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Résumé

Les modèles de milieux poreux, en régime compressible ou incompressible, sont utilisés dans la littérature pour décrire les propriétés mécaniques des tissus vivants et en particulier de la croissance tumorale. Il est possible de construire un lien entre ces deux différentes représentations en utilisant une loi de pression raide. Dans la limite incompressible, les modèles compressibles conduisent à des problèmes de frontières libres de type Hele-Shaw. Nos travaux visent à étudier la limite de pression raide des équations de type milieu poreux motivées par le développement tumoral. Notre première étude concerne l'analyse et la simulation numérique d'un modèle incluant l'effet des nutriments. Ensuite, un système d'équations, dont le couplage est délicat, décrit la densité cellulaire et la concentration en nutriments. Pour cette raison, la dérivation de l'équation de pression dans la limite incompressible était un problème ouvert qui nécessite la compacité forte du gradient de pression. Pour l'établir, nous utilisons deux nouvelles idées : une version L 3 de la célèbre estimation d'Aronson-Bénilan, également utilisée récemment pour des problèmes connexes, et une estimation L 4 sur le gradient de pression (où l'exposant 4 est optimal). Nous étudions en outre l'optimalité de cette estimation par un schéma numérique upwind aux différences finies, que nous montrons être stable et asymptotic preserving. Notre deuxième étude est centrée sur l'équation de milieux poreux avec effets convectifs. Nous étendons les techniques développées pour le cas avec nutriments, trouvant ainsi la relation de complémentarité sur la pression limite. De plus, nous fournissons une estimation du taux de convergence à la limite incompressible. Enfin, nous étudions un système multi-espèces. En particulier, en tenant compte de l'hétérogénéité phénotypique, nous incluons une variable structurée dans le problème. Par conséquent, un système de diffusion croisée et dégénérée décrit l'évolution des distributions phénotypiques. En adaptant des méthodes récemment développées pour des systèmes à deux équations, nous prouvons l'existence de solutions faibles et nous passons à la limite incompressible. En outre, nous prouvons de nouveaux résultats de régularité sur la pression totale, qui est liée à la densité totale par une loi de puissance.

Mots clés : équation des milieux poreux, croissance tumorale, estimation d'Aronson-Bénilan, frontière libre, problème de Hele-Shaw
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Introduction

Mathematical modelling of living tissue is one of the most fascinating and challenging problems in mathematical biology. The description and understanding of the mechanisms driving cell migration and proliferation can benefit remarkably from mathematical analysis and simulations.

While the former may lead to a more comprehensive view of the qualitative properties and asymptotic behavior of the biological problem, the latter may provide useful parameters suitable for comparison with biological observations. Moreover, mathematical models can provide new insights on those aspects that are more difficult to access experimentally. On the other hand, the modelling of biological phenomena is nowadays one of the most prolific sources of involved and challenging mathematical questions, in particular regarding the analysis of partial differential equations (PDEs). In the last decades, nonlinear and degenerate PDEs and systems motivated by the description of living tissues have been widely investigated. In particular, in this thesis we are interested in problems arising in the modelling of tumor growth.

One of the most crucial aspects to be taken into account in this context is the multiscale nature of cancer development. Indeed, the phenomenon involves several processes occurring at different spatial and temporal scales. This complexity is well represented in the extremely vast literature available today. From individual-based models describing the process from a microscopic viewpoint, to PDE systems representing the tissue as a continuum, the modelling of tumor growth has been largely addressed during the last six decades. One of the most interesting mathematical problems arising in this context concerns the question of bridging the gap between different scales or representations. In particular, among models describing tumor growth from a macroscopic viewpoint, it is possible to identify two main types of descriptions. On the one hand, the spacetime evolution of the cell population density can be naturally described by reaction-diffusion equations. On the other hand, a more geometrical perspective is also frequently used, since the tumor can be seen as a domain whose boundary evolves in time. This thesis is centered around the question of how to link these two different representations, namely continuity equations and free boundary problems, through asymptotic analysis.

Mechanical models of tissue growth

During the last decades, mathematical models of cancer growth have been increasingly applying a mechanical perspective to the problem, adopting a fluid dynamic viewpoint. In fact, at the macroscopic level living tissues can be seen as fluids moving through a porous medium, namely, the extra-cellular matrix (ECM). Continuous models describing the development of tumors usually consist of nonlinear partial differential equations. The temporal and spatial evolution of the cell population density can indeed be described through reaction-diffusion equations and systems. In mechanical models of tumor growth the pressure generated by the birth of new cells plays an essential role both in the dynamics that drive the cell movement, as well as in cell proliferation and death. Besides systems of PDEs based on conservation laws, a second main type of macroscopic models has been largely applied to the description of living tissues and, in particular, tumors: free boundary problems. Indeed, a more "geometrical" perspective can be assumed as the tumor is seen as a domain whose moving boundary evolves in time.

We now give a brief overview of these two types of macroscopic models. Let us stress the fact that, as aforementioned, this thesis is centered around the analytical challenges arising from the problem of bridging the gap between these two different representations. Although our focus does not concern the biomedical applications of such problems, for the sake of completeness we here provide a brief and simplified biological introduction on cancer growth.

Biological background on tumor development

The main feature characterizing cancer growth is certainly the acquired capacity of malignant cells to replicate uncontrollably. Despite the complexity of the phenomenon, that leads to an amount of about one hundred different types of cancer, it has been suggested that malignant growth is a manifestation of the combination of six essential functional capabilities: self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis [START_REF] Hanahan | The hallmarks of cancer[END_REF].

Among the principal dynamics that drive the tumor cells movement there is space competition.

In fact, cells tend to avoid overcrowding, moving towards less congested regions and searching for the space necessary in order to divide. Thus, before the occurrence of different movement processes such as, for instance, chemotaxis, cell motion is mainly triggered by the gradient of the pressure. Moreover, space availability plays a central role in cell proliferation as well. Indeed, a bio-mechanical form of contact inhibition prevents cell multiplication in regions with a high pressure/congestion. Sensing the level of mechanical stress around them, cells control their proliferation in order not to overcome a critical threshold of packaging, which is determined by the compression that cells experience, [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF]. It is possible to identify two main phases during the development of solid tumors: the avascular and vascular phases. Initially, neoplastic cells aggregate to form a quasi-spherical cluster. The size of the mass is so small that these very early stages of cancer growth can be studied only in laboratory experiments. Studying 3D cancer spheroids in vitro it is possible to recognize their internal structure. They are usually formed by an outer rim of cells that reproduce fast and without control, an intermediate layer of quiescent cells, and a core of dead cells. This internal region contains cells that have died by necrosis. Unlike apoptosis, which is the natural end of the cell cycle, necrosis is induced by the lack of nutrients in the surrounding environment. Since avascular tumors do not have direct access to blood vessels, they receive the nutrient supply by diffusion. For this reason, they tend to adopt a well-defined symmetrical shape with an outer nutrient-rich rim and a dead core spaced out by a non-proliferating annulus, [START_REF] Byrne | Using mathematics to study solid tumour growth[END_REF].

In order to provide themselves with blood vessels, tumor cells induce a mechanisms called angiogenesis. Tumor cells lacking oxygen produce angiogenic factors that diffuse into the host tissue and activate the endothelial cells lining into the blood vessels. After breaking the basement membrane, endothelial cells migrate towards the tumor and generate a new network of blood supply.

During the vascular phase the cancer grows much faster and its structure and shape change significantly compared to avascular tumors. The new vessels are usually formed very quickly, thus they lack muscular tone and may easily collapse under the pressure generated by the surrounding cells. This decreases the level of oxygen in certain regions which induces hypoxia. Consequently, angiogenic factors are secreted, neovascularization occurs and cells start proliferating again. For this reason, the composition and spatial organization of the tumor changes dynamically during the vascular phase. Later, tumor cells may enter the blood vessels and be transported to other regions, creating metastasis which represent the most dangerous side of the disease.

Density-based models

Reaction-diffusion equations and systems are one of the most common mathematical models used to describe tissue growth at the macroscopic level. The evolution in space and time of the cell population density is classically described by the continuity equation of fluid mechanics

∂ϱ ∂t (x, t) -∇ • ⃗ J = f (x, t), (1.1) 
where ⃗ J = ⃗ J(ϱ, ∇ϱ, ⃗ v) is the flux which is usually related to the mass density ϱ = ϱ(x, t), its gradient and/or to a vector field ⃗ v given by a constitutive law. On the right-hand side, f denotes the growth/degradation of the tissue. The reaction term may depend on the space and time variables, on the density itself, or on other quantities involved in tumor growth such as, for instance, the pressure of the tissue or the concentration of nutrients. This class of macroscopic models based on conservation equations are usually referred to as density-based models. Early models were centered around the interaction between cancer cells and other chemical species such as, for instance, nutrients (oxygen or glucose), lactate or carbon dioxide, which play an important role in the evolution of tumors. In particular, the modelling of nutrient availability and diffusion has attracted a lot of attention in the context of avascular tumors. As mentioned above, until the tumor is able to provide itself with its own blood supply its evolution and size is inherently related to nutrient diffusion, see [START_REF] Burton | Rate of growth of solid tumours as a problem of diffusion[END_REF][START_REF] Roose | Mathematical models of avascular tumor growth[END_REF] and references therein. Later, mathematical models started including also tumor cell movement rather than only nutrient diffusion and consumption. The cells can move via convection [START_REF] Ward | Mathematical modelling of avascular-tumour growth[END_REF], active motion (diffusion) [START_REF] Sherratt | Traveling Wave Solutions of a Mathematical Model for Tumor Encapsulation[END_REF], or chemotaxis [START_REF] Marchant | Travelling wave solutions to a haptotaxisdominated model of malignant invasion[END_REF][START_REF] Pettet | The Migration of Cells in Multicell Tumor Spheroids[END_REF], i.e. the directed movement of cells towards a chemical concentration. For a complete review of mathematical models of avascular tumors we refer the reader to [START_REF] Roose | Mathematical models of avascular tumor growth[END_REF]. More recently, mathematical models have been directed more and more on the mechanical aspects of tumor development rather than only environmental ones. One of the first examples in this direction is the model introduced by Greenspan in 1975, which builds on the early models based on nutrients availability by including a notion of pressure. In [START_REF] Greenspan | On the growth and stability of cell cultures and solid tumors[END_REF], the author relates the tumor internal pressure p = p(x, t) to the cell velocity field, proposing a model that was later further elaborated by Byrne and Chaplain [START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF]. The common feature of these models is that tumors can be seen as fluids flowing through a porous medium represented by the ECM. As mentioned above, cells have the tendency to avoid over-crowding. Therefore, they move down pressure gradients, away from congested regions. For this reason, mechanical models of tumor growth usually link the velocity field ⃗ v to the pressure by the Darcy law, i.e.

⃗ v = -κ∇p, (1.2) 
where κ represents the ratio between permeability and viscosity.

Another step towards a more mechanical description of living tissue is the influence that overcrowding and congestion exert not only on cell motion but also on cell proliferation and death. One of the earliest examples in this direction has been proposed by Byrne and Drasdo in [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF].

The authors develop a mechanical model where the pressure plays a fundamental role not only as the driving force of cells movement, but also as the main growth-limiting factor. As aforementioned, the competition for space is indeed crucial in the development of tumors since cells tend to multiply less in highly congested regions due to contact inhibition. Therefore, the authors describe the evolution of the cell population density through a conservation law as (1.1), where the flux is ⃗ J = ϱ⃗ v with velocity field ⃗ v given by (1.2), and the stress-regulated proliferation is represented by a pressure-penalised reaction term

f ∂ϱ ∂t -∇ • (ϱ⃗ v) = f (p H -p), (1.3) 
where p H denotes the homeostatic pressure, i.e. the lowest level of pressure that prevents cell division. Above this value cell division is inhibited due to the mechanical stress generated by the pressure. For this reason, the authors assume f (p H -p) = s 0 H(p H -p), where s 0 denotes the local growth rate and H is the Heaviside step function. The model has to be closed by a law of state of the pressure, i.e. p = P (ϱ).

The model in [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF] has later attracted vast interest, in particular for its asymptotic behavior as the stiffness of the pressure increases. In fact, a properly chosen pressure law allows to build a link between Eq. (1.3) and the incompressible (or "geometrical") models that will be introduced in the following section. Two of the most common pressure laws in this context are the power law and the singular pressure law. Power laws as the following

p = P m (ϱ) = m m -1 ϱ ϱ c m-1 , m > 1,
where ϱ c represents the maximum packing density of cells, are also well known in applications to fluid mechanics. Combining the power law with Darcy's law (1.2), one can see that the continuity equation (1.3) actually reduces to a porous medium equation (PME) that well represents the behaviour of the tumor cells moving through the extra-cellular matrix.

The singular pressure law

p = P ε (ϱ) = ε ϱ 1 -ϱ , ε > 0,
is often specifically used to model tissue growth since the singularity at ϱ = 1 directly imposes a constraint on the maximum cell-population density, i.e. ϱ ⩽ 1. At the microscopic level, this singularity is equivalent to forcing non-overlapping constraints on the cells (particles) that compose the tissue. Despite having very different forms, these two pressure laws actually exhibit a very similar asymptotic behavior as γ → ∞ and ε → 0. Assuming, without loss of generality, that ϱ c = 1, in both cases the tumor pressure tends to become more and more stiff around the value ϱ = 1 and the model can be naturally represented through a more geometrical viewpoint. Both limits generate free boundary problems where a saturation constraint holds. Before going into further details regarding the asymptotic behavior of porous medium models, we briefly introduce the most common features of tumor growth models based on a free boundary formulation.

Free boundary problems

Besides density-based models consisting of reaction-diffusion equations, among macroscopic models of tumor growth one can identify a second main category of models. Rather than describing the evolution of the cell population density in space and time, free boundary problems represent the tumor as a domain Ω(t) with a moving boundary. Therefore, the unknowns of the problem are both the free boundary ∂Ω(t) and the solution of the partial differential equation set in Ω(t). This kind of problems is widely used in the modelling of tumor growth, in particular when dealing with avascular tumors or in vitro spheroids, which usually exhibit well-defined boundaries.

Moreover, multi-species models are also largely adopted, since early stages tumors are often formed by different layers of distinguished types of cells: an outer rim of proliferating cells, an inner region of quiescent cells and a core of necrotic cells. Therefore, several tumor growth models describe segregated populations through free boundary problems involving multiple interfaces, see for instance [START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | Growth of nonnecrotic tumours in the presence and absence of inhibitors[END_REF]. Let us give an example of a classical free boundary model of cancer growth which takes into account only one species of cells (proliferating cells) and in which cell proliferation is only nutrientlimited. Let α, β > 0 be positive given constants and let us denote by ∂ ν p the outward normal derivative of the pressure. The evolution of the pressure p = p(x, t) and the nutrient concentration c = c(x, t) are described as follows

     ∂ t c = ∆c -αc, in Ω(t), ∆p = f (c), in Ω(t), V = -∂ ν p, on ∂Ω(t),      p = βk, on ∂Ω(t), c = c B , on ∂Ω(t), c(x, 0) = c 0 (x), in Ω(0),
where Ω(0) and c 0 are given, and c B is the level of nutrients outside of the spheroid, see [START_REF] Friedman | A hierarchy of cancer models and their mathematical challenges[END_REF]. The density of the population is assumed to be constant inside Ω(t). For this reason, these problems are usually referred to as incompressible models. Unlike the classical condition of fluid incompressibility (i.e. a divergence-free velocity field), due to the presence of a reaction term f (i.e. cell multiplication) the divergence of the flow does not vanish.

The above system takes into account surface tension, i.e. the pressure on the boundary is proportional to the mean curvature k. If one assumes p = 0 on the moving boundary, the problem reduces to a Hele-Shaw type problem (HS in short), which is a well known free boundary problem that will be presented more in detail in the following sections.

Let us notice that the velocity law of the free boundary coincides with Darcy's law, which means that cells are escaping regions with higher pressure. In fact, there is a close relation between the HS problem and the conservation law (1.1). As already mentioned, through the so-called incompressible limit it is possible to bridge the gap between these two different representations of the same phenomenon, namely density-based models and free boundary problems. The analytical (and numerical) study of this limit for different PDEs and systems is the main subject of this manuscript.

Notation and preliminaries

For the sake of clarity, let us introduce some notation and preliminary results that will be used throughout the thesis.

Notation. Given a function w : R d → R, we define its positive sign and negative sign sign + (w) := 1 {w>0} and sign -(w) := -1 {w<0} .

We also define its positive part and negative part as follows (w) + := w, for w > 0, 0, for w ⩽ 0, (w) -:= -w, for w < 0, 0, for w ⩾ 0, as well as its absolute value |w| := (w) + + (w) -.

Given a general set A, we denote by 1 A its characteristic function, namely

1 A (x) =
1, for x ∈ A, 0, otherwise.

Let Ω ⊂ R d be an open subset. We denote by L p (Ω) and W m,p (Ω) the usual Lebesgue and Sobolev spaces, respectively, where 1 ⩽ p ⩽ ∞ and m ∈ N. As usual, we indicate H m (Ω) := W m,2 (Ω). Given a function f ∈ L p (Ω), we often use the abbreviated form ∥f ∥ p := ∥f ∥ L p (Ω) . We denote by < •, • > the standard duality pairing between (H 1 (Ω)) ′ and H 1 (Ω).

We denote by C ∞ comp (R d × (0, ∞)) the space of smooth functions with compact support in R d × (0, ∞). We also use the notation D(R d × (0, ∞)) to indicate the same space, and we denote by D ′ (R d × (0, ∞)) the space of distributions.

Useful inequalities. Let us recall some important inequalities and embedding theorems that we will frequently use in this thesis. where u Ω is the mean of u on Ω i.e.

u Ω = 1 |Ω| Ω u dx.

Proposition 1.2.4 (Compact embeddings of Sobolev spaces). Let Ω ⊂ R d be an open and bounded subset with Lipschitz boundary. Let j ⩾ 0 and m ⩾ 1 be integers and let 1 ⩽ p < ∞.

Then, the following embeddings are compact

• if mp > d, we have W j+m,p (Ω) → C j ( Ω),
W j+m,p (Ω) → W j,q (Ω), 1 ⩽ q < ∞, so, in particular, W m,p (Ω) → L q (Ω), 1 ⩽ q < ∞,

• if mp = d, we have W j+m,p (Ω) → W j,q (Ω), 1 ⩽ q < ∞,

• if mp < d, we have W j+m,p (Ω) → W j,q (Ω), 1 ⩽ q < p * = dp d -mp .

Compactness theorems. We recall two classical results on compactness that will be used in the following parts of the thesis.

Proposition 1.2.5 (Aubin-Lions lemma). Let X 0 , X and X 1 be three Banach spaces with X 0 ⊂ X ⊂ X 1 . Suppose X 0 is compactly embedded in X and that X is continuously embedded in X 1 . For 1 ⩽ p, q ⩽ ∞, let W := {u ∈ L p (0, T ; X 0 )| ∂ t u ∈ L q (0, T ; X 1 )}.

Then

• if p < ∞, then the embedding of W into L p (0, T ; X) is compact,

• if p = ∞ and q > 1, then the embedding of W in C(0, T ; X) is compact.

Proposition 1.2.6 (Fréchet-Kolmogorov theorem). Let S ⊂ L p (R d ) be a bounded subset. Assume that

lim |h|→0 R d |f (x + h) -f (x)| p dx = 0,
uniformly in f ∈ S. Then, for any Ω ⊂ R d , the set {f |Ω | f ∈ S} is relatively compact. If ∀ε > 0 there exists a bounded set Ω ε such that ∥f ∥ L p (R d \Ωε) < ε for any f ∈ S, then S is relatively compact.

Incompressible limit of porous medium models

Mathematical models based on porous medium type equations (or, more generally, filtration equations) have been vastly applied to problems arising in biology and medicine, as well as to the modelling of crowd motion and fluid dynamics. One of the most interesting problems related to these equations is to understand their asymptotic behavior as the pressure law becomes stiff. As aforementioned, this limit has recently attracted particular interest in the context of tumor growth modelling. However, its study has a very long history which originates in the seminal works on the classical porous medium equation (PME). Before introducing the incompressible limit, its derivation and its recent applications, let us give a brief overview of the PME and its main properties. For a complete picture on the theory of the porous medium equation we refer the reader to the monograph of Vázquez, cf. [START_REF] Vazquez | The mesa problem for the fractional porous medium equation[END_REF].

The porous medium equation

The porous medium equation (PME) is a well known nonlinear, degenerate parabolic equation. It represents the simplest example of a nonlinear parabolic equation and it reads as follows

∂u ∂t = ∆u m , x ∈ R d , t > 0, (1.7) 
with exponent m > 1. At first sight it might appear as a simple variation of the heat equation (HE), to which it is indeed equivalent when m = 1. However, the degeneracy of the PME induces several properties that drastically separate it from its linear and uniformly parabolic counterpart. The most recognizable characteristic that sets apart the PME from the HE is the property of finite speed of propagation. In fact, it is well known that solutions which are initially compactly supported remain so at any finite time, see [START_REF] Oleinik | The Cauchy problem and boundary problems for equations of the type of non-stationary filtration[END_REF]. This property is in stark contrast to the infinite speed of propagation of solutions of the HE, which is a direct consequence of the strong maximum principle. As a consequence, a moving boundary appears, separating the two sets {x; u(x, t) > 0} and {x; u(x, t) = 0}. The speed of this boundary is determined by the gradient of the density-related pressure, defined as follows

p = m m -1 u m-1 . (1.8)
Indeed, let us notice that the PME can be written as a continuity equation with velocity field given by Darcy's law, namely

⃗ v = -∇p, (1.9 
)

∂u ∂t + ∇ • (u⃗ v) = 0.
(1.10)

The so-called pressure transformation (1.8) is frequently used in the analysis of porous medium type equations. This change of variables is very useful in that it induces a self-contained equation satisfied by the pressure, namely ∂p ∂t = (m -1)p∆p + |∇p| 2 .

(1.11)

The above equation clearly shows that the PME behaves in very different ways around the value p ≈ 0. Indeed, when p is larger than zero, the parabolic part is dominant and thus the equation is a nonlinear perturbation of the HE plus a lower order term. On the other hand, when p approaches zero the equation is a perturbation of the eikonal equation

∂p ∂t = |∇p| 2 ,
which is highly hyperbolic. Therefore, around the value of degeneracy, the PME is of mixed type, and by consequence it exhibits mixed properties. From the last equation it is possible to notice that the finite velocity of the free boundary, ∂{x; u(x, t) = 0} = ∂{x; p(x, t) = 0}, coincides with the velocity field of the density, (1.9). For this reason, in the framework of diffusion equations, the porous medium equation is also referred to as slow diffusion, while the same equation for m < 1 is called fast diffusion.

Physical interpretation

Let us mention here the first notable application of the porous medium equation and its derivation in the context of fluid mechanics, which is due to Leibenzon (1930) and Muskat (1933). They describe the flow of a gas in a porous medium through the following system

     ∂ϱ ∂t + ∇ • (ϱ⃗ v) = 0, ⃗ v = - µ ν ∇p, p = P (ϱ),
where ϱ(x, t) indicates the gas density, which evolves under the usual continuity equation, and p(x, t) denotes the density-related pressure. The positive constants ν and µ represent the viscosity of the fluid and the permeability of the medium, respectively. The velocity field is linked to the pressure through the second equation of the system. The closure relation between pressure and density is given by the barotropic power law

p = P (ϱ) = p o ϱ γ ,
where γ = 1 for isothermal gases and γ > 1 for adiabatic gas flows. Therefore, one can rewrite the continuity equation of the density as follows

∂ϱ ∂t = ∇ • µ ν ϱ∇p = p 0 µ ν ∇ • (ϱ∇ϱ γ ) = p 0 µ ν γ γ + 1 ∆ϱ γ+1 .
To recover the classical porous medium equation, we choose µ = ν and p 0 = (γ +1)/γ. Therefore, taking γ + 1 = m we get (1.7) and (1.8).

Regularity

The definition of a class of weak solutions for Eq. (1.7) was first given in the one dimensional case in [START_REF] Oleinik | The Cauchy problem and boundary problems for equations of the type of non-stationary filtration[END_REF], where the authors prove existence and uniqueness of solutions in that class. We here give the definition of weak solution to Eq. (1.7) which is the one we will always consider throughout the subsequent chapters of the thesis.

Definition 1.3.1 (Weak solution of the PME). A locally integrable function u defined in R d × (0, T ) is said to be a weak solution of (1.7) with initial condition given by u

0 ∈ L 1 (R d ) if (i) u m ∈ L 2 (0, T ; H 1 (R d )), (ii) u satisfies T 0 R d ∇u m • ∇φ -u ∂φ ∂t dx dt = R d u 0 (x)φ(x, 0) dx, for any φ ∈ C 1 comp (R d × [0, T )).
It is well known that for compactly supported initial data u 0 , even if continuous, the porous medium equation does not admit a global classical solution due to its degeneracy (i.e. due to the appearance of a free boundary). In fact, for compactly supported initial data, it is not possible to have a solution of the Cauchy problem whose gradient is continuous in space. The discontinuity of u x was proven in [START_REF] Kalashnikov | On the occurrence of singularities in the solutions of the equation of nonstationary filtration[END_REF], where for the one-dimensional problem, the author proves that there always exists a point of discontinuity of u x (t) for each t > 0, even for smooth initial data, u 0 ∈ C ∞ (R). Nonetheless, in spatial neighborhoods of points in which u(x, t) takes positive values, weak solutions satisfy the problem in the classical sense. In particular, if we lift the initial data so that u ε (•, 0) ⩾ ε, then there exists a unique classical solution, u ε ⩾ ε. An explicit formula is available for source solutions of Eq. (1.7), i.e. u(x, t) such that u(x, t) → M δ(x) as t → 0, where M := u 0 (x) dx. The so-called Barenblatt solution is a self-similar profile given by the following expression

B(x, t; M ) := t -α F (x/t β ), F (ξ) := (C -κ|ξ| 2 ) 1 m-1 + , where α = d 2 + d(m -1) , β = 1 2 + d(m -1) , κ = α(m -1) 2md ,
and C > 0 is a constant determined by the mass M . This profile gives the simplest example of solution that does not satisfy the equation in the classical sense.

The regularity of solutions of the porous medium equation was extensively studied for decades, originating from the works of Aronson, Caffarelli, Crandall, Friedman, and Pierre in the '70s. In [START_REF] Aronson | Regularity properties of flows through porous media: The interface[END_REF], Aronson investigates the problem in dimension one, analysing the free boundary of compactly supported solutions. In order to give a more precise characterisation of the free boundary, i.e. the curves that separate {(x, t); u(x, t) > 0} from {(x, t); u(x, t) = 0}, the author proves a lower bound on the second derivative of the pressure. Assuming that essinf supp u0 (p 0 ) xx ⩾ -α for some α > 0, then ∂ 2 xx p(x, t) ⩾ -α for all (x, t) such that u(x, t) > 0. This estimate was later established in any spatial dimension by Aronson and Bénilan, [START_REF] Aronson | Régularité des solutions de l'équation des milieux poreux dans R N[END_REF], and is now named after the two authors

∆p = ∆ m m -1 u m-1 ⩾ - 1 kt , with k = m -1 + 2 d .
(1.12)

Let us mention that this lower bound on the Laplacian of the pressure is used by the authors to prove that there exists a unique strong and continuous solution to the Cauchy problem with L 1 -bounded initial data. The Aronson-Bénilan estimate (AB in short) is usually referred to as the fundamental estimate in the theory of the porous medium equation and it will be further discussed in Section 1.4.

Let us come back to the regularity of solutions in dimension one. The free boundary of the set Ω(t) := {x; u(x, t) > 0} consists of two monotone curves: there exist ζ i (t), i = 1, 2, such that

Ω(t) = {x; ζ 1 (t) < u(x, t) < ζ 2 (t)},
where both -ζ 1 (t) and ζ 2 (t) are monotone increasing, see [START_REF] Kalashnikov | On the occurrence of singularities in the solutions of the equation of nonstationary filtration[END_REF], and Lipschitz continuous for positive times, see [START_REF] Aronson | Regularity properties of flows through porous media: The interface[END_REF]. In 1979, Caffarelli and Friedman proved that ζ i are actually continuously differentiable after a certain time t = t * i , [START_REF] Caffarelli | Regularity of the free boundary for the one-dimensional flow of gas in a porous medium[END_REF]. At this point, there can be a jump discontinuity of the velocities ζ ′ i (t), therefore the Lipschitz regularity of the interfaces is optimal in dimension one. A fundamental step forward in the quest for the regularity properties of the PME was made in [START_REF] Caffarelli | Regularity of the free boundary of a gas flow in an n-dimensional porous medium[END_REF] where the authors prove Hölder continuity of both the free boundary and u(x, t) in any dimension. Later in 1987, Caffarelli, Vázquez and Wolanski show that the free boundary of the solution is Lipschitz continuous after a certain waiting time, see [START_REF] Caffarelli | Lipschitz continuity of solutions and interfaces of the n-dimensional porous medium equation[END_REF]. For dimension d > 1 such condition is needed since the free boundary velocity |∇p|, may blow up in finite time. This occurs if the initial support contains empty patches that close after a certain finite time t * usually referred to as focusing time. This behavior has indeed attracted a lot of attention in relation to the global regularity issue. The first study is due to Graveleau [START_REF] Graveleau | Quelques solutions auto-semblables pour l'equation de la chaleur nonlinéair[END_REF] after which the solution is named. The Graveleau solution, also called focusing solution, is a radially symmetric selfsimilar solution whose initial support is contained outside of a ball. Thanks to the finite speed of propagation, the "hole" shrinks in finite time, t * . This solution represents the simplest example that shows that global Lipschitz continuity cannot always be expected. Indeed, for d ⩾ 2, the solution is smooth on its support only after the focusing time t * , after which the initial "hole" has closed up (or focused ), [START_REF] Aronson | The focusing problem for the porous medium equation: Experiment, simulation and analysis[END_REF][START_REF] Aronson | A selfsimilar solution to the focusing problem for the porous medium equation[END_REF]. For more insights on the regularity of PME's solutions in Sobolev spaces we refer the reader to [START_REF] Gess | Optimal regularity for the porous medium equation[END_REF].

Filtration equation

In 1982, Crandall and Pierre extend the Aronson-Bénilan inequality for a broader class of degenerate and nonlinear equations. Investigating the regularity of the filtration equation, namely u t = ∆φ(u), where φ is a continuous, non-decreasing function with φ(0) = 0. In [START_REF] Crandall | Regularizing effects for u t = ∆φ(u)[END_REF] the authors prove an L ∞ -lower bound on u t = ∆φ(u). In [START_REF] Bénilan | The continuous dependence on φ of solutions of u t -∆φ (u)= 0[END_REF], Bénilan and Crandall establish the continuous dependence of the filtration equation on φ using nonlinear semi-group theory which enables them to allow for cases of φ being a monotone graph. As a matter of fact, their paper also covers the first result on the incompressible limit, which consists of letting m → ∞, upon choosing φ(z) = z m . The authors prove a convergence result in the particular case of non-negative initial data such that ∥u 0 ∥ ∞ ⩽ 1.

From the PME to the Hele-Shaw problem

A question that has fascinated many researchers in the last few decades is to understand the behavior of the porous medium equation as the exponent m becomes larger and larger. As it is now well known, a compactly supported solution u m develops sharp interfaces as m → ∞. In particular, the appearance of a saturated region occurs, i.e. a zone where u ∞ = 1, which is closely related to the domain of a free boundary problem known as the Hele-Shaw problem. Despite being quite different from a mathematical viewpoint, the PME and the Hele-Shaw problem share a crucial common feature. In fact, in both cases the flow is induced by Darcy's law. Before introducing the underlying principles behind the incompressible limit m → ∞ and summarizing the early results in the literature, let us give a short overview of the Hele-Shaw problem.

The Hele-Shaw problem

The Hele-Shaw problem is a free boundary problem which was first introduced to model the injection of a fluid into a laminar cell, see [START_REF] Richardson | Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel[END_REF]. The fluid surface expands in the small gap between two parallel flat plates that form the cell, also called Hele-Shaw cell, named after Henry Selby Hele-Shaw who studied the phenomenon in 1898. In 1972, Richardson analyses the Hele-Shaw problem for a point source injected into an infinite cell. Originally the model was motivated by applications to plastic industry, in particular to injection moulding, see [START_REF] Richardson | Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel[END_REF]. The same problem was then approached from a variational point of view by Elliot and Janovský. In [START_REF] Elliott | A variational inequality approach to Hele-Shaw flow with a moving boundary[END_REF], they consider a finite cell and a finite source. Moreover, the injected fluid is assumed to be incompressible and the pressure variations which are perpendicular to the cell surface are neglected, since the space between the plates is infinitesimally small. This property is the main characteristic of the Hele-Shaw flow. The fluid "blows" from the injection point with constant rate Q. Hence, after a certain time t the increment of the fluid blob is Qt volume units. As already mentioned the main feature of the Hele-Shaw flow is the fact that the movement of the fluid is governed by Darcy's law (1.2), where κ is a positive constant that depends on the fluid viscosity and the depth of the cell. From now on, without loss of generality we assume κ = 1. The problem is set as displayed in Fig. 1.1. The curve Γ I is the curve through which the fluid is blown into the cell at velocity Q. At time t = 0, the fluid occupies the region between Γ I and Γ 0 denoted Ω 0 , while Ω(t) is the area occupied at time t > 0 included between Γ I and Γ(t). We denote by Ω the entire domain, i.e. the region included between Γ I and the exterior fixed boundary Γ. Since the fluid is assumed to be incompressible the velocity field is divergence free in the region it occupies, namely ∆p = 0, in Ω(t).

The pressure on Γ(t) is assumed to be constantly equal to zero and the normal velocity of the free boundary Γ(t) is equal to the opposite of the normal derivative of the pressure V = -∂ ν p.

The flow is assumed to be tangential to the outer boundary of the cell, therefore ∂ ν p = 0 on Γ.

Let us assume that for some function l = l(x), the moving boundary and the fluid surface can be defined as

Γ(t) = {x; t -l(x) =: S(x, t) = 0}, Ω(t) = {x; l(x) < t}.
The Hele-Shaw problem in the sense of Elliot-Janovský [START_REF] Elliott | A variational inequality approach to Hele-Shaw flow with a moving boundary[END_REF] can be stated as follows.

Problem 1.3.2 (Original Hele-Shaw problem). Find l(x) and p(x, t), x ∈ Ω and t ∈ (0, T ] such that

l(x) = 0, for x ∈ Ω 0 , ∆p(x, t) = 0, for x ∈ Ω(t),              p = 0, on Γ(t), ∂ ν p = -V, on Γ(t), ∂ ν p = Q, on Γ I , ∂ ν p = 0, on Γ. (1.13) 
As observed in [START_REF] Elliott | A variational inequality approach to Hele-Shaw flow with a moving boundary[END_REF], the Hele-Shaw problem is actually a Stefan problem with zero specific heat. Indeed, if we replace ∆p = 0 by c∂ t p -∆p = 0 where p represents the temperature of water and c > 0 is the specific heat, Problem 1.13 describes the evolution of the surface of contact between water and melting ice. As shown in [START_REF] King | Persistence of corners in free boundaries in Hele-Shaw[END_REF], cusp-like singularities may appear on the free boundary, therefore the Hele-Shaw problem does not necessarily have a global classical solution. A weaker notion of solution is then introduced. Using the Baiocchi's transform it is possible to find an equivalent problem which consists of an elliptic variational inequality. Let w be the transform of p, namely

w(x, t) =              0, for x ∈ Ω \ Ω 0 , t ∈ [0, l(x)], t l(x) p(x, τ ) dτ, for x ∈ Ω \ Ω 0 , t ∈ [l(x), T ], t 0 p(x, τ ) dτ, for x ∈ Ω 0 , t ∈ [0, T ].
Let 1 Ω0 be the characteristic function of Ω 0 . Then, w satisfies the following complementarity problem

-∆w -(1 Ω0 -1) ⩾ 0, w ⩾ 0, (-∆w -(1 Ω0 -1))w = 0,        ∂ ν w = Qt on Γ I , ∂ ν w = 0 on Γ, w = 0, ∂ ν w = 0 on Γ(t). (1.14)
This problem is equivalent to the following variational formulation for which existence and uniqueness results are proven in [START_REF] Elliott | A variational inequality approach to Hele-Shaw flow with a moving boundary[END_REF].

Problem 1.3.3 (Variational inequality formulation of the HS problem). Let H = {v ∈ H 1 (Ω); v ⩾ 0 almost everywhere in Ω}. Find w(t) ∈ H for each t ∈ (0, T ) such that for all v ∈ H Ω ∇w • ∇(v -w) dx ⩾ Ω (1 Ω0 (x) -1)(v -w) dx + Γ Qt(v -w) dσ. (1.15)
The Hele-Shaw problem in a bounded domain Ω with a point source is analogously studied in [START_REF] Čížek | Hele-Shaw flow model of the injection by a point source[END_REF], where the authors prove the well-posedness of the variational inequality formulation.

Incompressible limit of the Cauchy problem

Following the work of Bénilan and Crandall on the continuous dependence of the filtration equation [START_REF] Bénilan | The continuous dependence on φ of solutions of u t -∆φ (u)= 0[END_REF], the asymptotic behaviour of the following Cauchy problem attracted increasing attention

     ∂u ∂t = ∆u m , x ∈ R d , t > 0, u(x, t) = u 0 (x) ⩾ 0, u 0 ∈ L 1 (R d ) ∩ L ∞ (R d ).
(1.16)

Before briefly reviewing the seminal works on the incompressible limit achieved from the late '80s, let us give a formal and intuitive explanation of the leading mechanisms behind this asymptotics.

The PME can be rewritten as a continuity equation as follows

∂u m ∂t = ∇ • (D(u m )∇u m ), D(u m ) = mu m-1 m ,
where we highlight the dependency upon the parameter m using subscripts. It is immediate to see that when m → ∞ the non-linear density-dependent diffusivity coefficient D(u m ) behaves as follows

D(u m ) m→∞ ----→ 0, when u < 1,
∞, when u > 1.

(1.17)

As a consequence, there exists a region in which the limit solution u ∞ is constantly equal to 1 and outside of which it coincides with the initial data. Indeed, since the diffusivity coefficient blows up where the initial data is larger than 1, the solution instantaneously collapses to the level 1 as m → ∞. On the other hand, where u 0 < 1 the diffusivity coefficient vanishes and thus the solution "stays still" as m → ∞. This heuristic argument suggests that in the limit the solution of the Cauchy problem (1.16) converges to a stationary limit u ∞ = u ∞ (x).

In [START_REF] Elliott | The mesa problem: Diffusion patterns for u t = ∇•(u m ∇u) as m → ∞[END_REF], Elliott et al. show the formation of a plateau-like region, which they refer to as mesa, of nearly constant density u m , for m ≈ ∞, using formal asymptotic expansions and working with radial solutions. The authors conjecture that there exists a region where the limit profile of the solution is nearly constant and outside of which it approximates the initial data u 0 , although they do not provide a rigorous derivation. Moreover, they show that the mesa region is associated with the variational inequality formulation of the Hele-Shaw problem. This will be proven rigorously in [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF] for star-shaped initial data, in [START_REF] Sacks | A singular limit problem for the porous medium equation[END_REF] for radially symmetric initial data and in [START_REF] Benilan | On the limit of solutions of u t = ∆u m as m → ∞[END_REF] in a more general setting.

In [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF], Caffarelli and Friedman consider the limit of the Cauchy problem (1.16) assuming weaker conditions on the initial data with respect to the work on the filtration equation by Bénilan and Crandall [START_REF] Bénilan | The continuous dependence on φ of solutions of u t -∆φ (u)= 0[END_REF]. In fact, they are the first to include the case in which the L ∞ -norm of the initial data is greater than 1. The "stationarity" of the limit density, i.e. u ∞ = u ∞ (x), is deduced upon combining three tools: uniform bounds, the AB estimate, and the conservation of mass. First of all, as explained above, Prob. (1.16) admits a unique non-negative weak solution u m . Using the comparison principle, it is immediate to see that the solution satisfies

0 ⩽ u m ⩽ ∥u 0 ∥ ∞ . (1.18)
As a consequence, u m converges weakly * in L ∞ to some limit u ∞ , up to a subsequence. Here, the classical Aronson-Bénilan estimate (1.12) proven in [START_REF] Aronson | Régularité des solutions de l'équation des milieux poreux dans R N[END_REF] plays an essential role in that it gives

∂u m ∂t ⩾ - u m m -1 + 2 d t . Therefore, for any ψ ∈ C ∞ 0 (R d × (0, ∞)), ψ ⩾ 0, the above inequality implies - u m ∂ψ ∂t dx dt ⩾ - u m m -1 + 2 d t ψ dx dt -→ 0,
and consequently

- u ∞ ∂ψ ∂t dx dt ⩾ 0.
It is then possible to conclude that for any t > s > 0

u ∞ (•, t) ⩾ u ∞ (•, s), almost everywhere in R d . (1.19)
Finally, the mass conservation property of the PME and the convergence of

u m in C((0, ∞), L 1 (R d ))
proven in [START_REF] Bénilan | The continuous dependence on φ of solutions of u t -∆φ (u)= 0[END_REF] imply

R d u m (x, t) dx = R d u m (x, s) dx, ↓ ↓ R d u ∞ (x, t) dx = R d u ∞ (x, s) dx,
which combined with Eq. (1.19) leads to u ∞ (x, t) = u ∞ (x), namely the limit u ∞ is timeindependent.

In [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF] the authors also show that 0 ⩽ u ∞ ⩽ 1. In fact, if ∥u 0 ∥ ∞ < 1, they infer that u ∞ = u 0 in a different way and independently from the result in [START_REF] Bénilan | The continuous dependence on φ of solutions of u t -∆φ (u)= 0[END_REF]. When ∥u 0 ∥ ∞ ⩾ 1 they show that

u ∞ (x) = 1, for x ∈ A, u 0 (x), for x / ∈ A, (1.20) 
where A is defined as the non-coincidence set of the solution to the following variational inequality problem

w ∈ L 1 (R d ), ∆w ∈ L 1 (R d ), -∆w -(u 0 -1) ⩾ 0, w ⩾ 0, (-∆w -(u 0 -1))w = 0, a.e. in R d , (1.21) which means u ∞ = ∆w + u 0 . (1.22)
In fact, the authors prove that

w(x 0 ) := R d (u 0 (x) -u ∞ (x))Γ x0 (x) dx,
is the unique solution of Prob. (1.21), where Γ x0 is the fundamental solution of -∆. Secondly, they show that u ∞ satisfies (1.20) with A = {w > 0}, [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF]Theorem 5.3] and therefore they infer the uniqueness of the limit. Let us mention that in [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF] the authors impose strong geometric assumptions on the initial data, such as u 0 continuously differentiable in its support and star shaped with respect to the origin. These assumptions are weakened by Sacks in [START_REF] Sacks | A singular limit problem for the porous medium equation[END_REF], where only radial symmetry is assumed, and later by Bénilan et al. in [START_REF] Benilan | On the limit of solutions of u t = ∆u m as m → ∞[END_REF], where taking

u 0 ∈ L 1 (R d ) is sufficient.
It is worth noting that the variational inequality problem (1.21) is the equivalent, in the whole space R d , of the Hele-Shaw problem (1.14) studied by Elliot and Janovský, in the case of initial data given by a patch, i.e. u 0 = 1 Ω0 . However, there is a main difference between the Hele-Shaw problem (1.13)-(1.15) and the limit problem generated by the PME in the asymptotic m → ∞: the "stationarity" of the solution. Indeed, while the solution of Eq. (1.15) depends on time and the free boundary is a moving interface, the limit density u ∞ = u ∞ (x) is independent of time, as is the solution w = w(x) of (1.21). It is interesting to notice that this is not in contrast with the dynamics that drive the Hele-Shaw flow. As explained above, the Hele-Shaw flow is induced by Darcy's law, i.e. the velocity field has the same direction as the gradient of the pressure. In Section 1.3.1 we analyzed the physical meaning of the PME, which is also induced by Darcy's law, cf. (1.10), with velocity field given by -∇p where the pressure is p = mu m-1 /(m -1). As one can deduce from Eq. (1.11) set in the whole space R d , as m → ∞ the pressure vanishes instantaneously, thus the limit pressure is equal to zero almost everywhere, as is its gradient. Therefore, there is no evolution in the limit problem, which can be seen as a "stationary" Hele-Shaw problem.

The picture drastically changes if we set the porous medium equation in a bounded domain with non-trivial boundary conditions, as explained in the following paragraph.

The boundary valued problem

The limit m → ∞ of the PME set in a bounded domain with homogeneous Dirichlet or Neumann boundary conditions was first studied in [START_REF] Benilan | On the limit of solutions of u t = ∆u m as m → ∞[END_REF], where the authors prove u m → u 0 + ∆w, with w a solution of corresponding variational inequalities. For both conditions, the limit solution is stationary and the variational inequality system coincides with a "motionless" Hele-Shaw problem.

The asymptotic behavior changes significantly for the Cauchy-Dirichlet problem with non-homogeneous boundary conditions

           ∂u m ∂t = ∆u m m , x ∈ Ω, t > 0, u m (x, 0) = u 0 (x) ⩾ 0, x ∈ Ω, u m (x, t) m = g(x, t) ⩾ 0, x ∈ ∂Ω, t > 0, (1.23) 
where Ω ⊂ R d is an open subset with non-empty boundary ∂Ω. In 2001, Gil and Quirós analysed the incompressible limit for the above problem for time-independent boundary data g = g(x), [START_REF] Gil | Convergence of the porous media equation to Hele-Shaw[END_REF].

Let us point out that as m ≈ ∞, u m m ≈ p m . Hence, imposing the boundary condition in (1.23) is equivalent to fixing the value of the pressure on the boundary. Usually the quantity v m = u m is referred to as the generalized pressure. Let us notice that given a set Ω large enough, the case g ≡ 0 coincides with the problem studied by Caffarelli and Friedman in [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF] in the whole space R d . Indeed, in [START_REF] Gil | Convergence of the porous media equation to Hele-Shaw[END_REF] Gil and Quirós are able to recover the same result from a different perspective by focusing on the role of the pressure rather than the density itself. This is indeed the main novelty introduced by the authors who center the analysis around p m rather than u m . For vanishing Dirichlet boundary data, i.e. g ≡ 0, the "stationarity" of the limit Hele-Shaw problem can be seen by analyzing the asymptotic behavior of p m . Indeed, in the limit, the pressure vanishes almost everywhere. This can be easily seen by letting m → ∞ in the pressure equation (1.11). In conjunction with the uniform essential bounds, this immediately yields ∥∇p ∞ ∥ L 2 (Ω×(0,T )) = 0, by the following argument

T 0 Ω |∇p m | 2 dx dt = 1 m -2 Ω (p 0 m -p m (T )) dx m→∞ ----→ 0. (1.24)
Therefore, the boundary of the limit HS problem is actually motionless. The central role of the pressure in [START_REF] Gil | Convergence of the porous media equation to Hele-Shaw[END_REF] is motivated by the fact that for non-vanishing boundary data the pressure p m that solves (1.23) does not vanish as m → ∞. Indeed, if g ⩾ 0 is non-trivial, the pressure is "forced" to be positive somewhere near the outer boundary ∂Ω. Since the pressure gradient is no longer zero, the motion of the free boundary ∂{p ∞ > 0} is governed by Darcy's law V = -∂ ν p ∞ . Let us also stress that the mass conservation property no longer holds since there is a source term on the boundary of Ω. Consequently, the proof of the "stationarity" of u ∞ , which relies on the AB estimate reported above, fails. Similarly, the proof of ∥∇p ∞ ∥ L 2 = 0 by Eq. (1.24) no longer holds true due to the fact that the boundary term arising from the integration by parts no longer vanishes. As a consequence, the main effect induced by imposing non-vanishing boundary data is the "nonstationarity" of the limit problem, which here turns out to be the standard Hele-Shaw problem ∆p(x, t) = 0, in {x; p(x, t) > 0}, V = -∂ ν p, on ∂{x; p(x, t) > 0}.

As already mentioned, using the Baiocchi transform w(x, t) = t 0 p(x, τ ) dτ the HS problem can be rewritten as a variational inequality problem. Let Ω 0 be the initial pressure support, i.e. supp (p 0 ) = Ω 0 , then w satisfies the variational inequality

-∆w -(1 Ω0 -1) ≥ 0, w ≥ 0, (-∆w -(1 Ω0 -1))w = 0, (1.25) 
with boundary data w = t 0 g(x, τ ) dτ on ∂Ω. In [START_REF] Gil | Convergence of the porous media equation to Hele-Shaw[END_REF] the authors prove that for time-independent boundary data, i.e. g = g(x), the pressure p m related to the solution of the PME (1.23) converges to the weak solution of the Hele-Shaw problem in the sense of Elliot-Janovský, namely

p m → p ∞ , strongly in L 1 (Ω × (0, T )),
and p ∞ is the solution of (1.25) with Ω 0 = {x; p(x, 0) > 0}.

In order to obtain this result, the authors introduce a new definition of weak solution of the HS problem, and prove that the limit p ∞ satisfies this weak formulation. It is our interest to introduce this definition since, from now on, we will only deal with this notion of weak solution rather than the original one by Elliot-Janovský. In [START_REF] Gil | Convergence of the porous media equation to Hele-Shaw[END_REF] it is proven that the two solutions coincide in the case of initial data given by a patch.

Definition 1.3.4 (Weak solution of the Hele-Shaw problem). Let u 0 ∈ L 2 (Ω), u 0 ⩾ 0 and g ∈ L 2 loc ([0, T ); H 1 (Ω)), g ≥ 0.
The pair of non-negative and measurable functions (u, p) is a weak solution of the Hele-Shaw problem in Ω with initial data u 0 and boundary data g, if

(i) u ∈ L 2 loc ([0, ∞); L 2 (Ω)), p ∈ L 2 loc ([0, ∞); H 1 (Ω)), (ii) ∀φ ∈ C 2,1 comp (Ω × [0, ∞)) vanishing on ∂Ω × (0, ∞), u satisfies ∞ 0 Ω u ∂φ ∂t -∇p • ∇φ dx dt + Ω u 0 φ(x, 0) dx = 0, (1.26) (iii) p ∈ Φ(u) := 0, 0 ⩽ u < 1, [0, ∞), u = 1, (1.27) (iv) p -g ∈ L 2 loc ([0, ∞); W 1,2 0 (Ω)).
The authors prove that the solution (u, p) defined above is unique. Moreover, let p be the solution of the Hele-Shaw problem (1.25) in the sense of Elliot-Janovský with initial support Ω 0 = {p 0 > 0}. By [87, Corollary 4.5], p = p, where p is the solution in the sense of Definition 1.3.4 with initial data given by u 0 = 1 Ω0 . Let us give a formal derivation of Eq. (1.26) as the limit of the porous medium equation, i.e. we formally deduce that the limit (u ∞ , p ∞ ) is a solution in the sense of Definition 1.3.4. First of all, we can write the PME as follows

∂u m ∂t = ∆ m -1 m p m m m-1
.

(1.28)

Hence, by passing formally to the limit m → ∞ we find

∂u ∞ ∂t = ∆p ∞ , (1.29) 
whose weak formulation is given by Eq. (1.26). Moreover, the relation between p m and u m implies

m m -1 p m m m-1 = u m m = m -1 m p m u m , from which we can formally recover p ∞ = p ∞ u ∞ , namely p ∞ (1 -u ∞ ) = 0, (1.30) 
which is equivalent to the graph relation p ∞ ∈ Φ(u ∞ ) in Eq. (1.27). This relation is fundamental in the theory of the incompressible limit of the PME, and, as we will show in the following chapters, different methods to derive it have been provided in the literature. We will be referring to this relation as saturation relation, since it implies that in regions of positive pressure the density is totally saturated, i.e. u ∞ ≡ 1. This is consistent with the fact that (u ∞ , p ∞ ) is a solution of the Hele-Shaw problem, where an incompressible fluid moves under Darcy's law.

Moreover, combining formally Eq. (1.30) and Eq. (1.29) we have ∆p ∞ (t) = 0 in {x; p ∞ (x, t) > 0}, i.e. we recover once again the standard equation of the Hele-Shaw problem. This can also be inferred from

p ∞ ∆p ∞ = 0, (1.31) 
which can be obtained by passing to the limit in the pressure equation (1.11). The above equation on the limit pressure is usually referred to as complementarity relation.

To prove Eq. (1.31) rigorously for porous medium-reaction-advection equations is an involved analytical challenge that has recently attracted great interest in the context of living tissue models.

Recent developments: tumor growth models

Emanating from the early works on the mesa problem for the porous medium equation, research began branching out in different directions. In this section, we aim at giving a brief overview of different extensions of the porous medium equation, applications of the models obtained this way to tumor growth description, as well as techniques used to study their respective incompressible limits analytically. The first generalisation concerns the inclusion of a pressure-dependent growth term, and was proposed in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]. As we presented in Section 1.3.2, the limit of the PME Cauchy problem is stationary, unless we set the equation in a bounded domain and impose non-trivial boundary conditions that act like a sort of "injection" of fluid, hence inducing a moving boundary with speed related to the pressure gradient. If the Cauchy problem is set in the whole space, "nonstationarity" can be induced by a different mechanism, which is the source/sink effect obtained by including a reaction term into the equation. As in the boundary valued problem, the "injection" of new mass implies that the set {p ∞ > 0} is non-empty and its dynamics is governed by a Hele-Shaw-type flow.

Most recently, the inclusion of migratory processes, i.e. local and non-local drift terms, as a model extension received a lot of attention. We also aim at shortly presenting the results on the incompressible limit for models using different pressure laws, or different relations between velocity field and pressure. We conclude the section by mentioning cross-reaction-diffusion models, where a system of two or more interacting species is considered.

Models including cell proliferation

The first generalisation concerns the inclusion of a pressure-dependent growth term proposed in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] by Perthame, Quirós and Vázquez. The authors present a tumor growth model that originates from the one by Byrne and Drasdo, [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF]. The cells move according to Darcy's law, and the tissue pressure p = p(x, t) is generated by the cell population density n = n(x, t) through the compressible law of state

p(n) = mn m-1 /m -1, m > 2.
As shown in Sec. 1.3.1, in conjunction with Darcy's law this leads to a porous medium-type diffusion. In addition, they include a proliferation term, nG(p), which models cells divisions with a pressure-penalised rate

∂n m ∂t -∇ • (n m ∇p m ) = n m G(p m ). (1.32)
As mentioned in Section 1.1, cells are less "willing" to divide in packed regimes. Therefore, the proliferation rate, G, is assumed to be a decreasing function of the pressure

G ′ (p) < 0, G(p H ) = 0, (1.33) 
where, as in [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF], the homeostatic pressure p H represents the lowest level of pressure that prevents cell multiplication due to contact inhibition.

Their paper is seminal in that the authors were the first to perform the rigorous stiff pressure limit in the presence of growth terms. In this case, the pressure equation (1.11) reads

∂p m ∂t = (m -1)p m (∆p m + G(p m )) + |∇p m | 2 . (1.34)
Therefore, as for the boundary valued problem with non-trivial boundary conditions (1.23), the proof of ∥∇p ∞ ∥ L 2 = 0 fails, due to the non-trivial reaction term, namely

T 0 R d |∇p m | 2 dx dt = m -1 m -2 T 0 R d p m G(p m ) dx dt + 1 m -2 R d (p 0 m -p m (T )) dx ↛ 0. (1.35)
Therefore, the region Ω(t) := {x; p ∞ (x, t) > 0} is non-empty and evolves under a Hele-Shaw flow. In fact, passing formally to the limit in the pressure equation, one can obtain the following problem

p ∞ (∆p ∞ + G(p ∞ )) = 0, (1.36) p ∞ ⩾ 0, 0 ⩽ n ∞ ⩽ 1, p ∞ (1 -n ∞ ) = 0. (1.37)
Let us recall that Eq. (1.36) is known in the literature as complementarity relation, and it is the equivalent of Eq. (1.31) for non-trivial reaction terms. Once again we find the saturation relation (1.37), which implies that the positivity set of the pressure is contained in the saturation region of the density, namely Ω(t) ⊂ {x; n ∞ (x, t) = 1}. In the presence of non-negative growth rate G (which is the case here since it is possible to prove that 0 ⩽ p γ ⩽ p H uniformly) the two sets actually coincide. Indeed, let us assume there exists (x, t) such that n ∞ (x, t) = 1 and p ∞ (x, t) = 0. Taking m → ∞ in Eq. (1.32) it is easy to see that n ∞ (x, t) should growth exponentially with rate G(0), which is a contradiction since 0 ⩽ n ∞ ⩽ 1.

Let us point out that, in order to have a complete representation of the solution behavior in the limit, Eq. (1.36) is not sufficient. In fact, the complementarity relation does not tell us what is the behavior of the limit solution in the mushy regions, namely those regions in which p ∞ = 0 and n ∞ < 1 and in which the density grows exponentially. Thus, in order to have a full description of the limit problem, the equation on the limit density (which is the analogue of (1.29)) is necessary

∂n ∞ ∂t -∆p ∞ = n ∞ G(p ∞ ). (1.38) 
Indeed, in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] the authors show that n ∞ is a weak solution of a reaction-Hele-Shaw problem in the sense of Definition 1.3.4.

Let us notice that passing to the limit in the pressure equation (1.34) is much more involved than obtaining Eq. (1.38) from Eq. (1.32). Indeed, the weak compactness of ∇p m in L 2 (R d × (0, T )) can be easily inferred from Eq. (1.35). Therefore, the strong compactness of p m and n m is absolutely sufficient for the Hele-Shaw limit of (1.32). On the other hand, this is not true when attempting to infer the complementarity relation (1.36). In order to prove it rigorously, the strong compactness of the pressure gradient is indispensable. To this purpose, obtaining a certain control on ∆p m is one of most common strategies. Let us point out that since the pressure has "corners" on the moving boundary, we cannot expect ∆p m to be more regular than a measure. In [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] using the comparison principle, the authors show that the Laplacian of the pressure satisfies an Aronson-Bénilan type estimate, namely

∆p m + G(p m ) ≳ - C mt , for t > 0. (1.39)
Combining this estimate with a time-regularising argument, the authors are able to prove the complementarity relation (1.36).

To complete the description of (1.38) as a Hele-Shaw flow, one should include the velocity of the moving boundary ∂Ω(t) = ∂{x; p ∞ (x, t) > 0}. From Eq. (1.34), one can infer

∂ t p ∞ = |∇p ∞ | 2 .
Hence, at least at a formal level, the speed should be V = |∇p ∞ |. This is indeed true if the initial data is the characteristic function of a bounded set, as was proven in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] and later in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF]. However, allowing for the presence of mushy regions introduces a novelty in the characterisation of the limit problem. As conjectured in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], the presence of regions where 0 < n ∞ < 1 influences the velocity of the free boundary. Let us show with a formal argument how the velocity of the moving boundary should be related to the pressure in the case of non-empty mushy regions, see [START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF]. We denote by n I ∞ and n E ∞ the value of n ∞ inside and outside of Ω(t), respectively. Integrating Eq. (1.38) and formally applying Reynold's transport theorem, we obtain

R d n ∞ G(p ∞ ) dx = d dt R d n ∞ dx = d dt Ω(t) n ∞ dx + R d \Ω(t) n ∞ dx = Ω(t) ∂n I ∞ ∂t dx + ∂Ω(t) V n I ∞ -n E ∞ dσ + R d \Ω(t) ∂n E ∞ ∂t dx = Ω(t) ∆p ∞ dx + ∂Ω(t) V n I ∞ -n E ∞ dσ + R d n ∞ G(p ∞ ) dx = ∂Ω(t) ∂ ν p ∞ + V 1 -n E ∞ dσ + R d n ∞ G(p ∞ ) dx,
where V indicates the normal velocity of ∂Ω(t). This suggests that, in the presence of mushy regions, the normal boundary velocity under which ∂Ω(t) evolves satisfies (1.40). This result was rigorously proven in [START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF] through a viscosity solutions approach. The authors pass to the limit in Eq. (1.32) and show locally uniform convergence of the density away from the free boundary ∂{p ∞ > 0}. Moreover, they prove locally uniform convergence of the pressure (as long as the limit is continuous) and that p ∞ is the viscosity solution of the following Hele-Shaw problem

V (1 -n E ∞ ) = -∂ ν p ∞ , see
     -∆p ∞ = G(p ∞ ), in {p ∞ > 0}, V = |∇p ∞ | 1 -min(1, n E ∞ ) , on ∂{p ∞ > 0}, (1.40) 
where the normal velocity law was only formally presumed in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], but not rigorously proven. As already mentioned, outside of Ω(t) the density grows exponentially, thus the external density is given by n E ∞ (x, t) = n 0 (x)e G(0)t . When the trace of n ∞ from the set {n ∞ < 1} vanishes, i.e. n E ∞ = 0 on ∂Ω(t), we obtain once again the classical Hele-Shaw flow, namely, the boundary moves under Darcy's law.

Let us stress the fact that, as the velocity law suggests, the density shows jump discontinuities at the free boundary. Moreover, the velocity blows up when the density reaches value 1. As a consequence, if at a certain time s > t a new mesa of non-zero measure appears outside of {p ∞ (t) > 0}, the pressure becomes instantaneously positive in the new nucleated region, hence exhibiting time discontinuities. The equivalence between Eq. (1.37)- (1.38) and the free boundary problem (1.40) was further studied in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF], where Mellet et al. prove that the velocity law of the free boundary holds both in a weak (distributional) and in a measure theoretical sense. In the same paper, they also provide an L 4 -bound of the pressure gradient that relies on the Aronson-Bénilan estimate (1.39).

Non-monotone case

Let us point out that if 0 ⩽ p 0 m ⩽ p H , then by the comparison principle the solution of (1.32) is bounded by p H for all times. Therefore, the reaction term n m G(p m ) induces always a nonnegative source/growth and the total mass is non-decreasing. In fact, the monotonicity properties

∂ϱ ∞ ∂t ⩾ 0, ∂p ∞ ∂t ⩾ 0,
can be deduced from the AB estimate (1.39), see [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] for the detailed proof. This no longer holds true if the reaction term can be either a source or a sink. A major difference in this case is given by the fact that when the reaction is not necessarily non-negative the inclusion {p ∞ > 0} ⊂ {n ∞ = 1} is strict. Let us mention that, if G can take negative values, the proof that the two sets coincide given above does not apply. Therefore, n ∞ might be continuous on some regions of the free boundary ∂{p ∞ > 0}. In particular, this happens when the pressure gradient is continuous as well, as shown in [START_REF] Perthame | Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient[END_REF] for travelling waves solutions in dimension 1. On the one hand, if |∇p ∞ | > 0 on ∂{n ∞ = 1} then the boundary is expanding with a Hele-Shaw-type flow, with velocity given by (1.40). On the other hand, if |∇p ∞ | = 0, the boundary might recede. In fact, since (1 -n E ∞ )V = |∇p ∞ |, if the pressure gradient vanishes, either the velocity of the boundary is zero or n E ∞ = 1, i.e. the limit density is continuous across the free boundary. In the latter case, as proven in [START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF] through a viscosity solution approach, a retraction of the saturated region might occur. It is interesting to notice that in the case of non-monotone reaction terms, the movement of the free boundary is not only determined by the Hele-Shaw flow, but it also depends on a completely different dynamics generated by the loss of mass.

Models including local and non-local drifts

A different mechanism that may generate an alternation of forward and backward movements of the free boundary, even in the absence of growth terms, is the presence of a force field. In 2010, Kim and Lei introduced the notion of viscosity solution for the porous medium equation with drift

∂n m ∂t = ∆n m m + ∇ • (n m ∇Φ), with Φ : R d → R,
and they prove that it coincides with the weak solution in the distributional sense [START_REF] Kim | Degenerate diffusion with a drift potential: A viscosity solutions approach[END_REF]. Using the same viscosity approach, in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF] Alexander et al. study the link between the Hele-Shaw model with drift

-∆p = ∆Φ, in {p > 0}, V = -(∇p + ∇Φ) • ν, on ∂{p > 0},
and the congested crowd motion model

   ∂n ∂t -∇ • (n∇Φ) = 0, where n < 1, 0 ⩽ n ⩽ 1,
where the latter constraint comes from the singular limit in the nonlinear diffusion term. To prove the equivalence of the two models, they study the asymptotics of the porous medium equation with drift as m → ∞. They show that the viscosity solution converges locally uniformly to a solution of the Hele-Shaw model. At the same time, using the metric setting of the 2-Wasserstein space, they infer the convergence to the aforementioned congested crowd motion model. To this purpose, they assume the potential Φ to be sub-harmonic, i.e. ∆Φ > 0. While the convergence in the 2-Wasserstein distance holds for general initial data 0 ⩽ n 0 ⩽ 1, the locally uniform limit holds only for patches, i.e. n 0 = 1 Ω0 , with Ω 0 a compact set in R d . Let us also mention that the authors are able to estimate the convergence rate of the solutions as m → ∞ in the 2-Wasserstein distance. In fact, they find

sup t∈[0,T ] W 2 (n m (t), n ∞ (t)) ⩽ C m 1/24 .
(1.41)

The result in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF] was later extended in [START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF] 

∂n m ∂t = ∆n m m + ∇ • (n m ∇N ⋆ n m ).
The main novelty they introduce is that they are able to study the incompressible limit despite lack of convexity. In fact, unlike the congested drift equation studied in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF], the energy related to the aggregation equation through the 2-Wasserstein gradient flow structure is not semi-convex, see [START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF]. A different approach for the incompressible limit for Eq. (1.32) was taken in [START_REF] Chizat | A tumor growth model of Hele-Shaw type as a gradient flow[END_REF], where a transport-growth distance is introduced so that Eq. (1.32) can be understood as a gradient flow with respect to said metric. The question of how to pass to the limit m → ∞ in the porous medium equation with a drift and a non-trivial source term has been addressed in [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF]. The authors propose a model with a generic vector field ⃗ b : R d × R + → R d as drift term, namely

∂n m ∂t -∆n m m + ∇ • (n m ⃗ b) = n m G, (1.42) 
with growth rate G = G(x, t). Through viscosity solutions methods, they prove that as m → ∞ the model converges to a free boundary problem of Hele-Shaw type. Their work improves the results previously achieved in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF], extending the class of initial data from patches to any continuous and compactly supported function bounded between zero and one.

Different pressure laws and relations

As indicated above, in certain contexts Darcy's law may not be the appropriate relation that links the velocity field to the mechanical pressure. Depending on the modelling context and the model complexity, the pressure is incorporated in the fluid velocity through Stokes flow, Brinkman's law or Navier-Stokes' law. We briefly present recent works on the incompressible limit for different pressure laws and relations.

Singular Pressure. As already mentioned, parallel to the advances in the context of incompressible limits with power-law pressures, it has been observed that the singular pressure law of the form

p ε (n) = ε n 1 -n , (1.43) 
can be used to model living tissue, see for instance [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF]. Let us recall that (1.43) already introduces an incompressibility condition in the sense that the pressure blows up when the cell density reaches the saturated regime, n = 1. Thus, singular pressure laws of this kind are encountered in scenarios when non-overlap conditions are enforced already at a population-level, see for instance [START_REF] Degond | Numerical simulations of the Euler system with congestion constraint[END_REF][START_REF] Perrin | Free/congested two-phase model from weak solutions to multidimensional compressible Navier-Stokes equations[END_REF] in the context of congestive collective crowd motion, and [START_REF] Berthelin | A model for the formation and evolution of traffic jams[END_REF][START_REF] Berthelin | A traffic-flow model with constraints for the modeling of traffic jams[END_REF] in the context of traffic flow modelling. In [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF] the authors are able to show that the pressure in (1.43) is suitable to pass to the incompressible limit using a generalisation of the Aronson-Bénilan argument by Crandall and Pierre, cf. [START_REF] Crandall | Regularizing effects for u t = ∆φ(u)[END_REF].

Brinkman Law. Unlike Darcy's law, using the Brinkman law

-ν∆W + W = p(n),
accounts for visco-elastic effects, [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF]. Based on this observation, in [START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF] the authors propose a modification of the above model, Eq. (1.32), incorporating the Brinkman law

∂n ∂t -∇ • (n∇W ) = nG(p).
Different from the Darcy law setting, the authors are forced to use a different set of techniques since the problem is no longer degenerate parabolic but, instead, of transport nature. While, at first glance, the Brinkman law has a regularising effect on the velocity field, it makes obtaining compactness of the pressure a hard endeavour. Using a kinetic reformulation and controlling oscillations in the pressure finally yields the required compactness to pass to the incompressible limit and obtain a visco-elastic version of the complementarity relation, cf. [132, Theorem 1.1].

For pressure laws of the form p ε (n) = ε1 n⩾1 log(n), quite recently, explicit travelling wave profiles were obtained by [START_REF] Liu | Towards understanding the boundary propagation speeds in tumor growth models[END_REF].

Navier-Stokes flow. It is important to stress that both Darcy's law and Brinkman's law are, at least, formally related to the Navier-Stokes law which can therefore be seen as the most general relation between the fluid velocity and the mechanical pressure. In [START_REF] Vauchelet | Incompressible limit of the Navier-Stokes model with a growth term[END_REF] the authors prove the incompressible limit for a proliferating species whose velocity is linked to the pressure through the Navier-Stokes law thus generalising the case without birth and death processes of [START_REF] Lions | On a free boundary barotropic model[END_REF]. The authors use the fact that the growth rate is linear in the pressure so that weak compactness of the pressure suffices in order to pass to the limit, so long as the density itself is strongly compact. While the weak compactness of the pressure follows from a renormalisation argument the strong compactness of the density is based on a compactness propagation argument introduced (and later refined) in [START_REF] Belgacem | Compactness for nonlinear continuity equations[END_REF][START_REF] Bresch | Global weak solutions of PDEs for compressible media: a compactness criterion to cover new physical situations[END_REF][START_REF] Bresch | Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor[END_REF].

Active Motion. In [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF] the authors extend the model of [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] by an additional active motion term in form of a linear diffusion term. They are able to rigorously perform the incompressible limit.

In fact, they obtain the same complementarity relation as in the absence of active motion without relying on the Aronson-Bénilan by imposing certain conditions on the initial data. Nonetheless, the restriction on the initial data can be dropped by employing the argument of Crandall and Pierre, in [START_REF] Crandall | Regularizing effects for u t = ∆φ(u)[END_REF]. In [START_REF] Tang | Composite waves for a cell population system modeling tumor growth and invasion[END_REF] the authors propose a very similar model based on Brinkman's law, including a linear diffusion term. They observe that travelling waves exist and analyse their profile.

Fractional Diffusion. In 2015, Vázquez opened another both fascinating and challenging research direction by addressing the mesa problem in the fractional pressure case, cf. [START_REF] Vazquez | The mesa problem for the fractional porous medium equation[END_REF]. More precisely, he studies the incompressible limit, m → ∞, in the fractional porous medium equation,

∂n m ∂t + (-∆) -s (n m ) m = 0,
for s ∈ (0, 1). Unlike the case of classical porous medium type diffusion, the limiting profile exhibits tails and does not remain compactly supported. The analysis is of orders of magnitude harder since the classical theory discussed in Section 1.3.2 relies on comparison principles and the fact that it is known what happens to the Barenblatt profiles in the incompressible limit. In the fractional setting the source solutions are not known explicitly. Nonetheless, they are the starting point of the analysis of [START_REF] Vazquez | The mesa problem for the fractional porous medium equation[END_REF]. Many questions remain open, in particular the inclusion of other processes such as reactions and drifts.

Multi-Species Systems

Recently, there has been a growing interest in multi-phase extensions of the models presented above. Instead of merely modelling the evolution of a single species, say, cancer tissue, other phases such as quiescent cells, healthy tissue, dead tissue, are incorporated into the model. The extension to multiple interacting species not only leads to interesting behaviors, such as phase separation, but also raises novel mathematical challenges such as the loss of regularity at internal layers, i.e. regions where two or more phases get in contact.

In 2018, Carrillo et al. consider the following cross(-reaction)-diffusion system

         ∂n 1 ∂t - ∂ ∂x n 1 ∂χ ′ (n) ∂x = n 1 F 1 (p) + n 2 G 1 (p), x ∈ R, t > 0, ∂n 2 ∂t - ∂ ∂x n 2 ∂χ ′ (n) ∂x = n 1 F 2 (p) + n 2 G 2 (p),
where the single species n 1 , n 2 evolve under nonlinear diffusion represented by χ ′ (n), which indicates the opposition to the congestion generated by the total population density n = n 1 + n 2 .

Using methods from optimal transport, the authors prove the existence of solutions in the one dimensional case, [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF]. This result was later extended by Gwiazda et al. to higher dimensions in the case where χ ′ is related to the total density by a power law, [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF]. Therefore, since both species evolve under Darcy's law, the joint population n satisfies a porous medium-type equation with pressure given by p

(n) = χ ′ (n) = n γ , γ > 1.
Let us mention that in the following parts of the thesis we will use both this simple power law without coefficients and (1.8). Indeed, the two respective equations are equivalent apart from a re-scaling coefficient. The existence result in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] relies on applying a uniformly parabolic regularisation to the system and then obtaining the compactness needed to pass to the limit. Certainly, to this end, the nonlinearity of the cross-diffusion terms n i ∇p, i = 1, 2, represents the most involved challenge.

Unlike in [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF], only weak compactness is known on the single species n i (since BV -estimates are not available for d > 1). Hence, the authors proceed by deducing the strong compactness of the pressure gradient. To this end, they prove an L 2 -version of the Aronson-Bénilan estimate which provides a bound on the Laplacian of the pressure

(∆p) -∈ L ∞ (0, T ; L 2 (R d )), ∆p ∈ L 1 (R d × (0, T )).
However, in order to obtain the above regularity results on the pressure, the authors enforce a technical condition on the reaction rates, namely F 1 (0) + F 2 (0) = G 1 (0) + G 2 (0). Later, an existence result for a cross-diffusion model of the same form was obtained by Price and Xu avoiding this strong assumption, [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF]. In fact, their argument does not rely on any control on the second derivatives of p = n γ , but it rather focuses on directly studying the compactness of ∇n γ+1 . The incompressible limit for this kind of two-species porous medium models has attracted a lot of attention as well. Due to the hyperbolic flavour of the single species equations (in contrast with the parabolic nature of the joint density equation) to infer the required compactness represents a remarkably challenging problem. In [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF], Bubba et al. have established the rigorous incompressible limit for the same model as the one in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] as γ → ∞ in the pressure law. However, the lack of regularity is such that only a one-dimensional result could be obtained. Indeed, the authors are not able to deduce the strong time-compactness of the pressure in dimension greater than one. This is due to the fact that the proof relies on an L 1 -version of the Aronson-Bénilan estimate which only holds in the one-dimensional case. As detailed in the following section, this particular control requires the Sobolev embedding

W 1,1 (R) ⊂ L ∞ (R).
Let us mention that, in a similar fashion, a one-dimensional result could be obtained, see [START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF], when the pressure is given by the singular law (1.43) using the generalisation of the Aronson-Bénilan estimate introduced in [START_REF] Crandall | Regularizing effects for u t = ∆φ(u)[END_REF].

In 2020, [START_REF] Dou | Modeling the autophagic effect in tumor growth: a cross diffusion model and its free boundary limit[END_REF] proposed a two-cell-type model coupled with nutrients to study the effect of autophagy on tumour growth. In their work they, too, consider an incompressible limit, however the results remains formal due to difficulties similar to that of the system without nutrients treated by [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF][START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF]. The multi-dimensional case for a pressure generated in form of a power law was later successfully addressed in [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF] through a different argument that does not rely on high order estimates on the pressure p = n γ . On the contrary, the authors' effort is focused on the quantity v = n γ+1 which is the power of the density that appears in the porous medium form of the equation. In this way, they are able to directly show the strong compactness of the gradient, ∇v, avoiding the issue of the strong time-compactness on the pressure itself. Thanks to the higher regularity of the pressure induced by Brinkman's law, a more complete picture on the two-species system was available earlier in this case, see [START_REF] Dębiec | Incompressible Limit for a Two-Species Tumour Model with Coupling Through Brinkman's Law in One Dimension[END_REF][START_REF] Dębiec | Incompressible limit for a two-species model with coupling through Brinkman's law in any dimension[END_REF]. For early works on (reaction)-cross-diffusion system we refer the reader to [START_REF] Bertsch | On interacting populations that disperse to avoid crowding: the case of equal dispersal velocities[END_REF][START_REF] Bertsch | On a system of degenerate diffusion equations[END_REF][START_REF] Hilhorst | Fast Reaction Limit of Competition-Diffusion Systems[END_REF] and references therein.

Regularity à la Aronson-Bénilan: a short review

As briefly presented in the previous section, the Aronson-Bénilan estimate is a well known and powerful tool which has been widely applied and adapted in the context of porous medium equations. This estimate and its variations constitute very useful results in that they provide a control on the second order derivatives of the pressure. Therefore, the AB estimate is often used in order to show regularity as well as to obtain the compactness needed to pass to the incompressible limit. Here we aim at giving a short overview of this bound, its origin and some variations. For a complete review we refer the reader to [START_REF] Bevilacqua | The Aronson-Bénilan Estimate in Lebesgue Spaces[END_REF].

The original estimate: lower bound on ∆p

The original AB estimate provides a lower bound on the Laplacian of the pressure and it has been proven in 1979 by Aronson and Bénilan in [START_REF] Aronson | Régularité des solutions de l'équation des milieux poreux dans R N[END_REF]. The core of the proof is the application of the comparison principle for quasi-linear parabolic operators. Here we present a formal proof. Let m > 1 and w := ∆p. Let us recall Eq. (1.11), i.e. the pressure equation

∂p ∂t = (m -1)p∆p + |∇p| 2 .
We compute

∂w ∂t = ∆ ∂p ∂t = ∆ (m -1)pw + |∇p| 2 = (m -1)w 2 + 2(m -1)∇p • ∇w + (m -1)p∆w + 2∇p • ∇∆p + 2 i,j ∂ 2 p ∂x i ∂x j 2 ⩾ (m -1)w 2 + 2m∇p • ∇w + (m -1)p∆w + 2 d (∆p) 2 ,
and thus

∂w ∂t ⩾ m -1 + 2 d w 2 + 2m∇p • ∇w + (m -1)p∆w.
Assuming p is smooth and bounded away from zero, the above inequality implies that w is a supersolution of a quasi-linear parabolic operator. Let τ > 0. The function

W (t) := - 1 α(t + τ ) , with α := m -1 + 2 d ,
is a subsolution of the same operator, since

W ′ (t) = 1 α(t + τ ) 2 = αW (t) 2 .
Let us assume that, for τ small enough, w(x, 0) = ∆p(x, 0) ⩾ -1 ατ = W (0). Therefore, by the comparison principle for uniformly parabolic operators we find w(x, t) ⩾ -1 α(t+τ ) for t > 0 and for any τ > 0. Letting τ → 0 we finally find

w(x, t) ⩾ - 1 m -1 + 2 d t , (1.44) 
namely, the classical AB estimate (1.12). Let us notice that the above estimate is independent of any regularisation argument. Therefore, it can be understood in the sense of distributions for any solution obtained as the limit of regular solutions, see [START_REF] Aronson | Régularité des solutions de l'équation des milieux poreux dans R N[END_REF]. Let us report the gist of the argument for the sake of completeness. In order to apply the comparison principle for quasi-linear parabolic operator we need to approximate the solution of the PME taking u 0,ε (x) = u 0 (x) + ε. For such initial data, the PME is no longer degenerate and there exists a unique solution that satisfies

u ε ∈ C ∞ (R d × (0, ∞)) and u ε (x, t) ⩾ ε. Consequently, the pressure p ε = m m-1 u m-1 ε ∈ C ∞ (R d × (0, ∞)
) is bounded away from zero as well. Then, we can apply the above argument and the AB estimate (1.44) holds for p ε uniformly in ε. One can show that

p ε → p in L 1 loc (R d × (0, ∞)), cf. [149, Lemma 9.5]. Hence, for any φ ∈ C ∞ c (R d × (0, ∞)), φ ⩾ 0, we have ∞ 0 R d ∆p ε + 1 αt φ dx dt ⩾ 0,
and, thus

∞ 0 R d p ε ∆φ + 1 αt φ dx dt ⩾ 0, ↓ ∞ 0 R d p∆φ + 1 αt φ dx dt ⩾ 0,
and this completes the proof, i.e. Eq. (1.12) holds in the sense of distributions. 

AB estimate with reaction terms

The first generalisation of the AB estimate for an equation including a pressure-dependent reaction term, Eq. (1.32), is due to [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]. Under conditions (1.33), and assuming 0 ⩽ p 0 ⩽ p H , one can prove 0 ⩽ p ⩽ p H in R d × (0, ∞). Let us define the non-negative quantity

r G := min 0⩽p⩽p H (G(p) -pG ′ (p)) ⩾ 0. (1.45)
Since the equation includes a reaction term, the functional on which it is possible to infer a lower bound is different from the one considered in the classical AB estimate. Indeed, the authors define w := ∆p + G(p). Therefore, the pressure equation (1.34) now reads

∂p ∂t = (m -1)pw + |∇p| 2 . (1.46)
Computing ∂ t w, we find

∂w ∂t = (m -1)∆(pw) + 2∇p • ∇∆p + 2 i,j ∂ 2 p ∂x i ∂x j 2 + G ′ (p) ∂p ∂t ⩾ (m -1)p∆w + (m -1)w∆p + 2(m -1)∇p • ∇w + 2∇p • ∇(w -G) + G ′ (p)(m -1)pw + G ′ (p)|∇p| 2 = (m -1)p∆w + (m -1)w 2 -(m -1)wG + 2m∇p • ∇w + G ′ (p)(m -1)pw -G ′ (p)|∇p| 2 ⩾ (m -1)p∆w + (m -1)w 2 + 2m∇p • ∇w -(m -1)(G(p) -pG ′ (p))w,
where in the last inequality we used the fact that -G ′ (p) ⩾ 0. Since (m -1) > 0 and -(m -1)(G(p) -pG ′ (p)) ⩽ 0 we can again apply the comparison principle. In fact, treating p as a known function with enough regularity, w is a supersolution of a quasi-linear parabolic operator.

Let us define

W G (t) := -r G e -(m-1)r G t 1 -e -(m-1)r G t . Then, W (t) is a solution to W ′ G = (m -1)W G (t) 2 -(m -1)r G W G (t).
In particular, it is a subsolution of the same parabolic operator. Therefore, we recover

∆p + G(p) ⩾ -r G e -(m-1)r G t 1 -e -(m-1)r G t .
(1.47)

As for the case G = 0, the above estimate holds independently of any regularity. Consequently, it is possible to prove that this lower bound holds in the sense of distributions for a larger class of functions obtained as the limit of solutions with enough regularity. Let us notice that for t ∼ 0, the above estimate turns out to be ∆p + G(p) ≳ -1 (m-1)t .

AB estimate with drift terms

A similar lower bound on the Laplacian of the pressure was also provided in [START_REF] Kim | Porous Medium Equation with A Drift: Free boundary Regularity[END_REF], for a model including a general drift ⃗ b : R d × (0, ∞) → R d . The equation of the model is given by taking G = 0 in Eq. (1.42). In this case, the pressure satisfies

∂p ∂t = (m -1)p(∆p + ∇ • ⃗ b) + |∇p| 2 + ∇p • ⃗ b. (1.48)
The authors assume the drift to have continuous space derivatives up to the third order, and to be continuously differentiable in time, i.e. ⃗ b ∈ C 3,1 x,t . Under this assumption, following the idea developed by Aronson and Bénilan, they are able to find a subsolution of a suitable parabolic operator in order to estimate ∆p on one side. Once again, since for any weak solution n of the drift-PME equation there exists a sequence of strictly positive classical solutions n ε > 0 that converges to n in L 1 (R d × (0, ∞)), it is sufficient to prove that the AB estimate holds for such regular solutions.

Let w := ∆p. Upon computing the time derivative, we obtain

∂w ∂t = (m -1)∆(pw) + (m -1)∆(p∇ • ⃗ b) + 2∇p • ∇w + 2 i,j ∂ 2 p ∂x i ∂x j 2 + ∆(∇p • ⃗ b) = (m -1)p∆w + 2m∇p • ∇w + (m -1)w 2 + (m -1)w∇ • ⃗ b + 2(m -1)∇p • ∇(∇ • ⃗ b) + (m -1)p∆(∇ • ⃗ b) + 2 i,j ∂ 2 p ∂x i ∂x j 2 + ∇p • ∆ ⃗ b + 2 i,j ∂ 2 p ∂x i ∂x j ∂v i ∂x j + ∇w • ⃗ b.
(1.49) Using Young's inequality, we have

(m -1)w∇ • ⃗ b + 2 i,j ∂ 2 p ∂x i ∂x j ∂v i ∂x j ⩽ m -1 2 w 2 + m -1 2 ∇ • ⃗ b 2 + i,j ∂ 2 p ∂x i ∂x j 2 + i,j ∂v i ∂x j 2 ⩽ m -1 2 - 1 d w 2 + 2 i,j ∂ 2 p ∂x i ∂x j 2 + mC,
where in the last inequality we used

p 2 i,j = 2 p 2 i,j -p 2 i,j ⩽ 2 p 2 i,j -(∆p) 2 /d. Moreover, ∇p • ∆ ⃗ b + 2(m -1)∇p • ∇(∇ • ⃗ b) ⩽ m|∇p| 2 + mC, (m -1)p∆(∇ • ⃗ b) ⩽ Cm.
Thus, Eq. (1.49) becomes

∂w ∂t ⩾ (m -1)p∆w + 2m∇p • ∇w + (m -1)w 2 -m|∇p| 2 - m -1 2 - 1 d w 2 + ∇w • ⃗ b + Cm.
Here C indicates a positive universal constant, and depends on the L ∞ -norms of the space derivatives of ⃗ b. Assuming p to be a known smooth function, the above inequality can be written as

L(w) ⩾ 0,
where L is a quasi-linear parabolic operator. As before, we look for a subsolution. In [START_REF] Kim | Porous Medium Equation with A Drift: Free boundary Regularity[END_REF] the authors suppose that ∆p(x, 0) ⩾ -1 τ for some τ ⩾ 0. Therefore, p is uniformly bounded, i.e. there exists a positive constant

C 0 such that |p(x, t)| ⩽ C 0 . Let W ⃗ b := - C 1 t + τ + p -C 2 ,
where C i , i = 1, 2 are positive constants, to be chosen later, such that C 1 ⩾ 1 and

C 2 ⩾ C 0 . Then w(x, 0) = ∆p(x, 0) ⩾ - 1 τ ⩾ - C 1 τ + p(x, 0) -C 2 = W ⃗ b (x, 0). It is straightforward to see that W ⃗ b satisfies L(W ⃗ b ) = C 1 (t + τ ) 2 + ∂p ∂t -(m-1)p∆p-m|∇p| 2 - m -1 2 + 1 d - C 1 t + τ + p -C 2 2 -∇p• ⃗ b+Cm.
Substituting Eq. (1.48) into the above equation, and estimating |∇p • ⃗ b| ⩽ Cm, we obtain

L(W ⃗ b ) ⩽ C 1 (t + τ ) 2 + (1 -m)|∇p| 2 - m -1 2 + 1 d C 2 1 (t + τ ) 2 - m -1 2 + 1 d (C 2 -p) 2 + Cm ⩽ C 1 (t + τ ) 2 - m -1 2 + 1 d C 2 1 (t + τ ) 2 - m -1 2 + 1 d (C 2 -p) 2 + Cm,
where in the last inequality we used m > 1. Choosing C 1 := d and C 2 := C 0 + √ 4dC we obtain L(W ⃗ b ) ⩽ 0. Therefore, by applying the comparison principle and taking τ → 0, we have

∆p ⩾ - C 1 t -C 2 . (1.50)
Let us stress a main difference between the previous AB estimates Eq. (1.44), Eq. (1.47) and the above estimate with drift proven in [START_REF] Kim | Porous Medium Equation with A Drift: Free boundary Regularity[END_REF]: the lower bound (1.50) does not vanish as m → ∞.

Although the bound provides a control from below of the Laplacian of the pressure, it is not sufficient to pass to the incompressible limit in the pressure equation (1.48) by applying the same argument used in the reaction case in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]. Indeed, the fact that the lower side of the inequality converges to zero in the limit plays an essential role in the proof by [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]. As explained in the following sections, in this case another strategy is required in order to obtain the strong compactness of the pressure gradient.

Variations in different norms: L p -estimates

For certain porous medium equations and systems it is not possible to find a lower bound on ∆p, i.e. a subsolution as in Eqs. (1.44, 1.47 1.50). Therefore, since it is not clear how to bound the L ∞ -norm of the negative part of ∆p, researchers have been searching for weaker estimates on the same quantity. This idea was first developed in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] where Gwiazda, Perthame, and Świerczewska-Gwiazda prove the existence of solutions to the following cross-diffusion system

               ∂n 1 ∂t -∇ • (n 1 ∇p) = n 1 F 1 (p) + n 2 G 1 (p), ∂n 2 ∂t -∇ • (n 2 ∇p) = n 1 F 2 (p) + n 2 G 2 (p), p = (n 1 + n 2 ) γ , γ > 1, (1.51) 
where n 1 , n 2 represent the densities of two different populations, F 1 , G 2 the growth rates of each population and F 2 , G 1 the cross-growth rates. The pressure to which each species is subject is given by a power law of the total population density, n = n 1 + n 2 . Therefore, the equation on n looks like a porous medium equation (up to a factor γ/γ + 1)

∂n ∂t = γ γ + 1 ∆n γ+1 + n 1 F (p) + n 2 G(p),
where

F := F 1 + F 2 and G := G 1 + G 2 .
The fact that the reaction term in the equation is not directly proportional to the density n is a crucial difference with respect to the one-species case. Denoting σ i := n i /n and R(σ i , p) = σ 1 F (p) + σ 2 G(p), one can rewrite the density equation as follows

∂n γ ∂t = γ γ + 1 ∆n γ+1 γ + n γ R γ ,
and thus

∂p γ ∂t = γp γ (∆p γ + R γ ) + |∇p γ | 2 ,
where we pointed out the dependence on γ. Although the equation looks similar to (1.34), the term R γ also depends on the density fractions. Hence, it is not possible to look for subsolutions, i.e. finding an L ∞ -bound on the negative part of ∆p γ + R γ . Consequently, the Aronson-Bénilan estimate was extended in weaker norms:

• in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] the authors prove

((∆p γ + R γ )(t)) -∈ L 2 (R d ).
Although this estimate is not sufficient in order to pass to the incompressible limit, (since time-compactness of the pressure is missing for Sys. (1.51)) let us point out that this estimate can be obtained uniformly with respect to γ. In [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF], the authors use it to apply the Aubin-Lions lemma and prove the existence of weak solutions of Sys. (1.51) for any fixed γ > 1.

• the same approach was later used in [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF] for dimension d = 1. The authors prove

((∆p γ + R γ )(t)) -∈ L 1 (R)
uniformly in γ and successively they recover the complementarity relation in the incompressible limit. Indeed, in the one dimensional case time-compactness of the pressure is available. Now we briefly presents the gist of the proofs, starting from the one-dimensional case.

L 1 -Aronson-Bénilan estimate
The proof relies on the following a priori estimates

∂p ∂x ∈ L 2 x,t , ∂σ i ∂x ∈ L 1 x,t , for i = 1, 2. (1.52)
Moreover, let us assume that the initial pressure is compactly supported. Then, thanks to the finite speed of propagation property of porous medium equations, the pressure remains compactly supported for all finite times, i.e. for all T > 0 there exists

Ω ⊂ R independent of γ > 1 such that supp (p(t)) ⊂ Ω, ∀t ∈ [0, T ], ∀γ > 1.
As usual we define w := ∆p + R and compute the time derivative

∂w ∂t = γ ∂ 2 (pw) ∂x 2 + ∂ 2 ∂x 2 ∂p ∂x 2 + ∂R ∂t = γ ∂ 2 (pw) ∂x 2 + 2 ∂p ∂x ∂(w -R) ∂x + 2 ∂ 2 p ∂x 2 2 + ∂R ∂t .
(1.53)

Since we aim at estimating the negative part of w, we multiply by sign -(w) to obtain

∂(w) - ∂t ⩽γ ∂ 2 (p(w) -) ∂x 2 + 2 ∂p ∂x ∂(w) - ∂x -2 ∂p ∂x ∂R ∂x sign -(w) + 2|w -R| 2 sign -(w) + sign -(w) ∂R ∂t , (1.54) 
where we used Kato's inequality. Let us notice that

sign -(w) ∂R ∂t ⩽ γp(w) -R p + sign -(w)|∇p| 2 + (F -G) ∂σ 1 ∂t ⩽ (F -G) ∂σ 1 ∂t , (1.55) 
since R p ⩽ 0. As explained above, the main novelty of this approach is to integrate the inequality and using a priori estimates in order to achieve a control on (w) -in a weaker norm. Let us notice that, by integrating (1.54) in space, the first term on the right-hand side vanishes. As will be explained below, this term will instead play a crucial role in the L 2 -AB estimate. We obtain

d dt Ω (w) -dx ⩽ 2 Ω ∂p ∂x ∂(w) - ∂x dx + 2 Ω ∂p ∂x ∂R ∂x dx -2 Ω (w) 2 -dx + 4 Ω (w) -R dx + 2 Ω |R| 2 dx + Ω (F -G) ∂σ 1 ∂t dx.
Using the boundedness of R p , F, and G, one can see

2 Ω ∂p ∂x ∂R ∂x dx ⩽ C Ω ∂p ∂x 2 dx + C 2 i=1 Ω ∂p ∂x ∂σ i ∂x dx ⩽ C + C ∂p ∂x ∞ ,
where we used the a priori estimates (1.52). Moreover, computing ∂ t σ 1 , it is possible to prove

Ω (F -G) ∂σ 1 ∂t dx ⩽ C + ∂σ 1 ∂x L 1 ∂p ∂x L ∞ ⩽ C + C ∂p ∂x L ∞ .
Therefore, we have

d dt Ω (w) -dx ⩽ 2 Ω ∂p ∂x ∂(w) - ∂x dx -2 Ω (w) 2 -dx + C Ω (w) -dx + C + C ∂p ∂x L ∞ = -2 Ω ∂ 2 p ∂x 2 (w) -dx -2 Ω (w) 2 -dx + C Ω (w) -dx + C + C ∂p ∂x L ∞ = -2 Ω (w -R)(w) -dx -2 Ω (w) 2 -dx + C Ω (w) -dx + C + C ∂p ∂x L ∞ ⩽ 2 Ω (w) 2 -dx -2 Ω (w) 2 -dx + C Ω (w) -dx + C + C ∂p ∂x L ∞ = C Ω (w) -dx + C + C ∂p ∂x L ∞ .
Let us mention that this only works since we are in dimension one. In fact, for any dimension d greater than one, the factor multiplying (w) 2 -would be 2(1 -1/d) > 0. Therefore, due to the positivity of the coefficient, we would not be able to apply Gronwall's lemma or to absorb this higher order term.

Before applying Gronwall's lemma, we have to estimate the L ∞ -norm of the pressure gradient. Let us recall that for the classical porous medium equation the pressure is always Lipschitz in dimension one. We now show that this holds (uniformly in γ) also for Sys. (1.51); however, due to a different argument. Thanks to Sobolev's embedding theorem in dimension one, we have

∂p ∂x L ∞ (Ω) ⩽ ∂ 2 p ∂x 2 L 1 (Ω) = Ω ∂ 2 p ∂x 2 dx ⩽ Ω (w -2(w) -+ |R|) dx ⩽ Ω (∆p + 2(w) -+ 2|R|) dx ⩽ C + C Ω (w) -dx.
Hence, we finally have

d dt Ω (w) -dx ⩽ C + C Ω (w) -dx,
and, provided (w(x, 0)) -∈ L 1 (R), by Gronwall's lemma we have (uniformly in γ)

∂ 2 p ∂x 2 + R - ∈ L ∞ (0, T ; L 1 (R)). (1.56) L 2 -Aronson-Bénilan estimate
As aforementioned, the above L 1 -estimate can only work for d = 1. In fact, the first L p -extension of the Aronson-Bénilan estimate was developed for any dimension and p = 2, see [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF]. The argument is similar to the one-dimensional case, but the inequality on w is multiplied by -(w) - instead by simply sign -(w). Hence, from

∂w ∂t = γ∆(pw) + ∆ ∂p ∂x 2 + ∂R ∂t = γ∆(pw) + 2∇p • ∇(w -R) + 2 i,j ∂ 2 p ∂x i ∂x j 2 + ∂R ∂t ⩾ γ∆(pw) + 2∇p • ∇(w -R) + 2 d |∆p| 2 + ∂R ∂t ,
we obtain

1 2 ∂(w) 2 - ∂t ⩽γ∆(p(w) -)(w) -+ 2(w) -∇p • ∇(w) -+ 2(w) -∇p • ∇R - 2 d (w) -|w -R| 2 - ∂R ∂t (w) -.
Developing the last term in a similar fashion as in Eq. (1.55), gives

- ∂R ∂t (w) -= - ∂p ∂t R p (w) --(F (p) -G(p)) ∂σ 1 ∂t (w) - = γp(w) 2 -R p -|∇p| 2 R p (w) --(F (p) -G(p)) ∂σ 1 ∂t (w) - ⩽ -|∇p| 2 R p (w) --(F (p) -G(p)) ∂σ 1 ∂t (w) -,
and hence

1 2 ∂(w) 2 - ∂t ⩽γ ∆(p(w) -)(w) -+ ∇p • ∇(w) 2 - D + (w) -|∇p| 2 R p N ⩽0 + 2(w) -∇p • ∇σ 1 (F (p) -G(p)) B1 - 2 d (w) 3 -+ C(w) 2 -+ C(w) --(F (p) -G(p)) ∂σ 1 ∂t (w) - B2 , (1.57) 
where C > 0 is independent of γ. The core of the proof is still the same. After integrating in space over Ω, we aim at using Gronwall's lemma. However, the treatment of some terms is different with respect to the L 1 -estimate. For instance, the terms including the gradient of σ 1 cannot be bounded in the same way, since for d ⩾ 2 the BV -bounds of the density fractions and the L ∞ -bound on the pressure gradient no longer hold. Let us mention that for a certain bounded and continuous function F = F(σ 1 , σ 2 , p), the equation on σ 1 reads

∂σ 1 ∂t = ∇σ 1 • ∇p + F.
As shown in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF], the "bad" terms, B 1 and B 2 , can be treated using integration by parts as follows

Ω B 1 + B 2 dx = Ω (F (p) -G(p))∇σ 1 • ∇p(w) -dx - Ω (F (p) -G(p))F(w) -dx ⩽ C Ω (w) -dx - Ω σ 1 (F (p) -G(p))∆p(w) -dx - Ω (F ′ (p) -G ′ (p))σ 1 |∇p| 2 (w) -dx - Ω σ 1 (F (p) -G(p))∇p • ∇(w) -dx.
Let us focus the attention on the last term on the right-hand side. Indeed, the other terms can be bounded using ∆p = w -R, integration by parts, and ∇p ∈ L ∞ t L 2

x . Using Young's inequality, we have

- Ω σ 1 (F (p) -G(p))∇p • ∇(w) -⩽ 1 2 Ω |F (p) -G(p)| 2 p |∇p| 2 + 1 2 Ω p|∇(w) -| 2 . (1.58)
Here is where the technical condition assumed in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] is used. In fact, the authors impose

F (0) = G(0). (1.59) 
Therefore, the first integral on the right-hand side is uniformly bounded. It remains to treat one "bad term" which is the integral including |∇(w) -| 2 in Eq. (1.58). In order to absorb it, we use the dissipation term D in Eq. (1.57). Indeed, as we mentioned before, unlike for the L 1 -estimate this term does not disappear. Using again integration by parts and ∆p = w -R, we have

Ω D ⩽ 1 - γ 2 Ω (w) 3 -+ 1 - γ 2 Ω R(w) 2 --γ Ω p|∇(w) -| 2 ⩽ 1 - γ 2 Ω (w) 3 -+ 1 2 Ω R(w) 2 --γ Ω p|∇(w) -| 2 , (1.60) 
where in the last inequality we used the fact that R is always non-negative. Therefore, the last integral on the right-hand side helps absorbing the last one in Eq. (1.58).

Finally, combining these estimates with Eq. (1.57), we find

d dt Ω (w) 2 - 2 ⩽ 1 - γ 2 - 2 d Ω (w) 3 -+ C Ω (w) 2 -+ C Ω (w) -+ C. (1.61)
Assuming γ > max(1, 2 -4/d), we can apply Gronwall's lemma to obtain

(∆p + R) -∈ L ∞ (0, T ; L 2 (R d )), (1.62) 
which is uniform in γ, since the constant C is independent of γ.

Contents of the thesis

In this thesis we develop further the theory on the incompressible limit of porous medium models motivated by tumor growth. This section is devoted to presenting the novelties introduced in this work, which is structured in three parts:

• Part I concerns the analysis of the stiff limit of a mechanical tumor growth model and its numerical simulation. In Chapter 2 we analyse the incompressible limit of a model including the presence of nutrients (for instance, oxygen or glucose). As explained above, during the development of cancers the lack of nutrients in the center of the tumoral mass induces cell death by necrosis, generating a necrotic core. As a consequence, models that account for nutrient availability allow for non-positive reaction terms. From an analytical viewpoint, this turns out to be a crucial difference with respect to models without nutrients, such as the purely mechanical model studied in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]. In this chapter, we consider a system of reaction-diffusion equations whose bad coupling makes the comparison principle, used in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] to recover the AB estimate in L ∞ , fail. Therefore, in order to recover the complementarity relation in the stiff limit, we rely on two new techniques: an L 3 -version of the AB estimate, and a sharp uniform L 4 -bound on the pressure gradient which allows us to recover the required regularity in order to pass to the limit. Chapter 3 concerns the numerical simulation of this kind of porous medium models of tumor growth. We present an upwind finite difference scheme of the purely mechanical model for which we prove stability results and the asymptotic preserving property as γ → ∞. We also test our scheme for models including a nutrient, both in the in vitro and in vivo cases, and including necrotic cells in the system. Finally, we numerically verify the sharpness of the L 4 -bound of the pressure gradient, computing the norms of the focusing solution in dimension 2.

• Part II is focused on the incompressible limit of a reaction-porous medium equation including convective effects. As mentioned in Introduction, the asymptotic behavior of this kind of equations has already been addressed in the literature. However, the complementarity relation that allows to recover the limit pressure as the solution of an elliptic equation was still an open problem. In Chapter 4, we present a proof which is based on extending and blending the two techniques presented in Chapter 2: the L 4 -bound of the pressure gradient and the L 3 -version of the Aronson-Bénilan estimate. We are able to extend these results to the case including convective effects, as well as to substantially reduce the conditions on the drift term imposed in the previous literature. To this end, we apply the L 4 -control in order to recover the AB estimate. We also prove uniqueness of the weak solution of the limit Hele-Shaw problem. Chapter 5 deals with estimating the convergence rate of the incompressible limit analysed in Chapter 4. This question has been rarely addressed in the literature. In this chapter we present a simple and flexible proof of how to obtain an estimate for the convergence rate in the L ∞ t H -1

x -norm for nonlinear and degenerate diffusion equations including convection, in both the power law and the singular pressure law cases.

• Part III concerns the analysis of a tumor growth model structured by phenotypic trait. We consider a cross-diffusion model where each phenotypic density evolves under Darcy's law, and the pressure is related to the total population density. We prove the existence of weak solutions as well as the incompressible limit as the pressure becomes stiff. Moreover, we recover regularity results that, to the best of our knowledge, are novel in the multi-species case.

Now we summarize the main contributions of this thesis in some greater detail.

1.5.1 Incompressible limit of tumor growth models including nutrients: analysis and simulations

Free boundary limit of a model with nutrient

As mentioned in the previous section, the behavior of the free boundary of PME's solutions changes drastically if we allow for non-monotonicity, namely if the growth rate can assume negative values. In the context of cancer growth modelling this happens, for instance, if the presence of nutrients is taken into account. The nutrients (for instance glucose or oxygen) are brought by the blood vessels and diffuse into the tumor where they are consumed by cancer cells.

However, if the level of nutrients is not high enough, cells may die by necrosis, as it happens in the center of avascular tumors after they have reached a certain size. Therefore, modelling nutrient presence means allowing for cell death, i.e. assuming that the growth rate G depends both on the pressure p and on the nutrient concentration c, and that G(p, c) < 0 for c small enough. This type of models implicitly distinguishes proliferating cells from necrotic cells. Although several multi-species models describing proliferating, necrotic or quiescent cells are available in the literature, we focus on a model that only considers the first type of cells. Consequently, the cell population density may vanish in regions contained in its initial support.

The incompressible limit for a model including nutrients was already addressed in the seminal work [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], where the authors consider a system of PDEs including a nutrient concentration which satisfies a reaction-diffusion equation. As for the purely mechanical model (1.32), they pass to the stiff limit in the density equation obtaining (1.38). However, they leave open the question of how to recover the complementarity relation, namely

p ∞ (∆p ∞ + G(p ∞ , c ∞ )) = 0. (1.63) 
In fact, the method the authors developed for the purely mechanical model does not apply in this case. The reason lies in the fact that the fundamental Aronson-Bénilan estimate (1.39) fails.

In fact, since G may now take negative values, we can no longer apply the comparison principle in order to bound the quantity w := ∆p + G(p, c) by a subsolution that vanishes as m → ∞. Indeed, after a certain time, a region may appear where the pressure is constantly equal to zero and the reaction rate is negative. Therefore ∆p + G(p, c) ≳ -1/mt cannot hold.

Our work aims at solving this open problem. We consider the following model including nutrients

                 ∂n ∂t -∇ • (n∇p) = nG(p, c), x ∈ R d , t ⩾ 0, p = n γ , γ > 1, ∂ t c -∆c + nH(c) = (c B -c)K(p), c(x, t) → c B for x → ∞.
Unlike [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], we consider nutrient consumption (with given rate H) as well as nutrient release from the vasculature (with given rate K). In order to prove the complementarity relation (1.63) we derive a weaker version of the Aronson-Bénilan estimate, in the spirit of the L 2 -estimate proven in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF], whose derivation was explained in Section 1.4.3. In this case, we are able to obtain an equation which is analogous to (1.61). However, there is an essential difference in the case including nutrients. Since the reaction rate G(p, c) does not have a sign, we are not able to bound the corresponding integral as in (1.60). Therefore, the positive constant C in front of (w) 2 -in (1.61) is no longer independent of γ. As a consequence, we are not able to use Gronwall's lemma to infer

(∆p+G(p, c)) -∈ L ∞ (0, T ; L 2 (R d ))
uniformly in γ. However, we are still able to prove the following result. Proposition 1.5.1 (L 3 -version of the AB estimate). The following control holds uniformly with respect to γ

(∆p + G(p, c)) -∈ L 3 (R d × (0, T )).
This bound allows us to deduce ∆p ∈ L 1 (R d × (0, T )) which, together with the L 1 -control of ∂ t p, is enough to infer the strong compactness of ∇p in L q x,t for 1 ⩽ q ⩽ d/(d -2). Since we aim at proving the complementarity relation, we know that the strong compactness of the pressure gradient in L 2

x,t is needed. Therefore, we need to prove a higher uniform control. Proposition 1.5.2 (Sharp L 4 -bound of the gradient). The following estimate holds uniformly with respect to

γ |∇p| ∈ L 4 (R d × (0, T )).
Moreover, this estimate is sharp, namely, there exists a solution such that ∥∇p∥ L q blows up as γ → ∞ for every q > 4.

This control on the gradient was already achieved in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF], where the authors consider the purely mechanical model. However, their argument deeply relies on the L ∞ -AB control, which fails in our case. We develop a new proof which does not rely on any control on ∆p. Moreover, we are the first to show that this uniform estimate is sharp. Indeed, a counterexample is given by the focusing solution discussed in Sec. 1.3.1. We analyze this property using an asymptotic argument and we later investigated it numerically, as presented below.

Numerical simulation of a mechanical model of tumor growth

We propose a simple finite difference scheme to analyze the purely mechanical model introduced in

[130] ∂n ∂t -∇ • (n∇p) = nG(p), p = n γ , γ > 1.
The numerical simulation of tissue growth models of porous medium type has attracted a lot of interest in recent years, see, for instance, [START_REF] Liu | Towards understanding the boundary propagation speeds in tumor growth models[END_REF][START_REF] Liu | An accurate front capturing scheme for tumor growth models with a free boundary limit[END_REF][START_REF] Liu | Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics[END_REF][START_REF] Bessemoulin-Chatard | A finite volume scheme for nonlinear degenerate parabolic equations[END_REF] and references therein. The main challenges are represented by the lack of regularity near the free boundary and the stiffness of solutions that occurs when γ → ∞.

We propose the following upwind scheme in dimension one

d dt n i = n i+1/2 q i+1/2 -n i-1/2 q i-1/2 ∆x + n i G(p i ), with q i+1/2 = p i+1 -p i ∆x , (1.64) 
where we define

n i+1/2 = n i , if q i+1/2 ⩽ 0, n i+1 , if q i+1/2 > 0.
The simplicity of the scheme allows us to prove several stability estimates. In particular, we prove BV -controls on both the semi-discrete scheme and the fully discrete scheme, obtained using Euler implicit discretization in time. Moreover, we prove the asymptotic preserving (AP) property of the scheme as γ → ∞.

Proposition 1.5.3 (Asymptotic preserving property). Given n i , p i a solution of scheme (1.64) with γ > 1. Then, for all i, we have

n i γ→∞ ----→ n ∞,i , in L p (0, T ), for all 1 ⩽ p < ∞, p i γ→∞ ----→ p ∞,i , in L p (0, T ), for all 1 ≤ p < ∞, q i+ 1 2 γ→∞ ----⇀ q ∞,i+ 1 2
, weakly in L 2 (0, T ). and the limit satisfies

0 = p ∞,i p i+1 -2p i + p i-1 |∆x| 2 p ∞,i + G(p ∞,i ) , d dt n ∞,i = n ∞,i+1/2 q ∞,i+1/2 -n ∞,i-1/2 q ∞,i-1/2 ∆x + n ∞,i G(p ∞,i ).
We then derive a discrete version of the Aronson-Bénilan estimate. As frequently illustrated before, this estimate is fundamental in the analysis of both the classical PME and the related tissue growth models. Therefore, it is our interest to analyze whether such estimate is also discretely satisfied by our upwind scheme. This purpose was addressed by Monsaingeon in [START_REF] Monsaingeon | An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem[END_REF] for a tracking front scheme of the classical PME, i.e. Eq. (1.7). We manage to infer the same estimate in the case of a fixed grid, for γ = 1 and γ ≈ ∞. Our main contribution in this direction is the proof of the AB estimate in the case of non-trivial pressure-dependent reaction terms.

Proposition 1.5.4 (Discrete Aronson-Bénilan estimate). Let α > 0, G(p) = α(p H -p) and 
w i := δ 2 x p i + G(p i ) = p i+1 -2p i + p i-1 (∆x) 2 + G(p i ), ∀i.
Then, for γ = 1 and γ ≈ ∞, scheme (1.64) satisfies the Aronson-Bénilan estimate, namely

w i ⩾ - 1 γt , ∀i.
We perform several numerical simulations to test the accuracy of our scheme. We test it both for the classical PME and for tumor growth models including nutrients and/or necrotic cells.

At last, we perform numerical simulations to investigate the sharpness of the L 4 -estimate on the pressure gradient mentioned before, cf. Lemma 1.5.2. We consider a radial focusing solution, i.e. a solution of the Hele-Shaw problem whose initial data is a spherical shell. By computing the L q -norm of ∇p we verify the worsening of the blow up at the focusing time as q > 4.

Incompressible limit of a tumor growth model including convective effects: regularity and convergence rate

Stiff limit of a model with drift: regularity and complementarity relation

Besides the passive movement generated by the pressure gradient, tumor cells can undergo active forces as, for instance, the attraction due to the concentration of a certain chemical, or as a result of self-propulsion as in the Keller-Segel model. In the latter case the velocity field is given by the convolution of the density with the Newtonian potential, N ⋆ n. In this part of the thesis, we analyse the regularity properties and the incompressible limit of the following nonlinear diffusionadvection equation

∂n ∂t -∇ • (n(∇p + ∇V )) = nG, (1.65) 
where V : R d × (0, ∞) → R is given. Several works on the free boundary limit of porous medium equations incorporating advection terms can be found in the literature, see for instance [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF][START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF][START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF]. However, to find the complementarity relation, i.e. the elliptic equation satisfied by p ∞ in its positivity set, was still an open question. As in the case including nutrients, the main difficulty consists in proving the L 2 -strong compactness of the pressure gradient. We address this problem for Eq. (1.65) with p = n γ and a pressure-dependent growth rate G = G(p).

Under suitable assumptions on V , we prove that as γ → ∞ the solution to Eq. (1.65) converges to a limit (n ∞ , p ∞ ) that satisfies the following statement.

Proposition 1.5.5 (Complementarity relation with drift). The limit

(n ∞ , p ∞ ) solves p ∞ (∆p ∞ + ∆V + G(p ∞ )) = 0, p ∞ (1 -n ∞ ) = 0.
To this end, we extend the techniques that we developed in the case with nutrients: the L 3 -version of the Aronson-Bénilan estimate and the L 4 -bound on the pressure gradient. In particular, the latter is a novelty in the context of porous medium-advection equations.

We also aim at weakening the assumptions on the drift V with respect to the existing literature.

To this end, we use ∇p ∈ L 4 to deduce the AB estimate, although the two arguments could be made one independent of the other. Moreover, let us stress that an L ∞ -version of the Aronson-Bénilan estimate was already obtained by [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF] in the drift case, Eq. (1.50), as illustrated in Section 1.4. However, to obtain this lower bound, the authors require a C 3,1

x,t -control on ∇V . In order to achieve the much weaker L 3 -bound we considerably reduce this assumption, asking only for

D 2 V ∈ L ∞
x,t and ∆∇V ∈ L x,t . Finally, we give a proof of the uniqueness of the limit solution adapting Hilbert's duality method. Proposition 1.5.6 (Uniqueness of the limit solution). There exists at most one distributional solution such that for all T > 0 the couple

(n ∞ , p ∞ ) ∈ L ∞ (R d × (0, T )) × L 2 (0, T ; H 1 (R d )) is a solution to the following system    ∂n ∞ ∂t -∆p ∞ -∇ • (n ∞ ∇V ) = n ∞ G(p ∞ ), D ′ (R d × (0, T )), p ∞ (1 -n ∞ ) = 0, a.e. in R d × (0, T ).
(1.66)

Stiff limit of a model with drift: convergence rate Despite the vast literature on the incompressible limit of porous medium models including advection, the question of how to estimate the convergence rate of the solutions has been rarely addressed. A first result is provided by Alexander, Kim and Yao in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF], where the authors find a polynomial rate of 1/24 in the 2-Wasserstein distance, Eq. (1.41). Our aim is to estimate the convergence rate in the L ∞ t Ḣ-1

x -norm. In particular, for both the power and the singular laws

p γ = γ γ -1 n γ-1 γ or p ε = ε n ε 1 -n ε ,
we study the convergence of solutions n γ (respectively n ε ) of Eq. (1.65) as γ → ∞ (respectively ε → 0) and we find the following polynomial rate.

Proposition 1.5.7 (Convergence rate in Ḣ-1 ). Under suitable assumptions on V = V (x, t) and G = G(x, t), for all T > 0, there exists a unique function

n ∞ ∈ C([0, T ); L 1 (R d )) such that the sequence n γ (resp. n ε ) converges as γ → ∞ (resp. ε → 0) to n ∞ strongly in L ∞ (0, T ; Ḣ-1 (R d ))
with the following rate

sup t∈[0,T ] ∥n γ (t) -n ∞ (t)∥ Ḣ-1 (R d ) ⩽ C(T ) γ 1/2 + ∥n 0 γ -n 0 ∞ ∥ Ḣ-1 (R d ) .
Moreover, thanks to this result we are able to provide a new proof of the saturation relation in Eq. (1.66) which does not require the strong convergence of the density or the pressure.

We here present the gist of the methods that we apply in Chapter 5 to estimate the convergence rate. Our strategy relies on considering φ γ := K ⋆ n γ , where K is the fundamental solution of the Laplace equation. Then, we have

-∆φ γ = n γ .
For γ ′ > γ > 1, we consider the following equation

∂(n γ -n γ ′ ) ∂t = ∆(A γ -A γ ′ ) + ∇ • ((n γ -n γ ′ )∇V ) + (n γ -n γ ′ )G,
where A γ is chosen appropriately depending on the law of state of the pressure. Multiplying the above equation by φ γ -φ γ ′ , we obtain

1 2 d dt R d |∇(φ γ -φ γ ′ )| 2 dx = R d (n γ ′ -n γ )(A γ (n γ ) -A γ ′ (n γ ′ )) dx - R d (n γ -n γ ′ )∇(φ γ -φ γ ′ ) • ∇V dx + R d G(t, x)(n γ -n γ ′ )(φ γ -φ γ ′ ) dx.
Under suitable assumptions on G and V , we are able to find

1 2 d dt R d |∇(φ γ -φ γ ′ )| 2 dx + R d (n γ -n γ ′ )(A γ (n γ ) -A γ ′ (n γ ′ )) dx ⩽ C R d |∇(φ γ -φ γ ′ )| 2 dx.
Manipulating the second term on the left-hand side in a proper way (depending on the pressure law under consideration) and applying the Gronwall inequality, we can deduce

sup t∈[0,T ] ∥∇(φ γ -φ γ ′ )(t)∥ L 2 (R d ) ⩽ C 1 √ γ + 1 √ γ ′ + ∥∇(φ γ -φ γ ′ )(0)∥ L 2 (R d ) .
(1.67)

Passing to the limit γ ′ → ∞ we infer the result in Proposition 1.5.7.

A multi-species model structured by phenotype

As discussed in Section 1.3.3, multi-species models of cross-reaction-diffusion equations have been widely studied during the last decade. The different natures of the single species equations and the total population equation introduce involved challenges to the analysis. Existence and regularity results for these models have been provided recently by [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF][START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF][START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF]] and the incompressible limit has been addressed in one spatial dimension in [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF] and then extended in multiple dimensions by [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF].

We aim at extending these recent results for a model structured by a phenotypic trait. Phenotypic heterogeneity plays a central role in the development of tumors. Cells with different gene expressions can develop higher aggressivity that lead to faster invasion. An interesting phenomenon called "growth or go" has been observed in certain tumors. It consists in the fact that cells with higher mobility are less aggressive and have a diminished growth rate with respect to cells with a lower mobility. This dichotomy has been analysed through a structured model by Lorenzi et al. in [START_REF] Lorenzi | Invasion fronts and adaptive dynamics in a model for the growth of cell populations with heterogeneous mobility[END_REF], where the authors perform a formal asymptotic analysis to show the appearance of accelerating fronts.

In this part of the thesis we consider a similar structured system

       ∂n ∂t (y, x, t) -∇ • (n(y, x, t)∇p(x, t)) = nR(y, p), (y, x, t) ∈ [0, 1] × R d × (0, ∞), ϱ(x, t) = 1 0 n(y, x, t) dy, p(x, t) = ϱ(x, t) γ , (1.68) 
which in some way extends the two-species system (1.51) to an infinitely-many-species problem. We only analyse the case of constant mobility rates which, unlike in [START_REF] Lorenzi | Invasion fronts and adaptive dynamics in a model for the growth of cell populations with heterogeneous mobility[END_REF], do not depend on the structured variable y.

The main contribution of our work consists in three results: the existence of weak solutions n γ , p γ of (1.68), the incompressible limit of such solutions as γ → ∞, and additional regularity results on p γ . The first two results are obtained as an extension of the methods developed in [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF] and [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF], respectively. The main difference with respect to the works by [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] and [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF] is the fact that the focus is no longer centered around the pressure itself, but rather on the quantity v := ϱ γ+1 . Working with ∇v rather than ∇p, it is possible to infer strong compactness in L 2 x,t without any control on the Laplacian ∆p which was the case in [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF][START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF]. Following this approach and adapting it to the structured case, we are able to prove both existence of weak solutions and pass to the stiff limit γ → ∞. Unlike [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF], where the authors assume the reaction terms to depend only on a certain nutrient concentration, we consider pressure-penalised reaction terms. Therefore, we also need to prove strong compactness of the pressure itself in order to pass to the limit in this nonlinear term. This issue was left open in [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF] since to control ∂ t p uniformly in γ is still an open question. However, assuming to have compactly supported solutions, i.e. supp(ϱ(t)) ⊂ Ω ⊂ R d for 0 ⩽ t ⩽ T , we are able to prove strong compactness of p simply using Poincaré inequality and the strong compactness of ∇p. Proposition 1.5.8 (Existence of solutions and incompressible limit).

Given n 0 ∈ L ∞ ([0, 1] × R d ) ∩ L 1 ([0, 1] × R d ), n 0 ⩾ 0, there exists n ∈ L ∞ ([0, 1] × R d × (0, ∞)) ∩ L 1 ([0, 1] × R d × (0, ∞)), n ⩾ 0, such that ∇p ∈ L 2 (R d × (0, ∞))
, that satisfies Sys. (1.68) in the sense of distributions. Moreover, assuming ϱ 0 is compactly supported in R d , after extraction of a subsequence, the triple

(n γ , ϱ γ , p γ ) converges weakly * in L ∞ (R d × (0, ∞)) to (n ∞ , ϱ ∞ , p ∞ ) which satisfies the following Hele-Shaw problem ∂ϱ ∞ ∂t = ∆p ∞ + 1 0 n ∞ R(y, p ∞ ) dy, in D ′ (R d × (0, ∞)), p ∞ ∆p ∞ + 1 0 n ∞ R(y, p ∞ ) dy = 0, in D ′ (R d × (0, ∞)), p ∞ (ϱ ∞ -1) = 0, a.e. in R d × (0, ∞).
Although no control on ∆p is needed neither to prove existence nor to pass to the incompressible limit, it still represents a challenging and interesting question by itself. Therefore, we also aim at understanding if an L 2 -version of the AB estimate holds for this structured model as well. As illustrated in Section 1.4.3, this control was proven in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] for the two-species counterpart, (1.62). However, the authors had to impose a restrictive condition on the reaction terms, i.e. (1.59). We manage to remove this assumption by performing a different treatment of the "bad term", i.e. the first integral in Eq. (1.58). In fact, we first prove the following control on the pressure gradient.

Proposition 1.5.9 (L 4 -estimate). There exists a constant C(T ) such that for any 0 ⩽ α < 1 γ the following estimate holds true

κ(α) T 0 Ω |∇p| 4 p 1-α dt ⩽ C(T ), with κ(α) := α 6 (1 -αγ).
By using this result, we are able to find an L 2 -AB estimate which is the analogue of (1.62). Indeed, applying Young's inequality, the integral in (1.58), for which the technical assumption F (0) = G(0) was needed, now can be treated as follows

1 0 Ω σR(y, p)∇p • ∇(w) -dx dy ⩽ ∥R∥ ∞ 4 Ω |∇p| 4 p 1-α dx + 3 4 Ω p 1-α |∇(w) -| 4/3 dx, (1.69) 
where

R := 1 0
σ(y)R(y, p) dy, and σ(y, x, t) := n(y, x, t) ϱ(x, t) .

Thanks to the previous proposition the first term on the right-hand side of (1.69) is bounded, while the second one can be absorbed in the term -γ Ω p|∇(w) -| 2 which will appear analogously as in (1.60). Therefore, we recover the following Aronson-Bénilan estimate for the structured system (1.68) without imposing any special conditions on the reaction term (which we always consider monotonically decreasing with respect to the pressure).

Proposition 1.5.10 (L 2 -Aronson-Bénilan estimate). For all T > 0, there exists a constant C(T ) independent of γ, such that for all t ∈ [0, T ] we have

Ω (∆p(t) + R) 2 -⩽ C(T ), T 0 Ω (∆p + R) 3 -dt ⩽ C(T ).

Discussions and perspectives

Mathematical models motivated by tissue growth and movement represent one of the most stimulating sources of challenging mathematical questions, in particular, in the context of analysis of PDEs. In this thesis we contribute to the study of the asymptotic behavior and well-posedness theory of porous medium equations and systems motivated by tumor development. This topic has been largely addressed by many researchers and, in recent years, remarkable results have been achieved in the understanding of these problems. Nevertheless, this field presents several challenging questions that remain open, in particular regarding the well-posedness of cross-diffusion systems and the Hele-Shaw limit with surface tension.

Existence results on cross-diffusion systems

As we already mentioned, degenerate cross-diffusion systems are particularly involved to treat due to the difficulty of proving strong compactness on at least one of the quantities involved. Many variations of System (1.51) have been investigated in the literature, and some of these problems represent long-standing open questions.

Different drifts

In Chapter 4, we study the incompressible limit of a porous medium model including convective effects, i.e. Eq. (1.65). Neglecting reaction processes and coupling Eq. (1.65) with an analogous equation for a second species that moves accordingly to Darcy's law and a different drift, we obtain the following system

               ∂n 1 ∂t -∇ • (n 1 (∇p + ∇V 1 )) = 0, ∂n 2 ∂t -∇ • (n 2 (∇p + ∇V 2 )) = 0, p = (n 1 + n 2 ) γ , γ > 1,
where the pressure depends on the joint population density. Despite major efforts applied by different research groups, this problem remains the simplest example of a nonlinear cross-diffusion system for which the existence of solutions has not been established yet. Although both the densities and the pressure gradient are weakly compact, passing to the limit would require strong convergence of one of the two terms involved. The strategies based on the Aronson-Bénilan estimate used for systems like (1.51) do not seem to hold in this case. Only one result has been obtained in the one-dimensional case, see [START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF]. However, the authors need to impose a restrictive condition, namely that the two species stay segregated for all times, i.e.

-∂ x V 1 ⩾ -∂ x V 2 and x 1 > x 2 for x i ∈ {n 0 i > 0}, i = 1, 2.

Different mobilities

Including different mobility coefficients, µ 1 ̸ = µ 2 , into System (1.51) increments even more the complexity of proving the existence of weak solutions

               ∂n 1 ∂t -µ 1 ∇ • (n 1 ∇p) = n 1 F 1 (p) + n 2 G 1 (p), ∂n 2 ∂t -µ 2 ∇ • (n 2 ∇p) = n 1 F 2 (p) + n 2 G 2 (p), p = (n 1 + n 2 ) γ , γ > 1.
Nowadays, no well-posedness results on the above system are available in the literature. Indeed, the whole set of methods developed for the previously presented models built upon the fact that the sum of the two equations generates a porous medium type equation. Due to the asymmetry of the degenerate diffusion terms, those techniques cannot be applied in this case. In fact, it is not clear how to find uniform a priori estimates on the pressure gradient, which are essential to the analysis of the system. Moreover, instabilities may occur under certain conditions, as noticed in [START_REF] Kim | Interface dynamics in a two-phase tumor growth model[END_REF][START_REF] Lorenzi | On interfaces between cell populations with different mobilities[END_REF].

In [START_REF] Kim | Interface dynamics in a two-phase tumor growth model[END_REF], Kim and Tong considered a similar model in dimension d = 2, and showed local-intime well-posedness of the related free boundary problem imposing specific assumptions to avoid instabilities. They assume that G 1 ≡ F 2 ≡ G 2 ≡ 0, and n 1 + n 2 ⩽ 1, and analyse the free boundary problem

-∇ • ((µn 1 + νn 2 )∇p) = n 1 F 1 (p), if n 1 + n 2 = 1, p = 0, if n 1 + n 2 < 1.
They assume that at the initial time, both the tumor, n 1 = 1 Ω , and the surrounding healthy tissue, n 2 = 1 Ω\Ω , are given by patches, with Ω ⊂⊂ Ω. Numerical results in [START_REF] Lorenzi | On interfaces between cell populations with different mobilities[END_REF] show that if µ 1 < µ 2 a certain radially symmetric solution is stable, while for µ 1 > µ 2 instabilities may occur. Therefore, Kim and Tong assume µ 1 < µ 2 . However, they notice that instabilities may still occur at the contact interface between the two species, and thus they impose specific geometrical assumptions on Ω and Ω.

Relation to Mean-Field Games

As mentioned above, in order to pass to the incompressible limit in Eq. (1.65) we manage to weaken the assumptions imposed on the drift term, see Chapter 4. However, further improvements in this direction are expected. In particular, it is of interest to find optimal conditions on V under which to obtain the sharp estimate ∇p ∈ L 4 x,t and the strong compactness of the pressure. This would be important in view of applications to the following mean field game, where a Hamilton-Jacobi equation and a continuity equation are coupled, and the system with unknowns φ(x, t) (value function), n(x, t) (density), and p(x, t) (pressure), is closed with incompressibility conditions on n and p

       ∂φ ∂t + |∇φ| 2 2 -∇φ • ∇p = 0, ∂n ∂t + ∇ • (n(∇φ -∇p)) = 0, and 
   p ≥ 0, p(1 -n) = 0, φ(x, T ) = Φ(x), n(x, 0) = n 0 (x).
(1.70)

The model was first proposed in [START_REF] Santambrogio | A Modest Proposal for MFG with Density Constraints[END_REF]. Due to the nonvariational formulation of the problem, proving the existence of solutions remains open and remarkably obstinate to solve. A possible approach could be to apply Schauder's fixed point theorem on the pressure p, but it requires strong stability and uniqueness results. For this reason, extending the new regularity results that we obtained in Chapter 4 represents a possible strategy in order to address the problem.

Cahn-Hilliard model and surface tension

In mathematical modelling of living tissues dynamics a crucial aspect to consider is the surface tension between different phases. Indeed, experimental measurements have shown that surface tension plays an important role in cell-segregation and cluster formation, [START_REF] Foty | The differential adhesion hypothesis: a direct evaluation[END_REF]. For this reason, mechanical models of tumor growth that include this effect are more relevant from a biological viewpoint with respect to the models we presented, in which the pressure is always vanishing on the moving boundary. On the other hand, accounting for jump discontinuities of the pressure on the interface also induces several challenging mathematical questions.

One of the most used models that accounts for surface tension is the well known Cahn-Hilliard equation (CH in short). Models of CH type have been widely used in tumor growth modelling; we refer the reader to [START_REF] Chatelain | Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture[END_REF][START_REF] Frieboes | Threedimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis[END_REF][START_REF] Wise | Three-dimensional multispecies nonlinear tumor growth-I: Model and numerical method[END_REF] and references therein.

The model describes the interaction between two phases (tissues, or more broadly fluids) whose densities are denoted by n 1 , n 2 . In the context of living tissues, we assume that cells constituting the phase i = 1 are tumor cells, while the second phase represents the surrounding environment. Therefore, we denote n = n 1 /(n 1 + n 2 ) the relative cell density of interest. The degenerate CH model reads as follows

   ∂n ∂t -∇ • (n∇µ) = nG(µ), µ = n γ -δ∆n. (1.71) 
By definition, the so-called effective pressure, µ, is formed by two potentials that represent, respectively, the repulsion between cells, n γ , and the surface tension, δ∆n, where √ δ is the width of the interface in which partial mixing of the two components n 1 , n 2 occurs. The relation between the Cahn-Hilliard equation and the Hele-Shaw model with surface tension has attracted vast interest. In [2], the authors prove that, in the sharp interface limit, level surfaces of solutions to the Cahn-Hilliard equation with constant mobility tend to solutions of the Hele-Shaw problem with surface tension, provided that classical solutions of the latter exist, which was proven in [START_REF] Escher | Classical solutions for Hele-Shaw models with surface tension[END_REF]. A similar result was recently obtained by Kroemer and Laux in [START_REF] Kroemer | The Hele-Shaw flow as the sharp interface limit of the Cahn-Hilliard equation with disparate mobilities[END_REF] where the authors prove convergence of weak solutions of the CH equation to the HS model. Let us mention that in these two works no reaction term is taken into account in the equation. A step forward in this direction has been achieved in [START_REF] Elbar | Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel model[END_REF], where the authors consider a relaxed version of the CH model (1.71), and prove convergence of solutions as γ → ∞. However, it is still an open question how to directly pass to the stiff limit in the degenerate CH equation (1.71) and to obtain the following HS model

-∆µ = G(µ), in Ω(t) := {x; p(x, t) > 0}, µ = -δ∆n, on ∂Ω(t), p(1 -n) = 0, p -δ∆n = µ.
In particular, it is of interest to find a rigorous way to link the jump of the pressure on the moving boundary to its mean curvature for the model including reaction terms.

Part I

Incompressible limit of tumor growth models including nutrients: analysis and simulations

Chapter 2

Free boundary limit of a tumor growth model with nutrients Abstract Both compressible and incompressible porous medium models are used in the literature to describe the mechanical properties of living tissues. These two classes of models can be related using a stiff pressure law. In the incompressible limit, the compressible model generates a free boundary problem of Hele-Shaw type where incompressibility holds in the saturated phase.

Here we consider the case with a nutrient. Then, a badly coupled system of equations describes the cell density number and the nutrient concentration. For that reason, the derivation of the free boundary (incompressible) limit was an open problem, in particular a difficulty is to establish the so-called complementarity relation which allows to recover the pressure using an elliptic equation. To establish the limit, we use two new ideas. The first idea, also used recently for related problems, is to extend the usual Aronson-Bénilan estimate in L ∞ to an L 2 -setting. The second idea is to derive a sharp uniform L 4 -estimate on the pressure gradient, independently of the space dimension. This chapter is taken from N.D. and B. Perthame. Free boundary limit of a tumor growth model with nutrient, Journal de Mathématiques Pures et Appliquées, (2021).

Introduction

We consider a compressible mechanical model of tumor growth, where the cell motion is driven by the pressure gradient according to Darcy's law. The cell proliferation is governed by a biomechanical form of contact inhibition that prevents cell division when the total cell density exceeds a critical threshold. The evolution of the cell population density n(x, t) ⩾ 0 and the 51 concentration of nutrients c(x, t) ⩾ 0 are described by the following type of system

               ∂n ∂t -∇ • (n∇p) = nG(p, c), x ∈ R d , t ⩾ 0, ∂c ∂t -∆c + nH(c) = (c B -c)K(p), c(x, t) → c B for x → ∞.
(2.1)

The pressure within the tissue is denoted by p(x, t), and, in the compressible setting, we use for simplicity the following law of state

p = n γ , γ > 1. (2.2)
The reaction term G(p, c) is the cell division rate, and the lowest value of pressure that prevents cell division is called homeostatic pressure, and we denote it by p H . The concentration c B > 0 is the level of nutrients in the source, namely the network of blood vessels. Here, we consider the vascular phase of tumor growth, after angiogenesis has occurred, therefore the vasculature is present both outside and inside the tumor. The term K ⩾ 0 is the rate of nutrient release, which decreases with respect to the pressure. As clinical observations have shown, the mechanical stress generated by the cells shrinks the vessels inside the tumor and affects the blood flow; by consequence, the nutrient delivery decreases, see [START_REF] Macklin | Multiscale modelling and nonlinear simulation of vascular tumour growth[END_REF] for further details. Finally, the term H ⩾ 0 is an increasing function of c and represents the nutrient consumption rate. The specific form of the reaction term in the equation on c is not fully relevant for our analysis, and we only need the possibility to derive some generic a priori estimates, mostly in L 2 . Our study covers, for example, the terms in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] where the authors take H = H(p, c), K = 0 and those in [START_REF] Perthame | Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient[END_REF] where K = 1 {n=0} , since the authors are considering the avascular phase of tumor growth. For our study, only some general conditions are needed, which are detailed in the next sections.

Motivations and previous works. Models of tumor growth, including (2.1), possibly with more biological relevance, have been widely used recently. Several surveys are available, as [START_REF] Roose | Mathematical models of avascular tumor growth[END_REF].

Numerical schemes for the model at hand, with AP property (asymptotic preserving), have been proposed in [START_REF] Liu | An accurate front capturing scheme for tumor growth models with a free boundary limit[END_REF]. Mechanical models of tumor growth are focused on the effect of the internal pressure which governs the dynamics of the cell population density. This kind of description was initiated in [START_REF] Greenspan | On the growth and stability of cell cultures and solid tumors[END_REF] by Greenspan and further developed by Byrne and Chaplain, [START_REF] Byrne | Modelling the role of cell-cell adhesion in the growth and development of carcinomas[END_REF], Friedman, [START_REF] Friedman | Mathematical analysis and challenges arising from models of tumor growth[END_REF], and Lowengrub et al., [START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF], among the others. The leading assumption is that the birth of a cell generates a mechanical stress on the surrounding cells which start to move under a gradient of pressure. By consequence, the motion of the cells is usually described by Darcy's law ⃗ v = -∇p. This type of models have been extensively used to describe the early stage of tumor growth, the so-called avascular phase, see for example [START_REF] Bresch | Computational modeling of solid tumor growth: the avascular stage[END_REF][START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Sherratt | A new mathematical model for avascular tumour growth[END_REF]. Models of tumor growth that include the effect of viscosity, [START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF][START_REF] Dębiec | Incompressible Limit for a Two-Species Tumour Model with Coupling Through Brinkman's Law in One Dimension[END_REF][START_REF] Ranft | Fluidization of tissues by cell division and apoptosis[END_REF], or more than one species of tissue cells, [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF][START_REF] Lorenzi | On interfaces between cell populations with different mobilities[END_REF], are also well-developed. For a comprehensive overview of this topic we refer the reader to [START_REF] Friedman | Mathematical analysis and challenges arising from models of tumor growth[END_REF][START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF][START_REF] Preziosi | Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications[END_REF][START_REF] Ribba | A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents[END_REF].

The equation for the density in system (2.1) is based on the continuous mechanical model presented in [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF], in which the dynamics of tumor growth are governed by competition for space and contact inhibition. The homeostatic pressure is determined by the maximum level of stress that the cells can tolerate; we refer the reader to [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF] for further details on the individual-based model that leads to the continuous one.

As explained above, this type of models are usually referred to as compressible, since they relate the density and the pressure through a compressible constitutive law, in a fluid mechanical view. A second class of models commonly used to describe cancer growth are free boundary problems, [START_REF] Friedman | A hierarchy of cancer models and their mathematical challenges[END_REF]. They are also called geometric or incompressible models and describe the tumor as a moving domain where the density is constant. Free boundary problems arise also from the theory of mixture applied to tumor growth, [START_REF] Byrne | A two-phase model of solid tumour growth[END_REF][START_REF] Byrne | Modelling solid tumour growth using the theory of mixtures[END_REF].

Building a link between these two classes of models has attracted the attention of many researchers in recent years. This result has first been achieved in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] for a purely mechanical model, passing to the so-called incompressible limit, as the pressure becomes stiff. Later, it has been studied for a lot of models, which included viscosity, [START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF][START_REF] Dębiec | Incompressible Limit for a Two-Species Tumour Model with Coupling Through Brinkman's Law in One Dimension[END_REF], different laws of state, [START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF] and more than one species of cells, [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF]. In each case the limit model turns out to be a free boundary model of Hele-Shaw type.

Our goal is to study the limit γ → ∞ in the law of state (2.2), and prove that the limit solution satisfies a free boundary problem. It has been proved in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] that (the norms are specified in the next section and we now use the notation n γ , p γ , c γ in place of n, p, c to indicate the dependency upon γ)

n γ → n ∞ , p γ → p ∞ , c γ → c ∞ ,
and the limits satisfy the system

             ∂n ∞ ∂t -∇ • (n ∞ ∇p ∞ ) = n ∞ G(p ∞ , c ∞ ), x ∈ R d , t ⩾ 0, ∂c ∞ ∂t -∆c ∞ + n ∞ H(c ∞ ) = (c B -c ∞ )K(p ∞ ), c ∞ (x, t) → c B for x → ∞, (2.3) 
with a graph relation between p ∞ and n ∞ given by

0 ⩽ n ∞ ⩽ 1, p ∞ (n ∞ -1) = 0. (2.4)
A remarkable result is the uniqueness of the weak solutions of this system.

However, it was left open in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] to establish the so-called complementarity condition, which reads (in the sense of distributions)

p ∞ ∆p ∞ + G(p ∞ , c ∞ ) = 0 in D ′ (R d × (0, ∞)), (2.5) 
which follows formally from the equation on n written for the pressure, namely

∂ t p γ = γp γ ∆p γ + G(p γ , c γ ) + |∇p γ | 2 . (2.6)
The complementarity condition is fundamental because it relates the weak solutions defined by equations (2.3) and (2.4) to the geometric form of the Hele-Shaw problem, where the set Ω(t) := {x; p(x, t) > 0} evolves with the speed determined by the normal component of ∇p ∞ . The limit pressure is a solution to the elliptic equation with Dirichlet boundary conditions

-∆p ∞ = G(p ∞ , c ∞ ) in Ω(t) = {x; p ∞ (x, t) > 0}.
The Hele-Shaw model is a widely studied free boundary problem. Although we are only interested in the weak formulation, the regularity of the boundary is also a challenging issue, see [START_REF] Caffarelli | A geometric approach to free boundary problems[END_REF][START_REF] Figalli | An overview of unconstrained free boundary problems[END_REF][START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF].

Difficulties and strategies. To handle this problem, we make use of two new estimates which hold because the cell population density satisfies the following equation of porous medium type

∂n γ ∂t - γ γ + 1 ∆n γ+1 γ = n γ G(p γ , c γ ). (2.7) 
• The first estimate results from the famous Aronson-Bénilan (AB in short) inequalities for the porous media, [START_REF] Aronson | Régularité des solutions de l'équation des milieux poreux dans R N[END_REF][START_REF] Crandall | Regularizing effects for u t = ∆φ(u)[END_REF], which have been extended in various contexts (see [START_REF] Lu | An accurate front capturing scheme for tumor growth models with a free boundary limit[END_REF] for another example). It was adapted to a purely mechanical tumor growth model, [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], and it gives the lower bound ∆p γ (t) + G(p γ (t)) ⩾ -C/γt, with C positive constant. Here, unlike in the case without nutrients, it cannot hold. In fact, as shown in [START_REF] Perthame | Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient[END_REF], where a semi-explicit travelling wave solution was found, there exists a region where p γ is constantly equal to zero and G is negative. Therefore, we show a weaker, but still sufficient, condition

T 0 R d | min(0, ∆p γ )| 3 dx dt ⩽ C(T ).
This is proved by working in L 2 rather than with a sub-solution, as it has been recently initiated in [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF][START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF]. This method has the advantage to be compatible with the L 2 -estimates on c γ and its derivatives. We recall that ∆p ∞ is a bounded measure due to the free boundary of the set Ω(t) where the pressure is positive.

• The second new estimate is an L 4 -bound on ∇p γ , independent of the dimension d. In the simple case, where G depends only on p, it results from the kinetic energy relation combined to the AB inequality in L ∞ , which is wrong here. We have a new and more general way to derive it, independently of the AB estimate.

Plan of the paper. The paper is organized as follows. The next section is devoted to explain the notation and assumptions and to state the main result of the paper, namely that the complementarity condition holds. The rest of the paper is dedicated to prove this result. We begin in Section 2.3 presenting standard bounds which are useful for deriving the main new estimates that are stated and proved in Section 2.4. Finally, in Section 2.5 we give the proof of the complementarity relation.

Notation, assumptions and main result

Notation. We denote Q = R d × (0, ∞), and for T > 0 we set

Q T = R d × (0, T ). Given a bounded subset Ω ⊂ R d , we denote Ω T := R d × (0, T ).
We frequently use the abbreviated form n(t) := n(x, t), p(t) := p(x, t), c(t) := c(x, t).

Assumptions. Considering the growth/reaction terms, the functions G, H and K are assumed to be smooth and we make the following assumption. There exist positive constants β, p H , p B (reference pressure of blood vessels) such that

∂ p G < -β, ∂ c G ⩾ 0, G(p, c B ) ⩽ 0, for p ⩾ p H , (2.8) 
K ′ (p) ⩽ 0, 0 ⩽ K(p) ⩽ 1, K(p) = 0, for p ⩾ p B , (2.9) 
H ′ (c) ⩾ 0, 0 ⩽ H(c), H(0) = 0. (2.10)
Furthermore, for a given pressure p, G(p, c) < 0 for c small enough. This assumption indicates that tumor cells die by necrosis when the concentration of nutrients is below a survival threshold.

Some standard choices for the reaction terms are

G(p, c) = g(p)(c + c 1 ) -c 2 , H(c) = c, K(p) = 1 - p p B + ,
where c 1 , c 2 are positive constants and g is a decreasing function of p, see [START_REF] Chatelain | Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture[END_REF][START_REF] Macklin | Multiscale modelling and nonlinear simulation of vascular tumour growth[END_REF][START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF].

Initial data. System (2.1) is endowed with initial data n 0 γ , c 0 γ . We assume that for some n 0 , c 0 , the initial data n 0 γ , c 0 γ satisfy

0 ⩽ n 0 γ ⩽ n H := p 1/γ H , ∥n 0 γ -n 0 ∥ L 1 (R d ) ----→ γ→∞ 0, n 0 ∈ L 1 + (R d ), (2.11 
)

0 ⩽ c 0 γ ⩽ c B , ∥c 0 γ -c 0 ∥ L 1 (R d ) ----→ γ→∞ 0, c 0 -c B ∈ L 1 + (R d ).
(2.12)

We also assume that there is a positive constant C such that

∥∇p 0 γ ∥ L 2 (R d ) + ∥∆p 0 γ ∥ L 2 (R d ) ⩽ C, (2.13) 
∥(∂ t n γ ) 0 ∥ L 1 (R d ) + ∥(∂ t c γ ) 0 ∥ L 1 (R d ) ⩽ C, (2.14) 
∥∇c 0 γ ∥ L 2 (R d ) ⩽ C. (2.15)
Set these conditions on the initial data, we give the definition of weak solution of system (2.1) as follows.

Definition 2.2.1. Given T > 0, a weak solution of system (2.1) is a triple (n γ , p γ , c γ ) such that,

n γ , p γ , c γ ∈ L ∞ ((0, T ), L p (R d )) ∀p ⩾ 1, ∇c γ , ∇p γ ∈ L 2 (R d × (0, T )),
and for all φ

∈ C 1 comp (R d × [0, T )), T 0 R d (-n γ ∂ t φ + n γ ∇p γ ∇φ -n γ G(p γ , c γ )φ) dx dt = R d n 0 γ φ(0) dx, T 0 R d (-c γ ∂ t φ + ∇c γ ∇φ + n γ H(c γ )φ -(c B -c)K(p)φ) dx dt = R d c 0 γ φ(0) dx.
From standard methods, see [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF][START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF][START_REF] Vazquez | The porous medium equation: mathematical theory[END_REF], we know that a weak solution exists for all T > 0.

Compact support. Because our arguments rely on technical calculations, we first simplify the setting assuming that there exists a smooth bounded open domain Ω 0 ⊂ R d , independent of γ, such that for all γ > 1 supp(n 0 γ ) ⊂ Ω 0 . Unlike the solutions of the heat equation, the PME's solutions have a finite speed of propagation, see [START_REF] Vazquez | The porous medium equation: mathematical theory[END_REF]. This means that, for all T > 0, there exists a smooth bounded open domain

Ω independent of γ such that supp(n γ (t)) ⊂ Ω, ∀t ∈ [0, T ],
see Appendix 2.A for the proof. From now on, we consider a solution (n γ , p γ ) with compact support for all γ > 1. In the Appendix 2.B, we show how to extend the result to more general solutions.

Main result. We now state the main result of the paper, namely the weak formulation of the complementarity relation.

Theorem 2.2.2 (Estimates and complementarity relation).

With all the previous assumptions, the limit pressure p ∞ satisfies the relation (2.5), that means, for all test functions ζ ∈ D(Q), we have

Q -|∇p ∞ | 2 ζ -p ∞ ∇p ∞ ∇ζ + p ∞ G(p ∞ , c ∞ )ζ dx dt = 0.
Furthermore the following estimates hold uniformly in γ

Ω T (∆p γ + G(p γ , c γ )) 3 -dx dt ⩽ C(T ), Ω T |∇p γ | 4 dx dt ⩽ C(T ).

Preliminary Estimates

Let (n γ , p γ , c γ ) be a weak solution to system (2.1). We recall some standard preliminary bounds on n γ , p γ , c γ and their derivatives, gathered in the following Proposition.

Proposition 2.3.1 (Direct estimates). Let (n γ , p γ , c γ ) be a weak solution of system (2.1). For all T > 0, the following holds independently of γ

0 ⩽ n γ ⩽ n H , 0 ⩽ p γ ⩽ p H , 0 ⩽ c γ ⩽ c B , (2.16 
)

n γ , p γ , c γ (t) -c B ∈ L ∞ (0, T, L 1 (R d )), (2.17) 
c γ ∈ L ∞ (0, T, H 1 (R d )) ∩ L 2 (0, T, H 2 (R d )), (2.18) 
∂ t n γ , ∂ t p γ ∈ L 1 (Q T ), ∂ t c γ ∈ L 2 (Q T ) (2.19) 
c γ ∈ L 4 (Q T ), p γ ∈ L 2 (0, T, H 1 (R d )). (2.20)
Proof. L ∞ -bounds for n γ , p γ , c γ . The L ∞ -bounds follow from the comparison principle and our assumptions on G. For the sake of completeness, we recall the argument. From equation (2.7) we have

∂ t (n γ -n H ) - γ γ + 1 ∆(n γ+1 γ -n γ+1 H ) = (n γ -n H )G(p γ , c γ ) + n H G(p γ , c γ ).
Multiplying by sign + {n γ -n H } we obtain

∂ t (n γ -n H ) + - γ γ + 1 ∆((n γ+1 γ -n γ+1 H ) + ) ⩽G(p γ , c γ )(n γ -n H ) + + n H (G(p γ , c γ ) -G(p H , c γ ))sign + (n γ -n H ).
since, thanks to the assumptions on G, we have

G(p H , c γ ) ⩽ 0.
Integrating in space yields 

d dt R d (n γ (t) -n H ) + dx ⩽ ∥G∥ ∞ R d (n γ (t) -n H ) + dx, because (G(p γ , c γ ) -G(p H , c γ ))sign + (n γ -n H ) ⩽ 0,
d dt R d (n γ (t)) -dx ⩽ C R d (n γ (t)) -dx.
By Gronwall's lemma we deduce

R d (n γ (t)) -dx ⩽ e Ct R d (n 0 γ ) -dx,
and, since the initial data is non-negative by assumption (2.11), this yields n γ ⩾ 0 and p γ ⩾ 0.

The same argument applies to c γ and then we have c γ ⩾ 0. From the equation for c γ it holds

∂ t (c γ -c B ) + -∆(c -c B ) + ⩽ -n γ H(c γ )sign + (c γ -c B ) -K(p)(c γ -c B ) + .
Since H, K and n γ are always non-negative, we get

∂ t (c γ -c B ) + -∆(c -c B ) + ⩽ 0, which gives d dt R d (c -c B ) + dx ⩽ 0.
Since c 0 γ ⩽ c B , by assumption (2.12), we conclude that c γ ⩽ c B .

L 1 -bounds on n γ , p γ , c γ . These are also standard estimates, noting that

∥p(t)∥ L 1 (R d ) = ∥n(t)p(t) γ-1 γ ∥ L 1 (R d ) ⩽ p γ-1 γ H ∥n(t)∥ L 1 (R d ) .
L 2 -bounds for the derivatives of c γ . We now prove the L 2 -bounds for ∇c γ , ∆c γ and ∂ t c γ .

We multiply the equation for c γ by -∆c γ and we integrate in space and time

- t 0 R d ∂ t c γ ∆c γ dx ds + t 0 R d |∆c γ | 2 dx ds = t 0 R d (n γ H(c γ ) -(c B -c γ )K(p γ ))∆c γ dx ds.
Integrating by parts and using Young's inequality we obtain

t 0 R d ∂ t |∇c γ | 2 2 dx ds + t 0 R d |∆c γ | 2 dx ds ⩽ t 0 R d |n γ H(c γ ) -(c B -c γ )K(p γ )| 2 2 dx ds + t 0 R d |∆c γ | 2 2 dx ds.
Hence, we have

1 2 R d |∇c γ (t)| 2 dx + 1 2 t 0 R d |∆c γ | 2 dx ds ⩽ C t 0 ∥n γ (s)∥ 2 L 1 (R d ) + ∥c γ (s) -c B ∥ 2 L 1 (R d ) ds + 1 2 ∥∇c 0 γ ∥ 2 L 2 (R d ) ,
where C is a positive constant depending on n H , c B and the L ∞ -norms of H and K.

Finally, using the L 1 -bounds (2.17), we obtain

R d |∇c γ (t)| 2 + t 0 R d |∆c γ | 2 ⩽ C(T ) + ∥∇c 0 γ ∥ 2 L 2 (R d ) ,
for 0 < t ⩽ T , and thanks to (2.15) we conclude the proof of the first and second estimates in (2.18). At last, considering the equation for c γ

∂ t c γ = ∆c γ -n γ H(c γ ) + (c B -c γ )K(p γ ),
and using the previous bounds on n γ , c γ and ∆c γ we conclude that

∂ t c γ ∈ L 2 (Q T ).
L 1 -bounds for the time derivatives of n γ and p γ . We differentiate the equation for n γ and we multiply it by sign(∂ t n γ )

∂ t |∂ t n γ | -γ∆(n γ γ |∂ t n γ |) ⩽ |∂ t n γ |G + n γ ∂ p G|∂ t p γ | + n γ ∂ c G∂ t c γ sign(∂ t n γ ). (2.21)
We integrate in space using the monotonicity of G

d dt ∥∂ t n γ (t)∥ L 1 (R d ) ⩽ ∥G∥ L ∞ (Q T ) ∥∂ t n γ (t)∥ L 1 (R d ) + ∥∂ c G∥ L ∞ (Q T ) ∥n γ (t)∥ L 2 (R d ) ∥∂ t c γ (t)∥ L 2 (R d ) .
Thanks to (2.17) and (2.18), Gronwall's lemma gives

∥∂ t n γ (t)∥ L 1 (R d ) ⩽ C(T )∥(∂ t n γ ) 0 ∥ L 1 (R d ) ⩽ C(T ),
where in the last inequality we used (2.14). By integrating in Q t := R d × (0, t), we obtain

∥∂ t n γ (t)∥ L 1 (R d ) + min |∂ p G| Qt n γ |∂ t p γ | dx ds ⩽ C(T ),
thanks to (2.14) and the L 1 bounds proved above. Then, for the time derivative of the pressure, it holds

∥∂ t p γ ∥ L 1 (Q T ) ⩽ Q T ∩{nγ ⩽1/2} γn γ-1 γ |∂ t n γ | dx dt + 2 Q T ∩{nγ ⩾1/2} n γ |∂ t p γ | dx dt ⩽ C(T ).
We differentiate the equation for c γ and multiply it by sign(∂ t c γ )

∂ t |∂ t c γ | -∆(|∂ t c γ |) ⩽ -∂ t n γ Hsign(∂ t c γ ) -n γ H ′ |∂ t c γ | -|∂ t c γ |K + (c B -c)K ′ ∂ t p γ sign(∂ t c γ ).
Integrating in space we obtain

d dt ∥∂ t c γ (t)∥ L 1 (R d ) ⩽ ∥H∥ L ∞ (Q T ) ∥∂ t n γ (t)∥ L 1 (R d ) + n H ∥H ′ ∥ L ∞ (Q T ) ∥∂ t c γ (t)∥ L 1 (R d ) + c B ∥K ′ ∥ L ∞ (Q T ) ∥∂ t p(t)∥ L 1 (R d ) ,
and thanks to the previous bounds and Gronwall's lemma we have

∥∂ t c γ (t)∥ L 1 (R d ) ⩽ C(T )∥(∂ t c γ ) 0 ∥ L 1 (R d ) ⩽ C(T ),
and this concludes the proof of (2.19).

L 4 -bound for the gradient of c γ . Now, we prove that the gradient of c γ is bounded in L 4 . Integration by parts gives

R d |∇c γ | 4 dx = - R d c γ ∆c γ |∇c γ | 2 dx - R d c γ ∇c γ • ∇(|∇c γ | 2 ) dx.
We use Young's inequality on the first term of the right-hand side and we get

1 2 R d |∇c γ | 4 dx ⩽ 1 2 R d c 2 γ |∆c γ | 2 dx - R d c γ ∇c γ • ∇(|∇c γ | 2 ) dx.
We write the last term as

- R d c γ ∇c γ • ∇(|∇c γ | 2 ) dx = -2 i,j R d c γ ∂ i c γ ∂ j c γ ∂ 2 i,j c γ dx ⩽ 1 4 R d |∇c γ | 4 dx + 4c 2 B R d i,j (∂ 2 i,j c γ ) 2 dx = 1 4 R d |∇c γ | 4 dx + 4c 2 B R d |∆c γ | 2 dx.
Thus, we have

1 4 R d |∇c γ | 4 dx ⩽ 1 2 + 4 c 2 B R d |∆c γ | 2 dx.
and the L 4 -estimate is proven.

L 2 -bound for the pressure gradient. Since the pressure satisfies equation (2.6), integrating it in space we get

d dt R d p γ (t) dx = -γ R d |∇p γ (t)| 2 dx + γ R d p γ (t)G(p γ (t), c γ (t)) dx + R d |∇p γ (t)| 2 dx.
Then, we integrate in time

(γ -1) T 0 R d |∇p γ | 2 dx dt = ∥p γ (0)∥ L 1 (R d ) -∥p γ (T )∥ L 1 (R d ) + γ T 0 R d p γ G(p γ , c γ ) dx dt, (γ -1) T 0 R d |∇p γ | 2 dx dt ⩽ C 0 + γC(T ),
and this gives, since γ > 1,

T 0 R d |∇p γ | 2 dx dt ⩽ C(T ).

Stronger a priori estimates on p γ

To establish the complementarity condition (2.5) is equivalent to prove the strong compactness of |∇p γ | 2 . One step towards this goal is to prove compactness in space using the classical AB estimate, [START_REF] Aronson | Régularité des solutions de l'équation des milieux poreux dans R N[END_REF][START_REF] Crandall | Regularizing effects for u t = ∆φ(u)[END_REF]. Here, major difficulties arise. As explained in the Introduction, since the reaction term can change sign the usual Aronson-Bénilan lower bound cannot hold true, see [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Perthame | Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient[END_REF]. Moreover, we cannot apply the comparison principle because of the bad coupling in system (2.1). Since the L ∞ bound from below in the AB estimate is missing, we prove an L 3 version, adapting the method presented in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF]. Then, we show that the gradient of the pressure is bounded in L 4 (Q T ), which gives the compactness needed to pass to the limit. Our first goal is to prove the AB estimate on the functional

w := ∆p γ + G(p γ , c γ ), (2.22) 
which is a variation of the Laplacian in order to take into account the source term, at the same order of ∆p γ , in equation (2.6).

Theorem 2.4.1 (Aronson-Bénilan estimate in L 3 ). With the assumptions of Section 2.2 and with γ > max(1, 2 -4 d ), for all T > 0 there is a constant C(T ) depending on T and the previous bounds and independent of γ such that

Ω T (w) 3 -dx dt ⩽ C(T ), Ω T |∆p γ | dx dt ⩽ C(T ). (2.23)
Let us point out that because the free boundary is where p ∞ vanishes, it is important that w itself is controlled and not merely pw as in the next estimate.

Theorem 2.4.2 (L 4 -estimate on the pressure gradient). With the same assumptions as before, given T > 0, it holds (γ -1)

Ω T p γ |∆p γ + G| 2 dx dt + Ω T p γ i,j (∂ 2 i,j p γ ) 2 dx dt ⩽ C(T ), (2.24) 
Ω T |∇p γ | 4 dx dt ⩽ C(T ), (2.25) 
where C(T ) depends on T and previous bounds and is independent of γ.

We recall that in the model independent of c γ , [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], the AB estimate is much stronger and gives ∆p γ (t) + G(p γ (t)) ⩾ -1 γt , and the major difficulty is the control of ∆p γ which is provided by Theorem 2.4.1. As proved in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF], the L 4 -estimate follows from the total energy control when G = G(p), but this uses the strong form of the AB estimate. Therefore, we use another argument, which is reminiscent of the energy control, but treats differently of the "dissipation" terms.

Proof of Theorem 2.4.1. For the sake of simplicity we forget the index γ and dx dt in the integration. We compute the time derivative of w and obtain

∂ t w = ∆(|∇p| 2 ) + γ∆(pw) + ∂ p G(|∇p| 2 + γpw) + ∂ c G ∂ t c.
The first term is

∆(|∇p| 2 ) = 2 i,j (∂ 2 i,j p) 2 + 2∇p • ∇(∆p) ⩾ 2 d (∆p) 2 + 2∇p • ∇(∆p).
By definition of w we have

2∇p • ∇(∆p) = 2∇p • ∇(w -G) = 2∇p • ∇w -2∂ p G|∇p| 2 -2∂ c G∇p • ∇c.
Hence, the time derivative satisfies

∂ t w ⩾ 2 d (w -G) 2 + 2∇p • ∇w -∂ p G|∇p| 2 -2∂ c G∇p • ∇c (2.26) + γ∆(pw) + γpw ∂ p G + ∂ c G ∂ t c.
Multiplying (2.26) by -(w) -, we obtain

-∂ t w (w) -⩽ - 2 d (w) 3 -- 4 d G|w| 2 -- 2 d G 2 (w) -+ ∇p • ∇(w) 2 -+ ∂ p G|∇p| 2 (w) - + 2∂ c G∇p • ∇c(w) -+ γ∆(p(w) -)(w) -+ γp ∂ p G(w) 2 --∂ c G ∂ t c(w) -.
Hence, using the fact that ∂ p G < -β from (2.8), we integrate in space to obtain

d dt Ω (w) 2 - 2 ⩽ - 2 d Ω (w) 3 -- 2 d Ω G 2 (w) --β Ω |∇p| 2 (w) - - 4 d Ω G(w) 2 -+ Ω ∇p • ∇(w) 2 -+ γ∆(p(w) -)(w) - A - Ω ∂ c G ∂ t c(w) - B + 2 Ω ∂ c G∇p • ∇c(w) - C
. Now, we proceed integrating by parts the first term,

A = - Ω ∆p(w) 2 -+ γ∇p • ∇(w) -(w) -+ γp|∇(w) -| 2 = Ω (w) 3 -+ Ω G(w) 2 -+ γ 2 Ω ∆p(w) 2 --γ Ω p|∇(w) -| 2 = 1 - γ 2 Ω (w) 3 -+ 1 - γ 2 Ω G(w) 2 --γ Ω p|∇(w) -| 2 .
Next, using (2.18) and the Cauchy-Schwarz inequality, we obtain

B ⩽ C Ω (w) 2 -+ C.
Thanks to Young's inequality and (2.20), we compute

C ⩽ β 2 Ω |∇p| 2 (w) -+ C Ω |∇c| 4 + C Ω (w) 2 - ⩽ β 2 Ω |∇p| 2 (w) -+ C Ω (w) 2 -+ C.
We may now come back to the control of

d dt Ω (w) 2 - 2 .
Gathering all the previous bounds, we get the following estimate

d dt Ω (w) 2 - 2 ⩽ - 2 d -1 + γ 2 Ω (w) 3 -- β 2 Ω |∇p| 2 (w) -+ C(γ + 1) Ω (w) 2 -+ C.
Hence integrating in time we have

2 d -1 + γ 2 Ω T (w) 3 -⩽ C (γ + 1) Ω T (w) 2 -+ Ω (w 0 ) 2 - 2 + C(T ) ⩽ C (γ + 1) Ω T (w) 3 - 2 3 + C(T ),
where we used assumption (2.13) and C represents different constants depending on T , |Ω(T )| and previous bounds. This is the place where we strongly use the compact support assumption. At last, with our assumption that γ is large enough, we obtain

Ω T (w) 3 -⩽ C Ω T (w) 3 - 2 3 + C(T ),
and hence we have proved our main result, that is the first estimate of (2.23),

Ω T (w) 3 -⩽ C(T ).
To prove the second estimate, we argue as follows. Since

Ω T (∆p + G) ⩽ C(T ),
we can also control the positive part of w

Ω T (w) + ⩽ C(T ) + Ω T (w) -⩽ C(T ) + C Ω T (w) 3 - 1 3 
.

Thus it holds

Ω T |∆p + G| ⩽ C(T ).
Hence, we finally obtain the L 1 -estimate for the Laplacian of the pressure

Ω T |∆p| ⩽ C(T ),
that concludes the proof of Theorem 2.4.1.

Proof of Theorem 2.4.2. We consider the equation for the pressure (2.6), we multiply it by -(∆p γ + G(p γ , c γ )) and integrate in space. We find successively

- Ω ∂ t p γ ∆p γ - Ω ∂ t p γ G = -γ Ω p γ |∆p γ + G| 2 - Ω |∇p γ | 2 ∆p γ - Ω |∇p γ | 2 G, d dt Ω |∇p γ | 2 2 - Ω ∂ t p γ G + γ Ω p γ |∆p γ + G| 2 + Ω |∇p γ | 2 ∆p γ ⩽ ∥G∥ L ∞ ∥∇p γ (t)∥ 2 L 2 .
We integrate by parts the last term of the left-hand side and obtain

Ω |∇p γ | 2 ∆p γ = Ω p γ ∆(|∇p γ | 2 ) = 2 Ω p γ ∇p γ • ∇(∆p γ ) + 2 Ω p γ i,j (∂ 2 i,j p γ ) 2 = -2 Ω p γ |∆p γ | 2 -2 Ω |∇p γ | 2 ∆p γ + 2 Ω p γ i,j (∂ 2 i,j p γ ) 2 .
Hence, we conclude that

Ω |∇p γ | 2 ∆p γ = - 2 3 Ω p γ |∆p γ | 2 + 2 3 Ω p γ i,j (∂ 2 i,j p γ ) 2 .
Thus, we have

d dt Ω |∇p γ | 2 2 - Ω ∂ t p γ G I1 + γ Ω p γ |∆p γ + G| 2 - 2 3 Ω p γ |∆p γ | 2 I2 + 2 3 Ω p γ i,j (∂ 2 i,j p γ ) 2 ⩽ C(T ).
(2.27) We can define the function G = G(p γ , c γ ) = pγ 0 G(q, c γ )dq and then

∂ t p γ G(p γ , c γ ) = ∂ t G(p γ , c γ ) -∂ t c γ ∂ c G(p γ , c γ ).
Using this relation the term I 1 can be written as

I 1 = - Ω ∂ t G + Ω ∂ c G ∂ t c γ ⩾ - Ω ∂ t G -C,
thanks to the L 2 -bound on ∂ t c γ in (2.18) and because |∂ c G| ⩽ Cp γ . We can estimate the term I 2 from below as follows

I 2 ⩾ (γ -1) Ω p γ |∆p γ + G| 2 -C Ω p γ |G| 2 .
Thus, we find

I 1 + I 2 ⩾ (γ -1) Ω p γ |∆p γ + G| 2 - Ω ∂ t G -C(T ).
(2.28)

Combining (2.27) and (2.28), we have

d dt Ω |∇p γ | 2 2 -G + (γ -1) Ω p γ |∆p γ + G| 2 + 2 3 Ω p γ i,j (∂ 2 i,j p γ ) 2 ⩽ C(T ).
Finally, integrating in time, we obtain estimate (2.24), and this proves the first step of Theorem 2.4.2.

Furthermore, this bound also implies

Ω T p γ |∆p γ | 2 ⩽ C(T ). (2.29)
We compute the L 4 -norm of the gradient of p γ , as we did for the gradient of c γ ,

Ω T |∇p γ | 4 = - Ω T p γ ∆p γ |∇p γ | 2 - Ω T p γ ∇p γ • ∇(|∇p γ | 2 ).
Applying Young's inequality to the first term, we obtain

1 2 Ω T |∇p γ | 4 ⩽ 1 2 Ω T p 2 γ |∆p γ | 2 -2 i,j Ω T p γ ∂ i p γ ∂ j p γ ∂ 2 i,j p γ .
The last term can be bounded from above as follows

2 i,j Ω T p γ ∂ i p γ ∂ j p γ ∂ 2 i,j p γ ⩽ 1 4 Ω T |∇p γ | 4 + 4 Ω T p 2 γ i,j (∂ 2 i,j p γ ) 2 .
Therefore, we obtain

1 4 Ω T |∇p γ | 4 ⩽ 1 2 Ω T p 2 γ |∆p γ | 2 + 4 Ω T p 2 γ i,j (∂ 2 i,j p γ ) 2 .
Since p γ ⩽ p H , by (2.24) and (2.29) we conclude

Ω T |∇p γ | 4 ⩽ C(T ),
and this completes the proof of Theorem 2.4.2.

Complementarity relation

Thanks to the bounds provided by Theorem 2.4.1 and Theorem 2.4.2, we may obtain the desired compactness on the pressure gradient. This allows us to pass to the incompressible limit and prove the complementarity relation as we state it now. 

∈ D(Q), the limit pressure p ∞ satisfies Q -|∇p ∞ | 2 ζ -p ∞ ∇p ∞ • ∇ζ + p ∞ G(p ∞ , c ∞ )ζ dx dt = 0.
This result is related to the geometric form of the Hele-Shaw free boundary problem (while (2.3) is the weak form). It tells us that the limit solution satisfies

-∆p ∞ = G(p ∞ , c ∞ ) in Ω(t) := {x; p ∞ (x, t) > 0}, p ∞ = 0 on ∂Ω(t),
where, for every t > 0, the set Ω(t) represents the region occupied by the tumor. Moreover, in the limit, the pressure and the cell population density satisfy the relation

p ∞ (1 -n ∞ ) = 0.
Therefore, Ω(t) ⊂ {x; n ∞ (x, t) = 1}, hence the classification of incompressible model. In the purely mechanical case the two sets actually coincide almost everywhere, see [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF].

Proof of Theorem 2.5.1. Thanks to the bounds in (2.18), (2. [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF]) and (2.20), p γ and c γ are locally compact. Thus, after the extraction of subsequences, we have

p γ → p ∞ strongly in L 1 (Q T ), c γ → c ∞ strongly in L 1 (Q T ),
when γ → ∞, for all T > 0. From Theorem 2.4.2, we also recover the weak convergence of the gradient of the pressure, up to a subsequence, i.e.

∇p γ ⇀ ∇p ∞ weakly in L 4 (Q T ).
From Theorem 2.4.1, we know that ∆p γ is bounded in L 1 . Then, we have local compactness in space for the pressure gradient. To gain compactness in time we use the Aubin-Lions lemma.

From equation (2.6), we have

∂ t (∇p γ ) = ∇[γp γ (∆p γ + G) + |∇p γ | 2 ],
where the right-hand side is a sum of space derivatives of functions bounded in L 

∇p γ → ∇p ∞ strongly in L q (Q T ), for 1 ⩽ q < d d -1 .
After the extraction of a subsequence, we obtain convergence almost everywhere for ∇p γ . Then, using the L 4 -bound of Theorem 2.4.2, we have

∇p γ → ∇p ∞ strongly in L q (Q T ), for 1 ⩽ q < 4,
hence, in particular, also for q = 2.

Let ζ ∈ D(Q) be a test function. We consider the equation for p γ

∂p γ ∂t = γp γ (∆p γ + G(p γ , c γ )) + |∇p γ | 2 ,
we multiply it by ζ and we integrate in

Q - 1 γ Q p γ ∂ t ζ + |∇p γ | 2 ζ dx dt = Q -|∇p γ | 2 ζ -p γ ∇p γ • ∇ζ + p γ G(p γ , c γ )ζ dx dt.
Hence, passing to the limit for γ → ∞ we obtain the complementarity relation

Q -|∇p ∞ | 2 ζ -p ∞ ∇p ∞ • ∇ζ + p ∞ G(p ∞ , c ∞ )ζ dx dt = 0.
This is equivalent to

Q p ∞ (∆p ∞ + G(p ∞ , c ∞ )) ζ dx dt = 0, which means p ∞ (∆p ∞ + G(p ∞ , c ∞ )) = 0, in D ′ (Q),
and the proof of Theorem 2.5.1 is complete.

2.A Compact support property

We give the proof of the finite speed of propagation property of solutions of system (2.1). Our goal is to show that, if the initial data satisfy

supp(n 0 γ ) ⊂ Ω 0 , ∀γ > 1,
with Ω 0 independent of γ, then the solutions n γ (t), p γ (t) are compactly supported, uniformly in γ and t ∈ [0, T ], for all T > 0. This means that there exists a bounded open domain

Ω independent of γ such that supp(n γ (t)) ⊂ Ω, ∀γ > 1, ∀t ∈ [0, T ].
For every γ > 1, the pressure p γ is a sub-solution to equation

∂ t p γ ⩽ |∇p γ | 2 + γp γ (∆p γ + G(0, c B )).
Thus, by finding a supersolution with compact support, we can control the supports of p γ and n γ . We consider the function

Π(x, t) = G(0, c B ) S(t) - |x| 2 2 + ,
where we choose the function S such that it satisfies

S ′ (t) ⩾ 2G(0, c B )S(t).
We compute the derivatives of Π and we find

∂ t Π(x, t) = G(0, c B )S ′ (t)1 {S(t)⩾ |x| 2 2 } , ∇Π(x, t) = -G(0, c B )x1 {S(t)⩾ |x| 2 2 } , Π∆Π(x, t) = Π -d G(0, c B )1 {S(t)⩾ |x| 2 2 } + G(0, c B )|x|δ {S(t)= |x| 2 2 } = -dG(0, c B )Π. Therefore Π satisfies ∂ t Π -|∇Π| 2 -γΠ(∆Π + G(0, c B )) ⩾ (G(0, c B )S ′ (t) -G(0, c B ) 2 x 2 )1 {S(t)⩾ |x| 2 2 } + γΠG(0, c B )(d + 1) ⩾ (2G(0, c B ) 2 S(t) -G(0, c B ) 2 x 2 )1 {S(t)⩾ |x| 2 2 } ⩾ 0.
Hence, we have proved that for all T > 0

supp(p γ (t)) ⊂ supp(Π(t)) ⊂ B T , ∀γ > 1, ∀t ∈ [0, T ],
where B T is the open ball with radius 2S(T ).

2.B Removing the compact support assumption

The proof of the main result of the paper is built on the compact support assumption stated in Section 2.2. Our goal is to generalize the result removing this condition. Let us note that it is sufficient to extend Theorem 2.4.1, since it is the only one for which we used the compact support assumption. Moreover, let us notice that Proposition 2.3.1 holds true in this framework. We define the functional w as in (2.22) ), for all T > 0 there exists a constant C(T ) depending on previous bounds and independent of γ such that

T 0 R d (w) 3 -Φ ⩽ C(T ), T 0 R d |∆p|Φ ⩽ C(T ).
Proof. Computing the time derivative of the negative part of w, we have

-∂ t (w) 2 - 2 ⩽ - 4 d (w) 3 -- 2 d G|w| 2 -- 2 d G 2 (w) -+ ∇(w) 2 -• ∇p + ∂ p G|∇p| 2 (w) - + 2∂ c G∇p • ∇c(w) -+ γ∆(p(w) -)(w) --∂ c G ∂ t c(w) -,
as in the proof of Theorem 2.4.1. We multiply the inequality by Φ and integrate in space

d dt Ω (w) 2 - 2 Φ ⩽ - 2 d Ω (w) 3 -Φ - 2 d Ω G 2 (w) -Φ -β Ω |∇p| 2 (w) -Φ (2.30) - 4 d Ω G(w) 2 -Φ + Ω ∇p • ∇ (w) 2 -Φ + γ∆(p(w) -)(w) -Φ A - Ω ∂ c G ∂ t c(w) -Φ B + 2 Ω ∂ c G∇p • ∇c(w) -Φ C .

Now we proceed computing each term,

A = R d ∇p • ∇ (w) 2 -Φ -γ R d ∇(p(w) -) • ∇(w) -Φ -γ R d (w) -∇(p(w) -) • ∇Φ = - R d ∆p(w) 2 -Φ - R d (w) 2 -∇p • ∇Φ -γ R d (w) -∇p • ∇(w) -Φ -γ R d p|∇(w) -| 2 Φ + γ R d p(w) 2 -∆Φ + γ R d p∇ (w) 2 - 2 • ∇Φ = - R d ∆p(w) 2 -Φ - R d (w) 2 -∇p • ∇Φ + γ 2 R d ∆p(w) 2 -Φ + γ 2 R d (w) 2 -∇p • ∇Φ -γ R d p|∇(w) -| 2 Φ + γ 2 R d p(w) 2 -∆Φ - γ 2 R d (w) 2 -∇p • ∇Φ = 1 - γ 2 R d (w) 3 -Φ + 1 - γ 2 R d G(w) 2 -Φ -γ R d p|∇(w) -| 2 Φ + A 1 ,
with

A 1 = γ 2 R d p(w) 2 -∆Φ - R d (w) 2 -∇p • ∇Φ.
By the Cauchy-Schwarz inequality we have

B ⩽ R d (w) 2 -Φ + C R d |∂ t c| 2 Φ ⩽ R d (w) 2 -Φ + C.
Using Young's inequality and (2.20), we find

C ⩽ β 2 R d |∇p| 2 (w) -Φ + C R d |∇c| 2 (w) -Φ ⩽ β 2 R d |∇p| 2 (w) -Φ + C R d |∇c| 4 Φ + C R d (w) 2 -Φ ⩽ β 2 R d |∇p| 2 (w) -Φ + C R d (w) 2 -Φ + C.
It remains to treat the term containing the derivatives of Φ

A 1 = - R d (w) 2 -∇p • ∇Φ + γ 2 R d p(w) 2 -∆Φ.
We choose a positive function Φ with exponential decay, such that |∇Φ| ⩽ CΦ and |∆Φ| ⩽ CΦ. Now, we integrate by parts and use Young's inequality

A 1 = 2 R d p(w) -∇(w) -• ∇Φ + 1 + γ 2 R d p(w) 2 -∆Φ ⩽ 1 2 R d p|∇(w) -| 2 Φ + C(γ + 1) R d (w) 2 -Φ.
Finally, inequality (2.30) can be written as follows

d dt R d (w) 2 -Φ + 2 d + γ 2 -1 R d (w) 3 -Φ + β 2 R d |∇p| 2 (w) -Φ ⩽ C(γ + 1) R d (w) 2 -Φ + C, then, for γ > 2 -4 d , integrating in time we have T 0 R d (w) 3 -Φ ⩽ T 0 R d (w) 3 -Φ 2 3 + C(T ),
and then we have proved

T 0 R d (w) 3 -Φ ⩽ C(T ).
By consequence

T 0 R d (w) 2 -Φ ⩽ C(T ), T 0 R d (w) -Φ ⩽ C(T ).
Since Φ is a smooth function with compact support

T 0 R d (∆p + G)Φ ⩽ C,
and then also

R d Φ|∆p + G| + = R d Φ(∆p + G) + R d Φ(∆p + G) -⩽ C(T ).
Therefore we recover the local L 1 -estimate for the Laplacian of the pressure

T 0 R d |∆p|Φ ⩽ C.

2.C Sharpness of the bound ∇p ∈ L 4

In Theorem 2.4.2, we have established the uniform bound ∇p γ ∈ L 4 x,t , see (2.25). Here, we aim at showing that the exponent 4 cannot be increased. We use the so-called focusing solution of the porous medium equation, see for instance [START_REF] Aronson | A selfsimilar solution to the focusing problem for the porous medium equation[END_REF], which consists in a spherical hole filling which generates a stronger singularity than the Barenblatt solution, see [START_REF] Vazquez | The porous medium equation: mathematical theory[END_REF]. We consider the limit γ → ∞, i.e. the Hele-Shaw problem, that was already studied in detail in [START_REF] Aronson | Limit behaviour of focusing solutions to nonlinear diffusions[END_REF] for a larger class of operators. Consider α > 0 such that ∇p ∈ L α (Q T ), where p is a solution of the Hele-Shaw problem with homogeneous Dirichlet boundary conditions in a spherical shell {R(t) < |x| < R 1 }, for a fixed R 1 > 0 and R(0) small enough. Then, to simplify the problem, we fix the external radius R 1 and let p satisfy

       -∆p = 1, for R(t) < |x| < R 1 , p(x) = 0, for |x| = R(t) or |x| = R 1 , R ′ (t) = -∇p • ν, for |x| = R(t).
(2.31)

Here, ν denotes the inner normal to the ball B R(t) (0). As in [START_REF] Aronson | A selfsimilar solution to the focusing problem for the porous medium equation[END_REF], R(t) diminishes and vanishes in finite time, generating a singularity |∇p| → ∞. The power 4 turns out to be the highest possible integrability in time at this singular time. We treat the case of dimension 2. In higher dimension, the radial solutions are more regular and the worst singularity would be obtained for a cylinder with a 2 dimensional basis.

Case d = 2. With spherical symmetry, we set p = p(r), r := |x|, and the first equation in (2.31) reads

- 1 r (rp ′ ) ′ = 1.
Integrating once, we get, for some a(t)

p ′ = - r 2 + a(t) r ,
and the second integration yields p = -r 2 4 + a(t) ln r + b(t).

Imposing p(R 1 ) = p(R(t)) = 0, we find

b(t) = R 2 1 4 -a(t) ln R 1 , R(t) 2 4 -a(t) ln R(t) = R 2 1 4 -a(t) ln R 1 .
Hence, for R(t) ≈ 0, we have

a(t) ≈ - R 2 1 4 ln R(t) , R ′ (t) ≈ 1 R(t) ln R(t) . (2.32)
Therefore, there is T > 0 when R(T -) = 0 and as t ≈ T , we compute

T 0 B R 1 (0) |∇p(x)| α dxdt = T 0 R1 R(t) |p ′ (r)| α rdrdt ≈ T 0 R1 R(t) |a(t)| α r α-1 drdt.
The singularity at T is thus driven by

T 0 |a(t)| α R(t) α-2 dt ≈ T 0 1 | ln R(t)| α R(t) α-2 dt ≈ R(0) 0 1 | ln R| α-1 R α-3 dR
by the change of variable R = R(t) and using equation (2.32). We recall that we have chosen R(0) small enough. This integral is finite for 1 ⩽ α ⩽ 4 and infinite for α > 4.

Chapter 3

An asymptotic preserving scheme for a tumor growth model of porous medium type Abstract Mechanical models of tumor growth based on a porous medium approach have been attracting a lot of interest both analytically and numerically. In this paper, we study the stability properties of a finite difference scheme for a model where the density evolves down pressure gradients and the growth rate depends on the pressure and possibly nutrients. Based on the stability results, we prove the scheme to be asymptotic preserving (AP) in the incompressible limit. Numerical simulations are performed in order to investigate the regularity of the pressure. We study the sharpness of the L 4 -uniform bound of the gradient, the limiting case being a solution whose support contains a bubble which closes-up in finite time generating a singularity, the so-called focusing solution.

This chapter is taken from N. D. and X. Ruan. An asymptotic preserving scheme for a tumor growth model of porous medium type, ESAIM: M2AN, (2021).

Introduction

We consider a model of tumor growth describing the evolution of the cell population density n(x, t) through a porous medium equation with a source,

∂n ∂t -∇(n∇p) = nG(p), x ∈ R d , t > 0, (3.1) 
where p is the internal pressure of the tumor, defined by the law of state

p = n γ , γ > 1. (3.2)
The non-linearity and degeneracy of the diffusion term bring several difficulties to the numerical analysis of the model, and many numerical schemes have been proposed in the literature, cf. [START_REF] Liu | An accurate front capturing scheme for tumor growth models with a free boundary limit[END_REF][START_REF] Bessemoulin-Chatard | A finite volume scheme for nonlinear degenerate parabolic equations[END_REF][START_REF] Liu | Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics[END_REF][START_REF] Monsaingeon | An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem[END_REF]. In this paper, we investigate the properties of solutions of Eq. (3.1), which for simplicity we consider in one dimension, using the following upwind scheme

d dt n i = n i+1/2 q i+1/2 -n i-1/2 q i-1/2 ∆x + n i G(p i ), with q i+1/2 = p i+1 -p i ∆x ,
and where we define n i+ 1 2 in the upwind manner

n i+1/2 = n i , if q i+1/2 ⩽ 0, n i+1 , if q i+1/2 > 0.
Extension to higher dimensions is straightforward for tensor product grids and thus omitted here.

On the one hand, the simplicity of the scheme allows us to prove analytical properties which do not apply to more complex ones. We prove stability results and the asymptotics preserving (AP) property of the scheme as γ → ∞. On the other hand, despite its simplicity, we perform numerical tests that show the good efficiency of the scheme for different reaction terms G as well as for γ ≫ 1.

We are also interested in analysing numerically the regularity of the so-called focusing solution of Eq. (3.1), whose support is initially contained outside of a compact set, see for instance [START_REF] Aronson | A selfsimilar solution to the focusing problem for the porous medium equation[END_REF]. Due to the degeneracy of the diffusion, the inner hole closes up in finite time and singularities occur due to this topological change. In particular, we perform numerical tests to study the blow-up of the L p -norms of the pressure gradient, which are uniformly (with respect to γ) bounded for p ≤ 4, as recently proved in [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF]. This regularity is actually sharp, and the focusing solution represents the limiting case since the L p -norms of its gradient blow up for p > 4 as γ → ∞. Our aim is to obtain a numerical verification of the study of the optimal exponent from [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF].

Motivations. Models as Eq. (3.1), possibly including advection terms or coupled with a second equation, have been largely applied to the description of tissue and tumor growth. They are based on the mechanical aspects that drive cell motion and proliferation. Describing the fact that cells move down pressure gradients, the flow velocity in Eq. (3.1) is given by Darcy's law, namely

⃗ v = -∇p.
Besides driving the cells movement, the pressure also controls the cell proliferation through an inhibitory effect, since the division rate is lower at higher pressure values. Therefore, we make the following assumption on the growth rate G: there exist positive constants α and p H such that

G ′ (p) ⩽ -α, G(p H ) = 0, (3.3) 
where p H represents the so-called homeostatic pressure, namely the lowest level of pressure that prevents cell multiplication due to contact inhibition. Later in the paper, we also consider an extension of the model where G depends both on the pressure and the concentration of a nutrient (for instance, oxygen or glucose), denoted by c(x, t).

In this case, Eq. (3.1) would be coupled with an equation on c that depends both on the environmental conditions (in vitro or in vivo) and on the stage of the tumor development (avascular or vascular ). We refer the reader to [START_REF] Perthame | Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient[END_REF] for the formulation of the Hele-Shaw problem with nutrient and its traveling wave solutions.

As mentioned above, the density actually satisfies a porous medium type equation, which can be directly recovered combining the pressure law, Eq. (3.2), and Eq. (3.1), namely

∂n ∂t = γ γ + 1 ∆n γ+1 + nG(p).
As the solution of the classical porous medium equation (PME), n evolves with finite speed of propagation, since the diffusion term degenerates when n = 0. Thus, if the initial data has compact support, the solution remains compactly supported at any time and exhibits a moving front, which is the interface that separates {n > 0} and {n = 0}.

As shown in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], as γ → ∞, the pressure p γ of Eq. (3.1) converges strongly in L 1 to a function p ∞ which is a solution of a Hele-Shaw free boundary problem defined on the set Ω(t) := {x, p ∞ (x, t) > 0}, in which p ∞ satisfies an elliptic equation. The so-called incompressible limit of Eq. (3.1) has attracted a lot of interest in the last decades and a vast literature on the topic is now available, cf. [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF][START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF]]. The Hele-Shaw limit has also been studied for several extensions of the model at hand, we refer the reader to [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF][START_REF] David | Convergence rate for the incompressible limit of nonlinear diffusion-advection equations[END_REF][START_REF] David | On the Incompressible Limit for a Tumour Growth Model incorporating Convective Effects[END_REF][START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF][START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF][START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF][START_REF] Dębiec | Incompressible limit for a two-species model with coupling through Brinkman's law in any dimension[END_REF] for models including nutrients, viscosity, active motion, convective effects or a second species of cells. The complete proof can be found in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF], while here we present a formal argument to explain the link between the compressible model and the free boundary formulation. Upon multiplying Eq. (3.1) by γn γ-1 , we recover the equation satisfied by the pressure, which reads

∂p ∂t = γp(∆p + G(p)) + |∇p| 2 . (3.4)
Then passing formally to the limit γ → ∞ we find the complementarity relation

p ∞ (∆p ∞ + G(p ∞ )) = 0.
This implies that the limit pressure has to satisfy the elliptic equation -∆p ∞ = G(p ∞ ) in the tumor region Ω(t).

Our contribution.

• Asymptotic preserving property. In this paper, we show that, as γ → ∞, the aforementioned scheme is asymptotic preserving and the solution converges to a solution of the following finite difference equation p i (δ 2 x p i + G(p i )) = 0, where we denote δ 2

x p i := (p i+1 -2p i + p i-1 )/|∆x| 2 . • Aronson-Bénilan estimate. The derivation of the complementarity relation in the continuous case is deeply related to a lower bound on the quantity w := ∆p + G(p), namely w ≳ -C γt , cf. [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]. This bound is an adaptation of the Aronson-Bénilan (AB in short) estimate, which is a well-known and powerful tool in the theory of porous medium equations. It is our aim to recover a discrete version of this lower bound for our scheme. This purpose has been already addressed in the literature, in particular we refer the reader to [START_REF] Monsaingeon | An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem[END_REF] for a tracking front scheme for which the author proves the Aronson-Bénilan estimate for the classical porous medium equation (namely, with no reaction terms), and for any γ > 1. Unlike [START_REF] Monsaingeon | An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem[END_REF], we keep a fixed grid and show that the AB estimate holds also for a restricted class of pressure-penalized growth rates G = G(p), only in the cases γ = 1 and γ ≈ ∞ which is our interest for the Hele-Shaw limit. To the best of our knowledge, we are the first to prove the discrete version of the AB estimate for a nontrivial pressure-dependent reaction term in the porous medium equation. It is not the main goal of this paper to prove the convergence of the scheme as ∆x → 0, nevertheless, we want to point out that this estimate could be useful in this direction.

• Focusing solution. The solutions of Eq. (3.1) exhibit different kind of singularities in the incompressible limit γ → ∞. For instance, the limit density n ∞ shows jump discontinuities across the boundary of the tumor region ∂Ω(t), while the pressure p ∞ can develop singularities in time. In fact, when a new saturated region is generated outside Ω(t), i.e. when n ∞ (•, s) becomes 1 in a set of positive measure contained outside the original tumor region, for some s > t, the pressure instantaneously becomes positive in the same set, according to the relation p ∞ (1 -n ∞ ) = 0. Moreover, time discontinuities can also appear when the set Ω(t) undergoes certain topological changes, for instance when the support contains a hole which closes up at time t = T * , which is called focusing time. This particular solution is referred to as focusing solution. The hole filling problem has attracted a lot of attention since it represents the limiting case for several regularity results. For instance, in [START_REF] Aronson | A selfsimilar solution to the focusing problem for the porous medium equation[END_REF], Aronson and Graveleau use the focusing solution to show that the Hölder continuity of the pressure gradient is optimal, for dimension d ⩾ 2. In fact, the pressure gradient blows up at the focusing time T * . In [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF], the authors prove that the L 4 -norm of ∇p γ is uniformly bounded with respect to γ. Then, they show that this uniform estimate is optimal using the focusing solution as a counterexample. Through an asymptotic argument on a radial solution, they compute that 4 is the highest possible order of integrability for the gradient of the pressure of the Hele-Shaw problem. One of the main interests of this paper is to numerically investigate and confirm this property of the focusing solution. To this end, we perform 2-dimensional simulations with initial data given by the characteristic function of a spherical shell. The results obtained by computing the L pnorms of the pressure gradient clearly show its singularity at the focusing time and confirm the worsening of the blow-up as the exponents become greater than 4. At the best of our knowledge, there are no numerical inspections of this sharpness result in the literature, although the focusing solution has been deeply studied both analytically and numerically [START_REF] Aronson | A selfsimilar solution to the focusing problem for the porous medium equation[END_REF][START_REF] Aronson | Limit behaviour of focusing solutions to nonlinear diffusions[END_REF][START_REF] Aronson | The focusing problem for the porous medium equation: Experiment, simulation and analysis[END_REF]. Previous works. The numerical simulation of the tumor growth model (3.1) is challenging in two aspects, the lack of regularity of solutions near the free boundary, which is a common difficulty of porous medium equations, and the stiffness appearing in the Hele-Shaw limit γ → ∞. The numerical study of porous medium equations lasts for decades and a variety of algorithms have been proposed. An early study of the finite difference method can be found in [START_REF] Graveleau | A finite difference approach to some degenerate nonlinear parabolic equation[END_REF]. Further studies on the finite difference method include the interface tracking algorithm, [START_REF] Benedetto | An Interface Tracking Algorithm for the Porous Medium Equation[END_REF][START_REF] Monsaingeon | An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem[END_REF], which works perfectly in 1D by separating the computation of the free boundaries and the solutions inside the support, a WENO scheme, [START_REF] Liu | High order finite difference WENO schemes for nonlinear degenerate parabolic equations[END_REF], which eliminates the oscillations around the free boundaries, and so on. There is also an extensive study on the finite volume method, [START_REF] Bessemoulin-Chatard | A finite volume scheme for nonlinear degenerate parabolic equations[END_REF][START_REF] Eymard | Convergence of a finite volume scheme for nonlinear degenerate parabolic equations[END_REF] and various finite element methods, including an early study of the convergence analysis, [START_REF] Rose | Numerical Methods for Flows Through Porous Media. I[END_REF], the locally discontinuous Galerkin method, [START_REF] Zhang | Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method[END_REF], and the adaptive mesh, [START_REF] Baines | Scale-invariant moving finite elements for nonlinear partial differential equations in two dimensions[END_REF][START_REF] Baines | A moving mesh finite element algorithm for the adaptive solution of time-dependent partial differential equations with moving boundaries[END_REF][START_REF] Ngo | A study on moving mesh finite element solution of the porous medium equation[END_REF]. The relaxation scheme, which is originally designed for conservation laws, [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF], can be extended to porous medium equations successfully as well, [START_REF] Cavalli | High-order relaxation schemes for nonlinear degenerate diffusion problems[END_REF][START_REF] Naldi | Relaxation schemes for partial differential equations and applications to degenerate diffusion problems[END_REF]. Besides the methods on Euler coordinates, there is an increasing interest in designing Lagrangian methods, see for example [START_REF] Budd | Self-similar numerical solutions of the porous-medium equation using moving mesh methods[END_REF][START_REF] Carrillo | Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms[END_REF][START_REF] Carrillo | A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes[END_REF][START_REF] Carrillo | Numerical study of a particle method for gradient flows[END_REF][START_REF] Liu | On Lagrangian schemes for porous medium type generalized diffusion equations: A discrete energetic variational approach[END_REF]. Despite the extensive study of the numerical methods for porous medium equations, the algorithm preserving the free boundary limit is rarely studied. A fully implicit solver is generally needed. A recent work shows that one way to avoid a fully implicit scheme is to construct a semiimplicit scheme by combining the relaxation scheme with the prediction-correction formulation, [START_REF] Liu | An accurate front capturing scheme for tumor growth models with a free boundary limit[END_REF].

Contents of the paper. The semi-discrete scheme and the analysis of its properties are presented in Section 3.2. We prove stability providing a priori estimates on the main quantities and their derivatives, Subsec. 3.2.1. Let us point out that these estimates are uniform with respect to γ, and therefore stability holds for any γ > 1. Then, we prove the asymptotic preserving property of the scheme, Subsec. 3.2.2 and recover a discrete version of the Aronson-Bénilan estimate for a nontrivial reaction term, Subsec. 3.2.3. We introduce the implicit scheme in Section 3.3, and we extend the uniform a priori estimates previously derived on the semidiscrete scheme. The solvability of the scheme is proven in detail in Appendix 3.A. We report the results of several numerical simulations in Section 3.4. We test the accuracy of the scheme using the explicit Barenblatt profile, and we compare the numerical solutions with γ large to the exact solutions of the in vitro and in vivo model with nutrients. Moreover, we apply our scheme to a two-species model of tumor growth, where both populations evolve under a porous medium mechanics. Finally, we report the results of the 2-dimensional simulations on the focusing solution which confirm the sharpness of the L 4 -uniform bound of ∇p.

The semi-discrete scheme

To better focus on the analysis of the upwind discretization in space, we start from the semidiscrete scheme. For simplicity, only the one dimensional problem is considered. The scheme for the multi-dimensional problem with tensor product grids can be analyzed similarly.

We suppose the domain is a closed interval Ω = [-X, X]. We choose a uniform mesh with mesh size ∆x = X Mx , where 2M x is the number of sub-intervals. Denote n i (t) and p i (t) to be the numerical approximations of n(t, x i ) and p(t, x i ), where

x i = i∆x for i ∈ I = {-M x , -M x + 1, . . . , M x }.
Then the semi-discrete finite difference scheme for Eq. (3.1) is

d dt n i = n i+1/2 q i+1/2 -n i-1/2 q i-1/2 ∆x + n i G i , i ∈ I, (3.5) 
with

q i+1/2 = p i+1 -p i ∆x , G i = G(p i ). (3.6) 
The Neumann boundary condition is applied so that n -Mx-1 = n -Mx+1 and n Mx+1 = n Mx-1 . We define n i+ 1 2 in the upwind manner

n i+1/2 = n i , if q i+1/2 ⩽0, n i+1 , if q i+1/2 > 0. (3.7) 
Multiplying Eq. (3.5) by γn γ-1 i we recover the finite difference equation on the pressure

d dt p i = γn γ-1 i n i+1/2 -n i ∆x q i+1/2 + n i -n i-1/2 ∆x q i-1/2 + γp i δ 2 x p i + G i , (3.8) 
where δ 2 x p i :=

q i+1/2 -q i-1/2 ∆x .
Assumptions. In order to prove stability results such as L ∞ control and discrete BV -estimates, we need to make the following assumptions: we assume that there exists positive constants C

and p H (homeostatic pressure) such that

0 ⩽ p 0 i ⩽ p H , ∆x i |n 0 i | ⩽ C ∆x i |p 0 i | ⩽ C, i |n 0 i+1 -n 0 i | ⩽ C, ∆x i d dt n i 0 ⩽ C.
(3.9)

In the following section we will prove that thanks to Gronwall's lemma the above regularity of the initial data propagates along time.

Stability results

Now we prove the positivity preserving property of the semi-discrete scheme (3.5), and the a priori estimates that imply stability for any γ > 1.

Theorem 3.2.1 (A priori estimates). Let T > 0 and n H := p 1/γ H and assume (3.3) and (3.9) hold true. Then, for all 0 ⩽ t ⩽ T , we have

(i) 0 ⩽ n i (t) ⩽ n H , 0 ⩽ p i (t) ⩽ p H , ∀i, (ii) ∆x i |n i (t)| ⩽ C(T ), ∆x i |p i (t)| ⩽ C(T ), (iii) i |n i+1 (t) -n i (t)| ⩽ C(T ), (iv) ∆x i d dt n i (t) ⩽ C(T ), T 0 ∆x i d dt p i dt ⩽ C(T ), (v) 
T

0 ∆x i pi+1-pi ∆x 2 dt ⩽ C(T ).
for some positive constants C(T ) depending on T and independent of γ.

Proof. L ∞ estimates. Combining Eq. (3.6) and Eq. (3.7) we recover

γn γ-1 i n i+1/2 -n i ∆x q i+1/2 =    0 if q i+1/2 < 0, γn γ-1 i n i+1 -n i ∆x p i+1 -p i ∆x if q i+1/2 > 0, and 
γn γ-1 i n i -n i-1/2 ∆x q i-1/2 =    γn γ-1 i n i -n i-1 ∆x p i -p i-1 ∆x if q i-1/2 < 0, 0 if q i-1/2 > 0.
Therefore, the equation on the pressure, Eq. (3.8), reads

d dt p i = γp (γ-1)/γ i n i+1 -n i ∆x (q i+1/2 ) + + n i -n i-1 ∆x (q i-1/2 ) -+ γp i δ 2 x p i + G i ,
where (•) + and (•) -denote the positive and negative parts, respectively.

To begin with, we prove the non-negativity of n i (t) and p i (t). In fact, if n i = 0 at t = t 0 , by scheme (3.5), we have

d dt n i = n i+1/2 -n i ∆x q i+1/2 + n i -n i-1/2 ∆x q i-1/2 = (n i+1 -n i ) + ∆x (q i+1/2 ) + + (n i -n i-1/2 ) - ∆x (q i-1/2 ) - ≥ 0,
which implies that n i and p i can never be negative.

As for the upper bound, let us notice that the following inequality holds

d dt p i ⩽ q i+1/2 2 + + q i-1/2 2 -+ γp i (δ 2 x p i + G i ). (3.10) 
Let us assume that at time t = t 0 , max i p i = p H . For simplicity of notations, we denote

p i = max i p i .
It is easy to check that q i+1/2 + = q i-1/2 -= 0, δ 2 x p i ≤ 0 and G i = 0. Then, inequality (3.10) shows that d dt p i ≤ 0, which implies that p i can never be greater than p H , and thus n i can never be greater than n H . L 1 -estimate. To prove estimates (ii), we compute the sum of Eq. (3.5) for all i, and we find successively

d dt ∆x i n i = i (n i+1/2 q i+1/2 -n i-1/2 q i-1/2 ) + ∆x i n i G(p i ) = ∆x i n i G(p i ), d dt ∆x i n i ⩽ G(0)∆x i n i ,
where in the last inequality we use the assumptions on the growth term, cf. Eq. (3.3). By Gronwall's lemma and Eq. (3.9), we have

∆x i |n i (t)| ⩽ e G(0)t ∆x i |n 0 i | ⩽ C(T ), for 0 ⩽ t ⩽ T.
Upon using the L ∞ -bound of the pressure, we finally obtain

∆x i |p i (t)| ⩽ p (γ-1)/γ H ∆x i |n i (t)| ⩽ C(T ).
BV -estimate. We now subtract the equation for n i from the equation for n i+1 and multiply by sign(n i+1 -n i )

d dt |n i+1 -n i | ≤ 1 ∆x (n i+3/2 |q i+3/2 | -2n i+1/2 |q i+1/2 | + n i-1/2 |q i-1/2 |) + (n i+1 G(p i+1 ) -n i G(p i ))sign(n i+1 -n i )).
We sum over i to obtain

d dt i |n i+1 -n i | ⩽ 1 ∆x i (n i+3/2 |q i+3/2 | -2n i+1/2 |q i+1/2 | + n i-1/2 |q i-1/2 |) + i |n i+1 -n i |G(p i ) + n i+1 (G(p i+1 ) -G(p i ))sign(n i+1 -n i )
since G ′ is negative. Hence, we obtain

∆x i d dt n i ⩽ e G(0)t ∆x i d dt n i 0 ⩽ C(T ), for 0 ⩽ t ⩽ T. (3.12)
It remains to prove the estimate on the time derivative of the pressure. We compute

T 0 ∆x i d dt p i dt ⩽ T 0 ∆x i γn γ-1 i d dt n i 1 {ni⩽1/2} dt+2 T 0 ∆x i n i d dt p i 1 {ni⩾1/2} dt.
(3.13) Thanks to Eq. (3.12) the first term in the right-hand side is bounded.

Let us denote β := min i |G ′ (p i )|. We sum Eq. (3.11) over i and we integrate in time to obtain

∆x i d dt n i +β T 0 ∆x i n i d dt p i dt ⩽ G(0) T 0 ∆x i d dt n i dt+∆x i d dt n i 0 ⩽ C(T ),
where the last inequality comes from Eq. (3.12). Thanks to this bound, we know that

T 0 ∆x i n i d dt p i dt ⩽ C(T ),
and from Eq. (3.13) we finally find

T 0 ∆x i d dt p i dt ⩽ C(T ).
L 2 -estimate on the pressure gradient. We sum for all i the inequality satisfied by the pressure, Eq. (3.10), namely

i d dt p i ⩽ i p i+1 -p i ∆x 2 + + i p i -p i-1 ∆x 2 - + γ i p i (δ 2 x p i + G i ) ⩽ i p i+1 -p i ∆x 2 + γ i p i p i+1 -2p 2 i + p i-1 p i |∆x| 2 + γ i p i G i = i p i+1 -p i ∆x 2 -γ i p i+1 -p i ∆x 2 + γ i p i G i .
Hence, we have

(γ -1) i p i+1 -p i ∆x 2 ⩽ - i d dt p i + γ i p i G i ,
and, upon integrating in time, we recover

T 0 ∆x i p i+1 -p i ∆x 2 dt ⩽ 1 γ -1 ∆x i p 0 i -∆x i p i (T ) + γ γ -1 T 0 ∆x i p i G i dt.
Thus (v) follows from the assumptions on G and p 0 i , cf. Eqs. (3.3, 3.9), and the estimates (ii) proven above.

The asymptotic-preserving property

As mentioned in the introduction, it is well-known that when γ → ∞ the porous medium-type equation (3.1) turns out to be a free boundary problem of Hele-Shaw type. In particular, passing to the limit in the equation of the pressure

∂p ∂t = γp(∆p + G(p)) + |∇p| 2 ,
allows to recover the complementarity relation, namely

p ∞ (∆p ∞ + G(p ∞ )) = 0,
in the sense of distributions.

We show that the semi-discrete scheme (3.5) satisfies the same property and thus is asymptotic preserving (AP) as γ → ∞. First of all, let us prove the following convergence result (where we point out the dependence of the solution on γ in the notation).

Theorem 3.2.2 (Convergence result). Given n γ,i , p γ,i a solution of scheme (3.5) with γ > 1.

Then, for all i, we have

n γ,i γ→∞ ----→ n ∞,i , in L p (0, T ), for all 1 ⩽ p < ∞, p γ,i γ→∞ ----→ p ∞,i , in L p (0, T ), for all 1 ≤ p < ∞, q γ,i+ 1 2 γ→∞ ----⇀ q ∞,i+ 1 2 , weakly in L 2 (0, T ).
Proof. Thanks to the uniform bounds (ii), (iv) stated in Theorem 3.2.1, by standard compactness arguments we infer the convergence of n γ,i and p γ,i in L 1 (0, T ). Since both the density and the pressure are bounded uniformly in L ∞ (0, T ), they converge strongly, up to a subsequence, in any L p (0, T ), with 1 ⩽ p < ∞.

Finally, the a priori bound (v) of Theorem 3.2.1 yields the weak convergence of q γ,i+ 1 2 in L 2 (0, T ).

Now we prove the asymptotic preserving property of the scheme. First of all, let us recall the equation satisfied by the pressure

d dt p i -γn γ-1 i n i+1/2 -n i ∆x q i+1/2 + n i -n i-1/2 ∆x q i-1/2 = γp i δ 2 x p i + G i . (3.14) Since γn γ-1 i n i+1/2 -n i ∆x q i+1/2 + n i -n i-1/2 ∆x q i-1/2 ⩽ q i+1/2 2 + + q i-1/2 2 -,
thanks to Theorem 3.2.1 we know that the left-hand side of Eq. (3.14) is uniformly bounded in L 1 (0, T ). Testing Eq. (3.14) against a function φ ∈ C 1 comp (0, T ), we obtain

T 0 p i δ 2 x p i + G(p i ) φ dt =- 1 γ T 0 p i φ ′ dt - T 0 γn γ-1 i n i+1/2 -n i ∆x q i+1/2 + n i -n i-1/2 ∆x q i-1/2 φ dt .
Hence, passing to the limit γ → ∞ using Theorem 3.2.2, we recover

p ∞,i (δ 2 x p ∞,i + G(p ∞,i )) = 0,
which is the discrete formulation of the complementarity relation. We now pass to the limit also in the equation for the density, which reads

d dt n i = n i+1/2 q i+1/2 -n i-1/2 q i-1/2 ∆x + n i G i .
Multiplying by a test function, we obtain

- T 0 n i φ ′ dt = T 0 n i+1/2 q i+1/2 -n i-1/2 q i-1/2 ∆x φ dt + T 0 n i G(p i )φ dt,
hence, thanks to Theorem 3.2.2, we find (in the weak sense)

d dt n ∞,i = n ∞,i+1/2 q ∞,i+1/2 -n ∞,i-1/2 q ∞,i-1/2 ∆x + n ∞,i G(p ∞,i ).

Stronger estimate on the pressure -The Aronson-Bénilan estimate

In [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], Perthame, Quirós and Vázquez recover the compactness needed to pass to the limit in Eq. (3.4) relying on a lower bound on the Laplacian of the pressure. In fact, they extend the celebrated Aronson-Bénilan estimate of the PME to the case of non-trivial reaction term, i.e. G ̸ = 0, proving the following bound

∆p + G(p) ≳ - C γt . (3.15)
It is our interest to investigate whether this lower bound on the second derivatives still holds for Eq. (3.5), in order to obtain a discrete counterpart of a fundamental property of porous medium-type equations.

We are able to prove the discrete version of the Aronson-Bénilan estimate, Eq. (3.15), for γ = 1 and γ ≈ ∞ and for a pressure-dependent growth term of the form G(p) = α(p H -p). It remains an open question how to recover the discrete AB estimate for γ > 1 and for a general reaction term G. The discrete version of the AB property for non-trivial reaction terms could be extremely useful in order to pass to the limit as ∆x vanishes and therefore to prove the convergence of the scheme.

Theorem 3.2.3 (Aronson-Bénilan estimate). Let G(p) = α(p H -p), with α ⩾ 0. We set

w i := δ 2 x p i + G(p i ) = p i+1 -2p i + p i-1 (∆x) 2 + G(p i ), ∀i.
Then, for γ = 1 and γ ≈ ∞, scheme (3.5) satisfies the Aronson-Bénilan estimate, i.e.

w i ⩾ - 1 γt , ∀i.
Proof. As in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], it is sufficient to prove dw dt ≥ γ(w) 2 , with w := min i {w i }.

• Case γ = 1.

We have p i = n i and thus scheme (3.5) can be reformulated as

dp i dt = p i w i + (q + i+ 1 2 ) 2 + (q - i-1 2 ) 2 ,
where q

+ i+ 1 2 = max{q i+ 1 2 , 0} and q - i-1 2 = max{-q i-1 2
, 0}, and it further implies that

dw i dt = δ 2 x (p i w i ) + δ 2 x [(q + i+ 1 2 ) 2 ] + δ 2 x [(q - i-1 2 ) 2 ] -αp i w i -α(q + i+ 1 2 ) 2 -α(q - i-1 2 ) 2 . (3.16)
In order to consider the evolution of the minimal w i we denote

w j := min i w i .
On the one hand, it is easy to see that

δ 2 x (p j w j ) ≥ w j δ 2 x p j . (3.17) 
On the other hand, by definition

w j = q j+ 1 2 -q j-1 2 ∆x + α(p H -p j ),
and the inequality w j ≤ w j+1 indicates that q j+ 3 2 + q j-1 2 ≥ q j+ 1 2 (2 + α|∆x| 2 ). As a result,

q + j+ 3 2 + q + j-1 2 ≥ max{q j+ 3 2 + q j-1 2 , 0} ≥ max{q j+ 1 2 (2 + α|∆x| 2 ), 0} = q + j+ 1 2 (2 + α|∆x| 2 ).
And then, by Jensen's inequality, we get

(q + j+ 3 2 ) 2 + (q + j-1 2 ) 2 ≥ (q + j+ 1 2 ) 2 (2 + α|∆x| 2 ), or equivalently, δ 2 x [(q + j+ 1 2 ) 2 ] ≥ α(q + j+ 1 2 ) 2 . (3.18)
Similarly, we recover δ

2 x [(q - j-1 2 ) 2 ] ≥ α(q - j- 1 2 
) 2 . Upon combining Eq. (3.17) with Eq. (3.16) and adding and subtracting G(p j )w j , we get

dw i dt ⩾ w 2 i -G(p j )w j + δ 2 x [(q + i+ 1 2 ) 2 ] + δ 2 x [(q - i-1 2 ) 2 ] -αp i w i -α(q + i+ 1 2 ) 2 -α(q - i-1 2 ) 2 , which yields dw i dt ⩾ w 2 i -G(p j )w j -αp i w i ,
thanks to Eq. (3.18). Finally, using the definition of G and assuming without loss of generality that w j ⩽ 0, we obtain

dw i dt ≥ w 2 i ,
which implies

w j ≥ - 1 t . • Case γ ≈ ∞.
Now, we prove the AB estimate for γ very large. We recall that

d dt p i = γn γ-1 i n i+1/2 -n i ∆x q i+1/2 + n i -n i-1/2 ∆x q i-1/2 + γp i δ 2 x p i + G i ,
and we use the following definitions

w i = δ 2 x p i +G(p i ) = q i+1/2 -q i-1/2 ∆x + G(p i ), q i+ 1 2 = n γ i+1 -n γ i ∆x .
Computing the time derivative of q i+1/2 we find

1 γ d dt q i+1/2 = 1 |∆x| 2 n γ-1 i+1 n i+3/2 q i+3/2 -n i+1/2 q i+1/2 -n γ-1 i n i+1/2 q i+1/2 -n i-1/2 q i-1/2 .
Hence,

1 γ d dt w i = 1 |∆x| 3 n γ-1 i+1 n i+3/2 q i+3/2 -n i+1/2 q i+1/2 -n γ-1 i n i+1/2 q i+1/2 -n i-1/2 q i-1/2 + 1 |∆x| 3 -n γ-1 i n i+1/2 q i+1/2 -n i-1/2 q i-1/2 + n γ-1 i-1 n i-1/2 q i-1/2 -n i-3/2 q i-3/2 - α γ γn γ-1 i n i+1/2 -n i ∆x q i+1/2 + n i -n i-1/2 ∆x q i-1/2 + γp i δ 2 x p i + G i . (3.19) 
Once again we define min i w i =: w j . Let us notice that, for γ ≈ ∞, we have

n γ-1 j+1 n j+2 ≈ p j+1 , since n γ-1 j+1 n j+2 = (p j+1 ) γ-1 γ (p j+2 ) 1 γ .
Analogously, we also have

n γ-1 j n j+1/2 ≈ p j n γ-1 j n j-1/2 ≈ p j .
Thus, when γ ≈ ∞, from Eq. (3.19) we recover

1 γ d dt w j = 1 (∆x) 3 n γ-1 j+1 n j+3/2 q j+3/2 -n j+1/2 q j+1/2 -n γ-1 j n j+1/2 q j+1/2 -n j-1/2 q j-1/2 + 1 (∆x) 3 -n γ-1 j n j+1/2 q j+1/2 -n j-1/2 q j-1/2 + n γ-1 j-1 n j-1/2 q j-1/2 -n j-3/2 q j-3/2 -αp j w j - α ∆x n γ-1 i (n i+1/2 -n i )q i+1/2 + (n i -n i-1/2 )q i-1/2
≈ 1 (∆x) 3 p j+1 q j+3/2 -q j+1/2 -p j q j+1/2 -q j-1/2 + 1 (∆x) 3 -p j q j+1/2 -q j-1/2 + p j-1 q j-1/2 -q j-3/2 -αp j w j ⩾ p j+1 w j+1 -2p j w j + p j-1 w j-1

(∆x) 2 ≥ w 2 j ,
where we assumed again w j ⩽ 0. Hence

d dt w j ⪆ γw 2 j ,
thus the result is proven.

The fully discrete implicit scheme

Now we consider the fully discrete implicit scheme and show that all the properties for the semi-discrete scheme hold for the fully discrete scheme if the time step ∆t is small enough. Similar to Section 3.2, we only consider the one dimensional problem and the scheme for the multidimensional problem is straightforward. In space, we use the same notations as in Section 3.2. We denote N k i to be the numerical approximation of n(t k , x i ), where t k = k∆t and x i = i∆x, k ≥ 0, i ∈ I. Then P k i := N k i γ is the numerical approximation of p(t k , x i ) and the fully implicit scheme can be written as

δ t N k i = N k+1 i+ 1 2 Q k+1 i+ 1 2 -N k+1 i-1 2 Q k+1 i-1 2 ∆x + N k+1 i G k+1 i , (3.20) 
where

δ t N k i = N k+1 i -N k i ∆t , Q k i+ 1 2 = P k i+1 -P k i ∆x , G k i = G(P k i ) ≤ G(0), and 
N k i+1/2 = N k i , if Q k i+1/2 < 0, N k i+1 , if Q k i+1/2 > 0.
For simplicity, we introduce

A(U, V ) = V Q + (U, V ) -U Q -(U, V ), for U, V ≥ 0, (3.21) 
where Q(U, V ) = (V γ -U γ )/∆x and

Q + (U, V ) = max{Q(U, V ), 0}, Q -(U, V ) = max{-Q(U, V ), 0}.
A direct computation shows that

∂ 1 A(U, V ) = -γH(U, V )U γ-1 -Q -(U, V ) ≤ 0, ∂ 2 A(U, V ) = γH(U, V )V γ-1 + Q + (U, V ) ≥ 0,
where

H(U, V ) = U, if Q(U, V ) < 0, V, if Q(U, V ) > 0.
With the notations defined above, scheme (3.20) can be reformulated as

(1 -∆tG k+1 i )N k+1 i -ν A k+1 i+ 1 2 -A k+1 i-1 2 = N k i , (3.22) 
where ν = ∆t/∆x and

A k+1 i+ 1 2 = A(N k+1 i , N k+1 i+1 ) = N k+1 i+ 1 2 Q k+1 i+ 1 2 .
Theorem 3.3.1 (A priori estimates). Let T > 0 and n H := p 1/γ H , ∆t < 1/G(0) and k(T ) = ⌊T /∆t⌋. Then, there exists a unique solution

N k i of Eq. (3.22) satisfying (i) 0 ⩽ N k i ⩽ n H , 0 ⩽ P k i ⩽ p H , ∀t > 0, ∀i, and ∀n, (ii) ∆x i N k i ⩽ C(T ), ∆x i P k i ⩽ C(T ), (iii) let M k i be a non-negative solution satisfying Eq. (3.22), then ∆x i |M k i -N k i | ⩽ C(T ), (iv) if i |N 0 i+1 -N 0 i | ⩽ C, then i |N k i+1 -N k i | ⩽ C(T ), (v) ∆x i |δ t N k i | ⩽ C(T ), ∆x i |δ t P k i | ⩽ C(T ), (vi) ∆t∆x k j=0 i |Q j i+ 1 2 | 2 ⩽ C(T ),
for some positive constant C(T ) depending on T and independent of γ.

Proof. Solvability and L ∞ estimate. When ∆t < 1/G(0) and 0 ≤ N k i ≤ p

1 γ
H for all i, we claim that there exists a unique solution

N k+1 i satisfying 0 ≤ N k+1 i ≤ p 1 γ
H . The proof relies on the the existence of sub-and supersolutions. When Ni = p 1 γ H for all i, we have G( N γ i ) < 0 and A( Ni , Ni+1 ) = 0, which implies that

(1 -∆tG( N γ i )) Ni -ν A( Ni , Ni+1 ) -A( Ni-1 , Ni ) ≥ N k i and thus Ni = p 1 γ
H is a supersolution. Similarly, we can prove that Ni = 0 is a subsolution. Then following the proof in [3], we can prove the existence and uniqueness of the solution. The detailed proof can be found in Appendix 3.A. L 1 estimate. Summing up Eq. (3.20) over i, we have

∆x i N k+1 i -∆x i N k i = ∆t∆x i N k+1 i G k+1 i ≤ G(0)∆t∆x i N k+1 i .
As a result, when ∆t ≤ α/G(0) with α < 1, we have

∆x i N k i ≤ 1 (1 -∆tG(0)) k ∆x i N 0 i ≤ 1 (1 -α) G(0)T α ∆x i N 0 i ,
where T = k∆t. Further, we have

i P k i ≤ p γ-1 H i N k i ≤ C(T ). L 1 -contraction. Denote M k
i to be another non-negative solution satisfying Eq. (3.22), or more specifically

(1 -∆tG k+1 M,i )M k+1 i -ν A k+1 M,i+ 1 2 -A k+1 M,i-1 2 = M k i , where G k M,i = G(P k M,i ) with P k M,i = (M k i ) γ , A k+1 M,i+ 1 2 = A i+ 1 2 (M k+1 i , M k+1 i+1 ).
Subtracting the equation for N k i from the equation for M k i , we get

I 1 -ν A k+1 M,i+ 1 2 -A k+1 N,i+ 1 2 + ν A k+1 M,i-1 2 -A k+1 N,i-1 2 = M k i -N k i ,
where the term I 1 is defined as

I 1 = (1 -∆tG k+1 M,i )M k+1 i -(1 -∆tG k+1 N,i )N k+1 i = (1 -∆tG k+1 M,i )(M k+1 i -N k+1 i ) -∆t(G k+1 M,i -G k+1 N,i )N k+1 i = (1 -∆tG k+1 M,i )(M k+1 i -N k+1 i ) -∆tG ′ (P k+1 η,i )N k+1 i (P k+1 M,i -P k+1 N,i ) where P k+1 η,i = (η k+1 i ) γ with η k+1 i
being some non-negative number between M k+1 i and N k+1 i . Noticing that G ′ (•) ≤ 0 and the fact that P k+1 M,i -P k+1 N,i shares the same sign with M k+1 i -N k+1 i , we have that

I 1 sign(M k+1 i -N k+1 i ) ≥ (1 -∆tG(0))|M k+1 i -N k+1 i | + ∆t min p |G ′ (p)|N k+1 i P k+1 M,i -P k+1 N,i .
In fact, we can further prove that

I 1 sign(M k+1 i -N k+1 i ) ≥ (1 -∆tG(0))|M k+1 i -N k+1 i | + ∆t min p |G ′ (p)| max{M k+1 i , N k+1 i } P k+1 M,i -P k+1 N,i ≥ (1 -∆tG(0))|M k+1 i -N k+1 i |.
(3.23)

By the mean value theorem, we have

A k+1 M,i+ 1 2 -A k+1 N,i+ 1 2 = α k+1 i M k+1 i -N k+1 i + β k+1 i+1 M k+1 i+1 -N k+1 i+1
where α k+1 i ≤ 0 and β k+1 i ≥ 0 are defined as

α k+1 i := ∂ 1 A(ξ k+1 i , M k+1 i+1 ) = A(M k+1 i , M k+1 i+1 ) -A(N k+1 i , M k+1 i+1 ) M k+1 i -N k+1 i , β k+1 i := ∂ 2 A(N k+1 i , η k+1 i+1 ) = A(N k+1 i , M k+1 i+1 ) -A(N k+1 i , N k+1 i+1 ) M k+1 i+1 -N k+1 i+1 , for some ξ k+1 i , η k+1 i between M k+1 i and N k+1 i . As a result, A k+1 M,i+ 1 2 -A k+1 N,i+ 1 2 sign(M k+1 i -N k+1 i ) ≤ α k+1 i M k+1 i -N k+1 i + β k+1 i+1 M k+1 i+1 -N k+1 i+1 . (3.24)
Similarly, we can prove that 

A k+1 M,i-1 2 -A k+1 N,i-1 2 sign(M k+1 i -N k+1 i ) ≥ α k+1 i-1 M k+1 i-1 -N k+1 i-1 + β k+1 i M k+1 i -N k+1 i . ( 3 
1 -∆tG(0) -να k+1 i + νβ k+1 i M k+1 i -N k+1 i -νβ k+1 i+1 M k+1 i+1 -N k+1 i+1 + να k+1 i-1 M k+1 i-1 -N k+1 i-1 ≤ M k i -N k i .
Summing over i, we have

(1 -∆tG(0)) i |M k+1 i -N k+1 i | ≤ i |M k i -N k i |.
which indicates that, when ∆t < 1/G(0),

∆x i M k i -N k i ≤ 1 (1 -∆tG(0)) k ∆x i M 0 i -N 0 i ≤ C(T ), (3.26) 
since we assumed that

∆x i M 0 i -N 0 i ≤ C. BV -estimate. When ∆t < 1/G(0), by taking M k i = N k i+1 in Eq. (3.26), we get that, i |N k i+1 -N k i | ≤ 1 (1 -∆tG(0)) k i |N 0 i+1 -N 0 i | ≤ C(T ),
where in the last inequality we used the assumption i |N 0 i+1 -N 0 i | ⩽ C. Estimate on time derivative. The boundedness of the discrete time derivative of the density comes directly from the L 1 -contraction (3.26). Assuming ∆t < 1/G(0) and taking M k i = N k+1 i in Eq. (3.26), we have that

∆x i |δ t N k i | ≤ 1 (1 -∆tG(0)) k ∆x i |δ t N 0 i | ≤ C(T ). (3.27)
Analogous to the semi-discrete case, we can prove an estimate of the discrete time derivative of the pressure. Denoting k(T ) = ⌊T /∆t⌋, where ⌊x⌋ is the largest integer that is less or equal than x, then we are able to prove that

∆t∆x k(T ) n=1 i δ t P k N,i ⩽ C(T ). (3.28) 
The proof is similar to the semi-discrete case. To begin with, we have that

|δ t P k N,i | = |δ t P k N,i |1 {max{N k i ,N k+1 i }≤ 1 2 } + |δ t P k+1 N,i |1 {max{N k i ,N k+1 i }> 1 
2 } . The first term is uniformly bounded in γ thanks to Eq. (3.27) and

|δ t P k N,i |1 {max{N k i ,N k+1 i }⩽ 1 2 } ≤ γ max{(N k i ) γ-1 , (N k+1 i ) γ-1 }|δ t N k i |1 {max{N k i ,N k+1 i }⩽ 1 2 } ≤ γ 2 γ-1 |δ t N k i |. (3.29)
To give an estimate of the second term, we recall the first inequality in Eq. (3.23), i.e.

I 1 sign(M k+1 i -N k+1 i ) ≥(1 -∆tG(0))|M k+1 i -N k+1 i | + ∆t min p |G ′ (p)| max{M k+1 i , N k+1 i } P k+1 M,i -P k+1 N,i .
And then following a similar procedure as before, we have that

1 -∆tG(0) -να k+1 i + νβ k+1 i M k+1 i -N k+1 i + ∆t min p |G ′ (p)| max{M k+1 i , N k+1 i } P k+1 M,i -P k+1 N,i -νβ k+1 i+1 M k+1 i+1 -N k+1 i+1 + να k+1 i-1 M k+1 i-1 -N k+1 i-1 ≤ M k i -N k i . Now taking M k i = N k+1 i
, dividing both sides by ∆t and summing over i and k = 0, 1, . . . , we proved that

min p |G ′ (p)|∆t∆x k(T ) k=1 i max{N k i , N k+1 i } δ t P k N,i ≤∆x i δ t N 0 i -∆x i δ t N k(T ) i + G(0)∆t∆x k(T ) k=1 i |δ t N k i | ≤ C(T ), which further implies that ∆t∆x k(T ) k=1 i |δ t P k N,i |1 {max{N k i ,N k+1 i }> 1 2 } ≤ 2∆t∆x k(T ) k=1 i max{N k i , N k+1 i }|δ t P k N,i | ≤ C(T ).
(3.30)

The conclusion (3.28) is then obvious by combining Eq. (3.29) and Eq. (3.30). L 2 -estimate on the pressure gradient. Rewriting Eq. (3.20) to be

δ t N k i = N k+1 i+ 1 2 -N k+1 i ∆x Q k+1 i+ 1 2 + N k+1 i -N k+1 i-1 2 ∆x Q k+1 i-1 2 + N k+1 i (δ 2 x P k+1 i + G k+1 i )
and multiplying both sides by γ(N k+1 i ) γ-1 , we get

γ(N k+1 i ) γ-1 δ t N k i ≤ Q k+1 i+ 1 2 2 + + Q k+1 i-1 2 2 - + γP k+1 i (δ 2 x P k+1 i + G k+1 i ),
by the following argument. By definition of Q k+1 i+ 1 2 we have

γ(N k+1 i ) γ-1 N k+1 i+ 1 2 -N k+1 i ∆x Q k+1 i+ 1 2 =    0, if Q k+1 i+ 1 2 < 0, γ(N k+1 i ) γ-1 N k+1 i+1 -N k+1 i ∆x Q k+1 i+ 1 2 if Q k+1 i+ 1 2 > 0,
and moreover, when

N k+1 i+1 ⩾ N k+1 i convexity implies γ(N k+1 i ) γ-1 N k+1 i+1 -N k+1 i ∆x ⩽ Q k+1 i+ 1 2 .
Noticing that δ t P k i ≤ γ(N k+1 i ) γ-1 δ t N k i due to the convexity, we prove

δ t P k i ≤ Q k+1 i+ 1 2 2 + + Q k+1 i-1 2 2 - + γP k+1 i (δ 2 x P k+1 i + G k+1 i ). (3.31) 
Summing Eq. (3.31) over all i, we have

δ t i P k i ≤ i Q k+1 i+ 1 2 2 + + i Q k+1 i-1 2 2 - + i γP k+1 i (δ 2 x P k+1 i + G k+1 i ) = (1 -γ) i |Q k+1 i+ 1 2 | 2 + γ i P k+1 i G k+1 i ≤ (1 -γ) i |Q k+1 i+ 1 2 | 2 + γG(0) i P k+1 i .
Then summing over n = 0, 1, 2, . . . and dividing both sides by γ -1, we get

∆t∆x k j=0 i |Q j i+ 1 2 | 2 ≤ ∆x i P 0 i -∆x i P k i γ -1 + γ γ -1 G(0)∆t∆x k j=0 i P j i ≤ C(T ).

Numerical simulations

Now we present some numerical results on Eq. (3.1) and for some extensions of the model including the effect of a nutrient. In particular, we are interested in the performance of the implicit scheme (3.20) for large values of γ, hence confirming the AP property of the scheme.

Accuracy test: the Barenblatt solution

At first, we consider the simplest example in order to test the accuracy of the scheme as γ increases. Let us take the standard porous medium equation in dimension 1, i.e. Eq. (3.1) with trivial reaction terms

∂n ∂t = ∂ 2 n γ+1 ∂x 2 ,
where for sake of simplicity we take p = γ+1 γ n γ . We take as initial data the delayed Barenblatt solution n(x, 0) = 1

t β 0 C -β γ 2(γ + 1) x 2 t 2β 0 1 γ + , (3.32) 
with t 0 = 0.01, β = 1/(γ + 2) and C a positive constant to be chosen later. We compare the numerical solution of the scheme to the Barenblatt profile for γ = 3, γ = 12, γ = 40. We compute the L 1 -error for ∆x = 1/2 k , with k = 4, 5, 6, 7, 8 and ∆t = 10 -5 .

We choose [-15, 15] to be the spatial computational domain and T = 0.1 as final time. Upon defining N x = 30/∆x, the error at time t j := j∆t is given by

err 1 (t j ) = Nx i=1 |N j i -n(i∆x, t j )|∆x. (3.33)
In the formula of the exact solution, Eq. (3.32), we choose C = 1 for γ = 3 and C = 0.1 for γ = 12, 40. In Figure 3.1, the plots of both the analytical solution and the numerical solution are displayed. We notice that as γ increases, the moving boundary becomes sharper and sharper and this affects the accuracy of the scheme as can be seen in Figure 3.2, where on the left we display the error (3.33) along time till T = 0.1, and on the right we show the spatial convergence of our scheme by plotting the following error

∥err 1 (t > 0.05)∥ ∞ = max j∆t>0.05 Nx i=1 |N j i -n(i∆x, j∆t)|∆x , (3.34) 
with respect to ∆x and for different values of γ. When checking the spatial convergence rate, we consider the maximal error over a period as in (3.34) to get rid of the affect due to oscillation as shown on the left of Figure 3.2. As shown in the figure, our scheme is roughly first order accurate in space, which is consistent with our intuition since the first order upwind finite difference discretization is applied in space. 

1D model with nutrient: in vitro and in vivo

Including the effect of a nutrient (e.g. oxygen) into the model, the density equation (3.1) is coupled with an equation for the nutrient concentration c(x, t), to obtain the system

     ∂n ∂t -∇ • (n∇p) = nG(p, c), τ ∂c ∂t -∆c + H(n, c) = 0,
where H denotes the nutrient consumption and τ is a time scaling parameter. Since the nutrient diffuses much faster than the tumor invasion, it is usual to take τ = 0. The consumption term H can take different forms, depending on which stage of tumor growth we put under investigation.

For instance, if one considers an in vitro setting, which means that the tumor is developing surrounded by an homogeneous liquid, then the level of nutrient is assumed to be constant outside the region occupied by the tumor, while inside it is consumed linearly, with a rate ψ(n) depending on the tumor cell population density. The model reads

-∆c + ψ(n)c = 0, in {n > 0}, c = c B , in R d \ {n > 0}. (in vitro)
The consumption rate ψ(n) is always non-negative and vanishes for n = 0.

A second kind of models are the in vivo models, which include the effect of the blood vessels that deliver the nutrient supply. During the early stages of tumor growth, the vasculature is present only outside the tumor region (avascular phase), and the equation reads

-∆c + ψ(n)c = (c B -c)1 {n=0} . (in vivo)
On the other hand, if the tumor is already in its vascular phase, we have

-∆c + ψ(n)c = (c B -c)K(p), (in vivo: vascular)
where K is the nutrient release rate which depends on the pressure. In particular, we assume it to decrease with respect to the pressure to describe the shrinking effect of the mechanical stress generated by the cells on the vessels, which may cause the reduction of nutrients delivery, cf. [START_REF] Macklin | Multiscale modelling and nonlinear simulation of vascular tumour growth[END_REF]. We refer the reader to [START_REF] Perthame | Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient[END_REF] for an extensive study of the Hele-Shaw model in both the in vitro and in vivo cases.

From now on, we assume that the growth term G depends only on the nutrient concentration, forgetting the effect of the pressure. Then, passing to the incompressible limit γ → ∞, we obtain the limit problem

   ∂n ∞ ∂t -∇ • (n ∞ ∇p ∞ ) = n ∞ G(c ∞ ), -∆c ∞ + H(n ∞ , c ∞ ) = 0,
and since it holds p ∞ (1 -n ∞ ) = 0, the density is constantly equal to 1 in the set {p ∞ > 0}.

As shown in [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF], one can also pass to the limit in the equation for the pressure, which leads to the Hele-Shaw problem

-∆p ∞ = G(c ∞ ), in Ω(t), p ∞ = 0, on ∂Ω(t),
where Ω(t) := {x | p ∞ (x, t) > 0}.

In vitro model: comparison with the exact solution of the Hele-Shaw problem

We consider the model (in vitro) in 1D with linear growth, i.e. G(c) = c, and

ψ(n) = n, namely    ∂ t n -∂ x (n∂ x p) = nc, -∂ xx c + nc = 0, in {n > 0}, c = c B , in R d \ {n > 0}. (3.35)
We take as initial density n(x, 0) the characteristic function of the interval [-R 0 , R 0 ], with R 0 > 0. Then, passing to the incompressible limit, the density remains always a patch, with support [-R(t), R(t)]. Therefore, we have

n ∞ = 1 [-R(t),R(t)] .
(3.36)

Thus, as computed in [START_REF] Liu | Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics[END_REF], the explicit solution is

c ∞ =    c B cosh(x) cosh(R(t)) , for x ∈ [-R(t), R(t)], c B , for x / ∈ [-R(t), R(t)],
and

p ∞ =    - c B cosh(x) cosh(R(t)) + c B , for x ∈ [-R(t), R(t)], 0, for x / ∈ [-R(t), R(t)].
(3.37)

The velocity of the front is

R ′ (t) = c B tanh(R(t)).
We perform numerical simulations using our scheme for system (3.35) for γ = 80 and compare the results to the exact solution (3.36)-(3.37). We use the computational domain [-5, 5] and choose as initial data n(x, 0) = (p ∞ (x, 0))

1 γ , (3.38) 
with p ∞ defined by (3.37). We also set c B = 1, R(0) = 1, ∆x = 0.025 and ∆t = 10 -6 , cf. Fig. 3.3.

In vivo model: comparison with the exact solution

Using again a characteristic function as initial data, in the limit γ → ∞ the model (in vivo) reads

-∂ xx c ∞ + c ∞ = (c B -c ∞ )1 {n=0} , with {n = 0} = R \ [-R(t), R(t)]
. Thus, the explicit solution is given by

c ∞ = c B e R(t) cosh(R(t)), for x ∈ [-R(t), R(t)], c B -c B sinh(R(t))e -|x| , for x / ∈ [-R(t), R(t)],
cf. [START_REF] Liu | Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics[END_REF]. The limit pressure is

p ∞ =    - c B G 0 e R(t) cosh(x) + c B G 0 e R(t) cosh(R(t)), for x ∈ [-R(t), R(t)], 0, for x / ∈ [-R(t), R(t)], (3.39) 
with a front invasion speed given by

R ′ (t) = c B G 0 sinh R(t) e R(t) .
As for the previous case, we perform numerical simulations using our scheme for the system (in vivo) with γ = 80 and compare the results to the exact solution. As before we choose (3.38) as initial data where the pressure is defined by (3.39) and we set c B = 1, R(0) = 1, ∆x = 0.025 and ∆t = 10 -6 , cf. Fig. 3.4. As in [START_REF] Liu | An accurate front capturing scheme for tumor growth models with a free boundary limit[END_REF], we notice that the scheme is more accurate for the in vivo model than for the in vitro. 

Two-species model: proliferating and necrotic cells

We consider a model including a second species of cells. Indeed, at the early stages of its growth, the tumor mass develop a necrotic core of dead cells, which is surrounded by a rim of quiescent or proliferating cells. The model reads

         ∂n P ∂t - ∂ ∂x n P ∂p ∂x = n P G(c), ∂n D ∂t - ∂ ∂x n D ∂p ∂x = n P (G(c)) -, (3.40) 
where n P and n D represent the cell densities of proliferating and necrotic (dead) cells. The total population density and the pressure are, respectively, n = n P + n D , p = n γ . Since in this case the growth rate G = G(c) can be negative, the proliferating cells die and turn into necrotic with the same rate. In particular, we assume there exists a positive constant c such that G(c) < 0 if c < c, to indicate that the cells die because of the lack of nutrients. We use the scheme (3.20) for both the equations on n P and n D and we test it for both (in vitro) and (in vivo). We take as computational domain [-6, 6], and we set c B = 1,

G(c) = 12 if c < 0.4, -15 if c ⩾ 0.4,
and as initial data

n 0 P = 1 [-1,1]
, n 0 D = 0. The numerical simulations for the in vitro and in vivo environments are displayed along time in Fig. 3.5 and Fig. 3.6, respectively.

2D model: the focusing problem

The focusing solution of the porous medium equation is the solution of Eq. (3.1) with an initial data whose support is contained outside of a compact set. At finite time the empty bubble closes up and the topological change of the support generates a singularity of the pressure gradient.

In [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF], the authors show that the pressure gradient is uniformly bounded with respect to γ in L 4 (R d × (0, T )). Then, they prove the sharpness of this uniform bound using the focusing solution as counterexample. The Hele-Shaw problem in a spherical shell is defined by the following system

-∆p ∞ = G(p ∞ ) in Ω(t), V = -∂ ν p ∞ on ∂Ω(t), (3.41) 
where ν and V denote the outward normal and the normal velocity of the free boundary, with

Ω(t) = {x; R 1 (t) ⩽ |x| ⩽ R 2 (t)}.
In [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF] the authors compute the asymptotic behaviour of the L p -norms in space and time of the gradient of a radial solution, choosing for the sake of simplicity a constant reaction term and external radius R 2 (t) = R 2 fixed. They show that the L p -norms are uniformly bounded (with respect to γ) if and only if p ⩽ 4, which confirms that the uniform L 4 -bound of the PME solution gradient is optimal. We use our fully discrete scheme (3.20) in 2D to verify this interesting behaviour. We approximate the solution of system (3.41), taking γ = 10, which is a value that well approximate the behaviour of the solution as γ → ∞.

We take as computational domain [-8, 8] × [-8, 8] and G(p) = 1 -p. The initial data is given by

n(x, y) = 0.8 if 0.6 < x 2 + y 2 < 6, 0 otherwise. (3.42)
The plots of the L q x -norms of ∇p(t), with q = 2, 4, 6, 8, are displayed along time in Fig. 3.7. We notice that at the focusing time, which is around t = 0.428, the norms with exponent larger than 4 develop a singularity. We also present 3D plots of the solution and its pressure as time evolves, cf. Fig. 3.8 and Fig. 3.9. In order to better show the behaviour and the shape of the focusing solution, we choose to take a larger initial internal radius. Hence, we take it to be equal to 1 rather than 0.6 in Eq. (3.42).

Conclusions

We studied the properties of an upwind finite difference scheme for a mechanical model of tumor growth proving stability results which allowed us to infer the asymptotic preserving property of the scheme in the so-called incompressible limit. We performed numerical simulations in order to investigate the sharpness of the L 4 -uniform bound of the pressure gradient, using the focusing solution as limiting example. equation. Moreover, as aforementioned, it could be of use in order to pass to the limit as ∆x → 0 in the semi-discrete scheme. Extending our approach on the Aronson-Bénilan estimate to finite difference schemes for cross-reaction-diffusion systems of porous medium type could also represent a challenging problem.

3.A Proof of the solvability of (3.22)

The following theorem, which is a generalization of [3, Theorem A.1] holds.

Theorem 3.A.1. Denote ni (t) and n i (t) to be two solutions of the system of equations

dn i (t) dt + (1 -α i (t))n i (t) -ν [A(n i (t), n i+1 (t)) -A(n i-1 (t), n i (t))] = N k i , i ∈ I, (3.43) 
where A(n i (t), n i+1 (t)) is defined from (3.21), ν = ∆t/∆x, α i (t) = ∆tG(n γ i (t)) and ∆t < 1/G(0), with a super-and a sub-solution initial data, respectively, i.e.

ni (0) = p 1 γ H , n i (0) = 0.
Then we have (i) ni (t) and n i (t) are nonnegative for all t > 0 and i ∈ I. (ii) ni (t) and n i (t) are super-and sub-solutions for all t > 0 and i ∈ I. (iii) ni (t) ≥ n i (t) for all t > 0 and i ∈ I. (iv) for any i ∈ I, both ni (t) and n i (t) converges to the same limit, which is the unique solution of (3.22).

Proof. (i) We prove the case of supersolution. The proof for the case of subsolution is similar. Consider the moment t * when ni (t) first reach 0 for some i 0 , i.e. ni0 (t * ) = 0 while ni (t * ) ≥ 0 for all i ̸ = i 0 , then A(n i0 (t), ni0+1 (t)) ≥ 0, A(n i0-1 (t), ni0 (t)) ≤ 0 and thus

dn i0 (t * ) dt = ν [A(n i0 (t), ni0+1 (t)) -A(n i0-1 (t), ni0 (t))] + N k i0 ≥ 0,
via the evolution equation (3.43). As a result, ni (t) can't change signs and thus remain nonnegative for all t ≥ 0.

(ii) Here we prove the case of subsolution. The proof for the case of supersolution is similar. Denote

z i (t) = dn i (t) dt , α i (t) = ∆tG(n γ i (t)), A i+ 1 2 (t) = A(n i (t), n i+1 (t)
), then z i (0) ≥ 0 for all i since n i (0) is a subsolution. Differentiating (3.43), we get

dz i (t) dt + (1 -α i (t))z i (t) -α ′ i (t)n i (t) -ν ∂ 1 A i+ 1 2 -∂ 2 A i-1 2 z i (t) =ν∂ 2 A i+ 1 2 z i+1 (t) -ν∂ 1 A i-1 2 z i-1 (t).
Noticing that α ′ i (t) = 0 when z i (t) = 0, the function z i (t) can't change signs following a similar argument as in (i), which implies that z i (t) ≥ 0 for all t ≥ 0. Then combining with (3.43), we have that

(1 -α i (t))n i (t) -ν A i+ 1 2 (t) -A i-1 2 (t) ≤ N k i , for all t ≥ 0,
which shows that n i (t) is always a subsolution.

(iii) Denote w i (t) = ni (t) -n i (t), then initially we have w i (0) ≥ 0 for all i. We wish to show that w i (t) ≥ 0 for all t ≥ 0 and i ∈ I. For simplicity of notation, we denote

ᾱi (t) = ∆tG(n γ i (t)), α i (t) = ∆tG(n γ i (t)).
Noticing (3.3) and the fact that both ni (t) and n i (t) are nonnegative, when ∆t < 1/G(0), we have ᾱi (t) ≤ 1 and α i (t) ≤ 1. A direct computation shows that

(1 -ᾱi (t))n i (t) -(1 -α i (t))n i (t) = (1 -ᾱi (t))w i (t) + (α i (t) -ᾱi (t))n i (t) = (1 -ᾱi (t) + β i (t))w i (t),
where β i (t) = -∆tG ′ (η γ i (t))γη γ-1 i (t)n i (t) ≥ 0 for some nonnegative η i (t) between ni (t) and n i (t). By (3.43) and the fact that ni (t) and n i (t) are super-and subsolutions, we have

(1 -ᾱi (t) + β i (t))w i (t) -ν A i+ 1 2 (n i , ni+1 ) -A i-1 2 (n i-1 , ni ) + ν A i+ 1 2 (n i , n i+1 ) -A i-1 2 (n i-1 , n i ) ≥ 0.
Combining the above inequality with the following expression

A i+ 1 2 (n i , ni+1 ) -A i+ 1 2 (n i , n i+1 ) = ∂ 1 A i+ 1 2 (ξ i , ni+1 )w i + ∂ 2 A i+ 1 2 (n i , η i+1 )w i+1 , where ∂ 1 A i+ 1 2 (ξ i , ni+1
) ≤ 0 with some ξ i between ni and n i and ∂ 2 A i+ 1 2 (n i , η i+1 ) ≥ 0 with some η i+1 between ni+1 and n i+1 , we have

1 -ᾱi (t) + β i (t) -ν ∂ 1 A i+ 1 2 (ξ i , ni+1 ) -∂ 2 A i-1 2 (n i-1 , η i ) w i (t) -ν∂ 2 A i+ 1 2 (n i , η i+1 )w i+1 (t) + ν∂ 1 A i-1 2 (ξ i-1 , n i )w i-1 (t) ≥ 0.
Multiplying both sides by 1 {wi<0} and summing over i, we get

- i (1 -ᾱi (t) + β i (t))w - i + I 1 + I 2 ≥ 0,
where w - i = max{-w i , 0} and

I 1 = ν i ∂ 2 A i-1 2 (n i-1 , η i )w i (1 {wi<0} -1 {wi-1<0} ), I 2 = -ν i ∂ 1 A i+ 1 2 (ξ i , n i+1 )w i (1 {wi<0} -1 {wi+1<0} ).
It is worth noticing that w i (1 {wi<0} -1 {wi±1<0} ) ≤ 0, which implies that I 1 ≤ 0, I 2 ≤ 0 and further

i (1 -ᾱi (t) + β i (t))w - i ≤ 0. (3.44)
It is easy to see from (3.44) that we must have w - i (t) ≡ 0, i.e. w i (t) ≥ 0 for all t > 0. (iv) The monotonicity of ni (t) and n i (t) indicates that there exist the limits

Ni = lim t→∞ ni (t), N i = lim t→∞ n i (t). Denote W i = Ni -N i , we can show that 1 -∆tG( N γ i ) + β i (t) -ν ∂ 1 A i+ 1 2 (ξ i , Ni+1 ) -∂ 2 A i-1 2 (N i-1 , η i ) W i -ν∂ 2 A i+ 1 2 (N i , η i+1 )W i+1 + ν∂ 1 A i-1 2 (ξ i-1 , N i )W i-1 =
0, for some ξ i 's and η i 's. Summing over all i, we have 

1 -∆tG( N γ i ) + β i (t) W i = 0.
Noticing that W i ≥ 0 and 1 -∆tG( N γ i ) + β i (t) > 0, we have W i = 0 for all i ∈ I. In other words, for each i, there is a unique limit of ni (t) and n i (t) as t → ∞, which is N k+1 i , the unique solution of (3.22).

Part II

Stiff limit of a tumor growth model including convective effects: regularity and convergence rate

Introduction

Modelling living tissue poses a whole range of challenges. On the one hand, it is important to identify the biomedical drivers that should be incorporated in the model, while, on the other hand there are certain modelling choices that need to be discussed. One of these choices that, in a way, separates the community is the type of model used to describe tissue growth. Roughly speaking we identify the following two types of models: those that describe the tissue as an evolving distribution in space and those that describe the tissue as an evolving domain in space. While the first type is mostly based on a partial differential equation description, the latter is known as a free-boundary or evolving boundary model. The goal of this paper is to build a bridge between the two types of models by passing to the so-called stiff limit in the population-based model to obtain a free-boundary description. The model we propose here describes the evolution of the tissue density, n γ = n γ (x, t), and is given 105 by

∂n γ ∂t -∇ • (n γ ∇p γ ) -∇ • (n γ ∇V ) = n γ G(p γ ). (4.1)
on R d and for t > 0. It is equipped with some non-negative initial data n γ (0,

x) = n 0 γ (x) ∈ L 1 + (R d ).
Here p γ = n γ γ denotes the pressure, G = G(p γ ) models the cell proliferation (resp. cell death), and V = V (x, t) denotes a chemical concentration. In order to pass to the incompressible limit γ → ∞ we need to study the equation satisfied by the pressure, i.e. , the equation

∂p γ ∂t = γp γ (∆p γ + ∆V + G(p γ )) + ∇p γ • ∇(p γ + V ). (4.2)
While it is intuitive to expect

p ∞ (∆p ∞ + ∆V + G(p ∞ )) = 0, as well as p ∞ (n ∞ -1) = 0,
in the limit, there are technical subtleties, obtaining strong compactness of the pressure gradient to be precise, that need to be overcome. We are by no means the first to ask this question. As a matter of fact, there are already some promising results towards this rigorous limit. However, all of them are borderline and just not good enough to obtain the strong compactness of the pressure gradient. A blend of two techniques finally allows us to settle this open question. The rest of the introduction is dedicated to recall previous results on this type of models. We will also use this as an opportunity to introduce the tools necessary for the limit passage in a brief, explanatory way.

Previous works on the incompressible limit

The question of passing to the incompressible limit has a rich history and several variations of it have been studied in the literature. Historically, the problem has its early foundation in the work of Bénilan and Crandall on the continuous dependence on φ of solutions to the filtration equation ∂ t n = ∆φ(n) in 1981, cf. [START_REF] Bénilan | The continuous dependence on φ of solutions of u t -∆φ (u)= 0[END_REF], see also [START_REF] Oleinik | The Cauchy problem and boundary problems for equations of the type of non-stationary filtration[END_REF][START_REF] Sabinina | On the Cauchy problem for the equation of nonstationary gas filtration in several space variables[END_REF].

Henceforth the problem has been attracting a lot of attention. In [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF] the authors consider the limit of the density of the porous equation but they can weaken the assumption on the initial data thus extending the results of [START_REF] Bénilan | The continuous dependence on φ of solutions of u t -∆φ (u)= 0[END_REF]. Moreover, they are able to show that the limit density, n ∞ , is independent of time and bounded 0 ⩽ n ∞ ⩽ 1. Later, in 2001, Gil and Quirós revisit the study of the incompressible limit of the solution of the porous medium equation defined in [0, +∞) × Ω, with non-trivial boundary data g = g(x).

In this case, the pressure is "forced" to be positive near to the boundary, and then, since the pressure gradient is no longer zero, the motion of the free boundary ∂{p ∞ > 0} is governed by Darcy's law V = -∂ ν p ∞ , where ν denotes the outward normal on the free boundary, see also [START_REF] Gil | Boundary layer formation in the transition from the porous media equation to a Hele-Shaw flow[END_REF].

Emanating from the early works on the mesa problem for the porous medium equation, research began branching out in different directions. The first generalisation concerns the inclusion of a pressure-dependent growth term proposed in the work of [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]. Here the authors propose a tissue-growth model where cells move according to a population pressure generated by the total density of the form p(n) = n γ . In conjunction with Darcy's law they recover the porous-medium type degenerate diffusion. In addition, they include a proliferation term, nG(p), which models cells divisions with a pressure depending rate. Thus the proliferation rate, G, is assumed to be a decreasing function accounting for the fact that cells are less "willing" to divide in packed regimes. Their paper is seminal in that they were the first to perform the rigorous stiff pressure limit in the presence of growth terms. While strong compactness of the pressure is absolutely sufficient for the Hele-Shaw limit itself, obtaining the so-called complementarity relation which provides an equation for the pressure in the limit is much more involved. In fact, in order to obtain it strong compactness of the pressure gradient is indispensable. To this purpose, using the comparison principle, they show that the Laplacian of the pressure satisfies an Aronson-Bénilan type estimate, namely ∆p + G(p) ≳ -C/γt.

Later in [START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF] the authors study the same model through a viscosity solution approach. They are also able to recover the velocity law in presence of mushy regions, i.e. regions where P ∞ = 0 and 0 < n ∞ < 1.

The related free boundary problem was further studied in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF], where the authors prove that the velocity law of the free boundary holds both in a weak (distributional) and in a measure theoretical sense. In the same paper, they also provide an L 4 -bound of the pressure gradient that relies on the Aronson-Bénilan estimate, which we extend to our model, Eq. (4.1), through a self-contained proof in Lemma 4.3.2, independently of any estimate on ∆p γ .

In [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], the authors also study an extension of the model including the effect of a nutrient with concentration c = c(x, t). While they were able to prove the strong convergence of n γ and c γ as γ → ∞, they leave open the question of how to recover the compactness needed to pass to the limit in the pressure equation and obtain the complementarity relation. As presented in Chapter 2, this problem was addressed in [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF], where the authors combine a weak version of the Aronson-Bénilan estimate in L 3 with a uniform bound of the pressure gradient in L 4 to infer strong compactness. Recently, interesting progress have been made in [START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF] in the non-monotone case.

The model by [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] was then extended by the inclusion of migratory processes, i.e. , drift terms given by a velocity field, v(x, t), as a model extension received a lot of attention.

In [START_REF] Kim | Degenerate diffusion with a drift potential: A viscosity solutions approach[END_REF] and [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF], this problem is analysed through both viscosity solutions and optimal transportation approaches. This result was extended in 2016, by Craig, Kim, and Yao, cf. [START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF] to a model with non-local Newtonian potential, N . The question of how to pass to the limit γ → ∞ in the porous medium equation with a drift and a non-trivial source term has been addressed in [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF]. The authors propose a model with a generic vector field v :

R d × R + → R d as drift term, i.e. , ∂n γ ∂t -∆n γ γ + ∇ • (n γ v) = n γ G,
with a growth rate G = G(x, t). Through viscosity solutions methods, they prove that as γ → ∞ the model converges to a free boundary model of Hele-Shaw type. Their work improves the results previously achieved in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF], extending the class of initial data from patches to any continuous and compactly supported function bounded between zero and one. This is also where our contribution to the current discourse enters, namely the first rigorous derivation of the complementarity relation, that is, an equation governing the pressure distribution inside of the moving boundary problem.

Our Contribution

As set out in the introduction, there have been several promising steps towards establishing the incompressible limit and the complementarity relation for reaction-diffusion models incorporating convective effects. As a matter of fact, just like the authors of [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF], we address the problem of passing to the incompressible limit in a porous medium equation with both a drift and a source term. While their approach is based on a viscosity solution approach, we use a weak (distributional) interpretation. By employing a blend of recently developed tools, i.e. , an L pversion of the celebrated Aronson-Bénilan estimate, cf. [START_REF] Aronson | Régularité des solutions de l'équation des milieux poreux dans R N[END_REF], along with the optimal L 4 -regularity of the pressure gradient observed in [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF], we can obtain strong compactness of the pressure gradient and proceed to passing to the incompressible limit and obtain the complementarity relation in the same vein as [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF]. To summarise:

• We obtain an L 3 -space-time estimate on the negative part of the Laplacian of the pressure which ultimately helps us obtain strong compactness of the pressure gradient. We note that an L ∞ -version has been obtain recently in [START_REF] Kim | Porous Medium Equation with A Drift: Free boundary Regularity[END_REF]Theorem 3.1]. However, the lower bound on the Laplacian of the pressure that they infer, ∆p ⩾ -C/t -C, does not go to zero as γ → ∞, as in the classical Aronson-Bénilan estimate. Nonetheless, this result in conjunction with our uniform L 4 -estimate on the pressure gradient would already be sufficient to obtain the complementarity relation rigorously, following [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF][START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF][START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF].

• Here, we choose a different route by only striving for the much weaker L 3 -estimate on the negative part of the Laplacian of the pressure. This, in turn, allows us to drastically relax the C 3,1 x,t -regularity of the velocity field, ∇V , required by [START_REF] Kim | Porous Medium Equation with A Drift: Free boundary Regularity[END_REF]. In fact, our assumptions on the drift, cf. Eq. (A1-V ) and Eq. (A2-V ), in a way boil down to controlling certain third derivatives in L 12/5 loc (Q T ).

• Finally, to the best of our knowledge, we are the first to prove the uniqueness of the solution,

(n ∞ , p ∞ ), to the limit problem

∂n ∞ ∂t = ∆p ∞ + n ∞ G(p ∞ ) + ∇ • (n ∞ ∇V ).
This result is only possible since we work with weak solutions in the classical sense which ultimately allows us to apply a variation of Hilbert's duality method. The only related results in this direction in the literature are given by [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF] where the uniqueness of so-called patch solutions is shown in the drift-diffusion model with ∆V > 0 in the absence of growth dynamics and the very recent preprint [START_REF] Igbida | L 1 -Theory for reaction-diffusion Hele-Shaw flow with linear drift[END_REF] where uniqueness of the limit equation is shown for signed solutions, linear drifts, and general growth dynamics. In the absence of drifts uniqueness was known since [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] and for a special type of growth term it can also be obtained from λ-contractivity of metric gradient flows, cf. [START_REF] Marino | Uniqueness issues for evolution equations with density constraints[END_REF][START_REF] Chizat | A tumor growth model of Hele-Shaw type as a gradient flow[END_REF].

Moreover, our approach provides an answer to several open problems proposed in [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF]:

• The first question the authors raise concerns the monotonicity assumption on G(p)+∆V > 0, which in our case is not necessary. An improvement in this direction has also been obtained very recently, [START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF]. We stress that in the growth rate in [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF] does not depend on the pressure but on space and time, only.

• The next question concerns the class of initial data. In [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF], the authors write "A more interesting question arises with the initial data that is larger than 1 at some points. In such cases there is a jump in the solution at t = 0 in the limit 'γ → ∞' which adds another challenge in the analysis." 1 This effect has already been observed at the early stages of this singular limit problem. The parts of the density that are larger than 1 are known to "collaps" immediately and a mesa-structure is obtained instantaneously, for instance, cf. [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF]. Following our approach, we can allow for the larger class of non-negative

L 1 (R d ) ∩ L ∞ (R d
) functions with compact support as initial data.2 

• Finally, in [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF], the authors postulate BV -regularity of the limiting density, also suggested by [START_REF] De Philippis | BV estimates in optimal transportation and applications[END_REF] based on the "five-gradients-estimate" using tools from optimal transportation. Even though our arguments do not borrow techniques from optimal transport but, instead, rely on Sobolev compactness theory, we are able to improve the regularity result in that we obtain the BV -regularity of the limit density for any initial data. What is more, we additionally have an L 4 -regularity of the limit pressure gradient, which, to the best of our knowledge, is novel.

Problem Setting and Main Results

Before we present the main results of our paper let us introduce some notation used throughout this work. Henceforth, we call Q T := R d × (0, T ) the truncated space-time cylinder and drop the subscript T to denote the entire cylinder, i.e. , Q := R d × (0, ∞). Besides, for the sake of readability, we shall employ the short-hand notation

n γ := n γ (t) := n γ (x, t),
and, similarly,

p γ = p γ (t) := p γ (x, t).
Moreover, throughout, C > 0 denotes a generic positive constant independent of γ that may change from line to line.

In order to be able to establish our result we impose the following set of assumptions which, for clarity, are split into assumptions on the initial data, the growth terms, and the advective term, respectively. We assume that for every γ > 1 the initial data are non-negative, integrable, and uniformly essentially bounded, i.e. ,

n 0 γ ∈ BV (R d ) ∩ L ∞ (R d ), 0 ⩽ n 0 γ ⩽ n M , and 0 ⩽ p 0 γ ⩽ p M , (A1-n 0 γ )
for some constants n M , p M > 0. Here BV denotes the space of functions with bounded variation. Moreover, we assume the initial population is contained in a compact set, i.e. , there exists a bounded set

K ⊂ R d such that supp(n 0 γ ) ⊂ K. (A2-n 0 γ )
Let us notice that, thanks to the finite speed of propagation property of porous medium type equations, assumption (A2-n 0 γ ) implies that, for any T > 0, there exists a bounded domain Ω ⊂ R d such that the supports of n γ (•, t), p γ (•, t) are contained in Ω for any t ∈ [0, T ], uniformly in γ, as proven in the next section, cf. Lemma 4.2.1. In addition, we suppose that there exists a positive constant C independent of γ such that

∥∆(n 0 γ ) γ+1 ∥ L 1 (R d ) + ∥∇p 0 γ ∥ L 2 (R d ) + ∥(∆p 0 ) -∥ L 2 (R d ) ⩽ C. (A3-n 0 γ )
Note, that strictly speaking, the L 2 -bound on the pressure gradient is not required as it is a consequence of the L 2 -control on the Laplacian of the pressure. Besides we make the biological assumption

G ′ (p) < -α, and G(p M ) = 0, (A-G)
for some α > 0 and all p ⩾ 0, and some p M > 0, to include the tendency of tissue to grow slower as the pressure increases and starts to die when the pressure exceeds the homeostatic pressure, p M . Finally, we have to make the following regularity assumptions on the chemical distribution

               ∇(∂ t V ) ∈ L 1 ((0, T ); L ∞ loc (R d )), ∆(∂ t V ) ∈ L 1 loc (Q T ), D 2 V ∈ L ∞ loc (Q T ), ∇V ∈ L 2 loc (Q T ) ∩ L ∞ loc (Q T ), (A1-V )
and

∇(∆V ) ∈ L 12/5 loc (Q T ). (A2-V )
Note, that the additional assumption, (A2-V ), is required solely for technical reasons to establish the control of the Laplacian of the pressure. Under these hypotheses we are now able to state the two main theorems of this work. The first concerns the complementarity relation.

Theorem 4.1.1 (Complementarity relation). We may pass to the limit in Eq. (4.2) as γ → ∞ and establish the so-called complementarity relation

p ∞ (∆p ∞ + ∆V + G(p ∞ )) = 0, (4.3) 
in the distributional sense. Moreover, 0 ⩽ n ∞ ⩽ 1 and p ∞ ⩾ 0 satisfy the equation

∂n ∞ ∂t = ∆p ∞ + n ∞ G(p ∞ ) + ∇ • (n ∞ ∇V ), (4.4a 
)

in D ′ (Q T ), as well as p ∞ (1 -n ∞ ) = 0, (4.4b)
almost everywhere.

The complementarity relation, Eq. ( 4.3), is a crucial link that allows us to bridge the gap between the compressible model, Eq. (4.1), and the geometrical free boundary problem of Hele-Shaw type. Let us define the set

Ω(t) := {x | p ∞ (x, t) > 0}.
Then, the pressure satisfies

-∆p ∞ = ∆V + G(p ∞ ), in Ω(t), p ∞ = 0, on ∂Ω(t),
which coincides with the classical Hele-Shaw problem whenever V and G are identically equal to zero.

Theorem 4.1.2 (Uniqueness of the limit solution). There exists at most one distributional solution such that for all T > 0 the couple

(n ∞ , p ∞ ) ∈ L ∞ (Q T ) × L 2 (0, T ; H 1 (Ω)
) is a solution to system (4.4a).

The rest of the paper is organised as follows. In Section 4.2 we present straigh-forward a priori estimates necessary to derive more refined bounds on the pressure. The latter are proven in Section 4.3. This includes both the L 3 -version of the Aronson-Bénilan estimate as well as an L 4space-time estimate on the pressure gradient. Building on the estimates derived in the previous sections, Section 4.4 is dedicated to the rigorous limit process in the pressure equation and to obtaining the complementarity relation. In the subsequent section, Section 4.5, we then proceed to proving the uniqueness of solutions to the complementarity relation.

A Priori Estimates

We state some a priori estimates on the main quantities and their derivatives, that we need to obtain the main result of the paper.

Lemma 4.2.1 (A priori estimates). For any T > 0, there exists a bounded domain Ω ⊂ R d such that the supports of n γ (•, t), p γ (•, t) are contained in Ω for any t ∈ [0, T ], uniformly in γ.

Moreover, the following estimates hold uniformly in γ:

(i) n γ , p γ ∈ L ∞ (0, T ; L ∞ (Ω)), (ii) ∂ i n γ , ∂ t n γ ∈ L ∞ (0, T ; L 1 (Ω)), for i = 1, . . . , d, (iii) ∂ i p γ , ∂ t p γ ∈ L 1 ((0, T ) × Ω), for i = 1, . . . , d, (iv) ∇p γ ∈ L 2 (0, T ; L 2 (Ω)).
Proof. Thanks to the comparison principle, from Eq. ( 4.1) we immediately find n γ ⩾ 0 and, as a consequence, p γ ⩾ 0. In order to establish uniform essential bounds, we construct a super solution. To this end we define

Π(x, t) := C R(t) - |x| 2 2 +
where C is a positive constant that satisfies

C ⩾ 2 d (G(0) + ∥∆V ∥ ∞ ), (4.5) 
and we take R(t) such that

R ′ (t) ⩾ (2C + 1)R(t) + ∥∇V ∥ ∞ 2 . (4.6)
From Eq. (4.2) and the assumption on the growth term (A-G), we know that p γ satisfies

∂p γ ∂t -|∇p γ | 2 -∇p γ • ∇V -γp γ (∆p γ + G(0) + ∥∆V ∥ ∞ ) ⩽ 0.
Let us show that Π(x, t) is a super-solution to this differential inequality. We have

∂Π ∂t = CR ′ (t)1 R(t)⩾ |x| 2 2 ,
and

∇Π = -Cx1 R(t)⩾ |x| 2 2 ,
as well as

∆Π = -Cd1 R(t)⩾ |x| 2 2 -C|x|δ R(t)= |x| 2 2 .
Using Eq. (4.5) in conjunction with Eq. (4.6) we get

∂Π ∂t -|∇Π| 2 -∇Π • ∇V -γΠ(∆Π + G(0) + ∥∆V ∥ ∞ ) ⩾CR ′ (t)1 R(t)⩾ |x| 2 2 -C 2 |x| 2 1 R(t)⩾ |x| 2 2 + Cx • ∇V 1 R(t)⩾ |x| 2 2 + γCΠ d 2 ⩾ R ′ (t) -2CR(t) - |x| 2 2 - ∥∇V ∥ ∞ 2 1 R(t)⩾ |x| 2 2 ⩾0. (4.7)
Taking R(0) such that K ⊂ B √ 2R(0) and C large enough, by the assumption on the initial data (A2-n 0 γ ) we have p 0 γ ⩽ Π(0). Then, this implies that p γ (t) ⩽ Π(t) for all positive times by comparison. Let us show the argument for the sake of completeness.

Setting N (Π) = Π 1/γ , and multiplying Eq. (4.7) by N ′ (Π) we obtain

∂N ∂t -N ′ (Π)|∇Π| 2 -N ′ (Π)∇Π • ∇V -γN ′ (Π)Π∆Π ⩾ γN ′ (Π)Π(G(0) + ∥∆V ∥ ∞ ), whence ∂N ∂t -∇ • (N ∇Π) -∇N • ∇V ⩾ N (G(0) + ∥∆V ∥ ∞ ).
Since, by Eq. (4.1), we know that n γ is a sub-solution to the same equation, we have n γ (t) ⩽ N (t) for all t > 0, by the comparison principle. Therefore, we conclude that p γ (t) ⩽ Π(t) for all positive times. We take Ω ⊂ R d a bounded domain such that B √ 2R(T ) ⊂ Ω and then, by the definition of Π, we infer that supp(p γ (t)) ⊂ Ω, for all t ∈ [0, T ] and any γ > 1. As consequence, both n γ and p γ are uniformly bounded in L ∞ (Ω T ), where Ω T := Ω × (0, T ).

Now we prove the BV -estimates on the density. Differentiating Eq. (4.1) with respect to the i-th component of the space variable, x i , and multiplying by sign(∂ xi n γ ) we get

d dt Ω ∂n γ ∂x i dx ⩽ Ω γ∆ n γ γ ∂n γ ∂x i dx+ Ω ∇ • n γ ∇ ∂V ∂x i sign ∂n γ ∂x i dx + G(0) Ω ∂n γ ∂x i dx ⩽ d j=1 Ω ∂n γ ∂x j ∂ 2 V ∂x i ∂x j dx + d j=1 Ω n γ ∂ 3 V ∂x i ∂x 2 j dx + G(0) Ω ∂n γ ∂x i dx,
for i = 1, . . . , d. We sum the inequalities over all i = 1, . . . , d, and obtain

d dt d i=1 Ω ∂n γ ∂x i dx ⩽ C d i=1 Ω ∂n γ ∂x i dx + C,
where the constants depend on the L ∞ -norm of G and the assumptions on the potential V , cf. Eqs. (A-G, A1-V ). Using Gronwall's lemma we conclude

d i=1 Ω ∂n γ ∂x i dx ⩽ Ce Ct d i=1 Ω ∂n 0 γ ∂x i dx ⩽ C(T ),
where, in the last inequality, we have used the uniform BV -bounds on the initial data, cf. assumption (A1-n 0 γ ).

Following the same line of reasoning for the time derivatives we obtain

∂ ∂t ∂n γ ∂t ⩽γ∆ p γ ∂n γ ∂t + ∇ • ∂n γ ∂t ∇V + sign ∂n γ ∂t ∇ • n γ ∇ ∂V ∂t + ∂n γ ∂t G(p γ ) + n γ G ′ (p γ ) ∂p γ ∂t , (4.8) 
due to the fact that sign(∂ t p γ ) = sign(∂ t n γ ). An integration in space yields

d dt Ω ∂n γ ∂t dx ⩽ G(0) Ω ∂n γ ∂t dx + Ω ∇ • n γ ∇ ∂V ∂t dx I ,
where we used that G ′ < -α, cf. Eq. (A-G). We can estimate the term I as follows

I = Ω ∇n γ • ∇ ∂V ∂t + n∆ ∂V ∂t dx ⩽ Ω ∇n γ • ∇ ∂V ∂t dx + Ω n∆ ∂V ∂t dx ⩽ ∇ ∂V ∂t (•, t) L ∞ (Ω) ∥∇n γ ∥ L ∞ (0,T ;L 1 (Ω)) + n H ∆ ∂V ∂t (•, t) L 1 (Ω) ⩽C ∇ ∂V ∂t (•, t) L ∞ (Ω) + C ∆ ∂V ∂t (•, t) L 1 (Ω)
, where we have used the BV -space regularity of n γ from before. Hence, we obtain

d dt Ω ∂n γ ∂t dx ⩽ G(0) Ω ∂n γ ∂t dx + C ∇ ∂V ∂t (•, t) L ∞ (Ω) + C ∆ ∂V ∂t (•, t) L 1 (Ω)
.

By assumption (A1-V ) we know that

∥∇(∂ t V )(•, t)∥ L ∞ (Ω) and ∥∆(∂ t V )(•, t)∥ L 1 (Ω) are L 1 -integrable in time. Using Gronwall's lemma, we conclude ∂n γ ∂t (t) L 1 (Ω) ⩽ e G(0)t ∂n γ ∂t 0 L 1 (Ω) + t 0 C ∇ ∂V ∂t (•, t) L ∞ (Ω) + ∆ ∂V ∂t (s, •) L 1 (Ω) e G(0)(t-s) ds ⩽ C(T ), (4.9) 
for a.e. t ∈ (0, T ), i.e. , ∂ t n γ ∈ L ∞ (0, T ; L 1 (Ω)). Let us stress that assumptions (A1-n 0 γ ) and (A3-n 0 γ ) imply the initial bound (∂ t n γ ) 0 L 1 (Ω) ⩽ C. Before establishing the BV -bounds on the pressure, let us notice that integrating Eq. (4.8) in space and time, we have

∂n γ ∂t (•, t) L 1 (Ω) + min 0⩽pγ ⩽Π(0,T ) |G ′ (p γ )| t 0 Ω n γ ∂p γ ∂t dx dt ⩽ C(T ),
thanks to Eq. (4.9). Then, it holds

∂p γ ∂t L 1 (Ω T ) ⩽ Ω T ∩{nγ ⩽1/2} γn γ-1 γ ∂n γ ∂t dx dt + 2 Ω T ∩{nγ >1/2} n γ ∂p γ ∂t dx dt ⩽ C(T ).
The same argument can be used for the space derivatives of p γ and it goes through without major changes.

We can actually gain more information on the pressure gradient, by integrating Eq. (4.2) in space, i.e. ,

Ω ∂p γ ∂t dx = γ Ω p γ (∆(p γ + V ) + G(p γ )) dx + Ω ∇p γ • ∇(p γ + V ) dx.
Integration by parts yields

Ω ∂p γ ∂t dx ⩽ (1 -γ) Ω |∇p γ | 2 dx + γ Ω p γ G(p γ ) dx + (1 -γ) Ω ∇p γ • ∇V dx,
and using Young's inequality we obtain γ -1 2

Ω T |∇p γ (t)| 2 dx dt ⩽ ∥p 0 γ ∥ L 1 (Ω) + (γ -1) 2 Ω T |∇V | 2 dx dt + γ Ω T |p γ G(p γ )| dx dt.
Dividing by (γ -1) we finally get

Ω T |∇p γ | 2 dx dt ⩽ C(T ),
which concludes the proof.

Stronger bounds on p γ

This section is dedicated to establishing more refined estimates on the pressure, cf. Lemma 4.3.2 and Lemma 4.3.3. Upon obtaining those estimates we will then be able to proceed to proving the strong compactness of the pressure gradient, cf. Lemma 4.3.6, which is crucial in the overall endeavour of establishing the incompressible limit.

The first result on the pressure's regularity is the L 4 -boundedness of its gradient. This bound was already proved in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF], although, the authors use the L ∞ -version of the Aronson-Bénilan estimate. Here we adapted the method used in [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF], where a new method was employed, that does not require any estimate on ∆p γ . Unlike the model in [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF], the convective term may not vanish at the boundary which leads to boundary terms to be considered in the subsequent analysis. In the following remark we shall see, however, that they do not pose any problems. 3) are critical to establishing the regularity necessary for passing to the stiff limit. Due to several integrations by parts, boundary terms occur that need to be addressed. Since their treatment is purely technical and they are not even at the heart of the strategy we introduce the notation O ∂Ω T (1) to indicate that the traces of the respective quantities are bounded uniformly in γ. This is possible due to the elliptic regularity result presented in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 9.11] which states that

∥u∥ H 2 (U ′ ) ⩽ C(∥u∥ L 2 (U ) + ∥∆u∥ L 2 (U ) ),
for some open U ⊂ R n containing U ′ ⊂ compactly. Choosing u = ∂ i V , for all i = 1, . . . , d, and using assumption (A2-V ), it is immediate that ∇∆V ∈ H 2 (Q T ). With the third-order derivatives controlled in L 2 (Q T ) the traces of all second order derivatives appearing in the integration by parts are bounded. Let us highlight, too, that terms involving p γ and its derivatives vanish close to the boundary by the choice of Ω T . We therefore collect all boundary terms in O ∂Ω T (1) lest the notation blow up.

Lemma 4.3.2 (L 4 -estimate of the pressure gradient.). Given T > 0, there exists a positive constant C, independent of γ, such that

Ω T p γ d i,j=1 ∂ 2 p γ ∂x i ∂x j 2 dx dt + (γ -1) Ω T p γ |∆p γ + ∆V + G| 2 dx dt ⩽ C(T ),
as well as

Ω T |∇p γ | 4 dx dt ⩽ C(T ).
Proof. We write the equation for the pressure as follows

∂p γ ∂t = γp γ (∆f γ + G) + ∇p γ • ∇f γ , (4.10) 
where f γ := p γ + V . We multiply Eq. (4.10) by -(∆f γ + G) and integrate in space and time to obtain

T 0 d dt Ω |∇p γ | 2 2 dx dt - Ω T ∆V ∂p γ ∂t dx dt - Ω T G ∂p γ ∂t dx dt = - Ω T ∇p γ • ∇f γ (∆f γ + G) dx dt I -γ Ω T p γ |∆f γ + G| 2 dx dt. (4.11) 
For convenience, let us define the function G = G(p γ ) = pγ 0 G(q) dq. Thus, we have

∂ t p γ G(p γ ) = ∂ t G(p γ ),
and thus

Ω T ∂p γ ∂t G(p γ ) dx dt = T 0 d dt Ω G(p γ ) dx dt.
Now, we need to estimate the term I on the right-hand side of Eq. (4.11). Since p γ = f γ -V we have

I = - Ω T ∇p γ • ∇f γ (∆f γ + G) dx dt = - Ω T |∇f γ | 2 ∆f γ dx dt + Ω T ∇V • ∇f γ ∆f γ dx dt - Ω T G∇p γ • ∇f γ dx dt ⩽ - Ω T |∇f γ | 2 ∆f γ dx dt I1 + Ω T ∇V • ∇f γ ∆f γ dx dt I2 +C,
thanks to the L 2 -bounds of both ∇p γ and ∇V . We integrate by parts twice in space the term I 1 and obtain

I 1 = Ω T f γ ∆(|∇f γ | 2 ) dx dt = 2 Ω T f γ ∇f γ • ∇(∆f γ ) dx dt + 2 Ω T f γ d i,j=1 ∂ 2 f ∂x i ∂x j 2 dx dt + O ∂Ω T (1) = -2 Ω T f γ |∆f γ | 2 dx dt -2 Ω T |∇f γ | 2 ∆f γ dx dt + 2 Ω T f γ d i,j=1 ∂ 2 f ∂x i ∂x j 2 dx dt + O ∂Ω T (1).
Let us notice that the second term on the right-hand side is equal to -2I 1 . Hence, moving it to the left-hand side of the equation and simplifying the expression we obtain

-I 1 = - Ω T |∇f γ | 2 ∆f γ dx dt = 2 3 Ω T f γ |∆f γ | 2 dx dt - 2 3 Ω T f γ d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt + O ∂Ω T (1) = 2 3 Ω T p γ |∆f γ | 2 dx dt - 2 3 Ω T p γ d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt + 2 3 Ω T V |∆f γ | 2 dx dt - 2 3 Ω T V d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt + O ∂Ω T (1) 
.

We now compute the sum of the last two integrals of the right-hand side

2 3 Ω T V |∆f γ | 2 dx dt - 2 3 Ω T V d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt = 2 3 Ω T   d i,j=1 ∂f γ ∂x j ∂ 2 V ∂x i ∂x j ∂f γ ∂x i dx dt -∆V |∇f γ | 2   dx dt ⩽ C(∥D 2 V ∥ L ∞ ∥∇f γ ∥ 2 L 2 + ∥∆V ∥ L ∞ ∥∇f γ ∥ 2 L 2 )
⩽ C, having used the assumptions on the velocity field, cf. (A1-V ), and the information on the pressure gradient, cf. Lemma 4.2.1. Therefore, we can estimate the term -I 1 as follows

-I 1 ⩽ 2 3 Ω T p γ |∆f γ | 2 dx dt - 2 3 Ω T p γ d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt + C.

Now we proceed integrating by parts and estimating the term

I 2 I 2 = Ω T ∇V • ∇f γ ∆f γ dx dt = - Ω T d i,j=1 ∂f γ ∂x j ∂ 2 V ∂x i ∂x j ∂f γ ∂x i dx dt - Ω T d i,j=1 ∂V ∂x j ∂ 2 f γ ∂x i ∂x j ∂f γ ∂x i dx dt + O ∂Ω T (1) ⩽ C∥D 2 V ∥ L ∞ ∥∇f γ ∥ 2 L 2 - Ω T d i,j=1 ∂V ∂x j ∂ 2 f γ ∂x i ∂x j ∂f γ ∂x i dx dt + O ∂Ω T (1) ⩽ C - 1 2 Ω T ∇V • ∇|∇f γ | 2 dx dt + O ∂Ω T (1) = C + 1 2 Ω T ∆V • |∇f γ | 2 dx dt + O ∂Ω T (1) ⩽ C + 1 2 ∥∆V ∥ L ∞ ∥∇f γ ∥ 2 L 2 + O ∂Ω T (1) ⩽ C.
Therefore, we obtain

I ⩽ -I 1 + I 2 ⩽ 2 3 Ω T p γ |∆f γ | 2 dx dt - 2 3 Ω T p γ d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt + C ⩽ 2 3 Ω T p γ |∆f γ + G| 2 dx dt - 2 3 Ω T p γ d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt + C,
where in the last inequality we used the fact that G is uniformly bounded.

Gathering all the bounds we can write Eq. (4.11) as

2 3 Ω T p γ d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt + γ - 2 3 Ω p γ |∆f γ + G| 2 dx dt ⩽ T 0 d dt Ω G - |∇p γ | 2 2 dx dt + Ω T ∆V ∂p γ ∂t dx dt + C ⩽ C(T ),
where in the last inequality we used the L 1 -bound of ∂ t p γ . Thus, we have proved the following bound

2 3 Ω T p γ d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt + γ - 2 3 Ω T p γ |∆f γ + G| 2 dx dt ⩽ C(T ).
Finally, thanks to the boundedness of ∂ 2 i,j V , we have

Ω T p γ d i,j=1 ∂ 2 p γ ∂x i ∂x j 2 dx dt ⩽ 2 Ω T p γ d i,j=1 ∂ 2 f γ ∂x i ∂x j 2 dx dt + 2 Ω T p γ d i,j=1 ∂ 2 V ∂x i ∂x j 2 dx dt ⩽ C(T ), (4.12) 
and since γ > 1

Ω T p γ |∆p γ | 2 dx dt ⩽ 2 Ω T p γ |∆f γ + G| 2 dx dt + 2 Ω T p γ |∆V + G| 2 dx dt ⩽ C(T ),
and the first part of the lemma is proven. Now it remains to prove the L 4 -bound of the pressure gradient. Integrating by parts we have

Ω |∇p γ | 4 dx = - Ω p γ ∆p γ |∇p γ | 2 dx - Ω p γ ∇p γ • ∇(|∇p γ | 2 ) dx.
Applying Young's inequality to the first term, we obtain

1 2 Ω |∇p γ | 4 dx ⩽ 1 2 Ω p 2 γ |∆p γ | 2 dx -2 d i,j=1 Ω p γ ∂p γ ∂x i ∂p γ ∂x j ∂ 2 p γ ∂x i ∂x j dx.
Thanks to Young's inequality, the last term can be bounded from above by

2 d i,j=1 Ω p γ ∂p γ ∂x i ∂p γ ∂x j ∂ 2 p γ ∂x i ∂x j dx ⩽ 1 4 Ω |∇p γ | 4 dx + 4 Ω p 2 γ d i,j=1 ∂ 2 p γ ∂x i ∂x j 2 dx.
Therefore, we obtain

1 4 Ω |∇p γ | 4 dx ⩽ 1 2 Ω p 2 γ |∆p γ | 2 dx + 4 Ω p 2 γ d i,j=1 ∂ 2 p γ ∂x i ∂x j 2 dx.
Since p γ ⩽ Π(0, T ) and thanks to Eq. (4.12), we conclude that

Ω T |∇p γ | 4 dx dt ⩽C(T ),
which completes the proof.

Building on the L 4 -estimate on the pressure gradient, we are now dedicated to an additional bound on the pressure which, by itself, yields L 1 -compactness of the pressure gradient. In conjunction with the L 4 -estimate the gradient is then shown to be strongly compact in any L p (Ω T ), for 1 ⩽ p < 4, cf. Lemma 4.3.6. The subsequent estimate is an L p -version of the celebrated Aronson-Bénilan estimate, cf. [START_REF] Aronson | Régularité des solutions de l'équation des milieux poreux dans R N[END_REF][START_REF] Bevilacqua | The Aronson-Bénilan Estimate in Lebesgue Spaces[END_REF]. At the heart of its proof is the study of an auxiliary second-order quantity and its evolution along the flow of the pressure equation. We define w := ∆p γ + G(p γ ) and, for the reader's convenience, recall that the pressure satisfies the equation

∂p γ ∂t = γp γ w + γp γ ∆V + ∇p γ • (∇p γ + ∇V ). (4.13) 
Lemma 4.3.3 (Aronson-Bénilan L 3 -estimate.). For all T > 0 and γ > max(1, 2 -2 d ), there exists a positive constant C(T ), independent of γ, such that

Ω T (w) 3 -dx dt ⩽ C(T ).
Proof. We compute the time derivative of w

∂w ∂t =γ∆(p γ w) + γp γ ∆(∆V ) + γ(w -G)∆V + 2γ∇p γ • ∇(∆V ) + 2∇p γ • ∇(w -G) + 2 d i,j=1 ∂ 2 p γ ∂x i ∂x j 2 + ∇(w -G) • ∇V + ∇p γ • ∇(∆V ) + 2 d i,j=1 ∂ 2 p γ ∂x i ∂x j ∂ 2 V ∂x i ∂x j + G ′ ∂p γ ∂t .
Young's inequality yields

2 d i,j=1 ∂ 2 i,j p γ ∂ 2 V ∂x i ∂x j ⩽ d i,j=1 ∂ 2 p γ ∂x i ∂x j 2 + d i,j=1 ∂ 2 V ∂x i ∂x j 2 ,
and thus, using Eq. (4.13), we get

∂w ∂t ⩾γ∆(p γ w) + γp γ ∆(∆V ) + γw∆V -γG∆V + (2γ + 1)∇p γ • ∇(∆V ) + 2∇p γ • ∇w -2|∇p| 2 G ′ + d i,j=1 ∂ 2 p γ ∂x i ∂x j 2 - d i,j=1 ∂ 2 V ∂x i ∂x j 2 + ∇w • ∇V -G ′ ∇p • ∇V + γG ′ p γ w + γp γ G ′ ∆V + G ′ |∇p γ | 2 + G ′ ∇p γ • ∇V.
We use the fact that

d i,j=1 ∂ 2 p γ ∂x i ∂x j 2 ⩾ 1 d |∆p γ | 2 = 1 d (w -G) 2 ,
and we obtain

∂w ∂t ⩾γ∆(p γ w) + γp γ ∆(∆V ) + γw∆V -γG∆V + (2γ + 1)∇p γ • ∇(∆V ) + 2∇p γ • ∇w -|∇p| 2 G ′ + 1 d w 2 - 2 d wG + 1 d G 2 - d i,j=1 ∂ 2 V ∂x i ∂x j 2 + ∇w • ∇V + γG ′ p γ w + γp γ G ′ ∆V.
We multiply by -(w) -, to find

- ∂w ∂t (w) -⩽ - 1 d (w) 3 -+ γ∆V (w) 2 -- 2 d G(w) 2 -+ γG ′ p γ (w) 2 -- 1 d G 2 (w) -+ γG∆V (w) - + d i,j=1 ∂ 2 V ∂x i ∂x j 2 (w) --γp γ G ′ ∆V (w) -+ |∇p γ | 2 G ′ (w) - + γ∆(p γ (w) -)(w) -+ 2∇p γ • ∇(w) -(w) - -γp γ ∆(∆V )(w) --(2γ + 1)∇p γ • ∇(∆V )(w) - + ∇V • ∇(w) -(w) -.
Hence, using the fact that G ′ < -α and integrating in space and time, we obtain

- Ω (w 0 ) 2 - 2 dx ⩽ - 1 d Ω T (w) 3 -dx dt + Cγ Ω T |w| 2 -dx dt + Cγ Ω T (w) -dx dt + γ Ω T ∆(p γ (w) -)(w) -+ 2∇p γ • ∇(w) -(w) -dx dt I1 -γ Ω T p γ ∆(∆V )(w) -dx dt I2 -(2γ + 1) Ω T ∇p γ • ∇(∆V )(w) -dx dt I3 + Ω T ∇V • ∇(w) -(w) -dx dt I4 (4.14) 
where C represents different constants depending on the L ∞ -norms of G, G ′ and ∂ 2 i,j V , for i, j = 1, . . . , d.

Now, we compute each term individually. Integration by parts yields

I 1 =γ Ω T ∆(p γ (w) -)(w) -+ 2∇p γ • ∇(w) -(w) -dx dt = - γ 2 Ω T ∇p γ • ∇(w) 2 -dx dt -γ Ω T p |∇(w) -| 2 dx dt + Ω T ∇p γ • ∇(w) 2 -dx dt = -1 - γ 2 Ω T (w -G)(w) 2 -dx dt -γ Ω T p γ |∇(w) -| 2 dx dt = 1 - γ 2 Ω T (w) 3 -dx dt + 1 - γ 2 Ω T G(w) 2 -dx dt -γ Ω T p γ |∇(w) -| 2 dx dt ⩽ 1 - γ 2 Ω T (w) 3 -dx dt -γ Ω T p γ |∇(w) -| 2 dx dt + Cγ Ω T (w) 2 -dx dt.
We continue by using integration by parts and Young's inequality to get

I 2 = -γ Ω T p γ ∆(∆V )(w) -dx dt =γ Ω T p γ ∇(∆V ) • ∇(w) -dx dt + γ Ω T ∇p γ • ∇(∆V )(w) -dx dt ⩽ γ 2 Ω T p γ |∇(w) -| 2 dx dt + γ 2 Ω T p γ |∇(∆V )| 2 dx dt + γ Ω T |∇p γ | 4 1/4 Ω T |∇(∆V )(w) -| 4/3 dx dt 3/4 ⩽ γ 2 Ω T p γ |∇(w) -| 2 dx dt + γ 2 Ω T p γ |∇(∆V )| 2 dx dt + Cγ Ω T |∇(∆V )| 12/5 dx dt 5/12 Ω T (w) 3 -dx dt 1/3 ⩽ γ 2 Ω T p γ |∇(w) -| 2 dx dt + Cγ + Cγ Ω T (w) 3 -dx dt 1/3
, where we used Hölder's inequality, the L 4 -bound of the pressure gradient of Lemma 4.3.2 and the assumption (A2-V ), ∇(∆V ) ∈ L 12/5 loc (Q T ). Using again Young's and Holder's inequalities we have

I 3 ⩽(2γ + 1) Ω T |∇p γ | 4 dx dt 1/4 Ω T |∇(∆V )(w) -| 4/3 dx dt 3/4 ⩽Cγ Ω T |∇(∆V )| 12/5 dx dt 5/12 Ω T (w) 3 -dx dt 1/3 ⩽Cγ Ω T (w) 3 -dx dt 1/3
.

The last term is

I 4 = Ω T 1 2 ∇V • ∇(w) 2 -dx dt = - 1 2 Ω T ∆V (w) 2 -dx dt ⩽ C Ω T (w) 2 -dx dt.
Here we have used the fact that Ω is a compact set which contains supp(p γ ) and large enough such that ∆p γ = 0 on ∂Ω, then (w) -= 0 on ∂Ω.

Hence, gathering all the estimates and using Hölder's inequality, we can rewrite Eq. (4.14) as

γ 2 -1 + 1 d Ω T (w) 3 -dx dt ⩽ Cγ Ω T (w) 3 -dx dt 1/3 + Cγ Ω T (w) 3 -dx dt 2/3 + Cγ, since we assumed (w 0 ) -∈ L 2 (R d ). Finally, for γ > max(1, 2 -2/d), we have Ω T (w) 3 -dx dt ⩽ C Ω T (w) 3 -dx dt 1/3 + C Ω T (w) 3 -dx dt 2/3 + C, which yields Ω T (w) 3 -dx dt ⩽ C(T ),
where C(T ) depends on T , |Ω| and previous uniform bounds, and the proof is concluded.

Corollary 4.3.4. It holds Ω T |∆p γ | dx dt ⩽ C(T ). (4.15) 
Proof. The compact support assumption yields

Ω T (∆p γ + G) dx dt ⩽ C(T ),
and then, thanks to Hölder's inequality, we have

Ω T |∆p γ + G| dx dt = Ω T (∆p γ + G) dx dt + 2 Ω T (w) -dx dt ⩽ C(T ) + C Ω T |w| 3 -dx dt 1/3 ⩽ C(T ).
Finally, since G is bounded, we obtain 

Ω T |∆p γ | dx dt ⩽ C(T ).
∇p γ → ∇p ∞ , strongly in L 2 (Q T ).
Proof. Thanks to Lemma 4.3.2, we infer the weak convergence (up to a subsequence) of the pressure gradient

∇p γ ⇀ ∇p ∞ , (4.16) 
weakly in L 4 (Q T ). From Lemma 4.3.3, we know that ∆p γ is bounded in L 1 (Q T ), which is instrumental in establishing space-time compactness in any L r (Q T ), with 1 ⩽ r < 4. The proof of this claim is an extension of [109, Theorem 1] to a space-time setting.

To this end, let us define the continuous function ψ, by setting

     ψ(s) = -ϵ, for s < -ϵ, ψ(s) = s, for -ϵ ⩽ s ⩽ ϵ, ψ(s) = ϵ, for s > ϵ, for ϵ > 0. Given γ, γ > 1, we compute Ω T |∇p γ -∇p γ | 2 ψ ′ (p γ -p γ ) dx dt = - Ω T (∆p γ -∆p γ )ψ(p γ -p γ ) dx dt.
Next we split the domain into two parts by defining the set

Ω T,ϵ := {(x, t) ∈ Ω T | |p γ (x, t) -p γ (x, t)| ⩽ ϵ}.
Thus, since ∆p γ is bounded in L 1 (Q T ) (uniformly with respect to γ), we have

Ω T ,ϵ |∇p γ -∇p γ | 2 dx dt ⩽ Cϵ.
Hence

Ω T |∇p γ -∇p γ | dx dt = Ω T ,ϵ |∇p γ -∇p γ | dx dt + Ω c T ,ϵ |∇p γ -∇p γ | dx dt ⩽ Cϵ 1/2 + 2 T 1/2 ∥∇p γ ∥ L 2 (Q T ) • |Ω c T,ϵ | 1/2 ,
where in the last line we used Hölder's inequality. Since p γ is compact, it is a Cauchy sequence, and there exist Γ(ϵ) large enough such that for γ, γ > Γ(ϵ) there holds

Ω T |∇p γ -∇p γ | dx dt ⩽ Cϵ 1/2 + Cϵ.
This implies that ∇p γ is a Cauchy sequence in L 1 (Q T ). Up to a subsequence we have a.e. convergence. Thanks to Eq. (4.16), the pressure gradient is compact in any L r (Q T ), for 1 ⩽ r < 4.

Remark 4.3.7. The tumour growth rate usually depends also on the presence of nutrients, therefore one can couple Eq. (4.1), with an equation on the nutrient concentration. Then, the model reads

       ∂n γ ∂t -∇ • (n γ ∇p γ ) -∇ • (n γ ∇V ) = n γ G(p γ , c γ ), ∂c γ ∂t -∆c γ = -n γ H(c γ ), (4.17) 
where H is the nutrient consumption rate. Thus, system (4.17) is actually an extension of the model with nutrient studied in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF].

Let us notice that the proofs of the estimates in Lemma 4.3.2 and Lemma 4.3.3 can be adapted for system (4.17) without any particular difficulty. In fact, the boundedness of the new terms depending on c γ , ∇c γ , and ∆c γ relies only on the L 2 -regularity of c γ and its derivatives, which comes directly from its equation in system (4.17). Therefore, the strong convergence stated in Lemma 4.3.6 still holds for this model. We refer the reader to [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] and [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF] for the complete treatment of these additional terms.

The Incompressible Limit

The results obtained in Section 4.3 allow us to finally pass to the incompressible limit in Eq. (4.2) and obtain the complementarity relation, Eq. (4.3). Let us point out that, thanks to the uniform (with respect to γ) boundness of ∇p γ in L 2 (Q T ) and ∂ t p γ in L 1 (Q T ), the complementarity relation turns out to be equivalent to the strong convergence of ∇p γ in L 2 (Q T ), given by Lemma 4.3.6.

Theorem 4.4.1 (Complementarity relation). We may pass to the limit in Eq. (4.2), as γ → ∞, and obtain the so-called complementarity relation

p ∞ (∆p ∞ + ∆V + G(p ∞ )) = 0,
in the distributional sense. Moreover, n ∞ and p ∞ satisfy the equations

∂n ∞ ∂t = ∆p ∞ + n ∞ G(p ∞ ) + ∇ • (n ∞ ∇V ), (4.18a 
)

in D ′ (Q T ), as well as p ∞ (1 -n ∞ ) = 0, (4.18b) 
almost everywhere.

Proof. Thanks to the bounds in Lemma 4.2.1,

Ω T ∂p γ ∂t + |∇p γ | dx dt ⩽ C(T ),
then, by the Fréchet-Kolmogorov Theorem, p γ is strongly compact in L 1 (Q T ), for all T > 0. We integrate Eq. (4.2) against a test function

φ ∈ C ∞ c (Q T ) to obtain Q T ∂p γ ∂t φ dx dt =(1 -γ) Q T |∇p γ | 2 φ dx dt + Q T ∇p γ • ∇V φ dx dt -γ Q T p γ ∇p γ • ∇φ dx dt -γ Q T p γ ∇V • ∇φ dx dt + γ Q T p γ G(p γ )φ dx dt.
Dividing by γ -1 and passing to the limit γ → ∞, we obtain

lim γ→∞ - Q T |∇p γ | 2 φ + p γ ∇p γ • ∇φ dx dt - Q T (∇p γ • ∇V φ + p γ ∇V • ∇φ) dx dt + Q T p γ G(p γ )φ dx dt = 0.
It remains to identify the limit. By the strong convergence of p γ and ∇p γ in L 2 (Q T ) we have

- Q T |∇p ∞ | 2 φ + p ∞ ∇p ∞ • ∇φ dx dt - Q T (∇p ∞ • ∇V φ + p ∞ ∇V • ∇φ) dx dt + Q T p ∞ G(p ∞ )φ dx dt = 0, i.e. , p ∞ (∆p ∞ + ∆V + G(p ∞ )) = 0,
in the distributional sense. Now, we prove that Eq. (4.18a) and Eq. (4.18b) are satisfied. By Lemma 4.2.1, we have

Ω T ∂n γ ∂t + |∇n γ | dx dt ⩽ C(T ),
and then we infer the compactness of the density. Up to a subsequence, we also have almost everywhere convergence, both for n γ and p γ . Passing to the limit in the relation p

(1+γ)/γ γ = n γ p γ , we obtain p ∞ (1 -n ∞ ) = 0,
a.e. in Q T . Now, we may pass to the limit in Eq. (4.1) to obtain

∂n ∞ ∂t = ∇ • (n ∞ ∇p ∞ ) + n ∞ G(p ∞ ) + ∇ • (n ∞ ∇V ).
From the following relation

1 + γ γ n γ ∇p γ = p γ ∇n γ + n γ ∇p γ ,
we infer p ∞ ∇n ∞ = 0, and thus

n ∞ ∇p ∞ = ∇p ∞ .
By consequence, n ∞ and p ∞ satisfy

∂n ∞ ∂t = ∆p ∞ + n ∞ G(p ∞ ) + ∇ • (n ∞ ∇V ),
which completes the proof.

Uniqueness of the Limit Pressure

This section is dedicated to proving the following statement.

Theorem 4.5.1 (Uniqueness of n ∞ and p ∞ ). The incompressible limit obtained in the previous section, (n ∞ , p ∞ ), cf. Eq. (4.4a) is unique.

Proof. In order to prove uniqueness, we assume that (n 1 , p 1 ) and (n 2 , p 2 ) are two solutions and let Ω be a compact, simply connected Lipschitz set that contains the union of their supports. Upon subtracting the equation for n 2 from the equation for n 1 we see that difference, n 1 -n 2 , satisfies

∂(n 1 -n 2 ) ∂t -∆(p 1 -p 2 ) -∇ • ((n 1 -n 2 )∇V ) -(n 1 G(p 1 ) -n 2 G(p 2 )) = 0. (4.19) 
For the sake of simplicity, we shall use the short-hand notation G i = G(p i ), for i = 1, 2, and u = ∇V . Multiplying Eq. (4.19) by a test function ψ = ψ(x, t) and integrating by parts we get

Ω T (n 1 -n 2 ) ∂ψ ∂t + (p 1 -p 2 )∆ψ -(n 1 -n 2 )∇ψ • u + (n 1 G 1 -n 2 G 2 )ψ dx dt = 0. (4.20)
The strategy is to employ Hilbert's dual method to establish uniqueness. To this end we introduce the following notation

                       Z := n 1 -n 2 + p 1 -p 2 , A := n 1 -n 2 Z , B := p 1 -p 2 Z , C := -n 2 G 1 -G 2 p 1 -p 2 ,
where we set A = B = 0, whenever Z = 0. Using this notation we rewrite Eq. (4.20) which becomes

Ω T Z A ∂ψ ∂t + B∆ψ -A∇ψ • u + (AG 1 -BC)ψ dx dt = 0. (4.21) 
Note that, by definition,

0 ⩽ A, B ⩽ 1, as well as 0 ⩽ C ⩽ sup 0⩽p⩽p M |G ′ (p)|.
In order to apply Hilbert's duality method, we have to find a solution, ψ, to the dual problem

A ∂ψ ∂t + B∆ψ -A∇ψ • u + (AG 1 -BC)ψ = Aξ, (4.22) 
in Ω T , and ψ = 0 on ∂Ω × (0, T ). The equation is complemented by the final time condition ψ(x, T ) = 0 for x ∈ Ω. Here, ξ is an arbitrary smooth function. If solved, substituting the solution to the dual problem, ψ, into Eq. (4.21) would yield

Ω T AZξ dx dt = Ω T (n 1 -n 2 )ξ dx dt = 0, (4.23) 
thus proving uniqueness of the density. Subsequently, from Eq. (4.20), the uniqueness of the pressure follows.

However, since the coefficient of Eq. (4.22) are not smooth and A and B can vanish, the equation is not uniformly parabolic and we need to regularise the system first. To this end, let {A k }, {B k }, {C k }, {u k }, {G 1,k } be approximating sequences of smooth and bounded functions such that

∥A -A k ∥ L 2 (Ω T ) , ∥B -B k ∥ L 2 (Ω T ) , ∥C -C k ∥ L 2 (Ω T ) , ∥G 1 -G 1,k ∥ L 2 (Ω T ) , ∥u -u k ∥ L 2 (Ω T ) ⩽ 1 k , (4.24a) 
such that

1/k ⩽ A k , B k ⩽ 1, as well as 0 ⩽ C k , |G 1,k | ⩽ C, (4.24b) 
and

∥∂ t C k ∥ L 1 (Ω T ) , ∥∇G 1,k ∥ L 2 (Ω T ) ⩽ C, (4.24c) 
where C > 0 is some positive constant. Using the regularised quantities, we consider the regu-

larised equation ∂ψ k ∂t + B k A k ∆ψ k -∇ψ k • u k + G 1,k - B k C k A k ψ k = ξ, (4.25) 
in Ω T , and ψ k = 0, on ∂Ω × (0, T ), and ψ k (T, x) = 0, in Ω. Here, ξ denotes an arbitrary smooth test function which is crucial for this approach, as discussed above, cf. Eq. (4.23). Since the coefficient B k /A k is smooth and bounded from away from zero, the equation is uniformly parabolic, whence we infer the existence of a smooth solution, ψ k .

Using ψ k as a test function in Eq. (4.21) and thanks to Eq. (4.25) we get

0 = Ω T Z A ∂ψ k ∂t + B∆ψ k -Au • ∇ψ k + (AG 1 -BC)ψ k dx dt = Ω T ZA - B k A k ∆ψ k + u k • ∇ψ k -G 1,k - B k C k A k ψ k + ξ dx dt + Ω T Z(B∆ψ k -Au • ∇ψ k + (AG 1 -BC)ψ k ) dx dt = Ω T ZAξ + Ω T Z B k A k (A -A k )(-∆ψ k + C k ψ k ) dx dt + Ω T Z(B k -B)(-∆ψ k + C k ψ k ) dx dt + Ω T ZB(∆ψ k -Cψ k ) dx dt + Ω T ZB(-∆ψ k + C k ψ k ) dx dt + Ω T ZAψ k (G 1 -G 1,k ) dx dt + Ω T ZA∇ψ k • (u k -u) dx dt.
Using the definition of A, B, and Z, we finally obtain

Ω T (n 1 -n 2 )ξ dx dt = I 1 k -I 2 k + I 3 k -I 4 k + I 5 k ,
where

I 1 k = Ω T (n 1 -n 2 + p 1 -p 2 ) B k A k (A -A k )(∆ψ k -C k ψ k ) dx dt, I 2 k = Ω T (n 1 -n 2 + p 1 -p 2 )(B -B k )(∆ψ k -C k ψ k ) dx dt, I 3 k = Ω T (p 1 -p 2 )(C -C k )ψ k dx dt, I 4 k = Ω T (n 1 -n 2 )(G 1 -G 1,k )ψ k dx dt, I 5 k = Ω T (n 1 -n 2 )∇ψ k • (u -u k ) dx dt.
We aim at showing that lim k→∞ I i k = 0, for i = 1, . . . , 5, in order to be able to conclude that n 1 = n 2 . Before proving the convergence of each I i k , we need certain uniform bounds which we collect and state in the subsequent lemma.

Lemma 4.5.2 (Uniform bounds). There exist a positive constant C > 0, independent of k, such that

sup 0⩽t⩽T ∥ψ k (t)∥ L ∞ (Ω) ⩽ C, sup 0⩽t⩽T ∥∇ψ k (t)∥ L 2 (Ω) ⩽ C, ∥(B k /A k ) 1/2 (∆ψ k -C k ψ k )∥ L 2 (Ω T ) ⩽ C. (4.26) 
Proof. The L ∞ -bound comes directly from the maximum principle applied to Eq. (4.25), since ξ is bounded and

G 1,k - B k C k A k ⩽ C.
Now we multiply Eq. (4.25) by

(∆ψ k -C k ψ k ) and integrate in (t, T ) × Ω to obtain - T t Ω ∂ ∂t |∇ψ k | 2 2 dx ds - T t Ω C k 2 ∂ ∂t ψ 2 k dx ds + T t Ω B k A k |∆ψ k -C k ψ k | 2 dx ds = T t Ω u • ∇ψ k (∆ψ k -C k ψ k ) dx ds I1 + - T t Ω G 1,k ψ k (∆ψ k -C k ψ k ) dx ds I2 + T t Ω ξ(∆ψ k -C k ψ k ) dx ds I3 , (4.27) 
where we shall bound each of the terms, I i , for i = 1, 2, 3, individually. First note that

I 1 = T t Ω u • ∇ψ k ∆ψ k dx ds - T t Ω u • ∇ψ k C k ψ k dx ds = I 1,1 + I 1,2 .
Integrating by parts in the first term of I 1 we get

I 1,1 = - T t Ω d i,j=1 ∂u (i) ∂x j ∂ψ k ∂x i ∂ψ n ∂x j dx ds - T t Ω d i,j=1 u (i) ∂ 2 ψ k ∂x i ∂x j ∂ψ k ∂x j dx ds = - T t Ω d i,j=1 ∂u (i) ∂x j ∂ψ k ∂x i ∂ψ n ∂x j dx ds + T t Ω |∇ψ k | 2 2 ∇ • u dx ds ⩽ d∥∇u∥ L ∞ + 1 2 ∥∇ • u∥ L ∞ T t Ω |∇ψ k | 2 dx ds,
where u (i) is the i-th component of the vector u and ∇u is the matrix with element (∇u) i,j = ∂ j u (i) . Similarly, we observe

I 1,2 = - T t Ω u • ∇ψ k C k ψ k dx ds ⩽ 1 2 ∥u∥ L ∞ (Ω T ) ∥C k ∥ L ∞ (Ω T ) ∥ψ k ∥ 2 L 2 (Ω T ) + 1 2 ∥∇ψ k ∥ 2 L 2 (Ω T ) ⩽ C + C∥∇ψ k ∥ 2 L 2 (Ω T ) ,
with C > 0 independent of k, after applying Young's inequality. Hence

I 1 ⩽ C + C∥∇ψ k ∥ 2 L 2 (Ω T ) .
Next, let us address the term I 2 . We observe that

I 2 = - T t Ω G 1,k ψ k (∆ψ k -C k ψ k ) dx ds = T t Ω G 1,k |∇ψ k | 2 dx ds + T t Ω ψ k ∇ψ k • ∇G 1,k dx ds + T t Ω G 1,k C k ψ k dx ds.
We note that ∥G 1,k ∥ L ∞ (Ω T ) whence we obtain bounds for the first and the last term, respectively.

In addition, we recall ∥∇G 1,k ∥ L 2 (Ω T ) ⩽ C, whence, upon using Young's inequality, we get

T t Ω ψ k ∇ψ k • ∇G 1,k dx ds ⩽ 1 2 ∥ψ k ∥ L ∞ (Ω T ) ∥∇G 1,k ∥ 2 L 2 (Ω T ) + 1 2 ∥ψ k ∥ L ∞ (Ω T ) T t Ω |∇ψ k | 2 dx ds ⩽ C + C T t Ω |∇ψ k | 2 dx ds.
In combination we get

I 2 ⩽ C + C∥∇ψ k ∥ 2 L 2 (Ω T ) ,
with C > 0 independent of k. Last, let us address the term I 3 . We readily observe

I 3 = T t Ω ξ(∆ψ k -C k ψ k ) dx ds ⩽ C,
integrating by parts twice and using the L ∞ -bounds. Using the bounds obtained above, the right-hand side of Eq. (4.27) can be bounded as follows

C+C∥∇ψ k ∥ 2 L 2 (Ω T ) ⩾ - T t Ω ∂ ∂t |∇ψ k | 2 2 dx ds - T t Ω C k 2 ∂ ∂t ψ 2 k dx ds + T t Ω B k A k |∆ψ k -C n ψ k | 2 dx ds ⩾ - T t d dt Ω |∇ψ k | 2 2 dx ds + T t Ω ∂C k ∂t ψ 2 k 2 dx ds + T t Ω B k A k |∆ψ k -C k ψ k | 2 dx ds + Ω C k (t)ψ 2 k (t) 2 dx ⩾ 1 2 ∥∇ψ k (•, t)∥ 2 L 2 (Ω) -∥∂ t C k ∥ L 1 (Ω T ) ∥ψ k ∥ 2 L ∞ (Ω T ) + T t Ω B k A k |∆ψ k -C k ψ k | 2 dx ds - 1 2 ∥C k ∥ L ∞ (Ω T ) ∥ψ k ∥ 2 L 2 (Ω T ) ⩾ 1 2 ∥∇ψ k (•, t)∥ 2 L 2 (Ω) + T t Ω B k A k |∆ψ k -C k ψ k | 2 dx ds -C,
having used the regularity assumptions on the regularised coefficients, cf. Eq. (4.24). Finally, since C k is positive, we get

1 2 Ω |∇ψ k (t)| 2 dx + T t Ω B k A k |∆ψ k -C k ψ k | 2 dx ds ⩽ C + C T t Ω |∇ψ k | 2 dx ds. (4.28) 
Introducing the notation

Q(s) := Ω |∇ψ k (s, x)| 2 dx,
we observe that Eq. (4.28) now reads

Q(t) ⩽ C + C T t Q(s) ds,
and by Gronwall's lemma we conclude that

sup 0⩽t⩽T Q(t) = sup 0⩽t⩽T ∥∇ψ k (t)∥ 2 L 2 (Ω) ⩽ C.
The third bound of Eq. (4.26) comes a posteriori from Eq. (4.28), which completes proof.

Thanks to these uniform bounds, we obtain

I 1 k = Ω T (n 1 -n 2 + p 1 -p 2 ) B k A k (A -A k )(∆ψ k -C k ψ k ) dx dt ⩽ C∥(B k /A k ) 1/2 (A -A k )∥ L 2 (Ω T ) ⩽ Ck 1/2 ∥A -A k ∥ L 2 (Ω T ) ⩽ C/k 1/2 ,
and, similarly,

I 2 n = Ω T (n 1 -n 2 + p 1 -p 2 )(B -B k )(∆ψ k -C k ψ k ) dx dt ⩽ Ck 1/2 ∥B -B k ∥ L 2 (Ω T ) ⩽ C/k 1/2 .
Finally, we have

I 3 k = Ω T (p 1 -p 2 )(C -C n )ψ k dx dt ⩽ C∥C -C k ∥ L 2 (Ω T ) ⩽ C/k, and 
I 4 k = Ω T (n 1 -n 2 )(G 1 -G 1,k )ψ n dx dt ⩽ C∥G 1 -G 1,k ∥ L 2 (Ω T )
⩽ C/k, as well as

I 5 n = Ω T (n 1 -n 2 )∇ψ n • (u -u k ) dx dt ⩽ C∥u -u k ∥ L 2 (Ω T ) ⩽ C/k.
In summary, we have

Ω T (n 1 -n 2 )ξ dx dt = I 1 k -I 2 k + I 3 k -I 4 k + I 5 k -→ 0,
as k → ∞, and therefore n 1 = n 2 . From Eq. (4.20) we have

Ω T ((p 1 -p 2 )∆ψ + n 1 (G(p 1 ) -G(p 2 ))ψ) dx dt = 0.
Taking a smooth approximation of p 1 -p 2 as test function we get

Ω T |∇(p 1 -p 2 )| 2 dx dt = Ω T n 1 (G(p 1 ) -G(p 2 ))(p 1 -p 2 ) dx dt,
and, by the monotonicity of G, cf. Eq. (A-G), we conclude that p 1 = p 2 .

Velocity of the boundary for patches

Let us recall that the Hele-Shaw problem is given by Proof. We have to show that n ∞ (t) = 1 Ω(t) satisfies

-∆p ∞ = ∆V + G(p ∞ ), in Ω(t), v = -(∇p ∞ + ∇V ) • ν, on ∂Ω(t), (4.29 
∂n ∞ ∂t = ∆p ∞ + ∇ • (n ∞ ∇V ) + n ∞ G(p ∞ ),
in the distributional sense. Given a test function ψ = ψ(x), by Reynolds' transport Theorem and Eq. (4.30), we have

R d ψ(x) ∂n ∞ ∂t dx = d dt R d ψ(x)1 Ω(t) dx = ∂Ω(t) vψ(x) dx = vδ ∂Ω(t) .
On the other hand, it holds

∆p ∞ + ∇ • (n ∞ ∇V ) + n ∞ G(p ∞ ) = -(∂ ν p ∞ + ∂ ν V )δ ∂Ω(t) = vδ ∂Ω(t) ,
in the sense of distributions, as can be seen by the following argument. First, by the definition of Ω(t) as the positivity set of p ∞ and the fact that n ∞ = 1 Ω(t) we observe that the weak formulation of the left-hand side can be manipulated as follows:

R d -∇p ∞ • ∇ψ -n ∞ ∇V • ∇ψ + n ∞ G(p ∞ )ψ dx = Ω(t) -∇p ∞ • ∇ψ -∇V • ∇ψ + G(p ∞ )ψ dx.
Integrating by parts the right-hand side, we obtain

Ω(t) (∆p ∞ + ∆V + G(p ∞ ))ψ dx - ∂Ω(t) ∂ ν p ∞ ψ dx - ∂Ω(t) ∂ ν V ψ dx = - ∂Ω(t) ∂ ν p ∞ ψ dx - ∂Ω(t) ∂ ν V ψ dx
where we used ∆p ∞ + ∆V + G(p ∞ ) = 0, in D ′ , by Eq. (4.29).

Introduction

We consider the following nonlinear drift-diffusion equation

∂n ∂t -∇ • (n∇p + n∇V ) = ng, (5.1) 
posed on R d × (0, T ), d ⩾ 2, where n describes a population density and p = p(n) is the density dependent pressure. The reaction term on the right-hand side represents the population growth rate, g = g(x, t), while V = V (x, t) is a chemical concentration. The pressure is assumed to be a known increasing function of the density. We consider the following two representative examples:

p γ = P γ (n) := γ γ -1 n γ-1 , γ > 1, (5.2) 
and

p ϵ = P ϵ (n) := ϵ n 1 -n , ϵ > 0. (5.3)
We are concerned with calculating the rate at which solutions to Eq. (5.1) converge to the socalled incompressible (or stiff pressure) limit, as described below. More precisely we prove the following results. 

∥n γ (t) -n ∞ (t)∥ Ḣ-1 (R d ) ⩽ C(T ) γ 1/2 + ∥n 0 γ -n 0 ∞ ∥ Ḣ-1 (R d ) . ( 5 
∥n γ (t) -n ∞ (t)∥ L 4/3 (R d ) ⩽ C(T ) γ 1/4 + ∥n 0 γ -n 0 ∞ ∥ 1/2 Ḣ-1 (R d ) .
(5.5)

Theorem 5.1.3. Under the assumptions of Theorem 5.1.1, there exists a function p ∞ ∈ L ∞ (R d × (0, T )) such that, after extracting a subsequence, the sequence p γ converges to p ∞ weakly * in L ∞ ((0, T ) × R d ) and the following relation holds

p ∞ (1 -n ∞ ) = 0, (5.6) 
almost everywhere in (0, T ) × R d .

The above graph relation between the limit pressure and density is well-known in the literature.

In particular, when considering tumor growth models it implies that saturation holds in the region where there is a positive pressure, which is usually referred to as the region occupied by the tumor. Here we provide a new proof that does not require strong convergence of the density nor the pressure.

In fact, the limit n ∞ satisfies (together with a limit pressure, p ∞ ) a free boundary type problem, discussed shortly below, and the question of passing to this limiting problem has been vastly addressed in literature. Our contribution is to provide a new proof together with a convergence rate.

Motivation and previous works. Models like Eq. (5.1) are well-known and commonly employed in a variety of applications, for instance in bio-mathematical modelling of living tissue.

In the case V = 0, g = 0, it is well-known that if the pressure satisfies the power law (5.2), then Eq. (5.1) is actually the porous medium equation

∂n γ ∂t -∆n γ γ = 0, (5.7) 
whose well-understood properties (e.g. regularising effects) facilitate the analysis notably. The other choice of the pressure, given by Eq. (5.3), is well-known in kinetic theory of dense gases where the short-distance interactions between particles are strongly repulsive. In this spirit it has been used in models describing collective motion or congested traffic flow, see [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF][START_REF] Perrin | Free/congested two-phase model from weak solutions to multidimensional compressible Navier-Stokes equations[END_REF][START_REF] Degond | Self-organized hydrodynamics with congestion and path formation in crowds[END_REF][START_REF] Berthelin | A model for the formation and evolution of traffic jams[END_REF][START_REF] Berthelin | A traffic-flow model with constraints for the modeling of traffic jams[END_REF]. Despite having a singularity when the population density reaches its maximum value (here standardised to 1), this choice of pressure gives rise to a tissue growth model with similar properties -indeed, the crucial a-priori estimates are the same and the limiting free boundary type problem is almost identical. A difference is that the singularity in the pressure prevents the cell densities to ever rise above the maximum value 1. Taking advantage of these similarities, we shall henceforth index the solution of Eq. (5.1) by γ, n = n γ , and consider the singular limit γ → ∞. Each of the assumptions and properties we discuss below has its natural ϵ-analogue by putting ϵ = 1/γ.

Let us recall that the study of the incompressible limit has a long history and it has been investigated for many different models related to Eq. (5.1). The first result on the limit γ → ∞ has been obtained for the classical porous medium equation (5.7). The most interesting difference from the case with a non-trivial reaction term is that the free boundary problem arising in the limit turns out to be stationary. In fact, as proven in [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF] the limit density, n ∞ , is independent of time. This result can be intuitively explained by noticing that the degenerate diffusivity of Eq. (5.1), namely γn γ-1 converges to 0 if n < 1, while it tends to infinity in the regions where n > 1. Therefore, while there is no motion in the regions where the density is below 1, where the solution lies above this level it tends to collapse instantaneously, cf. [START_REF] Gil | Boundary layer formation in the transition from the porous media equation to a Hele-Shaw flow[END_REF]. In the absence of reaction terms and, hence, of any evolution process in the Hele-Shaw problem, the limit pressure turns out to be constantly equal to zero, p ∞ ≡ 0.

Introducing non-trivial Dirichlet boundary conditions changes drastically the behaviour of the limit free boundary problem. In fact, the limit pressure no longer vanishes and this triggers the evolution of the interface in accordance with Darcy's law (which states that the velocity of the free boundary is proportional to the pressure gradient). This problem was addressed in [START_REF] Gil | Convergence of the porous media equation to Hele-Shaw[END_REF],

where the authors study the incompressible limit of the porous medium equation defined in [0, ∞) × Ω, where Ω is a compact subset of R d , and the pressure satisfies p(x, t) = f (x, t) on ∂Ω, for some f (x, t) ⩾ 0. In the absence of Dirichlet boundary data, i.e. f ≡ 0, and for Ω large enough, the problem is actually the same as in [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF] and it still holds that n ∞ = n ∞ (x) as well as p ∞ ≡ 0. On the other hand, if one imposes the pressure to be strictly positive somewhere on ∂Ω, i.e. f ̸ ≡ 0, then the pressure gradient no longer vanishes and the dynamics of the limit problem is governed by Darcy's law. The same non-stationary effect, although due to different dynamics, is produced by a nontrivial reaction process. The incompressible limit for Eq. (5.1) without convective effects, i.e. V = 0, and with a pressure-dependent growth rate g = G(p), was first addressed in the seminal paper [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] by Perthame, Quirós and Vázquez. They prove that it is possible to extract subsequences of n γ and p γ which converge in the L 1 -norm to functions

n ∞ ∈ C([0, T ]; L 1 (R d )) ∩ BV (R d × (0, T )), p ∞ ∈ L 2 (0, T ; H 1 (R d )) ∩ BV (R d × (0, T )), (5.8) 
satisfying the following equation in the sense of distributions on R d × (0, T )

∂n ∞ ∂t -∆p ∞ = n ∞ G(p ∞ ), (5.9) 
and the following relations

(1 -n ∞ )p ∞ = 0, (5.10) 
almost everywhere, as well as p ∞ (∆p ∞ + G(p ∞ )) = 0, (5.11) in the sense of distributions. The last equality is usually referred to as the complementarity relation and represents the link between the limit equation and the free boundary problem. In fact, denoting by Ω(t) := {x ∈ R d | p ∞ (x, t) > 0} the region occupied by the tumor, from Eq. (5.11) one can see that the pressure satisfies an elliptic equation in the evolving domain Ω(t) with homogeneous Dirichlet boundary conditions. The free boundary ∂Ω(t) is moving under Darcy's law, which finally allows to obtain the fully geometrical representation of the limit problem. A derivation of the velocity law can be found in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] for initial data given by characteristic functions of bounded sets, although the proof relies on formal arguments. A weak (distributional) and a measure-theoretic interpretation of the free boundary condition have been recovered in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF], while in [START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF] the same result is achieved through the viscosity solutions approach. An analogous result regarding the limit γ → ∞ has been shown in [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF] for the pressure law given by Eq. ( 5.3). The authors obtain virtually the same limiting problem, the only difference being that the complementarity relation (5.11) becomes

p 2 ∞ (∆p ∞ + G(p ∞ )) = 0, (5.12) 
see [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF]Theorem 2.1]. Let us point out that due to uniform estimates in L ∞ the convergence of the sequence of densities is also true in any L p -space, p < ∞.

The Hele-Shaw limit for the porous medium equation including convective effects, cf. Eq. (5.1) with V ̸ ≡ 0, and possibly reaction terms, has attracted a lot of interest as well. Similarly as for the driftless case, when passing to the limit γ → ∞, the model converges to a free boundary problem where, however, the interface dynamics is no longer driven only by Darcy's law, but also by the external drift, i.e. the normal velocity is given by -(∇p ∞ +∇V )•ν, where ν is the outward normal direction. The asymptotics as γ → ∞ has been addressed both for local and non-local drift, in the absence of reactions, see for instance [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF][START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF], where the authors adopt techniques relying on the gradient flow structure of the equation. In [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF], Kim, Požàr and Woodhouse include also a linear reaction term into the equation and are able to prove the convergence to the incompressible limit using viscosity solutions. Recently, in [START_REF] David | On the Incompressible Limit for a Tumour Growth Model incorporating Convective Effects[END_REF] the authors show that the complementarity condition including a drift, i.e.

p ∞ (∆p ∞ + ∆V + G(p ∞ )) = 0,
holds in the sense of distributions.

In recent years, many other variations of the model at hand have been proposed together with the analysis of their incompressible limit. We refer the reader to [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF] for a model including the effects of nutrients, [START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF] for the generalization of the driftless model with a non-monotone proliferation term, and [START_REF] Tang | Composite waves for a cell population system modeling tumor growth and invasion[END_REF] for the model including active motion. In order to account for visco-elastic effects, several models propose to use Brinkman's law instead of Darcy's law [START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF]. Moreover, cross-reaction-diffusion model using Darcy's law, Brinkman's law or singular pressure law have attracted a lot of attention as they raise challenging questions both on the existence of solutions and their incompressible limit, see [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF][START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF][START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF][START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF][START_REF] Dębiec | Incompressible Limit for a Two-Species Tumour Model with Coupling Through Brinkman's Law in One Dimension[END_REF][START_REF] Dębiec | Incompressible limit for a two-species model with coupling through Brinkman's law in any dimension[END_REF].

Our aim is to compute the rate of convergence of the solutions of Eq. (5.1) as ϵ → 0 or γ → ∞ in Eq. ( 5.3) or Eq. ( 5.2) respectively. To the best of our knowledge the only result in this direction is given by Alexander, Kim and Yao in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF] for the porous medium equation including a spacedependent drift. Passing to the incompressible limit, the authors are able to build a link between the Hele-Shaw model and the following congested crowd motion model

∂ t n + ∇ • (n∇V ) = 0, if n < 1,
with the constraint n ⩽ 1. To prove the equivalence of the two models, they study the convergence as γ → ∞ of the porous medium equation with drift, cf. Eq. (5.1) with G ≡ 0. Unlike [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], their approach is based on viscosity solutions. On the one hand, they are able to prove locally uniform convergence of the viscosity solution of Eq. (5.1) to a solution of the Hele-Shaw model. On the other hand, they show the convergence of the porous medium equation with drift to the aforementioned crowd motion model in the 2-Wasserstein distance. Therefore, they prove the equivalence of the two models in the special case of initial data given by "patches", namely n 0 = 1 Ω0 for a compact set Ω 0 . In fact, the locally uniform limit holds only for solutions of the form of a characteristic function, while the limit in the 2-Wasserstein metric holds for any bounded initial data, 0 ⩽ n 0 ⩽ 1 with finite energy and second moment. Moreover, while the local uniform convergence only requires a strict subharmonicity assumption on the drift term, i.e. V ∈ C 2 (R d ), ∆V > 0, stronger regularity is needed to pass to the 2-Wasserstein limit. More precisely the authors make the following assumptions on V = V (x): there exists λ ∈ R such that

inf x∈R d V (x) = 0, D 2 V (x) ⩾ λI d , ∀x ∈ R d , ∥∆V ∥ L ∞ (R d ) ⩽ C.
Under these assumptions, they derive the following rate of convergence, cf. [1, Theorem 4.2.]

sup t∈[0,T ] W 2 (n γ (t), n ∞ (t)) ⩽ C γ 1/24 ,
where C is a positive constant depending on V n 0 , ∥∆V ∥ ∞ and T . The main result of this paper offers an improved polynomial rate of convergence in a negative Sobolev norm and the strong topology of Lebesgue spaces, see Theorems 5.1.1 and 5.1.2 above and Corollary 5.1.7 below. Let us remark that the 2-Wasserstein distance and the Ḣ-1 -norm can be bounded by each other when the densities are uniformly bounded away from vacuum, see Appendix 5.A. We refer the reader to [144, Section 5.5.2], and references therein, for further discussion about the equivalence of the two distances.

Preliminaries and assumptions. Throughout this paper we make the following assumptions on the components of the model. Firstly, we assume that Eq. (5.1) is equipped with non-negative initial data n 0 γ (resp. n 0 ϵ ) such that there is a compact set K ⊂ R d and a function

n 0 ∞ ∈ L 1 (R d ) satisfying supp n 0 γ ⊂ K, p 0 γ = P γ (n 0 γ ) ∈ L ∞ (R d ), 0 ⩽ n 0 γ ∈ L 1 (R d ), ∥n 0 γ -n 0 ∞ ∥ L 1 (R d ) → 0, p 0 ϵ = P ϵ (n 0 ϵ ) ∈ L ∞ (R d ), 0 ⩽ n 0 ϵ ∈ L 1 (R d ), ∥n 0 ϵ -n 0 ∞ ∥ L 1 (R d ) → 0.
(A-L 1 data) Note in particular that the compact support assumption is needed only in the power law pressure. This is because when the pressure is given by Eq. ( 5.3) we can achieve our main estimate without a uniform bound for the pressure in L ∞ , which is not the case for the power law. Having uniformly compactly supported data allows to derive a maximum principle for the equation satisfied by the pressure. When additionally specified, we assume further

n 0 γ ∈ BV (R d ), ∆ n 0 γ γ ∈ L 1 (R d ), (A-BV data)
uniformly in γ. Secondly, the chemical concentration potential, V , is assumed to satisfy

D 2 V ⩾ λ + 1 2 tr(D 2 V ) I d , for some λ ∈ R, (A-drift) equation. Explicitly, for x ̸ = 0, K(x) =        - 1 2π ln |x|, for d = 2, 1 d(d -2)ω d |x| 2-d , for d ⩾ 3, (5.14) 
where ω d denotes the volume of the unit ball in R d . Suppose for now that d ⩾ 3. Then, since

n γ ∈ L 1 (R d ) ∩ L ∞ (R d )
, a straightforward application of Young's inequality shows that

φ γ ∈ L p (R d ), for p > d d -2 , (5.15) 
and ∇φ γ ∈ L 2 (R d ).

(5.16)

If d = 2, then we do not have φ γ ∈ L ∞ (R 2 ) and we cannot apply Young's inequality to deduce square-integrability of ∇φ γ (indeed, this is an endpoint case). However, let us point out that, for the power law case, since by Lemma 5.1.4 (point 1.) solutions are always compactly supported we can take φ γ to be the solution of the Poisson equation on K(T ) ⊂ R 2 with homogeneous Dirichlet boundary conditions. In this case, we know that ∇φ γ ∈ L 2 (K). Under suitable conditions it is possible to infer the L 2 -integrability of ∇(φ ϵ -φ ϵ ′ ) in R 2 , which is needed for the singular pressure law. In this case, we impose the following additional assumptions

g = g(t), ∇V ∈ L 1 ((0, T ) × R 2 ), R 2 |x| n 0 ϵ < ∞. (A-2D)
The bound on the first moment is propagated in time and guarantees the well-posedness of K⋆n ϵ . Taking a space-independent growth rate implies that the difference n ϵ -n ϵ ′ has zero mean for all times. Therefore, we have

R 2 (n ϵ -n ϵ ′ ) = 0, R 2 |x||n ϵ -n ϵ ′ | < ∞, from which we conclude that ∇(φ ϵ -φ ϵ ′ ) ∈ L 2 (R 2 ).
Notice that the L 1 convergence of the initial data implies the convergence of ∇φ 0 γ to ∇φ 0 ∞ in L 2 . Moreover, the uniform bounds on n γ together with the Hardy-Littlewood-Sobolev inequality imply that the convolution n γ → K ⋆ n γ is a bounded linear operator from L 2d/d+2 to L 2 . Therefore there is a subsequence ∇φ γ k which converges weakly in L 2 to ∇φ ∞ . Finally, we recall that the gradient ∇φ can be used to represent the Ḣ-1 -norm of the function n as follows

∥n(t)∥ Ḣ-1 (R d ) = ∥∇φ(t)∥ L 2 (R d ) .
(5.17)

Having obtained a convergence rate in the negative norm and assuming additionally the BV bounds provided by Lemma 5.1.4, we will use the following interpolation inequality, proved (in greater generality) by Cohen et al. [START_REF] Cohen | Harmonic Analysis of the space BV[END_REF] (see also [START_REF] Cinti | Interpolation inequalities in pattern formation[END_REF]), to deduce a rate in the Lebesgue 4/3-norm:

Lemma 5.1.6 (Interpolation inequality). There exists a constant C = C(d, T ) > 0, such that, for all t ∈ [0, T ], 

∥n(t)∥ L 4/3 (R d ) ⩽ C|n(t)| 1/2 BV (R d ) ∥∇φ(t)∥ 1/2 L 2 (R d ) . ( 5 
∥n γ (t) -n ∞ (t)∥ L p (R d ) ⩽ C γ α , (5.19) 
with

α :=        p -1 p , for p ∈ (1, 4/3], 1 3p , for p ∈ [4/3, ∞).
(5.20)

Remark 5.1.8 (Finite speed of propagation). When one assumes additionally that the initial data have uniformly compact support, then at any later time the support of n γ is still uniformly contained in a bounded set (this is one of the fundamental properties of the porous medium equation, see [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]Lemma 2.6] and [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF]Lemma 3.3] for the model with a non-zero right-hand side). Therefore one can consider problem (5.1) to be posed on a bounded subset of R d with homogeneous Dirichlet boundary condition. Naturally our results remain true in this case with the improvement that we obtain a rate ∼ γ -1/4 in any L p -norm, 1 ⩽ p ⩽ 4/3. In particular this covers the case of "patches", i.e. , when the initial distribution is given by an indicator function of a compact set, as considered recently in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF].

Plan of the paper. The remainder of the paper is devoted to proving the main theorem. It turns out that the equation can be conveniently trisected and dealt with term-by-term: considering separately the pressure-driven advection, drift, and proliferation. Indeed, it is the diffusion term that governs the rate of convergence. The proof is therefore structured as follows. In Sections 5.2 and 5.3 we prove the main theorem for the choice of the singular pressure in Eq. ( 5.3) and the power law pressure in Eq. (5.2) in the absence of reactions and drift. Then in Section 5.4 we explain how to treat the additional terms.

Notation. Henceforth we shall usually suppress the dependence on time and space of the quantities of interest, only exhibiting the time variable in the final results. Similarly, for the sake of brevity, all space integration should be understood with respect to the d-dimensional Lebesgue measure.

Singular pressure law

In this and the following section, to explain the main idea in a simple situation, we ignore the drift and proliferation terms in Eq. (5.1) and consider only the nonlinear diffusion equation

∂n ϵ ∂t -∇ • (n ϵ ∇p ϵ ) = 0, (5.21) 
assuming now the pressure law as in Eq. (5.3). In this case we can rewrite Eq. (5.21) as

∂n ϵ ∂t -∆H ϵ (n ϵ ) = 0, (5.22) 
with

H ϵ (n ϵ ) := nϵ 0 sp ′ ϵ (s) ds = ϵ n ϵ 1 -n ϵ + ϵ ln(1 -n ϵ ).
(5.23)

Recall that we have the uniform bound n ϵ < 1, so that the right-hand side above is well-defined with ln(1 -n ϵ ) ⩽ 0.

Let us take ϵ > ϵ ′ > 0. We subtract the equation for n ϵ ′ from the equation for n ϵ to obtain

∂(n ϵ -n ϵ ′ ) ∂t -∆(H ϵ (n ϵ ) -H ϵ ′ (n ϵ ′ )) = 0.
(5.24)

Now we pose Eq. (5.13) for both solutions n ϵ and n ϵ ′

-∆φ ϵ = n ϵ , -∆φ ϵ ′ = n ϵ ′ .
Then Eq. ( 5.24) reads

-∆ ∂(φ ϵ -φ ϵ ′ ) ∂t -∆(H ϵ (n ϵ ) -H ϵ ′ (n ϵ ′ )) = 0, (5.25) 
and we test it against φ ϵ -φ ϵ ′ to derive

1 2 d dt R d |∇(φ ϵ -φ ϵ ′ )| 2 = R d (n ϵ -n ϵ ′ )(H ϵ ′ (n ϵ ′ ) -H ϵ (n ϵ )).
We now proceed to estimate the right-hand side. On the set {n ϵ > n ϵ ′ } we make use of nonnegativity of H ϵ (n ϵ ) and non-positivity of the logarithmic term in H ϵ ′ (n ϵ ′ ) to write

{nϵ>n ϵ ′ } (n ϵ -n ϵ ′ )(H ϵ ′ (n ϵ ′ ) -H ϵ (n ϵ )) ⩽ ϵ ′ {nϵ>n ϵ ′ } (n ϵ -n ϵ ′ ) n ϵ ′ 1 -n ϵ ′ ⩽ ϵ ′ {nϵ>n ϵ ′ } n ϵ ′ .
Similarly, on the complementary set {n ϵ ⩽ n ϵ ′ } we have

{nϵ⩽n ϵ ′ } (n ϵ -n ϵ ′ )(H ϵ ′ (n ϵ ′ ) -H ϵ (n ϵ )) ⩽ ϵ {nϵ⩽n ϵ ′ } (n ϵ ′ -n ϵ ) n ϵ 1 -n ϵ ⩽ ϵ {nϵ⩽n ϵ ′ } n ϵ .
Therefore we have

1 2 d dt R d |∇(φ ϵ -φ ϵ ′ )| 2 ⩽ ϵ {nϵ⩽n ϵ ′ } n ϵ + ϵ ′ {nϵ⩾n ϵ ′ } n ϵ ′ ⩽ ϵ∥n ϵ (t)∥ L 1 (R d ) + ϵ ′ ∥n ϵ ′ (t)∥ L 1 (R d ) ,
and since n ϵ and n ϵ ′ are uniformly bounded in L ∞ ((0, T ), L 1 (R d )) with respect to ϵ and ϵ ′ , we obtain

1 2 d dt R d |∇(φ ϵ -φ ϵ ′ )(t)| 2 ⩽ C(ϵ + ϵ ′ ). (5.26) 
Integrating in time on [0, t) we then have

1 2 R d |∇(φ ϵ -φ ϵ ′ )(t)| 2 ⩽ Ct(ϵ + ϵ ′ ) + R d |∇(φ ϵ -φ ϵ ′ )(0)| 2 .
(5.27)

It follows that the sequence (∇φ ϵ ) ϵ converges in the strong topology of L ∞ ((0, T ), L 2 (R d )) to ∇φ ∞ . Consequently, letting ϵ ′ → 0, we deduce the following rate for the convergence n ϵ → n ∞ in the space Ḣ-1 (R d )

∥n ϵ (t) -n ∞ (t)∥ Ḣ-1 (R d ) ⩽ C √ t √ ϵ + ∥n 0 ϵ -n 0 ∞ ∥ Ḣ-1 (R d ) , (5.28) 
where C is a positive constant defined as follows

C = 2 sup ϵ>0 ∥n ϵ ∥ L 1 (R d ×(0,T ))) .
Assuming the additional BV bounds for the initial data, we get from Lemma 5.1.4 that n ϵ is uniformly bounded in L ∞ (0, T ; BV (R d )), and we can use Eq. (5.18) to obtain the rate ϵ 1/4 , as announced in Eq. (5.5). Thus Theorems 5.1.1 and 5.1.2 are proved in this special case.

Power law

Let us now consider Eq. (5.21) with the pressure law given by Eq. ( 5.2) and demonstrate that the method employed in the previous section remains valid. We now have the porous medium equation ∂n γ ∂t -∆n γ γ = 0.

(

Let us recall that there exists a positive constant p M such that

0 ⩽ γ γ -1 n γ-1 γ ⩽ p M , 0 ⩽ γ ′ γ ′ -1 n γ ′ -1 γ ′ ⩽ p M .
Let us define

c γ := γ -1 γ 1 γ-1 p 1/(γ-1) M
and ñγ := n γ c γ .

Then it immediately follows that ñγ ⩽ 1 and solves the equation

∂ t ñγ -∆(c γ-1 γ ñγ γ ) = 0.
Following the same argument as before, we define φ γ and φγ by

-∆φ γ = n γ , -∆ φγ = ñγ , i.e. φγ = φ γ /c γ .
Without loss of generality, we take 1 < γ < γ ′ . Now we subtract the equation for ñγ ′ from the equation for ñγ to obtain

∂(ñ γ -ñγ ′ ) ∂t -∆(c γ-1 γ ñγ γ -c γ ′ -1 γ ′ ñγ ′ γ ′ ) = 0.
(5.30)

Then from Eq. (5.30) we have

-∆ ∂( φγ -φγ ′ ) ∂t -∆(c γ-1 γ ñγ γ -c γ ′ -1 γ ′ ñγ ′ γ ′ ) = 0,
and we test it against φγ -φγ ′ to deduce

1 2 d dt R d |∇( φγ -φγ ′ )| 2 = R d (c γ-1 γ ñγ γ -c γ ′ -1 γ ′ ñγ ′ γ ′ )(ñ γ ′ -ñγ ) ⩽ R d c γ-1 γ ñγ γ (1 -ñγ ) + R d c γ ′ -1 γ ′ ñγ ′ γ ′ (1 -ñγ ′ ), (5.31) 
where the inequality follows from the fact that ñγ , ñγ ′ ⩽ 1. It is easy to see that for 0 ⩽ s ⩽ 1 it holds s γ (1 -s) ⩽ s γ . Hence, we have

1 2 d dt R d |∇( φγ -φγ ′ )| 2 ⩽ c γ-1 γ 1 γ R d ñγ + c γ ′ -1 γ ′ 1 γ ′ R d ñγ ′ ⩽ γ -1 γ p M sup γ ∥ñ γ (t)∥ L 1 (R d ) 1 γ + γ ′ -1 γ ′ p M sup γ ′ ∥ñ γ ′ (t)∥ L 1 (R d ) 1 γ ′ ⩽ C 1 γ + 1 γ ′ ,
where in the last inequality we used the fact that by Lemma 5.1.4 n γ is uniformly bounded in L ∞ (0, T ; L 1 (R d )). Finally, we remove the scaling using the triangle inequality

1 3 ∥∇(φ γ -φ γ ′ )(t)∥ 2 L 2 (R d ) ⩽ ∥∇(φ γ -φγ )(t)∥ 2 L 2 (R d ) + ∥∇( φγ ′ -φ γ ′ )(t)∥ 2 L 2 (R d ) + ∥∇( φγ -φγ ′ )(t)∥ 2 L 2 (R d ) ⩽ 1 - 1 c γ 2 ∥∇φ γ (t)∥ 2 L 2 (R d ) + 1 - 1 c γ ′ 2 ∥∇φ γ ′ (t)∥ 2 L 2 (R d ) + Ct 1 γ + 1 γ ′ + ∥∇( φγ -φγ ′ )(0)∥ 2 L 2 (R d ) ⩽ 1 γ Ct + γ 1 - 1 c γ 2 sup γ ∥n γ (t)∥ 2 Ḣ-1 (R d ) + 1 γ ′ Ct + γ ′ 1 - 1 c γ ′ 2 sup γ ′ ∥n γ ′ (t)∥ 2 Ḣ-1 (R d ) + ∥∇( φγ -φγ ′ )(0)∥ 2 L 2 (R d ) .
By the definition of c γ , γ 1 -1 cγ 2 → 0 as γ → ∞. Thus, we have

∥∇(φ γ -φ γ ′ )(t)∥ 2 L 2 (R d ) ⩽ (Ct + C) 1 γ + 1 γ ′ + 3∥∇( φγ -φγ ′ )(0)∥ 2 L 2 (R d ) .
By the same argument, we find

∥∇( φγ -φγ ′ )(0)∥ 2 L 2 (R d ) ⩽ C 1 γ + 1 γ ′ + 3∥∇(φ γ -φ γ ′ )(0)∥ 2 L 2 (R d ) .
Finally, we conclude

∥∇(φ γ -φ γ ′ )(t)∥ 2 L 2 (R d ) ⩽ (Ct + C) 1 γ + 1 γ ′ + 9∥∇(φ γ -φ γ ′ )(0)∥ 2 L 2 (R d ) .
(5.32)

Consequently, arguing as before and letting γ ′ → ∞, we find

∥n γ (t) -n ∞ (t)∥ Ḣ-1 (R d ) ⩽ C √ t + C √ γ + 9∥n 0 γ -n 0 ∞ ∥ Ḣ-1 (R d ) .
(5.33)

Again, under the additional BV assumptions we obtain (5.5) thanks to the interpolation inequality in Lemma 5.1.6.

Including drift and reaction terms

Having obtained the announced rate of convergence due to the nonlinear diffusion term, we now exhibit that we can include the drift and reaction terms. In fact, due to our assumptions on the proliferation rate and the chemical potential, all the additional terms will either have an appropriate sign, or be absorbed into the L 2 -norm of the potential φ. We now write Eq. (5.1) as follows

∂n γ ∂t -∆A γ (n γ ) = ∇ • (n γ ∇V ) + n γ g, (5.34) 
where g = g(x, t) and A γ is chosen appropriately depending on the state law for the pressure. As seen before, there is no harm in assuming the uniform bound n ⩽ 1. Then, arguing in the same way as previously, we obtain

1 2 d dt R d |∇(φ γ -φ γ ′ )| 2 + R d (n γ -n γ ′ )(A γ (n γ ) -A γ ′ (n γ ′ )) = - R d (n γ -n γ ′ )∇(φ γ -φ γ ′ ) • ∇V + R d g(x, t)(n γ -n γ ′ )(φ γ -φ γ ′ ) = R d ∆(φ γ -φ γ ′ )∇(φ γ -φ γ ′ ) • ∇V - R d g(x, t)∆(φ γ -φ γ ′ )(φ γ -φ γ ′ ).
It only remains to consider the two new terms on the right-hand side. For the first one we can write

R d ∆(φ γ -φ γ ′ )∇(φ γ -φ γ ′ ) • ∇V = - R d ∇(φ γ -φ γ ′ ) T D 2 (φ γ -φ γ ′ )∇V - R d ∇(φ γ -φ γ ′ ) T D 2 V ∇(φ γ -φ γ ′ ) = - 1 2 R d ∇|∇(φ γ -φ γ ′ )| 2 • ∇V - R d ∇(φ γ -φ γ ′ ) T D 2 V ∇(φ γ -φ γ ′ ) = 1 2 R d |∇(φ γ -φ γ ′ )| 2 ∆V - R d ∇(φ γ -φ γ ′ ) T D 2 V ∇(φ γ -φ γ ′ ) ⩽ -λ R d |∇(φ γ -φ γ ′ )| 2 ,
where we have integrated by parts and used assumptions (A-drift). For the remaining term we integrate by parts to obtain

R d g|∇(φ γ -φ γ ′ )| 2 + R d (φ γ -φ γ ′ )∇(φ γ -φ γ ′ ) • ∇g ⩽ ∥g + ∥ L ∞ (R d ×(0,T )) R d |∇(φ γ -φ γ ′ )| 2 + R d (φ γ -φ γ ′ )∇(φ γ -φ γ ′ ) • ∇g A .
In case of d = 2, we suppose that g satisfies Assumption (A-reaction). Then we can integrate by parts in the last term to obtain

A = - 1 2 R d |φ γ -φ γ ′ | 2 ∆g ⩽ 0. (5.35) 
If instead d ⩾ 3, we may alternatively assume that g satisfies Assumption (A-reaction') or Assumption (A-reaction"). In the first case, using successively the inequalities of Hölder and Sobolev we obtain

A ⩽ 1 2 ∥φ γ -φ γ ′ ∥ 2 L 2 * (R d ) ∥(∆g) -∥ L d/2 (R d ) ⩽ C S ∥(∆g) -∥ L d/2 (R d ) R d |∇(φ γ -φ γ ′ )| 2 ,
where C S denotes the constant from Sobolev inequality, and 2 * = 2d d-2 is the Sobolev conjugate exponent. Otherwise, if g satisfies Eq. (A-reaction"), in order to estimate the term A we do not integrate it by parts and we use in turn the inequalities of Young, Hölder and Sobolev to obtain

2A ⩽ R d |∇(φ γ -φ γ ′ )| 2 + R d |(φ γ -φ γ ′ )| 2 |∇g| 2 ⩽ R d |∇(φ γ -φ γ ′ )| 2 + ∥φ γ -φ γ ′ ∥ 2 L 2 * (R d ) ∥∇g∥ 2 L d (R d ) ⩽ 1 + C S ∥∇g∥ 2 L d (R d ) R d |∇(φ γ -φ γ ′ )| 2 .
Therefore we have

1 2 d dt R d |∇(φ γ -φ γ ′ )| 2 + R d (n γ -n γ ′ )(A γ (n γ ) -A γ ′ (n γ ′ )) ⩽ C R d |∇(φ γ -φ γ ′ )| 2 .
Assuming for concreteness the power law pressure, using inequality (5.32) and a Gronwall inequality, we deduce

sup t∈[0,T ] ∥∇(φ γ -φ γ ′ )(t)∥ L 2 (R d ) ⩽ C 1 √ γ + 1 √ γ ′ + ∥∇(φ γ -φ γ ′ )(0)∥ L 2 (R d ) .
(5.36) Finally, passing to the limit γ ′ → ∞, we conclude the proof of Theorem 5.1.1. Using the uniform BV -bound and Eq. (5.18) we obtain Theorem 5.1.2.

Limit relation between n ∞ and p ∞

Here we prove relation (5.6) between the limit density and pressure, where p ∞ is defined as the weak * limit (up to a sub-sequence) of p γ in L ∞ (R d × (0, T )).

Proof of Theorem 5.1.3. The relation is a straightforward consequence of the main estimate obtained in Section 5.3. We inspect Eq. (5.31), this time not ignoring the non-positive terms. After integration in time, these terms can be bounded as follows, using Eq. (5.32)

T 0 R d ñγ ′ γ ′ (1 -ñγ )c γ ′ -1 γ ′ + T 0 R d ñγ γ (1 -ñγ ′ )c γ-1 γ ⩽ C(T ) 1 γ + 1 γ ′ + R d |∇(φ γ -φ γ ′ )(0)| 2 .
Now let ψ be a compactly supported test function and consider the quantity

T 0 R d ψñ γ γ (1 -ñγ ′ ) ⩽ ∥ψ∥ ∞ T 0 supp ψ ñγ γ (1 -ñγ ′ ) = ∥ψ∥ ∞ T 0 supp ψ p γ γ-1 γ (1 -ñγ ′ ).
Using weak lower semicontinuity of convex functionals and weak * convergence of the pressure and the density, we can pass to the limit with γ ′ and γ in turn to obtain

T 0 R d ψp ∞ (1 -n ∞ ) = 0,
which concludes the proof.

Conclusions and open problems

We computed the rate of convergence of the solutions of a reaction-advection-diffusion equation of porous medium type in the incompressible limit. Our result in a negative Sobolev's norm can be interpolated with uniform BV -estimates in order to find a rate in any L p -space for 1 < p < ∞.

How to assess the accuracy of our estimate remains an open problem. For the pure porous medium equation it might seem tempting to attempt a calculation for the illustrious example of the Barenblatt solution (taking as initial data the solution at some time t > 0). However, a direct calculation shows that in this case the data is "ill prepared" in the sense that it converges (in L 1 ) to its limit profile with too slow a rate of ∼ ln γ/γ. It is unclear how to approach the question of optimality in general. We expect that the "worst" rate would be exhibited by a focusing solution, whose support is initially contained outside of a compact set and closes up in finite time, thus generating a singularity. Another challenging problem is to find an estimate for the convergence rate of the pressure, for which the method used above seems inapplicable as it is not clear how to relate the quantities p γ -p γ ′ and φ γ -φ γ ′ . Consequently, we are also currently unable to treat more general, pressure dependent, reaction terms. Finally, it would be of interest to investigate whether it is possible to strengthen the estimate of Theorem 5.1.1 to Lebesgue norms without interpolation with BV . One advantage of any such alternative approach could be to allow for passing to the incompressible limit when BV bounds are not available, as is the case for systems of equations like (5.1). Additionally, it could allow for estimating the rate of convergence in the L 1 -norm rather than the seemingly arbitrary L 4/3 -norm.

5.A Bounding W 2 -norm by the Ḣ-1 -norm

We consider here the conservative case of Eq. (5.1), assuming n γ (t) = n ∞ (t) = 1. Moreover, rather than the Cauchy problem set in the whole space, we consider the boundary valued problem set in a bounded domain Ω ⊂ R d with homogeneous Neumann boundary conditions. We put dµ γ = n γ (x) dx, dµ ∞ = n ∞ (x) dx, ignoring time-dependence for the sake of brevity. Furthermore we make the additional assumption that n ∞ ⩾ n > 0 for some constant n.

that (σ, E) satisfy the continuity equation, and

∥E τ ∥ L 2 (R d ;στ ) = W 2 (µ γ , µ ∞ ). Then ∥∇φ γ -∇φ ∞ ∥ 2 L 2 = Ω (φ γ -φ ∞ )(n γ -n ∞ ) = 1 0 Ω ∇(φ γ -φ ∞ ) • E τ dρ τ dτ ⩽ 1 2 ∥∇φ γ -∇φ ∞ ∥ 2 L 2 + 1 2 W 2 (µ γ , µ ∞ ) 2 .
We refer the reader to [144, Section 5.5.2], and references therein, for further discussion about the equivalence of the two distances.

Part III

A multi-species model structured by phenotype

Introduction

We consider the following model of tumor growth structured by phenotypic trait, represented by the continuous variable y ∈ [0, 1]. The cell proliferation rate depends on both the trait and the pressure inside the tissue. The motion of cells is driven by Darcy's law, since the cell movement is passively generated by the birth and death of cells which create pressure gradients. We denote by n = n(y, x, t) the density of the population with phenotypic trait y ∈ [0, 1], and with ϱ = ϱ(x, t) the total density at point x ∈ R d and time t > 0. The pressure is related to the total density by the following power law p(x, t) = (ϱ(x, t)) γ , γ > 1. (6.1) 153 than 1, as in Eq. (6.1). This pressure law has been extensively used in the modelling of tumor growth, since it can be associated to the pressure of a compressible fluid. Combining the power law with Darcy's law yields to porous medium type equations as Eq.( 6.3). Indeed, the invasion of cancer cells can be seen as the motion of a fluid through a porous medium (the extra-cellular matrix) [START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF].

The power law was first adopted for one-species models of tumor growth, see for instance [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF] and references therein. Furthermore, this pressure law is of particular interest since passing to the limit γ → ∞, it is possible to establish a link between compressible models and 'geometrical' problems. As the pressure becomes more and more stiff, porous medium models converge to Hele-Shaw free boundary problems where the density is saturated and the pressure satisfies an elliptic equation. This limit, referred to as incompressible limit or stiff pressure limit, has been studied for a lot of non-structured one-species models, starting from the seminal paper by Perthame et al. [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]. For an overview on the single-species case, we refer the reader to [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF][START_REF] David | On the Incompressible Limit for a Tumour Growth Model incorporating Convective Effects[END_REF][START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF][START_REF] David | Convergence rate for the incompressible limit of nonlinear diffusion-advection equations[END_REF][START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF][START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF][START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF] and references therein.

Multi-species extensions. Lately, multi-phase extensions of the model introduced in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] have been studied from different perspectives. Multi-species models allow to study the interaction between different types of tissue, for instance, cancer tissue, immune cells, healthy tissue, or dead tissue. In cross-reaction-diffusion systems, the coupling of the single densities equations gives rise to new mathematical challenges, such as the loss of regularity due to internal layers, namely regions where two species get in contact. For this reason, the mathematical analysis of these models presents many involved open problems. In 2018, Carrillo et al. show the existence of solutions to a reaction-cross-diffusion system of two equations using methods from optimal transport [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF]. Their result, which was achieved in one spatial dimension, was later extended in 2019 by Gwiazda et al. in multiple dimensions [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF]. Here, the authors consider a twospecies system which is the analogous of our model, i.e. Eq. ( 6.2) for y ∈ {1, 2}. In particular, the two species evolve under Darcy's law, where the pressure is given by p = (n 1 + n 2 ) γ , and n i , i = 1, 2 denotes the two phases. Their existence result relies on applying a uniformly parabolic regularisation to the initial data and then passing to the limit. To this end, the most involved term is the nonlinear cross-diffusion term n i ∇p. In order to pass to the limit, the authors prove an L 2 -version of the Aronson-Bénilan estimate, which is a celebrated estimate in the context of porous medium equations, and provides a bound on the Laplacian of the pressure. We refer the reader to [START_REF] Aronson | Régularité des solutions de l'équation des milieux poreux dans R N[END_REF] for the classical result. The same problem was then approached in [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF], in which the authors are able to prove convergence by focusing on the quantity (n 1 + n 2 ) γ+1 rather than the pressure itself. Their proof is simpler, since it does not require any regularity result on the second order derivatives of p. In fact, in [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF] the authors recover the strong convergence of ∇(n 1 + n 2 ) γ+1 without using the Aronson-Bénilan estimate of [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF], for which a restrictive condition on the reaction terms was needed.

As mentioned above, the analysis of the incompressible limit for porous medium models has a long history and has been addressed by many researchers for several models. The stiff limit for systems including two different species have been firstly addressed by Bubba et al. in 2019, [START_REF] Bevilacqua | The Aronson-Bénilan Estimate in Lebesgue Spaces[END_REF], where the authors use an approach based on a L 2 -Aronson-Bénilan estimate in the spirit of [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF]. However, due to the absence of BV controls on the single species population densities, their argument only works in dimension 1. The result in any spatial dimension has been recently achieved by Liu and Xu in [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF], where the authors consider a cross-reaction-diffusion system in a bounded domain with Neumann boundary conditions. Rather than dealing with the pressure, p γ = ϱ γ γ , the authors focus on the quantity ϱ γ+1 γ , proving strong compactness of its gradient, thus being able to prove convergence of the cross-diffusion terms. However, they are not able to include pressure-dependent reaction terms, and proving strong compactness of the pressure itself remains a open question in this setting. The stiff limit for cross-diffusion systems has also been studied for different pressure laws and in the presence of drifts, see for instance [START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF][START_REF] David | On the Incompressible Limit for a Tumour Growth Model incorporating Convective Effects[END_REF][START_REF] Dębiec | Incompressible limit for a two-species model with coupling through Brinkman's law in any dimension[END_REF].

Our contribution. In this paper, we aim to study the existence and regularity of solutions to System (6.2) and their incompressible limit. This problem can be seen as an infinitely-manyspecies extension of the models studied in [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF][START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF][START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF]. At first, we extend the method by [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF] to the structured case. Adapting the same argument, we are able to prove the existence of global weak solutions, cf. Theorem 6.3.7. The second main result of the paper, cf. Theorem 6.4.1 and Theorem 6.4.2, concerns the incompressible limit of System (6.2). As γ → ∞ in the pressure law, the problem turns out to be a free boundary problem of Hele-Shaw type. By extending and adapting the new method used in [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF], we are able to recover the compactness needed to pass to the limit. Moreover, by restricting our study to the class of compactly supported solutions, we are able to show strong compactness of the pressure p γ which, unlike in [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF], allows us to account for pressure-dependent reaction terms. Finally, we prove higher order regularity results on the pressure. First of all, we recover an L 4 -bound on the pressure gradient, cf. Theorem 6.5.2, which has been introduced in the context of one-species porous medium models, see for instance [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF][START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF][START_REF] David | On the Incompressible Limit for a Tumour Growth Model incorporating Convective Effects[END_REF], and represents a novelty in the multi-species case. Thanks to this bound, we are able to prove that an L 2 -version of the Aronson-Bénilan estimate also holds for structured models, cf. Theorem 6.5.4. Moreover, we are able to recover it removing the technical assumption on the reaction terms required in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] for the two-species case.

Plan of the paper. In the next section, we present the assumptions and the main results of the paper. Section 6.3 is devoted to the proof of the existence of weak solutions: in Section 6.3.1 we introduce the regularised problem, obtained performing a viscosity perturbation, and we infer uniform a priori estimates, while in Section 6.3.3, we show that ∇(ϱ ε ) γ+1 is strongly precompact in L 2 , which is essential in order to pass to the limit in the regularised problem. In Section 6.4, we study the asymptotics of Problem (6.2) as γ → ∞. The additional regularity estimates are deduced in Section 6.5.

Notation. Given T > 0 and Ω ⊂ R d , we denote Q T := R d × (0, T ), Ω T := Ω × (0, T ). We frequently use the abbreviated forms n(t) := n(y, x, t), n(y) := n(y, x, t), ϱ(t) := ϱ(x, t).

Assumptions and main results

Now let us state the main results, i.e. the existence of weak solutions to System (6.2), the incompressible limit and the additional regularity estimates, and for each of them the related assumptions.

Existence of weak solutions

Assumptions on the reaction term. The function R(y, p) is assumed to be smooth and bounded. Moreover, since the pressure induces an inhibitory effect on cell proliferation, we suppose there exists a positive constant p M representing the homeostatic pressure, such that

∂ p R(•, •) ⩽ 0, R(•, 0) > 0, R(•, p M ) ⩽ 0, (6.4) 
Assumptions on the initial data. In order for the density fractions to be well defined we need to regularize the initial data such that it is always strictly positive. Therefore we take n 0,ε (y, x) = n 0 (y, x) + εe -|x| 2 , i.e. ϱ 0,ε (y, x) = ϱ 0 (y, x) + εe -|x| 2 , and p 0,ε = (ϱ 0,ε ) γ .

We say that the initial data are well-prepared if they satisfy the following assumptions: there exists 0 < ε 0 < 1 and C independent of ε, such that for all 0 < ε ⩽ ε 0 the following holds

0 ⩽ ϱ 0,ε0 ⩽ (p M ) 1/γ a.e. in R d , sup y∈[0,1] n 0,ε (y) ϱ 0,ε L ∞ (R d ) ⩽ C. (6.5) 
To show the existence of weak solutions, we extend the method developed in [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF] to the structured case and we prove the following result.

Theorem 6.2.1 (Theorem 6.3.7).

Given n 0 ∈ L ∞ + ([0, 1] × R d ) ∩ L 1 ([0, 1] × R d ),
there exists a weak solution to System (6.2), namely, there exists n(y, x, t) 

∈ L ∞ + ([0, 1] × R d × (0, ∞)) ∩ L 1 ([0, 1] × R d × (0, ∞)) such that ∇p(x, t) ∈ L 2 (R d × (0, ∞)) and for all T > 0 and φ ∈ C([0, 1]; C 1 comp ([0, T ) × R d )) - 1 0 R d n(y,

Incompressible limit

In order to pass to the incompressible limit the more involved part is to find compactness of the pressure gradient. Our approach consists in extending and adapting the methods developed in [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF] to our problem, namely focusing on the quantity v γ = ϱ γ+1 γ . Unlike [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF], we consider nonlinear pressure-dependent reaction terms. Consequently, our treatment of this term is different, and involves compensated compactness results and the monotonicity of R with respect to p. Moreover, we need to assume that the solutions are compactly supported (uniformly in γ). Indeed, outside of this class of solutions we are not able to show the strong compactness of the pressure which is necessary in order to pass to the limit in the reaction terms. The problem then reduces to a boundary valued problem with Dirichlet homogeneous conditions, while in [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF] the authors choose Neumann homogeneous conditions on the boundary.

Assumptions on the initial data. We assume n

γ,0 ∈ L ∞ ([0, 1]×R d ), ϱ γ,0 ∈ L 1 + (R d )∩L ∞ (R d ), and that there exists Ω 0 ⊂ R d such that supp(n γ,0 (y)) ⊂ Ω 0 , for a.e. y ∈ [0, 1], ∀γ > 1.
Thanks to the finite speed of propagation of porous medium type equations, we can reduce the problem to the case of a bounded domain Ω ⊂ R d , on which we have homogeneous Dirichlet boundary conditions, ϱ γ (x, t) = 0, for almost every (x, t) on ∂Ω × [0, T ]. Since ϱ γ,0 is compactly supported, then for all T > 0 there exists

Ω ⊂ R d such that supp ϱ γ (t) ⊂ Ω, ∀t ∈ [0, T ], ∀γ > 1.
Moreover, we assume there exists ϱ

0 , p 0 ∈ L ∞ + (Ω) such that ∥ϱ γ,0 -ϱ 0 ∥ L 1 (Ω) → 0 ∥p γ,0 -p 0 ∥ L 1 (Ω) → 0 and 0 ⩽ ϱ γ,0 ⩽ (p M ) γ , 0 ⩽ p γ,0 ⩽ p M .
Let us denote v γ = ϱ γ+1 γ . We can rewrite Eq. ( 6.3) as follows

∂ϱ γ ∂t - γ γ + 1 ∆v γ = 1 0 n γ R(y, p γ ) dy. (6.6) 
We can pass to the incompressible limit γ → ∞ and recover a Hele-Shaw problem, as stated in the following theorems.

Theorem 6.2.2 (Theorem 6.4.1). Let (n γ , ϱ γ , p γ ) be a solution given by Theorem 6.3.7. For all T > 0, up to the extraction of a subsequence we have

n γ (y, x, t) ⇀ n ∞ (y, x, t) weakly * in L ∞ ((0, 1) × Ω T ), ϱ γ (x, t) ⇀ ϱ ∞ (x, t) weakly * in L ∞ (Ω T ), p γ (x, t) ⇀ p ∞ (x, t) weakly * in L ∞ (Ω T ), ∇v γ ⇀ ∇v ∞ weakly in L 2 (Ω T ),
as γ → ∞. Moreover, the limit satisfies the following relation

p ∞ (1 -ϱ ∞ ) = 0 almost everywhere in Ω T , (6.7) 
as well as

∂ϱ ∞ ∂t = ∆v ∞ + 1 0 n ∞ R(y, p ∞ ) dy, in D ′ (R d × (0, ∞)).
In order to pass to the limit in the equations for n γ and p γ we need to prove the strong compactness of ∇v γ in L 2 (Ω T ), see Lemma 6.4.8.

Theorem 6.2.3 (Theorem 6.4.2). The limit solution ϱ ∞ , p ∞ satisfies

∂n ∞ ∂t = ∇ • (n ∞ ∇p ∞ ) + n ∞ R(y, p ∞ ), in D ′ ((0, 1) × R d × (0, ∞), p ∞ ∆p ∞ + 1 0 n ∞ R(y, p ∞ ) dy = 0, in D ′ (R d × (0, ∞)). (6.8) 
Relation (6.7) implies that the total limit density ϱ ∞ is saturated in the positivity set of the pressure Ω(t) := {x; p ∞ (x, t) > 0}, which can be seen as the region occupied by the tumor. Moreover, the complementarity relation (6.8) tells us that in Ω(t) the limit pressure satisfies an elliptic equation, which is usually referred to as a Hele-Shaw free boundary problem.

Additional regularity

The last part of the paper concerns additional regularity estimates on the pressure gradient, therefore we focus on p rather than ϱ γ+1 . We prove an L 2 -version of the Aronson-Bénilan estimate on the Laplacian of the pressure. This estimate was already obtained in the context of two-species systems, see [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF][START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF]. Here, we not only extend it to our structured problem, but we are able to remove the constraint on the reaction term used in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF]. To this end, we infer a bound on the quantity p α-1 |∇p| 4 , for certain values of α, in the spirit of [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF].

Additional assumptions. In order to prove the following additional regularity results on the pressure, it is necessary to make stronger assumptions on the initial data. In particular, we assume that p γ,0 satisfies (uniformly in γ)

∇p γ,0 ∈ L 2 (Ω), (∆p γ,0 ) -∈ L 2 (Ω).
Moreover, we assume

γ > max 3 2 , 2 - 4 d .
Theorem 6.2.4 (Theorem 6.5.2). There exists a positive constant C(T ) such that for any 0 ⩽ α < 1 γ the following estimate holds true

κ(α) T 0 Ω |∇p| 4 p 1-α dx dt ⩽ C(T ), with κ(α) := α 6 (1 -αγ).
Theorem 6.2.5 (Theorem 6.5.4). For all T > 0, there exists a positive constant C(T ) independent of γ such that for all t ∈ [0, T ] we have

Ω (∆p(t)) 2 -dx ⩽ C(T ), T 0 Ω (∆p) 3 -dx dt ⩽ C(T ).
6.3 Existence of solutions

Regularised problem

In order to prove the existence of weak solutions of Problem (6.2), we regularise the system introducing a viscosity term. Let 0 < ε < ε 0 , and consider the following uniformly parabolic system

       ∂n ε ∂t -∇ • (n ε ∇p ε ) -ε∆n ε = n ε R(y, p ε ), y ∈ [0, 1], (x, t) ∈ Ω T , ϱ ε (x, t) = 1 0 n ε (y, x, t) dy. (6.9) 
The equation on ϱ ε reads

∂ϱ ε ∂t - γ γ + 1 ∆ϱ γ+1 ε -ε∆ϱ ε = 1 0 n ε R(y, p ε ) dy. ( 6 

.10)

As mentioned above, in order to define the population fraction densities σ ε = n ε /ϱ ε we have to make sure that the total population density ϱ ε is always strictly positive. To this end, we regularise the initial data as follows

n 0,ε (y, x, t) = n 0 (y, x) + ε e -|x| 2 , therefore ϱ 0,ε (x, t) = ϱ 0 (x) + ε e -|x| 2 .
Before proving that this implies strict positivity of ϱ ε (x, t) for all times, we have to prove nonnegativity of solutions.

Non-negativity. Multiplying Eq. (6.9) by sign -(n ε ) we obtain

∂ ∂t (n ε ) --∇ • ((n ε ) -∇p ε ) -ε∆(n ε ) -⩽ (n ε ) -∥R∥ ∞ ,
where we denote ∥R∥ ∞ = sup y∈[0,1] R(y, 0). Integrating in space, we have

d dt R d (n ε ) -dx - R d ∇ • ((n ε ) -∇p ε ) dx -ε R d ∆(n ε ) -dx ⩽ ∥R∥ ∞ R d (n ε ) -dx, By Gronwall's lemma we infer 1 0 R d (n ε (y, x, t)) -dx dy ⩽ e ∥R∥∞t 1 0 R d (n ε (y, x, 0)) -dx dy,
which implies that almost everywhere n ε (t) ⩾ 0 for t ∈ (0, T ] and by consequence both the density ϱ ε and the pressure p ε are non-negative.

Positivity. Let us define the function ϱ = εe -Kt e -|x| 2 , with K = 2(ε + γ) + ∥R∥ ∞ . We state that ϱ is a subsolution of the following equation

∂ϱ ∂t = γ γ + 1 ∆ϱ γ+1 + ε∆ϱ -ϱ∥R∥ ∞ .
In fact, we have

γ γ + 1 ∆ϱ γ+1 + ε∆ϱ -ϱ∥R∥ ∞ = 2γϱ γ+1 (2(γ + 1)|x| 2 -1) + 2ε(2|x| 2 -1)ϱ -ϱ∥R∥ ∞ ⩾ -2εϱ -2γϱ γ+1 -ϱ∥R∥ ∞ ⩾(-2ε -2γ -∥R∥ ∞ )ϱ = -Kϱ = ∂ϱ ∂t .
Therefore, since by (6.10) ϱ ε is a supersolution to the same equation and ϱ ε (0) ⩾ ϱ(0), by the comparison principle we have

ϱ ε (t) ⩾ ϱ(t) > 0, ∀t ∈ [0, T ].
Therefore, the quantity

σ ε (y, x, t) := n ε (y, x, t) ϱ ε (x, t) ,
is well defined, and satisfies the following transport equation

∂σ ε ∂t = ∇σ ε • ∇p ε + σ ε R(y, p ε ) -σ ε 1 0 σ ε (η)R(η, p ε ) dη, (6.11) 
where we used the notation η to distinguish the variable of integration from the variable y involved in the equation. Therefore, we rewrite the equation on ϱ ε as

∂ϱ ε ∂t - γ γ + 1 ∆ϱ γ+1 ε -ε∆ϱ ε = ϱ ε R ε ,
where we denote

R ε := R(σ ε , p ε ) = 1 0 σ ε (η)R(η, p ε ) dη. (6.12)
Let us notice that, from (6.12), R ε is also uniformly bounded in L ∞ (Q T ) and

∥R ε ∥ L ∞ (Q T ) ⩽ sup y∈[0,1] |R(y, 0)| 1 0 σ ε (η) dη = ∥R∥ ∞ .

A priori estimates

Here we prove a priori estimates (uniform in ε) which are essential to prove the existence of weak solutions.

L 1 -bounds. Multiplying (6.10) by sign(ϱ ε ) and integrating in space we obtain

d dt R d |ϱ ε | dx ⩽ R d ∆|ϱ ε | γ+1 dx + ε R d ∆|ϱ ε | dx + R d 1 0 sign(ϱ ε ) n ε R(y, p ε ) dy dx ⩽ ∥R∥ ∞ R d |ϱ ε | dx. By Gronwall's lemma we have ϱ ε ∈ L ∞ (0, T, L 1 (R d )) and thus p ε ∈ L ∞ (0, T, L 1 (R d )). L ∞ -bounds. Let us denote ϱ M := (p M ) 1/γ and R M = 1 0 σ ε (η)R(η, p M
) dη, which is negative by the definition of p M . From Eq. (6.10) we have

∂ ∂t (ϱ ε -ϱ M ) - γ γ + 1 ∆(ϱ γ+1 ε -ϱ γ+1 M ) -ε∆(ϱ ε -ϱ M ) ⩽ (ϱ ε -ϱ M )R ε + ϱ M (R ε -R M ).

Multiplying by sign

+ (ϱ ε -ϱ M ) we obtain ∂ ∂t (ϱ ε -ϱ M ) + - γ γ + 1 ∆(ϱ γ+1 ε -ϱ γ+1 M ) + -ε∆(ϱ ε -ϱ M ) + ⩽(ϱ ε -ϱ M ) + R ε + ϱ M (R ε -R M )sign + (ϱ ε -ϱ M ) ⩽∥R ε ∥ ∞ (ϱ ε -ϱ M ) + ,
where in the last inequality we used ∂ p R ⩽ 0. Integrating over R d and applying Gronwall's lemma we obtain

d dt R d (ϱ ε -ϱ M ) + dx ⩽ e ∥R∥∞t R d (ϱ 0,ε -ϱ M ) + dx.
For all 0 < ε ⩽ ε 0 , thanks to Assumption (6.5), we finally have

0 ⩽ ϱ ε ⩽ ϱ M , 0 ⩽ p ε ⩽ p M . (6.13) 
Let us consider the equation on the fraction density, Eq. (6.11). By the assumptions on the reaction term, σ ε satisfies

∂σ ε ∂t ⩽ ∇σ ε • ∇p ε + σ ε 2∥R ε ∥ ∞ .
Hence, by the comparison principle we obtain σ ε ⩽ e 2∥Rε∥∞t σ 0,ε .

Since by Assumption (6.5) σ 0,ε is uniformly bounded in

[0, 1] × R d , we have σ ε ∈ L ∞ ([0, 1] × Q T ), (6.14) 
and by consequence Extending the method by Price and Xu [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF], in this section we prove the existence of solutions to Problem (6.2), by showing the convergence of the solution of the regularised problem as ε → 0.

n ε ∈ L ∞ ([0, 1] × Q T ). ( 6 
To this end, the most involved part consists in proving the strong convergence of the degenerate divergence term. Unlike the method developed by Gwiazda et al. in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF], this strategy focuses on the quantity ϱ γ+1 ε rather than on the pressure p ε = ϱ γ ε .

Lemma 6.3.1. There exists a positive constant C(T ) independent of ε such that the following holds

Q T ∇ϱ γ+1 2 ε 2 dx dt + ε Q T 1 0 |∇ √ n ε (y)| 2 dy dx dt ⩽ C(T ).
Proof. Let ν be a positive constant. We multiply Eq. (6.9) by ln(n ε + ν) and we obtain

∂n ε ∂t ln(n ε + ν) -∇ • (n ε ∇p ε ) ln(n ε + ν) -ε∆n ε ln(n ε + ν) = n ε R(y, p ε ) ln(n ε + ν).
Integrating in space and in y over [0, 1] we have

d dt R d 1 0 ((n ε + ν) ln(n ε + ν) -n ε ) dy dx+ R d 1 0 n ε n ε + ν ∇p ε • ∇n ε dy dx + ε R d 1 0 |∇n ε | 2 n ε + ν dy dx = R d 1 0 n ε R(y, p ε ) ln(n ε + ν) dy dx ⩽ ∥R∥ ∞ R d 1 0 n ε ln(n ε + ν) dy dx.
Let us notice that, since n ε is uniformly bounded in L ∞ ([0, 1] × Q T ), the right-hand side is bounded. Let t ⩽ T . Upon integration in time for τ ∈ [0, t], we obtain

t 0 R d ∇p ε • 1 0 n ε n ε + ν ∇n ε dy dx dτ + ε t 0 R d 1 0 |∇n ε | 2 n ε + ν dy dx dτ ⩽ R d 1 0 (n ε (t) -(n ε (t) + ν) ln(n ε (t) + ν)) dy dx + R d 1 0 (n 0,ε + ν) ln(n 0,ε + ν) dy dx + C(T ), Letting ν → 0, thanks to the L ∞ -bound of n ε , we have t 0 R d ∇ϱ γ ε • ∇ϱ ε dx dτ + 4ε t 0 R d 1 0 |∇ √ n ε | 2 dy dx dτ ⩽ C(T ),
for all 0 ⩽ t ⩽ T , and this concludes the proof.

Lemma 6.3.2. The sequence ϱ γ+1 2 ε is precompact in L 2 (0, T ; L 2 (R d )).
Proof. From Lemma 6.3.1 we know that the gradient of ϱ

γ+1 2 ε is bounded in L 2 (Q T ). Now we compute its time derivative. ∂ ∂t ϱ γ+1 2 ε = γ + 1 2 ϱ γ-1 2 ε ∇ • (ϱ ε ∇p ε ) + ε∆ϱ ε + 1 0 n ε (η)R(η, p ε ) dη = γ + 1 2 ϱ γ-1 2 ε ∇ • (ϱ ε ∇ϱ γ ε ) + γ + 1 2 εϱ γ-1 2 ε ∆ϱ ε + γ + 1 2 ϱ γ-1 2 ε 1 0 n ε (η)R(η, p ε ) dη = γ + 1 2 ∇ • ϱ γ+1 2 ε ∇ϱ γ ε - γ 2 -1 4 ϱ γ-1 2 ε ∇ϱ ε • ∇ϱ γ ε + γ + 1 2 ε∇ • ϱ γ-1 2 ε ∇ϱ ε - γ 2 -1 4 εϱ γ-3 2 ε |∇ϱ ε | 2 + γ + 1 2 ϱ γ-1 2 ε 1 0 n ε (η)R(η, p ε ) dη =γ∇ • ϱ γ ε ∇ϱ γ+1 2 ε -γ γ -1 γ + 1 ϱ γ-1 2 ε ∇ϱ γ+1 2 ε 2 + ε∆ϱ γ+1 2 ε -ε(γ 2 -1)ϱ γ-1 2 ε |∇ √ ϱ ε | 2 + γ + 1 2 ϱ γ-1 2 ε 1 0 n ε (η)R(η, p ε ) dη.
Let us notice that Lemma 6.3.1 and the uniform L ∞ -bound of σ ε imply ε|∇

√ ϱ ε | 2 ∈ L 1 (Q T ).
Therefore, the time derivative of ϱ γ+1 2 ε is a sum of functions bounded in L2 (0, T ; H -1 (R d )) and L 1 -functions. Applying Aubin-Lions' lemma we infer that ϱ

γ+1 2 ε is precompact in L 2 (Q T ).
Remark 6.3.3. The sequence ϱ ε is precompact in any L q -space, for 1 ⩽ q < ∞. In fact, if q < γ+1 2 , the result follows from Hölder's inequality, while if q > γ+1 2 it follows from the uniform boundedness of ϱ ε in L ∞ . Remark 6.3.4. Let us recall the results already proven. Up to a subsequence, we have

σ ε ⇀ σ weak * in L ∞ ([0, 1] × Q T ), n ε ⇀ n weak * in L ∞ ([0, 1] × Q T ), ϱ ε → ϱ strongly in L q (Q T ), for each 1 ⩽ q < ∞, ϱ γ+1 2 ε ⇀ ϱ γ+1 2 ε weakly in L 2 (0, T ; H 1 (R d )), ∂ϱ ε ∂t ⇀ ∂ϱ ∂t weakly in L 2 (0, T ; H -1 (R d )).
Let us recall the notation R =

1 0 σ(η)R(η, p) dη. Then R ε ⇀ R weak * in L ∞ (Q T ) (6.16) n ε R(y, p ε ) ⇀ nR(y, p) weak * in L ∞ ([0, 1] × Q T ). (6.17) 
The convergences of (6.16) and (6.17) are shown in detail in Appendix 6.B. Lemma 6.3.5. For all q ≥ γ + 1 and all t ∈ [0, T ], we have

R d (ϱ ε (x, t)) q dx ε→0 ---→ R d (ϱ(x, t)) q dx.
Proof. Let us define

w ε := ϱ γ+1 ε + ε γ + 1 γ ϱ ε .
Hence, we rewrite Eq. ( 6.3) as

∂ϱ ε ∂t - γ γ + 1 ∆w ε = ϱ ε R ε , (6.18) 
where we recall that R ε = 1 0 σ ε R(η, p ε ) dη. We test Eq. (6.18) against ∂ t w ε to obtain

R d ∂ϱ ε ∂t ∂w ε ∂t dx - γ γ + 1 R d ∆w ε ∂w ε ∂t dx = R d ϱ ε R ε ∂w ε ∂t dx.
Now we treat each term individually, to obtain

R d ∂ϱ ε ∂t ∂w ε ∂t dx = R d ∂ϱ ε ∂t ∂ϱ γ+1 ε ∂t dx + ε γ + 1 γ R d ∂ϱ ε ∂t 2 dx =(γ + 1) R d ϱ γ ε ∂ϱ ε ∂t 2 dx + ε γ + 1 γ R d ∂ϱ ε ∂t - γ γ + 1 R d ∆w ε ∂w ε ∂t dx = γ γ + 1 d dt R d |∇w ε | 2 2 dx, R d ϱ ε R ε ∂w ε ∂t dx = R d ϱ ε R ε ∂ϱ γ+1 ε ∂t dx + ε γ + 1 γ R d ϱ ε R ε ∂ϱ ε ∂t dx ⩽ γ + 1 2 R d ϱ γ ε ∂ϱ ε ∂t 2 dx + γ + 1 2 R d ϱ γ+2 ε R 2 ε dx + ε 2 γ + 1 γ R d ϱ 2 ε R 2 ε dx + ε 2 γ + 1 γ R d ∂ϱ ε ∂t 2 dx.
Therefore, we obtain

sup t∈[0,T ] R d |∇w ε (t)| 2 dx + ε 2 γ + 1 γ Q T ∂ϱ ε ∂t 2 dx dt + γ + 1 2 Q T ϱ γ ε ∂ϱ ε ∂t 2 dx dt ⩽ C, (6.19) 
where

C depends on ∥ϱ ε ∥ ∞ and ∥R ε ∥ ∞ . Since ∂ t ϱ γ+2 2 ε 2 = (γ+2) 2 4 ϱ γ ε |∂ t ϱ ε | 2 , from Eq. (6.19) we have ∂ t ϱ γ+2 2 ε ∈ L 2 (Q T ), √ ε∂ t ϱ ε ∈ L 2 (Q T ), ∇w ε ∈ L ∞ (0, T ; L 2 (R d )).
It follows easily from the boundedness of ϱ ε , that

∂ t ϱ γ+1 ε ∈ L 2 (Q T ). Hence, ∂ t w ε ∈ L 2 (Q T ).
Thanks to the bound on ∇w ε and the Aubin-Lions lemma,

w ε is precompact in C([0, T ], L 2 (R d )). Consequently, ϱ γ+1 ε is also precompact in C([0, T ], L 2 (R d )), since we have R d ϱ γ+1 ε (t) -ϱ γ+1 (t) 2 dx ⩽ R d w ε (t) -ϱ γ+1 (t) 2 dx + R d ε γ + 1 γ ϱ ε (t) 2 dx → 0, as ε → 0.
Once again, thanks to the uniform boundedness of ϱ ε we infer that ϱ ε is precompact in C([0, T ], L q (R d ))

for any q ⩾ γ + 1. Therefore

R d (ϱ ε (x, t)) q dx ε→0 ---→ R d (ϱ(x, t)) q dx, ∀q ⩾ γ + 1,
and thus the proof is completed.

As already mentioned above, when dealing with cross-diffusion systems as (6.2), the most involved part is to obtain the compactness needed to pass to the limit in the cross-diffusion term. In the absence of strong compactness of the single species densities, here being the distribution of each phenotypic trait n ε (y), it is essential to infer strong compactness of ∇ϱ γ+1 ε . For this reason, the following convergence result is the core of the proof. Lemma 6.3.6. Upon the extraction of a subsequence, we have

∇ϱ γ+1 ε ε→0 ---→ ∇ϱ γ+1 strongly in L 2 (Q T ).
Proof. For the sake of simplicity, when integrating, we now neglect the symbols dx, dt. Let us consider the limit equation ∂ϱ ∂t -γ γ + 1 ∆ϱ γ+1 = ϱR, and then subtract it from Eq. (6.10), to obtain

∂ ∂t (ϱ ε -ϱ) + γ γ + 1 ∆(ϱ γ+1 ε -ϱ γ+1 ) + ε∆ϱ ε = ϱ ε R ε -ϱR.
We test the above equation against ϱ γ+1 ε -ϱ γ+1 and we obtain

γ γ + 1 Q T |∇(ϱ γ+1 ε -ϱ γ+1 )| 2 = -ε Q T ∇ϱ ε • ∇(ϱ γ+1 ε -ϱ γ+1 ) + T 0 ⟨∂ t (ϱ ε -ϱ), ϱ γ+1 ε -ϱ γ+1 ⟩ - Q T (ϱ ε R ε -ϱR)(ϱ γ+1 ε -ϱ γ+1 ).
Let us consider the three terms on the right-hand side individually. From to the strong compactness of ϱ ε in any L p -space and the weak * compactness of R ε , it directly follows that

Q T (ϱ ε R ε -ϱR)(ϱ γ+1 ε -ϱ γ+1 ) → 0.
Recalling Lemma 6.3.5, the strong convergence of ϱ γ+1 ε and the weak convergence of

∂ t ϱ ε in L 2 (0, T ; H -1 (R d )), we have T 0 ⟨∂ t (ϱ ε -ϱ), ϱ γ+1 ε -ϱ γ+1 ⟩ = Q T ∂ t ϱ γ+2 ε γ + 2 + Q T ∂ t ϱ γ+2 γ + 2 - T 0 ⟨∂ t ϱ, ϱ γ+1 ε ⟩ - T 0 ⟨∂ t ϱ ε , ϱ γ+1 ⟩ = R d ϱ γ+2 ε (T ) γ + 2 + R d ϱ γ+2 (T ) γ + 2 - R d ϱ γ+2 ε (0) γ + 2 - R d ϱ γ+2 (0) γ + 2 - T 0 ⟨∂ t ϱ, ϱ γ+1 ε ⟩ - T 0 ⟨∂ t ϱ ε , ϱ γ+1 ⟩ → 2 R d ϱ γ+2 (T ) γ + 2 -2 R d ϱ γ+2 (0) γ + 2 -2 T 0 ⟨∂ t ϱ, ϱ γ+1 ⟩ = 0.
Since from Lemma 6.3.1 we have

√ ε∇ √ ϱ ε ∈ L 2 (Q T ), as well as ∇ϱ γ+1 2 ε ∈ L 2 (Q T ), we finally compute ε Q T ∇ϱ ε • ∇(ϱ γ+1 ε -ϱ γ+1 ) = 4ε Q T √ ϱ ε ∇ √ ϱ ε • ϱ γ+1 2 ε ∇ϱ γ+1 2 ε -ϱ γ+1 2 ∇ϱ γ+1 2 ⩽ √ εC → 0,
and this concludes the proof.

Having proved the L 2 -strong convergence of ∇ϱ γ+1 ε , we can now show that the limit of the sequence (n ε , ϱ ε ) is a solution of Problem (6.2).

Theorem 6.3.7. Given n 0 ∈ L ∞ + ([0, 1] × R d ) ∩ L 1 ([0, 1] × R d ),
there exists a weak solution to System (6.2), namely, there exists n(y, x, t) Proof.

∈ L ∞ + ([0, 1] × R d × (0, ∞)) ∩ L 1 ([0, 1] × R d × (0, ∞)) such that ∇p(x, t) ∈ L 2 (R d × (0, ∞)) and for all T > 0 and φ ∈ C([0, 1]; C 1 comp ([0, T ) × R d )) - 1 0 R d n(y,
For all φ ∈ C([0, 1]; C 1 comp ([0, T ) × R d ))
, the variational formulation of Problem (6.9) can be written as

- 1 0 R d n ε (y, x, t) ∂φ(y, x, t) ∂t dx dy + 1 0 Q T n ε (y, x, t)∇p ε (x, t) • ∇φ(y, x, t) dx dt dy = -ε 1 0 Q T ∇n ε (y, x, t) • ∇φ(y, x, t) dx dt dy (6.21) + 1 0 Q T n ε (y, x, t)R(y, p ε )φ(y, x, t) dx dt dy + 1 0 R d n 0,ε (y, x, t)φ(y, x, 0) dx dy.
As we already proved, there exists a bounded non-negative function σ = σ(y, x, t) such that

σ ε → σ weakly * in L ∞ ([0, 1] × Q T ).
Therefore, from Lemma 6.3.6 we infer

n ε ∇p ε = n ε ∇ϱ γ ε = σ ε ϱ ε ∇ϱ γ ε = σ ε γ γ + 1 ∇ϱ γ+1 ε ε→0 ---→ σ γ γ + 1 ∇ϱ γ+1 , weakly in L 2 ([0, 1] × Q T ). (6.22) 
It remains to show that σ(y, x, t) = n(y, x, t)/ϱ(x, t) almost everywhere in [0, 1] × Q T . Let δ > 0 be an arbitrary positive constant. Then, we have

σ ε (ϱ ε -δ) + → σ(ϱ -δ) + , weakly * in L ∞ ([0, 1] × Q T ).
On the other hand

σ ε (ϱ ε -δ) + = n ε (ϱ ε -δ) + ϱ ε → n (ϱ -δ) + ϱ , weakly * in L ∞ ([0, 1] × Q T ),
by the following argument. Since 0 ⩽ (ϱ-δ)+ ϱ ⩽ 1, we obtain Finally, using Eq. (6.22), Remark 6.3.4 and passing to the limit in Eq. ( 6.21) we obtain Eq. (6.20) and the proof is completed.

1 0 Q T n ε (ϱ ε -δ) + ϱ ε -n (ϱ -δ) + ϱ φ dx dt dy = 1 0 Q T (n ε -n) (ϱ -δ) + ϱ φ dx dt dy + 1 0 Q T n ε (ϱ ε -δ) + ϱ ε - (ϱ -δ) + ϱ φ

Incompressible limit

Thanks to the result proven in the previous section, cf. Theorem 6.3.7, we know that for each γ > 1 there exists (n γ , ϱ γ , p γ ) that satisfies following equations n γ (x, t)R(y, p γ (x, t)) dy ψ(x, t) dx dt + Ω ϱ γ,0 (x)ψ(x, 0) dx, (6.24) for all test functions ψ ∈ C 1 comp ([0, T ) × Ω), where v γ = ϱ γ+1 . The goal of this section is to study the incompressible limit γ → ∞ and recover the weak formulation of a Hele-Shaw free boundary problem. To this end, we have to infer the compactness on the main quantities needed to pass to the limit in (6.23, 6.24). While for the first equation the strong compactness of ∇p γ is needed, weak compactness of ∇v γ is sufficient in order to pass to the limit in equation (6.24), as stated in the following theorem. Theorem 6.4.1 (Weak Hele-Shaw problem). Let (n γ , ϱ γ , p γ ) be a solution given by Theorem 6.3.7. For all T > 0, up to the extraction of a subsequence we have n γ (y, x, t) ⇀ n ∞ (y, x, t) weakly * in L ∞ ((0, 1) × Ω T ), (6.25) The second main result is the complementarity relation which allows to recover the limit pressure as the solution of an elliptic equation. In order to prove it we need to infer the strong compactness of ∇p γ , which also allows us to pass to the limit in Eq. (6.23).

ϱ γ (x, t) ⇀ ϱ ∞ (x, t) weakly * in L ∞ (Ω T ), (6.26) 
Theorem 6.4.2 (Complementarity relation). The limit solution satisfies

v ∞ ∆v ∞ + 1 0 n ∞ (y)R(y, p ∞ ) = 0, in D ′ (Ω × (0, ∞)), (6.31) 
as well as The following part of this section is devoted to the proof of Theorem 6.4.1 and Theorem 6.4.2. Since we are not able to prove any control on ∂ t p γ , it is not possible to directly prove the strong compactness of p γ (Corollary 6.4.9) which is necessary in order to find the limit of the reaction term. For this reason we will be able to identify the limit only after the proof of the strong compactness of ∇v γ (Lemma 6.4.8). 

Ω T |∇p γ | 2 dx dt ⩽ γ∥R γ ∥ L ∞ (Ω T ) ∥p γ ∥ L 1 (Ω T ) + ∥p 0 ∥ L 1 (Ω) .
Therefore, for all γ > 1, it holds p γ ∈ L 2 (0, T ; H 1 (Ω)). (6.35) By the definition of v γ , we have

∇v γ = γ + 1 γ p 1 γ γ ∇p γ = γ + 1 γ ϱ γ ∇p γ ∈ L 2 (Ω T ), (6.36) 
uniformly in γ, and therefore Eq. (6.28) is proven.

Corollary 6.4.5. The limit triplet (n ∞ , ϱ ∞ , p ∞ ) satisfies

∂ϱ ∞ ∂t = ∆v ∞ + 1 0 H ∞ (y) dy, in D ′ (R d × (0, ∞)), (6.37) 
where H ∞ = H ∞ (y, x, t) is the weak limit of n γ R(y, p γ ).

Proof. The result comes from passing to the limit in Eq. (6.24) using the convergence results (6.26), (6.28), and (6.33).

As mentioned above, in order to conclude the proof of (6.30) we have to show that H ∞ = n ∞ R(y, p ∞ ). This will be proven in the following subsection, cf. Eq. (6.46). At this moment, we are not able to identify the limit since we do not have the strong compactness of p γ . Remark 6.4.6 (H -1 -bound of the density time-derivative). From the previous bounds and Eq. (6.6), we have ∂ϱ γ ∂t ∈ L 2 (0, T ; H -1 (Ω)). (6.38) Corollary 6.4.7. The limit solution satisfies Eq. (6.29).

Proof. Let us recall that the non-negativity of n γ , and consequently of ϱ γ and p γ , has already been proven in the previous sections. Since ϱ γ ⩽ ϱ M = (p M ) 1/γ we have 0 ⩽ ϱ ∞ ⩽ 1.

By definition we have v γ = ϱ γ p γ . Thanks to Eqs. (6.35) and (6.38) we can apply the compensated compactness theorem stated in Appendix 6.A, cf. Theorem 6.A.1, and infer

Ω T v γ φ dx dt → Ω T ϱ ∞ p ∞ φ dx dt,
for every φ ∈ C(0, T ; C 1 (Ω)). Hence v ∞ = ϱ ∞ p ∞ , almost everywhere. Finally, by weak lower semi-continuity of convex functionals we have

lim γ→∞ v γ = lim inf γ→∞ p γ+1 γ γ ⩾ p ∞ .
For the sake of completeness, we include here the full argument. Let ψ δ = ψ δ (x) be a convex function such that ψ δ (x) → x as δ → 0. Let us denote Ψ γ (x) = x γ+1 γ , γ > 1. Let us take δ > 0 small enough such that ψ δ (x) ⩽ Ψ γ (x).

Therefore, we have Since we chose δ > 0 arbitrarily, we take δ → 0 to obtain

ψ δ (p ∞ ) ⩽ lim inf
p ∞ ⩽ lim inf γ→∞ p γ+1 γ γ . Hence ϱ ∞ p ∞ = v ∞ ⩾ p ∞ , which implies ϱ ∞ p ∞ = p ∞ .
6.4.2 Proof of Theorem 6.4.2

In order to prove the complementarity relation, cf. Theorem 6.4.2, the usual strategy is to prove the strong convergence of ∇p γ , see for instance [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF][START_REF] David | On the Incompressible Limit for a Tumour Growth Model incorporating Convective Effects[END_REF][START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF]. Although we are able to prove strong compactness in space of the gradient (thanks to the Aronson-Bénilan estimate proven in the next section) we do not have any control on ∂ t p γ from which to infer time compactness. Therefore, we follow the strategy of [START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF], directly proving the strong compactness of ∇v γ . The core of the proof is given by the following lemma.

Lemma 6.4.8. Up to a subsequence, as γ → ∞, we have ∇v γ → ∇v ∞ strongly in L 2 (Ω T ). (6.39)

Proof. Let us use v γ -v ∞ as a test function in Eq. (6.6) to obtain where we used the weak compactness of the density in L 2 (0, T ; H -1 (Ω)) given by Eq. (6.38).

Ω ∂ϱ γ ∂t (v γ -v ∞ ) dx + γ γ + 1 Ω ∇v γ • ∇(v γ -v ∞ ) dx =
We now treat the first term in the right-hand side of Eq. (6.42). We add and subtract the same quantity to get 

⩽ 2∥R∥ ∞ ϱ M (1 -ε) γ + 2∥R∥ ∞ ϱ M p M max ε, 1 γ | ln p M | + o 1 γ .
Choosing ε = 1/ √ γ, we infer that the right-hand side converges to zero as γ → ∞.

Now we show that, after the extraction of a subsequence, the term

B = 1 0 Ω T n γ R(y, p ∞ )(v γ -v ∞ ) dx dt dy,
converges to zero as γ → ∞. Let us choose y ∈ (0, 1). We denote w γ := R(y, p ∞ )(v γ -v ∞ ). First of all, there exists a subsequence γ k independent of y such that w γ k converges to zero weakly in L 2 (Ω T ). Let us recall that ∂ t n γ (y) = ∇ • (n γ (y)∇p γ ) + n γ (y)R(y, p γ ).

Hence, ∂ t n γ (y) ∈ L 2 (0, T ; H -1 (Ω)). Therefore, we can apply the compensated compactness theorem, see Theorem 6.A.1. For all indexes γ kj there exist γ kj i such that Ω T n γ k j i (y)R(y, p ∞ )(v γ k j i -v ∞ ) dx dt → 0, as i → ∞, which implies

Ω T n γ k (y)R(y, p ∞ )(v γ k -v ∞ ) dx dt → 0,
as k → ∞. Moreover, the above function is uniformly bounded in L 1 ([0, 1]). Since γ k only depends on the convergence of v γ we have

B = 1 0 Ω T n γ k R(y, p ∞ )(v γ k -v ∞ ) dx dt dy → 0, as k → ∞.
Now, we can finally come back to Eqs.(6.41)-(6.42)

lim sup γ→∞ Ω T |∇(v γ -v ∞ )| 2 dx dt ⩽ Ω T ∂ϱ ∞ ∂t v ∞ dx dt. (6.43)
To conclude the proof we will show that the right-hand side is actually equal to zero. Let us notice that for any ε > 0

Ω T (ϱ ∞ (x, t + ε) -ϱ ∞ (x, t))v ∞ dx dt = Ω T (ϱ ∞ (x, t + ε) -1 + 1 -ϱ ∞ (x, t))v ∞ dx dt ⩽ 0,
where in the last inequality we used Eq. (6.29). In a similar fashion we have

Ω T (ϱ ∞ (x, t) -ϱ ∞ (x, t -ε))v ∞ dx dt ⩾ 0.
Now it remains to prove that From Eq. (6.36) we have In an analogous way we can prove that

lim ε→0 Ω T ϱ ∞ (x, t + ε) -ϱ ∞ (x, t) ε v ∞ dx dt = Ω T ∂ϱ ∞ ∂t v ∞ dx
1 ε t+ε t 1 0
H ∞ (y, x, s) dy ds → Combining Eq. (6.45) and Eq. (6.37) we have

lim ε→0 Ω T ϱ ∞ (t + ε) -ϱ(t) ε v ∞ (x, t) dx dt = - Ω T |∇v ∞ | 2 dx dt + Ω T 1 0 H ∞ (y, x, t) dy v ∞ (x, t) dx dt = Ω T ∂ϱ ∞ ∂t v ∞ dx dt.
Hence Eq. (6.44) is proven. As a consequence, Eq. (6.43) concludes the proof.

Having proved the strong compactness of ∇v γ , we can finally recover the strong compactness of the pressure itself, by simply applying the Poincaré inequality, using the fact that Ω has been chosen large enough such that the pressure satisfies Dirichlet boundary conditions. Corollary 6.4.9 (Strong compactness of p γ ). Up to the extraction of a subsequence, we have p γ → p ∞ , strongly in L 2 (Ω T ).

Proof. Since we assumed the solutions to be compactly supported for all times 0 ⩽ t ⩽ T , by Lemma 6.4.8 and Poincaré's inequality we infer the strong compactness of v γ in L 2 (Ω T ). Finally, since p γ = v γ/(γ+1) γ

and p ∞ = v ∞ , the proof is completed.

Thanks to this result, we can finally identify the limit of the reaction term, i.e. the following equality holds almost everywhere in [0, 1] × Ω T H ∞ (y, x, t) = n ∞ (y, x, t)R(y, p ∞ (x, t)). (6.46) Thanks to the strong compactness of the pressure gradient, we can pass to the limit in Eq. (6.23) to obtain Eq. (6.32). Finally, to complete the proof of Theorem 6.4.2, we show that the complementarity relation (6.31) holds true. Let us multiply Eq. (6.6) by v γ to get

1 γ + 2 ∂ϱ γ+2 γ ∂t = γ γ + 1 v γ ∆v γ + v γ 1 0
n γ R(y, p γ ) dy.

As already proven, v γ , p γ and ∇v γ are strongly compact in L 2 (Ω T ). Therefore, passing to the limit γ → ∞ we obtain

v ∞ ∆v ∞ + 1 0 n ∞ (y)R(y, p ∞ ) dy = 0, in D ′ (Ω × (0, ∞)),
which concludes the proof.

Additional regularity estimates

Here we present some regularity estimates on the pressure p = ϱ γ , where ϱ is a solution of Eq. (6.10). In particular, we extend a result already proved in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF] for a Hele-Shaw model of one species, which implies that p α-1 |∇p| 4 is integrable, for certain values of α. This new estimate allows us to prove an L 2 -version of the Aronson-Bénilan estimate for the structured model at hand. The original AB estimate is a lower L ∞ -bound on the Laplacian of the pressure. In recent years, several extensions in both L 1 and L 2 -settings have been proposed in the context of degenerate parabolic equations and systems. We refer the reader to [START_REF] Bevilacqua | The Aronson-Bénilan Estimate in Lebesgue Spaces[END_REF][START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF][START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF][START_REF] David | On the Incompressible Limit for a Tumour Growth Model incorporating Convective Effects[END_REF][START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] for a comprehensive overview. Before presenting the proof of the main results, cf. Theorem 6.5.2 and Theorem 6.5.4, we point out that as a consequence the following corollary holds. Let us stress the fact that this estimate, together with a regularisation argument on Eq. (6.2) and Eq. ( 6.3), implies the existence of weak solutions. In fact, considering the equations

∂ t n = ∇ • (n∇p) + nR(y, p), ∂ t ϱ = ∇ • (ϱ∇p) + ϱR,
we can replace the initial data n 0 (y) by n 0,µ (y) = n 0 (y) + µe -|x| 2 , with µ > 0. Therefore, the equations are non degenerate and have a positive solution (n µ , ϱ µ ) and σ µ (y) = n µ (y)/ϱ µ is well defined. Since the bound on the Laplacian, Eq. (6.47), is independent of the regularisation, applying the Aubin-Lions lemma it is possible to obtain strong compactness of the pressure gradient in L q (Ω T ) for all 1 ⩽ q ⩽ d d-2 , as µ → 0. Hence, combining this result with the compactness of n, σ and ϱ stated in Remark 6.3.4 allows to pass to the limit in the model and prove existence. For the detailed proof of a particular case, we refer the reader to [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF], where the authors study the same problem for two species, n 1 and n 2 , rather than for an infinite set of phenotypic traits, y ∈ [0, 1]. In fact, the estimate on the Laplacian of the pressure is analogous, and relies on the Aronson-Bénilan estimate in an L 2 -setting. The improvement that we bring here is to prove the AB estimate removing the strong technical assumption that the authors in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] impose on the reaction terms, namely

F (0) = G(0),
where the source term of the total density is R(p, σ 1 , σ 2 ) = F (p)σ 1 + G(p)σ 2 , with σ i = n i /(n 1 + n 2 ), for i = 1, 2. As shown in the previous section, the question of how to prove existence without this assumption can be achieved using the method by Price and Xu in [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF]. However, to recover the bound (6.47) on the Laplacian removing the condition on the reaction terms was still an open question. Proof. First of all, let us recall that R = 1 0 σ(η)R(η, p) dη, hence ∂ p R ⩽ 0.

We multiply Eq. ( 6 where Bdd now includes other bounded quantities. Now it remains to treat the term B. Let us point out here that we cannot estimate it in the same way as in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF], since the authors make use of a lower bound of the quantity ∆p + R, i.e. the L ∞ -Aronson-Bénilan estimate, which does not hold for a multi-species system like the one at hand. For this reason, we deal with the term B by splitting it into two parts. The one coming from the source term is easier to estimate, since it can be bounded in the following way

Ω T p α R|∇p| 2 dx dt ⩽ p α M ∥R∥ ∞ ∥∇p∥ 2 2 ⩽ max(1, p M )∥R∥ ∞ ∥∇p∥ 2 2 . (6.51)
The term with ∆p is instead more involved. We refer the reader to [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF] for the same method applied to the case of one species and α = 0. From now on, for the sake of simplicity, we only compute the integral in space. Integrating by parts twice we have where we used integration by parts on the second term. We compute the last term in Eq. (6.52) as follows where in the last equality we used integration by parts and we denoted (D 2 i,j p) 2 = i,j (∂ 2 i,j p) 2 . By consequence, Eq. (6.52) now reads with κ(α) := α 6 (1 -αγ). Since we assumed 0 < α < 1 γ , this concludes the proof.

Let us point out that for α = 0 the result proved above immediately implies a bound on the pressure gradient which is uniform with respect to γ. This bound was also investigated in [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF],

where the authors prove its sharpness. Proof. Let us take α = 0 in Eq. (6.54). Then, we infer the following bounds Using integration by parts, it follows that the boundedness of these two terms implies ∇p ∈ L 4 (Ω T ). We refer the reader to [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF] for the detailed proof.

Theorem 6.5.4 (L 2 -Aronson-Bénilan estimate). With the assumptions of Section 6.2.3, for all T > 0, there exists a constant C(T ) independent of γ, such that for all t ∈ [0, T ] we have

Ω (∆p(t)) 2 -dx ⩽ C(T ), Ω T (∆p) 3 -dx dt ⩽ C(T ).
Proof. We define w = ∆p + R. Hence, Eq. (6.34) reads

∂ t p = γpw + |∇p| 2 .
Let us recall again the definition of R R(p, σ) = 

6.B Convergence of the reaction terms

Now we prove that (6.16) and (6.17) hold. By the Stone-Weierstrass theorem we know that, for any δ > 0, there exists N > 0 and {a i } N i=1 and {G i } N i=1 such that R(y, p ε ) - Incompressible limit and well-posedness of PDE models of tissue growth Abstract

Both compressible and incompressible porous medium models have been used in the literature to describe the mechanical aspects of living tissues, and in particular of tumor growth. Using a stiff pressure law, it is possible to build a link between these two different representations. In the incompressible limit, compressible models generate free boundary problems of Hele-Shaw type where saturation holds in the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous medium equations motivated by tumor development. Our first study concerns the analysis and numerical simulation of a model including the effect of nutrients. Then, a coupled system of equations describes the cell density and the nutrient concentration. For this reason, the derivation of the pressure equation in the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed.

To establish it, we use two new ideas: an L 3 -version of the celebrated Aronson-Bénilan estimate, also recently applied to related problems, and a sharp uniform L 4 -bound on the pressure gradient. We further investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to be stable and asymptotic preserving. Our second study is centered around porous medium equations including convective effects. We are able to extend the techniques developed for the nutrient case, hence finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular, we account for phenotypic heterogeneity, including a structured variable into the problem. In this case, a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting methods recently developed in the context of two-species systems, we prove existence of weak solutions and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total pressure, which is related to the total density by a power law of state.

Keywords: porous medium equation, tumor growth, Aronson-Bénilan estimate, free boundary, Hele-Shaw problem

Résumé

Les modèles de milieux poreux, en régime compressible ou incompressible, sont utilisés dans la littérature pour décrire les propriétés mécaniques des tissus vivants et en particulier de la croissance tumorale. Il est possible de construire un lien entre ces deux différentes représentations en utilisant une loi de pression raide. Dans la limite incompressible, les modèles compressibles conduisent à des problèmes de frontières libres de type Hele-Shaw. Nos travaux visent à étudier la limite de pression raide des équations de type milieu poreux motivées par le développement tumoral. Notre première étude concerne l'analyse et la simulation numérique d'un modèle incluant l'effet des nutriments. Ensuite, un système d'équations, dont le couplage est délicat, décrit la densité cellulaire et la concentration en nutriments. Pour cette raison, la dérivation de l'équation de pression dans la limite incompressible était un problème ouvert qui nécessite la compacité forte du gradient de pression. Pour l'établir, nous utilisons deux nouvelles idées : une version L 3 de la célèbre estimation d'Aronson-Bénilan, également utilisée récemment pour des problèmes connexes, et une estimation L 4 sur le gradient de pression (où l'exposant 4 est optimal). Nous étudions en outre l'optimalité de cette estimation par un schéma numérique upwind aux différences finies, que nous montrons être stable et asymptotic preserving. Notre deuxième étude est centrée sur l'équation de milieux poreux avec effets convectifs. Nous étendons les techniques développées pour le cas avec nutriments, trouvant ainsi la relation de complémentarité sur la pression limite. De plus, nous fournissons une estimation du taux de convergence à la limite incompressible. Enfin, nous étudions un système multi-espèces. En particulier, en tenant compte de l'hétérogénéité phénotypique, nous incluons une variable structurée dans le problème. Par conséquent, un système de diffusion croisée et dégénérée décrit l'évolution des distributions phénotypiques. En adaptant des méthodes récemment développées pour des systèmes à deux équations, nous prouvons l'existence de solutions faibles et nous passons à la limite incompressible. En outre, nous prouvons de nouveaux résultats de régularité sur la pression totale, qui est liée à la densité totale par une loi de puissance.

Mots clés : équation des milieux poreux, croissance tumorale, estimation d'Aronson-Bénilan, frontière libre, problème de Hele-Shaw
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 12141225 Kato inequality).Let Ω ⊂ R d be a bounded open subset, and let w ∈L 1 loc (R d ) be a function such that ∆w ∈ L 1 loc (R d ).Then ∆(w) -is a Radon measure and the following holds∆(w) -⩾ sign -(w)∆w, in D ′ (R d ).(1.Proposition Poincaré inequality). Let 1 ⩽ p < ∞ and let Ω ⊂ R d be an open and bounded subset. There exists C depending on Ω and p such that for every u ∈ W 1,p 0 (Ω), we have∥u∥ L p (Ω) ⩽ C∥∇u∥ L p (Ω) . (1Proposition 1.2.3 (Poincaré-Wirtinger inequality). Let 1 ⩽ p < ∞ and let Ω ⊂ R d be an open and bounded subset. There exists C depending on Ω and p such that for every u ∈ W 1,p (Ω), we have ∥u -u Ω ∥ L p (Ω) ⩽ C∥∇u∥ L p (Ω) , (1.6)

Figure 1 . 1 :

 11 Figure 1.1: Domain of the Hele-Shaw problem

Figure 1 . 2 :

 12 Figure 1.2: Focusing solution: density (left) and pressure (right). Numerical solution of the focusing problem with γ = 10, ∆x = 0.02, initial internal radius 1.

Theorem 2 . 5 . 1 (

 251 Complementarity relation). With the assumptions of Theorem 2.4.1, the complementarity condition (2.5) holds. More precisely, for all test functions ζ

. 25 )

 25 Combining Eqs. (3.23, 3.24, 3.25), we finally get
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 31132 Figure 3.1: Porous Medium Equation in 1D: we compare the analytical solution and the numerical solution for γ = 3 (left) and γ = 12 (right), with ∆x = 1/64 and ∆t = 0.01∆x.

Figure 3 . 3 :

 33 Figure 3.3: In vitro model in 1D: comparison between the numerical solution and the analytical solution at different times, t=0.5, t=1, t=1.5, with γ = 80, ∆x = 0.025 and ∆t = 10 -6 .

Figure 3 . 4 :

 34 Figure 3.4: In vivo model in 1D: comparison between the numerical solution and the analytical solution at different times, t=0.5, t=1, t=1.5, with γ = 80, ∆x = 0.025 and ∆t = 10 -6 .
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 3536 Figure 3.5: In vitro two-species model in 1D: plot of n P , n D , n, c with γ = 80, ∆x = 0.025 and ∆t = 10 -4 .

Figure 3 . 7 :

 37 Figure 3.7: Focusing solution: pressure gradient norms. Plot of the pressure gradient norms along time, from the left ot the right, from the top down, L 2 , L 4 , L 6 , L 8 , L 10 , L ∞ -norm, with γ = 10, ∆x = 0.02, ∆t = 0.001, p H = 1 and initial internal radius 0.6.

Figure 3 . 8 :

 38 Figure 3.8: Focusing solution (density). Numerical solution of the focusing problem with γ = 10, ∆x = 0.02, initial internal radius 1.

Figure 3 . 9 :

 39 Figure 3.9: Focusing solution (pressure). Numerical solution of the focusing problem with γ = 10, ∆x = 0.02, initial internal radius 1.
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Remark 4 . 3 . 1 (

 431 Boundary Terms and Integration by Parts). The subsequent technical lemmas (Lemma 4.3.2 and Lemma 4.3.

Remark 4 . 3 . 5 .Lemma 4 . 3 . 6 (

 435436 The proof of the Aronson-Bénilan estimate can be made independent of the L 4 -bound on ∇p γ imposing a stronger condition on V , namely ∇(∆V ) ∈ L 6 rather than L 12/5 . The bounds provided by Lemma 4.3.2 and Lemma 4.3.3 allow us to prove the strong convergence of ∇p γ in L 2 (Q T ) thanks to compactness arguments, in particular the Fréchet-Kolmogorov theorem and the Aubin-Lions lemma. Strong convergence of the pressure gradient). For any T > 0 it holds

Theorem 5 . 1 . 1 (

 511 Convergence rate in Ḣ-1 ). Assume (A-L 1 data), (A-drift), and (A-reaction) (for d = 2) and (A-reaction') or (A-reaction") (for d ⩾ 3). For d = 2 assume additionally (A-2D). Then, for all T > 0, there exists a unique functionn ∞ ∈ C([0, T ); L 1 (R d )) such that the sequence n γ (resp. n ϵ ) converges, as γ → ∞ (resp. ϵ → 0) to n ∞ strongly in L ∞ (0, T ; Ḣ-1 (R d ))with the following rate sup t∈[0,T ]

. 4 )

 4 Theorem 5.1.2 (Convergence rate in L 4/3 ). Under the assumptions of Theorem 5.1.1, and additionally (A-BV data), (A-BV drift) and g ∈ BV (R d × (0, T )), we also have n ∞ ∈ BV (R d × (0, T )) and sup t∈[0,T ]

.15) 6 . 3 . 3

 633 Passing to the limit ε → 0

  dx dt dy → 0,as ε → 0 for any φ ∈ L 1 ([0, 1] × Q T ). Therefore, σ(ϱ -δ) + = n (ϱ -δ) + ϱ almost everywhere in [0, 1] × Q T ,for any δ > 0. Hence σϱ = n, almost everywhere on the set where ϱ is strictly positive. If ϱ = 0 then n(y) = 0 for almost every y ∈ [0, 1], and thus σ(y, x, t)ϱ(x, t) = n(y, x, t) for almost every (y, x, t) ∈ [0, 1] × Q T .

  γ (y, x, t)∇p γ (x, t) • ∇φ(y, x, t) dx dt dy = γ (y, x, t)R(y, p γ )φ(y, x, t) dx dt dy + 1 0 Ω n γ,0 (y, x, t)φ(y, x, 0) dx dy, (6.23) for all φ ∈ C([0, 1]; C 1 comp ([0, T ) × Ω)) γ (x, t) • ∇ψ(x, t) dx dt = Ω T 1 0

pn

  γ (x, t) ⇀ p ∞ (x, t) weakly * in L ∞ (Ω T ),(6.27)∇v γ → ∇v ∞ weakly in L 2 (Ω T ),(6.28)as γ → ∞. Moreover the limit satisfies0 ⩽ ϱ ∞ ⩽ 1, p ∞ (1 -ϱ ∞ ) = 0 almost everywhere in Ω T . ∞ R(y, p ∞ ) dy ψ dx dt + Ω ϱ 0 (x)ψ(x, 0) dx,(6.30)for all test functions ψ ∈ C 1 comp ([0, T ) × Ω).

n

  ∞ R(y, p ∞ )φ dx dt dy + Ω n 0 (y, x)φ(y, x, 0) dx dy, (6.32) for all test functions φ ∈ C((0, 1); C 1 comp ([0, T ) × Ω)).

γ→∞ ψ δ

 δ (p γ ) ⩽ lim inf γ→∞ Ψ γ (p γ ) = lim inf

Ω 1 0T 1 0T 1 0

 111 n γ R(y, p γ ) dy (v γ -v ∞ ) dx. γ -v ∞ )| 2 dx dt ⩽ lim sup γ→∞ Ω T ∇v γ • ∇(v γ -v ∞ ) dx dt -Ω T ∇v ∞ • ∇(v γ -∇v ∞ ) dx dt ⩽ lim sup γ→∞ Ω T ∇v γ • ∇(v γ -v ∞ ) dx dt,(6.41)where in the last inequality we use the fact that ∇v γ is weakly compact in L 2 (Ω T ). From Eq. (6.40) we obtainlim sup γ→∞ Ω T ∇v γ • ∇(v γ -v ∞ ) dx dt ⩽ lim sup γ→∞ Ω n γ R(y, p γ ) dy (v γ -v ∞ ) dx dt + lim sup γ→∞ Ω T ∂ϱ γ ∂t v ∞ dx dt ⩽ lim sup γ→∞ Ω n γ R(y, p γ ) dy (v γ -v ∞ ) dx dt + Ω T ∂ϱ ∞ ∂t v ∞ dx dt,(6.42)

Ω T 1 0 1 0Ω T 1 0. 1 0T 1 0T 1 0T 1 0 1 0Ω T ∩{ϱγ ⩽1-ε} 1 0Ω T ∩{ϱγ >1-ε} 1 0

 1111111111 n γ R(y, p γ ) dy (v γ -v ∞ ) dx dt = Ω T n γ (R(y, p γ ) -R(y, p ∞ )) dy (v γ -v ∞ ) dx dt A + n γ R(y, p ∞ ) dy (v γ -v ∞ ) dx dt BOur goal is to prove that the right hand side is bounded by some quantity that converges to zero as γ → ∞. To deal with A we use the monotonicity of R(y, •), which is a decreasing function of the pressure. We rewrite A as followsA = Ω T n γ (R(y, p γ ) -R(y, p ∞ )) dy (p γ ϱ γ -v ∞ ) dx dt = Ω n γ (R(y, p γ ) -R(y, p ∞ )) dy (p γ (ϱ γ -1) + p γ -p ∞ ) dx dt = Ω n γ (R(y, p γ ) -R(y, p ∞ )) dy p γ (ϱ γ -1) dx dt + Ω n γ (R(y, p γ ) -R(y, p ∞ )) dy (p γ -p ∞ ) dx dt,where the last integral is non-positive by the monotonicity of R. Let ε > 0, we split the remaining term as followsΩ T n γ (R(y, p γ ) -R(y, p ∞ )) dy p γ (ϱ γ -1) dx dt = n γ (R(y, p γ ) -R(y, p ∞ ))dy ϱ γ γ (ϱ γ -1) dx dt + n γ (R(y, p γ ) -R(y, p ∞ )) dy p γ (ϱ γ -1) dx dt

1 ε T +ε 0 |

 10 s-ε) Ω |∇v ∞ (x, s)| 2 dx dt ds ⩽ min(T, s) -max(0, s -ε)| Ω |∇v ∞ (x, s)| 2 dx ds ⩽ C(T ). x, s) ds → ∇v ∞ (x, t), weakly in L 2 (Ω T ).

1 0H

 1 ∞ (y, x, t) dy, weakly in L 2 (Ω T ).

Corollary 6 . 5 . 1 .

 651 With the assumptions of the previous sections, for all T > 0 there exists a constant C(T ) which does not depend on γ, such thatΩ |∆p(t)| dx ⩽ C(T ),(6.47)for all t ∈ [0, T ].

Theorem 6 . 5 . 2 (

 652 L 4 -estimate). There exists a constant C(T ) such that for any 0 ⩽ α < 1 γ the following estimate holds true κ(α)Ω T |∇p| 4 p 1-α dx dt ⩽ C(T ),with κ(α) := α 6 (1 -αγ).

qqqqq= - 1 + αγ 2 Ωqq 2 Ω⩽ - 1 + αγ 2 Ωp

 12212 α R(η, q) dq ∂ t σ dη. Now using the equation on the fraction density σ, Eq. (6.11), we haveα R(η, q) dq ∇σ • ∇p dη dx + α R(η, q) dq (R(η, p) -R(p))σ dη dx = -α R(η, q) dq ∇σ • ∇p dη dx + Bdd,where we use Bdd to denote the bounded termα R(η, q) dq (R(η, p) -R)σ dη dx ⩽ C α + 1 Ω p α+1 dx ⩽ C∥p∥ 2 L 2 ,where C is a positive constant that depends on ∥R∥ ∞ . Now let us come back to Eq. (6.48) and integrate on Ωα 2 Ω p α-1 |∇p| 4 dx + γ Ω p α+1 (∆p + R) 2 dx p α (∆p + R)|∇p| 2 dx + d dt Ω R -p α |∇p| 2 α R(η, q) dq ∇σ • ∇p dη dx A α R(η, q) dq σ∆p dη dx ⩽∥R∥ ∞ p α α R(η, q) dq σ dη 2 p α+1 dx + 1 2 Ω p α+1 |∆p| 2 dx,where in the last line we used Fubini's Theorem and Young's inequality. Since by assumption both R(y, p) and ∂ p R(y, p) are bounded, the second term in the right-hand side is bounded.Combining the estimate on the term -A with Eq. (6.49) and integrating in time, we obtain α T p α-1 |∇p| 4 dx dt + γ Ω T p α+1 (∆p + R) 2 dx dt T p α (∆p + R)|∇p| 2 dx dt B α+1 |∆p| 2 dx dt + Bdd, (6.50)

Ω p α ∆p|∇p| 2 Ω p α ∆p|∇p| 2 dx -2α 2 Ω

 22 dx = Ω ∆(p α |∇p| 2 )p dx = Ω ∆p α |∇p| 2 p dx +2α Ω ∇p • ∇(|∇p| 2 )p α dx + Ω p α+1 ∆(|∇p| 2 ) dx. (6.52)Computing the sum of the first two terms of the right-hand side, we findΩ ∆p α |∇p| 2 p dx + 2α Ω ∇p • ∇(|∇p| 2 )p α dx =α(α -1) Ω p α-1 |∇p| 4 dx + α Ω p α ∆p|∇p| 2 dx -2α p α-1 |∇p| 4 dx = -α(α + 1) Ω p α-1 |∇p| 4 dx -α Ω p α ∆p|∇p| 2 dx,

ΩpΩ p α |∇p| 2 ∆p dx - 2 Ω p α+1 |∆p| 2 dx + 2 Ωp

 22 α+1 ∆(|∇p| 2 ) dx = 2 Ω p α+1 ∇p • ∇(∆p) dx + 2 Ω p α+1 (D 2 i,j p) 2 dx = -2(α + 1) α+1 (D 2 i,j p) 2 dx,

Ω p α ∆p|∇p| 2 2 Ω p α+1 |∆p| 2 dx + 2 Ω

 222 dx = -α(α + 1) Ω p α-1 |∇p| 4 dx -(3α + 2) Ω p α ∆p|∇p| 2 dx -p α+1 (D

Corollary 6 . 5 . 3 .

 653 The following estimate holds uniformly in γ,Ω T |∇p| 4 dx dt ⩽ C(T ).

  + R) 2 dx dt ⩽ C(T ), Ω T p(D 2 i,j p) 2 dx dt ⩽ C(T ),and both hold uniformly with respect to γ. Since both p and R are uniformly bounded in L ∞ , this impliesΩ T p 2 |∆p| 2 dx dt ⩽ C(T ), Ω T p 2 (D 2 i,j p) 2 dx dt ⩽ C(T ).

1 0 1 0R 1 0 2 Ω 1 0R

 11121 , p) dη + R p γpw ≥γ∆(pw) + 2∇p • ∇w -p) dη + R p γpw,where in the last inequality we used that R p ⩽ 0. We recall that∂σ ∂t = ∇σ • ∇p + σR(y, p) -σ σ(η)R(η, p) dη.We multiply by sign -(w) to obtain∂(w) - ∂t ≤γ∆(p(w) -) + 2∇p • ∇(w) --2 sign -(w) (η, p)∇σ • ∇p dη + 2 d (w -R) 2 sign -(w) + sign -(w) ∇σ • ∇pR(η, p) dη + C + R p γp(w) -,where C is a constant depending on ∥R∥ ∞ . Firstly, we multiply by (w) -and use again that R p ⩽ 0 to obtain w) -)(w) -dx + ∇p • ∇(w) -(w) -dx + Ω (η, p)∇σ • ∇p dη (w) -dx -

(6. 55 )

 55 where ω(|k|) → 0 as k → 0. HenceΩ T R d (w γ (x)φ(x) -w γ (x -εz)φ(x -εz))ψ(z) dz u γ (x, t) dx dt = T 0 R d Ω (w γ (x)φ(x) -w γ (x -εz)φ(x -εz))u γ (x, t) dx ψ(z) dz dt ⩽ ε|z|)) 1/2 ∥u γ (t)∥ L 2 (Ω) ψ(z) dz dt → 0.Now we treat the last term. For the sake of brevity, let us denote (w γ φ)ε := (w γ φ) ⋆ x ψ ε Ω T (u γ -u γ ⋆ t ζ σ )(wφ) ε dx dt = Ω T R (u γ (t) -u γ (t -σs))ζ(s) ds (w γ φ) ε dx dt = Ω ∂u γ (τ ) ∂t (w γ φ) ε dx dτ dt ds ∂u γ (τ ) ∂t H -1 (Ω) dτ ∥(w γ φ) ε ∥ H 1 (Ω) dt ds γ φ) ε ∥ H 1 (Ω) dt ds ⩽ Cσ → 0,as σ → 0.

61 )-

 61 Let φ ∈ L 1 (Q T ), such that ∥φ∥ L 1 = 1. Since σ ε ⇀ σ weakly * in L ∞ ((0, 1) × Q T ) and p ε → p strongly in L 2 (Q T ) as ε → 0, we have η)a i (η)G i (p ε ) dη φ(x, t) dx dt = η)a i (η)G i (p ε )φ(x, t) dx dt dη ε→0 a i (η)G i (p)φ(x, t) dx dt dη.

  by Craig et al. to a model with non-local interaction potential N : R d → R, i.e.

  Starting from the seminal paper by Perthame et al., several variations of the Aronson-Bénilan estimate have been proposed in the literature for reaction-advection equations with porous medium diffusion, as well as for cross-diffusion systems.

	1.4.2 Including reactions and drifts: L ∞ -estimates

  since G is decreasing with respect to p γ . By the assumption (2.11) and thanks to Gronwall's lemma, we find n γ ⩽ n H and therefore p γ ⩽ p H .Using the same argument with the sign -(n γ ) we obtain

  and we state the following result. Proposition 2.B.1 (Aronson-Bénilan generalized estimate in L 3 ). Let Φ be a test function in C 2 comp (R d ). With the assumptions from (2.8) to (2.15), and with γ > max(1, 2-4 d

  )where ν indicates the outward normal to the boundary, and Ω(t) := {x; p ∞ (x, t) > 0}. Here we denote v the normal velocity of the free boundary. Below we give a characterisation of patch solutions, i.e. , the indicator of the growing domain described by Eq. (4.29) satisfies the incompressible limit equation, cf. Eq. (4.4a). To this end, we suppose that the boundary ∂Ω(t) admits a Lipschitz parameterisation ∂Ω(t) = {x(t, α) | α ∈ [0, 1], x(t, 0) = x(t, 1)} that satisfies Theorem 4.6.1 (Characterisation of the Free Boundary Velocity). Let Ω 0 be a bounded and Lipschitz continuous domain. Let us consider the solution (Ω(t), p ∞ ) to the free boundary problem, Eq. (4.29), with initial data Ω 0 . Then, the characteristic function in Eq. (4.31), satisfies Eq. (4.4a).

	d dt	x(t, α) = -(∇p ∞ (x(t, α), t) + ∇V (x(t, α), t)).	(4.30)
	Then the characteristic function	
		n ∞ (t) = 1 Ω(t) .	(4.31)
	satisfies the limit problem, Eq. (4.4a).	

  .18) Thus, Theorem 5.1.2 is a simple consequence of Theorem 5.1.1, Lemma 5.1.6 and the uniform bound in BV provided by Lemma 5.1.4. By the usual log-convex interpolation of the L p -norms we readily obtain the following corollary to Theorem 5.1.2.

	Corollary 5.1.7 (Convergence rate in L p ).
	sup
	t∈[0,T ]

  6.4.1 Proof of Theorem 6.4.1 Remark 6.4.3 (Weak * convergence as γ → ∞). Let us point out that the L ∞ -bounds (6.13),(6.14) and (6.15) proven in Subsection 6.3.2 are also uniform with respect to γ. Therefore, there exist n ∞ , ϱ ∞ , p ∞ and v ∞ such that, after the extraction of a subsequence Eqs. (6.25)-(6.27) hold. Moreover, there exists H ∞ such thatn γ R(y, p γ ) ⇀ H ∞ weakly * in L ∞ ((0, 1) × Ω T ). (6.33) Remark 6.4.4 (H 1 -bounds of p γ and v γ ). Multiplying the equation on the density, Eq. (6.3), by γϱ γ-1 γ , it is immediate to see that the pressure satisfies ∂p γ ∂t = γp γ (∆p γ + R γ ) + |∇p γ | 2 . (6.34) Hence, the pressure gradient is bounded in L 2 (Ω T ) as shown by integrating by parts in space to get d dt Ω p γ dx = (1 -γ)

	which implies
	(γ -1)

Ω |∇p γ | 2 dx + γ Ω p γ R γ dx,

  dt.(6.44) We integrate Eq. (6.37) between t and t + ε to obtainϱ ∞ (t + ε) -ϱ ∞ (t) = We test the above equation against 1 ε v ∞ (•, t) to get

					t+ε	t+ε	1
					∆v ∞ ds +	H ∞ dy ds.
					t	t	0
						(6.45)
	We have	1 ε	t	t+ε	∇v

Ω ϱ ∞ (x, t + ε) -ϱ ∞ (x, t) ε v ∞ (x, t) dx = -Ω 1 ε t+ε t ∇v ∞ (x, s) ds • ∇v ∞ (x, t) dx + Ω 1 ε t+ε t 1 0 H ∞ (y, x, s) dy ds v ∞ (x, t) dx. ∞ (x, s) ds → ∇v ∞ (x,

t), a.e. in Ω T .

  .34) by -p α (∆p + R) to obtain-p α ∂p ∂t (∆p + R) = -γp α+1 (∆p + R) 2 -p α |∇p| 2 (∆p + R).(6.48)Now we integrate in space and we split the left-hand side treating each term individually.

	-	Ω	p α ∂p ∂t	∆p dx =	1 2 Ω	p α ∂ ∂t	|∇p| 2 dx + α	Ω	p α-1 ∂p ∂t	|∇p| 2 dx
				=	1 2	d dt Ω	p α |∇p| 2 dx +	α 2 Ω	p α-1 ∂p ∂t	|∇p| 2 dx
				=	1 2	d dt Ω	p α |∇p| 2 dx +	αγ 2 Ω	p

α (∆p + R)|∇p| 2 dx + α 2 Ω p α-1 |∇p| 4 dx.

  α+1 |∆p| 2 dx dt + Bdd,where Bdd includes also the bound in Eq.(6.51). By Young's inequality, we have

		Then, we finally have	
			κ(α)		Ω T	p α-1 |∇p| 4 dx dt + γ -	3 2	+	p α+1 (∆p + R) 2 dx dt Ω T 3(α + 1) Ω T p α+1 (D 2 i,j p) 2 dx dt ⩽ C(T ), 2 + αγ	(6.54)
											2 i,j p) 2 dx,
	and thus								
					Ω	p α ∆p|∇p| 2 dx = -+	α 3 Ω 3(α + 1) Ω p α-1 |∇p| 4 dx -p α+1 (D 2 i,j p) 2 dx. 2 3(α + 1) Ω 2	p α+1 |∆p| 2 dx	(6.53)
	Using Eq. (6.53) in Eq. (6.50), we finally find
	α 2	Ω T	p α-1 |∇p| 4 dx dt + γ	Ω T	p α+1 (∆p + R) 2 dx dt +	2 + αγ 3(α + 1)	Ω T	p α+1 (D 2 i,j p) 2 dx dt
		⩽	α 3	1 +	αγ 2	Ω T	p α-1 |∇p| 4 dx dt +	2 + αγ 3(α + 1)	+	1 2	Ω T
			Ω T	p α+1 |∆p| 2 dx dt ⩽	3 2	Ω T	p α+1 |∆p + R| 2 dx dt + 3	Ω T	p α+1 |R| 2 dx dt.

p

  dη + R p (γpw + |∇p| 2 ) =γ∆(pw) + 2∇p • ∇w -R p |∇p| 2 -2

	Now we compute ∂ t w			
	∂w ∂t	=∆(γpw + |∇p| 2 ) +	∂R ∂t	
		=γ∆(pw) + 2∇p • ∇(∆p) + 2	i,j	(∂ 2 i,j p) 2 +	∂R ∂t
		≥γ∆(pw) + 2∇p • ∇w -2∇p • ∇R +	2 d	(w -R) 2 +	∂R ∂t
		=γ∆(pw) + 2∇p • ∇w -2R p |∇p| 2 -2	0	1	R(η, p)∇σ • ∇p dη +	2 d	(w -R) 2 +	∂R ∂t
		=γ∆(pw) + 2∇p • ∇w -2R p |∇p| 2 -2	0	1	R(η, p)∇σ • ∇p dη +	2 d	(w -R) 2
		+	0	1	∂σ ∂t	R(η, p) 1 0	R(η, p)∇σ • ∇p dη +	2 d	(w -R) 2
									1
									R(η, p(x, t))σ(η, x, t) dη.
									0

This quote is directly taken from[START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF] where we only adapted the notation to that of our paper.

While L ∞ -data with compact support immediately implies integrability, we trust that the assumption on the support may be removed by a localising argument in the spirit of[START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF][START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF].

dx,

Acknowledgements

Acknowledgements

where in the last inequality we use the monotonicity of G, Eq. (3.3). In fact, since G ′ is negative, sign(n i+1 -n i ) = sign(p i+1 -p i ) = -sign(G(p i+1 ) -G(p i )). Finally, we get

and thus we recover (iii) thanks to Gronwall's lemma and the assumptions on the initial data, Eq. (3.9),

Estimates on the time derivatives. Now we give the proof of the boundedness of the time derivatives, (iv). Deriving Eq. (3.5) with respect to time, we obtain

We multiply by

We now compute A i and B i

Upon summing over i, we find i

and then, from Eq. (3.11), we have

and additionally

Thirdly, we assume the proliferation rate, g = g(x, t), to be locally integrable and satisfy one of the following assumptions

where f + := max(f, 0) denotes the positive part of the function, or

where f -:= max(-f, 0) denotes the negative part of the function, or in alternative

Under these assumptions one can derive several crucial uniform estimates for Eq. (5.1).

Lemma 5.1.4 (A-priori estimates). Under assumption (A-L 1 data) the family n γ of solutions to Eq. (5.1) satisfies the following bounds, uniformly in γ 1. supp p γ (t) ⊂ K(t) for some compact set K(t),

2. there exists a positive constant

Assuming in addition (A-BV drift) we also have n γ ∈ L ∞ (0, T ; BV (R d )). When the pressure is given by Eq. (5.3) points 2. and 3. still hold, and moreover 0 ⩽ n ϵ ⩽ 1.

These bounds are enough for our purposes. Their proofs are fairly standard and derived in full detail in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF][START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF][START_REF] David | On the Incompressible Limit for a Tumour Growth Model incorporating Convective Effects[END_REF], so we omit them here. Let us point out that to fully justify passing to the incompressible limit γ → ∞ one usually needs to derive additional estimates for the time derivative of the population density and the pressure.

Remark 5.1.5 (More general drift term). It is easily seen in the proof of our main results that we do not require the drift velocity to be a gradient. Indeed, one can replace the term n∇V in Eq. (5.1) by nU (x, t) with appropriate modifications to the regularity assumptions (A-drift) and (A-BV drift).

Our approach is to first obtain a rate of convergence in the homogeneous negative Sobolev norm Ḣ-1 and then interpolate with the uniform bound in BV to deduce a convergence rate in Lebesgue spaces. To realise this program we make use of the diffusion structure of the problem and "lift" the Laplacian. More precisely, we define the function φ to be the solution of the following Poisson equation in R d × (0, T )

given by the convolution φ γ = K ⋆ n γ , where K is the fundamental solution of the Laplace Consider the curve ρ :

(5.37)

For any test function ψ ∈ C ∞ c ((0, 1) × Ω) we have

(5.41)

Therefore the pair (ρ, V ) solves the continuity equation

posed on (0, 1) × R d with the marginal constraints

Consequently, from Theorem 5.15 in [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF], we deduce that ρ is absolutely continuous and the following inequality holds

where |ρ ′ | denotes the metric derivative of the curve ρ with respect to the Wasserstein distance. Furthermore, since (P 2 (R d ), W 2 ) is a length space, we have

(5.44)

Combining these last two inequalities, we obtain the following bound

(5.47)

Interestingly, a reverse bound can also be shown. Rather than a positive lower bound, a common upper bound is now required of all the densities (which is of course the case here). Let now σ : [0, 1] → P 2 (R d ) be a constant-speed geodesic from µ γ to µ ∞ and E be a vector field such

The model is the following

with initial data n 0 (y, x)

Let us point out that the equation satisfied by ϱ(x, t) is a porous medium-reaction equation with coefficient γ + 1, namely

where with σ = n/ϱ we denote the phenotype density fractions, while R represents the total population growth rate.

Structured models: motivations. The mathematical modelling of living tissue has attracted increasing attention in the last decades for both its ability to describe and investigate biological phenomenon and the extremely challenging mathematical problems that arise from such models. Among them, there is a growing interest towards models where the population density is structured by a phenotypic trait. In structured models, intra-population heterogeneity is taken into account by letting the mobility rate and/or the growth rate of each phenotypic distribution be functions of the structuring variable. Most of these models are based on Fisher-KPP equations, hence they describe the random movement of the cells through a linear diffusion term, with a phenotype-dependent mobility rate, and cell proliferation through a logistic growth rate. Nonlocal reaction terms are also considered, as in the non-local version of the Fisher-KPP model, [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF], as well as divergence terms with respect to the phenotypic state to account for mutations, see for instance [START_REF] Bénichou | Front acceleration by dynamic selection in Fisher population waves[END_REF]. In this paper, Calvez et al. introduce a model in which only the mobility rate depends on the phenotypic trait. In particular, they assume the mobility rate to be proportional to the structuring variable. Computing an exact asymptotic traveling wave solution, they show that phenotypic segregation occurs and leads to front acceleration. Originating from [START_REF] Bénichou | Front acceleration by dynamic selection in Fisher population waves[END_REF], the acceleration of invasion fronts has been further studied in [START_REF] Berestycki | Existence of self-accelerating fronts for a nonlocal reaction-diffusion equations[END_REF][START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF] in the case of unbounded mobility, see also [4,[START_REF] Ardaševa | Evolutionary dynamics of competing phenotype-structured populations in periodically fluctuating environments[END_REF]5] and references therein for applications of structured PDEs models to tumor growth.

In [START_REF] Lorenzi | Invasion fronts and adaptive dynamics in a model for the growth of cell populations with heterogeneous mobility[END_REF], Lorenzi et al. propose a model structured by phenotypic trait to study a phenomena arising in cancer development which is usually referred to as 'growth or go', i.e. the dichotomy of migration and proliferation. As investigated in [START_REF] Giese | Cost of migration: invasion of malignant gliomas and implications for treatment[END_REF][START_REF] Gerlee | Evolution of cell motility in an individual-based model of tumour growth[END_REF][START_REF] Gerlee | The impact of phenotypic switching on glioblastoma growth and invasion[END_REF][START_REF] Giese | Dichotomy of astrocytoma migration and proliferation[END_REF], more mobile cells tend to divide less than cells that have a lower mobility rate. For this reason, the authors consider mobility and growth rates which are, respectively, increasing and decreasing functions of the structuring variable. Unlike the previously mentioned models, they consider a velocity field which depends on the total population, i.e. the integral of the distributions with respect to the phenotypic trait.

In particular, they take the velocity field to be proportional to the gradient of the total density. Therefore, the diffusion in the model is degenerate and no longer linear. The authors study the creation of compactly supported invasion fronts, and show that phenotypic separation occurs in the case of bounded mobility while the front undergoes acceleration in the case of unbounded mobility.

Porous medium models. As suggested in [START_REF] Lorenzi | Invasion fronts and adaptive dynamics in a model for the growth of cell populations with heterogeneous mobility[END_REF], a natural generalisation of their model consists of considering a pressure p related to the density by a power law with exponent greater

We estimate the sum of the first two terms of the right-hand side.

γ

Now we treat the term with ∇σ. Since we do not have any BV -estimate on the density fraction we lift the derivative from σ

Using ∆p = w -R we find

Let us point out that it is in order to bound the term B that the assumption F (0) = G(0) was needed in [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF]. In fact, combining this assumption and Young's inequality (with exponent 2), the authors are able to estimate B by 1 2 Ω p|∇(w) -| 2 . In order to avoid imposing an analogous assumption on R(y, p), we treat this term differently, using the estimate proven in Theorem 6.5.2. Applying Young's inequality with exponents 4 and 4/3, we have

Taking α = 1/(γ + 2), we know by Theorem 6.5.2 that the first term is bounded. Let us denote β = (γ-1)/3(γ+2). Then using Young's inequality with exponents 3/2 and 3 it is straightforward to see

Thanks to the choices of α and β, we have

(6.58) Coming back to Eq. (6.56) and recalling that R p is bounded and non-positive, we obtain

Finally, combining Eq. (6.56), Eq. (6.57), Eq. (6.58) and Eq. ( 6.59) we find

We can finally come back to Eq. (6.55) to obtain

with C(γ, d) = 1 -γ 2 -2 d being negative thanks to the assumption on γ. Since we are on a compact support, by Young's inequality we have

Let us stress that this assumption can be removed and all the estimates can be proven in R d by multiplying by a properly chosen test function, see [START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF] for the detailed proof in the two species case. Then we obtain 1 2

and hence by Gronwall's inequality, we have

Finally, from Eq. ( 6.60) we also obtain

and this concludes the proof.

Proof of Corollary 6.5.1. Thanks to the Aronson-Bénilan estimate in L 2 proven above we have

for all t ∈ [0, T ], and this completes the proof.

6.A Compensated compactness

Theorem 6.A.1. Let u γ , w γ ∈ L ∞ (0, T ; L 2 (Ω)), and let u ∞ , w ∞ be the L 2 -weak limits of u γ , w γ as γ → ∞, respectively. We assume that

Then, up a subsequence, we have

, for t > 0 be smooth mollifiers. Then, we compute

As γ → ∞, we have

It now remains to prove that the other terms converge to zero as ε → 0 and σ → 0. By the Fréchet-Kolmogorov theorem, we know that i.e. (6.16) is proven. By an analogous argument, we have n ε R(y, p ε ) ⇀ nR(y, p), weakly * in L ∞ ((0, 1) × Q T ), and this concludes the proof of (6.17).