iii Abstract A Brain-Computer Interface (BCI) is a system that can translate brain activity patterns into messages or commands for an interactive application. It enables a subject to send commands to a device only by means of brain activity, without requiring any peripherical muscular activity. These systems are increasingly explored for control and communication, as well as for treatment of neurological disorders, especially via the ability of subjects to voluntarily modulate their brain activity through mental imagery (MI).

To control a BCI, the user must produce different brain signal patterns that the system will identify and translate into commands. Even though this technique has been widely used, subjects performance, measured as the correct classification of the user's intent, still shows low scores. Much of the efforts to solve this problem have focused on the BCI classification block. While, the research of alternative features has been poorly explored. In most implemented systems, pattern recognition relies on power spectrum density (PSD) of a reduced number of sources, focusing on features that characterize a single brain region.

However, the brain is not a collection of isolated pieces working independently. It rather consists of a distributed complex network that integrates information across differently specialized regions. It turns out that examining signals from one specific region, while neglecting its interactions with others, oversimplifies the phenomenon. It would be preferable to have an understanding of the system's collective behavior to fully capture the brain functioning. Thus, we hypothesize that functional connectivity (FC) features could be more representative of the complexity of neurophysiological processes, since they measure interactions between different brain areas, reflecting the information exchange that is essential to decode brain organization. Then, these interactions can be quantified using network theoretic approaches, extracting few summary properties of the entire complex brain network.

Thus, network analysis may also be more efficient by reducing the problem dimension and optimizing the computational cost.

Nevertheless, extracting topological properties of the network, while disregarding the intrinsic spatial nature of the brain, could overlook crucial information for understanding brain functioning. Recent neuroimaging studies demonstrated that brain connectivity reveals hemisphere lateralization during motor MI-related tasks. Covering these two concepts, we explored the dual contribution of brain network topology and space in modelling motor-related mental states through the concept of functional lateralization. Specifically, we introduced new metrics to quantify segregation and integration within and between the hemispheres, and we showed that they are highly relevant features for decoding a motorimagery mental task. These network properties not only give competitive classification accuracy but also have the advantage of being neurophysiologically interpretable, compared to state-of-the-art approaches that are instead blind to the underlying mechanism. v

Résumé

Une interface cerveau-machine (ICM) est un système capable de traduire les modèles d'activité cérébrale en messages pour une application. Il permet à un sujet d'envoyer des commandes à un appareil a travers l'activité cérébrale, sans nécessiter d'activité musculaire périphérique. Ces systèmes sont de plus en plus explorés pour le contrôle et la communication, ainsi que pour le traitement des troubles neurologiques, notamment via la capacité des sujets à moduler volontairement leur activité cérébrale grâce à l'imagerie mentale (IM).

Pour contrôler une ICM, l'utilisateur doit produire différents types de signaux cérébraux que le système identifiera et traduira en commandes. Même si cette technique a été largement utilisée, la performance des sujets, mesurée comme la correcte classification de l'intention de l'utilisateur, affiche toujours de faibles scores. Une grande partie des efforts pour résoudre ce problème s'est concentrée sur la classification. Alors que la recherche de features alternatives a été peu explorée. Dans la plupart des systèmes mis en oeuvre, la reconnaissance des états mentaux repose sur la puissance spectrale d'un nombre réduit de sources, en se concentrant sur les caractérisation d'une seule région du cerveau.

Cependant, le cerveau n'est pas un ensemble de pièces isolées travaillant de manière indépendante. Il s'agit plutôt d'un réseau complexe qui intègre des informations dans des régions différemment spécialisées. Il s'avère que l'examen des signaux d'une région spécifique, tout en négligeant ses interactions avec les autres, simplifie à l'extrême le phénomène.

Il serait préférable de comprendre le comportement collectif du système pour bien saisir le fonctionnement cérébral. Ainsi, nous pensons que l'étude a travers la connectivité fonctionnelle pourraient être plus représentatives de la complexité des processus neurophysiologiques, puisqu'elles mesurent les interactions entre différentes aires cérébrales, reflétant l'échange d'informations qui est essentiel pour décoder l'organisation cérébrale. Ensuite, ces interactions peuvent être synthétisées à l'aide d'estimateurs des réseaux complexes, modélisant le cerveau humain comme un réseau. Certes, l'analyse de réseau peut présenter une performance plus précise car elle optimise le coût de calcul et la dimensionnalité.

Néanmoins, la simple extraction des propriétés topologiques du réseau, sans tenir compte de la nature spatiale intrinsèque du cerveau, pourrait manquer des informations cruciales pour comprendre le fonctionnement du cerveau. Des études récentes ont démontré que la connectivité cérébrale révèle la latéralisation des hémisphères lors de tâches liées à l'IM moteur. Couvrant ces deux concepts, nous avons exploré la double contribution de la topologie et de l'espace dans la modélisation des états mentaux moteurs par la latéralisation fonctionnelle. Plus précisément, nous avons introduit de nouvelles métriques pour quantifier la ségrégation et l'intégration au sein et entre les hémisphères, et nous avons montré qu'il s'agit de caractéristiques très pertinentes pour décoder une tâche mentale d'imagerie motrice. Ces propriétés de réseau donnent non seulement des précisions de classification compétitives, mais ont également l'avantage d'être interprétables sur le plan neurophysiologique, par rapport aux approches de pointe qui sont plutôt aveugles au mécanisme sous-jacent. 
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Introduction

Over the past decades, the way scientists have looked at the human brain has witnessed a paradigm shift. The view that cognition and behavior result from localized neuronal ensembles has progressively left room for the realization that their interaction is what really matters. Today, we know that the brain is not just a collection of isolated units working independently, but it rather consists of a complex network that integrates information across differently specialized regions via anatomical as well as functional connections [START_REF] Bullmore | Complex brain networks: graph theoretical analysis of structural and functional systems[END_REF].

Such transition from a reductionist to a holistic perspective has been accompanied by the dawning of network science, i.e. a modern field drawing on graph theory that summarizes and quantifies organizational properties of complex interconnected systems. In human neuroscience, brain regions are treated as network nodes, and the connections between the nodes -inferred from structural or functional neuroimaging data-are represented as network edges (or links) [START_REF] Rubinov | Complex network measures of brain connectivity: uses and interpretations[END_REF][START_REF] Vico Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF][START_REF] Stam | Graph theoretical analysis of complex networks in the brain[END_REF]. Network properties including efficiency [START_REF] Latora | Efficient behavior of small-world networks[END_REF], modularity [START_REF] Newman | Modularity and community structure in networks[END_REF], node centrality [START_REF] Borgatti | Centrality and network flow[END_REF], and laterality [START_REF] Liu | Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors[END_REF] have been demonstrated to support basic cognitive functions such as language and memory [START_REF] Bullmore | Complex brain networks: graph theoretical analysis of structural and functional systems[END_REF]. Critically, these network indexes are also sensitive to physiological and pathological alterations of the mental state and can capture brain organizational mechanisms across different spatiotemporal scales [START_REF] Stam | Modern network science of neurological disorders[END_REF][START_REF] Ganguly | Activity-dependent neural plasticity from bench to bedside[END_REF].

Such a fundamental relationship between network topology and brain function is a key element of modern neuroscience and offers a grounded tool for analyzing brain networks using few topological descriptors rather than high-dimensional connectivity matrices [START_REF] Boccaletti | Complex networks: Structure and dynamics[END_REF]. Network neuroscience has allowed answers to fundamental questions spanning consciousness, plasticity, and learning, but it can also play a role in engineering applications aiming to characterize different brain states and recognize mental intentions from functional neuroimaging recordings. This is the case of brain-computer interfaces (BCIs) which implement ideal communication pathways bypassing the traditional effector of the musculoskeletal system and directly interacting with external devices [START_REF] Vidal | Toward direct brain-computer communication[END_REF][START_REF] Bozinovski | Using EEG alpha rhythm to control a mobile robot[END_REF][START_REF] Wolpaw | Brain-computer interfaces for communication and control[END_REF]. Based on the classification of mental states from brain activity, BCIs are increasingly explored for control and communication [START_REF] Wolpaw | Brain-computer interfaces for communication and control[END_REF][START_REF] Carmena | Learning to control a brain-machine interface for reaching and grasping by primates[END_REF][START_REF] Carlson | Brain-controlled wheelchairs: a robotic architecture[END_REF], and for treatment of neurological disorders [START_REF] Daly | Brain-computer interfaces in neurological rehabilitation[END_REF][START_REF] Vansteensel | Fully implanted brain-computer interface in a locked-in patient with ALS[END_REF].

In this context, the first findings have shown that the modulation of brain activity elicited by motor imagery (MI) [START_REF] Pfurtscheller | Event-related EEG/MEG synchronization and desynchronization: basic principles[END_REF] as well as by decision-making tasks [START_REF] Donchin | The mental prosthesis: assessing the speed of a P300-based brain-computer interface[END_REF], generates detectable signal changes such as Event-Related Desynchronization or Synchronizationcan (ERD/ERS) that corresponds to specific amplitude variations in the power of the signals for a particular frequency band.

To minimize intra-class variance, power-based features are usually combined with filtering techniques, such as common spatial patterns (CSP), a particular type of supervised spatial filters [START_REF] Blankertz | Optimizing spatial filters for robust EEG single-trial analysis[END_REF]. Other outstanding methods based their study on Riemannian geometry (RG). They enable the direct manipulation of the signal covariance matrices by using the topology of the manifold [START_REF] Yger | Riemannian approaches in brain-computer interfaces: a review[END_REF]. Although these approaches exhibit high accuracy, there is still a non-negligible portion of subjects (∼30%) that show inefficient performance [START_REF] Thompson | Critiquing the concept of BCI illiteracy[END_REF]. Besides, these methods lack of direct interpretability, which leaves open the possibility that artifacts lead classification results.

Notably, most of these current methods consider each sensor (ie, a brain region) as an isolated element, thus neglecting possibly existing interactions across them. This can be in part explained by the fact that the BCI community has mainly focused on improving the signal processing and classification block of the BCI pipeline, while neglecting the feature extraction part [START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update[END_REF]. To capture the brain's collective behaviour, we hypothesize that functional connectivity (FC) could fill in this gap, by taking into account information exchange between different brain areas. More relevant to this PhD thesis, we investigate how network theory can be adapted to identify new spatial connection mechanisms subserving BCI tasks (De Vico Fallani and Bassett, 2019) (Fig 1).

Outline of the manuscript

The manuscript has the following structure:

• In Chapter 1 we introduce the optimal ways to infer networks from brain activity.

We present most relevant network properties to model brain interactions at different topological scales.

• In Chapter 2 we describe the translation process from BCI-related data to brain network. We report the studies that have been done in the field, and the feasibility network features in a BCI pipeline.

• In Chapter 3 we substantiate and develop lateralization network properties for identifying MI states (laterality, segregation and integration).

• In Chapter 4 we select the most popular methods for feature extraction in BCI:

CSP and RG. We explain how we have adapted the Riemannian approach to be comparable we our proposed method. We outline the supplementary procedures for the implementation and validation of our methods, including statistical analysis, feature selection and classification algorithms.

• In Chapter 5 we demonstrate the discriminant power of network lateralization metrics in left and right hand-MI, for multiple BCI datasets. We validate them in a classification pipeline comparing its performance with state-of-the-art methods.

• Finally, in the Discussion, Conclusion and Perspectives chapters, we discuss our results and provide potential future research directions. Chapter 1

From brain activity to networks

Parts of this chapter has been published in Journal of Neural Engineering:

• Title: Network-based brain computer interfaces: principles and applications 

Introduction

In this chapter, we first provide some general information about the construction of functional brain networks, we survey network theoretic measures, and illustrates their application to cognitive and motor BCI-related neuroimaging data. This constitutes a methodological reference and does not aim to provide new neurophysiological insights. Throughout the sections, we comment on the methodological limitations and the best practices for their application. This section goal is to provide an accessible introduction to the field.

From functional neuroimaging data to brain networks

The first step when studying brain networks is to decide which are the nodes and the edges. Typically, the definition of the nodes depends on the specific neuroimaging modality. For functional Magnetic Resonance Imaging (fMRI) and other voxel-based techniques, the most common approach consists in using anatomical atlas and each region of interest (ROI) corresponds to a node [START_REF] Cohen | Defining functional areas in individual human brains using resting functional connectivity MRI[END_REF][START_REF] Salvador | Neurophysiological architecture of functional magnetic resonance images of human brain[END_REF]. For sensor-based modalities, such as EEG and MEG, each sensor typically corresponds to a node [START_REF] Stam | Graph theoretical analysis of complex networks in the brain[END_REF][START_REF] Bassett | Human brain networks in health and disease[END_REF], although source-reconstruction techniques can be used to define nodes at the cortical level [START_REF] Baillet | Electromagnetic brain mapping[END_REF][START_REF] Michel | EEG source imaging[END_REF][START_REF] Edelman | EEG source imaging enhances the decoding of complex right-hand motor imagery tasks[END_REF]. Because neuroimaging techniques only give access to regional activities, recorded as signals, the network edges must be inferred using statistical approaches. This is typically done by means of functional connectivity (FC) 

Undirected

Spectral coherence [START_REF] Carter | Coherence and time delay estimation[END_REF] ---Imaginary coherence [START_REF] Nolte | Identifying true brain interaction from EEG data using the imaginary part of coherency[END_REF] ---Phase-Locking Value [START_REF] Aydore | A note on the phase locking value and its properties[END_REF] ✓ --Weighted phase lag index [START_REF] Vinck | An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias[END_REF] ✓ --Partial coherence [START_REF] Rosenberg | The Fourier approach to the identification of functional coupling between neuronal spike trains[END_REF] --✓ Synchronization likelihood [START_REF] Stam | Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets[END_REF] ✓ --Mutual information [START_REF] Kaiser | Information transfer in continuous processes[END_REF] ✓ --Wavelet coherence [START_REF] Chavez | Detecting dynamic spatial correlation patterns with generalized wavelet coherence and non-stationary surrogate data[END_REF] ✓ ✓ -

Directed

Granger causality [START_REF] Blinowska | Granger causality and information flow in multivariate processes[END_REF]) ---Kernel Granger causality [START_REF] Marinazzo | Nonlinear connectivity by Granger causality[END_REF] ✓ --Partial Granger causality [START_REF] Barrett | Multivariate Granger causality and generalized variance[END_REF] --✓ Partial directed coherence [START_REF] Baccalá | Partial directed coherence: a new concept in neural structure determination[END_REF] --✓ Transfer entropy [START_REF] Kaiser | Information transfer in continuous processes[END_REF] ✓ -✓ Directed Transfer Function [START_REF] Kaminski | A new method of the description of the information flow in the brain structures[END_REF] ✓ -✓ Adaptive partial directed coherence [START_REF] Leistritz | Time-variant partial directed coherence for analysing connectivity: a methodological study[END_REF] -✓ ✓ estimators which measure the temporal dependency between different brain signals. As a result, network edges correspond to FC estimates.

In the last decades, many methods have been developed to quantify functional interactions in the brain, relying on tools from signal processing and information theory. Even if each method is characterized by its own specific operations, the general procedure remains the same. Given a set of time series corresponding to the activity of different brain sites, the goal is to quantify the interaction between every signal pair. The literature is consistent in recognizing that the first distinction between FC estimators is between undirected and directed methods [START_REF] Vico Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF][START_REF] Bastos | A tutorial review of functional connectivity analysis methods and their interpretational pitfalls[END_REF]. The former measures symmetric interactions, without considering the directionality of the information flow. The latter characterizes causal effects during activity propagation. Inside these categories, further distinctions can be done, according to their ability to describe linear or nonlinear interactions, bivariate or multivariate effect, time or frequency domain properties.

Table 1.1 shows a non-exhaustive list of the most used FC estimators in neuroscience, with their associated properties. In the following, we present some of the most challenging issues that significantly influence connectivity estimation.

Critical aspects

Spurious connectivity

The ultimate goal of FC methods is to quantify true signal interactions between different brain areas. However, several conditions can affect the correct estimation and introduce spurious contributions, thus giving a potentially distorted measure of the real interactions.

This is in part due to the fact that most of the experiemental techniques for recording noninvasve human brain signals, such as EEG, MEG or fMRI [START_REF] Hwang | EEG-based brain-computer interfaces: a thorough literature survey[END_REF][START_REF] Harrison | Finding a way in: a review and practical evaluation of fMRI and EEG for detection and assessment in disorders of consciousness[END_REF][START_REF] Fouad | Brain computer interface: a review[END_REF] can only indirectly capture the real neuronal source activity. For example, EEG and MEG measure respectively the electrical activity and magnetic flux produced by neurons within the brain. The electromagnetic signals propagate through the head tissues from the cortex -i.e., the source space -to the scalp -i.e., the sensor space. During this propagation, the different electrical conductibility of the tissues generates a spatial smearing of the signals on the scalp [START_REF] Broek | Volume conduction effects in EEG and MEG[END_REF][START_REF] Nunez | EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales[END_REF]. As a consequence, the signal measured in one electrode does not reflect the activity of one single source and this phenomemon, also known as volume conduction effect, can lead to spurious instantaneous interactions [START_REF] Nolte | Identifying true brain interaction from EEG data using the imaginary part of coherency[END_REF]. One possible solution consists of computing FC in the source domain, after having reconstructed the signals of the cortical space by means of inverse procedures. While source reconstruction techniques do alleviate the volume conduction effect, they do not entirely solve the problem and results can strongly depend on the implemented algorithm [START_REF] Mahjoory | Consistency of EEG source localization and connectivity estimates[END_REF]. Furthermore, individual head models obtained from structural MRI are often necessary to have best high-quality results [START_REF] Michel | EEG source imaging[END_REF][START_REF] Edelman | EEG source imaging enhances the decoding of complex right-hand motor imagery tasks[END_REF].

Because volume conduction effects exclusively affect instantanous interactions, an alternative solution is the use of FC estimators that purposely remove lag-zero contributions from the estimates, such as imaginary coherence [START_REF] Nolte | Identifying true brain interaction from EEG data using the imaginary part of coherency[END_REF], or weighted phase lag index. While these approaches significantly limit the bias introduced by the volume conduction smearing, they might remove possibly existing instantaneous neurophysiological signal interactions [START_REF] Vicente | Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays[END_REF]. Spurious FC can also be introduced by third-party influences when multiple signals are available. When estimating the interaction between two signals, a portion of the interaction might be merely given by the presence of a third signal interacting with them. In some cases, it is therefore crucial to isolate this contribution and eventually remove it from the estimate [START_REF] Kus | Determination of EEG activity propagation: pair-wise versus multichannel estimate[END_REF][START_REF] Jalili | Constructing brain functional networks from EEG: partial and unpartial correlations[END_REF]. While the large part of the FC methods have tended to neglect thirdparty influences, there are now several methods in literature, based on partial coherence [START_REF] Rosenberg | The Fourier approach to the identification of functional coupling between neuronal spike trains[END_REF][START_REF] Makhtar | Improved functional connectivity network estimation for brain networks using multivariate partial coherence[END_REF] or partial directed coherence [START_REF] Baccalá | Partial directed coherence: a new concept in neural structure determination[END_REF], which have been designed to circumvent and alleviate those spurious effects.

Non-linear interactions

The neural system at a microscopic scale is characterized by nonlinear dynamics such as those of neuronal responses to stimuli or synaptic transmission [START_REF] Haken | Nonlinearities in biology: the brain as an example[END_REF]. A crucial question is whether the brain activity at a macroscopic scale can be instead approximated by linear dynamics and take advantage of the efficacy of linear methods [START_REF] Gourévitch | Linear and nonlinear causality between signals: methods, examples and neurophysiological applications[END_REF]. The findings related to this subject are controversial [START_REF] Winterhalder | Nonlinear dynamics in EEG from epileptic patients: Is it possible to predict seizures?[END_REF]. Several studies have investigated nonlinearities in brain signals using the largest Lyapunov exponent, the correlation integral or the method of data surrogate. The obtained results show that in healthy subjects there is a weak signal nonlinearity [START_REF] Theiler | Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram[END_REF][START_REF] Paluš | Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos[END_REF]. Other works have reported nonlinear behavior in epileptic patients explained by the transitions between ordered and disordered states and the lowdimensional chaos [START_REF] Babloyantz | Low-dimensional chaos in an instance of epilepsy[END_REF][START_REF] Iasemidis | REVIEW: Chaos Theory and Epilepsy[END_REF]. The latter evidence was nevertheless contradicted by more recent endeavors showing that even in diseased subjects, nonlinear methods perform as well as linear ones [START_REF] Mcsharry | Prediction of epileptic seizures: are nonlinear methods relevant?[END_REF][START_REF] De Clercq | Anticipation of epileptic seizures from standard EEG recordings[END_REF].

More in general, nonlinearity also concerns the statistical interdependence between different brain signals. This typically means that FC is not proportional to either magnitude or phase of the signal frequency contents. In the early 1980s, the concept of synchronization was already extended and explained as a result of the adjustment of the oscillators caused by the presence of weak interactions [START_REF] Pikovsky | A universal concept in nonlinear sciences[END_REF]. In these situations, the use of linear FC can fail to provide a complete description of the temporal properties of the signal interactions. Despite such limitation, the majority of FC studies still rely on linear-based interaction methods because of their simplicity and intuitive interpretation. In the case of spectral coherence and related estimators (partial coherence, imaginary coherence, etc..) it has been shown that they are relatively robust to nonlinear fluctuations in the signal amplitudes but not in phases [START_REF] Sakkalis | Linear and nonlinear synchronization analysis and visualization during altered states of consciousness[END_REF]. However, if there is a precise for non-linearity, several estimators can be used to capture non-linear FC taking into undirected (mutual information [START_REF] Kraskov | Estimating mutual information[END_REF], phase locking value, synchronization likelihood ) or directed relationships (e.g., transfer entropy [START_REF] Schreiber | Measuring information transfer[END_REF], kernel Granger-causality) Table 1.1.

Time-varying dynamic connectivity

FC estimators have been typically applied to extract connectivity patterns characterizing relatively long time periods (from dozens of seconds to minutes). In the last decade, the focus has shifted to shorter time scales that can be studied with dynamic functional connectivity (dFC) [START_REF] Hutchison | Dynamic functional connectivity: promise, issues, and interpretations[END_REF]. Indeed, the possibility to determine how FC fluctuates during specific tasks is particularly appealing for BCI applications, where the mental state of the subjects rapidly varies to control the effector or accommodate the feedback. To this end, the simplest approach consists of reducing the length of the time window, letting it slide along the entire period of interest, with or without overlapping. On the one hand, reducing the size of the time window has also the effect of ensuring the signal (quasi)stationarity hypothesis required by many FC estimators [START_REF] Cestari | Stochastic and deterministic stationarity analysis of EEG data[END_REF][START_REF] Kwiatkowski | Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?[END_REF][START_REF] Horwitz | The elusive concept of brain connectivity[END_REF]. On the other hand, the statistical reliability of the estimates strongly depends on the available temporal data points. That is, the larger is the number of available data points, the better is the ability of the FC estimator to capture the underlying connection mechanism. This situation is further exacerbated in the case of multivariate and non-linear estimators, which typically require more data points to give reliable estimates [START_REF] Netoff | Detecting coupling in the presence of noise and nonlinearity[END_REF][START_REF] Pereda | Nonlinear multivariate analysis of neurophysiological signals[END_REF]. Standard solutions consist in concatenating the temporal windows associated with multiple repetitions of the same experimental task or averaging the FC estimates obtained in each repetition [START_REF] Wibral | Measuring information-transfer delays[END_REF]. Methods based on multi-window spectrum estimation can be also used [START_REF] Thomson | Spectrum estimation and harmonic analysis[END_REF][START_REF] Baraniuk | Multiple window time varying spectrum estimation[END_REF]. They allow the analysis of short data segments by using smoothing over orthogonal windows and they can be defined in the Fourier [START_REF] Babadi | A review of multitaper spectral analysis[END_REF] and Wavelet domain [START_REF] Brittain | Single-trial multiwavelet coherence in application to neurophysiological time series[END_REF]. Another elegant approach to estimate time-varying FC would consist in the use of methods formally designed to deal with non-stationary signals, such as detrended fluctuation analysis [START_REF] Márton | Detrended fluctuation analysis of EEG signals[END_REF] or wavelet decomposition [START_REF] Santoso | Time-series analysis of nonstationary plasma fluctuations using wavelet transforms[END_REF]. Among others, time-frequency methods such as wavelet coherence [START_REF] Babloyantz | Low-dimensional chaos in an instance of epilepsy[END_REF][START_REF] Lachaux | Estimating the time-course of coherence between singletrial brain signals: an introduction to wavelet coherence[END_REF] and adaptive partial directed coherence [START_REF] Leistritz | Time-variant partial directed coherence for analysing connectivity: a methodological study[END_REF][START_REF] Sanei | EEG signal processing[END_REF] represent particularly appealing solutions More in general, the development of FC methods able to capture time-varying interactions is a fertile research field. For instance, tracking algorithms of brain correlation dynamics have been recently exploited [START_REF] Monti | Real-time estimation of dynamic functional connectivity networks[END_REF], also considering low-rank subspaces [START_REF] Ozdemir | Recursive tensor subspace tracking for dynamic brain network analysis[END_REF]. Other approaches are based on model assumptions on the nature of signals [START_REF] Romero | Kernel-based reconstruction of space-time functions on dynamic graphs[END_REF], time-varying autoregressive models and variation of standard connectivity estimators [START_REF] Chavez | Detecting dynamic spatial correlation patterns with generalized wavelet coherence and non-stationary surrogate data[END_REF][START_REF] Kraut | The adaptive coherence estimator: A uniformly most-powerful-invariant adaptive detection statistic[END_REF].

Choosing the best FC estimator

We reported some of the most common FC estimators and their associated ability to solve one or more criticalities. It is important to notice that in general none of them is able to simultaneously solve all the raised issues. While it may be expected that applying all the possible methods would lead to consistent results, this approach lacks a precise rationale because different estimators intrinsically capture different signal properties and address different methodological questions (eg, causality versus synchronization). Instead, the choice of the "best" estimator mainly depends on the specific scientific question [START_REF] Bastos | A tutorial review of functional connectivity analysis methods and their interpretational pitfalls[END_REF]. If the scientific hypothesis that guides the analysis is clear, the choice of the estimator should be a natural consequence frequency range, from infra-slow (<1 Hz) to ultra-fast (>100 Hz) dynamics depending on the task and on the presence of pathological conditions [START_REF] Palva | New vistas for α-frequency band oscillations[END_REF][START_REF] Mcfarland | Mu and beta rhythm topographies during motor imagery and actual movements[END_REF][START_REF] Jacobs | Curing epilepsy: progress and future directions[END_REF]. For this reason, frequency-domain methods are more

Chapter 1. From brain activity to networks appropriate with EEG/MEG signals as they allow to isolate FC in specific frequency bands of interest. On the contrary, time-domain methods, such as Pearson correlation and partial correlation [START_REF] Marrelec | Partial correlation for functional brain interactivity investigation in functional MRI[END_REF], can be more appropriate with fMRI data, where the available frequency range is rather limited (i.e. < 1 Hz) [START_REF] Fox | Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[END_REF].

From brain connectivity to networks

After computing FC for each pair of signals, the corresponding values can be collected in the so-called connectivity matrix A, i.e. a N ×N matrix, where N is the number of nodes (sensors, ROIs, ...) and the entry a ij contains the FC value for the connection, or edge, between the nodes i and j (Fig

1.1).
Diagonal elements a ii correspond to FC of a node with itself. Because their interpretation is not trivial, the main diagonal of the connectivity matrix is typically set to null values.

In addition, in presence of directed FC the direction of the connection must be specified to correctly read the connectivity matrix. In fact, while for undirected FC there is a symmetric relation between the elements of the connectivity matrix (i.e., a ij = a ji ) for directed FC the relation becomes asymmetric (i.e., a ij ̸ = a ji ).

The values contained in the connectivity matrix depend on the nature of the employed FC estimator. While the majority of the methods give normalized values within the [0,1] interval, there might be in general different ranges or scales. In these situations, it is often preferable to transform the data, taking into account the nature of the FC estimator, so to re-scale them within the normative interval. For example, Pearson correlation gives values that span the interval -1 ≤ a ij ≤ 1, i.e. from perfect anticorrelation (anti-phase) to perfect correlation (in-phase). However, since it might be difficult to interpret the negative values from a neurophysiological perspective (i.e., true anti-phase behavior or simple delayed interaction), a common procedure is to consider the absolute values in the corresponding connectivity matrix and interpret their magnitude as general correlation.

Statistical approaches based on known properties of the estimators or on data surrogates can be eventually used to remove non-significant FC values [START_REF] Vico Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF].

Network science to model functional connectivity

Together, nodes and edges form a new type of networked data that cannot be studied with standard tools, but needs appropriate techniques from network science, i.e. a modern field that draws on graph theory, statistical mechanics, data mining and inferential modeling [START_REF] Albert | Statistical mechanics of complex networks[END_REF][START_REF] Vespignani | Twenty years of network science[END_REF]. Network science allows to analyze complex systems at different spatial scales -from molecular biology to social sciences -and to quantify organizational mechanisms by extracting indices that characterize specific topological properties [START_REF] Boccaletti | Complex networks: Structure and dynamics[END_REF][START_REF] Newman | Networks: An introduction[END_REF].

In this framework complex networks are modeled as graphs, i.e. mathematical objects defined by nodes and edges [START_REF] Newman | Networks: An introduction[END_REF]. After being constructed, the resulting brain network corresponds to a weighted graph whose edges code for the magnitude of the FC between different nodes. Common courses in brain network analysis typically use thresholding procedures to filter the raw networks by retaining, and eventually binarizing, a certain percentage of the available links. These procedures typically result in sparse networks with a relatively low connection density (Box 1.3). Despite the consequent information loss, thresholding is often adopted to mitigate the uncertainty of the estimated weakest edges, reduce the false positives, and facilitate the interpretation of the inferred network topology [START_REF] Vico Fallani | A topological criterion for filtering information in complex brain networks[END_REF][START_REF] Smith | SIFT: Spherical-deconvolution informed filtering of tractograms[END_REF][START_REF] Sherbondy | MicroTrack: an algorithm for concurrent projectome and microstructure estimation[END_REF].
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The simplest way to proceed is to fix a threshold on the number of strongest links to retain or on the FC value. However, these approaches are parametric and researchers are often required to repeat the analysis for a broad range of different thresholds and eventually select the one belonging to an interval for which results remain relatively stable.

Since these approaches might be considered suboptimal, they can be alternatively replaced by theoretically-grounded non-parametric methods based on different criteria including statistical contrasts with data surrogates [START_REF] Winterhalder | Handbook of Time Series Analysis: Recent Theoretical Developments and Applications[END_REF][START_REF] Valencia | Complex modular structure of large-scale brain networks[END_REF], topological optimization [START_REF] Tumminello | A tool for filtering information in complex systems[END_REF][START_REF] Serrano | Extracting the multiscale backbone of complex weighted networks[END_REF][START_REF] Tewarie | The minimum spanning tree: an unbiased method for brain network analysis[END_REF][START_REF] Vico Fallani | A topological criterion for filtering information in complex brain networks[END_REF] and population-based consensus [START_REF] Roberts | Consistency-based thresholding of the human connectome[END_REF][START_REF] Betzel | Distance-dependent consensus thresholds for generating grouprepresentative structural brain networks[END_REF].

After thresholding, network properties can be extracted from the resulting sparse networks, which can be weighted or unweighted depending on whether the remaining weights are maintained or binarized. For the sake of simplicity, we will describe in the following graph theoretic metrics in the case of undirected and unweighted networks, mentioning how they can be extended in the general cases.

Box 1.2 -Basic characteristics of graphs or networks Density: ratio of actual number of edges and the number of total possible edges in the network. Brain networks tend to be relatively sparse (i.e. density < 50%) [START_REF] Ringo | Neuronal interconnection as a function of brain size[END_REF], although there is a high variability due to thresholding procedures.

Walk, cycle and path: a walk is a sequence of successive edges which joins a sequence of nodes. A cycle is a closed walk where the first and last nodes coincide.

A path is a walk in which all edges and nodes are distinct. A graph is said to be connected if there exists a path between any possible node pair.

Distance: length of the shortest path between two nodes. In weighted graphs the shortest path is the one that minimizes the sum of the edge weights along the path

(Fig 1.2).
In brain networks, weights should be inverted when computing distances as the highest weights correspond to the strongest, most reliable, links [START_REF] Vico Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF][START_REF] Goñi | Resting-brain functional connectivity predicted by analytic measures of network communication[END_REF].

Network metrics

In this section, starting from general notions, we present the main network metrics to quantify local-, meso-, and global-scale topological properties of brain networks or graphs.

Local scale properties are at the level of a single node, and quantify its importance in the network according to different criteria.

Meso-scale properties refer to grouping of nodes based on distinctive interaction patterns.

Global-scale properties characterize the network as a whole and represent a summary index.

As a reminder, we refer to A as to the connectivity or adjacency matrix of the filtered brain network containing N nodes and L links, or edges.

Local-scale properties

Degree: The most intuitive metric for a node is the so-called node degree which counts the number of connections with the rest of the network. For binary, undirected networks the degree of node i can be computed as

k(i) = N j=1,j̸ =i A ij (1.1)
The analog of node degree in weighted networks is known as node strength, which simply sums the weights of the connections of node i to the rest of the network. In the case of directed graphs, it's possible to both count the number of incoming edges of node i, and the number of outgoing edges considering the sum of the rows or columns of A (Fig 1 .2).

The node degrees are generally used to identify the most connected nodes in the graph that hold a large part of the overall system's connectivity and therefore represent candidate hubs of the brain network (Fig 1 .2).

Betweenness: Apart from the node degree, there are in general several ways in which a node can be considered central or important in a network. Betweenness centrality measures the extent to which a node lies "between" other pairs of nodes by considering the proportion of shortest paths (Box 1.3) in the network passing through it [START_REF] Freeman | A set of measures of centrality based on betweenness[END_REF][START_REF] Anthonisse | The rush in a directed graph[END_REF]. In practice, the betweenness centrality of a node ireads as

C B (i) = 1 (N -1)(N -2) N h=1,h̸ =j N j=1,j̸ =i σ hj (i) σ hj , (1.2)
where σ hj (i) the number of shortest paths between nodes h and j that pass through i,

σ
hj is the number of shortest paths between nodes h and j. Betweenness centrality can be computed in the same way for weighted and directed networks, i.e. calculating the shortest paths following the direction of the edges.

Assuming that information flow along shortest paths, the betweenness centrality can be used to identify those nodes which are crucial for the information transfer between topologically distant brain regions.

Communicability: Differently from betweenness centrality, communicability takes into account the contribution of all possible walks between node pairs [START_REF] Estrada | Communicability in complex networks[END_REF]. By doing so, communicability reflects a network's capacity for parallel information transfer.

Formally, the communicability of a node i is given by

C C (i) = N j=1 [e A ] ij , (1.3) 
where e A denotes the matrix exponential of the matrix A that takes into account for each pair of nodes the total number of walks between them [START_REF] Benzi | Total communicability as a centrality measure[END_REF].

Communicability in weighted networks can be computed by normalizing the connectivity matrix with appropriate transformations [START_REF] Crofts | A weighted communicability measure applied to complex brain networks[END_REF]. In the case of directed networks, heuristic approaches can be used to identify all the possible paths of a specified maximum length [START_REF] Vico Fallani | Redundancy in functional brain connectivity from EEG recordings[END_REF].

Communicability can be particularly suitable for identifying brain areas that are central for the diffusion of information across the network [START_REF] Crofts | A weighted communicability measure applied to complex brain networks[END_REF][START_REF] Chavez | Node accessibility in cortical networks during motor tasks[END_REF].

Eigenvector: The eigenvector centrality of a node is a metric which considers the importance of its neighbors, i.e. the nodes directly connected, or adjacent, to it. Hence, it can be thought as being equivalent to the summed centrality of its neighbors [START_REF] Bonacich | Factoring and weighting approaches to status scores and clique identification[END_REF]. The eigenvector centrality of a node i is obtained by computing graph spectrum and reads as

C E (i) = 1 λ N j=1 A ij v j , (1.4)
where λ is the largest eigenvalue of A and v is the associated leading eigenvector. Eigenvector centrality can be extended to weighted networks, subject to certain conditions [START_REF] Newman | Networks: An introduction[END_REF][START_REF] Newman | Analysis of weighted networks[END_REF]. In this case, A must be positive definite and this condition might not be satisfied for correlation-based networks which also contain negative entries.

One solution is to remap edge weights to a positive range, by taking for instance the absolute value of the correlation coefficients. In directed networks, the adjacency matrix A is asymmetric and there are two leading eigenvectors, which can be therefore used to isolate the contribution of either incoming or outgoing edges.

Eigenvector centrality can be used to identify brain areas which do not necessarily have a high number of links, but that are connected to other central regions [START_REF] Lohmann | Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain[END_REF]. 

Meso-scale properties

Motifs: Network motifs are subgraphs that repeat themselves in a network. Each of these subgraphs, defined by a particular pattern of interactions between nodes, often reflects a mode in which particular functions are realized by the network.

The motif detection can be done under various paradigms including exact counting, sampling, and pattern growth methods (Masoudi-Nejad, [START_REF] Masoudi-Nejad | Building blocks of biological networks: a review on major network motif discovery algorithms[END_REF].

After calculating the frequency F -as the number of occurrences-of a subgraph G the assessment of its significance is given by

Z(G) = F (G) -µ(G) σ(G) (1.5)
Where µ and σ indicate respectively the mean and standard deviation of the frequency of the subgraphs in an ensemble of random networks corresponding to a null-model associated to the empirical network (see next subsection). The resulting Z-score indicates if the motif G is occurring either more or less than expected by chance. While motif detection naturally applies to binary networks, the extension to weighted ones can be achieved by replacing the motif occurrence with its intensity [START_REF] Onnela | Intensity and coherence of motifs in weighted complex networks[END_REF].

Motifs represent the basic building blocks of a network and may provide a deep insight into the brain network's functional abilities [START_REF] Sporns | Motifs in brain networks[END_REF]De Vico Fallani et al., 2008b), albeit their detection is computationally challenging as the number of nodes becomes higher than six [START_REF] Milo | Network motifs: simple building blocks of complex networks[END_REF] 

(Fig 1.2).
Communities and modularity: Communities, or modules, are often defined in terms of network partitions where each node is assigned to one and only one module (Fig

1.2).
Community detection structure is not trivial and many algorithms to identify community structures are available. For instance, they may be based on hierarchical clustering, spectral embedding, statistical inference, and more recently machine learning approaches [START_REF] Fortunato | Community detection in networks: A user guide[END_REF][START_REF] Liu | Deep learning for community detection: progress, challenges and opportunities[END_REF].

The quality of the identified partition can be measured by the so-called modularity index

Q = 1 2L N i=1 N j=1 (A ij -R ij )δ(m i , m j ), (1.6)
where R ij is the probability to observe an edge as expected by chance and the Kronecker delta δ(m i , m j ) equals one if nodes i and j belong to the same module (i.e., m i = m j ) and zero otherwise. When Q is positive, the network tends to have high intra-module connectivity and low inter-module connectivity; when Q is less than or equal to zero then the network lacks a modular structure. The above equation can be extended to the analysis of weighted [START_REF] Newman | Analysis of weighted networks[END_REF], and directed networks [START_REF] Leicht | Community structure in directed networks[END_REF].

In brain networks, topological modules tend to be spatially localized, and they typically include cortical areas that are known to be specialized for visual, auditory, and motor functions [START_REF] Sporns | Modular brain networks[END_REF].

Core-periphery structure: Core-periphery is a peculiar partition of the network consisting of a group of tightly connected nodes (i.e. the core), and a group made by the remaining weakly connected nodes (i.e. the periphery) [START_REF] Borgatti | Models of core/periphery structures[END_REF]. Identifying the core of a network can be achieved through methods optimizing a fitness function or via statistical null models [START_REF] Csermely | Structure and dynamics of core/periphery networks[END_REF]. These methods rely on subjective finetuning of one or more free parameters and tend to be relatively complex with consequent scalability issues.

Here we report an alternative method that only requires the degree sequence and no prior knowledge on the network [START_REF] Ma | Rich-cores in networks[END_REF]. The basic idea is to separate the nodes in two groups based on their rank, as determined by their node centrality (e.g. the degree). The optimal separating rank position is then given by

r * = argmax r (k + r ), (1.7)
where k + r is the number of links that a node of rank r shares with nodes of higher rank. This method has the advantage of being fast, highly scalable and it can be readily applied to weighted and directed networks.

In brain networks, core-periphery organization is thought to emerge as a cost-effective solution for the integration of distributed regions in the periphery [START_REF] Battiston | Multiplex core-periphery organization of the human connectome[END_REF].

A related concept is that of rich-club behavior, where the brain network hubs tend to be mutually interconnected [START_REF] Van Den | Rich-club organization of the human connectome[END_REF].

Global-scale properties

Characteristic path length and global-efficiency: The characteristic path length is a scalar that measures the global tendency of the nodes in the network to integrate and exchange information. Assuming that the information flows through the shortest paths, the characteristic path length is given by [START_REF] Watts | Collective dynamics of 'small-world'networks[END_REF])

P = 1 N (N -1) N i=1,i̸ =j d ij , (1.8) 
where d ij is the distance between nodes i and j. Because the distance between two nodes that are not connected through any path is equal to infinity, P is ill-defined for disconnected networks.

To overcome this issue, the ef f iciency between two nodes as the reciprocal of their distance was introduced. With this measure the contribution of two disconnected nodes becomes zero. Hence, the global-efficiency of a network is a normalized scalar given by [5]

E glob = 1 N (N -1) N i=1,i̸ =j 1 d ij , (1.9) 
Both P and E glob can be easily applied to directed and weighted networks taking into account the appropriate way to compute the distance (Box 1.3). Characteristic path length and global-efficiency represent two of the most widely used measures of integration in brain networks because of the simplicity of their interpretation [START_REF] Rubinov | Complex network measures of brain connectivity: uses and interpretations[END_REF]).

An average short distance between the nodes may constitute a biological mechanism to minimize the energetic cost associated with long-range connectivity, and could provide more efficient and less noisy information transfer [START_REF] Bullmore | Complex brain networks: graph theoretical analysis of structural and functional systems[END_REF][START_REF] Achard | Efficiency and cost of economical brain functional networks[END_REF].

Clustering coefficient and local-efficiency:

Clustering is an important feature in complex networks that measures the extent to which nodes' neighbors are mutually interconnected. Strongly related to the presence of triangles in the network (i.e. triads of nodes fully connected), the clustering coefficient is a normalized scalar given by

C = 1 N N i=1 2l i k i (k i -1) , (1.10)
where l i is the number of links between the neighbors of node i and k i its node degree.

The extension to weighted and directed networks was proposed in [START_REF] Onnela | Intensity and coherence of motifs in weighted complex networks[END_REF][START_REF] Fagiolo | Clustering in complex directed networks[END_REF].

Alternatively, the overall tendency of a network to form a clustered group of nodes can be obtained in terms of network global-efficiency. The so-called local-efficiency is given by averaging the global-efficiencies of the network's subgraphs

E loc = 1 N N i=1 E glob (G i ), (1.11)
where G i denotes the subgraph comprising all nodes that are immediate neighbors of the i th node. In brain networks, the clustering coefficient and local-efficiency are often interpreted as a measure of functional segregation or specialization [START_REF] Wig | Segregated systems of human brain networks[END_REF].

Together with distance-based metrics (P and E glob ), clustering metrics are used to quantify the small-world properties of a network, i.e. the tendency to optimize simultaneously integration and segregation of information [START_REF] Watts | Collective dynamics of 'small-world'networks[END_REF]. Because the strong parallel with a plausible model of neural functioning these metrics are the most widely used in the field of network neuroscience [START_REF] Latora | Complex networks: principles, methods and applications[END_REF].

In practice, the small-world propensity can be computed by normalizing the values of the empirical network with those obtained from network surrogates, such as random graphs [START_REF] Humphries | The brainstem reticular formation is a small-world, not scale-free, network[END_REF]. Then, a small-world index can be obtained, for example, by combining the normalized P and C values

w = C µ(C rand ) µ(P rand ) P ,
(1.12)

where P rand and C rand are vectors containing the values obtained for the network surrogates. Notably, other types of small-world indexes can be obtained by opportunely substituting P and C, with E glob and E loc [START_REF] Vico Fallani | Multiscale topological properties of functional brain networks during motor imagery after stroke[END_REF], or by adopting normalization with other types of network surrogates [START_REF] Telesford | The ubiquity of small-world networks[END_REF].

We report in Table 1.2 the time complexity of the above metrics for unweighted and weighted networks [START_REF] Latora | Complex networks: principles, methods and applications[END_REF].

Normalizing network metrics

Most measures of network organization scale with the number of nodes and edges in a graph.

Thus, to compare the values of the metrics extracted from different size and connection densities, it is often necessary to account for basic properties of the underlying network.

As mentioned before, normalization with respect to null, or reference, models provides a practical benchmark to determine the extent to which a network property deviates from what would be expected by chance and to compare network properties across different conditions [START_REF] Rubinov | Complex network measures of brain connectivity: uses and interpretations[END_REF][START_REF] Van Wijk | Comparing brain networks of different size and connectivity density using graph theory[END_REF][START_REF] Newman | Networks: An introduction[END_REF].

Table 1.2: Computational complexity of network metrics. N = number of nodes; L = number of links; g = size of the motif; k = average node degree; k 2 = node degree variance.

Computational complexity Network metric

Unweighted Weighted

Local-scale Degree O(L) O(L) Betweenness O(N (N + L)) O(N (L + N logN )) Communicability O(N 3 ) O(N 3 ) Eigenvector O(N 2 ) O(N 2 ) Meso-scale Motifs O(N g) - Communities O(N logN ) O(N logN ) Modularity O(L) O(L) Core-periphery O(L + N logN ) - Global-scale Characteristic path length O(N (N + L)) O(N (N + L)) Global-efficiency O(N (N + L)) O(N (N + L)) Clustering coefficient O(Lk 2 / k) O(Lk 2 / k) Local-efficiency O(N (k 2 -k)) O(N (k 2 -k))
Generating reference networks that match all properties of an actual network except for the one that has to be normalized is difficult in practice, since most properties are interrelated. It is therefore usual to match only basic properties, such as network size, connection density, and degree distribution. This kind of null network is typically obtained using randomization strategies, where the actual network is randomly rewired according to a set of rules. In particular, the rewiring may be performed either preserving the degree distribution or not, the former being a more conservative choice [START_REF] Maslov | Specificity and stability in topology of protein networks[END_REF].

Because the rewiring process is stochastic, a certain number of network samples -typically higher than 100 -should be generated in order to constitute an ensemble of reference networks with similar characteristics.

The normalized value of a metric can then be computed as the ratio of the value measured on the observed network (M obs ) and the mean obtained from the randomized network ensemble

M ′ = M obs µ(M rand ) , (1.13)
While the ratio is the preferred way to normalize network metrics, Z-scores procedures can be used as well (Eq. 1.5). Notably, rewiring procedures that preserve the degree distribution have been extended to weighted and signed networks [START_REF] Rubinov | Weight-conserving characterization of complex functional brain networks[END_REF].

While generating purely random network ensembles is the most intuitive way of normalizing, alternative strategies that generate more complex null models might be adopted too (Box 2.2).

Advanced network approaches

The previous paragraphs introduced some of the well-established graph metrics used in network neuroscience that might be particularly relevant to BCI applications. Nonetheless, the field of network science is quickly advancing and new research directions are currently in development to address the open challenges.

First, the above mentioned graph metrics have been mainly conceived as topological descriptors of static networks, whose links do not change in time. This is an oversimplification of the real phenomena as brain networks are intrinsically dynamic and functional connectivity can change across multiple time scales (e.g., within and between BCI sessions).

Hence, time must be formally considered as a part of the network problem and not merely as a repeated measure [START_REF] Holme | Temporal networks[END_REF]. In neuroscience, many network metrics have been rethought temporally by considering the nature of time-respecting paths [START_REF] Tang | Small-world behavior in time-varying graphs[END_REF] and the persistence of specific motifs (De Vico Fallani et al., 2008b) and modules [START_REF] Bassett | Dynamic reconfiguration of human brain networks during learning[END_REF]. The theoretical development of temporal networks appears therefore particularly relevant for future BCI-related studies.

Second, the characteristics of the brain network strongly depend on the neuroimaging technique (i.e., the nodes) and on the type of functional connectivity estimator used (i.e., the edges). That means that multiple brain networks simultaneously characterize the same subject. Multilayer networks have been recently introduced to provide theoretically grounded metrics integrating the available information from multiple sources [START_REF] De Domenico | Mathematical formulation of multilayer networks[END_REF][START_REF] Boccaletti | The structure and dynamics of multilayer networks[END_REF]. In multilayer brain networks, different types of connectivity are represented on different layers (e.g., neuroimaging modality [START_REF] Battiston | Multiplex core-periphery organization of the human connectome[END_REF] and frequency bands [START_REF] De Domenico | Mapping multiplex hubs in human functional brain networks[END_REF][START_REF] Guillon | Loss of brain inter-frequency hubs in Alzheimer's disease[END_REF]) and connectivity can span both within and between layers (e.g., cross-frequency coupling [START_REF] Jirsa | Cross-frequency coupling in real and virtual brain networks[END_REF]). Notably, multilayer network metrics are able to extract higher-order information that cannot be obtained by simply aggregating connectivity across layers. Therefore, this innovative framework for integrating different connectivity levels might be particularly useful for the development of multimodal BCI systems [START_REF] Corsi | Integrating EEG and MEG signals to improve motor imagery classification in brain-computer interface[END_REF].

Together with the descriptive nature of the network metrics (which are intrinsically data-driven) the development of network models could greatly advance the study of brain networks in BCI by providing complementary statistical information. Since brain networks, as in other real networks, are typically inferred from experimental data their edges are subject to statistical uncertainty. Stochastic network models based on spatial, topological or Bayesian rules have been recently introduced to tackle those aspects and obtain a more robust understanding of the organizational properties of complex brain networks [START_REF] Betzel | Generative models of the human connectome[END_REF][START_REF] Obando | A statistical model for brain networks inferred from large-scale electrophysiological signals[END_REF][START_REF] Faskowitz | Weighted stochastic block models of the human connectome across the life span[END_REF]. Finally, approaches based on network controllability [START_REF] Liu | Controllability of complex networks[END_REF]) could be used in brain networks to identify the driver nodes that could be experimentally targeted by BCI feedback to elicit specific mental states or behaviors [START_REF] Stiso | Learning in brain-computer interface control evidenced by joint decomposition of brain and behavior[END_REF].

Chapter 2

Network-based BCI

Parts of this chapter has been published in Journal of Neural Engineering:

• Title: Network-based brain computer interfaces: principles and applications 

Network properties underlying BCI motor tasks

BCIs involve a complex mixture of cognitive processes not necessarily directly linked with the targeted task [START_REF] Golub | Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control[END_REF][START_REF] Farahani | Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review[END_REF]). Among them are attention and task engagement [START_REF] Walz | Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem[END_REF], working memory and decisionmaking [START_REF] Hampson | Brain connectivity related to working memory performance[END_REF][START_REF] Stanley | Changes in brain network efficiency and working memory performance in aging[END_REF][START_REF] Gong | Functional integration between salience and central executive networks: a role for action video game experience[END_REF][START_REF] Markett | Working memory capacity and the functional connectome-insights from resting-state fMRI and voxelwise centrality mapping[END_REF], but also error-potential have been shown to occur during BCI tasks [START_REF] Buttfield | Towards a robust BCI: error potentials and online learning[END_REF][START_REF] Ferrez | Error-related EEG potentials generated during simulated brain-computer interaction[END_REF][START_REF] Chavarriaga | Learning from EEG error-related potentials in noninvasive brain-computer interfaces[END_REF]. These higher-order cognitive processes result from interactions between different areas that engender brain network reorganization. Here, we will specifically focus on the network changes underlying motor (executed and imagined) performance, which is largely studied in the literature and directly associated with one of the most used BCI paradigms.

Short-term dynamic network changes during motor tasks

Performing motor imagery-based BCI experiments consists of the voluntary modulation of α/β activity to control an object [START_REF] Guillot | The neurophysiological foundations of mental and motor imagery[END_REF]. The analysis of event-related desynchronization and event-related synchronization enables the detection of mental states [START_REF] Pfurtscheller | Event-related EEG/MEG synchronization and desynchronization: basic principles[END_REF][START_REF] Pfurtscheller | Event-related cortical desynchronization detected by power measurements of scalp EEG[END_REF][START_REF] Pfurtscheller | Motor imagery activates primary sensorimotor area in humans[END_REF][START_REF] Pfurtscheller | Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks[END_REF][START_REF] Neuper | Event-related dynamics of cortical rhythms: frequencyspecific features and functional correlates[END_REF]. Notably, motor imagery (MI) and execution (ME) tasks have been shown to share similar characteristics such as the spatial and frequency localization of the evoked brain activity [START_REF] Wilson | Using an EEG-based brain-computer interface for virtual cursor movement with BCI2000[END_REF][START_REF] Munzert | Cognitive motor processes: the role of motor imagery in the study of motor representations[END_REF][START_REF] Lotze | Motor imagery[END_REF] These results seem to be corroborated by studies performed from a network perspective.

By using betweenness centrality, [START_REF] Xu | Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory[END_REF] showed that in ME the most important region lies in the SMA cortex whereas during MI the most central area was located in the right PMA. In the case of ME, it would suggest that SMA could enable an efficient communication between brain areas, especially motor ones [START_REF] Luppino | The organization of the frontal motor cortex[END_REF][START_REF] Cauda | Discovering the somatotopic organization of the motor areas of the medial wall using low-frequency bold fluctuations[END_REF] during sequential execution. In the case of MI, PMA could integrate both sensorimotor information from motor areas (e.g. SMA) and spatial information of movements from regions such as posterior parietal lobe to enable motor planning [START_REF] Luppino | The organization of the frontal motor cortex[END_REF][START_REF] Hoshi | Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties[END_REF][START_REF] Kantak | Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury[END_REF].

Complementary to the previous studies, another approach consists of studying timevarying network properties while performing tasks (De Vico Fallani et al., 2008b;[START_REF] Valencia | Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach[END_REF]De Vico Fallani et al., 2008a). In the specific case of motor tasks, a work based on the use of time-varying partial direct coherence (PDC) revealed that the cingulate motor areas could be seen as a hub of outgoing flows during dorsal flexions of the right foot (De Vico Fallani et al., 2008a). Based on experiments performed with five subjects via a 64-EEG channel system, the authors observed changes of network patterns at different stages of the task. The preparation of the movement presented a high level of efficiency, associated with an increase of clustering coefficient and a reduction of the characteristic path length. During the movement, strong functional links between the cingulate motor and the supplementary motor areas were obtained but also a lower network efficiency at the global level. These results illustrate the existence of a dynamic network reorganization process during the preparation and execution of a simple motor task.

Long-term longitudinal network changes during BCI learning

Understanding how we learn to use a BCI is crucial to adapt to individual variability and improve performance. Learning is a complex phenomenon that can be categorized in different types such as instructed (supervised [START_REF] Knudsen | Supervised learning in the brain[END_REF] or reinforced [START_REF] Dayan | Reinforcement learning: the good, the bad and the ugly[END_REF]) or unsupervised [START_REF] Barlow | Unsupervised learning[END_REF], explicit or implicit [START_REF] Seger | Implicit learning[END_REF].

Regardless of the type of learning, it is characterized by changes in brain associations from microscale, with the synapse strengthening for example, to macroscale levels, including changes of functional brain connectivity. In this section, we present some of the recent studies using network science approaches to characterize large-scale neural processes of human learning at the macroscale [START_REF] Seger | Category learning in the brain[END_REF][START_REF] Bassett | A network neuroscience of human learning: potential to inform quantitative theories of brain and behavior[END_REF].

Motor learning

In the past years, studies focusing on functional connectivity demonstrated changes induced by motor skill learning. Comparisons made before and after a locomotor attention training revealed an alteration of the connectivity in the sensorimotor areas potentially modulated by focusing attention on the movements involved in ambulation [START_REF] Katiuscia | Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention[END_REF].

Sensorimotor adaptation tasks involve notably prefrontal cortex, premotor and primary motor and parietal cortices [START_REF] Mcdougle | Taking aim at the cognitive side of learning in sensorimotor adaptation tasks[END_REF] and once acquired, motor skills are encoded in fronto-parietal networks [START_REF] Rizzolatti | The cortical motor system[END_REF]. However, little is known about its evolution through training.

In Taubert et al., 2011, fourteen From a network perspective, a large number of metrics characterizing the topological properties have been considered to capture the motor acquisition process. [START_REF] Heitger | Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis[END_REF] showed that the motor performance improvement of a complex bimanual pattern was associated with an increase of clustering coefficient and a shorter communication distance.

However, it should be considered that the latter one was possibly influenced by the reported higher connection density and strength.

Network modularity has been used as a marker in the case of age-related changes [START_REF] Meunier | Age-related changes in modular organization of human brain functional networks[END_REF] but also in the case of induced brain plasticity [START_REF] Gallen | Brain modularity: a biomarker of interventionrelated plasticity[END_REF]. Therefore, it seems particularly of interest in the study of learning process as it captures changes in the modular organization of the brain [START_REF] Bassett | Dynamic reconfiguration of human brain networks during learning[END_REF]. In the specific case of motor skill acquisition based on the practice of finger-movement sequences over six weeks, the use of modularity revealed that learning induced an autonomy of sensorimotor and visual systems and individual differences in amount of learning could be predicted by the release of cognitive control hubs in frontal and cingulate cortices [START_REF] Bassett | Learning-induced autonomy of sensorimotor systems[END_REF].

Based on the temporal extension of network modularity, Bassett et al., 2011 defined the "flexibility" as the number of times a node changes its module allegiances between two consecutive time steps. This measure was used to study the evolution of brain network properties during a motor learning task. Twenty-five healthy subjects were instructed to generate responses to a visually cued sequence by using the four fingers of their non-dominant hand. They participated in three training sessions in a five-day period, performed inside the fMRI. The flexibility predicted the relative learning rate, particularly in frontal, presupplementary motor, posterior parietal and occipital cortices.

Neurofeedback and human learning

To master closed-loop systems such as neurofeedback (NFB) or BCIs, several training sessions are typically needed. Recent studies suggest that the involved learning process is analogous to cognitive or motor skill acquisition [START_REF] Hiremath | Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays[END_REF]. NFB could induce behavioral modifications and neural changes within trained brain circuits that last months after training [START_REF] Sitaram | Closed-loop brain training: the science of neurofeedback[END_REF]. At microscale, changes at the neuronal level have been observed and simulated during BCI learning [START_REF] Ito | Self-reorganization of neuronal activation patterns in the cortex under brain-machine interface and neural operant conditioning[END_REF]. At larger spatial scales, the recruitment of areas beyond those targeted by BCI has been observed during the skill acquisition [START_REF] Wander | Distributed cortical adaptation during learning of a braincomputer interface task[END_REF][START_REF] Orsborn | Parsing learning in networks using brain-machine interfaces[END_REF]. For example, the decrease of the global-efficiency in the higher-beta band indicated the involvement of a distributed network of brain areas during MI-based BCI training [START_REF] Pichiorri | Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness[END_REF]. These findings motivated a deeper understanding of the brain network reorganization, at the macroscale, underlying the BCI/NFB learning process.

In a recent study, [START_REF] Corsi | Functional disconnection of associative cortical areas predicts performance during BCI training[END_REF] studied how the brain network reorganizes during a MI-based BCI training. Twenty healthy, and BCI-naïve, subjects followed a four-session training over two weeks. The BCI task consisted of a standard 1D two-target task [START_REF] Wolpaw | Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans[END_REF]. To hit the up-target, the subjects had to perform a sustained MI of right-hand grasping and to hit the down-target they remained at rest. MEG and EEG signals were simultaneously recorded during the sessions.

Results obtained from the relative node strength showed a progressive reduction of integration among, primary visual areas and associative regions, within the α and β frequency ranges. This metric could also predict the learning rate more specifically in the anterior part of the cingulate gyrus and the orbital part of the inferior frontal gyrus, both known to be involved in human learning [START_REF] Euston | The role of medial prefrontal cortex in memory and decision making[END_REF], and the frontomarginal gyrus and the superior parietal lobule, which is associated with learning and motor imagery tasks [START_REF] Stephan | Functional anatomy of the mental representation of upper extremity movements in healthy subjects[END_REF][START_REF] Solodkin | Fine modulation in network activation during motor execution and motor imagery[END_REF]. To fully take advantage of the behavioral and MEG information to predict learning, a multimodal network approach has been adopted by [START_REF] Stiso | Learning in brain-computer interface control evidenced by joint decomposition of brain and behavior[END_REF] 

Clinical applications: the case of stroke

It is well known that neurological or psychiatric disorders lead to changes in terms of communication between brain regions [START_REF] Stam | Modern network science of neurological disorders[END_REF]. For example, connectivity between high-degree hub nodes has been observed in schizophrenia [START_REF] Van Den | Abnormal rich club organization and functional brain dynamics in schizophrenia[END_REF] and comatose patients [START_REF] Achard | Hubs of brain functional networks are radically reorganized in comatose patients[END_REF]. Decreased global-and local-efficiencies has been reported in Parkinson disease [START_REF] Skidmore | Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data[END_REF], while modifications of the core-periphery structure [START_REF] Guillon | Disrupted core-periphery structure of multimodal brain networks in Alzheimer's disease[END_REF] and a loss of inter-frequency hubs has been found in Alzheimer disease [START_REF] Guillon | Loss of brain inter-frequency hubs in Alzheimer's disease[END_REF]. In the case of attention-deficit/hyperactivity disorder in children the increase of local-efficiency and lower global efficiency suggested a disorder-related tendency toward regular organization [START_REF] Wang | Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder[END_REF]. In addition, modifications in nodal properties have been observed in both children and adults in the attention, sensorimotor and DMN [START_REF] Raichle | A default mode of brain function[END_REF] and striatum [START_REF] Wang | Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder[END_REF][START_REF] Martino | Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder[END_REF][START_REF] Hart | Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring taskspecific, stimulant medication, and age effects[END_REF].

Brain network changes in stroke patients are particularly relevant for BCI clinical applications and neurofeedback rehabilitation strategies. Recent studies showed that stroke recovery is accompanied by an increased smallworldness, which supports increased efficiency in information processing [START_REF] Grefkes | Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches[END_REF][START_REF] Westlake | Functional connectivity in relation to motor performance and recovery after stroke[END_REF]. Laney et al., 2015 performed a study with ten stroke patients that participated in six-weeks training sessions dedicated to improve voluntary motor control. fMRI data were collected, before and after training, while patients performed an auditory-cued grasp and release task of the affected hand. Finger extensions were assisted by an MRI compatible exoskeleton. Two opposite effects were observed: an increased node closeness-centrality [START_REF] Boccaletti | Complex networks: Structure and dynamics[END_REF] with sensorimotor and cerebellum networks and a decreased closeness-centrality in the DMN and right frontal-parietal components. The authors associated the former to an improved within-network communication and the latter to a reduced dependence on cognition as motor skill enhanced [START_REF] Laney | Quantifying motor recovery after stroke using independent vector analysis and graph-theoretical analysis[END_REF]. In another study [START_REF] Termenon | The "hub disruption index," a reliable index sensitive to the brain networks reorganization. a study of the contralesional hemisphere in stroke[END_REF], authors aimed to characterize the brain network reorganization after stroke in the chronic stage in a group of twenty patients. Brain networks were constructed by estimating wavelet correlation from fMRI signals. They showed an overall reduction of connectivity in the hubs of the contralesional hemisphere as compared to healthy controls. Most of these studies are based on a static representation of the brain plasticity and partially inform on the individual ability of stroke patients to recover motor or cognitive functions. Recently, an approach based on temporal network models that aimed at tackling these issues indicated that both the formation of clustering connections within the affected hemisphere and interhemispheric links enabled to characterize the longitudinal network reorganization from the subacute to the chronic stage [START_REF] Obando | Temporal connection signatures of human brain networks after stroke[END_REF]. These mechanisms could predict the chronic language and visual outcome respectively in patients with subcortical and cortical lesions.

MI has been proved to be a valuable tool in the study of upper-limb recovery after stroke [START_REF] Sharma | Motor imagery: a backdoor to the motor system after stroke?[END_REF]. It enabled observations of changes in ipsilesional intrahemispheric connectivity [START_REF] Pichiorri | Brain-computer interface boosts motor imagery practice during stroke recovery[END_REF] but also modifications in connectivity in prefrontal areas, and correlations between node strengths and motor outcome [START_REF] Sharma | Motor imagery after stroke: relating outcome to motor network connectivity[END_REF]. Within the β frequency band, performing a MI task of the affected hand induced lower small-worldness and local-efficiency compared to the MI of the unaffected hand [START_REF] Vico Fallani | Multiscale topological properties of functional brain networks during motor imagery after stroke[END_REF]. Based on previous observations in resting-state [START_REF] Dubovik | The behavioral significance of coherent resting-state oscillations after stroke[END_REF], a recent double-blind study revealed that node strength, computed from the ipsilesional primary motor cortex in the α band, could be a target for a MI-based NFB and lead to significant improvement on motor performance [START_REF] Mottaz | Modulating functional connectivity after stroke with neurofeedback: Effect on motor deficits in a controlled cross-over study[END_REF].

Network features for improving BCI performance

The use of network approaches in BCI is a relatively young and unexplored area, yet, the existing publications show encouraging results. In this section, we first provide a proofof-concept on simulated data to illustrate the theoretical benefit of using network metrics from a classification perspective. Then, we present some of the recent classification results obtained with neuroimaging data during real BCI experiments.

Box 2.2 -Network generative models

Random networks are generated with the Erdös-Rényi (ER) model. They are constructed by fixing a parameter p which fixes the probability to have a link between two randomly selected nodes in the graph. By construction, p coincides with the connection density of the resulting networks. In general, ER networks do not exhibit any particular structure but typically low characteristic path lengths [START_REF] Erdős | On the evolution of random graphs[END_REF].

Small-world networks are generated with the Watts-Strogatz (WS) model. Starting from a ring lattice graph, where each node is connected to its first k neighbors, WS networks are generated by rewiring the links with a probability p W S i.e. the model parameter. With relatively low values of p W S , the resulting networks exhibit both high clustering coefficient and low characteristic path length. This is a feature observed in many real-world interconnected systems and it optimizes both segregation and integration of information [START_REF] Watts | Collective dynamics of 'small-world'networks[END_REF].

Scale-free networks are generated with the Barabási-Albert (BA) model. Its construction starts with m 0 nodes. Then, new nodes are iteratively added with m links (m ≤ m 0 ) that connect them to existing nodes with a probability p BA proportional to their node degree. As a result of such preferential attachment rule, BA networks show highly heterogeneous node degrees, few strongly connected hubs as well as low characteristic path length and null clustering coefficient. These features have been found in many real networks as a sign of resilience [START_REF] Barabási | Emergence of scaling in random networks[END_REF].

Modular networks are generated with the stochastic block model (SBM). This model partitions the nodes in M groups of arbitrary size. Then it assigns edges between nodes with a probability that fixes the expected connection density within-(p intra and between-groups (p inter ). By construction, SBM networks have high modularity values as well as typical small-world properties [START_REF] Holland | Stochastic blockmodels: First steps[END_REF].

Simulating brain network changes

In current settings, different mental strategies are used to control the MI-based BCI. The resulting brain states are translated into features that need to be properly recognized by the classifier. To reproduce this scenario, we associated different brain states with ideal networks having distinct topological properties. Specifically, we generated synthetic networks exhibiting four different topologies, or classes, which have been extensively reported in neuroscience, i.e. small-world, modular, scale-free and random networks [START_REF] Stam | Modern network science of neurological disorders[END_REF][START_REF] Bassett | Small-world brain networks[END_REF]. These networks were generated with the models described in Box 2.2.

We fixed the same number of nodes (N =100) and links (L=600) for all of them. The specific model parameters values were: p=0.12 for random networks; p ws =0.1 for small-world; m 0 =m=6 for scale-free; and finally M =4 of equal size for modular ones, with p intra 0.46 and We then evaluated the performance of network metrics in discriminating the four classes as compared to the use of the entire connectivity matrix. We specifically tested 2-classes and 4-classes scenarios according to the typical number of mental states used in BCIs. To reproduce the fact that nodes might not correspond exactly to the same brain areas across different subjects -because of a natural individual spatial and functional variability [START_REF] Sheng | Characteristics and variability of functional brain networks[END_REF]-we further performed a random permutation of the node labels. Notably, this procedure did not alter the intrinsic topology of the generated networks.

p
Classification accuracies were finally obtained from a repeated random sub-sampling validation with 100 random balanced-splits. Specifically, the training set consisted of 80% of all the networks, while 20% of the networks were used as testing set. Results showed that when we applied node permutation classification accuracy of connectivity matrices progressively decreased down to chance levels, while network metrics always exhibited a perfect classification. More precisely, from 50% of node permutation, the accuracy obtained by using connectivity matrices was significantly lower than network metrics (Wilcoxon test,

p < 1.6 × 10 -10 , Bonferroni corrected for multiple comparisons) (Fig 2.1C).
All network analysis and classification have been performed with the freely available networkX1 and scikit-learn2 packages in Phyton.

Taken together, these results indicated the theoretical benefit of including network metrics into the classification of BCI-related mental states. The development of sophisticated machine learning techniques, which operate on the entire connectivity matrices [START_REF] Wu | A comprehensive survey on graph neural networks[END_REF], could lead to similar performance in the next future, too. Finally, it is important to mention that the advantage of network metrics also lies in their relatively low computational cost and dimensionality, as well as in an easier direct interpretation.

State-of-the-art of network-based BCI

The first study using network metrics in MI-based BCI classification was Daly, Nasuto, and Warwick, 2012. Authors assessed the discrimination ability of mean clustering coefficient to differentiate between tap and no-tap, in real and imagined finger tapping task. They Both connectivity matrices and network metrics were fed separately as input features into the classifier. Specifically, connectivity matrices were vectorized taking into account only the upper triangular matrix. Thus, the size of the feature vectors was 4950 for connectivity matrices and 4 for network metrics, respectively. To deal with the resulting complexity, we used singular value decomposition-based linear discriminant analysis (LDA) classifiers, which implement appropriate dimensionality reductions. To challenge the classifier, we increasingly permuted in a random fashion the nodes in the connectivity matrices. This corresponded to an increasing ratio of random relabeling of the nodes in the networks (x-axis). The line plots show the average value of the classification accuracy, while standard deviation is represented as shading patches around the average (obtained from a repeated random sub-sampling validation). For illustrative purposes, we also show an example for a modular network, where the darker colors correspond to the links of the nodes which have been permuted.

recorded EEG data from twenty-two subjects performing the different task modalities. Then, to model the dynamics of inter-regional communication within the brain, they built FC networks by setting up phase synchronization links between each pair of electrodes. This resulted in a set of variable networks across time and frequency, potentially analyzable via graph theoretic tools. In order to characterize this synchronization dynamics, they computed mean clustering coefficients over the whole collection of networks. The result was a timefrequency map of mean clustering coefficients for each trial. The statistically significant differences between conditions, tap versus no-tap, suggested the potential of using time series of clustering coefficient as classification features. Thus, satisfying the fact that these features are not temporally independent, they used Hidden Markov Models (HMMs) to model and classify the temporal dynamics of these patterns. The discriminatory capability was superior when compared to traditional band power-based features, achieving accuracies above 70% for all subjects, which was not reproduced by band power approach.

Based on the same variations in phase synchronization during MI, Stefano Filho, Attux, and Castellano, 2018 also tested the potential of graph metrics to characterize these changes.

In an offline study, EEG signals were recorded from eight participants during imagination of right and left hands movements using 64 electrodes. In the same direction as [START_REF] Daly | Brain computer interface control via functional connectivity dynamics[END_REF], networks were built for every 1 second window of left and right MI, but in this case they filtered the time series in two frequency bands of interest, α-and βbands. Then they computed five different graph theory metrics and used them as inputs for a least-squares based linear discriminant analysis classifier (LSLDA). At the same time, they extracted power spectrum density (PSD) features to perform a fair comparison. Using a leave-one-out cross-validation, the accuracies for single network metric classification were substantial, being around 80%, but when compared with PSD estimates its results were superior, being closer to perfect rate (99%). Nonetheless, the authors proposed a pair-wise combination of metrics which was enough to reproduce similar rates reached by PSD. Notably, the performance achieved by combined metrics involved a significantly smaller number of features, due to a selection of electrodes according to its individual classification rates.

It is important to highlight that during the classification process this would be translated into less computational cost, which is encouraging when considering the implementation of network features in real time applications.

With a similar dataset, Uribe et al., 2019 investigated the potential of centrality measures to discriminate between left and right hand MI. They considered the difference between each pair of symmetric electrodes across hemispheres for every graph metric. They used degree, betweenness and eigenvector centrality to provide information regarding node's importance within the network. Two different classification methods were implemented, LDA and EML (Extreme Learning Machine), and feature selection was likewise based on classification rate improvement. Their results, expressed in terms of average classification error, showed better performance in α-band when using degree centrality and EML. In a more ambitious attempt, the authors tested their approach on the BCI Competition IV 2a database [START_REF] Tangermann | Review of the BCI competition IV[END_REF]. Using a wrapper feature selection their results were ranked in the third place, while the best known performance was obtained with PSD and CSP (Common Spatial Patterns) feature selection [START_REF] Ang | Filter bank common spatial pattern (FBCSP) in brain-computer interface[END_REF]. accuracies over 70% for certain subjects. Noteworthy, they chose the participants relying on their PSD-based MI-BCI inefficiency, i.e. its accuracy was under 70% [START_REF] Kübler | Brain-computer communication: self-regulation of slow cortical potentials for verbal communication[END_REF] when using power spectrum. Similar to the previous study, it is interesting to point out that they also used spectral-coherence as a connectivity estimator. Their frequency selection was reduced to α band and, in order to avoid volume conduction effects, they selected 20 spatially separated electrodes. This is a potential explanation of the fact that they even got better accuracies than CSP when using single network metrics.

In a recent study, Gu et al., 2020 explored lower limbs MI. They did a detailed analysis of synchronization patterns in α and β rhythms, to distinguish between left and right foot MI.

Their study revealed a subset of sensorimotor networks exhibiting a cortical lateralization in the β band with the respect to the imagined movement. Then the assessment with multiple network metrics showed a dynamic behavior between integration and segregation across each task repetition. Exploiting these results, they used and compared three variations of sparse logistic regression (SLR) to perform feature selection combined with support vector machine (SVM) classifier. The best accuracy was up to 75%, with all participants scores above the chance level, which is notable for foot MI discrimination. Furthermore, they contrasted the classification accuracy with features extracted with CSP method, but results were not able to outperform those obtained with network metrics.

As seen in section 2.1, network analysis can also be implemented in the study of other mental processes commonly evoked in usual BCI tasks, as for example cognition. In a preliminary study conducted by [START_REF] Buch | Network brain-computer interface (nBCI): An alternative approach for cognitive prosthetics[END_REF], a single subject with 122 intracranial EEG electrodes performed a test where reaction time was studied as an index of cognitive assessment. The experimental procedure consisted in a randomly chosen waiting period followed by a go signal after which the subject had to indicate its perception with a keypress; defining the reaction time as the delay between these two. Their premise was that dynamic changes in functional brain networks before and after the cue, could reflect temporal expectancy.

Thus, they measured phase-locking value from sliding 500ms windows for the high γ activity (70-100 Hz) of all pairs of electrodes, i.e. nodes, constituting the weighted links between them. They found that for fast reaction time trials, the immediate pre-cue period network (500ms before the cue) was characterized by a high node strength value compared to slower reaction times. When contrasting with traditional spectral based features, they did not find any pattern associated with reaction time variations. Going deeper in the network analysis, they computed communicability and showed a potential prediction ability based on the significant correlation between fast reaction time and high communicability in the left anterior cingulate. Motivated by these results, a SVM classifier was trained to discriminate between fast and slow trials, and then evaluated with a 10-fold cross-validation and permutation t-test. More precisely, they arbitrarily generated 2-classes labels and then randomized them 1000 times to create a null distribution of area under the curve AUCs. Results exhibited a reliable performance of the classifier (AUC = 0.72, p = 0.03). These results demonstrate the potential of network features as control signals for alternative cognitive-based BCIs.

Taken together, these results indicated the potential of network metrics as complementary features in BCIs. Future works should assess the robustness of these new features during online and real-time classification scenarios, where the reliability of the estimated brain networks becomes more challenging.

Chapter 3

Spatial brain network lateralization

Introduction

Motor imagery has been defined as the conscious mental simulation of actions involving our brain's motor representations in a way that is similar to when we actually perform movements [START_REF] Jeannerod | Mental imagery in the motor context[END_REF][START_REF] Lotze | Motor imagery[END_REF]. MI-based Brain-Computer Interface (MI-BCI) especially relies on the imagination of kinesthetic movements of large body parts such as hands, feet, and tongue, which result in modulations of brain activity [START_REF] Guillot | Brain activity during visual versus kinesthetic imagery: an fMRI study[END_REF]. This paradigm has a wide range of applications, such as controlling devices, virtual reality, or even neurorehabilitation [START_REF] Lotte | Electroencephalography (EEG)-based braincomputer interfaces[END_REF].

MI is associated with event-related desynchronization (ERD) in α (8-13 Hz) and β rhythms (13-30 Hz). By contrast, resting state results in event-related synchronization (ERS). The ERD and ERS modulations are most prominent in EEG signals acquired from electrodes located above the sensorimotor cortex [START_REF] Pfurtscheller | Event-related cortical desynchronization detected by power measurements of scalp EEG[END_REF][START_REF] Beisteiner | Mental representations of movements. Brain potentials associated with imagination of hand movements[END_REF][START_REF] Pfurtscheller | Motor imagery activates primary sensorimotor area in humans[END_REF][START_REF] Neuper | Motor imagery and ERD[END_REF]. Previous studies further confirmed that MI activates brain regions that are linked to actual movement generation [START_REF] Porro | Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study[END_REF], regions that intervene in planning and preparation of such movements [START_REF] Jeannerod | Mental imagery in the motor context[END_REF][START_REF] Pfurtscheller | Motor imagery activates primary sensorimotor area in humans[END_REF]. More especially the posterior supplementary motor area (SMA) and the premotor cortex, which seem to be predominant areas [START_REF] Hétu | The neural network of motor imagery: an ALE meta-analysis[END_REF]. Since neurons in the SMA are involved in the preparation of movements, then it is reasonable that preparatory aspects of movement may be closely related to MI [START_REF] Stephan | Functional anatomy of the mental representation of upper extremity movements in healthy subjects[END_REF]. In this spatial layout of MI, another prominent characteristic is lateralization. It is well known that the motor cortex is principally involved in controlling the contralateral side of the body [START_REF] Beisteiner | Mental representations of movements. Brain potentials associated with imagination of hand movements[END_REF]. Most motor-based BCI paradigms rely on this spatial lateralization to decode MI from brain signals [START_REF] Pfurtscheller | Event-related EEG/MEG synchronization and desynchronization: basic principles[END_REF].

These dynamics of brain oscillations in the motor cortex, associated with sensory, cognitive and motor processing, form complex spatial patterns. This is reflected in changes in the functional connectivity (FC) within the implied areas. Recent neuroimaging studies demonstrated that FC is able to capture the contralateral asymmetry of brain activity during motor-related tasks [START_REF] Cattai | Phase/amplitude synchronization of brain signals during motor imagery BCI tasks[END_REF]. It has also been shown that functional brain lateralization exhibits greater preference for within-hemisphere interactions in the left hemisphere, particularly for cortical regions involved in fine motor coordination. While the right hemisphere behaves in a more integrative fashion with stronger bilateral interactions, focused in regions related to visuospatial and attentional processing [START_REF] Gotts | Two distinct forms of functional lateralization in the human brain[END_REF].

All these asymmetries can be quantified by means of network science estimators. [START_REF] Gotts | Two distinct forms of functional lateralization in the human brain[END_REF][START_REF] Liu | Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors[END_REF] quantified functional lateralization in the brain by studying interactions across homotopic regions between hemispheres.

Here, we explore the dual contribution of brain network topology and space in modeling MI-related mental states through functional lateralization. We introduce network estimators to examine the degree to which brain networks preferentially interact with ipsilateral or contralateral nodes. Specifically, we formulate the notions of laterality, segregation, and integration to quantify patterns of biased interactions in brain asymmetry.

Brain lateralization

Functional lateralization of the brain refers to the tendency for some neural functions or cognitive processes to be specialized in one hemisphere. Although the macro-structure of the two hemispheres seems almost identical, intrinsic brain organization relies on specialized functions that may differ across hemispheres. One documented example is motor function.

Each brain hemisphere controls the contralateral side of the body, and the natural asymmetry of the brain is the cause of left/right side dominance, i.e., better performance or preference for using one hand [START_REF] Amunts | Asymmetry in the human motor cortex and handedness[END_REF].

Lateralization in motor imagery

MI activates many of the same cortical areas as those involved in the planning and execution of motor movements (supplemental motor area, premotor cortex, dorsolateral prefrontal cortex, and posterior parietal cortex) (Fig 3.1) [START_REF] Miller | Cortical activity during motor execution, motor imagery, and imagery-based online feedback[END_REF][START_REF] Porro | Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study[END_REF]. The premotor cortex (PMA) and supplementary motor areas (SMA) appear to be higher-level areas that encode complex patterns of motor output and that select appropriate motor plans to achieve desired results. The relevance of primary motor cortex (M1) may be considered as an unresolved issue, since it exists evidence both supporting and against a role for M1

during MI [START_REF] Beisteiner | Mental representations of movements. Brain potentials associated with imagination of hand movements[END_REF][START_REF] Porro | Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study[END_REF][START_REF] Roth | Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study[END_REF][START_REF] Roth | Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study[END_REF][START_REF] Pfurtscheller | Motor imagery activates primary sensorimotor area in humans[END_REF][START_REF] Lotze | Motor imagery[END_REF].

Authors have found that increases in motor cortex activity primarily occur contralateral to the imagined hand movement [START_REF] Beisteiner | Mental representations of movements. Brain potentials associated with imagination of hand movements[END_REF][START_REF] Roth | Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study[END_REF]. Nonetheless, the programming of motor behavior of each body side cannot be completely segregated. It has also been shown that MI primarily engages the left (dominant) motor cortex for both right and left MI tasks [START_REF] Beisteiner | Mental representations of movements. Brain potentials associated with imagination of hand movements[END_REF][START_REF] Stinear | Lateralization of unimanual and bimanual motor imagery[END_REF]. This suggests that MI involves the dominant cortex in higher-order function, possibly related to movement planning and/or generation of the expected sensory components of task performance [START_REF] Naito | Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum[END_REF].

The asymmetry of MI may have important implications for the usefulness of rehabilitation. In the case of stroke, it may depend on the lateralization of the lesion. [START_REF] Sabaté | Brain lateralization of motor imagery: motor planning asymmetry as a cause of movement lateralization[END_REF] found that MI of the right hand following right (nondominant) hemisphere stroke was largely unaffected. Conversely, if the dominant hemisphere is affected, MI may be of little benefit. This numbering is still used as a shorthand for describing the functional regions of the cortex, particularly those related to sensory functions. Some overlap exists among functional areas. For example, the motor cortex is area 4; the primary sensory cortex includes areas 3, 1, and 2.

Lateralization properties

Brain lateralization can be modeled by means of graph theory. As seen in section 1.2, interactions across different brain regions can be quantified with multiple network properties.

In weighted networks, edges can assume a range of different values, capturing variations in the strength of connectivity between pairs of nodes [START_REF] Boccaletti | Complex networks: Structure and dynamics[END_REF]. This spectrum can vary according to the connectivity estimator (section 1.2). If we look at a single node, its connectivity sum will also be influenced by the size of the graph. For example, in the case of a spectral coherence-based undirected EEG network, one link will vary between 0 and 1, but the sum of edges of a node will scale proportionally with the number of sensors.

These variations are perfectly capture by node strength property introduce in section 1.3.1. If we consider W as the weighted connectivity matrix of the non-filtered N nodes brain network, then we can compute the strength of node i as

s(i) = N j=1,j̸ =i W ij , (3.1)
where W ij is the strength or weight of the edge linking nodes i and j (Fig 3 .2).

Laterality index

It is possible to implement strength to study connection patterns related to brain lateralization. For this, we consider pairs of homotopic nodes, which means mirror channels across the hemispheres. E.g., if we consider 10-20 international system EEG configuration, then nodes C3 and C4 are defined as homotopic. Then we can estimate the laterality index (λij) Box 3.3 -Within and inter-hemisphere connections Lateralization properties are based on functional connectivity within or across hemispheres. For a node i in the left hemisphere, strength within-hemisphere (LL i ) is measured by summing the connectivity values between it and the rest of nodes located in the left hemisphere. For the particular case of EEG-based networks, the connections that node i established with the central line electrodes (LC i ) are also included in the within-hemisphere connections. On the other side, strength acrosshemisphere (LR i ) is estimated by summing the connectivity between it and all the nodes located in the right hemisphere.

LL i = L l̸ =i W il(LL) , LC i = C c W ic(LC) , LR i = R r W ir(LR) (3.2)
Subsequently, for a node j in the right hemisphere, RR j , RC j and RL j are obtained using the same reasoning.

RR j = R r̸ =j W jr(RR) , RC j = C c W jc(RC) , RL j = L l W jl(RL) (3.3)
The same is repeated for node k located in the EEG central line obtaining CC k , CR k and CL k .

CC k = C c̸ =k W kc(CC) , CR k = R r W kr(CR) , CL k = L l W kl(CL) (3.4)
For obvious reasons, the concepts of segregation and integration do not apply to nodes located in the central line.

To clarify the notation, notice that each capital letters term respectively denotes the locations of node i and the nodes it establishes connections with (e.g. LR i means that node i belongs to the left hemisphere and we consider the connections that link it to the right hemisphere nodes).

by measuring the strength difference between the homotopic pair i and j, normalized by the strength of the closest middle line node k. 

λ ij = LL i -RR j CC k , ( 3 

Segregation

The concept of functional lateralization can be further developed by analyzing the influence of interactions within and across hemispheres. Adapting the metrics proposed by [START_REF] Gotts | Two distinct forms of functional lateralization in the human brain[END_REF][START_REF] Liu | Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors[END_REF], we can define segregation as the tendency for greater withinhemisphere interactions compared to between-hemisphere interactions, calculated as the difference of intra-and inter-hemispheric strength (i.e., LL i +LC i -LR i or RR j +RC j -RL j )

(Fig 3.2).
Particularly, the lateralization of segregation for the pair of homotopic nodes i and j is calculated as their segregation difference:

σ ij = (LL i + LC i -LR i ) -(RR j + RC j -RL j ) (CL k + CR k + CC k ) (3.6)
The analysis of this metric sign could lead to some misinterpretation. Then, it is necessary to underline two main aspects. First, the strength values involved in the equation are strictly positive since we are working with undirected networks. Secondly, to guarantee a true sided σ ij we empirically proved that LL i + LC i > LR i and RR j + RC j > RL j for every node (see section 3.2.1,Fig A.5). It means that a negative σ ij value reflects higher lateralization of segregation in the right homotopic node of the pair. In other words, the within-hemisphere interactions are stronger in the right hemisphere. The opposite situation occurs for a positive value.

Integration

Integration seeks the contribution of contralateral connections, characterizing how the information flows across hemispheres. Then it is defined as the summed effect of intra-and inter-hemispheric interactions (e.g.,

LL i + LC i + LR i or RR j + RC j + RL j ) (Fig 3.2).
Therefore, the lateralization of integration for a node i in the left hemisphere as compared to node j in the right is calculated as:

ω ij = (LL i + LC i + LR i ) -(RR j + RC j + RL j ) (CL k + CR k + CC k ) (3.7)
As a general remark, it is important to highlight that all these properties are local, ie they characterize each node. From a classification perspective, it means that the number of nodes is equivalent to the number of features. Yet, the lateralization metrics reduce the number of features to the half minus the central line, since each pair of homotopic nodes have the same feature value but with opposite signs (e.g. λij = -λji). It is possible to identify functional lateralized nodes by comparing the strength between homotopic pairs. Through these three pictures, we illustrate how links of the same network are considered for the computation of the studied properties. In the top left figure, we represent the computation of the strength of node i. On the top right, we introduce lateralityindex for the homotopic pair i-j (λij). The bottom figure represent the distinction between segregation (σ) and integration (ω) at the same pair ij. The key difference in the interpretation remains on the influence of interhemispheric edges (LR i and RL j ). While ω adds the strength of bilateral interactions, σ challenges the strength of within interactions. That is to say, a large positive value for σ would suggest that the bias for stronger within-hemisphere is stronger for the left hemisphere. In contrast, a large negative value would indicate that the bias for withinhemisphere interactions is stronger for the right. Notations are the same as in Box 3.3 Chapter 4
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Conventional methods and classification

Introduction

Identifying mental intentions from brain signals requires working in different domains, temporal, frequency, and space. Since EEG, as many other neuroimaging techniques, are often characterized by noisy measurements and low spatial resolution it is necessary to implement methods that enhance characteristics that define each mental task. During a MI task, brain activation is well localized in the sensorimotor cortex. Then one smart solution is to apply spatial filtering [START_REF] Lotte | A tutorial on EEG signal-processing techniques for mental-state recognition in brain-computer interfaces[END_REF]. These methods try to collect this information while reducing the influence of the surrounding activity. In the last decades, the most reproduced in the BCIs fields is Common Spatial Patterns (CSP) [START_REF] Ramoser | Designing optimal spatial filters for single-trial EEG classification in a movement task[END_REF][START_REF] Pfurtscheller | Motor imagery and direct brain-computer communication[END_REF][START_REF] Blankertz | The Berlin brain-computer interface: Report from the feedback sessions[END_REF][START_REF] Blankertz | Optimizing spatial filters for robust EEG single-trial analysis[END_REF]. This filter works as a data-driven dimension reduction method that aims to extract the signal sources by maximizing the variance ratio between two conditions. It is based on the simultaneous diagonalization of two covariance matrices of the band-pass filtered signal for the two classes. In this way, covariance matrices are just handled in the Euclidean space.

Another technique that has gained large space in the field is Riemannian geometry.

Basically, it enables direct manipulation of the signal covariance matrices and subspaces [START_REF] Yger | Riemannian approaches in brain-computer interfaces: a review[END_REF][START_REF] Congedo | Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review[END_REF]. The core idea behind these algorithms is to work with covariance matrices in the manifold of symmetric positive-definite (SPD) matrices and use them as features in a classifier that respects their intrinsic geometry. Matrices with such property form a manifold M, in which the tangent space at each point is a finite-dimensional Euclidean space. In particular, the approaches that use tangent space projection have been shown to out-perform most other conventional methods [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF][START_REF] Jayaram | MOABB: trustworthy algorithm benchmarking for BCIs[END_REF]. However, these methods undergo two major disadvantages, high computational complexity and lack of interpretation.

Since they work in the space of sensor covariance matrices, their size scales quadratically with the number of sensors. Then when projecting to the tangent space, this easily becomes an overfitting problem when the vector dimension is higher than the available training trials [START_REF] Rodrigues | Dimensionality Reduction for BCI classification using Riemannian geometry[END_REF][START_REF] Congedo | Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review[END_REF]. This translates into unfeasible application in high-density BCI systems. Further, the issue of interpretation is a significant commonly forgotten problem. Riemannian methods do not count with a direct way to determine what parts of a signal are being used to build a tangent space classifier. Neither the classifiers in the manifold contemplate for this issue [START_REF] Barachant | Riemannian geometry applied to BCI classification[END_REF][START_REF] Barachant | Channel selection procedure using Riemannian distance for BCI applications[END_REF].

To tackle both problems, we propose the feature selection in the manifold introduced by [START_REF] Barachant | Channel selection procedure using Riemannian distance for BCI applications[END_REF], where we keep the covariance components that best maximize the Riemannian distance between classes (section 4.3). In other words, the selected rows/columns of the covariance matrix are equivalent to the most discriminative sensors.

Using this approach, we guarantee a proper dimensionality and features can be validated by visualizing the selected sources. Then the reduced SPD matrices can be projected onto the tangent space.

Finally, to homogeneously assess the classification performance of all the described methods in this thesis, we implement a typical classification algorithm used in BCI, a Support Vector Machines (SVM). More details are presented in section 4.5.

Common Spatial Pattern

CSP is a supervised spatial filter that allows addressing the two classes paradigm in multichannel data. This technique aims to maximize one condition's variance while minimizing the other (see [START_REF] Ramoser | Designing optimal spatial filters for single-trial EEG classification in a movement task[END_REF][START_REF] Blankertz | The Berlin brain-computer interface: Report from the feedback sessions[END_REF][START_REF] Blankertz | Optimizing spatial filters for robust EEG single-trial analysis[END_REF]. Mathematically, the matrix W ∈ R N ×N containing the spatial filters, projects the EEG signal x(t) ∈ R N from the original sensor space into the signal z(t) ∈ R N which lives in the surrogate sensor space:

z(t) = [z 1 (t)...z N (t)] T = W T x(t) (4.1)
Each column vector w j ∈ R N of W , constitutes a spatial filter and z j (t) = w T j x(t) the corresponding spatial filtered signal at instant t (j = 1, ..., N ). Yet, it is necessary to select an optimal subset of filters to best capture the difference between classes but simultaneously avoid overfitting. In this thesis, we work with eight components selected based on decreasing mutual information (Barachant et al., 2010a;[START_REF] Gramfort | MEG and EEG Data Analysis with MNE-Python[END_REF]. Then we project the original signals by the selected filters and compute their logarithmic power. Finally, these eight-dimensional log-variances are linearly combined as features for a linear classifier [START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces[END_REF].

From the spatial filters decomposition, it is also possible to extract the corresponding patterns of brain activation by taking the inverse of the transposed full filters matrix W [START_REF] Blankertz | The Berlin brain-computer interface: Report from the feedback sessions[END_REF][START_REF] Blankertz | Optimizing spatial filters for robust EEG single-trial analysis[END_REF]Barachant et al., 2010a).

A = (W T ) -1 (4.2)
Spatial patterns are the column vectors a j of the matrix A. These patterns are used to represent the projected sources to the scalp, hence they can be used to validate neurophysiological plausibility. Despite its popularity and efficiency, CSP is also known to be highly sensitive to noise [START_REF] Blankertz | Optimizing spatial filters for robust EEG single-trial analysis[END_REF][START_REF] Grosse-Wentrup | Beamforming in noninvasive brain-computer interfaces[END_REF]. Artifacts are more likely to be captured by a component with a high variance. Then if an artifact is more pronounced for one class, the class's variance is maximized by extracting the artifactual component that does not provide information on the subject's intention.

Riemannian method

Riemannian methods enable the direct manipulation of EEG signal covariance matrices.

These matrices are SPD that live in a Riemannian manifold [START_REF] Yger | Riemannian approaches in brain-computer interfaces: a review[END_REF][START_REF] Congedo | Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review[END_REF]. The classification accuracy of these approaches has shown to outperform other reported methods in BCI [START_REF] Jayaram | MOABB: trustworthy algorithm benchmarking for BCIs[END_REF].

However, their results lack neurophysiological interpretability. To address this issue and get comparable results with our proposed method (section 3.3), we decided to implement the Riemannian-based feature selection introduced by [START_REF] Barachant | Channel selection procedure using Riemannian distance for BCI applications[END_REF] This algorithm takes as a selection criterion the Riemannian distance δ R between the classconditional mean covariance matrices.

Crit = δ R ( C(1) , C(2) ), (4.3) 
where C(1) denotes the mean covariance matrix of class 1 and C(2) for class 2 (Fig 4 .3).

This criterion is implemented in a backward feature selection where, in an iterative loop, we keep the N * electrodes that best maximize δ R . Note that N * is a predefined value lower than N (set to 10 for our analysis) and that a particular electrode i represents the i-th row and column in the covariance matrix. This enables to list the anatomical location of the retained channels.

With the objective to explore multi-type feature fusion, we transformed the reduced covariance matrices into suitable inputs to a vector-based classifier. We mapped the them onto the tangent space of the Riemannian manifold [START_REF] Barachant | Channel selection procedure using Riemannian distance for BCI applications[END_REF]. There they can be vectorized and used as input to an SVM (Fig 4.3). This vector has dimension N (N + 1)/2, We evaluate these methods performance through a 5-fold cross-validation procedure.

Since both methods use class label information, the calculation of the CSP filters and the Riemannian channels selection are performed within the cross-validation on samples of the respective training set. Then the spatial filters and the selected electrodes are applied to the samples of the test set (see section 4.5).

Statistical analysis

It has been explained how lateralization properties quantify asymmetries in the brain. Since we already know that hand-MI is reflected as a lateralized task in the motor cortex [START_REF] Beisteiner | Mental representations of movements. Brain potentials associated with imagination of hand movements[END_REF][START_REF] Pfurtscheller | Event-related EEG/MEG synchronization and desynchronization: basic principles[END_REF][START_REF] Xu | Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory[END_REF]Cattai et al., 2021a), we hypothesize that our proposed metrics have great potential in differentiating between left and right hand-MI.

To statistically evaluate this ability, we performed a 5000 permutation t-test for each of the metrics. Comparing at the subject level, we assumed a null hypothesis that the metric means for the two conditions were equal. Analysis was carried out by using SciPy 1 python package. A level of P<0.05 was considered critical for assigning statistical significance.

Since we carried out this analysis for each node, it enabled us to detect the most discerning electrodes. We repeated this test for the entire population of subjects (Table 5.1).

Feature selection and classification

A common problem in BCI systems is the small sample size datasets [START_REF] Lu | Regularized common spatial pattern with aggregation for EEG classification in small-sample setting[END_REF][START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update[END_REF]. EEG sensors need gel or saline liquid to improve contact and reduce impedance with the scalp. Consequently, their drying limits long time recording. In addition to this, not all available datasets count with a testing set. To circumvent this issue, we decide to assess the model with a k-fold cross-validation (CV) procedure [START_REF] Buitinck | API design for machine learning software: experiences from the scikit-learn project[END_REF]. Data is divided into 5 stratified folds, and classification is performed with a support vector machine (SVM) classifier (the splits are kept identical for all pipelines in a given subject). Finally, classification performance is measured in terms of ROC-AUC (receiver operating characteristic -area under the curve). In order to return a single score per subject, the scores from each session are averaged when multiple sessions were present. All our analyses are inspired and based on MOABB-WithinSessionEvaluation 2 and scikit-learn 3 python packages.

Feature selection for network properties

The properties proposed in this thesis characterize the network at a local scale (see section 1.3.1). In the classification scenario, this is translated into a number of features equal 1 https://scipy.org 2 http://moabb.neurotechx.com/docs/generated/moabb.evaluations.WithinSessionEvaluation 3 https://scikit-learn.org/ [START_REF] Dominguez | On the risk of extracting relevant information from random data[END_REF], to obtain a subset of selected features, N ′ = 10. For eachCV nested iteration, features are ranked according to their discriminant power between classes (t-test). In a forward sequential order, a feature is going to be retained and accumulated in the selected set, if its accuracy is higher than the previous set. The output of this CV nested is a group of 10 selected features on which the CV orig validation set (FOLD 5) is going to be tested. This is repeated for each iteration in CV orig .

to the number of nodes. Then, if the data set size is small and the number of channels is large, we risk an overfitting problem. To prevent this issue, we add a feature selection step, that limits the number of selected features to 10. This procedure benefited from fewer parameters to be optimized by the classifier and the possibility to neurophysiologically interpret the selected features.

It is important to clarify that feature selection does not mean node removal. In other words, the interactions of a non-selected node with the selected ones, still account for the latter.

We implemented an embedded approach to select the best discriminant features. We use a sequential forward feature selection. Within a nested cross-validation framework, this algorithm adds features to form a feature subset. To limit the research complexity, at each stage we rank our features from the training folds according to their discrimination power (t-test).Then we perform a bottom up search procedure which conditionally includes new features to the selected set based on the cross-validation score (Fig 4.4).

Chapter 5

Application to real data

Part of this chapter will be published in (in prep.):

• Title: Network lateralization features for motor imagery-based brain-computer interfaces

• Authors: Juliana Gonzalez-Astudillo and Fabrizio De Vico Fallani

Introduction

Most BCI systems rely on electroencephalography (EEG) as the acquisition system [START_REF] Lotte | Electroencephalography (EEG)-based braincomputer interfaces[END_REF]. EEG measures small electrical currents that reflect brain activity. Like other recording techniques used in this field, such as MEG or fMRI, EEG has a high risk of being contaminated by undesirable non-neural sources [START_REF] Jackson | The neurophysiological bases of EEG and EEG measurement: A review for the rest of us[END_REF][START_REF] Niedermeyer | Electroencephalography: basic principles, clinical applications, and related fields[END_REF][START_REF] Nunez | Electric fields of the brain: the neurophysics of EEG[END_REF]. Dealing with this problem, BCI must provide predictive classifiers, based purely on brain-derived features. These divergent requirements prompted the field to develop in two different directions: spatial filtering and Riemannian manifold techniques [START_REF] Ramoser | Designing optimal spatial filters for single-trial EEG classification in a movement task[END_REF][START_REF] Yger | Riemannian approaches in brain-computer interfaces: a review[END_REF]. These methods have proven outstanding accuracies but rarely report the corresponding feature interpretation. Then their neurophysiological validation is still an open question.

On the contrary, the network-based method has as starting point the direct modeling of the complexity of neurophysiological processes [START_REF] Bullmore | Complex brain networks: graph theoretical analysis of structural and functional systems[END_REF][START_REF] Vico Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF]. They synthesize interactions between different brain areas using graph properties. Then by simply looking at these properties we can identify the most prominent interactions and how each node or sensor contributes to the process. Still their validation as discriminant classification features in a BCI pipeline is an emerging field [START_REF] Gonzalez-Astudillo | Network-based brain-computer interfaces: principles and applications[END_REF].

BCI essentially requires real-time brain recording and classification. However, this is not the best scenario to first validate a new pipeline, since it adds variability that cannot be controlled by the system like the influence of the subject and the experimenter [START_REF] Attina | The importance of individual features for motor-imagery based bci. 4th International Brain-Computer Interface Workshop and Training Course[END_REF][START_REF] Saha | Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review[END_REF]. As a result, validating approaches has always been a difficult task. Because of this, we decide to validate the methods proposed in this project in an offline scenario. This allows us to test in many publicly available EEG datasets, that have shared characteristics but defer in number of electrodes [START_REF] Jayaram | MOABB: trustworthy algorithm benchmarking for BCIs[END_REF]. We present results in a classification scenario of two-class imagined movement, as that is the most widely used MI paradigm.

Through this section we explore feature interpretation as well as feature performance in terms of classification score. Our goal is not to achieve the best performance, but to validate the neurophysiological plausibility of lateralization properties in hand MI, comparing it with the most distinguished benchmark methods in the field.

EEG

Electroencephalography (EEG) measures the electrical activity of the brain [START_REF] Jackson | The neurophysiological bases of EEG and EEG measurement: A review for the rest of us[END_REF][START_REF] Niedermeyer | Electroencephalography: basic principles, clinical applications, and related fields[END_REF][START_REF] Nunez | Electric fields of the brain: the neurophysics of EEG[END_REF]. Signals are captured through sensors distributed over the scalp (non-invasive) or by directly placing the electrodes on the brain surface (invasive), a procedure that requires a surgical intervention [START_REF] Engel | Invasive recordings from the human brain: clinical insights and beyond[END_REF]. This technique is characterised by its high temporal resolution, enabling the study of dynamic processes such as cognition and motor task. Yet, EEG signals are nonstationary and have a non-linear nature, which makes it difficult to get useful information directly in the time domain. Nonetheless, specific patterns can be extracted using advanced signal processing techniques.

During signal recording, undesirable potential coming from sources other than the brain may alter the quality of the signals. These artifacts should be detected and removed to improve pattern recognition. Multiple methods could be applied depending on the artifact to be eliminated [START_REF] Bashashati | A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals[END_REF][START_REF] Lotte | A tutorial on EEG signal-processing techniques for mental-state recognition in brain-computer interfaces[END_REF]. Here we use pass-band filtering to keep the physiological rhythms of interest [START_REF] Cheveigné | Filters: when, why, and how (not) to use them[END_REF][START_REF] Michel | EEG source imaging: a practical review of the analysis steps[END_REF]. MI task triggers different frequency oscillations as a consequence of changes in the signal's amplitude, known as event-related desynchronization (ERD) [START_REF] Pfurtscheller | Event-related cortical desynchronization detected by power measurements of scalp EEG[END_REF][START_REF] Neuper | ERD/ERS patterns reflecting sensorimotor activation and deactivation[END_REF]. Hence, this phenomenon represents frequency specific changes in ongoing EEG [START_REF] Pfurtscheller | Event-related EEG/MEG synchronization and desynchronization: basic principles[END_REF].

Amplitude increase and decrease in the temporal domain translates into a power increase and decrease of a particular frequency band in the spectral domain. The most important bands in the context of MI-based BCI are α (8-13 Hz) and β (13-30 Hz) [START_REF] Pfurtscheller | Motor imagery and direct brain-computer communication[END_REF].

This frequency responses are not necessarily located at the same electrodes. EEG oscillations can also be used to identify the brain areas activated during a task, which could offer greater insight into cortical dynamics [START_REF] Başar | The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity[END_REF]. Electrodes can spatially approximate the activity localization in terms of Brodmann areas, enabling the functional mapping of the brain (Fig 5.1) [START_REF] Brodman | Vergleichende Lokalisationslehre der Grosshirnrinde, in ihren Prinzipien dargestellt auf Grund des Zellenbaues[END_REF]. Many Brodmann areas are closely associated with diverse cortical functions. For example, Brodmann areas control several sensory and motor functions [START_REF] Başar | Brain function and oscillations: volume I: brain oscillations[END_REF][START_REF] Johnson | Neural correlates of self-reflection[END_REF][START_REF] Faymonville | Neural mechanisms of antinociceptive effects of hypnosis[END_REF]. In this thesis, it should be contemplated that we presume a good manipulation and placement of the electrodes since we do not apply source reconstruction techniques. We assume that On the left side, we represent the brain's left hemisphere profile of Brodmann area division. This segmentation is based on their neuronal organization, correlated to diverse cortical functions. On the right side, we represent the electrodes distribution of a 10-20 EEG system in these areas. These locations interpolates to the right hemisphere for the homotopic electrodes. This figure seeks for illustrative purpose. For a more exhaustive association between channels and Brodmann areas, refer to Table 5.2

the EEG cap is always correctly placed according to the anatomical landmarks Nasion and Inion.

Dataset cohorts

EEG is the principal acquisition tool in BCI due to its time resolution, cost and portability. This type of data can be found on open-access warehouses, as well as via collaborative projects such as the BNCI Horizon 20201 . These repositories are valuable since they contribute to establishing harmonisation procedures in processing and creating benchmarks.

Typically, all datasets guarantee informed consent and anonymization to protect the participants privacy. Data come in different formats according to the acquisition system or the pre-processing software. The most common formats for EEG are .edf, .gdf, .eeg, .csv or .mat files. These different formats can create challenges when working with multiple datasets.

Luckily, some tools have been developed to handle this problem. In this thesis we rely all our analysis on data available from the python package MOABB 2 (Mother of all BCI Benchmark ) [START_REF] Jayaram | MOABB: trustworthy algorithm benchmarking for BCIs[END_REF]. This open source project helps to overcome the problem of limited number of subjects, converting all the data to an MNE-Python 3 exploitable format. MOABB also counts with a set of algorithms and utility functions for analysis and visualisation.

We have selected six open-access datasets of healthy participants. This data contains non-invasive EEG signals measured during MI experiments focusing on left and right hand grasping motions. Table 5.1 provides a description of the selected datasets and Fig 5 .2

shows the spatial layout of EEG montages. Each trial is band-passed filtered in a broad α-β band , where we typically observed characteristic signal changes while subjects are performing MI [START_REF] Pfurtscheller | Event-related cortical desynchronization detected by power measurements of scalp EEG[END_REF][START_REF] Pfurtscheller | Event-related EEG/MEG synchronization and desynchronization: basic principles[END_REF][START_REF] Neuper | Event-related dynamics of cortical rhythms: frequencyspecific features and functional correlates[END_REF]. 3 https://mne.tools/

Building functional brain networks

Functional connectivity (FC) derives the existence of interaction between distant brain areas, if there is a statistical synchronization between them [START_REF] Bastos | A tutorial review of functional connectivity analysis methods and their interpretational pitfalls[END_REF][START_REF] Vico Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF]. There are several FC estimators (see section 1.2), here we use undirected spectral coherence (W ) [START_REF] Carter | Coherence and time delay estimation[END_REF] that has already been well documented in the MI-BCI domain [START_REF] Hamedi | Electroencephalographic motor imagery brain connectivity analysis for BCI: a review[END_REF][START_REF] Cattai | Phase/amplitude synchronization of brain signals during motor imagery BCI tasks[END_REF][START_REF] Corsi | Functional connectivity ensemble method to enhance BCI performance (FUCONE)[END_REF]. Given two signals i and j from two electrodes, this estimator computes their normalized cross-spectral density for a particular frequency f :

W ij [f ] = |P ij [f ]| P i [f ]P j [f ] , (5.1) 
where P ij [f ] express the cross-spectrum and P i [f ] the auto-spectrum at frequency f .

We estimate the cross-spectral density of each pair of EEG signals at the trial level, using multitapers [START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case[END_REF] with time windows of 1 second length with an overlap of 0.5 seconds and 1Hz frequency resolution. We average the resulting FC matrices over α-β bands . Summing up, for each trial, we obtain a W symmetric adjacency matrices of shape N × N , where N is equivalent to the number of EEG channels. These matrices correspond to fully connected and weighted networks. Now the complexity of their interactions can be quantitatively analyzed using network science tools [START_REF] Vico Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF][START_REF] Gonzalez-Astudillo | Network-based brain-computer interfaces: principles and applications[END_REF].

Network lateralization patterns during motor imagery

In this section we investigate the lateralization properties introduced in section 3.3, with the objective of identifying their discrimination power between the two mental tasks under study, left and right hand-MI. We apply the statistical analysis described in section 4.4 to each of the metrics. For the sake of simplicity and to avoid any mixture of MI classes with hemisphere sides, we refer to left MI as LM I and right MI as RM I.

In This evidence of sided-contrast connections across tasks encourages us to perform a lateralization analysis. To do so, we consider the spatial locations of the electrodes, differentiating between intra-and inter-hemispheric interactions. We implement laterality (λ) to quantify the strength difference across homotopic pairs of nodes (see Eq. 3.5). Then, we also study integration (ω) and segregation (σ), that respectively account for the contribution of across-and within-hemispheric connections (see Eq. 3.7 and 3.6).

Lateralization metrics give symmetric inverse values for each pair of homotopic nodes.

Then in the following results, we represent just one hemisphere. Also notice that the tvalues sign is strictly related to the task, i.e. a positive value means stronger lateralization for LM I and a negative for RM I.

Laterality index. When repeating the same statistical analysis done for strength on lateralization metrics, we obtain a comparable behaviour between strength and λ (Fig 5 .4).

Most of the highest t-values are located in MI related areas (M1, PMA, SMA and S1) [START_REF] Jeannerod | Mental imaging of motor activity in humans[END_REF][START_REF] Grezes | Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis[END_REF][START_REF] Guillot | Brain activity during visual versus kinesthetic imagery: an fMRI study[END_REF][START_REF] Hétu | The neural network of motor imagery: an ALE meta-analysis[END_REF], but with accentuated t-values particularly in M1 and S1 (see Segregation. For the particular case of σ we first query if the connections with the middle line nodes (LC i and RC j ) were deemed as within-hemisphere or not. Thus, we analyze their role in the two possible scenarios by statistically comparing the differences.

By looking at the behaviors shown in Fig A .5, we conclude that middle line connections play a more reasonable role in within-hemisphere. We base this judgment on the fact that the nodes with predominant connections of this type are the ones closer to the middle line, and some of them are strategic for the MI tasks under study. Then if we reduce their influence by subtracting LC i and RC j links, this may alter the neurophysiological nature of the results. Besides, we also avoid any misinterpretation of the sign of σ.

When analyzing the impact of subtracting the now well-defined inter-hemispheric connections (LR i , RL j ), σ shows the highest impact in the frontal-central electrodes. These nodes are primarily linked with SMA and PMA cortex, along with the dorsolateral prefrontal cortex (DLFC) associated with action planning [START_REF] Jeannerod | Mental imaging of motor activity in humans[END_REF][START_REF] Curtis | Persistent activity in the prefrontal cortex during working memory[END_REF][START_REF] Gao | Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality[END_REF][START_REF] Mokienko | Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects[END_REF][START_REF] Hétu | The neural network of motor imagery: an ALE meta-analysis[END_REF].

Most of the significant nodes give negative t-values. This is due to higher σ values for RM I. Since these nodes exhibit negative values for this property for both classes (see These findings indicate that MI of the hand grasping elicits detectable brain network changes that might be useful to characterize and discriminate MI-based BCI tasks. These changes revealed the existence of two parallel lateralization behaviors (i.e. fronto-central σ,

Common spatial pattern

We compare the previous results with one of the state-of-art-methods based on spatial filtering, common spatial pattern (CSP). As explained in section 4.2, this approach allows feature interpretation by looking at the resulting filters (w j ) and patterns (a j ). Spatial patterns represent a correlation map between the original electrode signal and the spatially filtered signal.

To compare this transformation with our network approach, we analyze the pair of vectors (w j , a j ) that correspond to the largest and the smallest eigenvalues for each subject.

Even though we work with eight filters, for the neurophysiological interpretation we just show these pairs because they correspond to the most discriminant components for each MI condition. For illustrative purpose, For each subject, we include the absolute normalized topographic maps. These values are normalized to compensate for the difference between datasets. Signs are not considered, since they are irrelevant in our analysis. predominance on the contralateral side. This is also consistent with the patterns. This dual activation of contralateral and ipsilateral areas is usually observed for non-dominant hand task [START_REF] Kim | Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness[END_REF]. Nonetheless, the patterns also show involvement of parieto-occipital areas (channels in PO line), that are principally related to the associative visual cortex.

It is important to point out that CSP is not a source separation or localization method [START_REF] Blankertz | Optimizing spatial filters for robust EEG single-trial analysis[END_REF] Regardless this possible misinterpretation, for the discrimination task this mixing effect is irrelevant. This becomes a significant limitation for neurophysiological interpretation.

Riemannian geometry

We performed a channel selection in the manifold to corroborate a valid interpretation of Riemannian features. In the 5-fold CV framework, the backward selection procedure selected 10 sensors that best maximized the Riemannian distance between classes for each subject (see section 4.3). Fig 5.9 resumes the group-cumulative occurrences in a sensor plot. For each electrode, the number of selection times is normalized by the maximum possible occurrences. For example, C4 is the most selected electrode, with an occurrence of 58% over the total times it could have been selected.

In general, we observed a concentration of features in the M1, S1, and S2 on the right hemisphere and punctually on the left M1. These channels prove that Riemannian features are directly associated with the sensorimotor cortex. Nonetheless, we observe a subset of channels located in the parieto-occipital area that are not strictly related to MI, being P08 the 5 th most selected channel. If we look more in detail, we notice that datasets Schirrmeister2017 and Weibo2014 have a relevant influence of this area (see Fig A .12).

Even though this manipulation approaches the Riemannian method to feature interpretation, it still lacks a clear understanding of which features are associated with each class.

For example, it is not possible to figure out if occurrences located in the motor cortex are related to the contralateral hand MI or the consequence of bilateral recruitment of these areas. We also observe that there is a bias for selections on the right hemisphere. We might think that it is due to higher resource consuming on the non-dominant hemisphere by establishing a correlation with results obtained with previous methods. But this is still a speculation that could not be assessed by only examining Riemannian selection. 

Classification performance

We finally evaluate the three methods' performance through a 5-fold cross-validation (CV) procedure, using an SVM classifier (see section 4.5). Each feature extraction method follows a particular arrangement to end up in a proper input for the classifier. Network features follow a within-CV selection to reduce their dimensionality and guarantee the most discriminant nodes. CSP method first projects the signal by the selected spatial filters, and then it takes the logarithm of the power of the projected signal. Lastly, reduced-Riemannian SPD matrices are projected onto the tangent space (TS) of the manifold, where they can be vectorized. All types of features converge in separate SVM classifiers. Average scores across datasets are quite heterogeneous independent of pipeline. The differences in hardware, strategy paradigm, and subject can generate large variation in the outcome of a BCI task, making it very difficult to generalize findings. When we look at the case of Zhou2016, we observe outstanding accuracies for all the methods. Nonetheless, this dataset has pre-trained subjects [START_REF] Zhou | A fully automated trial selection method for optimization of motor imagery based brain-computer interface[END_REF], which might be the reason for such remarkable difference. Each transparent silhouette represents a single subject and the bigger contoured silhouette presents the mean across subjects. Note that there is only one score per subject, representing the mean between sessions (if it applies, see Table 5.1). The black dotted line corresponds to a chance level performance (0.5), and the grey one to the begging of efficient performances (0.7) [START_REF] Thompson | Critiquing the concept of BCI illiteracy[END_REF]. Network-based features applied the feature selection algorithm described in section 4.5.1. RG: Riemannian geometry method, s: strength, λ: laterality index, σ: segregation, ω: integration. On the other side, CSP and TS methods are all well-known approaches and have been compared against each other often in the past, then a comparison between them would be of great interest. Repeating the same statistical analysis, we find that TS outperforms CSP across datasets. However, the score difference is not reliably significant for two of the datsets, Zhou2016 and Weibo2014, and there is also one dataset for which the opposite trend is shown, 001-2014 (see Fig 5 .12). The confidence intervals also show that this is likely the case for datasets with few subjects (see Table 5.1).

In order to improve classification scores for network metrics, we have tried other techniques like feature fusion and ensemble classifiers. For the first, we hypnotized that the complementarity of lateralization properties could also be reflected in an accuracy improvement.

Unfortunately, this is not the case, showing scores closed to the already obtained. Another strategy that we have tested is ensemble classifiers. We have worked with soft voting, a technique that combines multiple classifiers and uses the average predicted probabilities to predict the class labels. Such a classifier is worthwhile for a set of equally well-performing models to balance out their individual weaknesses. Since CSP and Riemannian methods outperform network metrics by a significant difference, the resulting scores are ruled by the state-of-the-art methods. for the interest of this project, it incites a deeper analysis. Across single subjects scores, we observe that for CSP there is a subset that accumulates between 0.5 and 0.6 scores, and another smaller subset between 0.9 and 1. On the other side, network properties accuracies are more homogeneous with a normal-like distribution around the means on each metric (between 0.6 and 0.7). Thus, it means that there must be a group of subjects with low CSP scores, that get better performance with network features.

Classification in

To confirm this tendency, we implement a paired plot that compares scores across methods for each individual (Fig 5.13). Note that there is only one score per subject, regardless of the number of sessions. This plot confirms the trend for better results with network features for the subset of subjects that get low scores with CSP. More precisely, if we consider the group with accuracy below 0.7 (33 subjects), that is to say, CSP inefficient subjects [START_REF] Thompson | Critiquing the concept of BCI illiteracy[END_REF], we notice that their global accuracy with network features is significantly higher (Fig 5.14).

Looking at the feature interpretation associated with this dataset (see section A.1 and see section A.4), we observe that there are some discrepancies across types of features. 

Discussion

This PhD project was motivated by the hypothesis that brain network properties might have a beneficial role in the discrimination of different mental states associated with BCIs.

In particular, we hypothesized that including the spacial component in the mathematical formulation of the network metrics, might give more interpretable, and possibly accurate, results as compared to standard network topological indices.

The obtained results showed brain network lateralization is a distinct attribute in hand MI, making it particularly appropriate for a classification scenario. Moreover, we evaluated the replicability of our approach over 140 subjects via an open-access toolkit [START_REF] Jayaram | MOABB: trustworthy algorithm benchmarking for BCIs[END_REF] and demonstrated its reliability in identifying the underlying brain connectivity mechanisms of MI.

Features interpretation

Our main contribution is the proof that brain network lateralization properties can reveal the intrinsic mechanisms that underlay hand MI, converting them into promising features for a MI-BCI system. The relevance of these features can be easily assessed by the spatial position of the most discriminant nodes, mainly covering sensorimotor-related areas, ensuring that artifactual sources are not leading the differentiation.

The t-values topographical maps reveal that the electrodes with the highest discriminant strength were located in the contralateral hemisphere of the imagined movement,

showing that lateralization is reflected in the connectivity of MI organization. Considering the anatomical symmetry of sensorimotor areas, this boosted the development of properties that compares functional lateralization on homotopic brain regions.

Interestingly, each introduced network metric emphasized different groups of nodes that are related to the motor task at different stages (e.g. planning and coordination). Laterality index principally highlighted differences at nodes associated with M1 and S1 cortex, essential areas in motor execution. Notably, this metric considers both hemispheres as completely isolated modules, i.e. it does not include inter-hemispheric links. Hence, one possible conclusion is that areas related to pure motor tasks mostly rely on within-hemisphere connections.

On the contrary, inter-hemispheric interactions, are involved in the significance and the complexity of information exchange in high-order functions [START_REF] Liu | Hemispheric asymmetries in visual mental imagery[END_REF]. In fact, integration increased differentiation on the parietal S2 and supramarginal cortex, more related to spatial orientation [START_REF] Vanderah | Nolte's The Human Brain E-Book: An Introduction to its Functional Anatomy[END_REF], visuospatial awareness [START_REF] Mesulam | Principles of behavioral and cognitive neurology[END_REF] respectively. Then segregation emphasized PMA, SMA, and DLFC areas, typically involved in motor planning [START_REF] Gao | Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality[END_REF][START_REF] Hétu | The neural network of motor imagery: an ALE meta-analysis[END_REF].

These results should be also discussed with respect to standard reference methods such as CSP and Riemannian. For the case of CSP, the obtained spatial patterns were also consistent with the MI task by giving the highest weight to electrodes over the motor cortex. Nevertheless, the expected contralateral engagement could be observed since they show a bilateral activation of the motor cortex and influence of other channels, notably in parieto-occipital regions. Apart from this global conclusion, no specific areas could be referred since the patterns showed the involvement of all the sensors.

The Riemannian geometry-based method showed a relevant occurrences concentration over the sensorimotor areas, mainly on right M1 and S1. However, an unexpected subset of selected nodes was located over the parieto-occipital area (electrodes in the PO line) that could be associated with artifacts since these channels are located in the associative visual cortex which has not been proven to be involved in the motor task. Another inconvenience was the impossibility to associate patterns to each mental task since the focus is not put on characterizing each mental state, but on maximizing the distance between SPD matrices.

Classification contrast

Despite the promising discriminant network lateralization patterns, the classification scores of network metrics were still under the reference established by state-of-the-art methods.

While we are still exploring the reasons for this evidence, there is a number of considerations that is important to make.

First, we need to recognize that our method does not add any manipulation strictly committed to improving classification as CSP and Riemannian methods do. For instance, CSP aims to directly maximize the variance ratio between two conditions and not to purely recognize the neural sources that generate that variance. In addition, CSP is not robust to outliers, in fact, one single trial with high variance can have a strong impact on the resulting filters [START_REF] Blankertz | Optimizing spatial filters for robust EEG single-trial analysis[END_REF].

Second, Riemannian methods are the best in terms of accuracy, but their principal limitation is their lack of interpretability. Most implemented techniques based their results on Minimum Distance Mean (MDM) [START_REF] Barachant | Channel selection procedure using Riemannian distance for BCI applications[END_REF]. They based their results on the distance between class mean SPD matrices, without any intermediate interpretation, being blind to the true feature that generates this distance. Another popular technique consists in projecting to the tangent space. There we have to pay special attention to the dimensionality of SPD matrices. Features derived from high-dimensional covariance matrices are prone to overfitting because of the limited number of trials usually available in BCI datasets [START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces[END_REF][START_REF] Rodrigues | Dimensionality Reduction for BCI classification using Riemannian geometry[END_REF]. The Riemannian solution used in this project [START_REF] Barachant | Channel selection procedure using Riemannian distance for BCI applications[END_REF], tackles both issues by selecting a limited number of sensors in the manifold based on their class discriminability, enabling their posterior interpretation.

Recent publications have demonstrated their interest in validating Riemannian-based accuracies with a suitable neurophysiological interpretation. [START_REF] Larzabal | The Riemannian spatial pattern method: mapping and clustering movement imagery using Riemannian geometry[END_REF] took the same Riemannian selection approach used in our project [START_REF] Barachant | Channel selection procedure using Riemannian distance for BCI applications[END_REF]. But instead of working with accumulated occurrences, they attributed Riemannian distances to electrodes. Within each backward iteration (for more details see section 4.3) they assigned the Riemannian distance between classes to the removed electrode. Then there is an inverse relationship between distance and the contribution of the electrode in separating the classes.

In congruence with our work, they reported better results in terms of interpretability and classification performance, than CSP. Other authors have tried the combination of both techniques, CSP and Riemannian, looking for better interpretation. Xu, Grosse-Wentrup, and Jayaram, 2020 studied spatial filters in the tangent space that enables CSP-like pattern analysis while improving accuracies. Compared to the CSP method the resulting patterns were less prone to artifacts and could extract additional neurophysiological activity.

Methodological considerations

Even though we showed the reliability of our approach in finding consistent neurophysiological sources over a considerable number of datasets, this study presents clear caveats that need to be acknowledged and addressed in the future. A first limitation is related to the signal preprocessing steps included in our pipeline. Indeed, only pass-band filtering is included. Other filtering techniques like Common Average Reference (CAR) for re-referencing or Independent Component Analysis (ICA) for artifacts suppression would have been beneficial for this study and might have helped in improving accuracy [START_REF] Bashashati | A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals[END_REF].

Nonetheless, looking at the topographical t-test scalp maps on the network side, artifacts do not seem to show a leading role in the results.

With respect to pass-band filtering, we have worked with the assumption that MI gener- [START_REF] Corsi | Functional connectivity ensemble method to enhance BCI performance (FUCONE)[END_REF] or work it out at the feature selection level by looking at precise single frequency bins [START_REF] Cattai | Phase/amplitude synchronization of brain signals during motor imagery BCI tasks[END_REF].

In our MI lateralization study, we have worked at the network level. Other studies have directly explored the possibility to use FC as feature for MI classification [START_REF] Brunner | Online control of a brain-computer interface using phase synchronization[END_REF][START_REF] Hamner | Phase-based features for motor imagery brain-computer interfaces[END_REF][START_REF] Zhang | Improved recognition of error related potentials through the use of brain connectivity features[END_REF][START_REF] Li | Decoding EEG in cognitive tasks with time-frequency and connectivity masks[END_REF][START_REF] Feng | Functional connectivity for motor imaginary recognition in braincomputer interface[END_REF]. [START_REF] Blankertz | Classifying single trial EEG: Towards brain computer interfacing[END_REF]). This suggests that a direct classification at the FC level can give competitive results.

Lastly, all these results assume an approximated correspondence between the EEG channel locations and the brain areas beneath. Further analysis in the source space, could be of interest to provide a more accurate description of the neural mechanisms detected with our method [START_REF] Jatoi | A survey of methods used for source localization using EEG signals[END_REF][START_REF] Barzegaran | Functional connectivity analysis in EEG source space: the choice of method[END_REF]. To address this solution two main limitations must be considered. First, individual magnetic resonance images (MRIs) are needed to have a realistic model of the brain but are not available for the studied datasets. Second, FC estimators can be sensitive to signal transformations and results can strongly depend on the selected reconstruction algorithm. Future research is necessary to investigate the stability of our results at the source space level.

Conclusion and Perspectives

In this PhD project, we aimed to introduce a novel approach to improve BCI performance.

By acting on the feature extraction block of a typical BCI pipeline, we based our original contribution on the development of network-based metrics extracted from functional brain connectivity. More specifically, we hypothesized that the spacial brain organization (i.e.

the fact that brain nodes are spatially embedded) might have a role in the discrimination of different BCI-related mental states. The obtained results showed that brain network lateralization is a distinct attribute in hand MI, making it particularly appropriate for a classification scenario. The ensemble of introduced lateralization indexes proved its efficiency in identifying the key components that intervene in MI.

Several BCI studies tend to overlook the feature interpretation, focusing only on classification scores to validate their designs. In this project, we compared our approach to two typically used methods, CSP and Riemannian geometry, and by looking at the most discriminant features, we found out that they were not all strictly related to the MI task.

This questions the interpretability of the classification performance and the extend to which their scores can be actually associated to the neural processes of the MI task.

In the BCI community, we have high expectations for the development of tools that will help in decoding mental states. Two major conditions have to be simultaneously reached, high accuracy and neurological plausibility. The latter has been validated by our method, but research is still needed to improve its scores.

Many ideas emerge from this project in several research directions, intended to develop new techniques or possible applications, that could be pursued in the future.

The multiple brain areas involved in MI elicits a complex ordered dynamic of activation. [START_REF] Pfurtscheller | Motor imagery and direct brain-computer communication[END_REF] claimed that movement preparation and execution go through multiple stages in its whole process, generating different patterns of oscillation over time. These fluctuations in the mental state are related to dynamic variations in the functional network [START_REF] Zalesky | Time-resolved resting-state brain networks[END_REF][START_REF] Shine | Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives[END_REF]. Therefore, analyses of time-varying network reconfiguration during MI may provide a new tool to capture the dynamics of the task and corroborate the involvement of different sensorimotor areas at different stages (De Vico Fallani et al., 2008a).

Building on the advances in information geometry for BCI, [START_REF] Corsi | Functional connectivity ensemble method to enhance BCI performance (FUCONE)[END_REF] proposes a novel framework that combines FC estimators and covariance-based pipelines. By ensuring that connectivity matrices are SPD, they worked with a two-step classification in which FC matrices are handled in the Riemannian manifold, obtaining outstanding and neurophysiologically validated results. Encouraged by this work, we presume that network-based classification in the Riemannian manifold could be a promising approach. Given a vector of local properties characterizing an EEG-based network (e.g. strength), it is possible to work with the covariance between each pair of electrode properties in the vector. Then if the resulting matrix is SPD, it can be projected onto the Riemannian manifold and follow a similar path as the Riemannian method presented in this thesis ((see section 4.3)). The appropriate mythological feasibility of this hypothesis must be demonstrated.

Another interesting avenue is clinical application. BCI is a recognized technique in the field of stroke rehabilitation due to the power of MI to enhance motor recovery [START_REF] Ang | Brain-computer interface in stroke rehabilitation[END_REF]. Brain lesions typically affect only one brain hemisphere, then the brain distribution of MI task may have practical consequences. In an attempt to maximize the residual cortical output, two patterns are observed during recovery, bilateral recruitment or lateralization toward the perilesional tissue and remaining motor regions of the lesioned hemisphere [START_REF] Westlake | Functional connectivity in relation to motor performance and recovery after stroke[END_REF][START_REF] Grefkes | Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches[END_REF][START_REF] Sabaté | Brain lateralization of motor imagery: motor planning asymmetry as a cause of movement lateralization[END_REF]. These plasticity and compensation mechanisms can be capture by network lateralization properties, and exploited as features for MI-BCI rehabilitation. 

Figure 1 :

 1 Figure 1: From brain activity to BCI classification. Principle scheme of a networkbased brain-computer interface. From bottom to top: brain networks are reconstructed by computing functional connectivity between remote brain signals. The resulting connectivity networks are characterized by means of graph theoretic metrics, which extract summary indices quantifying different topological properties. These values correspond to specific network properties that can be used to identify predictors of BCI performance as well classify different BCI mental states.

  Figure 1.1: Brain network construction. Nodes correspond to specific brain sites according to the used neuroimaging technique. In an EEG system, each electrode is translated into a node. Links are estimated by measuring the FC between pairs of nodes; this information is summarized in a connectivity matrix. By means of filtering procedures, based on thresholds, only the most important links constitute the brain graph. The topology of the resulting brain network can be quantified by different graph metrics (or indices) (e.g. node strength).
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 12 Figure1.2: Measures of network topology. An illustration of key complex network measures (in italics). These measures are typically based on basic properties of network connectivity (in bold type). Thus, measures of integration are based on shortest path lengths (green), while measures of segregation are often based on triangle counts (blue) but also include more sophisticated decomposition into modules (ovals). Measures of centrality may be based on node degree (red) or on the length and number of shortest paths between nodes. Hub nodes (black) often lie on a high number of shortest paths and consequently often have high betweenness centrality. Patterns of local connectivity are quantified by network motifs (yellow). An example three-node and four-link anatomical motif contains six possible functional motifs, of which two are shown-one motif containing dashed links, and one motif containing crossed links. Extracted from[START_REF] Rubinov | Complex network measures of brain connectivity: uses and interpretations[END_REF] 

  . The authors used a non-negative matrix factorization to identify regularized, covarying subgraphs of functional connectivity to estimate their similarity to BCI performance and detect the associated time-varying expression. From their observations, they deduced a model tested via the network control theory in which specific subgraphs support learning via a modulation of brain activity in areas associated with sustained attention.Despite the promising evidence, brain network reorganization needs to be further investigated to better understand learning mechanisms underlying the use of BCI devices and enhance the usability in clinical applications[START_REF] Vico Fallani | Network neuroscience for optimizing braincomputer interfaces[END_REF][START_REF] Orsborn | Parsing learning in networks using brain-machine interfaces[END_REF].

  intra =0.01. These networks qualitatively exhibit disparate properties in terms of integration, segregation and heterogeneity of information (Fig 2.1A). To quantify these differences, we computed four relevant network metrics, i.e. global-efficiency, local-efficiency, modularity and degree-variance. In order to sample the distribution of these properties across models, we generated a large ensemble of 1000 networks per class (Fig 2.1B).
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 21 Figure 2.1: Classification of networks via graph metrics. Panel A) illustrates the graphs associated with each network class. For illustrative purposes graphs contain here N =24 nodes. Their position in the three-dimensional space qualitatively emphasizes their intrinsic properties in terms of segregation, integration and heterogeneity of information. Panel B) shows the radar plots for the mean values of the network metrics (section 1.3.1) obtained from 1000 synthetic networks generated with different network models (Box 2.2).Each model corresponds to a different "class" of networks. Panel C) shows the accuracy results for the classification of the synthetic networks. Notably, 2-class and 4-class scenarios were performed, which is in line with the typical number of mental states used in BCI applications. Both connectivity matrices and network metrics were fed separately as input features into the classifier. Specifically, connectivity matrices were vectorized taking into account only the upper triangular matrix. Thus, the size of the feature vectors was 4950 for connectivity matrices and 4 for network metrics, respectively. To deal with the resulting complexity, we used singular value decomposition-based linear discriminant analysis (LDA) classifiers, which implement appropriate dimensionality reductions. To challenge the classifier, we increasingly permuted in a random fashion the nodes in the connectivity matrices. This corresponded to an increasing ratio of random relabeling of the nodes in the networks (x-axis). The line plots show the average value of the classification accuracy, while standard deviation is represented as shading patches around the average (obtained from a repeated random sub-sampling validation). For illustrative purposes, we also show an example for a modular network, where the darker colors correspond to the links of the nodes which have been permuted.

  The introduction of network-based BCI should not necessarily imply the exclusion of traditional features. Instead, it should be seen as a complementary approach to improve performance by integrating multiple neuronal mechanisms. In[START_REF] Cattai | Phase/amplitude synchronization of brain signals during motor imagery BCI tasks[END_REF] they proposed different types of features combination. After revealing brain signal amplitude/phase synchronization mechanisms during EEG-based MI vs rest tasks, authors detected specific brain network changes associated with MI. Based on these findings, they computed spectralcoherence and imaginary-coherence connectivity matrices. The computation was performed for frequency bins in the 4 to 40Hz band with 1 Hz resolution, considering 9 electrodes in the sensorimotor area contralateral to the imagined movement. For every MI and rest trial, they extracted three types of features, coherence-based node strength, imaginary coherence-based node strength and power spectrum density. Then they tested all possible combinations with a cross-validated LDA classifier. While single node strength discrimination gave poorer results than power spectrum, their combination led to classification improvements in most of the subjects. Zhang et al., 2019 also demonstrated the success of multimodal features fusion. Their cross-validated classification showed that the combination of node strength, or clustering coefficient, with CSP power selection, achieved higher accuracy than single feature. Getting
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 31 Figure 3.1: Brodmann areas top view. The functional units of the cerebral hemispheres have been separated into what are called Brodmann areas, and include areas 1 through 47.This numbering is still used as a shorthand for describing the functional regions of the cortex, particularly those related to sensory functions. Some overlap exists among functional areas. For example, the motor cortex is area 4; the primary sensory cortex includes areas 3, 1, and 2.

  .5) For a clarified notation, check Box 3.3. In Fig 3.2 we illustrate how these interactions are distributed for a toy example network.
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 32 Figure 3.2: Network properties.It is possible to identify functional lateralized nodes by comparing the strength between homotopic pairs. Through these three pictures, we illustrate how links of the same network are considered for the computation of the studied properties. In the top left figure, we represent the computation of the strength of node i. On the top right, we introduce lateralityindex for the homotopic pair i-j (λij). The bottom figure represent the distinction between segregation (σ) and integration (ω) at the same pair ij. The key difference in the interpretation remains on the influence of interhemispheric edges (LR i and RL j ). While ω adds the strength of bilateral interactions, σ challenges the strength of within interactions. That is to say, a large positive value for σ would suggest that the bias for stronger within-hemisphere is stronger for the left hemisphere. In contrast, a large negative value would indicate that the bias for withinhemisphere interactions is stronger for the right. Notations are the same as inBox 3.3 

  Fig 4.1 and Fig 4.2). It generates N spatial filters by generalized eigen value decomposition (GEVD) of the average covariance matrices, being N equivalent to the number of electrodes

Figure 4 . 1 :

 41 Figure 4.1: CSP filtering. On the left, the distribution of samples before filtering. Two ellipses show the estimated covariances and dashed lines show the direction of CSP projections. On the right, the distribution of samples after the filtering. The horizontal (vertical) axis gives the largest variance in the red (blue) class and the smallest in the blue (red) class, respectively. Extracted from Blankertz et al., 2007
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 43 Figure 4.3: Manifold M. Schematic representation of manifold M, the geometric mean C of two points and the tangent space at C. Consider two points (e.g., two covariance matrices) C i and C j on M. The geometric mean of these points is the midpoint on the geodesic connecting C i and C j that minimizes the sum of the squared distances ( C = argmin C N i=1 δ 2 R (C, C i )). If we construct the tangent space T C at C, there exists only one tangent vector ζ i (respectively ζ j ) corresponding to the geodesic departing from C and arriving at C i (respectively C j ) on the M. The map from the M to the T C is a logarithmic map. This type of mapping is used to vectorized the selected features for the SVM classifier.

  which might risk overfitting by exceeding the number of training trials. Nonetheless, this issue is tackled by dimensionality reduction done with feature selection.
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 44 Figure 4.4: Feature selection algorithm. Within a cross-validation framework (CV orig ), this approach uses a nested 5-fold cross-validated SVM (CV nested ) on a subtraining set (80% of the CV orig training)[START_REF] Dominguez | On the risk of extracting relevant information from random data[END_REF], to obtain a subset of selected features, N ′ = 10. For eachCV nested iteration, features are ranked according to their discriminant power between classes (t-test). In a forward sequential order, a feature is going to be retained and accumulated in the selected set, if its accuracy is higher than the previous set. The output of this CV nested is a group of 10 selected features on which the CV orig validation set (FOLD 5) is going to be tested. This is repeated for each iteration in CV orig .
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 51 Figure5.1: EEG electrodes and its nearest Brodmann areas. On the left side, we represent the brain's left hemisphere profile of Brodmann area division. This segmentation is based on their neuronal organization, correlated to diverse cortical functions. On the right side, we represent the electrodes distribution of a 10-20 EEG system in these areas. These locations interpolates to the right hemisphere for the homotopic electrodes. This figure seeks for illustrative purpose. For a more exhaustive association between channels and Brodmann areas, refer to Table5.2
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 52 Figure 5.2: Datasets EEG montages.
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 53 Figure 5.3: Strength lateralization in MI tasks. Group-averaged t-values, contrasting s LM I versus s RM I in the α-β band. Evidence of lateralization is observed in channels located in motor-related areas.

  Fig 5.1 and Table5.2). This suggests that just combining homotopic information helps to increase the difference among MI tasks. Integration. In the same line, by considering the contribution of inter-hemispheric interactions, ω increases this difference over nodes related to the parietal S2 cortex and supramarginal area (see Fig 5.5). Distinctively, this metric maintains significant t-values for channels in the M1 and S1 areas, while reducing the rest (see Fig 5.1 and Table 5.2). The same behavior is observed for each individual dataset (except Schirrmeister2017 ) (Fig A.4, Table A.1).
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 54 Figure 5.4: Laterality index in MI. Group-averaged t-values in differentiating between LM I and RM I states in the α-β band. For illustrative purposes we combine results across datasets for each channel. Results at the dataset-level are presented in Appendix A. For a simpler visualization, just significant t-values are shown (p < 0.05).
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 55 Figure 5.5: Integration in MI. Group-averaged significant t-values in differentiating between LM I and RM I states (p < 0.05).

Fig

  Fig A.6), it indicates that the bias for within-hemisphere connections is stronger in the right hemisphere when performing LM I.
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 56 Figure 5.6: Segregation in MI. Group-averaged significant t-values in differentiating between LM I and RM I states (p < 0.05).

  Fig 5.7 and Fig 5.8 display the interpolation to sensor space of the group-averaged filter and pattern that best minimize each class's variance.
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 57 Figure 5.7: CSP filter and pattern in RM I. Filters apply the highest weights to electrodes related to motor task on the corresponding contralateral side (C3, C1, CP3, CP1, CCP3h), while the resulting patterns show a bilateral behaviour (C3, C4, CP3, C2, CP1).
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 58 Figure 5.8: CSP filter and pattern in LM I. Here the bilateral involvement is present in both, filetrs (C4, C3, C2, FCC4h, CP2) and patterns (C4, C3, PPO1, CP4, C2).
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 59 Figure 5.9: Riemannian-based feature selection. Group-averaged normalized occurrences. It illustrates the number of times that a specific feature in the manifold has been chosen. Most selected electrodes are C4, FCC4h, CCP6h, C3, CCP4h, PO8 (occurrence > 30%).
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 510 Figure 5.10: Classification performances. Visualization of all classification scores for each method across datasets applying a 5-fold cross-validated SVM (section 4.5).Each transparent silhouette represents a single subject and the bigger contoured silhouette presents the mean across subjects. Note that there is only one score per subject, representing the mean between sessions (if it applies, see Table5.1). The black dotted line corresponds to a chance level performance (0.5), and the grey one to the begging of efficient performances (0.7)[START_REF] Thompson | Critiquing the concept of BCI illiteracy[END_REF]. Network-based features applied the feature selection algorithm described in section 4.5.1. RG: Riemannian geometry method, s: strength, λ: laterality index, σ: segregation, ω: integration.
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 511 Figure 5.11: Classification statistical analysis: lateralization versus CSP. Metaanalysis style plots showing the performance of lateralization network metrics versus CSP. The effect sizes shown are standardized mean differences, with p-values corresponding to the one-tailed Wilcoxon signed-rank test for the hypothesis given at the top of the plot and 95% interval denoted by the grey bar. Stars correspond to *** = p < 0.001, ** = p < 0.01, * = p < 0.05. The meta-effect is shown at the bottom of the plot. even though there is a significant amount of variance between datasets, the overall trend shows that CSP outperforms the other algorithms in this setting.

Figure 5 . 12 :

 512 Figure 5.12: Classification statistical analysis: Riemannian method versus CSP. The same interpretation as in Fig 5.11 is applied. The overall performance shows that TS works better than CSP.

  Lee2019MI dataset: a promising case It is interesting to note that in the case of Lee2019MI dataset, λ shows almost equal mean score than CSP (Fig 5.10). Even though this difference is not significant (see Fig 5.11),

  Even though RM I and LM I CSP patterns exhibit emphasized contralateral motor areas, patterns for RM I seems to be governed by possible artifacts in the frontal area (Fig A.9 and Fig A.11). A high influence of frontal nodes is also observed for the case of strength (Fig A.1), but it is important to point out that they are located on the contralateral side and not on the ipsilateral as it is for RM I CSP. On the contrary, λ reduces this influence on frontal sensors and presents a higher distinction between classes in MI-associated areas (PMA, SMA, and S1) (Fig A.2). Yet, the Riemannian method shows cleaner features, with almost zero frontal selections (Fig A.12), giving also the best scores.

Figure 5 . 13 :

 513 Figure 5.13: Score paired-plot for Lee2019MI dataset. Comparison between CSP and network properties scores. Each numbered point represents the mean across sessions for a single subject. Subjects that get a low score with CSP, tend to get better results with network metrics.

Figure 5 . 14 :

 514 Figure 5.14: Classification statistical analysis for Lee2019MI dataset: lateralization versus CSP, for the subset of subjects (33) that get low CSP scores (<0.7). The same interpretation as in Fig 5.11 is applied. We observe a significant bias for better resultswith network features, particularly with strength and λ.

  ates distinguishing ERD/ERS in the α and β frequency bands. But a more thorough study within sharper bands may be worthwhile since α and β components differ with temporal behavior. Pfurtscheller and Neuper, 2001 have demonstrated the existence of at least three different types of oscillations at the same electrode location over the sensorimotor cortex in voluntary hand movement. Then working at different band levels may generate different and potentially more precise results. One possibility is to test the characteristics of each frequency band before immersing into feature extraction

  Here we have decided not to test FC because it implies concatenating the connectivity matrix which can drive to an overfitting problem. Two possible solutions to this problem would be channel selection and dimensionality reduction techniques. Indeed, Li et al., 2016 used principal component analysis (PCA) on concatenated FC matrices to reduce feature dimension after feature extraction. Their results on the BCI competition II dataset (001-2014 ) of SVM classification were consistently high (82%, 2% under the winning accuracy reported by the competition

Figure A. 2 :

 2 Figure A.2: Laterality index in MI tasks per dataset.
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 7 Figure A.7: Network feature selection.

Figure A. 10 :

 10 Figure A.10: CSP filters in LM I per dataset.

Figure A. 11 :

 11 Figure A.11: CSP patterns in LM I per dataset.

  

  

  

  

  

  

  

  

  

Table 1 . 1 :

 11 Selection of the most commonly used FC estimators. The different methods are organized according to their ability to capture directed or undirected interactions. Specific properties associated with some of the critical issues discussed in the section are reported on the right part of the table.

	Properties

  ).Meta-analyses, mainly based on fMRI and PET studies, recently revealed a group of regions involved during ME[START_REF] Mcdougle | Taking aim at the cognitive side of learning in sensorimotor adaptation tasks[END_REF] and MI[START_REF] Hétu | The neural network of motor imagery: an ALE meta-analysis[END_REF], including premotor area (PMA), primary sensorimotor area (S1), supplementary motor area (SMA), posterior parietal lobe. Notably,[START_REF] Hardwick | Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution[END_REF], made a comparison between imagery, observation and execution. They identified two main clusters involved in both MI and ME: bilateral cortical sensorimotor and premotor clusters. They also performed contrast analyses to elicit regions more consistently involved in MI than in ME. It appeared that MI tends to recruit more often premotor regions and left inferior and superior parietal cortex.

  healthy subjects performed a dynamic balance task once a week during six consecutive weeks. They underwent four fMRI scans: before the first, the third, the fifth sessions and one week after the training program. The authors observed an increased fronto-parietal network connectivity in one week. Training sessions

progressively modulated these modifications. Changes induced by motor imagery learning have been observed, notably in resting-state functional connectivity of the default mode network (DMN)

[START_REF] Ge | Motor imagery learning induced changes in functional connectivity of the default mode network[END_REF]

. These results prove that motor learning relies on areas beyond those directly involved during the task performance and illustrate the need to study how communication between brain regions evolves during the training.

Table 5 .

 5 1: Dataset attributes. Overview of all included datasets with EEG recordings in a left versus right hand MI paradigm. #: number, sub: subjects, ch: channels.

	Dataset	#sub #ch #trial/class epoch[s] #sessions	ref.
	001-2014	9	22	144	4	2	Tangermann et al., 2012
	Cho2017	49	64	100	3	1	Cho et al., 2017
	Lee2019MI	54	62	100	4	2	Lee et al., 2019
	Schirrmeister2017	14	128	120	4	1	Schirrmeister et al., 2017
	Weibo2014	10	60	80	4	1	Yi et al., 2014
	Zhou2016	4	14	160	5	3	

[START_REF] Zhou | A fully automated trial selection method for optimization of motor imagery based brain-computer interface[END_REF] 

  Fig 5.3 we show the node strength t-values obtained across trials and averaged across subjects. These results reveal interesting patterns for a subset of nodes. Notably, the largest changes tend to concentrate on motor-related areas. But what is more remarkable is the predominance of positive t-values in the right hemisphere. This trend confirms that LM I evokes higher strength in the contralateral motor cortex. The inverse situation occurs for RM I but with lower t-values, suggesting that this task requires fewer connectivity resources. This might be explained by the predominance of right-handed subjects.

	If we look at each dataset separately (Fig A.1, Table A.1), we observe that those that
	show significant t-values (001-2014, Cho2017, Schirrmeister2017, Zhou2016 ) concentrate
	the most discriminant strength at nodes related to the motor cortex, particularly on the
	right hemisphere.

  . Contrarily, each filter is optimized for the maximization of one class's variance while minimizing the other's. In the case of RM I versus LM I paradigm, if we consider a filter that maximizes variance for class LM I and minimizes it for RM I, then an expected high weight on the left hemispherical motor area can have two plausible causes. It can either originate from an ERD during RM I, or from an ERS during LM I (RM I areas are more relaxed if concentration focuses on LM I, therefore the idle rhythm may increase). Or it can be a mixture of both effects, since LM I elicits both hemispheres.

Table 5 .

 5 3 and Fig 5.10 show all the results generated by this entire processing chain. Decoding accuracies for multiple sessions datasets are calculated independently, and averaged for this representation. Besides the gaps in neurophysiological interpretation, we observe that for almost all the datasets, state-of-the-art methods (CSP and Riemannian) still outperform network-based features.

Table 5 . 3 :

 53 Classification performances: Average accuracies across methods for each dataset. RG: Riemannian geometry method, s: strength, λ: laterality index, σ: segregation, ω: integration.

	Dataset	s+SVM	λ+SVM	σ+SVM	ω+SVM	CSP+SVM RG+SVM
	001-2014	75.68 ± 15.8	70.45 ± 15.56	72.16 ± 15.75	74.33 ± 15.46	86.04 ± 12.05	85.31 ± 12.62
	Cho2017	64.24 ± 11.54	62.45 ± 10.78	61.09 ± 10.24	62.95 ± 11.03	72.80 ± 13.21	75.24 ± 11.93
	Lee2019MI	64.46 ± 11.27	67.11 ± 11.11	63.05 ± 9.63	65.63 ± 11.96	67.10 ± 16.60	76.46 ± 15.08
	Schirrmeister2017	66.26 ± 10.37	70.54 ± 11.03	62.31 ± 9.31	66.17 ± 9.65	82.53 ± 15.43	88.16 ± 11.58
	Weibo2014	68.63 ± 15.02	63.62 ± 13.37	62.96 ± 12.32	67.69 ± 15.64	82.75 ± 14.49	84.78 ± 13.99
	Zhou2016	86.91 ± 5.33	82.36 ± 7.98	83.34 ± 7.81	86.52 ± 7.04	94.20 ± 5.63	94.44 ± 5.51

  Table A.1: Minimum and maximum t-values obtained across datasets. t-val: t-value, ch: channel.

	A.3 Network feature selection					
	strength laterality index segregation integration	Dataset max min max min max min max min	t-val ch t-val ch t-val ch t-val ch t-val ch t-val ch t-val ch t-val ch	001-2014 3.62 CP4 -0.03 C3 -7.88 FC1 -2.81 P1 -8.38 FC1 -1.38 P1 -8.61 CP3 -0.04 FC1	Cho2017 2.33 CP4 0.01 O1 -2.27 F1 -0.16 PO3 -2.37 F1 -0.26 P7 -2.70 C3 0.01 F5	Lee2019MI -1.73 F9 0.03 TP10 -4.33 FC1 1.27 PO10 -4.04 FC1 1.69 FTT10h -4.59 CP3 -0.05 PO10	Schirrmeister2017 2.66 FCC4h 0.01 TTP8h -4.85 C1 -0.01 TPP7h -3.81 C1 -0.03 POO3h -4.89 FCC3h 0.00 AF7	Weibo2014 -1.37 C3 0.01 P2 -2.51 F1 -0.03 PO7 -2.56 F1 -0.00 P5 -3.82 CP3 -0.03 TP7	Zhou2016 4.99 C4 0.40 O1 -10.48 Fp1 -1.37 O1 -11.46 Fp1 -2.31 O1 -13.66 C3 -0.01 O1

https://networkx.org/

https://scikit-learn.org/

http://bnci-horizon-2020.eu

http://moabb.neurotechx.com/docs/

Figure A.3: Segregation in MI tasks per dataset.
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 .7). This reinforces the idea that our approach enables to capture relevant processes in the MI task.

Table 5.2: EEG channels and corresponding Brodmann areas, for a 10-10 montage. L: left hemisphere, R: right hemisphere [START_REF] Başar | Brain function and oscillations: volume I: brain oscillations[END_REF][START_REF] Johnson | Neural correlates of self-reflection[END_REF][START_REF] Faymonville | Neural mechanisms of antinociceptive effects of hypnosis[END_REF].

Appendix A

Features analysis

A.1 Network properties per dataset On the left, we show the results when we consider the influence of including middle line links (LC i , RC j ) as within-hemisphere. On the right, the results of considering them as inter-hemispheric. Excluding LC i and RC j from the within-connections has a localized negative impact on nodes closer to the central line. On the other hand, LL i + LC i > LR i and RR j + RC j > RL j guarantees positives values for each hemisphere segregation. Then when analyzing the lateralization of σ, a negative value implies stronger segregation on the right hemisphere. 

A.2 Segregation

A.4 Common spatial pattern per dataset