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Spécialité de doctorat : Physique

Discipline : Cosmologie

Soutenue publiquement le 28 Juin 2022, par :

Martin Jacques FRANCE

Cosmic microwave background properties in a
universe with simply or multiply connected

topology

–

Propriétés du Fond diffus cosmologique micro-ondes dans
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Résumé

Le modèle cosmologique standard, dans le cadre de la théorie de la Relativité

Générale (notée GR), suppose que l’Univers est isotrope et homogène et que le

principe copernicien est valide. Ce modèle ne prescrit pas explicitement si l’Univers

est spatialement infini ou fini. En effet la GR ne contraint pas la topologie ou

l’extension spatiale de l’Univers. Cependant, en pratique, un modèle de formation

de structure et d’évolution globale de l’Univers, dérivé avec la GR à une résolution

spatiale appropriée, requiert une connaissance à priori de la topologie globale. Les

anisotropies de température du fond diffus cosmologique (ci-après CMB), dans le

modèle standard, sont projetées sur la 2−sphère qui détermine la limite spatiale finie

comobile de notre Univers observable. L’observation du CMB, depuis notre planète,

résulte des effets que, la géométrie de l’espace-temps local et global, et les sources

d’énergie au sens des composantes du tenseur énergie-impulsion de la GR, ont sur la

propagation des photons. Le modèle standard d’Univers est le modèle ΛCDM, dont

le contenu en énergie, outre l’énergie associée à la matière ordinaire, inclut l’énergie

sombre (DE) sous la forme d’une constante cosmologique Λ, et l’énergie de la matière

sombre froide (CDM). ΛCDM est un modèle cosmologique paramétrique, basé sur

six paramètres cosmologiques (voir appendice 8.2.2), quoique sa paramétrisation

puisse être étendue à six paramètres additionnels. La paramétrisation du modèle

ΛCDM permet d’en explorer les variantes. Chaque variante étant caractérisée par

une modification du spectre de puissance angulaire des anisotropies de température

du CMB. Ainsi, le CMB et son spectre de puissance offrent un diagnostic synoptique

de l’Univers ΛCDM. Les prédictions de ce modèle sont globalement en excellente

conformité avec la plupart des observations de notre Univers. Ces observations étant

interprétées dans ce modèle. Cependant, plusieurs anomalies dans les observations

cosmologiques, sont constatées par rapport aux prévisions du modèle ΛCDM.

Notamment, le spectre du CMB de l’Univers ΛCDM infini diffère du spectre du

CMB observé.

La carte de température du CMB est affectée de biais dus à la géométrie de

l’espace-temps et aux sources traversées par les photons dans leur trajectoire depuis

l’époque de dernière diffusion. Corrigée de ces effets, la carte de température du

CMB primordial, montre plusieurs anomalies à grande échelle angulaire, par rapport

au CMB du modèle ΛCDM. Ce modèle suppose une expansion adiabatique de

l’Univers, et prescrit les propriétés d’isotropie, d’homogénéité et de gaussianité des

anisotropies de température du CMB primordial.

Durant mon travail de thèse, et dans ce Manuscrit, je m’intéresse notamment à

une particularité des données du CMB qui est en désaccord avec la prescription

d’isotropie globale du CMB dans le modèle standard. En fait, la fonction

de corrélation à deux points (ci-après 2-pcf) dans l’Univers ΛCDM, révèle des

corrélations non nulles à toutes les échelles angulaires, soit de 0 à 180◦. Cependant,
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la 2-pcf du CMB observé affiche une absence de corrélation aux grandes échelles

angulaires, c’est à dire pour les angles > 60◦. Ce manque de corrélation sur les

deux derniers tiers de la plage de 180◦ est en anomalie avec le résultat du modèle

ΛCDM. De plus, aucun changement dans la valeur ou le choix des 6 paramètres

du modèle standard ne conduit à ce défaut de corrélation angulaire. Mais, c’est

en reconsidérant la topologie globale de l’Univers avec des variétés multi-connexes

qu’une solution à ce problème est obtenue. Ainsi, des cartes de simulation du

fond diffus cosmologique dans un Univers de modèle ayant une topologie multi-

connexe, par exemple celle du dodécaèdre de Poincaré (dénomination courante de la

variété topologique orientable précisément appelée sphère d’homologie de Poincaré)

ou bien celle du 3−tore, affichent également un manque de corrélation de la 2-pcf

aux grands angles. Le dodécaèdre de Poincaré (de courbure intrinsèque positive

constante) et le 3−tore plat (de courbure intrinsèque constante nulle) sont deux

variétés topologiques compactes, finies et sans bord. Durant mes recherches de

thèse, je développe ou adapte plusieurs outils d’analyse morphologique et statistique

(morpho-statistique) pour les cartes du CMB. J’analyse, en recourant à différentes

stratégies, trois variétés de cartes de température du CMB, (i) observée par les

sondes WMAP et Planck, (ii) générées à partir de modèle d’Univers à topologie

multi-connexe tel que le 3−tore et (iii) générées à partir du modèle d’Univers infini

ΛCDM.

Ce qui est nouveau, c’est que les investigations accomplies pendant ma thèse,

conduisent à développer et implémenter numériquement pour le CMB, une signature

statistique ρ, d’Univers multi-connexe complémentaire de la fonction de corrélation

à deux points décrite plus haut. Les travaux et résultats sont présentés en détail

dans notre article d’équipe publié 2, (voir [1]), et dans le chapitre dédié de ce

Manuscrit. Non seulement, l’article prouve que la signature de variance du gradient

de température ρ permet de classer monotoniquement les modèles d’Univers en

fonction de leur extension spatiale, mais encore montre que les cartes du CMB avec

topologie trois-toröıdale restent statistiquement compatibles avec le haut niveau

d’isotropie et d’homogénéité, défini au sens de ρ, des cartes de température du

CMB du modèle standard infini.

Dans le second article publié, présenté dans ce Manuscrit, nous recherchons,

de manière modèle-indépendante, les écarts à la gaussianité de cartes du CMB.

Dans le modèle standard, le fond diffus cosmologique est supposé être isotrope,

homogène et gaussien (donnant l’acronyme IHG) pour les échelles angulaires plus

grandes que l’horizon primordial de 0.6◦. Une violation de la gaussianité à ces

échelles pour les dernières données CMB, pouvant signifier que les précédentes

conclusions sur l’Univers primordial et les hypothèses de modèles standards avec

2 The variance of the CMB temperature gradient: a new signature of a multiply

connected Universe 2021. Aurich R, Buchert T, France M J et Steiner F (auteurs par ordre

alphabétique).
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inflation doivent être modifiés. Les analyses sont menées principalement avec une

classe de descripteur à la fois statistique et morphologique, les Fonctionnelles de

Minkowski (ci-après MFs), appliquées en cosmologie dès 1994 par Mecke, Buchert

et Wagner.

Notre article d’équipe 3 (voir [2]) confirme le faible niveau de non-gaussianité

(ci-après NG) de la carte d’anisotropie de température du CMB observé par Planck.

Par conséquent, le développement perturbatif de la NG du CMB est justifié et

appliqué tout au long de ce travail. Y est montré, que notre développement modèle

indépendant de la non-gaussianité du CMB en polynômes d’Hermite, converge avec

une précision croissante dépendant seulement de l’ordre du développement. Notre

méthode s’appliquant aussi à toute forme et amplitude de non-gaussianité. Nous

vérifions également que le développement modèle dépendant avec ordonnancement

hiérarchique biaise la description de la non-gaussianité primordiale. De plus, nous

observons que ces développements modèle dépendants en séries perturbatives sont

faits en fonction du terme σ0 qui est de valeur non négligeable. Enfin, nos calculs

mettent en évidence la plus faible non-gaussianité, au sens des Fonctionnelles de

Minkowski, de la carte de température du CMB observé par Planck en comparaison

avec les cartes gaussiennes par construction du CMB du modèle ΛCDM.

3 Model-independent analyses of non-Gaussianity in Planck CMB maps using

Minkowski functionals 2017. Buchert T, France M J et Steiner F (auteurs par ordre

alphabétique).
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Plan de la thèse

Dans ce Manuscrit, je vise à présenter mes recherches et résultats d’analyse du

CMB dans le cadre large, tout d’abord du modèle standard d’Univers ΛCDM. Puis,

à la lumière de résultats récoltés ou obtenus pendant mon travail de thèse, je dessine

quelques traits d’un modèle d’Univers plus réaliste, restant à construire, et plus à

même de tenir compte, de l’inhomogénéité de l’Univers et de prédire ses propriétés

aux grandes échelles spatiales. Je recense tout d’abord, dans la revue historique,

les étapes du développement de la GR et de la cosmologie relativiste (voir section

2.1). J’introduis ensuite en 3.1, des observations majeures et les concepts physiques

sous-tendant la construction de la cosmologie actuelle. Mon introduction décrit

la progression conceptuelle partant des fondations générales relativistes du modèle

ΛCDM d’un Univers homogène et isotrope (From the ΛCDM model), où je détaille

l’équation de champ d’Einstein (EFE) en 3.1.1, puis je présente la solution exacte

de l’EFE dite Friedmann-Lemâıtre-Robertson-Walker (FLRW) en 3.1.2. Ensuite,

en 3.1.3, j’introduis les équations de Friedmann. Puisqu’il faut prendre en compte

l’existence d’anomalies et d’éventuelles inconsistences ou contradictions du modèle

standard; mon Manuscrit s’intéresse à quelques pistes possibles en vue d’amender

le modèle ΛCDM. En 3.2 (...toward an inhomogeneous universe model), je présente

au début, une difficulté conceptuelle de la GR que je nomme “incompatibilité

d’échelle”. En effet, la solution exacte de l’équation d’Einstein n’est, sauf en de

rares cas, calculable qu’aux petites échelles spatiales cosmologiques ou en imposant

l’homogénéité et l’isotropie prescrite dans le modèle FLRW. Or, comme je vais le

quantifier plus loin, les observations cosmologiques montrent que notre Univers est

anisotrope et inhomogène à ces petites échelles spatiales et c’est seulement à partir

des grandes échelles spatiales que l’homogénéité est constatée.

Les méthodes permettant la géométrisation relativiste de la gravité à grande

échelle spatiale par moyennage et la rétroaction inhérente aux distributions d’énergie

inhomogènes sont discutées en 3.2.1. Et c’est en 3.2.2 que je fais une brève

présentation de la Topologie Cosmique (ci-après CT) assortie d’une revue historique

de la Topologie et de la CT. J’y présente, entre autres, un papier de Boud Roukema

auquel je contribue sur la détectabilité de la topologie cosmique dans des relevés

de galaxies à grand redshift [3]. En 3.2.4, “Relativité Générale et topologie globale

de l’Univers”, je discute les spécificités du problème de Cauchy (problème de la

valeur initiale) et d’un problème bien posé (existence et unicité d’une solution)

appliqués à la résolution exacte des équations aux dérivées partielles non linéaires

constituant l’EFE. Je considère alors l’application des conditions périodiques

de bord (conditions de Neumann et de Dirichlet) dans le cas d’un Univers à

topologie multi-connexe pour la résolution de l’EFE. J’illustre en détaillant la

méthodologie d’un article par Frank Steiner qui détermine au premier ordre le

champ gravitationnel (globalement anisotrope) d’un trou noir statique dans un

Univers à topologie 3−toröıdale.
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En section 3.2.5, je fais une brève présentation du CMB que j’approfondis

dans l’appendice 8.2.2. Je développe alors au chapitre 4 notre article d’équipe

sur la découverte d’une nouvelle signature d’Univers multi-connexe. L’introduction

détaillée de la fonction de corrélation à deux points (2-pcf) du CMB et du manque

de corrélation au delà d’un angle de 60◦ du CMB observé est faite en 4.1.1. Et

l’anomalie vis à vis des corrélations non nulles partout du CMB du modèle ΛCDM

est discutée en 4.1.2. Le calcul du spectre discret de l’opérateur de Laplace, c’est

à dire de ses valeurs propres et de ses nombres d’onde est détaillé pour l’espace à

topologie 3−tore plat, fini sans bord en 4.1.3.

En section 4.2.1, est explicité le calcul de ρ défini comme l’écart-type du

champ de gradient normalisé de la température du CMB. Alors qu’en 4.2.2 est

détaillé (en figures et tableaux), le résultat fondamental de notre papier, à savoir

que ρ présente une signature hiérarchique monotonique de la taille de la variété

topologique : “plus petit est le volume de la variété topologique, plus grande est

la valeur de ρ associée”. Et cette loi est même linéaire. Cet article illustre aussi

l’effet que la taille du 3−tore à sur le manque de corrélation aux grands angles

de la 2-pcf: “plus petit est le volume du tore, plus la disparition des corrélations

survient à un petit angle”. Enfin le dernier résultat de cet article est quantifié

en 4.2.4, à savoir l’absence marquée d’anisotropie au sens de ρ pour le CMB avec

topologie toröıdale. La conclusion de cet article souligne, (i) l’actuelle impossibilité

de prédire physiquement la loi linéaire constatée entre ρ et L/LH la taille du côté

des tores cubiques, soit L/LH ∼ −0.3ρ + 14 tracée figure 5, et (ii) est compatible

avec une taille comobile de topologie toröıdale cubique de notre Univers de environ

3 longueurs de Hubble (LH) soit environ 13.3 gigaparsecs.

L’article développé au chapitre 5 vise à évaluer le degré de gaussianité des

cartes du CMB dans le modèle standard infini spatialement vis à vis de la carte du

CMB de Planck. La fonction de densité de probabilité (PDF) est définie en détail en

5.2. Les constructions des fonctions d’anomalie (discrepancy functions) quantifiant

l’écart à la gaussianité, et les développements en polynômes orthogonaux d’Hermite

sont explicités avec les moments et cumulants de la PDF en 5.2.2 avec les résultats

pour les cartes du CMB du modèle ΛCDM infini. L’expression analytique de la

première fonctionnelle de Minkowski v0 est donnée en 5.2.3 ainsi que sa prédiction

pour un champ scalaire aléatoire gaussien. La précision arbitrairement grande,

permise par les développements modèle indépendants en polynômes d’Hermite de

la non-gaussianité (NG), est vérifiée en 5.2.4. L’hypothèse modèle dépendante

“d’ordonnancement hiérarchique” avec formulation perturbative de la NG est

explicitée par des développements en séries hiérarchiques en 5.2.5, prouvant que la

signature de NG est biaisée par la modèle dépendance. En 5.2.6, les fonctionnelles

de Minkowski v1 et v2 sont définies et leurs représentations graphiques données

pour les cartes du ΛCDM infini. Si, comme discuté en section 5.2.7, formellement,

la définition des fonctions d’anomalies des fonctionnelles de Minkowski diffère dans
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les recherches de NG de la collaboration Planck et dans nos recherches, notre article

trouve des niveaux de NG similaires. Enfin en 5.2.8, la plus forte non-gaussianité

du grand échantillon de cartes (100,000), gaussiennes par construction, du ΛCDM

est comparée graphiquement à la plus faible NG de la carte d’observation de Planck

pour la PDF et les 3 MFs (voir les graphiques en 21, 22, 23 et 24). En conclusion

de cet article (voir sections ≥ 5.3.1), aux échelles angulaires supérieures à ∼ 2◦ 4 la

faible non-gaussianité de la carte d’anisotropies de température du CMB observé

par Planck est confirmée mais il serait important que des investigations sur des

cartes à plus haute résolution, celle de Planck et celles du modèle ΛCDM, soient

menées.

Le chapitre 6 de mon Manuscrit présente la question de la non-gaussianité

du CMB abordée sous différentes perspectives. Il s’agit d’un article [4] élaboré

par notre équipe à l’invitation de la revue Classical and Quantum Gravity 5 après

la publication de notre article “Model-independent analyses of non-Gaussianity in

Planck CMB maps using Minkowski functionals” développé section 5).

4 L’horizon causal sur le CMB est d’un rayon inférieur à ∼ 0.6◦, cependant, la faible résolution de

Nside=128 et le fort lissage gaussien de 2◦ f.w.h.m. appliqués aux cartes effacent les contributions

d’anisotropie de température primordiales à petite échelle.
5 Focus issue: Planck and fundamentals of cosmology est une revue en ligne étudiant

l’impact sur la cosmologie théorique des données Planck réinterprétées et fournies en 2015 (voir

CQG+ https://cqgplus.com/2017/04/18/is-the-cosmic-microwave-background-gaussian/).
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Abstract

The standard cosmological model, in the frame of the General Theory of Relativity

(hereafter GR), assumes that the Universe is isotropic and homogeneous and that the

Copernican principle is valid. This model does not explicitly prescribe whether the

Universe is spatially infinite or finite given that GR does not constrain the topology

or the finiteness of the Universe. However, in practice, a model of structure formation

and global evolution of the Universe derived with GR at an appropriate spatial resolution

requires assumptions on the global topology. The Cosmic Microwave Background (CMB)

temperature anisotropies in the standard model are projected over the 2-sphere which

determines the comoving finite limit in space of our observable Universe. The CMB as

observed from Earth accounts for the local spacetime geometry and energy-momentum

sources. In the standard ΛCDM universe model, the energy-momentum content includes

phenomenologic dark energy in the form of a cosmological constant Λ and cold dark

matter (CDM). ΛCDM is a parametric cosmological model, based on six cosmological

parameters (see appendix 8.2.2), although its parametrization could be extended up to

six additional parameters. The parametrization of the ΛCDM model allows to explore

the variants of this model. Each variant being characterized by a change in the CMB

power spectrum, thus the CMB and its power spectrum offer a diagnosis picture of the

ΛCDM Universe. These model predictions are globally in excellent conformity with most

of the observations of our Universe, interpreted within this model. However, several

anomalies of the cosmological observations are ascertained with respect to the forecasts

of the ΛCDM model. Notably, the CMB spectrum of the infinite ΛCDM Universe differs

from the spectrum of the observed CMB.

The CMB temperature map is impacted by biases due to spacetime geometry and

sources traversed by the photons in their trajectory from the last scattering surface.

Once corrected from these effects, the primordial CMB temperature map shows several

anomalies at large angular scale with respect to the CMB map in the ΛCDM Universe.

This model assumes adiabatic expansion of the Universe, and prescribes the properties of

isotropy, homogeneity and Gaussianity of the primordial CMB temperature anisotropies.

In my thesis work and in this Manuscript I am interested, notably, in a peculiarity

of the CMB data which is in disagreement with the prescription of global isotropy

of the CMB. Indeed, the CMB two-point correlation function (hereafter 2-pcf) in the

ΛCDM Universe presents non-zero correlations at any angular scale, i.e. from 0◦ to 180◦.

However, the 2-pcf of the CMB observation map displays a lack of correlation at large

angular scale, for angles > 60◦. This absence of correlation over the last two thirds of

the range of 180◦ is in disagreement with the result of the ΛCDM model. Moreover,

no change in the values of the 6 parameters of the standard model accounts for this

discrepancy. But it is by reconsidering the global topology of the Universe with multiply

connected manifolds that a solution to this problem appears. Indeed, simulation maps

of the CMB in a model universe having the multiply connected topology, of e.g. the

Poincaré dodecahedron (current name of the orientable topological manifold precisely

named Poincaré’s homology sphere) or the 3−torus both show a lack of correlation of the

2-pcf at large angles. Both the dodecahedron (of constant positive intrinsic curvature) and

the 3−torus (of vanishing constant intrinsic curvature) are compact topological manifolds,

finite and without boundary. During my PhD studies, I have analysed, using different
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strategies and developing different tools, both statistical and morphological (thereafter

morpho-statistical), three kinds of CMB temperature maps, (i) observed by the probes

WMAP and Planck, (ii) generated from the universe model with 3−toroidal topology and

(iii) generated from the infinite ΛCDM model.

What is new is that the investigations made during my PhD lead to develop and

numerically implement a statistical signature ρ of a multiply connected universe model

that is complementary to the signature of the 2-pcf. The work and the results are

presented in detail in a published paper and in the dedicated chapter of this Manuscript.

Our team paper [1] not only proves that the signature ρ allows to sort, monotonically,

the universe models as a function of the spatial size, but yet shows that the CMB maps

with 3−torus topology stay statistically consistent with the high level of isotropy and

homogeneity, defined in the sense of ρ, of the CMB maps in the ΛCDM model.

In the second published article [2], presented in this Manuscript, we investigate in

a model-independent way, the deviations from Gaussianity in the CMB maps. In the

standard model, the temperature map of the Cosmic Microwave Background is assumed

to be isotropic, homogeneous and Gaussian (giving the acronym IHG) at the angular

scales larger than the primordial horizon of ∼ 0.6◦. Violation of Gaussianity at these

scales for the last CMB data available could mean that the previous conclusions on the

primordial Universe and the hypothesis of the outcome of standard models of inflation

have to be modified. The analyses in this work are chiefly based on a class of statistical

and morphological descriptors, the Minkowski Functionals (thereafter MFs), applied first

in cosmology in 1994 by Mecke, Buchert and Wagner and broadly used after. Our team

paper confirms the weak level of non-Gaussianity (thereafter NG) of the CMB temperature

anisotropy map as observed by Planck. As a consequence, the perturbative expansion of

the CMB NG is justified and applied all along this investigation. It is shown that our

model-independent development of the CMB non-Gaussianity in Hermite polynomials

converges with an increasing precision depending only on the order of expansion. Our

method applies as well to any form and amplitude of non-Gaussianity. We also verify

that the model-dependent development with hierarchical ordering biases the description

of the primordial NG. Moreover, we observe that these perturbative expansions are made

in series of the term σ0 which is not negligible. At last, our computations put into

light the weak non-Gaussianity, in the sense of the Minkowski Functionals, of the CMB

temperature map observed by Planck, in comparison with the higher NG of the ΛCDM

CMB maps which are Gaussian by construction.
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Summary of Contents

In this Manuscript, I aim at presenting my researches and results of analysis of the

CMB in the wide framework, chiefly, of the standard universe model, the ΛCDM. Then,

in light of the results harvested and obtained during my thesis work, I am sketching a few

features of a universe model, more realistic, still to be constructed, and more able to take

into account the inhomogeneities of the Universe, and to predict its properties at large

spatial scale. In the historical overview, I make a review of the evolution of GR and the

relativistic cosmology (see section 2.1). In 3.1, I introduce some important observations

and the physical concepts underlying the construction of the current cosmology. My

introduction aims at describing the conceptual progression starting from the general

relativistic foundations of the ΛCDM model of a homogeneous and isotropic Universe

(From the ΛCDM model...), where I present the Einstein Field Equation (EFE), in 3.1.1,

then I introduce the Friedmann-Lemâıtre-Robertson-Walker (FLRW) solution in 3.1.2.

The Friedmann equations appear in 3.1.3. Since one has to take into account the existence

of anomalies and possible inconsistencies or contradictions of the standard model, I focus

in my Manuscript on a few paths towards amendments of the ΛCDM model. In 3.2,

(...toward an inhomogeneous universe model), I discuss at the beginning a conceptual

difficulty of GR which I name “scale incompatibility”. Indeed, the exact solution to the

EFE is practically computable at small spatial cosmological scales assuming in addition

homogeneity and isotropy prescribed in the FLRW model. But, as I shall quantify and

detail further, cosmological observations display anisotropy and inhomogeneity at these

small spatial scales and the homogeneity is ascertained only at large spatial scales.

The averaging methods allowing the relativistic geometrisation of gravity at large

spatial scale, and the backreaction inherent to inhomogeneous energy distributions are

reviewed in 3.2.1. It is in 3.2.2, that I make a brief introduction to Cosmic Topology

(thereafter CT). The section continuing with an historical overview of Topology and

then of CT. I present, inter alia, a paper by Boud Roukema to which I contribute on

the statistical detectability of CT with high-redshift galaxies [3]. In 3.2.4, “General

Relativity and global topology of the Universe”, I discuss the Cauchy problem (initial value

problem) and the well-posed problem (existence and uniqueness of a solution) applied to

the exact resolution of the partial differential equations (PDE), non linear, of the EFE. I

consider then the application of boundary conditions (Neumann and Dirichlet boundary

conditions) in the case of the EFE for a Universe with multiply connected topology. I

illustrate the effect of topology on GR, reviewing the methodology of an article by Frank

Steiner that determines the (globally anisotropic) gravitational field of a static black hole

to first order, in a Universe with 3−toroidal topology.

In section 3.2.5, I make a brief presentation of the CMB that I deepen in the

appendice 8.2.2. I develop then in chapter 4 our team article on the discovery of a new

statistical signature of a multiply connected universe model. A detailed introduction of

the 2-point correlation function (2-pcf) of the CMB and of the lack of correlation beyond

the angle of 60◦ in the observed CMB is made in 4.1.1. The anomaly of this result, with

respect to the everywhere non-vanishing correlations of the CMB in the ΛCDM model

is discussed in 4.1.2. The calculation of the discrete spectrum of the Laplace operator,

and of its eigenvalues and its wave-numbers is presented for the universe model with

3−toroidal topology, flat, finite and without boundary (4.1.3).
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In section 4.2.1 ρ is defined as standard deviation of the CMB temperature gradient

field. It is in 4.2.2 that the important result of the paper is presented (in figures and

tables). That is to say, ρ is a signature, monotonic and hierarchical of the size of the

topological manifold: “the smaller the size of the topological manifold, the larger the

associated ρ value”. Furthermore, the relationship between the size of the Universe and

and ρ turns out to be linear. This article illustrates also a result already known: “the

smaller the sidelength of the torus, the more the lack of correlation begins at a small

angle”. At last, in section 4.2.4, our work shows the absence of anisotropy, in the sense

of ρ, of the CMB in a toroidal topology. The conclusion of this article underlines, (i) the

current impossibility to predict the linear law we verify between ρ and L/LH , the size of

the cubic tori. This linear law is L/LH ∼ −0.3ρ+ 14, and it is shown in figure 5. (ii) our

results are consistent with a comoving size of the 3−torus of ∼ 3 Hubble lengths (LH),

corresponding to ∼ 13.3 gigaparsecs.

The article developed in chapter 5 investigates the level of Gaussianity of the CMB

simulation maps in the infinite Universe of the standard model, compared to the CMB

map observed by Planck. The probability density function (PDF) of the CMB is defined in

5.2. The constructions of the discrepancy functions quantifying the CMB deviations from

Gaussianity, and the developments in Hermite orthogonal polynomials are made explicit

with the moments and the cumulants of the PDF in 5.2.2 along with results for the infinite

model. The analytical expression of the first Minkowski Functional v0 is given in 5.2.3 with

its prediction for a Gaussian scalar random field. The arbitrarily high precision allowed by

the model-independent expansions, in Hermite polynomials of the CMB non-Gaussianity

is satisfied in 5.2.4. The model-dependent assumption of “hierarchical ordering” with

perturbative formulation of the NG is developed in hierarchical series in 5.2.5, proving

that the signature of NG is biased by the model dependence. In 5.2.6, the Minkowski

Functionals v1 and v2 are defined and their graphical representations are given for the

CMB in the infinite universe model. In section 5.2.7, we verify that the definition of

discrepancy functions of the MFs differ in the investigations of the Planck collaboration

and in our work. We check in our article that the two methods yield very similar levels of

weak non-Gaussianity. At last, in 5.2.8, the stronger NG of large ensembles of maps

(100,000), Gaussian by construction, of the ΛCDM, is compared, graphically, to the

weaker NG of the Planck observation map. The smaller NG of the Planck map is observed

in the figures of the PDF and the 3 MFs (see figures 21, 22, 23 and 24). In conclusion

of this article (in sections ≥ 5.3.1), at angular scales larger than ∼ 2◦ 6 , the weak level

of non-Gaussianity in the Planck CMB map is confirmed but it would be important to

make investigations on CMB maps at much higher angular resolution.

The chapter 6 of my Manuscript presents the question of the CMB non-Gaussianity

examined under different insights. It is an article [4] devised by our team replying to the

invitation of the editor Classical and Quantum Gravity 7 after publication of our article

“Model-independent analyses of non-Gaussianity in Planck CMB maps using Minkowski

functionals” developed in chapter 5.

6 The causal horizon on the CMB is of radius smaller than ∼ 0.6◦ , nevertheless, the low

resolution of Nside=128 and the Gaussian smoothing of 2◦ f.w.h.m. applied to the maps, erase

the contribution of temperature anisotropy at small scales.
7 Focus issue: Planck and fundamentals of cosmology is an online review studying

the impact on theoretical cosmology of Planck data re-interpreted and released in 2015 (see

CQG+ https://cqgplus.com/2017/04/18/is-the-cosmic-microwave-background-gaussian/).
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1 Notations

Acronyms

BBN Big Bang Nucleosynthesis

CMB Cosmic Microwave Background

COBE COsmic microwave Background Explorer (space probe)

COBRA/SAMBA or Planck COsmic Background Radiation Anisotropy (space probe)

SAtellite for Measurement of Background Anisotropies

CITS CIrcle-in-The-Sky (topological signal)

COSMOS COSMic EvOlution Survey (using various large telescopes)

CT Cosmic Topology

DE Dark Energy

DM Dark Matter

EFE Einstein Field Equation

EP Equivalence Principle

FIRAS Far InfraRed Absolute Spectrophotometer (onboard COBE)

FLRW Friedmann, Lemâıtre, Robertson, and Walker

GR General Relativity

HFI Planck bolometers covering 6 high microwave frequencies

from 100GHz to 857GHz

IHG Isotropic, homogeneous and Gaussian

ISW Integrated Sachs-Wolfe (effect)

ΛCDM Λ Cold Dark Matter

LFI Planck bolometers covering 3 low microwave frequencies

from 30GHz to 70GHz

LRG Luminous Red Galaxies

LSS Large Scale Structures

MCM Multiply Connected Manifold

MCT Multiply Connected Topology

MCU Multiply Connected Universe

MFs Minkowski Functionals

NG Non-Gaussianity

PBC Periodic Boundary Conditions

PDE Partial Differential Equation

PDF Probability Distribution Function

Planck CMB observation space probe

SCM Simply Connected Manifold

SDSS Sloan Digital Sky Survey

SLS Surface of Last Scattering

SNe Ia Supernovae of type Ia

SR Special Relativity

SW Sachs-Wolfe (effect)

SZ Sunyaev-Zel’dovich (effect)

WMAP Wilkinson Microwave Anisotropy Probe
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Mathematical conventions

I denote a first rank tensor (i.e. a vector) using a bold symbol or the upper arrow

(example: the vector x can be denoted x or ~x). And I denote a second or greater rank

tensor using a bold symbol (example: the tensor G is denoted G).

The adjective hierarchical is used in the two fields of investigation presented in my

PhD thesis. i) In the chapter “A new signature of multiply connected Universe” the

hierarchy of the 3−tori is sorted out by increasing side lengths L. The signature ρ is

monotonically decreasing with respect to L. Also the maximum of the PDF of ρ is

(excepted in one case) a monotonically decreasing function of ρ. We encase these two

properties under the adjective hierarchical. ii) In the chapter “CMB non-Gaussianity:

a model-independent analysis” the hierarchical ordering of the cumulants of the PDF

(hierarchical ordering being a method to calculate the perturbative expansion of the

CMB temperature non-Gaussianity) is discussed and compared to our model-independent

approach of the CMB non-Gaussianity.

The term Gaussian premise (Gaußsche prämisse in german) adopted in some places

in the thesis replaces the terms Gaussian hypothesis or Gaussian prior.

Variables, Functions and Functionals

∆P discrepancy function of the PDF

∆i discrepancy function of the ith Minkowski Functional (i=0,1,2)

H0 present-day Hubble constant

h present-day reduced Hubble constant, h=H0/(100 km s−1 Mpc−1)

LH Hubble length, LH=c/H0

p (in GR) relativistic pressure

P and PG probability density function (PDF) and its Gaussian premise

ρ (in GR) relativistic energy density

ρ (in the 2 CMB papers) normalized standard deviation of the CMB temperature gradient field

σ2
0 variance of the CMB temperature field

σ2
1 variance of the CMB temperature gradient field

ST spacetime section separating emitter from receiver

STΛ ST across the ΛCDM Universe

T 3 3−torus or hypertorus multiply connected topological manifold

2-pcf two-point correlation function

v0 and v
G
0 first normalized Minkowski Functional and its Gaussian premise

v1 and v
G
1 second normalized Minkowski Functional and its Gaussian premise

v2 and v
G
2 third normalized Minkowski Functional and its Gaussian premise
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2 Historical Overview

2.1 on General Relativistic Cosmology

T
he seminal papers of Albert Einstein on General Relativity “Covariance Properties of

the Field Equations of the Theory of Gravitation Based on the Generalized Theory

of Relativity” (“Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte

Relativitätstheorie gegründeten Gravitationstheorie”) and “The Formal Foundation

of the General Theory of Relativity” (“Die formale Grundlage der allgemeinen

Relativitätstheorie”) were written in 1914 [1, 2]. These papers describe the geometric

theory of gravity devised by Einstein and based on the principles of covariance 8, Special

Relativity, the Equivalence Principle (EP)9 and what Einstein will later name Mach’s

principle. I summarize the physical concepts underpinning these principles in section 3.1

of the Introduction (see 3). Einstein derived in these papers the covariant equations of the

gravitational field and proved that the gravitational theory of Newton is an approximation

of the General Relativity (GR). GR and the field equations of gravitation will be presented

and developed with more details by Einstein in the subsequent papers written in 1915-

1916 [3–6]. A comprehensive review of GR and its applications can be found in [7].

Einstein will identify three observational tests of GR: (i) The anomalous perihelion

advance of Mercury (∼0.1arcsec per revolution) which he explains and confirms in [8].

(ii) The bending of light trajectories exerted by the gravitational field of a heavy celestial

body which was predicted by Einstein in 1911 [9]. The bending of light due to the

gravitational field of the Sun will be verified and measured by Dyson, Eddington and

Davidson in 1919 (see [10]) thanks to the minute drift in position of stars they observed

just next to the eclipsed Sun. (iii) The gravitational redshift of light propagating in a

gravitational field. This gravitational redshift was first suggested by Einstein in [11], well

before the formulation of GR, as a test of the Equivalence Principle. Einstein estimated at

1 part in 2 million the gravitational redshift of spectral lines of atoms at the sun’s surface.

However, Florides hinted in 2002 [12] that this gravitational redshift was predictable only

using the full theory of General Relativity. And the first detection of this gravitational

redshift, in rather good conformity with GR calculations, will be obtained in 1954 by

Popper [13] comparing the redshift of a heavy white dwarf star to the redshifts of its

lighter neighbouring stars. In the case of a massive object such as a white dwarf, the

spectral lines of the light emitted by the object are shifted by two effects, the gravitational

redshift as determined by the mass of the star and the “peculiar redshift” due to the radial

velocity of the star.

From February 1917, in works such as “Cosmological Considerations in the General

Theory of Relativity” [14] , Einstein discussed the dependence between the geometric

structure of the spacetime and its energy-momentum content at the scale of the Universe

8 The concept of covariance assumes that the form of the physical laws is invariant with respect

to any differentiable and invertible coordinate transformation.
9 The weak EP assumes identity of the inertial and gravitational masses. The strong EP assumes

identity of results of a same experiment made in two distinct frames in free fall. The strong

EP further asserts that at any event, always and everywhere, it is possible to choose a local

inertial frame such that in a sufficiently small spacetime neighbourhood all non-gravitational laws

of nature take on their familiar forms appropriate to the absence of gravity, namely the laws of

special relativity.
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as a whole (see also the historical review [15] by specialists and translators in English of

Einstein’s works). Einstein’s initial ansatz was to “supplement the differential equations”

of GR by “limiting conditions at spatial infinity”, since at the time, the Universe was

generally believed to be spatially infinite. However, Einstein identified huge difficulties

in obtaining an infinite universe model where all frames of reference should be equivalent

and where the inertia of any celestial body could exist. Einstein thus proposed a finite

and bounded universe model, with spatial sections given by the 3 dimensional sphere S3

of constant positive curvature. Within this model, Einstein found that there were static

non-vacuum solutions if an additional term was introduced in the system of differential

equations. This term amounted to a universal constant Λ modifying Poisson’s equation

∆φ = Λ − 4πGρ ; (1)

with φ being the gravitational potential and ρ being the inhomogeneous density of matter

in the Universe 10. In analogy with the modified Poisson’s equation, the full and general

modified Einstein field equations (EFE) become

Gµν − Λgµν = κT µν . (2)

where κ = 8πG/c4, and G is the universal constant of gravitation. The cosmological

constant Λ was introduced by Einstein to ensure that the spacetime solution was static;

however, it turned out that this static property was unstable. The system of equations

(2) has a static dust solution with constant and uniform density field ρ0 if Λ satisfies

Λ =
κρ0

2
=

1

R2
, (3)

where R is the radius of the spatial sections of S3, and its volume being V = 2π2R3.

The question of applying the field equations of gravitation to regions of the Universe

showing a lack of uniformity of the matter distribution was a concern for Albert Einstein

in [14], since in the physical Universe the “metrical structure of the continuum must

necessarily be extremely complicated”. He reasoned that it was a question of scale, since

at large scale the matter distribution could be represented as uniformly distributed “over

enormous spaces”.

However, the questions to know,

1)– how to account for the matter distribution over a very large spatial volume,

to determine the stress-energy-momentum tensor within small sub-regions of this

volume, and

2)– how to arrive at a uniform universe description at large spatial scale from a spacetime

solution on the small scales of GR (which is a local theory in virtue of its differential

nature, but non local due to propagating constraints equations.),

were not asked or clarified yet.

After Einstein’s founding work “Cosmological Considerations in the General Theory

of Relativity”, Alexander Friedmann derived non- static exact solutions to the EFE with

k > 0 in his paper of 1922 (see [16] and [17] for the English translation). The model

10 In the article “Cosmological Considerations...” [14], equations (1), (2) and (3) were written

differently by Einstein. Einstein used definitions and conventions of notation slightly different of

the ones used in GR today.
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universes studied by Friedmann were homogeneous and isotropic with strictly positive

or negative constant curvature of space (1924 [18], translated in English [19]). These

solutions were the spherical Universe (curvature k > 0) and the hyperbolic Universe

(k < 0) but Friedmann never considered the simplest flat models with k = 0. These

works of Friedmann went against Einstein, who at the time considered the non static

solutions unrealistic.

In 1927, George Lemâıtre derived differential equations for the radius of the spherical

and non static Universe. The first observations of recessing nebulae by Slipher were

known by Lemâıtre who suggested that large volumes of the Universe could be in global

expansion in conformity with his solutions to the EFE (original French version [20] of

1927 and English translation in [21]). In the same paper Lemâıtre gave an observational

estimate of the value of the Hubble constant H0 ≈ 625 km/s/Mpc. The reader may

refer also to the editorial note of Jean-Pierre Luminet pp1619-33 of [21]. In 1929, Hubble

established a linear relation between recession velocity and distance of spiral nebulae

(galaxies) [22]. This relation was compatible with a general expansion law predicted by

the Friedmann’s and Lemâıtre’s solutions to the EFE 11. Robertson in 1929 [23] and

Walker in 1933 [24, 25] also worked out a homogeneous and isotropic expanding solution

to the EFE, slightly after the ones of Friedmann and Lemâıtre. Today, the spatially

homogeneous and isotropic spacetime exact solutions to the EFE are known as the FLRW

metric solutions. Confronted with the observational evidence, “The redshift of the distant

nebulae have smashed my old construction like a hammer blow” said Einstein in 1931. And

he published several works accounting for the ’new deal’ of an expanding Universe (see

the Einstein’s bibliography of the early 1930’s in [15]). The two main General Relativistic

models of an expanding Universe devised by Einstein were, one model with non-vanishing

positive spatial curvature and one model flat, both without the cosmological constant

because Λ is not needed to formalise an expanding Universe.

Since these first applications of GR to cosmology by Einstein, Friedmann, Lemâıtre,

Robertson, Walker and others at the beginning of the twentieth century, many attempts

have been made to refine and to interpret existing derivations of exact solutions to the

EFE, and to devise new exact solutions. One can refer to the review by [26] made

in 2015 and the exploration of the more than 4,000 papers reviewing these solutions

in [27]). Algebraic Classifications of the exact solutions were developed by Petrov (1957)

and Segre (1964). Among these exact solutions, a vast majority of them concern either

isolated astrophysical objects or the cosmological scales. Schwarzschild (1916) [28], Kerr

(1963) [29] derived exact solutions for static or rotating black holes. Tolman (1939),

Buchdahl (1967) studied exact solutions for star interiors and neutron stars. At the

cosmological scales, attempts were made by Baldwin (1926) to build exact solutions in

the case of the plane gravitational wave (propagation of gravitational radiation). Among

the most important exact solutions to the EFE in cosmology going beyond the FLRW

model, are the following inhomogeneous or anisotropic models. The LTB that is to say

Lemâıtre-Tolman-Bondi (from 1933) spherically symmetrical inhomogeneous models are

dust models [30] (see [31] for a definition of dust in cosmology). One strain of spatially

homogeneous, anisotropic universe model with dust and perfect fluid source was devised

by Kantowski and Sachs in [32] (1966). The spatially homogeneous, but anisotropic

11 This general expansion law was named Hubble’s law though the chronology should have given

precedence to Lemâıtre by 2 years.
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Bianchi models (1969) with perfect fluid sources were ascertained and studied in [33]. The

inhomogeneous universe models of Oleson (1971) [34] have the source of gravitational field

which is a perfect fluid (i.e. with vanishing anisotropic dissipative terms). The Stephani-

Barnes [35] inhomogeneous models (from 1967) are with energy density and pressure in

the stress-energy tensor but with barotropic equation of state, i.e. where pressure is a

function of the restmass density. The Szekeres models [36] (dating back to 1975) are

spatially inhomogeneous and without pressure. While the Szekeres-Szafron (1977) range

of inhomogeneous models is with homogeneous pressure [37].

These theoretical progressions to model an inhomogeneous or anisotropic Universe

were aimed at finding a better conformity with the observed Universe. The standard

ΛCDM cosmological paradigm (based on the flat FLRW solution) constitutes today a

largely consistent fit to the key cosmological observations. Since this model presents the

least unacceptable concordance to the whole set of observational data, it is granted the

title of Concordance model. Nevertheless, several of these observational data interpreted

in the framework of the ΛCDM model are not compatible with its predictions. This leads

to conclude to serious specific or statistical inconsistencies of this model. For instance,

the FLRW model proposes no physical mechanism to describe nature and origin of Dark

Energy (DE) and of Dark Matter (DM). DE and DM are two physical unknowns, energy

sources in the EFE, inherent to the way the observations are interpreted in the FLRW

model; see section 3.1 in the chapter 3 for explanations on DE and DM. Moreover, the

CMB temperature anisotropies observed by Planck and the previous CMB radiotelescopes

display several anomalies [38] with respect to the predictions of the standard model of

cosmology relying on the FLRW solutions to the EFE. One of this anomalies is of course

“the lack of correlation at large angular scale” of the CMB 2-pcf. Furthermore, the value

of H0, the Hubble parameter today, evaluated from observations of nearby regions of the

Universe, and estimates of H0 from the angular diameter distance of the first acoustic

peak of the CMB, are in strong tension. I invite the reader to refer to the initial paper

of 2020 on the tension on H0 [39], and to the beginning of section 3.1 for more references

and discussion on the foundational problems of the ΛCDM paradigm and the anomalies

of the observational data w.r.t. this model.

I shall close here the historical overview on General Relativistic Cosmology. I will

extend this discussion in section 3.2.1 of chapter 3 concerning the averaging problem of

Einstein’s equations and the resulting backreaction of inhomogeneities on global properties

of universe models.

2.2 and on Cosmic Topology

T
he history of Cosmic Topology, in its definition of science studying the global

structure of spacetime with the mathematical tools of geometry and topology begins

at the end of the 20th century. Cosmic Topology (denoted CT) is therefore a very young

science. Its main historical facts and the theory will be developed in my subsection “A

brief introduction to Cosmic Topology” 3.2.2 and in the chapter 4 presenting the results

obtained for “The CMB in the multiply connected Universe T 3”.
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[16] A Friedmann 1922 Über die Krümmung des Raumes Zeitschrift für Physik 10 377-86

[17] A Friedmann 1922 On the Curvature of Space (engl. translation of 1999) Gen. Relat. Gravit.

31 1991-2000
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3 Introduction

3.1 From the ΛCDM model...

C
osmology studies the origin, the birth and the evolution of the Universe considered

as a whole (see also e.g. [1]). As in any field of physics, in cosmology one wants

to make observations and experiments and to obtain predictions on the evolution of the

Universe. The Universe at cosmological scales, because of the huge distances separating

an observer from the stars, galaxies, galaxy clusters, gas and dust clouds and the Cosmic

Microwave Background, leaves no possibility to make experiments on these objects.

Cosmology must therefore rely on the occurence of spatially and temporally non-controlled

phenomena offering the opportunity to proceed to observations. The periodicity of

many cosmological phenomena seen from Earth has permitted to systematize observation

methods and to design always refined means of observation of the Universe. The

repeatability of the physical experiments and the accuracy of the observations made on or

around our planet Earth allows to build and develop the modern physics and supported

by a robust and evolutive mathematical framework to frame the physical laws and the

predictability of the experiments on fiducial physical models. The story goes differently

for cosmology for which the standard cosmological model (SCM) is highly satisfactory in

its globality and its predictions but faces several problems: inconsistencies, discrepancies

or anomalies of observations compared to its expectations, such as the recent tension

assessed between two different methods of evaluation for the value of H0 the Hubble

constant today, from the measurements in the large scale structures, or from the first

acoustic peak of the Cosmic Microwave Background (see e.g. [2–4]). Other problems of

the SCM have been at the origin of the development of three theories in cosmology which

are the Inflation scenario (for an exploration of many variants of Inflation mechanisms

see e.g. [5]), and the dark sources, i.e. Dark Matter [6] and Dark Energy [7, 8]. These

problems were brought to light from the interpretation of CMB or large scale structure

observations within the framework of the standard model. Two such problems see [10]

are for instance the “horizon problem” [11] and the “singularity problem”. As in the case

of the Inflation, Dark Matter and Dark Energy theories are based on phenomenological

mechanisms proposed as an attempt to elucidate observations made and interpreted with

the prescriptions of the standard model that is to say homogeneity and isotropy of the

Universe. Earth or solar system scaled phenomena are rather well described and predicted

by the Newtonian gravity but the application of physical laws at cosmological scales could

be impaired by the difficulty to apply the General Relativity at large scale to a Universe

showing a big complexity due to the presence of spatial inhomogeneities.

The proposition of a realistic cosmological model must be made knowing that the

spacetime where we make the observations can be twisted, stretched, compressed or even

torn by the gravitational field and therefore the geodesics taken by the light during its

propagation from emitter to receiver may be warped continuously before the light reaches

the telescope. I shall define the light cone as the ensemble of geodesics associated to

the observation of a sky object having a non zero transverse physical size subtending an

angular size depending on the travel made by the photons along the different geodesics. In

a Euclidean space of constant curvature k = 0 and a homogeneous and isotropic medium
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the light cone is described by the usual geometric cone, but in the most general case the

space curvature and the cut across medium may vary all along the travel of the source

photons resulting in an anamorphic distortion of the light cone. The apparent direction,

luminosity and angular size of the object differing from the ones observed in the Euclidean

case.

The concept of “fair observation” in cosmology is therefore dependent on the level

of knowledge the observer has on the spacetime ST separating the instrument from

the light source object and on the physical nature of the object itself. The model

hypothesis of an ideal Newtonian spacetime Euclidean, homogeneous and isotropic on

average at large scale (named cosmological principle and denoted CP thereafter) makes

far easier the estimation (always model-dependent) of distances since the angular diameter

distance or the luminosity distance are supposed to be not affected by variations of

the angle subtended by the object or by drifts of homogeneity all along the light cone

propagation. Obviously for the determination of angular diameter distance or luminosity

distance, the absolute diameter or the absolute luminosity of the source are required.

The ansatz of assuming the most simple properties of geometry, that is to say constant

zero curvature and homogeneous and isotropic matter distribution in the Universe allows

to get a first (Euclidean model weighted) picture of our Universe. Step by step, once

absolute diameter, absolute luminosity, mass and spectrum of the sun in our solar

system are measured or determined applying the Newtonian dynamics (through the

Kepler laws) and the Doppler-Fizeau effect, the sun-like stars velocities and distances

and the galaxies velocities, distances, absolute luminosities and masses can be estimated.

It is important to characterize the results, the limits, and the problems due to these

assumptions of Newtonian geometry and CP applied to the whole Universe with the

standard cosmological model, and to compare to the outcomes of non homogeneous

models with Einsteinian gravity, more realistic, far more complex and which the global

implementation at cosmological scales seems out of reach today.

I endeavour in this Manuscript of PhD thesis, to present my work of investigation

on the CMB, first in the light of the achievements and the possibilities of evolution

and enhancement offered by the ΛCDM model. The ΛCDM model is one of the

most comprehensive universe models. This model imposes the prescriptions of spatial

homogeneity, isotropy and takes into account the phenomenologies of the Big Bang,

primordial Inflation, cold Dark Matter (CDM) and Dark Energy (associated to the

cosmological constant denoted Λ). But it appeared also as a necessity and a motivation

to keep into mind the possibility to explore and probe the Universe in all its apparent

complexity with the physical laws inherent to a gravity dominated spacetime. The non-

exhaustive inventory I am now making presents the interpretations of key observations,

some are elaborated within the ΛCDM model under the assumptions of homogeneous and

isotropic Universe, while some do not depend on the ΛCDM model.

- The Universe is in global expansion even at cosmological distances (up to z ∼ 11 or

beyond, see e.g. [12]). The expansion following the Hubble-Lemâıtre law satisfied by

the recessional component of velocity of the galaxies (vrec or Doppler-Fizeau redshift

z = vrec/c) as a function of the Hubble constant H0 and the luminosity distance rL

(see [13], [14] p15 fig8 or [15]). The approximate Hubble-Lemâıtre law, valid at small

redshift (see section 3.1.2 for more details), reads

ṙ = H0r + a(t)ς̇ , (4)
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if |ṙ| ≪ c while the comoving objects have the relative peculiar motion (using

comoving distance units and proper time as defined in (6)) ς̇ for e.g. a galaxy. The

relation between physical distance r = r(t) and comoving distance ς through the

scale factor a(t) is

r = a(t)ς , (5)

while proper time t and conformal time η follow the relation

dt = a(t)dη . (6)

The value taken by the Hubble parameter H being estimated from the first

acoustic peak of the CMB and its angular diameter distance, at a value today of

H0=(67.66±0.42)km s−1 Mpc−1 [17].

- The distribution of nearby objects around our planet in the solar system (spatial

scale = sc ∼ a few astronomical units) and up to the nearby stars (sc ∼ a few

lightyears) looks very different according to the direction of observation, which

answers to the definition of anisotropy. An anisotropy is also observed at larger

distances (sc ∼ a few kilo-parsecs) in the various and motley shapes, sizes and

separations of the constellations in the Milky way and the anisotropy appears also

in the spatial dispersal of close galaxies (sc ∼ a few million parsecs). Overally the

anisotropy seems to decrease for larger and larger spatial scales. Thus [18] presents a

“transition to large-scale homogeneity” measured in the distribution of galaxies with

the 2-point correlation function (2-pcf) estimating this way a minimum comoving

scale of homogeneity sc ∼ 70 mega parsecs (70h−1Mpc). Though [19] suggests using

number counts statistics a large scale convergence to spatial homogeneity leading to

a larger by 40 % “transition to large-scale homogeneity”. Moreover, [20] using the

morpho-statistical “Germ-grain” Minkowski Functionals (denoted MFs) 12 on the

luminous red galaxies (LRG) of the SDSS-DR7 catalogue, obtains departure > 3σ

from the homogeneity compared to a ΛCDM mock catalogue even at spatial scales

of 500h−1Mpc and 2σ for 700h−1Mpc scales.

- Slice-shaped (at constant galactic declination) and projected distribution maps of

galaxies (up to 7031 objects) are presented by de Lapparent et al. in 1986 [21] using

the survey of Zwicky and the CfA redshift survey. “The galaxies appear to be on

the surfaces of bubble-like structures”, posing a riddle about the mechanisms of

structure formation. In 2007, de Lapparent et al. using their ESO-Sculptor galaxy

survey (ESS) confirm the scenario that structures form by gravitational instability

“driven by the hierarchical merging of dark matter halos” [22]. More specifically,

that early-type galaxies are located near the center of dark matter halos, while late-

type galaxies (spiral) are located around the center of less massive dark matter halos.

The clustering by hierarchical formation of structures such as galaxies and clusters

is observed and confirmed [23]. A cosmological consistency relation quantifies the

effects of structures on the validity of hypothesis of a homogeneous and isotropic

Universe [24]. What comes out is that Universe matter is structured into voids

12 The MFs of a random field are a set of morpho-statistical descriptors integrating all the orders

of correlation functions, 2-pcf, 3-pcf, ...
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separating galaxies organised in filaments, clusters and superclusters mapped by

surveys such as COSMOS and SDSS [25, 26] which detect the baryon acoustic peak

in the clustering of galaxies.

- The long term observations and measurements made on the kinematics and the

dynamics of the sun and the planets in our solar system are in agreement with the

predictions of General Theory of Relativity (read e.g. [27]).

- The relative abundance of light elements in our galaxy is measured in halo stars

at low-metallicity, it amounts to 25% for the helium while the expected helium

abundance assuming that initially stars were made of pure hydrogen should be only

2% today. The excess in helium and light elements is assumed to be produced during

a primordial period said Big Bang Nucleosynthesis or BBN (see e.g. [28], [29], [30]

and [31]). The observed relative abundances of deuterium, D/H and of helium 3,
3He/H are in conformity with the predictions of production obtained during the

primordial nucleosynthesis. However, the abundance of 7Li/H measured in low-

metallicity stars is 3 to 4 times lower than predicted with the BBN with a difference

of 5σ (see e.g. [32]).

- The Cosmic Microwave Background is observed as highly homogeneous, isotropic

and Gaussian [33, 34] with a nearly ideal blackbody radiation spectrum (see [35]

for a review and [36]) at a temperature today T0=(2.7255±0.0006)K [37]. CMB

anisotropies hold within |∆T/T0| ∼10−5. The CMB angular power spectrum is

nearly flat at angular distances larger than 3◦, shows a dominant acoustic peak

around 0.55◦ and several secondary peaks at smaller angles [38].

- Given the prescriptions of the Virial theorem is observed a too high velocity

dispersion of the luminous matter (stars) at the edge of the galaxies. This is

accounted for an invisible matter named Dark Matter (DM) dominating in mass

the luminous matter said baryonic [6].

- Supernovae of type Ia (SNe Ia) are dimmer and therefore farther away than estimated

from their redshift recession velocity and luminosity distance [7,8]. It is in the specific

Universe of the ΛCDM model which prescribes spatial homogeneity and isotropy at

large scale that this could be interpreted as the effect of an accelerated expansion

occuring since ∼5Gyr. A Dark Energy (DE) with equation of state ω= p
ρc2 < −1/3 is

in this case phenomenologically considered as being the cause of this acceleration. In

2005, Triay discusses the issue of the Cosmological Constant Problem. In [9], Triay

argues that the vacuum energy density ρvac of quantum fluctuations is expected to

amount to (2 10−4 ≤ ρvac ≤2 1089) g cm−3 however, in comparison, the Dark Energy

density

ρDE =
Λc2

8πG
, (7)

measured in cosmological observations in comoving units amounts only to

ρDE ∼10−29 g cm−3. As a consequence, Dark Energy cannot be attributed to the

vacuum energy of quantum fluctuations.

Apart from the cosmological principle I discussed before, I explain now under which

conditions and under which other fundamental principles these cosmological observations
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are made. The conditions and principles are part of the model would it be the ΛCDM

model or other challenging models.

- In absence of any reference point and energy source around even at the remotest

distances, Mach’s principle assumes that an observer cannot determine if he is at

rest or in motion or in rotation on himself, given that a non vanishing inertial frame

is needed to feel the inertial forces. Many different observers live each in a non zero

inertial frame made up of all the surrounding Universe energy and matter and make

experiments, observations and measurements [39]. In [51] Einstein summarizes what

will be named the Mach’s principle, stating “there can be no inertia relatively to

space but only inertia of masses relatively to one another”.

- The Copernican principle is assumed, meaning that there is no privileged location

in the Universe. Wherever the observer sits, he or she observes on average the same

objects and properties whatever the direction of observation. Remark: except for the

case of the CMB the Copernican principle cannot be verified given the requirement

to extend the set of experiments and observations in as many as possible different

remote locations in the Universe. This requirement has still not been fulfilled, though

observations from Earth may help to decide to what degree the Copernican principle

is valid [40]. From our Earth-centered vantage point, it is made far easier to verify

the spatial isotropy of the large scale structures (LSS) of the Universe rather than

their homogeneity.

Although the following assertions: “isotropy implies space homogeneity if the

Copernican principle is valid”, “Spatial isotropy everywhere ≡ spatial homogeneity”

and “high isotropy of the CMB plus Copernican principle prove the homogeneity

of the Universe”, are not true in general and are very interesting to open the

discussion (see e.g. [41]). I am illustrating with the example of the Bianchi universe

models which spatially are prescribed as being homogeneous but anisotropic and

the example explored in the chapter 4, the flat 3−torus topology which spatially is

globally homogeneous but is not globally isotropic.

The Cosmic Microwave Background observed in the spacetime of the ΛCDM model

universe seems to be highly isotropic and homogeneous at all spatial scales, this

illustrates the period when the Universe would verify the Copernican principle. Since

the subsequent LSS formation, the distribution of matter in the Universe is observed

from Earth across the ΛCDM spacetime (STΛ) to be much less isotropic at small

spatial scale.

- The equivalence principle in its weak acception stipulates that inertial mass min

and gravitational mass mgr of a body are identical. More generally in its strong

acception, the equivalence principle states that a same physical experiment embedded

in two different frames in free fall will produce the same results. Remark: the weak

equivalence principle (denoted EP) is quantified with the Eötvös parameter which

allows many experiments to confirm the weak EP at higher and higher precision.

The strong EP edicting that a physical experiment, involving negligible masses in

free fall, is subjected to no gravitational field [42].
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- The principle of Special Relativity (denoted SR) is based upon 1) the strong EP,

i.e. physical laws are invariant with respect to the inertial frames, and 2) in a given

medium c the speed of light is invariant. Specifically, c is the same whatever the

velocity of the source or of the observer until the light experiences a change of

medium in its propagation [43].

- General Relativity (denoted GR) is a geometric and tensor theory of gravity

extending the Special relativistic resolution of the physical problems in curved

spacetimes with a source of gravitational field represented by a stress-energy-

momentum tensor T µν as input to the Einstein Field Equation (the Einstein Field

Equation denoted thereafter EFE): a 10 nonlinear partial differential equations

system. The solution to EFE are the components of the metric tensor gµν [44].

Remarks: the exact solution of EFE is extremely difficult to derive and is made far

easier using simplifying physical hypotheses e.g. assuming properties of symmetry

of the metric. Also, by definition, the solutions to partial differential equations are

local. Thus a fundamental question is to know if the global solution of EFE in an

extended spacetime neighborhood can be treated at a relevant spatial scale by e.g.

scalar averaging on the volume element of the metric.

3.1.1 The Einstein Field Equation

T
he Einstein Field Equation of General Relativity relying on the principles seen above

and on the covariance principle of the tensor formalism of physical laws is the tensor

equation

Gµν + Λgµν =
8πG

c4
T µν , (8)

where the Einstein tensor representing the term of spacetime curvature reads

Gµν = Rµν − 1

2
Rgµν . (9)

Rµν is the Ricci tensor and R the Ricci scalar curvature (i.e. the Riemann tensor

contracted to its trace part) and gµν is the metric tensor. Notice that the Weyl tensor,

the trace-free part of the Riemann tensor, does not enter EFE. Λgµν is the cosmological

constant tensor, it accounts for an amount of positive or negative energy due to the Dark

Energy in addition of the stress-energy-momentum tensor T µν which describes the content

in energy of the Universe. T µν satisfies the fundamental principle of conservation

∇µT µν = 0 . (10)

In the case of the DE inferred from the SNeIa light curve measurements, DE plays the

role of a positive cosmological constant Λ corresponding to a repulsive force counteracting

the attractive gravity. An expanding Universe with cosmological constant Λ is described

by the partial differential equation

Gµν =
8πG

c4
(T µν − ρDEgµν), (11)

T µν − ρDEgµν accounting for all the matter and energy content in the Universe with

ρDE = Λc2

8πG of equation of state ωDE =
pDE

ρDE c2 = −1. Dark Energy is also termed vacuum

energy.
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EFE is decomposed into 16 coupled equations (although the tensors in EFE are

evaluated point wise in tangent spaces, the physical setup can be illustrated by considering

the changes of geometry between the 4 spacetime coordinates xi = (x0, x1, x2, x3) of a

point coupled to the 4 spacetime coordinates’ xi′

= (x0′

, x1′

, x2′

, x3′

) of a neighboring

point) but the Einstein tensor Gµν is symmetric implying that among the 16 possible

pairs between xi and xi′

the couples (xµ, xν′

) = (xν , xµ′

) so that EFE should be reduced

to 10 independent differential equations. Furthermore the four Bianchi identities that

couple together the curvature in each of the 2 points allow to limit EFE to 6 independent

equations (see also further discussions on the Cauchy problem and EFE in section 3.2.4).

The drawback of EFE system of these 6 differential equations is that it is not linear,

meaning that the superposition principle doesn’t hold. The sum of two different solutions

to EFE is not solution of EFE in general. Actually, because of this non linearity and

for other technical reasons the resolution of EFE system of differential equations is made

overwhelmingly difficult.

3.1.2 The FLRW solution to the Einstein Field Equation

T
he assumption that the Universe is spatially homogeneous and isotropic at large

scales, implies interesting simplifications when using the symmetry properties of

the metric (the symmetries appear in the matrix form of the metric which behaves

like a symmetric and second-rank tensor) to get exact solutions to the Einstein Field

Equation. These exact solutions are the Friedmann-Lemâıtre-Robertson and Walker

(abridged FLRW) metrics of an expanding, homogeneous and isotropic Universe. Such

metrics invariant under spatial translations (homogeneity) and invariant under spatial

rotations (isotropy) take the general form

ds2 := −dt2 + a2(t)
[

dς2 + S2(ς, k)(dθ2 + sin2 θdφ2)
]

, (12)

in spherical coordinates (ς, θ,φ) where ς is the dimensionfull comoving radial distance

defined in equation (5). If K(t) is the time-dependent curvature, the curvature scalar of

the three-dimensional surfaces is k = K(t)a2(t). The three FLRW metrics are defined

according to the parameter S(ς, k) as follows

S(ς, k) :=











k−1/2 sin(
√
k ς), if k > 0 , spherical topological manifolds

ς, if k = 0 , flat topological manifolds

|k|−1/2 sinh(
√

|k| ς), if k < 0 , hyperbolic topological manifolds

(13)

These FLRW metrics are conformally flat (i.e. the angles are conserved by a flat space

mapping over infinitesimal areas). On the 2-sphere S2 of radius R the curvature is

K ≡ 1/R2 and for manifolds of spatially constant curvature K = K(t) Carroll and

Ostlie (see [45]) propose the formula

K =
3

π
limRequ→0

2πRequ − Cmeas.

R3
equ

, (14)

where Cmeas. is the measured boundary length of a closed curve used to make a diagnostic

of the given manifold. Requ is the radius of the equivalent circle having circumference

Cmeas.. The infinitesimal distance element ds of any metric provides only a local

description of the spacetime geometry. Thus, each of the three FLRW metrics is

compatible with different global topologies of constant curvature:
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met(+1)– The FLRW metric with S(ς, k > 0) = k−1/2 sin(
√
k ς) belongs to the topological set

of homogeneous spherical spaces (of constant and non vanishing positive curvature)

which are all finite and in infinite number (classified by [46, 47], and see also [48]).

The simply connected sphere S3 is one of this spherical solutions.

met(+0)– The FLRW metric with S(ς, k = 0) = ς belongs to the topological set of the 18

homogeneous flat spaces (of vanishing curvature), some are finite (e.g. the multiply

connected 3-torus T 3), some are non-orientable, but of which for instance the

Euclidean 3−space E
3 is spatially infinite (see the chapter on Cosmic Topology in

3.2.2).

met(−1)– The FLRW metric with S(ς, k < 0) = |k|−1/2 sinh(
√

|k| ς) belongs to the topological

set of the homogeneous hyperbolical spaces (of constant and non vanishing negative

curvature) which are in infinite number and are not yet exhaustively classified.

Certain of such hyperbolical spaces are compact e.g. the simply connected Picard

horn of finite volume and infinite length along its axis of symmetry.

In an expanding and spatially isotropic Universe the Hubble-Lemâıtre expansion is

isotropic.

The physical distance between light emitter and receiver (the receiver is

conventionally at the origin of the coordinate system) is defined here with the radial

part of the FLRW distance element

r(ς) = a(t)

∫ ς

0

dS√
1 − kS2

. (15)

The physical distance being r and the comoving distance ς. In the case of a flat FLRW

space (k = 0) the integral (15) yields the result seen above in equation (5)

r = a(t)ς . (16)

For k > 0 (spherical spaces) the integration gives

r =
a(t)√
k

arcsin
(

S
√
k
)

, (17)

while one has for the hyperbolic spaces (k < 0)

r =
a(t)
√

|k|
arcsinh

(

S
√

|k|
)

. (18)

The quantities involved in (15) are not directly reachable while the redshift of most

of the cosmological light sources can be obtained knowing their chemical composition

since the fiducial emission lines of elements at rest are measured with high precision on

Earth. The Doppler shift of the emission lines ∆λ = λrec − λemi satisfying z = ∆λ/λrec.

The scale factor and the redshift at two different periods of proper time t an t′ satisfy the

ratio

a(t)

a(t′)
=

1 + z′

1 + z
, (19)

and for t′ = t0=today we have a(t′) = a0 = 1, z′ = z0 = 0 and a(t) = 1
1+z . The four-

velocity vector of a distant object can be parallel transported to the receiver and then
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there exists a physically meaningful Minkowski spacetime velocity v between object and

receiver four-velocities in the same tangent spacetime. v and redshift z are related by

1 + z =

√

1 + v/c

1 − v/c
. (20)

A relation between redshift z and proper distance r is proposed in [45] for redshifts z < 2

(error on r < 5%)

r =

[

(z + 1)2 − 1

(z + 1)2 + 1

]

c

H0
, (21)

with c = 299 792.458 km s−1 (c the speed of light in vacuum, the Planck constant and the

electron charge are the fundamental physical constants considered as exact i.e. with a zero

uncertainty [49]), the Hubble constant today (see 2019 results by [50]) H0 = 67.44±0.58

km s−1 Mpc−1 giving the proper distance r in Mpc.

3.1.3 The Friedmann equations

G
eometry and kinematics of an expanding, isotropic and homogeneous Universe are

governed by a FLRW metric. The remaining unknowns of the FLRW metric, the

scale factor a(t) and its evolution are obtained by solving EFE. The CP is inherent with

stringent simplifications and imposes to the stress-energy tensor the most general form

of a multicomponent ideal fluid source entirely described by the total energy density 13 ρ

(assuming linear superposition of all the energy densities ρi and ρDE due to Dark Matter,

radiation, ..., and Dark Energy) and the pressure p (assuming linear superposition of all

the pressures pi and pDE due to DM, radiation, ..., and DE). If in addition is assumed

that ρ and p share a same velocity field and depend on the time only we get a single fluid

described by

T µν = (ρc2 + p)uµuν + pgµν , (22)

with uµ the fluid four-velocity field. The resolution of EFE for this fluid gives the two

Friedmann equations as a function of a(t) and the energy density ρ = ρDE +
∑

i ρi and

pressure p = pDE +
∑

i pi

(

ȧ

a

)2

:= H2 =
8πG

3
(ρDE +

∑

i

ρi) − Kc2

a2
, (23)

ä

a
:= −4πG

3c2

[

(ρDE +
∑

i

ρi)c
2 + 3(pDE +

∑

i

pi)

]

. (24)

The equation of state, needed to close the system, is for instance a single-valued function

p = f(ρ), e.g. p = 0 for pressureless models or barotropic equations of state with p = ωρ

or p = ρ/3 (for purely radiative models).

One has a source being reduced to an ideal single fluid characterized by 3 quantities,

a(t), the density ρ, the pressure p and 4 constraints which are the 2 Friedmann equations,

the continuity equation (ρ̇ + 3 ȧ
a(ρ + p/c2) = 0 calculated with T 0ν

;ν ) and the equation of

13 I shall use the same unique notation ρ for the restmass density of matter and the energy density

(or specific internal energy density often denoted by ǫ/c2 in GR, see e.g. Ellis in [41] p93 or Einstein

in [51] the footnote p143).
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state (relating ρ to p). However, the continuity equation is contained in the 2 Friedmann

equations. This reduces the number of constraints to 3 meaning that the two Friedmann

equations are redundant. The second Friedmann equation can be obtained from the time

derivative of the first imposing energy conservation, i.e. ρ̇+ 3H(ρ+ p/c2) = 0.

Equation (23) fixes the constraints on the energy and equation (24) which depends

only on the global equation of state of all the fluid components can be derived also in the

FLRW conditions without pressure (equation of state p = 0) from the Raychaudhuri’s

equation [52].

3.2 ...toward an inhomogeneous universe model

T
he evidence is presented in my introductory section 3.1 that the transition to

large scale homogeneity is statistically satisfied at increasing spatial scales. The

homogeneity scale starts from 70h−1Mpc (2-pcf of galaxy distributions). Recent works of

analysis, for instance of the SDSS-IV DR16 quasar survey (see [53]) report an homogeneity

scale ∼ 90h−1Mpc at redshift z=2.30 and ∼ 71h−1Mpc at redshift z=2.85 using the

scaled count-in-spheres ansatz. The homogeneity scale is evaluated up to 700h−1Mpc

(Minkowski Functionals of luminous red galaxies).

Our Universe does not look very isotropic and homogeneous. Observations and

measurements suggest that the smaller the spatial scale the larger the inhomogeneity. It

is likely that this property also holds for other locations in the Universe, and not just

our Earth-centred vantage point. Even if the Universe satisfies the CP at increasingly

large spatial scales, a difficulty arises from the fact that EFE are only directly tested

on the scales of few body systems such as stellar systems and black holes. These

represent small spatial scales by cosmological standards. The conditions of ideal fluid

(idealized in subsection 3.1.3) allowing to calculate the stress-energy tensor are not fullfiled

at the small spatial scales of the Universe. The consequence is that the Friedmann

equations may be not representative of the physical reality. Applying an homogeneous

and isotropic FLRW metric to small cosmological scales from the interpretation of

observations and measurements made at large scales is not appropriate. However, despite

this tension, which I shall name “scale incompatibility” between GR and transition scale

to homogeneity, one may wonder how is the FLRW model comparable to a more realistic

universe model? Ellis and Stoeger discussed in [54] “the best way to fit” the idealised

FLRW model to a model more representative of the “lumpy” Universe not FLRW in its

time-evolution. In “What is dust?” (see [55]) Wiltshire studies “The fitting problem: On

what scale are Einstein’s equations valid?”. He developes the concept of the “timescape”

scenario, a step toward the possibility of applying GR beyond the local scales, as I shall

discuss in the next subsection.

3.2.1 Relativistic geometrisation of gravity at large scale

T
he resolution of EFE provides a local description of the spacetime since the

infinitesimal distance element of the metric determines exactly the local scalar
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curvature k. This local characterisation could be extended to arbitrarily large regions

in a Universe which is ideally homogeneous and isotropic everywhere, since the metric is

in this case spatially invariant. In a more realistic description of the Universe showing

drifts from the CP (medium to large scale inhomogeneity) the fluid and T µν should be

reevaluated locally to allow to solve EFE in a few places. In the most stringent case one

would aim at describing the real observed Universe over all its spatial inhomogeneities

at sharp resolution. In such a case the resolution of EFE should be made in a countless

number of places. The other way around is to average spatially over the distinct sources.

The question being, can one work out a “macroscopic” theory of the General Relativity

(see e.g. [56])? For an inhomogeneous Universe there are two competing solutions, i.e.

respectively to make a “temporal evolution of spatial averages” (operator denoted AE) or

to make an “average of evolved spatial metrics” (operator EA) [57, 58]. For pressureless

fluids (p ≡ 0) 14, in the first case T µν can be determined at proper time t from the spatially

weighted averaging of the scalar variables like the densities ρi, the expansion rate or the

scalar curvature (for regions of size below the transition scale to large-scale homogeneity

LΥ i.e. estimated to be 70 to 100Mpc wide according to the evaluations made using the

2-pcf) and EFE is solved once to give the evolution. In the second case T (i)
µν obtained

from the ρi’s and the velocities vi serves to solve EFE in each point indexed i within the

selected spatial region (reg) to calculate the local metrics which are averaged into one

metric. In general, because of the non-linearity of EFE, in an inhomogeneous Universe

the two operators AE and EA do not commute as illustrated by the two cases below

d

dt
〈ζ〉reg −

〈

d

dt
ζ

〉

reg
=
〈

ζ2
〉

reg
− 〈ζ〉2

reg 6= 0 , (25)

with the scalar function ζ (see [57]), or given that
〈(

Rµν − 1

2
Rgµν

)

[gµ′ν′ ]

〉

6=
(

〈Rµν〉 − 1

2

〈

Rgµν

〉

)

[
〈

gµ′ν′

〉

] , (26)

where < . > stands for an operator of spatial averaging suitably defined. This equation

illustrates that the average Einstein tensor differs, in general, from the Einstein tensor

constructed from the average of the metric. What comes out, is that applied over a

spatially inhomogeneous region the “averaging does modify Einstein‘s equations by an

effective energy term” [59]. The difference between the two operators AE and EA is

called “backreaction” of the inhomogeneities (see [60], [61] and [62]) appearing as an

additional source term in EFE and the Friedmann’s equations.

But of course, energy density gradients and pressure gradients cannot be smoothed

and averaged too much without erasing or changing the micro-geometry and micro-local

evolution of the Universe, since for the classical matter, the motion of inertial mass density

of matter follows the gradients of pressure, moving in their direction if the inertial mass

density of matter is positive. The weak energy condition, if ρ ≥ 0, is obtained with

ρ+ p/c2 > 0 . (27)

While if the gravitational mass density is positive, one has the strong energy condition

(see e.g. [41]) verified if both the weak energy condition and

ρ+ 3p/c2 > 0 , (28)

are true. ρ + 3p/c2 is also named active gravitational mass density. Even if these

energy conditions are valid locally, it is possible that a scalar spatial averaging might

14 The pressureless matter is also termed “dust” in cosmology (see the discussion in [55]).
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yield a negative effective energy density, showing that on average we do not have energy

conditions as the local ones.

In a CDM model (without DE source) expanding, perturbatively inhomogeneous and

anisotropic, the “macroscopic” Friedmann evolution equations closed with an equation of

state p = 0 (for ideal pressureless fluids) are derived according to the Buchert scheme

(see [63]). The following procedure is extended now over a non infinitesimal spatial

domain D of volume VD, in general non spherical and of arbitrarily complex shape in an

inhomogeneous Universe, so that the cosmological variables corresponding to the local

EFE are now spatially averaged variables over the comoving domain D. The scale factor

a(t) becomes the volume scale factor aD(t) during the time of expansion between the

moments tini and t

aD(t) :=

(

VD(t)

VDini

)1/3

, (29)

and the averaged Ricci scalar curvature is 〈R〉D. The Friedmann equations over the non

homogeneous and non isotropic domain D become on average on the volume VD
(

ȧD
aD

)2

:= H2
D =

8πG

3
〈ρ〉D − (〈R〉D + QD)c2

6
, (30)

äD
aD

= −4πG

3
〈ρ〉D +

QD
3

, (31)

where 〈ρ〉D is the average of the densities
∑

i ρi (which are scalars quantities as in equations

(23) and (24)) obtained by the covariant mean values

〈ρi〉D =
1

VD

∫

D
ρi dV . (32)

QD is the kinematical backreaction term which arises in equations (30) and (31) when the

domain D does not satisfy the principle of homogeneity and isotropy, i.e. in the domain

D, local expansion called θ may differ from average expansion 〈θ〉D and a shear (σ which

preserves the volume but not the distance) effect may appear. The vorticity term ω

doesn’t enter this kinematical backreaction since dust is assumed to be irrotational in this

averaging scheme, and therefore one has

QD :=
2

3

〈

(θ − 〈θ〉D)2
〉

D
− 2

〈

σ2
〉

D
. (33)

In the case of an ideal pressureless fluid with four-velocity field corresponding to

a homogeneous and isotropic Hubble flow field, [58] demonstrated that under periodic

boundary conditions of the three space sections of an inhomogeneous Universe Newtonian

and of Euclidean metric, the backreaction term cancels out for an averaging made over

the whole volume. The spacetime S considered is toroidal based on the 3−torus (which

is flat i.e. of intrinsic curvature equal to zero), S = T 3xR. [58] proves that a unique kind

of homogeneous and isotropic Hubble flow exists for a 3-torus which expands then self-

similarly without rotation. The absence of backreaction doesn’t depend on the proportions

or volume of the closed topological manifold (compact and without boundaries). Notice

that most of the numerical simulations in cosmology and astrophysics run within a

virtual space, of Euclidean geometry, staked out by a parallelepiped rectangle volume

imposing practically the same periodic boundary conditions (PBC) mentioned above to
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data and physics. Such N−body simulations with homogeneous distribution of points

are globally anisotropic because of the breaking of rotational SO(3) symmetry due to

the PBC of the virtual parallelepiped rectangle volume where the physical model is

simulated. N−body general relativistic simulations of inhomogeneous distribution of

points with PBC and their analyses in the frame of GR are made by [64,65]. Besides [66]

proposes a N−body method numerically simulating an expanding and infinite Universe

with Newtonian gravity and without such PBC while the periodic effects due to PBC on

the Newtonian gravity have been tested in N−body simulations of a patch of the ΛCDM

Universe in [67].

3.2.2 A brief introduction to Cosmic topology...

I
t was in 1995 that Lachièze-Rey and Luminet applied the term Cosmic Topology

(thereafter CT) to the science studying the “spacetime global structure” (see [68]

p138), that is to say the global geometry and topology of the Universe. Lachièze-Rey

and Luminet describe spatial topology as unevolving with time within the class of FLRW

models, the term topology being generally used to apply to the topology of the spatial

sections, not to that of global spacetime. Global geometry and topology (see [68–70]) of

the spacetime are not dictated by the resolution of the Einstein Field Equation of General

Relativity.

However, global geometry and topology constrain spatial curvature, connectedness

and compactness of the Universe. Since GR takes the inputs of EFE from the various

gravity sources, at various spatial scales, a knowledge a priori of the spacetime geometry

and topology is very important to get, in order to build an initial estimator of T µν the

stress-energy-momentum tensor and an equation of state both representative of the chosen

universe model.

In the ΛCDM model of cosmology the global properties of the spacetime are provided

beforehand by the FLRW prescriptions of an homogeneous and isotropic in average,

expanding and infinite Universe. As presented in 3.1.2 each one of the FLRW metrics is

consistent with one of the 3 simply connected topological manifolds (SCM) of constant

curvature which are either M = R
3 the Euclidean manifold of vanishing curvature, or

the spherical one M = S3 with k > 0 or the hyperbolic one M = H
3 with k < 0. The

spacetime, endowed with a unidimensional time, being the 4−manifold M×R. But many

other types of topologies exist, thus multiply connected topologies (MCT) are possible

candidates for interesting simulations of universe models which for some of them bring

interesting similarities with the observations (see the similarity of the 2-point correlation

functions of the CMB temperature anisotropies for the Planck map compared to the

3−torus CMB model maps in chapter 4).

A Universe with multiply connected spatial sections is based on a multiply connected

manifold (MCM), quotient space M/Γ of a simply connected space by Γ. Γ belongs to the

group of isometries, or holonomy group (see e.g. the work of Thurston in [71–73]). The

3−torus T 3 (also said hypertorus) is a flat MCM, finite and without boundaries. T 3 =

R
3/Γcg, where Γcg is one of the three-dimensional symmetry groups said crystallographic

groups (see Steiner in [74]). A 3−torus is compact, defined by a fundamental domain

represented by a polyhedron, parallelepiped rectangle (the hexahedron, made of 12 edges,

8 vertices and 6 faces), regular in the case of the cubic 3−torus. The identification of
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the opposite faces is the generator of the holonomy group of T 3. The displacements

allowing the identification of homologous points are isometries. The 3−torus (E1) is one

of the 10 three-dimensional flat manifolds, orientable since its holonomy group preserves

an orientation curve (e.g. materializing a rotation sense in the plane of a face) after

identification of opposite faces. The classification of flat 3−manifolds [75–77] counts

18 manifolds going from E1 the 3−torus, to the only simply connected manifold E18,

the Euclidean space E
3. The manifold orientability is best defined by counter-examples

such as the Klein space (E7) which contains an orientation-reversing curve (in analogy

with the Möbius band, its flip impose a reversal to an orientation curve) is therefore a

nonorientable flat 3−manifold. The half-turn space (E2) is obtained from a 3−torus where

a plane rotation of π/2 is made after identification of the opposite faces, this preserves

the orientation. This is why E2 which doesn’t contain an orientation-reversing curve is

an orientable flat 3−manifold.

The tesselation (term covering the concepts of tiling or paving) corresponds to the

juxtaposition of an infinite numbers of copies of the fundamental hexahedron which

tiles E
3. The universal covering space E

3 of the 3−torus practically corresponds to

an observational space. Any point in the covering space of T 3 can be localized in a

right-handed trihedron by its rectangular cartesian coordinates defining a 3−vector ~x

of coordinates xi, for i running on (1,2,3). Even if the 3−torus has no boundaries,

the periodicities due to the symmetry group yield periodic boundary conditions. The

3−torus is intrinsically flat, locally and globally homogeneous, locally isotropic but is

globally anisotropic since the global periodic identifications of the group Γcg break the

rotational symmetries of the group SO(3). T 3 is characterized by an infinite number of

discrete eigenmodes specific of the 3 finite side lengths L1, L2, L3. In comparison, E16

the slab space with one compact direction and the 2 other infinite is characterized by a

discrete spectrum of eigenmodes along its finite direction and a continuum along the 2

other directions. A discussion about the 17 flat multiply connected 3−manifolds, quotient

spaces of the Euclidean space E
3 by Γi, Ei = E

3/Γi, for i=1,17, is made in [78] in relation

with the numerical simulations in cosmology.

3.2.3 ...and an Historical Overview of Topology

The historical overview I present here, on topology, integral geometry, and Cosmic

Topology, is intended to complete the specific bibliographies made in the 2 team articles

presented in this Manuscript (see these peer reviewed articles [79] and [34]).

It was from 1895 that Henri Poincaré condensed his preliminary investigations in

a series of articles entitled “Analysis Situs” (the Latin term for topology). In these

articles Poincaré established topology as a field of mathematics, pioneering the algebraic

topology, introducing the concepts of homology, and for instance, the Kronecker integral

and the Kronecker index (see [80]). Many earlier mathematical works such as by Euler

(∼1735, solution to the Königsberg bridge problem and the fundamental formula of convex

polyhedra), Listing (1847, concept of connectivity and the first use of the word topology in

a scientific publication), Riemann (connectivity of Riemann surfaces, 1851), Möbius (1865,

publication of the work on the Möbius band and the non-orientability), and Klein (1872,

the Erlangen program; 1921, fundamental group of a topological space, classification of

geometries [81]), contributed to the construction of the theories of Integral Geometry and
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of Topology in their current definitions. The mathematical definition of the 2−torus T 2,

embedded in E
3, was explicitly given in French by the engineer Armengaud (1848) in the

book [82] translated in English (1851) by Johnson [83].

I arrive then to the topology of spacetime, as in 1949 Infeld predicted the infrared

cut-off as signature of a finite Universe with 3−torus topology [84]. In “Topology and

Cosmology” [85], 1971, Ellis asked the question whether the Universe had compact spatial

sections. Since this hypothesis was compatible with each of the three Friedmann solutions,

k = −1, k = 0 or k = +1. In 1984, Zel’dovich considered the dynamical evolution of a

locally open region in a closed inhomogeneous Tolman’s Universe [86] without pressure.

The first predictions of detectability of a non trivial topology of the Universe on the

cosmic microwave background, such as the hypertorus T 3, were developed, investigated

and confirmed in 1993 by [87,88]. In 1994 Jing et al. detected an infrared cutoff in the two-

point correlation function of the CMB temperature anisotropies observed by COBE [89].

Jing et al. concluded to a possible finiteness of our Universe having the topology of a

3−torus. It was one hundred years after the Poincaré’s “Analysis Situs” that “Cosmic

Topology”, the Physics Report published in 1995 by Lachièze-Rey and Luminet, specified

the definition of Cosmic Topology as being the field of study of the spacetime global

structure [68].

Starting in 1995 were made the pioneering works of de Oliveira and Smoot [90, 91]

(CMB constraints on CT), Lehoucq [92] (applying methods of crystallography to detect

a non-trivial CT in LSS) and Cornish [93] (predicting that pairs of circles of correlated

radiation would be observable on the CMB as signature of a Universe with multiply

connected topology). Several investigations were made by Roukema et al. in observational

and numerical CT. His studies aimed at “determining the topology of the observable

Universe via” different strategies of analysis of the matter distribution at large scale.

In a Universe having a MCT such as the 3−toroidal one, multiple images of a same

astrophysical object could be observed in different directions of the sky (ghost images).

“A cosmic hall of mirrors” [94], although ahead in the chronology (2005), illustrated well

the way ghost images of a test object form in a Universe with flat 3−torus topology. The

observer would see one direct image and six images by first reflection on each torus face. In

1996 was explored the quasars distribution in the NED catalogue to search for isometries

of QSOs quintuplets in comparison with the results of Monte-Carlo 3D simulations [95].

The observation of only two QSOs quintuplets in the data was statistically not sufficient

to conclude to a positive detection of the hypertorus topology. Another investigation was

made by Roukema in [96] applying a similar strategy to find ghost images of a few highly

luminous X-ray clusters of galaxies at predicted sky locations. However, the observed

physical properties of the ghost candidates did not support identity with the original

X-ray cluster.

In 1998 other general or topology-independent methodologies were considered by

Roukema in order to detect or constrain the global topology of our Universe (see [97–100]).

Thus, in 2013 I contributed to the paper [101] evaluating the detectability of a T 3 topology

in the observational surveys of high-redshift galaxies (7>z>4). The method compared the

quadruple statistics,(i) of the observed galaxy catalogue to which was applied the 3−torus

holonomy (based on the geometric construction of matched disks) to (ii) a corresponding

galaxy catalogue with simply connected topology. Both catalogues constructed in a
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spacetime having a flat FLRW metric. However, the statistical validity of the catalogue

comparison needed a higher photometric redshift accuracy given the small number of high-

redshift galaxies at the time. Therefore, one could not confirm or reject the detectability

of the toroidal topology with this method.

To complete the bibliography on Cosmic Topology made in the section 4.1.3 of

this Manuscript, reviews of conceptual and observational investigations made in Cosmic

Topology can be found for instance in [102] (period going up to year 2000), and in the

Planck collaboration paper [17] (2016). In the next section “General Relativity and global

topology of the Universe” 3.2.4, I shall present the investigations made by Roukema and

others concerning the effects a MCT may have on the gravitational field of a test object. I

am closing this historical review of the CT mentioning the many thorough investigations of

Ralf Aurich et al. regarding the computing of CMB temperature anisotropies in universe

models having different multiply connected topologies. The main works and results of

Aurich in CT, starting in 1999, are discussed in the section 4.1.3 presenting the paper

I wrote in collaboration with Ralf Aurich, Thomas Buchert and Frank Steiner during

my PhD thesis, “The variance of the CMB temperature gradient: a new signature of a

multiply connected topology”.

3.2.4 General Relativity and global topology of the Universe

F
or a PDE, the solution which satisfies the initial conditions (initial value problem)

and the boundary conditions (boundary value problem) is the general form of

the Cauchy problem (see a review of the extremely rich mathematical work of Cauchy

in [104] and the original French texts of Cauchy on the website Gallica). According to

the definition of Hadamard, a well-posed problem of a mathematical model describing

physical phenomena satisfies: 1) one solution exists and 2) this solution is unique [105].

In General Relativity EFE is a system of PDEs reducible to a set of nonlinear hyperbolic

partial differential equations for which the local solutions are completely determined by the

initial conditions. Existence and uniqueness of an analytic solution to a partial differential

equation in a close neighborhood of a spacetime point xi = (x0, x1, x2, x3) is guaranteed

if the PDE satisfies the conditions of the Cauchy-Kowalevski theorem (C-K theorem).

Though C-K theorem applies in arbitrarily large dimension, GR applies in a 4−manifold,

smooth in addition. This C-K theorem requires that all the functions describing the PDE

and all the functions describing the initial conditions are analytic in the vicinity of xi. In

the 4−dimension spacetime of GR, x0 has the dimension of a time element times c, the

speed of light, while the 3 other components are the space elements. Since GR is a causal

theory, EFE is solved on a 3−dimensional hypersurface, the Cauchy surface CS .

The boundary value problem imposes in addition the resolution of the PDE on a

spatial domain D of CS delimited by a boundary ∂D. In this case, the value taken

by the solution (Dirichlet conditions) and, or the derivatives of the solution (Neumann

conditions) on the boundary ∂D of the domain are imposed. Having in mind the questions:

for which kind of boundary the problem of resolution of EFE is well-posed? A smooth,

axially or centrally symmetric boundary? And in the contrary, for which kind of boundary

EFE yields several distinct solutions (ill-posedness)? With a boundary not smooth, or

asymmetrical, or anisotropic? One can refer to e.g. the works of Frittelli on the issue of
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boundary in the resolution of EFE and the concept of initial-boundary value problem in

numerical GR in [106,107]. Choquet-Bruhat and Ringström [108–110] study, theoretically,

the resolution of the Cauchy problem and the issue of existence and uniqueness of a

solution to EFE in relation with the topology.

A question which is of interest for both CT and the resolution of the field equations

of GR is to study the effect the periodic boundary conditions, for instance inherent to a

3-torus multiply connected topology, have on the resolution of EFE in comparison with a

spatially infinite and flat Universe which presents no boundary value problem. Since we

already know that EFE doesn’t determine the curvature or the topology at large scale, the

issue is to know how CT affects the inputs of EFE, the components of the stress-energy-

momentum tensor and the equation of state? And as a consequence, how the prescriptions

of a non-trivial topology change the results of EFE? Thus, the assumption is made in

cosmology that a “topological acceleration” could result from the property of periodicity

of a MCM. That is to say that the Einsteinian gravity of an isolated massive object should

be modified in a Universe having, for instance, the topology of an hypertorus or a Poincaré

dodecahedron. Since in such a Universe, an object could interact with itself, and could

interact differently with another object, and this in term of any interaction. In 1989,

Farrar and Melott discuss the periodic boundary conditions inherent to the virtual space,

finite with boundaries imposed to the numerical simulations made in cosmology. They

show that the local physical properties of the model do not depend on the topology [111].

Notably, they probe a very peculiar topology: the non-orientable Klein space (E7). I

already pointed out the 1997 work of Buchert and Ehlers in sub-section 3.2.1. They

conclude to the cancelation of the globally averaged backreaction [58] in a spacetime of

flat toroidal topology and this for inhomogeneous Newtonian universes with Euclidean

metric and isotropic expansion.

Roukema et al. published a work studying the Newtonian causal gravity (for which

the interaction of gravitation propagates at the speed of light, and not instantaneously

as it is inherent to the original Newton’s gravity) in a Universe with spatial periodic

boundary conditions [112].

Steiner asks in [74], “Do black holes exist in a finite Universe having the topology

of a flat 3−torus?”. I.e., what is the static gravitational field of a black hole or a star

of mass M, at rest, in a flat 3−toroidal Universe? As cited above in 2.1, Schwarzschild

calculates the exact solution to EFE for a static, spherically symmetric black hole in

an infinite Universe. But, does an approximate solution to EFE exists for this object,

in the boundless, finite and homogeneous 3−torus, where, in virtue of T 3 symmetries

(quantified above in 3.2.2), the weak and static gravitational field of the black hole should

be a triply-periodic function? In absence of availability of an exact solution, Steiner

devises an iterative and perturbative approach to get an approximate solution to the

full non-linear EFE for a weak gravitational field. The Hadamard condition, seen above,

of existence and uniqueness of solutions to EFE, satisfying the T 3 periodic boundary

conditions, is guaranteed here by the theorem said Fredholm alternative. Concretely, in

the fundamental domain of the 3−torus, the source, i.e. the active gravitational mass

density ρ+ 3p/c2 of the star has to be a triply-periodic function S(~x) (see definitions in

3.2.2). In virtue of the Fredholm alternative, a non-trivial and unique solution u0(~x) to the

Poisson’s equation must be orthogonal to S, i.e. has to satisfy the integrability condition

〈S, u0〉 = 0 (the operator 〈, 〉 denotes the inner product). Unfortunately, Steiner arrives
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first to a divergent solution for the Newton’s gravitational potential and furthermore the

integrability condition is not satisfied. However, adopting three regularization methods

based (i) on the Appell Zeta function, (ii) on the Epstein Zeta function, and (iii) on

the generalized Green’s function, Steiner solves the first order Einstein-Poisson equation

using these three different ansatzes. Thus, Steiner proves that for a cubic torus, three

equivalent, non-trivial, convergent and exact first-order solutions to the Einstein-Poisson

equation exist. In view of these results, Steiner conjectures that the gravitational field

of a black hole in a Universe with 3−toroidal topology is in the far-field limit 15 well

approximated by this 1st order solution. This solution is globally anisotropic and is

unique up to an additive constant field.

An illustration of the effects of the global topology on the resolution of the relativistic

geometrisation of gravity over large spatial scales by averaging methods is made in [113].

Hypotheses on the topology of the Universe allow to consider solutions to the closure

problem of the spatially averaged 3+1 Einstein Field Equations. Thus, Brunswic and

Buchert use the Gauss-Bonnet-Chern theorem (GBC). GBC formalises a relationship

between the topological Euler characteristic (of 4D spaces) of the Cauchy hypersurface

and the extrinsic curvature of its boundary. This method consists in shrinking the 4D

tube to 3D to relate GBC to 3D space sections. This ansatz yields a supplementary

equation connecting the expansion tensor and the Weyl tensor. However, the resolution

of the averaged EFE cannot predict the change of the global topology of the Universe,

while the formation of singularities in the spacetime (such as new black holes puncturing

the Cauchy hypersurface) could induce dynamical intrinsic changes of topology over time.

3.2.5 A short introduction to the Cosmic Microwave Background

T
he CMB was discovered in 1965 by Penzias and Wilson [114] in a study of noise

backgrounds in a microwave receiver as a nearly isotropic radiation with antenna

temperature (3.5±1.0)K at a wave-length of 7.5 cm.16 But from this they could not

conclude that they were observing a black-body spectrum as predicted by the Big-Bang

paradigm. It was 25 years later that the satellite COBE (Cosmic Microwave Background

Explorer, active life-time 1989-1993) [117] could show with the FIRAS instrument that

the CMB data follow an almost perfect Planck spectrum with the present mean value of

15 In the far-field limit, the distance r to the star with mass M is such that its gravitational field is

weak and the star can be treated as a point-like object, having rs ≪ R < r ≪ L, where rs = 2GM
c2

is the Schwarzschild radius, R is the radius of the star and L is the side length of the cubic 3−torus.
16 “In between the star ζ Oph (Ophiuchi) and the earth there is a cloud of cold molecular gas,

whose absorption of light produces dark lines in the spectrum of the star. In 1941, Adams [115],

following a suggestion of McKellar, found two dark lines in the spectrum of ζ Oph that could

be identified as due to absorption of light by cyanogen (CN) in the molecular cloud ... From

this, McKellar concluded [116] that a fraction of the CN molecules in the cloud were in the

first excited rotational component of the vibrational ground state, ... and from this fraction he

estimated an equivalent molecular temperature of 2.3 K. Of course, he did not know that the CN

molecules were being excited by radiation, much less by black-body radiation. After the discovery

by Penzias and Wilson, several astrophysicists independently noted that the old Adams-McKellar

result could be explained by radiation with a black-body temperature at wave-length 0.264 cm in

the neighborhood of 3 K.” (Citation from [31].)
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the CMB temperature TCMB=(2.735±0.060)K. Nine years later, COBE finally obtained

TCMB=(2.725±0.002)K [118] (see section 4.2.1 for the present best value). In 1992 ,

COBE discovered with the DMR instrument the CMB temperature anisotropies [119–121],

subsequently measured with more and more precision by the space probe missions WMAP

(Wilkinson Microwave Anisotropy Probe, active life-time 2001-2010) [122–125] and Planck

(Planck probe active life-time 2009-2013) [126–131].

The observable part of the CMB covers, typically, depending on the frequency, up to

70% of the celestial sphere, and one has to assume what the properties of the remaining

invisible CMB are. For this problem there is no model–independent analysis of the CMB—

a model is required to infer and build the CMB regions hidden beyond the galaxy mask

and beyond each field source out of the main foreground mask. It is interesting to see that

some of the CMB anomalies reviewed in [132], such as the cold spot or the hemispherical

asymmetry, are very likely independent of the masked CMB reconstruction model. But,

most of the various CMB anomalies, even of this magnitude, are consistent with a certain

level of Gaussianity (p–value > 99%). Some of these anomalies are detected with the

2–point correlation function; some anomalies could be remedied by a cutoff between 60

and 160◦ as in [133], statistically favouring multiply connected universe models with finite

volume [134,135]. Besides assumptions on the topology of the Universe, an assumption is

needed for the geometry of the CMB support manifold, commonly thought of as being an

ideal sphere. This is related to the estimate of the relative motion vector of the observer

to the CMB. Will peculiar–velocity analyses of larger and larger catalogues converge to

this motion, or is there a global dipole of a non–idealized space form? What is the correct

definition of “peculiar–velocities”? There can be significant differential expansion of space

that is not allowed for in a Newtonian model of structure formation [136]. Another

challenge to the CMB non–Gaussianity is the way to link the specific CMB intensity,

I(ν), to the CMB temperature anisotropy, δT [137], using the Taylor expansion at first

order only; higher orders may eventually impair the evaluation of the primordial non–

Gaussianity.
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endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes Math. Ann.

104 1

[47] W Threlfall and H Seifert 1932 Topologische Untersuchung der Diskontinuitätsbereiche
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4 A new signature of multiply connected Universe

I
arrive now at the first research paper presented in this PhD thesis. Very preliminary

calculations made by Sven Lustig, Frank Steiner and me suggested an interesting

property of the CMB maps calculated by Ralf Aurich for a Universe having the topology

of the 3−torus. These maps seemed to satisfy a general property that we qualify of

hierarchical, i.e. the smaller the size of the 3−torus the larger the variance of the CMB

temperature gradient map. I confirmed the result applying the systematic study to large

ensembles of maps (100 000) for each torus size L. Ralf Aurich suggested to calculate

the probability distribution function (PDF) of ρ over each map ensemble. The PDFs

confirmed the hierarchical result. Furthermore I found that the law of L with respect to

the variance of the CMB temperature gradient was linear. Given the interesting results

we found, I began writing the paper (published in 2021) named The variance of the

CMB temperature gradient: a new signature of a multiply connected Universe

(see references page xvi). Even if my contributions to this paper and to the results were

important and numerous (various investigations, algorithmics, computing, bibliography,

redaction), it was decided to apply the alphabetical order of the authors (Ralf Aurich,

Thomas Buchert, Martin J France and Frank Steiner) and keeping this way the logic of

displaying Ralf Aurich as first author of the series of cosmic topology papers involving

him and Frank Steiner.

4.1 The CMB in the multiply connected Universe T 3

4.1.1 Two-point correlation function

A
basic quantity characterizing the anisotropies of the CMB and probing the primordial

seeds for structure formation is the full-sky two-point correlation function (hereafter

2–pcf) of the temperature fluctuation δT (n̂), observed for our actual sky in a direction

given by the unit vector n̂, defined by

Cobs(ϑ) :=
〈

δT (n̂)δT (n̂′)
〉

with n̂ · n̂′ = cosϑ , (34)

where the brackets denote averaging over all directions n̂ and n̂′ (or pixel pairs) on the full

sky that are separated by an angle ϑ. Since Cobs(ϑ) corresponds to one observation of the

actual CMB sky from our particular position in the Universe, the average in equation (34)

should not be confused with an ensemble average. The ensemble average could be either

an average of the observations from every vantage point throughout the Universe, or the

average of an ensemble of realizations of the CMB sky in a given cosmological model.

Cobs(ϑ) has been measured for the first time in 1992 by COBE [1, 2] from the

1–year maps, and in 1996 from the 4–year maps [3]. The COBE data revealed small

correlations in the large angular range Υ delimited by 70◦ ≤ ϑ ≤ 150◦ which later has

been confirmed with high precision by WMAP [4–7] and Planck [8–13]. COBE compared

the observed correlation functions with a large variety of theoretical predictions within

the class of FLRW (Friedmann-Lemâıtre-Robertson-Walker) cosmologies, including flat
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and non-zero constant-curvature models with radiation, massive and massless neutrinos,

baryonic matter, cold dark matter (CDM), and a cosmological constant Λ, using both

adiabatic and isocurvature initial conditions, see e.g. [14, 15]. From COBE observations

it was concluded [1] that the two-point correlations, including the observed small values

of Cobs(ϑ) in the range Υ, are in accord with scale-invariant primordial fluctuations

(Harrison-Zel’dovich spectrum with spectral index n = 1) and a Gaussian distribution as

predicted by models of inflationary cosmology. Thus, there was no indication that the

small correlations measured in the angular range Υ could hint to a serious problem, or

even to new physics. The situation changed drastically with the release of the first-year

WMAP observations that will be discussed below.

At this point it is worth to mention that at the time of COBE, i.e. before 1998,

the Hubble constant was not well-determined (the uncertainty amounting to a factor

of 2 or more); the acceleration of the time-evolution of the scale-factor of a FLRW

cosmology [16,17] was not yet discovered and thus the value of the cosmological constant

was not known. Also the low quadrupole was already clearly seen by COBE, but was

usually dismissed due to cosmic variance or foreground contamination.

COBE observations were used in 1993 in an attempt [18, 19] to detect CMB

temperature fluctuations specific of the discrete spectrum of metric perturbations of a

Universe with 3−torus topology. And several other authors emphasized that the COBE

observations might hint to a non-trivial topology of our Universe and called this field of

research Cosmic Topology [20]. Another signature of multiply connected universes on

the CMB, based on the identified circles principle was proposed since 1996 [21, 22] and

observational analyses of the COBE data were made using this principle [23,24].

The first-year data by WMAP led to today’s standard model of cosmology

[4–6], a spatially flat Λ−dominated universe model seeded by nearly scale-invariant

adiabatic Gaussian fluctuations, the ΛCDM model with cold dark matter and a

positive cosmological constant Λ. The fact that the non-Gaussianities of the primordial

gravitational fluctuations are very small is nicely confirmed by the recent Planck data [25].

There remain, however, intriguing discrepancies between predictions of the ΛCDM

model and CMB observations: one of them is the lack of any correlated signal on angular

scales greater than 60◦ [6], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38].

Further anomalies are e.g. the low quadrupole and a strange alignment of the quadrupole

with the octopole [39–41]. These anomalies were still questioned on the basis of the seven-

year WMAP data [7], and it is only with the sharper spatial and thermal resolution of

Planck that their existence in the CMB data have a robust statistical standing [8]. The

observed severe suppression of correlations at large scales does not appear in the simulated

sky map examples of the CMB in a ΛCDM model. Figure 1 shows the average 2–pcf of the

four Planck foreground corrected CMB observation maps without mask, NILC, SEVEM,

SMICA and Commander-Ruler (their ensemble hereafter named NSSC) compared to the

average 2–pcf of one hundred thousand ΛCDM CMB maps at a resolution Nside = 128,

with lmax = 256 and a Gaussian smearing (defined in equation (63)) of 2◦ (full width at

half maximum). The calculation of the 2–pcfs is made in the spherical harmonic space

imposing isotropy and homogeneity for the Planck NSSC 2–pcf which shows no correlation

between 80◦ and 150◦. Also the 2–pcf average behaviour of the ΛCDM ensemble differs

strongly from the one of the CMB observation maps by WMAP and Planck. Approxi-

mately 0.025% of the ΛCDM realizations have a 2–pcf displaying the same large-angles

suppression as the 5−year WMAP map [34].
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Figure 1: The average two-point correlation function of 100 000 CMB simulation maps without

mask in the infinite ΛCDM model according to Planck 2015 [9] cosmological parameters (in black

dash line), ±1σ in the dark shaded area, and ±2σ in the light shaded area (68 and 95 percent

confidence levels, respectively). This is compared to the average two-point correlation function

of the four foreground corrected Planck maps, NILC, SEVEM, SMICA and Commander-Ruler

(NSSC) in solid blue line.

A further discrepancy occurs on scales below ϑ ≈ 50◦, where the ΛCDM simulations

also reveal, on average, larger correlations than those observed by WMAP and Planck (see

figure 1 and, e.g., figure 3 in [41]). The angular range ϑ ≤ 50◦ of the 2–pcf depends on all

multipoles (l ≥ 2) of the observed power spectrum (see e.g. the Planck spectrum, figure

57) [9]) in the case of no or very small smoothing (see equation (63)). There is a large

contribution from the first acoustic peak and also from the higher peak structure which

appears up to the large l′s (i.e. the smallest angles limited by the instrument resolution).

Note, however, that the very large multipoles (l ≥ 900) are strongly suppressed by Silk

damping. The ‘high’ multipole moments (l ≥ 30) do not differ very much for ΛCDM and

the ‘topological’ models, the crucial contribution to C(ϑ), which leads to the discrepancy

for ϑ ≤ 50◦, comes from the ‘low’ multipoles (mainly for l ≤ 29) where the power spectrum

shows a lack of power for the quadrupole and a characteristic ‘zig-zag structure’ (see,

e.g., [6], [26], [27], [28], [29], [30], [31], [32], [34], [35], [36], [37], [38]).

In addition, the 2–pcf C(ϑ) of the ΛCDM model reveals a negative dip between 50◦

and 100◦ and a positive slope beyond and up to 180◦. Thus, on average, these CMB

sample maps for an isotropic and homogeneous infinite ΛCDM model display a non zero

2–pcf for any separation angle ϑ except those in the two narrow regions of cancellation

around 40◦ and 120◦.
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4.1.2 2-pcf hinting at a difficulty

F
or the observed CMB by Planck, WMAP or COBE the lack of correlations at large

angular scales finds a natural explanation in cosmic topology: compared to the CMB

simulation maps of the ΛCDM model in an infinite Universe, the suppression of the 2–pcf

at large angular scales of the Planck CMB maps is consistent with finite spatial sections

of the Universe.

Before 1998 there was the theoretical prejudice that the Universe is flat (total density

parameter Ωtot=1), while the data pointed to a negatively curved spatial section Ωtot < 1.

In [42, 43] the CMB was investigated for a small compact hyperbolic universe model (an

orbifold) with 0.3 ≤ Ωtot ≤ 0.6, and for the nearly flat case with Ωtot ≤ 0.95, respectively,

containing radiation, baryonic, cold dark matter and Λ. It was shown that the low

multipoles are suppressed even for nearly flat, but hyperbolic models with Ωtot ≤ 0.9. For

even larger values of Ωtot ≈ 0.95, fluctuations of the low multipole moments Cl occur,

which are typical in the case of a finite volume of the Universe. In [44, 45] the first-year

WMAP data and the magnitude-redshift relation of Supernovae of type Ia have been

analyzed in the framework of quintessence models and it has been shown that the data

are consistent with a nearly flat hyperbolic geometry of the Universe if the optical depth

τ to the surface of last scattering is not too big.

Furthermore it has been shown [26–28] that the hyperbolic space form of the Picard

universe model, defined by the Picard group which has an infinitely long horn but finite

volume, leads e.g. for Ωmatter = 0.30 and ΩΛ = 0.65, to a very small quadrupole and

displays very small correlations at angles ϑ ≥ 60◦. Even at small angles, ϑ ≈ 10◦, C(ϑ)

agrees with the observations much better than the ΛCDM model.

Depending on certain priors, the WMAP team reported in 2003 from the first-

year data [6] for the total energy density Ωtot = 1.02 ± 0.02 together with Ωbaryon =

0.044±0.004, Ωmatter = 0.27±0.04, and h = 0.71+0.04
−0.03 for the present-day reduced Hubble

constant h = H0/(100km s−1 Mpc−1) (the errors give the 1σ-deviation uncertainties).

Taken at face value, these parameters hint at a positively curved Universe. Luminet et

al. [46] studied the Poincaré dodecahedral space which is one of the well-known space forms

with constant positive curvature. In [46] only the first three modes of the Laplacian have

been used (comprising in total 59 eigenfunctions), which in turn restricted the discussion

to the multipoles l ≤ 4. Normalizing the angular power spectrum at l = 4, they found

for Ωtot = 1.013, a strong suppression of the quadrupole and a weak suppression of the

octopole. The 2–pcf C(ϑ) could not be calculated.

A thorough discussion of the CMB anisotropy and of C(ϑ) for the dodecahedral

topology was carried out in [29] based on the first 10 521 eigenfunctions. An exact

analytical expression was derived for the mean value of the multipole moments Cl (l ≥ 2)

for the ordinary Sachs-Wolfe contribution (i.e. without the integrated Sachs-Wolfe effect

and the Doppler contribution), which explicitly shows that the lowest multipoles are

suppressed due to the discrete spectrum of the vibrational modes. The discrete eigenvalues

for all spherical spaces are in appropriate units given by Eβ = β2 − 1, where the

dimensionless wave numbers β run through a subset of the natural numbers. (Only in the

case of the simply connected sphere S3, β runs through all natural numbers.) In the case of

the dodecahedral space there exist no even wave numbers, and the odd wave numbers have

large gaps since, e.g., the allowed β-values up to 41 are given by {1, 13, 25, 31, 33, 37, 41},

where β = 1, corresponding to the zero mode E1 = 0, is subtracted since it gives

the monopole. Thus, the spectrum is not only discrete but has in addition large gaps
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(‘missing modes’) which lead to an additional suppression. The analytical expression

for the Cl’s also leads to an analytical expression for the correlation function (due to

the ordinary Sachs-Wolfe contribution) which shows the suppression at large scales [29].

The remaining contributions from the integrated Sachs-Wolfe and Doppler effect were

computed numerically. A detailed analysis of the CMB anisotropy for all spherical spaces

was carried out in [30], and it was shown that only three spaces out of the infinitely many

homogeneous spherical spaces are in agreement with the first-year WMAP data.

The question of the strange alignment of the quadrupole with the octopole, and the

extreme planarity or the extreme sphericity of some multipoles has been investigated

in [47] with respect to the maximal angular moment dispersion and the Maxwellian

multipole vectors for five multiply connected spaces: the Picard topology in hyperbolic

space [26–28], three spherical spaces (Poincaré dodecahedron [29,46], binary tetrahedron

and binary octahedron [30]) and the cubic torus [32]. Although these spaces are able

to produce the large-scale suppression of the CMB anisotropy, they do not describe the

CMB alignment. From the models considered, the Picard space form reveals the strongest

alignment properties.

Already the 3−year data of WMAP provided a hint that our Universe might be

spatially flat [31]. The 2018 results reported by the Planck team [48], combining Planck

temperature and polarization data and BAO (baryon acoustic oscillation) measurements,

give for the curvature parameter ΩK := 1 − Ωtot the small value ΩK = 0.0007 ± 0.0019,

suggesting flatness to a 1σ accuracy of 0.2%. Recently, however, a different interpretation

has been presented claiming that the data show a preference for a positively curved

Universe, noted also in [48] (for references see [49]). This problem has been revisited

in [49], and when combining with other astrophysical data, it is concluded that spatial

flatness holds to extremely high precision with ΩK = 0.0004 ± 0.0018 in agreement

with Planck [48]. But, also recently, it has been pointed out [50–54] that there

are inconsistencies between cosmological datasets arising when the FLRW curvature

parameter ΩK is determined from the data rather than constrained to be zero a priori.

Relaxing this prior also increases the already substantial discrepancy between the Hubble

parameter as determined by Planck and local observations to the level of 5σ. These

different outcomes originate from the comparison of data at the CMB epoch and data

from the present-day Universe providing ‘tensions’ for the ΛCDM model [55], [56], [57].

Resolving these tensions appears to need a fully general-relativistic description of the

curvature evolution [58].

Assuming that the spatial section of our Universe is well-approximated by a flat

manifold that is furthermore simply connected, it follows that its topology is given by

the infinite Euclidean 3−space E
3. This is exactly the assumption made in the ΛCDM

model which leads to the intriguing discrepancies in the range Υ of large angular scales

as discussed above (see figure 1). It has been shown in [32, 35, 37, 59] that the simplest

spatially flat finite-volume manifold with non-trivial topology i.e. the multiply-connected

cubic 3−torus T 3 with side length L having the finite volume L3, leads in a natural way,

without additional assumptions, to the observed suppression at large scales if only the

volume is not too large. For the many previous works on a toroidal Universe model, see

the references in [32].

A modified correlation function, the spatial correlation function, was suggested

in [33], which takes the assumed underlying topology of the dodecahedron into account

and provides estimates for the orientation of the manifold. This method was applied to

the 3−torus topology in [37]. Another example of topology is provided by the flat slab
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space [38] with one compact direction and two infinite directions. A further example is

provided by the compact Hantzsche-Wendt manifold for which the ensemble averages

of statistical quantities such as the 2–pcf depend on the position of the observer in

the manifold, which is not the case for the 3−torus topology T 3. The suppression of

correlations of the 2–pcf is studied in [36]. For this topology, the ‘matched circles-in-the-

sky’ signature is much more difficult to detect because there are much fewer back-to-back

circles compared to the T 3 topology.

4.1.3 The CMB of a Universe with 3−torus topology

W
hile the infinite ΛCDM model is homogeneous and isotropic, the multiply

connected torus Universe T 3 is still homogeneous and locally isotropic, but no

more globally isotropic. In a flat Universe having three infinite spatial directions such

as for the ΛCDM model, the spectrum of the vibrational modes (i.e. the eigenvalues

and eigenfunctions) of the Laplacian is continuous. In the case of the 3−torus topology

T 3, the CMB temperature anisotropies δT over the 2−sphere S2 are calculated by using

the vibrational modes of the Laplacian with periodic conditions imposed by the cubic

fundamental domain without boundary [32]. The discrete eigenvalues of the Laplacian

are then given by

En =

(

2π

L

)2

n2 with n = (n1, n2, n3) ∈ Z
3 . (35)

Thus, the wave number spectrum of T 3 is discrete and countably infinite consisting of

the distinct wave numbers

km =
2π

L

√
m , m = 0, 1, 2, ... , (36)

i.e. there is no ultraviolet cut-off at large wave numbers. There are gaps between

consecutive wave numbers,

km+1 − km =
π

L

1√
m

[

1 − 1

4m
+ O

(

1

m2

)]

, m → ∞ , (37)

which tend to zero asymptotically. However, the wave numbers are degenerate, i.e. they

possess multiplicities r3(m), where r3(m) is a very irregular, number-theoretical function

with increasing mean value, which counts the number of representations of m ∈ N0 as

a sum of 3 squares of integers, where representations with different orders and different

signs are counted as distinct. For example, r3(0) = 1, r3(1) = 6, r3(2) = 12, r3(3) = 8,

r3(4) = 6, r3(5) = 24. (r3(m) has been already studied by Gauss.) Weyl’s law provides

the asymptotic growth of the number N(K) of all vibrational modes in the 3−torus with

|kn| :=
√
En ≤ K,

N(K) ∼ V

6π2
K3 , K → ∞ , (38)

where V = L3 is the volume of the torus manifold (see for instance [29, 30, 43] and the

review [60]). For example, in [59], the first 50 000 distinct wave numbers were taken into

account comprising in total 61 556 892 vibrational modes which allowed to compute the

multipoles up to l = 1 000. There is, however, in the case of the CMB anisotropy in a torus

universe model, a cut-off at small wave numbers, i.e. an infrared cut-off, |kn| ≥ 2π/L = k1,

since the zero mode |k0| = 0 has been subtracted, as was first pointed out by Infeld in

the late forties [61].
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In this part of my manuscript, the cosmological lengths are expressed in terms of

the Hubble length denoted LH = c/H0 as in [32, 37]. The value of the reduced Hubble

constant today according to Planck 2015 [9] was h = (0.6727 ± 0.0066) (68% limits) ,

giving a Hubble length of LH = (4.4453+0.0386
−0.0379) Gpc. The value determined from the

most recent analysis of Planck from the ΛCDM model in 2019 [62] is very close, i.e. at

h = (0.6744 ± 0.0058) (68% limits). The 3−torus and ΛCDM simulations presented in

my thesis manuscript are calculated using the Planck 2015 cosmological parameters. But,

given the small Nside = 128 and lmax = 256 and the strong Gaussian smoothing scale of

2◦ f.w.h.m., suppressing the sharp CMB structures at the first acoustic peak and beyond,

differences between using the Planck 2015 or the Planck 2019 cosmological parameters

to generate the CMB temperature maps are not expected in terms of cosmic topology.

It is only when considering the improved polarization data of Planck legacy 2018 that

differences might be expected for cosmic topology.

For the CMB in a universe model with 3−torus topology and with an optimally

determined torus side length of L ≈ 3.69LH , the 2–pcf is nearly vanishing for large

angles [32, 37], fitting much better to the 2–pcf of the observed maps than those of the

ΛCDM model. In the case of the slab space manifold (only one compact direction [38]) the

match with the Planck 2015 CMB maps 2–pcf is good, once the slab is optimally oriented

with respect to our galactic plane and for an optimal slab thickness close to 4.4LH (for

the same H0 of Planck 2015). Also good is the 2–pcf match for any angle separation [38],

except for the angles beyond 150◦ where the remnants of galactic foreground pollution in

the Planck maps could explain the non-zero and negative value of the correlation at the

largest scales.

Another signature of multiply connected topology, the ‘matched circles-in-the-sky’

(thereafter CITS) was and is much tested on the COBE, WMAP and Planck CMB

temperature and polarization maps (see [11], [21–24], [32] and [63–66]). The CITS signal

is based on the fact that the metric perturbation at the surface of last scattering (SLS) is

responsible for a large part of the CMB signal, since the metric perturbation is mapped by

the 3−torus group to the identified points on the SLS. Other contributions to the CMB

signal deteriorate the CITS signal, such as the Doppler contribution which is projected

from different lines of sight. Another deteriorating effect is due to the integrated Sachs-

Wolfe (ISW) effect, which describes the changes along the photon path from the SLS

to the observer, where again the points along the path are not identified due to the

topology. There are hints that this contribution is larger than expected from the ΛCDM

model, so that the CITS signal might be less pronounced than derived from ΛCDM

simulations. The late time ISW effect due to the supervoids is stronger than expected

from the ΛCDM model measured by AISW = ∆T data/∆T theory [67] which should be

close to 1. The Dark Energy Survey (DES) collaboration finds an excess amplitude

AISW=4.1 ±2.0 [67] and when they combine their data with the independent Baryon

acoustic Oscillations Spectroscopic Survey (BOSS) data, even an excess ISW signal of

supervoids with AISW=5.2 ±1.6 is revealed. For a summary, see figure 5 in [67] and

references in this publication. It thus seems to be premature to exclude non-trivial

topologies due to the non-observations of the CITS signal on the SLS.

The other tested signature of a 3−torus multiply connected topology, the covariance

matrix, entails no conclusive results, e.g. [32]. It is then of great importance to confirm

the possibly multiply connected nature of our Universe suggested by the vanishing 2–pcf

through complementary methods using different observables and implemented with other

morphological or topological descriptors.
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It is clear that the Cosmic topology of multiply connected manifolds brings to a

universe model an intrinsic signature at any spatial scale since the whole spectrum of

eigenmodes of the Laplacian characterizes unambiguously shape and volume of each

different manifold up to its maximum size(s) while in a 3−spatially infinite Universe

such as the Universe of the ΛCDM model, there are no eigenmodes. The intrinsic

discretization of the eigenmodes due to the finite section(s) of a Universe with multiply

connected topology would have important consequences on the observable shape of

structures and would also play a major role on the structure formation (see e.g. [68]

for a study considering the effect of the 3−torus multiple connectedness and inherent

periodic boundary conditions on the gravity and a possible weak topological acceleration)

and evolution in conjunction with the role played by the geometrisation of the gravity.

Cosmic topology of MCM allows a spatial discretization which is not accounted for by

the General Theory of Relativity formalism. Although “observable” is a concept one

sometimes use in cosmology, I shall therefore not generalize the term of “observable” in

the present PhD thesis manuscript since its application to observational cosmology needs

clarifications because of the incompatibility between Quantum Mechanics and GR and a

Quantum Gravity Theory still to be build.

I shall now introduce an important result reached during the period of my PhD

thesis work while analysing large ensembles of CMB simulation maps for a Universe with

multiply connected topology with a new statistical tool:

4.2 CMB temperature gradient map and cosmic topology

4.2.1 The standard deviation ρ of the temperature gradient field

T
he CMB temperature fluctuation δT (n̂) := T (n̂) − T0 is defined as the difference

between the direction-dependent temperature T (n̂) and the monopole T0 := TCMB,

with TCMB = (2.7255 ± 0.0006K) [9, 69]. On the unit sphere S2, we write the metric in

spherical coordinates (ϑ, ϕ),

ds2 := dϑ2 + sin2 ϑ dϕ2 , (39)

and denote the unit vector by n̂ = n̂(ϑ, ϕ). The angular average of δT (n̂) vanishes,

1

4π

∫

S2
d2n̂ δT (n̂) = 0 . (40)

Averaging also over the possible positions from which the CMB is observed, one obtains:
∫

S2
d2n̂ µ(n̂) = 0 , (41)

with µ(n̂) := 〈δT (n̂)〉. Here, the brackets denote an ensemble average at fixed n̂.

Similarly, we define the ensemble average of the variance of δT (n̂),

σ2
0(n̂) :=

〈

[δT (n̂) − µ(n̂)]2
〉

. (42)
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Assuming that the Universe is homogeneous and isotropic on average, all averages

〈δT (n̂)δT (n̂′)δT (n̂′′) · · ·〉 are rotationally invariant functions of n̂, n̂′, n̂′′, · · ·, and thus

µ and σ2
0 are independent of n̂. In this case it follows that µ = 0 17 and

σ2
0 = 〈[δT (n̂)]2〉 . (43)

Since the correlation function (34) is a function of n̂ · n̂′ = cosϑ, it can be expanded in

Legendre polynomials,

Cobs(ϑ) =
1

8π2

∫

S2
d2n̂1

∫

S2
d2n̂2 δ (n̂1 · n̂2 − cosϑ) δT (n̂1)δT (n̂2)

=
1

4π

∞
∑

l=1

(2l + 1)Cobs
l Pl(cosϑ) , (44)

with the multipole moments

Cobs
l :=

1

4π

∫

S2
d2n̂

∫

S2
d2n̂′ Pl(n̂ · n̂′) δT (n̂)δT (n̂′) =

1

2l + 1

l
∑

m=−l

|alm|2 , (45)

and where the complex coefficients {alm} are the coefficients of the expansion of δT (n̂)

into spherical harmonics, Y m
l (n̂), on the full sky. The observed angular power spectrum

is then given by
(

δT obs
l

)2
:=

l(l + 1)

2π
Cobs

l . (46)

Note that equations (44) and (45) hold without any theoretical assumptions on δT (n̂)

(provided the integrals and series converge).

Assuming that the Universe is homogeneous and isotropic on average, the ensemble

average of the full-sky correlation function is rotationally invariant and satisfies

C(ϑ) := 〈δT (n̂)δT (n̂′)〉 =
1

4π

∞
∑

l=1

(2l + 1)Cl Pl(n̂ · n̂′) , (47)

with the multipole moments

Cl := 〈|alm|2〉 (48)

(independent of m). From (45) and (48) follows that

〈Cobs
l 〉 = Cl . (49)

From (48) and (49) one finds the normalized variance of Cl−Cobs
l , i.e. the cosmic variance:

〈(

Cl − Cobs
l

Cl

)2〉

= −1 +
1

(2l + 1)2C2
l

l
∑

m=−l

l
∑

m′=−l

〈|alm|2|alm′ |2〉 . (50)

If we furthermore assume that δT (n̂) is a Gaussian random field on S2, it follows that

the {alm} are complex Gaussian random variables which, however, does not imply that

also the Cl’s are Gaussian random variables. The cosmic variance (50) simplifies in the

Gaussian case and is given by
〈(

Cl − Cobs
l

Cl

)2〉

=
2

2l + 1
. (51)

17 For an ensemble of n maps we have 〈µ〉 := (1/n)
∑n

j=1 µj . After subtraction of the monopole

and the dipole (this is done for all the maps studied in this work), we can verify that over the

100 000 simulation maps of the ΛCDM and the 3−torus models, |〈µ〉| is numerically extremely

small O(10−7µK) without mask and O(10−4µK) − O(10−3µK) after mask pixel suppression.
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(For the case with mask, the reader is directed to equations (22)-(24) in [36].)

Over the 2−sphere support of the CMB temperature anisotropy map we also define

G, the gradient field, dependent on the spherical coordinates ϑ and ϕ. In terms of its

components,

Gϑ :=
∂δT

∂ϑ
, (52)

and

Gϕ :=
1

sinϑ

∂δT

∂ϕ
. (53)

The variance σ2
1 of the local temperature gradient is defined by an average over the

directions,

σ2
1 :=

〈

∇1δT (n̂)∇1δT (n̂) + ∇2δT (n̂)∇2δT (n̂)
〉

, (54)

where in spherical coordinates the covariant derivatives are given by

∇1δT (n̂)∇1δT (n̂) = δT,ϑδT
,ϑ = G2

ϑ =

(

∂δT

∂ϑ

)2

, (55)

and

∇2δT (n̂)∇2δT (n̂) = δT,ϕδT
,ϕ = G2

ϕ =

(

1

sinϑ

∂δT

∂ϕ

)2

. (56)

If the CMB sky map is an isotropic and homogeneous Gaussian random field having a

negligible mean µ (hereafter IHG properties, IHG standing for isotropic, homogeneous

and Gaussian of zero mean), the ensemble average of the CMB is statistically determined

by its 2–pcf C(ϑ), equations (47) and (48). Under this condition the components Gϑ and

Gϕ of the gradient vector G, equations (52) and (53), are Gaussian random variables with

zero mean and identical variance σ2
1/2.

The field of CMB temperature anisotropies δT (n̂) is discretized into pixels of the

HEALPix tessellation δTi := δT (n̂i), and for the purpose of this investigation, σ2
1 is

calculated in pixel space in spherical coordinates (see also the formulas in the non-

discretized case, equations (29) and (30) in [70]) as the average18 expanded into

σ2
1 :=

〈

G2
ϑ +G2

ϕ

〉

=

∑npixels−1
i=0

[

(

∂δTi

∂ϑ

)2
+
(

1
sin ϑ

∂δTi

∂ϕ

)2
]

npixels
. (57)

The reader may refer to mathematical definitions, developments and discussions related

to scalar statistics on the CMB spherical support manifold in [14], [71], [70], [59]. Under

the assumption that δT (n̂) is an isotropic and homogeneous random field on average, σ2
1

can be calculated in the spherical harmonic space as

σ2
1 :=

lmax
∑

l=lmin

Cl
l(l + 1)(2l + 1)

4π
, (58)

where Cl are the multipole moments (48), monopole and dipole are subtracted (i.e.

lmin = 2) and lmax = 256. Under the same isotropy condition, the variance of δT (n̂)

reads:

σ2
0 :=

lmax
∑

l=lmin

Cl
2l + 1

4π
. (59)

18 This is implemented using a modified version of the HEALPix Fortran subroutine ‘alm2map der’

and its function ‘der1’.
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If the CMB sky maps possess the IHG properties, they are statistically completely

determined by the multipoles Cl. Also, the equivalence between the 2–pcf C(ϑ) and the

power spectrum (δT 2
l := l(l + 1)Cl/2π) only holds if the CMB over the whole 2−sphere

is observable.

We define ρ as the normalized standard deviation of the gradient field G of

temperature anisotropy over a single map,

ρ :=

√

√

√

√

〈

G2
ϑ +G2

ϕ

〉

σ2
0

=

√

σ2
1

σ2
0

, (60)

while the mean in terms of ρ for an ensemble of n maps is given by

〈ρ〉 :=

∑n
j=1 ρj

n
. (61)

While searching for possible non-Gaussianities in the CMB maps using Minkowski

functionals [25], one of us (FS) proposed in 2012 the normalized variance of the CMB

gradient as a new signature of a multiply connected nature of the Universe. Note that the

ratios σ1/σ0 and respectively σ2
1/σ

2
0, appear in the definition of the Gaussian prediction

of the second Minkowski functional (MF) and respectively the third MF of a random

field on the 2−sphere S2. For comprehensive definitions of random fields and Minkowski

functionals of excursion sets, see [72], [73, 74], [14], [71, 75], [59], [25].

Obviously, ρ defined as a ratio does not depend on an overall normalization constant

of the temperature field. While a comparison of maps using only σ0 or σ1 or the 2–pcf

requires the normalization of the temperature anisotropy field. We shall develop on this

application of normalization for our ensembles of 3−torus maps in section 4.2.5.

In order to provide an illustration of the quantity from which ρ is derived by averaging

G, figure 2 shows in Mollweide projection the map of

ρi :=

√

√

√

√

G2
ϑ,i +G2

ϕ,i

σ2
0

=

√

√

√

√

σ2
1,i

σ2
0

, (62)

where i denotes a pixel index, for one CMB map of the 3−torus simulations at a side

length of L = 1.0LH . The resolution parameters are the ones applied to all the maps

all along the present study i.e. Nside = 128, lrange = [2, 256] and a Gaussian smoothing

ϑG = 2◦ f.w.h.m. The Gaussian smoothing is defined by Cl → Cl|Fl|2 with

Fl = exp

(

−α2ϑ2
G

2
l(l + 1)

)

(63)

and α = π/(180
√

8 ln 2), which is obtained in the limit αϑG ≪ 1 from the Gaussian kernel

on S2.

4.2.2 Hierarchical dependence: size of fundamental cell versus ρ

T
he following analysis is based on five ensembles of the cubic 3−torus T 3 topology

belonging to different sizes of the fundamental cell, and one ensemble of the infinite

ΛCDM model (with a simply connected topology). The five 3−torus ensembles belong

to the side lengths L/LH = 0.5, 1.0, 1.5, 2.0 and 3.0. Each ensemble consists of 100 000
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Figure 2: The map of the normalized norm of the temperature gradient field G, as defined in

equation (62) and calculated from a CMB map of the 3−torus at L = 1.0LH at a resolution of

Nside = 128, lrange = [2, 256] and ϑG = 2◦. The strongest local gradients appear in red and the

weakest gradients in dark-blue. While the most interesting features, the numerous iso-contour

patterns, are shown in light-blue.

realizations leading to 100 000 CMB sky maps.19 In order to generate a realization of the

ensemble, a Gaussian random number of unit variance and zero mean is multiplied by

each eigenmode belonging to a wavenumber kn, see equation (36). The CMB maps of the

3−torus and the infinite ΛCDM model are computed using the cosmological parameters

according to Planck 2015 [9]. The CMB maps are analyzed at a HEALPix resolution

of Nside = 128 (196608 pixels of diagonal 27.5′, i.e. a pixel side length of 19.4′) with

lmax = 256, and are smoothed with ϑG = 2◦.

For each set of 100 000 maps, the probability distribution functions (PDFs) of ρ are

shown for the five cubic 3−torus side lengths L, and for the infinite ΛCDM model, as

histograms in figure 3 (unmasked case) and figure 4 (masked case). All distributions are

unimodal with a pronounced peak. We present in tables 1 and 2 the mean value 〈ρ〉,
the median ρ-value (hereafter denoted median), the standard deviation Σ, the skewness

coefficient

γ1 :=
m3

Σ3
, (64)

and the excess kurtosis

γ2 :=
m4

Σ4
− 3 , (65)

where mn denotes the nth central moment of a given distribution (see e.g. [25]).

The PDFs of the random variables σ0 and σ1, respectively, can be approximated by

truncated Gaussian distributions (see Appendix 8.1). The deviations from the actual

19 The simulation of the map ensembles for larger side lengths of the torus is computationally

expensive, typically months for a hundred core cluster.
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Figure 3: The histograms of ρ without foreground mask. Presented in solid lines are the PDF

histograms and the Gaussian distributions for the ensembles of 100 000 model maps. From right

to left: the 3−torus at L = 0.5LH in light brown, L = 1.0LH in brown, L = 1.5LH in magenta,

L = 2.0LH in green, L = 3.0LH in blue and the ΛCDM model in black. The Gaussian PDFs are

computed from the means and the variances given in table 1 and illustrate the deviation of the

PDFs from a symmetrical distribution. The means are shown with a vertical solid line and the

medians with a vertical dashed line. The mean 〈ρ〉 for each of the four Planck maps is shown

with a vertical red line (NILC in small dots, SEVEM in small dashes, SMICA in large dashes and

Commander-Ruler as a solid line).

histograms is due to the fact that the PDF of σ0 possesses a definite non-Gaussian

component, whereas the PDF of σ1 only shows a small deviation from a Gaussian

behaviour. The histograms presented in figure 3 are indeed unimodal, but not Gaussian20.

In order to visualize a possible non-Gaussianity of P (ρ), we shall compare in figures 3

and 4 the histograms with a Gaussian PDF.

Since ρ is by definition a strictly positive random variable, the appropriate Gaussian

PDF to compare with is not the standard normal distribution defined on the whole

line but rather a truncated normal distribution defined only on the positive half-line.

Thus, the Gaussian PDF to be applied in this situation should a priori be a one-

sided truncated Gaussian probability distribution function. For the construction of the

truncated Gaussian we refer to the Appendix in 8.1. There it is shown that the deviations

of the truncated Gaussian PDF from the standard normal distribution are, however,

extremely small in the case considered here. Therefore, we compare the histograms in

figures 3 and 4 with the standard Gaussian PDF fixed by the mean values 〈ρ〉 and the

variance Σ2 given in tables 1 and 2.

20 The deviation from Gaussianity does not necessarily imply a violation of the IHG properties.
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Figure 4: Same as figure 3 for the histograms of ρ, here with exclusion of the U73 mask pixels.

The Gaussian PDFs are computed from the means and the variances given in table 2.

A Gaussian random variable has the following unique characteristic properties:

– Its PDF maximizes the (differential) entropy among all probable continuous

distributions with fixed first and second moment, and in general among all unimodal

distributions.

– All higher odd moments and all cumulants with n ≥ 3 are identically zero, i.e. in

particular γ1 = γ2 = 0.

– Furthermore, one can show (Marcinkiewicz’s theorem [76]) that the normal

distribution is the only distribution having a finite number of non-zero cumulants.

– The equality ‘mean’ = ‘median’ = ‘mode’ holds (where ‘mode’ is defined as the lo-

cation of the maximum of the unimodal PDF).

Thus, γ1, γ2 as well as all higher cumulants and the differences

δ1 := median − 〈ρ〉 ; δ2 := mode − 〈ρ〉 , (66)

can serve as indicators of non-Gaussianity of P (ρ). There exists the general bound

(Mallows’ bound) for all PDFs with Σ < ∞:

|δ1| ≤ Σ , (67)

and for any unimodal PDF there is the sharper bound

|δ1| ≤
√

3

5
Σ ≈ 0.775 Σ . (68)
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Tables 1 and 2 show that δ1 > 0 for all tori, and thus we can consider the normalized

ratio δ1/Σ as another measure of non-Gaussianity. A possible non-Gaussianity may be

considered as small, if δ1/Σ is smaller by a factor of 10 than the upper bound (68), i.e. if

δ1/Σ ≤ 0.078 holds.

Some general properties of these histograms of ρ arise, independently of taking into

account the U73 union mask:

– All PDFs of ρ show a systematically weak negative skewness γ1 which is true also

for the infinite ΛCDM sample. This skewness is less pronounced for the torus at

L = 0.5LH .

– The PDFs for the 3−torus at L = 0.5LH are platykurtic, i.e. with a small negative

excess kurtosis γ2 = −0.115 (no mask) and γ2 = −0.109 (U73 mask).

– The PDFs of L = 1.0, 2.0LH and the ΛCDM are almost mesokurtic with γ2 very

small and positive (γ2 ≤ 0.085).

– The PDFs of L = 1.5 and 3.0LH are leptokurtic i.e. with γ2 positive between

γ2 = 0.138 and γ2 = 0.245.
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L/LH L(Gpc) R 〈ρ〉 median δ1 Σ δ1/Σ γ1 γ2

0.5 2.2227 12.57 49.275 49.376 0.101 2.723 0.037 −0.202 −0.115

1.0 4.4453 6.29 42.755 42.907 0.152 2.45 0.062 −0.339 0.085

1.5 6.6680 4.19 41.215 41.347 0.132 2.106 0.063 −0.372 0.175

2.0 8.8906 3.15 39.771 39.858 0.087 1.815 0.048 −0.273 0.085

3.0 13.3359 2.10 36.173 36.285 0.112 1.879 0.060 −0.356 0.201

NILC 35.434

SEVEM 36.290

SMICA 35.591

C-R 35.635

NSSC 35.738 35.613 −0.125 0.327 −0.380 0.971 −0.781

∞ ∞ 0 34.067 34.143 0.076 1.722 0.044 −0.248 0.035

Table 1: Table of ρ (no mask), 〈ρ〉 (ρ for the four Planck maps), median, δ1, standard deviation

Σ, δ1/Σ, skewness γ1 and excess kurtosis γ2 for each of the 3−torus side lengths and the infinite

ΛCDM. NSSC stands for the ensemble of the four Planck maps NILC, SEVEM, SMICA and

Commander-Ruler. The 3−torus comoving side length L is given in units of the Hubble length LH ,

and R = 2rSLS/L is twice the ratio comoving CMB angular diameter distance to the comoving side

length of the fundamental cell, with a distance to the CMB of rSLS = 14.0028 Gpc corresponding

to 3.15LH .

L/LH L(Gpc) R 〈ρ〉 median δ1 Σ δ1/Σ γ1 γ2

0.5 2.2227 12.57 49.542 49.634 0.092 2.645 0.035 −0.184 −0.109

1.0 4.4453 6.29 43.031 43.161 0.130 2.352 0.055 −0.304 0.054

1.5 6.6680 4.19 41.351 41.471 0.120 2.064 0.058 −0.339 0.138

2.0 8.8906 3.15 39.622 39.720 0.098 1.928 0.051 −0.274 0.069

3.0 13.3359 2.10 36.288 36.400 0.112 1.888 0.059 −0.360 0.245

NILC 36.639

SEVEM 36.662

SMICA 36.688

C-R 36.612

NSSC 36.650 36.650 6.9 10−5 2.8 10−2 0.002 −6.2 10−3 −1.304

∞ ∞ 0 34.132 34.206 0.074 1.809 0.041 −0.244 0.050

Table 2: Same as table 1 but with U73 mask.

no mask L/LH = 3 NSSC ΛCDM

〈ρ〉 36.173 35.738 34.067

δs −0.232ΣL3 +0.970ΣΛ

median 36.285 35.613 34.143

δs −0.358ΣL3 +0.854ΣΛ

U73 mask L/LH = 3 NSSC ΛCDM

〈ρ〉 36.288 36.650 34.132

δs +0.192ΣL3′ +1.392ΣΛ′

median 36.400 36.650 34.206

δs +0.132ΣL3′ +1.351ΣΛ′

Table 3: Table of the statistical deviations δs (see equations (69) and (70)), comparing 〈ρ〉 and

median of the Planck NSSC maps with the 3−torus at L/LH = 3, also denoted L3 (L3′ with

mask), and with the ΛCDM model, also denoted Λ (Λ′ with mask).
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In tables 1 and 2 one observes that the largest value for δ1/Σ is in the no mask case

0.063, and in the U73 mask case 0.059, which clearly indicates that the non-Gaussianities

of P (ρ) are small.21

Despite the overlap between the adjacent PDFs of each different 3−torus, one notices

that, to a given ρ-range, one can associate a given 3−torus side length following a

hierarchical ordering, i.e. the smaller the 3−torus, the larger the ρ-value. In addition,

the PDF of ρ for the infinite ΛCDM model is located beyond the PDF of the largest

chosen 3−torus at L = 3.0LH . This trend confirms the hierarchical dependence between

the size of the fundamental cell of the universe model and the value of the normalized

standard deviation ρ of the temperature gradient. Figure 4 shows, in contrast to figure

3, the distributions obtained from the CMB maps with the application of the U73 mask,

i.e. the pixels behind the U73 mask are ignored. It reveals a similar hierarchical ordering

with the mean and median ρ-values somewhat shifted to higher ρ-values for a given torus

ensemble, see also table 2.

The two figures 3 and 4 also display the value of ρ for each of the four foreground-

corrected Planck 2015 maps, NILC, SEVEM, SMICA and Commander-Ruler. In addition,

the arithmetic average 〈ρ〉 for these four Planck maps (NSSC) is shown (see tables 1 and

2). Their individual ρ-values are indicated by the four vertical lines in the two plots. These

ρ-values can be clearly distinguished in figure 3, where the foreground-contaminated pixels

are present. These ρ-values, however, nearly converge to the arithmetic average 〈ρ〉, when

the U73 mask pixels are rejected, as can be appreciated in figure 4. The arithmetic

average 〈ρ〉 = 35.738 of the four Planck maps is rather close to the arithmetic average

〈ρ〉 ∼ 36.173 of the 3−torus ensemble L = 3.0LH at −0.232ΣL3 (see equations (69) and

(70) for definition of the statistical deviations) when no mask is used, see table 1, and,

with the U73 union mask, the arithmetic average 〈ρ〉 = 36.650 of the four Planck maps

is +0.192ΣL3′ above the arithmetic average at 36.288 of the 3−torus sample L = 3.0LH ,

see table 2.

Without mask (see table 1), the median value 35.613 of the four Planck maps is

slightly below the median at 36.285 of the 3−torus ensemble, i.e. at −0.358ΣL3. With

the U73 mask (see table 2), the median of the NSSC maps at 36.650 is a little above, i.e.

at +0.132ΣL3′ of the median 36.400 of the 3−torus sample L = 3.0LH . These results of

the statistical deviation δs of 〈ρ〉 and median for the four NSSC Planck maps compared

with the 3−torus at L = 3.0LH are shown in the synoptic table 3. This table applies the

same method to compare the NSSC maps with the ΛCDM maps, and we discuss these

further results at the end of section 4.2.5.

The statistical deviation δs of the NSSC ensemble (denoted NSSC’ with mask) in

comparison with the 3−torus at L/LH = 3 (denoted L3 or L3′ with mask) or the ΛCDM

21 In table 2, the very tiny values of Σ, δ1/Σ and γ1 obtained for the NSSC maps using the

U73 mask are due to the fact that the observed maps constitute only one realization for a

single observer position, evaluated with different pipelines of analysis. If the observations and

the different pipelines were perfect, one would obtain a zero value. So, these tiny values are a

measure of the consistency of the four pipelines used by Planck in the case of the U73 mask

and should not be compared with the results obtained over the ensemble of 100 000 realizations

(different universe models or different observer positions separated by cosmological scales) for the

T 3 models and the ΛCDM model. For the same reason, the corresponding NSSC values in table

1 should not be compared with the ensemble-derived values.
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model ensembles (denoted Λ or Λ′ with mask) is defined the following way without mask:

δs :=



























〈ρ〉NSSC−〈ρ〉L3

ΣL3
, for 〈ρ〉 and the 3−torus at L/LH = 3

〈ρ〉NSSC−〈ρ〉Λ

ΣΛ
, for 〈ρ〉 and ΛCDM

medianNSSC−medianL3

ΣL3
, for the median and the 3−torus at L/LH = 3

medianNSSC−medianΛ

ΣΛ
, for the median and ΛCDM ,

(69)

and with U73 mask:

δs :=































〈ρ〉NSSC′ −〈ρ〉L3′

ΣL3′

, for 〈ρ〉 and the 3−torus at L/LH = 3

〈ρ〉NSSC′ −〈ρ〉Λ′

ΣΛ′

, for 〈ρ〉 and ΛCDM

medianNSSC′ −medianL3′

ΣL3′

, for the median and the 3−torus at L/LH = 3

medianNSSC′ −medianΛ′

ΣΛ′

, for the median and ΛCDM .

(70)

The ρ-statistics is thus favouring a 3−torus size slightly larger than 3LH in the case

without mask and is consistent with a 3−torus of side length 3LH ≈ 13.336 Gpc in the

case with U73 mask. The analysis of ρ median and 〈ρ〉 with respect to the 3−torus

side length L clearly shows (see the figures 3 and 4) that the derivatives are negative,

d(median)/dL < 0 and d〈ρ〉/dL < 0, as it is quantified by the linear equations (71), (72),

(73) and (74) obtained by linear least square fitting (thereafter LSF). Figure 5 shows the

relation between the side length L of the cubic 3−torus and the median or the arithmetic

mean of ρ obtained from the samples consisting of 100 000 maps.

Except below L = 1.0LH , the curves of L = f(median) and L = f(〈ρ〉) look close

to linear between L = 1.0LH and the three larger side lengths up to L = 3.0LH . In the

case without a mask, the linear least square fitting for the median case in the interval

36.285 ≤ mediannomask ≤ 42.907 yields

Lnomask(median)

LH
≈ −0.302 mediannomask + 13.981 , (71)

and for the 〈ρ〉 case in the interval 36.173 ≤ 〈ρ〉nomask ≤ 42.755, the LSF gives

Lnomask(〈ρ〉)
LH

≈ −0.304 〈ρ〉nomask + 14.021 . (72)

With applying the U73 mask, the LSF for the median case in the interval

36.400 ≤medianU73 ≤ 43.161 yields

LU73(median)

LH
≈ −0.295 medianU73 + 13.751 , (73)

and for the 〈ρ〉 case in the interval 36.288 ≤ 〈ρ〉U73 ≤ 43.031, the LSF gives

LU73(〈ρ〉)
LH

≈ −0.296 〈ρ〉U73 + 13.750 . (74)

One may visually observe in figure 5 the better agreement with the linear behaviour of the

curves with U73 mask (small dotted line for the median-case or small dashed line for the

〈ρ〉-case) in comparison to the slightly twisted curve (solid line or dotted dash line for the

〈ρ〉-case) obtained without mask pixel suppression. The χ2 comparing the data points to

the LSF’s being with U73 mask 1.72 10−6 for the median and 7.5 10−7 for 〈ρ〉, while the

χ2 without mask is 2.929 10−5 for the median and 4.040 10−5 for 〈ρ〉. These χ2-values are

∼17 (for the median) and ∼ 54 (for 〈ρ〉) times larger without mask than with U73 mask.

Thus, given the median and average ρ values of the four Planck NSSC maps, these LSF’s

of the data points yield, with the hypothesis of a flat 3−toroidal topology of our Universe,
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Figure 5: The side length L/LH of the 3−torus as a function of the median of ρ in black and of

〈ρ〉 in magenta, for L/LH = [0.5, 1.0, 1.5, 2.0, 3.0]. The median case without mask is in black solid

line, and in black small-dotted line with U73 mask; the 〈ρ〉 case without mask is in dotted-dashed

line, and in small-dashed line with U73 mask. For the median case, the thick black cross in the

upper left at L/LH ≈ 3.229, respectively the thick black dot at L/LH ≈ 2.920, point at the side

length of the T 3 estimated from equation (71), respectively equation (73), using as argument the

〈ρ〉 of the NSSC Planck maps without mask, respectively with U73 mask. Similarly, for the 〈ρ〉
case of the Planck maps, the equation (72) without mask points at a side length of L/LH ≈ 3.164

(the solid square in the upper left), respectively the equation (74) with U73 mask pointing at a

side length of L/LH ≈ 2.889 (the thick inferior dot).

a side length between 2.89 and 3.23 (3.16 ≤ L/LH (no mask) ≤ 3.23 and 2.89 ≤ L/LH

(U73 mask) ≤ 2.92).

According to the works [11], [38] and [77], 3−torus side lengths that are barely bigger

than the CMB diameter (Llimit = 2.2rSLS, which translates to 6.93LH , corresponding to

a threshold ratio R = 0.91), do not allow for a clear detection of a multiply connected

topology in the sense of the Kullback–Leibler divergence. A reasonable spatial section

size that results in no difference with the infinite Universe was proposed in [38] to be

L∞ = 4rSLS = 12.6LH giving R = 0.5. For this chapter we did not calculate ρ-values

for L bigger than three Hubble radii to analyze the asymptotic behaviour of L = f(ρ)

presented in figure 5.

4.2.3 Comparison of two tori: L = 0.5 LH and L = 3.0 LH

T
he CMB map for a 3−torus topology at L = 0.5LH is shown in figure 6 and reveals

that the small–scale structures are dominant, i.e. the anisotropy gradients at the

smallest scales are strong almost everywhere, while no obvious structure at large scales

appears. This contrasts to the CMB map for a six times larger 3−torus at L = 3.0LH

(figure 7), where the small–scale structures are superposed by large–scale structures, i.e.

larger areas with similar temperatures are patching the CMB map. This is caused by the

decreasing suppression of large–scale fluctuations with increasing size of the fundamental
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cell, which is also revealed by the multipole spectrum Cl or the 2–pcf C(ϑ). The small

smoothing scale of ϑG = (1/3)◦, which is applied in the CMB maps shown in figures 6

and 7, does not influence those features.

In both cases, a scale typical for the underlying 3−torus size visually betrays the

topology (see the 2–pcf signature of each of these side lengths in figures 8 and 9). This

visual illustration is in accordance with the conclusions in section 4.2.2 that the normal-

ized local CMB gradient ρ characterizes and quantifies the 3−torus side length.

The CMB maps of different 3−torus sizes and of the infinite ΛCDM model have to

be normalized in order to get the first acoustic peak of the power spectrum at the same

level as in the Planck observation map. To this aim, the transfer function is computed for

each averaged torus model, and the 1st acoustic peak of the corresponding Cl spectrum

is fitted to the 1st peak of the Planck spectrum.

Figure 8 (respectively figure 9) display, for the case without mask, the average 2–pcf

(over 100 000 simulation maps) of the torus at L = 0.5LH (respectively at L = 3.0LH),

compared with the average 2–pcf of the ensemble of 100 000 ΛCDM simulation maps and

to the average 2–pcf of the four NSSC Planck maps.

An examination of the 2–pcfs of the cubic torus with L = 0.5 (shown in figure 8),

and 3.0LH (shown in figure 9) reveals the following:

– the torus with L =0.5LH has no correlation for the pairs of pixels separated by more

than 30◦, on average;

– between 10◦ and 30◦, and between 60◦ and 145◦, the average 2–pcf for L = 3.0LH

fits well the average 2–pcf of the Planck NSSC, better than the average 2–pcf of the

ΛCDM model;

– for the small angles ϑ below 30◦ also the ±1σ confidence region of the 3−torus at

L = 3.0LH does not overlap with the corresponding region of the ΛCDM model.
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Figure 6: This figure shows a simulated CMB sky map (having the monopole and dipole

subtracted) for a small cubic 3−torus fundamental cell of L = 0.5LH . The resolution parameters

are Nside = 256, lrange = [2, 256] and ϑG = (1/3)◦.

Figure 7: Figure showing a simulated CMB sky map (having the monopole and dipole subtracted)

for a cubic 3−torus fundamental cell of L = 3.0LH , which is six times larger than the one used

for figure 6. The resolution parameters are those of the figure 6.
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Figure 8: For 100 000 CMB maps without mask, at Nside = 128, lmax = 256 and a Gaussian

smoothing of 2◦fwhm: the average two-point correlation functions of the ΛCDM ensemble in large-

dashed black line, of the torus at L = 0.5LH in green small-dashed line; ±1σ in dark shaded area

and ±2σ in light shaded area are shown versus the average 2–pcf of the four Planck NSSC maps

in solid blue line.
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Figure 9: Same as figure 8, but for the torus at L = 3.0LH .
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4.2.4 Isotropy and homogeneity of the CMB with torus topology

W
e define a discrepancy function of the histogram of P (ρ) shown in figure 3 by

∆P (ρ) :=
PIHG(ρ) − P (ρ)

max(PIHG)
, (75)

where the histogram PIHG(ρ) is determined from the equations (58) and (59), while the

histogram P (ρ) is determined using equations (57) and (42). This quantifies the drift of

the 3−torus CMB maps from the hypothesis of isotropy and homogeneity. We present

in figure 10 the shape of the function (75) for the map ensembles of the ΛCDM and the

3−torus.
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Figure 10: The level of isotropy and homogeneity of the CMB in a Universe with 3−torus

topology is quantified with the discrepancy functions ∆P (ρ) of the histogram of P (ρ) without

mask. This figure is presented in solid lines with from left to right the ΛCDM in black, the

3−torus at 3.0LH in blue, 2.0LH in green, 1.5LH in magenta, 1.0LH in brown and at 0.5LH in

light brown.

The discretization of figure 10 is due to the very close values taken by the two

histograms in each bin so that the discrepancy function progresses by leaps, because the

histograms with IHG or without IHG differ only by zero or by a few multiples of unity

before normalization. Despite the large number of 100 000 maps used for this ρ-statistics,

figure 10 does neither present a smooth behaviour nor shape similarities from one 3−torus

to another. Finally, this test proves the extremely high level of isotropy and homogeneity

(in the sense of the formulas (58) and (59)) of all the ensembles of maps. This test over

100 000 maps allows to draw a firm conclusion, confirming that the ΛCDM CMB map

ensemble is closer to the perfect IH (this is not a test of IHG but only of IH). The violation

of the isotropy in the sense of ρ is nearly as small as for the five CMB map ensembles

of the 3−torus under scrutiny given that |∆P (ρ)| < 0.18% for all the map ensembles.

Thus, the relative global anisotropy of the 3−torus models barely appears here and we
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will come later to methods able to detect it. Very likely, a similar analysis applied to the

same large sample sizes but with a higher spatial resolution would lead to the same weak

anisotropy and inhomogeneity.

4.2.5 Discussion and outlook on ρ

T
he 3−torus simulations of the CMB temperature anisotropies were computed by

implementing the following effects of the Boltzmann physics and the influence of the

discrete spectrum of vibrational modes dictated by the topology: the roster of physical

ingredients of the 3−torus simulations includes the ordinary and integrated Sachs-Wolfe

effects, the Doppler effect, Silk damping, reionization, photon polarization and neutrinos.

The computation of the CMB anisotropies (CMB power spectrum) is carried out along

the lines presented in [78]. We use as in [12] the definition of low-l values l ∈ [2, 29]

(see e.g. their figures 2 and 3 on page 6 of [12]) and high-l values for l ≥ 30. At high-l

values, the angular power spectrum δT 2
l := l(l+1)Cl/2π gets smoother and smoother and

approaches for instance, near the first acoustic peak at l = 221 and for all the different

3−torus side lengths, the ΛCDM result (shown in [12], figure 57).

For the CMB simulations in the ΛCDM model, in addition to the effects enumerated

above, lensing is present too. However, the impact of lensing would be sensitive for

maps with lmax ≥ 400 (see [79]) but all of our maps are limited to lmax = 256, and are

furthermore smoothed to a resolution of 2◦ f.w.h.m. Because of this smoothing we have

almost no power above l = 100 ... 150. Thus, the comparison between the 3−torus and

the ΛCDM CMB maps remains unaffected by the effect of weak lensing in the ΛCDM

simulation maps. Fully accounting for all these effects in a universe model with multiply

or even simply connected topology for an analytic prediction of CMB observables such as

ρ, or for a statistics such as the 2–pcf, is for the moment out of reach. The σn’s defined

for n = 0, 1, 2, ... by [59],

σ2
n :=

∞
∑

l=2

2l + 1

4π
Cl|Fl|2

(l + n)!

(l − n)!
, (76)

are decreasing functions of ϑG, the scale of Gaussian smoothing (full width at half

maximum), defined in equation (63). However, the decrease of (76) does not imply that the

normalized variance of the gradient field, ρ =
√

σ2
1/σ

2
0, of a CMB map is also everywhere

a decreasing function of the smoothing angle ϑG.

In a flat Universe having three infinite spatial directions such as the ΛCDM model

the spectrum is continuous. The average 2–pcf of the CMB map sample in the ΛCDM

model (large-dashed line e.g. in figure 9) shows correlations at all angular scales.

Our investigation shows that ρ is a powerful signature probe that is sensitive to the

size and the compactness of the spatial sections of the Universe. The ρ-statistics allows to

hierarchically discriminate compact fundamental cells having the same 3−torus topology

but different volumes. A clear distinction between a multiply connected flat universe

model (the cubic 3−torus) and a simply connected flat universe model with infinite spatial

sections (the ΛCDM model) is nicely verified for torus side lengths smaller than L ∼ 3LH

as shown in figures 3 and 4. For tori larger than about L = 3.0LH (see the discussion

at the end of section 4.2.2), the calculation of a more refined grid of models would be

needed. Different observables allow to detect a given multiply connected topology in a

different way. On the one hand, the 2–pcf is able to detect on the CMB map the different
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angular scales and the size of a given fundamental domain. On the other hand, ρ is by

definition extremely sensitive to a change of the normalized CMB gradient as a function

of the domain size and of the smoothing angle and amplitude. The ρ-statistics furnishes a

complementary test of the multiply connected nature of the Universe along with the 2–pcf.

The present results based on samples of 100 000 CMB maps with cubic torus topology are

consistent with a Dirichlet domain side length of our Universe of ∼ 3.20LH , or ∼ 2.90LH

when the Planck and torus maps are cleaned up from the contaminated mask pixels. The

investigated ρ-test may be included in future Bayesian analyses of model selection, with

the expectation that a torus model in the above size range with the U73 mask might be

favoured over the flat infinite model.

For the Planck maps, the 3−torus size around three Hubble radii or below, inferred

from this ρ-study, is therefore slightly smaller than the torus size of 3.69LH inferred

from the 2–pcf investigations. It remains to be seen whether other statistics like the

Minkowski functionals, may lead to a slightly different optimal torus size. The sources of

such a difference as well as the systematically negative skewness are currently investigated

and thoroughly probed in other projects that employ the Minkowski functionals and

topological characterization using Betti numbers and homological concepts such as

hierarchical persistence, e.g. [80]. It will have to be verified that ρ could more generally

detect size changes in finite fundamental cells of any geometry and topology. The

vibrational modes (wave numbers and eigenfunctions of the Laplacian) along each compact

spatial section and the interference (destructive or constructive) of these vibrational modes

reveal the possible shapes of the underlying topological manifold. The 2–pcf says nothing

about the non–Gaussianity of a random field. For some compact manifolds there are

analytic premises of the CMB 2–pcf for the Sachs-Wolfe contribution, e.g. for the Poincaré

dodecahedron [29], and general spherical spaces [29, 30]. Thus, the 2–pcf and ρ lead to

identical diagnoses in two conceptually different ways.

The possibility of detecting the circle-in-the-sky (CITS) signal of a multiply

connected topology has been discussed at the end of section 4.1.3. It is a geometric

signal, while the 2–pcf and ρ are statistical observables. In [11], ΛCDM temperature

simulation maps (with noise and Gaussian smoothing of the Planck SMICA map) with

cubic 3−torus topology at L/LH = 2 present all the pairs of matched circles that are

expected. Also for the associated simulation maps of E-mode polarization, the multiply

connected topology is detected with the S−
max(α) statistics. However, the same detection

tools applied to the Planck 2015 observation maps for different circle patterns show no

evidence of multiply connected topology with a size smaller than the distance to the CMB,

i.e. L ≈ 3.15LH . In view of recent survey results regarding the strong ISW effect, it is

possible that this ISW signal (which is stronger than in the ΛCDM 3−torus simulations)

impairs the detection of the CITS signal.
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[33] Roukema B F, Buliński Z, Szaniewska A and Gaudin N E 2008 The optimal
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5 CMB non-Gaussianity: a model-independent analysis

T
his second research paper presented in my PhD thesis investigates the non-

Gaussianity of the CMB temperature map a model-independent way. Thomas

Buchert, my PhD supervisor, suggested that for the purpose of a paper we go further

in the application, to the CMB map, of the morphological and statistical descriptors

said Minkowski functionals (MFs). MFs have been first applied to cosmology by Mecke,

Buchert and Wagner then implemented by Schmalzing and Buchert using excursion sets

and adapted to the analysis of the CMB temperature anisotropy by Schmalzing and

Górski (see the bibliography in this chapter).

In the literature the weak non-Gaussianity (weak NG) of the CMB temperature map

was often probed a model-dependent way. Indeed, Thomas Buchert, Frank Steiner and

me were intrigued by papers of T Matsubara working out analytical formulae of the MFs

of the CMB using perturbation theory and imposing hierarchical ordering of the PDF

cumulants (this hierarchical ordering was assumed in some models of inflation). These

perturbative expansions of the CMB NG were developed as power series of σ0 the standard

deviation of the CMB temperature anisotropy. But σ0 was not small, as it should be for

such perturbative expansions which are valid in the neighbourhood of zero.

Frank Steiner devised model-independent expansions of the CMB non-Gaussianity

without use of the perturbation theory and for arbitrarily large NG. We calculated the

signatures of CMB deviation from Gaussianity by expressing them in terms of discrepancy

functions (normalized difference of each given descriptor and its Gaussian premise) and

this for the PDF and the 3 MFs. Our expansions of the CMB NG made use of the

Hermite orthogonal polynomials (method of Gauss-Hermite quadrature denoted thereafter

GHQ). I developed and adapted the formalisms giving me a base to write numerically

implementable algorithms. Thus my computations allowed us to analyse large ensembles

of CMB maps (100 000 to 200 000) in terms of discrepancy functions of the PDF and the

three MFs and to calculate the GHQ expansions and the model-dependent expansions

with hierarchical ordering. Our comparative results showed that our model-independent

method was, for a given order of expansion, a better fit to the CMB non-Gaussianity

than the model-dependent expansion with hierarchical ordering. I wrote the draft of

the paper in LATEX and we iterated with Buchert and Steiner to finalize and submit

Model-independent analyses of non-Gaussianity in Planck CMB maps using

Minkowski functionals (published in 2017) (see references page xvi). I contributed

much to the investigations, algorithmics, computing, bibliography and redaction but the

alphabetical authorship (Thomas Buchert, Martin J France and Frank Steiner), adopted

generally for papers in e.g. high-energy physics, was decided.

5.1 CMB statistics in the infinite ΛCDM Universe

Probing the non–Gaussianity of the CMB temperature map

I
n his March 26, 2010 talk (Observational Constraints on Primordial Non–Gaussianity)

during the ‘Non–Gaussian Universe’ workshop at the Yukawa institute (YITP),

Eiichiro Komatsu [1] concluded about the statistical analysis of the Cosmic Microwave
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Background (CMB): “So far, no detection of primordial non–Gaussianity of any kind by

any method”22. This conclusion, strengthened by the analysis of the last available CMB

data at the time (WMAP 7yr)—and the reader may judge, after reading this chapter

and in the future, whether we can say more after Planck—sounded like a challenge to

the cosmological community. An ongoing challenge, because the high–precision Planck

CMB data are certainly not exhaustively analysed today. A challenge also as there

are as many analytical definitions of ‘non–Gaussianity’ as there are different statistical

descriptors calling for the application of unified statistical analysis tools. But mostly a

challenge, because in the frame of the ΛCDM model and various inflationary models, a

non–detectable up to a non–negligible primordial non–Gaussianity may be expected [2–4],

as measured by bi– and tri–spectra [5]. In various other models of primordial physics

we may expect different kinds of primordial non–Gaussianity for the CMB as, e.g., in

string gas cosmology [6], or even large non–Gaussianity such as in some ekpyrotic phase

models [7]. Furthermore, it is a challenge given that a sufficiently high tensor–to–scalar

ratio r should allow for a slight detection of primordial gravitational waves with the

non–Gaussianity of the CMB polarization (B–mode) and temperature maps correlation

function (〈BTT 〉 bispectrum)23 [9,10] and see (inter alia) the chapter 7 “Lensing and the

CMB” in the book by Durrer [8].

Given the variety of potential contaminations in the cosmic microwave background

map, a good strategy to analyse it and discriminate primordial non–Gaussianity

from secondary effects is not only to multiply the statistical methods, but to head

for model–independent estimators. For that, integral geometry provides us with a

general mathematical framework where a small set of descriptors allows for a complete

morphological analysis over random fields such as the CMB temperature maps. The

descriptive power of integral geometry relies on the polynomial of convex bodies in

three dimensions, introduced by J. Steiner (1840) [17], its generalization to the mixed

volume associated to a convex body by Minkowski [18], and the Blaschke problem and

diagram. Then, the Bonnesen enhanced isoperimetric inequality (1921), the Aleksandrov

(Fenchel) inequalities (1937), the Hadwiger works and theorem (1955, 1957) [19], the

studies by Santaló (1976) [20], the statistical predictions for random fields by Adler

(1981) [21] and the work by Tomita (1986) [22,23] bring the key mathematical foundations

to the Minkowski Functionals (henceforth ‘MFs’). Interesting theoretical and applied

developments are found in the mathematical reviews by Groemer [24], Schneider [25] and

Mecke [26].

The theory of 2D Gaussian random fields on the CMB 2–sphere was developed by

Bond and Efstathiou (1987) [27]. They applied it to the number density of hot and cold

spots and to the ellipticity of peaks. This has later been generalized for extrema counts

and ellipticity contour lines by Aurich et al. [28] and also by Pogosyan et al. [29–31].

Minkowski Functionals comprise the by now well–known set of scalar functionals,

being rotation and translation invariant, Minkowski additive24, and conditionally

continuous. This set of MFs describes the morphology of any convex body25 in a

22 http://wwwmpa.mpa-garching.mpg.de/˜komatsu/talks.html .
23 However, small angular scales (l>200) temperature anisotropies have to be analysed to reach the

convergence power spectrum of the B–modes; unfortunately, at such scales the Sunyaev–Zel’dovich

effect and reionization scattering pollute the temperature lensing reconstruction.
24 Minkowski additivity assigns a functional of the union of bodies to the functionals of the

individual bodies minus the functionals of their intersection.
25 Even more generally, the morphology of non–convex bodies is made possible using the property
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complete and unique way in the sense of Hadwiger’s theorem. The explicit introduction

of the MFs into cosmology (describing the morphology of galaxy distributions) was made

in statistics of large–scale structure using the Boolean grain description by Mecke et

al. (1994) [32] with follow–up studies of galaxy catalogues [33–35]; Kerscher wrote a

review on the MFs including applications to cosmology [36]. In 1997, Schmalzing and

Buchert introduced the MFs for the excursion set approach, suitable for any density

or temperature contour maps [37]. In 1998, Schmalzing and Górski are the first to

apply the set of 3 + 1 MFs of the CMB 2–sphere (curvature=+1) to COBE DMR data

excursion sets on a quadriteralized spherical cube tesselation (6 [22(N−1)] pixels) [38],

implementing also the Gaussian premises predicted in 1990 by Tomita [39]. (See also [40].)

Also, galaxy catalogues have been analysed with the excursion set approach [41, 42],

and a generalization to vector–valued MFs has been proposed [43] and applied to the

morphological evolution of galaxy clusters [44].

At present, many fundamental tools are available to take up the challenge in the

broad sense of several different but unified statistical descriptors to ask: is the cosmic

microwave background Gaussian? Looking at CMB non–Gaussianity within the MF

approach was first undertaken by Winitzki and Kosowsky [45], and by Novikov et al [46].

Following work by Takada et al. [47] on the detectability of the weak lensing with the

two–point correlation function, a further study predicts that the weak lensing effect could

be detected directly with the MFs v1 and v2 [48]. Not only this capability of the MFs was

confirmed in later work, but also the lensing–induced morphology changes in modified

gravity theories could be detected. Furthermore, the lensing and the Sunyaev–Zel’dovich

non–Gaussianity can be separately detected with MFs, all of this for CMB temperature

maps at high resolution (up to ℓ = 3000) [49]. Specific, regional morphological features

like the Cold Spot could be detected by local analyses with MFs [50].

Since then the majority of works rely on model assumptions, either by testing a given

inflationary model as in [46], or explicitly replacing the analytic Gaussian premises for

the MFs by the MFs of a grid of ΛCDM model maps: the so–evaluated deviations from

non–Gaussianity yield what we below call the ‘difference of the normalized MFs’ (abridged

by Df) (see [51–56], to mention only a few works in this context). These authors argue

that the noise, the mask and the pixel effects are better taken into account by using

a model ensemble rather than using analytical predictions for evaluating the data map

non–Gaussianity.

Ade et al. [56] propose a rather exhaustive (claimed model–independent)

investigation of the CMB isotropy and statistics and neither reach a clear rejection

nor a confirmation of the standard FLRW cosmological model. It is then a natural

next step to investigate perturbative models at a FLRW background (here the works

by Matsubara [57, 57, 59] stand out as a sustained such attempt). In this chapter we

follow another route. We focus on and specify model–independent methods to quantify

non–Gaussianity, and we compare with what is obtained when applying the standard

model–dependent perturbative ansatz. General perturbative expansions are based on

series of terms, some of which are solely specified in terms of the chosen model [60–62],

leaving a certain degree of arbitrariness in the application of perturbation theory. Beyond

perturbation theory taken in this broad sense, we can fundamentally explore the non–

Gaussianity only when using non–perturbative expansions. We shall introduce these latter

paying careful attention to some methodological details that may have a strong impact

of Minkowski additivity, extending the analysis to the convex ring.
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on the extremely weak level of CMB non–Gaussianity.

5.2 PDF and Minkowski Functionals of the CMB map

T
he CMB anisotropy δT is described by a scalar random field on the surface of

last scattering. The CMB support manifold is idealized by the constant curvature

2−sphere S2, but different supports of variable curvature may be envisaged for the CMB.

Furthermore, the thickness of the surface of last scattering is not taken into account.

The manifold S2 is very convenient and universally adopted and we use it in the present

work too. Upon this chosen manifold, any statistical descriptor such as the Minkowski

Functionals is otherwise model–independent.

5.2.1 Probability density function of the CMB temperature map

A
n important statistical descriptor of the random variable δT is its probability density

function (PDF) or frequency function P (τ) ≥ 0, where we assume that τ can take on

any real value, and P (τ) is continuous. (The more general case will be discussed below.)

P (τ)dτ gives the probability of finding δT in between τ and τ + dτ . Hence, P (τ) is

normalized to unity.

Figure 11 shows the 105 histograms envelope of the individual PDFs in the ΛCDM

sample over a total temperature range ±396.5µK, divided into 61 bins of 13µK. Detailed

informations regarding the ΛCDM map sample generation, the numerical methodology,

and the conventions adopted for the analysis all along this work are given in Appendix

8.2.

From P (τ) one obtains the cumulative distribution function F (τ) (CDF),

F (τ) := prob(δT < τ) =

∫ τ

−∞
P (τ ′)dτ ′ , (77)

respectively, the complementary cumulative distribution function FC(τ) (CCDF)26,

FC(τ) := prob(δT ≥ τ) =

∫ ∞

τ
P (τ ′)dτ ′ = 1 − F (τ) , (78)

satisfying F (−∞) = 0, F (∞) = 1, respectively, FC(−∞) = 1, FC(∞) = 0. Note that

F (τ) is non–decreasing and prob(τ1 ≤ τ < τ2) = F (τ2) − F (τ1).

For a continuous function f : R → R, f(δT ) is again a random field whose expectation

value is defined as:

〈f(δT )〉 :=

∫ ∞

−∞
f(τ)P (τ)dτ , (79)

if the integral exists. An important role is played by the moments αn of δT ,

αn := 〈(δT )n〉 :=

∫ ∞

−∞
τnP (τ)dτ ; n = 0, 1, 2, · · · , (80)

26 It will turn out that FC(τ) is identical to the Minkowski Functional v0 (see below).
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Figure 11: ΛCDM map sample, Nside=128, ℓrange=[2,256] without mask, 2◦ fwhm, for a 13µK

temperature bin width over the largest temperature range of the sample (±396.5µK). We plot

the envelope of P(τ) histograms for the ensemble of 105 simulation maps. Each PDF histogram is

normalized to 1 (the cosmic variance being not shown here as it is not normalized to 1). The small

asymmetries of this envelope reflect a non–vanishing skewness. The average of all the individual

PDFs is the white histogram from which the centre τℓ of each white horizontal segment serves as

comparison point with the Gaussian hypothesis (of the averages), used to calculate the discrepancy

function. (Model and computational details are given in Appendix 8.2).

the central moments mn (i.e., the moments about the mean µ := α1),

mn := 〈(δT − µ)n〉 :=

∫ ∞

−∞
(τ − µ)nP (τ)dτ , (81)

and the cumulants κn := 〈(δT )n〉C . The generating function of the moments αn is given

by:

M(x) :=
〈

exδT
〉

=

∫ ∞

−∞
exτP (τ)dτ =

∞
∑

n=0

αn
xn

n!
, (82)
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from which one obtains the generating function of the cumulants κn,

C(x) := lnM(x) =
∞
∑

n=1

κn
xn

n!
. (83)

The first few moments and cumulants are α0 = m0 = 1, the mean values µ := α1 = κ1,

respectively, m1 = 0, and the variance σ2
0,

σ2
0 :=

〈

(δT − µ)2
〉

= m2 = α2 − µ2 = κ2 , (84)

respectively, the standard deviation (uncertainty) σ0 =
√

α2 − µ2. There are the following

recurrence relations:

mn =
n
∑

r=0

(

n

r

)

(−1)n−rµn−rαr ; n = 0, 1, 2, · · · , (85)

and, for n ≥ 2:

κn = mn −
n−1
∑

r=1

(

n− 1

r − 1

)

κrmn−r . (86)

Any odd non–vanishing central moment m2n+1 of the CMB anisotropy δT is a measure

of the skewness of P (τ); the simplest of these is

m3 = κ3 = α3 − 3µα2 + 2µ3 , (87)

respectively, the dimensionless skewness coefficient

γ1 :=
m3

σ3
0

. (88)

This latter indicates a possible asymmetry of P (τ), i.e., whether the left tail (γ1 < 0) or

the right tail (γ1 > 0) is more pronounced. Another important measure of the “tailedness”

of P (τ) is the dimensionless excess kurtosis (sometimes simply called kurtosis or excess),

γ2 :=
m4

σ4
0

− 3 . (89)

It should be stressed that the basic equations (77), (78), and (79) will in general only

hold for the theoretical continuous limit distributions of the CMB anisotropy in the sense

of ensemble averages in the limit of an infinite ensemble (infinitely many realizations).

For a single realization, as it is the case for the data obtained by WMAP or Planck, or

in computer simulations using a large but finite number of realizations, the distributions

will in general not be continuous but rather discrete and, thus, the PDF will not satisfy

P (τ) = dF/dτ = −dFC/dτ , as is implied by (77), respectively (78). Instead, the above

Riemann integrals have to be replaced by Riemann–Stieltjes integrals such that, for

example, the expectation value (79) is given by:

〈f(δT )〉 :=

∫ ∞

−∞
f(τ)dF (τ) . (90)

The last relation even holds in cases where F (τ) is ill–behaved, for example, if F (τ) has

at most enumerably many jumps at the discrete points τℓ, and as long as F (τ) is a CDF.

In this case one has (if the integral and the sum over ℓ converge):

〈f(δT )〉 :=

∫ ∞

−∞
f(τ)F ′(τ)dτ +

∑

ℓ

f(τℓ)[F (τℓ + 0) − F (τℓ − 0)] , (91)
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where F ′(τ) is the almost everywhere existing derivative of F (τ). An example is the case

where F (τ) is given as a histogram, i.e., it is a step function and, thus, F ′(τ) ≡ 0 almost

everywhere.

The non–Gaussianities, which are the subject of this chapter, are defined as

deviations from the analytically known Gaussian prediction for the PDF and for the

Minkowski Functionals that we shall introduce below. In the case of the PDF, the

Gaussian prediction (G) is given by the normal distribution,

PG(τ) =
1√

2πσ0

e
− (τ−µ)2

2σ2
0 , (92)

which has mean µ and variance σ2
0. From (92) one derives with (82) the moment generating

function,

MG(x) = e µx+
σ2

0
2

x2
, (93)

and with (83) the generating function for the Gaussian cumulants,

CG(x) = µx+
σ2

0

2
x2 . (94)

Our numerical results for the CMB anisotropy are based on an ensemble of 105 realizations

(for details, see Appendix 8.2). It turns out that the mean value µ = 〈δT 〉 (calculated

from pixels) is negligibly small, µ = O(10−7µK) for sky maps that cover the full sky.

Since typical values for the standard deviation σ0 are σ0
∼= 59µK, the ratio µ/σ0 is much

smaller than τ/σ0 and, thus, we can put µ = 0 in (92) when comparing with the full PDF.

We then obtain from equations (82) and (93) the well–known result that all odd moments

of the Gaussian prediction PG(τ) vanish, αG
2n+1 = 0, and that the even moments are given

by:

αG
2n =

2n

√
π

Γ

(

n+
1

2

)

σ2n
0 =

(2n)!

2nn!
σ2n

0 , (95)

and increase with increasing n. (Note that mG
n = αG

n .) Equation (95) gives αG
4 = 3σ4

0 and,

thus, one obtains from (88) and (89) γG
1 = γG

2 = 0, which shows that a non–vanishing

value of the skewness coefficient γ1 and/or of the excess kurtosis γ2 are quantitative

measures of non–Gaussianity. A comparison of equation (94) with equation (83) shows

that all Gaussian cumulants vanish apart from κ
G
2 = σ2

0 and, therefore, any non–vanishing

cumulant with n ≥ 3 is a measure of non–Gaussianity.
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5.2.2 Discrepancy functions and Hermite expansions

I
n the present chapter we pursue a general model–independent approach to the PDF and

to the Minkowski Functionals (MF) that depends, in general, on all higher–order poly–

spectra. As a measure of non–Gaussianity using the PDF, we consider the dimensionless

discrepancy function ∆P (τ), defined by:

∆P (τ) :=
P (τ) − PG(τ)

PG(0)
, (96)

with PG(0) = (
√

2πσ0)−1 = max{PG(τ)}. Here, P (τ) denotes the ensemble average

over a large number of realizations (105 in our case), compatible with µ = 〈δT 〉 = 0,

and possessing the standard deviation σ0. The Gaussian prediction is defined by

equation (92) for µ = 0, and by identifying the standard deviation with the value σ0

that is numerically obtained from P (τ), i.e., αG
n = αn for n = 0, 1, 2, respectively κ1 = 0

and κ2 = σ2
0.

Although some models of inflation predict large non–Gaussianities for P (τ), there is

clear evidence from WMAP and Planck data, [51, 52, 55, 56], that possible deviations

from the Gaussian prediction PG(τ) are very small. Under very general conditions

(for details see 8.5), ∆P (τ) can be written as a product of a Gaussian and a function

h(ν) ∈ L2(R, w(ν)dν), where w(ν) denotes the weight function, w(ν) = exp(−ν2/2),

expressed in terms of the dimensionless scaled temperature variable ν := τ/σ0 ∈ R.

The Hermite polynomials Hen(ν) provide a complete orthogonal basis in the Hilbert

space L2(R, w(ν)dν). Therefore, h(ν) possesses a convergent Hermite expansion (see 8.5)

and we are led to

∆P (τ) = e−τ2/2σ2
0

∞
∑

n=3

aP (n)

n!
Hen

(

τ

σ0

)

, (97)

which describes the non–Gaussian “modulations” of the PDF. Possible non–Gaussianities

are parametrized by the real dimensionless coefficients aP (n), where the non–vanishing

of any of them is a clear signature of non–Gaussianity. We would like to point out

that the Hen(ν) are the “probabilist’s Hermite polynomials” that are different from

the Hermite polynomials Hn(ν) commonly used in physics and which are defined with

respect to the weight function exp(−ν2). In the cosmology literature the Hen(ν) are

used, but unfortunately denoted as Hn(ν)! The relation between the two is Hen(ν) =

2−n/2Hn(ν/
√

2), (see, e.g., [63]). Our condition on h(ν) is satisfied as long as P (τ) and,

thus, also ∆P (τ) are piecewise continuous, and if h(ν) = o(exp(ν2/4)/
√

|ν|) for |ν| → ∞
(see 8.5). It is clear that the expansion (97) is particularly useful if only a few terms have

to be taken into account such that the series can be cut off at a low value n = N , i.e.,

can be well–approximated by a polynomial of degree N .

In order to obtain a physical interpretation of the non–Gaussianity (NG) parameters

aP (n), we insert P (τ) = PG(τ)+[1/(
√

2πσ0)]∆P (τ) into the definition (82) of the moment

generating function M(x), which in turn gives with (83) the following generating function

of the cumulants κn of P (τ) (see 8.3):

C(x) =
σ2

0

2
x2 + ∆C(x) , (98)

with

∆C(x) := ln

[

1 +
∞
∑

n=3

aP (n)σn
0

n!
xn

]

=
∞
∑

n=3

κn

n!
xn . (99)
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Then, the cumulants are κ1 = 0, κ2 = σ2
0, and the higher cumulants, for n ≥ 3, are

uniquely determined by (99). Here are the first coefficients aP (n), expressed in terms of

the skewness coefficient γ1, equation (88), the excess kurtosis γ2, equation (89), and the

dimensionless normalized cumulants,

Cn :=
κn

σn
0

=
〈(δT )n〉C

σn
0

: (100)

aP (3) = γ1 ; aP (4) = γ2 ; aP (5) = C5 ; aP (6) = 10γ2
1 + C6 ;

aP (7) = 35γ1γ2 + C7 ; aP (8) = 56γ1C5 + 35γ2
2 + C8 ;

aP (9) = 280γ3
1 + 126γ2C5 + 84γ1C6 + C9 ;

aP (10) = 2100γ2
1γ2 + 120γ1C7 + 210γ2C6 + 126C2

5 + C10 ;

aP (11) = 5775γ1γ
2
2 + 4620γ2

1C5 + 165γ1C8 + 330γ2C7 + 462C5C6 + C11 ;

aP (12) = 15400γ4
1 + 5775γ3

2 + 27720γ1γ2C5 +

9240γ2
1C6 + 220γ1C9 + 495γ2C8 + 792C5C7 + 462C2

6 + C12 . (101)

Note that there is the general closed expression in terms of the normalized cumulants

(n ≥ 3):

aP (n) = Bn(0, 0, γ1, γ2, C5, · · · , Cn) , (102)

where Bn(x1, x2, · · · , xn) denotes the nth complete Bell polynomial (see 8.4). An

equivalent closed expression in terms of the moments is given in equation (219).

Table 4 shows the moments αn (main term, equation (201) in 8.2.5), the cumulants

κn and the dimensionless normalized cumulants Cn of P (τ). We here give the three

first orders of each for the sample without mask, α0,1,2 = 1, 0µK, 3558.31519µK2;

κ0,1,2 = 1, 0µK, 3558.31519µK2 and C0,1,2 = 1, 0, 1, and we obtain σ0 = 59.65166µK,

γ1 = −5.1872 × 10−4 and γ2 = 5.825 × 10−5.

(Units of µKn) ΛCDM sample Full individual map range, no mask, 2◦fwhm, bin 13µK c.f. 8.2

n 3 4 5 6 7 8 9 10 11 12

αn −110.103727 37985558.5 −4040069.36 6.8 × 1011 −1.5 × 1011 1.7 × 1016 −6.6 × 1015 5.4 × 1020 −3.1 × 1020 2.1 × 1025

κn −110.103727 737.480513 −122231.715 −108751936. 785344215. 8.2 × 1011 1.1 × 1014 −1.1 × 1016 2.4 × 1018 8.4 × 1020

Cn −5.187 × 10−4 5.82 × 10−5 −1.618 × 10−4 −2.4138 × 10−3 2.922 × 10−4 5.1255 × 10−3 1.14291 × 10−2 −1.96036 × 10−2 7.14927 × 10−2 0.4147370

(Units of µKn) ΛCDM sample Equal temperature range (ETR ± 201µK), U73 mask, 2◦fwhm, bin 6µK

n 0 1 2 3 4 5 6 7 8 9

αn 1.0001469 −1.4912 × 10−3 3515.73711 −113.475560 36119872.5 −2963938.41 5.9 × 1011 −7.8 × 1010 1.2 × 1016 −2.2 × 1015

κn 1.0 −1.4912 × 10−3 3515.73710 −97.7480482 −961350.317 741927.368 −1.3 × 1010 −3.4 × 109 1.8 × 1014 −1.6 × 1014

Cn 1.0 −2.51 × 10−5 1.0 −4.689 × 10−4 −7.77766 × 10−2 1.0123 × 10−3 −0.2973678 −1.3108 × 10−3 1.1699687 −1.76138 × 10−2

Table 4: Table of the moments αn (main term, equation (201)), cumulants κn, and dimensionless

normalized cumulants Cn of the probability density function P (τ).

With the help of the orthogonality relation (see [63], p.775, and 8.5),
∫ ∞

−∞
e−ν2/2 Hem(ν)Hen(ν) dν =

√
2π n! δmn , (103)

one derives from (97) the following integral representation for the aP (n)’s (n ≥ 3):

aP (n) =
1√
2π

∫ ∞

−∞
∆P (σ0ν) Hen(ν) dν . (104)
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If the discrepancy function ∆P is known, one can compute from (104) the non–Gaussianity

parameters aP (n) and then, from (101) and (102), the normalized cumulants γ1, γ2, Cn.

Vice versa, one can compute the aP (n)’s from (101) once the cumulants have been

computed from the moments αn = mn of the PDF P (τ), using equations (80) and (86),

or directly from a theory of the primordial CMB fluctuations as, e.g., given by the ansatz

(170). With He2n+1(0) = 0 and He2n(0) = [(−1)n(2n)!]/2nn!, we obtain from (97) and

(101) for the discrepancy function at τ = 0:

∆P (0) =
∞
∑

n=2

(−1)naP (2n)

2n n!
=
aP (4)

8
− aP (6)

48
+
aP (8)

384
− aP (10)

3840
+
aP (12)

46080
∓ · · ·

=
γ2

8
− 5

24
γ2

1 − C6

48
+

35

384
γ2

2 +
7

48
γ1C5 +

C8

384
∓ · · · . (105)

In table 5 we present the values for the first aP (n)’s (see equations (101) and (104)),

respectively for γ1, γ2, and C5 for the ΛCDM model (model and computational details

are given in 8.2).

ΛCDM sample Full individual map range, no mask, 2◦fwhm, bin 13µK c.f. eqs. (101), (104) and model in 8.2

n 3 4 5 6 7 8 9 10 11 12

aP (n) −5.1872 × 10−4 5.825 × 10−5 −1.6184 × 10−4 −2.41112 × 10−3 2.9116 × 10−4 5.13035 × 10−3 1.153302 × 10−2 −1.964794 × 10−2 7.123993 × 10−2 0.41622908

aP (n) −5.1872 × 10−4 5.830 × 10−5 −1.6184 × 10−4 −2.40919 × 10−3 2.9116 × 10−4 5.19401 × 10−3 1.153302 × 10−2 −1.785385 × 10−2 7.123994 × 10−2 0.45721793

ΛCDM sample Equal temperature range (ETR ± 201µK), U73 mask, 2◦fwhm, bin 6µK

n 0 1 2 3 4 5 6 7 8

aP (n) −5.4435 × 10−4 −7.777654 × 10−2 1.01233 × 10−3 −2.9736480 × 10−1 1.7101 × 10−4 1.38165948

aP (n) 9.9534 × 10−4 −2.8 × 10−7 1.002019 × 10−2 −4.7175 × 10−4 5.20385 × 10−3 1.00469 × 10−3 −1.989114 × 10−2 9.19 × 10−6 −2.1129824 × 10−1

Table 5: Table of coefficients aP (n) for the ΛCDM model, computed from table 4 using equation

(101) in 1st line, then using equation (104) in 2nd line.

One observes that aP (6) = 10γ2
1 + C6 < 0 implying C6 < 0 in agreement with table 4.

This is in contrast to hierarchical ordering (as assumed in perturbation theory [58]) where

aHO
P (J, 6) = 6aHO

0 (J, 5) = 10γ2
1 > 0 in second– and third–order (J = 2, 3) (see equations

(136) and (137). Only at fourth and higher order (i.e. J ≥ 4) does that aHO
P (J, 6) = aP (6)

(see (138)). This will be discussed more in detail in subsection 5.2.5.

Figure 12 displays the discrepancy function ∆P of the averaged PDF (105 map

sample). ∆P is calculated by equation (96) over the lattice defined by the mid–points

of each segment in the histogram of P (τ) using σ0 defined as the “main term” of α2 in

equation (200). This figure also displays the expansion in Hermite polynomials (equation

(97) limited to the order 8).

Figure 13 shows the envelope of the 105 discrepancy functions of the map sample.

5.2.3 The first Minkowski Functional v0

L
et us discuss now the simplest morphological descriptor which is given by the first

Minkowski Functional (MF). We consider the compact excursion set Qν ∈ S2 with

boundary ∂Qν(ν := τ/σ0):

Qν := {n̂ ∈ S2
∣

∣

∣ δT (n̂) ≥ σ0ν} . (106)

We define the MF V0(ν) as follows:

V0(Qν) :=

∫

Qν

da = area(Qν) , (107)
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Figure 12: ΛCDM map sample, Nside=128, ℓrange=[2,256] without mask, 2◦ fwhm, for a

13µK temperature bin width over the smallest temperature range covering all the sample maps

(±396.5µK). We plot the discrepancy function (black dashed line) of the PDF for the 105 maps

ensemble (σ′

0 =
√

α′

2 = 59.65166µK being used here to calculate ∆P – see 8.2.5 for details). The

black solid line shows the Hermite expansion according to equation (97) for n = 3 to n = 8.

with da denoting the surface element on S2. In the following we shall be using the

normalized MF v0(ν) that is normalized with respect to area(S2) = 4π, i.e.:

v0(ν) :=
1

4π
V0(ν) = prob(δT ≥ σ0ν) = FC(σ0ν) =

∫ ∞

−∞
Θ(τ ′ − σ0ν)P (τ ′) dτ ′ , (108)

where FC is the complementary cumulative distribution function (78). From the definition

(108) follows also the relation

P (τ) = − 1

σ0

dv0(ν)

dν

∣

∣

∣

ν=τ/σ0

. (109)

Thus, the MF v0(ν) can be seen as a “smoothed” (cumulative) version of the PDF P (τ).

Using the Gaussian prediction PG(τ) in equation (92), we obtain the Gaussian prediction
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Figure 13: ΛCDM map sample, Nside=128, ℓrange=[2,256] without mask, 2◦ fwhm, for a 13µK

temperature bin width over the largest temperature range of the sample (±396.5µK). We plot

the envelope of the 105 individual discrepancy functions of the PDFs of figure 11. The cosmic

variance curves of the 105 maps sample appear in white or in black from 1σ up to 6σ. This proves

the high level of non–Gaussianity of several maps. The quasi straight, white horizontal central

line is the PDF discrepancy function of the ensemble average.

for v0(ν) (setting µ = 0):

v
G
0 (ν) :=

1

2
erfc

(

ν√
2

)

, (110)

in terms of the complementary error function [63], from which one derives v
G
0 (−∞) = 1,

v
G
0 (∞) = 0, v

G
0 (0) = 1/2, and the symmetry relation v

G
0 (−ν) = 1 − v

G
0 (ν). Furthermore,

one has the asymptotic behaviour for ν → ∞,

v
G
0 (ν) =

1√
2π

e−ν2/2

ν

[

1 − 1

ν2
+ O

(

1

ν4

)]

. (111)

In analogy to equation (96), we define the dimensionless discrepancy function ∆0(ν) as

follows:

∆0(ν) :=
√

2π
(

v0(ν) − v
G
0 (ν

)

, (112)
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which in turn is expanded into Hermite polynomials,

∆0(ν) := e−ν2/2
∞
∑

n=2

a0(n)

n!
Hen(ν) , (113)

with the coefficients

a0(n) =
1√
2π

∫ ∞

−∞
∆0(ν)Hen(ν) dν . (114)

The above coefficients a0(n), n ≥ 2, measure a possible non–Gaussianity described by

the MF v0(ν). With

d

dν

[

e−ν2/2 Hen(ν)
]

= −e−ν2/2 Hen+1(ν) , (115)

and the relation (see equations (97) and (109)),

d

dν
∆0(ν) = −∆P (σ0ν) , (116)

one obtains the following relation between the coefficients a0(n) and aP (n):

a0(n) =
aP (n+ 1)

n+ 1
(n ≥ 2) , (117)

and, thus, we arrive at the following exact coefficients (see equations (101) and (102)):

a0(2) =
γ1

3
; a0(3) =

γ2

4
; a0(4) =

C5

5
; a0(5) =

5

3
γ2

1 +
C6

6
;

a0(6) = 5γ1γ2 +
C7

7
; a0(7) = 7γ1C5 +

35

8
γ2

2 +
C8

8
;

a0(8) =
280

9
γ3

1 + 14γ2C5 +
28

3
γ1C6 +

C9

9
;

a0(9) = 210γ2
1γ2 + 12γ1C7 + 21γ2C6 +

63

5
C2

5 +
C10

10
;

a0(10) = 525γ1γ
2
2 + 420γ2

1C5 + 15γ1C8 + 30γ2C7 + 42C5C6 +
C11

11
;

a0(11) =
3850

3
γ4

1 +
1925

4
γ3

2 + 2310γ1γ2C5 +

770γ2
1C6 +

55

3
γ1C9 +

165

4
γ2C8 + 66C5C7 +

77

2
C2

6 +
C12

12
. (118)

In table 6 we present the values for the first a0(n)’s of the ΛCDM model.

ΛCDM Full individual map range, no mask, 2◦fwhm, bin 13µK c.f. equation (118) and model in 8.2

n 0 1 2 3 4 5 6 7 8

a0(n) −1.7295 × 10−4 1.456 × 10−5 −3.237 × 10−5 −4.0185 × 10−4 4.159 × 10−5 6.4130 × 10−4 1.28145 × 10−3

ΛCDM Equal temperature range (ETR ± 201µK), U73 mask, 2◦fwhm, bin 6µK

n 0 1 2 3 4 5 6 7 8

a0(n) −1.8145 × 10−4 −1.944413 × 10−2 2.0247 × 10−4 −4.95608 × 10−3 2.443 × 10−5 1.7270744 × 10−1 −1.54858 × 10−3

Table 6: Table of coefficients a0(n), computed from table 4 using equation (118).

Figure 14 shows the first Minkowski Functional v0(ν) of the ΛCDM sample without mask,

and figure 15 its discrepancy function ∆0(ν) together with the Hermite expansion (113)

of ∆0(ν) (order 2 to 5) in a0(n).
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Figure 14: ΛCDM map sample, Nside=128, ℓrange=[2,256] without mask, 2◦ fwhm, for a 13µK

temperature bin width over the largest temperature range of the sample (±396.5µK). We plot

the first Minkowski functional v0(ν) as a black dashed line with its Gaussian premise in black

solid line (almost coincident). The 1σ cosmic variance is displayed as a grey shaded area.

5.2.4 Accuracy of Hermite expansions

T
he Hermite expansions (97) and (113) for the discrepancy functions ∆P (τ) and ∆0(ν),

respectively, provide very convenient parametrizations and quantitative measures

of the CMB non–Gaussianities. They hold under very general conditions (as discussed

in 8.5) and do not require that the NGs have to be small. The main assumption is

the existence of a unique probability density function P (τ) (a very natural assumption,

indeed, from a physical point of view), which is equivalent to demanding that the

“Hamburger moment problem” is determinate (see e.g. [78, 79]). It is then guaranteed

that the Hermite expansions are absolutely convergent. In subsections 5.2.2 and 5.2.3 we

considered polynomial approximations of degree N in τ , respectively in ν of ∆P (τ) and

∆0(ν) by truncating the Hermite expansions at n = N . A nice property of this truncation

is that the accuracy of the approximation is well under control, since there is, for example
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Figure 15: We plot ∆0(ν), the discrepancy function of v0 in dashed line (σ0px = 59.53348µK, the

variance from the moments of pixels being used here to calculate ∆0). The Hermite expansions

(order 2 to 5) appear in black solid line using the coefficients a0(n) computed from equation (114),

and in dotted line from equation (118). Coefficients are shown in table 6.

for ∆0(ν), the exact mean square error of equations (226) and (227),

EN := ||h0 −
N
∑

n=2

a0(n)

n!
Hen||2 = ||h0||2 −

N
∑

n=2

(a0(n))2

n!
, (119)

for h0(ν) := eν2/2∆0(ν). The error EN gets smaller and smaller if the degree N increases

and finally approaches zero in the limit N → ∞ as a consequence of the completeness

relation (Parseval’s equation),

∞
∑

n=2

(a0(n))2

n!
= ||h0||2 :=

1√
2π

∫ +∞

−∞
e−ν2/2(h0(ν))2dν , (120)

(here we use the weight function w(ν) = 1√
2π
e−ν2/2 in the definition of the inner product

of the Hilbert space IH = L2(IR, w(ν)dν), see 8.5.) As an example, let us consider the
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approximation of degree N = 5 applied to ∆0(ν) for which the mean square error is

explicitly given in terms of the skewness coefficient γ1, the excess kurtosis γ2 and the

higher cumulants C5 and C6 by

E5 = ||h0||2 −
[

γ2
1

18
+
γ2

2

96
+
C2

5

600
+

(10γ2
1 + C6)2

4320

]

, (121)

using the coefficients a0(2, 3, 4, 5) of (118). Figure 15 nicely illustrates that the polynomial

approximation of degree 5 provides an excellent description of the discrepancy function

∆0(ν). Similar results exist for the discrepancy function ∆P (τ) as shown already in figure

12 at order 8.

5.2.5 Hierarchical ordering and perturbation theory

M
ost of the commonly studied models of inflation predict weak primordial non–

Gaussianities. Among these models there is a wide class where the normalized

cumulants Cn obey the additional property of hierarchical ordering (indexed below by

HO), i.e., Cn ∼ σn−2
0 , n ≥ 2 (where we assume C1 = 0, C2 = 1). This suggests to expand

the discrepancy function not into Hermite polynomials, but rather at fixed ν into a power

series (perturbation theory) in σ0. This approach has been pioneered by Matsubara [57,58]

who has derived second–order perturbative formulae in σ0 for the discrepancy functions

of the MFs. In the following, we show that the perturbation theory applied to ∆0(ν) is a

direct consequence of the general Hermite expansion (113) that can be easily carried out

to any order J in σ0, i.e., to the NG of order σJ
0 (indexed below by HO(J), J ≥ 1). It

turns out that the perturbation expansion HO(J) corresponds, at a given order J , to a

double truncation of the Hermite expansion: i) a truncation of the Hermite expansion at

n = M0(J) := 3J − 1, ii) a truncation of the expansion coefficients a0(n) at order J with

respect to their expansion into a power series in σ0. As an example, we give below the

explicit formulae at second, third and fourth order, where the second–order formula is

identical to Matsubara’s result. Analogous perturbative formulae hold for ∆P (τ), which

have not been given before. As another new result we also present the exact mean square

error of the perturbative formulae and compare it with the corresponding error (119) of

the original Hermite expansion.

Let us assume that the hierarchical ordering holds and introduce the “renormalized

cumulants” (or “HO–cumulants”),

Sn :=
Cn

σn−2
0

, n ≥ 3 , (122)

which are assumed to be of zeroth order in σ0. Using the relation (117) and the explicit

expression (102) for the coefficients aP (n) in terms of the complete Bell polynomials Bn,

we obtain for n ≥ 2,

a0(n) =
aP (n+ 1)

n+ 1
=

1

n+ 1
Bn+1(0, 0, γ1, γ2, C5, C6, · · · , Cn+1)

=
1

n+ 1
Bn+1(0, 0, S3σ0, S4σ

2
0, · · · , Sn+1σ

n−1
0 ) , i.e.

a0(n) = Dn−1(σ0), n ≥ 2 , (123)
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where Dn(z) is a polynomial of degree n in z with D0(z) := 1 and

Dn(−z) = (−1)nDn(z) . (124)

Thus, a0(n) is a polynomial of degree n− 1 in σ0,

a0(n) =
n−1
∑

j=j0(n)

Dn−1,j(S3, S4, · · · , Sn+1)σj
0 , n ≥ 2 . (125)

Here, j0(n) denotes the smallest power of σ0 which contributes to a0(n) and is given for

n ≥ 2 by

j0(n) := n(k, l) − (2l + 1) = k + l − 1 ≥ l + 1 , (126)

where n is parametrized as n = n(k, l) := k + 3l with k = 2, 3, 4 and l = 0, 1, 2, · · ·. (As

a consequence of the symmetry relation (124), the coefficients Dn−1,j vanish for j even

or odd depending on whether n is even or odd.) The first few polynomials are explicitly

given by:

Dn(z) =
Sn+2

n+ 2
zn (n = 1, 2, 3) ; D4(z) =

5

3
S2

3z
2 +

S6

6
z4 ;

D5(z) = 5S3S4z
3 +

S7

7
z5 ; D6(z) = (7S3S5 +

35

8
S2

4)z4 +
S8

8
z6 . (127)

(Note that the highest power in σ0 is for all Dn given by Sn+2

n+2 z
n for n ≥ 1.) Explicit

expressions for the polynomials Dn(z) for n ≥ 7 are easily obtained either from the

recurrence relation (212) or from the combinatorial expression (213).

In order to derive the perturbative expansion HO(J) for the discrepancy function

∆0 at any order J ≥ 1, we insert in the Hermite expansion (113) the polynomial relation

(123) for the expansion coefficients a0(n). At lowest order, J = 1, one immediatly obtains

from (123) and (125–127) the simple result:

∆
HO(1)
0 (ν) = e−ν2/2a0(2)

2
He2(ν) =

γ1

6
(ν2 − 1)e−ν2/2 , (128)

which is completely determined by the skewness coefficient γ1 = S3σ0. To obtain the

HO(J)–expansion for J ≥ 2, we decompose the exact (general) Hermite expansion into

three terms (M0(J) = 3J − 1):

∆0(ν) = e−ν2/2





J+1
∑

n=2

Dn−1(σ0)

n!
Hen(ν) +

M0(J)
∑

n=J+2

Dn−1(σ0)

n!
Hen(ν)

+
∞
∑

n=M0(J)+1

Dn−1(σ0)

n!
Hen(ν)



 . (129)

Since Dn−1(σ0) is a polynomial of degree n − 1 in σ0, the first sum in (129) represents

(having ν fixed) a polynomial of degree J in σ0 and thus contributes to the HO(J)–

expansion. The last infinite series in (129), which is absolutely convergent, does not

contribute at all to the HO(J)–expansion, since the smallest power of σ0 appearing in

this series is already larger than J ; (with M0(J) + 1 = n(3, J − 1), equation (126) gives

j0(M0(J) + 1) = J + 1 > J .) We thus obtain the important result that the perturbative

expansion at order J necessarily implies a truncation of the Hermite expansion at

n = M0(J) = 3J − 1. It remains to discuss the second finite sum in (129) where

the summation runs over J + 2 ≤ n ≤ M0(J). Inspection of the expression (125) for

the polynomials Dn−1(σ0) (see also the explicit expressions (127)) shows that they will
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contribute (for n ≥ J + 2 and j0(n) ≤ J) to this sum not only with powers j ≤ J ,

but also with higher powers that are not admitted in the HO(J)–expansion. Thus, the

polynomials Dn−1 have to be replaced by truncated ones. In the case where j0(n) > J ,

the polynomials Dn−1 do not contribute at all. This leads us to define, for n ≥ J + 2, the

truncated polynomials D
HO(J)
n−1 (z), which now depend also on J :

D
HO(J)
n−1 (z) :=

{

∑J
j=j0(n)Dn−1, j(S3, S4, · · · , Sn+1)zj , j0(n) ≤ J

0 , j0(n) > J .
(130)

We now explicitly give the truncated polynomials at order J = 2, 3 and 4:

J = 2,M0(2) = 5:

D
HO(2)
3 (z) = 0

D
HO(2)
4 (z) =

5

3
S2

3z
2 ; (131)

J = 3,M0(3) = 8:

D
HO(3)
4 (z) = D

HO(2)
4 (z)

D
HO(3)
5 (z) = 5 S3S4z

3

D
HO(3)
6 (z) = 0

D
HO(3)
7 (z) =

280

9
S2

3z
3 ; (132)

J = 4,M0(4) = 11:

D
HO(4)
5 (z) = D

HO(3)
5 (z)

D
HO(4)
6 (z) = (7 S3S5 +

35

8
S2

4)z4

D
HO(4)
7 (z) = D

HO(3)
7 (z)

D
HO(4)
8 (z) = 210 S2

3S4z
4

D
HO(4)
9 (z) = 0

D
HO(4)
10 (z) =

3850

3
S4

3z
4 . (133)

We then obtain from (129) the general perturbative formula for the discrepancy function

∆0(ν) valid at any order J ≥ 1:

∆
HO(J)
0 (ν) := e−ν2/2

M0(J)
∑

n=2

aHO
0 (J, n)

n!
Hen(ν) , (134)

in terms of the HO–Hermite expansion coefficients aHO
0 (J, n), which now also depend on

J ,

aHO
0 (J, n) :=

{

a0(n) = Dn−1(σ0) , for 2 ≤ n ≤ J + 1

D
HO(J)
n−1 (σ0) , for J + 2 ≤ n ≤ M0(J) .

(135)

As an example, we give the expansion coefficients of the hierarchical ordering at

second, third and fourth order:

J = 2,M0(2) = 5:

aHO
0 (2, 2) = a0(2) =

γ1

3

aHO
0 (2, 3) = a0(3) =

γ2

4
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aHO
0 (2, 4) = 0

aHO
0 (2, 5) =

5

3
γ2

1 . (136)

J = 3,M0(3) = 8:

aHO
0 (3, 2) = a0(2) =

γ1

3

aHO
0 (3, 3) = a0(3) =

γ2

4

aHO
0 (3, 4) = a0(4) =

C5

5

aHO
0 (3, 5) =

5

3
γ2

1

aHO
0 (3, 6) = 5γ1γ2

aHO
0 (3, 7) = 0

aHO
0 (3, 8) =

280

9
γ3

1 . (137)

J = 4,M0(4) = 11:

aHO
0 (4, n) = a0(n) (n = 2, 3, 4, 5)

aHO
0 (4, 6) = 5γ1γ2

aHO
0 (4, 7) = 7γ1C5 +

35

8
γ2

2

aHO
0 (4, 8) =

280

9
γ3

1

aHO
0 (4, 9) = 210γ2

1γ2

aHO
0 (4, 10) = 0

aHO
0 (4, 11) =

3850

3
γ4

1 . (138)

(Here, we have replaced the S′
ns by the cumulants Cn according to equation (122).)

Being a direct consequence of the general Hermite expansion (113), the perturbative

formula (134), valid at arbitrary order J in σ0, has still the form of a Hermite expansion

(truncated at n = M0(J)). If we insert, however, for the Hermite coefficients aHO
0 (J, n)

their definition (135) in terms of polynomials in σ0, we obtain, by combining all terms of

same power, the alternative version of the perturbative formula:

∆
HO(J)
0 (ν) = e−ν2/2

J
∑

j=1

v
HO(J)
0 (j, ν)σj

0 , (139)

which has now (at fixed ν) the form of a power series in σ0 with coefficient functions

v
HO(J)
0 (j, ν). (Since the series in (134) is finite, the rearrangement as a power series in σ0

is of course always possible.) The coefficient functions v
HO(J)
0 (j, ν) are given as a linear

combination of a finite number of Hermite polynomials. Up to the second order, they have

been calculated by Matsubara [57, 58]. It is straightforward to obtain them at arbitrary

order J using the equations (125), (130) and (135). Here we give the coefficient functions

up to fourth order:

J = 1 : v
HO(1)
0 (1, ν) =

S3

6
He2(ν) , (140)

J = 2 : v
HO(2)
0 (1, ν) = v

HO(1)
0 (1, ν)

v
HO(2)
0 (2, ν) =

S4

24
He3(ν) +

S2
3

72
He5(ν) , (141)
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J = 3 : v
HO(3)
0 (1, ν) = v

HO(1)
0 (1, ν)

v
HO(3)
0 (2, ν) = v

HO(2)
0 (2, ν)

v
HO(3)
0 (3, ν) =

S5

120
He4(ν) +

S3S4

144
He6(ν) +

S2
3

1296
He8(ν) , (142)

J = 4 : v
HO(4)
0 (1, ν) = v

HO(1)
0 (1, ν)

v
HO(4)
0 (2, ν) = v

HO(2)
0 (2, ν)

v
HO(4)
0 (3, ν) = v

HO(3)
0 (3, ν)

v
HO(4)
0 (4, ν) =

S6

720
He5(ν) +

1

720
(S3S5 +

5

8
S2

4)He7(ν)

+
S2

3S4

1728
He9(ν) +

S4
3

31104
He11(ν) . (143)

The second–order formulae (141) agree with Matsubara’s result [57, 58] (who writes

S := S3 and K := S4).

It is worthwhile to mention that the perturbative formula (139) closely resembles the

so–called Edgeworth expansion (240) which gives a refinement of the classical central limit

theorem (for details and references, see 8.5). However, (240) is an asymptotic expansion in

the sense of Poincaré where the role of σ0 is played by the small dimensionless parameter

1/
√
n which can be made arbitrarily small and does not have a fixed finite value as

in the case of the standard deviation σ0 of the CMB anisotropy. In fact, the central

limit theorem is precisely the statement that the limit n → ∞ is asymptotically exactly

Gaussian and thus the NGs in the Edgeworth expansions have no fundamental meaning,

they just determine the rate of convergence to the Gaussian limit. In contrast, the NGs

of the CMB—if they are non–zero and of primordial origin—contain genuine information

on the underlying model of inflation.

Having shown that the two perturbative formulae (134) and (139) are identical, we

discuss in the following only the Hermite expansion (134).

Let us compare the perturbative NG–coefficients, (136) respectively (137), with the

complete NG–coefficients a0(n) given in equation (118). At second order (J = 2) we

see that the first two coefficients are identical to the complete coefficients a0(n), i.e.,

aHO
0 (2, n) = a0(n) for n = 2, 3. The coefficient aHO

0 (2, 4) vanishes because its complete

value C5/5 is of third order. Finally, the last coefficient aHO
0 (2, 5) differs from a0(5) by

the term C6/6, which is of fourth order. At third order (J = 3) one observes that now the

first three coefficients are identical to the complete expressions, i.e., aHO
0 (3, n) = a0(n)

for n = 2, 3, 4; aHO
0 (3, 5) = aHO

0 (2, 5) still does not contain the term C6/6; the coefficient

aHO
0 (3, 7) vanishes because the complete value for a0(7) is of order σ4

0; aHO
0 (3, 6) does

not contain the term C7/7 (of order 5), and aHO
0 (3, 8) does not contain the terms of

order 5, respectively 7. Note, in particular, that a vanishing coefficient aHO
0 (J, n) implies

that the associated contribution from the Hermite polynomial Hen(ν) is absent in ∆
HO(J)
0

compared to ∆0. This is the case at second order with He4(ν), and at third order with

He7(ν). Since the Hen(ν)’s have exactly n distinct zeros, the omission of one or several

of them can have an important influence on the shape of the discrepancy function.

Finally, we come to the important question about the accuracy of the perturbative

expansion. To this purpose we consider in analogy to equation (119) the mean square
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error of the HO(J)–expansion:

EHO(J) := ||h0 −
M0(J)
∑

n=2

aHO
0 (J, n)

n!
Hen||2

= ||h0||2 −
M0(J)
∑

n=2

(a0(n))2

n!
+

M0(J)
∑

n=2

(a0(n) − aHO
0 (J, n))2

n!
, (144)

where we have used the identity (227). Here, the first two terms are identical to the error

EM0(J), i.e. the error of the complete Hermite expansion truncated at order N := M0(J)

(see equation (119)), which leads to the interesting formula:

EHO(J) = EM0(J) +

M0(J)
∑

n=J+2

(a0(n) − aHO
0 (J, n))2

n!
. (145)

Here, we have used in the last sum a0(n) − aHO
0 (J, n) ≡ 0 for 2 ≤ n ≤ J + 1 (see (135)).

Since the last sum in (145) is strictly positive, one infers that we have at any order in

perturbation theory:

EHO(J) > EM0(J) , (146)

i.e., the mean square error of the HO(J)–expansion is always larger than the mean square

error of the complete Hermite expansion truncated at n = M0(J). For instance, at

second–order of perturbation theory, J = 2, we have EHO(2) > E5, where E5 is explicitly

given in (121). Precisely, we obtain from (145) through (118) and (136):

EHO(2) = E5 +
C2

5

600
+

C2
6

4320
. (147)

One observes that both errors approach zero in the limit J → ∞ which reflects the fact

that the perturbative expansion becomes identical to the general untruncated Hermite

expansion in this limit.

Test of the hierarchical ordering in perturbation theory

In figure 16 we compare the discrepancy function ∆P with its Hermite expansion

in terms of the coefficients aP (n) (computed from (101) and table 4) for n = 3 to 6,

according to the following equation:

∆P (τ) = e−τ2/2σ2
0

n=6
∑

n=3

aP (n)

n!
Hen(τ/σ0) . (148)

In addition, in figure 16, we show the expansion of ∆P with the assumption of hierarchical

ordering (HO) in fourth–order perturbation theory, according to

∆
HO(4)
P (τ) = e−τ2/2σ2

0

12
∑

n=3

aHO
P (4, n)

n!
Hen(τ/σ0) , (149)

where the NG–coefficients aHO
P (4, n) are obtained from equations (117) and (138) using

γ1, γ2 and the cumulants Cn in table 4.

We verified that, at second and third–order, the HO–expansion displays an almost

purely odd function (central symmetry), while ∆P (black dashed line) does not pass by

the central point (τ = 0, ∆P (0), see equation (105)), and we note that ∆P x(τ) derived

from moments of pixels, not shown here, confirms this behaviour.

At fourth–order, however, the HO–expansion fits well the non–Gaussianity of the

sample and reveals the same shift from perfect central symmetry. (For some further
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Figure 16: ΛCDM map sample, Nside=128, ℓrange=[2,256] without mask, 2◦ fwhm, for a 13µK

temperature bin width over the largest temperature range of the sample (±396.5µK). We plot the

discrepancy function (black dashed line) of the PDF for the 105 maps ensemble. As a black dotted

line we show the perturbative expansion according to equation (149) limited to n = 6 (hierarchical

ordering and second–order perturbation theory); the red line shows the result for the HO(J = 4)

expansion of equation (149) up to n = 12 (the coefficients aHO
P obtained from equations (117)

and (138), which practically coincides with the black solid line showing the Hermite expansion at

order 6 according to equation (148).

discussion on the perturbative model with hierarchical ordering, we refer the reader to

8.5).

5.2.6 The Minkowski Functionals v1(ν) and v2(ν)

A
ccording to Hadwiger’s theorem [19], there are three independent MFs on S2. The

simplest case V0, respectively v0 has already been discussed in subsection 5.2.3. In
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this section, we discuss the remaining two which are defined again with respect to the

excursion set Qν , see equation (106), and are given in their normalized form by

v1(ν) :=
1

4π
V1(ν) =

1

4π

1

4

∫

∂Qν

ds =
1

16π
length (∂Qν) , (150)

v2(ν) =
1

4π
V2(ν) =

1

4π

1

2π

∫

∂Qν

κ(s) ds , (151)

where ds denotes the line element along ∂Qν , and κ(s) the geodesic curvature of ∂Qν . The

Gaussian prediction for the MFs, vk(ν), k = 1, 2, have been computed by Tomita [21–23]

(we set µ = 0):

v
G
1 (ν) :=

1

8
√

2

σ1

σ0
e−ν2/2 ; v

G
2 (ν) =

1

2(2π)3/2

σ2
1

σ2
0

ν e−ν2/2 . (152)

Here, σ0 denotes again the standard deviation of the CMB temperature anisotropy δT (n̂)

on S2, where n̂ = n̂(ϑ, ϕ) denotes a unit vector on S2 dependent on the coordinates

x1 = ϑ ∈ [0, π] and x2 = ϕ ∈ [0, 2π]. Then, the line element on S2 is given by

ds2 = γijdx
idxj with γ11 = 1, γ22 = sin2 ϑ, γij = 0 otherwise, and γikγ

kj = δ j
i .

Furthermore, σ2
1 is the variance of the gradient field ∇δT = (∇1δT,∇2δT ), i.e.,

〈∇iδT (n̂)∇jδT (n̂)〉 =
σ2

1

2
γij . (153)

From the MFs v1 and v2 one can form, by a linear combination, two further interesting

measures, the Euler characteristic χ(ν), respectively the genus g(ν) := 1 − 1
2χ(ν). On

the excursion set Qν with smooth boundary ∂Qν the Gauss–Bonnet theorem holds

(K = 1/R2 ≡ 1 is the Gaussian curvature on the unit sphere with radius R = 1):
∫

Qν

K da+

∫

∂Qν

κ(s)ds = V0(ν) + 2πV2(ν) = 2π χ(ν) , (154)

which gives

χ(ν) = 2v0(ν) + 4πv2(ν) and g(ν) = 1 − v0(ν) − 2πv2(ν) . (155)

As a measure of possible non–Gaussianities based on the MFs vk(ν), k = 1, 2, we define, in

analogy to the discrepancy functions ∆P (ν) (equation (97)) and ∆0(ν) (equation (113)),

the following discrepancy functions (we here include also the case k = 0):

∆k(ν) :=
vk(ν) − v

G
k (ν)

Nk
(k = 0, 1, 2) , (156)

with N0 = 1/
√

2π, N1 = max{v
G
1 } = [1/(8

√
2)]σ1/σ0, and N2 = [1/(2(2π)3/2)]σ2

1/σ
2
0.

Under the same assumptions made before (for ∆P respectively ∆0, see 8.5), we can

expand the ∆k’s into a convergent Hermite expansion,

∆k(ν) = e−ν2/2
∞
∑

n=nk

ak(n)

n!
Hen(ν) ; k = 0, 1, 2 , (157)

with the dimensionless NG–coefficients ak(n) and n0 = 2, n1 = n2 = 0. With the help of

(103) we obtain the integral representation:

ak(n) =
1√
2π

∫ ∞

−∞
∆k(ν) Hen(ν) dν . (158)
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Again, it is assumed that the series (157) can be truncated at a low value n = N , where

N may depend on k. In the following, we shall again compare the general expansion (157)

with the one derived under the assumption of hierarchical ordering (k = 0, 1, 2),

∆
HO(J)
k (ν) = e−ν2/2

Mk(J)
∑

n=nk

aHO
k (J, n)

n!
Hen(ν) , (159)

for which the second order NG–coefficients aHO
k (2, n) have also been calculated by

Matsubara [51, 59] for k = 1 and k = 2. The highest degree of the Hermite polynomials

contributing for J = 2 is given by M1(2) = 6 and M2(2) = 7.

The NG–coefficients are then given for ∆
HO(J)
1 (ν) as follows:

J = 2,M1(2) = 6:

aHO
1 (2, 0) = −K3

16

aHO
1 (2, 1) = −S1

4

aHO
1 (2, 2) = −1

6
(K1 +

3

8
S2

1)

aHO
1 (2, 3) = γ1

aHO
1 (2, 4) = γ2 − γ1S1

aHO
1 (2, 5) = 0

aHO
1 (2, 6) = 10γ2

1 . (160)

and for ∆
HO(J)
2 (ν):

J = 2,M2(2) = 7:

aHO
2 (2, 0) = −S2

aHO
2 (2, 1) = −1

2
(K2 + S1S2)

aHO
2 (2, 2) = −S1

aHO
2 (2, 3) = −K1 − γ1S2

aHO
2 (2, 4) = 4γ1

aHO
2 (2, 5) = 5γ2 − 10γ1S1

aHO
2 (2, 6) = 0

aHO
2 (2, 7) = 70γ2

1 . (161)

Here, we introduced the three dimensionless skewness parameters γ1, S1, S2 and the four

dimensionless kurtosis parameters γ2, K1, K2 and K3 using the notation τ = τ(n̂) :=

δT (n̂) (γ1 and γ2 as in equations (88) and (89), respectively):

S1 :=

〈

τ2
∇

2τ
〉

C

σ0σ2
1

; S2 :=

〈

|∇τ |2∇
2τ
〉

C
σ0

σ4
1

;

K1 :=

〈

τ3
∇

2τ
〉

C

σ2
0σ

2
1

; K2 :=
2
〈

τ |∇τ |2∇
2τ
〉

C
+
〈

|∇τ |4
〉

C

σ4
1

; K3 :=

〈

|∇τ |4
〉

C

σ4
1

. (162)

(Note that the products of the field τ(n̂) respectively of its derivatives are taken at the

same point n̂ on S2.)

Table 7 shows the coefficients a1(n) and a2(n) calculated from (158).
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ΛCDM sample Full individual map range, no mask, 2◦fwhm, bin 13µK c.f. 8.2

n 0 1 2 3 4 5 6 7 8

a1(n) −2.21 × 10−6 −2.808 × 10−5 3.97274 × 10−3 −5.0873 × 10−4 −5.823 × 10−5 −6.643 × 10−5 −1.97922 × 10−3 5.059 × 10−5 6.37408 × 10−3

a2(n) 1.927 × 10−5 −2.148 × 10−5 −1.7313 × 10−4 1.183631 × 10−2 −1.53488 × 10−3 −4.8941 × 10−4 −1.20822 × 10−3 −9.58844 × 10−3 −7.33397 × 10−3

Table 7: Table of coefficients a1(n) and a2(n).

Figure 17 shows the second Minkowski Functional, and figure 18 the discrepancy function

∆1 together with the Hermite expansion to order 8. The third Minkowski Functional is

shown in figure 19, and the discrepancy function ∆2 together with the Hermite expansion

to order 8 in figure 20.

Figure 17: ΛCDM map sample, Nside=128, ℓrange=[2,256] without mask, 2◦ fwhm, for a 13µK

temperature bin width over the largest temperature range of the sample (±396.5µK). We plot the

second Minkowski Functional v1(ν) as a black dashed line with its Gaussian premise as a black

solid line (almost coincident). The 1σ cosmic variance is the grey shaded area. (We use σ2
0px and

σ2
1px – see, respectively, 2nd equation in (186) and equation (188) as well as table 8.)
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Figure 18: We plot ∆1(ν), the discrepancy function of v1 as a dotted line, and as a solid line

the Hermite expansion to order 8. (For the σ−values used, see caption to figure 17.)

5.2.7 Discrepancy functions and Df−differences

G
aussian random fields have a specific signature (the Gaussian prediction) depending

only on the choice of the descriptor. Non–Gaussian processes may generate strong

departures from the Gaussian prediction as in the formation of large–scale structure;

however, attempts to find general and specific analytic signatures of a statistical property

sufficiently far away from Gaussianity are most of the time unsuccessful in the context of

CMB analyses. It is clear that the values σ0Cℓ and σ1Cℓ are model–dependent and that

their use in the formulae for the Gaussian prediction, equations (92), (111) and (152),

biases the reference of Gaussianity in general, so that the σ−values from the moments of

pixels (denoted by subscripts px, x) or from the moments of the PDF should rather be

used in the discrepancy functions ∆k(...) we defined above. As a reminder, we list here

the whole set of discrepancy functions:

∆P (τ) :=
P (τ) − PG(τ)

NP
, with NP =

1

σ0

√
2π

; (163)
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Figure 19: ΛCDM map sample, Nside=128, ℓrange=[2,256] without mask, 2◦ fwhm, for a 13µK

temperature bin width over the largest temperature range of the sample (±396.5µK). We plot

the third Minkowski Functional v2(ν) as a black dashed line with its Gaussian premise as a black

solid line (almost coincident). The 1σ cosmic variance is the grey shaded area. (For the σ−values

used, see caption to figure 17.)

∆0(ν) :=
v0(ν) − v

G
0 (ν)

N0
, with N0 =

1√
2π
, ν =

τ

σ0px
; (164)

∆1(ν) :=
v1(ν) − v

G
1 (ν)

N1
, with N1 =

1

8
√

2

σ1px

σ0px
, ν =

τ

σ0px
; (165)

∆2(ν) :=
v2(ν) − v

G
2 (ν)

N2
, with N2 =

1

2(2π)3/2

σ2
1px

σ2
0px

, ν =
τ

σ0px
. (166)

These discrepancy functions are self–consistent and model–independent given that the

terms used, σS and σSpx are model–independent; these four formulae (∆k(...)) are

straightforwardly applicable to a single data or sample map. In the case of determination
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Figure 20: We plot ∆2(ν), the discrepancy function of v2 as a dotted line, and as a solid line

the Hermite expansion to order 8. (For the σ−values used, see caption to figure 17.)

for a sample S of maps, we define the sample discrepancy functions this way:

PG
S (τ) := PG

(

〈µ〉S ,
√

〈

σ2
0

〉

S, τ

)

, (167)

v
G
iS(ν) := v

G
i

(

〈µpx〉S ,

√

〈

σ2
1px

〉

S
,

√

〈

σ2
0px

〉

S
, ν

)

. (168)

As mentioned at the end of the introductory section 5.1, the Planck collaboration applies

a different method of calculation for the non–Gaussianity. While the analytic formulae

are not given in the various papers [51–56], we can rebuild them here from the explicit

formulations in the text. In the case of a single data map d, the differences of the

normalized MFs (denoted Df) are given by

Dfd
i (ν) :=

v
d
i (ν)

Nd
i

−
〈

vi(ν)

Ni

〉

S
, (169)

where the reference map sample S is Gaussian by construction. Compared with the

discrepancy functions, the Df’s measure the distance to a Gaussian premise which may
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be different in amplitude and shape from our analytical one. The Df’s may, under certain

conditions, provide a direct statistical measure of the departure from a given cosmological

model statistics, which is an interesting feature.

Let us make some remarks on this methodology addressing some important issues.

The variance terms σS , entering the left and right denominators of equation (169),

may differ in the sample map generation, if no special precaution is taken. We have

compared the results of this Df−method (using Gaussian ΛCDM map samples) with

our discrepancy functions method, using the analytical Gaussian premises, and found no

significant difference of non–Gaussianity. But, obviously, the dependence on the statistical

properties of the map sample and the number of maps may yield different results. It is

not clear how the non–Gaussianity of the reference map sample is calculated as the direct

application of the formula (169) gives zero and in this case, the analytic Gaussian premise

is probably used. If instead our discrepancy functions are applied to the sample, we do

not employ different methods for comparing the non–Gaussianity of a CMB data map

with a CMB map sample.

5.2.8 Comparing the ΛCDM map sample to the Planck map

T
he next figures, figure 21, figure 22, figure 23 and figure 24 show the statistical

and morphological behaviour of each of the 105 sample maps in the ΛCDM model

compared with the four Planck maps NILC, SEV EM , SMICA and Commander—

Ruler, all with the U73 mask and a bin width of 6µK. The average quantities µ, σ0

and σ1, as well as the discrepancy functions are calculated over the largest common and

centered (on ν = 0) temperature range [−201µK,+201µK], as given by the Planck 2015

SMICA map. In these figures, clearly, the non–Gaussianity of the average sample is

weak. For each descriptor, many ΛCDM sample maps show a strong non–Gaussianity;

several individual sample maps lying well beyond the 5σ cosmic variance limit.

The benchmark study of Planck maps and the ΛCDM sample with U73 mask

(figures 21 to 24) compares all the different maps over the same temperature range

(±201µK) for a 6µK binning, and shows very populated (almost saturated) 4σ–sample

envelopes for each of the four discrepancy functions. In the case of ∆P we count 240 maps

(among 100000) peaking beyond the 6σ–envelope. Peaking beyond 6σ we also count 354

maps for ∆0.
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Figure 21: Envelope of each ∆P function in grey, 1σ to 6σ cosmic variances in white or black

solid lines. The central and almost horizontal white line is the discrepancy function of the average

sample. Planck maps are in blue dashed line for NILC, yellow dotted line for SEV EM , in red

solid line for SMICA, and green solid line for Commander–Ruler, as calculated for the ΛCDM

map sample, Nside=128, ℓrange=[2,256] with U73 mask, 2◦ fwhm, for a 6µK temperature bin width

over the equal temperature range (±201µK).
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Figure 22: Envelope of each ∆0 function. Same figure caption as in figure 21.
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Figure 23: Envelope of each ∆1 function. Same figure caption as in figure 21.
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Figure 24: Envelope of each ∆2 function. Same figure caption as in figure 21.
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5.3 Three brief discussions about the CMB non–Gaussianity

5.3.1 Origin of non–Gaussianities

C
ontrary to other works to unveil CMB non–Gaussianity, no specific model of non–

Gaussianity has been put into the 100000 maps of the ΛCDM sample probed all

along this study (see 8.2). However, already without mask, as in the initial analysis of the

sample explored in this chapter, we find that the four discrepancy functions show small

but clear departures from Gaussianity, and this for a map ensemble that is supposed to

be highly if not completely Gaussian, since it is computed from the ΛCDM model using

purely Gaussian initial conditions. What is the origin of these NGs? For a given ensemble

of realizations one expects several extraneous mechanisms that generate supplementary

NG such as: an increasing smoothing scale beyond the 1◦ horizon angular scale on the

surface of last scattering increases the NG amplitude (increasing the dependence between

neighbouring pixels acts in the sense of enlarging the causal horizon radius); we also

checked that smoothing leaves the shape of the discrepancy functions unaffected, while

rising the amplitude of NG. Our present study shows that these numerical NGs are of

non-negligible amplitude even for a 100000 map sample without mask. Our previous

analyses using different parameters Nside, lmax, fwhm, without or with mask leave the

shape of the descriptors ∆1 and ∆2 invariant, but with different amplitudes (we have no

such invariance for ∆P and ∆0, they detect the mask). We reached the same conclusion

using different cosmological parameters (e.g. WMAP 7yr) for the generation of the power

spectrum to get a 100000 map sample. The comparison with the NG of the observed CMB

(figures 21 to 24) shows that numerous individual ΛCDM maps can possibly be of the

same amplitude and shape of NG than the Planck data map. These assessments would

say that without any addition of supplementary NGs in each sample map, some sources

of non–Gaussianity existing in the power spectrum used to generate the maps may well

be detected by the discrepancy functions. The census of components is in 8.2.3. Among

them, probably some cannot be detected because we limit the l–range to [2, 256], but

the Sachs–Wolfe effect, the Doppler effect and the integrated Sachs–Wolfe effect would

contribute to the non–Gaussianity detected in the individual maps of the ensemble. A

systematic study is needed to disentangle the NG effects of the various components.

5.3.2 The case of σ0

W
hen µ, σ0, and σ1 are evaluated over [−τm, τm], while the discrepancy functions

are calculated over a smaller interval in τ (resp. in ν), this leads to an error

on their shape and to an overestimate of the magnitude of NG, as we tested for the

100000 map sample. Such a problem may arise when one works with the normalized

temperature ν = τ/σ0. While σ0(τmax1) is known for the temperature range τmax1 giving

νmax1 = τmax1/σ0(τmax1), the need to impose a ν–range (νmax2) different from νmax1 (e.g.

for comparing with another map sample) is equivalent to solve for an implicit function

f , σ0(νmax2) = f(σ0(νmax2)), simply because two different map samples or two different
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maps will have in general different variances and variances of the gradient, even if they

are explored over the exactly same temperature range. The estimation of the unknown σ0

corresponding to the new ν–range can be made using iterative methods, or by referring

to a model that predicts the behaviour of σ0 for given changes of the range. For the

comparison (with U73 mask) of Planck maps to the ΛCDM sample, P (τ) and ∆P (τ)

show no difficulties as abscissas are in τ and impose the same range to data and to the

simulation maps.

For ∆0,1,2 we first calculated µ’s and σ’s over the full τ–range (± 201 µK) of the four

different Planck maps. For each of these we obtain the following σ0 values: NILC

51.532µK, SEV EM 51.750µK, SMICA 51.576µK, Commander—Ruler 51.794µK,

while we obtain σ0 =59.294µK for the ΛCDM simulations over exactly the same (±
201 µK) range! This illustrates well the “anomalously” low variance of Planck data

already observed with WMAP compared to a ΛCDM model map ensemble (see [11,80–85]

and [56, 86]). When not treated correctly, the impact of this anomaly is significant for

the calculation of the Gaussian premises PG, equation (92), and v
G
k , equations (110) and

(152), as they are functions of the standard deviation σ0. Regarding v1 and v2 we made

two interesting observations: firstly, the Gaussian premises v
G
1 and v

G
2 are functions of

the ratio ρ = σ1/σ0 in the prefactor of the exponential, and we verified that this ratio

is very similar for the four Planck maps, ρ =36.658+0.030
−0.032 , even if the σ0’s are not very

similar, σ0 =51.663µK+0.131
−0.131. For the simulation sample, ρΛCDM has a much smaller

value: 34.162. Secondly, we observed that the ratio ρ is very stable for the sample with

U73 mask and for Planck maps with U73 mask when passing from the largest common

temperature range (± 201 µK) to the smallest temperature range covering all the maps

(± 396.5 µK). On the other hand we noticed (see at the beginning of 8.2) that the ratio

ρ is no more stable but increasing when passing from no mask to U73 mask.

In summary, in the present work, the issue of the fair comparison of different CMB

maps, (i) is treated by using exactly the same temperature range for P , PG and ∆P , (ii)

for v0, v
G
0 and ∆0 it required some iterations upon different temperature ranges to reach

close to the νmax values, and (iii) is simplified for v1, v
G
1 , v2, v

G
2 , ∆1 and ∆2 by assuming

ρ = σ1/σ0 to be constant for the given change of temperature range.

5.3.3 The fNL results

N
on–linear correction terms within the standard perturbation approach are

commonly investigated by constraining the coefficients (bi–spectrum with fNL and

tri–spectrum with gNL). Applied to Bardeen’s curvature these constraints allow to

decide whether inflation models such as with single slow–roll scalar field are rejected

or not. A scalar random field of the primordial period, the gravitational potential Φ(n̂)

(n̂ = n̂(ϑ, ϕ)), is commonly expanded in real space around a Gaussian random field φ(n̂)

(of vanishing mean), using the expansion:

Φ(n̂) = φ(n̂) + f
(local)
NL (φ2(n̂) −

〈

φ2(n̂)
〉

) + g
(local)
NL (φ3(n̂) −

〈

φ3(n̂)
〉

) + · · · . (170)

In 2010, the limit derived from WMAP 7yr was f
(local)
NL ≈ 30 ± 20 at 1σ, a very

small non–Gaussianity almost compatible with a zero value allowing for single–scalar

fields [1]. Planck 2013 data, expected to give smaller error bars, have narrowed this to

f
(local)
NL = 2.7 ± 5.8, f

(equilateral)
NL = −42 ± 75, and f

(orthogonal)
NL = −25 ± 39 [88]. Then,
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Planck 2015 temperature data provided f
(local)
NL = 2.5 ± 5.7, f

(equilateral)
NL = −16 ± 70,

and f
(orthogonal)
NL = −34 ± 33 [4]. All these very similar outcomes are consistent with a

vanishing fNL, which is itself consistent with a very weak primordial non–Gaussianity.

However, the interpretation of this characterization of CMB Gaussianity depends on the

cosmological model and, in particular, on the type of inflation mechanism that is assumed

in this model.

5.4 Conclusion

D
etecting non–Gaussianity in the CMB temperature maps is still a great challenge.

Whatever the descriptor, the discrepancy functions of the CMB by Planck 2015

data are not zero but stay within 1σ or slightly leak into the 2σ cosmic variance band

of current (model–dependent) ensembles. In our search for CMB non–Gaussianities we

find systematic signatures of weak non–Gaussianity which would be of importance if the

ensemble cosmic variance would be re-evaluated at smaller amplitudes. Compared to the

Planck maps we find that the ΛCDM simulations commonly used offer a systematically

larger value for the variances σ2
0 and σ2

1 as observed in [11, 80–85] and [56, 86]. This

anomaly of the variances and its interpretation has to be explored in more detail in the

prescriptions of model simulations. Furthermore, after the first main mask is applied,

further different possible superimposed foreground and source masks have a big impact

upon the magnitude of non–Gaussianities, showing that numerous tiny field sources

contribute to residual foreground contamination and may imply a noticeable change

in the values of the variances [87]. Several possible strategies should be explored to

select ensembles on the basis of the actually observed statistical parameters within

a constrained random field approach, in order to reach a deeper understanding of a

statistical comparison with a single realization, or to accordingly constrain cosmological

models.
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6 Is the Cosmic Microwave Background Gaussian?

In connection with our 2017 paper on the model-independent analyses of the CMB non-

Gaussianity, the editorial board of Classical and Quantum Gravity proposed us to give

insights presented here, regarding this question, in the CQG online review Focus issue:

Planck and fundamental of cosmology 27.

A
challenging question touching upon the initial conditions of the primordial Universe,

on modeling assumptions, on statistical ensembles of the Cosmic Microwave

Background, and on the quest for model-independent approaches being one of the

underlying guidelines of my work all along my PhD thesis. There is a heuristic issue

concerning all the observational cosmology which is that no physical experiment allows

to “run” the Universe evolution at will to obtain ensembles of observed patterns, nor

one can communicate with observers everywhere in spacetime to get an overview of our

Universe. This remains the conundrum that hampers any statistically valuable modeling

endeavor. The efforts to understand and construct the Cosmic Microwave Background

(CMB) maps, built from raw data of the Planck satellite, are based on a large number of

hypotheses, i.e. observer independence if the cosmological principle holds, data reduction

and modeling assumptions that, however for some of them can be tested on the grounds

of an ensemble of statistical realizations of the same model. The question can then be

answered as to whether there is a single realization of the chosen model that agrees with

what is observed, but we better extend the answer to judge the probability of finding this

single realization within the ensemble of patterns that our model offers. However, for this

we have to select the statistical average properties of the model and those of its initial

conditions. The key-assumption (i) is that initial conditions are drawn from a Gaussian

random field with a power spectrum that is built on further assumptions on the energy

content of the model. Cosmology traces back the Gaussian hypothesis to some generality

of predictions from the inflationary paradigm.

The essential further hypotheses underlying models and that are commonly adopted

to construct CMB maps are (ii) to idealize the global event of last scattering of the CMB

radiation as an ideal surface without thickness, (iii) to idealize this surface as an exact

2-sphere by adopting the hypothesis (iv) that the cosmological model is homogeneous and

isotropic with—according to the concordance model of cosmology—a vanishing constant

curvature at this surface; of course this hypothesis on the curvature can be extended

to test a variety of constant-curvature models, (v) the assumption that the observed

dominant dipole pattern (generally not included in the analyses of CMB anisotropies)

has no global cause and is solely the result of our proper motion with respect to the

global reference frame, and (vi) an assumption on the global topology that can also be

extended to test a variety of topological space forms. Combined with hypotheses on

the preparation of ideal CMB maps (e.g. recipes of how to mask the galactic emission

and foreground contamination) finally furnishes statistical ensembles of model maps as

candidates for the comparison with the data.

In view of the large number of hypotheses, it may appear plausible that the anomalies

observed in the Planck maps (like the Cold Spot, see [1]) are a result of violation of one or

27 CQG+ https://cqgplus.com/2017/04/18/is-the-cosmic-microwave-background-gaussian/
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some of the assumptions made. A surprising result of our studies is, however, that we do

have to be cautious about rapid conclusions on abandoning the above hypotheses: already

inspection by eye of some maps show ”anomalous patterns” in realizations of Gaussian

random fields, and an important part for future work should be dedicated to asking as to

whether these anomalies may be compatible with all of the assumptions currently made:

realizing 100000 maps we found likelihood envelopes on various statistical characteristics

of CMB maps that allow single maps in excess of 6σ from the averaged assumed Gaussian

distribution. Indeed, it is true that the characteristics of the Planck maps do not lie close

to the average characteristics of the model ensemble: the average variance of the maps

created from the standard concordance model of cosmology is bigger than the variance

of the Planck maps, but individual members of the ensemble offer compatible values.

Constrained random samples will have to be analyzed, with characteristics around those

of the Planck maps, to narrow the ensemble and to understand more about what we

will be able to get with realizations of a Gaussian random field. Despite the disclaimers

made above, there are alternative hypotheses which provide ”natural” explanations of

some of the anomalies. As an example I mention the anomaly of missing power on large

scales (studied and discussed in the chapter 4) in the observed CMB maps. The standard

concordance model assumes infinite space sections with perturbations on all scales up to

infinity. The assumption on the global topology can be altered to closed space sections.

Having a finite volume, closed spaces offer an explanation of missing power on large scales,

since perturbations at spatial scales larger than the cutoff length are missing. A variety

of topological space forms has been analyzed earlier at Ulm University. Some models like

3−tori are compatible with flat space sections, some are not. However, on the scale of

the CMB, curvature is small but non-vanishing, widely opening the door to an infinity of

possible, spherical or hyperbolic space forms.

The issue of cosmic topology has attracted scientists from another angle: could we

dig deeper into the topology by analyzing CMB maps (now that we have provided a new

CMB signature of non-trivial topology)? The answer is likely, yes. These efforts have to

assume and analyze a space form. Then, out of a wealth of possible space forms, only

those that have a finite size below the CMB scale have a chance to be observed: observing

the CMB then may create ”circles-in-the-sky” along which the pixels of the CMB data

should have comparable properties. On the other hand, it turned out that finite volume

space forms should be closed on a scale that is comparable for a variety of space forms

analyzed (and are of the order of 4 times the Hubble length for best- fits to the two-

point correlation function of the observed maps). However, even extreme situations like

the construction of CMB maps for observers who look into a horn of a hyperbolic and

closed space form (the Poincaré dodecahedron space) did not reveal significant observable

differences to the standard models for CMB maps. So far, the most conservative way

to advance our understanding of the Planck maps is to first keep the assumptions listed

above. This already provides a starting point of rich and unforeseen consequences, as our

results show.

We are attempting to go another route—from the standard list of hypotheses

on the model and the assumed average statistical distribution—aiming at critically

examining further model-dependencies in the analysis of the deviations from the assumed

Gaussian distribution (named non-Gaussianities). It is here, where model-independent

strategies can be developed and compared with current perturbative models of the CMB
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perturbations: we employ discrepancy functions to measure the drifts from Gaussianity

for the univariate descriptors (i) probability density function PDF, and (ii) the complete

set of three Minkowski Functionals MFs. The latter method, exploiting the wealth

of results of integral geometry, has been developed over the last 27 years, after their

introduction into cosmology by [2], and is nowadays used by many teams worldwide

including the Planck team. In particular, the family of Minkowski Functionals provide a

robust set of morphological valuations which supersedes the power of correlation analyses.

A small number of functionals is needed to completely characterize the morphology of the

CMB, a characterization that contains all orders of the correlation functions in integrated

form. Deviations from Gaussianity are then expanded into Hermite polynomials of

these discrepancy functions, a method that appears to fit well the behaviour of non-

Gaussianities even for masked model maps that are expected to show large deviations from

a Gaussian (large deviations are also expected, e.g., in string gas cosmologies (see [3]) and

multi-field inflation models (see [4]). Hermite expansions rely on coefficients obtained by

integration over limited temperature ranges and eventually large bin widths, corrections

that we can control. Non-Gaussianities can thus be parametrized by those coefficients,

which are calculated in the case of the PDF as functions of normalized cumulants (using

the moment and cumulant generating functions and the complete Bell polynomials which

have integer coefficients). Any drift from Gaussianity is unveiled by non-vanishing

higher cumulants (order ≥ 3) and impacts directly on the expansion coefficients of the

discrepancy functions. This general characterization of the CMB non-Gaussianities is

compared with model-dependent procedures commonly employed.

Among the models of inflation many predict the hierarchical ordering (HO) of the

normalized cumulants: in standard perturbation theory one usually expands in powers

of σ0 (standard deviation of the field). By virtue of the central limit theorem, such an

expansion should be exactly Gaussian if its argument σ0 would decrease with the sample

size, but this is not the case. Moreover, σ0 is not a small parameter. To compare the

two approaches, one has to perform numerical tests. The result of our tests are that,

at comparable orders of the expansions (we had to go to fourth order in σ0), the HO-

expansion yields satisfactory results, but the full Hermite expansion provides a better

fit. In our paper we also found a stable signature of non-Gaussianity in the ensemble

of map realizations despite the Gaussian assumption underlying their construction. This

calls for systematic further analyses that disentangle the various secondary effects that

go into the production of maps. And, to add a fresh remark, there are issues related

to general-relativistic modeling of the CMB that have not yet been addressed: there

might be inhomogeneity effects—named cosmological backreaction—hints coming from

the reality of inhomogenous expansion (see [5]), as well as related problems such as the

current assumption of a single universal frame for the description of all energy sources in

the model, contradicting basic principles of a cosmological model in a space+time foliation

within general relativity. To understand these effects is one of the headlines of our future

work.
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7 General Conclusions and Outlook

T
his PhD thesis, under the supervision of Thomas Buchert and Laurence Tresse,

investigates some of the topological, geometrical and dynamical properties of the

Universe that can be predicted or derived from the physics and statistical analysis of

the primordial CMB temperature anisotropy map. Firstly I review: the construction

of the General Relativistic Cosmology; the Universe observed according to the ΛCDM

model; and the key-principles of GR, cosmology and the construction of the FLRW model.

This manuscript explores two fields of research in cosmology, cosmic topology: the CMB

in a multiply connected Universe (in chapter 4) and morpho-statistics with Minkowski

Functionals: a model-independent analysis of the CMB non-Gaussianity (in chapter 5).

A
Universe with multiply connected topology such as the 3−torus, flat, homogeneous

and globally anisotropic could dictate specific physical properties to our observable

Universe. Indeed, we verify that any CMB map in the ΛCDM model displays a different

2-point correlation function once the toroidal topology is assumed. In the first case the

2-pcf shows non-vanishing correlations at all angles, in the second case all correlations

vanish beyond an angular scale depending on the torus sidelength (20◦ for a small cubic

torus of 0.5LH and 30◦ for 3.0LH). The CMB observed by the radiotelescopes Planck,

WMAP and others displays also a lack of correlation, in fact beyond ∼60◦. Should we

conclude that our Universe is spatially finite? It would be a bold and early conclusion,

since e.g. the CMB, bigger by its diameter of 6.3LH than the (nearly optimal in term

of the 2-pcf) torus at 3.0LH , exists and is observable nevertheless. Also there are not

yet identified connections between the cut-off angle of the CMB 2-pcf in a Universe with

toroidal topology and the infrared cut-off due to the finite spatial size of the torus. The

2 signatures of the 2-pcf and ρ I presented and discussed in the chapter 4 prove that

the physics of our Universe is, at a certain degree of magnitude, affected by the finite

size of: matter distribution at large scale and, or physical processes affecting chiefly the

Sachs-Wolfe effect on the CMB. Cosmology doesn’t have yet obvious clues on the causes

of the toroidal-like, or multiply connected-like behavior of our Universe. The signature of

the 2-pcf and our new signature ρ are compatible with a spatially finite physical Universe.

Our observable Universe remains spatially finite and presents two typical signatures of

finite and boundless topologies. But cosmology should make progresses to prove that our

physical Universe could be finite.

(i) Our results are in contradiction with the Concordance model, i.e. the ΛCDM

model which is spatially infinite and shows angular correlations everywhere in the 2-pcf.

Furthermore, a spatially infinite Universe addresses the question of the validity of Mach’s

principle, essential to GR, unless the infinite Universe is populated by an infinite number

of heavenly bodies. This hypothesis leading to the issue of an infinitely energetic (or

massive) Universe. Numerically, it seems out of reach to simulate an infinite Universe

showing the properties of our Universe. Does this technical impossibility correspond to

the physical reality of our Universe at large scale? Besides, numerical simulations of finite

or multiply connected Universe are only limited by the complexity (increasing with the

spatial size) of the calculations of modes and the inherent but ever improving computing

durations.

(ii) The spatial finiteness of the torus fundamental domain has certainly many other

consequences on the physical properties of the observable Universe. It is up to us in
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future studies to predict, to model, to observe or to rediscover certain of the specific

properties and signatures of non-trivial topologies. As a matter of fact, the question of the

unexplained CMB anomalies and the ΛCDM model tensions, chiefly on H0 and σ8, should

be investigated in a global universe model with multiply connected topology (MCU). Such

a Universe, as discussed in this thesis, answers to the question of the anomalous lack of

correlation at large angular scale observed on the CMB. Is it possible that this MCU

alleviates other anomalies and tensions?

(iii) We re-verify the known result that the CMB angular 2-point correlation function

presents a hierarchical signature of the size of the universe topology; the larger the cubic

torus, the higher the angular cut-off of the 2-pcf. In addition, the 2-pcf of the primordial

CMB is compatible with the 2-pcf of model Universes with non trivial topology (finite

without boundary) and incompatible with the 2-pcf of the infinite ΛCDM Universe.

(iv) We show that the statistical quantity ρ which is the normalized standard

deviation of the CMB temperature gradient field is a hierarchical signature for a Universe

with cubic 3−toroidal topology. We also observe a linear relation between ρ and L/LH . A

large number of CMB temperature maps is generated, 100 000 by model, at a resolution

of Nside=128 i.e. 196 608 pixels, over the multipole range l=[2,256]. The computing time

of a CMB map in the infinite ΛCDM Universe is short, however, this is not the case

for the CMB with toroidal topology. Indeed, in comparison with an infinite Universe,

homogeneous and isotropic, the discrete spectrum of the torus vibrational modes (of

spatial frequencies) has to be calculated. In addition, the torus has an anisotropic

impact on CMB physics and this has to be calculated since the orientation of the 3−torus

does matter. Even limited to lmax=256 the computation of the CMB temperatures in a

Universe with toroidal topology is time consuming. Therefore, we have limited our present

investigations to 5 ensembles of 100 000 torus maps at 0.5, 1.0, 1.5, 2.0 and 3.0 Hubble

lengths. However, it will be important to confirm our results with other torus sizes, to

satisfy the hierarchical and linear laws we observe and to refine the provisional comoving

size of 3 Hubble lengths for our Universe. Two other aspects could be investigated. The

first concerns the detection of torus orientation which I already study in connection with

the signature ρ. The second aspect is to calculate the CMB signature ρ for other kinds

of universe topologies over various sizes, such as the simply connected spherical Universe

S3.

Interesting properties of P(σ0), P(σ1) and P(ρ) have been observed during our studies

or appear in our ρ paper. In fact, P(σ0) presents a systematic important skewness. In

relation with this skewness of P(σ0), P(ρ) presented in our paper displays also a persistent

skewness. This skewness is under scrutiny since, as a consequence, the property of CMB

Gaussianity in terms of these PDFs should be re-visited. At last, for the variance of the

gradient σ1, P(σ1) shows no pronounced skewness.

Also, as I said above, ρ plays an important role in the Minkowski functionals since

it is the prefactor in the Gaussian premise of the second MF v1 and ρ2 is the prefactor

for the Gaussian premise of the third MF v2. I already work on a comprehensive study

of the MFs for the CMB in multiply connected Universes.

What is the origin of the properties of ρ, as hierarchical signature of a MCU and the

linear law L/LH ∼-0.3ρ+14? For the moment, none of our analytical attempts to connect

ρ and L/LH , a monotonic way, through another physical or statistical quantity, e.g. the

Gaussian smoothing of the CMB, is valid or brings significant results.

(v) What about the primordial physical Universe beyond the CMB, i.e. beyond our

observable Universe? It has been proven that the asymptotic limit of a toroidal Universe
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model is not L→ ∞ but L∼1.1 CMB comoving diameter. It is important that we verify

this limit in terms of ρ with tori of sizes larger than 3 Hubble length. We know that our

Universe is compatible with a torus of size L ∼ 3LH in the sense of both the CMB angular

2-pcf and ρ.

(vi) One difficulty arises from the absence of observation of the circle-in-the-sky

patterns expected on the CMB as complementary signature of a multiply connected

Universe. As it is discussed in the ρ-paper, it is likely that the CITS signal is drowned

out by the strong integrated Sachs-Wolfe effect observed and recently confirmed. It is

therefore very important that our ρ signature actually verifies the multiply connected

nature of the Universe measured before by only the 2-point correlation function.

(vii) The Gaussianity of the primordial CMB, in the sense of the MFs is verified

in the second article developed in this thesis. This weak level of non-Gaussianity goes

along with an angular power spectrum and its associated 2-pcf which are compatible with

a multiply connected Universe. As illustrated in the ρ-paper, the level of isotropy and

homogeneity (IH) of the CMB in a toroidal Universe is very high and at the level of IH

of the ΛCDM in the sense of ρ. This property is very interesting since we are able to

propose a challenging universe model, multiply connected but where the CMB displays

the IHG properties of the CMB in the ΛCDM Universe.

In view of these results, important for cosmology since ρ brings a new signature

reinforcing the hypothesis of a Universe with finite topology, the future prospects of

this PhD thesis open toward a better understanding of the mechanisms connecting the

statistical quantity ρ to the underlying physical properties of the CMB in a MCU.

Thus, the property of global anisotropy of the 3−torus will be used in an attempt to

discriminate different multiply connected Universe models in function of their global

orientation. A modified implementation of ρ would make possible the detection of the

topology, differentiating e.g. the spherical Universe S3 from the infinite Universe, or from

a multiply connected Universe. Some of my researches going in this sense are in progress.

Besides, the perspectives of application of solution to the EFE of General Relativity

in a multiply connected Universe have to be deepened and explored theoretically first

devising toy-models and to extend the studies with a geometrisation of gravity at non-

infinitesimal scales. There are important difficulties to constrain a MCT in the resolution

of the EFE even in the case of a static black hole. The non trivial first order solutions found

by Steiner and e.g. the exact solution for a static black hole in a slab space (1994, [1, 2])

are promising. However, it would be very interesting to progress in the description of the

metric properties of a MC Universe more densely populated.

The CMB, because of its good properties, projected over the 2−sphere S2 brings a

diagnosis synoptic tool of any universe model. Proceeding to more realistic cosmological

models (finite and with inhomogeneous matter and curvature distributions), we might see,

whether these models would also reveal other anomalies detected in the observed CMB.
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8 Appendices

8.1 The truncated Gaussian probability density function

The construction of the truncated Gaussian PDF is based on the standard

unconditional normal distribution (also called in this context the “parent distribution” by

statisticians) defined on the whole line in terms of the mean µ and the variance σ2. The

truncated Gaussian PDF P+(ρ) is defined as the normalized conditional PDF restricted

to the half-line [0,∞[ by

P+(ρ) :=
N√
2πσ

exp

(

−(ρ− µ)2

2σ2

)

Θ(ρ) , (171)

where Θ(ρ) is the Heaviside step function (Θ(ρ) = 1 for ρ ≥ 0, Θ(ρ) = 0 for ρ < 0). N is

a normalization constant determined by the parent parameters µ > 0 and σ > 0 and is

given by

N :=
2

1 + erf( µ√
2σ

)
, (172)

satisfying 1 < N < 2. It follows that P+(ρ) is unimodal of mode µ having the same shape

as the standard normal distribution whose peak height b at ρ = µ is, however, larger by

the factor N . The important new properties of P+(ρ) are that the mean 〈ρ〉 is no more

equal to the mode µ and is also different from the median, and that the variance Σ2 is

different from the parent variance σ2. Actually, all higher moments are different from the

well-known Gaussian moments, in particular the odd moments and all higher cumulants

are non-zero. As an example we give the values for 〈ρ〉 and Σ2:

〈ρ〉 = µ+ σλ > µ ; (173)

Σ2 :=
〈

(ρ− 〈ρ〉)2
〉

= σ2 − σ2λ

(

λ+
µ

σ

)

< σ2 , (174)

with

λ :=
N√
2π

exp

(

− µ2

2σ2

)

. (175)

Note that 〈ρ〉 and Σ2 can be directly computed from the histograms. But in order to

compare the histograms with the truncated (continuous) Gaussian P+(ρ), one has to

know the a priori unknown parent parameters µ and σ. In principle, it is straightforward

to get them. µ is directly determined by the position of the maximum of the histogram,

and σ is obtained from the numerical solution of the equation (see equations (171) and

(172)),

σ + σ erf
(

µ√
2σ

)

=

√

2

π

1

b
, (176)

once the previously obtained value for µ and the peak height b have been inserted. The

actual determination of µ and σ is, however, rendered more difficult, since the accuracy

of the histograms depends on the binning and, thus, the correct position of the maximum

(and of b) is not well-defined (see figures 3 and 4).
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From equations (172)–(176) one infers that the relevant parameter determining the

size of the deviations of the truncated Gaussian PDF from the standard (parent) Gaussian

PDF is given by the positive parameter

β :=
µ√
2σ

. (177)

The figures 3 and 4 show that the modes of all histograms are much larger than the

associated variances and thus we have β ≫ 1 for the tori considered. For β ≫ 1, one

obtains for N and λ from (172) and (175):

N =
1

1 − ǫ
= 1 + ǫ+ O(ǫ2) , (178)

with

ǫ :=
1

2
erfc(β) = 1

2
√

π
e−β2

β

(

1 + O
(

1
β2

))

, and λ = 1√
2π
e−β2

+ O
(

e−2β2

β

)

,

(179)

which gives e.g. for β = 10 the extremely small values ǫ = O(10−45) and λ =

O(βǫ)=O(10−44). Thus, it is justified to use for a comparison of the histograms with

a Gaussian PDF the Gaussian PDF (171) with N = 1. Since a precise determination

of the parent parameters µ and σ from the histograms is rendered with difficulties, as

discussed before, we show in figures 3 and 4 the standard Gaussian PDF determined by

the mean values 〈ρ〉 and the variances Σ2 of the histograms given in tables 1 and 2 for

the cases without mask and with U73 mask, respectively. The ratio β is then given by

〈ρ〉/2Σ, which varies in the unmasked case between 12.340 and 15.494, and in the U73

mask case between 12.938 and 14.532.

8.2 Definitions and notations for the CMB analysis

Statistical and morphological descriptors of a random field are a priori based on

model–independent definitions for a given support manifold. But these descriptors are

bias– and error–dependent according to the impact they have on the amplitude and

shape of the non–Gaussianity, problems we shall touch upon in this appendix. Numerical

biases and errors originate from the pixelation and finite–temperature resolution of the

CMB data maps and sample maps, but also from the way infinitesimal calculations are

translated into discrete algorithms. These numerical issues affect the descriptors, the

fundamental quantities of the field and also the Gaussian predictions.

In what follows we recall some fundamental quantities of the CMB random field

as they are used in the numerical analysis. The temperature anisotropy δT we use in

this thesis is dimensionful, δT := T − T0 in units of µK with T the absolute local

temperature, and T0 = 2.7255 ± 0.0006K, is the mean CMB temperature, which can

be considered as the monopole component of the CMB maps. The dimensionless CMB

temperature anisotropy (T − T0)/T0 is used in linear perturbation theory, in the Sachs–

Wolfe formula (see for instance [72, 73]). The temperature anisotropy δT derives from

the measure of the spectral radiance I(ν(GHz)) by the instruments HFI and LFI of the

Planck probe [16], and depend on the modelling of several effects: relativistic Doppler–

Fizeau, and Sunyaev–Zel’dovich. The magnitude of these effects is a function of the
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cosmological model, therefore, the CMB spectral radiance and consequently the CMB

temperature rest–frame estimations are model–dependent. The suffixes, px or Cℓ apply to

the quantities calculated: from the moments of the probability distribution function (no

suffix), P (τ), directly from the pixels, or from the angular power spectrum, respectively.

8.2.1 Basic quantities of the CMB random field

We consider a Gaussian window function with smoothing scale θfwhm(◦),

σG := θfwhm
π

180

1√
8 ln 2

. (180)

For σ2
G ≪ 1 the Gaussian kernel is approximated by

Wℓ = exp (−σ2
G

2
ℓ(ℓ+ 1)) , (181)

and once the aℓ,m coefficients of the expansion of δT on S2 in spherical harmonics are

calculated from the map, given the pixelation correction pxc(ℓ), the corrected multipole

moments are given by

Cℓ :=

〈

1

2ℓ+ 1

+ℓ
∑

m=−ℓ

|aℓ,m|2
〉

, (182)

Cwℓ = Cℓ pxc(ℓ)2 exp (−ℓ(ℓ+ 1)σ2
G) , (183)

and the angular power spectrum by

(δTℓ)
2 := (ℓ(ℓ+ 1)/2π)Cwℓ. (184)

We consider the mean values,

µ := α1 ; µpx := 〈δT 〉px , (185)

and the variances,

σ2
0 := α2 − µ2 ; σ2

0px :=
〈

(δT )2
〉

px
− 〈δT 〉2

px . (186)

For a homogeneous and isotropic Gaussian random field, σ2
0Cℓ is independent of the

absolute direction of light provenance; the variance ensemble average is

σ2
0Cℓ :=

ℓmax
∑

ℓ=2

Cwℓ
(2ℓ+ 1)

4π
. (187)

The variance of the local gradient is (compare the definition in equation (153))

σ2
1px :=

〈

(∇1δT (n̂))(∇1δT (n̂)) + (∇2δT (n̂))(∇2δT (n̂))
〉

, (188)

and, only in a homogeneous and isotropic model, for a Gaussian random field, the ensemble

average of σ2
1Cℓ is

σ2
1Cℓ :=

ℓmax
∑

ℓ=2

Cwℓ
(2ℓ+ 1)ℓ(ℓ+ 1)

4π
. (189)

The measures of the variance and variance of the local gradient, equations (186) and

(188), contain an averaged statistical, respectively, morphological information of the

random field. Since the model–dependent expressions, equations (187) and (189), are
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valid only for homogeneous–isotropic Gaussian fields, any significant difference between

these two methods indicates a preliminary detection of non–Gaussianity and the degree

of comformity with the model for the CMB. For the ΛCDM sample we notice such a

difference between the variances calculated from the pixels and the variances calculated

from the angular power spectrum. Model–dependent predictions for σ0Cℓ and σ1Cℓ and

further discussions can be found in [28].

Table 8 shows the averaged values of µ, σ0 and σ1 over the CMB map sample in the

ΛCDM model. Two cases are shown in this table and all the further tables for our ΛCDM

105 map sample at Nside = 128, ℓmax = 256, 2◦fwhm: without mask at bin width 13µK

and over the full temperature range of the sample; with U73 mask subtraction at bin

width 6µK and over the limited temperature range fixed by the Planck SMICA map.

The effect of passing from no mask to the mask U73 is upon µ, σ0 and σ1. And the

variation of the ratio σ1/σ0 is noticeable (e.g. 34.16218/33.93190 = 1.006787) and affects

the magnitude of the Gaussian premise of the Minkowski Functionals v1 and v2.

(Units of µK) ΛCDM sample Full individual map range, no mask, 2◦fwhm, bin 13µK

µpx σ0px σ1px σ1px/σ0px

−3.4 × 10−7 59.53348 2020.08398 33.93190

(Units of µK) ΛCDM sample Equal temperature range (ETR ± 201µK), U73 mask, 2◦fwhm, bin 6µK

µpx σ0px σ1px σ1px/σ0px

−1.4534 × 10−3 59.13275 2020.10372 34.16218

Table 8: Table of µ and σ values.

8.2.2 The Cosmic Microwave Background in the ΛCDM model

The six-parameter (see e.g. the article by de Valentino [1]) ΛCDM model is based on

a choice of six cosmological parameters selected to limit degeneracies when fitting to the

observation dataset. An example is to find the best fit of a ΛCDM model variant to the

observational data using the 2-point CMB power spectrum (see the article by Callin [2]

on the calculation of the CMB spectrum and the associated algorithms and programs

CAMB and CMBFAST).

An example of 6-parameter setting:

physical baryon density, Ωbh
2

physical cold dark matter density, Ωch
2

age of the Universe, t0

scalar spectral index, ns

curvature fluctuation amplitude, σ8

reionization optical depth, τ

The 2 articles developed in my Manuscript make use of the same ΛCDM model

cosmological parameters to get the CMB temperature map ensemble. The ΛCDM CMB

maps are generated with the software library HEALPix synfast. Its interface takes as

input the CMB angular power spectrum calculated with CAMB using the cosmological

parameters of the ΛCDM model according to Planck 2015 (see [3], p.31, table 4, last

column, and Review of particle physics [75]:
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H0 = 67.74 ± 0.46 kms−1Mpc−1, the Hubble constant today

h = H0/(100kms−1Mpc−1) = 0.6774, the normalized Hubble constant today

T0 = 2.7255 ± 0.0006 K, present–day CMB temperature

Ωbh
2 = 0.02230 ± 0.00014, baryon density

Ωch
2 = 0.1188 ± 0.0010, Cold Dark Matter density

Ωνh
2 = 0.00209, neutrino density

Ωk = 0, constant–curvature density parameter

YP = 0.249+0.025
−0.026, helium fraction

Neff = 3.04 ± 0.33, number of massless neutrinos
∑

mν < 0.194 eV, neutrino mass eigenstates

τ=0.066 ± 0.012, reionization optical depth

zre=8.8 +1.2
−1.1, redshift of the reionization

nS=0.9667 ± 0.0040, scalar spectral index

xe=1, ionization fraction

z∗=1089.90 ± 0.23, redshift of decoupling

ΩΛ=0.6911 ± 0.0062, cosmological constant density

Ωm=0.3089 ± 0.0062, total matter density

Age= 13.799 ± 0.021 Gyr, age of Universe

The recent investigation (August, 2021) made by Efstathiou updates the cosmological

parameters after a reanalysis of the Planck HFI maps (see in [50]) .

A few important definitions

– Elastic Thomson scattering and CMB regime out of equilibrium

Thomson scattering of charged particles (free electrons of mass me−) by incident

photons of energy hνinc is the main process at the origin of CMB radiation. Before

recombination, at a temperature> 3000K electrons and protons are statistically decoupled

while electrons and photons are coupled. As a consequence, elastic collisions between

free electrons and photons occur very frequently. This is the Thomson scattering

obtained if hνinc <<me−c2. Photons are then in regime of thermodynamic equilibrium

at the temperature Tequ. The number of CMB photons at a given energy Ei=hνinc,i is

proportional to the Bose-Einstein statistics

Φ(hνinc,i) =

(

e
hνinc,i

kTequ − 1

)−1

, (190)

where h is the Planck constant and k being the Boltzmann constant. During the

recombination of electrons with protons, the mean free path of photons overcomes the

comoving radius while the number density of free electrons drops down. In the phase of

decoupling between photons and electrons, the CMB thermodynamic system is no more

in state of thermal balance. Collisions photon-electron or of completely different particles

occur now occasionally and abruptly. The statistical evolution of this thermodynamic

system is described by the collision integral taking the form of the non-linear integro-

differential Boltzmann’s equation. This equation allows a global and statistical description

of the evolution of a complex thermodynamical system made of various kinds of particles

in collision in a regime now out of equilibrium. Nevertheless, the CMB is extremely close

to the ideal blackbody i.e. equivalent to a body with an absorption coefficient nearly of
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1 at temperature today 2.7255±0.0006K. Mathematical developments on the Boltzmann

equation and the mechanisms of CMB primordial radiation can be found in the books by

Carlo Cercignani [4] and Ruth Durrer [5].

– Harrison-Zel’dovich spectrum

A weak level of inhomogeneity, anisotropy and non-Gaussianity is observed all over

the CMB. However, the extreme CMB temperature uniformity (∆T/T ∼10−5) at angular

scales beyond 7◦ cannot be explained physically since the causal horizon at the epoch of

last scattering underlies an angular size of ∼0.6◦ measured in the ΛCDM model. Also,

the extremely high level of CMB Gaussianity that we confirm at angular scales >0.6◦ is

compatible with a statistical and physical independence of small CMB regions physically

decoupled. Inflation (see e.g. the book by Giovannini [6]) is a phenomenological theory

that proposes a scenario of mechanisms able to

- produce the CMB temperature uniformity,

- account for a CMB patched by small regions physically decoupled,

- account for the high level of inhomogeneity observed in the large scale structure

distribution of our Universe.

The properties of inhomogeneity of the primordial Universe are characterized by a

statistical tool, the 2-point distance correlation function. Given the 2-point correlation

function (which is an auto-correlation function) denoted 2pcfd of the density fluctuations

in the primordial Universe, the 2-point distance spectrum is defined as the Fourier

transform of the 2pcfd (see e.g. the reference book by Lyth and Liddle [7]). In the

framework of the ΛCDM model of a Universe homogeneous, isotropic and Gaussian, the

fluctuations around the homogeneous density ρd are considered as adiabatic perturbations

δ(ρd). The 2pcfd is calculated as the mean value of the density contrast of all the pairs

of points separated by the distance r

2pcfd(r) =

〈

δ(ρd, x0)

ρd

δ(ρd, x0 + r)

ρd

〉

. (191)

No specific location x0 enters this equation (191) given the properties of homogeneity and

isotropy of the ΛCDM Universe. The spectrum P(k) as a function of the wave-vector k

(the wavelength l verifying l = 2π/k) is

P (k) =
k3

2π2

∫

2pcfd(r)dx3 . (192)

In the case of adiabatic perturbations verifying purely Gaussian statistics, the properties

of these perturbations are completely given by the power spectrum.

– ∆2
R is the amplitude of the primordial power spectrum specified at a comoving

scale of 0.002Mpc h−1 or 0.05Mpc h−1. ∆2
R is denoted As in previous studies on the

primordial density perturbation. In the tables of cosmological parameters, ∆2
R is used

generally under the form loge(1010 ∆2
R) or ∆2

R 109 or ∆2
R 1010.

– ns, the scalar spectral index quantifies how the density fluctuations vary with

scale, having scale invariant fluctuations for ns=1 corresponding to the peculiar case of

an Harrison-Zel’dovich spectrum. The primordial Harrison-Zel’dovich spectrum is, in the

ΛCDM model, the spectrum able to account for the evolution to the inhomogeneity and

116



anisotropy observed in our Universe today. In this scenario, the relation between ∆2
R,

amplitude of the primordial power spectrum, and its scalar spectral index ns is given by

the power law

∆2
R(k) = ∆2

R(k∗)

[

k

k∗

]ns−1

, (193)

where k∗ is an arbitrary wave-vector.

– σ8 is the root mean square of perturbations of density at a comoving scale of

8Mpc h−1. How the Universe is clumped at a given redshift? Thus, σ8 is measured, (i)

on the CMB temperature map, (ii) in large-scale structures distributions such as spatial

distributions of galaxies or galaxy clusters. A slight and persistent tension is signalled

between the values of σ8 measured in the CMB temperature map and in LSS data such

as the SZ (Sunyaev-Zel’dovich) clusters.

– τ , the reionization optical depth quantifies how much CMB radiation has been

absorbed or scattered between CMB and receiver during the reionization era taking place

in a ΛCDM Universe old of ∼13Gy, i.e. at redshift z∼9. At scales smaller than the horizon

size at reionization (l≥10 i.e. angle ≤ 18◦) free electrons generated during the reionization

scatter and damp the CMB anisotropies. This implies a scale independent suppression of

CMB radiation power within this angular range. τ is dimensionless and given by

τ = nH(z = 0) c σT h

∫ zmax

z=0
xe(z)

(1 + z)2

H(z)
dz , (194)

where nH is the fractional number of hydrogen nuclei, σTh is the Thomson scattering cross

section and xe the number density of free electrons (or ionization fraction).

8.2.3 The CMB radiation components

The full Boltzmann physics is implemented in the CAMB software; thus, the maps of

the CMB sample in the ΛCDM model include the following effects: ordinary Sachs–Wolfe

effect / Doppler effect / Silk damping / Reionization / Polarization of photons / Neutrinos

/ Integrated Sachs–Wolfe effect (ISW ) / Lensing. The weak lensing effect upon the CMB

is treated in [5] and in [8] beyond the Born approximation, which is usually applied at

first–order of perturbation theory. For a second–order treatment the deflection angles,

still assumed small28 if ℓ 6 2500, are no more Gaussianly distributed, but the post–Born

corrections would be weakly detectable in low noise CMB temperature maps merging

the contributions of hundreds of ℓ–values between ℓ = 1000 and ℓ = 2500. Our present

study uses an ℓ–range [2,256], well below ℓ = 1000. One notices that an evaluation of the

Sunyaev–Zeldovich effect (SZ) on the CMB radiation is not implemented in CAMB, the

sources responsible of the SZ effect being more or less excluded when using an appropriate

foreground mask. It is clear that, in this list, some of the effects are not primordial

but depend on model–dependent knowledge of the matter distribution and the physical

assumptions in the concordance model, i.e., mainly the ISW effect, the lensing and the

neutrinos.

28 Two times the typical angular deviation equals 4 arc minutes (CMB lensing due to structures

at z < 20 in a flat FLRW model); this corresponds to ℓmax = 180◦/(4/60) = 2700.
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8.2.4 Map ensemble and statistical stability

From the power spectrum we generate with synfast a 105 map ensemble. Given

the map resolution (Nside = 128, ℓmax = 256, and 2◦fwhm), the number of 105 maps

allows a statistical stability in the sense of the second averaged MF v1, which becomes

smooth and stable around 105 maps, a second different sample of 105 maps gives very

similar results and doubling the sample brings no visible improvement in the shape of v1.

A number of 105 maps is satisfactory in the sense of the statistical stability for the MFs

themselves, but less for the PDF. However, once we come to the discrepancy functions,

the stability is definitely impaired when using a smaller number of maps, and 105 maps

must be considered as a minimum requirement. We shall not develop more on these

studies in the present work.

8.2.5 Discretization: definition of the τ–lattice

One observes that in the case of 105 realizations there is an interval in τ , [τ−, τ+] such

that P (τ) = 0 for all realizations, if τ /∈ [τ−, τ+]. In order to simplify the problem, we use

a symmetric interval [−τm,+τm], where τm = max{|τ−|, τ+}. The interval [−τm,+τm] is

divided into 2L+ 1 bins of equal bin width ∆τ := 2τm/(2L+ 1), where the mid–points of

the bins are given by the “τ−lattice”, τl = −τm + (2l − 1)(∆τ/2), l = 1, 2, · · · , (2L+ 1),

in such a way that the (L+ 1)th bin is centered at τL+1 = 0. (Example: τm = 396.5 µK,

L = 30, ∆τ = 13µK ⇒ (2L + 1) = 61 bins.) Then, the discretized PDF for a given

realization, which is now a step–function, i.e. piecewise continuous, can be represented as

a histogram that is defined by (l = 1, 2, · · · , (2L+ 1)):

P (τl) :=
#pixels{δT ∈ [τl − ∆τ

2 , τl + ∆τ
2 )}

Ntot∆τ
, (195)

with Ntot the total number of pixels, and for τ within the lth bin, i.e., τ ∈
[

τl − ∆τ
2 , τl + ∆τ

2

)

(half open interval!).

The ensemble average (mean) 〈P (τ)〉 is given by the arithmetic mean of all the PDFs

of the 105 realizations. 〈P (τ)〉 is still constant in a given bin, denoted by 〈P (τl)〉 in the lth

bin and, thus, the derivative d〈P (τ)〉/dτ is zero almost everywhere, but 〈P (τ)〉 will have,

in general, (2L+2) jumps, namely at the points τl+∆τ/2, l = 1, 2, · · · 2L and at the points

∓τm (iff 〈P (τ)〉 possesses this special property!) In general, there will be a first jump at

a value τ0 ∈ [−τm, τ1 + ∆τ/2), and a last jump at a value τ2L+2 ∈ (τ2L+1 − ∆τ/2, τm],

and these contributions have to be treated separately.

If we ignore the last subtlety, the expectation value (79) of a given random field

f(δT ) is exactly given by the finite sum

〈f(δT )〉 =
2L+1
∑

l=1

〈P (τl)〉
∫ τl+∆τ/2

τl−∆τ/2
f(τ) dτ . (196)

As an important example, this yields with f(τ) = τn the exact formula for the moments

αn of δT (see equation (80) for n = 0, 1, 2, · · ·):

αn =
1

n+ 1

2L+1
∑

l=1

〈P (τl)〉
[

(τl + ∆τ/2)n+1 − (τl − ∆τ/2)n+1
]

. (197)
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For n = 0 and n = 1 one obtains the expected values

α0 =
2L+1
∑

l=1

〈P (τl)〉 ∆τ = 1 (normalization) , (198)

α1 = µ =
2L+1
∑

l=1

τl〈P (τl)〉 ∆τ = 0 , (199)

whereas, for n ≥ 2, one gets a decomposition into a “main term” and an “exact correction”

in the form of a finite series in the bin width ∆τ :

αn =
2L+1
∑

l=1

τn
l 〈P (τl)〉 ∆τ +

2

n+ 1

[n/2]
∑

k=1

(

n+ 1

2k + 1

)

2L+1
∑

l=1

τn−2k
l 〈P (τl)〉

(

∆τ

2

)2k+1

. (200)

(Example for n = 2: σ2
0 := α2 =

∑2L+1
l=1 τ2

l 〈P (τl)〉∆τ + (∆τ)2/12.)

In many papers on MFs the integral in equation (79) and similar integrals are

approximated by the “main term” and, thus, the results suffer from an error, which

is exactly given (in the case of (79)) by the “correction” in (200), if it is not taken into

account. For a discussion of the correction term in the case of the MFs v1 and v2, see [77].

This error can be made small, iff ∆τ or ∆ν is chosen small enough in principle, which

is not the case, i.e., for ∆τ = 13µK. Looking at the “main term” (mentioned above)

without correction,

α′
n =

2L+1
∑

l=1

τn
l 〈P (τl)〉 ∆τ , (201)

we obtain that σ′
0 =

√

α′
2 = 59.6516µK to be compared with σ0px = 59.5335µK (second

equation in (186) and see also table 8).

8.3 Generating functions of the moments and cumulants

From the definition (96) of the discrepancy function ∆P (τ) and the Hermite

expansion (97), one obtains with (82) for the generating function M(x) of the moments

αn (with α0 = 1, α1 = µ = 0, α2 = σ2
0):

M(x) =
∞
∑

n=0

αn

n!
xn = 〈exδT 〉 =

∫ ∞

−∞
exτ

[

PG(τ) +
1√

2πσ0

∆P (τ)

]

dτ =: MG(x)+M∆(x), (202)

with

MG(x) :=
1√

2πσ0

∫ ∞

−∞
exτ−τ2/2σ2

0 dτ = eσ2
0x2/2 , (203)

and

M∆(x) :=
1√

2πσ0

∞
∑

n=3

aP (n)

n!

∫ ∞

−∞
exτ−τ2/2σ2

0 Hen(τ/σ0) dτ

=
1√
2π

eσ2
0x2/2

∞
∑

n=3

aP (n)

n!

∫ ∞

−∞
e−ν2/2e(σ0x)ν− 1

2
(σ0x)2

Hen(ν) dν .

(204)
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Using the generating function of the Hermite polynomials [64],

ezν− 1
2

z2
=

∞
∑

m=0

Hem(ν)
zm

m!
,

equation (204) can be rewritten as

M∆(x) =
1√
2π

e(σ0x)2/2
∞
∑

n=3

aP (n)

n!

∞
∑

m=0

(σ0x)m

m!

∫ ∞

−∞
e−ν2/2 Hem(ν) Hen(ν) dν ,

which leads with the orthogonality relation (103) to

M∆(x) = MG(x)
∞
∑

n=3

aP (n)

n!
(σ0x)n , (205)

and, thus, with (202), (203), to the factorization

M(x) = MG(x)K(x) , (206)

with

K(x) := 1 +
∞
∑

n=3

aP (n)

n!
(σ0x)n . (207)

The cumulant generating function, defined in (83), is then additive,

C(x) =
∞
∑

n=2

κn
xn

n!
= CG(x) + ∆C(x) , (208)

as given in equations (98) and (99) of the main text. It is convenient to write ∆C(x) :=

lnK(x) in terms of the dimensionless variable z := σ0x,

∆C

(

z

σ0

)

= ln

[

1 +
∞
∑

n=3

aP (n)

n!
zn

]

=
∞
∑

n=3

Cn

n!
zn , (209)

where Cn := κn/σ
n
0 are the normalized (dimensionless) cumulants. To obtain closed

expressions for the NG–coefficients aP (n) in terms of the cumulants Cn, we recall the

generating function of the complete Bell polynomials Bn [65] (B0 = 1):

exp

[ ∞
∑

n=1

xn

n!
zn

]

= 1 +
∞
∑

n=1

Bn(x1, x2, · · · , xn)

n!
zn . (210)

By expanding the exponential and comparing in (210) the terms of the same power in z,

it is not difficult to obtain, e.g., the first four Bell polynomials: B1(x1) = x1, B2(x1, x2) =

x2
1+x2, B3(x1, x2, x3) = x3

1+3x1x2+x3, B4(x1, x2, x3, x4) = x4
1+6x2

1x2+4x1x3+3x2
2+x4.

A comparison between (209) and (210) yields the closed expression (x1 = x2 = 0, x3 =

γ1, x4 = γ2, xn = Cn for n ≥ 5):

aP (n) = Bn(0, 0, γ1, γ2, C5, · · · , Cn) , n ≥ 3 , (211)

as given in the main text in equation (102). The explicit expressions for B3 and B4 give

aP (3) = B3(0, 0, γ1) = γ1, aP (4) = B4(0, 0, γ1, γ2) = γ2, in agreement with (101). In

order to obtain the higher Bell polynomials, one can either use the recurrence relations,

Bn+1(x1, x2, · · · , xn+1) =
n
∑

m=0

(

n

m

)

Bn−m(x1, x2, · · · , xn−m) xm+1 , (212)
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or the combinatorial expression

Bn(x1, x2, · · · , xn) =
∑

π(n)

n!

a1!a2!, · · · , an!

(

x1

1!

)a1
(

x2

2!

)a2

· · ·
(

xn

n!

)an

.(213)

Here, the sum is over all partitions π(n) of n, i.e., over all positive integers am such that
∑n

m=1m am = n. The multinomial coefficients

(n; a1, a2, · · · , an)′ :=
n!

(1!)a1a1!(2!)a2a2! · · · (n!)anan!
, (214)

are given, for n = 1, 2, · · · , 10, in table 24.2 in [63]. The Bell polynomials have the nice

property that their coefficients are integers and, therefore, the NG coefficients aP (n) of

the PDF discrepancy function are linear combinations of the normalized cumulants with

integer coefficients, as seen in equation (101). Since the NG–coefficients a0(n) of the

discrepancy function ∆0 are related to the aP (n)’s by a0(n) = aP (n+1)
n+1 , n ≥ 2, it follows

that the coefficients of the a0(n)’s are, in general, rational numbers (see equation (118)).

8.4 A closed expression for the NG–parameters aP(n)

Finally, we give an alternative closed formula for the expansion coefficients aP (n),

which does not express them in terms of the cumulants Cn as in equation (211), but

rather in terms of the normalized moments α̂n (see equation (80)),

α̂n :=
αn

σn
0

=
〈

(

δT

σ0

)n
〉

. (215)

Replacing ∆P in equation (104) by its definition (96), we obtain:

aP (n) =

∫ ∞

−∞
[P (τ) − PG(τ)] Hen(τ/σ0) dτ , (216)

which gives, with the definition (79) and the orthogonality relation (103), (n = 0, 1, 2, . . .):

aP (n) = 〈Hen(δT/σ0)〉 − δn0 . (217)

From (217) follows immediately aP (0) = 0, aP (1) = α̂1 = µ/σ0 = 0, and aP (2) =

α2/σ
2
0 − α̂0 = 0, and for the required aP (n)’s with n ≥ 3 using the expansion [63],

Hen(x) = n!

[n/2]
∑

k=0

(−1)k

2kk!(n− 2k)!
xn−2k , (218)

the closed expression

aP (n) = n!

[n/2]
∑

k=0

(−1)k

2kk!(n− 2k)!
α̂n−2k (n ≥ 3) . (219)

By virtue of this formula, the integral in the original definition (104) is replaced by a

finite sum and, thus, one obtains in combination with the formula (80) for the moments

simple closed expressions for the Hermite expansion coefficients.
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8.5 General Hermite and Edgeworth expansions

Here, we summarize some well–known mathematical facts (see, e.g., [66–71]), which

are used in section 5.2.3 for expanding the various discrepancy functions ∆P (x), ∆0(x),

etc., in terms of Hermite polynomials.

Let f(x), R → R, be square integrable with respect to a positive weight function

w(x), i.e., f(x) ∈ H := L2(R, w(x)dx). For f, g ∈ H, we define the inner product

(f, g) :=

∫ ∞

−∞
w(x)f(x)g(x)dx , (220)

which satisfies the Schwarz inequality |(f, g)| ≤ ||f || · ||g||, where ||f || denotes the norm

of f , ||f || :=
√

(f, f). Let ψ0(x), ψ1(x), · · · ∈ H be an orthonormal system satisfying the

orthogonality relation (m,n ∈ N0),

(ψm, ψn) = δmn , (221)

and let f ∈ H be any function. Then, the numbers

bn := (f, ψn) (n ∈ N0) (222)

are called the expansion coefficients (“Fourier coefficients”) of f with respect to the ψn’s.

From the relation

0 ≤
∫ ∞

−∞
w(x)

(

f(x) −
N
∑

n=0

bnψn(x)

)2

dx = ||f ||2 −
N
∑

n=0

b2
n , (223)

one obtains
∑N

n=0 b
2
n ≤ ||f ||2, and since the right–hand–side of the last inequalities is

independent of N , we obtain Bessel’s inequality
∞
∑

n=0

b2
n ≤ ||f ||2 . (224)

This proves that the sum of the squares of the expansion coefficients bn always converges.

Consider now, for a given function f(x) ∈ H the following linear combination:

FN (x) :=
N
∑

n=0

γnψn(x) , (225)

with constant coefficients γn and fixed N . Then, there arises the question under which

conditions the approximation (225) can be considered as an approximation “in the mean”

such that the mean square error

EN := ||f − FN ||2 (226)

is as small as possible. From the identity

EN = ||f ||2 +
N
∑

n=0

(γn − bn)2 −
N
∑

n=0

b2
n (227)

it follows immediately that EN takes on its least value for γn = bn (n = 0, 1, · · · , N). If

the error EN converges for every piecewise continuous function f ∈ H to zero as N goes

to infinity, then the orthonormal system {ψn} is said to be complete, i.e., it provides a
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complete basis of H, and Bessel’s inequality (224) becomes an equality for every piecewise

continuous function f ,
∞
∑

n=0

b2
n = ||f ||2 , (228)

which is known as completeness relation (also called Parseval’s equation).

It is important to note that the completeness of the system {ψn}, expressed by the

equation

lim
N→∞

∫ ∞

−∞
w(x)

(

f(x) −
N
∑

n=0

bnψn(x)

)2

dx = 0 , (229)

does not necessarily imply that f(x) can be expanded in a series in the functions ψn(x).

The expansion

f(x) =
∞
∑

n=0

bnψn(x) (230)

is, however, valid if the series in (230) converges uniformly and, thus, the limit in (229)

can be carried out under the integral.

In this thesis, our main concern is not the theoretical problem to find an expansion

(230) of f(x), but rather the practical problem to obtain a representation (225) of f(x)

with γn = bn with a small number of terms, N < 10, say, which provides a fairly good

approximation by minimizing the error (226). To this end, it is convenient to choose

an orthogonal basis {φn(x)} in H, where each φn(x) is a polynomial of degree n. For

the Gaussian weight function wG(x) := exp (−x2/2) =
√

2πPG(x), it turns out that the

polynomials are uniquely determined (up to a multiplicative constant in each polynomial)

by the Hermite polynomials Hen(x) (c.f. [63]),

φn(x) := Hen(x) , (231)

which provide a complete orthogonal (not orthonormal) system in H =

L2(R, exp (−x2/2) dx), satisfying the orthogonality relation (see (103))

(φm, φn) := hn δmn (m,n = 0, 1, 2, · · ·) , (232)

with hn :=
√

2πn! . In order that the piecewise continuous function f(x) satisfies ||f || < ∞
in H, it must obey the asymptotic condition

f(x) = O

(

ex2/4

|x|1/2+ǫ

)

, ǫ > 0 , |x| → ∞ . (233)

The approximation (225) becomes then the polynomial approximation

FN (x) =
N
∑

n=0

a(n)

n!
Hen(x) , (234)

where the expansion coefficients a(n) = 1√
2π

(f, φn) are explicitly given by

a(n) =
1√
2π

∫ ∞

−∞
e−x2/2 f(x) Hen(x) dx (n = 0, 1, 2, · · ·) . (235)

The completeness relation (228) then reads:

∞
∑

n=0

a2(n)

n!
=

1√
2π

∫ ∞

−∞
e−x2/2 f2(x) dx , (236)
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which implies the asymptotic behaviour

|a(n)|
n!

= O

(

1

n1/2+δ
√
n!

)

, δ > 0 , n → ∞ . (237)

It is important to bear in mind that, even in the case when the series (230) is uniformly

convergent, it by no means follows that the N th partial sum (234) is the best selection of

N terms for representing the function f(x). Even though (234) gives the best fit in the

sense of least squares by minimizing the error (226), it may be that some other measure

of approximation is better suited for a given problem [67]. All the more this may be the

case if the series (230) is divergent, in which case one may ask whether there exists an

asymptotic expansion in the sense of Poincaré (c.f. [68]).

In the particular case of the Hermite expansion (234), many authors have worked on

asymptotic expansions since quite a long time, mainly in the context of probability theory,

statistics, number theory, and mathematical aspects of insurance risk (c.f. [67, 69–71],

and references therein). The results relevant to us in this thesis are connected with the

attempts to give a refinement of the classical central limit theorem in probability theory,

and are often, historically incorrect, referred to as Charlier or Gram–Charlier A–series

and Edgeworth expansion, although they had been introduced by Tchebychev already

before [71]. Since Matsubara’s expansion of the MFs in [57, 58] (see also [60] and [61]),

based on the assumption of hierarchical ordering (HO), is formally closely related to the

Edgeworth expansion, we shall summarize the main properties of the latter. It turns out

that the Edgeworth expansion furnishes, in the case of the central limit theorem, a genuine

asymptotic expansion with a well–defined remainder term.

Let x1, x2, · · · , xn be independent and identically distributed random variables with

a common continuous distribution function, such that every xk has zero mean, standard

deviation σ, and a third absolute moment β3 = 〈|δT |3〉. Consider the standardized sum

variable

yn :=
x1 + x2 + · · · + xn√

nσ
, (238)

and let Pn(x) be the PDF of yn. The central limit theorem then asserts that, as

n → ∞, under appropriate conditions, Pn(x) tends to the Gaussian (normal) PDF,

PG(x) = 1√
2π

exp (−x2/2). The Edgeworth expansion is a refinement of this by giving

also the rate of convergence to the Gaussian limit. Define the discrepancy function

δn(x) :=
√

2π
(

Pn(x) − PG(x)
)

. (239)

Then, the Edgeworth (E) expansion [67, 69–71] is the following asymptotic expansion:

δE
n (x) = e−x2/2

[

K
∑

k=1

qk(x)

nk/2
+ O

(

1

n(K+1)/2

)

]

(n → ∞) , (240)

where qk(x) is a polynomial of degree 3k, which only depends on the normalized cumulants

Cn (n ≥ 3;C3 = γ1, C4 = γ2), and which can be expressed as a linear combination of the

Hermite polynomials Hen(x). For k = 1, · · · , 4 they are explicitly given by:

q1(x) =
γ1

3!
He3(x) ;

q2(x) =
γ2

4!
He4(x) +

10γ2
1

6!
He6(x) ;

q3(x) =
C5

5!
He5(x) +

35γ1γ2

7!
He7(x) +

280γ3
1

9!
He9(x) ;

q4(x) =
C6

6!
He6(x) +

35γ2
2 + 56γ1C5

8!
He8(x) +

2100γ2
1γ2

10!
He10(x) +

15400γ4
1

12!
He12(x) .(241)

124



The expansion (240), δE
n (x), taking the first K terms into account, is an asymptotic

expansion of δn(x) in powers of 1/
√
n with a remainder of the same order as the first

term neglected (i.e., it is an “asymptotic expansion to K terms” as defined by Poincaré,

c.f. [68]). Thus, it gives a correction to the central limit theorem, with a well–defined

error of order n−(K+1)/2, in the case where n is finite but large (1 ≪ n < ∞). Due to the

Hermite expansions (241) of the polynomials qk(x), the Edgeworth expansion (240) can

be interpreted as a particular rearrangement of the following polynomial approximation:

δn,3K(x) := e−x2/2

[

3K
∑

m=3

aE(m)

m!
Hem(x) + O

(

1

n(K+1)/2

)

]

(n → ∞) , (242)

where the ordering is not with respect to powers of 1/
√
n, but rather according to the

order of the Hermite polynomials. (The n−dependence of the coefficients aE(m) is not

explicitly noted.) By a comparison of (242) with (240,241) one immediately reads off the

first 12 expansion coefficients (here we choose K = 4):

aE(3) =
γ1√
n

; aE(4) =
γ2

n
; aE(5) =

C5

n3/2
; aE(6) =

10γ2
1

n
+
C6

n2
;

aE(7) =
35γ1γ2

n3/2
; aE(8) =

56γ1C5 + 35γ2
2

n2
; aE(9) =

280γ3
1

n3/2
;

aE(10) =
2100γ2

1γ2

n2
; aE(11) = 0 ; aE(12) =

15400γ4
1

n2
. (243)

(Note that the coefficients aE(m), m ≥ 7, change if one goes to higher order in 1/
√
n,

e.g., for K = 5 they receive additional contributions of order n−5/2 and n−3.) If the

coefficients (243) are compared with the coefficients aP (m) in equation (101), derived for

a general Hermite expansion for the non–Gaussianities as in (97), it is not difficult to

derive the law that governs the size, with respect to powers of 1/
√
n, of the coefficients

aE(m) associated with the asymptotics (240) of the central limit theorem. It simply says

that every cumulant Cr in (101) has to be replaced by Cr/n
(r−2)/2 (for fixed n ≫ 1, r ≥ 3).

This is precisely the law, rigorously proven for the central limit theorem, which in

some models of inflation is built in as hierarchical ordering (HO). But then, the role of

the small dimensionless expansion parameter 1/
√
n is played by the standard deviation

σ0 which, for the CMB anisotropy, has a fixed value and cannot be made arbitrarily small

as in the case of the central limit theorem. It is, thus, important to perform numerical

checks, as done in this thesis. Furthermore, one should keep in mind that the Edgeworth

expansion, applied to a given PDF, can suffer from the fact that the PDF is not correctly

normalized and it can exhibit undesirable properties such as negative probabilities. In

particular, the approximation deteriorates in the tails.
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