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ABSTRACT

Context

This thesis deals with the notion of incremental stability and its application in the context
of control design for nonlinear systems. The manuscript is divided into four main chapters,
each of them dealing with different topics but strictly related among them. In the first
chapter, we study the notion of incremental stability for nonlinear control systems. In
short, a system is said to be incrementally stable if trajectories starting from different
initial conditions asymptotically converge towards each other. Such a notion is of interest
due to several properties that incrementally stable systems share, such as periodicity of
trajectories, robustness with respect to external perturbations, and many others. Among
the different tools to study such a notion, we focus on the so-called (Riemaniann) ‘metric-
based’ approach. Despite the theory of incrementally stable systems is receiving a lot
of interest from the worldwide control community, several open questions need to be
answered yet, concerning the analysis of incremental properties and the feedback control
design achieving incremental stability.

In the second chapter, we focus on the output regulation problem. The goal is to design
a (dynamic) control law such that the output of a nonlinear system can asymptotically
track a reference and, at the same time, reject perturbations. In particular, we aim to
achieve “global” output regulation, meaning that the regulation task must be achieved
independently of the initial conditions and on the amplitude of the external signals. The
challenge is to guarantee the existence of a steady-state solution on which the regulation
error is zero for every value of the external signals, and the convergence of trajectories
towards such a solution for every initial condition. While tools achieving regulation for
minimum phase systems in normal form are well developed, much less is known for more
general classes of systems, especially when global regulation is the goal. Therefore, new
tools need to be developed. In our approach, in particular, we cast the regulation task
into the incremental framework and we tackle the problem with tools derived from the
first chapter of the manuscript.

In the third chapter, we focus on the multiagent synchronization problem. Here, we
consider a group of single identical entities which communicate among them through a
communication protocol. The objective is the design of a distributed coupling control law
such that these entities reach an agreement on their state evaluation. While the theory for
linear systems is well developed, many questions remain open for nonlinear ones. In our
approach, we cast the synchronization problem into the incremental framework. Such a
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choice is motivated by the fact that, if agents are described by the same dynamical model,
then the synchronization problem corresponds to the design of a distributed control law
such that different trajectories of the same differential equation asymptotically converge
towards each other.

In the fourth and last chapter, we focus on two practical applications. In particular, we
consider two separate problems. The first problem is a robust output set-point tracking
problem for a power flow controller. A power flow controller is an electric circuit whose
role is to regulate the power of the lines to which it is attached, despite the uncertainties
of the plant parameters and of the references to be tracked. The second problem is a
periodic trajectory tracking for a ventilation machine. A ventilation machine is a piece of
medical equipment used to support patients breathing. The objective here is to design a
control law such that the machine can track a periodic pressure signal representing the
breathing phase, despite the uncertainties in the plant.

At the end of the last chapter, a summary of the thesis written in French is present.

Main contributions

In Chapter 1, we study incremental properties of nonlinear systems with a metric-based
approach. Some literature results are recalled. Then, we study incremental ISS properties.
To conclude, we propose some designs of feedback control laws for the closed-loop system
to possess incremental properties. The main contribution of this chapter can be found in
the author’s publications Giaccagli et al. (2022a,b,c,d).

Contribution 1: Through the notion of ‘Killing vector field’, we derive metric-based
sufficient conditions for a system to be incremental ISS.

Contribution 2: We provide a set of sufficient conditions for the design of feedback
control laws achieving incremental properties for the closed-loop system. In particular: i)
we derive a metric-based incremental small gain theorem; ii) we develop an incremental
version of forwarding control techniques; iii) we provide a set of LMI conditions for systems
with sector-bound nonlinearities.

In Chapter 2, we study the global output regulation problem. We cast the problem into
the contraction framework. We study two problems separately: the problem of tracking a
constant reference and the problem of harmonic regulation. The main contributions can
be found in the author’s publications Giaccagli et al. (2020, 2021b, 2022d).

Contribution 3: We provide a set of sufficient conditions to achieve global constant
output set-point tracking and disturbance rejection for nonlinear systems which do not
necessarily admit a globally defined diffeomorphism that allows rewriting them in normal
form.

Contribution 4: We provide a set of sufficient conditions to achieve global harmonic
regulation of a periodic trajectory of a nonlinear system which does not necessarily admit
a globally defined diffeomorphism that allows to rewrite it in normal form.

In Chapter 3, we study the multiagent synchronization problem. We tackle the prob-
lem with tools derived from incremental stability theory. We study the synchronization
of connected directed networks in the Euclidean framework and leader-synchronization of



0

undirected networks in the Riemaniann framework. Then, in this second case, we provide a
Deep Neural Network-based algorithm for the practical implementation of the distributed
control law. The results in this chapter have been obtained together with Samuele Zoboli,
LAGEPP, University of Lyon 1 (Villeurbanne, France) who took care of the machine learn-
ing experimental part. The main contributions can be found in the author’s publications
Giaccagli et al. (2021a, 2022e).

Contribution 5: We derive a set of sufficient conditions based on a Euclidean metric
analysis for the synchronization of connected directed networks of nonlinear systems.

Contribution 6: We derive a set of sufficient conditions based on a Riemannian met-
ric analysis for the leader-synchronization of connected undirected networks of nonlinear
systems. A general deep neural network-based algorithm for the implementation of the
control law is presented.

In Chapter 4, we focus on two practical applications. In particular, we consider a robust
output set-point tracking problem for a power flow controller and a harmonic regulation
problem for a mechanical ventilation machine. The results in this chapter have been
obtained together with Tanguy Simon and collaborators at Laboratory Ampere, INSA
Lyon (Villeurbanne, France) for the power flow controller and with Joey Reinders and
collaborators at Depertment of Mechanical Engineering, Eindhoven University of Tech-
nology (Eindhoven, the Netherlands) for the ventilation machine. In both cases, the other
teamwork took care of the modelling and of the experimental part. The main contribu-
tions can be found in the author’s publications Simon et al. (2021a, 2022); Reinders et al.
(2022).

Contribution 7: We design and implement a forwarding-based dynamic robust control
law for the power flow controller achieving robust output set-point tracking. The control
law is validated through experimental results.

Contribution 8: We design and implement an incremental circle criterion-based dynamic
control law for the mechanical ventilation machine achieving robust harmonic regulation.
The control law is validated through experimental results.
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• Simon, T., Giaccagli, M., Trégouët, J. F., Astolfi, D., Andrieu, V., Lin-Shi,
X., and Morel, H. (2021). Robust output set-point tracking for a power flow
controller via forwarding design. In 60th IEEE Conference on Decision and
Control (CDC), pp. 6385-6390, IEEE.



CONTENTS

Abstract

Notation

1 Incremental Stability 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Autonomous systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Main definition . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Existing results . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Metric-based approach to incremental stability . . . . . . . . . 5
1.2.4 Main properties . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Nonautonomous systems . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Incremental Input-to-State Stability . . . . . . . . . . . . . . . 18
1.3.2 Interconnected systems . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Feedback design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.2 A metric-based incremental small-gain theorem . . . . . . . . 23
1.4.3 Incremental forwarding design for cascade systems . . . . . . . 25
1.4.4 LMI-based design . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . 57

2 Global Output Regulation 60
2.1 Introduction and problem statement . . . . . . . . . . . . . . . . . . 60

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.1.2 The global output regulation problem . . . . . . . . . . . . . . 61

2.2 Global integral action . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.2.1 From incremental stability to global integral action . . . . . . 69
2.2.2 State feedback design . . . . . . . . . . . . . . . . . . . . . . . 74
2.2.3 Output feedback design . . . . . . . . . . . . . . . . . . . . . 85
2.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.3 Global harmonic regulation . . . . . . . . . . . . . . . . . . . . . . . 96
2.3.1 From incremental stability to global harmonic regulation . . . 96
2.3.2 State feedback design . . . . . . . . . . . . . . . . . . . . . . . 98



0

2.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.4 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . 110

3 Multiagent Synchronization 112
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.1.1 The multiagent synchronization problem . . . . . . . . . . . . 112
3.1.2 Existing solutions and proposed contributions . . . . . . . . . 113

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2.1 Basics on graph theory . . . . . . . . . . . . . . . . . . . . . . 115
3.2.2 Synchronization with nonlinear diffusive coupling . . . . . . . 116
3.2.3 Network synchronization for linear systems . . . . . . . . . . . 117

3.3 Network synchronization with Euclidean contraction . . . . . . . . . . 119
3.3.1 Feedback design for network synchronization . . . . . . . . . . 119

3.4 Leader synchronization with Riemaniann contraction . . . . . . . . . 123
3.4.1 Network structure and problem statement . . . . . . . . . . . 123
3.4.2 Feedback design for leader synchronization . . . . . . . . . . . 123

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.5.1 Minimum-phase systems . . . . . . . . . . . . . . . . . . . . . 131
3.5.2 Monotonic systems . . . . . . . . . . . . . . . . . . . . . . . . 133

3.6 Deep Learning for metric estimation . . . . . . . . . . . . . . . . . . 135
3.6.1 Killing-less leader synchronization . . . . . . . . . . . . . . . . 135
3.6.2 A DNN-based algorithm for metric estimation . . . . . . . . . 138
3.6.3 Leader-synchronization of a network of Lorentz oscillators with

DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.7 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . 141

4 Applications 144
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.2 Robust output set-point tracking of a Power Flow Controller . . . . . 145

4.2.1 About Power Flow Controllers . . . . . . . . . . . . . . . . . . 145
4.2.2 PFC’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.2.3 Robust output set-point tracking for the PFC . . . . . . . . . 151
4.2.4 Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.2.5 Proof of technical lemmas . . . . . . . . . . . . . . . . . . . . 166

4.3 Harmonic regulation of a Ventilation Machine . . . . . . . . . . . . . 169
4.3.1 About the Ventilation Machine . . . . . . . . . . . . . . . . . 169
4.3.2 Model of the Ventilation Machine . . . . . . . . . . . . . . . . 171
4.3.3 Harmonic regulation for Lur’e systems: an incremental circle

criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.3.4 Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.4 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . 184

Résumé
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NOTATION

Unless where explicitly specified, we will use the following notations.

General notation

• ẋ := dx
dt
(t) ;

• ∂f

∂x
:= partial derivative of f with respect to x;

• ∂kf

∂xk
:= k-th partial derivative of f with respect to x;

• A⊤ := transpose of a vector/matrix A;

• ∀ := for all;

• Given a symmetric matrix A ∈ R
n×n, A = A⊤, we say that A is positive definite

(respectively, semi-positive definite) and we write A ≻ 0 (⪰ 0) if x⊤Ax > 0 (≥
0) for all x ∈ R

n;

• Given a symmetric matrix A ∈ R
n×n, A = A⊤, we say that A is negative

definite (respectively, semi-negative definite) and we write A ≺ 0 (⪯ 0) if −A
is positive definite (respectively, semi-positive definite);

Vectors

• 1 :=
(
1 1 . . . 1

)⊤
is the column vector full of ones;

• Given a vector a ∈ R
n, the notation ak refers to the k-th element of a, with 1

being the index of the first element;

Sets

• R := (−∞,+∞), real numbers;

• R
n := (−∞,+∞)× · · · × (−∞,+∞)︸ ︷︷ ︸

n-times

, n-dimensional real numbers;

• R≥0 := [0,+∞), non-negative real numbers;
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• R>0 := (0,+∞), positive real numbers;

• N := {0, 1, 2, . . . }, natural numbers;

• C := {a+ jb | a ∈ R , b ∈ R}, complex numbers where j is the imaginary term
satisfying j2 = -1;

• Given a set A ⊆ R
n and 1 ≤ p ≤ +∞, we indicate with Lp(A) the set of locally

p-integrable functions defined on A, that is the set of functions f : A 7→ R
m

satisfying ∫

A

|f |p < +∞;

• Given a set S ⊂ R
n, we indicate with cl{S} the closure of S, that is, the set

containing all the elements of S together with its boundary elements;

• Given a set S ⊆ R
n, we indicate with Sm the set S× · · · × S︸ ︷︷ ︸

m-times

⊆ R
nm;

• Given a set S, card{S} denotes its cardinality, that is, the number of the
elements in S;

• Given a set S, int{S} denotes its interior, that is, the elements of S that do not
belong to its closure.

Functions

• A function f : Rn 7→ R
m is Ck (for some k ∈ N) if it is differentiable up to

k-times and all the k partial derivatives are continuous functions

• A function α : R≥0 7→ R≥0 is positive definite if it verifies the identity {x ∈
R | α(x) = 0} = {0};

• A function α : R≥0 7→ R≥0 is of class-K if it is strictly increasing and α(0) = 0;

• A function α : R≥0 7→ R≥0 is of class-K∞ if it is of class-K and lims 7→∞ α(s) =
+∞.

• A function β : R≥0 × R≥0 7→ R≥0 is of class-KL if, for each fixed s, β(r, s)
is of class-K with respect to r and, for each fixed r, the mapping β(r, s) is
decreasing with respect to s and lims 7→∞ β(r, s) = 0;

• Define the following asymmetric scalar saturation function sats̄s : R → R as

sats̄s(s) =





s if s < s

s if s ≤ s ≤ s̄

s̄ if s > s̄

for some constants s ≤ s̄ ∈ R (see Figure 1);

• Define the following scalar dead-zone function dzd : R → R as

dzd(s) = s− satd−d(s)

for some constant d > 0 (see Figure 2);
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s
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s
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s
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Figure 1: Function sats̄s(s)

s

dzd(s)

dd

Figure 2: Function dzd(s)

• Given any two vectors s̄ =
[
s̄1 . . . s̄m

]⊤ ∈ R
m, s =

[
s1 . . . sm

]⊤ ∈ R
m,

define the following (vector) saturation function Sats̄s : R
m → R

m as

Sats̄s(s) =



sats̄1s1(s1)

...
sats̄msm(sm)




for some vector s =
[
s1 . . . sm

]⊤ ∈ R
m, i.e. as the functions that implement

element-wise the sat function;

• Given any two vectors s̄ =
[
s̄1 . . . s̄m

]⊤ ∈ R
m, s =

[
s1 . . . sm

]⊤ ∈ R
m,

define the following (vector) dead-zone function Dzd : R
m → R

m as

Dzd(s) =



dzd(s1)

...
dzd(sm)


 , (1)

for some vector s =
[
s1 . . . sm

]⊤ ∈ R
m, i.e. as the functions that implement

element-wise the dz function;

Operators

• Given a complex number c ∈ C, c = a + jb we indicate its real part with
R{c} = a;

• Given a complex number c ∈ C, c = a+ jb we indicate its imaginary part with
I {c} = b;

• Given a matrixA ∈ R
n×m, we indicate with Im{A} its image, namely Im{A} :=

{λ ∈ R
n | Av = λ , for some v ∈ R

m};
• Given a matrix A ∈ R

n×m, we indicate with rank{A} ∈ N the rank of A;

• Given a square matrix A ∈ R
n×n, we indicate with spec{A} the spectrum of

A, i.e. the set whose elements are the eigenvalues of A;

• Given a partially ordered set S, we indicate with infS{·} the infimum over
the set S, namely the greatest element in S that is less than or equal to each
element of S;

• Given a partially ordered set S, we indicate with supS{·} the supremum over
the set S, namely the least element in S that is greater or equal to each element
of S;
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• Given a square matrix A ∈ R
n×n we indicate the Hermitian operator as

He{A} = A+ A⊤;

• Given N square matrices (possibly with different dimensions) A1, . . . , AN , we
indicate with blkdiag{A1, . . . , AN} the square matrix with A1, . . . , AN in the
main diagonal and zeros everywhere else

blkdiag{A1, . . . , AN} :=




A1 0 . . . 0

0 A2
...

...
. . . 0

0 . . . 0 AN


 ;

• GivenN column vectors xi ∈ R
ni for i ∈ {1, . . . , N}, we indicate with col{x1, . . . , xN}

the column vector of dimension n =
∑N

i=1 ni whose elements are the ordered
set of vectors xi,

col{x1, . . . , xN} :=



x1
...
xN


 ;

• Given a n×m matrix B, we indicate with vec(B) the nm column vector where
the elements are the ordered elements of matrix B.

• |x| :=
√
x⊤x, Euclidean norm of x ∈ R

n;

• |x|P :=
√
x⊤Px, norm of x ∈ R

n in the matrix operator P ∈ R
n×n;

• ||A||P := supx̸=0
|Ax|P
|x|P

, induced matrix norm of the matrix A ∈ R
n×n in the

matrix operator P ∈ R
n×n;

• Given a set S ⊂ R
n and a vector x ∈ R

n, we indicate with |x|
S
:= infz∈S |x− z|;

• A⊗ B := Kronecker product between A and B;

• Given a vector field f : Rn → R
n and a C1 mapping h : Rn → R

m, we denote
the Lie derivative of h along f at x as Lfh(x) =

∂h
∂x
(x)f(x);

• Given a vector field f : Rn × R 7→ R
n and a 2-tensor P : Rn × R 7→ R

n×n

both C1, we indicate with LfP (x, t) the Lie derivative of the tensor P along f
defined as

LfP (x, t) = lim
h→0

(I + h∂f
∂x
(x, t))⊤P (x+ hf(x, t), t+ h)(I + h∂f

∂x
(x, t))− P (x, t)

h

with coordinates

(LfP (x, t))i,j =
∑

k

[
2Pik(x, t)

∂fk
∂xj

(x, t) +
∂Pij
∂xk

(x, t)fk(x, t) +
∂Pij
∂t

(x, t)

]
.

Equivalently,

LfP (x, t) := dfP (x, t) + P (x, t)∂f
∂x
(x, t) + ∂f⊤

∂x
(x, t)P (x, t)

where

dfP (x, t) := lim
h→0

P (X(x, t+ h, t), t)− P (x, t)

h
+
∂P

∂t
(x, t) ,

and where and X(x0, t, t0) is the solution of
∂
∂t
X(x0, t, t0) = f(X(x0, t, t0), t), X(x0, t0, t0) = x0, ∀ t ≥ 0 ;
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Acronyms

• SISO := Single-Input Single-Output;

• MIMO := Multi-Input Multi-Output;

• ODE:= Ordinary Differential Equation;

• PDE := Partial Differential Equation;

• LMI := Linear Matrix Inequality;

• BMI := Bilinear Matrix Inequality;

• ARE := Algebraic Riccati Equation;

• LQR:= Linear Quadratic Regulator;

• HJB := Hamilton-Jacobi-Bellman

• RC := Repetitive Control;

• PFC := Power Flow Controller;

• VM := Ventilation Machine;

• DC := Direct Current;

• AW := Anti Windup;

• DNN := Deep Neural Network.





CHAPTER 1

INCREMENTAL STABILITY

The only thing that one really knows
about human nature is that it changes.
Change is the one quality we can
predicate of it. The systems that fail
are those that rely on the permanency
of human nature, and not on its
growth and development.

O. Wilde

1.1 Introduction

Stability is a wide concept. Depending on the kind of problem that we face or on the
kind of analysis that we aim to pursue, one can exploit different types of stability
notions. The most common is the stability of an equilibrium point of a vector field in
the sense of Lyapunov with the (ε− δ) formalism (see (Khalil, 2002, Section 4.1) for
an overview). Roughly speaking, an equilibrium point is said to be stable if solutions
of an Ordinary Differential Equation (ODE) that are initialized ‘close’ to it, remain
‘close’ for all positive times. If moreover, such an equilibrium is attractive, that
is, the solutions asymptotically converge towards it, then we recover the classical
notion of asymptotic stability of an equilibrium point. Such a concept is generally
exploited when dealing with stabilization problems of nonlinear systems. But the
stability of an equilibrium point is not the only notion of stability. One can for
instance look at the stability of a manifold. In this sense, similar concepts regarding
the boundness of solutions and asymptotic convergence can be derived. This is
of interest for instance, when dealing with engineering problems such as output
regulation or multiagent synchronization. Similarly, if we deal with a trajectory
tracking problem, one can look at the stability properties of a particular solution of
the system.

It is clear that, depending on the kind of problem that one aims to solve, it is of
interest to exploit one or another stability notion. All of the above, however, have a
common point: they’re all stability notions of a particular attractor. In other words,

1



1

the interest is to study how the solutions of a dynamical system behave with respect
to a well-defined mathematical object, be it an equilibrium point, a manifold, or a
particular solution. It is straightforward that the knowledge of such a mathematical
object is a central point. This is evident if we look at a stabilization problem of
an equilibrium point. Most of the existing results in the literature that rely on
a Lyapunov-based analysis, consider (without loss of generality) the origin as the
equilibrium point that has to be stabilized using a control law. However, especially
in practical problems, this is never the case. What is commonly done, is to first
apply a constant control law to shift the equilibrium to the origin, and then rely on
stabilizing control actions. This, however, requires the knowledge of the equilibrium
point, and also of the constant preliminary control action that has to be applied.
The problem is that these two pieces of information might not be perfectly known
since they are strongly dependent on the plant. Moreover, they are very sensitive in
case of external perturbations, up to the point that, in limited cases, the existence
itself of an equilibrium cannot be guaranteed.

From this limitation, it becomes of interest the study of stability notions that are not
dependent on a ‘fixed’ element. Indeed, instead of linking any solution of the system
with respect to a specific object, we may be interested in studying the relations
between any solution of the system with respect any other solution. This led to the
definition of the notion of incremental stability, also known as contraction, which
will be the main subject of this first section. Of course, a trajectory initialized in
an equilibrium point (if it exists), is itself a valid solution to a dynamic system.
For this reason, the kind of analysis and the conditions that we will obtain will be
generally stronger than the ones for the stability of an equilibrium point. On the
other hand, the properties that will be derived will be stronger as well.

This chapter is structured as follows. In Section 1.2 we study incremental stability
properties for systems with no control action. We introduce the main definition,
provide a quick overview of existing results on incremental stability theory and
recall some of the main properties of such systems. In particular, we focus on
the so-called metric-based approach, which will be the main tool for analysis and
design of incremental stability properties that we will exploit throughout the whole
manuscript. Then, in Section 1.3, we focus on incremental properties for nonlinear
systems coupled with an external input. To conclude, in Section 1.4, we focus on
the design of feedback control laws achieving incremental stability for the closed-
loop system. Conclusions and future perspectives are in Section 1.5. The novel
results in this section can be found in the author’s publications Giaccagli et al.
(2022a,b,c,d).

1.2 Autonomous systems

1.2.1 Main definition

We consider a dynamic system that can be described using a differential equation
of the form

ẋ = f(x, t) (1.1)

where x ∈ R
nx is the state of the system and f : R

nx × R 7→ R
nx is a vector

field. We will assume f to be a C2 vector field in the first argument and piece-
wise continuous in the second. We indicate with X(x0, t, t0) the solution of (1.1)
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initialized at x0 ∈ R
nx and evaluated at time t ≥ t0 ∈ R, that is, the solution of the

initial value problem

∂

∂t
X(x0, t, t0) = f(X(x0, t, t0), t), X(x0, t0, t0) = x0 . (1.2)

In the following, we define the notion of incremental stability.

Definition 1.2.1 (Incremental stability). Let D ⊆ R
nx. We say that system (1.1)

is

• (δUS) Incrementally Uniformly Stable in D if there exists a class-K function
α such that

|X(x1, t, t0)− X(x2, t, t0)| ≤ α(|x1 − x2|) ; (1.3)

• (δUES) Incrementally Uniformly Exponentially Stable in D if there exist two
strictly positive real numbers k, λ > 0 such that

|X(x1, t, t0)− X(x2, t, t0)| ≤ k |x1 − x2| exp(−λ(t− t0)) ; (1.4)

for any couple of initial conditions (x1, x2) ∈ D × D and for all t ≥ t0. In case
D = R

nx, we say that the system is, respectively, Incrementally Globally Uniformly
Stable (δGUS) and Incrementally Globally Uniformly Exponentially Stable (δGUES).

1.2.2 Existing results

The study of incremental stability properties has a long history. A nice bibliogra-
phy summary can be found in the recent review Giesl et al. (2022). The earliest
results on contractive systems can be tracked back down 100 years ago, when Ba-
nach showed that in a complete metric space, (S, |·|), a mapping T : S 7→ S satisfying
|T (x)− T (y)| ≤ ρ |x− y| for some ρ ∈ (0, 1) would lead to the existence of a unique
fixed point x⋆ for the map T satisfying x⋆ = T (x⋆), see Banach (1922). Later on,
in the late ′40, Lewis showed tha under the solution of a differential equation, the
geodesic (i.e. the shortest curve) between two points in a Finsler space is expo-
nentially decreasing in time and this would imply asymptotic convergence of two
different solutions of an ODE Lewis (1949, 1951). Then, in Hartman (1961) the
author showed analogous results, by proving that the distance between two solu-
tions is decreasing in time and that, for time-invariant systems, this would lead to
the existence of an asymptotically stable equilibrium point. Similar results have
been found independently by Krasovskii when considering a Euclidean space in
Krasovskii (1959) and by Demidovich (see Pavlov et al. (2004) for a historical re-
view). In particular, Demidovich studied the convergent properties of solutions of
ODEs. Under the solution of a differential equation, he claimed that solutions of a
nonlinear time-varying vector field have a distance associated with a Euclidean met-
ric that is exponentially decreasing in time, extending Krasovskii’s result in the case
of non-existence of equilibrium points. Demidovich’s results led to the definition of
convergent systems (see Section 1.2.3.2).

The interest in incremental stability and contractive properties in control theory
started to become popular after the publication of Lohmiller and Slotine (1998)
(and intensively extended in the numerous publications by Slotine and co-workers).
The authors studied an infinitesimal displacement (i.e. an infinitesimal variation of
the initial conditions) between two different solutions of an ODE. They showed that
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different solutions approach each other, provided that they remain inside a contrac-
tion region, a subset of the state space where the Jacobian of the vector field satisfies
a differential equation. In this sense, the authors recovered the results previously
obtained by Lewis, Hartman, Krasovskii, and Demidovich. From the ′2000 to the
present days, incremental stability in control theory has been intensively studied in
numerous publications. Among them, we recall for instance the Lyapunov-based
analysis in Forni and Sepulchre (2013a) and Angeli (2002, 2009) (where the concept
of incremental ISS was first introduced), the analysis based on matrix measures
(also called logarithmic norms) in Sontag (2010), Aminzare and Sontag (2014) and
the related applications for infinite-dimensional systems (see, for instance Russo
et al. (2010), Aminzare et al. (2014) and references therein). It is worth also recall-
ing the work Simpson-Porco and Bullo (2014) where a geometrical interpretation of
contractive systems was studied in Riemannian manifolds, and Andrieu et al. (2016)
where the authors studied transverse exponential stability, a generalized notion of
incremental exponential stability. Incremental stability has been studied also in case
only a ‘subset’ of the state-space is contractive. This has led to the (similar) notions
of partial contraction Wang and Slotine (2005), horizontal contraction Forni and
Sepulchre (2013a) and, more recently, of k-contraction Wu et al. (2022). Despite
this manuscript focuses on continuous-time smooth nonlinear systems, for the sake
of completeness it is worth recalling also some results on incremental stability for
discrete-time nonlinear systems Tran et al. (2018), Tsukamoto et al. (2021), for hy-
brid systems Biemond et al. (2018), stochastic incremental stability Kawano and
Hosoe (2021) and with non-Euclidean norms Davydov et al. (2021a,b). Incremen-
tal stability properties have been used also in several practical applications. For
instance, in Fromion et al. (1999), a PI control for a missile was designed through
contractive tools implemented via LMIs. In Reinders et al. (2022), a repetitive con-
trol scheme was implemented for a ventilation machine, where stability properties
are guaranteed using incrementally stable and convergent arguments. In Jayaward-
hana et al. (2007), incremental passivity (see Forni and Sepulchre (2013b)) was
exploited for the control of nonlinear RCL circuits.

Giving an exhaustive and detailed list of references for incremental stability is out of
the scope of this section. For this, we have just recalled some of the most important
works existing in the literature and we won’t go further into details. The interested
readers can find additional results in the references of the various articles that have
been cited. Here, the main objective is to point out the following three aspects:

1. incremental stability and contractive systems have a long history and therefore
some of the results that will be presented in this first chapter are not new;

2. nevertheless, there are still several aspects and open questions, and this makes
contraction theory still a ‘hot topic’ for control engineers and mathematicians;

3. the interest in incremental stability is motivated by its employment in practical
applications, since it provides stability properties that, generally, cannot be
obtained by solving an equilibrium stabilization problem.

With this in mind, the objective of what will follow will be:

• to provide an overview of the main aspects of incremental stability, by char-
acterizing the main properties and the various shades with a detailed mathe-
matical formalism. In particular, we will focus on the ‘metric-based’ approach,
which will be the leading analysis and design tool of the whole manuscript;
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• to present some additional new results that have been developed, to provide
an answer to some open problems;

• to do all this with ‘an eye towards control design’, that is, to present all of
these aspects with the objective to use them as tools to solve control engi-
neering problems. In particular, this last aspect will be of interest as we will
rely on incremental stability theory as the main tool to provide a possible so-
lution to the output regulation and the multiagent synchronization problem,
respectively, in Chapter 2 and Chapter 3 of the manuscript, together with some
practical applications in Chapter 4.

1.2.3 Metric-based approach to incremental stability

1.2.3.1 Tools to study incremental stability

Among the different methodologies to study incremental stability properties of non-
linear systems, we recognize 3(+1) different approaches. The first approach is the
one proposed for instance in Sontag (2010) and Aminzare and Sontag (2014) for the
case of incremental exponential stability. It is based on the study of system (1.1)
by means of matrix measures (also called logarithmic norms) on normed spaces, see
Söderlind (2006). We recall in the following the main aspects of Euclidean spaces.
Given a symmetric positive definite matrix P ∈ R

nx×nx , P = P⊤ ≻ 0 and the asso-
ciated induced matrix norm ||·||P , we define the matrix measure µP : Rnx×nx 7→ R

associated to the matrix function P as

µP (A) := lim
h 7→0+

||I + hA||P − 1

h
(1.5)

Remark 1.2.1. In case ||·|| is the Euclidean 2-norm, then P = I and µI(A) is the

maximum eigenvalue of the symmetric part of A, that is, A+A⊤

2
. Note moreover that

the logarithmic norm can be extended to more general norms, such as the infinity
norm. See Davydov et al. (2021a,b) for a contraction theory analysis in such a case.

Incremental exponential stability is claimed under the existence of a symmetric
positive definite matrix P and associated matrix norm such that the matrix measure
of the Jacobian of the vector field f in (1.1) is uniformly negative definite, see
(Sontag, 2010, Theorem 1). In particular, if there exists a strictly positive real
number λ > 0 such that

µP
(
∂f

∂x
(x, t)

)
≤ −λ , (1.6)

then (1.4) holds with such a λ and with k = 1.

The second approach follows a Lyapunov-based analysis. Within this context, we
can recognize two sub-cases. The first one is the one proposed in Forni and Sepulchre
(2013a) (see also Wu and Duan (2021)). In this work, the authors study incremental
stability properties of a system of the form (1.1) on a forward invariant manifold
D with Finsler-Lyapunov functions. In other words, they lift the usual concept of
Lyapunov function to the tangent bundle1. This point-wise tangent characterization
allows associating to the local convergence of trajectories, a Lyapunov function
by path-integrating along the solutions of the system. It is shown in (Forni and
Sepulchre, 2013a, Theorem 1) that it is possible to characterize the behaviour of

1Given a manifold D, the tangent bundle of D is defined as the union of all the x ∈ R
nx belonging to

the tangent space of D.
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distances between different trajectories of (1.1) under the existence of a C1 Finsler-
Lyapunov function V : Rnx × R

nx 7→ R≥0 satisfying

∂V

∂x
(x, δx)f(x, t) +

∂V

∂δx
(x, δx)

∂f

∂x
(x, t) ≤ −α(V (x, δx)) , (1.7)

together with the usual ‘sandwich-like’ bounds on V guaranteeing positivity, ho-
mogeneity, and strict convexity, which are generally required to show that if the
Lyapunov function decreases along the trajectories, so does the distance between
two solutions. The function α(·) characterizes the behavior of the convergence, de-
pending if it is the zero-function α(s) = 0 (non-increasing distances), a class-K
function (stable and asymptotically convergent to zero distances) or if it is linear in
its argument (stable and exponential convergency to zero of distances). A converse
theorem with Finsler-Lyapunov functions has been provided in Wu and Duan (2021)
in case the vector field f has bounded first derivatives.

The second sub-case regarding a Lyapunov-based approach to study incremental
stability is the one proposed in Angeli (2002, 2009). Here, the author considers
time-invariant systems affected by an external signal d taking values in a compact
set, and studies the notion of incremental global asymptotic stability. The key
intuition is to study a system and a copy of itself, that is, to study

ẋ1 = f(x1, d)

ẋ2 = f(x2, d)
(1.8)

and to analyze the stability properties of the manifold where x1 = x2. Sufficient
and necessary conditions guaranteeing incremental global asymptotic stability are
obtained through the existence of a continuous function V : R

nx × R
nx 7→ R≥0

satisfying

V (X(x1, t, d),X(x2, t, d))− V (x1, x2) ≤ −
∫ t

0

α(|X(x1, τ, d)− X(x2, τ, d)|) dτ. (1.9)

In such a case, α is any positive function and V still presents the ‘sandwich-like’
bounds guaranteeing radial unboundedness, positivity, and homogeneity, where such
bounds are imposed to hold on the difference |x1 − x2|. It important to remark
that in Angeli (2002) (with further extensions in Angeli (2009)), the author first
introduces the concept of incremental input-to-state stability, that will be discussed
in this chapter later on, in Section 1.3.

The last of the approaches to study incremental stability properties is the one based
on the study of Riemannian metrics. Its application in control system design has
been characterized in several works. Among the most well-known and complete, we
recall for instance Lohmiller and Slotine (1998) (and the several works by Slotine and
co-workers) and Andrieu et al. (2016) for the δGUES case. In this case, incremental
exponential stability is obtained if there exists a Riemannian metric along which the
flow of the vector field (1.1) generates trajectories for which the distance associated
with such Riemannian metric is monotonically decreasing in forward time (i.e. for
each t ≥ t0, we have that the mapping x0 7→ X(x0, t, t0) is a contraction). Such a
condition can be verified under the solution of a differential equation involving the
Jacobian of the vector field f of the form2

LfP (x, t) ⪯ −qI, (1.10)

2see the Notation for the definition of the Lie derivative of a vector field along a 2-tensor

6
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see for instance Andrieu et al. (2020) for the time-invariant case. In such a case,
q is a strictly positive real number, P : Rnx × R 7→ R

nx×nx is a C1 symmetric and
positive definite matrix function representing the Riemannian metric (and coupled
with the norm |·|P (x,t)), which is uniformly upper and lower bounded by strictly
positive definite constant matrices, to guarantee completeness of the metric space
and to provide uniformity in the convergence of different solutions of the system (i.e.
to guarantee equivalence of norms between the Euclidean one and the Riemaniann
one).

In this manuscript, we focus on this fourth and last method, that is, on the anal-
ysis of incremental stability properties using a metric-based approach. All of these
approaches provide similar results. However, at the current time, the author of this
manuscript is not aware of works that provide a comparative study among all of
these techniques, by providing for instance a constructive design to pass from one of
the four conditions (1.6), (1.7), (1.9), (1.10) to any of the others. The main interest
in employing a metric-based analysis can be addressed for instance, in the fact that
we will be able to provide tractable conditions for the analysis of incrementally stable
systems (and the design of control laws) for some specific classes of systems.

1.2.3.2 A few words on convergent systems

The notion of incremental stability is strictly related to the notion of convergent
systems. Such a notion has been first introduced by B.P. Demidovich (see Demi-
dovich (1959) and Pavlov et al. (2004)) and has been intensively studied in the
manuscript Pavlov et al. (2006) and in various articles by the same authors. For the
sake of completeness, we recall such a definition (see (Pavlov et al., 2005, Definition
1)).

Definition 1.2.2 (Convergent). System (1.1) is said to be convergent if:

• there exists a solution X̄(x0, t, t0) defined and bounded for all t ∈ R;

• the solution X̄(x0, t, t0) is globally asymptotically stable.

If the solution X̄(x0, t, t0) is globally exponentially stable, then the system is said to
be exponentially convergent.

Despite Definition 1.2.1 and Definition 1.2.2 may seems similar, they’re actually
different notions and many counterexamples can be found in this sense, see the
comparative study Rüffer et al. (2013). The main difference in this sense is that
convergent systems assume the existence of a ‘steady-state’ bounded solution, while
incremental systems do not. This difference becomes evident and relevant when
considering time-varying vector fields.

1.2.3.3 Metric characterization of incremental stability: sufficient conditions

In this section, we provide a characterization of the different shades of incremental
stability in Definition 1.2.1 using an analysis based on Riemannian metrics. Suf-
ficient conditions to claim global uniform incremental stability for a system of the
form (1.1) are presented in the following (see e.g. Andrieu et al. (2016) for an
equivalent proof).

Theorem 1.2.2 (Sufficient conditions for incremental stability). Consider system
(1.1). Assume there exists a C1 matrix function taking symmetric positive real values

7
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P : Rnx × R 7→ R
nx×nx, two strictly positive real numbers p ≥ p > 0 and a non-

negative continuous function q : Rnx 7→ R≥0 such that the following conditions hold:

pI ⪯ P (x, t) ⪯ pI , (1.11a)

LfP (x, t) ⪯ −q(x)P (x, t) (1.11b)

for all x ∈ R
nx, for all t ≥ t0. Then:

1. if q(x) ≥ 0 for all x ∈ R
nx, then the system is δGUS;

2. if there exists a strictly positive real number λ > 0 such that q(x) ≥ λ for all
x ∈ R

nx, then the system is δGUES.

Proof. Given any vector v ∈ R
nx define the norm operator associated to the

metric P (x, t) as
|v|2P (x,t) := v⊤P (x, t)v . (1.12)

Let [s1, s2] ⊂ R and fix an instant of time t ≥ t0. Define γt : [s1, s2] 7→ R
nx as

any C2 curve (parametrized by t) such that, at time t, we have that γt(s1) = x1
and γt(s2) = x2 for any two points (x1, x2) ∈ R

nx × R
nx . Define the length of

the curve γt in the operator norm P (x, t) as

ℓP (γt) :=

∫ s2

s1

|γt(s)|P (γ(s),t) ds (1.13)

where the pedix t is included to specify the fact that the length of the curve
depends on the considered time instant. Then, define the energy of the curve γt
as

EP (γt) :=
1

2

∫ s2

s1

|γt(s)|2P (γ(s),t) ds . (1.14)

Then, for any fixed t ≥ t0, define the distance between the two points (x1, x2) ∈
R
nx×R

nx as the infimum of the length in the operator norm P in all the possible
curves γ at time t, i.e.

distP (x1, x2) := inf
γt

{ℓP (γt)} . (1.15)

Note that the inf{·} operator is in γt as, for fixed (x1, x2) ∈ R
nx×R

nx , the curve
with minimum length might change depending on the considered time instant.
Now, fix t0 ∈ R. Let Γ(s, t, t0) be the solution of the system (1.1) parametrized
along the curve γt0(s), namely, Γ(s, t, t0) = X(γt0(s), t, t0) and define the function

ξ(s, t, t0) :=

∣∣∣∣
∂Γ

∂s
(s, t, t0)

∣∣∣∣
2

P (Γ(s,t,t0),t)

. (1.16)

8
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Taking its time derivative and by using (1.11b) it yields

∂

∂t
ξ(s, t, t0) =

∂

∂t

∣∣∣∣
∂Γ

∂s
(s, t, t0)

∣∣∣∣
2

P (Γ(s,t,t0),t)

=
∂Γ⊤

∂s
(s, t, t0)LfP (Γ(s, t, t0), t)

∂Γ

∂s
(s, t, t0)

≤ −q(Γ(s, t, t0))
∣∣∣∣
∂Γ

∂s
(s, t, t0)

∣∣∣∣
2

P (Γ(s,t,t0),t)

≤ −q(Γ(s, t, t0))ξ(s, t, t0) .

Therefore

∂

∂t
EP (Γ(s, t, t0)) =

∂

∂t

∫ s2

s1

ξ(s, t, t0) ds

≤ −
∫ s2

s1

q(Γ(s, t, t0))ξ(s, t, t0) ds .

We now show all the items separately.
Item 1: If q(Γ(s, t, t0)) ≥ 0, then ∂

∂t
EP (Γ(s, t, t0)) ≤ 0. This implies EP (Γ(s, t, t0)) ≤

EP (γt0(s)). Let E
⋆
P (Γ(s, t, t0)) be the minimum-energy path, that is

E⋆
P (Γ(s, t, t0)) := inf

γt0

EP (Γ(s, t, t0)) (1.17)

Using the lower bound in (1.11a), we get that the energy of a curve in the norm
P is lower-bounded by the energy in a Euclidean metric, namely

p

2

∫ s2

s1

∂Γ⊤

∂s
(s, t, t0)

∂Γ

∂s
(s, t, t0) ds ≤ EP (Γ(s, t, t0)) .

Recall now that the minimum energy path for an Euclidean metric is the straight
line s 7→ x1 +

s1−s
s1−s2 (x2 − x1). To check this, consider the path s 7→ δ(s) such

that δ(s1) = δ(s2) = 0. Consider now the function

χ(h) :=

∫ s2

s1

(
∂X

∂s
(γ⋆t0(s), t, t0) + h

∂δ

∂s
(s)

)⊤(
∂X

∂s
(γ⋆t0(s), t, t0) + h

∂δ

∂s
(s)

)
ds ,

where γ⋆t0(s) is the minimum energy path. In this sense, δ(·) represents a per-
turbance to the (Euclidean) minimum energy of a curve. This implies that the
function χ reaches its minimum at h = 0. By integrating per part and recalling
the boundary conditions of δ, we get

0 =
∂χ

∂h
(0) = 2

∫ s2

s1

∂δ⊤

∂s
(s)

∂X

∂s
(γ⋆t0(s), t, t0) ds = −2

∫ s2

s1

δ⊤(s)
∂2X

∂s2
(γ⋆t0(s), t, t0) ds .

Since this doesn’t depends on δ, it follows that

∂2X

∂s2
(γ⋆t0(s), t, t0) = 0 ,

9
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namely, for the Euclidean case, the minimum energy path is the straigh (linear)
path. Hence

p

2

∫ s2

s1

∂X⊤

∂s
(γ⋆t0(s), t, t0)

∂X

∂s
(γ⋆t0(s), t, t0) ds ≥ c |x1 − x2|2

for some c > 0. Note now that, by definition of infimum, for all n ∈ N, there
exists a curve γnt0 such that

EP (X(γ
n
t0
(s), t, t0))− E⋆

P (X(γt0(s), t, t0)) ≤ 1
n
. (1.18)

By taking the limit for n 7→ +∞, we get

c |x1 − x2|2 ≤ E⋆
P (X(γt0(s), t, t0)) . (1.19)

On the other hand, by definition, any other curve than the geodesic has a greater
energy. Taking for instance the energy of the straigh line, it follows that there
exists c > 0 such that

E⋆
P (X(γt0(s), t, t0)) ≤ c |x1 − x2|2 . (1.20)

Since

E⋆
P (X(γt0(s), t, t0)) ≤ EP (X(γt0(s), t, t0))

≤ EP (γt0(s))

≤
(
E⋆
P (γt0(s)) +

1
n

)
,

by employing (1.19) and (1.20) and by taking the limit n 7→ +∞, inequality
(1.3) follows.
Item 2: If there exists λ > 0 such that q(x) ≥ λ for any x ∈ R

nx , then

∂
∂t
EP (Γ(s, t, t0)) ≤ −λ EP (Γ(s, t, t0)) .

Hence by Gronwall’s lemma

EP (Γ(s, t, t0)) ≤ EP (γt0(s)) exp (−λ(t− t0)) .

Let E⋆
P (Γ(s, t, t0)) be the minimum-energy path defined as in (1.17). By defini-

tion, for all n ∈ N there exists a curve γnt0 such that (1.18) holds. Therefore it
follows that

E⋆
P (X(γt0(s), t, t0)) ≤ EP (X(γt0(s), t, t0))

≤ EP (γt0(s)) exp(−λ(t− t0))

≤
(
E⋆
P (γt0(s)) +

1
n

)
exp(−λ(t− t0)) .

By taking the limit for n 7→ +∞ and following the same exact steps as in Item
1, inequality (1.4) follows.

Remark 1.2.3. The lower bound in (1.11a) is required to make sure that the whole
R
nx space is endowed with the Riemannian metric P is complete. Such a condition

guarantees that every geodesic can be maximally extended to R (see Sanfelice and
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Praly (2011)). By Hopf-Rinow’s Theorem (see (Sakai, 1996, Theorem 1.1)) this
implies that the metric is complete and hence that the minimum of the length of
any curve γ connecting two points (x1, x2) is given by the length of the geodesic at
any time instant. Similarly, it guarantees that the Lyapunov function defined as the
distance associated with the norm operator in the metric P is radially unbounded, and
therefore incremental properties are obtained globally in the state space. Moreover,
the upper bound in (1.11a) is introduced for solutions to be uniformly decreasing.
As shown in the proof, by guaranteeing that both the upper and the lower bound are
provided with respect to two strictly positive real numbers p, p, we can link the decay
of trajectories in the distance operator distP (·, ·) to the Euclidean norm, i.e. we can
go from the Riemaniann distance to the Euclidean one and its associated norm.

Remark 1.2.4. In case the metric P is a constant symmetric positive definite matrix
(i.e. we consider a Euclidean metric), the function f can be only C1 in its first
argument. Indeed, in this case, an equivalent proof of Theorem 1.2.2 can be given
by considering the Lyapunov function V (e(t)) = e⊤(t)Pe(t) with e := x1 − x2 and
by using the Mean Value Theorem.

Remark 1.2.5. Theorem 1.2.2 provides only sufficient conditions to claim uni-
form incremental stability. In literature, there exist some converse theorems. In
particular, in Andrieu et al. (2016) a converse metric-based result for the δGUES
property is given in case the vector field f is time-invariant and has a bounded first
derivative. Recently, a similar result has been given in Wu and Duan (2021) with
Finsler-Lyapunov functions.

The same result of Theorem 1.2.2 holds when trajectories remain inside a compact
invariant set. The following result shows such a case for the δGUES property.
Similar considerations can be done for the δGUS one.

Corollary 1.2.5.1. Suppose that there exists a C1 matrix function P : Rnx × R 7→
R
nx×nx taking positive definite symmetric values and two positive real numbers p, p,

such that (1.11a) holds for all (x, t) ∈ R
nx × R. Let D be compact subset of Rnx

that is invariant for system (1.1) and assume that there exist a positive function
q : Rnx 7→ R>0 and a strictly positive real number λ > 0 such that q(x) ≥ λ for all
x ∈ R

nx and such that inequality (1.11b) holds for all x ∈ O, where

O :=
{
x ∈ R

nx ,max
s∈D

|x− s| < r
}
, (1.21)

where r > 0 is any positive real number satisfying

r >

√
p

2
√
p

max
(x1,x2)∈D2

|x1 − x2| . (1.22)

Then, system (1.1) is δUES in D.

Proof. Let [s1, s2] ⊂ R and fix an instant of time t ≥ t0. Define γt :
[s1, s2] 7→ R

nx as any curve (parametrized by t) such that, at time t, we have
that γt(s1) = x1 and γt(s2) = x2 for any two points (x1, x2) ∈ R

nx ×R
nx . Define

then, the length of the curve γt in the operator norm P (x, t) as (1.13). Then, for
any fixed t ≥ t0, define the distance between the two points (x1, x2) ∈ R

nx×R
nx

as (1.15). Note that for all (x1, x2) both in R
nx , inequalities (1.11a) imply

p|x1 − x2|2 ≤ dist2P (x1, x2) ≤ p|x1 − x2|2 . (1.23)
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Let r1 be such that

r > r1 >

√
p

2
√
p

max
(x1,x2)∈D2

|x1 − x2| , (1.24)

and let

O1 =

{
x ∈ R

nx ,max
s∈D

|x− s| < r1

}
. (1.25)

Note that D ⊂ O1 and cl{O1} ⊂ O. The proof is divided into two steps. In the
first step, it is shown that the (Riemannian) convex hull of D is included in O1

defined in (1.25). In a second step, it is shown that the Riemannian distance
between any pair of points in D converges exponentially to zero.
Step 1 : Let (x1, x2) be in D. From (1.24), we can find ϵ > 0 such that

ϵ√
p
< 2r1

√
p

p
− max

(x1,x2)∈D2
|x1 − x2|. (1.26)

Fix t0 ∈ R. We aim at showing that for all C2 time-parametrized path γt0 :
[s1, s2] → R

nx between x1 = γt0(s1) and x2 = γt0(s2) such that

ℓP (γt0) ≤ distP (x1, x2) + ϵ , (1.27)

this implies that γt0(s) ∈ O1 for all s ∈ [s1, s2]. Assume the opposite. In other
words, assume that there exists s⋆ in [s1, s2] such that γt0(s

⋆) /∈ O1. With (1.25),
this implies that |γt0(s⋆)− x1| ≥ r1 and |γt0(s⋆)− x2| ≥ r1. Consequently, in
combination with the left-hand side of (1.23), it implies

ℓP (γt0) ≥ distP (x1, γt0(s
⋆)) + distP (x2, γt0(s

⋆))

≥√p (|x1 − γt0(s
⋆)|+ |x2 − γt0(s

⋆)|)
≥ 2r1

√
p .

(1.28)

On the other hand, with (1.27), the right-hand side of (1.23) and (1.26), it yields

ℓP (γt0) ≤
√
p |x1 − x2|+ ϵ < 2r1

√
p . (1.29)

This yields a contradiction. Consequently, for all C2 paths such that (1.27)
holds, γt0(·) takes values in O1.
Step 2: Let now T > 0 be a real number such that

X(x, t, t0) ∈ O, ∀(x, t) ∈ O1 × [t0, T ] . (1.30)

Such a T exists since there exists a minimal distance between the boundary
of the two sets, and O is bounded. Consider a C2 path between (x1, x2) ∈
D×D satisfying (1.27). With Step 1, we know that γt0 : [s1, s2] 7→ O1. For all
(s, t, t0) ∈ [s1, s2]× [t0, T ]× R we can define

Γ(s, t, t0) := X(γt0(s), t; t0), ξ(s, t, t0) :=

∣∣∣∣
∂Γ

∂s
(s, t, t0)

∣∣∣∣
2

P (Γ(s,t,t0))

.

12
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Due to (1.30), Γ(s, t, t0) ∈ O for all (s, t, t0) ∈ [s1, s2]× [t0, T ]×R. Then ξ is C1

and equation (1.11b) yields

∂ξ

∂t
(s, t, t0) =

∂Γ⊤

∂s
(s, t, t0)LfP (Γ(s, t, t0), t)

∂Γ

∂s
(s, t, t0)

≤ −λ
∣∣∣∣
∂Γ

∂s
(s, t, t0)

∣∣∣∣
2

P (Γ(s,t,t0))

= −λ ξ(s, t, t0)

which yields

∂ℓP (Γ(·, t, ·))
∂t

=
∂

∂t

∫ s2

s1

√
ξ(s, t, t0) ds

=

∫ s2

s1

1

2
√
ξ(s, t, t0)

∂ξ

∂t
(s, t, t0) ds

≤ −λ
2
ℓP (Γ(·, t, ·)) .

Hence, ℓP (Γ(γt0 , T, t0)) ≤ ℓP (γt0) exp(−λ
2
(T−t0)). Choosing a sequence of paths

(γnt0)n∈N such that ℓP (γ
n
t0
) 7→ distP (x1, x2) and satisfying (1.27) and passing to

the limit, we obtain

distP (X(x1, T, t0),X(x2, T, t0)) < κ distP (xa, xb) . (1.31)

for some 0 < κ < 1. This property is true for all (x1, x2) in D ×D. Recalling
the positive invariance of D, it implies that (1.4) holds.

1.2.4 Main properties

1.2.4.1 Periodicity of trajectories and equilibrium point

In this section, we aim to review the main properties of incremental systems. In
particular, we will focus on the following two aspects: periodicity of trajectories (and
the existence of equilibrium points) and invariance with respect to diffeomorphisms.
A property of interest of incremental systems is that if the vector field f is periodic
with respect to time, then the trajectories will asymptotically converge to a periodic
solution with the same period. This is recalled in the following. See for instance
Angeli (2002); Sontag (2010) for a proof.

Lemma 1.2.6 (Periodic trajectories). Consider system (1.1) and assume that is
δGUES. Assume that f is periodic, namely, there exists a positive real number T > 0
such that f(x, t)− f(x, t+ T ) = 0 for all t ≥ t0. Then the trajectories of the system
asymptotically converge towards a periodic solution with the same period.

An incremental system doesn’t necessarily admit the existence of an equilibrium
point. The following examples show that.

Example 1.2.7. We consider the δGUS and δGUES property separately.

• Consider the system ẋ = 1. The system is δGUS. This can be claimed through
Theorem 1.2.2 with the metric P = 1, or by explicitly calculating the trajectory
of the system, that is

X(x, t) = x+ t

13
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and by showing that

|X(x1, t)− X(x2, t)| = |x1 − x2| .
The system does not have an equilibrium point.

• Consider the system ẋ = −x + t. The system is δGUES. This can be claimed
through Theorem 1.2.2 with the metric P = 1, or by explicitly calculating the
trajectory of the system, that is

X(x, t, t0) = exp(−(t− t0))x+

∫ t

t0

exp(s− t)s ds

and by showing that

|X(x1, t)− X(x2, t)| = |x1 − x2| exp(−(t− t0)) .

Again, the system does not have an equilibrium point.

However, if an equilibrium point exists then it is necessarily unique and stable.

Corollary 1.2.7.1 (Equilibrium implies stability). Consider system (1.1) and as-
sume that there exists x⋆ ∈ R

nx such that f(x⋆, t) = 0 for all t ≥ t0. Then:

• if the system is δGUS, then x⋆ is Globally Stable (GS);

• if the system is δGUES, then x⋆ is Globally Exponentially Stable (GES).

Proof. Since x⋆ is an equilibrium, then x⋆ = X(x⋆, t, t0) for all t ≥ t0. As
(1.3) (respectively, (1.4)) hold for all (x1, x2) ∈ R

nx ×R
nx and for all t ≥ t0, the

result follows.

If Lemma 1.2.6 holds for any T > 0, then system (1.1) is time-invariant, i.e. it can
be described by a differential equation of the form

ẋ = f(x) . (1.32)

If a time-invariant system (1.32) presents some incrementally uniformly globally
stability properties on a closed forward invariant set, then it must admit a stable
equilibrium point. This is recalled in the following.

Corollary 1.2.7.2 (Time-invariant implies equilibrium). Consider system (1.32). If
it is δUES in a closed forward invariant set D, then there exists a unique equilibrium
x⋆ which attracts all solutions initiated in D.

Proof. Let τ be such that k exp(−λτ) = ρ < 1 and define Tτ as the mapping
that associates to any initial condition x0 of system ẋ = f(x), its corresponding
solution X(x0, τ) at time τ , that is Tτ (x0) := X(x0, τ). Since D is forward
invariant, the function so defined maps points in D into D. Furthermore, by
using the inequality (1.4) guaranteed by the δUES property of system (1.1) on
D, for any two given points x1, x2 ∈ D, we have

|Tτ (x1)− Tτ (x2)| ≤ ρ|x1 − x2|

for some ρ < 1. Recall that the Euclidean space endowed with standard Eu-
clidean norm is a complete metric. Hence, the map Tτ is a contraction and by
Banach fixed point theorem (see, e.g., Almezel et al. (2014) or (Khalil, 2002,
Appendix B)), there exists a unique fixed point x⋆ in D such that Tτ (x⋆) = x⋆.
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Hence, for any x in D, inequality (1.4), implies,

|X(x, t)− x⋆| = |X(x, t)− X(x⋆, t)|
≤ k exp(−λt) |x− x⋆| .

Hence, x⋆ attracts all trajectories initiated from D. An equivalent proof of this
Corollary has been developed independently in (Heemels et al., 2020, Section
IV-B).

Remark 1.2.8. In case D in Corollary 1.2.7.2 coincides with R
nx, then the equi-

librium point is Globally Exponentially Stable.

A time-invariant δGUES system always admits a globally exponentially stable equi-
librium point. The same however does not hold for the δGUS property. Example
1.2.7 confirms so. In this case, indeed, we have to assume the existence of the equi-
librium. In some cases, such an equilibrium is not only stable but also attractive.
The following result claims so.

Proposition 1.2.9 (Non-uniform δGUES). Suppose there exist a C1 function P :
R
nx × R → R

nx×nx taking positive definite symmetric values, a continuous strictly
positive function q : R

nx → R>0 and positive real numbers p, p > 0, such that
(1.11a), (1.11b) hold for all (x, t) ∈ R

nx × R. If there exists an equilibrium point
x⋆ ∈ R

nx, then x⋆ is unique and it is globally attractive for system (1.1).

Proof. Since system (1.1) satisfies (1.11b), (1.11a), following the same steps
that in Step 2 of the proof of Corollary 1.2.5.1 it can be shown that picking
any two points (x1, x2) in R

nx × R
nx , it yields distP (X(x1, t, t0),X(x2, t, t0)) ≤

distP (x1, x2). Recalling that p |x1 − x2|2 ≤ dist2(x1, x2) ≤ p |x1 − x2|2, it fol-
lows that |X(x1, t, t0)− X(x2, t, t0)| ≤ k |x1 − x2| for some k > 0. In the par-
ticular case in which there exists an equilibrium x⋆, then for all x in R

nx , it
follows that distP (X(x, t, t0), x

⋆) ≤ distP (x, x
⋆). Hence, for all d ≥ 0, the

set C := cl{x, distP (x, x⋆) ≤ d} is a compact invariant subset of R
nx . Let

q
O
:= min{x∈O} q(x) > 0, where O := {x ∈ R

nx ,maxs∈C |x − s| < r, }, for some

positive real number r satisfying r >
√
p

2
√
p
max(x1,x2)∈C2 |x1 − x2| . Hence, in view

of Corollary 1.2.5.1, this implies that the system (1.1) is δUES on C, and appli-
cation of Corollary 1.2.7.2 implies the existence of a unique equilibrium which is
attractive from C. Since these arguments hold for any d ≥ 0, we conclude that
x⋆ is the unique equilibrium globally attractive.

1.2.4.2 Preservation via diffeomorphism

Incremental stability is a property of trajectories and hence it is coordinate-free.
Therefore, it is preserved via diffeomorphism. This has been shown in (Angeli,
2002, Proposition 4.6) in case convergence between trajectories is only asymptotic.
Following the same lines, we provide such a result.

Proposition 1.2.10 (Invariance via diffeomorphism). Consider system (1.1) and
assume that it is δGUS (respectively, δGUES). Let φ : R

nx 7→ R
nx be a global

diffeomorphism such that there exist two strictly positive real numbers L1, L2 > 0
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such that

|φ(x)− φ(y)| ≤ L1 |x− y| , (1.33a)∣∣φ−1(x)− φ−1(y)
∣∣ ≤ L2 |x− y| (1.33b)

for all x, y ∈ R
nx, where φ(φ−1(z)) = z. Consider the change of coordinates x 7→

z := φ(x) so that system (1.1) can be rewritten as

ż =
∂φ

∂x
(φ−1(z))f(φ−1(z), t) := fz(z, t) . (1.34)

Then also (1.33) is δGUS (respectively, δGUES).

Proof. Let Z(z, t, t0) indicates the trajectory of (1.34). We prove the two
cases separately.
Case 1: (δGUS). We have that

|Z(z1, t, t0)− Z(z2, t, t0)| =
∣∣φ(X(φ−1(z1), t, t0))− φ(X(φ−1(z2), t, t0))

∣∣
≤ L1

∣∣X(φ−1(z1), t, t0)− X(φ−1(z2), t, t0)
∣∣

≤ L1α(
∣∣φ−1(z1)− φ−1(z2)

∣∣)
≤ L1α(L2 |z1 − z2|)
:= αz(|z1 − z2|),

where αz is again a class-K function.
Case 2: (δGUES). We have that

|Z(z1, t, t0)− Z(z2, t, t0)| =
∣∣φ(X(φ−1(z1), t, t0))− φ(X(φ−1(z2), t, t0))

∣∣
≤ L1

(∣∣X(φ−1(z1), t, t0)− X(φ−1(z2), t, t0)
∣∣)

≤ L1k
∣∣φ−1(z1)− φ−1(z2)

∣∣ exp(−λ(t− t0))

≤ L1kL2 |z1 − z2| exp(−λ(t− t0)).

Remark 1.2.11. Condition (1.33a) implies that the considered diffeomorphism is
uniformly continuous, while (1.33b) implies that it is uniformly injective.

If incremental properties are claimed using Theorem 1.2.2, then the construction
of the metric in the new coordinates z = φ(x) can be easily obtained using the
following.

Proposition 1.2.12 (Metric in different coordinates). Consider system (1.1) and
assume to know a C1 symmetric and positive definite matrix function P : Rnx×R 7→
R
nx×nx, two strictly positive real numbers p ≥ p > 0 and a continuous function

q : Rnx 7→ R≥0 such that (1.11) holds. Let φ : Rnx 7→ R
nx be a global diffeomorphism

such that (1.33) holds. Then, the system (1.34) satisfies

0 ≺ p
z
I ⪯ Pz(z, t) ⪯ pzI , , (1.35a)

LfzPz(z, t) ⪯ −qz(z)Pz(z, t) (1.35b)

for all z ∈ R
nx, for all t ≥ t0, for some strictly positive real numbers pz, pz > 0 and

some function qz : R
nx 7→ R where

Pz(z, t) =

(
∂φ

∂x
(φ−1(z))

)−⊤

P (φ−1(z), t)

(
∂φ

∂x
(φ−1(z))

)−1

. (1.36)
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Moreover:

• if q(x) ≥ 0 for all x ∈ R
nx, then (1.34) is δGUS;

• if there exists a positive real number λ > 0 such that q(x) ≥ λ for all x ∈ R
nx,

then (1.34) is δGUES.

Proof. The proof is divided into three steps. First, we show that (1.34), (1.36)
satisfy (1.35b). Then, we show that the bound (1.35a) are guaranteed. Finally,
we show that the incremental properties are preserved.
Part 1. We have that

LfzP z(z, t) = dfzP z(z, t) + He

{
Pz(z, t)

[
∂

∂z

(
∂φ

∂x
(φ−1(z))

)
f(φ−1(z), t)

]}

+He

{
Pz(z, t)

[
∂φ

∂x
(φ−1(z))

∂f

∂x
(φ−1(z), t)

∂

∂z

(
φ−1(z)

)]}
.

Given any invertible matrix function A, we have that

∂

∂x
(A−1(x)) = −A−1(x)

∂

∂x
(A(x))A−1(x) .

Therefore we have that

dfzPz(z, t) =

[
He



−

((
∂φ

∂x

)−1
∂

∂z

(
∂φ

∂x

)(
∂φ

∂x

)−1
)⊤

P

(
∂φ

∂x

)−1




+

(
∂φ

∂x

)−⊤
∂

∂z
(P )

(
∂φ

∂x

)−1
]
∂φ

∂x
f

where every function is evaluated in φ−1(z) (besides f and P which are in
(φ−1(z), t)) and where the notation has been omitted for space reasons. Finally,
by using the definition (1.36) we get

LfzPz(z, t) =

(
∂φ

∂x
(φ−1(z))

)−⊤ [
LfP (φ

−1(z), t)
](∂φ

∂x
(φ−1(z))

)−1

⪯ −q(φ−1(z))Pz(z, t)

By defining qz(z) := q(φ−1(z)), the relation (1.35b) follows.
Part 2. Since the inverse of the Jacobian of the diffeomorphism is always full
rank and therefore invertible, we have that

φ(φ−1(z)) = z =⇒ ∂
∂z
(φ(φ−1(z))) = 1 (1.37a)

=⇒ ∂φ−1

∂z
(z) =

[
∂φ

∂x
(φ−1(z))

]−1
. (1.37b)
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Therefore,

Pz(z, t) ⪰
(
∂φ

∂x
(φ−1(z))

)−⊤

p

(
∂φ

∂x
(φ−1(z))

)−1

=

(
∂φ−1

∂z
(z)

)−⊤

p

(
∂φ−1

∂z
(z)

)−1

⪰ 1

L2
2

pI

By doing similar computations, a uniform costant upper-bound can be obtained.
Part 3. The third item is satisfied since for the δGUS and the δGUES case it’s
possible to take, respectively, qz = q = 0 and qz = q = λ > 0. Hence the result
follows from direct application of Theorem 1.2.2.

1.3 Nonautonomous systems

1.3.1 Incremental Input-to-State Stability

1.3.1.1 Main definition

In this section, we study nonlinear systems whose dynamics are affected by an
external input u. Such an input may represent a control action and/or a disturbance.
In particular, we consider systems defined by

ẋ = f(x, t) + g(x, t)ρ(u). (1.38)

where x ∈ R
nx is the state, u ∈ U is an exogenous signal where U ⊂ R

nu is a compact
set, f : Rnx × R 7→ R

nx and g : Rnx × R 7→ R
nx×nρ are C2 in their first argument

and piecewise continuous in the second and ρ : Rnu 7→ R
nρ is any function for which

there exists a class-K∞ function δρ such that

|ρ(u1)− ρ(u2)| ≤ δρ(|u1 − u2|) . (1.39)

We denote by X(x, u, t, t0) the solution of system (1.38) starting at initial condition
x at time t with input u = u(t) and satisfying the initial value problem

X(x, u, t, t0) = x,

∂X

∂t
(x, u, t, t0) = f(X(x, u, t, t0), t) + g(X(x, u, t, t0), t)ρ(u).

(1.40)

Definition 1.3.1 (Incremental ISS). We say that system (1.1) is

• (δGUISS) Incrementally Globally Uniformly Input-to-State Stable if there ex-
ists a class-K function α such that

|X(x1, u1, t, t0)− X(x2, u2, t, t0)| ≤ α(|x1 − x2|)+ sup
s∈[t0,t]

[αd (|u1(s)− u2(s)|)] ;

(1.41)
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• (δGUEISS) Incrementally Globally Uniformly Exponentially Input-to-State Sta-
ble if there exist positive real numbers k, λ such that

|X(x1, u1, t, t0)− X(x2, u2, t, t0)|
≤ k |x1 − x2| exp(−λ(t− t0)) + sup

s∈[t0,t]
[αd (|u1(s)− u2(s)|)] ; (1.42)

for all initial conditions x1, x2 ∈ R
nx and for all inputs u1, u2 ∈ U, for all

t ≥ t0 and for some class-K function αd.

1.3.1.2 Sufficient conditions for incremental-ISS: the Killing vector notion

In this section, we look for sufficient conditions for a system of the form (1.38) to
possess an incremental ISS property. To the best of the knowledge of the author of
this manuscript, such a notion has been studied in a general framework only using
a Lyapunov-based analysis in Angeli (2002, 2009). In this section, we aim to look
for some metric-based sufficient conditions to have an incremental ISS property. For
this, we introduce the notion of Killing Vector field.

Definition 1.3.2 (Killing vector field). Given a C1 2-tensor P : Rnx ×R → R
nx×nx

and a C1 vector field g : Rnx ×R → R
nx, we say that g is a Killing vector field with

respect to P if

LgP (x, t) = 0 (1.43)

for all (x, t) ∈ R
nx × R.

Remark 1.3.1. In case g is a C1 matrix function i.e. g : Rnx × R → R
nx×nρ, we

say that g is a Killing vector field (or it possesses the Killing vector field property),
meaning that LgiP (x, t) = 0 for all (x, t) ∈ R

nx × R, and for all i = 1, . . . , nρ with
gi being the i-th column of g.

The notion of Killing vector field takes the name from Wilhelm Killing, a German
mathematician (see, for instance, Nomizu (1960); Yano (1952)). In a few words,
such a Killing Vector property implies that distances between different trajectories
generated by the vector field g(x, t) in the norm |·|P (x,t) are invariant. Basically, the
signals that enter in the directions of the vector field g do not affect the distances,
in the sense that different trajectories of the differential equation ẋ = g(x, t) have a
distance (associated with the norm provided by P ) among them which is constant
for any t ≥ t0.

Remark 1.3.2. Note that:

• if P is constant and g(x, t) = G where G ∈ R
nx×nξ is any constant matrix,

then G has always the Killing vector property concerning such a P ;

• for any C1 scalar vector field g : R 7→ R such that there exists g ∈ R>0 such
that |g(x)| ≤ g for all x ∈ R, then P (x) = g−2(x) always satisfies the Killing
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vector property. Indeed

LgP (x) =
∂P

∂x
(x)g(x) + 2

∂g

∂x
(x)P (x)

∂g−2

∂x
(x)g(x) + 2

∂g

∂x
(x)g−2(x)

= −2
g′(x)

g3(x)
g(x) + 2

g′(x)

g2(x)

= 0

The requirement on g is due to the bounds that P should have.

The Killing Vector property can be used to derive sufficient conditions for a system
of the form (1.38) to be δGUISS or δGUEISS, as stated in the following.

Theorem 1.3.3 (Incremental + Killing vector implies δISS). Consider system
(1.38) and assume there exists a C1 matrix function P : Rnx × R → R

nx×nx tak-
ing symmetric positive definite values, two strictly positive real numbers p ≥ p > 0
and a continuous function q : Rnx 7→ R≥0 satisfying (1.11). Suppose moreover that
there exists a strictly positive real number g > 0 such that ||g(x, t)|| ≤ g for all
(x, t) ∈ R

nx ×R. Furthermore, assume that g is a Killing vector field for P , namely
LgP (x, t) = 0 for all (x, t) ∈ R

nx × R. Then

1. if q(x) ≥ 0 for all x ∈ R
nx, then the system is δGUISS;

2. if there exists a strictly positive real number λ > 0 such that q(x) ≥ λ for all
x ∈ R

nx, then the system is δGUEISS.

Proof. We prove the theorem only for the δGUEISS case. The proof for the
other item is analogous. First, we indicate with ν := ρ(u), so that system (1.38)
can be rewritten as

ẋ = f(x, t) + g(x, t)ν .

Associated to the matrix function P we can define a Riemannian metric and its
associated norm (1.12) on R

nx . The (Riemannian) distance dP on R
nx between

a pair of points of R
nx can be defined similarly as in the proof of Theorem

1.2.2. Indeed, define γt : [s1, s2] 7→ R
nx as any C2 t-parametrized curve such

that, at time t, we have that γt(s1) = x1 and γt(s2) = x2. Define the length
of the curve γt in the operator P (x, t) as (1.13) and the distance between x1
and x2 as (1.15). Consider a C2 path between (x1, x2) ∈ R

nx × R
nx . For all

(s, t, t0) ∈ [s1, s2] × R × R, let Γ(s, t, t0) = X(γt0(s), v(s), t, t0) and define the
function ξ as in (1.16) where

v(s) =
(s1 − s)ν2 + (s− s2)ν1

s1 − s2
.
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The function ξ is C1 and, by using the relations (1.11a) and (1.43), we obtain

∂ξ

∂t
(s, t, t0) =

∂Γ⊤

∂s
(s, t, t0)LfP (Γ(s, t, t0), t)

∂Γ

∂s
(s, t, t0)

+ 2
∂Γ⊤

∂s
(s, t, t0)P (Γ(s, t, t0), t)g(Γ(s, t, t0), t)

ν1 − ν2

s1 − s2

≤ −λξ(s, t, t0) + 2
√
ξ(s, t)

√
pg

|ν1 − ν2|
s2 − s1

.

Hence, it yields

∂ℓP
∂t

(Γ(s, t, t0)) =
∂

∂t

∫ s2

s1

√
ξ(s, t, t0)ds

=

∫ s2

s1

1

2
√
ξ(s, t, t0)

∂ξ

∂t
(s, t, t0)ds

≤ −λ
2
ℓP (Γ(s, t, t0)) +

√
pg|ν1 − ν2| .

Since ν = ρ(u), by using (1.39) we get

∂ℓP
∂t

(Γ(s, t, t0)) ≤ −λ
2
ℓ(Γ(s, t, t0)) +

√
pgδρ(|u1 − u2|) .

Hence for each t

distP (X(x1, u1, t, t0),X(x2, u2, t, t0)) ≤ ℓP (Γ(s, t, t0))

≤ ℓP (γt0)e
−λ

2
(t−t0) +

√
p̄ḡ

∫ t

t0

e−
λ
2

(t−s)δρ(|u1(s)− u2(s)|) ds

≤ ℓ(γt0)e
−λ

2
(t−t0) +

√
pg sup

s∈[t0,t]
[δρ(|u1(s)− u2(s)|)]

Following similar arguments as in the proof of Theorem 1.2.2, the result follows
with

√
pgδρ(s) =: αd(s).

1.3.2 Interconnected systems

In this section, we present some results about incrementally stable systems that
are interconnected with each other. Most of these results are well known in the
literature, see e.g. (Lohmiller and Slotine, 1998, Section 4).

1. Consider two systems in parallel described by

ẋ1 = f1(x1, t) + g1(x1, t)ρ1(u1) (1.44a)

ẋ2 = f2(x2, t) + g1(x1, t)ρ1(u1) . (1.44b)

Of course, if both sub-systems are δGUEISS, the parallel interconnection (x1, x2)
is so. In particular, if there exist two metrics P1(x1, t), P2(x2, t) such that The-
orem 1.3.3 holds for the x1 subsystem with P1 and, respectively, for the x2
subsystem with P2, then blkdiag{P1(x1, t), P2(x2, t)} is a metric for the paral-
lel interconnection.
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2. Consider now two sub-systems in a cascade interconnection

ẋ1 = f1(x1, t) + g1(x1, t)ρ1(u1) (1.45a)

ẋ2 = f2(x2, t) + g2(x2, t)ρ2(x1) . (1.45b)

where x1 ∈ R
nx1 , u1 ∈ R

nu1 , x2 ∈ R
nx2 , u2 ∈ R

nu2 and all the functions are
sufficiently smooth. If (1.45a) is δGUES and (1.45b) is δGUEISS, then the
interconnection is δGUES. This has been shown in (Angeli, 2002, Proposition
4.7). A suitable metric can be defined as the following.

Proposition 1.3.4 (Metric for cascade interconnection). Consider system
(1.45). Assume that there exist two C1 matrix functions P1 : Rnx1 × R 7→
R
nx1×nx1 , P2 : Rnx2 × R 7→ R

nx2×nx2 taking symmetric and positive definite
values, nine strictly positive real numbers λ1, λ2, p1, p1, p2, p2, g1, g2, ρ such that

||g1(x1, t)|| ≤ g1, ||g2(x2, t)|| ≤ g2,
∣∣∣
∣∣∣ ∂ρ2∂x1

(x1)
∣∣∣
∣∣∣ ≤ ρ. Then if

Lf1P1(x1, t) ⪯ −λ1I, p
1
I ⪯ P1(x1, t) ⪯ p1I, Lg1P1(x1, t) = 0

Lf2P2(x2, t) ⪯ −λ2I, p
2
I ⪯ P2(x2, t) ⪯ p2I, Lg2P2(x2, t) = 0

(1.46)

for all (x1, x2, t), then Theorem 1.3.3 holds for the cascade system (1.45) with
P (x1, x2, t) = blkdiag{P1(x1, t), ϵP2(x2, t)} for some ϵ > 0 sufficiently small
and therefore the system is δGUEISS with respect to u1.

Proof. Follows from the Lipschitz condition on ρ2. A similar proof has
been obtained in (Sontag, 2010, Theorem 3) via matrix measures.

1.4 Feedback design

1.4.1 Existing solutions

In this section, we try to provide an answer to the question: ‘how to design a
feedback control to achieve incremental properties for the closed-loop system?’. The
question is not trivial and several results already exist in the literature. We can
divide such results into three categories.

• The first category considers control laws that are specific for particular classes
of systems. Among them, we recall for instance a backstepping approach in
Zamani and Tabuada (2011), impulsive control in Liu et al. (2021), a piece-
wise approximation design for Lur’e systems Waitman et al. (2017); Fromion
et al. (2003) and a small-gain design in Angeli (2002); Sontag (2010). In these
cases, the proposed control laws generally provide satisfactory and tractable
conditions. On the other hand, the main drawback of the proposed designs is
that they apply only to the considered class of systems.

• The second category considers control laws that provide a design for notions
that are similar to the one of incremental stability. We recall for instance the
control laws based on the notion of convergent systems (see the manuscript
Pavlov et al. (2006) and references therein), or the one of quadratic stability
D’Alto and Corless (2013). It’s important to highlight however the following
aspect. These notions are similar, but not equivalent to incremental stability.
Many counterexamples can be constructed. In this sense, we already recalled
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ẋ1

ẋ2

x1(t)

x2(t)

Figure 1.1: Feedback interconnection

the strict link between incremental stability and convergent systems, see Sec-
tion 1.2.3.2. For this reason, we can generally apply these results to have
incremental properties, but each case has to be carefully addressed.

• The last category includes control designs that make use of machine learning
tools and/or optimization techniques. See for instance Manchester and Slo-
tine (2017); Tsukamoto et al. (2021) and references therein. This last category
provides more general control designs that can be applied to many different
classes of systems. See for instance, the control contraction metric approach in
Manchester and Slotine (2017). On the other hand, these results are difficult
to be practically implemented since they usually require solving an online op-
timization problem along the geodesic, whose knowledge is usually unknown.
For this reason, the implementation usually relies on machine learning tools.
If the use of artificial intelligence simplifies the practical aspects, it reflects in
a loss of guarantees that an analytic solution could provide.

In this section, we claim some results about the design of feedback control laws
guaranteeing incremental properties for the closed-loop system. The results that we
will give, will take place in the first category of the one mentioned above. In other
words, we will consider specific classes of systems.

1.4.2 A metric-based incremental small-gain theorem

The first result that we aim to show is an incremental version of the small gain
theorem (Jiang et al. (1994)). A small gain result for incremental stability is not
new in the literature. It has been already stated in (Angeli, 2002, Proposition 4.8),
but it can practically be difficult to verify since it requires the knowledge of the
function(s) αd in (1.42). We want to obtain the same, but easier-to-check, kind of
result through a metric analysis. Consider therefore a system of the form (1.38)
where x = (x1, x2) and

ẋ1 = f1(x1, t) + g1(x1, t)ρ1(x2)

ẋ2 = f2(x2, t) + g2(x2, t)ρ2(x1)
(1.47)

connected as in Figure 1.1. The following holds

Theorem 1.4.1 (Incremental Small Gain). Consider system (1.47). Assume that
there exist two C1 matrix functions P1 : R

nx1 × R 7→ R
nx1×nx1 , P2 : R

nx2 ×
R 7→ R

nx2×nx2 taking symmetric and positive definite values, ten strictly positive
real numbers λ1, λ2, p1, p1, p2, p2, g1, g2, ρ1, ρ2 such that (1.46) holds and such that
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||g1(x1, t)|| ≤ g1, ||g2(x2, t)|| ≤ g2,
∣∣∣
∣∣∣ ∂ρ1∂x2

(x2)
∣∣∣
∣∣∣ ≤ ρ1 and

∣∣∣
∣∣∣ ∂ρ2∂x1

(x1)
∣∣∣
∣∣∣ ≤ ρ2. If more-

over
λ1λ2 > 8p1p2g1g2ρ1ρ2 , (1.48)

then system (1.47) is δGUES.

Proof. Consider the metric

P (x1, x2, t) =

[
ϵP1(x1, t) 0

0 P2(x2, t)

]

where P1, P2 are the metrics satisfying (1.46) and ϵ > 0 is a strictly positive real
number to be defined. Let x = (x1, x2) and

f(x, t) =

[
f1(x1, t) + g1(x1, t)ρ1(x2)
f2(x2, t) + g2(x2, t)ρ2(x1)

]
.

Let L be defined as

L(x, t) := LfP (x, t) + λI =

[
ℓ1(x, t) ℓ2(x, t)
ℓ⊤2 (x, t) ℓ3(x, t)

]

where

ℓ1(x, t) = ϵLf1P1(x1, t) + λI

ℓ2(x, t) = ϵP1(x1, t)g1(x1, t)
∂ρ1

∂x2
(x2) +

(
P2(x2, t)g2(x2, t)

∂ρ2

∂x1
(x1)

)⊤

ℓ3(x, t) = Lf2P2(x2, t) + λI .

We have to show that there exists λ > 0 such that L ⪯ 0. First note that,
for any λ ≤ λ2

2
, it follows from (1.46) that ℓ3(x, t) ⪯ 0. Therefore, we have

just to check that the Schur complement of LfP is negative definite, namely if
ℓ1 − ℓ2ℓ

−1
3 ℓ⊤2 ≺ 0. From the bounds on ρi, gi and Pi, we have

ℓ1 − ℓ2ℓ
−1
3 ℓ⊤2 = ϵLf1P1(x1, t) + λI

−
(
ϵP1(x1, t)g1(x1, t)

∂ρ1

∂x2
(x2) +

(
P2(x2, t)g2(x2, t)

∂ρ2

∂x1
(x1)

)⊤)
(Lf2P2(x2, t) + λI)−1

×
(
ϵP1(x1, t)g1(x1, t)

∂ρ1

∂x2
(x2) +

(
P2(x2, t)g2(x2, t)

∂ρ2

∂x1
(x1)

)⊤)⊤

⪯
[
−ϵλ1 + λ+

2

λ2
(ϵp1g1ρ1 + p2g2ρ2)

2

]
I .

Therefore, L ⪯ 0 if

−ϵλ1 + λ+
2

λ2
(ϵp1g1ρ1 + p2g2ρ2)

2 ≤ 0 . (1.49)

We look at (1.49) as a quadratic inequality in the unknown ϵ and we look for
the positive value of ϵ such that (1.49) holds. Hence, we derive the left-hand
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u(t)
χ̇ = F (χ, u, w) η̇ = H(η, χ, w)

χ(t) η(t)

w(t) w(t)

Figure 1.2: Feed-forward interconnection

side of (1.49) with respect to ϵ and set it equal to 0 and we get

ϵ =
λ1λ2 − 4p1p2g1g2g1ρ2ρ1

4p21g
2
1ρ

2
2

. (1.50)

From (1.48), such ϵ is positive definite. To conclude, we have to show that, with
such a choice of ϵ, we have that (1.49) holds. For this, we plug (1.50) into (1.49)
and get

− ϵλ1 + λ+
2

λ2
(ϵp1g1ρ1 + p2g2ρ2)

2

= −λ1
(
λ1λ2 − 4p1p2g1g2ρ2ρ1

4p21g
2
1ρ

2
2

)
+ λ+

2

λ2

[(
λ1λ2 − 4p1p2g1g2ρ2ρ1

4p1g1ρ2

)
+ p2g2ρ2

]2

= −λ1
(
λ1λ2 − 4p1p2g1g2ρ2ρ1

4p21g
2
1ρ

2
2

)
+ λ+

2

λ2

[
λ21λ

2
2

16p21g
2
1ρ

2
2

]

=
− 4λ1λ2 (λ1λ2 − 4p1p2g1g2ρ2ρ1) + 2λ21λ

2
2 + 16λλ2p

2
1g

2
1ρ

2
2

16λ2p21g
2
1ρ

2
2

=
− 2λ1λ2(λ1λ2 − 8p1p2g1g2g1ρ2ρ1) + 16λλ2p

2
1g

2
1ρ

2
2

16λ2p21g
2
1ρ

2
2

< 0

where the last equality follows from (1.48) and by taking λ > 0 sufficiently small.
And this concludes the proof.

1.4.3 Incremental forwarding design for cascade systems

1.4.3.1 Introduction and context

In this section, we focus on the control design for the class of systems in cascade.
With the term ‘cascade’, we mean that the dynamics of (1.38) can be decomposed
into two terms. A first component, denoted with χ and whose time derivative is
driven by the control action u, and a second component, denoted with η, whose input
is a (possibly nonlinear) function of χ. Both the two dynamics are affected by an
external uncontrolled disturbance w(t). A block scheme representing such a control
structure can be found in Figure 1.2. This class of systems (also called feed-forward
form) has been intensively studied for stabilization purposed, especially in the ′90,
see for instance Arcak et al. (2001); Mazenc and Praly (1996); Sepulchre et al. (2012);
Teel (1992); Sepulchre et al. (1997); Jankovic et al. (1996) and references therein.
In particular, we will consider a system of the form (1.38) which can be described
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by the following ODE

χ̇ = fχ(χ) + gχ(χ)(u+ w(t)), (1.51a)

η̇ = Φη + v(χ) +Rw(t) . (1.51b)

In this case, the state is x = (χ, η) where χ ∈ R
nχ , η ∈ R

nη . The plant is excited
by a control input u ∈ R

nu and by an external perturbation w : R 7→ W ⊂ R
nw .

The functions fχ : Rnχ 7→ R
nχ , gχ : Rnχ 7→ R

nχ×nu , v : Rnχ 7→ R
nη are sufficiently

smooth and f(0) = 0 and v(0) = 0. Moreover Φ, R are constant matrices.

Remark 1.4.2. The perturbation w acting on the χ-dynamics is assumed to sat-
isfy a ‘matching condition’, i.e. the disturbance enters in the same directions as the
controller. The matching condition assumption is quite common in the nonlinear
control literature and verified by many practical applications. See for instance the
works Qu (1993); Praly and Wang (1996) and references therein. From a practical
point of view, matching disturbances are always verified when considering perturba-
tions acting on the actuators of the plant.

The objective will be to design the control action u for the closed-loop system to be
incrementally ISS with respect to w.

Remark 1.4.3. The interest in the design of control laws for such a class of systems
is relevant since this system’s structure arises in several case studies. This is the
case for instance when dealing with dynamic control laws architectures, where the
χ-dynamics is the plant and the η-dynamics is part of the control design. For ex-
ample, the results presented in this section will play a fundamental role in providing
solutions to the output regulation problem, which will be considered in Chapter 2 of
this manuscript.

In particular, we will focus on extending the forwarding-based results in Mazenc
and Praly (1996); Praly et al. (2001) to the incremental framework, presenting a
set of sufficient conditions for the closed-loop system to possess some incremental
properties. This will lead to a control design that we will call incremental forwarding.
The results that will be presented in this section can be found in the author’s article
Giaccagli et al. (2022d) (see also Giaccagli et al. (2020, 2021b) for a simplified
version).

1.4.3.2 Forwarding design for stabilization

Before presenting the main results of this section, we recall the main aspects and
peculiarities of forwarding-based control design (in the sense of Mazenc and Praly
(1996)) for stabilization purposes. Forwarding-based control laws for stabilization
purposes have been studied in several works, see Mazenc and Praly (1996); Praly
et al. (2001); Astolfi and Praly (2017); Kaliora and Astolfi (2004); Poulain and Praly
(2010); Benachour et al. (2013); Zitte et al. (2020).

Therefore, consider system (1.51) with w = 0, that is, system

χ̇ = fχ(χ) + gχ(χ)u

η̇ = Φη + v(χ) .
(1.52)

The forwarding design starts with the assumption that the χ-dynamics of (1.52) is
stabilizable using a feedback control law.
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Assumption 1.4.1 (Open-loop stabilizability). We know a C1 functions ϕ0 : R
nχ 7→

R
nu such that the origin of

χ̇ = f0(χ) , f0(χ) := fχ(χ) + gχ(χ)ϕ0(χ) , (1.53)

is Locally Exponentially Stable and Globally Asymptotically Stable.

The second assumption is on the η-dynamics. In particular, it is assumed that it is
stable, as in the following.

Assumption 1.4.2 (Stability of Φ). There exists a symmetric positive definite ma-
trix H = H⊤ ≻ 0 such that

HΦ + Φ⊤H ⪯ 0. (1.54)

In a nutshell, the main intuition behind forwarding is the following one. The η-
dynamics can be seen as a linear system (having a stable origin) that is forced by
the external signal v(χ(t)). Since the origin of χ is GAS and LES and v(0) = 0,
such an external signal will asymptotically vanish along the trajectories of the χ-
dynamics, i.e. limt 7→+∞ v(χ(t)) = 0. As a consequence, the η-dynamics will converge
on a (stable) manifold M(χ), which depends of the vector field f0 and on v,Φ. The
existence of such a manifold is recalled in the following result.

Lemma 1.4.4 (Existence of the M). Consider system (1.52) and let Assumption
1.4.1 and Assumption 1.4.2 hold. Then, there exists a C1 function M : Rnχ → R

nη

such that M(0) = 0 and M is solution of

Lf0M(χ) = ΦM(χ) + v(χ). (1.55)

Remark 1.4.5. The main intuition behind such a result is the existence of a stable
manifold

Ω :=

{
(χ, η) ∈ R

nχ × R
nη

∣∣∣∣ η =M(χ), M solution to (1.55)

}
(1.56)

that contains the origin and that it is forward invariant for the system’s dynamics.

The forwarding approach relies on a state-feedback control law of the form

u = ϕ0(χ) + ℓ(χ)LgχM
⊤(χ)(η −M(χ)), (1.57)

where ℓ : Rnχ → R>0 is a sufficiently small function. We have then the following
result.

Proposition 1.4.6 (Forwarding for stabilization). Consider system (1.53) and let
Assumption 1.4.1 and Assumption 1.4.2 hold. Let M : Rnχ → R

nη be defined as in
Lemma 1.4.4 and assume that

rank

(
A− σI B
C 0

)
= nη (1.58)

where

A :=
∂

∂χ
(fχ(χ) + gχ(χ)ϕ0(x))χ=0 , B := gχ(0) C :=

∂v

∂χ
(0) (1.59)

for any σ ∈ spec{Φ}. Then, there exists ℓ : R
nχ → R>0 such that the origin

of system (1.51) in closed-loop with (1.57) is Globally Asymptotically Stable and
Locally Exponentially Stable.

27



1

Proof. The main idea is to take the Lyapunov functionW (χ, η) = V (χ)+(η−
M(χ))⊤(η −M(χ)) where V is a Lyapunov function for the χ-dynamics. The
proof is concluded with standard LaSalle’s invariance principle. See (Astolfi and
Praly, 2017, Section III) or Poulain and Praly (2010) and references therein for
a complete proof.

Remark 1.4.7. The condition (1.58) is to make sure that the system (1.51) is
controllable in the origin. Indeed, by considering (1.59), note first that the condition
(1.55) reduces to the solution of the Sylvester equation

M(0)A = σM(0) + C .

In such a case, for every C the solution always exists and it is unique since A
and −Φ have disjoint spectra. Indeed A is Hurwitz by local exponential stability in
Assumption 1.4.1, and −Φ has no negative eigenvalue by Assumption 1.4.2. Such a
property is also known in regulation theory as non-resonance condition. This aspect
will be recalled later on in Chapter 2.

Although the existence ofM is always guaranteed under the conditions of Lemma 1.4.4,
its explicit expression may not be always easy to find, since it involves the solution
of the differential equation (1.55). As a consequence, in order to provide additional
degrees of freedom for the design of the control law (1.57), several extensions have
been developed. See, for instance, (Astolfi and Praly, 2017, Section III.B) for an
overview.

A particular design of interest is the one proposed in Praly et al. (2001), called
‘forwarding mod{LgV }’. We recall such a result in the following proposition. Note
that the forwarding mod{LgV } has been formulated only in the single-input case
with unitary dimension of the η-dynamics (nu = nη = 1) and for the case in which
Φ = 0.

Proposition 1.4.8 (Forwarding mod{LgV }). Consider system (1.51) with Φ = 0
and nη = nu = 1, and suppose to know a positive definite Lyapunov function V
satisfying Lf0V (χ) < 0 for all χ ̸= 0. Assume, moreover, to know a C1 function
M : Rnχ 7→ R with M(0) = 0 and a C0 function k(χ) such that the following holds.

1. Lf0M(χ) = v(χ) + k(χ)LgχV (χ).

2. LgχM(0) ̸= 0.

3. For all {χ ∈ R
nχ : LgχM(χ) ̸= 0, χ ̸= 0}, then

Lf0M(χ)− k(χ)(LgχV )2(χ)

LgχM(χ)
< 0. (1.60)

Then, the origin of (1.51) in closed-loop with

u = ϕ0(χ)−
k(χ)LgχV (χ)

LgχM(χ)
− [LgχV (χ)− LgχM(χ)(η −M(χ))], (1.61)

is Globally Asymptotically Stable and Locally Exponentially Stable.
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Proof. See (Praly et al., 2001, Proposition 1).

The interest of the condition 1 in Proposition 1.4.8 concerns the computation of
M , which can be interpreted as an approximated version of the solution of (1.55).
Now, the M can be ‘chosen’ to simplify the design of the control action. However,
this choice add some extra constraints, which are represented by the mismatching
term k(χ). The open-loop system must be ‘sufficiently stable’ to stand the presence
of such a mismatching. This is represented by the condition (1.60) In such a case
indeed, the mismatch needs to satisfy the extra condition on item 3 that is crucial
to conclude the global asymptotic stability of the closed-loop system. On the other
hand, item 2 is the counterpart of (1.58) when considering σ = 0.

Remark 1.4.9. Note that in case one selects k(χ) = 0, the condition (1.60) is
automatically satisfied by assumption and item 1 recovers (1.55) withM(χ) =M(χ).

1.4.3.3 Uniform incremental forwarding mod{LgV }

In this section, we aim to extend the result on forwarding design to the incremental
framework. In other words, the objective is to develop an incremental forwarding
design for the class of systems (1.38) of the form

χ̇ = fχ(χ) + gχ(χ)(u+ w(t)), (1.62a)

η̇ = Φη + v(χ) +Rw(t). (1.62b)

where x = (χ, η) and where we assume that there exists g > 0 such that ||gχ(χ)|| ≤ g
for all χ ∈ R

nχ . Motivated by Remark 1.4.9, we focus directly on the forwarding
mod{LgV } design. We start by assuming the following.

Assumption 1.4.3 (Pre-contractive feedback + Killing vector). Consider system
(1.62). We know a C2 function ϕ0 : R

nχ 7→ R
nu, a C1 matrix function Pχ : Rnχ 7→

R
nχ×nχ taking symmetric and positive values Pχ = P⊤

χ ≻ 0 and three positive real
numbers p

χ
, pχ, pχ such that the function f0(χ) = fχ(χ) + gχ(χ)ϕ0(χ) satisfies

Lf0Pχ(χ) ⪯ −pχI, p
χ
I ⪯ P (χ) ⪯ p̄χI (1.63)

LgχPχ(χ) = 0 (1.64)

for all χ ∈ R
nχ.

Assumption 1.4.3 asks for the knowledge of a pre-stabilizing feedback control action
such that the χ-dynamics is incrementally uniformly exponentially stable in the
sense of Definition 1.2.1, with respect to a Riemannian metric induced by the matrix
function Pχ. Also, (1.64) implies that gχ is a Killing Vector field for this metric,
see Definition 1.3.2. In the linear framework, this corresponds to a stabilizability
assumption, where (1.64) is always satisfied as Pχ is taken as a constant positive
definite matrix solution of a Lyapunov equation. The design of ϕ0 and Pχ can be
obtained following, for instance, the techniques recalled in Section 1.4.1

Remark 1.4.10. Note moreover that, in light of Theorem 1.3.3, the Killing vector
property (1.64) guarantees that the χ-dynamics is incrementally globally uniformly
exponentially ISS with respect to any perturbation w.

From now on, we consider fχ(χ) = f0(χ) without loss of generality (that is, As-
sumption 1.4.3 holds for ϕ0(χ) = 0 for all χ, for some metric Pχ).
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Assumption 1.4.4 (Stability of Φ). There exists a symmetric positive definite ma-
trix H = H⊤ ≻ 0 such that

HΦ + Φ⊤H ⪯ 0 (1.65)

As we aim to develop an incremental version of forwarding mod{LgV } as in Propo-
sition 1.4.8, we assume the following.

Assumption 1.4.5 (Incremental forwarding mod{LgV }). We know three C1 func-
tions M : Rnχ 7→ R

nη , ∆ : Rnχ 7→ R
nη and ϱ : Rnχ 7→ R

nu such that, for all χ ∈ R
nχ,

the following hold:

1. the functions M and ∆ are solution of

LfχM(χ) = ΦM(χ) + v(χ) + ∆(χ); (1.66)

2. there exists a matrix Λ such that

LgχM(χ) = Λ (1.67)

and such that the couple (Φ, (HΛ)⊤) is detectable;

3. the function ϱ satisfies

Λ
∂ϱ

∂χ
(χ) = −∂∆

∂χ
(χ); (1.68)

4. the following inequality holds

LfχPχ(χ) + He

{
Pχ(χ)gχ(χ)

∂ϱ

∂χ
(χ)

}
⪯ −λI (1.69)

for some λ > 0.

Assumption 1.4.5 corresponds to a MIMO version of the assumptions in Proposition
1.4.8. In particular:

• item 1 corresponds to a more general version of (1.66). In particular, a solution
M(χ) = M(χ) of (1.66) is known to exist for ∆(χ) = 0. This follows from
Assumption 1.4.3, Assumption 1.4.2 and from the fact that a time-invariant
system that is incrementally uniformly globally exponentially stable, admits a
globally exponentially stable equilibrium point, see Corollary 1.2.7.2;

• about item 2, the term LgχM(χ) can be seen as a controllability assumption
on the control u to act on the dynamics of η of (1.62) in any point of the state
space χ. This is a counterpart of item 2 of Proposition 1.4.8;

• about item 3, as the dynamics of η in the most general case, can have a higher
dimension than the one of u, we ask for the mismatch term ∆ to be mapped
in a (possibly lower) space of the dimension of the input and to be integrable.
This additional item is required to extend the results of Proposition 1.4.8 to
the MIMO case;

• item 4 asks for a robustness-like property for the autonomous system. Indeed,
to rely on a free-to-choose differential equation solution M rather than the
exact one M , the open-loop system must be sufficiently contractive to merge
the mismatch represented by ∆. This last item is the counterpart of (1.60).
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We’re now ready to state the main result of this section.

Theorem 1.4.11 (Incremental stability of feedforward systems). Consider system
(1.62) and let Assumption 1.4.3, 1.4.4 and 1.4.5 hold. Moreover assume that there

exists LM ≥ 0 such that
∣∣∣
∣∣∣∂M∂χ (χ)

∣∣∣
∣∣∣ ≤ LM for all χ ∈ R

nχ. Then, for any gain κ > 0,

the system (1.62) in closed-loop with the control law

u = ϕ0(χ) + κ(HΛ)⊤(η −M(χ)) + ϱ(χ) (1.70)

is incrementally globally uniformly ISS with respect to w.

Proof. The proof is divided into two steps. First, we consider the unforced
system (1.62) with w = 0 and we show that the closed-loop system is δGUES
by constructing a suitable metric. Then, we show that a Killing vector property
holds, and therefore, by Theorem 1.3.3, the system is δGUEISS. For this, we
first consider the change of coordinates η 7→ z := η − M(χ) with M solving
(1.66). By making use of (1.67), the closed-loop system can be written in the
form

ẋ = F (x), F (x) :=

[
fχ(χ) + gχ(χ)

[
κ(HΛ)⊤z + ϱ(χ)

]

(Φ− κΛ(HΛ)⊤)z − Λϱ(χ)−∆(χ)

]
(1.71)

with x = (χ⊤, z⊤)⊤. Following Theorem 1.2.2, in order to claim incremental
uniform global exponential stability, we look for a C1 matrix function P : Rnx ×
R
nη 7→ R

(nx+nη)×(nx+nη) of the form

P(x) :=

(
Pχ(χ) 0
0 µ(H + bS)

)
(1.72)

with b, µ being strictly positive real numbers to be defined, Pχ taken as in
Assumption 1.4.3, H as in Assumption 1.4.4 and S being a strictly positive
definite matrix to be defined. The main intuition behind this choice is that given
Assumption 1.4.4 the matrix H by itself doesn’t provide negativity in all the
components of z. In order to ‘strictify ’ the metric, we rely on a design inspired
by Praly (2019) (also used in Astolfi et al. (2022b)) by means of an observer.
Indeed, by item 2 of Assumption 1.4.5, the couple (Φ, (HΛ)⊤) is detectable, and
therefore there exist two matrices S = S⊤ ≻ 0 and K solving

He
{
S(Φ−K(HΛ)⊤)

}
⪯ −2I. (1.73)

Hence let S = S and consider the matrix function L : Rnχ×R
nη 7→ R

(nχ+nη)×(nχ+nη)

L(x) := LFP(x) +

(
p1I 0
0 p2I

)
(1.74)

for some p1, p2 strictly positive real numbers to be chosen. If L(x) ⪯ 0 for
all x and for some p1, p2, then the conditions of Theorem 1.2.2 hold with
p = min{p1, p2} (conditionally to a constant, which always exists thanks to
the constant upper bound of P). Thanks to (1.68) and to the Killing Vector
property LgχPχ(χ) = 0 in Assumption 1.4.3, we have that

L(x) =

(
ℓ1(x) ℓ2(x)
ℓ⊤2 (x) ℓ3(x)

)
(1.75)
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where

ℓ1(x) = LfχPχ(χ) + He
{
Pχ(χ)gχ(χ)

∂ϱ

∂χ
(χ)
}
+ p1I

ℓ2(x) = κPχ(χ)gχ(χ)(HΛ)⊤

ℓ3(x) = µHe
{
(H + bS)(Φ− κΛ(HΛ)⊤)

}
+ p2I.

By adding and subtracting the term µbHe{SK(HΛ)⊤} and by Assumption 1.4.4
we get

ℓ3(x) ⪯ p2I − µ

[
2κHΛ(HΛ)⊤ + 2bI − bHe{S(K − κΛ)(HΛ)⊤}

]

⪯ p2I − µ

[
2κHΛ(HΛ)⊤ + 2bI − b2

2β
S(K − κΛ)(K − κΛ)⊤S − β

2
HΛ(HΛ)⊤

]

for any real number β > 0, where we used Young’s inequality. Therefore, we
select β = 4κ, b < 2β

|S(K−κΛ)|2 and p2 <
µb

2
and we get ℓ3(x) ≺ 0 for all x, for any

κ, µ > 0. To have L ≺ 0, it remains to check the sign of its Schur complement
SL(x). In particular, we need SL(x) := ℓ1(x) + ℓ2(x)ℓ

−1
3 (x)ℓ⊤2 (x) ≺ 0. Keeping

in mind item 4 of Assumption 1.4.5 and the upper bounds of P and g, we get

SL(x) ⪯ −(λ− p1)I +
4κ2pχ

2g2

µb
(HΛ)⊤(HΛ).

Hence, for any κ > 0, set

p1 ≤
λ

4
, µ ≥ 16κ2p2χg

2 |HΛ|2

λb

so that SL(x) ≺ 0 and therefore L(x) ≺ 0 for all x. Note that the metric P has
been obtained in the x = (χ, z)-coordinates. To complete the proof, we need
to come back into the original coordinates x = (χ, η). This can be done with
a globally Lipschitz diffeomorphism, see Proposition 1.2.10. In particular, the
metric P in the original coordinates is defined as

P (χ, η) := E⊤(χ)P(x)E(χ), E(χ) :=

(
I 0

−∂M
∂χ

(χ) I

)
, (1.76)

namely

P (x) =

(
Pχ(χ) + µ(H + bS)∂M

⊤

∂χ
(χ)∂M

∂χ
(χ) ⋆⊤

−µ(H + bS)∂M
∂χ

(χ) µ(H + bS)

)
.

Note that

E−1(χ) =

(
I 0

∂M
∂χ

(χ) I

)
,

and, since M is Lipschitz,

|E(χ)| ≤ 1 + LM ,
∣∣E−1(χ)

∣∣ ≤ 1 + LM , ∀ χ ∈ R
nχ .
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Hence, for all vectors v,

v⊤P (χ, η)v ≥ min{p
χ
, µ |H + bS|} |E(χ)v|2

≥ min{pχ, µ |H + bS|} |v|2
|E−1(χ)|2

≥
min{pχ, µ |H + bS|}

(1 + LM)2
|v|2 .

On another hand,

v⊤P (χ, η)v ≤ max{pχ, µ |H + bS|} |E(χ)v|2

≤ max{pχ, µ |H + bS|} (1 + LM)2|v|2 .

Hence, the closed-loop system is incrementally globally exponentially stable
with respect to the contraction metric P (χ, η) satisfying pI ⪯ P (x) ⪯ pI and
LfP (x) ⪯ −pI with p = min{p1, p2} and

p := max{pχ, µ |H + bS|} (1 + LM)2,

p :=
min{p

χ
, µ |H + bS|}

(1 + LM)2
.

(1.77)

Note now that the closed-loop system can be written in the form

ẋ = f(x) + β(x)w(t)

where

f(x) =

(
fχ(χ) + κgχ(χ)[(HΛ)⊤(η −M(χ)) + ϱ(χ)]

Φη + v(χ)

)
, β(x) =

(
gχ(χ)
R

)

It is not hard to verify that the matrix function β is a Killing vector field with
respect to the metric P (x) (since LgχM(χ) is constant for all χ). Therefore,
in virtue of Theorem 1.3.3, the closed-loop system is incrementally globally
uniformly exponentially ISS with respect to w, completing the proof.

Example 1.4.12. We consider the example of a nonlinear liquid level control reso-
nant circuit system described in Li et al. (2021). Such a system can be described by
a nonlinear model of the form (1.62), where

fχ(χ) =

(
−χ1

χ1 − sin(χ2)

)
, gχ(χ) =

(
1
0

)
, Φ = 0 , v(χ) = −χ1 − χ2 + sin(χ2) .

First thing, we apply a preliminary feedback in order to satisfy Assumption 1.4.3.
We look for a linear feedback of the form

ϕ0(χ) = K1χ1 +K2χ2 +K3 sin(χ2) .

The choice of the nonlinear term in the preliminary feedback will be clear in a second
moment. In particular, we select K1 = −2.8, K2 = −4.4 and K3 = 3.8. The closed-
loop system satisfies Assumption 1.4.3 with respect to the constant metric

Pχ(χ) =

(
0.7 1
1 6

)
.
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Note moreover that, since the metric is Euclidean and the vector field gχ is constant,
the Killing vector property is automatically satisfied. Then, note that since Φ = 0,
it follows that Assumption 1.65 is automatically satisfied for any H ≻ 0. We take
H = 1. About Assumption 1.4.5 we pick the following choice. Since gχ is constant,
we look for a function M(χ) that is linear in its argument in order to satisfy the
constraint on LgχM to be constant. Namely, we take

M(χ) =M1χ1 +M2χ2 .

Note that, since LgχM = M1 and nη = 1, it’s sufficient to have M1 ̸= 0 to satisfy
the detectability assumption on (Φ, (HΛ)⊤) = (0,M1). Now, equation (1.66) reads

(
M1 M2

)(−3.8χ1 − 4.4χ2 + 3.8 sin(χ2)
χ1 − sin(χ2)

)
= −χ1 − χ2 + sin(χ2) + ∆(χ) .

We set ∆(χ) = 0. With this choice, we have that (1.68) and (1.69) are automatically
satisfied with ϱ(χ)= 0. With this choice, since equation (1.66) has to be satisfied for
any (χ1, χ2), we can rewrite it in the unknowns M1,M2 as



−3.8 1
1 0
3.8 −1



(
M1

M2

)
=



−1
−1
1


 .

Note that the first and third rows are a linear combination. This implies that the
solution is (

M1

M2

)
=

(
−3.8 1
1 0

)−1(−1
−1

)
=

(
1

−4.8

)

which leads to the choice
M(χ) = −χ1 − 4.8χ2 .

Therefore, the system in closed-loop with the feedback

u = ϕ0(χ) + κ(HΛ)⊤(η −M(χ)) + ϱ(χ)

= −2.8χ1 − 4.4χ2 + 3.8 sin(χ2)− κ(η + χ1 + 4.8χ2)

is incrementally globally uniformly exponentially stable for any κ > 0. Note that the
nonlinear term in the preliminary feedback ϕ0 played an important role. Indeed,
thanks to such a term, Assumption 1.4.5 was satisfied with very simple choices
(linear M and ϱ = ∆ = 0).

1.4.4 LMI-based design

1.4.4.1 Introduction and context

In this section, we focus on the analysis and on the control design for a class of
nonlinear systems that can be described by a combination of a linear term plus a
nonlinearity which we will assume to satisfy a monotonic or a sector-bound con-
dition. Such a class of system has been intensively studied in the literature, see
for instance Arcak et al. (2003); Zemouche and Boutayeb (2013); Fan and Arcak
(2003) for the design of observers, Zames and Falb (1968); Castelan et al. (2008);
Tarbouriech et al. (2011); Turner and Kerr (2014); Waitman et al. (2017) for sta-
bilization purposes and Zhang et al. (2014, 2015); Zhao et al. (2013); Tang et al.
(2018); Andrieu and Tarbouriech (2019) for multiagent synchronization and all the
references therein. The interest in considering such a class of systems can be seen
from the following two main aspects.
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• First of all, there exist several real-life engineering systems that can be mod-
eled as a linear part plus a nonlinearity satisfying a monotonic/sector-bound
condition. Some examples can be found for instance in Reinders et al. (2022)
for a mechanical ventilation machine for patient respiration support, in Tang
et al. (2018) for Chua’s circuit, in Andersson et al. (2014) for a surge’s systems,
in Pavlov et al. (2006) for the TORA systems, in Praly et al. (2001) for the
disk inertia pendulum and in (Isidori, 1985, Section 4.10) for a link robot arm.

• The second reason is that through the monotonic/sector-bound assumption on
the nonlinearity, the analysis and the control design for this class of systems
simplify and tractable conditions can be derived.

In particular, for such a class of systems, it is common in the literature to rely
on Linear Matrix Inequalities (LMIs). LMIs are an efficient and practical easy-to-
use tools of interest in control design as they provide constructive ways to provide
possible solutions to many problems. Examples of such problems are for instance
stabilization Henrion and Tarbouriech (1999); Tarbouriech and Gomes da Silva Jr.
(2000); Šiljak and Stipanovic (2000), observer design Arcak et al. (2003); Zemouche
and Boutayeb (2013); Zemouche et al. (2008) stability region estimation Gomes da
Silva Jr and Tarbouriech (2005); Pittet et al. (1997) and multiagent synchroniza-
tion Zhang et al. (2015); Dal Col et al. (2018); Nguyen et al. (2017); Andrieu and
Tarbouriech (2019).

In conclusion, in this section, we will study the analysis and the design of control
action for systems composed of a linear term plus a nonlinearity satisfying a mono-
tonic or sector-bound condition. The focus will be made with respect to the uniform
global incremental exponential stability (and the uniform global incremental expo-
nential ISS) property described in Definition 1.2.1. The objective will be to derive
LMI conditions for the analysis and the control design for the considered class of
systems. Along the section, several examples taken from the articles cited above will
be presented to check the validity (and the feasibility) of the proposed conditions.
The results that will be presented can be found in the author’s work Giaccagli et al.
(2022a,b).

1.4.4.2 Sufficient LMI conditions for uniform global exponential stability

In this section, we consider a nonlinear non-autonomous system described by the
following differential equation

ẋ = Ax+Gφ(z) +Rw(t),

z = Hx
(1.78)

where x ∈ R
nx is the state, z ∈ R

nz is a linear combination of the state, w : R 7→ W is
an external signal taking values on a compact set W ⊂ R

nw that includes the origin,
A,G,R and H are constant matrices of appropriate dimensions and φ : Rnz 7→ R

nφ

is a C1 function. In particular we assume that the nonlinearity φ satisfies a sector-
bound or amonotonic condition. Such an assumption is stated in the following.

Assumption 1.4.6. Consider system (1.78). The function φ satisfies one of the
following conditions.

(A1) (Sector-bound): there exist a symmetric positive definite matrix S ∈ R
nφ×nφ,
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S = S⊤ ≻ 0 and a matrix Ω ∈ R
nφ×nz such that

He

{
∂φ

∂z
(z)⊤S

[
∂φ

∂z
(z) + Ω

]}
⪯ 0; (1.79)

(A2) (Monotonic): there exists a symmetric positive definite matrix Γ = Γ⊤ ≻ 0
such that

∂φ

∂z
(z) =

∂φ⊤

∂z
(z), 0 ⪯ He

{
∂φ

∂z
(z)

}
⪯ Γ (1.80)

for all z ∈ R
nz .

Figures 1.3 and 1.4 illustrate an example of a nonlinearity and its Jacobian when
φ is a function from R to R. Note that, in the scalar case, the monotonic and the
sector-bound conditions are equivalent.

Remark 1.4.13. Note that both the sector bound and the monotonic conditions
imply that φ is a globally Lipschitz nonlinearity.

Remark 1.4.14. Note that in the monotonic case, we require the Jacobian of φ to
be symmetric. This requires φ to be a mapping from R

nφ to R
nφ.

s

ϕ(s)

Figure 1.3: Non-linearity

s

∂ϕ
∂s

(s)

Figure 1.4: Derivative term

As previously said, in this section we aim to study the notion of incremental uniform
global exponential stability of (1.78) and incremental uniform global exponential ISS
with respect to the external signal w. In this sense, Theorem 1.2.2 and Theorem
1.3.3 provide respectively some sufficient conditions to claim such properties. Indeed
system (1.78) is uniformly incrementally globally exponentially ISS with respect to
the input w, if there exists a C1 matrix function P : Rnx 7→ R

nx×nx and three strictly
positive real numbers p, p, λ > 0 such that

LfP (x) ⪯ −λI, pI ⪯ P (x) ⪯ pI

LgP (x) = 0
(1.81)

for all x ∈ R
nx , where, for shortness of notation, we indicated with f(x) = Ax +

Gφ(Hx) and g(x) = B.

Remark 1.4.15. Note that, in light of Remark 1.4.13, the condition for the incre-
mental uniform exponential stability (i.e. for w = 0) in (1.81) is also necessary by
Andrieu et al. (2016).
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Equations (1.81) require the solution of a first-order differential equation in the
unknown P (x). In such a case, an explicit solution may be difficult to be computed,
especially for high-dimensional systems. For this reason, we restrict ourselves to
the case in which the metric is Euclidean, that is, P is a strictly positive constant
matrix P = P⊤ ≻ 0. From such a restriction, the condition (1.81) simplifies and we
have the following.

Lemma 1.4.16. Consider system (1.78). If there exists a symmetric positive defi-
nite matrix P = P⊤ ≻ 0 and a strictly positive real number λ > 0 such that

He

(
P

[
A+G

∂φ

∂z
(z)H

])
⪯ −λI, (1.82)

then the system is uniformly incrementally globally exponentially ISS with respect to
w.
Proof. The result follows from Theorem 1.2.2 and Theorem 1.3.3 since, by
taking the metric P as a constant, the Killing vector assumption LgP = 0 is
automatically satisfied.

By considering only Euclidean metrics, we restrict the set of solutions of (1.81).
Because of this choice, we will neglect the possibility of obtaining necessary condi-
tions. However, on the other hand, this will allow us to obtain tractable easy-to-use
sufficient conditions, that we will express in form of LMIs. The condition (1.82)
is still an infinite-dimensional LMI due to the presence of the nonlinearity φ. It is
now where the assumption on the sector-bound/monotonic condition of φ will play
a role.

In the following, we show a set of sufficient conditions to claim uniformly incremen-
tally exponentially ISS with respect to w for systems of the form (1.78). First, we
show some LMI-based conditions in case φ satisfies the sector-bound condition.

Proposition 1.4.17 (Sufficient conditions for sector bound). Consider system (1.78)
and suppose that φ satisfies the sector bound assumption (A1) in Assumption 1.4.6.
If there exist a symmetric positive definite matrix P ∈ R

nx×nx, P = P⊤ ≻ 0 and a
positive real number λ > 0 such that the following inequality holds

[
A⊤P + PA+ λI PG−H⊤Ω⊤S
(PG−H⊤Ω⊤S)⊤ −2S

]
⪯ 0 , (1.83)

then system (1.78) is incrementally uniformly globally exponentially ISS with respect
to w.
Proof. Let us define

L :=He

{
P

[
A+G

∂φ

∂z
(z)H

]}
(1.84)

=PA+ A⊤P + PG
∂φ

∂z
(z)H +H⊤∂φ

⊤

∂z
(z)G⊤P (1.85)

for all z ∈ R
nz . In view of Assumption 1.4.6, it yields, by pre-multiplying

(respectively, post-multiplying) inequality (1.79) by H⊤ (respectively, H):

L ⪯ L−H⊤∂φ

∂z
(z)⊤S

[
∂φ

∂z
(z) + Ω

]
H−H⊤

[
∂φ

∂z
(z) + Ω

]⊤
S
∂φ

∂z
(z)H. (1.86)
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By defining

Q =

[
A⊤P + PA+ ηI PG−H⊤Ω⊤S
(PG−H⊤Ω⊤S)⊤ −2S

]
,

and using the definition of L, inequality (1.86) gives

L ⪯ −λI +
[

I
∂φ

∂z
(z)H

]⊤
Q

[
I

∂φ

∂z
(z)H

]
.

Hence, if relation (1.83) is satisfied, Q ⪯ 0 and one can conclude from previous
inequality that

L ⪯ −λI.
In other words, relation (1.82) holds and then, according to Lemma 1.4.16,
system (1.78) is uniformly incrementally globally exponentially ISS with respect
to input w. This concludes the proof.

Similar considerations can be done in case φ satisfies the monotonic condition. This
is recalled in the following.

Proposition 1.4.18 (Sufficient conditions for monotonic). Consider system (1.78)
and assume that φ satisfies the monotonic condition (A2) in Assumption 1.4.6. If
there exist a symmetric positive definite matrix P ∈ R

nx×nx, P = P⊤ ≻ 0 and a
strictly positive real number λ > 0 such that

[
A⊤P + PA+ λI PG+H⊤

(PG+H⊤)⊤ −4Γ−1

]
⪯ 0 (1.87)

then system (1.78) is incrementally uniformly globally exponentially ISS with respect
to w.

Proof. Similarly as in the proof of Proposition 1.4.17, let us define

L :=He

{
P

[
A+G

∂φ

∂z
(z)H

]}
(1.88)

=PA+ A⊤P + PG
∂φ

∂z
(z)H +H⊤∂φ

⊤

∂z
(z)G⊤P (1.89)

Such a function L defined in (1.88) can be rewritten as:

L := PA+ A⊤P + w⊤∂φ

∂z
(z)v + v⊤

∂φ

∂z
(z)⊤w,

with the notation v = H and w = G⊤P . The latter gives

L = PA+ A⊤P − 1

4
(v − w)⊤

(
∂φ

∂z
(z) +

∂φ⊤

∂z
(z)

)
(v − w)

+
1

4
(v + w)⊤

(
∂φ

∂z
(z) +

∂φ⊤

∂z
(z)

)
(v + w) .

With the monotonic condition in Assumption 1.4.6, this implies

L ⪯ PA+ A⊤P +
1

4
(v + w)⊤Γ(v + w) ,
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or, equivalently,

L ⪯ −λI + PA+ A⊤P + pI +
1

4
(v + w)⊤Γ(v + w) . (1.90)

If relation (1.87) holds then one also gets by using the Schur’s complement of
the matrix in the left-hand term of (1.87) that

PA+ A⊤P + λI +
1

4
(H⊤ + PG)Γ(H +G⊤P ) ⪯ 0

corresponding to the right-hand term of (1.90). In other words, we obtain

L ⪯ −λI .

Then, one can conclude that if relation (1.87) holds then the system (1.78) is
exponentially contractive in view of Lemma 1.4.16.

Remark 1.4.19. An interesting aspect of the approach developed from the mono-
tonic condition (A2) in Assumption 1.4.6 is that the condition (1.80) can be relaxed
to

0 ⪯ ∂φ

∂z
(z) +

∂φ

∂z
(z)⊤ , ∀z ∈ R

nz . (1.91)

In this case, no global Lipschitz assumption is imposed on the mapping φ. In this
case, the matrix inequality (1.87) reads

[
A⊤P + PA+ λI PG+H⊤

(PG+H⊤)⊤ 0

]
⪯ 0 . (1.92)

This implies that P = P⊤ ≻ 0 has to satisfy the following constraints

A⊤P + PA+ λI ≺ 0 , H⊤ = −PG .

Hence, no restriction on the slope of the nonlinearity has to be imposed provided that
a part of the LMI is replaced by an equality constraint.

Remark 1.4.20. Note that all the result that have been provided in Section 1.4.4.2
still hold in case φ is an explicit function of time φ = φ(z, t).

Remark 1.4.21. In case one aims to obtain these properties on a specific compact
invariant set rather than on the whole state space, it is sufficient to restrict the
analysis on the considered set, see Corollary 1.2.5.1.

1.4.4.3 LMI conditions for state-feedback control design

The LMI-based conditions proposed in Section 1.4.4.2 focus on the analysis of sys-
tems of the form (1.78) under a monotonic/sector-bound assumption as in Assump-
tion 1.4.6. In this section, we aim to keep a similar framework, but we want to focus
on a control design problem. In particular, we focus on a nonlinear non-autonomous
system of the form

ẋ = Ax+Gφ(z) + Bu+Rw,

z = Hx
(1.93)
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where x ∈ R
nx is the state, z ∈ R

nz is a linear combination of the state, u ∈ R
nu

is a control action, w : R 7→ W is an external signal taking values on a compact
set W ⊂ R

nw that includes the origin, A,G,R,B and H are constant matrices of
appropriate dimensions and φ : Rnz 7→ R

nφ is a C1 function that will satisfy, again,
a monotonic or sector-bound assumption. The problem that we aim to solve is the
following one.

Problem 1.4.22 (State-feedback design). Consider system (1.93). Find a C1 func-
tion α : Rnx 7→ R

nu such that system in closed-loop with the control action

u = α(x) (1.94)

is incrementally uniformly globally exponentially ISS with respect to w.

In the proposed framework, we restrict ourselves to a specific feedback control of
the form

α(x) = Kx+Nφ(Hx) (1.95)

where K and N are constant matrices of suitable dimensions. The main reason
behind this choice is that the closed-loop system dynamics reads

ẋ = (A+BK)x+ (G+BN)φ(Hx) +Rw . (1.96)

With this choice, the closed-loop structure reassembles the one of (1.78). Therefore,
similar considerations as in Lemma 1.4.16 can be stated, which are expressed in the
following.

Lemma 1.4.23. Consider system (1.93). If there exists a symmetric positive def-
inite matrix P = P⊤ ≻ 0, two matrices K,N and a strictly positive real number
λ > 0 such that

He

(
P

[
A+BK + (G+BN)

∂φ

∂z
(z)H

])
⪯ −λI, (1.97)

then the system is uniformly incrementally globally exponentially ISS with respect to
w.

Proof. Straightforward from Lemma 1.4.16.

The first idea that one may have, is to re-use the conditions that have been obtained
in Proposition 1.4.17 and Proposition 1.4.18 by properly substituting in the related
LMIs (1.83) and (1.87) the particular choice of the matrices K and N of control
action 1.94. This however would lead to two major problems:

• the control designer should select beforehand the matrices K and N , evaluate
the closed-loop matrices, plug everything into the previous LMIs, and check if
they admit a solution. In this case, the conditions would be just a ‘try-and-
check’ result, that wouldn’t lead to a constructive design of the control;

• in case the control designer aims to keep K and N as free design parameters
that would appear as an unknown in the LMIs, the final form of (1.83) and
(1.87) would become Bilinear Matrix Inequalities (BMIs).

It is clear that to obtain a constructive design, the LMI conditions previously pre-
sented should be somehow revisited so that the presence of the unknowns K and
N of the control action are included. However, such a modification can be done
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by exploiting the properties of the Schur’s complement. In case the nonlinearity
φ in (1.93) satisfies a sector-bound property, sufficient LMI-based conditions for
the design of a state-feedback control law to have incremental uniform global expo-
nential stability with respect to w can be obtained. Such a result is shown in the
following.

Proposition 1.4.24 (Feedback design for sector bound). Consider system (1.93).
Assume that the nonlinearity φ satisfies the sector bound condition (A1) in As-
sumption 1.4.6. If there exist a symmetric positive definite matrix W ∈ R

nx×nx,
two matrices Z ∈ R

nu×nx, N ∈ R
nu×nφ and a positive real number ν such that the

following LMI holds

He








AW +BZ 0 0
G⊤ +N⊤B⊤ − SΩHW −S 0

W 0 −ν
2
I






 ≤ 0, (1.98)

then the system (1.93) in closed-loop with the control action (1.94) with K = ZW−1

and such a N is incrementally globally uniformly exponentially ISS with respect to
w.

Proof. By applying the Schur complement to relation (1.98), and by pre-
and post-multiplying the resulting one by blkdiag{P, I} where P = W−1 and
K = ZW−1, we obtain

[
He{P (A+BK)}+ ν−1I P (G+BN)−H⊤Ω⊤S
(P (G+BN)−H⊤Ω⊤S)⊤ −2S

]
≺ 0.

By denoting ν−1 = λ, one retrieves relation (1.83) of Proposition 1.4.17. Hence,
by applying Proposition 1.4.17 to the closed-loop system (1.93), (1.94), we con-
clude that the closed-loop system is incrementally globally uniformly exponen-
tially ISS with respect to the input w.

Similar considerations can be done in case φ satisfies the monotonic condition. This
is shown in the following.

Proposition 1.4.25 (Feedback design for monotonic). Consider system (1.93). As-
sume that the nonlinearity φ satisfies the monotonic condition in (A2) of Assumption
1.4.6. If there exist a symmetric positive definite matrix W ∈ R

nx×nx, two matrices
Z ∈ R

nu×nx, N ∈ R
nu×nφ and a positive real number ν > 0 such that the following

LMI holds

He








AW +BZ 0 0
HW + (G+BN)⊤ −2Γ−1 0

W 0 −ν
2
I






 ⪯ 0, (1.99)

then the closed-loop system (1.93), (1.94)with K = ZW−1 and such a N is incre-
mentally globally uniformly exponentially ISS with respect to w.

Proof. By applying the Schur complement to relation (1.99), and by pre-
and post-multiplying the resulting one by blkdiag{P, I} with P = W−1 and
K = ZW−1, we obtain

[
He{P (A+BK)}+ ν−1I P (G+BN) +H⊤

(P (G+BN) +H⊤)⊤ −4Γ−1

]
⪯ 0 .
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By denoting ν−1 = λ, one retrieves relation (1.87) of Proposition 1.4.18. Hence,
by Proposition 1.4.18 to the closed-loop system (1.93), (1.94), we conclude that
the closed-loop system is incrementally globally uniformly exponentially ISS
with respect to the input w.

Remark 1.4.26. Similarly considerations as the one of Remark 1.4.19 and Remark
1.4.20 can be done in this case. Indeed if the function φ satisfies the inequality
(1.91), the LMI condition (1.99) is transformed into an equality constraint of the
form

[
He{AW +BZ} W

W⊤ −νI

]
⪯ 0 , W ≻ 0 , (1.100)

WH⊤ = −(G+BN) . (1.101)

Similarly, the same conditions hold if φ is explicitly dependent on time. Further-
more, similar results can be obtained by restricting the analysis to desired forward
invariant compact sets.

Example 1.4.27. Consider the surge subsystem of an axial compressor (see for
instance (Andersson et al., 2014, Eq. (2))), with system dynamics described by

{
ẋ1 = −x2 − 3

2
x21 − 1

2
x31

ẋ2 = x1 − u,
(1.102)

with x = (x1, x2) ∈ R
2. Following Arcak et al. (2003), we can rewrite this system as
{
ẋ1 = −x2 + ℓx1 − φℓ(x1)
ẋ2 = v

, (1.103)

where

φℓ(z) = ℓz +
3

2
z2 +

1

2
z3 (1.104)

and where ℓ ∈ R is a free parameter, u = x1 − v and v is an additional input. It
is shown in Arcak et al. (2003) that φℓ satisfies the sector condition φℓ(z)z ≥ 0 if
ℓ ≥ 9

8
. If ℓ ≥ 6, it yields

∂φℓ
∂z

(z) = ℓ+ 3z +
3

2
z2 ≥ ℓ− 6 . (1.105)

Hence, equation (1.91) is satisfied and we may try to apply the former approach. In
particular, for all ℓ ≥ 6, there exist K in R

1×2 and N in R, such that the feedback
law

v = Kx+Nφℓ(x1) , (1.106)

makes the system (1.103) incrementally uniformly globally exponentially stable. Note
that it can be shown that the conditions (1.100)-(1.101) are always feasible. Indeed,
the system (1.102) is in the form (1.93) with

A =

[
ℓ −1
0 0

]
, B =

[
0
1

]
, G =

[
−1
0

]
, H =

[
1 0

]
, R = 0. (1.107)

Then, letting

W =

[
w11 w12

w12 w22

]
, Z =

[
z1 z2

]
,
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the equation (1.101) is solved with w11 = 1 and w12 = −N . Now, take w22 sufficiently
large (w22 −N2 > 0) such that W is positive definite. Then, by ignoring the term ν
and selecting w11 = 1, inequality (1.100) becomes

He{AW +BZ} = He

{[
ℓ+N −Nℓ− w22

z1 z2

]}
. (1.108)

By taking N < −ℓ < 0, this matrix can be always made negative definite provided z2
is taken sufficiently negative. For example, one can choose z1 = w22 and z2 ≥ ℓ2N2

4|l+N | .

Applying Proposition 1.4.25, the result follows. The introduction of the nonlinearity
explicitly appearing in the controller, in this case, plays an important role. Note
indeed that in case N = 0, the LMIs have no solution since the top-left term of
(1.108) reduces to 2ℓ and therefore is always positive definite.

1.4.4.4 Incremental infinite gain margin control design

The results that we have presented so far in this section, provide a set of tools for the
analysis and design that can be used in practical applications. For this, we focused
on a class of systems with several real-life examples and we derived tractable and
easy-to-use conditions that we expressed in LMI form. This has been remarked
in Section 1.4.4.1. However, most of the control designs that exist in literature
and that look towards a practical implementation, focus on the design of robust
controllers. In the most general case, with ‘robust’ we mean that the stabilization
problem that the control action aims to solve (that in our case will be an incremental
stabilization problem) has to be achieved in case the plant to be stabilized is not
perfectly known.

In this section, we aim to extend the control action proposed in Section 1.4.4.3 to
guarantee some form of robustness to our design. To do this, we focus on the notion
of infinite gain margin control laws. Such a concept is not new in control theory
for stabilization purposes. A detailed analysis of such a property can be found for
instance in the manuscript (Sepulchre et al., 2012, Section 3). Roughly speaking, a
stabilizing control action u = α(·) is of infinite gain margin if the system in closed-
loop with a control of the form u = κα(·) has an equilibrium point that is stable for
any gain κ ≥ 1. Such a property is of interest as closed-loop stability is preserved
in presence of static and/or unmodeled fast dynamics plant uncertainties. This
robustness property is guaranteed because infinite gain margin feedbacks stabilize
a given plant always in the ‘right direction’ and therefore can be re-scaled by any
positive (large enough) parameter. For linear systems, this is translated to the fact
that the Nyquist plot of the transfer function between the control and the state
never crosses the negative part of the real axis.

In this section, we aim to extend the concept of infinite gain margin to the design
of incrementally uniform exponential stabilizing control actions. To the author’s
knowledge, such a concept has only been exploited in Sanfelice and Praly (2011) for
the design of observers, but never for the design of incremental control actions. We
have therefore the following definition.

Definition 1.4.1 (Incremental infinite gain margin). Consider a system of the form

ẋ = f(x, t) + g(x, t)u

where x ∈ R
nx, u ∈ R

nu and f : Rnx ×R 7→ R
nx, g : Rnx ×R 7→ R

nx×nu are both C2

in their first argument and piecewise continuous in the second. We say that the C2
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function α : Rnx×R 7→ R
nu is an incremental infinite gain margin control law if there

exist a C1 symmetric and positive definite matrix function P : Rnx × R 7→ R
nx×nx

and three strictly positive real numbers p, p, λ > 0 such that, by letting

fκ(x, t) := f(x, t) + κg(x, t)α(x, t) ,

we have that
LfκP (x, t) ⪯ −λI , pI ⪯ P (x, t) ⪯ pI

for all κ ≥ 1 and for all (x, t) ∈ R
nx × R.

Remark 1.4.28. Note that Definition 1.4.1 is uniform with respect to P , that is,
the metric does not depend on the gain κ.

We focus again on the class of systems defined by (1.93) with φ satisfying a mono-
tonic or a sector-bound assumption. By keeping the same control structure (1.94),
we aim to derive sufficient conditions based on LMIs to have an incremental in-
finite gain margin state-feedback control law. If we consider Euclidean metrics
P = P⊤ ≻ 0, by means of Lemma 1.4.23 the incrementally uniformly globally ex-
ponential ISS property with respect to w is automatically guaranteed if the system
with w = 0 is incrementally uniformly globally exponentially stable. Therefore, the
problem that we aim to solve is the following.

Problem 1.4.29 (Infinite gain margin state-feedback design). Consider system
(1.93). Find matrices K,N such that the state-feedback control (1.94) is an in-
cremental infinite gain margin control law for system (1.93), namely, there exist
P = P⊤ ≻ 0 and λ > 0 such that, the following holds

He

{
P

[
(A+ κBK) + (G+ κBK)

∂φ

∂y
(Hx)H

]}
⪯ −λI (1.109)

for all x ∈ R
nx and for all κ ≥ 1.

Of course, the problem is trivially satisfied if the system with no control action, i.e.
u = 0 is already incrementally uniformly globally exponentially stable. However,
following the same lines as in Section 1.4.4.3, some LMI conditions for the control
law design can be derived. If the nonlinearity φ satisfies a sector-bound condition,
this is expressed in the following.

Proposition 1.4.30 (Infinite gain margin state-feedback design for sector-bound).
Consider system (1.93) and assume that φ satisfies the incremental sector-bound
condition (A1) in Assumption (1.4.6) for some matrices Ω and S = S⊤ ≻ 0. If there
exist a matrix W ∈ R

nx×nx, W = W⊤ ≻ 0, two matrices Z ∈ R
nu×nx, N ∈ R

nu×nφ

and a real number ν > 0 such that the following LMIs hold

He








AW +BZ 0 0
G⊤ +N⊤B⊤ − SΩHW −S 0

W 0 −ν
2
I






 ⪯ 0, (1.110)

He

{[
BZ 0

N⊤B⊤ − SΩHW −S

]}
⪯ 0, (1.111)

then Problem 1.4.29 is solved with (1.94) where K = ZW−1 and such a N .
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Proof. The closed-loop system can be written in the form

ẋ = (A+ κBK)x+ (G+ κBN)φ(Hx)

= (A+BK)x+ (G+BN)φ(Hx)

+ (κ− 1) [BKx+BNφ(Hx)]

(1.112)

Let

ξ(x) = (A+BK)x+ (G+BN)φ(Hx)

ζ(x, κ) = (κ− 1)[BKx+BNφ(Hx)].
(1.113)

By Proposition 1.4.24, if (1.110) holds, then ξ(x) is incrementally uniformly
globally exponentially stable with respect to the metric P = W−1 forK = ZW−1

and such N . To conclude the proof, by the linearity of the Lie derivative, we
have to show that ζ satisfies LζP (x, κ) ⪯ 0 for all κ ≥ 1 with respect to the
same K and P . Then, by employing the sector bound condition (1.79), we have
that, for κ ≥ 1 and for any vector b ∈ R

nx ,

b⊤LζP (x, κ)b ≤ b⊤LζP (x, κ)b+ (κ− 1)b⊤(Ψ(x) + Ψ⊤(x))b

with

Ψ(x) = H⊤∂φ

∂z
(z)S

[
∂φ

∂y
(y) + Ω

]
H.

From the definition of ζ in (1.113), we get

b⊤LζP (x, κ)b ≤ (κ− 1)b⊤
[

I
∂φ

∂z
(z)

]⊤
Λ

[
I

∂φ

∂z
(z)

]
b

with

Λ := He

{[
PBK 0

N⊤B⊤ − PSΩH −S

]}
.

By pre and post-multiplying (1.110) by blkdiag{W, I}, we retrieve Λ. Hence
Λ ⪰ 0 and so b⊤LζP (x, κ)b ≤ 0 for all b, x and κ ≥ 1, concluding the proof.

Similar considerations can be done in case φ satisfies a monotonic condition. In
such a case, we have the following proposition.

Proposition 1.4.31 (Infinite gain margin state-feedback design for monotonic).
Consider system (1.93) and assume that φ satisfies the monotonic condition (A2) in
Assumption 1.4.6 for some matrix Γ = Γ⊤ ≻ 0. If there exist a matrix W ∈ R

nx×nx,
W = W⊤ ≻ 0, two matrices Z ∈ R

nu×nx, N ∈ R
nu×nφ and a real number ν > 0

such that the following LMIs hold

He








AW +BZ 0 0
HW + (G+BN)⊤ −2Γ−1 0

W 0 −ν
2
I






 ⪯ 0, (1.114)

He

{[
BZ 0

HW + (BN)⊤ −2Γ−1

]}
⪯ 0, (1.115)

then Problem 1.4.29 is solved with (1.94) where K = ZW−1 and such a N .
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Proof. The closed-loop system can be written in the form

ẋ = (A+ κBK)x+ (G+ κBN)φ(Hx)

= (A+BK)x+ (G+BN)φ(Hx)

+ (κ− 1) [BKx+BNφ(Hx)]

(1.116)

Let

ξ(x) = (A+BK)x+ (G+BN)φ(Hx)

ζ(x, κ) = (κ− 1)[BKx+BNφ(Hx)]
(1.117)

By Proposition 1.4.25, if (1.114) admits a solution, then ξ(x) defines a contrac-
tion with respect to the metric P = W−1 for K = ZW−1 and N . To conclude
the proof, by the linearity of the Lie derivative, we have to show that ζ sat-
isfies LζP (x, κ) ⪯ 0 for all κ ≥ 1 with respect to the same K and P . As a
consequence, compute, for any vector b ∈ R

nx ,

b⊤LζP (x, κ)b = (κ− 1)b⊤ He

{
PBK + PBN

∂φ

∂z
(z)H

}
b

= (κ− 1)b⊤
(
PBK + (BK)⊤P − 1

4
(PBN −H⊤) He{∂φ

∂z
(z)}((BN)⊤P −H)

+ 1
4
(PBN +H⊤) He

{
∂φ

∂z
(z)

}
((BN)⊤P +H)

)
b

≤ (κ− 1)b⊤(He{PBK})b+ 1
4
b⊤(PBN +H⊤)Γ((BN)⊤P +H)b

= (κ− 1)b⊤
[
PBK + (BK)⊤P (PBN +H⊤)
(H + (BN)⊤P ) 4Γ−1

]
b.

By left and right-multiplying by blkdiag{W, I}, we finally obtain

b⊤LζP (x, κ)b ≤ b⊤(κ− 1)He

{[
BZ 0

HW + (BN)⊤ −2Γ−1

]}
b

≤ 0

for all b and all κ ≥ 1 by (1.115), concluding the proof.

1.4.4.5 Optimality of infinite-gain margin control laws

For linear systems of the form
ẋ = Ax+Bu (1.118)

with A,B being constant matrices, the infinite gain margin property is linked to the
concept of passivity (see (Sepulchre et al., 2012, Section 3.5.3)). Indeed in such a
case, the construction of an infinite gain margin stabilizing control law boils down
to the solution of an Algebraic Riccati Equation (ARE)

PA+ A⊤P − PBR−1B⊤P = −Q (1.119)

where P = P⊤ ≻ 0 and R = R⊤ ≻ 0 are strictly positive matrices and Q = Q⊤ ⪰ 0
is a semi-positive definite matrix. In such a case, the control action (1.94) is

u = Kx, K = R−1B⊤P (1.120)
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On the other hand, the solution of the ARE (1.119) is linked to a (infinite horizon)
Linear Quadratic Regulator (LQR) problem. Given a strictly positive matrix R =
R⊤ ≻ 0 and a semi-positive definite matrix Q = Q⊤ ⪰ 0, the objective is to find
a control action u such that the cost function J : Rnx × Lp(R≥0) 7→ R≥0 defined
as

J(x, u) =

∫ ∞

0

X⊤(x, u, t)QX(x, u, t) + u⊤(t)Ru(t)

subject to (1.118) is minimized. Again, the optimal control action is given by (1.120),
with the matrix P solution of the ARE (1.119).

For nonlinear systems, some results have been recently developed in Faulwasser and
Kellett (2021), where the relations between infinite time-horizon optimal control,
dissipativity, and transversality are studied. To the knowledge of the author of this
manuscript, however, the link between infinite gain margin and optimality in an
incremental framework has not been studied. In the last part of this section, we
aim to study such a relation for the class of systems (1.93), where we take w = 0
for the sake of simplicity. Even in an incremental framework, we can show that a
strong link between infinite gain margin control action and optimality exists. For
this, define the cost function J : Rnx × Lp(R≥0) 7→ R≥0 of the form

J(x, u) :=

∫ ∞

0

Q(X(x, u, t)) + u(t)⊤R(X(x, u, t))−1u(t) dt (1.121)

where X(x, u, t) is the solution of (1.93) for some chosen control action u and for
w(t) = 0 for all t ≥ t0, Q : Rnx 7→ R≥0 is a semi-positive definite function and
R : Rnx 7→ R

nu×nu is a matrix-valued function such that R(x) > 0 for all x in R
nx .

In particular, we can show that, under a monotonic assumption with no right-hand
upper bound as in (1.91) of the nonlinearity φ, we have that:

• an incremental infinite gain margin control law can be obtained under the
solution of some LMIs;

• it is possible to construct a cost function of the form (1.121) such that, if
these LMIs admit a solution, the incremental infinite gain margin control law
minimizes (1.121).

Such a result is formalized in the following.

Theorem 1.4.32 (Incremental infinite gain margin and optimality). Consider sys-
tem (1.93) where w = 0 and with φ satisfying the monotonic condition (1.91).
Assume that there exist two symmetric positive definite matrices P ∈ R

nx×nx and
R ∈ R

nu×nu, two matricesM ∈ R
nx×nφ, N ∈ R

nu×nφ, and three real numbers (µ1, µ2)
and λ > 0 such that

He

{
P

(
A+M

∂φ

∂z
(z)H

)}
− PBRB⊤P ⪯ −λI ,

P (G−M) = µ1H
⊤, PBN = µ2H

⊤.

(1.122)

Then there exists a positive real number γ such that the control law

α(x) = −γ
(
RB⊤Px+ µ2Nφ(Hx)

)
, (1.123)

is a solution to Problem 1.4.29, namely the control action (1.94), (1.123) is an
incrementally infinite gain margin control law. Moreover if φ(0) = 0, then for all
κ ≥ 2 there exist Q : Rnx 7→ R≥0 and R : Rnx 7→ R

nu×nu both depending on κ such
that u = κα(x) minimizes the cost function (1.121).
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Proof. Noting that the control law α(x) defined in (1.123) depends on the
parameter γ, we define

f(x) := Ax+Gφ(Hx), L(γ, x) := P
∂fγ
∂x

(x) +
∂f⊤

γ

∂x
(x)P,

fγ(x) := Ax+Gφ(Hx) + Bα(x).

(1.124)

About infinite gain margin. Let γ be defined as

γ := max

{
µ1

µ2
2

,
1

2

}
. (1.125)

Using the definition of L in (1.124), we obtain

L(γ, x) := He

{
P

[
A+G

∂φ

∂z
(z)H

]}
−2γPBRB⊤P−γµ2 He

{
PBN

∂φ

∂z
(z)H

}
.

Adding and subtracting the term M ∂φ

∂z
(z)H to the right-hand side of the above

definition of L yields

L(γ, x) = He

{
P

[
A+M

∂φ

∂z
(z)H

]}
+He

{
P (G−M)

∂φ

∂z
(z)H

}
− 2γPBRB⊤P

− γµ2 He

{
PBN

∂φ

∂z
(z)H

}
.

Furthermore, using the second line in (1.122), the latter gives

L(γ, x) = He

{
P

(
A+M

∂φ

∂z
(z)H

)}
− 2γPBRB⊤P

+ (µ1 − γµ2
2)H

⊤ He

{
∂φ

∂z
(z)

}
H . (1.126)

Using the first line of (1.122), it implies for all (γ, x)

L(γ, x) ⪯ −λI− (2γ−1)PBRB⊤P +(µ1−γµ2
2)H

⊤ He

{
∂φ

∂z
(z)

}
H . (1.127)

Hence, with γ defined in in (1.125), and using inequality (1.91), it follows that
the right-hand term of (1.127) is negative definite for all x. Consequently, the
control action (1.94) with (1.123) makes the closed-loop system incrementally
uniformly globally exponentially stable. Note moreover that for all κ ≥ 1,
u = κα(x) makes also the closed-loop system incrementally uniformly globally
exponentially stable. Hence, (1.123) is a control action with an infinite gain
margin.

About optimality. The idea of the proof is first to show that the Lyapunov
function V (x) = x⊤Px is the value function associated with an optimal control
problem and satisfies a Hamilton-Jacobi-Bellman (HJB) equation. Second, one
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proves that the control law u = κα(x) is the optimal one. To this end, note that
since φ(0) = 0, by the Mean Value Theorem, we have that

φ(Hx) =

∫ 1

0

∂φ

∂z
(sz) ds Hx (1.128)

for all x ∈ R
nx . Hence, the function α given in (1.123) reads

α(x) = −γ
(
RB⊤Px+ µ2N

∫ 1

0

∂φ

∂z
(sz) ds Hx

)
. (1.129)

Consequently, employing PBN = µ2H
⊤ from (1.122), the following equation

may be obtained.

κα(x) = −κγRB⊤Px− κγµ2N

∫ 1

0

∂φ

∂z
(sz)dsHx

= −κγ
[
R + µ2N

∫ 1

0

∂φ

∂z
(sz)dsN⊤

]
B⊤Px

= −1

2
R(x)(2B⊤Px) ,

where R : Rnx 7→ R
nu×nu depends on κ and is defined as

R(x) := κγ

(
R + µ2N

∫ 1

0

∂φ

∂z
(sz) ds N⊤

)
.

Note that, since φ has a symmetric Jacobian and satisfies (1.91), we have that
R takes symmetric positive definite values. Then, recalling the definition of f
given in (1.124), let the function Q : Rnx 7→ R be defined as

Q(x) := −LfV (x) +
1

4
(2x⊤PB)R(x)(2B⊤Px) , (1.130)

The former equation (1.130) is a HJB equation with respect to the cost function
(1.121) if Q takes positive semi-definite values. Recalling the definitions of V
and f , the term LfV is computed as

LfV (x) = x⊤(PA+ A⊤P )x+He

{
x⊤PGφ(Hx)

}
,

which gives by using (1.128)

LfV (x) = x⊤
[∫ 1

0

He

{
P

[
A+G

∂φ

∂z
(sz)H

]}
ds

]
x.

Moreover,

x⊤PBR(x)B⊤Px = κγx⊤
[∫ 1

0

(
PBRB⊤P +

µ2

2
He

{
PBN

∂φ

∂z
(sz)H

})
ds

]
x.
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Hence, using the definition of L given in (1.124) and equation (1.126), we obtain

Q(x) = −x⊤
(∫ 1

0

L(κγ, sx) ds

)
x− x⊤PBR(x)B⊤Px .

With (1.127), it implies

−L(κγ, x) ⪰ λI + (2κγ − 1)PBRB⊤P − (µ1 − κγµ2
2)H

⊤ He

{
∂φ

∂z
(z)

}
H .

Hence,

Q(x) ⪰ λ|x|2+(κγ− 1)x⊤PBRB⊤Px−
(
µ1 − κγ

µ2
2

2

)
H⊤ He

{
∂φ

∂z
(z)

}
H .

(1.131)

With the definition of γ in (1.125), previous inequality implies

Q(x) ⪰ λ|x|2 +
(κ
2
− 1
)
x⊤PBRB⊤Px + µ1

(κ
2
− 1
)
H⊤ He

{
∂φ

∂z
(z)

}
H .

(1.132)

Consequently Q is a positive definite function if κ ≥ 2. Hence, u = κα(x)
minimizes the cost function (1.121).

Remark 1.4.33. Using the monotonic condition (1.91), the conditions in (1.122)
can be also rewritten as

WA⊤ + AW − BRB⊤ ≺ 0 ,

G = WH⊤ , BN = µ2WH⊤ ,

with unknown W = W⊤ ≻ 0, µ2 and N so that inequality (1.122) is satisfied with
P = W−1, M = G, µ1 = 0.

Remark 1.4.34. If one includes the upper-bound in the monotonic condition, that
is, consider (1.80), the condition (1.122) can be written as

[
A⊤P + PA− PBRB⊤P + λI H⊤ + PM

H +M⊤P −4Γ−1

]
⪯ 0 ,

P (G−M) = µ1H
⊤, PBN = µ2H

⊤.

Again, with the choice P = W−1, M = G, µ1 = 0, by matrix manipulation one
can recover the conditions given in Proposition 1.4.31, namely the LMIs (1.114),
(1.115).

Remark 1.4.35. If φ is a function satisfying (1.91) and the sector-bound condition
(1.79) rather then the monotonic condition (1.80), similar LMIs conditions can be
derived.

Example 1.4.36. To show that the proposed design for incremental infinite gain
margin control law can be applied to practical case studies, in this example we con-
sider a single-link robot arm system (see (Isidori, 1985, Section 4.10)). Its model is

50



1

given in the form (1.93) with

A =




0 1 0 0

−k+mgdℓ
J2

−F2

J2

k
J2b

0

0 0 0 1
k
J1b

0 − k
J2b

−F1

J1


 , B =




0
0
0
1


 , G =




0

−mgd

J2

0
0


 ,

H =
[
1 0 0 0

]
φ(s) = cos(s) + ℓs, R = 0

where k = 0.4,m = 0.8, g = 9.81, d = 0.6, J2 = 0.2, F2 = 0.15, b = 2, J1 = 0.15, F1 =
0.1 are plant parameters and ℓ is a degree of freedom. Note that if ℓ > 1, then the
monotonic condition (1.80) holds with Γ = ℓ+1

2
. With ℓ = 1.01, it’s possible to check

that the LMIs (1.114), (1.115) are satisfied with N = 6.15 · 103 and

K =
[
−1.03 · 106 −0.35 · 106 −0.5 · 108 −2.22 · 103

]
.

We obtain that the closed-loop system with the control law u = κ(Kx+ φ(Hx)) for
any κ ≥ 1 is a contraction. Figure 1.5 shows the dynamics of the closed-loop system
for different values of κ. As the closed-loop system is a contraction, the trajectories
converge to a globally exponentially stable equilibrium point, that is the origin.

1.4.4.6 Uniformly incrementally stable observers and a nonlinear separation
principle

In this section, we consider the case in which the dynamical system (1.93) is com-
plemented with a measured output of the form

y = Cx (1.133)

where y ∈ R
ny and C is a matrix of appropriate dimensions. Incremental stability

properties have been deeply investigated for the design of observers. See for instance
the recent survey Bernard et al. (2022) and more in particular Sanfelice and Praly
(2011, 2015, 2021); Andrieu et al. (2020). In our context, following Arcak and
Kokotović (2001), we consider an observer of the form

˙̂x = Ax̂+Bu+ L(y − Cx̂) +Gφ(ẑ),

ẑ = Hx̂− E(y − Cx̂) ,
(1.134)

where E,L are matrices in R
nz×ny and R

nx×ny respectively. In particular, differently
from many other standard designs (such as Luenberger observers, Kalman-like ob-
servers, high-gain observers and so on), the observer (1.134) is characterized by the
presence of a correction term inside the nonlinear term. In case w = 0, a sufficient
condition to guarantee the convergence of the observer, namely, that the observer
trajectories X̂(x̂, x, t) converge to the plant’s trajectory X(x, t), is to select the ma-
trices E and L to ensure that the observer defines is uniformly (with respect to y)
incrementally exponentially stable. For systems of the form (1.93), (1.133) with an
observer selected as (1.134), this is achieved for instance if there exists a positive
definite matrix Q in R

nx×nx such that

He

{
Q

[
A− LC +G

∂φ

∂z
(z)(H − EC)

]}
⪯ −qI (1.135)
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Figure 1.5: x-dynamics for κ = 1 (green), κ = 10 (red) and κ = 100 (blue)
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for all z, for some strictly positive real number q > 0. Indeed, under the condition
(1.135), it is easy to show3 the existence of strictly positive real numbers (k̃, λ̃) such
that for all (x, x̂) in R

2nx ,
∣∣∣X(x, t)− X̂(x̂, x, t)

∣∣∣ ≤ k̃ exp(−λ̃t) |x− x̂| ,

for all t ≥ 0 in the time domain of existence of solutions.

Similar to the results presented in the former sections, it is possible to give suffi-
cient conditions in the form of LMI to obtain constructive conditions for the design
of L and E. For instance, based on the sector-bound condition in item (A1) of
Assumption 1.4.6, we obtain the following result.

Corollary 1.4.36.1 (Observer for sector-bound). Consider system (1.93) with w =
0 coupled with a measurement output (1.133). Assume that φ satisfies the sector
bound condition (A1) in Assumption 1.4.6. If there exist a symmetric positive def-
inite matrix Q ∈ R

nx×nx, two matrices R and E of appropriate dimensions, and a
strictly positive real number q > 0 such that

He

{[
QA−RC + q

2
I 0

G⊤Q− SΩ(H − EC) −S

]}
≺ 0, (1.136)

then (1.134) is a incrementally uniformly globally exponentially stable observer with
L = Q−1R and such a E.

Proof. Straightforward from Proposition 1.4.17.

Based on monotonic nonlinearities, the same result has been obtained in Arcak
and Kokotović (2001). Equivalently, under a monotonic assumption on φ, system
(1.134) is an exponential observer for system (1.93), (1.133). This is recalled in the
following.

Corollary 1.4.36.2 (Observer for monotonic). Consider system (1.93) where w = 0
coupled with a measurement output (1.133). Assume that φ satisfies the monotonic
condition (A2) in Assumption 1.4.6. Then if there exist a symmetric positive definite
matrix Q ∈ R

nx×nx, two matrices R and E of appropriate dimensions and a strictly
positive real number q > 0 such that

He

{[
QA−RC + q

2
I 0

H − EC +G⊤Q −2Γ−1

]}
≺ 0, (1.137)

then (1.134) is a incrementally uniformly globally exponentially stable observer with
L = Q−1R and such a E.

Proof. Straightforward from Proposition 1.4.18.

In the following, we specialize such a result for a nonlinearity φ satisfying (1.91).

Corollary 1.4.36.3. Consider system (1.93) where w = 0 coupled with a mea-
surement output (1.133). Assume that φ satisfies 1.91. If there exist a symmetric
positive definite matrix Q ∈ R

nx×nx, two matrices R and E of appropriate dimen-
sions and a strictly positive real number q > 0 such that

He
{
QA−RC + q

2
I
}
⪯ 0 (H − EC)⊤ = −QG. (1.138)

3This can be done, for instance, by applying Lemma 1.4.16 to the error-coordinates dynamics e := x−x̂.
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then (1.134) is an incrementally uniformly globally exponentially stable observer with
L = Q−1R and such a E.

Proof. Straightforward from Proposition 1.4.18 and Remark 1.4.19.

Example 1.4.37. Consider again the surge subsystem studied in Example 1.4.27.
Recall that the nonlinearity satisfies relation (1.91). The output matrix C is given as
C = [c1, c2]. Depending on the values of c1 and c2 different cases can be considered.
In the following, we consider the case in which c1 = 0 and c2 = 1. It can be shown
that for all ℓ ≥ 6, there exists (L1, L2, E) in R

3 such that the system

{
˙̂x1 = −x̂2 + ℓx̂1 − φℓ(x̂1 + E(y − x̂2)) + L1(y − x̂2)
˙̂x2 = x̂1 − u+ L2(y − x̂2)

with φℓ defined in (1.104) is a incrementally uniformly globally exponentially stable
observer. As shown in (1.105), the function φℓ satisfies inequality (1.91) if ℓ ≥ 6.
Moreover, the system (1.102) is in the form of (1.93) with matrices A,B,G,H,R
as in (1.107) and C =

[
0 1

]
. Let

Q =

[
q11 q12
q12 q22

]
, R =

[
R1

R2

]
.

Then, the equality constraint in (1.138) reads q11 = 1 and q12 = −E. To satisfy
Q > 0 one has to satisfy q22 − E2 > 0. From inequality (1.138), one also obtain

He{QA−RC} = He

{[
ℓ− E −1−R1

−Eℓ+ q22 E −R2

]}
,

which can be made definite negative selecting

R1 = −Eℓ+ q22 − 1, E − ℓ > 0, R2 − E > 0.

Hence, (1.138) is satisfied for sufficiently small q.

One of the motivations of observer design is surely the design of output feedback
control laws. In this section, we establish a separation principle by showing that
a globally stabilizing output feedback law can be obtained by first designing an
incrementally uniformly exponentially stable state-feedback control law, and then
replacing the state with an estimate provided by a contractive observer. Recall in
this sense, that an incrementally uniformly exponentially stable system admits an
exponentially stable equilibrium point, see Corollary 1.2.7.2. In contrast with most
of nonlinear separation principle, with the proposed conditions one may recover
standard results of linear systems in which the design of gains of the state-feedback
law and the observer output injection are independent. As a matter of fact, most
of the existing results about the separation principle for nonlinear systems rely on
time-separation scale conditions, see, e.g. Atassi and Khalil (1999); Teel and Praly
(1994); Andrieu and Praly (2009). In other words, the typical nonlinear approach
consists in first designing a state-feedback law, and then replacing the state with an
estimate which converges to the true state trajectory sufficiently fast. Such a goal is
typically achieved using (tunable) high-gain observers Atassi and Khalil (1999); Teel
and Praly (1994); Andrieu and Praly (2009). In our case, such a time-separation
scale condition is no anymore needed thanks to the uniform incremental stability
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properties. As a result, the observer’s convergence may be tuned independently of
the feedback design (for instance, it can be selected slower than the convergence of
the state-feedback law). We recover in this sense, the standard linear separation
principle results (Khalil, 2002, Section 12).

To state the main result of this section, consider system (1.93) with w = 0 coupled
with a measurement output (1.133) together with an output feedback control law
of the form

u = Kx̂+Nφ(Hx̂) (1.139)

in which the estimate x̂ is provided by an observer of the form (1.134). In this section
we consider only the case of functions φ satisfying the monotonic condition (A2) in
Assumption 1.4.6, but similar results can be extended to the case of sector-bound
condition (A1) of Assumption 1.4.6. Now, following the framework in Andrieu and
Praly (2009) based on the notion of input-to-state stability (ISS), we recall that two
different paths may be followed for the design of an output feedback law:

Direct approach: An ISS property is imposed on measurement error in the state
feedback law to cope with the mismatch between x and x̂.

Indirect approach: An ISS property is imposed to cope with the observer correc-
tion term.

In our context, both cases may be pursued under an extra assumption, as shown in
the following.

Theorem 1.4.38 (Output-feedback stabilization for monotonic). Consider the sys-
tem (1.93) with w = 0 coupled with a measurement output (1.133). Suppose that the
nonlinearity φ satisfies the monotonic condition (A2) in Assumption 1.4.6. Con-
sider the feedback output law given by the observer (1.134) and control law (1.139).
Suppose that the LMIs (1.99) and (1.137) are feasible for some symmetric strictly
positive matrices Q = Q⊤ ≻ 0, W = W⊤ ≻ 0 and some matrices R,E,Z,N of
appropriate dimensions and some strictly positive scalar λ, q > 0. Assume moreover
that one of the following properties holds:

• The nonlinear term in the controller (1.139) is zero (N = 0);

• The injection term inside the nonlinearity in (1.134) is zero (E = 0).

Then the origin of the closed-loop system (1.93), (1.133), (1.134), (1.139) is globally
exponentially stable with K = ZW−1, L = Q−1R, and N = 0 or E = 0.

Proof. Direct approach (N = 0): With the change of coordinates x̂ 7→ e :=
x− x̂, the closed-loop dynamics (x, e) reads

ẋ = (A+BK)x− BKe+Gφ(Hx)

ė = (A− LC)e+G[φ(Hx)− φ(Hx− (H + EC)e)].

Now, consider the Lyapunov function V (x) = x⊤Px where P = W−1 with W
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defined as solution to (1.99). By the Mean Value Theorem, we have that

V̇ = 2x⊤P [(A+BK)x+Gφ(Hx)− BKe]

≤ 2x⊤P

[
A+BK +G

∫ 1

0

∂φ

∂z
(sz)dsH

]
x+ 2x⊤PBKe

≤ −2ν|x|2 + 2x⊤PBKe

for some ν > 0, where the last inequality comes from Proposition 1.4.25. From
Sontag and Wang (1995), the x-dynamics is ISS with respect to the input e.
Since (1.137) holds, then by Arcak et al. (2003) we have that

lim
t→∞

e(t) = 0.

Hence the closed-loop can be seen as a cascade of a system having an equilibrium
that is globally asymptotically stable and an ISS system. Hence, (x, e) = (0, 0)
is globally asymptotically stable for the closed loop system.

Indirect approach (E = 0): With the change of coordinates x 7→ e := x− x̂,
the closed-loop dynamics (x̂, e) reads

˙̂x = (A+BK)x̂+ (BN +G)φ(Hx̂) + LCe

ė = (A− LC)e+Gφ(x̂+ e)−Gφ(x̂)

Consider the Lyapunov function V (x̂) = x̂⊤Px̂ where P = W−1 with W defined
as solution to (1.99). We have that

V̇ = 2x̂⊤P [(A+BK)x̂+ LCe+ (BN +G)φ(Hx̂)]

≤ 2x̂⊤P

[
A+BK + (BN +G)

∫ 1

0

∂φ

∂s
(sHx̂)ds H

]
x̂

+ 2x̂⊤PLCe

≤ −ν|x̂|2 + 2x̂⊤PLCe

for some ν > 0. Again, we have obtained a cascade of a contractive system and
an ISS system. Therefore, the origin of the closed loop is globally exponentially
stable.

Remark 1.4.39. In the general case in which E ̸= 0 and N ̸= 0, no stability results
can be stated a priori. However, one might still be able to claim stability of the
closed loop by addressing the problem through a small-gain analysis (see Jiang et al.
(1994)). In this case, the designs of the feedback and the observer cannot be made
disjointed and typically a time-scale separation between these dynamics is needed.

Remark 1.4.40. The output feedback law (1.134), (1.139) doesn’t ensure in general
any contractivity property for the closed-loop system (1.93), (1.133), (1.134), (1.139).
As a consequence, if one aims at obtaining a contractive output feedback law, a more
general dynamic output feedback of the form

u = K1xc +K2y +
∑m

j=1Njφ(HJjxc + Ejy),
ẋc = Acxc +

∑m

j=1Mjφ(HJjxc + Ejy)
(1.140)

needs to be considered. Indeed in the proposed design, we considered a dynamical
feedback control action based on an observer where, in particular, we focused on the
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observer proposed in Arcak and Kokotović (2001). This is however a restriction
on the choice of the observer structure. More general dynamical designs can be
constructed, following for instance the ideas in Scherer et al. (1997). To maintain
an LMI-based analysis, the objective would just be to look for a dynamic control law
such that the closed-loop system can be written as a linear term plus a nonlinearity
satisfying either a monotonic or a sector-bound condition. By rewriting the closed-
loop system in the form (1.93), LMI conditions similar to those derived in Section
1.4.4.3 can be established to show contractivity of the closed-loop system in the sense
of Lemma 1.4.23.

Example 1.4.41. Consider the example of a flexible link manipulator presented in
Wu et al. (2015) where system (1.93) defined by matrices

A =




0 1 0 0

− k

Im
, −Cvf

Im

k

Im
0

0 0 0 1
k

Il
0 − k

Il
− b

mgh

Im
0



, B =




0
kT
Im
0
0


, G =




0
0
0

mgh

Im


 ,

H =
[
0 0 1 0

]
, φ(z) = sin(z) + bz , R = 0.

The nonlinearity φ satisfies the monotonic condition (A2) in Assumption 1.4.6 with
Γ = 2(b − 1) where b > 1 is a degree of freedom parameter. The system is coupled
with a linear output C =

[
1 0 0 0

]
. For such a system with plant parameters

selected as k = 1.8, Im = 3.7; Il = 9.3, Cvf = 4.6, kT = 8,m = 2.1, g = 9.81, h = 1
and b = 1.1, the assumptions of Theorem 1.4.38 hold with a zero nonlinear injection
term E = 0 and the system is output-feedback stabilizable by means of the dynamical
controller (1.134), (1.139) with gains selected as

K =
[
−43.2 −5.4 203.8 −599.9

]
, N = 16.9 ,

L =
[
−9.4 −87.1 −858.7 −1177.5

]
,

and with positive scalars p = 1 and q = 0.5. In this case, the convergence of
the observer is slower than the guaranteed convergence of the state-feedback law
(differently from most of output feedback results for nonlinear systems). Figure 1.6
shows the trajectory of the system with initial conditions x(0) = (−10, 5,−3, 8) and
observer initial conditions x̂(0) = (7, 6, 0,−4).

1.5 Conclusions and perspectives

In this chapter, we studied incremental properties for nonlinear systems. First, we
analyzed autonomous time-varying systems. We provided a set of sufficient condi-
tions with a metric-based approach guaranteeing incremental properties for a non-
linear time-invariant system. Then, we recalled the main properties of incremental
systems. Later, we considered systems coupled with an input. Through the notion
of ‘Killing vector’ field, we provided a set of novel sufficient conditions for a system
to be incremental ISS. Then, we focused on the design of control laws guarantee-
ing incremental properties for the closed-loop. We considered three different sets of
control laws for three different classes of systems: a small-gain analysis for systems
in feedback, an incremental forwarding control law for systems in cascade, and a
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Figure 1.6: Output feedback stabilization for the flexible link manipulator

set of LMI conditions for linear systems coupled with a monotonic or sector-bound
nonlinearity.

Future studies will focus on the following aspects:

• Theorem 1.2.2 provides sufficient conditions for a system to have incremental
properties with respect to the Euclidean metric. An interesting point could
be to see whenever this result can be generalized concerning any Riemaniann
metric (and the associated distance operator), similarly to Forni and Sepulchre
(2013a).

• Another interesting analysis could focus on the notion of incremental asymp-
totic stability (not exponential), i.e. when the left-hand side of (1.3) is a
class-KL function. To the best of the author’s knowledge, such notions have
not been studied with a metric-based analysis.

• The study that we pursued considers vector fields that have to be sufficiently
smooth. On the other hand, incremental stability is a property of trajectories
and therefore is not linked with the smoothness of the vector field. There-
fore, a future study could involve the analysis of incremental properties for
non-smooth systems, for instance by means of a study based on differential
inclusions.

• An interesting point could be to study more general sufficient conditions to
have incremental ISS properties concerning the one provided with the Killing
vector field notion. On one hand, it could be of interest to look for a feedback
control design guaranteeing that the Killing vector field property is satisfied.
On the other hand, another analysis can focus on the robustness of the Killing
vector field property and how model-uncertanties can cause a loss of δISS
properties

• A very interesting field is related to the results that have been provided con-
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cerning the infinite gain margin control law and optimality. A future per-
spective could be to study in deeper detail the relations between incremental
stability and optimality for more general classes of systems and to see how this
is related, in a discrete-time context, to existing results on Model Predictive
Control.

59



CHAPTER 2

GLOBAL OUTPUT
REGULATION

When it is obvious that the goals
cannot be reached, don’t adjust the
goals, adjust the action steps.

Confucius

2.1 Introduction and problem statement

2.1.1 Introduction

One of the most important problems in control theory is the so-called output regu-
lation problem (also called the servomechanism problem). Given a system, the goal
of the output regulation problem is to regulate some desired outputs of the system
to some references while rejecting some external perturbations. In case such an
objective has to be achieved without the perfect knowledge of the plant’s dynam-
ics, it is called the robust output regulation problem. The robust output regulation
problem in the linear framework for Multi-Input Multi-Output (MIMO) system has
been completely solved in the ′70 by B.A. Francis and W.M. Wonham in their
works Francis and Wonham (1975, 1976) and by E. Davidson in Davison (1976).
In their contributions, Francis and Wonham provided the notion of what nowadays
is commonly known as the Internal Model Principle. Such a principle says that ‘a
regulator synthesis is structurally stable only if the controller utilizes feedback of the
regulated variable, and incorporates in the feedback path a suitably reduplicated model
of the dynamic structure of the exogenous signals which the regulator is required to
process.’. If such a problem has been completely solved for linear systems, for non-
linear systems there are still several questions and open problems. The objective of
this chapter is to try to provide an answer to some of these questions.

In detail, in this Chapter, we focus on the global output regulation problem for
nonlinear systems. Roughly speaking, with the word ‘global’ we mean that we want
to achieve the regulation task independently on the initial conditions of the system
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and independently on the amplitude of the external references and disturbances.
The peculiarity of the proposed design is that the main tool that we will use for the
control design is incremental stability, which has been presented in Chapter 1. In
other words, we will cast the output regulation problem into an incremental frame-
work, by using the tools for the analysis and control synthesis previously developed.
The main intuition behind this choice is that, if the system in closed-loop has some
incremental global uniform ISS properties with respect to the external signals, then,
independently of the initial conditions and on the amplitude of these signals, the
system reaches a bounded steady-state solution. In this case, the role of the control
action will be to provide such an incremental ISS property, as well as to force the
steady-state solution to be the one in which the regulation task is achieved.

The Chapter is structured as follows. In Section 2.1.2, we provide an overview of
existing results and open problems on linear and nonlinear output regulation. In
Section 2.2, we study the problem of global set-point tracking and constant distur-
bance rejection problem. In particular in Section 2.2.1, we show why incremental
stability tools can be used to solve such a problem. Then, in Section 2.2.2 and Sec-
tion 2.2.3, we provide, respectively, a state-feedback and output-feedback control
design for the solution to such a problem. To conclude, in Section 2.2.4, we show
that the proposed design applies to some cases of interest. After this, in Section
2.3, we approach the global harmonic regulation problem. In details, in Section
2.3.1, we show how incremental properties can be useful to solve such a problem.
Then, in Section 2.3.2, we propose some state-feedback conditions. The proposed
design is characterized in Section 2.3.3 for some case studies. The results that will
be presented, can be found in the author’s publications Giaccagli et al. (2020, 2021b,
2022d).

2.1.2 The global output regulation problem

2.1.2.1 Linear output regulation

In this section, we recall some aspects of linear output regulation theory. The
objective here is not to provide a detailed analysis of existing literature results,
but rather to recall the main aspects and to put in evidence the main differences
with respect to the nonlinear case. For the sake of brevity, we focus only on state-
feedback control designs. The results that will be presented can be found for instance
in Francis and Wonham (1975, 1976); Davison (1976) or in several books of control
of linear and nonlinear systems theory, such as Isidori et al. (2003); Byrnes et al.
(2012); Huang (2004).

Let’s consider a linear system defined by the following dynamical equations

ẇ = Sw (2.1a)

ẋ = Ax+Bu+ Pw (2.1b)

e = Cx+Qw (2.1c)

where x ∈ R
nx is the state of the plant, u ∈ R

nu is the control action and w ∈ R
nw

is an external signal generated by the autonomous system (2.1a) called exosystem.
Such an autonomous signal w may physically represent some disturbances acting on
the system and/or some signals that have to be tracked. We denote with e ∈ R

ne

the error signal between an output y = Cx and the external signal Qw(t). We have
that A,B, P, S, C,Q are constant matrices of appropriate dimensions. The linear
output regulation framework is based on the following assumption.
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Assumption 2.1.1 (Neutral stability). The exosystem (2.1a) is neutrally stable,
that is, the matrix S can be expressed as a skew-symmetric matrix, i.e.

S = −S⊤ .

In other words, S has eigenvalues only on the imaginary axis. This guarantees that
the trajectories of the autonomous exosystem (2.1a) are well-defined and bounded
for all positive and negative times. To have a well-posed problem, we assume that
the system is not underactuated, that is nu ≥ ne. As we will recall, such a constraint
is indeed necessary for the solution of the problem.

The problem that we aim to solve is to find a dynamic feedback control action that
asymptotically regulates the error e to zero while keeping the trajectories of the
closed-loop bounded. This can be done with or without the full knowledge of the
plant’s dynamics (2.1). Such an objective is formulated in the following.

Problem 2.1.1 (Linear output regulation). Consider system (2.1). Find a dynam-
ical control law of the form

η̇ = Φη + Γe (2.2a)

u = Kx+Nη (2.2b)

with η ∈ R
nη , for some matrices Φ,Γ, K,N such that the following hold.

(P1) (Output regulation) We have that:

• the origin (x, η) = (0, 0) of the unforced (w(t) = 0) closed-loop system
(2.1), (2.2) is globally asymptotically stable;

• the trajectories of the forced (w(t) ̸= 0) closed-loop system (2.1), (2.2) are
bounded and

lim
t 7→∞

e(t) = 0

for every initial condition (x(0), η(0), w(0)) ∈ R
nx × R

nη × R
nw .

(P2) (Robust output regulation) For the same control action (2.2) with fixed
matrices Φ,Γ, K,N and the same exosystem (2.1a) with fixed matrix S, we
have that:

• the output regulation problem (P1) is solved for nominal matrices A,B, P, C,Q;

• the output regulation problem (P1) is solved for perturbed matrices Ã, B̃, P̃ , C̃, Q̃
belonging to a neighborhood of the nominal matrices in the space of pa-
rameters P = R

nx×nx × R
nx×nu × R

nx×nw × R
ne×nx × R

ne×nw .

We consider two different problems. In the (linear) output regulation problem (P1),
we aim to find a dynamical control action of the form (2.2) such that:

• if we disconnect the exosystem, i.e. w(t) = 0 for all t ≥ 0, then the origin of
the closed-loop system is globally asymptotically stable;

• If the plant is excited by the exosystem (2.1a) satisfying Assumption 2.1.1,
then, for any initial condition, the trajectories of the closed-loop system are
bounded and, asymptotically, the regulation error e goes to zero.

On the other hand, the (linear) robust output regulation problem (P2) requires
that:
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• the linear output regulation problem (P1) is solved;

• for the same control law (2.2), even if we do not have a perfect knowledge of
the plant’s matrices (under certain limits), the asymptotic regulation task on
the error is still achieved.

Since the origin of the closed-loop system (2.1), (2.2) has to be asymptotically stable
if w = 0, a trivial necessary condition is that the following must hold.

Assumption 2.1.2 (Closed-loop stabilizability). There exist two symmetric positive
definite matrices P = P⊤ ≻ 0 and Q = Q⊤ ≻ 0 such that

PA+A⊤P ⪯ −Q, A :=

(
A+BK BN

ΓC Φ

)

By Assumption 2.1.2, the unforced plant has the origin which is globally asymptot-
ically stable. If now we excite the plant with the signal w(t), since the matrix S
is assumed to have poles only on the imaginary axis, the closed-loop system (2.1),
(2.2) will have bounded trajectories.

An apparently simple yet incredibly powerful result is the following one, which
provides a sufficient and necessary condition for the solution of the output regulation
problem.

Theorem 2.1.2 (Linear regulator equations). Consider the system (2.1) with the
controller (2.2). There exists a controller solving the output regulation problem if
and only if there exist matrices Π,Ψ solution of

ΠS = AΠ+ BΨ+ P (2.3a)

0 = CΨ+Q. (2.3b)

The conditions (2.3) are generally called regulator equations (also known as Francis-
Byrnes-Isidori equations). It can be shown that, if the regulation problem is solved,
then the steady-state solution of the x-dynamics on which the regulation error e is
zero is given by x = Πw. In a similar way, the steady-state input (known as the
friend) is given by u = Ψw. We have then the following assumption.

Assumption 2.1.3 (Non-resonance condition). Consider the system (2.1) for some
matrices (A,B,C, S). The matrix

(
A− λI B
C 0

)

has rank equal to the number of its rows, for any λ in the spectrum of S.

Such an assumption is generally known as non-resonance condition. It can be un-
derstood as the assumption that the transfer function C(sI −A)−1B between input
u and the output y = Cx (where here s denotes the Laplace’s variable) does not
have zeros at the same frequency at the eigenvalues of S. Note that such a condition
can be verified only if the number of columns of B is higher than the number of
rows of C, which justifies the fact that we assumed nu ≥ ne. Note moreover that,
in virtue of (Byrnes et al., 2012, Proposition 1.6), such an assumption is necessary
to solve the robust linear output regulation problem.

The design of the matrices of the control action (2.2) follows a two step proce-
dure:
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ẋ = Ax+Bu+ Pw

e = Cx+Qw

e(t)
η̇ = Φη + Γe

x(t)

u = Kx+Nη

η(t)
ẇ = Sw

w(t)

u(t)

Figure 2.1: Block-scheme solving the output regulation problem for linear systems

1. design the internal model unit (2.2a) which has to process the regulation error
e;

2. design the stabilizing action (2.2b) for the (x, η)-dynamics.

The internal model principle states that the control action must encode in its struc-
ture a suitable copy of the exosystem. For this, the solution to the problem consists
in the design of the dynamics of η in (2.2a) with a state-space matrix that possesses
the same characteristic polynomial of S and that processes as input the error e. For
the MIMO case, a possible choice for the design of the internal model is to pick the
matrix

Φ = blkdiag{Φ1, . . . ,Φne} =



Φ1

. . .
Φne




where each Φi possesses the same characteristic polynomial of S (the copy of the
exosystem) and any matrix Γ = blkdiag{Γ1, . . . ,Γne} such that any pair (Φi,Γi) is
controllable (to ensure that the η-dynamics correctly processes e(t)). Then, the sta-
bilizer (2.2b) can be selected as any couple of matrices K,N such that Assumption,
2.1.2 is satisfied. A block scheme of the resulting closed-loop system is shown in
Figure 2.1. This result is summed up in the following.

Theorem 2.1.3 (Linear output regulation). Consider system (2.1) in closed-loop
with a dynamic controller of the form 2.2. Let Assumption 2.1.1 hold. Select the
matrices Φ ,Γ as Φ = blkdiag{Φ1, . . . ,Φne} and Γ = blkdiag{Γ1, . . . ,Γne} where Φi

and S have the same eigenvalues and (Φi,Γi) is controllable pair for every i. Let the
non-resonance condition in Assumption 2.1.3 hold and select any K,N such that
Assumption 2.1.2 holds. Then the linear output regulation problem (P1) in Problem
2.1.1 is solved.

Remark 2.1.4. Two important aspects are that:

• the problem is solved independently on the stabilizer u, as long as the closed-
loop system is stable for w = 0. This implies that different control designs can
be applied (passivity, H∞, LQR, . . . ) and the asymptotic behavior of the error
e(t) is independent of the stabilizer (as long as it is linear). This is achieved
thanks to the Internal Model Principle;

• the problem is solved for any initial condition of the plant x, of the internal
model unit η, and of the exosystem w. This means that independently of the
amplitude of the perturbations and the signals to be tracked, the control action
(which depends only on the frequencies of w and not on P,Q) asymptotically
regulates the error to zero.
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An even more surprising result is that the same control action and the same con-
ditions are sufficient for the solution of the robust output regulation problem (P2)
in Problem 2.1.1. In particular, if the matrices A,B,C, P,Q are not well known, as
long as the non-resonance condition in Assumption 2.1.3 is satisfied and the stabi-
lizer (2.2b) makes the unforced closed-loop system stable, output regulation is still
achieved. This is recalled in the following.

Theorem 2.1.5 (Robust linear output regulation). Consider system (2.1) in closed-
loop with (2.2). Assume that Theorem 2.1.3 holds, that is, the linear output regu-
lation problem (P1) in Problem 2.1.1 is solved for some nominal plant matrices
(A,B, P, C,Q). Then for the same control action (2.2), the linear output regulation
problem is solved for any matrices (Ã, B̃, P̃ , C̃, Q̃), as long as Assumption 2.1.2 and
Assumption 2.1.3 are satisfied for (Ã, B̃, P̃ , C̃, Q̃) instead of (A,B, P, C,Q), i.e. the
robust linear output regulation problem (P2) in Problem 2.1.1 is solved.

Remark 2.1.6. In the results that we presented, we considered a state-feedback
design for the stabilizer. Similar results can be obtained with an output-feedback
design, through an additional detectability assumption and the design of a Luenberger
observer for such an output.

2.1.2.2 Nonlinear output regulation

In this section, we review the main aspects of nonlinear output regulation theory
and we illustrate some open problems. In a nutshell, for nonlinear systems, there
are two main differences with respect to the linear case.

1. A nonlinear version of the Internal Model Principle for general MIMO input-
affine systems does not exist (yet?). This implies that it is generally not possi-
ble to follow the same two-step procedure as in the linear case, by first designing
the internal model unit and then (any!) suitable stabilizer. This because the
internal model might not just depend on the exosystem, but it can depend also
on the plant and the stabilizer. At the same time, the stabilizing unit must
act on both the plant and the internal model unit. This creates a chicken-egg
dilemma (Bin and Marconi (2018)), in which it is not generally possible to
design the internal model and the stabilizer independently with respect to the
other. This dependence is of particular importance when the goal is to achieve
robust regulation (with particular attention to what ‘robust’ now means, see
Bin et al. (2018, 2022)).

2. In linear output regulation, the problem is solved independently on the initial
conditions and independently on the amplitude of the exosystem (i.e. for every
fixed S). For nonlinear systems, this is not always the case. Depending on the
domain of attraction on which convergence to the steady state solution must
be achieved and on the amplitude of the external signals w, different stability
properties can be exploited. In other words, weaker or stronger properties
might be required, depending if regulation has to be achieved locally, regionally,
semi-globally, or globally.

Consider for this a general nonlinear system of the form

ẇ = s(w) (2.4a)

ẋ = f(x) + g(x)u+ p(x)w (2.4b)

e = h(x) + q(w) (2.4c)
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where x ∈ R
nx is the plant’s state, u ∈ R

m is a control action, w ∈ R
nw is an

external signal generated by the autonomous exosystem (2.4a) and e ∈ R
ne is the

error that has to be asymptotically regulated to zero. We assume f : Rnx 7→ R
nx ,

g : Rnx 7→ R
nx×nu , p : Rnx 7→ R

nw , h : Rnx 7→ R
ne , q : Rnw 7→ R

ne and s : Rnw 7→ R
nw

to be sufficiently smooth and f(0) = 0, h(0) = 0 and s(0) = 0. Similarly to the
linear case, we assume that nu ≥ ne and that the exosystem (2.4a) is Poisson stable1

in a neighborhood of the origin. The problem to be solved is the following.

Problem 2.1.7 (Nonlinear output regulation). Consider system (2.4). Find a dy-
namic control action of the form

η̇ = ϕ(η, e) (2.5a)

u = α(x, η) (2.5b)

such that

1. The origin of

ẋ = f(x) + g(x)α(x, η)

η̇ = ϕ(η, h(x))

is asymptotically stable and locally exponentially stable;

2. there exists a neighborhood Nx×Nη×Nw of the origin such that, for any initial
condition (x(0), η(0), w(0)) ∈ Nx × Nη × Nw, the solutions of the closed-loop
system (2.4), (2.5) are bounded and satisfy

lim
t 7→∞

e(t) = 0.

Similarly to Theorem 2.1.2, for the nonlinear case, a sufficient and necessary condi-
tion for the solution of the problem can be found. This is recalled in the following,
whose proof can be found in (Isidori and Byrnes, 1990, Theorem 1).

Theorem 2.1.8 (Nonlinear regulator equations). Consider system (2.4) and assume
that (A,B) is stabilizable, where A := ∂f

∂x
(0), B := ∂g

∂x
(0). Then, the nonlinear

output regulation problem in Problem 2.1.7 is solvable if and only if there exist two
sufficiently smooth mapping π : Rnw 7→ R

nx and ψ : Rnw 7→ R
nu satisfying π(0) = 0

and ψ(0) = 0 that are well-defined in a neighborhood of w = 0 such that

∂π

∂w
s(w) = f(π(w)) + g(π(w))ψ(w) + p(π(w))w (2.6a)

0 = h(π(w)) + q(w). (2.6b)

The conditions (2.6) are a nonlinear version of the regulator equations in (2.3). The
mapping π is the steady-state solution to which the plant has to asymptotically
converge x = π(w) and on which the regulation error is zero. Similarly, ψ is the
‘friend’, that is, the steady-state input u = ψ(w) that is required to guarantee

1The system (2.4a) is said to be Poisson stable if, for any initial condition w(0), the solution W(w(0), t)
of the system is well-defined for all t ∈ R and for each neighborhood N of w(0). Moreover, for each real
number T > 0, there exist τ1 > T and τ2 < −T such that W(w(0), τ1) ∈ N and W(w(0), τ2) ∈ N. See
Isidori and Byrnes (1990). The concept of Poisson stability is a generalization of a system having a periodic
solution (e.g. an oscillator). A linear system (2.1a) is Poisson stable if and only if S = −S⊤.
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that the manifold on which x = π(w) is forward-invariant for the dynamics of the
closed-loop system.

The question now is: how to design the control action? As we said, a nonlinear
version of the Internal Model Principle does not exist. For this, most of the re-
sults that can be found in the literature, approach the problem with techniques to
overcome such a missing point. An important class of control designs is the one
in which the internal model unit behaves as an observer for the friend (see for in-
stance Marconi et al. (2007); Byrnes and Isidori (2004); Priscoli et al. (2006)). In
such a case, the key observation is that the existence of an attractive and invariant
manifold on which the regulated variable vanishes can be related to the problem of
designing an observer. This kind of approach has however the drawback that the
knowledge of the plant is generally required. This is not the case for control designs
that make use of adaptive techniques (Serrani et al. (2001); Priscoli et al. (2006);
Bin et al. (2020); Bernard et al. (2020)). In this case, the internal model unit is
capable to adapt and self-tune itself to the dynamics that generate the steady-state
control that is necessary to maintain the regulation error zero. Other more recent
approaches make use of a pre-processing internal model design (Bin and Marconi
(2020); Wang et al. (2020), where the input of the internal model unit is the combi-
nation of the error dynamics and of the stabilizing unit or some infinite-dimensional
internal models (Astolfi et al. (2021)), where the internal model unit is modeled as
a transport equation (a delay).

Other kinds of designs tackle the problem with the objective to achieve practical
and/or harmonic regulation rather than the asymptotic one. With practical regu-
lation, we mean that the regulation error e does not vanish asymptotically, but can
be upper bounded by an arbitrarily small constant, i.e.

lim
t 7→∞

|e(t)| ≤ ε , for some ε > 0 .

Such a notion is generally satisfying in practical cases, especially because more
tractable conditions can be derived for the design of the controller, see Marconi and
Praly (2008); Astolfi et al. (2022b,a). In some cases, the internal model unit can be
designed independently of the plant’s model. Another design is to have a control
action that aims to achieve harmonic regulation, see e.g. Blin et al. (2021); Riedinger
and Daafouz (2022). With harmonic regulation, we mean that the control design
is realized to cancel the harmonic content of the steady-state periodic solution to
which the regulation error asymptotically converges. Despite no formal proof exists
that shows that harmonic cancellation implies that the regulation error decreases in
norm (besides for some particular cases, see Astolfi et al. (2022b)), such a design has
been successfully implemented in some practical applications (see for instance the
results in Section 4.3 and references therein), due to its simple synthesizing.

Remark 2.1.9. Practical and harmonic regulation designs have a strong link with
Repetitive Control (RC) theory. In RC’s control design, the idea is to include in the
transfer function of the controller a (finite) number of complex conjugates poles at the
reference’s frequency and its multiplies (see Ghosh and Paden (2000)). Note that
such a technique is a finite-dimensional approximation of an infinite-dimensional
internal model. This because a generator of periodic signals can be modeled through
a delay T , which has the effect to place an infinite number of complex conjugates
poles at the frequency 2π

T
and all its multiplies (see Astolfi et al. (2021)). This is

particularly effective for discrete-time systems, as a delay can be easily modeled with
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a buffer.

The literature on nonlinear output regulation is wide, and the above references
represent just a small portion of existing results. Nevertheless, it is worth pointing
out an important aspect. The vast majority of the results on nonlinear output
regulation, consider systems with a globally defined normal form that possesses a
minimum phase property (see (Isidori, 1995, Section IV)). For linear systems, the
design is ‘coordinate-free’, i.e. it can be done in the original given set of coordinates.
On the contrary, for nonlinear systems, this condition simplifies the analysis and,
usually, it allows to obtain more tractable conditions. This however poses three
main problems.

• The first one is that finding the change of coordinates that allows rewriting
the system in normal form is generally not an easy task, especially for MIMO
systems, see for instance Wang et al. (2016).

• The second problem is that uncertainties in the ‘original-coordinates’ plant
would be manipulated as well, once the change of coordinates is applied. This
implies that ‘easy-to-handle’ uncertainties (such as parametric and globally
Lipschitz uncertainties) in the original coordinate plant might pose some prob-
lems in normal form coordinates.

• The third problem is the domain of existence of the change of coordinates.
Indeed, the diffeomorphism needed to write the system in normal form is always
well-defined locally around the origin. However, we are not guaranteed that
such a diffeomorphism is well defined globally, i.e. for all x.

2.1.2.3 Global output regulation: existing solutions

In this chapter, we focus on the global output regulation problem. With the word
‘global’, we mean that we aim to solve the problem for every initial condition of
the system (global domain of attraction) and any amplitude of the external signal.
Concerning the structural properties of the system, we can classify the existing
results into three main categories.

1. In the first group of works, it is commonly supposed the existence of a change of
coordinates that can put the system into a normal form, (Isidori, 1995, Chapter
4). Depending on the properties of the zero-dynamics, different control design
have been proposed: see, among others, Khalil (2000); Behtash (1990); Jiang
and Marcels (2001) for single-input single-output (SISO) minimum-phase sys-
tems; Wang et al. (2020); Bin and Marconi (2020) for MIMO minimum-phase
systems; Huang et al. (2018) for SISO non-minimum phase systems. In such
case, output regulation has been achieved (semi)globally in the initial condi-
tions and in the size of the references, using a feedback control law composed
of a term depending on the internal model and a high-gain feedback (see for
instance Serrani et al. (2001); Astolfi et al. (2022b) and references therein).
In these settings, output regulation can be ensured for arbitrarily large refer-
ences and/or disturbances with a semi-global (or global) domain of attraction,
provided the zero-dynamics possess good uniform attractivity properties. How-
ever, as said in the previous section, such approaches cannot be followed when
a global normal form is not globally defined or its explicit expression is hard
to be computed.
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2. The second group of works approached the problem in a ‘coordinate-free’ frame-
work, trying to develop a feedback design in the original coordinates, see Astolfi
and Praly (2017); Astolfi et al. (2022a). Such an approach provides results that
are semi-global in the domain of attraction, but only local in the size of the
exosystem. In this case, the analysis is generally divided into two parts. First,
the exosystem is disconnected from the plant, and the stability of the origin is
studied. Then, solutions are studied in presence of external signals. For this,
stability is guaranteed only in case of sufficiently small external signals (locally
around the equilibrium point).

3. The third group of results makes use of the notion of convergent systems.
Such technique has been developed in the manuscript Pavlov et al. (2006)
and in several articles by the same authors. Such an approach works in the
original coordinates and provides control action which allows obtaining output
regulation globally in the domain of attraction and globally in the size of
external signals. The main drawback of such results is that the control design
generally requires the exact knowledge of the regulator equations (2.6), i.e.
the knowledege of a solution to a PDE. This is generally a difficult task and
strongly model-dependent.

In our design, we will try to provide a solution for the global output regulation prob-
lem. The main idea is to combine the advantages of the three approaches proposed
above. Indeed we will aim to provide a solution working in the original coordinates
without explicitly relying on the existence of a globally defined diffeomorphism to
write the system in normal form. We will look for conditions to solve the problem
globally in the domain of attraction and globally in the amplitude of the external
signals. For this, we will cast the problem by using incremental stability tools de-
rived in Chapter 1. We already recalled the strong link between incrementally stable
and convergent systems. In the proposed design, however, we will look for control
designs that do not explicitly require the solution of the regulator equations. We will
split the problem into two parts. First, in Section 2.2, we will consider the global
integral action problem. In this case, we can show that asymptotic regulation can
be achieved and a ‘perfect’ internal model can be designed. Then, in Section 2.3 we
will focus on the global harmonic regulation problem. By ‘adding oscillators’, we
present some sufficient conditions to achieve harmonic regulation independently on
the initial conditions and on the amplitude of external signals.

2.2 Global integral action

2.2.1 From incremental stability to global integral action

In this chapter, we focus on a nonlinear system of the form

ẋ = f(x) + g(x)(u+ d) (2.7a)

e = h(x)− r. (2.7b)

where x ∈ R
nx is the system’s state, u ∈ R

nu is the control input, e ∈ R
ne is the error

between the output y = h(x) to be regulated and a constant (possibly unknown)
reference r ∈ R

ne , and d ∈ R
nu is a constant unknown disturbance. We suppose

that the functions f : Rnx 7→ R
nx , g : Rnx 7→ R

nx×nu , h : Rnx 7→ R
ne are C2. To

have a well-posed problem, we assume that the system is not underactuated, that
is, we assume nu ≥ ne. Furthermore, we assume that f(0) = 0 and h(0) = 0.
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Remark 2.2.1. Note that:

• system (2.7) is in input-affine form, satisfying a matching-conditions for the
disturbances d. The matching condition assumption is quite common in the
nonlinear control literature and verified by many practical applications. See for
instance the works Qu (1993); Praly and Wang (1996) and references therein.
From a practical point of view, matching disturbances are always verified when
considering perturbations acting on the actuators of the plant,

• The results that will be presented may be generalized to systems having a more
complex structure such as (2.4). In such a case, however, the knowledge of
functions p, q is required as well as an additional assumption on a Killing vector
property (see Assumption 2.2.1).

The problem that we consider in this section is the design of a state feedback con-
trol law to achieve output set-point tracking and disturbance rejection, that is,
limt→∞ e(t) = 0. In other words, we focus on the output regulation problem in
case w = (d, r) is a constant signal. Following Poulain and Praly (2010); Astolfi
and Praly (2017) and in the spirit of Francis and Wonham (1976); Davison (1976),
we focus on the implementation of a dynamic controller with the internal model
designed as an integral action post-processing the regulation error. Specifically, we
extend the system with a bunch of integrators of the form

η̇ = e (2.8a)

with η ∈ R
ne . After this, we look for a feedback stabilizer for the closed-loop system

α : Rnx × R
ne 7→ R

nu of the form

u = α(x, η) (2.8b)

with α(0, 0) = 0. We formalize the problem in the following.

Problem 2.2.2 (Constant nonlinear output regulation). Consider system (2.7).
Find a dynamic control law of the form (2.8a), (2.8b) such that there exist two sets
S ⊆ R

nx+ne and W ⊆ R
nu+ne, containing their respective origins, such that the

following properties are fulfilled:

1. if (d, r) = (0, 0), the origin of the closed-loop system (2.7),(2.8a), (2.8b) is
globally asymptotically stable;

2. for all constant (d, r) ∈ W and all initial conditions (x0, η0) ∈ S, the closed-loop
system (2.7),(2.8a), (2.8b) has bounded trajectories and

lim
t→+∞

e(t) = 0.

Then, we have the following problem definitions.

• If S and W are non-empty, the regional constant output regulation problem is
solved.

• If S = R
nx+ne and W = R

nu+ne, the global constant output regulation problem
is solved.

• If S is non-empty and W is of the form W = ∅ × R for some non-empty set
R ⊆ R

ne, then the constant output set-point tracking problem is solved.
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Without the use of normal forms the construction of the control law α is not straight-
forward, especially whenever the size of the disturbances is large in amplitude. The
crucial point in the synthesis of an integral controller is to ensure the existence of an
equilibrium for every value of (d, r). This amounts to asking that, for every external
signal, the flow of the closed-loop system admits a fixed point which can be obtained
via Banach fixed point Theorem (see for instance (Khalil, 2002, Appendix B)) if the
flow itself defines a contraction.

System (2.7), (2.8a), (2.8b) leads to a closed-loop system of the form

χ̇ = φ(χ) + Γ(χ)w, (2.9)

where χ = (x⊤, η⊤)⊤ ∈ R
nx+ne , w = (d⊤, r⊤)⊤ ∈ R

nu+ne , and the functions φ and Γ
are defined as

φ(χ) :=

(
f(x) + g(x)α(x, η)

h(x)

)
, (2.10)

Γ(χ) :=
(
Γd(χ) Γr

)
, Γd(χ) :=

(
g(x)

0

)
, Γr :=

(
0

−I

)
. (2.11)

Given any initial condition χ0 in R
nx+ne and w ∈ R

nu+ne , the corresponding solution
of system (2.9) is denoted with X(χ0, w, t).

The control law (2.8b) solves the constant global output regulation problem if, for
any value of w ∈ W, there exists a unique equilibrium χ∗ = (x⋆, η⋆) that is globally
asymptotically stable. Indeed, thanks to the integral action, at the equilibrium we
have

0 = η̇ = h(x⋆)− r =⇒ h(x⋆) = r

and consequently the error e converges asymptotically to zero along any solution
of the closed-loop system. Contraction theory can be used to solve the problem at
hand, as highlighted in the following theorem.

Theorem 2.2.3 (Contraction implies constant regulation). Consider system (2.9).
Suppose that there exist a C2 function α : Rnx×R

ne 7→ R
nu, a C1 matrix function P :

R
nx×R

ne → R
(nx+ne)×(nx+ne) taking symmetric positive definite values, a C0 function

q : R
nx+ne → R>0 taking positive values and two strictly positive real numbers

p̄, p > 0 such that the vector fields φ,Γ defined in (2.10),(2.11) satisfy the following
set of properties

pI ⪯ P(χ) ⪯ p̄I (2.12a)

LφP(χ) ⪯ −q(χ)I (2.12b)

LΓrP(χ) = 0, (2.12c)

LΓdP(χ) = 0, (2.12d)

for all χ ∈ R
nx+ne. Then, the following holds.

1. If there exists a positive real number q > 0 such that q(χ) ≥ q for all χ ∈
R
nx+ne, then the global constant output regulation problem is solved.

2. Otherwise, we have the following properties.

(a) Let W be a non-empty subset of Rnu+ne such that, for all w in W, there
exists an initial condition χ0 ∈ R

nx+ne such that the corresponding closed-
loop system trajectory X(χ0, w, t) is bounded. Then, the regional constant
output regulation problem is solved for S = R

nx+ne and such a W.
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(b) There exists w > 0 such that, the regional constant output regulation prob-
lem is solved for S = R

nx+ne and W = {w ∈ R
nd+ne , |w| ≤ w}.

Furthermore, if the condition (2.12d) is not verified, then the above results 1) and
2) hold for the constant output set-point tracking problem, in particular with W of
the form W = ∅ × R, for some R ⊆ R

ne.

The statement of Theorem 2.2.3 involves many different results based on a contrac-
tion analysis of the vector field φ of the closed-loop system (2.9) and how perturba-
tions and references w affect the system through the vector Γ.

First, conditions (2.12a) and (2.12b), require the unforced closed-loop system (2.9),
i,e, for w = 0, to be incrementally globally stable (see Definition 1.2.1), but possibly
non-uniformly with respect to the full-state space χ. In other words, since q can
be non-uniformly lower-bounded, we cannot conclude that the unforced closed-loop
system is uniformly δGUES. However, since φ(0) = 0, the origin is globally asymp-
totically stable (see Proposition 1.2.9). If the contraction is uniform (see item 1),
that is q(x) ≥ q > 0, and the Killing vector conditions (2.12c), (2.12d), with re-
spect to Γ are verified, then by Theorem 1.3.3 the system is incrementally globally
uniformly ISS with respect to w, for any χ ∈ R

nx+ne and any w ∈ R
nu+ne . In this

case, the key role of the Killing vector property is to ensure that the distance among
different trajectories is invariant with respect to the amplitude of external signals.
In turn, such a geometric condition ensures that the contractivity property of sys-
tem (2.9) is invariant with respect to w, and that the convergence to an equilibrium
is guaranteed. Note that such a Killing property is always verified when Γ is a
linear mapping and P is a constant matrix. This is the case, for instance, of linear
systems.

As we shall see in the sequel, the existence of a feedback law (2.8b) ensuring a
uniform contraction is not always possible. However, under milder assumptions, we
shall see that it is in general possible to obtain a non-uniform contraction, according
to the conditions of Item 2. In such a case, output regulation is obtained globally
in the initial conditions, but only regionally with respect to the exosignal w, that
is, only for w ∈ W for some compact set W ⊂ R

nu+ne . Item 2 (a) and (b) provide
two different conditions for the estimation of such a set W. It is of particular
interest the first set of conditions (a), in which it suffices to verify whether the
resulting trajectory is bounded forward in time to conclude asymptotic regulation.
Nonetheless, condition (b) ensures that the set W is non-empty. In other words,
asymptotic regulation is always guaranteed globally in the state χ and at least locally
in the size of the exosignal w. Note that such a result is also new with respect to
Astolfi and Praly (2017), where output regulation is obtained only semi-globally in
χ and locally in w.

Finally, since the existence of a metric P which is of Killing for both vectors Γr and
Γd is not always possible, the last part of the theorem states that whenever only Γr
is a Killing vector for P, then, all previous arguments hold by considering only the
case of tracking problem, i.e. with d = 0. As a matter of fact, as we shall see in
the subsequent sections, it is easier to design a feedback law satisfying the condition
(2.12c) than (2.12d), because Γr is constant while Γd is not.

Proof. [Proof of Theorem 2.2.3] First, note that the origin of (2.9) for w = 0 is
an equilibrium. Hence, direct application of Proposition 1.2.9 implies that the
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equilibrium is globally attractive when w = 0. Furthermore, it is also locally
exponentially stable. This can be proved by using the first order approximation
of system (2.9) at the origin and the Lyapunov function V (χ) = χ⊤P(0)χ, and
inequality (2.12b), which is LφP(0) ≤ −q(0)I < 0 at the origin. This establishes
the first property 1). Concerning the second property, we will now prove the
two items separately.

Item 1. Since q(χ) ≥ q > 0, the inequality (2.12b) is strict for all χ ∈ R
nx+ne .

Furthermore, by using the the Killing matrix properties (2.12c), (2.12d), by
linearity of the Lie derivative we have

Lφ+ΓwP(χ) = LφP(χ) + LΓP(χ)w

= LφP(χ)

⪯ −qI ,

(2.13)

for all χ ∈ R
nx+ne and all w ∈ R

nu+ne . As a consequence, the system (2.9) is
an autonomous system satisfying the conditions of Theorem 1.2.2 in Chapter
1, Section 1.2. We deduce that system (2.9) is δGUES. Direct application of
Corollary 1.2.7.2 in the Chapter 1, Section 1.2 ensures that, for any w, there
exists a unique equilibrium point χ⋆ = (x⋆, η⋆) which exponentially attracts all
solutions. On such equilibrium, we obtain η̇ = 0 and hence e = 0, concluding
the proof of the statement.

Item 2 (a). Let w be in W and let χ0 ∈ R
nx+ne such that X(χ0, w, t) is bounded.

Let C ⊂ R
nx+ne be defined as

C := cl

{ ∞⋃

t≥0

X(χ0, w, t)

}

and note that C is a forward invariant compact set, in view of (Teschl, 2012,
Lemma 6.4). Let

q
O
:= min

χ∈O
q(χ) > 0

where O is the set defined as

O :=

{
χ ∈ R

n+p

∣∣∣∣ max
s∈C

|χ− s| < r

}
,

for some positive real number r satisfying

r >

√
p̄

2
√
p

max
(χ1,χ2)∈C2

|χ1 − χ2| .

Keeping in mind that Γd,Γr satisfy the Killing matrix properties (2.12c), (2.12d)
for P, by using computations similar to (2.13), we obtain

Lφ+ΓwP(χ) ⪯ −q
O
I

for all (χ,w) ∈ O×W. Hence Corollary 1.2.5.1 applies and therefore system (2.9)
is δUES in C. Then, Corollary 1.2.7.2 implies the existence of an equilibrium
χ⋆ ∈ C. From Proposition 1.2.9 it yields that this equilibrium is unique and it
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is globally attractive. Again, in such an equilibrium, we have η̇ = 0, and hence
e = 0.

Item 2 (b). We already proved that the equilibrium of (2.9) is locally exponen-
tially stable for w = 0. Hence, by (Astolfi and Praly, 2017, Lemma 5), there
exists w > 0 such that, for all w ∈ W, where

W :=
{
w ∈ R

nu+ne : |w| ≤ w
}
,

system (2.9) admits an equilibrium χ∗ ∈ R
nx+ne which is locally exponentially

stable. Hence, employing Item 2 (a) with this set W, the result follows.

Motivated by the conditions of Theorem 2.2.3, in the rest of the section we will
design a control law able to guarantee both the contraction of φ for some metric P

and the Killing vector property with respect to Γ.

2.2.2 State feedback design

2.2.2.1 Assumptions

In this section, we state the main assumptions for system (2.7) which are needed
in order to design a feedback-law of the form (2.8) able to satisfy the contractive
conditions of Theorem 2.2.3. Motivated by the closed-loop structure and by Remark
1.4.3, the idea is to make use of incremental forwarding control techniques presented
in Section 1.4.3.3 to design the stabilizing unit (2.8b). Indeed, the cascade (2.7),
(2.8a) for (d, r) = (0, 0) reassemble the structure in (1.52) with Φ = 0 and v(x) =
h(x). For this, we first assume the existence of a pre-stabilizing feedback ensuring
incremental uniform global exponential stability of the plant (2.7) according to a
metric satisfying the Killing vector property with respect to the function g.

Assumption 2.2.1 (Open-loop δGUES and Killing vector). Consider system (2.7)
with the matrix function g fulfilling ∥g(x)∥ ≤ ḡ for some positive ḡ > 0 for all
x ∈ R

nx. There exist a known C2 function α0 : R
nx 7→ R

nu, α0(0) = 0, a C1 function
P : Rnx → R

nx×nx taking symmetric positive definite values P (x) = P (x)⊤ ≻ 0 for
all x ∈ R

nx, and three strictly positive real numbers p, p̄, λ0 > 0 such that, by denoting

ẋ = f0(x), f0(x) := f(x) + g(x)α0(x) , (2.14)

the following properties hold for all x ∈ R
nx

pI ⪯ P (x) ⪯ p̄I , Lf0P (x) ⪯ −2λ0I , (2.15)

LgP (x) = 0 . (2.16)

According to Theorem 1.2.2 (see Section 1.2), the feedback law u = α0(x) ensures the
vector field f0 to be incrementally uniformly globally exponentially stable (δUGES)
with respect to the metric P . The computation of α0 can be obtained, for instance,
by the design techniques illustrated in Section 1.4 (and references therein). Fur-
thermore, in (2.16), we ask that the (Riemaniann) metric induced by P is invariant
along g. This means that the system preserves its contractive properties in the di-
rections provided by g, namely, in the directions in which the control law and the
perturbations d act. In other words, by Theorem 1.3.3, Assumption 2.2.1 implies
that system

ẋ = f0(x) + g(x)d
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is δGUEISS (see Definition 1.3.1) with respect to d.

Since system (2.14) is δGUES, there exists an equilibrium point (the origin, with-
out loss of generality) that is globally exponentially stable. As a consequence, by
applying Lemma 1.4.4, we know the existence of a function M : Rnx 7→ R

ne satisfy-
ing

Lf0M(x) = h(x). (2.17)

This is a particular case of (1.55), due to the system’s structure (2.7), (2.8a). Simi-
larly to Assumption 2.1.3, we suppose then that LgM(x) satisfies a controllability-
like condition, which, in our incremental framework, is stated as follows.

Assumption 2.2.2 (Controllability along trajectories). There exists a positive real
number b > 0 satisfying

LgM(x)LgM
⊤(x) ⪰ bI ∀ x ∈ R

nx (2.18)

where M is the solution of (2.17).

Remark 2.2.4. Note that for a linear system of the form

ẋ = Ax+Bu, η̇ = Cx

Assumptions 2.2.1 and 2.2.2 boil down to ask, respectively, for (A,B) to be stabiliz-
able (in this case the metric P is constant and (2.16) is automatically satisfied) and
the non-resonance condition in Assumption 2.1.3 to hold. In particular:

• since (A,B) is stabilizable, then there exists K such that A0 := A+BK is Hur-
witz. In such a case, f0(x) = A0x. Therefore, (2.17) reduces to the existence
of a function M solution to

∂M

∂x
A0x = Cx.

Since A0 is Hurwitz and therefore invertible, a solution is given by M(x) =
CA−1

0 x;

• with such a choice of M (and remembering that nu ≥ ne), we have that
LgM(x) = CA−1

0 B. Therefore, the controllability-like condition (2.18) is equiv-
alent to ask for rank{CA−1

0 B} = ne. This is the counterpart of the non-
resonance condition for the linear systems’ case. Indeed since w is constant,
the dynamics of the exosystem is given by ẇ = Sw = 0, namely S = 0. The
non-resonance condition in Assumption 2.1.3 reduces to ask for the matrix

(
A0 B
C 0

)

to have full rank. By left-multiplying by the non-null vector
(
CA−1

0 −I
)
we

obtain
(
CA−1

0 −I
)(A0 B

C 0

)
=
(
0 CA−1

0 B
)
.

Since Assumption 2.1.3 is known to be necessary for the linear systems case,
necessarily CA−1

0 B must be full-rank;

• in light of the previous item, note that the term LgM(x) can be understood as a
non-linear version of the DC-gain of the transfer function between the control
input u and the output y = h(x).
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As remarked in Section 2.1.2.1, in linear output regulation theory both these two
conditions are necessary and sufficient to solve the linear global output regulation
Problem.

2.2.2.2 Design for constant output set-point tracking

In this Section, we aim to propose a solution for the constant output set-point
tracking problem proposed in Problem 2.2.2. In other words, along all this section,
we will consider system (2.7) when d = 0. Under the assumptions stated in Sec-
tion 2.2.2.1, we are now in the position to state the first result, concerning the design
of a forwarding-based control law for system (2.7) satisfying the hypothesis (2.12a)
(2.12b) and (2.12c) of Theorem 2.2.3. Taking inspiration from (1.57), we focus on a
control law of the form

α(x, η) = α0(x) + κΨ(x)β(η −M(x)), (2.19)

where the function Ψ : Rnx → R
nu×ne is defined as

Ψ(x) := LgM(x)⊤(LgM(x)LgM(x)⊤)−1, (2.20)

κ ∈ R is a control gain parameter and β : Rne → R
ne is a C1 function to be specified.

We have the following result.

Proposition 2.2.5. Consider system (2.7) and suppose Assumptions 2.2.1 and
2.2.2 hold. Suppose, moreover, that there exist two positive real numbers LM > 0
and k1 ≥ 0 such that the following inequalities are verified

∣∣∣∣
∣∣∣∣
∂M

∂x
(x)

∣∣∣∣
∣∣∣∣ ≤ LM , (2.21)

∣∣∣∣
∣∣∣∣
∂Ψv

∂x
(x)

∣∣∣∣
∣∣∣∣ ≤ k1|v| , ∀v ∈ R

ne (2.22)

for all x ∈ R
nx, with Ψ defined as in (2.20) and withM defined as in (2.17). Finally,

select β : Rne → R
ne as any C1 function satisfying

|β(s)| ≤ 1

k1
,

∂β

∂s
(s) =

∂β⊤

∂s
(s) , 0 ≺ ∂β

∂s
(s) ⪯ I, (2.23)

for all s ∈ R
ne. Then, there exists a positive real number κ̄ > 0 such that, for

any κ ∈ (0, κ̄], the closed-loop system (2.7),(2.8), with α selected as in (2.19), sat-
isfies the properties (2.12a), (2.12b), and (2.12c) and the conditions of Item 2 of
Theorem 2.2.3.

Remark 2.2.6. For instance, when p = 1, a simple choice of β satisfying the
conditions in (2.23) is β(s) = µ atan(s) with µ > 0 to be selected sufficiently small.

A direct consequence of Proposition 2.2.5 and Theorem 2.2.3, is the following corol-
lary.

Corollary 2.2.6.1 (Regional constant output set-point tracking). Under the as-
sumptions of Proposition 2.2.5, the control law (2.8), with α selected as in (2.19),
satisfies the regional constant output set-point tracking problem for system (2.7) for
some non-empty R ⊂ R

ne, according to the statement of Item 2 of Theorem 2.2.3.
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Proof. [Proof of Proposition 2.2.5] Consider then the following change of coor-
dinates

χ = (x, η) 7→ x := (x, z), z := η −M(x), (2.24)

and recall that in view of Assumption 2.2.2 and the definition of Ψ in (2.20), we
have LgM(x)Ψ(x) = I for all x ∈ R

nx . As a consequence, in the x-coordinates,
the closed-loop system (2.7), (2.8), (2.19), with d = 0 reads

ẋ = F (x) + Γrr

with

F (x) :=

(
f0(x) + κg(x)Ψ(x)β(z)

−κβ(z)

)
, Γr :=

(
0

−I

)
. (2.25)

Now, from the triangular structure of F , the Jacobian JF of F is given by

JF (x) :=
∂F

∂x
(x) =

(
J11(x) J12(x)

0 J22(x)

)
(2.26)

where the components J11, J12 and J22 are defined as

J11(x) :=
∂f0

∂x
(x) + κ

∂

∂x

(
g(x)Ψ(x)

)
β(z)

J12(x) := κg(x)Ψ(x)
∂β

∂z
(z)

J22(x) := −κ∂β
∂z

(z) .

Consider a matrix-valued function P : Rnx+ne → R
(nx+ne)×(nx+ne) of the form

P(x) :=

(
P (x) 0

0 bI

)
, (2.27)

where P is given by Assumption 2.2.1 and b > 0 is some positive real number to
be defined yet. By construction, the function P takes symmetric positive values.
Then, let also the function R : Rnx+ne → R

(nx+ne)×(nx+ne) be defined as

R(x) := LFP(x) +



λ0I 0

0 κ
∂β

∂z
(z)


 (2.28)

with λ0 given by Assumption 2.2.1. Observe that R takes symmetric values.
We want to show now that R takes only negative definite values if κ is selected
small enough. To this end, let us decompose R as follows

R(x) :=

(
R11(x) R12(x)

R⊤
12(x) R22(x)

)
. (2.29)
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By inspecting its components, by using the definition of JF and the Killing
vector property LgP (x) = 0, see (2.16) in Assumption 2.2.1, we have

R11(x) :=Lf0P (x) + λ0I + κP (x)g(x)
∂

∂x
Ψ(x)β(z) + κ

(
P (x)g(x)

∂

∂x
Ψ(x)β(z)

)⊤

,

R12(x) :=κP (x)g(x)Ψ(x)
∂β

∂z
(z) ,

R22(x) :=− κ(2b− 1)
∂β

∂z
(z) .

By using the bound in the Jacobian of β in (2.23), for any b > 1
2
, we get

R22(x) ≺ 0

for all x ∈ R
nx+ne . Furthermore, this also guarantees that R22(x) is invertible

for all x ∈ R
nx+ne . By the Schur’s complement, it follows that R(x) is negative

definite for all x ∈ R
nx+ne if its Schur complement, denoted as SR(x), is also

negative definite for all x ∈ R
nx+ne , i.e. if

SR(x) = R11 − R12R
−1
22 R

⊤
12 ≺ 0 .

Now, by using the fact that the open-loop system is already incrementally uni-
formly globally exponentially stable, i.e. Lf0P satisfies inequality (2.15), and
that the functions P , g, β and the derivative of Ψ are bounded by assumption,
see (2.15), (2.16), (2.21), and (2.23), it yields

R11(x) :=Lf0P (x) + λ0I + κP (x)g(x)
∂

∂x
Ψ(x)β(z) + κ

(
P (x)g(x)

∂

∂x
Ψ(x)β(z)

)⊤

⪯− 2λ0I + λ0I + 2κp̄ ||g(x)||
∣∣∣∣
∣∣∣∣
∂

∂x
Ψ(x)

∣∣∣∣
∣∣∣∣ |β(z)| I

⪯− (λ0 − 2κp̄ḡ) I (2.30)

for all x ∈ R
nx+ne . Moreover, by combining the bounds on M and g in (2.18),

the controllability along trajectories assumption in (2.21) and by recalling the
definition of Ψ in (2.20), we also obtain

Ψ(x) ⪯ ||Ψ(x)|| I

=
∣∣∣∣LgM(x)(LgM

⊤LgM(x))−1
∣∣∣∣ I

⪯

∣∣∣∣
∣∣∣∣
∂M

∂x
(x)

∣∣∣∣
∣∣∣∣ ||g(x)||

||(LgM⊤LgM(x))−1||I

⪯ LMg

b
I
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By combining all previous bounds together, we obtain

SR(x) :=R11(x)− R12(x)R22(x)
−1R12(x)

⊤

⪯− (λ0 − 2κp̄ḡ) I +
κ

2b− 1
P (x)g(x)Ψ(x)

∂β

∂z
(z)Ψ⊤(x)g⊤(x)P (x)

⪯−
(
λ0 − κp̄ḡ

(
2 +

p̄L2
M ḡ

3

2(2b− 1)b2

))
I .

Hence, with b > 1
2
, selecting

κ̄ =
λ0

2

(
p̄ḡ

(
2 +

p̄ḡ3L2
M

2(2b− 1)b2

))−1

,

it implies that SR(x) ⪯ 0 for all x ∈ R
nx+ne and therefore R(x) ⪯ 0 for all

κ ∈ (0, κ̄] and for all x ∈ R
nx+ne . Consequently, recalling the definition of R in

(2.28), it yields

LFP(x) ⪯ −min

{
λ0, κ

∂β

∂z
(z)

}
I . (2.31)

Note that the metric P has been obtained in the x-coordinates. To complete
the proof, we need to come back into the original coordinates χ = (x, η). In
particular by Proposition 1.2.12, the metric P is defined as

P(χ) := E(x)⊤P(χ)E(x) , E(x) :=




I 0

−∂M
∂x

(x) I


 , (2.32)

giving

P(χ) =



P (x) + b

∂M⊤

∂x
(x)

∂M

∂x
(x) −b

∂M⊤

∂x
(x)

−b
∂M

∂x
(x) bI


 .

Note that

E(x)−1 =




I 0

∂M

∂x
(x) I


 ,

and, with the Lipschitz condition on the norm of Jacobian of M in (2.21), we
get

||E(x)|| ≤ 1 + LM ,
∣∣∣∣E−1(x)

∣∣∣∣ ≤ 1 + LM ,

for all x ∈ R
nx . Hence, for all v in R

nx+ne and x ∈ R
nx ,

v⊤P(χ)v ≥ min{p, b} |E(x)v|2

≥ min{p, b} |v|2
||E−1(x)||2

≥
min{p, b}
(1 + LM)2

|v|2 .
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On another hand,

v⊤P(χ)v ≤ max{p, b} |E(x)v|2

≤ max{p, b} (1 + LM)2|v|2 .

Hence, the metric P is uniformly upper and lower bounded by two constants,
that is, inequality (2.12a) holds with

p̄ := max{p, b} (1 + LM)2, p :=
min{p, b}
(1 + LM)2

. (2.33)

Finally, by combining inequality (2.31) with the definition of P in (2.32) and
previous bounds, we have that the Lie derivative of the closed-loop vector field
with respect to P is non-uniformly negative definite, that is, inequality (2.12b)
holds with the function q : Rnx+ne → R>0 defined as

q(χ) =
1

(1 + LM)2
min

{
λ0, κ

∂β

∂x
(η −M(x))

}
, (2.34)

which is always positive in view of the property of β in (2.23). Finally, since the
metric P is constant in the z-coordinates (indeed, by its definition, it does not
depend on z), and Γr is constant, it follows that LΓrP(χ) = 0 for all χ ∈ R

nx+ne ,
that is (2.12c) is satisfied.

Remark 2.2.7. Note that, according to Definition 1.2.1 in Chapter 1, Section 1.2,
the closed-loop system is not δGUES. This implies that it is not possible to guarantee
the existence of an equilibrium point for every value of r ∈ R

ne, but an equilibrium
point exists if trajectories remain bounded. The main reason why the closed-loop sys-
tem loses its incremental uniformity property,can be attributed to the term LgM(x)
being non-constant.

2.2.2.3 Design for global constant output regulation

In the previous section, we have seen that under Assumptions 2.2.1 and 2.2.2, it is
always possible to solve the regional constant output set-point tracking Problem.
Three main drawbacks of the previous procedure can be highlighted.

• The first concerns the fact that the proposed design relies on the solution of
(2.17) that may be hard to compute in practice.

• The second is related to the fact that the condition (2.12d) is not satisfied as
Γd depends on x and therefore only the second part of Theorem 2.2.3 can be
applied. In other words, global disturbance rejection is not generically ensured.

• The third is that the regulation task is achieved regionally and not globally.

To handle these two points, the idea now is to rely on a control structure that
follows the lines of the forwarding mod{LgV } presented in Section 1.4.3.3. With
such a choice:

• the proposed conditions, although more conservative, will allow for a design
that is easier to apply since it doesn’t rely on the exact solution of (2.17), but
only on an approximation version of it. This generally simplifies the design of
the control action, adding more degrees of freedom;
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• this will allow us to include the presence of disturbances d ̸= 0 in (2.7) and to
obtain a design that is global in the domain of attraction and in the size of the
external signals (d, r).

In particular, as highlighted in Remark 2.2.7, the idea is to use this freedom in
the choice of the solution of (2.17) to force the term LgM(x) to be constant. This
particular condition will allow us to have a result that is global in the size of the
external signals and to take into account the presence of disturbances d.

To make this Chapter more self-contained, we will highlight again the main assump-
tions, theorems, proofs, remarks, and comments that have been done in Section
1.4.3.3, with a specific viewpoint concerning the output regulation problem. To this
end, we state a new assumption. It is a particular case of Assumption 1.4.5, due to
the system’s structure.

Assumption 2.2.3 (Incremental forwarding mod{LgV }). We know a C2 function
M : Rnx 7→ R

ne, a C2 function ∆ : Rnx 7→ R
ne a constant matrix Λ ∈ R

ne×nu and a
positive real number λ1 > 0 satisfying the following properties:

1. Lf0M(x) = h(x) + ∆(x) for all x ∈ R
nx.

2. LgM(x) = Λ for all x ∈ R
nx.

3. rank(Λ) = ne.

4. The following inequality holds

Lf0P (x)− P (x)g(x)Ψ
∂∆

∂x
(x)− ∂∆⊤

∂x
(x)Ψ⊤g(x)⊤P (x) ≤ −2λ1I, (2.35)

for all x ∈ R
nx, with P given by Assumption 2.2.1, and Ψ defined as

Ψ := LgM(x)⊤
[
LgM(x)LgM(x)⊤

]−1
= Λ⊤(ΛΛ⊤)−1. (2.36)

Remark 2.2.8. Note that:

• in Assumption 2.2.3 we ask LgM(x) to be constant for all x ∈ R
nx. Although

such an assumption is in general much more stringent than asking for a con-
stant rank as in Assumption 2.2.2, it is worth however noting that the definition
of M is now different, see item 1. In particular, the function ∆ represents the
mismatch between the definition of M in (2.17) and M in Assumption 2.2.3.
Such a term ∆ can be therefore used as an extra degree of freedom, to achieve
the desired regularity on LgM or to provide an ‘easy-to-compute’ approximate
solution of (2.17);

• in the contraction analysis, the remaining term ∆ is managed via the robustness
properties of the x-dynamics, which is assumed to be ‘sufficiently contractive’.
This is expressed in the inequality (2.35). Evidently, in case ∆(x) = 0 for
all x ∈ R

nx, the designs of M and M coincide and items 2 and 3 read as a
strongest version of Assumption 2.2.2, while item 4 is automatically satisfied
by Assumption 2.2.1 with λ1 := λ0.

Remark 2.2.9. Item 2 of Assumption 2.2.3 can be interpreted as the existence
of a a DC-gain approximation Λ of the system (2.14), which is constant for any
linearization around any point of the state space.
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Based on the previous assumption, we focus on a control law of the form

α(x, η) = α0(x) + κΨ
(
η −M(x)

)
−Ψ∆(x), (2.37)

where the matrix Ψ is defined as in (2.36), ∆ is the function of item 1 satisfy-
ing (2.35), and κ ∈ R is a control gain parameter. We have then the following
result.

Proposition 2.2.10. Consider system (2.7) and suppose Assumptions 2.2.1 and
2.2.3 hold. Suppose, moreover, that there exists a positive real number LM > 0 such
that

∣∣∣∣∣

∣∣∣∣∣
∂M

∂x
(x)

∣∣∣∣∣

∣∣∣∣∣ ≤ LM (2.38)

holds for all x ∈ R
nx. Then, for any κ > 0, the closed-loop system (2.7),(2.8) with

α selected as in (2.37), satisfies the properties (2.12a), (2.12b), (2.12c), (2.12d) and
the conditions of Item 1 of Theorem 2.2.3, namely, there exists q > 0 such that the
function q in (2.12b) satisfies q(χ) ≥ q for all χ ∈ R

nx+ne.

A direct consequence of Proposition 2.2.5 and Theorem 2.2.3 is the following re-
sult.

Corollary 2.2.10.1 (Global constant output regulation). Under the assumptions
of Proposition 2.2.10, the control law (2.8b), with α selected as in (2.37), solves the
global constant output regulation problem in Problem 2.2.2 for system (2.7).

Proof. [Proof of Proposition 2.2.10] Consider the change of coordinates

χ := (x, η) 7→ x := (x, z), z := η −M(x)

withM defined as in Assumption 2.2.3. By item 2 of Assumption 2.2.3, we have
that LgM(x) is a constant matrix for all x ∈ R

nx . Moreover, by definition of Ψ
in (2.36), we have that

LgM(x)Ψ = I .

Hence, the z-dynamics reads

ż =h(x)− Lf0M(x)− LgM(x)α(x, η)

=h(x)− Lf0M(x)− κLgM(x)Ψz + LgM(x)Ψ∆(x)

=− κz,

where we used the relation

Lf0M(x) = h(x) + ∆(x)

given in Item 1 of Assumption 2.2.3. The closed-loop system (2.7), (2.8), (2.37)
can be then compactly written as

ẋ = F (x) + Γ̃(x)w
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with F and Γ̃ defined as

F (x) :=

(
f0(x) + κg(x)Ψz − g(x)Ψ∆(x)

−κz

)
, Γ̃(x) :=

(
g(x) 0

−Λ −I

)
.

The Jacobian JF of F is given by

JF (x) :=
∂F

∂x
(x) =

(
J11(x) J12(x)

0 J22(x)

)
(2.39)

where the components J11, J12 and J22 are defined as

J11(x) :=
∂f0

∂x
(x) + κ

∂g

∂x
(x)Ψz − g(x)Ψ

∂∆

∂x
(x) ,

J12(x) := κg(x)Ψ ,

J22(x) := −κI.

Consider a matrix-valued function P : Rnx+ne → R
(nx+ne)×(nx+ne) of the form

P(x) :=

(
P (x) 0
0 bI

)
, (2.40)

where P is the metric associated with the incremental stability property of the
open-loop x-dynamics and it is given by Assumption 2.2.1 and b > 0 is some
positive real number to be defined yet. Let the matrix function R : Rnx+ne →
R

(nx+n−e)×(nx+ne) be defined as

R(x) := LFP(x) +

(
λ1I 0
0 κI

)
(2.41)

with λ1 given by (2.35). By construction, R takes symmetric values. We want
to show that for any value of κ, the function R so defined is negative definite
for all x ∈ R

nx+ne . To this end, let us decompose L as follows

R(x) :=

(
R11(x) R12(x)

R⊤
12(x) R22(x)

)
. (2.42)

By using the Killing vector property LgP (x) = 0 in (2.16), we obtain

R11(x) :=Lf0P (x) + λ1I − P (x)g(x)Ψ
∂∆

∂x
(x)− ∂∆⊤

∂x
(x)Ψ⊤g⊤(x)P (x) ,

R12(x) :=κP (x)g(x)Ψ ,

R22(x) :=− κ(2b− 1)I .

Trivially, for any b > 1
2
we have that

R22(x) ≺ 0
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for all x ∈ R
nx+ne . As a consequence, R(x) is negative definite for all x ∈ R

nx+ne

if its Schur complement, denoted as

SR(x) = R11 − R12R
−1
22 R

⊤
12

is also negative definite for all x ∈ R
nx+ne . By using (2.35), we compute

SR(x) :=R11(x)− R12(x)R22(x)
−1R12(x)

⊤

⪯Lf0P (x) + λ1I − P (x)g(x)Ψ
∂∆

∂x
(x)− ∂∆⊤

∂x
(x)Ψ⊤g⊤(x)P (x)

− κ (P (x)g(x)Ψ) (−κ(2b− 1)I)−1 (κP (x)g(x)Ψ)⊤

⪯− λ1I +
κ

2b− 1
P (x)g(x)ΨΨ⊤P (x)g(x)P (x)

⪯−
(
λ1 −

κ(p̄ḡk1)
2

2b− 1

)
I,

where k1 =
√
||ΨΨ⊤||. Hence, by selecting

b =
1

2

(
1 +

κ(p̄ḡk1)
2

λ1

)
. (2.43)

we obtain SR(x) ⪯ 0 and consequently R(x) ≺ 0 for all x ∈ R
nx+ne . Conse-

quently, recalling the definition of R in (2.41), it yields

LFP(x) ⪯ −min {λ1, κ} I . (2.44)

Moreover, in light of the structure of Γ̃ and the fact that P is independent of z,
we deduce that LΓ̃P(x) = 0 for all x ∈ R

nx+ne . In order to complete the proof,
we need to come back into the original coordinates χ = (x, η). This can be done
following the same steps as in the proof of Proposition 2.2.5 and get

P(χ) =




P (x) + b
∂M⊤

∂x
(x)

∂M

∂x
(x) −b

∂M⊤

∂x
(x)

−b
∂M

∂x
(x) bI


 .

Finally, by combining inequality (2.44) with the definition of P and previous
bounds, we have that the Lie derivative of the closed-loop with respect to the
metric P is uniformly negative definite, that is, inequality (2.12b) holds with
the function q : Rnx+ne → R>0 defined as

q :=
1

(1 + LM)2
min {λ1, κ} , (2.45)

which is always positive. Finally, since the metric P is constant in the z-
coordinates (indeed, by its definition, it does not depend on z), it is not hard
to see that the Killing vector property is satisfied, namely LΓP(χ) = 0 for all
χ ∈ R

nx+ne , that is, both (2.12c) and (2.12d) are satisfied.
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Remark 2.2.11. The fact that the closed loop defines a uniform global contraction
with respect to a metric P(χ) and that Γ is of Killing with respect to such P, is a
sufficient condition to show that the closed loop is incremental uniformly globally
ISS (see Theorem 1.3.3) with respect to the input w. Therefore, in case w = (d, r)
is a time-varying bounded and integrable signal, the trajectory of the closed loop
is guaranteed to be bounded for all positive times. Moreover, if limt 7→∞w(t) = w⋆

for some constant w⋆, then the closed loop trajectory asymptotically tends to an
equilibrium point where constant output regulation is achieved.

Remark 2.2.12. Note that Proposition 2.2.10 holds for any positive gain κ > 0.
Therefore, the stabilizer (2.37) (besides α0) is a control action with infinite gain
margin.

2.2.3 Output feedback design

In this section, we explore the case in which the control law used to stabilize the
cascade system is not dependent on x but only on the state of the integrator itself.
Such a problem has been studied for instance in Desoer and Lin (1985) or, more
recently, in Simpson-Porco (2020); Lorenzetti and Weiss (2022)). Solutions in which
the stabilization of the cascade system is achieved by a control law only dependent
on the local state are not new in literature. For linear systems, this corresponds to
the use of a pure I -regulator with a small gain, instead of a classical PI -regulator.
In this section, we show how, by slightly strengthening the condition (2.35), the
feedback law (2.37) can be modified into

α(x, η) = α0(x) + κΨη (2.46)

where α0 is the pre-stabilizing feedback needed to achieve contractivity of the x-
dynamics (recall that for an open-loop contractive system, α0 can be zero), and
κ > 0 is a positive gain to be selected, which will be taken sufficiently small (we
lose the infinite gain margin property). With respect to control law (2.37), the term
κΨM(x)+∆(x) is not needed. To this end, we state the following assumption.

Assumption 2.2.4 (Robustness for output-feedback). There exist positive real
numbers a, λ2 > 0 such that all the items of Assumption 2.2.3 are verified and
moreover the following inequality

(
aP (x)g(x)Ψ− 1

a

∂∆⊤

∂x
(x)

)(
aP (x)g(x)Ψ− 1

a

∂∆⊤

∂x
(x)

)⊤

+ Lf0P (x) ⪯ −2λ2I

(2.47)

holds for all x ∈ R
nx.

Remark 2.2.13. Simple computation show that (2.47) implies (2.35) for some λ1 ≥
λ2. Moreover, if ∆(x) = 0 for all x ∈ R

nx, the inequality (2.47) is always verified
under open-loop incremental stability in Assumption 2.2.1. In particular, it can be
directly derived from inequality (2.15) by selecting

a =
1

p̄ḡ

√
λ0

2∥ΨΨ⊤∥ , λ2 =
λ0
2
,

and λ0, p̄, ḡ as in (2.15), (2.16), and (2.21).
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Under the above assumption, we can design a pure output-feedback control design
to solve the global constant output regulation problem. This is shown in the follow-
ing.

Proposition 2.2.14. Consider system (2.7) and suppose Assumptions 2.2.1 and
2.2.4 hold and that there exists a strictly positive real number LM > 0 such that the
inequality (2.38) holds for all x ∈ R

nx. Then, there exists a positive real number
κ̄ > 0, such that, for any κ ∈ (0, κ̄], the closed-loop system (2.7),(2.8), with α
selected as in (2.46), satisfies the properties (2.12a), (2.12b), (2.12c), (2.12d) and
the conditions of Item 1 of Theorem 2.2.3, namely, there exists q > 0 such that the
function q in (2.12b) satisfies q(χ) ≥ q for all χ ∈ R

nx+ne.

Combining Proposition 2.2.14 with Theorem 2.2.3, we directly obtain the following
result.

Corollary 2.2.14.1 (Output-feedback global constant output regulation). Under
the assumptions of Proposition 2.2.14, the control law (2.8b), with α selected as in
(2.46), satisfies the global constant output regulation problem for system (2.7) for
κ > 0 small enough.

Proof. [Proof of Proposition 2.2.14] Consider the change of coordinates

χ := (x, η) 7→ x := (x, z), z := η −M(x)

with M defined as in Assumption 2.2.3. The closed-loop system (2.7), (2.8),
(2.46) reads as

ẋ = F (x) + Γ̃(x)w

with F and Γ̃ defined as

F (x) :=

(
f0(x) + κg(x)Ψ

(
z +M(x)

)

−κz −∆(x)− κM(x)

)
, Γ̃(x) :=

(
g(x) 0

−Λ −I

)
.

The Jacobian JF of F is now of the form

JF (x) :=
∂F

∂x
(x) =

(
J11(x) J12(x)

J21(x) J22(x)

)
,

where now the components J11, J12, J22 and J22 are defined as

J11(x) :=
∂f0

∂x
(x) + κ

∂g

∂x
(x)Ψ

(
z +M(x)

)
+ κg(x)Ψ

∂M

∂x
(x) ,

J12(x) :=κg(x)Ψ ,

J21(x) :=− κ
∂M

∂x
(x)− ∂∆

∂x
(x) ,

J22(x) :=− κI.
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Consider a matrix-valued function P : Rnx+ne → R
(nx+ne)×(nx+ne) of the form

P(x) :=

(
P (x) 0

0 bI

)
, (2.48)

where P is given by Assumption 2.2.1 and b > 0 is some positive real number
to be defined yet. Let the function R : Rnx+ne → R

(nx+ne)×(nx+ne) be defined as

R(x) := LFP(x) +



λ2I 0

0
κb

2
I


 (2.49)

with λ2 given by (2.47). By construction, R takes symmetric values. We want to
show that, for κ sufficiently small, the function R so defined is negative definite
for all x ∈ R

nx+ne . To this end, let us decompose L as follows

R(x) :=

(
R11(x) R12(x)

R⊤
12(x) R22(x)

)
. (2.50)

By using the Killing vector property LgP (x) = 0 in (2.16), we obtain

R11(x) :=Lf0P (x) + λ2I + κP (x)g(x)Ψ
∂M

∂x
(x) + κ

∂M⊤

∂x
(x)Ψ⊤g⊤(x)P (x) ,

R12(x) :=κP (x)g(x)Ψ− κb
∂M⊤

∂x
(x)− b

∂∆⊤

∂x
(x) ,

R22(x) :=− 3
2
κbI .

Trivially,
R22(x) ≺ 0

for all x ∈ R
nx+ne and for any b > 0. As a consequence, R(x) is negative definite

for all x ∈ R
nx+ne if its Schur complement, denoted as SR(x) = R11−R12R

−1
22 R

⊤
12,
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is also negative definite for all x ∈ R
nx+ne . By using Young’s inequality we obtain

SR(x) = R11(x)− R12(x)R22(x)
−1R12(x)

⊤

= Lf0P (x) + λ2I + κP (x)g(x)Ψ
∂M

∂x
(x) + κ

∂M⊤

∂x
(x)Ψ⊤g⊤(x)P (x)

+
2

3κb

[
κP (x)g(x)Ψ− κb

∂M⊤

∂x
(x)− b

∂∆⊤

∂x
(x)

]

×
[
κP (x)g(x)Ψ− κb

∂M⊤

∂x
(x)− b

∂∆⊤

∂x
(x)

]⊤

⪯ Lf0P (x) + λ2I + κP (x)g(x)Ψ
∂M

∂x
(x) + κ

∂M⊤

∂x
(x)Ψ⊤g⊤(x)P (x)

+

(√
κ

b
P (x)g(x)Ψ−

√
b

κ

∂∆⊤

∂x
(x)

)(√
κ

b
P (x)g(x)Ψ−

√
b

κ

∂∆⊤

∂x
(x)

)⊤

+ 2κb
∂M⊤

∂x
(x)

∂M

∂x
(x).

Hence, select b = κ/a2 with a given by (2.47). It gives

SR(x) ⪯ Lf0P (x) + λ2I + κP (x)g(x)Ψ
∂M

∂x
(x) + κ

∂M⊤

∂x
(x)Ψ⊤g⊤(x)P (x)

+ 2κb
∂M⊤

∂x
(x)

∂M

∂x
(x) +

(
aPg(x)Ψ− 1

a

∂∆⊤

∂x
(x)

)(
aPg(x)Ψ− 1

a

∂∆⊤

∂x
(x)

)⊤

and therefore, by using (2.47), and the bounds (2.15), (2.16) and (2.21), we
obtain

SR(x) ⪯ −
(
λ2 − 2κp̄ḡ∥Ψ∥LM − 2κ2

L2
M

a2

)
I,

for all x ∈ R
nx+ne . Hence by selecting κ > 0 small enough so that

λ2 − 2κp̄ḡ∥Ψ∥LM − 2κ2
L2
M

a2
≥ 0

and by recalling the definition of R in (2.49) and the structure of Γ̃, we conclude
that

LFP(x) ⪯ −min

{
λ2,

κ2

2a2

}
I, LΓ̃P(x) = 0 (2.51)

for all x ∈ R
nx+ne and for all κ ∈ (0, κ̄]. The proof concludes by coming back

into the original coordinates χ = (x, η) and by showing that the Killing vector
property is satisfied. This can be done as in the proof of Proposition 2.2.10,
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where inequality (2.12b) holds with

q :=
1

(1 + LM)2
min

{
λ2,

κ2

2a2

}
, (2.52)

which is always positive.

2.2.4 Examples

2.2.4.1 A simple motivating example

Consider a nonlinear system of the form (2.7) with nx = 3, nu = 2, ne = 2 and
functions f, g, h selected as

f(x) =




−x1 − x31

−x2 −
1

2
x2 cos(x2)

−2x3


 , g(x) =




1 1

2 + cos(x2) 0

0 1


 ,

h(x) =

(
x31 − 2x2 − sin(x2)

x3

)

Following (Isidori, 1995, Chapter 5), we compute

Lgh(x) =

(
3x21 − (2 + cos(x2))

2 3x21

0 1

)

which is not invertible for all x, as it contains some singularities, for instance in
(x1, x2) = (±

√
3, 1). Therefore, it does not exist a global diffeomorphism transform-

ing this system into a normal form (Isidori, 1995, Chapter 5). Yet, a solution to the
global constant output regulation Problem does exist. Indeed, it’s possible to check
that Assumptions 2.2.1 and 2.2.3 hold. First, we can check that inequality (2.15) is
verified with α0(x) = 0,

P (x) =




1 0 0

0 (2 + cos(x2))
−2 0

0 0
1

2




and λ0 = 1. Indeed,

LfP (x) =



−2− 6x21 0 0

0 −1 0

0 0 −2


 ⪯ −I.
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Furthermore, it can be verified that the Killing vector property (2.16) is verified.
Hence Assumption 2.2.1 holds. Then, selecting

M(x) =




−x1

−1

2
x3


 , Λ =

(
−1 −1

0 −1
2

)
,

∆(x) =

(
x1 + 2x2 + sin(x2)

0

)
, Ψ =

(
−1 2

0 −2

)
.

verifies items 1-3 of Assumption 2.2.3. Finally, item 4 and in particular inequality
(2.35) is satisfied for λ1 = 1

2
. Hence, Corollary 2.2.10.1 holds and the control law

(2.37), reading

η̇ = h(x)− r =

(
x31 − 2x2 − sin(x2)− r1

x3 − r2

)

u = α(x, η) =

(
−κη1 + 2κη2 + (1− κ)x1 + (2 + κ)x2 + sin(x2)

−κ(η2 + x3)

)
,

solves the global constant output regulation Problem for any κ > 0.

2.2.4.2 Lipschitz systems

In this section, we specialize our previous results for the class of linear systems cou-
pled with a Lipschitz nonlinearity. In particular, consider a system of the form

ẋ = Ax+B(u+ d) +Gϑ(ν), ν = Hx

e = Cx+Dϑ(ν)− r
(2.53)

where A,B,C,G,D,H are constant matrices of suitable dimension and ϑ : Rnν 7→
R
nϑ is a C1 Lipschitz function with Lipschitz constant ϑL. In order to apply the

results proposed in Section 2.2.2, we specialize the assumptions for such a class of
systems. Therefore, we suppose that the following assumption holds.

Assumption 2.2.1’. Consider system (2.53). There exist a constant symmetric
positive definite matrix P and a positive real number λ0 > 0 satisfying the inequal-
ity

PA+ A⊤P + PG
∂ϑ

∂ν
(ν)H +H⊤∂ϑ

⊤

∂ν
(ν)G⊤P ⪯ −2λ0I

for all x ∈ R
nx.

Such an assumption is a particular case of Assumption 2.2.1 in which we considered a
constant Euclidean metric P . Assumption 2.2.1’ can be satisfied after a preliminary
state-feedback, by following for instance the results in Section 1.4.4. Following an
incremental forwarding mod{LgV } design, instead of looking for the exact solution
M of (2.17), we look for an approximation M that is obtained by considering only
the linear terms of (2.53). Let us define the following functions and matrices

M(x) := CA−1x , Λ := CA−1B ,

∆(x) := (CA−1G−D)ϑ(Hx) , Ψ = Λ⊤(ΛΛ⊤)−1 .
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With these definitions and by using the Lipschitz constant of ϑ, it follows that
inequality (2.35) in Assumption 2.2.3 is satisfied if

PBΨ(CA−1G−D)H +
[
PBΨ(CA−1G−D)H

]⊤ ⪯ 2(λ0 − λ1)

ϑL
I, (2.54)

for some λ1 > 0. Note that inequality (2.54) is verified with λ1 = λ0 when CA
−1D =

G or for some λ1 < λ0 when ϑL is sufficiently small compared to λ0. Furthermore,
inequality (2.47) in Assumption 2.2.4 reads

(
aPBΨ− ϑL

a
(CA−1G−D)H

)(
aPBΨ− ϑL

a
(CA−1G−D)H

)⊤

⪯ 2(λ0 − λ2)I

(2.55)
for some λ2, a > 0. Hence, the following can be stated.

Corollary 2.2.14.2 (Global constant output regulation for Lipschitz systems).
Consider system (2.53) and suppose Assumption 2.2.1’ holds. Then, the following
holds.

• If Λ is full rank and the inequality (2.54) is satisfied for some λ1 > 0, the
dynamic control law

η̇ = e,

u = κΨ(η − CA−1x)−Ψ(CA−1G−D)ϑ(Hx)

solves the global constant output regulation problem for any κ > 0.

• Moreover if the inequality (2.55) is satisfied for some λ2, a > 0, then the output-
feedback control law

η̇ = e

u = κΨη

solves the global constant output regulation problem for κ sufficiently small.

2.2.4.3 Minimum phase systems

As stated in Section 2.1.2, most of the results in output regulation literature focus
on systems possessing a well defined relative degree ((Isidori, 1995, Chapter IV)).
See, for instance, Khalil (2000); Behtash (1990); Jiang and Marcels (2001). In this
section, we aim to show that the proposed conditions for the incremental forwarding
mod{LgV } control action, are satisfied for the class of systems with a globally well-
defined normal form possessing a minimum phase property. We focus on SISO
systems that admit a globally defined normal form with a unitary relative degree.
The extension to a higher relative degree can be dealt with with canonical tools, see,
e.g., (Serrani et al., 2001, Section V)). In such a case, system (2.7) can be rewritten
as

ż = ψ(z, y)

ẏ = q(z, y) + b(z, y)(u+ d),

e = y − r

(2.56)

where z ∈ R
nx−1 is the so-called zero-dynamics, y ∈ R is the output to be regulated,

u ∈ R is the control, r ∈ R is the reference and d ∈ R represents some constant
perturbation.
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By using the change of coordinates y 7→ e := y−r, system (2.56) can be alternatively
rewritten as

ż = ψ̄(w, z, e),

ė = q̄(w, z, e) + b̄(w, z, e)u,

with

ψ̄(w, z, e) := ψ(z, e+r) , q̄(w, z, e) := q(z, e+r)+b(z, e+r)d , b̄(w, z, e) := b(z, e+r) .

Concerning the zero-dynamics, it is worth recalling that very few works addressed
the case of non-minimum-phase, that is when the dynamics

ż = ψ̄(w, z, 0) (2.57)

is possibly unstable. Most of the works, indeed, focused on the case in which such
a zero-dynamics possess a unique steady-state trajectory (possibly that depends on
w) which is attractive with a given domain of attraction. See, for instance, (Serrani
et al., 2001, Assumption V.1), (Khalil, 2000, Assumption 4), (Mahmoud and Khalil,
1996, Assumption 4), (Seshagiri and Khalil, 2005, Assumption 4), (Marino and
Tomei, 2007, Assumption H2), and many others. This, in turn, corresponds to
asking that the subsystem (2.57) possesses some incremental stability property on
a given set of interest, since the attractivity properties are uniform with respect
to w. In the global framework considered in this work, this corresponds to our
Assumption 2.2.1.

We focus here on minimum-phase systems (2.56) possessing a constant, and there-
fore, without loss of generality, unitary high frequency gain, that is b(z, y) = 1.
System (2.56) reads

ż = ψ(z, y)

ẏ = q(z, y) + u+ d

e = y − r.

(2.58)

In our framework, the minimum-phase assumption is stated as follows.

Assumption 2.2.5 (Incremental minimum-phase). Consider system (2.58). There
exist positive real numbers q̄, ψ̄y, p̄z, pz, λz > 0 and a function Pz : R

nx−1 7→ R
(nx−1)×(nx−1)

taking symmetric positive values so that the following inequalities2 hold

∣∣∣∣
∂q

∂x
(z, y)

∣∣∣∣ ≤ q̄ ,

∣∣∣∣
∂ψ

∂y
(z, y)

∣∣∣∣ ≤ ψ̄y , (2.59)

p
z
I ⪯ Pz(z) ⪯ p̄zI , LψPz(z, y) ⪯ −2λzI , (2.60)

for all (z, y) ∈ R
nx.

We have the following result.

Proposition 2.2.15. Consider system (2.58) and suppose Assumption 2.2.5 is sat-
isfied. Then, there exists a positive real number σ ≥ 1 such that, for any fixed σ ≥ σ,

2The notation LψPz(z, y) has to be understood as the Lie derivative of Pz along the vector field z 7→
ψ(z, y) where y is fixed.
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Assumptions 2.2.1, 2.2.3 and 2.2.4 are satisfied with

P (z, y) =

(
Pz(z) 0

0 σ−2
3

)
, p = min

{
p
z
, σ−2

3

}
, p̄ = max{p̄z, 1} ,

α0(z, y) = −σy , λ0 =
λz
2
, λ1 = λ2 =

λz
4
, a = σ−2

3 ,

M(z, y) = −y
σ
, ∆(z, y) = −q(z, y)

σ
, Λ = Ψ−1 = − 1

σ
,

with Pz, p̄z, pz and λz given by Assumption 2.2.5.

As a consequence of the previous proposition, we have the following corollary that
can be derived from Proposition 2.2.15 and Corollary 2.2.14.1.

Corollary 2.2.15.1 (Global constant output regulation for minimum-phase sys-
tems). Under the assumptions of Proposition 2.2.15, the control law

η̇ = e ,

u = −σ(y + κη) ,
(2.61)

solves the global constant output regulation Problem for system (2.58) for two strictly
positive real numbers κ > 0 small enough and σ > 0 large enough.

Proof. [Proof of Proposition 2.2.15] Let σ be defined as

σ
1
3 := max

{
q̄ +

λz
2

+
(p̄zψ̄y + q̄)2

2λz
, 2

√
q̄

λz
,

√
2

λz
(1 + 2q̄), 1

}
. (2.62)

Now, with the control u = α0(x, z) system (2.58) is in the form (2.7) and (2.14)
with x = (z, y) and

f0(x) =

(
ψ(z, y)

q(z, y)− σy

)
, g(x) =

(
0

1

)
, h(x) = y.

With the function, P defined as in the statement of the proposition, let us define

T(x) := Lf0P (x) + λzI =

(
T11(x) T12(x)

T12(x)
⊤ T22(x)

)
, (2.63)

where

T11(x) :=LψPz(z) + λzI,

T12(x) :=Pz(z)
∂ψ

∂y
(z, y) + σ−2

3
∂q

∂z
(z, y),

T22(x) :=− 2σ
1
3 + 2σ−2

3
∂q

∂y
(z, y) + λz.

By using the bound on the Jacobian of q given in Assumption 2.2.5 and the
definition of σ in (2.62), we have

T11(x) ≺ 0
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and
T22(x) ≺ 0

for all x ∈ R
nx and all σ ≥ σ. Then, by denoting with ST = T11−T12T

−1
22 T

⊤
12 the

Schur complement of T, by using again the bounds on the Jacobian of q and ψ
and σ− 2

3 ≤ 1, we compute

ST(x) ⪯ −
(
λz −

(p̄zψ̄z + q)2

2σ
1
3 − 2q̄ − λz

)
I ⪯ 0 ∀ x ∈ R

nx ,

for all σ ≥ σ. Therefore T(x) ⪯ 0 for all x ∈ R
nx which shows that the system

with the pre-stabilizing control action α0(x) is incrementally uniformly globally
exponentially stable with respect to the metric P , namely, inequality (2.15)
with λ0 selected as in the statement of the theorem holds. Finally, since the
function, P is defined in the statement of the proposition and the function g are
constant in the y-coordinates (and zero otherwise), the Killing vector property
LgP (x) = 0 is trivially satisfied. This shows that Assumption 2.2.1 holds.

Remark 2.2.16. Note that an alternative proof can be done, in the case of
constant metric Pz, by following (Pavlov et al., 2009, Theorem 2).

Now, in order to show Assumption 2.2.3, first note that with the definition of
M,∆,Λ,Ψ given in the statement, Items 1, 2, and 3 are trivially satisfied with
simple computations. Then, to show inequality (2.35), we define

Q1(x) := −P (x)g(x)Ψ∂∆
∂x

(x)− ∂∆⊤

∂x
(x)Ψ⊤g(x)⊤P (x).

By omitting computations and using the bounds on q in (2.59), we have

Q1(x) = σ−2
3




0
∂q

∂z
q(z, y)

∂q⊤

∂z
q(z, y)

∂q

∂y
q(z, y)


 ⪯ 2σ−2

3 q̄I,

that is, Q1(x) ⪯ λz
2
I for all x ∈ R

nx and all σ ≥ σ. Therefore, by recalling
the definition of T given in (2.63) and recalling that T(x) ⪯ 0 for all x ∈ R

nx ,
inequality (2.35) reads

Lf0P (x) +Q1(x) ⪯ T(x)− λz
2
I ⪯ −λz

2
I

for all x ∈ R
nx and for all σ ≥ σ. Hence, inequality (2.35) holds with λ1 given

as in the statement of the proposition showing Assumption 2.2.3.

Finally, in order to show Assumption 2.2.4, we define

Q2(x) := T (x)T⊤(x) , T (x) := aP (x)g(x)Ψ− 1

a

∂∆⊤

∂x
(x),

which gives

T⊤(x) = σ− 1
3

(
∂q

∂z
(z, y)

∂q

∂y
(z, y)− 1

)
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with a selected as in the statement of the Proposition. By using the bounds in
(2.59), we obtain

Q2(x) ⪯ ∥T (x)∥2I ⪯ σ−2
3 (2q̄ + 1)2I ⪯ λz

2
I

for all x ∈ R
nx and all σ ≥ σ. Hence, by following the previous steps, we obtain

Lf0P (x) +Q2(x) ⪯ T(x)− λz
2
I ⪯ −λz

2
I

for all x ∈ R
nx and for all σ ≥ σ. This shows inequality (2.47) with λ2 given as

in the statement of the proposition and concludes the proof.

Example 2.2.17. We consider the example of a flexible joint robot manipulator
presented in Zemouche and Boutayeb (2013). The system can be described with a
dynamical model of the form (2.53) where

A =




0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 + 3.33ℓ 0


 , B =




0
21.6
0
0


 , G =




0
0
0

−3.33


 ,

H =
(
0 0 1 0

)
, C =

(
1 0 0 0

)
, D = 0 ,

where ϑ(ν) = sin(ν) + ℓν and where ℓ is an additional degree of freedom. We aim
to achieve global constant output regulation. For this, first we look for a feedback
design so that the system satisfies Assumption 2.2.1. To this end, as the open-loop
system is composed by a linear part and a monotonic nonlinearity, we rely on the
results presented in Section 1.4.4. In particular, the system satisfies the monotonic
Assumption 1.4.6 for any ℓ > 1 with Γ = ℓ − 1. Therefore, for the design of the
preliminary feedback we rely on Propoition 1.4.25. The LMI is solvable for ℓ = 1.1
and the system in closed-loop with the preliminary feedback with

u = Kx+Nϑ(Hx) , K =
[
−0.0040 −0.0002 −0.0009 −0.0011

]
, N = −5.3490

is incrementally globally uniformly exponentially stable with respect to a constant
metric P . Moreover, the Killing vector assumption is automatically satisfied. We
extend now the system with an integral action processing the regulation error

η̇ = Cx− r

where r is the constant reference that has to be tracked. Now, we aim to sat-
isfy Assumption 2.2.3. For this, we follow the suggestion in Section 2.2.4.2. We
take M(x) = CA−1x and ∆(x) = CA−1Gϑ(ν). This choice is admissible since
LgM(x) = CA−1B ̸= 0. A simple computation moreover shows that (2.35) is satis-
fied. Therefore, the system in closed-loop with the dynamic control law

η̇ = Cx− r

u = Kx+Nϑ(Hx) +
κ

CA−1B
(η − CA−1x)− CA−1G

CA−1B
ϑ(Hx)

for any κ > 0 solves the global constant output regulation problem, for any r ∈ R.
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2.3 Global harmonic regulation

2.3.1 From incremental stability to global harmonic regulation

2.3.1.1 Introduction

In Section 2.2 we showed that it is possible to solve the global constant output regula-
tion Problem by casting the control design problem into the incremental framework.
If the closed-loop system possesses some incremental uniform ISS properties with re-
spect to the (constant) external signal, then its trajectories asymptotically converge
to an equilibrium point where, thanks to the presence of the integral action, the reg-
ulation error is zero. By taking advantage of the closed-loop structure, we proposed
a design of the stabilizing unit based on incremental forwarding tools developed in
Section 1.4.3.3.

Similarly to the previous section, we consider now a system of the form (2.7). In this
case, however, we do not assume the external signals to be constant, but T -periodic.
In other words, we assume the following.

Assumption 2.3.1 (T -periodic exosystem). Consider system (2.7). The signals
r : R 7→ R

ne, d : R 7→ R
nu are smooth time-varying external references with finite

L∞-norm which are T -periodic, i.e. there exists T > 0 such that

r(t) = r(t+ T ) , and d(t) = d(t+ T ) . (2.64)

Remark 2.3.1. Note that the case in which (r, d) is constant signals, is a sub-case
of Assumption 2.3.1 (take any T > 0).

As we said in Section 2.1.2 when considering non-constant exosignals the design
of the control action becomes much more complicated. It is clear indeed that the
integral action is a perfect internal model unit for constant exosignals. In other
words, the design of the dynamical part of the closed-loop control action can be
designed without the knowledge of the plant’s dynamics. Nevertheless, asymptotic
output regulation can be achieved. This is not the case in presence of non-constant
external signals. In such a case, the internal model unit strongly depends on the
plant’s dynamic and on the stabilizing unit.

In this section, we focus on a control design achieving harmonic regulation. With
‘harmonic regulation’ we mean that we aim to cancel the Fourier coefficients of the
steady state solution of the regulation error. Despite no formal proof exists guaran-
teeing that such a condition implies that the norm of the regulation error reduces
(except for the special case of unitary relative degree minimum phase systems in
normal form, see Astolfi et al. (2022b)), our interest is motivated by the following
aspects.

• Harmonic regulation is a useful tool in practical applications, see for instance
the results in Section 4.3.

• There’s a strong link with Repetitive Control design structures, see Remark
2.1.9.

• ‘Perfects’ internal model units can be designed using an infinite dimensional
internal model modeled as a delay of time T , see Astolfi et al. (2021). A delay
has the effect of placing an infinite number of poles at T and its multiplies,
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canceling all the harmonic contents (i.e. the Fourier coefficients) at frequencies
of the delay and all its multiplies.

As we will see in the following, the proposed approach relies on the technique of
adding oscillators and feedback stabilizers. In other words, we will design the internal
model unit as a bunch of linear oscillators at frequencies that should vanish. Then,
we will design the stabilizing unit to guarantee an incremental uniform global ISS
property of the closed-loop with respect to the exosystem. Indeed:

• if the plant is incrementally globally uniformly ISS with respect to the ex-
osignal w = (d, r), the trajectories of the closed-loop system will converge
asymptotically to a periodic solution with the same period T of the exosystem
(see Lemma 1.2.6). However, because of the nonlinearities, they will present a
harmonic content involving the exosystem’s frequencies and also higher-order
terms, see Khalil (1993); Huang and Lin (1993); Priscoli (1993).

• if the closed-loop system possesses some incremental stability properties, be-
cause of the choice of the internal model unit as a bunch of the linear oscil-
lators, it is possible to show that the Fourier coefficients associated with the
frequencies of such oscillators will be zero.

We stress again that we focus on the global harmonic regulation problem, that is,
we aim to achieve harmonic regulation independently on the domain of attraction
and on the amplitude of the external signals. In other words, we allow the external
signals (r, d) to span the whole R

ne × R
nu and we look for a global result in the

domain of attraction of the state-space. The existing results have been developed
only for the class of nonlinear systems having a globally defined normal form and
possessing a minimum phase property Astolfi et al. (2022b, 2021). On the other
hand, for systems working in the ‘original’ coordinates the existing results are only
local in the amplitude of the external signals (Astolfi et al. (2022a); Ghosh and
Paden (2000)), that is, with the external signal’s amplitude being sufficiently small.
As we do not want to make use of normal forms but still provide a global result, we
cast again the problem into the incremental framework.

Remark 2.3.2. For the sake of completeness, we recall a different approach to
achieve harmonic regulation, that is for instance the one proposed in Riedinger and
Daafouz (2022); Blin et al. (2021). The authors study the problem in the frequency
domain through a Fourier decomposition and design the control action in different
coordinates. As such an approach presents several differences with respect to the
proposed one, we won’t enter in details.

2.3.1.2 Problem statement and internal model unit design

The problem that we address in this section is the design of a state-feedback control
law that can achieve harmonic regulation. With ‘harmonic regulation’ we mean that
the trajectories of system (2.7) in closed-loop with a dynamical control action of the
form

η̇ = ϕ(η, e) , (2.65a)

u = α(x, η) (2.65b)

are bounded in forward time and the error e does not present a frequency content
at particular selected frequencies. We formalize our problem in the following.
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Problem 2.3.3 (Global harmonic regulation). Consider system (2.7). Find a dy-
namical control law of the form (2.65) such that:

1. if (d, r) = (0, 0), the origin of the closed-loop (2.7), (2.65) is globally asymp-
totically stable;

2. For any (d, r) satisfying Assumption 2.3.1 the closed-loop system (2.7), (2.65)
has bounded trajectories and there exists a trajectory e⋆(t) that is globally at-
tractive for the error e and such that it does not present an harmonic content
at the frequencies ωℓ = ℓ2π

T
for ℓ = 0, 1, . . . , L for some L ≥ 0. Namely, the

first L-Fourier coefficients of e⋆ are zero, i.e.

cℓ :=
1

T

∫ T

0

e⋆(t) exp

(
2iℓπ

t

T

)
dt = 0, ∀ ℓ = 0, . . . L. (2.66)

A common approach to solve such a problem is to add oscillators and feedback sta-
bilizers. In other words, the design makes use of an internal-model-based control
design of the form (2.65) processing the regulation error and containing linear os-
cillators at the desired frequencies, together with a stabilizer for the closed-loop
system. In particular, we consider a dynamical controller (2.65) of the form

η̇ = Φη + Γe (2.67)

with η ∈ R
nη and where the matrices Φ,Γ are selected as

Φ = blkdiag
(
0 ω1Φ1 . . . ωLΦ1

)
=




0
2π
T
Φ1

. . .

L2π
T
Φ1


 ,

Γ = blkdiag
(
Γ0 Γ1 . . . ΓL

)
=




Γ0

Γ1

. . .
ΓL




(2.68)

where Φ1 ∈ R
2ne×2ne and Γℓ ∈ R

2ne are selected as

Φ1 = blkdiag
(
ϕ, . . . , ϕ

)
=




ϕ
ϕ

. . .
ϕ


 , ϕ =

(
0 1
−1 0

)
(2.69)

and Γℓ = (γ, . . . , γ) such that each couple (ωℓϕ, γ) is controllable, together with a
stabilizer (2.65b) for the closed-loop.

2.3.2 State feedback design

2.3.2.1 Assumptions

To provide a solution to problem 2.3.3, the idea is to rely on the results developed
in Section 1.4.3.3 to make the closed-loop system incrementally uniformly globally
exponentially ISS with respect to the external signals. To make the Section more self-
contained, we will highlight again the main assumptions, theorems, proofs, remarks,
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and comments that have been done in Section 1.4.3.3, with a specific viewpoint
concerning the output regulation problem. Therefore, we start by assuming the
following.

Assumption 2.3.2 (Open-loop δGUES and Killing vector). Consider system (2.7).
There exist a C2 function α0 : R

nx 7→ R
nu, a C1 matrix function P : Rnx 7→ R

nx×nx

taking symmetric and positive values and three positive real numbers p, p̄, p such that
the function f0(x) = f(x) + g(x)α0(x) satisfies

Lf0P (x) ⪯ −pI, pI ⪯ P (x) ⪯ p̄I (2.70)

LgP (x) = 0 (2.71)

for all x ∈ R
nx.

Assumption 2.3.2 asks for the knowledge of a pre-stabilizing feedback control action
such that the x-dynamics generates a contraction with respect to a Riemannian met-
ric induced by the matrix function P . Also, (2.71) implies that g is a Killing Vector
field for this metric. Moreover, by, the Killing vector property (1.64) guarantees
that the x-dynamics is incrementally uniformly exponentially ISS with respect to
any input u.

Remark 2.3.4. In the linear framework, this corresponds to a stabilizability assump-
tion, where (2.71) is always satisfied as P is taken as a constant positive definite
matrix solution of a Lyapunov equation.

The design of α0 and P can be obtained following, for instance, the techniques in
Section 1.4 and references therein. From now on, we consider f(x) = f0(x) without
loss of generality (that is, Assumption 2.3.2 holds for α0(x) = 0 for all x, for some
metric P ).

The open-loop system (2.7) together with the internal model (2.65) is in feedforward
form. The structure of the stabilizing unit (2.65b) that we aim to use is based on
the incremental forwarding mod{LgV } developed in Section 1.4.3.3. For this, we
recall the following assumption.

Assumption 2.3.3 (Incremental Forwarding mod{LgV }). We know three C1 func-
tions M : Rnx 7→ R

nη , ∆ : Rnx 7→ R
nη and ϱ : Rnx 7→ R

nu such that, for all x ∈ R
nx,

the following hold:

1. the functions M and ∆ are solution of

LfM(x) = ΦM(x) + Γh(x) + ∆(x); (2.72)

2. there exists a matrix Λ such that

LgM(x) = Λ (2.73)

and such that the couple (Φ,Λ⊤) is detectable;

3. the function ϱ satisfies

Λ
∂ϱ

∂x
(x) = −∂∆

∂x
(x); (2.74)

4. the following inequality holds

LfP (x) + He

{
P (x)g(x)

∂ϱ

∂x
(x)

}
≤ −λI (2.75)
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for some λ > 0.

Assumption 2.3.3 corresponds to a MIMO version of the assumptions in Proposition
1.4.8. In particular:

• item 1 corresponds to a generalization of Praly et al. (2001). In particular,
a solution M(x) = M(x) of (2.72) is known to exist for ∆(x) = 0. This
follows from Assumption 2.3.2 and from the fact that Φ has only poles on
the imaginary axis. Indeed, by Corollary 1.2.7.2, the x-dynamics possesses
an equilibrium point (the origin, without loss of generality), that is globally
exponentially stable;

• about item 2, the term LgM(x) can be seen as a controllability assumption on
the control u to act on the dynamics of η of (2.67) in any point of the state
space x;

• as the dynamics of η in the most general case can have a higher dimension than
the one of u (because the internal model unit contains the bunch of oscillators
at period T and its multiplies), in item 3 we ask for the mismatch term ∆ to
be mapped in a (possibly lower) space of the dimension of the input and to be
integrable;

• finally, item 4 asks for a robustness-like property for the autonomous system.
Indeed, in order to rely on a free-to-choose solutionM of (2.72) rather than the
exact one M , the open-loop system must be sufficiently contractive to merge
the mismatch represented by ∆.

2.3.2.2 State-feedback design for global harmonic regulation

We’re ready to state the main result of this section

Proposition 2.3.5 (Global harmonic regulation). Consider system (2.7) extended
with the dynamical system (2.65), (2.68), (2.69) and let Assumptions 2.3.2 and 2.3.3
hold. Suppose, moreover, that there exists a positive real number LM > 0 such that

∣∣∣∣∣

∣∣∣∣∣
∂M

∂x
(x)

∣∣∣∣∣

∣∣∣∣∣ ≤ LM (2.76)

holds for all x ∈ R
nx. Then for any (r, d) satisfying Assumption 2.3.1 and any

initial conditions (x0, η0) ∈ R
nx ×R

nη , system (2.7) in closed-loop with the dynamic
control law

η̇ = Φη + Γe

u = α0(x) + κΛ⊤(η −M(x)) + ϱ(x)
(2.77)

with any gain κ > 0 solves the global harmonic regulation Problem in Problem 2.3.3.

Proof. We consider the change of coordinates

χ := (x, η) 7→ x := (x, z) , z := η −M(x)
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withM solving (2.72). Since LgM(x) is a constant matrix by (2.73), the closed-
loop system can be then written in form

ẋ = F (x) + Ω(x)w ,

Ω(x) =

(
g(x) 0

Λ I

)
, F (x) :=

[
f(x) + g(x)

[
κΛ⊤z + ϱ(x)

]

(Φ− κΛΛ⊤)z − Λϱ(x)−∆(x)

] (2.78)

where w := (d, r). The proof is divided into three steps:

1. we show that the unforced closed-loop system (i.e. for w(t) = 0 for all
t ≥ 0) is incrementally uniformly globally exponentially stable. This will
be done by showing that it is possible to find a metric for which the closed-
loop vector field F has a uniformly negative definite Lie derivative;

2. we show that, in case w(t) ̸= 0 satisfies Assumption 2.3.1, then the forced
closed-loop system is incrementally uniformly globally exponentially ISS
with respect to w(t) and that the trajectories are bounded and asymp-
totically converge to a solution that is T -periodic. This will be done by
showing that the matrix Ω possesses the Killing vector field property with
respect to the metric found in item 1;

3. we show that, thanks to the presence of a bunch of oscillators in the internal
model unit, the Fourier coefficients associated with the frequencies ωℓ = ℓ2π

T

are zero for ℓ = 0, . . . , L, i.e. harmonic regulation is achieved.

Hence, we first look for a C1 matrix function P : Rnx × R
nη 7→ R

(nx+nη)×(nx+nη)

taking symmetric positive definite values of the form

P(x) :=

(
P (x) 0

0 µ(I + bS)

)
(2.79)

with b, µ being strictly positive real numbers to be defined, P taken as in As-
sumption 2.3.2, I is the Identity matrix and S being a strictly positive definite
matrix to be defined. The main intuition behind this choice is that, since Φ
is a skew-symmetric matrix (with eigenvalues only on the imaginary axis), the
identity matrix by itself doesn’t provide negativity in all the components of z.
In order to ”strictify” the metric, we rely on a design inspired by Praly (2019)
(also used in Astolfi et al. (2022b)) by means of an observer. Indeed, by item 2
of Assumption 2.3.3, the couple (Φ,Λ⊤) is detectable, and therefore there exist
two matrices S = S⊤ ≻ 0 and K solving

S(Φ−KΛ⊤) + (Φ−KΛ⊤)⊤S ⪯ −2I. (2.80)

Hence let S = S and consider the matrix function R : Rnx×R
nη 7→ R

(nx+nη)×(nx+nη)

R(x) := LFP(x) +

(
p1I 0

0 p2I

)
(2.81)

for some p1, p2 strictly positive real numbers to be chosen. If R(x) ⪯ 0 for
all x ∈ R

nx+nη and for some p1, p2, then by Theorem 1.2.2 the closed-loop
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system (2.78) with w(t) = 0 for all t ≥ 0 is incrementally uniformly globally
exponentially stable. We can express the matrix function R as

R(x) =

(
R11(x) R12(x)

R⊤
12(x) R22(x)

)
. (2.82)

Thanks to (2.74) and to the Killing Vector property LgP (x) = 0 in Assumption
2.3.2, we have that

R11(x) = LfP (x) + He
{
P (x)g(x) ∂ϱ

∂x
(x)
}
+ p1I

R12(x) = κP (x)g(x)Λ⊤

R22(x) = µHe
{
(I + bS)(Φ− κΛΛ⊤)

}
+ p2I.

Remember now that, since Φ is skew-symmetric,

Φ + Φ⊤ = 0 .

By adding and subtracting the term µbHe{SKΛ⊤} and by making use of (2.80)
we get

R22(x) = µHe
{
(I + bS)(Φ− κΛΛ⊤)

}
+ p2I

= µHe
{
Φ− κΛΛ⊤ + bSΦ− bκSΛΛ⊤}+ p2I

= µ
[
−2κΛΛ⊤ + bSΩ + bΩ⊤S − bκSΛΛ⊤ − bκΛΛ⊤S

]
+ p2I

± µb
(
SKΛ⊤ + ΛK⊤S

)

= µ
[
−2κΛΛ⊤ + bHe

{
S(Ω−KΛ⊤)

}
− bHe

{
S(K − κΛΛ⊤)

}]
+ p2I

⪯ −µ
[
2κΛΛ⊤ + 2bI − bHe{S(K − κΛΛ⊤)}

]
+ p2I

⪯ −µ
[
2κΛΛ⊤ + 2bI − b2

2β
S(K − κΛ)(K − κΛ)⊤S − β

2
ΛΛ⊤

]
+ p2I

for any real number β > 0, where we used Young’s inequality. Therefore, we
select

β = 4κ , b <

√
2β

||S(K − κΛ)||2
, p2 <

µb

2

and we get

R22(x) ≺ −µb
2
I

for all x ∈ R
nx+nη , for any κ, µ > 0. In order to have R ≺ 0, it remains to check

the negative definiteness of its Schur complement SR(x) = R11−R12R
−1
22 R

⊤
12 ≺ 0.

Keeping in mind Item 4 of Assumption 2.3.3 and the upper bounds of P and g,
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we get

SR(x) = LfP (x) + He
{
P (x)g(x) ∂ϱ

∂x
(x)
}
+ p1I

−
(
κP (x)g(x)Λ⊤)R−1

22 (x)
(
κP (x)g(x)Λ⊤)⊤

⪯ −(λ− p1)I +
4κ2p2g2

µb
Λ⊤Λ.

Hence, for any κ > 0, set

p1 ≤
λ

4
, µ ≥ 16κ2p2g2 |Λ|2

λb

so that SR(x) ≺ 0 and therefore R(x) ≺ 0 for all x ∈ R
nx+nη . Note that the

metric P has been obtained in the x = (x, z)-coordinates. In order to complete
the proof, we need to come back to the original coordinates χ = (x, η). This
can be done with a globally Lipschitz diffeomorphism similarily to the proof of
Proposition 2.2.10, where we get

P(χ) =




P (x) + µ(I + bS)
∂M⊤

∂x
(x)

∂M

∂x
(x) ⋆⊤

−µ(I + bS)
∂M

∂x
(x) µ(I + bS)


 .

Hence, the closed-loop system is incrementally uniformly globally exponentially
stable with respect to the contraction metric P(x, η) satisfying

pI ⪯ P ⪯ p̄I LFP(x, η) ⪯ −pI

with F (χ) being the closed-loop (2.78) in the original (x, η)-coordinates, and

p = min{p1, p2}

p̄ := max{p, µ ||I + bS||} (1 + LM)2,

p :=
min{p, µ ||I + bS||}

(1 + LM)2
.

(2.83)

This concludes the first part of the proof.

Note now that, since P(χ) is independent on η and thanks to the Killing vector
property in Assumption 2.3.3, then Ω(χ) possesses the Killing vector property
with respect to such P(x), i.e. LΩP(x) = 0 for all x ∈ R

nx+nη . Since Ω(x) is
bounded for all x ∈ R

nx+nη , by Theorem 1.3.3 the closed-loop system is incre-
mentally uniformly globally exponentially ISS with respect to w(t). Since (r, d)
satisfy Assumption 2.3.1 with period T , then by Corollary 1.2.6 the trajectories
of the system and of the error e are bounded and asymptotically converge to-
ward a periodic trajectory e⋆(t) with same period T . The proof concludes since,
by construction of the matrices Φ,Γ as in (2.68), (2.69) and by (Astolfi et al.,
2022a, Proposition 1), the first L-Fourier coefficients of the error e⋆ are zero, i.e.
(2.66) holds.
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2.3.3 Examples

2.3.3.1 A test design for a class of nonlinear systems

In this section, we propose a possible design to apply the results in Proposition 2.3.5.
We consider a nonlinear system of the form

ẋ = f(x) + g(x)(u+ d)

e = h(x)− r,

where

f(x) = Ax+Gϑ(ν), g(x) = B,

h(x) = Cx+Dϑ(ν), ν = Hx
(2.84)

where A,G,H,B,C,D are constant matrices of suitable dimension and ϑ : Rnν 7→ R

is a scalar C1 nonlinearity with ϑ(0) = 0 without loss of generality. For such class
of systems we first assume that Assumption 2.3.2 is satisfied with respect to some
constant metric P = P⊤ ≻ 0. In other words, we assume that there exists a
symmetric and positive definite matrix P = P⊤ ≻ 0 such that

He

{
P

(
A+G

∂ϑ

∂ν
(ν)H

)}
⪯ −pI (2.85)

for some strictly positive real number p > 0.

Remark 2.3.6. In case such a condition is not verified, a preliminary feedback
design may be applied. To have a preliminary design that can maintain the same
system’s structure, it’s possible to use for instance the techniques in Section 1.4.4.

In order to apply the control law as in Proposition 2.3.5, we propose the following
design. We want to stress that such a design is not unique, as the solution of (2.72)
is a choice. Let Q be defined as the following matrix parametrized by two scalars a
and ω

Q(a, ω) :=

(
A⊤ ⊗ I − I ⊗ Φ(ω) −C⊤ ⊗ I

H⊤(aB⊤ −G⊤)⊗ I −H⊤D⊤ ⊗ I

)
(2.86)

where Φ is as in (2.68) where we explicitly expressed the dependency on the pa-
rameter ω = (0, ω1, . . . , ωL) for some L ≥ 0 and let A ⊂ R be the set defined
as

A(λ) :=

{
a ∈ R

∣∣∣∣∣ He
{
P (A+ (G+Ba)

∂ϑ

∂ν
(Hx)H)

}
⪯ −λI, ∀x ∈ R

nx

}
.

(2.87)

Then the following holds.

Corollary 2.3.6.1. Consider system (2.84) extended with the dynamical system
(2.65), (2.68), (2.69) and assume that (2.85) holds for some constant matrix P =
P⊤ ≻ 0 and some p > 0. Given ω, let λ > 0 and suppose there exists a ∈ A(λ) such
that det(Q(a, ω)) = 0. Let M,Γ be any solution to

Q(a, ω)

(
vec(M)
vec(Γ)

)
= 0.
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If (Φ, B⊤M⊤) is detectable and (Φ,Γ) is controllable, then Assumption 2.3.3 holds
with M,∆, ϱ,Λ given as

M(x) =Mx, ∆(x) = (MG− ΓD)ϑ(Hx),

ϱ(x) = aϑ(Hx), Λ =MB.
(2.88)

Proof. First, note that by Assumption 2.3.2 and by continuity, the set A is
non-empty. Then, letM,∆, ϱ,Λ be defined as in (2.88). For the considered class
of systems (2.84), the main idea behind this choice is to pick the function M(x)
as a linear function which satisfies the linear part of (2.72) (and therefore also
(2.73)), and to stick all the nonlinearities in the term ∆(x), which will be handled
by the robustness of the open-loop system with (2.75) through the existence of
a mapping ϱ(x) satisfying (2.74). With this choice, the conditions (2.72), (2.74)
reduce to the existence of constant matrices M,Γ and a real number a solution
of the matrix equalities

MA = Φ(ω)M + ΓC (2.89a)

aMBH = (MG− ΓD)H (2.89b)

where (2.89a) comes from the linear terms of (2.72) and (2.89b) from the defini-
tion of ∆ in (2.88) and (2.74). Recalling the definition of the Sylvester equation,
the conditions (2.89a), (2.89b) can be rewritten with the Kronecker operator ⊗
as a linear problem of the form

Q(a, ω)Y = 0 (2.90)

where Y is a 2L× nx + 2L column vector of unknowns defined as

Y = (vec(M), vec(Γ))⊤

and Q(a, ω) is the matrix defined as in (2.86). For fixed ω, if there exists a ∈ A

such that the matrix Q(ā, ω) has a non-null kernel, then there exists at least one
non-null vector Y such that Q(a, ω)Y = 0. In such case, the matrices M,Γ can
be constructed from the vector Y and the function ϱ is selected as ϱ(x) = aϑ(ν).
From such choice, (2.72), (2.74) are satisfied. Moreover, since a ∈ A, then
also (2.75) holds. Since (Φ, B⊤M⊤) is detectable and (Φ,Γ) is controllable by
assumption, then Assumption 2.3.3 holds.

We have then the following result.

Corollary 2.3.6.2 (Global harmonic regulation for Lipschitz systems). Consider
system (2.84) (2.65), (2.68), (2.69) and assume that Corollary 2.2.14.2 holds. Then
system (2.84) in closed-loop with the dynamical control law

η̇ = Φη + Γe (2.91)

u = κ(MB)⊤(η −Mx) + aϑ(ν) (2.92)

solves the global harmonic regulation Problem in Problem 2.3.3.

Remark 2.3.7. Note that the results of Corollary 2.3.6.1 can be seen also from
a different perspective. In particular, for a given system and a fixed set A, such
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a result shows the frequencies w that can be naturally regulated with the proposed
design. In this case, the set of w that can be regulated is a subset of the w satisfying
the non-resonance condition

rank

(
A− σI B
C 0

)
= nx + ne

with σ being any eigenvalue of the matrix Φ, see Astolfi et al. (2022a).

Remark 2.3.8. Note that the design proposed in Corollary 2.3.6.1 provides a test
that can be performed on the system: for a given set of frequencies ω = (ω1, . . . , ωL).

1. Compute the matrix Q(a, ω).

2. Compute its determinant which is a polynomial in the variable a.

3. Find the (finite) values of a that nullify the determinant.

4. Check if such values are in the set A.

5. If this is the case, then it’s sufficient to check the detectability of (Φ, B⊤M⊤)
and the controllability of (Φ,Γ).

Example 2.3.9. Consider a simple academic example where we take a system of
the form (2.7) with

f(x) =

(
−5x1 + x2 + sin(x1)

x1 − 2x2

)
, g(x) =

(
−1

−1

)
, h(x) = sin(x1)− x2 .

We aim to cancel the harmonic content at the frequency ω = 2π
T

= 1. Note that such
a system does not admit a globally defined normal form. Indeed Lgh(x) = cos(x1)+1,
which is non constant for x1 = (2j+1)π for any integer j. Yet, a solution does exist.
First, Assumption 2.3.2 is satisfied with P = I where the Killing Vector property
holds as both P and g are constant. Then, following Proposition 2.3.5, we extend
the plant with a dynamical system (2.67) where we choose

Φ =

(
0 1
−1 0

)
, Γ =

(
0.478
0.433

)
.

We select M,∆, ϱ,Γ,Λ solution of (2.72), (2.73), (2.74) according to Corollary
2.3.6.1 where

A =

(
−5 1
1 −2

)
, B =

(
−1
1

)
, G =

(
1
0

)
,

C =
(
0 −1

)
, D = 1 , H =

(
1 0

)
,

and ϑ(s) = sin(s). In such case, we can select a = 0.4962 ∈ A(1) and check the de-
tectability of (Φ,Λ⊤) and the controllability of (Φ,Γ). With such choice, Assumption
2.3.3 holds and global harmonic regulation is achieved with the dynamic controller
(2.67), (1.70).

2.3.3.2 The case of minimum phase systems

The main drawback of the design provided by Proposition 2.3.3 when applied to the
case of harmonic regulation, is that in the most general case a constructive design
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that is uniform on the number of oscillators L and independent of the considered
frequency ωℓ to check the validity of Assumption 2.3.3 might not be always possible,
but instead depends on the considered system. In this section, we show that this is
not the case for instance if we consider the special case of nonlinear systems which
admit a globally defined normal form with a zero-dynamics that is incrementally
stable. We want to stress that the result in Proposition 2.3.5 does not assume a-
priori the existence of a globally defined normal form. We consider, for the sake of
simplicity, a single-input single-output (SISO) system with unitary relative degree
(the extension to a higher relative degree can be dealt with canonical tools, see, e.g.,
(Serrani et al., 2001, Section V)) of the form

ż = ψ(z, y)

ẏ = q(z, y) + u− r(t)
(2.93)

where x = (z⊤, y)⊤ ∈ R
nx−1 ×R is the state, and the vector fields ψ : Rnx−1 ×R 7→

R
nx−1 and q : Rnx−1×R 7→ R are sufficiently smooth. Most of the existing results on

output regulation for nonlinear systems focus on systems having a minimum phase
zero-dynamics. As our approach is to cast the problem in the contraction framework,
we will assume that system (2.93) possesses a contractive zero-dynamics. This is
assumed in the following.

Assumption 2.3.4 (Incremental minimum phase). Consider system (2.93). There
exist positive real numbers q̄, ψ̄y, p̄z, pz, λz > 0 and a C1 matrix function Pz : R

nx−1 7→
R

(nx−1)×(nx−1) taking symmetric positive values such that the following inequalities3

hold
∣∣∣∣
∂q

∂x
(z, y)

∣∣∣∣ ≤ q̄,

∣∣∣∣
∂ψ

∂y
(z, y)

∣∣∣∣ ≤ ψ̄y, (2.94)

p
z
I ⪯ Pz(z) ⪯ p̄zI, LψPz(z) ⪯ −2λzI, (2.95)

for all (z, y) ∈ R
nx−1 × R.

Under such an assumption we have the following result.

Proposition 2.3.10. Consider system (2.93) extended with the dynamics (2.67),
(2.68), (2.69) and let Assumption 2.3.4 hold. Then for any number of oscillators
L ≥ 0, Assumption 2.3.2 and 2.3.3 are satisfied with h(x) = y and

P (x) =

(
Pz(z) 0

0 ε

)
, α0(x) = −ky , ϱ(x) = −q(z, y) + (k − 1)y ,

M⊤(x) =
[
y M⊤

1 (x) . . . M⊤
L(x)

]
, M⊤

ℓ (x) =
(
y y

)
,

Λ⊤ =
[
1 Λ⊤

1 . . . Λ⊤
L

]
, Λ⊤

ℓ =
(
1 1

)
,

Γ⊤ =
[
−1 Γ⊤

1 . . . Γ⊤
L

]
, Γ⊤

ℓ =
[
−ωℓ − 1 ωℓ − 1

]
,

∆⊤(x) =
[
∆0(x) ∆⊤

1 (x) . . . ∆⊤
2L(x)

]
, ∆0(x) = ∆ℓ(x) = −ϱ(x) ,

(2.96)

3The notation LψPz(z, y) has to be understood as the Lie derivative of Pz along the vector field z 7→
ψ(z, y) where y is fixed.
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with ℓ = 1, . . . , L for some gain k > 0 sufficiently large and ε > 0 sufficiently small,
both independent on L.

Proof. We first show that Assumption 2.3.2 holds. After the pre-stabilizing
action α0, the open-loop system (2.93) is of the form (2.7), (2.65) where x =
(z, y) and

f(x) =

(
ψ(z, y)

q(x, y)− ky

)
, g(x) =

(
0

1

)

Consider the metric P (x) defined as in (2.96). First, note that the Killing Vector
property is satisfied, i.e. LgP (x) = 0 for all x. We look for p > 0 such that
T(x) ≺ 0 where

T(x) : = LfP (x) + pI =

(
T11 T12

T⊤
12 T22 .

)

=




LψzPz(z) Pz(z)
∂ψ

∂y
(x) +

(
ε
∂q

∂z
(x)

)⊤

[
Pz(z)

∂ψ

∂y
(x) +

(
ε
∂q

∂z
(x)

)⊤]⊤
2ε

(
∂q

∂y
(x)− k

)




+ pI

Fix any

ε >
λz

2(p2zψ
2
y)

and set

k ≥ k := q̄ +
λk
2ελz

+
(p̄zψ̄y + εq̄)2

2ελz

for some λk > 0. From the bounds on q in Assumption 2.3.4, the bottom-
right term of LfP (x) is negative definite for any ε, λk > 0, namely T22 ≺ 0 for
any p ≤ ε(k − q). Hence to show the existence of a metric for the open-loop
system, namely, (2.70), we check the sign of the Schur’s complement ST(x) =
T11 − T12T

−1
22 T

⊤
12 of T(x). By making use of the bounds on ψ, q and since there

exists λz such that LψzPz(z) ⪯ −2λzI from Assumption 2.3.4, we get

ST(x) = LψzPz(z) + pI

−
[
Pz(z)

∂ψ

∂y
(x) +

(
ε
∂q

∂z
(x)

)⊤]
T−1
22

[
Pz(z)

∂ψ

∂y
(x) +

(
ε
∂q

∂z
(x)

)⊤]⊤

⪯


−2λz + p+

(
p̄zψ̄y + εq̄

)2

1
λz

(
λk +

(
p̄zψ̄y + εq̄

)2)


 I

⪯ −2λkI

Therefore, Assumption 2.3.2 holds with P defined in (2.96) and

p = min{p
z
, ε} , p = max{pz, ε} , p = min{2λk, 2λz, 2λkλz , ε(k − q)} .
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We then check each point of Assumption 2.3.3 separately. For Item 1 note that
(2.72) holds. Indeed for ℓ = 0, we get

∂M0

∂x
(x)f(x) = h(x) + ∆0(x)

q(x)− ky = −y +∆0

and we recover the definition of ∆0(x) in (2.96). Similarly, for ℓ = 1, . . . , L from
the definitions of Φ,Γ as in (2.68), (2.69), (2.96) we have

∂Mℓ

∂x
(x)f(x) =

(
0 ωℓ

−ωℓ 0

)
Mℓ(x) + Γℓh(x) + ∆ℓ(x)

which is a set of 2L identities of the form
{
(q(x)− ky) = ωℓy + (−ωℓ − 1)y +∆ℓ(x)

(q(x)− ky) = −ωℓy + (ωℓ − 1)y +∆ℓ(x)

from the definition of ∆ as in (2.96). About Item 2, note that LgM(x) = Λ.
Moreover, since M is linear and Φ is block diagonal, the observability matrix O

of (Φ,Λ⊤) is

O = blkdiag{1,O1, . . . ,OL}, Oℓ =

(
1 ωℓ
1 −ωℓ

)

which has non-zero determinant for all ωℓ ̸= 0. This shows that (Φ,Λ⊤) is
detectable. About Item 3, again, we recover a set of 2L + 1 identities. Indeed
for all ℓ = 0, . . . , 2L we defined ϱ(x) = −∆ℓ(x). About Item 4, equation (2.75)
reads

(
LψzPz(z) Pz(z)

∂ψ

∂e
(x) +

(
ε∂q
∂z
(x)
)⊤

⋆⊤ 2ε
(
∂q

∂e
(x)− k

)

)
−




0
(
ε∂q
∂z
(x)
)⊤

⋆⊤ 2ε
(
∂q

∂y
(x)− k + 1

)


 ⪯ −λzI

where the right-hand-side follows a similar analysis as previously, from the defi-
nition of ε and Assumption 2.3.4. To conclude the proof, note that the control-
lability matrix C of (Φ,Γ) has a block-diagonal structure of the form

C = blkdiag{1,C1, . . . ,CL}, Cℓ =
(
−ωℓ − 1 ωℓ(ωℓ − 1)
ωℓ − 1 ωℓ(ωℓ + 1)

)

where each Cℓ is full rank and hence C is so.

From Proposition 2.3.5, the following then holds.

Corollary 2.3.10.1 (Global harmonic regulation for minimum-phase systems).
Consider system (2.93) with any r ∈ R satisfying (2.64) and let Assumption 2.3.4
hold. Then for any L ≥ 0 and any initial condition (z0, y0, η0), the system in closed
loop with the dynamical control law

η̇ = Φη + Γe

u = α0(x) + κΛ⊤(η −M(x)) + ϱ(x)
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with (2.68), (2.69), (2.96) for any gain κ > 0 solves the global harmonic regulation
Problem in Problem 2.3.3.

Remark 2.3.11. The control (2.77) recovers more classical designs used in nonlin-
ear output regulation theory for minimum phase systems (see Serrani et al. (2001);
Astolfi et al. (2022a)). The term α0 = −ky is a high-gain that acts as a pre-stabilizer
for the y-dynamics where k is sufficiently large to handle the Lipschitz constant of
q while the term Λ⊤(η − M(x)) provides negativity in the directions of the inter-
nal model. In the design (2.77) a particular feature is the term ϱ which might be
seen as a feedback linearization term in the input-output mapping between u and η.
Such a term allows obtaining an upper-triangular structure in the Jacobian of the
closed-loop system under the change of coordinates η 7→ z = η −M(x).

2.4 Conclusions and perspectives

In this chapter, we studied the global output regulation problem for input-affine
nonlinear systems which do not necessarily admit the existence of a globally defined
normal form. To do so, we framed the regulation task with tools from incremental
stability theory. We considered, separately, the global integral action problem and
the global harmonic regulation one. In the first case, the objective is to design a feed-
back control law such that the output of a nonlinear system asymptotically tracks
a constant reference while rejecting external (constant) disturbances. The second
case focuses on the design of a feedback control law such that the output of a non-
linear system is bounded and asymptotically converges towards a periodic solution
that does not contain a harmonic content at certain frequencies. In both cases, the
objective was to provide a solution to these problems independently of the initial
conditions and independently of the amplitude of the external signals (references
and disturbances). In both cases, we proposed a set of sufficient conditions. For the
global integral action problem, the control law consists of an integral action process-
ing the regulation error and a feedback design (state or output feedback) based on
incremental forwarding techniques so that the closed-loop system is incrementally
globally uniformly input-to-state stable with respect to the external signals. For the
global harmonic regulation problem, the control law consists of a dynamical system
composed of a bunch of linear oscillators processing the regulation error and a state-
feedback design based on incremental forwarding techniques so that the closed-loop
system is incrementally globally uniformly input-to-state stable with respect to the
external signals. The proposed designs have been characterized for some classes of
systems such as minimum phase systems and linear systems possessing a monotonic
nonlinearity.

Future studies will focus on the following aspects.

• Despite incremental properties are preserved under sufficiently small model un-
certainties, it could be of interest to try to quantify the maximum uncertainties
and how they affect the control design and the closed-loop stability.

• For the harmonic regulation problem, the proposed design is generally not
easily extendable in case the number of oscillators changes (except for the case
of minimum phase systems in normal form). A possible extension could be to
try to provide a design that does not have such a limitation.

• It is known that, for the class of minimum phase systems in normal form with a
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unitary relative degree, canceling harmonics with the proposed design implies
that the norm of the regulation error decreases with respect to the number of
oscillators in the internal model unit (see Astolfi et al. (2022b)). An interesting
extension could be to see if such a condition is true for more general classes of
system. In such a way, the proposed harmonic regulation design could achieve
also practical regulation.

• A future perspective could be also to look for a pre-processing design for the in-
ternal model unit that provides incremental stability properties for the closed-
loop, see Wang et al. (2020).
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CHAPTER 3

MULTIAGENT
SYNCHRONIZATION

Concord is a union of wills, not of
opinions.

T. D’aquino

3.1 Introduction

3.1.1 The multiagent synchronization problem

The problem in which a group of systems has to exchange information among them in
order to cooperate and achieve an agreement is generally called the synchronization
or consensus problem. In this framework, we generally consider a group of single
separated entities, each of them described by their dynamical equation and with their
inputs and outputs. Each of these systems is called an agent. These entities however
are not isolated but can exchange information among them through a communication
protocol. We consider therefore a network of agents. Each agent can send and/or
receive information from/to some other agents in the network. Each agent is not in
general allowed to communicate with every other agent of the network, but only to a
subset of them. The agents with which a single agent i can communicate are called
neighbors of agent i. In particular, if agent j can send an information to agent i,
then j is an in-neighbor of agent i, while i is an out-neighbor of j. In this sense, the
synchronization problem is the problem of designing a distributed diffusing coupling
control action, so that all the agents in the network reach consensus, that is, they
reach some sort of agreement in their state evaluation.

Over the last years, synchronization and consensus problems have become very pop-
ular in the control community due to the several applications in which such problems
arise. Power networks Dörfler et al. (2013), heat networks Scholten et al. (2016),
robot swarms Bullo et al. (2009); Olfati-Saber (2006); Chiddarwar and Babu (2011),
urban traffic Abdoos et al. (2013); Balaji and Srinivasan (2010), fault detection Hu
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et al. (2018), microgrids Simpson-Porco et al. (2013); Shen et al. (2018) and biolog-
ical systems Roche et al. (2008) are just a few of possible real-life cases in which the
study and the control of multi-agent networks play a fundamental role.

In a synchronization problem, the design of the control action must take into consid-
eration two fundamental aspects that do not appear in other control problems. The
first one is the model of the network. In other words, the first aspect is how to model
the interaction and exchange of information among agents. This is done with tools
from graph theory (see, for instance, Godsil and Royle (2001)). Depending on the
properties of the graph describing the network (directed/undirected, weighted/un-
weighted, . . . ), different control strategies may be exploited. The second aspect is
the model of each agent. In this case, it is not only important the form of the equa-
tion describing the agent (linear/nonlinear, continuous-time/discrete-time/hybrid,
. . . ), but also if the network is homogeneous or heterogeneous. In the first case, all
the agents are described by the same model, while in the second case each agent
may be modeled differently.

3.1.2 Existing solutions and proposed contributions

Due to the various form of characterization that such a problem can have, the
literature on multi-agent synchronization is very large. In this manuscript, we will
consider only networks whose agents are modeled by a continuous-time ODE. In
such a framework, systems modeled by a linear ODE were first considered. In
this case, fundamental results where obtained in Scardovi and Sepulchre (2008) for
homogeneous networks and Wieland et al. (2011) for heterogeneous ones.

Nowadays, the control community is focusing on the study of control actions de-
signed for nonlinear systems. In this manuscript, we will consider only homogeneous
networks. The majority of results that have been obtained for homogeneous net-
works, approach the problem using control tools specifically adapted to deal with a
distributed framework. Among them, we recall for instance a passivity approach in
Arcak (2007), a dissipativity one in Stan and Sepulchre (2007) and an ISS one in
Casadei et al. (2019a,b). High-gain techniques, inherited from high-gain observers
theory or high-gain domination approaches (see, e.g., Chopra and Spong (2008);
Isidori et al. (2014); Casadei and Astolfi (2017); Panteley and Loŕıa (2017)), form
another notable class of solutions. Such controllers share pros and cons with their
observers counterparts. This led researchers to investigate alternative tools such as
nonlinear integral control, see Pavlov et al. (2022).

In the proposed approach, we attack the synchronization problem using tools de-
rived from incremental stability. The reason for this choice is very intuitive. In
a homogeneous network, every agent is modeled by the same dynamical equation,
and they are different from each other only by their initial conditions. In other
words, we have copies of the same ODE. In this sense, the synchronization task is
to design a distributed control action so that each agent loses its dependence on
the initial conditions. Since the difference between two solutions of the same ODE
(the trajectories of two different agents) must asymptotically converge to zero, we
recover the basic concept of incremental asymptotic stability described in Chapter
1. The explicit use of incremental stability tools to solve a synchronization task is
not new in the literature. Some results can be found for instance in Andrieu et al.
(2016); Andrieu and Tarbouriech (2019); Yin et al. (2021); Zhang et al. (2015, 2014);
Pavlov et al. (2022). The existing results, however, either focus on specific classes
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of systems such as monotonic systems Andrieu and Tarbouriech (2019) or Lur’e and
sector bound Zhang et al. (2014, 2015); Zhao et al. (2013), or solve the synchro-
nization task only locally i.e. if the initial conditions of each agent are close one
to each other Andrieu et al. (2016), or propose control strategies that are strongly
dependent on the topology of the network Pavlov et al. (2018, 2022).

In the tackled problem:

• we will consider homogeneous networks where agents are described by a non-
linear MIMO time-varying ODE;

• we aim to achieve global synchronization of the network, that is, the consensus
problem will be solved independently on the initial conditions of the agents.

The contributions are various. First, we approach the problems with an Euclidean-
based contractive analysis. We consider a directed and connected network of input-
affine nonlinear systems with constant input vector fields. We show that synchro-
nization can be achieved under the design of an infinite gain margin control law
that involves the solution of a Riccati-like inequality. This extends more classical
results on synchronization of linear systems, see (Isidori, 2017, Section 5). In this
context, the proposed design provides a unifying framework with respect to many
literature results (see e.g. the high-gain observer approach in Casadei et al. (2014),
the incremental passive approach in Pavlov et al. (2022) and the results in Zhang
et al. (2014); Andrieu and Tarbouriech (2019) when considering particular classes
of systems). Moreover, we show how the proposed design extends the results in
Andrieu et al. (2018) in terms of control gain (that is different on every agent) and
domain of attraction (local synchronization), as well as the results in Pavlov et al.
(2022) in terms of network topology (which in our case is only assumed to be con-
nected). As a second contribution, we show that in leader-synchronization scenarios
with undirected networks the proposed control laws can be generalized further using
Riemannian metrics. This allows considering more general classes of systems with
significant nonlinearities. However, in the Riemannian case, the proposed control
design requires the solution of a nonlinear differential equation. This turns out to
be a difficult task in practice. To deal constructively with such complexity, we pro-
vide the following additional results. i) First, we show that synchronization can be
achieved in a regional context under less stringent assumptions. ii) Thanks to this
relaxation, we provide a formulation of a practical Deep Neural Network (DNN)-
based algorithm to check the solvability of such differential equation. The use of
DNNs for solving partial differential equations is not new to the Machine Learning
community, see e.g., Raissi et al. (2019); Cai et al. (2022). In this context, we recall
recent results on the use of Deep Learning tools for the estimation of a Riemannian
metric (see for instance Tsukamoto et al. (2021); Wei et al. (2021) and references
therein).

The results that will be presented can be found in the articles of the manuscript’s au-
thor Giaccagli et al. (2021a, 2022e). The chapter is structured as follows. In Section
3.2, we provide some preliminaries. In particular, in Section 3.2.1, we provide basic
results on graph theory and introduce the notation while in Section 3.2.3 we recall
the main aspects of synchronization of linear systems. In Section 3.3, we provide
some results for the design of a distributed feedback control law (state and output
feedback) to achieve synchronization of connected networks of nonlinear systems.
Such an analysis is based on Euclidean incremental stability tools. In Section 3.4 we
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provide a state-feedback and an output-feedback distributed control law based on a
Riemannian metric analysis for the synchronization of a leader-connected network of
nonlinear systems. In Section 3.5 we show that our design applies to some classes of
systems. To conclude, in Section 3.6, using Deep Learning tools we provide a Deep
Neural Network-based algorithm for the practical implementation of the proposed
design. The procedure is then successfully implemented to achieve synchronization
for a leader-connected network of Lorentz oscillators.

3.2 Preliminaries

3.2.1 Basics on graph theory

Before entering in details of the results in this section, it is useful to introduce some
preliminaries. In particular, we will cover the following aspects.

• We will remind basic aspects of graph theory and introduce the notation that
will be used, together with some useful results that will play a role in the
upcoming analysis.

• We will recall the main aspects of synchronization for networks of linear sys-
tems.

In a general framework, a communication graph is described by a triplet G =
{V,E,A} in which V = {v1, v2, . . . , vN} is a set of N vertexes (or nodes), E ⊂ V×V

is the set of edges ejk that models the interconnection between the vertexes with the
flow of information from vertex j to vertex k weighted by the (k, j)-th entry akj ≥ 0
of the adjacency matrix A ∈ R

N×N . We denote by L ∈ R
N×N the Laplacian matrix

of the graph, defined as

ℓkj = −akj for k ̸= j, ℓkj =
N∑

i=1

aki for k = j,

where ℓj,k is the (j, k)-th entry of L. We denote with Ni the set of in-neighbors of
node i, i.e. the set Ni := {j ∈ {1, . . . , N} | eji ∈ E}.
Definition 3.2.1 (Connected graph). A time-invariant communication graph is
said to be connected if, for any two nodes (i, j) ∈ V × V, there exists a (directed)
path connecting vi to vj, i.e. there exists a sequence of nodes vq, vq+1, . . . , vqn such
that (ei,q, eq,q+1, . . . , eqn,j) ∈ E× · · · × E.

Proposition 3.2.1. A time-invariant graph is connected if and only if L has only
one trivial eigenvalue λ1(L) = 0 and all other eigenvalues λ2(L), . . . , λn(L) have
strictly positive real parts

Proof. See (Isidori, 2017, Theorem 5.1).

In this chapter, two different types of graphs will be considered: directed and undi-
rected. In particular, let us identify the Laplacian of the network as

L =

(
L11 L12

L21 L22

)
(3.1)

where L11 is a scalar, L12 is a N − 1 row vector, L21 is a N − 1 column vector and
L22 is a (N − 1)× (N − 1) matrix. The following then holds.
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Lemma 3.2.2. Let the graph G = {V,E,A} be directed and connected. Then, there
exists a strictly positive real number µ > 0 and a symmetric positive definite matrix
Q = Q⊤ ≻ 0 such that the Laplacian L satisfies

He{Q(L22 − 1L12)} ⪰ µI. (3.2)

Proof. Since the graph is connected, the Laplacian L has one zero eigenvalue
and N−1 strictly positive eigenvalues by Proposition 3.2.1. Consider the matrix

R = R−1 =

(
1 0
1 −I

)
.

and let ν⊤ =
(
1 0 . . . 0

)
and note that Rν = 1. Consider the change of

coordinates on the Laplacian defined by

L̃ = RLR−1 =

(
0 −L12

0 L22 − 1L12

)
.

Since R is full rank, the new matrix L̃ has still one eigenvector associated with
the eigenvalue zero, and all the others are strictly positive definite. In particular,
the zero eigenvalue is associated with the eigenvector ν, since Rν = 1 and
L1 = 0. Because of the block-diagonal structure of L̃, all the eigenvalues of
L22 − 1L12 are strictly positive. Hence (3.2) holds.

Definition 3.2.2 (Leader-connected graph). A time-invariant communication graph
is said to be leader-connected if there exists a node, called ‘leader’, for which the graph
contains at least one spanning tree with the leader as a root.

For an undirected graph, instead, we have the following property proved in Godsil
and Royle (2001).

Lemma 3.2.3. Consider the graph G = {V,E, A} be undirected and leader-connected.
Then the Laplacian L can be partitioned as

L =

(
0 0
L21 L22

)
. (3.3)

Moreover, there exists a strictly positive real number µ > 0 such that

L22 ⪰ µI. (3.4)

3.2.2 Synchronization with nonlinear diffusive coupling

The dynamics of each agent of the network are described by a general time-varying
nonlinear ODE

ẋi = f(t, xi, ui), y = h(t, xi), i = 1, . . . , N, (3.5)

where xi ∈ R
nx is the state of node i, ui ∈ R

nu is the control action on node i, and
yi ∈ R

ny is the output which is exchanged to the neighborhoods of the network. We
denote the state of the entire network as

x := col{x⊤1 , . . . , x⊤N}⊤ ∈ R
Nnx . (3.6)
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Furthermore, we denote with Xi(x
◦
i , t, t0) the trajectory of agent i starting from

the initial condition x◦i and initial time t0 ∈ R evaluated at time t ≥ t0, and with
X(x◦, t, t0) the trajectory of the entire network (3.6) evaluated at initial condition x◦,
initial time t0 at time t ≥ t0. Our synchronization objective is to design a nonlinear
diffusive coupling, namely a distributed feedback control law of the form

ui =
∑

j∈Ni

aij

[
φ(xi, yj, t)− φ(xi, yi, t)

]
= −

N∑

j=1

ℓijφ(xi, yj, t) (3.7)

for all i = 1, . . . , N , for some sufficiently smooth function φ : Rnx ×R
ny ×R → R

nu ,
that stabilizes the dynamics (3.16) on the so-called synchronization manifold D

defined as

D := {x ∈ R
Nnx | xi = xj, for all i, j ∈ {1, . . . , N}}, (3.8)

where the states of all the agents of the network agree with each other. By con-
struction, the i-th agent uses only the output information yj of its neighborhoods
j ∈ Ni and its own local information yi, xi. Furthermore, the control action ui is
equal to zero on the synchronization manifold. In other words, when consensus is
achieved, no correction term is needed for each agent. As a consequence, stabilizing
all the agents on the desired equilibrium point is generally not a valid solution in
such a framework. We formalize our synchronization problem as follows.

Problem 3.2.4 (Network synchronization). Let the function φ be such that the
manifold D defined in (3.8) is globally uniformly exponentially stable for the closed-
loop system

ẋi = f(t, xi,−
∑

j∈Ni

ℓijφ(xi, yj, t)), i = 1, . . . , N,

namely, there exist positive constants k and λ > 0 such that for all (x◦, t0) in
R
Nnx × R and for all t ≥ t0 in the time domain of existence of solutions T ⊆ R we

have

|X(x◦, t, t0)|D ≤ k exp(−λ (t− t0)) |x◦|D. (3.9)

Then, we say that the distributed feedback control law (3.7) solves the global expo-
nential synchronization problem for the network (3.6).

3.2.3 Network synchronization for linear systems

To better contextualize and frame the results in this chapter, it is useful to recall
some important aspects of synchronization of a homogeneous network of linear sys-
tems, see, e.g. (Isidori, 2017, Chapter 5). Consider a network where each agent is
described by

ẋi = Axi +Bui, yi = Cxi (3.10)

where x ∈ R
nx is the state, u ∈ R

nu is the control action, y ∈ R
ny is a linear

combination of the state and A,B,C are matrices of appropriate dimension. The
following result holds, see (Isidori, 2017, Proposition 5.2).

Proposition 3.2.5 (Synchronization of linear systems). Consider a connected net-
work where each agent is described by (3.10). Assume there exists a matrix K such

117



3

that the matrix A−λLBKC is Hurwitz for all λL ∈ spec{L}\{0}. Then the network
in closed-loop with the distributed control law

ui = K
∑

j∈Ni

aij(yj − yi) = −K
n∑

j=1

ℓijyj (3.11)

achieves consensus, i.e. limt 7→+∞ |xi(t)− xj(t)| = 0 for all (i, j) ∈ V× V.

In other words, for a connected network of linear systems, the synchronization prob-
lem can be seen as a robust (or simultaneous) stabilization problem. With ‘robust’
we mean that the stabilization problem must be achieved for any strictly positive
eigenvalue of the Laplacian λL, which can be seen as a gain acting on the control
term. To fulfill this requirement, a solution is given by employing an infinite gain
margin feedback (see e.g. (Sepulchre et al., 2012, Section 3)), that is a feedback
law that achieves stability in the presence of an uncertain factor in front of the gain
matrix B.

For linear systems, a general sufficient condition can be stated as follows.

Lemma 3.2.6. Suppose there exists a symmetric positive definite matrix P = P⊤ ≻
0, matrices D,E and positive real numbers ε, ρ > 0 such that the following holds

PA+ A⊤P − ρC⊤E⊤EC ⪯ −εP,
PBD = C⊤E⊤.

(3.12)

Then, the feedback gain K = DE is an infinite-gain margin static output feedback
law for the triplet (A,B,C), namely A− κBKC is Hurwitz for any κ ∈ [ρ

2
,∞).

Proof. Let P given by (3.12) and compute

P (A− κBKC) + (A− κBKC)⊤P

= PA+ A⊤P − κPBDEC − κC⊤E⊤D⊤B⊤P

= PA+ A⊤P − 2ρC⊤E⊤EC − (2κ− ρ)C⊤E⊤EC

⪯ −εP

for all κ ≥ ρ

2
concluding the proof.

We remark that condition (3.12) is slightly different from the one established for
instance in Kučera and De Souza (1995), where sufficient and necessary conditions
for the existence of a static output feedback stabilizing control law are given. The
conditions in Kučera and De Souza (1995) takes the form

PA+ A⊤P − PBB⊤P + C⊤C + E⊤E = 0,

KC − B⊤P = −E,

but don’t necessarily have the infinite gain margin property (except for the passivity-
like case E = 0). Therefore, (3.12) is more restrictive. An exhaustive discussion
about the necessity and feasibility of (3.12) is out of the scope of this section. Some
specific cases are discussed at the end of this section.

Coming back to our synchronization problem, we may state now the following re-
sult.
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Lemma 3.2.7. Consider the network described by (3.10) and suppose there exists a
solution to (3.12). Then, the distributed control law (3.11) solves the synchronization
Problem 3.2.4 with K = κDE with κ ≥ ρ

2µ
and µ given by Lemma 3.2.2.

The proof of such a result is shown, for instance, in (Li et al., 2009, Section II.B).
See also (Isidori, 2017, Chapter 5) and references therein for more details. We may
observe that the aforementioned condition (3.12) generalizes the following classical
results.

• For a state-feedback synchronization problem

ẋi = Axi +Bui, yi = xi,

condition (3.12) recovers the feedback design

PA+ A⊤P − PBB⊤P ⪯ −εP, K = B⊤P (3.13)

with D = I, E = B⊤P , ρ = 1. Note that the Algebraic Riccati Equation
(ARE) (3.13) always admits a solution if (A,B) is stabilizable.

• For the observer-form output-feedback synchronization problem

ẋi = Axi + ui, yi = Cxi,

the condition (3.12) recovers the feedback design

PA+ A⊤P − C⊤C ⪯ −εP, K = P−1C⊤, (3.14)

with D = P−1C⊤, E = I, ρ = 1. The ARE (3.14) always admits a solution if
(A,C) is detectable.

• For the square ny = nu MIMO output-feedback synchronization problem

ẋi = Axi +Bui, yi = Cxi,

the condition (3.12) recovers the passivity condition

PA+ A⊤P − C⊤C ⪯ −εP, PB = C⊤, (3.15)

with D = Inu , E = Iny , ρ = 1 and K = Iny .

Therefore, the take-away message we aim to highlight in this section is that, if we
aim at developing a theory for general nonlinear dynamics and generic connected
networks, we need to be able to solve a robust stabilization problem as in Propo-
sition 3.2.5. As a consequence, the key property is given by the extension of the
aforementioned infinite-gain margin law in the contraction framework, see, e.g. Sec-
tion 1.4.4.4. This symmetry will be further developed in the next sections.

3.3 Network synchronization with Euclidean contraction

3.3.1 Feedback design for network synchronization

In this first section, we will consider a network of N homogeneous nonlinear multi-
agent systems, i.e., described by identical dynamics. The objective is to derive
sufficient conditions for the synchronization of the full network. Motivated by the
linear systems case, we aim to provide a design that requires no additional assump-
tions on the network, except for its connectivity. This is recalled in the following
assumption.
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Assumption 3.3.1 (Graph network synchronization). The graph G = {V,E,A} is
directed and connected.

Concerning the dynamics of the agents of the network, in this section we focus on
time-varying nonlinear dynamics described by the following nonlinear ODE

ẋi = f(xi, t) + Bui, i = 1, . . . , N, (3.16)

where xi ∈ R
nx is the state of node i, ui ∈ R

nu is the control action on node i, B
is a constant matrix and f : Rnx × R 7→ R

nx is a vector field which is C1 in the
first argument and piece-wise continuous in the second. Motivated by the analysis
in Section 3.2.3, we consider the case in which agent (3.16) can exchange with their
neighborhoods only an output of the form

yi = Cxi, i = 1, . . . , N, (3.17)

with yi ∈ R
ny and where C is a constant matrix. In particular, our objective is

to design a feedback distributed control law stabilizing the dynamics (3.16) on the
so-called synchronization manifold D defined in (3.8), where the states of all the
agents of the network agree with each other. Following Section 3.2.2, we look for a
diffusive coupling law of the form (3.7) for all i = 1, . . . , N . Along the lines of the
linear case, we focus on a control design which involves the solution of a Riccati-like
inequality in order to get a control law possessing an infinite gain margin property.
We have the following result.

Theorem 3.3.1 (Feedback network synchronization). Consider system (3.16), (3.17)
and let Assumption 3.3.1 hold. Assume there exists a symmetric positive definite
matrix P = P⊤ ≻ 0, two matrices D,E and two real numbers ε, ρ > 0 such that

LfP (x, t)− ρC⊤E⊤EC ≤ −εP,
PBD = C⊤E⊤.

(3.18)

for all (x, t) ∈ R
nx × R. Then, for any κ ≥ ρ

2µ
, with µ given by Lemma 3.2.2, the

distributed feedback law (3.7) with

φ(x, t) = κKy , K = DE, (3.19)

solves the synchronization Problem 3.2.4 for the network (3.16).

As for the linear case, condition (3.18) includes many published results. For instance,
in the case of output-feedback form in which B = I, we recover the high-gain
observer approach proposed in (Casadei et al., 2014, Proposition 1). In the state-
feedback case with C = I, we recover the results in (Andrieu et al., 2018, Theorem
3) which are generalized concerning the assumption on the graph and in terms
of gain of the control law, which in our case is the same for each agent. When
considering system dynamics expressed in Lur’e form, we recover the results of Zhang
et al. (2014). When considering the passivity condition as in (3.15), we recover the
context of incrementally passivity with respect to a constant Euclidean metric P ,
see for instance Forni and Sepulchre (2013b), (Pavlov and Marconi, 2008, Section
5) and we generalize the result in (Pavlov et al., 2022, Theorem 4) concerning the
assumption on the graph.
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Proof. The idea behind the proof is to set a virtual leader and show that the
dynamics of the error between any other agent and such a leader exponentially
goes to zero. Therefore, let x̃ = (x̃⊤2 , . . . , x̃

⊤
N)

⊤ where x̃i = xi−x1 represents the
error between agent xi and z = x1. Since ℓij = 0 if j ̸∈ Ni, the x̃i-dynamics can
be written as

˙̃xi = f(z + x̃i, t)− κB
N∑

j=1

ℓijDEC(z + x̃j)

− f(z, t) + κB
N∑

j=1

ℓ1jDEC(z + x̃j) .

Since
∑N

j=1 ℓij = 0 for all i = 1, . . . , N , we can add the terms−κB
(∑N

j=1 ℓ1j

)
DECz =

0 and κB
(∑N

j=1 ℓij

)
DECz = 0. This leads to

˙̃xi = f(z + x̃i, t)− f(z, t)− κB
N∑

j=1

ℓijDECx̃j

+ κB
N∑

j=1

ℓ1jDECx̃j

= f(z + x̃i, t)− f(z, t)− κB

N∑

j=1

(ℓij − ℓ1j)DECx̃j .

Note that in these new coordinates, the synchronization manifold defined in
(3.8) corresponds to the origin of the x̃-dynamics. Let t0 be in R and consider a

solution Z(z◦, t, t0), X̃(t, t0) = (X̃2(t, t0), . . . , X̃N(t, t0)) of the closed-loop system
which is defined for all t in the time domain of definition T ⊆ R. Consider the
following Lyapunov function V

V (t) := X̃(t, t0)
⊤(Q⊗ P )X̃(t, t0) (3.20)

defined for all t in T, where P solves (3.18) and Q is chosen as in Lemma 3.2.2.
Taking the time-derivative V and recalling that (Q ⊗ P )⊤ = (Q⊤ ⊗ P⊤) =
(Q⊗ P ), it yields

V̇ (t) = 2X̃(t, t0)
⊤(Q⊗ P )blkdiag

i=2,...,N

{
f(Z+ X̃i, t)− f(Z, t)

}

−2κ X̃(t, t0)
⊤(Q⊗ P )((L22 − 1L12)⊗ BDEC)X̃(t, t0) .

Since Q ⊗ P = (Q ⊗ I)(I ⊗ P ), by Lemma 3.2.2 and by using the Mean Value
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Theorem, it follows that

V̇ (t) = 2X̃(t, t0)
⊤
[
(Q⊗ P )blkdiag

i=2,...,N

{∫ 1

0

∂f

∂x
(Z− sX̃i, t) ds

}

− 2κ (Q(L22 − 1L12)⊗ PBDEC)

]
X̃(t, t0)

≤ 2X̃(t, t0)
⊤
[
(Q⊗ I)blkdiag

i=2,...,N

{∫ 1

0

LfP (Z− sX̃i, t) ds

}

− 2κ (µI ⊗ C⊤E⊤EC)

]
X̃(t, t0).

By using (3.18) and by choosing any κ ≥ ρ

2µ
with µ given by Lemma 3.2.2, we

get

V̇ (t) ≤ −ε X̃(t, t0)⊤(Q⊗ P )X̃(t, t0) = −ε V (t) . (3.21)

From Gronwall’s Lemma this implies

V (t) ≤ exp (−ε(t− t0))V (t0)

for all t in T. Using the definition of V in (3.20), the latter inequality gives

|X̃(t, t0)|2 ≤
λM(Q⊗ P )

λm(Q⊗ P )
exp (−ε(t− t0)) |X̃(t0, t0)|2 , (3.22)

for all t in T, where λm(Q⊗ P ), λM(Q⊗ P ) are respectively the minimum and
the maximum (strictly positive) eigenvalues of Q ⊗ P . Remembering that by
definition x̃i = xi − z, by equivalence of norms in finite dimensional spaces it
follows that there exist two strictly positive real numbers c, c > 0 such that

c
∣∣X(x◦, t, t0)

∣∣
D
≤
∣∣X̃(t, t0)

∣∣ ≤ c
∣∣X(x◦, t, t0)

∣∣
D
, (3.23)

for all t in T, which implies (3.9) and concludes the proof.

We highlight again the symmetry between the results proposed in Theorem 3.3.1
and the linear case in Section 3.2.3. Both results involve the solution of a Riccati-
like inequality to guarantee an infinite-gain margin property for the control action.
This aspect allows relying on the sole assumption of the network being simply con-
nected.

As a last remark of this section, we stress that the Riccati-like condition (3.18) is
in general only sufficient and not necessary. Indeed, in the context of contraction
analysis and incremental stability, the existence of a Riemannian metric is proved
to be equivalent (under a globally Lipschitz property of the first derivative of the
vector field) to the desired contraction properties, see Andrieu et al. (2016). Similar
considerations obviously, can be done in a multi-agent context, see Andrieu et al.
(2018). However, when we restrict to Euclidean metrics, this equivalence is lost. As
a consequence, a set of Euclidean metric-based conditions is only sufficient.
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3.4 Leader synchronization with Riemaniann contraction

3.4.1 Network structure and problem statement

In Section 3.3 the synchronization problem has been solved with an analysis based on
incremental stability tools concerning a Euclidean metric. To extend such a result to
more general classes of systems, in this section, we aim to pursue a similar analysis
with a study based on Riemannian metrics. Consider a network of N identical
agents described by

ẋi = f(xi, t) + g(xi, t)ui, i = 1, . . . , N, (3.24)

where x ∈ R
nx is the state, ui ∈ R

nu is the control action and f : Rnx×R 7→ R
nx , g :

R
nx ×R 7→ R

nx×nu are C2 functions in the first argument and piecewise continuous
in the second.

In what follows, we focus on the leader-synchronization problem. In other words,
we suppose the presence of a leader, that is, an agent of the network (3.24) for which
the control action is zero, as specified in the following assumption. Without loss of
generality, we label the leader as the node 1.

Assumption 3.4.1. The graph G = {V,E, A} is undirected and leader-connected.

As a consequence, the network (3.25) can be rewritten as

ẋ1 = f(x1, t)

ẋi = f(xi, t) + g(xi, t)ui, i = 2, . . . , N.
(3.25)

The control objective is to design a feedback distributed control law of the form

ui =
∑

j∈Ni

aij

[
φ(xj, t)− φ(xi, t)

]
= −

N∑

j=1

ℓijφ(xj, t) (3.26)

for all i = 2, . . . , N , stabilizing the dynamics of (3.25) to the synchronization mani-
fold D (3.8). For the moment, we focus on the case in which the i-th agent uses only
the state information of its neighborhoods and of itself. To this end, we look again
for a feedback design that is derived from a Riccati-like inequality. In this case,
however, we follow the contraction analysis based on Riemannian metrics.

3.4.2 Feedback design for leader synchronization

3.4.2.1 State-feedback leader synchronization

In this section, we consider the problem of designing a state-feedback control law
such that the global exponential multiagent leader-synchronization problem is solved.
To consider a more general class of systems as in (3.25), we approach the problem
with a contraction analysis based on Riemannian metrics. The following result
holds.

Theorem 3.4.1 (State-feedback leader-synchronization). Consider system (3.25)
and assume Assumption 3.4.1 holds. Assume moreover that there exists a C1 matrix
function P : Rnx × R → R

nx×nx taking symmetric positive definite values such that
the following conditions hold:
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• the State Control Matrix Function (SCMF) condition holds:

LfP (x, t)− ρP (x, t)g(x, t)g⊤(x, t)P (x, t) ⪯ −εP (x, t)
pI ⪯ P (x, t) ⪯ pI ,

(3.27)

for all (x, t) ∈ R
nx × R and for some positive real numbers, p, p, ε, ρ > 0;

• the matrix function g has the Killing vector field property with respect to P ,
i.e.,

LgP (x, t) = 0 (3.28)

for all (x, t) ∈ R
nx × R;

• there exists a C2 function α : Rnx × R 7→ R
nu such that

∂α⊤

∂x
(x, t) = P (x, t)g(x, t) (3.29)

for all (x, t) ∈ R
nx × R.

Then, for any gain κ ≥ ρ

2µ
for some µ > 0 given by Lemma 3.2.3, the distributed

state-feedback control law (3.26) with

φj(xj, t) = −κ ℓijα(xj, t) , (3.30)

solves the global exponential leader-synchronization problem for (3.25).

Proof. Similarly to the proof of Theorem 3.3.1, the main goal is to show
that the dynamics of the error between any agent and the leader exponentially

decreases to zero. Therefore, let us denote x̃ =
(
x̃⊤2 . . . x̃⊤N

)⊤
where x̃i =

xi − x1 represents the error between agent i and z = x1. Since ℓij = 0 for all
j ̸∈ Ni, the dynamics of the error x̃i for all i = 2, . . . , N with the control law
(3.30) can be rewritten as

˙̃xi = f(z + x̃i, t)− f(z, t)−κg(z + x̃i, t)
N∑

j=1

ℓijα(z + x̃j, t).

Note that there’s no term on g(z, t) since no control action is acting on the

leader. Since
∑N

j=1 ℓij = 0 for all i = 1, . . . , N , we can add the term κg(z +

x̃i, t)
(∑N

j=1 ℓij

)
α(z, t) = 0 and get

˙̃xi = f(z + x̃i, t)− f(z, t)

− κg(z + x̃i, t)
N∑

j=1

ℓij [α(z + x̃j, t)− α(z, t)] .
(3.31)

Note that in this new coordinates, the synchronization manifold defined in (3.8)
corresponds to the origin of the x̃-dynamics. Let t0 be in R and consider a

solution Z(z◦, t, t0) and X̃(t, t0) = (X̃2(t, t0), . . . , X̃N(t, t0)) of the closed-loop
system which is defined for all t in the time domain of definition T1 ⊂ R.
Consider the function Γ : [0, 1]× T2 × R 7→ R

Nnx which satisfies

Γ(s, t0, t0) = sX̃(t0, t0)
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and where its i-th component Γi is the solution of the following ordinary differ-
ential equation

∂Γi

∂t
(s, t, t0) = f(ζi, t)− f(Z(z◦, t, t0), t)

− κg(ζi, t)
N∑

j=1

ℓij(α(ζj, t)− α(Z(z◦, t, t0), t))

where we indicated with ζi = Z(z◦, t, t0)+Γi(s, t, t0) for shortness of notation and
where Z(z◦, t, t0) is the solution of the virtual leader z initialized at (z◦, t0) ∈
R
nx × R and evaluated at time t ≥ t0. Finally T2 ⊂ T1 is the time domain

of definition of Γ. We will show in the following that T2 = T1. Consider the
function Vi for i = 2, . . . , N defined for t in T2 by

Vi(t) =

∫ 1

0

∂Γi
∂s

(s, t, t0)
⊤P (ζi, t)

∂Γi
∂s

(s, t, t0)ds . (3.32)

Note that we have for all (k, l) in {1, . . . , nx}2

d

dt
[P (ζi, t)kl] =

∂Pkl
∂x

(ζi, t)
[
f(Z(z◦, t, t0) +

∂Γi
∂t
(s, t, t0))

]
+

∂Pkl

∂t
(ζi, t).

This implies that for all vector ν in R
nx ,

d

dt

[
ν⊤P (ζi, t)ν

]
= ν⊤dfP (ζi, t))ν

− 2κ
N∑

j=1

[
ℓij

nu∑

ι=1

ν⊤dgιP (ζi, t)ν(αι(ζj, t)− αι(Z(z
◦, t, t0), t))

]
.

By using the Killing vector assumption (3.28) and the integrability one on the
function α in (3.29), the time derivative of Vi becomes

V̇i(t) =

∫ 1

0

[
∂Γ⊤

i

∂s
(s, t, t0)LfP (ζi, t)

∂Γi
∂s

(s, t, t0)

− 2κ
∂Γ⊤

i

∂s
(s, t, t0)

N∑

j=1

ℓijP (ζi, t)g(ζi, t)g(ζj, t)
⊤P (ζj, t)

∂Γj
∂s

(s, t, t0)

]
ds.

Let
DfP (ζ, t) := blkdiag{LfP (ζ2, t), . . . , LfP (ζN , t)}

and
Ψ(ζ, t) := col{P (ζ1, t)g(ζ1, t), . . . P (ζN , t)g(ζN , t)} .
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By considering all the Vi we have that

N∑

i=2

V̇i(t) =

∫ 1

0

[
∂Γ⊤

∂s
(s, t, t0)DfP (ζ, t)

∂Γ⊤

∂s
(s, t, t0)

− 2κ
∂Γ⊤

∂s
(s, t, t0)Ψ(ζ, t)L22Ψ

⊤(ζ, t)
∂Γ

∂s
(s, t, t0)

]
ds.

(3.33)

Hence by Lemma 3.2.3,

N∑

i=2

V̇i(t) ≤
∫ 1

0

[
∂Γ⊤

∂s
(s, t, t0)DfP (ζ, t)

∂Γ⊤

∂s
(s, t, t0)

− 2κµ
∂Γ⊤

∂s
(s, t, t0)Ψ(ζ, t)Ψ⊤(ζ, t)

∂Γ

∂s
(s, t, t0)

]
ds. (3.34)

Therefore by selecting κ ≥ ρ

2µ
with ρ satisfying the SCMF defined in (3.27) and

µ > 0 given by Lemma 3.2.3 we get

V̇ (t) =
N∑

i=2

V̇i(t) ≤ −ε
N∑

i=2

Vi(t) = −ε V (t) . (3.35)

From Gronwall’s Lemma this implies for all t in T2

V (t) ≤ exp (−ε(t− t0))V (t0) . (3.36)

From this inequality, we first deduce that T2 = T1 since the path Γ has finite
(Riemaniann) energy and has boundary defined in T1. Moreover,

Vi(t) ≥ p

∫ 1

0

∂Γi
∂s

(s, t, t0)
⊤∂Γi
∂s

(s, t, t0)ds

≥ p X̃i(t, t0)
⊤X̃i(t, t0) .

Since moreover,

V (t0) ≤ p X̃(t0, t0)
⊤X̃(t0, t0)

it yields for all t in T1

|X̃(t, t0)|2 ≤ exp(−ε(t− t0))
p

p
|X̃(t0, t0)|2 .

With (3.23), inequality (3.9) follows.

3.4.2.2 Incrementally passive output feedback leader synchronization

In this section, we tackle the problem of designing a static output-feedback dis-
tributed control law of the form (3.26) achieving leader-synchronization for the net-
work. In other words, we consider a network defined by

ẋ1 = f(x1, t), y1 = h(x1, t),

ẋi = f(xi, t) + g(xi, t)ui, yi = h(xi, t),
(3.37)

126



3

where yi ∈ R
ny and h : Rnx × R 7→ R

ny is C2 in the first argument and piecewise
continuous in the second. We assume that the number of inputs is equal to the
number of outputs, i.e. nu = ny. Similar to the previous section, the following
result establishes a set of sufficient conditions for the existence of a distributed
output feedback nonlinear diffuse coupling.

Corollary 3.4.1.1 (Output-feedback leader-synchronization). Consider the net-
work (3.37). Let Assumption 3.4.1 hold and suppose that there exists a C1 matrix
function P : Rnx × R → R

nx×nx taking symmetric positive definite values such that
the following conditions hold.

1. The Output Control Matrix Function (OCMF) condition holds:

LfP (x, t)− ρ
∂h⊤

∂x
(x, t)

∂h

∂x
(x, t) ⪯ −εP (x, t) ,

pI ⪯ P (x, t) ⪯ pI ,

(3.38)

for all (x, t) ∈ R
nx × R for some positive constants p, p, ε, ρ > 0;

2. the following holds

P (x, t)g(x, t) =
∂h⊤

∂x
(x, t) (3.39)

and g has the Killing vector property for P , i.e.

LgP (x, t) = 0 (3.40)

for all (x, t) ∈ R
nx × R.

Then, for any κ ≥ ρ

2µ
with µ > 0 given by Lemma 3.2.3, the output-feedback dis-

tributed control law (3.26) with

φj(xj, t) = −κ ℓijh(xj, t) (3.41)

solves the global exponential leader synchronization problem.

Proof. The proof is similar as in Theorem 3.4.1. We recall only the main

aspects. Therefore, let us denote x̃ =
(
x̃⊤1 . . . x̃⊤N

)⊤
where x̃ = xi − x1

represents the error between agent i and z = x1. The dynamics of the error x̃
for all i = 2, . . . , N with the control law (3.30) can be rewritten as

˙̃xi = f(z + x̃i, t)− f(z, t)− κg(z + x̃i, t)
N∑

j=1

ℓijyj

where there’s no term in g(z, t) since the control action on the leader is zero.

Since
∑N

j=1 ℓij = 0 for all i = 1, . . . , N , we can add the term κg(z+x̃i, t)
(∑N

j=1 ℓij

)
y1

and get

˙̃xi = f(z + x̃, t)− f(z, t)− κg(z + x̃i, t)
N∑

j=1

ℓij [yj − y1] .

Let t0 be in R and consider a solution Z(z◦, t, t0) and X̃(t, t0) = (X̃2(t, t0), . . . , X̃N(t, t0))
of the closed-loop system which is defined for all t in the time domain of defini-
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tion T1 ⊂ R. Consider the function Γ : [0, 1]× T2 × R 7→ R
Nnx which satisfies

Γ(s, t0, t0) = sX̃(t0, t0)

and where its i-th component Γi is the solution of the following ordinary differ-
ential equation

∂Γi

∂t
(s, t, t0) = f(ζi, t)− f(Z(z◦, t, t0), t)

− κg(ζi, t)
N∑

j=1

ℓij(α(ζj, t)− α(Z(z◦, t, t0), t))

where we indicated with ζi = Z(z◦, t, t0) + Γi(s, t, t0) for shortness of notation
and where Z(z◦, t, t0) is the solution of the virtual leader z initialized at (z◦, t0) ∈
R
nx × R and evaluated at time t ≥ t0. Finally T2 ⊂ T1 is the time domain of

definition of Γ. We will show in the following that T2 = T1. Consider the function
Vi for i = 2, . . . , N defined by (3.32). By using the Killing vector assumption
(3.40) and the integrability one (3.39), the time derivative of Vi becomes

V̇i(t) =

∫ 1

0

∂Γ⊤
i

∂s
(s, t, t0)

[
LfP (ζi, t)

∂Γi
∂s

(s, t, t0)

− 2κ
N∑

j=1

ℓij
∂h⊤

∂x
(ζi, t)

∂h

∂x
(ζj, t)

∂Γj
∂s

(s, t, t0)

]
ds .

Let
DfP (ζ, t) := blkdiag{LfP (ζ2, t), . . . , LfP (ζN , t)}

and
H(ζ, t) := col

{
∂h⊤

∂x
(ζ2, t), . . . ,

∂h⊤

∂x
(ζ2, t)

}
.

By Lemma 3.2.3, we have that

N∑

i=2

V̇i(t) =

∫ 1

0

[
∂Γ⊤

∂s
(s, t, t0)DfP (ζ, t)

∂Γ⊤

∂s
(s, t, t0)

− 2κ
∂Γ⊤

∂s
(s, t, t0)H(ζ, t)L22H

⊤(ζ, t)Ψ(ζ, t)
∂Γ

∂s
(s, t, t0)

]
ds

≤
∫ 1

0

[
∂Γ⊤

∂s
(s, t, t0)DfP (ζ, t)

∂Γ⊤

∂s
(s, t, t0)

− 2κµ
∂Γ⊤

∂s
(s, t, t0)H(ζ, t)H⊤(ζ, t)

∂Γ

∂s
(s, t, t0)

]
ds .

Therefore by selecting κ ≥ ρ

2µ
with ϱ satisfying the OCMF condition in (3.38)

and µ > 0 given by Lemma 3.2.3 we have that (3.35) holds. From Gronwall’s
Lemma we have that (3.36) is satisfied. From this inequality, we first deduce
that T2 = T1 since the path Γ has finite (Riemaniann) energy and has boundary
defined in T1. The proof then concludes as in Theorem 3.4.1.
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Remark 3.4.2. Note that the control law (3.41) is linear in the output y. A similar
result can be claimed by considering a controller ξ(y) which is nonlinear in y and
such that ξ(0) = 0. In such a case, the relations (3.38) and (3.39) become

LfP (x, t)− ρ
(
∂ξ

∂x
(h(x, t))

)⊤ ( ∂ξ
∂x
(h(x, t))

)
⪯ −εP (x, t)

P (x, t)g(x, t) =
(
∂ξ

∂x
(h(x, t))

)⊤

and synchronization is achieved with the output-feedback control law

ui = −κ
∑

j∈Ni

ℓijξ(yj) .

3.4.2.3 Full-input-feedback leader synchronization

The output-feedback control design for the Riemaniann case in Section 3.4.2.2 makes
use of incremental passive tools. This requires the dimension of the output to be
the same as the dimension of the input. In this section, we aim to show that such a
limitation can be avoided in some cases. We suppose in this case that each agent is
described by (3.25) where g(x, t) = I and that it is coupled with a scalar nonlinear
output. In other words, we consider a system of the form

ẋ1 = f(x1, t), y1 = h(x1, t),

ẋi = f(xi, t) + ui, yi = h(xi, t),
(3.42)

for all i = 2, . . . , N , where x ∈ R
nx , u ∈ R

nx and y ∈ R. For such a class of systems,
the following result holds.

Proposition 3.4.3 (Full-input output feedback leader synchronization). Consider
a network of systems of the form (3.42) and let Assumption 3.4.1 hold. Suppose that
there exists a C1 function P : Rnx ×R → R

nx×nx taking symmetric positive definite
values such that the following conditions hold.

• The Output Control Matrix Function (OCMF) condition in (3.38) holds;

• The vector field α : Rnx × R → R
nx defined as

α(x, t) = P−1(x, t)
∂h⊤

∂x
(x, t) (3.43)

is a Killing vector for P , i.e.

LαP (x, t) = 0 (3.44)

for all (x, t) ∈ R
nx × R.

Then, for any κ ≥ ρ

2µ
, with ρ satisfying (3.38) and µ given by Lemma 3.2.2, the

distributed control law (3.26) with

φj(xj, t) = −κ ℓijα(xi, t)yj (3.45)

solves the global exponential leader synchronization problem for system (3.42).

Proof. First of all note that, in virtue of Lemma 3.2.3, the control action
on the leader is identically zero since ℓ1j = 0 for all j. Similarly to the proof
of Theorem 3.3.1 then, the idea behind the proof is to show that the dynamics
of the error between any agent and the leader exponentially decrease to zero.
Consider, without loss of generality, that x1 is the leader node in the network.
Define N − 1 error coordinates x̃ := (x̃2, . . . , x̃N) with x̃i := xi−x1 and z := x1.
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The dynamics of these errors reads

˙̃xi = f(x̃i + z, t)− f(z, t)− κ

N∑

j=1

ℓijα(x̃i + z, t)[h(x̃j + z, t)− h(z, t)]

for all i = 2, . . . , N . Let t0 be in R and consider a solution Z(z◦, t, t0) and

X̃(t, t0) = (X̃2(t, t0), . . . , X̃N(t, t0)) of the closed-loop system which is defined
for all t in the time domain of definition T1 ⊂ R. Consider the function Γ :
[0, 1]× T2 × R 7→ R

Nnx which satisfies

Γ(s, t0, t0) = sX̃(t0, t0)

and where its i-th component Γi is the solution of the following ordinary differ-
ential equation

∂Γi

∂t
(s, t, t0) = f(ζi, t)− f(Z(z◦, t, t0), t)

− κg(ζi, t)
N∑

j=1

ℓij(α(ζj, t)− α(Z(z◦, t, t0), t))

where we indicated with ζi = Z(z◦, t, t0)+Γi(s, t, t0) for shortness of notation and
where Z(z◦, t, t0) is the solution of the virtual leader z initialized at (z◦, t0) ∈
R
nx × R and evaluated at time t ≥ t0. Finally T2 ⊂ T1 is the time domain

of definition of Γ. We will show in the following that T2 = T1. Consider the
function Vi, i = 2, . . . , N , defined by (3.32). Employing the Killing vector
field assumption (3.44) and the definition of α in (3.43), we compute the time-
derivative of Vi as

V̇i(t) =

∫ 1

0

∂Γ⊤
i

∂s
(s, t)

[
LfP (Z(t) + Γi(s, t))

− 2κ
N∑

j=1

ℓij
∂h⊤

∂z
(Z(t))

∂h

∂z
(Z(t))

]
∂Γ⊤

i

∂s
(s, t)ds

Hence

N∑

i=2

V̇i(t) =

∫ 1

0

N∑

i=2

∂Γ⊤
i

∂s
(s, t, t0)

[
LfP (Z(t, t0) + Γi(s, t, t0), t)

− 2κ
N∑

j=1

ℓij
∂h⊤

∂z
(Z(t, t0), t)

∂h

∂z
(Z(t, t0), t)

]
∂Γ⊤

i

∂s
(s, t, t0)ds

=

∫ 1

0

N∑

i=2

∂Γ⊤
i

∂s
(s, t, t0)LfP (Z(t, t0) + Γi(s, t, t0), t)

∂Γi

∂s
(s, t, t0)

− 2κµv⊤(s, t, t0)v(s, t, t0) ds

130



3

where we defined

v(s, t, t0) =




∂h
∂z
(Z(t, t0), t)

∂Γ2

∂s
(s, t, t0)

...
∂h
∂z
(Z(t, t0), t)

∂ΓN
∂s

(s, t, t0)


 .

Therefore by selecting κ ≥ ρ

2µ
with ρ satisfying the OCMF condition in (3.38)

and µ > 0 given by Lemma 3.2.3 we have that (3.35) holds. From Gronwall’s
Lemma we have that (3.36) is satisfied. The proof then concludes as in Theorem
3.4.1.

Remark 3.4.4. Concerning the Euclidean case in Section 3.3, the following critical
aspects should be highlighted.

• In this section we considered a network with the presence of a leader. The
Riemannian extension to network synchronization (without a leader) is non-
trivial. The main challenge is the dependence of the control vector field g on
the state xi. Indeed, without an agent that acts as a leader, we are left with
an additional term in (3.31) which depends on g(z, t). As a consequence, the
sum of Vi(t) is not (in general) a good candidate to be a Lyapunov function.
This problem does not arise when the matrix function multiplying the control
action u is state independent, such as in Section 3.3. In this case, to satisfy
the Killing vector condition the metric is Euclidean, that is, P is a constant
positive definite matrix.

• In this section we considered an undirected network while in Section 3.3 we al-
lowed the communication links between agents to be unidirectional. The main
limitation in the Riemaniann case is, again, the choice of the Lyapunov func-
tion. Indeed in the Euclidean case, the metric is equivalent for each agent since
it is a constant matrix P . In the Riemannian framework, this is not the case.
As a consequence, the Kronecker product Q ⊗ P in the Riemaniann frame-
work cannot be defined since P depends on x. In such a case the Lyapunov
function for the entire network takes the form of a block-diagonal structure of
all the P (xi, t) (or, equivalently, the sum of the Lyapunov functions for each
agent). This requires the matrix L22 to be symmetric, with the consequence
that (besides the leader) the graph must be undirected.

• We conclude this section by noting that, differently from the Euclidean case de-
veloped in Section 3.3, we don’t have a complete extension to the Riemannian
case of the general ARE condition (3.12): we only extended the three cases
(3.13), (3.14), (3.15). The main reason is that, again, in a Riemaniann frame-
work, the dependency of the state in the vector field g(x, t) does not allow to
to easily derive an equivalent condition to PBD = C⊤E⊤ as in the nonlinear
framework.

3.5 Examples

3.5.1 Minimum-phase systems

In this section, we specialize the previous conditions to specific classes of nonlinear
systems. In particular, we will consider minimum-phase systems and nonlinear sys-
tems that are described in Lur’e form with an incremental monotonic nonlinearity.
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A significant amount of results in synchronization considers systems either in normal
form or for which there exists a globally defined diffeomorphism that allows rewrit-
ing the dynamics in normal form, see, e.g. Isidori et al. (2014); Panteley and Loŕıa
(2017); Chopra and Spong (2008). For such a class of systems, the zero-dynamics
is generally assumed to possess a unique steady-state trajectory which is attractive
with a given domain of attraction (minimum-phase). We show below that the condi-
tions provided in Section 3.4 recover these results. In particular, consider a network
where each agent is modeled as a SISO system whose dynamics can be described
by

żi = F (zi, yi)

ẏi = q(zi, yi) + ui
(3.46)

where xi = (zi, yi) ∈ R
nx is the state, with i = 1, . . . , N . In particular, we consider

systems with unitary relative degree, that is, zi ∈ R
nx−1 and y ∈ R. The functions

F, q are C2 in their arguments. The high-frequency gain (i.e. the coefficient in front
of u) is selected as 1 without loss of generality. With respect to the representation
(3.37), we have

f(x, t) =

(
F (z, y)
q(z, y)

)
, g(x, t) =

(
0
1

)
, h(x, t) =

(
0 1

)
.

We cast the synchronization problem to the incremental framework with the follow-
ing (incremental) minimum-phase assumption.

Assumption 3.5.1 (Incremental minimum-phase). There exists a C1 symmetric
and positive definite matrix function S : Rnx−1 7→ R

(nx−1)×(nx−1) and positive real
numbers s, s̄, ϵ, χ > 0 such that the following inequalities1 hold

sI ⪯ S(z) ⪯ s̄I, LFS(z, y) ⪯ −ϵS(z) , (3.47)
∣∣∣∣
∂F

∂y
(z, y)

∣∣∣∣ ≤ χ ,

∣∣∣∣
∂q

∂z
(z, y)

∣∣∣∣ ⪯ χ ,

∣∣∣∣
∂q

∂y
(z, y)

∣∣∣∣ ≤ χ , (3.48)

for all (z, y) ∈ R
nx.

Under the previous assumption, the problem of synchronization is solved, as es-
tablished in the following result. It recovers the results of Chopra and Spong
(2008).

Proposition 3.5.1 (Synchronization of minimum phase systems). Consider system
(3.46) and let Assumptions 3.4.1 and 3.5.1 hold. Then, there exists κ⋆ > 0 such that,
for any κ ≥ κ⋆, the distributed state-feedback control law (3.7) with φ(x, y, t) = κy
solves the synchronization Problem 3.2.4 for (3.46). Furthermore, if the metric S
is Euclidean (i.e. constant), then Assumption 3.4.1 can be relaxed with Assump-
tion 3.3.1.
Proof. The proof follows by noticing that condition (3.39) and (3.40) are
satisfied with the metric P (x) = blkdiag(S(z), 1) . Then, it is completed with
standard high-gain arguments in order to find a sufficiently large ρ satisfying the
condition (3.38). As a consequence, the value of κ⋆ depends on the parameter µ
of Lemma 3.2.2 and the Lipschitz constant χ of Assumption 3.5.1. As the proof
follows the same steps as in the proof Proposition 2.2.15, the details are omitted

1The notation LFS(z, y) has to be understood as the Lie derivative of S along the vector field z 7→
F (z, y) where y is fixed.
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for space reasons.

3.5.2 Monotonic systems

In this Section, we specify our design for systems of the form

ẋi = Axi +Gθ(υi, t) + Bui + ω(t), υi = Hxi, (3.49a)

yi = Cxi (3.49b)

where A,G,B,H,C are constant matrices of suitable dimension, υi ∈ R
nυ is a linear

combination of the state, ω : R 7→ W is a time-varying piecewise continuous signal
taking values in a compact set W ⊂ R

nx and θ : Rnυ ×R 7→ R
nθ is a C1 nonlinearity

satisfying the following monotonic condition

Assumption 3.5.2 (Monotonic). There exists a symmetric positive matrix Q =
Q⊤ ≻ 0 such that

0 ⪯ ∂θ

∂υ
(υ, t) +

∂θ⊤

∂υ
(υ, t) ⪯ Q (3.50)

for all (υ, t) ∈ R
nυ × R.

In the following, we want to show that it is possible to rewrite the design pro-
posed in Theorem 3.4.1 (and Theorem 3.3.1) in form of a Linear Matrix Inequality
(LMI).

Proposition 3.5.2. Consider system (3.49) and let Assumption 3.5.2 hold. Assume
that there exists a symmetric positive definite matrix W = W⊤ ≻ 0, and two strictly
positive real numbers q, ρ > 0 such that the LMI



AW +W⊤A⊤ − ρBB⊤ G+W⊤H⊤ W

G⊤ +HW −4Q−1 0
W 0 −qI


 ⪯ 0 (3.51)

holds. Then the assumptions of Theorem 3.4.1 hold with P (x) = W−1, ε = 1
qp

,

α(xj, t) = PBxj and such a ρ. Moreover, if B = WC⊤, then the Assumptions of
Theorem 3.3.1 are satisfied with D = I and E = I and synchronization is achieved
with φ(x, t) = κy.

Proof. The proof follows the same lines as the ones in Proposition 1.4.25 and
hence it’s omitted for space reasons.

Since the chosen metric is Euclidean, the following trivially holds.

Corollary 3.5.2.1 (Synchronization of monotonic systems). Consider a network
where each agent is described by (3.50) and let Assumption 3.5.2 hold. Assume that
the LMI (3.51) is satisfied and consider the distributed control law

ui = −κ
N∑

j=1

ℓijB
⊤Pxj .

Then:

1. if Assumption 3.3.1 holds, the global exponential synchronization problem is
solved;
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Figure 3.1: Mechanical structure of the elastic bar

2. if Assumption 3.4.1 holds, the global exponential leader-synchronization prob-
lem is solved.

Remark 3.5.3. Note the similarity between the LMI in Proposition 3.5.2 and the
ones proposed in Zhang et al. (2014).

Example 3.5.4 (Synchronization of archetypal oscillators of an elastic arc). In this
section, we apply the proposed design for the synchronization of a network of forced
archetypal oscillators described in Cao et al. (2006). The model of each agent is
inspired by the model of a mass-spring elastic arc. It is composed of a mass m
linked by a pair of inclined elastic springs which are capable of resisting both tension
and compression. Each spring of stiffness k is pinned to a rigid support. A picture
describing each agent taken from (Cao et al., 2006, Figure 1) can be found in Figure
3.1. The space-state model describing each agent is given by

ẋi,1 = xi,2

ẋi,2 = − 1

m

[
2kxi,1

(
1− L√

(xi,1)2 + l

)
+ F0 cos(Ωt) + ui

]

where (xi,1, xi,2) ∈ R
2 is the state of agent i. Here, L is the equilibrium length, x1i

is the mass displacement (in Figure 3.1 indicated with the symbol X) and l is half
the distance between the rigid supports. Each agent is excited by the same external
co-sinusoidal signal F0 cos(Ωt) and by the control action ui. Without the control
action, each agent represents a nonlinear oscillator where the dynamics of the two
states have a different amplitude and phase (which depends on the plant parameters).
The system can be written in form (3.49) where

A =




0 1

−2k

m
0


 , B =

(
0
1

)
, G =

(
0
1

)
, H =

(
1 0

)
, θ(ν, t) =

2kLν

m
√
ν2 + l

.

The nonlinearity is monotonic according to Assumption 3.5.2 with

Q =
2kL

m
√
l
,

and therefore we aim to apply Proposition 3.5.2. We picked as parameters m =
1, k = 0.5, L = 0.5, l = 1. The system is excited by a high-frequency external signal
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Figure 3.2: Considered network of archetypal oscillators of elastic arcs

Figure 3.3: First state of each agent

F0 cos(Ωt) with F0 = 50 and Ω = 100. With the aid of a MATLAB LMI solver, we
compute the LMI (3.51) which is feasible with

ρ = 3 and W =

(
0.3441 −0.2558
−0.2558 0.6499

)
.

Note that the solution of the LMI does not depend on the external force F0 cos(Ωt).
We consider a network of 5 agents connected by a directed graph as in Figure 3.2.
The initial conditions of the network are taken as

x◦ =
(
−10 21 23 −0.5 7 19 0 −34 16 22

)⊤
.

Figure 3.3 and Figure 3.4 show respectively the first and second state of each agent
of the network.

3.6 Deep Learning for metric estimation

3.6.1 Killing-less leader synchronization

The main limitation of the approach presented in Section 3.4 is the complexity
of finding a metric P solving (3.27) and, at the same time, satisfying the Killing
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Figure 3.4: Second state of each agent

vector field property in (3.28). For several classes of systems (see Section 3.5) these
conditions can be easily verified. However, this is not an easy task in general,
especially when considering high-dimensional systems with significant nonlinearities.
In this section, we aim to provide a practical solution to such limitations. First, we
relax the Killing vector assumption. Hence, we show that synchronization can still
be achieved (in compact sets) when the LgP (x, t)-term is non-zero, yet sufficiently
small. Second, we circumvent the need of computing a suitable metric by relying
on Machine Learning tools. We provide a general optimization-based algorithm
allowing the approximation of both the metric and the integrability condition in
(3.29) via Deep Neural Networks (DNNs). The proposed design is then validated
on a synchronization problem for a network of Lorentz oscillators. We present the
results for the state-feedback control design. Nevertheless, the same tools can be
used to derive conditions for the output-feedback design. For the sake of notation,
we consider the single-input case. Yet, similar results can be applied to the multi-
input one. We now present the theoretical result relaxing the Killing vector field
property in (3.28).

Proposition 3.6.1 (Killing-less synchronization). Consider system (3.25). Let
Assumption 3.4.1 hold and assume that there exists a C1 matrix function P :
R
nx × R 7→ R

nx×nx taking symmetric positive definite values, some strictly posi-
tive constants p, p, ε, ρ and a C2 function α : R

nx × R 7→ R
nu such that (3.27),

(3.29) hold. Let X ⊂ R
nx be a compact set and fix κ ≥ ρ

2µ
, for some µ > 0 given by

Lemma 3.2.3. Then, there exists a strictly positive real number ϵX > 0 such that, if
||LgP (x, t)|| ≤ ϵX for all (x, t) ∈ X×R, the trajectory of network in closed-loop with
the state-feedback distributed control law (3.26) with (3.30) exponentially converges
towards the synchronization manifold (3.8) for all time existence of solutions in X,
i.e. for all tf ≥ t0 such that Xi(x

◦
i , t, t0) ∈ X for all t ∈ [t0, tf ) and all i = 1, . . . , N .

Proof. The proof is identical to the proof of Theorem 3.4.1 up to equation
(3.32). Therefore, the first part is omitted. Then, by using the integrability
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assumption on the function α in (3.29), the time derivative of Vi becomes

V̇i(t) =

∫ 1

0

[
∂Γ⊤

i

∂s
(s, t, t0)LfP (ζi, t)

∂Γi
∂s

(s, t, t0)

− 2κ
∂Γ⊤

i

∂s
(s, t, t0)

N∑

j=1

ℓijP (ζi, t)g(ζi, t)g
⊤(ζj, t)P (ζj, t)

∂Γj
∂s

(s, t, t0)

− 2κ
∂Γ⊤

i

∂s
(s, t, t0)LgP (ζi, t)

∂Γi
∂s

(s, t, t0)
N∑

j=1

ℓijα(ζj, t)

]
ds .

Consequently, by selecting κ ≥ ρ

2µ
with ρ satisfying the SCMF condition in

(3.27) and by following similar computations as in the proof of Theorem 3.4.1,
we get

N∑

i=2

V̇i(t) ≤ −ε
∫ 1

0

[
∂Γ⊤

∂s
(s, t, t0)P (ζ, t)

∂Γ

∂s
(s, t, t0)

− 2κ
∂Γ⊤

∂s
(s, t, t0)DgP (ζ, t)

∂Γ

∂s
(s, t, t0)L22Λ(ζ, t)

]
ds (3.52)

where we indicated with

DgP (ζ, t) := blkdiag{LgP (ζ2, t), . . . , LgP (ζN , t)}
Λ(ζ, t) := [α⊤(ζ2, t), . . . , α

⊤(ζN , t)]
⊤ .

Now, for any X ⊂ R
nx , let

ϵX :=
εp

4κN
3

2µα

with µ being the largest eigenvalue of L22 and

α := sup
x∈X,t≥t0

{α(x, t)} .

Then if ||LgP (x, t)|| ≤ ϵX , it follows that

2κ

∫ 1

0

∂Γ⊤

∂s
(s, t, t0)DgP (ζ, t)

∂Γ

∂s
(s, t, t0)L22Λ(ζ, t) ds

≤
εp

2

∫ 1

0

∂Γ⊤

∂s
(s, t, t0)

∂Γ

∂s
(s, t, t0) ds

which by (3.52) it implies

V̇ (t) =
N∑

i=2

V̇i(t) ≤ −ε
2

N∑

i=2

Vi(t) = −ε
2
V (t) .

The proof concludes by following the same lines of Theorem 3.4.1.

Remark 3.6.2. Note that a bound on ϵX can be given also by linearizing the er-
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ror dynamics around the equilibrium e = 0. This recovers known results on local
exponential synchronization, see Andrieu et al. (2018).

3.6.2 A DNN-based algorithm for metric estimation

As mentioned in the previous section, a drawback of the proposed approach lies in the
fact that metrics may not be easy to find in the Riemannian scenario. Moreover, even
when a metric has been found, it may not be straightforward to design a control law
satisfying the integrability condition (3.29). A way of overcoming such difficulties
is to combine the proposed control design with Machine Learning tools. In the
last years, DNNs turned out to be effective tools for solving complex differential
equations, see e.g., Raissi et al. (2019); Cai et al. (2022). As a matter of fact, recent
works began mixing learning tools and control. Such a combined framework tackles
the complexity of computing control theoretic exact solutions by exploiting deep
approximators, e.g., Zoboli et al. (2021); Janny et al. (2021); Sanchez-Escalonilla
et al. (2021). Hence, the idea is to set up an optimization problem for approximating
the solution. In this section, we circumvent the need of computing a suitable metric
by approximating it via a DNN. Once a suitable metric has been found, we train a
second DNN to satisfy the integrability condition.

The idea of relying on Machine Learning tools to estimate a Riemannian metric is not
new in literature and similar approaches have been used for instance in Tsukamoto
et al. (2021); Wei et al. (2021) (see also references therein). In Tsukamoto et al.
(2021), the authors propose a convex optimization problem to compute a suitable
metric. Yet, they successively suggest approximating the solution via a DNN. Hence,
the convex optimization is solved on a finite number of samples and the DNN pro-
vides a continuous interpolation through those points. This overcomes the need
of solving such an optimization in each point of the state space. Our approach,
however, is inspired by Wei et al. (2021). The authors propose a Siamese DNN
structure Sheng and Fazekas (2019). The goal is to minimize a loss function defined
by the matrix conditions required for contraction. Once such a function reaches 0,
the DNN provides the entries of a suitable metric for each point in the training/test
datasets. Even if similar, our solution differs in three main points.

1. First, we rely on the continuous time framework. Hence, we avoid the need of
a Siamese network and compute the DNN’s Jacobian. Note that, usually, it
can be easily obtained thanks to the automatic differentiation tools provided
by common libraries such as PyTorch.

2. Second, we add a separate estimator which looks for the best parameters in the
cost function. It works jointly with the DNN during the optimization process.

3. Finally, we rely on (3.29), instead of computing the control law via approxi-
mate integration over the geodesic. This greatly simplifies the algorithm, since
geodesics are not easy to find in general.

We now describe the proposed algorithm. Let us consider the problem of finding a
suitable approximation of the metric first. The neural metric is constructed as

P (xi, ϑ
′) =




p1(xi, ϑ
′) p2(xi, ϑ

′) · · · pn(xi, ϑ
′)

p2(xi, ϑ
′) pn+1(xi, ϑ

′) · · · p2n(xi, ϑ
′)

...
...

. . .
...

pn(xi, ϑ
′) p2n(xi, ϑ

′) · · · pM(xi, ϑ
′)


 ,
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where M = n(n+1)
2

is the total number of entries to be learned, the vector

p = (p0(xi, ϑ
′), . . . , pM(xi, ϑ

′))⊤

is the output of the neural network DNNP : R
nx × R

nϑ′ 7→ R
M and ϑ′ ∈ R

nϑ′

is the vector of DNNP parameters. To train the DNNP parameters, we relax the
Killing-vector assumption and rely on Proposition 3.6.1. We set up an optimization
problem asking for the minimization of the following cost function

JP (x, ϑ
′) =

4∑

i=1

wiJi(x, ϑ
′), (3.53)

being w = (w1, . . . , w4) a vector of scalar weights and

M1 = LfP (x, ϑ
′)− ρP (x, ϑ′)g(x)g⊤(x)P (x, ϑ′) + εI

M2 = LgP (x, ϑ
′)− ϵI

M3 = −LgP (x, ϑ′)− ϵI

M4 = −P (x, ϑ′) + pI

Ji(x, ϑ
′) = ln

(
max

(
ℜ
{
λM(Mi)

}
, 0

)
+ 1

)
, i = 1, . . . , 4

where ρ, ϵ, p are positive scalars, ε > ϵ. Note that each cost Ji serves the purpose of
satisfying a particular condition for the neural metric. While J1 provides a positive
cost if the contraction condition is not satisfied, J2 and J3 encourage the bound-
edness of LgP and J4 steers the solution towards positive definite matrices. The
natural logarithm is used as a regularization term between costs Ji. It allows the
rescaling of widely different costs to similar values and a more precise selection of
their importance through the weight vector w. In parallel to the DNNP , we train
a parameter estimator outputting the values of ρ, ε, ϵ, p. The estimator and DNNP

work together, trying to minimize (3.53). Note that if the cost reaches 0, all the con-
traction conditions are satisfied for the dataset and the learned estimator outputs,
hence learning can be stopped.

The second step is to find a suitable law satisfying the integrability condition (3.29).
We train the parameters ϑ′′ ∈ R

nϑ′′ of the second network DNNα : Rnx×R
nϑ′ 7→ R

nu

such that

Jα(x, ϑ
′′) =

∣∣∣∣
∣∣∣∣
∂DNNα

∂x
(x, ϑ′′)− g(x)⊤P (x, ϑ′)

∣∣∣∣
∣∣∣∣
2

(3.54)

is minimized.

Finally, the controller is synthesized as in (3.30) with the approximation α(x) ≈
DNNα(x, ϑ

′′). We rely on the robustness properties of contractive systems (see
Sontag (2010)) to compensate for the DNNs’ approximation errors. The full learning
procedure is summarized by Algorithm 1.

Remark 3.6.3. Note that Algorithm 1 refers to time-invariant agents. However,
things can be generalized in case the dynamics of each node are modeled by a time-
varying equation.
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Algorithm 1 DNN-based controller learning

1: Input: Dataset of
(
x , f(x) , g(x) , ∂f

∂x
(x) , ∂g

∂x
(x)
)
,

DNNP ,DNNα;
2: while JP (x, ϑ

′) ̸= 0 do
3: Train DNNP and the estimator with (3.53);
4: end while
5: Train the DNNα with (3.54);
6: Set the distributed law

ui(x1, · · · , xN ) = −κ
∑

j∈Ni
ℓijDNNα(xj , ϑ

′′);

1

2

35

4

6

Figure 3.5: Considered network of Lorentz’s oscillators

3.6.3 Leader-synchronization of a network of Lorentz oscillators with
DNNs

In the following, we apply the proposed algorithm to a leader-synchronization prob-
lem. The code for reproducing the experiments proposed in this section can be found
at https://github.com/SamueleZoboli/Control-learning-multiagent-lorenz.
git. We consider a network of N = 6 identical Lorenz attractors. Such systems
are particularly interesting since they can present a chaotic behavior. Each agent
i = 1, . . . , N is described by the following dynamics





ẋ1i = a(x2i − x1i ) + ui
ẋ2i = x1i (b− x3i )− x2i + (2 + sin(x1))ui
ẋ3i = x1ix

2
i − cx3i

where a, b, c are positive scalars. Similarly to (Casadei et al., 2018, Section 5), we
pick a = 10, b = 8

3
, c = 28, guaranteeing the chaotic behavior. We consider the

control matrix g(x) =
(
1 2 + sin(x1) 0

)⊤
to exclude the possibility of feedback

linearizing solutions. The agents communicate with each other following the leader-
connected graph represented in Figure 3.5.

We code and train our fully-connected DNNs and estimator using PyTorch Paszke
et al. (2019). For the metric network, we select an architecture composed of 4
hidden layers, with sizes 30, 20, 20, 10 respectively and tanh activation functions.
The output layer passes through a saturation function as a final activation, limiting
the single elements of the metric. The second network presents 3 hidden layers,
with size 30, 20, 10 respectively and tanh activation functions. We select the identity
function as the output layer activation function.
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We select a weight vector w = (1, 10, 10, 20), directing the learning towards posi-
tive matrices first and successively satisfying the Killing-less assumptions and the
contraction condition. We train both the networks and the estimator using Adam
optimizer (see Kingma and Ba (2014)). The learning rate for the metric network
and the estimator is set as 3 × 10−3, while DNNα uses a learning rate of 5 × 10−3.
The DNNs’ learning rates are scheduled according to a cosine annealing policy (see
Loshchilov and Hutter (2016)), while the estimator one remains constant. We train
the neural metric and the estimator over 100 epochs (yet stopped after 15 epochs
due to the cost reaching 0) and the second DNN over 200 epochs. For both of the
learning phases (the metric learning and the integrability learning), the dataset is
composed of 2× 105 samples coming from a Gaussian distribution N(0, 10). We use
80% of the dataset as the training set, with a batch size of 512. The remaining 20%
is used as a test set.

We select a κ = 5 and we apply the controller in a noisy-measurements scenario, i.e.,
ui = φ(xi+ ωi) where ωi ∼ N(0, 0.2). This allows for testing the robustness proper-
ties of the proposed neural control law. Each agents’ initial condition is randomly
sampled from a Gaussian distribution N(0, 20). Figure 3.6 and Figure 3.7 show the
controller performances once the DNNs have been trained. Figure 3.6 presents the
mean and standard deviation between agents of the norm of the error concerning
the leader trajectory. Figure 3.7 directly shows the state trajectories of each agent.
As synchronization is achieved, we can see that the DNN optimized with (3.53)
provides a suitable approximation of the metric, while the one trained with (3.54)
effectively learns a primitive of g⊤(x)P (x, ϑ′). The parameter estimator provided a
decay rate ε ≈ 4.7 and ρ ≈ 36.3. From Figure 3.7 it’s possible to see that the agents
quickly synchronize, despite having significantly different initial conditions. It has
to be noticed that such an approach depends on the generalization capabilities of
the DNN. Since it is trained on a finite number of data, we cannot guarantee perfect
behavior for all the state space. Nevertheless, due to the robustness properties of
contracting systems, training a neural metric on a sufficiently big dataset is a valu-
able tool to tackle the complexity of the proposed solution. This is proved by the
experimental results.

3.7 Conclusions and perspectives

In this chapter, we studied the multiagent synchronization problem for nonlinear
MIMO time-varying systems. To do so, we tackled the problem with tools taken
from the contraction framework. To this end, we derived sufficient conditions for
the design of a distributed nonlinear diffusive coupling control law. First, through
Euclidean metric-based incremental stability tools, we achieved network consensus
between the agents, globally in the domain of attraction. Then, through a Rie-
mannian metric-based analysis, we achieved synchronization of undirected graphs
in the presence of a leader. Static state and output feedback laws have been inves-
tigated. Then we showed that our design applies to classical case studies, such as
minimum phase systems and linear systems coupled with a monotonic nonlinearity.
To conclude, we showed that the proposed conditions for the Riemannian case can
be further relaxed by asking for synchronization in compact sets. We provided a
constructive algorithm based on Deep Learning tools to estimate the metric. We ap-
plied such a design for the synchronization of a network of Lorentz oscillators.

Future perspectives will involve the following aspects:
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Figure 3.6: Evolution of the mean error norm between agents with respect to the leader
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• A first future perspective will involve the generalization of the results obtained
in the Euclidean framework to the Riemannian one. As recalled in Remark
3.4.4, this is due to the choice of the Lyapunov function. We believe that this
generalization could be achieved by considering the Lyapunov function based
on a potential energy, similar to what has been done in Andrieu et al. (2018).
The main reason is that, for instance, in the proofs of the Euclidean case we
look for the error between any node of the network with respect to a virtual
leader, that is taken as node 1. However, in practice, a ‘true’ leader does not
exists.

• Another development could be to look for dynamic output feedback distributed
control laws. This could be done, for instance, by coupling each agent with an
internal model unit, similarly to Isidori et al. (2014), and then looking for a
feedback controller.

• The last important future perspective could involve the analysis of the robust-
ness of the proposed control law. It is known that the infinite gain margin
property already provides robustness concerning fast dynamics and specific
plant uncertainties. The interest in this case would be to try to see if these
properties persist also in a distributed framework.
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CHAPTER 4

APPLICATIONS

Experience without theory is blind,
but theory without experience is mere
intellectual play.

I. Kant

4.1 Introduction

In this chapter, we consider two output regulation tasks for two real-life engineering
applications. In particular, we will consider two separate problems.

• First, we will consider a constant output regulation problem for a Power Flow
Controller (PFC). PFCs are power electronic devices used to control the power
flow at a node of a meshed grid and may act as DC circuit breakers. The
structure of the PFC can be modeled as a bilinear system whose ODE is
strongly dependent on a set of parameters. The system is then coupled with a
polynomial output.The objective is to design a control action that can regulate
the power to the lines of the terminals attached to the PFC to a constant set-
point.

• Then, we will consider a harmonic regulation problem for a mechanical Ven-
tilation Machine (VM). Such machines are essential equipment in Intensive
Care Units (ICUs) to assist patients who cannot breathe on their own or need
support to breathe sufficiently. Such a machine can be modeled as a Lur’e
system. As the model takes also into consideration the patient, it is strongly
parameter-dependent. In this case, the task is to track a desired pressure refer-
ence signal. As such a signal represents the pressure in and out of the patient’s
lungs, it is a periodic signal.

The PFC’s problem is addressed with tools presented in Section 2.2. The system is
extended with an integral action processing the regulation error and a forwarding-
based control action has been implemented. To keep in consideration the physics
of the actuators, a saturated controller has been implemented, together with an
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anti-windup strategy to cope with possible instability behaviors due to such a sat-
uration. A tuning procedure for the control gains is given. Stability and set-point
tracking have been achieved, despite parametric uncertainties of the plant and of
the references. The VM’s problem is approached with tools from Section 2.3. The
system is extended with a bunch of linear oscillators at the reference’s trajectories
and their multiplies. Through an incremental-like version of the Circle Criterion,
an output-feedback control law is implemented and harmonic regulation is achieved.
The proposed solutions for both problems have been validated theoretically and
through real-life experiments.

Both of these applications have been realized in collaboration with another research
team, which took care of the modelling and the implementation. In particular, the
regulation problem on the PFC has been done together with Tanguy Simon and
collaborators at Laboratory Ampere, INSA Lyon (Villeurbanne, France) and the
results are presented in Simon et al. (2021a, 2022). The regulation problem on the
VM has been made together with Joey Reinders and collaborators at the Department
of Mechanical Engineering, Eindhoven University of Technology (Eindhoven, the
Netherlands) and the results are presented in Reinders et al. (2022).

4.2 Robust output set-point tracking of a Power Flow Con-
troller

4.2.1 About Power Flow Controllers

In the light of the current climate breakdown, it appears of paramount importance
to reduce our impact on the environment. The access to electrical energy holds an
important place in these discussions, and direct current (DC) micro-grids respond
favorably to those issues. This type of electrical power network enhances the pen-
etration of small renewable energy generators and lowers the energy losses while
helping the clean access to electrical energy and the transition to a more energy-
frugal lifestyle (see, e.g., Sen and Kumar (2018); Simon et al. (2021b) and references
therein for a broader discussion on the subject). In this sense, meshed structures
play an important role. With meshed, we mean that there might be multiple paths
between two nodes in the electrical network. The meshed structure of micro-grids
improves this result by reducing the amount of copper needed. This because there
can be multiple paths between two points and the average power in each line in a
building is low, as well as improving the reliability, modularity, and efficiency of the
system, see Mackay et al. (2015).

To control a meshed DC grid, a DC Power Flow Controller (PFC) is required. It is
a multi-terminal DC-DC converter located at a node in the mesh, sometimes called
a smart-node Zafeiratou et al. (2018). Its objective is the regulation of the power
in each line of the node (see Fig. 4.1), despite the high intermittency of renewable
generators.

Although PFCs for high voltage DC applications (HVDC) have received a strong
academic interest (see, e.g., the recent survey Balasubramaniam et al. (2019)) very
little has been done for low-voltage applications (LVDC). The lower voltage rating
leads to a completely different converter topology, and therefore to different control
schemes. Among them, recall a multi-terminal PFC with a compensation node in
Takahashi et al. (2015) improved by removing the compensation node in Natori et al.
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Figure 4.1: m-terminal PFC at a node in the grid

(2018), a PFC made of two separate Split-PI converters in Barara et al. (2017),
and a three-terminal PFC in Simon et al. (2021b,a). The main shortcomings of
Takahashi et al. (2015); Natori et al. (2018); Barara et al. (2017) are the absence of
a dynamic model and their control strategies, which fail to give any proof of stability
or robustness. No direct control of the power is achieved, and the control laws are
applied to two-terminal devices, which do not constitute a node. In Takahashi et al.
(2015), the control law is a constant ratio determined by a look-up table, based
on the knowledge of the voltage at the end of the line, an uncertain parameter in
practice. In Natori et al. (2018), a PI controller is used to regulate the current instead
of the power, whose reference is again computed using the voltage at the end of the
line. Moreover, the reservoir voltage, which is the voltage on a capacitor inside the
converter, is not controlled and can drift outside the physical boundaries. Finally, in
Barara et al. (2017), the authors propose a current-limited voltage controller using
the RST technique with hysteresis switching. The reservoir voltage is properly
controlled but power flow control is not achieved.

In this section, an nT -terminal power flow controller is considered. Assume a syn-
chronous PWM switching scheme on each branch, and suppose that the grid’s dy-
namics are partially unknown to take into account its high variability. In this con-
text, the PFC in the grid has been recently modeled using a state-space approach
Simon et al. (2021b). The resulting continuous-time and finite-dimensional model
is uncertain and bilinear. Moreover, the output to be regulated is a second-order
polynomial. Indeed, this signal corresponds to the electrical power in all the lines,
and this quantity is the product of couples of state variables, i.e. the voltage and
current in each line.

While many papers dealing with stabilization problems for bilinear systems can be
found in the literature (see, for instance, Koditschek and Narendra (1983); Gutman
(1981); Quinn (1980); Longchamp (1980); Banks (1986); Tarbouriech et al. (2009);
Andrieu and Tarbouriech (2012)), very few addressed the more general problem of
output regulation, e.g., Grasselli et al. (1979), and more recently Cisneros et al.
(2015); Tang et al. (2006), and all of them are focused on control designs for sys-
tems having a pure linear output and therefore not directly applicable to the problem
explained above. Despite this lack of literature on output regulation, bilinear sys-
tems are a class of systems commonly employed to model physical systems, such
as a heat exchanger Zitte et al. (2020), hydraulic systems Guo and Schwarz (1989),
power factor compensators, and HVDC converters Cisneros et al. (2015), microbial
cell growth Williamson (1977) and many others Pardalos and Yatsenko (2010). Di-
rect power flow control is achieved in Simon et al. (2021b) on a three-terminal PFC,
using a state feedback on the linearised dynamics after adding integrators. Yet,
such a result only gives local stability results in the state-space, and although its
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robustness has been tested, no proofs are given for local stability in the parametric
space. Furthermore, the saturation of the duty cycles is not taken into account when
designing the controller.

About the proposed control design, the contributions concerning the literature are
therefore the following.

• The proposed controller achieves semi-global asymptotic stability in the state-
space and provides robustness with respect to small parameter variations. To
this end, model uncertainties and non-linearities are directly taken into ac-
count at the design step. In a nutshell, the PFC model is first extended with
an integral action processing the regulation error. Then, a stabilizer for the
extended system is derived with a forwarding-based control law, which has
been presented in Section 1.4.3.3.

• An arbitrary number of terminals is considered, i.e. nT ≥ 2 can be any integer.
This guarantees that the proposed model and control design is independent of
the number of terminals.

• As the control inputs are physically represented by the duty cycles of each
terminal, a saturation is applied to the control action to meet such constraints.
Compared to the unconstrained case, the closed-loop basin of attraction is
preserved through the implementation of an anti-windup correction term to
deal with (possible) unstable behaviors of the integrator dynamics due to such
an input saturation.

• A tuning procedure for the controller gains is provided.

• All these achievements are successfully assessed on a real tenth-scale test bench
for nT = 3, and via simulations for a larger number of terminals.

4.2.2 PFC’s model

The Power Flow Controller (PFC) is an electrical device whose objective is to control
the electric power in the lines it is connected to. We consider a general nT -terminal
version as in Fig. 4.1. The chosen electrical circuit to achieve this function is made
of nT identical buck-boost converters whose high-side are connected in parallel to
a unique reservoir capacitor noted CR. Each branch (buck-boost) is depicted on
the left of Fig. 4.2. The grid connected to terminal k, as seen by the PFC, is
modeled by a Thevenin equivalent circuit, as drawn on the right-hand side of the
same figure.

This circuit cannot operate properly if the reservoir voltage is not controlled. Indeed,
if vR < vk for some k ∈ {1, . . . , nT}, the current flows freely through the diode in the
upper transistor of the kth branch, which cannot be controlled by the PWM switching
(see Fig. 4.2). This implies that, for a constant power reference, there exists an
infinite set of equilibrium points on which the power tracking task is achieved. From
a practical viewpoint, this may be problematic, as the control action may overcome
the bounds imposed by the saturation. This adds another control objective which
can be solved knowing that such a voltage is constant if and only if the sum of
average powers is equal to zero. Consequently, if the reservoir voltage is regulated
to a constant value vR

r and all the lines but one are regulated to a constant power
reference Pr

k for k ∈ {1, . . . , nT − 1}, the power in the last line naturally converges

to the overall power balance, i.e. Pr
nT

tends to −∑nT−1
k=1 Pr

k.
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Table 4.1: Symbols

Electrical

Cf Filter capacitance CR Reservoir capacitance
ik, ik Current in Lf iGk, iGk Grid current
Lf Filter inductance LGk Grid inductance
Pk Power in line k RGk Grid resistance

vk, vk Line voltage (on Cf ) VGk Grid voltage
vR, vR Reserv. volt. (on CR) nT number of terminals

State-space

A, A Space state matrix B Input matrix
C, C Output matrix H, H Polynomial out. mat.
J ”Inertia” matrix N, N Bilinear input mat.
q Constant vector r Reference vector

u, u Input vector χ, χ Aug. state vector
x, x State vector y, y Output vector
η, η Integrator vector δ Set-point vector
θ Parameter vector φ(.) aug. cl.-loop dynamics
nx number of states nu number of inputs
ny number of outputs nη number of integrators
ϕ integral action α, ψ control laws
ζ anti-windup P,Ω,M control actions
d, d AW tuning

Sets

D Possible set-points E(δ) Equilibrium points
R Possible references S Admissible set-points
U Admissible inputs Θ Possible parameters

Accents, indexes and exponents

˜ see Section 4.2.3.5 r Reference
⋆ Equilibrium nom On nominal set-point

bold absolute coordinates slim error coordinates
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CR vR

Lfik

Cf vk

k
LGkiGk

RGk

VGk

PFC Gridk

Figure 4.2: Detail of the k-th branch of the PFC (left) and the proposed Thevenin grid
model as seen by this terminal (right)

The problem is the following: design a state-feedback controller delivering the duty
ratios for the pulse-width modulation (PWM) switching of the transistors to achieve
power control in each line of the node, while maintaining the reservoir voltage to a
fixed given constant value, despite the uncertainty of the parameters characterizing
the grid. Moreover, to ensure flexibility and modularity, assume limited knowledge
of the grid model at the end of each line.

In Fig. 4.2, the currents are denoted by i and measured in Amps, and the dynamic
voltages by v and measured in Volts. Note that the line voltage should be positive
in a grid (more specifically within a precise tolerance of the nominal voltage), there-
fore every steady-state voltage v⋆k will be considered non-negative. The component
parameters are denoted by Lf/LGk, Cf/CR, RGk and VGk for, respectively, induc-
tors (Henry), capacitors (Farad), resistors (Ohm) and constant voltages (Volts).
The dynamic model of the system can be derived by using Kirchhoff’s and Ohm’s
electrical laws, along with the dynamic electrical laws for inductors and capacitors
while assuming ideal components, see, e.g. Simon et al. (2021b) for a more detailed
construction of the PFC’s model.

A synchronous PWM switching is implemented, and the dynamics are averaged
over a switching period. The input vector u = [u1, . . . ,unu ]

⊤ ∈ R
nu is made of the

duty ratio of each terminal and hence each of the ui(t) must be included in the set
[0, 1] ⊂ R for all t ≥ 0. Therefore, the set of admissible inputs is defined as

U :=
[
0, 1
]nu

. (4.1)

Note that, since the control ui is the duty ratio at terminal i, it follows that nu = nT .
The dynamic variables are all gathered in the state vector x ∈ R

nx with nx =
3nu + 1, and the uncertain model parameters are collected in the vector θ ∈ R

3nu ,
as shown in Table 4.2. The output vector corresponds to the control objectives
y = [P1, . . . ,Pny−1,vR]

⊤ ∈ R
ny , with Pk = iGkvk. Note that, since the output

vector is made by the power in each terminal (but one) and the reservoir voltage, it
follows that ny = nT = nu. To avoid confusion, we will use a common notation and
indicate with

m = ny = nT = nu .

A state-space model can then be obtained for the PFC, following the results in Simon
et al. (2021b). The system can be represented as a bilinear system. The states are
the currents ik, iGk and the voltages vk for k ∈ {1, . . . ,m} and vR. Additionally,
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the PFC is coupled with a polynomial output on which the regulation task has to be
achieved. Such an output is composed of the powers Pk for k ∈ {1, . . . ,m} and the
reservoir voltage vR. In detail, it can be described by a set of dynamical equations
of the form

ẋ = A(θ)x+N(x)u+ q(θ),

y = Cx+H(x)x,

u ∈ U,

(4.2)

with

A(θ) = J(θ)−1 =




0 0 0 0
0 0 I 0
0 −I 0 I
0 0 −I − blkdiag{RG}


 , (4.3a)

N(x)u =
m∑

j=1

(Njuj)x = J(θ)−1




0 u⊤ 0
−u 0 0
0 0 0


x, (4.3b)

q(θ) = J(θ)−1[0, V ⊤
G ]⊤ , (4.3c)

J(θ) = blkdiag{CR, 1⊤Lf , 1
⊤Cf , L

⊤
G}⊤, (4.3d)

C =

(
0 0
1 0

)
, (4.3e)

H(x) =

(
0 1

2
blkdiag{iG1, . . . , iGm−1} 0 1

2
blkdiag{v1, . . . ,vm−1} 0

0 0 0 0 0

)
(4.3f)

where, for each j = 1, . . . ,m, the Nj are constant nx × nx matrices defined as
Nj = J(θ)−1Nj where Nj are m different matrices full of zeros with a 1 in the first
row and j + 1 column and a −1 in the first column and j + 1 row, and with

LG = [LG1, . . . , LGm] , RG = [RG1, . . . , RGm] , VG = [VG1, . . . , VGm] .

Let Θ ⊂ R
3m be the non-empty set of possible system parameters that are compat-

ible with the physics of the system. It is defined as

Θ :=
{
θ ∈ R

3m
∣∣ LGk > 0, RGk > 0, VGk ≥ 0, k ∈ {1, . . . ,m}

}
. (4.4)

There is no loss of generality in these constraints since LG, and RG represent physical
properties (inductance and resistance) that are always strictly positive. As shown
later,

Pr
k = 0 =⇒ lim

t→+∞
vk(t) = v⋆k = VGk ,

i.e. when the power reference is null, the line voltage tends to VGk. As stated before,
this line voltage should always be non-negative, then so should VGk.

The vector of references corresponds to the control objectives, i.e.

r = [Pr
1, . . . ,P

r
m−1,vR

r]⊤ ,

and the non-empty set of possible references R ⊆ R
m is defined as

R :=

{
r = (Pr

1, . . . ,P
r
m−1,vR

r) ∈ R
m

∣∣∣∣ (P
r
1, . . . ,P

r
m−1, ) ̸= (0, . . . , 0),vR

r > 0

}
.

(4.5)
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Table 4.2: State vector and uncertain parameter vector.

x
x1 x2 . . . xm+1 xm+2 . . . x2m+1 x2m+2 . . . x3m+1

vR i1 . . . im v1 . . . vm iG1 . . . iGm

θ
θ1 . . . θm θm+1 . . . θ2m θ2m+1 . . . θ3m
LG1 . . . LGm RG1 . . . RGm VG1 . . . VGm

where, as stated before, vR
r should be sufficiently high for the device to operate

properly, and hence only strictly positive values have been taken into consideration.
The case in which all the reference powers Pr

j are null has not been taken into
consideration, as it makes the control objective structurally impossible, as shown
later on.

4.2.3 Robust output set-point tracking for the PFC

4.2.3.1 Control problem

Define beforehand the compact notation δ := (θ, r) and D := Θ × R. The tackled
problem is stated as follows.

Problem 4.2.1 (Robust output set-point tracking for the PFC). Given a nominal
set of parameters D and δnom ∈ D, find functions ϕ : R

nx × R
nη → R

nη and
α : Rnx×R

nη → U such that for any arbitrarily large compact set of initial conditions
X× Z ⊆ R

nx ×R
nη there exists δ > 0 such that, for any δ satisfying |δ − δnom| ≤ δ,

the resulting trajectories of system (4.2) in closed-loop with the regulator

η̇ = ϕ(x,η),

u = α(x,η)

are bounded forward in time and

lim
t→∞

y(t) = r .

Following an internal model based design, the system (4.2) is first extended with an
integral action processing the regulation error as follows

η̇ = y − r . (4.6)

Furthermore, the control law is saturated since u ∈ U, and this physical constraint
may lead to unstable behaviors in the dynamics of the integrator. To deal with this
issue, an anti-windup design is implemented (see Tarbouriech and Turner (2009);
Zheng et al. (1994); Galeani et al. (2009)) to mitigate the effects of uncontrollable
integral action. This leads to the following integral dynamics

η̇ = ϕ(x,η) := y − r+ ζ(x,η) (4.7)

where the function ζ represents such an anti-windup. The overall proposed control
scheme is depicted in Fig. 4.3.
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ẋ = A(θ)x + N(x)u + q(θ)

y = Cx + H(x)x
x

Figure 4.3: Proposed control structure for the PFC

4.2.3.2 Set of solutions

The considered problem may not be solvable for all δ = (θ, r) ∈ D since for some
values of δ there may not exist an equilibrium pair (x⋆,u⋆) satisfying y = r within
the input constraints. Therefore, for a given δ ∈ D, let E(δ) be the set of admis-
sible equilibrium points, namely the set of steady-state solutions on which output
regulation is achieved, i.e.

E(δ) :=
{
(x⋆,u⋆) ∈ R

nx × U

∣∣∣∣A(θ)x⋆ +N(x⋆)u⋆ + q(θ) = 0, Cx⋆ +H(x⋆)x⋆ = r
}
.

(4.8)

The set S is then defined as the set of admissible parameters and references δ for
which there exist such equilibrium points:

S :=
{
δ ∈ D|card{E(δ)} > 0

}
. (4.9)

A characterization of S can then be provided through model inversion as shown
below.

Proposition 4.2.2 (Equilibrium points for the PFC). Consider system (4.2). Then

S =

{
δ ∈ D

∣∣∣∣ ∆k(δ) ≥ 0, 0 ≤ 1
2vR

r

(
VGk ±

√
∆k(δ)

)
≤ 1, k ∈ {1, . . . ,m}

}
, (4.10)

where
∆k(δ) := V 2

Gk − 4RGkP
r
k (4.11)

with Pr
m := −∑m−1

k=1 Pr
k. Moreover, for a given δ ∈ S, there exist from one to 2m

pairs (x⋆,u⋆) ∈ E(δ).

Proof. By considering (4.2) and posing ẋ = 0, the following set of equations
is found





m∑

k=1

i⋆ku
⋆
k = 0, (4.12a)

v⋆k − vR
⋆u⋆k = 0, (4.12b)

−i⋆k + i⋆
Gk = 0, (4.12c)

−v⋆k −RGki
⋆
Gk + VGk = 0, (4.12d)
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where k ∈ {1, . . . ,m}, and
{
v⋆ki

⋆
Gk = Pr

k, k ∈ {1, . . . ,m− 1} (4.13a)

vR
⋆ = vR

r. (4.13b)

Solving (4.12b) and (4.12c) results in

u⋆k =
v⋆k
vR

⋆
and i⋆k = i⋆

Gk (4.14)

where vR
⋆ = vR

r > 0. Hence the first condition for the existence of solutions is

0 ≤ v⋆k
vR

⋆
≤ 1 .

Feeding (4.12c) into (4.12a) leads to

1

vR
⋆

m∑

k=1

i⋆
Gkv

⋆
k = 0. (4.15)

Taking (4.13) in (4.15) results in

1

vR
r

(
m−1∑

k=1

Pr
k + iGm

⋆vm
⋆

)
= 0, (4.16)

from which Pr
m := −∑m−1

k=1 Pr
k = iGm

⋆vm
⋆ is defined. Then, multiplying (4.12d)

by v⋆k and using (4.13a), it follows that

−(v⋆k)
2 + VGkv

⋆
k −RGkP

r
k = 0 (4.17)

hence the second condition for the existence of real solutions is ∆k(δ) = V 2
Gk −

4RGkP
r
k ≥ 0. If ∆k(δ) ≥ 0, the characterisation of E(δ) can be given using

(4.12) and (4.13) as

E(δ) =





v⋆k =
1

2

(
VGk ±

√
∆k(δ)

)
(4.18a)

i⋆k = i⋆
Gk =

1

RGk

(VGk − v⋆k) (4.18b)

vR
⋆ = vR

r (4.18c)

u⋆k =
v⋆k
vR

r
(4.18d)

with k ∈ {1, . . . ,m} and vR
r > 0 by definition of R.

Remark 4.2.3. Two important aspects should be highlighted.

• Note that the control problem for the PFC does not fit in the incremental frame-
work proposed in Section 2.2. The main reason is that the system is bilinear.
Indeed, satisfying the Killing vector property for such a class of systems is not
an easy task, especially because the vector field multiplying the control input is

153



4

not bounded.

• Nevertheless, this is not a problem. As explained, the references to be tracked
do not belong to the whole state-space, but only to the set R. In other words, the
interest is not in achieving global output set-point tracking. For this reason,
the control action that we will implement will not make use of incremental
forwarding tools, but of forwarding tools for equilibrium point stability (see
Section 1.4.3.2).

4.2.3.3 Forwarding for bilinear systems with polynomial output

In light of Remark 4.2.3, in this section we aim to specialize the forwarding-based
Lyapunov stability tool for the class of systems which are bilinear in the x-dynamics,
feeding a polynomial η-dynamics. For this, consider a system composed of a cascade
of a bilinear system having a second-order polynomial output feeding an integrator
of the form

ẋ = Ax+ (N(x) + B)u,

η̇ = Cx+H(x)x,
(4.19)

where (x, η) ∈ R
nx+nη is the state, u ∈ R

n
u is the control input, A,B,C are matrices

of suitable dimensions, and functions H : Rnx → R
nη×nx and N : Rnx → R

nx×nu

defined as H(x) =
[
H⊤

1 x . . . H⊤
nη
x
]⊤

and N(x) =
[
N1x . . . Nnux

]
for some

nx × nx matrices H1, . . . , Hnη , N1, . . . , Nnu . Similarly to Section 1.4.3.2, we assume
the following.

Assumption 4.2.1 (Over-actuated system). The number of inputs is not smaller
than the number of outputs, i.e nu ≥ nη.

Stabilizing forwarding design for systems of the form (4.19) is presented in the
following.

Proposition 4.2.4 (Forwarding for polynomial systems). Consider system (4.19).
Suppose that A is Hurwitz and that the matrix CA−1B is full rank. Select P =
P⊤ ≻ 0 and Mi =M⊤

i such that

PA+ A⊤P ≺ 0, (4.20)

MiA+ A⊤Mi =
1

2

(
Hi +H⊤

i

)
, ∀i ∈ {1, . . . , nη}, (4.21)

and let M0 = CA−1. Then, for any matrix Ω = Ω⊤ ≻ 0, the origin of system (4.19)
in closed-loop with u = ψ(x, η), with the function ψ : Rnx+nη → R

nu defined as

ψ(x, z) = −
(
x⊤P (N(x) + B)− (η −M(x))⊤Ω (M0 + 2R(x)) (N(x) + B)

)⊤
,

(4.22)
with

R(x) :=
[
M1x . . . Mnηx

]⊤
(4.23)

M(x) :=M0x+R(x)x , (4.24)

is globally asymptotically stable and locally exponentially stable.
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Proof. The proof is based on a Lyapunov function construction which follows
the results presented in Section 1.4.3.2. In particular, let W : Rnx+nη → R be
defined as

W (x, η) =
1

2
x⊤Px+

1

2
(η −M(x))⊤Ω(η −M(x)) , (4.25)

with P and M defined respectively by (4.20) and (4.24) as in the statement of
the proposition. Note that W is proper and positive definite. By construction,
the function M satisfies

∂M

∂x
(x)Ax =M0Ax+



x⊤(M1A+ A⊤M1)x

...
x⊤(MpA+ A⊤Mp)x


 = Cx+

1

2



x⊤(H1 +H⊤

1 )x
...

x⊤(Hp +H⊤
p )x




= Cx+H(x)x .

Hence, the time derivative of W along the solutions of system (4.19) satisfies

Ẇ (x, z) = x⊤P [Ax+ (N(x) + B)u] + (η −M(x))⊤Ω

[
−∂M
∂x

(x)(N(x) + B)u

]

=
1

2
x⊤(PA+ A⊤P )x

+
[
x⊤P (N(x) + B)− (η −M(x))⊤Ω(M0 + 2R(x))(N(x) + B)

]
u.

Using again the definition of M in (4.24) and the definition of ψ in (4.22) yields

Ẇ (x, η) =
1

2
x⊤(PA+ A⊤P )x− ψ⊤(x, η)ψ(x, η) ≤ 0 .

Furthermore, note that

{(x, η)
∣∣ Ẇ (x, η) = 0} = {(x, z)

∣∣ x = 0, ψ(x, η) = 0}. (4.26)

Moreover, using the definition ofM0, one obtains ψ
⊤(0, η) = η⊤ΩCA−1B. Since

by assumption, CA−1B and Ω are full rank, the set {(x, η)
∣∣ Ẇ (x, η) = 0}

coincides with the origin and therefore (x, η) 7→ Ẇ (x, η) is negative definite.
Consequently, W is a Lyapunov function of the closed-loop system and the
origin is globally asymptotically stable. Finally, employing the same method,
note that the quadratic function

W0(x, η) =
1

2
x⊤Px+

1

2
(η −M0x)

⊤Ω(η −M0x),

is a Lyapunov function for the first-order approximation

ẋ = Ax+Bψ0(x, η), η̇ = Cx,

with ψ0(x, η) being the first-order approximation of ψ. Hence, local exponential
stability of the equilibrium is obtained.

155



4

4.2.3.4 Controller design

To solve the regulation problem in Problem 4.2.1, we aim to follow the control
structure presented in Fig. 4.3. The controller is designed for some known nominal
parameters and references δnom := (θnom, rnom). Furthermore, it is assumed that this
pair belongs to int{S}. This allows to prove that output set-point tracking is still
achieved for δ distinct from δnom but sufficiently close to it, as specified later on.
The main result of the section is stated in the following.

Theorem 4.2.5 (Robust output set-point tracking for the PFC). Consider the set
S defined in (4.9). Select any δnom = (θnom, rnom) ∈ int{S} and any corresponding
(x⋆

nom
,u⋆

nom
) ∈ E(δnom). Then, for d > 0 sufficiently high, the robust output set-point

tracking Problem for system (4.2) is solved by the dynamic control law

η̇ = ϕ(x,η) := y − r−Dzd(η −M(x− x⋆
nom

))

u = α(x,η) := u⋆
nom

+ Sat
1−u⋆

nom

−u⋆
nom

(ψ(x− x⋆
nom

,η))
(4.27)

where the functions Sat and Dz are defined in (1), the function ψ is chosen as (4.22)
with the matrices A,B,C and functions N,H defined as

A := A(θnom) +
m∑

j=1

Nju
⋆
nom,j, B := N(x⋆

nom
)

C := C+ 2H(x⋆
nom

), N(x) := N(x),

H(x) := H(x), P,M defined as in (4.20), (4.24) and any Ω = Ω⊤ ≻ 0.

Remark 4.2.6. Note that the integral action dynamics is designed in the form of
(4.7) with the anti-windup term that takes the form of a dead-zone function. As it
will be shown in the following, if δ = δnom one could avoid the anti-windup design,
as a simple feed-forward controller is sufficient to stir the system’s dynamics to
its (nominal) target equilibrium point and solve the regulation problem. However,
because of the plant’s uncertainties, the dead-zone effect must be present not only
in the nominal equilibrium, but also in a neighborhood of it, and hence one requires
d > 0. On the other hand, the function α is selected as a first (nominal) feed-forward
action u⋆

nom
plus a second term made by saturating the function ψ derived from the

forwarding approach in Proposition 4.2.4. Thanks to the saturation, the stabilizer
satisfies the input constraints as α takes only values in U, ensuring the validity of
the control law with respect to the model (4.2). Indeed the following holds

0 ≤ u = u⋆
nom

+ Sat
1−u⋆

nom

−u⋆
nom

(ψ(x, η)) ≤ 1

In this sense, note that the control law ψ in Proposition 4.2.4 is of infinite gain
margin, i.e. κψ(·) is still a stabiliser for (4.19) for all gains κ > 0, and hence the
saturation does not restrict the set of solutions. To this end, recall the well-known
link between forwarding and small-input control (Kaliora and Astolfi (2004)).

Proof. [Proof of Theorem 4.2.5] The proof is divided into three parts. It
is first shown that the origin of the closed-loop system (4.2), (4.27) is globally
asymptotically stable for δ = δnom. Then, it is proven that for d sufficiently large,
the anti-windup effect disappears in the target equilibrium (and so regulation is
achieved). Finally, it is shown that the proposed design is robust to sufficiently
small model parameter variations and semi-global asymptotic stability on an
equilibrium is guaranteed (on which the regulation objective is satisfied).
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Part 1: Global output set-point tracking. Consider δ = δnom ∈ int{S} and
(x⋆,u⋆) ∈ E(δ). Define the following change of coordinates:



u
x
η


 7→



u
x
η


 :=



u− u⋆nom
x− x⋆nom
η − η

⋆
nom




in which η
⋆
nom = 0. In these coordinates, the system (4.2) reads

ẋ = A(θ)(x+ x⋆nom) +N(x+ x⋆nom)(u+ u⋆nom) + q(θ), (4.28)

=
(
A(θ) +

m∑

j=1

Nju
⋆
nom,j

)
x+N(x+ x⋆nom)u (4.29)

while the η-dynamics reads

η̇ = (C+ 2H(x⋆nom))x+H(x)x,

for which the relations Cx⋆nom + H(x⋆nom)x
⋆
nom = r and H(x)x⋆nom = H(x⋆nom)x

have been used. By selecting the matrices A,B,C and the functions N,H as in
the statement of the theorem, one obtains a system in the form of (4.19). The fol-
lowing two technical lemmas show that A is Hurwitz and that the non-resonance
condition CA−1B full rank holds. The proofs are post-poned in Section 4.2.5.

Lemma 4.2.7. Pick any δ ∈ int{S}. Then for all (x⋆,u⋆) ∈ E(δ), the matrix
A = A(θ) +

∑m

j=1 Nju
⋆
j is Hurwitz.

Lemma 4.2.8. Pick any δ ∈ int{S}. Then for all (x⋆,u⋆) ∈ E(δ) the matrix
CA−1B is full rank.

Remark 4.2.9. Lemma 4.2.7 can be understood as the natural stability of the
system: in practice, for any constant duty ratio, the system stabilizes to a steady-
state equilibrium point. Concerning Lemma 4.2.8, it has been shown in Astolfi
and Praly (2017) that such a condition is necessary to achieve output set-point
tracking in case of (sufficiently small) parametric uncertainties. Since the lin-
earized model around the equilibrium point is stabilizable, this condition implies
controllability of the extended (plant and integral action) linearised system and
represents the non-resonance condition (see Section 2.1.2.1). It follows from the
proof of Lemma 4.2.8 that the points δ ∈ ∂S := S \ int{S} do not satisfy such a
condition.

Following the proof of Proposition 4.2.4, consider the Lyapunov function

W (x, η) =
1

2
x⊤Px+

1

2
(η −M(x))⊤Ω(η −M(x))

where P = P⊤ ≻ 0 verifies PA + A⊤P ≺ 0, the function M is defined as in
(4.24) and Ω is any symmetric positive definite matrix. Note that P always
exists in view of Lemma 4.2.7. Computing the time derivative and following the
same steps of the proof of Proposition 4.2.4, one obtains

Ẇ (x, η) = −x⊤(PA+ A⊤P )x−Ψ(x, η)− (η −M(x))⊤ Dzd(η −M(x)) (4.30)
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with
Ψ(x, η) := ψ(x, η)⊤ Sat

1−u⋆nom
−u⋆nom

(ψ(x, η))

with ψ defined as in the statement of the theorem, i.e. in (4.27). The function
Ψ verifies

Ψ(x, η) > 0 ∀ (x, η) ̸= (0, 0). (4.31)

To show the previous inequality, let ψi(x, η) denote the i-th element of ψ(x, η).
By definition of the saturation function in (1),

Ψ(x, η) =
m∑

i=1

Ψi(x, η) =
m∑

i=1

ψi(x, η) sat
1−u⋆

nom,i

−u⋆
nom,i

(ψi(x, η))

and, for any i ∈ {1, . . . ,m}, the following conditions hold :

1. if ψi(x, η) < −u⋆nom,i, then
Ψi(x, η) = −ψi(x, η)u⋆nom,i > 0;

2. if −u⋆nom,i ≤ ψi(x, η) ≤ 1− u⋆nom,i, then

Ψi(x, η) = ψi(x, η)
2 > 0;

3. if ψi(x, η) > 1− u⋆nom,i, then
Ψi(x, η) = ψi(x, η)(1− u⋆nom,i) > 0,

proving (4.31) since each element of the sum is positive. Moreover, since sDzd(s) ≥
0 for any s, d, it follows from (4.30) that Ẇ (x, η) < 0. Since this derivative is
a sum of non-negative terms, Ẇ (x, z) = 0 if and only if each term is null.
Moreover, x⊤(PA+ A⊤P )x = 0 if and only if x = 0. It follows that

Ψ(0, z) = 0 ⇐⇒ ψi(0, z) sat
1−u⋆

nom,i

−u⋆
nom,i

(ψi(0, z)) ∀i ∈ {1, . . . ,m}
⇐⇒ ψ(0, z) = 0 ⇐⇒ z =M(0) = 0,

hence that Ẇ (x, z) = 0 ⇐⇒ (x, z) = (0, 0) and that the origin of the closed-
loop system is globally asymptotically stable. Furthermore, following the proof
of Proposition 4.2.4, it is possible to show that the origin of the closed-loop
system is globally asymptotically stable and locally exponentially stable.

Part 2: Anti-windup function design. The dead-zone function Dzd has been
introduced to implement an anti-windup in the integral action. It follows from
the Lyapunov analysis that such a function does not compromise the stability
of the nominal closed-loop. However, the constant d must be chosen sufficiently
large so that when trajectories are close to the equilibrium point for which y = r,
the anti-windup has no effect (i.e. the dead-zone is equal to zero), and set-point
tracking is achieved. The dead-zone constant d must therefore satisfy

d ≥ d, d := sup
(x,η)∈Dz×DM

{|η −M(x)|}

whereDz,DM are defined as the sets containing all possible equilibrium of (x, η).
On one hand, when δ = δnom, i.e. the system converges to the nominal equilib-
rium, d can be taken equal to 0 as the feed-forward action u = u⋆nom is sufficient
to bring the system to the equilibrium where regulation is achieved. On the
other hand, when δ ̸= δnom, d must be sufficiently high: the dead-zone constant
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must be chosen concerning the plant’s uncertainties so that the anti-windup ef-
fect vanishes on the (new) equilibrium point. Giving a detailed formulation of
d is quite complicated and out of the scope of the practical implementation, as
its value affects the largest admissible bounds on the set-points δ (see Part 3 of
the proof of this Theorem) and vice versa. Its computation has therefore been
omitted. For practical implementations, once a bound on the possible uncer-
tainties for the parameters and references is known (and hence a neighborhood
of the nominal equilibrium), taking d sufficiently high will guarantee that the
anti-windup disappears on the new target equilibrium. Such aspects have been
remarked also in the experimental part in Section 4.2.4. Taking d too high will
not compromise the stability or the regulation, but will simply result in a delay
of the effect of the anti-windup.

Part 3: Robustness analysis. To conclude the proof of the theorem, we aim
to show that for every compact set of initial conditions, there exists a bound
of the parameters’ uncertainty δ̄ such that, if |δ − δnom| ≤ δ̄, then the following
can still be guaranteed: i) that an equilibrium point for the closed-loop system
exists; ii) that such an equilibrium is asymptotically and locally exponentially
stable; iii) that the regulation task is still achieved. To this end, let w := (x,η)
and let the nominal closed-loop (4.2), (4.27) be defined by

ẇ = φ(w, δnom) . (4.32)

From the Lyapunov analysis in Part 1, there exists a radially unbounded Lya-
punov function W and a positive definite function V such that

∂W

∂χ
(χ)φ(χ, δnom) ≤ −V (χ) < 0

where χ = (x − x⋆nom,η − η
⋆
nom), for which the origin of the closed-loop is

globally asymptotically stable and locally exponentially stable. Therefore, for
each compact setD, there exists two compact sets of initial conditions containing
the origin and denoted C and C̄, both in X×Z, such that C̄ is forward invarianta

for the closed-loop system (4.32). Therefore, by (Astolfi and Praly, 2017, Lemma
5) there exists ρ > 0 such that, for each C1 vector field φp satisfying

|φp(χ, δ)− φ(χ, δnom)| ≤ ρ, ∀ χ ∈ C̄, (4.33)∣∣∣
∣∣∣∂φp∂x (χ, δ)−

∂φ

∂x
(χ, δnom)

∣∣∣
∣∣∣ ≤ ρ, ∀ χ ∈ C, (4.34)

there exists an exponentially stable equilibrium of

χ̇ = φp(χ, δ) ,

whose basin of attraction contains the compact set C̄. Let us define now the
function ρ̄ : D → R>0 as

ρ̄(δ) := max
χ∈C̄,

{
|φ(χ, δ)− φ(χ, δnom)| ,

∣∣∣∣∂φ
∂x
(χ, δ)− ∂φ

∂x
(χ, δnom)

∣∣∣∣} .

Such a function is continuous and satisfies ρ̄(δnom) = 0. Any positive real
number δ̄ > 0 can now be selected such that, |δ − δnom| ≤ δ̄ implies ρ̄(δ) ≤ ρ.
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This parameter δ̄ > 0 is a solution to the third part of the proof. Indeed, for
each δ such that |δ − δnom| ≤ δ̄, then the closed-loop system

χ̇ = φ(χ, δ) ,

satisfies (4.33) and (4.34) and consequently admits an exponentially stable equi-
librium with a basin of attraction containing D × {0}. Thanks to the integral
action, the output set-point tracking is achieved on this equilibrium, which con-
cludes the proof.

aSimply pick C̄ = {(x, z) :W (x, z) ≤ c0} for sufficiently large c0.

Remark 4.2.10. A more precise characterization of the robustness bound δ can
be given by explicitly computing its value. Indeed the closed-loop is a polynomial
system, hence computation solvers or polynomial optimization tools (see Henrion
and Lasserre (2003); Henrion et al. (2009)) could be used.

4.2.3.5 Tuning of the control gains

The proposed control law α(x,η) in (4.27) admits some free-to-choose parameters.
In particular, any matrices P = P⊤ satisfying (4.20), Ω = Ω⊤ ≻ 0. This section
aims to give guidelines for choosing the matrices P and Ω with respect to some cost
function around the nominal equilibrium point.

Consider the nominal system: (4.2), (4.27) with δ = δnom. Since only local perfor-
mances are sought around the nominal equilibrium, the tuning procedure is designed
without taking into account the saturation function and the dead-zone anti-windup,
as their effect disappears sufficiently close to the equilibrium point. Taking the nom-
inal error coordinates (x,η) 7→ χ = (x, η) = (x − x⋆nom,η − η

⋆
nom), the closed-loop

system writes

ẋ = Ax+ (N(x) + B)u

η̇ = Cx+H(x)x

u = ψ(x, η)

(4.35)

where u = u − u⋆nom, A,B,N,C and H are taken as in Theorem 4.2.5 and ψ(·) is
taken accordingly to Proposition 4.2.4.

Consider the cost function J : Rnx × R
m → R>0 defined as

J :=

∫ ∞

0

[
χ⊤(t)Q̃χ(t) + u⊤(t)R̃u(t)

]
dt (4.36)

for some given matrices Q̃ = Q̃⊤ ⪰ 0 and R̃ = R̃ ≻ 0, where χ(t) = (x(t), η(t)) is
the trajectory of the closed-loop at time t for some initial conditions. Consider the
linearisation of the closed-loop system (4.35) around χ = (x, η) = (0, 0):

˙̃χ = Ãχ̃+ B̃ũ

ũ := K̃χ̃
(4.37)
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where χ̃ ∈ R
nx+m, ũ ∈ R

m and

Ã :=

[
A 0
C 0

]
, B̃ :=

[
B
0

]

K̃ := −
[
B⊤P +B⊤M⊤

0 ΩM0 −B⊤M⊤
0 Ω
]

(4.38)

Note first that the Mi (i = 1, . . . ,m) do not play a role in this local optimization
design, as they are associated with a quadratic term and hence disappear during the
linearization. For a linear system of the form (4.37), a linear state-feedback optimal
control law (see (Kirk, 2004, Section 3.12)) is given by

ũ = K̃optχ̃ = −R̃−1B̃⊤S̃χ̃ (4.39)

where S̃ = S̃⊤ ≻ 0 is the solution of the algebraic Riccati equation

S̃Ã+ Ã⊤S̃ − S̃B̃R̃−1B̃⊤S̃ = −Q̃ (4.40)

The idea is to choose the control law degrees of freedom such that its linearisation
K̃ is as close as possible to the optimal control law for linear systems K̃opt. In this
sense, it can be rewritten as an optimization problem of the form

min
P,Ω,ε

ε

s.t. (K̃ − K̃opt)(K̃ − K̃opt)
⊤ − εI ⪯ 0

P ≻ 0, Ω ≻ 0, ε ≥ 0

A⊤P + PA ≺ 0

(4.41)

where K̃ depends on P and Ω, as seen in (4.38). This problem can be expressed in
LMI form using the Schur complement:

min
P,Ω,ε

ε

s.t.

[
−εI (K̃ − K̃opt)

(K̃ − K̃opt)
⊤ −I

]
⪯ 0

P ≻ 0, Ω ≻ 0, ε ≥ 0

A⊤P + PA ≺ 0

which is a semi-definite program for which efficient solvers exist, see for instance
VanAntwerp and Braatz (2000); Henrion and Lasserre (2003); Henrion et al. (2009).

Remark 4.2.11. As the system’s dynamics involve the plant and the integrator, in
most applications there is no interest in choosing the cost function to be dependent
on the full state space, i.e. Q̃ is generally positive semi-definite. Hence one can select
Q̃ := C̃⊤C̃ for some matrix C̃ of appropriate dimensions, where (Ã, C̃) is assumed
to be detectable to still provide convergence of the closed-loop system towards an
equilibrium point. Moreover, note that the plant’s uncertainties play a role in this
tuning and hence more advanced techniques could be used, such as robust optimal
control or stochastic optimal control. As this focus is out of the main scope of this
section, the details will not be explained, and the interested readers may refer for
instance to Van Handel (2007); Savkin and Petersen (1995); Chen (1993) and the
references therein.
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4.2.4 Experimentations

This section presents the tenth-scale experimental measurements of the PFC in
closed-loop with the proposed controller. The experimental setup is presented in
Fig. 4.4 and 4.5. A dSPACE MicroLabBox rapid prototyping system (µLB) is used
to control the PFC. A voltage-controlled electronic load in series with a resistor
(EL+R) is connected to the first terminal of the PFC through thirty meters of
standard U1000 RV2 cable (LG). The two other terminals are connected to a resistor
(R) and a power supply (PS), also through thirty meters of the same cable.

The proposed controller is tested through different scenarios. First, it is verified
that the control objectives can be properly reached, despite perturbations of the
uncertain parameters. Second, a test is performed to show the efficiency of the
anti-windup function. Third, an experiment illustrates the effect of the proposed
tuning of the parameters. Finally, the generalization to m-terminal is illustrated by
a simulation on MATLAB Simulink, for m = 5.

Unless otherwise stated, the parameters of control law (4.27) are selected as follows:
the matrices P and Mi, i ∈ {1, . . . ,m} are computed using CVX, a package for
specifying and solving convex programs Grant and Boyd (2014),Grant and Boyd
(2008), such that

A(θnom)
⊤P + PA(θnom) ⪯ −I,

MiA(θnom) + A⊤(θnom)Mi =
1

2
(Hi +H⊤

i ),

the function ψ in (4.27) is multiplied by a scalar positive gain κ = 0.01 inside
the saturation (see Remark 4.2.6) and the tuning matrix Ω is chosen equal to
blkdiag{1, 1, 5}. These values have been found by experimentally tuning the pa-
rameters to reach satisfactory dynamics.

Robust regulation. The system is initialised on the nominal set-point δnom =
(θnom, rnom), whose numerical values are displayed in Table 4.3. At t = 21 ms, the
reference is changed to ra, and at t = 61.5 ms, the system is perturbed with a
voltage step on the electronic load, from 2 V to 10 V, so that θ = θa (see Table 4.3).
From Fig. 4.6, it can be concluded that the objectives are properly reached in 20 ms
so that modeling and measurement errors are properly compensated for. Moreover,
observe that although no reference is tracked on the third line, a constant power
value is asymptotically reached. This asymptotic value is determined by the total
power balance so that it equals −Pr

1 − Pr
2 plus the power losses in the converter.

Saturation and anti-windup. Bearing in mind that the power references are
given by a higher-layer control algorithm, observe that if a constant perturbation
occurring on a line makes the given reference unreachable, it will induce a saturation
of the duty cycle and lead to an integral windup, until the higher-layer controller
can deliver a new attainable reference. This scenario has been tested and the most
relevant signals are displayed in Fig. 4.7. Pr

1 is set to −85 W, which is attainable
when VG1 = 2 V, but not when VG1 = 10 V. Such a step on VG1 is implemented via
the electronic load at t = 0.1 s. This prevents the power reference to be reached
due to duty cycle constraints. Assume that the higher-layer controller delivers a
new reachable reference Pr

1 = −75 W at t = 0.5 s. Without anti-windup action,
i.e. ζ = 0 on (4.7), the value of η1 increases continuously, and the integral wind-up
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LG1,2,3
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Figure 4.4: Picture of the experimental setup

PFC

R

EL

+R
PS

µLB LG2

LG1LG3

Figure 4.5: Drawing of the experimental setup

Table 4.3: Set-point numerical values

Parameter Test value Unit
k = 1 k = 2 k = 3

θnom

LGk 18 18 18 µH
RGk 21.7 24.5 1.2 Ω
VGk 2 0 40 V

θa

LGk 18 18 18 µH
RGk 21.7 24.5 1.2 Ω
VGk 10 0 40 V

Parameter Test value Unit

rnom

Pr
1 -50 W

Pr
2 -50 W

vR
r 50 V

ra

Pr
1 -60 W

Pr
2 -60 W

vR
r 50 V
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Figure 4.6: Experimental measurements of the PFC in closed-loop with control (4.27).
Reservoir voltage and power in each line with their references

problem is clearly illustrated as the tracking capability is only recovered after 600
ms (in blue). This is in contrast with η1,AW which saturates around 0.2 J, leading
to a much faster recovery of the tracking capability (in red).

Tuning of the converter parameters. In Section 4.2.3.5, a procedure is given to
assist the tuning of the control parameters: define a cost function in (4.36), solve the
Riccati equation in (4.40) and deduce the control gain using (4.39). Then, chose P
and Ω along the optimisation problem (4.41). This procedure has been followed: for
simplicity, the cost function is chosen using the matrices Q̃ = I and R̃ = 0.01 × I.
Indeed, since the inputs are saturated duty cycles, there is no need to minimize
their magnitude, so the associated cost is small. The Riccati equation has been
solved using the icare(·) function in MATLAB. To evaluate the impact of Ω, matrix
P is kept unchanged while different values for Ω are tested with the optimization
problem. One then notices that for Ω = ϵI, smaller values of ϵ lead to a smaller
ε, i.e. K̃ is closer to K̃opt. This is verified during a startup test on the nominal
system. Considering (θnom, rnom) given by Table 4.3 at t = 2 ms, the reservoir
voltage transients are displayed in Fig. 4.8 for different ϵ. It can be noticed that
decreasing the value of Ω improves the dynamics on the nominal set-point. However,
note that this matrix multiplies the integral part η of the current law (see (4.22)).
Therefore, the selection of Ω appears to be a trade-off between nominal performance,
suggesting Ω = 0, and accuracy of the steady-state, requiring Ω ≻ 0.

Simulation of a 5-terminal PFC. A MATLAB-Simulink simulation validates
this extension for m = 5. The two new branches have the same parameters and
references as branches one and two and have been inserted between the second and
the third ones, i.e. they are numbered 3 and 4. Thus, the numerical values are
LG1,2,3,4,5 = 18 µH, RG1,3 = 21.7 Ω, RG2,4 = 24.5 Ω, RG5 = 1.2 Ω, VG2,4 = 0 V
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Figure 4.7: Experimental measurements illustrating the efficiency of the dead-zone func-
tion method to prevent an integral wind-up when the set-point is unreachable. Power on
the first line with its reference (top) and corresponding integrator (bottom)
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Figure 4.8: Experimental measurements of the startup of the converter on the nominal
set-point for different values of Ω = ϵI. Only vR is shown, but the same behavior is
observed on the other outputs

and VG5 = 40 V. VG1,3 is initially set to 2 V and changed to 10 V at t = 61.5 ms.
The power references are all initially at Pr

1,2,3,4 = −50 W, and stepped to −60 W
at t = 21 ms. The reservoir voltage reference vR

r remains at 50 V. The resulting
reservoir voltage and power signals are drawn in Fig. 4.9. Their comparison to those
of Fig. 4.6, shows that the proposed model can accurately capture the dynamics
of the system. Furthermore, this simulation suggests that the generalization of
the control law to more than three terminals maintains both the stability and the
performance of the system.

4.2.5 Proof of technical lemmas

In the following, we provide the proofs of Lemma 4.2.7 and of Lemma 4.2.8.

Proof. [of Lemma 4.2.7] To show that A is Hurwitz, it is sufficient to show that
the origin of the system ẋ = Ax is globally asymptotically stable. Taking the
quadratic Lyapunov function VJ(x) = x⊤J(θ)x yields

V̇J(x) = x⊤(A⊤J(θ) + J(θ)A)x

= −x⊤ blkdiag{0, RG1, . . . , RGm}x ≤ 0

by definition of Θ. By applying LaSalle’s invariance principle, the system con-
verges to the following set {x

∣∣ V̇J(x) = 0} = Im{[I, 0]⊤}. Pick any element x so
that iGk = 0, for all k ∈ {1, . . . ,m}. Plugging it in the iGk-dynamic, see (4.3a)
results in

0 =
d

dt
iGk = − 1

LGk
vk,
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Figure 4.9: Simulation of the PFC model (4.2) for m = 5, in closed-loop with control
(4.27). Reservoir voltage and power in the m− 1 first lines with their references

167



4

which leads to vk = 0. From the vk-dynamic this means

0 =
d

dt
vk = − 1

C
ik,

and so ik = 0. Finally, by looking at the ik-dynamic, the following holds

0 =
d

dt
ik = − 1

L
u⋆kvR.

Before concluding that vR = 0, it is necessary to prove that (u⋆1, . . . ,u
⋆
m) ̸=

(0, . . . , 0). From (4.18d) and the definition of R, a necessary and sufficient
condition is (v1

⋆, . . . ,vm
⋆) ̸= (0, . . . , 0). From (4.18a), and the definition of Θ,

v⋆k equals zero on two conditions: the first one is VGk = 0 and ∆k = 0, which is

excluded by taking δ ∈ int{S}. The second one is VGk −
√
V 2
Gk − 4RGkPr

k = 0,
which occurs if and only if Pr

k = 0, by definition of Θ. Yet, the definition of R
ensures that (Pr

1, . . . ,P
r
m−1) ̸= (0, . . . , 0), meaning there is at least one u⋆k ̸= 0

and so vR ≡ 0 for all (θ, r) ∈ int{S)}, which concludes the proof of the lemma.

Proof. [of Lemma 4.2.8] As the number of inputs equals the number of outputs,
CA−1B is full rank if and only if the following matrix is injective:

T =

(
A B
C 0

)

Let us show that T (x⊤, u⊤)⊤ = 0 if and only if (x⊤, u⊤)⊤ = 0. We have that

Ax+Bu = 0

if and only if

1

CR

m∑

j=1

u⋆j ij + i⋆kuk = 0 (4.42)

1

L
(−u⋆kvR + vk − vR

ruk) = 0 (4.43)

1

C
(−ik + iGk) = 0 (4.44)

1

LGk
(−vk −RGkiGk) = 0 (4.45)

and
Cx = 0

if and only if

2

(
i⋆
Gk

2
vk +

v⋆k
2
iGk

)
= 0 (4.46)

vR = 0 . (4.47)
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Using (4.43),(4.44),(4.45) and (4.47), one gets

vk = vR
ruk, ik = iGk and vk = −RGkiGk. (4.48)

Placing the latter in (4.46) yields

(−RGki
⋆
Gk + v⋆k)iGk = 0.

Using (4.12d), we get −RGki
⋆
Gk = −VGk + v⋆k which then gives

(−VGk + 2v⋆k)iGk = 0

and, from (4.18a) we get v⋆k =
1

2

(
VGk ±

√
∆k(δ)

)
. Therefore, one finds

±iGk
√
∆k(θ, r) = 0

for k ∈ {1, . . . ,m}. In int{S}, ∆j(θ, r) > 0, hence iGk = 0. Remembering that
by definition of Θ and R, RGk > 0 for k ∈ {1, . . . ,m} and vR

r > 0 and using
(4.48), it can be concluded that (x⊤, u⊤)⊤ = 0 and therefore that T is full rank
for all (θ, r) ∈ int{S}.

4.3 Harmonic regulation of a Ventilation Machine

4.3.1 About the Ventilation Machine

In this section, a mechanical Ventilation Machine (VM) is considered. Mechanical
ventilators are essential equipment in Intensive Care Units (ICUs) to assist patients
who cannot breathe on their own or need support to breathe sufficiently. A large
number of patients require mechanical ventilation. According to Needham et al.
(2005), 19 186 people required mechanical ventilation in ON, Canada, in 2000.
Therefore, improvements in ventilation benefit a large population worldwide. The
goal of mechanical ventilation is to ensure adequate oxygenation and carbon dioxide
elimination, see Warner and Patel (2013), thereby sustaining the patient’s life.

In this section, a Pressure Controlled Ventilation (PVC) is considered. Due to its
critical importance, modeling and control of PVCs devices have been intensively
studied. An overview of techniques for modeling and control of mechanical ventila-
tion machines can be found in Borrello (2005). About the control strategies, basic
techniques make use of linear time-invariant control laws. This generally results in
sub-optimal behaviors, especially in terms of tracking performance. For this reason,
several solutions were proposed in the last two decades. In Van De Wouw et al.
(2018); Hunnekens et al. (2018) a variable control gain is proposed, but the control
law makes use of measurements that are usually non-available in practice and re-
sulted in a tracking performance with significant overshoots. In Borrello (2001) an
adaptive feedback control is presented. The drawback, in this case, is that the control
action is based on strong assumptions about the model’s knowledge, a task generally
difficult. In Pomprapa et al. (2015) a funnel-based control is implemented, achiev-
ing however limited performances in terms of tracking. In Scheel et al. (2017) and
Li and Haddad (2012) a model-based control and, respectively, a model predictive
control are provided. Both such control strategies require however the knowledge
of a set of parameters representing the patient’s dynamics, a piece of information
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Figure 4.10: Typical airway pressure for two breathing cycles of pressure-controlled ven-
tilation, showing the set-point ( ) and the typical response ( ).

that is generally not perfectly known due to the different typologies of patients. An
iterative control strategy is presented in Scheel et al. (2015).

Giving a detailed analysis of existing results and strategies to model and control
PVCs devices is out of the scope of the chapter, and hence it’s omitted. The in-
terested reader may refer to Borrello (2005); Reinders et al. (2020) and references
therein. What is important to highlight, is how the control of the VM assuring PVC
is of interest in the scope of this manuscript. From a structural point of view, the
PVC system is driven by a blower. Such a blower compresses the air to achieve
the desired pressure reference profile in the patient’s lungs. The airway pressure
is increased during inspiration, in order to achieve the Inspiratory Positive Airway
Pressure (IPAP), filling the patient’s lungs with air. Then, the blower decreases
the pressure to the Positive End-Expiratiory Pressure (PEEP), so that the air in
the lungs comes out. A figure representing the respiratory phase can be seen in
Figure 4.10. From a control viewpoint, the objective of a VM is to achieve tracking
of a signal. Such a signal represents the pressure in the patient’s lungs during the
breathing phase. Therefore, it is a periodic signal.

The considered ventilation machine system can be modeled as a nonlinear dynamical
system in Lur’e form. Lur’e-type systems consist of the interconnection of linear
time-invariant dynamics with a static nonlinearity in the feedback loop. The main
components of this system are the blower, the hose-filter system, and the patient.
A centrifugal blower compresses ambient air to achieve the desired blower outlet
pressure pout. The difference between pout and the airway pressure paw results in
the outlet flow Qout through the hose. This hose is modeled using a nonlinear hose
model. The flow through the hose, i.e., the outlet flow Qout, is divided into a patient
flow Qpat and a leak flow Qleak. The intended leak near the patient is used to flush
CO2-rich air from the system. Finally, the patient’s lungs are inflated and deflated
by the patient’s flow. A block-scheme structure can be seen in Figure 4.11.

In the PCV system the pressure near the patient’s mouth, the airway pressure
paw, should track a desired pressure target reference ptarget, i.e., r := ptarget. On a
preset periodic interval, of length T , the pressure level is increased to the IPAP and
consequently lowered to the PEEP. These varying pressure levels ensure the desired
airflow in and out of the patient’s lungs. The total breath length T consists of the
inspiration time Ti and expiration time Te, i.e., T = Ti+Te. The control goal for the
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Figure 4.11: Schematic representation of the blower-hose-patient system, with the corre-
sponding resistances, lung compliance, pressures, and flows.

PCV system is to achieve a small tracking error e := r − paw, where the reference
r(t) is a time-varying signal that is perfectly periodic with an interval length T , i.e.,
r(t) = r(t+ T ) for a known T > 0 and all t ≥ 0, see Figure 4.10.

Because of this periodicity property of the reference to be tracked and the nonlinear
nature of the hose model, the harmonic regulation tool presented in Section 2.3 is
particularly effective for the application. The control strategy would be therefore
to extend the plant’s dynamics with a finite number L of linear oscillators in the
control loop. This results in L poles on the imaginary axes at the frequency of
the periodic reference and its multiples. Therewith, if the resulting closed-loop
trajectories converge to a periodic solution, harmonic regulation of the tracking error
is guaranteed. More precisely, the Fourier coefficients of the steady-state trajectory
of the error signal corresponding to the frequencies embedded in the linear oscillators
are zero. As experiments will show, in this case, also the L2-norm of the error
signal will be significantly reduced for a value of L large enough. To guarantee the
existence of globally asymptotically stable periodic solutions, incremental properties
are exploited. To this end, we suppose that the static nonlinearity in the Lur’e-type
system satisfies an incremental sector-bound condition. Then, using an incremental
version of the Circle Criterion, sufficient conditions for the design of an output-
feedback control law achieving incremental uniform global exponential stability are
established. From a practical point of view, such an approach is interesting because
the conditions can be checked by visual inspection of the Nyquist plot and linear
analysis tools (potentially using measured data only).
Summarizing, the main contributions of this section are:

• a harmonic regulation strategy for nonlinear Lur’e-type systems including a
formal circle criterion-based incremental stability analysis, and

• the implementation and analysis of this RC scheme on the practical use-case
of a nonlinear mechanical ventilator, including experimental validation.

4.3.2 Model of the Ventilation Machine

For controller design and stability analysis, a mathematical Lur’e-type system model
is derived. The ventilation model is based on Reinders et al. (2020). First, the
separate models for the plant components are derived, i.e., blower model Gb, hose
model Rhose, and patient-leak model Gp. Thereafter, these models are combined to
obtain the open-loop Lur’e-type ventilation system model for the controller design
and associated stability analysis. The complete plant and the considered control
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Figure 4.12: Frequency response measurement ( ) and 6th order identified parametric
model ( ) of the blower, i.e., from pc to pout.

strategy are visualized in the block diagram in Fig. 4.13.

The blower model Gb is obtained using a sixth-order fit of a Frequency Response
Measurement (FRF) of the actual blower dynamics, see Pintelon and Schoukens
(2012). This state-space model accurately describes the input-output relation of the
blower, i.e., from the control signal pc to the blower output pout. The measured FRF
and the blower model Gb are depicted in Fig. 4.12, showing that Gb is an accurate
representation of the FRF measurement of the actual blower. The blower Gb is
modeled as the following state-space system:

ẋb = Abxb +Bbpc

pout = Cbxb,
(4.49)

with xb ∈ R
6, pc ∈ R, pout ∈ R, and system matrices Ab, Bb, Cb of appropriate

dimensions.

The hose is modeled by the nonlinear hose resistance Rhose, which describes the
relationship between the flow through the hose Qout and the pressure drop over the
hose ∆p := pout − paw. From experiments it is concluded that the hose can be
modeled as follows:

Qout : = Rhose(∆p)

= sign(∆p)
−R1 +

√
R2

1 + 4R2|∆p|
2R2

,
(4.50)

where R1 and R2 are the hose-resistance parameters.

Next, the combined patient-leak model Gp describes the relationship between the
outlet flow Qout and the system output y = paw. This patient model is described by
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the following first-order state-space model, based on the linear one-compartmental
lung model in Bates (2009):

ṗlung = applung + bpQout

paw = cpplung + dpQout

(4.51)

with

ap = − 1

Clung(Rleak +Rlung)
,

bp =
Rleak

Clung(Rleak +Rlung)
,

cp =
Rleak

Rleak +Rlung

dp =
RleakRlung

Rleak +Rlung

.

(4.52)

Finally, these separate models are combined to obtain the open-loop plant model,
as depicted inside the dashed box in Fig. 4.13. Note that an additional term ℓ∆p
is added to the nonlinear hose-resistance, i.e., φ(∆p) := Rhose(∆p) + ℓ∆p, and
subtracted in the parallel path. This is included to ensure that the linear dynamics
of the open-loop plant in Lur’e-type form are controllable and observable. The total
system’s dynamics, i.e., the full Lur’e-type ventilation system, are independent of
the choice of ℓ ∈ R.

To obtain the open-loop plant model, the blower, hose, and patient models are
combined. This gives the open-loop model from pc to paw in the Lur’e form

ẋ = Ax+Bu+ Ew

y = Mx+Nw

w = −φ(y)
v = Cx+Dw,

(4.53)

where

A =

[
Ab 0

−(1− ℓdp)
−1ℓCbbp ap + ℓcp(1− ℓdp)

−1bp

]
,

B =

[
Bb

0

]
, E =

[
0

−bp(1− ℓdp)
−1

]
,

M =

[
Cb + dp(1− ℓdp)

−1ℓCb
−cp − dp(1− ℓdp)

−1ℓcp

]T
,

N = dp(1− ℓdp)
−1 , D = −dp(1− ℓdp)

−1,

C =
[
−dp(1− ℓdp)

−1ℓCb cp + dp(1− ℓdp)
−1ℓcp

]
,

(4.54)

and the nonlinearity

φ(y) := Rhose(y) + ℓy. (4.55)

where ℓ ∈ R is a degree of freedom.
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Figure 4.13: Block diagram of the full ventilation system, with Gb the blower dynamics, C
an arbitrary feedback controller, Gp the patient-leak dynamics, and φ(∆p) = Rhose(∆p)+
ℓ∆p the nonlinear hose model.

4.3.3 Harmonic regulation for Lur’e systems: an incremental circle cri-
terion

The purpose of this section is to design a controller achieving harmonic regulation
for the class of Lur’e systems. In particular, we consider a Single-Input Single-
Output (SISO) Lur’e-type system of the form (4.53) where x ∈ R

nx is the state,
u ∈ R is the control input, w,y are in R, v ∈ R is the measured output, and
A,B,E,M,N,C, and D are real matrices of appropriate dimensions. The static
nonlinearity φ : R 7→ R satisfies φ(0) = 0, and the following incremental sector
bound condition:

φ ≤ φ(y1)− φ(y2)

y1 − y2

≤ φ , (4.56)

for all y1 ̸= y2, for some known non-negative constants 0 ≤ φ ≤ φ. The control
objective is to regulate the output v of the system (4.53) to a T -periodic bounded
reference r. Hence, the output regulation error is defined as

e(t) := r(t)− v(t) . (4.57)

By using similar tools as in Section 2.3, the design consists in adding a bunch of
L linear oscillators at the reference’s frequencies and its multiplies, and a feedback
stabilizer for the closed-loop system. In particular, we consider a dynamic controller
of the form

η̇ = ϕ(η, e) := Φη + Γe (4.58)

u = α(η, e) := Kη (4.59)

where η =
[
η0 ηT1 . . . ηTL

]⊤ ∈ R
(2L+1)×1 with η0 ∈ R and ηk ∈ R

2×1 for k =

1, . . . , L, and where the matrices Φ ∈ R
(2L+1)×(2L+1), Γ ∈ R

(2L+1)×1, and K ∈
R

1×(2L+1) are defined as

Φ := blkdiag(0 ϕ1 . . . ϕL),

Γ :=
[
γ0 γ

⊤
1 . . . γ⊤L

]⊤
,

K := [κ0 κ1 . . . κL] ,

(4.60)

where

ϕk := k




0
2π

T

−2π

T
0


 , k = 1, . . . , L, (4.61)
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with γ0 ̸= 0 the integrator gain such that η0 embeds an integrator, and the ma-
trix γk ∈ R

2×1 is chosen such that the pair (ϕk, γk) is controllable for any k =
1, . . . , L.

Next, the closed-loop system consisting of the plant (4.53), (4.57) and the repetitive
controller (4.58), (4.59) is written as a Lur’e-type system

χ̇ = A0χ+ E0w + d(t)

y0 =M0χ+N0w

w = −φ(y0)
(4.62)

where

A0 :=

[
A BK

−ΓC Φ

]
, E0 :=

[
E

−ΓD

]
, Q0 :=

[
0
Γ

]
,

M0 :=
[
M 0

]
, N0 := N,

(4.63)

where χ := [x⊤, η⊤]⊤ ∈ R
nχ and d(t) := Q0r(t), is a periodic, with period time

T , time-varying piece-wise continuous disturbance (induced by the periodic refer-
ence).

Next, a loop-transformation as described in (Khalil, 2002, Chapter 7) is applied
to the closed-loop dynamics. This loop-transformation gives an equivalent Lur’e-
type system where the transformed nonlinearity φ̃(y) satisfies the incremental sector
bound in (4.56) with φ̃ = 0 and φ̃ = ∞. This loop-transformation gives the following
loop-transformed Lur’e-type system:

ẋ = Ax+ Ew + d(t)

y =Mx+Nw

w = −φ̃(y)
(4.64)

where

A := A0 − (E0φ(M0 +N0(1 + φN0)
−1φM0)),

E := E0(1− φD0(1 + φN0)
−1),

M := ϱM0 − ϱN0(1 + φN0)
−1φM0,

N := 1 + ϱN0(1 + φN0)
−1

(4.65)

where x ∈ R
nχ , ϱ = φ−φ, and φ̃(y) satisfies the incremental sector bound in (4.56)

with φ̃ = 0 and φ̃ = ∞, namely

0 ≤ φ̃(y1)− φ̃(y1)

y1 − y2
≤ ∞ . (4.66)

We assume that the following holds.

Assumption 4.3.1 (Controllability and observability). Consider system (4.64).
The pair (A,E) is controllable and the pair (A,M) is observable.

Controllability and observability imply that the quadruplet {A,E,M,N} admits a
transfer function

G =M(sI − A)−1E +N (4.67)
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that represents a minimal realization1 of the linear part of the system, where s here
indicates the Laplace variables.

Definition 4.3.1 (Strictly positive real transfer function). Let j indicates the imag-
inary number, i.e. j2 = −1. We say that the transfer function (4.67) is strictly
positive real if:

• all the poles of G have non-positive real part;

• for all real ω for which jω is not a pole of any element of G, the matrix
G(jω) +G⊤(jω) is positive semi-definite;

• any pure imaginary pole jω of G is a simple pole and the residue matrix

lim
s 7→jω

(s− jω)G(s)

is positive semi-definite Hermitian2

An important result claiming that a matrix is strictly positive real is the so-called
Strictly Positive Real (SPR) lemma (also called the Kalman-Yakubovic-Popov lemma).
Such a result is recalled in the following, whose proof can be found in (Khalil, 2002,
Lemma 6.3)

Lemma 4.3.1 (Strictly Positive Real). Consider the transfer function (4.67) and
let Assumption 4.3.1 hold. Then, G is strictly positive real if and only if there exists
a strictly positive matrix P = P⊤ ≻ 0, two matrices L,W , and a strictly positive
real number ε > 0 such that

PA+ A⊤P = −εP − L⊤L , (4.68a)

PE =M⊤ − L⊤W , (4.68b)

W⊤W = N +N⊤ . (4.68c)

In light of the results of Section 2.3 and the design of the internal model unit as
in (4.58), (4.60), (4.61), in order to achieve harmonic regulation, it is sufficient to
proof that the system is incrementally globally uniformly ISS with respect to d.
To this end, by means of Theorem 1.3.3, it’s sufficient to show that system (4.64)
with d(t) = 0 is incrementally uniformly globally exponentially stable with respect
to a constant metric P . To have such a result, we will present in the following an
incremental version of the Circle Criterion (see (Khalil, 2002, Theorem 7.1) for a
non-incremental version). The main intuition is that, if the transfer function (4.67)
is strictly positive real, then the matrix P in (4.68a) can be used as a metric to
claim incremental stability by Theorem 1.2.2.

Proposition 4.3.2 (Incremental Circle Criterion). Consider system (4.64) with the
nonlinearity satisfying (4.66) and let Assumption 4.3.1 hold. If the transfer function
(4.67) is strictly positive real, then system (4.64) is incrementally uniformly globally
exponentially ISS with respect to d.

1A transfer function is a minimal realization if it does not exist another realization that has a smaller
dimension. It implies that the description of a linear system in state space is equivalent to the one with
the transfer function.

2A complex matrix A ∈ C
n×n is said to be Hermitian if it’s equal to its conjugate transpose
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Proof. As said, by Theorem 1.3.3, if the system is incrementally globally
uniformly exponentially stable with respect to a constant metric P , then the
incremental uniform global ISS property holds. Consider for this the Euclidean
metric P = P⊤ ≻ 0 where P solves (4.68a). Let LψP (x) indicate the lie deriva-
tive of (4.64) with respect to P . By using (4.68a) and (4.68b) it follows that

LψP (x) = He

{
PA+ PE

∂w

∂x
(y)

}

= He

{
−ε
2
P − 1

2
L⊤L+

(
M⊤ − L⊤W

) ∂w
∂x

(y)

}

By adding and subtracting the term
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Note however that
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Employing the incremental sector bound condition in (4.66), the result follows.

A consequence is the following.

Corollary 4.3.2.1. Consider system (4.53) with (4.54) coupled with the regulation
error (4.57) and assume that the nonlinearity satisfies (4.56). Consider the dynamic
control law (4.58), (4.59), (4.60), (4.61) and perform the coordinates change (4.62),
(4.63), (4.64). If Assumption 4.3.1 holds and the transfer function (4.67) is strictly
positive real, then the harmonic regulation problem is solved.

Remark 4.3.3. An important feature of the proposed design is that the Strict Pos-
itive Real assumption of the transfer function (4.67) can be visually checked through
the Nyquist plot, similarly to frequency-domain designs techniques of linear systems
control design. This provides a method to verify the conditions of Proposition 4.3.2
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that is very simple, especially in practical cases such as the ventilation machine.

Remark 4.3.4. On the other hand, a drawback of the proposed design is that it
does not provide a constructive method to choose the gain K in (4.59), resulting
in a ‘try-and-check’ condition, in which the control engineer has to choose a-priori
the value of K and see if the conditions of the propositions are satisfied. For the
particular case of the ventilation machine, such a constructive design cannot be easily
provided because of the non-linearity appearing in the output v in (4.53). The reason
is easy to see. The x dynamics is passive with respect to the nonlinear term. This
because of the strictly positive real lemma and by (Khalil, 2002, Lemma 6.4). At
the same time, the internal model composed of the oscillators is passive with respect
to the regulation error e. If the output v had been linear, it would have resulted
in a feedback of passive systems, which is again passive. However, the nonlinearity
appears also in the output. This results in a triangular crossed structure, in which it
is not in general possible to apply the composition rules for passive systems without
explicitly choosing a suitable storage function.

4.3.4 Experimentations

In this section, we aim to apply the design proposed in Section 4.3.3 to the practical
case of the ventilation machine. The main components of the experimental setup
used in this case study are depicted in Fig. 4.14. The figure shows the Macawi blower-
driven mechanical ventilation module DEMCON macawi respiratory systems (2021).
The dSPACE system (dSPACE GmbH, Paderborn, Germany) is used to implement
the controls in MATLAB Simulink (MathWorks, Natick, MA). Furthermore, the
ASL 5000TM Breathing Simulator (IngMar Medical, Pittsburgh, PA) represents the
patient. This lung simulator can be used to emulate a wide variety of patients with
a linear resistance and compliance. Furthermore, a typical ventilation hose with a
leak is used to attach the ventilation module to the lung simulator. The system
parameters that are used for the stability analysis are shown in Table 4.4. The
leak and hose parameters are obtained by calibration and the patient parameters
are the settings used on the mechanic lung simulator, i.e., the patient emulator in
Fig. 4.14.

The analysis in the following section is done using a continuous-time representa-
tion of the controller and plant model. However, the controller is implemented in
dSPACE using a discrete-time representation of the continuous-time control strat-
egy. The discrete-time controllers are obtained using the zero-order hold discretiza-
tion scheme at a sampling frequency of 500 Hz. This sampling frequency is sig-
nificantly higher than the relevant system dynamics, e.g., the blower shows strong
roll-off at frequencies above 10 Hz. Furthermore, 500 Hz is significantly higher
than the frequency content of the reference signal. Therefore, the continuous-time
controller design and stability analysis is deemed relevant for this application.

Controller design for mechanical ventilation Next, the controller design for
the mechanical ventilation is described. For the design of the feedback controller
C in Fig. 4.13, the control strategy in (4.58), (4.60), and (4.61) with feedback
law (4.59) is followed. This means that the feedback controller C consists of an
integrator and L oscillators from the first up until the Lth harmonic of the breathing
frequency ωb = 2π

T
rad/s. Besides this feedback controller, a unity feedforward

controller as depicted in Fig. 4.13 is used. The unity feedforward term is included to
improve the overall regulation accuracy. Note that it does not affect stability since
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Figure 4.14: The experimental setup with the mechanic patient simulator, the respiratory
module, ventilation hose, and dSPACE module.

Table 4.4: The relevant system and experiment parameter for the stability analysis.

Parameter Value Unit

Rleak 24 mbar s/L
R1 2.8 mbar s/L
R2 1.6 mbar s2/L2

Rlung 5 mbar s/L
Clung 50 mL/mbar
ℓ −0.1 mL/s/mbar

it is included in the closed-loop ventilation system through the disturbance term d
in (4.62). The stability analysis is independent of this disturbance in view of the
convergence properties of the closed-loop dynamics.

For the final RC design, different controllers are designed to analyze the effect of
the number of oscillators, i.e., L ∈ {0, 1, 5, 15, 20}. We select the integrator
gain as γ0 = 2π, and oscillator gains as γk =

[
1 1

]
2

k1+ϵ
with ϵ = 0.4, for k =

1, 2, . . . , L. The feedback law is chosen as K ∈ R
1×(2L+1) with all entries 1. Next,

the stability properties of the closed-loop ventilation system with the RC controller
are analyzed.

Stability analysis. To guarantee exponential convergence of the closed-loop ven-
tilation system, Proposition 4.3.2 is verified. First of all, the controlled system is
written in the closed-loop form of (4.62), and the upper φ and lower φ sector bounds
of the nonlinearity φ(y) in (4.55) are computed. Using these bounds, the loop-
transformation is applied to obtain the system in (4.64). The upper sector bound φ
is defined by taking the derivative of φ(∆p) at the origin, where the slope of φ is the
largest, see Fig. 4.15, which gives φ = 1

R1
+ ℓ. The lower sector bound φ is obtained

from visual inspection, such that it holds on a finite domain of ∆p ∈ [−20, 20] mbar;
this domain is sufficient for the practical application of ventilation. This leads to
the sector φ ∈ [φ, φ] = [80, 1

R1
+ ℓ] for the nonlinearity in (4.55). The nonlinearity

and these sector bounds are visualized in Fig. 4.15.
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Figure 4.15: Visualization of the nonlinearity φ(∆p) ( ), and its sector bounds φ∆p
( ) and φ∆p ( ), showing that the incremental sector condition holds for [φ, φ] =

[80, 1
R1

+ η].

Using these sector bounds, the loop-transformation is performed to obtain the sys-
tem in (4.64), and it is verified that the pair (A,E) is controllable and the pair
(A,M) is observable for every L, i.e., Assumption 4.3.1 holds. Thereafter, G(s) is
constructed using the matrices of the loop-transformed system. Then, it is guaran-
teed that G(s) is SPR, it is first verified that for all L ∈ {0, 1, 5, 15, 20} the transfer
function G(s) is Hurwitz, which is verified by computing the poles and checking that
they reside in the open left-half plane. Thereafter, it is graphically validated that
re(G(jω)) > 0 ∀ω ∈ [−∞, ∞]. This is validated in Fig. 4.16; it is clearly shown that
for all considered values of L the real part of G(jω) is strictly positive. Finally, it is
verified that G(∞) > 0. This is also the case for all L ∈ {0, 1, 5, 15, 20}.

From these results, it is concluded that the nonlinear closed-loop ventilation system
is incrementally uniformly globally exponentially stable for ∆p ∈ [−20, 20] mbar and
that this controller solves the harmonic regulation problem. Next, the performance
of the different controllers is analyzed through experiments.

Experimental results for mechanical ventilation. The main experimental re-
sults are shown in Fig. 4.17 and 4.18. The time-domain results of the 20th breath
with the integrator only, i.e., L = 0, and the repetitive controller with 20 oscillators,
i.e., L = 20, are visualized in Fig. 4.17. The top plot shows the reference and the
measured outputs and the bottom plot shows the tracking error for both controllers.
The figure clearly shows that the tracking error is significantly reduced by the con-
troller. The overshoot is eliminated and the rise-time is significantly shorter. Note
that the residual error contains oscillatory behavior, especially during the expira-
tion at the PEEP level, i.e., between 82 and 84 seconds. These oscillations contain
mostly frequency content higher than 20 times the breathing frequency, i.e., above
5 Hz. It is observed that the tracking error’s frequency content at frequencies above
the Lth harmonic is increased.

The L2-norm of the error per breath for every controller is shown in Fig. 4.18. The
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Figure 4.16: Nyquist plot of G(s) for L = 0 ( ), L = 1 ( ), L = 5 ( ), L = 15 ( ),
and L = 20 ( ). The figure shows that re(G(jω)) > 0∀ω ∈ [−∞, ∞].

L2-norm of the error of a particular breath j is defined as

|e|2 =




jρ∑

k=1+(j−1)ρ

|e(k)|2



1

2

with ρ = T
∆T

and ∆T the sampling time. The figure clearly shows that increasing the
number of oscillators reduces the L2-norm of the error upon convergence. Including
20 oscillators in the loop reduces the L2-norm of the error by more than a factor 3
compared to integral action only. Furthermore, it is observed that the convergence
time is longer for an increasing number of oscillators and the controller with 20
oscillators converges in approximately 15 breaths.

Concluding, all controllers show convergent behavior in the experiments, as expected
by the analysis. Furthermore, the tracking error is reduced significantly, by more
than a factor 3, by including the harmonic control. The Fourier coefficients of the
steady-state output error e(t) are suppressed at the frequencies w = k 2π

T
, k =

0, 1, . . . , L.

Analysis of conservatism To analyze how conservative the convergence properties
of Proposition 4.3.2 are, an experimental use case is presented where the SPR prop-
erties are violated. This is achieved by considering a ventilation use-case with lung
parameters that represent a baby patient, i.e., Clung = 3 mL/mbar and Rlung = 50
mbar s/L. The same hose and blower system as for the adult use case is used, hence,
the same sector conditions for the linearity can be used. Furthermore, the same
harmonic control design as for the adult use case is followed for L = 20. The trans-
fer function G(s) is computed for this system and visualized in Fig. 4.19. This
figure clearly shows that the second condition for SPR transfer functions is violated
for L = 20. Therefore, the desired convergence properties of the system cannot be
guaranteed for this controller design with L = 20 oscillators.

The resulting L2-norm of the error per breath is shown in Fig. 4.20. This figure
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Figure 4.17: The time domain results upon convergence for L = 0 ( ) and L = 20 ( ),
and the target pressure ( ). The figure shows that the error is significantly reduced by
the harmonic controller.

Figure 4.18: The L2-norm of the error for every breath for L = 0 ( ), L = 1 ( ), L = 5
( ), L = 15 ( ), and L = 20 ( ). The figure shows that more oscillators results in a
smaller error and the controllers converge in approximately 10 breaths.

clearly shows that the system behaves unstable for L = 20. Concluding, this use-case
shows that the sufficient conditions in Proposition 4.3.2 have limited conservatism,
which is a desirable property for practical controller design because it allows more
design freedom.

Remarks on the proposed design. In the experimental analysis, especially in
the baby use case, it is observed that the remaining error consists of oscillations at
frequencies above the harmonics of the Lth oscillator. These oscillations in the error
are increasing for an increasing number of oscillators, limiting the overall tracking
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Figure 4.19: Nyquist plot of G(s) for L = 20 ( ) for the baby use-case. The figure shows
that re(G(jω)) > 0∀ω ∈ [−∞, ∞] does not hold, hence, convergence is not guaranteed.

Figure 4.20: The L2-norm of the error for every breath for L = 0 ( ), and L = 20 ( )
for the baby use-case. The figure shows unstable behavior for that the closed-loop system
with L = 20.

performance. Especially in other use-cases, it is observed that increasing the number
of oscillators can significantly deteriorate the system performance. This effect can
be explained by analyzing the sensitivity Sre, i.e., the transfer function from the
reference r to the tracking error e, of a linearization of the closed-loop ventilation
system. This linearized closed-loop system is obtained by replacing the nonlinearity
in Fig. 4.13 by a linear resistance, i.e., Rhose(∆p) is replaced by ∆p

Rlin
with Rlin = 2

φ+φ
,

and ℓ = 0. The resulting Bode magnitude plot of Sre is shown in Fig. 4.21. This
Bode magnitude plot clearly shows that the tracking error is zero at the harmonics
of the breathing frequencies. However, it also shows an increase in magnitude at
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Figure 4.21: Bode magnitude plot of the sensitivity Sre for the linearization of the closed-
loop system with L = 0 ( ), L = 1 ( ), L = 5 ( ), L = 15 ( ), and L = 20 ( ).
The figure shows a magnitude increase at frequencies around 8 Hz, causing oscillations at
these frequencies.

a frequency above the oscillator frequencies. The magnitude at these frequencies
is increasing for an increasing number of oscillators. This increase in magnitude
causes the oscillations at these frequencies as shown in the experiments. Therefore,
in future work, it should be analyzed how this increase in magnitude at these specific
frequencies can be eliminated.

4.4 Conclusions and perspectives

In this chapter, we considered two, separate, practical applications. First, we consid-
ered a robust output set-point tracking problem for a power flow controller. Power
flow controllers are electrical circuits that have to regulate on a constant value the
power of the lines to which they are attached. The tracking task has to be achieved
despite the uncertainties that are present in the electrical network. To achieve such
a goal, first, we provided a state-space-based model of the power flow controller.
This resulted in a bilinear system coupled with a polynomial output. Then, we
constructed a dynamic state-feedback control law design. The plant is extended
with an integral action processing the regulation error and a saturated stabilizer for
the extended dynamics has been provided with forwarding tools specialized for the
case of bilinear systems coupled with a polynomial output. In a separate section,
we studied the harmonic regulation problem for a ventilation machine. A ventila-
tion machine is a medical device that is used to help patients breathe. For this, a
periodic regulation task on the pressure in the patient’s lungs has to be achieved.
To do so, first, we provided a state-space model for the system. This resulted in a
Lur’e system. Then, we constructed a dynamic output-feedback control law. The
plant is extended with a bunch of linear oscillators at the frequencies of the periodic
signal that has to be tracked. Then, a pure output feedback in the internal model
dynamics is used to stabilize the extended system. Stability is claimed using an
incremental version of the circle criterion. In both cases, the theoretical results have
been validated with experiments.

Future studies will focus on the following aspects.

• For the power flow controller, the focus will be on the meshed role that the
device has. In particular, we provided a control action for the single unit.
However, power flow controllers have to operate in meshed networks. A pos-
sible study will be therefore to analyze the case in which multiple loads and
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generators are connected to the network through (or without) other DC/DC
converters.

• For the machine ventilation a possible extension can be to look for a more
constructive design for the feedback stabilizer, and to try to see whenever
passivity properties could be exploited to design alternatives control laws (see
Remark 4.3.4).
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RESUMÉ

Contexte

Cette thèse traite la notion de stabilité incrémentale et son application dans le
contexte de la conception de commandes pour des systèmes non linéaires. Le
manuscrit est divisé en quatre chapitres principaux, chacun d’entre eux traitant
de sujets différents mais strictement liés entre eux. Dans le premier chapitre,
nous étudions la notion de stabilité incrémentale pour les systèmes de contrôle non
linéaires. Plus précisément, on dit qu’un système est stable de manière incrémentale
si différentes trajectoires du même système convergent asymptotiquement entre
elles. Une telle notion est intéressante en raison de certaines propriétés que les
systèmes incrémentalement stables partagent, telles que la périodicité des trajec-
toires, la robustesse par rapport aux perturbations externes et bien d’autres. Parmi
les différents outils permettant d’étudier une telle notion, nous nous concentrons
sur l’approche dite ‘métrique’ (Riemannienne). Bien que la théorie des systèmes
incrémentalement stables suscite beaucoup d’intérêt de la part de la communauté
mondiale des contrôleurs, plusieurs questions ouvertes doivent encore être résolues,
concernant l’analyse des propriétés incrémentales et la conception des commandes
en boucle fermée permettant d’atteindre la stabilité incrémentale.

Dans le deuxième chapitre, nous nous concentrons sur le problème de la régulation
de la sortie. L’objectif est de concevoir une loi de commande (dynamique) telle que
la sortie d’un système non linéaire soit capable de suivre asymptotiquement une
référence et, en même temps, de rejeter les perturbations externes. En particulier,
nous cherchons à obtenir une régulation ‘globale’ de la sortie, ce qui signifie que la
tâche de régulation doit être accomplie indépendamment de la condition initiale et
de l’amplitude des signaux externes. Le challenge est de garantir l’existence d’une
solution en régime permanent sur laquelle l’erreur de régulation est nulle pour toute
valeur des signaux externes, et la convergence des trajectoires d’une telle solution
pour toute condition initiale. Si les outils permettant d’obtenir une régulation pour
les systèmes à phasage minimal sous forme normale sont bien développés, on en sait
beaucoup moins pour des classes de systèmes plus générales, en particulier lorsque la
régulation globale est le but recherché. Par conséquent, de nouveaux outils doivent
être développés. Dans notre approche en particulier, nous plaçons le problème de la
régulation dans le cadre incrémental.



Dans le troisième chapitre, nous nous concentrons sur le problème de la synchronisa-
tion multi-agents. Ici, nous considérons un groupe d’entités identiques qui commu-
niquent entre elles par le biais d’un protocole de communication. L’objectif ici, est
la conception d’une loi de contrôle du couplage distribué tel que ces entités parvien-
nent à un consensus. Alors que la théorie des systèmes linéaires est bien développée,
de nombreuses questions restent ouvertes pour les systèmes non linéaires ayant une
formulation générale. Dans notre approche, nous plaçons le problème de synchroni-
sation dans un cadre incrémental. Ce choix est motivé par le fait que, si les agents
sont décrits par le même modèle, alors le problème de synchronisation correspond à
la conception d’une loi de contrôle distribuée telle que différentes trajectoires de la
même équation différentielle convergent asymptotiquement entre elles.

Dans le quatrième et dernier chapitre, nous nous concentrons sur deux applications
pratiques. En particulier, nous considérons deux problèmes distincts. Le premier
problème est un problème du suivi du point de consigne pour un contrôleur de flux
de puissance. Un contrôleur de flux de puissance est un circuit électrique dont le
rôle est de réguler la puissance sur les lignes auxquelles il est attaché, malgré les
incertitudes paramétriques de la centrale et sur les références à suivre. Le second
problème est un suivi de trajectoire périodique pour une machine de ventilation. Une
machine de ventilation est un équipement médical utilisé pour aider les patients à
respirer. L’objectif ici, est de concevoir une loi de commande telle que la machine
soit capable de suivre un signal périodique de pression représentant la phase de
respiration, malgré l’incertitude sur les paramètres.

Contributions principales

Dans le Chapitre 1, nous étudions les propriétés incrémentales des systèmes non
linéaires avec une approche métrique. Nous rappelons quelques résultats de la
littérature sur les propriétés que possèdent les systèmes incrémentaux. Nous étudions
ensuite les propriétés incrémentales ISS. Pour conclure, nous cherchons à concevoir
des lois de contrôle par rétroaction pour que le système en boucle fermée possède
des propriétés incrémentales. Les principales contributions de ce chapitre peut être
trouvée dans les publications de l’auteur Giaccagli et al. (2022a,b,c,d).

Contribution 1: Grâce à la notion de ‘champ de Killing’, nous dérivons des con-
ditions suffisantes basées sur des métriques pour qu’un système soit incrémental
ISS.

Contribution 2: Nous fournissons un ensemble de conditions suffisantes pour la
conception de lois de contrôle par rétroaction atteignant des propriétés incrémentales
pour le système en boucle fermée. En particulier : i) nous déduisons un théorème
de petit gain incrémental basé sur des métriques ; ii) nous développons une ver-
sion incrémentale des techniques de contrôle par forwarding ; iii) nous fournissons
un ensemble de conditions LMI pour les systèmes avec des non-linéarités limite
secteur.

Dans le Chapitre 2, nous étudions le problème de la régulation de la sortie globale.
Nous plaçons le problème dans le cadre de la contraction. Nous étudions deux
problèmes séparément : le problème du suivi d’une référence constante et le problème
de la cancellation harmonique. Les principales contributions de ce chapitre peut être



trouvée dans les publications de l’auteur Giaccagli et al. (2020, 2021b, 2022d).

Contribution 3: Nous fournissons un ensemble de conditions suffisantes pour
réaliser le suivi global du point de consigne à sortie constante et le rejet des per-
turbations pour les systèmes non linéaires, qui n’admettent pas nécessairement
un difféomorphisme globalement défini permettant de les réécrire sous forme nor-
male.

Contribution 4: Nous fournissons un ensemble de conditions suffisantes pour
obtenir une régulation harmonique globale d’une trajectoire périodique d’un système
non linéaire, qui n’admet pas nécessairement un difféomorphisme globalement défini
permettant de la réécrire sous forme normale.

Dans le Chapitre 3, nous étudions le problème de la synchronisation multi-agents.
Nous formulons le problème avec des outils incrémentaux. Ensuite, nous étudions
la synchronisation des réseaux dans le cadre Euclidien et la synchronisation vers un
leader dans le cadre Riemannienn. Ensuite, dans ce deuxième cas, nous fournissons
un algorithme basé sur un réseau neuronal profond pour la mise en œuvre pratique
de la loi de contrôle de contrôle de synchronisation. Les résultats présentés dans ce
chapitre ont été obtenus en collaboration avec Samuele Zoboli, LAGEPP, Université
de Lyon 1 (Villeurbanne, France) qui s’est occupé de la partie apprentissage. Les
principales contributions de ce chapitre peut être trouvée dans les publications de
l’auteur Giaccagli et al. (2021a, 2022e).

Contribution 5: Nous dérivons un ensemble de conditions suffisantes basées sur
une analyse de la métrique Euclidienne pour la synchronisation des réseaux dirigés
connectés de systèmes non linéaires.

Contribution 6: Nous dérivons un ensemble de conditions suffisantes basées sur
une analyse de la métrique de Riemaniann pour la synchronisation vers un leader
de réseaux non dirigés connectés de systèmes non linéaires. Un algorithme général
basé sur des réseaux neuronaux pour la mise en œuvre est présenté.

Dans le Chapitre 4, nous étudions deux applications pratiques. En particulier,
nous considérons un problème de suivi robuste de la consigne de sortie pour un
contrôleur de flux de puissance et un problème de régulation harmonique pour une
machine de ventilation mécanique. Les résultats de ce chapitre ont été obtenus
avec Tanguy Simon et ses collaborateurs au Laboratoire Ampère de l’INSA de Lyon
(Villeurbanne, France) pour le contrôleur de puissance et avec Joey Reinders et ses
collaborateurs du collaborateurs du Département d’Ingénierie Mécanique, Université
de Technologie d’Eindhoven (Eindhoven, Pays-Bas) pour la machine de ventilation.
Dans les deux cas, l’autre équipe s’est occupée de la modélisation et de la partie
expérimentale. Les principales contributions de ce chapitre peut être trouvée dans
les publications de l’auteur Simon et al. (2021a, 2022); Reinders et al. (2022).

Contribution 7: Nous concevons et mettons en œuvre une loi de contrôle dy-
namique robuste par forwarding pour le contrôleur de flux de puissance permettant
un suivi robuste du point de consigne de sortie. La loi de contrôle est validée par
des résultats expérimentaux.



Contribution 8: Nous concevons et mettons en œuvre une loi de contrôle dy-
namique basée sur un critère de cercle incrémentiel pour la machine de ventilation
mécanique permettant une régulation harmonique robuste. La loi de contrôle est
validée par des résultats expérimentaux.

Publications
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ci-dessous.

Articles journal:

• Giaccagli, M., Astolfi, D., Andrieu, V., and Marconi, L. (2021). Sufficient
conditions for global integral action via incremental forwarding for input-affine
nonlinear systems. IEEE Transactions on Automatic Control.

• Giaccagli, M., Andrieu, V., Tarbouriech, S., and Astolfi, D. (2022). Infinite
gain margin, contraction and optimality: an LMI-based design. European
Journal of Control, 100685.

• Giaccagli, M., Zoboli, S., Astolfi, D., Andrieu, V., and Casadei, G. (2022).
Synchronization in networks of nonlinear systems: contraction metric analysis
and deep-learning for feedback estimation. Submitted to IEEE Transactions
on Automatic Control.

• Giaccagli, M., Andrieu, V., Tarbouriech, S., and Astolfi, D. (2022). LMI
conditions for contraction, integral action and output feedback stabilization
for a class of nonlinear systems. Submitted to Automatica.

• Giaccagli, M., Astolfi, D., Andrieu, V., and Marconi, L. (2022). Incremen-
tal stabilization of cascade nonlinear systems and harmonic regulation: a
forwarding-based design. Submitted to IEEE Transactions on Automatic Con-
trol.

• Giaccagli, M., Astolfi, D., and Andrieu, V. (2022). A metric approach to
incremental stability. In preparation.
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Chapitre 1: stabilité incrémentale

Introduction

La stabilité est un concept varié. Selon le problème de contrôle à résoudre, différentes
notions de stabilité peuvent être étudiées. Les exemples classiques sont la stabilité
d’un point d’équilibre dans un problème de stabilisation, la stabilité d’une variété
ou la stabilité d’une trajectoire particulière du système. Tous ces exemples ont
un point commun : nous étudions le comportement des trajectoires du système
par rapport à un élément fixe (point d’équilibre, variété ou trajectoire). Dans ce
manuscrit, nous allons étudier une notion différente de la stabilité, appelée stabilité
incrémentale. Dans ce contexte, nous ne sommes pas intéressés à étudier comment
les trajectoires d’un système se comportent par rapport à un élément fixe, mais
plutôt comment les trajectoires se comportent les unes par rapport aux autres.
L’intérêt est dû au fait que, dans ce cas, nous n’avons pas besoin de connâıtre
et/ou de supposer l’existence d’éléments fixes. Par conséquent, les propriétés des
systèmes incrémentaux sont plus fortes que celles qui seraient obtenues en résolvant
un problème de stabilisation.

Considérons un système décrit par

ẋ = f(x, t) (R.1)

où x ∈ R
nx est l’état et f : Rnx × R 7→ R

nx est un champ vectoriel suffisamment
lisse. Soit X(x0, t, t0) la trajectoire du système avec les conditions initiales (x0, t0) ∈
R
nx × R.

Définition 1 (Stabilité incrémentale). Disons que le système (R.1) est

• Incrémental Globalement Uniformément Stable (δGUS) s’il existe une fonction
α de classe-K telle que

|X(x1, t, t0)− X(x2, t, t0)| ≤ α(|x1 − x2|) ; (R.2)

• Incrémental Globalement Uniforme Exponentiellement Stable (δGUES) s’il ex-
iste deux nombres strictement positifs λ, k > 0 tels que

|X(x1, t, t0)− X(x2, t, t0)| ≤ k |x1 − x2| exp(−λ(t− t0)) (R.3)

pour tous (x1, x2, t) ∈ R
nx × R

nx × R.

La stabilité incrémentale n’est pas un concept nouveau (voir Giesl et al. (2022)).
Dans la littérature, il y a 3 méthodes pour étudier les propriétés incrémentales.
La première consiste à utiliser les normes logarithmiques (voir Sontag (2010)). La
seconde est une approche de Lyapunov (voir Forni and Sepulchre (2013a); Angeli
(2002)). La troisième approche est basée sur l’étude des métriques riemanniennes
(voir Lohmiller and Slotine (1998); Andrieu et al. (2016)). Dans ce manuscrit,
nous utiliserons cette dernière méthode. Il est en effet connu qu’un système est
incrémental s’il existe une métrique Riemannienne telle que le champ de vecteurs
génère des trajectoires dont la distance diminue de façon monotone dans le temps
(i.e. le mapping t 7→ X(x0, t, t0) est une contraction).

Théorème 1 (Métrique implique incrémentale). Considérez le système (R.1). S’il
existe une fonction matricielle C1 symétrique et définie positive P : Rnx × R 7→



R
nx×nx, deux nombres strictement positifs p, p et une fonction continue q : Rnx 7→

R≥0 tels que

LfP (x, t) ⪯ −q(x)P (x, t) , pI ⪯ P (x, t) ⪯ pI (R.4)

pour tous (x, t) ∈ R
nx × R. Alors:

• si q(x) ≥ 0 pour tous x ∈ R
nx, le système est δGUS;

• s’il existe un nombre strictement positif λ > 0 tel que q(x) ≥ λ pour tous
x ∈ R

nx, le système est δGUES.

Les mêmes conditions s’appliquent dans un ensemble compact et invariant D. Dans
ce cas, le système est incrémental en D.

Propriétés des systèmes incrémentaux

L’intérêt pour les systèmes incrémentaux est dû aux propriétés que ces systèmes
possèdent. En particulier, nous nous concentrons sur la périodicité des trajectoires
(et l’existence de points d’équilibre) et l’invariance par rapport aux difféomorphismes.
Les résultats suivants sont valables.

Lemme 1 (Trajectoires périodiques et points d’équilibre). Considérons le système
(R.1). Donc:

1. si le système est δGUES et f est périodique, c’est-à-dire qu’il existe T > 0
tel que f(x, t) = f(x, t + T ) pour tous t ≥ t0, alors les trajectoires convergent
asymptotiquement vers une solution périodique avec la même période T ;

2. s’il existe un point d’équilibre x⋆ tel que f(x⋆, 0) = 0 et le système est δGUS (re-
spectivement δGUES), alors x⋆ est Globalement Stable (respectivemente, Glob-
alemente Exponentiellement Stable);

3. si le système est δGUES et f est invariant dans le temps, alors il existe un
point d’équilibre x⋆ Globalemente Exponentiellement Stable

L’incrémentalité est une propriété des trajectoires et est donc invariante par rapport
aux difféomorphismes. Le résultat suivant l’affirme.

Lemme 2 (Invariance aux difféomorphismes). Considérons le système (R.1). Soit
φ un difféomorphisme globalement Lipschitz. Alors si (R.1) est δGUS (respective-
mente, δGUES), alors le système ż = fz(z, t) avec z = φ(x) est δGUS (respective-
mente, δGUES).

Remarque 1. Si les propriétés incrémentales ont été obtenues par une métrique P
avec le Théorème 1, alors

Pz(z, t) =

(
∂φ

∂x
(φ−1(z))

)−⊤

P (φ−1(z), t)

(
∂φ

∂x
(φ−1(z))

)−1

est une métrique pour le système dans les nouvelles coordonnées z.

Systèmes non-autonomes

Dans cette section, nous étudions les propriétés incrémentales pour les systèmes du
type

ẋ = f(x, t) + g(x, t)u (R.5)



où x ∈ R
nx est l’état, u ∈ U ⊂ R

nu est une entrée et f : Rnx × R 7→ R
nx , g :

R
nx×R 7→ R

nx×Rnu sont des champs vectoriels suffisamment lisses. Soit X(x, u, t, t0)
la trajectoire du système avec la condition initiale (x, t0) ∈ R

nx × R et l’entrée
u = u(t).

Définition 2 (Incrémentalement entrée-sortie stable). Nous disons que le système
(R.5) est:

• Incrémentalement Globalement Uniformément Entrée-Sortie Stable (δGUESS)
par rapport à u s’il existe une fonction α de classe-K telle que

|X(x1, u1t, t0)− X(x2, u2, t, t0)| ≤ α(|x1 − x2|) + sup
s∈[t0,t[

[αd(|u1 − u2|)] ; (R.6)

• Incrémentalement Globalement Uniformément Entrée-Sortie Exponentiellement
Stable (δGUESES) s’il existe deux nombres strictement positifs λ, k > 0 tels
que

|X(x1, u1, t, t0)− X(x2, u2, t, t0)| ≤ k |x1 − x2| exp(−λ(t−t0))+ sup
s∈[t0,t[

[αd(|u1 − u2|)] ;

(R.7)

pour tous (x1, x2, u1, u2, t) ∈ R
nx × R

nx × U× U× R, et pour une certaine fonction
αd de classe-K.

Cette notion a déjà été étudiée en Angeli (2002), mais pas par une approche métrique.
Pour étudier la stabilité incrementale entrée-état, nous introduisons la définition
suivante.

Définition 3 (Champ de Killing). Soit g : Rnx × R 7→ R
nx×nu un champ vectoriel

et P : Rnx × R 7→ R
nx×nx une fonction matricielle symétrique définie positive, les

deux C1. Nous disons que g est un champ de Killing pour P si LgP (x, t) = 0 pour
tous (x, t) ∈ R

nx × R.

Nous avons donc le résultat suivant, qui fournit des conditions suffisantes pour être
incrementalement entrée-état stable.

Théorème 2 (Métrique + Killing implique incremental ESS). Considérons le système
(R.5). Admetons qu’il existe une fonction matricielle C1 symétrique et définie pos-
itive P : Rnx × R 7→ R

nx×nx, deux nombres strictement positifs p, p et une fonction
continue q : Rnx 7→ R≥0 tels que (R.4) est valide. Supposons également que g est un
champ Killing pour P . Alors:

• si q(x) ≥ 0 pour tous x ∈ R
nx, le système est δGUESS;

• s’il existe un nombre strictement positif λ > 0 tel que q(x) ≥ λ pour tous
x ∈ R

nx, le système est δGUESES.

Conception de la commande en boucle fermée

En conséquence des propriétés des systèmes incrémentaux, de nombreux résultats
existent dans la littérature sur la façon de concevoir des lois de contrôle de rétroaction
pour un système afin d’obtenir des propriétés incrémentales (voir Zamani and Tabuada
(2011); Pavlov et al. (2006); Manchester and Slotine (2017); Tsukamoto et al. (2021)
et références). Dans cette section, nous proposons trois conceptions basées sur des
métriques.



Commande par petit gain incrémental pour des systèmes en rétroaction

Considérons un système du type

ẋ1 = f1(x1, t) + g1(x1, t)x2 , ẋ2 = f2(x2, t) + g2(x2, t)x1 (R.8)

avec état x = (x1, x2) et x1 ∈ R
nx1 , x2 ∈ R

nx2 . Dans cette section, nous voulons
dériver un théorème du petit-gain incrémental. Ce résultat a déjà été donné en
Angeli (2002), mais sans approche métrique. Dans ce qui suit, nous donnons le
résultat par une analyse métrique.

Lemme 3 (Petit gain incrémental). Considérons le système (R.8). Supposons qu’il
existe deux fonctions matricielles C1 symétriques et positives définies P1 : Rnx1 ×
R 7→ R

nx1×nx1 , P2 : Rnx2 × R 7→ R
nx2×nx2 et 6 nombres positifs p

1
, p1, λ1, p2, p2, λ2

tels que

Lf1P1(x1, t) ⪯ −λ1I , p
1
I ⪯ P1(x1, t) ⪯ p1I , Lg1P1(x1, t) = 0

Lf2P2(x2, t) ⪯ −λ2I , p
2
I ⪯ P2(x2, t) ⪯ p2I , Lg2P2(x2, t) = 0 .

S’il existe également deux nombres positifs g1, g2 tels que ||g1(x1, t)|| ≤ g1 et ||g2(x2, t)|| ≤
g2 et

λ1λ2 ≤ 8p1p2g1g2 ,

alors le système est δGUES.

Commande par forwarding incrémentale pour des systèmes en cascade

Considérons un système du type

χ̇ = fχ(χ) + gχ(χ)(u+ w(t)) , η̇ = Φη + v(χ) + w(t) (R.9)

avec état x = (χ, η) et χ ∈ R
nχ , η ∈ R

nη . Nous avons que w : R 7→ W ⊆ R
nw

est une perturbation et f(0) = 0 et v(0) = 0. Un système de cette forme est
dit en ‘feedforward’. Nous voulons développer une version incrémentale de la loi
de contrôle par forwarding (voir Mazenc and Praly (1996)). Nous avons donc les
hypothèses suivantes.

Hypothèse 1 (Stabilité en boucle ouverte et champ de Killing). Considérons le
système (R.9). On connâıt une fonction C1 ϕ0 : Rnχ 7→ R

nu, une fonction ma-
tricielle C1 prenant des valeurs symétriques et positives Pχ : R

nχ 7→ R
nχ×nχ et

trois nombres réels positifs réels positifs p
χ
, pχ, pχ tels que la fonction f0(χ) =

fχ(χ) + gχ(χ)ϕ0(χ) satisfait

Lf0Pχ(χ) ⪯ −pχI p
χ
I ⪯ Pχ(χ) ⪯ pχI , LgχPχ(χ) = 0

pour tout χ ∈ R
nχ.

Hypothèse 2 (Stabilité de Φ). Il existe une matrice symétrique définie positive
H = H⊤ ≻ 0 telle que HΦ + Φ⊤H ⪯ 0.

En bref, le forwarding est basé sur le fait qu’il existe une variété invariante pour
la dynamique η qui peut être exprimée par la solution d’une équation différentielle.
Dans notre étude, nous développerons le plus général forwarding mod{LgV } (voir
Praly et al. (2001)). Nous avons donc cette dernière hypothèse.



Hypothèse 3 (Forwarding mod{LgV }). On connâıt trois fonctions C1 M : Rnχ 7→
R
nη , ∆ : Rnχ 7→ R

nη et ϱ : Rnχ 7→ R
nu telles que, pour tout χ ∈ R

nχ , les conditions
suivantes sont vérifiées:

• les fonctions M et ∆ sont solution de LfχM(χ) = ΦM(χ) + v(χ) + ∆(χ);

• il existe une matrice Λ telle que LgχM(χ) = Λ pour tout χ et tel que le couple
(Φ, (HΛ)⊤) est détectable ;

• la fonction ϱ satisfait Λ
∂ϱ

∂χ
(χ) = −∂∆

∂χ
(χ);

• l’inégalité suivante est vérifiée LfχPχ(χ) + He

{
Pχ(χ)gχ(χ)

∂ϱ

∂χ
(χ)

}
⪯ −λI,

pour un certain λ > 0.

Nous avons donc le résultat suivant.

Théorème 3 (Forwarding incremental). Considérons le système (R.9) et supposons
que les hypothèses 1, 2 et 3 soient vérifiées. De plus, supposons qu’il existe existe

LM ≥ 0 tel que
∣∣∣
∣∣∣∂M∂χ (χ)

∣∣∣
∣∣∣ ≤ LM pour tout χ. Alors, pour tout gain κ > 0, le système

(R.9) en boucle fermée avec la loi de commande

u = ϕ0(χ) + κ(HΛ)⊤(η −M(χ)) + ϱ(χ)

est δGUESES par rapport à w.

Contrôle avec des LMIs pour des systèmes monotones/sectoriels

Considérons maintenant un système du type

ẋ = Ax+Gφ(z) +Rw(t) , z = Hx (R.10)

où A,G,R,H sont des matrices et où φ satisfait une des conditions suivantes.

Hypothèse 4. La fonction φ satisfait à l’une des conditions suivantes:

• (Limite secteur) il existe une matrice définie positive symétrique S = S⊤ ≻ 0
et une matrice Ω telle que

He

{
∂φ

∂z
(z)⊤S

[
∂φ

∂z
(z) + Ω

]}
⪯ 0 ;

• (Monotone) il existe une matrice définie positive symétrique Γ = Γ⊤ ≻ 0 telle
que

∂φ

∂z
(z) =

∂φ⊤

∂z
(z), 0 ⪯ He

{
∂φ

∂z
(z)

}
⪯ Γ .

L’idée est de ne considérer que des métriques Euclidiennes (matrice constante P )
et de dériver des conditions que nous exprimerons sous la forme d’inégalités ma-
tricielles linéaires (LMIs) pour l’analyse et la conception du contrôle afin d’obtenir
des propriétés incrémentales pour cette classe de systèmes.

Lemme 4 (LMIs pour l’analyse). Considérons le système (R.10) et supposons qu’il
existe une matrice P = P⊤ ≻ 0 et un nombre λ > 0 tels que



[
A⊤P + PA+ λI PG−H⊤Ω⊤S
(PG−H⊤Ω⊤S)⊤ −2S

]
⪯ 0

[
A⊤P + PA+ λI PG+H⊤

(PG+H⊤)⊤ −4Γ−1

]
⪯ 0

φ est limite secteur φ est monotone

alors le système est δGUESES par rapport à w.

Considérons maintenant

ẋ = Ax+Bu+Gφ(z) +Rw(t) , z = Hx (R.11)

et cherchons des conditions pour faire un contrôleur. Nous nous concentrons sur
des contrôleurs du type

u = α(x) = Kx+Nφ(z) . (R.12)

Ceci est dû au fait que le système en boucle fermée est encore une fois composé
d’un terme linéaire et d’un terme non linéaire satisfaisant à la condition de mono-
tonicité/limite secteur. Nous avons l’ensemble des résultats suivants.

Lemme 5 (LMIs pour la conception du contrôle). Considérons le système (R.11)
avec une non-linéarité φ qui satisfait à l’une des conditions monotone/limite secteur.
Ensuite:

• nous pouvons construire des LMIs telles que, si elles admettent une solution,
alors le système en boucle fermée avec (R.12) est δGUESES;

• nous pouvons construire des LMIs telles que, si elles admettent une solution,
alors le système en boucle fermée avec u = κα(x), où α est est défini dans
(R.12), est δGUESES pour tous κ ≥ 1 (contrôleur à marge de gain infinie).
Dans ce cas, nous pouvons construire une fonction de coût qui est minimisée
par une telle loi de commande;

• nous pouvons construire des LMIs telles que, si elles admettent une solution, le
système en boucle fermée avec le contrôleur en rétroaction de sortie donné par
(R.12) et l’observateur en Arcak et al. (2003) a l’origine qui est globalement
exponentiellement stable.



Chapitre 2: réglage de la sortie globale

Le problème dans lequel la sortie d’un système dynamique doit être ajustée asympto-
tiquement vers une référence et, en même temps, annuler les perturbations externes,
est appelé le problème de réglage de la sortie. Pour les systèmes linéaires, le problème
a été complètement résolu. La solution implique un contrôleur dynamique composé
de deux éléments. Le premier est le modèle interne : un système qui traite l’erreur
de contrôle et dont la dynamique est équivalente à celle de l’exosystème générant
les références et les perturbations. Le second est un stabilisateur pour le système
étendu. Voir, par exemple, Francis and Wonham (1976); Isidori et al. (2003). La so-
lution permet une conception séparée des deux unités, grâce au principe du modèle
interne. Le problème pour les systèmes non linéaires n’a pas encore été résolu. Pour
cette raison, la littérature sur le problème du réglage de la sortie est vaste, voir Ser-
rani et al. (2001); Isidori and Byrnes (1990); Astolfi et al. (2022a) et références. Dans
ce chapitre, nous traiterons le problème de la régulation de la sortie globale. Par
‘globale’, nous entendons que nous voulons résoudre le problème indépendamment
des conditions initiales du système et de l’amplitude des signaux externes. De plus,
nous voulons résoudre le problème sans faire appel aux formes normales. Pour cette
raison, nous encadrons le problème par des techniques incrémentales. Nous allons
aborder deux problèmes séparément. Le premier est le problème de la régulation de
la sortie constante. Le second est le problème de la régulation harmonique.

Régulation globale de la sortie constante

Dans ce chapitre, nous considérons un système du type

ẋ = f(x) + g(x)(u+ d) , e = h(x)− r (R.13)

où x ∈ R
nx est l’état, u ∈ R

nu est la commande, e ∈ R
ne est l’erreur de régulation

entre une sortie et une référence constante r et d est une perturbation constante.
Motivés par le cas linéaire, nous étendons le système avec une action intégrale

η̇ = e (R.14)

qui traite l’erreur de régulation et nous cherchons un contrôleur en rétroaction u =
α(x, η) pour le système en boucle fermée. Nous avons donc le problème suivant.

Problème 1 (Régulation globale constante de la sortie). Considérons le système
(R.13) étendu avec (R.14). Trouver un contrôleur du type u = α(x, η) tel qu’il existe
deux ensembles S ⊆ R

nx+ne et W ⊆ R
nu+ne, contenant leurs origines respectives tels

que :

1. si (d, r) = (0, 0) alors l’origine du système étendu est globalement asympto-
tiquement stable ;

2. pour chaque (d, r) ∈ W constantes et pour chaque condition initiale (x0, η0) ∈
S, le système en boucle fermée a des trajectoires bornées et, asymptotiquement
limt→+∞ e(t) = 0.

Alors disons que:

• si S et W sont non vides, le problème de la régulation régionale constante est
résolu;



• Si S = R
nx×ne et W = R

nu×ne le problème de régulation constante globale est
résolu;

• Si S n’est pas vide et que W est de la forme W = ∅×R pour un ensemble non
vide R ⊆ R

ne, le problème de suivi du point de consigne de la sortie constante
globale est résolu.

Nous utilisons des propriétés incrémentales pour résoudre le problème. En fait,
l’objectif est de garantir l’existence et la stabilité d’un point d’équilibre x⋆ pour
chaque w = (d, r). Cela peut être garanti si le système en boucle fermée est sta-
ble de manière incrémentielle. En fait, en réécrivant le système à boucle fermée
comme

χ̇ = φ(χ) + Γ(χ)w , φ(χ) :=

(
f(x) + g(x)α(x, η)

h(x)

)
, Γ(χ) :=

(
Γd(χ) Γr

)
,

avec Γ⊤
d (χ) = (g(x), 0) et Γr = (0,−I), grâce à l’action intégrale nous avons que 0 =

η̇ = h(x⋆)− r =⇒ h(x⋆) = r. Nous avons donc le résultat suivant.

Théorème 4 (Contraction implique action intégrale globale). Considérons le système
(R.13), (R.14). S’il existe une fonction C2 α : Rnx × R

ne 7→ R
nu, une fonction de

matrice C1 symétrique définie positive P : Rnx 7→ R
nx×nx, une fonction continue

positive q : Rnx 7→ R>0 et deux nombres réels positifs p, p tels que:

pI ⪯ P (x) ⪯ pI LφP (χ) ⪯ −q(χ)I , LΓP (χ) = 0 . (R.15)

Alors:

• s’il existe un nombre réel positif λ > 0 tel que q(x) ≥ λ pour tout x, alors le
problème de régulation globale à sortie constante est résolu;

• Sinon, nous avons les propriétés suivantes:

(a) Soit W un sous-ensemble non vide de R
nu×ne tel que, pour tout w ∈ W,

il existe une condition initiale x0 telle que la trajectoire correspondante
du système en boucle fermée X(x0, t) est bornée. Alors, le problème de
régulation régionale à sortie constante est résolu pour S = R

nx×ne et un
tel W;

(b) Il existe w > 0 tel que, le problème de régulation régionale à sortie con-
stante est résolu pour S = R

nx×ne et W = {w ∈ R
nu+ne , |w| ≤ w}

En plus, si LΓdP (χ) = 0 n’est pas vérifiée, alors les résultats 1) et 2) ci-dessus sont
valables pour le problème de suivi de consigne à sortie constante, en particulier avec
W de la forme W = ∅ × R, pour un certain R ⊆ R

ne.

Motivés par la structure en boucle fermée (R.13), (R.14), nous utilisons une loi
de contrôle par forwarding incrémental. Nous avons donc les hypothèses suiv-
antes.

Hypothèse 5 (Stabilité boucle ouverte). Considérons le système (R.13). On connâıt
une fonction C1 ϕ0 : Rnx 7→ R

nu, une fonction matricielle C1 prenant des valeurs
symétriques et positives P0 : Rnx 7→ R

nx×nx et trois nombres réels positifs p
0
, p0, p0

tels que la fonction f0(x) = f(x) + g(x)ϕ0(x) satisfait

Lf0P0(x) ⪯ −p0I , pI ⪯ P0(x) ⪯ pI , LgP0(x) = 0

pour tout x ∈ R
nx.



Puisque la dynamique x satisfait Hypothèse 5, l’origine est un point d’équilibre qui
est globalement asymptotiquement stable et localement exponentiellement stable.
Ainsi, pour (Mazenc and Praly, 1996, Lemma IV.2), il existe une fonction M qui
satisfait

Lf0M(x) = h(x) .

Hypothèse 6 (Contrôlabilité étendue). Il existe un nombre positif b > 0 qui satisfait
LgM(x)LgM

⊤(x) ⪰ bI pour tout x ∈ R
nx.

Cette deuxième hypothèse correspond à une hypothèse de contrôlabilité sur le système
étendu (x, η). Nous avons donc ce résultat.

Théorème 5 (Suivi du point de consigne de sortie régional). Considérons le système
(R.13) et supposons que les Hypothèses 5 et 6 sont vérifiées. Soit

Ψ(x) := LgM(x)⊤(LgM(x)LgM(x)⊤)−1 ,

et supposons également qu’il existe deux nombres LM > 0 et k1 ≥ 0 tels que∣∣∣∣∂M
∂x

(x)
∣∣∣∣ ≤ LM et

∣∣∣∣∂Ψv
∂x

(x)
∣∣∣∣ ≤ k1|v|, ∀v ∈ R

ne. Définissons β : R
ne 7→ R

ne

comme toute fonction C1 satisfaisant

|β(s)| ≤ 1
k1
, ∂β

∂s
(s) = ∂β⊤

∂s
(s) , 0 ≺ ∂β

∂s
(s) ⪯ I .

Alors, il existe un nombre positif κ⋆ tel que, pour chaque κ ∈ (0, κ⋆], le système en
boucle fermée avec (R.14) et

u = ϕ0(x) + κΨ(x)β(η −M(x))

il résout le problème régional de suivi de consigne à sortie constante pour un R ⊂ R
ne

non vide.

Le résultat précédent ne permet pas de faire un réglage global. La principale lim-
ite se trouve dans le fait que le terme LgM(x) n’est pas constant. Pour surmonter ce
problème, nous changeons nos hypothèses et utilisons le forwarding mod{LgV }.
Hypothèse 7 (Forwarding mod{LgV } incrémental pour l’action intégrale). On
connâıt deux fonctions C1 M : Rnx 7→ R

ne et ∆ : Rnx 7→ R
ne telles que, pour tout

x ∈ R
nx , les conditions suivantes sont vérifiées:

• les fonctions M et ∆ sont solution de Lf0M(x) = h(x) + ∆(x);

• il existe une matrice Λ telle que LgM(x) = Λ pour tout x et tel que rank(Λ) =
ne ;

• l’inégalité suivante est vérifiée Lf0P0(x)+He
{
P0(x)g(x)

∂∆
∂x

(x)
}
⪯ −2λ1I, pour

un certain λ1 > 0.

Dans ce cas, le terme LgM peut être compris comme une approximation du gain
DC entre la commande et la sortie. Nous avons donc le résultat suivant.

Théorème 6 (Retour d’état pour régulation globale de la sortie constante). Con-
sidérons le système (R.13) et supposons que les Hypothèses 5 et 7 sont vérifiées.

Supposons également qu’il existe un nombre positif LM > 0 tel que
∣∣∣
∣∣∣∂M∂x (x)

∣∣∣
∣∣∣ ≤ LM .

Alors, pour chaque κ > 0, le système en boucle fermée avec (R.14) et

u = ϕ0(x) + κΛ⊤(ΛΛ⊤)−1
(
η −M(x)

)
− Λ⊤(ΛΛ⊤)−1∆(x)

résout le problème de la régulation globale à sortie constante.



La méthode proposée est en retour d’état. Sous des hypothèses supplémentaires, une
rétroaction de sortie statique est possible. Dans ce cas, l’hypothèse supplémentaire
est que le système en boucle ouverte est suffisamment robuste. Le contrôleur devient
un pur contrôleur I avec un petit gain. Nous avons l’hypothèse suivante.

Hypothèse 8 (Robustesse pour rétroaction de la sortie). Il existe deux nombres
positifs a et λ2 tels que l’Hypothèse 7 est vérifiée et tels que

(
aP0(x)g(x)Ψ− 1

a

∂∆⊤

∂x
(x)

)(
aP (x)g(x)Ψ− 1

a

∂∆⊤

∂x
(x)

)⊤

+ Lf0P0(x) ⪯ −2λ2I

est valide avéc Ψ = Λ⊤(ΛΛ⊤)−1.

Sous l’hypothèse ci-dessus, nous pouvons concevoir une commande en rétroaction
de sortie pure résolvant le problème de régulation de sortie constante globale.

Théorème 7 (Retour de sortie pour régulation globale de la sortie constante).
Considérons le système (R.13) et supposons que les Hypothèses 5 et 8 sont valables.

Supposons également qu’il existe un nombre LM > 0 tel que
∣∣∣
∣∣∣∂M∂x (x)

∣∣∣
∣∣∣ ≤ LM . Alors

il existe un κ⋆ tel que, pour chaque κ ∈ (0, κ⋆], le système à boucle fermée avec (R.14)
et u = ϕ0(x) + κΨη résout le problème de régulation globale à sortie constante.

Nous soulignons les aspects suivants :

• pour les systèmes en forme normale à phase minimale, les hypothèses du
Théorème 7 sont toujours vérifiées. Dans ce cas, le contrôleur est linéaire
et consiste en un grand gain dans la variable e et un petit gain dans la variable
η. Cela montre que notre résultat se rapproche des résultats existants dans la
littérature pour cette classe de systèmes;

• pour les systèmes linéaires avec une non-linéarité Lipschitz, le contrôleur pro-
posé peut être réécrit comme des LMIs.

Régulation harmonique globale de la sortie

Dans cette section, nous considérons le problème de la régulation harmonique glob-
ale. En d’autres termes, nous considérons le système R.13 et faisons l’hypothèse
suivante.

Hypothèse 9 (Exosystème périodique). Les signaux r et d sont variables dans le
temps, lisses et périodiques, c’est-à-dire qu’il existe T > 0 tel que r(t) = r(t+ T ) et
d(t) = d(t+ T ) pour chaque t ≥ 0.

L’objectif est de construire un contrôleur dynamique tel que le contenu harmonique
de l’erreur de contrôle à certaines fréquences soit nul. Nous formulons notre problème
comme suit.

Problème 2 (Réglage harmonique global). Considérons le système (R.13). Trouvez
un contrôleur du type

η̇ = ϕ(η, e) , u = α(x, η) (R.16)

tel que :

1. si (d, r) = (0, 0) alors l’origine du système est globalement asymptotiquement
stable ;



2. pour chaque (d, r) ∈ R
nu × R

ne qui satisfait l’Hypothèse 9, le système en
boucle fermée a des trajectoires périodiques et bornées et l’erreur e(t) converge
asymptotiquement vers une solution sans contenu harmonique aux fréquences
ωℓ = ℓ2π

T
pour ℓ = 0, 1, . . . , L pour un certain L ≥ 0, c’est-à-dire que les

premiers L-coefficients de Fourier sont nuls

cℓ :=
1

T

∫ T

0

e(t) exp

(
2iℓπ

t

T

)
dt = 0, ∀ ℓ = 0, . . . L .

Comme dans le cas précédent, nous voulons résoudre le problème sans utiliser de
formes normales et obtenir des résultats globaux en termes de domaine d’attraction
des conditions initiales et d’amplitude des signaux externes. Nous encadrons à nou-
veau le problème avec des outils incrémentaux. En effet, si un système incrémental
est forcé par un signal périodique, la trajectoire est elle-même périodique avec la
même période. Motivés par Ghosh and Paden (2000); Astolfi et al. (2022a), nous
construisons le modèle interne (c’est-à-dire la dynamique η) comme une cascade
d’oscillateurs aux fréquences à éliminer et qui traitent l’erreur d’ajustement. En
d’autres termes, nous prenons

η̇ = Φη + Γe

avéc

Φ = blkdiag
(
0 ω1Φ1 . . . ωLΦ1

)
, Γ = blkdiag

(
Γ0 Γ1 . . . ΓL

)

et

Φ1 = blkdiag
(
ϕ, . . . , ϕ

)
=




ϕ
ϕ

. . .
ϕ


 , ϕ =

(
0 1
−1 0

)

avéc Γℓ = (γ, . . . , γ) où la paire (ωℓϕ, γ) est contrôlable. Nous recherchons ensuite
un stabilisateur pour le système en boucle fermée. Compte tenu de la structure du
système étendu, nous proposons un contrôleur basé sur le forwarding mod{LgV }
incrémental. Nous avons donc l’hypothèse suivante.

Hypothèse 10 (Forwarding mod{LgV } incrémental pour le réglage harmonique).
On connâıt trois fonctions C1 M : Rnx 7→ R

nη , ∆ : Rnx 7→ R
nη et ϱ : Rnx 7→ R

nu

telles que, pour tout x ∈ R
nx , les conditions suivantes sont vérifiées:

• les fonctions M et ∆ sont solution de Lf0M(x) = ΦM(x) + Γh(x) + ∆(x);

• il existe une matrice Λ telle que LgM(x) = Λ pour tout x et tel que le couple
(Φ,Λ⊤) est détectable ;

• la fonction ϱ satisfait Λ
∂ϱ

∂x
(x) = −∂∆

∂x
(x);

• l’inégalité suivante est vérifiée Lf0P0(x) +He

{
P0(x)g(x)

∂ϱ

∂x
(x)

}
⪯ −λI, pour

un certain λ > 0.

Nous avons donc le résultat suivant.

Théorème 8 (Régulation harmonique globale). Considérons le système (R.13)
étendu avec (R.16). Soit les Hypothèses 5 et 10 vérifiés. Supposons en outre qu’il



existe un nombre LM > 0 tel que
∣∣∣
∣∣∣∂M∂x (x)

∣∣∣
∣∣∣. Ensuite, pour chaque (d, r) ∈ R

nu×R
ne

satisfaisant l’Hypothèse 9, le système en boucle fermée avec le contrôleur dynamique

η̇ = Φη + Γe , ϕ0(x) + κΛ⊤(η −M(x)) + ϱ(x)

pour chaque κ > 0, résout le Problème 2.

Nous soulignons les aspects suivants :

• pour les systèmes en forme normale à phasege minimale, le résultat proposé
récupère les résultats existants dans la littérature. Le contrôleur est un grand
gain dans la variable e et un petit gain dans la variable (η −M(x));

• pour les systèmes linéaires avec une non-linéarité Lipschitz, nous proposons
un test qui, s’il est vérifié, satisfait automatiquement toutes les hypothèses du
Théorème 8.



Chapitre 3: synchronisation multi-agents

Dans ce chapitre, nous traitons du problème de la synchronisation multi-agents.
Dans ce cadre, nous avons N entités distinctes appelées agents qui communiquent
entre elles via un protocole de communication. L’objectif est de construire un
contrôleur distribué de manière à obtenir un consensus, c’est-à-dire un accord entre
les états des différents agents. Dans notre cas, nous considérons un réseau ho-
mogène, c’est-à-dire un réseau dans lequel le modèle décrivant chaque agent est le
même. Le problème n’est pas nouveau dans la littérature. Elle a été complètement
résolue pour les systèmes linéaires, voir (Isidori, 2017, Chapitre 5). Dans ce cas, le
problème peut être considéré comme un problème de stabilisation robuste (ou si-
multané). Pour les systèmes non linéaires, plusieurs solutions ont été proposées, voir
Isidori et al. (2014); Pavlov et al. (2022); Arcak (2007); Stan and Sepulchre (2007);
Casadei et al. (2019a) et références. Dans notre cas, nous encadrons le problème de
synchronisation avec des outils incrémentaux. Cela est dû au fait que le modèle est
le même pour chaque agent. Ils ne diffèrent que par leur condition initiale. Le rôle
du contrôleur est donc de faire oublier à l’agent individuel ses conditions initiales
et de faire en sorte que, asymptotiquement, deux trajectoires d’un même système
dynamique soient cöıncidentes. On retrouve en ce sens le concept de base de la
stabilité incrémentale. Dans nos résultats, nous considérons deux cadres différents.
Tout d’abord, nous considérerons les réseaux connectés et dirigés et encadrerons
le problème par des outils incrémentaux Euclidiens. Ensuite, nous considérons les
réseaux connectés par un leader et les réseaux indirects et nous encadrons le problème
par des outils incrémentaux Riemanniens.

Synchronisation des réseaux avec contraction Euclidienne

Dans cette section, nous considérons un réseau où chaque agent est décrit par

ẋi = f(xi, t) + Bui (R.17)

où xi ∈ R
nx est l’état de l’agent i, ui ∈ R

nu est le contrôleur de l’agent i, f :
R
nx×R 7→ R

nx est une fonction lisse et B est une matrice. Soit x l’état de l’ensemble
du réseau et ℓij les éléments du Laplacien L. Dans cette section, nous considérons
l’hypothèse suivante.

Hypothèse 11 (Graphe pour la synchronisation du réseau). Le graphe est connecté
et dirigé.

En d’autres termes, il existe un chemin entre chaque agent et chaque autre agent.
En outre, le graphe est dirigé, c’est-à-dire que les liens de communication peuvent
être unidirectionnels. Nous formulons notre problème comme suit.

Problème 3 (Synchronisation du réseau). Soit φ une fonction telle que la variété
de synchronisation

D := {x ∈ R
Nnx | xi = xj, for all i, j ∈ {1, . . . , N}} , (R.18)

est globalement uniformément exponentiellement stable pour le système en boucle
fermée

ẋi = f(xi, t) + Bui , ui =
N∑

j=1

ℓijφ(xj, t) (R.19)



c’est-à-dire qu’il existe deux nombres strictement positifs λ, k > 0 tels que

|X(x◦, t, t0)|D ≤ k exp(−λ (t− t0)) |x◦|D (R.20)

pour chaque t ≥ t0 dans le domaine d’existence des solutions. Nous disons alors
que le problème de synchronisation multi-agent global est résolu.

Motivés par le cas linéaire, nous recherchons un contrôleur robuste qui stabilise
l’origine de (R.17). Pour cette raison, nous nous concentrons sur une structure
impliquant un contrôleur avec une marge de gain infinie qui peut être obtenue en
résolvant une inégalité de Riccati. Dans ce cas, on associe chaque agent à une sortie
de type

yi = Cxi . (R.21)

Nous avons donc le résultat suivant.

Théorème 9 (Synchronisation du réseau avéc retour de sortie). Considérons un
réseau connecté où chaque agent est décrit par (R.17), (R.21). S’il existe une matrice
symétrique définie positive P = P⊤ ≻ 0, deux matrices D,E et deux nombres réels
positifs ρ, ε > 0 tels que

LfP (x, t)− ρC⊤E⊤EC ⪯ −εP , PBD = C⊤E⊤

pour tout (x, t), alors pour tout κ suffisamment grand, le système en boucle fermée
(R.19) avec φ(xj, t) = −κDEyj résout le problème de synchronisation multi-agent
global.

Synchronisation vers le leader avec contraction Riemannienne

Dans cette section, nous essayons d’étendre les résultats à une classe plus générale
de systèmes définis par

ẋi = f(xi, t) + g(xi, t)ui , yi = h(xi, t) (R.22)

avéc xi ∈ R
nx , ui ∈ R

nu et yi ∈ R
ny . Dans ce cas, supposons que nous ayons un

graphe leader connecté. En d’autres termes, il existe un agent, appelé ‘leader’, dont
le contrôleur est nul et pour lequel il existe un chemin entre le leader et chaque
autre agent. En outre, considérons un graphe indirect, c’est-à-dire que les liens de
communication sont bidirectionnels.

Hypothèse 12 (Graphe pour la synchronisation vers le leader). Le graphe est non
dirigé et connecté au leader. En d’autres termes, il contient au moins un arbre
couvrant avec le leader comme racine.

Nous formulons notre problème comme suit.

Problème 4 (Synchronisation vers le leader). Soit φ une fonction telle que la variété
de synchronisation (R.18) est globalement uniformément exponentiellement stable
pour le système en boucle fermée

ẋi = f(xi, t) + g(xi, t)ui , yi = h(xi, t) , ui =
N∑

j=1

ℓijφ(yj, t) (R.23)

c’est-à-dire qu’il existe deux nombres strictement positifs λ, k > 0 tels que (R.20) est
valide pour chaque t ≥ t0 dans le domaine d’existence des solutions du leader. Nous
disons alors que le problème de synchronisation multi-agent global vers le leader est
résolu.



Dans ce qui suit, nous considérons trois cas différents pour (R.23).

1.

Théorème 10 (Retour d’état complet). Considérons le système (R.23) avec
yi = xi. Supposons que l’Hypothèse 12 soit vérifiée. Supposons également
qu’il existe une fonction matricielle C1 symétrique et définie positivement P :
R
nx × R 7→ R

nx×nx et 4 nombres positifs p, p, ε, ρ tels que:

• l’inégalité de type Riccati suivante est satisfaite

LfP (x, t)−ρP (x, t)g(x, t)g⊤(x, t)P (x, t) ⪯ −εP (x, t) , pI ⪯ P (x, t) ⪯ pI ,
(R.24)

pour tous (x, t);

• Le champ vectoriel g est un champ de Killing pour P , c’est-à-dire LgP (x, t) =
0 pour tous (x, t);

• il existe une fonction C2 α : R
nx × R 7→ R

nu telle que
∂α⊤

∂x
(x, t) =

P (x, t)g(x, t) pour tous (x, t).

Alors, pour tout κ > 0 suffisamment grand, le système en boucle fermée (R.23)
avec φ(yj, t) = −κα(xj, t) résout le problème de synchronisation globale vers
le leader.

2.

Théorème 11 (Retour de sortie incrémental passif). Considérons le système
(R.23). Supposons que l’Hypothèse 12 soit vérifiée. Supposons également qu’il
existe une fonction matricielle C1 symétrique et définie positivement P : Rnx×
R 7→ R

nx×nx et 4 nombres positifs p, p, ε, ρ tels que:

• l’inégalité de type Riccati suivante est satisfaite

LfP (x, t)− ρ∂h
⊤

∂x
(x, t)∂h

∂x
(x, t) ⪯ −εP (x, t) , pI ⪯ P (x, t) ⪯ pI ,

pour tous (x, t);

• Le champ vectoriel g est un champ de Killing pour P , c’est-à-dire LgP (x, t) =
0 pour tous (x, t);

• on à que
∂h⊤

∂x
(x, t) = P (x, t)g(x, t) pour tous (x, t).

Alors, pour tout κ > 0 suffisamment grand, le système en boucle fermée (R.23)
avec φ(yj, t) = −κyj résout le problème de synchronisation globale vers le
leader.

3.

Théorème 12 (Retour de sortie avec entrée pleine). Considérons le système
(R.23) avec g(xi, t) = I. Supposons que l’Hypothèse 12 soit vérifiée. Sup-
posons également qu’il existe une fonction matricielle C1 symétrique et définie
positivement P : Rnx × R 7→ R

nx×nx et 4 nombres positifs p, p, ε, ρ tels que:

• l’inégalité de type Riccati suivante est satisfaite

LfP (x, t)− ρ∂h
⊤

∂x
(x, t)∂h

∂x
(x, t) ⪯ −εP (x, t) , pI ⪯ P (x, t) ⪯ pI ,

pour tous (x, t);



• Le champ vectoriel

α(x, t) = P−1(x, t)∂h
∂x
(x, t)

est un champ de Killing pour P , c’est-à-dire LαP (x, t) = 0 pour tous
(x, t).

Alors, pour tout κ > 0 suffisamment grand, le système en boucle fermée (R.23)
avec φ(yj, t) = −κα(xj, t)yj résout le problème de synchronisation globale vers
le leader.

Remarque 2. Nous notons que : les contrôleurs proposés peuvent être étendus aux
classes de systèmes en forme normale à phase minimale et aux systèmes linéaires
avec des non-linéarité sectorielle. Dans le premier cas, le régulateur est un grand
gain dans la variable yj. Dans le second cas, les conditions peuvent être réécrites
comme des LMIs. Dans les deux cas, nous récupérons les conditions existantes dans
la littérature, voir Chopra and Spong (2008); Zhang et al. (2014).

Apprentissage profond pour l’estimation de la métrique

Un des inconvénients de la méthode proposée dans la section précédente est le fait
qu’il est souvent difficile de trouver une métrique P non linéaire qui satisfasse les
conditions des théorèmes proposés. Dans cette section, nous cherchons des méthodes
pour compenser ce défaut. En particulier, nous donnons deux résultats. Tout
d’abord, nous montrons comment la synchronisation peut être obtenue dans un
domaine plus restreint mais avec des hypothèses plus légères (sans l’hypothèse du
champ de Killing). Ensuite, nous proposons un algorithme général basé sur les
réseaux neuronaux profonds pour l’apprentissage de la métrique.

Théorème 13 (Synchronisation sans champ de Killing). Considérons le système
(R.22). Supposons que l’Hypothèse 12 soit vérifiée et qu’il existe une fonction ma-
tricielle C1 prenant des valeurs définies positives symétriques P : Rnx×R 7→ R

nx×nx,
des constantes strictement positives p, p, ρ, ε > 0 et une fonction C2 α : Rnx × R 7→
R
nu telle que (R.24) soit vérifiée et ∂α⊤

∂x
(x, t) = P (x, t)g(x, t). Supposons que

X ⊂ R
Nnx soit un ensemble compact et que κ soit suffisamment grand. Alors,

il existe un nombre réel strictement positif ϵX > 0 tel que, si ||LgP (x, t)|| ≤ ϵX pour
tout (x, t) ∈ X × R, la trajectoire du réseau en boucle fermée (R.23) avec la loi de
commande distribuée à retour d’état φ(xj, t) = −κα(xj, t) à une convergence expo-
nentielle vers la varietè de synchronisation (R.18) pour toute existence temporelle
de solutions en X, c’est-à-dire pour tout tf ≥ t0 tel que Xi(x

◦
i , t, t0) ∈ X pour tout

t ∈ [t0, tf ) et pour tout i = 1, . . . , N .

Nous proposons maintenant un algorithme général basé sur des Réseaux Neuronaux
Profonds (RNP) pour résoudre les hypothèses du Théorème 13 (des conditions simi-
laires peuvent être dérivées pour les Théorèmes 11 et 12). L’utilisation de techniques
d’apprentissage automatique combinées à la théorie du contrôle n’est pas un sujet
nouveau, voir Zoboli et al. (2021); Sanchez-Escalonilla et al. (2021). Les mêmes
idées ont également été utilisées pour obtenir des propriétés incrémentales, voir
Tsukamoto et al. (2021); Wei et al. (2021). L’algorithme que nous proposons est le
suivant.



1. Nous construisons la métrique comme

P (xi, ϑ
′) =




p1(xi, ϑ
′) p2(xi, ϑ

′) · · · pn(xi, ϑ
′)

p2(xi, ϑ
′) pn+1(xi, ϑ

′) · · · p2n(xi, ϑ
′)

...
. . .

...
pn(xi, ϑ

′) p2n(xi, ϑ
′) · · · pM(xi, ϑ

′)


 ,

où M est le nombre d’entrées à apprendre, p = (p0(xi, ϑ
′), . . . , pM(xi, ϑ

′))⊤ est
la sortie du RNPP : Rnx×R

nϑ′ 7→ R
M et ϑ′ ∈ R

nϑ′ est le vecteur de paramètres
de la RNP.

2. Nous entrâınons le système neuronal en essayant de minimiser le coût

JP (x, ϑ
′) =

4∑

i=1

wiJi(x, ϑ
′),

où w = (w1, . . . , w4) est un vecteur de poids scalaires et

M1 = LfP (x, ϑ
′)− ρP (x, ϑ′)g(x)g⊤(x)P (x, ϑ′) + εI

M2 = LgP (x, ϑ
′)− ϵI

M3 = −LgP (x, ϑ′)− ϵI

M4 = −P (x, ϑ′) + pI

Ji(x, ϑ
′) = ln

(
max

(
ℜ
{
λM(Mi)

}
, 0

)
+ 1

)
, i = 1, . . . , 4

Notons comment chacun des coûts Ji sert à satisfaire l’une des conditions du
Théorème 10. En parallèle avec le RNP , nous entrâınons un estimateur de
paramètres qui fournit les valeurs de ρ, p, ϵ, ε.

3. Nous formons maintenant un deuxième réseau neuronal RNPα : Rnx ×R
nϑ′ 7→

R
nu pour satisfaire l’hypothèse d’intégrabilité. Soit ϑ” l’ensemble des paramètres

de RNPα. Essayons de minimiser le coût

Jα(x, ϑ
′′) =

∣∣∣∣
∣∣∣∣
∂RNPα
∂x

(x, ϑ′′)− g(x)⊤P (x, ϑ′)

∣∣∣∣
∣∣∣∣
2

.

4. En conclusion, nous appliquons au réseau le contrôleur défini par

ui = −κ
N∑

j=0

ℓijRNPα(xj, ϑ
′′) .

L’algorithme a été mis en œuvre avec succès dans un problème de synchronisation
vers un leader pour un réseau d’oscillateurs de Lorentz.
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Figure 22: Détail de la k-ième branche du PFC (à gauche) et le modèle de grille de
Thévenin proposé tel que vu par cette borne (à droite).

Chapitre 4: Applications

Dans ce chapitre, nous traitons deux applications pratiques. Le premier est un
problème de suivi robuste du point de consigne pour un Convertisseur de Flux
de Puissance (PFC). Ce dispositif est un circuit électrique utilisé dans les réseaux
électriques maillés dont le rôle est de réguler la puissance dans les lignes auxquelles
il est rattaché. Ceci doit être réalisé malgré l’incertitude des paramètres du système.
Le deuxième problème que nous abordons est un problème de régulation harmonique
robuste pour une Machine de Ventilation Mécanique (MVM). Ces dispositifs sont
utilisés dans le domaine médical pour aider les patients qui ne peuvent pas respirer
par eux-mêmes. Dans ce cas, l’objectif est le suivi d’un signal périodique représentant
la pression dans les poumons du patient. Ceci doit être réalisé sans une connaissance
parfaite du modèle du système. Les contrôleurs proposés pour les deux applications
ont été validés avec succès dans la pratique. Les deux applications ont été réalisées
en collaboration avec des équipes d’autres universités (Lab. Ampere, INSA, Lyon
pour le PFC et Université de Eindhoven, Pays-Bas pour la MVM).

Suivi robuste du point de consigne pour un Convertisseur de Flux de Puis-
sance

Un contrôleur de flux de puissance DC est un convertisseur DC-DC multi-terminal
situé à un noeud d’un réseau maillé. Son objectif est la régulation de la puissance
dans chaque ligne du nœud, malgré la forte intermittence des générateurs renouve-
lables. Plusieurs solutions ont été proposées pour résoudre une telle tâche, voir par
exemple Simon et al. (2021b); Natori et al. (2018); Barara et al. (2017). Cependant,
les résultats existants présentent plusieurs inconvénients : de l’absence d’un modèle
dynamique, à l’absence de preuve de stabilité, de la conception de la loi de contrôle
basée sur une connaissance complète des paramètres, à des domaines d’attraction
uniquement locaux. Dans cette section, un PFC avec nT -terminal est considéré.
Supposons un schéma de commutation PWM synchrone sur chaque branche, et sup-
posons que la dynamique du réseau soit partiellement inconnue pour tenir compte
de sa grande variabilité. Le circuit considéré est composé de nT convertisseurs
buck-boost identiques dont le côté haut est connecté en parallèle à un unique con-
densateur réservoir CR. Le réseau connecté à la borne k est modélisé par un circuit
équivalent de Thevenin, voir Fig. 22. Le système est modélisé dans l’espace d’état
comme un système bilinéaire couplé à une sortie polynomiale. L’état du système a
une dimensione 3nT + 1 et est constitué des courants et des tensions dans chaque
ligne, ainsi que de la tension sur le condensateur réservoir. Le vecteur d’entrée a une



dimension de nT et est constitué par le rapport cyclique de chaque borne et, pour
cette raison, il est saturé dans l’ensemble U = [0, 1]nT . La sortie est polynomiale et
elle est constituée par la tension sur le condensateur réservoir et les puissances sur
nT − 1 lignes (la dernière est automatiquement régulée à la valeur correcte). Par
conséquent, le modèle du CFP est

ẋ = A(θ)x+N(x)u+ q(θ) , y = Cx+H(x)x , u ∈ U , (R.25)

où x est l’état, u est la commande, y est la sortie, A(θ),C, q(θ), sont des matrices
dépendant d’un vecteur paramètre inconnu θ prenant des valeurs dans un ensemble
compact Θ et N(x),H(x) sont des matrices de fonctions polynomiales du second
ordre. Soit r ∈ R ⊂ R

nT le vecteur de référence sur lequel la sortie doit être réglée
et δ = (θ, r). Désignons par δnom la valeur nominale de δ. Le problème à résoudre
est le suivant.

Problème 5 (Réglage robuste du PFC). Étant donné un ensemble nominal de
paramètres (Θ,R) et δnom ∈ (Θ,R), trouvons des fonctions ϕ : Rnx × R

nη → R
nη et

α : Rnx × R
nη → U telles que pour tout ensemble compact arbitrairement grand de

conditions initiales il existe un δ > 0 talle que, pour tous δ tal que |δ − δnom| ≤ δ,
les trajectoires résultantes du système en boucle fermée avec le régulateur

η̇ = ϕ(x,η),

u = α(x,η)

sont bornés pour les temps positifs et limt→∞ y(t) = r.

Le contrôleur proposé est le suivant. Tout d’abord, nous étendons le système avec
une action intégrale qui traite l’erreur de contrôle

η̇ = y − r (R.26)

avec η ∈ R
nη . Grâce à l’action intégrale, si nous pouvons garantir l’existence d’un

point d’équilibre (x⋆,η⋆), alors nous avons que 0 = η̇ = y − r =⇒ y = r. Nous
réalisons ensuite un stabilisateur pour le système étendu. Le contrôleur proposé est
basé sur une rétroaction constante (réalisé par inversion du modèle) pour déplacer
le point d’équilibre vers l’origine et un second terme réalisé par des techniques par
forwarding spécialisées pour les systèmes bilinéaires à sortie polynomiale. En parti-
culier, nous pouvons montrer que les hypothèses suffisantes pour la mise en œuvre
de cette technique sont toujours satisfaites pour le système considéré et pour les
valeurs des paramètres et des références dans (Θ,R). Enfin, nous ajoutons une ac-
tion anti-windup ζ réalisée par une deadzone sur le contrôleur due au fait que u est
saturé en U. L’anti-windup nous permet d’atténuer les effets incontrôlés de l’action
intégrale causés par la saturation. Le schéma de commande final est illustré en Fig.
23. Ce résultat s’exprime de la manière suivante.

Théorème 14 (Suivi robuste du point de consigne de sortie pour le PFC). Con-
sidérons l’ensemble des références et des paramètres S pour lesquels il existe une
solution au problème. Soit δnom = (θnom, rnom) ∈ int{S} et (x⋆

nom
,u⋆

nom
) le point

d’équilibre correspondant où y = r. Ensuite, pour tout d > 0 suffisamment grand,
le Problème 5 est résolu avec le contrôleur dynamique

η̇ = ϕ(x,η) := y − r−Dzd(η −M(x− x⋆
nom

))

u = α(x,η) := u⋆
nom

+ Sat
1−u⋆

nom

−u⋆
nom

(ψ(x− x⋆
nom

,η))

ψ(x, z) = −
(
x⊤P (N(x) + B)− (η −M(x))⊤Ω (M0 + 2R(x)) (N(x) + B)

)⊤
,



r
+

∫
−
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+
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ẋ = A(θ)x + N(x)u + q(θ)
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x

Figure 23: Structure de contrôle proposée pour le PFC

où les matrices A,B,C et les fonctions N(x), H(x) sont définies comme suit

A := A(θnom) +

nT∑

j=1

Nju
⋆
nom,j, B := N(x⋆

nom
)

C := C+ 2H(x⋆
nom

), N(x) := N(x),

H(x) :=
[
H⊤

1 x . . . H⊤
nη
x
]⊤

= H(x), pour P,M satisfaisant

PA+ A⊤P ≺ 0 , MiA+ A⊤Mi =
1

2

(
Hi +H⊤

i

)
, ∀ i ∈ {1, . . . , nη} ,

M0 = CA−1 avec M(x) =M0x+ [M1x, . . . ,Mnηx]
⊤x et chaque Ω = Ω⊤ ≻ 0.

La solution proposée a été validée avec succès avec un montage expérimental avec un
PFC attaché à 3 terminaux et avec un montage en simulation avec un PFC attaché
à 5 terminaux.

Régulation harmonique pour une Machine de Ventilation Mécanique

Nous examinons ici un appareil de ventilation mécanique (MVM). Les ventilateurs
mécaniques sont des équipements essentiels dans les unités de soins intensifs pour
aider les patients qui ne peuvent pas respirer par eux-mêmes ou qui ont besoin
d’une assistance pour respirer suffisamment. Une ventilation à pression contrôlée
(PVC) est considérée. En raison de son importance critique, la modélisation et le
contrôle des dispositifs de PVC ont été intensivement étudiés. Un résumé des tech-
niques de modélisation et de contrôle des machines de ventilation mécanique peut
être trouvé dans Borrello (2005). En ce qui concerne les stratégies de contrôle,
les techniques de base font appel à des lois de contrôle linéaires. Il en résulte
généralement des comportements sous-optimaux, notamment en termes de perfor-
mances de suivi. D’autres stratégies de contrôle ont été proposées. Cependant,
ces solutions nécessitent généralement la connaissance d’un ensemble de paramètres
représentant la dynamique du patient, une information qui n’est généralement pas
parfaitement connue en raison des différentes typologies de patients.

D’un point de vue structurel, le système PVC est entrâıné par une soufflerie. Ce
ventilateur comprime l’air pour obtenir le profil de référence de pression souhaité
dans les poumons du patient. La pression des voies aériennes est augmentée pen-
dant l’inspiration (IPAP), afin d’atteindre la pression positive inspiratoire des voies
aériennes, remplissant les poumons du patient d’air. Ensuite, le ventilateur diminue
la pression jusqu’à la pression positive de fin d’expiration (PEEP), de sorte que l’air
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Figure 24: Représentation schématique du système souffleur-tuyau-patient, avec les
résistances, la compliance pulmonaire, les pressions et les débits correspondants.

contenu dans les poumons soit évacué. Du point de vue du contrôle, l’objectif d’un
MVM est d’assurer le suivi d’un signal. Un tel signal représente la pression dans
les poumons du patient pendant la phase de respiration. Il s’agit donc d’un signal
périodique.

Le système de machine de ventilation considéré peut être modélisé comme un système
dynamique non linéaire de forme Lur’e. Les principaux composants de ce système
sont la soufflante, le système tuyau-filtre et le patient. Un ventilateur centrifuge com-
prime l’air ambiant pour obtenir la pression de sortie souhaitée pout. La différence
entre pout et la pression des voies respiratoires paw résulte du débit de sortie Qout à
travers le tuyau. Ce tuyau est modélisé à l’aide d’un modèle de tuyau non linéaire.
Le flux à travers le tuyau, c’est-à-dire le flux de sortie Qout, est divisé en un flux
patient Qpat et un flux de fuite Qleak. La fuite prévue près du patient est utilisée
pour évacuer l’air riche en CO2 du système. Enfin, les poumons du patient sont
gonflés et dégonflés par le flux du patient. La Fig. 24 présente une structure en
bloc. Dans le système PCV, la pression près de la bouche du patient, la pression des
voies respiratoires paw, doit suivre une référence de pression cible souhaitée ptarget,
c’est-à-dire r := ptarget. Sur un intervalle périodique prédéfini, de longueur T , le
niveau de pression est augmenté jusqu’à l’IPAP, et par conséquent abaissé jusqu’à
la PEEP. Ces niveaux de pression variables garantissent le flux d’air souhaité dans
et hors des poumons du patient. La durée totale de la respiration T se compose
du temps d’inspiration Ti et du temps d’expiration Te, c’est-à-dire T = Ti + Te.
Le but de la commande du système PCV est d’obtenir une petite erreur de suivi
e := r−paw, où la référence r(t) est un signal variant dans le temps qui est parfaite-
ment périodique avec une longueur d’intervalle T , c’est-à-dire r(t) = r(t + T ) pour
un T > 0 connu et tous les t ≥ 0.

Le modèle de la MVM est défini par

ẋ = Ax+Bu+ Ew

y = Mx+Nw

w = −φ(y) = Rhose(y) + ℓy

v = Cx+Dw,

où x ∈ R
7 est l’état représentant la dynamique du patient Gb (obtenue par des

mesures de fréquence) et la dynamique des pertesGp, u ∈ R est le contrôle, y,w ∈ R,
v ∈ R est la sortie mesurée et A,B,E,M,N,C, et D sont des matrices réelles de
dimensions appropriées. Le modèle en boucle ouverte de la machine est présenté
dans la Fig. 25 La non-linéarité statique φ : R 7→ R satisfait φ(0) = 0, et la
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Figure 25: Schéma fonctionnel du système de ventilation complet, avec Gb la dynamique
du ventilateur, C un contrôleur de rétroaction arbitraire, Gp la dynamique de la fuite du
patient, et φ(∆p) = Rhose(∆p) + ℓ∆p le modèle non linéaire du tuyau.

condition de limite secteur incrémental suivante :

φ ≤ φ(y1)− φ(y2)

y1 − y2

≤ φ , (R.27)

pour tout y1 ̸= y2, pour certaines constantes non négatives connues 0 ≤ φ ≤ φ.
L’objectif de la commande est de réguler la sortie v du système à une référence r
bornée et périodique. Par conséquent, l’erreur de régulation de la sortie est définie
comme

e(t) := r(t)− v(t) . (R.28)

La solution proposée consiste à utiliser un contrôleur dynamique de la forme suiv-
ante

η̇ = ϕ(η, e) := Φη + Γe , u = α(η, e) := Kη

où η =
[
η0 ηT1 . . . ηTL

]⊤ ∈ R
(2L+1)×1 avec η0 ∈ R et ηk ∈ R

2×1 pour k = 1, . . . , L,

et où les matrices Φ ∈ R
(2L+1)×(2L+1), Γ ∈ R

(2L+1)×1, et K ∈ R
1×(2L+1) sont définies

par

Φ := blkdiag(0, ϕ1, . . . , ϕL) , Γ :=
[
γ0, γ

⊤
1 , . . . , γ

⊤
L

]⊤
, K := [κ0, κ1, . . . , κL] ,

(R.29)
où

ϕk := k




0
2π

T

−2π

T
0


 , k = 1, . . . , L, (R.30)

avec γ0 ̸= 0 le gain d’intégrateur tel que η0 embarque un intégrateur, et la matrice
γk ∈ R

2×1 est choisie de telle sorte que la paire (ϕk, γk) soit contrôlable pour tout
k = 1, . . . , L. Nous obtenons les résultats suivants :

• le choix de K et donc la stabilité du système en boucle fermée est obtenue par
une version incrémentale du critère circulaire. Cela garantit que le système en
boucle fermée est incrémentalement ESS par rapport à la référence r;

• puisque r est périodique, les trajectoires du système en boucle fermée seront
périodiques avec la même période;

• en raison du choix des matrices Φ et Γ, les coefficients de Fourier de l’erreur
associée aux fréquences ω = k 2π

T
pour k = 1, . . . , L sont asymptotiquement

nuls



Les résultats expérimentaux montrent également que non seulement le contenu
fréquentiel de l’erreur est nul aux pulsations définies par Φ, mais qu’en outre la
norme d’erreur tend asymptotiquement vers zéro d’une manière directement pro-
portionnelle au nombre d’harmoniques annulées, c’est-à-dire à la valeur de L. Ces
résultats ont été obtenus expérimentalement.
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