
HAL Id: tel-03909431
https://hal.science/tel-03909431v1

Submitted on 21 Dec 2022 (v1), last revised 15 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The cognitive and neural bases of graph perception and
comprehension

Lorenzo Ciccione

To cite this version:
Lorenzo Ciccione. The cognitive and neural bases of graph perception and comprehension. Cognitive
science. PSL University, 2022. English. �NNT : �. �tel-03909431v1�

https://hal.science/tel-03909431v1
https://hal.archives-ouvertes.fr


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soutenue par 

Lorenzo Ciccione  

Le 19/12/2022 

Ecole doctorale n° 474 

Frontières de l’innovation en 

recherche et éducation 

Spécialité 

Sciences cognitives 

Cognitive science 

Composition du jury: 
 

Pascal, MAMASSIAN 

Research director, 

Ecole Normale Supérieure, PSL                 Président 
 

Manuela, PIAZZA 

Full professor, 

Università degli Studi di Trento               Rapporteur 
 

Steven, FRANCONERI 

Full professor,  

Northwestern University   Rapporteur 
 

Elizabeth, SPELKE 

Full professor,  

Harvard University   Examinateur 
 

Véronique, IZARD 

Researcher,  

Université de Paris   Examinateur 
 

Stanislas, DEHAENE 

Full professor, 

Collège de France, PSL       Directeur de thèse 

 



 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3  

TABLE OF CONTENTS 
 

ACKNOWLEDGMENTS ..............................................................................................................5 
 

STATEMENT OF ORIGINALITY ..................................................................................................7 
 

SUMMARY (ENGLISH) ..............................................................................................................8 
 

RESUME (FRANCAIS) ..............................................................................................................10 
 

RIASSUNTO (ITALIANO) ..........................................................................................................13 
 

INTRODUCTION ......................................................................................................................17 

 WHAT IS A GRAPH? .....................................................................................................18 

 A SHORT HISTORY OF GRAPH .....................................................................................19 

  From the origins to the 18th century ...............................................................19 

  The 19th century ..............................................................................................21 

  The rise of the scatterplot in the 20th century ................................................24 

 PRINCIPLES OF DATA VISUALIZATION .........................................................................27 

  Different graphs for different purposes ..........................................................27 

  Improving data visualization ...........................................................................30 

 MASTERING GRAPHICACY: WHAT DOES IT TAKE TO UNDERSTAND A GRAPH? .........32 

  Data extraction: the visual processing of graphs ............................................33 

  Data understanding: inferring the mathematical function .............................35 

Data forecasting: predicting the future ...........................................................37 

THE THESIS’ GOAL: INVESTIGATING THE COGNITIVE AND NEURAL BASES OF GRAPH 

PERCEPTION THROUGH A PSYCHOPHYSICAL APPROACH ...........................................38 

  Research questions and organization of the chapters ....................................39 
 

CHAPTER 1: THE PRECURSORS OF GRAPH PERCEPTION: HUMAN ACCURACY IN A TREND 

JUDGMENT TASK ...................................................................................................................43 

 STUDY 1: TREND JUDGMENT ON NOISY SCATTERPLOTS ............................................45 

  Methods ..........................................................................................................46 

  Results .............................................................................................................49 

  Discussion .......................................................................................................54 

STUDIES 2, 3 AND 4: TREND JUDGMENT ACROSS AGE, EDUCATION, AND CULTURE .56 

  Methods ..........................................................................................................59 

  Results .............................................................................................................63 

  Discussion .......................................................................................................70 
 

CHAPTER 2: MENTAL REGRESSION: HUMAN ACCURACY AND BIAS IN PERFORMING LINEAR 

REGRESSION AND EXTRAPOLATION .....................................................................................75 

 STUDY 5: LINE ADJUSTMENT ......................................................................................77 



 4  

  Methods ..........................................................................................................77 

  Results .............................................................................................................79  

  Discussion .......................................................................................................83 

 STUDY 6: LINEAR EXTRAPOLATION .............................................................................87 

  Methods ..........................................................................................................87 

  Results .............................................................................................................89 

  Discussion .......................................................................................................91 
 

CHAPTER 3: ROBUST MENTAL REGRESSION: HUMAN RESISTANCE TO OUTLIERS ..............95 

 STUDY 7: OUTLIER DETECTION AND REJECTION .........................................................97 

Methods ........................................................................................................102 

  Results ...........................................................................................................106 

  Discussion .....................................................................................................123 

Evidence-based suggestions to improve data visualization of outliers in 

scatterplots ...................................................................................................132 
 

CHAPTER 4: PREDICTING THE UNCERTAIN FUTURE: EXTRAPOLATION FROM NON-LINEAR 

NOISY TRENDS .....................................................................................................................135 

 STUDY 8: EXTRAPOLATION FROM NON-LINEAR NOISY SCATTERPLOTS ...................137 

  Methods ........................................................................................................137 

  Results ...........................................................................................................141 

  Discussion .....................................................................................................148 

 STUDY 9: EXTRAPOLATION FROM EXPONENTIAL FUNCTIONS .................................151 

  Methods ........................................................................................................153 

  Results ...........................................................................................................157 

  Discussion .....................................................................................................171 

Evidence-based suggestions to improve data visualization of exponential 

trends ............................................................................................................173 
 

CHAPTER 5: THE NEURAL BASES OF MENTAL REGRESSION ...............................................177 

 STUDY 10: FMRI STUDY ON TREND JUDGMENT .......................................................178 

  Methods ........................................................................................................180 
 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS ..........................................................185 

 CONCLUSION ............................................................................................................186 

 FUTURE RESEARCH DIRECTIONS ...............................................................................191 
 

APPENDICES .........................................................................................................................197 
 

REFERENCES .........................................................................................................................209 

  



 5  

ACKNOWLEDGMENTS 

As any scientific endeavor, work is never accomplished alone and many people deserve my 

gratitude and recognition. First and above all, my great supervisor, professor Stanislas 

Dehaene (Stan). Working with him is one of the greatest achievements of my educational and 

professional career and every meeting with him is a true learning experience. He taught me 

to be rigorous, passionate and ambitious. I sincerely thank Stan for letting me work with him. 

And thanks to the ENS, the LPI and the Mind Science Foundation for funding my work. 

I then want to thank all the people in the lab I have been working in (Neurospin/Unicog): 

Mathias for the long discussions, the meta-science thoughts and the work that we have done 

together (part of this thesis’ work is the result of a wonderful collaboration with him); Tiffany 

for the coffee breaks (with no coffee), the walks, and the philosophical quests for meaning 

(and gossip); Vanna for the true help, the politically incorrect conversations, and the 

presence; Marie for her coding skills, her cooking skills, and her friendship skills; Cassandra, 

to be an inspiration for my oral presentations, and for her contagious smile and laughs.  

Special thanks as well to my PhD adventure colleagues: Yvan, Theo M., Alexis, Harish, Lucas, 

Caroline, Cedric, Maxime, Theo D., Alex, Christos, Audrey, Andrea, Pauline, Marie, Valentine, 

François, Alexandre, Timo. Huge thanks for their incredible help to Minye, Antonio, 

Christophe, Evelyn, Isabelle. And thanks to all people working in participants’ recruitment, 

HR, and administration and to the hundreds of people that participated in my experiments. 

I would also like to thank: my thesis’ advisors (Veronique and Valerian); the people from my 

doctoral school (LPI, ED 474: Camille, Chiara, Ana, Dragana); my dear friends from the ENS, 

where I spent three wonderful years for my master studies: Marco, Camille, Ioanna, Emma, 

Lena, Michele, Zeynep, Quentin; and my science/beer friends: Camille and Raph. 



 6  

Another round of important acknowledgments: in Paris, thanks to Basak, Garance and Izel, 

the friends that everyone should deserve but not many people have; you are an inspiration 

of loyalty, kindness, and love. Thanks to my Italian Parisian friends: Nicola and Gauthier, who 

helped me de-connect from my French/English brain. Thanks to my friends from Andora, the 

small town I grew up in: Michela, Giulia, Federica for making my days there happy and fun. 

Thanks to Marianna, the best friend that was always there: we saw each other grow up along 

these years and I am proud of who we are. In Trento, where I spent my undergraduate years, 

thanks to everyone I had the privilege to live with (Francesco, Linda and Chenfu among others) 

and especially to Dario, one of the few people in my life that would always answer my calls, 

no matter where and when: meeting him was a gift. 

A special note to those who allowed me to teach at university (and especially to Serge, who 

also became a mentor and, together with Mathilde and Esther, a collaborator) and to the 

many students I had (Université de Paris, Paris 8, IA School, EDC Business School and American 

University of Paris), since you made me realize that teaching is the career I want to purse in 

life. Thanks as well to the teachers I had in school and at university, and particularly to the 

good ones (they made the difference). 

Thanks to Thomas, without whom these years would not have been the same: he made me 

travel not just out of Paris, but of my comfort zone. Thanks to my cat Cleo, who has the most 

beautiful and caring eyes I have ever met. Thanks to my papà Gianfranco, who taught me how 

to stand up and be proud of my ideas and abilities, how to forget bad things fast, and how to 

be always ambitious. Thanks to my mamma Ornella, who taught me what it means to love 

and being loved, the importance of education and culture, the value of coherence and that I 

am never alone. Lastly, thanks to child and teenager Lorenzo, who was strong and patient and 

understood he was brave, lucky, and smart enough to keep on going. 



 7  

STATEMENT OF ORIGINALITY 

The work presented in this manuscript has been conducted by myself, under the guidance of 

my supervisor, Professor Stanislas Dehaene, and sometimes in collaboration with several 

colleagues: Mathias Sablé-Meyer (software implementation of study 2 and study 9; modelling 

of study 9); Guillaume Dehaene (algorithm of outlier creation in study 7); Serge Caparos, 

Mathilde Josserand, Esther Boissin (data collection in Namibia for study 3); Cassandra Potier-

Watkins (data collection at school for study 4).  

Most of the findings described in this manuscript have already been published during the 

three years of my PhD program and can be found here: 

 

Ciccione, L., & Dehaene, S. (2020). Grouping Mechanisms in Numerosity Perception. Open 

Mind, 4, 102–118. https://doi.org/10.1162/opmi_a_00037 

Ciccione, L., & Dehaene, S. (2021). Can humans perform mental regression on a graph? 

Accuracy and bias in the perception of scatterplots. Cognitive Psychology, 128, 

101406. https://doi.org/10.1016/j.cogpsych.2021.101406 

Ciccione, L., Sablé-Meyer, M., & Dehaene, S. (2022). Analyzing the misperception of 

exponential growth in graphs. Cognition, 225, 105112. 

https://doi.org/10.1016/j.cognition.2022.105112 

Ciccione, L., Dehaene, G., & Dehaene, S. (2022). Outlier detection and rejection in 

scatterplots: Do outliers influence intuitive statistical judgments? Journal of 

Experimental Psychology: Human Perception and Performance. 

https://doi.org/10.1037/xhp0001065 

Ciccione, L., & Dehaene, S. (2022). Graphicacy skills across ages and cultures: a new 

assessment tool of intuitive statistical abilities. Proceedings of the Annual Meeting of 

the Cognitive Science Society. (Vol. 44, No. 44). 

Ciccione, L., Sablé-Meyer, M., Boissin, E., Josserand, M., Potier-Watkins, C., Caparos, S., & 

Dehaene, S. (2022). Graphicacy across age, education, and culture: a new tool to 

assess intuitive graphics skills. BioRxiv 

 

 

The manuscript does not follow the strict order of the articles. In order to improve readability, 

I re-organized the single studies in the way that I considered most logical and coherent. 

Therefore, studies from a single article might be presented in different chapters. 



 8  

SUMMARY 

Despite being a recent cultural product, graphs are ubiquitous in our life: they appear in 

newspapers, in school books, on television. Economic reports and scientific papers usually 

include multiple graphical representations, and professionals spend a considerable amount 

of time conceiving and designing charts and plots. The extraordinary increase in data 

availability, together with powerful digital visualization techniques, made graphs one of the 

most suited tools to transmit complex information in a complete and efficient manner. A 

growing body of research is investigating how to make graphs easier to read and more 

memorable, what graphical features guide readers’ attention, and how people make 

subjective estimations of correlation when facing a graph. However, little is known about the 

cognitive bases of our ability to intuitively extract statistical information from graphs. In a 

series of 9 behavioral studies, we applied psychophysical methods and analyses to 

characterize the perception of one of the simplest and most used graphical representation: 

the scatterplot.  

With a novel trend judgment task (study 1, N=10: “does this graph go up or down?”), I was 

able to model participants’ accuracy and response time as a function of the t-value of the 

graph, showing that our perceptual system acts closely to an optimal observer that would 

base its decision on a statistical test. Then, I psychometrically operationalized human abilities 

at performing such task through what I called the “graphicacy index”, and found that such 

measure widely varies in a large-scale online sample and strongly correlates with 

mathematical knowledge (study 2, N=3943). I also replicated the reliance on the t-value in 

two specific populations: the Himba people, who live in remote villages in Namibia and do 

not receive formal schooling (study 3, N=87); and 6-years-old French children attending their 



 9  

first year of primary school, who were never taught what a scatterplot was (study 4, N=27). 

Taken together, these results suggest that the cognitive precursors of graph perception, 

although variable, are available independently from education, age, and culture. 

With a line adjustment task (study 5, N=10: “adjust the line to make it pass through the 

points”) I further characterized human mental regression, by finding that humans do not 

minimize the vertical distance of the points from the fit (as it would be predicted by a classic 

OLS model) but they rather minimize the orthogonal distance (as done by Deming regression). 

I replicated such Deming bias with an extrapolation task (study 6, N=10: “place a point as the 

best continuation of the plot”) and I explored its concrete implications. 

I then probed the limits of mental regression by investigating whether it was robust to the 

presence of outliers (study 7, N=30), as it would be predicted in the literature if graphs were 

treated like an ensemble. I found that humans spontaneously include outliers in their intuitive 

trend judgments and line adjustments and are able to exclude those with a large z score, only 

if explicitly asked to pay attention to them.  

I lastly investigated whether humans were able to go beyond linearity, by asking them to 

extrapolate from noisy scatterplots generated from non-linear functions (study 8, N=10): I 

found that they could, with a performance dependent on the level of evidence in the plot, 

except for quadratics, which were underestimated. I then considered another example of 

accelerating functions that are known to be misperceived: exponentials (study 9, N=625). 

Participants underestimated them but only if hidden in noise, suggesting that human bias at 

extrapolating from complex accelerating functions do not derive from a lack of understanding 

of the function itself, but rather from an inability to extract it from noise. I also found that 

such bias correlates with mathematical knowledge and, on the basis of a Bayesian simulation, 

that is likely to be due to a prior against non-linear functions. 
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RESUME 

Bien qu'ils soient un produit culturel récent, les graphiques sont omniprésents dans notre vie: 

ils apparaissent dans les journaux, dans les manuels scolaires, à la télévision. Les rapports 

économiques et les articles scientifiques comportent généralement de multiples 

représentations graphiques, et les professionnels passent un temps considérable à concevoir 

et à dessiner des diagrammes et des graphiques. L'extraordinaire augmentation de la 

disponibilité des données, ainsi que les puissantes techniques de visualisation numérique, ont 

fait des graphiques l'un des outils les plus adaptés pour transmettre des informations 

complexes de manière complète et efficace. De plus en plus de recherches s'intéressent à la 

façon de rendre les graphiques plus faciles à lire et plus mémorables, aux aspects qui guident 

l'attention des lecteurs et à la façon dont les gens font des estimations subjectives de la 

corrélation. Cependant, on sait peu de choses sur les bases cognitives de notre capacité à 

extraire intuitivement des informations statistiques des graphiques. Dans une série de 9 

études comportementales, nous avons appliqué des méthodes et des analyses 

psychophysiques pour caractériser la perception de l'une des représentations graphiques les 

plus simples et les plus utilisées: le nuage de points. 

Avec une nouvelle tâche de jugement de tendance (étude 1, N=10: "ce graphique va-t-il vers 

le haut ou vers le bas ?"), j'ai pu modéliser la précision et le temps de réponse des participants 

en fonction de la valeur t du graphique, montrant que notre système perceptif agit de 

manière proche d'un observateur optimal qui baserait sa décision sur un test statistique. 

Ensuite, j'ai opérationnalisé psychométriquement les capacités humaines à effectuer une 

telle tâche par le biais de ce que j'ai appelé "indice de graphicacité", et j'ai constaté que cette 

mesure varie largement (dans un grand échantillon en ligne) et qu'elle est fortement corrélée 
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aux connaissances mathématiques (étude 2, N=3943). J'ai également reproduit le recours à 

la valeur t dans deux populations spécifiques: chez les Himba, qui vivent dans des villages 

reculés de Namibie et qui ne reçoivent pas d'éducation formelle (étude 3, N=87); et chez les 

enfants français de 6 ans en première année d'école primaire, à qui on n'a jamais appris ce 

qu'était un nuage de points (étude 4, N=27). L'ensemble de ces résultats suggère que les 

précurseurs cognitifs de la perception des graphes, bien que variables, sont disponibles 

indépendamment de l'éducation, de l'âge et de la culture. 

Avec une tâche d'ajustement de ligne (étude 5, N=10: "ajuster la ligne pour qu'elle passe entre 

les points"), j'ai caractérisé davantage la régression mentale humaine, en trouvant que les 

participants ne minimisent pas la distance verticale des points par rapport à la droite (comme 

prédit par un modèle classique OLS) mais ils minimisent plutôt la distance orthogonale 

(comme fait la régression de Deming). J'ai reproduit ce biais de Deming avec une tâche 

d'extrapolation (étude 6, N=10: "placer un point comme continuation du graphique") et j'ai 

exploré ses implications concrètes. 

J'ai ensuite sondé les limites de la régression mentale en cherchant à savoir si elle était 

robuste à la présence de valeurs aberrantes (étude 7, N=30), comme cela serait prédit dans 

la littérature si les graphiques étaient traités comme un ensemble. J'ai constaté que les 

humains incluent spontanément les valeurs aberrantes dans leurs jugements intuitifs de 

tendance et leurs ajustements de lignes et qu'ils sont capables d'exclure celles qui ont un 

score z élevé, uniquement si on leur demande explicitement d'y prêter attention.  

Enfin, j'ai cherché à savoir si les humains étaient capables d'aller au-delà de la linéarité, en 

leur demandant d'extrapoler à partir de nuages de points bruités générés par des fonctions 

non linéaires (étude 8, N=10): j'ai constaté qu'ils le pouvaient, avec une performance 

dépendant du niveau d'évidence du graphique, sauf pour les quadratiques, qui étaient sous-
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estimées. J'ai ensuite considéré un autre exemple de fonctions connues pour être mal 

perçues: les exponentielles (étude 9, N=625). Les participants les ont sous-estimées, mais 

seulement si elles étaient cachées dans le bruit, ce qui suggère que le biais humain à 

extrapoler à partir de fonctions complexes ne provient pas d'un manque de compréhension 

de la fonction elle-même, mais plutôt d'une incapacité à l'extraire du bruit. J'ai également 

constaté que ce biais est corrélé aux connaissances mathématiques et, sur la base d'une 

simulation bayésienne, qu'il est probablement dû à un a priori contre les fonctions non 

linéaires. 
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RIASSUNTO 

Nonostante siano un prodotto culturale recente, i grafici sono onnipresenti nella nostra vita: 

compaiono sui giornali, nei libri di scuola, in televisione. I rapporti economici e i documenti 

scientifici spesso includono molteplici rappresentazioni grafiche e i professionisti dedicano 

una notevole quantità di tempo a ideare e progettare grafici e diagrammi. Lo straordinario 

aumento della disponibilità di dati, insieme alle potenti tecniche di visualizzazione digitale, ha 

reso i grafici uno degli strumenti più adatti a trasmettere informazioni complesse in modo 

completo ed efficiente. Un numero crescente di ricerche sta studiando come rendere i grafici 

più facili da leggere e più memorabili, quali caratteristiche grafiche guidano l'attenzione dei 

lettori e come le persone effettuano stime soggettive di correlazione quando si trovano di 

fronte a un grafico. Tuttavia, poco si sa sulle basi cognitive della nostra capacità di estrarre 

intuitivamente informazioni statistiche dai grafici. In una serie di 9 studi comportamentali, 

abbiamo applicato metodi e analisi psicofisiche per caratterizzare la percezione di una delle 

rappresentazioni grafiche più semplici e più utilizzate: il diagramma di dispersione.  

Con un nuovo compito di giudizio di tendenza (studio 1, N=10: "questo grafico sale o 

scende?"), sono stato in grado di modellare l'accuratezza e il tempo di risposta dei 

partecipanti in funzione del valore t del grafico, dimostrando che il nostro sistema percettivo 

si comporta in modo simile a un osservatore ottimale che basa la sua decisione su un test 

statistico. In seguito, ho operazionalizzato psicometricamente le capacità umane a svolgere 

tale compito attraverso quello che ho chiamato "indice di graficità", e ho scoperto che tale 

misura varia ampiamente in un campione online su larga scala ed è fortemente correlata alle 

conoscenze matematiche (studio 2, N=3943). Ho anche replicato la dipendenza dal valore t in 

due popolazioni specifiche: il popolo Himba, che vive in villaggi remoti della Namibia e non 
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riceve un'istruzione formale (studio 3, N=87); e i bambini francesi di 6 anni che frequentano 

il primo anno di scuola primaria, ai quali non è mai stato insegnato cosa fosse un diagramma 

di dispersione (studio 4, N=27). Nel complesso, questi risultati suggeriscono che i precursori 

cognitivi della percezione dei grafici, sebbene variabili, siano disponibili indipendentemente 

dall'istruzione, dall'età e dalla cultura. 

Con un compito di aggiustamento della linea (studio 5, N=10: "aggiusta la linea per farla 

passare attraverso i punti") ho caratterizzato ulteriormente la regressione mentale umana, 

scoprendo che gli esseri umani non minimizzano la distanza verticale dei punti dal fit (come 

sarebbe previsto da un modello OLS classico), ma piuttosto minimizzano la distanza 

ortogonale (come fa la regressione di Deming). Ho replicato questo bias di Deming con un 

compito di estrapolazione (studio 6, N=10: "posizionare un punto come migliore 

continuazione del grafico") e ne ho esplorato le implicazioni concrete. 

Ho poi sondato i limiti della regressione mentale indagando se fosse robusta alla presenza di 

outlier (studio 7, N=30), come sarebbe previsto dalla letteratura se i grafici fossero trattati 

come un insieme. Ho scoperto che gli esseri umani includono spontaneamente gli outlier nei 

loro giudizi intuitivi sulla tendenza e negli aggiustamenti delle linee e sono in grado di 

escludere quelli con un punteggio z elevato, solo se viene loro chiesto esplicitamente di 

prestarvi attenzione. 

 Infine, ho indagato se gli esseri umani fossero in grado di andare oltre la linearità, chiedendo 

loro di estrapolare da diagrammi di dispersione (con rumore) generati da funzioni non lineari 

(studio 8, N=10): ho scoperto che sono in grado di farlo, con prestazioni dipendenti dal livello 

di evidenza di informazione nel grafico, tranne che per le quadratiche, che venivano 

sottostimate. Ho poi preso in considerazione un altro esempio di funzioni che notoriamente 

sono percepite in modo errato: le esponenziali (studio 9, N=625). I partecipanti le hanno 
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sottostimate, ma solo se nascoste nel rumore, suggerendo che la sottostima umana 

nell'estrapolazione di funzioni complesse non deriva da una mancanza di comprensione della 

funzione stessa, ma piuttosto dall'incapacità di estrarla dal rumore. Ho anche riscontrato che 

tale sottostima è correlata alle conoscenze matematiche e, sulla base di una simulazione 

bayesiana, che è probabile sia dovutoa a un prior contro le funzioni non lineari. 
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WHAT IS A GRAPH? 

Consider the following sentences: “stock prices are dropping today”; “the number of new 

Covid-19 cases is exponentially growing”; “life expectancy correlates with wealth”. Although 

their content is different, they share two fundamental aspects: first, they express a relation 

between (two) variables; second, they can be easily represented through graphs, which are, 

by definition, pictures that show how (two) sets of information or variables are related 

(Cambridge Dictionary of English). It seems even reasonable to assume that many readers, 

when facing such type of sentences, would probably mentally represent them as graphs (or 

at least think of graphs). Graphical representations come in all shapes and sizes: they can be 

colorful histograms illustrating the distribution of an enterprise budget among its 

departments or simple scatterplots expressing the increase in new deaths during a pandemic. 

Histograms and scatterplots are just two examples of the wide variety of graphs that are used 

today. The key aspect is that the above definition of graph still holds for all of them: they are 

revealing a relation between variables (in the examples above: the amount of money and the 

enterprise department; or the number of deaths and time). Interestingly, the relation 

between those variables is not necessarily made explicit, but it rather emerges from the 

information being displayed. Crucially, each datapoint (i.e., each irreducible portion of the 

dataset, such as the money given to a single department or the number of deaths in a single 

day) needs at least one other datapoint to express a meaningful relation between the 

variables at play and the higher the number of information datapoints is, the richer the 

interpretation of the relation becomes. Based on these assumptions, graphs are particularly 

useful when the relation is not known beforehand: in other words, when the graph creator 

wants to make sense of the amount of information they have, possibly discovering trends that 

they could not discover without a plot. The historical excursus presented in the following 
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paragraphs would provide evidence for this claim: indeed, throughout their history, graphs 

have been mainly used to interpret large amounts of empirical observations whose relations 

could not easily emerge without their visual representation. 

 

A SHORT HISTORY OF GRAPHS 

From the origins to the 18th century 

Graphs are a cultural product, meaning that they are a human invention with defined rules 

and syntax. In this respect, they are very similar to written words and numbers, probably the 

two most famous cultural inventions: they all are symbolic representations based on shared 

conventions; they take advantage of the speed and capacity of the human visual channel to 

allow for the fast transmission of complex information; they require considerable learning 

experience; they are commonly taught at school. However, unlike numbers and words, graphs 

have been invented much more recently and they became widespread only in the last two 

centuries (Spence, 2006). The precursors of the wide variety of graphical representations that 

exist today can be traced back to Réné Descartes, the famous French mathematician that 

invented and formalized the system of Cartesian coordinates. The legend tells that, while lying 

on the bed and looking at his rectangular roof, flies would move around the surface of the 

ceiling; Descartes thought about a way to precisely represent the position of the flies on that 

surface. To do so, he conceptualized the west and south ceiling’s borders as two axes and he 

divided them in fixed units (starting from zero), thus organizing the entire space as a grid. By 

doing so, he could easily determine the location of each fly in terms of their position over such 

a grid. The position was thus subsumed by a pair of numbers: one indicating the location on 

the south “x” axis, the other indicating the location on the west “y” axis. Thanks to the 

invention of the Cartesian plane, Descartes made one of the most important breakthroughs 
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in the history of mathematics: he found a way to bridge the gap between geometry and 

algebra, therefore making math equations visually representable. It is then not surprising that 

graphs depicting mathematical and physical laws were the first to appear, although they did 

not meet an immediate success until very late. Edmund Halley, the English astronomer, was 

the first to use a line graph in 1686 to represent the change in atmospheric pressure with 

altitude (figure 1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Bivariate plot of the theoretical relation between barometric pressure and altitude (On the height of 

the mercury in the barometer at different elevations above the surface of the earth, and on the rising and falling 

of the mercury on the change of weather. 1686, Edmund Halley). 

 

 

No empirical data was represented in this plot though and, most importantly, the graph was 

used by Halley simply as a visualization of a (theoretical) physical argument rather than as a 

tool to reveal an undiscovered trend or relationship between two variables. In order to find 

graphs of this sort we have to wait until 1786: William Playfair, a Scottish engineer, decided 
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to graphically represent, by means of all types of 

graphs, the expenditures, revenues and debts of 

England. Interestingly, the text that accompanies 

his charts gives us a clear idea of his drawings’ 

purposes. Take the example in figure 2, depicting 

the interest of national debt; Playfair explicitly 

declares his desire to show the ruinous folly of 

England to finance the war through debt, whose 

rocketing increase is made clear through the 

graph. In other words, Playfair was the first to use 

plots and charts in the “statistical” sense 

(interestingly, the term statistics was used for the 

first time in the contemporary sense only one 

year later, in 1787): to reveal a trend that 

summarizes a set of data, possibly in order to 

convey a message to the reader. 

 

The 19th century 

During the 19th century, graphical representations with a statistical purpose slowly became 

more common: they were used to convey a message that would have not been evident from 

simple text or mathematical notation alone. I am going to consider a few remarkable 

examples in the following paragraphs.  

John Snow, in 1854, realized a spatialized version of a histogram, thanks to which he 

discovered the origin of a cholera epidemics (figure 3). In fact, many people were dying of 

Figure 2. Evolution of the interest of the 

national debt (The commercial and 

political atlas; 1786, William Playfair). 
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cholera in the Soho district of London and authorities had a hard time finding the cause of 

such a major outbreak. Snow decided to more closely look at the data by taking a map of the 

district and drawing a small line on top of each building where a death had occurred. 

Therefore, higher stocks of lines indicated that those households had suffered from a higher 

number of deaths. The genial aspect of Snow’s graph was to go beyond a simple histogram: 

in fact, it did not only provide the magnitude of the number of deaths per household but it 

also visually conveyed the location of the most affected buildings in the district. These were 

all around a water pump, which was thus immediately identified as the source of 

contaminated water. The pump was eliminated and the cholera epidemics came to an end. 

 

 

 

 

 

 

 

 

 

 

 

Florence Nightingale, in 1858, proposed her famous “rose” graph, by which she visually 

demonstrated that most deaths in the army were due to preventable causes (figure 4). This 

is a great example of chart in which a certain amount of data is consistently magnified in order 

to more strongly convey the underlying message. Indeed, rose graphs are simply histograms 

Figure 3. Households touched by Cholera deaths (On the mode of communication of 

Cholera; 1854, John Snow). 
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presented on a polar grid: this means that each unit increase in the occurrence of a certain 

factor (for example, the number of people who died in November 1854) results in a non-linear 

increase of the area occupied in the grid, making it more salient for the reader. It is worth 

noting that Nightingale accompanied her graphs with a short text explaining how to read and 

interpret them. 

 

 

 

Jacques Bertillon, in 1896, further developed and refined the idea of a spatialized histogram 

and proposed his chart of the distribution of foreigner habitants of Paris by district (figure 5). 

In this map, each column represents the number of foreigners in that specific area. The graph 

is particularly efficient since it allows to immediately grasp where the majority of foreigners 

lives, without the need to go through each district one by one. 

Figure 4. Causes of mortality in the army in the east (Notes on matters affecting the health, efficiency and 

hospital administration of the British Army; 1856, Florence Nightingale). 
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Despite the fast development of new 

graphical representations over the 

course of 19th century, most 

commentators and scientists of the time 

thought that graphs were nothing more 

than an embellishment, with no useful 

purpose and lacking a sufficient rigor 

(Gray Funkhouser, 1937). If one critic 

might still be addressed towards those 

first graphs is probably to be found in 

the rather poor flexibility of their 

“syntax”. In fact, all examples of statistical graphs I have just introduced were either a 

representation of a trend over time (Playfair, Nightingale) or distributions of occurrences of 

events (Snow, Bertillon). In other words, they did not depict the relationships of two purely 

empirical variables. This is exactly the most common purpose of another very powerful, yet 

simple, graphical representation: the scatterplot. 

 

The rise of the scatterplot in the 20th century 

It has been argued (Friendly & Denis, 2005) that scatterplots are the most versatile type of 

graphs, since they allow to discover regularities and trends among two purely empirical 

factors. Then, why did we have to wait until the 20th century to see scatterplots (Kurtz & 

Edgerton, 1939)? The most plausible reason is that people were primarily concerned about 

trends over time or distributions over locations, which are better displayed, respectively, 

through line graphs and histograms. It is thus not surprising that scatterplots’ rise (except two 

Figure 5. Frequency of foreigners in Paris in 1891 (Cours 

élementaire de statistique administrative; 1896, Jacques 

Bertillon). 
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notable exceptions by Herschel and Galton, which do not entirely fall into the current 

definition of scatterplot) coincided with the rising success of the experimental sciences at the 

beginning of the 20th century. The first actual occurrence of the term scatterplot dates back 

to 1906 (Jenkinson, 1906): John Jenkinson described the relation between the symmetry of 

the egg and the symmetry of the embryo in the frog by plotting several observations along 

two axes (figure 6). All the typical elements of a scatterplot are there: observations are 

realized over multiple units (in this specific case, multiple eggs); the points are not connected 

one by one, but the general trend is left to the reader to discover (in this case, a negative 

linear relationship); each unit comprises two measurements, which refer to two different 

variables (namely: the symmetry of the egg and the symmetry of the embryo). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Scatter Diagram of the correlation between the plane of symmetry and the first furrow (On 

the relation between the symmetry of the egg and the symmetry of the embryo in the frog (Rana 

Temporaria); 1906, John Jenkinson). 
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From the beginning of the 20th century on, the 

use of scatterplots exploded. Since they 

represent multiple (often numerous) units of 

information, the invention and use of 

automatized computing and visualization 

methods contributed to the wide diffusion of 

scatterplots (and all other graphical 

representations). Today scatterplots have maintained their key aspects as described in the 

previous paragraph, but a few remarkable variations have been invented: three-dimensional 

scatterplots that integrate a third coordinate axis, thus allowing to concomitantly plot 3 

variables of interest (figure 7); and dynamic two-dimensional scatterplots that change over 

the course of a video presentation, thus allowing to see the evolution of the variables’ 

relationship over time (figure 8). These animated charts were invented by Hans Rosling a few 

years ago and quickly became widely appreciated and used.  

 

 

 

 

 

 

 

 

 

 

Figure 7. Example of 3D scatterplot. “Iris” 

dataset, R package. 

 

Figure 8. Snapshot of Hans Rosling bubble chart. Gapminder.com.  
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PRINCIPLES OF DATA VISUALIZATION 

Graphs have quickly become the elective tool for data visualization: we see them on 

television, newspapers, scientific books or financial reports. Their ubiquity has been 

accompanied with many guidelines aimed at improving the way graphs communicate the 

intended message. These guidelines might be summarized as follows: first, different types of 

graphs are better suited for specific contents and messages; second, certain elements in 

graphs can be added, modified or eliminated in order to improve their readability. 

 

Different graphs for different purposes 

Every quantitative information could potentially be represented with any type of graphs. 

However, some pieces of information are better plotted through specific graphical 

representations. The following paragraphs provide a short review of the uses of the most 

common types of graphs: the line graph, the histogram, the boxplot and the scatterplot. 

The line graph. It is often used to plot the evolution of an event or a quantity over 

time: in fact, a line allows to visually appreciate a trend, such as the evolution of the number 

of new Covid-19 cases or the change in stock prices. Line graphs are particularly efficient when 

attention should be focused on the rapid evolution of a value: if it drastically increases or 

decreases from a moment in time to the following one, the line connecting the two value 

positions will be proportionally longer. This aspect is particularly important since it might be 

intentionally used to exaggerate the message of the graph: by stretching the y axis scale, by 

truncating it (Correll et al., 2020), or by compressing the x axis scale, the resulting line 

becomes longer and steeper, thus conveying the message that the change is more drastic 

than it actually is. It has been shown (Beattie & Jones, 2002) that financial experts are indeed 

affected by the slope of a line graph when asked to make a judgment over the improving 
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performance of two competing companies: the actual numbers in the graphs are the same, 

but the stretched steeper line creates the illusion that a more impressive evolution has 

occurred (compared to the shallower one). If the factors are more than one but they are all 

measured along the same numerical metrics, multiple lines can be plotted on the same graph, 

particularly when the purpose of the graph creator is to make the comparison between the 

different conditions more salient. 

The histogram. It is usually employed when the graph creator wants to emphasize the 

distribution of occurrences of a certain measure or event. In these cases, the x axis simply 

represents the different values (continuously or discretely ordered) that the factor can take 

and, on top of each value, a column is plotted with a height proportional to the number of 

occurrences of that value. In this context, histograms make immediately apparent if the 

distributions follow a known mathematical curve (such as the famous normal distribution) 

and where their measures of central tendency and dispersions are: in other words, histograms 

are also perfectly suitable to show how much the data are spread around a central value. But 

the x axis can also contain the factors of a nominal variable: in this case, the choice of their 

ordering is left to the graph creator, and can be based either on a contextual reason (i.e., 

putting closer the factors that are logically closer) or based on the number of their 

occurrences. It is worth noting that only in the case of a nominal variable (or of a discrete 

variable with a limited number of factors) the histogram represents the complete set of 

information available: if the variable is continuous, the graph creator is obliged to bin the data 

in intervals, thus losing the precise value of each information unit. It is therefore clear that 

different binning strategies might end up not revealing any reasonable distribution (if the 

range of the bins is too small) or hiding potentially interesting multiple distributions and 

outliers (if the range of the bins is too large; Knuth, 2019). 
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The pie chart. In a sense, a pie chart could be seen as a histogram plotted on a polar 

grid. In fact, each angle (and therefore each corresponding area of the circle) is proportionally 

larger for higher occurrences of a certain factor. It is, however, less flexible than the histogram 

since it is adapted only for nominable variables with a limited number of levels: many factors 

result in small slices, making it hard for the reader to identify their corresponding labels. 

Although pie charts might be useful when the graph creator wants to highlight some striking 

differences among the occurrences of certain events or measurements (e.g., by showing the 

higher number of men in positions of power as compared to the number of women), several 

studies (Kosara & Skau, 2016; Siirtola, 2019) concluded that pie charts are often not as 

efficient as other graph types, thus making them less and less used. 

The boxplot. This is probably one of the most recently invented types of graphs (Spear, 

1952; Tukey, 1977) and it is mainly used to conduct exploratory data analysis, since it 

provides, for each experimental factor, an indication of the lower and upper quartile (the 

horizontal borders of the box) and of the central tendency (the line inside the box) of the data 

distribution for that factor. As compared to the histogram, it is more limited: in fact, it does 

not allow to look at the actual distribution of the data but only at its summary values, making 

it hard, for example, to appreciate outliers (Godau et al., 2016; Pastore et al., 2017), unless 

they are added as separate points to the graph. The clear advantage of boxplots is in those 

situations where multiple distributions need to be compared: a separate histogram for each 

distribution would in fact take up much more space and it would not precisely point to the 

numerical values of the quartiles or the central tendency. 

The scatterplot. This has been claimed to be the most used graph (Tufte, 2001) and 

probably the most flexible one. Indeed, it has a few unique features: it is suitable for showing 

the association between two variables, even when they are both independent from each 
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other (thus, it is not only adapt to show evolutions over time, as the line graph tends to do); 

it can easily represent the entire dataset available, since each information unit is indicated by 

a distinct point; it allows to easily make mathematical and statistical computations over it, 

since each point is a pair of two numerical values on a cartesian plane; lastly, it makes easy to 

extract, if present, the trend in the dataset and the noise around it, thus concomitantly 

providing indications of tendency and dispersion. Today, multiple variations of scatterplots 

exist: those including vertical lines to facilitate the location of the points on the x axis 

(Reimann et al., 2022); those with connected points (Haroz et al., 2016); those separating 

clusters of data by color (Wang et al., 2019); those varying the size of each datapoint 

depending on a third variable (Hong et al., 2021). The simplicity yet large versatility of 

scatterplots makes them highly suitable for a psychophysical investigation, as it will be 

explained at the end of the introduction. 

 

Improving data visualizations 

Independently from which type of graph one might want to use, several general suggestions 

have been made in order to improve graph readability and understanding. Most of these 

suggestions come from the seminal works of Edward Tufte (the most famous of which: Tufte, 

2001). In his books, he provides a large number of guidelines to make better graphical 

representations of data: some of them have been confirmed to improved graph readability; 

some of them have not been confirmed by experimental evidence; some others (probably the 

majority) have never been put to test. Here I consider his most famous guidelines. 

Increase the data density. Tufte argues for the need of condensing as much 

information as possible in one graphic. This suggestion translates into displaying the entire 

set of information available in a single graph. Against this norm, a given chart can be repeated 
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multiple times in order to convey the evolution of a factor over time or places. These graphs 

have been called “small multiples” and an example is provided in figure 9. Recent evidence 

seems to support the higher readability of this graph type when compared with more classic 

and “dense” visualizations (Yoghourdjian et al., 2018). 

 

Maximize the data-ink ratio. This is probably the most famous of his guidelines: it 

suggests that the ratio between the quantity of data being displayed and the “ink” used to 

display it (i.e., the area that the visualization occupies) should be maximized. In Tufte’s words, 

this maximization is the non-erasable core of a graphic. Concretely, following this guideline 

means: avoiding the repetition of axes’ labels if those axes are presented multiple times; 

displaying the legend only once if it refers to multiple charts; if possible, labelling conditions 

inside the graph instead of adding a separate legend. The data-ink ratio principle has been 

both confirmed (e.g.: adding esthetic enhancements does not improve memory for the data 

values: Peña et al., 2020) and refuted (e.g., adding two axes to scatterplots increases graph 

understanding: Poulton, 1985), suggesting that it might largely depend on the specific graph 

Figure 9. Example of “small-multiples” graph, depicting the increase in debt in several countries. 2017, 

Pew Research Center.  
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and content that is plotted (Franconeri et al., 2021). In fact, highly decorated graphs might 

push the reader to engage more into the exploration of the graph. 

Minimize the lie-factor. Tufte discourages representing graphics in which the 

numerical metrics are not proportional or faithful to the actual numerical values of the 

dataset. In other words, if an effect size is small, it should be graphically represented as small. 

As I have already argued when 

discussing the line graph, manipulating 

the axes in order to increase the slope 

of lines is an example of “lie” that has 

been shown to affect people 

judgments and understanding. An 

example of graph with a large lie-factor 

is provided in figure 10. 

The other guidelines are more subjective (e.g., the encouragement to make elegant graphs) 

and therefore, although appealing and seemingly reasonable, are difficult to be accurately 

tested. What seems important to point out about Tufte’s work is that his suggestions pertain 

to the globality of the graph and do not concern the fundamental visual operations (such as 

detecting the difference in length of two lines or locating the relative position of two points) 

that are necessary to understand all types of graphs.  

 

MASTERING GRAPHICACY: WHAT DOES IT TAKE TO UNDERSTAND A GRAPH? 

Graphicacy is the human ability to read and understand a graph (Balchin & Coleman, 1966): 

the word clearly echoes literacy and numeracy, the two other human skills based on the 

explicit learning of cultural symbols (letters and numbers, respectively). Independently from 

Figure 10. Example of graph with a large lie-factor. The 

increase in numerical magnitude is not proportional to the 
increase in length of the corresponding lines. 2001, Tufte.  
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the graph type and the techniques to improve data visualization described in the previous 

paragraphs, mastering graphicacy requires three steps, which have been metaphorically 

defined as (1) reading the data, (2) reading between the data and (3) reading beyond the data 

(Curcio, 1987; Friel et al., 2001). The first step consists in extracting the data by visually 

inspecting the elements drawn in the graph; the second step requires inferring the 

mathematical relation between the variables; the third step refers to the ability to make a 

numerical forecast based on the graph’s underlying trend. This three-steps classification is 

particularly useful to organize the heterogeneous corpus of studies about graph perception 

and comprehension. I will detail each step separately in the following paragraphs. 

 

Data extraction: the visual processing of graphs 

Before any complex understanding of the graph content, the reader has to correctly process 

the visual features of the graph. The first attempt to systematize them was made by the 

French cartographer Jacques Bertin in 1967 (Bertin, 1967). First, he defined the three 

elements used to signal the position of the information units on the graph: points, lines and 

areas, which are, respectively, the 

elements used in scatterplots, line 

graphs and histograms/pie charts. 

Second, and most importantly, he 

provided examples of the six features 

that those elements can take inside a 

graph, i.e., the way such elements can be 

distinguished from one another, often in 

order to introduce a third variable in the Figure 11. Combination of elements and features in graphical 

representations (Sémiologie graphique; 1967, Jacques Bertin).  
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representation. These features are: size, value, texture, color, orientation and shape. A 

summary of the combination of elements and features is provided in figure 11.  

Bertin offered many suggestions about which combination is better suited for a given dataset: 

for example, he encouraged using size and position when representing quantitative variables 

and he saw value and texture as more adapt than color at communicating order. However, 

he did not provide an empirical investigation of the human abilities at perceiving these 

elementary visual elements. The first to do so were Cleveland and Mcgill (Cleveland et al., 

1982; Cleveland & McGill, 1985, 1985): they considered Bertin’s (and other) visual elements 

and asked human participants to judge the ratio of two values expressed through a given 

visual element. For example, how larger a circle is compared to another one, how wider an 

angle is compared to another one. Their findings (recently replicated with online testing: Heer 

& Bostock, 2010) allowed them to order visual elements on the basis of participants’ accuracy 

at judging those ratios. Figure 12 shows this ordering, from visual elements harder to 

distinguish to those easier to tell apart.  

Color and brightness can also affect the ease of data extraction from a graph (Vanderplas et 

al., 2020). Indeed, most Gestalt principles of perceptual organization play a crucial role in data 

extraction (Kosslyn & Kosslyn, 2006): for example, data points that are closer in space are 

Figure 12. Visual features used in a graph, ordered from the hardest to detect to the easiest to detect, based on 

the literature reviewed in the text: curvature, volume, area, angle, orientation, length, position. 
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more likely to be perceived as grouped (Ciccione & Dehaene, 2020), and vertical and 

horizontal lines are easier to discriminate than oblique ones (Appelle, 1972). 

Other studies have also investigated the visual illusions that certain representations might 

induce in extracting data from a graph, thus resulting in possible confusions and 

misunderstandings for the reader. Franconeri and colleagues recently provided a 

comprehensive review of these illusions (Franconeri et al., 2021), together with a critical 

analysis of the existing research-based guidelines in data visualization. It is worth noting that, 

despite this and other recent efforts, data visualization guidelines are still often taken as 

granted (as it is the case for most of Tufte’s work), although not being rooted in scientific 

evidence; and even when they are backed up by empirical proofs, they come from very distant 

research communities (ergonomics, graphic design, cognitive psychology, user experience…), 

thus making it hard to easily navigate through the different pieces of evidence.  

 

Data understanding: inferring the mathematical function 

The second step, inference or “reading between the data”, refers to the ability to infer the 

nature of the mathematical function that relates the data in the graph. Most studies in this 

field have focused on a specific paradigm of “function learning”, the ability to learn the 

functional mapping between a set of input values and a set of output values. However, these 

studies did not primarily focus on graphs, but mostly on the sequential presentation of pairs 

of input/output data. In such paradigms, there is a learning phase during which participants 

slowly infer (with or without corrective feedback) the nature of the relation between paired 

stimuli, the data being presented for instance as horizontal bars (one for the input value, and 

another for the output value of the function given that input). When participants were asked 

to generalize from new input stimuli, they often gave evidence of having correctly learned and 
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applied the function that linked the input and output values (Bott & Heit, 2004; Carroll, 1963; 

DeLosh et al., 1997), but failed at doing so for more complex non-linear functions (Kalish, 

2013). 

While a growing body of literature focused on the cognitive mechanisms of function learning, 

few studies investigated the capacity to infer functions from classic graphical stimuli (such as 

line plots or scatterplots drawn on a Cartesian plane). A notable exception is the work of 

Schulz and colleagues (2017), who found that human adults could successfully interpolate and 

extrapolate sophisticated functions (such as a sinusoidal function with an increasing 

amplitude) from a plot of their graph. Schulz and colleagues suggested that this ability 

reflected the existence of a compositional grammar of functions, which allows human adults 

to understand complex functions as the composition of a small repertoire of simpler ones. 

Other authors have shown that, when exposed to a noisy scatterplot, participants tend to 

interpolate functions with a lower polynomial degree than the real one (Little & Shiffrin, 2009) 

and their subjective ability to interpolate is negatively affected by increasing levels of noise 

(Schulz et al., 2015). Other studies showed that participants could, in a slow and reflexive 

manner, fit a linear function to a given scatterplot after receiving formal training on statistical 

regressions (Mosteller et al., 1981). Human adults may even adjust quadratic and 

trigonometric functions to an underlying scatterplot, once they are precisely informed about 

the nature of each curve (Correll & Heer, 2017). 

Closer to the present research, the perceived correlation in a scatterplot has been investigated 

as well. When asked to judge the degree of association between two variables in a scatterplot, 

participants tend to underestimate it (Strahan & Hansen, 1978) and this underestimation is 

higher for regression slopes further from a 45° orientation (Bobko & Karren, 1979). 

Participants’ ability to compare scatterplots with different correlation coefficients follows 
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Weber’s law (Harrison et al., 2014; Rensink & Baldridge, 2010) and they perceive datasets as 

more highly correlated if the axes are scaled in order to make the underlying function’s slope 

appear steeper (Beattie & Jones, 2002; Cleveland et al., 1982). Interestingly, it has been 

observed that correlation judgments might indeed be based on a small number of visual 

features in the graph, rather than on the correlation itself (Yang et al., 2019). Also, 

participants’ performance at extracting the regression’s slope is affected by the localization of 

the scatterplot: positive slopes are more easily detected if the scatterplots are presented on 

the right of the visualization area, and the opposite is true for negative slopes (Parrott et al., 

2014), a bias consistent with the Spatial-Numerical Association of Response Codes (SNARC) 

effect (Dehaene et al., 1993). 

 

Data forecasting: predicting the future 

The third step, numerical forecasting or “reading beyond the data”, is the capacity to make 

numerical predictions and forecasts based on the data presented, i.e., to extrapolate beyond 

the existing data range. Given its many concrete applications, it is not surprising that the 

majority of studies in this area have been conducted by researchers in finance, economics and 

politics. Studies on this topic are too diverse in methods and purposes to be reviewed here. 

Most pertinent to the present work is a general tendency to underestimate future data points 

if they are based upon a non-linear, positively accelerated function (Lawrence et al., 2006; W. 

Wagenaar & Sagaria, 1975). The authors speculated that, in a real-world context, most trends 

do not keep growing at the same steady rate and, knowing this, participants might be 

conservative in their predictions. Better extrapolation performance has been obtained 

through experimental designs involving numerical values instead of scatterplots (Lawrence & 

Makridakis, 1989). The noise of the dataset was also found to affect extrapolation 
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performance (Harvey et al., 1997), and participants seemed to add noise to their 

extrapolations, as if they were attempting to make their predictions more consistent with a 

noisy forecast (Bolger & Harvey, 1993). 

 

THE THESIS’ GOAL: INVESTIGATING THE COGNITIVE AND NEURAL BASES OF GRAPH 

PERCEPTION THROUGH A PSYCHOPHYSICAL APPROACH 

Overall, the heterogeneous set of studies presented so far, which vary considerably in both 

methods and research questions, do not provide a thorough psychophysical investigation of 

human abilities to detect trends in noisy graphical representations, in the absence of any 

reference to the graph’s meaning, context, or underlying function. The vast majority of these 

studies used very few stimuli, did not systematically explore the multiple parameters of the 

graphs, provided considerable training and/or background information about the underlying 

functions, left considerable time for subjects to inspect the data and strategize about the task, 

and none of them measured the time needed to extract statistical information from a graph, 

for instance to perform a simple trend judgment. Here, our goal was to begin to fill these gaps. 

We ran a series of behavioral experiments with the purpose of studying human accuracy, 

response times and biases in the visual extraction and inference of statistical information from 

noisy graphs. For simplicity, we focused on one of the simplest graphical representations, the 

scatterplot. This choice was made for different reasons. First, in order to minimize the effects 

of learning and memory, which, as pointed out by several authors (Little & Shiffrin, 2009; Lucas 

et al., 2015; Villagra et al., 2018), were certainly at play in the aforementioned classic studies 

of function learning, mostly based on long training sessions with serial presentations of 

input/output pairs. Indeed, one of the most remarkable properties of the scatterplot is its 

ability to simultaneously represent, in a single graph, a very large data set, thus allowing 
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participants to perform a statistical judgment on each single trial. Second, the scatterplot is 

perfectly suited for a fine manipulation of its appearance, for which – unlike natural scenes – 

we can know all statistical aspects: as I will describe in the methods’ sections of the following 

chapters, it is easy to generate a desired number of points with gaussian noise around the 

equation of a line with a certain slope, thus investigating separately the influence of each of 

these factors (i.e., number of points, noise and slope) on participants’ performance (on the 

usefulness of graphs as ideal perceptual stimuli, see: Szafir et al., 2016). Third, scatterplots can 

easily reveal non-linear trends, therefore not limiting our investigation to linear functions. 

They are also the elective graphical tool (Orr et al., 1991) for the visual exploration of the 

presence of outlier observations. Fourth, they are represented along two axes, which can in 

turn be experimentally manipulated, for example by varying their scale from linear to 

logarithmic. Fifth, they are generally used for different purposes, such as detecting a general 

trend, interpreting the rate of growth or extrapolating future observations. This means that 

we could ask participants to perform a variety of tasks on the same kind of stimuli, which is 

crucial for the sake of generalization of our findings. Sixth, the simplicity and versatility of 

scatterplots made them good stimuli candidates for a neuroimaging investigation of the neural 

bases of the perception of graphs. Last but not least, as briefly stated in the introduction, 

scatterplots are one of the most used graphical representation: it thus seemed reasonable to 

start our psychophysical investigation of graphs from a well-known and used existing chart. 

 

Research questions and organization of the chapters 

I applied a psychophysical approach to all three fundamental steps of graphicacy described in 

the previous section: data extraction, inference of the mathematical function and data 

forecasting. More precisely, I organized my investigation of the cognitive bases of graph 
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perception guided by several research questions. I here introduce those questions and the 

studies performed in order to answer them; each number in the list refers to the 

corresponding chapter in the thesis.  

1) What are the precursors of graph perception? In order to answer this question, I 

designed a novel psychophysical task of trend judgment, which is one of the simplest 

statistical judgments that can be performed over a noisy graphical representation. By 

finely manipulating several features of the scatterplot, I was able to characterize the 

psychophysical characteristics of such intuitive data extraction, finding that human 

performance is tightly predicted by the t-value, i.e., the statistical significance of the 

correlation expressed in the graph (study 1). I replicated these findings with a large-

scale online study and I operationalized a graphicacy index based on the performance 

on this simple trend judgment task, finding that it correlates with self-evaluations of 

statistical and mathematical knowledge (study 2). I further investigated whether these 

intuitive graphics abilities are available early in the development and independently 

from formal schooling: to do so, I asked unschooled Himba people (study 3) and 6-

year-old children (study 4) to perform the same trend judgment task, obtaining similar 

results. 

2) How accurately can humans perform a mental regression over a noisy graph? In order 

to answer this question, I asked participants to adjust a line over a flashed scatterplot 

(study 5), finding that they do not minimize the vertical distance of the points to the 

fit (as expected by classic OLS regression) but rather the orthogonal distance (as in 

Deming regression). I replicated this Deming bias with an extrapolation task in which 

participants were asked to forecast data outside the portion of graph presented to 

them (study 6), thus showing that the bias we discovered is independent from task 
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modality and probably due to the way our visual system extracts summary information 

from noise. 

3) Is human mental regression resistant to outliers? In order to investigate the limits of 

human intuitive statistical abilities over noisy graphs, I asked participants to perform 

the same trend judgment and line adjustment tasks over scatterplots including outliers 

(study 7), either without informing them of their presence or by asking them to 

exclude outliers from their judgments. I found that humans are strongly attracted by 

outliers in their judgment, in partial contradiction with the findings from the ensemble 

perception literature, which suggest that, when averaging a perceptual dimension 

over multiple stimuli, humans automatically exclude distractors and outliers. I also 

found that, when asking participants to explicitly detect outliers before making a 

mental regression, their attraction towards deviant observations is reduced but not 

excluded.  

4) Can humans correctly forecast data from graphs underlying non-linear functions, 

including the famous exponential growths? I asked participants to perform an 

extrapolation task from noisy scatterplots generated from non-linear trends, including 

piece-wise linear, sinusoid and quadratic functions (study 8); I found that their 

performance, generally accurate, depend on the evidence provided in the graph and 

is quite low for quadratics. In a large-scale online study (study 9) I found that, for 

exponentials, participants tend to largely underestimate their forecasts, unless the 

data are presented on a log scale (thus resulting in a visually linear function), in which 

case other biases appeared, including anchoring effects to displayed numerical values. 

5) What are the neural bases of graph perception? With 3T fMRI I investigated the neural 

bases of the trend judgment task (study 10; the study is currently ongoing). 
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In the studies described in this chapter we asked participants to make a simple decision about 

a noisy scatterplot (“does it go up or down?”), bringing classical methods of psychophysics 

and mental chronometry to the study of human graph perception. Specifically, our first 

empirical questions were the following: can human adults perform a fast judgment of the 

trend underlying a noisy scatterplot, i.e., understand whether the data is increasing or 

decreasing? Which factors affect participants’ accuracy and response times in such a task? Do 

participants perform a mental computation akin to the computation that a statistician would 

perform to detect if a significant positive or negative trend is present? Are these abilities also 

found in 6-year-old children and unschooled adults? Do they correlate with mathematical and 

statistical knowledge?  

We tested 10 adult participants in our laboratory (study 1), 3943 adult participants online, 

who performed the task on their computers or smartphones/tablets (study 2), 87 adult and 

teenager Himba participants in Namibia, who performed the task on tablets (study 3) and 27 

6-year-old children of the Académie de Versailles, who also performed the task on tablets 

(study 4). 
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STUDY 1: TREND JUDGMENT ON NOISY SCATTERPLOTS 

In our first experiment, we tested in our laboratory if human adults can perform a fast, 

intuitive judgment of whether a scatterplot of data shows an increasing or decreasing trend. 

We generated the graphs according to the hypotheses of classical linear regression (“ordinary 

least squares”): the values on the ordinate (called yi) were a linear function of the values on 

the abscissa (called xi) plus independent Gaussian noise (𝑦! = 	𝛼𝑥! + 𝜀!, where 𝜀!  are random 

numbers independently drawn from a normal distribution centered on zero and with 

standard deviation s). We varied orthogonally three parameters of the graphs: the slope of 

the linear trend (a); the number of points (n); and the standard deviation of the noise (σ). 

This experimental design was chosen because it allowed to compare the performance of 

human participants with a normative model of decision making in this task. As further detailed 

in appendix A, classical statistical theory predicts that the optimal decision should be 

determined by a simple t test, similar to the one that statisticians use to test for the presence 

of a positive or negative linear trend. The theory further predicts that responses should be a 

sigmoidal function of the t-value, and that the response time should be a decreasing, convex 

upward function of the absolute deviation of the t-value from zero. The sole dependence of 

decisions on the t-value also implied that decision difficulty should vary significantly with all 

three of the manipulated graph parameters (n, σ and a), because all of them influence the 

statistical t-value: it varies positively and linearly with the slope a, positively with the number 

of points (as the square root of n-2), and inversely with the noise level σ. Finally, the theory 

predicts that the effects of these variables should be jointly subsumed by an effect of the t-

value on behavior.  
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METHODS 

Participants 

10 participants were recruited (age: 23.9 ± 1.5, 4 females, 6 males). All participants had 

normal or corrected to normal vision, no medical history of epilepsy, were right-handed, and 

did not take psychoactive drugs. They all signed an informed consent and were paid 5 euros 

for their participation. The experimental session lasted approximately 30 minutes. The 

experimental procedure was approved by the local ethical committee. 

Experimental design and procedure 

Each participant was presented with 672 scatterplots and, for each of them, was asked to 

decide, as fast as possible, if the dataset was increasing or decreasing. Each scatterplot was 

the graphical representation of a dataset that was generated randomly, independently for 

each participant, using a linear equation plus noise (see below). The design was a full factorial 

design where we varied the number of points (n = 6, 18, 38 or 66), the standard deviation of 

the noise (σ = 0.05, 0.1, 0.15 or 0.2), and the slope of the underlying linear trend (a = -0.1875, 

-0.125, -0.0625, 0, +0.0625, +0.125 or +0.1875), for a total of 4x4x7=112 combinations. The 

values of n were chosen so that √𝑛 − 2 , which is the value that enters in the t-test for the 

significance of a regression, was linearly distributed (√𝑛 − 2 = 2, 4, 6 or 8). The other factors 

were selected after piloting in order to avoid excessive difficulty as well as ceiling effects; 

specifically, we chose relatively high levels of noise and relatively small levels of a in order to 

make the task non-trivial. The 112 combinations of parameters were randomly presented to 

each participants in each of the 6 experimental blocks, for a total of 672 trials per participant. 

The participants were invited to sit on a fixed chair with their head at a distance of 50 cm from 

the screen. As illustrated in figure 13A, a fixation cross first appeared for 1000 ms, 

immediately followed by the flashing of a scatterplot for 100 ms, and then by a fixation circle 
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of 1 cm diameter at the center of the screen; the participants were informed that the circle 

marked the onset of the response window. Participants were asked to respond as fast and as 

accurately as possible. Half of them responded by pressing with their right index on a key 

(signaled with a Ý sticker) on the right side of the keyboard if they thought that the trend in 

the scatterplot was increasing; and, conversely, they pressed with their left index on a key 

(signaled with a ß sticker) on the left side of the keyboard if they thought that the trend in 

the scatterplot was decreasing. The opposite response configuration was presented to the 

other half of the participants. Once they gave their answer, a fixation cross appeared again 

for 1000 ms, inviting the participants to concentrate on the center of the screen before a new 

stimulus appeared. As mentioned, the task was divided into 6 blocks of 112 trials; the duration 

of each block was ~4 minutes. After each block, the participants could take a short break and 

received feedback on the total number of correct responses they gave in that block. Before 

the beginning of the actual experiment, 25 practice trials were run under the supervision of 

the researcher, in order to control for the correct execution of the task. 

 
Figure 13. A, task: subjects were presented with a simple scatterplot, generated by a linear function plus noise, with a variable 

number of datapoints, and were asked to judge if the trend was ascending or descending. B, examples of stimuli. 
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Stimuli 

Each scatterplot comprised two unlabeled lines denoting the x and y axes (which remained 

on screen for the duration of the experiment), each marked with three small ticks at the 

values 0, 0.5, and 1 (see figure 13; those numbers were arbitrary and were not shown to the 

participants). The dots’ coordinates were calculated by a Python program as follows. First, the 

algorithm used the desired number of dots, n, to generate the x values (denoted xi) such that 

they ranged from 0 to 1 and were equally spaced. Thus, for example, for all configurations 

having 6 points, the x values were always [0, 0.2, 0.4, 0.6, 0.8, 1]. The y coordinates were then 

determined according to the following equation: yi = α xi + ei, where α is the prescribed slope 

and the ei are random numbers independently drawn from a normal distribution centered on 

zero and with standard deviation s. If, occasionally, a point took a particularly high or small y 

coordinate (y<-0.27 or y>1.27), which would have exceeded the boundaries of the y axis, the 

algorithm was reinitialized for that particular trial. The noise terms eI were generated 

independently for each trial and each participant. Due to this noise term, the actual linear 

regression line, as calculated from each dataset, could pass slightly above or below the center 

of the screen. To sidestep this issue, the coordinates were adjusted vertically by subtraction 

of the mean to ensure that the underlying regression actually passed through the exact center 

of the screen (i.e., through the point P having coordinates x = 0.5 and y = 0.5). The x and y 

coordinates were then rescaled to the coordinates of the computer screen used in the 

experiment, and each data point was represented by a 2-mm white dot centered at the 

appropriate location (~0.23° of visual angle given the distance of 50 cm from the screen). 

Figure 13B shows four examples of scatterplots derived from datasets with different 

parameter values. As we can see, higher values of a correspond to higher inclinations of the 

graph, and higher values of s result in noisier scatterplots. 
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RESULTS 

Performance depends on the t-value of the scatterplot 

We first looked at the proportion of “increasing” responses as a function of the prescribed 

slope a and either the prescribed noise σ or the number of points (figure 14). A repeated-

measures ANOVA on the fraction of “increasing” responses confirmed a main effect of the 

prescribed slope (F[6, 54] = 466.51, partial h2 = .98, p <.0001), and its interaction with noise 

(F[18,162] = 12.62, partial h2 = .58, p <.0001) and with the number of points (F[18,162] = 4.97, 

partial h2 = .36, p <.0001). In other words, the smaller the slope, the higher the influence of 

noise and number of points on the trend detection task. 

We also conducted an analysis of each participant’s sensitivity to prescribed slope, as a 

function of the noise σ and number of points n. We fitted a logistic regression to the 

percentage of “increasing” responses as a function of the prescribed slope, separately for 

each participant, noise level, and number of points, and used the slope of that logistic function 

Figure 14. Accuracy of human subjects in judging whether a noisy scatterplot is increasing or decreasing. The percentage of 

“increasing” responses is affected by the prescribed slope of the graph (a), the noise in the graph (σ) and the number of points (n). 

The third plot shows that subjects’ responses depended not only on the prescribed slope a, but on the actual slope α" after the addition 

of noise. The fourth plot shows that all the effects of noise, number of points and slope could be subsumed by an influence of the t-

value associated with the Pearson coefficient of correlation, as if participants performed a mental linear regression. In this graph, each 
dot represents the mean, across trials and subjects, of all data for one of the 112 experimental conditions determined by each 

combination of a, σ and n. 
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as an indicator of sensitivity. In a few cases (11 out of 160 combinations), the logistic 

regression was not a meaningful indicator of performance since the data were better 

modeled through a step function (meaning that perfect answers were always given, thus 

resulting in a slope approaching to infinity); these cases were substituted with the maximum 

observed value. We submitted the resulting sensitivity values to a repeated-measures 

omnibus ANOVA and found a significant main effect of noise (F[1.61, 14.45] = 82.72, partial 

h2 = .90, p <.0001) and a significant main effect of the number of points (F[2.29, 20.60] = 

19.33, partial h2 = .68, p <.0001). The direction and monotonicity of these effects indicated 

that, as expected, participants’ decisions became increasingly sensitive as the datasets had a 

smaller noise level and a higher number of data points. 

Because of the randomness in the stimulus generation process, on any given trial the actual 

slope of the linear regression line a, could differ from its prescribed value a. We wondered if 

participants were sensitive enough to detect such variations in the actual slope of the graph. 

To this end, we looked at the fraction of “increasing” responses as a function of the prescribed 

slope a, while separating the trials based on whether the actual slope a, was above or below 

a (figure 14, third plot from the left). A repeated measures omnibus ANOVA revealed a 

significant effect of the prescribed slope (F[2.83, 25.51] = 549.13, partial h2 = .98, p <.0001), 

of the direction of the actual slope (F[1, 9] = 3109.05, partial h2 > .99, p <.0001) and an 

interaction of the two factors (F[2.37, 21.32] = 39.62, partial h2 = .81, p <.0001), meaning that 

participants were strongly influenced by the actual slope a,. We confirmed this effect by 

focusing on scatterplots with a prescribed slope of zero, and with an actual slope extremely 

close to zero (between -0.03 and +0.03), and examined if participants were still able to extract 

the correct trend for those very hard trials. Indeed, the number of “increasing” responses was 
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significantly larger for positive slopes (95/156 = 61 %) than for negative slopes (68/170 = 40 

%; c2 = 14.21, df = 1, p<.001), indicating a significant sensitivity even within this limited range. 

The results so far indicate that participants’ judgements were highly sensitive to the slope, 

the noise, and the number of points in a graph. We next tested the prediction of the “mental 

regression” hypothesis, according to which all of these effects may be subsumed by a single 

equation, the t-value that a statistician would compute to judge whether a significant trend 

is present in the data. For each graph, we computed the Student t-value associated to its 

Pearson coefficient of correlation and replotted the percentage of “increasing” responses as 

a function of that t-value (figure 14, right). As we can see, participants’ mean performance 

was a sigmoid function of t. We compared the logistic regression of participants’ responses 

as a function of either the actual slope (a,) or the t-value. A simple model comparison based 

on the Akaike Information Criterion (AIC) values revealed that participants’ responses were 

significantly better predicted by the t-value (AIC for actual slope as predictor: 4138; AIC for t-

value as predictor: 4086.7; DAIC = 51.3, p <10-16). Furthermore, we replicated the above 

sensitivity analysis once the data were accounted for by the t-value, and verified that the 

sensitivity values, once computed as a logistic function of t, were no longer affected either by 

s or by n (respectively F[1.4, 12.63] = 1.27, partial h2 = .12, p =.3 and F[1.61, 14.53] = 1.18, 

partial h2 = .12, p=.32). In other words, the entire behavior was captured by a single value, 

the  t-value (figure 14, fourth plot from the left). 

One might argue that the Pearson coefficient of correlation r may also provide a good model 

of human behavior. Indeed, r is a measure of the strength of a linear trend that jointly 

summarizes the effects of the slope α and the noise s – but crucially, not the number of points 

n. To investigate whether r alone sufficed to account for behavior, we performed the same 

sensitivity analysis as above, as a logistic curve either as a function of r or of t. Sensitivity 
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values, when computed as a logistic function of r, were still significantly affected by the 

number of points (F[2.49, 22.39] = 10.64, partial h2 = .54, p < .001), whereas when computed 

as a logistic function of the t-value, as already noted, the effect of number of points 

disappeared. 

Response times are also predicted by the t-value of the scatterplot 

We then looked at the response times as a function of the prescribed slope and either the 

prescribed noise (figure 15, left) or the number of points (figure 15, middle). We conducted a 

repeated-measures omnibus ANOVA with median response times per condition as dependent 

variable, and prescribed slope, noise and number of points as within-participants factors. We 

found a main effect of slope (F[6, 54] = 21.06, partial h2 = .7, p <.0001), a main effect of noise 

(F[3, 27] = 20.07, partial h2 = .69, p <.0001), and an interaction of noise and slope (F[18, 162] 

= 3.05, partial h2 = .25, p <.0001). As we can see from figure 15 (left), higher slope values and 

smaller noise values led to faster responses. As concerns the number of points, although there 

Figure 15. Response times in study 1 (trend judgment). Mean response times are shown as a function of the prescribed slope (a) and 

either the noise (σ, left) or the number of points (n, middle). Error bars indicate one standard error of the mean across subjects. The 

plot on the right shows the response times as a function of the t-value associated to the Pearson coefficient of correlation. The blue 

line indicates the response times predicted by a simple accumulation-of-evidence model (Gold and Shadlen, 2002). 
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was no main effect of this variable (F[3, 27] = 0.47, partial h2 = .05, p =.7), it entered into 

significant interactions with both slope (F[18,162] = 1.88, partial h2 = .17, p = .02) and noise 

(F[9,81] = 2.7, partial h2 = .23, p <.01). Once again, as shown in figure 15 (right), those effects 

on median response times were well summarized by a single function of the t-value 

associated to the regression: RTs varied as a symmetrical, convex-upward, monotonously 

decreasing function of the distance of the t-value from zero. 

Could the shape of this RT effect be predicted by the mental Pearson model? Following Gold 

& Shadlen (2002), we assumed that participants based their decisions on a noisy accumulation 

of evidence towards a fixed decision bound.  Given our theoretical assumptions (see appendix 

A), we assumed that the noisy samples upon which the decision was based arose from a 

sampling of the regression t-value. Under those assumptions, the probability P of responding 

“increasing” and the mean RTs should follow the following joint equations (see Gold & 

Shadlen, 2002): 

P(t) = 	 11 +	𝑒"#$% 
and 

RT(t) = 𝐵|t| 	tanh	(𝐵|t|) 
where B is a free parameter that corresponds to the slope of the psychometric function. We 

first fitted B using the performance data presented in figure 14 (right), then plugged this value 

into the second equation to obtain the shape of the predicted RT as a function of the t-value 

in our stimuli. We thus obtained dimensionless predicted RTs for each experimental 

condition, which we fitted to the data using a 2-parameter linear regression where the 

dependent variable was the across-participants mean RT in each of the 112 experimental 

conditions. The model provided a very good fit to the participants’ RTs (r²= 0.76; regression 
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slope = 286 ± 15 ms, t(110) = 18.97, p <10-16; intercept (non-decision time) = 429 ± 11 ms, 

t(110) = 37.43, p <10-16).  The corresponding curve is shown in blue in figure 15 (right).  

 

DISCUSSION 

The results from the first experiment reveal that participants are able to quickly extract the 

linear trend of a scatterplot, without requiring any sophisticated training or long exposures 

to the stimulus. The fast presentation time (100 ms) and the short response times we 

observed (below 900 ms on average, see figure 15) imply that participants did not have time 

to perform complex calculations. Rather, they must have relied on an intuitive yet accurate 

estimate of the correlation. In fact, even on trials with a prescribed slope equal to 0, 

participants’ performance remained above chance level, indicating a fine sensitivity to 

random variations in the graphs.  

As expected, all three parameters of slope, noise and number of points significantly affected 

participants’ accuracy, making it lower for shallower slopes, higher noise levels and smaller 

datasets. Similar effects were observed on RTs, and all those effects were subsumed by the t-

value predicted by Pearson coefficient of correlation. By applying the model of Gold and 

Shadlen (2002) to our data, we found that participants’ decisions followed the prediction of 

a classic accumulation-of-evidence decision model; in our data, the decision variable was the 

strength of the t-value associated with the Pearson correlation coefficient. This finding 

suggests that, before giving an answer, participants were accumulating evidence on the 

dataset’s trend, and that this decision process approximated a statistical regression 

procedure. Indeed, participants’ performance was better modeled as a function of the t-value 

rather than as a function of the prescribed slope. Thus, when detecting a scatterplot’s 
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tendency, human adults do not solely rely on the slope of the linear regression, but extract 

an approximate summary statistic. 

It is noteworthy that the mean RTs did not increase with the number of points n. On the 

contrary, RTs either stayed roughly constant or even decreased with n for large values of the 

slope α (see figure 15). Thus, participants did not treat the data points serially, as would have 

been unavoidable if the data were presented through numbers (such as in a tabular form), 

but took advantage of the graphic presentation to process them in parallel. We conclude that 

the human visual system affords a parallel form of approximate regression. Note that the 

coefficient of correlation formula involves only variances (in x and y) and covariances, all of 

which are sums or, equivalently, averages over values provided by each data point – and there 

is considerable prior evidence that the visual system can compute averages of various 

features in parallel across the items in a set (“ensemble perception”; see e.g. Chong & 

Treisman, 2003, 2005; Van Opstal et al., 2011). The findings of study 1 seemed to extend this 

concept to the case of statistical trend perception. 

The present results go beyond previous studies (Cleveland et al., 1982; Lane et al., 1985; 

Rensink & Baldridge, 2010) which showed that, when participants are asked to judge the 

strength of an association presented in a scatterplot, their judgement is more accurate for 

higher levels of the Pearson correlation coefficient r, although still affected by the variance of 

the dataset (Lane et al., 1985). As pointed out by Surber (Surber, 1986), however, the 

interpretation of subjective ratings of correlation is complex and may be hard to relate to 

objective statistics. In agreement with this observation, Cleveland and colleagues (Cleveland 

et al., 1982) found that the perceived correlation was particularly small for values of r < .5, 

suggesting that only high levels of r (> .95) might relate to the actual r value. Also, prior beliefs 

have been recently shown to bias correlational judgments (Xiong et al., 2022). For these 
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reasons, in our study, we decided to avoid subjective measures of perceived correlation and 

asked for a more direct categorical trend judgement (increasing or decreasing). This forced-

choice task provides solid evidence that participants could perform a “mental regression” 

with a high sensitivity, even when the slope of the linear trend in the data was shallow and 

the noise was high. 

 

STUDIES 2, 3, AND 4: TREND JUDGMENT ACROSS AGE, EDUCATION, AND CULTURE 

Humans often exhibit a surprising intuitive grasp of the core concepts of mathematics, physics 

or statistics. These intuitive abilities, which emerge in the absence of formal education, are 

likely to rely on a system of core implicit knowledge about the fundamental properties of the 

environment in which humans evolved (Spelke & Kinzler, 2007). A solid body of research 

shows, for example, that humans can accurately and quickly grasp the approximate 

numerosity of sets of objects (Dehaene, 2011) and perform approximate calculations even in 

the absence of formal mathematical education (Pica et al., 2004). Euclidean and even non-

Euclidian geometrical intuitions of space are present in remote Amazon populations without 

access to formal education (Dehaene et al., 2006; Izard et al., 2011). In concrete settings, 

humans may also excel in intuitive physics: their misconceptions concerning the behavior of 

moving objects (McCloskey, 1983) disappear when questions are framed in familiar and real-

life contexts (Kubricht et al., 2017). Humans are also remarkably good at performing intuitive 

statistical estimations in a variety of tasks (Nisbett & Krantz, 1983) and they seem to be 

endowed with these abilities from early on in their development (Xu & Garcia, 2008). Indeed, 

many quantitative assessments of intuitive mathematics and physics have been proposed, 

and they often predict the subsequent development of higher-level cognitive abilities (Baron-

Cohen et al., 2001; Halberda et al., 2008; Perez & Feigenson, 2021; Piazza et al., 2010; Riener 
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et al., 2005), suggesting a strong link between basic intuitions and the formal mastery of 

complex concepts. 

Whether these core intuitions extend to graphical representations is still an open question. 

In fact, despite the widespread use of charts and plots in our everyday life, no quantitative 

assessment of intuitive graphics skills has been proposed. Here, we show how the graph-

based trend judgment task presented in study 1 offers a tool to quantify intuitive graphics 

skills. As I showed above, when facing a bivariate visual representation such as a noisy 

scatterplot (figure 1A), human adults can detect whether the curve is increasing or 

decreasing, regardless of the number of dots, noise level or slope of the graph. Their 

performance is simply subsumed by the t-value that a statistician would calculate to 

determine the significance of the trend in the data. In other words, the percentage of 

“increasing” responses is a sigmoid function of the t-value of the scatterplot. Here, we show 

that this task can be used to provide a quantitative assessment of graphicacy. As in any two-

alternative forced choice task, the slope of the psychometric function (figure 14, right plot) 

provides a measure of a participant’s sensitivity to detect variations in the stimulus: the 

steeper the function, the higher the participant’s precision. In studies 2, 3, and 4, we 

demonstrate that this simple psychophysical task is reliable and provides a simple way to 

quantitatively assess how good a single individual is in such a trend judgment. We also 

investigated the emergence and distribution of trend judgment skills across people of 

different ages, education levels and cultures.  

First (study 2), we tested intuitive graphics in a large-scale online sample of educated adults 

from all over the world, from which we obtained information about several demographical 

aspects including age, sex and education level, together with self-reports of mathematical and 

statistical understanding. Testing intuitive graphics on such a large and diverse population 
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offered insights into the predictors of these skills; also, it provided a large-scale replication of 

the psychophysical results obtained in the controlled laboratory environment of study 1, thus 

contributing to the growing but still scarce body of research on psychophysical measurements 

outside the lab (de Leeuw & Motz, 2016; Halberda et al., 2012; Semmelmann & Weigelt, 2017). 

Second (study 3), we explored whether graphicacy emerges as a result of graph exposure or 

whether some premises of graphicacy are universally available, even in the absence of formal 

education. To investigate this, we tested Himba participants, a Namibian people with no or 

little formal education, who are not exposed to any form of graphical representations. This 

sample of participants allowed us to test for the generalizability of such skills in non-western 

and unindustrialized societies, as previously been done for other intuitive skills (Spelke & 

Kinzler, 2007), including the perception of number (Pica et al., 2004) and geometry (Dehaene 

et al., 2006; Izard et al., 2011; Sablé-Meyer et al., 2021). 

In addition (study 4), we tested graphicacy in French 6-year-old 1st-graders who had not yet 

encountered any graphical representation in their school curriculum. In this manner, we 

asked whether the ability to compute intuitive visual statistics from graphical representations 

arises early on in development, as should be the case if it relies on a core skill of human 

cognition, similar to number sense or shape perception. As proposed by the cultural recycling 

hypothesis (Dehaene & Cohen, 2007), the latter two evolutionary old cognitive functions 

sustain culturally learned skills (respectively, arithmetic and reading abilities). Similarly, 

humans’ ability to read and interpret complex graphs might be sustained by more 

fundamental cognitive functions available early on in development and irrespectively of 

formal education, such as the ability to recognize the orientation of objects. As previously 

discussed, our findings from study 1 point indeed to that direction: simple trend judgments 

performed on noisy scatterplots are based on metrics close to their principal axis’, thus 
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suggesting that the ability to identify objects’ orientation might be a core skill at the root of 

graph perception and understanding. Showing that graphical intuitions are available to 1st-

graders would constitute a further piece of evidence of its “core” nature. 

 

METHODS 

Experimental procedure and participants 

Online participants. The online test was advertised and shared on social networks (mainly 

through Twitter). It could be performed either on computers or on tactile devices. Participants 

had to read and accept a written consent and to declare to be at least 18 years old before 

taking part in the experiment, in compliance with the local Ethical Committee that approved 

our research. Data collection for the purpose of the study started on the 15th of January and 

ended on the 15th of March 2021, as planned ahead of the experiment. The link to the test 

was still running after that date, but the data were not included in the current work. 

Before taking the test, all participants answered a demographic questionnaire consisting in a 

series of single-answer questions about: country of origin, age, gender, number of previous 

participations in the task (if any) and the highest level of education attained. If participants 

declared to have completed a university degree, they were asked to choose the closest field 

of the degree within a list and their average grade in mathematics during their school and 

university years. Using a Likert scale (ranging from 1 to 10, with intermediate numbers not 

shown), all participants had to rate their subjective self-evaluation of their: familiarity with 

graphs, ability to read scatterplots, knowledge of statistics, current skills in mathematics, and 

current skills in their first language in terms of spelling, grammar and communication. Once 

the demographic questionnaire was completed, participants started the experiment 

(smartphone users were asked to rotate their phone horizontally: otherwise, the task would 
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not start; accidentally orientating the phone vertically during the task lead it to pause the 

experiment). The instructions and the questionnaire were available in six languages: English, 

French, Italian, Spanish, Portuguese and Chinese. 3943 subjects participated and completed 

the online experiment (the ones that did not complete the task were not included in the data 

analysis). 2409 of them declared being women, 1294 men, 183 non-binary, 20 “other” than 

the previous ones, and 137 preferred not to answer. The average age was 28.8 ± 9.6 years.  

Himba. 87 Himba participants (39 women and 48 men) were recruited in small villages in the 

Kunene region, Northern Namibia. Most Himba do not know their age. Participants’ age, 21.1 

± 9.4 years, was evaluated by local research assistants who were bilingual Namibians (in 

Otjiherero and English) and instructed each participant about how to perform the task on a 

tablet using the native language of the participant (Otjiherero).  Before the experiment, each 

participant was provided with four examples of stimuli and the expected correct answers. 

Each participant indicated whether they had received any type of formal schooling. 

Rudimentary mobile schools (using black board and chalk) exist in the Kunene region and 12 

participants declared having received at least one year of such form of schooling. 

Children. 27 French 1st graders (6 ± 0.6 years) took part in the experiment (approved by the 

local ethical committee under the reference CER-Paris-Saclay-2021-046). 13 of them declared 

being girls, 14 being boys. They all completed the experimental tasks. Each child was 

accompanied by an experimenter to a silent room and invited to sit on a chair facing a table. 

Before starting the actual experiment, they performed three short behavioral tests: a one-

minute reading task consisting in a series of French words of increasing difficulty; a one-

minute counting task of sets of points of discontinuously increasing numerosity; a one-minute 

counting task of those same sets of points but organized in groups (e.g., 4 groups of 3). The 

first task provided a number of correctly read items in one minute, which was used as a proxy 
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of reading abilities. The difference in correctly enumerated items between the second and 

the third task provided an implicit measure of the mastery of arithmetic operations, because 

grouped items can be enumerated faster if children know how to perform mental arithmetic 

(Ciccione & Dehaene, 2020; Starkey & McCandliss, 2014). The main experimental task was 

performed on a tablet and, immediately before it, each child was provided with four examples 

of stimuli and their expected correct answers.  

Experimental task 

The task consisted in the rapid presentation (100 ms) of scatterplots (see figure 16A for a few 

examples). Participants performed a trend judgment task, identical to that described in study 

1: they had to judge, as fast and accurately as possible, the trend of the scatterplot (increasing 

or decreasing), by pressing one of two separate keys on their computer keyboard or, if they 

played on a smartphone/tablet, by touching an upwards or a downwards arrow. For the 

online experiment, the response configuration of the keys and the arrows was randomly 

determined at the beginning of the experiment for each subject, in order to control for 

possible preferential response sides; also, each correct response was rewarded with a certain 

number of points, inversely proportional to the response time, in order to push participants 

to be both accurate and fast. To maintain a high level of attention in the task, consecutive 

correct responses were rewarded with increasingly higher points. Also, a pleasant sound 

followed each correct trial and an unpleasant sound followed each incorrect trial. For children 

and Himba participants, a smiling green face or a red unsmiling face was displayed instead of 

the numerical score. A fixation cross was presented for 1000 ms before the following trial 

appeared. The experimental session lasted around 6 minutes. Online and Himba participants 

had the opportunity to realize another run or to stop. Online participants could also check 

their percentage of correct responses and their ranking among other participants in the 



 62  

world. For data analysis, we rejected any answer that was given after more than 5 seconds 

from the stimulus onset (0.75% of trials for online participants; 9.39% for children; 0.91% for 

Himbas). 

 

Stimuli 

Both the experimental task and the stimulus generation algorithm were identical to the ones 

already used in the laboratory study version of the task (study 1). Figure 16 A shows four 

examples of stimuli. For each scatterplot, the t-value associated to its Pearson coefficient of 

correlation was calculated. Figure 16B shows examples of responses for one subject: each 

Figure 16. A simple test of graphicacy. A: 

four examples of stimuli shown to one 

participant in the trend judgment task, 
where the participant was asked if the 

graph was increasing or decreasing. The 

actual stimuli were white dots on a black 

background. Each scatterplot was created 

according to the combinations of different 

parameters: slope of the generative 

function, number of points, and noise 
level. Each thus had a certain t-value, 

corresponding to the t statistic used to 

calculate the significance of the trend in 

the dataset. B: Responses given by a 

representative participant are plotted as a 

function of the t-value of each scatterplot. 

Color dots show the data for the four 
example trials in panel A. For visualization 

purposes, the black dots show averages 

over bins of t-values. We fitted the data 

with a psychometric function (blue curve). 

The slope of the sigmoid, indicated by a 

black bar, evaluates the subject’s 

sensitivity in the trend judgment task, and 

was used as a “graphicacy index”, a proxy 
of the participant’s intuitive graphics 

skills. 
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answer is plotted as a function of the t-value of the corresponding trial. For each subject, we 

fitted a classic psychometric function to the data (shown in blue in figure 16B) and we 

extracted its slope, which provided a measure of precision at performing the trend judgment 

task. The first 12 trials for each subject were considered as practice trials and thus excluded 

from the computation of such index. Also, a minority of subjects that participated in the online 

experiment had a very large sensitivity index, meaning that their performance was close to 

perfect (in fact, it was better modelled by a step function rather than by a sigmoid one). To 

avoid excessive variability, all sensitivities higher than 5 (.03% of all participants) were capped 

at 5. 

 

RESULTS 

Study 2: performance in the trend judgment task is predicted by the t-value of the 

scatterplot 

First, we looked at the percentage of “increasing” responses as a function of the prescribed 

slope (i.e., how steep is the scatterplot), the noise level and the number of dots (figure 17). 

We replicated results from study 1, finding that the proportion of responses “increasing” was 

affected by all the above parameters (figure 17A, left and middle plots). In an ANOVA on the 

proportion of “increasing” responses as a function of the prescribed slope, the noise level and 

the number of points, all factors had a significant main effect, and the prescribed slope 

significantly interacted with both the noise and the number of points (all p < .001). These 

findings confirm what is clearly visible in figure 17A: the smaller the slope of the graph, the 

higher the influence of the noise level and the number of points on the trend judgment task. 

No interaction effect was found between the noise and the number of points (F[8.5, 19667.8] 

= .81, p = .6), suggesting that the two factors independently affected human trend judgments.  
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All of these effects, as in study 1, were subsumed by an effect of the t-value associated to the 

Pearson coefficient of correlation (figure 17A, right plot). Accordingly, we computed a 

multiple logistic regression on “increasing” responses as a function of the t-value, the number 

of points and the noise level (averaged across the 112 combinations of the experimental 

conditions and across all subjects) and we found that only the t-value was a significant 

predictor of participants’ responses (βt-value= .77, p < .0001; βnumber of points= .002, p = .83; βnoise= 

-.48, p = .91).  

Figure 17. Psychophysics of graph perception (N=3943). The top row shows the percentage of 

responses “increasing” as a function of prescribed slope and noise level (A), prescribed slope and 

number of points (B), and t-value associated to the Pearson correlation coefficient of the scatterplot 
(C). Panel C shows that participants’ performance can be subsumed by the t-value. D-E-F, equivalent 

plots for response time. The blue line in plot F shows the prediction of a simple accumulation of 

evidence model (Gold and Shadlen, 2002). 
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As far as response times for correct answers are concerned (figure 17D and 17E), we 

submitted them to separate linear regressions as a function of the three main experimental 

factors (the absolute value of the main slope, the noise level and the number of points) and 

with the subjects as random factors. We found that, while both the prescribed slope and the 

noise level significantly predicted the response times (βslope = -946.5, p < .0001; βnoise = 920.3, 

p < .0001), this was not the case for the number of points (βnumber of points = .06, p > .05), thus 

suggesting a parallel processing of all items in the set. The simple model of noisy evidence 

accumulation already used in study 1 (Gold & Shadlen, 2002) correctly predicts response 

times on all trials (blue line in figure 17F, right plot), based on the responses given by the 

subjects. 

Study 2: The trend judgement task provides a reliable index of graphicacy and its variations 

across individuals 

We modeled participants’ responses as a sigmoid function of the t-value of each stimulus they 

saw (figure 16B). We postulate that this function provides a measure of their intuitive graphics 

skills, which we called the “graphicacy index”. Figure 18A shows the broad distribution of this 

index across the large sample we collected online (median value = 1.24). For the vast majority 

of participants (97.9%), the regression was significant and with a positive index, thus providing 

a reliable estimate. However, graphicacy varied considerably, with 95% of the distribution 

falling between 0.19 and 3.22. 

To evaluate training effects during the course of an experimental run, we computed (for the 

3419 participants that performed only one experimental run) the index separately on the first 

50 trials and on the following 50 trials. Although the increase was significant (Wilcoxon signed 

rank test, p <.0001), it was small, passing from a median of 1.28 to 1.35 – and more crucially, 

there was a significant correlation between the two values (r(3417) = .38, p < .0001), thus 
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showing a relative stability of the graphicacy index. To further evaluate whether the 

graphicacy index remained stable over time, we computed the orthogonal linear regression 

between the above two index measurements and we found that the regression was close to 

one (1.02; 95% confidence interval = [.94, 1.1]), thus suggesting that, on average, the index 

did not increase nor decrease over time.  

We then restricted the analysis to those subjects (n = 387) that completed more than one 

block of trials and analyzed the correlation between their graphicacy index in the first 

experimental run and in the second one: again, the two measures correlated (r(385) = .49, p 

< .0001) and the orthogonal linear regression between the two was still close to one (1.16; 

95% confidence interval = [.95, 1.36]).  

Overall, these results suggest that our measure of intuitive graphics skills is stable, at least in 

the absence of long training, and can be reasonably estimated in a 6-minute on-line test. It is 

likely that, at the individual level, a longer testing session would provide an even more reliable 

graphicacy index. 

Study 2: Graphicacy correlates with statistical knowledge and academic field 

We then tested whether graphicacy correlated with participants’ self-evaluation of statistical 

knowledge. For the following analyses, in order to avoid any (although modest) effect of 

training described above, we included, for each subject, only their first block of responses.  

We found a significant correlation (figure 18B; r = .21, df = 3092, p < .0001) between 

participants’ graphicacy index and their self-reported statistical knowledge. Was this 

correlation specific to statistical knowledge? Among the subjects included in the analysis, a 

large majority (N = 2030) also answered a self-evaluation question on their first language 

skills, always using a scale from 1 to 10. We performed a multiple linear regression on the 

graphicacy index as a function of statistical knowledge and language skills, finding that the 
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former was a significant predictor (β = .06, p < .0001) but the latter was not (β = -.004, p = 

.65), thus suggesting that participants’ ability to perform the task was not simply predicted by 

general personal skills (or self-confidence). 

Figure 18C shows the graphicacy index as a function of the academic field in which graduate 

participants obtained their title: it was considerably higher for graduates in engineering, 

statistics and science (n = 1576, mean = 1.5) than for graduates in other disciplines (n = 1323, 

mean = 1.26; t(2892.8) = 8.81, p <.0001). In graduate subjects, the graphicacy index also 

significantly correlated with their reported average grade in mathematics (r = .04, df = 3028, 

p < .05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Inter-individual variability in graphicacy. A: Distribution of the graphicacy index across 

participants. B: Graphicacy increases as a function of participants’ self-reported statistical knowledge, 

collected before the experimental task was introduced. C: Graphicacy in participants that obtained at 

least a bachelor degree varies as a function of the academic field in which they graduated (F(7,2891)= 

15.57, p<.001; note that data were ordered according to each group’s mean graphicacy index). 
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Study 3: performance in the trend judgment task for Himba participants is predicted by the 

t-value of the scatterplot, independently of age and educational level 

Figure 19 (top plot) shows that the performance in the trend judgment task for Himba 

participants was well predicted by the t-value of the scatterplot. To statistically test for this, 

we computed a multiple logistic regression of responses “increasing” as a function of the t-

value, the number of points and the noise level (averaged across the 112 combinations of the 

experimental conditions and across all subjects), and we found that, again, the t-value was 

the only significant predictor of participants’ responses (β = .27, p < .01), while the noise (β = 

.37, p = .92) and the number of points (β = .001, p = .86) were not. The same findings held 

when we separated our data in three separate groups (figure 19, top right): teenagers (i.e., 

participants younger than 18 years old, N=36), unschooled adults (i.e., participants who did 

not receive any formal education, N=39), and schooled adults (i.e., participants who attended 

mobile schools during at least one year, N=12). For all these subgroups, responses were 

entirely accounted for by the t-value of the stimulus (all β with p < .01). The median graphicacy 

index for Himbas was of .32. 

Study 4: Performance in the trend judgment task for 6-years-old children is predicted by the 

t-value of the scatterplot 

The results described so far were also replicated in a group of 27 6-years-old children 

attending their first grade of primary school (figure 19, bottom). Although children’s 

responses were noisier and never reached perfect performance (as is clear from the 

boundaries of the sigmoid function in figure 19, right plot), their responses were again 

significantly predicted by the t-value of the scatterplot, which alone accounted for children’s 

performance: in fact, it was a significant predictor of their responses (β = .17, p < .05), whereas 

the noise (β = 1.97, p = .58) and the number of points (β = -.0003, p = .98) were not. 
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We then calculated, for each child, their intuitive graphics skills and correlated them with the 

two measures described in the methods’ section: groupitizing advantage (an implicit measure 

of their arithmetic abilities) and their number of correctly read words in one minute (a proxy 

of their reading skills). Both correlations were significant (respectively: r = .51, df = 25, p < .01, 

and r = .46, df = 25, p < .05). It is worth noting that the performances in the implicit arithmetic 

task and in the reading one were also highly correlated (r = .7, df = 25, p < .0001). The median 

graphicacy index for children was of .12. 

 

 

 

 

 

 

 

 

 

Figure 19. Precursors of graphicacy in the 

absence of formal education. The 

percentage of responses “increasing” is 

well predicted by the t-value associated 

with the graph Pearson correlation 
coefficient r, both in 6-years-old children 

(bottom, N=27) and in the Himba 

participants (top, N=87), an ethnic group 

from Namibia with reduced access to 

formal education. Insets show the effect 

separately as a function of schooling and 

age for the Himba people. 
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DISCUSSION 

In study 2, we investigated in a large sample the human ability to perform a trend judgment 

task on a noisy graph (i.e., “Does this graph go up or down?”). Analyzing the responses of 

3943 participants that performed the task online on computers or tactile devices, we found 

that their accuracy was affected by all three manipulated factors, namely, the steepness of 

the graph, its noise level and the number of points. In terms of response times, there was a 

significant effect of steepness and noise but not of the number of points. As already suggested 

by study 1, fast intuitive statistical judgments on graphs with Gaussian noise thus seem to 

operate similarly to ensemble perception, the human ability to rapidly extract the “average” 

of visually displayed items, without focusing on each particular element in the set (Cui & Liu, 

2021; Szafir et al., 2016; Whitney & Yamanashi Leib, 2018). 

Crucially, participants’ responses were entirely predicted by the t-value associated to the 

Pearson coefficient of correlation of the graph, showing that humans’ trend judgments 

approach those of an optimal statistical model (Peterson & Beach, 1967). Thus, humans are 

not “naïve” intuitive statisticians who wrongly assume that a sample of information derived 

from a restricted number of items is representative of the entire population (Fiedler, 2000; 

Juslin et al., 2007). In agreement with this view, it was shown that people do not include the 

sample size in their variability estimations (Kareev et al., 2002). On the contrary, our studies 

demonstrate that, for datasets represented in a bivariate graphical format, people correctly 

assess both variability and sample size (as proved by their reliance on the t-value) when 

performing a trend judgment. In other words, at least at a perceptual level, humans are not 

naïve in their statistical estimates but seem to take into account all the parameters of the 

dataset. 
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The replication of study 1, which was conducted in a controlled laboratory environment, is 

important both empirically and methodologically. It confirms that, unlike popular opinion 

among many scientists, psychophysical studies on accuracy and response times do not need 

to be confined to a controlled setting and can be successfully performed online.  This clearly 

reduces research times and costs, especially when participants, such as in the present online 

study, were asked to participate on a purely voluntary basis and with no reward beside that 

of personal enjoyment.  

The first drive of study 2 was to introduce a quantitative measure of intuitive graphics skills 

(the graphicacy index). We operationalized it as the slope of the psychometric function of 

responses “increasing” (Klein, 2001) and we found that such measure, which was highly 

variable in the general population, was predicted by participants’ self-evaluation of statistical 

knowledge (but, crucially, not by their self-evaluation of first language skills). This suggests 

that numerical cognition might influence the development of intuitive graphics skills, similarly 

to the positive effect of mathematical understanding on the intuitive number sense (Piazza et 

al., 2013). Whether a better grasp of numerical concepts strengthen graph-based statistical 

judgments (and/or vice versa) remains an open question that could be better addressed in 

the future through a finer assessment of participants’ numerical skills. This is particularly 

necessary in the case of children: in our sample, we found a strong correlation between 

intuitive graphics skills and both arithmetic and reading performance, which does not allow 

to conclude for a specific correlation of intuitive graphics with numerical cognition. 

Interestingly, however, a relation between complex graph understanding and numerical 

cognition does indeed seem to exist (Ludewig et al., 2020). While the link between intuitive 

statistics’ skills and complex statistical graph understanding remains to be shown, we believe 

that our trend judgment task could be an adequate assessment tool for the former, being 
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simple and fast (less than 10 minutes) to perform. The test is publicly available online and can 

be freely run by all researchers interested in investigating the correlation between their 

participants’ intuitive graphics skills and other abilities (https://neurospin-

data.cea.fr/exp/lorenzo-ciccione/graphicacy-index/). Also, future research could determine if 

a long training on the task would be able to improve higher level graph understanding, in the 

same way that training the intuitive number sense has been shown to increase mathematical 

proficiency (Park & Brannon, 2013). 

The core drive of study 3 and study 4 was to investigate whether intuitive graphics skills are 

available uniquely to individuals previously exposed to graphical representations, or whether 

they could be found in the absence of any such exposure. Children have been recently found 

to be able to discriminate the visual items of graphs, such as the location of datapoints and 

their size (Panavas et al., 2022), but no study had yet specifically tested whether they are also 

able to perform statistical judgments on noisy graphs. We show here that French 6-years-old 

children (unexposed to graphical representations) and uneducated Himba individuals (living 

in an unindustrialized remote society, in Northern Namibia, where there is no form of 2D 

visual representations, including graphical representations) base their intuitive decisions on 

the t-value of the scatterplot. This shows that intuitive graphics skills are universally available 

and emerge early on in development, irrespectively of previous exposure to graphical 

representations. The present finding echoes previous data supporting the existence of a 

universal understanding of quantities (Dehaene, Stanislas, 2011), geometrical shapes (Sablé-

Meyer et al., 2021), probabilities (Xu & Garcia, 2008), physics (Atran, 1998), and human 

psychology (Bjorklund, 2014). However, we found that the graphicacy index was much lower 

in Himba and children than in educated adults. Taken together, our results suggest that 

intuitive graphics might be refined with exposure to statistics and graphical representations 
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but, crucially, they do not vary qualitatively with age and education. Recent evidence in 

numerical cognition (Piazza et al., 2018) suggests that the precision of numerical estimations 

increases with education through an improved ability to focus on relevant information in the 

task (thus discarding non numerical features). Future studies may investigate whether a 

progressive refinement of the filtering of irrelevant information (e.g., outlier datapoints or 

large noise) is also responsible for the relationship between the graphicacy index and 

education. 

In sum, by investigating the premises of human intuitive graph perception, our study laid the 

foundations of a quantitative assessment of human graphicacy; such assessment would be 

essential in building effective and early educational interventions that might in return 

strengthen the comprehension of the complex graphs that humans are more and more 

routinely confronted with. 
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CHAPTER 2 

MENTAL REGRESSION: HUMAN 

ACCURACY AND BIAS IN 

PERFORMING LINEAR REGRESSION 

AND EXTRAPOLATION 
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The findings presented so far indicate that human performance in a trend judgment task 

approaches an optimal statistical model that would compute the t-value of the graph in order 

to determine its trend. But what is the actual regression line that participants would 

intuitively derive from a graph? Does it also approach classic statistical models? In the two 

studies described in this second chapter I answered these questions by investigating the 

actual slope of the mental regression performed by participants over a noisy scatterplot. We 

did so by either asking them to adjust a line (line adjustment task, study 5) or by asking them 

to extrapolate a point outside the shown scatterplot (extrapolation task, study 6). Both 

studies were performed in the laboratory and comprised 10 participants each. 
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STUDY 5: LINE ADJUSTMENT 

In study 5, we further probed whether human participants act as good statisticians, and which 

procedure they use to approximate linear regression. Whereas study 1, 2, 3, and 4 solely 

asked participants to decide whether an ascending or descending trend was present, we now 

asked participants to report the slope of the best-fitting regression line. They did so by using 

a trackpad to adjust the tilt of a line on screen. What predictions can we derive for this task? 

If participants used a mental process equivalent to the classic simple linear regression (also 

called “ordinary least squares” method, OLS), then their average slope estimate should be 

centered on the prescribed slope used to generate the graph, and should not be influenced 

by the number of data points (n) nor by the noise level (σ). The reason is that the OLS estimate 

of slope is what statisticians call an “unbiased estimator”, i.e. an estimate whose expected 

value is equal to the prescribed slope (McElroy, 1967; Puntanen & Styan, 1989). In this study, 

we tested whether participants’ slope estimates follow this law. 

 

METHODS 

Participants 

10 participants were recruited for the experiment (age: 25.2 ± 1.2, 4 females, 6 males; the 

inclusion criteria were the same of study 1). They were paid 10 euros for their participation. 

The experimental session lasted approximately 45 minutes. The experimental procedure was 

approved by the local ethical committee. One participant was excluded by the analyses 

because he failed to perform the task (he did not adjust the line for more than half of trials). 

Procedure 

Stimuli and procedure were identical to study 1, except that immediately after the scatterplot 

(presented for 100 ms), a blank screen appeared for 100 ms and then an adjustable line was 
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shown in the middle of the screen (see figure 20). The line was initially horizontal, but 

participants were asked to adjust it as accurately as possible by moving their right index on 

the computer trackpad. The center of the line was kept fixed (since, as in study 1, the OLS 

regression line of the scatterplot always passed through the exact center of the graph), so 

that moving the finger up or down the trackpad resulted in a rotation of the line around its 

center, whose angle was proportional to finger displacement; moving the finger up tilted the 

line in the counterclockwise direction, whereas moving the finger down tilted it in the 

clockwise direction. The participants were informed that we would measure the accuracy of 

their fit and, for this reason, they were invited to take their time to perform the task. When 

the adjustment was completed, they simply had to press the trackpad in order to confirm 

their answer and move to the next trial, which was, as in study 1, preceded by a 1s fixation 

cross. 

Figure 20. Experimental design for study 5 (line adjustment). Subjects were presented with a simple scatterplot, 

generated by a linear function plus noise, with a variable number of data points. Immediately after, they were 

asked to adjust a line by moving their finger on a trackpad, in order to provide an estimation of the regression 

line underlying the noisy scatterplot. 
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Exactly as for study 1, the task was divided into 6 blocks, each comprising all 112 conditions; 

the duration of each block was now ~6 minutes. After each block, the participants could take 

a short break and received feedback on the total number of correct responses they gave (for 

this feedback, a response was considered as correct if its slope had the correct sign, i.e. 

positive or negative). Before the beginning of the actual experiment, 25 practice trials were 

conducted under the supervision of the researcher, in order to control for the correct 

execution of the task. 

 

RESULTS 

Increasing and decreasing judgments: replication of study 1 

To see if we could replicate the findings of experiment 1, we first categorized the participants’ 

responses as increasing or decreasing (based on the slope of their regression lines) and 

examined the proportion of “increasing” responses as a function of the prescribed slope and 

either the prescribed noise (figure 21, bottom left) or the number of points (figure 21, bottom 

middle). A repeated measures ANOVA on the percentage of “increasing” responses confirmed 

the statistical significance of the data presented in the figures, which closely paralleled the 

findings from study 1: we again found a main effect of the prescribed slope (F[6, 48] = 508.51, 

partial h2 = .98, p <.0001) and its interaction with noise level (F[18,144] = 12.36, partial h2 = 

.61, p <.0001) and number of points (F[18,144] = 8.88, partial h2 = .53, p <.0001). Once again, 

the closer the slope was to zero, the higher the influence of the noise and of the number of 

points (figure 21). As in study 1, we conducted an analysis of each participant’s sensitivity as 

a function of the noise σ and number of points n. We fitted a logistic regression to the 

percentage of “increasing” responses (as a function of the prescribed slope), separately for 

each participant, noise level, and number of points, and used the slope of the logistic function 
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as an indicator of sensitivity. In the few cases (5 out of 144 combinations) where the logistic 

regression was not meaningful, since the data were better modeled by a step function, the 

values were substituted with the maximum observed value. We submitted the resulting 

sensitivity values to a repeated-measures omnibus ANOVA and found a significant main effect 

of noise (F[3, 24] = 96.65, partial h2 = .92, p <.0001) and a significant main effect of the number 

of points (F[3, 24] = 24.45, partial h2 = .75, p <.0001). As we can see from figure 21 (bottom 

left and middle), participants were significantly more sensitive to datasets having a smaller 

noise and a higher number of points, closely replicating the results from study 1. We also 

looked again at the fraction of “increasing” responses as a function of the prescribed slope 

and the direction of the actual slope compared to the prescribed one (i.e., above or below it): 

a repeated-measures omnibus ANOVA revealed a significant effect of the prescribed slope 

(F[2.03, 22.44] = 563.86, partial h2 = .99, p <.0001), of the direction of the actual slope (F[1, 

8] = 437.65, partial h2 = .98, p <.0001) and an interaction of the two factors (F[2.74, 21.96] = 

29.79, partial h2 = .79, p <.0001), meaning that participants, once again, were able to base 

their judgement on the actual value a, rather than the prescribed slope a. 

 

 

 

Figure 21. Accuracy of human subjects in adjusting a line over a noisy scatterplot. The percentage of lines adjusted with a positive 

slope (which is analogous to responses “increasing” in study 2) is affected by the prescribed slope of the graph (a), the noise in the 

graph (σ) and the number of points (n). The third plot shows that subjects’ responses depended not only on the prescribed slope a, 

but on the actual slope α" after the addition of noise. The fourth plot shows that all the effects of noise, number of points and slope 

could be subsumed by an influence of the t-value associated with the Pearson coefficient of correlation, as if participants performed 

a mental linear regression. In this graph, each dot represents the mean, across trials and subjects, of all data for one of the 112 

experimental conditions determined by each combination of a, σ and n. Data perfectly mimic those presented in figure 14. 
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Exactly as for study 1, for each graph, we computed the Student t-value associated to its 

Pearson coefficient of correlation and replotted the percentage of “increasing” responses as 

a function of that t-value (figure 21, bottom right). As we can see, participants’ mean 

performance was once again a sigmoid function of t. We compared the logistic regression of 

participants’ responses as a function of either the actual value of the slope (a,) or t. A simple 

model comparison based on the Akaike Information Criterion (AIC) values revealed that 

participants’ responses were again significantly better predicted by the t-value (AIC for actual 

slope as predictor: 4815; AIC for t-value as predictor: 4574; DAIC = 241, p <10-16). We also 

replicated the above sensitivity analysis once the data were accounted for by the t-value, and 

verified that neither s nor n played a significant role (respectively: F[3, 24] = 2.69, partial h2 

= .25, p =.07 and F[3, 24] = 1.04, partial h2 = .12, p=.39), confirming the results from study 1: 

the entire behavior was captured by a single value, the t-value (figure 21 bottom, fourth plot 

from the left). 

Slope estimation: participants minimize orthogonal distance from the fit 

Figure 22 (top) shows the slope estimates, averaged across participants, as a function of the 

prescribed slope and either the noise level (left) or the number of points (right). We 

conducted a repeated measures ANOVA on participants’ median estimated slopes. As 

expected, we found a main effect of slope (F[6, 48] = 91.6, partial h2 = .92, p <0.001): as the 

prescribed slope increased continuously across 7 levels, so did the participants’ estimates. 

However, the values that they reported were always in excess of the ideal slopes, both in the 

positive and in the negative direction (see figure 22, dashed line). Furthermore, this tendency 

to exaggerate the linear trends increased with noise level, and also with the number of points, 

as attested by significant interactions of prescribed slope and noise level (F[18, 144] = 3.56, 

partial h2 = .31, p <0.001), and prescribed slope and number of points (F[18, 144] = 9.63, 
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partial h2 = .55, p <0.001), as well as a triple interaction of slope, number of points and noise 

(F[54, 432] = 2.07, partial h2 = .21, p <0.001). The nature of this bias can be described as 

follows. First, participants always overestimated positive slopes, and did so with a bias that 

increases with noise level and number of points (ANOVA restricted to positive slopes: main 

effect of noise, F[3,24] = 6.43, partial h2 = .45, p <0.01; main effect of number of points, F[3,24] 

= 12.48, partial h2  = .61, p<.0001). Second, conversely, participants always underestimated 

negative slopes, again increasingly so for larger noise levels and numbers of points (ANOVA 

restricted to negative slopes: main effect of noise, F[3,24] = 3.48, partial h2 = .30, p =0.03;  

main effect of number of points, F[3,24] = 20.59, partial h2 = .72, p<.0001).  

Figure 22. Human regression slopes and 

theoretical predictions. Slopes reported 

by the participants (top) and predicted 

by the OLS and Deming regression 

models (middle and bottom). Values are 
plotted as a function of the prescribed 

slope a, noise σ and number of points n. 

The dashed line represents the ground 

truth, i.e. the prescribed slope a. 

Subjects’ median estimated slopes show 

a bias similar to Deming predictions 

(figure 23). 
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DISCUSSION 

The significant dependency of participants’ estimated slope on both noise and number of 

points violates the predictions of simple linear regression (OLS). Since OLS slopes are unbiased 

statistical estimators of the true underlying slope, OLS predicted no effect of either noise or 

number of points on the slope estimates (figure 22, middle). Those predictions were clearly 

violated in the data. Note in particular that the more data points were present, the more the 

participants’ slope estimates were biased towards exceedingly extreme values. This finding 

may seem paradoxical, given that in OLS (red line in figure 23), a larger number of data points 

implies that the regression can be estimated with greater precision – and such an effect was 

indeed found in participants’ proportion of “increasing” responses both in the trend judgment 

task and in the line adjustment one. 

 

 

 

 

 

 

 

 

 

How can we explain the participants’ behavior? A key observation is that simple linear 

regression, based on ordinary least squares, is not the only procedure that can be used to 

estimate the slope of a graph. Indeed, it is not even always the optimal one. If there is variance 

in both the x and the y measurements, statisticians recommend the use of another procedure 

Figure 23. Illustration of the difference 

between ordinary least squares (OLS) 

and Deming regression. OLS regression 

(red line) minimizes the sum of the 

squares of the vertical distances of the 

points to the line. It is appropriate when 
the x values are fixed and there is noise 

only in the dependent variable (y axis). 

Deming regression (blue line) minimizes 

the sum of the squares of the orthogonal 

distances of the points to the line 

(assuming equal variance on the x and y 

measures). It is appropriate when the 

measurement is noisy on both the x and 
y axes. 
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termed “Deming regression” (Deming, 1943; Linnet, 1998; Martin, 2000). This procedure 

belongs to the category of “errors-in-variables models” which optimally account for the fact 

that there can be measurement errors on both x and y axes. The gist of Deming regression is 

illustrated in figure 23 (blue line). Essentially, it can be conceived as an “orthogonal 

regression”, seeking the line that minimizes the sum of square distances to the data 

simultaneously in both the x and y dimensions (strictly speaking, this is true only when 

assuming equal noise on x and y; otherwise one of the axes must first be scaled). This is the 

appropriate thing to do if x itself is the result of a noisy measurement. Classical regression 

(OLS), on the other hand, minimizes the sum of square distances only along the y axis; this is 

the proper thing to do if x is a fixed experimental factor, and only y is a noisy measure. 

OLS regression is clearly appropriate for our graphs, which were created by keeping x fixed 

and generating y using a linear equation plus noise. However, participants, unaware of this 

fact, might have applied a procedure akin to Deming regression, perhaps because they 

treated the x and y coordinates of the dots as equivalent and therefore both potentially 

subject to noise. Indeed, Deming regression presents the unique advantage of yielding an 

identical regression line whether y is regressed on x, or x is regressed on y. This is not true of 

OLS regression, which treats x and y asymmetrically. Note, however, that the correlation 

coefficient r, and therefore the t test, are symmetrical in x and y, and are appropriate 

measures of the presence and strength of a linear trend for both OLS and Deming regression. 

Figure 22 (bottom) shows the slopes predicted by Deming regression (calculated over 50000 

stimuli generated through the identical algorithm used to generate the stimuli presented to 

participants). Remarkably, the Deming model made predictions strictly parallel to what we 

observed in our data: the median slope increased with both the noise level and with the 

number of data points. For Deming regression, one must provide not only the x and y values, 
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but also the ratio of the variances of the errors on x and on y. Here, we used the ratio of the 

empirical variances in the graphs, but qualitatively similar predictions were obtained if we 

assumed a fixed ratio of 1.  

To summarize, study 5, using a line adjustment procedure, closely replicated the results of 

study 1 with binary trend judgement (increasing or decreasing). This parallelism suggests that, 

when asked to quickly extract the tendency of a scatterplot through a simple binary choice, 

humans can be as accurate as when precisely adjusting a regression line. Remarkably, both 

fast (study 1) and slow (study 5) judgments were affected by the same stimulus parameters, 

namely the slope, the noise and the number of points. Crucially, behavior was again 

subsumed by the t-value associated to the Pearson coefficient of correlation. This finding 

offers a methodological guidance for future experiments in graph perception: fast binary 

choices might be as informative as slow line adjustments when investigating the human 

perception of positive or negative trends in scatterplots. 

However, slope adjustment also revealed a result that was inaccessible to binary judgments: 

humans are biased in their estimations of linear trends. They overestimate positive slopes, 

underestimate negative ones, and those biases increase with noise and with number of 

points. These findings refute the hypothesis that human adults compute a traditional OLS 

regression, and instead suggest that participants might use Deming regression when fitting a 

line to a noisy scatterplot. Simulations showed that Deming regression, far from being 

unbiased, leads to exactly the same qualitative biases as observed in humans.  

Deming regression feels reasonable because it essentially consists in finding a line that 

minimizes the Euclidean distances to all points, thus treating the cloud of dots as a 2-

dimensional shape, without distinguishing the x and y measurements (as OLS does). Thus, 

Deming regression, yields the same line whether y is regressed on x or vice-versa, unlike OLS. 
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Deming regression might have been induced by the stimuli we used, which were square 

graphs with identical layouts for the x and y axes, thus perhaps encouraging participants to 

treat the x and y axes as two noisy measurements. However, note that the x values were 

always equally spaced discrete samples, a fact that was particularly obvious for small numbers 

of points (see figure 1, n = 6); yet even in this case, the Deming-like bias was present. Thus, 

our findings suggest that human participants fail to apply the most standard regression 

procedure, ordinary least squares, and exhibit a strong bias. But which consequences might 

this bias have on human decisions and activities? 

Indeed, regardless of its ultimate cause, the fact that human adults compute a Deming rather 

than an OLS regression may have considerable implications in real-life uses of graphical 

representations, such as in finance, where stock markets’ noisy graphs are often used by 

investors to make quick selling or buying decisions. Biases in economic and financial behavior 

have typically been reduced to various cognitive biases (Kahneman, 2003; Ricciardi & Simon, 

2000), such as confirmation bias (Nickerson, 1998) or loss aversion (Kahneman et al., 1991). 

Our findings suggest that such biases, although certainly at play, might not be the only factors 

influencing financial behavior. The Deming bias implies that investors could be more likely to 

keep investing in stocks showing an uprising trend (or selling stocks revealing a negative 

trend), because they perceive the trend as steeper than it actually is. Indeed, finance experts 

strongly rely on the slope information when looking at a graph (Beattie & Jones, 2002), and it 

is known that data series presented in graphical rather than tabular forms generally lead to a 

worse encoding of the actual trend in a dataset (DeLosh et al., 1997; Lawrence & Makridakis, 

1989). Further studies of graph perception could be performed with specific populations such 

as finance experts in order to disentangle the biases of geometrical origin from other 

reasoning and cognitive biases, and to measure the practical import of the present findings. 
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STUDY 6: LINEAR EXTRAPOLATION 

The studies described so far indicate that human adults can categorize a linear trend as 

ascending or descending, and approximate its slope. In study 6, we examined if their intuitive 

statistical skills also allowed them to perform a third task: linear extrapolation. We refer to 

extrapolation as an estimation that is made beyond the original observation range, assuming 

that the trend underlying the scatterplot will continue to be the same. To test it, we engaged 

participants in an extrapolation task, in which they adjusted a point vertically to place it on 

their best estimation of the regression line fitting the data points. This instruction aimed to 

minimize the tendency of participants to add noise to their extrapolations in order to match 

the noise in the graph, a phenomenon already described by Bolger and Harvey (1993).  

Our predictions were simple: if participants relied on Deming regression, then they should 

produce exaggerated estimates (deviating too far either upwards or downwards, depending 

on whether the main slope is positive or negative), and this bias should be all the more 

pronounced that the noise in the scatterplot is high.  

 

METHODS 

Participants  

10 participants were recruited for the experiment (age: 24.6 ± 1.8, 5 females, 5 males). All 

participants met the same inclusion criteria as in study 1 and 5. They were paid 5 euros for 

their participation. The experiment lasted approximately 30 minutes and was approved by 

the local ethical committee. 

Experimental design and stimuli 

The stimuli were generated according to the same algorithm of previous studies. Five levels 

of prescribed slopes were used to generate the scatterplots (-0.48, -0.24, 0, +0.24, +0.48). The 
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number of points was kept fixed at 18. The noise levels were the same used in experiments 1 

and 2 (0.05, 0.1, 0.15, 0.2). The scatterplot was now confined to the left part of the screen, 

while the right one served as the extrapolation area (see figure 24A). The location of the 

scatterplot was vertically jittered by a random amount in order to induce participants to avoid 

responding at the same location; the jitter was later corrected for in our analyses. We 

included a considerable margin (12.5% of the screen) above and below the locations of the 

correct answers, where no expected correct answers could fall into; this was done in order to 

allow participants to give a free and unconstrained response, even if considerably higher or 

lower than the correct one. 

Procedure  

The procedure closely followed the previous studies, except that each scatterplot was now 

presented on the left side of the screen and for a long duration (until the response). On the 

right side, a single point was shown at one of two possible x coordinates (either x = 1.3 or x = 

1.6, which we refer to as “probed positions”) and at a y coordinate corresponding to the 

middle of the y axis (Figure 24A). Participants were asked to vertically adjust the point as 

accurately as possible by moving their right index on the computer trackpad. Once they were 

satisfied with the given response, they confirmed it by pressing the trackpad. Participants 

were explicitly asked to give an intuitive answer and to locate the point on their best 

estimation of the regression line of the scatterplot. The task was divided into 7 blocks, each 

comprising one trial for each of the 40 conditions (5 slopes, 4 noise levels, two probed 

positions), for a total of 280 trials. The duration of each block was ~4 minutes. After each 

block, the participants could take a short break. Before the beginning of the actual 

experiment, 25 practice trials were conducted under the supervision of the researcher, in 

order to control for the correct execution of the task. 
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RESULTS 

Location of the extrapolated point  

For each of the 40 conditions and each participant, we computed the median response 

location on the y axis. We conducted a repeated measures ANOVA on those median 

extrapolation values with prescribed slope, noise and probed position as within-participants 

factors, and we found a significant effect of the slope (F(4, 36) = 95.15, partial η2 = .91, p 

<.0001); no main effect of the probed position was found (F(1,9) = 0.01, partial η2 = .001, p = 

.92), although it entered into a significant interaction with the slope (F(4, 36) = 36.30, Partial 

Figure 24. Results of study 6 (linear extrapolation). A. 

Left: example of trial. Participants adjusted a movable 

dot (here indicated by a red circle and a red arrow, for 

illustrative purposes only) in the vertical direction so 

that it best extrapolated the data at left. B. Subjects’ 

median extrapolation responses at x = 1.3 and x = 1.6. 
The solid lines indicate the OLS regression lines, which 

match the original lines from which the noisy 

scatterplots were generated. The dashed lines 

indicate the median slopes predicted by Deming 

regression. C. Mean (and standard error) of the 

median estimated slope computed from the subjects’ 

responses (left), and compared to the median slope 
predicted by Deming regression (right). The slope was 

calculated as the slope of a line passing through the 

center of the screen and through the answer given by 

the subjects. The results in the plot are averaged 

across the two x positions. 
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η2 = .80, p < .0001). As shown in figure 24B, those findings reflect the fact that participants 

adapted their extrapolation responses to the prescribed slope and the probed position. 

However, as in study 5, an interaction of prescribed slope and noise (F(12, 108) = 4.24, partial 

η2 = .32, p <.0001), as well as a triple interaction of slope, probed position and noise (F(12,  

108) = 2.46, partial η2 = .21, p <.01) indicated that, as the noise increased, the extrapolation 

responses became increasingly biased towards exaggerated values, as predicted by Deming 

regression. Specifically, as in study 5, participants always overestimated positive slopes, and 

did so with a bias that increases with noise level (ANOVA restricted to positive slopes: main 

effect of the noise, F[1.68, 14.85] = 6.60, partial h2 = .42, p =.01). Conversely, participants 

always underestimated negative slopes, again increasingly so for larger noise levels (ANOVA 

restricted to negative slopes: main effect of noise level, F[1.81,16.30] = 4.17, partial h2 = .32, 

p =.04). 

Next, we directly compared participants’ extrapolation responses with those expected under 

Deming regression. The solid lines in figure 24B show the functions from which the 

scatterplots were generated (i.e., the OLS regressions of the dataset), whereas the dashed 

lines show the Deming regressions. As already described, Deming regression results in steeper 

slopes than OLS predictions. Relative to those lines, we can see that the participants’ 

responses lay close to Deming predictions, although at x = 1.6 they tend to be slightly lower. 

To quantitatively test for the resemblance of participants’ extrapolation responses to Deming 

predictions, we calculated the median slope associated with each extrapolated point 

(calculated as the slope of the line passing through the center and the given point). Figure 

24C shows the remarkable similarity of participants’ extrapolations with Deming predictions. 

We conducted a repeated measures omnibus ANOVA on participants’ median slopes and 

found a significant main effect of the prescribed slope (F[4, 36] = 79.01, partial h2 = .9, p 
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<.0001), a significant main effect of noise (F[3, 27] = 3.17, partial h2 = .26, p =.04) and an 

interaction effect of the slope with the noise (F[12, 108] = 4.36, partial h2 = .33, p <0.0001). 

Although there was no main effect of the probed position (F[1, 9] = 0.5, partial h2 = .05, p =.5), 

it entered into a significant interaction with the slope (F[4,36] = 7.82, partial h2 = .46, p < 

.0001) and into a triple interaction with slope and noise (F[12, 108] = 3.51, partial h2 = .28, p 

< .001), confirming that participants adapted their responses to the prescribed slope and the 

probed position. These effects reveal that the median slopes associated to the extrapolation 

responses were increasingly steeper as the noise increased, with a bias, once again, that 

increased with noise level (ANOVA restricted to positive slopes: main effect of noise, F[1.64, 

14.78] = 7.86, partial h2 = .47, p <.01; ANOVA restricted to negative slopes: main effect of 

noise, F[1.67,15.07] = 6.22, partial h2 = .41, p =.01). 

 

DISCUSSION 

The results of study 6 showed that participants were able to perform an intuitive 

extrapolation, meaning they could predict the location of a point outside the range of 

available data. Unlike the predictions of ordinary least squares, participants’ estimates were 

biased and were affected by noise level. In agreement with the results of experiment 2, their 

estimates resembled again those predicted by Deming regression. We conclude that 

participants can approximate a linear regression from a noisy scatterplot, and do so with a 

comparable performance regardless of the details of the stimuli and the task: binary 

judgement on a flashed graph (study 2), slope adjustment on a flashed graph (study 5) or 

extrapolation on a long-exposure graph (study 6). The results of our three experiments 

converge to suggest that humans behave in a highly competent and consistent way when 

extracting statistical information from a scatterplot. They take into account not only the slope, 
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but also the noise level and the number of data points – but do not do so according to classical 

OLS regression, but to the lesser known Deming regression. 

How could we explain that, independently from the response mode (line adjustment and 

extrapolation) humans use Deming regression rather than ordinary least squares, although 

the latter procedure would have been more adequate for our datasets, where the y values 

were noisy measurements of fixed x values? A Deming-like regression may be rational for 

several reasons. First, Deming is the appropriate procedure when the x measurements are 

noisy – and participants may not have been aware that x values were fixed. Second, Deming 

emerges naturally if participants treat the x and y axes symmetrically, which results in 

minimizing the distance of the points to the fit from both points’ coordinates. Indeed, the 

asymmetry in OLS regression (resulting in a different regression line when y is regressed on x 

or vice-versa) is highly counter-intuitive. Our results suggest that humans spontaneously 

perceive the principal axis of the graph, which is defined as the straight line that minimizes 

the sum of the squared Euclidean distances to the set of points, and hence corresponds 

exactly to the Deming regression line. Interestingly, considerable research indicates that, 

during both the perception of objects and of the geometry of the environment, humans and 

other animals spontaneously extract the principal axis of simple shapes and use it in various 

computations including object perception (Cohen & Singh, 2006), object misperception in 

patients with hemineglect (Driver et al., 1994), object manipulation (Turvey et al., 1992), 

grasping (Cuijpers et al., 2004), visual search (Boutsen & Marendaz, 2001), or spatial 

reorientation (Bodily et al., 2011, 2018; Cheng, 2005). It therefore makes sense that, when 

confronted with the task of perceiving the direction of a scatterplot, human adults would 

spontaneously reuse this evolutionarily ancient ability to grasp an object’s principal axis. 

According to this hypothesis, graph perception would constitute a novel instance of “neuronal 
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recycling” (Dehaene, 2005; Dehaene & Cohen, 2007), i.e. the repurposing of pre-existing and 

evolutionary older cognitive mechanisms, initially devoted to other purposes, for novel 

cultural uses. Just like the invention of writing repurposes part of the ventral visual system for 

object recognition towards the fast recognition of letter strings (Dehaene, 2009), the cultural 

invention of the scatterplot could be viewed as a clever way, starting from a large set of 

numerical data points, to display them in 2D or 3D space such that the resulting graph benefits 

from the human visual system’s sophisticated parallel processing ability, resulting in an 

immediate extraction of its principal axis. 
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CHAPTER 3 

 

ROBUST MENTAL REGRESSION: 

HUMAN RESISTANCE TO OUTLIERS 
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In the next study (study 7) we further probed human ability to perform mental regression by 

asking the following research question: are human intuitive statistical estimations robust to 

the presence of outliers? We asked participants to perform trend judgments and line 

adjustments in the absence and in the presence of outliers and we manipulated the level of 

attention towards such outliers: we either did not inform them about their presence 

(experiment 1); inform them that some outliers might be present and invite them to discard 

any outlier (experiment 2); inform them about their presence and, before adjusting the robust 

regression line over the scatterplot, invite them to actively detect their presence or absence 

(experiment 3).  
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STUDY 7: OUTLIER DETECTION AND REJECTION 

Every scientist regularly deals with outliers, i.e. anomalous observations or measurements 

that appear very different from the others. The dilemma is always the same: should we 

consider them the result of normal variability ("noise") inherent in the data, or exclude them 

from the main analysis, because they “arise suspicions that they were generated by a different 

mechanism” (Hawkins, 1980)? The answer is never straightforward and often depends on the 

data format, the scientific field, the number of observations and many other factors; as a 

consequence, several methods for outlier detection exist, with their advantages and 

disadvantages (Smiti, 2020). They include distribution-based methods (defining outliers as a 

function of their variation from a standard distribution), distance-based methods (which 

compute the distances among all items in the dataset, and consider as outliers those items 

that do not have close neighbors), and density and cluster-based approaches (which define 

outliers on the basis of their local density and their belonging to a distinct data cluster). 

Crucially, all of these methods depend on a threshold, a point beyond which an outlier is 

considered as such – and once a threshold has been fixed, they are only meant to detect 

outliers and do not provide explicit guidance on their inclusion or rejection from further 

analysis. A notable exception is represented by Bayesian approaches, which will be discussed 

later in the paper. Interestingly, different graphical adaptations have also been proposed to 

facilitate the perceptual identification of outliers in graphs by human readers, through data 

visualization tools such as modifying the size, color and opacity of different data points 

(Micallef et al., 2017). 

As discussed in the introduction, one of the most intuitive (but still efficient) techniques to 

detect outliers is to plot all observations in a bivariate visual format, the scatterplot (Friendly 

& Denis, 2005), and to let a human viewer decide on the presence of outliers. Indeed, 
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researchers in psychology consider scatterplots their elective tool in outlier detection (Orr et 

al., 1991). The other alternatives I have reviewed, such as box plots, hide the complexity of a 

dataset and may ultimately favor misleading conclusions about the data (Godau et al., 2016; 

Pastore et al., 2017). For example, scatterplots can be used to detect and reject response 

times that are either too fast or too slow relative to the average value. They can also be useful 

to detect the existence of a secondary pattern of data that should be analyzed separately or 

in interaction (see Sunday et al., 2019 for an example). 

These studies, however, raise an important and understudied question: are humans really 

capable of spotting outliers when a large dataset is displayed as a scatterplot? Our findings 

on “intuitive statistics” (studies 2, 3, and 4)  but also other studies indicate that human adults 

are remarkably accurate at performing several different statistical tasks on scatterplots. 

Crucially, the stimuli in the studies described so far were always graphs without outliers, 

whose data points were normally distributed around the regression line. Only a few studies 

specifically investigated the role of outliers in graph-based tasks. One found that human 

adults fail to fully reject outliers when asked to determine the Pearson r of the dataset (Bobko 

& Karren, 1979; Meyer et al., 1997). Similarly, correlation estimations are affected by outliers 

independently of the participants’ statistical knowledge (Meyer & Shinar, 1992). Even when 

asked to adjust the trend on a scatterplot including outliers that were either extremely far or 

located at the boundaries of the main dataset, participants performed a linear regression that 

fell in-between a robust one (that excludes those outliers) and the line predicted by an 

ordinary least squares (OLS) algorithm (Correll & Heer, 2017; Liu et al., 2021). Taken together, 

these results suggest that, in the presence of clear and extreme outliers, participants are 

affected by them in their correlation judgments and regression estimations, although they 
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assign them a lower weight than that of other observations in the dataset. In other words, 

participants attempt to reject outliers, but are not completely successful in doing so. 

Another line of research on so-called “ensemble perception", the human ability to 

automatically encode summary statistics of the visual environment (for a review: Whitney & 

Yamanashi Leib, 2018), found that, with stimuli other than graphs, humans do the exact 

opposite: they discard from their judgments all the items that considerably deviate from the 

other elements in the set (Epstein et al., 2020; Haberman & Whitney, 2010). This automatic 

filtering of outliers might indeed be highly beneficial in real-life contexts: avoiding deviant 

observations while focusing on the most representative information, allows to overcome our 

attentional limitations and to enhance our visual cognition (Alvarez, 2011).  

As suggested by the findings from the line adjustment and the extrapolation task presented 

in studies 6 and 7, perceiving noisy graphical representations such as scatterplots might thus 

be a novel instance of ensemble perception (since humans manage to quickly and accurately 

extract a statistical trend from noise). At the same time, however, it does not seem robust to 

the presence of outliers, contrary to what the literature on ensemble coding would predict. 

Unfortunately, all past experimental investigations on outlier processing in graphs do not 

resolve this discrepancy. Indeed, previous studies share two fundamental limitations. First, 

they allowed participants to slowly inspect the scatterplot before providing any correlation 

judgment. Second, they always used outliers that diverged dramatically from the main 

distribution or that were located exclusively at its boundaries, without experimentally 

manipulating the strength of the outliers in terms of both their distance and their number. 

These experimental choices can surely be praised for their resemblance to ecological real-life 

situations: researchers usually take their time to inspect a graph and they often tend to reject 

only extreme outliers (Anscombe, 1960). However, they do not allow to characterize humans’ 
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spontaneous processing of outliers and their role in affecting intuitive statistics. Furthermore, 

they do not clearly separate outlier detection from outlier rejection, two processes that we 

suggest should be carefully distinguished – indeed, the above results suggest, but do not 

prove, that humans may detect the presence of outliers, and yet continue to be dragged 

towards them in their mental regression evaluations.  

In this study, we aimed to provide an in-depth psychophysical investigation of the perceptual 

processing of outliers in scatterplots. We tried to answer five open questions:  

1) Do subjects spontaneously reject outliers when asked to perform a trend judgment or 

a regression estimation on a graph, without being told that there might be outliers? 

The aforementioned studies on ensemble perception (Whitney & Yamanashi Leib, 

2018) found that outlier facial expressions (Haberman & Whitney, 2010) and oriented 

lines (Epstein et al., 2020) are spontaneously excluded when participants are asked to 

evaluate the average value of a set. We tested whether those findings extend to trend 

judgments and line fitting on scatterplots or whether, in this case, outlier items are 

automatically included. 

2) Do the number of outliers and their distance from the main dataset modulate the bias 

that participants exhibit in estimating the slope or in judging the direction of the data’s 

linear trend? Previous research (Bobko & Karren, 1979; Correll & Heer, 2017; Meyer 

et al., 1997; Meyer & Shinar, 1992) showed that correlation judgments and regression 

estimates are not robust to the presence of outliers, but this result could vary with the 

number and distance of the outliers. We thus measured if human performance in 

intuitive statistics is parametrically affected by those factors. 

3) If outliers do bias participants’ performance, is this bias modulated by the level of 

attention towards them? Across our three studies, we varied the level of attention to 
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outliers by either not providing any information about their presence (experiment 1: 

no attention); telling participants about their presence and inviting them to discard 

them in their judgments (experiment 2: medium attention); or explicitly asking them 

to detect the presence of any outlier, on every trial, before estimating the line through 

the remaining data points (experiment 3: high attention). There is very little prior 

research on this topic. Attention towards deviant stimuli has been shown to bias 

ensemble average estimations in the direction of the deviant item, but participants 

were never asked to discard outliers (de Fockert & Marchant, 2008). Our manipulation 

of participants’ attention towards outliers thus provides a first test of the role of 

attention in outlier rejection. 

4) How does outlier detection work? In experiment 3, we asked participants to detect as 

fast as possible the presence (or absence) of any outlier in the dataset. In this manner, 

we could directly investigate the variables that affect outlier detection and, ultimately, 

to propose a model of how humans decide whether a given data point is an outlier or 

not. 

5) If outliers are correctly detected, does this mean that they can also be rejected? In 

experiment 3, we tried to disentangle outlier detection and rejection. On every trial, 

participants performed a task of outlier detection followed by slope estimation, thus 

allowing us to examine the contingencies between them. Participants might be well 

aware of the presence of outliers and the need to discard them, but still fail at doing 

so, thus suggesting that perceptually rejecting outliers is an ability impenetrable to 

cognition, as is the case for many visual phenomena (Stokes, 2013). 

 

 



 102  

METHODS 

Stimuli 

All stimuli included two unlabeled lines denoting the x and y axes, which remained on screen 

for the duration of the experiment (figure 25). Each line was marked with three small ticks at 

locations corresponding to the values 0, 0.5, and 1 (those numbers were arbitrary and not 

shown to participants). Within the area comprised by those two axes, the stimuli were 

scatterplots comprising 18 white dots on a black background. The x coordinates of the 18 

points were fixed and separated by an equal distance on the x axis. Each stimulus was the 

graphical representation of a dataset generated on the basis of three experimental factors, 

whose values were combined in a full factorial design. First, we varied the slope of the line 

(the “main slope”) around which the main datapoints (except outliers) were located; the main 

slope could take value: -0.5, -0.25, +0.25, or +0.5. Second, we independently varied the slope 

of the line around which the outliers were located; this “outliers’ slope” could take value: -

0.5, -0.25, +0.25, or +0.5. Third, we varied the number of outliers (n = 0, 1, 2, 3 or 4). In detail, 

the stimulus generation algorithm worked as follows. First, the y coordinates of all points 

were determined according to the following equation: yi = main_slope* xi + ei, where the xi 

are 18 numbers equally spaced between 0 and 1, and the ei are random numbers 

independently drawn from a normal distribution centered on zero and with standard 

deviation of 0.1. Afterwards, the desired number of outlier points (0, 1, 2, 3 or 4) were 

selected at random among all points in the dataset, excepting the six central ones, and their 

y coordinates were changed according to the following equation: yi = outliers_slope*xi + εI, 

again with εi ∈ N(0,0.1). Because of the added noise, the OLS regression slope of the non-

outliers dots could depart slightly from the prescribed one (“main slope”). To compensate for 

this, a small linear component was added to the main datapoints, calculated such that their 
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final slope corresponded precisely to the prescribed one, and always passed through the 

center of the screen (see figure 25B for an example with a main slope of 0.5, an outliers’ slope 

of -0.5 and 4 outliers. Examples of stimuli from all experimental conditions are provided in 

appendix B). When the main slope was identical to the outlier slope, all data points were 

generated around a single slope, thus resulting in no outlier being presented (and such 

condition was considered equivalent to the one with 0 prescribed outliers). We generated 

outliers using a secondary process (namely another regression line with the outlier slope) 

because it offered a means to finely control their average distance from the main dataset, 

while still avoiding to impose an exact location to them. A different choice would have been 

to manipulate the distance factor by using different standard deviation distances from the 

main regression line but, in this case, all outliers would have had, for a given distance 

condition, exactly the same deviance, likely making the stimuli easily recognizable over trials. 

 

 

 

 

 

Figure 25. Experimental design. A, example trial. On each trial, participants were presented with a scatterplot and asked to 

judge, in experiment 1 and 2, if its trend was ascending or descending; or, in experiment 3, if there were any outliers. Immediately 

after their response, they had to adjust the slope of a line on screen by moving their finger on a trackpad, in order to provide an 

estimation of the regression line underlying the noisy scatterplot. In experiment 1, participants were not informed of the 

presence of outliers. Experiment 2 differed from experiment 1 only in that participants were informed that some outliers could 

be present, and were asked to try to ignore them in their judgments. Experiment 3 further emphasized outliers by first asking 
for explicit outlier detection before the slope adjustment task. B, Illustration of the stimulus generation process. In each 

scatterplot, the majority of dots were noisy samples around a line with a main slope of either 0.5, 0.25, -0.25, or -0.5. Between 

0 and 4 dots were outliers (in this example, 4) generated as noisy samples around another line, whose slope could also take the 

values 0.5, 0.25, -0.25 or -0.5. Different colors are used for illustrations purposes only: outliers were not signaled in any way, 

since all stimuli were white dots on a black background. 
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Participants 

30 participants (10 per experiment) were recruited (age: 26.2 ± 2.1, 16 females, 14 males). 

The sample size was the same as in our previous studies. All participants had normal or 

corrected to normal vision, no medical history of epilepsy, were right-handed, and did not 

take psychoactive drugs. The experiment was advertised through the mailing list of the first 

author’s university. In order to ensure the homogeneity of the sample in terms of participants’ 

cultural background, only participants with at least a master’s degree were recruited. They all 

signed an informed consent and were paid 5 euros for their participation. The experimental 

sessions lasted approximately 30 minutes and were approved by the local ethical committee. 

One participant was excluded from study 7b analyses since he failed to perform the task 

appropriately (his performance was at chance level).  

Experimental procedure 

Participants were invited to sit on a fixed chair with their head at a distance of 50 cm from 

the screen. Each experimental session was divided into 5 blocks of 80 trials; the duration of 

each block was ~4 minutes. After each block, participants could take a short break. Before 

starting the actual experiment, 25 practice trials were run under the researcher’s supervision, 

in order to control for the correct execution of the task (i.e., maintaining the correct distance 

from the screen, correctly placing their hand and fingers; familiarizing with the rapid 

presentation of the stimuli. No feedback on performance was provided). On each trial, as 

illustrated in figure 25A, a fixation cross first appeared for 1000 ms, immediately followed by 

a scatterplot flashed for 100 ms. The stimuli were flashed in order to promote spontaneous 

and fast responses and thus to avoid any possible explicit strategy, calculation, or complex 

eye movement patterns. The experimental procedure varied depending on the experiment. 
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Experiment 1. No information concerning the presence of outliers was given to participants. 

They were merely asked to respond (as fast and accurately as possible) by pressing with their 

left-hand ring finger on a key (signaled with a ß sticker) if they thought that the trend in the 

scatterplot was decreasing or, conversely, to press with their left-hand index finger on 

another key (signaled with a Ý sticker) if they thought that the trend in the scatterplot was 

increasing. Immediately after this first response, an adjustable line appeared in the middle of 

the screen. The line was initially horizontal, but participants were asked to adjust it as 

accurately as possible by moving their right-hand index finger on the computer trackpad. The 

center of the line was kept fixed, so that moving the finger up or down the trackpad resulted 

in a rotation of the line around its center, whose angle was proportional to the finger 

displacement; moving the finger up tilted the line in the counterclockwise direction, whereas 

moving the finger down tilted it in the clockwise direction. For this second task, participants 

were invited to respond independently of their first trend judgment: they were explicitly told 

that they could orient the line in a direction opposite to their trend judgment, if they thought 

that they had made a mistake in the first task. When the adjustment was completed, they 

pressed the trackpad in order to confirm their answer and move to the next trial, which was 

preceded by a 1s fixation cross. 

Experiment 2. Participants of this experiment were asked to perform the exact same task as 

participants in experiment 1. The only difference consisted in the information given to them 

before starting the experimental session: they were informed that 1 or more outliers, defined 

as points outside the main dataset, could be present in some trials. They were invited to try 

to exclude such outliers from their answers, and thus to perform both tasks of trend judgment 

and slope adjustment only on the main dataset. 
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Experiment 3. As in experiment 2, participants were informed that one or more outliers could 

be present in some trials. They were asked to detect them, as fast and accurately as possible, 

by pressing with their left-hand ring finger on a key (signaled with a “NO” sticker) if they 

thought that the scatterplot did not include any outliers or, conversely, to press with their 

left-hand index finger on another key (signaled with a “YES” sticker) if they thought that the 

scatterplot included one or more outliers. Immediately after this detection response, they 

moved to the slope adjustment task, identical to experiment 2, with the explicit instruction 

to try to estimate the slope of the main dataset only and, thus, to reject outliers. 

 

RESULTS 

Performance in trend judgment and line adjustment in graphs without outliers 

First, in an attempt to replicate our previous studies, we analyzed participants’ trend 

judgment performance in the absence of outliers. Figure 26A shows the percentage of trials 

classified as “increasing” as a function of the main slope and of the t-value associated with 

the scatterplot linear regression. As clear from the figure, in both experiments 1 and 2, 

participants’ responses could be modeled as a sigmoid function of such t-value. Both the 

sigmoidal shape of their response rates (figure 26A) and the distance effect in their response 

times (i.e., slower responses for stimuli with a t-value closer to zero; figure 26B) could be 

jointly predicted by a classical decision-making model which assumes a noisy accumulation of 

evidence towards a decision bound (Gold & Shadlen, 2002). In figure 26B, the blue lines show 

the performance predicted by that model. These results replicate the findings described in 

the previous chapters. 
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Influence of outliers on accuracy in the trend judgment task 

We then looked at participants’ performance in the same trend judgment task (“ascending or 

descending?”) when outliers were present in the stimuli. Figure 27 shows the results from 

both experiment 1 and 2, which closely resembled each other. The average error rates for 

stimuli without outliers are simply indicated as a reference (the black dots). The top row 

indicates the error rate as a function of the number of outliers as well as two other driving 

variables: the absolute value of the main slope of the scatterplot (steep: 0.5; or shallow: 0.25), 

and the outliers’ distance, quantified as the absolute difference between the outliers’ slope 

and the main slope. For a main slope of 0.5, the available outliers’ distances were 1, 0.75 and 

0.25, which for simplicity are referred to, respectively, as “large”, “medium” and “small”. 

Figure 26. Performance in trend judgment (A, B) 

and line adjustment (C) in graphs without 

outliers. In both experiments, the percentage of 

“increasing” responses (A) and the response times 

(B) vary systematically with the t-value associated 

to the Pearson coefficient of correlation. The blue 

lines in the middle row indicate the response 
times predicted by a simple accumulation-of-

evidence model (Gold and Shadlen, 2002). The 

plots in C show the slopes reported by participants 

(black lines) and predicted by ordinary least 

squares (OLS) regression (dashed grey lines), 

which corresponds to the process by which the 

scatterplots were generated. Participants 
responded with slopes exceeding those predicted 

by OLS, in agreement with the use of Deming 

regression. All of these results replicate our 

previous findings with similar mental regression 

tasks (Ciccione & Dehaene, 2021). 
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Similarly, for a main slope of 0.25, the available outliers’ distances were 0.75, 0.5 and 0.25, 

which are again referred to with the same labels.  

 

 

 

 

 

 

As we can see, in both experiments, the error rate increased as a function of the number of 

outliers and their distance from the main dataset, indicating that the participants’ responses 

were attracted towards the outliers. To test for the significance of these observations, we 

conducted an ANOVA on participants’ error rates with the main slope, the outliers’ distance 

Figure 27. Influence of outliers on performance in the trend judgment task (“is the graph ascending or 

descending?”). Results are plotted as a function of the number of outliers, separately for graphs with steep (0.5) 

or shallow (0.25) main slopes. Both error rates (A) and response times (B) increase as a function of the number of 

outliers, as well as of the distance of the outlier slope from the main slope. When the graph has a shallower main 

slope (0.25), thus rendering the task more difficult, the influence of outliers becomes correspondingly larger. Error 
bars indicate one standard error of the mean across subjects. 
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and the number of outliers as within-subjects’ factors and the experiment number (1 or 2) as 

a between-subjects’ factor. While the experiment number had no significant main effect nor 

any interaction (all related p values > .1), all other factors had main effects (main slope: F[1, 

17] = 101.15, partial h2 = .86, p <.001; outliers’ distance: F[1.5, 25.8] = 90.97, partial h2 = .84, 

p <.001; number of outliers: F[2.5, 42.9] = 39.55, partial h2 = .7, p <.001) and interaction effects 

(main slope and outliers’ distance: F[1.6, 27.4] = 18.78, partial h2 = .52, p <.001; main slope 

and number of outliers: F[2.3, 39] = 25.6, partial h2 = .6, p <.001; outliers’ distance and number 

of outliers: F[3.2, 54.1] = 19.12, partial h2 = .53, p <.001; triple interaction of main slope, 

outliers’ distance and number of outliers: F[3.9, 66.9] = 6.54, partial h2 = .28, p <.001).  

Figure 27 clarifies the meaning of those interactions. First, error rates generally increase with 

the number of outliers, but more so when the main slope is shallow (0.25), thus rendering the 

main decision more difficult, than when the main slope is steep (0.5). Second, similarly, for 

the same number of outliers, their impact is larger when their distance to the main dataset is 

larger, i.e., when they deviate more from the main regression line. Those findings make sense: 

essentially, the more numerous the outliers, and the more they push towards a line with a 

different orientation from the main one, the more likely participants are to make an error. 

Indeed, it is worth noting that the small outliers’ distance condition (red lines), with a main 

slope of 0.25, was the only experimental condition in which the outliers’ slope was steeper 

than the main slope: in this situation, outliers were not expected to make the trend judgment 

harder to perform, since they made the overall trend of the graph steeper. Indeed, the error 

rates in these conditions did not increase as a function of the number of outliers (the red lines 

are essentially flat): this was confirmed by a non-significant main effect of the number of 

outliers in two ANOVAs restricted to those conditions (experiment 1: F[1.1, 9.7] = .28, partial 

h2 = .03, p = .62; experiment 2: F[3, 24] = 1.73, partial h2 = .18, p = .19).  
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Influence of outliers on response times in the trend judgment task 

Response times in the trend judgment task for experiment 1 and 2 are plotted in figure 27 

(bottom). Response times behaved in parallel to error rates, thus indicating the absence of a 

speed/accuracy tradeoff. They increased as a function of the number of outliers as well as of 

the distance of the outliers’ slope from the main slope. The same ANOVA as above, now on 

median response times, again revealed no main effect or interactions involving the 

experiment factor (all related p values > .1). It also indicated that all within-subject factors 

had a significant main effect (main slope: F[1, 17] = 53.67, partial h2 = .76, p <.001; outliers’ 

distance: F[1.1, 18] = 26.88, partial h2 = .61, p <.001; number of outliers: F[1.6, 26.8] = 20.02, 

partial h2 = .54, p <.001) and entered into significant interactions (main slope and outliers’ 

distance: F[1.4, 23.3] = 16.87, partial h2 = .5, p <.001; main slope and number of outliers: F[2.4, 

40.3] = 6.45, partial h2 = .28, p <.01; outliers’ distance and number of outliers: F[2.4, 39.9] = 

15.04, partial h2 = .47, p <.001; no triple interaction of the within-subjects factors was found). 

Again, those interaction effects are easily observable in figure 27: response times increased 

significantly faster with the number of outliers as the distance of the outliers increases, and 

also as the main slope gets shallower. Like for error rates, the experimental condition in which 

the outliers’ slope was steeper than the main one resulted in no increase of response times 

(as evident from the essentially flat red lines in the plots for a main slope of 0.25), which was 

confirmed by two ANOVAs restricted to those conditions (experiment 1: F[2.6, 23.4] = .7, 

partial h2 = .07, p = .54; experiment 2: F[2, 15.7] = .37, partial h2 = .04, p = .7). 

Lastly, as we can see from the response time plots for a main slope of 0.25, we found that the 

presence of a single outlier, at a large enough distance from the main dataset (blue lines), 

induced a substantial increase in response times. Indeed, a paired t-test on participants’ 

response times from both experiments revealed a significantly slower median response time 
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in the presence of one outlier than in the absence of outliers (t(18) = 2.78, p < .01; respectively 

550 versus 478 ms). 

One could argue that a greater number of outliers simply made the overall slope of the 

dataset closer to zero, thus making trend judgement more difficult. Could participants’ slower 

response times be explained by changes in slope rather than by the number of outliers? To 

test for this, we performed a multiple linear regression on response times with both the 

number of outliers and the absolute Deming slope as predictors. We found that both were 

significant (bnumber of outliers= 20.7 ms/outlier, p < .0001; babsolute Deming slope = -822.5, p < .0001). 

We also computed a linear regression on the residuals of the response times as a function of 

the absolute Deming slope and found that the number of outliers was still a significant 

predictor (b= 19.2 ms/outlier, p < .0001). Thus, the results confirm that outliers influenced 

response times over and above their indirect effect on the overall trend, with a cost of ~20 

ms per outlier. 

Overall, performance in the trend judgment task indicated that, regardless of the instructions 

to exclude outliers, participants were always strongly influenced by them, especially when (1) 

they were more numerous; (2) their deviation was large; and (3) the decision was difficult 

because the main slope was shallow. 

Influence of outliers on the line adjustment task 

The second task, which was run in experiments 1, 2 and 3, consisted in a slope adjustment: 

participants were asked to adjust the line in order to best fit the scatterplot. As explained in 

the methods section, the three experiments differed only in terms of the induced level of 

attention about the presence of outliers in the stimuli: in experiment 1, no information about 

outliers was given; in experiment 2, participants were invited to exclude them in both their 

trend judgment and slope adjustment; in experiment 3, they were explicitly invited to 
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concentrate on them and detect their presence (or absence) before performing the slope 

adjustment task (after rejecting them). 

We first examined the slope estimated by participants in the absence of outliers (figure 26C 

shows the results for experiment 1 and 2, which were similar to experiment 3). Confirming 

our previous studies, we found that the estimated slope closely tracked the actual slopes of 

the graphs, but were steeper than the ones predicted by a classic ordinary least squares (OLS) 

regression (the grey dashed lines in figure 26C). Their values were compatible with the 

minimization of the orthogonal distance of the points to the best-fitting line, a procedure 

known as Deming regression. 

For each subject and each experimental condition, we then evaluated the impact of outliers 

relative to this no-outlier baseline. To this aim, we calculated “response bias” as the 

difference between the median slope that they reported in the presence of outliers and in 

their absence. For visualization and analysis’ purposes, the sign of this difference was flipped 

such that a positive value always indicated attraction towards the outliers (in practice, this 

meant that we flipped the sign for all stimuli with an outliers’ slope lower than the main 

slope). Figure 28 shows the mean response bias as a function of experiment, main slope, 

number of outliers, and outliers’ distance from the main dataset. We can see that the outlier-

induced bias increased with the number of outliers, but did so faster for a large outliers’ 

distance, and more so in experiment 1 than in experiment 2 or, a fortiori, experiment 3. We 

confirmed these observations through a repeated measures ANOVA on participants’ median 

bias with experiment number as between-subjects factor and main slope, number of outliers, 

and outliers’ distance as within-subjects factors. All of the latter had a significant main effect 

(main slope: F[1, 26] = 43.35, partial h2 = .63, p < .001; number of outliers: F[1.57, 40.94] = 

82.72, partial h2 = .76, p < .001; outliers’ distance: F[1.48, 38.53] = 22.08, partial h2 = .46, p < 
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.001). Although the main effect of experiment was close to significance (F[2, 26] = 3.20, partial 

h2 = .2, p = .06), it entered in a significant interaction with both the main slope (F[2, 26] = 4.99, 

partial h2 = .28, p = .01) and the outliers’ distance (F[2.96, 38.53] = 5.76, partial h2 = .31, p < 

.01).  

 

 

Indeed, as we can see from figure 28, the outlier-induced bias decreased across experiments, 

as the level of attention to outliers increased, and this effect was more pronounced for a 

larger number of outliers and for larger outliers’ distances. It is worth noting that the number 

of outliers had also a significant interaction with both the main slope (F[2.17, 56.35] = 3.9, 

partial h2 = .13, p = .02) and the outliers’ distance (F[4.15, 107.81] = 12.36, partial h2 = .32, p 

Figure 28. Influence of outliers on the adjusted slope in the line 

adjustment task. Top: results of exp. 1, 2, 3, separately for 

graphs with a steep (0.5) and a shallow main slope (0.25). 
Response bias was calculated as the average difference 

between the slope reported in the presence of a certain number 

of outliers minus the slope reported in the absence of outliers. 

Data were flipped such that a positive value always indicates 

attraction towards the outliers. Across experiments, the bias 

decreases, suggesting an improved rejection of outliers. Error 

bars indicate one standard error of the mean across subjects. 
Bottom: theoretical predictions of Deming regression. 

Response bias was the average difference between the overall 

Deming slope and the Deming slope in the absence of outliers. 

The response bias in exp. 1 was almost identical to the response 

bias of Deming regression: participants not informed about 

outliers performed a Deming regression on the entire dataset. 
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< .001). Thus, the results of the line adjustment task (figure 28) closely paralleled those of the 

trend judgment task (figure 27). 

If, as we suggest, uninformed participants did not spontaneously reject outliers, but included 

them in their regression estimates, then their response bias should be predictable by a global 

regression performed on the entire dataset. To test this idea, we examined whether the 

response bias from participants of experiment 1 (i.e., those who received no information 

about the presence of outliers) mirrored the theoretical predictions of Deming regression. As 

with the actual data, we first computed the response bias as the difference between the slope 

predicted when the regression was applied to the entire dataset, and when it was applied to 

a dataset without outliers. Figure 28 (bottom) shows the predicted biases for each 

experimental condition, plotted in the same way as the human data. Those predictions 

quantitatively match the observed data (linear regression between predicted and observed, 

R² = 0.91, slope = 1.02 ± 0.07, intercept = .01). In particular, Deming regression predicts that 

bias should increase with the number of outliers and with their distance from the main 

dataset, exactly as in human data. 

Performance in outlier detection 

On every trial of experiment 3, participants first performed an outlier detection task: 

immediately after the flashing of the scatterplot, they had to decide whether they had seen 

at least one outlier or not, by pressing one of two response keys as fast and accurately as 

possible. This experimental procedure allowed us to directly investigate whether and how 

humans detect the presence of outliers. Figure 29 shows the percentage of “yes” responses 

as a function of the main slope, the number of outliers and their distance. The results 

indicated that false alarms were quite high (40-50% of trials without outliers), but that correct 

detection increased as a function of the number of outliers, especially for large and medium 
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outliers’ distances. Those observations were confirmed by an ANOVA on the percentage of 

“yes” responses with the above factors as within-subjects’ factors (to obtain a full factorial 

design, we excluded the conditions with 0 outliers, which are presented in figure 29 only for 

reference). There was a main effect of both the number of outliers (F[1.90, 17.13] = 11.52, 

partial h2 = .56, p < .001) and their distance (F[1.59, 14.28] = 52.61, partial h2 = .85, p < .001). 

The main slope had no main effect (p = .48) but entered in a significant interaction with the 

outliers’ distance (F[1.79, 16.13] = 11.32, partial h2 = .56, p = .001): in fact, as clear from figure 

29, for a steeper main slope of 0.5, the difference in correct detections between the three 

outliers’ distances was more pronounced than for a main slope of 0.25. 

We ran a similar ANOVA on participants’ median response times for correct detections and 

found only a significant main effect of outliers’ distance (F[1.13, 10.17] = 5.99, partial h2 = .4, 

p = .03) and its interaction with the main slope (F[1.81, 16.25] = 6.09, partial h2 = .4, p = .01). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Performance in outlier detection in experiment 3. The percentage of trials in which participants reported seeing 

at least one outlier is plotted as a function of the true (i.e., “prescribed”) number of outliers (0-4).  This percentage increases 

as a function of the number of outliers, as well as their distance between their slope and the main slope. Error bars indicate 

one standard error of the mean across subjects. 
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Formulating and testing a theory of outlier detection and rejection 

On what basis do participants decide on the presence of outliers? We formulated the 

hypothesis that, like a statistician, they might base their judgments on an estimate of how 

much a given data point departs from the rest of the cloud. A simple way of measuring such 

a departure is to compute a z-score for each point, i.e., a fraction with the numerator equal 

to the distance of that point to the regression line, and the denominator equal to the standard 

deviation of such distances. Such a z-score evaluates to what extent the observed data point 

is out-of-distribution compared to the other ones. 

The specific model we propose is shown in figure 30A. First, we computed the Deming 

regression of each scatterplot and postulated that, for the numerator, participants use the 

perpendicular distance to that line. Second, for the denominator, since our graphs all had the 

same noise level (standard deviation = 0.1), we postulated that subjects could pool their noise 

estimates across trials and eventually converge to a fixed value. Note that this hypothesis may 

be revised in a different experimental setting – for instance if participants saw a single graph, 

or if the noise level varied across trials; then their estimate could be based on the observed 

graph. Here, however, we obtained a better account by postulating a fixed value of the 

denominator (as confirmed by a model comparison described later in this section). 

In the end, we therefore calculated, for each point, a z-score equal to its perpendicular 

distance to the regression line divided by 0.1 (figure 30A). Our hypothesis predicts that this 

value is the decision variable on the basis of which participants decide whether that point is 

an outlier. Since they had to decide whether any outlier was present, the percentage of “yes” 

responses in outlier detection should be a logistic function of the maximum z-score over all 

18 data points. Figure 30B shows the corresponding psychophysical curve (for visualization 

and analysis’ purposes, the responses were binned according to the highest z-score). We ran 
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a multiple logistic regression on all participants’ responses with two regressors: the highest z-

score and the actual prescribed number of outliers; we found that the former was an excellent 

predictor of “yes” responses (b = 1.91, p < .0001), better than the actual prescribed number 

of outliers (b = .1, p < .0001). Indeed, as we can see from figure 30B, when the highest z-score 

was low (~0.8), the proportion of “yes” responses dropped to 15%, lower than the average 

rates of false alarms of 48% on trials where prescribed outliers were genuinely absent (figure 

29). Conversely, at the opposite extreme, when the highest z-score exceeded about 3, the 

detection rate was close to 100%, higher than the average values of 65% when a single outlier 

was actually present (figure 29).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Participants may detect outliers by 

computing the significance of their deviation 

from the principal axis. A: example of a 

scatterplot with three outliers and proposal of 
an outlier detection algorithm. The outliers can 

be detected by calculating their individual z-

scores, computed as their distance to the 

Deming regression line (i.e., the principal axis), 

divided by an estimate of the standard 

deviation of those distances. Outliers tend to 

have large z values. B: The percentage of trials 
in which the subjects reported seeing at least 

one outlier (detection task in experiment 3) is 

well predicted by the highest z-score in the 

stimulus graph, regardless of the prescribed 

number of outliers. Crucially, the highest z-

score is a better predictor of outlier detection 

than the prescribed number of outliers, 
(shown in figure 5). C: the bias in the slope 

adjustment task also varies as a function of the 

highest z-score in the dataset. In experiment 1, 

where participants were not told about 

outliers, the increase is essentially monotonic. 

In experiments 2 and 3, the bias starts 

decreasing when the highest z-score exceeds 

~2.8. In experiment 3, the bias returns to zero 
for larger z-scores, indicating that extreme 

outliers can be rejected when explicitly 

instructed. D: response times in trend 

judgment (exp. 1 and 2) increase as a function 

of the highest z-score in the dataset; response 

times in outlier detection (exp. 3) peak for 

highest z-scores around 2, where the model 
predicts the presence or absence of outliers to 

be most ambiguous. Error bars indicate one 

standard error of the mean across subjects. 
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One could rightfully argue that the highest z-score in the dataset does not take into account 

the number of other outliers. To focus on the simplest cases, we thus restricted our logistic 

regression to stimuli with either no prescribed outlier, or with a single prescribed outlier – 

and in both cases, we found that the highest z-score was still a significant predictor of the 

percentage of “yes” responses (respectively: b0_outliers = 1.88, p < .0001; b1_outlier = 2.22, p < 

.0001). Figure 30B makes it clear that a single function of the z-score provided an excellent 

account of the outlier detection responses, regardless of the actual prescribed number of 

outliers. 

We tested several alternative ways of computing the z-scores. First, the distances (numerator) 

could be computed using the regression of all points (as we did) or the regression restricted 

to the main dataset. Second, they could be based on the perpendicular distance to the 

Deming regression, or the vertical distance to the OLS fit. Third, the standard deviation 

(denominator) could use the prescribed standard deviation of the distances (0.1) or the actual 

standard deviation, measured from the specific graph. We modeled the logistic regressions 

of the percentage of “yes” responses as a function of the highest z-score calculated through 

all eight combinations of those three parameters and found that the model with the 

significantly smallest Akaike Information Criterion (AIC), thus the one more plausible to be 

correct (Akaike, 1998), was the above-described model. 

Given that the highest z-score accounted well for outlier detection in experiment 3, we next 

examined whether the same variable also predicted the capacity for outlier rejection, i.e., the 

influence of outliers on mental regression slopes. To this end, we went back to experiments 

1, 2 and 3, and plotted the participants’ response bias in the line adjustment task as a function 

of the highest z-score in the stimulus graph, separately for each experiment (figure 30C). 

Interestingly, for experiment 1, the response bias increased monotonously as a function of 
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the highest z-score (R2 = .36, F[1, 98] = 57.21, p <.001): with no information concerning the 

presence of outliers, participants included them in their estimations, and the greater their 

deviance, the higher the bias they induced. However, for experiment 2 and 3, in which 

participants were explicitly asked to reject outliers, a similar increase in response bias was 

seen only up to a highest z-score of ~2.8, after which the bias started to decrease. Indeed, in 

experiment 3, which required an explicit outlier detection on each trial, the bias was 

statistically indistinguishable from zero for z-scores higher than 3.6 (mean bias = 0.001; t-test 

on all responses against zero: t(173) = .09, p = .93).  

These observations were confirmed by a repeated-measures ANOVA on the outlier-induced 

bias with experiment (1, 2 or 3) as between-subjects factor and the highest z-score in the 

dataset as within-subjects factor: both had a significant main effect (experiment: F[2, 26] = 

4.94, partial h2 = .28, p = .02; highest z-score: F[3.17, 82.53] = 8.56, partial h2 = .25, p < .0001) 

and entered into a significant interaction with each other (F[6.35, 82.53] = 2.57, partial h2 = 

.17, p = .02). Crucially, the main effect of the experiment and its interaction with the highest 

z-score vanished when the ANOVA was computed only on stimuli with a highest z score 

limited to values at or below 2.4 (both p values > .47).  

In summary, the data in figure 30 suggests the existence of two ranges. For highest z-scores 

below roughly 2.4, participants miss many of the outliers, while their influence on regression 

responses increase with z; and for highest z-scores above that value, outlier detection 

approaches 100%, and their influence on mental regression starts to decrease – but only if 

subjects are told to reject them. 

This conclusion seems to suggest that, on average, outlier rejection closely parallels outlier 

detection. However, this was not true on a single-trial basis. We restricted the analysis to 

those trials of experiment 3 in which (a) a single outlier was prescribed; (b) that point had the 
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highest z-score; and (c) the participant responded that he had detected an outlier (most likely 

the prescribed one). On such trials, if outlier detection automatically led to outlier rejection, 

there should be no outlier-induced bias on the participants’ slope estimates. This was true for 

scatterplots with one prescribed outlier with a z-score higher than 2 (t(84) = -.31, p = .62) but 

not for scatterplots with one prescribed outlier with a z-score at or below 2: for these stimuli, 

the bias was still significantly higher than zero (t(49) = 2.75, p < .01). This finding confirms that 

participants could remain influenced even by outliers that they have detected. 

Lastly, we looked at whether the response times could also be predicted by the z-score of the 

datapoints (figure 30D). First, we considered the trend judgment task used in experiments 1 

and 2, where we previously found that RT increased with the prescribed number of outliers, 

and examined whether it could be explained by the actual number of outliers. To estimate 

the latter, we calculated, for each graph, the number of outliers passing a threshold of z>2, 

and we included it as a predictor in a multiple regression on response times, together with 

the absolute Deming slope and the absolute main slope of the dataset. All predictors were 

significant (bnumber of outliers higher than z=2= 25.3 ms/outlier, p < .0001; babsolute Deming slope = -1185.3, 

p < .0001; bmain slope = 579.2, p < .0001). We then calculated the residuals of the regression 

with the two mentioned slopes as predictors and computed a linear regression on such 

residuals as a function of the number of outliers with a z-score higher than 2, finding it was 

still a significant predictor (b = 13.9, p < .01). Crucially, such a linear regression had an AIC of 

112289, which was significantly smaller than the one calculated on the residuals as a function 

of the prescribed number of outliers (AIC = 112456, DAIC = 167, p < .0001), suggesting once 

more that the z-score of the datapoints was a better predictor of participants’ performance 

than the prescribed number of outliers. This is evident when comparing figure 29 to figure 

30B: if the prescribed number of outliers is taken into account (figure 29), outliers are wrongly 
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detected at a very high rate (~40-50% when no outliers were present); however, when the 

actual distance of those outliers is considered (figure 30B), the false detection rate turns out 

to be much lower (~20-30%  for trials with a low z-score). 

Next, we considered the response times in outlier detection (experiment 3). Our model 

predicts that participants take that decision by evaluating whether any point has a z score 

above a threshold value, close to z=2. Thus, the decision variable should be the difference 

between the highest-score and this threshold, and response times should be increasingly 

slower as this difference approaches zero. To test this prediction, for each graph, we 

calculated the absolute distance between its highest z-score and 2, and we used such value 

as a predictor in a linear regression of response times. The effect was significant (b = -70.8, p 

< .0001), and a plot of RTs indicated that indeed, RTs decreased with the distance from the 

putative decision boundary (figure 30D). 

Comparing human performance with an optimal Bayesian model 

As explained in the introduction, formal methods of outlier detection share two fundamental 

aspects: they possess a threshold beyond which a datapoint is dichotomously considered an 

outlier or not, and they do not provide any explicit indication on whether the outlier should 

be included or excluded from the analysis – and thus do not directly speak to our data, which 

are primarily about how participants’ regression estimates vary in the presence of outliers, 

and of instructions to reject them.  

An exception is given by Bayesian approaches, which compute the posterior probability that 

each observation is an outlier; such probability can be seen as the “weight” that each item 

has in the regression (a lower probability/weight has a smaller influence on the regression). 

How does this approach perform in comparison with our participants? In order to answer this 

question, we computed, for each trial used in our experiments, the posterior probability of 
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each item being an outlier, as formalized by Chaloner & Brant (1988). Then, for each such 

trial, we ran 1000 iterations, in which the points in the dataset were excluded depending on 

their probability to be an outlier (e.g., a point with a probability of 0.8 being an outlier, was 

excluded, on average, 80% of the times). We then calculated the Deming regression slope of 

each iteration (i.e., on the items that, on that occasion, were not considered outliers) and 

took the median of the 1000 iterations. This algorithm provided us with the regression slope 

predicted by the weighted Bayesian approach for each trial in each experimental condition of 

our experiments. Next, we calculated the response bias of such a model (figure 31) in the 

exact same way we did for our participants. For comparison, we also plotted in figure 31 the 

bias shown by a classic Deming regression algorithm. Indeed, Deming regression is also 

thought to be more robust to outliers than ordinary least squares, because outlier data points 

affect (i.e., “pull”) the regression line to a smaller extent when they are orthogonally 

projected to it (as in Deming) than when they are vertically projected to it (as in OLS). 

 

 

 Figure 31. Slope bias of Deming regression (calculated on trials presented to subjects in experiment 1) and of the 
weighted Bayesian approach (on trials from exp. 2 and 3). The model is adapted by Chaloner & Brant (1988). As 

evident from the comparison of this figure with figure 6C, Deming regression well mimics participants’ response bias 

in experiment 1: no outliers are excluded. In experiment 2 and 3, the Bayesian model mimics participants’ outlier 

rejection behavior, although human bias (figure 6C) decreases to zero for very large highest z-score values. 
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The results show that Deming regression, once again, nicely mimics participants’ performance 

in experiment 1, where participants were not explicitly told about outliers, but not 

experiments 2 and 3. In other words, even if Deming regression is partially robust to outliers, 

its robustness is modest and both participants (figure 30C) and Deming do not automatically 

exclude even distant outliers. However, we can see that the Bayesian model (set to 

probabilistically detect outliers beyond a threshold of z = 2) is much more robust to outliers 

and shows a behavior partially similar to humans in experiments 2 and 3: for highest z-scores 

larger than 2.8, its bias stops increasing. Crucially, however, a difference remains: whereas in 

humans such bias ultimately decreases as the z score becomes very large (figure 30C), the 

bias for the model remains essentially flat for increasing values of z-scores. The results 

indicate that the Bayesian model, while close to humans, still differs from them in that it 

misses a mechanism to sharply reject obvious outliers. 

 

DISCUSSION 

Across three experiments manipulating the number and distance of outliers in scatterplots 

and the level of attention towards them, we probed the human capacity for intuitive statistics 

in tasks of trend judgment, line fitting and outlier detection, investigating whether outlier 

items are spontaneously included (as suggested by the literature on graph perception) or 

rather excluded from any statistical judgment (as predicted by the literature on ensemble 

perception). We now examine how the results provided answers to the five research 

questions presented in the introduction of this chapter. We also try to integrate our findings, 

both with previous findings in the narrow domain of scatterplot perception and with the 

larger literature on ensemble and outlier perception (which did not use graphs as stimuli); 

indeed, as appropriately argued by Rensink (2021), studies on graphical representations can 
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provide fruitful insights not just for graph perception but also, more broadly, for vision 

sciences. 

First, do subjects spontaneously reject outliers when asked to perform a trend 

judgment or a regression estimation on a graph, without being told that there might be 

outliers? Experiment 1 is quite clear: participants do not spontaneously reject outliers and 

they integrate these deviant points in both their trend judgments and their regression 

estimations. As summarized in the introduction to this chapter, recent studies on ensemble 

perception (e.g., Epstein et al., 2020; Haberman & Whitney, 2010) showed that, on the 

contrary, deviant items are easily discarded when participants are asked to provide an 

estimate of the average of a set. This contradiction might suggest that the intuitive extraction 

of visual statistics from a graph is not solely a form of ensemble perception. Indeed, when 

asked to fit a line or extract a trend from a graph, our participants performed a computation 

that goes beyond the simple “averaging” of a value on a common scale, as is the case for the 

ensemble perception of items of different hues or orientations. In these cases, the averaging 

is over a factor that is already present in each individual item: the average color of all items’ 

color, the average orientation of all items’ orientations (Whitney & Yamanashi Leib, 2018). In 

the case of scatterplots, the average item location is useless when assessing a trend, which 

arises from the relations between data points. Future research should try to disentangle the 

commonalities and differences between graph and ensemble perception (Cui & Liu, 2021). At 

the very least, our studies prove that the two processes are not fully overlapping. It is 

important to point out that, both in our stimuli and in the reviewed papers on ensemble 

perception, when multiple outliers were present, they were correlated  with each other: more 

specifically, they either had the exact same level of deviation from the average value 

(Haberman & Whitney, 2010) or they were generated from a secondary value with the 
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addition of random noise (Epstein et al., 2020), as was also the case here. Future research 

should investigate whether the same results hold (both for graph and ensemble perception) 

if the outliers are fully uncorrelated. 

Second, do the number of outliers and their distance from the main dataset modulate 

the bias they induce? Our results from experiment 1 and 2 show that yes, participants’ errors 

and response times in the trend judgment task increase for a higher number of outliers and 

for a larger distance of these outliers from the main dataset. Likewise, the participants’ slope 

estimates become increasingly biased (i.e., attracted towards outliers) for larger values of 

these factors. It is worth noting that those increases in error rate, response time and response 

bias were significantly less pronounced for a main slope of |0.5| than for a shallower main 

slope of |0.25|. In other words, when the main trend was steeper, outliers were less likely to 

affect participants’ responses. This result makes sense: it is when the decision is most difficult, 

because the main slope is less pronounced, that outliers have the greatest influence. 

However, the effect of outliers on response times was still significant even when slope was 

regressed out, a finding that suggests a serial processing of outliers, with a cost of ~20 ms per 

item. Overall, our findings extend previous research on outlier processing in scatterplots 

(Bobko & Karren, 1979; Correll & Heer, 2017; Meyer et al., 1997; Meyer & Shinar, 1992) by 

showing that deviant points in a scatterplot affect the human capacity for mental regression 

more if they are numerous and further from the main dataset.  

One might argue that the stimuli we used comprised a too small number of observations (18), 

which may not be sufficient to allow the viewer to form a reliable mental regression from 

which to detect deviant points. However, the results from figure 26 clearly show that our 

stimuli comprised enough evidence for subjects to accurately detect the regression slope. The 

reason we opted for 18 datapoints is double: first, we showed in study 1 that humans are able 
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to reliably compute mental regressions with as few as 6 datapoints, with a performance close 

to optimal for datasets like the ones we used in the current study (i.e., with 18 points 

generated from slopes steeper than 0.2); second, we wanted to avoid conditions in which 

outliers could too easily pop out, making the task trivial. Future studies could investigate the 

effects of the overall number of datapoints on outlier detection by parametrically varying this 

factor. 

Third, can the outlier-induced bias be mitigated by drawing attention to them? In the 

fast trend judgment (first task of experiment 1 and 2), devoting attention to outliers did not 

significantly improve participants’ performance (figure 27). This finding suggests that an 

extraction of the overall trend (including outliers) occurs fast and automatically – indeed, our 

hypothesis for outlier rejection suggests that it could be a necessary step prior to outlier 

detection and rejection. However, the comparison of the response bias in the line adjustment 

task from the three conditions of attention deployment (exp. 1: none; exp. 2: medium; exp. 

3: high) revealed that, yes, outliers are more easily rejected when participants are aware of 

their presence and invited to discard them. It is worth clarifying that this finding does not 

imply that attention is needed for outlier processing itself: indeed, our findings from 

experiment 1 (no attention) clearly show that deviant items affect trend judgments and slope 

estimations even more if participants are not aware of their presence. In agreement with this, 

several studies showed that attention is not necessary for the perceptual processing of visual 

items (Kouider & Dehaene, 2007), which can still attract spatial attention even when 

subliminally perceived (Astle et al., 2010; Robitaille  & Jolicoeur, 2006) and clearly deviating 

from the other items (Hsieh et al., 2011). However, our results are congruent with the finding 

that attention can modulate even subliminal processing (Kiefer & Brendel, 2006; Naccache et 

al., 2022). 
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When attention was deployed towards outliers (but, crucially, no rejection was asked), one 

study found that deviant items in size or brightness were integrated in judgments of average 

size or brightness and biased participants’ judgments towards the outlier value (de Fockert & 

Marchant, 2008). Our findings show that this strong attraction, exerted by both unattended 

and attended outliers, can be reduced if participants are explicitly asked to exclude them, but 

experiment 3 suggests that it is hard to fully eliminate – even when a single outlier was 

present, and it was explicitly detected, it kept an influence on the participants’ estimates of 

regression slopes. An interesting question for future studies is to what extent this strong 

attraction is resistant to training: in fact, a recent study showed that the estimation of 

correlation in a scatterplot improved significantly following long perceptual training sessions 

with feedback (Cui et al., 2018). 

Fourth, how does outlier detection work? In the first task of our third experiment, we 

found that correct detection of outliers improved for larger distances from the main dataset, 

but also for more numerous outliers. The latter result might be due to at least two different 

reasons: a larger number of outliers may increase the probability for at least one of them to 

be seen; and/or it may make them globally more salient and recognizable (Kinchla, 1977). 

Future studies could try to disentangle these two hypotheses.  

Interestingly, outlier detection exhibited considerably slower response times than trend 

judgments on the whole set (figure 30D for a direct comparison): this observation replicates 

previous evidence that visual judgments about the average value of the items in a set are 

faster than the detection of deviant observations present in those sets (Hochstein et al., 

2018). This finding agrees with our model, according to which the extraction of the scatterplot 

trend is a necessary step prior to outlier detection, since the latter is based on their deviation 

from the main trend. Indeed, the paradox of outliers’ detection (Epstein et al., 2020) is that 
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an outlier is defined as deviating from a summary statistic computed on the entire set, 

meaning that it cannot be computed without also extracting such a summary reference value. 

Therefore, the higher response times observed for outlier detection might be the result of a 

trend judgment phase followed by outlier detection per se. It should however be noted that, 

perhaps as a consequence of those successive stages, those response times were highly 

variable, and therefore any conclusion should be drawn with great caution. 

We also formulated an explicit model of outlier detection, and tested it against many 

alternative models. The model hypothesizes that outliers are detected based on their 

elevated z-score, i.e., their large distance to the regression line, relative to the typical distance 

of other data points. Participants would compute a z-score for each data point, and evaluate 

whether the highest of these z scores exceeds a threshold of about 2. This model was 

supported by both response times and error analyses. In response times, we found a distance 

effect, whereby outlier detection became increasingly faster for stimuli whose highest z-score 

increasingly deviated from 2. This is exactly what the model predicts: for stimuli comprising 

points with smaller z-scores, the absence of outliers is quickly detected, whereas for stimuli 

with outliers with higher z-scores, their presence is recognized increasingly fast. Likewise, we 

found that the percentage of “yes” responses was best modeled as a function of the highest 

z-score, with a sigmoidal function showing an inflection point around about 2. Importantly, 

the best fit was obtained when the z score was calculated as the ratio between the orthogonal 

distance of the data point to the Deming fit, and the prescribed standard deviation of the 

datasets (i.e., the “noise” level). The explanatory advantage of the orthogonal distance over 

the vertical distance from OLS replicates our results from study 5 and 6 showing that 

participants minimize the perpendicular Euclidean distance of each point to the best-fitting 

line when computing a trend (Ciccione & Dehaene, 2021). On the other hand, the explanatory 
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advantage of the prescribed standard deviation over the actual standard deviation of each 

stimulus merits a brief discussion. It might have been rational for participants to compute the 

actual noise level in every individual scatterplot in order to determine if a point is or not an 

outlier. However, humans are remarkably accurate at encoding the variability in a set of items 

(Morgan et al., 2008; Solomon, 2010) and they do so automatically, even when not explicitly 

asked for it (Khayat & Hochstein, 2018). Furthermore, the standard deviation of orthogonal 

distances from the fit seems also to be used by humans when asked to perform correlation 

judgments (Yang et al., 2019). Therefore, it is reasonable to speculate that participants in our 

experiment computed the average noise level across trials, i.e., the prescribed standard 

deviation, and used it as their reference against which outliers were compared. This would be 

in agreement with previous evidence showing that human observers have access to a reliable 

measure of visual uncertainty in decision-making tasks (Barthelmé & Mamassian, 2009). 

It is worth highlighting that we do not claim that humans are using explicit mental calculation 

to compute the z-score of each datapoint in the scatterplot. Indeed, the observed responses 

times would be incompatible with such a slow procedure. Our data simply suggest that, during 

fast graph perception tasks, humans deploy a fast process that tightly approximates a 

statistical model computing z-scores. As reviewed throughout the paper, the human visual 

system is known to be able to compute complex summary statistics over briefly presented 

sets of items: the automatic computation of z-scores merely adds to this set of computational 

abilities. However, whether or not the z-score hypothesis holds should be more precisely 

studied. Future research could manipulate, for instance, the noise level in successive graphs 

and asks (1) whether the actual noise level (i.e., the denominator in the z-score formula) can 

be computed on a trial-by-trial basis; and (2) whether an approximate division of dot distance 

by this noise estimate actually occurs and what is its accuracy. A more parsimonious 
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hypothesis is simply that the human visual system recycles its ability to detect objects’ 

contours and principal axes and applies it to graphs, by extracting an estimation of the 

posterior distribution of all possible graph’s contours (which would obviously depend on how 

noisy the graph is). Each datapoint would then be perceived either as part of such distribution 

(and therefore included in the trend estimation) or out of it (thus detected as an outlier). 

Fifth, finally, if outliers are correctly detected, does this mean that they can also be 

rejected? Experiment 3 concludes to the negative: outlier detection does not necessarily lead 

to outlier rejection. When we modeled participants’ bias as a function of the highest z-score 

in the dataset (figure 30B), we found that correct detection of the presence of outliers 

approached 90% for a highest z-score of 2.8. However, the response bias in the subsequent 

regression estimation (in which participants were asked to reject outliers; figure 30C) showed 

that, although the bias was reduced in experiment 3 (high attention) as compared with the 

two other experiments (none or medium attention), it was at its peak for a highest z-score of 

2.8. It is only for stimuli with a highest z-score larger than 3.6 (i.e., with at least one extreme 

outlier) that the bias disappeared.  

Interestingly, we also showed that an optimal Bayesian model that assigns a lower weight to 

outliers on the basis of their z-score (therefore, without fully rejecting them) behaves 

somewhat similarly to our participants, suggesting that human outlier detection and rejection 

may be a probabilistic computation. However, in this Bayesian model, the bias does not 

decrease sufficiently for large z-scores, whereas the human bias almost disappears then. This 

discrepancy may be due to the fact that the model uses the actual noise in the dataset, rather 

than an estimate of noise averaged over several trials (as used by humans). In fact, for larger 

highest z-scores, when more than one outlier is present, the z-score of those outliers 

necessarily decreases because high z-scores increase the overall noise level and, as a 
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consequence, decrease their weight in the regression. On the contrary, humans seem able to 

calibrate their rejections on the basis of the noise of the main generative process, as already 

discussed in a previous section. 

 

Taken together, these findings suggest that outlier rejection depends on two factors: the 

degree of attention towards them, and their deviation from the main dataset. Both factors 

seem to influence participants in placing a threshold past which they would be more likely to 

consider a data point as an outlier, beyond the normal noise in the dataset. In other words, 

the same data point could be seen either as the result of normal variability in the graph or as 

a significantly deviant observation, depending on task instructions. However, even when 

participants were maximally invited to pay attention to outliers and to detect and reject them 

before performing any regression estimation (experiment 3), non-extreme outliers still biased 

their performance, even when they were correctly detected. This finding suggests that, to 

some extent, mental regression may be cognitively impenetrable (Pylyshyn, 1999; Stokes, 

2013): correctly detecting outliers does not prevent them from influencing the participants’ 

mental regression estimates. We can reasonably conclude that outliers in a graph are not 

treated as sets of items, thus confirming that graph perception does not operate identically 

to ensemble perception. We speculate that trend judgment and regression estimation are 

fast and largely automatic and that outliers, if present and detected, are rejected at a later 

time, with cognitive effort and following a probabilistic computation. In support of this 

hypothesis, a recent fMRI study on the neural bases of outlier processing for sets of colored 

objects (Cant & Xu, 2020) found that voluntarily discarding outliers led to activations that 

were not confined to early visual areas but involved fronto-parietal areas. Thus, two different 

types of processes (Kahneman, 2003) seem to be deployed during graph perception. Visual 
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perception, including the automatic computation of the principal axes of an object or a graph, 

seems to interact with higher-level cognition, including the deliberate rejection of outliers, 

with the second process not always able to counteract the information coming from the first 

(Pylyshyn, 1999). 

Lastly, it is important to point out that our experimental tasks focused solely on the 

psychophysical aspects of graph perception, and did not include any specification of the 

names, characteristics and meaning of the x and y variables, as one would expect from “real” 

bivariate graphical representations. It seems likely that participants would have behaved 

differently if the stimuli were referring to actual data: indeed, outliers are usually either 

included or rejected from main analyses depending on several factors, including the statistical 

framework adopted by the scientist (frequentist or Bayesian), the experimental procedure of 

data acquisition, the type of variables, and their meaning. While our studies investigated the 

perceptual stages of outlier detection and rejection, future work should also consider using 

more ecologically valid stimuli in order to evaluate to what extent explicit knowledge of the 

data affects participants’ biases and their probability to include or reject outliers.  

 

EVIDENCE-BASED SUGGESTIONS TO IMPROVE DATA VISUALIZATION OF OUTLIERS IN 

SCATTERPLOTS 

Based on the findings presented in this manuscript, we conclude by proposing a few 

suggestions to improve outlier detection and rejection in data visualizations. Since these 

guidelines are speculative, although evidence-based, future research should empirically test 

their utility through appropriate behavioral studies. 

1) Given that outliers are not spontaneously rejected, it could be helpful to explicitly 

identify all datapoints that exceed a predetermined z-score deviation from the 
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overall linear regression. For instance, they could be put in a different color or, 

preferably, a smaller size or luminance. Such a manipulation of size and luminance 

was shown to be successful at modifying people estimations in a barycenter task 

(Hong et al., 2021) and perceptual judgments have been proved to operate 

correctly even in parallel, over multiple sets within a scatterplot (Gleicher et al., 

2013). 

2) Since human mental regressions tend to be performed on the whole dataset, even 

when outliers are correctly detected, scatterplots could include both the 

regression applied to all points and the regression after exclusion of the points that 

exceed a predetermined z-score. The direct comparison of a robust regression with 

a non-robust one could help make the discrepancy between the two models more 

salient to the reader. 

3) Since outlier detection is better than outlier rejection, interactive visualizations 

may help. A regression line would first be calculated over the entire dataset, and 

then the user would select potential outliers. The regression slope would then 

instantly adapt to exclude those points, which would allow for an interactive, on-

line visualization of how outlier rejection changes the regression. In this manner, 

the defects of human intuition would be supplemented by human-machine 

interaction. 
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CHAPTER 4 

 

PREDICTING THE UNCERTAIN 

FUTURE: EXTRAPOLATION FROM 

NON-LINEAR NOISY TRENDS 

 

  

XKCD comics 
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In the studies presented so far, we showed that humans can accurately judge if a noisy linear 

trend is increasing or decreasing, fit a regression line over it and even extrapolate from it. 

Performance was highly consistent across these three tasks of trend judgment, line fitting and 

extrapolation and was characterized by what we called a Deming bias: humans minimize the 

orthogonal fit to the points rather than the vertical one. We also showed that human mental 

regression is not entirely robust to outliers, even when attention is deployed towards them. 

We next wanted to challenge humans “beyond linearity”: we wondered whether we could 

characterize their ability to forecast the evolution of noisy scatterplots generated from non-

linear trends. In this chapter I present findings obtained in the laboratory, in which we asked 

10 participants to predict future datapoints from piece-wise, quadratic and sinusoid graphs 

(study 8). I also present a large-scale online study (N = 521), in which participants were asked 

to extrapolate from exponential functions (study 9). 
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STUDY 8: EXTRAPOLATION FROM NON-LINEAR NOISY SCATTERPLOTS 

Linear regression is a standard procedure that, in most statistical packages, is typically applied 

without any verification of whether a linear fit does or does not make sense (e.g. if the data 

actually follows a non-linear trend). A famous example of the risks of performing linear 

regressions without visually exploring a graphical representation of the data is given by the 

famous Anscombe quartet (Anscombe, 1960). In study 8 I ask if humans are superior to 

standard linear regression, in the sense that they can recognize whether and when such a 

regression is appropriate. We used the same extrapolation task as in study 6, but we extended 

the scatterplots to non-linear functions, and asked whether humans could adequately adapt 

their extrapolations to the specific function exemplified in the graph. Our hypothesis was that 

human adults may be able to go beyond linearity and spontaneously identify non-linear 

statistical trends, although their performance might still be affected by a preference for linear 

trends (Kalish et al., 2007; Little & Shiffrin, 2009; Mcdaniel & Busemeyer, 2005). Specifically, 

our experiment was designed to disentangle two possible views of human extrapolation. 

Under hypothesis 1, participants would be restricted to linear extrapolation, based either on 

the last few points of a curve, or the tangent to the curve. Under hypothesis 2, participants 

would infer the nature of the curve and adapt their extrapolation correctly, either by taking 

into account the curvature in the last few points of the curve, or even the entire underlying 

function. 

 

METHODS 

Participants 

10 participants were recruited for the experiment (age: 23.1 ±  3, 5 females, 5 males), with 

the same inclusion criteria of studies 1, 5, and 6. They were paid 5 euros for their participation. 
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The experiment lasted approximately 25 minutes and was approved by the local ethical 

committee. 

Experimental design and stimuli 

The stimuli were generated according to the same algorithm as studies 1, 5, and 6, but five 

different functions were used to generate the scatterplot. All had the same absolute value of 

the derivative at their rightmost point within the interval plotted (x = 1), but half of them had 

a positive derivative (figure 32, left column) and half of them had a negative derivative (figure 

32, right column). The functions were the following: 

1) Two linear functions having equations 𝑙&(𝑥) = 0.65𝑥 + 0.18 and 𝑙#(𝑥) = −0.65𝑥 + 1.47.  

2) Four piecewise linear functions composed of two straight-line segments. Two functions had 

their inflection point early on, at 1/3 of their length; equations: 𝑝𝑙&(𝑥) = 0.65 D&
'
− 𝑥D +

0.39	and 𝑝𝑙#(𝑥) = −0.65| &
'
− 𝑥| + 1.26. The other two piecewise linear functions had a late 

inflection point, i.e. at 2/3 of their length; equations: 𝑝𝑙'(𝑥) = 0.65 D#
'
− 𝑥D + 0.61	and 

𝑝𝑙((𝑥) = −0.65| #
'
− 𝑥| + 1.04. 

3) Two quadratic functions, either convex or concave, with equations 𝑞&(𝑥) = 0.92𝑥# −
1.19𝑥 + 1.09 and 𝑞#(𝑥) = −0.92𝑥# + 1.19𝑥 + 0.56. Crucially, the x coordinate of, 

respectively, the minimum and maximum of these two functions (x = 0.65), was almost 

identical to the x coordinate of the inflection point of the two piecewise linear functions (x = 

0.66). These quadratic functions allowed us to examine if participants would correctly 

estimate the curvature of the graph, or even its entire quadratic trend. 

4) Two sinusoidal functions completing 1.5 periods on screen and with two opposite phases, 

which corresponded to the following equations: 𝑠&(𝑥) = 0.2 sin(11.28𝑥) + 1.02 and 

𝑠#(𝑥) = 0.2 sin(11.28𝑥 + 𝜋) + 0.63. These functions were the only ones for which the 
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extrapolated points at x = 1.3 and 1.6 were not monotonically ordered (see figure 33). They 

were selected to examine if participants would correctly take into account the global 

oscillatory nature of the sine function.  

For this experiment, the noise added for the generation of the actual scatterplots was kept 

fixed at 0.05 and the number of points was always 66. These values were chosen in order to 

allow participants to determine the nature of the curve without making it a trivial task. As in 

experiment 3, the location of the scatterplot was vertically jittered by a random amount 

(which was later corrected for in our analyses) and we included a considerable margin (12.5% 

of the screen) above and below the locations of the correct answers. Figure 32 shows an 

example of stimulus for each generative function. 

Procedure 

Display parameters, procedure and task were the same as in study 6. Participants were 

explicitly asked to give an intuitive answer (at one of the two “probed positions”: either x = 

1.3 or x = 1.6, exactly as in study 6) and to locate the point on their best estimate of the 

function from which the scatterplot was generated. The experimental design was a factorial 

design comprising all possible combinations of 5 generative functions, each with two possible 

signs of the derivative at x = 1, and two extrapolation positions, for a total of 20 conditions. 

The task was divided into 10 blocks, each comprising all 20 conditions in random order, for a 

total of 200 trials; the duration of each block was ~3 minutes. After each block, the 

participants could take a short break. No feedback was given. Before the beginning of the 

actual experiment, 25 practice trials were conducted under the supervision of the researcher 

in order to evaluate the correct execution of the task (but no feedback on correct responses 

was provided). 
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 Figure 32. Design of study 8 (linear and non-linear extrapolation). The figure shows examples of stimuli for each 

generative function used. The movable dot is indicated by a red circle. 
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RESULTS 

Location of the extrapolated point  

First, we looked at the distribution of the participants’ extrapolation responses on the y axis 

(figure 33). In all 20 conditions (except for quadratics, to which we later return), the center of 

the distribution fell close to the ideal answer (black dots in figure 33) and was clearly adapted 

to the function on the left. To verify this, we conducted a repeated measures ANOVA on 

participants’ median extrapolation value with the type of function, the sign of the derivative 

and the probed position as within-participants factors, and we found a significant effect of 

function type (F(2.65, 23.85) = 3.19, partial η2 = .26, p <.05), the sign of the derivative (F(1,9) 

= 177.64, Partial η2 = .95, p < .0001), an interaction of the sign of the derivative with the 

probed position (F(1,9) = 15.03, partial η2 = .63, p <.01), and a triple interaction of sign, probed 

position, and function type (F(1.61, 14.52 = 33.39, partial η2 = .79, p <.0001). The effects and 

interactions involving function type indicated that participants varied their answers, not only 

according to the probed position (x=1.3 or 1.6) or the derivative at the end point, but also, 

crucially, according to the type of function underlying the scatterplot. Since all functions 

ended with the same derivative at x=1 (the rightmost point of the graph) this finding allows 

us to reject the hypothesis that participants were confined to a linear tangential extrapolation 

of the data. 

Indeed, examination of the distributions made to the sinusoidal function made it clear that 

participants readily identified this function and gave adequate non-monotonic responses. In 

this condition only, the extrapolation at x=1.6 significantly reverted and became closer to the 

graph mean (y = 0.825) relative to the extrapolation at x=1.3 (for sinusoid with positive 

derivative: meanx=1.3  = 1.20, meanx=1.6 = 0.87, t(9)= 6.89, p < 10-5; for sinusoid with negative 

derivative: meanx=1.3  = 0.44, meanx=1.6 = 0.73, t(9)= -4.69, p = .001). This observation is 
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compatible with the oscillations of the sinusoidal function, but incompatible with any linear 

extrapolation, either based on a subset of the data points or on the tangent at x=1. In all other 

conditions, the participants’ extrapolations at x=1.6 deviated more than those at x=1.3, in 

agreement with the monotonicity of the underlying generative functions 

 

 

 

 

 

 

 
Figure 33. Results of study 8 (linear and 

non-linear extrapolation). The functions 

from which the scatterplots were 

generated are shown on the left, and are 

prolonged by dotted lines. Large dots 

indicate the ideal answers at the two 

probed x positions (x = 1.3 and x = 1.6). 
Dashed lines show the linear extrapolation, 

based on the function’s derivative at the 

last point. Density plots show the 

distribution of all given answers from all 

subjects for a given x position. For greater 

readability, all densities were normalized to 

the same peak height. 
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Response bias  

We next examined how accurately the participants’ extrapolations coincided with the ideal 

location, as derived from the functions used to generate the graphs. For linear and piecewise-

linear functions, responses were biased towards extrapolations further away from the 

expected point, as expected from Deming regression. 718 out of 1200 extrapolations resulted 

in regression lines steeper than the ideal response (59.83%, one sample proportion test: c2 = 

46.413, df = 1, p<.0001). Furthermore, examination of the mode of participants’ responses 

revealed a systematic over-estimation of the absolute slope in 12 out of 12 combinations of 

sign, probed position, and function (see figure 33). Those results confirm the findings from 

studies 5 and 6: participants’ linear regressions are not unbiased, as would be expected under 

OLS assumptions, but are biased towards steeper slopes, as predicted by Deming-like 

regression. 

For quadratic functions, participants’ extrapolations were inaccurate, since their answers 

were considerably further from the expected location (see figure 33). One sample two-tailed 

t-tests on participants’ median answers revealed a significant difference with the ideal answer 

for both convex and concave quadratic functions at the probed position of x = 1.6 (meanconvex 

= 1.27, idealconvex = 1.54, t(9) = -4.39, p = .002 and meanconcave = .47, idealconcave = .11, t(9) = 

4.60, p = .001) and for the concave quadratic at the probed position of x = 1.3 (mean = .63, 

ideal = .55, t(9) = 2.656, p = .026); for the convex quadratic, the difference was in the proper 

direction but did not reach significance (mean = 1.07, ideal = 1.10, t(9) = -0.569, p = .6). 

Crucially, no significant difference was found between participants’ answers and the answer 

expected if participants computed a linear extrapolation based on the derivative at x = 1 

(dashed line in figure 33; all p values > .38). 
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Response variability  

As we see from figure 33, the variability in responses greatly varied depending on the type of 

function and on the probed position; to investigate the statistical significance of this variation, 

we conducted a Fligner Killeen test, which is a test for homogeneity of variances, robust to 

departures from Gaussian distributions (see Conover et al., 1981). It revealed no significant 

differences in the variance of the responses to functions having a positive or a negative 

derivative (FK med X2 = 0.137, df = 1, p = 0.71). However, both the type of function and the 

probed x position had a significant impact (respectively: FK med X2 = 63.90, df = 4, p < 10-16 

and FK med X2 = 94.37, df = 9, p < 10-16). Also, the variance of responses for piecewise linear 

functions with a late inflection was significantly higher than either the one for purely linear 

functions (FK med X2 = 14.33, df = 1, p < .001) or for piecewise linear functions with an early 

inflection (FK med X2 = 6.63, df = 1, p = .01). This increase in response variability is consistent 

with participants estimating a linear regression based on increasingly fewer data points (those 

on the right-hand side of the inflection for piecewise linear curves). It allows us to reject the 

hypothesis that participants used the fact that the piecewise linear functions were 

symmetrical, with the same absolute slope on both sides: if that was the case, there should 

have been no increase in variability, as the same number of points would have been available 

to estimate the slope for both types of piecewise linear functions. Crucially, no difference in 

responses’ variance was found between quadratic and piecewise linear functions with a late 

inflection (FK med X2 = .004, df = 1, p = .95). This finding, together with participants’ inaccuracy 

for quadratics, suggests that quadratics might have been misperceived as ending with a linear 

trend. 

To further confirm these findings, we conducted an ANOVA on the standard deviation of the 

participants’ responses, with the type of function, the sign of the derivative and the probed 
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position as within-participants factors. There was no effect of the sign of the derivative (F(1, 

9) = .02, partial η2 = .003, p = .88), nor of its interactions, indicating that participants treated 

symmetrically the upward and downward-going functions. As expected, we observed a main 

effect of the probed position (F(1, 9) = 35.78, partial η2 = .80, p < .001), indicating that the 

standard deviation increased when the probed position went from x = 1.3 to x =1.6, i.e. with 

greater extrapolation distance (meanx=1.3 = .159, meanx=1.6 = .276). Furthermore, there was a 

significant effect of the type of function (F(2.63, 23.70) = 10.10, partial η2 = .53, p <.001 ) and 

its interaction with probed position (F(2.48, 22.31) = 3.57, partial η2 = .28, p = .04). Post-hoc 

Tukey tests on the standard deviation of participants’ given responses confirmed that 

response variability increased from linear (mean = .08) to both early (mean = .18, p < .001) 

and late (mean = .20, p < .0001) piecewise linear functions. It also significantly increased from 

linear to quadratic (mean = .18, p < .01) but not to sinusoid functions (mean = .12, p = .41). 

Also, we found no difference between the standard deviation of participants’ answers for 

quadratic functions and for early (p = .94) and late (p = .78) piecewise linear functions. 

Modelling of an optimal observer 

One possible explanation of the poor performance with quadratics is that, given the noise 

level, there might not have been sufficient evidence to distinguish them from piecewise-linear 

functions. To clarify this point, we modeled a Bayesian optimal observer (as often done in the 

domain of visual perception; for a general framework and limitations, see Maloney & 

Mamassian, 2009; Mamassian et al., 2001) capable of selecting the best-fitting function within 

four families of functions: linear, piecewise-linear, quadratic or sinusoid. To find the best-

fitting curve, the algorithm first used a minimization algorithm to identify, separately for each 

family of functions, the parameters that minimize the sum of the squares of the vertical 

distances of each data point to the curve (classical least squares). As a forward model, the 
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algorithm assumed (correctly) that distance to the curve was drawn at random from a 

Gaussian distribution with standard deviation σ. Thus, the total Log likelihood of a graph was 

ln(𝐿) = −𝑛2 ln(2𝜋) − 𝑛2	ln 𝜎² − 12𝜎²Q𝑑!#)

!*&

 

where di are the vertical distances of each data point to the curve (i.e. di = yi – ymodel). 

For the best-fitting model within each family of functions, we computed ln(L) using the above 

formula, with σ equal to the standard deviation of the residual distances. Finally, we selected 

the function for which the Bayesian Information Criterion (BIC) was minimal, i.e. the one 

which achieved an optimal trade-off between the number of free parameters (k) and the fit 

of the data points. We used the following formula: BIC = k ln(n) – 2ln(L), where k is the number 

of estimated parameters in a given model (including the fixed variance term, i.e. k = 3 for 

linear regression), and ln(L) is the likelihood of the data for that model. We preferred BIC over 

AIC since it has been shown that BIC is asymptotically consistent, which means that it will 

select the true model if it figures among the models considered (Vrieze, 2012); also, BIC tends 

to penalize complex models more than AIC (Kuha, 2004). 

We applied the model to the stimuli presented to the participants and we found that it was 

almost always able to select the correct underlying generative function (overall accuracy = 

93.5%), even for datasets generated from quadratic functions (accuracy = 94.25%). This is 

crucial, since it means that the noise in our graphs was sufficiently low to make such a task 

possible. The optimal observer reproduced some, but not all of the features of the data. Like 

human participants, its response variability increased with the extrapolation distance, from x 

= 1.3 to x = 1.6. Like humans, the ideal observer was more precise for fully linear than for 

early-piecewise-linear and late-piecewise-linear functions. However, unlike humans, its 

estimates were unbiased and centered on the ideal location (see figure 34A). To reproduce 
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human biases, we returned to Deming-like regression by replacing di in the above equations 

with the Euclidean distance of each data point to the nearest point of the curve. This 

procedure reduces to Deming regression when the function is linear, but extends the concept 

to any arbitrary function. When the sum of the squares of this Euclidean distance was 

minimized, the model, like human participants, revealed a bias towards extrapolations further 

away from the ideal point, in agreement with Deming regression (see figure 34B).  

The last important misfit of the model was that it failed to reproduce the observed human 

inaccuracy with quadratic functions. Indeed, as expected from Deming regression, the mean 

extrapolations of the model for the quadratic function fell slightly beyond the ideal ones (e.g. 

for the convex quadratic and x=1.6, correct extrapolation = 1.54, mean model response = 

1.57), whereas the converse was true for our participants (mean response = 1.26, which is 

quite close to the linear tangent-based extrapolation = 1.22). We therefore considered a 

model that did not include the quadratic functions as one of the possible fits. In this case, 

quadratic functions were classified as piecewise linear functions 100% of the time. However, 

as seen in figure 34C, the fit to human data remained inadequate, since the model now 

predicted values that were almost constant as a function of x position, and way too close to 

the mean of the data (e.g. for the convex quadratic and x=1.6, mean response = 0.96).  

Note, however, that for quadratics, the participants’ responses exhibited a large variance and 

a distribution with multiple peaks roughly coinciding with the three above possibilities 

(constant response, linear tangent, or quadratic extrapolation); it is therefore possible that 

they adopted a mixture of the above strategies, and/or that they correctly identified the 

quadratic but failed to appropriately follow its curvature and, instead, based their 

extrapolations on the tangent line. We can at least conclude from our theoretical analysis that 
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(1) all functions were clearly discriminable, including the quadratic and piecewise-linear 

functions; and yet (2) participants performed poorly only with quadratic functions.  

  

 

 

 

DISCUSSION 

Study 8 showed that, unlike a fixed linear regression package, participants could flexibly adapt 

their regressions to the nature of the graphs they were exposed to. They understood linearity, 

bi-linearity, and periodicity (sine function) and used this knowledge to extrapolate points 

Figure 34. Predictions of three different models. A: Bayesian ideal-observer with full knowledge of the set of 

functions used, and using ordinary least squares (as appropriate given how the graphs are generated). B: Same as 

the ideal observer, but using Deming-like minimization of the Euclidean distance of each data point to the regression 

curve. C: Same as B, but after removal of the quadratic functions from the hypothesis set. 
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outside the observational range, even for non-linear functions. The sole exception was 

quadratic functions, for which participants systematically underestimated the size of the 

variations of the function on most trials, and often chose to follow the tangential line rather 

than the actual curvature of the quadratic. This finding is consistent with prior evidence for a 

human preference for linear trends (Kalish et al., 2007; Little & Shiffrin, 2009; Mcdaniel & 

Busemeyer, 2005). Several previous studies reported a so-called “exponential growth bias”, 

according to which humans, when facing a series of data points that underlie an exponential 

increase, tend to underestimate the position of a point outside the observational range 

(Andreassen & Kraus, 1990; Eggleton, 1982; Wagenaar & Timmers, 1978; Wagenaar & 

Sagaria, 1975; Wagenaar & Timmers, 1979); I will specifically investigate the nature of this 

bias in the next study. Our results uncovered such an underestimation for quadratic functions 

as well, thus suggesting that it might occur more generally for curved functions, not just 

exponentials. Whether this bias is proportional to the function’s acceleration should be 

investigated by future studies. Also, we show that this bias may be restricted to non-linear 

functions that are, in their extrapolation area, monotonic, since participants correctly 

extrapolated sinusoids with a high degree of precision. 

The consistent misperception of quadratics is compatible with the hypothesis that human 

compositional grammar (Piantadosi et al., 2016) of functions may be limited to a certain set 

of primitives such as linear and oscillating functions (Schulz et al., 2017) but not quadratics. It 

fits with the just mentioned previous observations that exponentially accelerating 

progressions are consistently underestimated. Tentatively, the misperception of accelerated 

functions may also be related to the history of science and, specifically, the remarkably slow 

discovery of the quadratic law of falling bodies. For centuries, the accepted theory of the 

“impetus” misconstrued the trajectory of a projectile as a line, followed by an arc of a circle, 
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followed by a vertical fall. Galileo finally managed to correctly describe the projectile motion 

as a quadratic function and formalized the concept of uniform acceleration of a falling body, 

which is crucial in Newton’s second law of dynamics. Interestingly, it has been shown that 

most students hold pre-Newtonian intuitive views of motion (Espinoza, 2005; McCloskey et 

al., 1983). The misperception of quadratics might therefore be considered as part of a more 

general misunderstanding of the concepts of acceleration and deceleration. It would be 

interesting to further investigate the acquisition of quadratic functions in mathematics 

students and the specific difficulties that it raises. 

With the exception of quadratics, study 8 reveals that humans are not limited to the 

perception of a single straight axis (the principal axis, as discussed for linear extrapolation in 

study 6), but can accommodate the perception of complex spaces comprising multiple, 

possibly flexible subparts. The visual system appears to extract multiple axes of quasi-

symmetry that may correspond to the mathematical concept of “medial axis” or “shape 

skeleton” (Ayzenberg & Lourenco, 2019; Cohen & Singh, 2006; Kelly & Durocher, 2011; Kovacs 

& Julesz, 1994; Lowet et al., 2018). Mathematically, a medial axis is the locus of points 

equidistant from the two closest shape boundaries (Blum, 1967, 1973). The concept of medial 

axis generalizes the notion of principal axis to curved shapes (e.g. the skeleton of a snake). As 

such, it may explain why we found that human participants could extrapolate the scatterplots 

of non-linear functions, an ability that goes beyond the mere extraction of the principal axis. 

The capacity to approximate the medial axis of a graph, i.e. the locus of the curve that 

minimizes the sum of the square Euclidean distances to the points, would readily explain how 

humans extract non-linear curves from scatterplots, and why they show a Deming-like bias 

when doing so. More studies will be needed to test the reliance of participants on medial axis 

and to verify to what extent the neural recycling proposal applies to graphicacy. 
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STUDY 9: EXTRAPOLATION FROM EXPONENTIAL FUNCTIONS 

As pointed out in the introduction, scatterplots are widely used to visually convey the 

evolution of measures such as global temperature, salary, or mortality over time (Friendly & 

Denis, 2005). They allow humans to efficiently grasp a functional relationship at a glance, 

without serially processing the data in numerical form, and to predict values beyond the 

available range. The studies presented so far indicate that human adults can extract the trend 

underlying a graph and that their extrapolation abilities partially extend to noisy 

representations of linear and non-linear functions. Would they extend to exponentials as 

well? 

The case of exponential functions is important because it captures many real-world processes 

such as the increase in insect populations (Maino & Kearney, 2015), the compound interest 

on a financial capital (Blackman, 1919), the area damaged in a fire (Ramachandran, 1986) or 

the spread of epidemics and rumors (Bernoulli, 1760; Dietz, 1967; Ma, 2020). Exponentials 

are mathematical functions of the form y = a	𝑏+ where a is the intercept with the y-axis and 

b is a positive real number. Exponential growth, which occurs when b>1, may initially look 

slow, but it will eventually overtake any linear or polynomial function. 

Humans are known to consistently underestimate exponential evolutions. This “exponential 

growth bias” was originally described in behavioral studies in which participants extrapolated 

a new value from numerical real-world data: their numerical extrapolation was consistently 

lower than the correct one (Andreassen & Kraus, 1990; Eggleton, 1982; Wagenaar & Timmers, 

1978), even when the data was presented in a graphical format ( Wagenaar & Sagaria, 1975) 

or as a computerized representation of growing plants (Wagenaar & Timmers, 1979). The 

magnitude of this bias was slightly reduced after a short lecture on it (Wagenaar & Sagaria, 

1975), but did not correlate with participants’ education level (Levy & Tasoff, 2016). 
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Misunderstanding exponential functions may have dramatic consequences. During the 2019 

coronavirus pandemic, people systematically misunderstood its exponential evolution 

(Lammers et al., 2020): when asked to estimate the number of Covid-19 cases over the past 

days, they strongly underestimated its acceleration, and this underestimation correlated with 

low personal adherence to sanitary measures. Correcting their misperception significantly 

increased the support for social distancing measures (Lammers et al., 2020; Schonger & Sele, 

2020), thus confirming the importance of a correct understanding of exponential functions to 

improve decision making and social behavior. 

In study 9, we investigated whether experimental conditions can be found in which the 

exponential growth bias is reduced or even eliminated, in order to provide evidence-based 

suggestions for a better graphic visualization of exponential trends. To this aim, we analyzed 

in fine detail the factors that determine the misperception of exponential growths in graphs, 

by rigorously applying the same psychophysical methods and procedures I have been 

advocating for in this thesis. First, we investigated the role of the response modality: most 

previous studies asked participants to venture a numerical guess, and thus their biases might 

have arisen from the numerical estimation stage rather than from the analysis of the function 

itself. To separate those possibilities, we compared two extrapolation conditions from visually 

presented scatterplots: participants were either asked to point to the expected location of 

the extrapolated dot, or to provide a numerical answer. 

Second, we analyzed the effect of noise in the dataset. Our studies of linear scatterplots 

showed that, with increasing levels of noise, participants’ extrapolations and regressions’ 

estimations depart more from the statistical ideal. In the case of exponentials, it is not known 

whether the underestimation bias is already present for noiseless functions or if it only arises 
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when extracting an exponential trend from noise. To answer this question, we compared 

extrapolation performance for noiseless versus noisy plots. 

Third, we measured the costs and benefits of plotting the data on a log scale. When the y axis 

is logarithmic, exponential growth looks linear, and such linear trends can be perceived 

without much bias, as we showed in our first studies. Thus, we hypothesized that the 

advantage of extrapolating from a visually linear trend could eliminate the exponential 

growth bias altogether. In support of this hypothesis, framing exponential evolution in terms 

of doubling times (i.e., taking a logarithmic perspective on data) was shown to reduce the bias 

(Schonger & Sele, 2020). However, we also investigated whether this advantage was 

mitigated by the difficulty of interpolating numbers on a log scale. 

Finally, we checked whether education in science and mathematics can help overcome the 

exponential growth bias. To this end, we asked whether the exponential bias varied with 

participants’ knowledge of mathematics as well as their type and level of education.  

 

METHODS 

Experimental design 

We used a factorial design with factors of response modality, noise, axis scale, and function 

type (figure 35A). On each trial, participants saw a scatterplot and extrapolated a new point 

outside the original data range. In two distinct blocks, they either placed a dot (pointing task) 

or ventured a numerical value (number task). Within each block, the stimuli consisted in a 

mixture of noisy or noiseless scatterplots, whose y-axis scale could either be linear or 

logarithmic. Importantly, the same five equidistant ticks were shown, and only their labels 

were changed (0-250-500-750-1000 in the linear scale condition; 1-10-100-1000-10000 in the 

log scale condition). Finally, the type of function could either be linear or exponential. In the 
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“same-graph” condition, the function was visually linear in both the linear and the log scale 

conditions (across subjects, the same exact displays were used). In the “same-function” 

condition, the function was numerically exponential in both the linear and the log scale 

conditions (across subjects, the same exact numerical values were used), thus resulting in an 

exponential-looking graph when plotted on a linear scale and in a linear-looking graph when 

plotted on a log scale (figure 35A). Each trial consisted in a scatterplot comprising 33 

horizontally equally spaced white points on a black background inside a square graph. 

 

 

Figure 35. Experimental paradigm to study the human extrapolation of linear and exponential graphs. A: the four 

experimental conditions, with a sample noisy stimulus for each. Right, distribution of the stimulus datapoints, with some sample 

noiseless curves in red. B: distribution of the participants’ extrapolation responses (in purple) compared with the distribution 

of correct responses (in green). Numerical (left) and pointing (right) responses are separated for sake of clarity. At the right of 

each subplot, the average error (i.e., the average bias, which simply refers to the difference between participants’ response 

and the correct one) is indicated, for each location of the extrapolation area, separately for noisy and noiseless conditions. 
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Stimuli 

To avoid possible biases due to a reluctance to use the extremes of the available scale, we 

matched the linear and exponential stimuli in two different ways, as explained below. 

In the “same-graph” condition, the slopes and intercepts were randomly varied in order to 

generate an approximately uniform distribution of desired pointing responses in the range 

150-850. Concretely, stimuli were generated by uniformly sampling a value Y in [150, 850] 

and then repeatedly uniformly sampling a slope A greater than 50 or smaller than -50 until 

the line of equation y	 = 	Ax + (Y − A)	would take a value between 150 and 850 for x=-1 (the 

leftmost value). Then, 33 equally spaced points were sampled along the line of equation y	 =
	Ax + (Y − A) + ε, for x in [-1, 0.5], where 𝜀- 	was centered noise of variance 𝜎, independent 

for each point. Finally, either a linear or a log scale was displayed on the left, without changing 

the screen locations of the dots.  

In the “same-function” condition, the two parameters of the function were randomly chosen 

in order to generate an approximately flat distribution of desired numerical responses in the 

range 150-850. Concretely, we first sampled a value Y’ in [150, 850] and then computed 𝑌 =
&...

(
𝑙𝑜𝑔&.(𝑌′). Then, we sampled parameters with the same constraints as the “same-graph” 

condition (plus the requirement that the slope would be positive), to define a set of 33 points 

from the equation y	 = 	Ax + (Y − A) + ε,. Then, we either presented the points with a log 

scale on the left (log scale condition), or computed, for each point, the numerical value when 

shown on the log scale, and presented these values on a linear scale, thereby displaying a 

function of equation 𝑦 = 10 !

"#
∗(1+2(3"1)25$), or equivalently 𝑦 = 10!(&'()	+$)"# × ^10!("#_+, 

where the second term is the base, or growth rate, of the exponential. By doing so, we 
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ensured that the correct response ranged from 150 to 850 in the linear scale condition, and 

this procedure yielded bases ranging from 1.59 to 14.21. 

The noise level 𝜎 was set to either zero (noiseless condition) or 10. This value was chosen to 

add a moderate amount of noise without hiding the underlying linear or exponential trend.  

Participants 

625 participants took part in this on-line experiment. The experiment was advertised on 

Twitter and Facebook, starting from the 18th of February, 2021. People interested to 

participate could simply click on the provided link, choose their preferred language among six 

(English, French, Italian, Spanish, Portuguese and Chinese) and read and accept a written 

consent, in which they declared not to be legally minor. Participants were informed they could 

withdraw from the experiment at any moment by simply quitting the webpage. The 

procedure and the consent were approved by the local ethical committee. Data collection for 

the purpose of the study was stopped two months later, the 18th of April, 2021. 521 

participants met our criteria for data analysis, i.e., answering to all questions proposed and 

not giving the default answer to the four questions on self-evaluation. Note that 33 

participants declared passing the experiment more than once, but the results were 

unchanged when their data was excluded. Their data was merely discarded from correlational 

analyses. 

Experimental procedure 

The experimental procedure started with a series of questions on demographic aspects 

(country of origin, gender, age, highest degree obtained; average grade in mathematics and 

academic field) and on subjective self-evaluations assessments, with answers on a Likert scale 

from 1 to 10: current skills in mathematics; current skills in first language; familiarity with 

graphs; knowledge of statistics. Then, participants performed one experimental task (the 
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pointing task or the number task), preceded by short instructions. At the end of their first 

task, participants were invited to continue with the second task, which was again preceded 

by the instructions. The order of the tasks was randomly assigned for each participant. Both 

instruction texts were each accompanied with a simple explanatory figure. The instructions 

to the pointing task were the following: “In this part of the experiment, you will see 

scatterplots such as in the figure below. Place a point in the grey zone where you think that 

the curve will go. When you are happy with the location you chose, just click. Try to be as 

precise as possible but do not use rulers and do not make calculations: we want your intuitive 

response!”. The instructions to the number task were the following: “In this part of the 

experiment, you will see scatterplots such as in the figure below. Consider the grey zone and 

estimate the value that the curve would reach if it continued till that zone. Try to be as precise 

as possible but do not use rulers and do not make calculations: we want your intuitive 

response!”. 

Each participant performed 48 trials: 3 stimuli were presented in each of the 16 experimental 

conditions resulting from the combination of response modality, noise and y axis scale, in 

each of the same-graph and same-function conditions. Feedback on overall performance was 

provided only at the end of the experimental session, which lasted approximately 10 minutes 

including the questionnaire. 

 

RESULTS 

Evaluating bias versus variance in participants’ responses 

Using a terminology borrowed from machine learning literature (Geman et al., 1992), 

participants could be inaccurate in two ways: bias versus variance (as already shown in study 

8). Bias refers to the average error: a positive bias means that participants overestimate their 
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extrapolation, whereas a negative bias means that they underestimate it. Variance, or rather 

variability, here measured by standard deviation, describes how much participants’ errors are 

spread around their average value, thus indicating erratic responding. 

On each trial, we measured the signed difference between a subject’s answer and the correct 

answer. Pointing responses were evaluated to the nearest pixels and linearly rescaled to 

range from 0 to 1000, thus coinciding with the linear axis values. Numerical responses were 

similarly transformed to screen units (see appendix C for discussion and alternative 

measures). We could then compute each subjects’ mean error (bias) and standard deviation 

(variability) in each condition. Figure 35B shows the distributions of participants’ responses 

and their average bias for each desired response, and figure 36 shows the average bias and 

standard deviation in the sixteen conditions of the design. Bias and variability, our dependent 

measures, were primarily analyzed with repeated-measures ANOVAs, separately for the 

same-graph (tables 1A and 1B) and the same-function condition (tables 2A and 2B; tables are 

all in appendix D). For each condition, we included the response modality (pointing vs 

numerical guess, categorical), the presence of noise (noisy vs noiseless functions, categorical) 

and the scale of the y axis (linear vs logarithmic, categorical) as within-subjects factors.  We 

first present the results for linear-looking functions (same graph condition), then for 

numerically exponential functions (same function condition). 

Extrapolations from linear functions (“same-graph” condition) 

ANOVAs for the “same-graph” condition are presented in tables 1A (for bias) and 1B (for 

variability). On bias, there were main effects of noise and axis scale (see table 1A). Although 

there was no main effect of response modality, this variable interacted with axis scale. 

Similarly, on variability, there were main effects of all variables, and also several 2-factor 

interactions (table 1B). To understand those effects, we separate the data according to the 



 159  

axis scale: we first examine linear functions on a linear axis (in the following three paragraphs) 

before evaluating the impact of a logarithmic axis. 

Pointing leads to more precise linear extrapolations than venturing a number. On a 

linear scale (top line in figure 35, and leftmost points in figure 36), on average, participants 

were very precise at pointing towards the correct extrapolation value: no bias was found 

(mean bias=.79; t(520)=.91, p=.4). When asked to type in a numerical answer, the bias 

remained small, although significantly different from zero (mean bias=-14.6, t(520)=-5.55, 

p<.001, d=.2). As concerns variability, pointing answers were also less variable than numerical 

ones (sdpointing = 23.68, sdnumber = 44.91, t(520) = -10.95, p < .0001, d=.48). Combined, these 

results reveal that participants were accurate at extrapolating linear trends, and that their 

predictions were significantly less erratic when pointing than when venturing a numerical 

guess. 

Figure 36. Mean bias and mean 

standard deviation of extrapolation 

responses, separately for each 

response modality, y axis scale and 

noise level. On the left: results from 

the same-graph (= linear) 
conditions. On the right, results 

from the same-function (= 

exponential) conditions. The figure 

makes it clear that responses to 

exponential curves on a linear axis 

differ considerably from the other 

conditions, both in bias and in 

variability across trials. 
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Numerical answers are anchored to round numbers. Examination of the distribution of 

responses indicated that numerical answers displayed a strong anchoring effect: responses 

spiked for round numbers (purple peaks in figure 35B) while pointing responses followed the 

flat distribution of desired responses. Reference tick values (0-250-500-750-1000) were used 

significantly more commonly as numerical guesses (433/3126=13.9%) than as pointing 

responses (31/3126=.01%; c2=374.34, df=1, p<.0001). Furthermore, responses corresponding 

to tens and hundreds were significantly more frequent than the expected frequency under 

the null hypothesis that each number had the same probability to be chosen (binomial test, 

empirical proportion 2597/3126=83%, expected proportion 313/3126=10%, p<.0001). Those 

findings fit with the known human preference for round numbers, particularly powers of ten 

(Dehaene & Mehler, 1992; Sigurd, 1988). 

Extrapolations from noisy linear trends are more variable but still accurate. We next 

tested the effect of noise on linear extrapolations: by looking at figure 36, we can see that 

participants’ bias (on a linear scale) was small when extrapolating both noiseless and noisy 

scatterplots. Their average errors were virtually identical in both cases, with no significant bias 

in the pointing condition (t-tests against zero, both p>.05), and a modestly larger bias for noisy 

stimuli in the numerical condition (biasnoisy=-17.71, biasnoiseless=-13.27, t(520)=-1.97, p<.05, 

d=.09). Their pointing responses were more variable for noisy scatterplots, as confirmed by a 

t-test restricted to the two conditions (sdnoisy=27.92, sdnoiseless=13.20; t(520)=9.93, p<.0001, 

d=.44), and in agreement with the findings from study 8. 

For numerical answers, surprisingly, additional noise did not increase participants’ response 

variability (two-sample t-test, p=.54), probably because the data was dominated by variability 

due to the anchoring effect. 
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Participants are poor at reading numbers from a log scale, except at tick values. We 

next examined the pure effect of asking participants to read out the numbers from a log scale 

rather than from a linear one, using identical linear graphs (second line in figure 35, and 

second data point in figure 36). As expected, the scale had no effect when participants 

responded by pointing (bias: biaslog=.51, biaslinear=.79; t(520)=-.49, p=.63; variability: 

sdlog=24.7, sdlinear=23.68; t(520)=.81, p=.42). However, there was a large influence on 

numerical responses. While response variability was only slightly larger on a log scale 

(sdlog=51, sdlinear=44.91; t(520)=3.32, p<.001, d=.15), response bias became systematically 

positive (biaslog=15.58) and was significantly different from both zero (t(520)=7.5, p<.0001) 

and from the linear axis condition where bias was negative (biaslog=15.58, biaslinear=-14.64; 

t(520)=13.62, p<.0001, d=.6). 

What could be the reason for this effect? It appears that, on a log scale, participants have 

trouble finding which number corresponds to a given location. Indeed, the organization of a 

logarithmic scale can be counterintuitive. For instance, the value that falls in the middle of 10 

and 100 is not 55, as on a linear scale, but 31.6 (the geometric mean of 10 and 100). 

Participants’ failure to understand this property (or, at the very least, to appropriately convert 

a location on the log scale into a numerical value) could explain their numerical 

overestimations on a log scale: they would know the correct location (as indicated by their 

accurate pointing), but fail to turn it into a correct number, instead choosing either the closest 

tick mark, or using a linear interpolation of the two nearest tick marks, two strategies that 

would lead to overestimation. 

Indeed, both strategies were attested in our data. First, for log scales, response distributions 

showed prominent spikes at tick values 10, 100 and 1000, which were absent at 

corresponding points 250, 500 and 750 on the linear scale (figure 35B). Indeed, the anchoring 
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effect was much stronger on a log scale: participants were more likely to make numerical 

guesses that fell at or close to the reference ticks’ values (±25 screen units) on a log scale 

(1268/3126=41%) than on a linear scale (814/3126=26%; c2=147.77, df=1, p<.0001).  

However, there was no significant difference in the frequency of answers corresponding 

exactly to the ticks (log, 452/3126=14.5%; linear, 433/3126=13.9%; c2=.43, df=1, p=.51). Thus, 

participants were still trying to venture an accurate guess, not just responding with the tick 

value. We next tested the idea that they performed a linear rather than logarithmic 

interpolation between ticks. We extracted all log-scale trials whose desired response location 

fell between the second and third tick marks (i.e., between 10-100 on a log scale) and 

submitted subjects’ numerical answers to a multiple regression analysis with two regressors: 

the correct numerical answer and the answer that would have been correct under linear 

interpolation. We found that the latter regressor entered as a significant predictor (b=.97, 

p=.001), whereas the correct numerical response did not (b=.14, p=.65). Similar results were 

found in the range 100-1000 (but both predictors were significant: blinear_interpolation=4.94, 

p<.001; bcorrect_response=.5, p<.001). 

Extrapolations from exponential functions (“same-function” condition) 

We next turn to the perception of exponential functions. Overall ANOVAs for the “same-

function” condition are presented in tables 2A (for bias) and 2B (for variability). On bias, there 

were main effects of noise and response modality (see table 2A). Although there was no main 

effect of axis scale, this variable interacted with both noise and response modality. Similarly, 

on variability, there were main effects of all variables, and also all 2-factor interactions (table 

1B). To understand those interactions, we first examine what happens when exponentials are 

plotted on a linear scale, then investigate whether their perception can be improved by using 

a log scale. 
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Only noisy scatterplots lead to an underestimation bias for exponential functions. On a 

linear scale (third data point in figure 36), we observed the classical exponential 

underestimation bias. Importantly, this negative bias was only found for noisy functions, for 

both pointing responses (bias=-13.23, t(520)=-2.37, p=.02, d=.1) and numerical guesses 

(bias=-50.44, t(520)=-8.85, p<.0001, d=.39). On the contrary, participants’ answers often 

overshot the correct prediction in the noiseless condition, for both numerical (bias=56.67, 

t(520)=13.93, p<.0001, d=.61) and pointing answers (bias=19.12, t(520)=3.37, p<.001, d=.15).  

These two opposite biases are clearly visible in the heatmaps in figure 37, which show the 

entire set of participants’ responses for exponential functions on a linear scale. In the noisy 

condition, the green line, which represents the median response given by participants as a 

function of the correct location, is consistently lower than the red line, which represents the 

desired response. For noiseless functions, however, the green line is consistently above the 

red one, meaning that participants overestimate their extrapolations.  

 

 

Figure 37. Distribution of the participants’ responses to exponential functions on a linear scale, as a function of the 

expected correct locations (binsize = 25). Plots are shown separately for each response modality and noise level. On the 

right of each plot, a histogram of the frequency of responses is shown in blue. The diagonal red line indicates optimal 

performance. The green line shows the participants’ median response for each bin of correct location. 
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Note also that the underestimation bias for noisy exponentials becomes noticeably larger as 

the exponential growth rate increases and, thus, as the location of the correct answer 

increases. This trend was confirmed by a linear regression between the bias and the 

exponential growth rate (R2=.01, F[1,3124]=44.85, p<.0001) and by a linear regression 

between the bias and the correct location (R2=.04, F[1,3124]=145.8, p<.0001). Because of the 

way our stimuli were generated, correct location and growth rate were correlated (r(3124) = 

.24, p < .0001). In an attempt to separate those variables, we performed a multiple regression 

on their normalized values, which revealed that both had a significant effect on bias (bcorrect 

location=-34.1, p<.0001, bgrowth rate=-12.6, p<.0001; R2=.05, F[2,3123]=81.16, p<.0001). Thus, 

although the higher the growth rate, the higher the bias, the bulk of the effect came from the 

expected correct location: participants misperceived to a larger extent those exponentials 

that were expected to land at a higher location in the extrapolation area.  

In passing, the marginal histograms in figure 37 (top) exhibit spikes at ticks' and round 

numbers’ locations. We confirmed the presence of an anchoring effect for numerical 

responses, similar to that found for linear functions (see supplementary material). 

As concerns response variability, participants’ responses on a linear scale were dramatically 

more variable for exponential functions than for linear ones (figure 2; t(520)=38.88, p<.0001, 

d>1). This was true for both noise levels and response modalities (all p<.0001), confirming 

that participants always experienced considerable difficulties in correctly estimating the 

behavior of exponential functions. Extrapolations of exponentials on a linear scale were also 

more variable for noisy data than for noiseless functions: this was true for both pointing 

(sdnoise=125.38, sdnoiseless=74.77, t(520)=11.84, p<.0001, d=.52) and numerical responses 

(sdnoise=122.33, sdnoiseless=78.91, t(520)=10.55, p<.0001, d=.46). 
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The underestimation bias disappears when exponential functions are plotted on a log 

scale. Finally, we examined whether the perception of exponential trends could be rescued 

by plotting the same data on a log scale. The ANOVA (table 2A) revealed a main effect of the 

axis scale and its interaction with response modality, confirming what we can observe in 

figure 2B: when participants were asked to extrapolate exponentials plotted on a log scale, 

their answers became much less biased and more precise for both response modalities and 

noise levels. Pointing answers were significantly less biased on a log axis than on a linear axis, 

for both noisy (t(520)=2.18, p<.05, d=.1) and noiseless scatterplots (t(520)=-15.39, p<.0001, 

d=.67). The same was true for numerical guesses, which were significantly less biased on a log 

axis for both noisy (t(520)=8.65, p<.0001) and noiseless scatterplots (t(520)=-3.78, p<.001, 

d=.17). Analogously, participants’ extrapolations of exponentials were considerably less 

variable on a log scale than on a linear scale (t(520)=-42.19, p<.0001, d>1).  

Those results (figure 37) hold because we compare performance on both axes using the 

common currency of screen location units. When considering the actual numbers given, the 

variability for answers on a log scale increases relative to the linear scale but, crucially, the 

underestimation bias still vanishes (see appendix C). Taken together, these results suggest 

that, for the very same exponential trend, plotting the data on a log rather than a linear scale 

eliminates the underestimation bias. 

Mathematical education mitigates the exponential growth bias 

We next examined inter-individual variability in the underestimation bias. For each 

participant, we computed the magnitude of their exponential growth bias for noisy 

scatterplots. The distribution of individual biases, shown in figure 38A, covered a broad range 

from ~0 (no bias) to -100 or lower (strong bias). Was this variability just noise, or did it vary 

systematically with knowledge and education? Before the test, participants self-evaluated 
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their skills in mathematics on a scale from 1 to 10. For the following analysis, we excluded 

participants that answered 1 or 10, since they were considerably fewer than the other ones 

(only two and nine respectively).  

 

Participants’ self-evaluated mathematical knowledge predicted the size of their 

underestimation bias for noisy exponentials (figure 38B), for both pointing (R=.12, df=476, 

p<.01) and numerical answers (R=.19, df=476, p<.0001). This correlation was specific to 

mathematics and was not found between participants’ bias and their self-evaluation of first-

language skills (regardless of noise and response modality, all p>.05). For noiseless 

exponentials, no such correlation was found for pointing responses (R=.05, df=476, p=.26) 

Figure 38. Inter-individual 

variability in the underestimation 

bias for noisy exponentials. A: 
distribution of the bias across 

participants. B: participants’ bias as 

a function of their self-evaluated 

mathematical knowledge. C: 

participants’ bias as a function of 

their academic field of study. 
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and only a moderate one for numerical answers (R=.09, df=476, p<.05). To further analyze 

how the exponential growth bias for noisy data varied with education, we analyzed it as a 

function of the academic field in which participants obtained their university degree (figure 

38C). We observed that graduates in science, engineering and health (n=221; average bias=-

8) performed considerably better in extrapolating exponentials from noisy scatterplots than 

graduates in the other fields (n=196; average bias=-49; t(410.68)=-4.5, p<.0001).  

Other correlation analyses are available in appendix C. In particular, we found that the 

precision of linear extrapolation increased with mathematical knowledge, both for numerical 

and for pointing responses. 

Putative origins of the exponential growth bias in graph perception 

Why do human adults underestimate the growth of noisy exponentials? Participants did not 

simply prolong the exponential curves linearly: their extrapolation responses were 

significantly higher than the values predicted by the tangent at the last point (t(6251)=41.8, 

p<.0001, d=.53). This remained true even when including solely the responses from 

participants whose mathematical education was below the median (t(3287)=26.11, p<.0001, 

d=.46). Thus, participants clearly understood that exponential data are positively accelerated.  

Another possibility is that participants mistook exponential growth for another simpler and 

shallower relationship such as a quadratic one. We could reject this model, however, because 

its predictions were significantly lower than the actual data (t(6251)=-50.4, p<.0001, d=.64), 

and this was true even for responses from the least educated participants (t(3287)=-32.69, 

p<.0001, d=.57). Furthermore, this theory would only account for the underestimation in the 

noisy condition, and would fall short of explaining success or overestimation in the noiseless 

condition. 
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The latter point suggests that humans possess an intuition of exponential growth, but do not 

systematically apply it. We reasoned that the underestimation bias for exponential functions 

could arise from a subset of trials in which noise would make it hard for participants to 

distinguish exponentials from other functions. The high variability of responses to noisy 

exponentials (figures 37, 38) would arise from a mixture of trials in which participants 

correctly detect the exponential trend and trials in which they do not. In fact, this conclusion 

might be rational: noise could prevent the detection of exponentials even for an optimal 

observer, who would then revert to the simpler hypothesis of linear or quadratic growth. 

 To test this idea, we modeled a biased Bayesian ideal observer that attempted to select the 

best-fitting curve from three alternatives: linear, quadratic and exponential, with a special 

penalty against exponentials (figure 39A). The model, adapted from the one described in 

study 8, selects the best-fitting function according to a penalized Bayesian Information 

Criterion (BIC). 

When penalty=0, the model is unbiased and almost always correctly detects exponential 

growth in our noisy stimuli (1000 trials, accuracy=91.2%). This finding validates our choice of 

noise level, which was sufficiently low to prevent the confusion of exponentials with other 

functions. However, it also shows that the unbiased optimal observer does not fit human 

data. Crucially, participants may not consider linear and exponential relationships as equally 

likely or equally complex. It seems likely that, with less and less mathematical education, 

participants would increasingly consider the exponential as a more exotic relationship than 

the linear one. By biasing the model with a single free parameter (the penalty K associated to 

choosing exponentials) we get a good fit to the data (figure 39). For a penalty K=3 (which 

cancels the difference between quadratic and exponentials, the former having one extra free 
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parameter), exponentials were frequently misclassified either as quadratic (22.6% of trials) or 

as linear (8.5%), both of which led to an underestimation of extrapolated responses.  

We systematically searched for the penalty that provided the best fit to the human data, 

obtained by minimizing the Jensen–Shannon Distance between the 2D distributions of the 

model and the data in 3000 randomly selected trials. The best fit was obtained for a value of 

K=12.62 (figure 39B). With this value, the biased ideal observer model accounted for several 

additional features of the data. First, while it underestimated noisy exponentials, its average 

response always fell in between quadratic and exponential extrapolation, similar to humans. 

This finding arose because when faced with a noisy exponential graph, the model sometimes 

opted for a quadratic and sometimes for an exponential, but rarely for a linear function. The 

model also provided a plausible account of the effect of mathematical education, by assuming 

that less educated participants exhibit a larger prior against exponentials (figure 39C). Indeed, 

when we separately fitted the data from participants in the first and last quartiles of 

mathematical education, we found that a lower exponential penalty was required for the 

former than for the latter (respectively 7.1 vs 15.8; figure 39D). Importantly, these 

observations held only for noisy exponentials. For noiseless trials, even the heavily biased 

Bayesian observer (corresponding to a participant with low mathematical education) 

systematically opted for an exponential function when an exponential was actually present, 

explaining the absence of a negative bias for noiseless graphs. 

Finally, we examined whether the humans and the model failed on similar trials. Using the 

best-fitting penalty value of 12.62, we split the noisy exponential trials according to the 

model’s classification (Figure 39E). When the model correctly classified the function as 

exponential (25.5% of trials), participants’ bias was not significantly different from 0 (mean=-

13.1, p>.05) and smaller than when the model misclassified it as either quadratic (mean=-
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34.5; 66.2% of trials) or linear (mean=-49.5; 8.3% of trials). The bias was significantly different 

in the first case than in the other two (pairwise differences in a generalized mixed effect 

model; linear-exponential: t(2960)=-2.62, p<.05; quadratic-exponential: t(2955)=-2.42, 

p<.05). Those results suggest that both humans and the model are not blind to exponential 

growth: bias and noise lead them to often misinterpret curves as linear or quadratic growths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Ideal observer 

model of graph perception 

and extrapolation. A: 
architecture of the model: 

for a given trial, the model 

extrapolates the best-fitting 

candidate function that 

minimizes the Bayesian 

information Criterion (BIC) 

plus an adjustable penalty 
for exponentials. B: 

comparison of the 

distribution of answers to 

noisy exponentials for 

humans (left) and for the 

model with three different 

values of the exponential 
penalty (right; numbers 

indicate the Euclidean 

distance between the data 

and model distributions). C: 

average exponential 

underestimation bias of the 

model as a function of 
penalty K. D: modelling of 

participants with high and 

low mathematical 

knowledge: Jensen–

Shannon Distance as a 

function of the penalty for 

the first and last quartile of 

math level, plus indication of 
the penalty K minimizing the 

distance. E: splitting of the 

distribution of responses 

according to the choice of 

the ideal observer, both for 

the model and for the 

behavioral data. 
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DISCUSSION 

In a large-scale online study, we studied the factors that modulate the misperception of 

exponential growth in graphs. For noisy exponentials, our systematic extrapolation study 

replicated the exponential growth underestimation bias  (Andreassen & Kraus, 1990; Levy & 

Tasoff, 2016; Wagenaar & Sagaria, 1975; Wagenaar & Timmers, 1979) and extended it to 

pointing responses. Indeed, although the bias was higher for numerical extrapolations from 

noisy stimuli, it was still significantly present when subjects were asked to extrapolate a curve 

by pointing. This finding suggests that the bias arises, at least in part, at the stage of perceiving 

and extrapolating the scattered noisy dots, and not just when the plot is converted into 

numerical values. This finding converges with prior studies showing that human adults have 

difficulties in interpolating or extrapolating accelerating functions (Schulz et al., 2017), 

including quadratics, as we showed in study 8. In agreement with previous literature (Hutzler 

et al., 2021), we also found that the magnitude of the bias increases as a function of the 

exponential growth rate.  

For noiseless functions, however, we discovered that the exponential growth bias disappears. 

This suggests that participants do not lack an intuitive understanding of accelerating 

functions, but fail to deploy it properly in the presence of noisy data trends. We confirmed 

this suggestion by exploring the properties of an ideal-observer model of graph perception 

and extrapolation. The model is based on the idea that participants have to mentally chose 

between several candidate functions and that the presence of noise in the data may prevent 

the selection of the proper curve, thereby leading to a quadratic or even linear extrapolation 

of exponentials. We could reject an ideal observer model that does not penalize exponentials. 

However, we found that a biased model, with an additional penalty against exponentials, 

could fit the data. This analysis suggests that participants had intuitions of exponential growth 
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but were biased against this interpretation and failed to correctly chose an exponential trend 

in the presence of noise. 

We also discovered an independent source of bias in human graph extrapolation, which 

occurred solely for numerical guesses: participants anchored their answers to round integer 

values and to tens and hundreds. This “rounding” behavior is intuitive and fits with the higher 

cross-linguistic frequency of number words corresponding to tens (Dehaene & Mehler, 1992; 

Sigurd, 1988). It may partially arise from an anchoring heuristic (Jacowitz & Kahneman, 1995) 

elicited by the values displayed on the y-axis. 

One last finding merits discussion: the overestimation bias for noiseless functions. This aspect 

partly contradicts Hutzler et al. (2021), who found an underestimation. However, this is likely 

to be due to methodological differences in the studies: their stimuli did not depict genuine 

exponential functions, but exponentials with a temporally decreasing rate; also, their graphs 

were either so curved that the correct extrapolation fell way above the depicted y axis or too 

shallow to be perceived as exponential (which is, indeed, what often happens in the media 

when the exponential evolution of a pandemic is presented: the y axis is not scaled to 

anticipate the future number of cases). In our stimuli, we carefully chose the parameters a 

and b of the exponential functions in order to make sure that participants were not 

constrained in the range of their possible predictions. Further research will be required to 

understand why, in such a context, our noiseless exponentials were slightly overestimated. 

One possibility is that participants visually extended such curves using inappropriate but 

intuitive geometric operations (Dehaene et al., 2006; Sablé-Meyer et al., 2021). Another 

possibility is that participants knew that humans underestimate exponentials and 

overcorrected their responses when they were confident they saw an exponential. Indeed, 

the experiment was conducted one year after the beginning of the Covid-19 pandemic and 
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most participants could have been aware of the general underestimation in the number of 

new contaminated people during Covid-19 outbreak.  

 

EVIDENCE-BASED SUGGESTIONS TO IMPROVE DATA VISUALIZATION OF EXPONENTIAL 

TRENDS 

Many scientists recently called for an improvement in data visualization and graphical 

representations as a fundamental step towards a stronger public appropriation of societal, 

environmental, and health phenomena (Concilio et al., 2021; Dixon et al., 2021; Harold et al., 

2016; Murray et al., 2020). The present results lead to the following suggestions to improve 

the perception of exponentials in scatterplots. 

1. Improve people’s mathematical education. We found that, the higher the participants’ 

self-evaluated math knowledge, the smaller their exponential underestimation bias 

(as well as their variability in linear extrapolation). Although correlation is not 

causation, it seems likely that explicitly educating people to the fast-growing 

mathematical properties of exponentials could mitigate their bias. Indeed, a short 

lecture on the exponential growth bias was shown to reduce the size of the 

underestimation (Wagenaar & Sagaria, 1975). Math education correlates with 

participants’ numerosity perception (Ciccione & Dehaene, 2020; Halberda et al., 2008, 

2012; Piazza et al., 2013), and intervention studies suggest a causal effect on both 

number acuity (N. Jordan & Dyson, 2016; Wilson et al., 2009) and intuitive 

mathematics (Dillon et al., 2017). Recent evidence also suggests that mathematical 

skills correlate with complex graph understanding (Ludewig et al., 2020). Future 

studies should confirm our findings with psychophysical experiments in a laboratory 
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context, and test causality through a randomized control trial with an education 

intervention on graph perception. 

2. Use pointing rather than numerical responses. Participants were more precise and less 

variable when pointing to the extrapolation location, rather than venturing a 

numerical response. Thus, inviting the reader to carefully locate the extrapolation 

point, for instance by clicking before making a numerical estimation, may help. The 

latter suggestion is particularly relevant for interactive visualizations: readers could 

click on the extrapolated location while the software would provide the corresponding 

number. 

3. Use a logarithmic scale, but with a high density of labels. A logarithmic scale makes 

exponential data look linear, and therefore easier to extrapolate without bias. Our 

data indicate that log scales have pros and cons: they remove the exponential bias, 

but lead to an overestimation of numerical responses. The latter effect arises from the 

difficulty of understanding which numbers fall in between tick marks on a log scale. As 

a result, subjects either select the nearest tick, or interpolate linearly between ticks. 

Those issues could be mitigated by providing a higher density of numerical labels (e.g., 

not just 10-100-1000 but also the intermediate locations for decades and hundreds). 

Our study also replicates and extends previous research showing that exponential 

extrapolations from a log scale are more variable than those from a linear scale 

(Menge et al., 2018; Romano et al., 2020). However, this is true only if we consider the 

actual numerical distance from the correct answer (see appendix C) but not if we 

consider the distance in the space of the graph. 

Intervention studies could be designed to foster a better understanding of log scales. 

For example, after performing a numerical extrapolation on a log scale, participants 
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could receive precise feedback about the discrepancy between their response and the 

correct one. In young children, such a procedure has been shown to induce a 

representational change in the conceptualization of the numerical scale, from 

logarithmic to linear (Opfer & Siegler, 2007). In passing, it is interesting and somewhat 

paradoxical that children and uneducated adults initially conceive of numbers as 

logarithmically spaced (Berteletti et al., 2010; Dehaene et al., 2008; Siegler & Opfer, 

2003), then move on to a linear understanding in the first years of schooling (Booth & 

Siegler, 2006; Siegler & Booth, 2004; Siegler & Opfer, 2003), and finally may receive a 

formal mathematical training on logarithms and log scales. Future work should 

examine if the adult understanding of log scales rests, at least in part, on a return to 

the initial intuitive conceptualization of the compressive number line, or whether it 

constitutes an independent form of learning. 

4. Reduce the noise in the data plot. One of the most interesting results in our study is 

that the exponential underestimation bias vanished (and indeed became an 

overestimation) when we presented a noiseless exponential function rather than 

noisy data. According to our model, reducing the noise facilitates the choice of the 

adequate family of functions, and therefore leads to better extrapolations. This 

suggests that a more accurate human perception of the exponential growth in real 

data could be obtained by presenting a smoother graph, e.g.  the best-fitting 

exponential curve or a moving average, instead of noisy datapoints.  

We end the discussion of study 9 by noting that the last two suggestions not only eliminate 

the underestimation bias, but lead to overestimation. One should therefore consider the 

concrete implications of the conveyed message and the cost associated to either type of error. 

If, for example, the purpose is to alert the readers to the fast-growing progression of a 
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pandemic, overestimation may be less problematic than underestimation. However, 

overestimating the future number of contaminated people may have adverse effects as well, 

such as excessive sanitary measures. In sum, the preference for a data visualization over 

another should be based on a thorough analysis of the represented data and of the message 

that the graph is supposed to convey (Franconeri et al., 2021). While such decisions are 

beyond the scope of cognitive psychology, the present study highlights the crucial importance 

of informing them by psychophysical research on graph perception. 
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CHAPTER 5 

 

THE NEURAL BASES OF MENTAL 
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STUDY 10: FMRI STUDY ON TREND JUDGMENT 

The behavioral studies presented so far provide us with some new findings about the way 

humans extract statistical information from noisy graphical representations. They contribute 

to the growing body of research on graph perception and understanding by proposing a 

psychophysical approach to information processing. One last question remained, to our 

knowledge, still never asked to date: what are the neural bases of our abilities to extract 

statistical summary information from noisy graphs? If we zoom out and broaden our view on 

all research on ensemble perception (which share many characteristics with graph 

perception, as described in the previous chapters), very few studies tackled the question of 

how our brain performs summary statistics of our visual environment (e.g., the average 

orientation of objects, the average emotional facial expression…) and no study specifically 

investigated the brain responses to graphical representations. It has been suggested that the 

neural bases of ensemble perception might be largely distributed and hard to capture 

(Whitney & Yamanashi Leib, 2018): one study in macaques found that V4 seems implicated in 

the extraction of high-level summary statistics of objects’ textures (Okazawa et al., 2015) and 

one study in humans found fMRI adaptation in anterior-medial ventral visual cortex for stimuli 

with the same ensemble statistics (Cant & Xu, 2012). Interestingly, one EEG study found that 

ensemble properties might even being available before the detection of individual object 

properties (Epstein & Emmanouil, 2021). Whether these preliminary findings generalize to 

graph perception is unknown. We therefore thought that a similar neuroimaging approach 

could be applied to our trend judgment task: for this reason, we used 3T fMRI to investigate 

the neural bases of human ability to perform “mental regression” in the classic trend 

judgment task that we developed in our work. 

Specifically, we tried to answer to the following four research questions: 
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1) What are the neural bases of trend judgment? In order to answer this question, we 

designed a blocked paradigm of the type “same stimuli, different tasks”: participants 

saw a series of scatterplots composed of triangles and diamonds and, for each of 

them, they either had to judge the graph trend (ascending or descending) or, in other 

blocks, the most numerous shape (triangles or diamonds). We then performed simple 

contrasts between the two types of blocks in order to investigate if the trend judgment 

task elicited a specific activation in a defined brain area. 

2) Where does the brain treat the scatterplot’s parameters (i.e., noise, slope and number 

of points), including its t-value? Our behavioral studies showed that each of those 

parameters influenced participants’ accuracy and response times, which they were 

well subsumed by the t-value associated to the graph. We thus wondered where in 

the brain these parameters are treated and whether we could find brain areas that 

reveal an increase in activation for different levels of the t-value. To tackle this 

question, we designed an event-related paradigm in which participants saw a series 

of scatterplots (in trials separated by relatively long intervals) that varied in their slope 

(positive or negative), noise level (large or small), number of points (18 or 38) and the 

visual hemifield in which they appeared (left or right). The quasi-randomly alternating 

appearance on both visual hemifields was meant to control for possible retinotopic 

explanations of our findings: in fact, we wanted to investigate the pure effects of the 

scatterplots’ parameters independently from the visual area they covered. Concretely, 

we performed a representational similarity analysis (RSA) on regions of interest. 

3) Does the cultural recycling hypothesis proposed for letters and numbers processing 

apply to graphical representations as well? Along the manuscript we evoked the 

hypothesis that brain areas devoted to object orientation detection might have been 
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recycled for graph perception: indeed, detecting the trend of a noisy scatterplot seems 

analogous to the detection of the orientation of an object but, at the same time, 

requires the extraction of more complex summary visual statistics. In order to 

investigate whether such recycling occurred, we designed a blocked paradigm of the 

same sort described above (“same stimuli, different tasks”), in which subjects were 

asked to either detect the orientation of an object (ascending or descending), or to 

identify its category (kitchen tool or not-kitchen tool). We then performed simple 

contrasts between the two types of blocks and then looked at the overlapping of the 

brain areas involved in object orientation with those involved in trend judgment. The 

“objects” trials were proposed at the end in order to avoid priming participants to 

conceive the graphs as objects when performing the trend judgment (in fact, if they 

saw objects before graphs, they might have been primed to treat graphs as objects). 

4) Is trend judgment sustained by the brain areas involved in numerical cognition? Some 

of our previous findings suggested that numerical and mathematical cognition might 

play a role in our ability to correctly perform a trend judgment of noisy scatterplots or 

to extrapolate from non-linear functions. To investigate whether this hypothesis holds 

at the brain level, we asked participants to perform language and math simple tasks 

in order to find, for each subject, the brain areas specifically involved in numerical 

cognition. We then looked at the overlapping between those areas and those involved 

in trend judgment. 

 

METHODS 

The experimental procedure was divided into 7 runs (plus an anatomical run). Before being 

put into the scanner, each participant was instructed on how to perform each run and could 
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make a few practice trials. No feedback on correct or wrong responses was provided: the 

practice was intended uniquely to check for the correct execution of the task (e.g., giving only 

one response per trial, fixating the center of the screen, not moving the head…). 

Run 1 and run 3: shape detection and trend judgment (blocked paradigm) 

The experimental procedure of these runs is shown in figure 40. Participants saw one of the 

two possible instructions for 3000 ms. If they saw the diamond and the triangle, they had to 

concentrate, for the following 8 trials (consisting in noisy scatterplots made by triangles and 

diamonds), on the most numerous shapes in the image: if they thought there were more 

triangles, they had to press the right button; if they thought there were more diamonds, they 

had to press the left button. On the contrary, if they saw the two arrows, they had to judge 

the trend (descending or ascending) of the following trials and answer accordingly, 

analogously to the procedure described in study 1. Each stimulus remained on screen for 200 

ms and then a fixation cross appeared for 1300 ms, signaling the response window. 

Participants were asked to give one answer within that time frame. After eight trials, the 

fixation cross remained on screen for 4, 6, or 8 seconds (on average for 6 seconds) and then 

a new block of trials started with the relevant instructions showing up, again, for 3000 ms. 

Run 1 and run 3 both comprised 20 blocks each (10 for shape detection and 10 for trend 

judgment). The order of the two tasks was, within each run, randomly determined and not 

known in advance by participants. The only difference between run 1 and run 3 was in the 

response-hand configuration: run 1 had the instructions presented as in figure 40, whereas 

run 3 had the opposite configuration of triangle/diamond and up arrow/down arrow, thus 

asking participants to respond with their right hand for diamond and left hand for triangle 

(shape detection task) or with their right hand for descending and left hand for ascending 

(trend judgment task). The duration of run 1 and 3 was of 420 seconds each.  
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Each scatterplot was created according to the same equation described in study 1. The 

experimental factors were: the slope of the generative regression (+ 0.5 or -0.5), the number 

of items (18 or 38), the noise level (0.05 or 0.15). Their combination resulted in 8 experimental 

conditions: one scatterplot per condition was presented in each block, in a random order, for 

a total of 4 ascending trends and 4 descending trends (participants were unaware of these 

distributions). Of these 8 scatterplots, each had one of the following ratios of triangles and 

diamonds (all ratios were presented in a given block): only triangles; 2 triangles over 18 or 4 

over 38; 4 triangles over 18 or 8 over 38; 6 triangles over 18 or 12 over 38; only diamonds; 2 

diamonds over 18 or 4 over 38; 4 diamonds over 18 or 8 over 38; 6 diamonds over 18 or 12 

over 38 (to summarize, in each block there were 4 scatterplots with a majority of triangles 

and 4 with a majority of diamonds; again, participants were unaware of these distributions). 

A total of 160 trials was presented in each run. Each stimulus had a visual angle of 15°. Each 

triangle and diamond had the same number of pixels. 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Experimental procedure of run 1 and run 3. Instructions were presented for 3000 ms, signaling whether 

participant should perform shape detection or trend judgment for the following eight trials. After a break of 6 seconds 

(on average), another block started again, with one of the two tasks’ instructions. 
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Run 2 and run 4: trend judgment (event-related paradigm) 

These two runs consisted uniquely in a trend judgment task (therefore, no mixture of triangles 

and diamonds was presented in the scatterplots, but only dots). The response-hand 

configuration was the same of run 1 (for run 2) and the same of run 3 (for run 4). The duration 

of the fixation cross’ presentation was of either 3800, 5800 or 7800 ms (on average, 5800 ms). 

The hemifield in which the stimulus was presented could be either the left or the right. The 

duration of run 2 and 4 was of 774 s each.  

Scatterplots were again generated according to the same algorithm of study 1. The 

experimental factors were: the slope of the generative function (+0.5 or -0.5); the number of 

points (18 or 38); the level of noise (0.05 or 0.15); the hemifield in which the scatterplot was 

presented (left or right). Their combination resulted in 16 experimental conditions; these 16 

conditions were presented in a random order for 8 times during the run, for a total of 124 

stimuli per run. Each stimulus had a visual angle of 15°. 

Anatomical run 

After the end of run 4, each participant was scanned for 7 minutes in order to obtain a precise 

anatomical image of their brains. This run was realized at this moment in order to allow 

participants to relax before the last 3 runs. 

Run 5 and run 6: object identification and object orientation detection (blocked paradigm) 

These two runs were structured identically to run 1 and run 3 but each trial consisted in the 

presentation of one object out of 6 possible objects (a knife, a fork, a spoon, a pen, a wrench 

and a brush) with 6 possible orientations (+15°, +30°, +45°, -15°, -30°, -45°). Two possible 

instructions were proposed to participants: they were either asked to identify the object 

category (if a “C” and a “A” appeared on screen, C standing for “cuisine” – kitchen in French; 

A standing for “autre” – other in French) or to judge the orientation of the object (if an up 
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arrow and a down arrow appeared on screen). Run 6 had the opposite response-hand 

configuration. In each block there were: in terms of object identity, 4 kitchen tools and 4 other 

types of tools; in terms of orientation, 4 upward and 4 downward objects (again, participants 

were unaware of these distributions). As for runs 1 and 3, the duration of runs 5 and 6 was of 

420 seconds, comprising 160 trials. 

Run 7: localizer of numerical cognition and language networks 

The last run consisted in a series of language and mathematical tasks aimed at defining, for 

each participant, their numerical cognition and language networks. The precise procedure of 

this run is described by Pinel and collaborators (Pinel et al., 2004, 2007). 

Participants 

The experiment was advertised on the laboratory recruitment platform. Participants had to 

meet the following criteria in order to be considered eligible: being between 18 and 35 years 

old; being a university student or having completed at least three years of university studies 

(this criterion was added in order to ensure a relative homogeneity of the sample); not taking 

psychoactive drugs; not being pregnant; having normal or corrected to normal vision; being 

able to move their hands and fingers; not having mental implants in the body. 20 participants 

were recruited (12 women, 8 men; age: 25.2 ± 4.1). Half participants performed the 

experiment with the order of response-hand configurations described in the methods’ 

section; half of them started with the opposite order (in order to control for possible effects 

of preferential response-hand configurations). 

 

RESULTS 

Analyses are currently being conducted: they will be presented at the defense. 
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CONCLUSION 

In this first section I summarize the results presented in the thesis and I briefly discuss them 

in relation to one another, with the aim to provide a general and summarized overview of the 

thesis’ findings.  

 

What are the precursors of graph perception? 

I designed a novel trend judgment task over a noisy scatterplot (“does the graph goes up or 

down?”) and I found that the probability of giving increasing responses is a sigmoid function 

of the t-value associated to the correlation in the graph. In other words, participants’ 

performance was akin to an optimal statistical model based on the calculation of the entire 

set of parameters in the graph: the slope, the number of points and the level of noise, which 

are all necessary factors for the computation of the t-value formula that a statistician would 

calculate to determine the significance of a correlation in a scatterplot. I found that response 

times are also predicted by an accumulation of evidence model that takes the t-value as the 

decision variable. I replicated these findings in several populations: first, in a large sample of 

participants who performed the experiment online; second in the Himba, a Namibian people 

with little to no access to formal schooling; third, in 6-years-old 1st graders who never 

encountered a scatterplot in their school curriculum. I then operationalized each individual 

performance in such a trend judgment task as the slope of the psychometric function of the 

increasing responses over the t-value (what I called the “graphicacy index”). I lastly showed 

that such quantitative assessment of people graphicacy greatly varies in the large sample that 

performed the task online and tightly correlates with participants’ self-evaluation of 

mathematical and statistical knowledge (but crucially not of native language mastery). Taken 

together, these findings show that the precursors of graph perception (operationalized as the 
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performance to a simple trend judgment task) are available early on in development and 

independently from formal education, but they can very likely improve with mathematical 

education. These findings echo the ones in the numerical cognition literature (Dehaene, 

2011), showing that the number sense, while being universally available across different 

educational levels, ages, cultures, and even animal species, is still affects by (and predicts) 

mathematical achievements. In other words, they seem to provide preliminary evidence that 

graphical intuitions (analogously to the number sense) are not purely perceptual abilities but 

are somehow intertwined with mathematical understanding (that might help, for example, to 

better integrate the different factors of the graph). If such interrelation exists, we might 

wonder whether training graphical intuitions improves later mathematical performance (or, 

at the very least, basic statistical understanding). Investigating the potential benefits of such 

a training could have important implications for education, especially if we consider the 

relatively large proportion of the general population that does not know how to read a simple 

graphical representation (Galesic & Garcia-Retamero, 2011). 

 

How accurately can humans perform a mental regression over a noisy graph? 

With a novel line adjustment task, I asked participants to adjust a line over a briefly flashed 

scatterplot in order to investigate the precision of what I called human “mental regression”. I 

found that participants are consistently biased (as compared with the response expected in a 

classic statistical framework) in their regression estimations: they do not minimize the vertical 

distance of the points to the fit (as it would have been predicted by a procedure akin to 

ordinary least squares regression) but rather the orthogonal distance (as done in Deming 

regression). In order to rule out the possibility that this finding derived from the experimental 

methodology used (i.e., the possibility that participants simply preferred moving the line 
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higher or lower than expected in certain conditions), I conducted a study based on an 

extrapolation task, in which participants were asked to locate a point beyond the presented 

scatterplot, as a continuation of the underlying trend. I found that participants’ extrapolations 

perfectly mimic their line adjustments: they extrapolate points higher than expected (for 

positive trends) and lower than expected (for negative trends), and particularly for increasing 

levels of noise and larger numbers of points, thus confirming the existence of a Deming bias. 

As already partly discussed in chapter 2, the implications of the existence of such a bias are 

both applied and theoretical. First, the Deming bias might play an important role in several 

domains in which decisions are often based on intuitive graphical judgments (such as finance), 

and therefore help explaining over-optimistic and over-pessimistic behaviors (such as buying 

stocks too early or selling them too late) that are usually considered a default of our reasoning 

abilities rather than the result of our perceptual limitations (Kahneman, 2003; Kahneman et 

al., 1991). Second, they suggest that graphs are (at least partly) treated as objects: the Deming 

regression of a graph is mathematically equivalent to the principal axis of an object (which 

has been showed to be easily computed by humans in several behavioral tasks; e.g., Bodily et 

al., 2018; Lowet et al., 2018). Our remarkable ability to extract an object’s principal axis might 

therefore have been recycled by our visual system in order to sustain the capacity to perform 

graphical judgments, analogously to the recycling of our object recognition system towards 

the development of our reading abilities (Dehaene, 2005). The cultural recycling hypothesis, 

if true, would also explain why certain types of graphs are so hard to grasp and, consequently, 

rarely used: for instance, human angle recognition system is prone to many misperceptions 

and, as a consequence, graphical systems that use angles to distinguish among occurrences 

or events in a plot (such as pie charts do) are rarely employed and often criticized (Kosara & 

Skau, 2016; Siirtola, 2019). 
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Is human mental regression resistant to outliers? 

In another study, I investigated whether outliers are automatically excluded in mental 

regression judgments and, if not, whether paying increasing levels of attention towards them 

could make human statistical judgments more robust to their deviance. I found that, when 

participants are not informed about the presence of outliers, they spontaneously integrate 

them in their trend judgments and line adjustments: these findings are crucial because they 

suggest that graph perception operates in parallel on the entire set of observations. In fact, if 

it was simply another instance of ensemble perception, outliers should have been easily 

discarded, as several studies have shown (Avci & Boduroglu, 2021; Epstein & Emmanouil, 

2021; Hochstein et al., 2018). Furthermore, I found that even when participants were 

informed about the presence of deviant observations in the graph, they were nevertheless 

biased towards them (although their bias decreased for very strong outliers). Based on these 

and other findings I proposed a model of outlier rejection based on the z-score of the 

datapoints in the scatterplot, which predicted both outlier detection and line adjustment. 

Overall, these findings confirm once more that intuitive judgments on noisy graphs seem to 

be well modeled by existing statistical models (t-value for trend judgments, orthogonal 

minimization for line adjustments, and z-score for outlier detection and rejection), showing 

how refined the perceptual precursors of our graph intuitions are. 

 

Can humans extrapolate from non-linear trends? 

I asked participants to extrapolate from noisy graphs generated from non-linear trends 

(namely: piecewise linear functions with early and late inflexions, sinusoids and quadratics) 

and I found that their performance was overall precise and, as suggested by the performance 

of a Bayesian ideal-observer model, likely dependent on the amount of evidence provided in 
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the observational range. I found that this was true with the one notable exception of 

quadratic functions, whose curvature was considerably underestimated. I therefore 

investigated another famous example of underestimation of accelerating functions: 

exponentials (Lammers et al., 2020; W. Wagenaar & Sagaria, 1975). By finely manipulating 

several conditions (i.e.: datapoints presented on linear or log scales; scatterplots being noisy 

or noiseless; extrapolations performed as numerical guesses or by pointing), I found that the 

exponential growth bias is strong but it considerably decreases when participants are asked 

to point instead of giving a numerical response, it disappears when data are displayed on a 

log scale (thus making the graph look linear), and it even reverses when the plotted function 

is noiseless. The bias also correlates with mathematical knowledge and, crucially, even in the 

pointing condition, which did not require any particular ability with numbers’ representation 

and manipulation. This finding suggests once more, as for the trend judgment, that graph-

based perceptual tasks are somehow intertwined with numerical cognition and/or 

mathematical understanding. A Bayesian observer showed the same underestimation bias for 

noisy graphs when it was modelled with a prior against exponentials; also, a larger prior better 

modelled the performance of participants with a low mathematical knowledge. Taken 

together, these biases suggest that the misperceptions described in the literature might 

derive from difficulties in extracting information from noise in graphical representations: I 

therefore proposed several evidence-based guidelines that could improve the way 

accelerating functions are displayed in plots. 
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FUTURE RESEARCH DIRECTIONS 

I conclude by providing some research directions for future studies in the field of graph 

perception and graphicacy. 

 

Testing the evidence-based suggestions derived from psychophysics 

In this thesis I provided psychophysical results that can be used to design evidence-based 

guidelines to, for example, increase the detection of outliers in graphs or to better display 

exponential functions to the public. While these guidelines represent concrete proposals that 

could be easily implemented in data visualizations, the question of their utility remains. In 

other words, it would be important to test whether they translate into a real improvement of 

how people assign weight to outliers or how they forecast the evolution of exponential 

growths. This means that future research should both investigate whether the human 

statistical judgements improve when data are plotted on the basis of such guidelines and, 

most importantly, whether such improvement also leads to a better understanding of the 

underlying mathematical patterns. For example, the exponential growth bias is reduced after 

a short lecture on it (W. Wagenaar & Sagaria, 1975) but, when participants’ performance is 

explored in detail, it is noticeable that they correct their bias with a compensation that is not 

proportional to the growth rate of the function: in other words, participants learned their bias 

(in a sense, they overcompensated it) but did not really extract the correct function. Graphs 

could be a useful tool to improve such training: for instance, correlational judgments improve 

after a long perceptual training on graphs (Cui et al., 2018). More broadly, it would be 

interesting to see whether being trained in statistical judgments on graphs extend beyond an 

improvement in the recognition of specific functions and statistical details and lead, for 

example, to a better understanding of statistics and mathematics in general. 
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The developmental learning trajectory of graph perception and understanding 

Although children have recently been showed to perform very similarly to adults when it 

comes to make perceptual judgments over the physical dimensions that are needed to read 

and understand a graph (Panavas et al., 2022, in agreement with our findings on the trend 

judgment task), it has also been shown then they are quite impaired when asked to perform 

more complex statistical judgments over ensembles (Jones & Dekker, 2018). Future studies 

could investigate the evolution of graphical intuitions in children and, most importantly, what 

are the conceptual stages that have to be reached in order to attain a real understanding of 

graphs that goes beyond the perceptual/intuitive level. In other words, correctly perceiving 

and understanding a graph is likely to require the mastery of several non-trivial concepts, such 

as: oriented lines and points symbolize underlying trends; those trends are organized along 

lines that have a certain magnitude; each observation can concomitantly represent two 

quantities, as in the Cartesian plane; functional relations between dimensions allow to 

extrapolate future unobserved datapoints. In which order these stages are learned and 

mastered is an open question that would certainly merit further research work. In the same 

direction, it would be interesting to investigate the existence of (more or less specific) 

troubles of graphical understanding and whether they are separate from (or overlapping with) 

other learning disorders, such as dyscalculia and dyslexia. 

 

The intuitive dictionary of mathematical functions 

Our findings, together with several pieces of evidence from the literature on inductive biases  

(Schulz et al., 2015, 2017) and function learning (Brehmer, 1971; Lewandowsky et al., 2002; 

Lucas et al., 2015), defined several primitive functions that are available to human recognition 

and extrapolation and those, such as accelerating functions, that seem hard to grasp. 
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However, little is known about which and how many functions are indeed intuitively 

understandable by humans. Future research might thus undertake a catalogic effort to probe 

the limits of human intuitive dictionary of functions, at least when presented in the accessible 

format of graphical representation. To put it clearly, this effort would translate into asking the 

following questions: what is the full set of primitive functions that humans can recognize 

and/or learn and/or extrapolate from? What are the limits of human intuitive understanding 

on the number and type of combinations of such primitives into composite functions? Future 

studies might show, to both children and adults, all the existing mathematical functions 

expressed as noisy or noiseless graphs (both as primitives and in composition with one 

another) and ask them, for example, to draw their continuation towards a further boundary. 

Also, we could make (and test) the hypothesis that mathematical functions might be more or 

less easily recognized and learned as a function of the minimal description length (MDL) of 

the mental programs necessary to represent them: for example, a sinusoid would only 

necessitate to encode a rhythmic regular pattern having a fixed frequency and amplitude, 

whereas exponentials might need the representation of positive tendency, curvature and 

acceleration, thus making their MDL longer. These reflections are borrowed from the 

literature on the language of thought hypothesis, according to which music, geometry, 

sequences and math might be encoded and compressed based on the structure of their 

syntax (for a recent review: Dehaene et al., 2022). 

 

Experimentally inducing priors in graph perception 

Our comparisons of participants’ performance with Bayesian optimal observers seem to 

suggest the existence of priors against accelerating functions in human mind. In other words, 

as we argued along the manuscript, people difficulty at extracting quadratics or exponentials 
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does not seem to depend on a lack of understanding of the function behavior itself: indeed, 

in studies 8 and 9 some extrapolation answers were in agreement with, respectively, 

quadratic and exponential growths. It rather seemed that their priors against acceleration 

made them less likely to select those functions when the level of noise made it hard to choose 

one option in their mental set of functional hypotheses. However, we did not experimentally 

test whether specific priors could actually affect participants’ performance in trend judgment, 

line adjustment or extrapolation (as it has been recently done for correlation judgments: 

Xiong et al., 2022). Different priors could be elicited through different experimental 

manipulations: for example, the perception of a steeper linear regression might be induced 

through the indication of variables’ labels that are known to be strongly correlated; or, 

participants could be informed beforehand about the behavior (and distribution) of non-liner 

functions to which they are going to be exposed; or, in the case of exponential noisy graphs, 

participants could be overly primed towards exponentials, possibly compensating their 

tendency to linearize accelerating trends. 

 

The precursors of intuitive statistical judgments across species 

In the field of numerical cognition, several studies have shown that its precursors (the so 

called “number sense”) are available not just across several human populations but also 

across different animal species (K. E. Jordan et al., 2008; McComb et al., 1994; Rugani et al., 

2007; Santolin et al., 2016; Versace et al., 2017). The cognitive precursors of intuitive 

statistical judgements might be similarly investigated in other non-human species. Indeed, 

there is a strong debate about the cognitive and neural mechanisms of ensemble perception 

and intuitive statistics (Whitney & Yamanashi Leib, 2018). One way to invigorate such debate 

would be to use a very simple animal model: newborn chicks of Gallus gallus. Immediately 
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after birth (thus avoiding any possible learning mechanism) it is possible to imprint them on 

a given stimulus for a few days; immediately afterwards, they can be presented with two 

stimuli (one being the same of the imprinting phase) and test if they prefer to spend 

significantly more time with the stimulus they have been imprinted on; if so, this means that 

the chicks were able to encode and learn the stimulus’ features. More interestingly, in order 

to test chicks’ ability to learn and generalize the core features of their imprinting object, they 

can be presented, in the testing phase, with a stimulus deviating in terms of superficial 

features (such as presentation modalities, colors, position…) from the imprinting one. Using 

such a paradigm, newborn chicks could imprint on (and generalize from) many different 

stimuli, including specific numerosities and abstract patterns, thus showing that their 

generalization abilities go well beyond the encoding of simple and superficial stimulus’ 

aspects. At present, however, no study has investigated whether chicks can be imprinted on 

(and thus generalize from) statistical summaries of ensembles, such as the regression trend 

underlying a series of points, as in the series of experiments presented in this thesis. Finding 

evidence for intuitive statistics’ abilities in chicks might shed light on the phylogenetics of such 

remarkable skills and guide and inform research about the neural levels at which they are 

implemented in humans.  

 

The meaning and interpretation of graphs 

My thesis focused on the fundamental aspects of graph perception and understanding, as 

summarized by the three-steps distinction made in the introduction: data extraction, 

statistical inference and data forecasting. My findings, however, while characterizing people 

accuracy and bias in the statistical judgments I described, cannot extend to the final stage of 

graph understanding, which concerns the ability to use these statistical judgments to 
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interpret data and assign them a meaning. As an example, understanding the accelerating 

nature of the evolution of the number of cases of an epidemic illness is probably necessary 

but likely not sufficient to lead the reader to understand and/or memorize what such 

mathematical function entails. In other words, it would be interesting to investigate the 

degree at which graphical representations help the reader understanding, remembering and 

using the meaning behind the information they convey. Studies have shown what aspects 

attract people attention towards graphs (Borkin et al., 2016), which features and graph types 

improve their memorability (Borkin et al., 2013; Peña et al., 2020), and how graphs can 

improve decision making (Padilla et al., 2018) but, to date, no study specifically investigated 

whether a graph significantly improved people learning of the message derived from its 

interpretation. In fact, while we know that patterns are more easily recognized when shown 

in a graphical format, it is unclear whether such improvement in recognition translates into a 

better learning of the relation between the variables in the graph. Future studies could, for 

example, present the same piece of information in different modalities (e.g., tabular form, 

plain text, and graph) and then test which of them leads to the best learning performance. 

Importantly, graphs could take the form not just of scatterplots but also of all other types of 

charts and, consequently, we could also investigate the advantage in concepts/facts learning 

of one graph type over another. 
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APPENDIX A: OPTIMAL DECISION MAKING IN THE TREND JUDGEMENT TASK (STUDY 1) 

According to classical statistical theory (David & Neyman, 1938; Theil, 1971), given a dataset 

generated from a noisy linear function (i.e., n pairs of data points {𝑥! , 𝑦!}, where 𝑦! = 	𝛼𝑥! +
𝜀!  and the 𝜀!  are independent centered Gaussian samples with standard deviation σ), the best 

linear unbiased estimator (BLUE) of the slope a is: 

 	
α, = ∑ (𝑥! − �̅�)(𝑦! − 𝑦g))

!*&∑ (𝑥! − �̅�)²)
!*&

 

According to the Gauss-Markov theorem, this estimator is unbiased (its mean is equal to a) 

and has minimum variance when compared to other possible estimators. Thus, it is the most 

appropriate estimator on which to base the trend judgment task. In order to optimally decide 

whether the trend in the graph is increasing or decreasing, an ideal observer should base its 

decision on whether the slope estimate α, is positive or negative. Assuming now that this is 

the decision strategy, can we predict how the associated error rate and response times should 

vary with experimental parameters? According to the tenets of classical signal detection 

theory (Green & Swets, 1966) and its extension to response times (e.g., Gold & Shadlen, 2002) 

the difficulty and error rate of such a decision is determined not only by the mean of this 

variable, but also by its distribution across trials. The standard error of the slope estimate α, 

is given by  

𝑠a6 = h 1𝑛 − 2∑ (𝑦! − 𝑦7,)²)
!*&∑ (𝑥! − �̅�)²)

!*&

 



 199  

Under the null hypothesis, the ratio of the slope estimate to its standard error has a Student’s 

t-distribution with n-2 degrees of freedom (i.e. a distribution close to a Gaussian for large n). 

This t-value can also be written as 

𝑡 = 	 a,𝑠a6 = √𝑛 − 2 𝑟	√1 − 𝑟# 

where r is the Pearson coefficient of correlation, given by the covariance of the x and y values 

divided by the product of their standard deviations (for a comprehensive explanation, see 

Baguley, 2012): 

𝑟 = 𝑐𝑜𝑣(𝑥, 𝑦)
s+	s8  

The t-value is the basis for the classical statistical test for significance of a linear trend: to 

decide if a non-null (positive or negative) trend is present, we compare the observed t-value 

to the Student’s t distribution expected under the null hypothesis. Here, however, the 

situation is a bit different: as an experimenter, we know how the data was generated on each 

trial with a given slope α, which may be different from zero; and, to compute the 

psychometric function, we would like to know what is the probability that the decision maker 

will respond “the trend is increasing”, assuming that the decision is based on whether a, is 

greater than zero. Under these conditions, the t-value is no longer distributed as a Student’s 

t-distribution (because the expected value of a,, being an unbiased estimator, is α). However, 

the following value, 𝑡′ = 	 a6"9
:a-

, is again distributed as a Student’s t-distribution. Thus, the 

probability of the “increasing” response is: 
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𝑝!);<=>:!)? = 𝑝(a, > 0) = 𝑝(𝑡′𝑠a6 + α > 0) = 𝑝 n𝑡@ > −α𝑠a6 o = 𝑝(𝑡@ > −𝑡)
= p 𝑆𝑡𝑢𝑑𝑒𝑛𝑡)(𝑢)	𝑑𝑢2A

"B

= p 𝑆𝑡𝑢𝑑𝑒𝑛𝑡)(𝑢)	𝑑𝑢B

"A

 

This equation indicates that the proportion of responses is an increasing function of the t-

value. More specifically, it is a sigmoid-like function, namely the cumulative Student’s t-

distribution. Note that, strictly speaking, this function still depends on the number of points 

n. However, as n increases, it quickly becomes essentially indistinguishable from the integral 

of a Gaussian, and hence independent of n; it is also extremely similar to  the classical sigmoid 

(see Gold & Shadlen, 2002).   

The above theory, analogous to classical signal detection theory (SDT; Green & Swets, 1966), 

assumes that the decision is based on a single sample of t, and predicts only the psychometric 

function (or, equivalently, error rates) but not response times. To predict response times, we 

turn to a “sequential probability ratio test” variant of the above theory, according to which 

the decision-maker accumulates noisy samples of evidence about the sign of a,, up to a fixed 

decision bound. Under such an accumulation-of-evidence model, according to the equations 

in (Gold & Shadlen, 2002), the psychometric response function becomes the classic sigmoid:  

𝑝!);<=>:!)? =	 11 +	𝑒"#$% 
And the response time is predicted by the deviation of the absolute value of t from zero, 

according to a decreasing, convex upward function given by the equation: 

𝑅𝑇 = 𝐵|t| 	tanh	(𝐵|t|) 



 201  

In those equations, B is a constant that jointly reflects both the sensitivity of the decision-

maker (the amount of information accumulated per unit of time) and his decision threshold 

(controlling the speed/accuracy tradeoff). In summary, the theory predicts that decision 

difficulty (both error rates and RTs) should be determined by the t-value. The equation for t, 

in turn, makes it clear that the decision difficulty should depend on all manipulated graph 

parameters (n, σ and a), and predicts that the effects of these variables should be jointly 

summarized by a single effect of the t-value on behavior.  

APPENDIX B: EXAMPLES OF STIMULI WITH OUTLIERS (STUDY 7) 

The figure below provides examples of stimuli for the conditions with a main slope of +0.5. 

Outliers are signaled in red for readability purposes. Actual stimuli, as explained in the text, 

were white dots on a black background. 
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APPENDIX C: SUPPLEMENTARY STUDY DETAILS AND RESULTS (STUDY 9) 

This appendix provides more details about the choice of the error measure used as dependent 

variable in study 9, together with additional results. 

Choice of error measure 

We used the difference in screen units (normalized to the range 0-1000) as an error measure 

since it offers a common currency for comparing conditions with different axes. Concretely, 

answers for stimuli presented on a log scale were translated into their corresponding values 

in screen units. Consider a participant making a numerical guess of 100 for an extrapolation 

from a log scale. If the correct answer was 1000, the numerical error would be 900. However, 

this corresponds, in terms of screen units, to the difference between two tick marks, i.e., to 

the same error that a participant would make if they answered 500 instead of a correct 

answer of 750 on the linear scale. Thus, in both cases, this example corresponds to an error 

of 250 screen units. Using screen units is natural since it assigns the same weight to the errors 

resulting (on a log scale) from answering 1000 instead of 100 and answering 100 instead of 

10. For a log scale, this is analogous to calculating the ratio between the given answer and the 

correct one; however, using error ratios for extrapolations on a linear scale would be 

problematic since it assigns a different weight to the error resulting from a given answer of 

750 instead of 500 and a given answer of 500 instead of 250: in the first case the error ratio 

is of 1,5 and in the second case it is of 2, although the overestimation bias is, for both cases, 

of 250 screen units.  

An alternative error measure would be using the numerical difference between the given and 

the correct answer. In figure S1, results are plotted in such units. This measure is informative 

about absolute numerical distance from the correct value, but it makes impossible to 

quantitively compare errors for stimuli on different scales. When considering the actual 
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numbers given, answers’ variability on a log scale increases relative to the linear scale: this is 

unsurprising given that, with a log scale, a very small change on screen can result in a very 

large change in number. However, the exponential underestimation bias vanishes for pointing 

responses (t(520)=-0.16, p=.87), and turns into an overestimation for number responses 

(t(520)=8.54, p<.0001; figure S1), which is reasonably low given the wide numerical extension 

of the log scale. 

 

Figure S1. Mean bias and mean standard deviation of extrapolation responses, separately for experimental condition. 

Same format as figure 2, but the unit of measurement here is the difference between participants’ numerical answers and 

the correct responses (in figure 2, we used screen units as measurement). For conditions with a linear scale, the plot 

therefore corresponds to figure 2. For conditions with a logarithmic scale, the higher bias and standard deviation are due 

to the much longer numerical interval covered by the y axis scale for log (range: 1-10000) than for linear scales (1-1000). 
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Anchoring effects for exponential extrapolations 

For exponential functions on a linear scale, numerical responses were more likely than 

pointing responses to correspond to tick values (672/3126=21% versus 24/3126=1%; 

c2=676.79, df=1, p<.0001), and numerical responses corresponding to tens and hundreds 

were significantly more frequent than the expected frequency under the null hypothesis that 

each number had the same probability to be chosen by participants (binomial test, empirical 

proportion 2645/3126=85%, expected proportion 313/3126=10%, p<.0001). These findings 

replicate the anchoring effects found for linear functions. Combined, they suggest that for 

both linear and exponential functions, participants’ numerical answers were biased towards 

round numbers. 

Influence of mathematical knowledge on linear extrapolations 

We also tested whether mathematical knowledge modulated the precision of linear 

extrapolations. Self-evaluated math knowledge did not correlate with participants’ bias, for 

any experimental conditions (all p>.05), thus indicating that for linear functions, the bias 

remained null regardless of mathematical education. However, math knowledge negatively 

correlated with participants’ response variability, confirming that participants with a higher 

mathematical education are more precise; this was true for both linear (R=-0.17, df=476, 

p<.001) and log scale (R=-0.13, df=476, p<.01), for both pointing (R=-0.09, df=476, p<.05) and 

numerical responses (R=-0.17, df=476, p<.001) and for both noiseless (R=-0.12, df=476, p<.01) 

and noisy functions (R=-0.2, df=476, p<.0001). Crucially, no correlation was found with self-

evaluation of participants’ first language skills (all related p>.05). These findings show that, 

even for simple linear scatterplots and even when just pointing to an extrapolated data point, 

participants’ precision in responding is modulated by their math knowledge. 
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Influence of other factors on the exponential growth bias 

The underestimation bias of noisy exponentials did not correlate with the highest degree 

obtained (in agreement with previous research: Levy & Tasoff, 2016), nor with age or gender. 

Other than with mathematical knowledge, the bias also correlated with familiarity with 

graphs and statistical knowledge and with participants’ (reported) average math grade at 

university (all p<.05). Again, no correlation was found with the self-evaluated knowledge of 

first language.  

Effect of task order 

As explained in the methods’ section, participants either started with the pointing task or the 

number task. To test for an effect of order on extrapolation performance, we conducted two 

ANOVAs (one on bias, the other on variability) with the task order as a between-subject 

factor. For the “same-graph” condition, no main effect of order was found for bias 

(F[1,519]=1.04, partial h2=.002, p=.31), nor for variability (F[1,519]=.12,partial h2=.0002, 

p=.72); no interaction effects of order with the other factors were found either (all p>.05). For 

the “same-function” condition, only a small interaction of order with axis scale was found for 

the bias (F[1,519]=5.24, partial h2=.01, p<.05). In terms of variability, an interaction effect of 

order with response modality was found (F[1,519]=13.13, partial h2=.02, p<.001): indeed, 

when participants started with the pointing task, their average variability (61.3) remained 

relatively stable for the number task (63.1); however, when they started with the number 

task, the average variability (69.7) shrunk to 56.5 in the pointing task. Plausibly, performing 

numerical guesses requires a higher level of graphical analysis and might have pushed 

participants to be more precise in the subsequent pointing task.  
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APPENDIX D: ANOVA TABLES FOR BIAS AND VARIABILITY (STUDY 9) 

 

 

Table 1A. Repeated measures omnibus ANOVA on extrapolation bias in the “same-graph” 

conditions. 

 

 

 

Table 1B. Repeated measures omnibus ANOVA on extrapolation variability in the “same-

graph” conditions. 

  

Effect df F p Partial η2 

Response modality 1, 520 .09 .77 .0002 

Noise 1, 520 9.32 <.01 .02 

Axis scale 1, 520 152.24 <.0001 .23 

Response modality x Noise 1, 520 1.53 .22 .003 

Response modality x Axis scale 1, 520 167.41 <.0001 .24 

Noise x Axis scale 1, 520 .07 .79 .0001 

Response modality x Axis scale x Noise 1, 520 .24 .63 .0005 

Effect df F P Partial η2 

Response modality 1, 520 241.11 <.0001 .32 

Noise 1, 520 72.12 <.0001 .12 

Axis scale 1, 520 9.44 <.01 .02 

Response modality x Noise 1, 520 51.80 <.0001 .09 

Response modality x Axis scale 1, 520 6.52 .01 .01 

Noise x Axis scale 1, 520 .12 .73 .0002 

Response modality x Axis scale x Noise 1, 520 .002 .97 <.0001 
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Table 2A. Repeated measures omnibus ANOVA on extrapolation bias (for “same-function” 

conditions). 

 

 

 

 

Table 2B. Repeated measures omnibus ANOVA on extrapolation variability (for “same-

function” conditions). 

 

 

 

Effect df F p Partial η2 

Response modality 1, 520 18.82 <.0001 .03 

Noise 1, 520 229.54 <.0001 .31 

Axis scale 1, 520 1.02 .31 .002 

Response modality × Noise 1, 520 .002 .97 <.0001 

Response modality × Axis scale 1, 520 105.4 <.0001 .17 

Noise × Axis scale 1, 520 285.95 <.0001 .35 

Response modality × Axis scale × Noise 1, 520 .002 .96 <.0001 

Effect df F p Partial η2 

Response modality 1, 520 20.93 <.0001 .04 

Noise 1, 520 315.26 <.0001 .38 

Axis scale 1, 520 1615.38 <.0001 .76 

Response modality × Noise 1, 520 7.06 <.01 .01 

Response modality × Axis scale 1, 520 20.06 <.0001 .04 

Noise × Axis scale 1, 520 126.55 <.0001 .20 

Response modality × Axis scale × Noise 1, 520 .04 .83 <.0001 
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ABSTRACT 

Graphs are a cultural product, meaning that they are a human invention with defined rules and syntax. In 
this respect, they are very similar to written words and numbers, probably the two most famous cultural 
inventions. However, unlike them, graphs have been invented much more recently and they became 
widespread only in the last two centuries. Furthermore, graphicacy, the ability to read and understand 
graphs, has received little to no attention from cognitive psychology. In this thesis I present some new 
findings about the human ability to intuitively extract statistics and mathematical relations from graphical 
representations. Specifically, I show that: graphics’ intuitions are available early on in development, 
independently from formal education, and correlate with statistical and mathematical knowledge; humans 
are biased in their mental regression, estimating steeper slopes than expected; they are not robust to the 
presence of outliers, being largely affected by them in their intuitive statistical judgments; they can 
extrapolate non-linear mathematical patterns, with the notable exception of quadratic and exponential 
functions. Based on these findings I also propose concrete suggestions to improve data visualization. 

MOTS CLÉS 

 
Graphiques ; statistiques intuitives ; psychophysique ; perception visuelle ; fonctions 
mathématiques. 

RÉSUMÉ 

Les graphiques sont un produit culturel, ce qui signifie qu'ils sont une invention humaine avec des 
règles et une syntaxe définies. À cet égard, ils sont très similaires aux mots écrits et aux chiffres, 
probablement les deux inventions culturelles les plus célèbres. Toutefois, contrairement à ces derniers, 
les graphiques ont été inventés beaucoup plus récemment et ne se sont répandus qu'au cours des 
deux derniers siècles. En outre, la psychologie cognitive n'a accordé que peu ou pas d'attention à la 
“graphicacy", c'est-à-dire à la capacité de lire et de comprendre des graphiques. Dans cette thèse, je 
présente des nouvelles découvertes sur la capacité humaine à extraire intuitivement des statistiques et 
des relations mathématiques à partir de représentations graphiques. Plus précisément, je montre que : 
les intuitions des graphiques sont disponibles très tôt dans le développement, indépendamment de 
l'éducation formelle, et sont corrélées avec les connaissances statistiques et mathématiques ; les 
humains sont biaisés dans leur régression mentale, estimant des pentes plus raides que prévu ; ils ne 
sont pas robustes à la présence de valeurs aberrantes, étant largement affectés par celles-ci dans 
leurs jugements statistiques intuitifs ; ils peuvent extrapoler des fonctions mathématiques non linéaires, 
à l'exception notable des courbes quadratiques et exponentielles. Sur la base de ces résultats, je 
propose également des suggestions concrètes pour améliorer la visualisation des données. 
 

KEYWORDS 

 
Graphs; intuitive statistics; psychophysics; visual perception; mathematical functions. 
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