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Résumé vulgarisé

L’apprentissage sensorimoteur est l’acquisition d’aptitudes motrices par un individu, guidée par la
perception sensorielle, comme l’acquisition de la parole chez l’homme et les oiseaux chanteurs. Nous
utilisons les oiseaux chanteurs pour étudier les circuits neuronaux qui soutiennent l’apprentissage
sensorimoteur. Nous créons des modèles informatiques pour explorer l’utilité des voies corticales et sous-
corticales parallèles qui régissent l’acquisition du chant, et nous étudions l’interaction entre la plasticité
fonctionnelle et structurelle dans ces circuits. Inspirés par le comportement d’apprentissage vocal,
nous étudions les mécanismes biologiquement plausibles pour optimiser l’apprentissage sensorimoteur.
Nous étudions les corrélats neuraux de l’apprentissage par renforcement contribuant à l’apprentissage
vocal en observant l’activité neuronale dans le système de chant. En utilisant les approches théoriques
et expérimentales, nous espérons mieux comprendre l’apprentissage sensorimoteur.

Abstract

Sensorimotor learning refers to the acquisition of motor skills by an individual, guided by sensory
perception, for instance, learning to speak. Human speech acquisition is rather similar to vocal
learning by songbirds. Hence, we use songbirds to study the neural circuitry underlying sensorimotor
learning. We build computational models to explore the utility of parallel cortical and subcortical
pathways that govern song acquisition, and investigate the interplay between functional and structural
plasticity within this circuitry. Inspired from the vocal learning behaviour, we look at biologically
plausible mechanisms to optimise sensorimotor learning. We investigate the neural correlates of
reinforcement learning contributing to vocal learning by observing the neural activity in the song
system of male zebra finches. By using both theoretical and experimental approaches of neuroscience,
we hope to advance our understanding of vocal learning, and, in general, sensorimotor learning.





Architecture à double voie sous-jacent l'apprentissage vocal des oiseaux chanteurs

Résumé:
Les êtres humains peuvent maîtriser nombre d’aptitudes motrices. L’apprentissage sensorimoteur 
est l’acquisition de multiple aptitudes motrices par un individu, guidée par la perception 
sensorielle. Ici, nous examinons les circuits et mécanismes neuronaux qui peuvent soutenir 
l’apprentissage sensorimoteur. Les oiseaux chanteurs et leur comportement d’apprentissage 
vocal constituent une voie intéressante pour étudier les circuits neuronaux qui sous-tendent 
l’apprentissage sensorimoteur.

La plasticité structurelle est centrale dans le développement des circuits cérébraux liés au 
chant et nous étudions son rôle surement critique dans l’acquisition du chant chez les jeunes 
oiseaux. Nous expliquons la contribution de la plasticité structurelle dans un circuit pour 
aider l’apprentissage sensorimoteur. Dans le chapitre 2, nous examinons les différents types de 
plasticité et leurs interactions en contribuant à la fonction du circuit. Nous explorons les études 
de modélisation actuelles intégrant la plasticité structurelle.

Dans le chapitre 3, nous présentons le comportement d’apprentissage vocal chez les oiseaux 
chanteurs comme un bon exemple d’apprentissage sensorimoteur, ainsi que les circuits qui le 
sous-tendent. Nous établissons la pertinence de l’étude des oiseaux chanteurs en démontrant 
leurs similitudes frappantes avec le comportement humain ainsi que les parallèles avec les circuits 
neuronaux. Il a été démontré que le transfert des structures sous-corticales de type BG vers les 
voies corticales joue un rôle dans leur apprentissage vocal. Nous utilisons cet exemple spécifique 
d’apprentissage sensorimoteur pour étudier les contributions possibles de la plasticité structurelle 
et fonctionnelle à l’apprentissage sensorimoteur, dans un paradigme d’apprentissage en deux 
étapes.

Tout d’abord, nous examinons la possibilité d’un rôle fonctionnel joué par la plasticité 
structurelle dans l’apprentissage sensorimoteur, au chapitre 5. Il existe des preuves montrant le 
retard de maturation de la voie corticale, par rapport à la voie BG-thalamo-corticale. Nous 
enquêtions si ce retard dans le développement de la voie motrice corticale contribue directement 
à l’apprentissage vocal. Nous examinons cette question en créant une architecture simplifiée du 
système vocal et en simulant une tâche non linéaire analogue d’apprentissage sensorimoteur par 
un bras pivotant multi-segmenté.

Ensuite, nous examinons les stratégies biologiquement réalistes adoptées par l’oiseau chanteur 
pour résoudre le problème de la navigation dans un paysage sensorimoteur complexe et inégal. Il 
a été démontré qu’une détérioration post-sommeil de la qualité du chant chez les oiseaux juvéniles 
peut être associée à une éventuelle imitation supérieure, du chant du tuteur, à l’âge adulte. Nous 
nous inspirons de ces preuves empiriques concernant le comportement de l’apprentissage vocal 
et son anatomie sous-jacente. Nous établissons ensuite des parallèles avec les algorithmes utilisés 
en machine learning pour compléter l’apprentissage par renforcement basé sur la descente de 
gradient. Nous étudions d’abord ces questions à l’aide d’un modèle conceptuel, puis nous le 
renforçons en utilisant un réseau de populations de neurones à fréquence codée.

Finalement, nous examinons le transfert d’un tel apprentissage basé sur le BG dans le système 
de chant chez le diamant mandarin. Nous étudions les corrélats neuraux de l’apprentissage par 
renforcement contribuant à l’apprentissage vocal, dans le cadre de la double voie. Nous testons



cette hypothèse en utilisant un modèle computationnel simplifié du système de chant en simulant
la plasticité adulte. Nous utilisons ensuite l’électrophysiologie pour enregistrer les signaux
neuronaux du système de chant chez des diamant mandarin, pendant l’apprentissage vocal,
ce qui nous permet d’étudier l’interaction entre les noyaux du système de chant. En utilisant
les approches théoriques et expérimentales, nous espérons mieux comprendre l’apprentissage
sensorimoteur.

Mots-clés : L’apprentissage sensorimoteur, neuroscience, apprentissage par renforcement



Dual pathway architecture underlying vocal learning in songbirds

Abstract:
From learning to walk to riding a bike to playing tennis, human beings display a remarkable
ability to master a wide range of motor skills. Sensorimotor learning refers to the acquisition of
all such motor skills by an individual, guided by sensory perception. In this manuscript, we look
into the neural circuitry and mechanisms that can support trial-by-trial sensorimotor learning.
The animal model of songbirds along with their vocal learning behaviour provide an interesting
avenue to study the neural circuitry underlying sensorimotor learning.

Structural plasticity is central to the development of song-related brain circuits and we
investigate its possibly critical role in song acquisition in juvenile songbirds. We account for the
contribution of structural plasticity within a circuit towards facilitating sensorimotor learning.
In chapter 2, we look into the different types of plasticity and their interactions with each other
while contributing towards the function of the circuit. We explore current modelling studies
incorporating structural plasticity and unexplored questions which are raised by such models.

In chapter 3, we introduce the vocal learning behaviour in songbirds as a tractable instance
of sensorimotor learning, along with the circuitry underlying it. We establish the relevance of
studying the animal model of songbirds by demonstrating their striking similarities with respect
to human behaviour as well as parallels with neural circuitry. The transfer from subcortical BG-
like structures to cortical pathways has been shown to play a role in vocal learning in songbirds.
We use this specific instance of sensorimotor learning to study the possible contributions of
structural as well as functional plasticity to sensorimotor learning, within a two-step learning
paradigm.

First, we look into the possibility of a functional role played by structural plasticity towards
sensorimotor learning, in chapter 5. There is evidence showing the delayed maturation of the
cortical pathway, as compared to the BG-thalamo-cortical pathway. We investigate if this delay
in the development of the cortical motor pathway contributes directly towards vocal learning.
We look into this by building a simplified architecture of the song system, and simulating an
analogous non-linear task of sensorimotor learning by a multi-segmented pivoted arm.

Second, we take a closer look into biologically realistic strategies adopted by the songbird to
solve the problem of navigating an extremely complex and uneven sensorimotor landscape. It
has been shown that a post-sleep deterioration in song quality in juvenile birds can be associated
with an eventual superior imitation of tutor song during adulthood. We take inspiration from
such empirical evidences regarding both the behaviour of vocal learning and the underlying
anatomy supporting it. We, then, draw parallels with algorithms used in machine learning to
supplement gradient-descent based reinforcement learning. We, first, investigate these questions
using a conceptual model and then proceed to ratify it using a network of rate-coded neuron
populations.

Third, moving from the circuit level to a more granular scale, we look closely into the transfer
of such BG-driven learning within the song system in zebra finches. We posit a hypothesis to
investigate the neural substrates of reinforcement learning contributing to vocal learning, within
the dual pathway framework. We test this hypothesis using a simplified computational model
of the song system. We, then, use electrophysiology to record neural signals from the song



system in freely-behaving zebra finches, when subjected to a protocol to induce vocal learning in
adult songbirds, allowing us to study the interaction between nuclei in the song system during
sensorimotor learning.

By using both theoretical and experimental approaches of neuroscience, we hope to advance
our understanding of vocal learning, and, in general, sensorimotor learning.

Keywords: Sensorimotor learning, neuroscience, reinforcement learning
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1 Sensorimotor learning

From learning to walk to riding a bike to playing tennis, human beings display a remark-
able ability to master a wide range of motor skills. Sensorimotor learning refers to the
acquisition of all such motor skills by an individual, guided by sensory perception. Such
learning progresses by accounting for the perceived effect of the said action (Wolpert,
Diedrichsen, et al. 2011). It involves efficiently processing the sensory information regard-
ing the outcome of a motor action and thus, over time forming an expectation of the out-
come of one’s actions. Sensorimotor learning involves not only skill acquisition, but also
maintenance of skill, for instance, in response to injury or ageing. Moreover, sensorimo-
tor learning pertains to more than just the execution of motor action. It also involves the
swift selection of the optimal action in response to a given stimulus or scenario (Krakauer
et al. 2019). Certain instances of sensorimotor learning, such as habit formation, are inter-
twined with procedural learning, where several trials of a particular skill or sequence of
actions, leads to an implicit representation of the skill which is not necessarily accessible
to awareness (Knowlton et al. 2008). Sensorimotor learning can occur over a wide range
of timescales. On one end of the spectrum, certain skills can be learnt in one shot, often
by imitation. A child learning to produce a new word or an individual learning to draw a
character from a new script are both possible via one shot learning (Carey et al. 1978; Lake et
al. 2011) . On the other end of the spectrum, several motor skills require repeated practice
over years, as commonly observed within procedural learning (Knowlton et al. 2008).

Similarly, a variety of processes can govern sensorimotor learning. A statistical distribu-
tion of perceivable effects of motor action can be built, akin to the prior of a Bayesian in-
ference. This information can then be used to estimate the effect of future motor actions
and, thus, help select the appropriate action. Such an estimate can be updated continu-
ally, and thus, support maintenance of a skill within an evolving body, or adaptation to
change in the environment (Körding et al. 2006). Alternatively, sensorimotor learning can
proceed via error-based learning. Progress in motor skill acquisition is usually measured
by the reduction in perceived error of motor action or reaction time (Wolpert, Diedrichsen,
et al. 2011). In error-based learning, both the desired goal and metric of improvement to-
wards the goal can be quite subjective and purely intrinsic to the individual. Learning, in
itself, can be both intrinsically or externally motivated. Curiosity, for instance, is a form of
intrinsic motivation, which is well-exhibited by infants and children (Gottlieb et al. 2016).
Another example is the completely intrinsic desire of a songbird to sing in isolation, de-
spite it not necessarily being beneficial to the bird (Kim et al. 2021). On the other hand,
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1 Sensorimotor learning

external motivation can be presented in the form of goals or rewards in the environment,
either in concrete form, such as food, or abstract, such as appreciation. Such factors can
influence the objective or error perception of a task by an individual.

Alongside error-based learning, random exploration of motor actions, for e.g. infants
at play, can facilitate the formation of an internal inverse model, associating a particular
effect in the sensory phase with a particular motor action initiated by the agent. Such an
inverse model can be harnessed in imitative learning, where a motor skill can be learnt
quickly by recalling motor actions corresponding to specific target effects (Kuperstein
1988). Moreover, an agent can build a forward model to predict the sensory consequences
of a particular motor action (Ito 2000; Jordan et al. 1992; Sutton, Barto, et al. 1998). For in-
stance, the amount of force one applies to lift an unknown object is scaled as per their ini-
tial visual perception, and subsequent tactile perception. Such a forward model (possibly
also combined with the inverse model) can be used in error-based learning, where the im-
provement of a motor skill proceeds through an extensive trial-and-error process (Wolpert
and Flanagan 2001). However, random sampling in the motor space can be rather ineffi-
cient and does not necessarily induce uniform sampling in the sensory space (Benureau
2015). The outcome of such error-based learning can be refined further using reinforce-
ment learning (Wolpert, Diedrichsen, et al. 2011).

It has been widely hypothesised that the BG implements reinforcement learning in or-
der to convey tutor signals towards vocal learning (Doya and Sejnowski 1998; M. Fee et al.
2011; Fiete, M. S. Fee, et al. 2007; Wickens et al. 2003) (discussed further in chapter 5). Re-
inforcement learning involves an agent repeatedly interacting with the environment and
adapting their interactions, depending on their perception of the environmental response
(Sutton, Barto, et al. 1998). Under this paradigm, the agent requires the ability to, one,
modify its actions, two, perceive, evaluate and compare the effect of their actions against
an internal objective, and, three, choose actions which provide more favourable results.
There are several theories regarding the internal mechanisms that can provide these re-
quired elements and support reinforcement learning within neural circuitry, especially
within the avian song system (Doya and Sejnowski 1998; Farries and Fairhall 2007) (discussed
further in chapter 3). One, variability induced by different neural regions within the cen-
tral nervous system, as well as, motor effectors can enable an agent to modify its actions
and explore the varying outcomes of different actions. Two, dopaminergic projections
from the mid-brain have been implicated in several studies to transmit information con-
veying the error in outcome prediction (Schultz et al. 1997). Such feedback provides the
system with the ability to compare different action outcomes and evaluate them with re-
spect to the desired goal. Three, the system can, then,“reinforce” preferable motor actions
using experience-dependent synaptic plasticity within the relevant neural circuitry (Ding
et al. 2004a; Mehaffey et al. 2015). Thus, reinforcement learning seems to be a biologically
plausible mechanism to implement sensorimotor learning within neural circuits.

Several cortical and subcortical structures are known to be involved in governing sen-
sorimotor learning across species. Cerebellar-cortical as well as basal ganglia-thalamo-
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cortical loops have been shown to play a role in sensorimotor learning (Caligiore, Arbib,
et al. 2019). The cerebellum is essential for proper sensory and motor timing in the range
of milliseconds up to a second (Ivry et al. 1988). The cerebellum timing mechanisms sup-
port reinforcement learning in striatal-thalamo-cortical circuits, by providing error cor-
rection and sub-second timing signals to the basal ganglia (H. Chen et al. 2013; Schwartze
et al. 2016). In sub-second interval detection tasks, as learning proceeds, the need for mo-
tor and temporal adjustments decreases along with decreasing reliance on the cerebellum
(Caligiore, Arbib, et al. 2019; Ito 2013). Similarly, it has been observed that the basal ganglia
can influence slower learning mechanisms in the cortex (Murray et al. 2020). For instance,
during reversal training of a visuo-motor association task in monkeys, direction selectiv-
ity increased sooner and more abruptly in the caudate nucleus (a part of the striatum that
receives direct projections from, and indirectly projects to, the PFC), compared with the
pre-frontal cortex (PFC) (Pasupathy et al. 2005b). However, the literature on this matter
does not lead to a consensus across species. For instance, Kawai et al. (2015) demonstrate
transfer of learning in the opposite direction in rodents, where the motor cortex is re-
quired for learning but not for executing a motor skill.

In the context of transfer of learning, a two-step learning paradigm has been widely
discussed, wherein the initial learning stages are reliant on subcortical structures and the
learning is later progressively imprinted onto neocortical areas (Boraud et al. 2018a). The
basal ganglia, the hippocampus, the cerebellum are all involved with cortical loops that
can support this kind of transfer. The hippocampus has shown to be involved in the rapid
formation of novel memories, while these memories are gradually consolidated within
the neocortex (Buzsáki 1989; Milner et al. 1998). This has been evidenced in mice, amongst
other species, where increasing the retention interval in a spatial discrimination task re-
sulted in decreased hippocampal metabolic activity, along with a recruitment of certain
cortical areas (Bontempi et al. 1999; Eichenbaum 2014). However, while memory formation
is a specialised form of learning, it is not specifically sensorimotor learning. As per the
model proposed by Doyon et al. (2003) and Nicolson et al. (2007)’s hypothesis, two types
of mechanisms can govern procedural learning. They posit that one type of learning pro-
ceeds through perceptual-motor adaptation, and is dependent on the cortico-cerebellar
loop. Meanwhile, the second type of learning is concerned with memorising perceptual-
motor sequences, which depends on the cortico-striatal loop.

In this study, we focus on the striatal-thalamo-cortical network and how the basal gan-
glia may tutor neocortical motor areas, leading to the long-term storage of motor pro-
grams. In addition to primates as discussed above, the transfer from subcortical BG-like
structures to cortical pathways has been shown to play a role in vocal learning in songbirds
(Andalman et al. 2009a). The song-related BG circuit guides changes in motor output by
generating an error-reducing motor bias that is rapidly incorporated into the cortical pre-
motor network. In birds, as in mammals, it is believed that the adaptive motor changes
elicited by the BG are learned through a reinforcement learning mechanism (discussed
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1 Sensorimotor learning

further in chapter 3).

In this manuscript, we aim to investigate the neural circuitry and mechanisms under-
lying sensorimotor learning. More precisely, we look into the role of the structure of the
circuitry as well as its function towards learning. Neural plasticity is the ability of the
brain to undergo persistent functional or structural change, often in response to inter-
nal or external stimuli. Plasticity within nervous systems, is the primary substrate, which
allows animals to exhibit learning or adapt to a changing environment. In chapter 2,
we look into the different types of plasticity and their interactions with each other while
contributing towards the function of the circuit. For instance, functional plasticity, i.e.
experience dependent modification of synaptic strength, is crucial to implement learning
within neural circuitry (Citri et al. 2008). On the other hand, the contribution of struc-
tural plasticity, i.e., the physical changes in neural connectivity, is seldom discussed in
literature. Structural plasticity within neural circuitry is often critical to both the devel-
opment of the central nervous system and the acquisition of complex behaviours (Butz,
Wörgötter, et al. 2009). In this manuscript, we account for the contribution of structural
plasticity within a circuit towards facilitating sensorimotor learning. In chapter 2, we
introduce the various types of plasticity and specifically, review current evidences for
structural plasticity across species and development scales. We discuss their interplay
with functional synaptic plasticity and their significance from a functional point of view.
We explore current modelling studies incorporating structural plasticity and unexplored
questions which are raised by such models.

The animal model of songbirds along with their vocal learning behaviour provide an
interesting avenue to study the neural circuitry underlying sensorimotor learning. Struc-
tural plasticity is central to the development of song-related brain circuits and we inves-
tigate its possibly critical role in song acquisition in juvenile songbirds. Moreover, the
transfer from subcortical BG-like structures to cortical pathways has been shown to play
a role in vocal learning in songbirds (Andalman et al. 2009a). In chapter 3, we introduce
the vocal learning behaviour in songbirds as a tractable instance of sensorimotor learning,
along with the circuitry supporting it. We establish the relevance of studying the animal
model of songbirds by demonstrating their striking similarities with respect to human
behaviour as well as parallels with neural circuitry. We use this specific instance of sen-
sorimotor learning in order to study the potential contributions of structural and func-
tional plasticity to sensorimotor learning, within the aforementioned two-step learning
paradigm. We detail several features as well as constraints imposed by the vocal learning
behaviour and underlying circuitry in songbirds, which we later incorporate in our the-
oretical study into the functioning of the dual pathway architecture.

Inspired by the behaviour as well as the structural and functional plasticity demon-
strated by songbirds, we investigate the neural mechanisms of sensorimotor learning.
Based on the aforementioned evidences, in chapter 4, we build our hypothesis about
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the workings of the neural circuits governing vocal learning in songbirds, and detail the
objective of our investigation.

In chapter 5, we design computational models to look into the utility of the parallel
cortical and subcortical pathways that govern song acquisition in songbirds. We study the
interplay between functional plasticity and structural plasticity within this vocal learn-
ing circuitry. Inspired from the vocal learning circuitry in zebra finches, we build a dual
pathway framework underlying sensorimotor learning, and implement a two-step learn-
ing paradigm. We incorporate empirical evidences about the vocal learning behaviour
and explore potential strategies used by these birds to supplement reinforcement learn-
ing and evade its shortcomings in navigating a complex, uneven sensorimotor contour.
Ultimately, we draw comparisons with optimisation techniques used in machine learn-
ing in similar scenarios, in terms of their advantages, computational cost and biological
feasibility.

In chapter 6, we further investigate the plausibility of such BG-driven reinforcement
learning within the song system in zebra finches, and its subsequent consolidation within
cortical circuitry. We posit a hypothesis to verify the mechanisms of BG-led exploration
contributing to vocal learning, within the dual pathway framework. In a first approach,
to make qualitative predictions about the hypothesis, we design a simplified computa-
tional model of the song system wherein we simulate adult plasticity. We, then, proceed
to design an experimental protocol to test the predictions that emerge from this model.
Within this protocol, we use electrophysiology to record signals from the neural corre-
lates in the song system in freely-moving zebra finches. These songbirds are subjected to
a standardised protocol to induce vocal learning in adulthood, allowing us to study the
interaction between nuclei in the cortical and subcortical parts of the song system, dur-
ing sensorimotor learning. We present a pilot study outlining our experimental protocol,
preliminary data and methods of analysis, in order to verify the plausibility of reinforce-
ment learning within the song system. Finally, we conclude the manuscript by discussing
the relevance of our work, considering its various limitations and formulating possible
directions to extend our investigation.1

1Note: The review article “Computational benefits of structural plasticity, illustrated in song-
birds” (Sankar, Rougier, et al. 2022) has been edited and split into chapter 2 and 3. The article
“Dual pathway architecture underlying vocal learning in songbirds” (Sankar, Leblois, et al.
2022) about the dual pathway architecture, presented at ICDL 2022, has been incorporated in sec-
tion 5.2.
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2 Structural Plasticity

Plasticity is defined as the capacity of the neural activity generated by an experience to mod-
ify neural circuit function and thereby modify subsequent thoughts, feelings, and behavior
according to (Citri et al. 2008). This definition of plasticity encompasses a broad range of
phenomena that have been observed to induce an alteration of the function or the struc-
ture of a neural component. For instance, plasticity can be induced by an external stimuli,
an internal state, a lesion, etc. Such alterations of neural components occur across a large
range of spatial scales and take place through different mechanisms: i) intrinsic plastic-
ity relates to the continual alteration of a neuron’s inherent biophysical characteristics by
neuronal activity (Debanne 2009) ii) synaptic plasticity relates to the activity-dependent
modification of the strength or efficacy of synaptic transmission at preexisting synapses
(Citri et al. 2008) iii) representational plasticity relates to the re-organisation of distributed
responses as a result of persistent external changes (Buonomano et al. 1998). On the tempo-
ral scale, short-term plasticity occurs on the sub-second to minutes time scale in response
to an external event such as, for example, an external stimulation and may be transient.
Long-term plasticity occurs on the hours, days or years time scale and encompasses long-
lasting changes such as the modification of behavior, the formation of new memory, de-
velopment of new connections across regions, etc.

Across these different spatial and temporal scales, plasticity operates via different means
and there are two main forms in which plasticity manifests itself: functional and struc-
tural. Functional plasticity involves changes in synaptic strengths without any change in the
anatomical connectivity between neurons (Butz, Wörgötter, et al. 2009). This can be realized
through the insertion or the removal of synaptic receptors, change in the presynaptic re-
lease of transmitters or change in the thickness of the synapse and has been studied in a
large number of works (Citri et al. 2008; Lledo et al. 2006). The transmission strength of
a synapse can, thus, be modified, via potentiation and depression, over milliseconds, to
seconds, to hours, to days, and possibly, even longer (Abraham et al. 2003). The experi-
ences of an individual can modify their behaviour through long-term synaptic plasticity,
i.e. activity-dependent, long-lasting modifications of synaptic strength (Bliss et al. 1973).
Such synaptic plasticity plays a role in consolidation of memories in the hippocampus, in
the development of the sensory cortex, in the induction of Pavlovian fear conditioning by
the amygdala and in mediating addiction to drugs via the mesolimbic dopaminergic sys-
tem, amongst several other crucial functions (Everitt et al. 2002; Malenka et al. 2004; Martin
et al. 2000; Sigurdsson et al. 2007).
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On the other hand, structural plasticity refers to changes in the physical anatomical
connections (excluding the simple insertion or removal of synaptic receptors). There are
numerous evidences of structural plasticity: from the excessive axonal branching during
ontogeny with ensuing pruning to the rapid increase in synaptic density during infancy
with subsequent slower synapse elimination to adult neurogenesis in the mammalian hip-
pocampus (Butz, Wörgötter, et al. 2009; Eriksson et al. 1998; Huttenlocher et al. 1979; 1982;
Portera-Cailliau et al. 2005). Major structural reorganisation of the primary somatosensory
cortex has also been observed following amputation or sensory deprivation (Buonomano
et al. 1998) in primates while the trimming of whiskers in juvenile rats have been shown
to induce a realignment of the dendrites of stellate neurons in the barrel cortex (Datwani
et al. 2002). Such evidences suggests that a change in neural activity may induce structural
plasticity. Functional and structural plasticity work hand in hand with other mechanisms
in the brain, such as homeostatic plasticity, in order to help stabilise the network activ-
ity by coordinating changes in network structure and maintaining the balance between
excitation and inhibition within the circuitry (Tien et al. 2018).

The mechanisms underlying plasticity and its relationship with behaviour, learning
and memory have been studied for several decades (Bliss et al. 1973; Livingston 1966; Wurtz
et al. 1967) with a major focus on functional plasticity more than structural plasticity (Kerr
1975; Ooyen et al. 2017; Rutledge 1978). For example, long term potentiation, long term de-
pression and spike time dependent plasticity have been intensively explored experimen-
tally and widely incorporated in a number of computational works (Bi et al. 1998; Gerstner
et al. 1996; Hartley et al. 2006; Markram et al. 1997; Shouval et al. 2002). However, with the
advent of new experimental techniques, such as diffusion tensor imaging, the number
of studies in structural plasticity has increased (Innocenti et al. 2005) and several of these
studies from the last decade have clearly demonstrated the importance of structural rear-
rangements (Bernardinelli et al. 2014). It has been widely discussed that structural plasticity
confers several advantages, such as improving energy efficiency of network formation, in-
creasing information capacity, amongst others (discussed further in section 2.3) (Chechik
et al. 1998; Chklovskii et al. 2004; Knoblauch and Sommer 2016). Moreover, it holds the ca-
pacity to improve learning in a circuit, while conserving resources (Spiess et al. 2016). This
leads us to explore the role played by such structural plasticity in learning and develop-
ment. While there are several instances across species, from ontogeny to seasonal plasticity
(discussed in chapter 2.1 and 3.3), where the role played by such plasticity can be deduced
based on the hypotheses prevalent in literature, benefits specific to a particular circuit and
function may emerge in certain ecological contexts. Using this particular case of senso-
rimotor learning in the vocal learning circuitry of birds, where the function fulfilled by
structural plasticity is not immediately evident, we investigate if structural plasticity can
additionally contribute directly to circuit function.

In this chapter, we review current evidences for structural plasticity and their signifi-
cance from a computational point of view. To do so, we start by examining evidences for
structural plasticity across species and categorizing them along the spatial axis as well as
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along the time course of development. Finally, we discuss properties that can be exploited
computationally, and unexplored questions which are raised by such models.

2.1 Structural plasticity across spatial and
development scales

Structural plasticity pertains to the physical changes in neuronal connections. It com-
prises of changes in synapse numbers, axonal fibre densities, axonal and dendritic branch-
ing patterns, synaptic connectivity patterns, and even neuronal cell numbers (Butz, Wörgöt-
ter, et al. 2009). Structural plasticity can be categorised according to the spatial scale (e.g.
synaptic, axonal, network), the temporal scale (e.g. sub-seconds, minutes, days) and the
development period (e.g. sensitive period, childhood, adulthood). Depending on the de-
velopment period, we can further categorise it based on the cause for structural plasticity:
hormonal, learning, pathological, injury-induced.

2.1.1 Spatial scale

Structural plasticity occurs across the whole range of cerebral scales through morpholog-
ical changes, such as enlargement, growth or apoptosis, that target spines to axon termi-
nals to glia (Bernardinelli et al. 2014). Recent breakthroughs in recording techniques such
as in vivo confocal microscopy have made it possible to gain deeper knowledge onto the
underlying mechanisms.

Synapses go through an exuberant growth during early brain development and most
of them will permanently disappear as a result of a competitive process involving neurons,
synapses and neural growth factors (Le Bé et al. 2006). It has further been observed that
lesions in adult brains can lead to an alteration in the synaptic connectivity patterns, due
to structural plasticity (Raisman 1969). Besides sprouting and pruning, structural plas-
ticity can also manifest through neuro-degeneration, neurogenesis (Lledo et al. 2006) and
synaptic rewiring, i.e. modification of existing connections, e.g. dendritic spines or axonal
branches, by dissociating a pre/post synaptic element, and later, linking it to a different
target (De Roo et al. 2008; Trachtenberg et al. 2002).

Dendritic spines are both highly motile and transient structures. For example, in the
barrel cortex, about two thirds of the spines remain for less than a month while some of
them appear and disappear within a day (Trachtenberg et al. 2002). It has been observed in
mice that spine turnover and stabilisation can also correlate with learning and memory
consolidation, respectively (Xu et al. 2009). In addition to their motility, dendritic spines
occur in a wide range of size, shape and organelles, which in turn potentially affects dif-
ferent functional properties such as, the synaptic strength, its stability, the postsynaptic
receptors, etc (Bernardinelli et al. 2014). Morphology does indeed have a direct impact on
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2 Structural Plasticity

the functional role, with large spines helping to form stable connections, and the tran-
sience of thin spines being an aid in learning, for instance.

Axon arbor structure can be manipulated within a circuit-level mechanism of learn-
ing. In macaque monkeys, trained to perform a contour detection task, Van Kerkoerle
et al. (2018) found that there is an extensive sprouting and pruning of axonal collaterals
in cortical regions which correspond to the trained area of the visual field. In addition
to neurogenesis, neurons have the capacity to degenerate part of their axon in order to
refine connections through axon pruning or more drastically, cell apoptosis (Geden et al.
2019; Portera-Cailliau et al. 2005). Both, the mechanisms underlying such formation of
short-range or long-range axonal connections as well as the selective degeneration of un-
optimal axonal branches could potentially have long-term impacts on circuit function
(Tessier-Lavigne et al. 1996).

At the network level, significant structural changes occur that affect large cerebral re-
gions. For instance, in blind Braille readers, representation of the reading fingers in the
somatosensory cortex is larger than nonreading fingers or any finger of non-Braille read-
ers (Pascual-Leone et al. 1993). Similarly, it has been shown that a massive reorganization of
the motor cortex occurs within a few hours following the transection of the facial nerves
in the rat (Gilbert 1998). There is, thus, overwhelming evidence that structural plasticity
serves a functional role by manipulating various elements of the central nervous system,
from spines to synapses to axonal arbors to neurons. We won’t detail adult neurogenesis
since it is beyond the scope of this manuscript, but we redirect the reader to the studies
by Gould (2007), Paredes et al. (2016) and Pytte (2016).

2.1.2 Time course across development
Structural plasticity can be initiated by several factors at several timepoints in one’s lifes-
pan. During development, dendritic spines exhibit structural plasticity, by variable sprout-
ing and pruning, depending on experience. Synaptic turnover is extremely high during
this period, and a majority of newly sprouted dendritic spines in the mice somatosensory
cortex, are lost, within the span of a mere few days (Bufill et al. 2011). As development of
an individual progresses, the course of puberty also marks some structural changes. The
beginning of higher rates of pruning of dendritic spines in the human frontal cortex, and
cortical thinning in humans have been shown to correspond with pubertal development
(Boivin et al. 2018).

During development, structural plasticity is limited in time by what is known as ‘sen-
sitive periods’. These periods designate limited periods of time wherein several connec-
tions or skills are modified permanently and significantly, based on the information ac-
quired through experience (Hensch 2005). Sensitive periods occur in the prenatal brain
and continue throughout development but are very limited during adulthood. For in-
stance, newly hatched chicks memorize the characteristics of the first moving object they
encounter, and subsequently show a preference for it. This “imprinting” behavior can
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only be acquired within the first few days following hatching, and involves age-dependent
remodeling of neural networks in the visual and associative areas of the chicks’ brains
(Nakamori et al. 2013). In humans, language acquisition is, often, a highly cognizant and
arduous task for adults, as compared to the relative passive learning by children. It can
be argued that, before the end of puberty, certain neural circuits are more susceptible to
assimilating such skills (Patton et al. 2019). A prominent study by Hubel et al. (1979) found
that closing one eye of kittens, but not of adult cats, causes the permanent loss of visual re-
sponsiveness of neurons in the primary visual cortex to stimulations to the deprived eye
(ocular dominance plasticity). Moreover, axonal sprouting and branching of thalamic
neurons is curbed by visual deprivation during development in rodents, and retinal gan-
glion cells extend their receptive fields in turtles which have been raised in the dark (Berry
et al. 2016; Butz, Wörgötter, et al. 2009). Hence, while the beginning and end of sensitive
periods are triggered by molecular signals delivered timely during development, sensory
experience is crucial and can modulate the opening and closing of sensitive periods, espe-
cially during development (Hensch 2005; Yazaki-Sugiyama 2019).

Beyond development as well, structural plasticity has an impactful presence through-
out the lifespan of an animal, triggered by various reasons, ranging across hormonal,
lesion-induced, pathological and training. Hormonal changes lead to structural changes
in neural circuits. Structural changes in the circuitry is crucial for the seasonal control
of reproduction. Morphological rearrangements cause seasonal inhibition of a certain
hormonal secretion in adult ewes (Migaud et al. 2011). Similar hormonal changes can be
internally triggered, as in the previous case, or caused due to external chemical influence.
Administration of drugs, such as, amphetamine or methylphenidate alters the organiza-
tion of dendrites in the prefrontal cortex, causing reduced play initiation, as well as im-
paired working memory functioning (Kolb et al. 2011). Furthermore, lesions or adverse
conditions can induce changes in the network. Lesioning a part of the retina leads to an
adjustment in the cortical topography, by causing the receptive fields of cells in the corti-
cal scotoma to adapt to representing the retinal area surrounding the lesion (Gilbert 1998).
Pathological conditions can cause major upheaval in the neuronal networks. Uncharac-
teristically higher spine densities has been observed in certain parts of the frontal, parietal
and temporal lobes in patients with Autism Spectrum Disorder (Forrest et al. 2018). Con-
tinuous exposure or targeted training can also potentially cause structural changes. The
difference in proficiency, between professional musicians, amateur musicians, and non-
musicians, in discriminating tones has been traced to certain structural differences, in-
cluding the higher gray matter volume in the left Heschl’s gyrus in musicians (Steven et al.
2004). Structural plasticity clearly plays a sensitive and functional role in several processes
during and after development.
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2.2 Interaction between structural and
functional plasticity

The previous section has demonstrated the ubiquitous presence of structural plasticity
across species and across developmental and spatial scales. Structural plasticity encom-
passes a variety of mechanisms that depends on the level under consideration; the pro-
cesses underlying spine turnover are very different from the ones that drive axon arbori-
sation (Bosch et al. 2012; Lewis Jr et al. 2013). However, such processes of structural plas-
ticity do not occur in isolation. We find abundant evidences wherein structural plasticity
interacts with the other various forms of plasticity within neural circuits. As discussed
earlier, plasticity in neural circuits ranges from the alteration of the intrinsic biophys-
ical properties of a neuron, and the experience-dependent modification of the efficacy
of synaptic transmission, to a massive overhaul of axonal connections within and across
brain regions. Inducing synaptic plasticity not only affects the generation of action po-
tentials by a neuron but also affects the intrinsic properties of a neuron, such as synaptic
integration. For instance, induction of long-term potentiation in slices of CA1 pyramidal
and Purkinje neurons from the rat hippocampus and cerebellum, respectively, has been
shown to have strong effects on the intrinsic excitability of a neuron as well as dendritic in-
tegration (Belmeguenai et al. 2010; Campanac et al. 2008). Conversely, alteration of neuronal
excitability, by blocking after-hyperpolarisation (AHP), enhances induction of long-term
potentiation in the hippocampal pyramidal neurons (Sah et al. 1996). Reduced AHP of
pyramidal neurons in the rat piriform cortex, following operant conditioning, also has
been linked with improved learning capacity (Saar et al. 1998). Similarly, functional and
structural plasticity are tightly inter-connected. Initiation of structural plasticity may be
triggered due to an external lesion, or by an internal hormone release (Ooyen et al. 2017).
In this wide landscape, there is an interesting case where structural plasticity is driven first
and foremost by neural activity. De Roo et al. (2008) observed an increase in spine turnover
following induction of long term potentiation in slice culture of neurons. Further, Oh
et al. (2013) showed an activity-dependent shrinkage of dendritic spines. It has been also
observed in hippocampal slice cultures that stimulation led to an increased stabilisation
of stimulated synapses and faster pruning of non stimulated synapses (Bernardinelli et al.
2014; Leuner et al. 2010). On the other hand, such synaptic pruning can lead to an in-
creased inhibitory nature of the circuitry, which can have varied impacts. For instance,
the late development of an inter-neuron subset in the primary visual cortex causes the
maturation of the inhibitory circuitry which plays a crucial role in the opening and clos-
ing of the sensitive period (Hensch 2005). Thus, we can see that structural and functional
plasticity have a strong mutual interaction, and are both closely related to the neural ac-
tivity of the related network. While, in the former examples, a functional change is able
to trigger structural plasticity, in the latter case, structural plasticity shows a prominent
functional impact. At a larger scale, the increase in inhibitory activity curtails the gener-
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ation of new synapses and the elimination of existing ones, which ultimately leads to the
stabilisation of the circuitry (Schaefer et al. 2017).

These observations suggest that certain instances of structural plasticity stem from
functional changes, and in turn, have the potential to induce a prominent functional
impact. It seems more than relevant to investigate the interactions between structural
plasticity, neuronal activity and the function of the related networks. Given the complex
interactions between network structure, activity and function, theoretical investigations
in computational models will likely be required to shed light on the underlying mech-
anisms. In the next section, we discuss how structural plasticity has been sporadically
incorporated into computational models.

2.3 Computational perspectives: From biology to
machine learning

We have seen that structural plasticity is shared among different species, occurs (non-
uniformly) across the whole lifespan and scales from the level of dendritic spines up to dis-
tributed cortical regions. It leads us to question why plasticity of this kind is as prevalent,
and if it confers any benefits to the development of neural circuitry. Models of experience-
dependent structural plasticity have shown that rules of dendritic and synaptic growth,
derived from experimental data (Butz and Ooyen 2013), improve information transmis-
sion in networks with small-world topology (i.e. high clustering coefficients and short
path lengths) (Butz, Steenbuck, et al. 2014). Knoblauch, Körner, et al. (2014) simulate struc-
tural plasticity by accommodating potential future synapses and find that this leads to a
higher storage capacity per synapse than networks with only synaptic weight plasticity.
Moreover, Chechik et al. (1998) show that energy efficiency of memory storage, indeed,
is improved by using the strategy of excessive sprouting followed by synaptic pruning.
Structural plasticity can also influence the development of synaptic connectivity within
networks. Poirazi et al. (2001) show that memory formation or long-term information stor-
age might also be governed by the co-activation of synapses on a shared dendritic branch
rather than merely synaptic weights. Stepanyants et al. (2002) complement this study, using
geometric analysis to demonstrate that dendritic spines improve information capacity by
increasing the specificity of dendritic connections. Sailor et al. (2016) further demonstrate
the functional role of dendritic arborisation of adult-born granule cell inter-neurons in
the olfactory bulbs of adults. Simulations by Spiess et al. (2016) show that structural plas-
ticity improves learning by decreasing response noise, and when combined with pruning,
also reduces the training time. Further, models such as Lightheart et al. (2013) incorporate
the effect of structural plasticity by using constructive algorithms to simulate network
growth which also account for the creation of new neurons. Such comparatively slower
structural plasticity could balance the trade-off between stability and plasticity in order
to help evade catastrophic forgetting (Knoblauch, Körner, et al. 2014; Knoblauch and Som-
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mer 2016). Knoblauch, Palm, et al. (2010) further demonstrate that this strategy also helps
optimise information capacity in biological networks (Knoblauch 2017).

Despite these clear advantages of incorporating structural plasticity, it has seldom been
used in machine learning and computational neuroscience literature. Most of the time,
the architecture of a model is chosen prior to the learning phase and remains fixed until
the end. There are of course notable exceptions. One of the earliest and best known
example of a computational model taking full advantage of structural plasticity is the
growing neural gas model (Fritzke 1995) that learns the topology of the input thanks to the
dynamic topology of the network. Connections between units can be created or removed
dynamically during the learning phase according to a precise criterion that depends on
both the data and the history of the model. This dynamic reconfiguration allows the
model to faithfully map the topology of the data as opposed to, for example, a regular
self-organising map (Kohonen 1982) that uses a fixed topology.

A couple of years before this model was introduced, pruning algorithms (Reed 1993)
were popularized by the Optimal Brain Damage algorithm (LeCun et al. 1990) that aim at
finding the optimal size (in terms of the number of connections) of a feed-forward model
in order to establish a trade-off between the complexity and the error magnitude of the
resulting model. This algorithm starts from a fully connected feed-forward model (multi-
layer perceptron) and removes, after training, the weights that have the lowest saliency.
With the advent of deep-learning during the past decade and the inflating size of models,
there has been a renewed interest in such pruning techniques (Blalock et al. 2020). How-
ever, pruning is the simpler side of structural plasticity since you start from a situation
where you can objectify the influence of a neuron A onto a neuron B based on the exis-
tence of a connection between them. The careful analysis of this influence can then help
to decide if the connection can be removed or not.

On the other hand, the case of sprouting is quite different because there is a need to
establish a new connection between a neuron A and a neuron B that are, by definition,
not connected. This implies that, from a structural point of view, this selection cannot
be based on the correlation of activity, for instance, since no connection exists. Hence,
one obvious way to perform the selection is to randomly choose the source and the target.
This is the technique used in a number of generative models that search for the best archi-
tecture (Angeline et al. 1994). There exist however non random techniques, such as marker
induction, as proposed by (Willshaw et al. 1979). In this model, markers are used to induce
presynaptic fibers to connect to the post-synaptic sheet. This results in a neighbouring
presynaptic region to connect to a neighbouring postsynaptic region in an ordered fash-
ion and this model is used to explain the formation of ordered retinotectal projections
in amphibians and fishes. There exist similar models for the development of the retino-
geniculo cortical pathway (Elliott et al. 1999) and more generally, the formation of topo-
graphic maps (Bogdan et al. 2018; Sirosh et al. 1996). In addition to several widely applicable
advantages of structural plasticity such as optimising energy consumption, as discussed
above, structural plasticity, in the case of topographic maps (e.g. visual maps), can help
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to embed pattern of synaptic strengths in the network topology (Bamford et al. 2010) and
may explain the existence of a critical period as well. However, from a computational
point of view, the advantage of such structural plasticity compared to, for instance, an
initially fully connected model that is later pruned, is not clear. Departing from the pure
formation of topographical maps, the model by Kappel et al. (2018) explains and exploits
structural plasticity to give a functional account on the development of a dedicated ar-
chitecture for solving reward based tasks. As explained by the authors, this model uses
reward-driven network plasticity as continuous sampling of network configurations that re-
sults in policy sampling. This model is interesting because it provides a functional in-
terpretation of structural plasticity and justifies its presence. Without such plasticity, it
would be more difficult or longer for the model to solve the task.

However, we suggest that the functional role of the sprouting phase should be consid-
ered beyond the formation of topographic maps. We hypothesise that via the wide range
of interactions discussed in this chapter, structural plasticity could potentially fulfil, not
merely an auxiliary role in the functioning of a circuit (e.g. energy optimisation), but
also a more direct role towards facilitating the intended function of a circuit. We will
advocate in the next chapter that vocal learning in songbirds is a useful paradigm to un-
derstand the implications of structural plasticity on the organization of neural networks
during development and beyond, on the network function and the underlying neural
code, and ultimately on behavior.
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3 Vocal learning by songbirds
The vocal learning behaviour of songbirds provide an avenue to study sensorimotor learn-
ing, along with the role of structural plasticity therein. Birds and mammals share striking
similarities in both a behavioural and neuroanatomical sense. We outline the evidence
accumulated in support of the hypothesis that the two taxa share behavioural traits as
well as general principles in the organisation of brain networks, the constraints bearing
on their construction during development and reorganisation following injury or natural
re-modelling of brain circuits. Whether these common principles are conserved, or the
result of convergent evolution, is open to discussion (see Güntürkün (2012)). Once the
parallels have been established, we highlight that structural plasticity is ubiquitous in the
bird brain, just as in mammals, as seen in chapter 2. Thus, we emphasize that songbirds
form a suitable animal model to gain insight into sensorimotor learning and its neural
mechanisms. We then focus our survey on a specific instance of sensorimotor learning,
i.e. the vocal learning behaviour exhibited by songbirds. We look into the brain circuits
involved in the acquisition and production of complex vocalisations in songbirds, where
the relation between neural structure, activity and function has been best studied. To
this end, we briefly describe the vocal learning circuitry, then delve into the details of
structural plasticity in this circuitry and finally extract computationally useful properties
herein.

3.1 Songbird behaviour
Akin to speech acquisition by infants, juvenile songbirds imitate the vocalisations of adult
tutor songbirds. In this section, we advocate for the use of songbirds as a pertinent animal
model to study sensorimotor learning in humans, owing to the parallels in behaviour
between mammals and songbirds, and the tractability of the vocal learning behaviour
exhibited by zebra finches.

3.1.1 General behavior in birds
The successful evolution of mammals in diverse ecological contexts is thought to rely,
at least in part, to the evolution of their large brains, conferring them with behavioral
flexibility and cognitive abilities and making them efficient predators and competitors.
These cognitive abilities are diverse and include (but are not limited to) complex senso-
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rimotor coordination and adaptation, memorization, planning and anticipation capac-
ity, analytical and deductive reasoning, sophisticated social interactions, and introspec-
tive judgement. While many of these complex cognitive skills have first been thought to
be the hallmark of humans, or exclusively present in mammals gifted with large brains,
abundant experimental evidence now demonstrates that several bird species also display
many, if not all, of the same cognitive functions as mammals (Güntürkün and Bugnyar 2016;
Karten 2015). Sophisticated sensorimotor learning abilities are demonstrated in songbirds
by song acquisition, with remarkable parallels to human speech learning, including its re-
liance on high auditory processing of auditory feedback, tight coordination of vocal mus-
cles and social interactions (Doupe and Kuhl 1999; Mooney 2009). Various bird species dis-
play food caching behavior and rely on months-old spatial memory traces to retrieve their
spread-out cached food (Sherry and Hoshooley 2010), illustrating their excellent episodic-
like memorization and planning capacities. Tool use and other problem-solving tasks have
been successfully solved by several bird species, many from the corvidae family (Striedter
2013). Many species of birds, including starlings, crows and parrots, have been found to
maintain complex social organization among colonies of thousands (and more) of sub-
jects (Boucherie et al. 2019; Downing et al. 2020), relying at least partly on vocal communica-
tion. Finally, parrots display cognitive abilities that we have until now considered unique
to humans and other primates (conceptual representation, combinatory learning, count-
ing (Pepperberg 2006)) and magpies can recognize themselves in a mirror (Prior et al. 2008),
a skill thought to require a representation of oneself and only sparsely present in mam-
mals.

3.1.2 Song acquisition and production
Songbirds use learned vocalizations to communicate during courtship or aggressive be-
haviors. Akin to speech learning in humans, vocal learning in young birds requires the
coordination of vocal muscles to reproduce previously experienced adult vocalizations.
Singing is a sensorimotor skill and song acquisition in juvenile birds is also highly depen-
dent on hearing the adults they will imitate, as well as themselves as they practice, and this
dependence wanes as the birds mature. Strikingly, the gene FoxP2, linked to speech learn-
ing in humans (MacDermot et al. 2005), is also implicated in avian song learning (Haesler
et al. 2004). Similar neural mechanisms underlying vocal learning are most probably in-
volved in humans and birds (Doupe and Kuhl 1999), and the study of these mechanisms in
birds could shed light on the neurobiological bases of speech learning.

Interestingly, in birds, as in humans, imitative vocal learning is characterized by sev-
eral phases (Doupe and Kuhl 1999): (i) the sensory phase enables human infants or juve-
nile birds to build a neural representation of adult vocalizations, which will guide later
vocal production; (ii) during the sensorimotor phase the young subjects start to vocal-
ize, initially producing babbling sounds and then adapting its vocal output to imitate
previously heard vocalizations; (iii) finally the produced vocalization becomes more and
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Figure 3.1: Phases of the vocal learning behaviour in zebra finches. Juvenile songbirds form a neu-
ral representation of tutor vocalisations by listening to the adult male tutor in the initial
sensory phase of sensorimotor learning. In the sensorimotor period, the bird produces
random vocalisations and gradually attempts to imitate the tutor song. Towards the
crystallised phase, the produced vocalisations become more stereotyped with a reduc-
tion in variability.

more stereotyped and vocal plasticity significantly drops (Figure 3.1). This final phase
is called crystallization in birds. Each of these phases is bounded by a sensitive period
(Mooney 2009). In most bird species, if the young subjects have not experienced conspe-
cific adult vocalizations before a species-specific age limit (e.g. 60 days post hatch (dph) in
zebra finches, around 2 years in children), imitation will be virtually impossible because
the sensory phase of vocal learning is closed past that age. Similarly, the sensorimotor
phase closes with puberty in many species (around 90 dph in zebra finches, 12-14 years
in humans) when vocal exploration drastically decreases (and vocalizations become more
stereotyped), making vocal imitation more difficult and reducing greatly the vocal plastic-
ity. Seasonal birds may re-open the sensorimotor phase yearly and therefore display cyclic
sensitive periods locked to seasonal changes. These sensitive periods and the underlying
phases of vocal learning are driven by physiological signals that constrain the develop-
ment of neural circuits in the central nervous system, and thereby affect the behavioral
plasticity. It is important to note that while avian song learning may share some similari-
ties with human speech acquisition, bird song does not share the semantical complexities
of human language.
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3.1.3 Salient features of vocal learning

Having established a parallel between human speech acquisition and avian vocal learning,
we now focus on features that are characteristic of vocal learning in songbirds and more
specifically, zebra finches. Later, we attempt to incorporate some of these features within
our theoretical investigation of the circuitry underlying vocal learning.

As noted in the previous subsection, vocal learning in zebra finches (Taeniopygia gut-
tata) proceeds through three stages: the sensory phase, where the juveniles form a mem-
ory representation of the tutor song, the sensorimotor phase, where the juvenile engages
in vocal exploration and attempts to imitate the tutor song, and finally, the crystallised
phase, where each rendition of the bird’s song is more stereotyped. The duration of each
song learning stage differs across species. For zebra finches, the sensory stage lasts until
around 65 dph, while the sensorimotor stage lasts for a duration of approximately 60
days, between 30-90 dph (see Figure 3.1) (Immelmann 1969) .

Birds raised in isolation, or deafened before tutor exposure, produce abnormal songs,
termed ‘isolate’ songs. Aligned with the idea of sensitive periods, birds exposed to song
post their sensory phase, are incapable of producing a recognisable imitation of tutor song
(Marler 1970). Juveniles are not limited to imitating only the song of their male parent.
They can learn to imitate the song of a non-parental conspecific or heterospecific adult
tutor (Marler and Peters 2010).

In zebra finches, each song motif is composed of stable sequence of syllables and inter-
vals of silence. During the sensorimotor and crystallised phase, birds can produce around
1000 to 3000 song motifs per day, with each motif being 300-1000ms long (Glaze et
al. 2013). Birds deafened post tutor exposure are also unable to learn tutor song. This
demonstrates the need for birds to listen to their own vocalisations during the sensori-
motor stage, possibly to improve their imitation via self-evaluation (Konishi 1985).

Trial-to-trial variability in song renditions reduces gradually over these stages, with
adult birds displaying a coefficient of variation of 2-3% in the fundamental frequency of
their syllables (Arnold 1975; Tumer et al. 2007). While birds retain variability during adult-
hood as well, it is further reduced when the song performance is directed towards a female,
as compared to undirected singing (Kao et al. 2005; Sakata et al. 2008). It is interesting to
note that when female songbirds are presented to male juveniles around 60dph (well be-
fore crystallisation), the male songbirds are already capable of producing song which is
more similar to their eventual adult song than their current undirected song (Kojima et al.
2011). This indicates the ability of a juvenile songbird to continue vocal exploration of
its sensorimotor capabilities, despite having learnt more preferable imitations. Addition-
ally, songbirds demonstrate a wider repertoire of vocalisations during their sensorimotor
phase, than during adulthood (Nelson et al. 1994). Akin to human speech acquisition, so-
cial interactions play a key role in vocal learning. Quality of song imitation is superior
when juvenile birds are trained using live models than by passive playback, similar to hu-
man infants (Catchpole et al. 2003; Kuhl 2010).
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The role of sleep during song learning in birds is currently under investigation. Derég-
naucourt et al. (2005) observe a pronounced deterioration in song quality post sleep, al-
though a similar deterioration is not observed post long breaks in song production during
awake periods. Most of the improvement in imitation quality, within a day, occurred in
the post-sleep recovery period, and little improvement was observed in the later periods
of the day. The daily deterioration was much less pronounced in the crystallised phase.
Interestingly, the extent of such post-sleep deterioration in the sensorimotor period also
seemed indicative of quality of tutor song imitation in the crystallised phase. This obser-
vation suggests the possibility of a non-monotonic progression in quality of imitation.

A similar non-monotonic trajectory in progression of sound acoustics has been ob-
served by Tchernichovski et al. (2001). During song learning, juvenile birds often engage in
pitch doubling. For instance, instead of gradually reducing the fundamental frequency
of a particular vocalisation to match the target template, the bird increases the fundamen-
tal frequency and then doubles the period in order to produce an imitation of the target
vocalisation. Thus, considered along with the daily post-sleep deterioration observed in
song similarity during vocal learning, there are multiple indicators that songbirds may fol-
low non-monotonic trajectories towards the target song. Additionally, using a novel tech-
nique of repertoire dating, Kollmorgen et al. (2020) observe that after 40dph, the within-
day change in vocal behaviour can be partly misaligned with the slower change over the
timescale of weeks.

Once the song has been learnt, birds experience deterioration in song quality, if deaf-
ened. This deterioration is more pronounced if the bird is deafened during adolescence
than during adulthood. This may serve as an indicator to the need for active maintenance
of song, as well as, the diminishing ability to alter vocal behaviour, with age (Nordeen et al.
1992).

The ability to alter vocal behaviour, or learn new songs, is dependent on the species of
songbirds. Zebra finches, etc, belong to a set of ‘closed-learners’ who experience a single
song learning period during their lifetime. On the other hand, canaries, etc, are ‘open-
learners’ and can continue to learn new songs during adulthood, for instance, in each
season (F. Nottebohm, M. E. Nottebohm, L. A. Crane, et al. 1987). Songbirds are capable of
demonstrating adult plasticity. They retain a limited ability to introduce slight modifica-
tions to their song structure in adulthood, both in terms of maintenance of song as well
as in response to external stimulus (Tumer et al. 2007; Warren et al. 2011). When subjected
to a differential feedback protocol (detailed further in section 6.3.1), adult birds are able
to selectively adapt the corresponding syllabic features.

What are the changes undergone during vocal learning by the related neural circuits?
Can we understand the various behavioural phases in light of circuit changes? In other
words, how does structural plasticity related to the development of brain circuits underly-
ing vocal learning affect the imitation process? We will illustrate in the next section how
behavioral, anatomical, neurochemical and electrophysiological data collected in song-
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Figure 3.2: Comparative evolution of the striatum and pallium in vertebrates (Adapted from Bo-
raud et al. (2018a)).

birds (mostly in zebra finches) may help bridge the gap between structural plasticity and
function.

3.2 Songbird anatomy
As described in the previous section, the similar cognitive abilities of birds compared to
mammals suggest that the organization of their nervous system face similar challenges to
optimize their behavior. Studying the emergence of brain function during development
or re-organization in adulthood in birds is, thus, just as promising as it is to rely on mam-
malian animal models. In this section, we look into the general configuration of brain
structures in songbirds, and more specifically, at the neural circuitry underlying the vocal
learning behaviour.

3.2.1 General brain anatomy in birds
The complex behaviors displayed by birds and briefly summarized above rely on brain
circuits that display, for the most part, major biochemical, anatomical, and physiological
differences as compared to their mammalian counterparts, but still remain surprisingly
analogous in their functional organization (Güntürkün 2012; Karten 2015). Basic avian
brain anatomy already differs from that of mammals, the most notable discrepancy being
the absence of a laminated neocortex in the avian telencephalon (Güntürkün 2005; Herold
et al. 2019). Rather, the avian pallium is inherited from the reptilian Dorsal Ventricular
Ridge and is organized into a largely continuous field of nuclei. For this reason, the avian
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telencephalon has long been considered to mainly consist of a hypertrophied basal gan-
glia structure (or paleostriatum, see (Reiner, Medina, et al. 1998; Reiner, Perkel, et al. 2004)).
While this organization appears very different, the nuclei of the avian pallium show sim-
ilar connectivity, neuronal types and functional properties to those of the mammalian
cortex, amygdala, and claustrum. Within this area, birds clearly display a hippocampus,
piriform cortex and olfactory bulb. The hyperpallium in birds (previously/also called the
Wulst), also included in this area, displays a strong analogy with the primary visual area
and a primary somatosensory area of the mammalian cortex, in terms of thalamic input,
connectivity, and electrophysiological properties (Medina et al. 2000). The Nidopallium
contains various auditory areas that display a similar functional organization as the mam-
malian auditory cortex, although the spatial arrangement of the various network com-
ponents is very different in birds (Calabrese et al. 2015; Wang et al. 2010). At a finer scale,
comparative developmental analysis and neurochemical data reveal a surprising extent of
similarities in the neuronal subtypes and among birds and mammals (Butler et al. 2011;
Montiel et al. 2016).

In the ventral part of the avian telencephalon, ‘subcortical’ structures are older from
an evolutionary point of view as compared to the pallium, and therefore share even more
similarities with mammalian subcortical structures. In particular, the avian brain con-
tains homologues of the mammalian septum, basal ganglia (BG) and several other nu-
clei, as unveiled by developmental, topological, neurochemical, cellular, connectional
and functional data (Doupe, Perkel, et al. 2005). Moreover, a modern revision of the avian
anatomical nomenclature has now provided a common language for studying the func-
tion of the avian subcortical nuclei (Reiner, Perkel, et al. 2004).

Concerning the BG, there is an avian circuit that has been looked deeper into: the
song-related BG-thalamo-cortical loop of songbirds. Indeed, songbirds have specialized
a portion of their forebrain–BG circuitry expressly for the purpose of song learning. Re-
cent advances in anatomical, physiological and histochemical characterization of avian
BG neurons and circuitry have revealed a homology between this circuit and the mam-
malian motor loop of the BG-thalamo-cortical network (Bottjer and Johnson 1997a; Reiner,
Medina, et al. 1998). In particular, the song-related BG nucleus Area X differs from mam-
malian BG in its gross anatomical structure, but it displays surprisingly similar circuitry
at a finer scale. It is embedded within a region homologous to the mammalian striatum
and receives a particularly strong dopaminergic projection (Lewis et al. 1997). It contains
neuron classes corresponding electrophysiologically and morphologically to those in the
mammalian striatum (Carrillo et al. 2004; Farries and Perkel 2002). In addition, Area X con-
tains a class of neurons with pallidal properties, which directly project to the thalamic
nucleus DLM (Leblois, Bodor, et al. 2009; Luo and Perkel 1999). We will focus below on the
song-related circuits in songbirds, including this BG-thalamo-cortical loop.

Given the strong homology (for subcortical structures) or analogy in the organization
of brain circuits driving complex behavior between birds and mammals, it is most likely
that the functional organization of these circuits rely on the same basic principles. There-
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Figure 3.3: Schema of the neural substrates involved in vocal learning in zebra finches. The cortical
pathway, shown in black, comprising the cortical nuclei HVC (premotor) and RA
(motor), is primarily responsible for vocal production. The anterior forebrain pathway
(AFP, show in grey), consists of the cortical nucleus LMAN, Area X (song-related BG
nucleus) and thalamic DLM, and plays a crucial tutor role in vocal learning.

fore, studying the computational advantages of structural plasticity in birds will improve
our understanding of this basic principle and provide generalizable theories for how de-
velopment and remodeling acts to (re)shape brain function. Now, we will discuss the
specific case of the vocal learning circuitry in songbirds.

3.2.2 The song system: anatomy and function
In birds, the sensorimotor skill of song production and its learning has a dedicated set
of interconnected brain nuclei collectively known as the “song system" (see Figure 3.3),
that ultimately coordinate the patterned breathing and vocal muscle activity necessary for
vocalization. This dedicated circuit makes the songbird an outstanding model to study
the neural mechanisms of vocal learning and more generally, the function of neural circuit
in sensorimotor learning.

The song system includes a ‘motor pathway’ that is required throughout life for normal
song production, and a BG-thalamo-cortical circuit necessary for song learning, plastic-
ity and maintenance, called the ‘anterior forebrain pathway’ (AFP) (Brainard et al. 2002).
The song system receives auditory information through the projections from the high-
level auditory areas Field L, NCM (caudo-medial nidopallium) and CM (caudal mesopal-
lium), and the pallial regions analogous to the auditory cortices of mammals (see sec-
tion 3.2.1), to the nucleus HVC (used as a proper name) (Hahnloser and Kotowicz 2010).
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The motor pathway includes the premotor cortical nucleus HVC and the robust nu-
cleus of the arcopallium (RA), which is functionally equivalent to the laryngeal motor
cortex. The HVC is involved in generating the timing and sequencing of song (Hahnloser,
Kozhevnikov, et al. 2002; Long et al. 2008). RA receives inputs from the HVC and projects
directly to respiratory centers and to the brainstem motor neurons controlling the vocal
organ; the respiratory centers send recurrent information back to the HVC via the thala-
mus, reflecting the importance of bidirectional coordination between telencephalic and
brainstem structures in vocal control (Brainard et al. 2013; Schmidt et al. 2012).

The BG-cortical loop indirectly connects the HVC and RA, and like the cortico-basal
ganglia circuitry in mammals, plays a crucial role in motor learning. It consists of three
nuclei connected in a loop: the BG nucleus Area X, the medial portion of the dorsolateral
thalamic nucleus (DLM), and the lateral magnocellular nucleus of the anterior nidopal-
lium (LMAN). This loop is closed in the macroscopic sense (i.e. the projections form
a recursive loop). The LMAN - Area X, Area X-DLM and DLM - LMAN projections
within the loop are topographic (Luo, Ding, et al. 2001; Vates et al. 1995), thus demonstrat-
ing that this BG-cortical loop is also microscopically closed. The song-related BG nucleus
Area X receives strong dopaminergic innervation from the midbrain (Bottjer and Johnson
1997a). Because this specialized cortico–BG circuit is discrete and devoted to a specific
well-defined and naturally learned sensorimotor task rather than a broad range of motor
behaviors, it is particularly tractable for elucidating the interwoven sensory, motor and
reward signals carried by BG, and the function of these signals in skill learning and exe-
cution (Doupe, Perkel, et al. 2005).

The cortical motor pathway from the HVC to the RA is responsible for song produc-
tion, by projecting to downstream structures that control respiration and syringeal mus-
culature. The HVC is composed of at least three main types of neurons (Mooney 2005).
One set of neurons project to the downstream nucleus RA and is necessary for song pro-
duction (J. Kirn et al. 1991). The second set of projection neurons signal to the avian BG
homologue, area X, and is required for vocal plasticity (Prather et al. 2010). The third set of
neurons function as inhibitory inter-neurons (Kubota et al. 1998). Hahnloser, Kozhevnikov,
et al. (2002) show that individual RA-projecting HVC neurons produce sparse bursts of
less than 10ms, at a single, precise time during the song motif. Thus, as a population, these
HVC neurons may form a representation of time in the sequence. In turn, these HVC
neurons project to the RA, the site of motor control. The RA consists of excitatory pro-
jection neurons and inhibitory interneurons, as well. Outside of singing bouts, the RA
projection neurons display a tonic regular spiking activity of 10-20Hz. During singing,
RA neurons display highly variable firing patterns in juvenile birds (Ölveczky, Otchy, et al.
2011). As development proceeds, the motor program underlying crystallized song in adult
birds, develops into phasic activity of highly stereotyped sequences of bursts in RA (Yu
et al. 1996). These sparse bursts are precisely timed-locked to the song (Ölveczky, Otchy,
et al. 2011). Immediately post singing, all RA neurons experience strong inhibition, last-
ing 400 to 800 ms, after which the neurons return to their baseline tonic activity. The
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RA neurons modulate song at a timescale of 10-20ms (FEE et al. 2004; Sober, Sponberg,
et al. 2018; Vu et al. 1994). Notably, surgical transection of the HVC-RA fibres completely
eliminates normal adult song (Aronov et al. 2008). Thus, the cortical motor pathway is
indispensable for generating vocalisations.

On the other hand, during song acquisition, the integrity of the song-related BG-
cortical loop is required for proper imitation of adult vocalizations (Bottjer, Miesner, et
al. 1984; Scharff et al. 1991). Although its precise role in song learning has long remained
mysterious, recent experimental studies have shed light on its function during learning.
Multiple lines of experimental evidence support a role of the BG-cortical loop in driv-
ing and modulating acoustic variability in song. In particular, lesions or inactivations of
the cortical output of the loop (LMAN) reduce the acoustic variability of plastic song in
juvenile birds (Ölveczky, Andalman, et al. 2005; Warren et al. 2011) and changing dopamin-
ergic input to the circuit triggers changes in song variability (Leblois, Wendel, et al. 2010).
The song-related BG circuit also guides changes in motor output by generating an error-
reducing motor bias that is rapidly incorporated into the cortical premotor network (An-
dalman et al. 2009a). In birds, as in mammals, it is believed that the adaptive motor changes
elicited by the BG are learned through a reinforcement learning mechanism. Accordingly,
dopamine delivery in the BG provides an online evaluation of song quality (Gadagkar and
Goldberg 2016) analogous to reward prediction errors signaled by dopamine during con-
ditioning in mammals (Schultz et al. 1997). This dopaminergic signal provides a reinforce-
ment signal that drives error correction during learning (Hisey et al. 2018; Xiao et al. 2018).
The dopaminergic input is known to modulate activity-dependent synaptic plasticity in
area X in birds (Ding et al. 2004b), akin to mammals (Wickens et al. 2003). Thereby, the
BG output implements behavioral adaptations guided by dopaminergic reinforcement
signaling to optimize motor output. These behavioral adaptations are ultimately consol-
idated in cortical networks following extensive training (Andalman et al. 2009a; Hélie et al.
2015).

The whole network of brain nuclei involved in song production in songbirds - the song
system - offers a great model for studying brain circuits and their role in behavior. The
numerous genes implicated in human diseases that are enriched in the song system nuclei
and exhibit differential expression, both at specific points in development and during be-
haviors, such as listening to song or singing, also opens up interesting paths for the study
of pathophysiological processes (M. S. Fee and Scharff 2010; Wada et al. 2006). We argue that
studying the benefits and consequences of structural plasticity in this system, through a
functional standpoint, may shed light on the general principles that make structural plas-
ticity advantageous for the central nervous system in the perspective of learning complex
skills.

28



3.3 Structural plasticity in songbirds

  

Volume
No. of synapses

RA LMAN-RA

0 10 20 30 40 50 60 70 80 90

RA LMAN HVC

Sensory phase

Sensorimotor learning

HVC

RA

LMAN

AREA 
X

DLM

RA

DLM

LMAN

AREA 
X

HVC

Q
ua

lit
at

iv
e 

va
ria

tio
n

Days post hatch

Figure 3.4: Timeline of development of the vocal learning circuitry in zebra finches (Bottjer, Mies-
ner, et al. 1986; Herrmann and Arnold 1991; Herrmann and Bischof 1986; Johnson
et al. 1992; Konishi 1985; Mooney and Rao 1994b; Nordeen et al. 1988; Sohrabji et al.
1993). The bottom panel shows the axons from HVC entering the RA, to form the
cortical pathway responsible for vocal production, much after the anterior forebrain
pathway (theorised to provide a tutor signal for vocal learning) is completed (bottom
panel). This is accompanied by significant changes in the neural regions involved. Dur-
ing the initial sensorimotor period, the volume of the RA and HVC increase with a
significant decrease in the LMAN volume, while the synapses within the RA increase,
both from HVC axons and from RA interneurons. In the later stages of the sensori-
motor learning, decreasing song variability is accompanied with a stabilisation of the
volume of the LMAN and HVC and a slight decrease in RA volume.
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3.3 Structural plasticity in songbirds
Similar to mammals, birds display plasticity from the scale of dendritic spines to synapses
to networks throughout their lifespans, both during development and in adulthood. In-
ternal factors (such as the concentration of circulating hormones) and external factors
(such as daily light cycles, but also injury or lesion), can trigger plasticity in birds. For
instance, the avian olfactory pathway which projects into paralimbic areas, before hatch-
ing, is displaced competitively by the development of visual, auditory and motor path-
ways after hatching, as a result of higher audio-visual exposure (Teuchert-Noodt et al. 1991).
Neurogenesis and circuit reorganization is also common in adult birds. The hippocam-
pus undergoes seasonal neurogenesis and reorganization in food-storing birds and brood
parasites (Sherry and MacDougall-Shackleton 2015), and higher exposure leads migrating
species (passerines) to undergo more neurogenesis in areas that process spatial informa-
tion, than non migratory species (LaDage et al. 2011). Interestingly, similar mechanisms
underlie adult neurogenesis in both avian and mammalian species (Brainard et al. 2013).
The brain circuit where structural plasticity has been most studied in birds is arguably
the song system in songbirds (Brenowitz 2004). In this section, we provide a short review
on the current evidence for structural plasticity in the vocal learning circuitry in birds.

During development

Song acquisition happens in juvenile birds while their brain is still in development. As
a consequence, the song-related neural circuits are still in the process of being built and
there are many forms of structural plasticity in the network, during the song learning
period.

Auditory experience may already have an influence on brain development before hatch-
ing (Mariette et al. 2016) and the auditory pathway from the ears to high auditory areas in
the pallium is built early in development. The anatomical structure of the auditory net-
work is thus largely mature in young birds when the sensory learning phase starts (dph
20), with all major anatomical connections being present. Exposure to adult vocalization,
at that stage, shapes the auditory responses of neurons in the high-level auditory nuclei of
the pallium where song-selective responses occur relatively early (before dph 35) (Amin
et al. 2007). Receiving strong afferents from these auditory nuclei, neurons in HVC and
its efferent structures show a progressive emergence of song selectivity during the sen-
sory period of song learning (Doupe and Kuhl 1999). A. N. Chen et al. (2020) demonstrate
that during development, there are significant changes in the phasic excitability in the
caudal mesopallium CM, a cortical auditory region which exhibits selective responses to
familiar conspecific songs. Exposure to tutor song has been shown to induce cell-type
specific changes within the ion channel expression patterns of HVC neurons, depending
on whether they project to the RA or the Area X. These changes happen at a magnitude
that can potentially alter network function (Ross et al. 2017). Moreover, daytime expo-
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sure to tutor song had profound effects on the distributions of inter-spike intervals of
RA bursting activity during sleep, depending on the tutor song (Shank et al. 2009). Deaf-
ening adult birds, on the other hand, decreases dendritic spine size and stability of Area X
projecting HVC neurons, along with an increase in mean spontaneous action potential
firing rates and decrease in inter-spike intervals (Tschida et al. 2012). Daou et al. (2020) inves-
tigate the intrinsic properties of Area X projecting HVC neurons further, and discover
that birds displaying good copies of their tutor’s song exhibit similar spike morphology,
spike trains, and ion current magnitudes, indicating that these intrinsic dynamics may be
molded by auditory and vocal experience. Additionally, considering conditioning using
distorted auditory feedback also elicits a prominent effect on the intrinsic properties of
HVC neurons in adults, it has been suggested that such intrinsic plasticity could form
an alternate/complementary mechanism for learning via their effect on synaptic efficacy
and network interactions (Daou et al. 2020; 2021). Further, functional plasticity is likely
involved in the shaping of auditory responses in this network (Fiete, Senn, et al. 2010). The
synaptic rewiring in HVC is also evidenced by a large turnover of dendritic spines early in
the sensory learning phase, followed by a rapid stabilisation of spine dynamics (Roberts et
al. 2016). This correlation of circuit changes with tutoring may indicate a functional role
of structural plasticity in sensorimotor learning. On the other hand, with development,
spine turnover in the HVC decreases in untutored birds too. Hence, this stabilisation
might potentially underlie the closing of a sensitive period, where they are more recep-
tive to learning behavioural change. The underlying cellular and molecular mechanisms
triggering the changes in plasticity are still under investigation. Interestingly, perineu-
ronal nets surrounding groups of neurons and limiting axonal and dendritic processes
could mediate changes in plasticity (Cornez et al. 2018). Further work is however required
to confirm their causal role in the opening and closing of sensitive periods.

Contrary to the ascending auditory pathway, the song system is highly immature when
birds start the song learning process, and structural plasticity is ongoing both during the
sensory and the early sensorimotor period of song acquisition (Figure 3.4). Among the
two pathways of the song system, the BG-cortical loop develops first and is fully formed
by dph 20, before the sensorimotor phase begins (Mooney and Rao 1994b). Indeed, in juve-
nile male zebra finches, at the onset of song learning, axonal terminals from LMAN enter
Area X (dph 20), Area X terminals enter DLM by dph 20 (Sohrabji et al. 1993), and DLM
terminals enter LMAN before dph 15 (Johnson et al. 1992). This BG-thalamo-cortical cir-
cuit is topographic in nature and reaches maturity before dph 20. (Iyengar et al. 1999;
Vates et al. 1995). Concerning the input pathway of the BG-thalamo-cortical loop, HVC
neurons projecting to Area X innervate this target by dph 20 (Alvarez-Buylla, Theelen, et
al. 1988; Nordeen et al. 1988). The output pathway of the loop is also formed early, with
LMAN projections entering the RA by dph 15 (Herrmann and Arnold 1991). The number
of synapses made by LMAN axons onto RA neurons decreases substantially (-70% be-
tween dph 20 and 60) over the course of vocal development (Herrmann and Arnold 1991).
While anatomical connections between the nuclei are stable from dph 20 to adulthood,
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the nuclei of the BG-cortical pathway nonetheless experience dramatic volume changes.
Between 20 dph and 60 dph, LMAN volume and neuron number decline by 50%, while
the volume of Area X increases by 50%, due to neurogenesis (Bottjer, Glaessner, et al. 1985;
Nordeen et al. 1988) .

The motor pathway, on the contrary, develops very late in the song learning process.
First, both HVC and RA grow slowly, reaching adult size only after dph 40 and dph 70,
respectively (Herrmann and Bischof 1986). In HVC, the number and size of neurons both
increase dramatically (Bottjer, Miesner, et al. 1986). Meanwhile, the synapses in the RA,
from the HVC and LMAN are drastically rearranged at the onset of the sensorimotor
phase. HVC axons reach the dorsal border of RA by dph 15, but, unlike the LMAN,
they form synapses with the RA only between dph 30 and 40 (Herrmann and Arnold 1991;
Mooney and Rao 1994b). In the sensorimotor period, between dph 20 and 60, the reduc-
tion of synapses between the LMAN and RA is accompanied by a tripling of the number
of synapses within the RA and an increase of the RA volume (Bottjer, Miesner, et al. 1986;
Herrmann and Arnold 1991; Herrmann and Bischof 1986).

The most striking consequence of the late development of the song system is that the
motor pathway, which drives adult vocalizations, does not contribute to the babbling vo-
calization, called subsong, produced by juveniles in the early sensorimotor phase of song
learning (Aronov et al. 2008). At that stage, the HVC-to-RA pathway is not yet function-
ally strong enough to drive singing and LMAN projections are driving subsong-related
activity in RA. During the following days, the formation and strengthening of inputs
from HVC to RA leads to the emergence of plastic song, driven both by LMAN and
HVC (Garst-Orozco et al. 2014b; Herrmann and Arnold 1991). As learning progresses, the
influence of the LMAN inputs to the RA reduces due to the strengthening of the synap-
tic connections from the HVC. Further, the variability of the song decreases with devel-
opment and practice (dph 60–90), along with a significant pruning of the HVC inputs
to the RA, albeit with a strengthening of the surviving connections (Garst-Orozco et al.
2014b).

During seasonal plasticity

Post-development, hormonal changes and external factors continue to induce structural
changes in the brain in many vertebrates beyond the developmental period (Jacobs 1996).
Most temperate songbird species breed seasonally and display a pronounced seasonal plas-
ticity in their singing behavior (Ball et al. 2010). The song initially learned as a juvenile un-
dergoes a pattern of yearly changes triggered by changes in the light cycle and mediated
by sex steroid signaling in the brain (Alward et al. 2013; F. Nottebohm, M. E. Nottebohm,
L. A. Crane, et al. 1987). Producing highly stereotyped songs during breeding, birds stop
singing during the summer molt, resume singing in fall with short-duration songs of vari-
able structure at lower rate and volume and gradually sing longer, louder and more stereo-
typed songs until the next breeding season (Brenowitz 1997; F. Nottebohm 1981). These

32



3.3 Structural plasticity in songbirds

changes in song are accompanied by a large structural reorganization of the neural cir-
cuits in the song system (F. Nottebohm, M. E. Nottebohm, and L. Crane 1986), auditory ar-
eas (Caras et al. 2012) and beyond (De Groof et al. 2008). This naturally occurring plasticity
in the songbird brain is perhaps the most pronounced observed in any adult vertebrate.
The volume of many song-related brain regions, as well as their number of neurons and
synapses, increase dramatically in anticipation of the breeding season (Brenowitz 2004; F.
Nottebohm 1981), while the physiological and functional properties of their neurons are
altered (Del Negro et al. 2002; Meitzen et al. 2007). The entire volumes of several song nu-
clei, including HVC, RA and Area X, are considerably larger during the spring breeding
season than during autumn and winter in seasonal birds (Tramontin et al. 2000). The in-
crease in volume may reflect an addition of new neurons through neurogenesis, notably
in the HVC (Alvarez-Buylla and J. R. Kirn 1997; Goldman et al. 1983), or dendritic growth
and synaptogenesis, with an increase in the number of dendritic spines, as seen in the
RA or Area X (Hill et al. 1991). Meanwhile, neuron number in LMAN and their inputs
to RA remain relatively constant (Thompson et al. 2007). Altogether, it is interesting to
note that the strengthening of the HVC-RA pathway before the breeding season recapit-
ulates at least in part the late development of the motor pathway during song acquisition
in juveniles. Interestingly, seasonal plasticity is regulated by the same endocrine signals
as juvenile song learning (Korsia et al. 1991; Whaling et al. 1995) and may therefore exploit
similar mechanisms as those acting during early ontogeny (Cajal 1928).

3.3.1 Functional impact of structural plasticity

There are parallels in the manifestation of structural plasticity between mammals and
birds. Insights drawn from the songbird literature can be used to understand neural cir-
cuitry and behaviour in mammals, as well. They present an avenue to explore the contri-
butions of changes in neural circuitry beyond functional plasticity.

Certain fundamental elements of structural plasticity can potentially confer benefits
when incorporated into computational models. During song learning, there is an early
excessive sprouting of neurons in HVC and RA, followed by a significant pruning of
the HVC-RA synapses, and strengthening of the surviving connections (Herrmann and
Arnold 1991). This form of abundant sprouting followed by selective pruning is a com-
monly adopted technique to model changes in network connectivity. This phenomenon
can also be employed to encode the trade off between exploration and exploitation, to
represent decreasing tendencies to explore, as learning proceeds (Garst-Orozco et al. 2014b;
Tumer et al. 2007). Also, spine turnover and terminal size can be useful parameters in
modeling the consolidation of learned motor action or behaviour, in lieu of solely modi-
fying synaptic weights (Herrmann and Arnold 1991; Roberts et al. 2016). Beyond structural
plasticity, it could also be interesting to consider integrating features of intrinsic plastic-
ity within computational models, for instance, by simulating the alteration of intrinsic
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excitability of a neuron by introducing activity-dependent modifications within the acti-
vation functions in typical neural network models, as suggested by Daou et al. (2021).

Apart from the general usage of these basic elements to computationally exploit the
properties of structural plasticity, there are specific insights that can be drawn from vocal
learning in songbirds, where structural plasticity directly has a crucial functional impact
on learning. As we have seen in the section 3.3, a common feature of the developmental
and seasonal structural plasticity in the song system is the progressive strengthening of the
motor pathway and its increased synaptic drive on RA neurons compared to the early
shaped and steady input from LMAN. Interestingly, in both cases, induction of large
variability in the song by LMAN occurs in the condition where HVC inputs to RA are
not as prominent (Alliende et al. 2017; Aronov et al. 2008). The putative effect of this relative
change in the balance of inputs from HVC and LMAN in RA is crucially influencing the
activity of neurons in RA and how they mediate changes in song.

Both in the early phase of juvenile learning and during fall in seasonal songbirds, LMAN
drives variable patterns of activity in RA, resulting in less structured and more variable
songs (Alliende et al. 2017; Ölveczky, Andalman, et al. 2005). Accordingly, the singing related
activity of RA neurons gradually changes from highly variable firing patterns to precise
and sparse bursts of spikes locked to song motifs during juvenile learning (Ölveczky, Otchy,
et al. 2011). LMAN input is necessary for the expression of RA firing variability, and the
change from variable to stereotyped firing patterns in RA throughout development could
be explained by the strengthening and pruning of HVC inputs to RA (that drive stereo-
typed patterns) while LMAN inputs remain unchanged (Garst-Orozco et al. 2014b). As
HVC input to RA becomes larger, it drives stronger bursting in RA interleaved with hy-
perpolarized periods of silence due to recurrent inhibition (Ölveczky, Otchy, et al. 2011).
LMAN inputs to RA are mediated mostly through voltage-dependent NMDA recep-
tors (Mooney and Konishi 1991; Ölveczky, Andalman, et al. 2005), and its influence on RA
firing is weak in this condition. The influence of LMAN on RA is thus diminished,
resulting in a progressively more stereotyped song (Ölveczky, Andalman, et al. 2005). In-
terestingly, this scenario does not require any seasonal or developmental modification in
the BG–forebrain circuit to see its influence on song strongly modulated. It ensures that
LMAN-driven variability is expressed long before the HVC driven temporal structure
of the song motif emerges, and likely results in the two-phase learning, including early
babbling in subsong followed by temporally structured plastic song.

The strong influence of the LMAN on the RA early in development initially drives
subsong and then drives the variability in plastic song; thereafter, HVC plays an increas-
ingly strong role in driving the stereotyped firing of RA as the bird approaches crystalliza-
tion. The same scenario seems to be recapitulated at least partially during seasonal plas-
ticity due to the regrowth of HVC and the entrance of new axons in RA. Why is HVC
input arriving so late in the RA during song acquisition or during seasonal relearning?
And why is learning divided in these two phases - babbling and plastic song? In the next
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chapter, we draw a parallel with optimisation techniques, commonly used in machine
learning, to investigate the potential roles of these phenomena in sensorimotor learning.

3.4 Two-stage learning
Beyond the specific case of birds, for which non-seasonal structural plasticity has been
hypothesised to be critical for both acquisition and automatization in juvenile songbirds,
we may question to what extent such structural plasticity is similarly critical in verte-
brates and more specifically, in mammals. The similarity in brain organization between
birds and mammals is indeed striking, especially when considering the cortex-basal gan-
glia loop. As discussed in (Boraud et al. 2018a) how the development of automatized skills
relies on the BG teaching cortical circuits and is actually a late feature linked with the devel-
opment of a specialized cortex or pallium that evolved in parallel in different taxa. Along-
side this hypothesis, there is a growing number of computational models of decision mak-
ing that takes into account this dual pathway hypothesis, where the BG acts as a general
training machine for cortico-cortical connections (Hélie et al. 2015). In this context, it is
natural to wonder if the initial delay in connection might exist as well in other species
and if this would provide a similar benefit in early learning. In humans, this would cor-
respond to the phase preceding the babbling phase that is known to be characterized by
rapid structural and functional changes. However, as explained by Vasung et al. (2019), the
study of early human brain development remains a challenge.

Beyond the interactions between the basal ganglia and the cortex, other learning-related
brain circuits function with a ‘two-stage’ learning process where the initial learning stages
rely on subcortical structures while long-term memory is imprinted in neocortical areas
through on-line and/or off-line training of cortical networks by the subcortical regions.
Concerning motor learning, BG and cerebellar circuits may teach neocortical motor ar-
eas where the motor programs are engrained for long-term storage of motor tasks (Cali-
giore, Pezzulo, et al. 2016). Here, we have shown how BG motor output matures earlier
than cortico-cortical connections in songbirds, and how this may be beneficial for song
learning. Similarly, the cerebello-neocortical circuit driving motor cerebellar-dependent
learning may mature before the cortico-cortical connection in motor areas of the motor
cortex are mature enough to store the motor memories. Even though this is purely spec-
ulative, this hypothesis could be tested experimentally by comparing the contribution of
cerebellar and neocortical circuits to motor learning across development. Whether delay-
ing the maturation of cortico-cortical connections benefits learning could be tested fur-
ther in theoretical models of the BG-cortical and cerebello-cortical networks (Doya 2000).

For declarative memory, the experimentally confirmed ‘two-stage’ theory (Bontempi
et al. 1999; Marr 1971; Maviel 2004) posits that new memories are transiently encoded in
the hippocampus before they are gradually transferred in the prefrontal cortex for long-
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term retention. The hippocampus has appeared before the neocortex in evolution, and
it is tempting to speculate that ontogeny partially recapitulates evolution with an early
maturation of hippocampal circuits involved in declarative memory before the matura-
tion of the prefrontal cortex, which only terminates in adolescence or even later (Teffer
et al. 2012). Such two-stage motor learning and episodic memory formation continues
in adulthood, albeit with diminished influence of the cerebullum and hippocampus, re-
spectively. Whether such two-stage developmental process could be beneficial for the
development of memory circuits, during development, remains to be investigated both
experimentally and theoretically.
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4 Objective
In chapter 2 and 3, we have established that songbirds present a tractable animal model
to study sensorimotor learning. We discussed evidence of BG-led sensorimotor learning
in songbirds, and its subsequent consolidation within cortical motor pathways, suggest-
ing a two-step paradigm of learning. The avian BG-thalamo-cortical pathway is necessary
for learning vocalisations and is uniquely situated to implement reinforcement learning,
which enables it to act as a tutor. In parallel, the cortical motor pathway is critical for
producing these learnt vocalisations. In this manuscript, we exploit the vocal learning be-
haviour in songbirds, specifically zebra finches, and the underlying song system, in order
to understand how neural circuits govern sensorimotor learning, from the perspective of
both structural and functional plasticity.

Does structural plasticity have a functional role?

As discussed in chapter 2, the interactions between functional and structural plasticity are
still unclear and often overlooked in computational models. In chapter 3, we have high-
lighted the presence of structural plasticity within the dual pathway system underlying
vocal learning in songbirds. Several studies have provided sufficient empirical evidence
showing the delayed maturation of the cortical pathway, with respect to the subcortical
circuit through the BG in songbirds. The BG-thalamo-cortical loop (AFP) is fully devel-
oped before the sensorimotor phase of vocal learning, while in the cortical pathway, the
HVC axons do not innervate the RA until two weeks later (Mooney and Rao 1994a). In
this study, we are interested in exploring the functional role of structural plasticity in sen-
sorimotor learning. Could structural plasticity potentially facilitate the transfer of sen-
sorimotor learning from subcortical to cortical structures when constraints imposed by
behaviour and anatomical development are taken into account? More specifically, is this
delayed maturation of the cortical pathway, with respect to the subcortical circuit, merely
an artefact of development? Or does the late innervation of RA by the HVC axons have
a functional role in song learning? Could this lag be advantageous for sensorimotor ex-
ploration led by the BG during the initial phase of vocal learning (before 35dph)?

In chapter 5, we investigate the potential functional role played by structural plasticity
towards sensorimotor learning. We hypothesize that the delayed growth of the cortical
pathway, within the song system, confers functional advantages to vocal learning. In or-
der to investigate this hypothesis, we design a simplified model of the song system that
conducts sensorimotor exploration using a non-linear multi-segmented pivoted arm, as
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an analogy to vocal learning. Within this scenario, we simulate both the simultaneous
development of the parallel cortical and BG-thalamo-cortical pathways, as well as the de-
layed maturation of the cortical motor pathway and use this simple model to demonstrate
the functional role of structural plasticity.

How can sensorimotor learning be optimised under complex
landscapes in a biologically plausible manner?

The highly non-linear nature of the relationship amongst neural activity, the musculature
in the syrinx and the resulting vocalisations creates an extremely complex and uneven sen-
sorimotor landscape. In chapter 5, we look into biologically realistic strategies adopted
by the songbird to navigate such a landscape. In chapter 3, in addition to anatomical
substrates, such as the parallel cortical and subcortical pathways governing vocal learning
and production, we have elucidated various behavioural features or constraints of vocal
learning, such as the duration of sensorimotor learning period, the number of trial mo-
tifs per day, etc. Moreover, a daily post-sleep deterioration has been observed in song
quality during early sensorimotor learning, which has been associated with an eventual
superior imitation of tutor song during adulthood (Derégnaucourt et al. 2005). A similar
non-monotonic trajectory in progression of sound acoustics has been observed during
song learning, where juvenile birds often engage in pitch doubling (Tchernichovski et al.
2001). Thus, there seem to be multiple indicators of an apparent non-monotonic trajec-
tory of improvement in song quality during vocal learning.

We look into possibly strategies employed by the songbird to optimise vocal learning in
complex, uneven landscapes, by taking into consideration empirical evidences regarding
the behaviour of vocal learning and the underlying anatomy supporting it. Given the dual
pathway architecture of the song system, do the parallel pathways aid sensorimotor learn-
ing by executing different roles? What is the effect of structural plasticity within such a
dual pathway framework? Furthermore, is there a potential neural mechanism that could
implement the aforementioned post-sleep deterioration? Could the mechanisms under-
lying such a saltatory trajectory facilitate navigation in a complex sensorimotor landscape?
How do such learning mechanisms compare with standard machine learning algorithms
that optimise gradient-descent based reinforcement learning?

In section 5.2 and 5.3, we investigate the interplay between the cortical and subcor-
tical pathways during vocal learning. We look into the different roles played by the two
pathways and the potential functional benefits conferred by the delayed maturation of
the cortical pathway to vocal learning. Further, we interpret the post-sleep deterioration
observed during early sensorimotor learning as a facilitatory factor towards vocal learn-
ing. In order to investigate this hypothesis, we design a conceptual model of the song
system that conducts sensorimotor exploration on a performance landscape generated
using a model of the avian syrinx, as an analogy to vocal learning. We ratify the concep-
tual model using a network model with sigmoidal rate-coded neurons. Finally, we draw
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parallels between the functioning of the model and optimisation techniques of gradient
descent approaches used in machine learning.

Neural correlates of reinforcement learning and transfer of
sensorimotor learning from subcortical to cortical circuitry in
songbirds

It has been widely hypothesised that reinforcement learning, driven by the BG-thalamo-
cortical loop, is a primary substrate for sensorimotor learning (M. Fee et al. 2011). In chap-
ter 3, we inspect the song system and study the necessary substrates for the neural im-
plementation of reinforcement learning within the dual pathway architecture. There are
indeed evidences demonstrating, one, the ability of the output nucleus of the AFP, the
LMAN, to inject exploratory variability into the system, two, mid-brain dopaminergic
projections providing feedback about performance evaluation to the area X, and, three,
activity-dependent plasticity within both the BG and cortical pathways of the song sys-
tem. Thus, the avian BG-thalamo-cortical pathway displays most of the ingredients nec-
essary to implement reinforcement learning.

We scrutinise the plausibility of such BG-led exploration influencing vocal behaviour
and being consolidated within the cortical motor pathway in songbirds. Now, if the BG
does indeed implement reinforcement learning, the output nucleus of the AFP, i.e. the
LMAN, needs to be able to drive variations in behaviour. It has been shown that vari-
ations in premotor RA activity are correlated with variations in acoustic features, such
as, pitch. The LMAN could potentially use its direct excitatory projections to the RA
to influence behaviour. In this case, during vocal learning, variations in LMAN activity
would also show a correlation with variations in acoustic features. Moreover, for the tutor
signals from the AFP to be consolidated within the motor pathway as well, the LMAN
needs to be able to exert its influence on the cortical pathway. If the LMAN does indeed
drive variability in the RA, in order to exact changes in behaviour, we hypothesise that
during sensorimotor learning, there would be an increase in correlation between, one,
LMAN activity and resulting behaviour, as well as, two, LMAN and RA activity, pre-
sumably within the premotor window.

In chapter 6, we look further into this hypothesis regarding the feasibility of reinforce-
ment learning in the song system. First, we build a simplified model of the song system
and induce adult plasticity, by emulating a widely used protocol of conditioned auditory
feedback (CAF), in order to make qualitative predictions concerning our hypothesis. We
then proceed to test the prediction which emerges from the model, by designing an elec-
trophysiology study to observe the activity in the neural correlates of vocal behaviour, in
freely moving zebra finches, exhibiting song learning. We induce adult plasticity in male
zebra finches, using the aforementioned conditioned auditory feedback protocol. Dur-
ing this protocol, while the bird learns to alter its song, we perform electrophysiological
recordings in the RA, the locus of motor control, and LMAN, the output nucleus of
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the AFP, and analyse whether the activity of LMAN is correlated with behaviour, and
whether LMAN drives RA activity during sensorimotor learning.

Thus, we investigate BG-driven sensorimotor learning within the avian song system,
from both a theoretical and experimental perspective in order to assess our hypothesis
concerning the contribution of structural plasticity, biologically plausible optimisations
of learning mechanisms and transfer of reinforcement learning within a dual pathway ar-
chitecture. More specifically, we begin by using theoretical models to understand the in-
teraction between the parallel pathways in the song system and the functional role played
by structural plasticity, in chapter 5. We posit that within the dual pathway architecture,
the delayed maturation of the cortical pathway directly facilitates sensorimotor learning.
We then proceed to incorporate behavioural features of vocal learning and look into bi-
ologically plausible ways of optimisation in pathological situations for gradient-descent
based learning. Finally, in chapter 6, we look into the feasibility of reinforcement learning
in a two-step paradigm, within the song system, using both theoretical and experimental
methods. To investigate the predictions made by the computational model, we design an
experimental protocol and collect preliminary electrophysiological data from the neural
correlates of vocal learning in zebra finches.
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5 Computational benefits of
the dual pathway framework

The vocal learning behaviour exhibited by songbirds makes them an excellent model to
study sensorimotor learning. As discussed in chapter 3, song acquisition and production
in songbirds is governed by a dedicated neural circuitry that involves two parallel path-
ways: a cortical pathway required for production and a basal ganglia-thalamo-cortical
(BG) pathway necessary for plasticity. The BG pathway induces variability in produc-
tion during vocal exploration, receives a performance signal via midbrain dopaminergic
projections and drives a motor bias that corrects vocal errors. This dopamine-modulated
change in vocal output, induced by the BG is gradually consolidated within the cortical
pathway.

To understand BG-driven learning, several models based on Hebbian learnng have
been proposed (Hanuschkin et al. 2013; Pagliarini et al. 2018). These models hypothesize that
early sensorimotor exploration could enable the bird to form an internal inverse represen-
tation of the possible vocalisations and corresponding neural motor codes. This inverse
model can be later used to produce the appropriate motor command or vocalisation at
a given point of time within an independently learnt sequence structure. Alternatively,
Yildiz et al. (2011) generate vocalisations with a three-level heirarchical model, instead of
an inverse model, where neural ensembles in the HVC are sequentially activated, and
drive the activity in RA from one attractor ensemble to the next, which in turn generates
vocalisations using a model of vocal tract dynamics (Laje et al. 2002). Troyer et al. (2000)
implement Hebbian learning at HVC-RA synapses to build a forward model and map
neural codes of motor action to its auditory consequences. They, then, use the AFP as a
critic to evaluate this mapping. Such an inverse or forward model could provide the foun-
dation for dopamine-dependent reinforcement learning (RL) within the BG circuitry to
eventually learn an accurate imitation of the tutor song.

Reinforcement learning (RL) has been widely hypothesised to govern sensorimotor
learning (Wickens et al. 2003). Schultz et al. (1997) show that dopaminergic signals from
the ventral tegmental area and substantia nigra report ongoing prediction errors for re-
ward, which is reminiscent of the error signals propagated over time in temporal differ-
ence learning algorithms, a class of RL algorithms. Likewise, in songbirds, dopaminer-
gic neurons have been shown to encode performance error during vocal learning, with
a suppression of dopaminergic activity following worse than expected performance and
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vice versa (Gadagkar and Goldberg 2016). Unlike the reward prediction error seen in the
former study, which predicts value based on external factors, performance errors are an
intrinsic evaluation of perceived motor output with respect to an internal objective. The
facilitators of reinforcement learning within the BG-thalamo-cortical circuitry in song-
birds have been discussed further in section 3.2.2 and 5.2.1. In the context of BG-driven
vocal learning in songbirds, Doya and Sejnowski (1998) propose that the LMAN acts as a
variability generator, which perturbs the HVC-RA connections, leading to exploration
of the bird’s range of vocalisations. Fiete, M. S. Fee, et al. (2007) expand on this idea in
a more biologically realistic manner, where instead of perturbing synaptic connections,
the cortical pathway is influenced via perturbing RA neurons or ‘nodes’. However, the
purely gradient descent based approach adopted here is susceptible to getting trapped in
local optima when traversing uneven sensorimotor landscapes (Bottou et al. 1991; Gori et al.
1992). An important proposed hypothesis for BG-led exploration is that the AFP is in-
volved in gradually biasing the motor system towards the desired target (M. Fee et al. 2011).
Finally, Farries and Fairhall (2007) take a step towards verifying the biological plausibility
for the reinforcement learning theory by using spike-time dependent plasticity rules to
train a neural network such that given a patterned synaptic input, neurons generate firing
patterns that lead to neural ensembles developing the appropriate population response.

Thus, reinforcement learning can enable the BG pathway to guide the cortical pathway
towards producing desired vocalisations. However, the non-linear and redundant nature
of the relationship between neural control, syrinx musculature and resulting acoustics,
makes song learning a complicated problem to solve (Srivastava et al. 2015). Such complex
and uneven sensorimotor landscapes present a challenge to reinforcement learning imple-
mented using direct gradient descent. Several pathological landscapes, such as the Rast-
rigin function, divulge the shortcomings of gradient descent when several local optima
are present (“Global Optimization” 1999). Now, we turn to the vocal learning behaviour
and underlying circuitry to explore the strategies adopted by songbirds to navigate such
sensorimotor landscapes. As discussed in chapter 3, the song system, with its parallel sub-
cortical and cortical pathways, gradually transfers BG-led reinforcement learning to cor-
tical motor networks, within a two-step paradigm. It has been observed that within the
cortical pathway, the HVC axons wait at the dorsal border of RA for two weeks before
innervating the RA (Mooney and Rao 1994b). Is this delayed maturation of the cortical
pathway merely an artefact of development? Or could it be advantageous for sensori-
motor exploration led by the BG during the initial phase of vocal learning? Moreover, a
daily post-sleep deterioration has been observed in song quality during early sensorimotor
learning, which has been associated with higher quality of vocal imitations in the longer
timescale (Derégnaucourt et al. 2005). Could such a saltatory trajectory aid reinforcement
learning in navigating a complex sensorimotor landscape? What could be the underlying
mechanism for the post-sleep deterioration during early sensorimotor learning?

In this chapter, we examine the aforementioned characteristics of the vocal learning
behaviour and circuitry in songbirds, and theoretically investigate the potential benefits
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conferred by them to vocal learning. We, first, look into a possible functional role of struc-
tural plasticity towards sensorimotor learning. We posit that structural plasticity may play
a crucial role in vocal learning by regulating the transfer of information from sub cortical
to cortical networks and moderating their relative influence towards motor output. Hav-
ing established a possible role for structural plasticity towards learning, we proceed to look
at the dual pathway framework with a more holistic approach. We begin with a concep-
tual model which investigates the transfer of learning within a dual pathway framework
while incorporating empirical evidences from both behaviour and anatomy. Using this
conceptual model, we look into 1. the interplay between the two parallel pathways in-
volved in vocal learning using both functional and structural plasticity, 2. strategies to
navigate a complex sensorimotor landscape, inspired from the non-monotonic trajectory
towards the vocal imitation and 3. the analogies between functioning of the biologically
feasible dual pathway framework and more computationally intensive machine learning
algorithms. We proceed to validate this conceptual model further using a scaled biologi-
cally realistic model with rate coded neurons.

5.1 Functional advantage of structural
plasticity

Based on the empirical observations we have reviewed in the chapter 3, we introduce in
this section a simplified model of vocal learning in songbirds (see Fig 5.1). While its pur-
pose is not to precisely model the circuitry underlying the vocal learning process, this
model attempts to demonstrate the benefits of adopting features of structural plasticity
within computational frameworks. Furthermore, this simplified model will help us to
illustrate the putative role of structural plasticity in the early phase of learning. More
specifically, we aim at showing that structural plasticity plays a functional role and the
absence of such early plasticity is indeed detrimental to learning. This will constitute the
ground for a discussion about the crucial role of the structural plasticity in sensorimotor
learning as well as the rather scarce use of structural plasticity in computational models.

5.1.1 Hypothesis
Now, we hypothesise a role for structural plasticity in directly aiding the process of song
learning within a dual pathway framework, by incorporating evidences from anatomi-
cal studies of songbirds, specifically zebra finches. As we have seen in earlier sections,
in the case of songbirds, the vocal learning circuitry comprises of two parallel pathways.
The primary cortical motor pathway (involving the HVC and RA) is believed to be re-
sponsible for controlling song generation, while a secondary BG-thalamo-cortical path-
way (involving the LMAN, Area X and DLM) functions as a tutor and sends signals to
influence the course of vocal production. Area X receives strong dopaminergic innerva-
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tion from the midbrain, which provides an online evaluation of song quality (Lewis et
al. 1997). Moreover, there is experimental evidence showing activity-dependent synaptic
plasticity at HVC and LMAN projections to spiny neurons in area X (Ding et al. 2004a).
Thus, along with LMAN-driven variability, Area X forms an ideal site to facilitate rein-
forcement learning. On the other hand, activity dependent synaptic potentiation and
depression have also been described at the HVC-RA synapses(Mehaffey et al. 2015). This
provides an avenue for synaptic plasticity based on Hebbian learning, or co-activation
of pre-synaptic and post-synaptic terminals, within the cortical motor pathway. There
is a range of empirical evidence to support the hypothesis that the tutor signals from the
BG-thalamo-cortical pathway guide song learning and are eventually consolidated within
the cortical pathway(Ölveczky, Andalman, et al. 2005; Ölveczky, Otchy, et al. 2011). Based on
these evidences, we model the vocal learning circuitry using a dual pathway framework.

Additionally, morphological studies have shown that, during the development pro-
cess, the structural formation of the BG-thalamo-cortical (or tutor pathway) is completed
prior to the formation of the primary cortical motor pathway. More precisely, it has been
shown that by day post-hatch (dph) 20, i.e. at the onset of singing, the axons from LMAN
enter the RA, thus completing the tutor pathway. However, the axons from HVC (part
of the primary pathway) reach the dorsal border of RA by dph 15, but do not innervate
the RA before day 30 (Herrmann and Arnold 1991; Mooney and Rao 1994b). Thus, the HVC
axons wait at the dorsal border of RA and enter the RA to form synapses only after the
formation of the BG-thalamo-cortical loop.

This leads us to investigate if this delayed circuit completion, induced by structural
plasticity, might, in fact, have a crucial functional role in the process of vocal learning
using the dual pathway architecture. We hypothesise that this manifestation of structural
plasticity, in the form of delayed axonal connections, has a functional purpose and confers
a functional advantage in the song learning process.

5.1.2 Virtual arm exploration as an analogy to song
learning

To verify our hypothesis, we investigate this phenomenon, using an analogous paradigm
of virtual arm exploration, albeit in a simplified manner1. Given a multi-segmented arm,
pivoted at a point, we model the process of the arm learning to reach a specified target.
We assume that sensory learning has conferred a sensory representation of the tutor song
to the juvenile and is modeled here directly as a position on the sensorimotor space. The
RA plays a crucial role in controlling the bird’s syrinx and respiratory muscles, which
are essential to the production of song. Imitating tutor song requires learning this com-
plex non-linear transformation of the activity in the RA to the functioning of the vocal

1The scripts are available on https://github.com/rsankar9/Review-Arm-Exploration-Model and
archived in Zenodo (https://doi.org/10.5281/zenodo.4063714) (Sankar, Rougier, et al. 2020).
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Figure 5.1: Full and simplified model architecture illustrating our hypothesis regarding learning
and consolidation. The anterior forebrain pathway, via the avian BG, provides a tutor
signal which is eventually consolidated within the cortical pathway to generate the de-
sired behaviour. The simplified model illustrates a minimal functioning of the parallel
pathways, built using Hebbian learning and reinforcement learning, without detailed
description of the neural components.
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musculature of the bird. Sensorimotor exploration via the manipulation of the angles
between the arm segments serves as a minimal task to represent this process.

5.1.3 Methods

Architecture

The model’s network comprises of three layers of rate-coded neurons: the HVC, the RA
and the output layer, as shown in Fig 5.1. The HVC is used to encode the desired target.
It contains multiple binary rate-coded neurons, and the configuration of these neurons
can be used to denote different targets. The RA represents the locus of motor control,
and consists of several highly sigmoidal neurons (Eq 5.2). The output layer comprises as
many neurons as the number of arm segments(nseg) (Eq 5.3). The angles between the
arm segments is governed by the output of the model.

The model is mainly governed by two pathways connecting the HVC and the RA. Path
A, analogous to the cortical motor pathway, connects the HVC and RA. In parallel, Path
B minimally represents the BG-thalamo-cortical tutor pathway, without explicitly detail-
ing the BG-thalamic components. Path A (WA) and path B (WB) are fully connected via
two pathways (Eq 5.1). In path A, the connections are initialised to zero, and in path B,
the connections are initialised to random values, betweenWBmin

andWBmax . The input
to RA is a summation of the inputs from both Path A and Path B, normalised by the
size of the HVC. The RA and the output layer are fully connected with fixed synaptic
weights (WC). The activation function of RA is a sigmoidal function with a steep slope
(ss). The output of the model is thus a non-linear function of the total output of two
parallel paths. The motor output provides the angle (in radians, θ) between each arm seg-
ment w.r.t. the horizontal plane, which is thereafter converted into Cartesian coordinates
(Eq 5.9).

JRA = sig(
JHV C ·WA + JHV C ·WB

nHV C

) (5.1)

sig(x) =
1

1 + e−1∗(x−sm)∗ss (5.2)

output =
JRA ·WC

nRA

− π (5.3)

wherenHV C is the number of neurons in HVC,nRA is the number of neurons in RA,
JX is the activity of layer X , ss is the slope of the sigmoid, and sm is the mid-point of
the sigmoid.
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Learning

Path A, analogous to the cortical motor pathway, is built on Hebbian learning between
the HVC and RA. Path A updates the weights of its synaptic connections via potenti-
ation when both presynaptic and postsynaptic neurons are active, and depotentiation
when either of them are inactive. Path B minimally represents the BG-thalamo cortical
tutor pathway by using reinforcement learning between the HVC and RA, without ex-
plicitly detailing the BG-thalamic components. Path B induces randomised noise in the
network in order to explore and evaluates its sensorimotor exploration using feedback
from the motor output. This scalar feedback is indirectly proportional to the distance of
the position of the arm’s end-effector from the target position.

Path B: Reinforcement Learning

The weights of Path B are updated using reinforcement learning, specifically using the
covariance rule. Path B conducts exploration for the desired goal, by introducing ran-
domised noise directly into the weights of the Path B. The noise (ξ) injected into Path B
perturbates the activity of RA, which in turn affects the output of the model. The error is
calculated as the normalised Euclidean distance between the position of the end effector
of the arm and the desired target (Eq 5.4). A scalar reward signal, indirectly proportional
to the error, is then sent as feedback to path B (Eq 5.5). Path B uses this information to
reinforce its weights if the injected noise improves the reward received and vice versa (Eq
5.7). The weights are soft-bounded to WBmin

and WBmax .

E =

√
(x− x∗)2 + (y − y∗)2

2 ∗ Σnseg

k=1 lk
(5.4)

R = e−E2/σ2
R (5.5)

Rrec =
Σnt

t=nt−25R[t]

25
(5.6)

∆WB = ηB ∗ ξ ∗ (R−Rrec) ∗ JHV C ∗ JRA (5.7)

where ηB is the learning rate of path B, x, y denote the output coordinates, l is the
length of each segment and nt is the trial number.

Path A: Hebbian Learning

The weights of Path B are updated as per Hebbian learning. If the presynaptic neuron
in the Hvc and the postsynaptic neuron in the RA are both active, the corresponding
synaptic weight is potentiated, and if either one is inactive, the corresponding synaptic
weight is depotentiated (Eq 5.8). The weights are soft-bounded to WAmin

and WAmax .
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Table 5.1: Parameter values used for simulations in section 5.1.
Parameter Symbol Value

No. of arm segments nseg 3
Path B learning rate ηB 0.15

Path A potentiation rates ηp 0.0015
Path A depotentiation rate ηd 0.0015

Reward sensitivity σR 0.35
Noise limit ξmax 0.5

No. of training trials NT 6000
Path A, B weight bounds WAmin

,WAmax -1, 1
Path B weight bounds WBmin

,WBmax -1, 1
Path C weight bounds WCmin

,WCmax 0, 25

∆WA = ηp ∗ JHV C ∗ JRA

− ηd ∗ JHV C ∗ (1− JRA)

− ηd ∗ (1− JHV C) ∗ JRA (5.8)

where ηp and ηd are the rates of potentiation and depotentiation.

Task

The objective of the model is to learn the right combination of angles between the seg-
ments of a pivoted arm in order to reach a specified target. The model receives, as input,
one, the length of the arm segments (l), two, the configuration of the network, and three,
the target position (x∗, y∗), i.e. the Cartesian coordinates of the desired target (Eq 5.9).
The length of the arm segments are selected to be equal and to sum up to 1. The configu-
ration of network includes the information about the fixed weights between the RA and
the output layer, as well as the randomly initialised weights between the HVC and RA
via path A and path B. Further, it is verified that the network configuration has the ca-
pacity to produce outputs (representing the angles between the arm segments) in a range
larger than 0 to 2π. The target position is chosen such that it lies within the range of the
pivoted arm, i.e. a circle of diameter twice the arm length.

x, y = Σ
nseg

k=1 lk.cosθk,Σ
nseg

k=1 lk.sinθk (5.9)

where nseg is the no. of arm segments.
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Simulation

Each simulation consists of a training phase and a testing phase. The training phase (nt
trials) is ten times longer than the testing phase. During the training phase, path B is
active, while during the testing phase, it is deactivated. This represents lesioning of the
LMAN outputs, which has been shown to reduce variability in song production, as well
as arrest song learning in juveniles. Thus, testing phase consists of nt/10 trials where
the model is controlled only by path A. For condition 2, the training consists of nt trials
where both Path A and Path B are active. For condition 1, Path B is active throughout
the training phase while path A is deactivated for the initial third of the training phase,
i.e. the training consists of nt/3 trials in the beginning where only Path B is active. This
particular delay was chosen as, in 90% of simulations, path B takes longer than one-third
of the training phase to converge (Path B convergence: M=3840, SD=1136), when path A
is inactive throughout. The convergence point of a simulation, as shown in Fig 5.2, was
determined as the trial at which 1. the current average error is within 1% of the minimum
average error of the simulation, and 2. the standard deviation of the average error of the
recent 500 trials is less than 0.03%. Here, the average error is the running average over 100
trials.

Hypothesis test

We test the learning process of this multi-segmented pivoted arm, under two conditions:

1. This condition mimics the delayed innervation of RA by HVC axons. Path B is
present and active from the beginning of the training phase, while path A is not.
Path A is formed and activated after a stipulated delay, in this case, the initial third
of the training phase. Path A starts to learn after a delay with respect to when path
B has started its exploratory learning.

2. This condition denotes simultaneous progression of both pathways. Paths A and
B are present and active from the beginning of the simulation, and learn simulta-
neously. Path A is active throughout the training phase in condition 2.

Path B is active throughout the training phase in both conditions.

Analysis

The average convergence of path B, without any influence of path A, is calculated in or-
der to set the delay. For analysis, each condition is simulated with two hundred different
random seeds using the parameter set, shown in Table 5.1. Each seed corresponds to a spe-
cific network configuration, initial position of the arm, and the target destination. The
mean normalised error during the testing phase of each simulation is used as a metric for
further statistical comparison of the distributions. The proportion of seeds for which
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5 Computational benefits of the dual pathway framework

Figure 5.2: Two sample simulations demonstrating the calculation of convergence. To calculate
the convergence point, we inactivate path A and observe the number of trials path
B takes to reach convergence. The point of convergence is calculated as explained in
section 5.1.3, and annotated here with a vertical dotted line. Each subfigure has three
panels. The top panel shows the evolution of the error function (red) over the simu-
lation. The bottom panel shows the evolution of the strength of the Path A (red) and
Path B (grey) connections. The circular figure, on the right panel, provides a visuali-
sation of the movement of the arm over training, form the initial position (dot) to the
target (x). The final configuration of the arm is shown with higher opacity.
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the simulation had a better performance in condition 1 than condition 2 is calculated. A
paired t-test between this metric for the simulations in condition 1 vs those in condition
2, with corresponding random seeds, is conducted. Additionally, the initial distance be-
tween the arm end-effector and the target position is plotted against the final distance,
and it is observed that larger the initial distance (i.e. the distance the arm needs to traverse
to reach the target), the lower the success in reaching the target in condition 2.

5.1.4 Results
To understand the workings of the model under the two conditions, we look at one ex-
ample simulation in each condition, as shown in the schema of the simplified model in
Fig 5.3. Fig 5.3A illustrates condition 1, i.e. the progression when there is a time lag be-
tween the start of the two pathways, while Fig 5.3B illustrates condition 2, the progression
of the simulation when both pathways have a simultaneous start. As shown in the bottom
panel of Fig 5.3A, when Path A is paused for the initial third of the training process, Path
B, using reinforcement learning, begins exploration and is able to find the right direction
to move towards the target (top panel). After one third of the training phase, when path
A is activated, Hebbian learning mimics the direction chosen by reinforcement learning,
by further strengthening the pattern of neuronal activation in RA, selected by path B
(bottom panel). This leads to the arm eventually reaching the target (right panel). On
the other hand, in condition 2, when there is a simultaneous start of both path A and
path B (Fig 5.3B), we observe that the arm is unable to reach the target (right panel). The
bottom panel shows us that, before the tutor pathway finds the correct direction (i.e. the
correct pattern of neural activation in the RA), path A prematurely strengthens connec-
tions to the incorrect set of RA neurons. The strong input to the RA, from path A, leads
to path B being unable to sufficiently modulate the incorrect RA activity. This, in turn,
obstructs the depotentiation of the required synaptic connections in path A. Hence, the
network causes the arm to moves towards an arbitrary position, and ultimately, not reach
the target.

During the test phase, the influence of path B is completely removed in both condi-
tions. The delay in condition 1 is insufficient for path B to converge to a solution on its
own (when only path B is activated, 90% cases require more than one third of the train-
ing phase to converge). Performance in a simulation is measured by the mean normalised
error during the test phase. The lower the mean error, the better the performance. Over
two hundred such simulations per condition, with varying initial and target positions,
we observed2 that condition 1 (0.12± 0.10) has a significantly better performance than
condition 2 (0.27± 0.21) in reaching the desired target; t(199)=11.76, p<0.001. In con-
dition 2, the desired target was not reached in a majority of simulations. These results

2Here, we have presented the mean ± standard deviation of the performance metric (mean normalised
error in testing phase) for both conditions.
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Figure 5.3: A sample simulation demonstrating the advantage in having a delay in the develop-
ment of the cortical motor pathway. Subfigure A shows the arm successfully converg-
ing to the target in condition 1, unlike condition 2, shown in subfigure B. Each subfig-
ure has three panels. The top panel shows the evolution of the error function (red) over
the simulation. The bottom panel shows the evolution of the strength of the Path A
(red) and Path B (grey) connections. The circular figure, on the right panel, provides a
visualisation of the movement of the arm over training, form the initial position (dot)
to the target (x). Only one arm configuration per 250 trials has been plotted for clarity.
The final configuration of the arm is shown with higher opacity.
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5.1 Functional advantage of structural plasticity

suggest that having a delay in the development of path A with respect to to the tutor
path B confers a critical advantage in motor learning via sensorimotor exploration (see
Figure 5.4).

5.1.5 Discussion
While several advantages of structural plasticity have been noted across the literature,
ranging from energy efficiency to optimisation of information storage (as discussed in
chapter 2), we demonstrate that structural plasticity, within a specific circuitry, contributes
directly to the function of said circuitry. In order to look into the potential direct func-
tional advantages of structural plasticity, we scrutinize a hypothesis that is gaining popu-
larity in the literature. This hypothesis states that the development of automatized skills,
such as song production, is driven by the basal ganglia through dopamine-modulated
reinforcement learning in order to guide learning in a parallel cortical pathway, which
eventually governs the production of the skill (Andalman et al. 2009a; Ashby et al. 2010;
Pasupathy et al. 2005a).

The model presented in this section attempts to stress upon the, often overlooked,
potential functional role conferred by structural plasticity, using the vocal learning cir-
cuitry of songbirds as a framework. This simplified model illustrates why and how the
simultaneous development of tutor and motor pathways could be detrimental to learn-
ing. From Figure 5.3 A, we observe that when the tutor pathway is granted a period of
unregulated exploration, the model is able to test different patterns of RA activation in
an unencumbered manner and selectively potentiate the suitable synaptic connections
within the cortical motor pathway. Thus, the model is rendered more likely to find the
favourable solution, as compared to condition 2 (Figure 5.4). The vocal babbling period
of sensorimotor learning in songbirds has been shown to be largely driven by BG. The de-
layed growth of the cortical pathway, being analogous to condition 2, might thus facilitate
an indispensable period of sensorimotor exploration. The simultaneous development of
the cortical motor pathway and the BG tutor pathway, limits the influence of the tutor
on the motor output to effectively explore the sensorimotor space. Thus, in condition 2,
the premature development of the cortical pathway solidifies an undesirable motor con-
trol pattern within the RA, rendering the system more likely to be saddled close to the
initial configuration, as shown in Figure 5.4B. The tutor pathway being given the oppor-
tunity to independently explore, and identify the right direction to move the arm, results
in an improved capacity to influence the motor pathway towards the desired target. Thus,
structural plasticity, by enabling this differential development of the two pathways in ze-
bra finches, serves a crucial functional purpose of assisting sensorimotor exploration and
learning.

In the next section, we continue to investigate sensorimotor learning using a similar
framework inspired by the vocal learning circuitry. However, moving one step closer to
understanding the biological mechanisms underlying vocal learning, we take into con-
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5 Computational benefits of the dual pathway framework

Figure 5.4: Summary of all simulations in condition 1 and condition 2. Panel A shows the mean
error during the test phase of each simulation in condition 1 (black) vs condition 2
(red). Panel B shows the comparison between the error at the beginning of the simu-
lation vs the end of the simulation. We observe that in condition 2 (red), the model
does not always move away from the initial configuration. In condition 1 (grey), the
model is able to land in locations with low error, irrespective of the starting position.
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sideration the different behavioural features or constraints of vocal learning exhibited by
songbirds, in addition to the architecture of the song system and the structural plasticity
therein. Furthermore, in order to better incorporate the complexities of the syrinx, in-
stead of the artificial task of sensorimotor learning by an agent with a multi-segmented
robotic arm, we benefit from a biophysical model of the syrinx (Amador et al. 2013). Using
this syrinx model, we build a sensorimotor landscape for the dual pathway model to nav-
igate. This model of the songbird syrinx provides us with an improved approximation of
the complexities and non-linear nature of the relationship between different neural con-
trol patterns and muscular configurations of the syrinx or resulting behaviour. Hence,
having established the potential functional role of structural plasticity in this section, in
the next section, we study the mechanisms governing sensorimotor learning under more
realistic behavioural and physical constraints.

5.2 The dual pathway architecture
The acquisition of motor skills in vertebrates is widely believed to be governed by rein-
forcement learning (RL) wherein a skill is progressively learned through a series of trials
and errors (Boraud et al. 2018b). Each trial in the motor space can be perceived in the sen-
sory space to subsequently provide an evaluation of the performance, which will in turn
generate a reward signal to the motor system and help rectify the action. In this view,
learning to produce a given sensorimotor target involves finding the global optimum of
the reward landscape across all possible motor commands. Reinforcement learning uses
exploration to build an estimate of the local reward contour and implements gradient de-
scent in order to maximize the expected reward (Sutton, Barto, and Williams 1992). Previous
work has shown how neural circuitry may implement RL (direct policy search) through
gradient ascent in the reward landscape to maximize the cumulative reward (Fiete, M. S.
Fee, et al. 2007). However, standard RL approaches may result in non-optimal solutions
in a continuous action space under uneven reward contours, such as the Himmelblau
and the Rastrigin functions. There are several techniques that have been harnessed to
optimise the gradient descent underlying RL, especially to evade local optima. Some of
these techniques include Newton’s method, proximal policy optimisation, momentum-
accelerated gradient descent, etc (Vieillard et al. 2020). Other gradient-free algorithms (e.g.
simulated annealing) are more efficient in complex uneven reward landscapes, but the
mechanisms of their implementation in brain circuits remains speculative (Dhawale et
al. 2017; Tsallis et al. 1996). However, these techniques can be computationally intensive
and/or do not adhere to biological constraints. We find that the vocal learning behaviour
exhibited by songbirds offers a less computationally intensive solution to reach the opti-
mal solution under complex reward contours. Here, we look into the insights offered by
the neural circuitry governing vocal learning in songbirds towards an alternate approach
for sensorimotor learning.
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In order to look into the mechanisms underlying sensorimotor learning, we consider
the paradigm of vocal learning in songbirds. Based on their behavior, brain anatomy and
physiology, we hypothesise that motor learning is governed by a dual pathway architecture
that allows for an efficient learning, mixing reinforcement learning and the regulation of
noise. The point we want to make here is not about optimality but rather plausibility. To
do so, we adopt an alternative to classical approaches: instead of trying to justify a pos-
teriori the existence of one or the other critical feature (e.g. back-propagation) inside the
brain, we start from the raw biological facts and explore different hypotheses as to how
the neural circuitry could implement efficient vocal learning.

5.2.1 The vocal learning behaviour and circuitry

Juvenile songbirds learn to imitate the vocalisations of an adult tutor through vocal learn-
ing, a form of sensorimotor learning akin to human speech learning. During develop-
ment, the juvenile’s vocalizations progress from highly variable (vocal babbling) to highly
stereotyped and accurate imitations of the tutor song through a trial-and-error process
indicating reinforcement learning. In zebra finches, song learning lasts around 60 days
during which a juvenile produces thousands of vocalisations per day (Derégnaucourt et al.
2005). Vocalisations undergo changes at multiple timescales. While rapid changes are ob-
served across vocalisations produced in a single day, some changes are consolidated on a
weekly timescale (Derégnaucourt et al. 2005; Kollmorgen et al. 2020). Moreover, sleep in-
duces a rapid discontinuity in the produced vocalisations with increased variability post-
sleep (Derégnaucourt et al. 2005). Overnight changes, daily fluctuations and weekly consol-
idations are only partially aligned, making the song learning an erratic process (Kollmorgen
et al. 2020).

Song acquisition and production is governed by a dedicated neural circuitry that in-
volves two parallel pathways: a cortical (motor) pathway controlling vocal production in
adults and a basal ganglia-thalamo-cortical (BG) pathway necessary for vocal learning and
plasticity (Figure 5.5a). These pathways connect two main cortical nuclei: the premotor
HVC generating song timing (Hahnloser, Kozhevnikov, et al. 2002; Long et al. 2008), and the
RA, controlling the syringeal and tracheal musculature in order to produce vocalisations.

Direct axonal projections along the motor pathway develop during the early phase of
song acquisition and exert a growing influence on song production during learning. On
the contrary, the early-matured BG pathway drives initial vocalizations and variability
in the subsequent song production, but has a reduced influence post learning (Mooney
and Rao 1994a). The BG pathway receives a performance evaluation signal via strong
dopaminergic projections from the midbrain and drives a motor bias that rectifies vocal
errors (Bottjer and Johnson 1997b). This motor bias is then gradually consolidated within
the cortical motor pathway.
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Figure 5.5: Song system in zebra finches and a simplified schema of the dual pathway architec-
ture. A The specialised vocal learning circuitry comprises of two pathways: the corti-
cal motor pathway (brown) and the BG-thalamo-cortical pathway (grey). The cortical
pathway governs song production and includes the premotor cortical nucleus HVC
and the RA. The RA projects to downstream regions which control respiratory mus-
culature. The parallel BG pathway receives performance evaluation from mid-brain
dopaminergic neurons and projects to the RA. B. The dual pathway architecture in-
spired by the vocal learning circuitry. The BG pathway (grey) is based on reinforce-
ment learning (RL) and provides a tutor signal, which is consolidated gradually within
the parallel cortical motor pathway (brown). The syrinx transforms the combined out-
put of these two pathways into a syllable vocalisation.

Activity-dependent synaptic plasticity is believed to allow RL to be implemented in the
BG pathway (HVC-BG synapses (Ding et al. 2004a)), and the consolidation of motor bias
within the cortical motor pathway (HVC-RA synapses (Mehaffey et al. 2015)). Following
song acquisition, the motor pathway is capable of producing the learnt song without the
input from the BG pathway as lesions in the BG pathway do not affect song quality, but
reduce the residual song variability.

During song learning, each timing signal in HVC must be associated to the proper
muscle configuration to produce a given syllable, i.e. a vocalization with the desired acous-
tic features. This represents a complex problem to solve in a continuous action space, with
a non-linear and redundant relationship between RA neural activity, muscle activation
patterns and vocal acoustics (Srivastava et al. 2015).
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Gradient descent can lead to sub-optimal solutions under uneven contours in contin-
uous action spaces. Here, we propose to re-interpret the role of the dual pathway archi-
tecture underlying sensorimotor learning in birds, which offers a potential solution to the
aforementioned limitations of direct gradient descent approaches. We explore the bene-
fits of this architecture by simulating a simplified algorithmic implementation of the vocal
learning process in the context of different reward landscapes, both randomly generated
and biologically inspired. We demonstrate that the structural (delayed maturation of cor-
tical pathway) and functional plasticity (activity-dependent synaptic plasticity (Ding et al.
2004a; Mehaffey et al. 2015)) observed in a two-pathway framework together help over-
come certain shortcomings of standard RL approaches and facilitate a convergence to
the global optimum. Further, we propose a novel data-driven algorithmic implementa-
tion, governing the functioning of the dual pathways, adhering to biological constraints.
Meanwhile, we also draw parallels with traditional machine learning approaches, albeit
this comparison does not aim at being exhaustive.

5.2.2 Methods
The goal of the model is to implement a vocal learning process consistent with the be-
havioural, physiological and anatomical evidence collected in songbirds and thereby gain
insight into sensorimotor learning. We theoretically investigate the interplay of the two
parallel pathways within the song system and their role in song acquisition. In this manuscript
we choose to define an abstraction based on a simplified two dimensional (2D) represen-
tation of the dual pathway architecture, in order to perform a more systematic study of
its properties in a reduced system.

Architecture

Taking inspiration from the vocal learning circuitry found in songbirds, the model 3

has been designed as a three layered architecture with two major parallel pathways (Fig-
ure 5.5b). The first layer (HVC) operates as an input layer which indicates the target sylla-
ble to be produced. The second layer (RA) generates a bounded 2D motor output. The
third layer mimics the working of an avian syrinx and transforms the low-dimensional
motor output from the RA layer into a syllable vocalisation. The HVC and RA layers
are connected by two parallel circuits inspired by the song system, the cortical pathway
(motor pathway) which drives motor output and the BG-thalamo-cortical circuit (RL
pathway) which implements RL and provides a tutor signal to the motor pathway (Fig-
ure 5.5). The outputs of the motor and RL pathways are represented by two scalar values,
µmtr, and µrl, respectively. These values are weighted by the influence of the two path-
ways, wmtr and wrl that reflect their respective contributions to RA output (Eq 5.10-
5.11). RA output, P , is a summation of the contributions of the motor, Pmtr, and RL,

3The scripts are available at https://doi.org/10.5281/zenodo.6407128.

62

https://doi.org/10.5281/zenodo.6407128
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Prl, pathways (Eq 5.12). The output, P , generates the sampling position of the model
in the sensorimotor space, which is further transformed into a syllable vocalisation, as
explained in section 5.2.2.

Pmtr = wmtr ∗ µmtr (5.10)
Prl = wrl ∗ (µrl + ξ) (5.11)
P = Pmtr + Prl (5.12)

Learning

The RL pathway,µrl, is governed by reinforcement learning, following the REINFORCE
rule (Eq 5.15) (Williams 1992). Local exploratory noise, ξ, is injected directly into the RL
pathway, along with the performance (or reward) prediction error, PPE (Eq 5.11, 5.15).
Performance prediction error,PPE, here corresponds to the difference between the per-
formance evaluation at a given trial, Rtr, and the expected performance evaluation, Rtr

(Eq 5.14). The motor pathway,µmtr, gradually consolidates the drive from the BG-led ex-
ploration, by maintaining a slow trace of the BG contribution, Prl, and eventually learns
to produce the desired vocalisation (Eq 5.13).

∆µmtr = ηmtr ∗ Prl (5.13)
PPE = Rtr −Rtr (5.14)
∆µrl = ηrl ∗ ξ ∗H(PPE) (5.15)

where tr denotes the current trial, ηrl: learning rate within the RL pathway, ηmtr: learn-
ing rate within the motor pathway, R̄tr: running average of recently (100 trials) obtained

performance evaluations and H(x) =

{
1 x > 0

0 x <= 0
.

We supplement the reinforcement learning implemented by the BG pathway with two
mechanisms derived from empirical evidences underlying vocal learning in songbirds.

(i) Taking inspiration from the delayed growth of the cortical motor pathway, we sim-
ulated the increasing influence of the motor pathway, µmtr, alongside the decreasing in-
fluence of the RL pathway, µrl. The maturation of the motor pathway is modeled using
an asymptotically increasing contribution, wmtr, towards the RA (Eq 5.10,5.16) while
the influence of the RL pathway, wrl is modeled using an asymptotically decreasing con-
tribution (Eq 5.11,5.17).

(ii) Drawing on evidences from the studies of (Derégnaucourt et al. 2005) showing a daily
post-sleep deterioration of song structure during the sensorimotor period (discussed in
section 3.1.3), the output of the RL pathway, µrl, is shifted each morning. This shift
is implemented as a random jitter, ϕ (Eq 5.19) added to the current BG output. These
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Figure 5.6: Various types of performance landscapes. The concentric circles show equipotential
surfaces. A-C. Examples of Gaussian-based performance landscapes with 1 global op-
timum and A. ‘low’ (1-5) B. ‘medium’ (10-20) and C. ‘high’ (30-50) number of local
optima. D-F. Reward contour generated using a model of the avian syrinx (Amador
et al. 2013). D. The 50ms waves of tension and pressure used as input to the syrinx
model to generate the target syllable. E. The spectrogram of a common zebra finch
syllable chosen as the target syllable, as generated by the model. F. The performance
landscape generated using the similarity between the target syllable and vocalisations
generated over the parameter range used in (Amador et al. 2013). It has three global
optima and several (=11) local optima.

two factors are weighted as per the daily consolidation trace,wk, determined by the mean
rectified performance prediction error experienced in the previous day k (Eq 5.18).

wmtr = e−.5∗c1/tr (5.16)
wrl = 1− e−c1/tr (5.17)

wk = c2 ∗ f(PPE)k (5.18)
µk+1
rl = wk ∗ µk

rl + (1− wk) ∗ ϕ (5.19)

where ci denotes scalar constants and f(x) = xH(x).
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Performance landscapes

The transformation of RA motor output into produced vocalizations, that are then com-
pared to an auditory template of a tutor song for performance evaluation, represents a
complex and largely unsolved problem. We therefore test the model in two different con-
texts. First, we map the 2D motor space of RA output to a 1D performance space through
an arbitrary non-monotonic function artificially denoting the performance quality, de-
tailed below. Second, we generate a biologically realistic performance landscape using an
artificial model of the syrinx driven by RA output, detailed in this section.

In order to evaluate the performance of the model, we first create continuous perfor-
mance landscapes (analogous to reward profiles), by transforming a 2D motor space to
a 1D performance evaluation: The performance landscape is a set of Gaussian distribu-
tions, giving rise to several local optima along with one global optimum. Each optimum
is represented by a 2D Gaussian distribution, and the performance landscape is the max-
imum of these distributions. We generate several contours by changing the number, po-
sition and widths of local optima, awarding a maximum performance evaluation of 60%
of that of the global optimum. We categorise these set of contours into three classes with
low (1-5), medium (10-20) and high (30-50) number of local optima. Figure 5.6a-c shows
an example performance landscape from each class. These randomly generated contours
provide us with explicit control over the complexity of the performance landscape, in
terms of the number of local and global optima and their relative heights and positions.
We take advantage of these properties to test the model’s versatility and robustness by sim-
ulating the model’s performance on different classes of such Gaussian-based performance
landscapes.

Further, we test the performance of the dual pathway model with a reward contour
that has been generated using a model of the avian syrinx (Amador et al. 2013). The 2D
scalar output of the RA layer, P , is transformed to form the input signals for the avian
syrinx model as per Eq 5.20, 5.21 (Figure 5.6d). The syrinx layer receives two input sig-
nals from the RA layer, corresponding to the air-sac pressure, α(t), and the tension of
syringeal labia, β(t). These input signals of pressure and tension lead to oscillations in
the syrinx and trachea and generate a syllable vocalisation as a pressure wave of 50ms (T )
(Figure 5.6e) (Amador et al. 2013). We construct a spectrogram from this oscillatory pres-
sure wave, and choose a target syllable which is similar to a commonly-occurring syllable
in zebra finches (shown in Figure 5.6e). We proceed to simulate several vocalisations over
a range of input parameters (as described in (Amador et al. 2013)), and thereby, generate a
performance landscape using a similarity metric, based on the correlation coefficient be-
tween the generated vocalisations and the target template. As shown in Figure 5.6f, the
performance landscape has three global optima, as multiple configurations of the syrinx
can produce the desired vocal output. Alongside these global optima, there are several
(11) shallow local optima across the sensorimotor range. The motor control output of
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the RA layer traverses the contour, thus generated, to obtain an evaluation of its perfor-
mance.

α(t) = Pα + 0.04sin((T/2 + t) ∗ π ∗ 10) (5.20)
β(t) = Pβ − 0.2e−200t − 10−5e200t (5.21)

where the motor output of the RA layer, P ∝ [Pα, Pβ], T : duration of the vocalisation
and t ∈ [0, T ].

Simulation

Each simulation of the model is run over 60 days, which is the typical duration of the
sensorimotor phase for a zebra finch, with each day consisting of 1000 trials (Derégnau-
court et al. 2005). The noise level injected by the BG is initialised at 20% of the RA output
range. As we reach the crystallisation stage, the RL noise level exponentially decreases to
10% of its initial value (=2%) which is comparable to the variance observed in the pitch
of the vocalisations produced by adult birds (Sober, Wohlgemuth, et al. 2008).

Metrics

We measure the ‘terminal performance’ as the mean performance evaluation obtained
during the last five days of a simulation. For the Gaussian-based performance landscape,
the global optimum has an associated reward level of 1 while all other local optima have
a maximum associated performance evaluation of 0.6. Therefore, we consider a simula-
tion to be ‘successful’ if it achieves a performance metric above 0.6. For the syrinx-based
performance landscape, we observed that the highest peak outside the global optimum
has an associated performance evaluation of 0.55 while the global optima has an associ-
ated reward of 1. Therefore, we maintain 0.6 as the threshold above which a simulation
is considered to be successful. Finally, the ‘success rate’ of the model for a given scenario
is the proportion of successful simulations compared to the total number of simulations.

Benchmark algorithms

In order to compare the performance of the dual pathway model with established ap-
proaches, we build a framework with a single pathway architecture, implementing vari-
ants of RL. The single pathway injects exploratory noise, receives performance evaluation
and governs motor output. In essence, we lesion the motor pathway allowing the RL
pathway to be in sole control of the motor output.

First, we test the performance of the single pathway framework using the standard
reinforcement learning approach (StdRL). Here, the learning rule is based on gradient
descent, akin to the former RL pathway (Eq 5.15). Under this scenario, the variability of
the output does not reduce over time as the influence of the BG remains intact due to the
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absence of a motor pathway. Second, we compare the performance of the dual pathway
system with a modified standard RL approach, i.e. RL with decreasing noise (DevRL).
Here, we exponentially reduce the noise injected into the RL pathway, as learning pro-
gresses (Eq 5.22).

ξtr = ξ0(1− e−c1/tr) (5.22)

where ξ0 denotes the initial noise level injected into the pathway. Third, we compare
the performance of the dual pathway system with simulated annealing (SA), a proba-
bilistic technique, used to find the global optimum in discrete search spaces (Tsallis et al.
1996). This technique uses an explicit acceptance functionM , to control the exploitation-
exploration trade-off, or more specifically, the probability to move to lower rewarding
positions. This acceptance probability is determined by an exponentially-decreasing tem-
perature parameterΓ, weighted by the difference in performance evaluation between suc-
cessive iterations ∆R (Eq 5.23-5.25). Note, the range of exploration available to the sys-
tem at each timestep is not explicitly altered.

Γtr = 1− e−c1/tr (5.23)
∆Rtr = Rcandidate −Rcurrent (5.24)

M(tr) = e
∆Rtr
Γtr (5.25)

where ∆Rtr refers to the difference in performance evaluation between a randomly cho-
sen candidate motor output,Rcandidate and the current motor outputRcurrent. The can-
didate motor output is chosen in a range corresponding to ηrl ∗ ξ (Eq 5.15) to maintain
an equivalent step size with the previous algorithms.

5.2.3 Results
In this section, we test the proposed data-driven algorithm on our simplified implementa-
tion of the dual pathway architecture. We verify the robustness of the model using differ-
ent types of reward contours and modifying exploratory parameters. We, further, com-
pare the performance of the model with established reinforcement learning approaches.

Sensorimotor learning by the dual pathway model

We simulate the vocal learning process using the algorithm described above governing the
dual pathway architecture, on a Gaussian-based performance landscape with a ‘medium’
number of local optima (17) and 1 global optimum (Figure 5.7). Figure 5.7a shows that
the motor output of the modelP explores several local optima, including the global opti-
mum. Each day, the RL pathway output is shifted, following which it performs gradient
ascent to find the nearest local optimum, over the course of the day. Meanwhile, over
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Figure 5.7: Simulation of the dual pathway model on a Gaussian-based reward contour with
medium number of local optima (17) and 1 global optimum using 20% initial BG vari-
ability. A The cortical motor pathway, in brown, follows the BG-led exploration to
several local optima on the performance landscape before coverging at the global op-
timum. The black dots denote the total motor output. B Initially, the contribution
of the RL pathway Prl, in grey, drives a strong bias in the motor output P , in black.
As the contribution of the motor pathway Pmtr, in brown, reaches the global opti-
mum, the BG contribution recedes. C The range of BG-led exploration, around the
motor pathway, shrinks with development. Each dot represents the bias driven by the
RL contribution Prl at a given trial. D Performance evaluation, in purple, fluctuates
over the coarse of learning on both daily (inset) and weekly timescales. The daily BG
consolidation trace wk, in black, determines the shift on the following day.
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Figure 5.8: A demonstration of the dual pathway system on the syrinx-based reward contour with
3 global optima using 20% initial noise injected into the BG. A The cortical motor
pathway, in brown, follows the BG-led exploration to several local optima on the per-
formance landscape before coverging at the global optimum. The black dots denote
the total motor output. B Initially, the contribution of the RL pathway Prl, in grey,
drives a strong bias in the motor outputP , in black. As the contribution of the motor
pathway Pmtr, in brown, reaches the global optimum, the BG contribution recedes.
C The range of BG-led exploration, around the motor pathway, shrinks with develop-
ment. Each dot represents the bias driven by the RL contribution Prl at a given trial.
D Performance evaluation, in purple, fluctuates over the coarse of learning on both
daily (inset) and weekly timescales. The daily BG consolidation trace wk, in black, de-
termines the shift on the following day.
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the weekly timescale, the motor pathway consolidates more information from the motor
outputs that are produced more often. Figure 5.7a-b shows that the motor pathway does
follow the model output to certain local optima. However, the dual pathway model is
able to successfully evade it and eventually converge at the global optimum.

Figure 5.7b shows that the output is governed increasingly by the contribution of the
motor pathway as the model approaches the global optimum. The contribution of the
RL pathway induces a strong bias and high variability in the early stages. As learning pro-
gresses, the target information is consolidated into the motor pathway and the bias and
variability induced by the RL pathway recedes. This helps the model to converge at the
chosen peak. Figure 5.7c shows that in the initial days of learning, BG-led exploration
ranges over a large area of the sensorimotor space around the contribution of the motor
pathway, Pmtr. Eventually, the growth of the motor pathway curbs the influence of the
RL pathway, resulting in a reduced range of exploration as well as increased exploitation
tendency. Thus, despite the same amount of noise being injected into the BG, the vari-
ability in the motor output decreases, leading to the convergence of the vocal production
at the position consolidated within the cortical pathway. Progress in learning is accompa-
nied by a non-monotonic increase in the average performance evaluation obtained by the
model, as shown in Figure 5.7d. The daily shift in the RL pathway output induces dips
in the performance evaluation, which rapidly improves within the time course of a single
day, as the RL pathway finds the best local optimum within the exploration range. The
variability in performance evaluation reduces as learning proceeds and as the influence of
the BG-injected noise reduces over time.

We further demonstrate the versatility and robustness of the dual pathway framework
by testing the system on a relatively more biologically plausible performance landscape
generated using a model of the avian syrinx, as explained in section 5.2.2 (Amador et al.
2013). Figure 5.7 demonstrates a simulation using the dual pathway architecture on a
sample artificially generated reward contour with 10 local optima and 1 global optimum.
Similar to the previous case, Figure 5.8a shows that the sampling position of the model
P , shown in black, explores several local optima, including the global optima. Each day,
the BG locus is displaced to a different position and it then performs gradient descent to
find the nearest local optimum. When the variance in exploration is less than the width
of the optimum, the gradient descent leads the system to get stuck at local optimum,
while the motor pathway gradually tracks the BG-led exploration. Now, each day a new
region is explored due to the daily BG displacement, which helps guide the motor path-
way away from the local optimum. Meanwhile, the motor pathway consolidates more
information from the optima that are sampled more often. When the reward obtained in
a neighbourhood is high, the daily BG displacement would be slightly biased towards its
vicinity. Hence, the global optimum is more likely to be sampled, which in turn increases
the probability of the motor pathway tracing its position. Figure 5.8a-b shows that the
motor pathway does follow the model output to certain local optima.
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Figure 5.8c shows that in the initial days of learning, exploration ranges over a large
area of the sensorimotor space. However, over time as the influence of the BG pathway
reduces, the exploration gets restricted to a region around the locus of the motor pathway.
Figure 5.8b shows that as the model approaches the global optimum, the output is gov-
erned increasingly by the contribution of the motor pathway (in brown). While the con-
tribution of the RL pathway induces a strong bias and high variability in the early stages,
as learning progresses and the target information is consolidated into the motor pathway,
the bias and variability induced by the RL pathway recedes. This helps the model to con-
verge at the chosen peak. Progress in learning is accompanied by an increase in the average
reward obtained by the model, as shown in Figure 5.8d. The daily displacement of the
BG pathway induces dips in the performance evaluation, which rapidly improves within
the time course of a single day, as the BG pathway finds the best local optimum within
the neighbourhood/exploration range. The variability in reward reduces as the model ap-
proaches the global optimum and as the influence of the BG-injected noise reduces over
time (shown in grey). Thus, we observe that the dual pathway framework enables the
system to evade local optima and converge at the global optimum.

Robustness

Having observed a demonstration of the dual pathway architecture, in this section we
proceed to demonstrate the versatility and robustness of the dual pathway framework.
We test the system under various types of scenarios and compare the dual pathway model
with a set of benchmarks using a single pathway framework.

First, we verify the stability of the model under identical conditions (20% initial RL
noise level) on the Gaussian-based performance landscape consisting of “medium” (10-
20) number of local optima. We simulate motor learning within this scenario using 100
different seeds for the random number generator resulting in varying performance land-
scapes and observe that the model is successful in finding the global optima in 76% cases
(success defined as per section 5.2.2) (Figure 5.10a). Moreover, in successful simulations,
the model consistently achieves a high terminal performance (above 0.9).

Second, we verify the robustness of the model under different types of performance
landscapes. We test whether the number of local optima has an impact on the model
performance. In order to do this, we randomly generate 100 different performance land-
scapes each with “low” (1-5) and “high” (30-50) number of local optima in addition to the
global optimum. We simulate sensorimotor learning on these performance landscapes
and observe that the model is successful in 92% and 64% cases, respectively (Figure 5.10a).
Further, in successful simulations, the model has a terminal performance higher than 0.9.
Thus, we observe that the model success rate decreases with increasing number of local
optima (Figure 5.10a), however the terminal performance of successful simulations is un-
affected.
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Third, we verify the performance of the model under a biologically-inspired perfor-
mance landscape, built using a model of the avian syrinx (described in section 5.2.2).
Under identical levels of BG-induced noise (20% initial RL noise), we simulate vocal
learning using 100 different seeds for the random number generator. We observe that the
model is successful in 92% cases and reaps a terminal performance above 0.9 in these cases
(Figure 5.10b). Thus, the model is capable of sensorimotor learning under biologically
realistic performance landscapes as well.

Fourth, we test the stability of the model when higher levels of noise are injected into
the RL pathway. We simulate the model with different higher initial levels of noise (30%,
40% and 50%) injected into the RL pathway. We observe that the increase in the RL noise
level leads to an improvement in the success rate of the model (Figure 5.10b). On the other
hand, there is a slight decrease in the terminal performance of successful simulations with
increase in initial RL noise levels.

Benchmarks

Now, we compare the performance of the dual pathway architecture with that of the sin-
gle pathway framework, as described in section 5.2.2, when governed by different learning
rules.

First, we test the performance of the single pathway framework using the standard re-
inforcement learning approach (StdRL), as described in section 5.2.2. We observe that,
over 100 simulations, each at 20% RL noise level using the syrinx-based performance land-
scape, the dual pathway framework (92% success rate, n=100, median terminal perfor-
mance=0.96) performs significantly better (Mann–Whitney U=9437, p<0.01) than the
single pathway framework with StdRL (55% success rate, n=100, median terminal perfor-
mance=0.62), as shown in Figure 5.10b. Now, increasing the noise level injected in the
pathway does facilitate the model to escape local optima and find the global optimum.
However, this leads to a drawback where the high variability leads to a low terminal per-
formance (n=100, median terminal performance=0.4 at 50% noise) being harvested by
the model post learning (when RL noise is above 20%, terminal performance is below
0.6 even at global optimum).

Second, in order to address the aforementioned disadvantage of StdRL, we compare
the performance of the dual pathway system with a modified standard RL approach,
RL with decreasing noise (DevRL), as described in section 5.2.2. Here, we explicitly
reduce the noise injected into the single pathway, as learning progresses. We observe in
Figure 5.10b that the dual pathway system achieves a higher success rate than the single
pathway system with the DevRL approach at all noise levels (Mann–Whitney U=3816,
p<0.01, n=100 at 50% noise). Now, increasing the level of noise injected into the path-
way does help resolve this issue, and drastically improves the success rate, however this is
at the cost of high vocal variability and reduced terminal performance.
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5.2 The dual pathway architecture

Figure 5.9: Performance of the dual pathway architecture on the Gaussian-based performance
landscapes with ‘low’, ‘medium’ and ‘high’ number of local optima, at 20% initial RL
noise. The grey bar and the percentage value next to it denote the success rate, i.e. the
proportion of simulations with a high terminal performance (above 0.6). The purple
dots represent the terminal performance of individual simulations, i.e., the mean per-
formance evaluation obtained in the last five days. The opacity of the dots denotes the
number of simulations that received a similar terminal performance. Yellow crossed
markers represent the median terminal performance in each scenario.
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5.2 The dual pathway architecture

Third, we compare the performance of the dual pathway system with a single path-
way system implementing simulated annealing (Tsallis et al. 1996). When lower levels of
noise are injected into the pathway, simulated annealing performs better (71% success
rate) on the syrinx-based performance landscapes than the standard RL (55% success rate)
approach due to its superior ability to escape local optima. With increasing noise, this ap-
proach yields improved success rates. On the other hand, the dual pathway framework
obtains a higher success rate (92%) as well as significantly higher terminal performance
metrics (Mann Whitney U=9306, p<0.01) than the simulated annealing approach (71%)
at 20% RL noise as well as higher noise levels (Figure 5.10b).

Thus, the dual pathway framework, with its advantages and shortcomings, provides a
viable approach for sensorimotor learning, even under low noise conditions.

5.2.4 Discussion
Inspired from the dual pathway architecture of the vocal learning circuitry in songbirds
and by the large overnight changes undergone by juvenile vocalizations during early phases
of learning (Derégnaucourt et al. 2005), we proposed a new algorithmic implementation for
efficient sensorimotor learning in the face of uneven performance landscapes with mul-
tiple optima.

In songbirds, a BG pathway drives early vocalizations and rectifies vocal output through
RL guided by a dopaminergic signal denoting performance evaluation (Gadagkar, Puzerey,
et al. 2016). In parallel, a cortical motor pathway consolidates BG-driven changes, utilising
activity-dependent plasticity at the HVC-RA synapses (Mehaffey et al. 2015). Similarly, in
the model, a trace of the RL pathway output is gradually consolidated within the motor
pathway (Eq 5.13). First, to reflect on the large day-to-day changes in juveniles vocaliza-
tions that do not necessarily align with the long-term improvement of the song (Kollmor-
gen et al. 2020), the initial state of the RL pathway is reset every day with a partial copy of
the previous day’s final output (Eq 5.19). As synapses in the nervous system are known to
be very volatile (Holtmaat et al. 2005; Roberts et al. 2010), the daily shift in the BG output
could reflect large overnight changes in the HVC-X synapses, inducing a partial loss of
the memory formed by RL in the previous days. In the model, this synaptic fluctuation
has been simulated using the daily consolidation trace wk. Such a biologically plausible
mechanism for partial forgetting in the RL pathway facilitates the exploration of a new re-
gion of the performance landscape each day, which helps guide the motor pathway away
from the local optimum. Thus, while the partial forgetting within the BG does not di-
rectly contribute to the formation of strong synaptic connections and is detrimental in
the short timescale of a few hours, in this case, partial forgetting is beneficial in the long
term as it helps unlearn sub-optimal performances. Second, the cortical motor pathway
exhibits a delayed maturation during sensorimotor learning (Mooney and Rao 1994a). It
has been hypothesised that the development of the HVC-RA synapses plays a role in re-
ducing the RA sensitivity towards LMAN input and thereby, gradually suppresses the
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BG-induced bias in motor output (Garst-Orozco et al. 2014a). Correspondingly, the rela-
tive influence of the two pathways in the model to the motor output changes over devel-
opment (Eq 5.16, 5.17). As the RL pathway contribution to the global output decreases
over development, so does the variability of the vocal output due to the daily shift and
the noise in RL pathway output, consistent with the progressive decrease in song vari-
ability during learning in songbirds (Derégnaucourt et al. 2005). Interestingly, a parallel
can be drawn between the effect of these two mechanisms and simulated annealing, a
technique used to optimise stochastic gradient descent (Tsallis et al. 1996). The daily shift
in BG output facilitates escape from local optima, akin to discrete fluctuations imple-
mented within simulated annealing. The change in relative influence exerted by the two
pathways plays a strikingly similar role as temperature in simulated annealing. Indeed,
the exploitation-exploration trade-off is initially skewed towards exploration with high
trial-by-trial variability and daily changes, analogous to the high temperature condition.
As learning progresses, it leans towards exploitation akin to low temperature scenarios in
annealing, as mentioned in (Derégnaucourt et al. 2005).

It is to be noted that such a heuristic does not convey any guarantees concerning the
optimality of the solution. Other optimization techniques used in machine learning such
as simulated annealing may succeed in pathological landscapes that pose difficulties to the
model proposed here. They are however less biologically realistic as they rely on a long-
term maintenance of the memory of all explored options. Alternatively, developmental
regulation of variability in song through sexual hormones is known in songbirds and may
provide a biologically realistic mechanism to partially overcome the drawbacks of gradient
descent (as implemented above using DevRL) (Sizemore et al. 2011).

Using the conceptual model presented above as a basis, in the upcoming section, we
further test the viability of the proposed dual pathway framework towards sensorimo-
tor learning, by building an analogous network composed of rate-coded sigmoidal units
representing the activity of neuronal populations.

5.3 Neural implementation of dual pathway
model

In the previous section, we looked into the idea of interplay between two parallel path-
ways, using a highly simplified abstract model. We would like now to explore whether
a neural implementation of this dual pathway is feasible when taking into account the
anatomical constraints of the song system in zebra finches, both at structural and func-
tional levels.

In songbirds, the cortical pathway connecting HVC and RA is necessary for the pro-
duction of song (F. Nottebohm, Stokes, et al. 1976). RA-projecting HVC neurons have
been shown to burst sparsely at single, precise timepoints during song (Hahnloser, Kozhevnikov,
et al. 2002). As a population, these HVC neurons could form a representation of timing
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within the song sequence. Further, as song learning progresses, RA neurons fire in a more
stereotyped, sparse and bursty pattern, as opposed to a variable and distributed firing pat-
tern during early subsong (Ölveczky, Otchy, et al. 2011). Aronov et al. (2008) have shown that
the variable firing pattern during babbling is driven by the parallel BG-thalamo-cortical
pathway. On the anatomical side, the pathways within the AFP which project to the RA
and from RA to downstream areas controlling vocalisation are topographically organ-
ised (Luo, Ding, et al. 2001; Vicario 1991). Moreover, there are around 13 to 15 neurons in
the RA in each hemisphere in the early sensorimotor phase (Bottjer, Miesner, et al. 1986;
Herrmann and Arnold 1991). During this period, between 5 to 10 thousands neurons from
LMAN project to project to RA (Bottjer, Glaessner, et al. 1985). 23-40 thousand HVC
neurons exist in one hemisphere, during the sensorimotor period, however only a frac-
tion of these project to RA and are active during song ((Herrmann and Arnold 1991)). In
this section, we attempt to take into consideration these features of the song system and
investigate biologically plausible mechanisms which could support the analytical model,
discussed in section 5.2.

5.3.1 Methods

Architecture

From the empirical observations outlined above and building the analogy with the model
presented in section 5.2, we designed a model comprising four layers representing respec-
tively HVC, RA, BG (reduced model of AFP) and MC (motor control). These structures
are connected as follows (see Figure 5.1a): the HVC and the RA are connected via one
direct pathway and a parallel pathway though the BG. The RA projects to downstream
regions which control respiration and syringeal musculature, represented here as the mo-
tor control layer (MC). The model has been scaled according to the proportions of the
respective number of neurons in the corresponding nuclei of the song system introduced
in previous section. This leads to the HVC and RA having 100 rate-coded units while the
BG layers has 50 rate-coded units. Each unit represents a population of inhibitory and
excitatory neurons. The RA neurons are modeled using very steep sigmoidals for activa-
tion functions, which bound the RA firing rate between -1 and 1. The firing rates of the
BG neurons are linearly bound between -1 and 1. The HVC and RA are fully connected
with each other, as well as the HVC and BG. The weights between these layers are plastic,
based on the activity-dependent plasticity found at the RA and BG synapses. The BG-
RA and RA-MC pathways are topographically connected in clusters, with fixed positive
weights (path C).
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JRA = sig(
JHV C ·WA

n′
HV C

+ 2 ∗ JHV C ·WB∑nBG WB

) (5.26)

sig(x) =
1

1 + e−1∗(x−sm)∗ss ∗ 2− 1 (5.27)

JBG =
JHV C ·WB

n′
HV C

+ ξ (5.28)

JMC =
JRA ·WC∑nRA

0 WC

(5.29)

where n′ denotes the number of active neurons in a layer at a given timepoint, p the
summation of fixed weights projecting to a neuron in the layer, J the activity of a layer
and ξ represents the exploratory noise injected into the BG layer. The steepness and dis-
placement of the sigmoidal function is determined by ss and sm. The sum of the fixed
weights in the BG-RA and RA-MC pathways serve as a normalisation factor to maintain
the input activation between -1 and 1.

Learning

The plastic weights in the BG pathway, WB , are modeled using reinforcement learning,
specifically the REINFORCE rule (Williams 1992). Local exploratory noise, ξ, is intro-
duced within the BG layer. Additionally, the BG layer receives a relative evaluation of
performance (R). The plastic weights in the HVC-RA pathway, WA, are modeled us-
ing Oja’s rule, a normalised variant of Hebbian learning, where the co-activation of two
neurons in both layers, potentiates the mutual synapse (Oja 1982). All plastic weights are
bound between 1 and -1.

∆WB = ηB ∗ JHV C ∗ JBG ∗ (R− R̄) (5.30)
∆WA = ηA ∗ JRA ∗ (JHV C − JRA ∗WA) (5.31)

where ηA and ηB represent the learning rates of their corresponding pathways.
The reinforcement learning driven by the BG pathway is supplemented with behavioural

features, drawn from empirical evidences (Derégnaucourt et al. 2005). More specifically, a
daily deterioration in song performance has been shown to occur post-sleep in juvenile
birds during the sensorimotor period. This post-sleep deterioration is implemented with
1000 iterations of random potentiation and de-potentiation of the HVC-BG synapses
overnight, which results in a slight jitter of the BG output the following day. Unlike the
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analytical model, the change in the influence of the two pathways, due to the delayed
innervation of RA by the HVC axons, is not explicitly modeled here.

∆WB = ηB ∗ JHV C ∗ ξ ∗ (1− wk) (5.32)

where wk represents the daily consolidation trace, which is the cumulative potentia-
tion experienced by the HVC-BG synapses over a given day, k.

Performance landscapes

The model is tested on the same set of performance landscapes, as described in the pre-
vious section 5.2.2. Different set of contours are generated using a superimposition of
Gaussians, giving rise to several local optima and one global optimum, with varying posi-
tions and depths. The output of the model is used to denote the position on the perfor-
mance landscape.

Simulation

Within each simulation, the model attempts to learn a motif of 4 syllables, over a 60-
day sensorimotor period. Each day comprises 1000 trial motifs. Each motif consists of
the 4 syllables in a fixed sequence. Each syllable corresponds to a different performance
landscape within the same motor range. The local exploratory noise injected into the BG
is maintained at 20% of the BG activity range. After a 60 day sensorimotor period, we we
make the equivalent of a lesion in LMAN outputs by silencing BG outputs to the RA,
i.e. the input from the BG pathway to the RA is inactivated. We can then observe the
performance of the model when governed solely by the cortical pathway.

Metric

Described in section 5.2.2.

5.3.2 Results
Figure 5.11 demonstrates the progression of sensorimotor learning for each individual
syllable within a song motif. In the example simulation shown in Figure 5.11, we observe
that the motor output traverses several regions of the sensorimotor space, over the course
of a few weeks. Each day, the model explores a new local optimum and converges even-
tually to the global optimum. The search for the optimal solution of the four syllables is
carried at different rates resulting in different times for finding the optimal one.

Figure 5.12A shows the progression in the quality of each syllable vocalisation over
time. The performance evaluation for each syllable changes at different rates. Some syl-
lables are learnt faster than others. At the beginning of each day, there is a varied dip
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Figure 5.11: A demonstration of the dual pathway model with rate-coded neurons on several
Gaussian-based reward contour with a medium number of local optima and 1 global
optimum using 20% BG variability. The motor output (black dots) is driven to dif-
ferent regions of the sensorimotor space, due to the daily jitter experienced within the
BG pathway. Within the day, the BG pathway helps the system find the local optima,
while the motor pathway maintains a trace of this exploration. Over the course of
several weeks, the BG pathway explores several such local optima, with the cortical
motor pathway gradually consolidating this information and ultimately converging
at the global optimum. The initial and final motor outputs are shown in brown and
yellow, respectively.
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A B

C D
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Figure 5.12: Progression of sensorimotor learning by the dual pathway model on a Gaussian-based
reward contour with medium number of local optima and 1 global optimum. A Per-
formance evaluation fluctuates over the coarse of learning on both daily and weekly
timescales. The performance evaluation for each syllable is shown in purple, while
the average performance evaluation over the motif is shown in black. B Progression
of motor output, corresponding to the 2-D position on the performance landscape.
Initially, the motor output, in black, is highly variable due to being primarily driven
by the BG pathway. As learning progresses, the variability of motor output reduces.
The target output is shown in red. C The weights of HVC-BG synapses remain vari-
able across learning, and experience overnight discontinuous changes. D The weights
of HVC-RA synapses develop slowly and ultimately saturate. E The activity (firing
rate) of BG units remains variable across learning. F The activity (firing rate) of RA
units is highly variable in the beginning of learning. As the HVC-RA synapses grow,
the RA activity develops a bursty pattern. A, B, C, D The vertical dotted black line
represents the point of BG lesion i.e. inactivation of the BG inputs to RA. A decrease
in variability of output occurss post BG lesion.
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Figure 5.13: Robustness of the dual pathway model. The purple dots represent the terminal per-
formance of each syllable, on the left, and of each motif, on the right. The grey bar
denotes the success rate, i.e. the number of simulations with a terminal performance
over 0.6. In over 100 simulations, with a target motif of 4 syllables each, the model
successfully learns 84% of the target syllables. Moreover, in most successful simula-
tions, the model achieves a terminal performance greater than 80%.

in performance evaluation of each syllable. This deterioration in song quality reduces
as the song reaches crystallisation. The overall quality of the song motif improves non-
monotonically over the sensorimotor period. Post lesioning of the BG pathway, the vari-
ability in performance evaluation reduces. As shown in Figure 5.12B, at the beginning of
sensorimotor learning, the variability in motor output is relatively high and decreases as
learning proceeds. The trajectory from the initial motor output to the target output, for
each syllable, is not monotonic. Post BG lesion, the variability in motor output further
reduces. The HVC-BG synaptic weights experience activity-dependent plasticity during
the day time and undergo a sudden change overnight (Figure 5.12C). The firing rate of
the BG neurons fluctuates across the learning period. Figure 5.12D shows the slow, grad-
ual growth of the HVC-RA synaptic weights. Correspondingly, the neurons in the RA
display a variable firing rate in the beginning of sensorimotor learning. The firing rate of
these neurons towards the crystallised phase demonstrates a more binary nature, indicat-
ing bursts of spiking activity, especially post BG-lesion.

Further, we test the robustness of the dual learning framework, by testing the model
on different performance landscapes, while learning different song motifs. In over 100
simulations of the model attempting to learn a four-syllable song, the system successfully
produces the target syllable in more than 84% cases (considering 400 individual sylla-
bles). Moreover, in successful simulations, the model reaps a high reward and achieves a
terminal performance of greater than 60%, as shown in Figure 5.13. Similarly, when con-
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sidering the quality of the motif as a whole, 100% of the simulations were able to yield a
terminal performance of above 60%.

5.3.3 Discussion
The dual pathway model presented in this section serves as an extension to the analyti-
cal model presented in section 5.2. The model presented here tests the hypothesis pro-
posed by the analytical model under the constraints of a biological neural circuitry, using
an analogous network with rate-coded neurons. Similar to the analytical model, the BG
layer, here, implements reinforcement learning and serves as a tutor for the cortical motor
pathway.

Figure 5.11 and 5.12 show the dual pathway system learning one song motif comprised
of four syllables, over a 60 day sensorimotor period. We observe that the BG pathway ini-
tially drives exploration leading to a highly variable motor output and performance eval-
uation, as shown in Figure 5.12a, d. Meanwhile, the cortical motor pathway gradually
consolidates the BG-led exploration within its synapses, using activity dependent plastic-
ity. Figure 5.12a shows the non-monotonic increase in performance evaluation. As the
influence of the cortical pathway increases, the variability in motor output reduces and
the post-sleep deterioration in motor output decreases. Due to non-overlapping syllable
encoding within the HVC, learning one syllable doesn’t interfere with other syllables.

Gradient-descent based reinforcement learning often tends to get stuck in local op-
tima. Inspired from the post-sleep deterioration in song quality observed in songbirds,
we posit that the displacement in motor output helps escape local optima. We model this
displacement as an effect of randomised overnight volatility of spines within the BG path-
way. This volatility is partially modulated by the cumulative potentiation experienced
over the day by the HVC-BG synapses. The more the change in performance evaluation
(signalled by dopamine) over the course of the day, the stronger the potentiation experi-
enced by the BG pathway and weaker the random synaptic fluctuation during the night.
This helps the system evade local optima and converge at the global optimum. Over the
course of every day, the BG pathway guides the dual pathway system to the nearest local
optimum, under a gradient descent protocol. At the beginning of each day, the overnight
volatility experienced by the HVC-BG synapses, leads a new region of the sensorimotor
space to be explored. This overnight volatility of the BG pathway is modulated partially
by the daily consolidation trace, wk, i.e., the amount of potentiation experienced over
the course of the day. The more the potentiation experienced in a given day, the less the
the BG synapses are affected during nighttime, and less the post-sleep song deterioration.
Consequently, over the sensorimotor period, the cortical motor pathway gradually con-
solidates the BG-led exploration and converges at the global optimum.

On the other hand, the RA activation pattern is steered by the BG pathway, in order to
produce the desired motor output. The HVC-RA synaptic weights grow over time using
the Hebbian learning rule which reinforces the RA activation pattern determined by the
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BG. Over the sensorimotor period, the cortical motor pathway grows steadily and can ex-
ert a growing influence over the motor output. This results in a less variable motor output
as well as performance evaluation as the target output is learnt. With the growth of the
HVC-RA synapses, the RA neurons(modeled using steep sigmoidals as the activation
function) get saturated by strong excitatory input from the HVC, leading to firing rates
indicative of burst-like spiking activity, as seen in songbirds within the crystallised phase.
This saturation of RA neurons leads to the influence of the BG inputs being suppressed.
This is in accordance with the hypothesis by Garst-Orozco et al. (2014b) that the strengthen-
ing of the excitatory HVC projections to the RA leads to an increased inhibitory nature of
the RA, which, in turn, suppresses the largely NMDAR-mediated glutametargic inputs
from the LMAN. Unlike the analytical model, we do not explicitly model the change in
influence between the two parallel pathways, here. The growth of the HVC-RA weights,
in itself, leads to a suppression of the BG influence and decrease in behavioural variability.

Thus, the dual pathway framework, incorporating the delayed maturation of the cor-
tical pathway and overnight synaptic volatility within the BG pathway, provides a robust
and biologically plausible mechanism to evade local optima and facilitate sensorimotor
learning.

5.4 Discussion and perspectives
In this chapter, we exploited anatomical and behavioural features of avian vocal learning
to investigate mechanisms underlying sensorimotor learning. While in the first section,
we look into a particular role of the initial babbling phase of vocal learning, typically be-
fore 40 days post hatch, in the second and third sections, we further explore the interplay
between the subcortical and cortical structures between 30-90 days post hatch. We ex-
ploit empirical evidences concerning the cortical and BG-thalamo-cortical pathways to
build a dual pathway framework, such that while one pathway is responsible for song
production, the other functions as a tutor. Morphological studies showed the delayed in-
nervation of RA by HVC axons, as opposed to the completion of the anterior forebrain
pathway, or avian BG loop. This provides a biologically realistic mechanism to potentially
control the exploration exploitation trade off. It also provides a plausible explanation as
to why juveniles learn poor imitations of tutor song when deprived of tutor interactions
in the early sensorimotor period. Thus, we confirm our hypothesis concerning a potential
functional role played by structural plasticity in facilitating sensorimotor learning.

Moreover, the findings of (Derégnaucourt et al. 2005) reveal a pronounced deterioration
in song structure after night-sleep, to be regained after intense singing in the morning. We
interpret this apparent deterioration as an opportunity to explore a novel region of the
landscape, implementing a variation of simulated annealing. Within simulated anneal-
ing, new candidate solutions are discontinuously explored, while maintaining a memory
of the best solution. However, such algorithms are computationally intensive and do
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not adhere to biological constraints. The dual pathway framework provides a biolog-
ically plausible alternative wherein one pathway conducts partial discontinuous explo-
ration while the parallel pathway maintains a trace of this exploration. The dual pathway
presented here, implements this discontinuous exploration by exploiting spine volatil-
ity within the BG. Although spine volatility during juvenile vocal learning in the area X
of zebra finches hasn’t been studied, dendritic spines have been shown to be transient
even within the timescale of a day, in rodents, and a large turnover of dendritic spines
in the HVC has been associated with sensory learning, as discussed in chapter 2. Addi-
tionally, simulated annealing uses an explicit temperature parameter to control the trade-
off between exploration and exploitation. We propose that the delayed maturation of
the cortical pathway could indirectly play a key role in controlling such an exploration-
exploitation trade off.

Vocal learning involves several aspects in addition to the learning the appropriate neu-
ral code to produce a desired vocalisation in response to an internal signal. For instance,
vocal learning in songbirds also involves the learning of the desired sequence of vocal ges-
tures. It is important to note that in this study, we do not investigate the learning of
sequence structures or the neural encoding of time, in terms of generating vocalisations
at specific timings and duration, as well as, the delated evaluation of recently produced
and perceived vocalisations.

From a theoretical perspective, the avian song system can be considered as a dual learn-
ing system, one is reactive and dependent on instantaneous reward (reinforcement learn-
ing) while the other is much slower and independent of reward but can strongly bias the
output. Reinforcement learning builds an approximation of the local error contour via
its exploration techniques, and can implement gradient descent in its pursuit to maxi-
mize the expected reward (or minimise the error) (Sutton, Barto, et al. 1998). However,
as discussed earlier, under uneven contours in continuous action spaces, reinforcement
learning using vanilla gradient descent can result in sub optimal solutions. In this chapter,
we have encountered one non-gradient based alternative to circumvent this issue. Simu-
lated annealing allows you to evade being stuck in local optima by exploring the candi-
date solutions in a discontinuous manner. Although this approach directly is biologically
unrealistic, we have discussed a possible mechanism for birds to reap similar benefits, as
those conferred by simulated annealing, in an analogous manner. On the other hand, ma-
chine learning has often supplemented gradient descent with algorithms, such as, Ada-
grad, Adam, RMSprop, etc (Ruder 2016). On a core level, these algorithms take advantage
of the fundamental notion of momentum in the field of machine learning. Momentum
is a simple and popular technique in supervised learning for improving stochastic gradi-
ent descent and to escape local minima (Goh 2017). This technique averages the last few
gradients in order to maintain a consistent direction of the gradient. This has been proven
to work better and faster than pure stochastic gradient descent. Very recently, such usage
of momentum has been adapted to the framework of reinforcement learning in the case
of the value iteration algorithm (Vieillard et al. 2020) but the technique can be adapted to

85



5 Computational benefits of the dual pathway framework

any reinforcement learning algorithm, including actor-critic architectures. For this latter
case, it is a matter of replacing the critic by the average of successive critics.
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Figure 5.14: Momentum guided reinforcement learning can be understood using an analogy of
velocity and acceleration. In this illustration, velocity corresponds to Hebbian learn-
ing, which represents the momentum of the trajectory, while acceleration corre-
sponds to reinforcement learning and can modify the velocity vector up to a certain
degree (10% in the figure). The illustration simulates the trajectory from a fixed ini-
tial position to a target, when the direction of the velocity is continually modified
by the acceleration. In the figure, four trajectories with increasing initial delays (left
to right) are shown. These delays correspond to the moment when velocity is acti-
vated/allowed to initiate the trajectory. Before that, the acceleration influences the
direction of the velocity, however without any displacement. When there’s no delay,
the initial velocity vector can potentially drive the trajectory away from the target (as
shown in this specific example), while with longer delays, the acceleration can explore
and identify a more conducive direction in order to exhibit a more direct trajectory
to the target.

Drawing an analogy with momentum-guided reinforcement learning, the BG pathway
biases the motor output towards the target syllable using reinforcement learning, akin to
the role of acceleration in the aforementioned illustration, as both play the role of mod-
ulating the direction of the system. The growth of the slower and more stable cortical
pathway can be compared to the role of velocity, where both maintain a steady direc-
tion in the learning phase. They provide a central locus around which acceleration/the
BG loop are able to explore locally and bias the output. The local changes made by ac-
celeration/the BG loop are gradually incorporated and consolidated within velocity/the
cortical pathway. Within this analogy, we extend the findings of the illustration to the
dual pathway system. We have observed that the slowly-modulated velocity parameter
can govern the direction of the system, and can thus provide the momentum required
to escape local minima by countering the effect of the acceleration parameter that would
preferentially guide the system towards the local minima. This overshooting of shallow
local minima in an attempt to reach the global minimum could be a potential role fulfilled
by the development of the cortical pathway and the transfer of information from the sub-
cortical to cortical pathways. Moreover, in the absence of momentum (as simulated using
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initiation delays), acceleration can exercise comparatively greater influence over velocity,
which could, in turn, help find a more conducive direction for the system to begin its
trajectory. Thus, during the early babbling stage of vocal learning, where the BG loop
is formed, but the cortical pathway isn’t yet fully formed, the avian BG can explore the
sensorimotor space and find a desirable direction with respect to the local contour. Such
early exploration would result in the system moving more rapidly in the chosen direction,
eventually, when momentum kicks in or, in this case, when the HVC axons innervate the
RA. Considering the cortical motor pathway to implement an equivalent of the notion
of momentum, it might be necessary for this pathway to be active only after the initial
direction of the gradient is determined. The alternative being a momentum, in a random
initial direction, that may cause delays in learning, or ultimately drive the learning away
from the actual target. Hence, the developmental delay facilitates an initial period of high
exploration, which could be hindered by the presence of a comparatively change-resistant
cortical pathway. The delay in the development of cortical pathway, thus, might have a
crucial role in controlling the exploration-exploitation trade-off by allowing for an initial
predominantly exploratory phase, while additionally assisting in escaping local minima
in the later stages of sensorimotor learning. Providing this auxiliary support to gradient
descent could be another potential functional role for the otherwise unaccountable delay
observed in the innervation of RA neurons by HVC axons.

While this hypothesis might be difficult to test at the experimental level, it is much
more feasible to simulate a comparison between a random initial momentum and a late
gradient-directed momentum. Our prediction is that in the former case, learning would
be deeply hindered, as illustrated in Figure 5.14, using an accelerated velocity analogy. It
is to be noted that the illustration has been made in 2D and may misleadingly suggest that
the initial velocity vector has a fair chance of pointing in the right direction. However, in
higher dimensions, this probability would be much lower and therefore, the delay in the
activation of the Hebbian-based pathway would be functionally critical 4.

The comparison of the structural plasticity within the cortical motor pathway with
the technique of momentum is also in agreement with a prevalent hypothesis (discussed
in section 3.3.1) that the innervation of RA by the HVC axons causes an increased in-
hibitory nature of the RA, which in turn diminishes the influence of the mainly NMDA
receptor-based LMAN inputs to the RA (Garst-Orozco et al. 2014b; Ölveczky, Otchy, et al.
2011). The development of the cortical pathway, thus, slowly diminishes the exploratory
LMAN influence and, over time renders the vocal production to be more stereotypical
in nature.

The dual pathway architecture we’ve introduced and illustrated in the songbird is, in
fact, a widespread cerebral organization among vertebrates, including birds, rodents and
primates (Boraud et al. 2018b). A rough description of this architecture is that the BG pro-

4The scripts are available on https://github.com/rsankar9/Review-momentum-illustration and archived
in a Zenodo repository https://doi.org/10.5281/zenodo.4063714 (Sankar, Rougier, et al. 2021)
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vides the necessary motor variability for exploration while the cortex (pallium for some
taxa) provides stability and late exploitation. Once acquired, skills are expressed solely by
the motor cortex without the need for the BG. This constitutes a generic and powerful
mechanism for the acquisition of sensorimotor skills that departs from modern machine
learning techniques. Given the architectural, behavioral and physiological constraints
we’ve introduced, the dual pathway model constitutes a plausible approach to sensori-
motor learning that is strongly rooted in neuroscience and behavior.
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6 Neural correlates of
transfer of learning between
cortico-striatal circuits

It has widely been hypothesised that reinforcement learning underlies sensorimotor learn-
ing. Vocal learning in songbirds provides a tractable system to investigate this hypothesis
further. The avian song system consists of a direct cortical pathway, capable of control-
ling song production, and a BG-thalamo-cortical loop, which contributes to learning an
imitation of the tutor song. The goal of this chapter is to conduct a theoretical and elec-
trophysiological investigation into the song-related circuitry in zebra finches, and verify
the feasibility of reinforcement learning within this circuitry. We being by elucidating
behavioural and anatomical features of vocal learning, discussed in chapter 3, and com-
piling them to formulate a hypothesis to investigate the transfer of BG-led reinforcement
learning to cortical motor pathways. We conduct a primary verification of the hypothesis
using a computational model, and then build an experimental protocol to test the predic-
tions that emerge from the model. We present the preliminary data collected from a pilot
electrophysiology study, using this protocol, and discuss methods to analyse the data in
the context of our hypothesis.

6.1 Hypothesis: Transfer from the avian BG-cortical
loop to the cortical motor pathway

As discussed in chapter 3, the vocal learning behaviour of songbirds is quite similar to
human speech acquisition. Juvenile songbirds learn to sing by imitating adult tutors.
They initially listen to the adult vocalisations, and build a neural representation. This
is followed by sensorimotor exploration, wherein young birds start to produce babbling
sounds and gradually improve their vocalisation of the tutor song. Eventually, vocal ex-
ploration decreases and the produced song is more stereotyped, as we approach the crys-
tallised phase. However, this entails an erratic process which is not easily tractable. For
instance, it is not straightforward to deduce which tutor song syllable the juvenile bird
is attempting to imitate at a given moment, in the early babbling phase (Kollmorgen et al.
2020; Tchernichovski et al. 2001). Thus, the trajectory of song improvement over the early
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sensorimotor phase is not easily quantifiable. On the other hand, post-crystallisation,
the bird produces more stereotypical and thus, tractable songs, consisting of usually the
same set of syllables in a stable sequence, or ‘motif’. Hence, in our study, we focus on
vocal learning during the crystallised phase, in adult songbirds.

Vocal learning in songbirds is governed by a system of cortical and subcortical struc-
tures that coordinate the required muscle and respiratory activity, as discussed in chap-
ter 3. This song system is solely responsible for producing and learning vocalisations.
It consists of two parallel pathways. The cortical motor pathway includes the premotor
cortical nucleus, HVC, and the robust nucleus of the arcopallium (RA), which is the
primary site of motor control. This pathway is required for normal song production. In
parallel, a BG-thalamo-cortical loop, called the anterior forebrain pathway (AFP), indi-
rectly connects the HVC and RA. This consists of three nuclei connected in a loop: the
BG homologue Area X, the dorsolateral thalamic nucleus (DLM), and the lateral mag-
nocellular nucleus of the anterior nidopallium (LMAN). The pre-motor nucleus, HVC,
is involved in generating the timing and sequencing of song and drives the RA activity
pattern, which controls downstream muscle activity for song production. Meanwhile,
similar to the cortico-basal ganglia circuitry in mammals, the AFP plays a crucial role in
motor skill learning and plasticity (Boraud et al. 2018a). Within this framework of two par-
allel pathways, tutor signals from sub-cortical circuits aid the primary cortical pathway in
motor skill acquisition.

To elucidate the putative function of the AFP further, lesions in the LMAN in juvenile
birds, disrupts song development, but does not affect production of stable song patterns,
in adult birds (Bottjer, Miesner, et al. 1984). This suggests that juvenile vocal learning is
driven by the BG circuit, which is distinct from that which produces adult vocalisations.
LMAN lesions in adult birds also reduce trial-to-trial variability in song rendition, sug-
gesting a role for LMAN in introducing variability into the circuitry. Microstimulation
of the LMAN during song induces acute, specific changes in the learned features of song
indicating the ability of LMAN activity to modulate ongoing motor performance (Kao
et al. 2005). Meanwhile, the Area X receives strong dopaminergic innervation from the
midbrain, providing an online evaluation of song quality. Moreover, there is experimen-
tal evidence showing activity-dependent synaptic plasticity at RA and area X synapses.
This suggests that all the elements required to implement reinforcement learning (ex-
ploratory variability, reward-related information and plasticity), are available within the
AFP.

Several studies have hypothesised that reinforcement learning underlies sensorimotor
learning, and specifically, vocal learning (M. Fee et al. 2011; Wickens et al. 2003). As discussed
in chapter 3, and summarised above, the AFP seems to be an ideal candidate to implement
RL within the avian song system. Further, during adult plasticity, studies have shown that
the role of LMAN (output of AFP) in the expression of learned motor bias decreases over
time (Andalman et al. 2009b). Several theoretical studies (Mehaffey et al. 2015; Teşileanu et
al. 2017) provide additional support to this view that the transfer of learning within a
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dual pathway framework can enable the BG to guide behavioural adaptations, until it is
eventually consolidated into cortical networks following extensive training.

If reinforcement learning (RL) does indeed govern vocal learning in songbirds, then
the LMAN (the output nucleus of the AFP and a source of variability) should be able to
drive variability in vocalisations during song learning. This suggests that the trial-to-trial
variability of multi-unit activity in LMAN should show a correlation with the acoustic
features of resulting vocalisations, during learning. Further, within the two-step learning
paradigm discussed above, the exploration conducted by the AFP would need to ulti-
mately be consolidated into the cortical motor pathway. This would imply the existence
of a neural framework that allows LMAN to influence RA activity. If the LMAN (a
source of variability generation in motor exploration), drives RA (the locus of motor
control in the song pathway) activity, a correlation will be found between the trial-to-
trial variability in the multi-unit activity of these two nuclei, during song learning. We,
therefore, seek to investigate the role of the LMAN, the output nucleus of the AFP, in
modulating RA activity, during vocal learning, in this chapter. To this end, we gather
information from relevant literature on adult vocal plasticity, and design an experimental
protocol to test the aforementioned hypothesis.

Studies have shown that adult birds, when deafened, show a gradual deterioration in
their song quality (Brainard et al. 2000). However, a similar deterioration is not observed
when projections from the LMAN are lesioned, post deafening. This indicates that the
AFP continues to help maintain song quality even after the song has crystallised. Fur-
thermore, songbirds retain the ability to implement minor modifications to their song,
even post-crystallisation, well into their adulthood. It has been established that when
provided with auditory feedback contingent on a given syllable, the bird is able to alter
the corresponding syllable in order to avoid the feedback (Tumer et al. 2007). Within this
protocol, researchers use a closed-loop system to target a particular syllable of the bird’s
song. Whenever the bird sings, an acoustic feature of the target syllable is computed, for
example, the pitch, duration, or spectral entropy. Depending on this feature, a feedback
is delivered to the bird immediately. This feedback can be visual or auditory, for e.g. a
playback of the bird’s syllable or white noise (Zai et al. 2020). When a short pulse of white
noise is used regularly to provide feedback to the bird, it attempts to evade this feedback
by altering its song accordingly. For e.g., if the feedback is delivered when the bird sings
a lower range of syllable pitch, the bird will attempt to escape the feedback by increas-
ing its pitch, or more generally, shifting its pitch. This pitch shift observed in songbirds
is a tractable demonstration of adult plasticity. When the AFP outputs to the RA are
lesioned, adult birds lose their ability to respond similarly to such behavioural training
protocols. Andalman et al. (2009a) show that the AFP influence is required to shift the
pitch according to such external feedback, and this bias is consolidated within a period of
a day in the cortical motor pathway. Within the pitch-modulation regime, the pitch of a
target syllable can be incrementally modified by increasing the range at which feedback is
provided. We harness this ability of songbirds, to observe the interplay between LMAN
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Figure 6.1: Sketch illustrating the proposed hypothesis. A protocol using conditional auditory
feedback can be used to shift the pitch of a particular syllable. We hypothesise that on
days where the bird is learning to either increase or decrease the pitch of a target syllable,
the correlation between the trial-to-trial variability in the activity of the LMAN and
the RA, in the premotor period, will increase. Correspondingly, the correlation in
the trial-to-trial variability between the activity in LMAN and pitch of the produced
vocalisations would also increase.

and RA activity during learning using the more controlled and tractable setting of adult
plasticity, instead of juvenile learning.

We test our hypothesis by inducing adult plasticity using the aforementioned pitch
shift paradigm with conditional auditory feedback. More specifically, we posit that if the
LMAN does indeed drive RA, during adult plasticity, then Post-consolidation within
the cortical pathway, this correlation would subside, as the LMAN would no longer need
to alter the RA activity pattern. Following the end of the feedback protocol, the bird’s
song has seen to return to its original form. In this case as well, we expect the correlation
between RA and LMAN activity would increase during the transition, but subside once
the song has returned to baseline. More specific details about the experimental protocol
are specified in section 6.3.

To scrutinise this hypothesis, we explore vocal learning using a computational frame-
work resembling a simplified song system, with sigmoidal rate-coded neurons. We use this
model to make quantitative predictions about the correlation between RA and LMAN
activity within the protocol. Post learning, we simulate the conditional feedback proto-
col and test the model’s response to it, in order to study the influence of the BG-cortical
pathway towards adult plasticity. Based on the prediction made by the model, we, fur-
ther, investigate our hypothesis using experimental approaches. We design an experimen-
tal protocol and use electrophysiology to collect preliminary data of the neural activity of
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RA and LMAN in freely-behaving birds, when subjected to the distorted feedback pro-
tocol. To summarise briefly, we posit that if the LMAN (a source of variability generation
in motor exploration) drives RA (the locus of motor control in the direct pathway) ac-
tivity during learning, then a correlation will be found between the variability in acoustic
features of a syllable, and the premotor activity in these neural regions.

6.2 Theoretical analysis of hypothesis
In this section, we attempt to gain further insights into the interplay between the BG-
thalamocortical pathway (the AFP) and the cortical motor pathway during vocal learning.
We build a simplified computational framework inspired by the dual pathway framework,
using rate-coded neurons. We, then, simulate learning in juvenile and adult conditions,
and observe the activity of the neurons in the different layers during learning. We use
this model to make quantitative predictions about the correlation between the activity
of LMAN and RA, during plasticity, and verify our hypothesis in a two-step learning
paradigm within a dual pathway framework.

6.2.1 Methods
Architecture

The model’s network comprises of three main layers: the HVC, RA and BG layer. Each
layer is composed of thirty rate-coded sigmoidal neurons, each. The HVC and the RA
layers are connected via two parallel pathways, with one of the pathways passing through
the BG layer. The RA layer projects to downstream layers that produce vocalisations,
which is represented here using an output layer, which produces a scalar value, denoting
the pitch of a syllable. The weights between the HVC and RA layer, as well as those
between the HVC and the BG layer are plastic. Meanwhile, the BG is connected to the
RA layer, and the RA to the output layer using fixed synaptic weights. The neurons are
modeled using steep sigmoidals for activation function, which bound the firing rate of
the neurons between -1 and 1 (Eq 6.3).

Learning

The two pathways are governed by Hebbian learning and reinforcement learning, respec-
tively. The BG layer (JBG) functions as a source for variability (ξ), and receives feedback
about performance quality (R). It uses a covariance learning rule to update its synaptic
weights (WRL), as shown in Eq 6.1. In parallel, the direct motor pathway (WHL) be-
tween HVC (JHV C) and RA (JRA) is governed by a modified version of Hebbian learn-
ing, known as Oja’s rule, such that co-activation of an HVC and RA neuron leads to the
potentiation of their shared synapse, in a more stable manner (Eq 6.2) (Oja 1982).
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Figure 6.2: Simplified schema of the dual pathway architecture. The cortical motor pathway con-
nects the HVC and RA and is built using Hebbian learning. The components of the
parallel AFP is represented using a BG layer. The synaptic connections between HVC
and BG are updated using reinforcement learning, while the connections between BG
and RA are topographic and fixed. The RA output is transformed into a scalar value
denoting the pitch of the desired vocalisation. Post learning, in order to test the effect
of LMAN lesions, we inactivate the inputs from the BG to the RA.
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Figure 6.3: Activity pattern within the HVC and the RA layer corresponding to each syllable
in the song motif. Syllables are encoded within the HVC layer, in a sparse and non-
overlapping manner. This syllable encoding functions as the input to the system sig-
nalling the target syllable to be produced. The RA layer gradually learns the activity
pattern corresponding to the desired pitch value for a given syllable. Hebbian learning
within the HVC-RA pathway gives rise to the binary pattern of firing rates observed
here in the RA, signalling bursts of spiking activity within the RA.

∆WRL = ηRL.JHV C .JBG.(R− R̄).ξ (6.1)
∆WHL = ηHL.JRA(JHV C − JRA.WHL) (6.2)

sig(x) =
1

1 + e−1∗(x−sm)∗ss (6.3)

where η refers to the learning rate of a pathway, such that ηHL = 0.01 ∗ ηRL.

Encoding

The model has to learn a song motif of four sequential syllables (A, B, C, D) using the
above-described dual pathway framework. Each syllable is associated with a scalar value
denoting the pitch of the syllable. The HVC encodes a discrete sparse representation for
each syllable in a song, and drives RA activity. The model must explore and find the right
RA activation pattern, to produce the desired song motif, as shown in Figure 6.3. The
HVC encoding used here is reminiscent of the findings of Hahnloser, Kozhevnikov, et al.
(2002).
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6 Neural correlates of transfer of learning between cortico-striatal circuits

Plasticity protocol in the model

Once the target motif has been learnt, we proceed to test the influence of the BG-cortical
pathway in song production. We simulate lesioning of LMAN, by inactivating the in-
puts from the BG pathway to the RA. We observe the effect of such lesioning of the BG
pathway on the variability of the pitch distribution generated by the model.

Post learning the target song motif, as a simplified analogy of juvenile song learning, we
study the role of the BG-cortical pathway in adult sensorimotor learning. We induce adult
plasticity, by simulating the conditioned auditory feedback protocol, described above,
and observing the model’s response to it. Under this protocol in songbirds, even a single
specific syllable of the song can be targeted to induce plasticity. Once a song motif has
been learnt by the model, we specifically distort the perception of the lower range of the
pitch distribution. We do this by artificially increasing the performance error associated
with a particular syllable, when the pitch produced by the model lies in the lower range of
its distribution, as illustrated in Figure 6.5. We observe the change in BG and RA activity
in response to this distorted feedback protocol.

We take a deeper look at the change in BG and RA activity in response to adult plastic-
ity, by simulating an artificially exaggerated scenario. Here, instead of inducing a minor
change in the syllable pitch, we task the model with learning a new target pitch for the
corresponding syllable. We then observe the relationship between the BG and RA activ-
ity.

6.2.2 Results

The model described here provides a signal to produce a syllable, using the HVC as an
input layer. The HVC uses a sparse non-overlapping representation for each syllable in a
song. As shown in Figure 6.4, the model learns to produce a song motif as a sequence of
four syllables, where each syllable is represented by a randomly chosen target pitch value.
Initially, similar to the babbling stage, the generated pitch distribution is highly variable,
and there is no sequence structure. As the model approaches the crystallised stage, the
variability in the pitch distribution of each syllable reduces and the renditions increasingly
resemble the target song. At this stage, we simulate lesioning the LMAN outputs, by
inactivating the influence of the BG pathway. This leads to the song continuing to be
produced in a stable manner, albeit with reduced variability.

Now, we further investigate the influence of the BG-cortical pathway towards plastic-
ity. To do this we emulate a common experimental protocol of distorted auditory feed-
back, generally used to induce adult plasticity in birds. As shown in Figure 6.5, after the
song has crystallised, we selectively penalise the production of lower half of the pitch dis-
tribution for syllable C. This results in an upward shift in the pitch distribution of syllable
C generated by the model.
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Initial stage Intermediate stage Crystallised stage BG lesion

Figure 6.4: Effect of lesion post vocal learning. The top panel groups multiple renditions within
each stage of vocal learning. The red horizontal bar denotes the target pitch for each
syllable. The black dots denote each production of syllable pitch. The bottom panel
shows the spectrogram corresponding to song in each stage. In the initial stage, the vo-
calisations are highly variable. As training proceeds, the vocalisations are more stereo-
typed for each syllable. Post lesion of BG outputs, the variability reduces further, as
shown on the left vertical panel.
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Initial stage Intermediate stage Crystallised stage Plasticity

Distorted 
feedback

10

Figure 6.5: Effect of the CAF protocol post song crystallisation. The top panel groups multiple
renditions within each stage of vocal learning. The red horizontal bar denotes the tar-
get pitch for each syllable. The black dots denote each production of syllable pitch.
The grey shaded region shows the presence of distorted feedback. The bottom panel
shows the spectrogram corresponding to song in each stage. In response to the CAF
protocol on syllable C, the pitch distribution of the target syllable undergoes an up-
ward shift.
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To explore the neural activity during this transition more closely, we simulate plasticity
in a more explicit scenario by exaggerating this change in motor action. We artificially alter
the target template for the syllable pitch, and observe the BG and RA activity in response
to this modified reward profile. Note that songbirds are not capable of such a drastic
change post crystallisation. In Figure 6.6, we take a closer look at syllable C in isolation.
When the target pitch for syllable C is altered, there is a drop in performance evaluation.
This leads to a renewed exploration of the motor space by the BG-cortical pathway. This
is reflected in the increased variability of the pitch distribution. As training progresses,
the performance improves and variability decreases. We look into the influence of the BG
pathway during this learning process, by tracing the correlation between the LMAN and
RA activity. We observe that the correlation between the activity of these two regions
increases in the exploration phase when a new target has to be learnt and decreases as the
the song is controlled more and more by the cortical pathway.

6.2.3 Discussion
It has been shown that online perturbations of auditory feedback of the pitch generates
adaptive changes in the pitch of syllable. The response of the model to distorted feed-
back is similar to songbirds where within a day, the bird attempts to evade the distorted
auditory feedback by preferentially producing pitches from the non-distorted range of its
pitch distribution (Andalman et al. 2009a). This could be by gradually raising or lowering
its pitch, depending on the direction of the distorted feedback. The fast timescale of learn-
ing within the AFP can support such rapid adaptation, while the slower learning mech-
anisms within the cortical pathway can consolidate information on a longer timescale.
This mechanism is akin to the one hypothesised by several researchers, including Boraud
et al. (2018a) and Hélie et al. (2015), where fast RL-based BG trial-and-error learning facili-
tates slower Hebbian learning mechanisms in the cortex for the storage and expression of
automatic skills.

In Figure 6.6, we see that the correlation between the activity of the LMAN and the
RA increases in the exploration phase, and decreases as the the song is controlled more
and more by the cortical pathway. This serves as an indication that the LMAN drives
neural activity in the RA, during sensorimotor exploration, but has diminished influ-
ence post the consolidation in the cortical pathway. Based on the model prediction, we
then hypothesise that when subjected to such a conditioned auditory feedback protocol,
the shift in pitch of a syllable will possibly be accompanied by an initial increase in the
correlation between the variability in LMAN and RA activity from trial-to-trial. The
model also predicts that such an increase in correlation would diminishe, as the induced
change is consolidated within the cortical pathway.

In this case, we then hypothesise that when adult songbirds are subjected to such a dis-
torted auditory feedback protocol, the shift in pitch will possibly be accompanied by an
initial increase in correlation between LMAN and RA variability. This would be followed
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6 Neural correlates of transfer of learning between cortico-striatal circuits

Figure 6.6: Correlation between RA and BG layer during learning. The top panel shows the pro-
gression of the produced error (red) in pitch and perceived reward (black). The middle
panel shows the target pitch for syllable C in red and the generated pitch distribution
of syllable C in black. The bottom panel shows the change in correlation coefficient
between the activity of the RA and BG layers during the simulation. When the tar-
get for syllable C is changed, there is an increase in the correlation coefficient between
activity of the RA and BG layers.
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by a corresponding decrease in correlation, as the shift in pitch gradually gets consolidated
in the cortical pathway.

6.3 Interaction between LMAN and RA during
learning

In this chapter, we presented a preliminary theoretical study about the role of the dual
pathway architecture in sensorimotor learning, in the avian context. We hypothesise that
reinforcement learning based sensorimotor learning within a dual pathway system, as seen
in the song system, would require the exploration of the RL pathway to be consolidated
within the motor pathway, implying the LMAN (a source of variability generation in
motor exploration) would drive the RA (the locus of motor control in the direct pathway)
activity during learning. If this is the case, then, a correlation would be found between
the variability in acoustic features of a syllable, and the premotor activity in these neural
regions.

We proceed to use experimental approaches to investigate the prediction emerging
from the model, described in the previous section. We conduct behavioural tests to study
the response of a songbird to distorted feedback of vocalisations, contingent on syllable
pitch, and observe the shift in pitch, described earlier. We, then, use electrophysiology
to record the neural activity of RA and LMAN in freely-behaving birds, when subjected
to this distorted feedback protocol. Here, we primarily design an experiment in order to
test the prediction made by the models in the previous two sections, and conduct a pilot
study using the designed protocol. Thus, within the avian context, we test the hypothesis
that if the LMAN drives RA activity during exploration, then a direct correlation will be
seen in the variability in acoustic features of a syllable, with the premotor activity in these
neural regions.

6.3.1 Methods
Bird care

Adult (>100dph) Zebra finches were bred in an open-air aviary and housed with their par-
ents until more than 90dph. Post 100dph, birds were isolated and housed in sound atten-
uating chambers with food and water provided ad libitum. Birds were housed in a natural
photoperiod, in both the aviary and sound-attenuating chambers. Here, they were tested
for suitability for experiments, as per the following criteria: i) weight ii) readiness to sing
iii) no. of syllables in song iv) presence of a high pitch syllable v) ability to shift pitch dur-
ing a CAF protocol. Birds which satisfied these criteria were selected as candidate birds.
A micro-drive was surgically placed on the skull of candidate birds (M. S. Fee and Leonardo
2001). After micro-drive placement, birds were isolated and housed in sound-attenuating
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chambers. All recordings presented in this manuscript are from undirected singing. All
procedures were in accordance with the animal care protocols approved by University of
Bordeaux.

Micro-drive

A lightweight motorised micro-drive was built and used for electrophysiological record-
ings from the bird (M. S. Fee and Leonardo 2001). Each micro-drive contained a customised
array of three high-impedance (10 − 20MΩ) electrodes and 3 silver wires (for EEG,
ground and reference). The micro-drive was built in the lab by attaching electrodes to a
motor, which allowed for controlling the depth of the electrodes inside the brain. Three
tubes were placed on the drive, corresponding to three neural regions, the RA, the area
X and LMAN, according to Table 6.1. Thus, the former tube was placed on the oppo-
site side of the motor of the two latter tube, with a distance of 5.2mm between them.
This corresponds to the average distance between the RA and LMAN on the anterior-
posterior axis at40◦ implantation angle, according to our preliminary studies with anatom-
ical tracers. Electrodes were placed within the tubes such that the relative distances from
the exit of the tubes were according to the relative depths between their corresponding
neural regions (accounting for the curvature of the skull between the anterior and poste-
rior electrodes). The electrodes were further connected using silver wires to a PCB which
could transmit the signal to the recording apparatus by Neuralynx.

Surgery

Before the surgery, birds were food-deprived for 30 minutes. An analgesic (meloxicam,
5mg/kg) was administered at the start of the procedure. Birds were anaesthesised (induc-
tion with 4% isoflurane and maintained with 0.5-1.0% isoflurane) while placed on the
stereotaxic apparatus at a head angle of 40◦. Local anaesthetic (lidocaine) was applied
under the skin before opening the scalp (incision site shaved and cleaned with betadine),
and re-applied on the open wound every 20 minutes. Small craniotomies was performed
above the midline reference point, the bifurcation of the midsagittal sinus and the above
the structures of interest. Stereotaxic coordinates in the anteroposterior and mediolateral
axis were determind as per the sinus junction. The stereotaxic coodinates used for each
site has been specified in Table 6.1. Coordinates were determined using anatomical trac-
ers, in advance. The previously described microdrive was positioned stereotaxically over
RA, LMAN and X in one hemisphere and secured to the skull using dental cement. An
EEG wire was placed above the dura posterior to LMAN. The silver wires corresponding
to reference and ground were placed in the cerebellum. Birds were sub-cutaneously in-
jected with glucose prior to the surgery, and fed glucose orally for two days post surgery.
Birds were injected (intra-muscular) with meloxicam for two days post surgery. After
surgery, the birds recovered and resumed singing within 5-10 days.
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Structure Antero-post (mm) Medio-lateral (mm) Depth (mm)

LMAN 4.5 1.8 2.3
Area X 4.5 1.5 3.3

RA -0.7 2.5 2.1

Table 6.1: Stereotaxic coordinates summary. Anteroposterior and medio-lateral coordinates are
expressed in millimeters from the sinus junction, and depth coordinates in millimeters
from the surface of the brain.

Electrophysiological data collection

After singing resumed, each day the electrodes were lowered into the brain and extracted
back at the end of the day, for a period of ten days. Recordings were made in the Area X,
LMAN and RA, as shown in Figure 6.7. Acquisition of the signal was done using appa-
ratus built by Neuralynx, at a sampling frequency of 32000 Hz. Putative RA recording
sites were identified by the presence of characteristic changes in activity associated with
production of songs and post-singing inhibition. Putative LMAN recording sites were
identified by increase in baseline activity during singing and the presence of spontaneous
bursts during and outside singing. Putative Area X recording sites were identified by the
presence of tonically active neurons. Multi-unit activity at each site was recorded until
100+ songs were produced by the bird. At the end of the experiment protocol, electrolytic
lesions will be made at one recording site, each, for RA and LMAN. Recording sites will
be confirmed using post-hoc histological confirmation of the trajectory of each electrode
array (coated with a fluorescent tracer), as well as the location of the electrolytic lesion.

Conditional auditory feedback protocol

For the first day of recording, the bird was allowed to sing without any interventions.
Post the baseline day, for five days, distorted auditory feedback (white noise of 100ms du-
ration) was provided using external speakers, contingent on the pitch of the chosen target
syllable. The amplitude of white noise was set manually to be higher than the amplitude
of the bird’s song. For the first three days (post baseline), the threshold for auditory feed-
back was adaptively increased or decreased. The new threshold was set to be the 60th
percentile of the previous 300 songs, if the protocol intended to induce an upward shift
in pitch, and 40th percentile, if a downward pitch shift was intended. On days 4-5 post
baseline, the threshold was maintained at the mean of the last 300 songs of day 3 post
baseline. After 5 days of CAF, no more feedback was provided on the subsequent days
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Figure 6.7: Recording sites for electrophysiology. A micro-drive was placed on the skull of a bird
which contained a customised array of three high-impedance (10−20MΩ) electrodes
and 3 silver wires (for EEG, ground and reference). The micro-drive was built in the
lab by attaching electrodes to a motor, which allowed for controlling the depth of the
electrodes inside the brain. Three electrodes were placed on the drive, corresponding
to three neural regions, the RA, the area X and LMAN, according to Table 6.1. Simul-
taneous recordings were made from the RA and LMAN sites.

until the bird re-learnt to produce the syllable with the original pitch distribution. The
CAF protocol was implemented using a closed-loop system run by a customised version
of the RTXI software (Skocik et al. 2013).

The recordings were classified into three categories according to the CAF protocol the
bird was subjected to. The recordings from days where feedback was provided with a
gradually increasing threshold (day 1-3 post baseline), inducing an upward shift in the
distribution of pitches of the target syllable produced by the bird, were included in the
category ‘learning’. The recordings from the days immediately after feedback was stopped
(after day 5 post baseline), leading to the bird gradually regaining its original pitch distri-
bution of the target syllable, i.e. extinction, were also included in the category ‘learning’.
The recordings from the days where CAF was provided below a fixed pitch threshold
(day4-5 post baseline) were included in the ‘maintenance’ category. The recordings from
days were no feedback was provided, and the bird produced its original distribution of
pitches of the target syllable were classified as ‘baseline’. Before the commencement of
the CAF protocol, the first day of recording with no feedback (day 0) was considered
baseline. Post the end of the CAF protocol, the baseline day is determined by observing
the pitch distribution. When two consecutive days show no significant difference as per
the Kruskal Wallis test, we consider the vocalisations of the target syllable to be outside
of the learning protocol, and is included in the ‘baseline’ category.
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Escape HitEscape

Distorted 
feedback

Figure 6.8: Instance of the CAF protocol. The fundamental frequency of a high pitched syllable
is computed. As shown in the first two song motifs, if the calculated pitch is in the top
forty percentile of the pitch distribution of the target syllable, no feedback is provided.
As shown in the third song motif, if the calculated pitch is in the lower sixty percentile
of the pitch distribution of the target syllable, a distorted auditory feedback of 100ms
is provided.

Acoustic feature

For each syllable, we defined a measurement time relative to the syllable onset that cor-
responds to a well-defined spectral feature, at 15ms post syllable onset. Syllable onsets
were defined based on amplitude threshold crossings. Pitch is defined as the fundamen-
tal frequency of the signal. Pitch was computed by combining several FFTs over a 25ms
sample (ending at the measurement time) of the target syllable. Each FFT was performed
with a decreasing number of sample points, such that the resulting cumulative FFT has
a finer resolution. The pitch is determined by the frequency of the FFT peak within a
manually pre-determined frequency range. To observe the effect of the CAF protocol,
the distribution of all vocalisations of the target syllable was plotted across all days of the
protocol.

Data analysis - spiking statistics

Units were sorted manually with the Spike2 (CED, UK) software, using principal com-
ponent analysis of spike waveforms. A unit was considered for analysis only if the average
signal-to-noise ratio was higher than 1 during baseline and if the spike shape looked stable
and salient, based on visual inspection. A unit was classified as multi-unit or single-unit
depending upon the distribution of its inter-spike intervals. From here on, unless spec-
ified, the term unit refers to a multi-unit cluster. For further analysis, units with low
average firing rate under the time-window pertaining to the corresponding analysis, were
discarded. The peri-stimulus time histograms (PSTH) were calculated for all recorded
units, with respect to syllable durations.

107



6 Neural correlates of transfer of learning between cortico-striatal circuits

Pre-motor neural activity

In this chapter, neural activity of a unit in a specified time window denotes the mean de-
trended firing rate. The instantaneous firing rate (IFR) was calculated for the spike train
for each unit. The IFR was used to detrend the signal. The number of spikes in the de-
sired time window (pre-motor, in this case) was retrieved by calculating the area under the
curve. This results in the mean detrended firing rate over the specified time window. It is
determined by building the instantaneous firing rate of the unit over the entire recording,
detrending the resulting signal and calculating the area under the curve for the specified
time window. Premotor neural activity denotes the mean detrended firing rate within
the “premotor window" corresponding to a duration before the measurement time of
acoustic features of a syllable. This “premotor window" for all RA units was chosen to
be 40ms to reflect the latency at which RA activity influences the song structure, deter-
mined based on previous studies (Sober, Wohlgemuth, et al. 2008). The premotor window
for all LMAN units was chosen to be 5ms before the premotor window for RA units, to
account for transmission lag from LMAN to RA (White et al. 1999).

Correlation analyses

First, for each RA and LMAN unit, we computed the linear correlation between aver-
age firing rate in the premotor window for each syllable and the corresponding acoustic
feature (pitch), to investigate the relationship between neural activity and behaviour. Be-
fore computing correlations, we discarded outlier syllable renditions with acoustic feature
measured at greater than 4 times the standard deviation from the mean feature across all
renditions in a recording session. Any unit with <1 spike on average within the premotor
window was discarded.

Second, for each simultaneously recorded RA-LMAN multi units, we computed the
linear correlation between the trial-to-trial variance in the average firing rate in premotor
window for each syllable. This helps us investigate the relationship between the neural
activity of these two regions, during vocalisation.

Third, we account for the possibility that the LMAN may be influencing RA neural
activity on a longer timescale than the pre-motor window. To look into this, we consider
the a larger time window, from motif onset until the measurement point of each syllable
(henceforth referred to as motif onset window). Now, for each simultaneously recorded
RA-LMAN multi units, we computed the linear correlation between the trial-to-trial
variance in the average firing rate in the motif onset window for each syllable.

Further, we performed a bootstrap analysis for each condition, as explained in Sober,
Wohlgemuth, et al. (2008), to build a distribution of the number of spurious significant
correlations that can arise from our dataset by chance.

108



6.3 Interaction between LMAN and RA during learning

6.3.2 Preliminary analysis from pilot study

Here, we present the data from a pilot study on one male zebra finch using the above
experimental protocol. We induce adult plasticity in the adult bird by implementing the
conditional auditory feedback protocol explained above. Vocalisations with a pitch from
the lower 60 percentile of the distribution were penalised with a distorted auditory feed-
back. In response to this training, we observe an upward shift of 4.43% over three days, as
compared to the baseline day, where no feedback was provided (Figure 6.9). Post training,
when the conditional feedback was stopped, the vocalisations gradually regained their
initial pitch distribution in four days (shown as the extinction phase (Kruskal-wallis test
between first and last day of protocol: K=4.75, p>0.01) in Figure 6.9). The Kruskal wallis
test over the last two days show that they the pitch samples could be drawn from the same
distribution (Kruskal-wallis test between the last two days of protocol: K=4.75, p>0.01).
Thus, we infer that the pitch of the target syllable has returned to baseline productions,
and conclude the protocol on day 10. From day 0 to day 3, there is an average increase of
57.8Hz each day, with an average standard deviation of 193.8Hz each day. 1.

Simultaneously, electrophysiological recordings were obtained from the RA and LMAN
of the zebra finch. As seen in a sample neuron in Figure 6.10, the recordings confirms
that units in the RA show a clear pattern of activation across song renditions, followed
by a post-song inhibition. 49 putative RA multi-units displayed tonic activity out of the
singing context, with a mean firing rate of 32 Hz during rest. The recordings were classi-
fied within ‘baseline’, ‘maintenance’ and ‘learning’ categories, as explained in the previous
section.

As shown in Fig 6.10 for a sample RA multi-unit, we observed a bimodal distribution
of the ISIs of the RA unit during singing (corresponding to intra- and inter-burst firing
rates). The PSTH for the multi-unit shows modulation of neural activity both during
motifs, unaffected by the distorted feedback, and during motifs, which received distorted
feedback. Here, the syllable ‘b’ was targeted to induce an upward pitch shift using the
CAF protocol. The PSTH confirms that this RA unit exhibits song-timing locked bursts
during singing, followed by an inhibition of their resting tonic activity.

32 putative LMAN multi-units showed spontaneous bursts, with increased baseline
activity during singing. As shown in Fig 6.11 for a sample LMAN multi-unit, we observed
a unimodal distribution of the ISIs during singing. The PSTH for the multi-unit shows
modulation of neural activity both during motifs, unaffected by the distorted feedback,
and during motifs, which received distorted feedback. The modulation of LMAN neural
activity during song is less pronounced than RA multi units.

1Note: The bird was trained on the CAF protocol twice with a gap of 4 days between the two sessions.
Owing to the dearth of simultaneously recorded RA and LMAN unit pairs, we discard the first 4 days
of the first session. The second session could not be continued to the end due to the drive being dis-
lodged by the bird. Therefore, in this section, we present the two sessions of the CAF protocol.
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Figure 6.9: Effect of CAF protocol on behavior. Panel A shows the change in the pitch distri-
bution of the target syllable during the CAF protocol. The renditions receiving dis-
torted feedback within the CAF protocol are shown in red. The renditions receiving
no distorted feedback within the CAF protocol are shown in black. The renditions
in absence of the CAF protocol are in grey. Panel B shows the mean and median of
the pitch distribution across days. Panel C shows the shifted distribution of pitches
on days where CAF is present (red+black) versus the days where no CAF is provided
(grey).
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Figure 6.10: A sample RA unit. A. Superimposed spike shapes during singing (black) along with
the mean spike shape (red). B. Raw and filtered signal of the sample RA unit over 1s
during singing. C. The distribution of ISIs during rest, singing and over the entire
recording. D. PSTH during motifs with no distorted feedback. E. PSTH during
motifs with distorted feedback. Note: The distorted feedback (‘z’) begins during the
target syllable ‘b’ and lasts until the next syllable ‘c’. 111
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Figure 6.11: A sample LMAN unit. A. Superimposed spike shapes during singing (black) along
with the mean spike shape (red). B. Raw and filtered signal of the sample LMAN unit
over 1s during singing. C. The distribution of ISIs during rest, singing and over the
entire recording. D. PSTH during motifs with no distorted feedback. E. PSTH dur-
ing motifs with distorted feedback. Note: The distorted feedback (‘z’) begins during
the target syllable ‘b’ and lasts until the next syllable ‘c’.112
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Correlation between unit and behaviour

The main question we aim to study here is if the LMAN can drive RA activity such that it
has an effect on behaviour. To look into this, we first look at the effect of LMAN and RA
neurons on behaviour. We verify if a portion of behavioural variation can be explained
by the trial-to-trial variation in LMAN and RA activity. We look into this by measuring
the correlation in trial-to-trial variation between pitch and premotor neural activity of
LMAN and RA. Owing to the song-modulated activity of neurons, not all units were
active in the premotor period of all syllables. When comparing neural variability and be-
havioural variability, we discarded cases where the multi-unit was not sufficiently active
in the premotor period of any syllable. For each recorded RA and LMAN unit, we com-
pute the premotor spiking activity and the acoustic feature (pitch) of the corresponding
syllable. Figure 6.12 shows a sample RA unit whose premotor neural activity was signif-
icantly correlated with the pitch of syllables ‘a’, ‘b’, and ‘c’, along with a sample LMAN
unit whose premotor neural activity was significantly correlated with the pitch of syllable
‘b’.

Table 6.2 shows the number of RA and LMAN multi-units whose premotor activ-
ity was significantly correlated with the pitch of the subsequent syllable in each category
of the protocol, as compared to the total number of units recorded within the category.
Bootstrapping shows that the number of significant correlations between the premotor
activity of an RA unit and the pitch of syllable ‘a’, ‘c’ or ‘d’, in the three categories, is
more than as expected by chance. Bootstrapping shows that the number of significant
correlations between the premotor activity of an RA unit and the pitch of syllable ‘b’,
in the ‘learning’ category, is more than as expected by chance. However, this is not the
case for the ’baseline’ and ’maintenance’ categories. For the LMAN units, the number of
significant correlations between their premotor activity and the subsequent syllable was
not more than as expected by chance. 18% of RA units showed a signification correlation
between their premotor activity and the pitch of the subsequent syllable.

Correlation between LMAN and RA units

We continue to investigate if the LMAN can drive RA activity such that it has an effect on
behaviour. After seeing the relationship between individual LMAN and RA units and
behaviour, we look into the relationship between LMAN and RA units in a given con-
text. To see if LMAN can drive RA activity during learning, we measure the correlation
between premotor neural activity of LMAN and RA. We consider the premotor period
of an LMAN unit to be 5s before that of a RA unit, to account for a transmission delay
from LMAN to RA. For each recorded RA and LMAN unit, we compute the premotor
spiking activity corresponding to each syllable. Figure 6.13 shows a sample RA-LMAN
unit pair whose premotor neural activity for syllable ‘b’ was significantly correlated with
each other. Table 6.3 shows the number of pairs of RA-LMAN multiunits showing a sig-
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Figure 6.12: Sample correlation plot between the trial-to-trial variability in the premotor neural
activity (MDFR) of a unit and the pitch of the corresponding syllable (grey). Left:
Sample simultaneous recording of an RA and LMAN multi-unit during singing.
The premotor windows with respect to the pitch measurement point of the target
syllable is depicted in grey. The time window for LMAN is displaced with respect
to that of RA to account for transmission delays. Right: Sample correlation plot be-
tween the trial-to-trial variability in pitch of a syllable and the neural activity (MDFR)
of an RA and LMAN multi-unit, respectively, within the corresponding premotor
window. Here, the LMAN unit does not show a significant correlation (p > 0.05)
in its activity in the premotor window for a syllable, but the RA unit shows a signifi-
cant correlation (p < 0.05) in its activity in the motif onset window for the syllable.
The blue line denotes the linear regression across the data points. MDFR: Mean de-
trended firing rate.
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6.3 Interaction between LMAN and RA during learning

RA LMAN

ACD B ACD B

23 8 17 7 TotalBaseline
9 0 1 1 Significant

80 28 42 14 TotalLearning
12 5 1 2 Significant

33 11 16 6 TotalMaintenance
7 0 0 0 Significant

Table 6.2: The table shows the number of significant correlations between the variability in the
premotor activity of an RA or LMAN multi-unit and the pitch of the subsequent syl-
lable. The syllables are divided into two groups, the target group with syllable ‘b’ and
the control group with syllable ‘a’, ‘c’ and ‘d’. For each category, we display the number
of significantly correlated unit-behaviour pairs vs the total number of pairs recorded.
The color denotes the result of bootstrapping. ‘Green’ denotes that the number of sig-
nificant correlations in the dataset is not as expected by chance. ‘Red’ denotes that the
number of significant correlations in the dataset is within chance levels.
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Premotor window Motif onset window

ACD B ACD B

23 7 40 16 TotalBaseline
1 0 3 1 Significant

51 19 111 42 TotalLearning
2 0 19 6 Significant

27 11 37 15 TotalMaintenance
1 2 2 3 Significant

Table 6.3: The table shows the number of significant correlations between the variability in the
activity of an RA and LMAN multi-unit in the premotor window and motif onset
window. The syllables are divided into two groups, the target group with syllable ‘b’ and
the control group with syllables ‘a’, ‘c’ and ‘d’. For each category, we display the number
of significantly correlated RA-LMAN unit pairs vs the total number of pairs recorded.
The color denotes the result of bootstrapping. ‘Green’ denotes that the number of
significant correlations in the dataset is not as expected by chance. ‘Red’ denotes that
the number of significant correlations in the dataset is within chance levels.

nificant correlation between their premotor neural activity corresponding to a syllable, as
compared to the total number of simultaneously recorded pairs which were active in the
premotor period of the corresponding syllable. Bootstrapping shows that the number of
significant correlations obtained in this dataset is not outside chance levels.

To account for a wider range of timescale in which the LMAN may potentially drive
RA, we compute the correlation between LMAN and RA spiking activity within the
motif onset window, as described in the previous section. Figure 6.13 shows a sample RA-
LMAN unit pair whose neural activity for syllable ‘b’ and ‘d’ in the corresponding motif
onset window was significantly correlated with each other. Table 6.3 shows the number
of pairs of RA-LMAN multiunits showing a significant correlation between their neural
activity in the motif onset window of a syllable, as compared to the total number of si-
multaneously recorded pairs. Bootstrapping shows that the number of RA-LMAN unit
pairs whose neural activity were significantly correlated to each other within the motif
onset window of either syllable group was higher than expected by chance, within the
‘learning’ category. This was not the case for the ‘maintenance’ and ‘baseline’ categories.
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Figure 6.13: Sample correlation plot between the trial-to-trial variance in the neural activity
(MDFR) of an RA and LMAN multi-unit within different time windows. Left:
Sample simultaneous recording of an RA and LMAN multi-unit during singing.
The premotor and motif onset windows with respect to the pitch measurement point
of the target syllable are depicted in grey. The time window for LMAN is displaced
with respect to that of RA to account for transmission delays. Right: Sample corre-
lation plot between the trial-to-trial variance in the neural activity (MDFR) of a RA
and LMAN multi-unit within the premotor and motif onset windows. Here, the
units do not show a significant correlation (p > 0.05) in their activity in the premo-
tor window for a syllable, but they show a significant correlation (p < 0.05) in their
activity in the motif onset window for the syllable. The blue line denotes the linear
regression across the data points. MDFR: Mean detrended firing rate.
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6.3.3 Discussion

It has been shown that the song system has an influence on acoustic features, such as pitch
(Tchernichovski et al. 2001). Tchernichovski et al. (2001) showed that three features (ampli-
tude, spectral entropy and pitch) explained majority of the trial-by-trial variation in each
syllable (Srivastava et al. 2015). Thus, in our study, we study the correlation between neural
activity of nuclei in the song system and one of these acoustic features, the pitch, of the
generated vocalisation. Here, we successfully induce adult plasticity in an adult male ze-
bra finch by using the CAF protocol described by several studies (Skocik et al. 2013; Warren
et al. 2011). The bird incrementally increases the pitch of the target syllable in order to es-
cape aversive feedback. On absence of feedback post training, the bird gradually returns
to producing the target syllable with a pitch distribution similar to pre-training days.

The glutamatergic projections from LMAN are topographic in nature. This implies
that the influence of LMAN on RA might not necessarily be evident when looking at
single units from each region, if the two single units do not belong within the same to-
pographical cluster. Moreover, if populations of neuronal units in the LMAN drive RA
activity, it would be more useful to scrutinise the correlation between multi units. Hence,
in this study, we look at the correlations between the activity of multi units in both re-
gions.

Multi-units in RA have shown significant correlations between their premotor activity
and the acoustic features of their resulting vocalisations (Darshan et al. 2017; Sober, Wohlge-
muth, et al. 2008). Similar to Sober, Wohlgemuth, et al. (2008), we observe approximately
15% of significant correlations between the premotor activity of RA units and the acous-
tic features of the subsequent syllable. For the target syllable in the CAF protocol, we see
that the number of significant correlations between premotor activity of RA units and
pitch is outside chance levels in the ‘learning’ category. As this is not the case for the ‘main-
tenance’ and ‘baseline’ categories, it could be an indicator towards increased influence of
RA towards behaviour during learning.

To the best of our knowledge, there has been no studies reporting on the correlation
between LMAN activity and vocal behaviour. In our dataset, the number of significant
correlations obtained between the premotor activity of LMAN multi units and the pitch
of the corresponding syllable is within chance levels. This resembles unpublished data
from our team which also do not show any evident correlation between LMAN activity
and vocal behaviour. Moreover, the hypothesis posits that, during learning, the premo-
tor activity of LMAN would be more correlated with behaviour, i.e. acoustic features of
corresponding syllable. However, the data presented here shows no such indicators. This
is interesting in the context of the widely discussed theory of BG-driven reinforcement
learning governing vocal learning in songbirds (M. Fee et al. 2011). As per this theory, the
AFP functions as a tutor, and provides signals to the RA, the locus of motor control, via
LMAN, the output of the AFP, in order to influence behaviour. If this is indeed the case,
one would expect a correlation between variability in LMAN activity and behaviour. Its
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absence would question the viability of the BG-driven reinforcement learning paradigm.
However, the data collected here is insufficient to make any inferences about the correla-
tion between LMAN activity and behaviour with certainty.

Next, we study the correlation between the neural activity in the premotor window of a
syllable of two nuclei in the song system, the RA and LMAN. The number of correlations
found between the neural activity, in the premotor window of any syllable group, of the
RA and LMAN were within chance levels. Thus, we do not make inferences based on
the pilot data at this time scale. To account for a wider range of timescale in which the
LMAN may potentially drive RA, we compute the correlation between LMAN and RA
neural activity within the motif onset window, as described in the previous section. We
see that the number of significant correlations between the neural activity of RA and
LMAN in the motif onset period for the two syllable groups is outside chance levels in
the ‘learning’ category, but not so in the ‘maintenance’ and ‘baseline’ categories. This
may be an indicator that the LMAN influences the RA on a longer timescale ( 100ms),
while the RA exerts a temporally specific control on the generated motor action.

Due to the insufficient number of birds and electrophysiology recordings included in
this pilot study, we only look for directions to continue the study and do not make a
comparison with the hypothesis with certainty. The hypothesis stated that if the LMAN
drives trial-to-trial variations in RA to influence behaviour, the activity of LMAN and
RA would be more correlated during the ‘learning’ period than during the ‘baseline’ pe-
riod. While the data presented here is insufficient to make conclusions, it provides indi-
cators that the two nuclei may be more correlated during learning, on a timescale longer
than the premotor window.

6.4 Appendix
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Baseline Shift Maintenance
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B

Figure 6.14: Bootstrapping results over the dataset presented in Table 6.2 for RA units across all
three conditions for both syllable groups. The 95% confidence interval is shaded in
grey.
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Figure 6.15: Bootstrapping results over the dataset presented in Table 6.2 for LMAN units across
all three conditions for both syllable groups. The 95% confidence interval is shaded
in grey.
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Figure 6.16: Bootstrapping results over the dataset presented in Table 6.3 for RA-LMAN multi
unit pairs across all three conditions for both syllable groups in the premotor window.
The 95% confidence interval is shaded in grey.
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Figure 6.17: Bootstrapping results over the dataset presented in Table 6.3 for RA-LMAN multi
unit pairs across all three conditions for both syllable groups in the motif onset win-
dow. The 95% confidence interval is shaded in grey.
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7 Conclusion

It has been widely hypothesised that reinforcement learning underlies sensorimotor learn-
ing. The exact mechanism of how reinforcement learning is implemented within neural
circuitry is unclear. In this manuscript, we use the vocal learning behaviour of songbirds
to study the neural circuitry underlying sensorimotor learning.

The dual pathway model we present in chapter 5 demonstrates that the parallel path-
ways within the song system allows the songbird to take advantage of both reinforcement
learning and Hebbian learning, while possibly avoiding the shortcomings of both mech-
anisms. This has benefits akin to the sensorimotor model built by Pyle et al. (2019), where
two parallel pathways utilise two different learning algorithms, one based on supervised
learning, while the other uses reward modulated Hebbian leaarning. The model harvests
the benefits of both algorithms, with the former being better at maintenance of the learnt
timeseries, while at the same time avoiding their pitfalls, with the former needing a super-
visory signal with complete error information, unlike the latter. Similarly, a circuit with
reinforcement learning alone could lead to highly variable output even post learning. On
the other hand, a circuit with solely Hebbian learning might not be flexible enough to
navigate the complex, uneven sensorimotor landscape of controlling the avian syringeal
musculature, especially in the presence of a low dimensional error signal.

In chapter 5, we establish that structural plasticity could indeed contribute to the func-
tion of a neural circuit. Using a model of the song system in birds, we show that structural
plasticity can facilitate vocal learning by helping to modulate the exploration-exploitation
trade-off. It has been observed that the cortical pathway develops with a delay with re-
spect to the parallel BG-thalamo-cortical pathway. The model presented in section 5.1
takes a look into the early sensorimotor phase (until 35 dph) and suggests that this delay
in cortical maturation allows for unrestrained exploration by the BG. Such exploration
can perhaps help form an inverse model of the neural patterns of the RA and the result-
ing vocalisations, the utility of which has been demonstrated by multiple studies (Giret
et al. 2014; Hanuschkin et al. 2013).

Taking a step further into later stages of sensorimotor learning, section 5.2 and 5.3
look into the role of structural plasticity in vocal learning, beyond 30dph as well. Our
models show that as the cortical pathway gradually develops, it can gradually suppress
the influence of the BG-thalamo-cortical pathway on motor output. This inhibitory ef-
fect is in line with the study by Ölveczky, Andalman, et al. (2005) which posits that strong
excitatory projections from HVC can saturate the RA, leading to a decrease in the ef-
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fect of the NMDA-mediated glutamatergic projections from LMAN, the output of the
BG-thalamocortical pathways in birds. Given that the role of inducing exploratory vari-
ability is generally attributed to the LMAN (Andalman et al. 2009a; Ölveczky, Andalman,
et al. 2005), by diminishing its influence, the growth of the cortical pathway slowly tilts
the exploration-exploitation tradeoff within the system towards exploitation. This effect
is similar to that of the temperature parameter in simulated annealing, an optimisation
technique used in machine learning (Tsallis et al. 1996). In simulated annealing, tempera-
ture controls the exploration-exploitation trade-off such that moving against the gradient
is less likely as the temperature decreases. Thus, we demonstrate one potential mechanism
through which structural plasticity can play a crucial role towards the function of a neural
circuit, including sensorimotor learning.

Derégnaucourt et al. (2005) observe a post-sleep deterioration in song similarity to tutor
song during sensorimotor learning. This deterioration was associated with an eventual
superior quality of imitation of tutor song, during adulthood. In section 5.2 and 5.3, we
present a potential mechanism that could implement a similar post-sleep deterioration
and interpret its role as a facilitation factor in sensorimotor learning. We speculate that a
similar daily drop in performance can be caused by overnight spine volatility within the
HVC-X synapses, and use a theoretical model to investigate its effects. In our theoretical
model, the daily deterioration in song quality post sleep corresponds with the exploration
of a different region of the sensorimotor landscape by the BG pathway, which can facil-
itate evading being trapped in local optima. While detrimental to song quality on the
shorter time scale, this could eventually lead to converging at the globally optimal solu-
tion, akin to simulated annealing. Simulated annealing conducts a discrete exploration of
the available solutions, leading to a non-monotonic trajectory towards the target (Tsallis
et al. 1996). The non-monotonic trajectory in song quality or its acoustic features, towards
a better imitation of tutor song, as observed in the model, has been indicated in Derég-
naucourt et al. (2005) as well as in instances of juvenile birds engaging in pitch doubling by
juvenile birds (Tchernichovski et al. 2001). Such a trajectory is also partially in accordance
with Kollmorgen et al. (2020). Using a novel technique of reservoir dating on the vocalisa-
tions in later stages of the sensorimotor phase (beyond 45dph), they observe the changes
in acoustic features were partially misaligned on the daily and weekly timescales. Such a
misalignment can be due to the comparatively poor performance at certain timepoints,
while the song continues to improve on a longer weekly timescale.

In effect, as shown in chapter 5, the presence of two parallel pathways could allow the
bird to use an interesting strategy to navigate complex performance landscapes. It could
potentially use the cortical pathway to maintain a memory of past exploration, while al-
lowing unconstrained exploration by the subcortical pathway on a daily basis, without a
need to keep track of its exploration on a longer timescale. This has parallels to the discon-
tinuous exploration conducted by simulated annealing, but eliminates the need for main-
taining a memory of the best candidate solution yet encountered. Thus, our theoretical
model suggests that one, the spine volatility within HVC-X dendrites can be a possible in-
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ternal mechanism for post-sleep deterioration of song quality during early sensorimotor
learning, two, the daily deterioration in song quality can lead to an eventual improvement
in song quality by facilitating the search for the global optimum, and three, the delayed
maturation of the cortical pathway facilitates early sensorimotor exploration, the fruits
of which can be exploited in the subsequent stages of learning.

Our model of vocal learning uses gradient descent based learning led by the BG which
perturbs RA nodes, similar to Fiete, M. S. Fee, et al. (2007). However, direct gradient de-
scent approaches tend to get stuck in local optima in complex, uneven landscapes (Bot-
tou et al. 1991; Gori et al. 1992). To address this shortcoming, model proposes a biologi-
cal plausible strategy to optimise gradient descent. Moreover, our model is tested on a
performance landscape derived from a simplified mathematical model of the avian sy-
rinx (Amador et al. 2013). Vocal learning in songbirds is likely more complex and higher
dimensional problem to solve. Benureau (2015) demonstrate that with increasing dimen-
sionality (referred to as the curse of dimensionality in machine learning circles), random
exploration of the motor space is insufficient to induce a uniform exploration of the sen-
sory space. Both our model and Fiete, M. S. Fee, et al. (2007) use random exploration of the
motor space to form an internal model of the landscape for gradient descent. While the
optimisation suggested in chapter 5 could help address this issue, it remains to be tested
on a higher dimensional task. Either a comprehensive model of the syrinx, or the anal-
ogy of a multi-segmented arm (used in section 5.1) can be an appropriate task to test the
feasibilty of the optimisation suggested by our dual pathway model. It is important to
note that our model does not account for temporal components of a motor gesture and
reduces a syllable from a complex temporally varying acoustic signal to a scalar feature at
a single time point. We also do not account for delays in feedback signal with respect to
the production of a vocal output. Moreover, song learning involves several components
in addition to learning how to produce a desired vocalisation, which are not addressed by
our model. For instance, it also involves sequence learning, which is provided as an input
to our model, but needs to be learnt by songbirds, as simulated by Yildiz et al. (2011). While
we use a rate-coded neurons and look at the average firing rate of a neuron within a time
window, there are models of vocal learning, such as Farries and Fairhall (2007) which take
a step further towards biological plausibility implementations of reinforcement learning
by incorporating spike timing dependent plasticity rules to train a neural network.

Moving to the second part of our study, we look into viability of the avian BG-thalamo-
cortical loop (AFP) to implement reinforcement learning, as per the hypothesis proposed
by M. Fee et al. (2011). In chapter 6, we designed an experimental protocol to verify the fea-
sibility of BG-driven reinforcement learning within the song system in male zebra finches,
and its eventual consolidation in the cortical motor pathway. First, we posit that if BG
drives reinforcement learning, then the LMAN, the output nucleus of the AFP, would
influence vocal output during learning. In order to test this hypothesis, we conduct pi-
lot electrophysiological studies to record the activity of the LMAN and RA in a freely-
moving bird engaged in vocal learning. Our recordings from the RA show correlation
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levels in the premotor period with vocal behaviour, similar to those reported by Sober,
Wohlgemuth, et al. (2008). We posit that, if the LMAN influences behaviour during vocal
plasticity, the biased variability injected by LMAN would also show a correlation with
the acoustic features of the produced vocalisations. However, we see no such correlation
between the LMAN in the premotor window and resulting vocalisations in our prelim-
inary dataset. This is in agreement with unpublished results from our lab. The lack of
correlation between premotor LMAN activity and vocal behaviour, during learning, can
raise serious questions about the circuit implementation of the BG-driven learning hy-
pothesis. However, keeping in mind the insufficient data collected, more experiments
would be needed to conclusively discuss this issue.

Further, in order to consolidate the tutor signals from such BG-driven reinforcement
learning, the output nucleus of the AFP, LMAN, will need to influence the activity of
RA, the locus of motor control within the cortical motor pathway. Within this hypothe-
sis, the LMAN would influence behaviour by driving RA activity. We first build a model
to make qualitative predictions about the interaction between RA and LMAN, based
on this hypothesis. Then, we conduct electrophysiology recordings from the LMAN and
RA, during vocal learning. From the pilot dataset that we collect, we see no clear evidence
of correlation between trial-to-trial variability within RA and LMAN activity within the
premotor window (40ms). However, our analysis indicates the presence of such a corre-
lation on a much longer timescale of 100-300ms between trial-to-trial variability in neural
activity of RA and LMAN. This raises interesting questions regarding the mechanisms
through which the LMAN influences RA activity. Further electrophysiological studies
with simultaneous recording of RA and LMAN during vocal learning are necessary to
speak with certainty about the timescale at which LMAN drives the RA. Also, further
analysis of the data is required. For instance, analysis of the correlation between activ-
ity of LMAN and RA during the entire song motif can give us further insight into the
timescale at which LMAN influences the RA. Further, analysis of the local field potential
can give us a better idea of the population-level interaction between the two nuclei.

Thus, the dual pathway architecture underlying sensorimotor learning, investigated in
this study, incorporates the widely discussed theory of transfer of learning from subcor-
tical to cortical structures. Additionally, we propose biologically realistic optimisations
of BG-driven learning which is gradually consolidated into cortical pathways, within a
two-step learning paradigm. Finally, we design and test an experimental protocol to in-
vestigate the feasibility of such a two-step learning paradigm within the song system of
zebra finches.
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Appendix
Here, we include our replication study of a sensorimotor learning model by Pyle et al.
(2019), which simulates the transfer of sensorimotor learning from subcortical to cortical
networks. It harvests the dynamics of a sparsely connected recurrent neural network to
generate a spatio-temporal signal. We adapted this model for an additional verification of
the hypothesis presented in chapter 6, within a dynamical system.
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1 Introduction

Pyle and Rosenbaum [1] introduce a novel learning algorithm to the reservoir comput-
ing framework, which harnesses the dynamics of a recurrently connected network to
generate time series. Most existing algorithms are built on fully supervised learning
rules (e.g. FORCE [2]), which limits their potential applications, or themore biologically-
realistic reinforcement learning techniques (e.g. RMHL [3]) which unfortunately fail to
converge on complex spatio-temporal signal generation tasks. Pyle and Rosenbaum [1]
use the advantages of these two learning rules, while averting their individual shortcom-
ings, by combining the two algorithms to form the SUPERTREXmodel. The workings of
this model are aligned to the theory of motor learning involving the basal ganglia, from
rodent and songbird literature [4]. This hypothesises that a cortical pathway works in
tandem with the basal ganglia for motor skill acquisition, wherein the basal ganglia
pathway functions as a tutor, providing guiding signals that would ultimately be consol-
idated in the primary cortical pathway in charge of production of the motor commands
[5]. Here, the basal ganglia pathway, which uses reward-modulated exploration based
learning, akin to the RMHL algorithm, works in parallel with the cortical pathway, mod-
eled using the fully supervised FORCE algorithm. The SUPERTREX model uses both
these pathways in parallel, with the RMHL-based pathway providing the supervisory
signal that the FORCE-based pathway requires.
In this article, we provide amodular and user-friendly Python re-implementation of the
model presented by Pyle and Rosenbaum [1]. We were able to successfully reproduce
themodel performance in Python, for two tasks out of the three presented in the original
article. For the third task, wewere able to do sowith limited robustness. We address this
by introducing somemodifications, and discuss how their inclusion vastly improves the
robustness as well as scalability of the model.

Terminology —

• Original scripts: the MATLAB scripts used by the authors to produce the results
presented in [1].

• Python adaptation: our Python adaptation of the original MATLAB scripts.

• Python re-implementation: an improved version of our Python adaptation.

Copyright © 2021 R. Sankar et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Remya Sankar (Remya.Sankar@inria.fr)
The authors have declared that no competing interests exists.
Code is available at https://github.com/rsankar9/Reimplementation-SUPERTREX/releases/tag/v3.0 – DOI https://doi.org/10.5281/zenodo.4596425.
Open peer review is available at https://github.com/ReScience/submissions/issues/50.
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1.1 Framework
Pyle and Rosenbaum [1] proposes a model for sensorimotor learning using the frame-
work of reservoir computing. The model is based on two existing reservoir computing
techniques: FORCE and RMHL.

τ
dx
dt

= −x+ Jr+Qz (1)

r = tanh(x) + ϵ (2)

FORCE (or first-order reduced and controlled error) is a fully supervised learning rule,
which is widely used within the reservoir computing framework [2]. A recurrently con-
nected reservoir, composed of rate-coded neurons is trained to produce a target time
series by modifying the readout weights between the reservoir and the output layer (Eq
3, 4). The output, in turn, interacts with the reservoir by providing feedback (Eq 1, 2).
FORCE can accurately generate complex dynamical target time-series. However, the
model must have explicit knowledge of the target function, as FORCE requires a fully
supervisory signal of the correct output in order to compute the error during training.

z1 = W1r (3)

τw1

dW1

dt
= −erTP (4)

RMHL (or Reward-Modulated Hebbian Learning) is built on the concept of reinforce-
ment learning, and uses only a scalar error signal indicating reward, allowing it to be
applicable in a wider range of scenarios than FORCE [3]. RMHL introduces perturba-
tions in the performance of themodel, and uses the information gained from this explo-
ration to find the target (Eq 5, 6). This is akin to dopamine-dependent Hebbian learning
in the basal ganglia. However, RMHL fails to converge to an accurate solution on sev-
eral complex tasks. Moreover, it has been observed in songbirds that while the basal
ganglia provides a tutor signal in the early stages, learning is eventually consolidated in
a parallel cortical pathway, which is primarily responsible for motor activity [5]. RMHL
cannot account for such empirical observations.

z2 = W2r+Ψ(e)η (5)

τw2

dW2

dt
= Φ(ê)ẑrT (6)

SUPERTREX (Supervised Learning Trained by Reward Exploration), themodel proposed
by the authors, tries to merge the advantages of both of these algorithms by combin-
ing both models. The more wide-ranged applicability of RMHL, owing to its usage of
a one dimensional error signal, is used to train the model, while the superior mainte-
nance ability of FORCE is recruited to consolidate the tutoring of the RMHL pathway.
This could also potentially support the empirical evidence showing the basal ganglia
and cortical pathways working in tandem for motor skill acquisition, discussed above.
Thus, the SUPERTREXmodel consists of two parallel pathways, one based on RMHL (ex-
ploratory) and one based on FORCE (mastery), each consisting of its own set of weights.
The mastery pathway uses the output of the exploratory pathway as its supervisory sig-
nal (Eq 7, 8, 9).

z = z1 + z2 (7)

ReScience C 7.1 – Sankar et al. 2021 2



[Re] A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity

τw1
dW1

dt
= (z− z1) rTP (8)

τw2
dW2

dt
= Φ(ê)ẑrT (9)

where x denotes the reservoir dynamics, J the recurrent connectivitymatrix,Q the feed-
back weights and r the reservoir activity. The output z of the SUPERTREX model is the
combination of the outputs z1 and z2 of the FORCE and RMHL pathways, respectively.
W1 andW2 denote the readout weights of the two pathways, respectively, e denotes the
squared distance between the output and the target trajectory, τ is the corresponding
timescales for learning, η is the exploratory noise, ϵ is a small noise term and P is a
running estimate of the inverse of the correlation matrix of rates. Ψ and Φ are two sub-
linear functions that serve to damp runaway oscillations during learning and control
weight update, respectively. x̂ is a high-pass filtered version of x, which represents the
recent changes in x.

1.2 Task
The authors test the SUPERTREXmodel on three motor tasks, with increasing difficulty,
and compare its performance to those of FORCE and RMHL. The target of each task is to
learn to produce a given spatio-temporal signal, under different constraints. Task 1 tests
the performance of the model when the target output is known. This task requires the
spatio-temporal signal to be produced directly by the model. Thus, the error signal is a
direct indicator of the change required in the output of the model, i.e. fully supervisory.
Task 2 and Task 3 use the paradigm of exploration by a multi-segmented arm, pivoted
at a point.
Task 2 tests the performance of the model when the target output is unknown, and only
an indirect error signal is provided. The task requires the angles between the arm seg-
ments to be generated by the model, which would in turn produce the trajectory of the
target spatio-temporal signal. In this case, the error signal is not a direct indicator of
the change required in the output of the model. A non-linear inverse transformation
of the trajectory would be required to compute the desired angles between the arm seg-
ments. It is, thus, not a fully supervisory signal, but simply a reinforcement signal. In
Task 3, themovement of the arm segments are penalised variably. This creates the need
to choose one frommultiple candidate solutions by optimising the cost of changing the
angles between the arm segments.
The simulation for each task includes a training phase and a testing phase. In the train-
ing phase, for ten periods, the time-series is generated by the model while the weights
are being updated according to the current error feedback. After this, in the testing
phase (lasting five periods), the readout weights are frozen and the time-series is gen-
erated using these frozen weights, without any further feedback-based update. In the
SUPERTREX model, the exploratory pathway is also deactivated. It is also worth noting
that the authors use teacher-forcing in the testing phase, which considerably improves
the model performance by limiting the dependence on the stability of the learned solu-
tion (refer to Section “State information provides stability of learned output” in [1]).

Disclaimer — Pyle and Rosenbaum [1] proceed to test the model under variations of the
above tasks, including disrupted learning and with additional state information. How-
ever, these variations have not been replicated by us. We only test the performance of
the three learning rules on the three tasks, specified above.
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2 Comparison with Python Adaptation

In this section, we compare the results presented in the paper [1] with the MATLAB im-
plementation by the authors and our Python adaptation. The original scripts, although
not available online, are readily available on request. We present our adaptation of this
model in the open source framework Python, which has been built based on the paper
and the MATLAB scripts provided by the authors. In contrast to the original scripts, it
is modular and is easily modifiable with external json descriptor files. We compare the
results presented in the paper, with simulations of the MATLAB scripts, provided by the
authors, and also with our adaptation in Python 1.

To validate our Python adaptation, we test the three algorithms on three tasks by simulat-
ing them using both the original scripts and our Python adaptation. For each algorithm-
task combination, we produce ten simulations with arbitrary seeds initialising the ran-
dom generator and one additional simulation using the default seed of MATLAB (equiv-
alent to seed 5489 of the numpy random generator). Except for the default seed, the
ten arbitrary seeds are different for the Python and MATLAB simulations, and for each
algorithm-task combination. BothMATLABandnumpyuse theMersenneTwister pseudo-
random number generator [6]. To evaluate the performance of the algorithm, the au-
thors plot the “distance from target”, i.e. the square root of the low pass filtered version
of the mean squared error, over the progression of the simulation. In order to cate-
gorise the model performance as satisfactory or unsatisfactory, we further compute a
deviation metric by calculating the mean “distance from target” over the testing phase.
If this deviationmetric is below the threshold of 0.5 (set by visual inspection), themodel
is said to have satisfactorily learnt and produced the target output.

2.1 Task 1
Here, we compare the simulations of the original scripts and our adaptation for Task 1,
using FORCE, RMHL and SUPERTREX, with the results presented in the article. Task 1
is designed to test the performance of these three algorithms when generating a known
target output. The objective of this task is to produce a time-series of 2-D coordinates re-
quired to traverse a target trajectory, in this case, the parameterized curve of a butterfly.
The model is trained to generate an output which closely matches the target function.

The article claims that:

• under the FORCE framework, the target time-series is learned accurately and is
maintained in a stable manner during the testing phase (Figure 1a).

• under the RMHL framework, the target time-series is generated accurately during
the training phase, however is not maintained perfectly during the testing phase
(Figure 1b).

• under the SUPERTREX framework, the target time-series is learned accurately and
is also maintained in a stable manner during testing phase, albeit not as well as
FORCE (Figure 1c).

We validate these observations with theMATLAB scripts provided by the authors as well
as with our Python adaptation. To do so, we run the simulations with the default seed
and repeat it ten times with different (arbitrarily chosen) seeds initialising the random
number generator.
We observe that:

1In Figures 1- 4, the results presented in the paper have been reused in the column titled ”original”.
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• under the FORCE framework, the target time-series is learned accurately and is
maintained in a stable manner during the testing phase, as claimed. The mean
deviation over eleven simulations, for both the original scripts (0.003±0.002; n=11)
and the Python adaptation (0.004± 0.003; n=11) is much lower than the threshold
of 0.5 (Figure 1a, 2a).

• under the RMHL framework, the target time-series is generated accurately during
the training phase, however is not maintained perfectly during the testing phase,
as claimed. The mean deviation, for both the original scripts (0.168± 0.038; n=11)
and the Python adaptation (0.182 ± 0.046; n=11), is higher than that with FORCE
(Figure 1b, 2b).

• under the SUPERTREX framework, the target time-series is learned accurately and
is also maintained in a stable manner during testing phase, albeit not as well as
FORCE, as claimed. Themeandeviation, for both the original scripts (0.006±0.003;
n=11) and the Python adaptation (0.006±0.003; n=11), is much better than that for
RMHL, but slightly worse than with FORCE (Figure 1c, 2c).

Both the original scripts and the Python adaptation are able to successfully closely re-
produce the results presented in the paper for Task 1 (Figure 1,2; Table 1, 2).

2.2 Task 2
Here, we compare the simulations of the original scripts and our Python adaptation for
Task 2, using FORCE, RMHL and SUPERTREX, with the results presented in the article.
Task 2 is designed to test the performance of these three algorithms when generating an
unknown target from an indirect error signal. Using the paradigm of a pivoted multi-
segmented arm, the objective of this task is to produce a time-series by generating the
angles between the arm segments. Motor output does not control the position of the
end-effector of the arm, but instead controls the angles of the arm joints, which are non-
linearly related to end-effector position.

The article claims that:

• the FORCE framework cannot be applied to this task, as FORCE requires the ex-
act target to be provided as a supervisory error, which in this case would be the
unknown target angles. Since, we do not have this information beforehand, and
require the model to derive it, the FORCE framework is inapplicable to this task.

• under the RMHL framework, the target time-series is imitated well by the model
during the training phase, however the weights do not converge, and hence, it is
unable to maintain the time-series in a stable manner during the testing phase
(Figure 3a).

• under the SUPERTREX framework, the target time-series is learned accurately
and is also generated in a stable manner, with minor divergences, during testing
phase, owing to the contribution of the pathway based on the FORCE algorithm
(Figure 3b).

We verify these observations with the MATLAB scripts provided by the authors as well
as with our Python adaptation. To do so, we run the simulations with the default seed
of MATLAB and re-simulate it with ten arbitrary seeds initialising the random number
generator. We do not modify any task conditions or model hyper-parameters.
We observe that:

• indeed, the FORCE framework is inapplicable to this task.
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(a) Results for Task 1 with the FORCE algorithm. The target time-series is learned accurately during the train-
ing phase and is maintained in a stable manner during the testing phase, in both implementations, as pre-
sented in [1].
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(b)Results for Task 1with theRMHLalgorithm. The target time-series is learned accurately during the training
phase, though not maintained perfectly during the testing phase, in both implementations, as presented in
[1].

SU
PE

RT
RE

X
x(
t)

y(
t)

1s
1s

(c) Results for Task 1 with the SUPERTREX algorithm. The target time-series is learned accurately during the
training phase, and is also maintained in a stable manner during testing phase, albeit not as well as FORCE,
in both implementations, as presented in [1].

Figure 1. Comparison of the performances of the MATLAB scripts (left column) and the Python
adaptation (right column) with the results presented in the original article (center column), for
the three learning algorithms on Task 1 [1]. All simulations shown here use the MATLAB default
(5489) as the seed for the random number generator. In each subfigure, the top row shows the
target trajectory (red) with the trajectory generated by the model (blue) throughout the test phase.
The second row shows the time-series (blue) generated by the model (x and y coordinates, in this
case) along with the target time-series (red). The grey vertical line marks the separation of the
training and testing phase.
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MATLAB Original Python
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(a) Results for Task 1 with the FORCE algorithm. The target time-series is learned accurately during the train-
ing phase and is maintained in a stable manner during the testing phase, as presented in [1].
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(b)Results for Task 1with theRMHLalgorithm. The target time-series is learned accurately during the training
phase, though not maintained perfectly during the testing phase, as presented in [1].
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(c) Results for Task 1 with the SUPERTREX algorithm. The target time-series is learned accurately during the
training phase, and is also maintained in a stable manner during testing phase, albeit not as well as FORCE,
as presented in [1].

Figure 2. Comparison of the performances of the MATLAB scripts (left column) and the Python
adaptation (right column)with the results presented in the original article (center column), for the
three learning algorithms on Task 1 [1]. All simulations shownhere use theMATLABdefault (5489)
as the seed for the random number generator. In each subfigure, the top row shows the target
trajectory (red) with the trajectory generated by the model (blue) throughout the test phase. The
second row shows the error metric (blue) over the simulation (x and y coordinates, in this case),
using the log scale for the y axis. The bottom row shows the progression of the corresponding
weight matrices (SUPERTREX: W1 in purple; W2, in green). The horizontal grey line, in the test
phase, indicates the deviation metric.
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• under the RMHL framework, the target time-series is imitated well by the model
during the training phase, however the weights do not converge, and hence, it is
unable to maintain the time-series in a stable manner during the testing phase.
The mean deviation over eleven simulations, for both the original scripts (0.759±
0.284; n=11) and the Python adaptation (0.814 ± 0.288; n=11) is higher than the
threshold of 0.5 (Figure 3a).

• under the SUPERTREX framework, the target time-series is learned accurately and
is also generated in a stablemanner, withminor divergences, during testing phase,
owing to the contribution of the pathway based on the FORCE algorithm. The
mean deviation over eleven simulations, for both the original scripts (0.011±0.003;
n=11) and the Python adaptation (0.012±0.005; n=11) is below the threshold of 0.5
and much lower than that with RMHL (Figure 3b).

The MATLAB scripts provided by the authors and the Python adaptation are able to suc-
cessfully closely reproduce the results presented for Task 2 in the paper, with the default
seed as well as with the 10 arbitrary seeds (Figure 3; Table 1, 2).

2.3 Task 3
Here, we compare the performance of the MATLAB scripts and our Python adaptation
on Task 3, for the three algorithms, with the results presented in the article. Task 3 is
an extension of Task 2, designed to test the constraint optimisation ability of these three
algorithms when generating an unknown target from an indirect error signal. Using
the paradigm of a pivoted multi-segmented arm, the objective of this task is to produce
a time-series by generating the angles between the arm segments, while also optimis-
ing the movement cost of each arm segment. Hence, the arm is required to traverse
the butterfly, while carefully choosing the segment to rotate, in order to minimise the
movement cost of its segments. Post the training phase, the readout weights are frozen
and in the SUPERTREX model, the exploratory pathway is deactivated.

The article claims that:

• FORCE canʼt be applied to this task, as explained for Task 2.

• under the RMHL framework, the target time-series is imitated well by the model
during the training phase, however the weights do not converge, and hence, it
poorly maintains the time-series during the testing phase (Figure 4a).

• under the SUPERTREX framework, the performance is much better than RMHL.
The target time-series is learned accurately and is also generated with minor di-
vergences, during testing phase (Figure 4b).

We verify these observations with the MATLAB scripts provided by the authors as well
as with our Python adaptation. To do so, we run the simulations with the default seed
of MATLAB and re-simulate it with ten arbitrary seeds initialising the random number
generator.
We observe that:

• indeed, the FORCE framework is inapplicable to this task, as claimed.

• under the RMHL framework, the target time-series is imitated well by the model
during the training phase, however the weights do not converge, and hence, it
poorly maintains the time-series during the testing phase, as claimed. The mean
deviation over eleven simulations, for both the original scripts (0.850±0.313; n=11)
and the Python adaptation (0.658±0.216; n=11) is higher than the threshold of 0.5.
All eleven simulations with different seeds did not generate the target output in a
satisfactory manner (i.e. deviation > 0.5 for 11/11 seeds) (Figure 4a).
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MATLAB Original Python
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(a) Results for Task 2 with the RMHL algorithm. The target time-series is imitated well by the model during
the training phase (not shown), however, it is unable to maintain the time-series in a stable manner during
the testing phase, in both implementations, as presented in [1].
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(b) Results for Task 2 with the SUPERTREX algorithm. The target time-series is learned accurately during the
training phase, and is also maintained in a stable manner, during the testing phase, in both implementations,
as presented in [1].

Figure 3. Comparison of the performances of original scripts (left column) and Python adaptation
(right column)with the results presented in the original article (center column), for the RMHL and
SUPERTREX, on Task 2 [1]. All simulations shown here use theMATLAB default (5489) as the seed
for the random number generator. In each subfigure, the top row shows the target trajectory (red)
with the trajectory generated by the algorithm (blue) throughout the test phase. The second row
shows the time-series (blue) generated by the model (joint angles (θi), in this case). The bottom
row shows the distance from target metric (blue) over the simulation (x and y coordinates, in this
case), using the log scale for the y axis. The horizontal grey line, in the test phase, indicates the
deviation metric. The grey vertical line marks the separation of the training and testing phase.
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MATLAB Python adaptation Python re-implementation
Task Model Mean Median Std Mean Median Std Mean Median Std

#1
FORCE 0.003 0.002 0.002 0.004 0.003 0.003 0.003 0.002 0.003
RMHL 0.168 0.165 0.038 0.182 0.182 0.046 0.201 0.203 0.053
ST 0.006 0.004 0.003 0.006 0.005 0.003 0.004 0.003 0.003

#2 RMHL 0.759 0.740 0.284 0.814 0.799 0.288 0.697 0.681 0.263
ST 0.011 0.010 0.003 0.012 0.011 0.005 0.010 0.009 0.004

#3 RMHL 0.850 0.794 0.313 0.658 0.647 0.216 0.849 0.794 0.360
ST 0.881 0.845 0.224 0.837 0.827 0.241 0.140 0.116 0.071

#2ʼ RMHL 0.846 0.807 0.299 0.738 0.713 0.256 0.839 0.794 0.310
ST 0.016 0.015 0.007 0.009 0.008 0.003 0.067 0.062 0.035

Table 1. Deviationmetric showing the performance of the originalMATLAB scripts, Python adapta-
tion and Python re-implementation on different tasks. Each variant is simulated with the default
seed (5489) and ten additional seeds. The mean, median and standard deviation of the deviation
metric over these eleven simulations are tabulated here. Note that for task #2 ,̓ the SUPERTREX
statistics have been computed using only 2 simulations, for the original MATLAB scripts and
Python adaptation. (ST: SUPERTREX; #2ʼ: 3 segment variant of Task 2)

MATLAB Python adaptation Python re-implementation
Task Model Satisfactory Total Satisfactory Total Satisfactory Total

#1
FORCE 11 11 11 11 11 11
RMHL 11 11 11 11 11 11
ST 11 11 11 11 11 11

#2 RMHL 0 11 0 11 0 11
ST 11 11 11 11 11 11

#3 RMHL 1 11 2 11 0 11
ST 5 11 4 11 10 11

#2ʼ RMHL 0 11 1 11 0 11
ST 2 2 2 2 11 11

Table 2. The proportion of model simulations categorised as having satisfactory performance.
Each variant is simulated with the default seed (5489) and ten additional seeds. Number of sat-
isfactory simulations refers to the number of simulations that were below the threshold (0.5) for
the deviation metric. The total number of simulations refer to the number of simulations which
successfully reached completion, without the weights growing exponentially. (ST: SUPERTREX;
2ʼ: 3 segment variant of Task 2)

• under the SUPERTREX framework, the performance is notmuchbetter thanRMHL,
contrary to the article s̓ claim. The target time-series is not generated in a satisfac-
tory manner, during the testing phase, for more than 50% of the tested simula-
tions (Original scripts: 6/11 and Python adaptation: 7/11). The mean deviation
over eleven simulations, for both the original scripts (0.881± 0.224; n=11) and the
Python adaptation (0.837 ± 0.241; n=11) is above the threshold of 0.5 and compa-
rable with that of RMHL (Figure 4b).

The original scripts and the Python adaptation are able to successfully reproduce the
results presented in the paper with the default seed as well as with the 10 arbitrary seeds
for the RMHL algorithm, but not for the SUPERTREX algorithm (Figure 3; Table 1, 2).

3 Modification

The Python adaptation is a close adaptation of the original MATLAB scripts provided by
the authors. However, on simulating their performance on the three tasks, we observed
that while, for the first two tasks, the models performed as described in Pyle and Rosen-
baum [1], the performance of the SUPERTREX algorithm on Task 3 was not consistent,
and was dependent on the seed used for the random number generator. On inspecting
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MATLAB Original Python
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(a)Results for Task 3with theRMHLalgorithm, using the default seed (5489) for the randomnumber generator.
The target trajectory is imitated well by the model during the training phase (not shown), however, it poorly
maintains the time-series during the testing phase, in both implementations, as presented in [1].
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(b) Results for Task 3 with the SUPERTREX algorithm using the default seed (5489) for the random number
generator. The target time-series is learned accurately during the training phase, but is notmaintained during
the testing phase, in both implementations, in contrast to the results presented in [1].
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(c) Results for Task 3 with the SUPERTREX algorithm using different implementations (MATLAB, left and
Python adaptation, right) and different seeds (295728336, left and 5624282, right) for the random number gen-
erator. The target trajectory is learned accurately during the training phase, and is also maintained in a stable
manner, with slight divergences (Deviation: 295728336: 0.215 ± 0.073; 5624282: 0.190 ± 0.054) , during the
testing phase, in both implementations, similar to the results presented in [1].

Figure 4. Comparison of the performances of original scripts (left column) and Python adaptation
(right column) with the results presented in the original article (center column), for RMHL and
SUPERTREX, on Task 3 [1]. Each subfigure shows the target trajectory (red) with the trajectory
generated by the algorithm (blue) throughout the test phase. In the second subfigure, the the
middle rows show the time-series (blue) generated by the model (joint angles (θi), in this case).
The bottom row shows the distance from target metric (blue) over the simulation (x and y coordi-
nates, in this case), using the log scale for the y axis. The horizontal grey line, in the test phase,
indicates the deviation metric. The grey vertical line marks the separation of the training and
testing phase.
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further, we notice that this was, in some cases, due to the uncontrolled exponential in-
crease in the readout weights.

To look into the robustness of the implementations further, we test the performance of
the RMHL and SUPERTREX algorithms on Task 2 with certain modifications to the task
parameters, specifically, the number of arm segments and the length of the arm seg-
ments. It would be expected for the behaviour to be comparable with the performance
on the original task performance, or undergo a gradual decline. We test Task 2 on the
arm parameters, which were used in Task 3, i.e. by increasing the number of arm seg-
ments from two to three and changing the length of each arm segment. We observe
that RMHL performance is comparable to the original Task 2, wherein the time series
is generated during the training phase, but is not maintained beyond (Original scripts:
0.846± 0.299, Python adaptation: 0.738± 0.256; n=11). On the other hand, simulations
of the SUPERTREX model, with 2 out of 11 seeds, were able to produce the target out-
put satisfactorily (Original scripts: 0.016± 0.007, Python adaptation: 0.009± 0.003; n=2)
(Figure 5). However, in simulations with 9 out of 11 seeds, the weights increase exponen-
tially, rendering the simulation unable to progress in a meaningful manner (Table 1, 2).

In order to improve the model performance, make the model more scalable in terms of
task parameters, and also more robust (as seen in Task 3, with respect to reproducibility
with different random seeds), we introduce two minor alterations.

1. We introduce a compensation factor to the update of the readout weights in the
exploratory pathway, inversely proportional to the number of segments. Specifi-
cally, when the number of segments is greater than two, we multiply the weight
update by 0.1/n_segs for Task 2 and by 0.5/n_segs for Task 3.

2. The SUPERTREX model transfers the information from the exploratory pathway
to the mastery pathway, only if the error is consistently below a certain threshold.
In the original scripts, this threshold is set at 1.5e-3 for Task 1 and Task 2, while at
1.5e-2 for Task 3. We change the transfer threshold for Task 2 from 1.5e-3 to 1.5e-2.

These slight modifications address the shortcomings we encountered earlier with the
performance of SUPERTREX in Task 2 and 3. Alteration #1, by including a compen-
sation factor for the change in number of arm segments, prevents the weights from
increasing exponentially, and lets the simulation proceed in a meaningful manner. Al-
teration #2, by increasing the error threshold governing the transfer of information to
the mastery pathway, makes the model more tolerant of fluctuations, while continuing
to explore and learn a good solution. Although this does not lead to a critical change
for Task 1 (Original scripts: 0.006 ± 0.003, n=11; Modified Python re-implementation:
0.004 ± 0.003, n=11) and Task 2 (Original scripts: 0.011 ± 0.003, n=11; Modified Python
re-implementation: 0.010±0.004, n=11), this alteration improves the performance of SU-
PERTREX on Task 3 (Original scripts: 0.881±0.224, n=11; Modified Python re-implemen-
tation: 0.140± 0.071, n=11). Simulations with 10 out of 11 seeds had satisfactory perfor-
mance (Deviation < 0.5), compared to 6 out of 11 simulations for the original scripts.
Further, it unlocks the potential for the model to be more scalable. We find that with
these alterations, on merely increasing the number of time-steps per training cycle and
with no further fine tuning of hyper-parameters, the model is able to proceed without
an exponential increase in weights over a wider range of task parameters. For instance,
on adding surplus segments with length 0.1 each, the model is able to perform in a sat-
isfactory manner, for most cases, with up to 50 arm segments (Table 3, Figure 6). Better
accuracy can be achieved by further fine tuning of the hyper-parameters.
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Figure 5. Robustness of the SUPERTREX model on a Task 2 variant. The performance of the origi-
nal scripts (left column) and modified Python re-implementation (right column) is tested for the
SUPERTREX learning algorithm on a variant of Task 2 with increased number of arm segments
(lengths: 1.8, 1.2, 0.6). The top panel shows the target trajectory (red) with the trajectory gener-
ated by the algorithm (blue) throughout the test phase. The next three rows show the time-series
(blue) generated by the model (joint angles (θi), in this case). The fourth row shows the progres-
sion of the norm of the weight matrix (W1 in purple; W2, in green). The bottom row shows the
distance from target metric (blue) over the simulation, using the log scale for the y axis. The hor-
izontal grey line, in the test phase, indicates the deviation metric. The grey vertical line marks
the separation of the training and testing phase. Using the MATLAB scripts, the readout weights
increase uncontrollably rendering the model unable to learn. The Python re-implementation, us-
ing a compensation factor to harness the weight update, is able to learn and converge to produce
the target time-series.
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Figure 6. Scalability of the performance of the modified Python re-implementation using the SU-
PERTREX algorithm on Task 2. The lengths of the arm segments are 1.8, 1.2 and 0.6 for the first
three segments (akin to Task 3) and 0.1 for each additional segment. Here, the simulations for
Task 2 with 5 to 50 segments are shown, all using the default seed 5489 for the random number
generator. (Continued on next page.)
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Figure 6. (Continued from previous page.) Scalability of the performance of the modified Python
re-implementation using the SUPERTREX algorithm on Task 2. The lengths of the arm segments
are 1.8, 1.2 and 0.6 for the first three segments (akin to Task 3) and 0.1 for each additional segment.
Here, the simulations for Task 2with 5 to 50 segments are shown, all using the default seed 5489 for
the random number generator. In each subfigure, the top panel shows the produced trajectory,
the middle panels show the evolution of the x and y coordinates of the end-effector of the arm
(blue) throughout the training and test phase, along with the target coordinates (red). The grey
vertical line marks the separation of the training and testing phase. The bottom panel shows the
progression of the distance from target metric (blue) over the simulation, using the log scale for
the y axis. The horizontal grey line, in the test phase, indicates the deviation metric.
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Task 2 variant Deviation metric
No. of segments Time steps Mean Median Standard Deviation

3 10000 0.057 0.032 0.069
4 10000 0.242 0.221 0.136
5 10000 0.141 0.080 0.147
6 10000 0.181 0.160 0.133
7 10000 0.173 0.129 0.130
8 10000 0.253 0.230 0.137
9 10000 0.331 0.297 0.168
10 10000 0.417 0.409 0.151
15 10000 0.538 0.512 0.179
20 15000 0.366 0.324 0.188
30 20000 0.549 0.489 0.236
40 20000 0.372 0.313 0.228
50 30000 0.375 0.283 0.281

Table 3. Deviation metric showing the performance of the modified Python implementation on
increasing number of segments for Task 2. Each variant is simulated with the default seed (5489)
and ten additional seeds. The mean, median and standard deviation of the deviation metric over
these eleven simulations are tabulated here.

4 Discussion

In this article, we discussed the SUPERTREX model presented by Pyle and Rosenbaum
[1]. We compared the results presented in the paper, both with the results obtained
using the original scripts, and with our modular and user-friendly Python adaptation.
Furthermore, we were able to improve the robustness and scalability of the model with
two minor alterations.
The Python adaptation strives to be a close adaptation of the original scripts in MATLAB
and differs mainly in the method of initialisation of the reservoir connectivity matrix.
This is due to the usage of the function sprandn in the original scripts, whose internal
implementation is not freely available. Figure 7 shows that, on importing initialisation
matrix fromMATLAB, the exact same results can be obtained in the Python adaptation,
as well. Most of the details for the implementation of the models are also described in
the paper. Only two necessary details were missing, both concerning the update of the
readout weights of the exploratory pathway in the RMHL and SUPERTREXmodels: One,
the inclusion of a crucial learning rate of 0.0005, for Tasks 1-3, and two, an additional
compensatory factor of 0.5, for Task 3. There is another discrepancy in the function
psi(x) for Task 3. The scripts provided by the authors use a factor of 0.005, whereas the
article mentions this factor to be 0.025.
The three algorithms (FORCE, RMHL and SUPERTREX) have been tested on three tasks,
presented in Pyle and Rosenbaum [1]. For Task 1 and 2, we verify that the three algo-
rithms function as presented in the paper, and validate that our Python re-implemen-
tation produces comparable results. For Task 3, the SUPERTREX model s̓ behaviour is
also reproducible, although the performance is dependent on the seed used for the ran-
dom number generator. Furthermore, we observed that this implementation is quite
sensitive to changes in task parameters, such as the number of arms. This was due to
the uninhibited increase in the readout weights. We propose the inclusion of a compen-
sation factor for the number of arm segments, which inhibits the growth of the readout
weights, and allows the simulation to proceed in a meaningful manner. This consider-
ably improves the robustness and the scalability of the original model.
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We conclude that the results presented in the paper are reproducible for two tasks, using
the original MATLAB scripts provided by the authors, and also, replicable in Python for
all tasks with comparable performance.

MATLAB Python
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Figure 7. Similarity between the original scripts and the Python adaptation. The performance of
the original scripts (left column) and the Python adaptation (right column) is tested for the RMHL
learning algorithm on a Task 1. The reservoir connectivity matrix for the Python simulation was
initialised using the MATLAB equivalent. Using this initialisation, the progression of the Python
simulation is identical to that of theMATLAB simulation. The toppanel shows the target trajectory
(red) with the trajectory generated by the model (blue) throughout the test phase. The next two
rows show the time-series (blue) generated by the model (x and y coordinates, in this case). The
third row shows the progression of the norm of the weight matrix. The bottom row shows the
distance from target metric (blue) over the simulation, using the log scale for the y axis. The
horizontal grey line, in the test phase, indicates the deviationmetric. The grey vertical linemarks
the separation of the training and testing phase.
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3.3 Schema of the neural substrates involved in vocal learning in zebra finches.
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sists of the cortical nucleus LMAN, Area X (song-related BG nucleus)
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3.4 Timeline of development of the vocal learning circuitry in zebra finches
(Bottjer, Miesner, et al. 1986; Herrmann and Arnold 1991; Herrmann and
Bischof 1986; Johnson et al. 1992; Konishi 1985; Mooney and Rao 1994b;
Nordeen et al. 1988; Sohrabji et al. 1993). The bottom panel shows the ax-
ons from HVC entering the RA, to form the cortical pathway respon-
sible for vocal production, much after the anterior forebrain pathway
(theorised to provide a tutor signal for vocal learning) is completed (bot-
tom panel). This is accompanied by significant changes in the neural re-
gions involved. During the initial sensorimotor period, the volume of
the RA and HVC increase with a significant decrease in the LMAN vol-
ume, while the synapses within the RA increase, both from HVC axons
and from RA interneurons. In the later stages of the sensorimotor learn-
ing, decreasing song variability is accompanied with a stabilisation of the
volume of the LMAN and HVC and a slight decrease in RA volume. . . 29
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5.1 Full and simplified model architecture illustrating our hypothesis regard-
ing learning and consolidation. The anterior forebrain pathway, via the
avian BG, provides a tutor signal which is eventually consolidated within
the cortical pathway to generate the desired behaviour. The simplified
model illustrates a minimal functioning of the parallel pathways, built
using Hebbian learning and reinforcement learning, without detailed
description of the neural components. . . . . . . . . . . . . . . . . . 49

5.2 Two sample simulations demonstrating the calculation of convergence.
To calculate the convergence point, we inactivate path A and observe the
number of trials path B takes to reach convergence. The point of con-
vergence is calculated as explained in section 5.1.3, and annotated here
with a vertical dotted line. Each subfigure has three panels. The top
panel shows the evolution of the error function (red) over the simula-
tion. The bottom panel shows the evolution of the strength of the Path
A (red) and Path B (grey) connections. The circular figure, on the right
panel, provides a visualisation of the movement of the arm over training,
form the initial position (dot) to the target (x). The final configuration
of the arm is shown with higher opacity. . . . . . . . . . . . . . . . . 54

5.3 A sample simulation demonstrating the advantage in having a delay in
the development of the cortical motor pathway. Subfigure A shows the
arm successfully converging to the target in condition 1, unlike condi-
tion 2, shown in subfigure B. Each subfigure has three panels. The top
panel shows the evolution of the error function (red) over the simula-
tion. The bottom panel shows the evolution of the strength of the Path
A (red) and Path B (grey) connections. The circular figure, on the right
panel, provides a visualisation of the movement of the arm over training,
form the initial position (dot) to the target (x). Only one arm configu-
ration per 250 trials has been plotted for clarity. The final configuration
of the arm is shown with higher opacity. . . . . . . . . . . . . . . . . 56

5.4 Summary of all simulations in condition 1 and condition 2. Panel A
shows the mean error during the test phase of each simulation in con-
dition 1 (black) vs condition 2 (red). Panel B shows the comparison be-
tween the error at the beginning of the simulation vs the end of the sim-
ulation. We observe that in condition 2 (red), the model does not al-
ways move away from the initial configuration. In condition 1 (grey),
the model is able to land in locations with low error, irrespective of the
starting position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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5.5 Song system in zebra finches and a simplified schema of the dual pathway
architecture. A The specialised vocal learning circuitry comprises of two
pathways: the cortical motor pathway (brown) and the BG-thalamo-
cortical pathway (grey). The cortical pathway governs song production
and includes the premotor cortical nucleus HVC and the RA. The RA
projects to downstream regions which control respiratory musculature.
The parallel BG pathway receives performance evaluation from mid-brain
dopaminergic neurons and projects to the RA. B. The dual pathway
architecture inspired by the vocal learning circuitry. The BG pathway
(grey) is based on reinforcement learning (RL) and provides a tutor sig-
nal, which is consolidated gradually within the parallel cortical motor
pathway (brown). The syrinx transforms the combined output of these
two pathways into a syllable vocalisation. . . . . . . . . . . . . . . . . 61

5.6 Various types of performance landscapes. The concentric circles show
equipotential surfaces. A-C. Examples of Gaussian-based performance
landscapes with 1 global optimum and A. ‘low’ (1-5) B. ‘medium’ (10-
20) and C. ‘high’ (30-50) number of local optima. D-F. Reward con-
tour generated using a model of the avian syrinx (Amador et al. 2013).
D. The 50ms waves of tension and pressure used as input to the syrinx
model to generate the target syllable. E. The spectrogram of a com-
mon zebra finch syllable chosen as the target syllable, as generated by
the model. F. The performance landscape generated using the similarity
between the target syllable and vocalisations generated over the param-
eter range used in (Amador et al. 2013). It has three global optima and
several (=11) local optima. . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Simulation of the dual pathway model on a Gaussian-based reward con-
tour with medium number of local optima (17) and 1 global optimum
using 20% initial BG variability. AThe cortical motor pathway, in brown,
follows the BG-led exploration to several local optima on the perfor-
mance landscape before coverging at the global optimum. The black
dots denote the total motor output. B Initially, the contribution of the
RL pathway Prl, in grey, drives a strong bias in the motor output P ,
in black. As the contribution of the motor pathway Pmtr, in brown,
reaches the global optimum, the BG contribution recedes. C The range
of BG-led exploration, around the motor pathway, shrinks with devel-
opment. Each dot represents the bias driven by the RL contribution
Prl at a given trial. D Performance evaluation, in purple, fluctuates over
the coarse of learning on both daily (inset) and weekly timescales. The
daily BG consolidation trace wk, in black, determines the shift on the
following day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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5.8 A demonstration of the dual pathway system on the syrinx-based reward
contour with 3 global optima using 20% initial noise injected into the
BG. A The cortical motor pathway, in brown, follows the BG-led ex-
ploration to several local optima on the performance landscape before
coverging at the global optimum. The black dots denote the total mo-
tor output. B Initially, the contribution of the RL pathway Prl, in grey,
drives a strong bias in the motor outputP , in black. As the contribution
of the motor pathway Pmtr, in brown, reaches the global optimum, the
BG contribution recedes. C The range of BG-led exploration, around
the motor pathway, shrinks with development. Each dot represents the
bias driven by the RL contribution Prl at a given trial. D Performance
evaluation, in purple, fluctuates over the coarse of learning on both daily
(inset) and weekly timescales. The daily BG consolidation trace wk, in
black, determines the shift on the following day. . . . . . . . . . . . . 69

5.9 Performance of the dual pathway architecture on the Gaussian-based
performance landscapes with ‘low’, ‘medium’ and ‘high’ number of lo-
cal optima, at 20% initial RL noise. The grey bar and the percentage
value next to it denote the success rate, i.e. the proportion of simula-
tions with a high terminal performance (above 0.6). The purple dots
represent the terminal performance of individual simulations, i.e., the
mean performance evaluation obtained in the last five days. The opac-
ity of the dots denotes the number of simulations that received a similar
terminal performance. Yellow crossed markers represent the median ter-
minal performance in each scenario. . . . . . . . . . . . . . . . . . . 73

5.10 Performance of the dual pathway architecture on the syrinx-based per-
formance landscapes at different noise levels and comparison with bench-
marks. The grey bar and the percentage value next to it denote the suc-
cess rate, i.e. the proportion of simulations with a high terminal per-
formance (above 0.6). The purple dots represent the terminal perfor-
mance of individual simulations, i.e., the mean performance evaluation
obtained in the last five days. The opacity of the dots denotes the num-
ber of simulations that received a similar terminal performance. Yellow
crossed markers represent the median terminal performance in each sce-
nario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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5.11 A demonstration of the dual pathway model with rate-coded neurons
on several Gaussian-based reward contour with a medium number of
local optima and 1 global optimum using 20% BG variability. The mo-
tor output (black dots) is driven to different regions of the sensorimotor
space, due to the daily jitter experienced within the BG pathway. Within
the day, the BG pathway helps the system find the local optima, while the
motor pathway maintains a trace of this exploration. Over the course of
several weeks, the BG pathway explores several such local optima, with
the cortical motor pathway gradually consolidating this information and
ultimately converging at the global optimum. The initial and final mo-
tor outputs are shown in brown and yellow, respectively. . . . . . . . . 80

5.12 Progression of sensorimotor learning by the dual pathway model on a
Gaussian-based reward contour with medium number of local optima
and 1 global optimum. A Performance evaluation fluctuates over the
coarse of learning on both daily and weekly timescales. The performance
evaluation for each syllable is shown in purple, while the average perfor-
mance evaluation over the motif is shown in black. B Progression of
motor output, corresponding to the 2-D position on the performance
landscape. Initially, the motor output, in black, is highly variable due
to being primarily driven by the BG pathway. As learning progresses,
the variability of motor output reduces. The target output is shown in
red. C The weights of HVC-BG synapses remain variable across learn-
ing, and experience overnight discontinuous changes. D The weights of
HVC-RA synapses develop slowly and ultimately saturate. E The ac-
tivity (firing rate) of BG units remains variable across learning. F The
activity (firing rate) of RA units is highly variable in the beginning of
learning. As the HVC-RA synapses grow, the RA activity develops a
bursty pattern. A, B, C, D The vertical dotted black line represents
the point of BG lesion i.e. inactivation of the BG inputs to RA. A de-
crease in variability of output occurss post BG lesion. . . . . . . . . . . 81

5.13 Robustness of the dual pathway model. The purple dots represent the
terminal performance of each syllable, on the left, and of each motif,
on the right. The grey bar denotes the success rate, i.e. the number of
simulations with a terminal performance over 0.6. In over 100 simu-
lations, with a target motif of 4 syllables each, the model successfully
learns 84% of the target syllables. Moreover, in most successful simula-
tions, the model achieves a terminal performance greater than 80%. . . . 82
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5.14 Momentum guided reinforcement learning can be understood using an
analogy of velocity and acceleration. In this illustration, velocity cor-
responds to Hebbian learning, which represents the momentum of the
trajectory, while acceleration corresponds to reinforcement learning and
can modify the velocity vector up to a certain degree (10% in the figure).
The illustration simulates the trajectory from a fixed initial position to
a target, when the direction of the velocity is continually modified by
the acceleration. In the figure, four trajectories with increasing initial
delays (left to right) are shown. These delays correspond to the moment
when velocity is activated/allowed to initiate the trajectory. Before that,
the acceleration influences the direction of the velocity, however with-
out any displacement. When there’s no delay, the initial velocity vector
can potentially drive the trajectory away from the target (as shown in this
specific example), while with longer delays, the acceleration can explore
and identify a more conducive direction in order to exhibit a more direct
trajectory to the target. . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Sketch illustrating the proposed hypothesis. A protocol using condi-
tional auditory feedback can be used to shift the pitch of a particular
syllable. We hypothesise that on days where the bird is learning to either
increase or decrease the pitch of a target syllable, the correlation between
the trial-to-trial variability in the activity of the LMAN and the RA, in
the premotor period, will increase. Correspondingly, the correlation in
the trial-to-trial variability between the activity in LMAN and pitch of
the produced vocalisations would also increase. . . . . . . . . . . . . . 94

6.2 Simplified schema of the dual pathway architecture. The cortical motor
pathway connects the HVC and RA and is built using Hebbian learn-
ing. The components of the parallel AFP is represented using a BG layer.
The synaptic connections between HVC and BG are updated using re-
inforcement learning, while the connections between BG and RA are
topographic and fixed. The RA output is transformed into a scalar value
denoting the pitch of the desired vocalisation. Post learning, in order to
test the effect of LMAN lesions, we inactivate the inputs from the BG
to the RA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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6.3 Activity pattern within the HVC and the RA layer corresponding to
each syllable in the song motif. Syllables are encoded within the HVC
layer, in a sparse and non-overlapping manner. This syllable encoding
functions as the input to the system signalling the target syllable to be
produced. The RA layer gradually learns the activity pattern correspond-
ing to the desired pitch value for a given syllable. Hebbian learning within
the HVC-RA pathway gives rise to the binary pattern of firing rates ob-
served here in the RA, signalling bursts of spiking activity within the
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6.4 Effect of lesion post vocal learning. The top panel groups multiple rendi-
tions within each stage of vocal learning. The red horizontal bar denotes
the target pitch for each syllable. The black dots denote each production
of syllable pitch. The bottom panel shows the spectrogram correspond-
ing to song in each stage. In the initial stage, the vocalisations are highly
variable. As training proceeds, the vocalisations are more stereotyped for
each syllable. Post lesion of BG outputs, the variability reduces further,
as shown on the left vertical panel. . . . . . . . . . . . . . . . . . . . . 99

6.5 Effect of the CAF protocol post song crystallisation. The top panel groups
multiple renditions within each stage of vocal learning. The red hori-
zontal bar denotes the target pitch for each syllable. The black dots de-
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the presence of distorted feedback. The bottom panel shows the spec-
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6.6 Correlation between RA and BG layer during learning. The top panel
shows the progression of the produced error (red) in pitch and perceived
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for syllable C is changed, there is an increase in the correlation coefficient
between activity of the RA and BG layers. . . . . . . . . . . . . . . . 102

157



List of Figures

6.7 Recording sites for electrophysiology. A micro-drive was placed on the
skull of a bird which contained a customised array of three high-impedance
(10− 20MΩ) electrodes and 3 silver wires (for EEG, ground and refer-
ence). The micro-drive was built in the lab by attaching electrodes to a
motor, which allowed for controlling the depth of the electrodes inside
the brain. Three electrodes were placed on the drive, corresponding to
three neural regions, the RA, the area X and LMAN, according to Ta-
ble 6.1. Simultaneous recordings were made from the RA and LMAN
sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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6.9 Effect of CAF protocol on behavior. Panel A shows the change in the
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protocol are shown in black. The renditions in absence of the CAF pro-
tocol are in grey. Panel B shows the mean and median of the pitch distri-
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days where CAF is present (red+black) versus the days where no CAF is
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6.10 A sample RA unit. A. Superimposed spike shapes during singing (black)
along with the mean spike shape (red). B. Raw and filtered signal of the
sample RA unit over 1s during singing. C. The distribution of ISIs dur-
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6.11 A sample LMAN unit. A. Superimposed spike shapes during singing
(black) along with the mean spike shape (red). B. Raw and filtered sig-
nal of the sample LMAN unit over 1s during singing. C. The distribu-
tion of ISIs during rest, singing and over the entire recording. D. PSTH
during motifs with no distorted feedback. E. PSTH during motifs with
distorted feedback. Note: The distorted feedback (‘z’) begins during the tar-
get syllable ‘b’ and lasts until the next syllable ‘c’. . . . . . . . . . . . . . . 112

158



List of Figures

6.12 Sample correlation plot between the trial-to-trial variability in the pre-
motor neural activity (MDFR) of a unit and the pitch of the correspond-
ing syllable (grey). Left: Sample simultaneous recording of an RA and
LMAN multi-unit during singing. The premotor windows with respect
to the pitch measurement point of the target syllable is depicted in grey.
The time window for LMAN is displaced with respect to that of RA
to account for transmission delays. Right: Sample correlation plot be-
tween the trial-to-trial variability in pitch of a syllable and the neural ac-
tivity (MDFR) of an RA and LMAN multi-unit, respectively, within
the corresponding premotor window. Here, the LMAN unit does not
show a significant correlation (p > 0.05) in its activity in the premotor
window for a syllable, but the RA unit shows a significant correlation
(p < 0.05) in its activity in the motif onset window for the syllable. The
blue line denotes the linear regression across the data points. MDFR:
Mean detrended firing rate. . . . . . . . . . . . . . . . . . . . . . . . 114
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dows with respect to the pitch measurement point of the target syllable
are depicted in grey. The time window for LMAN is displaced with re-
spect to that of RA to account for transmission delays. Right: Sample
correlation plot between the trial-to-trial variance in the neural activity
(MDFR) of a RA and LMAN multi-unit within the premotor and mo-
tif onset windows. Here, the units do not show a significant correlation
(p > 0.05) in their activity in the premotor window for a syllable, but
they show a significant correlation (p < 0.05) in their activity in the
motif onset window for the syllable. The blue line denotes the linear
regression across the data points. MDFR: Mean detrended firing rate. . 117
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6.17 Bootstrapping results over the dataset presented in Table 6.3 for RA-
LMAN multi unit pairs across all three conditions for both syllable groups
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