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membres du jury.
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Je pense évidemment en premier lieu à mes collaborateurs. Sans eux, les travaux présentés
ici n’existeraient tout simplement pas. Ceux qui m’ont suivi vers les ondes amorties, ceux
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i



ii



Presentation of the thesis

Avant-propos

This dissertation is about the research I have done since I arrived in Toulouse in 2011, after
my Ph.D.

My Ph.D. (2007-2010) was about the high-frequency dissipative Helmholtz equation.
More precisely, I proved high-frequency resolvent estimates in [2], and I studied in [3] the
semiclassical measure for the solution when the source term concentrates on a bounded sub-
manifold of the Euclidean space. The two papers [4, 5] were published later, but they were
already partially contained in my Ph.D. thesis. The work [4] is about the resolvent estimates
when the damping can take negative values, and [5] is a generalization of [3] to the case of an
unbounded submanifold. These works will not be discussed in this report (except for their
links with more recent papers). Neither will be [1], which is an undergraduate work on a
completely different subject (modelization of the traffic flow).

The Helmholtz equation is the stationary version of the damped wave equation. After
these works, I was motivated by the time-dependent problem. However, to state a result
for high frequencies only, one needs a spectral localization. This is an example among many
others of an issue completely insignificant in the selfadjoint setting which becomes a real
obstacle with damping.

When I arrived in Toulouse, I discussed this question with Jean-Marc Bouclet, and our
conclusion was that instead of trying to localize on high-frequencies, we should prove resolvent
estimates for low frequencies and then consider the damped wave equation without spectral
localization. Since Jean-Marc had just proved low frequency resolvent estimates for the
Schrödinger and undamped wave equations at that time, it was a perfect question to begin
a collaboration. And it turned out to be a very rich subject.

Il était une fois l’équation des ondes amorties...

An important part of this thesis will be devoted to the damped wave equation. An introduc-
tion on the subject will be given in Chapter 1. Several settings will be considered. On the
Euclidean space Rd, the damped wave equation reads

B2
t u` Pu` apxqBtu “ 0, on R` ˆ Rd,

where P is a general Laplace operator (see (1.8) below) and apxq ě 0 is the absorption index.
I have been interested in the local energy decay for this damped wave equation. In the first

results, the purpose was to recover in this setting the results known for the undamped wave
equation. As explained above, the main part of the work was the analysis of the contribution
of low frequencies.

To see the damped wave equation as a perturbation of the undamped case, we had to
assume that the absorption index apxq decays at infinity. It turned out that when the damping
is effective at infinity (for instance if apxq goes to 1 at infinity) the large time behavior of
the solution is different. I studied this new phenomenon in various contexts. Since the
technical issues raised by these two aspects are completely different, the discussion about
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the damped wave equation is split into two chapters. The case of the wave equation with
localized damping is discussed in Chapter 1 while the results about a damping effective at
infinity are described in Chapter 2.

Together with the wave equation, I have also considered the local energy decay for the
Schrödinger equation. These two problems share many similarities, and it is relevant to
discuss them together. In some situations the Schrödinger equation can be simpler, and it
has been used as an intermediate step toward the analysis of the wave equation. And finally,
the ideas developed for the damped wave equation had an important application to a result
about the usual (conservative) Schrödinger equation.

... et d’autres problèmes (pas toujours) linéaires impli-
quant des opérateurs (pas toujours) non-autoadjoints.

In parallel with my main research work on the damped wave equation, I have also developed
various collaborations on other topics. They are often questions which arose from scientific
discussions with friends and finally turned into a collaboration.

I would say that my field of research is the analysis of partial differential equations in-
volving non-selfadjoint operators, but this is of course not restrictive. Thus in most of these
problems there emerges a non-selfadjoint operator, but in some others only selfadjoint oper-
ators are involved. Most results are about a particular PDE, but some are about abstract
spectral theory. And most problems are linear, but some are about non-linear equations.

All these various settings will be presented separately in Chapter 3. Some are closely
related to my favorite topics, some are quite different, but they all could be the starting
points of new perspectives for future research.

Finally, the last chapter will be devoted to a description of my preprints, some works in
progress, and some discussions about possible future projects. As for my past research, some
are questions about the damped wave equation, and some others go in different directions.

I have chosen to present in this thesis all my papers which are not included in or closely
related to my Ph.D. However, since it is not possible to give a detailed description for all of
them, some will be emphasized with scientific context, mains ideas of the proofs and com-
ments, and for others I will only briefly describe the results.

A list of my publications and pre-publications, labeled from [1] to [27], is given at page
91. The other references used in the text, labeled from [Aaf21] to [Zwo12], are given at the
end of the manuscript.
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Chapter 1

Local Energy Decay for the damped
wave equation with localized
damping

In this chapter and the following, we discuss the local energy decay for the damped wave
equation on unbounded domains.

There are several difficulties. Because of the damping, the corresponding operator is
not selfadjoint, which raises some technical issues compared to the undamped case. In the
first result (see Theorem 1.1) the purpose was to generalize to this setting some estimates
already known without damping. In a second step, I considered problems specific to the
dissipative case (see all the results of Chapter 2). And finally, the strategies developed for
these dissipative settings gave some new ideas useful even for the selfadjoint setting (see
Section 1.7).

The damped wave equation was already well studied on compact domains. In this case,
there is no problem with the contribution of low frequencies (from the spectral point of view,
0 does not belong to the spectrum of the corresponding operator). In all my works, I consider
the wave equation on unbounded domains. Results about the contribution of high frequencies
are essentially contained in my Ph.D. [Roy10] and will not be discussed in details here. My
research after my Ph.D. mostly concerns the contribution of low frequencies, and the analysis
is completely different. This is the main subject of this thesis.

Finally, an important difficulty is due to the wave equation itself. In many aspects, the
problems of the local energy decay for the wave and Schrödinger equations are similar. How-
ever, we will see all along this thesis that there are difficulties specific to the wave equation,
especially in the dissipative case.

We begin in this chapter with the damped wave equation with localized damping and
closely related problems. We will discuss the papers [6, 7, 9, 10, 11, 23]. The earlier results
proved in [2, 3, 4, 5], that we do not present in this report, are also related to this setting.

1.1 Local energy decay for the wave equation

The model case. In this first chapter, we consider the wave equation in an asymptotically
Euclidean setting. Given f0 in H1pRdq and g0 in L2pRdq, the model case is the usual free
wave equation on Rd

B2
t u0 ´∆u0 “ 0, (1.1)

with initial condition

u0p0q “ f0, Btu0p0q “ g0. (1.2)

1



This is the simplest model for the description of waves. In many propagation phenomena,
there are also important non-linear effects, but this simple model is already suitable in many
concrete situations, such as the propagation of acoustic or electromagnetic waves (if the elec-
tromagnetic field does not depend on time then the Maxwell equations can be decoupled in
two wave equations for the electric and magnetic fields).

A large part of this thesis deals with the long time behavior of a solution of the wave
equation. A relevant way to measure the evolution of a wave is to look at the localization of
its energy:

E0pu0; tq “

ˆ
Rd

`

|∇u0pt, xq|
2
` |Btu0pt, xq|

2 ˘
dx. (1.3)

The global energy is a constant of the motion. However, we can look at the distribution of
the quantity |∇u0ptq|

2
` |Btu0ptq|

2
to see where the wave is propagating.

An important property of the wave equation is the finite speed of propagation. With
all the physical constants set to 1, a wave propagates at speed at most 1. If f0 and g0 are
supported in the ball Bp0, Rq of radius R ą 0, then u0ptq is supported in Bp0, R` tq.

In odd dimension, the wave actually propagates exactly at speed 1. This is the strong
Huyghens principle. This implies that there is no diffusion of waves. If a light bulb is turned
on for one second, someone looking at the bulb will see it for exactly one second, even from
very far away.

At least for regular initial data, we have an explicit expression for the solution of (1.1)-
(1.2) (see for instance [CH89, Eva98]). For d “ 3, we have

u0pt, xq “
1

|BBpx, tq|

ˆ
BBpx,tq

`

f0pyq `∇f0pyq ¨ py ´ xq ` tg0pyq
˘

dy.

If the initial condition pf0, g0q is supported in the ball Bp0, Rq, then u0ptq is supported in
Bp0, t`RqzBp0, t´Rq, and in particular the energy in any compact of Rd vanishes after
finite time. For instance,

@t ě 2R, }∇u0ptq}
2
L2pBp0,Rqq ` }Btu0ptq}

2
L2pBp0,Rqq “ 0. (1.4)

The same applies in any odd dimension d ě 3. In dimension 1, it is still true that Bxu0ptq
and Btu0ptq are supported in r´t´R,´t`Rs Y rt´R, t`Rs, but this is not necessarily the
case for the solution itself, as can be seen from the classical d’Alembert formula

u0pt, xq “
f0px` tq ` f0px´ tq

2
`

1

2

ˆ x`t

x´t

g0psqds.

The behavior is slightly different in even dimension. If one drops at time t “ 0 a pebble
in a (two dimensional) pond, a circular wave will emanate outward. The pond is perfectly
calm outside this circular wave, but not inside as would be the case with the strong Huyghens
principle. Even if the magnitude decays rapidly, the excited state will persist indefinitely.
Oral communication would be quite difficult in even dimension.

In this case, the free wave equation can be solved by the descent method (we can see a
wave in dimension 2 as the trace on R2ˆt0u of a wave in dimension 3 which does not depend
on the last variable). We can see, as expected, that with f0 and g0 compactly supported the
wave does not vanish in a fixed compact, even for large times. However, the wave mostly
propagates at speed close to 1 and the energy on a compact goes to 0 as t Ñ `8. More
precisely, we can show that for R ą 0 there exists CR ą 0 such that for pf0, g0q supported in
Bp0, Rq the solution u0 of (1.1)-(1.2) satisfies

}∇uptq}2L2pBp0,Rqq ` }Btuptq}
2
L2pBp0,Rqq ď CR 〈t〉´2d `

}∇f0}
2
L2pRdq ` }g0}

2
L2pRdq

˘

. (1.5)
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This is what we call the local energy decay. In any dimension, the energy of a wave in
any compact goes to 0 or, equivalently (since the global energy is constant), the energy of the
wave spreads to infinity. Notice that we have to consider localized initial data. Otherwise,
a wave coming from far away could reach a fixed compact after a long time and (1.4)-(1.5)
could not hold.

It is then natural to wonder if the same phenomenon occurs for waves in more general
settings, when explicit descriptions of the solutions are not available. Thus, the first question
is whether the energy of the wave on any compact still goes to 0 for any (localized) initial
condition in perturbed settings. When this is the case, the next issues are the rate of decay
and the uniformity with respect to the initial data (the time T “ 2R in (1.4) and the constant
CR in (1.5) depend on R but not on f0, g0 supported in Bp0, Rq, and in particular the right-
hand side in (1.5) is proportional to the initial energy).

These questions are interesting for themselves, since they give qualitative properties for
the long time behavior of the solutions. For instance, if we measure a wave on a bounded
subdomain, it can be useful to know for how long there is a relevent information in this region.
But the local energy decay, and the resolvent estimates that we develop for the proofs, are
also crucial for the mathematical analysis of other important properties (scattering theory,
non-linear problems, etc.).

Together with the wave equation, we also consider the Schrödinger equation, which plays
a central role in quantum mechanics. The model problem is

#

´iBtu0 ´∆u0 “ 0, on R` ˆ Rd,
u0|t“0 “ f0, on Rd,

(1.6)

for some f0 P L
2pRdq. The L2-norm of the solution is constant:

}u0ptq}
2
L2pRdq “ }f0}

2
L2pRdq .

There is no analog of the Huyghens principle for the Schrödinger equation. However, the
mass also escapes to infinity: for R ą 0 there exists CR ą 0 such that if f0 is supported in
Bp0, Rq then the solution u0ptq of (1.6) satisfies

}uptq}
2
L2pBp0,Rqq ď CR 〈t〉´d }u0}

2
L2pRdq . (1.7)

This is similar to (1.5). The difference is that there is no distinction due to the parity of the
dimension d. As for the wave equation, we are interested in this local energy decay for the
Schrödinger equation in more general settings.

The asymptotically Euclidean setting. Our main purpose in this chapter is to discuss the
local energy decay for the damped wave equation in an aymptotically Euclidean setting. We
introduce simultaneously the setting for the Schrödinger equation.

We consider on Rd a general Laplacian of the form

P “ ´
1

wpxq
divGpxq∇, (1.8)

where the matrix Gpxq and the scalar wpxq are positive and bounded. More precisely, we
assume that there exist Gmin, Gmax, wmin, wmax ą 0 such that, for all x P Rd and ξ P Rd,

Gmin |ξ|
2
ď xGpxqξ, ξyRd ď Gmax |ξ|

2
and wmin ď wpxq ď wmax. (1.9)

We also set
´∆G “ ´divGpxq∇.

3



The definition of P includes in particular the case of the standard Laplace operator (with
Gpxq “ Id and wpxq “ 1), a Laplacian in divergence form (with wpxq “ 1, so that P “ ´∆G)
or the Laplacian associated with a metric. We recall that the Laplace-Beltrami operator
associated with the metric gpxq “ pgj,kpxqq1ďj,kďd is given by

divg ∇g “
1

|gpxq|
1
2

d
ÿ

j,k“1

B

Bxj
|gpxq|

1
2 gj,kpxq

B

Bxk
,

where |gpxq| “ |detpgpxqq| and pgj,kpxqq1ďj,kďd “ gpxq´1. Then Pg “ ´divg ∇g is of the form

(1.8) with w “ |g|
1
2 and G “ |g|

1
2 g´1.

We assume that P is associated with a long range perturbation of the flat metric. This
means that Gpxq and wpxq are long range perturbations of Id and 1, respectively. For some
ρ0 Ps0, 1s there exist constants Cα ą 0, α P Nd, such that for all x P Rd,

ˇ

ˇBαpGpxq ´ Idq
ˇ

ˇ`
ˇ

ˇBαpwpxq ´ 1q
ˇ

ˇ ď Cα 〈x〉´ρ0´|α| . (1.10)

Here and everywhere below we use the standard notation 〈x〉 “ p1` |x|2q 1
2 .

For the wave equation we also introduce the absorption index apxq. It is smooth, bounded,
takes non-negative values, and it is of short range: choosing the constants Cα larger if
necessary, we have

ˇ

ˇBαapxq
ˇ

ˇ ď Cα 〈x〉´1´ρ0´|α| . (1.11)

The short range assumption is not just a technical issue. If a decays slower at infinity, then
the results are different. This will be discussed in the next chapter.

On the other hand, the case a “ 0 is allowed in this setting, so the results about the
damped wave equation presented in this chapter include in particular the case of the un-
damped wave equation.

We consider on Rd the (possibly) damped wave equation
#

B2
t u` Pu` apxqBtu “ 0, on R` ˆ Rd,
pu, Btuq|t“0 “ pf, gq, on Rd,

(1.12)

where pf, gq P H1pRdq ˆ L2pRdq. For f P L2pRdq we also consider the Schrödinger equation
#

´iBtu` Pu “ 0, on R` ˆ Rd,
u|t“0 “ f, on Rd.

(1.13)

In this asymptotically Euclidean setting, we define the energy of the wave by

Epu; tq “

ˆ
Rd

`

xGpxq∇upt, xq,∇upt, xqyRd ` wpxq |Btupt, xq|
2 ˘

dx. (1.14)

This is equivalent to the usual energy (1.3), in the sense that there exists C ě 1 such that
C´1E0pu; tq ď Epu; tq ď CE0pu; tq. This definition of the energy is adapted to the geometry
of the problem, since with this choice a solution of (1.12) has a non-increasing energy. More
precisely, we formally have

d

dt
Epu; tq “ ´

ˆ
Rd
apxqwpxq |Btupt, xq|

2
dx ď 0.

For the damped wave equation, the decay of the global energy is already an interesting
issue. However, the damping can be 0, and in any case it is small at infinity, so the waves
at infinity are not really damped and we cannot expect a uniform decay for the global energy.

Here we are interested in the local energy decay. We are going to prove this property
about the time dependent problem via a spectral approach. In particular, we can separate
the contributions of high and low frequencies.
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The non-trapping condition. The contribution of high frequencies, though highly non-trivial,
is now quite well understood. It is known that the propagation of a high frequency wave is
well approximated by the classical rays of light (for instance, the geometric optics is a good
approximation of wave optics if the wavelength is very small compared to the other lengths
of the problem). This is made rigorous with semiclassical analysis (see for instance [Zwo12]).
For a free wave, rays of light follow straight lines at constant speed (and necessarily escape
to infinity). With an obstacle, they bounce on the obstacle following the laws of geometric
optics (there are subtle behaviors for rays tangent to the boundary, which we do not discuss
here). For a metric g (corresponding to an inhomogeneous refraction index), the rays of light
are the geodesics. In general, for px, ξq P R2d » T˚Rd we set

ppx, ξq “
@

wpxq´1Gpxqξ, ξ
D

Rd . (1.15)

Then rays of light are the solutions of the Hamiltonian problem associated with p. For
px0, ξ0q P R2d we denote by pxpt;x0, ξ0q, ξpt;x0, ξ0qq the solution of

$

’

&

’

%

x1ptq “ Bξppxptq, ξptqq,

ξ1ptq “ ´Bxppxptq, ξptqq,

xp0q “ x0, ξp0q “ ξ0.

Since high frequency waves follow these classical trajectories, one expects that they all
escape to infinity if and only if all rays of light go to infinity (for the space variable). This is
the non-trapping condition:

@px0, ξ0q P p
´1pt1uq, |xpt;x0, ξ0q| ÝÝÝÝÑ

tÑ˘8
`8. (1.16)

The motion of rays of light in the phase space is only an approximation and, in fact, the
local energy always goes to 0. However, the higher the frequency is, the more accurate the
approximation is. So without (1.16) the high frequency wave stays trapped for a long time,
and the local energy decay is very slow. Thus, without (1.16), the estimate is not uniform

(proportional to Epu; 0q) but we have a loss of derivative (it is proportional to }f}
2
Hs`1`}g}

2
Hs

for some s ą 0).

The behavior of the contribution of low frequencies is completely different. Compared
to high frequencies, the local energy decay for the contribution of low frequencies is always
uniform with respect to the initial data. On the other hand, while the contribution of
high frequencies decays very fast (at least for regular initial data) the contribution of low
frequencies is responsible for the lack of time decay. For instance, the rate of decay in (1.5)
is governed by low frequencies. This question will be the main issue in this and the next
chapters.

Literature about the undamped case. There is an important literature about the local
energy decay for the wave equation. An early result is [Mor61], where decay at rate 1{t is
proved by a mutiplier method for the free wave outside a star-shaped obstable in dimension
3 (with a Dirichlet boundary condition). Then exponential decay is proved in [LMP63] via
an analysis of the corresponding semigroup. In [LP62] it is proved that the local energy for
the wave in a general exterior domain goes to 0. See also [Zac66] for more general hyperbolic
equations. In [LP72], the Lax-Phillips method is adapted to even dimensions. We refer to
the book [LP67] (or the revised version [LP89]) for a review of this theory. The non-trapping
condition is already mentioned there.

It is proved in [Ral69] that this non trapping condition is necessary to have uniform local
energy decay. Local energy decay outside non-trapping obstacles is considered in [Mor75,
Str75, MRS77], via the existence of an escape function (an escape function is a function on
the phase space which is increasing along the Hamiltonian flow). It is proved in [MRS77]
that we have decay at rate t´1 in even dimension, and exponential decay in dimension 3.
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This question is then discussed in [Vai75]. Compared to the previous strategies, the prop-
erties of the time-dependent problem are now deduced from the analysis of the stationary
problem. Another important step is the analysis of [Mel79], based on the propagation of
singularities of [MS78]). In particular, a decay at rate t´d is proved in even dimensions. This
has then been improved in [Kaw93]. We also refer to [Vod99] for a more general setting.
Finally, it is proved in [Bur98] that outside any compact smooth obstable we have at least
logarithmic decay if we allow a loss of regularity.

The stationary problem of the wave equation (the Helmholtz equation) is closely related
to the one for the Schrödinger equation. Then local energy decay has also been proved for the
latter. See [Rau78] for an exponentially decaying potential, [JK79] for more precise asymp-
totics (of the resolvent and the propagator) and [Mur82] for more general operators. The
case of an exterior domain is discussed in [Tsu84].

Finally, most of the recent papers deal simultaneously with the Schrödinger and wave
equations. We refer to [Bou11a, BH12] for estimates with an ε-loss on an asymptotically
Euclidean setting (the Laplacian is a Laplace-Beltrami operator associated with a long-range
perturbation of the standard metric on Rd). This means that the decay rate for the local
energy is of size Opt´d`εq for the Schrödinger equation and Opt´2d`εq for the wave equation.
The ε-loss has finally been removed in [BB21]. The method does not see the parity of the
dimension, so this final result is optimal for Schrödinger or for the wave in even dimension,
but not for the wave in odd dimension. However, it is proved [BH13] that if the metric goes
faster to the flat metric at infinity then we can recover a better estimate on the local energy
in odd dimensions.

In these works, the time decay is proved from resolvent estimates. And the main contri-
butions of these papers is the analysis of low frequency resolvent estimates. High frequency
resolvent estimates were already understood for the Schrödinger operator in close settings.
See for instance [RT87] for the Schrödinger operator with a potential, [Rob92] for a second or-
der perturbation of the Laplacian and [Bur02] for a general compactly supported perturbation
of the Laplacian in an exterior domain (via the contradiction argument using semiclassical
defect measures [Gér91], as also used in [Leb96]). Low frequency resolvent estimates were
also already discussed in [Bou11b, BH10]. Earlier papers also considered the limiting absorp-
tion principle at zero energy in some particular settings (see for instance [Wan06, DS09] and
references therein).

About the damped wave equation. Here we are mainly interested in the damped wave
equation. The stabilization of the wave equation also has a long history on compact domains.
In this case, we consider the global energy. The wave cannot escape to infinity, but it is
dissipated and we similarly study the decay to 0. In this setting there is no difficulty with
low frequencies, but the analysis of high frequencies is similar. In particular, the analog of
the non-trapping condition is the so-called geometric control condition. The energy decays
uniformly if and only if all the classical trajectories go through the damping region.

We refer to [RT74] for exponential decay with dissipation in the compact manifold and to
[BLR92] for dissipation at the boundary (see also [BG97]). For logarithmic decay with loss
of regularity without the control condition we refer to [Leb96] for internal damping and to
[LR97] for damping at the boundary. Then there have been several results about intermedi-
ate situations, where the geometric control condition does not hold, but the set of undamped
rays of light is small in some suitable sense. See for instance [BH07] for the problem on the
stadium (giving polynomial decay of the energy), [Chr07] for a situation where the decay
is exponential but not uniform, [LL17] for the so-called open book and [BG20] for a rough
damping. We also refer to [Sjö00, Ana10] for more results on manifolds without boundary.

In an unbounded domain we have additional difficulties, in particular due to the contri-
bution of low frequencies. As said above, we only consider the local energy decay in this
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chapter.
In this setting, the energy on a compact has now two reasons to decay. Either because

it escapes to infinity, or because it is dissipated. The expected corresponding condition on
classical trajectories is that they should all escape to infinity or go through the damping
region. This means that we can allow trapped trajectories if they are damped. We set

Ωb “

"

px0, ξ0q P p
´1pt1uq : sup

tPR
|xpt;x0, ξ0q| ă `8

*

.

Then the condition on classical trajectories (which we can call geometric damping condition)
reads

@px0, ξ0q P Ωb, Dt P R, apxpt, x0, ξ0qq ą 0. (1.17)

In [AK02], L. Aloui and M. Khenissi have considered the wave equation in an exterior
domain, with a compactly supported damping, via the theory of Lax-Philipps and the contra-
diction argument with semiclassical measures. They recover, under the assumption analogous
to (1.17) in an exterior domain, the exponential decay of the local energy in odd dimension.
A polynomial decay is obtained in [Khe03] in even dimension.

The main result. The local energy decay for the damped wave equation (1.12) (in dimension
d ě 3) has been proved in [6]. This is a collaboration with Jean-Marc Bouclet. It has then
been slightly improved in [11].

Instead of considering compactly supported initial data and the energy on a compact,
we choose initial data which decay at infinity and consider a weighted energy, which gives
slightly better results. For δ P R we denote by L2,δpRdq the weighted space L2p〈x〉2δ dxq and
for k P N we denote by Hk,δpRdq the corresponding Sobolev space. The main result about
the damped wave equation is the following.

Theorem 1.1. Assume that the geometric damping condition (1.17) holds. Let ε ą 0 and
δ ą d` 1

2 . There exists C ą 0 such that for pf, gq P H1,δpRdq ˆ L2,δpRdq and t ě 0 we have

›

› 〈x〉´δ∇uptq
›

›

L2pRdq `
›

› 〈x〉´δ Btuptq
›

›

L2pRdq

ď C 〈t〉´pd´εq
`
›

› 〈x〉δ∇f
›

›

L2pRdq `
›

› 〈x〉δ g
›

›

L2pRdq

˘

,

where u is the solution of (1.12).

Notice that in even dimension we have an ε-loss compared to (1.5) (where the squares
of the norms are considered). When [6] and [11] were written, this was the best known
result even for the undamped case. Now the ε-loss has been removed in the undamped case
in [BB21], and it is one of the perspectives to improve this result in the general case (see
Section 4.1.1).

We discuss this theorem in the next three sections (notice that the presentation is slightly
different than in the original papers), and then we will turn to the Schrödinger equation (see
in particular the local energy decay for (1.13) in Theorem 1.25 below).

1.2 Resolvent estimates for the wave operator

Theorem 1.1 is proved from the spectral point of view. More precisely, we deduce estimates
on the time-dependent problem from resolvent estimates for the corresponding wave operator.

1.2.1 The wave operator

As usual for a wave equation, we rewrite (1.12) as a first order problem of the form
#

BtUptq ´WUptq “ 0, @t ě 0,

Up0q “ F.
(1.18)

7



At least formally, uptq is a solution of (1.12) if and only if Uptq “
`

uptq, wBtuptq
˘

satisfies
(1.18) with F “ pf, wgq and

W “

ˆ

0 w´1

∆G ´a

˙

. (1.19)

We set H “ H1pRdq ˆL2pRdq. It is endowed with the natural norm. We also define the
energy space E as the Hilbert completion of S “ SpRdq ˆ SpRdq for the norm defined by

}pu, vq}
2
E “

ˆ
Rd
xGpxq∇upxq,∇upxqyRd dx`

ˆ
Rd

|vpxq|
2

wpxq
dx.

In particular, H is dense in E . We set

DompWq “ tU P E : WU P E u , (1.20)

where WU is understood in the sense of distributions. Then we consider on E the operator
W defined by (1.19) on the domain DompWq.

Notice that if u is a solution of (1.12) then its energy Epu; tq (see (1.14)) is equal to

}puptq, wBtuptqq}
2
E , while the usual energy E0 (see (1.3)) corresponds to the square of the

usual norm on 9H1pRdq ˆL2pRdq. As already observed for the energy, this choice of norm on
E is equivalent to the usual one, but it is adapted to the operator W, in the sense that with
this Hilbert structure the operator W is skew-adjoint if a “ 0, and iW is dissipative in the
general case a ě 0.

There are two possible conventions for dissipativeness. We choose the convention which
is usual for Schrödinger operators. We set

C˘ “ tz P C : ˘Repzq ą 0u and C˘ “ tz P C : ˘Impzq ą 0u .

Definition 1.2. We say that the operator T on the Hilbert space H is dissipative if

@ϕ P DompT q, Im xTϕ, ϕyH ď 0.

Similarly, T is accretive if

@ϕ P DompT q, Re xTϕ, ϕyH ě 0.

Then we say that the dissipative (accretive) operator T is maximal dissipative (maximal
accretive) if its resolvent set contains some –hence any– z in C` (z P C´).

The other possible definition for dissipativeness, satisfied by W on E , is the property
Re xTϕ, ϕyH ď 0 (in this case T is dissipative if p´T q is accretive).

With the convention of Definition 1.2, iW is dissipative (or p´Wq is accretive) on E since

@U “ pu, vq P DompWq, Im xiWU,UyE “ Re xWU,UyE “ ´xav, vyL2pRdq ď 0.

Now let ζ P C` and F P H . If we solve formally the equation pW´ζqU “ F for U P DompWq
we get

pW ´ ζq´1F “

ˆ

´Rpiζqpaw ` ζwq ´Rpiζq
w ´ wRpiζqpζaw ` ζ2wq ´ζwRpiζq

˙

F, (1.21)

where for z P C` we have set

Rpzq “
`

´∆G ´ iawz ´ wz
2
˘´1

. (1.22)

We also have

pW ´ ζq´1F “

ˆ

´ζ´1
`

1`Rpiζq∆G

˘

´Rpiζq
´wRpiζq∆G ´ζRpiζq

˙

F. (1.23)
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For Rpzq we have again chosen a convention consistent with the Schrödinger setting (z
belongs to the upper half-plane and Rpzq looks like the resolvent of the Schrödinger equation
if a “ 0). With this convention we have Rpiζq “ p´∆G ` awζ ` wζ

2q´1.

All this can be made rigorous. We first prove that Rpzq is well defined and then we check
that the right-hand side of (1.21) or (1.23) defines a bounded inverse of pW ´ ζq´1.

Proposition 1.3. The operator
`

´ ∆G ´ iawz ´ wz2
˘

with domain H2pRdq has a bounded
inverse on L2pRdq for all z P C`. Moreover, its inverse Rpzq extends to a bounded operator
from H´1pRdq to H1pRdq and there exists C ą 0 such that for z P C` and β1, β2 P Nd with
|β1| ď 1, |β2| ď 1, we have

›

›Bβ1
x RpzqB

β2
x

›

›

LpL2q
ď
C |z||

β1|`|β2|´1

Impzq
. (1.24)

Proposition 1.4. The operator iW is maximal dissipative on E . Moreover, for ζ P C` the
resolvent pW ´ ζq´1 is given by (1.23), and for F P H we also have (1.21).

By the Hille-Yosida Theorem, we deduce from Proposition 1.4 that W generates a con-
tractions semigroup on E , and in particular the problem (1.18) is well posed. Then we can
rewrite Theorem 1.1 with W in the weighted energy spaces. For δ P R we denote by E δ the
Hilbert completion of S for the norm given by

}pu, vq}
2
E δ “

›

› 〈x〉δ∇u
›

›

2

L2pRdq `
›

› 〈x〉δ v
›

›

2

L2pRdq.

Theorem 1.5. Assume that the geometric damping condition (1.17) holds. Let ε ą 0 and
δ ą d` 1

2 . There exists C ą 0 such that for F P E δ we have

›

›etWF
›

›

E´δ
ď C 〈t〉´pd´εq }F }E δ .

The main ingredients of the proof described below are given in [6]. However, in [6] there
is a loss of regularity, and the estimate also depends on the L2-norm of the initial condition
u0. Then the estimate of [6] is

›

› 〈x〉´δ∇uptq
›

›

L2pRdq `
›

› 〈x〉´δ Btuptq
›

›

L2pRdq ď C 〈t〉´pd´εq
`

}u0}H2,δpRdq ` }u1}H1,δpRdq
˘

.

Theorem 1.5 is the version proved in [11].

Remark 1.6. The fact that 9H1 is not included in L2 raises some difficulties, and one might
prefer to work in H instead of E . This is in some sense more convenient, but this will
not give the same results. If we estimate U in (a weighed version of) H , we are not only
considering the sizes of the derivatives of the wave (the energy), but also the size of the
solution itself, estimated with respect to the initial energy but also the size of the initial
condition f in L2pRdq. This can be considered –or not– as a drawback. We are also loosing
the nice structural properties of the operator W, but the resolvent pW ´ ζq´1 is still defined
on C` and the propagator etW is still defined for t ě 0. We will work in H in the next
chapter, see Section 2.2.1.

Of course, this discussion is irrelevant in situations where 9H1 and H1 are equal as sets
with equivalent norms, for instance on a bounded domain with Dirichlet boundary condition.
In unbounded domains, the same applies if we work with initial data supported in some fixed
compact, as is usually the case in results about the local energy decay. Similarly, if pf, gq
is not compactly supported but belongs to some weighted space H1,δpRdq ˆ L2,δpRdq, and
if we are ready to work in a slightly more restrictive space, then we can use the following
generalization of the Hardy inequality (see Lemma 4.1 in [11]). For ε ą 0 there exists C ą 0
such that for all u0 P SpRdq we have

} 〈x〉δ u0}L2pRdq ď C} 〈x〉δ`1`ε∇u0}L2pRdq. (1.25)
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Remark 1.7. In the literature about the undamped wave equation, it is usual to diagonalise
the operator W, and the analysis reduces to a problem involving the operator

?
P on L2pRdq.

We will not use this possibility, since with the damping it is no longer possible to diagonalise
W. We could certainly deal with the non-diagonal terms, but the gain is not clear at all and
we prefer to stay in the (possibly) unconvenient but (certainly) natural space E . Moreover,

it seems slightly more natural to prove estimates on } 〈x〉´δ∇uptq}L2pRdq rather than on

} 〈x〉´δ
?
Puptq}L2pRdq for the local energy decay.

1.2.2 From resolvent estimates to local energy decay

To deduce properties on the wave equation from resolvent estimates for W, we write the
propagator etW in terms of the resolvent pW ´ ζq´1, ζ P C`.

By density, it is enough to prove Theorem 1.5 for F P S . Let φ P C8pR, r0, 1sq be equal
to 0 on s ´ 8, 1s and equal to 1 on r2,`8r. For ζ P C` we set

Fζ “

ˆ
R
φ1psqespW´ζqF ds. (1.26)

We can see Fζ as a “regularized in time” version of F (we recover F if we replace φ by 1R` ,
hence φ1 by δ0). Then we have

pW ´ ζq´1Fζ “ ´

ˆ
R
φpsqespW´ζqF ds.

We still have propagation at finite speed for a wave in our perturbed setting, so for δ ě 0
and T ą 0 there exists C ě 0 such that for s P r0, T s and F P S we have (see [11, Lemma
5.1])

›

›esWF
›

›

E δ
ď C }F }E δ .

Thus there exists C ą 0 such that, for all F P S and ζ P C`,

}Fζ}E δ ď C }F }E δ .

Let µ ą 0. Given τ P R we write ζ for µ´ iτ . The interest of considering Fζ instead of F
is that pW ´ ζq´1Fζ decays rapidly as |τ | Ñ 8. Then the Fourier inversion formula gives

φptqetWF “
1

2iπ

ˆ
Repζq“µ

etζpW ´ ζq´1Fζ dζ, (1.27)

where the line Repζq “ µ is oriented from top to bottom (from µ ` i8 to µ ´ i8). Since
›

›etW
›

›

LpE q ď 1, the estimate of Theorem 1.5 is clear for t in a compact. It is then enough to

estimate (1.27), which coincides with etWF for t ě 2.

We deal separately with the contributions of high and low frequencies. We consider
χlow P C

8
0 pR, r0, 1sq equal to 1 on a neighborhood of 0, and χhigh “ 1´χlow. For ˚ P tlow, highu

and t ě 2 we set

U˚,µptqF “
1

2iπ

ˆ
Repζq“µ

χ˚pImpζqqe
tζpW ´ ζq´1Fζ dζ. (1.28)

We set D “ tz P C : |z| ď 1u. To estimate Uhigh,µptqF , we need estimates for pW ´ ζq´1.
We have the following result.

Theorem 1.8. Assume that the geometric damping condition (1.17) holds. Let n P N˚ and
δ ą n´ 1

2 . There exists C ą 0 such that for ζ P C`zD we have

›

›pW ´ ζq´n
›

›

LpE δ,E´δq ď C.
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The uniform estimates of Theorem 1.8 are not enough to estimate directly the integral
Uhigh,µptqF . This is the reason why we had a loss of derivative in [6]. This point has been
improved in [11], and we finally have the following result.

Proposition 1.9. Let γ ě 0 and δ ą γ` 1
2 . There exists C ě 0 such that for F P S , µ Ps0, 1s

and t ě 1 we have
}Uhigh,µptqF }E´δ ď C 〈t〉´γ etµ }F }E δ .

Notice that under the geometric condition (1.17), we can estimate uniformly as many
derivatives as we wish for the resolvent if the weight is strong enough. Then we get a fast
decay for Uhigh,µptqF . This is not the case for the contribution of Ulow,µptqF , which depends
on the resolvent estimates for ζ P C` close to 0.

Theorem 1.10. Let n P N˚, δ ą n´ 1
2 and ε ą 0. There exists C ą 0 such that for ζ P C`XD

we have
›

›pW ´ ζq´n
›

›

LpE δ,E´δq ď C |ζ|
minp0,d´n´εq

.

For low frequencies, it is not difficult to convert the resolvent estimates into time decay.
We refer to [6, 11] or [BB21, Section 5].

Proposition 1.11. Let δ ą d` 1
2 and ε ą 0. There exists C ą 0 such that for all F P S and

µ ą 0 we have

}Ulow,µptqF }E´δ ď C 〈t〉´pd´εq etµ }F }E δ .

Applying Propositions 1.9 and 1.11 and letting µ go to 0, we deduce Theorem 1.5. Now
we focus on the main ingredients for the proofs of the resolvent estimates. In Section 1.3 we
introduce the abstract commutators method, and in Section 1.4 we explain how it is used to
prove Theorems 1.8 and 1.10.

1.3 The Mourre commutators method

1.3.1 Introduction

A classical argument to prove resolvent estimates for a selfadjoint Schrödinger operator near
the real axis is the commutators method of Mourre.

Let H be a selfadjoint operator on a Hilbert space H. Given another selfadjoint operator
A (the conjugate operator) we have formally

d

dt

@

Ae´itHϕ, e´itHϕ
D

H “
@

irH,Ase´itHϕ, e´itHϕ
D

H .

Thus if iadApHq “ irH,As is a positive operator, the observation
@

Ae´itHϕ, e´itHϕ
D

H is an
increasing function of time. In particular, it is easy to see that if irH,As ě c0 for some c0 ą 0
then H cannot have an eigenvalue. Before E. Mourre, there were already important results
about the nature of the spectrum of H based on a positive commutator assumption (see for
instance [Put67]).

The great contribution of Mourre in [Mou81] is that the positive commutator assumption
is localized in energy with respect to H. Given an interval J of R, the assumption is then

1JpHqrH, iAs1JpHq ě c01JpHq, (1.29)

where c0 ą 0 and 1JpHq is the spectral projection of H on J .
For the free Laplacian H “ ´∆ on H “ L2pRdq, we can use the generator of dilations

A “ ´
x ¨ i∇` i∇ ¨ x

2
“ ´

id

2
´ x ¨ i∇. (1.30)
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This is the quantization of the symbol px, ξq ÞÑ x ¨ ξ, which is an escape function for the
Laplacian (the Poisson bracket tξ2, x ¨ ξu is positive on p´1pt1uq “ tpx, ξq : |ξ| “ 1u). In this
case we have irH,As “ 2H. This is not greater than a positive constant, but (1.29) holds for
any J ĂĂ R˚` “s0,`8r with c0 “ 2 infpJq ą 0.

From (1.29), Mourre deduced important properties such as the limiting absorption prin-
ciple and the absolute continuity of the spectrum of H in J . For this, he proves in particular
uniform resolvent estimates of the form

›

› 〈A〉´δ pH ´ zq´1 〈A〉´δ
›

›

LpHq ď C, (1.31)

where δ ě 1 (then for δ ą 1
2 in [Mou83]) and z P CzR has real part in I ĂĂ J .

The idea is to prove estimates uniform with respect to z and ε ą 0 for

Fεpzq “ 〈A〉´1
pHε ´ zq

´1 〈A〉´1
, where Hε “ H ´ iε1JpHqrH, iAs1JpHq. (1.32)

The operator Hε is dissipative. The dissipative part is not bounded below by a positive
constant, but with the positivity given by (1.29) we can prove an estimate of the form

›

›

›
1JpHqpH ´ zq

´1 〈A〉´1
›

›

›
À
}Fεpzq}

1
2

?
ε

.

And for Repzq P I ĂĂ J we have a uniform estimate for p1´ 1JpHqqpH ´ zq
´1 〈A〉´1

by the
spectral theorem. Since this does not give an estimate for Fεpzq uniform in ε small, we also
estimate the derivative of Fεpzq with respect to ε. After having removed the factors 1JpHq
we have to estimate

〈A〉´1
pHε ´ zq

´1rH,AspHε ´ zq
´1 〈A〉´1

.

This is where we use the fact that the dissipative part of Hε is a commutator of H. The
factor H is absorbed by one of the resolvents, and the weight 〈A〉´1

is used to absorb the
factor A. We finally get an estimate for the derivative, from which we deduce that the limit
F0pzq is bounded uniformly in z. We also refer to [Gér08] for an alternative approach.

The flexibility of the assumption (1.29) makes the result applicable in many situations,
and the Mourre method has been extended in many directions. We refer to the book [ABG96]
for a general overview on the subject.

Here we are only interested in the uniform estimates, but for the resolvent and its deriva-
tives. The multiple resolvent estimates for a selfadjoint operator are given in [JMP84, Jen85]
under additional assumptions about the multiple commutators adnApHq, n P t1, . . . , N ` 1u,
for some given N ě 2. The idea is to use other resolvent estimates involving the spectral
projections 1R˘pAq. For δ1, δ2 ě 0 such that δ1 ` δ2 ă N ´ 1 and δ P

‰

1
2 , N

“

there exists
C ą 0 such that for z P C` with Repzq P I we have

›

›

›
〈A〉δ1 1R´pAqpH ´ zq

´11R`pAq 〈A〉
δ2
›

›

›

LpHq
ď C, (1.33)

›

›

›
〈A〉´δ pH ´ zq´11R`pAq 〈A〉

δ´1
›

›

›

LpHq
ď C, (1.34)

›

›

›
〈A〉δ´1

1R´pAqpH ´ zq
´1 〈A〉´δ

›

›

›

LpHq
ď C. (1.35)

Then we can deduce similar estimates (with different conditions for the weights) for the
powers of pH ´ zq´1. For instance, for δ ą 3

2 we can write
›

›

›
〈A〉´δ pH ´ zq´2 〈A〉´δ

›

›

›

ď

›

›

›
〈A〉´δ pH ´ zq´1 〈A〉´pδ´1q

›

›

›

›

›

›
〈A〉δ´1

1R´pAqpH ´ zq
´1 〈A〉´δ

›

›

›

`

›

›

›
〈A〉´δ pH ´ zq´11R`pAq 〈A〉

δ´1
›

›

›

›

›

›
〈A〉´pδ´1q

pH ´ zq´1 〈A〉´δ
›

›

›
,
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and use (1.31), (1.34), (1.35) and (1.31) again. We similarly prove analogs of (1.33)-(1.35)
for pH ´ zq´2 and then we prove by induction estimates for higher powers of the resolvent.

1.3.2 The dissipative Mourre method

In [2], I generalized (1.31) to a parameter-dependent dissipative operator, of the form

Hλ “ H1,λ ´ iVλ (1.36)

where H1,λ is selfadjoint and semi-bounded, and Vλ is selfadjoint, non-negative and H1,λ-
bounded with relative bound smaller than 1. There is no convenient and general way to
localize with respect to the spectrum of a non-selfadjoint operator, so the assumption of
positive commutator is localized with respect to the selfadjoint part H1,λ. A key observation
in [2] is that the positive commutator is used to give some dissipativeness to the operator
Hε in (1.32). Thus, if the operator is already dissipative, we can use the dissipative part of
the operator to weaken the assumption (1.29) on the commutator. More precisely, in [2] the
estimate (1.31) is proved under an assumption of the form

1JpH1,λq
`

rH1,λ, iAλs ` βλVλ
˘

1JpH1,λq ě c01JpH1,λq, (1.37)

for some βλ P r0, 1s. We do not give too much details here since [2] is already described in
[Roy10].

For the proofs of Theorems 1.8 and 1.10 we need resolvent estimates for the powers (or,
equivalently, for the derivatives) of the resolvent. Thus, we first have to generalize (1.33)-
(1.35) and then the estimates for the powers of the resolvent to a dissipative setting.

But this is not enough. The commutators method cannot be applied directly to the
operator iW, for instance because its selfadjoint part is not semibounded. Thus, we first
estimate the derivatives of Rpzq by the Mourre method, and then we deduce estimates for
the derivative of pW ´ ζq´1 by (1.21). Notice that compared to the usual settings, the
derivatives of Rpzq are not given by its powers. We have

R1pzq “ Rpzq
`

iapxqwpxq ` 2zwpxq
˘

Rpzq,

and we see by induction on m P N that Rpmqpzq can be written as a sum of terms of the form

Tk;j1,...,jkpzq “ Rpzqpiaw ` 2zwqj1Rpzq . . . piaw ` 2zwqjkRpzq, (1.38)

where k P t0, . . . ,mu and j1, . . . , jk P t0, 1u are such that 2k ´
řk
`“1 j` “ m. Thus, we also

have to take into account the factors piaw` 2zwq inserted between the factors Rpzq (they do
not commute with Rpzq). We proved in [6] that under some suitable behavior between these
inserted factors and the conjugate operator (basically, the commutators with the conjugate
operator extend to bounded operators), we can generalize to this kind of setting the multiple
commutator estimates.

After [6, 11], I have been interested in the wave equation in a domain Ω with boundary,
in particular in wave guides, with damping at the boundary. This will be discussed with
more details in the next chapter, but this motivated the analysis of a Schrödinger operator
with dissipative Robin boundary condition. Given a P W 1,8pBΩ;R`q, we consider on Ω the
operator

Ha “ ´∆, DompHaq “
 

u P H2pΩq, Bνu “ iau on BΩ
(

. (1.39)

In this case, we cannot write Ha as the sum of a selfadjoint operator and a dissipative part
as in (1.36), so we cannot apply the results of [2, 6]. However, we can write such a sum for
the quadratic form corresponding to Ha on H1pΩq:

Qαpuq “

ˆ
Ω

|∇upxq|2 dx´ i

ˆ
BΩ

apxq |upxq|
2

dσpxq.
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In [9], I generalized the dissipative Mourre method to such operators (note that this includes
the previous cases). This is inspired by [ABG88] about a similar question for selfadjoint
operators.

This version of the dissipative Mourre method has been applied to wave guides in [9].
It also had an unexpected application to the dissipative Schrödinger equation on Rd (see
Remark 1.24 below).

Finally, in [23] I again had to use the Mourre method in a setting which was not included
in the previous versions. More details will be given in Section 1.7 below, but for this problem
we have to apply the multiple resolvent estimates simultaneously for two different operators.
This means that we have to estimate a product with factors given by different resolvents,
and with inserted factors as above.

Moreover, in [6, 11] we have applied the Mourre method to (1.22) with w “ 1, so it was
still possible to see Rpzq as the resolvent of the parameter-dependant operator ´∆G´iza with
spectral parameter z2. In [23] (see Section 1.7), there is no damping but w is not necessarily
equal to 1, so we include the spectral parameter in the operator, and just see the resolvent
as the inverse of a parameter-dependent dissipative operator. Thus, we need a dissipative
version of the commutators method even if the operator under study is selfadjoint.

1.3.3 The statement

Since it includes all the previous versions, we give here the statement of [23] for the commu-
tators method. Notice that the proofs given in [23] are self-contained.

Let H and K be two Hilbert spaces. We assume that K is densely and continuously
embedded in H. We denote by K˚ the space of continuous semilinear forms on K (we have
ϕpu1 ` λu2q “ ϕpu1q ` λ̄ϕpu2q for ϕ P K˚, u1, u2 P K and λ P C). We refer to [EE87,
pp. 3–4] for a discussion about this choice. We identify H with H˚ (with this convention,
the identification is linear). Then K is naturally (linearly) identified with a subset of K˚.

We consider a selfadjoint operator A on H with domain DH. We set

DK “ tϕ P K XDH : Aϕ P Ku . (1.40)

By restriction, A defines an operator AK on K with domain DK. Then DK is endowed with
the graph norm of AK. We can see AK as an operator in LpDK,Kq and A˚K maps K˚ to D˚K.

For S P LpK,K˚q we set ad0
ApSq “ S. Then, by induction on n P N˚, if the commutator

adn´1
A pSqAK´A

˚
Kad

n´1
A pSq P LpDK,D˚Kq extends to an operator in LpK,K˚q, then we denote

this extension by adnApSq. We can similarly define commutators in LpH,Kq.
For Q P LpK,K˚q we set RepQq “ pQ ` Q˚q{2 and ImpQq “ pQ ´ Q˚q{2i. We say that

Q P LpK,K˚q is non-negative if for all ϕ P K we have xQϕ,ϕyK˚,K ě 0.

All this being set, we consider Q P LpK,K˚q with negative imaginary part: there exists
c0 ą 0 such that

Q` :“ ´ImpQq ě c0I,

where I P LpK,K˚q is the natural embedding. By the Lax-Milgram Theorem, Q has an
inverse Q´1 P LpK˚,Kq Ă LpHq.

Example 1.12. If H is a selfadjoint semibounded operator and z P C` is a spectral parameter,
we recover the usual setting by choosing Q “ Qpzq “ H ´ z, seen as an operator from the
form domain K of H to K˚. Then Q` “ Impzq. If H is a dissipative operator of the form
H “ H1 ´ iV , with H1 selfadjoint and V ě 0, then Q` “ V ` Impzq.

Our purpose is to prove estimates on Q´1. For this, we use the following notion of
conjugate operator.
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Definition 1.13. Let N P N˚ and Υ ě 1. Let A be a selfadjoint operator on H. We say that
A is Υ-conjugate to Q up to order N if the following conditions are satisfied.

(H1) For ϕ P K we have }ϕ}H ď Υ }ϕ}K.

(H2) For all θ P r´1, 1s the propagator e´iθA P LpHq defines by restriction a bounded
operator on K.

(H3) The commutator adnApQq is well defined in LpK,K˚q and satisfies }adnApQq}LpK,K˚q ď Υ

for all n P t1, . . . , N ` 1u.

(H4) There exist QK P LpK,K˚q with ImpQKq ď 0, Q`K P LpK,K˚q non-negative and Π P

LpH,Kq such that

(a) Q “ QK ´ iQ
`
K ,

(b)
›

›Q`K
›

›

LpK,K˚q ď Υ, }Π}LpH,Kq ď Υ, }adApΠq}LpH,Kq ď Υ, and for ϕ P H we have

}Πϕ}K ď Υ }Πϕ}H,

(c) QK has an inverse RK P LpK˚,Kq which satisfies }pIdK ´ΠqRK}LpK˚,Kq ď Υ and

}RKpIdK˚ ´Π˚q}LpK˚,Kq ď Υ.

(H5) There exists β P r0,Υs such that if we set

M “ RepiadApQqq ` βQ`,

then }M}LpK,K˚q ď Υ, }adApMq}LpK,K˚q ď Υ, and in the sense of quadratic forms on
H we have

Π˚MΠ ě Υ´1Π˚IΠ. (1.41)

Example 1.14. For the dissipative operator H “ H1 ´ iV (as in Example 1.12) and Repzq P
I ĂĂ J , we recover the setting of [2] by choosing Π “ χpH1q (with χ P C80 pR, r0, 1sq
supported in J and equal to 1 on a neighborhood of I), QK “ H1 ´ z and Q`K “ V . Then
Q´1
K ΠK “ pH1 ´ zq

´1p1´ χqpH1q is bounded uniformly in z by the spectral theorem.

Now we can state the result for a single resolvent. In these estimates, it is important that
the constants C do not depend on Q but only on the parameter Υ.

Theorem 1.15. Let N P N˚ and Υ ě 1. Assume that A is Υ-conjugate to Q up to order N .

(i) Let δ ą 1
2 . There exists C ą 0 which only depends on Υ and δ such that

›

› 〈A〉´δ Q´1 〈A〉´δ
›

›

LpHq ď C. (1.42)

(ii) Assume that N ě 2 and let δ1, δ2 ě 0 such that δ1 ` δ2 ă N ´ 1. There exists C ą 0
which only depends on N , Υ, δ1, δ2 and such that

›

› 〈A〉δ1 1R´pAqQ
´11R`pAq 〈A〉

δ2
›

›

LpHq ď C. (1.43)

(iii) Assume that N ě 2 and let δ P
‰

1
2 , N

“

. There exists C ą 0 which only depends on N ,
Υ and δ such that

›

› 〈A〉´δ Q´11R`pAq 〈A〉
δ´1 ›

›

LpHq ď C (1.44)

and
›

› 〈A〉δ´1
1R´pAqQ

´1 〈A〉´δ
›

›

LpHq ď C. (1.45)

Then we use the following abstract lemma to deduce multiple resolvent estimates from
the estimates of Theorem 1.15.
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Lemma 1.16. Let H be a Hilbert space. Let n P N˚ and T1, . . . , Tn P LpHq. For j P t0, . . . , nu
we consider on H a selfadjoint operator Θj ě 1, and Π´j ,Π

`
j P LpHq such that Π´j ` Π`j “

IdH. Let N P N˚. For j P t1, . . . , nu we assume that there exist νj ě 0, σj P r0, νjs and a
collection Cj “ tCj ; pCj,δ1,δ2q; pCj,δqu of constants such that for δ1, δ2 ě 0 with δ1`δ2 ă N´νj
and δ P rσj , N s we have

›

›Θ
´σj
j´1TjΘ

´σj
j

›

›

LpHq ď Cj , (1.46)

›

›Θδ1
j´1Π´j´1TjΠ

`
j Θδ2

j }LpHq ď Cj,δ1,δ2 , (1.47)

›

›Θ
δ´νj
j´1 Π´j´1TjΘ

´δ
j

›

›

LpHq ď Cj,δ, (1.48)

›

›Θ´δj´1TjΠ
`
j Θ

δ´νj
j

›

›

LpHq ď Cj,δ. (1.49)

Let T “ T1 . . . Tn. We set

ν “
n
ÿ

j“1

νj , σ` “
n´1
ÿ

j“1

νj ` σn, σ´ “ σ1 `

n
ÿ

j“2

νj .

Assume that N ą ν. We set Π´ “ Π´0 and Π` “ Π`n . There exists a collection of constants
C “ tC; pCδ´,δ`q; pC

´
δ q; pC

`
δ qu which only depend on the constants Cj, 1 ď j ď n, and such

that
›

›Θ
´σ`
0 TΘ´σ´n

›

›

LpHq ď C, (1.50)

for δ´, δ` ě 0 such that δ´ ` δ` ă N ´ ν we have

›

›Θ
δ´
0 Π´TΠ`Θδ`

n

›

›

LpHq ď Cδ´,δ` , (1.51)

for δ P rσ´, N r we have
›

›Θδ´ν
0 Π´TΘ´δn

›

›

LpHq ď C´δ , (1.52)

and finally, for δ P rσ`, N r we have

›

›Θ´δ0 TΠ`Θδ´ν
n

›

›

LpHq ď C`δ . (1.53)

It is important that the constants in the conclusions of the lemma only depend on the
constants in the assumptions. Thus, if for some operators Tjpzq, 1 ď j ď n, the estimates
(1.46)-(1.48) are independent of the parameter z, then so are the estimates (1.50)-(1.53).

Theorem 1.15 allows to apply Lemma 1.16 with νj “ 1, σj P
‰

1
2 , 1

‰

, Θj “ 〈A〉, Π´j “

1R˚
´
pAq and Π`j “ 1R`pAq, where A is the conjugate operator. Notice that the assumptions

of Definition 1.13 are used to prove Theorem 1.15 but no longer play a role to get the multiple
resolvent estimates.

Since Lemma 1.16 is completely abstract, it can also be applied to the inserted factors.
Roughly, if the commutators of Tj with A are bounded on H, then the assumptions of Lemma
1.16 hold with νj “ σj “ 0 (see Proposition 3.11 in [23]).

Thus, we can apply Lemma 1.16 to a product of resolvents and inserted factors as in
(1.38). Moreover, the resolvents do not have to be associated with the same operator, and
they do not even have to be indeed resolvents.

1.4 Strategy for the proofs of the resolvent estimates

In this paragraph we explain how we use the dissipative commutators method of Section 1.3
to prove Theorems 1.8 and 1.10. This is an occasion to rewrite some arguments of [6, 11] in
the spirit of [23].
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1.4.1 Contribution of intermediate frequencies

The first step is to prove uniform estimates on Rpzq and then on pW`izq´1 for Impzq positive
and Repzq in a compact subset of R˚ “ Rz t0u. For z P C we set

PRpzq “ Re
`

´∆G ´ iawz ´ wz
2
˘

“ ´∆G ` awImpzq ´ wRepz
2q.

With the generator of dilations A defined in (1.30) we have

rPRpzq, iAs “ 2PRpzq `Kpzq ` 2Repz2q,

where

Kpzq “ divpx ¨∇Gpxqq∇´ Impzqpx ¨∇qpawq ` Repz2qpx ¨∇qw
´ 2awImpzq ` 2Repz2qpw ´ 1q.

Then we apply a compactness argument. Let τ P R˚. Since 0 is not an eigenvalue of PRpτq
(see [KT06]), the operator 1r´η,ηspPRpτqq goes weakly to 0 as η Ñ 0. On the other hand,
1r´1,1spPRpτqqKpτq1r´1,1spPRpτqq is compact, so 1r´η,ηspPRpτqqKpτq1r´η,ηspPRpτqq goes to 0
as η Ñ 0. For η ą 0 small enough we get

1r´η,ηspPRpτqqrPRpτq, iAs1r´η,ηspPRpτqq ě
3τ2

2
1r´η,ηspPRpτqq.

Then for χ P C80 pR, r0, 1sq supported in s´η, ηr and equal to 1 on
“

´
η
2 ,

η
2

‰

we get for z P C`
close to τ

χpPRpzqqrPRpzq, iAsχpPRpzqq ě τ2 χpPRpzqq
2. (1.54)

This is the main assumption in Definition 1.13 (see (1.41) with Q “ p´∆G ´ iawz ´ wz2q,
Π “ χpPRpzqq and β “ 0). We get the estimates of Theorem 1.15 with Q´1 “ Rpzq.

Then we use (1.21) to deduce estimates on pW ` izq´1. With (1.10) and (1.11) it is
classical that the estimates of Theorem 1.15 also hold with Q´1 replaced by a or w, for
any δ, δ1, δ2 ě 0, and δ ´ 1 replaced by δ in (1.44) and (1.45)). Then the assumptions of
Lemma 1.16 are satisfied with Θj “ 〈A〉 and νj “ σj “ 0. Using also the good commutation

properties of 〈D〉 “ p1´∆q
1
2 with A, we can finally prove with Lemma 1.16 that the estimates

of Theorem 1.15 hold for Q´1 “ pW ` izq´1 and A replaced by the operator

A “
ˆ

〈D〉´1
A 〈D〉 0

0 A

˙

,

which is selfadjoint on H . Applying once more Lemma 1.16, we deduce the multiple resolvent
estimates for pW ` izq´n with weight 〈A〉´δ in H . Notice that A does not have to be
conjugate to iW in the sense of Definition 1.13 (and it is not).

Using the regularity given by the resolvents of W to remove the derivatives in the weights
〈A〉δ (see the discussion about low frequencies below), we can finally prove the following
estimates.

Proposition 1.17. Let K be a compact subset of C˚. Let n P N˚ and δ ą n´ 1
2 . There exists

C ą 0 such that for ζ P K X C` we have
›

›pW ´ ζq´n
›

›

LpE δ,E´δq ď C.

1.4.2 Contribution of high frequencies

In this paragraph we briefly discuss the proof of Theorem 1.8. With Proposition 1.17, it is
enough to consider spectral parameters z “ iζ such that Impzq ą 0 and |Repzq| " 1.

As explained in the introduction, the behavior of the contribution of high frequencies
depends on the geometries of the domain and the damping region. It was the main motivation
of [2] to prove in a slightly different context the following estimate for a single resolvent.
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Theorem 1.18. Assume that the geometric damping condition (1.17) holds. Let δ ą 1
2 . There

exist τ0 ą 0 and c ą 0 such that for z P C` with Repzq ě τ0 we have
›

›

›
〈x〉´δ Bβ1

x RpzqB
β2
x 〈x〉´δ

›

›

›

LpL2pRdqq
ď

c

|z|
1´|β1|´|β2|

.

In [2] the estimate was given for the semiclassical Schrödinger operator with potential
´h2∆ ` V1pxq ´ ihV2pxq (and without the additional derivatives), but the strategy is the
same for a Laplacian associated with a metric (see [6, Section 8]). We do not give details for
Theorem 1.18 since the proof is essentially the same as in [Roy10], but we can at least recall
that we apply the Mourre method with a conjugate operator given by the Weyl quantization
of a symbol f which satisfies for some β ě 0

tp, fu ` βa ě c0 ą 0, on p´1pt1uq (1.55)

(p is the symbol defined in (1.15)). The positivity of the Poisson bracket tp, fu means that
f is increasing along the Hamiltonian flow associated with p. With the second term in the
left-hand side of (1.55) (which corresponds to the second term in the left-hand side of (1.37)
or (1.41)), the symbol does not have to be increasing along the flow in the damping region.
This is why we can allow bounded classical trajectories if they go through this damping
region (see (1.17)).

Then, as explained in Section 1.3, Theorem 1.18 was generalized in [6] to multiple resolvent
estimates with inserted factors, to deal with terms of the form (1.38). From this we can deduce
Theorem 1.8. We omit the details and refer to [6, Section 8] and [11, Sections 3.1 and 4.2].

1.4.3 Contribution of low frequencies

The main result in [6] is the resolvent estimates for the contribution of low frequencies. The
commutators method does not directly give uniform bounds for the resolvent of a Schrödinger
operator near 0. We see from (1.54) that the estimate becomes bad when τ Ñ 0. We can

apply the commutators method to the operator |z|
´2
p´∆´ izaw´ z2wq for z small, but we

only get an estimate of size Op|z|
´2
q for Rpzq in weighted spaces. This is at least uniform

with respect to Impzq close to 0, but we need an additional argument to get a uniform bound
when Repzq Ñ 0.

A key argument to recover some smallness in the low frequency analysis is a generalization
of the Hardy inequality, which roughly says that in dimension d ě 3 the multiplication by
|x|
´1

behaves like a derivative. And for low frequencies, a derivative can be seen as a small
operator.

In this report, I present the results of [6, 11] with the point of view developed recently
in [23] for the Schrödinger equation. For r Ps0, 1s we set Dr “

?
´∆{r. Then for s P R we

denote by Hs
r and 9Hs

r the usual Sobolev spaces Hs and 9Hs, endowed repectively with the
norms defined by

}u}Hsr “ }〈Dr〉s u}L2 , }u} 9Hsr
“ }Ds

ru}L2 . (1.56)

In particular }u} 9Hs “ rs }u} 9Hsr
, and for α P Nd and s P R the derivative Bαx defines an

operator of size r|α| from Hs
r to H

s´|α|
r . Finally, we denote by H s

r the Hilbert completion of
S for the norm defined by

}U}
2
H s
r
“ }ru}

2
Hs`1
r

` }v}
2
Hsr

, U “ pu, vq. (1.57)

In particular, H “ H 0
1 . We write Dz, H

s
z , 9Hs

z and H s
z for D|z|, H

s
|z|,

9Hs
|z| and H s

|z|.

Let d0 be a fixed integer greater than d
2 . For κ ě 0 we denote by S´κ the set of smooth

functions φ such that

}φ}S´κ “ sup
|α|ďd0

sup
xPRd

ˇ

ˇ 〈x〉κ`|α| Bαφpxq
ˇ

ˇ ă `8. (1.58)
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We can say that the multiplication by a decaying function behaves like a derivative, and hence
is small for low frequencies, in the following sense (see Proposition 7.2 in [6] or Proposition
3.1 in [23]).

Proposition 1.19. Let s P
‰

´ d
2 ,

d
2

“

and κ ě 0 such that s´ κ P
‰

´ d
2 ,

d
2

“

. Let η ą 0. There
exists C ě 0 such that for φ P S´κ´η, u P Hs and r Ps0, 1s we have

}φu}Hs´κr
ď Crκ }φ}S´κ´η }u}Hsr .

In particular, if φ P S´η for some η ą 0, then for any s P
‰

´ d
2 ,

d
2

“

the multiplication by
p1` φq defines a bounded operator on Hs

r uniformly in r Ps0, 1s.

A first application is that for s P
‰

´ d
2 ,

d
2

“

and ρ Ps0, ρ0r small enough the assumptions
(1.10) and (1.11) give

}zapxqwpxq}LpHs`1
z ,Hs´1

z q
`
›

›z2pwpxq ´ 1q
›

›

LpHs`1
z ,Hs´1

z q
À |z|

2`ρ
. (1.59)

Thus the corresponding terms are perturbations of ´∆ ´ z2 in LpHs`1
z , Hs´1

z q when z is
small. Notice that it is important here that a is of short range.

Even if Gpxq ´ Id also decays by (1.10), the same does not apply to p∆G ´∆q. Indeed,
this term is already of order 2 and we cannot pay more regularity to get some smallness in
LpHs`1

r , Hs´1
r ) for z small. The idea is then to consider first the case where }Gpxq ´ Id}S´ρ

is small enough, and then to add a compactly supported contribution for the metric. In [6]
this is done in Section 7.3. In [23] (for the Schrödinger equation) we deal with this compactly
supported perturbation in each intermediate result. This is an important technical difficulty
that we omit here for simplicity. Thus we proceed as if }Gpxq ´ Id}S´ρ were already small
enough.

Ideas of proof for Theorem 1.10. We see with (1.59) that p´∆G ` raw ` r2wq is a small
perturbation of ´∆` r2 in LpHs`1

r , Hs´1
r q for any s P

‰

´ d
2 ,

d
2

“

, and in particular

}Rpirq}LpHs´1
r ,Hs`1

r q
À

1

r2
.

From (1.23) we deduce, for s P
‰

´ d
2 ` 1, d2 r,

›

›pW ´ rq´1
›

›

LpH s´1
r ,H s

r q
À

1

r
.

Thus, for s1, s2 P
“

0, d2
“

and m P N˚ such that s1 ` s2 ď m we have

›

›pW ´ rq´m
›

›

LpH ´s2
r ,H

s1
r q

À
1

rm
. (1.60)

We can similarly estimate pW ´ ζq´m by |ζ|
´m

if Repζq Á |ζ|.

In general, we set r “ |ζ| and we observe that, by the resolvent identity, we can write
pW ´ ζq´n as a sum of terms of the form

pζ ´ rqm´npW ´ rq´m (1.61)

for some m ě n, or

pζ ´ rq2N`ν´npW ´ rq´N pW ´ ζq´νpW ´ rq´N , (1.62)

for ν ď n and N as large as we wish.
The idea to estimate a term of the form (1.61) is to use the weight (remember that we need

an estimate in LpE δ,E ´δq) to convert the elliptic regularity given by (1.60) into smallness.
By Proposition 1.19 and (1.25) we can prove that for s P

“

0, d2
“

and δ ą s we have

}U}E´δ À rs }U}H s
r

and }U}H ´s
r
À rs }U}E δ . (1.63)
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With (1.60) and (1.63) applied with

s1 “ s2 “ s “
1

2
minpd´ ε,mq,

we obtain that (1.61) satisfies the estimate of Theorem 1.10.

Now we turn to the terms of the form (1.62). In such a term we still have a factor
pW ´ ζq´ν as at the begining, but the interest of the decomposition (1.61)-(1.62) is that in
(1.62) we now have the factors pW ´ rq´N which give ellipitic regularity. The main step of
the proof remains the commutators method. Notice that we have omitted here the fact that
G ´ Id is only small at infinity. In general, to take this into account for the commutators
method, we can as in [BB21] replace the usual generator of dilations (1.30) by a generator of
dilations at infinity

Az “ ´
p1´ χzqx ¨ i∇` i∇ ¨ xp1´ χzq

2
, (1.64)

where χzpxq “ χp|z|xq for some χ P C80 pRd, r0, 1sq equal to 1 on a neighborhood of 0.
Following Sections 1.3 and 1.4.1, beging careful with the dependance on z going to 0, we

prove that Az is Υ-conjugate to |z|
2
p´∆ ´ izaw ´ z2wq for some Υ independent of z P C`

close to 0 (and with Repz2q Á |z|
2
). We get in particular an estimates of the form

›

›

›
〈Az〉´δ Rpzq 〈Az〉´δ

›

›

›

LpL2pRdqq
À

1

|z|
2 .

See [23, Sec. 5.2] for the case a “ 0. Then, as in Section 1.4.1, we can deduce with successive
uses of Lemma 1.16 an estimate of the form

›

›

›
〈Az〉´δ pW ` izq´ν 〈Az〉´δ

›

›

›

LpH 0
z q
À

1

|z|
ν , Az “

ˆ

〈Dz〉Az 〈Dz〉´1
0

0 Az

˙

. (1.65)

It remains to use the factors pW ´ rq´N to recover some smallness for (1.62). We also
use this regularity to compensate the derivatives used in the weights 〈Az〉. More precisely,
for s P

“

0, d2
“

and δ ą s we can prove

›

›

›
pW ´ rq´N 〈Aζ〉δ

›

›

›

LpH 0
z ,E

´δq
À rs´N ,

›

›

›
〈Aζ〉δ pW ´ rq´N

›

›

›

LpE δ,H 0
z q
À rs´N . (1.66)

Notice that we cannot directly use pseudodifferential calculus to prove these estimates, since
the commutators of two operators are usually not smaller than the products. We can do the
computation by hand.

Finally, with (1.65) and (1.66) we obtain that (1.62) also satisfies the estimate of Theorem
1.10.

As said above, the ideas of the proof are not presented here with the point of view of
[6, 11]. For instance, in these papers we did the decomposition (1.61)-(1.62) on the expression
(1.38), and not directly on the resolvent of W. On the other hand, in [6, 11] we rescaled the
operators and not the Sobolev spaces. This is equivalent.

1.5 Optimal resolvent estimate for the Schrödinger equation in
an asymptotically conical setting

In this paragraph, we briefly discuss the paper [7] about sharp low frequency resolvent esti-
mates on asymptotically conical manifold. This is a collaboration with Jean-Marc Bouclet.
It is related to the other works presented in this chapter since it is about low frequency
resolvent estimates for a Laplace operator, but the motivations are of different nature.
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The setting is a connected and asymptotically conical manifold M with Riemannian
metricG (possibly with boundary). Asymptotically conical means that there exists a compact
subset K of M such that pMzK,Gq is isometric to sR0,`8rˆS for some R0 ą 0 and some
closed Riemannian manifold S. This product is endowed with a metric approaching the
metric dr2 ` r2h0, where h0 is a Riemannian metric on S. More precisely, there exists a
diffeomorphism

κ :

"

MzK Ñ sR0,`8rˆS
m ÞÑ prpmq, ωpmqq

through which we can write

G “ κ˚
`

aprqdr2 ` 2rbprqdr ` r2hprq
˘

,

where aprq is a function on S going to 1, bprq is a 1-form on S going to 0 and hprq is a
Riemannian metric on S going to h0, in the sense that there exists ρ ą 0 such that for j P N
we have

›

›Bjrpaprq ´ 1q
›

›

Γ0pSq `
›

›Bjrbprq
›

›

Γ1pSq `
›

›Bjrphprq ´ h0q
›

›

Γ2pSq À r´j´ρ,

ΓkpSq being any seminorm on the space of smooth sections of pT˚Sqbk .
This setting is more general than the scattering metrics of [Mel95]. Moreover, even if

M “ Rd, the assumption on the metric is more general than being asymptotically flat since
h0 does not have to be the usual metric on the sphere S “ Sd´1.

We denote by P the Laplace-Beltrami operator on M (with Dirichlet boundary condition
if BM ‰ H). The main results in [7] are the following resolvent estimates.

Theorem 1.20. There exist a neighborhood U of 0 in C and C ą 0 such that for z P UzR we
have

›

›

›
〈r〉´1

pP ´ zq´1 〈r〉´1
›

›

›

LpL2pMqq
ď C.

Theorem 1.21. Let N P N˚ and let J be a compact interval of s0,`8r. There exists C ą 0
and ε0 ą 0 such that for ε Ps0, ε0s and z P CzR with Repzq P J we have

›

›

›
〈εr〉´N pε´2P ´ zq´N 〈εr〉´N

›

›

›

LpL2pMqq
ď C.

The two main interests of these results are the general geometric setting and the optimal
weight 〈r〉´1

. The best weight in the previous papers about the low frequency resolvent
estimates was of the form 〈r〉´s for s ą 1. It was in particular motivated by the Strichartz
estimates written later in [BM].

Notice that the second result corresponds to what we would get for the free Laplacian
on Rd from an estimate on 〈r〉´N p´∆´ zq´N 〈r〉´N by a scaling argument. Thus Theorem
1.21 says that the same estimate holds in a setting where such a scaling is meaningless.

We do not go into the details of the proofs here. The first important step is to reduce
the problem to resolvent estimates for a Schrödinger operator on the pure cone s0,`8rˆS.
Then the main part of the proof is to develop the Mourre theory on this pure cone for such
an operator.

1.6 The damped Schrödinger equation

In [10] we have considered with Moez Khenissi the local energy decay for a damped Schrödinger
equation.

Local energy decay for a dissipative Schrödinger equation has already been studied on
exterior domains, with some potential damping in the domain (α “ 0 with the notation of
(1.67) below) in [AK07] or at the boundary in [AK10]. See also [BC14] for a Schrödinger
equation with non-linear damping at infinity.
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Nevertheless, a potential damping is not strong enough to have the smoothing effect typ-
ical for the usual Schrödinger equation. For the regularized Schrödinger equation (α “ 1
in (1.67)), we can recover the usual gain of half a derivative (see [Alo08b, Alo08a]), or a

H
1
2´ε-smoothing effect if a few classical trajectories fail to satisfy the geometric damping

condition (see [AKV13], see also [Bur04] for a similar result in the selfadjoint case).

In [10], we consider this damped Schrödinger equation in the asymptotically Euclidean
setting. We consider on Rd the problem

#

´iBtu` Pu´ iapxq 〈D〉α apxqu “ 0, @t ě 0,@x P Rd,
u|t“0 “ u0,

(1.67)

where P “ ´∆G is a Laplacian in divergence form, D “
?
´∆, α P r0, 2r and a is of short

range as in (1.11). Since a appears twice, the dissipative term actually decays at least like

〈x〉´2´2ρ0 with respect to the space variable.

For the Schrödinger equation, it is the L2-norm of the solution which is constant without
damping and non-increasing in general. Formally,

d

dt
}uptq}

2
L2pRdq “ ´2 x〈D〉α auptq, auptqyL2pRdq ď 0.

We set
Pα “ P ´ iapxq 〈D〉α apxq, DompPαq “ H2pRdq.

The strength of the damping depends on the parameter α. This only plays a role for the
contribution of high frequencies (for low frequencies we have 〈D〉 » 1).

Under the non-trapping condition (1.16), the damping should not play an important role.
And indeed, we recover in this dissipative setting what was at that time the best result known
even in the undamped case for the local energy decay (the ε loss has been removed later in
[BB21]), and the smoothing effect.

Now assume that (1.16) does not hold but the geometric damping condition (1.17) does. If
the damping is strong enough (α ě 1), we recover the same results as under the non-trapping
condition. Of course, we cannot get a better estimate even with a stronger damping (α ą 1)
since the classical trajectories at infinity do not see the damping.

If the damping is weak (α ă 1), then the high-frequency resolvent estimates are weaker
in the presence of bounded trajectories. However, if we have a strong weight or if we can
allow a loss of regularity, then we can recover the same decay for large times (remember that
the rate of decay is actually limited by the contribution of low frequencies). However the
regularizing effect (governed by high frequencies) will be weaker than usual in this case.

More precisely, we prove in [10] the following local energy decay and smooting effect for
(1.67).

Theorem 1.22 (Local energy decay). Let ε ą 0. Let δ ą d`1
2 if d is even and δ ą d

2 ` 1 if δ
is odd. Let N P N and σ P r0, 2s. Assume that

(i) the non-trapping condition (1.16) holds,

(ii) or the geometric damping condition (1.17) holds, N minp1, αq ` σ ě 2 and δ ą N ´ 1
2 .

Then there exists C ě 0 such that for u0 P H
σ,δpRdq and t ě 0 we have

›

›e´itPαu0

›

›

L2,´δpRdq ď C 〈t〉´
d
2`ε }u0}Hσ,δpRdq.

The condition N minp1, αq ` σ ě 2 means that even if α is small, we can apply the
high-frequency resolvent estimate (see (1.68) below) with N large, or we can pay a loss of
derivative (typically if α “ 0).
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Theorem 1.23 (Global smoothing effect). Assume that the geometric damping condition (1.17)
holds. Then there exists C ě 0 such that for all u0 P L

2pRdq we have

ˆ `8
0

›

›

›
〈x〉´1 〈D〉minp1,αq{2

e´itPαu0

›

›

›

2

L2pRdq
dt ď C }u0}

2
L2pRdq .

Moreover, under the non-trapping condition (1.16), we can replace minp1, αq by 1.

Notice that to have the weight 〈x〉´1
in Theorem 1.23 we use the optimal resolvent esti-

mate at low frequencies deduced from Theorem 1.20.

For high frequencies, we use the same strategy as in [2, 6] (see Section 1.4.2), except that
the damping is not necessarily strong enough. For N P N˚ and δ ą N ´ 1

2 we get an estimate
of the form

›

›

›
〈x〉´δ pPα ´ zq´N 〈x〉´δ

›

›

›

LpL2pRdqq
À |z|

´
N minp1,αq

2 . (1.68)

For low frequencies, we adapt the proof of [6] to a dissipative perturbation of the Laplacian
which is of different nature. In particular, there is no time derivative in the dissipative term,
hence no factor z in the corresponding term for the resolvent. This is why we need more
spatial decay for the absorption index. Thus we use Proposition 1.19 in an even more crucial
way than for the wave equation, and the restriction on the Sobolev indices therein could have
been a serious difficulty. We do not discuss all the details and only emphasize the fact that
we unexpectedly had to use the dissipative Mourre theory in the sense of forms:

Remark 1.24. To apply the first version of the dissipative commutators method given in [2]
to the operator Pα at low frequencies, the dissipative part apxq 〈D〉α apxq has to be uniformly
relatively bounded with respect to the selfadjoint part P . For this we use the decay of
apxq at infinity and Proposition 1.19. P defines an operator of size Op|z|

2
q in LpH2

z , L
2q.

By Proposition 1.19, apxq can be seen as an operator of size Op|z|q in LpHs`1
z , Hs

z q and in
LpHs

z , H
s´1
z q (we omit 〈D〉α which does not play an important role). To have a dissipative

part of size Op|z|
2
q in LpH2

z , L
2q, we have to apply this with s “ 1. Because of the restriction

of Proposition 1.19, this is only possible if d ě 5.
However, for d ě 3 we can proceed similarly with s “ 0, which means that we see the

dissipative part as an operator from H1
z to H´1

z . Thus, even if Pα is the sum of a selfadjoint
operator and a dissipative part as in [2] (see also (1.36)), for d “ 3, 4 we can only apply the
Mourre method is the sense of forms as in [9].

Finally, the smoothing effect can be directly deduced from the resolvent estimates via the
theory of relatively smooth operators, which is classical for selfadjoint operators (see [RS79,
Sec. XIII.7]). For dissipative operators, this relies on the theory of selfadjoint dilations. For
this we refer to Proposition 6.2 in [9].

1.7 Asymptotic behavior for the Schrödinger equation

We finish this chapter with the most recent result about low frequency resolvent estimates.
In [23], we improve the results known for the usual selfadjoint Schrödinger equation (1.13)
about the local energy decay and low frequency resolvent estimates.

The optimal low frequency resolvent estimates and then the optimal local energy decay
have been proved in [BB21]. We go beyond and prove that the solution of (1.13) behaves (for
low frequencies and hence for large times) like the solution of the free Schrödinger equation
(1.6) for some f0 P L

2pRdq. More precisely, we prove that the local energy of the difference
uptq´u0ptq decays faster than the local energy of u0ptq. This means that u0ptq is the leading
term for the asymptotic expansion of uptq for large t. We recover in particular the same local
energy decay for uptq as for u0ptq. We denote by P0 the usual Laplacian on Rd. The precise
result is the following.
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Theorem 1.25. Assume that the non-trapping condition (1.16) holds. Let ρ1 P r0, ρ0r and
δ ě d

2 ` 2. There exists C ě 0 such that for t ě 0 we have

›

›

›
〈x〉´δ

`

e´itP ´ e´itP0w
˘

〈x〉´δ
›

›

›

LpL2pRdqq
ď C 〈t〉´

d
2´

ρ1
2 .

The factor w next to e´itP0 means that for f P L2pRdq we compare the solution u of
(1.13) with the solution u0 of (1.6) with f0 “ wf .

Since the decay at rate t´
d
2 is optimal for the free Schrödinger equation, Theorem 1.25

indeed says that the difference e´itP ´ e´itP0w decays faster than e´itP0w (in the sense of

the local energy). Moreover, as a corollary we recover the optimal decay at rate t´
d
2 for the

solution of (1.13).

We already know that under the non-trapping condition (1.16), the contributions of high
frequencies for both problems decay fast, so Theorem 1.25 is again mostly a result about low
frequencies. Thus we have to compare the resolvents of P and P0 near 0.

Theorem 1.26. Let ρ1 P r0, ρ0r, n P N˚ and δ ą n ` 1
2 . There exists C ą 0 such that for

ζ P DzR` we have

›

›

›
〈x〉´δ

`

pP ´ ζq´n ´ pP0 ´ ζq
´nw

˘

〈x〉´δ
›

›

›

LpL2pRdqq
ď C |ζ|

minp0,
d`ρ1

2 ´nq
.

Notice that asymptotic expansions for the resolvent of a Schrödinger operator at the low
frequency limit, and then the expansion of the propagator for large times, have already been
studied for perturbations by a potential. We have already mentioned [JK79]. We also refer
to the recent papers [Wan20] and [Aaf21] for complex-valued potentials. The difficulty in
these cases is that we can have an eigenvalue or a resonance at the bottom of the spectrum,
which gives a singularity for the resolvent. This is why these results require strong decay
assumptions on the potential.

We have already more or less used the setting of [23] to explain the results of [6, 11]
in Sections 1.3 and 1.4. Therefore, in this section we only add some comments specific to
the fact that we not only estimate resolvents but compare the resolvents of two different
operators.

In particular, one of the difficulties for the proof is that we have to use the commutators
method simultaneously for the two operators P and P0. We have already explained in Section
1.3 that this is one of the improvements of the method developed for [23].

Another problem is that the operator P and P0 are selfadjoint, but they are not selfadjoint
on the same Hilbert space (even if L2pRd,dxq and L2pRd, w dxq are equal as sets and have
equivalent norms).

We replace pP ´ ζq´1 by p´∆G ´ ζwq´1w. The operator p´∆G ´ ζwq´1 is no longer
the resolvent of a selfadjoint operator, but for ζ P C` it is still the inverse of the dissipative
operator ´∆G ´ ζw. It is dissipative on the usual space L2pRdq, as is ´∆ ´ ζ. Thus we
can work in L2pRdq endowed with its usual structure. This is why in Theorem 1.15 we no
longer consider resolvents but the inverse of parameter-dependent dissipative operators. In
particular, even for this selfadjoint problem we have to use the dissipative version of the
commutators method.

Replacing pP ´ ζq´1 by p´∆G ´ ζwq´1 is not just a technical issue, and it is really
p´∆G ´ ζwq´1 that is close to p´∆ ´ ζq´1 in a suitable sense. Then pP ´ ζq´1 is close to
p´∆´ ζq´1w, which explains the additional factor w in Theorem 1.26 and then in Theorem
1.25.

Ideas of proof. We have to estimate pP ´ ζq´nw´1 ´ pP0 ´ ζq´n for ζ “ z2 close to 0. We

first multiply this difference by |z|
2n

to have a spectral parameter of order 1. For n P N˚ we
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set

Rrnspzq “

˜

P

|z|
2 ´

z2

|z|
2

¸´n

w´1 “ |z|
2n `

p´∆G ´ z
2wq´1w

˘n´1
p´∆G ´ z

2wq´1, (1.69)

and for consistancy we also set R
rns
0 pzq “ |z|

2n
p´∆´ z2q´n.

Since the Mourre method is designed to estimate products of resolvents, we use the

resolvent identity to rewrite the difference Rrnspzq ´R
rns
0 pzq as

n´1
ÿ

k“1

Rrn´kspzqθ0pzqR
rks
0 pzq ´

n
ÿ

k“1

Rrn´k`1spzqθ1pzqR
rks
0 pzq, (1.70)

where we have set

θ0pzq “ w ´ 1 and θ1pzq “
p´∆G ´ z

2wq ´ p´∆´ z2q

|z|
2 . (1.71)

The fact that the difference Rrnspzq ´R
rns
0 pzq is smaller than R

rns
0 pzq for z P C` close to 0 is

due to the smallness of θ0pzq and θ1pzq in the suitable rescaled Sobolev spaces (see (1.56)),
given once more by Proposition 1.19.

Notice that we have factors w, θ0pzq and θ1pzq between the resolvents, but thanks to the
analysis of the damped wave equation we know that this is not a problem for the commutators
method. We get for instance the following estimate (with Az being the generator of dilations
at infinity defined in (1.64)):

Proposition 1.27. Let ρ P r0, ρ0r, n1, n2 P N˚, δ ą n1 ` n2 ´
1
2 and σ P t0, 1u. There exists

C ą 0 such that for z P D` we have

›

›

›
〈Az〉´δ Rrn1spzqθσpzqR

rn2s

0 pzq 〈Az〉´δ
›

›

›

LpL2pRdq
ď C |z|

ρ
.

The factor |z|
ρ

which appears in this estimate is due the small factor θσpzq and gives the

extra smallness in Theorem 1.26 compared to the estimate of R
rns
0 pzq or Rrnspzq alone.

However, this is an estimate on the rescaled resolvents and the estimate on the resolvents
would be of size Op|z|

ρ´2n1´2n2q. As in Section 1.4.3, we recover some smallness with the

weights 〈x〉´δ by ellipitic regularity and Proposition 1.19. And this regularity is also used to
compensate the derivatives which appear in the powers of the conjugate operator Az.

Theorems 1.25 and 1.26 are important for at least two reasons. The first is that ten years
ago the motivation of [6] was to recover in a non-selfadjoint setting estimates which were
already known in the selfadjoint case. Now we have reached the point where ideas developed
for the dissipative case are also used to improve the analysis of the selfadjoint Schrödinger
operator.

On the other hand, for the low frequency resolvent estimates, this result re-opens a topic
which seemed to be closed by the optimal estimates of [BB21]. Perspectives in that direction
will be discussed in Section 4.1.1.
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Chapter 2

The damped wave equation with
damping at infinity

In this chapter we continue the analysis of the damped wave equation (1.12). However, instead
of assuming that the damping is localized, we now consider settings for which the damping is
effective at infinity. This gives completely different properties. The results discussed in this
chapter are published in [8, 14, 15, 17, 18].

2.1 Introduction

We have seen in Theorem 1.1 that if the damping is small enough at infinity (in the sense
of (1.11)), the contribution of low frequencies for the damped wave equation (1.12) behaves
as for the undamped case. We will see in this chapter that this is no longer the case if the
damping is effective at infinity.

Our model case in this chapter is the free wave equation (P “ ´∆) with constant damping
apxq “ a1 ą 0:

#

B2
t u´∆u` a1Btu “ 0,

pu, Btuq|t“0 “ pf, gq.
(2.1)

With damping everywhere, it is clear that the damping condition (1.17) is satisfied, and as
expected the local energy of the contribution of high frequencies will decay rapidly. The dif-
ference is that all the classical trajectories go through the damping region, and not only the
bounded ones, so for high frequencies the global energy decays uniformly exponentially. As
one could have guessed, a stronger damping implies stronger decay properties for the energy.

The most interesting part is the contribution of low frequencies, whose behavior is not
that simple.

We first observe that for a very slowly oscillating solution u, the damping term a1Btu
is small, but the second order term B2

t u is even smaller. Neglecting this term leads to the
conjecture that u should behave like a solution of the heat equation

#

a1Btu0 ´∆u0 “ 0,

u0|t“0 “ f0.
(2.2)

And this is precisely what happens. This is sometimes called the diffusive phenomenon.
And since the local energy decay is slower for the heat equation than for the standard wave
equation (see Proposition 2.2 below), it turns out that the decay for the contribution of low
frequencies is not as fast with damping everywhere as it is without any damping.
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There is also a rich literature about the wave equation with damping at infinity. The local
energy decay for (2.1) has been discussed in [Mat76]. Matsumura proves Lp ´ Lq estimates
by explicit computations on the Fourier transform. The corresponding semilinear problem
is also discussed (see Section 4.5.2 for this question). Then the comparison with the heat
equation (2.2) has been studied in many papers. More precisely, it is proved that the solution
u of (2.1) behaves for large times like the solution u0 of (2.2) with

f0 “ f `
g

a1
. (2.3)

Then u0 is the asymptotic profile of u for large times. We refer to [Nis03] for a result in
dimension 3, [MN03] in dimension 1, [HO04] in dimension 2 and a more general discussion
in [Nar04].

The same problem has been studied in an exterior domain. See [Ike02] for a result with
constant coefficients and [AIK15] for an absorption index equal to 1 outside a compact subset.

A question that will not be discussed here is the case of a slowly decaying damping. This
means that a goes to 0 at infinity, but it is not of short range as in (1.11). We refer to [TY09]
for the energy decay when apxq » 〈x〉´α for some α P r0, 1r, to [ITY13] for the critical case
α “ 1 and to [Wak14] for the asymptotic profile when apxq “ 〈x〉´α, α P r0, 1r (which is
as expected a solution of 〈x〉´α Btu0 ´ ∆u0 “ 0). Finally, we refer to [SW16] for the same
question in an exterior domain.

There are also some abstract results in [CH04, RTY11, Nis16, RTY16]. For instance, in
[RTY11] the Laplacian is replaced by a general nonnegative selfadjoint operator, while in
[RTY16] another operator C acts on B2

t u. In [Nis16], a general damping operator acts on Btu,
and an application closer to our setting is provided, since the wave equation with a Laplacian
in divergence form and an absorption index which can vanish is considered. Only the decay
of the full energy is discussed in this setting.

My contributions for this problem are about the wave equation on a wave guide and in
an asymptotically periodic setting.

The original motivation was to consider the wave equation on a straight wave guide, with
damping at the boundary. See the setting of Section 2.3. I first tried to apply the Mourre
theory. This gave the paper [9], already discussed in Section 1.3, but this was not enough
to get the local energy decay. Then, as an intermediate step, I considered the case of the
Schrödinger equation with a one-dimensional cross-section, which is a much simpler model.
This has been published in [8], which is discussed in Section 2.7 below. The problem of a
wave guide with constant damping on the boundary has finally been solved in [14]. This is
discussed in Section 2.3.

After this, I invited in Toulouse Mohamed Malloug, who was at that time a Ph.D. Student
in Sousse with Moez Khenissi. We discussed together the case of a wave guide with internal
damping at infinity. This is a simpler setting, but it was an occasion to deal with a damping
which does not satisfy the geometric damping condition (1.17). See Section 2.4. It is only
then that, as a byproduct of the analysis, we wrote a result about the problem on the full
Euclidean space (where apxq is a long-range perturbation of 1), which is actually much easier.

After wave guides, I considered with Romain Joly the wave equation in an asymptotically
periodic setting. This raised different difficulties, which will be detailed Section 2.5.

Since this report is an opportunity to rewrite history, we begin here with the Euclidean
case and present in Section 2.2 some ideas on the model problem (2.1). Then, in the following
sections, we will discuss the difficulties coming from wave guides and the periodic setting.

2.2 On the Euclidean space

In this paragraph, we discuss some general ideas on the model case (2.1). More precisely, we
show from a spectral point of view why the solution of (2.1) behaves for large times like the
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solution of (2.2) with f0 given by (2.3). This is not written like this in any paper, since there
were already other proofs for this case in the literature. However, we use this simple setting
to show some ideas used in the papers [14, 15, 17], without the difficulties specific to these
more sophisticated cases.

2.2.1 The wave operator in the inhomogeneous energy space

We are going to compare a solution of the damped wave equation with a solution of the
heat equation. However, for the wave equation we usually consider the first derivatives (with
respect to space and time) of the solution, while for the heat equation we estimate the solution
itself. Thus, in addition to the energy space E “ 9H1pRdq ˆ L2pRdq, we also consider the
Hilbert space H “ H1pRdq ˆL2pRdq to rewrite the wave equation (1.12) in the form (1.18).

We define the wave operator WE by (1.19)-(1.20). Notice that we denote by WE the
operator denoted by W in the previous chapter. In particular, by Proposition 1.4 the operator
iWE is maximal dissipative and WE generates a contractions semigroup on E . Moreover, the
resolvent of WE is given by (1.23).

In this chapter, we denote by W the operator defined by (1.19) on H , with domain
DompWq “ tU P H : WU P H u. This is convenient to consider the solution and not only
the derivatives, but iW is no longer a dissipative operator. However, we will still be able to
write (1.27) in H .

Proposition 2.1. The operator W satisfies on H the following properties.

(i) i
`

W ´ 1
2

˘

is maximal dissipative on H .

(ii) C` Ă ρpWq, and for ζ P C` the resolvent pW ´ ζq´1 is given by (1.21) or (1.23).

(iii) W generates a C0-semigroup on H . Moreover, for ν Ps0, 1s there exists Mν ě 0 such
that

›

›etW
›

›

LpH q
ďMνe

tν for all t ě 0.

2.2.2 Local energy decay for the heat equation

We have said that we compare the solution of (2.1) with a solution of (2.2). Before going
further, we recall the local energy decay for a solution of the heat equation. For the solution
itself and its first derivatives.

Proposition 2.2. Let s1, s2 P
“

0, d2
‰

and s P r0, 1s. Let κ ą 1. There exists C ą 0 such that
for t ą 0 we have

›

› 〈x〉´κs1 et∆ 〈x〉´κs2
›

›

LpL2pRdqq ď C 〈t〉´
1
2 ps1`s2q ,

›

› 〈x〉´κs1´s∇et∆ 〈x〉´κs2´s
›

›

LpL2pRdqq ď C 〈t〉´
1
2 p1`s1`s2`sq ,

›

› 〈x〉´κs1 Btet∆ 〈x〉´κs2
›

›

LpL2pRdqq ď C 〈t〉´
1
2 p2`s1`s2q .

In [15] we provided a proof based on the explicit kernel for the heat equation (see Proposi-
tion 3.1 therein). Here we describe on this model case a more general strategy which will also
be used to estimate the difference between the solutions of (2.1) and (2.2) below, following
[17, Prop. 4.12]. See also [14, Prop. 3.3] for a third approach.

In Proposition 2.2 we give estimates in weighted L2-spaces, but in the proof they are
deduced from Lp-Lq estimates. This means that we can also directly state Lp-Lq estimates
in this context.

The first estimate can be rewritten as
›

› 〈x〉´κs1 et∆φ
›

›

L2pRdq À 〈t〉´
1
2 ps1`s2q

›

› 〈x〉κs2 φ
›

›

L2pRdq, φ P L2,κs2pRdq.

The parameter s2 measures how localized is the initial data φ. With s2 “ 0 we are considering
a general φ P L2pRdq, while if φ is compactly supported we get a better estimate by choosing
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s2 “
d
2 . Notice that we do not get a better estimate by considering a stronger weight, see

Remark 2.3. Similarly, s1 gives the weight for the energy. If s1 “ 0 we consider the L2

norms of uptq, ∇uptq and Btuptq “ ∆uptq, but if we are only interested in the L2 norms of
these quantities in a compact subset of Rd we get better estimates with s1 “

d
2 . All the

intermediate situations s1, s2 P
‰

0, d2
“

are also possible. There is a parameter κ ą 1 in the

weights since if sj P
‰

0, d2
‰

we need a weight 〈x〉´δj with δj ą sj , while no weight is necessary
(δj “ 0) when sj “ 0. Finally, as we will see in the last step of the proof, we can get an

extra power of t´
1
2 for the gradient if we can pay an extra weight 〈x〉´1

on both sides of the
estimate. This is the role of the parameter s.

Proof. We first notice that in the third estimate we can replace Bte
t∆ by ∆et∆. Let f0 P SpRq.

For t ě 0 we set u0ptq “ et∆f0. Let

p1 “
2d

d´ 2s1
P r2,`8s and p2 “

2d

d` 2s2
P r1, 2s. (2.4)

We denote by p11 P r1, 2s and p12 P r2,`8s the conjugate exponents of p1 and p2, respectively.
Let α P Nd. Since Lp1pRdq is continuously embedded in L2,´κs1pRdq, and by continuity of
the (inverse) Fourier transform (with respect to the space variable) from Lp

1
1pRdq to Lp1pRdq,

we have
}Dαu0ptq}L2,´κs1 pRdq À }D

αu0ptq}Lp1 pRdq À
›

›{Dαu0ptq
›

›

Lp
1
1 pRdq. (2.5)

Similarly,
}f̂0}Lp

1
2 pRdq À }f0}Lp2 pRdq À }f0}L2,κs2 pRdq . (2.6)

Let p10 P r1,`8s be such that

1

p10
“

1

p11
´

1

p12
“

1

p2
´

1

p1
“
s1 ` s2

d
.

By the Hölder inequality and the change of variable η “
?
tξ we get

›

›{Dαu0ptq
›

›

Lp
1
1 pRdq ď }ξ

αe´t|ξ|
2

}
L
p10
ξ pRdq

}f̂0}Lp
1
2 pRdq ď t

´
|α|
2 ´

d
2p10 }ηαe´|η|

2

}
L
p10
η pRdq

}f̂0}Lp
1
2 pRdq.

Finally,
›

›Dαu0ptq
›

›

L2,´κs1 pRdq À t´
1
2 p|α|`s1`s2q }f0}L2,κs2 pRdq ,

and the three estimates follow if s “ 0. Now we assume that s “ 1. Only the estimate for
the gradient is concerned. Let j P t1, . . . , du and x P Rd. We compute

Bxju0pt, xq “

ˆ
Rd
eix¨ξiξje

´t|ξ|2 f̂0pξqdξ

“ ´
i

2t

ˆ
Rd
eix¨ξBξj pe

´t|ξ|2qf̂0pξqdξ

“ ´
xj
2t

ˆ
Rd
eix¨ξe´t|ξ|

2

f̂0pξqdξ `
i

2t

ˆ
Rd
eix¨ξe´t|ξ|

2

Bξj f̂0pξqdξ

“
1

2t

`

´xjpe
t∆f0qpxq ` e

t∆pyjf0qpxq
˘

.

Then, using the first estimate of the proposition,

›

›Bxju0ptq
›

›

L2,´κs1´1pRdq À t´1´
s1`s2

2

´

}f0}L2,κs2 pRdq ` }yjf0}L2,κs2 pRdq

¯

À t´1´
s1`s2

2 }f0}L2,κs2`1pRdq .

This gives the estimate for the gradient when s “ 1. The case s Ps0, 1r follows by interpola-
tion.
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Remark 2.3. The estimates of Proposition 2.2 are optimal in the sense that we do not get
better decay even if we consider stronger (for instance compactly supported) weights. Indeed,
for f0 P C

8
0 pRdq, the explicit expression for u0 gives uniformly for x in a compact

u0pt, xq “
1

p4πtq
d
2

ˆ
Rd
e´

|x´y|2

4t f0pyqdy „
tÑ`8

1

p4πtq
d
2

ˆ
Rd
f0pyqdy,

∇u0pt, xq “ ´
1

p4πtq
d
2

ˆ
Rd

px´ yq

2t
e´

|x´y|2

4t f0pyqdy „
tÑ`8

´
1

2tp4πtq
d
2

ˆ
Rd
px´ yqf0pyqdy,

and

Btu0pt, xq “ ´
d

2t
u0pt, xq `Opt´ d2´2q „

tÑ`8
´

d

2tp4πtq
d
2

ˆ
Rd
f0pyqdy.

Our purpose is now to prove that the decay of the difference between the solutions of
(2.1) and (2.2) is faster than the decay given by Proposition 2.2.

2.2.3 The contribution of high frequencies

We begin with high frequencies. As already said, since we have damping everywhere, all
the classical trajectories and not only the bounded ones see the damping. From this we
can prove uniform estimates for the resolvent pW ´ ζq´1 directly in the energy space, and
not in weighted versions. This implies in particular that the imaginary axis (except 0) is
included in the resolvent set of W, with uniform estimates for the resolvent (away from a
neighborhood of 0). It is classical that if the imaginary axis is included in the resolvent set
with uniform estimates for the resolvent, then the propagator decays uniformly exponentially
(by the Gearhart-Prüss-Greiner Theorem, see [EN00, Th. V.1.11]). We cannot apply this
result directly to W because of the problem at 0, but it is not surprising to recover a uniform
and exponential decay for the contribution of high frequencies.

Theorem 2.4. There exist γ ą 0 and C ą 0 such that for all ζ P C with Repζq ě ´2γ and
|Impζq| ě 1 we have ζ P ρpWq and

›

›pW ´ ζq´1
›

›

LpH q
ď C.

Ideas of proof. Since the model case (2.1) is a problem with constant coefficients on Rd, we
can use the Fourier transform. For F P S and ξ P Rd we have

yWF pξq “MpξqF̂ pξq, where Mpξq “

ˆ

0 1
´ξ2 ´a1

˙

. (2.7)

The eigenvalues of Mpξq are

λ˘pξq “
´a1 ˘

a

a2
1 ´ 4ξ2

2
,

where we have set
a

a2
1 ´ 4ξ2 “ i

a

4ξ2 ´ a2
1 if 4ξ2 ą a2

1. Then ζ P ipRzs ´ 1, 1rq is not an
eigenvalue of Mpξq and we see that pMpξq ´ ζq´1 is bounded in LpC2

ξq uniformly in ζ and ξ,

with }pα, βq}
2
C2
ξ
“
`

1` |ξ|2
˘

|α|
2
` |β|

2
. Then pW ´ ζq´1F is the inverse Fourier transform of

ξ ÞÑ pMpξq ´ ζq´1F̂ pξq and we deduce Theorem 2.4 by the Parseval identity.

2.2.4 A first change of contour - Separation of low and high frequencies

As with a localized damping (see Section 1.2.2), we write the propagator etW in terms of
the resolvent pW ´ ζq´1. See (1.27). Since the integrand is holomorphic in ζ, we can change
the contour of integration tImpζq “ µu by Γµ defined as follows (see Figure 2.1). Given
θ P C80 pR, r0, 1sq supported in ]-2,2[ and equal to 1 on [-1,1] we set

Γµ : τ P R ÞÑ ´iτ ` µθpτq ´ γp1´ θpτqq. (2.8)
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Figure 2.1: Contours tRepzq “ µu, Γµ and Γ´a{2 Y Cpλ`pξq, rq.
(in grey, a region which contains the spectrum of W in the first two pictures, and the

eigenvalues of Mpξq or Wσ, for ξ or σ small, in the third)

Then we separate the contributions of high and low frequencies. We consider χlow P

C80 pR, r0, 1sq supported in ]-3,3[ and equal to 1 on [-2,2]. Then we set χhigh “ 1 ´ χlow.
Finally, for ˚ P tlow, highu we set

U˚ptqF “
1

2iπ

ˆ
Γµ

etζχ˚pImpζqqpW ´ ζq´1Fζ dζ. (2.9)

This is analogous to (1.28). In particular, we use the notation Fζ introduced in (1.26). Notice
that it is important to write the integral on the contour Γµ before separating the contribu-
tions of low and high frequencies, since the integrands in U˚ptqF are no longer holomorphic
in the region t2 ď |Impζq| ď 3u. It is still possible to change the contour for Ulowptq in the
strip t|Impζq| ď 2u. In particular UlowptqF , as UhighptqF , does not depend on µ.

We finish the analysis of high frequencies. Following the same idea as for Proposition 1.9,
we can deduce from Theorem 2.4 that UhighptqF decays uniformly exponentially.

Proposition 2.5. Let γ ą 0 be given by Theorem 2.4. There exists C ą 0 such that for t ě 0
and F P H we have

}UhighptqF }H ď Ce´
tγ
2 }F }H .

2.2.5 The contribution of low frequencies - Comparison with the diffusive
profile

We turn to the contribution of low frequencies. Replacing F by Fζ in (2.9) is convenient for
the analysis of UhighptqF , but to obtain a precise expression of the asymptotic profile, we go
back to F for low frequencies. For t ě 1 we set

U7ptq “
1

2iπ

ˆ
Γµ

etζχlowpImpζqqpW ´ ζq´1F dζ.

For ζ P C` we have

pW ´ ζq´1pFζ ´ F q “

ˆ 2

0

`

1´ φpsq
˘

espW´ζqF ds,

so with integration by parts we can see that UlowptqF ´ U7ptqF is small:

Proposition 2.6. Let m P N. There exists C ě 0 such that for F P H and t ě 1 we have

}UlowptqF ´ U7ptqF }H ď C 〈t〉´m }F }H .

To estimate U7ptqF we now have several possibilities.
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First strategy. The first option is to compare the resolvent

Rpzq “ Ra1pzq “ p´∆´ iza1 ´ z
2q´1

of the wave equation (2.1) to the resolvent Rhpzq “ p´∆ ´ iza1q
´1 corresponding to the

heat equation (2.2). This is what led to the ideas recently developed in [23] and explained in
Section 1.7.

Proposition 2.7. Let s1, s2 P
“

0, d2
“

and κ ą 1. Let β P Nd with |β| ď 1. Let m P N. There
exists C ą 0 such that for z P C` X D we have

›

›

›
〈x〉´κs1 BβxBmz

`

Rpzq ´Rhpzq
˘

〈x〉´κs2
›

›

›

LpL2pRdqq
ď C |z|

1
2 minp0,s1`s2´2m`|β|q .

Ideas of proof. Here, for the model case, the resolvent identity gives

Rpzq ´Rhpzq “ z2RpzqRhpzq. (2.10)

As in Section 1.4 we work in the rescaled Sobolev space, except that we now use Hs
|z|1{2

instead of Hs
|z|. A derivative is now of size Op|z|

1
2 q in LpHs

|z|1{2
, Hs´1

|z|1{2
q for any s P R. On

the other hand, Rpzq and Rhpzq are of size Op|z|
´1
q in LpHs´1

|z|1{2
, Hs`1

|z|1{2
q. An important

difference with the setting of Chapter 1 is that for z P C` the spectral parameter is iza1.
Since distpiza1,R`q Á |z|´1

, we do not need the limiting absorption principle and we will not

use the commutators method of Section 1.3 in this chapter. The weights 〈x〉´δ are only used
to convert the elliptic regularity given by the resolvents into powers of z. By Proposition
1.19 we have

›

› 〈x〉´δ1
›

›

LpHs1
|z|1{2

,L2pRdqq À |z|
s1
2 and

›

› 〈x〉´δ2
›

›

L2pRdq,LpH´s2
|z|1{2

q
À |z|

s2
2 . (2.11)

This is the analog of (1.63) used for (1.61).
We do not go further in the details of the proof, but the rough conclusion is that we have

better estimates on Rpzq´Rhpzq than on Rhpzq. Notice that we can iterate (2.10) and get an
expansion of Rpzq in terms of Rhpzq up to a rest of any order. With (1.21) we can similarly
write an expansion of the resolvent pW ´ ζq´1.

All the arguments above with the operator W on H can be reproduced with the operator

∆{a1 on L2pRdq. Then, up to rapidly decaying terms, the solution e
t∆
a1 f0 of (2.2) is equal to

1

2iπ

ˆ
Γµ

etζχlowpImpζqq

ˆ

∆

a1
´ ζ

˙´1

f0 dζ “ ´
a1

2iπ

ˆ
Γµ

etζχlowpImpζqqRhpiζqf0 dζ.

In view of (1.21) (replacing Rpzq by Rhpzq, removing the terms with extra powers of ζ and
removing the constant term in the bottom left coefficient), we see that the leading term for
the first component of U7,µptq is the solution of (2.2) with f0 as given by (2.3) (and the
leading term for the second component is its time derivative).

This kind of strategy has been used in [14] and [15] for wave guides. The interest is that we
can in particular consider an absorption index apxq which is a long-range perturbation of the
constant a1, since we can similarly estimate the difference Rapzq´Ra1

pzq, using Proposition
1.19 again.

The drawback with this strategy is that we have to know in advance what the asymptotic
profile will look like. This can lead to an impasse with a wrong guess. This is what happened
for [17]. More important, in the periodic setting the perturbation does not decay at infinity
and we can no longer use a result like Proposition 1.19 to recover some smallness for low
frequencies. For [17], we had to proceed with a different idea. Here we explain this new
strategy on the model case. This is also what gave the idea used in the proof of Proposition
2.2.
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Second strategy. The alternative approach uses the symmetries of the problem. Here, with
constant coefficients, we use again the Fourier transform. We can write

U7ptqF “
1

2iπ

ˆ
ξPRd

ˆ
ζPΓµ

eix¨ξetζχlowpImpζqqpMpξq ´ ζq
´1F̂ pξqdζ dξ.

For ρ ą 0 (to be chosen small enough) there exists ε ą 0 such that Repλ˘pξqq ď ´2ε if |ξ| ě ρ.
Then for |ξ| ě ρ we can replace the contour Γµ by Γ´ε and the corresponding contribution
decays exponentially. It remains the contribution UρptqF , defined as U7ptqF with the integral
on ξ over the ball Bpρq instead of Rd.

For ξ small, Mpξq has one simple eigenvalue λ`pξq close to 0 and the other one close to ´a.
We define ŨρptqF as UρptqF with Γµ replaced by Γ´a{2. It decays uniformly exponentially.

The difference between Uρptq and Ũρptq is given by the Residue Theorem (see the third contour
in Figure 2.1). We obtain that, up to exponentially decaying terms, U7ptqF is equal toˆ

ξPBpρq

eix¨ξetλ`pξqΠpξqF̂ pξqdξ, (2.12)

where

Πpξq “ ´
1

2iπ

ˆ
ζPCpλ`pξq,rq

pMpξq ´ ζq´1 dζ

is the Riesz projection on the eigenspace of Mpρq corresponding to the eigenvalue λ`pξq (the
integral is over a small circle around λ`pξq, oriented in the direct sense, while the circle in
Figure 2.1 is oriented in the clockwise direction). For G P C2 we have

ΠpξqG “ xΨpξq, GyC2 Φpξq, Φpξq “

ˆ

1
λ`pξq

˙

, Ψpξq “
1

a

a2
1 ´ 4ξ2

ˆ

a1 ` λ`pξq
1

˙

.

Notice that

λ`pξq “ ´
ξ2

a1
`Opξ4q, Φpξq “

˜

1

´
ξ2

a1
`Opξ4q

¸

,

and
@

Ψpξq, F̂ pξq
D

C2 “ f̂pξq `
ĝpξq

a1
`Opξ2}F̂ pξq}q.

In particular, if in (2.12) we replace each factor by the leading term in its Taylor expansion,
we expect that Uρptq should be close to

UheatptqF “

ˆ
Bpρq

eix¨ξe´
tξ2

a1 pf0pξq

˜

1

´
ξ2

a1

¸

dξ, (2.13)

with f0 given by (2.3). Up to the contribution of |ξ| ě ρ, which is exponentially decaying, we
see that the first component of (2.13) is the solution of (2.2)-(2.3) and the second component
is its time derivative. To prove that (2.12) is close to (2.13) we apply the idea given in the
proof of Proposition 2.2.

Conclusion. We finally obtain the following result, where for δ P R we have set H δ “

H1,δpRdq ˆ L2,δpRdq.

Theorem 2.8. Let s1, s2 P
“

0, d2
‰

and κ ą 1. Let s P r0, 1s. There exists C ą 0 such that for
pf, gq PH κs2 and t ě 0 we have

}uptq ´ u0ptq}L2,´κs1 pRdq ď C 〈t〉´
1
2 p2`s1`s2q }F }Hκs2 ,

›

›∇
`

uptq ´ u0ptq
˘
›

›

L2,´κs1´spRdq ď C 〈t〉´
1
2 p3`s1`s2`sq }F }Hκs2`s ,

›

›Bt
`

uptq ´ u0ptq
˘
›

›

L2,´κs1 pRdq ď C 〈t〉´
1
2 p4`s1`s2q }F }Hκs2 ,

where uptq is the solution of (2.1) and u0ptq is the solution of (2.2) with f0 given by (2.3).
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Combining Theorem 2.8 and Proposition 2.2 we deduce in particular that the estimates
of Proposition 2.2 also hold for uptq.

We have already observed that the local energy of the wave equation decays slowly with
a strong damping compared to the case without damping. We furthermore notice that the
decay for the heat equation (2.2) is slower when a1 becomes large.

2.3 On a wave guide with damping on the boundary

As said in the introduction of the chapter, my first work about a damped wave equation with
damping at infinity was not on the Euclidean space but on a wave guide.

More precisely, after a discussion with D. Krejcirik and P. Siegl on my earlier results
about the resolvent estimates by the commutator method, I was interested in the analysis of
the problem on a wave guide, with damping at the boundary.

On a waveguide we have bounded classical trajectories at infinity, so the geometric damp-
ing condition is not satisfied if the damping is localized. It seemed simpler to consider the
case of a constant damping. This led to the first question with damping at infinity (even if I
finally first wrote [8] about the Schrödinger equation, see Section 2.7).

Notice that there are now recent results [Wanb, Wanc] about the global energy decay for
the damped wave equation on (more general) wave guides with damping at the boundary.

2.3.1 The setting

Let Ω “ Rdˆω be a straight wave guide in Rd`n. The cross section ω is a smooth, bounded,
connected and open subset of Rn. A general point of Ω will be denoted by px, yq with x P Rd
and y P ω.

We consider on Ω the wave equation

$

’

&

’

%

B2
t u´∆u “ 0, on R` ˆ Ω,

Bνu` aBtu “ 0, on R` ˆ BΩ,
pu, Btuq|t“0 “ pf, gq, on Ω,

(2.14)

where a ą 0 is a constant absorption index on the boundary and pf, gq belongs to H1pΩq ˆ
L2pΩq. The energy is still a non-increasing function of time:

d

dt

ˆ
Ω

`

|∇uptq|2 ` |Btuptq|2
˘

“ ´2a

ˆ
BΩ

|Btuptq|
2
ď 0.

It is still possible to rewrite the wave equation in the form (1.18). For this we now define
on E “ 9H1pΩq ˆ L2pΩq the operator

W “

ˆ

0 1
∆ 0

˙

, (2.15)

with domain

DompWq “ tpu, vq P E : pv,∆uq P E and Bνu` av “ 0 on BΩu . (2.16)

We can check that iW is a dissipative operator on E . Then we introduce the analog of (1.22).
It is given by

Rpzq “ pHaz ´ z
2q´1, (2.17)

where for α P C we have defined on L2pΩq the operator Hα as in (1.39)

Hα “ ´∆, DompHαq “
 

u P H2pΩq : Bνu “ iαu on BΩ
(

. (2.18)
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One of the difficulty in [6] was that the derivatives of Rpzq (as defined by (1.22)) are not
its powers. Here it is even worse since the operator pHaz ´ z

2q depends on z via its domain.
Thus its derivatives only make sense if it is seen as a form on H1pΩq.

In the sense of forms it becomes clearer that Haz´z
2 is the analog of p´∆´izapxq´z2q for

a damping at the boundary. Indeed, the quadratic form on H1pΩq associated with Haz ´ z
2

is ´∆´ izΘa ´ z
2 P LpH1pΩq, H1pΩq˚q, where Θa is defined by

@ϕ,ψ P H1pΩq, xΘaϕ,ψyH1pΩq˚,H1pΩq “ a

ˆ
BΩ

ϕψ̄.

The fact that the boundary condition is a good model for a damping concentrated at the
boundary has been discussed in more details for a quantum graph in [26, Section 4].

Thus, in addition to Rpzq we also have to consider, at least for z P C`,

R̃pzq “
`

´∆´ izΘa ´ z
2
˘´1

P LpH1pΩq˚, H1pΩqq.

The link between Rpzq and R̃pzq is that for ϕ P L2pΩq and ψ P H1pΩq then u “ R̃pzqpϕ`Θaψq
is the unique solution in H2pΩq of the problem

#

p´∆´ z2qu “ ϕ on Ω,

Bνu “ iazu` aψ on BΩ.

In particular, R̃pzqϕ “ Rpzqϕ for all ϕ P L2pΩq.

Then we can check that the operator iW is maximal dissipative in E , and that for F P
H1pΩq ˆ L2pΩq its resolvent is given by

pW ´ ζq´1F “

ˆ

´R̃piζqpΘa ` ζq ´R̃piζq

1´ R̃piζqpζΘa ` ζ
2q ´ζR̃piζq

˙

F. (2.19)

We want to understand the long time behavior of the solution of (2.14), in particular the
local energy decay and the asymptotic profile. Compared to (2.1) we cannot just “remove”
the term B2

t u in (2.14) to get a heat equation which should describe the asymptotic behavior
of uptq.

2.3.2 Spectral properties of Hα

It is R̃pzq which appears in (2.19), but since R̃pzq and Rpzq are closely related, we can look
at the properties of Rpzq, hence at the spectral properties of the operator Hα. For this we
use the symmetries of Ω. We write the Laplacian Hα as the sum of the second derivatives
in the x and y directions. We denote by L the usual Laplacian on Rd and by Tα the Robin
Laplacian on the cross section ω:

Tα “ ´∆ω, DompTαq “
 

u P H2pωq : Bνu “ iαu on Bω
(

. (2.20)

Then, if we identify L with Lb IdL2pωq and Tα with IdL2pRdq b Tα, we have

Hα “ L` Tα.

The spectrum of L is the half-line r0,`8r. On the other hand, Tα has a non-empty resolvent
set and its domain DompTαq is compactly embedded in L2pωq, so its spectrum is given by a
sequence pλkpαqqkPN of isolated eigenvalues of finite multiplicities. Then it is a general result
(see for instance [RS79, §XIII.9]) that

σpHαq “ σpLq ` σpTαq “
ď

kPN
tλkpαq ` r, k P N, r P R`u . (2.21)
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Thus σpHazq is a sequence of half-lines which depend on the spectral parameter z.
In a selfadjoint setting it is not difficult to combine the properties of the longitudinal and

transverse operators to get information on the wave guide. We can proceed similarly if we
have a Riesz basis of L2pωq made with eigenvectors of the transverse operator (see (2.54) be-
low, see also [BK08] for another non-selfadjoint context). Here we have to proceed differently.

Let τ P R˚. The eigenvalues of Taτ have negative imaginary parts. Then τ2 is in the re-
solvent set of Haτ , so the resolvent Rpτq is well defined and ´iτ P ρpWq. The two important
steps of the proof are then to show that the resolvent pW ` iτq´1 is uniformly bounded for
|τ | Ñ 8 and to understand the behavior of the resolvent for τ close to 0.

2.3.3 Contribution of low frequencies

We begin with the contribution of low frequencies. Notice that T0 is the Neumann Laplacian
on ω, so λ0p0q “ 0 is a simple eigenvalue of T0 and the corresponding eigenprojection is the
orthogonal projection on constant functions. Seen as an operator on L2pΩq it reads

Pωupx, yq “
1

|ω|

ˆ
ω

upx, θqdθ. (2.22)

The other eigenvalues of T0 are positive.
Since Tα is analytic with respect to α (family of type B in the sense of Kato [Kat80]), the

spectrum of Tα is a holomorphic function of α. In particular, there exists a neighborhood V
of 0 such that for z small the operator Taz has exactly one (geometrically and algebraically)
simple eigenvalue λ0pazq in V.

If λ is another eigenvalue of Haz and r P σpLq “ R`, then the sum λ ` r (see (2.21)) is
“far” from 0, so the intuition is that only the contribution of the “first” transverse eigenvalue
λ0pazq of Taz should play a role in the behavior of pHaz ´ z

2q´1 when z is small.
To make this more precise, we would like to use a kind of spectral localization, but we

cannot use spectral projections given by functional calculus (Haz is not selfadjoint) or Riesz
projections (the spectrum of Haz close to 0 is not separated from the rest of the spectrum).
However, we can use simultaneously the facts that L is selfadjoint and Taz has discrete spec-
trum.

We can choose η ą 0 in such a way that if we set

G “ tζ P C : Repζq ă η, |Impζq| ă ηu ,

then for α small enough we have GXσpTαq “ tλ0pαqu and BGXσpTαq “ H. Let ζ P GXρpHαq

and σ P BG. We have ζ ´ σ P CzR` “ ρpLq, so we can write the resolvent identity

pHα ´ ζq
´1pTα ´ σq

´1 “ pTα ´ σq
´1pL´ pζ ´ σqq´1 ´ pHα ´ ζq

´1pL´ pζ ´ σqq´1. (2.23)

We set

Pα :“ ´
1

2iπ

ˆ
BG
pTα ´ σq

´1 dσ.

This is the Riesz projection of Tα on its one-dimensional eigenspace kerpTα´λ0pαqq. On the
other hand, since L is selfadjoint we have for ζ P G

´
1

2iπ

ˆ
BG
pL´ pζ ´ σqq´1 dσ “ Id.

Finally we can check (see [14, Prop.4.5]) that the operator

Bαpζq “
1

2iπ

ˆ
BG
pTα ´ σq

´1pL´ pζ ´ σqq´1 dσ
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is a holomorphic function of ζ P G. Thus, after integration of (2.23) with respect to σ P BG
we have

pHα ´ ζq
´1 “ pHα ´ ζq

´1Pα `Bαpζq “ pL` λ0pαq ´ ζq
´1Pα `Bαpζq,

and for z small we get

Rpzq “ pHaz ´ z
2q´1 “ pL` λ0pazq ´ z

2q´1Paz `Bazpz
2q.

Then we compute

λ10p0q “ ´iΥ, Υ “
|Bω|

|ω|
.

At this point, we expect that the wave resolvent Rpzq should behave like pL´ iaΥzq´1Pω for
z small. This is the resolvent corresponding to a heat equation in the x-direction, and the
projection on constant functions with respect to y. We can indeed prove the following result.

Theorem 2.9. For z P D` we have

Rpzq “ pL´ iaΥzq´1Pω ` R̃pzq “ ´
1

aΥ

ˆ

´
L

aΥ
` iz

˙´1

Pω `R1pzq,

where R1pzq satisfies the following property. For m P N, s P
“

0, d2
“

, δ ą s and βx P Nd,
βy P Nn such that |βx| ` |βy| ď 1 there exists C ą 0 such that for z P DX C` we have

} 〈x〉´δ Bβxx Bβyy R
pmq
1 pzq 〈x〉´δ }L2pΩq ď C |z|

minp0,´m`s`
|βx|

2 q
.

We can also write the Taylor expansions of λ0pazq and Paz up to any order to get a more
precise expansion of Rpzq. Then from (2.19) we deduce the asymptotics for the resolvent of
W near 0.

2.3.4 Contribution of high frequencies

Since we are not on the Euclidean space as in the previous chapter or in Section 2.2, we also
have to discuss the contribution of high frequencies.

The classical trajectories follow straight lines in Ω, bouncing on the boundary according
to the laws of geometrical optics. The rays of light parallel to the boundary never see the
damping, so we do not expect uniform exponential decay for the global energy. However, all
the bounded rays reach the boundary, so we should have uniform decay of the local energy
(notice that the set of undamped classical trajectories is unstable, so we should have a good
estimate on the global energy decay with loss of regularity, but I did not go in that direction
in [14]).

We already know that the resolvent pHaτ ´ τ
2q´1 is well defined for any τ ‰ 0. To prove

uniform estimates for |τ | " 1 we again have to combine the properties of L and Taτ . We
begin with the transverse operator. We have the following resolvent estimates.

Proposition 2.10. There exist τ0 ą 0, γ ą 0 and c ą 0 such that for |τ | ě τ0 and ζ P C with
ˇ

ˇRepζq ´ τ2
ˇ

ˇ ď γτ2 and Impζq ě ´γ |τ | the resolvent pTaτ ´ ζq
´1 is well defined and we have

›

›pTaτ ´ ζq
´1

›

›

LpL2pωqq
ď

c

|τ |
.

The proof, inspired by [Mil00], is based on the usual contradiction argument with semi-
classical measures on the compact domain ω. Compared to my previous results about high
frequencies, the damping is at the boundary (as in [BLR92]).

To prove estimates for Rpzq, we separate the contributions of high frequencies close to
longitudinal directions and high frequencies close to transverse directions.
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Let χ P C80 pR, r0, 1sq be supported in s ´ γ, γr and equal to 1 on
‰

´
γ
2 ,

γ
2

“

. We
use the functional calculus, available for L, and we estimate separately χpL{τ2qRpτq and
p1´ χqpL{τ2qRpτq.

For the first term, the idea is that with this localization with respect to L, Rpτq is in some
sense not too far from pTaτ ´ τ

2q´1. And, indeed, from Proposition 2.10 we can prove that

›

›χpL{τ2qRpτq
›

›

LpL2pΩqq
À

1

τ
. (2.24)

This is Proposition 7.3 in [14]. We gave a proof based on (2.23), but we can also use the
Fourier transform with respect to the x variable to conclude. Notice that we are dealing
with the contribution of frequencies which are not too large in the direction x. In terms of
classical trajectories, this corresponds to rays of light going in a direction transverse to the
wave guide, so they see the damping. It is no surprising that there is no weight in (2.24).

This is of course different for p1 ´ χqpL{τ2qRpτq, which corresponds to the contribution
of rays of light not far from being parallel to the wave guide.

Assume that we can replace Taτ by one of its eigenvalues λkpaτq. Then we have to estimate
p1´χqpL{τ2qpL`λkpaτq´τ

2q´1. If τ2´Repλkpaτqq ď γτ2{4, then we can apply the spectral
theorem for L. If τ2 ´ Repλkpaτqq ě γτ2{4 then, since Impλkpaτqq ă 0, we can apply the
(high-frequency) limiting absorption principle with the spectral parameter τ2 ´ λkpaτq for
the usual Laplacian L on Rd.

The rigorous proof does not work this way, since we cannot just sum the contributions
of each λkpaτq. Nevertheless, we can adapt the strategy known for the uniform resolvent
estimates for L in the setting of the wave guide to prove directly that for δ ą 1

2 we have

›

›

›
〈x〉´δ p1´ χqpL{τ2qRpτq 〈x〉´δ

›

›

›

LpL2pΩqq
À

1

|τ |
. (2.25)

Summing (2.24) and (2.25) gives the following result.

Proposition 2.11. Let δ ą 1
2 . There exist τ0 ą 0 and c ą 0 such that for |τ | ě τ0 we have

›

›

›
〈x〉´δ Rpτq 〈x〉´δ

›

›

›

LpL2pΩqq
ď

c

|τ |
.

With (2.19) we can get a uniform estimate for pW ` iτq´1 in weighted space. Because
of the weights, we cannot apply the same strategy as in Section 2.2. We apply the same
strategy as in Chapter 1 instead. In particular, we have to prove uniform estimates for the
derivatives of Rpτq. As explained above, this is not obvious, and this can only be done in
the sense of forms. To apply a result like Lemma 1.16, we need for instance estimates of
Rpτq in incoming and outgoing regions. For this, we have to adapt all the proofs known in
the Euclidean setting (we omit this part of the proof, see [14, Sec. 7.3]). We finally get the
following result.

Proposition 2.12. Let n P N and δ ą n´ 1
2 . There exists C ą 0 such that for |τ | ě 1 we have

›

›pW ` iτq´n
›

›

LpE δ,E´δq ď C.

2.3.5 Local energy decay and asymptotic profile

Now that we have estimated the resolvent, we can deduce the large time behavior for the
solution of (2.14). Since the contribution of high frequencies decays fast, the result depends
as usual on low frequencies. By Theorem 2.9 we expect that the asymptotic profile should
be a solution of

aΥBtu0 ` Lu0 “ 0, (2.26)

seen as a problem on Ω. By (2.19) and Theorem 2.9, the initial data for u0 should be given
by

f0 “
1

aΥ
PωpΘaf ` gq. (2.27)
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We can compute

PωΘaf “ aΥPBωf, where PBωfpx, yq “
1

|Bω|

ˆ
Bω

fpx, θqdσpθq.

This defines a function PBωf P L
2pΩq which only depends on x P Rd. Then we set

f0 “ PBωf `
1

aΥ
Pωg. (2.28)

This is analogous to (2.3). Since f is “multiplied” by the damping in (2.27), only its values
at the boundary play a role in the expression of f0, while f0 depends on the values of g on
the whole Ω (notice that g is only in L2pΩq and its trace on BΩ does not make sense).

On the other hand, the strength of the damping is given by the product aΥ. The coeffi-
cient a is the strength of the damping at each point of the boundary, and Υ depends on the
shape of the cross-section. If we normalize the section ω by |ω| “ 1, then Υ is the size of
Bω. It is not surprising that for a fixed value of a, the effect of the damping in Ω is stronger
when Υ is large.

Compared to Theorem 2.8 we cannot give estimates without weights (case s1 “ s2 “ s “
0) since we also need weights for the contribution of high frequencies. Of course, even for
high frequencies we can get weaker decay with weaker weights, but for simplicity we do not
detail this possibility and only write the statement which gives the best local energy decay
in this case.

We observe in particular that the power of t only depends on the number d of longitudinal
dimensions.

Theorem 2.13. Let δ ą d
2 ` 2. There exists C ą 0 such that for F “ pf, gq P H δ and t ě 0

we have
›

› 〈x〉´δ∇
`

uptq ´ u0ptq
˘
›

›

L2pΩq
`
›

› 〈x〉´δ Bt
`

uptq ´ u0ptq
˘
›

›

L2pΩq
ď C 〈t〉´

d
2´2

}F }H δ ,

where uptq is the solution of (2.14) and u0ptq is the solution of (2.26)-(2.28).

2.4 On a wave guide with damping at infinity

After [14], we discussed with Mohamed Malloug the wave equation with damping inside the
waveguide Ω. Since there are less technical problems than with damping at the boundary, it
was an occasion to consider other difficulties. Thus, in [15] we consider a situation where the
damping is not constant (and in particular breaks the symmetry of the wave guide) and the
geometric damping condition is not satisfied.

The setting. Let Ω “ Rd ˆ ω Ă Rd`n be a straight wave guide as in the previous section.
We consider on Ω an absorption index apx, yq ě 0 which is a long range perturbation of a
positive constant a1: for some ρ Ps0, 1s we have, for β P Nd and px, yq P Ω,

ˇ

ˇBβx papx, yq ´ a1q
ˇ

ˇ ď Cβ 〈x〉´ρ´|β| . (2.29)

Then we consider on Ω the damped wave equation with Neumann boundary conditions
$

’

&

’

%

B2
t u´∆u` aBtu “ 0, on R` ˆ Ω,

Bνu “ 0, on R` ˆ BΩ,
pu, Btuq|t“0 “ pf, gq.

(2.30)

Notice that we can also consider Dirichlet boundary conditions. This is actually much easier
since in this case 0 is not in the spectrum of the corresponding operator, so there is no diffi-
culty with low frequencies (see Theorem 4.2 in [15]).
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In this problem, a is a perturbation of a constant damping, but it can vanish in a bounded
subset of Ω. In particular, we may have undamped bounded classical trajectories. This is
only possible for rays of light going in a transverse direction, so the set of undamped rays
is unstable. For the contribution of high frequencies, this problem is actually similar to the
problem on the stadium with damping on the half-disks (see [BH07]).

In this setting the resolvent of the wave equation is

Rpzq “
`

´∆N ´ iapx, yqz ´ z
2
˘´1

,

where ´∆N the Neumann Laplacian in Ω.

Resolvent for a damping independent of the transverse variable. Even if a depends on y,
we use in the proof the case where it does not. Let α be a bounded function on Ω which only
depends on x P Rd. We can write

´∆N ´ iαpxq “
`

L´ iαpxq
˘

` TN ,

where L is as above the standard Laplacian on Rd and the transverse operator TN is the
usual non-negative and selfadjoint Neumann Laplacian on L2pωq. Compared to the setting
of the previous paragraph, we consider here the damping as part of the longitudinal operator.

We denote by pλkqkPN the non-decreasing sequence of eigenvalues (repeated according
to multiplicities) of TN , and we consider a corresponding orthonormal basis of eigenvectors
pϕkqkPN. Compared to the previous section, the fact that we have an orthonormal basis for
the transverse operator simplifies the analysis. We have λ0 “ 0, λ1 ą 0 and ϕ0 is constant.

For f P L2pΩq we can write f “
ř

kPN fkbϕk with fk P L
2pRdq, and for ζ in the resolvent

set of ´∆N ´ iαpxq we have

`

´∆N ´ iαpxq ´ ζ
˘´1

f “
ÿ

kPN

`

L´ iαpxq ´ pζ ´ λkq
˘´1

fk b ϕk. (2.31)

Thus we can deduce estimates for
`

´∆N ´ iαpxq´ ζ
˘´1

in LpL2pΩqq from similar estimates

for
`

L´ iαpxq ´ pζ ´ λkq
˘´1

, k P N, in LpL2pRdqq.

Contribution of low frequencies. Now we go back to the analysis of Rpzq. We begin with
the contribution of low frequencies. If a only depends on x, then we see that in (2.31) (with
α “ az and ζ “ z2) only the first term should play a role for z small (the other terms are
holomorphic around z “ 0).

We have not assumed that apx, yq only depends on x, but for low frequencies only the
values at infinity play an important role. Thus it is expected that, up to a rest, we can
replace apx, yq by a1 (and remove the term z2) in Rpzq when z is small. In other words, for
z small the resolvent Rpzq should be close to the resolvent of the heat equation

Rhpzq “ p´∆N ´ iza1q
´1.

On the other hand, by (2.31), Rhpzq should be close to RhpzqPω, where Pω (defined by
(2.22)) is the orthogonal projection on spanpϕ0q. All this holds in the following precise sense.

Proposition 2.14. Let s1, s2 P
“

0, d2
‰

and κ ą 1. Let ρ1 Ps0, ρr. Let β P Nd`n with |β| ď 1.
Let m P N˚. There exists C ą 0 such that for z P DX C` we have

›

›

›
〈x〉´κs1 Bβx,yBmz

`

Rpzq ´RhpzqPω
˘

〈x〉´κs2
›

›

›

LpL2pΩqq
ď C |z|

minp0, 12 ps1`s2`ρ1`|β|q´m´1q
.

Ideas of proof. To estimate the difference between Rpzq and Rhpzq we write the resolvent
identity

Rpzq ´Rhpzq “ Rhpzq
`

izpa´ a1q ` z
2
˘

Rpzq.
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Then we proceed as in the previous chapter (see Section 1.7) or for Proposition 2.7. Here the
rescaled Sobolev spaces (recall (1.56)) are only in the x direction. More precisely, for s P R
and z P C˚ we set

}u}HszL2pΩq “
›

›

〈a
L{ |z|

〉s
u
›

›

L2pΩq
.

For any s P R and z P C`, the resolventRhpzq is of sizeOp|z|
´1
q in LpHs´1

z L2pΩq, Hs`1
z L2pΩqq.

On the other hand, by an analog of Proposition 1.19, we see that pizpa´ a1q ` z
2q is of size

Op|z|
1`

ρ1
2 q in LpHs2

z L
2pΩq, Hs1

z L
2pΩqq if s1, s2 P

‰

´ d
2 ,

d
2

“

are such that s2 ´ s1 ě ρ1. In

particular Rpzq ´ Rhpzq is smaller than Rhpzq for z small, and Rpzq is of size Op|z|
´1
q in

LpHs´1
z L2pΩq, Hs`1

z L2pΩqq for any s P
‰

´ d
2 ,

d
2

“

. Notice also that ∇x is of size Op|z|
1
2 q in

LpHs
zL

2pΩq, Hs´1
z L2pΩqq and we can use (2.31) to see that ∇yRhpzq is bounded in a neigh-

borhood of z “ 0. Finally, we use the weights 〈x〉´κsj to convert regularity into powers of
|z| as in (2.11).

Contribution of high frequencies. We turn to the contribution of high frequencies. Since we
have damping everywhere at infinity, we can consider the global energy, and hence resolvent
estimates without weights. On the other hand, since the geometric damping condition (the
analog of (1.17) in Ω) does not necessarily hold, we cannot expect an estimate as good as in
the previous settings.

Proposition 2.15. Let β1, β2 P Nd`n with |β1| ď 1 and |β2| ď 1. Let τ0 ą 0. There exists
C ě 0 such that for τ P Rzr´τ0, τ0s we have

›

›Bβ1RpτqBβ2
›

›

LpL2pΩqq
ď C |τ ||

β1|`|β2|`1

and
›

›pW ` iτq´1
›

›

LpE q ď Cτ2. (2.32)

Ideas of proof. As is usual for high frequencies, we can replace apx, yq by a smaller damping.
We choose ãpxq which only depends on x and such that ãpxq ď apx, yq for all px, yq P Ω.
Then we can use (2.31). Since we can take ã going to 1 at infinity, it satisfies the damping
assumption on Rd, so pL ´ iτ ã ´ τ2q´1 if of size Opτ´1q in LpL2pRdqq. We get a similar
estimate for pL´ iτ ã´ pτ2 ´ λkqq

´1 if τ2 ´ λk is large. The loss is due to the contributions
of k such that τ2´λk is small. This corresponds to rays of light orthogonal to the boundary,
possibly undamped, and explains why we do not have a uniform bound in (2.32).

Local energy decay. Finally, we have to convert resolvent estimates to large times estimates.
For high frequencies we adapt the method of [Leb96, BH07]. Notice that there are abstract

results in the case where (2.32) holds for all τ P R (with τ2 replaced by 〈τ〉2, see for instance
[BEPS06, BD08, BT10]), but we cannot apply them because of the problem at 0. For the
contribution of low frequencies, the method is similar to the previous cases. From Proposition
2.14 we can deduce that the asymptotic profile u0ptq for the solution of (2.30) is the function
on Ω which does not depend on y P ω and is solution with respect to x to the heat equation
a1Btu0ptq ` Lu0ptq “ 0, with initial condition f0 “ Pωpf ` g{a1q:

u0ptq “ e´
tL
a1 Pω

ˆ

f `
g

a1

˙

. (2.33)

Finally, we get the following result.

Theorem 2.16. Let s1, s2 P
“

0, d2
‰

and κ ą 1. Let ρ1 Ps0, ρr. Let α P N and β P Nd`n with
α` |β| ď 1. Let k P N˚. There exists C ą 0 such that for F “ pf, gq PH κs2pΩqXDompWkq
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we have
›

›

›
〈x〉´κs1 Bαt Bβx,y

`

uptq ´ u0ptq
˘

›

›

›

L2pΩq

ď C

˜

〈t〉´
1
2 ps1`s2`2α`|β|`ρ1q }F }H κs2 `

lnptq
k
2`1

t
k
2

›

›pW ´ 1qkF
›

›

E

¸

,

where uptq is the solution of (2.30) and u0ptq is given by (2.33).

2.5 In a periodic medium

The motivation for [14] was the analysis of the damped wave equation on a wave guide.
It is only while proving this result that I realized that the damped wave equation with
damping at infinity was a really exciting problem in itself. When Romain Joly wrote a paper
about the damped Klein-Gordon equation with periodic damping (then improved to a more
general setting with Nicolas Burq in [BJ16]), giving the behavior of the contribution of high
frequencies for the corresponding damped wave equation, it was a natural question to study
the contribution of low frequencies for the damped wave equation with periodic damping.
This is what we did together in [17].

2.5.1 The asymptotically periodic setting

We consider the damped wave equation (1.12) on the Euclidean space, with a general Laplace
operator P as in (1.8), but the coefficients (including the absorption index) are now asymp-
totically periodic. This means that we can write

Gpxq “ Gppxq `G0pxq, wpxq “ wppxq ` w0pxq and apxq “ appxq ` a0pxq,

where Gp, wp and ap are Zd-periodic and G0, w0 and a0 are of long range: there exist
ρG, ρa ą 0 (we use two parameters since ρG and ρa will not play the same role in (2.46)
below) and CG, Ca ě 0 such that

|G0pxq| ď CG 〈x〉´ρG and |w0pxq| ` |a0pxq| ď Ca 〈x〉´ρa . (2.34)

We first consider the purely periodic case, G0 “ 0, w0 “ 0 and a0 “ 0. We denote by Wp

the wave operator (1.19) with coefficients Gp, wp and ap.
The damped wave equation with periodic metric had already been studied in [OZP01].

Compared to our setting, the initial condition is localized (at least in L1) and the absorption
index is constant (in particular it does not vanish and we can use some tools of the selfadjoint
problem).

Our absorption index ap cannot be identically zero, but it is allowed to vanish. This
means that at infinity it takes positive values but it can also be 0. This is an intermediate
situation between the setting of Chapter 1, where a is small at infinity, and the settings of
Sections 2.2 and 2.4, where a is asymptotically close to a positive constant.

We will see that we recover in this case the diffusive phenomenon typical for the damped
wave equation with damping effective at infinity.

Under the geometric damping condition for high frequencies (see (2.45) below), the large
time behavior of the wave is as usual given by the contribution of low frequencies. And if the
wave length of the solution is very large compared to the period of the medium, this solution
only sees, in some sense, the mean value of ap. This mean value is positive.

Thus, as above the solution of the periodic damped wave equation should look like the
solution of some heat equation. It is natural to expect that the corresponding heat equation is
obtained by removing the second derivative in time in the wave equation. After multiplication
by w this gives

´∆Gpu` appxqwppxqBtu “ 0 on R` ˆ Rd. (2.35)
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This is indeed the case, but we want to go further. As said above, the low frequency wave
only sees the mean value of apwp. We expect that in (2.35) we can replace apwp by its mean
value. Similarly, we would like to replace Gp by a simpler (constant) matrix. The reader
familiar with homogenization (which was not our case when starting this work) knows that
the mean value of Gp is not the good guess.

2.5.2 The Floquet-Bloch decomposition and spectral properties on the torus

All the coefficients of the equation are Zd-periodic, but this is not the case for the initial
condition pf, gq P H1pRdq ˆ L2pRdq. The solution itself will not be periodic, so the problem
does not reduce to a problem on the torus.

In this kind of context it is usual to use the Bloch waves (see for instance [BLP78, Sec.
4.3]). Compared to the plane waves eix¨ξ used for the Fourier transform (suitable for linear
problems with constant coefficients), the Bloch waves are of the form ψpxq “ eix¨σφpxq where
φ is Zd-periodic. They can be chosen in such a way that ψ is an eigenfunction of ´∆Gp .
Then φ is an eigenfunction for the operator

´∆Gp,σ :“ ´pdiv`iσᵀqGppxqp∇` iσq.

Compared to the undamped case (or with constant damping), we cannot use a basis of
Bloch waves which are eigenfunctions of our operator, but we can still use the Floquet-Bloch

decomposition. Let Td “
“

´ 1
2 ,

1
2

‰d
. For u P SpRdq and x P Rd we write

upxq “

ˆ
σP2πTd

eix¨σuσpxqdσ, where uσpxq “
1

p2πqd

ÿ

nPZd
upx` nqe´ipx`nq¨σ. (2.36)

Notice that uσ is periodic for all σ P Rd. This decomposition naturally shares some useful
properties with the Fourier transform. In particular, we have the Parseval identity for the
Floquet-Bloch decompostion: for u, v P SpRdq we have

xu, vyL2pRdq “ p2πq
d

ˆ
σP2πTd

xuσ, vσyL2
p

dσ, (2.37)

where the space L2
p of Zd-periodic and L2

loc functions is endowed with the natural Hilbert

structure. We also define the periodic Sobolev spaces Hk
p for k P N.

Now for U “ pu, vq P S and x P Rd we have

pWpUqpxq “

ˆ
σP2πTd

eix¨σWσUσpxqdσ,

where for σ P Rd we have set Uσ “ puσ, vσq and

Wσ “

ˆ

0 w´1
p

∆Gp,σ ´ap

˙

.

This defines a family pWσqσP2πTd of operators on H1
pˆL

2
p with domain H2

pˆH
1
p . The interest

of this decomposition is that each operator Wσ has a compact resolvent, so its spectrum is
given by a sequence of isolated eigenvalues. For U “ pu, vq P H2

p ˆH
1
p and λ P C we have

WσU “ λU ðñ

#

p´∆Gp,σ ` λapwp ` λ
2wpqu “ 0,

v “ λwpu.
(2.38)

Then we proceed as explained on the model case in Section 2.2. We first observe that
0 is the only possible purely imaginary eigenvalue of Wσ, and this happens if and only if
σ “ 0. Moreover, 0 is a (geometrically and algebraically) simple eigenvalue of W0 and a
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corresponding eigenvector is given by Φ0 “ p1, 0q
ᵀ (notice that we would have difficulties to

work with Φ0 in the periodic energy space 9H1
p ˆ L

2
p).

By continuity of the spectrum with respect to σ, we deduce that only one simple eigenvalue
of Wσ for σ small will play a role for the contribution of low frequencies.

Proposition 2.17. There exist r ą 0 and γ0, γ1, γ2 ą 0 such that

(i) for σ P 2πTdzBp0, rq the eigenvalues of Wσ with imaginary parts in r´3, 3s have real
parts smaller than ´γ0 ;

(ii) for σ P Bp0, rq the operator Wσ has a unique simple eigenvalue λσ such that |λσ| ď γ1,
and the other eigenvalues of Wσ with imaginary parts in r´3, 3s have real parts smaller
than ´γ2 (γ1 ă γ2).

We denote by Πσ the Riesz projection of Wσ corresponding to λσ and Φσ “ ΠσΦ0{ }ΠσΦσ}.
Then for some ϕσ P H

2
p (smooth with respect to σ) we have Φσ “ pϕσ, λσwpϕσq

ᵀ.
Then, up to exponentially decaying terms, we see that the important contribution is the

analog Ur,pptqF of (2.12), defined for t ě 0 and F P S by

Ur,pptqF “
ˆ
σPBp0,rq

eix¨σetλσΠσFσ dσ. (2.39)

The next step is to replace λσ, Φσ and Πσ by their Taylor expansions for σ small. From
(2.38) we can prove the following properties.

Proposition 2.18. (i) Let iψσ be the linear term in the Taylor expansion of ϕσ at σ “ 0.
Then we have

´ divGppxqpσ `∇ψσq “ 0. (2.40)

We denote by W pxq the Zd-periodic matrix such that, for all ξ P Rd,

W pxqξ “ ξ `∇ψξpxq. (2.41)

(ii) We have

λσ “ ´
1

ahwh
xGhσ, σy `Op|σ|

3
q,

where Gh is the mean value of W pxqᵀGppxqW pxq:

xGhσ, σy “

ˆ
Td
xGppxqpσ `∇ψσpxqq, σ `∇ψσpxqy dx. (2.42)

(iii) For σ P Bp0, rq we denote by Ψσ P L
2
p ˆ L

2
p the vector which satisfies, for all F ,

ΠσF “ xΨσ, F yL2
pˆL

2
p

Φσ.

Then Ψσ is a smooth function of σ and we have

Ψ0 “
1

ahwh

ˆ

apwp

1

˙

.

The definition of Gh is classical in homogenization theory (the matrix W pxq is the so-
called corrector matrix). It is interesting to notice how it appears as the Hessian matrix of
the eigenvalue λσ at σ “ 0.

2.5.3 Comparison with the asymptotic profile

From the eigenelements of Wσ for σ small we can define the asymptotic profile for the
contribution of low frequencies. Since the contribution of high frequencies decays fast under
the suitable geometric condition, we finally get a result of local energy decay for the difference
between the solution of the damped wave equation and the asymptotic profile.
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The asymptotic profile We compare (2.39) with

Ur,hptqF “
ˆ
σPBp0,rq

eix¨σe
´
txGhσ,σy
ahwh xFσ,Ψ0yΦ0 dσ. (2.43)

For this we use the strategy of Proposition 2.2, actually first developed for this point in [17]
(see Proposition 4.12 therein). We replace the continuity of the Fourier transform (remember
(2.5)-(2.6) with notation (2.4)) by the following property of the Floquet-Bloch transform (see
also [17, Cor. 4.2])

}u}L2,´κs1 pRdq À }uσ}Lp11 p2πTd;L2
p q
, }uσ}Lp12 p2πTd;L2

p q
À }u}L2,κs2 pRdq .

This can be proved with (2.37) and the following equality for u P SpRdq and ψ P L2
p:

xuσ, ψyL2
p
“

ˆ
xPRd

eix¨σupxqψpxqdx.

The first component of (2.43) gives the asymptotic profile (the second component gives
its time derivative, multiplied by wp). For t ě 0 we set

uhptq “ e
´ t
ahwh

Phuhp0q, where uhp0q “ xF,Ψ0y “
apwpf ` wpg

ahwh
. (2.44)

To get the asymptotic profile for ∇uptq, we cannot just take the gradient of uhptq. Indeed,
the leading term for ϕσ is just ϕ0 “ 1, but the leading term of ∇ϕσ is i∇ψσ (see Proposition
2.18). With the factor iσ coming from the factor eix¨σ we see that ∇upptq should be compared
with ˆ

σPBp0,rq

eix¨σe
´
txGhσ,σy
ahwh xFσ,Ψ0y ipσ ` ψσqdσ.

This is why we compare ∇upptq with W pxq∇upptq in Theorem 2.19 below. Notice also that

we cannot apply the trick of Proposition 2.2 to get an extra power of t´
1
2 with stronger weight

(case s “ 1). Then, with a strong weight, the estimate of ∇upptq´W∇uhptq in Theorem 2.19
is the same as the estimate of ∇uhptq in Proposition 2.2. Thus, it is not clear that W∇uhptq
is the asymptotic profile for ∇upptq, but this still gives at least the optimal decay for ∇upptq.

Contribution of high frequencies. For the contribution of high frequencies, we can deduce
Proposition 2.5 from the high frequency resolvent estimates given in [BJ16]. Notice that we
cannot use the assumption (1.17) in this context. In (1.17), it is only assumed that each
bounded classical trajectory goes once through the damping region. However, since bounded
trajectories live in a compact subset in the context of Chapter 1, the time needed to reach
the damping region in uniform, and each ray of light actually goes regularly through the
damping region. This is no longer automatic if we consider classical trajectories at infinity,
so we have to be more precise about the damping condition. With the same notation as for
(1.17), we assume

DT ą 0, Dα ą 0, @px0, ξ0q P p
´1pt1uq,

ˆ T

0

apxpt;x0, ξ0qqdt ě α. (2.45)

It is clear that (2.45) (for all trajectories, of for the bounded ones) implies (1.17), and on
the other hand we can check that if (1.17) holds in the context of Chapter 1 then bounded
trajectories satisfy (2.45).
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Local energy decay. Now that the contributions of low and high frequencies are understood,
we can state the main result of [17].

Theorem 2.19. Assume that the geometric damping condition (2.45) holds. Let s1, s2 P
“

0, d2
‰

and κ ą 1. There exists C ą 0 such that for t ě 0 and F “ pf, gq PH κs2 we have

}upptq ´ uhptq}L2,´κs1 pRdq ď C 〈t〉´
1
2´

s1`s2
2 }F }H κs2 ,

}∇upptq ´W∇uhptq}L2,´κs1 pRdq ď C 〈t〉´1´
s1`s2

2 }F }H κs2 ,

}Btupptq ´ Btuhptq}L2,´κs1 pRdq ď C 〈t〉´
3
2´

s1`s2
2 }F }H κs2 ,

where upptq is the solution of (1.12) with coefficients pGp, wp, apq and uhptq is given by (2.44).

As for Theorem 2.8, we could expand λσ and Πσ further in (2.39) to get a more precise
asymptotics for upptq and its derivatives.

By a perturbative argument, we get the following result for the general case with asymp-
totically periodic coefficients.

Proposition 2.20. Assume that the damping condition (2.45) holds. Let κ ą 1 and s1, s2, η ě 0
be such that

maxps1, s2q ` η ă min

ˆ

d

2
, ρG, ρa ` 1

˙

. (2.46)

Then there exists C ě 0 such that for U0 “ pu0, u1q PH κs2 and t ě 0 we have

}uptq ´ upptq}L2,´κs1 pRdq ď C 〈t〉´
s1`s2

2 ´
η
2 }U0}H κs2 ,

}∇uptq ´∇upptq}L2,´κs1 pRdq ď C 〈t〉´
1
2´

s1`s2
2 ´

η
2 }U0}H κs2 ,

}Btuptq ´ Btupptq}L2,´κs1 pRdq ď C 〈t〉´1´
s1`s2

2 ´
η
2 }U0}H κs2 ,

where uptq and upptq are the solutions of (1.12) with coefficients pG,w, aq and pGp, wp, apq,
respectively.

Because of the restriction (2.46), this proposition is probably far from being optimal.
The purpose was to show that even if the proof of Theorem 2.19 strongly depends on the
symmetry of the setting, the result is actually robust with respect to perturbations.

Nonetheless, Proposition 2.20 gives in any case a result for the global energy and for a
general initial data (s1 “ s2 “ 0). It also provide interesting estimates for a rapidly decaying
perturbation (ρG and ρa not too small).

2.6 The wave equation with highly oscillating damping

The discussions above mostly concern the contribution of low frequencies for the wave equa-
tion. However, while preparing [17], a technical detail about the high frequencies estimates
in [BJ16] drew my attention.

The analysis of high frequencies is based on semiclassical analysis, which requires quite
a lot of regularity for all the coefficients. However, contrary to the case of low frequencies
for which the overdamping phenomenon occurs, for high frequencies we have better decay
properties with a stronger damping, so if the absorption index a is not smooth, it is enough
to prove the estimates with a replaced by a smooth ã such that ã ď a.

However, some regularity is still required on a. In [BJ16] it is assumed that a is at
least uniformly continuous. Similarly, in [2] we had to apply the Mourre theory with the
original absorption index a, so we assumed existence and boundedness of its first two radial
derivatives.
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In [18], I have tried to show on a very simple model case that a highly oscillating ab-
sorption index should not be a problem, and that the only important quantity is the average
damping seen by the classical rays of light, as measured by the integral in (2.45). Note that
a more refined analysis of the damped wave equation with rough damping on the torus has
then been published in [BG20].

We consider the Klein-Gordon equation with a periodic damping whose period goes to
0. Let a P C8pRd,R`q be periodic. For η ě 1 and x P Rd we set aηpxq “ apηxq. For some
m ą 0 and pf, gq PH we consider the problem

#

B2
t u´∆u`mu` aηpxqBtu “ 0, on R` ˆ Rd,
pu, Btuq|t“0 “ pf, gq, on Rd.

(2.47)

The interest of considering the Klein-Gordon equation is that it behaves exactly as the wave
equation for high frequencies (the additional term mu is much smaller than the others) but
there is no problem with low frequencies, since 0 is not in the spectrum of the operator

ˆ

0 1
∆´m ´aη

˙

,

defined on H with natural domain. Since we consider the free Laplacian in (2.47), we have

ppx, ξq “ |ξ|
2

and classical trajectories are given by φtpx0, ξ0q “ px0 ` 2tξ0, ξ0q.

We have said that under the geometric damping condition on all classical trajectories we
have uniform exponential decay for the Klein-Gordon equation (see [BJ16]). The first result
in [18] is that if (2.45) is uniform in η ě 1, then the solution uη of (2.47) decays exponentially,
uniformly in the initial condition and uniformly in η ě 1. Even if the sizes of the derivatives
of the absorption index aη blow up with η. Thus we assume

DT ą 0, Dα ą 0,@η ě 1,@px0, ξ0q P Rd ˆ Sd´1,

ˆ T

0

aηpx` 2tξqdt ě α. (2.48)

In our particular case, we observe that if the damping condition (2.45) holds for η “ 1, then
it holds uniformly in η ě 1.

Theorem 2.21. Assume that the uniform geometric damping condition (2.48) holds. Then
there exist γ ą 0 and C ą 0 such that for η ě 1, pf, gq PH and t ě 0 we have

}uptq}H1pRdq ` }Btuptq}L2pRdq ď Ce´γt
`

}f}H1pRdq ` }g}L2pRdq
˘

,

where uptq is the solution of (2.47).

The second part of the paper is about the case where (2.48) is not satisfied. We know
that we cannot have a uniform decay, but we can still have energy decay if we allow a loss of
regularity.

Since the damping is regularly distributed for any η ě 1, we can apply [BJ16, Th. 1.3] to
see that we have at least logarithmic decay. The particular case of a periodic damping has
been analysed in [Wun17], and in this case we actually have polynomial decay, with the loss
of one derivative. This is consistent with the fact that in the periodic setting the set of rays
of light which do not see the damping is unstable. We look at the dependence in η for this
polynomial decay.

The second result of [18] is again that despite of the sizes of the derivatives of aη, we
recover the same result as in [Wun17], uniformly in η ě 1. Moreover, the estimate is even
better for large η. This is in fact natural, since for large η the classical rays of light see in
some sense the same quantity of damping, but this damping is more uniformly distributed
in Rd.

48



Theorem 2.22. There exists c ą 0 such that for η ě 1, pf, gq PH and t ě 0 we have

}uptq}H1pRdq ` }Btuptq}L2pRdq

ď
c

?
1` t

˜

}f}H1pRdq ` }g}L2pRdq `
}∆f}L2pRdq ` }∇g}L2pRdq

η2

¸

,

where uptq is the solution of (2.47).

2.7 The damped Schrödinger equation on a wave guide

In this paragraph we present the results of [8], which was actually written before all the
papers discussed in this chapter.

We consider the Schrödinger equation on a straight wave guide with one dimensional cross
section. Given d ě 2 and ` ą 0, we set Ω “ Rd´1ˆs0, `r. Then for a ą 0 and f P L2pΩq we
consider on Ω the Schrödinger equation

$

’

&

’

%

´iBtu´∆u “ 0, on R` ˆ Ω,

Bνu “ iau, on R` ˆ BΩ,
u|t“0 “ f.

(2.49)

The L2-norm of the solution is a non-increasing function of time. We have in fact uniform
exponential decay:

Theorem 2.23. There exist γ ą 0 and C ě 0 such that for any f P L2pΩq the solution u of
(2.49) satisfies

@t ě 0, }uptq}L2pΩq ď Ce´γt }f}L2pΩq .

Instead of a constant damping, we can consider a such that a0 ď a ď a1 on BΩ, for some
positive constants a0 and a1. The same result also holds if a satisfies this property on one
side of the boundary and vanishes on the other side. We can even consider the case where
the damping is a positive constant on one side and a negative one on the other side (with a
positive sum, so that the damping is positive on average, in the spirit of [4]).

It is remarkable that even if the classical trajectories parallel to the boundary never see
the damping, we can have a uniform decay for the global energy of the Schrödinger equation.

The operator corresponding to (2.49) is the Laplacian with Robin boundary condition
Ha, as defined by (1.39) or (2.18). To prove Theorem 2.23, we show that we have a spectral
gap for Ha.

Theorem 2.24. There exist γ1 ą 0 and C1 ě 0 such that any z P C with Impzq ě ´γ1 belongs
to the resolvent set of Ha and

›

›pHa ´ zq
´1

›

›

LpL2pΩqq
ď C1.

As in Section 2.3, we can deduce the spectral properties of the Laplacian on the wave guide
Ω from the properties of the transverse operator Ta (see (2.20)) on L2p0, `q. In dimension 1
it reads

Ta “ ´B
2
y, DompTaq “

 

u P H2p0, `q : u1p0q “ ´iaup0q, u1p`q “ iaup`q
(

.

Then [8] is mainly about the spectral properties of Ta.

Since Ta is a Laplacian in dimension 1, we can get many spectral properties by explicit
computations. In particular, for z P C˚ we can check that z2 is an eigenvalue of Ta if and
only if

e2iz` “

ˆ

z ´ a

z ` a

˙2

. (2.50)
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From this, we deduce some qualitative properties for the sequence of eigenvalues and in
particular its asymptotic behavior.

We recall that T0 is the Neumann Laplacian on s0, `r. The spectrum of T0 is given by the
sequence of simple eigenvalues pn2ν2qnPN, where

ν “
π

`
.

Let n P N˚. By the Implicit Function Theorem there exists an analytic function a ÞÑ znpaq
defined on a neighborhood Vn of 0, such that znp0q “ nν and znpaq is a solution of (2.50) for
a P Vn. Moreover,

znpaq “ nν ´
2ia

πn
` γa2 ` O

aÑ0
pa3q, with Repγq “

4`

n3π3
.

In particular, Repznpaqq Psnν, pn ` 1qνr for a ą 0 small. On the other hand, we can check
that for a in a fixed compact the solutions of (2.50) are in a horizontal strip of C and cannot
be on the vertical lines Repζq P νN. Then, by continuity of the solutions of (2.50) (using
for instance the Rouché Theorem), we can deduce that for any a ą 0 there is exactly one
solution of (2.50) with real part in snν, pn ` 1qνr. It is denoted by znpaq. Finally, we check
that for a ą 0 fixed and n large, we have the same asymptotic expansion as above:

znpaq “ nν ´
2ia

πn
`Opn´2q. (2.51)

Thus if we set λnpaq “ znpaq
2, the spectrum of Ta is given by the sequence pλnpaqqnPN and

we have

λnpaq “ n2ν2 ´
4ia

`
` O
nÑ`8

pn´1q. (2.52)

Since the operator Ta depends analytically on a (in the sense of Kato [Kat80]), since the
eigenvalues of T0 are simple, and since the eigenvalues of Ts for s P r0, as never meet, we
deduce that the eigenvalues of Ta are simple. In particular, there is no Jordan block.

Then we discuss the properties of the eigenfunctions of Ta. An eigenvector corresponding
to the eigenvalue λnpaq is given by

ϕnpyq “ ϕnpa; yq “ Anpaq

ˆ

eiznpaqy `
znpaq ` a

znpaq ´ a
e´iznpaqy

˙

, y Ps0, `r,

where Anpaq is for instance chosen positive and such that }ϕnpaq}L2p0,`q “ 1. With (2.51)

we see that ϕnpaq is close to ϕnp0q for large n. Since the family pϕnp0qq is orthonormal, we
deduce from a perturbation argument (see [Kat80, Th. V.2.20]) that the family pϕnpaqq is a
Riesz basis of L2p0, `q.

We recall that a sequence pβkq in a Hilbert space H is a Riesz basis if there exist an
orthonormal basis pekq and a bounded operator Θ P LpHq with bounded inverse such that
βk “ Θek for all k P N. In particular, for ψ P H there exists a unique sequence pψkqkPN P `

2pNq
such that ψ “

ř8

k“0 ψkβk and we have, for some C ě 1 independent of ψ,

C´1
8
ÿ

k“0

|ψk|
2
ď }ψ}

2
H ď C

8
ÿ

k“0

|ψk|
2
. (2.53)

With this Riesz basis property, we can use the symmetry of the domain Ω almost the
same way as with a selfadjoint Laplacian (or as in (2.31)). In particular, we can write
the resolvent of Ha in terms of the resolvent of L. For u “ upx, yq in L2pΩq we write
upx, yq “

ř

nPN unpxqϕnpyq and for z P ρpHaq we have

pHa ´ zq
´1u “

ÿ

nPN

`

pL´ pz ´ λnpaqqq
´1un

˘

b ϕn. (2.54)
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Theorem 2.23 can be seen as the consequence of the Riesz basis property for pϕnq (see (2.53)),
the spectral gap for the eigenvalues pλnq (given by (2.52)) and the fact that all the eigenvalues
have negative imaginary parts), and the estimate for the resolvent of the selfadjoint operator
L on L2pRd´1q.

Even if it was the original motivation, it was not possible to adapt the ideas of [8] to deal
with the wave equation in [14]. First, the Riesz basis property is probably wrong if the cross
section has dimension greater than 1. But even with a one dimensional cross section, the
difficulty with the wave equation is that we have to deal with a Robin parameter proportional
to the frequency. All the results given above are valid for any a ą 0, but they are not uniform
with respect to a going to `8. In particular, the size of the strip which contains σpHaq or
the constant Ca which appears in the Riesz basis property have no reason to be uniform with
respect to a. This is why I finally used other ideas in [14].

All this being said, it is still interesting to understand the behavior of σpHaq for large
values of a.

The first observation is that for a fixed n the map a P r0,`8rÞÑ Repznpaqq is increasing
from nν to pn ` 1qν, while Impznpaqq is 0 for a “ 0, it is negative for all a ą 0, and it goes
to 0 when aÑ `8. Thus, with a strong damping, we recover the behavior of an undamped
problem. More precisely, when a goes from 0 to `8, λnpaq goes from the n-th Neumann
eigenvalue n2ν2 to the n-th Dirichlet eigenvalue pn` 1q2ν2, through the lower half-plane (it
goes through the upper half-plane if a ď 0 goes from 0 to ´8).

But all this is not uniform with respect to n. Roughly speaking, znpaq is close to nν if
a ! n and close to pn` 1qν if a " n. But for the wave equation, a is precisely proportional
to the frequency, hence of order n. We can be more precise. We have

sup
aą0

|Impznpaqq| »
nÑ8

lnpnq,

so the curve a ÞÑ znpaq goes deeper and deeper in the lower half-plane for large n. This upper
bound is obtained when a „ nν. More precisely, for β P R we have

Re
`

zn
`

nν ` β lnpnq
˘˘

´ nν ÝÝÝÝÝÑ
nÑ`8

1

`

ˆ

π ´ arg
´

β `
i

`

¯

˙

P r0, νs,

Im
`

zn
`

nν ` β lnpnq
˘˘

„
nÑ`8

´
lnpnq

`
,

and for γ P R˚`z t1u,

Im pznpγnνqq ÝÝÝÝÝÑ
nÑ`8

1

`
ln

ˇ

ˇ

ˇ

ˇ

1` γ

1´ γ

ˇ

ˇ

ˇ

ˇ

and Reznpγnνq ´ nν ÝÝÝÝÝÑ
nÑ`8

#

0 if γ ă 1,

ν if γ ą 1.

These results were finally written in an appendix of [14].

These last properties were not used in [8]. They gave an intuition for [14] but could not be
used directly since the cross section was no longer of dimension 1. However, it is interesting to
have a good picture of the behavior of the eigenvalues in this quite simple setting, since being
able to localize (even roughly) the eigenvalues of a Robin-type non-selfadjoint Schrödinger
operator for any Robin coefficient will be an important issue for the Schrödinger and wave
equations on (one dimensional) quantum graphs. See the discussions in Sections 3.1 and 4.4.2.
See also Section 4.1.2 about the generalization of [8] to a system of two coupled equations on
the wave guide.
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Figure 2.2: The eigenvalues of Ha for a going from 0 to `8
On the left, the eigenvalues λ1paq and λ2paq for various values of a. On the right, the graphs
of a ÞÑ Impλnpaqq for n P t0, . . . , 4u.
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Chapter 3

Related topics

The analysis of the damped wave equation has been the main topic of my research, but I
have also worked on slightly or completely different problems. In this chapter we will discuss
quantum graphs, Agmon estimates, magnetic Laplacians, abstract spectral theory, a problem
of control and some non-linear problems. These works opened new directions of research and
give interesting perspectives for the future.

3.1 Spectrum of a non-selfadjoint quantum star graph

We begin with the analysis of the spectrum of a non selfadjoint quantum graph. With Gabriel
Rivière, we were interested in the spectral properties of quantum graphs. Since we were also
both interested by the damped wave equation, we chose to look at the damped wave equation
on graphs. In [21] we started with a toy model, namely a non-selfadjoint Schrödinger operator
on a star graph.

3.1.1 Quantum graphs

A discrete graph is defined by a set V of vertices and a set E of edges, which can be seen as a
subset of V ˆV. Two edges v1 and v2 are connected if and only if the pair pv1, v2q belongs to
E . The graph can be oriented (the pairs pv1, v2q and pv2, v1q are distinct) or not. For spectral
properties of discrete graphs, we refer for instance to [Chu97, CdV98] and references therein.

In our context the edges have lengths. Then an edge e P E of length `e ą 0 is identified
with s0, `er and a natural distance can be defined between the points of the graph (vertices
or points on edges). We use the terminology quantum graph when we consider a (differential)
operator on the Hilbert space given by a metric graph. More precisely, the edge e is endowed
with the Hilbert structure of L2p0, `eq. Then Γ is endowed with the Hilbert structure defined
by

L2pΓq “
à

ePE
L2p0, `eq.

Then we can consider a differential operator on each edge, usually of Schrödinger type, with
boundary conditions at the vertices. For a complete introduction about quantum graphs we
refer to [BK13].

In [21], we consider the graph Γ with the simplest non-trivial topology. Given N P N˚, it
is defined by a set of N ` 1 vertices v, v1, . . . , vN and N edges e1, . . . , eN . The edge ej joins
the vertex vj to the central vertex v. Then v has degree N and the other vertices have degree
1.

Our graph is not oriented, but we have to choose a convention for the parametrization of
the edges. The edge ej has length `j ą 0 and is parametrized by xj P r0, `js, with xj “ 0
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corresponding to the vertex vj and xj “ `j corresponding to the vertex v.
Then, given α P C, we define a Schrödinger operator Hα on L2pΓq with (possibly) non-

selfadjoint Robin condition at the central vertex. Its domain DompHαq is the set of functions

u “ pujq1ďjďN in
ÀN

j“1H
2p0, `jq which satisfy the Dirichlet boundary condition at the

exterior vertices
@j P t1, . . . , Nu , ujp0q “ 0, (3.1)

continuity at the central vertex v

@j, k P t1, . . . , Nu , ujp`jq “ ukp`kq, (3.2)

and the Robin condition
N
ÿ

j“1

u1jp`jq ` αupvq “ 0, (3.3)

where upvq stands for the common value ujp`jq, j P t1, . . . , Nu. Finally, for u “ pujq1ďjďN
in DompHαq we define Hαu P L

2pΓq by

pHαuqj “ ´u
2
j , @j P t1, . . . , Nu . (3.4)

The quadratic form associated with the operator Hα is given by

xHαu, uyL2pΓq “

N
ÿ

j“1

}u1j}
2
L2p0,`jq

` α |upvq|
2
. (3.5)

The vertex condition (3.3) is the analog of the usual Robin boundary condition Bνu`αu “
0 for Schrödinger operators on domains of Rd (see (2.18), with a different convention for α).
When α “ 0 we recover the usual Kirchhoff (or Neumann) condition, and we see from (3.5)
that the perturbation when α ‰ 0 corresponds to a Dirac potential at the central vertex v.

Notice that the particular case N “ 1 corresponds to the Schrödinger operator on a
bounded interval with mixed Dirichlet and Robin conditions at the boundary, while the case
N “ 2 is the Dirichlet Schrödinger operator on a bounded interval with a singular potential
in the interval.

Figure 3.1: The quantum star graph with N “ 6 edges.

3.1.2 Main spectral results

Our purpose in [21] is to discuss some spectral properties of the operator Hα. We are mainly
motivated by the non-selfadjoint case α R R. Contrary to the selfadjoint case (see for instance
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[BK13]), little is known about the spectral properties of Schrödinger operators on graphs in
the non-selfadjoint case (see however [Hus14, HKS15] for some general properties).

Here we only consider a model case, and considering more general graphs will be a natural
perspective. However, this allows us to give results without any restriction on the lengths
p`jq1ďjďN , when many results about quantum graphs are only given for rational lengths or
for a generic family of lengths.

We are interested in the qualitative behavior of the large eigenvalues. The main motivation
is the behavior of the imaginary parts, which are related to the decay for the corresponding
time-dependent problem, but the results also give information about the real parts (and in
particular we obtain new information even in the selfadjoint case). We describe the spec-
trum of Hα by comparison with the spectrum of the Kirchhoff operator H0. We denote
by pλnp0qqnPN˚ the non-decreasing sequence (with λ1p0q ą 0) of eigenvalues of H0 repeated
according to their multiplicities.

We say that an operator T on the Hilbert space H is sectorial if there exists γ P

R and θ P
“

0, π2
“

such that the numerical range of T is included in the sector Σγ,θ “
tζ P C : |argpζ ´ γq| ď θu. Then T is said to be maximal sectorial if σpT q Ă Σγ,θ.

We begin with a rough localization of the eigenvalues of Hα.

Proposition 3.1. Let α P C. The operator Hα is maximal sectorial and its spectrum is given
by an infinite sequence pλnpαqqnPN˚ of isolated eigenvalues whose geometric and algebraic
multiplicities are finite and coincide. These eigenvalues (repeated according to multiplicities)
can be labeled in such a way that for n P N˚ large enough we have

|λnpαq ´ λnp0q| ď dist
`

λnp0q, σpH0qz tλnp0qu
˘

.

Moreover, if τ P πZ
`j
X πZ

`k
(non-empty if `j{`k P Q) for some j, k P t1, . . . , Nu, then τ2 is a

common eigenvalue of H0 and Hα, with the same multiplicities.

This proposition says that the Robin eigenvalues are in some sense not so far from the
corresponding eigenvalues of the Kirchhoff operator. This gives in particular a Weyl law,
already known for the latter. For R ą 0 we set

NαpRq “ Card tn P N˚ : Repλnpαqq ď Ru .

The Weyl law for a Laplacian on a domain Ω of Rd (or a manifold) depends on the dimension
d and the size of the domain:

NΩpRq „
RÑ`8

|Ω|ωdR
d
2

p2πqd
,

where ωd is the volume of the unit ball. Here the size of the metric graph is the sum of
the lengths of the edges: |Γ| “

řN
j“1 `j . The following result agrees with the result already

known on manifold or for selfadjoint quantum graphs.

Theorem 3.2 (Weyl Law). Let α P C. We have

NαpRq “
|Γ|
?
R

π
` O
RÑ`8

p1q.

For α P C and n P N˚ we set ηnpαq “ λnpαq ´ λnp0q. For Theorem 3.2 we only need a
uniform bound on ηnpαq. The main result in [21] is a refined analysis of this difference. We
set ` “ p`1, . . . , `N q.

Theorem 3.3. There exists a probability measure µ` on C such that for any α P C˚ we have
in the weak sense for measures

1

n

n
ÿ

k“1

δ ηkpαq
α

ÝÝÝÝÝÑ
nÑ`8

µ`.

Moreover µ` satisfies the following properties.
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(i) µ` is supported in r0, 2 |Γ|
´1
s.

(ii) If `j{`k P Q for all j, k P t1, . . . , Nu then µ` is a linear combination of Dirac distribu-
tions, including the one at 0.

(iii) If κ ¨ ` ‰ 0 for all κ P Zdz t0u then µ` is absolutely continuous with respect to the

Lebesgue measure on r0, 2 |Γ|
´1
s and its support is exactly r0, 2 |Γ|

´1
s.

If s belongs to the support of µ` there exists an increasing sequence pnkq in N˚ such that
ηnkpαq goes to sα as k Ñ8. The last result is about the rate of convergence for this limit.

Proposition 3.4. Let α P C.

(i) There exists an increasing sequence pnkqkPN˚ such that

ηnkpαq “ O
kÑ8

ˆ

1

n2
k

˙

.

(ii) There exists Ω Ă pR˚`qN of Lebesgue measure 0 such that for ` P pR˚`qNzΩ, α P C,

s P r0, 2 |Γ|
´1
s and ε ą 0 we can find an increasing sequence pnkqkPN˚ such that

ηnkpαq “ sα` O
kÑ8

˜

1

n
1
N´ε

k

¸

.

By the last statement of Proposition 3.1, the sequence (ηnpαq) has a vanishing subse-
quence except in the last case of Theorem 3.3, so the first statement essentially concerns the
purely irrational case. Notice in particular that 0 always belongs to the support of µ`.

In these results, we only describe the eigenvalues of Hα by comparison with those of H0.
However, since Impλnpαqq “ Impηnpαqq, this gives a direct description of the imaginary parts,
which was our original motivation. The spacing between the real parts of λ0pαq and λnpαq
is nevertheless also an important result.

3.1.3 Ideas of proof

In the rest of this section, we comment some ideas of the proof of Theorem 3.3.

Comparison with the Dirichlet eigenvalues. We denote by HD the operator defined as Hα

with (3.3) replaced by the Dirichlet condition upvq “ 0 at the central vectex (this corresponds
to α “ 8). Then the edges are disconnected, and it is easy to identify the non-decreasing
sequence pλD,nqnPN˚ of eigenvalues for HD (repeated according to multiplicities). By a stan-
dard argument based on the Min-max Theorem (see for instance [BK13, Th. 1.3.8]) we have

λ1p0q ď λD,1 ď λ2p0q ď λD,2 ď . . . ď λnp0q ď λD,n ď . . . (3.6)

Moreover, we have a similar result with λnpαq instead of λnp0q if α is real. Since the eigen-
values of the Dirichlet problem are easily identified, this gives a rough localization of λnpαq
when α is real.

We cannot use this idea when α R R. Nevertheless, we can check that the two following
facts remain valid in general. If λ is an eigenvalue of HD of multiplicity m P N˚, then it
is an eigenvalue of Hα of (geometric and algebraic) multiplicity m ´ 1. On the other hand,
the eigenvalues of Hα which do not coincide with an eigenvalue of HD are of (geometric and
algebraic) multiplicity 1. The difficulty is then to localize these other eigenvalues.
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The secular equation. Let z P C˚. Assume that z2 is an eigenvalue of Hα and that u is a
corresponding eigenvector. By the Dirichlet condition (3.1), uj is necessarily of the form

ujpxjq “ βj sinpzxjq, xj P r0, `js, (3.7)

for some βj P C. With this information only, we can already prove that

lim sup
λPσpHαq

RepλqÑ`8

|Impλq| ď
2

|Γ|
|Impαq| . (3.8)

This implies in particular that σpHαq is included in a horizontal strip of C.
The conditions (3.2) and (3.3) at the central vertex v give N linear equations with respect

to the N coefficients βj , j P t1, . . . , Nu. Then z2 is an eigenvalue of Hα if and only if the
corresponding determinant is 0. In general, the determinant is some polynomial in sinpz`jq
and cospz`jq, j P t1, . . . , Nu. Here, with a star-graph, everything can be explicited. We
obtain the secular equation

F0pz`q `
α

z
FDpz`q “ 0, (3.9)

where for y “ py1, . . . , ydq P Cd we have set

F0pyq “
N
ÿ

j“1

cospyjq
ź

k‰j

sinpykq and FDpyq “
N
ź

j“1

sinpyjq.

The determinant F0pz`q corresponds to the case α “ 0. This is the determinant for the
Kirchhoff operator. On the other hand, FDpz`q is the determinant corresponding to the
Dirichlet condition at v. For y P CN and z P C such that FDpyq ‰ 0 and FDpz`q ‰ 0 we set

Ψpyq “ ´
F0pyq

FDpyq
“ ´

N
ÿ

j“1

cotanpyjq and ψpzq “ Ψpz`q.

Then z2 P CzσpHDq (remember that σpHαqXσpHDq is already understood) is an eigenvalue
of Hα if and only if

ψpzq “
α

z
. (3.10)

Perturbation of the Kirchhoff eigenvalues. The family of operators pHαqαPC is analytic with
respect to α (family of type B in the sense of [Kat80]). At least for α small the eigenvalues
of Hα are in some sense close to the eigenvalues of H0. The next step is to show that the
eigenvalues of H0 cannot move too far as long as α stays in a compact set of C.

Let n P N˚ such that λnp0q ‰ λD,n (in particular, λnp0q is a simple eigenvalue of H0).
The idea is to find a bounded domain ωn such that ωnXσpH0q “ tλnp0qu and BωnXHtα “ H

for t P r0, 1s. By continuity of the spectrum, this will imply that Hα has exactly one simple
eigenvalue in ωn. For the star graph, we can use the explicit expression for ψ. Using the
Taylor expansion around τn “

a

λnp0q, we can prove that (3.10) with α replaced by tα

cannot have a solution on the circle C
`

τn,
8|α|

τnψ1pτnq

˘

when n is large. In particular there is an

eigenvalue λnpαq of Hα which remains “close” to λnp0q. Then, by Taylor expansion again,
we can deduce that

ηnpαq “
2α

ψ1pτnq
`Opτ´1

n q. (3.11)

At this stage, we have roughly localized some eigenvalues of Hα. For n P N˚, if λnp0q coincides
with a Dirichlet eigenvalue, then it is also an eigenvalue of Hα and we set λnpαq “ λnp0q (the
multiplicities agree), otherwise there is an eigenvalue λnpαq close to λnp0q (both are simple).
We have used the continuity of the eigenvalues of Htα to see how the eigenvalues of H0 move
to those of Hα. It could also happen that some new eigenvalues appear at infinity. From the
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analysis of ψ again, we check that the eigenvalues of Htα for t P r0, 1s all stay in a region of
C which only has bounded connected components, so this phenomenon cannot occur here.
Thus, we have identified all the eigenvalues of Hα. For some of them we have ηnpαq “ 0 (this
happens if some lengths are commensurable), and for the others the difference ηn satisfies
(3.11).

The Barra-Gaspard measure and definition of µ`. We observe that the leading term in (3.11)
is simply linear with respect to α. For a better understanding of the sequence pηnpαqqnPN˚ ,
the next step is the analysis of the sequence pψ1pτnqqnPN˚ . This is a quantity which only
depends on the τn, n P N˚.

For this we use the measure introduced by Barra and Gaspard in [BG00] to study the level
spacing of H0. See also [KMW03, BW10]. We see F0 as a function on the N -dimensional
torus TN . We set Z “

 

y P TN : F0pyq “ 0
(

, so that τ2 is an eigenvalue of H0 if and only if
τ` P Z. For t ě 0 we set ϕt` “ rt`s in TN .

Here we focus on the case where κ¨` ‰ 0 for all κ P Zdz t0u (otherwise ϕt` lives in a subtorus
of TN , the general case is considered in [21]). In this case Z0 “ Zz t0u is a submanifold of
dimension N ´ 1 in TN to which any ` with positive components is transverse. For this last
property we use again the explicit expressions available for the case of a star graph. The
contribution of a small neighborhood of 0 in Z will be small and will not play any role. On
Z0 we consider the Barra-Gaspard measure

µBG “ |` ¨ νpyq|µZ0 , (3.12)

where µZ0
is the Lebesgue measure on Z0 and νpyq is a normal unit vector. Using in particular

unique ergodicity, we see that if g is a continuous and compactly supported function on Z0

we have
1

n

n
ÿ

k“1

gpϕτk` q ÝÝÝÑnÑ8

π

|Γ| |TN |

ˆ
Z0

g dµBG.

Then the measure µ` of Theorem 3.3 is given by

µ` “
π

|Γ| |TN |
Φ˚µBG, where Φpyq “

2

∇Ψpyq ¨ `
.

When some lengths are commensurable,
ˇ

ˇTN
ˇ

ˇ has to be replaced by the size of the sub-torus
in which the flow ϕt` is dense, and there is in µ` a Dirac mass at 0, corresponding of the
eigenvalues which do not move with α.

From the expression of µ` we can then prove the properties given in Theorem 3.3. We do
not discuss this part of the proof here.

It is natural to wonder if we can recover the same results on a more general quantum
graph. Some possible extansions of the results of [21] will be discussed in Section 4.4.2.

3.2 Agmon estimates for non-accretive Schrödinger operators

In this paragraph we briefly discuss the result of [13] about some non-accretive Schrödinger
operators. This is a joint work with David Krejčǐŕık, Nicolas Raymond and Petr Siegl.

The motivation for this paper was the Agmon estimates for a large class of non-selfadjoint
Schrödinger operators. The so-called Agmon estimates measure the decay of the eigenfunc-
tions of a Schrödinger operator in the classically forbidden region.

If we consider on R the case of a confining real valued potential V with minimum at 0
(for instance, V pxq “ x2), then a classical particle of energy E will necessarily stay in the
neighborhood of 0 defined by tx P R : V pxq ď Eu. This is not the case for a quantum
particle, but an eigenfunction of the operator ´B2

x` V pxq corresponding to the eigenvalue E
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decays exponentially fast outside this region, and the rate of decay is given by the distance
to the classical region as defined by the Agmon (pseudo) metric

a

pV pxq ´ Eq` dx2.

More generally, in a non-confining setting and for more general operators, the decay of eigen-
functions was studied for eigenvalues smaller than the bottom of the essential spectrum. We
refer for instance to [Agm82]. See also [HS96, Ch. 3]. The Agmon estimates have then been
extended in many settings. For a review, see for instance the talk [Hel19] and references
therein.

The purpose of [13] is to show that we have a similar phenomenon when the particle is
confined by the imaginary part of the potential. We also consider magnetic Laplacians, and
it turns out that the magnetic field actually plays exactly the same role. We can even go
further and show that if the imaginary part of the potential or the magnetic field becomes
large, then we can allow a (smaller) negative real part for the potential. As a typical example,
we can consider on L2pRq the operator

´
d2

dx2
´ x2 ` ix3,

whose numerical range covers the whole complex plane.
In fact, much wilder potentials are allowed. The setting of [13] is the following. We

consider an open and connected subset Ω of Rd, V P C1pΩ̄,Cq and A P C2pΩ̄,Rdq. The
magnetic matrix is B “ pBjAk ´ BkAjq1ďj,kďd. We set

〈B;V 〉 “
a

1` |B| ` |V |.

Conditions sufficient for all the results of the paper are

pReV q´ “ o
|x|Ñ`8

`

〈B;V 〉
˘

|∇V | ` |∇B| “ o
|x|Ñ`8

`

〈B;V 〉
3
2
˘

.

The second assumption prevents strong osclillations for the coefficients. The power 3
2 is

an improvement compared to previous papers on related subjects. The first condition says
that the negative real part has to be small at infinity compared to the imaginary part or
the magnetic matrix, as discussed above. The purpose is then to define and give spectral
properties for the electromagnetic operator

L “ p´i∇`Aq2 ` V.

We are thus considering Schrödinger operators which are not even accretive. We first
define the operator. The form domain is

V “
!

u P L2pΩq : p´i∇`Aqu P L2pΩq, 〈B;V 〉
1
2 u P L2pΩq

)

.

We cannot apply a standard version of the representation theorem, so we use a generalized
version given in [AH15]. This defines a closed operator L with domain

DompL q “
 

u P V : p´i∇`Aq2u` V u P L2pΩq
(

.

The next step is to prove that we have separation of the spectrum, namely

DompL q “
 

u P V : p´i∇`Aq2u P L2pΩq and V u P L2pΩq
(

.

The main result is then the following. For E P R we set

ΣE “ tζ P C : Repζq ` |Impζq| ă Eu .
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Theorem 3.5. (i) There exist γ1 ą 0 and γ2 P R such that for

µ ă lim inf
|x|Ñ`8

〈B;V 〉 pxq

then any ζ P Σγ1µ´γ2
is such that pL ´ ζq is Fredholm with index 0 and the spectrum

of L in Σγ1µ´γ2
consists of isolated eigenvalues with finite algebraic multiplicities.

(ii) Given λ P Σγ1µ´γ2 we define the corresponding Agmon distance on Ω by

dAg,λpx, yq “ inf
γPC1px,yq

ˆ 1

0

a

pγ1 〈B;V 〉 pγptqq ´ γ2 ´ Repλq ´ |Impλq|q`
ˇ

ˇγ1ptq
ˇ

ˇ dt,

where C1px, yq is the set of continuous and piecewise C1 path γ : r0, 1s Ñ Ω with
γp0q “ x and γp1q “ y. Let x0 P Ω be fixed. If λ is an eigenvalue of L then for any ψ
in the corresponding algebraic eigenspace we have

e
1´ε

3 dAgp¨,x0qψ P L2pΩq.

3.3 Absence of embedded eigenvalues for a magnetic Laplacian

In this paragraph we present [20]. This joint work with Nicolas Raymond is about the absence
of embedded eigenvalues in the essential spectrum of a magnetic Laplacian on R2.

We consider a magnetic field B which is invariant with respect to one variable. We set
Bpx, yq “ bpxq for some b P C1pR;Rq. A corresponding vector potential A “ pA1, A2q is given
by A1px, yq “ 0 and, for some a0 P R,

A2px, yq “ apxq “ a0 `

ˆ x

0

bpsqds. (3.13)

Then we consider the (selfadjoint) operator

L “ p´i∇´Aq2 “ ´B2
x `

`

´ iBy ´ apxq
˘2
,

defined on the domain

DompL q “
 

u P L2pR2q : p´i∇´Aqu, p´i∇´Aq2u P L2pR2q
(

.

The spectrum of L is purely essential. The purpose is to prove, under some assumptions
on b, that there are no eigenvalues in (some parts of) the spectrum of L . In some cases,
the spectrum of L can even be purely absolutely continuous. Such results cannot be true
in general since for a constant and non-zero magnetic field B, the spectrum of L consists
of eigenvalues of infinite multiplicities, given by the Landau levels p2n ´ 1q |B|, n P N˚ (so
σpL q “ σesspL q “ σppL q in this case).

Let
φ˘ “ lim

xÑ˘8
apxq.

It is already known [Iwa85] that if φ` “ φ´ “ ˘8 or if bpxq has two distinct finite and
non-zero limits at ´8 and `8, then L has an absolutely continuous spectrum (and in
particular, no eigenvalues). Our two main results in [20] are the following.

Theorem 3.6. Assume that the limit φ´ exists in R Y t˘8u. Assume that there exist α P
s ´ 1,`8rz t0u and c1, C ą 0 such that

bpxq „
xÑ`8

c1x
α and

ˇ

ˇb1pxq
ˇ

ˇ ď C 〈x〉α´1
, x ě 0.

Then L has no eigenvalue.
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We could similarly consider the cases where b is replaced by ´b or where the behavior of
b is prescribed near ´8. Notice that Theorem 3.6 covers in particular situations where bpxq
goes to 0 or to `8 for xÑ `8.

In the second theorem, we consider situations where b goes faster to 0 at infinity. We
assume that φ´ and φ` are finite but with φ` ´ φ´ " 1 (the case φ´ ´ φ` " 1 is similar).
For instance, we assume φ´ “ 0 and φ “ φ` " 1.

Theorem 3.7. Assume that b takes positive values, that it is integrable and that b1pxq “ OpxN q
for some N ě 0 as x Ñ `8. We choose a0 “

´ 0

´8
bpsqds in (3.13), so that φ´ “ 0 and

φ :“ φ` “ }b}L1pRq. Then we assume that a P L1pR´q and a´ φ P L1pR`q.

(i) σpL q “ r0,`8r.

(ii) L “ Lφ has no eigenvalue in
“

φ2

4 ,`8
“

.

(iii) Let ηφ be such that ηφ “ oplnpφq´6q as φ Ñ `8. Then there exists φ0 ą 0 such that
for φ ě φ0 the operator L “ Lφ has no eigenvalue smaller than ηφφ

2.

The question of existence of eigenvalues in
“

ηφφ
2, φ

2

4

“

remains open in this case.

The proofs of these two results are based on a Fourier transform with respect to y and a
careful analysis of the family of one-dimensional Schrödinger operators

Lξ “ ´B
2
x `

`

ξ ´ apxq
˘2
.

In particular, a refined version of the harmonic approximation is provided to give a precise
description of the eigenvalues of Lξ.

3.4 Reduction of dimension in an abstract setting

This paragraph is devoted to the paper [16], written with David Krejčǐŕık, Nicolas Raymond
and Petr Siegl.

This work was motivated by a Schrödinger operator with non-selfadjoint Robin condition
in a shrinking layer. More precisely, we consider a closed, orientable, smooth hypersurface Σ
in Rd without boundary, and we denote by ν : Σ Ñ Sd´1 a unit normal vector field which
specifies the orientation of Σ. We assume that Σ has a tubular neighborhood: for some ε ą 0
the map Θε : ps, tq ÞÑ s` εtνpsq is injective on Ω “ Σˆ r´1, 1s and defines a diffeomorphism
from Ω to its image Ωε “ ΘεpΩq.

We set Σ˘,ε “ ΘεpΣ ˆ t˘1uq. Given a smooth function α : Σ Ñ C we define α˘,ε on
Σ˘,ε by α˘,εps˘ ενpsqq “ αpsq. Then we consider on L2pΩεq the operator Pε defined as the
usual Laplace operator on Ωε subject to the Robin boundary condition

Bνu` α˘,εu “ 0 on Σ˘,ε.

This is a very particular (PT-symmetric) choice of Robin coefficients, but a more general
setting could be similarly considered. Then the purpose is to prove that when ε Ñ 0 the
spectral properties of Pε are close to those of an effective operator Peff “ ´∆Σ ` Veff on
L2pΣq. Here ´∆Σ is the usual Laplace-Beltrami operator on Σ and Veff is a potential which
depends on the geometry and the Robin coefficient α:

Veff “ |α| ´ 2αRepαq ´ αpκ1 ` ¨ ¨ ¨ ` κd´1q,

where κ1, . . . , κd´1 are the principal curvatures.
The convergence of Pε to Peff is in the sense of the norm of the resolvent. More precisely, we

denote by Π the projection of L2pΩq on functions which do not depend on t. For u P L2pΩq
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and ps, tq P Ω we set pΠuqps, tq “ 1
2

´ 1

´1
ups, θqdθ. Moreover, for ε ą 0 small enough, an

explicit unitary operator Uε : L2pΩεq Ñ L2pΩ, wε ds dtq is defined, for some wε : Ω Ñ R`
bounded and bounded away from 0 uniformly in ε. In the following result, Peff is seen as an
operator on ΠL2pΩq.

Theorem 3.8. Let K be a compact subset of ρpPeffq. There exist ε0 ą 0 and C ě 0 such that
for z P K and ε Ps0, ε0s we have z P ρpPεq and

›

›pPε ´ zq
´1 ´ U´1

ε pPeff ´ zq
´1ΠUε

›

›

LpL2pΩεqq
ď Cε.

Notice that the convergence in the sense of the norm-resolvent is very strong and we can
deduce important properties for Pε with ε ą 0 small from the properties of Peff . We say
that we have reduced the dimension since a d-dimensional problem is reduced to a pd ´ 1q-
dimensional problem, which can be significantly simpler.

There were already many results of this kind in the literature for selfadjoint operators.
The common aspect is that the spectral properties of a parameter-dependent operator are
well described by those of an effective operator when the parameter goes to some limit. How-
ever, in the previous literature, this similarity is hidden in the various technical steps specific
to each situation. In [16], we give a unified abstract result, described below. This includes
various settings such as the semiclassical Born-Oppenheimer approximation, a problem on a
shrinking tubular neighborhood as above, or the similar problem on a fixed domain but for a
large Robin parameter α. Reduction of dimension is already known in some of these contexts,
but the abstract result also provides new results. Here we only describe the abstract result,
but these examples of applications are discussed in [16].

The abstract setting is the following. Given a measure space Σ and a family of Hilbert
spaces Hs, s P Σ, we set H “

À

sPΣ Hs. A vector in H is a family pφsqsPΣ, where each φs
belongs to Hs, and

´
sPΣ

}φs}
2
Hs

dσpsq ă `8. We consider on H a selfadjoint operator of the
form

L “ S˚S `
à

sPΣ

Ts,

where S is densely defined and Ts is selfadjoint and non-negative for all s P Σ.
Typically, if we consider on R2 an operator of the form ´h2∆ ` V with V ě 0 then we

can take Σ “ R, S “ ´ihBs and Ts “ ´B
2
t ` V ps, tq for each s P R.

Then we consider a function s P Σ Ñ γs such that γs ě γ for some γ ą 0. For s P Σ we
denote by Πs the spectral projection of Ts on r0, γsr. We define Π P LpHq by Πφ “ pΠsφsqsPΣ
for φ “ pφsqsPΣ, and we set ΠK “ Id´Π. We assume that DompSq is invariant under Π.

In a typical example, the bottom of the spectrum of Ts is given by a simple eigenvalue and
γs is the second eigenvalue of Ts, so that Πs is the orthogonal projection on the eigenspace
corresponding to the first eigenvalue. After having chosen a corresponding eigenvector, Πsφs
is characterized by a scalar and Πφ can be identified with a function on Σ.

We set Leff “ ΠL Π. This is an operator on ΠH with domain ΠHXDompL q. The purpose
is to compare L with the simpler operator Leff . As an intermediate step we consider the

operator xL “ Leff `L K, where L K “ ΠKL ΠK on H. Then we have σp xL q “ σpLeffq Y

σpL Kq and for z P ρp xL q such that z R rγ,`8r we have

›

›

›
p xL ´ zq´1 ´ pLeff ´ zq

´1Π
›

›

›

LpHq
ď

1

distpz, rγ,`8rq
.

Thus the main result is about the difference between L and xL . We consider η1pzq, η2pzq,
η3pzq and η4pzq which are explicit functions of z P C, γ and }rS,Πs}LpHq (see (1.5) in [16]).
Then we have the following estimate.
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Theorem 3.9. Let z P ρp xL q. Assume that

1´ η1pzq
›

›p xL ´ zq´1
›

›´ η2pzq ą 0.

Then z P ρpL q and

›

›pL ´ zq´1 ´ p xL ´ zq´1
›

›

ď η1pzq
›

›pL ´ zq´1
›

›

›

›p xL ´ zq´1
›

›` η2pzq
›

›pL ´ zq´1
›

›` η3pzq
›

›p xL ´ zq´1
›

›` η4pzq.

Combining these two results we get information on the resolvent of L from properties on
the resolvent of Leff .

The regret with Theorem 3.9 is that even if it is quite general, it does not include the
non-selfadjoint setting of Theorem 3.8. However, the proofs follow the same ideas and use
common intermediate results. It would be interesting to be able to prove an abstract theorem
which also includes non-selfadjoint settings.

3.5 Observability for a Kolmogorov equation

In this paragraph we consider a question of control for a degenerate evolution equation. This
is a joint work with Jérémi Dardé [22].

3.5.1 Setting and main result

We consider a two-dimensional domain Ω of the form T ˆ I, where T “ R{2πZ and I “
s ´ `´, ``r for some `˘ ą 0. A general point in Ω is denoted by px, yq with x P T and y P I.
Let q P C3pĪ ,Rq such that qp0q “ 0 and minpq1q ą 0. The model case is qpyq “ y. Let T ą 0.
We consider a Kolmogorov equation of the form

$

’

&

’

%

Btu` qpyq
2Bxu´ Byyu “ 0, on s0, T rˆΩ,

u “ 0, on s0, T rˆBΩ,

u|t“0 “ u0 P L
2pΩq.

(3.14)

We say that the Kolmogorov equation (3.14) is observable through BΩ in time T ą 0 if
there exists C ą 0 such that for any u0 P L

2pΩq the solution u of (3.14) satisfies

}upT q}
2
L2pΩq ď C

ˆ T

0

}Bνuptq}
2
L2pBΩq dt. (3.15)

We can replace BΩ by any non-empty open subset of BΩ. We can also consider observ-
ability through a non-empty open subset ω of Ω. In this case, we replace (3.15) by

}upT q}
2
L2pΩq ď C

ˆ T

0

}uptq}
2
L2pωq dt. (3.16)

The critical time Tc P r0,`8s for the observability of (3.14) through BΩ is the infimum of
the times T ą 0 for which we have observability. In particular, (3.14) is not observable in
time T ą 0 through BΩ if T ă Tc. Moreover, since (3.14) is dissipative (the norm of uptq is a
non-increasing function of time), (3.14) is observable in any time T ą Tc.

The main motivation is the null-controllability by the boundary for the adjoint problem.
Given f P L2p0, T ;L2pBΩqq we consider the problem

$

’

&

’

%

Btu´ qpyq
2Bxu´ Byyu “ 0, on s0, T rˆΩ,

u “ f, on s0, T rˆBΩ,

u|t“0 “ u0 P L
2pΩq.

(3.17)
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Then we say that the Kolmogorov equation (3.17) is null-controllable by BΩ in time T ą 0
if for any u0 P L

2pΩq there exists f P L2p0, T ;L2pBΩqq such that the solution u satisfies
upT q “ 0. It is classical in control theory (see for instance [Cor07, Th. 2.44]) that the null-
controllability for (3.17) is equivalent to the observability for (3.14).

This problem is similar to the better understood Grushin equation (see Section 4.2 below).
For the Kolmogorov equation, it is proved in [Bea14] that (3.14) is observable through any

open subset of Ω if qpyq2 is replaced by y, and that there is a critical time Tc ě a2

2 for the
observability when qpyq2 “ y2 and ω “ Tˆra, bs for some 0 ă a ă b ă ``. With the same ω,
it is also proved in [BHHR15] that (3.14) cannot be observable in any time for qpyq2 replaced
by yn with n ě 3. There are also many results about parabolic equations generated by ge
neral quadratic operators, including the usual Kolmogorov equation (see for instance [BPS18]
and references therein).

Our purpose in [22] is to prove for the Kolmogorov equation a result similar to the result
of [BDE20] about the Grushin equation. The main result is the following.

Theorem 3.10. Let

T´ “
1

q1p0q

ˆ 0

´`´

|qpsq| ds and T` “
1

q1p0q

ˆ ``

0

qpsqds.

There exists

Tc P
“

minpT´, T`q,maxpT´, T`q
‰

such that the Kolmogorov equation (3.14) is observable through BΩ in any time T ą Tc, but
not in time T ă Tc.

We observe that we get exactly the critical time Tc in any configuration for which T´ “ T`.
This is in particular the case in a symmetric setting (`´ “ `` and q is odd).

Since the coefficients in (3.14) do not depend on x, we can consider the Fourier series of
the solutions with respect to x. Setting

upt, x, yq “
ÿ

nPZ
unpt, yqe

inx, unpt, yq “
1

2π

ˆ
T
e´inxupt, x, yqdx,

the Fourier coefficients unpt, yq are solutions of

$

’

&

’

%

Btun ´ Byyun ` inqpyq
2un “ 0, on s0, T rˆI,

unpt,´`´q “ unpt, ``q “ 0, for t Ps0, T r,

unp0q P L
2pIq.

(3.18)

Then (3.15) holds if and only if we have observability for un uniformly in n P Z. This
means that there exists C ą 0 such that for n P N (the case n negative follows by complex
conjugation of (3.18)) and a solution un of (3.18) we have

}unpT q}
2
L2pIq ď C

ˆ T

0

`

|Byunpt,´`´q|
2 ` |Byunpt, ``q|

2
˘

dt. (3.19)

3.5.2 Spectral properties of the Kolmogorov operator

The analysis of (3.18) depends on the spectral properties of the non-selfadjoint operator

Kn “ ´Byy ` inqpyq
2, with domain DompKnq “ H2pIq XH1

0 pIq Ă L2pIq.

In particular we use the decay of the corresponding semigroup.
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Proposition 3.11. Let

γ ă
q1p0q
?

2
.

There exists C ą 0 such that for n P N, a solution un of (3.18) and θ1, θ2 P r0, T s with
θ1 ď θ2, one has

}unpθ2q}
2
L2pIq ď Ce´2γ

?
npθ2´θ1q }unpθ1q}

2
L2pIq .

We notice that the semigroup e´tKn is regularizing, even if it is not as small as the
propagator of the heat equation for high frequencies.

We also give spectral properties for the operator K “ ´B2
y ` qpyq2Bx on Ω, and deduce

that (3.14) is well posed, dissipative and regularizing (in particular the normal trace in (3.15)
makes sense).

Near y “ 0 (where the problem is degenerate) the coefficient qpyq2 looks like q1p0q2y2. To
prove Proposition 3.11, we compare Kn with the Davies operator Hn on L2pRq:

Hn “ ´B
2
y ` inq

1p0q2y2, DompHnq “ tu P H
2pRq : y2u P L2pRqu.

The basic spectral properties of Hn are well known (see for instance [Hel13, §1.3]). The
spectrum of Hn is given by a sequence pλn,kqkPN˚ of (geometrically and algebraically) simple

eigenvalues given by λn,k “ p2k ´ 1q
?
nq1p0qe

iπ
4 . As is often the case for a non-selfadjoint

operator, the size of the resolvent of Hn is far from being controled by the distance between
the spectral parameter and the spectrum (see [PS06, HSV13, KSTV15]). However, given

γ ă q1p0q
?

2
there exists c ą 0 such that

sup
Repzqďγ

?
n

›

›pHn ´ zq
´1

›

›

LpL2pRqq ď
c
?
n
. (3.20)

To recover similar properties for Kn, we compare the resolvents of Kn and Hn. More
precisely, with the natural restriction operator 1I : L2pRq Ñ L2pIq we have the following
estimate.

Proposition 3.12. Let γ ă q1p0q
2 . Then for n large enough the eigenvalues of Kn have real

parts greater that γ
?
n. Moreover,

sup
Repzqďγ

?
n

›

›pKn ´ zq
´1 ´ 1IpHn ´ zq

´11˚I
›

›

LpL2pIqq
“ o
nÑ`8

ˆ

1
?
n

˙

.

We deduce Proposition 3.11 from Proposition 3.12 and the standard semigroup theory
(see for instance [EN00, Th. V.1.11]).

Another consequence of Proposition 3.12 is that the spectrum of Kn is in some sense
“close” to the spectrum of Hn. More precisely, we are interested in the “smallest” eigenvalue.
By perturbation theory, we get the following result.

Proposition 3.13. There exists a sequence pλnqnPN in C such that λn is an eigenvalue of Kn

for all n and

λn “
?
nq1p0qe

iπ
4 ` o

nÑ`8
p
?
nq. (3.21)

3.5.3 Positive result: observability in large time

To prove that we have observability in time T ą maxpT´, T`q we proceed in two steps. The
first step consists in proving that (3.19) actually holds in arbitrarily small time. But not
uniformly in n. For large n we have the following estimate.
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Proposition 3.14. Let τ1, τ2 Ps0, T s with τ1 ă τ2 and

κ ą max

˜

1
?

2

ˆ ``

0

qpsqds,
1
?

2

ˆ 0

´`´

|qpsq|ds

¸

“
q1p0q
?

2
maxpT´, T`q.

There exist n0 P N and C ą 0 such that for n ě n0 and a solution un of (3.18) we have

}unpτ2q}
2
L2pIq ď Ce2κ

?
n

ˆ τ2

τ1

`

|Byunpt,´`´q|
2 ` |Byunpt, ``q|

2
˘

dt.

The estimate is not uniform for high frequencies, but we control the dependence in n.
Then, the second step consists in... waiting. We see from Proposition 3.11 that for large
times the contribution of high frequencies is actually small. The time maxpT´, T`q is pre-
cisely how long we have to wait to ensure that the smallness in Proposition 3.11 (applied
with θ2 “ T and θ1 “ τ2) compensates the bad estimate of Proposition 3.14 (applied with τ2
small enough).

Proposition 3.14 can be seen as a quantified version of a unique continuation result (in
particular, if u is a solution of (3.18) with Bνu “ 0 on r0, T s ˆ BI then uptq “ 0 for all
t P r0, T s). It is usual to use a Carleman estimate for this kind of result.

Ideas of proof. Given n P N and a solution u of (3.14) (we omit the index n) we set w “ e´φu
for some φ ě 0. We prove estimates on w and then deduce estimates on u (then φ should be
chosen as small as possible).

If φ is large near t “ τ1 and t “ τ2, then w satisfies the assumptions of the following
proposition with ra, bs “ r´`´, ``s and g “ 0.

Proposition 3.15. Let n P N, τ1, τ2 ą 0 with τ1 ă τ2, a, b P R with a ă b, and g P
L2psτ1, τ2rˆsa, brq. Let φ P C4psτ1, τ2rˆra, bs,R`q. We consider w P C0prτ1, τ2s, H

2pa, bqq X
C1prτ1, τ2s, L

2pa, bqq such that

Btw ´ B
2
yw ` inqpyq

2w ` Btφw ´ 2Btφ Btw ´ pByφq
2w ´ B2

yφw “ g. (3.22)

We assume that w also satisfies the Dirichlet boundary condition wpt, aq “ wpt, bq “ 0 for
t Psτ1, τ2r, and the initial and final conditions wpτ1, yq “ wpτ2, yq “ 0 and Bywpτ1, yq “
Bywpτ2, yq “ 0 for y Psa, br. Then we have

ˆ τ2

τ1

ˆ b

a

`

Φ0 |w|
2
` Φ1 |Byw|

2 ˘
dy dt ď ´

ˆ τ2

τ1

“

Byφ |Byw|
2 ‰b

a
dt`

1

2

ˆ τ2

τ1

ˆ b

a

|g|
2

dy dt, (3.23)

where

Φ0 “ ´2pByφq
2B2
yφ´

B2
t φ

2
`
B4
yφ

2
` 2BtByφ Byφ´

n
3
2 q2q1
?

2
, Φ1 “ ´2B2

yφ´
?

2nq1. (3.24)

With g “ 0 we can deduce an observability estimate for w if Φ0 and Φ1 are positive. Thus
the purpose is to construct φ ě 0 as small as possible and such that Φ0 and Φ1 are bounded
away from 0. We construct φ in such a way that the first terms in Φ0 and Φ1 are positive.
Because of the last terms in the expressions of Φ0 and Φ1, φ should be at least of size

?
n.

We construct φ of the form φpt, yq “
?
nθptqψpyq. The second to fourth terms in Φ0 will be

smaller for large n.
The function θ is chosen in such a way that θ ě 1 (otherwise the first term in each

expression would be too small), θ goes to `8 near τ1 and τ2 (for the boundary conditions in
Proposition 3.15) and θ “ 1 on

“

2τ1`τ2
3 , τ1`2τ2

3

‰

(see (3.25) below). Then it remains to define
ψ to have, for some ε ą 0,

ψ ě ε, ´2pψ1q2ψ2 ´
q2q1
?

2
ě ε, ´2ψ2 ´

?
2q1 ě ε.
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We see that ψ2 has to be negative. Moreover, |ψ1| has to be bounded away from 0, but the
sign of ψ1 is not important. We also see from (3.23) that if ψ1 is positive it is enough to
observe on the left, and that it is enough to observe from the right if ψ1 is negative. We
could indeed observe from one side only, but it would be expansive to go through 0. Since we
observe from both sides, we proceed as follows. Given ε ą 0 and then δ ą 0 small enough, we
apply Proposition 3.15 with ψ1 ą 0 on r´`´, δs and with ψ1 ă 0 on r´δ, ``s. More precisely,
for y P r´δ, ``s we set

ψ`pyq “

ˆ

1
?

2
` ε

˙ˆ ``

y

`

qpsq ` ε
˘

ds` c`,

and for y P r´`´, δs

ψ´pyq “

ˆ

1
?

2
` ε

˙ ˆ y

`´

`

´ qpsq ` ε
˘

ds` c´.

The constants ε ą 0 and c˘ ě 0 are chosen in such a way that ψ´p0q “ ψ`p0q ď κ. Since w
does not vanish at ˘δ, we have to use cut-off functions to apply Proposition 3.15 on r´`´, δs
and r´δ, ``s. Then g is no longer 0 in (3.23), but the corresponding term on the right can
be absorbed by the left-hand side. Gluing the two estimates, we get for u

ˆ τ2

τ1

ˆ
I

`

n
3
2 |u|

2
`
?
n |uy|

2 ˘
e´2

?
nϕ dy dt À

?
n

ˆ τ2

τ1

`

|uypt,´`´q|
2
` |uypt, ``q|

2 ˘
dt.

What we need is an estimate on upτ2q. However, since upτ2q is smaller that upsq for any
s P rτ1, τ2s, we have

}upτ2q}
2
L2pIq ď

3eκ
?
n

τ2 ´ τ1

ˆ τ1`2τ2
3

2τ1`τ2
3

›

›

›
e´
?
nϕupsq

›

›

›

2

L2pIq
ds. (3.25)

We only use the estimate for s P
“

2τ1`τ2
3 , τ1`2τ2

3

‰

since otherwise θ (and hence φ) can be
large. Proposition 3.14 follows.

3.5.4 Negative result: non-observability in small time

In this paragraph, we discuss the non-observability for (3.14) when T ă minpT´, T`q. For
this, we construct a sequence of solutions which contradicts (3.15). We need a solution of
(3.14) which is small at the boundary. Since the (imaginary) potential nqpyq2 is large away
from 0 when n is large, we use the Agmon estimates described in Section 3.2. Following [13],
we prove the following estimate.

Proposition 3.16. Let E ą 0 and ε Ps0, 1r. For n P N and y P Ī we set

Wn,εpyq “
1´ ε
?

2

ˇ

ˇ

ˇ

ˇ

ˆ y

0

b

`

nqpsq2 ´
?
npE ` εq

˘

`
ds

ˇ

ˇ

ˇ

ˇ

. (3.26)

There exists C ą 0 such that for n P N, u P DompKnq and λ P C with |Repλq|`|Impλq| ď E
?
n,

we have

›

›eWn,εu1
›

›

2

L2pIq
`
?
n
›

›eWn,εu
›

›

2

L2pIq
ď C

?
n }u}

2
L2pIq `

C
?
n

›

›eWn,εpKn ´ λqu
›

›

2

L2pIq
.

For large n we see that Wn,εpyq is close to
?
nκεpyq, where

κεpyq “
p1´ εq
?

2

ˆ y

0

qpsqds.

We consider the eigenvalue λn of Kn given by Proposition 3.13 and a corresponding normal-
ized eigenfunction ψn. Since ψ2n “ ´λnψn ` inqpyq

2, we can deduce the following estimate.
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Proposition 3.17. There exists C ą 0 such that for n P N˚ we have

›

›e
?
nκεψ1n

›

›

2

L8pIq
ď Cn }ψn}

2
L2pIq .

Finally, we set umpt, x, yq “ e´λmteimxψmpyq, and we get a sequence of solutions of (3.14)
for which (3.15) cannot hold if T ă minpT´, T`q.

3.6 Nonlinear evolution equations with singular potentials

3.6.1 A singularly perturbed Gross-Pitaevskii equation

Most of my works concern spectral theory and linear PDEs. I have also developed with Stefan
Le Coz a collaboration around some non-linear problems. The starting point was a question
of Stefan about the spectral properties of the linearized operator which appeared in one of
his problems. We discussed more and more about it and, one thing leading to another, I was
aware of the whole problem and I finally joined the project.

The purpose of [12] (with Isabella Ianni and Stefan Le Coz) is the analysis of the black
solitons of the Gross-Pitaevskii equation with Dirac potential

´iBtu´ B
2
xu` γδu “ p1´ |u|

2
qu, (3.27)

subject to the boundary condition

|upt, xq| ÝÝÝÝÑ
|x|Ñ8

1, @t P R. (3.28)

The difficulty is then twofold. Technical problems arise from the presence of the singular
potential and the non standard condition at infinity. For instance, one of the difficulties due
to (3.28) is that we have to work in a functional space which is not even a vector space:

E “
!

u P H1
locpRq : Bxu P L

2pRq, p1´ |u|2q P L2pRq
)

.

It can however be endowed with a complete metric structure with the distance

d0pu, vq “ }Bxu´ Bxv}L2pRq `
›

› |u|
2
´ |v|

2 ›
›

L2pRq ` |up0q ´ vp0q| .

This work has been an occasion to get familiar with questions and technics of non-linear
analysis. The question here is the stability of the stationary solutions (or black solitons),
solutions of

´B2
xu` γδu “ p1´ |u|

2
qu.

The solutions can be explicited. Up to phase shift, they are given by

κpxq “ tanh

ˆ

x
?

2

˙

, bγpxq “ tanh

ˆ

|x| ´ cγ
?

2

˙

, b̃γpxq “ coth

ˆ

|x| ` cγ
?

2

˙

,

where cγ is an explicit parameter (b̃γ is only defined for γ ă 0). We get a first result of
stability by minimization of the energy

Epuq “
1

2

ˆ
R
|Bxu|

2
dx`

1

4

ˆ
R

`

1´ |u|
2 ˘2

dx`
γ

2
|up0q|

2
. (3.29)

Theorem 3.18. Let γ P R˚.

(i) The energy E reaches its (finite) minimum on

Gγ “

#

teiθbγ , θ P Ru if γ ą 0,

teiθ b̃γ , θ P Ru if γ ă 0.
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(ii) The set Gγ is stable for the flow of (3.27):

@ε ą 0, Dδ ą 0,@u0 P E , d0pu0,Gγq ă δ ùñ sup
tPR

d0puptq,Gγq ă ε.

The other stationary solutions are expected to be unstable. In r12s we prove the linear
instability of κ. If we write u “ κ ` η, then the perturbation η satisfies an equation of the
form Btη ` Lη `Npηq “ 0 where Npηq is non-linear in η and

Lη “ ´i
`

B2
xη ´ γδη ` p1´ κ

2qη ´ 2κ2Repηq
˘

.

Then κ is said to be linearly unstable if 0 is an unstable solution of the linear equation
Btη ` Lη “ 0.

Theorem 3.19. If γ ą 0 then κ is linearly unstable.

The proof relies on the spectral analysis of the R-linear operator L. We can rewrite L as
a R-linear matrix operator acting on pRepηq, Impηqq:

L “
ˆ

0 ´Lγ´
Lγ` 0

˙

, Lγ´ “ ´B
2
x ´ p1´ κ

2q, Lγ` “ ´B
2
x ` 2´ 3p1´ κ2q.

The operators Lγ´ and Lγ` are defined on the same domain

Dγ “
 

u P H2pR˚q XH1pRq : u1p0`q ´ u1p0´q “ γup0q
(

. (3.30)

Then a careful spectral analysis of Lγ´ and Lγ` shows that L has a negative eigenvalue when-
ever γ ą 0.

Unexpectedly, the main difficulty and hence the main part in [12] turned out to be the
analysis of the Cauchy problem (see already [Gér06] without singular potential). Before all
the discussion above, we check that the problem (3.27) is globally well posed and that the
energy E is conserved. The first step is the analysis of the propagator of the linear part,
generated by the operator associated with the quadratic form u ÞÑ }u1}

2
L2pRq` γ |up0q|

2
. It is

given by
Hγ “ ´B

2
x, DompHγq “ Dγ .

The difficulty is to deal with this not so usual operator in the completely unusual space E .
By Fourier transform we can see that e´itH0 ´ Id maps E to H1pRq. Since E `H1pRq “ E ,
we deduce that e´itH0 maps E into itself.

We cannot use the Fourier transform for e´itHγ when γ ‰ 0. Instead, we compute
explicitely the kernel of Γptq “ e´itHγ ´ e´itH0 . For instance, for γ ă 0 it is given by

Γpt;x, yq “ ´
|γ|

2

ˆ `8
0

e´
|γ|s

2 K0pt, s´ |x| ´ |y|q ds`
|γ|

2
e
iγ2t

4 e´
|γ|p|x|`|y|q

2 ,

where K0pt, ζq is the kernel of the free Schrödinger equation. By tedious computation, we can
show in particular that Γptq maps E to H1pRq (and }Γptqu}H1pRq is controled by }Bxu}L2pRq`

|up0q|).
Conservation of the energy is also a non-trivial issue. Finally, the analysis of the Cauchy

problem follows the standard strategy but, again, this standard strategy had to be adapted
to our non standard setting. We finally have a well-posedness result.

Theorem 3.20. For u0 P E there exists a unique solution u P C0pR,E q of (3.27) such that
up0q “ u0. Moreover Epuptqq “ Epu0q for all t P R.

Here, a solution is in the sense given by the Duhamel formula. For a more regular u0 we
have a solution in a stronger sense (in particular with Btuptq P C

0pR, L2pRqq). We also have
a result of continuity with respect to the initial condition, but for a slightly different distance
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on E .

Notice that a problem on R with singular potential can be seen has a problem on a graph
with two edges of infinite length. The jump condition which appears in (3.30) is then the
analog of the Robin condition at the unique vertex (see (3.3)).

3.6.2 A nonlinear Klein-Gordon equation with delta potentials

After [12], we started to discuss with François Genoud and Elek Csobo (who was at that
time Ph.D. student under the supervision of F. Genoud and S. Le Coz) another problem of
stability for standing waves, suggested by a question of Masahito Ohta.

We now consider a non-linear Klein-Gordon equation, again on the real line with a singular
potential. We also consider a singular term involving Btu. This looks like a singular damping,
but with a purely imaginary (conservative) coefficient. More precisely, given m ą 0 and
γ, α P R, the problem considered in [19] is

$

’

’

&

’

’

%

B2
t u´ B

2
xu`m

2u` γδu` iαδBtu´ |u|
p´1

u “ 0, on R` ˆ R,
upt, xq ÝÝÝÝÑ

|x|Ñ8
0, @t ą 0,

pu, Btuq|t“0 “ pf, gq P H
1pRq ˆ L2pRq.

(3.31)

The first step in the analysis of (3.31) is again the Cauchy problem. Here there is a subtil-
ity due to the term γδu, which is not usual for a wave equation. The operator corresponding
to the linear part is

W “

ˆ

0 1
B2
x ´m

2 0

˙

,

with domain

DompWq “
 

pu, vq P
`

H2pR˚q XH1pRq
˘

ˆH1pRq : u1p0`q ´ u1p0´q “ γup0q ` iαvp0q
(

.

This defines a skew-adjoint operator on the space H “ H1pRq ˆ L2pRq, endowed with the
norm defined by

}pu, vq}
2
H ,m,γ “

›

›u1
›

›

2

L2pRq `m
2 }u}

2
L2pRq ` γ |up0q|

2
` }v}

2
L2pRq .

The problem is that if γ is too negative, this norm is not a norm. In this case, we replace
m by some µ ě m large enough. We loose the skew-adjointness, but W still generates
on pH , }¨}H ,µ,γq a strongly continuous semigroup. Then we can proceed with the local
well-posedness for (3.31). Moreover, the following energy is a constant of the motion for
pu, vq “ pu, Btuq:

Epu, vq “
1

2
}Bxu}

2
L2pRq `

m2

2
}u}

2
L2pRq `

1

2
}v}

2
L2pRq `

γ

2
|up0q|

2
´

1

p` 1

ˆ
R
|u|

p`1
dx.

The charge is another constant of the motion:

Qpu, vq “ Im

ˆ
R
uv̄ dx´

α

2
|up0q|

2
.

The main issue of [19] is then the question of orbital stability for the standing waves. For
this we follow the general theory of Grillakis, Shatah and Strauss [GSS87].

A standing wave is a solution of (3.31) of the form eiωtΦωpxq, where Φω “ pϕω, iωϕωq is
a solution of the stationary equation

E1pΦωq ` ωQ
1pΦωq “ 0.
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Non-trivial solutions exist if and only if m2´ω2 ą pγ´αωq2{4. A standing wave eiωtΦωptq is
said to be orbitally stable if for any ε ą 0 there exists δ ą 0 such that the following property
holds for any solution Uptq of (3.31):

}Up0q ´ Φω}H ď δ ùñ sup
t

inf
θPR

›

›Uptq ´ eiθΦω
›

›

H
ď ε.

This property implies in particular that a solution starting close to Φω is defined for all t P R.
The method is based on the symplectic structure of the problem (see [DBGRN15]). We

can rewrite (3.31) in the form

JU 1ptq “ E1pUptqq, Uptq “ puptq, Btuptqq,

where J pu, vq PH ÞÑ p´iαδv, uq PH ˚ is skew-symmetric.
Then the criterion for orbital stability of the standing wave eitω0Φω0

depends on two
quantities. The first is the sign of

dQpΦωq

dω

ˇ

ˇ

ˇ

ω“ω0

.

Since Φω is explicitely known, this can be analysed by tedious but straightforward com-
putations. To conclude to orbital stability or instability (we also discuss linear stability
and instability), we also need some spectral properties for the operator R̃´1L2ωpΦωq, where
R̃ : H Ñ H ˚ is defined by p´B2

x ` 1, IdL2q and Lω “ E ` ωQ. I do not detail the assump-
tions here, but it concerns the positiveness of essential spectrum and the number of negative
eigenvalues.

This is the main part of the paper [19]. However, all these properties depend on the
parameters γ, α and ω (the strength p of the non-linearity also plays a role), so the results
of stability and instability have to be splitted into many different cases and I choose not to
give the precise statements here. See Section 4 in [19].
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Chapter 4

Projects and perspectives

After having discussed my past research in the previous chapters, the remaining part of this
thesis is devoted to the present and the future. In this last chapter I present unpublished
(submitted) results, works in progress and some longer term perspectives.

Some perspectives discussed here are parts of ongoing projects and can be continuations of
results already mentioned above, but this thesis is also an occasion to propose new directions
of research.

4.1 New questions about local energy decay

We begin with the projects which are close to the main subject of this thesis, namely the
local energy decay for wave or Schrödinger equations.

4.1.1 Asymptotic profile for the wave equation

In [23] (see the discussion in Section 1.7), it is proved that the solution of the Schrödinger
equation (1.13) behaves for large times like a solution of the free problem (1.6), in the sense
of Theorem 1.25. There are two natural continuations for this work.

These two questions, though quite different, are expected to be related to the same dif-
ficulty. This difficulty is in fact already present in [23]. The time decay in Theorem 1.25
depends on the parameter ρ0 which measures the spatial decay of the coefficients in (1.10).
This parameter is assumed to be not greater than 1. It is not the purpose of this report
to go into technical details, but the reason is that the smallness given by the decay of the
coefficients of the operators θσpzq in (1.71) is limited (as always because of the restriction of
the Sobolev indices in Proposition 1.19), and our proof would not give a better result with
ρ0 ą 1. In [23] this is not a problem since we are mostly interested in the case ρ0 ą 0 small,
but this becomes a more serious problem for the following two perspectives.

The main perspective in that direction is to prove an analog of Theorem 1.25 for the wave
equation (1.12). The proof of Theorem 1.25 is written in such a way that it is robust with
respect to dissipative perturbations, and adding a damping should not be a major problem.
However, even for the undamped case, the asymptotic profile is not completely clear, and the
problem comes from the gradient of the solution.

The method of [23] should work for the solution itself and its time derivative. We expect
that they should look like a solution of the free wave equation (1.1). From (1.21) we can guess
what should be the initial condition pf0, g0q for the asymptotic profile. However, there is an
additional difficulty for the gradient of the solution. We have said above that we cannot gain
as much as we wish with the inserted factors. Here, because of the gradient, the method does
not give anything at all. There is something more to understand. In particular, we could be
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in the same situation as for Theorem 2.19, where the asymptotic profile for the gradient is
not the gradient of the asymptotic profile.

The motivation for having such a result for the wave equation is twofold. In even dimen-
sion, we already have the optimal decay in [BB21] for the undamped case (for the solution
itself but not for its derivatives), so a result like Theorem 1.25 would give the leading term
of the asymptotic expansion (which would be new in any case) and in particular the optimal
decay (which is not known in the dissipative case). This would already be an important
improvement.

In odd dimension, the situation is different. The proofs of resolvent estimates and local
energy decay based on the Mourre method do not see the parity of the dimension, so the
results in odd dimensions are actually limited. Comparing the solution of the perturbed
problem to the solution of the model case (which decays much faster in odd dimensions) is a
way to reintroduce the difference of parity in the method, which is necessary to improve the
results in odd dimensions. A generalization of [23] to the wave equation would improve the
estimates of [BB21] in odd dimensions, even for the undamped equation.

Another natural continuation of [23] is to give a more precise asymptotic expansion for
the solution of the Schrödinger equation (1.13). In [23], we only give the first term of the
expansion. It could be interesting to go further.

The leading term for the resolvent is simply given by the resolvent identity (1.70). We
can apply the resolvent identity once more to get rests with two factors θσpzq. The same
strategy should work to estimate these rests, and we can iterate as many times as we wish.
In fact, the restriction in the proof of [23] is not about the number of terms in the asymptotic
expansion, but about the size of the rest. As above, we could problably consider N factors
θσpzq in the rests, but we would not get an optimal result if Nρ0 ě 1. Going further would
require a new improvement in the proof.

Finally, a related question is to consider the settings of Chapter 2. With damping at
infinity we have already worked by comparison with a model problem, this is even what
motivated [23] and the perspectives above. But I have never considered a general metric
perturbation of the Laplacian. We have proved a result for a perturbed setting in [17] (see
Proposition 2.20), but the assumptions on the perturbation are too strong. This is something
I have not tried yet, but considering a long range perturbation of (2.1) would probably raise
the same kind of difficulties as the long range perturbation of (1.12).

We could also consider all the intermediate situations (see the introduction of Chapter 2).

In particular, not much is known and I am still curious about the critical case apxq » C 〈x〉´1
.

We can also consider problems with a damping going to infinity (see [FST18] for some
basic properties of the wave operator in this case).

4.1.2 Systems on non-selfadjoint equations

I have recently started to consider questions of energy decay for a system of two equations.
So far I have only considered model problems, but this kind of systems naturally appear in
physics. For instance, there are already results about the energy decay for the Lamé system
in [BL01, DDK10].

System of Schrödinger equations on a wave guide In 2019, I invited Radhia Ayechi and
Ilhem Boukhris for two months in Toulouse. They were at that time Ph.D. students in Sousse
with Moez Khenissi. I suggested to look together at a generalization of [8] (see Section 2.7).
Then 2020 was a complicated time, but Ilhem came one more month. We finally finished the
work at the end of 2021, which gave the preprint [24].

The setting in [24] is as in [8] a straight wave guide with one-dimensional cross section:
Ω “ Rd´1ˆs0, `rĂ Rd for some ` ą 0. We consider on Ω a system of two Schrödinger equations
with damping and coupling at the boundary. Here they are only effective on Rd´1ˆt0u, and
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we consider a Neumann boundary condition on the other side (as in [8], various situations
could be similarly considered). Given a ą 0 (the absorption coefficient) and b P R˚ (the
coupling coefficient), we consider the problem

#

´iBtu´∆u “ 0,

´iBtv ´∆v “ 0,
on R` ˆ Ω, (4.1)

with boundary conditions

$

’

&

’

%

Bνupt;x, 0q “ iaupt;x, 0q ` ibvpt;x, 0q,

Bνvpt;x, 0q “ ´ibupt;x, 0q,

Bνupt;x, `q “ Bνvpt;x, `q “ 0,

@t ą 0,@x P Rd´1, (4.2)

and with initial data
pu, vq|t“0 “ pf, gq P L

2pΩq ˆ L2pΩq. (4.3)

Notice that only the first component u is dissipated at the boundary. However, the
second component v is indirectly dissipated through the coupling terms. The masses of u
and v separately have no reasons to be non-increasing, but it is the case for their sum:

d

dt

`

}uptq}
2
L2pΩq ` }vptq}

2
L2pΩq

˘

“ ´2a

ˆ
Rd´1

|upt;x, 0q|
2

dx ď 0.

The question is the decay of this total mass. The answer is that even if neither the damping
nor the coupling satisfies the geometric condition (the rays of light parallel to the boundary
do not see the boundary), and even if the second component v is not dissipated, we have
exponential decay for both components.

Theorem 4.1. Let a ą 0 and b P R˚. There exist γ ą 0 and C ą 0 such that for pf, gq P
L2pΩq ˆ L2pΩq and t ą 0 we have

}uptq}
2
L2pΩq ` }vptq}

2
L2pΩq ď Ce´γt

`

}f}
2
L2pΩq ` }g}

2
L2pΩq

˘

,

where pu, vq is the solution of (4.1)-(4.3).

As in [8], the analysis on the wave guide is related to the properties on L2p0, `qˆL2p0, `q »
L2p0, `;C2q of the transverse operator

Ta,b “
ˆ

´B2 0
0 ´B2

˙

,

defined on the domain

 

U P H2p0, `;C2q : U 1p0q ` iMa,bUp0q “ 0, U 1p`q “ 0
(

, Ma,b “

ˆ

a b
´b 0

˙

.

We prove that we have a spectral gap for the eigenvalues of Ta,b, and that we have a Riesz
basis of L2p0, `;C2q made with corresponding (generalized) eigenfunctions.

In [8], the eigenvalues pλnp0qq of T0 are simple, and a square root znpaq of λnpaq cannot
cross the lines Repzq P Nν (remember that ν “ π{`), so by continuity it is possible to conclude
that the eigenvalues of Ta remain simple with a rough localization.

Here it is no longer that simple. The model operator T0,0 has double eigenvalues pnνq2,
n P N. We can check that for pa, bq small the eigenvalue pnνq2 splits into two simple eigen-
values if a2 ‰ 4b2 and it stays a double eigenvalue if a2 “ 4b2 (in this case we have a Jordan
block if a ‰ 0). Moreover, the square roots of the eigenvalues can cross the lines Repzq P νN
and even for large n the (generalized) eigenfunctions are not close to being orthogonal. How-
ever, despite of these additional difficulties, we can prove that we indeed have a spectral gap
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and the Riesz basis property.

As a byproduct of this analysis, we also deduce the Weyl Law for the eigenvalues of
Ta,b. We can see Ta,b as a Schrödinger operator on a graph with two edges of same length
`, with a non-standard vertex condition between them. We denote by Na,bpRq the number
of eigenvalues of Ta,b (counted with multiplicities) with real part smaller than R. Then the
following result is analogous to Theorem 3.2 with |Γ| “ 2`:

Na,bpRq “
2`
?
R

π
` O
RÑ`8

p1q. (4.4)

Even if it was not necessary for the proof of Theorem 4.1 or for (4.4), we have continued
the analysis of the localization of the eigenvalues of Ta,b, and in particular the question of the
number of square roots of eigenvalues in the region Cn “ tRepzq Psnν, pn` 1qνru. We prove
in particular the following observations.

• pnνq2 is a double eigenvalue of T0,0. Its square root nν splits into z`pa, bq and z´pa, bq
such that z`pa, bq

2 and z´pa, bq
2 are eigenvalues of Ta,b.

• One (say z`pa, bq) always belongs to Cn.

• If a2 ą 4b2 ą 0, then it is also the case for z´pa, bq and z´pa, bq ‰ z`pa, bq. The
eigenvalues of Ta,b are simple.

• If a2 “ 4b2, then z`pa, bq “ z´pa, bq and the eigenvalues of Ta,b have algebraic multi-
plicities 2 (but geometric mutiplicities 1).

• If a2 ă 4b2, then z´pa, bq can go to Cn or Cn´1 depending on the value of θ P
‰

a
2ν ,`8

“

such that

4b2 “ a2 `
a2

4θ2π2
ln

ˆ

2θν ` a

2θν ´ a

˙2

.

Then z´pa, bq is in Cn´1 if θ ă n, in Cn if θ ą n and Repz´pa, bqq “ n if θ “ n.

This kind of additional remarks is motivated by curiosity (this is already a good reason),
but not only. For Theorem 4.1 it is enough to understand the eigenvalues λnpa, bq for n "
a ` |b|, but this is not the case for the wave equation. Thus such a localization of all the
eigenvalues is an interesting step toward the analysis of the wave equation.

A natural continuation of this work would be to consider a system of wave equations on
a wave guide. We will discuss this issue in the Euclidean space in the next paragraph. But,
as will be discussed in Section 4.4.2, we are also interested in the wave equation in general
quantum graphs.

It would be interesting to prove rough localization of the eigenvalues on a general compact
quantum graphs. To get a better intuition, we could begin by computing what happens for
the same problem with N equations, or considering only 2 edges but with a general non-
selfadjoint vertex. We will continue this discussion in Section 4.4.2.

System of wave equations In Chapter 2, we have discussed several problems about the wave
equation with damping at infinity. Each situation (Euclidean space, wave guide, periodic
setting) raised different and challenging difficulties. A new question, which turns out to be
again different and challenging, is the case of a system of several equations with coupling.

With Lassaad Aloui and Moez Khenissi, we have started to discuss the simplest case,
namely a system of two wave equations with constant coupling and damping on Rd. More
precisely, given a ą 0 and b P R˚ as above, we consider on Rd the system

#

B2
t u´∆u`m1u` bBtv ` aBtu “ 0,

B2
t v ´∆v `m2v ´ bBtu “ 0,

(4.5)

76



with initial conditions pu, Btuq|t“0 “ pf0, f1q and pv, Btvq|t“0 “ pg0, g1q in H1pRdq ˆ L2pRdq.
The coefficients m1 and m2 are non-negative. When mj “ 0 the corresponding equation is a
wave equation, while mj ą 0 gives a Klein-Gordon equation.

Compared to the previous case, we have damping and coupling everywhere. However, as
above, only the first component is dissipated and v can only be dissipated via the coupling.

We look at the decay of the energy

Epu, v; tq “ }Btuptq}
2
L2pRdq ` }∇uptq}

2
L2pRdq `m1 }uptq}

2
L2pRdq

` }Btvptq}
2
L2pRdq ` }∇vptq}

2
L2pRdq `m2 }vptq}

2
L2pRdq .

The first result is that the contributions of high frequencies for the global energy decay
uniformly and exponentially, so both components are dissipated.

For low frequencies, the wave and Klein-Gordon equations have different properties, and
the four situations (m1 “ 0{m1 ‰ 0 and m2 “ 0{m2 ‰ 0) will give four completely different
behaviors.

When m1 ą 0 and m2 ą 0, there is no difficulty with low frequencies and the global
energy of u and v decays exponentially. On the other hand, if m1 “ 0 or m2 “ 0 then 0
belongs to the spectrum of the corresponding operator

W “

¨

˚

˚

˝

0 1 0 0
∆´m1 ´a 0 ´b

0 0 0 1
0 b ∆´m2 0

˛

‹

‹

‚

,

defined on the Hilbert completion E of SpRdq4 for the norm

}pu0, u1, v0, v1q}
2
E “ }∇u0}

2
L2 `m1 }u0}

2
L2 ` }u1}

2
L2 ` }∇v0}

2
L2 `m2 }v0}

2
L2 ` }v1}

2
L2 .

We have to understand the contribution of low frequencies.
As in Section 2.2 we can use the Fourier transform. Let Mpξq, ξ P Rd, be defined as W

with ´∆ replaced by |ξ|
2

(as in (2.7)). For a system Wave–Klein-Gordon (m1 “ 0, m2 ą 0),
0 is a simple eigenvalue of Mp0q and we recover a behavior similar to the case of a single
equation. In particular, we can observe that u behaves like a solution of the heat equation.
If m2 “ 0 then 0 is a double eigenvalue of Mp0q. The behavior of the contribution of low
frequencies is governed by the behavior of these two eigenvalues (counted with multiplicities)
for ξ ‰ 0 small (as well as the corresponding eigenprojections). And this strongly depends
on the parameters m1, m1, a and b. We should get the asymptotic profile in each case, but
with a much wilder behavior than with a single equation.

We have already four parameters in all the computations, but we could (should) consider
another one. Everywhere, we have considered the speed of propagation c normalized to 1.
This is harmless for a single equation, but for (4.5) this means that we consider the same
speed for the two components u and v. It would be interesting to introduce the quotient of
these two speeds and see how the results would depend on this new parameter.

The problem (4.5) is the simplest possible system of wave equations on an unbounded
domain. It will then be natural to consider more evolved settings, as is done for a single
equation, and systems of equations which appear in concrete problems.

4.1.3 Local energy decay in more general geometric settings

Most of my works about the damped wave equation are set on asymptotically Euclidean
settings. I also considered the problem on a wave guide and on an asymptotically periodic
setting, and this highlighted new interesting phenomena.

In [7] (see Section 1.5) we have proved resolvent estimates for the Schrödinger equation
on an asymptotically conical manifold. It would be interesting to generalize the results about
the wave equation to this setting.
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Recently, V. Grasselli has proved in this setting all the results of [BB21]. See [Gra].
Thus, she proved in this context low frequency resolvent estimates and the corresponding
local energy decay for the Schrödinger and wave equations. In a similar context, R. Wang
[Wana] has also generalized the results of [BJ16] about the exponential decay for the Klein-
Gordon equation.

Concerning the Schrödinger equation, the obvious question is the adaptation of the result
of [23] to this setting. Is it true that solution of the Schrödinger equation on an aymptoti-
cally conical manifold M looks like (in the sense of Theorem 1.25) the solution of the free
Schrödinger equation on the corresponding conical model M0 for large times ? And how
does the geometry affect the initial condition for the asymptotic profile ?

Similarly, a result analogous to those of Chapter 2 could be proved on asymptotically
conical manifolds with damping at infinity, or on more general wave guides. And, again, it
would be interesting to see what would be the asymptotic profiles in these settings.

The results on the asymptotically conical manifold are expected to be proved with the
technics developed in this setting on the one hand, and the strategy developed for the Eu-
clidean setting on the other hand.

A less marked path would be to consider more general space-time geometries, in the spirit
of the recent papers [MST20] and [Kof] (the later being in some sense a generalization of [6]
on a Lorentzian manifold).

4.2 Null-controllability for a Grushin equation

In 2021, a few months after the publication of [22] about observability for a Kolmogorov
equation (see Section 3.5), Armand Koenig arrived as a post-doc in Toulouse. Armand had
already several results on similar problems (see [Koe17, DK20]), so it was natural to continue
this study together with Jérémi Dardé. In this paragraph, we discuss the preprint [25] and
further perspectives on the subject.

Let T ą 0, `˘ ą 0, I “s ´ `´, ``r and Ω “ I ˆ T. Given an open subset ω of Ω, we are
interested in the null-controllability for the following Baouendi-Grushin equation

$

’

&

’

%

Btu´ B
2
xu´ qpxq

2B2
yu “ 1ωf, on s0, T rˆΩ,

upt, ¨q “ 0, on BΩ, for all t Ps0, T r,

u|t“0 P L
2pΩq.

(4.6)

This is analogous to (3.17), except that the degenerate term is now a diffusive term. Less
important, the control is in the domain and not at the boundary (and not important at all,
we have also switched the roles of x and y). The coefficient q is again regular and vanishes
at and only at 0. Then (4.6) is a heat equation which is degenerate on the line x “ 0.

In the first results about the Grushin equation, the control (or observability) region ω
is usually rectangular (of the form ra, bs ˆ T, for ra, bs Ă I). In [BCG14], for qpxq2 “ |x|

γ

and 0 ă a ă b ă ``, it is proved that there is always observability if γ ă 2 (for any open

ω in this case), never if γ ą 2, and that there is a finite critical time Tc ě a2

2 if γ “ 2.

In [BMM15], it is proved that Tc “ 0 if a “ 0 and that the critical time is exactly a2

2 if
ω “ T ˆ pr´b,´as Y ra, bsq. Finally, [BDE20] deals with the case where q is general and
the observation is on one side of the boundary, which is essentially equivalent to observing
throught a rectangular neighborhood of the boundary (this is the result that we have proved
for the Kolmogorov equation in [22]).

In [Koe17, DK20], results are given for more general control domains. However, these
results are only proved for the model case qpxq “ x. Our purpose in [25] is to extend this
analysis for more general coefficients (see the precise assumptions for each result).
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Figure 4.1: A domain of control and the corresponding critical time.
In this picture, a domain of control ω as in Theorem 4.4, a path γ as in Theorem 4.2 (dotted
line, with δpγ´x q “ maxpδpγxpsqqq) and a line segment ra, bs ˆ ty0u as in Theorem 4.3. We
can choose a and γ´x arbitrarily close to γ´2 , which gives the critical time Tc “ δpγ´2 q{q

1p0q.

Theorem 4.2 is a positive result of null-controllability. It gives a sufficient condition on
ω to prove observability for large times, which gives an upper bound for the critical time of
null-controllability.

On the contrary, Theorem 4.3 provides a condition on ω for which we have a positive
lower bound for the critical time, which means than we cannot have null-controllability in
small times.

Finally, Theorem 4.4 gives a family of domains ω which satisfy the assumptions of both
results and for which the lower and upper bounds for the critical time coincide. In this case,
we have the precise critical time for the null-controllability of the Baouendi-Grushin equation
(4.6).

For these statements we set

δpxq “

ˆ x

0

qpsqds, @x P I, and δp˘`˘q “ `8.

Theorem 4.2. Assume that q P C3pIq is such that qp0q “ 0 and infI q
1 ą 0. Assume that there

exists a closed path γ “ pγx, γyq P C
0pT;ωq such that t´`´uˆT and t``uˆT are included in

different connected components of pI ˆ TqzγpTq. Then the Baouendi-Grushin equation (4.6)
is null-controllable on ω in any time T such that

T ą
1

q1p0q
max
sPT

δ
`

γxpsq
˘

.

The main result in [25] is the following.

Theorem 4.3. Assume that q P C2pIq is such that qp0q “ 0, q1p0q ą 0 and qpxq ‰ 0 whenever
x ‰ 0. Let ω be an open subset of I ˆT. Assume that there exist a P r´`´, 0r, b Ps0, ``s and
y0 P T such that, in Ī ˆ T,

`

ra, bs ˆ ty0u
˘

X ω “ H.

Then the generalized Baouendi-Grushin equation (4.6) is not null-controllable on ω in time
T such that

T ă
1

q1p0q
min

`

δpaq, δpbq
˘

.

In particular, we never have null-controllability if s ´ `´, ``rˆ ty0u X ω “ H for some
y0 P T.

Theorem 4.4. Assume that q P C3pIq is such that qp0q “ 0 and infI q
1 ą 0. Let γ1, γ2 P

C0pT; Iq such that γ1pyq ă γ2pyq for all y P T. We set

γ`1 “ max
´

0,max
T

γ1

¯

and γ´2 “ min
´

0,min
T
γ2

¯

.
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Then the critical time for the null-controllability of (4.6) on ω “ tpx, yq P I ˆ T : γ1pyq ă
x ă γ2pyqu is

Tc “
1

q1p0q
max

`

δpγ´2 q, δpγ
`
1 q

˘

.

We do not discuss the general strategy of the proof but only emphasize one argument of
the proof of Theorem 4.3. Instead of the (non-selfadjoint) operator Kn which appeared in
the analysis of the Kolmogorov equation in Section 3.5, we get after Fourier transform the
(selfadjoint) operator

Pn “ ´B
2
x ` n

2qpxq2 (with DompPnq “ H1
0 pIq XH

2pIq).

To prove Theorem 4.3 we contradict the corresponding observability estimate (see (3.16)) if
T is too small.

A key argument depends on the first eigenvalue λn of Pn (which is again close to the
eigenvalue q1p0qn of the harmonic oscillator), and a corresponding eigenfunction ϕn. Setting,
for some ε ą 0,

γt,xpnq “ e´tpλn`1´q
1
p0qpn`1qqϕn`1pxqe

pn`1qδpxqp1´εq

we have to prove the following estimate on polynomials
›

›

›

ÿ

γt,xpnqanz
n
›

›

›

L8pXq
À

›

›

›

ÿ

anz
n
›

›

›

L8pV q
,

uniformly in t Ps0, T r and x P I, where X is a compact subset of C and V is an open and
star-shaped (with respect to 0) neighborhood of X. For this, we use a result (see [Koe17,
Th. 18]) which requires estimates on a holomorphic extension of γt,x on some domain of
C. In particular, we need properties on the analytic extensions of λν and ϕν for Repνq ą 0.
Thus we have to study Pν for some non-real parameters ν and, even in this setting, spectral
properties of non-selfadjoint operators play an important role.

The results about null-controllability for the Grushin (discussed here) or the Kolmogorov
(see Section 3.5) equations still only concern particular situations. Even if more and more
general control domains ω and coefficients qpxq are considered, much remains to be under-
stood.

In [25], we have provided examples of control domains ω which are not covered by our
results. Some geometries are not so complicated and it is frustrating not to be able to
conclude in these cases.

Similarly, another assumption that we would like to relax is the increasingness of q in
Theorem 4.2. We could also consider the case where q vanishes twice (then q2 would form a
double-well potential). The difficulty does not come from the arguments based on spectral
theory, since these more general settings are more or less already understood. The main
obstacle is probably the Carleman estimate used for the positive result (Proposition 3.14 in
the context of [22]).

Of course, we would like to go further. For me, this first means a better understanding
of the classical technics in control theory (Carleman estimates, the method of moments, how
we can use the classical tools of microlocal analysis in this kind of context, etc.). This is a
very interesting possible perspective.

4.3 Discrete spectrum at the strong magnetic field limit on a
curved wave guide

In this section we discuss the preprint [27], written with Engerran Bon-Lavigne, Löıc Le
Treust and Nicolas Raymond. This started with a discussion at the CIRM in June 2021.

The question is about the existence of discrete spectrum under the essential spectrum for
a magnetic Laplacian on a two dimensional curved wave guide, at the strong magnetic field
limit.
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We consider a smooth and injective curve γ : RÑ R2 with |γ1| “ 1. We assume that the
algebraic curvature κ of γ is compactly supported. Then our curved wave guide is defined by

Ω “ Ωγ,δ “ ΘpΩ0,δq, Ω0,δ “ Rˆs ´ δ, δr, Θps, tq “ γpsq ` tNpsq,

where δ ą 0 is small enough and Npsq “ γ1psqK (with pa, bqK “ p´b, aq).
We consider on Ωγ,δ a uniform magnetic field of intensity h´1, with 0 ă h ! 1. If A is

a well chosen vector potential corresponding to a field equal to 1, we consider on L2pΩq the
operator

Ph,γ,δ “ p´ih∇´Aq2, DompPh,γ,δq “ H1
0 pΩq XH

2pΩq.

Without magnetic field, the Dirichlet Laplacian always has discrete spectrum if the wave
guide is not straight [DE95]. However, it is also known that the magnetic field plays against
the existence of discrete spectrum. It has even been conjectured by P. Duclos and P. Exner
in the mid-nineties that the discrete spectrum of Ph,γ,δ should be empty when h is small
enough. In that direction, it is proved in [KR14] that if the magnetic field is compactly
supported then there is no discrete spectrum in the strong field limit.

However, we give in [27] a sufficient condition to have discrete spectrum for a strong
uniform magnetic field.

Theorem 4.5. Assume that κ2 has a unique maximum, which is non-degenerate. There exist
δ0 ą 0 and h0 ą 0 such that for δ Ps0, δ0s and h Ps0, h0s we have

inf σpPh,γ,δq ă inf σesspPh,γ,δq.

In particular, Ph,γ,δ has non-empty discrete spectrum.

For the essential spectrum, we prove that it is equal to the essential spectrum of the
straight wave guide Ω0,δ, for which we can compute a lower bound. On the other hand, we
use the Min-max Theorem to get an upper bound for the minimum of the spectrum. The
argument is based on the equality

inf σpPh,γ,δq ´ h “ inf
ψPH1

0 pΩqzt0u

}p´ih∇´Aqψ}2L2pΩq ´ h }ψ}
2
L2pΩq

}u}
2

“ inf
uPH1

0 pΩqzt0u

4h2
´

Ω
e´

2φ
h |Bz̄u|

2
dx´

Ω
e´

2φ
h |u|

2
dx

.

The main parts of the proof are the construction of a good function φ and then the definition
of a suitable fonction u which is in particular holomorphic on Ω except near the boundary
(to satisfy the Dirichlet condition). This function φ already plays an important role in the
choice of the vector field A.

In addition to its own interest for the Duclos-Exner conjecture, this result is a step toward
the understanding of a similar property for the magnetic Dirac operator

Ph,γ,δ “
`

p´ihBx1
´A1qσ1 ` p´ihBx2

´A2qσ2

˘2
“

ˆ

|´ih∇´A|2 ´ h 0

0 |´ih∇´A|2 ´ h

˙

.

This is the model Hamiltonian for a non-relativistic spin-1
2 particle, constrained to move in

Ω, interacting with a magnetic field that is perpendicular to the plane. Spectral properties
of this operator are studied in [BLTRS21] when Ω is bounded. Our project is to consider as
above the operator on a wave guide.

A first step could be as in [27] the existence of discrete spectrum, but the perspective is
to prove as in [BLTRS21] more precise asymptotics for the first eigenvalues. For the Duclos-
Exner conjecture an upper bound for the bottom of the spectrum was enough, but we would
like to prove asymptotic properties for the k-th eigenvalue at the strong field limit, both
for the magnetic Laplacian and the Dirac operator. This is much more precise and would
require in particular a better understanding on our wave guides of the functional spaces used
in [BLTRS21] and wave-guide versions of classical results such as the Paley-Wiener theorem.
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4.4 Spectral theory on discrete and quantum graphs

4.4.1 Spectrum of the wave equation on a non-compact star-graph

In Section 3.1, we have discussed the spectrum of a non-selfadjoint compact star graph. Here
we discuss the result of the preprint [26] about the damped wave equation on a non-compact
star-graph. This is a joint work with David Krejčǐŕık.

We have already seen that the energy of the wave does not necessarily decrease faster
with a stronger damping. A natural question is then the optimal damping which will give
the best decay.

This question has been addressed in [BRT82] in the case of a wave on a finite interval with
singular damping in the middle. This was motivated by the analysis of stringed instruments.
They argue that there is indeed an optimal strength for the damping. The problem of the
wave on a finite string with Dirac damping has also been analysed in [ATH00, AHT01, CH08]
(see also [AN15, §4.1.1]). The damped wave equation has also been discussed in star-shaped
graphs in [AJ04] (damping at the central vertex), [AJK05] (damping at a boundary vertex)
or [AJK16] (local energy decay with one infinite edge).

In [26] we consider a star-graph with N infinite edges and damping at the only vertex.
The graph can be identified with pR˚`qN (the edges are parametrized from the vertex to
infinity). Given any α P C we consider the wave equation

B2
t ujpt, xq ´ B

2
xujpt, xq “ 0, 1 ď j ď N, t ě 0, x ą 0, (4.7)

with continuity at the vertex

ujpt, 0q “ ukpt, 0q, 1 ď j, k ď N, t ě 0, (4.8)

(we denote by upt, 0q this common value) and the damping vertex condition

N
ÿ

j“1

Bxujpt, 0q ` αBtupt, 0q “ 0. (4.9)

We really have damping when α ă 0 (the case α ą 0 would correspond to a supply of energy,
while the case α P iR is conservative and has an interpretation in quantum mechanics, see
Section 7 in [26]). Notice that the case N “ 1 corresponds to a semi-infinite string with
damping at the end, while the case N “ 2 is an infinite string with singular damping.

The corresponding operator is defined as follows. We denote by E the set of pairs pu, vq
such that u1j , vj P L

2p0,8q for all j and ujp0q “ ukp0q for all j, k (we denote by up0q this
common value). This is a Hilbert space if the first component is quotiented by the space of
constant functions on the graph. For u P 9H2pR˚`qN we set u2 “ pu2j q. Then we define the
operator W by

W
ˆ

u
v

˙

“

ˆ

v
u2

˙

, DompWq “

#

U “ pu, vq P E : WU P E and
N
ÿ

j“1

u1jp0q ` αvp0q “ 0

+

.

We are interested in the spectral properties of this operator W, and the corresponding
counterparts for the time dependent problem (4.7)-(4.9). We can check that ˘W is maximal
accretive if ˘Repαq ě 0 (it is skew-adjoint if Repαq “ 0). In particular, if Repζq ‰ 0 and
RepζqRepαq ď 0 then ζ P ρpWq and

›

›pW ´ ζq´1
›

›

LpE q ď
1

|Repζq|
.

We are interested in the spectrum in the half-plane where Repζq and Repαq have the same
sign. This is a difficult question in general and little is known in that direction, but for this
model setting we can proceed with explicit computation.

As already observed for a finite string, there is an abrupt change of properties for particular
values of α. More precisely, we have the following result about the spectrum of W.
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Theorem 4.6. The spectrum of Wα is

$

’

&

’

%

iR if α P Czt˘Nu,
C` if α “ N,

C´ if α “ ´N.

Moreover, iR contains no eigenvalue nor residual spectrum of Wα, and if α “ ˘N then any
ζ P C˘ is an eigenvalue of Wα of geometric multiplicity 1 and infinite algebraic multiplicity.

To understand this behavior, we compute the resolvent of W. As expected, for ζ P C˘
the norm of pW ´ ζq´1 in LpE q goes to `8 when αÑ ˘N .

Proposition 4.7. There exist c0, C ą 0 such that for α P C˘z t˘Nu and ζ P C˘ we have

max

ˆ

1

|Repζq|
,

c0
|ζ| |α¯N |

˙

ď
›

›pW ´ ζq´1
›

›

LpE q ď
C

|Repζq|

ˆ

1`
1

|α¯N |

˙

.

The values α “ ˘N also have a particular role for the wave equation (4.7)-(4.9). Notice
that on each edge, the wave has an outgoing part which never sees the damping and behaves
as the free wave equation on R. We are interested in the incoming part of the wave, which hits
the vertex. The vertex conditions describe how the waves coming from all edges are reflected.
In particular, the sum of the energies of all the reflected waves is equal (smaller, larger,
respectively) than the energies of the incident waves if Repαq “ 0 (Repαq ă 0, Repαq ą 0,
respectively). It turns out that in the particular case α “ ´N the incident waves are
completely absorbed. And the problem is ill posed in the case α “ N (we have no solution
or an infinite number of solutions for positive times, depending on the initial conditions). Of
course, these properties are reversed if we go backward in time. We refer to [26, Th. 2.4] for
a more quantitative statement.

4.4.2 Other model problems on non-compact quantum graphs

The paper [21] and the preprint [26] were about particular cases of non-selfadjoint quantum
graphs, and it would be interesting to go further in various directions.

The first obvious question is the generalization of [21] to more general graphs. The dif-
ficulties will come from the steps of the proof where we have used the explicit expression
for the secular equation (3.9). For instance, it has been used to prove that the Neumann
eigenvalues cannot escape too far (see the discussion before (3.11)) or to see that ` is always
transverse to the submanifood Z0 of TN (see before (3.12)). We have already thought about
this while writing [21]. Considering general compact quantum graphs will not be trivial, but
we can certainly go beyond the star-graph.

Another natural continuation of [21] is to consider the spectrum of the wave operator on
a compact star graph (and then in a more general situation).

The main difference between the Schrödinger and wave equations is that instead of the
operator Hα defined by (3.1)-(3.4), we have to consider the operator Haz where a is the
absorption coefficient and z is the spectral parameter (this is completely similar to the wave
with damping at the boundary, see (2.18)). Thus we have to work with the parameter α “ az
which goes to infinity when the spectral parameter z itself goes to infinity. Then the key
argument that the eigenvalues of Hα cannot go too far from those of H0 is no longer valid.

We have seen as a byproduct of studies on wave guides that for one edge (see Section
1.6) or for two edges with particular vertex conditions (see Section 4.1.2) we can prove that
eigenvalues stay in some bounded region of C for any α, but these results were again based
on explicit computation (and we already had more difficulties with two edges than with one),
so we have to find a more general argument to deal with more general graphs.
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Notice that when all the edges have the same length, it is proved in [FL17] that there is
a finite number of so-called spectral abscissas. With the terminology of Theorem 3.3, this
means that the corresponding measure µ` is a linear combination of Dirac masses (this is the
analog of the second case therein). We expect that a similar result will hold with damping
at the vertices. The difficulty, as in [21], is to give a precise statement for any set of lengths
(or at least a generic set of lengths, but including the case of irrationally dependent lengths).
For a review of some known results about the stabilization of the wave equation on quantum
graphs, we also refer to [Zua13].

All the questions around [21] concern the contribution of high frequencies. If we consider
non-compact quantum graphs, there will also be interesting phenomena for the contribution
of low frequencies, as is the case for the wave on non-compact manifolds.

A non compact graph can be a graph with a finite number of infinite edges, as in [26], or
a graph with an infinite number of edges. We give several examples (all with finite edges of
equal length) in Figure 4.2.

Figure 4.2: Examples of non-compact graphs

Let us briefly discuss for instance the case of trees. This is a particular example of
quantum graph which has many applications.

Again, there is less literature on the spectral properties of quantum graphs than on the
discrete ones, but this is now an active field. We refer for instance to [Car97, Sol04] (and
references therein) for early works about the spectrum of the Laplacian on quantum trees,
and to [AISW21] for an example of recent development.

It would be interesting to see what happens if we add some damping on the edges or at
the vertices. Since I have not started the analysis, I have to remain vague about what can
be expected, but this is a setting that I find exciting and that I would like to explore.

Another question which could be tested on a simple graph is the wave equation with
random damping. Consider for instance the case of a wave equation on the line R with
random singular damping at each integer. The damping coefficient an at n P Z could be
independent random variables (for instance they could all follow a Bernouilli distribution, so
that there is damping with probability p and nothing with probability p1´ pq). As usual, we
could start with the Schrödinger operator, in which case we are closer to the classical Anderson
model (see for instance [Kir08] for an introduction to random Schrödinger operators).

4.4.3 Resolvent estimates for the Schrödinger operator on a discrete graph

When I mention graphs, I mainly think about quantum graphs. However, even if discrete
graphs have already been extensively studied, there are still exciting questions to be discussed.

As for quantum graphs, we can consider many different interesting settings, but I will only
consider one problem in this parapraph. This is a project that I have started with Olivier
Bourget and Diomba Sambou.

With Amal Taarabt, they have studied in [BST20] various spectral properties (limiting
absorption principle, resonances, etc.) for a non-selfadjoint Schrödinger operator on `2pZq.
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We recall that the one-dimensional discrete Laplacian on `2pZq is defined by

pH0uqn “ 2un ´ un´1 ´ un`1, n P Z,

for u P `2pZq (we could also consider the analog on `2pZdq for any dimension d P N˚). Its
spectrum is

σpH0q “ σacpH0q “ r0, 4s.

In [BST20] they add a complex potential V (a potential simply acts as a diagonal matrix on
`2pZq: pV uqn “ Vnun).

In particular, they prove the limiting absorption principle with the Mourre commutators
method.

We recall that this method requires a suitable conjugate operator. In the papers discussed
in Chapter 1, the operator was always a perturbation of the usual Laplacian on Rd, and the
conjugate operator was always a perturbation of the generator of dilations. Dilations have no
obvious analog in the discrete setting. However, if we set A0 “ ImpSqX`XImpSq, where X is
the position operator (defined by pXuqn “ nun) and S is the shift operator (pSuqn “ un`1),
then we have

adiA0
pH0q “ 4H0 ´H

2
0 .

With this conjugate operator, they are able to apply the Mourre theory away from the thresh-
olds 0 and 4 (notice that there are more thresholds in higher dimensions).

This naturally raises the question of the properties (such as resolvent estimates) near
the thresholds. This is precisely the analog of studying the resolvent of usual Schrödinger
operators near 0.

The discussion is only at its early stage, but it is natural to try to adapt the strategy
described in Chapter 1. As for the use of the generator of dilations, many arguments used
in the Euclidean setting are meaningless in the discrete case, but there is a reasonnable hope
that we can adapt the ideas to get resolvent estimates for a discrete Schrödinger operator.
Of course it is also possible to consider the wave equation in this setting.

4.5 Non-linear problems

4.5.1 A non linear problem on a quantum graph

After [12] and [19] (see Section 3.6), I have started a new project with François Genoud and
Stefan Le Coz. It is again about a non-linear problem in dimension 1. Another common
feature between our two previous works was the singular potential. As observed above, a
problem on the real line with a singular potential can be seen as a problem on a graph with
two infinite edges, the singular potential being interpreted as a “boundary condition” at the
vertex.

Here we really consider a graph. Since our analysis should be essentially local, we consider
the model case: a star graph Γ, with N infinite edges (as in Section 4.4.1). We recall that Γ
can be seen as N copies of R˚`, and we define L2pΓq accordingly.

Given γ P R, we consider on Γ the non-linear Schrödinger equation

´iBtuj ´ B
2
xjuj ` γδu´ |uj |

4
uj “ 0, 1 ď j ď N, (4.10)

where δ is the Dirac distribution at the central vertex. A solution on the interval I of R is a
function u “ pujq1ďjďN P C

0pI,H1pR˚`qN q X C1pI, pH1pR˚`q˚qN q such that uj is a solution
on each edge, uptq is continuous at the vertex (as in (4.8)) for all t P I, and it satisfies the
Robin condition

N
ÿ

j“1

u1jpt, 0q “ γupt, 0q.
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The Cauchy problem is completed by an initial condition u0 at time t “ 0. Notice that since
γ is real, the generator of the linear part (the Laplacian on each edge, with these vertex
conditions in the domain) is selfadjoint. Two constants of the motion are given by the mass
and the energy:

Mpuq “
}u}

2
L2pΓq

2
, Epuq “

}Bxu}
2
L2pΓq

2
`
γ |up0q|

2

2
´
}u}

6
L6pΓq

6
.

Our question on this model is the existence of blowing-up solutions. It is known that for
the equation on the line,

´iBtu´ B
2
xu´ |u|

4
u “ 0, u|t“0 “ u0, (4.11)

the threshold between global existence of all the solutions and existence of blowing-up solu-
tions is the mass of the ground state Q : x ÞÑ 3

1
4 sechp2xq

1
2 (solution of Q2´Q`Q5 “ 0). If

Mpu0q ă MpQq then the solution of (4.11) is well defined for all times, and there exists u0

with }u0}L2pRq “ }Q}L2pRq such that the corresponding solution of (4.11) blows up in finite
time. Indeed, given T ą 0 we can consider the solution given by pseudo-conformal transform
of the standing wave eitQpxq, given by

upt, xq “
1

?
T ´ t

e
i

T´t e´
ix2

4pT´tqQ

ˆ

x

T ´ t

˙

.

Then we have

}uptq}L2pRq “ }Q}L2pRq and }Bxuptq}L2pRq „
tÑT´

1

T ´ t
.

On the graph, it is expected that the blowing-up solution with minimal mass has a similar
behavior with blow-up at some point of one of the edges. If we only consider radial solutions
(ujpt, xq does not depend on j), then the threshold for global existence is increased. With
γ “ 0, we can construct a similar solution by replacing Q by QΓ, defined by considering a
copy of Q|R` on each edge. This is no longer a solution if γ ‰ 0. Our purpose is to construct a
blowing-up solution at the minimal mass MpQΓq. The idea is still to construct a blowing-up
solution based on the profile QΓ. More precisely, we apply the method of [RS11, LMR16],
where the existence of minimal mass blowing-up solutions is proved in other contexts. We
also refer to the recent preprint [TX], dealing with the problem on the line.

The expected result is that given E‹ P R there exists T ą 0 and a radial solution u on
r0, T r such that Mpuq “MpQΓq, Epuq “ E‹, and

}Bxuptq}L2pΓq „
tÑT´

1

pT ´ tq
2
3

.

4.5.2 Nonlinear damped wave equations

All the works about the damped wave equation presented in Chapters 1 and 2 concern in
various settings the linear equation (1.12). I have also worked on some non-linear problems
(see Sections 3.6 and 4.5.1), but it was not about the damped wave equation.

As said in introduction, in many physical situations, propagation of waves is modeled by
an equation involving nonlinear terms. A possible perspective for the future is to consider
some questions about non-linear damped wave equations. I have not started anything in that
direction yet, so I am essentially ignorant, but one can at least discuss some natural questions
on the subject.

A first perspective is to continue the analysis of one-dimensional problems with singu-
lar potential. In particular, the paper [19] discussed in Section 3.6 is about the non-linear
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Klein-Gordon equation. It would be quite natural to consider the same kind of setting, for
Klein-Gordon or the wave equation, but with dissipation. This corresponds to replacing iα
by a ą 0 in (3.31). Beginning with one-dimensional settings would be quite convenient, and
the difficulties due to the singular potentials are, as already discussed, related to quantum
graphs which is another aspect that I would like to develop. The natural first questions are
the analysis of the local and global existence of solutions, and the decay of the energy. One
remembers from Section 4.4.1 that there are already strange behaviors for the linear problem
for some particular values of the damping, and it would be interesting to know what happens
if we add a non-linear perturbation.

Nevertheless, the long term perspective is to start to add non-linear terms to the general
damped wave equation (1.12). The typical example is to consider a source term of the form

fpuq “ bu |u|
p´1

, (4.12)

for some p ą 1. Another possibility is to consider a non-linear dissipative term. The model
example with both non-linearities is then an equation of the form

B2
t u´∆u` aBtu |Btu|

ρ´1
“ fpuq, (4.13)

for some ρ ě 1.
The first question is the local well-posedness for the Cauchy problem. Then comes the

question of global well-posedness or existence of blowing-up solutions. When the solution is
globally defined, we can look at the long time behavior of the energy

Epu; tq “
1

2
}Btu}

2
L2pΩq `

1

2
}∇u}2L2pΩq ´

b

p` 1
}u}

p`1
Lp`1pΩq .

As for the linear problem, it is natural to wonder if it goes to 0 and, in this case, what is the
rate of decay.

It is too early to state a conjecture here, but this report is an occasion to look at the
literature. It is of course impossible to be exhaustive about the non-linear wave equation (or
the related Schrödinger equation). We refer to the books [Tao06, Caz03, Sog08] for introduc-
tions to nonlinear dispersive equations and many references, and in this paragraph we only
mention some papers dealing with the damped wave equation.

As for the linear setting, the problem is much better understood on compact domains
(typically with Dirichlet boundary conditions), or for the Klein-Gordon equation (with an
additional term mu on the left in (4.13)). We refer to [HZ88] for the inhomogeneous equation.
In [GT94] it is proved that for

1 ă p ă

#

d
d´2 if d ě 3,

`8 if d ď 2,
(4.14)

then (4.13)-(4.12) is globally well-posed if p ď ρ (in the sense that u P C0pR`, H1
0 pΩqq and

Btu P C
0pR`, L2pΩqq X Lρ`1

loc pΩq), while there exists a solution which blows up in L8pΩq if
p ą ρ.

Concerning the decay of the energy, we refer for instance to [Har85, HZ88, Zua88, Zua90,
JL13, JL20] for results on a bounded domain and [Zua91, Deh01, DLZ03, AIN11] for the
Klein-Gordon equation. Typically, these works use multipliers method or the method based
on semiclassical defect measures. Notice that in addition to the geometric condition, the
proofs rely on an assumption of unique continuation. Moreover, an important observation
used in many of these articles is that once the solution is small, the non-linear term no longer
play any important role and the solution of the non-linear problem has the same decay prop-
erties as a solution of the linear problem (see [Gér96]).

87



As for the linear problem, it is a different issue to consider the wave equation in an un-
bounded domain. Moreover, if the damping is effective at infinity, it is natural to wonder
if we have a diffusive phenomenon as described in Chapter 2 for the linear equation. As
for the linear equation, there are many results about the problem with constant coefficients
(apxq “ 1 in (4.13)). The results are different in the defocusing (typically, (4.12) with b “ ´1)
of focusing (b “ 1) cases.

We begin with the case where fpuq is equal to or of the form´ |u|
p´1

u. The paper [Mat76],
which is one of the firsts about the linear problem (see the discussion in Chapter 2), also dealt
with the semilinear equation. The results have been refined in [KNO95] (in particular, general
initial data are allowed). In [Kar00] (see Theorem 2.3 therein), the diffusion phenomenon
has been proved for initial data in pH1XL1qˆ pL2XL1q, when d ď 3 and for p ą 1` 4

d such
that (4.14) holds. Then the asymptotic profile is given by a solution of the heat equation
as in the linear case. In dimension 1, a better result is given in [HKN07a]. In [INZ06], the
large time asymptotics for the supercritical case p ą 1` 2

d is proved in dimension d ď 3. The
solution is actually close to a solution of the semilinear heat equation

Btv ´∆v ` v |v|
p´1

“ 0,

which behaves itself as a solution of the linear heat equation in the supercritical case (the
critical exponent p “ 1 ` 2

d is known as the Fujita’s critical exponent [Fuj66]). The re-
sult has then been improved for d “ 3 and extended to d “ 4 in [Nis06]. Less is known
in the critical and subcritical cases. For results about the critical exponent we refer to
[HKN07b, HKN06, HN17]. For the subcritical case we refer to [Ham10]. Notice that in these
cases the problem is not necessarily globally well posed.

Now we turn to the focusing case, where fpuq is typically of the form |u|
p

or u |u|
p´1

. In
general, the solution blows up in finite times for large initial data (see [Lev74, Section IV]).
Results about the existence of global solutions or blow-up (for small initial data) can be found
in [NO93, LZ95, TY01, Zha01]. It is proved that for p ą 1` 2

d the solution with “small” initial
data is defined for all time, while there are solutions which blow up when p ď 1` 2

d . These
results were proved under strong decay assumption in the initial data (typically, compactly
supported). We refer to [Nak01] for the analysis on an exterior domain with a damping which
can vanish.

Then there have been several papers with results about local well-posedness for large
initial data and global well-posedness for small initial data in pH1 X Lrq X pL2 X Lrq under
some conditions on r and p. We do not mention them all and refer to the introduction of
the recent paper [IIW17], which study the large data local well-posedness and the small data
global well-posedness with slowly decaying initial data.

The asymptotic behavior in terms of solutions of the heat equation is also proved in
[IIW17]. There are many references dealing with the large time asymptotics in more and
more general settings. We mention for instance an early result in dimension 1 [GR98],
[KU13] (d ď 3), [HKN04] (any dimension, small solutions in particular in L1) or [NN08]
(slowly decaying data). The recent paper [IIOW19] improves the results for the linear and
the non-linear problems. Higher order expansions are also available [KT16].

All the papers mentioned above concern the semilinear wave equation with linear damp-
ing (ρ “ 1 in (4.13)). If ρ ą 1, we notice that if the energy of the wave becomes small,
the damping term becomes smaller than in the linear case. Here re-emerges the question
whether the energy goes to 0 as tÑ `8 (even with f “ 0). Depending on the precise setting
and on the initial conditions, there are results of decay (the energy goes to 0) and results
of non-decay (it does not) for this kind of problem, on the Euclidean space or an exterior
domain. It is expected that in the nondecay case, that is when the damping term becomes
very small, the solution of (4.13) behaves like a solution of the undamped wave equation.
This is indeed the case and it is proved under suitable assumptions in the literature. For
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more precise statements we refer to [MM95, MM96, Mat03, TY07, TUY09, Dao18]. See also
[Nak13, TY15] for results with non-linear damping and a non-linear potential.

There are actually many other variants of the non-linear damped wave equation in the
literature. For instance, various systems of wave equations [GR14, BD13, BR20], fric-
tion and viscoelastic damping [MMR20], wave equation with non-linear boundary damping
[CDCL07], higher order problems [CX20], time-dependent damping [IW20], delayed damping
[Kaf21],variable exponents for the non-linear terms [MTAS17], etc.

We also refer to results about more or less general damped hyperbolic equations: see
[LS97, LPS98, CTR21] (global existence of solutions), [GGH16c] (decay estimates), [GGH16a]
(asymptotic behavior), [GGH16b] (smoothing effect of solutions with strong damping). See
also the (older) lecture notes [Har81] and the book [Har87].

Finally, to make the link with the quantum graphs, we mention the paper [ABM21] about
the non-linear damped wave equation on a star-graph, with damping at infinity on one edge.

Even if this bibliography is far from being complete, we already see that there is a very
wide variety of problems about the non-linear damped wave equation. Of course, for future
works, it would be reasonable to begin with questions closely related to my centers of interest.

The most natural perspective about the non-linear damped wave equation is to continue
with the settings introduced in Chapters 1 and 2. As for the linear problem, the difficulty
compared to the previous literature is to deal with the contributions of low frequencies in
quite general geometric settings. The papers mentioned above about the wave equation on
an unbounded domain essentially consider the equation with constant coefficients, sometimes
in an exterior domain. It would be interesting to generalized these results, as is done for the
linear problem.

An important tool for the analysis of non-linear dispersive equations are the Strichartz
estimates, which are space-time integrability properties. They are estimates on the solution
of the linear problem, but they are used to estimate the integral term given by the Duhamel
formula, which can be crucial for the well-posedness of the Cauchy problem for the non-linear
equation. See again [Tao06, Caz03, Sog08] for an introduction to the Strichartz estimates.
There are again many papers on this question, for the Schrödinger or the (undamped) wave
equations. We can mention for instance the original work [Str77] and the proof of the im-
portant endpoint cases in [KT98]. See also [BGT04] in an exterior domain and [BT08] in the
asymptotically Euclidean setting. We finally refer to the recent work [BM].

It seems that not much is known about the Strichartz estimates for the damped wave
or Schrödinger equations. Some estimates about the regularized Schrödinger equation (1.67)
are given in [Kar15]. There are also recent results about the damped wave equation (2.1),
see [Wat17, Inu19, IW].

These Strichartz estimates are dispersive estimates, in the spirit of the local energy decay
presented in Chapters 1 and 2. Before considering general non-linear problems, it would be
completely natural to begin with Strichartz estimates for the damped wave equation (1.12).

It is already a problem which is far from simple, since the standard arguments for the
Strichartz estimates as in [KT98] do not apply to a non-selfadjoint setting.
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[HKS15] A. Hussein, D. Krejčǐŕık, and P. Siegl. Non-self-adjoint graphs. Trans. Am. Math. Soc.,
367(4):2921–2957, 2015.

[HN17] N. Hayashi and P.I. Naumkin. Damped wave equation with a critical nonlinearity in
higher space dimensions. J. Math. Anal. Appl., 446(1):801–822, 2017.

[HO04] T. Hosono and T. Ogawa. Large time behavior and Lp-Lq estimate of solutions of
2-dimensional nonlinear damped wave equations. J. Differ. Equations, 203(1):82–118,
2004.

97

https://www.math.univ-toulouse.fr/~vgrassel/shcrod%20on%20asymptot%20conical.pdf
https://www.math.univ-toulouse.fr/~vgrassel/shcrod%20on%20asymptot%20conical.pdf
https://www.youtube.com/watch?v=jLfR11KTW9o


[HS96] P.D. Hislop and I.M. Sigal. Introduction to Spectral Theory with applications to
Schrödinger Operators, volume 113 of Applied Mathematical Sciences. Springer, 1996.
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[KSTV15] D. Krejčǐŕık, P. Siegl, M. Tater, and J. Viola. Pseudospectra in non-Hermitian quantum
mechanics. J. Math. Phys., 56(10):103513, 32, 2015.

[KT98] M.A. Keel and T. Tao. Endpoint Strichartz estimates. American Journal of Mathe-
matics, 120(5):955–980, 1998.

[KT06] H. Koch and D. Tataru. Carleman estimates and absence of embedded eigenvalues.
Communication in Mathematical Physics, 267:419–449, 2006.

[KT16] T. Kawakami and H. Takeda. Higher order asymptotic expansions to the solutions for
a nonlinear damped wave equation. NoDEA, Nonlinear Differ. Equ. Appl., 23(5):30,
2016. Id/No 54.

[KU13] T. Kawakami and Y. Ueda. Asymptotic profiles to the solutions for a nonlinear damped
wave equation. Differ. Integral Equ., 26(7-8):781–814, 2013.
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[Mou83] E. Mourre. Opérateurs conjugués et propriétés de propagation. Comm. Math. Phys.,
91:279–300, 1983.

[MRS77] C.S. Morawetz, J.V. Ralston, and W.A. Strauss. Decay of the solution of the wave
equation outside non-trapping obstacles. Comm. on Pure and Applied Mathematics,
30:447–508, 1977.
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[Sjö00] J. Sjöstrand. Asymptotic distribution of eigenfrequencies for damped wave equations.
Publ. RIMS, Kyoto Univ., 36:573–611, 2000.

[Sog08] Ch. D. Sogge. Lectures on nonlinear wave equations. Boston, MA: International Press,
2nd ed. edition, 2008.

[Sol04] M. Solomyak. On the spectrum of the Laplacian on regular metric trees. Waves Random
Media, 14(1):s155–s171, 2004.

[Str75] W.A. Strauss. Dispersal of waves vanishing on the boundary of an exterior domain.
Commun. Pure Appl. Math., 28:265–278, 1975.

[Str77] R.S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of
solutions of wave equations. Duke Math. J., 44:705–714, 1977.

101

http://tel.archives-ouvertes.fr/tel-00578423/fr/
http://tel.archives-ouvertes.fr/tel-00578423/fr/


[SW16] M. Sobajima and Y. Wakasugi. Diffusion phenomena for the wave equation with space-
dependent damping in an exterior domain. J. Differ. Equations, 261(10):5690–5718,
2016.

[Tao06] T. Tao. Nonlinear dispersive equations. Local and global analysis, volume 106 of CBMS
Reg. Conf. Ser. Math. Providence, RI: American Mathematical Society (AMS), 2006.

[Tsu84] Y. Tsutsumi. Local energy decay of solutions to the free Schrödinger equation in
exterior domains. J. Fac. Sci., Univ. Tokyo, Sect. I A, 31:97–108, 1984.
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