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1 General Summary

1.1 State of the Art

The Born-Oppenheimer (BO) approximation is a cornerstone of the theoretical treat-
ment of molecular processes. It separates nuclear and electronic motion, splitting up an
immensely challenging many-body problem into two highly involved but well-understood
ones. The electronic problem, solved for fixed nuclear geometries, yields eigenvalues of
the electronic Hamiltonian as a function of the nuclear coordinates. Each eigenvalue (as
a function of the nuclear coordinates) forms a potential energy surface (PES) for a given
electronic eigenstate. The set of these electronic eigenstates forms the so-called adiabatic
basis throughout nuclear configuration space (NCS). The nuclear problem is then rep-
resented in this adiabatic basis in a second step usually. The BO approximation itself is
applied in this second step, by discarding derivatives of the adiabatic basis with respect to
nuclear coordinates arising from the nuclear kinetic energy operator. As a consequence,
this approximation neglects coupling terms between electronic states. It generally holds
for cases where the energies of electronic states are sufficiently separated for the dy-
namically relevant domain of the NCS, making it perfectly viable for a large range of
applications. Conversely, the BO approximation fails when these nonadiabatic coupling
terms become singular or very large for conical intersections (CI) or avoided crossings
[1]. Jahn-Teller (JT) systems are a prototypical example where (symmetry-induced) CIs
play a crucial role, as the presence of conical intersections typically induces the so-called
geometric phase effect (GPE) [1, 2]. While the underlying fundamental theory of the
GPE is well understood, its influence on molecular spectroscopy proves to be non-trivial
even for E⊗e C3v JT systems [2–10]. Publication [E1], discussed in greater detail below,
provides a systematic study of how (and under what conditions) the GPE influences the
vibronic level structure of a general E ⊗ e JT Cnv system. This in turn provides a way
to experimentally observe the GPE by spectroscopic means for such general systems,
connecting theory and experiment.

Comparing theoretical findings with experimental data necessitates theoretical com-
putations of sufficiently high accuracy. Hence, the construction of highly accurate PES
models is of fundamental interest. For JT systems, where the BO approximation breaks
down at the usually dynamically relevant symmetry point, it proves more convenient to
use a different representation. Such representations, called diabatic representations, are
constructed such that derivative couplings are sufficiently small, and there is no GPE
causing problems. In return, the electronic Hamiltonian can no longer be described by a
diagonal matrix of PESs. As diabatic electronic states are no longer eigenfunctions of the
electronic Hamiltonian throughout the NCS, the diabatic representation becomes a fully
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1 General Summary

occupied matrix. However, diabatic matrix elements representing the electronic Hamil-
tonian become smooth, well-behaved functions, simplifying the construction of PESs. It
may be important to note that while a true diabatic basis may not exist for realistic mod-
els beyond diatomics [11, 12], an approximate quasi-diabatic basis can be chosen in prac-
tice. Such basis sets will hence be referred to as “diabatic” for the sake of brevity. These
representations allow for constructing a representation of a so-called diabatic (potential)
matrix representing the electronic Hamiltonian with smooth, well-defined analytic func-
tions. However, diabatic representations cannot be computed directly and thus methods
for the diabatization of adiabatic states are required.
Common diabatization methods can be split roughly into two categories. The first

category utilizes electronic wave function information. These approaches are usually
characterized by different criteria enforced in the wave function [13–30]. The primary
drawback of these schemes is that they do not yield analytic PES models on their own,
meaning they need to be combined with an appropriate model in a second step to ensure
efficient evaluation usually required by nuclear quantum dynamics calculations. In con-
trast to the above, so-called diabatization by ansatz [31–39] schemes exclusively utilize
adiabatic energies obtained from ab initio calculations. The central idea of diabatization
by ansatz exploits the simple structure of diabatic coupling elements with the necessity
of the diagonalized form of the model reproducing adiabatic energies for each point in
NCS. Linear vibronic coupling (LVC) [40] and similar models [25–28], apart from being
immensely popular, are prototypical for how such a diabatization method is commonly
implemented. Related models [34–39] going beyond LVC usually expand the necessary
coupling terms as polynomials in suitable coordinates, up to some (usually low) order,
with LVC approaches expanding coupling terms in first or linear order only. LVC models
have been extremely successful in describing processes dominated by short-term dynam-
ics with a compact and straightforward model. However, this simplicity comes at the
cost of introducing arbitrariness, as the diabatic matrix elements are not specified be-
yond reproducing ab initio data once diagonalized. Additionally, increasing accuracy for
systems where short-term dynamics are insufficient proves far from straightforward, to
the point that the construction of highly accurate diabatic PESs in closed form continues
to be a major challenge beyond triatomic systems [41–44]. Various attempts have been
made to overcome this problem. Such approaches include the modified Shepard inter-
polation [45–47], the inclusion of invariant polynomials and CNPI symmetry [48], and
manually tailoring the functional form of diabatic matrix elements to satisfy the require-
ments of the given system [41–43]. Finally, a new diabatization approach was developed
recently in this research group called hybrid diabatization [49]. This diabatization tech-
nique combines the advantages of diabatization by ansatz with techniques based on
wave function information, thus reducing the arbitrariness of the model and retaining
more ab initio data per nuclear geometry. The hybrid diabatization method is the start-
ing point of the work presented here. Nonetheless, accurate high-dimensional diabatic
models remain scarce in the literature. One seemingly universally shared limitation of
polynomial-based models is that increasing polynomial orders introduces numerical in-
stabilities to the fitting process and increase the chance of unphysical artifacts. These
artifacts can range from minor oscillations to pathological regions where the PES is no

2



1.1 State of the Art

longer bound. The latter case, if not treated, can render dynamics calculations unusable,
as the wave packet tunnels into a normally dynamically less relevant domain. For this
reason, alternative functional forms with more desirable properties are of fundamental
interest.
One such functional form is provided by artificial neural networks (ANNs), which have

found a recent surge in popularity. While initially used for the construction of adiabatic
PESs [50–68], first attempts have been made towards diabatic ANN models [69–78]. To
understand their advantages over polynomial structures, one must first take a closer
look at their mathematical structure. The umbrella term “artificial neural network”
describes a very broad class of computational systems, yet the primary development
focus usually lies on the much more narrowly defined subclass of feed-forward neural
networks or multilayer perceptrons, which can be understood as a computational pro-
cess involving the successive computation of vectors (layers), beginning with a given
input layer of coordinates and returning a final output layer. If thought of as a func-
tion, input and output layer serve as function arguments and values, respectively. Each
layer is multiplied by a rectangular “weight matrix” and incremented by a “bias vector”.
Each element of the resulting vector is then evaluated by a layer-dependent, nonlin-
ear “activation function” of a single variable. The result defines the elements of the
next layer. A given ANN may have an arbitrary amount of intermediate (hidden) lay-
ers which only serve a computational purpose and introduce further flexibility to the
system. In such a setup, the weights and biases are the only fitting parameters, with
the (usually sigmoid) activation function being fixed. ANNs with a single hidden layer
were shown mathematically to be capable of reproducing any continuous, real function
of n dimensions up to arbitrary accuracy [79]. Hence, increasing an ANN’s number of
hidden layer neurons is (in terms of model flexibility) equivalent to increasing the order
in a polynomial expansion. However, this means that ANNs extend rather naturally,
as each “term” of a neural network is composed of bound sigmoid functions. This is in
stark contrast to polynomial expansions, where increasing the flexibility involves includ-
ing rapidly growing terms of increasing steepness. This structural difference translates
into an increased stability during fitting, being less prone to causing unphysical artifacts
in sparsely sampled regions of NCS. Most importantly, well-posed ANN models do not
seem to produce pathological regions in sparsely sampled regions of the NCS as polyno-
mials do. However, this advantage comes at the cost of losing the hierarchical structure
of series expansions, making the neural network output hard to analyze and interpret.
In the work presented here, a new scheme is developed, which unifies the flexibility of
neural networks with the commonly known and well-understood structure of LVC. This
scheme shows great potential to produce highly accurate diabatic models of exceptional
simplicity, both computational and conceptual, reliability and extensibility, making it a
promising tool to enable accurate nonadiabatic quantum dynamics studies in the future.
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1 General Summary

1.2 Detailed Summaries of Presented Articles

The Jahn-Teller effect and its influence on vibronic energy levels of doubly degener-
ate (E) electronic states is a long-standing subject of fundamental theoretical interest.
A study of how the geometric phase effect influences general Cnv systems is presented
in publication [E1] utilizing simple analytical and numerical models for the cases of n
from 3–8, including the different combinations of Eα ⊗ eβ Jahn-Teller systems for point
groups with more than one irreducible E-representation. It is shown that findings in C3v

systems do not trivially generalize to arbitrary Eα ⊗ eβ systems, as induced geometric
phases strongly depend on the particular choice of n, α and β. It is first shown that
restricting a model to a single polynomial coupling term is incapable of describing a sys-
tem’s multi-well structure, being itself of higher (C∞v) symmetry. A general derivation
scheme is provided to construct necessary (single-mode) coupling terms up to arbitrary
order. A minimal 2× 2 model system is constructed for each case, composed of the two
lowest coupling orders. The inclusion of more than one coupling term induces additional
conical intersections away from the Cnv reference point, separating the NCS into an
inner and outer region delimited by a regular polygon of conical intersections. Apart
from analytical arguments, numerical dynamics calculations are performed to further
confirm theoretical findings. The presence or absence of a GPE in conclusion is found
to depend both on the leading polynomial coupling order of the model as well as the
predominant localization of the wave function either within the inner or outer region.
This work also presents a simple Hückel-type model capable of predicting qualitatively
the structure of vibronic energy levels for systems with sufficiently deep multiple wells.
In such cases the vibronic level structure is composed of multiplets corresponding to
symmetrized local vibrational excitations in each single (harmonic) well. Since barriers
between wells are finite, these tunneling multiplets split with a characteristic level or-
dering. The Hückel model is capable of predicting the expected level ordering and the
irreducible representations of the vibronic eigenstates based on the distribution of exci-
tation quanta in the local well picture. Consequently, this work provides a way to infer
spectroscopically the presence (or absence) of the GPE based on the observed vibronic
level structure. The prediction of the symmetry of the excited vibrational modes helps
simplifying spectroscopic assignments.

(This author contributed to the development of the theoretical components of this
work. He also contributed to the writing of the corresponding body of text of the
manuscript.)

The construction of highly accurate, diabatic models for many electronic states for use
in nuclear dynamics is an active and essential field of interest. The present work aims
to propose a new method of constructing such models, utilizing state of the art artificial
neural network (ANN) methodology. The newly developed ANN-based diabatization
scheme is first established in publication [E2] in the literature. It utilizes the structure
of a linear vibronic coupling ansatz which is then extended by modifying the polynomial
expansion coefficients using a feed-forward neural network. The model is hence generated

4



1.2 Detailed Summaries of Presented Articles

from appropriately chosen symmetry-adapted coordinates in two steps. In a first step,
a minimal, bound vibronic coupling model is fitted against available ab initio data. In
this paper, the model is composed of all diagonal terms up to second order as well as
all coupling terms up to linear order. The ANN model is then generated by introducing
a simple multiplicative term for every (constant) coupling coefficient, as well as one
diagonal term for every electronic state. Each multiplicative term is composed of a
respective entry of the neural network’s output layer, meaning the number of so-called
output neurons of the ANN equals the number of coupling matrices (plus the number
of different diagonal elements). Consequently, increasing the number of polynomial
coupling matrices no longer serves as the primary source for increasing model flexibility.
Instead, the expansion coefficients are modulated as a function of nuclear coordinates. In
a purely polynomial context, this corresponds to “pulling out” common scalar prefactors
in individual matrix terms and contracting all prefactors with a shared (simplified)
basis matrix to a function. A simple example of such a simplification can be found in
Eq. 16 of [E1], where part of the infinite expansion is absorbed into “coefficient” fnα

±k .
This approach is developed to combine the straightforwardness of a vibronic coupling
approach with the accuracy and stability of an ANN. The modified model is fitted
against adiabatic energies by means of diagonalization using an appropriately adapted
Marquardt-Levenberg (ML) method. Since the resulting fit is highly non-linear, every
tested ANN architecture is fitted using a set of 100 randomly generated initial guesses.
A small part of the data set is withheld from the fit itself to serve as a validation set
used in a relaxed form of the early stopping technique [80]. The root mean square
error (RMSE) of the validation set serves in this context as a test of convergence, and
is a key indicator for overfitting. The new scheme has been applied to a 5-state model
of NO3 restricted to planar geometries as a difficult benchmark system. A large range
of hidden layer sizes has been studied, together with potential benefits of “deep” neural
networks with more than one hidden layer. Such deep networks (within the limited
confines of the study) are not found to improve fitting performance when compared
to a representative single-layer network with an approximately equivalent number of
fitting parameters. Fitting error, validation set error, and state-resolved RMSEs are
utilized as primary metrics for network performance. The discrepancy between fitting
and validation RMSE serves as a measure for risk of overfitting. Additionally, the tenth
percentile of fitted neural networks is taken into consideration as a simple measure for
the stability of the fitting result. The best fitted 75 hidden layer neuron ANN is deemed
optimal in terms of fitting error versus risk of overfitting by all accounts. Overall, the
approach is found to yield models of excellent accuracy in terms of fitting RMS.
(The candidate both developed and implemented the modified ML scheme and co-de-

veloped the ansatz itself. He also performed the necessary ANN fits using a specialized
program he co-developed, and contributed significant portions to the manuscript’s body
of text.)
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1 General Summary

A rigorous and systematic test of the performance of the newly developed ANN di-
abatic PES model in accurate quantum dynamics calculations is presented in [E3]. It
serves as a continued study of the scheme proposed in [E2] with a focus on the cen-
tral point of the potential model: nuclear dynamics application. For this purpose,
time-independent DVR calculations are carried out for all previously considered network
sizes on the 2A′

2
ground state as well as the 2E′′ excited state of the NO3 radical. Vibra-

tional/vibronic states also are computed for tenth percentile networks and multi-layer
networks investigated previously, to ensure consistency with previous findings. First,
computed levels are compared among different networks, with the tenth percentile net-
works of the 75 neuron network serving as a simple measure for how computed levels
spread among (in terms of fitting error) equivalent models. This measure then is uti-
lized to put differences between various network sizes and architectures into perspective.
While reducing the number of neurons (compared to the reference 75 network) is found
to have a significant impact on dynamics well beyond differences among competing net-
works, increasing the network size is observed to have a lesser overall impact, further
suggesting that the reference network provides sufficient flexibility. The model also is
compared to a state-of-the-art polynomial model from Ref. [81] as well as experimental
data [82, 83]. To ensure a rigorous comparison, the 6D polynomial model is restricted to
5D, using the multi-configuration time-dependent Hartee (MCTDH) [84, 85] approach,
with the potential being evaluated using the correlated discrete variable representa-
tion (CDVR) [86] method. Analogous computations also are carried out for the ANN
model, to ensure dynamics results are not meaningfully affected by the particular choice
of dynamics calculation. The reference network is found to not only reproduce exper-
imental data optimally among the different network sizes tested, but also significantly
improve agreement with experimental data when compared to the reference polynomial
model.

(The candidate performed the necessary DVR calculations (including state assign-
ments) and implemented the model for the nuclear dynamics application. He also devel-
oped an appropriate estimate for the expected accuracy of computed energy levels purely
based on a priori information. Furthermore, he authored the manuscript together with
the supervisor and another co-author.)

The subject of the fourth publication [E4] is the refinement of the diabatization method
previously established in [E2,E3] by ensuring the ANN model is intrinsically symmetrized
without the need of additional symmetrization. To this end, CNPI invariants are used
as coordinates. This approach again is tested using a combination of methods utilized
in [E2,E3]. However, instead of comparing the modified model to the purely polynomial
model described in Ref. [81], the best model from [E3] is used as a reference. The modified
approach is found to improve previous efforts in every considered aspect, including fitting
error, compactness, and agreement with experiment. The best network setup again is
determined by analyzing the fitting performance w.r.t. hidden layer size [E2] and further
confirmed based on dynamics calculations in analogy to [E3]. The optimal network
size for the modified approach turns out to be 30 instead of 75 hidden layers, cutting
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1.2 Detailed Summaries of Presented Articles

both fitting error and number of fitted parameters roughly in half. As a result, the
remaining error is deemed low enough to approach the expected limit of accuracy for the
available ab initio data. Ground state dynamics results resemble closely those produced
by the previous 75 neuron model. Excited state (2E′′

2
) results are more significantly

affected, coinciding with the model having significantly improved in reproducing the
intricate triple well structure of the lower Ã sheet when compared to [E2]. This is likely
caused by the modified input coordinates already encoding the required general structure
(symmetry), thus greatly removing strain from the network. Similarly, agreement with
experimental data is not changed significantly for the ground state, while it is vastly
improved for the Ã state.

(The candidate developed and implemented the CNPI-modified ANN scheme, and
carried out necessary ANN fits. The candidate also performed the necessary DVR com-
putations, and wrote the manuscript together with the supervisor.)

Up to this point, the benchmark system NO3 was restricted to planar geometries
to ensure consistency among studies [E2–4]. This restriction is lifted in [E5], where the
previous 5D CNPI-ANN model is embedded into a complete 6D model. For this purpose,
a natural extension of the diabatization scheme was developed that allows additional
ANNs to be included hierarchically. This way, a model can be fitted consecutively
against growing sub-domains of the NCS in such a way that new contributions vanish
for previously “covered” parts of the NCS. In this sense, the second neural network serves
as a correction upon a coefficient that is already modified by another ANN. This gives
way to a more general correction-upon-correction approach which may be used to avoid
a duplication of effort. In the present case, this scheme is used to create a fully occupied
PES matrix, taking into account umbrella motion. The new, full-dimensional model
was used then to analyze the effects of temperature and vibronic coupling in the low-
energy regime of the photodetachment spectrum of NO –

3 . Dynamics calculations were
performed using MCTDH for wavepacket propagation. Spectra are obtained from partial
spectra corresponding to the vibronically coupled X̃ and B̃ state manifolds and various
vibrationally excited initial states to account for temperature effects. Furthermore, near
threshold effects are accounted for in the simulations of the cryo-SEVI spectra by use
of Wigner’s threshold law. Computed partial spectra, when combined, are found to be
in excellent agreement with experimental data [87, 88]. This unprecedented accuracy,
combined with a detailed simulation of temperature and near threshold effects allows to
settle long-standing disputes regarding particular assignments, and made it possible to
fully distinguish thermal and vibronic contributions to the spectrum.
(The candidate developed, generalized and implemented the necessary modifications

to the CNPI ANN model. He also carried out necessary ANN fits and contributed to
the writing of the manuscript.)
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ABSTRACT

E ⊗ e Jahn-Teller (JT) systems are considered the prototype of symmetry-induced conical intersections and of the corresponding geometric
phase effect (GPE). For decades, this has been analyzed for the most common case originating from C3v symmetry and these results usually
were generalized. In the present work, a thorough analysis of the JT effect, vibronic coupling Hamiltonians, GPE, and the effect on spectro-
scopic properties is carried out for general Cnv symmetric systems (and explicitly for n = 3–8). It turns out that the C3v case is much less
general than often assumed. The GPE due to the vibronic Hamiltonian depends on the leading coupling term of a diabatic representation of
the problem, which is a result of the explicit n, α, and β values of a Cnv Eα ⊗ eβ system. Furthermore, the general existence of n/m (m ∈ N
depending on n, α, and β) equivalent minima on the lower adiabatic sheet of the potential energy surface (PES) leads to tunneling multiplets
of n/m states (state components). These sets can be understood as local vibrations of the atoms around their equilibrium positions within
each of the local PES wells symmetrized over all equivalent wells. The local vibrations can be classified as tangential or radial vibrations, and
the quanta in the tangential mode together with the GPE determine the level ordering within each of the vibronic multiplets. Our theoretical
predictions derived analytically are tested and supported by numerical model simulations for all possible Eα ⊗ eβ cases for Cnv symmetric
systems with n = 3–8. The present interpretation allows for a full understanding of the complex JT spectra of real systems, at least for low
excitation energies. This also opens a spectroscopic way to show the existence or absence of GPEs.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115396., s

I. INTRODUCTION

The study of vibronic energy levels supported by doubly degen-
erate electronic states affected by the Jahn-Teller (JT) effect is a
long standing subject studied for more than 60 years.1,2 In partic-
ular, the degenerate E state of a C3v symmetric system has been the
subject of many theoretical investigations. Several authors tackled
the problem of the E ⊗ e case thoroughly.3–8 They conclude that
due to the presence of the conical intersection and the associated
geometric phase effect (GPE), the lowest vibronic state of such a
system is doubly degenerate. A broad and thorough discussion of
the GPE can be found in the excellent review by Mead9 and in the

monograph on conical intersections, edited by Domcke, Yarkony,
and Köppel.10 Despite the widespread assumption that such JT sys-
tems generally have a double degenerate vibronic ground state, it
has been shown for the E ⊗ e case of C3v in a couple of stud-
ies that this is only valid up to a certain strength of the quadratic
couplings.11,12 It was shown that with strong quadratic but weak lin-
ear couplings, the vibronic ground state is nondegenerate. In most
studies, both a linear coupling term and a quadratic vibronic cou-
pling term are considered, resulting in a lower adiabatic potential
surface with three identical local wells. For all strengths of the lin-
ear and quadratic vibronic coupling terms, the symmetry induced
conical intersection at high symmetry configurations is present

J. Chem. Phys. 151, 074302 (2019); doi: 10.1063/1.5115396 151, 074302-1
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and is located in a region usually relevant for the vibronic
ground state wave function. It has been shown by Zwanziger
and Grant that three additional conical intersections exist on a
circle around the symmetry point and at higher energy.6 For
particularly strong quadratic but weak linear couplings, these
additional conical intersections away from the high symmetry
point are driven lower in energy such that they become rele-
vant for the vibronic ground state. These additional conical inter-
sections together with the symmetry induced one are the reason
for the nondegenerate vibronic ground state. This is coherent
with the widespread “rule” that the symmetry of a vibronic
level depends on the number of encircled conical intersections
(odd or even).

In real systems, like the prototypical NO3 studied by us thor-
oughly,13–15 the coupling terms are not limited to the linear and
quadratic low orders. Additional conical intersections may occur
which complicates the picture further. Our previous investigation
of the 2E′′ state of NO3 for which the vibronic level ordering pattern
is not obvious, motivates the present study.

The aim of the present paper is to investigate the presence
of the GPE, its effect on the vibronic quantum dynamics, and
the vibronic level structure in Cnv symmetric Jahn-Teller systems.
This is an extension of previous studies only dealing with C3v .

3–8

The cases varying from n = 3 to n = 8 are considered explic-
itly in the present work. A general derivation of coupled poten-
tial energy surfaces (PESs) of Cnv symmetric systems is given.
It is similar to the procedure developed by us13,16,17 and oth-
ers18–21 for the n = 3 case. For each Cnv case, we analyze the
conical intersections and their properties (in terms of the GPE)
and show that these properties depend on the lowest order cou-
pling terms. To this end, an analytic proof by asymptotic analy-
sis will be given as well as a numerical visualization of the GPE
by plotting the vector fields of the adiabatic wave functions. The
consequences of the couplings in terms of spectroscopic signa-
ture are discussed. The origin of this analyzed effect is that the
E ⊗ e JT system for Cnv causes the lower adiabatic PES sheet
to have multiple equivalent wells leading to a multiplet structure
of the vibronic levels with as many states within each multiplet
as the number of wells. The ordering of the levels in these mul-
tiplets is indicative of the GPE as will be shown in the present
work and as has been recognized in earlier work.5,6,9 This system-
atic study of Cnv groups with general n also accounts for the exis-
tence of different E representations. All possible combinations of
electronic symmetry Eα with the symmetry of the coupling coor-
dinate eβ are investigated for the Eα ⊗ eβ JT effect. Our findings
and conclusions are supported both by mathematical analysis and
numerical quantum dynamics simulations. It turns out that the
conclusions drawn from the C3v case are less general than widely
assumed.

This paper is organized as follows: Sec. II summarizes the
relevant symmetry aspects as well as the derivation of the dia-
batic models. At this point, the diabatic Cnv symmetric mod-
els for arbitrary Eα ⊗ eβ are derived. Section III focuses specif-
ically on the geometric phase effect induced by the potential
energy surfaces and provides a mathematical proof of the GPE
properties of general diabatic Hamiltonians and a visualization
of the effect. Section IV addresses the effects on the vibronic
quantum dynamics, presenting data relevant for spectroscopic

investigations. An analytic analysis and explanation using a Hückel-
like next neighbor model is given for the vibronic level structure,
and the findings are verified by numerical test calculations. The
main aspects and conclusions of the present work are summarized
in Sec. V.

II. SYMMETRY AND DIABATIC MODELS

A. Symmetry considerations

The well-known Jahn-Teller effect is a distortion of the molec-
ular geometry due to vibronic coupling within a set of states
belonging to a multidimensional irreducible representation (irrep).
The best known example is the distortion of a degenerate E state
of a C3v symmetric system along a degenerate set of e coordi-
nates, lowering the equilibrium geometry to only Cs due to E ⊗ e
vibronic coupling. The existence of two-dimensional E represen-
tations, and thus the existence of degenerate electronic states and
vibrational modes, is a general feature of all non-Abelian point
groups with a rotational axis of order n ≥ 3. The most common
molecular point groups of this type are the Cnv groups which are
used here as a general example for our study. The case n = 3
has been used extensively in the past to obtain general insight
into the effects of the symmetry on the quantum dynamics. How-
ever, we will show that this case is much less general than often
assumed.

To this end, a closer look at all E representations of Cnv groups
is necessary. Quantum mechanical eigenstates and vibrational nor-
mal modes must transform like irreps of the molecular symmetry
group due to the Wigner theorem.22 Normal modes are just one
special case of symmetry-adapted nuclear coordinates suitable to
express potential energy surfaces (PESs). Sets of symmetry coordi-
nates belonging to the same two-dimensional irrep eβ, which we
labelQβx andQβy, can be rotated freely. This can be utilized to trans-
form the symmetry coordinates such that each of the components
becomes an eigenfunction of the Ĉn rotation operator, the most
critical operator of a Cnv symmetry group. While Qβx and Qβy are

mixed by Ĉn, the complex coordinates

Qβ± ≙ 1√
2
(Qβx ± iQβy) ≙ re±iβϕ (1)

are eigenfunctions with respect to Ĉn with eigenvalues of

exp(± 2iβπ
n
). The β in Eq. (1) refers to the kind of the E irrep, namely,

Eβ. The groups C3v and C4v only have one E irrep, and thus β = 1
is usually omitted, but in general, Cnv groups have βmax irreps Eβ of
dimension 2 with

βmax ≙ n + n mod 2

2
− 1. (2)

For example, C5v and C6v have two different irreps E1 and E2.
The same kind of transformation as for the coordinates Eq. (1)

can be applied to the electronic state components of a degenerate
electronic state transforming as Eα, namely,

∣ψα±⟩ ≙ 1√
2
(∣ψαx⟩ ± i∣ψαy⟩). (3)
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These are eigenfunctions with respect to Ĉn with eigenvalues of
exp (∓ 2iαπ

n
). As has been used in our previous work,16 both the com-

plex symmetry adapted coordinates and the complex electronic state
components are relevant for the derivation of the diabatic models
because of their advantageous properties with respect to the rotation
operator Ĉn.

B. General quantum dynamics aspects

The fundamental aspects of the quantum dynamics in any
Eα ⊗ eβ JT system generally can be studied in the two-dimensional
subspace of the two eβ nuclear coordinates. It is of advantage
to transform the Hamiltonian to polar coordinates which then
reads

Ĥ(r,ϕ) ≙ −1
2
( ∂

2

∂r2
+
1

r

∂

∂r
+

1

r2
∂
2

∂ϕ2
) +D(r,ϕ), (4)

whereD(r, ϕ) is the diabatic PES matrix. The coupling between elec-
tronic and nuclear motions is described by the off-diagonal elements
of the potential matrix D, which represents the electronic Hamil-
tonian in a diabatic electronic state basis. D may be split into an
average potential for both state components, V1, and a coupling
matrix Vc. The function V and the matrix Vc can be expanded in
series, and the general form of the coupling matrix reads

Vc(r,ϕ) ≙ ∞∑
k≙0

∞∑
l≙−∞

ckl r
k ( 0 exp(ilϕ)

exp(−ilϕ) 0
). (5)

Note that l can be negative. The coefficients ckl depend on the details
of the system, especially symmetry can lead to many vanishing
coefficients.

It is of advantage to define l-dependent vibronic angular
momentum operators

Ĵl ≙ −i ∂
∂ϕ
(1 0

0 1
) − l

2
(1 0

0 −1), (6)

which commute with the term of the Fourier expansion in Eq. (5)
having the same l value. This operator will not commute with
any other expansion term of Vc having a different l value. In the
particular case of a Vc limited to a single l expansion term, Ĵl
presents some interesting properties detailed below. In that case,
Ĵl and Vc can be diagonalized simultaneously. The two eigen-
functions of Ĵl corresponding to the degenerate eigenvalue λ/2 are
given by

1√
2

⎛⎝exp(i
λ+l
2 ϕ)

exp(i λ−l2 ϕ)
⎞⎠, 1√

2

⎛⎝ exp(i λ+l2 ϕ)− exp(i λ−l2 ϕ)
⎞⎠. (7)

It can be shown that λ must be an integer of the same parity as l
because of the general properties of angular momentum operators
and the requirement that the total wave function must be single-
valued. The eigenvectors of Ĵl are also eigenvectors of the Fourier
terms of Vc having the same l value with eigenvalues

Λ ≙ ± ∞∑
k≙0

ckl r
k. (8)

This equation also shows that any coupling matrix with a coupling
element restricted to a single l value will have cylindrical symmetry

(C∞v). Equation (7) can be analyzed with respect to rotation of ϕ
by 2π and for λ = 0, this refers to the purely electronic contribution
to the wave function and thus to the electronic angular momentum.
For odd l, the electronic contribution to the eigenfunctions changes
sign and this implies a nontrivial geometric phase of the nuclear part
of the wave function to compensate. This is not the case for even
l values. These two cases we will refer to as fermionic (odd l) and
bosonic (even l) behavior, respectively.

C. General derivation of diabatic models

We consider a diabatic E ⊗ emodel for any system of Cnv sym-
metry, where the highest n-fold rotational axis is denoted by Cn. The
general symmetry properties of such systems have been presented
in Sec. II A. With the previously defined coordinates and states, a
general Eα ⊗ eβ diabatic model can be constructed by expanding the
electronic Hamiltonian in the diabatic state basis as

Ĥ ≙ ∑
j,k ∈ {+,−}

∣ψαj⟩⟨ψαj∣Ĥ∣ψαk⟩⟨ψαk∣
≙ ∑

j,k ∈ {+,−}

∣ψαj⟩ Dα
jk(Qβ+,Qβ−) ⟨ψαk∣. (9)

The diabatic PES matrix elements can be expanded to arbitrary
order as

D
α
jk(Qβ+,Qβ−) ≙ ∑

p,q
p+q≙m

1

m!
c
α
jkpq Q

p

β+Q
q

β−, (10)

and the invariance condition under symmetry transformations
allows us to determine the nonvanishing cαjkpq terms.

In particular, the invariance when considering the Ĉn rotational
transformation

∣ψα±⟩(Qβ+)
p(Qβ−)

q ⟨ψα±∣

≙ ∣Ĉnψα±⟩(ĈnQβ+)
p(ĈnQβ−)

q ⟨̂Cnψα±∣

≙ e2iπ β(p−q)

n ∣ψα±⟩(Qβ+)
p(Qβ−)

q ⟨ψα±∣, (11a)

∣ψα+⟩(Qβ+)
p(Qβ−)

q ⟨ψα−∣

≙ ∣Ĉnψα+⟩(ĈnQβ+)
p(ĈnQβ−)

q ⟨̂Cnψα−∣

≙ e2iπ β(p−q)−2α

n ∣ψα+⟩(Qβ+)
p(Qβ−)

q ⟨ψα−∣ (11b)

implies conditions on both the diagonal and off-diagonal matrix ele-
ments. For the diagonal elements of the diabatic matrix, denoted as
Vn(Qβ+, Qβ−), the resulting condition

∥β(p − q)∥mod n ≙ 0 (12)

is independent of α. By contrast, the condition for nonvanishing off-
diagonal elements, denoted by Pnα(Qβ+, Qβ−),

∥β(p − q) − 2α∥mod n ≙ 0 (13)

J. Chem. Phys. 151, 074302 (2019); doi: 10.1063/1.5115396 151, 074302-3

Published under license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

depends on both α and β. The diabatic matrix potential for Eα ⊗ eβ
is thus

Dnα(Qβ+,Qβ−) ≙ Vn(Qβ+,Qβ−) 1
+( 0 Pnα(Qβ+,Qβ−)

P∗nα(Qβ+,Qβ−) 0
). (14)

One finds thatVn(Qβ+,Qβ−) is a totally symmetric offset which does
not contribute to the coupling.

A more detailed analysis can be performed on the individual
terms of the Pnα(Qβ+, Qβ−) functions. In the expansion of Pnα, one

can first factorize out totally symmetric factors (Qβ+Qβ−)j which do
not change the symmetry properties as evidenced from a closer look
at Eq. (13). This yields

Pnα(Qβ+,Qβ−) ≙ ∑
p,q

c
nα
pq Q

p

β+ Q
q

β−

≙ ∑
p,q

c
nα
pq (Qβ+ Qβ−)j Qp−j

β+ Q
q−j
β− . (15)

For each term of the double sum, j can always be chosen to equal
either p or q, respectively, p= q being excluded by the constants given
in Eq. (13). This allows us to rewrite Eq. (15) as

Pnα(Qβ+,Qβ−) ≙ ∞∑
q≙0

∞∑
p≙q+1

c
nα
pq (Qβ+ Qβ−)qQp−q

β+

+
∞∑
p≙0

∞∑
q≙p+1

c
nα
pq (Qβ+ Qβ−)p Qq−p

β− (16a)

TABLE I. Lowest monomials of Pnα(Qβ+, Qβ = ) for Eα ⊗ eβ coupling potential of a Cnv system. The “GPE” indicates the presence/absence of a nontrivial geometric phase
effect in the “inner region” (λ = 0) (see text).

n α β Monomials GPE Radius of “inner region”

3 1 1 Q= Q2
+ Q4

− Q5
+ Yes f 31−1(0) − f 31+2 (0) r ≙ 0

4 1 1 Q2
+ Q2

− Q6
+ Q6

− No

5 1 1 Q2
1+ Q3

1− Q7
1+ Q8

1− No f 51+2 (0) − f 51−3(0) r ≙ 0
1 2 Q2+ Q4

2− Q6
2+ Q9

2− Yes f 51+1 (0) + f 51+1
′(0) r2 − f 51−4(0) r3 ≙ 0

2 1 Q1 = Q4
1+ Q6

1− Q9
1+ Yes f 52−1(0) + f 52−1

′(0) r2 − f 52+4 (0) r3 ≙ 0
2 2 Q2

2+ Q3
2− Q7

2+ Q8
2− No f 52+2 (0) − f 52−3(0) r ≙ 0

6 1 1 Q2
1+ Q4

1− Q8
1+ Q10

1− No
1 2 Q2+ Q2

2− Q4
2+ Q5

2− Yes
2 1 Q2

1− Q4
1+ Q8

1− Q10
1+ No

2 2 Q2 = Q2
2+ Q4

2− Q5
2+ Yes

7 1 1 Q2
1+ Q5

1− Q9
1+ Q12

1− No f 71+2 (0) + f 71+2
′(0) r2 − f 71−5(0) r3 ≙ 0

1 2 Q2+ Q6
2− Q8

2+ Q13
2− Yes f 71+1 (0) + f 71+1

′(0) r2 + f 71+1
′′(0) r4 − f 71−6(0) r5 ≙ 0

1 3 Q3
3+ Q4

3− Q10
3+ Q11

3− Yes f 71+3 (0) − f 71−4(0) r ≙ 0
2 1 Q3

1− Q4
1+ Q10

1− Q11
1+ Yes f 72−2(0) − f 72+3 (0) r ≙ 0

2 2 Q2
2+ Q5

2− Q9
2+ Q12

2− No f 72−2(0) + f 72+2
′(0) r2 − f 72−5(0) r3 ≙ 0

2 3 Q3 = Q6
3+ Q8

3− Q13
3+ Yes f 72−1(0) + f 72−1

′(0) r2 + f 72−1
′′(0) r4 − f 72+6 (0) r5 ≙ 0

3 1 Q1 = Q6
1+ Q8

1− Q13
1+ Yes f 73−1(0) + f 73−1

′(0) r2 + f 73−1
′′(0) r4 − f 73+6 (0) r5 ≙ 0

3 2 Q3
2+ Q4

2− Q10
2+ Q11

2− Yes f 73+3 (0) − f 73−4(0) r ≙ 0
3 3 Q2

3+ Q5
3− Q9

3+ Q12
3− No f 73+2 (0) + f 73+2

′(0) r2 − f 73−5(0) r3 ≙ 0
8 1 1 Q2

1+ Q6
1− Q10

1+ Q14
1− No

1 2 Q2+ Q3
2− Q5

2+ Q7
2− Yes

1 3 Q2
3− Q6

3+ Q10
3− Q14

3+ No
2 1 Q4

1+ Q4
1− Q12

1+ Q12
1− No

2 2 Q2
2+ Q2

2− Q6
2+ Q6

2− No
2 3 Q4

3+ Q4
3− Q12

3+ Q12
3− No

3 1 Q2
1− Q6

1+ Q10
1− Q14

1+ No
3 2 Q2 = Q3

2+ Q5
2− Q7

2+ Yes
3 3 Q2

3+ Q6
3− Q10

3+ Q14
3− No

J. Chem. Phys. 151, 074302 (2019); doi: 10.1063/1.5115396 151, 074302-4

Published under license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

≙ ∞∑
k≙1

Q
k
β+

∞∑
q≙0

c
nα
(q+k)q (Qβ+ Qβ−)q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f nα
+k
(Qβ+Qβ−)

+
∞∑
k≙1

Q
k
β−

∞∑
p≙0

c
nα
p(p+k) (Qβ+ Qβ−)p

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f nα
−k
(Qβ+Qβ−)

(16b)

≙ ∞∑
k≙1

(f nα+k (Qβ+Qβ−) Qk
β+

+ f
nα
−k (Qβ+Qβ−) Qk

β−). (16c)

The Qk
β+ and Qk

β− terms of Eq. (16b) are referred to as monomials
in the following. The characteristic properties of the potential con-
sidered in the present work do only depend on these monomials
but not on the totally symmetric prefactors. For all Cnv groups with
n = 3, . . ., 8 and all combinations of Eα and eβ, the four lowest orders
of such monomials are given in Table I. If higher orders are desired,
they can be derived easily following the above general rules. Higher
orders beyond the typically used lowest two orders are mainly of
interest to improve the quality of PES models for explicit systems
(like NO3 studied by us) in regions farther away from the coordinate
origin. They do not change the basic properties of the PES but allow
us to treat large amplitude motions of the nuclei more accurately.
Equation (16c) gives the expansion in the complex representation
of the coordinates Qβ+ and Qβ− in which ϕβ = β⋅ϕ. It is conve-
nient to contract the totally symmetric parts in the expression (16c)
resulting in

Pnα(rβ,ϕβ) ≙ ∑
k

[Fnα
+k(rβ) eikϕβ + F

nα
−k(rβ) e−ikϕβ]. (17)

For practical applications, the functions Fnα
±k(rβ) can be modeled by

any totally symmetric and continuous function of rβ. The power
expansion of the functions Fnα

±k(rβ) will render Eqs. (15) and (17)
equivalent. This form is particularly convenient for the analytic
investigation of the properties of the diabatic Hamiltonians as will
be seen below.

For the numerical models of Cnv Eα × eβ systems studied here,
we limit the expansion of Pnα(Qβ+, Qβ−) to the first two monomials,
as given in Table I. The use of at least two monomials is crucial in
order to obtain PESs with the symmetry induced multiple equiva-
lent potential wells on the lower adiabat as is characteristic for such
Jahn-Teller systems. The order of the expansion used for the diago-
nal average potential Vn(Qβ+, Qβ−) is chosen such that the resulting
adiabatic potential surfaces are bound. Table I also provides the next
two higher monomials for the expansion. In addition, the table pro-
vides the information about the presence (or absence) of a geometric
phase effect (GPE) as deduced from Eq. (7) for λ = 0 and each n,
α, β. The last column in Table I presents formulas to determine
the radius at which the additional conical intersections appear and
may change the behavior of the system. This is discussed in detail
in Sec. III.

The limitation to the first two coupling monomials in the
following is entirely due to practical reasons for the analyti-
cal and numerical analysis. Adding higher order terms is only
needed to improve the PES accuracy for a real system and

will not (or rather is not supposed to) change the fundamen-
tal physics. It should also be kept in mind that adding more
and more higher order terms in a Taylor expansion might lead
to numerical problems and unphysical behavior. For this rea-
son, a new strategy has been developed by us recently, which is
based entirely on the lowest coupling orders and artificial neural
networks.23

III. GEOMETRIC PHASE

The knowledge of the general and generic diabatic models for
Cnv systems now allows us to analyze their properties. One of the
most important and widely discussed properties is the geometric
phase effect, an effect usually considered to be induced by the exis-
tence of a conical intersection. The nontrivial geometric phase in
vibronic coupling systems is just a special case of a Berry phase.24 It
is often assumed that the “E ⊗ e” JT coupling generally induces such
a conical intersection and thus the geometric phase effect. However,
it will be shown in the following that the existence of a geometric
phase effect depends on the type of the E ⊗ e system, namely, on n,
α, and β.

For most of the systems with the above given diabatic models,
the coordinate region of interest usually is what we refer to as the
“inner region” where the JT coupling induces multiple equivalent
potential wells on the lower adiabatic PES. Inmost cases, the number
of equivalent wells is equal to the order n of the principalCn axis. For
n ≥ 6, there are also cases with only n/m equivalent minima due to
the symmetry properties of the eβ coordinates (see Sec. IV). For cases
dominated by the inner region, it is relevant to look more closely
at the PES for short distances from the symmetry point. Therefore,
an asymptotic expansion and analysis in the vicinity of the sym-
metry point (r → 0) is performed to investigate the effect of the
intersection. The totally symmetric part of the potential can be omit-
ted for the following discussion and will not be considered in this
derivation.

In the following, we will illustrate the effects of a geometric
phase using the above described generic diabatic models in more
detail. It is convenient to transform back the electronic component
basis to the real space, namely, {|ψαx⟩, |ψαy⟩}, in order to represent
the effects graphically. To this end, the eigenvectors of the diabatic
PES matrix are determined by solving the following equation:

(Wα(Qβ+,Qβ−) −Λ Zα(Qβ+,Qβ−)
Zα(Qβ+,Qβ−) −Wα(Qβ+,Qβ−) −Λ)cα ≙ 0, (18)

where Wα(Qβ+, Qβ−) = Re(Pnα(Qβ+, Qβ−)) and Zα(Qβ+, Qβ−)
= Im(Pnα(Qβ+, Qβ−)). The n dependence of W and Z has been
dropped for better readability. The resulting eigenvectors of this
equation can be expressed in the form

c
α
±(Qβ+,Qβ−)
≙ 1√

2(1 ∓Wα(Qβ+,Qβ−))(
±1 −Wα(Qβ+,Qβ−)

Zα(Qβ+,Qβ−) ) (19)

corresponding to the eigenvalues

Λ ≙ ±√∥Wα(Qβ+,Qβ−)∥2 + ∥Zα(Qβ+,Qβ−)∥2. (20)
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A relevant quantity to plot in order to visualize the role of the orders
l in the coupling part Pnα is the vector field of the real valued eigen-
vectors in the plane of the real coordinates Qβx and Qβy. Figure 1
presents the obtained vector fields for a selection of point groups
with single principal axisCn of order n = 3, 5, 7 for α, β combinations
featuring a leading coupling term of odd order. As already stated,
the numerical model systems are limited to the first two leading
monomials in the expansion Eq. (17), as listed in Table I.

Figures 1(a)–1(c) present the vector field in the region of low
energy around the origin where n equivalent minima on the lower
adiabatic PES sheet are located. The characteristic feature of all of
these plots is the existence of one or more slits where the vectors
change orientation (“sign”) abruptly. These slits are marked clearly
by red lines for the convenience of the reader. The case n = 3 is the
well-known standard case studied for decades. It clearly shows one
slit starting from the origin, confirming the established existence of

FIG. 1. Vector fields of the eigenvec-
tors corresponding to the lower adiabatic
PES plotted in the plane of the Qβx

and Qβy coordinates. (a)–(c) show the
inner region for C3v , C5v (E1 ⊗ e2),
and C7v (E1 ⊗ e3), respectively. (d)–
(f) present the outer region for the same
three cases. The green circles indicates
the radius separating inner from outer
regions.
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a geometric phase. The same kind of behavior is found for the case
of n = 5 for E1 ⊗ e2 (E2 ⊗ e1). Finally, the case E1 ⊗ e3 for n = 7
is presented because this is a case in which three slits and a corre-
sponding geometric phase are observed. By contrast, two slits are
found for n = 4 and C5v (E1 ⊗ e1 or E2 ⊗ e2), respectively, with the
consequence that there is no geometric phase in these cases. The cor-
responding vector fields are presented in Fig. 2. It turns out that the
number of slits observed near the origin in the real representation is
always equal to the power of the lowest coupling term as is shown
below.

To this end, the real valued eigenvectors are analyzed for the
limit of small distances from the origin (high symmetry point). In
this asymptotic analysis, only the term of the lowest order remains
relevant in the expansion of the coupling matrix and therefore the
eigenvectors corresponding to the eigenvalues

Λ ≙ ±rk (21)

read

c±(ϕ) ≙ 1√
2(1 ∓ cos(mϕ))(±1 − cos(mϕ)sin(mϕ) ), (22)

where

m ≙ βk. (23)

In the following, only the eigenvector c− is considered, but the treat-
ment of c+ is completely equivalent. We note that the normalization
factor becomes singular for mϕ = 2πj + π, j = 0, 1, . . ., m − 1. The
behavior of the eigenvectors in the vicinity of these singularities is
determined by the limit

lim
𝜖→0

c
−
(2πj + π

m
± 𝜖) ≙ lim

𝜖→0

1√
2(1 + cos(2πj + π ±m𝜖))

×(−1 − cos(2πj + π ±m𝜖)
sin(2πj + π ±m𝜖) ). (24)

This limit is evaluated by a Taylor expansion up to first order in the
denominator and in the numerator, which yields

lim
𝜖→0

c
−
(2πj + π

m
± 𝜖) ≙ lim

𝜖→0

1√
2m2

𝜖
2
( 0±m𝜖

)
≙ lim

𝜖→0
± 1√

2
(0
1
). (25)

This implies a discontinuity for each angle ϕ = (2πj + π)/m, and thus
a total ofm slits, withm being the order of the coupling term.

While this explains the behavior of the vector fields shown
in Figs. 1 and 2 for small distances r from the origin, it fails to
describe the r ≫ 1 outer region. Figures 1(d)–1(f) and 2(b) show
the same five systems considered before but now with focus on the
region for larger radius r ≫ 1 and thus for higher energies. The
radius at which the additional conical intersections occur is indi-
cated by green circles in Figs. 1 and 2. The n = 3 case obviously
has two slits starting at this radius whereas the slit starting from the
origin vanishes. By contrast, no change is seen for n = 4 and the
E1 ⊗ e1 (E2 ⊗ e2) case of n = 5. The two remaining cases, n = 5
E1 ⊗ e2 (E2 ⊗ e1) and n = 7 E1 ⊗ e3, result in 4 slits in the outer
region. The explanation of this behavior can be gained from a closer
look at the two adiabatic PES sheets for these systems. We present
two views of the adiabatic PESs plotted in the two-dimensional space
of Qx and Qy for n = 3 in Fig. 3. It becomes apparent from Fig. 3(a)
that the PESs fulfill the 3-fold symmetry and invariance properties
as required and enforced by construction of the model. In Fig. 3(b),
the representation of the bound PESs is restricted to Qx > 0. The
well-known conical intersection is seen at the origin and marked
by a green circle. An additional conical intersection is clearly vis-
ible for larger r and higher energy, also marked by a green circle.
Due to the 3-fold symmetry of the PESs, there are three equivalent
conical intersections of the latter kind. The formation and disap-
pearance of slits in the vector fields presented in Fig. 1 coincide
exactly with these additional conical intersections. Of course, for n
= 3, the additional conical intersections are known since a long time
as was shown in Ref. 6. In the present work, we show that this is
a more general feature of Cnv systems, at least when modeled in
the way described above. Whenever the two used expansion terms
are of different orders, this corresponds to the existence of addi-
tional conical intersections. The radius rCI where these additional
conical intersections occur corresponds to the real positive roots of

FIG. 2. Vector field of the eigenvec-
tors corresponding to the lower adiabatic
PES plotted in the plane of the Qβx and
Qβy coordinates. (a) shows the inner
region for C5v (E1 ⊗ e1). (b) presents
the outer region for the same case. The
green circle indicates the radius separat-
ing the inner from outer region.
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FIG. 3. Adiabatic PESs for n = 3 in the
two-dimensional space spanned by Qx

and Qy . (a) illustrates the 3-fold symme-
try. (b) presents a view cutting through
the origin and clearly showing the conical
intersections at the origin and for larger r
at high energy (marked by green circles).
Color coded energies in arbitrary units.

Pnα(Qβ+, Qβ−). For example, as modeled here for the case n = 3, the
distance of the additional conical intersection from the symmetry
point is simply rCI ≙ c1

c2
(in agreement with Ref. 6) and for n = 5 E1

⊗ e2 (E2 ⊗ e1), it is rCI ≙ 3

√
c1
c2 , where c1 and c2 refer to the two expan-

sion coefficients. The radii separating inner and outer regions for all
systems treated here can be found approximately by solving for the
roots of the functions given in the last column of Table I in which the
general totally symmetric expansion functions f αk±(r2β) [see Eq. (17)]
and their derivatives are used.

The existence of additional conical intersections induces two
effects. First of all, the additional conical intersections induce local
geometric phases, which may play an important role in wave packet
propagations. Second, the additional conical intersections will lift
the effect of the intersection at the symmetry point (or in general
other inner intersections). Therefore, the additional conical intersec-
tions will change the properties of the vibronic eigenstates. This has
been observed before for n = 3.6,11,12 An odd number of additional
conical intersections on a ring around the symmetry point will flip
the behavior such that if in the inside of the ring there is no geo-
metric phase, at the outside there will be one and vice versa. An even
number of additional conical intersections will not induce such a flip
of the properties.

The above discussion gives a clear picture of what happens to
the system in the two limiting cases with the wave function either
entirely located in the inner or outer region, respectively. However,
this clear picture is lost if the wave function extends significantly
beyond the dividing line and thus probes the additional conical
intersections only partially. In such a case, the impact of the con-
ical intersections and corresponding local geometric phases is not
well-defined and the concept of the GPE reaches its limits as a useful
concept.

IV. GEOMETRIC PHASE AND SPECTROSCOPY

It has been recognized early on that the existence of a geomet-
ric phase has an impact on the vibronic ground state of a Jahn-Teller

system.2,3 Model systems with linear and quadratic coupling terms
have been shown to have a ground state of E vibronic symmetry in
general. An elegant proof for this was given by Ham.5 However, it
has been shown that the ordering of the first two states switches
from E/A (meaning E lower in energy than A) to A/E above a cer-
tain value of the quadratic coupling constant.11,12 This is due to the
fact that for strong quadratic and weak linear coupling, the wave
function is not localized in the inner region but extends consider-
ably to the outer region. Thus, it probes four instead of one conical
intersection. Furthermore, Ham showed that an alternating pattern
should be expected for increasing excitation quanta. We recently
found in our investigation of the vibronic eigenstates of the nitrate
radical (NO3) a more complicated and rather intriguing pattern of
the vibronic level structure and proposed an explanation for these
observations.14 Here, we generalize these findings beyond C3v and
D3h systems.25

As discussed in Sec. III, an n-fold principal axis induces n/m
equivalent minima on the lower sheet of the adiabatic PESs for
any Eα ⊗ eβ JT system (m depends on n and β and usually
m = 1). The local environment around these minima shows a
lower symmetry than the symmetry of the full system and if the
wells are sufficiently deep the wave function will “localize” (i.e.,
will have a significantly increased density) in these wells. This is
essentially equivalent to the Jahn-Teller theorem stating that the
equilibrium geometry is distorted from its highest possible symme-
try.26 The molecular vibrations can be conceived as small oscilla-
tions of the atoms around their respective equilibrium positions.
However, these equilibrium positions refer to one of the equiva-
lent local minima, and the PES in the vicinity of these minima
only shows the reduced local symmetry. Therefore, vibrations for-
mally belonging to a degenerate eβ mode in the two dimensional
isotropic harmonic oscillator will not be degenerate in the local sym-
metry and thus the corresponding vibronic levels will split. These
local vibrations are equivalent for the n/m minima and must be
symmetrized according to the global symmetry. This leads to sets
of n/m vibronic states for each kind of local vibration, and these
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vibronic states transform as irreducible representations of the global
symmetry group. If the barriers between the local minima are high
enough, the vibronic states form tunneling sets and the correspond-
ing tunneling splittings depend on the well depth and the barrier
height between the wells. For more shallow wells or higher exci-
tations, the vibronic level energies may be above the barriers but
the general structure of what we call “tunneling sets” or “tunnel-
ing multiplets” remains because this is simply a consequence of
the global symmetry of the system and of the equivalent potential
wells.

This situation can be approximated and analyzed very effi-
ciently with a next neighbor or Hückel model. The n-fold symmetry
axis of any Cnv point group corresponds to a rotation operator Ĉn

transforming one local state residing in one local minimum into the
corresponding local state residing in the neighboring PES well. If we
further assume that the local states can only interfere with the ones
in the neighboring wells, we can write the Schrödinger equation in
the next neighbor approximation as

⎛⎜⎜⎜⎜⎜⎝

a − E b 0 0 . . . b
b a − E b 0 . . . 0
0 b a − E b . . . 0⋮ ⋱ ⋮
b 0 0 . . . b a − E

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

c1
c2
c3⋮
cn

⎞⎟⎟⎟⎟⎟⎠
≙
⎛⎜⎜⎜⎜⎜⎝

0
0
0⋮
0

⎞⎟⎟⎟⎟⎟⎠
. (26)

Here, a stands for the expectation value of the vibrational Hamilto-
nian over a purely local eigenstate and b for the integral correspond-
ing to the tunneling interaction with the next neighbor local state.
This yields the relation

b cj−1 + (a − E) cj + b cj+1 ≙ 0, with 1 < j < n − 1. (27)

The elements of each eigenvector, cj−1, cj, and cj+1, are related to
each other strictly by symmetry. The resulting n eigenvalues are
simply

Ek ≙ a + 2b cos(2πk
n
), k ≙ 0, 1, . . . ,n − 1. (28)

For example, for n = 3, the eigenvalues would be
a + 2b (A), a − b (E), and b < 0 for the ground state of systems
without the GPE. Thus, the expected level ordering would be (A)
below (E). The ordering of the tunneling multiplets only depends on
the sign of b, which is a tunneling probability determined from the
localized basis functions.

The parameters a and b are determined following the ideas of
Wallace developed for the band theory of graphite.27 As an exam-
ple, the model for C3v is considered, but the results are general and
the conclusions for the other point groups are to be obtained by
analogy. For the calculation of a and b, the adiabatic potential of
the electronic ground state (lower adiabatic PES sheet) is expanded
in a Taylor series around a local minimum, using the planar polar
coordinates r and ϕ. This yields

V
ad
− ≙ r2 −√(c11r)2 + (c22r2)2 + 2c11c22r3 cos(3ϕ)
≙ r2 − (c11r + c22r

2)√1 +
2c11c22r(c11 + c22r)2 (cos(3ϕ) − 1),

which is further approximated by

V
ad
− ≈ r2 − c11r − c22r2 − c11c22r

c11 + c22r
(cos(3ϕ) − 1)

≈ (1 − c22)(r − c11

2 − 2c22 )
2

+
9

2

c11c22r
2

c11 + c22r
ϕ
2 − c211

4 − 4c22 . (29)

Defining

r0 ≙ c11

2 − 2c22 , (30a)

ωr ≙ √2 − 2c22 , (30b)

Iωϕ ≙
√

9
c11c22r20
c11 + c22r0

, (30c)

and

V0 ≙ − c211
4 − 4c22 (30d)

yields the final expansion and definition of the local potential
V local(r, ϕ) limited to a single well around ϕ = 0,

V
ad
− ≈ 1

2
ωr(r − r0)2 + 1

2
Iωϕϕ

2 + V0 ≡ V local(r,ϕ). (31)

The local Hamiltonian is defined in terms of the local potential as

H
local ≙ T + V

local, (32)

where T represents the kinetic energy. This local Hamiltonian cor-
responds to a two-dimensional harmonic oscillator. The solutions
to this system are composed of the well-known one-dimensional
harmonic oscillator functions ΦHO

i,mass,frequency(x),
Ψ

local
pr ,pt(r,ϕ) ≙ exp(2iϕ3 )ΦHO

pr ,1.,ωr
(r − r0)ΦHO

pt ,r20 ,ωϕ
(ϕ). (33)

The quantum numbers pr and pt correspond to the radial and tan-
gential motion, respectively. In addition, this solution contains a

factor exp( 2iϕ3 ) accounting for the geometric phase directly induced
by the fact that C3v is fermionic. When considering a bosonic case,
this geometric phase factor is absent. For each combination of pr
and pt , the three local wave functions Ψ

local
pr ,pt(r,ϕ), Ψlocal

pr ,pt(r,ϕ − 2π
3 ),

and Ψ
local
pr ,pm(r,ϕ + 2π

3 ) are the solution for each local well, respec-
tively. Each of these triplets of wave functions with the same pr
and pt forms a basis for a Hückel model like the one given in
Eq. (26). The diagonal elements aprpt are approximated as the local
energies,

aprpt ≙ ωr(pr + 1

2
) + ωϕ(pt + 1

2
) + V0. (34)

The off-diagonal elements of the Hückel matrix are given by the
integral

bprpt ≙ ∫ ∞

0
dr∫ π

−π
dϕ Ψ

local
pr ,pt(r,ϕ + 2π

3
)HΨ

local
pr ,pt(r,ϕ). (35)

Replacing H by T + V local + V − V local yields

bprpt ≙ aprptSprpt + ∫ ∞

0
dr∫ π

−π
dϕΨlocal

pr ,pt(r,ϕ + 2π

3
)

×(V −V local)Ψlocal
pr ,pt(r,ϕ), (36)
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where Sprpt is the overlap between two consecutive local wave func-
tions. As usual in the Hückel approximation, this term is neglected
such that

bprpt ≈ ∫ ∞

0
dr∫ π

−π
dϕ Ψ

local
pr ,pt(r,ϕ + 2π

3
)(V −V local) ⋅Ψlocal

pr ,pt(r,ϕ).
(37)

Taking into account the geometric phase factors of the local wave
functions, the equation simplifies to

bprpt ≈ −∫ ∞

0
dr∫ π

−π
dϕ ∣Φpr ,1.,ωr(r − r0)∣2Φpt ,r20 ,ωϕ

(ϕ + 2π

3
)

×Φpt ,r20 ,ωϕ
(ϕ) (V −V local). (38)

Because the difference V − V local is always negative, the sign
of this integral does only depend on the sign of the product
o ≙ Φpt ,r20 ,ωϕ

(ϕ + 2π
3 )Φpt ,r20 ,ωϕ

(ϕ). The product of these local angu-
lar wave functions is positive for even pt and negative for odd pt .
(This holds strictly at least for the lowest few vibronic levels before
the normal mode picture becomes invalid anyway.) The graphical
representation given in Fig. 4 clearly shows the link between the sign
of bpr ,pt and the parity of pt of the local oscillator depending on ϕ.
This implies that bprpt > 0 for even pt and bprpt < 0 for odd pt . Since
the level ordering in each tunneling multiplet is ruled by the sign of
bprpt , we conclude that each tangential excitation inverts the order of
the tunneling multiplet with respect to the ordering of the multiplet
with one less quanta along ϕ. For C3v , this means that the ground
state multiplet is E under A and the multiplet corresponding to the
first local tangential excitation is A below E and so on.

The argument for different groups Cnv is entirely equivalent
keeping in mind that for bosonic cases, the negative sign in Eq. (38)
is absent because no geometric phase occurs in this case (for a
detailed explanation, see Sec. II B). In a bosonic case, bprpt is neg-
ative for even pt and positive for odd pt , while in a fermionic case,
bprpt is positive for even pt and negative for odd pt . This explains
why fermionic and bosonic cases show opposite behavior regard-
ing the level ordering. The results of the Hückel-like model holds

FIG. 4. Local angular wave functions and local potential of two wells in the Hückel
model. The product o of the ground state and the second exited state is positive,
but the product o of the first excited states is negative.

true even if the energy of the wave function is above the tangential
barriers. The tunneling constant bprpt becomes large, but the general
structure is preserved. The simple picture is gradually destroyed if
Fermi resonances are present. These occur if the spectrum becomes
dense and states of the same symmetry start to be close, which usu-
ally happens in all multimode systems beyond the first few quanta of
excitation.

In the following, we first will demonstrate this effect by numer-
ical simulations28 for n = 3 before discussing higher n. The two
leading coupling terms for n = 3 are of first and second order (see
Table I), and only the combination of the two results in the three
equivalent wells. The numerical values used in the following ensure
that the densities of the vibronic wave functions outside the inner
region are negligible and thus that the inner region characteristics
are the only ones relevant for the analysis. The leading first order
term induces a geometric phase. The vibrationless ground state of
a molecule sitting in one of the wells shows no node of the wave
function within the well. However, the global symmetrization over
the three wells leads to a vibronic ground state of E symmetry
and an excited state of A2 symmetry together forming a tunneling
triplet. It might appear counter-intuitive at first that the vibration-
less ground state shows nodes in the wave function. However, these
nodes appear between the equivalent wells rather than within the
wells. The ordering of E below A as well as the A2 symmetry of
the excited tunneling component is a consequence of the geometric
phase effect. The situation is visualized in Fig. 5 where the densi-
ties of the vibronic wave functions numerically computed using a
prototypical model are plotted.

The densities of the two components of the E state show the
expected lack of symmetry with respect to C3 rotation and cannot
be easily interpreted. By contrast, the sum of these two densities
shows the rotational symmetry and also demonstrates that the wave
function is nodefree within each of the three potential wells. Sum-
ming up the E components also allows us to identify the tunneling
sets of vibronic states which share the same local vibration as the
comparison of Figs. 5(c) and 5(d) demonstrates.

Next, we consider vibrational excitations. It is customary to
label the vibrational modes according to the global symmetry.
Therefore, it is helpful to map the irreps of the modes in global
symmetry onto the corresponding irreps of the local symmetry. The
degenerate e modes of global symmetry are of particular interest as
these map onto two different irreps in the local symmetry, namely,
symmetric (a′) or antisymmetric (a′′), with respect to the verti-
cal mirror planes σv . If the polar coordinate representation of the
Hamiltonian equations (4) and (5) is used, the first case would corre-
spond to a radial excitation while the second case would correspond
to a tangential excitation. It is obvious that the PES in the vicinity of
the equivalent PESminima is rather different in radial and tangential
directions, respectively, and this leads to a splitting of the vibronic
levels depending on the local excitation direction. Furthermore, the
tangential excitation is connected with the tunneling probability (see
above), while the radial excitation is not. As a consequence, odd
quanta of tangential excitation induce a sign change in the tunnel-
ing parameter of the simple next-neighbor model presented above
and in our previous study of NO3

14 and thus the order within the
tunneling multiplets is inverted. By contrast, any excitation in radial
direction as well as even quanta in the tangential mode has no effect
on the tunneling parameter thus not affecting the ordering.
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FIG. 5. Density of vibronic state wave functions for n = 3 plotted in the Qx , Qy plane. (a) First component of the E ground state, (b) second component of the E ground state,
(c) sum of first and second components of the E ground state, and (d) A2 excited tunneling state.

The behavior of the energy levels can be summarized by sim-
ple rules. It is customary to interpret vibronic spectra in terms
of normal modes transforming as e. In a local isolated deformed
oscillator, these normal modes transform like a′ and a′′ with
respect to the local symmetry group Cs. A single radial excita-
tion transforms like a′, and a single tangential excitation trans-
forms like a′′. Symmetrizing these local excitations with respect
to the global symmetry group C3v yields the tunneling triplets.
This scheme is represented in Fig. 6 for a formally single e exci-
tation. The ordering of the tunneling multiplets depends on the
number of tangential quanta of each state. The set (a′ Cs) cor-
responding to radial excitation is ordered E/A as in the ground
state. By contrast, the set (a′′ Cs) corresponding to a single tan-
gential excitation is inverted with respect to the ground state
pattern and the ordering is A/E. The odd tangential excitation
also causes the nondegenerate state to be A1 rather than A2.
The construction principle of the vibronic level structure now is
clear and can be applied to formally higher excitations in the e
modes as well. For example, a double excitation (e)2 first leads
to a threefold splitting of the levels because the different com-
binatorial possibilities of the excitations are different for (er)2,(et)2, and (er)1(et)1, where er and et refer to radial and tangen-
tial motions, respectively. Each of the three types of local vibra-
tions will result in a tunneling triplet and the level ordering of

FIG. 6. Vibronic level structure of a formal (e)1 excitation for n = 3.

the first two cases (even tangential quanta) will be E/A, while the
third case corresponds to odd tangential quanta and thus results
in A/E level ordering. This scheme holds for cases for which the
lower adiabatic PES sheet shows reasonably pronounced multiwell
character.

The behavior of the two different kinds of triplets in C3v (result-
ing from radial or tangential excitation) with respect to the cou-
pling parameters can be studied systematically, which is illustrated
in Fig. 7. Setting linear and quadratic coupling to zero results in
an isotropic harmonic oscillator for each of the two electronic com-
ponents. In this isotropic two dimensional harmonic oscillator, the
first few vibronic energy levels are 2-, 4-, 6-, and 8-fold degener-
ate. Using the irreps of the C3v symmetry group, the ground state
is of e symmetry, the first exited state transforms like e, a1, and a2,
the second exited state transforms like e, e, a1, a2, and so on. The
linear coupling term distorts the isotropic harmonic oscillator to
the well-known “Mexican hat” shape. As a result, some degenera-
cies of the isotropic oscillator are lifted. The split energy levels are
always twofold degenerate and correspond to the ±λ/2 values of the
vibronic angular momentum since the cylindrical symmetry is still
preserved. As shown in the left half of Fig. 7, the splitting becomes
stronger for increasing linear coupling strength. Note, however, that
all states can be classified in terms of the C3v irreducible representa-
tions and can be grouped into the aforementioned tunneling triplets.
For a triplet corresponding to even tangential quanta (black lines
in Fig. 7), the e state is always lower in energy than the a2 state.
Examples are the ground state, the states labeled r1t0, r2t0, and r0t2.
The state assignments in terms of radial and tangential excitations
are given as labels in the right half of Fig. 7. For states correspond-
ing to odd tangential quanta (red lines in Fig. 7), the a1 part of a
triplet is always lower in energy than the corresponding e state. This
is true even if the spectrum becomes very dense. When a quadratic
term in added, the 2-fold degeneracies of the a1 and a2 energies are
lifted as shown in the right half of Fig. 7 where the quadratic cou-
pling is increased for a given linear coupling value. In a vibronic
coupling model with a linear and a weak quadratic coupling, the
splitting of the triplets is quite large as seen near the center of Fig. 7.
Therefore, different triplets overlap, but nevertheless, the ordering
of each triplet stays invariant (a2 above e or e above a1 depending
on the number of tangential quanta, i.e., solid below dashed lines
for black and dashed below solid for red in Fig. 7). For increas-
ing quadratic coupling, the splitting between the triplet components
decreases and its existence becomes more obvious (see near 0.5 to

J. Chem. Phys. 151, 074302 (2019); doi: 10.1063/1.5115396 151, 074302-11

Published under license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

FIG. 7. Vibronic excitation energies of
a C3v symmetric JT system. Couplings
and energies are given relative to the
harmonic constant. For the left half of
this figure, the quadratic coupling is set
to 0 and the linear coupling varies from
0 to 2. In the right half, the linear cou-
pling is set to 2 and the quadratic cou-
pling is varied from 0 to 0.8. Vibronic
states with e symmetry are drawn as
solid lines, and vibronic levels of a1 or a2

symmetry are marked with dashed lines.
Fermionic states are indicated by black
lines, and bosonic states are given in
red. The states are labeled by their exci-
tation assignment on the right border.

0.6 of quadratic coupling in Fig. 7). The triplets start to be “true”
tunneling triplets of the corresponding triple well system. If the
quadratic coupling is very strong, the triple well effectively becomes
a collection of three isolated oscillators. In this case, tunneling is
unlikely and therefore the triplets become essentially degenerate as
seen at the right border of Fig. 7. It turns out that for reasonably
strong quadratic JT coupling, the Hückel-like picture is more ade-
quate than the picture of a perturbed isotropic harmonic oscillator
because the tangential multiwell structure of the potential becomes
important.

A confirmation of the predicted patterns is again obtained by
numerical model calculations and the analysis of the densities of
the vibronic eigenstates. The characteristic densities of the lowest
excited vibronic states obtained from a numerical model in which
the relevant part of the vibronic wave functions samples mostly the
inner region are presented in Fig. 8.

The nodal structure of the vibronic wave functions is clearly
visible, and radial and tangential excitations can be distinguished
easily. The states belonging to a specific tunneling triplet are found
by comparing the sum of densities of the E state components with
the density of the associated A state. This yields the specific level
ordering for each tunneling triplet which is also given in Fig. 8.
Figures 8(a), 8(c), 8(e), and 8(h) show states with radial excitations
exclusively. The corresponding levels are all ordered E/A2 like the
ground state tunneling triplet because there are no odd tangential
quanta. Figures 8(b) and 8(g) show states with tangential excitations
exclusively. The states with a single tangential excitation correspond
to a level ordering of A1/E, while the states with a double tangen-
tial excitation yield E/A2 as predicted. Finally, Figs. 8(d) and 8(f)
show states with a single tangential node combined with one or two
radial nodes, respectively. In both cases, the observed level ordering
is A1/E in agreement with our theoretical prediction. The numerical
simulations demonstrate clearly that the theory for the ordering
within the tunneling sets outlined above holds for the low lying
vibronic states. Note however that the energetic splitting between

different tunneling sets will depend on the specific system. Finally,
the above findings hold for low lying states. At higher energies and
for real multimode systems, this clear picture will be lost gradually as
assignments using excitation quantum numbers will become impos-
sible due to vibronic state interactions (e.g., Fermi resonances).
This is a general problem for all multimode vibrational assign-
ments because of the rapidly increasing density of states, which
is not a special property of the JT systems studied here. Clear
assignments are usually not possible beyond the first few excitation
quanta.

Next, the case n = 4 is considered for which the two leading
coupling terms are of second order, and thus no geometric phase is
induced by the PES. Therefore, the vibronic ground state of the sys-
tem is a nondegenerate A1 state followed by E and B1 forming the
lowest tunneling quartet. This is indeed observed in our numerical
simulations which also include higher excitations. The densities of
the first four tunneling sets are displayed in Fig. 9. The first local
excitation is found to be a radial one, and thus the same ordering
A1/E/B1 is observed for the vibronic states corresponding to this
tunneling set. By contrast, the second single excitation is the tan-
gential one. This results in a tunneling set with a state ordering of
B2/E/A2 which again shows a nondegenerate lowest component. In
this case, the inversion of the tunneling multiplet only affects the
nondegenerate states exchanging A and B as well as “1” and “2,”
respectively. The next set refers to a double excitation in the radial
direction for which again the order A1/E/B1 is expected. Instead,
an ordering of E/A1/B1 is observed in the numerical results. The
reason for this apparently is that the four equivalent wells of our
numerical example on the lower adiabatic PES sheet are very shal-
low and a double excitation is already sufficiently above the origin
energy at the degeneracy point so that due to the very high density
of vibronic states the simple reasoning used above becomes insuffi-
cient. State-state interactions (Fermi resonances) can lead to differ-
ent orderings within the tunneling sets because the density of states
strongly increases with energy and thus it is more likely that states of
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FIG. 8. Density of excited vibronic state wave functions for n = 3 plotted in the Qx , Qy plane together with the symmetry labels of the energy ordered multiplets. The local

excitations are r1t0 (a), r0t1 (b), r2t0 (c), r1t1 (d), r3t0 (e), r2t1 (f), r0t2 (g), and r4t0 (h).

the same symmetry are in energetic proximity and mix. In fact, the
E states show significant mixing with a higher E state in the present
example.

The C5v point group is the first case for which two differ-
ent two-dimensional irreps E1 and E2 exist, and thus the situa-
tion is considerably more complex than for the previous examples.
The leading terms in the diabatic PES models are first order for
E1 ⊗ e2 and E2 ⊗ e1 and second order for E1 ⊗ e1 and E2 ⊗ e2.
Consequently, the first two combinations will behave fermionic due
to the existence of a GPE, while the latter two combinations will
have bosonic properties. The effects on the vibronic eigenstates are

displayed in Fig. 10. The first and obvious observation is that the
ground state is of A2 symmetry in the bosonic case [see Fig. 10(a)]
and of E symmetry in the fermionic combination [see Fig. 10(e)].
The first two computed excitations in the E1 ⊗ e1 case correspond
to radial local excitations, and thus the ordering of the tunneling
quintet of A2/E1/E2 remains the same. The third local excitation
puts a single quantum into the tangential mode and thus leads to
an inversion of the tunneling quintet resulting in a level ordering of
E2/E1/A1. When analyzing the isomorphic case E2 ⊗ e2, the only dif-
ference with respect to E1 ⊗ e1 is that the two vibronic E levels E1

and E2 are interchanged. As expected, the numerical results for the

FIG. 9. Density of low lying vibronic state wave functions for n = 4 plotted in the Qx , Qy plane. The local excitations are r0t0 (a), r1t0 (b), r0t1 (c), and r2t0 (d).
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FIG. 10. Density of vibronic state wave functions plotted for n = 5 in the Qx , Qy plane. (a)–(d) show the E1 ⊗ e1 case; (e)–(h) show the E2 ⊗ e1 case. The local excitations

for the E1 ⊗ e1 case are r0t0 (a), r1t0 (b), r2t0 (c), and r0t1 (d). The local excitations for the E2 ⊗ e1 case are r0t0 (e), r0t1 (f), r1t0 (g), and r1t1 (h).

E2 ⊗ e1 case show a different behavior. The vibronic ground state is
E2 followed by E1 and A2 which form the first tunneling set. The first
excitation corresponds to a single tangential local excitation and thus
inverts the tunneling quintet leading to a level ordering of A1/E1/E2.
The second excited tunneling set is due to a single radial local exci-
tation and thus has the same level ordering as the ground state,
E2/E1/A2. The next set of states corresponds to a combination of a
single radial and a single tangential excitation in the local wells and
thus leads to an inversion again, and would be expected to result in
the level ordering A1/E1/E2. By contrast, the observed level ordering
in our numerical example is E2/A1/E1 because the E2 state is lowered
in energy by an interaction with another E2 level nearby.

The symmetry group C6v provides an interesting new situa-
tion because it is the first in the Cnv series to contain a non-Abelian
subgroup, namely, C3v , which is the most basic fermionic case of
a JT system. In addition, C6v has two 2-dimensional representa-
tions E1 and E2 leading to four different JT cases. E1 ⊗ e1 and
E2 ⊗ e1 are bosonic due to a leading coupling term of second order
(see Table I). The other two cases E1 ⊗ e2 and E2 ⊗ e2 have a dia-
batic Hamiltonian isomorphic to that of C3v , and thus the lower
adiabatic PES sheet only has three equivalent minima resulting in
tunneling triplets for the vibronic states. This is the first case where
the n/m equivalent minima correspond to m > 1. The e2 coor-
dinates are symmetric with respect to Ĉ2 rotation, and thus the

FIG. 11. Density of vibronic state wave functions plotted for n = 6 in the Qx , Qy plane for the E1 ⊗ e1 case. The local excitations are r0t0 (a), r0t1 (b), r1t0 (c), and r0t2 (d).
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seemingly missing three potential wells are excluded by the extra
symmetry of the coordinates.29 It is also shown easily using the
fundamental properties of the C6v irreps that the corresponding
vibronic wave functions only can transform as A1, A2, or E2 in this
case.

The remaining two cases, E1 ⊗ e1 and E2 ⊗ e1, do not show
the above idiosyncrasy and are analog to the two bosonic cases for
C5v but with the expected six equivalent minima. The correspond-
ing vibronic densities are presented in Fig. 11 together with the level
ordering of the tunneling sextets. The vibronic ground state is a
nondegenerate A2 level followed by the two degenerate states E1

and E2 and the highest level of the set transforms as B2. The den-
sities of these four states do not show any node within the local
PES wells. The next tunneling sextet corresponds to a single tan-
gential excitation in the local wells, as shown clearly in Fig. 11(b).
This changes the level ordering to B1/E2/E1/A1, similar to the corre-
sponding E1 ⊗ e1 case for C5v [see Fig. 10(d)]. Figure 11(c) shows
the next tunneling set corresponding to a single radial excitation in
the local wells. Thus, the level ordering is found to be A2/E1/E2/B2.
The states corresponding to Fig. 11(d) are due to a double tangen-
tial excitation in the local wells and thus again result in the pattern
A2/E1/E2/B2.

FIG. 12. Density of vibronic state wave functions plotted for n = 7 in the Qx , Qy plane. (a)–(d) show the E1 ⊗ e1 case, (e)–(h) show the E1 ⊗ e2 case, and (j)–(m) show the

E1 ⊗ e3 case. The local excitations for the E1 ⊗ e1 case are r0t0 (a), r1t0 (b), r2t0 (c), and r0t1 (d). The local excitations for the E1 ⊗ e2 case are r0t0 (e), r1t0 (f), r0t1 (g),
and r2t0 (h). The local excitations for the E1 ⊗ e3 case are r0t0 ( j), r0t1 (k), r1t1 (0), and r1t1 (m).
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C7v is the first example for which three different E rep-
resentations exist, leading to nine distinct Eα ⊗ eβ combina-
tions. The C7v JT system also shows a new feature in the case
of E1 ⊗ e3, namely, a leading term in the diabatic Hamilto-
nian of third order. The vibronic state densities for the differ-
ent combinations E1 ⊗ e1, E1 ⊗ e2, and E1 ⊗ e3 are displayed
in Fig. 12 for the ground and first few excited states. The E1 ⊗
e1 case with a quadratic leading coupling term does not present
a Berry phase. As a consequence, the level ordering for the
ground state septet shows a nondegenerate lowest vibronic state
(A2) followed by three doubly degenerate levels (E1/E2/E3) [see
Fig. 12(a)]. The same ordering is obtained in Figs. 12(b) and 12(c)

which corresponds to a single and a double radial excitation. By
contrast, in Fig. 12(d), a single tangential excitation induces an order
of E3/E2/E1/A1 for the vibronic levels of the tunneling set. For both
E1 ⊗ e2 and E1 ⊗ e3, a geometric phase effect is expected due to
the odd power of the leading coupling term (see Table I). As a
result, the lowest vibronic levels are doubly degenerate with an E1

ground state for the case with a linear coupling term E1 ⊗ e2 and
a lowest level of E2 in the case of the cubic leading term for E1⊗ e3. In the case of E1 ⊗ e2, the order E1/E3/E2/A2 obtained for
the ground state multiplet [Fig. 12(e)] and for the radial excita-
tions [Figs. 12(f) and 12(h)] is modified into A1/E2/E3/E1 when a
single tangential excitation is present [Fig. 12(g)]. The third order

FIG. 13. Density of vibronic state wave functions plotted for n = 8 in the Qx , Qy plane. (a)–(d) show the E1 ⊗ e1 case, (e)–(h) show the E1 ⊗ e2 case, and ( j)–(m) show the

E2 ⊗ e1 case. The local excitations for the E1 ⊗ e1 case are r0t0 (a), r1t0 (b), r0t1 (c), and r2t0 (d). The local excitations for the E1 ⊗ e2 case are r0t0 (e), r1t0 (f), r0t1 (g),
and r1t1 (h). The local excitations for the E2 ⊗ e1 case are r0t0 ( j), r0t1 (k), r1t0 (l), and r2t0 (m).
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leading term of E1 ⊗ e3 results in an E2/E1/E3/A2 set of levels
for the ground state multiplet and for multiplets corresponding to
radial excitations [Figs. 12(j) and 12(l)] and in an A1/E3/E1/E2 level
ordering when a single tangential excitation is involved [Figs. 12(k)
and 12(m)].

Finally, we present the various cases for C8v for which again
three different E representations exist. The nine possible Eα ⊗ eβ
combinations yield four different Hamiltonians of which the E2 ⊗ e2
one is isomorphic to the C4v case. This is due to the fact that C4v is
a subgroup of C8v and the situation is similar to the previously seen
C6v E1,3 ⊗ e2 cases. Distinct new cases are found for the isomorphic
sets {E1,3 ⊗ e1,3}, {E1,3 ⊗ e2}, and {E2 ⊗ e1,3}. Of these sets, only {E1,3 ⊗
e2} shows an odd leading coupling term and thus a geometric phase
due to the electronic Hamiltonian. The other two sets have even
leading coupling terms, and thus the electronic Hamiltonian does
not induce a GPE. A symmetry analysis of the vibronic eigenstates is
performed using model simulations and the corresponding densities
of the first few tunneling sets for the three new, distinct cases are dis-
played in Fig. 13. The ground state tunneling octet for the bosonic
E1 ⊗ e1 case shows a nondegenerate A2 lowest level, as expected, fol-
lowed by E1, E2, E3, and B2 and thus is comparable to the findings for
C7v E1 ⊗ e1. The next tunneling set is due to a single radial excita-
tion, clearly visible in Fig. 13(b) and thus has the same level ordering
as the ground state set. The first tangential excitation is found for the
following tunneling set displayed in Fig. 13(c) and leads to a change
of level ordering, which now reads B1/E3/E2/E1/A1. Finally, a double
radial excitation is found and, in agreement with the theoretical pre-
diction, the observed level ordering is back to that of the ground state
octet.

In contrast to the E1 ⊗ e1 combination, the Hamiltonian of
the E1 ⊗ e2 system has a leading coupling term of odd (first)
order and thus the electronic Hamiltonian induces a geometric
phase in the ground state multiplet. Furthermore, the e2 coordinates
are invariant under C2 rotation like in the case of the e2 coordi-
nates of C6v . This causes the lower adiabatic PES sheet to support
only four equivalent minima, and thus the vibronic states show
up as tunneling quartets. It is also expected that the ground state
should be doubly degenerate, which indeed is found in the numer-
ical example. As seen in Figs. 13(e)–13(h), each tunneling quartet
is composed of one E1 and one E3 state. The observed ordering
is E1/E3 for all sets with no or even tangential quanta [Figs. 13(e)
and 13(f )] and E3/E1 for all cases with odd tangential excitations
[Figs. 13(g) and 13(h)].

Last but not least, the E2 ⊗ e1 JT system is investigated for
completeness. The leading coupling term of the electronic Hamil-
tonian is of fourth order, and thus the system is expected to
show bosonic character. This is confirmed by the numerical sim-
ulation summarized in Figs. 13(j)–13(m). The ground state octet
displayed in Fig 13(j) and the tunneling sets corresponding to
radial local excitations exclusively all result in a level ordering
of A2/E1/E2/E3/B2 in analogy to the other bosonic case E1 ⊗ e1
[Figs. 13(a)–13(d)]. The single tangential local excitation visible
in Fig. 13(k) leads to a set with a changed level ordering of
B1/E3/E2/E1/A1, also in agreement with the finding for the E1 ⊗ e1
case [Fig. 13(c)].

The above numerical examples clearly confirm the general pat-
tern following from the analytic analysis using the next neighbor
approximation.

V. CONCLUSIONS

The quantum dynamics and the geometric phase effect (GPE)
are studied in the present work for Eα ⊗ eβ Jahn-Teller systems of
Cnv groups with n varying from 3 to 8. The coupled potential energy
surfaces (PESs), represented by analytical diabatic 2 × 2matrices and
derived here for all cases up to n = 8, all present at the symmetry
coordinate origin a conical intersection or touching point depend-
ing on the n, α, and β values. The presence or absence of a GPE
around this origin is directly linked to the polynomial order of the
leading coupling term. The analytically unraveled characteristics of
the coupled surfaces generally show an inner and an outer region
separated by the location of additional conical intersections. These
additional intersections do affect the conclusions about the presence
or absence of a GPE when considering spatially extended vibronic
wave functions for systems for which an odd number of additional
conical intersections are present (thus mostly for odd n). By con-
trast, no change between inner and outer region results for systems
with an even number of additional intersections (most of the cases
with even n). These effects are studied analytically and are also visu-
alized by plotting the vector fields of the eigenvectors of the diabatic
Hamiltonian in the plane of the Cartesian eβ symmetry coordinates.
The lines of sign change of the wave functions are clearly visible and
are correlated with the order of the leading coupling term of the
Hamiltonian. These topological slits are responsible for the presence
or absence of the nontrivial topological phase in the adiabatic wave
functions.

A second fundamental aspect is the presence of n/m equiv-
alent minima on the lower adiabatic PES sheet for all Cnv Eα ⊗
eβ systems (m depending on n and β). Such a topography leads
to the existence of n/m-fold sets of vibronic eigenstates, which are
studied in detail in the present work. These sets can be under-
stood in terms of “local vibrations” within each of the local min-
ima and a symmetrization over the equivalent PES wells. The local
vibrations can be characterized as tangential or radial motions,
respectively, when transformed to polar coordinates. This results in
the formation of what we call vibronic tunneling sets, which can
be obtained by a simple Hückel type model for weakly interact-
ing local vibrations in a next neighbor approximation. The GPE
has a clear impact on the level ordering of the tunneling mul-
tiplets, which furthermore depends on the type of local vibra-
tion. This effect is due to the sign of the tunneling parameter
as shown analytically and changes the level ordering only if the
local vibration corresponds to odd excitations of the tangential
mode. Since the local environment within each well has a low-
ered “local symmetry,” the PES is distinctly different in the radial
and tangential direction, respectively, leading to an energetic split-
ting between the corresponding tunneling sets. The GPE, together
with the interpretation of local vibrations and symmetrization, is
key for understanding the complicated vibronic spectra of real JT
systems. The analysis of such spectra could also yield experimen-
tal evidence for the impact of the GPE. Any experiment which
would provide reliable energy and symmetry data for all levels
within a tunneling multiplet would be suitable to confirm the
predicted effect of the nontrivial geometric phase on the level
ordering.

The theoretical predictions obtained from the above analy-
sis are tested using numerical models restricted to the two lowest
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coupling terms for each case and determining the low energy range
of the vibronic spectra for all Cnv Eα ⊗ eβ JT systems up to n = 8.
For all cases studied, the lower adiabatic PES sheet presents n/m
equivalent wells as predicted. The signature of the GPE caused by the
electronic Hamiltonian is that the vibronic ground state is a degen-
erate state of E symmetry. This is well known for C3v and general
linear vibronic coupling models. As shown here, this is always the
case if the leading coupling term is of odd order and the vibronic
wave function is dominated by the inner region of the PESs. For
n > 3, we show that the degeneracy, and more precisely the irre-
ducible representation, of the vibronic ground state does depend on
n, α, and β. Furthermore, the numerical results confirm the theo-
retical interpretation of the tunneling multiplets in terms of sym-
metrized local vibrations. The different effect of local radial and
tangential excitations, respectively, is clearly reflected in a change
of the level ordering within each tunneling multiplet. The symmetry
analysis of the numerical results provides a full characterization of
the computed vibronic states for all cases treated. These results will
be of significant help in the understanding of vibronic spectra of real
systems.
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A new diabatization method based on artificial neural networks (ANNs) is presented, which is capa-

ble of reproducing high-quality ab initio data with excellent accuracy for use in quantum dynamics

studies. The diabatic potential matrix is expanded in terms of a set of basic coupling matrices and the

expansion coefficients are made geometry-dependent by the output neurons of the ANN. The ANN is

trained with respect to ab initio data using a modified Marquardt-Levenberg back-propagation algo-

rithm. Due to its setup, this approach combines the stability and straightforwardness of a standard

low-order vibronic coupling model with the accuracy by the ANN, making it particularly advanta-

geous for problems with a complicated electronic structure. This approach combines the stability

and straightforwardness of a standard low-order vibronic coupling model with the accuracy by

the ANN, making it particularly advantageous for problems with a complicated electronic struc-

ture. This novel ANN diabatization approach has been applied to the low-lying electronic states of

NO3 as a prototypical and notoriously difficult Jahn-Teller system in which the accurate descrip-

tion of the very strong non-adiabatic coupling is of paramount importance. Thorough tests show

that an ANN with a single hidden layer is sufficient to achieve excellent results and the use of

a “deeper” layering shows no clear benefit. The newly developed diabatic ANN potential energy

surface (PES) model accurately reproduces a set of more than 90 000 Multi-configuration Refer-

ence Singles and Doubles Configuration Interaction (MR-SDCI) energies for the five lowest PES

sheets. Published by AIP Publishing. https://doi.org/10.1063/1.5053664

I. INTRODUCTION

The fundamental understanding of chemical processes

and spectroscopy is one of the main goals in chemi-

cal physics and theoretical chemistry. A key component

in the strive for such understanding is the study of the

underlying molecular quantum dynamics. With the ongo-

ing advances of theoretical and experimental treatments of

chemical systems alike, fundamental insights regarding chem-

ical dynamics become increasingly available. However, the

complexity of experimental data and the intricacy of theo-

retical treatments vastly increase with the size of the sys-

tem. Therefore, extending the fundamental insights to larger

systems is of great interest and an active field of current

research.

One of the core issues in the theoretical treatment of

systems beyond triatomics is the development of accurate

high-dimensional potential energy surfaces (PESs), which

provide the basis for quantum-dynamical investigations. In

the case of a single adiabatic electronic state, several strate-

gies for developing higher-dimensional PESs of sufficient

accuracy have been established. One class of approaches is

based on local interpolation techniques,1–5 and another one

uses invariant polynomials and least-squares fitting to uti-

lize the permutation symmetry of indistinguishable nuclei.6

However, extending these methods to PESs of multiple

a)wolfgang.eisfeld@uni-bielefeld.de

excited states proves difficult due to the added complexity of

accounting for state-state interactions. Recent attempts to

tackle this issue have been formulated by utilizing the mod-

ified Shepard interpolation7–9 and by using invariant poly-

nomials and complete nuclear permutation-inversion (CNPI)

symmetry.10,11

The proper inclusion of excited states requires a number

of PESs and their couplings to be represented in an appro-

priate form. In general, there will be at least some region in

nuclear configuration space (NCS) with a high density of elec-

tronic states, such that interactions among electronic states

become significant, rendering the Born-Oppenheimer (BO)

approximation invalid. For such a case, a quasi-diabatic rep-

resentation of the coupled electronic states has been found

to be of great advantage.12–25 Quasi-diabatic, which will be

referred to as “diabatic” from here on for the sake of sim-

plicity, means that the state basis to represent the electronic

Hamiltonian is required to preserve the character of the elec-

tronic states as much as possible, reducing the nonadiabatic

(or derivative) coupling to a degree that it can be neglected

safely. Thus, the electronic Hamiltonian will be represented

by a non-diagonal PES matrix encoding all state energies and

couplings. One advantage is that the matrix elements of the

electronic Hamiltonian become simple, well-behaved func-

tions of the nuclear coordinates, reducing the complexity of

finding analytic expressions for them. The simplest (and most

commonly used) such approach utilizing the diabatic represen-

tation is the multi-mode linear vibronic coupling method by

0021-9606/2018/149(20)/204106/11/$30.00 149, 204106-1 Published by AIP Publishing.
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Köppel, Domcke, and Cederbaum26 as well as similar methods

developed by Yarkony and co-workers.27–30 These treatments,

while suitable for the simulation of certain ultra-fast nonadia-

batic processes, are too limited to represent more extended

regions of the coupled PESs as required for the treatment

of more complicated dynamical processes. Therefore, exten-

sions of vibronic coupling models needed for the treat-

ment of dynamical processes of higher complexity have been

developed.31–36 Furthermore, several other approaches exist

utilizing properties of the adiabatic electronic wave func-

tions for diabatization.18,21,22,24,37–42 Most of these methods

do not require a model diabatic matrix, meaning that they

do not yield a set of PESs in closed mathematical form.

Therefore, a second step would be required to represent

the diabatic matrix elements provided by a point-wise dia-

batization scheme by some external mathematical model.

Representing the diabatic energies and couplings accurately

and in closed form as diabatic PESs beyond simple mod-

els is still a major problem for systems with more than

three atoms.43–46 This has been attempted by the aforemen-

tioned methods of extending vibronic coupling models in

various ways,31–36 using modified Shepard interpolation7–9 or

invariant polynomials and CNPI symmetry10 as well as by

choosing elaborate functional forms for the diabatic matrix

elements.43–45 However, the number of accurate diabatic

surfaces for such systems in the literature remains rather

scarce.

Recently an alternative approach for the representation of

PESs evolved utilizing artificial neural networks (ANNs),47–65

which are trained by various methods usually based on ana-

lytic reference data from other models or ab initio data. It has

been shown mathematically that ANNs are capable of uni-

formly representing any continuous real function of n dimen-

sions up to arbitrary accuracy.66 Therefore, in principle, it

should be possible to train an appropriate neural network

to represent any PES accurately with respect to the under-

lying data given. Apart from the high accuracy that can be

achieved, ANNs have the advantage that they can be evalu-

ated very efficiently once trained, which plays a key role in

quantum dynamics methods such as multi-configuration time-

dependent Hartree (MCTDH) where the evaluation of the PES

is the most time demanding part.67,68 While ANNs are in prin-

ciple capable of reproducing arbitrary continuous functions,

this is in practice of course limited by the acquisition of data,

training algorithm, chosen network architecture, and an issue

commonly referred to as “over-fitting.” However, ANNs have

already been used with impressive results to represent a sin-

gle PES based on high-level ab initio-data.63,65 Some first

attempts to extend the use of ANNs to diabatic PESs are also

known.69,70

In the present work, a novel ANN based diabatization

approach is used to accurately represent the coupled PESs of

electronically excited states with strong Jahn-Teller (JT) cou-

plings. For this purpose, an ANN-based diabatic model has

been developed and trained to represent the low-lying elec-

tronic states of NO3. The new method is described here for the

first time and the overall quality, the resulting PES model, and

the stability of the fitting procedure is analyzed depending on

various factors.

II. THEORY

A. Adiabatic and diabatic representation

As pointed out above, we aim for an accurate diabatic

representation of the electronic Hamiltonian of a given molec-

ular system. Therefore, the theoretical background of adiabatic

and diabatic representations is briefly summarized in the fol-

lowing. The starting point is the total molecular Hamiltonian

with electronic degrees of freedom q and nuclear degrees

of freedom Q reading

Ĥ(q, Q) = T̂nuc(Q) + T̂el(q) + VC(q, Q)
︸                ︷︷                ︸

Ĥel(q,Q)

. (1)

If the nuclear motions are frozen, the nuclear kinetic energy

T̂nuc(Q) vanishes and what remains is the electronic Hamil-

tonian Ĥel consisting of the electronic kinetic energy T̂el

and the Coulomb potential VC . The eigenvalues Ea
k
(Q) and

eigenfunctions ψa
k

(

q; Q
)

of Ĥel can be evaluated by suit-

able ab initio methods for selected points Q in the nuclear

configuration space. The Ea
k
(Q) depend parametrically on

the nuclear coordinates Q which yields the adiabatic poten-

tial energy surfaces (PESs) for the electronic states in ques-

tion. The set of all electronic eigenfunctions ψa
k

forms the

adiabatic basis for the complete molecular wave functions.

The total wave function thus can be expanded as

Ψ
a
j (q, Q) =

∑

k

φa
k(Q) · ψa

k (q; Q). (2)

Expanding Ĥ in terms of ψa
k
(q; Q) yields the adiabatic rep-

resentation Ĥ
a
(Q) with all electronic degrees of freedom

integrated out

Ĥ
a

kj =

(

T̂nuc(Q) + Ea
k
(Q)
)

· δkj − Λ̂kj(Q). (3)

In case that the derivative coupling terms Λ̂(Q) are small, they

can be ignored which is widely known as Born-Oppenheimer

(BO) approximation. However, this condition is often not ful-

filled for electronically excited states and Λ̂(Q) may even

become singular or very large for conical intersections or

avoided crossings, respectively.12

By contrast, a diababatic basis {ψd
k
(q; Q)} is chosen such

that Λ̂ remains negligibly small by construction so that in the

resulting Hamiltonian

Ĥ
d

kj = T̂nuc · δkj + Wd
kj

(Q) (4)

the derivative coupling terms can be ignored just like in the

BO approximation. The kinetic (derivative) coupling of the

adiabatic representation is transformed into a potential cou-

pling in the diabatic representation since the diabatic potential

matrix W
d(Q) is not diagonal anymore. Unfortunately, a dia-

batic basis cannot be defined unambiguously and can only

be determined ab initio through the computation of adiabatic

eigenstates and energies. However, it can be shown that the

diabatic matrix elements Wd
kj

(Q) must be simple and smooth

functions of the nuclear coordinates. Therefore, the approxi-

mate mathematical representation of W
d(Q) is usually much

easier than that of E
a(Q). Finally, the adiabatic basis functions
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can be expanded in terms of diabatic basis functions as

ψa
l (q; Q) =

∑

k

ukl(Q) · ψd
k (q; Q). (5)

This relates to a basis transformation U(Q) which would be

exact if both bases would be complete or span the same vector

space. In this case, the unitary matrix U diagonalizes Wd

U†WdU =Wa
= diag(Wa

j ) (6)

and the eigenvalues exactly reproduce the adiabatic energies

Ea
k
(Q).

Up to this point no approximations were necessary as all

bases were assumed to be complete. However, for any practi-

cal application, all bases involved are finite and only a small

number of states can be handled. Thus, the adiabatic states are

approximately represented in a finite Nd-dimensional diabatic

basis by

ψa
l (q; Q) ≈

Nd
∑

k

ud
kl(Q) · ψd

k
(q; Q). (7)

Nd can be equal or greater than the number of adiabatic states

required.

B. Artificial neural networks

In the present work, multilayer perceptron feed-forward

neutral networks are utilized for the diabatization of adiabatic

molecular energy data. A feed-forward neural network is a

function taking a vector η(1) as the input layer and processing

it via intermediate results η(k ), the so-called hidden layers, to

a final output vector η( f ) called the output layer. The vector

elements η
(k)

j
of the kth layer are the neurons (perceptrons).

Each intermediate η
(k ) depends solely on the previous layer

η
(k−1) by

η
(k)

j
= f (k)*

,
β

(k)

j
+
∑

l

ω
(k)

jl
η

(k−1)

l
+
-

︸                           ︷︷                           ︸
f (k)
(

χ
(k)

j

)

. (8)

Here, f (k ) is a function of one variable χ
(k)

j
called the acti-

vation function, χ
(k)

j
being a weighted sum of the values of

the neurons η
(k−1)

l
of the previous layer with an added bias

term β
(k)

j
. The resulting ANN can be visualized as shown

in Fig. 1.

C. Diabatic model (ansatz)

Since the diabatic matrix elements are by nature slowly

varying functions of the nuclear coordinates, it is straight-

forward to expand them as multi-dimensional polynomials

as

Wd
kj(Q) =

∑

α

p
kj
α

∏

l

Q
n� l

l
. (9)

The order of the polynomials is given by the sum of the expo-

nents n =
∑

l nα l. Special boundary conditions like asymptotic

behaviour or periodicity may be incorporated into the defini-

tion of the nuclear coordinates Ql. The symmetry of the sys-

tem is conveniently accounted for by using symmetry-adapted

FIG. 1. A neural network with 2 hidden layers. Arrows correspond to

weighted contributions. Bias terms and activation functions are not visualized.

coordinates in which case certain expansion parameters p
kj
α

may vanish or be strictly related to other expansion param-

eters. In the latter case, it is very convenient to rewrite this

expansion in terms of basis matrices as

Wd(Q) =
∑

L

λL ·ML(Q). (10)

The symmetry relations are encoded in the basis matri-

ces ML(Q) here. This approach is extremely successful and

straightforward in the case of linear vibronic coupling26 or

for other low-order expansions. The order of the expansion

terms needs to be increased if higher accuracy of the PES

model is required over more extended regions of the nuclear

configuration space (NCS). However, the higher-order terms

cause several technical problems for the required nonlinear fit-

ting as well as possibly causing artifacts in the shape of the

PESs. Hence, the choice of terms included in the model usu-

ally requires a trade-off between lower accuracy with higher

stability and higher (local) accuracy at the cost of more erratic

behavior outside the sampling space. In the present work, we

therefore propose a new approach based on an expansion in the

basis matrices of lowest orders. The expansion coefficients are

first obtained from a standard nonlinear least-squares fit and

then are modified by corrections provided by ANNs. As will

be shown below, this new method overcomes the character-

istic oscillation features plaguing typical higher-order poly-

nomial expansions. Furthermore, this approach does not pro-

duce the erratic behavior outside of the sampling space, often

observed in higher-order polynomial expansions. The new

ANN approach, thus, leads to very robust diabatic ANN-PES

models.

The fundamental idea of this method is to render the

expansion coefficients of Eq. (10) coordinate dependent read-

ing

Wd(Q) =
∑

L

λL(Q) ·ML(Q), (11)

where each coefficient is of the form
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λL(Q) =



λ0
L

for uncorrected terms

λ0
L
·
(

1 + η
(f )

kL
(Q)
)

otherwise.
(12)

The constants λ0
L

obtained from standard nonlinear fitting pro-

cedures are modified by the coordinate dependent outputs

of a trained ANN. This way, one can combine the stabil-

ity and basic qualitative description of low-order expansions

while still introducing flexibility to achieve excellent accu-

racy. Of course, the ANN must be trained properly with

respect to ab initio reference data and this training also

involves a necessary adiabatic-to-diabatic transformation. This

requires a modification of standard ANN training algorithms

described next.

D. Backpropagation of generalized outputs

All special properties of ANNs aside, they can be viewed

as parametrized functions modeled for the specific purpose of

closely reproducing an expected output t for each point in the

function’s domain. In the most simple case, the function output

η
(f ) is modeled to directly reproduce the desired output t, in

which case the error can be measured in terms of the difference

e between the two. The problem of finding an optimal set of

parameters can then be expressed in terms of minimizing the

sum of squares error

V =
1

2
|e2 |. (13)

Applying a (gradient descent) step in parameter space to

improve the current parameter set requires derivatives of V

with respect to all parameters ω
(k)

jl
and β

(k)

j
. However, thanks

to the mathematical structure of feed-forward networks, the

derivatives can be easily expressed in terms of derivatives with

respect to the weighted sums χ
(k)

j
by defining

δ
(k)

j
:=

∂V

∂ χ
(k)

j

(14)

which yields

∂V

∂ω
(k)

jl

= δ
(k)

j
· η

(k−1)

l
, (15a)

∂V

∂ β
(k)

j

= δ
(k)

j
. (15b)

These equations generalize naturally for sums over multiple

data points by introducing a sum over all points Qp which is

omitted for brevity. These δ
(k)

j
are in return analytically known

from the recurrence relation

δ
(k)

j
= f ′

(k)
(

χ
(k)

j

)

︸      ︷︷      ︸
f ′

(k)

j

·
∑

k

ω
(k+1)

kj
δ

(k+1)

k
, (16)

which terminates at the final layer, yielding

δ
(f )

j
= −ej · f

′(f )

j
. (17)

Evaluating and applying gradient descent steps by exploiting

the recursive nature of the required derivatives seen in Eq. (16)

is referred to as backpropagation. This scheme is generally

applicable as long as the error can be directly expressed in

terms of the ANN output. However, in principle, the neural

network output η(f ) can relate to the desired output t in arbi-

trarily indirect ways. For example, the present case uses the

individual output values as coefficients for a diabatic expan-

sion, which in turn produces a matrix that is diagonalized to

obtain adiabatic energies comparable to the actual ab initio

data. This processed form of η
(f ), denoted D

(

η
(f )
)

, is now

what is actually comparable to t. Hence we developed a modi-

fication allowing for arbitrary differentiable relations D
(

η
(f )
)

between the output layer and physical reference data. While

the actual backpropagation remains the same, the final layer

now terminates to

δ
(f )

j
=

∂V

∂ χ
(f )

j

= −
∑

l

el ·
∂Dl

(

η
(f )
)

∂ χ
(f )

j

= −
∑

l

el ·
∂Dl

(

η
(f )
)

∂η
(f )

j

∂η
(f )

j

∂ χ
(f )

j

= −
∑

l

el ·
∂Dl

∂η
(f )

j

· f ′
(f )

j
. (18)

In the present case, where D

(

η
(f )
)

refers to the eigenval-

ues of a diabatic matrix which is parametrized by the output

layer η(f ) as seen in Eqs. (11) and (6), partial derivatives are

obtained from numerical differentiation. This is always possi-

ble as long as the target t refers to a continuously differentiable

property. Since the diagonalization is carried out numeri-

cally, the partial derivatives must be computed numerically as

well.

E. (Adapted) Marquardt-Levenberg method

The most basic training algorithm using the back-

propagation would be a simple gradient decent approach.

However, due to the extreme non-linearity of the fitting prob-

lem, it is desirable to choose a more sophisticated algorithm

to optimize a given parameter set Ω (containing all weights

and biases) than a gradient descent method can provide. A

widely used improvement is to utilize a Marquardt-Levenberg

algorithm71 which approximates the exact Hessian using the

Jacobian

Jlk =
∂el

∂Ωk

(19)

and a damping term λ. The working equation to produce the

correction step ∆Ω in parameter space then reads

∆Ω =

(

JT J + λ1
)−1

JT e. (20)

It can be shown, in analogy to the derivatives of V with respect

to individual parameters, that J can be evaluated analytically.

By using backpropagation with a modified termination con-

dition,71 a single backpropagation yields all J lk for a fixed

row index l, meaning one requires as many backpropaga-

tions to construct J as there are physical outputs per data

point (e.g., adiabatic energies). In the standard case, each out-

put neuron corresponds to one physical output and the final

backpropagation layer ∆(f ,l) reads
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∆
(f ,l)

j
= −δlj · f

′(f )

j
(21)

for a given l. We again derived a modified version for the

case that there is no one to one correspondence of neural net-

work output and physical output but an arbitrary differentiable

relation D

(

η
(f )
)

instead. Equation (21) then generalizes to

∆
(f ,l)

j
= −

∂Dl

∂η
(f )

j

· f ′
(f )

j
. (22)

III. APPLICATIONS

The new method should be widely applicable and can

be used for conventional diabatization-by-ansatz problems as

well as for the more advanced approaches like the hybrid diaba-

tization72 recently developed by us. A prototypical Jahn-Teller

problem is chosen to demonstrate the novel ANN diabatiza-

tion. The first three electronic states of NO3, X̃
2
A′2, Ã

2
E′′, and

B̃
2
E′, have been studied by us extensively35,36,73–75 and thus

NO3 is an ideal benchmark system for the present study. The

results of the present work can be compared directly with our

latest diabatic PES model.75

A. Diabatic model for NO3

For this first proof-of-principle study of the new ANN

diabatization method, a restricted-dimensional (5D) model of

the lowest PESs corresponding to the X̃, Ã, and B̃ states of

the planar NO3 radical has been developed. Due to the global

D3h symmetry of NO3, two pairs of PESs become degenerate

at symmetry points and are split for distorted geometries due

to strong JT coupling. Thus, the symmetry and couplings have

to be accounted for properly. Furthermore, the Ã state has

a rather low dissociation threshold and thus the asymptotic

behaviour of the PESs is relevant. To account for the basic

asymptotic behavior and a correct description of the complete

nuclear transformation symmetry in the underlying low-order

model, a set of symmetry-adapted coordinates has been cho-

sen as already described in previous work.33,36 First, a set of

primitive coordinates is defined comprising the three N–O dis-

tances ri and a set of O–N–O anglesαi. The latter are numbered

according to the unique atom not involved in forming the angle.

These primitive coordinates are first transformed nonlinearily

as

mi = 1 − exp(−γ(ri − r0)), (23a)

α′i =
αi − α0

rjrk

, i , j , k (23b)

to account for the asymptotic behaviour. Here, r0 and α0 are

the respective distances and angles at the reference point and

γ is a chosen Morse-parameter. Then the transformed coor-

dinates are symmetry-adapted to yield a breathing mode a, a

degenerate pair of asymmetric stretching modes xs, ys, and a

degenerate pair of asymmetric bending modes xb, yb by

a =

√

1

3
(m1 + m2 + m3), (24a)

xs =

√

1

6
(2m1 − m2 − m3), (24b)

ys =

√

1

2
(m2 − m3), (24c)

xb =

√

1

6

(

2α′1 − α
′
2 − α

′
3

)

, (24d)

yb =

√

1

2

(

α′2 − α
′
3

)

. (24e)

With these coordinates, all linear coupling matrices can

be constructed with two non-trivial kinds of coupling matrix

blocks

εs,b =
*
,
xs,b ys,b

ys,b −xs,b

+
-

and ρs,b =
*
,

xs,b

−ys,b

+
-

(25)

accounting for 2E′ and 2E′′ Jahn-Teller coupling as well as

pseudo-Jahn-Teller coupling between 2A′2 and 2E′. The diag-

onal potential Wd(Q) consists of 12 coordinate-dependent

terms up to second order listed in the Appendix. The three con-

stants defining the energy differences between the electronic

states at the D3h reference geometry are modified by the ANN

as well as the expansion coefficients of the coupling matrices.

This yields a total of 9 ANN-corrected basis matrices. In the

following, the diabatic electronic basis states are used in order
2A′2, 2E′′, and 2E′. This yields the diabatic matrix

Wd(Q) =Wd
diag

(Q) +
*..
,

λ1 0T 0T

0 λ21 0

0 0 λ31

+//
-

+
*..
,

0 0T 0T

0 λ4εs + λ5εb 0

0 0 λ6εs + λ7εb

+//
-

+
*..
,

0 0T λ8ρs
T + λ9ρb

T

0 0 0

λ8ρs + λ9ρb 0 0

+//
-
, (26)

where Wd
diag

contains all uncorrected diagonal terms. The first,

second, and third matrix terms encode the ANN-corrected

contributions to the diagonal potential terms, the Jahn-Teller

coupling blocks, and the pseudo-Jahn-Teller coupling blocks,

respectively. The corrected coefficients λi are of the general

form

λj = λ
0
j ·
(

1 + cj · η
(f )

j
(Q)
)

. (27)

Factors of cj allow further flexibility if particular λ0
i

(read: the

reference model terms) reside in a different order of magnitude

than the other terms (the coupling terms) and hence require a

different treatment.

B. Ab initio data and reference fit

The extremely intricate electronic structure of the NO3

radical requires a rigorous treatment in order to obtain sta-

ble results. The ab initio data points are taken from pre-

vious work75 and were computed by Multi-configuration

Reference Singles and Doubles Configuration Interaction

(MR-SDCI) calculations based on Complete Active Space

Self-Consistent Field (CASSCF) reference wave functions

using a slightly adapted correlation consistent aug-cc-pVTZ

standard basis.74 For details of the ab initio computations,
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see Refs. 36 and 73–75. The data points have been selected

by a stochastic approach described in Ref. 76. To this end,

normalised random vectors are generated which define lin-

ear cuts through the multi-dimensional PESs starting from the

ground state equilibrium structure. Then, ab initio points are

computed along these random directions. By this approach,

we can check and ensure that the CASSCF/MRCI calcula-

tions converge to the correct result. This could not be achieved

by computing single points at random positions due to the

very complicated electronic structure of this system (as typ-

ical for radicals and excited states in general). The sampled

nuclear configuration space is selected such that the resulting

PES model is optimally suited for the simulation of spectro-

scopic properties. The 21 free parameters λ0
j

of the reference

model were fitted against this data set using a Marquardt-

Levenberg algorithm incorporated into a genetic algorithm

with a resulting root mean square (rms) error of roughly

1700 cm−1.

The large data set of roughly 90 000 ab initio reference

energies has been partitioned into training sets of 85% of the

data and external validation sets of the remaining 15% of the

energies. The validation set error is used as a convergence

parameter and does not otherwise contribute to the neural net-

work fit, but has been included in the polynomial reference

model. This technique is referred to as early stopping in the

literature.77 In the present work, this early stopping technique

is implemented in a “relaxed” fashion. Instead of immediately

stopping the fit when the reference error does not improve

along with the fitting error, the reference error must increase

for a fixed number of consecutive cycles (default is 3) before

early stopping is executed. The convergence of the fitting error

does not suffer from this restriction, as discussed in Sec. IV

below. The contributions to the squared error which is mini-

mized during the training of the neural network are weighted

with an exponential decay of energy differences of the

form

σij = exp
(

−α(Ea
j

(

Qi

)

− Ea
j

(

Q0

)

)
)

. (28)

This scheme allows us to weigh regions in NCS more or less

depending on their relevance in the nuclear dynamics and thus

helps to improve the accuracy of the fit in the most relevant

regions.

C. Description of ANN setup

Apart from the actual fit, several parameters and options

regarding the ANN have been taken into consideration to

ensure an optimal setup. The final setup discussed in Sec. IV

involves ANNs with only one hidden layer of varying sizes.

The sigmoid tanh(χ) has been chosen as the hidden layer acti-

vation function. For the final layer, the identity Id(χ) has

been selected. Each ANN is trained starting from a set of

100 randomly generated initial guesses for weights and biases

which are then optimized according to the working equations

from Sec. II E. While modified backpropagation by itself has

been tested, it has been found inferior for the current applica-

tion compared to the modified Marquardt-Levenberg method.

Similarly, “deeper” networks with more than one hidden

layer have been tested with various size combinations, but no

improvement compared to single layer ANNs was observed. It

has been shown by Cybenko that any continuous real function

can be represented with arbitrary accuracy by a single layer

ANN.66 Since this is a consequence of the superposition of

sigmoidal functions, this also holds for multi-layer ANNs and

has been shown by Cybenko for ANNs with two hidden lay-

ers. In principle, it could be more efficient to achieve a certain

accuracy with less optimization parameters by using multi-

ple hidden layers of smaller size. Therefore, we tested this

possibility by setting up ANNs with one through four hidden

layers and layer sizes such that the total number of optimization

parameters is roughly the same. Thus, a benefit of “deep lay-

ering” ANNs would manifest itself in lower rms errors. From

a study involving various ANN topographies listed in greater

detail in Sec. IV below, we conclude that increasing the num-

ber of hidden layers shows no clear advantage for the present

case (see below). Increasing the number of hidden layers can

yield slightly better as well a significantly worse results com-

pared to a single hidden layer. Larger numbers of initial guesses

(up to 2000) were found to have no influence on the overall

quality of the final model. Various splitting schemes for fitting

reference and validation data, respectively, have been studied.

The selection of 15% of the original data as validation set has

been found to be sufficiently large to reduce over-fitting while

not being detrimental to the overall quality of the final model

by removing too many data from the training set. Table III

provides a quick overview of various choices of data partition-

ing, which is discussed in Sec. IV. Furthermore, the validation

data has been ensured to have no characteristic differences

compared to the fitting data, as random reassignment of fit-

ting and reference subsets had no significant effect on the fit

quality.

IV. RESULTS AND DISCUSSION

The single layer ANN setup described in Sec. III C yields

excellent fit results for a surprisingly low number of hidden

layer neurons. The (weighted) rms error of the primitive ref-

erence model is fairly large and about the same for both fitting

and validation data set (1730 cm−1 and 1710 cm−1, respec-

tively). This is to be expected as both data sets have been

included equally in the reference fit. The reference model is

not flexible enough to represent the surface in a satisfying

quantitative way but is sufficient to reproduce the reference

data qualitatively. The remaining deviation is corrected by the

ANN model yielding PESs of very high accuracy. Various neu-

ral network sizes between 20 and 120 hidden layer neurons

have been tested as summarized in Table I. The convergence

behavior of the best rms error (and the corresponding reference

error) is presented in Fig. 2.

Considering the best ANN parametrization found in each

set of 100 initial guesses, the fitting rms expresses satisfac-

tory convergence for 60–75 neurons, the best fit from the

75 neuron set yielding a weighted rms error of 38.4 cm−1.

While the fitting rms expectedly decreases further for ever

increasing network sizes, the difference between fitting and

validation error increases also. For this reason the 75 neuron

network will be considered as the optimal result and primary
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TABLE I. Fitting results of best and 10th best out of 100 trained networks for

each hidden layer size, depending on the number of hidden layer neurons. Both

fitting rms and rms of validation set are shown. All rms errors are weighted

and are given in cm☞1.

Neurons Best Validation 10th best Validation

20 101 103 107 111

40 68.3 72.9 69.9 74.3

50 56.0 60.5 58.5 64.5

55 51.0 56.4 54.4 59.8

60 48.1 52.0 49.5 54.1

65 44.6 49.8 46.6 51.2

70 41.9 47.7 43.2 49.0

75 38.4 42.6 41.1 45.3

80 36.7 42.4 38.6 44.0

90 34.4 41.1 35.0 41.0

100 31.0 37.3 32.0 38.7

120 26.8 34.5 27.8 34.0

example to alleviate potential concerns of over fitting. Inter-

estingly, the closeness of the validation set and fitting set error

(here 38.4 cm−1 and 42.6 cm−1) is consistent throughout many

parametrizations in each set, as even the 10th percentile of each

set of 100 ranked ANNs generally shows the same behavior

as the best ANN itself. This is both a testament to the consis-

tency of the model in areas unknown to the fit as it is to the

stability of the method because a comparably small number

of initial guesses already produces a lot of networks of similar

quality. Knowing the basic capabilities of a 75 neuron single

layer ANN, it may be interesting to consider comparable net-

works of “increased depth,” that is, ANNs with multiple hidden

layers. To achieve a fair comparison one can increase the

number of layers while keeping the number of corresponding

formal parameters (weights and biases) approximately con-

stant and keeping all other technical influences of the fit the

same. Overall, the errors produced by networks of increasing

depth do not show a straightforward improvement compared to

the single-layer case, as seen in Table II. While the ANN with

three hidden layers does produce slightly better fitting errors,

FIG. 2. Weighted root mean square error of the best neural network of a given

set as a function of hidden layer size. Purple line represents fitting set error,

and green line represents validation set error.

TABLE II. Fitting results of best out of 100 trained networks for each network

topography. Both fitting rms and rms of validation set are shown. All rms errors

are weighted and are given in cm☞1.

Hidden layers Neurons/Layer Parameters Best Validation

1 75 1134 38.4 42.6

2 27 1170 96.6 104

3 20 1149 26.4 30.2

4 17 1182 75.9 82.5

both two and four hidden layer networks perform significantly

worse than the single layer model in this particular setup.

Therefore, increasing the number of layers shows no particular

advantage compared to the cost of increased complexity.

Another technical factor influencing the fit is that of early

stopping as described above. In order to investigate potential

(negative) impacts on the overall quality of the PES model,

the single layer 75 neuron model was fitted again without

early stopping and a maximum number of 1000 Marquardt-

Levenberg iterations. Both fitting and validation error have

been found to show no significant improvement (35.7 cm−1

and 40.3 cm−1) at the cost of missing an additional safeguard

against over-fitting. Furthermore, the training without early

stopping is much less efficient in terms of computer time which

might be a big disadvantage for the representation of larger

systems and thus larger ANNs.

Apart from the validation set as used in this work, it is not

uncommon to withhold an additional part of the data set which

is not considered in the fit at all, the so-called testing set. Fur-

thermore, choosing the relative sizes of these three data sets

may be a point of concern. In particular, increasing the valida-

tion (and testing) set(s) may be a way to further decrease the

risk of overfitting. The impact of these two factors has been

studied for the present case, again using the single layer 75 neu-

ron architecture as a benchmark. Table III shows the results of

comparing the present case (85% fit: 15% validation: 0% test-

ing) against a standard literature case (85%: 10%: 5%) as well

as the extreme case of choosing a training and validation set of

equal size, again with and without the 5% testing set. Due to

the extreme similarity of validation and testing rms, no benefit

has been observed in withholding data for a testing set. Instead,

introducing a testing set at the cost of reducing the validation

set has only been found to increase the difference between fit

and validation for the present case. Similarly, an even split

between validation and fitting data has not been found to

have any beneficial effect compared to the cost of increased

TABLE III. Fitting results of best out of 100 trained networks (single layer,

75 neurons) for each choice of data split. The full data set is segmented into

a set for fitting, a validation set for convergence testing (early stopping), and

an independent test set. All rms errors are weighted and are given in cm☞1.

Split Best Validation Testing

85%: 15%: 0% 38.4 42.6 . . .

85%: 10%: 5% 39.3 47.0 45.6

50%: 50%: 0% 37.7 53.2 . . .

50%: 45%: 5% 38.4 50.2 50.2
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FIG. 3. State-resolved convergence behavior of unweighted root mean square

error for ab initio data points up to 1 eV above respective reference point

energy. States are enumerated from ground state to energetically highest lying

state. Gray: weighted fitting set error.

disparity between the two. For this reason, our preferred dis-

tribution of the reference data is 85% fit: 15% validation:

0% testing.

Another useful measure for the accuracy of the surface

is the unweighted rms error of the adiabatic energies below a

certain threshold. Since we are particularly interested in the

quality of the surface in the physically relevant region, the

cutoff energies have been chosen 1 eV above the reference

point energies, which results in about 15 000 ab initio values

for each electronic state.

Considering again all network sizes as shown in Fig. 3 and

Table IV, one finds that the unweighted errors are generally

well below the weighted fitting rms for all states except the

first (and to a lesser degree third) excited state. This indicates

that the physically relevant regions of the surface are repro-

duced even significantly better than the weighted rms over all

ab initio data points would indicate. While the convergence of

the individual states initially appears more erratic than the total

weighted error for small networks, it becomes well-behaved

TABLE IV. Fitting results of best out of 100 trained networks of size 20 to

120, depending on the number of hidden layer neurons. Both fitting rms and

rms of validation set are shown. All rms errors are unweighted with a cutoff

1 eV above each state’s reference energy. All errors are given in cm☞1.

Neurons State 0 State 1 State 2 State 3 State 4

20 49.2 103 63.0 87.4 49.5

40 34.3 75.1 52.0 55.3 37.5

50 32.7 55.2 39.3 47.3 37.4

55 31.0 48.8 36.8 42.3 34.3

60 30.5 48.7 36.4 40.5 31.0

65 27.4 46.4 35.3 35.4 27.6

70 24.6 40.8 30.2 34.1 30.0

75 22.9 39.4 29.3 30.2 23.1

80 22.4 38.7 29.7 28.2 20.8

90 19.9 35.1 27.7 27.1 22.2

100 19.1 31.6 23.1 24.3 20.2

120 16.3 27.1 21.0 21.0 16.5

for networks approaching acceptable sizes (55 onwards). What

remains to be investigated further is the outlying error of the

first excited state, which almost appears to dominate the total

weighted error for large network sizes. This behavior is easily

explained when investigating the topographical complexity of

the individual sheets, as the first excited state has a far more

complicated multi-minimum structure than the ground state,

resulting in more strain for the network. Conversely, the ground

state itself is extremely well reproduced due to its significantly

simpler shape. With both convergences with respect to net-

work size and initial guess number sufficiently expanded upon,

what remains is a deeper analysis of the produced diabatic

model.

Given the previously considered 75 neuron network, the

cutoff-rms of 30.0 cm−1 turns out to be significantly smaller

than the weighted rms of 38.4 cm−1. The ground state by

itself is reproduced with a corresponding cutoff-rms of only

22.9 cm−1. The performance of the ANN model compared to

the polynomial reference model is also demonstrated graph-

ically in Figs. 4 and 5. Figure 4 shows that the ANN model

consistently reproduces the ab initio data quantitatively over

the complete energy range of 6 eV for an arbitrary cut through

the 5D surfaces. While the reference model shows significant

deviations of over 1 eV, the ANN fit is indistinguishable from

the reference energies at the scale of the plot. This also applies

to scans from the validation data set, as can be seen in Fig. 5,

FIG. 4. Comparison of ANN model with underlying primitive reference

model along a linear random cut through the 5D surfaces taken out of the

training set. Above: energies produced by ANN model. Below: energies pro-

duced by polynomial reference model. Circled dots are ab initio fitting data.

τ is an arbitrary scan parameter.
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FIG. 5. Comparison of ANN model with underlying primitive reference

model using validation set data. Above: energies produced by ANN model.

Below: energies produced by polynomial reference model. Circled dots are

ab initio validation data. Data points belong to a random cut through the 5D

surfaces, τ is an arbitrary scan parameter.

indicating consistent behavior beyond the fitting data. Looking

at the two sheets of the 2E′′ state as a function of the e′ stretch

coordinates xs and ys, Fig. 6 displays the symmetry-induced

three equivalent minima characteristic for the lower adiabatic

sheet. While this behavior is to be expected of a quantita-

tively correct surface, it follows in no way from the underlying

reference model. This is due to the fact that linear coupling

FIG. 6. Cross section of diabatic PESs of the two sheets of the 2E′′ and two

sheets of the 2E′ state of NO3 depending on the stretching modes xs and ys.

Contour lines facing outwards are drawn white. The cross section’s rim has

been marked in black to highlight the present conical intersections.

terms as used in the reference model are only capable (with-

out inclusion of higher order coupling terms) of producing

rotationally symmetric “mexican hat”-like potentials. Hence,

all characteristic features of the PESs are inherited from the

ANN correction. The two adiabatic PES sheets belonging to

the B̃
2
E′ state are also displayed in Fig. 6. The three equivalent

PES wells in the 2E′ manyfold are less pronounced compared

to the 2E′′ state and thus not so clearly visible in the figure.

The figure also reveals additional intersections between the
2E′′ and 2E′ PESs which certainly has an impact on the quan-

tum dynamics of the photochemistry of NO3 after excitation

into the B̃ state. These additional conical intersections also

become obvious from Fig. 7 in which the adiabatic energies

of the five state components are displayed along the 1D bond

dissociation coordinate rNO.

The novel ANN approach presented here has one further

extremely positive feature beyond its general ability to repro-

duce the ab initio data with very high accuracy. The Taylor

expansions of the diabatic matrix used so far tend to produce

rapid oscillations and even unbound areas in configuration

space where no ab initio reference data is available. These

Taylor expansions require a considerable trade-off between

local accuracy (higher orders, greater flexibility) and stability

of the model (lower orders, fewer oscillations). By contrast,

the ANN model is found to be completely robust against such

oscillations and unbound regions. Considering, for example,

a scan along an N–O distance as seen in Fig. 7 which has not

been included in the fit, the model shows the ability to pro-

duce a complex coupling structure of the higher states without

producing oscillations in the repulsive wall. The reason for

FIG. 7. Scan along NO distance around the reference point with all other

coordinates frozen at the reference geometry. The ANN model reproduces con-

ical intersections not included in the reference model and shows appropriate

asymptotic behaviour.
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this is that the used neural networks, unlike polynomials, are

by nature composed of slowly varying sub-expressions (sig-

moid functions) which merely increase in number but remain

unchanged in character for larger networks while polynomial

expansions introduce terms of increasingly erratic behavior

which need to be compensated for by all other terms at every

reasonable point in coordinate space. Furthermore, it is impor-

tant to keep in mind that the neural network model does not

need to reproduce the coupling terms directly. It only needs to

correct a low-order polynomial model which is already intrin-

sically bound and free of oscillations. Each contribution is

scaled in a way such that the neural network corrections reside

in the order of magnitude of the expected terms. It turns out

that this is an invaluable property of the novel ANN approach

when used for quantum dynamics simulations. A demonstra-

tion of the strength of the ANN diabatization method pre-

sented here will be given in a forthcoming quantum dynamics

study.

V. CONCLUSIONS AND OUTLOOK

A new diabatization approach is presented to accurately

represent the coupled PESs of strongly interacting electronic

states. The core idea of this method is to express the diabatic

model in terms of a primitive low-order polynomial expan-

sion whose coefficients are then modulated by an artificial

neural network (ANN). This approach combines the stabil-

ity and straightforwardness of a standard low-order vibronic

coupling model with the accuracy provided by the ANN as

required for reliable quantum dynamics simulations. The new

approach is applied to a 5-dimensional 5-state model of pla-

nar NO3. Special attention has been paid to the stability of the

fitting algorithm, the overall consistency of the resulting PESs

throughout the ab initio data, and the quality of the model with

respect to the whole data set including points not used for the

ANN training as well as the regions which are most relevant

for future dynamics calculations, namely, the potential wells.

The model has been found to excel in all of the above areas.

Furthermore, extensive tests show that a single hidden layer is

sufficient for this excellent performance and that “deeper” lay-

ering shows no clear benefit. While the primitive and easy to

obtain reference model only provides a general bound shape of

the potential roughly representing the reference data, the final

model is of outstanding quality over an energy range of 6 eV.

Despite being intrinsically non-linear, the algorithm produces

many high-quality parameter sets even for a small number of

initial guesses. Of the roughly 90 000 ab initio reference ener-

gies obtained from ab initio CASSCF/MR-SDCI calculations,

a subset of 15% has been excluded from the training data,

but used as validation set for a convergence test to prevent

over-fitting. This validation data set has been found also to be

represented with excellent accuracy by the final ANN model

despite these data not being used to train the ANN.

The present study demonstrates that the proposed method

is capable of producing stable, high-quality PESs based on a

straightforward and easy to extend model. What remains is

the extension of the model to a full-dimensional description of

NO3, including the umbrella motion as well as corresponding

couplings in the diabatic matrix. Furthermore, as a final study

of the resulting PESs, appropriate quantum dynamics calcula-

tions are already in progress. As the approach laid out in this

paper is generic, applying it to different systems as well as

different kinds of coupling (e.g., relativistic coupling) appears

to be very promising.

ACKNOWLEDGMENTS

We are grateful to the Deutsche Forschungsgemeinschaft

(DFG) for generous financial support. Calculations leading

to the results presented here were performed on resources

provided by the Paderborn Center for Parallel Computing.

APPENDIX: DIAGONAL MODEL TERMS

For the sake of simplicity, let r2
s,b

be given as

r2
s,b = x2

s,b + y2
s,b. (A1)

The totally symmetric diagonal contributions of the reference

model are expressed here in terms of three independent scalar

functions V i(Q)

Wd
diag

(Q) =
*..
,

V1(Q) 0T 0T

0 V2(Q)1 0

0 0 V3(Q)1.

+//
-

(A2)

Apart from the constant terms, referring to the vertical exci-

tation energies at the reference point, an expansion of each

V i(Q) up to second order yields four (constant) coefficients

µi
k

and the corresponding polynomial terms

Vi(Q) = µi
1 · a + µi

2 · a
2 + µi

3 · r
2
s + µi

4 · r
2
b . (A3)
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ABSTRACT

A recently developed scheme to produce high-dimensional coupled diabatic potential energy surfaces (PESs) based on artificial neural net-
works (ANNs) [D. M. G. Williams and W. Eisfeld, J. Chem. Phys. 149, 204106 (2019)] is tested for its viability for quantum dynamics
applications. The method, capable of reproducing high-quality ab initio data with excellent accuracy, utilizes simple coupling matrices to
produce a basic low-order diabatic potential matrix as an underlying backbone for the model. This crude model is then refined by making its
expansion coefficients geometry-dependent by the output neurons of the ANN. This structure, strongly guided by a straightforward physical
picture behind nonadiabatic coupling, combines structural simplicity with high accuracy, reproducing ab initio data without introducing
unphysical artifacts to the surface, even for systems with complicated electronic structure. The properties of diabatic potentials obtained by
this method are tested thoroughly in the present study. Vibrational/vibronic eigenstates are computed on the X̃ and Ã states of NO3, a noto-
riously difficult Jahn-Teller system featuring strong nonadiabatic couplings and complex spectra. The method is investigated in terms of how
consistently it produces dynamics results for PESs of similar (fitting) quality and how the results depend on the ANN size and ANN topogra-
phy. A central aspect of this work is to understand the convergence properties of the new method in order to evaluate its predictive power. A
previously developed, high-quality model utilizing a purely (high-order) polynomial ansatz is used as a reference to showcase improvements
of the overall quality which can be obtained by the new method.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125851., s

I. INTRODUCTION

The development of accurate high-dimensional potential
energy surfaces (PESs) is of fundamental interest for the theoret-
ical treatment of molecular systems, providing a foundation for
quantum-dynamical studies. Several strategies have been established
for developing such PESs in the case of a single adiabatic electronic
state, such as local interpolation techniques,1–5 or least-squares fit-
ting approaches utilizing invariant polynomials encoding complete
nuclear permutation-inversion (CNPI) symmetry of indistinguish-
able nuclei.6 However, extending such approaches to PESs includ-
ing excited states proves difficult as state-state interactions enter the

picture. Attempts to tackle this issue include the use of the modi-
fied Shepard interpolation7–9 ormore recently invariant polynomials
and the CNPI symmetry.10,11

A fundamental concern that arises when accounting for state-
state interactions is the appropriate representation of PESs and their
couplings as the Born-Oppenheimer approximation will not hold for
certain regions in nuclear configuration space (NCS) where inter-
actions among electronic states become significant. In such a case,
a quasidiabatic representation of the coupled electronic states has
been found to be of great advantage.12–25 For the sake of brevity,
we will refer to quasidiabatic representations as “diabatic” repre-
sentations from here on. Such a representation requires the state
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basis to represent the electronic Hamiltonian and to preserve the
character of the electronic states as much as possible throughout
NCS such that derivative coupling becomes small enough that it can
be neglected safely. As a consequence, the electronic Hamiltonian
is represented by a nondiagonal matrix encoding all state energies
and couplings. Accordingly, the matrix elements of the electronic
Hamiltonian become well-behaved functions of the nuclear coordi-
nates, decreasing the complexity required to express them analyti-
cally. A commonly used, straightforward approach utilizing diabatic
representations is the multimode linear vibronic coupling method
by Köppel, Domcke, and Cederbaum.26 Analogous methods have
been developed also by Yarkony and co-workers.27–30 Such meth-
ods, while well-suited for ultrafast nonadiabatic processes, do not
provide the flexibility needed to express extended regions of the
coupled PESs needed for more complicated dynamical processes.
Consequently, various approaches have been developed to prop-
erly account for extended regions of the PES, such as extensions of
vibronic coupling models to higher orders31–36 and methods utiliz-
ing properties of the adiabatic electronic wave functions for a dia-
batization.18,21,22,24,37–42 Members of the latter group of diabatization
approaches involving electronic wave function information usually
do not require a model diabatic matrix, thus not yielding a set of
PESs in closed form. Hence, these (pointwise) diabatizationmethods
require a second step in which an external model is used to construct
(fit) the diabatic matrix elements.

Overall, constructing accurate diabatic models in closed form
beyond simple models such as linear vibronic coupling remains a
significant problem for systems beyond triatomics.43–46 Attempts to
do so include the aforementioned extension of vibronic coupling
models in a variety of ways,31–36 using the modified Shepard interpo-
lation7–9 or invariant polynomials and the CNPI symmetry10 as well
as by choosing elaborate functional forms for the diabatic matrix ele-
ments.43–45 Nonetheless, instances of such diabatic surfaces remain
scarce in the literature.

An alternative, more recent approach to represent PESs
involves using artificial neural networks (ANNs),47–64 which are fit-
ted (“trained”) against ab initio or some reference data. ANNs, as
has been shownmathematically, are capable of uniformly represent-
ing any continuous real function of n dimensions up to arbitrary
accuracy.65 This makes them in principle suitable for representing
arbitrary PESs up to the limitations of the underlying data. Another
prominent feature of ANNs is that, once trained, they can be eval-
uated very efficiently as their evaluation consists mostly of matrix-
vector multiplications, making them particularly suitable for quan-
tum dynamics methods such asmulti-configuration time-dependent
Hartree (MCTDH),66,67 especially when using the correlated discrete
variable representation (CDVR)68 scheme for which the evaluation
of the PES is the most time demanding part. Without using the
CDVR approach, a sum of products form of the PES model can
be accounted for by special formulations of the ANN.56,64,69 Despite
their mathematical properties, the principal capabilities of ANNs are
of course limited by practical concerns such as the acquisition of
data, limitations of the training algorithm, and an issue commonly
referred to as “overfitting.” However, ANNs have been used already
with impressive results to represent a single PES based on high-
level ab initio data.54,63,64 Very recently, the first attempts to extend
the use of ANNs to diabatic PES models were documented in the
literature.70–73

Our recently developed approach presented in Ref. 73 com-
bines the basic, simple structure of a low-order vibronic coupling
ansatz with the ANN introducing the flexibility needed to construct
highly accurate PESs. Planar (5D) NO3 was chosen as the first test
case because it is certainly a tough, nontrivial problem and, sec-
ond, plenty of data and experience are available. The new approach
has proven to perform better in terms of overall accuracy than the
previous approach which was based on inclusion of high-order poly-
nomial expansions.31,32,36,74 More than one parameterization of the
ANNs as defined in Ref. 73 leads to very similar rms vs the electronic
ab initio energies. Selecting one of them as the “most physically rele-
vant” is thus not straightforward. In the present study, we investigate
the performance of these ANN based coupled PESs by computing
the bound states they support. Similar to the previous paper,73 planar
NO3 serves as a benchmark system. The low-lying electronic states of
NO3 are a notoriously difficult system with strong Jahn-Teller (JT)
coupling.35,36,75–78 In this work, only planar geometries are consid-
ered, mostly because of the computational cost reduction in dealing
with a 5-dimensional instead of a 6-dimensional system. This pla-
narity constraint also allows us to determine the vibronic energies
of the first excited state of NO3 as it decouples from the other elec-
tronic states when NO3 stays planar. The first excited state presents
a strong JT effect. We investigate the method’s performance by con-
verged accurate quantum dynamics computations of the vibrational
states supported by the 2A′2 adiabatic electronic ground and of the
vibronic levels supported by the 2E′′ first excited state. Energies are
compared with the ones supported by the potential energy surfaces
previously published36,74 and based on a high-order polynomial dia-
batic model. A direct comparison is made possible due to the use of
the same underlying ab initio data set. The results are also compared
to the available experimental data for the two 2A′2 and

2E′′ electronic
states.

II. DIABATIC POTENTIAL MODEL

In this work, the properties of the recently developed restricted-
dimensional (5D) model of the lowest PESs corresponding to the
X̃ 2A′2, Ã

2E′′, and B̃ 2E′ state of the planar NO3 radical are tested
thoroughly. A brief summary of the crucial aspects of the pre-
sented model and diabatization method is given below, all details
regarding both being available in Ref. 73. The core idea of this
method is to combine the advantages and general structure of a
low-order vibronic coupling model with the accuracy of ANNs.
To achieve this, we construct a minimal, symmetry-adapted poly-
nomial model and fit its coefficients by a nonlinear least squares
procedure yielding a qualitatively correct but not very accurate
initial model that follows the general shape of the final surfaces.
Then, in a second step, most of the obtained parameters are mod-
ified by an ANN making them coordinate dependent. This way,
the polynomial model dictates the overall structure of the cou-
pling model, while the neural network applies corrections to indi-
vidual terms yielding significantly improved (and in fact excellent)
accuracy.

In the present case, our underlying ansatz for the dia-
batic matrix is expressed as a sum of diagonal and coupling
matrices,12,32,73
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W
d(Q) ≙Wd

diag(Q) +
⎛⎜⎜⎝
λ1 0T 0T

0 λ21 0

0 0 λ31

⎞⎟⎟⎠

+

⎛⎜⎜⎝
0 0T 0T

0 λ4εs + λ5εb 0

0 0 λ6εs + λ7εb

⎞⎟⎟⎠

+

⎛⎜⎜⎝
0 0T λ8ρs

T + λ9ρb
T

0 0 0

λ8ρs + λ9ρb 0 0

⎞⎟⎟⎠. (1)

The matrices εs ,b are the first-order Jahn-Teller coupling blocks, and
the vectors ρs ,b are the pseudo-Jahn-Teller coupling blocks. These
couplings are given by

εs,b ≙ ⎛⎝
xs,b ys,b

ys,b −xs,b
⎞
⎠ and ρs,b ≙ ⎛⎝

xs,b

−ys,b
⎞
⎠, (2)

where symmetry-adapted coordinates corresponding to the degen-
erate asymmetric bending and stretching modes xs ,b, ys ,b have
been used. These coordinates, together with a totally symmetric
stretch coordinate a, are collected in the nuclear coordinate vec-
tor Q. They have been presented in previous work33,36 and are
given in the Appendix for the ease of the reader. They are con-
structed from a set of primitive valence coordinates specifically cho-
sen to account for the basic asymptotic behavior in the underly-

ing low-order model. In Eq. (1), Wd
diag(Q) is a diagonal matrix

which contains first and second order terms as detailed in previ-
ous work33,36,73,74 and reproduced in the Appendix. The 12 param-
eters appearing in this matrix are not modified by the ANN pro-
cedure. The three subsequent 5 × 5 matrices of Eq. (1) refer to
the usual zero-order (or constant), linear Jahn-Teller and linear
pseudo-Jahn-Teller coupling matrices. When the parameters λj(Q)
are kept constant (i.e., independent of Q), the model resumes to the
usual linear vibronic coupling model in symmetry-adapted nuclear
coordinates with λ0j , j ≙ 1, 9 being the usual parameters of the
expansion. The ANN step modifies this picture by allowing the 9
parameters to vary with Q. These 9 coordinate-dependent λj are
given by

λj(Q) ≙ λ0j ⋅ (1 + cj ⋅ η(f )j (Q)), (3)

where η
(f )
j are the neural network outputs and the λ0j are obtained

from a nonlinear least squares fit. Thus, the neural network output of
a single ANN depending on the five input coordinates only provides
corrections to the low-order polynomial model as a function of the
coordinates, going beyond constant coefficients in the expansions.
Additional scaling factors cj are introduced to allow for further flex-

ibility if particular λ0j (read: the reference model terms) reside in a
different order of magnitude than other terms and hence require a
different treatment. The coupling blocks, together with their corre-
sponding λj, account for

2E′ and 2E′′ Jahn-Teller coupling as well as
pseudo-Jahn-Teller coupling between 2A′2 and

2E′, providing 6 inde-
pendent coupling terms in total. Additionally, the constants defin-
ing the energy differences between the electronic states at the D3h

reference geometry are modified by the ANN (λ1−3).

All neural networks tested belong to the broad category of feed-

forward neutral networks, that is, a function taking a vector η(1) as

input (layer) and processing it via intermediate results η(k), the so-

called hidden layers, to a final output vector η(f ) called the output

layer. The vector elements η
(k)
j of the kth layer are the neurons (per-

ceptrons). Each intermediate η(k) depends solely on the previous

layer η(k−1) by

η
(k)
j ≙ f (k)(β(k)j +∑

l

ω
(k)
jl

η
(k−1)
l
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f (k)(χ(k)j )

. (4)

Here, f (k) is a function of one variable χ
(k)
j called the activation

function, χ
(k)
j being a weighted sum of the values of the neurons

η
(k−1)
l

of the previous layer with an added bias term β
(k)
j . In the

present case, f (k) is chosen to be tanh for all hidden layers and as
the identity Id for the output, respectively. The network architec-
ture ultimately to turn out as optimal in our present case features a
single hidden layer with 75 neurons, corresponding to a function of
roughly 1100 formal parameters. Both neural networks with more
or less neurons, respectively, as well as “deeper” architectures fea-
turing more hidden layers have also been investigated. All networks
have been trained using batches of 100 randomly generated initial
guesses for weights and biases which are then optimized utilizing a
specialized modification to a standard ANN Marquardt-Levenberg
method we developed alongside the present diabatization scheme.73

The inclusion of more than one initial guess arises from the nonlin-
ear nature of the fit. The reference model resulting from the fit of the

constants λ
(0)
j yields a root mean square (rms) error of 1730 cm−1

which is about two orders of magnitude higher than the final error
after the ANN training of 38.4 cm−1. More specifically, this model
reproduced ab initio energies of the 5 adiabatic electronic states
with an excellent accuracy with unweighted rms values of 22.9, 39.4,
29.3, 30.2, and 23.1 cm−1, respectively, for energy ranges up to 1 eV
above the energies of each state for the reference geometry point.
The 10th best network of the same batch shows very similar rms val-
ues. These (and all other later considered) fits used the same data
set containing roughly 90 000 adiabatic energies in total, of which
15% were withheld from the neural network fit for the sake of exter-
nal validation. The necessary energy data points for performing the
fit are taken from previous work74 and were computed at the Mul-
ticonfiguration Reference Singles and Doubles Configuration Inter-
action (MR-SDCI) level of theory based on Complete Active Space
Self-Consistent Field (CASSCF) reference wave functions using
a slightly adapted correlation consistent aug-cc-pVTZ standard
basis.79 For further details regarding the ab initio calculations, see
Refs. 36, 74, and 79–81.

At first glance, the remaining rms errors are slightly larger
than what has been achieved for single, uncoupled, adiabatic PESs
so far. However, the errors are similar to previous ANN repre-
sentations of diabatic potential models based on ab initio refer-
ence data.70,72 Smaller rms errors were obtained for a diabatic ANN
representation based on model reference data.71 One reason for
this observation most probably is the complicated topography of
the coupled adiabatic PESs to be reproduced. Very accurate ANN
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PESs can be obtained for spectroscopic purposes in the case of a
single adiabatic state single-well problem. This is not the case in
the present work, and it seems indicative that the second adiabatic
PES sheet, corresponding to a very pronounced triple-well PES with
low dissociation threshold, shows a significantly higher rms error
than the single-well ground state PES. This lower adiabatic sheet
of the Ã 2E′′ excited state dominates the vibronic energy levels
of the Ã state manifold (see below). A second reason most likely
lies in the reference data and explains why generally smaller rms
errors are obtained when analytic model PESs are used as refer-
ence data. It is a very demanding task to compute the electronic
structure of excited states for which usually multiconfiguration ref-
erence methods have to be applied. In the present case, the inter-
nally contracted MR-SDCI method by Werner and Knowles has
been used, which still is the state of the art.82,83 However, due to
the internal contraction scheme, the number of contractions (vari-
ational parameters) is not constant throughout extended regions
of the nuclear configuration space. Wherever the number of con-
tractions changes significantly, small jumps in energy are observed,
which can be up to about 30 cm−1 in our experience. This sets a
natural limit to the rms error that can be achieved by the ANN
diabatization without introducing artifacts by overfitting. A second
aspect worth mentioning is the required number of reference data.
For a 5D problem it might appear unnecessary to use 90 000 refer-
ence energies. However, since five adiabatic states are computed, this
corresponds only to about 18 000 different geometries. Furthermore,
nine independent matrix elements must be determined accurately
using these reference data. In this light, the number of used reference
data is certainly not too large but rather necessary to obtain robust
results.

Finally, a short note on choosing a 5D rather than the full-
dimensional 6D model is provided. First of all, NO3 is predomi-
nantly planar and many experimental observations can be simulated
without including the out-of-plane mode. Furthermore, the Ã state
is decoupled for planar geometries and thus, the vibronic eigenstates
can be obtained easily, which would be much more difficult in the
full-dimensional and fully coupled case. Second, the performance of
the ANN diabatization is tested by a large number of subsequent
quantum dynamics calculations. Such calculations can be performed
in 6D without problems, but doing literally hundreds to thousands
of such calculations as was necessary for the present study would
be prohibitively expensive without gaining more insight than by the
restriction to planar 5D NO3. However, a full 6D ANN model will
be published shortly.

III. COMPUTATIONAL DETAILS

Vibrational/vibronic energy levels have been calculated on the
adiabatic ground state as well as the (for planar geometries sep-
arable) first excited state in order to benchmark the novel ANN
diabatic PES model. The second excited state of 2E′ symmetry,
however, is coupled to the 2A′2 ground state by pseudo-JT cou-
pling, and thus, vibronic eigenstates would not be accessible easily
and are not computed in the present study. For the computation
of the vibrational/vibronic energy levels, a time-independent Her-
mite discrete variable representation (Hermite-DVR) was used84

in which the corresponding Hamiltonian has been diagonalized

by an exact short iterative Lanczos method. Normal coordinates
from MRCI calculations at the D3h point have been used, with
the out-of-plane umbrella bending mode (ν2, a

′′
2 ) being excluded

for these 5D calculations. The remaining coordinates correspond
to the symmetric stretch (ν1, a

′
1) as well as the asymmetric stretch

(ν3x ,3y, e
′) and asymmetric bend (ν4x ,4y, e

′). The kinetic energy
operator is transformed into the DVR grid point basis, neglect-
ing vibrational angular momenta, as previously established in
Ref. 74.

The associated number of DVR grid points (i.e., basis func-
tions) for each mode is 15, 17, 17, 17, and 17 for the ground state
and 19, 25, 25, 25, and 25 for the computations on the two cou-
pled surfaces of the first excited state. This yields total energies con-
verged to better than 10−1 cm−1, degeneracies being reproduced
better than 10−2 cm−1 for all calculated levels. The obtained vibra-
tional and vibronic eigenstates are analyzed in the same manner as
in our previous studies.36,74,78

Our previously developed high-order polynomial based 5 × 5
diabatic model74 has been used already to compute the vibrational
energy levels supported by ground electronic state in full dimen-
sionality. The vibronic levels supported by the E′′ state have also
been determined using an earlier 2 × 2 model in Ref. 36. In order
to generate usable reference data, we recomputed these data using
the older PES models in the reduced 5D dimensionality considered
here so that a comparison with the ANN models is possible. The
MCTDH approach,66,67,85 together with the state average and block
diagonalization scheme as described in Ref. 86, is employed to this
end. As in the previous studies, the six internal curvilinear coordi-

nates as proposed in Ref. 87 are utilized, that is ρ(cu), ϑ(cu), φ(cu),

θ(cu), ϕ(cu), χ(cu), keeping θ(cu) = π/2 to impose planarity. With this
choice of the coordinate system, the kinetic term is exact forD3h and
close to exact for the other geometries. As proposed in Ref. 87 and
used in Refs. 74 and 78, the fourth order Taylor expansion of the
only term not in the sum-of-product form is used here. The basis
set definitions used for the MCTDH approach are given in Table I.
The potential term is evaluated using the correlated discrete variable
representation (CDVR).33,68

TABLE I. Wave function representations given by the number of single particle func-
tions (n), the number of Fourier points (N), and the range of the underlying box (in
a.u.) for the six curvilinear coordinates constructed using mass weighted Cartesian
coordinates. The two columns provide the details of the MCTDH basis for the 2A′2
ground state surface74 and for the 2E′′ first excited state coupled surfaces.36

2A′2
2E′′

Coord. n N Range n N Range

ρ(cu) 5 32 [628:694] 7 32 [640:800]

ϑ(cu) 7 32 [0.845:1.055] 10 32 [0.805:1.105]

φ(cu) 7 32 [0.655:0.915] 11 32 [0.615:0.955]

θ(cu) π/2 π/2

ϕ(cu) 9 32 [0.777:1.377] 9 32 [0.860:1.235]

χ(cu) 10 32 [2.641:3.541] 9 32 [2.829:3.454]
Electronic 1 1 2 2
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IV. RESULTS AND DISCUSSION

The various ANN parameterizations fitted and tested in Ref. 73
are studied systematically below. The results of that previous study
suggested that an ANN model with a single hidden layer of 75 neu-
rons would provide an optimal balance between fitting accuracy and
robustness against overfitting. However, that assessment was based
on fitting errors only, while the present study will focus on quantum
dynamics results obtained with those ANN models. The 75 neuron
model is chosen as a reference case and the other ANN models will
be compared with respect to these reference results. The dynamics
results of the various ANN models will also be compared with the
results obtained with our previously developed purely polynomial
models36,74,78 for both ground and 2E′′ excited states. Our earlier
polynomial PES models reproduce the reference data with similar
rms errors but are much harder to fit. The performance of the new
approach finally will be assessed by its capability of reproducing the
available experimental data.88,89

A. Impact of the hidden layer size

Since both the size of the input layer (coordinates) and the
size of the output layer (modified coefficients) are dictated by the
general model, the number of neurons in the hidden layer is the pri-
mary convergence parameter left for fitting a given ab initio data
set. As such, it will be the primary focus of our investigations. If
an ANN is viewed as a simple, parameterized function, the num-
ber of hidden layers as well as each hidden layer size determines the
neural network’s number of formal parameters. More specifically, in
the case of a single hidden layer, each neuron exactly corresponds
to a set of 15 formal parameters to be fitted additionally (9 + 5
weights, 1 bias). While the number of formal parameters increases
in a more involved manner for multiple hidden layers, we will focus
solely on the single layer case in this section. The central question
here is whether or to which degree increasing/decreasing the num-
ber of hidden layer neurons (thus, fitting parameters) significantly
influences computed energy levels. Therefore, in this section, we

are not particularly interested in the energy levels themselves, but
rather ask how much equivalent levels deviate from the reference
model.

In order to properly quantify what a significant influence on
the computed energy levels is, let us first consider otherwise iden-
tical neural networks that differ only in the explicit values of their
weights and biases and marginally in terms of fitting error. Due to
the nonlinearity of ANNs, many fits with different initial guesses
are performed and ranked according to the resulting fitting error.
For the NO3 system, we found that the fitting errors of the best
10 obtained parameterizations hardly differ (41 cm−1 vs 38 cm−1).
Therefore, we compare the ten best out of 100 fitted ANNs includ-
ing the 75 neuron reference network. They are hereafter referenced
to by their “rank,” rank nmeaning the nth best model when consid-
ering the fitting error. The computed vibrational excitation energies
on the adiabatic electronic ground state PES are presented in Table II
for the best ANN.

The computed vibrational excitation energies of the compet-
ing networks (rank 2–10) are provided in terms of deviations from
the best network. The two last columns of Table II provide the
average excitation energies over the 10 ANNs, as well as the stan-
dard deviation. Considering this set of competing networks, one
finds that the produced energies differ within a few cm−1, the stan-
dard deviation over all states being roughly 2 cm−1. The values
of Table II are reproduced in Fig. 1 in order to better visualize
how the results of the different networks are spread around the
average energies. It is observed that, considering that these 10 net-
work parameterizations are of very similar quality in terms of fitting
error, the deviations among the vibrational level energies within
the given spread are intrinsic to the model. This means that they
are produced by the flexibility of the ANN approach to reproduce
the ab initio reference data. In this sense, we consider all changes
to the model that only produce deviations within this range to be
insignificant as they become a priori indistinguishable from com-
peting networks of the same architecture as our reference. Thus,
from here on, we will denote the excitation energies with a ±σi to

TABLE II. Comparison of computed transition energies for the X̃2A′2 state of 14NO3 (in cm−1) for the 10 best (in terms of fitting error) ANNs from a set of 100 fitted neural
networks, including the reference ANN. Standard deviation is provided with respect to average energy levels μi .

Best 2nd 3rd 4th 5th 6th 7th 8th 9th 10th μi σi

State Ei − E0 Deviations from best network Mean Std. dev.

1/2 366.8 3.9 1.8 4.1 3.1 1.5 4.6 3.7 1.8 3.7 364.0 1.5
3 756.3 3.9 0.5 4.3 −0.6 −0.8 3.9 1.2 −3.2 3.5 755.1 2.5
4/5 774.6 6.1 2.4 3.8 3.6 1.2 6.1 5.6 0.8 2.9 771.3 2.2
6/7 1039.7 3.4 −2.5 −1.3 −0.8 1.8 3.3 −2.7 3.0 0.2 1039.3 2.3
8 1054.9 0.2 −0.2 −0.7 0.0 −0.4 0.6 −1.1 1.0 −1.0 1055.1 0.7
9/10 1179.3 3.7 1.4 3.6 −2.6 −2.3 3.0 −0.7 −5.0 −0.4 1179.2 2.9
11 1187.7 5.6 2.1 2.4 1.8 −0.7 5.6 4.4 −4.7 2.2 1185.8 3.1
12 1215.1 8.7 4.4 4.2 5.6 1.7 8.5 8.0 0.8 0.7 1210.9 3.4
13 1344.9 3.7 −3.2 0.6 −1.3 1.4 5.0 −3.1 −0.3 0.4 1344.5 2.6
14/15 1417.7 2.9 0.5 2.1 1.9 0.5 4.1 1.0 1.7 1.8 1416.1 1.2
16/17 1490.0 4.1 −1.0 1.0 1.9 1.7 4.3 −2.0 0.2 1.3 1488.9 2.0
18 1498.2 8.7 0.5 −0.1 5.3 3.2 9.8 0.9 7.5 1.9 1494.4 3.8
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FIG. 1. Visual representation of the first 15 states given in Table II, showing devi-
ations of the 10 best networks from respective average state energies. Level
distances, not to scale, correspond to a deviation of 20 cm−1 from average. Gray:
Standard deviations σ i around average energies. Average energies are provided
on the right-hand side together with the deviation σ i in cm−1.

emphasize this point. While individual networks deviate more from
the average than others (e.g., network 7), the overall spread achieved
remains around or below 10 cm−1. This indicates that the method
does not produce a single exceptional network among the number

of tested reasonable parameterizations. Instead, the method appears
to produce several network parameterizations yielding consistent
results under present conditions. Thus, the method appears to work
robustly.

Deviations in excitation energies for a representative subset
of hidden layer sizes are summarized in Table III, which can now
be interpreted within the limits of our estimated intrinsic errors.
The 40 neuron network, having almost half the number of for-
mal parameters, deviates significantly for individual excitations (in
particular 4/5, 11, and 12), causing energy levels to be signifi-
cantly spread around the reference computation. This is intuitively
understandable as the significant loss of flexibility compared to
the reference model eventually limits the quality of the surface in
areas relevant for the quantum dynamics. The 60 neuron network
shows similar features although they are less pronounced as the
network is significantly more flexible. In general, states 1/2, 8, and
14/15, which already proved to be extremely robust with respect
to the network choice within the same set, show very low devia-
tion among reasonable network sizes. Increasing or decreasing net-
work size by 5 neurons (that is 70 and 80 neurons) largely leaves
the overall quality of the model unchanged, with the ANN being
marginally more susceptible to a decrease in parameters than to
an increase. Similarly, increasing the number of neurons to 100
(over 30% more parameters) yields no energy shift that is distin-
guishable from noise caused by choosing a different 75 neuron
network.

The vibronic levels supported by the 2E′′ first excited state of
the radical are an even more stringent test of the robustness of
the proposed ANN parameterizations of coupled surfaces as the
coupling terms are directly used in the dynamics computations.
Vibronic energy levels for the reference coupled surfaces (single hid-
den layer with 75 neurons) as well as deviations obtained among the
ten best networks of this architecture are summarized in Table IV in
analogy to Table II. The data are reproduced, furthermore, in Fig. 2

TABLE III. Comparison of computed transition energies for the X̃2A′2 state of 14NO3 (in cm−1) for different hidden layer
sizes. The vibrational excitation energies of the reference (75) surface are reported together with the deviation σ i as defined
before (see text). For the five hidden layer sizes tested, δ(Ei − E0) provides level shifts compared to the reference network
(75). The dotted vertical line materializes the separation between increased and decreased hidden layer sizes with respect to
the reference.

75 40 60 70 80 100

State Ei − E0 ± σi δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0)

1/2 366.8 ± 1.5 6.2 7.8 1.2 ⋮ 3.0 1.5
3 756.3 ± 2.5 5.2 5.8 −5.1 ⋮ 3.0 2.6
4/5 774.6 ± 2.2 13.6 10.7 3.1 ⋮ 4.9 2.9
6/7 1039.7 ± 2.3 −0.6 0.7 3.9 ⋮ −4.1 1.6
8 1054.9 ± 0.7 0.6 0.2 0.0 ⋮ −0.4 0.0
9/10 1179.3 ± 2.9 9.0 5.9 −6.1 ⋮ 2.8 3.3
11 1187.7 ± 3.1 15.3 7.1 −1.0 ⋮ 3.6 3.0
12 1215.1 ± 3.4 21.9 13.3 7.6 ⋮ 7.8 3.1
13 1344.9 ± 2.6 7.0 5.3 −1.7 ⋮ −4.3 0.1
14/15 1417.7 ± 1.2 4.7 6.2 −0.8 ⋮ 0.8 1.0
16/17 1490.0 ± 2.0 −0.1 0.8 1.4 ⋮ −0.4 2.6
18 1498.2 ± 3.8 6.0 4.4 9.6 ⋮ 1.7 6.0

J. Chem. Phys. 151, 164118 (2019); doi: 10.1063/1.5125851 151, 164118-6

Published under license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

TABLE IV. Comparison of computed transition energies for 14NO3 (in cm−1) on the Ã state for the 10 best (in terms of fitting error) ANNs in analogy to Table II. All states are
given labels in terms of excitations in the breathing mode (a) as well as radial and tangential excitations in the degenerate stretch and bend modes (rs ,b, ts ,b). Assignments
marked with (∗) display visible contamination of other rs excitation(s). States to which no meaningful label could be assigned are marked with ?

Best 2nd 3rd 4th 5th 6th 7th 8th 9th 10th μi σi

State Assignment Ei − E0 Deviations from best network Mean Std. dev.

2 0 a′′1 56.6 −2.5 3.2 2.9 3.4 0.6 0.9 3.5 6.3 −1.8 55.0 2.7
3/4 r1s e

′′ 516.2 −15.3 26.0 4.3 1.2 −14.0 −6.5 0.8 18.8 2.2 514.5 12.9
5 t1b a

′′
2 539.3 −5.6 −4.0 −3.2 −7.2 −9.7 −5.9 −0.2 −8.0 −2.2 543.9 3.3

6 r1s a
′′
1 576.4 −18.4 22.8 −0.4 −2.0 −11.8 −6.5 −2.9 17.1 −0.4 576.7 12.2

7/8 t1b e
′′ 604.7 −14.5 2.8 0.9 −3.3 −10.5 −5.3 2.6 0.1 −2.7 607.7 5.7

9/10 r1b e
′′ 790.0 −1.6 16.8 −3.4 14.2 10.5 −4.3 7.4 11.1 −10.6 786.0 9.2

11 r1b (∗) a′′1 833.9 −17.8 39.1 2.6 16.1 −3.7 −3.7 4.6 19.0 −10.6 829.3 16.4
12/13 r2s e

′′ 1013.4 −38.3 59.3 1.7 −3.2 −30.6 −7.1 −5.5 35.5 −6.4 1012.9 28.5
14 r1s t

1
b a
′′
2 1024.8 −19.5 21.5 2.8 −2.1 −18.8 −10.1 2.3 15.9 4.8 1025.2 13.3

15 r2s a
′′
1 1084.4 −35.9 48.8 −2.3 −3.9 −20.2 −10.5 −3.9 31.2 −8.3 1084.9 24.2

16/17 t2b (∗) e′′ 1100.1 −27.4 15.9 −2.8 −11.4 −21.5 −8.7 −3.4 5.4 −4.5 1105.9 12.5
18/19 r1s t

1
b (∗) e′′ 1151.2 −29.7 7.9 0.1 −8.5 −18.3 −8.5 0.9 1.4 −1.0 1156.8 11.1

20 t2b a
′′
1 1161.8 −24.4 0.7 0.1 −9.5 −16.8 −6.3 2.9 −6.0 −3.6 1168.1 8.6

21/22 a1 e′′ 1179.8 6.3 8.6 5.0 1.2 −2.6 4.3 0.5 4.1 4.0 1176.7 3.3
23 t1s a

′′
2 1276.1 −0.6 0.2 −7.6 −4.3 −4.3 −11.2 −3.6 −5.0 1.4 1279.6 3.9

24 a1 (∗) a′′1 1291.4 −0.1 51.6 16.5 17.5 −1.3 16.0 5.9 21.9 −4.2 1279.1 16.7
25/26 r1br

1
s e
′′ 1302.8 −25.3 54.3 0.0 19.1 −4.0 −0.2 5.6 22.1 −7.6 1296.4 21.4

27/28 ? e′′ 1357.4 −19.4 25.2 −1.7 4.1 −5.1 −7.0 4.6 9.8 −11.4 1357.5 12.3

FIG. 2. Visual representation of the first 15 states of Table IV, showing deviations
of the 10 best networks from respective average state energies. Level distances,
not to scale, correspond to a deviation of 100 cm−1 from average. Gray: Stan-
dard deviation σ i around average energies. Excitation energies together with the
deviation σ i are given at the right-hand side.

for better visualization. In addition to the energies, Table IV also
provides D3h labels and state assignments based on symmetry infor-
mation and projected wave function densities. State assignments in
the degenerate stretch and bend coordinates are given in terms of
radial rns,b and tangential excitations tns,b,

90 while excitations in the
totally symmetric mode are denoted with an. In contrast to ground
state calculations, the “spread” of individual energy levels is between
1 and 30 cm−1, the standard deviation over all vibronic states being
roughly 13 cm−1, with few states showing individual deviations up
to around 50 cm−1. At first glance, such an increase in error may
be fully attributed to the fact that the lower adiabatic sheet has been
found to be a very dominant contribution to the fitting error, making
it the most difficult part for the ANN to fit. In addition to this factor,
the deviations are not evenly distributed among the vibronic lev-
els but well-structured. More specifically, the ground state tunneling
first excitation of 57 cm−1 is robustly reproduced by the 10 param-
eterizations. Similarly, levels without noticeable contributions of rs
excitations show lower deviations than the ones with considerable rs
excitations. This means that, while the triple well structure is overall
well-described for dynamics, the accuracy of the surface diminishes
for larger displacements in the asymmetric stretch. The reason for
this observation is not clear but could be due to the sampling of the
reference data.

In analogy to the vibrational levels supported by the ground
electronic states (see Table III), the effect of the number of hidden
neurons used in the ANN is tested for the vibronic levels of the
2E′′ coupled surfaces and the results are summarized in Table V.
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TABLE V. Comparison of computed transition energies for 14NO3 (in cm−1) on the Ã state for different hidden layer sizes.
δ(Ei − E0) provides level shifts compared to the reference network (75). Assignments are identical to that of Table IV.
The dotted vertical line materializes the separation between increased and decreased hidden layer sizes with respect to the
reference.

75 40 60 70 80 100

State Assignment Ei − E0 δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0)

2 0 a′′1 56.6 ± 2.7 −0.1 −1.2 −0.9 ⋮ 1.8 5.6

3/4 r1s e
′′ 516.2 ± 12.9 −16.4 −15.6 −10.9 ⋮ 7.4 30.1

5 t1b a
′′
2 539.3 ± 3.3 −8.8 −4.3 −8.9 ⋮ 4.1 −9.2

6 r1s a
′′
1 576.4 ± 12.2 −12.1 −13.3 −11.6 ⋮ 4.1 25.7

7/8 t1b e
′′ 604.7 ± 5.7 −8.3 −11.5 −13.7 ⋮ 6.1 −0.2

9/10 r1b e
′′ 790.0 ± 9.2 −27.7 10.0 9.0 ⋮ 25.7 22.1

11 r1b (∗) a′′1 833.9 ± 16.4 −55.6 −6.2 −2.9 ⋮ 31.4 42.4

12/13 r2s e
′′ 1013.4 ± 28.5 −47.1 −31.8 −27.2 ⋮ 17.1 60.6

14 r1s t
1
b a
′′
2 1024.8 ± 13.3 −21.4 −17.6 −16.4 ⋮ 14.6 23.4

15 r2s a
′′
1 1084.4 ± 24.2 −32.9 −23.9 −24.2 ⋮ 13.4 50.1

16/17 t2b (∗) e′′ 1100.1 ± 12.5 −26.0 −17.7 −22.1 ⋮ 10.4 13.1

18/19 r1s t
1
b (∗) e′′ 1151.2 ± 11.1 −13.5 −20.2 −22.6 ⋮ 12.1 4.0

20 t2b a
′′
1 1161.8 ± 8.6 −13.1 −15.8 −21.6 ⋮ 11.7 −4.3

21/22 a1 e′′ 1179.8 ± 3.3 −3.9 1.3 1.4 ⋮ 7.7 6.4

23 t1s a
′′
2 1276.1 ± 3.9 −4.5 2.2 1.5 ⋮ 4.1 0.0

24 a1 (∗) a′′1 1291.4 ± 16.7 −44.9 2.3 7.0 ⋮ 42.8 44.2

25/26 r1br
1
s e
′′ 1302.8 ± 21.4 −62.2 −5.2 −3.6 ⋮ 47.3 52.5

27/28 ? e′′ 1357.4 ± 12.3 −39.0 −4.6 −6.8 ⋮ 29.6 27.2

In contrast to ground state calculations, we find the 40 neuron
network to just marginally deviate for most r0s states such as 2,
5, and 7/8, while producing a significant difference for the rb
fundamental. Overall, agreement increases for increased network
size up to the 80 and 100 neuron network, where, for exam-
ple, state 9/10 suddenly shows an increase in deviation. The lat-
ter may actually be an overfitting effect as both the dynamics on
the excited state and the fitting error are dominated by the lower
adiabatic sheet and both begin to show discrepancies past the 75
neuron mark (one in the form of yielding different energy lev-
els and the other in the form of being less consistent with the
validation set).

In conclusion, our findings regarding the behavior of the
model with respect to the hidden layer size coincide with pre-
vious conclusions drawn from fitting performance alone, that is,
while reducing the number of hidden layer neurons has a signif-
icant influence on ground state dynamics, increasing the network
size has an unclear effect. Furthermore, the dynamics on the first
excited electronic state produce results analogous to previous find-
ings, suggesting that networks significantly greater than the ref-
erence reproduce the ab initio data less consistently. As a conse-
quence, the 75 neuron model remains the ideal candidate for further
testing. In addition, the vibronic level analysis also suggests that
this instability may result from lacking data in certain regions of
the NCS.

B. Comparison of different ANN (and fitting) setups

Up to this point, we have only investigated the impact of the
network size (i.e., the number of formal parameters of the model)
with a single hidden layer architecture on the ground and excited
state dynamics of the resulting surfaces. We have found that our
initial reference of 75 neurons produces ground state excitations reli-
ably and consistently across different parameterizations arising from
different initial guesses. In the following, we give a brief summary of
the impact of two other factors independent of the number of for-
mal parameters of the fitting function. These tests are in analogy to
the study discussed in Ref. 73 based on fitting performance. For the
following two cases, we will focus on ground state dynamics as they
give easier insight into the surfaces’ overall quality without sampling
effects.

Early stopping91 as used in the present work is ameans of avoid-
ing overfitting by imposing an additional convergence criterion. For
this, we reserved about 15% of all ab initio data for an external val-
idation set for which an independent fitting error is computed at
each iteration. If this validation error does not improve along with
the fitting error for three times in a row, the last parameter set to
improve the validation error is considered converged. The valida-
tion set itself is not used for the training of the ANN. In order to
investigate potential downsides of this method, the identical set of
100 initial guesses that produced the 75 neuron reference ANN is
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refitted with early stopping disabled and a maximum number of
1000 Marquardt-Levenberg iterations. The deviations produced by
this network, referred to as network 75∗ for brevity, are listed in
Table VI alongside another networks discussed below. Deviations
found remain indistinguishable from differences between compet-
ing networks within the same fitting set, meaning that while early
stopping (in our present case) shows no clear advantage beyond
serving as an algorithmic safeguard and speeding up the training,
no discernible disadvantages of using it have been found.

One further aspect of relevance besides the number of free
parameters is the actual ANN architecture. As we have noted pre-
viously, each neuron depends on a small set of formal parameters
to fit, if we consider ANNs merely as fitting functions of a particu-
lar analytical form. This notion becomes marginally more involved
when considering networks with more than one hidden layer. This
is due to the fact that the number of formal parameters is roughly
equal to the number of connections between individual nodes in the
network. Hence, an ANN with 50 hidden layer neurons, one input
and one output, will have a different number of formal parameters
depending on whether it is one hidden layer with 50 neurons (100
connections, 50 in and 50 out) or two hidden layers with 25 each
(675 connections, 25 in, 625 intermediate, 25 out). This makes com-
paring different architectures particularly difficult. Hence, for our
practical purposes, we have chosen to take our best working model
(75 neurons) and produce multilayered networks with close to the
same number of formal parameters. For the sake of simplicity, we
further chose the number of neurons to be the same for each hid-
den layer, keeping all other technical details of the fit the same. Of all
network topographies considered, the only one that even remotely
compared in terms of fitting error to the single layer case was a
5–20–20–20–9 network (see Ref. 73). Other tested topographies
include two and four hidden layers. Considering again devia-
tions of ground state excitation energies, Table VI shows that the

TABLE VI. Comparison of computed transition energies for 14NO3 (in cm−1) on the X̃
state for various networks (see Sec. IV B). δ(Ei − E0) provides level shifts compared
to reference network (75). Networks fitted without early stopping are denoted with an
asterisk (∗). Networks fitted with more than one hidden layer list neuron numbers
separated by –.

75 75∗ 5–20–20–20–9

State Ei − E0 δ(Ei − E0) δ(Ei − E0)

1/2 366.8 ± 1.5 0.6 2.6
3 756.3 ± 2.5 0.1 2.9
4/5 774.6 ± 2.2 2.2 5.6
6/7 1039.7 ± 2.3 0.2 2.7
8 1054.9 ± 0.7 0.2 −1.0
9/10 1179.3 ± 2.9 1.0 5.9
11 1187.7 ± 3.1 1.8 2.3
12 1215.1 ± 3.4 3.4 9.4
13 1344.9 ± 2.6 −1.4 0.5
14/15 1417.7 ± 1.2 0.0 0.1
16/17 1490.0 ± 2.0 −0.1 −0.1
18 1498.2 ± 3.8 3.2 7.3

5–20–20–20–9 network, while “noisier” than, for example, the 75∗

network discussed above, shows deviations of the same order of
magnitude as the scattering of values among the best ten parame-
terizations of the 75 neuron reference model. While a more in-depth
investigation could provide further insight into the intricacies of the
effects more sophisticated network topographies could have, our
current findings suggest that the added value might be marginal,
while the sheer combinatorial effort required would be immense.
We thus conclude that a single-layer topography might be the most
robust and recommendable choice.

C. Comparison with experimental and previous
theoretical data

So far we investigated the impact of the ANNdesign parameters
on the quantum dynamics results by comparison with a reference
ANN model. Special attention has been paid to how the number
of hidden layer neurons influences the quality of the resulting sur-
face. These comparisons aim at estimating the intrinsic error of the
model with respect to differences in excitation energies produced by
ANNs of (in terms of fitting error) indistinguishable quality. In the
following, the focus will be on the quality of the surfaces based on
external consistency with experimental data, considering X̃ and Ã
state transition energies.

1. Vibrational eigenstates in the X̃
2A′2 electronic state

The results of the vibrational eigenstates of the X̃ state are given
in Table VII in which comparisons between experimental frequen-
cies and computed transitions for both the novel ANN model and
the previous purely polynomial ansatz are listed. TheMCTDH com-
putations with the earlier PES models74 are repeated in reduced
(5D) dimensionality excluding the umbrella mode in order to eval-
uate the effect of the reduced dimensionality. As apparent from
the third and fourth column of Table VII, the differences between
the original 6D and the new 5D calculation (with the previous
PES model) is rather small with a maximum absolute deviation of
3.5 cm−1. In previous work, we also ensured that the deviations
between the DVR method and the MCTDH calculations are very
small. This was confirmed again computing the vibrational and
vibronic states on the reference ANN PESs with both MCTDH and
DVR. Thus, the 5D ANN results of the DVR calculations, also used
to check for internal consistency (see above), are estimated to be
within about 5 cm−1 of corresponding 6D MCTDH calculations
once the full 6D ANN model is available. In the following, the focus
will be on the comparison of the 5D data with available experi-
ments and the improvements over the previous polynomial model
(Ref. 74).

We report a striking decrease in the overall deviation from
experimental data by about an order of magnitude for almost all
states compared to Ref. 74, which is easily seen from the last two
columns in Table VII. All assignments remain the same as for the
corresponding state(s) in the polynomial model calculation. As in
the case of the polynomial model,74 the long-debated 31 fundamen-
tal can be assigned confidently to a state computed at 1039.7 cm−1

(previously 1021.8 cm−1 in 6D and 1025.3 cm−1 in 5D) with signif-
icantly improved agreement to experiment. This assignment, now
at higher energy, agrees well with other theoretical treatments92–95

and recent experimental assignments.88,96,97 The second state of
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TABLE VII. Summary of the comparison between experimental and computed transition energies for 14NO3 (in cm−1).
The “assignment” column provides the corresponding D3h labels as well as state assignments including dominant state

contributions. E6D,5D
theo

provide excitation energies using the previous (polynomial) model74 and EANNtheo the ones obtained for

the present ANN based model.73 The remaining two columns provide respective differences from experimental data as listed
under Eexp reported from Ref. 88. See text for discussion.

E6D
theo E5D

theo

Assignment Eexp Polynomial model74 EANN
theo δE5D

exp δEANN
exp

41 e′ 365.5 361.1 361.1 366.8 4.3 −1.3
42 a′1 752.4 711.0 711.1 756.3 41.3 −3.9
42 e′ 771.8 742.2 742.3 774.6 29.5 −2.8
11 a′1 1051.2 1038.6 1040.2 1054.9 11.0 −3.7
31 e′ 1055.3 1021.8 1025.3 1039.7 30.0 15.6
43 e′ 1173.6 1082.5 1082.7 1179.3 90.9 −5.7
43 a′1 1214 1139.7 1140.1 1215.1 73.9 −1.1
1141 e′ 1413.6 1388.1 1390.0 1417.7 23.6 −4.1
3141 a′2 1491 1302.4 1305.9 1344.9 185.1 146.1
3141 e′ 1492.4 1438.6 1441.9 1490.0 50.5 2.4
3141 a′1 1499.8 . . . . . . 1498.2 52.2 1.6

particular interest is the combination mode 3141, giving rise to three
sublevels of e′, a′1, and a

′
2 symmetry, respectively. Much like the fun-

damental mode, the 3141 e′ transition now computed at 1490.0 cm−1

displays significantly improved agreement with the experimental
value at 1492.4 cm−1 with a deviation of only 2.4 cm−1. This gives
further strong evidence that this energy level does not correspond
to the 31 fundamental. The effect of the 5D approximation to the
6D dynamics using the polynomial model on this transition is found
to be less than 4 cm−1 (1438.6 cm−1 vs 1442.0 cm−1). Similarly, the
3141 a′1 state, to which no state could be assigned using the polyno-
mial model, now can be assigned with certainty to an energy level
at 1498.2 cm−1. Indeed, the harmonic oscillator basis function of
the DVR calculations corresponding to the 3141 a′1 state accounts
for over 70% of the total vibrational wave function. Finally, the
3141 a′2 state, computed at an energy level of 1344.9 cm−1, shows
significant deviation from the experimental assignment to a level
at 1491 cm−1. This disagreement of more than 150 cm−1 is one
order of magnitude larger than the second largest deviation (about
16 cm−1) and over 25 times greater than the third largest deviation
(about 6 cm−1). Considering, however, that excitations even higher
in energy, namely, 3141 e′ and a′1, do not deviate more than a few
cm−1 from the experimental values suggests that this deviation is
more likely to be due to an incorrect experimental assignment. It is
worth noting that deviations between the new ANN results and the
experimental assignments for most states reside well within devia-
tions between different ANNs from the same fitting set as described
in Sec. IV A. The impact of the ANN size on the quantum dynam-
ics results is put into perspective with respect to experimental val-
ues in Table VIII. We find larger hidden layer sizes to have no
significant effect on the agreement with experimental data when
compared with the competing reference network of 75 hidden neu-
rons. The same is observed when comparing with the 75∗ ANN
results.

The agreement of the present results with experimental data
shows that the PES model must be very accurate and certainly must
be qualitatively correct. This allows us to shine some light on another
controversy in the literature. The equilibrium geometry of NO3 in
its electronic ground state has been subject to debate since the late
1970s (see Ref. 80 for an extensive discussion). Electronic structure
calculations mostly yield a C2v equilibrium geometry, but it was
shown by one of the authors that this is an artifact due to artificial
symmetry breaking of the electronic wave function caused by the
use of single reference wave functions.80 The adiabatic ground state
PES resulting from the present diabatic model clearly has a single
PES minimum of D3h symmetry, thus supporting a D3h equilibrium
geometry. With this strong evidence from the current dynamics cal-
culations using this PESmodel and the excellent agreement obtained
with respect to experimental spectroscopy data, it is nearly unimag-
inable that a distorted C2v equilibrium structure is more than an
artifact.

2. Vibronic eigenstates in the Ã
2E′′ electronic state

For the electronically excited 2E′′ state, there are only a total
of 3 experimentally measured transitions to compare with as all
other observed transitions involve umbrella excitations and can-
not be computed with the present ANN model. The corresponding
results are gathered in Table IX together with their assignments. Due
to the strength of the Jahn-Teller coupling in this system and the
resulting triple-well structure on the lower diabatic sheet, the assign-
ment of the D3h labels based on normal mode excitations is not as
straightforward compared to the X̃ state labeling. The assignments
used in Sec. IV A in terms of radial and tangential excitations pro-
vide deeper insights regarding the limits of accuracy of the model as
states corresponding to rs excitations have been found to be more
limited in terms of accuracy. Further explanation as to how tunnel-
ing and geometric phase effects influence both the complexity of the
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TABLE VIII. Comparison of absolute differences between experimental and computed (ground state) transition energies for
14NO3 (in cm−1) for different hidden layer sizes. Assignments are identical to that of Table VII. |δEexp| corresponds to δEANNexp

from the same table. δ(|δEexp|) provides decreases (negative) or increases (positive) in deviation from experiment compared
to the first column. The third column provides data for the 10th percentile instead of the (in terms of fitting error) best fitted ANN
from a set of 100 fitted neural networks, including the reference ANN. Bottom rows: average increase/decrease in deviation
over all states and root mean square variations around the reference surface, disregarding the outlier state 3141 a′2; see
Sec. IV C 1.

75 75 (10th best) 40 70 80 100

Assignment |δEexp| δ(|δEexp|) δ(|δEexp|) δ(|δEexp|) δ(|δEexp|) δ(|δEexp|)

41 e′ 1.3 1.0 3.6 −1.2 0.3 −1.2
42 a′1 3.9 −3.5 −2.6 5.1 −3.0 −2.6
42 e′ 2.8 −2.7 8.0 −2.6 −0.8 −2.7
11 a′1 15.6 0.2 −0.6 3.9 −4.1 1.6
31 e′ 3.7 1.0 −0.6 0.0 0.4 0.0
43 e′ 5.7 0.4 −2.4 6.1 −2.8 −3.3
43 a′1 1.1 −0.7 19.6 5.4 5.5 0.8
1141 e′ 4.1 −1.8 −3.5 0.8 −0.8 −1.0
3141 a′2 146.1 0.4 7.0 −1.7 −4.3 0.1
3141 e′ 2.4 1.3 −0.1 1.4 −0.4 2.6
3141 a′1 1.6 1.9 6.0 9.6 1.7 6.0

Mean increase −0.3 2.7 2.9 −0.4 0.0
Variance 1.7 7.2 4.4 2.8 2.6

resulting spectra and the structure of the vibronic eigenstates can be
found in greater detail in Refs. 78 and 90. The deviations between
experimental assignments and both the new ANN model and the
prior, purely polynomial ansatz are given in Table IX. Of the three
states for which experimental data are available, all show significant
improvement in terms of reproducing experimental data over the
previous polynomial model. Both computed purely tangential exci-
tations reproduce experimental data up to a few cm−1, while the rs
excited state shows a larger deviation. This means that the relative
improvement of the 2E′′ model is consistent with that of the ground
state, with dissociative motions being a limiting factor on the excited
state surface.

3. Numerical stability and potential artifacts

In Secs. IV C 1 and IV C 2, we outlined how our present ANN
scheme significantly outperforms the previous purely polynomial-
based ansatz. One of the reasons for why the neural network per-
forms better than the polynomial model certainly is themore flexible
functional form of the ANN compared to the previously used poly-
nomial approach. To achieve higher flexibility with the polynomial
ansatz, one would have to increase the polynomial order consid-
erably. However, it is a fundamental property of polynomials that
as the order increases, the function starts oscillating rapidly or get-
ting unbound in areas not well sampled. This unphysical behavior

TABLE IX. Summary of the comparison between experimental and computed transition energies on the Ã2E′′ state of NO3

(in cm−1). Assignments in the first column correspond to those of Table VI of Ref. 89, with assignments from Table V given in

parentheses. E6D,5D
theo

provide excitation energies using the previous (polynomial) model,36,78 the E6Dtheo being reproduced from

Ref. 78 and EANNtheo the ones obtained for the present ANN based model.73 The remaining two columns provide respective
differences from experimental data.

E6D
theo E5D

theo

Assignment Eexp Polynomial model36,78 EANN
theo δE5D

exp δEANN
exp

410 (t1b) 539.5 549.1 544.9 539.3 −5.4 0.2
420 (r1s t1b) 1056.6 1136.9 1142.2 1024.8 −85.6 31.8
310 (t1s ) 1270.5 1300.1 1291.5 1276.1 −21.0 −5.6
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becomes a problem for dynamics treatment even for physically irrel-
evant nuclear configurations when the oscillation tends to negative
infinity. Such regions cause the wave packet to get trapped in these
unphysical regions. However, since these artifacts only occur where
little to no data are sampled, they only become apparent when the
wave packet dynamics on the PESs are investigated, meaning that
there is no structured, a priori method to predict or detect such
regions in a high dimensional nuclear configuration space. There-
fore, the development of high-dimensional coupled PESs, especially
when using some sort of polynomial model, is usually plagued by the
occurrence of such artifacts.

However, the general structure of the ANN approach tested
in this work shows a crucial difference. Unlike polynomial terms
of increasing order, the functional shape of hidden layer neurons
is bounded as they are composed of sigmoid functions depending
on weighted sums of coordinates. Furthermore, all hidden layer
neurons are homogeneous in the sense that increasing the num-
ber of neurons always adds a term of the same functional form as
the previous ones, merely differently parameterized, in stark con-
trast to adding a higher-order polynomial term to a function. As
a consequence, none of the investigated ANNs produced the arti-
facts discussed above in any of the dynamics calculations performed
here. This suggests that all ANN surfaces produced by our current
method, even if insufficiently parameterized to describe the PESs
well (e.g., the 40 neuron network) or potentially overfitted (e.g., the
100 neuron network) are well-behaved and free of severe oscilla-
tions or unbound areas comparable to those commonly occurring
in polynomial fits. This is a property of the new ANN approach of
invaluable importance for future applications.

V. CONCLUSIONS AND OUTLOOK

In the present study, we investigate the viability of our recently
developed diabatizationmethod as ameans to produce coupled PESs
for reliable high-dimensional quantum dynamics calculations. This
method, combining vibronic coupling models with artificial neu-
ral networks (ANNs), has been tested using the NO3 radical as a
benchmark system of exceptional complexity. For the purpose of
this work, the molecule has been restricted to planar geometries,
which will be extended to a full 6D space in future work. Using a
time-independent DVR method, the behavior of vibrational eigen-
states on the 2A′2 ground state as well as vibronic eigenstates on
the first excited 2E′′ state has been investigated depending on the
number of hidden layer neurons (corresponding to the number of
formal parameters) and to a lesser extent depending on the num-
ber of hidden layers (conserving the number of formal parameters).
The various resulting surfaces, exclusively differing in the underly-
ing ANN, have been compared among one another as well as with
previous efforts using a purely polynomial ansatz. To this end, the
MCTDH approach has been used to evaluate the effect of the planar
geometry restriction. The ANN results are also compared with avail-
able experimental data. The investigated approach utilizes the basic
structure (and simplicity) of low-order vibronic coupling models
and achieves the high accuracy needed for reliable dynamics simula-
tions by the neural network. Despite the highly nonlinear nature of
the fitting procedure, the presented method produces PESs of con-
sistent quality for a large number of initial guesses, with deviations

of fitting errors as well as excitation frequencies of a few cm−1 for
the best 10 out of 100 fitted networks for a fixed but reasonably large
number of hidden layer neurons. Similarly, despite being restricted
to planar geometries, the model reproduces measured transition
energies (excluding umbrella mode excitations) with unprecedented
accuracy, with deviations of only a few cm−1. It therefore is par-
ticularly noteworthy that for the vast majority of measured exci-
tations, deviations between best ANN results and experiment are
of the same order of magnitude as deviations among ANN results
of similar fitting quality but different parameterizations (different
initial guesses). While deviations on the excited 2E′′ state can be
significantly larger (10 cm−1 range), they remain well-structured.
The larger deviations correlate with radial excitations in the asym-
metric stretching mode (rs), which might indicate insufficient data
in the dissociative motions. Overall, when compared to experimen-
tal data, the surface model based on our new approach produces
vibrational/vibronic excitation frequencies that are an order of mag-
nitude better than our previous polynomial model. This allows us
to assign debated ground-state transitions with great confidence.
The numerical results indicate that our new, ANN-based model is
thus capable of providing reliable interpretations of experimental
data. In this context, we report a resolution of the disputed assign-
ment of the 31 e′ state, now confirmed at 1055.5 cm−1 (computed
at 1039.7 cm−1) and the measured excitation at 1492.4 cm−1 (com-
puted at 1490.0 cm−1) corresponding to the 3141 e′ state. Given the
accuracy reached, we can also confirm the measured transition cor-
responding to the 3141 a′2 state to be most certainly an incorrect
experimental assignment, as previously suggested by our polyno-
mial model. This is supported by the fact that this state is the only
one deviating from computed excitations by about 150 cm−1 across
all investigated ANN models, an order of magnitude higher than
any other (experimental or computational) deviation. Apart from
a significant increase in accuracy, it is also found that throughout
all investigated ANN-based PESs, there is not a single instance of
oscillations producing deep, unphysical minima in scarcely sampled
regions, a common problem with polynomial models. Such artifacts,
if close enough to physically relevant areas in NCS, can cause wave
packets to be trapped producing unphysical results. Consequently,
these results suggest that the present model not only produces PESs
of much higher accuracy than possible before but also better adapted
to dynamics calculations.

The influence of ANN size (in terms of free parameter num-
ber) and ANN design (number of hidden layers) on the dynamics
results is also studied. The same set of ANNs is investigated, which
previously was assessed purely on the basis of the fitting error. The
findings of the previous study confirmed (within the small scope
of this study) that multilayered network architectures are not supe-
rior to single-layer ANNs for our diabatization scheme. Similarly,
no significant disadvantage is found to be caused by omitting early
stopping from the fitting procedure as PESs produced remained
indistinguishable from those of the unmodified fit. The previously
reported indicator for overfitting is in agreement with the current
finding that hidden layer sizes beyond that point either do not
improve the dynamics results or even can lead to worse dynamics
results.

In conclusion, our present findings (based on quantum dynam-
ics calculations and experimental data) demonstrate that PESs pro-
duced by our novel ANN diabatization method, despite its simple
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setup, are not only very accurate but also robust against typical arti-
facts. Furthermore, the obtained PES models are very suitable for
quantum dynamics calculations and yield results of high accuracy.
The spread of quantum dynamics results among different parame-
terizations yielding a similar fitting error is rather small and gives a
good idea of the size of errors to be expected in general. Remaining
goals for future investigations include extending the model to a full-
dimensional description of NO3, including the umbrella motion, as
well as corresponding couplings in the diabatic matrix, and applying
the method to different kinds of coupling (e.g., relativistic coupling).
Corresponding work is in progress.
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APPENDIX: SUPPLEMENTARY EQUATIONS

1. Coordinates

The symmetry-adapted coordinates are constructed from a
set of primitive valence coordinates as already described in previ-
ous work33,36 and account for the basic asymptotic behavior in the
underlying low-order model. The primitive coordinates comprising
the three N–O distances ri and a set of O–N–O angles αi are first
transformed nonlinearly as

mi ≙ 1 − exp(−γ(ri − r0)), (A1)

α
′
i ≙ αi − α0

rjrk
, i ≠ j ≠ k, (A2)

where r0 and α0 are the respective distances and angles at the
reference point and γ is a chosen Morse-parameter. The out-
of-plane umbrella coordinate is omitted in the present study.
These primitive coordinates then are linearly transformed to
yield the symmetry-adapted coordinates a (breathing mode) and
the degenerate asymmetric modes xs, ys (stretching) and xb, yb
(bending),

a ≙
√

1

3
(m1 +m2 +m3), (A3)

xs ≙
√

1

6
(2m1 −m2 −m3), (A4)

ys ≙
√

1

2
(m2 −m3), (A5)

xb ≙
√

1

6
(2α′1 − α′2 − α′3), (A6)

yb ≙
√

1

2
(α′2 − α′3). (A7)

2. Diagonal model terms

For the sake of simplicity, let r2s,b be given as

r
2
s,b ≙ x2s,b + y

2
s,b. (A8)

The totally symmetric diagonal contributions of the reference model
are expressed here in terms of three independent scalar functions
Vi(Q),

W
d
diag(Q) ≙

⎛⎜⎜⎜⎝

V1(Q) 0T 0T

0 V2(Q)1 0

0 0 V3(Q)1

⎞⎟⎟⎟⎠
. (A9)

Apart from the constant terms, referring to the vertical excita-
tion energies at the reference point, an expansion of each Vi(Q),
i ≙ 1, 2, 3 up to second order yields four (constant) coefficients μik
and corresponding polynomial terms,

Vi(Q) ≙ μi1 ⋅ a + μ
i
2 ⋅ a2 + μ

i
3 ⋅ r2s + μ

i
4 ⋅ r2b . (A10)
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ABSTRACT: A recently developed scheme to produce accurate high-dimensional
coupled diabatic potential energy surfaces (PESs) based on artificial neural
networks (ANNs) [J. Chem. Phys. 2018, 149, 204106 and J. Chem. Phys. 2019, 151,
164118] is modified to account for the proper complete nuclear permutation
inversion (CNPI) invariance. This new approach cures the problem intrinsic to the
highly flexible ANN representation of diabatic PESs to account for the proper
molecular symmetry accurately. It turns out that the use of CNPI invariants as
coordinates for the input layer of the ANN leads to a much more compact and
thus more efficient representation of the diabatic PES model without any loss of
accuracy. In connection with a properly symmetrized vibronic coupling reference
model, which is modified by the output neurons of the CNPI-ANN, the resulting adiabatic PESs show perfect symmetry and high
accuracy. In the present paper, the new approach will be described and thoroughly tested. The test case is the representation and
corresponding vibrational/vibronic nuclear dynamics of the low-lying electronic states of planar NO3 for which a large number of ab
initio data is available. Thus, the present results can be compared directly with the previous studies.

1. INTRODUCTION

The fundamental theoretical understanding of chemical
processes by quantum dynamics simulations depends critically
on the availability of accurate models for the molecular potential
energy, the so-called potential energy surfaces (PESs). The
development of single, uncoupled PESs for systems of more than
three atoms made impressive progress in the past couple of
decades.1−6 Particularly the use of artificial neural networks
(ANNs) seems to be a very promising approach to achieve high
accuracy even for high-dimensional problems.7−24 The decisive
advantage of ANNs may be that it can be shown mathematically
that they are capable of uniformly representing any continuous
real function of n dimensions up to arbitrary accuracy.25Thus, in
principle, ANNs should be capable of representing arbitrary
PESs up to the limitations of the underlying data. Besides the
potential accuracy, they also can be evaluated very efficiently
once trained, as their evaluation consists mostly of matrix-vector
multiplications. This is an invaluable advantage for the use with
quantum dynamics methods such as the multiconfiguration
time-dependent Hartree (MCTDH) method,26,27 especially
when using the correlated discrete variable representation
(CDVR)28 scheme for which the evaluation of the PES is the
most time-demanding part. Alternatively to the CDVR
approach, a sum of products form of the PES model must be
used, which is also possible in the ANN framework.16,24,29 A

further advantage is that the training of ANNs can be done very
efficiently and is much less demanding than other nonlinear
optimization approaches. Of course there are also problems of
which one of the most prominent is an issue commonly referred
to as “over-fitting”. This algorithmic problem, related to the
extremly high flexibility and nonlinearity of typical ANNs, limits
the accuracy of the function representation and has to be
accounted for in the training algorithm. However, the impressive
results already obtained by the ANN representation of single
molecular PESs based on high-level ab initio data demonstrate
the power of this approach.14,23,24,29−32

The situation is way more complicated in the case that
multiple and strongly interacting electronic states are involved in
the process. For such nonadiabatic processes, not only the PESs
corresponding to different states but also the interactions
between those states have to be represented by a PES model.
One fundamental problem is here that the Born−Oppenheimer

Received: June 30, 2020
Revised: July 31, 2020
Published: August 11, 2020

Articlepubs.acs.org/JPCA

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acs.jpca.0c05991
J. Phys. Chem. A XXXX, XXX, XXX−XXX

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
o
w

n
lo

ad
ed

 v
ia

 7
7
.2

2
.2

5
0
.4

7
 o

n
 S

ep
te

m
b
er

 1
5
, 
2
0
2
0
 a

t 
0
7
:5

1
:1

2
 (

U
T

C
).

S
ee

 h
tt

p
s:

//
p
u
b
s.

ac
s.

o
rg

/s
h
ar

in
g
g
u
id

el
in

es
 f

o
r 

o
p
ti

o
n
s 

o
n
 h

o
w

 t
o
 l

eg
it

im
at

el
y
 s

h
ar

e 
p
u
b
li

sh
ed

 a
rt

ic
le

s.



approximation will break down in regions in nuclear
configuration space (NCS), where interactions among elec-
tronic states become significant or even singular as is the case for
conical intersections.33 It is well-established by now that the
solution in such cases is to use a quasi-diabatic representation of
the coupled electronic states and corresponding PES
model.33−49 For the sake of brevity, we will refer to quasi-
diabatic representations as “diabatic” representations from here
on. The diabatic representation removes singularities in the
nonadiabatic couplings and nondifferentiable points on the
PESs but is neither unique nor easily available. Many methods
have been developed to find the unitary basis transformation
between the adiabatic states and energies directly available from
ab initio calculations and diabatic states and PES matri-
ces.39,42,43,45,47−76 One particularly successful and straightfor-
ward approach is the multimode linear vibronic coupling
method by Köppel, Domcke, and Cederbaum50 and similar
approaches.70,72,77,78 These models are sufficient to treat many
ultrafast nonadiabatic processes but are not accurate enough for
many problems that are more complicated and depend critically
on more extended regions in the NCS. Thus, the vibronic
coupling approach has been extended to higher coupling orders
as well.64−66,68,69,74 However, the use of higher-order Taylor
expansions for the representation of the diabatic PES matrices is
quite cumbersome, and therefore alternative representations
have been developed as well.57,79−86

The latest development in the persuit of finding better
diabatic PES models is the use of ANNs.87−97 Different
strategies have been followed of which some are based on the
use of complete nuclear permutation inversion (CNPI)
invariant polynomials of the input coordinates.89,91,92 Our
recently developed approach presented in ref 90 and thoroughly
analyzed in ref 95 is based on a different strategy and uses all
symmetry-adapted valence coordinates of the molecule rather
than CNPI invariants. The reason for this is that the approach
combines the basic, simple structure of a low-order vibronic
coupling ansatz, which is tuned by an ANN so that very accurate
results are obtained. The high flexibility of the ANN introduces
slight symmetry contaminations, which are removed by an a
posteriori symmetrization. The new method presented here
circumvents the problem of the symmetry contamination by
using CNPI invariants as an input layer of the ANN in
combination with a standard low-order vibronic coupling
reference model.
To stay consistent with our previous studies,90,95 the

performance of the new approach was tested using planar
(5D) NO3, for which plenty of data and experience are available
in the group.64,65,74,98 A 5 × 5 diabatic model for the ground and
first two excited electronic states of 2A2′,

2E″, and 2E′ symmetry
is trained, and vibrational/vibronic eigenstates are computed.
The latter can be compared to previous theoretical69,74,95,99−105

and experimental results.106,107

2. THEORY

2.1. Adiabatic and Diabatic Representation. At the
center of any diabatization approach is the adiabatic-to-diabatic
transformation that connects an adiabatic and a diabatic basis of
electronic states. There aremany established ways to do this, and
for a deeper discussion we refer to the literature, for example, ref
33. The necessary information for this basis transformation
usually is obtained from adiabatic energies only (“diabatization
by ansatz”), by using the adiabatic wave function representation
alone (“block diagonalization”), or by a combination of both

(“hybrid diabatization”).76 The method presented here is
designed for the hybrid diabatization approach, though in the
example calculations, the wave function information is not used.
The fundamental requirement utilized in this method is that the
adiabatic and diabatic PES matrices are related by the unitary
transformation U that diagonalizes the diabatic matrix, and the
eigenvalues reproduce the adiabatic energies

= =† WU W U W diag( )j
d a a

(1)

The eigenvectors are related to the adiabatic electronic wave
functions and can also be used to determine the matrix elements
of the diabatic PES matrix Wd.

2.2. Artificial Neural Networks. The diabatization
approach presented here utilizes a multilayer perceptron feed-
forward neutral network. The input layer η(1) consists of the
molecular coordinates (cf. Section 2.3), which are connected to
the hidden layers η(k) according toikjjjjjj y{zzzzzz∑η β ω η= +

χ

−f
j
k k

j
k

l

jl
k

l
k

f

( ) ( ) ( ) ( ) ( 1)

( )k
j
k( ) ( )

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
(2)

The activation functions f(k) used in the present version depend
on the layer k. While the output layer (k = 3) uses the identity Id,
the activation function for the hidden layer reads

χ χ= · ·f A( ) 3 tanh( )(2)
(3)

with = ( )A artanh
1

3
. This choice of factors rescales the

sigmoid activation function in such a way that its “linear domain”
resides in the interval [−1,1], approximating the identity, while
the exponential plateaus reside outside of this interval. The
output layer is used to parametrize the diabatic PES matrix (cf.
Section 2.4). A simplified version of the neural network utilized
(with a reduced number of neurons in each layer) can be found
in Figure 1.
The ANN is trained by a modified Marquardt−Levenberg

back-propagation method described in ref 90. The modification
is necessary, because the output layer cannot be compared
directly to the reference data. Only the eigenvalues (and
eigenvectors) of the matrix parametrized by the output neurons

Figure 1. A neural network with one hidden layer. Arrows correspond
to weighted contributions. Bias terms and activation functions are not
visualized.
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can be used to determine the root-mean-square error (RMSE),
which is minimized by the method. Therefore, an additional
numerical differentiation of the eigenvalues (and eigenvectors)
with respect to the output neurons is required.
One notorious problem with the ANN training commonly is

called overfitting and is related to the very high flexibility of the
ANN. Since the training data are limited, an optimal
representation of this reference data might result in a poor
representation of data not contained in the reference set. This
can be avoided, at least to some degree, by amethod called “early
stopping”. For this, the complete available data set is partitioned
into a reference and a validation set. Only the reference set is
used for the actual training to minimize the reference RMSE. In
each step also the validation RMSE is computed, and if the latter
rises, the training is stopped. The details of how the early
stopping is implemented in the present method has been
described in ref 90.
While overfitting is a crucial aspect, it is naturally not the only

limitation to consider. ANNs are generally rather sensitive
toward the data set with which they are trained. A simple, yet
important example of this sensitivity lies in the sheer amount of
data required, as neural networks tend to extrapolate data rather
poorly. However, the use of a robust low-level reference model
tuned by an ANN as presented here at least ensures that the
extrapolated regions behave reasonably without showing
pathologies. Another, more subtle problem related to the
input data and the ANN training arises from the range of the
input data. Since the present training method relies on
derivatives of the activation function with respect to (wrt) its
argument, initial convergence will be slowed tremendously if the
derivatives are very small. Given the present activation eq 3, this
means that χ should, on average, reside in the interval [−1,1].
For this purpose, the molecular coordinates η(1) are scaled and
shifted in such a manner that all ηj

(1) have a mean of 0 and a
standard deviation of 1 across the presented data set. This is
achieved by first computing the mean η̅j and standard deviation
σ(ηj) of the coordinates ηj

(1) over the training data; in other
words

∑η η̅ =
=

N
Q

1
( )

j
D k

N

j k
1

(1)
D

(4a)

∑σ η η η= − ̅
=

N
Q( )

1
( ( ) )

j
k

N

j k j
D 1

(1) 2
D

(4b)

where ND is the number of ab initio data points, and ηj
(1)(Qk) is

the explicit value of ηj
(1) at the given data point. The normalized

input coordinates η̃j actually used in the training process are then
obtained by

η
η η

σ η
̃ =

− ̅

( )j

j j

j

(1)

(5)

which by definition has an average of 0 and a standard deviation
of 1 over the given set of ab initio data. Once the training is
completed, the optimized parameters corresponding toωjl

(2) and
βj
(2) from Equation 2 are modified to obtain an equivalent neural

network depending on the original coordinates ηj
(1), eliminating

the need to compute the means and variances when evaluating
the PES model during dynamics calculations. The equivalent
parameters ω̃jl

(2) and β̃j
(2) follow from Equation 2 for k = 2 by

substituting ηl
(1) with its normalized version of Equation 5 and

read

ω
ω

σ η
̃ =

( )jl

jl

l

(2)
(2)

(6a)

∑

∑

β β
ω η

σ η

β ω η

̃ = −
̅

= − ̃ ̅

( )j j
l

jl l

l

j
l

jl l

(2) (2)
(2)

(2) (2)

(6b)

In the present work this preconditioning is combined with an
appropriate choice of random initial weights and biases to ensure
better convergence.

2.3. Coordinates and CNPI Invariants. The ansatz
diabatic PES matrix has to fulfill strict symmetry requirements
for the matrix elements, because the represented Hamiltonian
must be invariant under all symmetry transformations. However,
the off-diagonal elements are not necessarily totally symmetric,
which has to be taken into account. In standard vibronic
coupling approaches the matrix elements are usually expressed
as polynomials in terms of symmetry-adapted coordinates Q
according to

∑ ∏=
α

α
αW Q p Q( )kj

kj

l
l
nd l

(7)

The expansion coefficients p are strictly related by symmetry,
and the coordinates transform according to different irreducible
representations of the molecular point group. Alternatively, the
diabatic matrix can be constructed from CNPI invariants of the
actual CNPI group and the invariants of its permutation
subgroups.91,108

The present approach is illustrated for theD3h symmetric NO3

radical in the following. In this case it is convenient to use
symmetry-adapted coordinates for the representation of the
vibronic coupling model, because the groupsD3h and S3 × Ci are
isomorphic. The five symmetry-adapted coordinates excluding
the umbrella motion read

= + +a m m m
1

3
( )1 2 3

(8a)

= − −x m m m
1

6
(2 )s 1 2 3

(8b)

= −y m m
1

2
( )

s 2 3 (8c)

α α α= ′ − ′ − ′x
1

6
(2 )b 1 2 3

(8d)

α α= ′ − ′y
1

2
( )

b 2 3 (8e)

in which the transformed distances mi and angles αi′ are

γ= − − −m r r1 exp( ( ))i i 0 (9a)

α
α α

′ =
−

≠ ≠
r r

i j k,i
i

j k

0

(9b)
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The coordinate a transforms totally symmetric as a1′, and the
vectors (xl,yl) transform as e′. The resulting invariants are
determined as64,65,74,109,110

=v 1(0) (10a)

=v 0(1) (10b)

= +v x y( )(2) 2 2
(10c)

= −v x xy(2 6 )(3) 3 2
(10d)

= + +v x x y y( 2 )(4) 4 2 2 4

∂ (10e)

for the first few orders, and the mixed terms of two different e′
modes read

= +v x x y y2( )ee
(2,1)

1 2 1 2 (11a)

= − −v x x x y x y y2( 2 )ee
(3,1)

1 2
2

1 2
2

2 1 2 (11b)

= − −v x x x y x y y2( 2 )ee
(3,2)

1
2

2 2 1
2

1 1 2 (11c)
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Each of the above invariants may be multiplied by an arbitrary
power of the amode and still remain an invariant. Similarly, if we
were to include the umbrella motion θ, we could also multiply
each term with arbitrary powers of θ2. Since for NO3 the CNPI
group and the D3h point group are isomorphic, the above point
group invariants can be used for convenience. In cases in which
point group invariants are not sufficient, the CNPI invariants
may be constructed following the techniques developed by
Braams and Bowman.6 Finally, it may be worth noting that, in
the present planar case, the CNPI and CNP symmetries are
equivalent.
2.4. Diabatic Model (Ansatz). The new approach will be

demonstrated using a 5 × 5 diabatic PES model to represent the
electronic Hamiltonian corresponding to the first few electronic
states of planar NO3, namely, X̃ 2A2′, Ã

2E″, and B̃ 2E′. The
diabatic PES model is based on a simple vibronic reference
model to simulate the basic physics of the problem, which then is
tuned by the ANN to achieve high accuracy. This reference
model is expressed in terms of a set of coupling matrices
depending on the symmetry-adapted coordinates Q para-
metrized by expansion coefficients λ and reads

i
k
jjjjjjjjjjjjj

y
{
zzzzzzzzzzzzzi

k
jjjjjjjjjjjj
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zzzzzzzzzzzzi

k
jjjjjjjjjjjj
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+

+
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d

1

2

3

4 s 5 b

6 s 7 b

8 s 9 b

8 s 9 b (12)

1 in the above supermatrix is a 2 × 2 unit matrix, the matrix
blocks εs,b are the well-known linear Jahn−Teller coupling
matrices, and the vectors ρs,b represent the linear pseudo-Jahn−
Teller couplings, which are given explicitly asikjjjjjj y{zzzzzz ikjjjjj y{zzzzzε ρ=

−
=

x y

y x

y

x
ands,b

s,b s,b

s,b s,b
s,b

s,b

s,b (13)

The symmetry-adapted coordinates corresponding to the
degenerate asymmetric bending and stretching modes are
labeled xs,b, ys,b, respectively. The diabatic PES matrix eq 12
can be recast in a more compact form as

∑ λ= ·vW Q M Q( ) ( ) ( )
L

L L
d

(14)

utilizing explicit coupling matrices ML. The ANN is introduced
into this model through the expansion coefficientslmoooonoooλ

λ

λ η
=

· +
v

v

( )
for uncorrected terms

(1 ( )) otherwise
L

L

L L
f

0

0 ( )
(15)

The constants λL
0, obtained from standard nonlinear fitting

procedures, are tuned by the outputs ηL
( f)(v) of a trained ANN.

Note that, in our previous studies, the ANN was fed with all
symmetry-adapted coordinatesQ, while in the present approach
the invariants v are used. This turns out to make a significant
difference. Though the vibronic coupling model with all output
neurons ηL

( f) set to zero fulfills the symmetry transformation
invariance exactly, this is not the case anymore when the output
neurons depend on the symmetry-adapted coordinates Q. One
could say that the ANN simply does not know about the
symmetry of the problem except for what it can “learn” from the
reference data. The errors are very small (∼1 cm−1) and have
been removed by an a posteriori resymmetrization in our
previous studies. However, the new approach presented here
deletes this issue intrinsically by feeding the ANN with
invariants rather than symmetry-adapted coordinates. Thus,
on the one hand, regardless of the various equivalent realizations
of a molecular geometry related by symmetry transformations,
the values of the invariants are the same and thus enforce the
proper symmetry of the model. On the other hand, it is not
obvious whether or not the invariants contain all the coordinate
information represented by the symmetry-adapted coordinates.
The lowest-order invariants are a, v(2)(xs,ys), v

(2)(xb,yb), and
vee
(2,1)(xs,ys,xb,yb). This means that there are only four instead of
five coordinates available. Furthermore, these invariants do only
represent information about the radial displacement of the
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molecular geometry with respect to the conical intersection but
none about the tangential displacement with respect to the three
equivalent positions around the conical intersection.110 The
missing information can be retrieved by utilizing the next higher
order of invariants as will be demonstrated by numerical tests. It
turns out that adding the four third-order invariants provides
sufficient input information for an accurate representation of the
full diabatic PES model.
Finally, the cubic terms in the invariants on the input layer of

the ANN cause small numerical errors, which only show in the
detailed results of the quantum dynamics calculations for the
vibrational/vibronic levels of the system. This is avoided by
damping the invariants according to

′ =v Q c d v Q( ) tanh( ( ))k k k k (16)

where ck and dk are empirical scaling factors chosen according to
the physical problem to be treated. A reasonable choice for this
scaling appears to be ck = dk

−1 = 10, and this assumption is tested
numerically in Section 4.3.
This diabatic PESmodel is designed such that the stability and

basic qualitative description of a low-order vibronic coupling
expansion is combined with the flexibility of the ANN to achieve
excellent accuracy. We found in previous studies that the basic
reference model should be restricted to the lowest reasonable
orders to avoid numerical problems in the ANN training. This
also ensures that themodel is free of pathologies. The accuracy is
not limited by this reference model but by the ANN tuning the
corresponding coupling parameters according to eq 15. What
remains is to fit the reference parameters λL

0 and to train the
ANN with respect to ab initio reference data.

3. COMPUTATIONAL DETAILS

The present method is tested by representing the 5 × 5 diabatic
Hamiltonian for the NO3 radical. The training of the ANN is
based on an extensive set of ab initio reference energies
computed byMulticonfiguration Reference Singles andDoubles
Configuration Interaction (MR-SDCI) calculations based on
Complete Active Space Self-Consistent Field (CASSCF)
reference wave functions using a slightly adapted correlation
consistent aug-cc-pVTZ standard basis.111 All details of the ab
initio computations can be found in refs 74, 98, 111, and 112.
The sampling approach for the data points is based on the
method described in refs 113 and 90.

These reference data are used first to fit the 21 free parameters
λj
0 of the reference model using a Marquardt−Levenberg
algorithm incorporated into a genetic algorithm with a resulting
RMSE of∼1700 cm−1. This is the same reference model as used
before. Then the reference data set is partitioned into a training
set of 85% of the data and an external validation set of the
remaining 15% of the energies. The training set is used to train
CNPI-ANNs with a single hidden layer of various sizes. The
validation set is used in the early stopping mechanism to prevent
overfitting as suggested in ref 114. The specific way how early
stopping is used here has been described in ref 90. All data are
energy weighted as described before in order to get the best
accuracy of the PES model in the region of the NCS most
relevant for the nuclear dynamics.
The resulting PES models were tested by computing

vibrational/vibronic energy levels on the adiabatic ground
state as well as the first electronically excited state, which is
separable for planar geometries. The second excited state of 2E′
symmetry cannot be tested easily by the dynamics calculations,
because it is coupled to the 2A2′ ground state by pseudo-JT
coupling, and thus vibronic eigenstates would not be accessible
easily and therefore are not computed in the present study. The
computation of the vibrational/vibronic energy levels was
performed using a time-independent Hermite discrete variable
representation (Hermite-DVR) method,115 in which the
corresponding Hamiltonian was diagonalized by an exact short
iterative Lanczosmethod. Further details can be found in refs 74,
90, 98, and 105.

4. RESULTS AND DISCUSSION

The new scheme is tested and compared to its predecessor laid
out in refs 90 and 95. First, both are compared in terms of fitting
performance and convergence with respect to the number of
parameters needed. In a second step, both models are compared
in terms of the dynamics results for both 2A2′ ground and 2E″
excited states, respectively. Finally, the new approach will be
assessed by its capability of reproducing the available
experimental data,106,107 in comparison to previous efforts.
While various ANN parametrizations will be used to provide

deeper insights regarding the stability of the produced results
(wrt the initial guess), each scheme will be primarily represented
by one specific parametrization as a reference case, which turned
out to be particularly suitable for the present case. The previous

Figure 2.Weighted RMSE of the best neural network of a given set as a function of the hidden-layer size. Purple line represents the fitting set error;
green line represents the validation set error. (left) Previous model. (right) New model.
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method will be represented by an ANN model with a single
hidden layer of 75 neurons (corresponding to 1134 formal
parameters), and the new model has a single hidden layer of 30
neurons (corresponding to 549 formal parameters).
4.1. Fitting Performance. The first and somewhat

surprising observation is that the new ANN setup outperforms
the previous efforts significantly in terms of compactness and
overall fitting results. Various neural network sizes between 5
and 120 hidden-layer neurons have been tested. The
convergence behavior of the best obtained RMS error (as well
as the corresponding validation error) is presented in Figure 2,
together with the analogous graph from ref 90. Not only does the
new scheme converge to roughly half of the previous fitting
error, convergence itself occurs significantly faster with respect
to the ANN size. As in previous work, a sudden increase of the
difference between fitting error and validation error is observed
at a certain number of hidden-layer neurons. This is a sign for
overfitting, and ANN models with a larger hidden layer are
considered less reliable. This point is reached for 50 hidden-layer
neurons with the new approach compared to 80 neurons for the
initial method. In the present study we will focus on the best
fitted 30 neuron network, with a fitting RMS of 21.4 cm−1 and a
validation error of 23.6 cm−1, respectively. This was chosen
instead of the 40 neuron network, because both result in almost
indistinguishable results, and the smaller ANN is more efficient
to test thoroughly. It also should be pointed out that the
reference data are obtained from very intricate ab initio
calculations rather than an analytic test model, and thus the
remaining errors not only reflect possible shortcomings of the
present model but also the errors intrinsic to the multireference
configuration interaction (MRCI) calculations. We are inclined
to estimate that an RMSE on the order of 10−20 cm−1might be
the lower limit of what is possible to achieve with the present
data set.
While the total root-mean-square error provides a measure for

how well the given ab initio data are reproduced overall, it
provides no information regarding how deviations are
distributed. For this purpose, unweighted RMS errors were
computed for each adiabatic energy separately below a certain
threshold. This threshold was chosen the same way it was in
previous work,90 1 eV above the reference point energies, to
obtain a measure of how well the model performs in the

physically relevant regions of the individual sheets. A
comparison between the convergence behavior of both present
and previous models can be found in Figure 3. Apart from
inheriting the same smoother, more well-behaved manner of
convergence, state-specific errors produced by the new method
are significantly closer together, meaning the overall error is far
more evenly distributed across the individual electronic states.
This is in stark contrast to the previous model, where the error
seems largely dominated by the error of the lower 2E″ sheet. A
reasonable explanation for this is that, while its intricate triple-
well structure remains the topographically most demanding to
reproduce, the inherent symmetry of the modified input
coordinates greatly reduces the overall strain on the network.
This also explains the significant reduction of required
parameters (less than half of the previous reference ANN
surface).

4.2. Impact of the Hidden-Layer Size on Dynamics.
While representing ab initio data reliably is a central aspect and
strong point of the presented method, it is equally essential for
the resulting models to behave consistently in dynamics
calculations. To this end, in a first step, fits of neural networks
are considered, which differ only in which particular (randomly
generated) initial guess was used in the training for the neural
network parameters. As mentioned above, these tests are
performed with 30 as the number of hidden-layer neurons for
this particular study. The resulting surfaces can vary significantly,
as the highly nonlinear nature of themodel allows for a great deal
of different realizations of nearly identical fitting errors. The
study itself is performed in analogy to that of ref 95, taking the 10
best-fitted networks (in terms of the RMS error) from a set of
100. These networks only differ marginally in terms of the fitting
error, ranging from 21.4 to 22.2 cm−1, meaning they can be
considered roughly identical in terms of quality. They are
enumerated by their numerical “rank” (starting at 1 for the best
network) for the sake of convenience in the following. Figure 4
shows an excerpt of the data resulting from computing
vibrational transition energies for the X̃ 2A2′ state, together
with the obtained average transition energies as well as
respective standard deviations σi. The latter are of particular
interest, as they provide a simple measure for how dynamics
results “spread” among samples of very similar networks. In
other words, these σi values are a measure for what kind of

Figure 3. State-resolved convergence behavior of unweighted RMSE for ab initio data points up to 1 eV above respective reference point energy. States
are enumerated from the ground state to the energetically highest lying state. Gray: weighted fitting set error. (left) Previous model. (right) Current
model.
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deviations are a priori indistinguishable from competing
networks of the same architecture as our reference, which is
why excitation energies will be denoted with a ±σi when
appropriate.
Overall, the dynamics results obtained from the new 30

neuron model closely resemble those from the previous 75
hidden-layer neuron model both with respect to the average
energies produced as well as with respect to the corresponding
standard deviations. Standard deviations are close to 2 cm−1 for
all 18 states considered in the present work. This more than
likely confirms the previous conclusions that the previous model
already exhausted the limits of what accuracy can be achieved
within the confines of the ab initio data presently available. This
indicates that the new approach inherits one of the most
favorable aspects of its predecessor, in particular, the consistency
of the dynamics results produced and thus the overall tendency
of the method to produce robust results of excellent quality.
With the standard deviations σi as a measure for significant

deviations from the reference network at hand, the findings
presented in Table 1 can be contextualized.
The 20 neuron network, with its significantly smaller number

of formal parameters, results in vibrational level energies
deviating significantly for all states known to be affected by
insufficiently flexible ANNmodels in the past (in particular, 4/5,
11, and 12), suggesting that these states are particularly sensitive
regardless of the specifics of themodel used. States 9/10, 13, and
14/15 are additionally affected, further suggesting that this
network size is insufficient to reproduce the lowest adiabatic
sheet accurately. The 25 neuron network, while being more
consistent with the reference network overall, still shows
significant deviations for states 12 and 13 as well as 6/7, 16/
17, and 18, in particular, which were previously indistinguishable
from the reference. Most interestingly, the 40 neuron network
(corresponding to an increase of formal parameters by ∼30%)

shows little to no significant change when compared to the
reference network. This was the reason why the less flexible 30
neuron ANN was chosen as reference model, because it is the
more rigorous test for the efficiency of the new model. It turns
out that network sizes depending on more than twice the
number of formal parameters than the reference network (such
as 60 and 80 hidden-layer neurons) show very few significant
deviations, with state 18 featuring the largest deviation overall.
This is surprising, as overfitting effects were much more
apparent in the previous model scheme, where the molecule’s
symmetry was not directly taken into account by construction.
This change in behavior suggests that, at least for the sample of
states considered, reproducing the adiabatic ground-state PES
accurately is less indicative of the model’s overall performance.
Apparently, the new CNPI-ANN approach greatly reduces the
strain on the network to reproduce the comparably simple,
highly symmetric structure of this PES.
Moving on to the significantly more sensitive dynamics of the

2E″ first excited state, again first the 10 best networks are
considered for the reference hidden-layer size (30 neurons) to
estimate the size of a “significant deviation”. A visualization of
the first 15 states is again provided in Figure 5. Despite the
overall improvement of the new model in terms of reproducing
ab initio data for this particular electronic state, no change in the
overall sensitivity of the resulting transition energies could be
observed. However, while the standard deviations σi remain
rather similar to those produced by the analogous study using
the previous model and 75 neuron network for each state
considered, even the average energies of the first few states (such
as 3/4, 6, and 8) deviate up to 30 cm−1. On the one hand, the
latter is to be expected, as the changes in fit performance were
the most significant for the coupled surfaces of the 2E″ state. The
former, on the other hand, can easily be interpreted as the
sensitivity of these states being intrinsic to the complexity of the
particular system, combined with the limited availability of ab
initio data. This interpretation is consistent with our findings in
ref 95.

Figure 4. Comparison of the computed transition energies for the X̃
2A2′ state of

14NO3 (in cm−1) for the 10 best (in terms of the fitting
error) ANNs from a set of 100 fitted neural networks, including the
reference ANN. Level distances, not to scale, correspond to a deviation
of 20 cm−1 from average. Gray: Standard deviations σi around average
energies. Average energies are provided on the right-hand side together
with the deviation σi in inverse centimeters.

Table 1. Comparison of Computed Vibrational Transition
Energiesa

30 20 25 40 60 80

state Ei − E0 ± σi

δ(Ei −

E0)
δ(Ei −
E0)

δ(Ei −

E0)
δ(Ei −

E0)
δ(Ei −
E0)

1/2 365.8 ± 1.0 −0.9 0.2 ⋮ 0.5 1.4 1.2

3 754.6 ± 1.3 −1.5 −0.5 ⋮ −0.2 −0.2 0.9

4/5 772.5 ± 1.7 −3.2 −0.8 ⋮ −0.5 1.2 1.5

6/7 1035.5 ± 1.7 0.4 2.6 ⋮ 1.9 2.1 2.2

8 1055.6 ± 0.7 −1.7 −1.0 ⋮ −1.2 −1.2 −1.1

9/10 1176.6 ± 1.5 −2.8 −1.1 ⋮ −1.9 −1.8 −0.4

11 1186.6 ± 1.9 −2.7 0.4 ⋮ −0.8 1.8 1.3

12 1212.3 ± 2.5 −6.1 −3.1 ⋮ −2.3 0.6 1.7

13 1342.7 ± 1.5 −2.3 2.5 ⋮ 0.5 1.2 1.9

14/15 1417.6 ± 1.0 −2.5 −0.7 ⋮ −0.7 −0.2 0.0

16/17 1488.1 ± 0.8 0.1 1.8 ⋮ −1.1 −0.1 0.0

18 1489.8 ± 2.1 0.0 3.6 ⋮ 0.2 2.8 2.8
aComparison of the computed vibrational transition energies for the
X̃ 2A2′ state of

14NO3 (in cm−1) for different hidden-layer sizes. The
vibrational excitation energies of the reference (30) surface are
reported together with the deviation σi as defined before (see text).
For the five hidden-layer sizes tested, δ(Ei − E0) provides level shifts
compared to reference network (30). The dotted vertical line
indicates the separation between increased and decreased hidden-
layer sizes with respect to the reference.
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The obtained standard deviations again provide a context in
which the resulting vibronic excitation energies of different
network sizes, summarized in Table 2, can be compared. In
addition to the energies, this table also provides D3h labels and
state assignments based on symmetry information and projected
wave function densities. As in the previous work,95 state
assignments in the degenerate stretch and bend coordinates are
given in terms of radial rs,b

n and tangential excitations ts,b
n .110

Excitations in the totally symmetric mode are denoted with an.
While deviations are largely well below 40 cm−1, the 80 neuron

network showed such immense overfitting artifacts that
comparison was not deemed feasible, which is why it was
omitted. Overall, deviations observed are rather large for
different neural network sizes, in particular, for states
corresponding to radial stretch excitations rs. The fact that the
radial stretch excitations remain sensitive despite the new model
representing the related ab initio data significantly better than
before further confirms the previous conclusions that this may
be a limitation of the underlying data itself being insufficiently
sampled in the dissociative domain of the nuclear configuration
space. Apart from that, the overall size of the deviations is
consistent with findings from the previous modeling scheme.
On the one hand, considering again the smaller networks first,

the 20 hidden-layer neuron network exhibits themost significant
deviations for the rb fundamental and the tb

2 a1″ state (state 20),
with most other states showing deviations close to their
respective σi. The 25 neuron network, on the other hand,
shows expectedly fewer deviations than the 20 neuron network,
as the flexibility of the network increases. Both networks remain
comparably more similar to the reference ANN overall, at least
relative to the deviations found for the same ANN sizes and the
corresponding dynamics results for the ground-state calcula-
tions.
Intriguingly, this pattern was also observed in the previous

model. A plausible explanation for this is that the adiabatic
ground state is more sensitive to underfitting, requiring a
minimal flexibility to be reproduced though having a simple
overall structure. Conversely, the Ã state appears to be more
sensitive to overfitting, having the most complicated structure.
This sensitivity toward overfitting can be observed when looking
at the 60 neuron network. In this case, deviations are again
larger, reaching up to 40 cm−1, with state 20 again deviating the
most, relative to the standard deviation. The 40 neuron network,
while significantly deviating for a few states (state 20, in
particular), is overall very similar to the reference network and
can be seen as an overall equivalent choice.
In conclusion, our findings show that the new modeling

scheme is overall very similar to its predecessor in terms of how

Figure 5. Comparison of the computed transition energies for 14NO3

(in cm−1) on the Ã state for the 10 best (in terms of fitting error) ANNs
in analogy to Figure 4. Level distances, not to scale, correspond to a
deviation of 100 cm−1 from average. Gray: Standard deviation σi around
average energies. Excitation energies together with the deviation σi are
given at the right-hand side.

Table 2. Comparison of Computed Vibronic Transition Energiesa

30 20 25 40 60

state assignment Ei − E0 ± σi δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0)

2 0 a1″ 58.1 ± 2.0 2.2 −2.5 ⋮ 2.8 1.7

3/4 rs
1 e″ 536.7 ± 10.5 12.3 15.3 ⋮ 13.1 16.6

5 tb
1 a2″ 539.5 ± 2.1 2.4 3.5 ⋮ −1.6 −0.1

6 rs
1 a1″ 595.0 ± 9.9 13.4 17.0 ⋮ 14.8 19.6

7/8 tb
1 e″ 614.3 ± 6.5 11.6 7.3 ⋮ 10.0 12.5

9/10 rb
1 (*) e″ 787.3 ± 11.6 19.5 −0.3 ⋮ 3.3 16.9

11 rb
1 (*) a1″ 859.4 ± 28.7 36.5 17.2 ⋮ 25.7 40.0

12 rs
1tb
1 a2″ 1047.7 ± 14.7 20.4 23.9 ⋮ 17.1 25.0

13/14 rs
2 e″ 1056.4 ± 24.8 25.0 29.2 ⋮ 22.7 27.8

15 rs
2 a1″ 1117.3 ± 17.4 26.2 20.7 ⋮ 19.3 25.4

16/17 tb
2 (*) e″ 1121.9 ± 18.5 29.6 30.1 ⋮ 28.9 34.9

18/19 rs
1tb
1 (*) e″ 1168.8 ± 5.9 5.3 13.5 ⋮ 3.5 9.8

20 tb
2 (*) a1″ 1176.2 ± 13.6 25.0 19.9 ⋮ 20.2 27.2

21/22 a1 e″ 1176.3 ± 10.3 18.2 16.3 ⋮ 12.9 20.5

23 ts
1 a2″ 1271.4 ± 6.7 5.7 8.3 ⋮ −2.6 5.0

aComparison of computed transition energies for 14NO3 (in cm−1) on the Ã state for different hidden-layer sizes. δ(Ei − E0) provides level shifts
compared to the reference network (30). All states are given labels in terms of excitations in the breathing mode (a) as well as radial and tangential
excitations in the degenerate stretch and bend modes (rs,b, ts,b). Assignments marked with (*) display visible contamination of other rs excitation(s).
The dotted vertical line indicates the separation between increased and decreased hidden-layer sizes with respect to the reference.
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it reacts to varying the hidden-layer size and overfitting, while
being capable of reproducing ab initio reference data both more
accurately and with less than half as many parameters. The
primary difference to previous findings (in terms of behavior) is
that the model shows a more clear-cut change in behavior as
overfitting effects become dominant. However, it is important to
note that this does not relevantly affect the stability of the
method itself, as these effects occur only for more than twice the
number of parameters needed to accurately reproduce the given
data, and resides far beyond any suitable model choice. As a
consequence, the 30 neuron model remains the focal point of
this work, with the 40 neuron model yielding largely equivalent
data at the cost of needing significantly more parameters.
4.3. Invariant Input Coordinates and Numerical

Stability. So far, only the model’s behavior with respect to
the hidden-layer size of the neural network has been
investigated. However, this is of course not the only free
parameter related to the neural network that could be adapted.
Most of these parameters, such as the number of hidden layers or
particularities regarding the distribution of the data set into the
reference and validation set already have been discussed at
length in ref 90.What remains is to analyze the impact of the new
parameters introduced in Equation 16. In the present case, these
parameters were set in such a way that ck = dk

−1 = 10. What this
means is that vk′(Q) approximates vk(Q) for all values of |vk| less
than ck while approaching ±ck as vk → ±∞. In other words, vk′
serves as an asymptotically damped version of vk.
One of the great advantages of neural networks, as we have

stressed before, is the homogeneous, bounded nature of the
sigmoid functions they are ultimately composed of. This is in
stark contrast to the terms of a polynomial expansion, which
increase more rapidly in size for increasing polynomial orders,
which can cause artifacts caused by rapid oscillations in the
undersampled domains of a fit. However, some of this
disadvantage is reintroduced by the use of higher-order
invariants as input coordinates, which means that small changes
in the primitive coordinates translate into large changes in the
third-order coordinates. This appears to cause unnecessary
numerical noise to the neural network, thus hindering (or even
impeding) convergence. The above damping scheme was
introduced to remove this problem and make the resulting
ANN model more robust numerically. What remains is to
address the question of how to choose the resulting parameters
ck. Since the goal of the damping scheme is to avoid artifacts
caused by ill-behaved coordinates rapidly increasing in size, the
present scheme aims to minimize the risk of numerical issues by
keeping vk′ as limited as possible. This means that the
dynamically relevant region of the surface must be represented
perfectly and that the damping does not interfere with that
region.
Table 3 provides a summary of how the computed Ã state

transitions change for the reference network size (30) for various
choices of ck. Again, labels and deviations wrt the reference
network are provided in the same format as that of Table 2,
including standard deviations σi as a measure for the expected
deviations from the reference for equivalent networks (see
Section 4.2). No significant impact on the X̃ state could be
observed. For this reason the present study will focus solely on
the Ã state. Choosing a significantly smaller value of ck than 10
causes the resulting network to become incapable of
reproducing ab initio reference data, as small ck begin to
dampen vk for smaller and smaller displacements from the
reference geometry. On the one hand, this loss of quality is so

significant that obtained dynamics results would fail to provide
relevant insight, as the resulting dynamics change too drastically
to allow a proper comparison. On the other hand, the behavior
of the network changes only marginally when increasing ck from
10 to 15. This suggests that ck = 10 is indeed large enough to
cover the dynamically relevant region, while minimizing the risk
of artifacts. Networks with thresholds of 50 or greater
(essentially meaning that vk′ → vk) have been found to cause
significant artifacts in the surface, rendering further comparisons
unfeasible. One way in which these artifacts become noticeable
is that dynamics results of formally degenerate level energies
begin to show deviations of ∼1 cm−1 due to numerical
instability. As the damping threshold ck becomes higher and
higher, the computed level energies change increasingly, with
deviations from the reference calculation values exceeding σi,
until a “tipping point” (close to ck = 50) is reached, rendering the
obtained dynamics calculations unusable.
In summary, tuning the damping threshold ck one observes a

significant change in the dynamics results obtained, with one
limiting case on either side. Each limiting case is accompanied by
an abrupt change into pathological behavior. Our interpretation
of the data presented in Table 3 is that very large values of the vk
outside the dynamically relevant region cause the numerical
artifacts and thus need to be damped as quickly as possible. This
means that the proper values of ck can be estimated
approximately by the inspection of the reference data and
should be chosen reasonably small. For this reason, all further
results are obtained with a value of ck = 10 ∀k.

4.4. Comparison with Experimental and Previous
Theoretical Data.Up to this point it was investigated primarily
how the ANN choices like hidden-layer size affects the fit
performance as well as quantum dynamics result in comparison
with a reference ANNmodel and how these observations fit into
the conclusions drawn from previous efforts. The comparisons
aim at estimating errors intrinsic to themodel with respect to the
differences in excitation energies produced by the ANNs of (in
terms of fitting error) indistinguishable quality. These estimates

Table 3. Comparison of Computed Transition Energiesa

Ei − E0 ± σi

δ(Ei −

E0)
δ(Ei −

E0)
δ(Ei −

E0)
δ(Ei −

E0)

state assignment ck = 10 ck = 15 ck = 20 ck = 30 ck = 40

2 0 a1″ 58.1 ± 2.0 −0.9 −1.9 1.0 1.5

3/4 rs
1 e″ 536.7 ± 10.5 −0.7 8.1 7.6 16.2

5 tb
1 a2″ 539.5 ± 2.1 −1.4 4.5 2.8 4.6

6 rs
1 a1″ 595.0 ± 9.9 2.3 12.5 10.4 17.6

7/8 tb
1 e″ 614.3 ± 6.5 −3.0 6.1 6.9 13.6

9/10 rb
1 (*) e″ 787.3 ± 11.6 5.8 −6.0 −2.1 −2.3

11 rb
1 (*) a1″ 859.4 ± 28.7 1.4 2.0 7.3 17.7

12 rs
1tb
1 a2″ 1047.7 ± 14.7 −3.5 13.9 11.3 23.4

13/14 rs
2 e″ 1056.4 ± 24.8 −0.8 22.8 15.1 29.5

15 rs
2 a1″ 1117.3 ± 17.4 1.9 19.2 14.2 25.6

16/17 tb
2 (*) e″ 1121.9 ± 18.5 −0.6 26.3 15.8 35.7

18/19 rs
1tb
1 (*) e″ 1168.8 ± 5.9 −1.8 7.6 2.3 8.8

20 tb
2 (*) a1″ 1176.2 ± 13.6 2.4 14.5 11.0 21.5

21/22 a1 e″ 1176.3 ± 10.3 −3.1 19.6 12.8 27.7

23 ts
1 a2″ 1271.4 ± 6.7 1.6 6.1 −2.0 −0.2

aComparison of the computed transition energies for 14NO3 (in
cm−1) on the Ã state for different damping thresholds ck = dk

−1 used in
Equation 16. Columns for ck values larger than 10 provide level shifts
compared to reference network (30 hidden-layer neurons, ck = 10).
Labels and standard deviations σi taken from Table 2.
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in return allow to judge different networks in terms of their
internal consistency among one another, without the need for an
external reference. In this section, the focus will be on the quality
of the surfaces based on external consistency with experimental
data, considering X̃ and Ã state vibrational/vibronic transition
energies.
4.4.1. Vibrational Eigenstates in the X̃ 2A2′ Electronic State.

The results of the vibrational eigenstates of the X̃ state are given
in Table 4. The experimental frequencies are compared to the

computed transitions for both the novel and previous ANN
model. As becomes apparent quickly from the fifth and sixth
columns of Table 4, deviations from experiment remain largely
similar, with all but one change in deviation being most likely
just coincidental and due to the model-intrinsic fluctuations
discussed in Section 4.2. The only state to which a noteworthy
change can be attributed is the 3141 a1′ state. However, this
deviation by itself does not allow for any meaningful
interpretation and still resides well within the limits of what
can be expected of themodel under present conditions. The new
model also reconfirms the long-debated 31 fundamental, which
can be assigned confidently to a state computed at 1036 cm−1

(previously 1040 cm−1), agreeing well with other theoretical
treatments102−104,116 and recent experimental assign-
ments.106,117,118 Similarly, the new model also provides further
evidence that the measured energy level of 1492.4 cm−1 does not
correspond to the 31 fundamental but to the combination band
3141 e′. Finally, the large deviation found for the 3141 a2′ state
can only be explained by a misassignment of the experiment as a
disagreement of almost 150 cm−1, for a single state appears more
than unlikely, especially with excitations even higher in energy
not reaching one-tenth of that.
4.4.2. Vibronic Eigenstates in the Ã 2E″ Electronic State.

The available data for the electronically excited 2E″ state are
restricted to three experimentally measured transitions, as was
the case with the previous model. While a greater deal of
experimentally observed transitions is indeed available, they all
involve umbrella excitations, which cannot be reproduced with
the present model being restricted to planar geometries. A
comparison of how both old and new ANN models reproduce

available experimental data is provided in Table 5. The two
adiabatic PES sheets corresponding to the 2E″ state show a

particularly strong Jahn−Teller coupling resulting in a
pronounced triple-well structure on the lower adiabatic sheet.
As a result, the assignment of the D3h labels based on normal
mode excitations are not straightforward. The intricacies of how
tunneling and the geometric phase effect affect the resulting
spectra as well as the structure of the vibronic eigenstates have
been analyzed in detail in refs 105 and 110.
Of the three experimentally known excitations, two have

already been reproduced within the intrinsic limitations of the
previous model. This continues to be the case for the present
method, excellently reproducing experimental data for the 40

1

(tb
1) and the 30

1 (ts
1) level. In addition, the previously far less well

reproduced rs
1tb
1 state now is computed with unprecedented

agreement with experimental data by the new CNPI-ANN
model. While it is impossible to extrapolate too far from such a
small data set, it may be concluded that it is a fair assumption
that this improvement is indicative of the overall improved
quality of the new model, in particular, with respect to the Ã
state.

5. CONCLUSIONS AND OUTLOOK

The recently developed diabatization method based on a
combination of a simple vibronic coupling model and an ANN
that tunes the coupling parameters has been improved and
thoroughly tested in the present study. The use of symmetry
transformation invariants as input coordinates for the ANN
intrinsically removes symmetry contaminations. Apparently, the
proper symmetry handling by the invariants reduces the stress
on the ANN and leads to reduced RMS errors of the represented
ab initio data. Furthermore, these improved results are obtained
with significantly smaller ANNs. While with the original method
an optimal ANN with 75 hidden-layer neurons was determined,
the present CNPI-ANNmethod needs only 30 neurons to yield
a PES model with noticeably improved RMSE. Thus, the new
method not only is capable of reaching better accuracy but also is
considerably more efficient. This can reduce the numerical effort
in demanding quantum dynamics calculations considerably and
thus can be of tremendous advantage.
The performance of the diabatic PESmodel obtained with the

CNPI-ANN method has been tested by representing an
extensive set of ab initio data for the few lowest electronic
states 2A2′,

2E″, and 2E′ of planar NO3. The same data set has
been used as in our previous studies, and thus the results can be
compared directly. In addition to the residual errors in the
representation of the ab initio data, vibrational- and vibronic-

Table 4. Summary of the Comparisona

assignment Eexp Etheo
ANN,old Etheo

ANN,new δEexp
ANN,old δEexp

ANN

41 e′ 365.5 366.8 365.8 −1.3 −0.3

42 a1′ 752.4 756.3 754.6 −3.9 −2.2

42 e′ 771.8 774.6 772.5 −2.8 −0.7

11 a1′ 1051.2 1054.9 1055.6 −3.7 −4.4

31 e′ 1055.3 1039.7 1035.5 15.6 19.8

43 e′ 1173.6 1179.3 1176.6 −5.7 −3.

43 a1′ 1214 1215.1 1212.3 −1.1 1.7

1141 e′ 1413.6 1417.7 1417.6 −4.1 −4.

3141 a2′ 1491 1344.9 1342.7 146.1 148.3

3141 e′ 1492.4 1490.0 1488.1 2.4 4.3

3141 a1′ 1499.8 1498.2 1489.8 1.6 10.
aSummary of the comparison between the experimental and
computed transition energies on the X̃ 2A2′ state of 14NO3 (in
cm−1). The “assignment” column provides the corresponding D3h

labels as well as state assignments including dominant state
contributions. Etheo

ANN,old provides excitation energies using the previous
(ANN-based) model,90,95 and Etheo

ANN,new relates to the ones obtained
for the present model. The remaining two columns provide respective
differences from the experimental data as listed under Eexp, reported
from ref 106.

Table 5. Summary of the Comparisona

assignment Eexp Etheo
ANN,old Etheo

ANN,new δEexp
ANN,old δEexp

ANN,new

40
1 (tb

1) 539.5 539.3 539.5 0.2 0.0

40
2 (rs

1tb
1) 1056.6 1024.8 1047.7 31.8 8.9

30
1 (ts

1) 1270.5 1276.1 1271.4 −5.6 −0.9
aSummary of the comparison between the experimental and
computed transition energies on the Ã 2E″ state of NO3 (in cm−1).
Assignments in the first column correspond to those of Table VI of ref
107, with assignments from Table 2 given in parentheses. Etheo

ANN,old

provides excitation energies using the previous (ANN-based)
model,90,95 and Etheo

ANN,new relates to the ones obtained for the present
ANN-based model. The remaining two columns provide the
respective differences from the experimental data.
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level energies have been computed. This allows to assess the
sensitivity of the nuclear dynamics results on the various
parametrizations of the CNPI-ANNPESmodel. It turns out that
the new CNPI-ANN model behaves very similarly to the
previous plain ANNmodel. In particular, the onset of overfitting
can be assessed from the development of the validation error
compared to the reference error when increasing the hidden-
layer size. For each ANN, many different parametrizations are
obtained, which are very similar in terms of RMSE. The
corresponding quantum dynamics calculations yield a certain
scattering of values for each vibrational/vibronic level that is
indicative of the sensitivity of the results on the minute details of
the PES model. The observed standard deviations are only on
the order of a couple of inverse centimeters for the 2A2′ ground-
state vibrational levels. The standard deviations computed for
the vibronic levels of the excited 2E″ state, having a much more
complicated PES topography, are approximately an order of
magnitude larger. Comparison of these dynamics results with
the available experimental values shows overall excellent
agreement, and most level energies are reproduced more or
less within the computed standard deviations. The agreement
with experiment is slightly improved over the plain ANNmodel,
which already yielded excellent results. The most noticeable
improvements are observed for the 2E″ state both in fitting
RMSE and quantum dynamics results.
The present model limited to 5D planar NO3will be extended

to full 6D in the near future to be able to investigate the nuclear
quantum dynamics and spectroscopy of this intriguing radical in
full detail. Of course, the CNPI-ANN diabatization model can
be applied also to other vibronic coupling problems. The present
results seem quite encouraging that accurate and reliable
diabatic PES models can be obtained by the present method
in an efficient way.
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Accurate quantum dynamics simulation of the photodetachment spectrum of
the nitrate anion (NO−

3 ) based on an artificial neural network diabatic
potential model

Alexandra Viel,1, a) David M. G. Williams,2, b) and Wolfgang Eisfeld2, c)
1)Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes,
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Germany

The photodetachment spectrum of the nitrate anion (NO−

3 ) is simulated from first principles using wave
packet quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five
state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation
inversion invariant artificial neural network (CNPI-ANN) diabatization technique [J. Phys. Chem. A, 2020,
124, 7608]. The quantum dynamics simulations are designed such that temperature effects and the impact of
near threshold detachment are taken into account. Thus, the two available experiments at high temperature
and at cryogenic temperature using the slow electron velocity-map imaging technique (cryo-SEVI) can be
reproduced in very good agreement. These results clearly show the relevance of hot bands as well as vibronic
coupling between the X̃ 2A′

2 ground state and the B̃ 2E′ excited state of the neutral radical. This together
with the recent experiment at low temperature gives further support for the proper assignment of the ν3
fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is
also proposed.

I. INTRODUCTION

One central goal of chemical physics is the detailed
and fundamental understanding of the nuclear dynam-
ics of molecular systems. Impressive progress has been
achieved in this quest by the combined efforts of ex-
periment and theory over the past decades. Yet, there
are still enigmatic systems which, despite being studied
intensively, are not understood very well. The nitrate
radical (NO3) is one such case which on the one hand
is of high significance due to its importance in atmo-
spheric chemistry1 and on the other hand shows com-
plicated nuclear dynamics and correspondingly complex
spectra. This sparked the interest of many research
groups over the years both experimental2–40 as well as
theoretical.41–75

One of the reasons for the complicated behaviour of
NO3 seems to be the presence of strong nonadiabatic cou-
pling effects. The two first electronically excited states
are of 2E′′ and 2E′ symmetry, respectively, and thus are
both subject to an E⊗e Jahn-Teller (JT) effect. Further-
more, the conical intersection at D3h symmetric nuclear
configurations induces a geometric phase due to the sin-
gularity of the nonadiabatic coupling. Both cause very
complicated spectra corresponding to the excited state
manifolds. But even the non-degenerate ground state of
2A′

2 symmetry shows spectroscopic features which have
been debated for decades. This may be attributed at
least in part to significant vibronic couplings to the ex-
cited state manifolds. A further complication is that NO3

a)Electronic mail: alexandra.viel@univ-rennes1.fr
b)Electronic mail: d.williams@uni-bielefeld.de
c)Electronic mail: wolfgang.eisfeld@uni-bielefeld.de

is difficult to study both experimentally and theoretically.
The bottleneck for detailed theoretical studies of the nu-
clear dynamics and spectroscopy is the need of a very
accurate potential energy surface (PES) model based on
advanced electronic structure calculations. Various mod-
els have been developed in the past40,64–68,70–75 but it has
been a stony track to achieve the required quality to reach
decisive interpretations in comparison with experimen-
tal observations. Our recent developments for producing
highly accurate diabatic PES models using artificial neu-
ral networks (ANNs) should be a significant step forward
to reach that goal.76–78

One experimental breakthrough has been the first pho-
todetachment spectrum of the nitrate anion (NO−

3 ) pub-
lished by the Neumark group in 1991.34 This has been
the first direct experimental proof of the existence of the
Ã 2E′′ state of the radical, which previously only had
been predicted by theory.79 This experiment also pro-
vided new data for the X̃ 2A′

2 state of the radical. How-
ever, both partial spectra showed idiosyncrasies which
sparked the discussion of their interpretation. A very re-
cent experiment from the same group tried to resolve at
least some questions regarding the X̃ state.80 By cryo-
genic cooling some hot bands of the original spectrum
could be removed which allows to focus on the remain-
ing unexpected features more clearly. Unfortunately, a
corresponding experiment for the Ã state is not available
yet. Thus, one aim of the present study is to simulate
the temperature effects on the spectra theoretically and
to compare the results with the new experimental data
available.

Several attempts to simulate this experiment have been
published over the years.64,71–73,80 While the X̃ state
could be simulated reasonably well even in the first
attempt,64 the Ã state took a lot more effort and required
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a lot of development to obtain a sufficiently accurate PES
model.73,81–84 Further development enables us now to use
a PES model of unprecedented accuracy to simulate the
corresponding spectra.76–78,85,86

II. FULLY COUPLED DIABATIC 6D POTENTIAL
ENERGY MODEL

The basic idea behind the model potential used in the
present work was detailed in Ref. 78. Its main features
and the extension of our approach to the full-dimensional
(6D) diabatic PES model for NO3 are presented here.
The underlying ansatz for the diabatic matrix is ex-
pressed as a sum of diagonal and coupling matrices76,82,87

reading

Wd(Q) = Wd
diag(Q) +



λ1 0T 0T

0 λ21 0

0 0 λ31




+ θ ·



0 0T 0T

0 0 λ101

0 λ101 0




+




0 0T λ8ρs
T + λ9ρb

T

0 λ4εs + λ5εb 0

λ8ρs + λ9ρb 0 λ6εs + λ7εb




+ θ ·




0 λ11ρs
T + λ12ρb

T 0T

λ11ρs + λ12ρb 0 λ13εs + λ14εb

0 λ13εs + λ14εb 0


 .

(1)

The 2×2 matrices εs,b in Eq. (1) are the first-order Jahn-
Teller coupling blocks and the vectors ρs,b are the pseudo-
Jahn-Teller coupling blocks given by

εs,b =

(
xs,b ys,b

ys,b −xs,b

)
and ρs,b =

(
ys,b

xs,b

)
. (2)

xs,b, ys,b and θ are symmetry-adapted coordinates cor-
responding to the degenerate asymmetric stretching and
bending modes (xs,b, ys,b) and the umbrella motion (θ).
These coordinates together with the symmetric stretch
coordinate a are gathered in the 6D vector of nuclear co-
ordinates Q. They are defined identically to those used
in previous studies73,83 and provided in the appendix for
the sake of convenience. In Eq. (1), Wd

diag(Q) is a diago-
nal matrix which contains first and second order terms as
detailed in previous work73,75,76,83 and reproduced in the
appendix. Wd

diag(Q) is comprised of purely polynomial

terms. The remaining four 5× 5 matrices of Eq. (1) cor-
respond to the parametrized constant, linear Jahn-Teller
and linear pseudo-Jahn-Teller coupling matrices. Due
to symmetry, all inter-state couplings between states of
(A′,E′) and E′′ symmetry, respectively, are proportional
to the umbrella coordinate θ and hence vanish for planar
geometries.

The key for the accuracy of the present model is that
the vibronic coupling coefficients, λj(Q) [j = 1, . . . 14],
are not constants like in standard vibronic coupling mod-
els. Instead, they depend on all six nuclear coordinates
Q through the use of an ANN with the coordinates as
input layer. More specifically, the modified λi depend

on invariant functions, Q̃, constructed from Q. Apart
from the inclusion of θ2 to account for the additional de-
gree of freedom, the invariants (Q̃) are identical to those
used for the 5D ANN-based model described in Ref. 78.
These invariants are provided in the Appendix for the
convenience of the reader.
The new 6D model is constructed such that for θ = 0

the 5D ANN model from Ref. 78 is reproduced exactly.
To this end, the vibronic coupling constants of a reference

model λ0
j are tuned by the scaled output neurons η5Dj (Q̃).

In addition, since the umbrella coordinate is now present,

a second ANN, yielding the output neurons η6Dj (Q̃), is
introduced to provide the necessary θ-dependence to the
λi parameters. More specifically, the coefficients λ0

1−3,
which correspond to the adiabatic energies at the refer-
ence point, are made coordinate-dependent by

λj(Q̃) = λ0
j ·
(
1 + 10−5 · η5Dj

(
Q̃
)

+ θ2 · 10−3 · η6Dj

(
Q̃
))

∀j ≤ 3,

(3)

and the coefficients λ4−9, also present in the 5D model,
are constructed similarly:

λj(Q̃) = λ0
j ·
(
1 + η5Dj

(
Q̃
)

+ θ2 · cj · η
6D
j

(
Q̃
))

4 ≤ j ≤ 9

(4)

where the η6Dj are the outputs of the additional neural

network depending on Q̃ and which account for the ef-
fects of non-planar geometries. The additional scaling
factors cj are introduced to allow for further flexibility
if particular reference model terms reside in a different
order of magnitude than other terms and hence require
a different treatment. The additional parameters λ10−14

are defined in analogy to the previously utilized mod-
els and correct the new inter-state coupling terms, which
vanish for planar geometries and thus were not included
in the previous 5D models. These read

λj(Q̃) = λ0
j ·
(
1 + cj · η

6D
j

(
Q̃
))

∀j ≥ 10. (5)

The constants λ0
j are obtained from non-linear least

squares fits with respect to accurate ab initio reference
data and yield a qualitatively correct reference model.
In a second step, the two ANNs are trained with respect
to the same reference data and provide the Q-dependent
corrections. A global view of the above equations is that
the λi coefficients are actually modified not by a single
but by two ANNs, the original θ-independent 5D model

from Ref. 78 (η5Dj (Q̃)) and the neurons η6Dj from the
ANN used in Eq. (5).
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The advantage of this approach is that the previously
derived 5D ANN model.78, which is of excellent quality, is
available already and accounts for a large part of the full
6D model. Eqs. 3, 4, and 5 ensure that the coefficients λj

are constructed in such a way that the model smoothly
falls back to the original 5D model for planar geometries.
This way, the present, full-dimensional model naturally
extends the previous planar model by including out-of-
plane motions, while simultaneously correcting the addi-
tional contributions of the new vibronic coupling terms.
This further serves as a proof of concept that the pre-
viously established scheme can be extended without the
need of changing the general structure of the ansatz.

All neural networks involved in the construction of
the model belong to the broad category of feed-forward
neutral networks. They are functions taking a vector

Q̃ = η
(1) as input and processing it via intermediate

results η
(k), the so-called hidden layers, to a final (Lth)

output vector η(L) = η
6D called output layer. The vector

elements of each layer are called neurons. Each interme-
diate η

(k) depends solely on the previous layer η
(k−1)

by

η
(k)
j = f (k)

(
β
(k)
j +

∑

l

ω
(k)
jl η

(k−1)
l

)
. (6)

f (k) is a nonlinear function of one variable called activa-
tion function. In the present case, f (k) is chosen to be
tanh for the single unique hidden layer k = 2 and as the

identity Id for the output (k = 3), respectively. ω
(k)
jl and

β
(k)
j are called weights and biases, respectively. They are

the fitting parameters of the neural network.
The additional neural network accounting for the θ-

dependence of the 6D model contains a single hidden
layer with 10 hidden layer neurons, corresponding to a
function of approximately 250 formal parameters. While
significantly larger (and smaller) networks have been
tested, this network size is considered the most suitable.
As in our previous work,76 this ANN was trained for a
set of 100 random initial guesses using a specialized ANN
Marquardt-Levenberg method developed in-house. The
data set is composed of over 2400 (non-planar) geome-
tries, with a validation data set of about 400 additional
geometries. This is a significantly smaller data set than
what was used for planar geometries (18,000 geometries),
as accurate ab initio data for fully asymmetrical (C1) ge-
ometries is significantly more expensive and problematic
to attain.

The reference model (including the previous 5D ANN

and fitted λ
(0)
j ) yields a root mean square (rms) error

of 835 cm−1 which is significantly higher than the final
error after the ANN training of 58.1 cm−1. This fitting
error only includes non-planar geometries, as the model
is identical to the previous 5D model for planar geome-
tries. The corresponding validation set error is expect-
edly higher, 70.0 cm−1. While larger networks slightly
decrease the resulting rms error by a few inverse cen-

timeters, the validation set error increases significantly,
suggesting over fitting. This further motivates our selec-
tion of this 10 neuron network as the optimal choice for
the present case. The rms error obtained is noticeably
higher than what was achieved for the 5D neural net-
work (which had a fitting rms of about 20 cm−1). Most
likely, this increase in the rms error is due to the less re-
liable ab initio reference data. Numerous problems with
convergence of the electronic structure calculations were
observed during the very demanding data acquisition.
A discussion of more technical matters such as poten-

tial benefits of using “deeper” neural networks with more
hidden layers or the size of the reference data set have
been discussed at great length in previous studies76–78,
and hence will not be repeated here.

III. COMPUTATIONAL DETAILS

The aim of the present study is to unravel the effects of
temperature (hot bands) and vibronic coupling in the low
energy regime of the photodetachment spectrum by accu-
rate quantum dynamics simulations. To this end, a time-
dependent approach is used for the determination of the
detachment spectrum. More specifically, the propagation
of a 6-dimensional wavepacket evolving on the 5 coupled
PESs of the radical is performed starting from the eigen-
function of each of the lowest vibrational states of NO−

3 .
The spectra obtained by the Fourier transform of the re-
sulting autocorrelation functions are subsequently added
with the proper Boltzmann weights to simulate the NO−

3

photodetachment spectrum at a given temperature. The
MCTDH approach,88,89 suitable for the representation
of wave functions with large dimensionality is employed
for the time propagation of the wave packets. The state
average and block diagonalization schemes90 are used for
the determination of the vibrational eigenfunctions of the
anion.
The six internal curvilinear coordinates

ρ(cu), ϑ(cu), ϕ(cu), θ(cu), φ(cu), χ(cu), as proposed in
ref. 91, are used in the dynamics calculations. The asso-
ciated quasi-exact kinetic operator is approximated by
the fourth order Taylor expansion as detailed in ref. 91.
Both our previous studies74,75 on the first excited state
of NO3 and on the computation of the vibronic levels
of the ground state of NO3 have demonstrated that
this choice of coordinates and approximation is efficient
and suitable for the study of the NO3 radical. In the
MCTDH approach used, the evaluation of the potential
term is carried out using the CDVR scheme92 for the
anion and using the generalized version as detailed in
the appendix of ref. 83 for the evaluation of the diabatic
five by five potential matrix of the radical.
The dominant low energy part of the photodetachment

experiments34,80 is simulated by assuming a vertical tran-
sition of one of the NO−

3 vibrational eigenfunctions onto
the lowest component corresponding to the 2A′

2 state of
diabatic potential matrix of the neutral system. An ad-
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ditional signal is obtained in the low energy domain from
the vertical transition to the two E

′

components of the
diabatic model. This second contribution is clearly due
to vibronic coupling between the 2A′

2 ground and 2E′

excited electronic state of the radical. No significant sig-
nal is found in the same energy range when the verti-
cal transition to the two 2E′′ components is treated. A
propagation time of 250 fs is found to be sufficient for
the comparison of the computed spectrum with the ex-
perimental data.

Table I provides the numerical details of the basis set
used for the representation of the wave-packets. Careful

TABLE I. Wave function representations given by the number
of single particle functions (n), the number of Fourier points
(N) and the range of the underlying box [in a.u.] for the
six curvilinear coordinates of hyperspherical type constructed
using mass weighted Cartesian coordinates

coord. n N range

ρ(cu) 8 64 [635 : 840]

ϑ(cu) 9 96 [0.785 : 1.055]

ϕ(cu) 9 64 [0.615 : 0.955]

θ(cu) 6 32 [1.431 : 1.711]

φ(cu) 10 96 [0.820 : 1.295]

χ(cu) 10 64 [2.809 : 3.474]

electronic 5 5

attention was paid to the definition of the underlying
box as well as to the number of single particle functions
n and and the number of Fourier grid points N to ensure
a converged autocorrelation function up to the relevant
propagation time. The basis definition is adapted to the
excitation to the E

′

components. A smaller basis would
be sufficient for the case of a vertical transition to the
lowest diabatic PES only.

The lowest vibrational energy levels of the anion73 as
well as their contribution to the final spectrum by means
of Boltzmann weights for a 435 Kelvin as in the experi-
mental work34 are presented in Table II. At 10 Kelvin,
the only relevant initial vibrational state is the ground
state.

When comparing with the experimental data, one must
keep in mind the current limits of the theoretical ap-
proach. First no overall rotation is explicitly taken into
account. The width of the peaks are introduced by an ad
hoc damping of the autocorrelation function to be Fourier
transformed. Second, no ab initio information about the
photo-detachment cross-section are used. As a substi-
tute, an arbitrary relative weight of the two different
electronic state manifolds is used to match the measured
spectra of the two experimental setups. And finally, the
presented, CPU and memory demanding, computations
correspond for the E

′

manifold to a low intensity part of
the full spectrum and are thus more sensitive to round

TABLE II. Ground state energy with respect to the bottom
of the potential energy surface and excitation energies for the
first six vibrational states of NO−

3 in cm −1. The Boltzmann
weights, Bi = exp(−E/kBT ), at 435 Kelvin are also given in
unit of B1.

level description Ei [cm
−1] Bi/B1

1 ground state 0 (3038)a) 1

2 antisym bending 703 0.10

3 antisym bending 703 0.10

4 umbrella 845 0.06

5 sym stretching 1040 0.03

6 antisym stretching 1353 0.01

7 antisym stretching 1353 0.01

a) Zero-point energy in parentheses

off errors. Extensive convergence tests were performed to
ensure that the presented data discussed in the following
are not artificial.

IV. RESULTS AND DISCUSSION

The present quantum dynamics simulations of the pho-
todetachment spectrum of NO−

3 are designed in order to
disentangle unequivocally the effects of temperature and
vibronic coupling in the observed spectra. The assign-
ment and interpretation of the spectroscopy of the NO3

anion as well as the radical gave rise to several contro-
versies over the past decades. The first photodetachment
spectrum published in 1991 was a breakthrough in the
understanding of NO3 and sparked significant interest.34

The latest slow electron velocity-map imaging (SEVI)
experiment80 carried out at cryogenic temperature and
with various photon energies provides a wealth of new in-
formation. The present first principles simulations based
on the new and highly accurate diabatic PES model are
capable to substantiate the interpretations of those ex-
periments and hopefully end at least some of the debate.
An overview of the present simulation results in compar-
ison with these two experiments is given in Fig. 1.
The first issue to be addressed for a complete under-

standing of the photodetachment spectroscopy of NO−

3 is
the influence of temperature and the contribution of hot
bands to the spectrum. The absence of one prominent
feature (m) in the new cryogenically cooled spectrum
clearly identifies that peak as hot band. The simulation
of the spectrum at a temperature of 435 K, the value
estimated from the first photodetachment experiment,34

reproduces this hot band, labeled m, and confirms the
original assignment as 411 transition. From Fig. 1 and
Fig. 2, the excellent agreement between theory and ex-
periment becomes obvious.
The full photodetachment spectrum is simulated by

two partial spectra corresponding to the contributions of
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FIG. 1. Comparison of experimental photodetachment spec-
tra with the final quantum dynamics simulation results. Panel
a) presents the theoretical and experimental34 spectra at an
estimated temperature of 435 K. Panel b) shows results at
10 K in comparison with the new cryo-SEVI results.80 A
damping time of 200 fs (resp. 100 fs) is used for the 10K
(resp. 435K) theoretical spectra. A ratio of 1/150 (resp.

1/30) is used for the X̃ 2A′

2 and the B̃ 2E′ partial spectra at
10K (resp. 435K)

the X̃ 2A′

2 and the B̃ 2E′ state, respectively. These two
partial spectra are also given in Fig. 2 in order to make
their contributions to the experimentally observed spec-
trum more clear. The reason for this approach is that
the detachment cross-sections corresponding to the two
different electronic state manifolds are very different and
need to be taken into account. The scaling factors due
to these different cross-sections and the energy shift due
to the lack of size extensivity of the underlying ab ini-
tio calculations are the only empirical factors used in the
present study. Each of these partial spectra can be de-
composed further into the contributions originating from
different thermally populated initial states in the NO−

3

anion.
The detailed and decomposed partial spectrum corre-

sponding to the X̃ state manifold is presented in panel
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FIG. 2. The theoretically simulated spectrum at T=435 K
(black) is compared to the experimental hot spectrum from

ref. 34 (dotted red). The partial contributions from the X̃ 2A′

2

and the B̃ 2E′ states are also shown in blue dashed and violet
dotted-dashed curves, respectively. The B̃ 2E′ contribution is
scaled by 30 with respect to the X̃ 2A′

2 one.

a) of Figure 3. The photodetachment spectrum obtained
when using the vibrational ground state of the anion after
a vertical excitation onto the lowest diabatic component
is presented in red. The blue spectra are obtained when
the initial wavepacket bears one quantum of energy in
the anti-symmetric bending of NO−

3 , and the violet trace
is obtained when the initial wavepacket is excited in the
umbrella mode. The black curve is the resulting spec-
trum considering a temperature of 435 K thus taking
into account the Boltzmann factors of the initial states
(see Table II). Because of the lack of size extensivity of
the underlying ab initio method, the computed absolute
energies of the radical and of the anion cannot be com-
pared. For this reason, we present theoretical spectra
shifted in energy so that the most intense peak (A) ob-
tained matches the experimental data. Only the energy
range of the relevant experimental data is shown.

The partial spectra from the wave packet propagations
provide information about the entire progression of the
corresponding hot band contributions to the total spec-
trum at 435 K. Some of these peaks superimpose fea-
tures of the cold spectrum and may lead to a broadening
because of slightly shifted transition energies. This is
entirely the case for all contributions when a single ν2
(umbrella) excitation in the anion is considered. Only
excitation of ν4 (asymmetric bend) gives rise to addi-
tional features clearly distinguishable from peaks in the
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FIG. 3. Partial spectra at 435 K (black) corresponding to

excitation to X̃ 2A′

2 (a) and to B̃ 2E′ (b). The contributions
from the different vibrational states of the anion are also dis-
played: vibrational ground state in red, anti-symmetric bend-
ing in blue and umbrella in violet.

cold spectrum. Probably the most interesting of these
additional contributions is found at the position of the
disputed first peak above the origin 000 transition labeled
B in Fig. 1. This feature was attributed to the Franck-
Condon (FC) forbidden 410 transition by Weaver et al.34

but assigned to the FC allowed 431 hot band transition
by Yamada and Ross.93 The present results clearly show
that there is a corresponding hot band transition at this
energy but its intensity is way too small to explain the
experimentally observed spectrum. This is also in agree-
ment with the fact that this peak is very prominent in
the cryogenically cooled spectrum where hot bands are
absent.

Excitations of the same initial NO−

3 vibrational eigen-

functions to the two 2E
′

components of NO3 result in
spectra provided in panel b) of Figure 3. The vertical
axis are not scaled to the same arbitrary unit for the
two panels, however. The ground state as well as the ν2
(umbrella) excitation produce partial spectra with two

main peaks. The first of them is superposed to the 431
hot band at position B (see blue curve in panel a) and
by this explaining the higher intensity of this peak in the
final spectrum as seen in Fig. 3.

The second prominent feature of this partial spectrum
is found at a position roughly 1040 cm−1 above the 000
peak and was assigned originally to the FC allowed 110
transition by Weaver et al.34 (labeled D in Fig. 1). How-
ever a 110 transition should not show up in the partial

spectrum corresponding to the B̃ state manifold. In
fact, we do observe a weak feature slightly to the blue
of this peak in the X̃ state partial spectrum but its in-
tensity would be too low to explain the experimentally
observed spectrum. When we compare the peak posi-
tions of the partial photodetachment spectra with our
earlier studies providing accurate vibrational eigenstate
energies for the X̃ manifold, we find that FC allowed 110
transition should correspond to about 1056 cm−1 above
000 while the FC forbidden 310 transition would correspond
to about 1036 cm−1 above origin. The latter assignment
is in agreement with the interpretation of the new cryo-
SEVI spectrum.80 Thus, the main intensity of the ob-
served peak D apparently originates from the B̃ state
manifold and indicates significant vibronic coupling be-
tween the two involved electronic states. The present
results show that both assignments are correct because
the experimentally observed feature is a superposition of
both detachment channels.

Some weaker additional features due to the B̃ state
manifold are found at higher energies but they are fairly
weak compared to the two very prominent peaks dis-
cussed above. The temperature effects can be included
in the same way as for the X̃ state manifold and a simi-
lar behaviour is found. Hot band contributions due to a
single quantum in ν2 (umbrella) in the initial state yields
a spectrum very similar to the one obtained for the sole
ground state, the only partial spectrum relevant at cryo-
genic temperature (10 K). By contrast, a single quantum
in ν4 (asymmetric bend) in the initial state results in
a very different spectrum. The first prominent peak is
slightly shifted to the blue compared to the origin peak
in the X̃ state manifold. Next there is a fairly broad
feature in the region around 32300 cm−1 where there
is little intensity originating from the X̃ state manifold.
Two similarly broad features are observed above around
32880 and 33330 cm−1.

At lower energy, one very interesting observation is
some intensity around 31,000 cm−1 and thus about
700 cm−1 below the 000 origin peak of the experimen-
tal spectrum. Apparently, this is a hot band due to a 401
transition, which would be FC forbidden in the X̃ state
manifold but becomes FC allowed in the B̃ state mani-
fold just like the 410 transition. It appears that this peak
labeled k in Fig. 1 was not assigned before because the
combination of hot band and vibronic coupling is nec-
essary to explain this transition. The hot band charac-
ter is evident now from the cryo-SEVI experiment while
its vibronic coupling origin only becomes clear from the
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quantum dynamics simulations.

The various contributions from the B̃ state manifold
also show intensity above 33,500 cm−1 where there is
very little intensity seen from the X̃ state manifold. This
results in two visible peaks at positions I and J which
will not disappear at cryogenic temperatures. This is in
agreement with experiment as well.

The new cryo-SEVI experiment also offers further data
to disentangle the contributions from vibronic coupling
between the X̃ and B̃ state by varying the laser frequency
near threshold. Thus, Wigner’s threshold law can be in-
voked together with the symmetry rules for allowed de-
tachment channels. It turns out that all FC allowed tran-
sitions should result in p-wave electrons having an angu-
lar momentum of l = 1 while all FC forbidden transitions,
which only gain intensity through vibronic coupling to
the B̃ state, should produce s-wave electrons with an an-
gular momentum l = 0 as was also discussed in Ref. 80.
Thus, the energy dependent intensity behavior will scale
with ∆E3/2 for X̃ contributions but with ∆E1/2 for B̃
contributions near threshold. Here ∆E is the electron ki-
netic energy depending on the photon energy used. This
effect can be taken into account in the present quantum
dynamics simulations and the resulting spectra are pre-
sented together with the experimental ones in Fig. 4. In
the theoretical simulation, a unique fixed ratio for the
contributions of the partial X̃ and B̃ states is used. The
variation of the relative peak intensities is only due to
the Wigner energy dependence introduced by the ∆E3/2

and ∆E1/2 additional multiplicative factors.

The first observation seen at first glance is that the
intensity pattern is grossly different from the high tem-
perature spectrum. The second very important point is
that the theoretical simulation taking the near thresh-
old effects into account are in very good agreement with
experiment. To show the agreement more clearly, a di-
rect comparison between experimental spectra and the
corresponding simulation is presented for each of the six
different photon energies used in the experiment in Fig. 5.

This level of agreement is only possible if the assump-
tions made for the simulation are reasonable of course,
giving evidence for both the assumption of the electron
wave character as well as the vibronic coupling between
the X̃ and B̃ state. Surely, this agreement is not and
cannot be perfect. One important effect that is not ac-
counted for is the narrowing of the experimental lines
when the photon energy is lowered. In the theoretical
simulations, the lines widths are induced by the damp-
ing of the autocorrelation functions before Fourier trans-
formation, while in the experiment, overall rotation as
well as experimental resolution determine the line widths.
Only peak intensities are compared in the present context
though the Wigner threshold law affects the detachment
cross-section rather than the intensity. So, in the fol-
lowing discussion it should be kept in mind that a peak
with a smaller half-width will be more intense for the
same cross-section. The simulation shows the same half-
widths regardless of the photon energy contrary to the
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FIG. 4. Experimental (top) and theoretical (bottom) spectra
at three photon energies: 35137 cm−1 (black), 33899 cm−1

(red) and 33003 cm−1 (blue). The photon energies are mate-
rialized by the vertical red and blue lines. The 35137 cm−1

(black) is outside the plotted energy range. The experimental
spectra are reproduced from Fig. 3a of ref. 80 with permis-
sion from the authors. Both the experimental spectra and the
theoretical simulations are scaled such as the maxima of peak
B are identical for the three photon energies.

experimental features.

In the following, the effect of the near threshold detach-
ment is discussed in detail. The most surprising point is
that the origin 000 peak (A) by far is not the most in-
tense feature anymore (see Fig. 4). For all but the two
lowest photon energies, peak D shows the highest inten-
sity. Peak B becomes the dominant feature for the two
lowest photon energies, followed by D. On the contrary,
according to a simple standard FC picture the 000 tran-
sition would be expected as the dominating line of the
spectrum because the equilibrium structures of the anion
and the radical are very similar. One also would expect
this to become even more pronounced when detaching
at near threshold but the contrary is the case. Further-
more, both the A/B as well as the A/D intensity ratio
are decreasing significantly rather than increasing when
the photon energy is reduced. Note that the intensity of
all spectra was normalized with respect to peak B. The
reason for the above observation clearly is the different
electron wave character because B and D are mainly due
to the B̃ state and resulting in s-wave electrons while A
is entirely due to the X̃ state corresponding to p-wave
electrons. The present detailed quantum dynamics simu-
lations show unequivocally that this effect cannot be re-
produced without the vibronic coupling effects between
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FIG. 5. Experimental (red) and theoretical (black) spectra at
various photon energies as given in cm−1 along the vertical
axis. Experimental80 and theoretical spectra are scaled such
as the maximum of peak B are identical. The fixed contribu-
tion of the partial X̃ and B̃ state in the theoretical simulation
is identical for all six plots. The variation of the relative peak
intensities is only due to the Wigner energy dependence.

these two electronic states. There would be no contribu-
tion from the B̃ state manifold in the energy region of
the present study without significant vibronic coupling.
This conclusion is the same as in previous theoretical
studies64,80 and is strengthened immensely by the excel-
lent agreement between our detailed simulations of the
near threshold effects and the cryo-SEVI experiments.

This agreement is found not only for the A/B and
A/D but also for the B/D intensity ratio. In this case,
a slight increase is observed when the photon energy is
lowered showing that these two peaks belong to the same
electronic state manifold and thus l quantum number of
the outgoing electrons. It is also clear from the simula-
tions that the corresponding case is l = 0 and the inten-
sity of B originates dominantly from the B̃ state man-
ifold. This is of particular interest because the assign-
ment of B as the FC forbidden 410 detachment34,80 has
been disputed by Hirota94 based on the interpretation of
Yamada and Ross.93 However, the present detailed simu-
lation results clearly support the assignment of feature B
as 410 detachment. The near threshold results also clearly
support another debated assignment namely that of peak
D. It is unequivocal that the main contribution to that
feature originates from the B̃ state and corresponds to a
FC forbidden 310 detachment. This was already discussed
above when analysing the partial spectra from the sim-

ulations. The FC allowed 110 detachment predicted close
by in energy is suppressed in these near threshold spec-
tra and contribute even less to peak D than in the hot
spectrum. And even in the 435 K spectrum 110 detach-
ment has only a minor effect compared to FC forbidden
310 detachment, contrary to the initial assignment.
Finally, there is also an interesting observation for peak

C in both experiment and simulation. The ratio of A/C
decreases strongly when the photon energy is lowered.
This indicates that A and C correspond to different l
quantum numbers for the outgoing electron wave. In
fact, the assignment of peak C to 420 detachment turns
out to be correct but the double excitation of a degen-
erate e′ mode leads to a more complex picture for C
when compared to A. The temptation to assume a FC
allowed transition corresponding to the X̃ state manifold
just like peak A does not account for this complexity.
Indeed, the present case leads to two different sub levels
of a′1 and e′ symmetry. These two sub levels are found
to be only 20 cm−1 apart in energy and the 420 (e′) sub
level corresponds to a FC forbidden transition becoming
allowed by coupling to the B̃ state. This latter sub level
is less affected by the near threshold effect than the FC
allowed a′1 sub level because the corresponding electron
wave belongs to l = 0 rather than to l = 1. It appears
that in the 435 K spectrum this peak is dominated by
the 420 (a′1) sub level and thus having a higher intensity,
while in the cryo-SEVI spectrum this feature is mainly
due to the 420 (e′) sub level resulting in a lower but less
photon energy dependent intensity.

V. CONCLUSIONS AND OUTLOOK

A new and highly accurate full-dimensional and fully
coupled diabatic potential energy (PES) model is pre-
sented for the lowest electronic states of NO3, namely
X̃ 2A′

2, Ã
2E′′, and B̃ 2E′. This model is based on high

quality ab initio reference data that was diabatized by the
recently developed method of complete nuclear permuta-
tion inversion invariant artificial neural network (CNPI-
ANN) diabatization.78 A reduced-dimensional model for
planar NO3 was extended by adding a second ANN to
account for the out-of-plane motion. This model is ex-
tremely efficient and reproduces the ab initio reference
data very accurately. Quantum wave packet dynam-
ics simulations using this model are performed to study
the photodetachment spectroscopy of the NO−

3 anion de-

taching from the energetic region of the X̃ state of the
radical. These calculations are designed such that the
two available experiments, an older recording at elevated
temperature34 and a very recent SEVI spectrum at cryo-
genic temperature80 are reproduced. To this end, the
effect of temperature as well as near threshold effects
(Wigner’s threshold law) are accounted for. Further-
more, the strong pseudo-Jahn-Teller coupling between
the X̃ and B̃ state leads to additional contributions in
the energetic region of the X̃ state manifold, which con-
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tribute considerably to the experimentally observed spec-
tra and are modeled properly in the present simulations.
Very good agreement is achieved giving strong evidence
to the interpretation of the detailed theoretical data.

Temperature effects are taken into account in a
straightforward way to simulate the contribution of hot
bands. To this end, partial spectra are computed for sev-
eral initial vibrational states of the anion and the total
spectrum is obtained as a weighted superposition using
the Boltzmann factors for a temperature of 435 K. This
does not yield a satisfactory spectrum if only the X̃ state
manifold is considered. Therefore, a second set of partial
spectra is computed accounting for the B̃ state manifold
and yielding Franck-Condon (FC) forbidden transitions
which become allowed through the strong pseudo-Jahn-
Teller coupling. Only the weighted superposition of all
partial spectra from X̃ state and B̃ state manifold yield
a simulated spectrum that agrees with experiment. In
fact, the obtained agreement is excellent, giving strong
support for the assumptions made in the simulation. The
simulations allow to identify the 000 transition in agree-
ment with experiment and two hot bands to the red of it,
namely 411 and 401. The latter transition is FC forbidden

and borrows its intensity from the B̃ state apparently.
The first prominent peak to the blue is a superposition of
the weak FC allowed 431 hot band and the much stronger
FC forbidden 410 detachment. The present result hope-
fully will settle the debate about the corresponding as-
signments. A further strong experimental feature a bit
more than 1000 cm−1 above the 000 line also turns out
to be a superposition and a weak FC allowed 110 detach-
ment and a much stronger FC forbidden 310 transition

that borrows intensity from the B̃ state through vibronic
coupling. This yields further support from both exper-
iment and theory that the disputed ν3 fundamental of
neutral NO3 is found around 1040 cm−1 rather than at
1492 cm−1.

The evidence for the above assignments is strength-
ened by the simulation of the new cryo-SEVI spectra in
which the near threshold effects (Wigner’s threshold law)
are taken into account. The two partial spectra for the
X̃ and B̃ state correspond to different angular momen-
tum for the detached electrons, l = 1 for X̃ and l = 0
for B̃. The different threshold behaviour allows to dis-
entangle which peaks are dominated by which electronic
state manifold. The cryogenic temperature of 10 K re-
moves all contributions from hot bands. The experimen-
tal cryo-SEVI spectra taken at six different photon ener-
gies show very different intensity patterns from the 435 K
spectrum, yet they are simulated in very good agreement
using the present model. The detailed analysis confirms
the above assignments and furthermore identifies another
peak as a superposition of weak FC allowed 420 (a′1) and
strong FC forbidden 420 (e′) detachment. All these re-
sults clearly show the importance of the vibronic cou-
pling between the X̃ and B̃ state without which it would
be impossible to simulate the experimental results that
well.

Finally, the very good agreement with experiment ob-
tained for all the spectra indicates the accuracy of the
underlying diabatic PES model. The model also in-
cludes the Ã state for which at least a photodetachment
spectrum at elevated temperature was recorded and pub-
lished. It can be expected that the present PES model
also will yield detailed simulation results for that spec-
trum and this shall be studied in the near future. Fur-
thermore, the model allows to investigate the nonadia-
batic dynamics after exciting the wave packet to one of
the excited states. This may allow to disentangle some
further experimental observations, like the B̃ state life-
time, which are not well-understood, yet. We hope that
the continued work will lift some more secrets of the enig-
matic NO3 radical in the future.

VI. APPENDIX

A. Coordinates Q

The symmetry-adapted coordinates are constructed
from a set of primitive valence coordinates as already de-
scribed in previous works73,83 and account for the basic
asymptotic behavior in the underlying low-order model.
The primitive coordinates comprising the three N–O dis-
tances ri and a set of O–N–O angles αi are first trans-
formed non-linearly as

mi = 1− exp(−γ(ri − r0)) (7a)

α′

i =
αi − α0

rjrk
, i 6= j 6= k (7b)

where r0 and α0 are the respective distances and an-
gles at the reference point and γ is a chosen Morse-
parameter. These primitive coordinates then are lin-
early transformed to yield the symmetry-adapted coordi-
nates a (breathing mode) and the degenerate asymmetric
modes xs, ys (stretching) and xb, yb (bending).

a =

√
1

3
(m1 +m2 +m3) (8a)

xs =

√
1

6
(2m1 −m2 −m3) (8b)

ys =

√
1

2
(m2 −m3) (8c)

xb =

√
1

6
(2α′

1 − α′

2 − α′

3) (8d)

yb =

√
1

2
(α′

2 − α′

3) . (8e)

The symmetry-adapted out-of-plane umbrella coordinate
θ is constructed from the trisector angle ϑ as follows:

θ =
ϑ− π

2

r1r2r3
(9)
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B. Invariants Q̃

For the sake of simplicity, let r2s,b be given as

r2s,b = x2
s,b + y2s,b. (10)

Furthermore, let the third order invariant terms τjk with
j, k ∈ {s, b} be defined as

τjk = x2
jxk − xky

2
j − 2xjykyj . (11)

Q̃ is then composed of the following invariants:

Q̃1 = a (12a)

Q̃2 = r2s (12b)

Q̃3 = r2b (12c)

Q̃4 = θ2 (12d)

Q̃5 = xsxb + ysyb (12e)

Q̃6 = 10 · tanh(0.1 · τss) (12f)

Q̃7 = 10 · tanh(0.1 · τbb) (12g)

Q̃8 = 10 · tanh(0.1 · τsb) (12h)

Q̃9 = 10 · tanh(0.1 · τbs) (12i)

C. Diagonal model terms

The totally symmetric diagonal contributions of the
reference model are expressed here in terms of three in-
dependent scalar functions Vi(Q).

Wd
diag(Q) =



V1(Q) 0T 0T

0 V2(Q)1 0

0 0 V3(Q)1


 (13)

Apart from the constant terms, referring to the vertical
excitation energies at the reference point, an expansion
of each Vi(Q), i = 1, 2, 3 up to second order yields four
(constant) coefficients µi

k and corresponding polynomial
terms.

Vi(Q) = µi
1 · a+ µi

2 · a
2 + µi

3 · r
2
s + µi

4 · r
2
b (14)

where r2i are defined in Eq. (10).
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