallelism of 9 each, andwhen k = 3we launch six instanceswith a parallelism
of 3 each. In this way, all executions of this algorithm, regardless of the sought number
of profiles, will have access to the same amount of resources and the final result will
not be biased by the order in which the lexicographic orders have been chosen.

5.2 Experiments results

5.2.1 Computing time

Our first experiment aims to analyze the computation time of the proposed algorithm.
Figure 3 depicts the average execution times and standard deviations for the problem
instances that were solved within a one hour time limit.

We observe that the execution time increases with the number of considered binary
comparisons at an exponential rate. The computation time also increases significantly
with the number of profiles.

Note that the exponential trend of the computing time seems to “weaken” for more
than 70 comparisons. This may be due to the one hour limit imposed for computing
Me; indeed, this timeout occurs more often for large instances. Finally, the differences
in execution time when computing RMP models with one, two or three profiles (ke =
1, 2, or 3) seem to reduce when more criteria are considered (m = 7).

We can conclude that, for data sets whose size corresponds to real instances (up
to 100 comparisons, 7 criteria), the computation time is compatible with a working
session mode (see for instance Ferretti et al. 2018) in which preference statements
are collected from the decision maker, and results are shown after at most 20–30mn
computation. It is however difficult to envisage an interactive trial and error mode with
datasets of real world size.

5.2.2 Inferring from noise free data

This section concerns the ability of elicited RMP models to restore a set of noise
free binary comparisons. We study the proportion of comparisons restored when the
number of comparisons, number of criteria and number of profiles vary.
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Fig. 3 Average execution times (log scale) wrt number of criteria (m), number of profiles (ke), and number
of comparisons (nbc)

• Flexibility of theRMPmodel: ability of anRMPmodelwith k = 1 . . . 3profiles
to represent a training set generated by an RMP with 10 profiles. Figure 4
depicts the mean value and standard deviation for the input data restoration rate,
i.e, the proportion of the input pairwise comparisons that are correctly restored by
the inferred model Me (as compared to the ground truth Mo).
Note that, in our experiment, the binary comparisons are generated with an RMP
model Mo using ko = 10 profiles whereas the inferred models Me use a number
of profiles ke varying from 1 to 3. Therefore, there is no guarantee that the inferred
models fully restore the set of pairwise comparisons. However, the results depicted
in Fig. 4 prove the RMP model to be highly flexible. For instance, with 5 criteria
it was always possible in the experiments to restore 100 comparisons generated
with a 10 profiles RMP model, with a model using only 2 profiles.
With 7 criteria (m = 7), and for small numbers of binary comparisons (nbc ≤ 40),
it is possible to restore all comparisons generated from Mo even with S-RPM
models with a RMP model with a single profile (ke = 1). Decreasing the number
of criteria leads to a less flexible model Me and therefore to a reduced restoration
rate. Similarly, increasing the number of profiles (ke = 2 or even 3) improves the
flexibility of Me, and consequently improves the restoration rate.

• Ability of the inferredmodelMe to restore the original oneMo. In this situation,
we test the ability of the elicitation algorithm to compute a model Me which is as
close as possible to the original one Mo. Since an RMP model contains multiple
sets of parameters, comparing two models given by two different sets of these
parameters can prove rather difficult. We overcome this problem by generating a
large test set of alternatives Ate and computing the Kendall Tau rank correlation
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Fig. 4 Proportion of restored binary comparisons on the training data

between the rankings obtained using Me and Mo. This serves as a proxy for the
similarity of the two models, the higher the rank correlation meaning the closer
the two models are to each other.
Figure 5 depicts the mean value and the standard deviation of the Kendall Tau
between Me and Mo ranks for m = 3, 5 and 7, and ke = 1, 2 and 3. The
experimental results show an expected trend in which increasing the number of
input comparisons results in an improvement in the Kendall Tau. The increasing
curves of the Kendall Tau values as the number of comparisons increases seem
to reach an asymptote: for example, beyond 50 comparisons, in the the case ke =
1, m = 3, the Kendall Tau reaches a “plateau” (∼ 0.75), and in the the case
ke = 1, m = 5, the Kendall Tau reaches a “plateau” beyond 80 comparisons
(∼ 0.85).
With 2 or 3 profiles, we do not observe the asymptote, but we can expect it for
a higher number of comparisons. Similarly, as the number of criteria increases,
the model gains flexibility, and we observe that more comparisons are required to
faithfully elicit the model.
There are configurations (e.g.m = 7) in which one would need more comparisons
to reach an asymptote and accurately assess the model. This would be computa-
tionally costly. However, one should keep in mind that the comparisons are chosen
randomly, without any consideration concerning the amount of information pro-
vided. To overcome such difficulty, it would be wise to follow an “active learning”
approach in which comparisons are carefully selected to provide effective infor-
mation.
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Fig. 5 Kendal Tau between the M0 and Me rankings on the test set

Note that when generating pairwise comparisons using an RMP model using 1
profile (2 or 3 profiles respectively) and learning from this comparisons an RMP
model with 1 profile (with 2 or 3 profiles respectively), it is obvious that the ability
to restore the original model should be higher for an RMP model having less
parameters and thus for smaller values of k. However, we do not observe such a
trend in Fig. 5. This is due to the fact we generate pairwise comparisons with an
RMP model with 10 profiles and learn from these comparisons an RMP model
using 1, 2 or 3 profiles. In the results, the main observed phenomenon corresponds
to the fact that it is not possible to restore much of the learning set (see Fig. 4),
and hence the generalization ability is impoverished.

5.2.3 Results on the ability of the inferred model to restore the original one with
noisy data

In the previous experiments, input data was assumed to be noise free. In what follows,
we study the effects of introducing a percentage of errorswithin the input comparisons.
By errors, we mean that, after generating a set of binary comparisons with the original
model (M0), we reverse the preference between a proportion of pairs of alternatives.
More precisely, we study the situations in which we introduce 5%, 10%, and 15% of
“errors” in the set of pairwise comparisons used to infer the model Me.

Figure 6 depicts the mean value and the standard deviation of the Kendall Tau
between Me and Mo ranks for m = 5, ke = 1, and m = 5, ke = 2, with a proportion
of 5%, 10%, and 15% of “errors”. The situation with 0% errors corresponds to the
case presented in Fig. 5 for m = 5.
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Fig. 6 Kendal Tau between M0 and Me rankings on the test set in presence of errors

We observe that, despite the introduction of errors in the input comparisons (event
for 15% errors), the algorithm takes advantage of additional comparisons, and the
elicited model Me gets closer to the original one Mo (the Kendall Tau increases). This
denotes a positive behavior of the algorithm, even with noisy data.

Obviously, a greater proportion of errors requires a larger number of comparisons
to faithfully elicit the model. For instance, we can observe in Fig. 6 that, form = 5 and
ke = 1, an average number of 60 noise free comparisons leads to a Kendall Tau equal
to ∼0.8; with 5% errors (with 15%, respectively), 80 comparisons (100 comparisons,
respectively) are necessary to obtain a similar result.

With noisy data, the computing time increases as compared to noiseless situations.
This is illustrated in Table 5 by the percentage of instances that were not solved within
a one hour execution time. For ke = 1 (except for nbc = 100), all instances were
solved in less than 60mn; however, for ke = 2, starting from nbc = 60, more than half
of the considered experiments did not provide a solution when errors were included
in the binary comparisons.

6 Conclusion and perspectives

In this paper, we propose an indirect approach for the elicitation of the parameters of
an RMP model. This approach aims to offer an operational tool to support the use of
RMP in real world applications (see e.g. Ferretti et al. 2018). Moreover, the proposed
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Table 5 Percentage of instances that did not provide a solution within one hour when considering errors in
the binary comparisons for m = 5

ke Errors (%) nbc
10 20 30 40 50 60 70 80 90 100

1 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 6

15 0 0 0 0 0 0 0 0 0 19

2 0 0 0 0 0 0 1 8 9 17 19

5 0 0 0 1 8 55 78 98 100 100

10 0 0 0 9 50 93 100 100 100 100

15 0 0 0 18 75 100 100 100 100 100

method has been implemented in R as part of the library of MCDAmethods proposed
by Bigaret et al. (2017), and is therefore available for use.

For an effective use in real-world applications, computing time can still be an issue
for instances of large size, or for situations in which the preference data collected from
the decision maker is highly noisy. For such situations, the metaheuristic developed in
Liu (2016) could be suitable as it makes it possible to infer in a reasonable computing
time an RMPmodel; such an approach does not however guaranty optimality. Another
possibility is to combine, exact and metaheuristics approaches as it was described in
Ferretti et al. (2018).

An interesting direction to improve this issue is to express the inference problem
as a Boolean Satisfiability Problem (SAT) in order to find a model fully consistent
with the learning set (whenever it exists). A first work has already been proposed for
multicriteria sorting models, and has proved to be computationally more efficient than
optimization approaches (Belahcène et al. 2018). Moreover, additional questions are
of interest in relation with this work, for instance empirically exploring the descrip-
tive power of the ordinal ranking model based on reference points, or designing the
interactive process to allow the decision maker to give feedback and allow refining
the parameters of the model.
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Appendix: Invariance with respect to Irrelevant alternative, the case
of pairwise comparisonmethods

Consider a multiple criteria ranking method in which a weak preference relation � is
constructed on the set of alternatives, based on a weighted voting of criteria, and where
the ranking is defined computing on � the net flow score of alternatives [5]. More
precisely, we consider the relation � defined on A as follows. for any pair x, y ∈ A:

x � y ⇔
∑

j :x j≥y j

w j ≥
∑

j :y j≥x j

w j

where x = (x1, ..., xm) and y = (y1, ..., ym). The relation � is exploited to rank
alternatives using the net flow score NF(x), x ∈ A: NF(x) = | fl(x)|−| fe(x)|where
fl(x) ( fe(x), respectively) represents the leaving flow of x (the entering flow of x ,
respectively), and is defined by fl(x) = {y ∈ A : x � y} ( fe(x) = {y ∈ A : y � x},
respectively).

Consider a small example involving 3 criteria (to be maximized) and 6 alternatives
(A = {a, b, c, d, e, f }) with the alternatives evaluations described in Table 6.

Suppose that the DM is able to provide preference information concerningA∗ ⊂ A
a reference set of alternatives A∗ = {a, b, c, d} through the form of a ranking on A∗ :
a � b � c � d. Note that the informational content of this ranking boils down to the
fact that none of the three criteria is amajority alone (i.e,w1+w2 > w3,w1+w3 > w2
and w2 +w3 > w1). Hence, any inference program which would compute the criteria
weights from this ranking will find weights compatible with these three inequalities.
The computation of the ranking on A∗ using such weights using the net flow score is
provided in Table 7, and leads to the ranking: a � b � c � d.

Table 6 Small example cri t1 cri t2 cri t3

a 2 4 2

b 1 3 5

c 0 5 1

d 5 0 0

e 4 1 4

f 3 2 3

Table 7 Outranking relation on
A∗ � a b c d | fl (x)|

a 1 1 1 1 4

b 0 1 1 1 3

c 0 0 1 1 2

d 0 0 0 1 1

| fe(x)| 1 2 3 4
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Table 8 Outranking relation on
A � a b c d e f | fl (x)|

a 1 1 1 1 0 0 4

b 0 1 1 1 1 1 5

c 0 0 1 1 0 0 2

d 0 0 0 1 0 0 1

e 1 0 1 1 1 1 5

f 1 0 1 1 1 0 4

| fe(x)| 3 2 5 6 3 2

Suppose now that we want to compute the ranking on the whole set A (including e
and f ), based on the weights inferred from the ranking on A∗(a � b � c � d), i.e.,
using weights such that w1 + w2 > w3, w1 + w3 > w2 and w2 + w3 > w1. This
is provided in Table 8 bellow, and leads to a ranking in which b is ranked first, a is
ranked second, then e and f at equal rank, then c then d. It appear that b is ranked
better than a, in contradiction with the initially provided preference ranking.

Hence, it appears that, when using such ranking method, the ranking onA using the
weights inferred from the ranking on A∗ (provided by the DM) does not necessarily
extend the ranking on A∗. Such observation, makes it difficult to use such ranking
method in a disagregation perspective.
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1. Introduction 

Multiple Criteria Decision Analysis (MCDA) aims at supporting a 

decision maker (DM) in making decisions among options described 

according to various points of view, formally represented by mono- 

tone functions called criteria . In this paper, decisions are modeled 

as an ordinal sorting problem , where alternatives are to be assigned 

to a class in the set of predefined ordered classes. 

The literature contains several multiple criteria sorting meth- 

ods which can be distinguished into (i) value based sorting meth- 

ods (see e.g. Greco et al., 2011; Greco et al., 2010; Marichal et al., 

2005; Soylu, 2011 ), (ii) outranking based sorting methods (see e.g. 

Bouyssou and Marchant, 2007a; Bouyssou and Marchant, 2007b; 

Leroy et al., 2011; Meyer and Olteanu, 2017; Sobrie et al., 2013; 

Zheng et al., 2014 ) and, (iii) rule based sorting methods (see e.g. 

Greco et al., 2002; Greco et al., 2016 ). 

We address the problem of ordinal sorting with an outranking 

based sorting model: the Non-Compensatory Sorting model (NCS, 

cf. Bouyssou and Marchant, 2007a; Bouyssou and Marchant, 2007b ), 

in which an object is assigned to a class based on its comparison 

to profiles representing multicriteria frontiers between consecutive 

classes. NCS assigns an alternative to a category above a profile if it 

∗ Corresponding author. 

E-mail address: vincent.mousseau@centralesupelec.fr (V. Mousseau). 

is at least as good as the profile on a sufficient coalition of criteria; 

the family of sufficient coalitions can be any upset 1 of the set of all 

subsets of criteria. A particular case of NCS occurs when the family 

of sufficient coalitions of criteria can be defined using additive cri- 

teria weights and a threshold. The literature refers to this additive 

case as the MR-Sort model (see e.g. Leroy et al., 2011; Sobrie et al., 

2013 ). Both MR-Sort and NCS models are particular cases of the 

Electre Tri model, a method for sorting alternatives into ordered 

categories based on an outranking relation (see Roy and Bouys- 

sou, 1993 , pp. 389–401 or Bouyssou et al., 2006 , pp. 381–385). 

Our aim is to learn an NCS model from preference informa- 

tion given in the form of a reference assignment. Such an ap- 

proach makes it possible to integrate the decision maker prefer- 

ences into the model without asking her for the preference pa- 

rameter values. Such indirect elicitation has been developped for 

Electre Tri ( Mousseau and Słowinski, 1998 ), MR-sort ( Leroy et al., 

2011 ), UTADIS ( Zopounidis and Doumpos, 2002 ). 

Algorithm 1 describes a general framework that has been 

widely used (see e.g. Jacquet-Lagrèze and Siskos, 1982; Leroy et al., 

2011 ) in order to leverage the power of generic mathematical pro- 

gramming solvers to learn the parameters of a multicriteria sort- 

ing procedure from examples. The workflow is divided into three 

phases: the problem is encoded into a formulation, this formulation 

1 An upset is an upward closed subset of an ordered set, i.e. if b is greater than 

a and a belongs to an upset, then so does b . 

https://doi.org/10.1016/j.cor.2018.04.019 
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Algorithm 1: Learning a model-based classifier. 

Input : a tuple of criteria, a tuple of ordered categories, a 

multicriteria sorting model, an assignment of 

alternatives to categories 

Result : a representation of the assignment in the model, or 

None if the assignment is not representable in the 

model 

1 encode the assignment into a formulation �

2 try to solve the formulation �

3 decode the solution into a model 

4 return the model 

5 except NoSolution 

6 return None 

is passed to an external solver , and a solution, if found, is then de- 

coded into a model. The faithfulness of this approach is guaranteed 

if, and only if: 

1. the encoded formulation has a solution as soon as the assign- 

ment can be represented in the model; 

2. the solver is complete, in the sense that it yields a solution if 

and only if there is at least one; 

3. the decoded model actually represents the assignment. 

To the authors’ knowledge, until now, general NCS models have 

been deemed too computationally difficult to address with this ap- 

proach. Restrictions to MR-Sort have been considered, either in 

Leroy et al. (2011) with a mixed integer programming (MIP) for- 

mulation, but this approach turned out to be inadequate to handle 

large datasets, or by Sobrie et al. (2013, 2015) using a metaheuristic 

solving procedure that handles large datasets but offers no guar- 

antee of its completeness (cf. point 2 above). The aim of this pa- 

per is to investigate an alternative venue: considering U-NCS, a 

broad subset of NCS models, that encompasses MR-Sort (for pre- 

cise definitions of these models, see Section 2.2 ), and formulating 

the problem of representing an assignment by a model in U-NCS 

as a boolean satisfiability problem (SAT). We prove that both the 

encoding and the decoding satisfy the faithfulness requirements 1 

and 3 above. We are thus able to leverage the advances made in 

the field of generic SAT solvers, to reach unprecedented compu- 

tational performance in the learning of non-compensatory sorting 

models. 

The paper is organized as follows. In Section 2 , we present the 

notions and concepts related to the formulation of the problem 

of learning parameters of a non-compensatory sorting model. In 

Section 3 , we develop our binary satisfaction (SAT) problem for- 

mulation for inferring an U-NCS model from a learning set, and 

show it has the desired properties of necessity and sufficiency re- 

garding the representation of an assignment in the U-NCS model. 

In Section 4 , we recall the bases of using a mixed integer formu- 

lation to learn the parameters of a MR-Sort model. After that, we 

propose experiments to assess the pertinence and interest of the 

SAT formulation in Section 5 . In Section 6 , we discuss the obtained 

results. Finally, in Section 7 , we conclude by pointing some future 

interesting perspectives. 

2. Position of the problem 

In this section, we detail the notions permitting to formulate 

the problem of learning the parameters of a non-compensatory 

sorting model. In Section 2.1 , we define the vocabulary of ordinal 

sorting and we formalize the notion of ordinal sorting procedure. 

We are then able to precisely describe the problem of representing 

a given assignment in a given ordinal sorting model. In Section 2.2 , 

we proceed by describing the broad class of non-compensatory 

sorting models, and two narrower subclasses of particular interest, 

namely U-NCS and MR-Sort. In Section 2.3 , we specify the expected 

inputs and outputs of the learning problem. 

2.1. Vocabulary of multicriteria ordinal sorting 

An ordinal sorting problem consists in assigning a category, 

taken among a given, finite set of categories C 1 ≺ · · · ≺ C p ordered 

by desirability, to alternatives described by several attributes. 

We assume N is a finite set of criteria , where each criterion 

i ∈ N maps alternatives to values among an ordered set (X i , ≤i ) , 

the order relation ≤ i meaning “weakly worse than”. 2 An alter- 

native is thus described by a |N | -tuple of multiple criteria val- 

ues called profile . We denote X = 

∏ 

i ∈N 

X i the set of all possible 

profiles– either describing actual alternatives or virtual ones. 

As an analogy with a voting system where criteria would act as 

voters, subsets of N are called coalitions of criteria. The following 

function maps a pair of profiles to the coalition of criteria weakly 

favorable to the former. 

O N 

: X × X −→ P(N ) 
(x, y ) �→ { i ∈ N : x i ≥i y i } 

When O N 

(x, y ) = N , the alternative x is at least as good as the 

alternative y with respect to all criteria, and we say x weakly dom- 

inates y in the sense of Pareto. Weak dominance defines a partial 

order � on the set of profiles X . 

In the remainder of this article, we assume the sets of criteria 

N , of profiles X and of categories C are given, and we endeavor to 

define a sorting procedure , a non-decreasing function mapping X to 

the set of classes ordered by dominance to C 1 ≺ · · · ≺ C p . 

2.2. Non-compensatory sorting models 

In Bouyssou and Marchant (2007a,b) , Bouyssou and Marchant 

define a set of sorting procedures deemed as non-compensatory . 

We briefly recall the definition of the non-compensatory sorting 

(NCS) model , as well as two specific subsets of this model, U-NCS 

and MR-Sort . 

All these classes of non-compensatory sorting models, rely on 

the notions of satisfactory values of the criteria and sufficient coali- 

tions of criteria. They combine into defining the fitness of an alter- 

native: an alternative is deemed fit if it has satisfactory values on 

a sufficient coalition of criteria. 

This notion is straightforward to implement when there are 

only two categories: the sufficient coalitions T form an upset of 

the power set of N and, for each criterion i ∈ N , the satisfactory 

values A i ⊂ X i form an upset that can be described by its lower 

bound b i ∈ X i – meaning a value is satisfactory if, and only if, it is 

greater or equal to the threshold b i , thus defining a limiting pro- 

file b ∈ X . With more than two categories, the notions of sufficient 

coalitions and satisfactory values are declined per category – de- 

noted respectively 〈A 

k 
i 
〉 i ∈N ,k ∈ [1 .p−1] and 〈T k 〉 k ∈ [1 .p−1] . The ordering 

of the categories C 1 ≺ · · · ≺ C p translates into a nesting of the suf- 

ficient coalitions: 

∀ k ∈ [1 .p − 1] , T k is an upset of (2 

N , ⊆) and T 1 ⊇ · · · ⊇ T p−1 

(1a) 

2 This setting differs from the one described by Bouyssou and Marchant 

(2007a,b) , in the sense that we suppose the attributes describing the alternatives 

are already sorted by the criteria according to their desirability: here, the order re- 

lation on each set X i needs not be constructed from holistic preference statements, 

but is assumed to be established beforehand, e.g. in a previous phase of a decision 

aiding process structured according to Bouyssou et al. (2006) (this is often the case 

in applications). 
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and also a nesting of the satisfactory values: 

∀ i ∈ N , ∀ k ∈ [1 .p − 1] , A 

k 
i is an upset of (X i , ≤i ) 

and A 

1 
i ⊇ · · · ⊇ A 

p−1 
i 

(1b) 

Condition (1b) translates into an ordering of the values 

〈 b k 
i 
〉 k ∈ [1 ..p−1] for a given criterion i ∈ N , or an ordering of the 

limiting profiles: 

b 1 , . . . , b p−1 is a non-decreasing sequence of (X , �) (1c) 

For convenience, these sequences are augmented with trivial el- 

ements on both ends: T 0 := P(N ) , T p := ∅ , ∀ i ∈ NA 

0 
i 

= X i , A 

p 
i 

= ∅ , 
b 0 := ⊥ , b p := � . 

Definition 1 (Non-compensatory sorting NCS, Bouyssou and 

Marchant, 2007b ) . Given a set of criteria N and an ordered set of 

categories C 1 ≺ · · · ≺ C p , for all pairs of tuples (〈 b〉 , 〈T 〉 ) where 〈 b 〉 
satisfies (1c) and 〈T 〉 satisfies (1a) , the sorting function NCS (〈 b〉 , 〈T 〉 ) 
maps a profile x ∈ X to the category C k such that O N 

(x, b k ) ∈ T k 
and O N 

(x, b k +1 ) / ∈ T k +1 . 

The set of preference parameters – all the pairs (〈 b〉 , 〈T 〉 ) satis- 

fying (1a) and (1c) – can be considered too wide and too unwieldy 

for practical use in the context of a decision aiding process. There- 

fore, following ( Bouyssou and Marchant, 2007b ), one may consider 

to restrict either the sequence of limiting profiles, or the sequence 

of sufficient coalitions. In order to remain compatible with Electre 

Tri, we elect the latter. 

Definition 2 (Non-compensatory sorting with a unique set of suf- 

ficient coalitions U-NCS) . Given a set of criteria N and an ordered 

set of categories C 1 ≺ · · · ≺ C p , for all pairs (〈 b〉 , T ) where the tu- 

ple 〈 b 〉 satisfies (1c) and T is an upset of coalitions, the sorting 

function U-NCS (〈 b〉 , T ) maps a profile x ∈ X to the category C k such 

that O N 

(x, b k ) ∈ T and O N 

(x, b k +1 ) / ∈ T . 

A further restriction of U-NCS is of particular interest: in 

the MR-Sort model, introduced in Leroy et al. (2011) , the suffi- 

cient coalitions are represented in a compact form which is more 

amenable to linear programming. As an analogy to a voting set- 

ting, each criterion i ∈ N may be assigned a voting power w i ≥ 0 so 

that a given coalition of criteria B ⊆ N is deemed sufficient if, and 

only if, its combined voting power �i ∈ B w i is greater than a given 

qualification threshold λ. 

Definition 3 (majority rule sorting MR-Sort) . Given a set of crite- 

ria N , the majority rule MR maps a pair ( 〈 w 〉 , λ), where 〈 w 〉 is a 

|N | -tuple of nonnegative real numbers and λ a nonnegative real 

number, to an upset MR ( 〈 w 〉 , λ) of the power set of N defined by 

the relation: 

∀ B ⊆ N , B ∈ MR (〈 w 〉 , λ) ⇐⇒ 

∑ 

i ∈ B 
w i ≥ λ (MR) 

Given, in addition, a set of categories C 1 ≺ · · · ≺ C p , for all triples 

( 〈 b 〉 , 〈 w 〉 , λ) where the tuple 〈 b 〉 satisfies (1c) , 〈 w 〉 is a |N | -tuple of 

nonnegative real numbers and λ a nonnegative real number, MR- 

Sort ( 〈 b 〉 , 〈 w 〉 , λ) is the sorting function U-NCS (〈 b〉 , MR (〈 w 〉 ,λ)) . 

Example 1. Terry is a journalist and prepares a car review for a 

special issue. He considers a number of popular car models, and 

wants to sort them in order to present a sample of cars “selected 

for you by the editorial board” to the readers. 

This selection is based on 4 criteria : cost ( €), acceleration (mea- 

sured by the time, in seconds, to reach 100 km/h from full stop –

lower is better), braking power and road holding, both measured 

on a qualitative scale ranging from 1 (lowest performance) to 4 

(best performance). The performances of six models are described 

in Table 1 : 

In order to assign these models to a class among C 1 
� 

(average) 

≺ C 2 
� 

(good) ≺ C 3 
� 

(excellent), Terry considers a NCS model: 

Table 1 

Performance table. 

Model Cost Acceleration Braking Road holding 

m 1 16 973 29 2.66 2.5 

m 2 18 342 30.7 2.33 3 

m 3 15 335 30.2 2 2.5 

m 4 18 971 28 2.33 2 

m 5 17 537 28.3 2.33 2.75 

m 6 15 131 29.7 1.66 1.75 

Table 2 

Categorization of performances. 

Model Cost Acceleration Braking Road holding 

m 1 �� �� ��� �� 

m 2 � � �� ��� 

m 3 ��� � � �� 

m 4 � ��� �� �� 

m 5 � ��� �� ��� 

m 6 ��� �� � � 

Table 3 

Model Assignments. 

Model Assignment 

m 1 �� 

m 2 � 

m 3 �� 

m 4 �� 

m 5 ��� 

m 6 � 

• Where the values on each criterion are sorted between 1 � (av- 

erage) and 2 � (good) by the following profiles: b 1 � cost = 17 250 , 

b 1 � 
acceleration 

= 30 , b 1 � 
braking 

= 2 . 2 , b 1 
� 

road holding 
= 1 . 9 . The boundary 

between 2 � and 3 � (excellent) is fixed by the profiles: b 2 � cost = 

15 500 , b 2 � 
acceleration 

= 28 . 8 , b 2 � 
braking 

= 2 . 5 , b 2 � 
road holding 

= 2 . 6 . 

Fig. 1 and Table 2 depict the performance of the six alternatives. 

• These appreciations are then aggregated by the following rule: 

an alternative is categorized good or excellent if it is good or ex- 

cellent on cost or acceleration, and good or excellent on braking or 

road holding. It is categorized excellent if it is excellent on cost or 

acceleration, and excellent on braking or road holding . Being ex- 

cellent on some criterion does not really help to be considered 

good overall, as expected from a non-compensatory model. Suf- 

ficient coalitions are represented on Fig. 2 . 

Finally, the model yields the following assignments ( Table 3 ): 

2.3. The disaggregation paradigm: Learning preference parameters 

from assignment examples 

For a given decision situation, assuming the NCS model is rel- 

evant to structure the DM’s preferences, what parameters should 

be selected to fully specify the NCS model that corresponds to the 

DM viewpoint? An option would be to simply ask the decision 

maker to describe, to her best knowledge, the limit profiles be- 

tween classes and to enumerate the minimal sufficient coalitions. 

In order to get this information as quickly and reliably as possi- 

ble, an analyst could make good use of the model-based elicitation 

strategy described in Belahcène et al. (2017b) , as it permits to ob- 

tain these parameters by asking the decision maker to only provide 

holistic preference judgment – should some (fictitious) alternative 

be assigned to some category – and builds the shortest question- 

naire. 

We opt for a more indirect setup, close to a machine learning 

paradigm, where a set of reference assignment is given and as- 
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Fig. 1. Representation of performances w.r.t. category limits. 

Fig. 2. Sufficient (grey) and insufficient (white) coalitions of criteria. Arrows denote strength - pointing towards the weaker. 

sumed to describe the decision maker’s point of view, and the aim 

is to extend these assignments with a NCS model. In this context, 

we usually refer to an assignment as a function mapping a sub- 

set of reference alternatives X 

� ⊂ X to the ordered set of classes 

C 1 ≺ · · · ≺ C p . These reference alternatives highlight values of in- 

terest on each criterion i ∈ N , X 

� 
i 

:= 

⋃ 

x ∈ X � { x i } . We are looking 

for suitable preference parameters specifying a non-compensatory 

sorting model, i.e. a tuple of profiles 〈 b 〉 satisfying (1c) and an up- 

set of coalitions T ⊂ 2 N (respectively, non-negative voting param- 

eters ( 〈 w 〉 , λ) of a majority rule) so that U-NCS (〈 b〉 , T ) (respectively, 

MR-Sort ( 〈 b 〉 , 〈 w 〉 , λ) ) maps each reference alternative x ∈ X 

� to its as- 

signed class A ( x ). 

Throughout this paper, we assume the expression of preference 

is free of noise. We are only interested in determining if the given 

assignment can be represented in the non-compensatory sorting 

model. 

3. SAT formulation for learning NCS 

In this section, we begin by giving a brief reminder of some key 

concepts regarding boolean satisfiability problems (SAT). Then, we 

proceed by describing the pivotal contribution of this work: the 

encoding of the problem of representing a given assignment in the 

U-NCS model as a SAT problem. We conclude this section by pro- 

viding the decoding procedure that prove this SAT formulation is 

equivalent to the original problem, and can be used in the context 

of Algorithm 1 together with a SAT solver. 

3.1. Boolean satisfiability (SAT) 

A boolean satisfaction problem consists in a set of boolean 

variables V and a logical proposition about these variables f : 

{0, 1} V → {0, 1}. A solution v � is an assignment of the vari- 
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ables mapped to 1 by the proposition: f (v � ) = 1 . A binary sat- 

isfaction problem for which there exists at least one solution is 

satisfiable , else it is unsatisfiable . Without loss of generality, the 

proposition f can be assumed to be written in conjunctive nor- 

mal form: f = 

∧ 

c∈C c, where each clause c ∈ C is itself a disjunc- 

tion in the variables or their negation ∀ c ∈ C, ∃ c + , c − ∈ P(V ) : c = ∨ 

v ∈ c + v ∨ 

∨ 

v ∈ c − ¬ v , so that a solution satisfies at least one condi- 

tion (either positive or negative) of every clause. 

The models presented hereafter make extensive use of clauses 

where there is only one non-negated variable (a subset of Horn 

clauses ): a ∨ ¬ b 1 ∨ · · · ∨ ¬ b n , which represent the logical implica- 

tion (b 1 ∧ · · · ∧ b n ) ⇒ a . 

It is known since Cook’s theorem ( Cook, 1971 ) that the Boolean 

satisfiability problem is NP-complete. Consequently, unless P = NP, 

we should not expect to solve generic SAT instances quicker than 

exponential time in the worst case. Nevertheless, efficient and scal- 

able algorithms for SAT have been – and still are – developed, and 

are sometimes able to handle problem instances involving tens of 

thousands of variables and millions of clauses in a few seconds 

(see e.g. Biere et al., 2009; Moskewicz et al., 2001 ). 

3.2. A SAT encoding of a given assignment in U-NCS 

Definition 4 (SAT encoding for U-NCS) . Let A : X 

� → C 1 ≺ · · · ≺ C p 

an assignment. We define the boolean function φSAT 
A 

with vari- 

ables: 

• x i, h, k , indexed by a criterion i ∈ N , a frontier between classes 

1 ≤ h ≤ p − 1 , and a value k ∈ X 

� 
i 

taken on criterion i by a ref- 

erence alternative, 
• y B indexed by a coalition of criteria B ⊆ N 

as the conjunction of clauses: 

(2a) For all criteria i ∈ N , for all frontiers between adjacent 

classes 1 ≤ h ≤ p − 1 , for all ordered pairs of values k < k ′ ∈ 

X 

� 
i 
: 

x i,h,k ′ ∨ ¬ x i,h,k (2a) 

(2b) For all criteria i ∈ N , for all ordered pairs of frontiers 1 ≤
h < h ′ ≤ p − 1 , for all values k ∈ X 

� 
i 

: 

x i,h,k ∨ ¬ x i,h ′ ,k (2b) 

(2c) For all ordered pairs of coalitions B ⊂ B ′ ⊆ N : 

y B ′ ∨ ¬ y B (2c) 

(2d) For all coalitions B ⊆ N , for all frontiers 1 ≤ h ≤ p − 1 , for 

all u ∈ X 

� : A (u ) = C h −1 (i.e. reference alternatives just below 

the frontier) : ( ∨ 

i ∈ B 
¬ x i,h,u i 

) 

∨ ¬ y B (2d) 

(2e) For all coalitions B ⊆ N , for all frontiers 1 ≤ h ≤ p − 1 , for all 

a ∈ X 

� : A (a ) = C h (i.e. reference alternatives just above the 

frontier) : ( ∨ 

i ∈ B 
x i,h,a i 

) 

∨ y N\ B (2e) 

Clauses of types (2a), (2b) and (2c) are easily interpreted as en- 

forcers of some monotonicity conditions inherent to ordinal sorting 

and to the parameters of the U-NCS model: 

(2a) Ascending scales – if k < k ′ ∈ X 

� 
i 

and k is above some thresh- 

old b h 
i 
, then so is k ′ . It is necessary and sufficient to consider 

the clauses where k and k ′ are consecutive values of X 

� 
i 
. 

(2b) Hierarchy of profiles – if 1 ≤ h < h ′ ≤ p − 1 and k ∈ X 

� 
i 

is 

above the threshold b h 
′ 

i 
, then it is also above b h 

i 
. It is neces- 

sary and sufficient to consider the clauses where h ′ = h + 1 . 

(2c) Coalitions strength – if a coalition B ⊆ N is sufficient, then 

any coalition B ′ ⊇B containing B is also sufficient. It is neces- 

sary and sufficient to consider the clauses where the coali- 

tion B ′ contains exactly one more criterion than B , corre- 

sponding to the edges represented on Fig. 1 . 

Clauses of types (2d) and (2e) ensure the correct representation 

of all reference alternatives contained by the assignment A in the 

U-NCS model. They rely on the following lemmas. 

Lemma 1. Let A : X 

� → C 1 ≺ · · · ≺ C p an assignment extended by a 

U-NCS model with profiles 〈 b 〉 and sufficient coalitions T . If B ⊆ N is 

a coalition of criteria such that, there is an alternative x ∈ X 

� stronger 

than the upper frontier of its class b A (x )+1 on every criterion in B, then 

this coalition is not sufficient. 

∀ B ⊆ N , [ ∃ x ∈ X 

� : ∀ i ∈ B, x i ≥ b A (x )+1 
i 

] ⇒ B / ∈ T 

Proof. Let A an assignment, (〈 b〉 , T ) correct U-NCS parameters , B 

a coalition of criteria and x an alternative that satisfy the premises, 

and suppose B is sufficient. The alternative x would be better than 

the boundary b A (x )+1 and so would be assigned to a class strictly 

better than A ( x ), and the NCS model with parameters b and T 
would not extend the assignment. �

Clauses of type (2d) leverage Lemma 1 to ensure alternatives are 

outranked by the boundary above them , relating insufficient coali- 

tions to the strong points of an alternative. 

Lemma 2. Let A : X 

� → C 1 ≺ · · · ≺ C p an assignment extended by a 

U-NCS model with profiles 〈 b 〉 and sufficient coalitions T . If B ⊆ N is 

a coalition of criteria such that, there is an alternative x ∈ X 

� weaker 

than the lower frontier of its class b A ( x ) on every criterion in B, then 

the complementary coalition is sufficient. 

∀ B ⊆ N , [ ∃ x ∈ X 

� : ∀ i ∈ B, x i < b A (x ) 
i 

] ⇒ (N \ B ) ∈ T 

Proof. Let A an assignment, (〈 b〉 , T ) correct U-NCS parameters, B a 

coalition of criteria and x an alternative that satisfy the premises, 

and suppose N \ B is insufficient. The set of criteria on which the 

alternative x would be better than the boundary b A ( x ) is a subset of 

N \ B, and would thus be considered insufficient. Hence, x would 

be assigned to a class strictly worse than A ( x ), and the NCS model 

with parameters b and T would not extend the assignment. �

Clauses of type (2e) leverage Lemma 2 to ensure alternatives 

outrank the boundary below them , relating the weak points of an 

alternative to a complementary insufficient coalition. 

We are now able to describe the decoding function required by 

Algorithm 1 and prove the faithfulness of both the encoding and 

the decoding. 

3.3. Faithfulness of the SAT representation 

Theorem 1 (from a U-NCS model representing an assignment to 

a solution of the SAT formulation) . Given an assignment A : X 

� → 

C 1 ≺ · · · ≺ C p , if the tuple of profiles 〈 b 〉 satisfies (1c) , the set T is 

an upset of coalitions of criteria, and the sorting function U-NCS 〈 b〉 , T 
extends A, then the binary tuple: 

• x i, h, k , indexed by a criterion i ∈ N , a frontier between classes 

1 ≤ h ≤ p − 1 , and a value k ∈ X 

� 
i 

taken on criterion i by some 

reference alternative, and defined by x i,h,k = 

{ 

1 , if k ≥ b h 
i 

0 , else 
• y B indexed by a coalition of criteria B ⊆ N and defined by y B = { 

1 , if B ∈ T 
0 , else 
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is mapped to 1 by the Boolean function φSAT 
A 

. 

Proof. The clauses (2a) are satisfied because if k < k ′ and k is above 

some threshold b h , then so is k ′ . The clauses (2b) are satisfied be- 

cause the frontier profiles 〈 b 〉 are assumed to satisfy (1c) (hence, 

if a given value is above some threshold b h 
′ 

i 
, then it is also above 

inferior thresholds b h 
i 

for h < h ′ ). The clauses (2c) are satisfied be- 

cause T is assumed to be an upset (hence, if a coalition is deemed 

sufficient, then so are wider coalitions). If the NCS model with pro- 

files b h and sufficient coalitions T extends the given assignments, 

then clauses (2d) are satisfied – else, by Lemma 1 , one of the alter- 

native u ∈ X 

� assigned to the class C h −1 would outrank the profile 

b h on a sufficient coalition of criteria. So are clauses (2e) - else, 

by Lemma 2 , one alternative a ∈ X 

� assigned to class C h would not 

outrank the profile b h , as the set of criteria on which a is better 

than b h would be smaller than some insufficient coalition. �

Corollary 1 (Faithful encoding) . Let A be an assignment A : X 

� → 

C 1 ≺ · · · ≺ C p . If φSAT 
A 

is unsatisfiable, then A cannot be represented in 

the model U-NCS. 

Theorem 2 (Decoding a solution of the SAT formulation into a U- 

NCS model) . Given an assignment A : X 

� → C 1 ≺ · · · ≺ C p , if the bi- 

nary tuple: 

• x i, h, k , indexed by a criterion i ∈ N , a frontier between classes 1 ≤
h ≤ p − 1 , and a value k ∈ X 

� 
i 

taken on criterion i by a reference 

alternative, 
• y B indexed by a coalition of criteria B ⊆ N 

satisfies φSAT 
A 

(x, y ) = 1 , then the profiles 〈 b 〉 defined by b h 
i 

:= 

min { k ∈ X 

� 
i 

: x i,h,k = 1 } satisfy (1c) , the set of coalitions T := { B ⊆
N : y B = 1 } is an upset, and the sorting function U-NCS (〈 b〉 , T ) , extends 

the assignment A. 

Proof. Clauses (2a) ensure that k ′ ≥ k ⇒ x i,h,k ′ ≥ x i,h,k , so that 

x i,h,k = 1 ⇐⇒ k ≥ b h 
i 
. Clauses (2b) ensure the tuple of profiles 〈 b 〉 

satisfies (1c) . Clauses (2c) ensure the set T is an upset of coali- 

tions. The sorting function U-NCS (〈 b〉 , T ) extends the given assign- 

ment because, for each reference alternative s ∈ X 

� , there is a 

clause (2e) that ensures s outranks the lower frontier of its class 

(if A ( s ) �C 1 ), and a clause (2d) that ensures s does not outrank the 

upper frontier of its class (if A ( s ) ≺C p ). �

Corollary 2 (Faithfullness of the SAT representation) . The assign- 

ment A can be represented in the model U-NCS if, and only if, φSAT 
A 

is 

satisfiable. 

4. Learning MR-sort using mixed integer programming 

Learning the parameters of an MR-Sort model using mixed inte- 

ger programming has been studied in Leroy et al. (2011) . We recall 

here the method used in Leroy et al. (2011) in order to obtain the 

mixed integer program (MIP) formulation that infers an MR-Sort 

model on the basis of examples of assignments. 

With MR-Sort (see Definition 3 ), the condition for an alternative 

a ∈ X 

� to be assigned to a category C h reads: 

a ∈ C h ⇐⇒ 

{∑ n 
i =1 c 

h −1 
a,i 

≥ λ∑ n 
i =1 c 

h 
a,i 

< λ
with c k a,i = 

{
w i if a i ≥ b k 

i 
, 

0 otherwise. 

The linearization of these constraints induces the use of binary 

variables. For each variable c k 
a,i 

, with k = { h − 1 , h } , we introduce 

a binary variable δk 
a,i 

that is equal to 1 when the performance of 

a ∈ X 

� is at least as good as or better than the performance of b k 

on the criterion i and 0 otherwise. For an alternative a assigned 

to a category C h with 2 ≤ h ≤ p − 1 , it introduces 2 n binary vari- 

ables. For alternatives assigned to one of the extreme categories, 

the number of binary variables is divided by two. The value of each 

variable δk 
a,i 

is obtained thanks to the following constraints: 

M(δk 
a,i − 1) ≤ a i − b k i < M · δk 

a,i (3a) 

in which M is an arbitrary large positive constant 3 . The value of 

c k 
a,i 

are finally obtained thanks to the following constraints: {
0 ≤ c k 

a,i 
≤ w i , 

δk 
a,i 

− 1 + w i ≤ c k 
a,i 

≤ δk 
a,i 

. 
(3b) 

The dominance structure on the set of profiles is ensured by the 

following constraints: 

∀ i ∈ N , h = { 2 , . . . , p − 1 } , b h i ≥ b h −1 
i 

(3c) 

As the Eq. (MR) defining the majority rule is homogenous, the co- 

efficients 〈 w 〉 and λ can be multiplied by any positive constant 

without modifying the upset of coalitions they represent. Thus, the 

following normalization constraint can be added without loss of 

generality: 

n ∑ 

i =1 

w i = 1 . (3d) 

To obtain a MIP formulation, the next step consists to define an 

objective function. In Leroy et al. (2011) , two objective functions 

are considered, one of which consists in maximizing the robust- 

ness of the assignments. It is done by adding continuous variables 

x a , y a ∈ R for each alternative a ∈ X 

� such that: {∑ n 
i =1 c 

h −1 
a,i 

= λ + x a , ∑ n 
i =1 c 

h 
a,i 

= λ − y a . 
(3e) 

The objective function consists in optimizing a slack variable α that 

is constrained by the values of the variables x a and y a as follows: 

∀ a ∈ X 

� , 

{
α ≤ x a , 
α ≤ y a . 

(3f) 

The combination of the objective function and all the constraints 

listed above leads to MIPs that can be found in Leroy et al. (2011) . 

Definition 5 (MIP-O formulation for MR-Sort) . Given an assign- 

ment A , we denote φMIP−O 
A 

the mixed linear program with decision 

variables α, λ, 〈 b k 
i 
〉 i ∈N ,k ∈ [1 .p−1] , 〈 w i 〉 i ∈N 

, 〈 c h 
a,i 

〉 i ∈N ,a ∈ X � ,h ∈{ A (a ) −1 ,A (a ) } , 
〈 x a 〉 a ∈ X � , 〈 y a 〉 a ∈ X � ∈ R 

+ and 〈 δh 
a,i 

〉 i ∈N ,a ∈ X � ,h ∈{ A (a ) −1 ,A (a ) } ∈ { 0 , 1 } , con- 

sisting in minimizing the objective α, subject to the constraints 

(3a) –(3f) . 

Theorem 3 (Faithfulness of the MIP-O formulation Leroy et al., 

2011 ) . An assignment A can be represented in the model MR-Sort if, 

and only if, φMIP-O 
A 

is feasible. If the tuple 〈 α, λ, b, w, c, x, y, δ〉 is 

a feasible solution of φMIP-O 
A 

, then the tuple of profiles b, the tuple of 

voting powers w and the majority threshold λ are suitable parameters 

of a MR-Sort model that extends the assignment A. 

We are looking to compare this state-of-the-art formulation to 

the boolean satisfiability formulation we propose in the next sec- 

tion in terms of computational efficiency, and in terms of quality of 

the result. Yet, we suspect the two approaches differ in too many 

aspects to be meaningfully compared. The MIP-O formulation is 

based on a numerical representation of the problem, considers the 

set of every MR-Sort model extending the assignment, and selects 

the best according to the objective function – here, returning the 

model that gives the sharpest difference in voting weights between 

sufficient and insufficient coalitions of criteria. Meanwhile, the SAT 

formulation is based on a logical representation of the problem, 

3 M > Max i ∈N max X i 
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considers the wider set of every U-NCS model extending the as- 

signment, and randomly yields a suitable model. In order to be 

able to credit the effects we would observe to the correct causes, 

we introduce a third formulation, called MIP-D, that helps bridging 

the gap between MIP-O and SAT. MIP-D is formally a mixed inte- 

ger program with a null objective function. This trick enables us 

to use the optimization shell of the MIP formulations to express 

a decision problem assessing the satisfiability of the constraints, 

and yielding a random solution (which, in our context, represents 

a particular MR-Sort model), rather than looking for the best one 

in the sense of the objective function. Another instance of this con- 

figuration, where an optimization problem is compared to its fea- 

sibility version, can be found in Dickerson et al. (2014) . Here, it 

should be noted that the MIP-D formulation is not exactly the fea- 

sibility version of MIP-O, as insufficient coalitions of criteria are 

characterized by a strict comparison. The optimization version cir- 

cumvents this obstacle by maximizing the contrast in normalized 

voting power between sufficient and insufficient coalitions, while 

the feasibility version addresses it by leaving the total weight un- 

constrained, but requiring the minimal difference between suffi- 

cient and insufficient coalitions is at least one vote. This slight dif- 

ference might account for some divergence of behavior we observe 

during our experiment (see Section 5 , and particularly 5.3 ). 

Definition 6 (MIP-D formulation for MR-Sort) . We denote MIP-D 

the mixed linear program with decision variables 〈 b k 
i 
〉 i ∈N ,k ∈ [1 .p−1] , 

〈 w i 〉 i ∈N 

, λ, 〈 x a 〉 a ∈ X � , 〈 y a 〉 a ∈ X � , 〈 c h a,i 
〉 i ∈N ,a ∈ X � ,h ∈{ A (a ) −1 ,A (a ) } ∈ R 

+ and 

〈 δh 
a,i 

〉 i ∈N ,a ∈ X � ,h ∈{ A (a ) −1 ,A (a ) } ∈ { 0 , 1 } , consisting in minimizing the 

objective 0, subject to the constraints (3a), (3b), (3c), (3e) and (3g) , 

where: 

∀ a ∈ X 

� , 

{
1 ≤ x i , 
1 ≤ y i . 

(3g) 

Theorem 4 (Faithfulness of the MIP-D formulation) . An assignment 

A can be represented in the model MR-Sort if, and only if, φMIP-D 
A 

is 

feasible. If the tuple 〈 λ, b, w, c, x, y, δ〉 is a feasible solution of φMIP-D 
A 

, 

then the tuple of profiles b, the tuple of voting powers w and the ma- 

jority threshold λ are suitable parameters of a MR-Sort model that 

extends the assignment A. 

Proof. This theorem results from Theorem 3 , with only minor 

changes to the constraints. As noted previously, the normalization 

constraint (3d) has no effect on the feasibility of the problem. In- 

stead, constraints (3g) ensure we are looking for voting parameters 

large enough to have at least a difference of one unit between the 

votes gathered by any sufficient coalition on the one hand and any 

insufficient coalition on the other hand. �

5. Implementation 

In this section, we study the performance of the formulation 

proposed in Section 3 , both intrinsic and comparative with respect 

to state-of-the-art techniques. We implement Algorithm 1 , using a 

state-of-the-art SAT solver, in order to solve instances of the prob- 

lem of learning a U-NCS model, given the assignment of a set of 

reference alternatives. We also implement two formulations rely- 

ing on Mixed Integer Programming, presented in Section 4 , using 

an adequate solver. We begin by describing our experimental pro- 

tocol, with some implementation details. Then, we provide the re- 

sults of the experimental study concerning the computation time 

of our program, and particularly the influence the size of the learn- 

ing set, the number of criteria, and the number of classes, as well 

as elements of comparison between the three approaches. 

5.1. Experimental protocol and implementation details 

The algorithm we test takes as an input the assignment of a set 

of alternatives X 

� , each described by a performance tuple on a set 

of criteria N , to a set of classes C 1 ≺ · · · ≺ C p . 

The performance of the solvers needs to be measured in prac- 

tice, by solving actual instances of the problem and reporting the 

computation time required. This experimental study is run on an 

ordinary laptop with Windows 7 (64 bit) equipped with an Intel 

Core i7-4600 CPU at 2.1 GHz and 8 GB of RAM. 

5.1.1. Dataset generation 

In the scope of this paper, we only consider to use a care- 

fully crafted, random dataset as an input. On the one hand, the 

algorithm we describe is not yet equipped with the capability to 

deal with noisy inputs, so we do not consider feeding it with ac- 

tual preference data, such as the one found in preference learn- 

ing benchmarks ( Fürnkranz and Hüllermeier, 2011 ). On the other 

hand, using totally random, unstructured, inputs makes no sense 

in the context of algorithmic decision. In order to ensure the pref- 

erence data we are using makes sense, we use a decision model to 

generate it, and, in particular, a model compatible with the non- 

compensatory stance we are postulating. Precisely, we use a MR- 

Sort model for generating the learning set, a model that particular- 

izes NCS and U-NCS by postulating the set of sufficient coalitions 

possess an additive structure (see Section 2.2 ). This choice ensures 

the three formulations we are using should succeed in finding the 

parameters of a model extending the reference assignment. 

When generating a dataset, we consider the number of crite- 

ria |N | , the number of classes p , and the number of reference al- 

ternatives | X 

� | as parameters. We consider all criteria take contin- 

uous values in the interval [0,1], which is computationally more 

demanding for our algorithm than the case where one criterion 

has a finite set of values. We generate a set of ascending profiles 

〈 b 〉 by uniformly sampling p − 1 numbers in the interval [0,1] and 

sorting them in ascending order, for all criteria. We generate vot- 

ing weights 〈 w 〉 by sampling |N | − 1 numbers in the interval [0,1], 

sorting them, and using them as the cumulative sum of weights. λ
is then randomly chosen with uniform probability in the interval 

]0.5,1[. Finally, we sample uniformly | X 

� | tuples in [0 , 1] N , defin- 

ing the performance table of the reference alternative, and assign 

them to classes in C 1 ≺ · · · ≺ C p according to the model M 

0 := MR- 

Sort 〈 b 〉 , 〈 w 〉 , λ with the generated profiles, voting weights, and qual- 

ified majority threshold. 

5.1.2. Solving the SAT problem 

We then proceed accordingly to Algorithm 1 , translating the 

assignment into a binary satisfaction problem, described by sets 

of variables and clauses, as described by Definition 4 . This bi- 

nary satisfaction problem is written in a file, in DIMACS format 4 , 

and passed to a command line SAT solver - CryptoMiniSat 5.0.1 

( Soos, 2016 ), winner of the incremental track at SAT Competition 

2016 5 , released under the MIT license. If the solver finds a so- 

lution, then it is converted into parameters (〈 b SAT 〉 , T SAT ) for a 

U-NCS model, as described by Theorem 2 . The model M 

SAT := U- 

NCS 〈 b SAT 〉 , T SAT yielded by the program is then validated against the 

input. As the ground truth M 

0 used to seed the assignment is, 

by construction, a MR-Sort model and therefore a U-NCS model, 

Theorem 1 applies and we expect the solver to always find a so- 

lution. Moreover, as Theorem 2 applies to the solution yielded, we 

expect the U-NCS model returned by the program should always 

succeed at extending the assignment provided. 

4 http://www.satcompetition.org/20 09/format-benchmarks20 09.html . 
5 http://baldur.iti.kit.edu/sat- competition- 2016/ . 
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Fig. 3. Computation time by size of the learning set. 

5.1.3. Solving the MIP problems. 

We transcribe the problem consisting of finding a MR-Sort 

model extending the assignment with parameters providing a good 

contrast into a mixed integer linear optimization problem de- 

scribed extensively in Section 4 that we refer to as MIP-O , where 

O stands for optimization . In order to bridge the gap between this 

optimization stance and the boolean satisfiability approach that is 

only preoccupied with returning any model that extends the given 

assignment, we also transcribe the problem consisting of finding 

some MR-Sort model extending the assignment into a MIP feasibil- 

ity problem (optimizing the null function over an adequate set of 

constraints), also described in Section 4 that we refer to as MIP-D , 

where D stands for decision . These MIP problems are solved with 

Gurobi 7.02, with factory parameters except for the cap placed on 

the number of CPU cores devoted to the computation (two), in or- 

der to match a similar limitation with the chosen version of the 

SAT solver. When the solver succeeds in finding a solution before 

the time limit – set to one hour – the sorting models returned are 

called M 

MIP −O and M 

MIP −D , respectively. 

5.1.4. Evaluating the ability of the inferred models to restore the 

original one. 

In order to appreciate how “close” a computed model M 

c ∈ 

{M 

SAT , M 

MIP −D , M 

MIP −O } is to the ground truth M 

0 from which 

the assignment examples were generated, we proceed as follows: 

we sample a large set of n profiles in X = [0 , 1] N and compute the 

assignment of these profiles according to the original and com- 

puted MR-Sort models ( M 

0 and M 

c ). On this basis, we compute 

err − rate the proportion of “errors”, i.e. tuples which are not as- 

signed to the same category by both models. 

5.2. Intrinsic performance of the SAT formulation 

We run the experimental protocol described above by varying 

the various values of the parameters governing the input. In order 

to assess the intrinsic performance of Algorithm 1 we consider all 

the combinations where 

• the number of criteria |N | is chosen among {5, 7, 9, 11}; 
• the number of reference alternatives | X 

� | is chosen among {25, 

50, 100, 200, 400}. 
• the number of categories p is chosen among {2, 3} 

For each value of the triplet of parameters, we sample 100 MR- 

Sort models M 

0 , and record the computation time ( t ) needed to 

provide a model M 

NCS 

Fig. 3 displays the time needed by Algorithm 1 to compute 

M 

NCS , versus the number of reference alternatives | X 

� | , both rep- 

resented in logarithmic scale, in various configurations of the num- 

ber of criteria. The fact that each configuration is seemingly rep- 

resented by a straight line hints at a linear dependency between 

log t SAT and log | X 

� | . The fact that the various straight lines, corre- 

sponding to various number of criteria, seem parallel, with a slope 

close to 1, is compatible to a law where t SAT is proportional to | X 

� |. 

The same observations in the plane (number of criteria × compu- 

tation time) (not represented) leads to infer a law 

t SAT ∝ | X 

� | × 2 

|N | , 

where the computing time is proportional to the number of refer- 

ence alternatives and to the number of coalitions (corresponding 

to the number of |N | -ary clauses of the SAT formulation). Finally, 

as a rule of thumb: the average computation time is about 10 s for 

11 criteria, 3 categories and 100 reference alternatives; it doubles for 

each additional criterion, or when the number of reference alterna- 

tives doubles . 

5.3. Comparison between the formulations 

In order to compare between models, we focus on a situation 

with three categories, nine criteria, and 64 reference alternatives, 

serving as a baseline. We then consider situations deviating from 

the baseline on a single parameter – either the number of cate- 

gories p , from 2 to 5, or the number of criteria, among {5, 7, 9, 

11, 13}, or the number of reference alternative among {16, 32, 64, 

128, 256}. For each considered value of the triple of parameters, 

we sample 50 MR-Sort models representing the ground truth M 

0 , 

and we record the computation time t needed to provide each of 

the three models M 

NCS , M 

MIP −D and M 

MIP −O , as well as the gen- 

eralization indexes for the three models. The MIP are solved with 

a timeout of one hour. 

5.3.1. Results on the computation time. 

For the three formulations under scrutiny and the set of consid- 

ered parameters governing the input, the computation time ranges 

from below the tenth of a second to an hour (when the time- 

out is reached), thus covering about five orders of magnitude. The 

left side of Fig. 4 depicts the distribution of the computation time 

for the baseline situation (9 criteria, 3 categories, 64 reference as- 

signments). While the computing time for the SAT and the MIP- 

D formulations seem to be centered around similar values (with 
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Fig. 4. Distribution of the computation time and the proportion of assignment similar to the ground truth for the three models in the baseline configuration: 9 criteria, 3 

categories, 64 reference alternatives. Represented: median; box: 25 − 75% ; whiskers: 10 − 90% . 

Fig. 5. Distribution of the computation time for the three models by number of reference assignments, with three classes and nine criteria. 

Med ( t SAT ) ≈ 2.4 s and Med(t MIP−D ) ≈ 3 . 1 s for the baseline), the 

distribution of the computing time for the SAT algorithm around 

this center is very tight, while the spread of this distribution for 

the MIP-D formulation is comparatively huge: The slowest tenth 

of instances run about a thousand time slower than the quick- 

est tenth. The computation time of the MIP-O formulation ap- 

pears about 50 times slower than the SAT, with a central value of 

Med(t MIP−O ) ≈ 130 s, and covers about two orders of magnitude. 

In order to assess the influence of the parameters governing the 

size and complexity of the input, we explore situations differing 

from the baseline on a single parameter. 

• The number of reference assignments | X 

� | . Fig. 5 indicates that 

the distribution of the computing time for SAT-based algorithm 

remains tightly grouped around its central value, and that this 

value steadily increases with the number of reference assign- 

ments. Meanwhile, the two MIP formulations display a similar 

behavior, with an increase of the central tendency steeper than 

the one displayed by the SAT, and a spread that widens when 

taking into account additional reference assignments. 

• The number of criteria |N | . Fig. 6 indicates that the distribution 

of the computing time for SAT-based algorithm remains tightly 

grouped around its central value, and that this value steadily 

increases with the number of criteria. This increase is steeper in 

the case of the SAT and MIP-O formulations than for the MIP-D 

formulation. 
• The number of categories p . Fig. 7 displays an interesting phe- 

nomenon. The number of categories seems to have a mild influ- 

ence on the computation time, without any restriction for the 

SAT-based algorithm, and as soon as there are three categories 

or more for the MIP-based algorithm, with a clear exception in 

the case of two categories, which yields instances of the prob- 

lem solved ten times faster than with three or more categories. 

5.3.2. Results on the ability of the inferred model to restore the 

original one. 

The right side of Fig. 4 depicts the distribution of the propor- 

tion of correct assignments (as compared to the ground truth) for 

the baseline situation (9 criteria, 3 categories, 64 reference assign- 

ments). The situation depicted is conveniently described by using 

the distribution of outcomes yielded by the MIP-D formulation as 
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Fig. 6. Distribution of the computation time for the three models by number of criteria, with three classes and 64 learning examples. 

Fig. 7. Distribution of the computation time for the three models by number of categories, with nine criteria and 64 learning examples. 

a pivotal point to which we compare those yielded by the SAT and 

MIP-O formulations: the central 80% of the distribution (between 

the whiskers) of outcomes for the MIP-O corresponds to the cen- 

tral half (the box) for the MIP-D, while the best half of the distri- 

bution of outcomes for the SAT corresponds to the central 80% for 

the MIP-D. In other terms, compared to the MIP-D, the MIP-O of- 

fers consistently good results, while the SAT has a 50% chance to 

yield a model that does not align very well with the ground truth. 

Figs. 8–10 depict the variations of the alignment of the mod- 

els yielded by the three algorithms with the ground truth with re- 

spect to the number of reference assignments, of criteria, or of cat- 

egories, respectively. The experimental results display a tendency 

towards a degradation of this alignment as the number of criteria 

or the number of categories increase. Conversely, as expected, in- 

creasing the number of reference assignments noticeably enhances 

the restoration rate. The three algorithms seem to behave in a sim- 

ilar manner with respect to the modification of these parameters. 

5.3.3. Reliability 

The three formulations expressing the problem we solve – find- 

ing a non compensatory sorting model extending a given assign- 

ment of reference alternatives – into technical terms are theoreti- 

cally faithful. Moreover, as we generate the input assignment with 

a hidden ground truth which itself obeys a non-compensatory sort- 

ing model, the search we set out to perform should provably suc- 

ceed. Unfortunately, a computer program is but a pale reflection 

of an algorithm, as it is restricted in using finite resources. While 

we take great care in designing the experimental protocol in or- 

der to avoid memory problems, we have purposefully used off- 

the-shelf software with default setting to solve the formulations. 

While this attitude has given excellent result for the implementa- 

tion of the SAT-based algorithm, which has never failed to retrieve 

a model that succeeds in extending the given assignment, the two 

MIP-based implementations have suffered from a variety of fail- 

ures, either not terminating before the timeout set at one hour or 

wrongly concluding on the infeasibility of the MIP. We report these 

abnormal behaviors in Table 4 . 
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Fig. 8. Distribution of the generalization index for the three models by size of the learning set, with three classes and nine criteria. 

Fig. 9. Distribution of the generalization index for the three models by number of criteria, with three classes and 64 learning examples. 

Fig. 10. Distribution of the generalization index for the three models by number of categories, with nine criteria and 64 learning examples. 
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Table 4 

Proportion of instances failing to retrieve a model. The default case is due to reaching the time 

limit, except for configurations marked with a dagger where the failure is due to an alleged in- 

feasibility of the formulation. 

Number of criteria 5 7 9 11 13 9 9 9 

Number of categories 3 3 3 3 3 3 5 7 

Number of reference assignments 64 64 64 64 64 128 64 64 

MIP-D 4% † 8% † 4% 0 0 42% 10% 12% 

MIP-O 0 0 0 10% 48% 4% 0 0 

SAT 0 0 0 0 0 0 0 0 

6. Discussion and perspectives 

In this section, we strive at interpreting the results presented in 

Section 5 . In Section 6.1 , we address the influence of the parame- 

ters governing the size and structure of the input - the reference 

assignment we set out to extend with a non-compensatory sort- 

ing model - on the computing time of the programs implement- 

ing the three formulations modeling the problem. In Section 6.2 , 

we discuss the differing approaches to knowledge representation 

underlying these different formulations, and their practical conse- 

quences. 

6.1. Influence of the parameters 

The influence of the various parameters ( | X 

� | , the number of 

reference assignments; |N | , the number of criteria; p , the num- 

ber of categories) governing the input on the ability of the output 

model to predict the ground truth seeding the input is best under- 

stood from a machine learning perspective. The input assignments 

form the learning set of the algorithm, while the number of cri- 

teria and the number of categories govern the number of param- 

eters describing the non-compensatory sorting model. Hence, an 

increase in | X 

� | adds constraints upon the system, while increases 

in |N | or p relieve some constraints, but demand more resources 

for their management. 

• The comparison between MIP-O and MIP-D informs the influ- 

ence of the loss function. This influence is threefold: optimizing 

this function demands a lot more time than simply returning 

the first admissible solution found; formalizing the problem of 

extending the input assignment with a model as an optimiza- 

tion problem incorporates a kind of robustness into the algo- 

rithm, which translates to a decrease in the number of failures; 

paradoxically, the strategy consisting in finding the most repre- 

sentative model (in the sense of the chosen loss function) does 

not yield models with a better alignment to the ground truth 

than the one consisting to return a random suitable model. 
• The MIP-D and SAT formulations implement the same bi- 

nary attitude concerning the suitability of a non-compensatory 

model to extend a given assignment, and both arbitrarily yield 

the first-encountered suitable model. Nevertheless, algorithms 

based on these formulations display marked differences in be- 

havior: while the running time of the SAT-based algorithm is 

very homogeneous between instances and follows very regular 

patterns when the input parameters change, the MIP-D algo- 

rithm behaves a lot more erratically, with some failures (dis- 

played in Table 4 ) and a tremendous spread. We credit this dif- 

ference in behavior to a difference of approach to knowledge 

representation, as discussed in Section 6.2 . Also, with the same 

input parameters, the model returned by the MIP-D algorithm 

seems on average to be more faithful to the ground truth than 

the model returned by the SAT algorithm. As both models re- 

turn random suitable models in different categories (MR-Sort 

for the MIP, and the superset NCS for the SAT, while the ground 

truth is chosen in the MR-Sort category), we interpret the dif- 

ference in the proportion of correct assignment to the respec- 

tive volumes of the two categories of model, and discuss the 

pros and cons of assuming one or the other in Section 6.2 . 
• Reference assignments are a necessary evil. On the one hand, 

they provide the information needed to entrench the model, 

and refine the precision up to which its parameters can be 

known. On the other hand, they erect a computational barrier 

which adds up more quickly for the MIP formulations we are 

considering than for the SAT one, as shown in Fig. 5 . Overcom- 

ing this barrier demands time and threatens the integrity of the 

somewhat brittle numerical representation underlying the MIP- 

D formulation. 
• From the perspective of the model-fitting algorithm, the num- 

ber of criteria and the number of categories are usually exoge- 

nous parameters, fixed according to the needs of the decision 

situation. The specific numbers of criteria we considered during 

the experiment, from 5 to 13, cover most of the typical deci- 

sion situations considered in MCDA. Introducing more criteria 

demands to assess more parameters, which has a compound 

effect on complexity, as it requires at the same time to build 

a higher dimension representation of the models, and to pro- 

vide more reference examples in order to be determined with 

a precision suitable to decision making. Apart from a noticeable 

exception (see below), the number of categories does not seem 

to have much influence (as shown on Figs. 7 and 10 ). 
• Underconstrained models are not very good at providing rec- 

ommendations. When fed with scarce information, the task of 

finding a suitable extension is easy, but there are very little 

guarantees this extension matches the unexpressed knowledge 

and preferences of the decision maker concerning alternatives 

outside the learning set. We interpret the decrease in the abil- 

ity to align with the ground truth as the number of criteria 

increases displayed on Fig. 9 as an expression of an overfitting 

phenomenon, where too many parameters are chosen to faith- 

fully represent a too little slice of the set of alternatives, but 

poorly represent cases never seen before. 
• Mixed integer programs can represent decision problems, in 

theory. Practically though, some complex inputs have proven 

overwhelming for the MIP-D formulation, whereas the MIP-O 

has shown more robustness, as evidenced by Table 4 . It seems 

fair to assume this lack of stability is related to the absence of a 

normalization constraint such as (3d) in the MIP-D formulation 

. Determining a good lower bound on the difference of normal- 

ized voting power between sufficient and insufficient coalitions 

would therefore likely help alleviating this issue. 
• MR-Sort with two categories is structurally different than mod- 

els with more than two categories. While we have defined it 

as a procedure where alternatives are compared holistically to 

a profile, it can also be described as an additive value sort- 

ing model with stepwise, non-decreasing, 2-valued marginals. 

The experimental results, both for the computing time and the 

alignment with the ground truth (see Figs. 7 and 10 , where the 

points corresponding to two categories are outliers with respect 

to the rest of the series) highlight this peculiarity, and tend to 
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show that the value-based representation of the MR-Sort model 

with two categories is computationally efficient. 

6.2. Numeric or symbolic representation of coalitions 

Our proposal to infer non-compensatory sorting models from 

assignment examples using a SAT formulation relies on a symbolic 

representation of sufficient coalitions of criteria. It departs fun- 

damentally from the state-of-the-art approach of representing the 

upset of sufficient coalitions with a numeric majority rule (MR) . 

Obviously, U-NCS is more general than MR-Sort as additive 

weights/majority level induce a set of minimal criteria coali- 

tions, while a set of minimal coalitions might not be additive. 

Uyanik et al. (2017) studies the proportion of additive represen- 

tations: all NCS models are additive up to 3 criteria, but the pro- 

portion of additive NCS models tends to be quickly marginal when 

the number of criteria increases. It is also possible to extend the 

MR-Sort model up to U-NCS by considering a capacity instead of a 

weight vector (see e.g. Sobrie et al., 2015 ). This leads to MIP formu- 

lations of increasing computational difficulty as the arity of the ca- 

pacity increases (increase of the number of decision variables and 

the computation time). Also, ( Sobrie et al., 2015 ) shows that a MR- 

Sort model learned from NCS generated examples provides a good 

approximation of this NCS model. 

A distinctive feature of MR-Sort is its parsimony with respect to 

interaction between criteria, a notion that the SAT formulation of 

U-NCS fails to capture. However, there are many ways to additively 

represent a set of minimal coalitions, and the intuitive interpreta- 

tion of the weights can therefore be misleading: there is no one 

to one correspondence between the tuples of voting powers and 

majority level, and the sets of additive coalitions of criteria. For 

instance, consider a three criteria problem in which coalitions of 

criteria are sufficient if and only if their cardinality is at least two. 

This set of minimal coalitions can be represented by w = ( 1 3 , 
1 
3 , 

1 
3 ) 

and λ = 

1 
2 , or w = (0 . 4 9 , 0 . 4 9 , 0 . 02) and λ = 

1 
2 . It is obvious that 

these two numerical representations yield erroneously to two very 

distinct interpretations about the relative importance of criteria. In 

this sense, the symbolic representation avoiding weights used in 

the SAT formulation is more faithful than a numerical representa- 

tion. As a consequence, this non-uniqueness of the additive repre- 

sentation penalizes the effectiveness of loss functions involved in 

MIPs. 

Also, as mentioned in Section 5.3 , the feasibility version of the 

MIP suffers from numerical instability, perhaps because of the lack 

of a normalization constraint. The symbolic representation of suf- 

ficient coalitions circumvents the difficult mathematical question 

of providing a good lower bound on the worst case difference of 

normalized voting power between sufficient and insufficient coali- 

tions. 

7. Conclusion 

In this paper, we consider the multiple criteria non- 

compensatory sorting model ( Bouyssou and Marchant, 2007a; 

2007b ) and propose a new SAT formulation for inferring this 

sorting model from a learning set provided by a DM. Learning this 

model has already been addressed by the literature, and solved by 

the resolution of a MIP ( Leroy et al., 2011 ) or via a specific heuris- 

tic ( Sobrie et al., 2013; 2015 ). Due to a high computation time, the 

MIP formulation can only apply to learning sets of limited size. 

Heuristic methods can handle large datasets, but can not ensure to 

find a compatible model with the learning set whenever it exists. 

Our new algorithm provides such guaranty. We implemented and 

tested our SAT formulation, and it outperforms MIP approaches in 

terms of computation time (reduction of the computation time by 

a factor of about 50). 

Moreover, it could have been the case that this good perfor- 

mance in terms of computing time would be counterbalanced by 

a limited ability of the inferred model in terms of generalization. 

Indeed, a MIP approach focuses the effort in finding a relevant rep- 

resentative model among the compatible models (through the use 

of an objective function), while our SAT approach does return the 

first compatible model found. 

Our experiments show that MIP and SAT approaches have sim- 

ilar performances in terms of generalization. Therefore, we believe 

this algorithm to be a strong advance in terms of learning NCS 

models based on learning sets, in particular when learning sets be- 

come relatively large. 

Thanks to its efficiency – finding a model compatible to some 

preference information takes seconds instead of minutes – this al- 

gorithm is well suited to be embedded in an interactive process, 

where the decision maker is invited to interactively elicit a non- 

compensatory sorting model by incrementally building a learning 

set (and possibly additional preference information). Another line 

of research lies in the idea of using the feasible SAT solution as a 

“warm start” to improve the resolution of the MIP-O formulation. 

In order to address real-world decision aiding situations, the al- 

gorithm we propose needs to be equipped with techniques per- 

mitting to account for noisy or inconsistent data. While the nu- 

meric formulations may rely on Lagrangian techniques to handle 

the requirement of correctly representing the data as a set of soft 

constraints rather than hard ones, the logic formulation we pro- 

pose could usefully investigate the notions of maximally consis- 

tent or minimally inconsistent set of clauses (see e.g. Besnard et al., 

2015 for solving techniques, or e.g. ( Mousseau et al., 2003 ) for an 

application in a MCDA context). The increased speed, as compared 

to the previous MIP-based approach, opens the door to the explo- 

ration of the set of all U-NCS models extending a given assignment, 

in the vein of the version space theory ( Mitchell, 1982 ) and ro- 

bust decision aiding ( Greco et al., 2008 ). The knowledge represen- 

tation underlying our approach may also permit to support a rec- 

ommendation with an explanation ( Amgoud and Serrurier, 2008; 

Belahcène et al., 2017a; Labreuche, 2011 ). 
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Abstract As decision-aiding tools become more popular everyday—but at the same
time more sophisticated—it is of utmost importance to develop their explanatory
capabilities. Some decisions require careful explanations, which can be challenging
to provide when the underlying mathematical model is complex. This is the case
when recommendations are based on incomplete expression of preferences, as the
decision-aiding tool has to infer despite this scarcity of information. This step is key
in the process but hardly intelligible for the user. The robust additive utility model
is a necessary preference relation which makes minimal assumptions, at the price of
handling a collection of compatible utility functions, virtually impossible to exhibit to
the user. This strength for the model is a challenge for the explanation. In this paper,
we come up with an explanation engine based on sequences of preference swaps, that
is, pairwise comparison of alternatives. The intuition is to confront the decision maker
with “elementary” comparisons, thus building incremental explanations. Elementary
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here means that alternatives compared may only differ on two criteria. Technically,
our explanation engine exploits some properties of the necessary preference relation
that we unveil in the paper. Equipped with this, we explore the issues of the existence
and length of the resulting sequences. We show in particular that in the general case,
no bound can be given on the length of explanations, but that in binary domains, the
sequences remain short.

Keywords Multicriteria decision making · Explanation · Necessary preference
relation

1 Introduction

A decision-aiding problem consists in formalizing the problem and eliciting the pref-
erences of the decision maker (DM) to make recommendations. In many decision
contexts, only providing recommendations based on the elicited preference model is
insufficient. In fact, decision makers may want explanations which justify in a con-
vincing way such recommendations. Indeed, justifying and explaining a rationale for
a decision is almost as important as the recommendation itself. Building a convincing
explanation is often required when the DM cannot be assumed to have any mathe-
matical background, as in the case of online recommender systems, where it has been
shown that explanations improve the acceptability of the recommended choice (Pu
and Chen 2007; Symeonidis et al. 2009; O’Sullivan et al. 2007). But even experts of
a domain can have huge difficulty to grasp with the mathematical models underlying
some decision-aiding tools. In this case, it is not satisfactory to just put forward the
preference model and the resulting recommendation. Although technically, of course,
this model does contain all the information on which the recommendation is based,
the format is unlikely to be suitable for presentation. Hence, the need for a synthetic,
short and easy to understand explanation.

Depending on the setting considered, the nature of an explanation may greatly
vary. Sometimes, even vague statements can prove effective to persuade a specific
decision maker. But when the decision is important, or when the decision maker
is accountable for the decision chosen (a situation where the decision needs to be
justified to some other stakeholders who did not participate to the decision process),
the explanation should be viable even under close scrutiny. Complete explanations
provide some guarantees in that respect since they bring all the information required
to reconstruct the rationale of the recommendation—in a sense they formally “prove”
it.

In this paper, we shall thus concentrate on complete explanations in the context of
decisions involving multiple criteria. More precisely, we propose to construct pieces
evidence that support unambiguously a binary preference relation between two alter-
natives described along multiple attributes. Such a relation is very often not explicit
but elicited by some algorithmic process from preference information stated by the
decision maker. In our case, this initial information takes the form of pairwise com-
parisons of alternatives. This initial input may be scarce, in any case not sufficient to
fully specify the preference relation of the DM. To deal with the incompleteness of the
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expression of preferences, the decision-aiding method will make use of an inference
step. It is usually an involved process, challenging for explanation.

Our explanation engine takes inspiration from the even-swaps method (Hammond
et al. 1998), an elicitation procedure assuming an additive value model of preferences
and based on trade-offs between pairs of attributes (hence the name even swaps).
Broadly speaking, in each swap, the DM changes the score of an alternative on one
attribute, and compensates this change with one another attribute, so that the new
alternative is equally preferred. The process is repeated until dominance can be shown
to hold, allowing to progressively eliminate attributes. The idea is to use similar
sequences as explanations of a recommendation. The problem with such a process
is that it requires each new generated option to be equally preferred to the initial
one, which is poorly adapted to the context of incomplete preferences (as such an
equivalence virtually never holds). To circumvent this issue, we propose a general-
ization of even swaps to preference swaps, and simply exhibit a comparison between
alternatives. To keep the sequence as simple as possible, we aim at constructing a
sequence of low-order preference swaps between two alternatives, in the sense that
two successive alternatives in the sequence only differ on a few criteria. In the end, the
resulting explanations can be appreciated through the number of swaps (length of an
explanation) and the order of the most complex swap involved in the explanation (the
number of differing attributes between the two alternatives). An interesting feature of
this explanation engine is that it can be shown to operate on any value-based decision
models satisfying some basic axiomatic properties.

We propose thereafter to instantiate the engine by relying on a robust additive util-
ity model (Greco et al. 2008, 2010). The robust (necessary) relation is constructed
according to preference information provided by the decision maker. However, con-
trary to the classical additive models, in the robust approach the relation holds if any
possible completion of the available preferential information yields the preferential
statement. In fact, in additivemodels, such asUTA(AdditiveUTility) (Jacquet-Lagrèze
and Siskos 1982), the preferential information brought by the DM is not sufficient to
uniquely specify the utility functions (utility functions are only partially known), but
the multiplicity of the compatible utility is not taken into account. To provide a solid
mechanism to construct explanations for necessary preference relations, we come up
with a new characterization of the necessary preference relation, based on the notion
of covectors, that facilitates its implementation in the explanation engine.

In a nutshell, our proposal is thus to decompose a robust preference into several
simpler recommendations. This paper investigates this idea and tackles the following
questions: are such explanations guaranteed to exist, in particular if we restrict the
order of swaps? And if they do exist, can we exhibit upper bounds on their length? As
we shall see, the answer to this question crucially depends on the number of distinct
values referenced by the preference information. In binary domains, we provide an
efficient algorithm which constructs such explanations.

The remainder of the paper is as follows. Section 2 presents the explanation engine
which relies on the construction of sequence of preference swaps between two alter-
natives. In Sect. 3, we define and analyze the value-based robust preference relation.
Section 4 proposes results concerning the construction of explanations when pref-
erence information is expressed using two levels on each criterion. Finally, Sect. 5
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studies how our contributions relate to previous work and proposes extensions and
further work.

2 The explanation engine

2.1 Presentation of the decision context

This article is set in the context of Multicriteria Decision Making, where a decision
maker has to decide between several alternatives explicitly measured on several cri-
teria. We call N the set of criteria, so alternatives are represented by elements of a set
X =

∏

i∈N
Xi , where the attribute set Xi for criterion i ∈ N is totally ordered by the

relation �i denoting preference.

Example 1 You need to chose a hotel for a business trip, and you are undecided
between four options described by the performance table (see below). Such options
are evaluated according to four criteria.

– The room comfort, ranging from ∗ (low) to ∗ ∗ ∗ ∗ ∗ (high).
– The presence of a restaurant on the premise, with yes preferred to no.
– The commute time to the convention center, the lower the better.
– The cost, the lower the better.

Hotel Comfort Restaurant Commute time (min) Cost

h1 5∗ Yes 10 160 $
h2 4∗ Yes 45 180 $
h3 3∗ No 15 60 $
h4 2∗ No 60 50 $

Definition 1 (ceteris paribus sets of pairs of alternatives) for any partition of criteria
N = A ∪ (N\A) and corresponding partition of attributes xA ∈

∏

i∈A
Xi and x−A ∈

∏

i /∈A
Xi , (xA, x−A) is an alternative belonging to X. For xA, yA ∈

∏

i∈A
Xi , we define the

ceteris paribus set (xA, yA)cp as the set of every possible completions of the pair:

(xA, yA)cp := {
((xA, c−A), (yA, c−A)), c−A ∈

∏

i /∈A
Xi

}

Whencomparing twoalternatives, the criteriamayunanimously rankone alternative
above the other.

Definition 2 (weak Pareto dominance)

∀(x, y) ∈ X × X, (x, y) ∈ D ⇐⇒ ∀i ∈ N , xi �i yi
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Definition 3 (sets of shared and differing attributes)

∀x, y ∈ X, N=
(x,y) := {i ∈ N : xi = yi } and N �=

(x,y) := {i ∈ N : xi �= yi }

Preferences of the decision maker make up a binary relation between alternatives
R ⊂ X

2, so that (x, y) ∈ R denotes the (weak) preference of alternative x over
alternative y. More often than not, this relation is not explicit over X

2, but elicited,
extrapolated by some algorithmic process from preference information stated by the
decision maker. In this context, an explanation of a statement (x, y) ∈ R is a piece
of supportive evidence, enabling the decision maker to assert this preference. The
explanation engine we develop in Sect. 4 assumes the relation R satisfies three core
axioms:

Axiom 1 (compatibility to dominance) D ⊂ R
Axiom 2 (transitivity) ∀x, y, z ∈ X : (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R
Axiom3 (cancelation)For any ceteris paribus set of pairs s, if a pair of alternatives
in s is in relation R, then every pair of alternatives in s is in relation R.

Example 2 (Ex. 1 cont.) Hotel h1 dominates hotel h2, as it is at the same time more
comfortable, closer to the convention center, and cheaper, while being as good on the
criterion presence of a restaurant. Thus, (h1, h4) ∈ D, and (h1, h4) ∈ R.

Hotelsh3 andh4 share their absenceof a restaurant on the premise. Thus, preference
of one over the other ignores the criterion restaurant and is represented by the ceteris
paribus set

(
(3∗, __r , 15min, 60$), (2∗, __r , 60min, 50$)

)
cp,where __r stands for any

value in Xr . As Xr contains two distinct values, there are two pairs in this set, and
(h3, h4) ∈ R ⇐⇒ (

(3∗, yes, 15min, 60$), (2∗, yes, 60min, 50$)
) ∈ R.

Compatibility to dominance is a fundamental requirement to correctly model pref-
erence. Transitivity asks for the model to eschew Condorcet’s paradox and to behave
like a preorder relation. Cancelation implies the preferential independence of criteria,
so that only differing attributes have a say in determining preference.

Many popular, value-based decision models fulfill these requirements, measuring
the fitness of an alternative by combining its attributes in a single index, using the
average, or weighted average of the attributes, or some carefully chosen separable,
parametric value function of the attributes. Sodoes the robust additivemodel, described
in Sect. 3.

2.2 Sequences of low-order preference swaps

The explanation engine detailed in what follows is reminiscent of the even-swaps
method (Hammond et al. 1998), an interactive and constructive elicitation procedure
assuming an additive value model of preferences. This method aims at identifying,
between two options x and y, which one is preferred to the other, without explicitly
constructing the utility functions. This is basically an elimination process based on
trade-offs between pairs of attributes (“swaps”), that can be seen as a scattered explo-
ration of the iso-preference curve of the decision maker (the curve where lies, even
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virtually, the alternatives equally preferred).1 Broadly speaking, in such a swap, the
decision maker changes the consequence (or score) of an alternative on one attribute,
and is asked to compensate for this change by acting on another attribute, so that
the new alternative is equally preferred in the end (“even”). This creates a new ficti-
tious alternative, that is indifferent to the previous one, with revised consequences. By
replacing one option (say x) with a different but equally preferred one, the hope is that
dominance will occur over y. The process is thus repeated allowing to progressively
cancel irrelevant attributes, until dominance can be shown to hold, and building a
sequence x ∼ e1 ∼ e2 . . . ∼ en−1, so that either (en−1, y) ∈ D or (y, en−1) ∈ D.

Considered through the prism of explanation, even swaps have several very attrac-
tive features.

– Each swap involves only attributes on two criteria.
– The method entirely references alternatives inside the decision space X, but not
artifacts of the underlying decision model (such as utility functions), or relations
between criteria.

However, the even-swaps approach suffers from a severe limitation, as it requires
each new generated option to be equally preferred to the initial one. This is a steep
requirement, for several reasons.

– Indifference requires compensation between criteria (Krantz et al. 1971), barring
the possibility that some difference in attributes on one criterion could be impos-
sible to compensate for.

– Indifference requires solvability of the attribute scales (Krantz et al. 1971), which
naturally occurs on continuous scales but rarely between discrete ones.

– Indifference imposes a high cognitive workload on the decisionmaker, as it repeat-
edly asks for cardinal information.

– Indifference is hardly a robust notion, especially in the context of incomplete
preferences.2

Consequently, we propose a generalization of even swaps that avoids these issues,
while retaining their simplicity and being well suited to the context of incomplete
preference. In preference swaps, the assumption of indifference between consecutive
alternatives in the sequence e0 := x, e1, . . . , en := y is relaxed and replaced by an
assumption of (weak) preference: (e j−1, e j ) ∈ R. The following definitions extend
the notion of swaps to pairs of alternatives differing on more than two criteria.

1 Equally preferred, or indifferent, alternatives are pairs in the symmetric part of the relation R : ∀x, y ∈
X, x ∼ y ⇐⇒ {(x, y), (y, x)} ⊂ R.
2 We note that [MH07,MH05] also propose to enrich the original even swaps method in a way that accounts
for incomplete knowledge about the value function. They consider a “practical dominance” notion when
the value of an alternative is at least as high as the value of another one with every feasible combination of
parameters, this perspective being very close to the one developed in [GMS08] (see next section). However,
this notion is only used for pre-processing dominated alternatives, and not integrated in the swap process,
let alone used for explanatory purposes.
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Definition 4 (preference swaps of orderk)

∀k ∈ N
�,�k =

{
D, i f k = 1
{(x, y) ∈ R\D, |N �=

(x,y)| = k}, i f k > 1

This definition leverages two properties assumed for the relation R. As D ⊂ R
(Axiom 1),R = ⋃

k≤|N | �k : any pair inR is a swap, and we try to reflect its cognitive
difficulty, in the context of explanation, by its order, the lower, the simpler. Dominance
relations are deemed to be simple, and are given the lowest order. For relations requiring
trade-offs between criteria, we define the order of a swap as the number of differing
attributes between the two alternatives.

We can now define the notion of explanation by a sequence of preference swaps.
This type of explanation transforms one single preference statement (x, y) ∈ R that
the decision maker needs to understand to a sequence of several preference statements
(e j−1, e j ) ∈ R. The idea is that the initial preference (x, y) is complex to understand
as the values of x and y differ on most (if not all) attributes, whereas each intermediate
comparison (e j−1, e j ) is much easier to understand as it involves alternatives differing
only on a few attributes.

Definition 5 (Explanation by preference swaps, order and length) ∀(x, y) ∈ X
2, n ∈

N, an explanation of length n of the pair (x, y) for the relation R is a tuple
(e0, e1, . . . , en) ∈ X

n such that e0 = x, en = y and ∀ j ∈ N : 1 ≤ j ≤
n, (e j−1, e j ) ∈ R. The order of such explanation is the integer k = max{k ∈
N : ∃( j ∈ N : 1 ≤ j ≤ n), (e j−1, e j ) ∈ �k}.

As R is transitive (axiom 2), an explanation of a pair of alternatives is a proof
that this pair belongs to R. One can note that somehow we have two elements to
appreciate the quality of the explanation. First, the number of comparisons (swaps)
used to construct such an explanation. Second, its complexity which is defined by the
most complex or difficult swap (with the highest order).

However, an important question regarding a pair (x, y) ∈ X
2 is whether it is

possible to find an explanation by preference swaps of the pair (x, y). The answer
obviously depends on the bound, if any, placed upon the order of the swaps linking the
explanation chain, or the length of the explanation chain. In this article, we address
this issue by first putting a cap on the order (the order of an explanation being the order
of its most difficult link), then looking for the possibility of finding an explanation
subject to this order constraint. Then, if explanations are available, we look for short
ones.

Definition 6 (pairs explainable by low-order preference swaps) ∀k ∈ N, Ek(R) is
the set of pairs (x, y) ∈ X

2 for which there exists an explanation of any length and of
order at most k.

There is a trade-off between the value of the cap placed upon the order of explana-
tions and the set of pairs we are able to explain.
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Theorem 1 (hierarchy of binary relations)

D = E1(R) ⊆ E2(R) ⊆ · · · ⊆ Ek(R) ⊆ · · · ⊆ E|N |(R) = R

Proof – For any (x, y) ∈ E1(R), there is a tuple (e0, e1, . . . , en) ∈ X
n such that

e0 = x, en = y and ∀ j ∈ N : 1 ≤ j ≤ n , (e j−1, e j ) ∈ D. As relation D is
transitive, (x, y) ∈ D, henceD ⊇ E1(R). Conversely, the sequence e0 := x, e1 :=
y is an explanation of length one and of order one of any pair (x, y) ∈ D , hence
D ⊆ E1(R). Finally, D = E1(R).

– For k′ ≥ k, an explanation of order at most k is also an explanation of order at
most k′, so Ek(R) ⊆ Ek′(R).

– The sequence e0 := x, e1 := y is an explanation of length one and of order
|N �=

(x,y)| of any pair (x, y) ∈ R. As |N �=
(x,y)| ≤ |N |, R ⊆ E|N |(R). Conversely, an

explanation (of any order and any length) of a pair (x, y) is a proof by transitivity
of (x, y) ∈ R, thus R ⊇ E|N |(R). Finally, R = E|N |(R). ��

2.3 Some technical challenges with explanation

In this section, we highlight a number of key issues affecting the feasibility (from
a theoretical, algorithmic point of view), and the satisfaction of the decision maker,
recipient of the explanation (from a practical point of view): the existence, or not, of
an explanation, its length and the values of the attributes referenced in the sequences.
In fact, throughout this work we investigate the conditions (in terms of order of swaps)
under which an explanation may exist. Moreover, we show also that the length of an
explanation depends on the number of values of the attributes in the sequence (see
Sect. 4 for the binary case). However, many other interesting questions related to
these issues remain open and are not addressed in this paper (see Sect. 5).

– Existence of an explanation The first point to consider in the construction of an
explanation is tomake sure there is one to be found.Without any additional assump-
tion, for a low cap k placed upon the order, it is quite possible that there are some
statements that cannot be explained by preference swaps of order at most k. Tech-
nically, checking if we can explain a statement (x, y) in Ek(R), can be seen as
determining if the vertices x and y are connected in the directed graph of the
relation

⋃
1≤n≤k �n . Of course, we have efficient algorithms to test if a graph

is connected or not (Even and Tarjan 1975). However, it may be challenging to
use them with regard to the size of the graph (possibly infinite, and, when finite,
exponential in the number of criteria) in our context.

– Length of an explanation A second point that we address here is the length n
of the sequence. Indeed, keeping the explanation short has a great bearing on its
ability to convince. Even if each elementary comparison (e j−1, e j ) ∈ R is trivial
for the decision maker, the overall sequence (x, e1, . . . , en−1, y) cannot be seen as
a convincing explanation if it is too long. One then looks for the shortest possible
explanations, and hope for an upper bound on this minimal size. Finding the
shortest explanation means resolving the problem of shortest path in the directed
graph

⋃
1≤n≤k �n . Thus, the length of a shortest explanation is bounded by the
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diameter of this graph.3 Finding such a diameter is a classical problem in graph
theory for which we have polynomial algorithm in terms of number, if finite, of
vertices and edges [see for instance (Aingworth et al. 1996)]. Unfortunately, as
soon as there are three criteria measured on infinite scales, this diameter has no
upper bound, as expressed by the following theorem.

Theorem 2 (long explanations)For any integer p, if there is a subset A ⊆ N : |A| = 3
and ∀i ∈ A, |Xi | ≥ p, then there is a relation R satisfying axioms 1, 2 and 3, and a
pair (x, y) ∈ �3 such that (x, y) ∈ E2(R) and any explanation of (x, y) by preference
swaps of order at most 2 has a length greater than 2p.

Proof The proof requires instantiating the relationR, and is presented in Appendix 1.
We make use of the necessary preference relation introduced in the Sect. 3, for some
carefully built preference information. ��

– Values of the terms in the sequence Another point concerns the choice of the
values of the intermediate alternatives e1, . . . , en−1 on the different attributes. If
these values are not chosen carefully, we believe they can induce a cognitive load
to the decision maker, when she analyzes the sequence. Several options may be
considered for these values. A “dynamic” option is to restrict the values of the
attributes of e1, . . . , en−1 to the value of the attributes of x or y. This choice seems
suitable to a decision context where there is only one statement (x, y) ∈ R to
explain. However, the case may arise where the decision maker asks repeatedly for
explanations for several statements, so that this policy would lead to intermediate
alternatives having different values from one explained pair to the next. This issue
may be solved considering a “static” option, where the values of the attributes
e1, . . . , en−1 are restricted to a predefined list, independently of the pair (x, y), so
that the intermediate alternatives always reference the samevalues on the attributes,
hopefully reducing the workload for the decision maker. One option or the other
may prove more or less convincing, depending on the context (see Sect. 4).

3 Necessary preference relation

3.1 Presentation of the relation

In many decision-aiding contexts, the preference relationR is not explicitly specified.
It is often elicited: some amount of preference information is stated by the decision
maker, which is extended by an algorithmic process. We use a holistic representation
of the preference information, described as a finite collection P ⊂ X

2 of preference
statements: (x, y) ∈ P stating that x is preferred to y.

3 The diameter in the graph is the longest distance between two vertices in graph.
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Example 3 (ex. 1, continued) The preference information elicited from the decision
maker can be expressed by three preference statements. P := {π1, π2, π3}, with

π1 := (
(4∗, no, 15 min, 180$), (2∗, yes, 45 min, 50$)

)

π2 := (
(2∗, no, 45 min, 50$), (2∗, yes, 15 min, 180$)

)

π3 := (
(2∗, yes, 15 min, 180$), (4∗, no, 45 min, 180$)

)

A model compatible with this preference information outputs a relation RP ⊃ P .
For instance, a preference model can be built upon any value function V ∈ R

X

that assigns a value to each alternative, and gives precedence to the higher valued
alternative.

Definition 7 (value models) ∀V ∈ R
X, RV := {(x, y) ∈ X

2 : V (x) ≥ V (y)}
Any value model is obviously transitive and satisfies Axiom 2 introduced in Sect. 2.
To also satisfy Axioms 1 and 3, we require the value function to be separable.

Definition 8 (additive value functions) ∀P ⊂ X × X,

V :=
{
V ∈ R

X : V (x) =
∑

i∈N
vi (xi ) and ∀i ∈ N , vi ∈ R

Xi is non-decreasing

}

VP := {V ∈ V : ∀(x, y) ∈ P, V (x) ≥ V (y)}

Proposition 1 (properties of additive value models) (Krantz et al. 1971) For any
value function V ∈ V, the corresponding value model RV satisfies Axioms 1, 2 and
3.

Any additive value model can thus benefit from the explanation engine described
in Sect. 2, as the conceits involved may prove difficult for a broad audience, especially
when conclusions are drawn from the particular shape of the marginal value functions
vi .

The non-empty4 set VP contains all the additive value functions compatible to
P , i.e., that correctly outputs each comparison in the preference information. While
many decision frameworks, such as UTA, instantiate this model by specifying a single
suitable function V ∈ VP , the necessary preference relation (Greco et al. 2008) cir-
cumvents the arbitrary nature of the choice of a particular value function, by demanding
that every value function compatible to P rates alternative x higher than alternative y
to assess that x is necessarily preferred to y.

Definition 9 (necessary preference relation inferred from P)

∀P ⊂ X × X , NP := {(x, y) ∈ X × X : ∀V ∈ VP , V (x) ≥ V (y)}

4 The setVP is not empty, as it contains at least all uniform value functions. It may sometimes come down
to contain only these, if the preference information is somewhat inconsistent. Any uniform value function
Vuniform leads to a degenerated, complete relation RVuniform ≡ X

2.
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Webelieve this extra layer of abstraction added on top of themodelling of preference
by additive value functions requires some supportive evidence, the more down to
earth the better. Fortunately, the necessary preference relation NP qualifies for the
explanation engine developed in Sect. 2, as it satisfies all three axioms made on the
relation to be explained.

Theorem 3 : The binary relation NP satisfies Axioms 1, 2 and 3

Proof By definition, NP = ⋂
V∈VP RV . By Theorem 1, every binary relation RV

satisfies Axiom 1 and is a superset of D, and so is their intersection. Hence, NP
satisfies Axiom 1.

Let (x, y) and (y, z) be two pairs in NP . For any value function V ∈ VP , both
(x, y) and (y, z) are in RV (by definition of the necessary preference relation), and
the pair (x, z) is in RV (by transitivity of RV , see Theorem 1). As (x, z) ∈ RV for
any V ∈ VP , the pair (x, z) is in NP , so NP is transitive and satisfies Axiom 2. It
is straightforward to adapt this argument to prove NP also satisfies the cancelation
axiom. ��

In the remainder of this section, the preference information P is considered given
once and for all, and we will omit the corresponding quantifier “∀P ⊂ X

2”.

3.2 The decision problem: basic principles

The inference of the relationNP from the preference informationP amounts to solving
many decision problems, queries of the form “is x necessarily preferred to y?”, for
every pair (x, y) ∈ X

2.
This issue has already been addressed by various techniques.

– In the wake of the original article (Greco et al. 2008) introducing the relation
NP , decision over a query requires solving a linear program (LP) minimizing
V (x) − V (y) subject to constraints ensuring the additive value function V is
compatible to both the preference information P and the Pareto dominance D,
then concluding that x is indeed preferred to y if and only if min V (x) − V (y) is
non-negative.

– Trying to write rule-based conditions on so-called positive and negative arguments
for necessary preference of x over y, as proposed by (Spliet and Tervonen 2014).

An issue sometimes mentioned [e.g., (Spliet and Tervonen 2014)] is that necessary
preference is a tall order, often resulting to a quite small set NP , so that most pairs
(x, y) ∈ X × X end up being incomparable (that is, neither (x, y) nor (y, x) are in
NP ). It should be noted though that NP is far from minimal:

– The transitive closure ofD∪P does not generally satisfy Axiom 3, so it is usually
a strict subset of NP .

– NP is actually not minimal under Axioms 1, 2 and 3. Indeed, the necessary pref-
erence relation also satisfies an additional axiom of multiple cancelation, which
will prove to be central in our setting.
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To first illustrate the intuition behind this additional axiom, let us consider the
following example:

Example 4 (example 3 continued) For any V ∈ VP , the following inequalities stand:

– From ((4*, no, 15 min, 180 $),(2*, yes, 45 min, 50 $)) ∈ P we derive:

u∗(4∗) + ur (no) + ut (15 min) + u$(180$) ≥ u∗(2∗) + ur (yes)

+ ut (45 min) + u$(50$)

– From ((2*, no, 45 min, 50 $),(2*, yes, 15 min, 180 $)) ∈ P we derive:

u∗(2∗) + ur (no) + ut (45 min) + u$(50$) ≥ u∗(2∗) + ur (yes)

+ ut (15 min) + u$(180$)

– From dominance for the criterion restaurant we derive:

ur (yes) ≥ ur (no)

Adding these three inequalities, and canceling terms appearing on both sides leads to:

∀V ∈ VP , u∗(4∗) + ur (no) ≥ u∗(2∗) + ur (yes)

which in turn proves, for instance, the necessary preference of (4*, no, 15 min, 50 $)
over (2*, yes, 15 min, 50 $).

Formally, this property is thus called multiple cancelation in the literature (Krantz
et al. 1971; Fishburn 1997).5 It has been established [see (Joel Michell 1988)] to be
logically independent from the axiom of cancelation, and if X is large enough, there
are relations in X

2 that satisfy Axioms 1, 2 and 3, but not double cancelation.
Regarding our explanation objective, this principle is extremely attractive: it

accounts for the inference of new pairs in NP by canceling arguments throughout
multiple statements, as illustrated in the previous example, a feature that none of the
other techniques offers. However, one can wonder if this situation, where a statement
of NP is proven by combining a subset of the previously approved statements of P
and D, is the rule or a lucky exception. We now address this issue by introducing a
new framework for the resolution of a query.

3.3 A novel technique to solve the decision problem

In this section, we present a decision framework for answering the query “is alternative
x necessarily preferred to alternative y?”, given a set of preference statements P: if

5 mth-order cancelation axiom: considerm+1 alternatives x(k) inX, k ∈ {0, 1, . . . ,m}. Let y(k) inX, k ∈
{0, 1, . . . ,m}m+1 alternatives such that, for every criterion i ∈ N , (y(0)

i , y(1)
i , . . . , y(m)

i ) is a permutation

of (x(0)
i , x(1)

i , . . . , x(m)
i ). Then, [(x(k), y(k)) ∈ R,∀k ∈ {0, 1, . . . ,m − 1}] ⇒ (y(m), x(m)) ∈ R.
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(x, y) is an unbounded pair, as defined by Definition 13, then necessary preference
does not hold (Theorem 4); else, we define covectors for the pair (x, y) (see Definition
12) permitting to express three characterizations of a positive query (Theorem 5): the
absence of solution to a linear system of inequalities; the expression of the covector
expressing the query as a linear combination with non-negative coefficients of the
covectors of the preference statements and of the covectors of the dual base; a slightly
modified version of this linear combination, where the coefficients sought for are
non-negative integers.

The preference information references a finite set of attributes for each criterion.
We call core alternatives the finite set of alternatives combining these attributes.

Definition 10 (core alternatives)

Di :=
⋃

(x,y)∈P
{xi , yi } := {di,1 ≺i · · · ≺i di,|Di |} ; D :=

∏

i∈N
Di

Example 5 (Example 3 continued)

D∗ = {a ≺∗ A} with a := 2∗ and A := 4∗
Dr = {b ≺r B} with b := no and B := yes
Dt = {c ≺t C} with c := 45 min andC := 15 min
D$ = {d ≺$ D} with d := 180$ and D := 50$

Consequently, the preference statements are: π1 = (AbCd, aBcD); π2 =
(abcD, aBCd); π3 = (aBCd, Abcd) and there are 16 core alternatives: D =
{ABCD, ABCd, ABcD, ABcd, AbCD, AbCd, AbcD, Abcd, aBCD, aBCd,
aBcD, aBcd, abCD, abCd, abcD, abcd}

In the remainder of this section, we often use interval semantics, where an interval
designates all the attributes simultaneously higher than the lower bound and lower
than the upper bound:

∀i ∈ N ,∀ai , bi ∈ Xi , [ai , bi ] := {z ∈ Xi : ai �i z �i bi }

In particular, core intervals [di,k, di,k+1] play a key role. They are indexed by pairs
(i, k) conveniently grouped in an index set I:

Definition 11 (indexes of core intervals) The set I :=
⋃

i∈N
{(i, k) : k ∈ N and 1 ≤

k ≤ |Di | − 1} contains the pairs (i, k) indexing the core intervals [di,k, di,k+1]
and, consequently, the differences in marginal value between consecutive core lev-
els �v(i,k) := vi (di,k+1) − vi (di,k).

We denote × the matrix multiplication, so that, for a (line) covector v� and a
(column) vector w both taken in R

I, v� × w =
∑

(i,k)∈I
v�
(i,k)w(i,k).

This collection of intervals [di,k, di,k+1], (i, k) ∈ I is partitioned between pros,
cons and neutral arguments of a pair of alternatives (x, y).
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di,1 di,2 di,3 di,4 di,5

(x, y)i,1 (x, y)i,2 (x, y)i,3 (x, y)i,4
0 +1 0 0

Case xi i yi Criterion i
Covector coefficients
Covector values

yi xi

dj,1 dj,2 dj,3 dj,4 dj,5

(x, y)j,1 (x, y)j,2 (x, y)j,3 (x, y)j,4
0 −1 −1 0

Case yj j xj Criterion j
Covector coefficients
Covector values

xi yi

Fig. 1 Covectors illustrated

Definition 12 (covector associated to a pair of alternatives) ∀(x, y) ∈ X
2, the cov-

ector (x, y)� is a linear form operating on R
I. Its coefficient associated with criterion

i ∈ N and interval [di,k, di,k+1] ⊂ Xi is given by:

(x, y)�(i,k) :=
⎧
⎨

⎩

+1, if [di,k, di,k+1] ⊂ [yi , xi ]
−1, if [di,k, di,k+1]∩]xi , yi [�= ∅
0, else

The canonical dual base is denoted (δ�
(i,k))(i,k)∈I, where the covector δ�

(i,k) has all
coefficients equal to zero, except for the coefficient associated to the interval indexed
by (i, k), which is equal to +1, so that δ�

(i,k) × �v = �v(i,k).

For alternatives (x, y) in the coreD
2, for each criterion i ∈ N , intervals [di,k, di,k+1]

between xi and yi are taken into account, positively if xi �i yi , and negatively if
yi �i xi . For alternatives (x, y) outside the core, for some criterion i ∈ N , some
attribute xi , or yi , or both, falls strictly between the values of Di , “breaking” some
interval [di,k, di,k+1]. Because of the cautious nature of the relation NP , “broken”
intervals are rounded down: those that would support the preference of x over y is not
taken into account and considered neutral, with coefficient 0, while “broken” intervals
that would go against this preference are totally taken into account with coefficient
−1. Figure 1 illustrates these notions.

Example 6 As the preference information only refers two attributes level by criteria,
there is exactly one core interval by criterion: from 2* to 4*, from no to yes, from
45 min to 15 min and from 180 $ to 50 $. Definition 12 is straightforward for core
alternatives:

π1 = (AbCd, aBcD); π�
1 = (1,−1, 1,−1);

π2 = (abcD, aBCd); π�
2 = (0,−1,−1, 1);

π3 = (aBCd, Abcd); π�
3 = (−1, 1, 1, 0).

Alternatives outside the core demand a bit more effort: (h1,h3)� = (0, 1, 0,−1), as:
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– h1 (5∗) is more comfortable than h3 (3∗), but not strongly enough to warrant for a
positive argument;

– h1 is strongly better than h3 on criterion restaurant;
– h1 is weakly nearer than h3;
– h3 is weakly cheaper than h1, and this counts as a fully negative argument.

We also find (h1,h4)� = (1, 1, 1,−1), (h3, h2)� = (−1,−1, 1, 1).

There is a class UP of unbounded queries (x, y) for which covectors fail to account
for arguments that are both negative (because yi �i xi ) and infinitely strong (because
xi ≺i minDi or yi �i maxDi ). In such a case, x is clearly not necessarily preferred
to y.

Definition 13 (unbounded pairs UP )

∀x, y ∈ X, (x, y) ∈ UP ⇐⇒ ∃i ∈ N : xi < yi and [xi , yi [� [minDi ,maxDi ]

Theorem 4 : UP ∩NP = ∅
Proof : see Appendix 1. ��
Example 7 (Example 5 continued)We see that h3 is not necessarily preferred to h1, as
(h1)∗ = 5∗ is better than both (h3)∗ = 3∗ and the most comfortable hotel referenced
by P (maxD∗ = 4*). No amount of positive arguments in favor of h3 make up for
such a high attribute within the cautious context of necessary preference.

Neither is h4 preferred to h2, as (h4)t = 60 min is worse than both (h2)t = 35 min
and the farthest hotel referenced by P (minDt = 45 min). No amount of arguments
in favor of h4 make up for such a low attribute.

For pairs outside the class UP , we give three characterizations of the necessary
preference of x over y using covectors.

Theorem 5 (characterization of necessary preference using covectors) ∀(x, y) ∈
X
2\UP , the following propositions are equivalent:

1. Necessary preference

(x, y) ∈ NP

2. Linear feasibility problem

⎧
⎨

⎩

(x, y)� × �v < 0
∀π ∈ P, π� × �v ≥ 0
∀(i, k) ∈ I, δ�

(i,k) × �v ≥ 0
has no solution�v ∈ R

I

3. Combination of statements ∃λ ∈ [0,+∞[P , μ ∈ [0,+∞[I:

(x, y)� =
∑

π∈P
λππ� +

∑

(i,k)∈I
μ(i,k)δ

�
(i,k)
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4. Integral combination of statements ∃n ∈ N
�, � ∈ N

P , m ∈ N
I :

n(x, y)� =
∑

π∈P
�ππ� +

∑

(i,k)∈I
m(i,k)δ

�
(i,k)

Proof: see Appendix 1. ��
Point 3 proves the situation depicted in example 4 is not a corner case, but a general

one: every necessary preference statement results from basic arithmetic operations
(namely multiplication by a positive number, addition and cancelation of terms) over
fundamental inequalities expressing either the preference information, or dominance.
The explorationof the different combinations of this grammar, to assess if an alternative
is necessarily preferred to another, is a linear programming problem. Noticeably, when
the pair (x, y) /∈ UP changes, the constraints remain the same, and can be computed
once and for all: two different queries differ only by their objective covector.

Example 8 We use the fourth point of Theorem 5 to establish:

– h1 is necessarily preferred to h4, as (h1,h4)� = π�
1 + 2δ�

(2,1);
– h3 is necessarily preferred to h2, as (h3,h2)� = π�

1 + 2π�
2 + 2π�

3 ;
– h1 is not necessarily preferred to h3, as there is no suitable linear combination.

Consequently, alternatives h1 and h3 are incomparable, as neither is preferred to the
other.

We represent graphically the skeleton of the relation NP ∩ D
2 (additional arcs

resulting of the transitive closure of this skeleton are omitted in Fig. 2). For illustrative
purpose, we show some example of the covectors associated to pairs involved in
Example 4.

The integral version (point 4) is obviously less useful than the continuous one (point
3) for the actual decision of a query, as it implies the solving of an ILP, rather than an
LP. It is nevertheless an important property that we shall leverage in the next section to
derive insights into the problemof explaining a necessary preference relation statement
(x, y) ∈ NP by low-order preference swaps, as introduced in Sect. 2.

4 Explanation of the necessary relation with binary reference scales

In this section, we bring together the main notions discussed in Sects. 2 and 3, con-
necting the explanation engine producing sequences of low-order preference swaps
to the necessary preference relation. This coupling is made possible by Theorem 3,
which ensures the necessary preference relation NP satisfies the requirement for the
relation R explained by the explanation engine (i.e., we instantiate R as NP ). This
coupling is also highly desirable, as the necessary preference relation makes minimal
assumptions, handling a collection of compatible utility functions, virtually impossible
to exhibit to the user.

To address some of the issues listed in Sect. 2.3, we make two additional assump-
tions. The first one concerns the number of distinct values referenced by the preference
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Fig. 2 Necessary preference
relations

ABCD

AbCD

ABcD aBCD

AbcD

ABCd abCD

AbCd

aBcD

abcD

aBCd

abCd

aBcd

abcd

ABcd

Abcd D

N \ (D ∪ P)

P

δ∗
(2,1) = (0, 1, 0, 0)

(1, −1, 0, 0) = π∗
1 + π∗

2 + δ∗
(2,1)

π∗
1 = (1, −1, 1, −1)

π∗
2 = (0, −1, −1, 1)

information P which serves as a basis for the inference of the necessary preference
relation NP , and is discussed in Sect. 4.1. The second one instantiates the cap on
the order of the swaps linking the alternatives in the explaining sequence, and is dis-
cussed in Sect. 4.2. Under these assumptions, explanations have a core, term-by-term
structure we expose in Sect. 4.3, followed by some resulting properties.

4.1 Binary reference scales

Binary reference scales are encountered when the preferences P expressed by the
decision maker only reference two levels on each attribute.

Definition 14 (Binary reference scales)

∀i ∈ N , Bi = {�i �i ⊥i }, B :=
∏

i∈N
Bi

Besides luck, such a tight reference set is the consequence of one of these two
situations :

– Attributes are themselves binary: present or absent features, passed or failed
checks, etc. In addition, such binary attributes may result from any model relying
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on subset comparisons. While they fall outside the scope of this article, we believe
the explanation engine discussed here can address problems not necessarily result-
ing from an additive utility decision model (for instance, robust weighted majority
decision models rely on subset comparisons between coalition of criteria, as do
pan-balance comparisons encountered in extensive measurement problems).

– When expressing preference statements, the decision maker is deliberately
restricted to comparing between prototypical alternatives specifically chosen in∏

i∈N
{⊥i ,�i }. This process is supposed to help the decision maker focusing on the

main aspects of the preference problems, by limiting the number of changing parts
between alternatives, and by referring to carefully chosen reference values, serving
as anchors. This technique is used in the field of experimental design (yielding
the one-factor-at-a-time or the factorial experiments methods), as well as in mul-
ticriteria decision aiding. For instance, the MACBETHmethod (Bana e Costa and
Vansnick 1995; Bana e Costa et al. 2008) is based on binary alternatives: to assess
hidden technical parameters (theweights of the various criteria), the decisionmaker
is asked to express preference between prototypical alternatives, traditionally ref-
erencing a neutral level ⊥i (for technological products, representing the attribute
of a mid-range, available product), and a high-level �i (representing the attribute
of a luxury product, or a hypothetical performance demanding a technological
breakthrough).

This tight set of core alternatives (see Definition 10) has bearing on the neces-
sary preference relation. It increases the likelihood of single and multiple cancelation
occurrence, thus enriching relation NP between core alternatives in B

2. It aligns the
individual technical arguments of the decision problem “is alternative x necessarily
preferred to alternative y?”, the intervals between consecutive attributes of the core
(see Definition 12), with the criteria themselves. This alignment has, in turn, conse-
quences concerning explanations, as the criteria involved in a preference statement
(precisely, their number) determine its order, which is a proxy for its cognitive com-
plexity. Technically, with binary reference scales, the order of a swap (x, y) ∈ NP\D
is exactly the number of non-zero coefficients of its covector (x, y)�.

4.2 Swaps of order two

While the assumption of binary scales is a favorable case for the joining of the expla-
nation engine based on sequences of preference swaps and the necessary preference
relation, we make the choice concerning the bound placed on the order of the swaps
eligible for participating in the explanation. We restrict the explanation to swaps of
order at most two, that is:

– either a dominance relation or
– a trade-off between exactly two criteria.

The concept of swaps is known in engineering. For instance, theArchitecture Trade-
off Analysis Method (ATAM) is used to assess software architectures according to
“quality attribute goals” (Kazman et al. 2000). A trade-off point is an architecture
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parameter affecting at least two quality attributes in different directions. For example,
increasing the speed of the communication channel improves throughput in the system
but reduces its reliability. Thus, the speed of that channel is a trade-off point. The
concept of trade-off point in ATAM makes explicit the interdependencies between
attributes. Even though trade-offs can be defined for any number of attributes, the
examples of trade-offs that are provided by experts are almost always given on pairs
of attributes. This is the case of the example provided above. It is thus a very reasonable
assumption to restrict ourselves to swaps of order two.

4.3 Structure of an explanation

Our restriction to binary scales allows us to introduce a simpler notation, in terms of
positive or negative arguments:

Definition 15 (pros and cons of a necessary preference statement) If P ⊂
B
2,∀(x, y) ∈ NP ,

(x, y)+ := {i ∈ N : (x, y)�(i,1) = +1} = {i ∈ N : yi �i ⊥i ≺i �i �i xi }
(x, y)− := {i ∈ N : (x, y)�(i,1) = −1} = {i ∈ N : ⊥i �i xi ≺i yi �i �i }

Assuming binary reference scales, the relation �2 ⊂ X
2 between alternatives

induces a relation between criteria �̃2 ⊂ N 2.

Definition 16 (criteria swaps) If P ⊂ B
2,

�̃2 := {(i, i ′) ∈ N 2 : ((�i ,⊥i ′), (⊥i ,�i ′))cp ⊂ �2}

Note the use of the ceteris paribus syntax here (see Definition 1). We emphasize
though that this relation is not suitable to being presented directly as an explanation.
The reason is that it could be interpreted, sometimes erroneously, as giving more
importance to criterion i than to criterion i ′.While this interpretation seems practically
correct in an elicitation framework similar to theMACBETHprocedure (see Sect. 4.1),
it is highly dependent of the values of Di ×Di ′ referred by the preference information
P . To remain on the safe side, the relation �̃2 should only appear as a technical tool
to produce an explanation.

Example 9 The necessary preference relation deduced from the preference informa-
tion given in Example 3 contains the following compact criteria swap statements,
represented in Fig. 3.

�̃2 = {(∗, r), (t, r), ($, ∗), ($, r), ($, t)}.

For instance, the compact criteria swap statement ($, r), represented by the arrow
from $ to r , means that an alternative ranking higher than D on attribute $ and low
on attribute r is necessarily preferred to one ranking low on $ (between d and D)
and high on r , attributes ∗ and t being equal:

(
(__∗, b, __t , D), (__∗, B, __t , d)

)
cp =

{((x∗, b, xt , D), (x∗, B, xt , d)
)
,∀x∗ ∈ X∗,∀xt ∈ Xt } ⊂ NP .
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Fig. 3 Binary relation between
criteria

$ ∗

t r

The following theorem reveals the core structure every explanation is built upon.

Theorem 6 (Term-by-term explanation) If P ⊂ B
2,∀σ ∈ NP , the following propo-

sitions are equivalent:

1. σ ∈ E2(NP )

2. ∃a ∈ N
�, γ1, . . . , γq ∈ �2, �1, . . . , �q ∈ N,m1, . . . ,mn ∈ N :

aσ� =
∑

k

�kγ
�
k +

∑

k

mkδ
�
(k,1)

3. There is a matching of cardinality |σ−| in the graph of �̃2 ∩ (σ+ × σ−).
4. There is an injection φ : σ− → σ+ such that ∀k ∈ σ−, (φ(k), k) ∈ �̃2.

Proof See Appendix 1. ��
In a nutshell, an explanation is a sequence where, at each step, a positive argument

is used up to cancel an inferior negative argument and, eventually, every negative
argument has been canceled. We highlight three consequences of this theorem:

– If preferences only refer to swaps of order 2, then every necessary preference can
be explained by swaps of order 2. This is a potent existence result for explanations,
and it provides a complete description of the necessary preference relation under
the assumption of the decision maker expressing preferences between alternatives
differing along two criteria only.

Corollary 1 (case of 2-order preference statements) IfP ⊂ B
2, and ∀π ∈ P, |N �=

π | =
2 then E2(NP ) = NP . i.e., for any statement (x, y) ∈ NP , there exists an explanation
of it in E2(NP )

Proof By Theorem 1, E2(NP ) ⊂ NP . Reciprocally, if (x, y) ∈ NP , the implication
1. ⇒ 4. of Theorem 5 ensures the existence of a linear combination with integral, non-
negative coefficients n(x, y)� =

∑

π∈P
�ππ� +

∑

(i,k)∈I
m(i,k)δ

�
(i,k). The assumption that

∀π ∈ P, |N �=
π | = 2 entails P ⊂ �2, so this linear combination satisfies proposition 2

of Theorem 6, thus (x, y) ∈ E2(NP ) by proposition 1.

– Explanations can be kept short. The next corollary proves that the size of the
explanation is at most “half the number of criteria, rounded down, plus one”,
which appears manageable for the recipient of explanation.
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Corollary 2 (short explanations) If P ⊂ B
2, for any statement (x, y) ∈ E2(NP ),

there exists an explanation with a length at most � |N |
2  + 1, where �m denotes the

integer part of m.

The bound � |N |
2  + 1 basically comes from the fact that |(x, y)−| ≤ � |N |

2  , which
follows directly from item 4 of Theorem 6. The main asset of this theorem is that it is
constructive. The explanation sequence will be provided in the next section.

Algorithm 1: FindExplanation
Data: a statement σ = (x, y) to be explained, a set of preference statements P .
Result: a matching of each negative argument by a stronger positive one.
Compute σ+, σ−1

if |σ+| < |σ−| then2
return None3

if σ /∈ NP then4
return None5

Build the graph of �̃2 ∩ (σ+ × σ−) :6

Initialize G as a graph with nodes σ+ ∪ σ− and no edge.7

for i ∈ σ+ do8
for j ∈ σ− do9

if the LP with |N | + |P| inequality constraints, |N | equality constraints and |N | + |P|10
variables
∀p ∈ P, �p ≥ 011
∀k ∈ N ,mk ≥ 012

∀k ∈ N ,
∑

p∈P
�p p�

k + mk = 1 if k = i , -1 if k = j , 0 else.
13

is feasible then14
add edge (i, j) to G15

Find a matching φ of maximum cardinality C in bipartite graph G.16

if C < |σ−| then17
return None18

return φ19

– Building an explanation, or ensuring there is none, is handled by an efficient
algorithm (see Algorithm 1). A quick inspection of the complexity reveals that in
the first part of the algorithm, there are at most O(n2) calls to a linear program
(with n the number of criteria). This is followed by the resolution of a matching
problem, which runs in its simpler version in O(n3). Note that in theory, the
number of constraints and variables of the LP may be exponential in n, because
of the number of preference statements can be. In practice, this is of course highly
unrealistic as it is too demanding for the decisionmaker. Finally, for a polynomially
bounded number of preference queries, the algorithm is efficient.

Example 10 (Ex 8. ctd.) The pair (h1,h4) is in NP . Its negative arguments are
(h1,h4)− = {∗, r, $} and its positive arguments (h1, h4)+ = {$}. As there are more
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Fig. 4 Matching returned by
Algorithm 1 with data of
Example 3

positive arguments negative arguments

$ ∗

t r

negative than positive arguments, the necessary preference of h1 over h4 cannot be
explained by a sequence of preference swaps of order 1 or 2.

The pair (h3,h2) is also in NP . (h3,h2)− = {∗, r} and (h3, h2)+ = {t, $}.
Figure 4 shows the bipartite graph of the relation �2 restricted to pairs of positive–

negative arguments of the statement (h3,h2). The double arrows highlight a matching
of cardinality 2, covering the negative arguments, as returned by Algorithm 1:
{($, ∗), (t, r)} ⊂ �̃2. Therefore, the statement (h3,h2) can be explained by a sequence
of preference swaps of order 2 and dominance relations.

To explain that h3 = (3∗, no, 15 min, 60 $) is necessarily preferred to h2=(4∗, yes,
45 min, 180 $), several explanations can be considered:

– h3 �2 (4�, no, 15 min, 180$) �2 h2
– h3 �2 (3�, yes, 45 min, 180$) �2 h2
– h3 D (a, b,C, D) �2 (A, b,C, d) �2 (A, B, c, d) D h2
– h3 D (a, b,C, D) �2 (a, B, c, D) �2 (A, B, c, d) D h2

The first two explanations, which involve directly the attributes of the compared alter-
natives are shorter than the last two, which refer to core alternatives. It is interesting
to observe how the two preference swaps (giving up cost for comfort and lengthening
commute time to obtain access to a restaurant) can be presented in any order (since
they do not have any criteria in common).

5 Related works and extensions

Generating explanations to justify recommendation is a key challenge to decision-
aiding systems. While we witness the emergence of highly sophisticated methods to
elicit preferences and compute recommended alternatives, the question of explanation
is often neglected. We believe this may hinder the development of such systems. As
a matter of fact, real decision makers often prefer the use of a very basic model if its
outcomes are transparent, rather that elaborate models that look as a black box for
them.

Explanations can either be conceived as being complete or incomplete. While we
clearly follow the first option in this paper, some papers assume that explanations
can be effective without being formally sufficient to support the statement [this may
indeed be absolutely appropriate in settings with low stakes, for instance for most
recommender systems (Herlocker et al. 2000; Friedrich and Zanker 2011)]. In that
case, explanations can be seen as positive evidence supporting the conclusion. In a
multicriteria setting close to ours, the approaches of Klein (1994), Carenini andMoore
(2006), Labreuche (2011), Nunes et al. (2014) fall into that category: they build upon
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patterns (or anchors) that are used to present some sufficiently convincing evidence to
the user. The idea in that case is for instance to identify which set of criteria should be
highlighted in the explanation.

A second distinctive feature of explanation is whether it is data based or process
based (Herlocker et al. 2000). The vast majority of approaches dealing with this con-
cept and emanating fromA.I. adopts a data-based approach: this is true in particular of
the literature investigating explanations in diagnosis systems [see for instance (Eiter
and Gottlob 1995)] or constraints [where the aim is to return a minimal subset of
mutually incoherent constraints in case of infeasibility (Ulrich Junker 2004)]. Here
the objective is to find a minimal subset of the data provided by the user which implies
the conclusion. This assumes that the explanation is to be presented to a user who has
no problem in understanding the process by which these data then lead to a given con-
clusion. This is not the case in our setting (as inference from the necessary preference
relation is a difficult notion to handle), and our approach follows instead a process-
based approach. We would like to point out though that these two approaches are by
no means contradictory: in particular, it would be certainly relevant to incorporate
some data-based consideration when building sequences of preference swaps, as was
already alluded to in the paper. Giving priority to the statements presented by the user,
or defining notions of proximity so that sequences of explanations can be evaluated
with respect to their distance to the initial data is certainly a promising perspective.

In our setting the initial preference information is provided as comparisons between
alternatives. Other form of input may justify the use of other decision models (and
consequently, of explanation techniques). For instance, complete explanations have
been investigated for (weighted) majority-based decision models, when ordinal rank-
ings on alternatives are given as input (Labreuche et al. 2011, 2012). In that case,
explanations also amounts to exhibit coalitions of criteria.

Each explanatory step produced by our approach is typically performed by focusing
on trade-offs on a subset of criteria, assuming the other ones remain unchanged. This
ceteris paribus principle, which lies at the heart of the initial even-swap technique,
has also been exploited for its ability to compactly represent qualitative conditional
preferences (Boutilier et al. 2004). This language was later extended to account for
possible trade-offs among criteria (Brafman et al. 2006), and (Nic Wilson 2011) pro-
posed an evenmore expressive language (allowing to capture also stronger semantics).
The resulting statements are similar in spirit to the criteria swaps that we use in this
paper as technical constructs. Interestingly, “flipping” or swapping sequences appear
as proof-theoretical counterpart for the semantics of these logical theories. While such
compact statements are certainly useful for users to express preferences, it is not clear
whether they should be used per se in producing explanations, because they may be
inappropriately interpreted, as discussed in Sect. 4.3. Investigating their relevance in
our setting is nevertheless an interesting future work.

We conclude by mentioning some further perspectives of this work.

– There remain theoretical questions to be studied.We have investigated two extreme
cases: in the first one, no assumption is made on the preference information (yield-
ing a negative result in terms of the length of the explanation), while in the second
one we assume a binary reference scale (and can guarantee the existence of a short
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explanation). A natural but challenging question is whether the complexity of the
reference scale can be more generally linked to the size of the explanations.

– We have provided an algorithm for the binary case only. It would be of practical
interest to design and implement an algorithm finding the simplest (e.g., shortest)
explanation in the general case.

– While we discuss good theoretical properties of explanations, an empirical val-
idation remains to be conducted on other aspects mentioned (the sequencing of
swaps, the choice of values, for instance).What makes the exercise difficult though
is that this may highly depend on the context of use: a DM who needs to justify
an important decision before a committee may not have the same expectations as
a DM taking a decision for herself. Other issues are likely to emerge too: in par-
ticular, as we saw in Example 10, the same preference swaps can (sometimes) be
presented in different orders. Are there good heuristics to select a given ordering?

– The framework may be smoothly extended to cater for more general situations.
For instance, the nature of the preferential information may be different. The DM
may use a more expressive language, and give some statements on the intensity of
their preferences. A first step in that direction is to assume a quaternary relation,
of the form “o1 is more intensely preferred to o2 than o3 is preferred to o4”. While
this would constitute a first step towards dealing with intensities, we are confident
that this may still be handled within the framework described here.

– As a final suggestion on a possible extension of this framework, we note that
this work makes the assumption that elicitation and explanation are dealt with
separately. A certainly promising perspective is to extend the framework so that
explanation and elicitation are actually intertwined. By putting forward an expla-
nation, the system shows some evidence which can in turn trigger some reaction
from the DM.

Proofs

Proof of theorem 2

For the sketch of the proof, we construct, for every p, a preference between x =
(0, 0, 0) and y = (2p,−p,−p). Starting from alternative (0, 0, 0), we begin with
a preference swap between attributes 1 and 2 (adding value 1 on the first attribute,
and subtracting 1 on the second one). Then we perform a preference swap between
attributes 1 and 3 (adding value 1 on the first attribute, and subtracting 1 on the third
one). We proceed then again by a preference swap between attributes 1 and 2, and so
on (the sequence is depicted in Fig. 5).

Proof (Theorem 2) The proof is based on an instantiation of R with the necessary
preference relation. This latter is inferred from information P , and is denoted by
NP . Let n = 3, p ∈ N

∗. Assume that X1 ⊇ {0, 1, 2, . . . , 2p}, X2 ⊇ {−p,−p +
1, . . . ,−1, 0} andX3 ⊇ {−p,−p+1, . . . ,−1, 0}. Consider the following preference
information P:

123



Explaining robust additive utility... 175

Fig. 5 Description of the
sequence
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∀ j ∈ {0, . . . , p − 1}
(((2 j)1, (− j)2), ((2 j + 1)1, (− j − 1)2))cp ⊂ P (1)

∀ j ∈ {0, . . . , p − 1}
(((2 j + 1)1, (− j)3), ((2 j + 2)1, (− j − 1)3))cp ⊂ P (2)

where (1) [resp. (2)] correspond to a ceteris paribus pair on attributes {1, 2} (resp.
{1, 3}). Hence, D1 = {0, 1, 2, . . . , 2p}, D2 = {−p,−p + 1, . . . ,−1, 0} and D3 =
{−p,−p + 1, . . . ,−1, 0}.

We set x = (0, 0, 0) and y = (2p,−p,−p). With this P , we clearly obtain the
sequence

(x , (1,−1, 0)) ∈ P (by (1))

((1,−1, 0) , (2,−1,−1)) ∈ P , . . . (by (2))

((2p − 2,−(p − 1),−(p − 1)) , (2p − 1,−p,−(p − 1))) ∈ P (by (1))

((2p − 1,−p,−(p − 1)) , (2p,−p,−p)) ∈ P (by (2))

so that (x, y) ∈ R. This sequence is of length 2 p.
There remains to prove that this is the shortest explanation.
To this end, we first need to determine the form of�2. By Theorem 4, the necessary

preference relation cannot hold outside the interval between the minimal and maximal
elements of D. Moreover, according to Theorem 5, the necessary preference relation
between two alternatives z, z′ holds iff a linear problem involving the covector of
(z, z′) is feasible. From these results, checking whether (z, z′) ∈ NP is equivalent
to checking boundness on z and z′, and also checking whether (t, t ′) ∈ NP where
t, t ′ ∈ D are appropriately chosen from z and z′. Therefore, we need only to consider
the elements in �2 that belong to D1 × D2 × D3 (The other ones can be deduced
by Pareto dominance). The preference information (1) and (2) is very specific. In
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particular, any value k ∈ D1 appears only in two examples—one in which k appears
in the left-hand side [in (1)] and the other one where k appears in the right-hand side
[in (2)]. Moreover, we notice that, in (1) and (2), the value on the first attribute is
always increasing from the left-hand side to the right-hand side, and the value of the
second and the third attributes is decreasing from the left-hand side to the right-hand
side. Hence, the elements of �2 cannot be obtained by a combination of two or more
preference information. They are obtained only from one preference information [(1),
(2)] and Pareto dominance D. More precisely, �2 is composed of the following pairs

(
(i, j, k) , (i ′, j ′, k′)

)

where either there exists l such that i = 2l, j = 2l + 1, j ≥ −l > −l − 1 ≥ j ′ and
k = k′, or there exists l such that i = 2l + 1, j = 2l + 2, j = j ′ and k ≥ −l >

−l − 1 ≥ k′. From this, one can readily see that the explanation of the preference of
x over y described earlier is the shortest one. ��

Proof of Theorem 4 and Theorem 5

Proof of (1) ⇐⇒ (2)

The belonging of a pair of alternatives to the necessary preference relation can be
expressed as a mathematical program. We have to prove that when the pair is not
unbounded, its constrains and objective function are linear and can be expressed using
the proposed, fixed-length covectors.

Pairs of core alternatives, and in particular, preference statements, are never
unbounded.We begin by introducing∀(i, k) ∈ I, �vi,k := vi (d(i,k+1))−vi (d(i,k)) and
proving covectors, when applied to such a vector �v of differences in value, correctly
compute the difference of value between core alternatives.

We break down the Definition 12 by criterion:
∀i ∈ N , ∀xi , yi ∈ Xi , let (xi , yi ) ∈ R

|Di |−1 : ∀k ∈ N : 1 ≤ k ≤ |Di | − 1,

(xi , yi )
�
k :=

⎧
⎨

⎩

+1, if [di,k, di,k+1] ⊂ [yi , xi ]
−1, if [di,k, di,k+1]∩]xi , yi [�= ∅
0, else

So that ∀x, y ∈ X,∀(i, k) ∈ I, (x, y)�(i,k) = (xi , yi )�k .

Lemma 1 (expression of differences in value as a product)

∀i ∈ N ,∀xi , yi ∈ Di ,∀V ∈ V, vi (xi ) − vi (yi ) =
|Di |−1∑

k=1

(xi , yi )
�
k�v(i,k)

Proof First, we note that for any valid indexes k1 < k2,
∑k2

k=k1
�v(i,k) = vi (di,k2) −

vi (di,k1)
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Second, we detail
∑|Di |−1

k=1 (xi , yi )�k�v(i,k), according to the sign of xi − yi :

– If xi > yi , the interval ]xi , yi [ is empty, so the case leading to a coefficient
(x, y)�(i,k) = −1 does not occur. Non-zero coefficients correspond to intervals

[di,k, ki,k+1[ partitioning [yi , xi [, so that∑|Di |−1
k=1 (xi , yi )�k�v(i,k) = (+1)(vi (xi )−

vi (yi ))
– If xi < yi , the interval [yi , xi ] is empty, so the case leading to a coefficient

(x, y)�(i,k) = +1 does not occur. Non-zero coefficients correspond to intervals

[di,k, ki,k+1[ partitioning [xi , yi [, so that∑|Di |−1
k=1 (xi , yi )�k�v(i,k) = (−1)(vi (yi )−

vi (xi )) = vi (xi ) − vi (yi )
– If xi = yi , the interval [xi , yi ] is trivial and the interval ]xi , yi [ is empty, so every
coefficient (x, y)�(i,k) is equal to zero. Consequently,

∑|Di |−1
k=1 (x, y)�(i,k)�v(i,k) =

0 = vi (xi ) − vi (yi ).

Thus, ∀i ∈ N , vi (x) − vi (y) = ∑|Di |−1
k=1 (x, y)�(i,k)�v(i,k). ��

For any alternatives x, y ∈ D, summing up these equalities over every criteria yields
V (x) − V (y) = (x, y)� × �v

Introducing ∀x, y ∈ X, �Vinf(x, y) := infV∈VP V (x) − V (y) ∈ R ∪ {−∞},
Definition 9 states that

∀x, y ∈ X, (x, y) ∈ NP ⇐⇒ �Vinf(x, y) ≥ 0

In the case of pairs of core alternatives, the objective function as well as the constraints
of the minimization problem�Vinf(x, y) can be expressed using covectors and matrix
multiplication, as permitted by Lemma 1, so that �Vinf(x, y) is a linear program.

Lemma 2 (query between core alternatives)

∀x, y ∈ D, �Vinf(x, y) = inf (x, y)� × �v s.t. �v ∈ �P ∩ �D

with �P := {�v ∈ R
I : ∀π ∈ P, π� ×�v ≥ 0} and �D := {�v ∈ R

I : ∀(i, k) ∈
I, δ�

(i,k) × �v ≥ 0}.
Generally, with alternatives (x, y) not necessarily belonging to the core D, it has

been shown Greco et al. (2008) that minimizing V (x) − V (y) over V ∈ VP is still
a linear program, with additional decision variables accounting for the distinct values
{xi , yi } /∈ Di . The vi (xi ), vi (yi ) are only constrained by the monotonicity of the
marginal value functions, so the problem is separate:

�Vinf = inf
�v∈�P∩�D

∑

i∈N
inf

vi (xi ) ∈ UXi ∩ LXi

vi (yi ) ∈ UYi ∩ LYi

vi (xi ) − vi (yi )

with, ∀i ∈ N ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UXi := {vi (xi ) ∈ R : ∀zi ∈ Di ∪ {yi }, zi �i xi ⇒ vi (zi ) ≥ vi (xi )}
LXi := {vi (xi ) ∈ R : ∀zi ∈ Di ∪ {yi }, zi �i xi ⇒ vi (zi ) ≤ vi (xi )}
UYi := {vi (yi ) ∈ R : ∀zi ∈ Di ∪ {xi }, zi �i yi ⇒ vi (zi ) ≥ vi (yi )}
LYi := {vi (yi ) ∈ R : ∀zi ∈ Di ∪ {xi }, zi �i yi ⇒ vi (zi ) ≤ vi (li )}
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Thus, it is possible to circumvent this augmentation of the decision space by:

– Considering a given criterion i ∈ N and a given vector �v ∈ �P ∩ �D;
– Directly assigning the additional decision variables to their optimal values in the
inner linear program

inf
vi (xi ),vi (yi )

vi (xi ) − vi (yi ) s.t.

{
vi (xi ) ∈ UXi ∩ LXi

vi (yi ) ∈ UYi ∩ LYi
;

– Checking this optimal case is correctly represented, either by an unbounded pair
or in covector form.

We begin by focusing on the case where the values of Di ∪ {xi , yi } are all different.
We sort these values in strictly ascending order, and we detail three cases according
to the position of xi and yi amongst these |Di | + 2 values:

– The interval [xi , yi ]overflows the setDi , so that the pair (x, y) ∈ UP is unbounded.
This case actually encompasses three subcases

– xi has no predecessor, when xi is the least element of Di ∪ {xi , yi }. There is no
constraints in LXi = R;

– yi has no successor, when yi is the highest element of Di ∪ {xi , yi }. There are no
constraints in UYi = R;

– Both preceding cases are simultaneously satisfied.

In any case,

inf vi (xi ) − vi (yi ) s.t.

{
vi (xi ) ∈ UXi ∩ LXi

vi (yi ) ∈ UYi ∩ LYi
= −∞,

thus Vinf(x, y) = −∞ and (x, y) /∈ NP , thus proving Theorem 4;

– yi is the predecessor of xi , so xi is the successor of yi . In this case, the constraints
UXi , LXi ,UYi , LYi can all be replaced by the single equality vi (xi ) = vi (yi ),
which defines a solution both feasible and where the objective function is mini-
mizedwith respect to the decision variables vi (xi ), vi (yi ).Meanwhile,we consider
the coefficients (x, y)�(i,k), 1 ≤ k < |Di |: the interval [yi , xi ] does not contain a
single core value di,k ∈ Di , hence (x, y)�(i,k) �= +1; the interval ]xi , yi [ is empty,
hence (x, y)�(i,k) �= −1; finally (x, y)�(i,k) = 0. This proves the identity:

inf vi (xi ) − vi (yi ) s.t.

{
vi (xi ) ∈ UXi ∩ LXi

vi (yi ) ∈ UYi ∩ LYi
=

|Di |−1∑

k=1

(x, y)�(i,k)�u(i,k),

as both sides are equal to zero.
– xi has a predecessorwhich is not yi , and yi has a successorwhich is not xi . First, we

rewrite inf vi (xi )− vi (yi ) s.t.

{
vi (xi ) ∈ UXi ∩ LXi

vi (yi ) ∈ UYi ∩ LYi
as a difference in marginal

value between surrogate alternatives in the core Di . The predecessor xi of xi is
given by xi := max{d ∈ Di , d �i xi }, so that the constraints UXi , LXi can
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both be replaced by the single equality vi (xi ) = vi (xi ), which defines a solution
both feasible and where vi (xi ) is minimal with respect to the decision variable
vi (xi ). The successor yi of yi is given by yi := min{d ∈ Di , d �i yi }, so that the
constraints UYi , LYi can both be replaced by the single equality vi (yi ) = vi (yi ),
which defines a solution both feasible andwhere vi (yi ) ismaximal, so the objective
function is minimal, with respect to the decision variable vi (yi ).

Thus,

inf vi (xi ) − vi (yi ) s.t.

{
vi (xi ) ∈ UXi ∩ LXi

vi (yi ) ∈ UYi ∩ LYi
= vi (xi ) − vi (yi )

Second, as both surrogate alternatives xi , yi belong to Di , Lemma 1 ensures that

vi (xi ) − vi (yi ) =
|Di |−1∑

k=1

(xi , yi )
�
k�u(i,k)

Third, we check that the covector coefficients for criterion i of the original pair match
those of the surrogate pair, that is:

∀k ∈ N : 1 ≤ k < |Di |, (xi , yi )
�
k = (xi , yi )

�
k

The proof is straightforward:

– If xi �i yi , then there is at least one attribute value d ∈ Di between xi and yi ,
so that the predecessor of xi and the successor of yi are in the same order, thus
xi �i yi . Hence, the coefficient indexed by (i, k) of their respective covectors
are in {0,+1}, with value +1, respectively, when yi �i di,k ≺i di,k+1 �i xi and
when yi �i di,k ≺i di,k+1 �i xi . The definition of the surrogate pair ensures these
conditions are equivalent.

– If xi ≺i yi , then obviously xi �i yi . Hence, the coefficients of their respective
covectors indexed by (i, k) are in {0,−1}, with value 0, respectively, when yi �i

di,k or di,k+1 �i xi , and when yi �i di,k or di,k+1 �i xi . The definition of the
surrogate pair ensures these conditions are equivalent. Thus,

inf vi (xi ) − vi (yi ) s.t.

{
vi (xi ) ∈ UXi ∩ LXi

vi (yi ) ∈ UYi ∩ LYi
=

|Di |−1∑

k=1

(xi , yi )
�
k�u(i,k)

The cases where |Di ∪ {xi , yi }| = |Di | + 1 are correctly handled in the discussion
above: if overflow (when either xi ≺i minDi or yi �i maxDi ) does not occur, the
case xi = yi extends the case where the optimal value of vi (xi ) − vi (yi ) is zero;
the case where yi ∈ Di leads to the introduction of yi := yi , and the case where
xi ∈ Di leads to xi := xi .
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Finally, for any pair (x, y) ∈ X
2, we have proven that, in every case, either the pair

is unbounded and not in the relation NP , or it can be represented by a covector such

that �Vinf(x, y) = inf�v∈RI (x, y)� × �v s.t.

{∀π ∈ P, π� × �v ≥ 0
∀(i, k) ∈ I, δ�

(i,k) × �v ≥ 0

Proof of (2) ⇐⇒ (3)

By Farkas’ lemma, the problem (2) has no solution if, and only if, the objective linear
form (x, y)� is a linear combination with non-negative coefficients of the constraint
linear forms {π�, π ∈ P} and {δ�

i,k, (i, k) ∈ I}.

Proof of (3) ⇐⇒ (4)

Obviously, (4)⇒ (3). Conversely, as the covectors involved in (3) have integral coor-
dinates, the non-negative coefficients {λπ, π ∈ P} and {μ(i,k), (i, k) ∈ I}, if they
exist, can be chosen in the field of rational numbers. Multiplying the relation by the
common denominator n ∈ N

� of these coefficients leads to (4).

Proof of Theorem 6

We prove Theorem 6 in four steps: (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).

– (1) ⇒ (2): Assume a statement σ := (x, y) ∈ E2(NP ). By Theorem 1 and
Definition 5, there is an integer n and a tuple (e0, e1, . . . , en) ∈ X

n such that
e0 = x, en = y and (e j , e j+1) ∈ D ∪ �2 for any integer j < n. This transitive
chain of dominance relations and swaps of order 2 can be transformed into the
covector relation sought, by induction on the length of the explanation, as described
by the following lemmas:

Lemma 3 (covector representation of dominance relations)

∀ρ ∈ D, ∃q ∈ {0,+1}I : ρ� =
∑

(i,k)∈I
q(i,k)δ

�
(i,k)

Proof A dominance relation has no negative argument, so its covector coefficient,
given by Definition 12, is in {0,+1}. ��
Lemma 4 (covector representation of transitivity relations)

∀x, y, z ∈ X, ∃q ∈ N
I : (x, z)� = (x, y)� + (y, z)� +

∑

(i,k)∈I
q(i,k)δ

�
(i,k)

Proof For core alternatives x, y, z ∈ D, for any separate value function V ∈ V,

(x, z)� × �v = V (x) − V (z)

= (V (x) − V (y)) + (V (y) − V (z))
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= (x, y)� × �v + (y, z)� × �v

= ((x, y)� + (y, z)�) × �v

As the relation above stands for any vector�v ∈ [0,+∞[, it yields (x, z)� = (x, y)�+
(y, z)� = (x, y)� + (y, z)� +

∑

(i,k)∈I
q(i,k)δ

�
(i,k) with q = 0.

For alternatives not necessarily in the core, and for any criterion i ∈ N , the trivial
cases where yi ∈ {xi , zi }, the case where xi = zi , or the case where xi , yi , zi are
all distinct, divided into 6 subcases considering the order of attributes xi , yi , zi , all
lead to (x, z)� ≥ (x, y)� + (y, z)� because of the rounding down of broken intervals
occurring once in the LHS and twice in the RHS. As both sides are covectors with
integer coefficients, the difference (x, z)� − ((x, y)� + (y, z)�) is a covector with
non-negative integer coefficients q(i,k). ��
– (2) ⇒ (3): Suppose there exists integer coefficients a, �1, . . . , �q , m1, . . . ,mn

and preference swaps of order 2: γ1, . . . , γq such that

aσ� =
∑

k

�kγ
�
k +

∑

k

mkδ
�
(k,1) (3)

Multiplying both sides of the covector Equation (3) by the vector (1, . . . , 1), we
obtain the relation:

M := a(|σ+| − |σ−|) =
∑

mk ≥ 0

To homogenize the right-hand side, we represent the dominance relation thanks
to a dummy criterion: N ′ = N ∪ {0} so that �̃1 := {(i, 0), i ∈ N } ⊂ N ′2. Thus,
relation D ∪ �2 is a graph with nodes in N ′. Re-indexing coefficients �k by the
positive and negative arguments of swap γk (summing up duplicates if needed),
and introducing �k,0 := mk :

a σ� =
∑

γ∈�̃1∪�̃2

�γ+,γ−γ � (4)

To complete the flow �, we introduce:

– A source s supplying flow �s,i = a to the positive arguments i ∈ σ+;
– A sink t collecting flow � j,t = a from the negative arguments j ∈ σ−, and

�0,t = M from node 0.

Covector Equation (4) ensures � defines a feasible flow on the graph (N ′ ∪{s, t}, �̃1∪
�̃2∪{s}×σ+∪σ−×{t}∪{(0, t)}), without capacity constraints, as projection on the
i th coordinate ensures flow conservation for node i ∈ N . Flow � can be decomposed
as a superposition of:

– Cycles, involving necessary equivalence between the nodes, and not contributing
to the value of the flow;
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– Paths from the source s to the sink t passing through node 0, denoting a dominance
relation. Their total contribution to the value of the flow is M ;

– Paths from the source s to the sink t not passing through node 0, with an overall
contribution of a×|σ−| to the value of the flow. Each of these paths links a positive
argument i1 ∈ σ+ to a negative argument ir ∈ σ− through necessary preference
swaps of order 2. Transitivity of the necessary preference relation entails that i1 is
necessarily preferred to ir : the edge (i1, ir ) belongs to �2 ∩ (σ+ × σ−).

We reduce the flow � by ignoring the cycles and paths passing through node 0. In
addition, the flow a carried by the path from source to sink s → i1 → i2 → · · · →
ir → t is redirected to edge (i1, ir ). As a result, we obtain a flow of value a|σ−| on the
graph of the relation �̃2 restricted to σ+×σ−. This entails the existence of a matching
of cardinality |σ−| in this graph, obtained by setting an upper capacity constraint of
value 1 on each edge leaving the source s and entering the sink t (as a cut of capacity
C on the network with capacity constraints ci, j ∈ {1,∞} is a cut of capacity a × C
on the same network with capacity constraints a × ci, j ).

• (3) ⇒ (4) is simply a rewording.
• (4) ⇒ (1): Let φ : σ− → σ+, injective, such that ∀k ∈ σ−, (φ(k), k) ∈ �̃2.
Given any ordering O of the negative argument set σ−, we can build a sequence
of alternatives of decreasing preference e0 := x, e1, . . . , e|σ−| ∈ V such that the
kth statement (ek−1, ek) matches the criteria swap (φ(Ok), Ok) ∈ �̃2:

N �=
(ek−1,ek )

:= {φ(Ok), Ok} ; N=
(ek ,y) := N=

(ek−1,y) ∪ {φ(Ok), Ok)}

Thus, the sequence of sets (ek, y)− decreases from σ− to ∅, one element at a time,
and the sequence of sets (ek � y)+ also decreases from σ+ to σ+\φ[σ−], one
element at a time. If the set σ+\φ[σ−] is empty, e|σ−| = y, and the sequence
x = e0, . . . , e|σ−| = y is an explanation of (x, y) ∈ NP by preference swaps of
order 2, of length |σ−|. Else, e|σ−| �= y but (e|σ−|, y) is a dominance statement,
as its negative argument set is empty. Thus, the sequence x = e0, e1, . . . , e|σ−|, y
is an explanation of (x, y) ∈ NP by preference swaps of order 2 and a dominance
relation, of length |σ−| + 1.
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Abstract—Semantic image annotation is a field of paramount
importance in which deep learning excels. However, some applica-
tion domains, like security or medicine, may need an explanation
of this annotation. Explainable Artificial Intelligence is an answer
to this need. In this work, an explanation is a sentence in natural
language that is dedicated to human users to provide them clues
about the process that leads to the decision: the labels assignment
to image parts. We focus on semantic image annotation with fuzzy
logic that has proven to be a useful framework that captures both
image segmentation imprecision and the vagueness of human
spatial knowledge and vocabulary. In this paper, we present
an algorithm for textual explanation generation of the semantic
annotation of image regions.

Index Terms—Explanation, natural language generation, se-
mantic annotation, fuzzy constraint satisfaction problems

I. INTRODUCTION

Semantic image annotation is the ability for a computer
to label images or image regions. It is a task of paramount
importance with the daily production of images in all the
domains (e.g. medicine, surveillance).

In this field, deep learning has enabled to build models
that can efficiently classify images and recognize objects.
Sometimes, these models can even top human capabilities
on several specific tasks [1]. For some critical applications
of Artificial Intelligence (AI), performance is not the only
criterion to optimize [2]. Such applications may require a
relative understanding of the logic performed by the AI. In
other words, the end-user would like to get a response to the
question “Why ?” [3]

For semantic annotation, Constraint Satisfaction Problems
(CSP) have been successfully applied to geometrical figure
annotation [4] and region labelling from a model [5]. Vanegas
et al. extended these previous works to fuzzy constraint
satisfaction problems (FCSP) to involve fuzzy spatial relations
and illustrate their approach with an automatic interpretation
of Earth observation images [6]. Since CSP and FCSP are
interpretable models and the process of solving is also inter-
pretable and explainable, this kind of approaches are good
candidates for explainable semantic annotation of images.
Pierrard et al. [7] propose algorithms to extract automatically
relevant fuzzy spatial relations for image annotation from

This work has been partly funded by the DeepHealth project, which has
received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 825111.

a few learning images whose regions are segmented and
labelled. The appropriate relations are then used to constitute
a FCSP for annotating areas of an image or a rule base to
classify the image.

In this paper, we focus on the generation of a textual
explanation of the semantic annotation in the context of [7].
Given a solution of such FCSPs and the degree of satisfaction
of all the involved constraints, we propose and evaluate two
algorithms to extract clues of the reasoning and to order the
pieces of the explanation efficiently.

The paper is structured as follows. In section II, fuzzy spa-
tial relations, constraint satisfaction problems and their solving
are described. Next, sections III and IV are devoted to describe
the methods for generating explanation of semantic annotation.
Then, the two approaches are evaluated and compared in
section V. Finally, we draw some conclusions and perspectives
in section VI .

II. BACKGROUND

A. Fuzzy Spatial Relations

The fuzzy logic framework allows using words instead
of numbers during computations and also during problem
formalization. Indeed, relations are represented by a linguistic
description that can be directly used in the explanation [7].

Many fuzzy spatial relations have been studied in the
literature [8]. For instance, Vanegas considers three types of
spatial relations: topological, metric and structural relations
[6]. The two first types are often used in computer vision. We
can cite for instance the RCC8 framework that defines rela-
tions between regions and their fuzzy counterparts that have
been introduced in [9], [10]. Bloch introduced a framework
based on fuzzy morpho-mathematics to evaluate fuzzy spatial
relations [8]. In particular, metric directional relations can be
expressed based on the fuzzy dilation operator.

Without loss of generality, in the remainder of this paper, we
use specifically directional, distance and symmetry relations.
Directional and distance relations [8] are computed as a
fuzzy landscape and assessed using a fuzzy pattern matching
approach [11]. The symmetry relation [12] we use consists in
finding the line that maximizes a symmetry measure between
two objects (regions). Since this measure is not differentiable,
a direct search method is used to solve this optimization
problem, such as the downhill simplex method.

978-1-6654-4407-1/21/$31.00 © 2021 IEEE



B. Fuzzy Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists in assign-
ing some values to a set of variables that must respect a set
of constraints.

An extension of CSP to the fuzzy logic framework to deal
with imprecise parameters and flexible constraints is presented
in [13]. This is called a fuzzy constraint satisfaction problem
(FCSP). A FCSP is defined by:
• A set of variables X = {x1, ..., xn},
• A set of domains D = {D1, ..., Dn} such as Di is the

range of values that can be assigned to xi,
• A set of flexible constraints C = {c1, ..., cp}. Each

constraint ck is defined by a fuzzy relation Rk and by
the set of variables Vk that are involved in it.

To solve a FCSP, the backtracking algorithm is applied. It
starts with an empty set of instantiations and selects a variable
x ∈ X to instantiate. Then, it finds a value in the domain of
X that maintains the consistency of the current instantiation,
regarding the set of constraints C. The steps are repeated until
all the variables are instantiated. When a variable x has no
more value to test, the algorithm backtracks and tries the next
value of the previously instantiated variable.

An instantiation that is consistent and complete is a solution.
One solution of the FCSP is evaluated by its degree of
consistency. Given a solution γ, its degree of consistency [6]
is:

cons(γ) = min
ck∈C

µRk
(γ|Vk

) (1)

where γ|Vk
is the projection of γ on Vk and µRk

the member-
ship function representing Rk.

This consistency degree also enables to compare different
solutions so that the best one can be extracted.

To improve the performance of the backtracking algorithm,
[6], [13] have adapted the AC-3 algorithm of crisp CSP that
prunes the domains, discarding values that are inconsistent
with the current instantiation.

C. Image Annotation with FCSP

When dealing with image annotation, the set of variables X
corresponds to the objects we would like to instantiate. The
variables share the same domain D that represents the regions
in the image that we get after segmentation. Thus, |X| ≤ |D|.
The constraints in C are defined by fuzzy relations: some of
them can deal with groups of objects [6].

This can solve specific annotation problems in which the
objects to annotate and the labels are known (even if they
are automatically detected, by a segmentation for instance).
The intuition behind is that such annotation problem can
be combinatorial and the labels are affected accordingly to
each other, by opposition with individually like in classical
approaches.

In [7], this approach was applied to organ annotation in
medical images, with a focus on automatically generating the
FCSP from few data. In the remainder of this paper, we will
take this work as an illustration with an automatic generated
FCSP.

To generate our explanations, the algorithms we propose
in this work (Algo 1 and Algo 2) take as input a trace
T =

〈
P, s, C̄

〉
of the execution of the solving algorithms.

T is composed of:
• P = 〈X,D,C〉 is a FCSP.
• s, a chosen solution among all the solutions of P , for

instance the best one regarding the degree of consistency.
s contains the assignment for each variable in X .

• C̄, the set of degrees of satisfaction of each c ∈ C.

D. Surface Realization

In linguistics, a realization consists in generating a surface
form, which is a correct sentence in a given natural language,
from a more abstract representation, in which the different
components such as the subject or the verb are specified.
Therefore, a surface realizer is a system that is able to take
an abstract semantic representation as an input to generate a
syntactically-correct sentence.

In this work, we rely on SimpleNLG [14] for performing
this task. This realization engine provides an API that is easy
to use and complete enough for the kind of explanation we
would like to generate. We do not explain here how we use it
(e.g. the function calls). We will just describe the form of the
sentences.

III. COMPLETE TEXTUAL EXPLANATION GENERATION

In this section, we present a first algorithm for explanation
generation in natural language.

A. Algorithm

Algo1 uses all the constraints of the FCSP and turns them
into sentences. The vocabulary of relations contains: to the left
of, to the right of, below, above, close to, symmetrical to and
stretched. That makes 6 binary and one unary relations. We
note that c̄x is the complement of x in the scope of c, and the
moderator is selected among those cited in table I according
to the satisfaction of c. This idea is inspired from [15].

Moderator Degree of satisfaction
very high from 0.9

high from 0.7 to 0.9
average from 0.4 to 0.7

moderate from 0.2 to 0.4
low from 0 to 0.2

TABLE I
SIMPLIFIED CONFIDENCE SCALE

B. Results

In this work, the FCSP has been extracted automatically
from few images from the Visceral dataset1. Figure 1 shows
one of the image and different organs of interest.

The segmentation has been obtained automatically and the
regions were given an identifier in an arbitrary order. Thus, in
this first approach, items are not sorted. However, for the sake

1http://www.visceral.eu/



Algorithm 1: Complete Explanations Generation
Input: a trace T =

〈
P, s, C̄

〉
Output: a complete textual explanation

1 foreach unprocessed variable x ∈ X do
2 v ← value of x in s
3 Create a sentence of the form: “Region v is annotated as

x with a moderator confidence because:”
4 foreach constraint c ∈ C involving x in its scope do
5 if x is the first variable in the scope of c then
6 Generate a sentence of the form: “it is c c̄x”

(eventually, for each variable x′ ∈ c̄x, indicate
the associated v′ ∈ s)

7 else
8 Generate a sentence of the form: “c̄x is/are c x”
9 end

10 end
11 end

of comprehension of this article, we numerated ourselves the
organs, from left to right and top to bottom.

We consider the solution of such a FCSP for Figure 1 with
the highest degree of consistency.

1

3

5

7

2

4

6

8

9

Fig. 1. Backward MRI image with different regions to annotate

The result, as it can be seen in figure 2 is obviously a long
but complete explanation.

In the next, we investigate the possibility to shorten this
explanation. Thus, the next section is dedicated to describe a
second algorithm to generate a more concise explanation.

IV. CONCISE TEXTUAL EXPLANATION GENERATION

A. Cognitive Science Considerations

Cognitive science has largely studied the way Humans
represent a scene or scan images. Thus, it seems natural to
consider those insights to create an explanation.

Zwaan et al. present more than a decade of studies about
situation model, i.e. a mental representation of affairs [16].
They highlight the difficulty to describe correctly a spatial
scene with language, because of the difference between its
dimensionality and the dimensionality of space. For instance,
if one describes a room in a circular way, the first and the last
objects are far from each other in the description but close
in the room. This also shows the importance of the order in
which the parts of the scene have to be described.

This leads us to the studies about image scanning [17],
which is related to the mental representation of a scene or an
image. Authors of [18] state that the visual images preserve
the metric spatial information. This implies that starting from a

Region 1 is annotated as the left lung with a high confidence
because:

• it is completely to the
left of region 2
(annotated as the right
lung by the model),

• region 2 (right lung) is
completely to the right
of region 1,

• it is above region 3
(spleen),

• region 3 (spleen) is

completely below
region 1,

• it is above region 7 (left
psoas),

• region 7 (left psoas) is
completely below
region 1,

• region 5 (left kidney) is
completely below
region 1.

Region 2 is annotated as the right lung with a very high
confidence because:

• it is completely to the
right of region 1 (left
lung),

• region 1 (left lung) is
completely to the left of
region 2,

• region 3 (spleen) is to
the left of region 2,

• region 4 (liver) is below
region 2,

• it is above region 8
(right psoas),

• region 8 (right psoas) is
completely below
region 2,

• region 6 (right kidney) is
completely below
region 2,

• region 9 (bladder) is
below region 2.

Fig. 2. Extract of an explanation for an annotation with the complete
approach. The complete one can be found in [7].

focus point, subjects need more and more time to mentally vi-
sualize the information when going further to this focus point.
Other works study the difficulties of subjects to represent a
scene if the description is too long and if the description is
too precise [19], [20]. Another difficulty is the direction of
reading: [21] indicates that it affects the description of a scene.

The studies about image scan paths bring also good informa-
tion. The attention of subjects is classically attracted by focus
points. In image understanding, this is called salient objects
and [22] gives a comprehensive review on their automatic de-
tection. Nevertheless, cognitive science warns of the difficulty
of defining saliency because it can be context-dependent, or
due to the singularity of an object, of the user’s goal, etc.
However, when a same subject watches the same picture, the
scan paths may be different [23]: thus, the scan path does not
depend only on the objects in the image. If several similar
pictures are presented, the scan path can also be more and
more efficient [23].

Finally, the Gestalt psychologists [24] studied the cognitive
issues of visual perception, in particular the shape of objects.
The 7 Gestalt principles concern figure-ground, similarity,
proximity, common region, continuity, closure and focal point
of images. They are particularly useful in design, but give
some insight about how objects are perceived. In particular,
they recommend to group objects that are similar or that share
properties.

This short overview of cognitive science helped us to design
our explanation strategy.



B. Principles

The previous subsection gives raw information from the
cognitive science. The idea of our approach is to improve
the previous version of the generation of explanation from
a FCSP by considering cognitive science insights. We thus
observe these principles:
• Sorting: the order of the results has an importance. It is

important to start with regions in images that are salient,
and then, regarding the recommendations of cognitive
science papers, use diagonals and increasing distances to
select the next results. The spiral order is not recom-
mended.

• Saliency: the saliency is a difficult concept that can be
context-dependent. A minima, one can select the biggest
object or a group of objects as focus point.

• Symmetry: a pair of objects that are symmetrical must
be grouped.

• Priority: we must select the most satisfied constraints
first.

• Associativity: some relations are associative (e.g. “to the
left of”) and explainees can immediately infer it, so we
must use that to reduce the number of constraints involved
in the explanations.

• Locality: if possible, we will use first the constraints with
the closest regions in the image.

Moreover, an explanation must somehow indicate how the
task has been achieved. In our case, the solving of a FCSP
is quite simple to explain since the algorithm searches for the
values of the variables such as the constraints are satisfied.
However, it makes the explanation more complicated when
constraints are not all unary, since these assignments are
dependent from each other. Indeed, for instance, a binary
constraint will force the assignment of two variables together.
In the case of semantic annotation or classification, the con-
straints are relations so that it is a little bit simpler than, for
instance, quadratic constraints.

Another point is that we are selecting a maximum number of
constraints for each variable, such that there is no correlation
between these constraints: for instance, the values of “to the
left of” and “to the very left of” may be correlated and so we
do not want to use them at the same time for the same variable
because they are redundant. We use mutual information to
detect this correlation.

In the next subsection, we introduce an algorithm that
considers those different principles.

C. Algorithm

Algo 2 presents the algorithm to generate concise explana-
tion for semantic annotation.

The explanation starts with a general sentence that indicates
the global confidence about the annotation based on the degree
of consistency of the solution (line 1). The algorithm then
selects the region from the segmentation that is the most salient
(line 2). Regarding this object, the image is divided into four
quadrants. The explanation will start with the most salient

region, then with the other objects in the same quadrant, then
quadrant by quadrant, in the clockwise order. This order is
materialized in an ordered set X ′ (lines 3-4).

For each variable in X ′, the algorithm has to select at most
Nmax constraints to justify the explanation. The constraints
are chosen regarding not only their level of satisfaction (that
must be the highest as possible not to overload the text with
moderators), but also their mutual link and the proximity with
the other variables (lines 5-12).

The mutual link between relations is a tricky part. We use a
knowledge graph about the relations as proposed in [7]. Such
a graph emphasizes different links between two relations r1
and r2, like r1 =⇒ r2, ¬r1 =⇒ r2, but also symmetry.
Symmetry is important not to use twice the same constraint.
Let o1 and o2 be two objects in the image, and r a symmetrical
relation, if o1 r o2 is used in a sentence, we cannot use o2 r o1
anymore.

Then, the algorithm looks for grouping constraints such as
“is symmetrical to” that constitutes a pair of variables (line 9).
Indeed, the previous section highlights that groups of objects
must be treated together. Thus, the other variables in the scope
of this constraint must be processed just after (line 10).

Algorithm 2: Concise Explanation Generation
Input: a trace T =

〈
P, s, C̄

〉
Output: a concise textual explanation

1 Write a sentence to introduce the result and the global
confidence

2 Select f the variable in s region that is the focus point in the
image

3 From the center of f , divide the image into 4 quadrants
Q1, . . . , Q4

4 X ′ = set of variables x ∈ s sorted by quadrant
5 while X ′ 6= ∅ do
6 x← pop(X ′)
7 S ← Select Nmax constraints ci that are not linked in

the knowledge graph and with maximal degrees of
satisfaction

8 Write the sentence “x is c1, ..., and is cj≤Nmax”
9 if x involves a grouping constraint c then

10 Move all variables in scope of c to the beginning of
X ′

11 end
12 end

D. Results

In this work, we define the focus point as the biggest object
(in terms of area). We set Nmax = 2.

For the same example (see Figure 1), and the same solution
s, the result is shown in Figure 3.

Most of the constraints are linked in the knowledge graph,
because we used mainly directional relations like “to the right
of” and “to the left of”. This explains why we rarely reach
Nmax constraints.

The result is obviously shorter, and seems easier to read. The
quadrant imposes an order for the description of each organ.
The explanation seems less redundant thanks to the selection
of the constraints.



“This is the annotation of the given image (with a very high
confidence). The right lung (region 2) is symmetrical to the left
lung (region 1) and above the liver (region 4).
The liver (region 4) is at the right of the right kidney (region 6)
and at the right of the right psoas (region 8).
The right psoas (region 8) is above of the bladder (region 9) and
is symmetrical to the left psoas (region 7).
The left psoas (region 7) is below the left kidney (region 5).
The spleen (region 3) is above the left kidney (region 5) and is
below the left lung (region 1).”

Fig. 3. Concise explanation produced by Algorithm 2

The next section is dedicated to the evaluation of both types
of explanation.

V. EVALUATION AND DISCUSSION

To compare the two approaches, we evaluated both of them.
In this aim, we use the questionnaire presented in [25]: it
is based on 17 questions organized in 3 categories: natu-
ral language, human-computer interaction and content and
form. Each question is evaluated with a Likert scale (from 1
“strongly disagree” to 5 “strongly agree”). Our panel consists
in 40 respondents, with 20 medical staff members (medical
doctors, surgeons, nurses, radiologists), the other half being
computer scientists (6) and other various non-medical profes-
sionals (14). To decrease the medical staff’s amount of time
dedicated to the questionnaire, we selected only 14 questions
out of the 17 initial ones that will allow comparing the both
approaches. We removed the questions about the grammar and
the one that indicates if the explanation made a respondent
change his mind. Because of the lack of space, figure 4
highlights the answers to few questions.

Both explanations are comparable in terms of syntax cor-
rectness (87% for approach 1 and 95% for approach 2),
of reasoning comprehension (67.5% agree for approach 1,
60% for approach 2), and of uncertainty communication
(62.2% for approach 1, 65% for approach 2). “Reasoning
comprehension” indicates if the respondents can infer about
the reasoning process when they read the explanation. The
“uncertainty communication” criterion evaluates the ability of
the explanation to tell the user at which point the decision
can be trusted. In our case, it is achieved by the translation
of the constraints satisfaction into sentence parts like “with
a very high confidence”. These facts show that not all the
people understood how the algorithm annotates the organs
and understood why the algorithm was not confident in all
the cases.

For all other comparisons, the second approach outperforms
the first approach. 19 persons found that the first explanation
was too long whereas only 1 respondent was concerned by
the length of the second explanation. Respondents found the
first explanation repetitive (87.5%) and hard to read (72.5%),
whereas only respectively 22.5% and 10% of the panel agree
with these facts for the second one. Only 32.5% of the respon-
dents found the order of the items in the explication suitable
for explanation 1 versus 72.5% for the second explanation.

Both explanations make the respondents think they can trust
the automatic labelling (55% for first approach and 65% for
the second one).

These results confirm the advantages of the second algo-
rithm.

First, it is important to note that these algorithms are not
domain-specific. Indeed, the relations are generic in the sense
that they could be used in another domain (such as satellite
image annotation). They also manipulate image regions, and
have no clue they represent organs. However, the labels that are
used are organ names, because we want a semantic annotation.
We do not use external domain knowledge, for instance to
replace the word “region” by “organ” on the explanation, or
to use a more technical vocabulary.

The results show that the order of the items inside an
explanation are important for the end users. Conciseness seems
to be a criterion of paramount importance too.

The questionnaire invited also the respondents to write
comments after each type of explanation. Most of the medical
staff felt uncomfortable with the fact that the MRI image
was taken from the back. Nevertheless, no one declared the
explanation was wrong: maybe it can have an impact on the
confidence of the users in the AI.

One of the medical respondent said it could be useful to
use the spine as main region and use it for the labelling of
the other regions. This idea emphasizes the importance of
saliency: indeed, in such an image, we can see the spine
first because it is whiter and central. Unfortunately, in the
segmentation we use, bones are not considered.

Finally, we also made a comparison between the medical
respondents and the others, but the results do not differ
significantly.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented our work on the generation
of textual explanations of image annotation. The first part
provides a form of explanation that was not pertinent for
humans. The second part is an improvement of the first one
that generates a more concise explanation. It relies on a more
sophisticated selection of the constraints that are used in the
explanation, based on cognitive science principles.

This work also shows the importance of realizers for
explainable AI: although it is not the goal of this work,
using synonyms or different sentence structures to break the
monotony of the explanations can help. However, the survey
we presented shows that most participants are convinced by
the explanations and they understand the logic of the model.

What we observe is that to develop a model, then an
algorithm to extract relevant clues and finally improve realizers
involve too many fields and is difficult to manage. In our future
work, we are thinking of the separation of these tasks.
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Fig. 4. Highlights from the survey
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Abstract
We introduce a way of reasoning about prefer-
ences represented as pairwise comparative state-
ments, based on a very simple yet appealing prin-
ciple: cancelling out common values across state-
ments. We formalize and streamline this procedure
with argument schemes. As a result, any conclu-
sion drawn by means of this approach comes along
with a justification. It turns out that the statements
which can be inferred through this process form a
proper preference relation. More precisely, it corre-
sponds to a necessary preference relation under the
assumption of additive utilities. We show the infer-
ence task can be performed in polynomial time in
this setting, but that finding a minimal length expla-
nation is NP-complete.

1 Introduction
In his famous letter to his friend Joseph Priestley, Benjamin
Franklin suggested a procedure to decide upon difficult de-
cision cases: draw two columns, list pros and cons, and
delete (sets of) arguments from both sides when they are of
“equal weight”. It is remarkable that Franklin’s “Moral Al-
gebra” is sometimes seen as a pioneer technique to both ar-
gumentative approaches [Toulmin, 1958] which aims at for-
malizing, visualizing (and eventually criticizing) reasoning
steps; as well as techniques to elicitate and reason about
preferences based on trade-offs (even swaps, [Hammond et
al., 1998]). The bipolar nature of his algebra also proved
to be influential in KR in general [Dubois et al., 2008;
Bouyssou et al., 2009]. In this paper we build on the legacy of
this approach, by relying on its core principle of cancellation,
but without considering the weighting of different attributes
– that is, only similar values can be crossed. We consider
comparative preference statements whereby a user expresses
unambiguously holistic judgments over alternatives described
according to several points of view. From a set of such com-
parative statements, we wish to maintain the set of all valid
consequences in order to make new inferences (under the
form of further holistic comparative statements), and at the

∗Contact Author

same time keep track of the reasoning steps involved. Thus,
our objective is to know, for any preference query, whether it
can be derived, but also how it can be derived.

We begin by introducing informally, through an exam-
ple, a way of reasoning about preferences under the form of
pairwise preference statements, then we propose a research
agenda concerning this reasoning engine, and we outline the
remainder the paper.

Example 1. Hotels are compared according to the points
of view of comfort, offer of a restaurant, commute time and
cost. We are given monotonicity conditions according to each
point of view (shared by all stakeholders), e.g. the larger
the comfort the better; it is better to have a restaurant; the
smaller the commute time the better; and the smaller the price
the better. We are also given the following preference infor-
mation:

• π1 : a hotel with features (4*, no, 15 min, 180 $) is
preferred to a hotel with features (2*, yes, 45 min, 50 $).

• π2 : a hotel with features (4*, no, 45 min, 50 $) is pre-
ferred to a hotel with features (4*, yes, 15 min, 100 $).

Monotonicity along each point of view allows for inferring
comparative statements outside of the knowledge base.

Example 2. (Ex. 1 continued) From π1, thanks
to the monotonicity w.r.t to cost, we can de-
duce that (4*, no, 15 min, 180 $) is preferred to
(2*, yes, 45 min, 80 $).

Reasoning ceteris paribus offers another venue to extend
our knowledge about valid preferences.

Example 3. (Ex. 2 continued) In π2, both hotels share
the same comfort rating 4∗, and we propose to inter-
pret this statement as: comfort being equal, we prefer
(no, 45 min, 50 $) to (yes, 15 min, 100 $). Taking value 2∗,
we obtain for instance that (2*, no, 45 min, 50 $) is preferred
to (2*, yes, 15 min, 100 $).

These two principles are too weak to deduce many entail-
ments from the preference information, and therefore will not
allow comparing many alternatives. We therefore propose a
way to combine several preference information statements.
The notion of ceteris paribus reasoning can be generalized
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throughout statements by cancelling a similar value appear-
ing in the left hand side (LHS) of a statement and in the right
hand side (RHS) of another statement.

Example 4. (Ex. 3 continued) For instance, the cost value
50 $ appears both in the LHS of π2 and the RHS of π1. This
extended principle can be used to infer new statements, as il-
lustrated in the following table. The first three lines of the ta-
ble introduce the premises: the preference information state-
ments π1 and π2, as well as the ceteris paribus monontonicity
statement d� according to which, everything else being equal,
a hotel with a restaurant is at least as good as a hotel without
one. In each column representing a feature, we strike out in-
dividual values appearing simultaneously on the LHS and the
RHS—when a value is repeated, we are careful to strike out
as many values from the LHS as from the RHS. At the end, we
notice that there is only one value left in each column, that we
report on the last line of the table—the conclusion—forming
what we consider a valid preference statement inferred from
the premises.

As: 4* no 15 min 180 $ π1 2* yes 45 min 50 $
no 45 min 50 $ π2 yes 15 min 100 $
yes d� no

So, 4* no 45 min 180 $ 2* yes 45 min 100 $

We are now in a position to set out several research ques-
tions concerning the procedure we just informally described,
that we shall address in this paper:

• Modeling (see Section 2). To what extent this procedure
can be formalized into a reasoning model?

• Templating (see Section 2). Can the template for present-
ing the arguments supporting a claim be streamlined?
How can these bundles be efficiently validated?

• Properties (see Section 3). The set of statements that can
be inferred from a given preference information form a
binary relation between alternatives. What are the prop-
erties of this relation? Importantly, is it a proper prefer-
ence relation?

• Inference (see Section 3). Is there an efficient way to
assess if a given pairwise preference statement can be
inferred from a given preference information?

• Explanations (see Section 4). Given a pairwise prefer-
ence statement, is it possible to find a cognitively simple
certificate supporting or informing its validity?

• Critique (see Section 5). This reasoning engine is built
upon several fundamental assumptions, that need to be
discussed.

2 The Reasoning Model
We address in this section the first research question, namely:
can the intuition presented in the introduction be formalized?

2.1 Features and Alternatives
We consider a set N of points of view, each one i ∈ N ex-
pressed by a feature taken in the set Xi. Alternatives are

described as tuples of features, and belong to the Cartesian
product X =

∏
i∈N Xi.

For an alternative x ∈ X and a point of view i ∈ N , we de-
note by xi the evaluation of x according to i. For any nontriv-
ial subset of points of view A ⊂ N and any two alternatives
a, b ∈ X, we denote a−AbA the (fictitious) alternative which
is equivalent to a according to each point of view not in A,
and equivalent to b according to the points of view in A.

2.2 Preference Information
We are interested in providing a principled way of reason-
ing that allows us to infer preference and answer preference
queries of the type ‘is alternative a preferred to alternative
b?’. The reasoning shall be based on preference information,
coming in two distinct flavors:
• explicit pairwise statements P ⊂ X2, where (x, y) ∈ P

means that x is at least as good as y for the decision
maker;
• implicit dominance—we assume that each feature set

corresponding to a point of view i ∈ N is totally or-
dered by a relation %i⊂ X2

i , and we denote D :=∏
i∈N %i, the Pareto dominance relation between alter-

natives stemming from the ordering of each feature set,
i.e. ∀x, y ∈ X, xDy ⇐⇒ ∀i ∈ N, xi %i yi.

2.3 Cancellation Axioms
The inductive principle based on ceteris paribus sketched in
Ex. 3 can be formalized thanks to the concept of cancellation.
The cancellative axioms are well-known in the preference lit-
erature [Krantz et al., 1971; Wakker, 1989], and we briefly
recall their definition.
Definition 1 (First-order cancellation). For all A ⊂ N ,
with A 6= ∅ and all x, y, z, z′ ∈ X,x−AzA % y−AzA ⇒
x−Az

′
A % y−Az

′
A.

In Ex. 3, according to the first-order cancella-
tion, π2 implies that (2*, no, 45 min, 50 $) is preferred to
(2*, yes, 15 min, 100 $).

We also have seen in the introduction cancellation across
preference statements. It can be formalized in the following
definition.
Definition 2 (High-order cancellation). Consider m + 1 al-
ternatives x(0), . . . , x(m) in X. Let y(0), . . . , y(m) be m + 1
alternatives in X such that, for every point of view i ∈
N , (y

(0)
i , . . . , y

(m)
i ) is a permutation of (x

(0)
i , . . . , x

(m)
i ).

Then,[x(k) % y(k), ∀k ∈ {1, . . . ,m}]⇒ y(0) % x(0).
In order to conveniently represent concatenations of

premises, maybe with repetition, modulo permutation, we
represent the tuples of alternatives or values as multisets.
The multiset containing the elements z1, repeated m1 times,
. . . , zk repeatedmk times has support {z1, . . . , zk}, cardinal-
ity
∑
mj and is denoted 〈z1 : m1, ..., zk : mk〉.

2.4 The Syntactic Cancellative Argument Scheme
We formalize the way of reasoning about preference state-
ments illustrated in the introduction through an argument
scheme [Walton, 1996], an operator tying premises satisfy-
ing some conditions, to a conclusion. This scheme is closely
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related to the high-order cancellation axiom described previ-
ously. We slightly alter it in order to allow for a repetition
of the conclusion (we defer an example and the discussion of
the importance of this alteration to Section 3.5).

Definition 3 (Syntactic cancellative argument scheme).
Given two positive integers m ≥ n, and a pair of alternatives
(x, y) ∈ X × X, we say the multiset of pairs of alternatives
〈(a(1), b(1)) : r1, . . . , (a

(k), b(k)) : rk〉 ∈ (X × X)N of cardi-
nality m =

∑k
i=1 ri is a syntactic cancellative explanation of

lengthm with n repetitions of the pair (x, y) if, for each point
of view i ∈ N , the multisets 〈a(1)

i : r1, . . . , a
(k)
i : rk, yi : n〉

and 〈b(1)
i : r1, . . . , b

(k)
i : rk, xi : n〉 are equal.

This definition is illustrated in Ex. 4.
Validation. Checking if a given tuple of pairs of alternatives
is an argument of a given pair of alternatives with a given
number of repetitions can be performed in O(|N | · k ln k),
where k is the cardinality of the support set of the explanation.

2.5 The Elliptic Cancellative Argument Scheme
In this section, we propose to streamline the syntactic can-
cellative argument scheme by omitting the dominance state-
ments. As the resulting scheme is based on an omission (an
ellipsis), we dub it the elliptic cancellative scheme.

Definition 4 (Elliptic cancellative explanation scheme).
Given a dominance relationD, we say the multiset of pairs of
alternatives 〈(a(1), b(1)) : r1, . . . , (a

(k), b(k)) : rk〉 ∈ (X ×
X)N of cardinality m =

∑k
i=1 ri is a syntactic cancellative

explanation of length m with n repetitions of the pair (x, y)
if there exists a multiset of cardinality m′ of dominance state-
ments 〈(c(1), d(1)) : r′1, . . . , (c

(k′), d(k′)) : r′k′〉 ∈ DN such
that 〈(a(1), b(1)) : r1, . . . , (a

(k), b(k)) : rk〉 ∪ 〈(c(1), d(1)) :

r′1, . . . , (c
(k′), d(k′)) : r′k′〉 is a syntactic cancellative expla-

nation of length m+m′ with n repetitions of the pair (x, y).

Example 5. (Ex. 4 continued) The syntactic cancellative ex-
planation of Ex. 4 can be simplified by removing the last
statement d, yielding:

As: 4* no 15 min 180 $ π1 2* yes 45 min 50 $
no 45 min 50 $ π2 yes 15 min 100 $

So, 4* no 45 min 180 $ 2* yes 45 min 100 $

Validation. It is a little more subtle to check the validity
of an elliptic cancellative argument scheme than of a syntac-
tic one. Indeed, when considering the point of view i ∈ N

and comparing the two multisets Li := 〈a(1)
i : r1, . . . , a

(k)
i :

rk, yi : n〉 and Ri := 〈b(1)
i : r1, . . . , b

(k)
i : rk, xi : n〉

there are missing elements corresponding to the implicit dom-
inance relations that are not mentioned. Adding these miss-
ing dominance relations would have added “good” elements
in Li and “bad” elements in Ri - yielding two lexicographi-
cally equivalent vectors. As this is not the case, Ri contains
better elements than Li in the lexicographic sense. In Ex. 5,
we obtain L� = 〈yes : 1, no : 2〉 and R� = 〈yes : 2, no : 1〉,
so that the previous dominance is verified (as R� contains

more “yes” values than L�). Hence the validation of an ellip-
tic cancellative argument scheme simply consists in ordering
each Li and Ri, and checking that, for every j, the jth best
elements in Ri is not lesser than the jth best elements in Li
w.r.t. to the order relation %i. Thus, the validation can also
be performed in O(|N | · k ln k).

3 The Inferred Preference Structure
In this section, we are interested in the description and the
computation of the binary relation over alternatives poten-
tially obtained by applying the reasoning engine to the facts
of the preference information.
Definition 5. Given preference information P and a domi-
nance relationD, we denoteNP,D the set of pairs of alterna-
tives for which there is a syntactic cancellative explanation of
any length with pairs of alternatives in P ∪ D.

3.1 Inference as Closure
We note thatN• is a closure operator: if new preference state-
ments NP,D can be inferred from P and D, adding them to
the knowledge base would not yield additional inference.

Lemma 1.
NP,D = NNP,D,D

Sketch of proof. The inclusionNP,D ⊂ NNP,D,D is a conse-
quence of the fact that 〈s : 1〉 is an explanation of s for any
statement in P . As for NP,D ⊃ NNP,D,D, let (X,Y ) ∈
NNP,D,D. There is an syntactic explanation of length m

with n repetitions of the pair (X,Y ), say 〈(x(1), y(1)) :
r1, . . . , (x

(K), y(K)) : rK〉 ∈ (X × X)N where each pair
(x(k), y(k)) is in NP,D, and is therefore supported by an ex-
planation Ek of length mk with nk repetitions, with state-
ments in P ∪ D. We claim the tuple obtained by concate-
nating each explanation Ek repeated

∏
k′∈[m],k′ 6=k nk′ is an

explanation with
∏
k∈[m] nk repetitions of the pair (X,Y ),

with statements in P ∪ D.

3.2 A Detour via Model-Based Inference
In order to state the main result of this paper, we need to recall
the basic principles of model-based inference. The goal of
inference is extend some (limited) preference information to
a richer preference relation R, with ‘good’ properties, such
as R being a reflexive and, transitive binary relation over X,
and maybe complete.

When preference information is given as P ∪ D, where
P is the explicit part, given in so-called holistic form, i.e.
P ⊂ X2 is a set of reference pairwise statements, and D is
the dominance relation stemming from the ordering of the
features, the relationR is said to be consistent when P∪D ⊂
R.

In order to describeR, which is potentially a very compli-
cated combinatorial object, in a simple language, it is custom-
ary to rely on some kind of parameterization of the target set.
For instance, numeric models [Jacquet-Lagrèze and Siskos,
1982] in the field of multiple criteria decision making, or
graphical languages [Wilson, 2009; Amor et al., 2016] from
KR. A popular paradigm consists in considering value-based
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preferences, where the target preference relation is parame-
terized by a numeric scoring function u : X → R, so that
xRuy ⇐⇒ u(x) ≥ u(y). (this assumption is made with-
out loss of generality as soon asR is assumed to be transitive
and complete). The target set is still very large and complex,
and a common additional assumption is to restrict the scor-
ing function to be additive w.r.t. the features, i.e. there is a
decomposition such that ∀x ∈ X, u(x) =

∑
i∈N ωi(xi).

Definition 6 (preferences based on additive value). The pa-
rameter set of the additive value model is ΩΣ :=

∏
i∈N RXi ,

and for a given value ω := 〈ωi〉i∈N of the parameter, the
corresponding preference relationR∑

ω ⊂ X2 is defined by:

∀x, y ∈ X, xR∑
ωy ⇐⇒

∑
i∈N

ωi(xi) ≥
∑
i∈N

ωi(yi).

For such an additive value, that we denote R∑
ω , the con-

dition D ⊂ R∑
ω translates to the following monotonicity

conditions: for all features i, the function ωi : (Xi,%i) →
(R,≥) is nondecreasing.

The most prevalent approach in model-based inference
consists in determining the most adequate value of the param-
eter in the sense of some loss function L: ω? = argminΩΣ

L,
and returning the corresponding preference relation R∑

ω? .
Meanwhile, the robust approach consists in considering the
intersection of all the consistent preference relations, assum-
ing it is not empty:

R?ΩΣ
:=

⋂
ω∈ΩΣ:(P∪D)⊂R∑

ω

R∑
ω.

The robust approach yields the version space [Mitchell,
1982] of the model. Equivalently, it can be understood as
assuming that the preference information P is incomplete (as
there might be several value of the parameter that are consis-
tent with it), and drawing skeptical conclusions with respect
to all the possible completions.

3.3 Cancellative-Powered Deductions are Robust
Inferences under Additive Values

We are now able to state an important result concerning the
preference structure NP,D.

Theorem 1.
NP,D = R?ΩΣ

The inferred preference structure is exactly the necessary
preference relation under the assumption of an additive value
model. This result has an important corollary concerning the
inferred relation:

Corollary 1 (Properties of the inferred structure). NP,D is a
transitive and reflexive binary relation.

The proof of Th. 1 relies on the fact that, under the as-
sumption of an additive value model, a preference statement
can be represented by a linear form operating over the vector
space ΩΣ.

Definition 7. Given some preference information P ⊂ X2,
alternatives x, y ∈ X, and a point of view i ∈ N , for any
value xi ∈ Xi, let εi,xi

: RXi → R, ωi 7→ ωi(xi), and

φ(x,y) =
∑
i∈N εi,xi − εi,yi a linear form over RX. Also, let

X̂i := {t ∈ Xi : ∃(a, b) ∈ P , t = ai or t = bi}∪{xi}∪{yi}
and X̂ :=

∏
i∈N X̂i.

Lemma 2.

(x, y) ∈ R∑
ω ⇐⇒ φ(x,y)(ω) ≥ 0

Proof of NP,D ⊂ R?ΩΣ
.

Let (x, y) ∈ NP,D. By definition, there is a syntactic
cancellative explanation of length m with n repetitions
of the pair (x, y), say 〈(a(1), b(1)), . . . , (a(m), b(m))〉 ∈
(P ∪ D)m. Therefore, for each point of view
i ∈ N , (yi, . . . , yi, a

(1)
i , . . . , a

(m)
i ) is a permutation of

(xi, . . . , xi, b
(1)
i , . . . , b

(m)
i ). In particular, for any param-

eter ω ∈ ΩΣ, nωi(yi) + ωi(a
(1)
i ) + · · · + ωi(a

(1)
i ) =

nωi(xi) + ωi(b
(1)
i ) + · · · + ωi(b

(1)
i ), so nφ(x,y)(ω) =∑m

j=1 φ(a(j),b(j))(ω). Now, if ω is consistent, (P ∪D) ⊂ Rω
and φ(a(j),b(j))(ω) ≥ 0. Thus nφ(x,y)(ω) is nonegative as the
sum of m nonnegative terms, and x is necessarily preferred
to y under the assumption of an additive value model.

Proof of NP,D ⊃ R?ΩΣ
.

Let (x, y) ∈ R?ΩΣ
. For any parameter ω ∈ ΩΣ such that

∀s ∈ (P ∪ D), φs(ω) ≥ 0, φ(x,y)(ω) ≥ 0. This prop-
erty concerns linear forms in RX, which is a vector space
of infinite dimension, but also holds in RX̂.Indeed, X̂ ⊂ X,
is of finite dimension, and any additive parameter function
ω̂ : X̂ → R such that (P ∪ D) ∩ X̂2 ⊂ Rω̂ can be extended
into an additive function ω : X → R describing a consistent
relation R∑

ω . By Farkas’ lemma, the linear form φ(x,y) is
a conical combination of the 〈φs〉s∈(P∪D)∩X̂2 . As the coef-
ficients of all these linear forms are integers—they are, in-
deed, in {−1, 0, 1}—the coefficients of the conical combina-
tions can be chosen rational, and by multiplying by the lesser
common multiple of their denominators, yield an identity:
n φ(x,y) =

∑
s∈(P∪D)∩X̂2 ms φs, with a positive integer n

and nonnegative integer coefficients 〈ms〉s∈(P∪D)∩X̂2 . We
claim the tuple 〈s : ms〉s∈(P∪D)∩X̂2 is a syntactic cancella-
tive explanation of length n of the pair (x, y), with statements
in P ∪ D, thus (x, y) ∈ NP∪D.

3.4 Efficient Inference Procedures
The necessary relation assuming an additive value model
R?ΩΣ

is defined and studied by [Greco et al., 2008]. In partic-
ular, Greco et al. propose a linear program permitting to solve
the decision problem corresponding to our research question
concerning inference: given a pair of alternative, decide if it
is in the inferred preference relation. This linear program is
expressed in the primal space RX̂ of the values ωi(xi) given
to each relevant value of the attributes. These values are of
little interest concerning our cancellative argument schemes,
so we propose to formulate the dual problem.

Corollary 2 (Polytime inference via conical decomposition).
For all pairs of alternatives (x, y) ∈ X2, (x, y) ∈ NP,D if,
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and only if, the following linear program is feasible:
find nonnegative real numbers 〈λs〉s∈(P∪D)∩X̂2 such that
φ(x,y) =

∑
s∈(P∪D)∩X̂2 λsφs.

Would the decision variables λ be integers, they could di-
rectly be interpreted as a multiset 〈s : λs〉 serving as a syntac-
tic cancellative explanation for (x, y). As the elliptic scheme
tells us that the coefficients corresponding to the dominance
statements are eventually irrelevant, this formulation ought to
be further streamlined. Unfortunately, the conical span of the
dominance statements is not easy to characterize in the dual
base (εi,xi). This obstacle can be lifted by representing the
preference statements in an alternative decomposition, that
focuses on differences of values, rather than values.
Definition 8. Given a finite binary relation A ⊂ X2, for
all points of view i ∈ N we denote {x̂i,1 - x̂i,2 - · · · -
x̂i,|X̂i|} = X̂i . For any integer k, 1 ≤ k < |X̂i|, let
δX̂,i,k := εi,x̂i,k+1

− εi,x̂i,k
.

Lemma 3. For any statement (x, y) ∈ A and any point of
view i ∈ N ,

εi,xi − εi,yi =


0 if xi ∼i yi∑
k:xi≤x̂i,k<yi

(−1) · δX̂,i,k, if xi ≺i yi∑
k:yi≤x̂i,k<xi

(+1) · δX̂,i,k, if xi �i yi
This lemma has two important consequences:

i) Corollary 2 can be expressed in terms of 〈δX̂2〉 rather
than 〈ε〉; and

ii) dominance statements in A are exactly the conical span
of the 〈δA〉.

This leads to a leaner reformulation of the inference problem.
Definition 9. For all x, y ∈ X, i ∈ N and k ∈ N : 1 ≤ k <

|X̂i|, let

ϕ
(i,k)
(x,y) :=


−1, if xi -i x̂i,k ≺i yi;
0, if xi ∼i yi; or
+1, if yi -i x̂i,k ≺i xi.

Theorem 2 (Inference via LP). For all pairs of alternatives
(x, y) ∈ X2, (x, y) ∈ NP,D if, and only if, the following lin-
ear program is feasible:
find nonnegative real numbers 〈λs〉s∈P such that the inequal-
ity ϕ(i,k)

(x,y) ≥
∑
s∈P λsϕ

(i,k)
s holds for every indices i ∈ N

and 1 ≤ k < |X̂i|.

3.5 Repetition of the Conclusion
The presence of repetition of the conclusion makes the expla-
nation scheme cumbersome. One may wonder whether it is
possible to get rid of the repetition of the conclusion.
Theorem 3. It is not possible to cover all possible inferences
obtained by the robust additive model by restricting the can-
cellation explanation schema with n = 1 repetition.

Proof. We provide a counter-example with |N | = 6 features,
X = {0, 1}6 and 1 %i 0 (statement di) for all i ∈ N . The
preference information is:

π1 :
(

(0, 0, 1, ·, ·, ·), (1, 1, 0, ·, ·, ·)
)

π2 :
(

(0, ·, ·, 0, 1, ·), (1, ·, ·, 1, 0, ·)
)

π3 :
(

(·, 0, ·, ·, 1, 0), (·, 1, ·, ·, 0, 1)
)

π4 :
(

(·, ·, 1, 0, ·, 0), (·, ·, 0, 1, ·, 1)
)

We can infer from the preference information that
(0, 0, 1, 0, 1, 0) is preferred to (1, 1, 0, 1, 0, 1) (statement πC).
One can readily see that π1 + π2 + π3 + π4 = 2 πC.

Assuming by contradiction that there exist Farkas coeffi-
cients with coefficient 1 associated to πC: πC =

∑6
i=1 λiπi+∑6

i=1 µi di, where λi, µi ∈ N leads to an infeasible linear
system.

One could also want to trim down the potential complex-
ity of the explanations by limiting the number of premises.
Unfortunately, this might lead to loss of transitivity for the
inferred relation.

4 Explanations for Valid Preference
Statements

It seems reasonable to believe that an explanation is easier
to process by a cognitive agent—‘simpler’—when it is short.
In the case of cancellative explanations, the actual cognitive
burden mainly comes from three factors: the number of points
of view |N |, that we consider as mostly exogenous; the length
m of the premises; and the number n of repetitions of the
conclusion. Without any experimental evidence, we consider
the problem of finding an explanation for a given pair (x, y) ∈
NP which is as simple as possible as a bi-objective integer
linear minimization problem:

min
n,m∈N?

(n,m) such that


n ϕ(x,y) ≥

∑
π∈P

`πϕπ; and

m ≥
∑
π∈P

`π.

(1)
Integer linear programs offer a powerful language permit-

ting to describe difficult combinatorial problems. These for-
mulations can be given wholesale to dedicated solvers, that
eschews the need for developing a dedicated piece of software
and benefits from state-of-the-art refinements in the solving
of such problems. Nevertheless, it would be unwise to dele-
gate the search for a short explanation of a given pair of alter-
natives to such a solver, if this search were not, intrinsically,
a difficult combinatorial problem. The following theorem ad-
dresses this issue.
Theorem 4. The problem of deciding, for a given input
(x, y, n,m) ∈ X × X × N? × N? if there is an elliptic can-
cellative explanation of the pair (x, y) of length at most m
with at most n repetitions is NP-complete. This remains true
even if the number n of repetitions is set to one.

Proof. Membership to NP is ensured, as checking the validity
of an elliptic scheme is polyomial in the number of distinct
premises, which is upper bounded by the cardinality of P .
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Hardness can be established e.g. by reduction from VER-
TEX COVER [Karp, 1972]. Formally, a vertex cover V ′ of
an undirected graph G = (V,E) is a subset of V such that
uv ∈ E ⇒ u ∈ V ′ ∨ v ∈ V ′, that is to say it is a set of ver-
tices V ′ where every edge has at least one endpoint in the
vertex cover V ′. The VERTEX COVER problem consists in,
given an instance (G, k) where G = (V,E) is a graph and k
a positive integer, to decide whether G has a vertex cover of
size at most k, or not. Given an instance of VERTEX COVER,
we map it to a gadget instance of our problem:
• the set of points of view is N = V ∪ E;
• an alternative is a subset of N ;
• each point of view is evaluated on a binary scale, with

presence preferred to absence;
• the preference information contains all statements of the

form ({(u, v)}, {u, v})—any edge is preferred to the set
of its endpoints—for all edges (u, v) ∈ E.

Any elliptic cancellative explanation without repetition of
the pair (E, V )—the pros are the edges, the cons are the
vertices—of length k is a subset of E that forms a vertex
cover of size k of of the graph G, and reciprocally.

5 Discussion and Perspectives
In the current quest for “explainable A.I.”, the additive value
(i.e. linear) model might be seen as occupying the very end
of the spectrum –an obviously interpretable model [Ribeiro
et al., 2016]. Even though recent advances have been made
towards providing “simpler” models, e.g. [Ustun and Rudin,
2016], most of these approaches ignore the perspective of the
decision maker [Miller, 2019], and the need to provide her
with a way of challenging the decision [Kroll et al., 2017].

Several works have explored the interplay between argu-
mentation and decision aiding. In [Amgoud and Prade, 2009],
argumentation is used as a mean make a decision and justify
it, while in [Zhong et al., 2019], it is shown that the outcomes
of a simple decision model are similar to the extension of the
corresponding argumentation framework.

Here, the preference information is considered exogenous.
It might have been obtained through dialog, by considering
domain knowledge—reference cases, jurisprudence, or in-
ferred by some means—learning from similar situations, or
previous interactions with the user.

5.1 Contributions
We introduced the notion of cancellative explanations, based
on the accrual of premises to obtain a conclusion. We studied
this explanative framework in the light of the principles stated
in introduction. This contrasts with approaches in decision
theory [Fishburn, 1970; Gonzales, 2000], where cancellation
is seen as a property of the preference relation, not a mean to
infer new preference statements and justify them. Our main
contributions are as follows:
Completeness. Every preference statement that can be
skeptically inferred from the preference information and the
way of reasoning corresponding to the additive value model
is supported by a cancellative explanation.

Soundness. Every preference statement that is supported
by a cancellative explanation can be skeptically inferred from
the preference information and the way of reasoning corre-
sponding to the additive value model;
Simplicity. We provided several ways of presenting can-
cellative explanations, in the form of tables, diagrams, or ar-
gument schemes, and proposed to ground them on a syntactic
check, or alternatively to keep implicit the information tied
to dominance, which can easily be restored by the recipient,
in the spirit of enthymemes. We provided formalizations that
lend themselves to an efficient implementation. We proposed
an intuitive partial ordering of explanations according to their
alleged complexity, and formulated the problem of finding
explanations as simple as possible.
Computation. Remarkably, while adjudicating necessary
preference is a polynomial problem, explaining it concisely
is NP-complete.

5.2 Perspectives
Providing an argument scheme along with the result of a com-
parative statement opens the possibility to discuss or chal-
lenge this result. This is made possible through what is called
critical questions [Walton, 1996], a tool associated with ar-
gument schemes representing attacks or criticisms that, if not
answered adequately, falsify the argument fitting the scheme.

In our setting, the criticism may point out (implicitly or
explicitly) elements perceived as missing or wrong in the
reasoning steps. Indeed, for instance, the decision maker
(DM) may challenge the fact that a preference between two
alternatives is not the right one. The consequence is that
either it is possible to derive a new conclusion with this
new information, or the DM’s statements express conflict-
ing preferences. Thus, the challenge of finding a principled
way to deal with inconsistency in an accountable manner,
needs to be addressed. Several promising approaches have
been proposed: considering maximally consistent subsets of
statements [Mousseau et al., 2003]; relaxing the aggrega-
tion model until a model sufficiently expressive to accommo-
date for the preference information is found [Ouerdane, 2011;
Greco et al., 2014]; or using a numerical estimation of incon-
sistency such as a belief function [Destercke, 2018].

Another situation is that the DM’s reasoning is incompat-
ible with the principles and properties underlying the pref-
erence model. For instance, expressing a preference depen-
dency may defeat the fundamental feature (ceteris paribus)
of an additive model [Fisher, 1892]. In this situation, re-
laxing the preference model could be a solution [Ouerdane,
2011]. Many models account for interactions between the in-
fluence of the points of view, such as Generalized additive
models (GAI) [Fishburn, 1967]. An underlying question that
has been less investigated (for notable exceptions, see e.g.
[Labreuche, 2011] and [Cailloux and Endriss, 2014]), and re-
mains difficult [Procaccia, 2019], is the question of the ac-
countability of recommendations based on an induced model.
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Abstract
We address the problem of multicriteria ordinal
sorting through the lens of accountability, i.e. the
ability of a human decision-maker to own a recom-
mendation made by the system. We put forward a
number of model features that would favor the ca-
pability to support the recommendation with a con-
vincing explanation. To account for that, we design
a recommender system implementing and formal-
izing such features. This system outputs explana-
tions under the form of specific argument schemes
tailored to represent the specific rules of the model.
At the end, we discuss possible and promising ar-
gumentative perspectives.

1 Introduction
While algorithmic automated decisions or recommendations
are nowadays pervasive, there is a growing demand of insti-
tutions and citizens to make these recommendations trans-
parent and trustworthy, while system designers seek persua-
sive recommendations [Tintarev, 2007]. The recent regulation
adopted by the European Parliament (known as the General
Data Protection Regulation, GDPR) goes further by adding
a “right to explanation”. According to [Goodman and Flax-
man, 2016] “the GDPR’s requirements could require a com-
plete overhaul of standard and widely used algorithmic tech-
niques”. We interpret this requirement in the strong sense of
accountability, its litmus test being the ability of the recipient
of the recommendation to defend it before other, skeptical,
stakeholders of the decision (whereas trust requires the rec-
ommendation to be consistently accurate, but eventually asks
for delegation of the decision to the system; transparency
simply provides access to the underlying algorithm without
concern for technical literacy [Burell, 2016]; and persuasive-
ness is hardly transferable: someone persuaded by a recom-
mendation may not be a good persuader).

Our aim in this paper is thus to build an accountable, ordi-
nal, multicriteria classifier, mapping a candidate object to a
recommendation consisting in one or more categories among
a predefined, ordered collection of these. In a multicriteria
decision aiding (MCDA) context, the only indisputable rela-
tion between objects is the Pareto dominance, occurring when
an object outperforms another on all criteria. As the situation

is seldom so clear, the rules permitting the comparison of ob-
jects need to be enriched, taking into account the knowledge
and values of the decision-maker, collected under the label
preference information, which is also considered as an input
of the classifier. We also consider an additional output, an
explanation aimed at the decision-maker, supporting the rec-
ommendation and enabling the accountability sought for. In
order to reach this goal of accountability, we make two im-
portant assumptions about the recommender system. These
design principles are as follows:

No jargon. A first step in a MCDA process is to collect
decision-maker’s preferences information. In order to accu-
rately represent the specific decision process, we opt for an
indirect elicitation [Dias et al., 2002]: the decision-maker is
never asked any questions about artifacts of the model (e.g.
weights). Instead she should express preferences directly in
the language of the actual decision situation, i.e. providing
direct assignments of typical examples, reference objects, to
categories.

No arbitrariness. MCDA usually proceeds by representing
the reasoning of the decision-maker with a formal parametric
model, describing a specific stance. The values of the prefer-
ence parameters are often fitted during an elicitation process,
up to a certain point. While many methods proceed by pick-
ing a specific, so-called representative value of the parame-
ters, we opt for a robust approach (to the lack of preference
information) [Vincke, 1999; Greco et al., 2008], formulating
a –possibly partial – recommendation that cannot be refuted
by any judgment function consistent with the preference in-
formation.

On top of these principles, we make three further assump-
tions about the MCDA model, proceeding from the willing-
ness to keep the model accessible to human reasoning.

No compensation. This assumption deals with the inter-
pretation of collected data –the evaluation of objects on vari-
ous criteria. We assume they are always used comparatively,
in a purely ordinal manner: on a given criterion, an alterna-
tive is either as good as another one, or strictly worse. Hence,
only the set of criteria for which an alternative is better is im-
portant, regardless of the specific values, and being very good
on some criterion cannot compensate for low performance on
others. This feature enables the algorithm to proceed without
performing any algebraic computation, which makes it par-
ticularly suited for explanation. It is shared with established
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non-compensatory ordinal sorting models used in the field of
MCDA (eg. NCS) [Bouyssou and Marchant, 2007]. More-
over, the use of a 2-valued comparison (≥, <) is similar to
[Bouyssou, 1986] rather than [Fishburn, 1976] who proposes
a 3-valued one (<,=, >).

No values. At the heart of the recommender system is a
preference structure encoding the comparison of alternatives.
There are two main families of structures: those based on
value [Keeney and Raiffa, 1976], and those based on out-
ranking relations [Roy, 1991]. We opt for the latter, as they
eschew the construction of a scoring function. An outrank-
ing relation naturally provides four outcomes when compar-
ing two alternatives: preference for the former, for the lat-
ter, indifference, or incomparability; also, it does not enforce
transitivity of preference.

No frontiers. In MCDA, most classifiers link the prefer-
ence structure and the recommendation of a class by introduc-
ing an explicit frontier between classes, defining the limit of
each class (a single value for value-based models, a limiting
profile for outranking-based ones, e.g. [Leroy et al., 2011]).
We do without this construct, as for instance models based
on Logical Analysis of Data (LAD) techniques [Crama et al.,
1988] which output classification rules. We shall use simple
rules permitting to classify a new object by comparing it to a
set of already classified reference objects (see Sect.2.3).

The general philosophy of these principles must be clear to
the reader: accountability should exclude in principle the use
of any model artifact that the decision-maker may not prop-
erly handle, but at the same time provide enough understand-
ing of the model so as to allow the decision-maker to defend
the recommendation as if it was her own. Following this, our
approach is to enforce these principles by design, and to in-
vestigate how far we can get with the resulting sorting model.
This approach differs from the recent work of [Ribeiro et al.,
2016] which adopts a model-agnostic approach, and builds
explanations adapted to virtually any classifier. They obtain
extremely promising results in terms of trust. As expected,
the explanation cannot be fully faithful to the model (they are
“locally” faithful though). It also differs from [Datta et al.,
2016] which seeks to extract how influential are input param-
eters, but keeping a black-box access to the model. While for
the trust requirement these approaches are sufficient, our no-
tion of accountability requires to get to grips with the model.

The rest of this paper is as follows. We propose a model
implementing and formalizing the different principles, de-
composing it in a learning phase (Section 2) and a recommen-
dation phase (Section 3). We provide formal explanations of
the recommendation in most cases, in the form of argument
schemes tailored to represent the specific rules of the model.
Section 4 introduces some insights on the description of the
sorting problem through an argumentation system. Section 5
concludes the paper, by putting its findings into perspective.

2 Formal Description

In this section, we define a recommender system following
the design principles and assumptions, and describe some of
its properties.

2.1 The Recommender System
We consider a multicriteria ordinal sorting problem : a col-
lection of objects are evaluated on a set of criteria N . We
note B := {0, 1}, so that elements of BN are at the same time
vectors with binary coordinates, and subsets of N , partially
ordered by inclusion. The maximal element of BN is the
unanimous coalition N , also denoted (1, . . . , 1). The min-
imal element of BN is the empty coalition ∅, also denoted
(0, . . . , 0). Each criterion i ∈ N maps an object to a perfor-
mance value in a totally ordered set Xi, the higher the better.
Consequently, each object is described by a performance vec-
tor in the partially ordered set X =

∏
i∈N Xi. The objects are

to be assigned to some class chosen among an ordered set
K = {k1 ≺ · · · ≺ kp}, so that assignment to a class with a
high index is desirable.

Formally, let us describe the recommender system as a
function mapping a pair 〈z,P〉 to a pair 〈K, E〉, where:
• The object z ∈ X is a candidate for sorting;
• P denotes preference information collected from the

decision-maker consisting of typical classification ex-
amples, a collection of reference objects X? ⊂ X, and
their assigned categories Class : X? → K. For syntac-
tic reasons, we represent it by a set of object-assignment
pairs P ⊂ X×K.

P :=
⋃

x?∈X?

(x?, Class(x?))

• K ⊂ K is the recommendation, concerning the classes
that could be assigned to the candidate (see Sect. 3);
• E is an explanation yet unspecified, supporting the rec-

ommendation K (see for instance [Labreuche et al.,
2012; Belahcene et al., 2017]), and addressed by Sect.
3.

Example 1. Objects are evaluated according to four cri-
teria a, b, c, d (higher is better). Six reference objects:
X? := {A1, A2, B1, B2, C1, C2}, described by the perfor-
mance table below, are assigned to three classes: K := {? ≺
?? ≺ ? ? ?} and make up the preference information P . We
consider two candidates: X,Y and try to assign them to some
possible classes.

Object a b c d Assignment
A1 3 3 2.5 0 ? ? ?
A2 3 2 2.1 1 ? ? ?
B1 2 2 1.3 1 ??
B2 3 1 3.7 0 ??
C1 2 1 1.6 1 ?
C2 1 1 4.1 0 ?
X 2 2 1.1 0 ?
Y 2 3 1.8 0 ?

2.2 The Reasoning of the Decision-Maker
A non-compensatory outranking relation can be represented
by a Boolean composite function:

∀x, y ∈ X, xSφy ⇐⇒ φ ◦ON (x, y) = 1

where the observation function ON maps a pair of objects
to its concordance set, and the consistent judgment of the
decision-maker, based on these concordance sets, is repre-
sented by the judgment function φ mapping a concordance
set to a truth value.
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ON : X× X → BN
(x, y) 7→ {i ∈ N : xi ≥ yi}

Antecedents of 1 by φ, called true points in the language
of the LAD [Crama et al., 1988], represent sufficient coali-
tions of criteria, while antecedents of 0 by φ are false points
or insufficient coalitions of criteria. φ is supposed non-
decreasing, meaning that a superset of a sufficient coalition
of criteria is also sufficient, and a subset of an insufficient
coalition is also insufficient. Compatibility of the outranking
relation S to the Pareto dominance imposes that a unanimous
support of criteria is always sufficient, so φ(N) = 1. Con-
versely, φ(∅) = 0 must hold, so the relation S is not reduced
to generalized indifference. Finally, we define the set of any
possible judgment function :

φ ∈ Φ̂ := {φ : BN → B : φ↗ and φ(N) = 1 and φ(∅) = 0}

2.3 Learning From the Assignment Examples
To assign a new object to a category, we shall use the follow-
ing classification rules:

• (R1) an object cannot outrank any object assigned to a
strictly better class;

• (R2) an object outranks objects assigned to a strictly
worse class;

• (R3) objects in the same class can be in any position with
respect to outranking.

To account for that, we first denote %P the complete pre-
order between reference objects induced by P:{

x? %P y? ⇐⇒ Class(x?) % Class(y?)
x? �P y? ⇐⇒ Class(x?) � Class(y?)
x? ∼P y? ⇐⇒ Class(x?) = Class(y?)

We consider the strict enforcement of the model rules for ref-
erence objects:

• (R1) : ∀x?, y? ∈ X?, x? �P y? ⇒ Not (y?Sφx
?);

• (R2) : ∀x?, y? ∈ X?, x? �P y? ⇒ x?Sφy
?.

Hence, the assignment of reference objects expressed by P
places upper (by (R1)) and lower (by (R2)) bounds upon the
outranking relation between reference objects. so that:

�P ⊆ Sφ ∩ (X?)2 ⊆ %P

These constraints transfer to the judgment functions. Each
pair (x?, y?) is mapped by the observation function ON to a
coalition of criteria. The observed coalitions ON (X? × X?)
serve as a learning set for the judgment function φ. They are
sorted between three sets, yielding necessary conditions on φ:

• insufficient coalitions ON (≺P) should be mapped to 0;

• sufficient coalitions ON (�P) should be mapped to 1;

• ON (∼P), which images by φ are not constrained.

Consequently, we define the set Φ(P) of judgment func-
tions compatible to the preference information P:

Φ(P) := {φ ∈ Φ̂ : φ◦ON (�P) = 1 and φ◦ON (≺P) = 0}

Example 2. (ex. 1 continued) In the following table, we de-
tail all the relevant observed coalitions. Sufficient coalitions
appear in the upper right side, boldfaced, while insufficient

coalitions are in the lower left side. N stands for unanimity,
which is self-explanatory.

? ? ? ?? ?
A1 A2 B1 B2 C1 C2

A1 − − abc abd abc abd
A2 − − N abd N abd
B1 d bd − − abd abd
B2 acd ac − − abc abd
C1 d d acd bd − −
C2 cd c c bcd − −

2.4 Consistency of Judgment
The set Φ(P) is empty if, and only if, Pareto dominance
is contradicted (∃ x?, y? ∈ X?, ∀i ∈ N, x?i ≥ y?i and
Class(x?) < Class(y?)), or some coalition of criteria M ∈
BN observed as being sufficient is weaker (for inclusion) than
some coalition M ′ ∈ BN observed as being insufficient. In
such a case, we call the preference information P inconsis-
tent; otherwise, it is consistent and Φ(P) is a partially de-
fined Boolean function [Crama et al., 1988]. Combining the
constraints on the judgment functions expressed by Φ̂ and
by P , we can compute the true points of Φ(P). They are
the antecedents of 1 common to every judgment function
φ ∈ Φ(P), and represent the coalitions established as suf-
ficient, by the virtue of being at least as strong as an observed
sufficient coalition.

TP := {t ∈ BN : ∃ tobs ∈ ON (�P), tobs ⊆ t}
Conversely, the false points are the antecedents of zero com-
mon to every φ ∈ Φ(P) and represent the coalitions estab-
lished as insufficient.

FP := {f ∈ BN : ∃ fobs ∈ ON (≺P), fobs ⊇ f}
Proposition 1 details three manners to express inconsistency:
Proposition 1. For any P ⊂ X × K, the three following
conditions are equivalent and characterize inconsistency:

1. Absence of compatible judgment function: Φ(P) = ∅
2. Conflicting constraints: TP ∩ FP 6= ∅
3. Explicit contradiction: ∃t ∈ ON (�P), ∃f ∈ ON (≺P) :
t ⊆ f

Example 3. (ex. 2 continued) Coalitions are sorted accord-
ing to the observations, and monotonicity:
ON (�P) = {N,abc,abd} = TP
ON (≺P) = {c,d,ac,bd,cd,acd,bcd}
FP = {∅,a,b,c,d,ac,ad,bc,bd,acd,bcd}
There is no dispute, as TP ∩ FP = ∅, but the coalition ab

is left undecided.

3 Recommendations and Explanations
In the previous section, we saw how the decision-maker in-
terprets pairwise comparisons between reference objects be-
longing to different classes as sufficient or insufficient coali-
tions of criteria. Here comes a new candidate, z ∈ X. It
gauges every reference object in X?, yielding |P| observa-
tions −→o (z,P) :=

⋃
x?∈X? ON (z, x?), and is also evaluated

by every reference object, yielding |P| other observations←−o (z,P) :=
⋃
x?∈X? ON (x?, z). Each of these 2|P| obser-

vations is interpreted as a sufficient, insufficient or undecided
coalition of criteria.
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Example 4. (ex. 3 continued) The following table aug-
ments the one presented in example 2 with the coalitions
resulting from comparisons between the reference objects
A1, A2, B1, B2, C1, C2 and the candidates X,Y .

? ? ? ?? ? ? ?
A1 A2 B1 B2 C1 C2 X Y

A1 − − abc abd abc abd N N
A2 − − N abd N abd N acd
B1 d bd − − abd abd N ad
B2 acd ac − − abc abd acd acd
C1 d d acd bd − − acd ad
C2 cd c c bcd − − cd cd

X d b (ab) bd (ab) abd
Y bd b abc bd abc abd

Non-bracketed coalitions have already been sorted accord-
ing to the preference information: boldfaced coalitions are
those previously established as sufficient, the others are in-
sufficient. Bracketed coalitions are yet undecided. ∀z ∈
{X,Y }, −→o (z,P) appears in the corresponding line, and←−o (z,P) in the appropriate column.

In this section, we specify the mapping between these ob-
servations and the output of the classifier system, the recom-
mendation K(z,P) ⊂ K and an explanation E(k,P) sup-
porting it.

3.1 Possible Assignments
As defined by the works of [Greco et al., 2010] about neces-
sary and possible preference relations, the definition of possi-
ble assignments is closely related to the notion of consistency
of an assignment with respect to the corpus of preference in-
formation. Defining, as we did in Section 2, Φ(P) as the set
of preference parameters compatible to P , and assuming it is
not empty:
• necessary assignments are yielded by every possible

completion of these preference parameters;
• possible assignments are yielded by some possible com-

pletion of these preference parameters;
• impossible assignments are yielded by no possible com-

pletion of these preference parameters;
These sets of assignments are concisely described referring
to the set:

K̂(z,P) := {k ∈ K : Φ(P ∪ {(z, k)}) 6= ∅}

A possible assignment is in K̂(z,P), an impossible one is
not. When K̂(z,P) boils down to a singleton, then it is a
necessary assignment for z.

This definition of possible assignment is straightforward to
implement, simply iterating through the set of possible as-
signments classes k ∈ K, updating the preference informa-
tion P ′ ← P ∪ {(z, k)}, and checking the consistency of
P ′. Unfortunately, it is a tricky notion when it comes to ex-
plaining. The actual unveiling of a Boolean judgment func-
tion compatible to the assignment is not very appealing, as it
introduces at the same time elements of jargon –describing
the judgment of the decision-maker as the partition of coali-
tions of criteria between sufficient and insufficient– and ar-
bitrariness, as some coalitions may very well be undecided

and should remain so. Consequently, we adopt the following
principle: “Everything is possible, unless proven otherwise”.

Doing so shifts the burden of proof towards impossibil-
ity, focusing on the exhibition of constraints restricting the
set K̂(z,P). We aim at explaining these constraints thanks
to statements of the form [premises : conclusions]scheme.
We define several argument schemes, as formalized by [Wal-
ton, 1996] in order to capture stereotypical patterns of hu-
man reasoning. These schemes specify the nature and con-
ditions imposed to both premises and conclusions, yielding
to valid arguments. We are looking for complete expla-
nations, so we must ensure the validity of the implication
premises ⇒ conclusions, and provide grounded sets of
statements, such that any premise is either the conclusion of
another argument, or directly referencing the assumed avail-
able information (pairwise comparisons between the refer-
ence objects or the candidate, based on criteria or assign-
ment).

In order to make apparent the cause of impossibility, we
consider the potential consequences of assigning a candidate
to a class through the additional (in)sufficient coalitions con-
ditional to the assignment of the candidate z to the class k:
∆TP(z, k) := TP∪{(z,k)}\TP ; ∆FP(z, k) := FP∪{(z,k)}\FP
We rewrite the impossibility of assigning the candidate z to
the class k using the conflicting constraints characterization
of inconsistency (see Prop. 1). We consider three poten-
tial sources of impossibility, sorted by evidence: K̂(z,P) =⋂
i∈{1,2,3}Ki(z,P) where:

• K1(z,P) := {k ∈ K : TP∩∆FP(z, k) = ∅} highlights
conflicts between established sufficient coalitions, and
the assignment of z;
• K2(z,P) := {k ∈ K : ∆TP(z, k)∩FP = ∅} highlights

conflicts between established insufficient coalitions, and
the assignment of z;
• K3(z,P) := {k ∈ K : ∆TP(z, k) ∩ ∆FP(z, k) =
∅} takes into account the least obvious situation where
some assignment of z may be self-contradictory, without
conflicting with any previously acknowledged informa-
tion.

The next section details the impossibilities captured by the set
K1(z,P), and proposes a supporting explanation E1(z,P),
while the other cases are briefly presented in section 3.3.

3.2 Assignments Contradicting Previously
Established Sufficient Coalitions

In this section, we focus on the set K1(z,P) := {k ∈ K :
TP ∩ ∆FP(z, k) = ∅}. As seen in the previous section this
set provides a range of possible assignments for the candidate
z, and partially implements the model described by the mani-
festo exposed in the introduction. We first describe K1(z,P)
as an intersection of constraints, for which we provide a de-
scription based on arguments. We prove K1(z,P) is an in-
terval of K, and provide a short, yet complete, explanation
accounting for this recommendation.

For increased readability, we introduce notations for par-
ticular sets of classes. For k ∈ K, let K- k (resp. K% k) the
interval of classes not greater (resp. not lower) than k.
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By construction, the recommended set K1(z,P) is built in
order to reject some impossible assignments. To illustrate and
understand its behavior, we make up a situation that specifi-
cally triggers this rejection flag. Suppose we know that:

(1) the coalition of criteria T ∈ BN is already known to be
sufficient, and

(2) the candidate z ∈ X is at least as good as the reference
object x? ∈ X?, assigned to class k ∈ K, for all criteria
in T .

Then, z outranks x? and cannot be assigned to a class strictly
worse than k by application of (R1). This constraint is cap-
tured by the set K1(z,P), as the assignment of z to any class
k ≺ k would lead to conclude that the coalition of criteria
ON (z, x?) is insufficient, so that the coalition of criteria T
would belong to both sets ∆FP(z, k) and TP . Consequently,
k /∈ K1(z,P).
If we replace the assumption (2) by:

(2’) the reference object x? ∈ X?, assigned to class k ∈ K,
is at least as good as the candidate z ∈ X for all criteria
in T .

then x? ∈ X? outranks z and z cannot be assigned to a class
strictly better than k, as

k � k ⇒ TP 3 T ⊆ ON (x?, z) ∈ ∆FP(z, k)⇒ k /∈ K1(z,P)

Reciprocally, any assignment k0 /∈ K1(z,P) results in
a non-empty intersection TP ∩ ∆FP(z, k0), which involves
at least one sufficient coalition T ∈ TP , as in assumption
(1), and one stronger, insufficient coalition resulting either
from the observations−→o (z,P), as in assumption (2), or from←−o (z,P), as in (2’).

A statement of type (1) needs to be backed by evidence, so
we introduce two argument schemes:

Definition 1. For any reference objects a?, b? ∈ X?
and any coalition of criteria T ∈ BN , we say the
tuple [a?, b? : T ]T instantiates the argument scheme
SUFFICIENT COALITION(P) if, and only if, T ⊇ ON (a?, b?)
and a? �P b?. We also say the tuple [∅ : N ]1 instantiates the
argument scheme WEAK DOMINANCE.

Proposition 2 (Argumentative structure of the sufficient
coalitions).

TP = {N} ∪
⋃

[a?,b?:T ]T

{T}

The sufficient coalitions are exactly the conclusions of
the arguments instantiating the SUFFICIENT COALITION(P)
scheme.

In order to account for the atoms of reasoning (2) and (2’)
and present them to the recipient of the recommendation, we
define the corresponding argument schemes.

Definition 2. For any coalition of criteria T ∈ BN , any ref-
erence object x? ∈ X? and any class c ∈ K, we say that:

• the tuple [T, x? : K% c ]T /−→o instantiates the argument
scheme OUTRANKING(z,P) if, and only if, T ∈ TP and
∀i ∈ T, zi ≥ x?i and class(x?) = c.

• the tuple [T, x? : K- c ]T /←−o instantiates the argument
scheme OUTRANKED(z,P) if, and only if, T ∈ TP and
∀i ∈ T, x?i ≥ zi and class(x?) = c

Proposition 3 (Argumentative structure of the recommenda-
tion).

K1(z, p) = K ∩
⋂

[T,x?:k]T /−→o

K% k ∩
⋂

[T,x?:k]T /←−o

K- k

Proposition 3 is a concise rewording of the necessary and
sufficient conditions for a given class not to belong to the set
K1(z,P) detailed previously. As a corollary, it shows that
K1(z,P) is an interval of K. Consequently, K1(z,P) can be
completely described by a pair (k1, k1) such that:

• K1(z,P) = K% k1 ∩ K- k1

• the lower bound k1 is maximal, as there is no class
strictly better than k1 which is supported by an argu-
ment instantiating the OUTRANKING(z,P) scheme. It
is trivial if k1 = minK (either when the set OUT-
RANKING(z,P) is empty, or when it does not support a
stronger outcome), in which case it does not need any
explanation. If k1 � minK, then it admits at least
one explanation E1 composed of an argument [T, x? :
K% k1 ]T /−→o ∈ OUTRANKING backed by an argument
[a?, b? : T ]T ∈ SUFFICIENT COALITION;

• the upper bound k1 is minimal, as there is no class
strictly worse than k1 which is supported by an argu-
ment instantiating the OUTRANKED(z,P) scheme. It
is trivial if k1 = maxK, in which case it does not
need any explanation. If k1 ≺ maxK, then it admits
at least one explanation E1 composed of an argument
[T ′, x? : K- k1

]T /←−o ∈ OUTRANKED backed by an ar-
gument [a?, b? : T ′]T ∈ SUFFICIENT COALITION.

Finally, the recommended interval K1(z,P) is supported by
an explanation E1 in the form of a pair (E1, E1), where E1

and E1 can be either the empty set or a pair of arguments.
Taken together, all these 0, 2 or 4 arguments prove that any
assignment k ∈ K \K1(z,P) should be rejected as ”impos-
sible”. Such explanation is not necessarily unique, and we
denote by Ê1(z,P) the set of suitable explanations.

Example 5. (ex. 4 continued)
Using the table presented in Example 4, the set K1 can

be interpreted as “a candidate cannot be assigned a class
laying strictly on the right of, nor a class strictly above, a
case containing a boldfaced coalition”: Consequently,

•
{
K1(X,P) = {?, ??}
E1(X,P) 3 (∅, {[∅ : N ]1, [N,B1 : - ??]T /←−o })

X cannot be ranked higher than ??, because B1 is rated ??
and dominates X .

•
{
K1(Y,P) = {??, ? ? ?}
Ê1(Y,P) 3 ({[A1, C1 : abc]T , [abc, B1 : % ??]T /−→o }, ∅)

Y cannot be ranked lower than ??, because it outranks B1.
Indeed, Y compares to B1 the same way as A1 to C1: it is at
least as good on the sufficient coalition of criteria abc.
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3.3 Other Impossible Assignments
The set K2(z,P) is defined symmetrically from K1(z,P)
w.r.t. sufficient and insufficient coalitions. Assignments
not in K2(z,P) result from the collision of a coalition
of criteria known to be insufficient, and the observation
of a candidate object resulting in an even weaker coali-
tion, so outranking is excluded, and all the classes strictly
above or below (depending on the direction of observa-
tion) the one of the reference object are therefore for-
bidden. Mutatis mutandis, we can define the argument
schemes INSUFFICIENT COALITION(P), WEAKLY DOMI-
NATED, NOT OUTRANKING(z,P), NOT OUTRANKED(z,P)
and obtain the same structural results, leading to define simi-
lar explanations for the lower and upper bounds of the interval
K2(z,P).

Example 6. (ex. 4 continued)
Using the table presented in Ex. 4, the set K2 interprets

the insufficient coalitions of the table, those not boldfaced nor
parenthesized. A candidate cannot be assigned a class strictly
below, nor strictly on the left, of such cases. For instance,
ON (B2, X) = acd ∈ FP (e.g. because ON (C1 ≺P B1) =
acd), so X is not outranked by B2 and should be at least
assigned the same class (??), and ON (X,B2) = bd ∈ FP
(e.g. because it is weaker than bcd = ON (C2 ≺P B2)),
so X does not outrank B2 and should not be assigned a
strictly better class (??). In terms of preference, objects X
and B2 are incomparable, and thus should be assigned the
same class. Finally, K2(X,P) = {??}.

The set K3(z,P) excludes inconsistent judgments on yet
undecided coalitions of criteria. There is no guarantee that
K3(z,P) has an interval structure. We omit this case due to
space limitations.

4 An argumentative Perspective
Along this paper, we proposed the construction of explana-
tions supporting results of a multi-criteria sorting problem,
as combinations of arguments schemes. Each instantiation of
one of the six previous main schemes (see Def. 1, 2 and their
symmetrical forms) provides one type of argument. These ar-
guments may be conflicting, and two different relations can
be distinguished:

Conflicting coalitions: we have evidence indicating that a
given coalition is potentially at the same time sufficient and
insufficient (i.e. there are two coalitions t ⊆ f such that
[a?, b? : t]T and [c?, d? : f ]F ). This situation represents an
explicit contradiction corresponding to an inconsistency situ-
ation (see Sec. 2.4). Such conflicts are not illustrated through
the previous examples, however inconsistencies are classical
situations within decision problems, as it concerns a human
decision-maker.

Conflicting classification: it may occur that, for some can-
didate, arguments based on the outranking relation point to-
wards an empty interval of possible assignments. This sit-
uation corresponds to the fact that the sets K1(z,P) and
K2(z,P) are disjoint, which may happen when either is
empty, or when the lower bound of one exceed the upper
bound of the other.

Example 7. (ex. 4 cont.) Y andA2 are incomparable, Y and
B2 are incomparable, yetA2 is preferred toB2. In particular,
A2 (???) does not outrank Y and Y does not outrankB2 (??)
so K2(Y,P) = ∅.

The impossibility to provide any recommendation is
clearly critical from the point of view of decision aiding.
These unfortunate situations cannot be ruled out in the gen-
eral case, as they may stem from Condorcet paradoxes (fail-
ures of transitivity) concerning the necessary outranking
relation or the necessary not-outranking relation (see e.g.
[Köksalan et al., 2009] for a discussion).

The argumentative treatment for our multi-criteria ordi-
nal sorting problem is thus to construct arguments pro and
against each possible assignment (of the reference object
and the candidate), and to determine among conflicting ar-
guments the acceptable ones. This can be done by taking
two different perspectives. One way is to rely on the work
of [Dung, 1995] - the next question being to identify which
semantics are appropriate in our situation. This is close in
spirit to an approach presented in [Amgoud and Serrurier,
2007] for classification in unordered classes (however in our
context the relation between arguments would be symmetric
[Coste-Marquis et al., 2005]). Another perspective is to con-
sider the construction of the argumentation system as a dia-
logue game and to rely on critical questions [Walton, 1996;
Ouerdane et al., 2008] to evaluate the arguments. This per-
spective has the advantage to keep the decision-maker in
the loop, which is often essential in a decision situation
[Labreuche et al., 2015]. Both approaches look promising
and are made possible thanks to the modeling presented in
this paper.

5 Conclusion

We have presented a fully accountable multi-criteria ordi-
nal sorting model, based on several design principles and as-
sumptions. The strength of the model is that it solely relies
on a simple set of classification rules, which means that each
recommendation can be justified by instantiating and com-
bining these rules–nothing else. Several argument schemes
have been proposed for that purpose. Interestingly, some of
these schemes have a flavour of analogical reasoning, which
was studied in the context of classification [Hug et al., 2016].
Now the simplicity of our model comes at a price: there are
different situations where inconsistency might occur, and the
model is not equipped yet to handle such situations. Facing
this issue we can take two stances. The first one is to relax
some of our design assumptions. For instance, we may decide
that it is actually acceptable for the model to use a frontier
between classes (allowing to eschew the Condorcet paradox).
This would require original explanation techniques to main-
tain the desired accountability. Another avenue is to handle
the inconsistencies thanks to defeasible and non-monotonic
reasoning techniques [Brewka et al., 2008]. Our discussion
in Section 4 points to formal argumentation as a natural and
promising opportunity for future research.
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and Alexis Tsoukiàs. Argument schemes and critical ques-
tions for decision aiding process. In COMMA, pages 285–
296. IOS Press, 2008.

[Ribeiro et al., 2016] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. “why should i trust you?”: Explain-
ing the predictions of any classifier. In ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD), 2016.

[Roy, 1991] Bernard Roy. The outranking approach and the
foundations of electre methods. Theory and decision,
31(1):49–73, 1991.

[Tintarev, 2007] Nina Tintarev. Explanations of recommen-
dations. In Proc. ACM conference on Recommender sys-
tems, pages 203–206, 2007.

[Vincke, 1999] Philippe Vincke. Robust solutions and meth-
ods in decision-aid. Journal of multicriteria decision anal-
ysis, 8(3):181, 1999.

[Walton, 1996] Douglas Walton. Argumentation schemes for
Presumptive Reasoning. Mahwah, N. J.,Erlbaum, 1996.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

820



Accountable Approval Sorting

Khaled Belahcene1, Yann Chevaleyre2, Christophe Labreuche3,
Nicolas Maudet4, Vincent Mousseau1, Wassila Ouerdane1
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4 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, France
{khaled.belahcene, vincent.mousseau, wassila.ouerdane}@centralesupelec.fr,

yann.chevaleyre@dauphine.fr, christophe.labreuche@thalesgroup.com, nicolas.maudet@lip6.fr

Abstract
We consider decision situations in which a set of
points of view (voters, criteria) are to sort a set of
candidates to ordered classes (GOOD / BAD). Can-
didates are judged GOOD when approved by a suf-
ficient set of points of view; this corresponds to
noncompensatory sorting. To be accountable, such
approval sorting should provide guarantees about
the decision process and decisions concerning spe-
cific candidates. We formalize accountability using
a feasibility problem expressed as a boolean satisfi-
ability formulation. We illustrate different forms of
accountability when a committee decides with ap-
proval sorting and study the information that should
be disclosed by the committee.

1 Introduction
A committee meets to decide upon the sorting of a num-
ber of candidates into two categories (e.g. candidates to ac-
cept or not, projects to fund or not). The committee ap-
plies a decision process which is public, the outcomes are
public as well, however the details of the votes are sensi-
tive and should not be made available. Recently, the issue
of the accountability of algorithmic decisions has become
a primary concern of our society [Doshi-Velez et al., 2017;
Wachter et al., 2017]. To what extent can we make the com-
mittee accountable of its decisions? In particular, in our set-
ting, a distinctive feature is that the decision may concern
several individuals: being accountable for the classification
of an individual may not be the same as being accountable
for all the classifications. To make things more precise, it is
thus useful to distinguish the following situations:
S1: an independent audit agency is commissioned to check

that the decisions of the committee indeed comply with
the publicly announced decision rule.

S2: a candidate, (supposedly) unsatisfied with the outcome
of the process regarding his own classification, chal-
lenges the committee and asks for a justification.

Situation S1 is sometimes called procedural regularity, see
for instance [Kroll et al., 2017], which calls for systems able
to prove to oversight authorities that “decisions are made un-
der an announced set of rules consistently applied in each
case”. A typical way to address situation S1 is to require
transparency and let the audit agency access all the available
information. This suffers from two drawbacks: (i) there are
often exceptions making full disclosure of the decision proce-
dure impossible, (ii) the burden of proof lies on the shoulders
of the audit agency, which (depending on the model) may
be too demanding. Alternatively, we can leave the burden of
proof on the committee’s side and ask for evidence that the set
of classifications is compliant with the decision process. This
may be done by exhibiting only part of the information, illus-
trating that the obtained classification is a possible outcome
of the sorting process. Since, typically, many other outcomes
would also be possible, this could preserve to some extent the
privacy of the committee’s votes. On the other hand, failing
this test would be evidence that the process was biased.

Regarding situation S2, the objective is to justify the clas-
sification of the complaining individual, again with minimal
disclosure of the committee’s votes. In this case, the commit-
tee will aim for evidence that the classification of the candi-
date cannot be otherwise, as long as a number of other clas-
sification outcomes are accepted. We can think of such deci-
sions as reference cases. Technically, this requires to show the
impossibility to rank the candidate in a different category, i.e.
the decision is necessary with respect to the jurisprudence.

More precisely, we shall primarily be concerned with a
general sorting model where voters express binary judgments
[Laslier and Sanver, 2010], and candidates are sorted as either
good or bad depending on the fact that the coalition of voters
supporting this classification is winning or not. An important
hypothesis is that the set of winning coalitions has to remain
constant for the set of classifications under scrutiny. This can
be seen as a requirement for the process to be unbiased. In
this setting, the “details of the votes” cover two aspects: (i)
the approval of voters at the individual level, (ii) the winning
coalitions at the committee level. In this paper we address the
following research question:
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Can we make the decisions of a committee using
approval sorting accountable while preserving as
much as possible the details of the votes?

The details of the sorting model are given in Section 2.
At the core of our proposal lies a characterization result of
the sorting model which avoids explicit reference to winning
coalitions, and leads to a SAT encoding (Section 3). In Sec-
tion 4, we consider the different scenarios discussed in the
introduction and show how this formal machinery allows us
to provide argument schemes which answer, at least partially,
the accountability requirements. Section 5 discusses related
work and concludes.

2 Noncompensatory Sorting
We are interested in situations where there is a need to aggre-
gate diverse, potentially conflicting, points of view forming a
set N – each i ∈ N can be seen as an agent, a voter, or a
criterion – into a single sorting of some alternatives taken in
a set X between two categories, GOOD and BAD, expressed
by an assignment α : X → {GOOD,BAD}. Each point of
view i ∈ N has an opinion on the entire set of alternatives
in the form of a complete preorder %i (i.e. %i is a complete,
reflexive and transitive binary relation on X) . This prefer-
ence may stem from numeric or symbolic performance, as
it is often the case in multi-criteria decision aiding, or be
intrinsically ordinal, as it is often assumed in social choice
contexts. Nevertheless, the aggregation procedure requires
that each point of view i ∈ N expresses only a binary judg-
ment on each alternative x ∈ X which is either approved or
not according to i. We shall also consider a subset X? ⊆ X
of alternatives with a reference status, with their assignment
α? : X? → {GOOD,BAD} serving as a basis for elaborating
justifications.

This abstract description covers several well-documented
decision processes, e.g. :

• a multiple criteria sorting problem [Bouyssou et al.,
2006] with ordinal preferences (each point of view i ∈
N is a criterion);

• a committee decision context (each point of view i ∈ N
is a voter and the GOOD category is the set of winners).

Example 1. We consider a situation with six alternatives
X := {a, b, c, d, e, f}, assessed from five points of view
N := {1, 2, 3, 4, 5} in the following manner:

a �1 b �1 f �1 e �1 c �1 d

e �2 b �2 c �2 d �2 a �2 f

f �3 a �3 b �3 d �3 e �3 c

d �4 a �4 c �4 e �4 f �4 b

c �5 e �5 b �5 f �5 d �5 a

We recall the definitions of an upset and the upper closure
of a subset w.r.t. a binary relation:

Definition 1 (Upset and upper closure). LetA be a set andR
a binary relation onA. An upset of (A,R) is a subsetB ⊆ A
such that ∀a ∈ A, ∀b ∈ B, aRb ⇒ a ∈ B. The upper
closure of a subset of (A,R) is the smallest upset of (A,R)
containing it: ∀B ⊆ A, clRA (B) := {a ∈ A : ∃b ∈ B aRb}.

We postulate that the process is bounded by two assump-
tions of rationality, individual and collective.

• At the individual level, for all points of view i ∈ N , the
approved subset of alternatives Ai ⊆ X should be an
upset for the preference relation %i. Hence, there is no
pair of alternatives x, x′ ∈ X where x is preferred to x′
w.r.t. %i, x′ is approved by i but not x.

• At the collective level, an alternative x ∈ X is collec-
tively approved and sorted into the upper category if,
and only if, it is approved by a sufficient coalition of
points of view. We assume the set of sufficient coalitions
S ⊆ P(N ) is fixed, and is an upset for inclusion. Hence,
if a coalition is sufficient, any superset of this coalition
is also sufficient (and if a coalition is insufficient, any
subset of it is also insufficient). We do not assume the
set of sufficient coalitions has an additive structure, as
opposed to weighted voting games or approval balloting
[Laslier and Sanver, 2010].

These two stages form the noncompensatory sorting model:

Definition 2 (NCS - noncompensatory sorting model,
[Bouyssou and Marchant, 2007]). Given a set of alternatives
X, a set of points of viewN , and a tuple of complete preorders
%i, i ∈ N , if S is an upset of (P(N ),⊆) and a tuple 〈Ai〉 of
upsets of 〈(P(X),%i)〉, 1 the noncompensatory sorting model
with parameters (S, 〈Ai〉) is the function NCSS,〈Ai〉 map-
ping alternatives from X to categories in {GOOD,BAD} such
that the alternative x is assigned to the upper category GOOD
if, and only if, the set of points of view according to which x
is approved is sufficient, i.e.

NCSS,〈Ai〉(x) =

{
GOOD, if {i ∈ N : x ∈ Ai} ∈ S
BAD, else

S is the set of sufficient coalitions of the model, and each Ai
is the approved set according to the point of view i ∈ N .

Example 2. (ex. 1 continued) Suppose the approved sets
are as follows: A1 := {a, b, f},A2 := {e, b, c},A3 :=
{f, a, b},A4 := {d, a, c},A5 := {c, e, b}, corresponding to
the three best alternatives according to the respective points
of view (3-approval). Suppose also the points of view are
aggregated according to the simple majority rule, i.e. B ∈
S ⇐⇒ |B| ≥ 3. Then, the corresponding noncompensatory
model assigns a, b, c to the GOOD category, and d, e, f to the
BAD one. Hence, α := {(a,GOOD), (b,GOOD), (c,GOOD),
(d,BAD), (e,BAD), (f,BAD)}. We note the same assign-
ment α can be obtained with different sorting parameters, e.g.
approved sets A′1 := {a, b, f},A′2 := {e, b, c, d, a},A′3 :=
{},A′4 := {d, a, c},A′5 := {c} and sufficient coalitions S ′
containing the coalitions {1, 2}, {5} and their supersets.

This model may appear particularly unwieldy to use ex-
plicitly, as it requires to handle a set of sufficient coalitions
that lies in the power set of the points of view.

1Meaning 〈Ai〉i∈N is a tuple of subsets of X such that, for all
i ∈ N ,Ai is an upset of (X,%i). Also, throughout the paper, when
the indexing is left unspecified, the tuples are indexed by points of
view i ∈ N .
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We propose an indirect approach w.r.t. the parameters of
the noncompensatory sorting model implicitly describing the
decision process: we suppose the inputs (ordinal preferences
over the alternatives according to each point of view) and out-
puts (an assignment of each alternative to a category, either
GOOD or BAD) of the aggregation model are given, and we
query the parameters (sufficient coalitions of points of view
and accepted sets according to each point of view) of the
model. Unlike the usual learning approach, based on the in-
verse problem of finding the value of a suitable tuple of pa-
rameters permitting to restore the output given the input, we
instead focus on versions of this problem where the issue is
merely the existence of such a tuple of parameters, and, in
the case of a positive answer, to find suitable values for the
accepted sets (but not for the set of sufficient coalitions).

Definition 3 (Inverse noncompensatory sorting problem: In-
v-NCS). Given an assignment α : X → {GOOD,BAD}
of alternatives to categories, we say that α can be repre-
sented in the noncompensatory sorting model if, and only if,
there is a pair of parameters (S, 〈Ai〉) where S is an up-
set of (P(N ),⊆) and 〈Ai〉i∈N is a tuple of subsets of X
such that, for all i ∈ N ,Ai is an upset of (X,%i), so that
α ≡ NCSS,〈Ai〉.

We say that α is a possible assignment if it is a YES in-
stance of Inv-NCS, i.e. α can be represented in the noncom-
pensatory sorting model. When there is some jurisprudence
α?, the assignment of a new candidate x can be necessary, in
the sense that no other assignment is possible.

Definition 4 (Necessary assignment w.r.t. reference cases).
Given a YES instance α? of Inv-NCS, an alternative x ∈ X is
necessarily assigned to a category C ∈ {GOOD,BAD} w.r.t.
assignment α? if α? ∪ {(x,C)} is a NO instance of Inv-NCS,
where C denotes the category opposite to C.

3 Feasibility of the Inverse NCS Problem
In this section, we propose a characterization of the possibil-
ity, given ordinal preferences over the alternatives according
to each point of view and an assignment of each alternative to
a category, either GOOD or BAD, of representing this assign-
ment in the non-compensatory sorting model. This formula-
tion circumvents any reference to the power set of points of
view, so we derive a compact SAT formulation for the inverse
problem, which is shown to be NP-hard.

3.1 Inv-NCS with Fixed Approved Sets
When the approved sets are given, solving the inverse NCS
problem – i.e. learning a set of sufficient coalitions permit-
ting to represent the assignment in the noncompensatory sort-
ing model – is similar to learning a disjunctive normal form
from training examples. From this observation, we derive a
tractable (computable in polynomial time) algorithm yielding
the version space [Mitchell, 1982] of the noncompensatory
sorting model with fixed approved sets:

Definition 5 (Observed sufficient and insufficient coalitions
given approved sets). Given α : X → {GOOD,BAD} and a

tuple 〈Ai〉 of upsets of 〈(P(X),%i)〉, we note:

T〈Ai〉(α) := cl⊇P(N )

(⋃
g∈α−1(GOOD){i ∈ N : g ∈ Ai}

)
,

F〈Ai〉(α) := cl⊆P(N )

(⋃
b∈α−1(BAD){i ∈ N : b ∈ Ai}

)
Proposition 1 (Lower and upper bounds for the sufficient
coalitions given the approved sets). Given an assignment α,
a tuple 〈Ai〉 of upsets of 〈(P(X),%i)〉 and an upset S of
(P(N ),⊆), α is represented by the noncompensatory sort-
ing model NCSS,〈Ai〉 if, and only if:

T〈Ai〉(α) ⊆ S ⊆ P(N ) \ F〈Ai〉(α)

Proof. α is represented by NCSS,〈Ai〉 iff i) for all alterna-
tives g ∈ α−1(GOOD), NCSS,〈Ai〉(g) = GOOD; and ii) for
all alternatives b ∈ α−1(BAD), NCSS,〈Ai〉(b) = BAD

i) holds iff S contains
⋃
g∈α−1(GOOD){i ∈ N : g ∈ Ai}

and, as a consequence of being an upset for inclusion, S con-
tains T〈Ai〉(α). ii) holds iff S does not contain any coalition
pertaining neither to

⋃
b∈α−1(BAD){i ∈ N : b ∈ Ai} nor to

F〈Ai〉(α).

Corollary 1 (complexity of Inv-NCS with fixed approved
sets). Given an assignment α of alternatives to categories
and a tuple 〈Ai〉 of upsets of 〈(P(X),%i)〉, the problem of
deciding whether α can be represented in the noncompen-
satory sorting model with approved sets 〈Ai〉 is tractable
(computable in polynomial time).

Indeed, it boils down to checking whether T〈Ai〉(α) ∩
F〈Ai〉(α) is empty or not, which is O(|X|2 · |N |).

3.2 A Pairwise Formulation for Inv-NCS
The following Theorem is very important as it says that, in or-
der to check that an assignment α is compatible with NCS, it
is equivalent to find approval subsets over each point of view
such that one can discriminate each pair of GOOD and BAD
alternatives on at least one point of view (i.e. the GOOD al-
ternative is approved on this point of view, and not the BAD
one). Interestingly, the concept of sufficient coalitions disap-
pears in the characterization.

Theorem 1 (Pairwise formulation of the noncompensatory
sorting model). An assignment α of alternatives to categories
can be represented in the noncompensatory sorting model if,
and only if, there is a tuple 〈Ai〉 ∈ P(X)N such that:

1. for each point of view i ∈ N , Ai is an upset of (X,%i)
2. for each pair of alternatives (g, b) ∈ α−1(GOOD) ×
α−1(BAD), there is at least one point of view i ∈ N
such that g ∈ Ai and b /∈ Ai.

Proof. [¬(1+2) ⇒ ¬NCS] If there are two alternatives g ∈
α−1(GOOD) and b ∈ α−1(BAD) that falsify Condition 2,
then, for any potential parameters S, 〈Ai〉 of a noncompen-
satory sorting model, the nesting {i ∈ N : g ∈ Ai} ⊆ {i ∈
N : b ∈ Ai} results in a sorting NCSS,〈Ai〉 at least as favor-
able to b as to g, whereas α(b) = BAD is strictly worse than
α(g) = GOOD.
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[(1+2) ⇒ NCS] Given a tuple 〈Ai〉 ∈ P(X)N satisfy-
ing conditions 1 and 2, we consider the sets of coalitions
T〈Ai〉(α) and F〈Ai〉(α).

According to Proposition 1, α can be represented in the
noncompensatory model iff T〈Ai〉(α) ∩ F〈Ai〉(α) = ∅. Sup-
pose this intersection is nonempty, and let B ∈ T〈Ai〉(α) ∩
F〈Ai〉(α). By definition of T〈Ai〉(α), there is an alternative
g ∈ α−1(GOOD) such that B ⊇ {i ∈ N : g ∈ Ai}:
for all points of view i /∈ B, g /∈ Ai. By definition of
F〈Ai〉(α), there is an alternative b ∈ α−1(BAD) such that
B ⊆ {i ∈ N : b ∈ Ai}: for all points of view i ∈ B,
b ∈ Ai. Consequently, there is no point of view according
to which g is accepted but not b, contradicting condition 2.
Hence, T〈Ai〉(α) ∩ F〈Ai〉(α) = ∅.

3.3 Complexity of Inv-NCS
We show that the inverse NCS problem is intractable.

Proposition 2 (NP-hardness of Inv-NCS).
Given an assignment α of alternatives to categories, the prob-
lem of deciding whether α can be represented in the noncom-
pensatory sorting model is NP-hard.

Proof. By reduction from SAT: consider a SAT instance in
conjunctive normal form, with n variables y1, . . . , yn and m
clauses c1 ∧ · · · ∧ cm. We build a gadget assignment with
m+n points of view and 2m alternatives: g1, . . . , gm are as-
signed to GOOD whereas b1, . . . , bm are assigned to BAD.
First, let us focus on the first m points of view: for each
k ∈ 1 . . .m, let gk ∼k bk �k g1 ∼k · · · ∼k gk−1 ∼k
gk+1 ∼k · · · ∼k gm ∼k b1 ∼k · · · ∼k bk−1 ∼k bk+1 ∼k
· · · ∼k bm. The preference %k has two equivalence classes,
the upper one containing {gk, bk} and the lower one contain-
ing
⋃
k′ 6=k{gk′ , bk′}. The n last points of view of the gadget

are built considering the SAT formula. From the j-th clause,
written in disjunctive form cj :=

∨
k∈Pj

yk ∨
∨
k∈Nj

¬yk,
where Pj and Nj are disjoint subsets of 1 . . . n indexing the
positive (resp. negative) atoms of cj , we build the prefer-
ence relation %j+m. It has at most 3 equivalence classes: the
uppermost containing the alternatives

⋃
k∈Pj
{gk}, the one in

the middle containing
⋃
k∈Pj
{bk}∪

⋃
k∈Nj

{gk}, and the low-
est containing

⋃
k∈Nj

{bk} ∪
⋃
k/∈Pj∪Nj

{gk, bk}. We note
trivial accepted sets – i.e. points of view i ∈ N such that
Ai = ∅ orAi = X – do not contribute to the feasibility of the
inverse NCS problem. For the m first points of view, there
is only one nontrivial accepted set: it accepts the upper class
and rejects the lower one. For the n last points of view of
the gadget, the nontrivial accepted sets accept the uppermost
equivalence class, reject the lowest class, and either accept or
reject the class in the middle. We define a one-to-one map-
ping between the nontrivial accepted sets of the gadget and
the assignment of the n variables of the SAT problem: yj is
False ⇐⇒

⋃
k∈Pj
{bk} ∪

⋃
k∈Nj

{gk} ∈ Am+j . Each non
trivial assignment discriminates all pairs (gk, bk′) with k 6= k′

w.r.t. the point of view k. The pairs (gk, bk) is discriminated
iff the clause ck is satisfied. Thus, a solution of the SAT prob-
lem is mapped to a tuple of accepted sets that discriminates
all pairs with opposite assignments and reciprocally.

3.4 A Compact SAT Formulation for Inv-NCS
We leverage Theorem 1 by formulating a boolean satisfiabil-
ity problem that answers the decision problem: can the as-
signment α be represented in the non-compensatory model?
If the instance is a YES, any solution of the satisfiability prob-
lem translates into suitable, yet arbitrary, explicit values for
the approved sets. Upper and lower bounds for the set of suf-
ficient coalitions can be obtained thanks to Proposition 1.
Corollary 2 (CNF Pairwise SAT formulation for NCS). Let
α : X → {GOOD,BAD} an assignment. We define the
boolean function φpairwise

α with variables:
• λi,x indexed by a point of view i ∈ N , and a value x ∈ X,
• µi,g,b indexed by a point of view i ∈ N , a good alternative
g ∈ α−1(GOOD) and a bad alternative b ∈ α−1(BAD),
as the conjunction of clauses: φpairwise

α := φ1α∧φ2α∧φ3α∧φ4α

φ1α :=
∧
i∈N

∧
x′%ix

(λi,x′ ∨ ¬λi,x)

φ2α :=
∧
i∈N , g∈α−1(GOOD), b∈α−1(BAD) (¬µi,g,b ∨ ¬λi,b)

φ3α :=
∧
i∈N , g∈α−1(GOOD), b∈α−1(BAD) (¬µi,g,b ∨ λi,g)

φ4α :=
∧
g∈α−1(GOOD), b∈α−1(BAD) (

∨
i∈N µi,g,b)

α can be represented in the noncompensatory sorting
model if, and only if, φpairwise

α is satisfiable.
Moreover, if 〈λi,x〉, 〈µi,g,b〉 is an antecedent of 1

by φpairwise
α , then the noncompensatory sorting model

NCSS,〈Ai〉 with accepted sets defined by Ai := {x ∈ X :
λi,x = 1} and any upset S of (P(N ),⊆) of sufficient coali-
tions containing the upset T〈Ai〉(α) and disjoint from the
lower set F〈Ai〉(α) satisfies α ≡ NCSS,〈Ai〉.

Variables λi,x are assigned to 1 when the alternative x is
accepted from the point of view i, and variables µi,g,b are
assigned to 1 when the point of view i accepts g but not b.

The clauses φ1α ensure the sets of accepted values of each
point of view meet the first condition of Theorem 1, i.e. Ai
is an upset. The clauses φ2α (resp. φ3α) ensure each variable
µi,g,b cannot take a value of one unless g is accepted (resp.
unless b is not accepted). The clauses φ4α ensure the second
condition of Theorem 1 is met.

The formulation is compact: O(|N | · |X|2) variables,
O(|N | · |X|2) binary clauses and O(|X|2) |N |-ary clauses.

4 Accountable Decisions with Inv-NCS
In this section we describe how the theoretical and algorith-
mic tools described in Section 3 in order to assess the feasi-
bility of the inverse NCS problem (see Def. 3) can be used
to support a decision process. More precisely, we address
the situation described in Section 1 where a committee has to
assign alternatives either to the GOOD or the BAD category,
and to account for this assignment. Section 4.1 addresses the
first situation S1, where an audit is commissioned to check
the compliance of the committee to its terms of reference,
by referring to the notion of possible assignment. Section
4.2 addresses the second situation S2, where the committee is
challenged by a stakeholder to defend a specific decision, by
referring to the notion of necessary assignment.
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4.1 Auditing Conformity
We consider the situation S1 depicted in Section 1, where an
independent audit agency has to check that the decision α
of the committee on candidates X is compatible with NCS.
We assume X? = ∅: all the assignments should be justified
together, and none should be taken for granted.

Should the burden of proof be left to the auditor, the audit
procedure could require either i) full disclosure of the pref-
erence profile 〈(X,%i)〉i∈N , and the auditor solving the NP-
hard Inv-NCS problem, e.g. using a SAT solver and Corollary
2; or ii) full disclosure of the approved sets 〈Ai〉i∈N , and the
auditor solving the tractable Inv-NCS with fixed accepted sets
problem as described by Proposition 1.

If we consider putting the burden of proof on the commit-
tee, Theorem 1 can be leveraged to compute and provide a
certificate of feasibility for Inv-NCS(α) that involves the dis-
closure of less information, as illustrated below:

Example 3. (ex. 2 cont.) If the approved sets of the com-
mittee are A1, . . . ,A5, then it needs to disclose information
concerning three points of view in order to prove the assign-
ment α is consistent with an approval procedure, e.g. :

• according to the first point of view, b is approved (and so
is a which is better than b) whereas e is not (and neither
is d which is worse than e), hence the procedure is able
to discriminate a, b from d, e;

• according to the second point of view, c is approved (and
so is b which is better than c) whereas d is not (and nei-
ther is f which is worse than d), hence the procedure is
able to discriminate b, c from d, f ;

• according to the fourth point of view, c is approved (and
so is a which is better than c) whereas e is not (and nei-
ther is f which is worse than e), hence the procedure is
able to discriminate a, c from e, f .

The following table summarizes the points of view permitting
to discriminate each pair:

BAD
d e f

a 1 1 4
GOOD b 1 1 2

c 2 4 2

This manner of arguing that a given assignment is indeed a
possible outcome of an approval sorting procedure can be for-
malized into an argument scheme, an operator tying a tuple of
premises – pieces of information satisfying some conditions
– to a conclusion [Walton, 1996].

Definition 6 (Argument Scheme (AS1)). We say a tuple
〈(i1, g1, G1, b1, B1), . . . , (in, gn, Gn, bn, Bn)〉 instantiates
the argument scheme AS1 supporting the assignment α if: i)
for all k ∈ {1 . . . n}, ik ∈ N , gk ∈ Gk, α(Gk) = {GOOD},
∀g ∈ Gk, g %ik gk, bk ∈ Bk, α(Bk) = {BAD}, ∀b ∈
Bk, bk %ik b and gk �ik bk; and ii)

⋃
k∈{1...n}Gk × Bk =

α−1(GOOD)× α−1(BAD)

Hence, according to the point of view ik, gk is the least pre-
ferred alternative in the subset of GOOD alternatives Gk and
it is preferred to bk, the most preferred alternative in the sub-
set of BAD alternatives Bk. This scheme is somewhat frugal

in the number of pairs of the profile 〈(X,%i)〉i∈N revealed to
the auditor, as the comparisons inside Gk × Gk or Bk × Bk
are not disclosed. Theorem 1 can be reworded as follows:
Corollary 3. An assignment α is a YES instance of Inv-NCS
if, and only if, there is an instance of AS1 supporting it.
Example 4. (Example 3 cont.) The explanations given in Ex-
ample 3 instantiate AS1 as follows:

〈
(1, b, {a, b}, e, {d, e}),

(2, c, {b, c}, d, {d, f}), (4, c, {a, c}, e, {e, f})〉
The length n of an explanation instantiating the argument

scheme AS1 offers an indication regarding its cognitive com-
plexity as well as the amount of information disclosed to the
auditor. Therefore, we would rather provide the shortest pos-
sible explanations, and strive to mention as few points of view
as possible. Obviously, an explanation needs to reference a
specific point of view at most once, so n ≤ |N |. Unfortu-
nately, the following result shows that one might require all
points of view in a complete explanation, even in situations
with relatively few alternatives.
Proposition 3. For every set of points of view N , there
exists a set of |N | + 1 alternatives X and an assignment
α : X → {GOOD,BAD} for which any tuple instantiating
the argument scheme AS1 and supporting α has length |N |.
Sketch of the Proof. The result is shown by induction on |N |.
For |N | = {1}, we consider α1 := {(g,GOOD), (b,BAD)}
with g �1 b. Consider by induction an assignment αp on p
candidates Xp assessed on points of view N = {1 . . . p}. We
introduce a new alternative z, judged as GOOD, and a new
point of view p+ 1, such that the candidates in Xp are indif-
ferent on the new point of view, and z can be discriminated
from b only on the new point of view.

4.2 Justifying Individual Decisions
We now wish to justify the decision of the committee on a
candidate x ∈ X (Situation S2). As we have seen in the pre-
vious section, a complete explanation of the assignment of
x necessarily implies the disclosure of many information re-
lated to the other candidates, which might not be acceptable.

A possible solution is for committee to base their de-
cision on reference cases, an assignment α∗ : X∗ →
{GOOD,BAD}, e.g. compiling past decisions that are rep-
resentative of its functioning mode. In order to get rid of the
influence of the other candidates, we are looking for neces-
sary assignments given these reference cases.
Example 5. (ex. 2 cont.) We consider the alternatives
a, b, c, d, e, f and their assignment α? have a reference sta-
tus, and we are interested in deciding on the assignment of
two candidates, x, y such that:

a �1 f �1 b �1 e �1 c �1 y �1 d �1 x

e �2 b �2 y �2 c �2 d �2 a �2 f �2 x

f �3 a �3 d �3 b �3 y �3 x �3 e �3 c

d �4 a �4 c �4 e �4 x �4 y �4 f �4 b

c �5 y �5 e �5 b �5 f �5 x �5 d �5 a

It is not possible to represent the assignment (x,GOOD) to-
gether with the reference assignment α. Thus, x is neces-
sarily assigned to BAD . On the contrary, both assignments
(y,GOOD) and (y,BAD) can be represented together with α.
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Necessary Decisions Entailed by the Jurisprudence
An explanation of the necessity of an assignment is intrinsi-
cally more complex than that for its possibility: one needs
to prove that it is not possible to separate all pairs of GOOD
and BAD candidates on at least one point of view. The proof
relies on some deadlock that needs to be shown. Formally,
this situation manifests itself in the form of an unsatisfiable
boolean formula, e.g. given by Corollary 2. The unsatisfi-
ability of the entire formula can be reduced to a ⊆-minimal
unsatisfiable subset of clauses (MUS), which are commonly
used as certificates of infeasibility, and can also be leveraged
to produce explanations [Junker, 2004; Besnard et al., 2010;
Geist and Peters, 2017]. In the case of the necessary deci-
sions by approval sorting with a reference assignment, any
MUS pinpoints a set of pairs of alternatives in (α−1(GOOD)∪
{x}) × α−1(BAD) that cannot be discriminated simultane-
ously according to the points of view.

Example 6. (ex. 5 cont.) Consider the subset of alternatives
c, d, e, f, x, and assume x to be assigned to GOOD. Each pair
in GB := {(c, e), (x, d), (x, f)} needs to be discriminated
from at least one point of view in N , but this is not possible
simultaneously: i) none of the pairs in GB can be discrim-
inated neither from the first, the second nor the third point
of view, as the overall GOOD alternative is deemed worse
than the BAD one. ii) no more than one pair in GB can be
discriminated according to each point of view among {4, 5},
and there are more pairs to discriminate than points of view.

The pattern of deadlock illustrated by Example 6 can be
generalized and formalized into an argument scheme, with
premises: i) a k-tuple of pairs 〈(g1, b1), . . . , (gk, bk)〉 of al-
ternatives with opposite assignment, ii) a subset of points of
view B ⊆ N with cardinality k − 1, such that, according to
all points of view i /∈ B, bj �i gj for all j, and, according to
all points of view i ∈ B the intervals ]b1, g1]i, . . . , ]b

k, gk]i
are pairwise disjoint.

Clearly, the existence of an argument instantiating the
premises of this scheme is a sufficient condition for the infea-
sibility of representing the given assignment in the noncom-
pensatory model, which in turn yields the conclusion that the
candidate x is necessarily assigned to the other category.

If we assume that the cognitive burden demanded by an ex-
planation along the lines of this argument scheme increases
with the number of its premises, we derive an implicit hierar-
chy among the necessary decisions supported by the scheme,
with a nesting E1 ⊆ E2 ⊆ · · · ⊆ E|N |+1, where Ek denotes
the set of decisions supported by a scheme with premises ref-
erencing at most k pairs of alternatives with opposite assign-
ment. E1 is exactly the set of decisions stemming from Pareto
dominance, where a candidate is either at least as good as
a reference alternative in the GOOD category, or at most as
good as a reference alternative in the BAD category.

The question of deciding if this scheme captures a neces-
sary condition, i.e. if any decision entailed by the jurispru-
dence can be supported by such an explanation, is left open.

Ambivalent Situations
It may happen that, for a given candidate, both assignments
to GOOD and to BAD are possible. This situation is obviously

all the more frequent as the reference set is small, or the num-
ber of points of view is high. In such a case, a design option
would consist in constraining the decision of the committee,
either favorably (e.g. following an innocent unless proven
guilty principle) or unfavorably (e.g. following a precaution-
ary principle). Another, more common, venue would give the
freedom of choice to the committee. In this case, as opposed
to the situation where the decision is entailed by the jurispru-
dence, and where the committee just needs to make obvious
the link between the current case and the reference cases, the
committee needs to disclose some information concerning its
inner functioning. In some cases, though, Proposition 1 offers
a solution that avoids a complete disclosure: suppose that,
given the approved sets 〈Ai〉, the candidate is approved from
a coalition of points of view that is known to be insufficient
(resp. sufficient), because a reference alternative is assigned
to the BAD (resp. GOOD) category in a similar, or even better
(resp. worse) situation than the candidate. This fortunate sit-
uation circumvents the need of discussing the particulars of
the set of sufficient coalitions by referring to its upper bound
P(N ) \ F〈Ai〉(α) (resp. lower bound T〈Ai〉(α)).

Example 7. (ex. 6 cont.) According to the first point of view,
y is disapproved, as it is worse than c /∈ A1. According to
the third point of view, y is disapproved, as it is worse than
b /∈ A3. According to the fifth point of view, y is disapproved,
as it is worse than f /∈ A5. Furthermore, being approved
according to both the second and fourth points of view is not
enough to warrant access to the GOOD category, as illus-
trated by e. Hence, y is assigned to the BAD category.

5 Related Work and Conclusion
In this paper we are interested in the problem of account-
ability of decisions issued from a noncompensatory sorting
model (NCS) [Bouyssou and Marchant, 2007]. Two situa-
tions have been mainly studied. In the first one, the commit-
tee needs to justify that its decision is a possible NCS assign-
ment. A characterization result helps to turn the existence of
such assignment to finding separations of the pairs of GOOD
and BAD candidates over at least one point of view, which
can be formulated as a SAT problem. This allows us to gen-
erate a single argument scheme that can explain all possible
NCS assignments. The second situation arises when the as-
signment of a new candidate is necessarily derived from ju-
risprudence. Thanks to the characterization result, one can
also construct an argument scheme representing deadlock sit-
uations. The use of argument schemes as formal tools to
convey explanation in the context of multi-criteria aiding has
also been advocated in [Labreuche, 2011; Nunes et al., 2014;
Belahcene et al., 2017].

Our solutions stem from an original take of the dual no-
tions of possibility and necessity, often used in so-called ro-
bust optimization, decision making [Greco et al., 2010] or
voting contexts [Boutilier and Rosenschein, 2016] to account
for incomplete information, conveying epistemic stances of
skepticism or credulousness. Instead we use them to describe
the leeway left to the committee in setting its expectations:
the decisions taken are bound from above by possibility, de-
scribed as the feasibility of the Inv-NCS problem related to
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their decision, and from below by necessity, described as the
infeasibility of the Inv-NCS problem simultaneously related
to the reference cases and impossible assignments.

Barrot et al. (2013) study the problem of identifying the
possible winners of an approval election, when votes are
given but approval thresholds are unspecified. They show that
determining whether a set of candidates are co-winners is NP-
complete when voters have fixed (even equal) importance.
Approval voting has been studied in the context of multi-
winner elections [Aziz et al., 2015], which may seem close
to our setting: indeed, we could see the candidates ranked in
GOOD as the winners. However, in our context, each candi-
date is ranked without consideration to the other candidates,
and voters are not assumed to have equal importance.

Finally, several algorithms have been proposed to learn the
parameters of a noncompensatory sorting model from obser-
vation: [Leroy et al., 2011] relies on a MIP formulation, [So-
brie et al., 2015] relies on a metaheuristic.
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Justifying Dominating Options when Preferential
Information is Incomplete

Christophe Labreuche1 and Nicolas Maudet2 and Wassila Ouerdane3

Abstract. Providing convincing explanations to accompany recom-
mendations is a key issue in decision-aiding. In the context of deci-
sions involving multiple criteria, the problem is made very difficult
because the decision model itself may involve a complex process. In
this paper, we investigate the following issue: when the preferential
information provided by the user is incomplete, is there a principled
way to define what is a “simple” explanation for a recommended
choice? We argue first that explanations may necessitate different
levels of detail. Next, we show that even when a detailed explana-
tion is necessary, it is possible to distinguish explanations of different
levels of complexity. Our results rely on an original connection we
establish between the “mechanics” required to compute supporting
coalitions of criteria and the simplicity of the explanation.

1 Introduction
From the first expert systems to the recent recommendation systems
which flourish on commercial websites, decision-aiding has been a
central concern in AI. Very soon, it has become clear that providing
recommendations was only part of the challenge. Indeed, explain-
ing the recommended choice(s) to the decision-maker is crucial to
improve the acceptance of the recommendation [9, 3, 13], but also
sometimes to allow the decision-maker to justify in turn the decision
against other stakeholders. What makes an explanation “convincing”
is thus highly context dependent.

In a context of movie recommendation, [7] notoriously reports that
a very efficient explanation is that “this recommender system has cor-
rectly predicted 80% of the time in the past”. In contexts involving
more critical decisions or other users, much more detailed explana-
tions would have to be considered [11]. Of course the ultimate na-
ture of the explanation will depend on the underlying decision model
and/or on the nature of the data provided by the user. Following [7],
a useful distinction to make is among data-based and process-based
explanations. To put it simply, in order to explain a recommenda-
tion, a data-based approach will focus on some key data, whereas a
process-based one would make explicit (part of) the steps that lead
to the decision. Both aspects are considered in this paper.

We start with a collection of partial orders over the options, as pro-
vided by different weighted criteria (or agents). The decision model
we rely on is based on the weighted Condorcet principle: options
are compared in a pairwise fashion, and an option a is preferred to
another option b when the cumulated support that a is better than b

1 Thales Research & Technology, 91767 Palaiseau Cedex, France, email:
christophe.labreuche@thalesgroup.com

2 LIP6, Université Paris-6, 75006 Paris Cedex 06, France, email: nico-
las.maudet@lip6.fr

3 LGI, Ecole Centrale de Paris, Chatenay Malabry, France, email: was-
sila.ouerdane@ecp.fr

outweighs the opposite conclusion. Our aim in this paper is to pro-
vide a principled way to produce explanations to the fact that a given
set of options A is dominating with respect to the other options, more
specifically in the sense that A constitutes a Smith set [4].

This decision model is specified from some preferential informa-
tion (PI) provided during interview, related to the comparison of the
options on each criterion and also on the weights of criteria. Most
of the time, the PI is not sufficient to uniquely specify the model. In
particular, some options may be incomparable on some criteria for
the decision-maker. Moreover, the elicitation process will not result
in a single value of the weight vector, but rather in a set of vectors
that are compatible with the PI [6]. For instance, in the context of
multi-criteria decision aid (MCDA), the decision-maker provides a
few learning examples that yield constraints on the weights. In social
choice, instead of assigning a weight to each party, one may only
know a subset of the winning coalitions (A winning coalition beats
its complement). Then an option is said to be necessarily preferred to
another one if the first option is preferred to the second for all weight
vectors that are compatible with the PI, and for all orderings of the
options on the criteria that are compatible with the PI [6].

Unfortunately, when the PI is incomplete, the explanation may be
quite complex, even for problems of small size, because one cannot
display the value of the weights to the audience as part of an expla-
nation. Consider the following example.

Example 1. There are 7 options {a, b, c, d, e, f, g} and 4 criteria
{1, 2, 3, 4}. The partial orderings (noted �1,�2,�3,�4) of options
over the 4 criteria are depicted in Figure 1. The PI regarding the
importance of the criteria is composed of three items:

• 1 together with 3 are more important than 2 and 4 together;
• 2 and 3 together are more important than criterion 1 taken alone;
• 4 is more important than criteria 2 and 3.

Actually, option a is the unique dominating option. The “techni-
cal” reason is that (i) a dominates e and f on all criteria, (ii) coali-
tion 1, 2, 3 is a winning coalition (preference of a over b), (iii) coali-
tion 1,4 is a winning coalition (preference of a over d), (iv) coalition
1,3,4 is winning (preference of a over g), and (v) coalition 2,3,4 is a
winning coalition (preference of a over c). But these reasons vary in
terms of the effort required to understand them: (i) is trivial, and (ii),
(iii) and (iv) are reinforcement of some statements of the PI. For in-
stance, (ii) easily follows from the fact that 1 and 3 are already more
important than 2 and 4. On the other hand, the underlying justifica-
tion to (v) is more complex. How to deduce indeed from the PI, the
statement that coalition 3,4 beats coalition 1,2?

We will focus on MCDA but our approach can be used in social
choice in a similar way. This paper advances the state of the art by
characterizing minimal complete explanations to justify dominating
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Figure 1. Partial preferences �1,�2,�3,�4 over the criteria 1,2,3,4.

sets in the presence of incomplete preferential information. We argue
that this question calls for a process-based approach whereby com-
parative statements can be produced. We make precise the intuition
that explanations can be of different levels of detail and complexity.
Specifically, we classify explanations depending on the “operators”
that were used to derive the desired statements. The major ingredient
is a characterization of statements on weights that can be deduced
(in terms of linear combinations) from the PI. We also show how to
compute them. The remainder of this paper is as follows. Sect. 2 first
details the available preferential information, the decision model, and
the language used to produce explanations. We show how our ap-
proach can flexibly cater for the different degrees of accuracy that
may occur within the same instance, depending whether the pairwise
comparison under analysis is considered tight (Sect. 3) or obvious
(Sect. 4). Sect. 5 illustrates the output as produced by our implemen-
tation. Sect. 6 discusses related work and concludes.

2 Background and basic definitions
We consider a finite set O of options and a finite set H = {1, . . . ,m}
of criteria. To simplify notation, coalition {1, 2, 3} will be noted 123.

2.1 Description of the preferential information
The decision-maker needs to provide information regarding the rank-
ing of options O, but also regarding the relative strength of coalitions
of criteria (2H ). Thus, two types of statements are considered.

Definition 1. A preferential statement (p-statement) is of the form
[b �i c] where b, c ∈ O and i ∈ H , meaning that b is preferred over
c on criterion i. Let S denote the set of all such statements.

Definition 2. A comparative statement (c-statement) is of the form
[I � J ] where I, J ⊆ H with I ∩ J = ∅, meaning that the impor-
tance of the criteria in I is larger than that of the criteria in J . Let V
denote the set of all such statements.

It is important to remark that expressing a c-statement amounts to
expressing a constraint on the feasible weight vectors attached to the
criteria. Let W (the set of normalized weights) be the set of weights
vectors w ∈ [0, 1]H such that

∑
i∈H wi = 1.

We now define the operators which will make the link between the
c-statements and their semantical counterpart (the weights).

Definition 3. For a set V ⊆ V of c-statements, let V ↓ := {w ∈
W s.t. ∀[I � J ] ∈ V ,

∑
i∈I wi >

∑
i∈J wi} be the set of weights

satisfying the comparative statements V . Conversely, the set of c-
statements that can be deduced from W ⊆ W is W ↑ := {[I � J ] ∈
V s.t. ∀w ∈ W ,

∑
i∈I wi >

∑
i∈J wi}. Finally, we introduce some

notation:

• For V ⊆ V , we set V ↓↑ = (V ↓)↑ and cl(V ) := V ↓↑.
• For W ⊆ W , we set W ↑↓ = (W ↑)↓.

Definition 4. A PI is a pair 〈S, V 〉 with S ⊆ S and V ⊆ V .

The information provided by the decision-maker is supposed to
be “rational”. Specifically, this means that the S part of the PI con-
stitutes a partial order (reflexive, antisymmetric, transitive, but not
necessarily complete), and that V is assumed to be consistent4, in
the sense that V ↓ 
= ∅. Note finally that the set of all linear exten-
sions that can be obtained from S is denoted Slin(S).

Example 2 (1 ctd.). Given the PI of Ex. 1, V = {[13 � 24], [23 �
1], [4 � 23]}. We have e.g. [c �1 d] ∈ S, [b �2 a] /∈ S, and
〈0.2, 0.1, 0.15, 0.55〉 /∈ V ↓ (violation of the first constraint).

2.2 Description of the choice problem
Definition 5. A set I ⊆ H is called a winning coalition (w.r.t. the PI
〈S,W 〉) if

∑
i∈I wi >

1
2

for all w ∈ V ↓.
Option b is necessarily preferred to c if whatever the weight vector

compatible with V , whatever the completion of S to form total orders
on each criterion, the sum of the weights of criteria supporting b is
larger than the sum of the weights of criteria supporting c.

Definition 6. For b, c ∈ O, b is necessary preferred to c given 〈S, V 〉
(noted b �S,V c) if

∀w ∈ V ↓ ∀K ∈ Slin(S)
∑

i∈H , [b�ic]∈K

wi >
∑

i∈H , [c�ib]∈K

wi.

This corresponds to the necessary preference relation [6]. In quali-
tative decision models, this concept is similar to the dominance query
for the CP nets [2]. An option a ∈ O is called weighted Condorcet
winner w.r.t. 〈S, V 〉 (noted WCWO(S, V )) if for all b ∈ O \ {a},
a �S,V b. When the WCW does not exist, it is usual to consider the
Smith set (henceforth denoted by A). It is the smallest set of alterna-
tives such that all elements of A beat all options outside this set. It
is well defined and unique [4]. When a WCW exists, the Smith set is
reduced to the WCW. Moreover, we set O� := O \ A.

There is a clear relationship between the size of A and 〈S, V 〉 pro-
vided: the less informative 〈S, V 〉, the more likely it is that some
options cannot be compared. Specifically, the size of A will typically
shrink as 〈S, V 〉 gets more specified. In Example 1, e and g are in-
comparable because (as we shall see later) 1 and 23 are not winning
coalitions given V , and e and g are incomparable on criterion 4.

This model is widely used in MCDA (note that all weights remain
hidden to the user). Models not based on numerical weights also ex-
ist, but they allow less deductions to be drawn from the PI.

2.3 Description of the language for the explanation
In Example 1, we have A = {a}. When analyzing why a beats all
options in O�, one notices that there are different situations. For op-
tions b, c, d, the preference of a over these options is not so trivial and
deserves an adequate explanation. For option g, the case seems more
clear, since a beats g on 134, and coalitions 13 and 34 are already
winning coalitions. Now regarding options e, f , the dominance of a
is clear since a is supported by unanimity of the criteria. Generaliz-
ing this example, it appears that dominated options can be partitioned

4 In fact, many work dealing with explanations in AI address the problem of
exhibiting subsets of constraints provoking an inconsistency, see e.g. [8].
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into different classes, capturing the fact that some of them are obvi-
ously dominated, some are clearly dominated, while some others are
close to a tie with some element of A. Thus, the level of detail ex-
pected by the decision maker in the produced explanation will vary.

• unanimous – this case occurs when an alternative b lies behind a
on all criteria (technically, the option is Pareto-dominated), i.e. for
all i ∈ H , [a �i b] ∈ S. This requires no specific explanation.

• large majority – this occurs when the minimum guaranteed value
of the weight of the criteria supporting a against b is larger than a
threshold ρ ∈ ( 1

2
, 1) to be fixed by the designer:

min
w∈V ↓

∑

i∈H, [a�ib]∈S

wi > ρ. (1)

As the decision is clear-cut, the decision-maker does not need for
a precise explanation.

• weak majority – these are the remaining cases, i.e. when the de-
cision is not clear and a detailed explanation is required. We will
focus our development mainly on this case.

The explanation process is thus as follows. For each element a
in the Smith set, we denote by O�

una [a], O�
large [a] and O�

weak [a] the
set of options from O� in the situations unanimous, large majority
and weak majority respectively with a. The first set is easily con-
structed. The second will be studied at the end of the paper as we
focus our analysis on the weak majority situation. In this case, we
notice that a is a WCW of the set O�

weak [a]∪{a} of options (denoted
by WCWO�

weak
[a]∪{a}(S, V )). We can thus treat each element of A

separately and explain why it is a WCW of this subset of options.

3 Complete explanations for a weak majority
We turn our attention to explanations as to why
WCWO�

weak
[a]∪{a}(S, V ) = {a} for some a ∈ A. We shall

formally distinguish different levels of complexity required to
explain c-statements in this context. This will provide a formal basis
for the definition of minimal explanations.

3.1 Complete explanations on S and V

Following the data-based approach in [7], providing an explanation
amounts to simplify the PI provided by the decision-maker. Accord-
ingly, a complete explanation is a set of p-statements S′ together with
a set of c-statements V ′ such that, for any weight vector which can
be deduced from V ′, any completion of the set of p-statements from
S′ yields a as a WCW. By complete, we mean that while simplifying
the data, one can still prove that a is a WCW.

Definition 7. The set of data-based complete explanations
given 〈S, V 〉 is: ExData

S,V (a) =
{

〈S′, V ′〉 ⊆ S × V s.t.

WCWO�
weak

[a]∪{a}(S
′, V ′) = {a}

}
.

We need the following definition to show that one can use a con-
dition on the operator cl to prove that a is a WCW.

Definition 8. PS(a, b) := {i ∈ H s.t. [a �i b] ∈ S} and V(S) :=
{[PS(a, b) � H \ PS(a, b)] , b ∈ O�

weak [a]}.

Lemma 1. WCWO�
weak

[a]∪{a}(S
′, V ′) = {a} iff V(S′) ⊆ cl(V ′).

Proof : Let b ∈ O�
weak [a]. Let L := {[a �i b] s.t. [a �i b] ∈

S′} ∪ {[b �i a] s.t. [a �i b] 
∈ S′}. We have a �S′,V ′ b iff

∑
i∈H , [a�ib]∈L wi >

∑
i∈H , [a�ib] �∈L wi for all w ∈ V ′↓, iff

[PS′(a, b) � H \ PS′(a, b)] ∈ V ′↓↑ = cl(V ′).

From the previous lemma, 〈S′, V ′〉 ⊆ S × V is an element of
ExData

S,V (a) iff V(S′) ⊆ cl(V ′).

Example 3. Consider 5 criteria and four options a, b, c, d. Assume
that V = {[1 � 23], [34 � 15], [2 � 5]} and S = {[a �1 b], [a �4

b], [a �5 b], [a �2 c], [a �3 c], [a �4 c], [a �1 d], [a �3 d], [a �4

d], [b �3 d]}. Let V ′ = {[1 � 23], [34 � 15]} and S′ = S \
{[b �3 d]}. We note that 〈S′, V ′〉 ∈ ExData

S,V (a). In the data-based
approach, 〈S′, V ′〉 is the minimal complete explanation in the sense
of set inclusion. However, for the decision-maker, the sole knowledge
of 〈S′, V ′〉 is not sufficient to understand why a is a WCW, i.e. why
the sets of criteria PS′(a, b), PS′(a, c) and PS′(a, d) appearing in
S′ form winning coalitions. In other words, the decision maker needs
to understand why V(S′) = {[145 � 23], [234 � 15], [134 � 15]}
can be deduced from V .

Following this example, one sees that there is a major distinction
between the data-based and the process-based approaches. The first
one does not allow a complete traceability from the PI to the recom-
mendations. Hence we adopt the second one in this paper regarding
the c-statements. In a process-based approach, a complete explana-
tion is a pair composed of S′ ⊆ S such that V(S′) ⊆ cl(V ) (proving
that a is a WCW), and of an explanation noted ExProc

V (V(S′)) of
why V(S′) results from V . ExProc

V is not further described here; it
will be done in Section 3.3.

Definition 9. The set of process-based complete explanations given
〈S, V 〉 is: ExProc

S,V (a) =
{

〈S′,ExProc
V (V(S′))〉 : S′ ⊆ S and

V(S′) ⊆ cl(V )
}

.
In order to be able to compute S′ but also to explain V(S′), we

need to give some properties of cl and characterize cl(V ).

3.2 cl as closure
From Def. 3, cl(V ) is the set of c-statements that can be deduced
from V . A natural question is whether applying cl several times adds
more c-statements. We show that this is not the case. More precisely,
the operator cl : P(V) → P(V) is a closure, i.e. V ⊆ cl(V ) for all
V ⊆ V (extensiveness), V ⊆ V ′ implies that cl(V ) ⊆ cl(V ′) for all
V, V ′ ⊆ V (increasingness), and cl ◦ cl = cl (idempotency), as its
notation suggests.

Lemma 2. The operator cl is a closure.

Proof : The following three results are clear.

W ⊆ W ↑↓ for all W ⊆ W. (2)

V ⊆ V ↓↑ for all V ⊆ V. (3)

∀V, V ′ ∈ V, V ⊆ V ′ ⇒ V ↓ ⊇ V ′↓. (4)

We now give a few useful assertions.

Assertion 1. W ↑ = W ↑↓↑ for all W ⊆ W .

Proof : We need only to prove W ↑↓↑ ⊆ W ↑ as the opposite inclusion
follows from (2). Let us consider thus [I � J ] ∈ W ↑↓↑. Hence

∀w ∈ W ↑↓ ∑

i∈I

wi >
∑

i∈J

wi. (5)

Let us fix now w ∈ W . From (2), w ∈ W ↑↓. By (5), we have∑
i∈I wi >

∑
i∈J wi. This latter relation is satisfied for all w ∈ W .

Hence [I � J ] ∈ W ↑.
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Assertion 2. V ↓ = V ↓↑↓ for all V ⊆ V .

Proof : Similar to that of Assertion 1.

Extensiveness: Follows from (3).
Increasingness: Let V ⊆ V ′ and [I � J ] ∈ V ↓↑. Then for all

w ∈ V ↓,
∑

i∈I wi >
∑

i∈J wi. As V ′↓ ⊆ V ↓ (by (4)), then for all
w ∈ V ′↓,

∑
i∈I wi >

∑
i∈J wi. Hence [I � J ] ∈ V ′↓↑, and thus

V ↓↑ ⊆ V ′↓↑.
Idempotency: Follows from Assertions 1 and 2.

3.3 Explanations of c-statements
The aim of this section is to construct ExProc

V (V ′) for V ′ ⊆ cl(V ).
To this end, one shall explain how any element of cl(V ) results from
V . We start with a simple example.

Example 4 (2 ctd.). From [4 � 23] ∈ V , we can deduce a fortiori
that [14 � 23] ∈ cl(V ) and [4 � 3] ∈ cl(V ).

Monotonicity generalizes the previous example in the following way:

[I � J ] ∈ V =⇒ ∀I ′ ⊇ I ∀J ′ ⊆ J [I ′ � J ′ \ I ′] ∈ cl(V ) (6)

Consider a more complex extension.

Example 5 (2 ctd.). V ↓ is composed of the weights w ∈ W satisfy-
ing w1 + w3 > w2 + w4, w2 + w3 > w1 and w4 > w2 + w3.

New constraints can be derived by linear combinations of these
constraints. For instance, the constraint w3 +w4 > w1 +w2 results
from the summation of constraint w1+w3 > w2+w4 with two times
the constraints w2 + w3 > w1 and w4 > w2 + w3.

The next proposition shows that the intuition of Example 5 holds
in the general case: all c-statements that can be deduced from V re-
sults from linear combinations (with integer coefficients) of the con-
straints in V and of the constraints on the sign of the weights.

Proposition 1. [I � J ] ∈ cl(V ) iff the following ILP is feasible:

Find non-negative integers {αE,F }[E�F ]∈V , {βi}i∈H , γ

minimizing
∑

[E�F ]∈V αE,F +
∑

i∈H βi + γ such that
∑

[E�F ]∈V

αE,F ≥ 1 (7)

βi +
∑

[E�F ]∈V,E	i

αE,F −
∑

[E�F ]∈V, F	i

αE,F =

⎧
⎨
⎩

γ if i ∈ I
−γ if i ∈ J
0 otherwise

(8)for all i ∈ H .

Proof : The normalization condition of the weights can be re-
moved since we analyse the completion among comparative state-
ments. Let U := {w ∈ Rm

+ : ∀[E � F ] ∈ V ,
∑

i∈E wi >∑
i∈F wi}. Let us consider [I � J ] ∈ cl(V ). Hence for all

w ∈ U ,
∑

i∈I wi >
∑

i∈J wi. This means that U ′ := {w ∈
U ,

∑
i∈E wi ≤ ∑

i∈F wi} = ∅. Hence the linear constraints in U ′

are inconsistent. From Motzkin’s theorem [12, pages 28-29], there
exists non-negative integers αE,F , γ and βi with at least one coef-
ficient corresponding to the strict inequalities (i.e. at least one αE,F

non-zero – see (7)) such that the coefficients in front of each wi in
the following expression are equal to zero

∑

[E�F ]∈V

αE,F

(∑

i∈E

wi −
∑

i∈F

wi

)
+γ

(∑

i∈J

wi−
∑

i∈I

wi

)
+
∑

i∈H

βi wi.

Hence (8) is fulfilled for all i ∈ H .

The previous proposition is very important. It provides a char-
acterization of cl(V ). It shows precisely how constraint [I � J ]
is derived from V and the sign of the weights. The values αE,F

and βk are the coefficients that are multiplied by the constraints∑
i∈E wi >

∑
i∈F wi and wk ≥ 0 respectively. The summation

yields the constraint γ × ∑
i∈I wi > γ × ∑

i∈J wi.
If the coefficients α, β, γ satisfy (7) and (8), multiplying these co-

efficients by any positive integer also verify the constraints. The use
of the minimization functional in the ILP ensures that we obtain the
smallest values of the coefficients and thus the simplest explanation.

Definition 10. The complete explanation ExProc
V ([I �

J ]) of the c-statement [I � J ] ∈ cl(V ) is〈
({αE,F }[E�F ]∈V , {βi}i∈H , γ), [I � J ]

〉
.

For V ′ ⊆ cl(V ), ExProc
V (V ′) := ∪[I�J]∈V ′ExProc

V ([I � J ]).

Example 6 (5 ctd.). With α13,24 = 1, α23,1 = 2, α4,23 = 1, βi = 0
for all i ∈ H and γ = 1, we obtain [34 � 12] ∈ cl(V ).

Moreover, cl(V ) = {[123 � 4], [124 � 3], [134 � 2], [13 �
24], [13 � 2], [14 � 23], [14 � 2], [1 � 2], [13 � 4], [14 �
3], [234 � 1], [23 � 1], [24 � 1], [34 � 12], [34 � 1], [4 �
1], [24 � 3], [34 � 2], [3 � 2], [4 � 23], [4 � 2], [4 � 3]}.

3.4 Complexity levels in explaining c-statements
In Example 6, let us consider four particular elements of cl(V ),
[23 � 1], [4 � 3], [4 � 1] and [34 � 12]. The difficulty of jus-
tifying these four statements from V is not the same. Indeed, the first
statement [23 � 1] is directly contained in V so that there is no un-
derlying complexity for the user. The second statement [4 � 3] is
directly obtained from [4 � 23] ∈ V using a monotonicity argument
(see Example 4). The third statement [4 � 1] results from the sum-
mation of the two relations w2 + w3 > w1 and w4 > w2 + w3 of
V ↓. Lastly, as we already noticed in Example 5, the last statement
[34 � 12] is more complex to obtain. The arguments that we use to
justify a statement from cl(V ), going from the first statement to the
fourth one are of increasing complexity.

It seems thus natural to decompose cl(V ) into four nested sets.
The first set cl0(V ) := V is the c-statements contained in the PI. The
second set cl1(V ) is composed of the elements of cl(V ) that can be
deduced from V only using monotonicity condition (see (6)). This
corresponds to the case where, in Proposition 1, all α coefficients
are equal to 0, except one that is equal to 1. The third set cl2(V ) is
composed of the elements of cl(V ) that can be deduced from V only
using summation and monotonicity conditions. This corresponds to
the case when the α coefficients are either equal to 0 or 1. Finally,
cl3(V ) = cl(V ). The set cl(V ) is partitioned in the following way.

Definition 11. Δ0 = cl0(V ), Δj = clj(V ) \ clj−1(V ) for j ∈
{1, 2, 3}.

Example 7 (6 ctd.). We have Δ0 = {[13 � 24], [23 � 1], [4 �
23]}, Δ1 = {[123 � 4], [134 � 2], [13 � 2], [13 � 4], [234 �
1], [124 � 3], [14 � 23], [14 � 2], [14 � 3], [24 � 3], [34 �
2], [4 � 2], [4 � 3]}, Δ2 = {[24 � 1], [34 � 1], [4 � 1], [1 �
2], [3 � 2]} and Δ3 = {[34 � 12]}.

The sets Δ0,Δ1,Δ2,Δ3 are of increasing complexity. When
comparing two sets V ′, V ′′ ⊆ cl(V ), we prefer the set that has the
smallest number of elements in Δ3. In case of equality, we prefer the
one that has the smallest number of elements in Δ2. And so on. The
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following ordering �V depicts the complexity of understanding why
a set of c-statements derives from V .

Definition 12. For V ′, V ′′ ⊆ cl(V ), V ′ �V V ′′ iff (|V ′ ∩
Δ3|, |V ′ ∩ Δ2|, |V ′ ∩ Δ1|, |V ′ ∩ Δ0|) �lex (|V ′′ ∩ Δ3|, |V ′′ ∩
Δ2|, |V ′′ ∩ Δ1|, |V ′′ ∩ Δ0|), where �lex is the lexicographic or-
dering. (x1, x2, x3, x4) �lex (y1, y2, y3, y4) if there exists i ∈
{1, 2, 3, 4} such that xi > yi and xj = yj for all j ∈ {1, 2, 3, 4}
with j < i.

We notice the elements of S and of Δ0 are of the same complexity
since they are both elements of the PI. The number of elements of p-
statements is added to the number of c-statements that belong to Δ0.

Definition 13. Let 〈S′,ExProc
V (V(S′))〉, 〈S′′,ExProc

V (V(S′′))〉 ∈
ExProc

S,V (a). The complexity of S′ is comp(S′) := (|V(S′) ∩
Δ3|, |V(S′) ∩ Δ2|, |V(S′) ∩ Δ1|, |V(S′) ∩ Δ0| + |S′|). We de-
fine the order � (over ExProc

S,V (a)) by 〈S′,ExProc
V (V(S′))〉 �

〈S′′,ExProc
V (V(S′′))〉 iff comp(S′) �lex comp(S′′).

3.5 Determination of the minimal explanations
In order to compute the minimal explanations in the sense of �, one
may proceed in three steps: (S1) determines all elements of cl1(V ),
cl2(V ) and cl3(V ); (S2) identifies all elements of ExProc

S (a) :=
{S′ ⊆ S : V(S′) ⊆ cl(V )}; (S3) determines the elements S′ in
ExProc

S (a) such that 〈S′,ExProc
V (V(S′))〉 is minimal in the sense of

�. To determine whether [I � J ] ∈ cl(V ), it suffices to perform an
ILP (by Proposition 1). Step (S1) requires to compute all elements of
cl1(V ), cl2(V ) and cl3(V ), which is not necessary in step (S2) and
might be time consuming. Hence, we propose to perform steps (S1)
and (S2) at the same time, determining the belonging to the closure
only when required.

To this end, the following variables are introduced in the algo-
rithm: Cl1, Cl2, Cl3 correspond to the elements of cl1(V ), cl2(V ),
cl3(V ) that are useful in the analysis; NCl are c-statements that are
not in cl(V ) and ExCl contains the explanations of Cl1, Cl2, Cl3. We
start by initializing these variables

Cl0 = V , Cl1 ← ∅ , Cl2 ← ∅ , Cl3 ← ∅ , NCl ← ∅ , ExCl ← ∅.
The next algorithm checks whether a c-statements belongs to cl(V ).

Algorithm 1. Function isInClosure(I) returns a boolean saying
whether [I � H \ I] ∈ cl(V ), and updates Cl1, Cl2, Cl3, NCl, ExCl:

If [I � H \ I] ∈ Cl0 ∪ Cl1 ∪ Cl2 ∪ Cl3 then return true;
If [I � H \ I] ∈ NCl then return false;
Launch the ILP of Proposition 1 on [I � H \ I];
If the ILP is infeasible then

NCl ← NCl ∪ {[I � H \ I]}; return false;
ExCl ← ExCl∪ {

〈
({αE,F }[E�F ]∈V , {βi}i∈H , γ), [I � H \ I]

〉
};

If
∑

[E�F ]∈V αE,F = 1 then return true;
If αE,F ∈ {0, 1} for all [E � F ] ∈ V then

Cl2 ← Cl2 ∪ {[I � H \ I]}; return true;
Cl3 ← Cl3 ∪ {[I � H \ I]}; return true;

The main algorithm is now described. Firstly, it computes
PS(a, b) := {I ⊆ PS(a, b) s.t. [I � H \ I] ∈ cl(V )}. Then steps
(S2) and (S3) are performed.

Algorithm 2. Function bestExplanations(a) (for a ∈ A) com-
putes the elements of ExProc

S,V (a) that are minimal w.r.t. �:
For all b ∈ O�

weak [a] do
PS(a, b) ← ∅;
For all I ⊆ PS(a, b) do

If isInClosure(I) =true then PS(a, b) ← PS(a, b) ∪ {I};

ExProc
S (a) ←

{
{[a �i b] , i ∈ Ib and b ∈ O�

weak [a]}
for all Ib ∈ PS(a, b), b ∈ O�

weak [a]
}

;

E ←
{

〈S′,ExProc
V (V(S′))〉 , S′ ∈ ExProc

S (a)
}

;

(where ExProc
V is stored in ExCl)

return the minimal elements of E w.r.t. �;

Note that in the first loop in Algorithm 2, when isInClosure(I) re-
turns false, we need not explore any subset of I (they cannot belong
to PS(a, b)). This treatment is clearly exponential in the number of
criteria in the worst case. In Algo. 2, the number of calls to an ILP is
at worse 2m (where m is the number of criteria) and the total num-
ber of calls of isInClosure is at worse |O�

weak [a]| × 2m. Moreover,
the cardinality of ExProc

S (a) is at worse 2m×|O�
weak [a]|. In practice, it

might be much less – see Example 8 below. Moreover our approach
only computes ILPs when required.

Example 8 (1 ctd.). In the comparison of a with b, c, d, the number
of ILP that are solved is 10 (instead of 16 in the worse case), and
isInClosure is called 15 times (instead of 48 in the worse case).
Moreover, |ExProc

S (a)| = 4 (instead of 4096 in the worse case) –
see Section 5 for the details.

4 Complete explanation for a large majority
We have seen at the beginning of the paper, that the large majority
situation applies when condition (1) is satisfied.

Definition 14. V 

ρ =

{
I ⊆ H s.t. ∀w ∈ V ↓ ∑

i∈I

wi > ρ
}
.

This section is concerned with the identification of the coalitions
in V



ρ with the associated explanation. One first notes that if I ∈ V



ρ

then necessarily [I � H \ I] ∈ cl(V ) as ρ > 1
2

.

Example 9. Assume that V = {[1 � 2], [2 � 3], [3 � 4], [4 � 5]},
with m = 5. One can easily show that w1 + w2 + w3 > 3

5
for all

w ∈ V ↓. Hence coalition 123 ∈ V


ρ if ρ does not exceed 3

5
.

We characterize the elements of V 

ρ .

Proposition 2. I ∈ V


ρ iff the following ILP is feasible:

Find {αE,F }[E�F ]∈V ∈ NV
+ , {βi}i∈H ∈ NH

+ , δ ∈ N, γ ∈ N+

minimizing
∑

[E�F ]∈V αE,F +
∑

i∈H βi + δ + γ such that
∑

[E�F ]∈V

αE,F ≥ 1 (9)

βi+δ+
∑

[E�F ]∈V , E	i

αE,F−
∑

[E�F ]∈V , F	i

αE,F =

{
γ if i ∈ I
0 otherwise

(10)for all i ∈ H , and

δ ≥ γ ρ (11)

Proof (Sketch): Similar to that of Proposition 1. The normalization
condition must be considered due to the presence of non-zero right
hand side in (1). The inequality (11) follows from this.

The values αE,F , βk and δ are the coefficients that are multiplied
by the constraints

∑
i∈E wi >

∑
i∈F wi, wk ≥ 0 and

∑
i∈H wi =

1 respectively.

Example 10 (Example 9 cont.). For 1
2
< ρ ≤ 3

5
, 123 ∈ V



ρ results

from the coefficients α1,2 = 2,,α2,3 = 4, α3,4 = 6, α4,5 = 3,
β1 = β2 = β3 = β4 = 0, δ = 3 and γ = 5. More generally,
V



ρ = {123, 124, 1234, 1235, 1245, 12345}.
The generation of explanation from the coefficients in Prop. 2 can

be done as for Prop. 1, based on α, β, δ and γ.
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5 Output of the results
To wrap up, for all a ∈ A, O�

una [a] = {b ∈ O� , PS(a, b) = H},
O�

large [a] = {b ∈ O� \ O�
una [a] , PS(a, b) ∈ V



ρ } and O�

weak [a]
are the remaining elements of O�. ILP is used to compute the coef-
ficients appearing in Propositions 1 and 2. The minimal explanations
for O�

weak [a] are obtained thanks to Algorithm 2. As for the closure,
the elements of V 


ρ are computed only when required, that is only
for coalitions PS(a, b).

We conclude the paper by considering again the Example 1, to
illustrate how our approach (implemented in JAVA) outputs the re-
sults. We recall that the Smith set is a. The explanation generated is
as follows:

• a is better than e and f by unanimity of the criteria;
• a is better than g on a large majority.

By default, the system shall not give any further detail, since the
case is deemed clear enough not to require any further justification.
Upon request (why?) of the decision-maker however, the algorithm
may provide the following explanation.

• In fact, the large majority is 134, and 134 ∈ V


ρ , with ρ = 0.7

and the coefficients α13,24 = 1 (for [13 � 24]), α4,23 = 2 (for
[4 � 23]), β3 = 2 (for w3 ≥ 0), δ = 3 (for w1+w2+w3+w4 =

1), γ = 4 (for 134 ∈ V


ρ ), and all other coefficients are zero.

Concerning the comparison of a with b, c and d, we apply Al-
gorithm 2 described in Section 3.5. In particular, ExProc

S (a) =
{S1, S2, S3, S4}, where S1 = {[a �1 b], [a �3 b], [a �3 c], [a �4

c], [a �1 d], [a �4 d]}, S2 = S1∪{[a �2 b]}, S3 = S1∪{[a �2 c]}
and S4 = S1∪{[a �2 b], [a �2 c]}. At first sight, S1 seems the sim-
plest set and S4 the most complex one. This intuition is defected. By
Def. 13 and Ex. 7, comp(S1) = (1, 0, 1, 7) as V(S1) is composed of
[13 � 24] ∈ Δ0 (comparison of a and b), [34 � 12] ∈ Δ3 (compar-
ison of a and c) and [14 � 23] ∈ Δ1 (comparison of a and d), and
S1 is composed of 6 statements. Likewise, comp(S2) = (1, 0, 2, 7),
comp(S3) = (0, 0, 2, 8), comp(S4) = (0, 0, 3, 8). Comparing
S1 and S3, it is apparent that simplifying over the p-statements
might result in a much more complex explanation regarding the c-
statements. Hence the minimal element of ExProc

S,V (a) w.r.t. � is
〈S3,Ex

Proc
V (V(S3))〉. The latter takes the following form:

• a is better than b on the weak majority 13 ∈ Δ0;
• a is better than c on the weak majority 234 ∈ Δ1 such that

α23,1 = 1 (for [23 � 1]), β4 = 1 (for w4 ≥ 0) and γ = 1;
• a is better than d on the weak majority 14 ∈ Δ1 such that α4,23 =

1 (for [4 � 23]), β1 = 1 (for w1 ≥ 0) and γ = 1.

The previous explanation is very detailed. For a user who does
not require such level of traceability (e.g. a user with a shallower
understanding of the decision process), it is possible to hide the co-
efficients α, β and γ, by just mentioning the set statements that yield
another one. We emphasize that we did not explore yet the natural
language issues that occur here: the way to present and organize the
same (content-wise) explanation may clearly affect the way it is per-
ceived [3]. We leave this for further research.

6 Related work and Conclusion
In the domain of recommender systems, the issue of explanation
has motivated a huge amount of studies. In their recent taxonomy
proposal, [5] distinguish three distinctive features to classify gen-
erated explanations: the reasoning model (whether the explanation

disclose, even partially, the decision model), the recommendation
paradigm (the type of decision model), and the information cat-
egories which are used when the explanation is generated (more
specifically, whether they use the user’s model, whether they refer
to the recommended item and/or to the alternative options). Our ap-
proach would be classified as follows: white box, knowledge-based,
and using the three categories (in our case: user’s rankings, and re-
ferring to both the recommended item and the dominated ones). A
distinctive feature of our approach lies on the decision model used,
taken together with the fact that the PI may be largely incomplete.
In this context, the precise weights attached to attributes cannot be
exhibited, and the challenge is to provide convincing (complete) ex-
planations despite this constraint.

We also observe that there is at least a syntactic similarity with ar-
gumentation theories. For instance, in Definition 10, an explanation
is a pair 〈C, [I � J ]〉, where C is minimal and is the support of the
explanation and [I � J ] is the conclusion. This may be seen as an
argument, a pair 〈H,h〉 where h is the conclusion, H is a minimal
consistent subset of the knowledge base that entails h [1]. However
we emphasize again that in our context we are looking for proofs,
whereas arguments support non-monotonic inferences. Under this
more argumentative perspective, [10] puts forward the idea of having
different levels of explanations for multi-attribute preference models.

A study of complete explanations for the same type of preference
model can be found in [11]. The main difference is that completeness
of the PI (for both weights and rankings) is assumed in [11]. In this
context, a sentence like “the weight of criterion 2 is 0.3” may stand
as a valid justification. Instead, this paper investigates the explanation
of the importance of coalitions of criteria.
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Abstract. The ability to provide explanations along with recommended
decisions to the user is a key feature of decision-aiding tools. We address
the question of providing minimal and complete explanations, a problem
relevant in critical situations where the stakes are very high. More specif-
ically, we are after explanations with minimal cost supporting the fact
that a choice is the weighted Condorcet winner in a multi-attribute prob-
lem. We introduce different languages for explanation, and investigate
the problem of producing minimal explanations with such languages.

1 Introduction

The ability to provide explanations along with recommended decisions to the
user is a key feature of decision-aiding tools [1,2]. Early work on expert systems
already identified it as one of the main challenge to be addressed [3], and the
recent works on recommender systems face the same issue, see e.g. [4]. Roughly
speaking, the aim is to increase the user’s acceptance of the recommended choice,
by providing supporting evidence that this choice is justified.

One of the difficulties of this question lies on the fact that the relevant concept
of an explanation may be different, depending on the problem at hand and on
the targeted audience. The objectives of the explanations provided by an online
recommender system are not necessarily the same as the ones of a pedagogical
tool. To better situate our approach, we emphasize two important distinctive
dimensions:

– data vs. process—following [5], we first distinguish explanations that are
based on the data and explanations that are based on the process. Explana-
tions based on the data typically focus on a “relevant” subset of the available
data, whereas those based on the process make explicit (part of) the math-
ematical model underlying the decision.

R.I. Brafman, F. Roberts, and A. Tsoukiàs (Eds.): ADT 2011, LNAI 6992, pp. 121–134, 2011.
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– complete vs. incomplete explanations—as opposed to incomplete explana-
tions, complete explanations support the decision unambiguously, they can
be seen as proofs supporting the claim that the recommended decision is
indeed the best one. This is the case for instance in critical situations (e.g.
involving safety) where the stakes are very high.

In this paper we shall concentrate on complete explanations based on the data,
in the context of decisions involving multiple attributes from which, associating
a preference model, we obtain criteria upon which options can be compared.
Specifically, we investigate the problem of providing simple but complete expla-
nations to the fact that a given option is a weighted Condorcet winner (WCW).
An option is a WCW if it beats any other options in pairwise comparison, con-
sidering the relative weights of the different criteria. Unfortunately, a WCW may
not necessarily exists. We focus on this case because (i) when a WCW exists it
is the unique and uncontroversial decision to be taken, (ii) when it does not
many decision models can be seen as “approximating” it, and (iii) the so-called
outranking methods (based on the Condorcet method) are widely used in multi-
criteria decision aiding, (iv) even though the decision itself is simple, providing
a minimal explanation may not be.

In this paper we assume that the problem involves two types of preferential
information (PI): preferential information regarding the importance of the crite-
ria, and preferential information regarding the ranking of the different options.

To get an intuitive understanding of the problem, consider the following
example.

Example 1. There are 6 options {a, b, c, d, e, f} and 5 criteria {1, · · · , 5} with
respective weights as indicated in the following table. The (full) orderings of
options must be read from top (first rank) to bottom (last rank).

criteria 1 2 3 4 5

weights 0.32 0.22 0.20 0.13 0.13

ranking c b f d e
a a e f b
e f a b d
d e c a f
b d d c a
f c b e c

In this example, the WCW is a. However this option does not come out
as an obvious winner, hence the need for an explanation. Of course a possible
explanation is always to explicitly exhibit the computations of every comparison,
but even for moderate number of options this may be tedious. Thus, we are
seeking explanations that are minimal, in a sense that we shall define precisely
below. What is crucial at this point is to see that such a notion will of course be
dependent on the language that we have at our disposal to produce explanations.
A tentative “natural” explanation would be as follows:

“First consider criteria 1 and 2, a is ranked higher than e, d, and f in
both, so is certainly better. Then, a is preferred over b on criteria 1 and
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3 (which is almost as important as criterion 2). Finally, it is true that c
is better than a on the most important criteria, but a is better than c
on all the other criteria, which together are more important.”

The aim of this paper is not to produce such natural language explanation, but
to provide the theoretical background upon which such explanations can later
be generated.

This abstract example may be instantiated in the following situations. In the
first one, a decision-maker presents a choice recommendation regarding a massive
investment before funding agency. The decision was based on a multi-criteria
analysis during which criteria and preferences were elicited. In the second one,
a committee (where members have different voting weights) just proceeded to a
vote on a critical issue, and the chairman is now to explain why a given option
was chosen as a result. The reason why we take these two concrete examples is
that beyond their obvious similarity (members of the committee play the role
of the criteria in the funding example), they share the necessity to produce a
complete explanation. The type of explanation we seek for is relevant when the
voters (for the committee example) are not anonymous, which is often the case
in committee.

The remainder of this paper is as follows. In the next section, we provide
the necessary background notions, and introduce in particular the languages
we shall use for formulating explanations. Section 3 defines minimal complete
explanations. Section 4 and Section 5 deal with languages allowing to express
the preferences on the rankings of options only, starting with the language al-
lowing basic statements, then discussing a more refined language allowing to
“factor” statements. Finally, Section 6 discusses connections to related works, in
particular argumentation theory.

2 Background and Basic Definitions

2.1 Description of the Choice Problem

We assume a finite set of options O, and a finite set of criteria H = {1, 2, . . . ,m}.
The options in O are compared thanks to a weighted majority model based on
some preferential information (PI) composed of preferences and weights. Prefer-
ences are linear orders, that is, complete rankings of the options in O, and a !i b
stands for the fact that a is strictly preferred over b on criterion i. Weights are
assigned to criteria, and Wi stands for the weight of criterion i. Furthermore,
they are normalized in the sense that they sum up to 1. An instance of the choice
problem, denoted by ρ, is given by the full specification of this PI. The decision
model over O given ρ is defined by b !ρ c iff

∑
b
ic

Wi >
∑

c
ib
Wi.

Definition 1. An option a ∈ O is called weighted Condorcet winner w.r.t. ρ
(noted WCW(ρ)) if for all b ∈ O� := O \ {a}, a !ρ b.

We shall also assume throughout this paper the existence of a weighted Con-
dorcet winner labeled a ∈ O.
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2.2 Description of the Language for the Explanation

Following the example in the introduction, the simplest language on the partial
preferences is composed of terms of the form [i : b ! c], with i ∈ H and b, c ∈ O,
meaning that b is strictly preferred to c on criterion i. Such terms are called
basic preference statements. In order to reduce the length of the explanation,
they can also be factored into terms of the form [I : b ! P ], with I ⊆ H , b ∈ O
and P ⊆ O \ {b}, meaning that b is strictly preferred to all options in P on all
criteria in I. Such terms are called factored preference statements. The set of all
subsets of basic preference statements (resp. factored preference statements) that

correspond to a total order over O on each criterion is denoted by S (resp. Ŝ).
For K ∈ S, we denote by K↑ the set of statements of the form [I : b ! P ] with
I ⊆ H and P ⊆ O such that for all i ∈ I and c ∈ P , [i : b ! c] ∈ K. Conversely,

for K̂ ∈ Ŝ, let K̂↓ = {[i : b ! c] : ∃[I : b ! P ] ∈ K̂ s.t. i ∈ I and c ∈ P} be the

atomization of the factored statements K̂. Now assuming that a is the WCW,
it is useful to distinguish different types of statements:

– positive statements, of the form [I : a ! P ]
– neutral statements, of the form [I : b ! P ] with a �∈ P
– negative statements, of the form [I : b ! P ] with a ∈ P .

We note that in the case of basic statements, negative statements are “purely”
negative since P = {a}.
Example 2. The full ranking of actions, on criterion 1 only, yields the following
basic statements:

– [1 : c ! a] (negative statement),
– [1 : c ! e], [1 : c ! d], [1 : c ! b], [1 : c ! f ], [1 : e ! d], [1 : e ! b, [1 : e !

f ], [1 : d ! b], [1 : d ! f ], [1 : b ! f ] (neutral statements),
– [1 : a ! e], [1 : a ! d], [1 : a ! b], [1 : a ! f ] (positive statements).

Regarding factored statements, the following examples can be given:

– [1, 2 : e ! d] is a neutral statement;
– [1 : c ! a, e] is a negative statement;
– [1, 2 : a ! d, e, f ] is a positive statement.

The explanation shall also mention the weights in order to be complete. We
assume throughout this paper that the values of weights can be shown to the
audience. This is obvious in voting committee where the weights are public. This
is also a reasonable assumption in a multi-criteria context when the weights are
elicited, as the constructed weights are validated by the decision-maker and then
become an important element of the explanation [6]. The corresponding language
on the weights is simply composed of statements (called importance statements)
of the form [i : α] with i ∈ H and α ∈ [0, 1] meaning that the weight of criterion
i is α. Let W (the set of normalized weights) be the set of sets {[i : wi] : i ∈ H}
such that w ∈ [0, 1]H satisfies

∑
i∈H wi = 1. For W ∈ W and i ∈ H , Wi ∈ [0, 1]

is the value of the weight on criterion i, that is that [i : Wi] ∈ W . A set A ⊆ H
is called a winning coalition if

∑
i∈A Wi >

1
2 .
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2.3 Cost Function over the Explanations

An explanation is a pair composed of an element of Ŝ (note that S ⊂ Ŝ) and
an element of W . We seek for minimal explanations in the sense of some cost
function. For simplicity, the cost of an element of Ŝ or W is assumed to be the
sum of the cost of its statements. A difficult issue then arises: how should we
define the cost of a statement?

Intuitively, the cost should capture the simplicity of the statement, the easi-
ness for the user to understand it. Of course this cost must depend in the end
of the basic pieces of information transmitted by the statement. The statements
are of various complexity. For instance [1, 2, 5, 7, 9 : a ! b, c, g, h] looks more
complex to grasp than [1 : a ! b], so that factored preference statements are
basically more complex than basic preference statements.

Let us considered the case of preference statements. At this point we make
the following assumptions:

– neutrality— the cost is insensitive to the identity of both criteria and options,
i.e. cost([I : b ! P ]) depends only on |I| and |P | and is noted C(|I|, |P |),

– monotony— the cost of a statement is monotonic w.r.t. criteria and to op-
tions, i.e. function C is non-decreasing in its two arguments. Neutrality im-
plies that all basic statements have the same cost C(1, 1).

Additionally to the previous properties, the cost may be sub-additive in the sense
that cost(I ∪ I ′, P ) ≤ cost(I, P ) + cost(I ′, P ) and cost(I, P ∪P ′) ≤ cost(I, P ) +
cost(I, P ′), or super-additive if the converse inequalities hold. Finally, we assume
the cost function can be computed in polynomial time.

3 Minimal Complete Explanations

Suppose now that the PI of choice problem is expressed in the basic language as
a pair 〈S,W 〉 ∈ S × W. Explaining why a is the Condorcet winner for 〈S,W 〉
amounts to simplifying the PI (data-based approach [5]). We focus in this section
on explanations in the language S ×W. The case of the other languages will be
considered later in the paper.

A subset 〈K,L〉 of 〈S,W 〉 is called a complete explanation if the decision
remains unchanged regardless of how 〈K,L〉 is completed to form an element
of S × W. The completeness of the explanation is thus ensured. The pairs are
equipped with the ordering 〈K,L〉 ' 〈K ′, L′〉 if K ⊆ K ′ and L ⊆ L′. More
formally, we introduce the next definition.

Definition 2. The set of complete explanations for language S ×W is:

ExS,W := {〈K,L〉 ' 〈S,W 〉 :

∀K ′ ∈ S(K) ∀L′ ∈ W(L) WCW(K ′, L′) = {a}},

where S(K) = {K ′ ∈ S : K ′ ⊇ K} and W(L) = {L′ ∈ W : L′ ⊇ L}.
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Example 3. The explanation K1 = [1, 2 : a ! d, e, f ], [1, 3 : a ! b], [2, 3 : a ! c]
is not complete, since it does not provide enough evidence that a is preferred
over c. Indeed, HK1(a, c) < 0 (since 0.42 − 0.58 = −0.16). On the other hand,
[1 : a ! e, d, b, f ], [2 : a ! f, e, d, c], [3 : a ! b, c, d], [4 : a ! c, e], [5 : a ! c]
is complete but certainly not minimal, since (for instance) exactly the same
explanation without the last statement is also a complete explanation whose cost
is certainly lower (by monotonicity of the cost function). Now if the cost function
is sub-additive, then a minimal explanation cannot contain (for instance) both
[1, 2 : a ! d, e] and [1, 2 : a ! f ]. This is so because then it would be possible to
factor these statements as [1, 2 : a ! d, e, f ], all other things being equal, so as
to obtain a new explanation with a lower cost.

In the rest of the paper, complete explanations will be called simply explanations
when there is no possible confusion. One has 〈S,W 〉 ∈ ExS,W and 〈∅, ∅〉 �∈
ExS,W . As shown below, adding more information to a complete explanation
also yields a complete explanation.

Lemma 1. If 〈K,L〉 ∈ ExS,W then 〈K ′, L′〉 ∈ ExS,W for all K ′, L′ with K ⊆
K ′ ⊆ S and L ⊆ L′ ⊆W .

Proof : Clear since S(K) ⊇ S(K ′) when K ⊆ K ′, and W(L) ⊇ W(L′) when
L ⊆ L′.

We will assume in the rest of the paper that there is no simplification regarding
the preferential information W . Indeed the gain of displaying less values of the
weights is much less significant than the gain concerning S. This comes from the
fact that |W | = m whereas |S| = 1

2 mp (p − 1), where m = |H | and p = |O|.
Only the information about the basic statements S ∈ S is simplified. We are thus
interested in the elements of ExS,W of the form 〈K,W 〉. Hence we introduce the
notation ExS = {K ∈ S : 〈K,W 〉 ∈ ExS,W}.

4 Simple Language for S

We consider in this section explanations with the basic languages S and W .
In this section, the PI is expressed as 〈S,W 〉. The aim of this section is to
characterize and construct minimal elements of ExS w.r.t. the cost.

We set HK(a, b) :=
∑

i : [i:a
b]∈K Wi−
∑

i : [i:a
b] �∈K Wi for K ⊆ S and b ∈ O�.
This means that K ⊆ S is completed only with negative preference statements
(in other words, what is not explicitly provided in the explanation is assumed
to be negative).

Lemma 2. ExS = {K ⊆ S : ∀b ∈ O� HK(a, b) > 0}.

Proof : We have WCW(K ′,W ) = {a} ∀K ′ ∈ S(K) iff WCW(K ′,W ) = {a} for
K ′ = K ∪ {[i : b ! a] : b ∈ O� and [i : a ! b], [i : b ! a] �∈ K} iff HK(a, b) > 0
∀b ∈ O�.
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A consequence of this result is that neutral statements can simply be ignored
since they do not affect the expression HK(a, b). The next lemma shows further-
more that the minimal explanations are free of negative statements.

Lemma 3. Let K ∈ ExS minimal w.r.t. the cost. Then K does not contain any
negative or neutral preference statement.

Proof : K ∈ ExS cannot minimize the cost if [i : b ! a] ∈ K since then
HK′(a, b) = HK(a, b) and thus K ′ ∈ ExS , with K ′ = K \ {[i : b ! a]}. It is the
same if [i : b ! c] ∈ K with b, c �= a.

Then we prove that we can replace a positive basic statement appearing in a
complete explanation by another one, while having still a complete explanation,
if the weight of the criterion involved in the first statement is not larger than
that involved in the second one.

Lemma 4. Let K ∈ ExS , [i : a ! b] ∈ K and [j : a ! b] ∈ S \K with Wj ≥Wi.
Then (K \ {[i : a ! b]}) ∪ {[j : a ! b]} ∈ ExS .

Proof : Let K ′ = (K \ {[i : a ! b]}) ∪ {[j : a ! b]}. We have HK′(a, b) =
HK(a, b) + 2(Wj −Wi) > 0. Hence K ′ ∈ ExS .

We define ΔS
i (a, b) = +1 if [i : a ! b] ∈ S, and ΔS

i (a, b) = −1 if [i : b ! a] ∈ S.
For each option b ∈ O�, we sort the criteria in H by a permutation πb on H such
that Wπb(1)Δ

S
πb(1)

(a, b) ≥ · · · ≥Wπb(m)Δ
S
πb(m)(a, b).

Proposition 1. For each b ∈ O�, let pb the smallest integer such that
HKb

pb
(a, b) > 0, where Kb

pb
= {[πb(1) : a ! b], [πb(2) : a ! b], . . . , [πb(pb) :

a ! b]}. Then {[πb(j) : a ! b] : b ∈ O� and j ∈ {1, . . . , pb}} is a minimal
element of ExS w.r.t. the cost.

Proof (Sketch): Let ExS(b) = {K ⊆ Sb : HK(a, b) > 0}, where Sb is the
set of statements of S involving option b. The existence of pb follows from the
fact that a is a WCW. Now let j ∈ {1, . . . , pb − 1}. From the definition of pb,
Kb

pb−1 �∈ ExS(b). This, together with Wπb(j) ≥ Wπb(pb) and Lemma 4, implies

that Kb
pb
\ {[πb(j) : a ! b]} �∈ ExS(b). Hence Kb

pb
is minimal in ExS(b) in the

sense of ⊆. It is also apparent from Lemma 4 that there is no element of ExS(b)
with a strictly lower cardinality and thus lower cost (since, from Section 2.3,
the cost of a set of basic statements is proportional to its cardinality). Finally,
∪b∈O�Kpb

minimizes the cost in ExS since the conditions on each option b ∈ O�

are independent.

This proposition provides a polynomial computation of a minimal element
of ExS . This is obtained for instance by the following greedy Algorithm 1.
The complexity of this algorithm is O(m · p · log(p)) (where m = |H | and
p = |O|).
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Function Algo(W,Δ) :
K = ∅;
For each b ∈ O� do

Determine a ranking πb of the criteria according to WjΔ
S
j (a, b) such

that Wπb(1)Δ
S
πb(1)

(a, b) ≥ · · · ≥ Wπb(m)Δ
S
πb(m)(a, b);

Kb = {[πb(1) : a > b]}; k = 1;
While (HKb(a, b) ≤ 0) do

k = k + 1; Kb = Kb ∪ {[πb(k) : a > b]};
done

K = K ∪ Kb;
end For
return K;

End

Algorithm 1. Algorithm for the determination of a minimal element of ExS . The
outcome is K.

We illustrate this on our example.

Example 4. Consider the iteration regarding option b. The ranking of criteria
for this option is 1/3/4/5/2. During this iteration, the statements [1 : a ! b], [3 :
a ! b] are added to the explanation. In the end the explanation produced by
Algorithm 1 is [1 : a ! b], [3 : a ! b], [2 : a ! c], [3 : a ! c], [4 : a ! c], [1 : a !
d], [2 : a ! d], [1 : a ! e], [2 : a ! e], [1 : a ! f ], [2 : a ! f ]. Note that criterion 5
is never involved in the explanation.

5 Factored Language for S

The language used in the previous section is simple but not very intuitive. As
illustrated in the introduction, a natural extension is to allow more compact
explanations by means of factored statements. We thus consider in this section
explanations with the factored language Ŝ and the basic language W . As in
previous section, all weight statements in W ∈ W are kept. The explanations
for Ŝ are:

Ex Ŝ =
{
K̂ ⊆ S↑ : ∀K ∈ S(K̂↓) WCW(K,W ) = {a}

}
.

Similarly to what was proved for basic statements, it is simple to show that
minimal explanation must only contain positive statements.

Lemma 5. Let K̂ ∈ Ex Ŝ minimal w.r.t. the cost. Then K̂ only contains positive
preference statements.

Proof : Similar to the proof of Lemma 3.

A practical consequence of this result is that it is sufficient to represent the PI
as a binary matrix, for a, where an entry 1 at coordinates (i, j) represents the
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fact that the option i is less preferred than a on criteria j. Doing so, we do not
encode the preferential information expressed by neutral statements.

This representation is attractive because factored statements visually cor-
respond to (combinatorial) rectangles. Informally, looking for an explanation
amounts to find a “cheap” way to “sufficiently” cover the 1’s in this matrix.
However, an interesting thing to notice is that a minimal explanation with fac-
tored statements does not imply that factored statements are non overlapping.
To put it differently, it may be the case that some preferential information is
repeated in the explanations. Consider the following example:

Example 5. There are 5 criteria of equal weight and 6 options, and a is the
weighted Condorcet winner. As for the cost of statements, it is constant whatever
the statement.

1 2 3 4 5

0.2 0.2 0.2 0.2 0.2

b 1 1 0 0 1
c 1 1 0 1 0
d 1 1 1 0 0
e 0 1 1 0 1
f 0 1 1 1 0

There are several minimal explanations involving 4 statements, but all of them
result in a covering in the matrix, like for instance [1, 2 : a ! b, c, d], [2, 3 : a !
d, e, f ], [4 : a ! c, f ][5 : a ! b, e], where the preferential information that a !2 d
is expressed twice (in the first and second statement).

The previous section concluded on a simple algorithm to compute minimal ex-
planations with basic statements. Unfortunately, we will see that the additional
expressive power provided by the factored statements comes at a price when we
want to compute minimal explanations.

Proposition 2 (Min. explanations with factored statements). Deciding
if (using factored statements S↑) there exists an explanation of cost at most k is
NP-complete. This holds even if criteria are unweighted and if the cost of any
statement is a constant.

Proof (Sketch): Membership is direct since computing the cost of an explana-
tion can be done in polynomial time. We show hardness by reduction from the
Biclique Edge Cover (BEC), known to be NP-complete (problem [GT18] in
[7]). In BEC, we are given a finite bipartite graph G = (X,Y,E) and positive
integer k′. A biclique is a complete bipartite subgraph of G, i.e., a subgraph
induced by a subset of vertices such that any vertex is connected to a vertex
of the other part. The question is whether there exists a collection of bicliques
covering edges of G of size at most k′.

Let I = (X,Y,E) be an instance of BEC. From I, we build an instance I ′ of the
explanation problem as follows. The set O of actions contains O1 = {o1, . . . , on}
corresponding to the elements in X , and a set O2 of dummy actions consisting
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of n+3 actions {o′
1, . . . , o

′
n+3}. The set H of criteria contains H1 = {h1, . . . , hn}

corresponding to the elements in Y , and a set H2 of dummy criteria consisting of
n+ 3 criteria {h′

1, . . . , h
′
n+3}. First, for each (xi, yj) ∈ E, we build a statement

[hi : a ! oj ]. Let SO1,H1 be this set of statements. Observe that a factored
statement [I : a ! P ] with I ⊆ H1 and P ⊆ O1 correspond to a biclique in I.
But a may not be a Condorcet winner. Thus for each action o ∈ O1, we add
(n + 2) − |{[hi : a ! o] ∈ O1}| statement(s) [h′

j : a ! o]. Let SO1,H2 be this set
of statements. Note that at this point, a is preferred to any other o ∈ O1 by
n+ 2 criteria. Next ∀(h′

i, o
′
j) ∈ (H2 × O2) such that i �= j we add the following

statement: [h′
i : a ! o′

j ]. There are n + 2 such statements, hence a is preferred
to any other o ∈ O2 by a majority of exactly n + 2 criteria. Let SO2,H2 be
this set of statements. We claim that I admits a biclique vertex partition of
at most k − (n + 3) subsets iff I ′ admits an explanation K̂∗ of cost at most k
using factored statements. Take (⇐). By construction, all the basic statements

must be “covered”, i.e. K̂↓
∗ = SO1,H1 ∪ SO1,H2 ∪ SO2,H2 . We denote by cov(.)

the cost of covering a set of basic statements of SO,H (this is just the number of
factored statements used, as the cost of statements is constant). Furthermore, as
there are no statements using actions from O2 and criteria from H1, no factored
statement can cover at the same time statements from SO1,H1 and SO2,H2 . Hence

cost(K̂∗) = cov(SO1,H1 ∪ S′) + cov(SO2,H2 ∪ S′′), such that S′ ∪ S′′ = SO1,H2 .

But now observe that cov(SO2,H2) = cov(SO2,H2∪SO1,H2) = n+3, so cost(K̂∗)
boils down to n+3+cov(SO1,H1∪S′). By monotony wrt. criteria, cov(SO1,H1∪S′)
is minimized when S′ = ∅, and this leads to the fact cov (SO1,H1) ≤ k − (n+ 3).
The (⇒) direction is easy.

The previous result essentially shows that when the cost function implies to
minimize the number of factored statements, no efficient algorithm can determine
minimal explanations (unless P=NP). But there may be specific class(es) of cost
functions for which the problem may turn out to be easy. As shown in the next
lemma, when the cost function is super-additive, then it is sufficient to look for
basic statements.

Lemma 6. If the cost function is super-additive, then minK̂∈Ex Ŝ
cost(K̂) =

minK∈ExS cost(K).

Proof : Let K̂ ∈ Ex Ŝ . We know that K̂↓ ∈ ExS . By super-additivity,

cost(K̂) =
∑

[I:b
P ]∈K̂ cost([I : b ! P ]) ≥ ∑
[I:b
P ]∈K̂

∑
i∈I , c∈P cost([i : b !

c]) ≥∑
[i:b
c]∈K̂↓ cost([i : b ! c]) = cost(K̂↓).

Yet, the cost is expected to be sub-additive. Relations (1) and (2) below give
examples of sub-additive cost functions. In this case, factored statements are
less costly (e.g. the cost of [{1, 2} : a ! b] should not be larger than the cost of
[1 : a ! b], [2 : a ! b]) and factored explanations become very relevant.

When the cost function is sub-additive, an intuitive idea could be to restrict
our attention to statements which exhibit winning coalitions. For that purpose,
let us assign to any subset P ⊆ O� defended by a winning coalition the cost
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of using such statement. A practical way to do this is to build T : 2O
� → 2H

such that for all subsets P ⊆ O�, T (P ) is the largest set of criteria for which
[T (P ) : a ! P ] ∈ S↑. We have T (P ) = ∩b∈PT ({b}), where T ({b}) := {i ∈ H :
[i : a ! b] ∈ S}. Then subsets P of increasing cardinality are considered (but
those supported by non-winning coalitions are discarded). The cost C(α, |P |) is
finally assigned, where α is the size of the smallest winning coalition contained
in T (P ). Then, the problem can be turned into a weighted set packing, for which
the direct ILP formulation would certainly be sufficient in practice for reasonable
values of |O| and |H |.

Example 6. On our running example, the different potential factors would be
T ({b}) = {1, 3} with C(2, 1), T ({c}) = {2, 3, 4, 5} with C(4, 1), T ({d}) =
{1, 2, 3} with C(3, 1), T ({e}) = {1, 2, 4} with C(3, 1), T ({f}) = {1, 2} with
C(2, 1), T ({b, d}) = {1, 3} with C(2, 2), etc. Depending on the cost function,

two possible explanations remain: K̂1 = {[1, 3 : a ! b], [2, 3, 4, 5 : a ! c], [1, 2 :

a ! d, e, f ]} for a cost of C(2, 1) + C(4, 1) + C(2, 3), and K̂2 = {[1, 3 : a !
b, d], [2, 3, 4, 5 : a ! c], [1, 2 : a ! e, f ] for a cost of C(2, 2) + C(4, 1) + C(2, 2).
The cost function

C(i, j) = iα jβ (1)

(which is sub-additive when α ≤ 1 and β ≤ 1) would select K̂1. Note that criteria
4 or 5 will be dropped from the statement [T ({c}) : a ! c].

Now, considering only factored statements with winning coalitions may certainly
prevent from reaching optimal factored explanations, as we illustrate below.

Example 7. We have 4 criteria and 3 options. Assume that a is preferred to b on
criteria 1, 2, and 3; that a is preferred to c on criteria 1, 2, and 4 and that any
coalition of at least 3 criteria is winning. The previous approach based on T gives
K̂1 = {[1, 2, 3 : a ! b], [1, 2, 4 : a ! c]}, with cost(K̂1) = 2 C(3, 1). Algorithm

1 gives K̂2 = (K̂1)
↓ with cost(K̂2) = 6 C(1, 1). Another option is to consider

K̂3 = {[1, 2 : a ! b, c], [3 : a ! b][4 : a ! c]}, with cost(K̂3) = C(2, 2) + 2 C(1, 1).
Let us consider the following cost function1

C(i, j) = i log(j + 1). (2)

Function C is sub-additive, since C(i+i′, j) = C(i, j)+C(i′, j) and, from relation
j + j′ + 1 ≤ (j + 1)(j′ + 1), we obtain C(i, j + j′) ≤ C(i, j) + C(i, j′). Then we

have cost(K̂3) < cost(K̂1) = cost(K̂2) so that the explanation with the smallest

cost is K̂3.

Enforcing complete explanations implies a relatively large number of terms in the
explanation. However, in most cases, factored statements allow to obtain small
explanations. For instance, when all criteria have the same weight, the minimal
elements of ExS contain exactly (p − 1)n basic statements (where p = |O|,
1 Capturing that factoring over the criteria is more difficult to handle than factoring
over the options.
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m = |H | and m = 2n− 1 if m is odd, and m = 2n− 2 if m is even. Indeed, one
needs p − 1 terms to explain that a is globally preferred over b, for all b ∈ O�,
and the minimal elements of Ex Ŝ contain at most p − 1 factored statements
(factoring with winning coalitions for each b ∈ O�).

A current matter of investigation is to determine the class of cost functions
for which the minimal explanation is not given either by trivial atomization or
by factoring with winning coalitions only, thus requiring dedicated algorithms.

6 Related Work and Conclusion

The problem of producing explanations for complex decisions is a long-standing
issue in Artificial Intelligence in general. To start with, it is sometimes necessary
to (naturally) explain that no satisfying option can be found because the problem
is over-constrained [8,9]. But of course it is also important to justify why an
option is selected among many other competing options, as is typically the case
in recommendations. Explanations based on the data seek to focus on a small
subpart of the data, sufficient to either convince or indeed prove the claim to
the user. Depending on the underlying decision model, this can turn out to be
very challenging.

In this paper we investigate the problem of providing minimal and complete
explanations for decisions based on a weighted majority principle, when a Con-
dorcet winner exists. A first contribution of this paper is to set up the framework
allowing to analyze notions of minimal explanations, introducing in particular
different languages to express the preferential information. We then characterize
minimal explanations, and study their computational properties. Essentially, we
see that producing minimal explanations is easy with basic statements but may
be challenging with more expressive languages.

Much work in argumentation set up theoretical systems upon which various
types of reasoning can be performed, in particular argument-based decision-
making has been advocated in [10]. The perspective taken in this paper is dif-
ferent in at least two respects: (i) the decision model is not argumentative in
itself, the purpose being instead to generate arguments explaining a multiat-
tribute decision model (weighted majority) issued from decision-theory; and (ii)
the arguments we produce are complete (so, really proving the claim), whereas
in argumentation the defeasible nature of the evidence put forward is a core
assumption [11]. Regarding (ii), our focus on complete arguments has been jus-
tified in the introduction. Regarding (i), we should emphasize that we make no
claim on the relative merits of argument-based vs. decision-theoretic models.
But in many organizations, these decision models are currently in use, and al-
though it may be difficult to change the habits of decision-makers for a fully
different approach, adding explanatory features on top on their favorite model
can certainly bring much added-value. This approach is not completely new, but
previous proposals are mainly heuristic and seek to generate natural arguments
[1] that are persuasive in practice. An exception is the recent proposal of [6]
which provides solid theoretical foundations to produce explanations for a range
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of decision-theoretic weight-based models, but differs in (ii) since explanations
are based on (defeasible) argument schemes. Our focus on complete explanations
is a further motivation to build on solid theoretical grounds (even though weaker
incomplete arguments may prove more persuasive in practice).

Recently, the field of computational social choice has emerged at the interface
of AI and social choice, the study of various computational of various voting sys-
tems being one of the main topic in this field. There are connections to our work
(and indeed one of the motivating example is a voting committee): for instance,
exhibiting the smallest subsets of votes such that a candidate is a necessary
winner [12] may be interpret as a minimal (complete) explanation that this can-
didate indeed wins. However, the typical setting of voting (e.g. guaranteeing the
anonymity of voters) would not necessarily allow such explanations to be pro-
duced, as it implies to identify voters (to assign weights). An interesting avenue
for future research would be to investigate what type of explanations would be
acceptable in this context, perhaps balancing the requirements of privacy and the
need to support the result. We believe our approach could be relevant. Indeed,
two things are noteworthy: first, the proposed approach already preserves some
privacy, since typically only parts of the ballots need to be exhibited. Secondly,
in many cases it would not be necessary to exactly identify voters, at least when
their weights are sufficiently close. Take again our running example: to explain
that a beats b we may well say “the most important voter 1 is for a, and among
2 and 3 only one defends b”.

We conclude by citing some possible extensions of this work. The first is to
improve further the language used for explanations. The limitations of factored
statements is clear when the following example is considered:

Example 8. In the following example with 6 alternatives and 5 criteria (with
the same weight), the factored statements present in any minimal explanation
contain at least 3 criteria or alternatives (for instance, [1, 2, 3 : a ! e, f ], [3, 4, 5 :
a ! b, c], [1, 2, 4 : a ! d])

1 2 3 4 5

0.2 0.2 0.2 0.2 0.2

b c d e f
a a a a a
c d e f b
d e f b c
e f b c d
f b c d e

However, an intuitive explanation that comes directly to mind is as follows: “a
is only beaten by a different option on each criteria”.

To take a step in the direction of such more natural explanations, the use of “ex-
cept” statements allowing to assert that an option is preferred over any other
option except the ones explicitly cited should be taken into account. (In fact, the
informal explanation of our example makes also use of such a statement, since
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it essentially says that a is better than c on all criteria except 1). In that case,
minimal explanations may cover larger sets of basic statements than strictly
necessary (since including more elements of the PI may allow to make use of
an except statement). Another extension would be to relax the assumption of
neutrality of the cost function, to account for situations where some information
is exogenously provided regarding criteria to be used preferably in the explana-
tion (this may be based on the profile of the decision-maker, which may be more
sensible to certain types of criteria).
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ABSTRACT
To provide convincing recommendations, which can be fully
understood and accepted by a decision-maker, a decision-
aider must often engage in an interaction and take the deci-
sion maker’s responses into account. This feedback can lead
to revising the model used to represent the preferences of
the decision-maker. Our objective in this paper is to equip
an artificial decision-aider with this adaptive behavior. To
do that, we build on decision theory to propose a principled
way to select decision models.

Our approach is axiomatic in that it does not only work
for a predefined subset of methods—we instead provide the
properties that make models compatible with our proposal.
Finally, the interaction model is complex since it can involve
the exchange of different types of preferential information, as
well as others locutions such as justifications. We manage it
through a dialogue game, and prove that it satisfies desired
properties, in particular termination, and efficiency

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and coordination, intelligent agents,
Multiagent systems

Keywords
Recommender system; Communication protocol; Argumen-
tation

1. INTRODUCTION
In a decision aiding context, there are at least two distinct

actors: a decision maker (DM), and an analyst, that we call
a decision aider (DA). These play very different roles [24].
The DM explains the decision problem to the DA, has some
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preferences on the decision options and is at the end respon-
sible for the decision and its justifcation. The DA helps
him in this task by bringing some methodology and ratio-
nality. The DA analyses the consistency of the information
provided by the DM, proposes some recommendation on the
basis of such information and constructs the corresponding
justifications. A key ingredient of the decision process is how
interaction takes place. In particular, the DA should be able
to adapt itself to the responses of the DM. In fact, the DM’s
preferences are often incomplete, or at least not fixed at
the beginning of the process. Only when confronted with
the recommendation can the DM react and give feedback.
The competence of a human DA is precisely to integrate this
new information, to revise her representation of the profile of
the DM, so as to produce a finely adapted recommendation
which can be understood and accepted.

This raises a challenging issue when the DA is an artifi-
cial agent, since it must have precisely this ability to adapt
itself to the responses of the DM. Take for instance recom-
mender systems used in commercial websites: the role of
the DA is to recommend items that the DM is likely to buy
(travel, books, etc.). Often the product space is extremely
large, and the role of the DA is to help to navigate in this
catalogue. According to [14], “user feedback is a vital com-
ponent of most recommenders”. In recommender systems,
this feedback of the DM can take various forms: value-based
feedback which asserts a value on a given attribute (“I want
three gears on my bike”), preference-based feedback which
singles out a favorite item so as to get more of the same
type in the next cycle of recommendation (“This is the bike
I prefer, can you show more like this?”), or critique-based
feedback, which can be seen as a mixture of the two since
the DM picks a preferred item but at the same expresses how
it could be improved (“This type of bike, but in a different
color.”). Many recommender systems do not explicitly con-
struct a preference model, and thus have no memory of user
feedback. The system can then recommend an option which
the user crticised a few iterations before. To take proper
account of user feedback in timely and consistent manner,
some authors argue to maintain the user’s preference model
[5, 19, 25]. Model-based recommendation systems are then
based on a unique model (e.g. additive utility) and rely upon

959



the assumption that all potential users can be represented
by this model [4, 25]. However, in the case of multi-criteria
recommendation, there is a wide variety of possible pref-
erence models, and assuming a fixed model may prove to
be too restrictive. Suppose for instance that the DA starts
with a majority model, but later realizes that the user shall
be represented by quantitative utilities and thus switches to
additive utility model.

In this paper we consider a simple recommendation sce-
nario where a set of available options is known at the start.
To remedy a previous flaw, here we propose to allow an
artificial DA to use a variety of decision models (able to
encompass most of decision situations) to build its recom-
mendation (as opposed to adjusting the parameters of a sin-
gle model). This raises some obvious questions: (i) if the
DA can choose among several models, is there a principled
way to do so? (ii) would such a method be dependent of
the models considered? And, finally (iii) how, in practice,
should such an interaction be regulated?

We borrow from decision theory and Multiple Criteria De-
cision Analysis to answer the first point in the positive. Re-
garding (ii), we advocate a generic method to account for
this adaptative behavior. Indeed, instead of focusing on a
given collection of models, we adopt an axiomatic approach,
and thus characterize which models can be handled in the
way we propose. As for (iii), the actual procedure we put
forward takes the form of a dialogue game between the DM
and the DA, and is inspired by recent work in dialectical
models of interaction.

2. A MOTIVATING EXAMPLE
We give a basic dialogue example between a DA and a

DM for a given decision problem. It shows the asymmetry
between the two agents: on the one hand the different feed-
back expressed by the DM (asking explanations, suggesting
new propositions, etc.), and on the other hand how the DA
adapts its responses (providing justifications, changing or
correcting the recommendation, etc.).

Example 1. Suppose that a DM specifies that he has to
rank four options {a, b, c, d} (say, bikes to be deployed for
sharing in big city). Each bike is evaluated on the set {c1, c2,
c3, c4, c5} of criteria (say, price, weight, esthetic, gears, di-
mension). The comparison of the options over each criteria
(where x �ci y means that option x is strictly preferred to y
on criterion ci) is as follows:

c1: d �c1 a �c1 c �c1 b;
c2: d �c2 a �c2 b �c2 c;
c3: b �c3 c �c3 a �c3 d;
c4: c �c4 b �c4 a �c4 d;
c5: b �c5 a �c5 c �c5 d.

On the basis of this information, the DA computes a rec-
ommendation and submits it to the DM for a discussion.
Such a discussion unfolds as follows:
(1) DA: I recommend that b � a � c � d.
(2) DM: Why b � a?
(3) DA: b is better on a majority of criteria (c3, c4, c5).
(4) DM: I see, but still I would prefer a to b
(5) DA: Why?
(6) DM: Because a is better on the price and weight (c1, c2),
these are very important criteria.
(7) DA: Fine. I still recommend b over c.
(8) DM: Yes, I agree.

(9) DA: Now, would d be preferred to a?
(10) DM: No, this is not the case.
(11) DA: Why?
(12) DM: Because d is bad on esthetic, gears and dimension
(c3, c4, c5).
(13) DA: Ok, so c is better than d.
(14) DM: I agree.
(15) DA: Do you agree also that a is preferred to b?
(16) DM: Of course.
(17) DA: Ok. My recommendation is thus: a � b � c � d.

3. BASIC DEFINITIONS
We consider a finite set O of options, a finite set H of

criteria. The recommendations of the DA are based on a
decision model, which provides a total order of the elements
of O on the basis of their evaluations on the criteria. There
are many different decision models in the literature. Each
model corresponds to different rationality assumptions on
the DM. Since neither DA nor DM know in advance what
model best represents the DM, one cannot use a single pre-
defined decision model. Rather we use a family Π of decision
models that encompasses most commonly encountered DM
profiles. In order to support our running example, we con-
sider four decision models (described formally below), but
our approach is not restricted to these models.

Example 2. In the rest of the paper, for illustration, we
will consider the following family Π of models: Simple Ma-
jority model (noted πSM ), Simple Weighted Majority model
(πSWM ), Mean model (πM ) and Weighted Sum model (πWS ).

3.1 Description of the preference information
In order to make a decision between several options, the

DM needs to provide information about the evaluation of
an option x ∈ O, and about the relative strength of criteria.
We will make use of two evaluation scales:

• an evaluation scale for the options on the criteria SO,
e.g. SO = { good, average, bad};
• an evaluation scale for the importance of criteria SH ,

e.g. SH = { strong, average, weak}.
The DM expresses some preference information (PI) which

is related to the comparison of the options on the criteria,
or the importance of criteria. This PI allows to construct
a preference relation among the options, thanks to the use
of a model in Π. The PI is expressed by means of different
types of statements:

Def. 1. An evaluation statement is of the form [c : x =
α] where x ∈ O, c ∈ H and α ∈ SO, meaning that the
assessment of option x on criterion c is equal to α.

Def. 2. A preference statement is of the form [x �c y]
where x, y ∈ O and c ∈ H, meaning that x is preferred to y
on criterion c.

Def. 3. A weight statement is of the form [c = α] where
c ∈ H and α ∈ SH , meaning that the importance of the
criterion c is equal to α.

Example 3. (Ex. 1, cont.) We have many preference
statements of the form [d �c1 a]. In Turn 12, the DM uses
an evaluation statement: [c4 : d = bad], while in Turn 6, the
DM uses a weight statement: [c1 = strong], [c2 = strong].
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In order to make inferences from PI, this latter shall be
consistent. This concept is now defined.

Def. 4. The previous statements are called PI statements.
A subset P of PI statements is said to be consistent if there
is no two evaluation statements [c : x = α], [c : x = α′] with
α 6= α′, there is no cycle of �c for preference statements,
and there is no two weight statements [c = α], [c = α′] with
α 6= α′.

Clearly, the use of some type of statements says something
about the underlying preference model. Let P(π), with π ∈
Π, denote the set of such statements that can be used for
constructing model π (see Ex. 4 below), and P = ∪π∈ΠP(π).
Thus we have:

Def. 5. The Preference Information (PI) is any subset
of P. The Preference Information (PI) for a decision model
π ∈ Π is any subset P ⊆ P(π).

The value of P(π) for the different models is now shown
in the four models.

Example 4. (Ex. 2 Cont.)

• the model πSM relies only on the preference statements:
P(πSM ) = {[a �c b] , a, b ∈ O , c ∈ H}, as it counts
pros and cons criteria.

• In πSWM , criteria are not anonymous. Hence weight
statements are also needed: P(πSWM ) = P(πSM ) ∪
{[c = α] , c ∈ H,α ∈ SH}.

• In πM , criteria are anonymous but evaluation state-
ments are needed: P(πM ) = P(πSM )∪{[c : x = α] , x ∈
O, c ∈ H,α ∈ SO}.

• In πWS , criteria are not anonymous: P(πWS ) = P(πM )∪
{[c = α] , c ∈ H,α ∈ SH}.

A decision model π ∈ Π produces a preference relation
�π,P (assumed to be a total order) over the options, given
P ⊆ P(π). When P is inconsistent (see Def. 4), �π,P
is empty. Moreover, often, P is incomplete, since the DM
may not have the ability/time to fully specify the problem.
When this is the case, we can use default weights and scores
to handle incomplete preference statements (see Ex. 5) ,
hence the preference order is always complete.

Example 5. (Ex. 4 Cont.) The preference relation de-
rived for the four models πSM , πSWM , πM and πWS can be
put in a unified way. For π ∈ Π and P ∈ P(π) (consistent
and possibly incomplete),

a �π,P b ⇔ Fπ,P (a, b) > Fπ,P (b, a)

where

FπSM ,P (a, b) = |{c ∈ H, [a �c b] ∈ P}|
FπSWM ,P (a, b) =

∑

c∈H, [a�cb]∈P
αPc

FπM ,P (a, b) =
∑

c∈H
uc(a)

FπWS ,P (a, b) =
∑

c∈H
αPc uc(a)

with

αPc =

{
α if ∃α ∈ SH s.t. [c = α] ∈ P
“average ′′ otherwise

(In other words, missing preference information in P re-
garding weights of criteria is filled by [c = average] (neu-
tral). We assign the numerical weights 1

2
, 1 and 2 to “weak ′′,

“average ′′ and “strong ′′ respectively), and

uc(a) =
∑

d∈O\{a}
∆P
c (a, d)

∆P
c (a, d) =





+3 if [a �c d] ∈ P and [c : d = bad ] ∈ P
+1 if [a �c d] ∈ P and [c : d = bad ] 6∈ P
0 otherwise

(Missing preference information in P regarding the evalua-
tion of the options on the criteria is filled by the default +1
value. We shall not discuss here how figures +1,+3 are ob-
tained – see elicitation of intensities of preference, e.g. [6]).
Note that utility uc is computed from differences of intensity
of preferences.

The goal of a decision problem, noted G, can be either a
ranking (from the best option to the worst, as in Ex. 1), or
a selection of the best option (which is guaranteed to exist
since the preference relation is complete). Thus a recom-
mendation is an answer to a given problem G.

Def. 6. A comparison statement is of the form [x � y]
where x, y ∈ O, meaning that x is globally preferred to y.

Def. 7. Two subsets φ1, φ2 of comparison statements are
conflicting if there exists [x � y] ∈ φ1 s.t. [y � x] ∈ φ2.

Def. 8. If the goal G of the decision problem is a ranking,
a recommendation ψ is a subset of comparison statements
[a � b] which corresponds to a total order over O. If G is the
selection of the best option, a recommendation ψ is a subset
of comparison statements of the form {[a � b] for all b ∈
O \ a} for some a ∈ O.

Def. 9. For P ⊆ P(Π) and a subset ψ of preference
statements, we define the entailment |=π w.r.t. π ∈ Π by
P |=π {[a1 � b1], . . . , [aq � bq]} if ∀i ∈ {1, . . . , q} [ai �π,P

bi].

In words, under the decision model π, the consistent pref-
erential information P supports the comparison statements
[a1 � b1], . . . , [aq � bq].

Example 6 (Ex. 1 cont.). For P = {[d �c1 b], [b �c2
d], [d �c3 b]}, we have P |=πSM [d � b] as d �πSM ,P b.

3.2 Description of the decision models
In order to adapt to different DMs, the DA will use a

range of decision models Π, where each model is identified
by a set of properties. Such properties correspond to some
characteristics of the DM’s preferences, corresponding to a
set of conditions supporting the use of a given model.

We denote by Q the set of properties that will allow to
discriminate among the set of models we consider. For a
given model π ∈ Π, each property can be either satisfied
or not. For illustration we will consider the set of prop-
erties Q that include: (1) Cardinality of the model (car):
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πWS (>,>)

πM (>,⊥)πSWM (⊥,>)

πSM (⊥,⊥)

Figure 1: Example of Decision Models

it means that the specific difference of performance values
makes sense (when this property is not satisfied, only the
ordering of options is relevant for comparison). (2) Non-
Anonymity of the model (nan): it suggests that criteria are
not exchangeable (when this property is not satisfied, all
criteria are exchangeable). With Q = {car ,nan}, we can
describe the four decision models πSM , πSWM , πM , πWS .

Example 7. (Ex.2 Cont.) Figure 1 summarizes such mod-
els and their description according to the two properties. For
instance, πSWM is represented by vector (⊥,>): the second
property (nan) is satisfied (because the weights depend on
the criteria), but not the first property (car) as the decision
rule does not require cardinality.

We note that the properties are not supposed to charac-
terize each model (in the sense of axiomatic approaches).
For instance, in [13], simple majority is characterized by
anonymity, neutrality and monotony. However, in our case,
neutrality and monotony are useless to discriminate among
the four models 1. Finally, properties are indeed basically
logically independent. However there can be dependencies
among them, thereby implying that some combinations of
properties is not possible (see Ex. 8).

Notation 1. For π ∈ Π, let Qπ ⊆ Q be the set of prop-
erties that decision model π satisfies.

For instance, QπSM = ∅ and QπWS = {car ,nan}. Set Q =
{Qπ , π ∈ Π}. In our example, Q = 2Q. But in general,
not all subsets of Q correspond to a model. In this case,
Q is assumed to satisfy the following conditions: (i) ∅ ∈ Q,
there always exists a model fulfilling no property; (ii) if R ∈
Q \ {Q}, then ∃i ∈ R s.t. R \ {i} ∈ Q; (iii) If R,R′ ∈ Q,
then R ∩ R′ ∈ Q. Let us illustrate these properties on a
more general situation than Ex. 7.

Example 8. On top of the two properties Cardinality (car)
and Non-Anonymity (nan), let us introduce a veto property
(vet) saying that there is a veto criterion. One can readily
see that not all combinations of properties yield to a relevant
decision model. Figure 2 shows the set of relevant properties.
For instance, the “outranking model” [22] (noted πOR) cor-
responds to property vector (⊥,>,>): it is ordinal but uses
criteria weights and veto criteria. On the other hand, prop-
erty vector (⊥,⊥,>) has no relevant corresponding model as
it satisfies only veto. A similar situation arises for (>,⊥,>)
and (>,>,>) as a cardinal model (weighted sum) able to rep-
resent a veto criterion subsumes to a dictatorial rule (only

1Of course, it is always possible to consider more properties
in order to describer other types of decision models (inter-
action among criteria (ruling out additive models), or con-
ditional preferences (leading to CP nets), etc.)

πOR (⊥,>,>) πWS (>,>,⊥)

πM (>,⊥,⊥)πSWM (⊥,>,⊥)

πSM (⊥,⊥,⊥)

Figure 2: Structure Q with three properties

one criterion counts), which is not very interesting and can
be represented by πOR. Clearly, the three conditions (i), (ii)
and (iii) are satisfied in this example.

Set Q is used to guide the navigation among the different
models (or associated subsets of properties), depending on
the properties that are currently satisfied or contradicted.
From (ii), if we take a set R of properties satisfied by a
model, then we can remove a property that yields to another
set of properties satisfied by a model. By (iii), there exists
a model which fulfills only the properties in common of any
pair of models. Remark that the second and third property
is satisfied by antimatroids and lattices [7], respectively.

3.3 Identifying the decision model of the DA
The DA collects some PI statements P from the DM and

then will make inferences. First of all, the DA needs to
identify the decision model to use. In fact, given preference
statement P , the least specific model (see Def. 10) compati-
ble within P is used by the DA to make assertion, question,
challenge, argue in the dialogue (see Axiom 2 in Section 4.3).

Let Π(P ) := {π ∈ Π , P ⊆ P(π)} be the set of models
compatible with P . In general, several decision models are
possible (see example below).

Example 9. (Ex7 Cont.) For our example, if P = {[c2 =
very strong ], [a �c2 c], [c �c2 b]}, then Π(P ) = {πWSM , πWS}
as P ⊆ P(πSWM ), P ⊆ P(πWS ).

In order to identify the model to use, we introduce the speci-
ficity of a model. As the elements in Q are basic properties
that shall be satisfied by default, the least specific model is
the one that satisfies more properties.

Def. 10. A model π is less specific than π′ if Qπ ⊆ Qπ′ .

Def. 11. Let π[P ] be the least specific model in Π(P ).
This is the model used by the DA given P .

In Example 9, π[P ] is πWSM since it satisfies less properties
than πWS asQπWSM = {nan} andQπWS = {car ,nan}. More
generally, the least specific model is obtained as follows.

Example 10. Given some information P , we can distin-
guish four cases, summarized in Table 1.

Intuitively, the notion of specificity also concerns the PI
statements that can be used with a model. If decision model
π is less specific than π′, then π shall use less PI statements,
and thus P(π) ⊆ P(π′). We strengthen this condition into
the following axiom:

Axiom 1. Relation Among Models (RAM). Consider three
models π1, π2, π12 such that R12 = R1 ∩ R2 where R1 =
Qπ1 , R2 = Qπ2 , R12 = Qπ12 . Then P(π12) = P(π1)∩P(π2).
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Table 1: Compatible models and least specific model
for each type of PI statements.

Form of the statements con-
tained in P

Compatible
models

Least
specific
model

[a �c b] Π πSM

[c : x = α] πM , πWS πM
and possibly [a �c b]
[c = wc] and possibly [a �c b] πSWM , πWS πSWM

[c : x = α] and [c = wc], πWS πWS

and possibly [a �c b], [a ∼c b]

It is easy to see that RAM is satisfied in our running ex-
ample (Ex. 4).Note that if R1, R2 ∈ Q then R1 ∩ R2 ∈ Q
by condition (iii). This axiom is satisfied in our running
example (from Ex. 7 and Figure 1). For instance, with
π1 = πSWM , π2 = πM , we have π12 = πSM , QπSM = QπSWM ∩
QπM = ∅ and P(πSM ) = P(πSWM ) ∩ P(πM ).

Thanks to RAM, Definition 11 is well-defined:

Lemma 1. Under RAM, for any subset P is PI state-
ments, there exists a unique least specific element in Π(P ).

Lemma 2. For two subsets P, P ′ of PI statements, if P ⊆
P ′ then π[P ] is less specific than π[P ′].

Proofs are omitted due to space limitations.

4. A FORMAL DIALOGUE MODEL
We have already introduced the two players in the dia-

logue. The DA has the aim of constructing a solution to a
given decision problem. The DM expresses his preferences
through feedback and has to be convinced by the solution.
Moreover, during the dialogue, the DA constructs a Knowl-
edge Base composed of two parts : KBP ⊆ P containing
the Preference Information provided by the DM, and KBφ
containing the accepted comparison statements.

Example 11. At the beginning, KBP contains all prefer-
ence statements [x �ci y]. In turn 6, [c2 = very strong ] is
added to KBP . In turn 8, [b � c] is added to KBφ

4.1 Dialogue statements and locutions
We define the dialogue statements (Φ) that we need in

order to express the different types of information.

Def. 12. The dialogue statements (Φ) are composed of
all comparison statements (see Def. 6) and all preference
information (PI) (see Def. 5).

The different locutions used in our dialogue game are in-
tuitively described below, assuming φ ∈ Φ:

• Assert(φ). It makes possible to put a claim forward.

• Accept(φ). Used to accept (possibly partially) a claim.

• Challenge(φ). The challenge requests some state-
ment that can serve as a basis for justifying or ex-
plaining φ.

• Question(φ). A question can be used to ask the DM
to respond on statement already asserted by the DA.
(for instance is it the case that φ is true?).

• Argue(φ, p) (with p ⊆ P): p is an explanation of
φ. The link between p and φ is set unspecified for the
DM, as he does not use in general a model.

• Contradict(φ) to contradict a previous statement φ.

• Succeed(φ) (such that φ is the final recommenda-
tion): the DA identifies that it has succeeded in pro-
viding a convincing recommendation to the DM.

• Fail: the DA acknowledges that it has failed to find a
convincing solution to the DM’s problem.

4.2 Commitment rules
To capture dialogues between agents, we follow [12, 18]

in associating a commitment store (CS) with the DM and
the DA, which holds the statements and the arguments to
which a particular they are dialectically committed.

It is however important to stress that the two behave dif-
ferently: while the DM’s one is monotonic, the DA’s one
can be revised throughout the process. Let φ ∈ Φ. In the
following table, s stands for the speaker (dm for the DM
or da for the DA). The CS is left unchanged with locution
Challenge.

Assert(φ) CS(s) = CS(s) ∪ {φ}
Accept(φ) CS(s) = CS(s) ∪ {φ}
Contradict(φ) CS(s) = CS(s) ∪ {¬φ}
Argue(φ, p) CS(s) = CS(s) ∪ {φ, p}

Note that the locutions Fail and Succeed mark the end
of the dialogue and so will not lead to the updating of the
commitment store.

4.3 Dialogue rules
The protocol for our dialogue model is described in Figure

3. Each node in this graph is a locution, except for “Update”
(described in detail later), and the outgoing arcs from a node
indicate the possible following locutions. A dialogue under
this protocol is composed of several iterations. Each itera-
tion starts from node “update”, and is organized around an
assert(ion) or a question made by the DA, and the feedback
of the DM.

In Fig. 3, φ1, φ2, . . . , φ8 are non empty comparison state-
ments, and p5, p7 ⊆ P. On top of the previous constraints
among locutions, the relevance [17] of the content (dialogue
statements) of the moves is constrained (otherwise, the di-
alogue could easily become meaningless), and the relations
among the statements used in successive locutions are spec-
ified in the table included in Fig. 3.

For instance, we have φ3 ⊆ φ1 as the DM can challenge
only a subpart of what was asserted by the DA.

For the DA, we note that p5 is formally an explanation of
φ5 (i.e. p5 |=π[KBP ] φ5). Lastly, we assume that the DM is
sure about his preferences and the dialogue will not modify
them (they will neither be contradicted nor changed) . This
corresponds to the prescriptive approach of decision aiding
[24]. The aim of the dialogue is to propose a recommen-
dation and a justification to the DM. However, if the DM
changes his preferences, the main impact is that statements
put in KBP or KBφ can become wrong later and shall then
be revised or removed. Thus when inconsistency arises, the
DA may challenge statements in KBP or KBφ. But, it is
outside the scope of this paper to consider this, hence we
assume that the dialogue cannot backtrack.
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update

Fail

Succeed(φ0)

Assert(φ1)Question(φ2) Argue(φ5, p5)

Challenge(φ6)

Accept(φ8)

Challenge(φ3) Contradict(φ4)

Argue(φ7, p7)

φ3 ⊆ φ1, φ3 ⊆ φ2

φ4 ⊆ φ1, φ4 ⊆ φ2, φ4 ⊆ φ5

φ5 ⊆ φ3

φ6 ⊆ φ4

φ7 ⊆ φ6, φ7 ⊆ φ5 or φ7 conflicting with φ5

φ8 ⊆ φ1, φ8 ⊆ φ2, φ8 ⊆ φ5

Figure 3: Successive speech acts at each iteration (grey nodes are for the DM, white nodes for the DA).

The update step.
Node “Update” does not correspond to a speech act. It

enables the DA to analyse the exchanges made during last
iteration of the dialogue, update the knowledge base and
construct the proposal for the next iteration. This is formal-
ized in Axiom UN. More precisely, such an axiom presents
all cases that can occur in the update node (see Ex 12).

We make several design assumptions. First, we assume
that the DA and the DM can use the same statement several
times (to allow the DA to update KBP ,KBφ and repropose
the same statement. This is for instance the case if the
DM agrees with φ1, φ2 or φ5 but not with the argument
used). However, the DA is only allowed to propose the same
statement more than once if new preference information has
been suggested by the DM. Otherwise repetition leads to the
protocol ending with a Fail (case (a) below).

Axiom 2 (Update Node (UN)). At and after node “Up-
date”, the DA behaves as follows:

(a) If CS(dm) ⊆ KBP ∪ KBφ ∪ CS(da), then the DA ut-
ters Fail (the DM does not accept new parts of the
recommendation, nor does he provide new preferential
information. He is not convinced by the arguments of
the DA, then the DM and the DA come up with differ-
ent conclusions with the same preference statements.
Hence they cannot agree.);

(b) CS(dm) ∩ P is added to KBP . If KBP is inconsistent
(Def. 4), the DA makes the speech act Fail (the in-
formation provided by the DM is inconsistent wrt the
family of models that the DA can handle.);

(c) One identifies the least specific compatible decision model
π[KBP ] (see Def. 11). For every φ ∈ CS(dm), if KBP
|=π[KBP ] φ, then φ is added to KBφ;

(d) The recommendation for goal G at current iteration is
noted φc (uniquely defined by Def. 8 and relation KBP
|=π[KBP ] φc). Then the missing commitments for φc
are:

miss(φc) = φc \ KBφ (1)

If miss(φc) = ∅ the DA utters Succeed(φc);

(e) If ∃φ ∈ CS(dm) which contradicts φc, then the DA
makes the speech act Assert(¬φ),

(f) Otherwise: if the current recommendation φc has not
been modified in the update phase, then the DA utters
Question(φ1) with φ1 ⊆ miss(φc), or else the DA
utters Assert(φ2), with φ2 ⊆ miss(φc).

Note that this implies that at the first iteration of the pro-
tocol, the DA makes the speech act Assert(φ) with φ ⊆ φc.

From UN, the model used by the DM is π[KBP ] and thus
the properties that are inferred are Qπ[KBP ].

Example 12. (Ex.1 Cont.) In the following we present
the different turns of the dialogue. The goal G is a rank-
ing. Superscript “(k)” represents the value at iteration k (for

instance, KB(2)
P is the value of KBP at iteration 2). More-

over, when we use the locution statements, we use the labels
φ0, . . . φ8, as in Figure 3, to help the reader to follow the
path in the dialogue.

1st iteration – update: KB(1)
P contains all statements [x �ci

y], KB(1)
φ = ∅, π[KB(1)

P ] = πSM , φ
(1)
c = [b � a � c � d],

miss(φ
(1)
c ) = φ

(1)
c

(1) DA:Assert(φ
(1)
1 ), φ

(1)
1 = φ

(1)
c

(2) DM:Challenge(φ
(1)
3 ), φ

(1)
3 = {[b � a]}

(3) DA:Argue(φ
(1)
5 , p

(1)
5 ), φ

(1)
5 = {[b � a]}, p(1)

5 = {[b �c3
a], [b �c4 a], [b �c5 a]}
(4) DM:Contradict(φ

(1)
4 ), φ

(1)
4 = {[a � b]}

(5) DA:Challenge(φ
(1)
6 ), φ

(1)
6 = {[a � b]}

(6) DM:Argue(φ
(1)
7 , p

(1)
7 ), φ

(1)
7 = {[a � b]}, p(1)

7 = {[a �c1
b], [a �c2 b], [c1 = strong ], [c2 = strong ]}
2nd iteration – update: KB(2)

P = KB(1)
P ∪{[c1 = strong ], [c2 =

strong ]}; KB(2)
φ = ∅, π[KB(2)

P ] = πWSM , φ
(2)
c = [d � a �

b � c]2, miss(φ
(2)
c ) = φ

(2)
c

(7) DA:Assert(φ
(2)
1 ), φ

(2)
1 = {[b � c]}

(8) DM:Accept(φ
(2)
1 ), φ

(2)
1 = {[b � c]}: CS(2)(dm) = {[b �

c]}
3rd iteration – update: KB(3)

P = KB(2)
P ; KB(3)

φ = {[b �
c]}, π[KB(3)

P ] = πWSM , φ
(3)
c = [d � a � b � c], miss(φ(3)

c ) =
{[d � a � b]}
(9) DM:Question(φ

(3)
2 ), φ

(3)
2 = {[d � a]}

(10) DA:Contradict(φ
(3)
4 ), φ

(3)
4 = {[a � d]}

2In particular d �
πWSM ,KB(2)

P

a as αc1 = αc2 = 2 and αc3 =

αc4 = αc5 = 1.
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(11) DM:Challenge(φ
(3)
6 ), φ

(3)
6 = {[a � d]}

(12) DA:Argue(φ
(3)
7 , p

(3)
7 ), φ

(3)
7 = {[a � d]}, p(3)

7 = {[a �c3
d], [a �c4 d], [a �c5 d], [c3 : d = bad], [c4 : d = bad], [c5 : d =
bad]}
4rd iteration – update: KB(4)

P = KB(2)
P ∪ {[c4 : d = bad]};

KB(4)
φ = {[b � c]}, π[KB(4)

P ] = πWS, φ
(4)
c = [a � b � c � d],

miss(φ
(4)
c ) = {[a � b], [c � d]}

Let us explain why c � d. For the computation of ∆c, we
have for instance ∆P

2 (d, c) = 1 and ∆P
3 (c, d) = 3. Hence

u1(c) = ∆1(c, a) + ∆1(c, b) + ∆1(c, d) = 1, u2(c) = 0,
u3(c) = 4, u4(c) = 5, u5(c) = 3, and u1(d) = 3, u2(d) = 3,
u3(d) = 0, u4(d) = 0, u5(d) = 0. Moreover, FπWS ,P (c, d) =
αP1 u1(c) +αP2 u2(c) +αP3 u3(c) +αP4 u4(c) +αP5 u5(c) = 14,
FπWS ,P (d, c) = 12 so that c �πWS ,P d.

(13) DA:Assert(φ
(4)
1 ), φ

(4)
1 = {[c � d]}

(14) DM:Accept(φ
(4)
8 ), φ

(4)
8 = {[c � d}): CS(4)(dm) =

CS(2)(dm) ∪ {[c � d]}
5rd iteration – update: KB(5)

P = KB(4)
P ; KB(5)

φ = {[b �
c], [c � d]}, π[KB(5)

P ] = πWS, φ
(5)
c = [a � b � c � d],

miss(φ
(5)
c ) = {[a � b]}

(15) DA:Question(φ
(5)
2 ), φ

(5)
2 = {[a � b]}

(16) DM:Accept(φ
(5)
8 ), φ

(5)
8 = {[a � b]}, CS(5)(dm) =

CS(4)(dm) ∪ {[a � b]}
6rd iteration – update: KB(6)

P = KB(4)
P ; KB(6)

φ = {[a �
b � c � d]}, π[KB(6)

P ] = πWS, φ
(6)
c = {[a � b � c � d]},

miss(φ
(6)
c ) = ∅

(17) DA:Success(φ
(6)
0 ), φ

(6)
0 = {[a � b � c � d]}

In this example, we start with model πSM at the first
iteration. Then model πSWM is used at the second iteration
due to statements [c1 = strong ], [c2 = strong ]. Lastly at
iteration 4, πWS is used due to statements [c3 : d = bad], [c4 :
d = bad], [c5 : d = bad]. The inference of the comparison
among options is consistently constructed even though the
model is changing, thanks to the relation between the models
and the related properties.

5. TERMINATION OF THE DIALOGUE
At each new iteration of the dialogue, there are two pos-

sible end states: success (acceptance by the DM of a rec-
ommendation), or a failure (the DA is not able to find a
proposal with an explanation that convinces the DM).

Proposition 1. Under UN, the length of the dialogue
resulting from the protocol is at most:

7 |P |+ 2 |O| (|O| − 1) + 1

where P is the knowledge base of the DM.

The size of P depends on the number of criteria. One can
easily derive bounds of |P | from the type of models that the
DM is expected to follow.

Corollary 1. Under UN, the protocol terminates.

Termination requires very few assumptions. However, as we
shall see now, obtaining guarantees on the quality of the
outcome is much more demanding.

6. OUTCOMES OF THE DIALOGUE
The DA is deemed to be an automatic agent following

some rationality postulates (e.g. axiom UN). On the other
hand, the DM is an individual and has more freedom of
action in the dialogue. However, we show in this section that
if the DM is representable by a model contained in the set Π
of models, then the dialogue necessarily terminates with a
Succeed, the option that results from the dialogue is among
the best options for the DM, and the properties that the DA
guesses are correct (but the DA may not have guessed all
properties – this depends on the length of the dialogue). In
particular, if the dialogue ends with a failure, this means
that the DM is not representable by a model in Π. In order
account for this, we should make some assumptions of the
consistency of both the DA and DM: in particular, the DM
must accept a statement if he agrees with the explanation
provided by the DA.

We first strengthen the constraint of the explanation given
by the DA, following a data-based explanation approach [9].

Axiom 3 (Explanation in Argue (EA)). Consider an
agent (DA or DM) having preferences P and using model π.

For the agent to utter Argue([x � y], p), p is the set of
all statements of the form [x �c y], [y �c x], [c = wc],
[c : x = α] and [c : y = α] belonging to P .

For the agent to utter Argue(φ, p), p is the union of all p
statements appearing in Argue([x � y], p), for all elements
[x � y] of φ. In particular, p |=π φ.

We consider the case where DM is represented by pref-
erence information P and user model π := π[P ] (Def. 11).
In our running example, we have P contains all statements
of the form [x �ci y], plus [c1 = strong ], [c2 = strong ] and
[c4 : d = bad]. Moreover, π = πWS .

We can illustrate axiom EA from Ex. 12. At turn (3), the
DA argues {[b � a]}, by the explanation {[b �c3 a], [b �c4
a], [b �c5 a]}. The explanation indeed contains all state-

ments in KB(1)
P that are related to the comparison [b �

a]. The same holds for the other speech acts Argue used
throughout the dialogue (see turns (6), (12)).

Axiom 4 (Consistency for the DM (C)). We assume
that P is consistent. If the DA utters Argue(φ5, p5) in the
protocol, then the next speech act is:

(α) The DM utters Contradict(φ4) iff there exists φ′4 s.t.
φ4 ⊆ φ5, P |=π φ

′
4 and φ4 is conflicting with φ′4;

(β) The DM utters Accept(φ8) iff φ8 ⊆ φ5, P |=π φ5 and
p5 |=π φ5 (the DM would obtain the same conclusion
with his preferences and also the same explanation).

(γ) Otherwise, the next move of the DM is Argue(φ7, p7),
where φ7 ⊆ φ5, p7 ⊆ P , p7 |=π φ7 and p7 6⊆ p5 (the
DM agrees on φ7 but provides a more specific explana-
tion).

Example 13. In Turns (4), the DM asserts a statement
that is exactly the opposite to the statement argued just before
by the DA, which fulfills axiom C.

Lemma 3. Let π ∈ Π and P ∈ P(π). If Argue(φ, p) is
used (with p ⊆ P ), then for every p′ ⊇ p with p′ ⊆ P , p′

consistent and p′ ∈ P(π), then p′ |=π φ.
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Lemma 4. Let P ⊆ P. Q(P ) = {R ⊇ Qπ[P ] , R ∈ Q}.

Proposition 2. Assume that RAM, EA, UN and C
are satisfied. Let R = Qπ. Assume that the knowledge base
of the DA at the start of the dialogue is included in P . Then:

• The dialogue terminates with Success;

• The dialogue stops with properties R ∈ Q, and R ⊆ R
(the properties guessed by the DA are correct);

• at the end, the recommendation provided by the DA is
%π,P , and the DM agrees with it.

Proof. In an iteration of the protocol, the knowledge
bases are KBP and KBφ. Axiom UN determines the model
and thus the properties R corresponding to the preference
information KBP collected so far by the DA: R is the small-
est element of Q(KBP ) (w.r.t. ⊆). Let π be the model
associated to R (i.e. with Qπ = R). Hence π = π[KBP ]
and R = Qπ[KBP ]. By the statement of the proposition,

R is the smallest element of Q(P ) w.r.t. ⊆. By definition
of KBP , we have KBP ⊆ P . Clearly, by RAM, we have
Q(KBP ) ⊇ Q(P ) and thus R ∈ Q(KBP ) (as R ∈ Q(P )).

By Lemma 4, we have Q(KBP ) = {R′ ⊇ R , R′ ∈ Q}.
Hence property R ∈ Q(KBP ) implies that R ⊆ R.

Assume by contradiction that the dialogue ends by Fail.
By UN, a Fail is obtained only when the last move of the
DM is a Argue(φ7, p7). This speech act was a respond to
statement φ (in Argue(φ1), Question(φ2) or Argue(φ5, p5)),
by the DA. We assume that φ is supported by p, with
p ⊆ KBP , i.e. p |=π φ by Axiom EA. There are two cases:

Case 1: p7 ⊆ KBP – case UN-(a): the DM did not pro-
vide any new preference information. As the DM argued, he
did not agree with Argue(φ, p) made by the DA.

In the case UN-(a), we have CS(dm) ⊆ KBP ∪ KBφ ∪
CS(da). This implies that the DM arrives at the same con-
clusions as the DA.

We conclude that φ and φ7 cannot be conflicting (see Def.
7).

The DM could not have used speech Contradict(φ4) since
then φ4 (which contradicts a statement commited by the
DA) would belong to CS(dm), and thus CS(dm) 6⊆ KBP ∪
KBφ ∪ CS(da), which contradicts UN-(a).

Hence in the last iteration of the dialogue, there is nec-
essarily the speech act Argue(φ5, p5) by the DA, and then
later the speech act Argue(φ7, p7) by the DM, with φ7 ⊆ φ5.

As the DM didn’t contradict Argue(φ5, p5) (by the DA),
the DM agrees with φ5 (see C-α). Hence P |=π φ5. Now, as
the DM didn’t accept Argue(φ5, p5) (by the DA), we have
p5 6|=π φ5.

Furthermore, as the DM made speech act Argue(φ7, p7),
we have φ7 ⊆ φ5, p7 ⊆ P , p7 |=π φ7 and p7 6⊆ p5. Then, p7 ⊆
KBP as p7 ⊆ CS(dm) and CS(dm) ⊆ KBP ∪KBφ∪CS(da).

To sum-up, we have

p5 |=π φ5 , p5 6|=π φ5 , P |=π φ5,

p7 |=π φ7 , φ7 ⊆ φ5,

p7 6⊆ p5 , p7 ⊆ KBP , p5, p7 ∈ P(π)

From EA, p5 (resp. p7) contains all statements in KBP
related to φ5 (resp. φ7). As φ7 ⊆ φ5, it is not possible
p7 6⊆ p5. Hence a contradiction is raised.

Case 2: KBP is inconsistent (after p7 has been added to
KBP ) – case UN-(b). This is not possible as KBP contains

only the preference information provided by the DM (i.e.
KBP ⊆ P ), and the preference information P is consistent
and thus any subset is also consistent. Hence the dialogue
cannot end by Fail.

As the dialogue terminates (see Proposition 1), it neces-
sarily terminated by a Success. By UN, a Success occurs
when the DM has accepted (in one or several times) the rec-
ommendation of the DA for goal G that the DA can derive
from KBP and π. By C-(β), the DM accepts a statement
only if it is entailed by his preferences. Hence the DM agrees
with the recommendation of the DA for goal G and it is nec-
essarily the final recommendation.

This is our main result: it shows for instance that if the
protocol returns a single recommended option, then this op-
tion is indeed amongst the DM’s most preferred options.

7. RELATED WORK AND CONCLUSION
Recommender systems have developed very sophisticated

techniques and algorithms, with the DM feedback being as
a vital component allowing to produce better recommenda-
tions. However, the case of multi-criteria recommendation
remains challenging: it was identified as an emerging topic
in the survey of [1] and is still recognized as such in the Rec-
ommender Systems Handbook [21]. A problem arising in
this context is that it opens a wide range of possible models
to account for the DM’s preferences [6]. And in that case,
the feedback of the DM may reveal preferential information
that require more than a simple adjustment of a parameter
in a predefined model. For instance in [20], a weighted sum
model is used. For a given criterion, its weight is initialized
by a default value, and is then multiplied by a factor if the
user critiques this criterion (the critique proves the user put
more importance on this criterion). While our approach is
close in spirit, we instead show in this paper how the feed-
back of the DM can be exploited so as to perform adaptive
selection of preference models.

Dialectical models of interaction have gained tremendous
popularity in recent years in the multiagent community.
Many protocols have been put forward, to tackle different
types of interaction [26]. It is clear that these protocols
offer a greater expressivity than simple feedback (since rec-
ommendations can be challenged and justified, as illustrated
here). Recently, an emphasis has been put on proving prop-
erties of such dialectical models, see e.g. [3, 10]. Our paper
follows this trend of research and studies a type of interac-
tion whose specificities have seldom been studied. Indeed,
while the link between decision-making and argumentation
has been investigated over a number of years [2, 8, 11, 15,
23], the decision-aiding setting itself has been little studied,
and the little reported work [16] does not go as far as we
do in capturing the process of exploring possible decision
models.
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ABSTRACT

Decision aiding can be abstractly described as the process of assisting a user/client/decision maker by recommending pos-
sible courses of his action. This process has to be able to cope with incomplete and/or inconsistent information and must
adapt to the dynamics of the environment in which it is carried out. Indeed, on the one hand, complete information about
the environment is almost impossible, and on the other hand, the information provided by the user is often affected by uncer-
tainty; it may contains inconsistencies and may dynamically be revised because of various reasons. The aim of this paper is
to present a model of the decision aiding process that is amenable to automation. The main features of the approach is that it
models decision aiding as an iterative defeasible reasoning process, and it uses argumentation for capturing important aspects
of the process. More specifically, argumentation is used for representing the relations between the cognitive artefacts that are
involved in decision aiding, as well as for modelling the artefacts themselves. In modelling the cognitive artefacts, we make
use of the notion of argument schemes and specify the related critical questions. More specifically, the work reported here
aims at initiating a systematic study of the use of argumentation in future decision aiding tools. Our ambition is twofold:
(i) enhance decision support capabilities of an analyst representing explicitly and accountably the reasons for which he
recommend a solution for a decision maker and (ii) enhance decision support capabilities of an (semi) automatic device to
handle (at least partially) the dialogue with the user. Copyright © 2011 John Wiley & Sons, Ltd.

KEY WORDS: argumentation; decision aiding; artificial intelligence

1. INTRODUCTION

Decision analysis (Belton and Stewart, 2002; Bouyssou
et al., 2000; French, 1988) is concerned with the
process of providing decision support to ‘clients’
who feel unable to handle alone a problem situation.
We call such an activity ‘decision aiding’. Decision
aiding is a process characterized by the emergence
of cognitive artefacts, resulting from the interaction
between the ‘client’ and the ‘analyst’. The decision
analyst and the client are engaged in an iterative
process, where the analyst attempts, through succes-
sive steps of interaction with the client, to obtain a
better understanding of the problem the client is
facing. To be able to cope with the complexity of
both the real world and the needs of the client, the
analyst needs to make assumptions and reason as if

these assumptions were true in the world. The
recommendations, which are the outcomes of the
decision aiding process (DAP), are subject to the cli-
ent validation. Rejection of the recommendations
means that some of the assumptions made by the
analyst are false and must be retracted.

On the contrary, systems that aim at assisting
people in decision making help the user to shape a
problem situation, formulate a problem and possibly
try to establish a viable solution to it. Decision theory
and Multiple-Criteria Decision Analysis have estab-
lished the theoretical foundation upon which many
decision support systems have blossomed. These
approaches (and the formal tools coming along with
them) have focused for a long time on how a ‘solu-
tion’ should be established. But it is clear that the pro-
cess involves many other aspects that are handled
more or less formally by the analyst. For instance,

• The problem of accountability of decisions is
almost as important as the decision itself. The deci-
sion maker should then be convinced by a proper
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explanation that the proposed solution is indeed
the best (see Belton and Stewart, 2002; Bouyssou
et al., 2000).

• It should be possible, for the client, to refine, or
even contradict, a given recommendation. Decision–
support processes often need to be constructive,
in the sense that a user may revise the assump-
tions or other aspect of the problem description
when the potential solutions and their implications
become explicit.

Nowadays, decision-aiding situations are perva-
sive: they can occur in situations where the role of
the analyst is taken by a non-expert, in some extreme
cases even by an automatic tool. For instance, con-
sider the following scenarios:

• Ann is not an experienced analyst, but she has good
knowledge of some decision–support tools that she
herself used quite often. She would like to help Bob
to make a decision regarding some public policy
investment. In this situation, Ann may find useful
to have the support of a tool that would provide
her with explicit explanations, justifications and
possible replies that could occur in the course of
an interaction with her ‘client’. Similarly, such a
system could be used for the non-expert analyst to
practice and simulate some virtual interactions with
a client.

• Bob is purchasing items on the Internet. He has to
choose among a selection of 150 digital cameras
on a commercial website (too many to be examined
exhaustively). Bob first provides some preferential
information to the system. On the basis of the
responses of Bob to these questions, the recommen-
der system selects a specific model. Bob, not fully
satisfied or convinced by the recommendation,
would like to interact with the system, at least to
gain a better understanding of the reasons underly-
ing this. Such needs has been identified by main-
stream recommender systems (Chen and Pu, 2007)
but is only very simply addressed. For instance, it
is now possible to check why a given item has been
recommended by Amazon and to contradict the
relevance of a certain purchase act for forthcoming
recommendations.

The aforementioned scenarios mean that several
aspects usually delegated to the human analyst
should (in these situations) ideally be handled by the
decision–support system. The task is ambitious: in
a ‘human-to-human’ interaction—even though the

dialogue is possibly supported by standard protocols
(as in the case of constructing a value or an utility
function or assessing importance parameters) that fix
some explicit formal rules on how such a process
can be conducted—the dialogue is handled through
typical human interaction. A tool should be able to
structure the dialogue on a formal basis in order to
be able to control and assess what the artefact con-
cludes as far as the user preference models are con-
cerned and what type of recommendations (if any) is
going to reach. In short, we need on the one hand
some formal theory about preferences (and this is basi-
cally provided by decision analysis), and on the other
hand some formal language enabling to represent the
dialogue, to explain it, to communicate its results, to
convince the user/decision maker that what is happen-
ing is both theoretically sound and operationally
reasonable.

Although, in the decision analysis literature, there
was until recently very little attention to the use of
decision theories and decision aiding methodology
when the interaction occurs between a human (a user)
and an automatic device (see Klein, 1994 for a notice-
able exception), the recent surge of automatic decision
aiding tools on the Internet (recommender systems)
have motivated a great deal of research. For instance,
there are studies on the impact of higher levels of
interaction with the user or explanation capabilities
on the efficiency of the recommendations (Pu and
Chen, 2007). Because of the context however, only
very simple interactions and models of preferences
are envisaged (a typical consumer is not prepared to
enter in a long preference elicitation process or to
discuss endlessly the benefits of a given option as
opposed to another one).

At the same time, there is a long tradition in artifi-
cial intelligence (AI), going back to the early work of
Simon, to challenge some assumptions of decision
theory models or to emphasize their limits in certain
circumstances. Stimulated by the objective to design
agents capable of autonomous decision-making abil-
ities (think of a robot exploring planet Mars), AI
researchers pointed out the need to deal with missing
or incomplete information, to revise some objectives
to adapt to the new contexts and so on. In particular,
the knowledge representation trend of AI has greatly
contributed to challenge and question the rather crude
‘utility’models used in decision theory. Indeed, one of
the key distinctive ingredient of many AI-based
approaches is to represent decision making in terms
of ‘cognitive attitudes’ (as exemplified in the famous
Belief-Desire-Intention paradigm) (Dastani et al.,
2005; Doyle and Thomason, 1999), instead of mere
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utilities (as already elicited by the analyst). This
change of perspective paved the way for more flexible
decision-making models: goals may change with cir-
cumstances, and understanding these underlying goals
offers, for instance, the opportunity to propose alterna-
tive actions. The approach is attractive as it offers a
natural and powerful way to specify agents’ prefer-
ences. This is because it naturally caters for partial
specification of preferences and makes explicit many
aspects that are usually somewhat hidden in decision
models.

A second, very influential contribution of AI,
related to the previous point, has been the develop-
ment of techniques for reasoning in the presence of
conflicting (possibly heterogeneous) information.
As the DAP is based on retractable assumptions,
the formal modelling language to be used must be
a non-monotonic one. Among the several possibili-
ties, it seems that argumentation is particularly well
suited for this task. Indeed, recently, following
some early works (Bonet and Geffner, 1996; Fox
and Parsons, 1997), several models have been put
forward in the AI community that makes use of
argumentation techniques (Amgoud, 2009; Amgoud
et al., 2005; Atkinson et al., 2006; Labreuche,
2006; Ouerdane et al., 2007, 2009) to tackle deci-
sion problems. Such approaches have identified a
variety of argument structures allowing to highlight
the benefits of argumentation for decision: expres-
siveness and explicit representation of reasoning
steps. Thus, they have greatly extended our under-
standing of the construction of argument for action
or decision.

Moreover, the use of argumentation in decision
support systems has been ever increasing. Such sys-
tems aim at assisting people in decision making. The
need to introduce arguments in such systems has
emerged from the demand to justify and to explain
the choices and the recommendations provided by
them. Together with this, other needs have motivated
the use of argumentation, such as dealing with incom-
plete information, qualitative information and uncer-
tainty (Amgoud and Prade, 2006; Fox et al., 1993;
Parsons and Greene, 1999). Such systems deal with
different contexts and applications, which may
involve very different types of decision makers, from
experts (medical domains) (Atkinson et al., 2006;
Shankar et al., 2006) to potential buyers (recommen-
der systems) (Chesñevar and Maguitman, 2004;
Chesñevar et al., 2004, 2006) or simple citizens (pub-
lic debate) (Atkinson, 2006; Morge, 2004), and even
largely autonomous pieces of software that should
act on behalf of a user (multi-agent systems) (Kakas

and Moraitis, 2003; Parsons and Jennings, 1998;
Sillince, 1994).

It is important to note that many of the aspects of
decision-support systems discussed previously touch
upon issues that have been long identified in system
design. Indeed, it was about four decades ago when
researchers such as Rittel (Rittel and Webber, 1973)
came to realize that in order to tackle ill-defined prob-
lems (as opposed to the well-defined problems of
science), an ‘argumentative approach’ was needed.
This initiated the design rationale movement that
advocates the thesis that ‘to understand why a system
design is the way it is, we also need to understand how
it could be different, and why the choices which where
made are appropriate’ (MacLean et al., 1989). The
rationale for a system describes the decision that have
taken the possible alternatives that were considered
and the pros and cons of these alternatives. Not sur-
prisingly, many design rationale systems, starting with
the early IBIS (Issue-Based Information System) (Kunz
and Rittel, 1970) system to the more recent SEURAT
(Software Using RATionale system) (Burge and Brown,
2008), are based on some form of argumentation.

The work presented here is in accordance with pre-
vious studies that employ argumentation in decision
making but from a different perspective. First, the
approach described here is not based on cognitive atti-
tudes and the underlying motivation of the decision
maker, but it relies on information provided by the
decision maker during a Decision Aiding Process
(DAP). Second, decision aiding is understood as the
process of constructing and revising cognitive arte-
facts, which gradually transform an abstract problem
description to an invocation of a concrete decision
support tool. Therefore, automating the DAP amounts
to automating the construction of these cognitive arte-
facts taking also into account the defeasible character
of the process. Argumentation is the language that
captures the interdependencies between these artefacts
and controls the overall process.

The specific approach to artefact construction that
is taken in this work is not intended to provide a fully
automated and general approach to decision aiding, as
it is limited in several ways. Initially, it is restricted to
the modelling of specific cognitive artefacts involved
in the Decision Aiding Process, leaving out highly
abstract cognitive tasks such as the representation of
a problem situation. Furthermore, the construction of
the artefacts is a process where predefined ‘compo-
nents’ of a decision–support system are put together
to make a meaningful whole. Argumentation main-
tains a high-level control of this synthetic process
and enables, instead of a static ‘composition’ of the
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elements of the system at design time, a more dynamic
one that can be decided at run-time, through the inter-
action with the environment or the user. Therefore,
instead of building a rigid decision aiding tool, argu-
mentation offers the possibility of delivering different,
context-dependent versions of such a tool.

Furthermore, we note that even within the limited
scope of the method that is described in this work, it
is not always easy or even possible to completely
automate this process because on the one hand, it is
not always easy to model the decision aiding metho-
dology, and the expertise of the analyst in the decision
problem is considered. On the other hand, it is also not
always easy or obvious to identify all needs and infor-
mation necessary to fully meet the expectations of the
user. In such cases, the approach can be seen as a
method of building tools that support the DAP, which
may help both the analyst and the user to share a com-
mon representation of the problem and the proposed
solutions.

The proposed approach aims at facilitating the
development of automatic decision devices and the
improvement of decision support and recommender
systems. In fact, the diffusion of Web-based services
pushed the development of online decision support
and decision support and recommender systems for a
large variety of applications (e-commerce, e-voting,
e-services, semantic Web, etc.). Such tools have to
combine traditional decision making methods with
flexible reasoning procedures allowing to handle the
large variety of tasks required, to be adaptable to the
changing environment where they operate and to
perform self-improvement. Therefore, automating the
DAP, whenever this is possible, by using argumenta-
tion is a first step towards meeting these needs. Addi-
tionally, argumentation can be used to provide design
rationale information to future users and developers.

In summary, this paper studies two different ways
of employing argumentation in decision aiding. First,
we show how the relation between different artefacts
of the DAP can be modelled using the framework of
Kakas and Moraitis (2003), which is dynamic in the
sense that the arguments, and their strength depend
on the particular context that the decision maker
(or agent) finds himself, thus allowing the agent to
adapt his decisions in a changing environment. The
decision aiding theories can be easily implemented
directly from their declarative specification in the
Gorgias system (Gorgias, 2002) for this framework.
We focus on the inferences that can be drawn by argu-
mentation and the way these inferences can be
retracted in the light of the new information, capturing
in this manner the dynamics of the DAP.

Second, we investigate how argumentation can
model crucial aspects of each artefact of the DAP.
More specifically, we study how argument schemes
can be developed and used in the DAP. Argument
schemes are presented as general inference rules
whereby given a set of premises, a conclusion can be
drawn. However, such schemes are not deductively
strict because of the defeasible nature of arguments
(Norman et al., 2003; Walton, 1996, 2005). The
schemes allow for arguments to be represented within
a particular context and take into account the fact that
the underlying reasoning may be altered in the light of
new evidence or exceptions to rules.

The paper is structured as follows. In Section 2,
first we introduce the concept of the DAP and the
cognitive artefacts it produces. Then, we explain, by
means of an example, what is missing in such a pro-
cess. In Section 3, we briefly introduce the argumenta-
tion framework we use and show how it can capture
the relations between the cognitive artefacts. Section
4 presents how the notion of arguments schemes,
and their related critical questions, can be used to
represent the steps of a multicriteria evaluation pro-
cess. Finally, Section 5 provides the conclusion.

2. THE DECISION AIDING PROCESS

Decision aiding is an activity occurring in the every-
day life of almost everybody. In this paper, we are
interested in that particular type of decision aiding
where formal and abstract languages are used (differ-
ent decision theories and approaches). A DAP is a
particular type of decision process involving at least
two actors: a client, who himself is involved in at least
one decision process (the one generating the concern
for which the aid is requested), and the analyst, who
is expected to provide the decision support. The aim
of this particular process is to establish a shared repre-
sentation of the client’s concern, using the analyst’s
methodological knowledge, a representation enabling
to undertake an action towards the concern.

2.1. Cognitive artefacts
Although decision aiding is a distributed process of
cognition, we will present this concept using an
operational approach based on the identification of
the cognitive artefacts of the process (the outcomes
or deliverables) (for more details, the reader is referred
to the studies of Bouyssou et al., 2000, and Tsoukiàs,
2007, 2008). The outcomes of this process are as
follows:
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• a representation of the problem situation: P;
• the establishment of a problem formulation: Γ;
• the construction of an evaluation model: T;
• the establishment of a final recommendation: Φ.

In this paper, we will focus on the establishment of
Γ and the construction of T. Our interest in this part of
the process is because both these artefacts represent
the easier to formalize and more structured outcomes
of the process. Therefore, they can be easily modelled
using a formal language. Two points should be
considered:

• although these two artefacts appear subsequent, they
are constructed through continuous interactions;

• the way the DAP is conducted influences the
process outcomes.

We can now go through more details as far as these
two artefacts are concerned.

2.1.1. Problem formulation (Γ). For a given repre-
sentation of the problem situation, the analyst might
propose to the client one or more ‘problem formula-
tions’. This is a crucial point of the DAP. The repre-
sentation of the problem situation has a descriptive
(at the best explicative) purpose. The construction of
the problem formulation introduces what we call a
model of rationality. A problem formulation reduces
the reality of the decision process, within which the
client is involved, to a formal and abstract problem.
The result is that one or more of the client’s concerns
are transformed to formal problems on which we can
apply a method (already existing, adapted from an
existing one or created ad hoc) of the type studied in
decision theory. From a formal point of view, a prob-
lem formulation is a triplet Γ ¼< A;V;Π > where

• A is the set of potential actions the client may under-
take within the problem situation as represented in
P. It should be noted that these are not ‘given’ but
have to be constructed. A typical situation is the
refinement of abstract options to more precise
actions. A does not necessarily have a formal
structure.

• V is the set of points of view under which the poten-
tial actions are expected to be observed, analysed,
evaluated, compared etc., including different sce-
narios for the future.

• Π is the problem statement, the type of application
to perform on the set A, an anticipation of what
the client expects.

A problem statement can be operational or not
(such as describing or conceiving the elements of A).
Operational problem statements are partitioning
operations to be applied on the set A within the evalua-
tion modelM (see below). As such they can partition
the set A:

• in predefined categories (large-medium-small, illness
(A)-illness(B)) or in categories to be inferred compar-
ing the elements of A;

• in ordered categories (accepted-rejected, bad-medium-
good) or unordered categories (greens-blacks,
monkeys-elephants).

Therefore, Π can be a choice statement (ordered
and not predefined categories), a ranking (ordered
and not predefined categories), a classification (prede-
fined and not ordered categories), a clustering (no pre-
defined and not ordered categories) etc. (for details see
Bana a Costa, 1996; Tsoukiàs, 2007).

2.1.2. Evaluation model (M). The term evaluation
model refers to the decision aiding models as they
are conceived in operational research, decision
theory or AI methods. Classic decision aiding
approaches focus on the construction of this model
and consider the problem formulation as given. An
evaluation model is a tupleM¼< A;D;H;U;R >,
where

• A is a precise set of alternatives or decision vari-
ables on which the model will apply; A has a precise
structure: enumeration of actions, domain of real
numbers, combinatorial structure etc.;

• D is a set of dimensions (attributes) under which the
elements of A are observed, measured, described
etc.; a scale is always associated to each element
of D;

• H is a set of criteria (if any) under which each ele-
ment of A is evaluated in order to take into account
the client’s preferences;

• U is an uncertainty structure;
• R is a set of operators (aggregation functions) such
that it is possible to obtain a comprehensive relation
and/or function on A, possibly allowing to infer a
final recommendation.

We emphasize the different use of terms such as
goals (or objectives), attributes and criteria. Goals
(objectives) represent ‘desired states of the world’
and are implicitly or explicitly considered while
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constructing the set A (for instance, through the
description of alternative plans enabling to achieve a
certain task or through the composition of different
investment options in order to satisfy a portfolio con-
struction). Attributes and criteria instead represent
the fact that achieving a goal or an objective is not
only a feasibility problem but also a preferability
one. When this is the case, it is necessary to describe
the consequences of potential actions along different
dimensions (establishing attributes) and to evaluate
the client’s preferences on some (possibly all) of such
consequences (establishing criteria).

2.2. Conducting the process
The DAP is the result of a dialogue between an analyst
and a decision maker. During this process, the four
artefacts may evolve, change and undergo revisions.
Moreover, because a DAP always refers to a decision
process that has a time and space extension, it is nat-
ural that the outcomes of the DAP remain defeasible
cognitive artefacts in the sense that new information,
beliefs and values may invalidate them and require
an update or a revision.

Going back to the model of DAP, we present
example 1 that serves the purpose of illustrating possi-
ble changes, revisions or updates associated with the
formulation problem and its corresponding evaluation
model during a DAP.
Example 1. (Bouyssou et al., 2006)
A client looking for decision support within a problem
situation described as ‘the client’s bus company is
looking for a bus’. He presents a set of offers received
from several suppliers, each offer concerning a precise
type of bus. The analyst will establish a problem for-
mulation in which

• A is the list of offers received;
• V is the list of point of view that are customary in
such cases, let us say cost, quality and transporta-
tion capacity;

• Π is a choice problem statement (an offer has to be
chosen).

It is possible to construct an evaluation model with
such information in which

• A are the feasible offers;
• D are the dimensions on which the offers are ana-
lysed: price and management costs, technical fea-
tures (for the quality point of view) etc.;

• H are the criteria that the client agrees to use in
order to represent these preferences;

• there is no uncertainty;
• R can be a multi-attribute value function, assuming
that the client is able to establish the marginal value
function on each criterion.

When this model is presented to the client, his
reaction could be ‘in reality we can buy more than
one bus and there is no reason that we should buy
two identical buses, since these could be used for dif-
ferent purposes such as long range leisure travels or
urban school transport’. With such information, it
is now possible to establish a new evaluation model
in which

• A are all pairs of feasible offers;
• D are the dimension under which the offers are ana-
lysed (price, management costs, technical features
etc.) but now concerning pairs of offers plus a clas-
sification of the buses in categories (luxury liner,
mass transit, etc.);

• H are the same as previously plus a criterion about
‘fitting the demand’ because two different types of
buses may fit the demand better;

• now, uncertainty is associated to the different sce-
narios of bus use;

• R can be multi-attribute utility function, provided
that the client is able to establish the marginal value
function on each criterion.

The process may continue revising models and
problem formulations until the client is satisfied.

Note that it is necessary to update the contents of
different models as the DAP involves in time and
space. When confronted with a result, the decision
maker realized that the model is not exactly what he
expected. Therefore, he makes changes or gives new
information in order to adapt the model to his needs.
The consequence of this update is that the two models
should be revised, namely the problem formulation
and the evaluation model.

Moreover, the outcome of decision aiding is a
recommendation Φ that is submitted to the user. There
are three possibilities for this:

Φ1 the recommendation is validated and implementable
Φ2 the recommendation is validated but fails to be

implemented
Φ3 the recommendation is not validated

The way the recommendation is submitted to the
user is out of the scope of this paper.

The user therefore receives a pair hΦj, Ti where
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• Φj represents the state of the recommendation with
the user;

• T represent the reasons for which the recommenda-
tion is in such a state.

In case the recommendation is in state Φ1, then the
reasons in T are the overall appreciation of the user. Pos-
sible reasons for a recommendation in state Φ2 or Φ3 can
be (i) no feasible solution in A satisfies the user or the
recommendation is no more feasible; (ii) the available
measures of elements in A are considered irrelevant,
erroneous or affected by too large uncertainty; (iii) the
preference models applied on A are not reliable and the
user feels not to be correctly represented; (iv) uncertainty
is misrepresented; or (v) the aggregation procedure is
revealed to be meaningless or irrelevant to the user.

In such situations, different questions can be asked:
how to construct such reasons to be meaningful in the
decision context considered? How to identify the
problem? Or how to provide the consequences to the
decision maker of a modification or a changes? Is it
possible to challenge the aggregation procedure and
how to update it? etc. Thus, decision aiding is more
than simply solving a complex decision model more
or less faithful to the decision maker’s values and pre-
ferences. It involves understanding, interpreting, justi-
fying, explaining, convincing, revising and updating
the outcomes of what we call a DAP. Currently, the
model of DAP provides a rich theoretical framework
in terms of aggregation of preferences and construct-
ing recommendation for various decision problems.
However, from a practical point of view, it offers little
about how such activities are formally represented.
We might be interested to establish a formal represen-
tation of all such activities for at least two reasons:

• enhance decision support capabilities of the analyst
representing explicitly and accountably the reasons
for which he recommend (or not) a solution (if any);

• enhance decision support capabilities of an (semi)
automatic device to handle (at least partially) the
dialogue with the user.

This work addresses these needs by relying on the
concepts and tools of argumentation theory.

3. ARGUMENTATION AND ARTEFACT
DEPENDENCIES

We have seen in the previous example that different
version of the cognitive artefacts can be established
during the DAP. These different versions are because

client does not know how to express clearly, at the
beginning of the process, what is his or problem and
what are his her preferences. So, as the model is con-
structed, the decision maker may revise and update his
preferences and/or objectives. However, such different
versions are strongly related to each other because
they carry essentially the same information and only
a small part of the model has to be revised (Bouyssou
et al., 2006; Tsoukiàs, 2007). The problem that arises
here is that this revision (or update) must be taken into
account by the model. In other words, there is a need
for a formal representation of how the evolution
occurs between different versions.

In the following, we discuss an argumentation fra-
mework that captures the dependencies between the
artefacts and illustrate its working by means of an
example.

3.1. The argumentation framework
This section gives the basic concepts of the underlying
argumentation framework in which an agent repre-
sents and reasons with its decision aiding theory. This
framework was proposed in the study conducted by
Kakas et al. (1994) and developed further in that of
Kakas and Moraitis (2003), in order to accommodate
a dynamic notion of priority over the rules (and hence
the arguments) of a given theory.

In this framework, (the components of) an agent
theory is layered in three levels. Object-level decision
rules are defined at the first level. The next two levels
describe priority rules on the decision rules of the first
level and on themselves thus expressing a preference
policy for the overall decision making of the agent.
This policy is separated into two levels: level 2 to cap-
ture the default preference policy under normal cir-
cumstances, whereas level 3 is concerned with the
exceptional part of the policy that applies under speci-
fic contexts. The argumentation-based decision mak-
ing will then be sensitive to context changes.

In general, an argumentation theory is defined as
follows.

Definition 3.1
A theory is a pair T ;Pð Þ. The sentences in T are pro-
positional formulae, in the background monotonic
logic L; ⊢ð Þ of the framework, defined as L L1, . . .,
Ln, where L, L1, . . ., Ln are positive or explicit negative
ground literals. Rules in P are the same as in T apart
from the fact that the head L of the rules has the gen-
eral form L= h _ p(rule1, rule2), where rule1 and rule2
are ground functional terms that name any two rules
in the theory. This higher priority relation given
by h _ p is required to be irreflexive. The derivability
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relation, ⊢, of the background logic is given by the
single inference rule of modus ponens.

For simplicity, it is assumed that the conditions of
any rule in the theory do not refer to the predicate
h _ p thus avoiding self-reference problems. For any
ground atom h _ p(rule1, rule2), its negation is denoted
by h _ p(rule2, rule1) and vice versa.

An argument for a literal L in a theory T ;Pð Þ is any
subset, T, of this theory that derives L, i.e. T ⊢ L under
the background logic. The subset of rules in the argu-
ment T that belong to T is called the object-level argu-
ment. Note that in general, we can separate out a
part of the theory T 0⊂T and consider this as a non-
defeasible part from which any argument rule can
draw information that it might need. We call T 0 the
background knowledge base.

The notion of attack between arguments in a theory
is based on the possible conflicts between a literal L
and its negation and on the priority relation of h _ p
in the theory.

Definition 3.2
Let T ;Pð Þ be a theory, T, T′⊆ T and P,P′⊆P. Then
(T′,P′) attacks (T,P) iff there exists a literal L,
T1⊆ T′, T2⊆ T, P1⊆P′ and P2⊆P such that

(i) T1 ∪P1 ⊢minL and T2 ∪P2 ⊢min¬L
(ii) (∃ r′2 T1 ∪P1, r2 T2 ∪P2 such that T ∪P ⊢ h _ p

(r, r′))⇒ (∃ r′2 T1 ∪P1, r2 T2 ∪P2 such that T
′ ∪P′ ⊢ h _ p(r′, r)).

Here S ⊢minL means that S ⊢ L and that no proper
subset of S implies L. When L does not refer to h _ p,
T ∪P ⊢minL means that T ⊢minL. This definition states
that a ‘composite’ argument (T′,P′) is a counter-
argument to another such argument when it derives a
contrary conclusion, L, and (T′ ∪P′) makes the rules
of its counterproof at least ‘as strong’ as the rules
for the proof by the argument that is under attack. Note
that the attack can occur on a contrary conclusion L=
h _ p(r, r′) that refers to the priority between rules.

Definition 3.3
Let T ;Pð Þ be a theory, T⊆T and P⊆P. Then (T,P) is
admissible iff (T ∪P) is consistent and for any (T′,P′),
if (T′,P′) attacks (T,P), then (T,P) attacks (T′,P′).
Given a ground literal L, then L is a credulous (respec-
tively sceptical) consequence of the theory iff L holds
in a (respectively every) maximal (with respect to set
inclusion) admissible subset of T.

Hence when we have dynamic priorities, for an
object-level argument (from T ) to be admissible, it
needs to take along with it priority arguments (from P)

to make itself at least ‘as strong’ as the opposing
counter-arguments. This need for priority rules can
repeat itself when the initially chosen ones can
themselves be attacked by opposing priority rules,
and again, we would need to make now the priority
rules themselves at least as strong as their opposing
ones.

An agent’s argumentation theory will be defined as
a theory T ;Pð Þ, which is further layered in separating
P into two parts as follows.

Definition 3.4
An agent’s argumentative policy theory, T, is a theory
T ¼ T ; PR;PCð Þð Þwhere the rules inT do not refer to
h _ p, all the rules in PR are priority rules with head
h _ p(r1, r2) such that r1; r2 2 T and all rules in PC
are priority rules with head h _ p(R1,R2) such that
R1;R2 2 PR∪PC.

We therefore have three levels in an agent’s theory.
In the first level, we have the rules T that refer directly
to the subject domain of the theory at hand. We call
these the object-level decision rules of the agent. In
the other two levels, we have rules that relate to the
policy, under which the agent uses its object-level
decision rules, associated to normal situations (related
to a default context) and specific situations (related to
specific or exceptional contexts). We call the rules in
PR (named R in the following) and PC (named C),
default or normal context priorities and specific con-
text priorities, respectively.

3.2. Modelling of the decision aiding process
In a nutshell, an automated decision aiding system
implements two mappings that correspond to the steps
of the DAP. The first mapping, which corresponds to
the problem formulation, is one of the form Γ :
Problem!< A;V;Π >. The second mapping corre-
sponds to the evaluation model construction and is
of the formM :< A;V ;Π >!< A;D;H;U;R >.

The first mapping can be implemented by a set of
logical rules that associate various parameters, such
as the features of the input problem, the situation at
hand, the profile of the user etc., with the parameters
of the problem formulation. For instance the rule

select A;Aið Þ  feature P;F1ð Þ; . . . ; feature P;Fnð Þ

states that if the problem at hand P has the features F1,
Fn, then the parameter A of the problem formulation
of P is instantiated by the set Ai . In the following,
we use the notation CA;Ai Pð Þ as a shorthand for the
set of conditions that need to be satisfied by problem
P in order for the parameter A to be instantiated by
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the set Ai in the problem formulation of P. Therefore,
the aforementioned rule can be represented more com-
pactly by select A;Aið Þ  CA;Ai Pð Þ.

Having incomplete information about the world,
such a model needs to account for the lack of informa-
tion. To cope with this, in the automated DAP
assumptions are made about other conditions that
may influence the selection of the parameters of the
problem formulation. These assumptions, and the
mode of reasoning associated with them, can be cap-
tured in the argumentation framework that is used by
rules of the following form:

rAi : select A;Aið Þ  CA;Ai Pð Þ
rAj : select A;Aj

� �
 CA;Aj Pð Þ

RA
i;j : h� p rAi ; r

A
j

� �

RA
j;i : h� p rAj ; r

A
i

� �
 SCA; j;if g Pð Þ

CA
j;i : h� p RA

j;i;R
A
i;j

� �

The aforementioned set of rules says that under
the conditionsCA;Ai,Ai is the default parameter selec-
tion forA in the problem formulation. If in addition to
CA;Ai some special conditions SCA; j;if g hold for the
problem at hand, then Aj is selected instead. Similar
rules can be written for the other parameters of the
problem formulation, i.e. for V and Π. Each set of
rules that corresponds to each of the parameters A,
V and Π of Γ is denoted by TA , TV and TΠ,
respectively.

The next step in automating the DAP is to provide
rules creating the mapping between the selected pro-
blem formulation and the possible evaluation models.
This can also be done along the lines described above.
Consider for instance the description of the relation
between A in the problem formulation and the para-
meter A of an evaluation model. The rules that
describe this mapping are of the form:

rAj : select A;Aj

� �
 select A;Aið Þ;CA;Aj Pð Þ

rAk : select A;Akð Þ  select A;Aið Þ;CA;Ak Pð Þ
RA
j;k : h� p rAj ; r

A
k

� �

RA
k;j : h� p rAk ; r

A
j

� �
 SCA; k;jf g Pð Þ

CA
k;j : h� p RA

k;j;R
A
j;k

� �

Similar rules are added for the other parameters of
the evaluation model. The rules for the parameters
D, H, U and R that correspond to the rule rAj are,
respectively,

rDj : select D;Dj

� �
 select V;Við Þ;CD;Dj Pð Þ

rHj : select H;Hj

� �
 select D;Dið Þ;CH;Hj Pð Þ

rUj : select U;Uj

� �
 select H;Hið Þ;CU;Uj Pð Þ

rRj : select R;Rj

� �
 select Π;Πið Þ;CR;Rj Pð Þ

Additional rules (of the type R and C), similar to
those that have been described for A, are added to the
argumentation theory and enforce different selections
for the evaluation model parameters, wherever special
conditions hold. The set of rules that are associated with
the choice of the parameters ofM are denoted by TA, TD,
TH, TU and TR, respectively.

Therefore, the resulting argumentation theory
T is the union of the above subtheories, i.e. T ¼
TA∪TV∪TΠ∪TA∪TD∪TH∪TU∪TR . At each cycle of the
DAP that terminates with a rejection of the recommenda-
tions, the reasons for this rejection J are added to T, a new
theory T′=T∪ J is constructed, and a new reasoning
phase starts, this time with the theory T′. In the following,
we present an example that illustrates the method.

3.3. An illustrative example
An agent wishes to plan a dinner for this evening. He has
four options. He could dine with his girlfriend, with his
best friend, alone or stay at home and order a delivery.
The agent prefers dining in a restaurant than staying
home and dining with company than dining alone. In
the first two cases, the venue is not as important as the
company. When dining alone, the standard of the venue
is very important. It must be in fact excellent in order to
compensate for the lack of company. For dining very late
at night, the agent prefers to dine alone, either out or order
his favourite pizza for delivery. However, his decision
criterion now becomes the time required for service.

The set of actions A relevant to the evening dinner
can be represented as follows:

a1 dine_with_girlfriend
a2 dine_with_best_friend
a3 dine_alone Xð Þ; X 2 r1;⋯rnf g
a4 order_pizza

The dine_alone(X) action stands for a set of
actions obtained by instantiating variable X with a
specific restaurant.

The dining problem can be captured within the
decision aiding model described earlier as follows.
The agent can choose between two alternative
problem formulations. The first is the formulation
Γ1 ¼ A1;V1;Π1h i, where A1 is the set of actions a1,
a2, a3, V1 is pleasure and venue standard and Π1 is a
choice (of the best thing to do this evening) or a
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Abstract. Our ambition in this paper is to begin to specify in argumentative terms
(some of) the steps involved in a decision-aiding process. To do that, we make use
of the popular notion of argument schemes, and specify the related critical ques-
tions. A hierarchical structure of argument schemes allows to decompose the pro-
cess into several distinct steps—and for each of them the underlying premises are
made explicit, which allows in turn to identify how these steps can be dialectically
defeated via critical questions. This work initiates a systematic study which aims at
constituting a significant step forward for forthcoming decision-aiding tools. The
kind of system that we foresee and sketch here would allow: (i) to present a rec-
ommendation that can be explicitly justified; (ii) to revise any piece of reasoning
involved in this process, and be informed of the consequences of such moves; and
possibly (iii) to stimulate the client by generating contradictory arguments.

Keywords. Decision aiding, argument schemes, critical questions

Introduction

Decision theory and multiple criteria decision analysis have established the theoretical
foundations upon which many decision-support systems have blossomed. However, such
systems have focussed more on how a “best solution” should be established, and less
on how a decision maker should be convinced about that (for exceptions on that see
[9,5]). In addition, the decision-support process is often constructive, in the sense that the
client refines its formulation of the problem when confronted to potential solutions. This
requires the system to cater for revision: it should be possible, for the client, to refine,
or even contradict, a given recommendation. These aspects are usually handled by the
decision analyst, but if we are to automate (some part of) the process (as is the case in
recommender systems, for instance), it is important to understand more clearly how they
can be integrated in a tool.

In AI, a different tradition to decision making had identified these problematic is-
sues. One of the key distinctive ingredient is that many AI-based approaches are prone to
represent decision making in terms of “cognitive attitudes" (as exemplified in the famous
Belief-Desire-Intention paradigm) [11,12], instead of crude utilities (as already elicited
by the analyst). This change of perspective paved the way for more flexible decision-
making models: goals may change with circumstances, and understanding these under-

1Corresponding Author.



lying goals offers the opportunity to propose alternative actions, for example. But then
a reasoning machinery has to be proposed to handle these complex notions. Regarding
the issues of expressiveness and ability to deal with contradiction that we emphasized
here, argumentation seemed a good candidate. Indeed, recently, following some early
works [13,8], several models have been put forward in the artificial intelligence commu-
nity that make use of argumentation techniques [16] to attack decision problems. These
approaches have contributed to greatly extend our understanding of the subject, in partic-
ular they clarify what makes argumentation about actions crucially different from mere
epistemic argumentation (when the object under discussion is a belief).

On the one hand, our contribution is much more modest in its current state than the
aforementioned approaches. We will not, in the present paper, base our model on cogni-
tive attitudes and try to represent the underlying motivations and informations of agents.
We take, instead, a different perspective which results from the following observation:
there exist many decision-support tools that clients understand well, find valuable, and
would be reluctant to drop for a completely new tool. Hence the following question: is
it possible (and to what extent) to integrate some flavour of argumentation within these
tools. On the other hand, having to deal with complex aggregation procedures proposed
in these approaches, we will also have to make explicit and discuss some aspects that
are often left aside by argumentation-based approaches (although it is known that some
aggregation procedures can be captured by an argumentative approach [1]). The main
one being that the aggregation procedure itself may be the subject of potential exchange
of arguments.

The remainder of this paper is as follows. Section 1 offers a brief reminder on de-
cision aiding theory. In particular we identify the different steps that compose the pro-
cess, and the nature of the involved objects. Section 2 then presents the different argu-
ment schemes that are involved in such processes. The section that follows exploits this
representation and defines the critical questions that can be attached to the argument
schemes. In Section 4, we present the nature of the resulting dialectical process, pointing
out the added-value of this argumentation-based approach when compared to classical
multicriteria decision-aiding tools. We conclude by discussing perspectives of this work.

1. Decision Aiding Process

An instance of a decision process is characterized by the participating actors, their con-
cerns, and the resources committed by each actors on each object. We are interested in
decision aiding. Intuitively, in decision aiding we also make decisions (what, why and
how to model and support). Decision aiding is also a decision process but of a particu-
lar nature [9,10]. A decision aiding context implies the existence of at least two distinct
actors (the client and the analyst) both playing different roles; at least two objects, the
client’s concern and the analyst’s (economic, scientific or other) interest to contribute;
and a set of resources including the client’s domain knowledge, the analyst’s method-
ological knowledge, money, time... The ultimate objective of this process is to come up
with a consensus between the client and the analyst [19]. Four cognitive artifacts consti-
tute the overall process:

� Problem situation— the first deliverable consists in offering a representation of
the problem situation for which the client has asked the analyst to intervene;



� Problem formulation— given a representation of the problem situation, the analyst
may provide the client with one or more problem formulation. The idea is that
a problem formulation translates the client’s concern, using the decision support
language, into a “formal problem”;

� Evaluation Model—for a given problem formulation, the analyst may construct
an evaluation model, that is to organise the available information in such a way
that it will be possible to obtain a formal answer to a problem statement. An
evaluation model can be viewed as a tuple comprising the set of alternatives on
which the model applies (denoted A); the set of dimensions (attributes) under
which the elements ofA are observed, described, measured, etc. (denotedD); the
set of scales E associated to each element of D; the set of criteria H under which
each element of A is evaluated in order to take in account the client’s preference;
and an aggregation procedure (R). Formally, a criterion is a preference relation,
that is a binary relation on A or a function representing the criterion. (A set of
uncertainty structures may also be used. Depending on the language adopted, this
set collects all uncertainty distributions or the beliefs expressed by the client. We
shall not discuss it further here).

� Final recommendation—the evaluation model will provide an output which is still
expressed in terms of the decision support language. The final recommendation is
the final deliverable which translate the output into the client’s language.

The study of this process shows that it suffers from some limits. The first one is
the lack of a formal justification or explanation of the final recommendation. Indeed, the
process focuses more on how to reach the final decision and fails in some way to provide
a justification for the decision-maker. Second, during the decision aiding process several
different versions of the cognitive artifacts may be established. These different versions
are due to the fact that client doesn’t known how to express clearly, at the beginning of
the process, what is his problem and what are his preferences. So, as the model is con-
structed, the decision maker revise and update his preferences and/or objectives. How-
ever, such different versions are strongly related to each other since they carry essen-
tially the same information and only a small part of the model has to be revised [19,10].
The problem that arises here is that this revision (or update) is not taken into account
by the model. In other words, there is no formal representation of how the evolution
occurs between different versions. Finally, the last problem encountered in this process
is the incomplete information. More specifically, the process does not support situations
or problems decision where some fields of one or more of the different models are not
completed.

In this paper we concentrate on the evaluation step. The approach based on argu-
mentation that we sketch in the next few sections is particularly well suited to tackle
these aspects: (i) by presenting the reasoning steps under the form of argument schemes,
it makes justification possible, and offers the possibility to handle default reasoning with
incomplete models; and (ii) by defining the set of attached critical questions, it estab-
lishes how the revision procedure can be handled.

2. Argument Schemes

Argument schemes are argument forms that represent inferential structures of arguments
used in everyday discourse, and in special contexts like legal argumentation, or scientific



argumentation. disjunctive syllogism are very familiar. But some of the most common
and interesting argumentation schemes are neither deductive nor inductive, but defeasible
and presumptive [22].

It is now well established that argument schemes can play two roles: (i) when con-
structing arguments, they provide a repertory of forms of argument to be considered,
and a template prompting for the pieces that are needed; (ii) when attacking, arguments
provide a set of critical question that can identify potential weaknesses in the opponents
case. Then, as Walton puts it, “ we have two devices, schemes and critical questions,
which work together. The first device is used to identify the premises and conclusion.
The second one is used to evaluate the argument by probing into its potentially weak
points” [22]. The set of critical questions have to be answered, when assessing whether
their application in a specific case is warranted. Prakken and Bench-capon [6] specify
that argument schemes are not classified according to their logical form but according to
their content. Some argument schemes express epistemological principles or principles
of practical reasoning: different domains may have different sets of such principles. Our
aim in this paper to identify those schemes that are involved in multicriteria decision-
aiding processes.

We need different classes of argument schemes to construct the whole evaluation
model. Argument schemes can very broadly be distinguished depending on (i) whether
they aggregate several criteria, or are concerned with a single criteria (multicriteria vs.
unicriteria); (ii) whether they follow a pairwise comparison principle or whether they
use an intrinsic evaluation, the action being compared to a separation profile (intrinsic
vs. pairwise); and (iii) whether they are concerned with the evaluation of the action or
its mere acceptability (evaluation vs. acceptability). In theory, all combinations seem
possible, even though some are much more natural than others.

In this paper, we shall focus our attention on the following schemes:

� argument schemes for Unicriteria Pairwise Evaluation (UC-PW-EV), which es-
tablishes that an objet is at least prefered to another object from the single view-
point of the considered criteria (note that there may be an intrinsic version of this
scheme, for instance for classification, but also to cater for all the argumentation-
based aggregation techniques);

� argument schemes for Unicriteria Intrinsic Acceptability (UC-IN-AC), which es-
tablishes that the action can be considered in the evaluation process (here also, it
may be possible to have a similar scheme for relative “pairwise" acceptability);

� argument scheme for Multicriteria Pairwise Evaluation (MC-PW-EV), which ba-
sically concludes that an object is at least as good as another object on the basis
of several criteria taken together. It is constituted of two sub-argument schemes:

� argument schemes for Positive Reasons Aggregation Process (PR-AP), which
concludes that there are enough positive reasons to support the claim of MC-
PW-EV, and that can be of many types depending on the aggregation technique
used (ex. simple majority, weighted sum, and so on);

� argument schemes for Negative Reasons Aggregation Process (NR-AP) which
concludes that the negative reasons should block the conclusion of MC-PW-EV
(again, this really constitute a family of argument scheme);



� argument schemes for Global Recommendation (GR) which provides the output
of the process (of different type depending on the decision problem considered).
We shall not discuss this level in this paper.

In the rest of this paper we limit the discussion to the case involving only two actions.
This is a basic building block that will be required if we are to construct more general
decision-aiding.

Now we turn our attention to argument schemes. In fact, as must be clear from
the discussion above, there is an underlying hierarchical structure that ties the different
argument schemes. In short, we can distinguish three levels of argument schemes that
will be embedded. At the highest level the multicriteria pairwise evaluation, which is
based on the aggregation of positive and negative reasons, which in turn is based on
unicriteria evaluation of actions versus other actions (or special profiles).

2.1. Argument Schemes for Unicriteria Action Evaluation

The first way to perform an action evaluation is to compare two actions from the point
of view of the chosen criterion: this is modeled by the scheme for Unicriteria Pairwise
Evaluation (UC-PW-EV), see Tab. 1. This argument scheme is the basic piece of rea-
soning that is required in our decision-aiding context. It concludes that an action a is at
least as good as an action b from the point of view of a given criterion hi , based on some
preference relation �i [17].

Premises a criteria hi

an action a

whose performance is gi .a/

an action b

whose performance is gi .b/

a preference relation �i

Conclusion a is at least as good as b a �i b
Table 1. Scheme for Unicriteria Pairwise evaluation (UC-PW-EV)

When an action needs to be intrinsically evaluated, there is a need to define the
categories and separation profiles. Such a separation profile defines on each criterion a
sort of neutral point: this is by not necessarily an existing action, but it allows to define
to which category to affect the action. A particular case is when we only consider “pro”
and “con” categories. The scheme for Unicriteria Intrinsic Action Evaluation, as given
in Tab. 2, details such a scheme.

Premises an action a

whose performance is gi .a/

along a criteria hi

a separation profile p

whose performance is gi .p/

a preference relation �i

Conclusion a is acceptable according to hi a �i p
Table 2. Scheme for Unicriteria Intrinsic Action Evaluation (UC-IN-EV)



2.2. Argument Schemes for Acceptability

The case of action acceptability is very similar to that of action evaluation: it can also
be performed intrinsically or in pairwise manner. We start with the Argument Scheme
for Intrinsic Acceptability (UC-IN-AC). The scheme is very similar to that of Unicriteria
Intrinsic Evaluation. In fact, in this case the separation profile can play the role of a veto
threshold: when the action does not reach that point, there are good reasons to exception-
ally block the claim (disregarding the performance of the action on other criterion). For
the sake of readability, we shall not repeat this very similar scheme here. A different kind
of acceptability relies instead on the relative comparison of actions: it may be the case
that an action is considered to be inacceptable because the difference in performance is
so huge with another action. In this case, we talk about an Argument Scheme for Pair-
wise Acceptability (UC-PW-AC). We believe this is self-explanatory given the examples
provided so far, and shall not give any further detail here.

2.3. Arguments Scheme for Aggregating Positive Reasons

At this level the piece of reasoning involved must make clear how we can conclude that
enough positive reasons are provided. Perhaps the most obvious such scheme, at least
one that is ubiquous in multicriteria making is the principle of majority. It only says that
a is at least as good as b when there is a majority of criterion supporting this claim. Table
3 gives the detail of the corresponding argument scheme.

Premises a set of criteria considered to be of equal importance fh1; h2; : : : ; hng

a set of pairwise evaluation of actions a and b

the majority support the claim
Conclusion there are good reasons to support a is at least as good as b a � b

Table 3. Scheme for Argument from the Majority Principle (PR-AG (maj))

Note that this scheme makes explicit that criteria are considered to be of equal im-
portance. This is not necessarily the case, and more generally many other aggregation
techniques may be used to instantiate RP . These other schemes will potentially require
additional information, which justifies that we have many different scheme and not a
single generic one. For instance, a possible scheme would conclude that a is at least as
good as b when it is at least as good on (some of) the most important criteria (argument
from sufficient coalition of criteria).

Here we only present a different one to illustrate the variety of argument schemes
that may be used. This simple typical example is the lexicographic method that we detail
below. The method works as follow: look at the first criterion, if a is strictly better than b
on this, then a is declared globally preferred to b without even considering the following
criteria. But if a and b are indifferent on the first criterion, you look at the second one,
and so on.

Note that the basic input information that needs to be provided to these schemes is
that of a pairwise comparison on a single criterion dimension (the output of UC-PW-EV).
Indeed, this will be in most case the basic building block upon which the recommen-
dation can be build. There is however a different type of scheme that would aggregate
instead intrinsic valuations of both actions: that would be the case of argument-based



Premises a set of criteria fh1; h2; : : : ; hng

a linear order on the set of criteria h1 > h2 > : : : > hn

a set of pairwise evaluation of actions a and b

a is strictly better than b on hi a �i b

a is indifferent to b on h j for any j < i a ’ j b when j < i

Conclusion there are good reasons to support a is at least as good as b a � b
Table 4. Scheme for Argument from the lexicographic method (PR-AG (lex))

aggregation procedures that take as input sets of arguments “pro" and “con". Clearly, the
basic argument scheme required will be different here, for it needs to provide an intrinsic
evaluation of the action.

2.4. Argument Scheme for Multi-Criteria Pairwise Evaluation

The argument scheme that lies at the top of our hierarchy is inspired by outranking multi-
criteria techniques [10], and indeed its argumentative flavour is obvious. The claim holds
when enough supportive reasons can be provided, and when no exceptionally strong neg-
ative reason is known. This already suggests that there will be (at least) two ways to
attack this argument: either on the basis on a lack of positive support, or on the basis
of the presence of strong negative reasons (for instance, a “veto”). Typically, supportive
reasons are provided by action evaluation, and negative reasons are provided by action
(lack of) acceptability. We shall discuss this further when we turn our attention to critical
questions.

Premises an action a

an action b

a set of criteria fh1; h2; : : : ; hng

there are enough supportive reasons according to RP

there are no sufficiently strong reasons to oppose it RN

Conclusion a is at least as good as b a � b
Table 5. Scheme for pairwise evaluation multicriteria (MC-PW-EV)

Here, RP stands for the aggregation process that should be used to aggregate the
(positive) reasons supporting the claim, whereas RN stand for the aggregation process
concerned with the aggregation of exceptionally negative reasons (vetos). The conclusion
of the scheme expresses that a is at least as good as b according to the preference relation
�MC PW EV induced by the scheme.

3. Critical Questions

Along with each different argument schemes comes a set of critical questions [22,21].
These questions as we said before, allow us to identify potential weaknesses in the
scheme. Below we present the set of critical questions attached to the schemes MC-PW-
EV, PR-AG (maj), and UC-PW-EV. We note that different types of critical questions
can be identified [14], depending on whether they refer to standard assumptions of the
scheme or to exceptional circumstances. This has in particular a significant difference
on how the burden of proof is allocated. We now list some of the questions that can be
attached to the different premises.



Argument Scheme for Multi-Criteria Pairwise Evaluation. In this context the different
type of questions is clear. The burden of proof lies on the proponent when it must pro-
vide supportive evidence (positive reasons) for the main claim. On the other hand, the
opponent should be the one providing negative reasons to block the conclusion.

1. actions (assumption): is the action possible?
2. list of criteria (assumption): (i) Is this criteria relevant?, (ii) Should we introduce

a new criteria?, (iii) Are these two criteria are in fact the same?
3. positive reasons (assumption): (i) Are there enough positive reasons to support

the claim? (ii) Is the aggregation technique relevant ?
4. negative reasons (exception): Are there not enough reasons to block the claim?

Is the aggregation technique relevant?

Note also that while the use of a specific aggregation technique may be challenged at
this level (“why are we using a majority principle here?”), the actual exchange of ar-
gument regarding this aspect will involve the sub-argument scheme concerned with this
aggregation. We now turn our attention to the critical questions that may then be used.

Together with the Scheme for Argument from the Majority Principle. come two obvi-
ous questions are:

1. list of criteria (exception): Are the criteria of equal importance?
2. majority aggregation (exception): Is the simple majority threshold relevant for

the current decision problem?

As for the Argument Scheme for Unicriteria Pairwise Action Evaluation, we can pro-
pose this tentative set of questions :

1. actions (assumption): Is the action possible?
2. criterion (assumption): Is the criteria relevant?
3. action’s performance (assumption): Is the performance correct?
4. preference relation (assumption): Is the preference relation appropriate?

It should be noted that a negative answer to some of these questions leads to a con-
flict whose resolution requires sometimes the transition to a different stage of the nego-
tiation process. For instance, when you challenge whether the action is possible to start
with, you are dealing with the problem formulation (cf. section 1), where the set of alter-
natives is defined. It is out of the scope of this paper to discuss this problem. We will just
mention that through the different critical questions, we have the opportunity to review
and correct not only the evaluation model, but also other stages of the process.

4. The Dialectical Process

In this section we give a glimpse of the dialectical process that will exploit the argument
schemes and critical questions that we have put forward so far. It is based on the popular
model of dialogue games, and more precisely it is based on recent extensions that incor-
porate argument schemes within such models [18]. The full specification of the dialogue
game is the subject of ongoing work. The process initiates with the client specifying the



basic elements of the evaluation model2 (see Sect. 1): it specifies a set of actions (in the
context of this paper we limit ourselves to two actions though), a set of criteria, and the
aggregation operators that shall be used. Contrary to classical decision tools, these sets
will only be considered to be the current evaluation model, and it is taken for granted
that it can be revised throughout the process. Now, as we see it, an argumentation-based
decision-aiding process should:

1. justify its recommendation. Crucially, by presenting its justifications in the form
of arguments, the system will make it possible for the user to pinpoint those steps
that pose problems. The system builds up the current recommendation by em-
bedding argument schemes of the three levels. The argument schemes are build
on the basis of the information provided by the user, and in some cases by using
default instantiation (when the scheme allows for it). If challenged by the user,
the system provides the different steps of reasoning by revealing parsimoniously
the lower level schemes that compose the recommendation. Each time a scheme
is presented, the entire set of critical is at the disposal of the user to challenge
the current conclusion. There are very different reasons to revise in such a pro-
cess: in some case the user may simply want to correct/refine one of its previous
statement, introduce new information. In other cases it will contradict one of the
system’s assumption;

2. inform the user of the consequences of its modifications. In many cases the user
would not foresee the various consequences of a seemingly local modification: in
these cases, the system helps the user by making explicit the hidden and critical
consequences of its move;

3. potentially propose automatically generated arguments, in order to stimulate
users (a technique that has proven very useful, for instance in the context of rec-
ommender systems [20]). The system holds a collection of argument schemes
that can be readily used to generate counter-arguments that would stimulate the
user in its decision-making process. In particular, the system may seek to gener-
ate counter-arguments based on the use of different argument schemes that would
contradict the current recommendation, by relaxing some assumptions or infor-
mations provided by the user. The idea being here to emphasize for the user what
are the assumptions in the evaluation model currently used.

The different cases mentioned above are illustrated by means of an example.
User: [specify its evaluation model: two actions a and b, five criteria c1; c2; c3; c4; c5,
among which c1 is considered to be of primary importance, followed by c2, and so on.
Acceptability is initially intrinsic: no action should have a score on a criterion lower
than 1. The performance table is as follows:]

c1 c2 c3 c4 c5
a 7.5 6 2 3 5
b 7 4 8 4 7

1. System: Given your informations, a is at least as good as b. [Recommendation]
2. User: Why? [Challenge]

2Of course a more ambitious dialectical system would have to consider the previous steps as well. This is
beyond the scope of this paper.



3. System: The most important criteria according to you defend this claim, so by com-
paring actions on the basis of criteria of decreasing importance, a should be prefered to
b [Justified Recommendation]
(although the majority of arguments defend the opposite claim [Gen. counter-arguments])
4. User: I still think that c1 is the most important criteria so the majority makes little
sense. [Reject counter-argument]
however, now I see that the difference between a and b is not significant enough...
5. System: My recommendation remains the same because a is prefered to b on the sec-
ond most important criterion
6. User: I agree but still a cannot be acceptable.
7. System: Why? [Burden of proof shift]
8. User: b is way better than a on c3, I could not justify this choice... [Argument Scheme
for Relative acceptability]
9. System: Ok. [Revise the recommendation]
But beware that applying this scheme for acceptability may have the following conse-
quences... [Inform of consequences of this revision]

Let us briefly analyze this dialogue. Turn 1 provides the recommendation, which is
challenged by the user on turn 2. Not being more explicit, the challenge can be assumed
to ask the system to provide more explicit information regarding positive reasons sup-
porting the claim. The system, on turn 3, explains that the claim is based on the use
of the PR-AG(lex) scheme. Note that it also generates a possible counter-argument by
relaxing some of the information provided by the user (here the fact that criteria have
different importance). Observe that this is an indirect way for the system to use a criti-
cal question...) The user rejects this counter-argument on turn 4 (by re-affirming the fact
that criteria have unequal importance), but attacks the basic UC-PW-EV argument upon
which the recommendation is based. The critical question used here is that of the rele-
vance of the preference relation. The system accepts the move (and modifies the user’s
information by specifying that actions should exhibit at least half a point of difference,
otherwise they should be considered as indifferent). But the system restates that the rec-
ommendation remains unchanged: this is due to the fact on the second most important
criterion, a is again better than b. (The attack is unrelevant in Prakken’s sense). The user
accepts this but now attacks on the ground of negative reasons, and explains that a can
not be accepted on the basis of pairwise acceptability (UC-PW-AC). Finally, the system
revises its recommendation but may at the same time make explicit the consequences of
the proposed change.

5. Related work

One of the most convincing proposal recently put forward to account for argument-based
decision-making is the one by Atkinson et al. [3,2]. They propose an extension of the
“sufficient condition” argument scheme for practical reasoning [21], by distinguishing
the goal into three elements: state, goal and value. This scheme serves as a basis for
the construction of a protocol for a dialogue game, called Action Persuasion Protocol
(PARMA) [4]. The authors show how their proposal can be made computational within
the framework of agents based on the BDI model, and illustrate this proposal with an



example debate within a multi-agent system. Prakken et al. [7] offer a logical formali-
sation of Atkinson’s account within a logic for defeasible argumentation. They address
the problem of practical syllogism by trying to answer questions such as: how can an
action be justified? In particular, the aim is to take into account the abductive nature of
the practical reasoning and the side effects of an action. A key element in this formalisa-
tion is the use of accrual mechanism for argument to deal with side effects (positive and
negative effects).

The first approach attempting to introduce argumentation in the decision aiding pro-
cess as a whole is the one of Moraitis et al. in [15]. The idea is to describe the outcomes
of the decision aiding process through an operational model and to use argumentation
in order to take into account the defeasible character of the outcomes. The authors tryu
to provide a way allowing the revision and the update of the cognitive artifacts of the
Decision Aiding Process.

In addition to these works, many other proposals have been put forward in the lit-
erature to use argumentation in a decision context, see [16] for a recent survey. From
the point of decision aiding though, a couple of elements remain largely unexplored.
Under that perspective, current argumentation models are not fully satisfying because
for instance: (i) most of the approaches assume a decision problem where the aim is to
select the “best” action for a given purpose, when in fact a variety of decision problems
can be addressed (choice, ranking, sorting,...); and (ii) most models currently proposed
in the literature rely on an underlying intrinsic evaluation (actions are evaluated against
some absolute scale), whereas most decision aggregation procedure make use of pairwise
evaluation techniques (actions are compared against each others).

6. Conclusion and Future Work

The purpose of this paper was to provide a first approach to represent the steps of a multi-
criteria decision aiding process by means of argument schemes and critical questions. We
focused here on the evaluation model, and considered the restricting but basic case of the
comparison of two actions. To represent the decision evaluation process, we identified a
hierarchical structure of argument schemes. Each level refers to one step in the classical
multicriteria evaluation. The highest level represents the pairwise evaluation, which is
based on the aggregation level, which is in turn based on unicriteria evaluation (pairwise
or intrinsic). To these schemes we associated a set of critical questions. One reviewer of
this paper raised the following issue: does it make sense in the first place to consider ar-
gument schemes that cover the aggregation level? One of the main claim of this paper is
that it does, precisely because the way basic argument schemes are collected and aggre-
gated may also be disputed, and be based on assumptions that can be challenged and/or
revised. The aim is (as usual with argument schemes and critical questions, as proposed
here) to allow us to check the acceptability of each scheme by probing into its potentially
weak points, and this from different point of views. We also give the very basic ingredi-
ents of the dialectical system currently under development. Future work should extend
the model to take into account, in one hand a large set of alternatives, on other hand to
handle different decision problems (ranking, sorting,...), in order to build a dialectical
system-based decision aiding system for the whole process.
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