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Presentation of the thesis

Avant-propos

This dissertation is about the research I have done since I arrived in Toulouse in 2011, after
my Ph.D.

My Ph.D. (2007-2010) was about the high-frequency dissipative Helmholtz equation.
More precisely, I proved high-frequency resolvent estimates in [2], and I studied in [3] the
semiclassical measure for the solution when the source term concentrates on a bounded sub-
manifold of the Euclidean space. The two papers [4, 5] were published later, but they were
already partially contained in my Ph.D. thesis. The work [4] is about the resolvent estimates
when the damping can take negative values, and [5] is a generalization of [3] to the case of an
unbounded submanifold. These works will not be discussed in this report (except for their
links with more recent papers). Neither will be [1], which is an undergraduate work on a
completely different subject (modelization of the traffic flow).

The Helmholtz equation is the stationary version of the damped wave equation. After
these works, I was motivated by the time-dependent problem. However, to state a result
for high frequencies only, one needs a spectral localization. This is an example among many
others of an issue completely insignificant in the selfadjoint setting which becomes a real
obstacle with damping.

When I arrived in Toulouse, I discussed this question with Jean-Marc Bouclet, and our
conclusion was that instead of trying to localize on high-frequencies, we should prove resolvent
estimates for low frequencies and then consider the damped wave equation without spectral
localization. Since Jean-Marc had just proved low frequency resolvent estimates for the
Schrédinger and undamped wave equations at that time, it was a perfect question to begin
a collaboration. And it turned out to be a very rich subject.

Il était une fois l’équation des ondes amorties...

An important part of this thesis will be devoted to the damped wave equation. An introduc-
tion on the subject will be given in Chapter 1. Several settings will be considered. On the
Euclidean space R, the damped wave equation reads

?u + Pu+ a(z)du =0, on R, xR,

where P is a general Laplace operator (see (1.8) below) and a(z) = 0 is the absorption index.

I have been interested in the local energy decay for this damped wave equation. In the first
results, the purpose was to recover in this setting the results known for the undamped wave
equation. As explained above, the main part of the work was the analysis of the contribution
of low frequencies.

To see the damped wave equation as a perturbation of the undamped case, we had to
assume that the absorption index a(x) decays at infinity. It turned out that when the damping
is effective at infinity (for instance if a(z) goes to 1 at infinity) the large time behavior of
the solution is different. I studied this new phenomenon in various contexts. Since the
technical issues raised by these two aspects are completely different, the discussion about

il



the damped wave equation is split into two chapters. The case of the wave equation with
localized damping is discussed in Chapter 1 while the results about a damping effective at
infinity are described in Chapter 2.

Together with the wave equation, I have also considered the local energy decay for the
Schrodinger equation. These two problems share many similarities, and it is relevant to
discuss them together. In some situations the Schréodinger equation can be simpler, and it
has been used as an intermediate step toward the analysis of the wave equation. And finally,
the ideas developed for the damped wave equation had an important application to a result
about the usual (conservative) Schrédinger equation.

... et d’autres problémes (pas toujours) linéaires impli-
quant des opérateurs (pas toujours) non-autoadjoints.

In parallel with my main research work on the damped wave equation, I have also developed
various collaborations on other topics. They are often questions which arose from scientific
discussions with friends and finally turned into a collaboration.

I would say that my field of research is the analysis of partial differential equations in-
volving non-selfadjoint operators, but this is of course not restrictive. Thus in most of these
problems there emerges a non-selfadjoint operator, but in some others only selfadjoint oper-
ators are involved. Most results are about a particular PDE, but some are about abstract
spectral theory. And most problems are linear, but some are about non-linear equations.

All these various settings will be presented separately in Chapter 3. Some are closely
related to my favorite topics, some are quite different, but they all could be the starting
points of new perspectives for future research.

Finally, the last chapter will be devoted to a description of my preprints, some works in
progress, and some discussions about possible future projects. As for my past research, some
are questions about the damped wave equation, and some others go in different directions.

I have chosen to present in this thesis all my papers which are not included in or closely
related to my Ph.D. However, since it is not possible to give a detailed description for all of
them, some will be emphasized with scientific context, mains ideas of the proofs and com-
ments, and for others I will only briefly describe the results.

A list of my publications and pre-publications, labeled from [1] to [27], is given at page

91. The other references used in the text, labeled from [Aaf21] to [Zwol2], are given at the
end of the manuscript.
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Chapter 1

Local Energy Decay for the damped
wave equation with localized
damping

In this chapter and the following, we discuss the local energy decay for the damped wave
equation on unbounded domains.

There are several difficulties. Because of the damping, the corresponding operator is
not selfadjoint, which raises some technical issues compared to the undamped case. In the
first result (see Theorem 1.1) the purpose was to generalize to this setting some estimates
already known without damping. In a second step, I considered problems specific to the
dissipative case (see all the results of Chapter 2). And finally, the strategies developed for
these dissipative settings gave some new ideas useful even for the selfadjoint setting (see
Section 1.7).

The damped wave equation was already well studied on compact domains. In this case,
there is no problem with the contribution of low frequencies (from the spectral point of view,
0 does not belong to the spectrum of the corresponding operator). In all my works, I consider
the wave equation on unbounded domains. Results about the contribution of high frequencies
are essentially contained in my Ph.D. [Roy10] and will not be discussed in details here. My
research after my Ph.D. mostly concerns the contribution of low frequencies, and the analysis
is completely different. This is the main subject of this thesis.

Finally, an important difficulty is due to the wave equation itself. In many aspects, the
problems of the local energy decay for the wave and Schrédinger equations are similar. How-
ever, we will see all along this thesis that there are difficulties specific to the wave equation,
especially in the dissipative case.

We begin in this chapter with the damped wave equation with localized damping and
closely related problems. We will discuss the papers [6, 7, 9, 10, 11, 23]. The earlier results
proved in [2, 3, 4, 5], that we do not present in this report, are also related to this setting.

1.1 Local energy decay for the wave equation

The model case. In this first chapter, we consider the wave equation in an asymptotically
Euclidean setting. Given fo in H'(R?) and go in L*(R%), the model case is the usual free
wave equation on R?

6t2u0 — AUO = 07 (1.1)

with initial condition

up(0) = fo, Jruo(0) = go. (1.2)



This is the simplest model for the description of waves. In many propagation phenomena,
there are also important non-linear effects, but this simple model is already suitable in many
concrete situations, such as the propagation of acoustic or electromagnetic waves (if the elec-
tromagnetic field does not depend on time then the Maxwell equations can be decoupled in
two wave equations for the electric and magnetic fields).

A large part of this thesis deals with the long time behavior of a solution of the wave
equation. A relevant way to measure the evolution of a wave is to look at the localization of
its energy:

Eoluo: ) — /R (1Vuo(t, o) + Gruo(t, )| ) da. (1.3)

The global energy is a constant of the motion. However, we can look at the distribution of
the quantity |Vuo(t)|* + |druo(t)|” to see where the wave is propagating.

An important property of the wave equation is the finite speed of propagation. With
all the physical constants set to 1, a wave propagates at speed at most 1. If fy and g¢ are
supported in the ball B(0, R) of radius R > 0, then () is supported in B(0, R + t).

In odd dimension, the wave actually propagates exactly at speed 1. This is the strong
Huyghens principle. This implies that there is no diffusion of waves. If a light bulb is turned
on for one second, someone looking at the bulb will see it for exactly one second, even from
very far away.

At least for regular initial data, we have an explicit expression for the solution of (1.1)-
(1.2) (see for instance [CH89, Eva98]). For d = 3, we have

1
wo(t.2) = pr / oy o)+ V0o (4 =2) + t90(1)

If the initial condition (fo,go) is supported in the ball B(0, R), then ug(t) is supported in
B(0,t + R)\B(0,t — R), and in particular the energy in any compact of R? vanishes after
finite time. For instance,

vt = 2R, Vuo(t) e p0,m) + 100 (D725 0,m) = O (1.4)

The same applies in any odd dimension d > 3. In dimension 1, it is still true that d,uo(t)
and Jzuo(t) are supported in [—t — R, —t + R] u [t — R,t + R], but this is not necessarily the
case for the solution itself, as can be seen from the classical d’Alembert formula

_folw+t)+ folw—t) 1 [
a 2 +§/m

uo(t, x) go(s) ds.

—t

The behavior is slightly different in even dimension. If one drops at time t = 0 a pebble
in a (two dimensional) pond, a circular wave will emanate outward. The pond is perfectly
calm outside this circular wave, but not inside as would be the case with the strong Huyghens
principle. Even if the magnitude decays rapidly, the excited state will persist indefinitely.
Oral communication would be quite difficult in even dimension.

In this case, the free wave equation can be solved by the descent method (we can see a
wave in dimension 2 as the trace on R? x {0} of a wave in dimension 3 which does not depend
on the last variable). We can see, as expected, that with fy and gy compactly supported the
wave does not vanish in a fixed compact, even for large times. However, the wave mostly
propagates at speed close to 1 and the energy on a compact goes to 0 as t — +0o. More
precisely, we can show that for R > 0 there exists Cr > 0 such that for (o, go) supported in
B(0, R) the solution ug of (1.1)-(1.2) satisfies

VU 25 0.1)) + 10O 32 50.1)) < Cr &) > (IV fol 2o ey + |90l 72 ey ). (15)



This is what we call the local energy decay. In any dimension, the energy of a wave in
any compact goes to 0 or, equivalently (since the global energy is constant), the energy of the
wave spreads to infinity. Notice that we have to consider localized initial data. Otherwise,
a wave coming from far away could reach a fixed compact after a long time and (1.4)-(1.5)
could not hold.

It is then natural to wonder if the same phenomenon occurs for waves in more general
settings, when explicit descriptions of the solutions are not available. Thus, the first question
is whether the energy of the wave on any compact still goes to 0 for any (localized) initial
condition in perturbed settings. When this is the case, the next issues are the rate of decay
and the uniformity with respect to the initial data (the time 7" = 2R in (1.4) and the constant
Cr in (1.5) depend on R but not on fy, go supported in B(0, R), and in particular the right-
hand side in (1.5) is proportional to the initial energy).

These questions are interesting for themselves, since they give qualitative properties for
the long time behavior of the solutions. For instance, if we measure a wave on a bounded
subdomain, it can be useful to know for how long there is a relevent information in this region.
But the local energy decay, and the resolvent estimates that we develop for the proofs, are
also crucial for the mathematical analysis of other important properties (scattering theory,
non-linear problems, etc.).

Together with the wave equation, we also consider the Schrodinger equation, which plays
a central role in quantum mechanics. The model problem is

{—i&tuo — Aug = 0, on R, x R%, (1.6)

Uo|t=0 = f07 on Rd7
for some fy € L?(R?). The L?-norm of the solution is constant:

2 2
HUO(t)HLz(Rd) = HfO”L?(Rd)'

There is no analog of the Huyghens principle for the Schrédinger equation. However, the
mass also escapes to infinity: for R > 0 there exists Cr > 0 such that if fy is supported in
B(0, R) then the solution ug(t) of (1.6) satisfies

2 —d 2
[u@I 720,y < Cr () luol L2 (ray - (L.7)

This is similar to (1.5). The difference is that there is no distinction due to the parity of the
dimension d. As for the wave equation, we are interested in this local energy decay for the
Schrodinger equation in more general settings.

The asymptotically Euclidean setting. Our main purpose in this chapter is to discuss the
local energy decay for the damped wave equation in an aymptotically Euclidean setting. We
introduce simultaneously the setting for the Schrédinger equation.

We consider on R? a general Laplacian of the form
1
w(z)

where the matrix G(z) and the scalar w(x) are positive and bounded. More precisely, we
assume that there exist Gnin, Gmax, Wmin, Wmax > 0 such that, for all z € R? and £ € RY,

P=-——divG(a)V, (1.8)

Gmin |§‘2 § <G(m)€>§>Rd < Gmax ‘€|2 and Wmin < ’LU(Q?) < Wmax- (19)

We also set
—AG = —div G((E)V



The definition of P includes in particular the case of the standard Laplace operator (with
G(z) = Id and w(z) = 1), a Laplacian in divergence form (with w(z) = 1, so that P = —Ag)
or the Laplacian associated with a metric. We recall that the Laplace-Beltrami operator
associated with the metric g(z) = (g;,x(2))1<jk<d 1S given by

v ¥y = — 3 L gt g )
gveg 1 ’
LOIEv=1e o

where |g(z)| = |det(g(z))| and (¢7%(x))1<jr<a = g(z) L. Then Py = — div, Vy is of the form
(1.8) with w = |g|* and G = |g|? g~*.

We assume that P is associated with a long range perturbation of the flat metric. This
means that G(z) and w(x) are long range perturbations of Id and 1, respectively. For some
po €]0, 1] there exist constants C, > 0, o € N, such that for all z € R?,

0%(G(z) — 1d)| + 0% (w(z) — 1)| < Cy (&)=~ (1.10)

Here and everywhere below we use the standard notation (z) = (1 + |z|*)z.

For the wave equation we also introduce the absorption index a(z). It is smooth, bounded,
takes non-negative values, and it is of short range: choosing the constants C, larger if
necessary, we have

0%a(z)| < Cy ()07l (1.11)
The short range assumption is not just a technical issue. If a decays slower at infinity, then
the results are different. This will be discussed in the next chapter.

On the other hand, the case a = 0 is allowed in this setting, so the results about the
damped wave equation presented in this chapter include in particular the case of the un-
damped wave equation.

We consider on R? the (possibly) damped wave equation

{(9t2u + Pu+a(x)dpu =0, on R, x RY, (1.12)

(u7atu)|t:0 = (fa g)v on Rda
where (f,g) € H*(RY) x L%(R%). For f € L?(R) we also consider the Schrodinger equation

—i0yu + Pu = 0, on R; x R?, (1.13)
up—o = f, on R*.
In this asymptotically Euclidean setting, we define the energy of the wave by
E(u;t) = / ((G(z)Vu(t,z), Vu(t, z))gs + w(z) \(9tu(t,x)|2) dz. (1.14)
R4

This is equivalent to the usual energy (1.3), in the sense that there exists C' > 1 such that
C~'Ey(u;t) < E(u;t) < CEg(u;t). This definition of the energy is adapted to the geometry
of the problem, since with this choice a solution of (1.12) has a non-increasing energy. More
precisely, we formally have

d
ZB(ut) = —/ a(z)w(z) |opu(t, z)|* dz < 0.
dt Rd

For the damped wave equation, the decay of the global energy is already an interesting
issue. However, the damping can be 0, and in any case it is small at infinity, so the waves
at infinity are not really damped and we cannot expect a uniform decay for the global energy.

Here we are interested in the local energy decay. We are going to prove this property
about the time dependent problem via a spectral approach. In particular, we can separate
the contributions of high and low frequencies.



The non-trapping condition. The contribution of high frequencies, though highly non-trivial,
is now quite well understood. It is known that the propagation of a high frequency wave is
well approximated by the classical rays of light (for instance, the geometric optics is a good
approximation of wave optics if the wavelength is very small compared to the other lengths
of the problem). This is made rigorous with semiclassical analysis (see for instance [Zwol2]).
For a free wave, rays of light follow straight lines at constant speed (and necessarily escape
to infinity). With an obstacle, they bounce on the obstacle following the laws of geometric
optics (there are subtle behaviors for rays tangent to the boundary, which we do not discuss
here). For a metric g (corresponding to an inhomogeneous refraction index), the rays of light
are the geodesics. In general, for (z,&) € R?? ~ T*R? we set

p(z,€) = (w(@) ' G(2)€, Epa - (1.15)

Then rays of light are the solutions of the Hamiltonian problem associated with p. For
(w0, &) € R? we denote by (z(t; w0, &), £(t; 70, &o)) the solution of

'(t) = Oep(x(t), £(1)),
§'(t) = —0ap(x(t),£(1)),
z(0) = zo, £(0) = &o-

Since high frequency waves follow these classical trajectories, one expects that they all
escape to infinity if and only if all rays of light go to infinity (for the space variable). This is
the non-trapping condition:

Y(zo,&0) e p t({1}), |z(t;z0,&)] T T (1.16)
The motion of rays of light in the phase space is only an approximation and, in fact, the
local energy always goes to 0. However, the higher the frequency is, the more accurate the
approximation is. So without (1.16) the high frequency wave stays trapped for a long time,
and the local energy decay is very slow. Thus, without (1.16), the estimate is not uniform
(proportional to E(u;0)) but we have a loss of derivative (it is proportional to ||f||§13+1 + HgH?{S
for some s > 0).

The behavior of the contribution of low frequencies is completely different. Compared
to high frequencies, the local energy decay for the contribution of low frequencies is always
uniform with respect to the initial data. On the other hand, while the contribution of
high frequencies decays very fast (at least for regular initial data) the contribution of low
frequencies is responsible for the lack of time decay. For instance, the rate of decay in (1.5)
is governed by low frequencies. This question will be the main issue in this and the next
chapters.

Literature about the undamped case. There is an important literature about the local
energy decay for the wave equation. An early result is [Mor61], where decay at rate 1/t is
proved by a mutiplier method for the free wave outside a star-shaped obstable in dimension
3 (with a Dirichlet boundary condition). Then exponential decay is proved in [LMP63] via
an analysis of the corresponding semigroup. In [LP62] it is proved that the local energy for
the wave in a general exterior domain goes to 0. See also [Zac66] for more general hyperbolic
equations. In [LP72], the Lax-Phillips method is adapted to even dimensions. We refer to
the book [LP67] (or the revised version [LP89]) for a review of this theory. The non-trapping
condition is already mentioned there.

It is proved in [Ral69] that this non trapping condition is necessary to have uniform local
energy decay. Local energy decay outside non-trapping obstacles is considered in [Mor75,
Str75, MRS77], via the existence of an escape function (an escape function is a function on
the phase space which is increasing along the Hamiltonian flow). It is proved in [MRS77]
that we have decay at rate ¢! in even dimension, and exponential decay in dimension 3.



This question is then discussed in [Vai75]. Compared to the previous strategies, the prop-
erties of the time-dependent problem are now deduced from the analysis of the stationary
problem. Another important step is the analysis of [Mel79], based on the propagation of
singularities of [MS78]). In particular, a decay at rate t~¢ is proved in even dimensions. This
has then been improved in [Kaw93]. We also refer to [Vod99] for a more general setting.
Finally, it is proved in [Bur98] that outside any compact smooth obstable we have at least
logarithmic decay if we allow a loss of regularity.

The stationary problem of the wave equation (the Helmholtz equation) is closely related
to the one for the Schrodinger equation. Then local energy decay has also been proved for the
latter. See [Rau78] for an exponentially decaying potential, [JK79] for more precise asymp-
totics (of the resolvent and the propagator) and [Mur82] for more general operators. The
case of an exterior domain is discussed in [Tsu84].

Finally, most of the recent papers deal simultaneously with the Schrodinger and wave
equations. We refer to [Boulla, BH12] for estimates with an e-loss on an asymptotically
Euclidean setting (the Laplacian is a Laplace-Beltrami operator associated with a long-range
perturbation of the standard metric on R?). This means that the decay rate for the local
energy is of size O(t~4*¢) for the Schrédinger equation and O(t~24+¢) for the wave equation.
The e-loss has finally been removed in [BB21]. The method does not see the parity of the
dimension, so this final result is optimal for Schrédinger or for the wave in even dimension,
but not for the wave in odd dimension. However, it is proved [BH13] that if the metric goes
faster to the flat metric at infinity then we can recover a better estimate on the local energy
in odd dimensions.

In these works, the time decay is proved from resolvent estimates. And the main contri-
butions of these papers is the analysis of low frequency resolvent estimates. High frequency
resolvent estimates were already understood for the Schrodinger operator in close settings.
See for instance [RT87] for the Schrodinger operator with a potential, [Rob92] for a second or-
der perturbation of the Laplacian and [Bur02] for a general compactly supported perturbation
of the Laplacian in an exterior domain (via the contradiction argument using semiclassical
defect measures [Gér91], as also used in [Leb96]). Low frequency resolvent estimates were
also already discussed in [Boullb, BH10]. Earlier papers also considered the limiting absorp-
tion principle at zero energy in some particular settings (see for instance [Wan06, DS09] and
references therein).

About the damped wave equation. Here we are mainly interested in the damped wave
equation. The stabilization of the wave equation also has a long history on compact domains.
In this case, we consider the global energy. The wave cannot escape to infinity, but it is
dissipated and we similarly study the decay to 0. In this setting there is no difficulty with
low frequencies, but the analysis of high frequencies is similar. In particular, the analog of
the non-trapping condition is the so-called geometric control condition. The energy decays
uniformly if and only if all the classical trajectories go through the damping region.

We refer to [RT74] for exponential decay with dissipation in the compact manifold and to
[BLR92] for dissipation at the boundary (see also [BG97]). For logarithmic decay with loss
of regularity without the control condition we refer to [Leb96] for internal damping and to
[LR97] for damping at the boundary. Then there have been several results about intermedi-
ate situations, where the geometric control condition does not hold, but the set of undamped
rays of light is small in some suitable sense. See for instance [BH07] for the problem on the
stadium (giving polynomial decay of the energy), [Chr07] for a situation where the decay
is exponential but not uniform, [LL17] for the so-called open book and [BG20] for a rough
damping. We also refer to [Sj600, Anal0] for more results on manifolds without boundary.

In an unbounded domain we have additional difficulties, in particular due to the contri-
bution of low frequencies. As said above, we only consider the local energy decay in this



chapter.

In this setting, the energy on a compact has now two reasons to decay. Either because
it escapes to infinity, or because it is dissipated. The expected corresponding condition on
classical trajectories is that they should all escape to infinity or go through the damping
region. This means that we can allow trapped trajectories if they are damped. We set

Qy — {<mo,§o> e (1) supla(tinn. &) < +oo}.

Then the condition on classical trajectories (which we can call geometric damping condition)
reads
V(IOa 50) € Qba dte Ra Q(I(t, Zo, §0)) > 0. (117)

In [AKO02], L. Aloui and M. Khenissi have considered the wave equation in an exterior
domain, with a compactly supported damping, via the theory of Lax-Philipps and the contra-
diction argument with semiclassical measures. They recover, under the assumption analogous
to (1.17) in an exterior domain, the exponential decay of the local energy in odd dimension.
A polynomial decay is obtained in [Khe03] in even dimension.

The main result. The local energy decay for the damped wave equation (1.12) (in dimension
d = 3) has been proved in [6]. This is a collaboration with Jean-Marc Bouclet. It has then
been slightly improved in [11].

Instead of considering compactly supported initial data and the energy on a compact,
we choose initial data which decay at infinity and consider a weighted energy, which gives
slightly better results. For § € R we denote by L%%(R%) the weighted space L2({z)** dz) and
for k € N we denote by H*?(R?) the corresponding Sobolev space. The main result about
the damped wave equation is the following.

Theorem 1.1. Assume that the geometric damping condition (1.17) holds. Let e > 0 and
§ > d+ 3. There exists C > 0 such that for (f,g) € H"9(R?) x L**(R?) and t > 0 we have

| (@)™ Vu®)] o gy + | 0) ™7 2()] 2 ey
<C(n~? (I (z)° VfHL?(JRd) +] <$>69HL2(R‘1))’
where u is the solution of (1.12).

Notice that in even dimension we have an e-loss compared to (1.5) (where the squares
of the norms are considered). When [6] and [11] were written, this was the best known
result even for the undamped case. Now the e-loss has been removed in the undamped case
in [BB21], and it is one of the perspectives to improve this result in the general case (see
Section 4.1.1).

We discuss this theorem in the next three sections (notice that the presentation is slightly
different than in the original papers), and then we will turn to the Schrodinger equation (see
in particular the local energy decay for (1.13) in Theorem 1.25 below).

1.2 Resolvent estimates for the wave operator

Theorem 1.1 is proved from the spectral point of view. More precisely, we deduce estimates
on the time-dependent problem from resolvent estimates for the corresponding wave operator.

1.2.1 The wave operator

As usual for a wave equation, we rewrite (1.12) as a first order problem of the form

{atU(t) —WU(t) =0, Vt=>0, 118)

U(0) = F.



At least formally, u(t) is a solution of (1.12) if and only if U(t) = (u(t),wd,u(t)) satisfies

(1.18) with F = (f,wg) and
—1
W = (AOG “ia> (1.19)

We set # = H'(RY) x L2(RY). It is endowed with the natural norm. We also define the
energy space & as the Hilbert completion of .7 = S(R?) x S(R?) for the norm defined by

2
I, )% = / (G(2)Vu(z), Vu(z))gs da + / @ 4,
Rd Rd w(x)
In particular, 5# is dense in &. We set
DomW) ={U e & : WU € &}, (1.20)

where WU is understood in the sense of distributions. Then we consider on & the operator
W defined by (1.19) on the domain Dom(WV).

Notice that if u is a solution of (1.12) then its energy FE(u;t) (see (1.14)) is equal to
H(u(t),w@tu(t))Hé, while the usual energy Ey (see (1.3)) corresponds to the square of the
usual norm on H(R?) x L2(R%). As already observed for the energy, this choice of norm on
& is equivalent to the usual one, but it is adapted to the operator W, in the sense that with
this Hilbert structure the operator W is skew-adjoint if a = 0, and WV is dissipative in the
general case a > 0.

There are two possible conventions for dissipativeness. We choose the convention which
is usual for Schrodinger operators. We set

C*¥={2eC: +Re(2) >0} and Cq ={zeC : £Im(z) > 0}.
Definition 1.2. We say that the operator T" on the Hilbert space H is dissipative if
Yo e Dom(T), Im{T¢,p), <O.
Similarly, T is accretive if
Vo € Dom(T), Re(T'¢,p),, = 0.

Then we say that the dissipative (accretive) operator T is maximal dissipative (maximal
accretive) if its resolvent set contains some —hence any— z in C; (z € C7).

The other possible definition for dissipativeness, satisfied by W on &, is the property
Re(T'p, ¢),, <0 (in this case T is dissipative if (=T') is accretive).

With the convention of Definition 1.2, iV is dissipative (or (—W) is accretive) on & since
VU = (u,v) € Dom(W), Im{WU,Upg = ReWU,U) s = —<av, v)p2(gay < 0.

Now let ¢ € C* and F € J#. If we solve formally the equation (W—¢)U = F for U € Dom(W)

we get
A-lp —R(i¢)(aw + (w) —R(i()
W—0'F = (w —wR(i¢)(Caw + CPw) —CwR(iC)) F, (1.21)

where for z € C, we have set
R(z) = (= Ag —iawz — wz2)_1. (1.22)

We also have
et (T +R(iQ)Ag)  —R(iC)
W-¢)7'F= < CwR(O) MG —Cﬁ(i<)> F. (1.23)



For R(z) we have again chosen a convention consistent with the Schrodinger setting (z
belongs to the upper half-plane and R(z) looks like the resolvent of the Schrédinger equation
if a = 0). With this convention we have R(i¢) = (—Ag + aw( + w(?)~L.

All this can be made rigorous. We first prove that R(z) is well defined and then we check
that the right-hand side of (1.21) or (1.23) defines a bounded inverse of (W — ¢)~ 1.

Proposition 1.3. The operator (— Ag — jawz — wz2) with domain H*(R?) has a bounded
inverse on L*(R?Y) for all z € C,. Moreover, its inverse R(z) extends to a bounded operator
from H-1(R?) to H'(R?) and there exists C > 0 such that for z € C, and 31, B> € N¢ with
181l <1, |B2| <1, we have

C|Z‘|ﬁ1\+|ﬁ2\*1

|02 R(z)02 HL(L2) = Im(z)

(1.24)

Proposition 1.4. The operator iW is mazimal dissipative on &. Moreover, for ( € Ct the
resolvent (W — ()™t is given by (1.23), and for F € 5 we also have (1.21).

By the Hille-Yosida Theorem, we deduce from Proposition 1.4 that W generates a con-
tractions semigroup on &, and in particular the problem (1.18) is well posed. Then we can
rewrite Theorem 1.1 with W in the weighted energy spaces. For § € R we denote by &? the
Hilbert completion of . for the norm given by

[ 0)lzs = [ @) Vulpaga + 142 0l o).

Theorem 1.5. Assume that the geometric damping condition (1.17) holds. Let ¢ > 0 and
0>d+ % There exists C > 0 such that for F € &° we have

| F|,_, < C @) |F

&

The main ingredients of the proof described below are given in [6]. However, in [6] there
is a loss of regularity, and the estimate also depends on the L2-norm of the initial condition
up. Then the estimate of [6] is

[ (2) ™" V)] gy + | @7 du(®)] 2 gay < C ™ (ol o may + 11l s ey )-

Theorem 1.5 is the version proved in [11].

Remark 1.6. The fact that H' is not included in L? raises some difficulties, and one might
prefer to work in 7 instead of &. This is in some sense more convenient, but this will
not give the same results. If we estimate U in (a weighed version of) J#, we are not only
considering the sizes of the derivatives of the wave (the energy), but also the size of the
solution itself, estimated with respect to the initial energy but also the size of the initial
condition f in L?(R%). This can be considered —or not— as a drawback. We are also loosing
the nice structural properties of the operator W, but the resolvent (W — ()~ is still defined
on C* and the propagator eV is still defined for t > 0. We will work in . in the next
chapter, see Section 2.2.1. .

Of course, this discussion is irrelevant in situations where H' and H! are equal as sets
with equivalent norms, for instance on a bounded domain with Dirichlet boundary condition.
In unbounded domains, the same applies if we work with initial data supported in some fixed
compact, as is usually the case in results about the local energy decay. Similarly, if (f,g)
is not compactly supported but belongs to some weighted space H'®(R%) x L?9(R%), and
if we are ready to work in a slightly more restrictive space, then we can use the following
generalization of the Hardy inequality (see Lemma 4.1 in [11]). For & > 0 there exists C' > 0
such that for all ug € S(R?) we have

[ {2)° ol L2 ray < O ()T Vo) 12 ga)- (1.25)



Remark 1.7. In the literature about the undamped wave equation, it is usual to diagonalise
the operator W, and the analysis reduces to a problem involving the operator v/P on L? (]Rd).
We will not use this possibility, since with the damping it is no longer possible to diagonalise
W. We could certainly deal with the non-diagonal terms, but the gain is not clear at all and
we prefer to stay in the (possibly) unconvenient but (certainly) natural space &. Moreover,
it seems slightly more natural to prove estimates on || (z)° Vu(t)||2(ray rather than on

| (z)~° VPu(t)| p2ray for the local energy decay.

1.2.2 From resolvent estimates to local energy decay

To deduce properties on the wave equation from resolvent estimates for W, we write the
propagator eV in terms of the resolvent (W — ¢)~!, ¢ e C*.

By density, it is enough to prove Theorem 1.5 for F' € .. Let ¢ € C*(R,[0,1]) be equal
to 0 on | — o0,1] and equal to 1 on [2,4+0o[. For ¢ € C* we set

F; :/Rqs’(s)eS(VV*OFds. (1.26)

We can see Fy as a “regularized in time” version of F' (we recover F if we replace ¢ by 1g,,
hence ¢’ by dg). Then we have

W —¢)'F: = —/Rqﬁ(s)es(w_oFds.

We still have propagation at finite speed for a wave in our perturbed setting, so for § > 0
and T' > 0 there exists C' = 0 such that for s € [0,T] and F € . we have (see [11, Lemma
5.1])

|V F| 55 <CIFlgs -

Thus there exists C' > 0 such that, for all €. and ( € CT,
1Fell g5 < CF g5 -

Let i > 0. Given 7 € R we write ¢ for y1 —i7. The interest of considering F; instead of F
is that (W — ¢)~1F, decays rapidly as |7| — c0. Then the Fourier inversion formula gives

1
P(t)e™VF = (W — )R d¢ (1.27)
20 JRe(¢)=n
where the line Re(¢) = p is oriented from top to bottom (from p + 00 to p — i00). Since
HetWHL(éa) < 1, the estimate of Theorem 1.5 is clear for ¢ in a compact. It is then enough to

estimate (1.27), which coincides with e?VF for ¢ > 2.

We deal separately with the contributions of high and low frequencies. We consider
Xiow € CL (R, [0,1]) equal to 1 on a neighborhood of 0, and xnigh = 1 —Xiow- For * € {low, high}
and t > 2 we set

1

o 2T JRe(¢)=p

X (Im(Q)e (W = ) Fe dC. (1.28)
We set D = {2z € C : |z| < 1}. To estimate Unign . (t)F, we need estimates for (W — ()1
We have the following result.

Theorem 1.8. Assume that the geometric damping condition (1.17) holds. Let n € N* and
6>n— % There ezists C > 0 such that for ( € CT\D we have

o —¢ <C.

)_n|‘ﬁ(g57g75)
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The uniform estimates of Theorem 1.8 are not enough to estimate directly the integral
Uhigh,.(t)F. This is the reason why we had a loss of derivative in [6]. This point has been
improved in [11], and we finally have the following result.

Proposition 1.9. Let v >0 and 6 > v+ % There exists C = 0 such that for F € &, u€]0,1]
and t = 1 we have
[Unigh, () Fll -5 < C ()" ™ | Fl g5 -

Notice that under the geometric condition (1.17), we can estimate uniformly as many
derivatives as we wish for the resolvent if the weight is strong enough. Then we get a fast
decay for Unigh,,(t)F. This is not the case for the contribution of Uiew,,.(t)F, which depends
on the resolvent estimates for ¢ € C* close to 0.

Theorem 1.10. Let n € N* § > n—% and ¢ > 0. There exists C > 0 such that for (€ CT nD
we have

low—¢ )< Ol

)7HH£(£’5,£—5
For low frequencies, it is not difficult to convert the resolvent estimates into time decay.
We refer to [6, 11] or [BB21, Section 5].

Proposition 1.11. Let § > d + % and € > 0. There exists C > 0 such that for all F € . and
u >0 we have
[ () F -5 < C (6“7 | F g5

Applying Propositions 1.9 and 1.11 and letting 1 go to 0, we deduce Theorem 1.5. Now
we focus on the main ingredients for the proofs of the resolvent estimates. In Section 1.3 we
introduce the abstract commutators method, and in Section 1.4 we explain how it is used to
prove Theorems 1.8 and 1.10.

1.3 The Mourre commutators method

1.3.1 Introduction

A classical argument to prove resolvent estimates for a selfadjoint Schrodinger operator near
the real axis is the commutators method of Mourre.

Let H be a selfadjoint operator on a Hilbert space H. Given another selfadjoint operator
A (the conjugate operator) we have formally

%<A€_itHg0, e_itHQO>H — <’L|:H, 14]6—'L'25H<)07 e_itHSD>H .

Thus if iad4(H) = i[H, A] is a positive operator, the observation { Ae~"H, e*“Hg0>H is an
increasing function of time. In particular, it is easy to see that if i[H, A] = ¢y for some ¢y > 0
then H cannot have an eigenvalue. Before E. Mourre, there were already important results
about the nature of the spectrum of H based on a positive commutator assumption (see for
instance [Put67]).

The great contribution of Mourre in [Mou81] is that the positive commutator assumption
is localized in energy with respect to H. Given an interval J of R, the assumption is then

1, (H)[H,iAL;(H) > o1 (H), (1.29)

where ¢g > 0 and 1;(H) is the spectral projection of H on J.
For the free Laplacian H = —A on H = L*(R?), we can use the generator of dilations
ziV+iVex id

5 iy —x-iV. (1.30)

A=

11



This is the quantization of the symbol (z,&) — x - £, which is an escape function for the
Laplacian (the Poisson bracket {¢2,x - £} is positive on p~1({1}) = {(=,&) : |¢] = 1}). In this
case we have i[H, A] = 2H. This is not greater than a positive constant, but (1.29) holds for
any J cc R¥ =]0, +oo[ with ¢ = 2inf(J) > 0.

From (1.29), Mourre deduced important properties such as the limiting absorption prin-
ciple and the absolute continuity of the spectrum of H in J. For this, he proves in particular
uniform resolvent estimates of the form

| (4) = (H = 2)7{A) " | gy < C (1.31)

where § > 1 (then for § > 1 in [Mou83]) and z € C\R has real part in I cc J.

The idea is to prove estimates uniform with respect to z and € > 0 for
F.(2) = (A" (H. —2)"" (A", where H.=H —iel;(H)[H,iA|1;(H). (1.32)
The operator H. is dissipative. The dissipative part is not bounded below by a positive
constant, but with the positivity given by (1.29) we can prove an estimate of the form
1
[F=(2)]”
o
And for Re(z) € I cc J we have a uniform estimate for (1 —1;(H))(H — z)~* (A)"" by the
spectral theorem. Since this does not give an estimate for F.(z) uniform in ¢ small, we also

estimate the derivative of F.(z) with respect to €. After having removed the factors 1 ;(H)
we have to estimate

L) H =27 4)7 <

(A)"T (He = 2) ' [HAJ(H. —2) 7 (4) 7
This is where we use the fact that the dissipative part of H. is a commutator of H. The
factor H is absorbed by one of the resolvents, and the weight (A)™' is used to absorb the
factor A. We finally get an estimate for the derivative, from which we deduce that the limit
Fy(2) is bounded uniformly in z. We also refer to [Gér08] for an alternative approach.

The flexibility of the assumption (1.29) makes the result applicable in many situations,
and the Mourre method has been extended in many directions. We refer to the book [ABG96]
for a general overview on the subject.

Here we are only interested in the uniform estimates, but for the resolvent and its deriva-
tives. The multiple resolvent estimates for a selfadjoint operator are given in [JMP84, Jen85]
under additional assumptions about the multiple commutators ad’s (H), n € {1,..., N + 1},
for some given N > 2. The idea is to use other resolvent estimates involving the spectral
projections 1g_ (A). For 61,02 > 0 such that 6; +d < N —1 and § € ]%,N[ there exists
C > 0 such that for z € C, with Re(z) € I we have

H<A>51 Iz (A)(H — 2) g, (A) (4)% con <G (1.33)
H<A>’5 (H—2)"'1g, (A) <A>5*1H£(H) <C, (1.34)
H<A>‘H Ta (A)(H — 2)7! <A>’5H (1.35)

<
L(H)
Then we can deduce similar estimates (with different conditions for the weights) for the

powers of (H — z)~!. For instance, for § > 3 we can write

)= (- 272 (a)7)
< (™ (1 =27 ()7 L) e (A)H - 2) 7 A

™ (i = ) e, () () ()0 (1 -2 )

)
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and use (1.31), (1.34), (1.35) and (1.31) again. We similarly prove analogs of (1.33)-(1.35)
for (H — 2)~2 and then we prove by induction estimates for higher powers of the resolvent.

1.3.2 The dissipative Mourre method

In [2], T generalized (1.31) to a parameter-dependent dissipative operator, of the form
Hy = Hy\ — iV (1.36)

where H; y is selfadjoint and semi-bounded, and V) is selfadjoint, non-negative and H; »-
bounded with relative bound smaller than 1. There is no convenient and general way to
localize with respect to the spectrum of a non-selfadjoint operator, so the assumption of
positive commutator is localized with respect to the selfadjoint part H; x. A key observation
in [2] is that the positive commutator is used to give some dissipativeness to the operator
H. in (1.32). Thus, if the operator is already dissipative, we can use the dissipative part of
the operator to weaken the assumption (1.29) on the commutator. More precisely, in [2] the
estimate (1.31) is proved under an assumption of the form

Ly (Hy ) ([Hine AN + BaVa) 1y (Hi ) = coly(Hyn), (1.37)

for some Sy € [0,1]. We do not give too much details here since [2] is already described in
[Roy10].

For the proofs of Theorems 1.8 and 1.10 we need resolvent estimates for the powers (or,
equivalently, for the derivatives) of the resolvent. Thus, we first have to generalize (1.33)-
(1.35) and then the estimates for the powers of the resolvent to a dissipative setting.

But this is not enough. The commutators method cannot be applied directly to the
operator iV, for instance because its selfadjoint part is not semibounded. Thus, we first
estimate the derivatives of R(z) by the Mourre method, and then we deduce estimates for
the derivative of (W — ¢)~! by (1.21). Notice that compared to the usual settings, the
derivatives of R(z) are not given by its powers. We have

R'(2) = R(2) (ia(z)w(z) + 2zw(z)) R(2),
and we see by induction on m € N that R("™ (z) can be written as a sum of terms of the form

Thijr....in (2) = R(2)(law + 2:w) R(2) . .. (iaw + 2zw)7* R(z), (1.38)

where k € {0,...,m} and j1,...,j; € {0,1} are such that 2k — Zif:ljg = m. Thus, we also
have to take into account the factors (iaw + 2zw) inserted between the factors R(z) (they do
not commute with R(z)). We proved in [6] that under some suitable behavior between these
inserted factors and the conjugate operator (basically, the commutators with the conjugate
operator extend to bounded operators), we can generalize to this kind of setting the multiple
commutator estimates.

After [6, 11], T have been interested in the wave equation in a domain  with boundary,
in particular in wave guides, with damping at the boundary. This will be discussed with
more details in the next chapter, but this motivated the analysis of a Schrédinger operator
with dissipative Robin boundary condition. Given a € W*(0Q; R, ), we consider on ) the
operator

H, = —A, Dom(H,) = {ue H*(Q),0,u = iau on 0Q} . (1.39)

In this case, we cannot write H, as the sum of a selfadjoint operator and a dissipative part
as in (1.36), so we cannot apply the results of [2, 6]. However, we can write such a sum for
the quadratic form corresponding to H, on H*():

Qa(u) = /Q |Vu(z)|* dz — z[ﬂ a(z) |u(x))? do(z).
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In [9], I generalized the dissipative Mourre method to such operators (note that this includes
the previous cases). This is inspired by [ABG88] about a similar question for selfadjoint
operators.

This version of the dissipative Mourre method has been applied to wave guides in [9].
It also had an unexpected application to the dissipative Schrodinger equation on R (see
Remark 1.24 below).

Finally, in [23] I again had to use the Mourre method in a setting which was not included
in the previous versions. More details will be given in Section 1.7 below, but for this problem
we have to apply the multiple resolvent estimates simultaneously for two different operators.
This means that we have to estimate a product with factors given by different resolvents,
and with inserted factors as above.

Moreover, in [6, 11] we have applied the Mourre method to (1.22) with w = 1, so it was
still possible to see R(z) as the resolvent of the parameter-dependant operator —A g —iza with
spectral parameter z2. In [23] (see Section 1.7), there is no damping but w is not necessarily
equal to 1, so we include the spectral parameter in the operator, and just see the resolvent
as the inverse of a parameter-dependent dissipative operator. Thus, we need a dissipative
version of the commutators method even if the operator under study is selfadjoint.

1.3.3 The statement

Since it includes all the previous versions, we give here the statement of [23] for the commu-
tators method. Notice that the proofs given in [23] are self-contained.

Let H and K be two Hilbert spaces. We assume that IC is densely and continuously
embedded in H. We denote by K* the space of continuous semilinear forms on X (we have
o(ur + Aug) = p(ur) + Mp(ug) for ¢ € K*, uj,uz € K and A € C). We refer to [EES7,
pp. 3—4] for a discussion about this choice. We identify H with H* (with this convention,
the identification is linear). Then K is naturally (linearly) identified with a subset of K*.

We consider a selfadjoint operator A on H with domain Dy . We set
D ={peKnDy : Ape K}. (1.40)

By restriction, A defines an operator Ax on K with domain Dyx. Then Dy is endowed with
the graph norm of Ax. We can see Ax as an operator in £(Dx, K) and A¥. maps K* to Dj..
For S € L(K,K*) we set ad)(S) = S. Then, by induction on n € N*, if the commutator
ad’; '(S)Ax — Afad’y ' (S) € L(Dx, D) extends to an operator in £(K, K*), then we denote
this extension by ad’; (S). We can similarly define commutators in £(H, K).
For Q € L(K,K*) we set Re(Q) = (Q + Q*)/2 and Im(Q) = (Q — Q*)/2i. We say that
Q € L(K,K*) is non-negative if for all ¢ € K we have (Qp, 9)jx , = 0.

All this being set, we consider @ € L(IK, K*) with negative imaginary part: there exists
co > 0 such that

Q+ = _Im(Q) = C()I,

where Z € L(K,K*) is the natural embedding. By the Lax-Milgram Theorem, @ has an
inverse Q! € L(K*,K) < L(H).

Ezample 1.12. If H is a selfadjoint semibounded operator and z € C; is a spectral parameter,
we recover the usual setting by choosing Q = Q(z) = H — z, seen as an operator from the
form domain K of H to K*. Then Q; = Im(2). If H is a dissipative operator of the form
H = Hy — iV, with H; selfadjoint and V = 0, then Q@ =V + Im(2).

Our purpose is to prove estimates on Q~'. For this, we use the following notion of
conjugate operator.
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Definition 1.13. Let N € N* and T > 1. Let A be a selfadjoint operator on H. We say that
A is T-conjugate to @ up to order IV if the following conditions are satisfied.

(H1) For ¢ € K we have ||, < T |¢].

(H2) For all § € [—1,1] the propagator e~*4 e L(H) defines by restriction a bounded
operator on K.

(H3) The commutator ad’; (Q) is well defined in £L(K, K*) and satisfies HadZ(Q)Hﬁ(K,K*) <7
forallme{l,...,N +1}.

(H4) There exist Q@ € L(K,K*) with Im(Q1) < 0, QT € L(K,K*) non-negative and II €
L(H,K) such that
(a) Q = QL 77’QIa
(b) HQIHﬁ()c,;c*) <7, HHHL(H,K:) <7, HadA(H)Hg(H,K) < 7T, and for ¢ € H we have
M|l < T [Te]y,
(c) @1 has an inverse R, € L(K*,K) which satisfies |/(ldx — I RL | cx ) < T and
[RL(dicx = I1*)| £ en ) < T

(H5) There exists 8 € [0, Y] such that if we set

M = Re(iad4(Q)) + BQ+,

then HMHE(,C,,C*) < T, HadA(M)“g(;c,;c*) < T, and in the sense of quadratic forms on
‘H we have
IT* MTI > Y~ T 711 (1.41)

Ezample 1.14. For the dissipative operator H = H; — iV (as in Example 1.12) and Re(z) €
I cc J, we recover the setting of [2] by choosing II = x(Hp) (with x € CF(R,][0,1])
supported in J and equal to 1 on a neighborhood of I), @, = H; — z and Q] = V. Then
Q' = (Hy — 2)~*(1 — x)(H,) is bounded uniformly in z by the spectral theorem.

Now we can state the result for a single resolvent. In these estimates, it is important that
the constants C' do not depend on @ but only on the parameter Y.

Theorem 1.15. Let N € N* and T > 1. Assume that A is Y -conjugate to Q up to order N.

(i) Let 6 > 5. There exists C > 0 which only depends on Y and § such that
-0 H— =
(A7 Q7 (A | 1y < C- (1.42)

(ii) Assume that N = 2 and let 61,02 = 0 such that §; + 9o < N — 1. There exists C > 0
which only depends on N, T, 61, 02 and such that

[ (4)° 1e_ (A)Q M r, (A) (A | 1y < C. (1.43)
(iii) Assume that N = 2 and let § € ]%,N[. There exists C > 0 which only depends on N,

T and 6 such that
-8 ~— 5—1
[(4)™° Q™ La (A) (A)° |y < © (1.44)

and

|4 1 (A)Q7(A) | 1py < C- (145)

Then we use the following abstract lemma to deduce multiple resolvent estimates from
the estimates of Theorem 1.15.
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Lemma 1.16. Let H be a Hilbert space. Let n e N* and Ty,...,T,, € L(H). For j€{0,...,n}
we consider on H a selfadjoint operator ©; = 1, and H;,H]—+ € L(H) such that 7 + H;r =
Idy. Let N € N*. For j € {1,...,n} we assume that there exist v; = 0, o; € [0,v;] and a
collection C; = {C}; (Cj.6,.5,); (Cj5)} of constants such that for 81,2 = 0 with 61402 < N—v;
and 6 € [0, N| we have

1655375057 | 23y < i (1.46)
|©0 11, Ty 092 3y < Cisy 0 (1.47)
€= I, 1507 2 ay) < Cis: (1.48)
|02, T 077 50 < Ciis- (1.49)

LetT =1T,...T,,. We set

n n—1 n
V=2Vj, 0'+=ZVJ‘+J”, 0,=01+Zuj.
Jj=1 Jj=1 Jj=2

Assume that N > v. We set II_ =115 and I1y = II7. There exists a collection of constants
C ={C;(Cs_s,):(C5); (C§)} which only depend on the constants C;, 1 < j < n, and such
that

1007 70,7 3y < C (1.50)
for 6_,64+ > 0 such that 6 + d+ < N — v we have
|06 TT-TTL 057 | 1 5y < C5_ 5.4 (1.51)
for 6 € [o_, N[ we have
|05 " I1-TO;° (5, < C5 . (1.52)

and finally, for § € (o4, N[ we have

|©g°TI, 05

N

”z:(?-t) < Cf. (1.53)
It is important that the constants in the conclusions of the lemma only depend on the

constants in the assumptions. Thus, if for some operators T;(z), 1 < j < n, the estimates

(1.46)-(1.48) are independent of the parameter z, then so are the estimates (1.50)-(1.53).

Theorem 1.15 allows to apply Lemma 1.16 with v; = 1, 0; € ]%,1], 0; = (4), II; =
1px (A) and Hj+ = 1r, (A), where A is the conjugate operator. Notice that the assumptions
of Definition 1.13 are used to prove Theorem 1.15 but no longer play a role to get the multiple
resolvent estimates.

Since Lemma 1.16 is completely abstract, it can also be applied to the inserted factors.
Roughly, if the commutators of T; with A are bounded on #, then the assumptions of Lemma
1.16 hold with v; = o; = 0 (see Proposition 3.11 in [23]).

Thus, we can apply Lemma 1.16 to a product of resolvents and inserted factors as in
(1.38). Moreover, the resolvents do not have to be associated with the same operator, and
they do not even have to be indeed resolvents.

1.4 Strategy for the proofs of the resolvent estimates
In this paragraph we explain how we use the dissipative commutators method of Section 1.3

to prove Theorems 1.8 and 1.10. This is an occasion to rewrite some arguments of [6, 11] in
the spirit of [23].
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1.4.1 Contribution of intermediate frequencies

The first step is to prove uniform estimates on R(z) and then on (W +iz)~! for Im(z) positive
and Re(z) in a compact subset of R* = R\ {0}. For z € C we set

Pr(z) = Re( — Ag —iawz — wz?) = —Ag + awlm(z) — wRe(2?).
With the generator of dilations A defined in (1.30) we have
[Pr(2),iA] = 2PR(2) + K(z) + 2Re(2?),
where

K(2) = div(z - VG(2))V — Im(2)(z - V) (aw) + Re(2?)(x - V)w
— 2awlm(z) + 2Re(2?)(w — 1).

Then we apply a compactness argument. Let 7 € R*. Since 0 is not an eigenvalue of Pr(T)
(see [KTO06]), the operator 1[_, ,1(Pr(T)) goes weakly to 0 as 7 — 0. On the other hand,
L1107 (Pr(7)) K (7)1 [—1,17(PRr(7)) is compact, so 1, ,1(Pr(7)) K (T)1[_, 1 (Pr(T)) goes to 0
as 7 — 0. For n > 0 small enough we get

7_2
Ly (PR(T))[PR(T), i A] L[y iy (PR(T)) = 37 Ly (PR(T))-

Then for x € C§°(R, [0,1]) supported in ] —n,n[ and equal to 1 on [ — %, 2] we get for z € C.
close to 7

X(PR(2))[Fr(2), iAIx(Pr(2)) = 72 X (Pr(2))*. (1.54)

This is the main assumption in Definition 1.13 (see (1.41) with Q = (—A¢g — iawz — wz?),
IT = x(Pr(2)) and B = 0). We get the estimates of Theorem 1.15 with Q=% = R(z).

Then we use (1.21) to deduce estimates on (W + iz)~t. With (1.10) and (1.11) it is
classical that the estimates of Theorem 1.15 also hold with Q! replaced by a or w, for
any 0,01,02 = 0, and § — 1 replaced by ¢ in (1.44) and (1.45)). Then the assumptions of
Lemma 1.16 are satisfied with ©; = (A) and v; = o; = 0. Using also the good commutation
properties of (D) = (1 —A)% with A, we can finally prove with Lemma 1.16 that the estimates
of Theorem 1.15 hold for Q=1 = (W +i2)~! and A replaced by the operator

A= (P o),

which is selfadjoint on #Z. Applying once more Lemma 1.16, we deduce the multiple resolvent
estimates for (W + iz)~" with weight (A)"° in . Notice that 4 does not have to be
conjugate to WV in the sense of Definition 1.13 (and it is not).

Using the regularity given by the resolvents of W to remove the derivatives in the weights
<A>6 (see the discussion about low frequencies below), we can finally prove the following
estimates.

Proposition 1.17. Let K be a compact subset of C*. Let n € N* and § > n — % There exists
C > 0 such that for ( € K n C* we have

[V =" gg0.5-9) < C

1.4.2 Contribution of high frequencies

In this paragraph we briefly discuss the proof of Theorem 1.8. With Proposition 1.17, it is
enough to consider spectral parameters z = i¢ such that Im(z) > 0 and |Re(z)| » 1.

As explained in the introduction, the behavior of the contribution of high frequencies
depends on the geometries of the domain and the damping region. It was the main motivation
of [2] to prove in a slightly different context the following estimate for a single resolvent.
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Theorem 1.18. Assume that the geometric damping condition (1.17) holds. Let § > % There
exist 7o > 0 and ¢ > 0 such that for z € C; with Re(z) = 19 we have

5 4 - c
H<x> 02 R(2)07 (x) HL(Lz(Rd)) < ‘Z|1f\ﬁ1|f|ﬁ2\'

In [2] the estimate was given for the semiclassical Schrodinger operator with potential
—h2A + Vi(z) — ihVa(x) (and without the additional derivatives), but the strategy is the
same for a Laplacian associated with a metric (see [6, Section 8]). We do not give details for
Theorem 1.18 since the proof is essentially the same as in [Roy10], but we can at least recall
that we apply the Mourre method with a conjugate operator given by the Weyl quantization
of a symbol f which satisfies for some 3 > 0

{p,f} +Ba=co>0, onp'({1}) (1.55)

(p is the symbol defined in (1.15)). The positivity of the Poisson bracket {p, f} means that
f is increasing along the Hamiltonian flow associated with p. With the second term in the
left-hand side of (1.55) (which corresponds to the second term in the left-hand side of (1.37)
or (1.41)), the symbol does not have to be increasing along the flow in the damping region.
This is why we can allow bounded classical trajectories if they go through this damping
region (see (1.17)).

Then, as explained in Section 1.3, Theorem 1.18 was generalized in [6] to multiple resolvent
estimates with inserted factors, to deal with terms of the form (1.38). From this we can deduce
Theorem 1.8. We omit the details and refer to [6, Section 8] and [11, Sections 3.1 and 4.2].

1.4.3 Contribution of low frequencies

The main result in [6] is the resolvent estimates for the contribution of low frequencies. The
commutators method does not directly give uniform bounds for the resolvent of a Schrodinger
operator near 0. We see from (1.54) that the estimate becomes bad when 7 — 0. We can
apply the commutators method to the operator |z|72 (—A —izaw — z?w) for z small, but we
only get an estimate of size O(|z|~*) for R(z) in weighted spaces. This is at least uniform
with respect to Im(z) close to 0, but we need an additional argument to get a uniform bound
when Re(z) — 0.

A key argument to recover some smallness in the low frequency analysis is a generalization
of the Hardy inequality, which roughly says that in dimension d > 3 the multiplication by
\x|71 behaves like a derivative. And for low frequencies, a derivative can be seen as a small
operator.

In this report, I present the results of [6, 11] with the point of view developed recently
in [23] for the Schrédinger equation. For 7 €]0,1] we set D, = v/=A/r. Then for s € R we
denote by H? and Hf the usual Sobolev spaces H® and H 5 endowed repectively with the
norms defined by

lull gy = KDe)* ull o s Jullgs = D7l - (1.56)

In particular |ul|;. = r®|luf ., and for &« € N? and s € R the derivative 0% defines an

operator of size r'®l from H? to H; e, Finally, we denote by J€° the Hilbert completion of
& for the norm defined by

2 2 2
U5 = lrullgser + lvlfs, U= (u,v). (1.57)
In particular, 7 = J4°. We write D, H?, HZs and J2° for Dy, HISZI’ H|Sz\ and ‘%‘le

Let dy be a fixed integer greater than g. For k = 0 we denote by S™" the set of smooth
functions ¢ such that

|6 g-n = sup sup | (z)" 1 0%(x)| < +oo. (1.58)

|a|<do xeR®
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We can say that the multiplication by a decaying function behaves like a derivative, and hence
is small for low frequencies, in the following sense (see Proposition 7.2 in [6] or Proposition
3.1 in [23]).

Proposition 1.19. Let s € ] — g, %[ and k = 0 such that s — k € ] — %, %[ Letn > 0. There
exists C = 0 such that for € ST ", uwe H* and r €]0,1] we have

[ulgy—n < Cr™ [Pl s—n—n

u”H;’ :

In particular, if ¢ € S~ for some n > 0, then for any s € ] — %, g[ the multiplication by
(1+ ¢) defines a bounded operator on H? uniformly in r €]0,1].

d

A first application is that for s € ] — %, 5[ and p €]0, po[ small enough the assumptions

(1.10) and (1.11) give
lza(@)w(@)| gt ety + |22 (@) = V)] g gesn gramay S 12177 (1.59)

Thus the corresponding terms are perturbations of —A — 2% in L(HS*, HS™1) when z is
small. Notice that it is important here that a is of short range.

Even if G(z) — Id also decays by (1.10), the same does not apply to (Ag — A). Indeed,
this term is already of order 2 and we cannot pay more regularity to get some smallness in
L(HT HE™1) for z small. The idea is then to consider first the case where |G(z) — Id| 45—,
is small enough, and then to add a compactly supported contribution for the metric. In [6]
this is done in Section 7.3. In [23] (for the Schrédinger equation) we deal with this compactly
supported perturbation in each intermediate result. This is an important technical difficulty
that we omit here for simplicity. Thus we proceed as if |G(z) —Id|s-, were already small
enough.

Ideas of proof for Theorem 1.10. We see with (1.59) that
perturbation of —A + r? in L(H:T!, H:7h) for any s € | —

—Ag + raw + r?w) is a small
, %[, and in particular

Nl —~

i 1
|R()| g s sy < =

From (1.23) we deduce, for s € | — % +1, %[,

o - :

DI P

Thus, for sq1,s9 € [0, %[ and m € N* such that s; + so < m we have

1
< —. (1.60)

H(W - T)ich(jf:S?Jﬁsl) r

We can similarly estimate (W — ¢)~™ by |¢|”™ if Re(¢) = [¢].

In general, we set r = |¢| and we observe that, by the resolvent identity, we can write
(W —¢)™™ as a sum of terms of the form

C—r)""W-r)—™m (1.61)
for some m > n, or
(C =)W =)W =)W =), (1.62)

for v < n and N as large as we wish.

The idea to estimate a term of the form (1.61) is to use the weight (remember that we need
an estimate in £(&?,67°%)) to convert the elliptic regularity given by (1.60) into smallness.
By Proposition 1.19 and (1.25) we can prove that for s € [0, [ and 6 > s we have

[Ullg—s <72 |Ull e and Ul -2 577 U] 5 - (1.63)
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With (1.60) and (1.63) applied with
1 .
S1 =83 =8 = imm(dfe,m),
we obtain that (1.61) satisfies the estimate of Theorem 1.10.

Now we turn to the terms of the form (1.62). In such a term we still have a factor
(W —¢)™" as at the begining, but the interest of the decomposition (1.61)-(1.62) is that in
(1.62) we now have the factors (W — r)~" which give ellipitic regularity. The main step of
the proof remains the commutators method. Notice that we have omitted here the fact that
G — Id is only small at infinity. In general, to take this into account for the commutators
method, we can as in [BB21] replace the usual generator of dilations (1.30) by a generator of
dilations at infinity
(1= xz)x- iV +iV-2(1l—x2)

2 )
where x.(z) = x(|z| z) for some x € CF(R%,[0,1]) equal to 1 on a neighborhood of 0.

Following Sections 1.3 and 1.4.1, beging careful with the dependance on z going to 0, we
prove that A, is Y-conjugate to |z|* (A — izaw — z2w) for some Y independent of z € C
close to 0 (and with Re(22) 2 |2|?). We get in particular an estimates of the form

A=

(1.64)

1
427 R(z) (42)7° < =
A7 R AT oy S T

See [23, Sec. 5.2] for the case a = 0. Then, as in Section 1.4.1, we can deduce with successive
uses of Lemma 1.16 an estimate of the form

v s 4= (PO 1)

It remains to use the factors (W — 7)~" to recover some smallness for (1.62). We also
use this regularity to compensate the derivatives used in the weights (A,). More precisely,

for s e [O, g[ and § > s we can prove

(w=n™ag?, s AP =N s (1:66)
Notice that we cannot directly use pseudodifferential calculus to prove these estimates, since
the commutators of two operators are usually not smaller than the products. We can do the
computation by hand.

Finally, with (1.65) and (1.66) we obtain that (1.62) also satisfies the estimate of Theorem
1.10. O

As said above, the ideas of the proof are not presented here with the point of view of
[6, 11]. For instance, in these papers we did the decomposition (1.61)-(1.62) on the expression
(1.38), and not directly on the resolvent of W. On the other hand, in [6, 11] we rescaled the
operators and not the Sobolev spaces. This is equivalent.

1.5 Optimal resolvent estimate for the Schrédinger equation in
an asymptotically conical setting

In this paragraph, we briefly discuss the paper [7] about sharp low frequency resolvent esti-

mates on asymptotically conical manifold. This is a collaboration with Jean-Marc Bouclet.

It is related to the other works presented in this chapter since it is about low frequency
resolvent estimates for a Laplace operator, but the motivations are of different nature.
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The setting is a connected and asymptotically conical manifold M with Riemannian
metric G (possibly with boundary). Asymptotically conical means that there exists a compact
subset K of M such that (M\K, Q) is isometric to |Rg, +0[xS for some Ry > 0 and some
closed Riemannian manifold §. This product is endowed with a metric approaching the
metric dr? 4+ r2hg, where hg is a Riemannian metric on S. More precisely, there exists a
diffeomorphism

. { M\K — Ry, +o0[xS

m = (r(m),w(m))

through which we can write
G = *(a(r)dr® + 2rb(r)dr + r*h(r)),

where a(r) is a function on § going to 1, b(r) is a 1-form on S going to 0 and h(r) is a
Riemannian metric on S going to hg, in the sense that there exists p > 0 such that for j € N
we have

[02(a(r) = Dllpogs) + 0260 o ) + [02((r) = ho)|[ a5y < 77777,

['*(S) being any seminorm on the space of smooth sections of (T*S)®k.

This setting is more general than the scattering metrics of [Mel95]. Moreover, even if
M = R?, the assumption on the metric is more general than being asymptotically flat since
ho does not have to be the usual metric on the sphere S = 91

We denote by P the Laplace-Beltrami operator on M (with Dirichlet boundary condition
if OM # ). The main results in [7] are the following resolvent estimates.

Theorem 1.20. There exist a neighborhood U of 0 in C and C > 0 such that for z € U\R we
have
-1 - -1
=

Theorem 1.21. Let N € N* and let J be a compact interval of 10, +w[. There exists C' > 0
and g9 > 0 such that for € €]0,e0] and z € C\R with Re(z) € J we have

<
L(L2(M))

-N, -2 -N -N
P- H <C
[en ™ P =™ L

The two main interests of these results are the general geometric setting and the optimal
weight <r>_1 The best weight in the previous papers about the low frequency resolvent
estimates was of the form (r)™" for s > 1. It was in particular motivated by the Strichartz
estimates written later in [BM].

Notice that the second result corresponds to what we would get for the free Laplacian
on R from an estimate on ()" (=A — 2)~N ()" by a scaling argument. Thus Theorem
1.21 says that the same estimate holds in a setting where such a scaling is meaningless.

We do not go into the details of the proofs here. The first important step is to reduce
the problem to resolvent estimates for a Schrédinger operator on the pure cone |0, +o0[xS.
Then the main part of the proof is to develop the Mourre theory on this pure cone for such
an operator.

1.6 The damped Schrédinger equation

In [10] we have considered with Moez Khenissi the local energy decay for a damped Schrédinger
equation.

Local energy decay for a dissipative Schrédinger equation has already been studied on
exterior domains, with some potential damping in the domain (o = 0 with the notation of
(1.67) below) in [AKO7] or at the boundary in [AK10]. See also [BC14] for a Schrédinger
equation with non-linear damping at infinity.
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Nevertheless, a potential damping is not strong enough to have the smoothing effect typ-
ical for the usual Schrédinger equation. For the regularized Schrodinger equation (o = 1
in (1.67)), we can recover the usual gain of half a derivative (see [Alo08b, Alo08a]), or a
H %_E—smoothing effect if a few classical trajectories fail to satisfy the geometric damping
condition (see [AKV13], see also [Bur04] for a similar result in the selfadjoint case).

In [10], we consider this damped Schréodinger equation in the asymptotically Euclidean
setting. We consider on R? the problem

{—i@tu + Pu—ia(z) (D) a(z)u =0,  Vt=>0,YzeRY, (1.67)

u\t:O = Uo,

where P = —Ag is a Laplacian in divergence form, D = v/—A, « € [0,2] and «a is of short

range as in (1.11). Since a appears twice, the dissipative term actually decays at least like
—2—2pg . .

(x) with respect to the space variable.

For the Schrédinger equation, it is the L?-norm of the solution which is constant without
damping and non-increasing in general. Formally,

d a
i Hu(t)||2L2(Rd) = —2{(D)" au(t),au(t)) ;2 gay < 0.

We set
P, = P —ia(z) (D)% a(z), Dom(P,) = H*(R?).

The strength of the damping depends on the parameter «. This only plays a role for the
contribution of high frequencies (for low frequencies we have (D) ~ 1).

Under the non-trapping condition (1.16), the damping should not play an important role.
And indeed, we recover in this dissipative setting what was at that time the best result known
even in the undamped case for the local energy decay (the € loss has been removed later in
[BB21]), and the smoothing effect.

Now assume that (1.16) does not hold but the geometric damping condition (1.17) does. If
the damping is strong enough (a = 1), we recover the same results as under the non-trapping
condition. Of course, we cannot get a better estimate even with a stronger damping (o > 1)
since the classical trajectories at infinity do not see the damping.

If the damping is weak (« < 1), then the high-frequency resolvent estimates are weaker
in the presence of bounded trajectories. However, if we have a strong weight or if we can
allow a loss of regularity, then we can recover the same decay for large times (remember that
the rate of decay is actually limited by the contribution of low frequencies). However the
regularizing effect (governed by high frequencies) will be weaker than usual in this case.

More precisely, we prove in [10] the following local energy decay and smooting effect for
(1.67).

Theorem 1.22 (Local energy decay). Let ¢ > 0. Let § > % if d is even and 0 > % +1ifo
is odd. Let N € N and o € [0,2]. Assume that

(i) the non-trapping condition (1.16) holds,
(ii) or the geometric damping condition (1.17) holds, N min(1,a) + ¢ > 2 and § > N — 3.

Then there exists C = 0 such that for ug € H7°(R?) and t = 0 we have

He_“P“UOHLz,—J( <C <t>_%+8 luoll o5 ma)-

RY)

The condition N min(1,«) + ¢ > 2 means that even if « is small, we can apply the
high-frequency resolvent estimate (see (1.68) below) with N large, or we can pay a loss of
derivative (typically if a = 0).
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Theorem 1.23 (Global smoothing effect). Assume that the geometric damping condition (1.17)
holds. Then there exists C = 0 such that for all ug € L*(R%) we have

/+oo
0

Moreover, under the non-trapping condition (1.16), we can replace min(1, «) by 1.

-1 min(1,a)/2 —itP, ‘2
D
(@) Dy

dt < C' Jluo|72 ge) -

Notice that to have the weight (x)fl in Theorem 1.23 we use the optimal resolvent esti-
mate at low frequencies deduced from Theorem 1.20.

For high frequencies, we use the same strategy as in [2, 6] (see Section 1.4.2), except that
the damping is not necessarily strong enough. For N € N* and § > N — % we get an estimate

of the form
_ Nmin(1,a)
2

(@)™ (Pa =)™ (@) < el (1.68)

L(L2@h) "~
For low frequencies, we adapt the proof of [6] to a dissipative perturbation of the Laplacian
which is of different nature. In particular, there is no time derivative in the dissipative term,
hence no factor z in the corresponding term for the resolvent. This is why we need more
spatial decay for the absorption index. Thus we use Proposition 1.19 in an even more crucial
way than for the wave equation, and the restriction on the Sobolev indices therein could have
been a serious difficulty. We do not discuss all the details and only emphasize the fact that
we unexpectedly had to use the dissipative Mourre theory in the sense of forms:

Remark 1.24. To apply the first version of the dissipative commutators method given in [2]
to the operator P, at low frequencies, the dissipative part a(z) (D) a(z) has to be uniformly
relatively bounded with respect to the selfadjoint part P. For this we use the decay of
a(z) at infinity and Proposition 1.19. P defines an operator of size O(|z|*) in L(H2, L?).
By Proposition 1.19, a(z) can be seen as an operator of size O(|z|) in L(H:T! HS) and in
L(H: H:™') (we omit (D)® which does not play an important role). To have a dissipative
part of size O(|z|°) in £(H2, L?), we have to apply this with s = 1. Because of the restriction
of Proposition 1.19, this is only possible if d > 5.

However, for d > 3 we can proceed similarly with s = 0, which means that we see the
dissipative part as an operator from H! to H_ . Thus, even if P, is the sum of a selfadjoint
operator and a dissipative part as in [2] (see also (1.36)), for d = 3,4 we can only apply the
Mourre method is the sense of forms as in [9)].

Finally, the smoothing effect can be directly deduced from the resolvent estimates via the
theory of relatively smooth operators, which is classical for selfadjoint operators (see [RS79,
Sec. XIII.7]). For dissipative operators, this relies on the theory of selfadjoint dilations. For
this we refer to Proposition 6.2 in [9].

1.7 Asymptotic behavior for the Schrodinger equation

We finish this chapter with the most recent result about low frequency resolvent estimates.
In [23], we improve the results known for the usual selfadjoint Schrédinger equation (1.13)
about the local energy decay and low frequency resolvent estimates.

The optimal low frequency resolvent estimates and then the optimal local energy decay
have been proved in [BB21]. We go beyond and prove that the solution of (1.13) behaves (for
low frequencies and hence for large times) like the solution of the free Schrodinger equation
(1.6) for some fy € L%(R%). More precisely, we prove that the local energy of the difference
u(t) — up(t) decays faster than the local energy of ug(t). This means that ug(¢) is the leading
term for the asymptotic expansion of u(t) for large t. We recover in particular the same local
energy decay for u(t) as for ug(t). We denote by Py the usual Laplacian on R¢. The precise
result is the following.
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Theorem 1.25. Assume that the non-trapping condition (1.16) holds. Let p1 € [0, po[ and
6= % + 2. There exists C = 0 such that for t = 0 we have

-8 (_—itP —itP, -0
H<x> (e — ¢ Ow) (m) Hﬁ(L?(]Rd))g

The factor w next to e~ means that for f € L?(R?) we compare the solution u of
(1.13) with the solution ug of (1.6) with fo = wf.

Since the decay at rate t% is optimal for the free Schrédinger equation, Theorem 1.25
indeed says that the difference e=#F — e~y decays faster than e~ (in the sense of
the local energy). Moreover, as a corollary we recover the optimal decay at rate t=% for the
solution of (1.13).

We already know that under the non-trapping condition (1.16), the contributions of high
frequencies for both problems decay fast, so Theorem 1.25 is again mostly a result about low
frequencies. Thus we have to compare the resolvents of P and P, near 0.

Theorem 1.26. Let py € [0,po[, n € N* and 6 > n+ . There exists C > 0 such that for
¢ € D\R, we have

d+pq

<C Cmin(O, 5 7n).
, < el

(@ (P=0™ = (R =) ()]

(L2 (e

Notice that asymptotic expansions for the resolvent of a Schrodinger operator at the low
frequency limit, and then the expansion of the propagator for large times, have already been
studied for perturbations by a potential. We have already mentioned [JK79]. We also refer
to the recent papers [Wan20] and [Aaf21] for complex-valued potentials. The difficulty in
these cases is that we can have an eigenvalue or a resonance at the bottom of the spectrum,
which gives a singularity for the resolvent. This is why these results require strong decay
assumptions on the potential.

We have already more or less used the setting of [23] to explain the results of [6, 11]
in Sections 1.3 and 1.4. Therefore, in this section we only add some comments specific to
the fact that we not only estimate resolvents but compare the resolvents of two different
operators.

In particular, one of the difficulties for the proof is that we have to use the commutators
method simultaneously for the two operators P and Py. We have already explained in Section
1.3 that this is one of the improvements of the method developed for [23].

Another problem is that the operator P and P, are selfadjoint, but they are not selfadjoint
on the same Hilbert space (even if L?(R% dz) and L?(R? wdx) are equal as sets and have
equivalent norms).

We replace (P —¢)~! by (—Ag — (w) 'w. The operator (—Ag — (w)~! is no longer
the resolvent of a selfadjoint operator, but for ¢ € C, it is still the inverse of the dissipative
operator —Ag — Cw. It is dissipative on the usual space L?(R?), as is —A — ¢. Thus we
can work in L?(R?) endowed with its usual structure. This is why in Theorem 1.15 we no
longer consider resolvents but the inverse of parameter-dependent dissipative operators. In
particular, even for this selfadjoint problem we have to use the dissipative version of the
commutators method.

Replacing (P — ¢)~! by (—Ag — ¢w)~?! is not just a technical issue, and it is really
(—Ag — ¢w)~! that is close to (—A — ¢)~! in a suitable sense. Then (P — ¢)~! is close to
(—A — ¢)~'w, which explains the additional factor w in Theorem 1.26 and then in Theorem
1.25.

Ideas of proof. We have to estimate (P — ) "w™! — (Py — ()™ for ¢ = 22 close to 0. We
first multiply this difference by |z\2n to have a spectral parameter of order 1. For n € N* we
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n P 22 - _ n _ n—1 _
RM(z) = <|z|2 - |Z2> wl = 27" ((~Ag — 22w) ") (A — 22w) 7, (1.69)

and for consistancy we also set R([)"] (2) = |2 (—A = 22)™™.
Since the Mourre method is designed to estimate products of resolvents, we use the

resolvent identity to rewrite the difference R[™(z) — Rg"] (2) as

Z R (2)00(2) R (2) — i R4 (2)0, ()R (2), (1.70)
k=1 k=1

where we have set

Oo(z) =w—1 and 6;(2) = (8¢ —# |z)2_ (zA- 22). (1.71)

The fact that the difference R™(z) — R([)n](z) is smaller than R([)n](z) for z € C, close to 0 is
due to the smallness of 6p(z) and 64(z) in the suitable rescaled Sobolev spaces (see (1.56)),
given once more by Proposition 1.19.

Notice that we have factors w, y(z) and ;1 (z) between the resolvents, but thanks to the
analysis of the damped wave equation we know that this is not a problem for the commutators
method. We get for instance the following estimate (with A, being the generator of dilations
at infinity defined in (1.64)):

Proposition 1.27. Let p € [0, po[, n1,n2 € N*, § > ny + ng — % and o € {0,1}. There exists
C > 0 such that for z € D, we have

—5 pln] [n2] -5 P
(427" R ()BRE ) (4070 <Ol

The factor |z|” which appears in this estimate is due the small factor 0, (z) and gives the

extra smallness in Theorem 1.26 compared to the estimate of RE"] (2) or RI™(2) alone.
However, this is an estimate on the rescaled resolvents and the estimate on the resolvents
would be of size O(|z]°>"72"). As in Section 1.4.3, we recover some smallness with the
weights <x>_5 by ellipitic regularity and Proposition 1.19. And this regularity is also used to
compensate the derivatives which appear in the powers of the conjugate operator A,. O

Theorems 1.25 and 1.26 are important for at least two reasons. The first is that ten years
ago the motivation of [6] was to recover in a non-selfadjoint setting estimates which were
already known in the selfadjoint case. Now we have reached the point where ideas developed
for the dissipative case are also used to improve the analysis of the selfadjoint Schrodinger
operator.

On the other hand, for the low frequency resolvent estimates, this result re-opens a topic
which seemed to be closed by the optimal estimates of [BB21]. Perspectives in that direction
will be discussed in Section 4.1.1.
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Chapter 2

The damped wave equation with
damping at infinity

In this chapter we continue the analysis of the damped wave equation (1.12). However, instead
of assuming that the damping is localized, we now consider settings for which the damping is
effective at infinity. This gives completely different properties. The results discussed in this
chapter are published in [8, 14, 15, 17, 18].

2.1 Introduction

We have seen in Theorem 1.1 that if the damping is small enough at infinity (in the sense
of (1.11)), the contribution of low frequencies for the damped wave equation (1.12) behaves
as for the undamped case. We will see in this chapter that this is no longer the case if the
damping is effective at infinity.

Our model case in this chapter is the free wave equation (P = —A) with constant damping
a(x) =a; > 0:

{afu—Au—&-al(?tu =0, (2.1)

(ua atu)\t=0 = (fa g)

With damping everywhere, it is clear that the damping condition (1.17) is satisfied, and as
expected the local energy of the contribution of high frequencies will decay rapidly. The dif-
ference is that all the classical trajectories go through the damping region, and not only the
bounded ones, so for high frequencies the global energy decays uniformly exponentially. As
one could have guessed, a stronger damping implies stronger decay properties for the energy.

The most interesting part is the contribution of low frequencies, whose behavior is not
that simple.

We first observe that for a very slowly oscillating solution u, the damping term a;0;u
is small, but the second order term d?u is even smaller. Neglecting this term leads to the
conjecture that u should behave like a solution of the heat equation

{alétuo - AUQ = O, (22)

ug|i=0 = Jo-
And this is precisely what happens. This is sometimes called the diffusive phenomenon.
And since the local energy decay is slower for the heat equation than for the standard wave

equation (see Proposition 2.2 below), it turns out that the decay for the contribution of low
frequencies is not as fast with damping everywhere as it is without any damping.
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There is also a rich literature about the wave equation with damping at infinity. The local
energy decay for (2.1) has been discussed in [Mat76]. Matsumura proves LP — L7 estimates
by explicit computations on the Fourier transform. The corresponding semilinear problem
is also discussed (see Section 4.5.2 for this question). Then the comparison with the heat
equation (2.2) has been studied in many papers. More precisely, it is proved that the solution
u of (2.1) behaves for large times like the solution wuy of (2.2) with

fo=1f+ a% (2.3)

Then wg is the asymptotic profile of u for large times. We refer to [Nis03] for a result in
dimension 3, [MNO3] in dimension 1, [HO04] in dimension 2 and a more general discussion
in [Nar04].

The same problem has been studied in an exterior domain. See [Ike02] for a result with
constant coefficients and [AIK15] for an absorption index equal to 1 outside a compact subset.

A question that will not be discussed here is the case of a slowly decaying damping. This
means that a goes to 0 at infinity, but it is not of short range as in (1.11). We refer to [TY09]
for the energy decay when a(z) ~ (z)~“ for some «a € [0, 1[, to [ITY13] for the critical case
a = 1 and to [Wak14] for the asymptotic profile when a(z) = (z)~%, a € [0,1] (which is
as expected a solution of (z)~* dyug — Aug = 0). Finally, we refer to [SW16] for the same
question in an exterior domain.

There are also some abstract results in [CH04, RTY11, Nis16, RTY16]. For instance, in
[RTY11] the Laplacian is replaced by a general nonnegative selfadjoint operator, while in
[RTY16] another operator C' acts on d7u. In [Nis16], a general damping operator acts on d,u,
and an application closer to our setting is provided, since the wave equation with a Laplacian
in divergence form and an absorption index which can vanish is considered. Only the decay
of the full energy is discussed in this setting.

My contributions for this problem are about the wave equation on a wave guide and in
an asymptotically periodic setting.

The original motivation was to consider the wave equation on a straight wave guide, with
damping at the boundary. See the setting of Section 2.3. I first tried to apply the Mourre
theory. This gave the paper [9], already discussed in Section 1.3, but this was not enough
to get the local energy decay. Then, as an intermediate step, I considered the case of the
Schrodinger equation with a one-dimensional cross-section, which is a much simpler model.
This has been published in [8], which is discussed in Section 2.7 below. The problem of a
wave guide with constant damping on the boundary has finally been solved in [14]. This is
discussed in Section 2.3.

After this, I invited in Toulouse Mohamed Malloug, who was at that time a Ph.D. Student
in Sousse with Moez Khenissi. We discussed together the case of a wave guide with internal
damping at infinity. This is a simpler setting, but it was an occasion to deal with a damping
which does not satisfy the geometric damping condition (1.17). See Section 2.4. It is only
then that, as a byproduct of the analysis, we wrote a result about the problem on the full
Euclidean space (where a(z) is a long-range perturbation of 1), which is actually much easier.

After wave guides, I considered with Romain Joly the wave equation in an asymptotically
periodic setting. This raised different difficulties, which will be detailed Section 2.5.

Since this report is an opportunity to rewrite history, we begin here with the Euclidean

case and present in Section 2.2 some ideas on the model problem (2.1). Then, in the following
sections, we will discuss the difficulties coming from wave guides and the periodic setting.

2.2  On the Euclidean space

In this paragraph, we discuss some general ideas on the model case (2.1). More precisely, we
show from a spectral point of view why the solution of (2.1) behaves for large times like the
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solution of (2.2) with fy given by (2.3). This is not written like this in any paper, since there
were already other proofs for this case in the literature. However, we use this simple setting
to show some ideas used in the papers [14, 15, 17], without the difficulties specific to these
more sophisticated cases.

2.2.1 The wave operator in the inhomogeneous energy space

We are going to compare a solution of the damped wave equation with a solution of the
heat equation. However, for the wave equation we usually consider the first derivatives (with
respect to space and time) of the solution, while for the heat equation we estimate the solution
itself. Thus, in addition to the energy space & = H'(R?) x L2(R?), we also consider the
Hilbert space /# = H'(R?) x L?(R?) to rewrite the wave equation (1.12) in the form (1.18).

We define the wave operator We by (1.19)-(1.20). Notice that we denote by We the
operator denoted by W in the previous chapter. In particular, by Proposition 1.4 the operator
iWe is maximal dissipative and Wy generates a contractions semigroup on &. Moreover, the
resolvent of We is given by (1.23).

In this chapter, we denote by W the operator defined by (1.19) on %, with domain
Dom(W) = {U € 5 : WU € s}. This is convenient to consider the solution and not only
the derivatives, but ¢V is no longer a dissipative operator. However, we will still be able to
write (1.27) in JZ.

Proposition 2.1. The operator W satisfies on € the following properties.

(i) i(W — %) is mazimal dissipative on .

(i) C* < p(W), and for ¢ € C* the resolvent (W — ()~! is given by (1.21) or (1.23).

(iii) W generates a C°-semigroup on . Moreover, for v €]0,1] there exists M, > 0 such

that HetWHL(%ﬂ) < M, et for allt = 0.

2.2.2 Local energy decay for the heat equation

We have said that we compare the solution of (2.1) with a solution of (2.2). Before going
further, we recall the local energy decay for a solution of the heat equation. For the solution
itself and its first derivatives.

Proposition 2.2. Let sq,s2 € |0, %] and s € [0,1]. Let k > 1. There exists C > 0 such that
fort > 0 we have

N

C (7=t
C <t>7%(1+81+82+s)

107 ¢ 07 Leaa
|| <$>7H8178 vetA <x>7l</8278

[a) 7" et ()

N

|z ;

”,C(L2(]Rd)) < C <t>7%(2+81+52) .

In [15] we provided a proof based on the explicit kernel for the heat equation (see Proposi-
tion 3.1 therein). Here we describe on this model case a more general strategy which will also
be used to estimate the difference between the solutions of (2.1) and (2.2) below, following
[17, Prop. 4.12]. See also [14, Prop. 3.3] for a third approach.

In Proposition 2.2 we give estimates in weighted L?-spaces, but in the proof they are
deduced from LP-L? estimates. This means that we can also directly state LP-L? estimates
in this context.

The first estimate can be rewritten as

[} €26 gy < O7F D (@) 6] gy, G TP (RY).

The parameter s; measures how localized is the initial data ¢. With sy = 0 we are considering
a general ¢ € L2(R?), while if ¢ is compactly supported we get a better estimate by choosing
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So = %. Notice that we do not get a better estimate by considering a stronger weight, see

Remark 2.3. Similarly, s; gives the weight for the energy. If s; = 0 we consider the L?

norms of u(t), Vu(t) and d;u(t) = Au(t), but if we are only interested in the L? norms of
d

these quantities in a compact subset of R? we get better estimates with s; = 5. All the

intermediate situations s, s2 € ]O, g[ are also possible. There is a parameter £ > 1 in the
weights since if s; € ]0, %] we need a weight <x)76]‘ with 6; > s;, while no weight is necessary
(0; = 0) when s; = 0. Finally, as we will see in the last step of the proof, we can get an
extra power of t~2 for the gradient if we can pay an extra weight <x>_1 on both sides of the
estimate. This is the role of the parameter s.

Proof. We first notice that in the third estimate we can replace d;e® by Ae*®. Let fy € S(R).
For t > 0 we set ug(t) = e!® fo. Let

2d 2d
— 9 d -
d—2s; © [ ’ +OO] an b2 d + 2s9

e [1,2]. (2.4)

b1

We denote by p} € [1,2] and p), € [2, +00] the conjugate exponents of p; and ps, respectively.
Let o € N9, Since LP*(R?) is continuously embedded in L?~%%1(R%), and by continuity of
the (inverse) Fourier transform (with respect to the space variable) from LP1(R?) to LP* (R%),
we have

1D 0 (021t < 1D 00(8)] s ety < 17000 ot - (2.5)
Similarly, R
ol gy S 1ol oagaay S 1ol een ey (26)

Let py € [1, +o0] be such that
1 1 1 1 1 si+s

;T

Po V4 D2 a P2 P d

By the Holder inequality and the change of variable n = \/t£ we get

la]

— g2 o i L - a2 ~
”Dauo(t)HLl’ll (Rd) < Hgae t|£‘ ”Lé’()(Rd)HfOHLP/z (Rd) < t : *Po Hnae |77‘ HLif)(Rd)HfoHLplz(Rd)'
Finally,
_1
[P0 ()] oo gty S 7212 fol s ey

and the three estimates follow if s = 0. Now we assume that s = 1. Only the estimate for
the gradient is concerned. Let j € {1,...,d} and z € R?. We compute

Ou ot x) = / e eige 1 fo(€) de
Rd
i
2t Jga

€0, (e fo(e) de

=B [ et e & [ eme o fue ag

1

= o7 (=2(e" fo) (@) + "% (y; /o) () -

Then, using the first estimate of the proposition,

s1+s2

[02; 00 (@) 2,y -1 gay S (”f0||L2w~sz<Rd>+“yif0HL2“2(Rd>)

_1_51ts2
<t 1 2 ||f0HL2,;<SQ+1(Rd) .

This gives the estimate for the gradient when s = 1. The case s €]0, 1| follows by interpola-
tion. O
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Remark 2.3. The estimates of Proposition 2.2 are optimal in the sense that we do not get
better decay even if we consider stronger (for instance compactly supported) weights. Indeed,
for fo e CF(R?), the explicit expression for uq gives uniformly for z in a compact

1 o—y|? 1

U t,l‘ = 7 e~ 4t d ~ . d,

o) = oy [T R o [ R

1 (ﬂf—y) _Jz—y|? 1 /
Vialta) == d/ ¢« dy, ~ —o——7 T — dy,
o(t, ) @r)? Ju 2 fo(y) Y, S 2t(ant)? Rd( y) fo(y) dy
and
Orug (t x)——iu (tz)+ 0t 272) ~ ,L/ foly)d
tUo(l, T 9t 0% o 2t(47rt)% » oly) dy.

Our purpose is now to prove that the decay of the difference between the solutions of
(2.1) and (2.2) is faster than the decay given by Proposition 2.2.

2.2.3 The contribution of high frequencies

We begin with high frequencies. As already said, since we have damping everywhere, all
the classical trajectories and not only the bounded ones see the damping. From this we
can prove uniform estimates for the resolvent (W — ¢)~! directly in the energy space, and
not in weighted versions. This implies in particular that the imaginary axis (except 0) is
included in the resolvent set of W, with uniform estimates for the resolvent (away from a
neighborhood of 0). It is classical that if the imaginary axis is included in the resolvent set
with uniform estimates for the resolvent, then the propagator decays uniformly exponentially
(by the Gearhart-Priiss-Greiner Theorem, see [EN00, Th. V.1.11]). We cannot apply this
result directly to VW because of the problem at 0, but it is not surprising to recover a uniform
and exponential decay for the contribution of high frequencies.

Theorem 2.4. There exist v > 0 and C > 0 such that for all { € C with Re(¢) = —2v and

Im(¢)| = 1 we have ¢ € p(W) and |[(W — C)71‘|£(.}f) < C.

Ideas of proof. Since the model case (2.1) is a problem with constant coefficients on R, we
can use the Fourier transform. For F € .7 and ¢ € R? we have

WE© = MOF©, where 36 = (). (27)

The eigenvalues of M (&) are
—ay +4/a? — 42
2 )

where we have set \/a? — 462 = iy/4€2 — a? if 4€% > a?. Then ¢ € i(R\] — 1,1[) is not an
eigenvalue of M (&) and we see that (M (€) — ()~ is bounded in ,C(CE) uniformly in ¢ and &,

with | (v, 6)”%2 = (1+¢/?) |@|* +B]>. Then (W —¢)~'F is the inverse Fourier transform of
£ (M(&) = ¢)"'F(€) and we deduce Theorem 2.4 by the Parseval identity. O

A+ (§) =

2.2.4 A first change of contour - Separation of low and high frequencies

As with a localized damping (see Section 1.2.2), we write the propagator e’V in terms of

the resolvent (W — ¢)~!. See (1.27). Since the integrand is holomorphic in ¢, we can change
the contour of integration {Im(¢) = pu} by I', defined as follows (see Figure 2.1). Given
0 € CF(R,[0,1]) supported in |-2,2[ and equal to 1 on [-1,1] we set

Iy:7eR— —it+ pf(r) —y(1 —6(7)). (2.8)
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Figure 2.1: Contours {Re(z) = u}, I'yy and T'_g 5 U C(A4 (§),7).
(in grey, a region which contains the spectrum of W in the first two pictures, and the
eigenvalues of M (&) or Wy, for & or o small, in the third)

Then we separate the contributions of high and low frequencies. We consider Yjow €
CP(R,[0,1]) supported in ]-3,3[ and equal to 1 on [-2,2]. Then we set Xhigh = 1 — Xiow-
Finally, for = € {low, high} we set

Us(t)F = —— /F ¢ xu (IM(C))W — () F dC. (2.9)

T un

This is analogous to (1.28). In particular, we use the notation F¢ introduced in (1.26). Notice
that it is important to write the integral on the contour I', before separating the contribu-
tions of low and high frequencies, since the integrands in U, (t)F are no longer holomorphic
in the region {2 < |[Im(¢)| < 3}. It is still possible to change the contour for U, (t) in the
strip {|Im(¢)| < 2}. In particular Uiow (t)F', as Unign(t)F, does not depend on p.

We finish the analysis of high frequencies. Following the same idea as for Proposition 1.9,
we can deduce from Theorem 2.4 that Unigh(t)F decays uniformly exponentially.

Proposition 2.5. Let v > 0 be given by Theorem 2.4. There exists C > 0 such that fort >0
and F € 7 we have

_t
Unigh () F'| ,,p < Ce™ 2 ||F'] 1 -

2.2.5 The contribution of low frequencies - Comparison with the diffusive
profile

We turn to the contribution of low frequencies. Replacing F' by F¢ in (2.9) is convenient for
the analysis of Unigh(t)F, but to obtain a precise expression of the asymptotic profile, we go
back to F' for low frequencies. For t > 1 we set

Ui(t) = — / ¢ Xiow (IM(C)) (W — ¢)"LF dC.

2
For ¢ € CT we have
2
W= Q) (F —F) = / (1= 6(s)) V-0 F ds,
0

so with integration by parts we can see that Uiow (t)F — Uy(t)F is small:
Proposition 2.6. Let m € N. There exists C = 0 such that for F € 5€ andt > 1 we have
[Uiow () F = Us()F | o < C )™ [ Fl 4 -

To estimate Uy (t) F' we now have several possibilities.
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First strategy. The first option is to compare the resolvent
R(2) = Ry, (2) = (A —izay — 2°)7!

of the wave equation (2.1) to the resolvent R,(z) = (—A — iza;)~! corresponding to the
heat equation (2.2). This is what led to the ideas recently developed in [23] and explained in
Section 1.7.

Proposition 2.7. Let 51,52 € [O, %[ and k > 1. Let 3 € N% with |3| < 1. Let m € N. There
exists C > 0 such that for z€ Cy n' D we have

<C ‘Z|% min(0,s1+s2—2m+|8|) '

H (@) " 0707 (R(2) — Rn(2)) (&) "™ £(12(R4))

Ideas of proof. Here, for the model case, the resolvent identity gives

R(2) — Rn(2) = 22R(2)Rp(2). (2.10)
As in Section 1.4 we work in the rescaled Sobolev space, except that we now use H, \sz|1/2
instead of H. A derivative is now of size O(|z|%) in L(H‘le/g,Hlsz‘_ll/Q) for any s € R. On

the other hand, R(z) and Ry(z) are of size O(|z|™") in E(H‘s‘zl_ll/Q,Hljll/Q). An important

difference with the setting of Chapter 1 is that for z € C, the spectral parameter is iza;.
Since dist(iza;, R4) = ||, we do not need the limiting absorption principle and we will not
use the commutators method of Section 1.3 in this chapter. The weights (x)fd are only used
to convert the elliptic regularity given by the resolvents into powers of z. By Proposition
1.19 we have

@)™ | pegmen S 1217 and (@7 | Larger pppre ) S 1217 (2.11)

(H 12 L2 (RD) L2RY,L(H )

This is the analog of (1.63) used for (1.61).

We do not go further in the details of the proof, but the rough conclusion is that we have
better estimates on R(z) — Rn(z) than on Rp(z). Notice that we can iterate (2.10) and get an
expansion of R(z) in terms of Ru(z) up to a rest of any order. With (1.21) we can similarly
write an expansion of the resolvent (W — ¢)~. O

All the arguments above with the operator W on J# can be reproduced with the operator
tA
AJay on L?(R?). Then, up to rapidly decaying terms, the solution e1 fy of (2.2) is equal to

A -1
L etCX|ow(|m(C)) <a1 - C) fod¢ = —% - 6t<X|ow(|m(C))Rh(iOf0 d¢.

24w r,

In view of (1.21) (replacing R(z) by Rh(z), removing the terms with extra powers of ¢ and
removing the constant term in the bottom left coefficient), we see that the leading term for
the first component of Uy () is the solution of (2.2) with f, as given by (2.3) (and the
leading term for the second component is its time derivative).

This kind of strategy has been used in [14] and [15] for wave guides. The interest is that we
can in particular consider an absorption index a(x) which is a long-range perturbation of the
constant aq, since we can similarly estimate the difference R,(z) — R,, (%), using Proposition
1.19 again.

The drawback with this strategy is that we have to know in advance what the asymptotic
profile will look like. This can lead to an impasse with a wrong guess. This is what happened
for [17]. More important, in the periodic setting the perturbation does not decay at infinity
and we can no longer use a result like Proposition 1.19 to recover some smallness for low
frequencies. For [17], we had to proceed with a different idea. Here we explain this new
strategy on the model case. This is also what gave the idea used in the proof of Proposition
2.2.
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Second strategy. The alternative approach uses the symmetries of the problem. Here, with
constant coefficients, we use again the Fourier transform. We can write

’LCE Eetc m B 1£ '
" 2in /&Rd /CEF Xiow (IM()) (M (§) — €)™ F(€) dC €

For p > 0 (to be chosen small enough) there exists € > 0 such that Re(A(§)) < —2¢if || = p
Then for |{] > p we can replace the contour I';, by I'_. and the corresponding contribution
decays exponentially. It remains the contribution U, (¢) F', defined as U;(t)F with the integral
on ¢ over the ball B(p) instead of RY.

For £ small, M (£) has one simple eigenvalue A, (£) close to 0 and the other one close to —a.
We define U, (t)F as U,(t)F with T',, replaced by I'_,/2. It decays uniformly exponentially.
The difference between U, () and U,(t) is given by the Residue Theorem (see the third contour
in Figure 2.1). We obtain that, up to exponentially decaying terms, Uy(t)F' is equal to

/ ¢ €A OTI(E) F () de, (2.12)
£eB(p)

where
1
) = —— M(€)—¢)td
() %in CeC(M(@M( € —¢) d¢

is the Riesz projection on the eigenspace of M (p) corresponding to the eigenvalue Ay (&) (the
integral is over a small circle around A, (§), oriented in the direct sense, while the circle in
Figure 2.1 is oriented in the clockwise direction). For G € C? we have

IEG = (1), O #(©). 26 =y 1)) WO = <= (1),

Notice that
e 1
M@ = -5 o), 2l - (_ e, O(£4>> ,
and R
(8O, F©O)c. = f©+ L + o).

In particular, if in (2.12) we replace each factor by the leading term in its Taylor expansion,
we expect that U,(t) should be close to

. 62 A 1
Uneat (1) F = /B( )e”fe*fffo(g) <_€> de, (2.13)
P ai

with fy given by (2.3). Up to the contribution of || = p, which is exponentially decaying, we
see that the first component of (2.13) is the solution of (2.2)-(2.3) and the second component
is its time derivative. To prove that (2.12) is close to (2.13) we apply the idea given in the
proof of Proposition 2.2.

Conclusion. We finally obtain the following result, where for § € R we have set .#° =
Hl,é(Rd) % L2’6(Rd).

Theorem 2.8. Let s1,52 € [07 2] and k > 1. Let s € [0,1]. There exists C > 0 such that for
(f,g) € 752 and t = 0 we have

2+s1+s
lu(t) = uo(t)] L2, —rsy (may < C'(E) 2 el T

HV(u(t) _ uO C<t>7% 3+51+82+s

)HL2 —rs1—s(R4) HFHHV»S2+Sa

02 (u(t) = uo ()] 12 —ver oy < <O P,

where u(t) is the solution of (2.1) and ug(t) is the solution of (2.2) with fo given by (2.3).
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Combining Theorem 2.8 and Proposition 2.2 we deduce in particular that the estimates
of Proposition 2.2 also hold for u(t).

We have already observed that the local energy of the wave equation decays slowly with
a strong damping compared to the case without damping. We furthermore notice that the
decay for the heat equation (2.2) is slower when a; becomes large.

2.3 On a wave guide with damping on the boundary

As said in the introduction of the chapter, my first work about a damped wave equation with
damping at infinity was not on the Euclidean space but on a wave guide.

More precisely, after a discussion with D. Krejcirik and P. Siegl on my earlier results
about the resolvent estimates by the commutator method, I was interested in the analysis of
the problem on a wave guide, with damping at the boundary.

On a waveguide we have bounded classical trajectories at infinity, so the geometric damp-
ing condition is not satisfied if the damping is localized. It seemed simpler to consider the
case of a constant damping. This led to the first question with damping at infinity (even if I
finally first wrote [8] about the Schrodinger equation, see Section 2.7).

Notice that there are now recent results [Wanb, Wanc] about the global energy decay for
the damped wave equation on (more general) wave guides with damping at the boundary.

2.3.1 The setting

Let Q = R? x w be a straight wave guide in R**™. The cross section w is a smooth, bounded,
connected and open subset of R™. A general point of  will be denoted by (x,%) with 2 € R?
and y € w.
We consider on ) the wave equation
02u — Au = 0, on R, x Q,
0yu + adiu = 0, on Ry x 09, (2.14)
(’LL, 631‘.u)|t=0 = (f7 g)v on Q7

where a > 0 is a constant absorption index on the boundary and (f, g) belongs to H'(£2) x
L?(Q2). The energy is still a non-increasing function of time:

d
G [ (e +12®) = <20 [ joto)® <o.
Q o0

It is still possible to rewrite the wave equation in the form (1.18). For this we now define
on & = H'(Q) x L?(Q2) the operator
0 1
wo (0 1) o

with domain
Dom(W) = {(u,v) € & : (v,Au) € & and d,u + av = 0 on 0N} . (2.16)
We can check that iV is a dissipative operator on &. Then we introduce the analog of (1.22).
It is given by
R(z) = (Hq: — 2°) 71, (2.17)
where for a € C we have defined on L?(f2) the operator H, as in (1.39)

Hy =—A, Dom(H,)={ue H*(Q) : d,u =iou on dQ}. (2.18)
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One of the difficulty in [6] was that the derivatives of R(z) (as defined by (1.22)) are not
its powers. Here it is even worse since the operator (H,. — z?) depends on z via its domain.
Thus its derivatives only make sense if it is seen as a form on H*().

In the sense of forms it becomes clearer that H,,—2? is the analog of (—A—iza(z)—2?) for
a damping at the boundary. Indeed, the quadratic form on H'(f2) associated with H,, — 2>
is —A —i20, — 22 € LIHY(Q), HY(Q)*), where O, is defined by

Vo, e HI(Q)a <9a907w>H1(Q)*7H1(Q) = a/n PP

The fact that the boundary condition is a good model for a damping concentrated at the
boundary has been discussed in more details for a quantum graph in [26, Section 4].
Thus, in addition to R(z) we also have to consider, at least for z € C,

R(z) = (- A—i20, —22) "' e LH (Q)*, H(Q)).

The link between R(z) and R(z) is that for p € L2(Q) and ¢ € H'(Q) then u = R(2)(p+04¢)
is the unique solution in H?(f2) of the problem

(A =22 u=¢ onQ,
Oyu = iazu + ap  on OS).

In particular, R(z)p = R(2)y for all ¢ € L*(Q).

Then we can check that the operator iV is maximal dissipative in &, and that for F' €
HY(Q) x L*(Q) its resolvent is given by

Ceip [ —RGEO®OL+C¢)  —R(i)
W-O7F (1—R(z'<)(<@a+<2> —<R<z'<>> F (2.19)

We want to understand the long time behavior of the solution of (2.14), in particular the
local energy decay and the asymptotic profile. Compared to (2.1) we cannot just “remove”
the term 07w in (2.14) to get a heat equation which should describe the asymptotic behavior
of u(t).

2.3.2 Spectral properties of H,,

It is R(z) which appears in (2.19), but since R(z) and R(z) are closely related, we can look
at the properties of R(z), hence at the spectral properties of the operator H,. For this we
use the symmetries of 2. We write the Laplacian H, as the sum of the second derivatives
in the x and y directions. We denote by L the usual Laplacian on R? and by T}, the Robin
Laplacian on the cross section w:

Ty = —Ay, Dom(T,) = {ue H*(w) : d,u = iau on dw}. (2.20)
Then, if we identify L with L ® Id2(,) and T;, with Idj2ge) ® T, we have
H,=L+T,.

The spectrum of L is the half-line [0, +o0[. On the other hand, T, has a non-empty resolvent
set and its domain Dom(T},) is compactly embedded in L?(w), so its spectrum is given by a
sequence (Ag(a))ken of isolated eigenvalues of finite multiplicities. Then it is a general result
(see for instance [RS79, §XIIL.9]) that

o(Hy) =0(L) +0(Ty) = U {Mp(a) +rkeN,reR,}. (2.21)
keN
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Thus o(H,.) is a sequence of half-lines which depend on the spectral parameter z.

In a selfadjoint setting it is not difficult to combine the properties of the longitudinal and
transverse operators to get information on the wave guide. We can proceed similarly if we
have a Riesz basis of L?(w) made with eigenvectors of the transverse operator (see (2.54) be-
low, see also [BK08] for another non-selfadjoint context). Here we have to proceed differently.

Let 7 € R*. The eigenvalues of T, have negative imaginary parts. Then 72 is in the re-
solvent set of H,,, so the resolvent R(7) is well defined and —i7 € p(W). The two important
steps of the proof are then to show that the resolvent (W + it)~! is uniformly bounded for
|7] — oo and to understand the behavior of the resolvent for 7 close to 0.

2.3.3 Contribution of low frequencies

We begin with the contribution of low frequencies. Notice that T} is the Neumann Laplacian
on w, 80 Ag(0) = 0 is a simple eigenvalue of Ty and the corresponding eigenprojection is the
orthogonal projection on constant functions. Seen as an operator on L?(f2) it reads

Pu(x,y) = |wl|/u(:v,9) dé. (2.22)

The other eigenvalues of Ty are positive.

Since T, is analytic with respect to « (family of type B in the sense of Kato [Kat80]), the
spectrum of T, is a holomorphic function of «. In particular, there exists a neighborhood V
of 0 such that for z small the operator T, has exactly one (geometrically and algebraically)
simple eigenvalue Ag(az) in V.

If X\ is another eigenvalue of H,, and r € o(L) = R, then the sum X\ + r (see (2.21)) is
“far” from 0, so the intuition is that only the contribution of the “first” transverse eigenvalue
Xo(az) of T, should play a role in the behavior of (H,, — 2%)~! when z is small.

To make this more precise, we would like to use a kind of spectral localization, but we
cannot use spectral projections given by functional calculus (H,, is not selfadjoint) or Riesz
projections (the spectrum of H,, close to 0 is not separated from the rest of the spectrum).
However, we can use simultaneously the facts that L is selfadjoint and T, has discrete spec-
trum.

We can choose 1 > 0 in such a way that if we set

G ={¢eC : Re(() <n,[Im(Q)| <n},

then for a small enough we have Gno(T,) = {No(a)} and 0Gno(T,) = &. Let (€ Gnp(H,)
and o € 0G. We have ( — o € C\R; = p(L), so we can write the resolvent identity

(Ha = Q) (Ta—0) ' = (Ta—0) (L= (C—0) " = (Ha =)7L~ (C—0))". (2.23)

We set .
Pyi=—— [ (T,—0)'do.
24w oG
This is the Riesz projection of T, on its one-dimensional eigenspace ker(T, — Ag(c)). On the
other hand, since L is selfadjoint we have for ( € G

1 L
~%in ag(L—(C—J)) do = Id.

Finally we can check (see [14, Prop.4.5]) that the operator

1
 ur

Ba(Q) /a R
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is a holomorphic function of ¢ € G. Thus, after integration of (2.23) with respect to o € 0G
we have

(Ha - <)71 = (Ha - C)ilPa + Ba(g) = (L + /\O(O‘) - C)ilPa + B(X(C)7
and for z small we get
R(2) = (Ha, — 2°)7 = (L + Mo(a2) — 22) 7' Po. + Ba.(2%).

Then we compute
owl|
Ap(0) = —iT, Tzl—.
O( ) ‘w‘
At this point, we expect that the wave resolvent R(z) should behave like (L — iaYz)~!P,, for
z small. This is the resolvent corresponding to a heat equation in the z-direction, and the
projection on constant functions with respect to y. We can indeed prove the following result.

Theorem 2.9. For z € D, we have
1 - 1 L\
R(z) =(L—1aY2)" P, + R(2) = —— | ———== + iz P, + Ri(2),
a

where R1(z) satisfies the following property. For m € N, s € [O, g[, § > s and B, € N?,
By € N™ such that |Bz| + |By| < 1 there exists C > 0 such that for z € D n C, we have

B m - min(0,— [Ba
| () 555155’JR§ )(z) (x) 5||L2(Q) <C|7| (0, —mts+ 15y

We can also write the Taylor expansions of A\g(az) and P,. up to any order to get a more
precise expansion of R(z). Then from (2.19) we deduce the asymptotics for the resolvent of
W near 0.

2.3.4 Contribution of high frequencies

Since we are not on the Euclidean space as in the previous chapter or in Section 2.2, we also
have to discuss the contribution of high frequencies.

The classical trajectories follow straight lines in €2, bouncing on the boundary according
to the laws of geometrical optics. The rays of light parallel to the boundary never see the
damping, so we do not expect uniform exponential decay for the global energy. However, all
the bounded rays reach the boundary, so we should have uniform decay of the local energy
(notice that the set of undamped classical trajectories is unstable, so we should have a good
estimate on the global energy decay with loss of regularity, but I did not go in that direction
in [14]).

We already know that the resolvent (H,, —72)~1 is well defined for any 7 # 0. To prove
uniform estimates for |7| » 1 we again have to combine the properties of L and T,,. We
begin with the transverse operator. We have the following resolvent estimates.

Proposition 2.10. There exist 79 > 0, v > 0 and ¢ > 0 such that for |7| = 19 and ¢ € C with
IRe(¢) — 72| <772 and Im(¢) = —|7| the resolvent (T — ()" is well defined and we have

-1 C
H(Tm -0 ”c(m(w)) S H
The proof, inspired by [Mil00], is based on the usual contradiction argument with semi-
classical measures on the compact domain w. Compared to my previous results about high

frequencies, the damping is at the boundary (as in [BLR92]).

To prove estimates for R(z), we separate the contributions of high frequencies close to
longitudinal directions and high frequencies close to transverse directions.
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Let x € C{(R,[0,1]) be supported in ] — v,7[ and equal to 1 on | — 3,2Z[. We
use the functional calculus, available for L, and we estimate separately x(L/7%)R(r) and
(1= )(L/7)R(r).

For the first term, the idea is that with this localization with respect to L, R(7) is in some
sense not too far from (7, — 72)~!. And, indeed, from Proposition 2.10 we can prove that

1
(/)R 2 2y <~ (2.24)

This is Proposition 7.3 in [14]. We gave a proof based on (2.23), but we can also use the
Fourier transform with respect to the x variable to conclude. Notice that we are dealing
with the contribution of frequencies which are not too large in the direction z. In terms of
classical trajectories, this corresponds to rays of light going in a direction transverse to the
wave guide, so they see the damping. It is no surprising that there is no weight in (2.24).

This is of course different for (1 — x)(L/72)R(7), which corresponds to the contribution
of rays of light not far from being parallel to the wave guide.

Assume that we can replace T, by one of its eigenvalues A;(a7). Then we have to estimate
(1—x)(L/m)(L+Me(aT)—72)7L. If 72 — Re(Mx(a7)) < y72/4, then we can apply the spectral
theorem for L. If 72 — Re(A\x(a7)) = ~72/4 then, since Im(\x(a7)) < 0, we can apply the
(high-frequency) limiting absorption principle with the spectral parameter 72 — \i(a7) for
the usual Laplacian L on R¢.

The rigorous proof does not work this way, since we cannot just sum the contributions
of each A\i(ar). Nevertheless, we can adapt the strategy known for the uniform resolvent
estimates for L in the setting of the wave guide to prove directly that for § > % we have

1
cr@) |

@)™ (=) (E/PR() (@) (2.25)

Summing (2.24) and (2.25) gives the following result.

Proposition 2.11. Let § > . There exist 0 > 0 and ¢ > 0 such that for |7| > 79 we have

2
@) R(r) (@) <=
cea@) )’

With (2.19) we can get a uniform estimate for (W + i7)~! in weighted space. Because
of the weights, we cannot apply the same strategy as in Section 2.2. We apply the same
strategy as in Chapter 1 instead. In particular, we have to prove uniform estimates for the
derivatives of R(7). As explained above, this is not obvious, and this can only be done in
the sense of forms. To apply a result like Lemma 1.16, we need for instance estimates of
R(7) in incoming and outgoing regions. For this, we have to adapt all the proofs known in
the Euclidean setting (we omit this part of the proof, see [14, Sec. 7.3]). We finally get the
following result.

Proposition 2.12. Let n € N and 6 > n— 3. There exists C > 0 such that for || > 1 we have

W+ iT)inHL(gé,gfﬁ) <C

2.3.5 Local energy decay and asymptotic profile

Now that we have estimated the resolvent, we can deduce the large time behavior for the
solution of (2.14). Since the contribution of high frequencies decays fast, the result depends
as usual on low frequencies. By Theorem 2.9 we expect that the asymptotic profile should
be a solution of

aYoyug + Lug = 0, (2.26)

seen as a problem on Q. By (2.19) and Theorem 2.9, the initial data for ug should be given
by

1
Jo= G—TPW(GJ +9)- (2.27)
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We can compute

Pw@af = aTPawf» where Pawf(xa y) = ‘T](;}' f($7 0) dd(o)
ow

This defines a function P, f € L?(Q2) which only depends on x € R?. Then we set

1
fo=Paf + ﬁng. (2.28)

This is analogous to (2.3). Since f is “multiplied” by the damping in (2.27), only its values
at the boundary play a role in the expression of fy, while fy depends on the values of g on
the whole Q (notice that g is only in L?(Q) and its trace on 02 does not make sense).

On the other hand, the strength of the damping is given by the product @Y. The coeffi-
cient a is the strength of the damping at each point of the boundary, and T depends on the
shape of the cross-section. If we normalize the section w by |w| = 1, then Y is the size of
Ow. It is not surprising that for a fixed value of a, the effect of the damping in 2 is stronger
when T is large.

Compared to Theorem 2.8 we cannot give estimates without weights (case s; = s9 = s =
0) since we also need weights for the contribution of high frequencies. Of course, even for
high frequencies we can get weaker decay with weaker weights, but for simplicity we do not
detail this possibility and only write the statement which gives the best local energy decay
in this case.

We observe in particular that the power of ¢ only depends on the number d of longitudinal
dimensions.

Theorem 2.13. Let § > % + 2. There exists C > 0 such that for F = (f,g) € 5° andt > 0
we have

| @)™ 9 (t) = 00(0)) oy + | @)™ 24 (ult) = w00) 1y < € O [Pl

where u(t) is the solution of (2.14) and uo(t) is the solution of (2.26)-(2.28).

2.4 On a wave guide with damping at infinity

After [14], we discussed with Mohamed Malloug the wave equation with damping inside the
waveguide 2. Since there are less technical problems than with damping at the boundary, it
was an occasion to consider other difficulties. Thus, in [15] we consider a situation where the
damping is not constant (and in particular breaks the symmetry of the wave guide) and the
geometric damping condition is not satisfied.

The setting. Let Q = R? x w < R¥™ be a straight wave guide as in the previous section.
We consider on 2 an absorption index a(x,y) = 0 which is a long range perturbation of a
positive constant a;: for some p €]0, 1] we have, for 3 € N? and (z,y) € Q,

|02 (a(a,y) —ar)| < Cp ()77 (2.20)
Then we consider on €2 the damped wave equation with Neumann boundary conditions

O?u— Au+ adpu =0, onRy xQ,
oyu =0, on Ry x 09, (2.30)
(’U,, (7tu)\t:0 = (fa g)

Notice that we can also consider Dirichlet boundary conditions. This is actually much easier

since in this case 0 is not in the spectrum of the corresponding operator, so there is no diffi-
culty with low frequencies (see Theorem 4.2 in [15]).
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In this problem, a is a perturbation of a constant damping, but it can vanish in a bounded
subset of . In particular, we may have undamped bounded classical trajectories. This is
only possible for rays of light going in a transverse direction, so the set of undamped rays
is unstable. For the contribution of high frequencies, this problem is actually similar to the
problem on the stadium with damping on the half-disks (see [BH07]).

In this setting the resolvent of the wave equation is

R(z) = (— An —ia(z,y)z — z2)_1,

where —A the Neumann Laplacian in 2.

Resolvent for a damping independent of the transverse variable. Even if a depends on y,
we use in the proof the case where it does not. Let a be a bounded function on 2 which only
depends on z € RY. We can write

—Ay —ia(z) = (L —ia(z)) + T,

where L is as above the standard Laplacian on R? and the transverse operator Ty is the
usual non-negative and selfadjoint Neumann Laplacian on L?(w). Compared to the setting
of the previous paragraph, we consider here the damping as part of the longitudinal operator.

We denote by (Ag)ken the non-decreasing sequence of eigenvalues (repeated according
to multiplicities) of T, and we consider a corresponding orthonormal basis of eigenvectors
(¢k)ken. Compared to the previous section, the fact that we have an orthonormal basis for
the transverse operator simplifies the analysis. We have A\g = 0, A\; > 0 and ¢ is constant.

For f € L?(Q) we can write f = >, . fx ® ¢ with fr € L2(R?), and for ¢ in the resolvent
set of —Ax — ia(x) we have

(= Ax —ia@) = ¢) " f = D) (L—ia(z) = ((— ) fr ® g (2.31)

keN

Thus we can deduce estimates for (— Ay —ia(z) — C)fl in £(L*(Q)) from similar estimates
for (L —ia(z) — (C— M), ke N, in L(L2(RY)).

Contribution of low frequencies. Now we go back to the analysis of R(z). We begin with
the contribution of low frequencies. If a only depends on z, then we see that in (2.31) (with
a = az and ¢ = 22) only the first term should play a role for z small (the other terms are
holomorphic around z = 0).

We have not assumed that a(z,y) only depends on z, but for low frequencies only the
values at infinity play an important role. Thus it is expected that, up to a rest, we can
replace a(z,y) by a; (and remove the term 2?) in R(z) when z is small. In other words, for
z small the resolvent R(z) should be close to the resolvent of the heat equation

Rp(2) = (~An —izay) "t

On the other hand, by (2.31), Rh(z) should be close to Rn(z)F,,, where P, (defined by
(2.22)) is the orthogonal projection on span(pp). All this holds in the following precise sense.

Proposition 2.14. Let s1,s9 € [0, g] and k > 1. Let py €]0,p[. Let 3 € N*" with |3| < 1.
Let m € N*. There exists C > 0 such that for z € D n C, we have

<C ‘Z|min(0,%(51+52+p1+\5\)*m*1) _

H<$>7HSI B om (R(Z) — Rh(z)Pw) (x)~"e2 L(L2(Q))

z,yYz

Ideas of proof. To estimate the difference between R(z) and Rh(z) we write the resolvent
identity
R(z) — Ry(2) = Rn(2)(i2(a — a1) + 2°) R(2).
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Then we proceed as in the previous chapter (see Section 1.7) or for Proposition 2.7. Here the
rescaled Sobolev spaces (recall (1.56)) are only in the z direction. More precisely, for s € R

and z € C* we set
HUHH;L2(Q) = H<\/W>SUHL2(Q)'

For any s € Rand z € C, the resolvent Ry, (z) is of size O(|z| ") in L(H ' L2(Q), H:t1L3(Q)).
On the other hand, by an analog of Proposition 1.19, we see that (iz(a — a1) + 22) is of size

O(‘z|1+%l) in L(HS2L*(Q), H'L2()) if 51,80 € | — 4, 4[ are such that s —s; > p;. In

particular R(z) — Ry (z) is smaller than Ry(z) for z small, and R(z) is of size O(|z|™") in
L(H:1L2(Q), Hs*1L2(Q)) for any s € | — 4, 4[. Notice also that V, is of size O(|z|%) in

272
L(HSL*(Q), H;*L?()) and we can use (2.31) to see that V,Ry(z) is bounded in a neigh-
borhood of z = 0. Finally, we use the weights (x)”"* to convert regularity into powers of

|z| as in (2.11). O

Contribution of high frequencies. We turn to the contribution of high frequencies. Since we
have damping everywhere at infinity, we can consider the global energy, and hence resolvent
estimates without weights. On the other hand, since the geometric damping condition (the
analog of (1.17) in Q) does not necessarily hold, we cannot expect an estimate as good as in
the previous settings.

Proposition 2.15. Let 31, 82 € N with || < 1 and |B2| < 1. Let 79 > 0. There emists
C > 0 such that for T € R\[—79, 70| we have
<C |T‘|f31\+|ﬁ2\+1

Haﬁl R(r)o* HL(L2(Q))

and

oW +ir < Cr2. (2.32)

) 1”&(5)
Ideas of proof. As is usual for high frequencies, we can replace a(z,y) by a smaller damping.
We choose a(z) which only depends on z and such that a(z) < a(z,y) for all (z,y) € Q.
Then we can use (2.31). Since we can take a going to 1 at infinity, it satisfies the damping
assumption on RY, so (L —ita — 72)7 ! if of size O(77!) in L(L*(R?)). We get a similar
estimate for (L —i7a — (72 — \)) "% if 72 — A4 is large. The loss is due to the contributions
of k such that 72 — )\, is small. This corresponds to rays of light orthogonal to the boundary,
possibly undamped, and explains why we do not have a uniform bound in (2.32). O

Local energy decay. Finally, we have to convert resolvent estimates to large times estimates.
For high frequencies we adapt the method of [Leb96, BHO7]. Notice that there are abstract
results in the case where (2.32) holds for all 7 € R (with 72 replaced by (7)?, see for instance
[BEPS06, BD08, BT10]), but we cannot apply them because of the problem at 0. For the
contribution of low frequencies, the method is similar to the previous cases. From Proposition
2.14 we can deduce that the asymptotic profile ug(t) for the solution of (2.30) is the function
on ) which does not depend on y € w and is solution with respect to x to the heat equation
a10pug(t) + Lug(t) = 0, with initial condition fo = P,(f + g/a1):

wo(t) = e 5 P, (f + 51) . (2.33)

Finally, we get the following result.

Theorem 2.16. Let s1,s5 € [O, %] and k > 1. Let p; €]0,p[. Let a € N and 8 € N with

a+|8| < 1. Let k € N*. There exists C > 0 such that for F = (f, g) € 7#°2(Q) n Dom(W¥)
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we have

(@)™ a0, (ult) — wo(®))|

L3 (Q)
In(t)z+?

_ 1l 2
<C ((t) L(s1+s2+2a+|B|+p1) HFH,%ONSZ + T

ov— 1)/«F|£,> |

where u(t) is the solution of (2.30) and ug(t) is given by (2.33).

2.5 In a periodic medium

The motivation for [14] was the analysis of the damped wave equation on a wave guide.
It is only while proving this result that I realized that the damped wave equation with
damping at infinity was a really exciting problem in itself. When Romain Joly wrote a paper
about the damped Klein-Gordon equation with periodic damping (then improved to a more
general setting with Nicolas Burq in [BJ16]), giving the behavior of the contribution of high
frequencies for the corresponding damped wave equation, it was a natural question to study
the contribution of low frequencies for the damped wave equation with periodic damping.
This is what we did together in [17].

2.5.1 The asymptotically periodic setting

We consider the damped wave equation (1.12) on the Euclidean space, with a general Laplace
operator P as in (1.8), but the coefficients (including the absorption index) are now asymp-
totically periodic. This means that we can write

G(z) = Gp(z) + Go(z), w(z)=wp(z) +wo(z) and a(z) = ap(x)+ ao(z),

where Gy, w, and a, are Z%periodic and Gg, wo and ag are of long range: there exist
PG, Pa > 0 (we use two parameters since pg and p, will not play the same role in (2.46)
below) and Cg, C, = 0 such that

|Go(a)| < Cg (x)™"¢ and  |wo(@)] + |ao(z)| < Ca (x)™"". (2.34)

We first consider the purely periodic case, Gy = 0, wy = 0 and ag = 0. We denote by W,
the wave operator (1.19) with coefficients G, w, and ap.

The damped wave equation with periodic metric had already been studied in [OZP01].
Compared to our setting, the initial condition is localized (at least in L!) and the absorption
index is constant (in particular it does not vanish and we can use some tools of the selfadjoint
problem).

Our absorption index a, cannot be identically zero, but it is allowed to vanish. This
means that at infinity it takes positive values but it can also be 0. This is an intermediate
situation between the setting of Chapter 1, where a is small at infinity, and the settings of
Sections 2.2 and 2.4, where a is asymptotically close to a positive constant.

We will see that we recover in this case the diffusive phenomenon typical for the damped
wave equation with damping effective at infinity.

Under the geometric damping condition for high frequencies (see (2.45) below), the large
time behavior of the wave is as usual given by the contribution of low frequencies. And if the
wave length of the solution is very large compared to the period of the medium, this solution
only sees, in some sense, the mean value of a,. This mean value is positive.

Thus, as above the solution of the periodic damped wave equation should look like the
solution of some heat equation. It is natural to expect that the corresponding heat equation is
obtained by removing the second derivative in time in the wave equation. After multiplication
by w this gives

—Ag,u+ ap(z)wp(z)du =0 on Ry x R (2.35)
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This is indeed the case, but we want to go further. As said above, the low frequency wave
only sees the mean value of apw,. We expect that in (2.35) we can replace apwp by its mean
value. Similarly, we would like to replace G, by a simpler (constant) matrix. The reader
familiar with homogenization (which was not our case when starting this work) knows that
the mean value of G, is not the good guess.

2.5.2 The Floquet-Bloch decomposition and spectral properties on the torus

All the coefficients of the equation are Z%-periodic, but this is not the case for the initial
condition (f,g) € H*(RY) x L?(R%). The solution itself will not be periodic, so the problem
does not reduce to a problem on the torus.

In this kind of context it is usual to use the Bloch waves (see for instance [BLP78, Sec.
4.3]). Compared to the plane waves ¢*¢ used for the Fourier transform (suitable for linear
problems with constant coefficients), the Bloch waves are of the form 1 (z) = €' ¢(x) where
¢ is Z%periodic. They can be chosen in such a way that ¢ is an eigenfunction of —Ag,.
Then ¢ is an eigenfunction for the operator

—Ag, .o = —(div +ioT)Gp(z)(V +io).

Compared to the undamped case (or with constant damping), we cannot use a basis of
Bloch waves which are eigenfunctions of our operator, but we can still use the Floquet-Bloch

decomposition. Let T? = [ — 1, %]d. For u € S(R?) and x € R? we write

) 1
u(z) = / e %us(x)do, where wuy(x) =
oe2nTd (2ﬂ)d

2 u(x + n)e @O (2.36)

nezZd

Notice that u, is periodic for all o € R%. This decomposition naturally shares some useful
properties with the Fourier transform. In particular, we have the Parseval identity for the
Floquet-Bloch decompostion: for u,v € S(R?) we have

g = 20 [

oe2nTd

(U, Vo) 2 do, (2.37)

where the space L?) of Z%-periodic and Lﬁ)c

structure. We also define the periodic Sobolev spaces Hr’f for ke N.

functions is endowed with the natural Hilbert

Now for U = (u,v) € . and z € R? we have

WoU)(z) = / e IW,Uy () do,

oe2nTd

where for o € R? we have set U, = (uy,v,) and

0 wy
Wy = P
(AGWO _ap>
This defines a family (W ),eax7e of operators on Hy x L3 with domain HZ x H,. The interest

of this decomposition is that each operator W, has a compact resolvent, so its spectrum is
given by a sequence of isolated eigenvalues. For U = (u,v) € Hg X H; and A\ € C we have

(—Ag,,0 + Aapwy + Nwp)u = 0,

2.38
v = AWpl. ( )

W,U=)\NU +— {

Then we proceed as explained on the model case in Section 2.2. We first observe that
0 is the only possible purely imaginary eigenvalue of W,, and this happens if and only if
o = 0. Moreover, 0 is a (geometrically and algebraically) simple eigenvalue of Wy and a
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corresponding eigenvector is given by ®; = (1,0)T (notice that we would have difficulties to
work with ®( in the periodic energy space H; X Lﬁ).

By continuity of the spectrum with respect to o, we deduce that only one simple eigenvalue
of W, for o small will play a role for the contribution of low frequencies.

Proposition 2.17. There exist r > 0 and vy, 71,72 > 0 such that

(i) for o € 2nTN\B(0,7) the eigenvalues of W, with imaginary parts in [—3,3] have real
parts smaller than —vg ;

(ii) for o € B(0,r) the operator W, has a unique simple eigenvalue Ay such that |As| < 71,
and the other eigenvalues of Wy with imaginary parts in [—3, 3] have real parts smaller

than —y2 (11 < ¥2).
We denote by I1,, the Riesz projection of W, corresponding to A, and ®, = I1,P¢/ |1, P, ||.
Then for some @, € Hp2 (smooth with respect to o) we have @, = (¢5, AeWpps)T.

Then, up to exponentially decaying terms, we see that the important contribution is the
analog U, ,(t)F' of (2.12), defined for ¢t > 0 and F € .¥ by

Uy o (O)F = / (77 T F do, (2.39)
oeB(0,r)

The next step is to replace A, ®, and II, by their Taylor expansions for ¢ small. From
(2.38) we can prove the following properties.

Proposition 2.18. (i) Let ith, be the linear term in the Taylor expansion of v, at o = 0.
Then we have

—divGp(z)(o + Vip,) = 0. (2.40)
We denote by W (x) the Z%-periodic matriz such that, for all £ € R?,
W(x)¢ = &+ Ve (). (2.41)

(ii) We have

1 3
Ay = R (Gho,0)+ O(|o]),

where Gy, is the mean value of W(x)T Gp(z) W(x):
(Gho,0) = / (Gp(x)(0 + Vo ()),0 + Vi (z)) da. (2.42)
Td
(ili) For o € B(0,r) we denote by ¥, € L2 x L2 the vector which satisfies, for all F,
M F = (o, Fy s g o

Then ¥, is a smooth function of o and we have

1
U, = (“Pf“f’) .
ahWh

The definition of G, is classical in homogenization theory (the matrix W (z) is the so-
called corrector matrix). It is interesting to notice how it appears as the Hessian matrix of
the eigenvalue A\, at o = 0.

2.5.3 Comparison with the asymptotic profile

From the eigenelements of W, for o small we can define the asymptotic profile for the
contribution of low frequencies. Since the contribution of high frequencies decays fast under
the suitable geometric condition, we finally get a result of local energy decay for the difference
between the solution of the damped wave equation and the asymptotic profile.
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The asymptotic profile We compare (2.39) with

t th,a>

U n(t)F = / e oe” mun (F,, Uo)dpdo. (2.43)
ceB(0,r)

For this we use the strategy of Proposition 2.2, actually first developed for this point in [17]
(see Proposition 4.12 therein). We replace the continuity of the Fourier transform (remember
(2.5)-(2.6) with notation (2.4)) by the following property of the Floquet-Bloch transform (see
also [17, Cor. 4.2])

H’U‘HLz’*m‘l (R2) S HU‘GHLPQ (2nT4;L2) HUUHLPIQ (2nT4;L2) b HUHLl'iSQ(Rd) :

This can be proved with (2.37) and the following equality for v € S(R?) and ) € LZ:

<ug,1/J>L§ =/ e u(x)(z) da.

zeRd

The first component of (2.43) gives the asymptotic profile (the second component gives
its time derivative, multiplied by w,). For ¢t = 0 we set

apWp [ + Wpg

un(t) = eiﬁphuh(O), where uh(0) = (F, ¥o) =
QA WhH

(2.44)

To get the asymptotic profile for Vu(t), we cannot just take the gradient of uy(t). Indeed,
the leading term for @, is just ¢o = 1, but the leading term of Ve, is iV, (see Proposition
2.18). With the factor ic coming from the factor €’? we see that Vu,(t) should be compared
with

o _KCnoo) :
/ i T "oy <Fo’ \IIO>Z(O' + ¢0) do.
oceB(0,r)

This is why we compare Vu,(t) with W (z)Vuy(t) in Theorem 2.19 below. Notice also that
we cannot apply the trick of Proposition 2.2 to get an extra power of t~2 with stronger weight
(case s = 1). Then, with a strong weight, the estimate of Vu,(t) — W Vup(t) in Theorem 2.19
is the same as the estimate of Vuy(t) in Proposition 2.2. Thus, it is not clear that W<V uy(t)
is the asymptotic profile for Vu,(¢), but this still gives at least the optimal decay for Vu,(t).

Contribution of high frequencies. For the contribution of high frequencies, we can deduce
Proposition 2.5 from the high frequency resolvent estimates given in [BJ16]. Notice that we
cannot use the assumption (1.17) in this context. In (1.17), it is only assumed that each
bounded classical trajectory goes once through the damping region. However, since bounded
trajectories live in a compact subset in the context of Chapter 1, the time needed to reach
the damping region in uniform, and each ray of light actually goes regularly through the
damping region. This is no longer automatic if we consider classical trajectories at infinity,
so we have to be more precise about the damping condition. With the same notation as for
(1.17), we assume

T
T > Oa Ja > Oa V(.To,go) € p_l({l})? / G/(Z‘(t, xO)EO)) dt = a. (245)
0

It is clear that (2.45) (for all trajectories, of for the bounded ones) implies (1.17), and on
the other hand we can check that if (1.17) holds in the context of Chapter 1 then bounded
trajectories satisfy (2.45).
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Local energy decay. Now that the contributions of low and high frequencies are understood,
we can state the main result of [17].

Theorem 2.19. Assume that the geometric damping condition (2.45) holds. Let s1, s € [0, %]
and k > 1. There exists C > 0 such that for t = 0 and F = (f, g) € "2 we have

_1_s1tso

Jupt) = n( s ver ey < C O F2 P s
_1_581+so

HVup(t) — Wvuh(t)HLz,—msl(Rd) < C<t> 1 2 HFijnsz )
3 si+so

|Osup(t) = Qrun() o nor gay < C(O2 7 |Flypnes »

where up(t) is the solution of (1.12) with coefficients (Gp, wp, ap) and un(t) is given by (2.44).

As for Theorem 2.8, we could expand )\, and II, further in (2.39) to get a more precise
asymptotics for uy(t) and its derivatives.

By a perturbative argument, we get the following result for the general case with asymp-
totically periodic coefficients.

Proposition 2.20. Assume that the damping condition (2.45) holds. Let k > 1 and s1, 82,1 = 0
be such that

d
max(s1, 82) + 1 < min (2,pg,pa + 1) . (2.46)

Then there exists C = 0 such that for Uy = (ug,u1) € %2 and t = 0 we have

s1+so

Hu(t)_up(t)HLZv*"le(Rd) < Oy °® _EHUOHk%ﬂ»sz’

_1_s1tsa _n
[Vu(t) = Vutp(O)] ooty < CHOTT 7 F Ul s

_1_81ts2 _n
[ru(t) = Geup()] oy gy < CO7 = Ul s

where u(t) and uy(t) are the solutions of (1.12) with coefficients (G, w,a) and (Gp, wp, ap),
respectively.

Because of the restriction (2.46), this proposition is probably far from being optimal.
The purpose was to show that even if the proof of Theorem 2.19 strongly depends on the
symmetry of the setting, the result is actually robust with respect to perturbations.

Nonetheless, Proposition 2.20 gives in any case a result for the global energy and for a
general initial data (s = so = 0). It also provide interesting estimates for a rapidly decaying
perturbation (pg and p, not too small).

2.6 The wave equation with highly oscillating damping

The discussions above mostly concern the contribution of low frequencies for the wave equa-
tion. However, while preparing [17], a technical detail about the high frequencies estimates
in [BJ16] drew my attention.

The analysis of high frequencies is based on semiclassical analysis, which requires quite
a lot of regularity for all the coefficients. However, contrary to the case of low frequencies
for which the overdamping phenomenon occurs, for high frequencies we have better decay
properties with a stronger damping, so if the absorption index a is not smooth, it is enough
to prove the estimates with a replaced by a smooth a such that a < a.

However, some regularity is still required on a. In [BJ16] it is assumed that a is at
least uniformly continuous. Similarly, in [2] we had to apply the Mourre theory with the
original absorption index a, so we assumed existence and boundedness of its first two radial
derivatives.
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In [18], T have tried to show on a very simple model case that a highly oscillating ab-
sorption index should not be a problem, and that the only important quantity is the average
damping seen by the classical rays of light, as measured by the integral in (2.45). Note that
a more refined analysis of the damped wave equation with rough damping on the torus has
then been published in [BG20].

We consider the Klein-Gordon equation with a periodic damping whose period goes to
0. Let a € C*(R% Ry) be periodic. For n > 1 and z € R? we set a,(z) = a(nz). For some
m > 0 and (f, g) € S we consider the problem

{éfu — Au+mu + a,(z)0u =0, on Ry x RY, (2.47)

(u, deu) =0 = (f, 9), on RY.

The interest of considering the Klein-Gordon equation is that it behaves exactly as the wave
equation for high frequencies (the additional term mu is much smaller than the others) but
there is no problem with low frequencies, since 0 is not in the spectrum of the operator

0 1
A—m —ay)’

defined on . with natural domain. Since we consider the free Laplacian in (2.47), we have
p(x,€) = |€]* and classical trajectories are given by ¢t (z0,&) = (2o + 2t&0, &)

We have said that under the geometric damping condition on all classical trajectories we
have uniform exponential decay for the Klein-Gordon equation (see [BJ16]). The first result
in [18] is that if (2.45) is uniform in > 1, then the solution w,, of (2.47) decays exponentially,
uniformly in the initial condition and uniformly in > 1. Even if the sizes of the derivatives
of the absorption index a,, blow up with . Thus we assume

T
3T > 0,3a > 0,¥n = 1,¥(z0, &) € R? x §71, / an(x +2t€) dt > a. (2.48)
0

In our particular case, we observe that if the damping condition (2.45) holds for n = 1, then
it holds uniformly in n > 1.

Theorem 2.21. Assume that the uniform geometric damping condition (2.48) holds. Then
there exist v > 0 and C > 0 such that forn =1, (f,g) € H and t = 0 we have

[ 2 ey + [00u(t)| L2gay < Ce™ (1l g1 ray + 19l L2 ey )
where u(t) is the solution of (2.47).

The second part of the paper is about the case where (2.48) is not satisfied. We know
that we cannot have a uniform decay, but we can still have energy decay if we allow a loss of
regularity.

Since the damping is regularly distributed for any n > 1, we can apply [BJ16, Th. 1.3] to
see that we have at least logarithmic decay. The particular case of a periodic damping has
been analysed in [Wunl17], and in this case we actually have polynomial decay, with the loss
of one derivative. This is consistent with the fact that in the periodic setting the set of rays
of light which do not see the damping is unstable. We look at the dependence in 7 for this
polynomial decay.

The second result of [18] is again that despite of the sizes of the derivatives of a,, we
recover the same result as in [Wunl7], uniformly in n > 1. Moreover, the estimate is even
better for large n. This is in fact natural, since for large n the classical rays of light see in
some sense the same quantity of damping, but this damping is more uniformly distributed
in RY.
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Theorem 2.22. There exists ¢ > 0 such that forn =1, (f,g) € # and t = 0 we have

[ 1 may + 19:u()] L2 (gay

__c 1Al p2ray + IVl 12 (ray
STt 1f £ gay + 19l £2gay + 7 s

where u(t) is the solution of (2.47).

2.7 The damped Schrédinger equation on a wave guide

In this paragraph we present the results of [8], which was actually written before all the
papers discussed in this chapter.

We consider the Schrédinger equation on a straight wave guide with one dimensional cross
section. Given d > 2 and ¢ > 0, we set = R%1x]0,¢[. Then for a > 0 and f € L?(Q) we
consider on 2 the Schrédinger equation

—i0iu — Au =0, on R, x €,
Oyu = iau, on R, x 09, (2.49)

Ujt=0 = I

The L2-norm of the solution is a non-increasing function of time. We have in fact uniform
exponential decay:

Theorem 2.23. There exist v > 0 and C = 0 such that for any f € L?(Q) the solution u of
(2.49) satisfies
V20, [ul®)] gy < O |l ey -

Instead of a constant damping, we can consider a such that ag < a < a; on 02, for some
positive constants ag and a;. The same result also holds if a satisfies this property on one
side of the boundary and vanishes on the other side. We can even consider the case where
the damping is a positive constant on one side and a negative one on the other side (with a
positive sum, so that the damping is positive on average, in the spirit of [4]).

It is remarkable that even if the classical trajectories parallel to the boundary never see
the damping, we can have a uniform decay for the global energy of the Schriodinger equation.

The operator corresponding to (2.49) is the Laplacian with Robin boundary condition
H,, as defined by (1.39) or (2.18). To prove Theorem 2.23, we show that we have a spectral
gap for H,.

Theorem 2.24. There exist v1 > 0 and Cy = 0 such that any z € C with Im(2) = —~1 belongs
to the resolvent set of H, and

| (Ha = Z)_1||L(L2(Q)) <Cu.

As in Section 2.3, we can deduce the spectral properties of the Laplacian on the wave guide
Q) from the properties of the transverse operator T, (see (2.20)) on L2(0,). In dimension 1
it reads

T, = —83, Dom(T,) = {ue H*(0,¢) : v’ (0) = —iau(0),u'(¢) = iau(()} .

Then [8] is mainly about the spectral properties of T,.

Since T, is a Laplacian in dimension 1, we can get many spectral properties by explicit
computations. In particular, for z € C* we can check that 22 is an eigenvalue of T, if and

only if
2
iz zZ—a
et — <Z+a) ) (2.50)
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From this, we deduce some qualitative properties for the sequence of eigenvalues and in
particular its asymptotic behavior.

We recall that Tj is the Neumann Laplacian on 0, ¢[. The spectrum of Tj is given by the
sequence of simple eigenvalues (n?v?),cy, where

vV = ?
Let n € N*. By the Implicit Function Theorem there exists an analytic function a — z,(a)
defined on a neighborhood V,, of 0, such that z,,(0) = nv and z,(a) is a solution of (2.50) for
a € V,. Moreover,

2a 5 , 4¢
n(a) =nv— — , th R = —.
zn(a) = nv — +a +a90(a ), wi e(y) -
In particular, Re(z,(a)) €]nv, (n + 1)v[ for @ > 0 small. On the other hand, we can check
that for a in a fixed compact the solutions of (2.50) are in a horizontal strip of C and cannot
be on the vertical lines Re(¢) € vN. Then, by continuity of the solutions of (2.50) (using
for instance the Rouché Theorem), we can deduce that for any a > 0 there is exactly one
solution of (2.50) with real part in |nv, (n + 1)v[. It is denoted by z,(a). Finally, we check
that for a > 0 fixed and n large, we have the same asymptotic expansion as above:
2ia

n(a) =nv — — + O(n?). 2.51

zn(a) = nv — (n™?) (2.51)
Thus if we set \,(a) = z,(a)?, the spectrum of T} is given by the sequence (A, (a))nen and
we have )
2 o 4ia -1
An(a) = n°v* — — O (n7). (2.52)

,€ n——+0o0
Since the operator T, depends analytically on a (in the sense of Kato [Kat80]), since the

eigenvalues of Ty are simple, and since the eigenvalues of Ty for s € [0, a] never meet, we
deduce that the eigenvalues of T, are simple. In particular, there is no Jordan block.

Then we discuss the properties of the eigenfunctions of T;,. An eigenvector corresponding
to the eigenvalue A\, (a) is given by

oa(y) = nla;y) = Aula) <6iz"<a>y pml@ta

zZn(a) —a

<>> . yelod,

where A, (a) is for instance chosen positive and such that [¢n(a)|g2 ) = 1. With (2.51)
we see that ¢, (a) is close to ¢, (0) for large n. Since the family (¢, (0)) is orthonormal, we
deduce from a perturbation argument (see [Kat80, Th. V.2.20]) that the family (¢,(a)) is a
Riesz basis of L%(0,¢).

We recall that a sequence (8i) in a Hilbert space H is a Riesz basis if there exist an
orthonormal basis (ex) and a bounded operator © € L(H) with bounded inverse such that
Br = B¢y, for all k € N. In particular, for 1) € H there exists a unique sequence () xen € £2(N)
such that ¢ = Z}?:o Vi Bk and we have, for some C' > 1 independent of v,

o0 o0
CUN el < Jwls < €D Jul?. (2.53)
k=0 k=0

With this Riesz basis property, we can use the symmetry of the domain €2 almost the
same way as with a selfadjoint Laplacian (or as in (2.31)). In particular, we can write
the resolvent of H, in terms of the resolvent of L. For u = u(z,y) in L%*(Q) we write
w(x,y) = Xen Un(@)pn(y) and for z € p(H,) we have

(H, —2)'u = Z (L= (2= (@) un) @ ¢y (2.54)

neN
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Theorem 2.23 can be seen as the consequence of the Riesz basis property for (¢,,) (see (2.53)),
the spectral gap for the eigenvalues (\,,) (given by (2.52)) and the fact that all the eigenvalues
have negative imaginary parts), and the estimate for the resolvent of the selfadjoint operator
L on L2(RI-1).

Even if it was the original motivation, it was not possible to adapt the ideas of [8] to deal
with the wave equation in [14]. First, the Riesz basis property is probably wrong if the cross
section has dimension greater than 1. But even with a one dimensional cross section, the
difficulty with the wave equation is that we have to deal with a Robin parameter proportional
to the frequency. All the results given above are valid for any a > 0, but they are not uniform
with respect to a going to +o0. In particular, the size of the strip which contains o(H,) or
the constant C, which appears in the Riesz basis property have no reason to be uniform with
respect to a. This is why I finally used other ideas in [14].

All this being said, it is still interesting to understand the behavior of o(H,) for large
values of a.

The first observation is that for a fixed n the map a € [0, +o0[— Re(z,(a)) is increasing
from nv to (n + 1)v, while Im(z,(a)) is 0 for a = 0, it is negative for all a > 0, and it goes
to 0 when a — 400. Thus, with a strong damping, we recover the behavior of an undamped
problem. More precisely, when a goes from 0 to +00, \,(a) goes from the n-th Neumann
eigenvalue n?v? to the n-th Dirichlet eigenvalue (n + 1)212, through the lower half-plane (it
goes through the upper half-plane if a < 0 goes from 0 to —o0).

But all this is not uniform with respect to n. Roughly speaking, z,(a) is close to nv if
a « n and close to (n + 1)v if a » n. But for the wave equation, a is precisely proportional
to the frequency, hence of order n. We can be more precise. We have

sup|lm(z,(a))] ~ In(n),

a>0 n—0o0

so the curve a — z,(a) goes deeper and deeper in the lower half-plane for large n. This upper
bound is obtained when a ~ nv. More precisely, for § € R we have

n——+00 é

Re(z, (nv + Bln(n))) — nv ——— 1 (ﬂ' —arg <5 + 2)) e [0,v],

Im(z, (nv + BIn(n))) ~ —

n—+0o0 Y4 ’

and for v € R¥\ {1},

and Rez,(ynv) —nv ——

n—>+00 n—+m

1+~
L=~

1 0 ify<1
Im (2, -1 ’
(zn () 14 n‘ {1/ if v> 1.

These results were finally written in an appendix of [14].

These last properties were not used in [8]. They gave an intuition for [14] but could not be
used directly since the cross section was no longer of dimension 1. However, it is interesting to
have a good picture of the behavior of the eigenvalues in this quite simple setting, since being
able to localize (even roughly) the eigenvalues of a Robin-type non-selfadjoint Schrédinger
operator for any Robin coefficient will be an important issue for the Schrodinger and wave
equations on (one dimensional) quantum graphs. See the discussions in Sections 3.1 and 4.4.2.
See also Section 4.1.2 about the generalization of [8] to a system of two coupled equations on
the wave guide.
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Figure 2.2: The eigenvalues of H, for a going from 0 to 400
On the left, the eigenvalues A1 (a) and A2(a) for various values of a. On the right, the graphs

of a = Im(\,(a)) for ne{0,...,4}.
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Chapter 3

Related topics

The analysis of the damped wave equation has been the main topic of my research, but I
have also worked on slightly or completely different problems. In this chapter we will discuss
quantum graphs, Agmon estimates, magnetic Laplacians, abstract spectral theory, a problem
of control and some non-linear problems. These works opened new directions of research and
give interesting perspectives for the future.

3.1 Spectrum of a non-selfadjoint quantum star graph

We begin with the analysis of the spectrum of a non selfadjoint quantum graph. With Gabriel
Riviere, we were interested in the spectral properties of quantum graphs. Since we were also
both interested by the damped wave equation, we chose to look at the damped wave equation
on graphs. In [21] we started with a toy model, namely a non-selfadjoint Schrodinger operator
on a star graph.

3.1.1 Quantum graphs

A discrete graph is defined by a set V of vertices and a set £ of edges, which can be seen as a
subset of V x V. Two edges v1 and v are connected if and only if the pair (v1,v2) belongs to
E. The graph can be oriented (the pairs (v1,v9) and (ve, v1) are distinct) or not. For spectral
properties of discrete graphs, we refer for instance to [Chu97, CdV98| and references therein.

In our context the edges have lengths. Then an edge e € £ of length ¢, > 0 is identified
with 10, 4.[ and a natural distance can be defined between the points of the graph (vertices
or points on edges). We use the terminology quantum graph when we consider a (differential)
operator on the Hilbert space given by a metric graph. More precisely, the edge e is endowed
with the Hilbert structure of L2(0, /). Then I is endowed with the Hilbert structure defined
by

L*(T) = P L*(0,L.).
ee&
Then we can consider a differential operator on each edge, usually of Schrédinger type, with
boundary conditions at the vertices. For a complete introduction about quantum graphs we
refer to [BK13].

In [21], we consider the graph I" with the simplest non-trivial topology. Given N € N*_ it
is defined by a set of NV + 1 vertices v,v1,...,vny and N edges e1,...,en. The edge e; joins
the vertex v; to the central vertex v. Then v has degree N and the other vertices have degree
1.

Our graph is not oriented, but we have to choose a convention for the parametrization of
the edges. The edge e; has length ¢; > 0 and is parametrized by z; € [0,¢;], with ; = 0
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corresponding to the vertex v; and x; = £; corresponding to the vertex v.

Then, given a € C, we define a Schrédinger operator H, on L?(I') with (possibly) non-
selfadjoint Robin condition at the central vertex. Its domain Dom(H,,) is the set of functions
u = (uj)igj<n In @;Vzl H?(0,¢;) which satisfy the Dirichlet boundary condition at the
exterior vertices

Vie{l,....N}, u;(0)=0, (3.1)

continuity at the central vertex v

Vi ke{l,....,N}, wuj(4;) = ur(ly), (3.2)

and the Robin condition N
Z wj(45) + au(v) =0, (3.3)

j=1
where u(v) stands for the common value w;(¢;), j € {1,...,N}. Finally, for u = (u;)i1<j<n

in Dom(H,,) we define H,u € L*(T") by

(Hou)j = —uff Vje{l,...,N}. (3.4)

39
The quadratic form associated with the operator H,, is given by

N
(o, oy = ) 13200, + 0 ulv) 2. (3.5)

Jj=1

The vertex condition (3.3) is the analog of the usual Robin boundary condition ¢, u+au =
0 for Schrédinger operators on domains of R? (see (2.18), with a different convention for «).
When o = 0 we recover the usual Kirchhoff (or Neumann) condition, and we see from (3.5)
that the perturbation when « # 0 corresponds to a Dirac potential at the central vertex v.

Notice that the particular case N = 1 corresponds to the Schrodinger operator on a
bounded interval with mixed Dirichlet and Robin conditions at the boundary, while the case
N = 2 is the Dirichlet Schrédinger operator on a bounded interval with a singular potential
in the interval.

u3(0) =0

Vi, k, uj(v) = u(v)

6
Zuj’(ﬂj) +au(v) =0
=1
Figure 3.1: The quantum star graph with N = 6 edges.
3.1.2 Main spectral results
Our purpose in [21] is to discuss some spectral properties of the operator H,. We are mainly

motivated by the non-selfadjoint case a ¢ R. Contrary to the selfadjoint case (see for instance
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[BK13]), little is known about the spectral properties of Schrédinger operators on graphs in
the non-selfadjoint case (see however [Hus14, HKS15] for some general properties).

Here we only consider a model case, and considering more general graphs will be a natural
perspective. However, this allows us to give results without any restriction on the lengths
(£j)1<j<n, when many results about quantum graphs are only given for rational lengths or
for a generic family of lengths.

We are interested in the qualitative behavior of the large eigenvalues. The main motivation
is the behavior of the imaginary parts, which are related to the decay for the corresponding
time-dependent problem, but the results also give information about the real parts (and in
particular we obtain new information even in the selfadjoint case). We describe the spec-
trum of H, by comparison with the spectrum of the Kirchhoff operator Hy. We denote
by (A (0))nen+ the non-decreasing sequence (with A1(0) > 0) of eigenvalues of Hj repeated
according to their multiplicities.

We say that an operator T' on the Hilbert space H is sectorial if there exists v €
R and 6 € [0,Z[ such that the numerical range of T is included in the sector £, =
{CeC : |arg(¢ — )| < 0}. Then T is said to be maximal sectorial if o(T") < X, 4.

We begin with a rough localization of the eigenvalues of H,,.

Proposition 3.1. Let a € C. The operator H, is maximal sectorial and its spectrum is given
by an infinite sequence (An(a))nen+ of isolated eigenvalues whose geometric and algebraic
multiplicities are finite and coincide. These eigenvalues (repeated according to multiplicities)
can be labeled in such a way that for n € N* large enough we have

[An (@) = An(0)] < dist(An (0), 0 (Ho)\ {An(0)} ).

Moreover, if T € % o) % (non-empty if £;/l, € Q) for some j, k € {1,...,N}, then 7% is a
common eigenvalue of Hy and H,, with the same multiplicities.

This proposition says that the Robin eigenvalues are in some sense not so far from the
corresponding eigenvalues of the Kirchhoff operator. This gives in particular a Weyl law,
already known for the latter. For R > 0 we set

Na(R) = Card {n € N* : Re(An(@)) < R}.

The Weyl law for a Laplacian on a domain € of R? (or a manifold) depends on the dimension

d and the size of the domain: .,
|Q| waR2
Nqo(R) ~ ————
ol )Ra+oo (2m)d 7
where wg is the volume of the unit ball. Here the size of the metric graph is the sum of
the lengths of the edges: |T'| = Z;yzl ;. The following result agrees with the result already

known on manifold or for selfadjoint quantum graphs.

Theorem 3.2 (Weyl Law). Let a € C. We have

IFI VR

Na(R) = + O (1).

R—+0o0

For o € C and n € N* we set n,(a) = A\, (a) — A\, (0). For Theorem 3.2 we only need a
uniform bound on 7, («). The main result in [21] is a refined analysis of this difference. We
set £ = ({1,...,¢N).

Theorem 3.3. There exists a probability measure pg on C such that for any o € C* we have
i the weak sense for measures

1 n

o Z (o) T [

Moreover py satisfies the following properties.
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(i) pe is supported in [0,2|T)7"].

(i) If ¢;/t, € Q for all j,k € {1,...,N} then pg is a linear combination of Dirac distribu-
tions, including the one at 0.

(iii) If k- £ # 0 for all Kk € Z4\ {0} then g is absolutely continuous with respect to the
Lebesgue measure on [0,2|T|”"] and its support is ezactly [0,2|T]'].

If s belongs to the support of p, there exists an increasing sequence (ny) in N* such that
Mn,, (@) goes to sa as k — 00. The last result is about the rate of convergence for this limit.

Proposition 3.4. Let a € C.

(i) There exists an increasing sequence (ng)genx such that

1
mi@ =0 ()

(ii) There exists Q < (R*)N of Lebesque measure 0 such that for £ € (R¥*)M\Q, a € C,
s€10,2 |F|71] and € > 0 we can find an increasing sequence (ny)pen+ such that

1
(@) =sa+ O [ ———].
k—o \ p N €
k

By the last statement of Proposition 3.1, the sequence (7n,(«)) has a vanishing subse-
quence except in the last case of Theorem 3.3, so the first statement essentially concerns the
purely irrational case. Notice in particular that 0 always belongs to the support of .

In these results, we only describe the eigenvalues of H, by comparison with those of H.
However, since Im(A,(«@)) = Im(n,,(«)), this gives a direct description of the imaginary parts,
which was our original motivation. The spacing between the real parts of \g(a) and A, («)
is nevertheless also an important result.

3.1.3 Ideas of proof

In the rest of this section, we comment some ideas of the proof of Theorem 3.3.

Comparison with the Dirichlet eigenvalues. We denote by Hp the operator defined as H,,
with (3.3) replaced by the Dirichlet condition u(v) = 0 at the central vectex (this corresponds
to a = o0). Then the edges are disconnected, and it is easy to identify the non-decreasing
sequence (Apn)nen+ Of eigenvalues for Hp (repeated according to multiplicities). By a stan-
dard argument based on the Min-max Theorem (see for instance [BK13, Th. 1.3.8]) we have

M0) <Ap1 <A(0)<Apa2<...<A(0)<Apn, <... (3.6)

)

Moreover, we have a similar result with A, («) instead of A, (0) if « is real. Since the eigen-
values of the Dirichlet problem are easily identified, this gives a rough localization of A, («)
when « is real.

We cannot use this idea when a ¢ R. Nevertheless, we can check that the two following
facts remain valid in general. If X\ is an eigenvalue of Hp of multiplicity m € N* | then it
is an eigenvalue of H, of (geometric and algebraic) multiplicity m — 1. On the other hand,
the eigenvalues of H, which do not coincide with an eigenvalue of Hp are of (geometric and
algebraic) multiplicity 1. The difficulty is then to localize these other eigenvalues.
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The secular equation. Let z € C*. Assume that 22 is an eigenvalue of H, and that u is a
corresponding eigenvector. By the Dirichlet condition (3.1), u; is necessarily of the form

’U,j(l’j) = ﬂj SiIl(ZIj), T; € [O,Zj], (37)

for some B; € C. With this information only, we can already prove that

2
limsup |Im(A)] < = |Im(a)]. (3.8)
Aeo (Ho) T
Re(A)—+®

This implies in particular that o(H,,) is included in a horizontal strip of C.

The conditions (3.2) and (3.3) at the central vertex v give N linear equations with respect
to the N coefficients f;, j € {1,...,N}. Then 2% is an eigenvalue of H, if and only if the
corresponding determinant is 0. In general, the determinant is some polynomial in sin(z¢;)
and cos(z¢;), j € {1,...,N}. Here, with a star-graph, everything can be explicited. We
obtain the secular equation

Fo(z0) + %Fp(zé) —0, (3.9)

where for y = (y1,...,yq4) € C? we have set

N N
Foly) = Z cos(y;) | [sin(y) and Fp(y) = H sin(y;).

kit

The determinant Fy(zf) corresponds to the case @ = 0. This is the determinant for the
Kirchhoff operator. On the other hand, Fp(z¢) is the determinant corresponding to the
Dirichlet condition at v. For y € CV and z € C such that Fp(y) # 0 and Fp(2f) # 0 we set

\I/—Fo(y)—Nt ) and — (ot
(y)*—FD(y)f—]glcoan(yg) and (z) = ¥(zf).

Then 22 € C\o(Hp) (remember that o(H,) no(Hp) is already understood) is an eigenvalue
of H, if and only if

Y(z) = (3.10)

a
z
Perturbation of the Kirchhoff eigenvalues. The family of operators (Hy,)aec is analytic with
respect to o (family of type B in the sense of [Kat80]). At least for a small the eigenvalues
of H, are in some sense close to the eigenvalues of Hy. The next step is to show that the
eigenvalues of Hy cannot move too far as long as « stays in a compact set of C.

Let n € N* such that A,(0) # Ap, (in particular, A,(0) is a simple eigenvalue of Hp).
The idea is to find a bounded domain w,, such that w, no(Hy) = {\,(0)} and dw,, " Hio = &
for t € [0,1]. By continuity of the spectrum, this will imply that H, has exactly one simple
eigenvalue in w,. For the star graph, we can use the explicit expression for . Using the

Taylor expansion around 7, = 1/A,(0), we can prove that (3.10) with « replaced by ta
cannot have a solution on the circle C (Tn, %) when n is large. In particular there is an

eigenvalue A\, («) of H, which remains “close” to A, (0). Then, by Taylor expansion again,

we can deduce that
2

-1
n(a) = o) +O(1,, ). (3.11)
At this stage, we have roughly localized some eigenvalues of H,. For n € N*_ if \,,(0) coincides
with a Dirichlet eigenvalue, then it is also an eigenvalue of H, and we set A, (a) = A\, (0) (the
multiplicities agree), otherwise there is an eigenvalue A, () close to A, (0) (both are simple).
We have used the continuity of the eigenvalues of Hy, to see how the eigenvalues of Hy move
to those of H,. It could also happen that some new eigenvalues appear at infinity. From the
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analysis of ¢ again, we check that the eigenvalues of Hy, for ¢ € [0, 1] all stay in a region of
C which only has bounded connected components, so this phenomenon cannot occur here.
Thus, we have identified all the eigenvalues of H,. For some of them we have 7,,(«) = 0 (this
happens if some lengths are commensurable), and for the others the difference 7, satisfies
(3.11).

The Barra-Gaspard measure and definition of ;1. We observe that the leading term in (3.11)
is simply linear with respect to a. For a better understanding of the sequence (7, (a))nen*,
the next step is the analysis of the sequence (¢'(7))nen+. This is a quantity which only
depends on the 7, n € N*,

For this we use the measure introduced by Barra and Gaspard in [BG00] to study the level
spacing of Hy. See also [KMWO03, BW10]. We see Fy as a function on the N-dimensional
torus TV. We set Z = {y € TV : Fy(y) = 0}, so that 72 is an eigenvalue of Hy if and only if
rle Z. For t >0 we set ¢}, = [tf] in TV.

Here we focus on the case where - # 0 for all x € Z%\ {0} (otherwise ¢} lives in a subtorus
of TV, the general case is considered in [21]). In this case Zy = Z\ {0} is a submanifold of
dimension N — 1 in TV to which any ¢ with positive components is transverse. For this last
property we use again the explicit expressions available for the case of a star graph. The
contribution of a small neighborhood of 0 in Z will be small and will not play any role. On
Zy we consider the Barra-Gaspard measure

pee = € v(y)| pz,, (3.12)

where p z, is the Lebesgue measure on Z; and v(y) is a normal unit vector. Using in particular
unique ergodicity, we see that if g is a continuous and compactly supported function on Zj
we have

1 & s

=D, 9(e) —— 7/ gdpse.
n 2,960) ICHTN J 2,

Then the measure py of Theorem 3.3 is given by

T 2
- % here ®(y) = —— .
He = fpypEa] Prree where ) = Ggray

When some lengths are commensurable, |TN | has to be replaced by the size of the sub-torus
in which the flow ¢! is dense, and there is in g, a Dirac mass at 0, corresponding of the
eigenvalues which do not move with a.

From the expression of u, we can then prove the properties given in Theorem 3.3. We do
not discuss this part of the proof here.

It is natural to wonder if we can recover the same results on a more general quantum
graph. Some possible extansions of the results of [21] will be discussed in Section 4.4.2.

3.2 Agmon estimates for non-accretive Schrodinger operators

In this paragraph we briefly discuss the result of [13] about some non-accretive Schrodinger

The motivation for this paper was the Agmon estimates for a large class of non-selfadjoint
Schrodinger operators. The so-called Agmon estimates measure the decay of the eigenfunc-
tions of a Schrodinger operator in the classically forbidden region.

If we consider on R the case of a confining real valued potential V' with minimum at 0
(for instance, V(z) = z?), then a classical particle of energy E will necessarily stay in the
neighborhood of 0 defined by { € R : V(z) < E}. This is not the case for a quantum
particle, but an eigenfunction of the operator —02 + V() corresponding to the eigenvalue E
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decays exponentially fast outside this region, and the rate of decay is given by the distance
to the classical region as defined by the Agmon (pseudo) metric

A (V(z) — E)y da?.

More generally, in a non-confining setting and for more general operators, the decay of eigen-
functions was studied for eigenvalues smaller than the bottom of the essential spectrum. We
refer for instance to [Agm82]. See also [HS96, Ch. 3]. The Agmon estimates have then been
extended in many settings. For a review, see for instance the talk [Hell9] and references
therein.

The purpose of [13] is to show that we have a similar phenomenon when the particle is
confined by the imaginary part of the potential. We also consider magnetic Laplacians, and
it turns out that the magnetic field actually plays exactly the same role. We can even go
further and show that if the imaginary part of the potential or the magnetic field becomes
large, then we can allow a (smaller) negative real part for the potential. As a typical example,
we can consider on L?(R) the operator

2
—% — 2% +iz®,
whose numerical range covers the whole complex plane.

In fact, much wilder potentials are allowed. The setting of [13] is the following. We
consider an open and connected subset Q of R, V e C1(Q,C) and 4 € C?(Q,R%). The
magnetic matrix is B = (0;Ax — Ok A;j)1<j k<d- We set

(B;V) =+/1+|B|+|V]|.

Conditions sufficient for all the results of the paper are

(ReV)_= o ((B;V))

|z| =400

wj

IVVI+|VB|= o ((B;V)
|z|—+0c0

The second assumption prevents strong osclillations for the coefficients. The power % is
an improvement compared to previous papers on related subjects. The first condition says
that the negative real part has to be small at infinity compared to the imaginary part or

the magnetic matrix, as discussed above. The purpose is then to define and give spectral
properties for the electromagnetic operator

L= (—iV+ A2+ V.

We are thus considering Schrédinger operators which are not even accretive. We first
define the operator. The form domain is

V= {u € L2(Q) : (—iV + A)ue L2(Q),(B:V)? ue LQ(Q)} .

We cannot apply a standard version of the representation theorem, so we use a generalized
version given in [AH15]. This defines a closed operator . with domain

Dom(Z) ={ueV : (—iV + A)*u+Vue L*(Q)}.
The next step is to prove that we have separation of the spectrum, namely
Dom(Z) = {ueV : (—iV + A)*ue L*(Q) and Vue L*(Q)}.
The main result is then the following. For E € R we set

Y ={CeC : Re(()+|Im()| < E}.

59



Theorem 3.5. (i) There exist v1 > 0 and 2 € R such that for

p < liminf (B; V) (z)

|z|—+00

then any ¢ € X, ,—v, 5 such that (£ — () is Fredholm with index 0 and the spectrum
of £ in X, ,—, consists of isolated eigenvalues with finite algebraic multiplicities.

(i) Given X € ¥,,,—, we define the corresponding Agmon distance on Q by

1
drsrlen) = __int [ (BV] (0) =7 = RelN) = ImN] (1) .

where CY(z,y) is the set of continuous and piecewise C* path v : [0,1] — Q with
¥(0) =z and y(1) = y. Let xo € Q be fized. If X is an eigenvalue of £ then for any
in the corresponding algebraic eigenspace we have

o5 dsca0)yp € L2(Q).

3.3 Absence of embedded eigenvalues for a magnetic Laplacian

In this paragraph we present [20]. This joint work with Nicolas Raymond is about the absence
of embedded eigenvalues in the essential spectrum of a magnetic Laplacian on R2.

We consider a magnetic field B which is invariant with respect to one variable. We set
B(z,y) = b(z) for some b e C*(R;R). A corresponding vector potential A = (A, Ag) is given
by Ai(z,y) = 0 and, for some ag € R,

As(z,y) = a(z) = ag + / b(s)ds. (3.13)
0
Then we consider the (selfadjoint) operator
L= (=iV = A)? = =2 + (—id, —a(x))’,
defined on the domain
Dom(.%) = {ue L*(R?) : (—iV — A)u, (—iV — A)’ue L*(R?)}.

The spectrum of £ is purely essential. The purpose is to prove, under some assumptions
on b, that there are no eigenvalues in (some parts of) the spectrum of .Z. In some cases,
the spectrum of £ can even be purely absolutely continuous. Such results cannot be true
in general since for a constant and non-zero magnetic field B, the spectrum of . consists
of eigenvalues of infinite multiplicities, given by the Landau levels (2n — 1) |B], n € N* (so
(L) = 0ess (L) = 0p(Z) in this case).

Let

It is already known [Iwa85] that if ¢4 = ¢_ = oo or if b(z) has two distinct finite and
non-zero limits at —oo and +o0, then % has an absolutely continuous spectrum (and in
particular, no eigenvalues). Our two main results in [20] are the following.

Theorem 3.6. Assume that the limit ¢_ exists in R U {£o0}. Assume that there exist o €
1—1,4o[\{0} and c1,C > 0 such that

b(z) ~ ciz® and |V'(z)] < Clx)*, z=o.

T—+00

Then £ has no eigenvalue.
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We could similarly consider the cases where b is replaced by —b or where the behavior of
b is prescribed near —oo. Notice that Theorem 3.6 covers in particular situations where b(x)
goes to 0 or to +o for x — +00.

In the second theorem, we consider situations where b goes faster to 0 at infinity. We
assume that ¢_ and ¢, are finite but with ¢ — ¢_ > 1 (the case ¢_ — ¢, » 1 is similar).
For instance, we assume ¢_ =0 and ¢ = ¢ » 1.

Theorem 3.7. Assume that b takes positive values, that it is integrable and that b'(z) = O(zN)
for some N = 0 as x — +0. We choose ag = ff’w b(s)ds in (3.13), so that ¢ = 0 and
¢ = ¢y = |b| 1 (r)- Then we assume that a € LY(R_) and a — ¢ € L*(R,).

() o(2) = [0, +ol.
(ii) Z = %4 has no eigenvalue in [%2, +ool.

(iii) Let ng be such that ny, = o(In(¢)~%) as ¢ — +oo. Then there exists ¢o > 0 such that
for ¢ = ¢¢ the operator £ = £, has no eigenvalue smaller than 77¢¢2.

2
The question of existence of eigenvalues in [77¢¢>2, %[ remains open in this case.

The proofs of these two results are based on a Fourier transform with respect to y and a
careful analysis of the family of one-dimensional Schridinger operators

L= =%+ (E—alx)”.

In particular, a refined version of the harmonic approximation is provided to give a precise
description of the eigenvalues of .Z.

3.4 Reduction of dimension in an abstract setting

.....

and Petr Siegl.

This work was motivated by a Schrodinger operator with non-selfadjoint Robin condition
in a shrinking layer. More precisely, we consider a closed, orientable, smooth hypersurface ¥
in R¢ without boundary, and we denote by v : ¥ — S a unit normal vector field which
specifies the orientation of ¥. We assume that 3 has a tubular neighborhood: for some € > 0
the map O : (s,t) — s+ etv(s) is injective on = ¥ x [—1, 1] and defines a diffeomorphism
from Q to its image Q. = 0.(Q).

We set £y . = O.(X x {£1}). Given a smooth function o : ¥ — C we define a4 . on
Y4 . by ay (s ev(s)) = a(s). Then we consider on L?({).) the operator P defined as the
usual Laplace operator on €). subject to the Robin boundary condition

Ou+ar . u=0 onXi..

This is a very particular (PT-symmetric) choice of Robin coefficients, but a more general
setting could be similarly considered. Then the purpose is to prove that when ¢ — 0 the
spectral properties of P. are close to those of an effective operator P = —Ayx, + Ver on
L?(¥). Here —Ay is the usual Laplace-Beltrami operator on ¥ and Vg is a potential which
depends on the geometry and the Robin coefficient a:

‘/eff = |O[‘ — QO[RG(O[) - Oé(/‘fl +-+ K/d—l)a

where K1,...,kq—1 are the principal curvatures.
The convergence of P- to Pe is in the sense of the norm of the resolvent. More precisely, we
denote by II the projection of L?(€2) on functions which do not depend on t. For u € L?(£2)
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and (s,t) € Q we set (Iu)(s,t) = %fil u(s,0)dd. Moreover, for € > 0 small enough, an
explicit unitary operator U, : L?(Q.) — L?(Q,w.ds dt) is defined, for some w. : @ — R,
bounded and bounded away from 0 uniformly in . In the following result, P is seen as an

operator on I1L?(12).

Theorem 3.8. Let K be a compact subset of p(Pesr). There exist eg > 0 and C = 0 such that
for z€ K and € €]0,e¢] we have z € p(P:) and
H (P — Z)_l - Us_l(PefF - z)_anE“c(LQ(QE)) < Ce.
Notice that the convergence in the sense of the norm-resolvent is very strong and we can
deduce important properties for P. with € > 0 small from the properties of Per. We say

that we have reduced the dimension since a d-dimensional problem is reduced to a (d — 1)-
dimensional problem, which can be significantly simpler.

There were already many results of this kind in the literature for selfadjoint operators.
The common aspect is that the spectral properties of a parameter-dependent operator are
well described by those of an effective operator when the parameter goes to some limit. How-
ever, in the previous literature, this similarity is hidden in the various technical steps specific
to each situation. In [16], we give a unified abstract result, described below. This includes
various settings such as the semiclassical Born-Oppenheimer approximation, a problem on a
shrinking tubular neighborhood as above, or the similar problem on a fixed domain but for a
large Robin parameter «. Reduction of dimension is already known in some of these contexts,
but the abstract result also provides new results. Here we only describe the abstract result,
but these examples of applications are discussed in [16].

The abstract setting is the following. Given a measure space % and a family of Hilbert
spaces Hs, s € X, we set H = P, Hs. A vector in H is a family (¢s)sex, where each ¢
belongs to Hs, and [, H(bs”i[ do(s) < +o0. We consider on H a selfadjoint operator of the
form

£ =85*S + (—B T,
seX
where S is densely defined and T is selfadjoint and non-negative for all s € .

Typically, if we consider on R? an operator of the form —h2A + V with V > 0 then we
can take ¥ = R, S = —ihds and Ty = —07 + V (s, t) for each s € R.

Then we consider a function s € ¥ — 7, such that v, = v for some v > 0. For s € 3 we
denote by II; the spectral projection of T on [0, vs[. We define Il € L(H) by I1¢p = (I5¢s)ses
for ¢ = (¢s)sex, and we set I+ = Id — II. We assume that Dom(S) is invariant under II.

In a typical example, the bottom of the spectrum of T is given by a simple eigenvalue and
vs is the second eigenvalue of T, so that Il is the orthogonal projection on the eigenspace
corresponding to the first eigenvalue. After having chosen a corresponding eigenvector, I15¢,
is characterized by a scalar and Il¢ can be identified with a function on 3.

We set Zoie = ILLTI. This is an operator on IIH with domain ITHNDom(Z). The purpose
is to compare % with the simpler operator Z.¢. As an intermediate step we consider the

operator .Z = L + L+, where £+ = II* ZII+ on H. Then we have o(.%) = o(Lgs) U
o(Z*) and for z € p(£) such that z ¢ [, +oo[ we have

1
ST u——
ey dist(z, [y, +o0[)

H —

(Z-2)7" — (L —2)711|

Thus the main result is about the difference between .# and .Z. We consider m(z), n2(2),
n3(2) and ns(z) which are explicit functions of z € C, v and [[S,I1]| ;5 (see (1.5) in [16]).
Then we have the following estimate.
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Theorem 3.9. Let z € p(.&). Assume that
1—m)|(Z —2)7" = na(2) > 0.
Then z € p(£) and

(£ -2 = (Z 271
<m@)|(Z =)7L =27 + @) |(L = 2)7Y + m )| (£ = 2) 7Y + ().

Combining these two results we get information on the resolvent of . from properties on
the resolvent of L.

The regret with Theorem 3.9 is that even if it is quite general, it does not include the
non-selfadjoint setting of Theorem 3.8. However, the proofs follow the same ideas and use
common intermediate results. It would be interesting to be able to prove an abstract theorem
which also includes non-selfadjoint settings.

3.5 Observability for a Kolmogorov equation

In this paragraph we consider a question of control for a degenerate evolution equation. This
is a joint work with Jérémi Dardé [22].

3.5.1 Setting and main result

We consider a two-dimensional domain €2 of the form T x I, where T = R/277Z and I =
] —¢_,¢,] for some ¢4 > 0. A general point in 2 is denoted by (z,y) with 2 € T and y € I.
Let g € C3(I,R) such that ¢(0) = 0 and min(q’) > 0. The model case is ¢(y) = y. Let T > 0.
We consider a Kolmogorov equation of the form

dru + q(y)?0,u — dyyu =0, on ]0,T[xQ,
u=0, on 0, T[x 09, (3.14)
Ujt=0 = Up € L2(Q)

We say that the Kolmogorov equation (3.14) is observable through 02 in time 7" > 0 if
there exists C' > 0 such that for any ug € L?(Q2) the solution u of (3.14) satisfies

T
()220 < C / 18, u(8) 2oy . (3.15)

We can replace 02 by any non-empty open subset of 0f2. We can also consider observ-
ability through a non-empty open subset w of Q. In this case, we replace (3.15) by

T
(D)2 < C / u(t) e . (3.16)

The critical time 7, € [0, +0] for the observability of (3.14) through 0 is the infimum of
the times T' > 0 for which we have observability. In particular, (3.14) is not observable in
time T' > 0 through 0Q if T < 7.. Moreover, since (3.14) is dissipative (the norm of u(t) is a
non-increasing function of time), (3.14) is observable in any time 7' > 7.

The main motivation is the null-controllability by the boundary for the adjoint problem.
Given f e L?(0,T; L?(02)) we consider the problem

dru — q(y)?0pu — Oyyu = 0, on 0, T[x€Q,
u=f, on 10, T[x 09, (3.17)
ujp—g = ug € L*(9).
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Then we say that the Kolmogorov equation (3.17) is null-controllable by 02 in time 7" > 0
if for any ug € L*(Q) there exists f € L?(0,7T;L?(052)) such that the solution u satisfies
u(T) = 0. Tt is classical in control theory (see for instance [Cor07, Th. 2.44]) that the null-
controllability for (3.17) is equivalent to the observability for (3.14).

This problem is similar to the better understood Grushin equation (see Section 4.2 below).
For the Kolmogorov equation, it is proved in [Beal4] that (3.14) is observable through any
open subset of Q if ¢(y)? is replaced by y, and that there is a critical time 7. > % for the
observability when ¢(y)? = 2 and w = T x [a, b] for some 0 < a < b < £,. With the same w,
it is also proved in [BHHR15] that (3.14) cannot be observable in any time for ¢(y)? replaced
by y™ with n > 3. There are also many results about parabolic equations generated by ge
neral quadratic operators, including the usual Kolmogorov equation (see for instance [BPS18§]
and references therein).

Our purpose in [22] is to prove for the Kolmogorov equation a result similar to the result
of [BDE20] about the Grushin equation. The main result is the following.

Theorem 3.10. Let

1 0 1 0y
L= 70 /47 lg(s)|ds and T4 = Wo)/o q(s)ds.

T € [ min(T-, T}.), max(T_, T4)]

There exists

such that the Kolmogorov equation (3.14) is observable through 0§ in any time T > T., but
not in time T < 7.

We observe that we get exactly the critical time 7. in any configuration for which 7_ = T..
This is in particular the case in a symmetric setting (/— = ¢, and ¢ is odd).

Since the coefficients in (3.14) do not depend on z, we can consider the Fourier series of
the solutions with respect to x. Setting

3 1 —inx
u(t,ﬂ?,y) = Z un(tay)eznxa Un(t,y) = 5= / € ’U,(t,ﬂf,y) d$7
T

neZ 2m
the Fourier coefficients u, (t,y) are solutions of

Orun, — Oyyun + ing(y)*u, =0, on ]0,T[xI,
Un(t, —0_) = un(t,l4+) =0, for t €]0, T, (3.18)
un (0) € L2(I).

Then (3.15) holds if and only if we have observability for w, uniformly in n € Z. This

means that there exists C' > 0 such that for n € N (the case n negative follows by complex
conjugation of (3.18)) and a solution w,, of (3.18) we have

T

3.5.2 Spectral properties of the Kolmogorov operator

The analysis of (3.18) depends on the spectral properties of the non-selfadjoint operator
K, = —0,, +ing(y)?, with domain Dom(K,) = H*(I) n Hy(I) = L*(I).

In particular we use the decay of the corresponding semigroup.
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Proposition 3.11. Let

¢ (0)

ol

There exists C > 0 such that for n € N, a solution u, of (3.18) and 61,0 € [0,T] with
01 < 03, one has

v <

[un (02) 72z < Ce27 V070 (01) [y -
We notice that the semigroup e *%» is regularizing, even if it is not as small as the
propagator of the heat equation for high frequencies.

We also give spectral properties for the operator K = —65 + q(y)?0, on Q, and deduce
that (3.14) is well posed, dissipative and regularizing (in particular the normal trace in (3.15)
makes sense).

Near y = 0 (where the problem is degenerate) the coefficient ¢(y)? looks like ¢/(0)%y%. To
prove Proposition 3.11, we compare K,, with the Davies operator H,, on L?(R):

H, = =0, +inq (0)*y*, Dom(H,) = {ue H*(R) : y*ue L*(R)}.

The basic spectral properties of H,, are well known (see for instance [Hell3, §1.3]). The
spectrum of H,, is given by a sequence (A, k)ren of (geometrically and algebraically) simple
eigenvalues given by A, = (2k — 1)y/ng’(0)e®. As is often the case for a non-selfadjoint
operator, the size of the resolvent of H,, is far from being controled by the distance between
the spectral parameter and the spectrum (see [PS06, HSV13, KSTV15]). However, given

v < % there exists ¢ > 0 such that

c

sup || (Hn — Z)ilua(y(R)) S n

Re(z)<v+/n

(3.20)

To recover similar properties for K,,, we compare the resolvents of K,, and H,. More
precisely, with the natural restriction operator 1; : L?(R) — L?(I) we have the following
estimate.

Proposition 3.12. Let v < qléo).
parts greater that y/n. Moreover,

Then for n large enough the eigenvalues of K, have real

1
Kn_ —1_]1 Hn_ _1]1* = — | .
o 2 ()

We deduce Proposition 3.11 from Proposition 3.12 and the standard semigroup theory
(see for instance [EN0O, Th. V.1.11]).

Another consequence of Proposition 3.12 is that the spectrum of K, is in some sense
“close” to the spectrum of H,,. More precisely, we are interested in the “smallest” eigenvalue.
By perturbation theory, we get the following result.

Proposition 3.13. There exists a sequence (An)nen in C such that A\, is an eigenvalue of K,
for all n and

Ao =g (0T + o (y/n). (3.21)

n—+00

3.5.3 Positive result: observability in large time

To prove that we have observability in time T' > max(7T_,T,) we proceed in two steps. The
first step consists in proving that (3.19) actually holds in arbitrarily small time. But not
uniformly in n. For large n we have the following estimate.
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Proposition 3.14. Let 7,7 €]0,T| with 71 < 72 and

an 0 /
K > max (\}5/0 q(s) ds,%/ﬁ |q(s)|ds> = q\ﬁ(%) max(T_,T,).

There exist ng € N and C > 0 such that for n = ng and a solution u, of (3.18) we have

Jun (72) oy < C> T / (18,00 (8, —£2)2 + [yua (1, €)P) .

The estimate is not uniform for high frequencies, but we control the dependence in n.
Then, the second step consists in... waiting. We see from Proposition 3.11 that for large
times the contribution of high frequencies is actually small. The time max(7_,T%) is pre-
cisely how long we have to wait to ensure that the smallness in Proposition 3.11 (applied
with 03 = T and 01 = 72) compensates the bad estimate of Proposition 3.14 (applied with 7o
small enough).

Proposition 3.14 can be seen as a quantified version of a unique continuation result (in
particular, if u is a solution of (3.18) with d,u = 0 on [0,T] x ¢I then u(t) = 0 for all
t € [0,7]). It is usual to use a Carleman estimate for this kind of result.

Ideas of proof. Given n € N and a solution u of (3.14) (we omit the index n) we set w = e~ %u
for some ¢ > 0. We prove estimates on w and then deduce estimates on w (then ¢ should be
chosen as small as possible).

If ¢ is large near t = 7, and t = 79, then w satisfies the assumptions of the following
proposition with [a,b] = [—¢_,¢,] and g = 0.

Proposition 3.15. Let n € N, 7,75 > 0 with 71 < 72, a,b € R with a < b, and g €
L2(Jry,m2[x]a,b]). Let ¢ € C*(Jry, m2[x[a,b],Ry). We consider w e C°([1, 72], H*(a,b)) N
CY([r1,72], L?(a,b)) such that

opw — &iw +ing(y)*w + 0o w — 20;¢ dyw — (9y)*w — 8§¢w =g. (3.22)

We assume that w also satisfies the Dirichlet boundary condition w(t,a) = w(t,b) = 0 for
t €]mi, m[, and the initial and final conditions w(t,y) = w(m2,y) = 0 and Jyw(ri,y) =
Oyw(72,y) = 0 for y €la,b]. Then we have

T2 b T2 1 T2 b

/ / (<I>0|w|2+<1>1|6yw|2)dydt<—/ [8y¢|6yw|2]2dt+§/ / lg|* dy dt, (3.23)
T1 a T1 T1 a

where

02 54(1) 3.2
By = —2(0,6)20%6 — t7¢’ L+ 200,06 0,6 - n j; ,

With g = 0 we can deduce an observability estimate for w if &y and ®; are positive. Thus
the purpose is to construct ¢ > 0 as small as possible and such that ¢y and ®; are bounded
away from 0. We construct ¢ in such a way that the first terms in ®3 and ®; are positive.
Because of the last terms in the expressions of ®; and @1, ¢ should be at least of size \/n.
We construct ¢ of the form ¢(¢,y) = /n0(t)1(y). The second to fourth terms in @y will be
smaller for large n.

The function 6 is chosen in such a way that § > 1 (otherwise the first term in each
expression would be too small), 6 goes to +o near 71 and 7» (for the boundary conditions in
Proposition 3.15) and § = 1 on [#7F72 74272 (see (3.25) below). Then it remains to define
1 to have, for some ¢ > 0,

P = —202¢ — V2nq'. (3.24)

2/
w = €, —2(¢/)2¢// - % = g, _2'(/)” - \/iq/ = €.
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We see that 10" has to be negative. Moreover, |¢)'| has to be bounded away from 0, but the
sign of ¢’ is not important. We also see from (3.23) that if ¢’ is positive it is enough to
observe on the left, and that it is enough to observe from the right if ¢’ is negative. We
could indeed observe from one side only, but it would be expansive to go through 0. Since we
observe from both sides, we proceed as follows. Given € > 0 and then § > 0 small enough, we
apply Proposition 3.15 with ¢/ > 0 on [—£_, ] and with ¢’ < 0 on [—4, £, ]. More precisely,
for y € [—6, 4] we set

Ly
Vi(y) = (\}5 +5> / (a(s) + &) ds + cq,
and for y € [—¢_, ]

Y_(y) = (\}§+E>/éy(—q(8)+€)ds+c.

The constants € > 0 and ¢4 > 0 are chosen in such a way that ¢_(0) = v, (0) < k. Since w
does not vanish at +4, we have to use cut-off functions to apply Proposition 3.15 on [—¢_, J]
and [—d,£4]. Then g is no longer 0 in (3.23), but the corresponding term on the right can
be absorbed by the left-hand side. Gluing the two estimates, we get for u

/ /(n l? + iy |2 )e 2V dydi \/ﬁ/ (Juy (t, €)1 + uy (£, £2)]?) .
T1 I T1

What we need is an estimate on u(m). However, since u(72) is smaller that wu(s) for any
s € [11,T2], we have

T1+272
3ervn TR 2
¢ / He_\/ﬁ‘pu(s)
2 L2(1)

HU(T2)H2Lz(1) S ds. (3.25)

T2 — T1 7'13+72

We only use the estimate for s € since otherwise 6 (and hence ¢) can be
large. Proposition 3.14 follows. O

[Fr2, m]

3.5.4 Negative result: non-observability in small time

In this paragraph, we discuss the non-observability for (3.14) when T' < min(7-,T). For
this, we construct a sequence of solutions which contradicts (3.15). We need a solution of
(3.14) which is small at the boundary. Since the (imaginary) potential nq(y)? is large away
from 0 when n is large, we use the Agmon estimates described in Section 3.2. Following [13],
we prove the following estimate.

Proposition 3.16. Let £ > 0 and £ €]0,1[. Forne N andy e I we set

1\;; /Oy \/(nq(s)2 —v/n(E + 6))+ ds|. (3.26)

There exists C' > 0 such that forn € N, u € Dom(K,,) and A € C with |[Re(A)|+|Im(A\)| < Ey/n,
we have

||€W"’E“/Hiz(1) +v/nfeeu

Wn,e (y) =

2 C 2
2y < OV lulgay + et (s = Ml

For large n we see that W), -(y) is close to v/nk.(y), where

_(1_8) ! s)das

We consider the eigenvalue \,, of K, given by Proposition 3.13 and a corresponding normal-
ized eigenfunction v,,. Since 1" = —\, 1, + inq(y)?, we can deduce the following estimate.
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Proposition 3.17. There exists C > 0 such that for n € N* we have
nkK 2
Hef El[}:LHLoo([) < CTL H'L/)nHi?(l) .

Finally, we set u,, (t, z,y) = e *=tei™4),, (y), and we get a sequence of solutions of (3.14)
for which (3.15) cannot hold if T < min(7_,T%).

3.6 Nonlinear evolution equations with singular potentials

3.6.1 A singularly perturbed Gross-Pitaevskii equation

Most of my works concern spectral theory and linear PDEs. I have also developed with Stefan
Le Coz a collaboration around some non-linear problems. The starting point was a question
of Stefan about the spectral properties of the linearized operator which appeared in one of
his problems. We discussed more and more about it and, one thing leading to another, I was
aware of the whole problem and I finally joined the project.

The purpose of [12] (with Isabella Tanni and Stefan Le Coz) is the analysis of the black
solitons of the Gross-Pitaevskii equation with Dirac potential

—idyu — 02u + ~you = (1 — |ul*)u, (3.27)
subject to the boundary condition

lu(t,z)| —— 1, VteR. (3.28)

|| —00

The difficulty is then twofold. Technical problems arise from the presence of the singular
potential and the non standard condition at infinity. For instance, one of the difficulties due
to (3.28) is that we have to work in a functional space which is not even a vector space:

€= {u e HL(R) : dyue L2(R), (1 — |u®) e L2(R)} .
It can however be endowed with a complete metric structure with the distance

2 2
o(u,0) = [0t = 00l ooy + |l = [0 | 2 gy + [u(0) = 0(O)]
This work has been an occasion to get familiar with questions and technics of non-linear
analysis. The question here is the stability of the stationary solutions (or black solitons),
solutions of

—%u+vou = (1 — |ul*)u.
The solutions can be explicited. Up to phase shift, they are given by

k(z) = tanh (\%) . by(z) = tanh ('””\/_;Q . by(z) = coth (|$|\%C”) :

where c, is an explicit parameter (137 is only defined for v < 0). We get a first result of
stability by minimization of the energy

1 1
B(w) = 3 /R Geuf® dar + /]R (1~ luf*)” dw + L (). (3.29)

Theorem 3.18. Let v € R*.

(i) The energy E reaches its (finite) minimum on

G — {eb,,0 e R} ify>0,
T {e®h,,0 e R} ify < 0.
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(ii) The set G is stable for the flow of (3.27):

Ve > 0,30 > 0,YVup e &, do(uo,Gy) <6 = supdo(u(t),g,) <e.

teR

The other stationary solutions are expected to be unstable. In [12] we prove the linear
instability of k. If we write u = k + 7, then the perturbation 7 satisfies an equation of the
form 0;n + Ln + N(n) = 0 where N(7) is non-linear in 1 and

Ln= fi(ﬁﬁn —~on + (1 — k%) — 2n2Re(n)).

Then k is said to be linearly unstable if 0 is an unstable solution of the linear equation

Theorem 3.19. If v > 0 then k is linearly unstable.

The proof relies on the spectral analysis of the R-linear operator L. We can rewrite L as
a R-linear matrix operator acting on (Re(n), Im(n)):

0 *LZ ¥ 2 2 v 2 2
L= Iz o ) LY =—02—-(1—-+k%), L} =-0;+2-3(1-k").
+

The operators L and L7 are defined on the same domain
D, ={ue H*(R*) n H'(R) : «/(07) —u/(07) = yu(0)}. (3.30)

Then a careful spectral analysis of LT and L7 shows that L has a negative eigenvalue when-
ever v > 0.

Unexpectedly, the main difficulty and hence the main part in [12] turned out to be the
analysis of the Cauchy problem (see already [Gér06] without singular potential). Before all
the discussion above, we check that the problem (3.27) is globally well posed and that the
energy FE is conserved. The first step is the analysis of the propagator of the linear part,
generated by the operator associated with the quadratic form u — |u’ HQLQ(R) +7]u(0)]?. Tt is
given by

H,=-02

x Dom(H’Y) = D’Y'
The difficulty is to deal with this not so usual operator in the completely unusual space £.
By Fourier transform we can see that e~*H0 — |d maps € to H'(R). Since £ + H!(R) = &,
we deduce that e~ maps &£ into itself.

We cannot use the Fourier transform for e~

explicitely the kernel of T'(t) = e~ #H+ — ¢~itHo

#Hy when v # 0. Instead, we compute

. For instance, for v < 0 it is given by

iv?t _ [yvl(el+lyD)
2

Iyl [ e | JETESERY
F(t;x,y)=—7 e 2 Ko(t,s—|x|—|y|)ds+7e Te ,
0

where Ky (t, () is the kernel of the free Schrédinger equation. By tedious computation, we can
show in particular that I'(t) maps £ to H(R) (and IT(£)ul g1 () is controled by [[Opul| 2 gy +
u(0)]).

Conservation of the energy is also a non-trivial issue. Finally, the analysis of the Cauchy
problem follows the standard strategy but, again, this standard strategy had to be adapted
to our non standard setting. We finally have a well-posedness result.

Theorem 3.20. For ug € & there exists a unique solution u € C°(R, &) of (3.27) such that
u(0) = ug. Moreover E(u(t)) = E(ug) for allt € R.

Here, a solution is in the sense given by the Duhamel formula. For a more regular uy we
have a solution in a stronger sense (in particular with d,u(t) € C°(R, L%(R))). We also have
a result of continuity with respect to the initial condition, but for a slightly different distance
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on £.

Notice that a problem on R with singular potential can be seen has a problem on a graph
with two edges of infinite length. The jump condition which appears in (3.30) is then the
analog of the Robin condition at the unique vertex (see (3.3)).

3.6.2 A nonlinear Klein-Gordon equation with delta potentials

After [12], we started to discuss with Francois Genoud and Elek Csobo (who was at that
time Ph.D. student under the supervision of F. Genoud and S. Le Coz) another problem of
stability for standing waves, suggested by a question of Masahito Ohta.

We now consider a non-linear Klein-Gordon equation, again on the real line with a singular
potential. We also consider a singular term involving d;u. This looks like a singular damping,
but with a purely imaginary (conservative) coefficient. More precisely, given m > 0 and
v, « € R, the problem considered in [19] is

2u — 2u + mPu + you + iaddu — [ul’ " u =10, on R, xR,
u(t,z) —— 0, vt >0, (3.31)
|| —00

(uaatu)\t=0 = (fa g) € HI(R) x LZ(R)

The first step in the analysis of (3.31) is again the Cauchy problem. Here there is a subtil-
ity due to the term ~ydu, which is not usual for a wave equation. The operator corresponding

to the linear part is
W= 0 1
S \Z-m? 0)°

Dom(W) = {(u,v) € (H*(R*) n H'(R)) x H'(R) : «/(07) — u/(07) = yu(0) + iaw(0)} .

with domain

This defines a skew-adjoint operator on the space 5# = H!(R) x L?(R), endowed with the
norm defined by

2 2
10 0) 5y = 1 2y + 02 Nl 2y + 7 [w(O) + 0] 72y -

The problem is that if v is too negative, this norm is not a norm. In this case, we replace
m by some p > m large enough. We loose the skew-adjointness, but W still generates
on (A, ||| 4 ,~) a strongly continuous semigroup. Then we can proceed with the local
well-posedness for (3.31). Moreover, the following energy is a constant of the motion for

(u,v) = (u, Opu):

2
2l 1
Plwv) = 5 1orulage + T o + 5 olaqey + 3 WO = — [ P do

The charge is another constant of the motion:

Qu,v) |m/Ruadx— 2 ).

The main issue of [19] is then the question of orbital stability for the standing waves. For
this we follow the general theory of Grillakis, Shatah and Strauss [GSS87].

A standing wave is a solution of (3.31) of the form e™“!®, (z), where ®,, = (¢, iwp,,) is
a solution of the stationary equation

El(q)w) + le(q)w) =0.
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Non-trivial solutions exist if and only if m? —w? > (y—aw)?/4. A standing wave e“!®,(t) is
said to be orbitally stable if for any € > 0 there exists § > 0 such that the following property
holds for any solution U(¢) of (3.31):

[U0) = ol < = supinf [UF) - @, <.

This property implies in particular that a solution starting close to @, is defined for all ¢ € R.
The method is based on the symplectic structure of the problem (see [DBGRN15]). We
can rewrite (3.31) in the form

JU'(t) = E'U(Y), U(t) = (u(t), deu(t)),

where J (u,v) € I — (—iadv,u) € H* is skew-symmetric.
Then the criterion for orbital stability of the standing wave e““°®, depends on two

quantities. The first is the sign of
dQ(¢.)

dw w:wo.
Since @, is explicitely known, this can be analysed by tedious but straightforward com-
putations. To conclude to orbital stability or instability (we also discuss linear stability
and instability), we also need some spectral properties for the operator R_lLffJ(@w), where
R: # — % is defined by (=02 + 1,1dg2) and L, = E + w@. I do not detail the assump-
tions here, but it concerns the positiveness of essential spectrum and the number of negative
eigenvalues.

This is the main part of the paper [19]. However, all these properties depend on the
parameters v, @ and w (the strength p of the non-linearity also plays a role), so the results
of stability and instability have to be splitted into many different cases and I choose not to
give the precise statements here. See Section 4 in [19].
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Chapter 4

Projects and perspectives

After having discussed my past research in the previous chapters, the remaining part of this
thesis is devoted to the present and the future. In this last chapter I present unpublished
(submitted) results, works in progress and some longer term perspectives.

Some perspectives discussed here are parts of ongoing projects and can be continuations of
results already mentioned above, but this thesis is also an occasion to propose new directions
of research.

4.1 New questions about local energy decay

We begin with the projects which are close to the main subject of this thesis, namely the
local energy decay for wave or Schrodinger equations.

4.1.1 Asymptotic profile for the wave equation

In [23] (see the discussion in Section 1.7), it is proved that the solution of the Schrédinger
equation (1.13) behaves for large times like a solution of the free problem (1.6), in the sense
of Theorem 1.25. There are two natural continuations for this work.

These two questions, though quite different, are expected to be related to the same dif-
ficulty. This difficulty is in fact already present in [23]. The time decay in Theorem 1.25
depends on the parameter py which measures the spatial decay of the coefficients in (1.10).
This parameter is assumed to be not greater than 1. It is not the purpose of this report
to go into technical details, but the reason is that the smallness given by the decay of the
coefficients of the operators 0, (z) in (1.71) is limited (as always because of the restriction of
the Sobolev indices in Proposition 1.19), and our proof would not give a better result with
po > 1. In [23] this is not a problem since we are mostly interested in the case pg > 0 small,
but this becomes a more serious problem for the following two perspectives.

The main perspective in that direction is to prove an analog of Theorem 1.25 for the wave
equation (1.12). The proof of Theorem 1.25 is written in such a way that it is robust with
respect to dissipative perturbations, and adding a damping should not be a major problem.
However, even for the undamped case, the asymptotic profile is not completely clear, and the
problem comes from the gradient of the solution.

The method of [23] should work for the solution itself and its time derivative. We expect
that they should look like a solution of the free wave equation (1.1). From (1.21) we can guess
what should be the initial condition (fy, go) for the asymptotic profile. However, there is an
additional difficulty for the gradient of the solution. We have said above that we cannot gain
as much as we wish with the inserted factors. Here, because of the gradient, the method does
not give anything at all. There is something more to understand. In particular, we could be
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in the same situation as for Theorem 2.19, where the asymptotic profile for the gradient is
not the gradient of the asymptotic profile.

The motivation for having such a result for the wave equation is twofold. In even dimen-
sion, we already have the optimal decay in [BB21] for the undamped case (for the solution
itself but not for its derivatives), so a result like Theorem 1.25 would give the leading term
of the asymptotic expansion (which would be new in any case) and in particular the optimal
decay (which is not known in the dissipative case). This would already be an important
improvement.

In odd dimension, the situation is different. The proofs of resolvent estimates and local
energy decay based on the Mourre method do not see the parity of the dimension, so the
results in odd dimensions are actually limited. Comparing the solution of the perturbed
problem to the solution of the model case (which decays much faster in odd dimensions) is a
way to reintroduce the difference of parity in the method, which is necessary to improve the
results in odd dimensions. A generalization of [23] to the wave equation would improve the
estimates of [BB21] in odd dimensions, even for the undamped equation.

Another natural continuation of [23] is to give a more precise asymptotic expansion for
the solution of the Schrodinger equation (1.13). In [23], we only give the first term of the
expansion. It could be interesting to go further.

The leading term for the resolvent is simply given by the resolvent identity (1.70). We
can apply the resolvent identity once more to get rests with two factors 6,(z). The same
strategy should work to estimate these rests, and we can iterate as many times as we wish.
In fact, the restriction in the proof of [23] is not about the number of terms in the asymptotic
expansion, but about the size of the rest. As above, we could problably consider N factors
0,(z) in the rests, but we would not get an optimal result if Npy = 1. Going further would
require a new improvement in the proof.

Finally, a related question is to consider the settings of Chapter 2. With damping at
infinity we have already worked by comparison with a model problem, this is even what
motivated [23] and the perspectives above. But I have never considered a general metric
perturbation of the Laplacian. We have proved a result for a perturbed setting in [17] (see
Proposition 2.20), but the assumptions on the perturbation are too strong. This is something
I have not tried yet, but considering a long range perturbation of (2.1) would probably raise
the same kind of difficulties as the long range perturbation of (1.12).

We could also consider all the intermediate situations (see the introduction of Chapter 2).
In particular, not much is known and I am still curious about the critical case a(x) ~ C (z) ™"

We can also consider problems with a damping going to infinity (see [FST18] for some
basic properties of the wave operator in this case).

4.1.2 Systems on non-selfadjoint equations

I have recently started to consider questions of energy decay for a system of two equations.
So far I have only considered model problems, but this kind of systems naturally appear in
physics. For instance, there are already results about the energy decay for the Lamé system
in [BLO1, DDK10].

System of Schrédinger equations on a wave guide In 2019, I invited Radhia Ayechi and
Ilhem Boukhris for two months in Toulouse. They were at that time Ph.D. students in Sousse
with Moez Khenissi. I suggested to look together at a generalization of [8] (see Section 2.7).
Then 2020 was a complicated time, but Ilhem came one more month. We finally finished the
work at the end of 2021, which gave the preprint [24].

The setting in [24] is as in [8] a straight wave guide with one-dimensional cross section:
Q) = RI1x]0, ¢[< R? for some ¢ > 0. We consider on ) a system of two Schrédinger equations
with damping and coupling at the boundary. Here they are only effective on R9~1 x {0}, and
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we consider a Neumann boundary condition on the other side (as in [8], various situations
could be similarly considered). Given a > 0 (the absorption coefficient) and b € R* (the
coupling coefficient), we consider the problem
—i0u —Au =0
Z_ " “=n on Ry x Q, (4.1)

—i0w — Av =0,

with boundary conditions

oyu(t; x,0) = iau(t; z,0) + ibv(t; z,0),
d,v(t;x,0) = —ibu(t; x,0), Vt > 0,Vz e R (4.2)
oyu(t; x, €) = ov(t;x, £) =0,

and with initial data
(u,v) =0 = (f,9) € L*(Q) x L*(). (4.3)

Notice that only the first component u is dissipated at the boundary. However, the
second component v is indirectly dissipated through the coupling terms. The masses of u
and v separately have no reasons to be non-increasing, but it is the case for their sum:

d 2 2 2
GOy + 10 a) =20 [ a0 dz <0.
The question is the decay of this total mass. The answer is that even if neither the damping
nor the coupling satisfies the geometric condition (the rays of light parallel to the boundary
do not see the boundary), and even if the second component v is not dissipated, we have
exponential decay for both components.

Theorem 4.1. Let a > 0 and b € R*. There exist v > 0 and C > 0 such that for (f,g) €
L2(Q) x L?(Q) and t > 0 we have

Hu(t>||2Lz(Q) + Hv(t)”iz‘(m < Ce HinZ(Q) + Hgﬂiz(ﬂ) ),
where (u,v) is the solution of (4.1)-(4.3).

As in [8], the analysis on the wave guide is related to the properties on L?(0,£) x L?(0,¢) ~
L?(0,¢; C?) of the transverse operator

defined on the domain

{U e H*(0,4,C?) : U'(0) +iMa,U(0) =0, U'(£) =0}, M,y = (_“b 8)
We prove that we have a spectral gap for the eigenvalues of 7,5, and that we have a Riesz
basis of L?(0,¢;C?) made with corresponding (generalized) eigenfunctions.

In [8], the eigenvalues (A, (0)) of Tj are simple, and a square root z,(a) of A\, (a) cannot
cross the lines Re(z) € Nv (remember that v = 7/¢), so by continuity it is possible to conclude
that the eigenvalues of T, remain simple with a rough localization.

Here it is no longer that simple. The model operator Tp o has double eigenvalues (nv)?,
n € N. We can check that for (a,b) small the eigenvalue (nv)? splits into two simple eigen-
values if a? # 4b? and it stays a double eigenvalue if a? = 4b? (in this case we have a Jordan
block if a # 0). Moreover, the square roots of the eigenvalues can cross the lines Re(z) € vN
and even for large n the (generalized) eigenfunctions are not close to being orthogonal. How-
ever, despite of these additional difficulties, we can prove that we indeed have a spectral gap
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and the Riesz basis property.

As a byproduct of this analysis, we also deduce the Weyl Law for the eigenvalues of
Tap- We can see T, as a Schrodinger operator on a graph with two edges of same length
¢, with a non-standard vertex condition between them. We denote by N, »(R) the number
of eigenvalues of 7, (counted with multiplicities) with real part smaller than R. Then the
following result is analogous to Theorem 3.2 with |I'| = 2¢:

Now®) = 2L 6 ), (4.4

™ R—+00

Even if it was not necessary for the proof of Theorem 4.1 or for (4.4), we have continued
the analysis of the localization of the eigenvalues of 7, 3, and in particular the question of the
number of square roots of eigenvalues in the region C,, = {Re(z) €]nv, (n + 1)v[}. We prove
in particular the following observations.

e (nv)? is a double eigenvalue of Tg . Its square root nv splits into 2 (a,b) and 2_(a,b)
such that z (a,b)? and z_(a,b)? are eigenvalues of T, .

e One (say z4(a,b)) always belongs to C,.

o If a®> > 4b% > 0, then it is also the case for z_(a,b) and z_(a,b) # 2z, (a,b). The
eigenvalues of 7T, ; are simple.

o If a® = 4b%, then 2z, (a,b) = 2_(a,b) and the eigenvalues of T, have algebraic multi-
plicities 2 (but geometric mutiplicities 1).

o If a® < 4b%, then z_(a,b) can go to C,, or C,,_; depending on the value of 6 € ]%, +oo[
such that )
2 20v + a
A =a®+ ——1 .
@ 40272 "\ 200 —a
Then z_(a,b) is in C,,—1 if # < n, in C,, if § > n and Re(z_(a,b)) =n if § = n.

This kind of additional remarks is motivated by curiosity (this is already a good reason),
but not only. For Theorem 4.1 it is enough to understand the eigenvalues A, (a,b) for n »
a + |b], but this is not the case for the wave equation. Thus such a localization of all the
eigenvalues is an interesting step toward the analysis of the wave equation.

A natural continuation of this work would be to consider a system of wave equations on
a wave guide. We will discuss this issue in the Euclidean space in the next paragraph. But,
as will be discussed in Section 4.4.2, we are also interested in the wave equation in general
quantum graphs.

It would be interesting to prove rough localization of the eigenvalues on a general compact
quantum graphs. To get a better intuition, we could begin by computing what happens for
the same problem with N equations, or considering only 2 edges but with a general non-
selfadjoint vertex. We will continue this discussion in Section 4.4.2.

System of wave equations In Chapter 2, we have discussed several problems about the wave
equation with damping at infinity. Each situation (Euclidean space, wave guide, periodic
setting) raised different and challenging difficulties. A new question, which turns out to be
again different and challenging, is the case of a system of several equations with coupling.
With Lassaad Aloui and Moez Khenissi, we have started to discuss the simplest case,
namely a system of two wave equations with constant coupling and damping on R?. More
precisely, given a > 0 and b € R* as above, we consider on R the system
O?u — Au + myu + bdw + adyu = 0, (4.5)
0?0 — Av + mav — bdyu = 0, .
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with initial conditions (u, 0yu)|i—0 = (fo, f1) and (v, d:v)|i=0 = (go,g1) in H'(RY) x L?(RY).
The coefficients m; and mgy are non-negative. When m; = 0 the corresponding equation is a
wave equation, while m; > 0 gives a Klein-Gordon equation.
Compared to the previous case, we have damping and coupling everywhere. However, as
above, only the first component is dissipated and v can only be dissipated via the coupling.
We look at the decay of the energy

E(u,v:) = [00u(t)] 2y + [V(0) 22 gay + ma [ult) |22 g0
T 1000(0) 2 oy + IV0(0) 22y + m [0(0) 22 gy -

The first result is that the contributions of high frequencies for the global energy decay
uniformly and exponentially, so both components are dissipated.

For low frequencies, the wave and Klein-Gordon equations have different properties, and
the four situations (mj; = 0/m; # 0 and mg = 0/mg # 0) will give four completely different
behaviors.

When m; > 0 and my > 0, there is no difficulty with low frequencies and the global
energy of w and v decays exponentially. On the other hand, if m; = 0 or my = 0 then 0
belongs to the spectrum of the corresponding operator

0 1 0 0
_A-m1 -—a 0 —b
W= 0 0 0 1|’

0 b A—m2 0

defined on the Hilbert completion £ of S(R?)* for the norm
2 2 2 2 2 2 2
| (w0, w1, vo, v1) e = [Vuol 2 +ma fJuolfz + lurlze + Vol Lz +mz fvolze + o1z -

We have to understand the contribution of low frequencies.

As in Section 2.2 we can use the Fourier transform. Let M (£), £ € R?, be defined as W
with —A replaced by |€]” (as in (2.7)). For a system Wave—Klein-Gordon (my = 0, mg > 0),
0 is a simple eigenvalue of M (0) and we recover a behavior similar to the case of a single
equation. In particular, we can observe that u behaves like a solution of the heat equation.
If my = 0 then 0 is a double eigenvalue of M (0). The behavior of the contribution of low
frequencies is governed by the behavior of these two eigenvalues (counted with multiplicities)
for £ # 0 small (as well as the corresponding eigenprojections). And this strongly depends
on the parameters my, my, a and b. We should get the asymptotic profile in each case, but
with a much wilder behavior than with a single equation.

We have already four parameters in all the computations, but we could (should) consider
another one. Everywhere, we have considered the speed of propagation ¢ normalized to 1.
This is harmless for a single equation, but for (4.5) this means that we consider the same
speed for the two components u and v. It would be interesting to introduce the quotient of
these two speeds and see how the results would depend on this new parameter.

The problem (4.5) is the simplest possible system of wave equations on an unbounded
domain. It will then be natural to consider more evolved settings, as is done for a single
equation, and systems of equations which appear in concrete problems.

4.1.3 Local energy decay in more general geometric settings

Most of my works about the damped wave equation are set on asymptotically Euclidean
settings. I also considered the problem on a wave guide and on an asymptotically periodic
setting, and this highlighted new interesting phenomena.

In [7] (see Section 1.5) we have proved resolvent estimates for the Schrédinger equation
on an asymptotically conical manifold. It would be interesting to generalize the results about
the wave equation to this setting.
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Recently, V. Grasselli has proved in this setting all the results of [BB21]. See [Gral.
Thus, she proved in this context low frequency resolvent estimates and the corresponding
local energy decay for the Schrodinger and wave equations. In a similar context, R. Wang
[Wana] has also generalized the results of [BJ16] about the exponential decay for the Klein-
Gordon equation.

Concerning the Schrédinger equation, the obvious question is the adaptation of the result
of [23] to this setting. Is it true that solution of the Schrédinger equation on an aymptoti-
cally conical manifold M looks like (in the sense of Theorem 1.25) the solution of the free
Schrodinger equation on the corresponding conical model M for large times ? And how
does the geometry affect the initial condition for the asymptotic profile ?

Similarly, a result analogous to those of Chapter 2 could be proved on asymptotically
conical manifolds with damping at infinity, or on more general wave guides. And, again, it
would be interesting to see what would be the asymptotic profiles in these settings.

The results on the asymptotically conical manifold are expected to be proved with the
technics developed in this setting on the one hand, and the strategy developed for the Eu-
clidean setting on the other hand.

A less marked path would be to consider more general space-time geometries, in the spirit
of the recent papers [MST20] and [Kof] (the later being in some sense a generalization of [6]
on a Lorentzian manifold).

4.2 Null-controllability for a Grushin equation

In 2021, a few months after the publication of [22] about observability for a Kolmogorov
equation (see Section 3.5), Armand Koenig arrived as a post-doc in Toulouse. Armand had
already several results on similar problems (see [Koel7, DK20]), so it was natural to continue
this study together with Jérémi Dardé. In this paragraph, we discuss the preprint [25] and
further perspectives on the subject.

Let T> 0,01 >0, =]—/_,¢,[and Q@ =TI x T. Given an open subset w of {2, we are
interested in the null-controllability for the following Baouendi-Grushin equation

Opu — Ozu — q(x)?02u = 1, f, on ]0,T[x,
u(t,-) =0, on 0, for all ¢ €]0,T7, (4.6)
Ult:() € LQ(Q)

This is analogous to (3.17), except that the degenerate term is now a diffusive term. Less
important, the control is in the domain and not at the boundary (and not important at all,
we have also switched the roles of & and y). The coefficient ¢ is again regular and vanishes
at and only at 0. Then (4.6) is a heat equation which is degenerate on the line x = 0.

In the first results about the Grushin equation, the control (or observability) region w
is usually rectangular (of the form [a,b] x T, for [a,b] = I). In [BCG14], for q(z)? = |z|"
and 0 < a < b < £y, it is proved that there is always observability if v < 2 (for any open
w in this case), never if v > 2, and that there is a finite critical time 7. > % if v = 2.

In [BMM15], it is proved that 7. = 0 if a« = 0 and that the critical time is exactly % i
w =T x ([-b,—a] v [a,b]). Finally, [BDE20] deals with the case where ¢ is general and
the observation is on one side of the boundary, which is essentially equivalent to observing
throught a rectangular neighborhood of the boundary (this is the result that we have proved
for the Kolmogorov equation in [22]).

In [Koel7, DK20], results are given for more general control domains. However, these
results are only proved for the model case g(z) = . Our purpose in [25] is to extend this
analysis for more general coefficients (see the precise assumptions for each result).
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b:f+

Figure 4.1: A domain of control and the corresponding critical time.
In this picture, a domain of control w as in Theorem 4.4, a path v as in Theorem 4.2 (dotted
line, with 6(v; ) = max(d(v.(s)))) and a line segment [a,b] x {yo} as in Theorem 4.3. We
can choose a and vy, arbitrarily close to 5 , which gives the critical time T, = §(v5 )/q’(0).

Theorem 4.2 is a positive result of null-controllability. It gives a sufficient condition on
w to prove observability for large times, which gives an upper bound for the critical time of
null-controllability.

On the contrary, Theorem 4.3 provides a condition on w for which we have a positive
lower bound for the critical time, which means than we cannot have null-controllability in
small times.

Finally, Theorem 4.4 gives a family of domains w which satisfy the assumptions of both
results and for which the lower and upper bounds for the critical time coincide. In this case,
we have the precise critical time for the null-controllability of the Baouendi-Grushin equation
(4.6).

For these statements we set

o(x) = / q(s)ds, Vxel, and 0(£l4) = 40.
0

Theorem 4.2. Assume that g € C3(I) is such that q(0) = 0 and inf; ¢ > 0. Assume that there
exists a closed path v = (Vz,7vy) € CO(T;w) such that {—(_} x T and {¢,} x T are included in
different connected components of (I x T)\v(T). Then the Baouendi-Grushin equation (4.6)
18 null-controllable on w wn any time T such that

1
T> 700 max §(7a(s)).

The main result in [25] is the following.

Theorem 4.3. Assume that q € C*(1) is such that ¢(0) = 0, ¢'(0) > 0 and q(z) # 0 whenever
x #0. Let w be an open subset of I x T. Assume that there exist a € [—£_,0[, b€]0,£,] and
yo € T such that, in I x T,
([(L,b] X {yO}) Nw = @
Then the generalized Baouendi-Grushin equation (4.6) is not null-controllable on w in time
T such that )
T < ——min (§(a),d(d)).

In particular, we never have null-controllability if | — ¢_, ¢ [x {yo} n@w = & for some

Yo € T.

Theorem 4.4. Assume that ¢ € C3(I) is such that q(0) = 0 and inf; ¢’ > 0. Let 1,7 €
CO(T; 1) such that v1(y) < v2(y) for all y € T. We set

v = max (O,m%X%) and 5 = min (O,mﬂin'yg) .
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Then the critical time for the null-controllability of (4.6) on w = {(z,y) € I x T : 71(y) <
T <72(y)} is

1

To = ——max (8(75 ), ().
iy e (605).3()

We do not discuss the general strategy of the proof but only emphasize one argument of
the proof of Theorem 4.3. Instead of the (non-selfadjoint) operator K, which appeared in
the analysis of the Kolmogorov equation in Section 3.5, we get after Fourier transform the
(selfadjoint) operator

P, = =02 + n?q(x)? (with Dom(P,) = H}(I) n H*(I)).

To prove Theorem 4.3 we contradict the corresponding observability estimate (see (3.16)) if
T is too small.

A key argument depends on the first eigenvalue A, of P, (which is again close to the
eigenvalue ¢'(0)n of the harmonic oscillator), and a corresponding eigenfunction ¢,,. Setting,

for some € > 0,

(n) = e~ t(nt1=4'(0)(n+1)) (n+1)é(z)(1—¢)

Ytz <Pn+1($)€

we have to prove the following estimate on polynomials

”Z Yz (M)an 2" HLOO(X) s HZ anz"

uniformly in ¢ €]0,7[ and « € I, where X is a compact subset of C and V is an open and
star-shaped (with respect to 0) neighborhood of X. For this, we use a result (see [Koel?7,
Th. 18]) which requires estimates on a holomorphic extension of 7, on some domain of
C. In particular, we need properties on the analytic extensions of A, and ¢, for Re(v) > 0.
Thus we have to study P, for some non-real parameters v and, even in this setting, spectral
properties of non-selfadjoint operators play an important role.

=)’

The results about null-controllability for the Grushin (discussed here) or the Kolmogorov
(see Section 3.5) equations still only concern particular situations. Even if more and more
general control domains w and coefficients ¢(z) are considered, much remains to be under-
stood.

In [25], we have provided examples of control domains w which are not covered by our
results. Some geometries are not so complicated and it is frustrating not to be able to
conclude in these cases.

Similarly, another assumption that we would like to relax is the increasingness of ¢ in
Theorem 4.2. We could also consider the case where ¢ vanishes twice (then ¢? would form a
double-well potential). The difficulty does not come from the arguments based on spectral
theory, since these more general settings are more or less already understood. The main
obstacle is probably the Carleman estimate used for the positive result (Proposition 3.14 in
the context of [22]).

Of course, we would like to go further. For me, this first means a better understanding
of the classical technics in control theory (Carleman estimates, the method of moments, how
we can use the classical tools of microlocal analysis in this kind of context, etc.). This is a
very interesting possible perspective.

4.3 Discrete spectrum at the strong magnetic field limit on a
curved wave guide

In this section we discuss the preprint [27], written with Engerran Bon-Lavigne, Loic Le
Treust and Nicolas Raymond. This started with a discussion at the CIRM in June 2021.

The question is about the existence of discrete spectrum under the essential spectrum for
a magnetic Laplacian on a two dimensional curved wave guide, at the strong magnetic field
limit.

80



We consider a smooth and injective curve v : R — R? with |/| = 1. We assume that the
algebraic curvature x of 7 is compactly supported. Then our curved wave guide is defined by

Q= Q'y,& = 6(90,5)7 QO,& = RX] - 676[7 G(Sat) = 7(5) + tN(S),

where § > 0 is small enough and N(s) = +/(s)* (with (a,b)* = (=b,a)).
We consider on €, 5 a uniform magnetic field of intensity h™!, with 0 < h « 1. If A is
a well chosen vector potential corresponding to a field equal to 1, we consider on L%(f) the

operator
Py5 = (—ihV — A)%, Dom(Py ) = H3(Q) n H*(Q).

Without magnetic field, the Dirichlet Laplacian always has discrete spectrum if the wave
guide is not straight [DE95]. However, it is also known that the magnetic field plays against
the existence of discrete spectrum. It has even been conjectured by P. Duclos and P. Exner
in the mid-nineties that the discrete spectrum of P} s should be empty when h is small
enough. In that direction, it is proved in [KR14] that if the magnetic field is compactly
supported then there is no discrete spectrum in the strong field limit.

However, we give in [27] a sufficient condition to have discrete spectrum for a strong
uniform magnetic field.

Theorem 4.5. Assume that k2 has a unique mazimum, which is non-degenerate. There exist
do > 0 and ho > 0 such that for § €]0, o] and h €]0, hg] we have

inf 0(Pp y,6) < Inf Oess(Ph,v.5)-
In particular, Py s has non-empty discrete spectrum.

For the essential spectrum, we prove that it is equal to the essential spectrum of the
straight wave guide €1y s, for which we can compute a lower bound. On the other hand, we
use the Min-max Theorem to get an upper bound for the minimum of the spectrum. The
argument is based on the equality

. 2 2
info(Ppys)—h= inf |(=ihV = )2 0) = MYl L2 0
v weHY ()\{0} lul?
_ o e e |ozuf® da

weHL O} [ e [uf® da

The main parts of the proof are the construction of a good function ¢ and then the definition
of a suitable fonction w which is in particular holomorphic on €2 except near the boundary
(to satisfy the Dirichlet condition). This function ¢ already plays an important role in the
choice of the vector field A.

In addition to its own interest for the Duclos-Exner conjecture, this result is a step toward
the understanding of a similar property for the magnetic Dirac operator

, 2
Phys = ((—ih0y, — Ar)or + (—ih0y, — 142)02)2 - (I ihV 0A| h _ihv _OA|2 B h) .
This is the model Hamiltonian for a non-relativistic spin-% particle, constrained to move in
), interacting with a magnetic field that is perpendicular to the plane. Spectral properties
of this operator are studied in [BLTRS21] when € is bounded. Our project is to consider as
above the operator on a wave guide.

A first step could be as in [27] the existence of discrete spectrum, but the perspective is
to prove as in [BLTRS21] more precise asymptotics for the first eigenvalues. For the Duclos-
Exner conjecture an upper bound for the bottom of the spectrum was enough, but we would
like to prove asymptotic properties for the k-th eigenvalue at the strong field limit, both
for the magnetic Laplacian and the Dirac operator. This is much more precise and would
require in particular a better understanding on our wave guides of the functional spaces used
in [BLTRS21] and wave-guide versions of classical results such as the Paley-Wiener theorem.
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4.4 Spectral theory on discrete and quantum graphs

4.4.1 Spectrum of the wave equation on a non-compact star-graph

In Section 3.1, we have discussed the spectrum of a non-selfadjoint compact star graph. Here
we discuss the result of the preprint [26] about the damped wave equation on a non-compact

We have already seen that the energy of the wave does not necessarily decrease faster
with a stronger damping. A natural question is then the optimal damping which will give
the best decay.

This question has been addressed in [BRT82] in the case of a wave on a finite interval with
singular damping in the middle. This was motivated by the analysis of stringed instruments.
They argue that there is indeed an optimal strength for the damping. The problem of the
wave on a finite string with Dirac damping has also been analysed in [ATH00, AHT01, CHOS]
(see also [AN15, §4.1.1]). The damped wave equation has also been discussed in star-shaped
graphs in [AJ04] (damping at the central vertex), [AJKO05] (damping at a boundary vertex)
or [AJK16] (local energy decay with one infinite edge).

In [26] we consider a star-graph with N infinite edges and damping at the only vertex.
The graph can be identified with (R* )™ (the edges are parametrized from the vertex to
infinity). Given any « € C we consider the wave equation

Ofuj(t,x) — 02u;(t,z) =0, 1<j<N,t>0,2>0, (4.7)
with continuity at the vertex
u;(t,0) = ug(t,0), 1<j,k<N,t>0, (4.8)
(we denote by u(t,0) this common value) and the damping vertex condition
N
D7 0pu;(t,0) + adeu(t,0) = 0. (4.9)
j=1

We really have damping when o < 0 (the case o > 0 would correspond to a supply of energy,
while the case o € iR is conservative and has an interpretation in quantum mechanics, see
Section 7 in [26]). Notice that the case N = 1 corresponds to a semi-infinite string with
damping at the end, while the case N = 2 is an infinite string with singular damping.

The corresponding operator is defined as follows. We denote by & the set of pairs (u,v)
such that u},v; € L%(0,00) for all j and u;(0) = uy(0) for all j,k (we denote by u(0) this
common value). This is a Hilbert space if the first component is quotiented by the space of
constant functions on the graph. For u € H?(R* )N we set u” = (u}). Then we define the
operator W by

w(“) = (”) Dom(W) = {U— (u,v) €& : WU € & and iu;(0)+av(0) _o}.

v U 4
Jj=1

We are interested in the spectral properties of this operator W, and the corresponding
counterparts for the time dependent problem (4.7)-(4.9). We can check that £WV is maximal
accretive if +Re(a) = 0 (it is skew-adjoint if Re(«) = 0). In particular, if Re(¢) # 0 and
Re(¢)Re(a) < 0 then ¢ € p(W) and

1
-1
”<W O ||£(é°) S |Re(<)|'
We are interested in the spectrum in the half-plane where Re(¢) and Re(a) have the same
sign. This is a difficult question in general and little is known in that direction, but for this
model setting we can proceed with explicit computation.

As already observed for a finite string, there is an abrupt change of properties for particular

values of a. More precisely, we have the following result about the spectrum of W.
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Theorem 4.6. The spectrum of W, is

iR if a e C\{+N},
C, ifa=N,
C_ ifa=—N.

Moreover, iR contains no eigenvalue nor residual spectrum of Wy, and if « = £ N then any
¢ € C4 is an eigenvalue of Wy of geometric multiplicity 1 and infinite algebraic multiplicity.

To understand this behavior, we compute the resolvent of W. As expected, for ( € C4
the norm of (W — ()~ ! in L(&) goes to +00 when o — +N.

Proposition 4.7. There exist ¢, C > 0 such that for o € C\{£N} and ¢ € C4 we have

1 Co _ 1 C 1
e <|Re<<>|’ K |a+N|) <l =07e) < frey (1 " |a+N|) '

The values @ = £N also have a particular role for the wave equation (4.7)-(4.9). Notice
that on each edge, the wave has an outgoing part which never sees the damping and behaves
as the free wave equation on R. We are interested in the incoming part of the wave, which hits
the vertex. The vertex conditions describe how the waves coming from all edges are reflected.
In particular, the sum of the energies of all the reflected waves is equal (smaller, larger,
respectively) than the energies of the incident waves if Re(a)) = 0 (Re(a) < 0, Re(a) > 0,
respectively). It turns out that in the particular case @« = —N the incident waves are
completely absorbed. And the problem is ill posed in the case @« = N (we have no solution
or an infinite number of solutions for positive times, depending on the initial conditions). Of
course, these properties are reversed if we go backward in time. We refer to [26, Th. 2.4] for
a more quantitative statement.

4.4.2 Other model problems on non-compact quantum graphs

The paper [21] and the preprint [26] were about particular cases of non-selfadjoint quantum
graphs, and it would be interesting to go further in various directions.

The first obvious question is the generalization of [21] to more general graphs. The dif-
ficulties will come from the steps of the proof where we have used the explicit expression
for the secular equation (3.9). For instance, it has been used to prove that the Neumann
eigenvalues cannot escape too far (see the discussion before (3.11)) or to see that ¢ is always
transverse to the submanifood Zy of TV (see before (3.12)). We have already thought about
this while writing [21]. Considering general compact quantum graphs will not be trivial, but
we can certainly go beyond the star-graph.

Another natural continuation of [21] is to consider the spectrum of the wave operator on
a compact star graph (and then in a more general situation).

The main difference between the Schrédinger and wave equations is that instead of the
operator H, defined by (3.1)-(3.4), we have to consider the operator H,, where a is the
absorption coefficient and z is the spectral parameter (this is completely similar to the wave
with damping at the boundary, see (2.18)). Thus we have to work with the parameter o = az
which goes to infinity when the spectral parameter z itself goes to infinity. Then the key
argument that the eigenvalues of H, cannot go too far from those of Hj is no longer valid.

We have seen as a byproduct of studies on wave guides that for one edge (see Section
1.6) or for two edges with particular vertex conditions (see Section 4.1.2) we can prove that
eigenvalues stay in some bounded region of C for any «a, but these results were again based
on explicit computation (and we already had more difficulties with two edges than with one),
so we have to find a more general argument to deal with more general graphs.
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Notice that when all the edges have the same length, it is proved in [FL17] that there is
a finite number of so-called spectral abscissas. With the terminology of Theorem 3.3, this
means that the corresponding measure iy is a linear combination of Dirac masses (this is the
analog of the second case therein). We expect that a similar result will hold with damping
at the vertices. The difficulty, as in [21], is to give a precise statement for any set of lengths
(or at least a generic set of lengths, but including the case of irrationally dependent lengths).
For a review of some known results about the stabilization of the wave equation on quantum
graphs, we also refer to [Zual3].

All the questions around [21] concern the contribution of high frequencies. If we consider
non-compact quantum graphs, there will also be interesting phenomena for the contribution
of low frequencies, as is the case for the wave on non-compact manifolds.

A non compact graph can be a graph with a finite number of infinite edges, as in [26], or
a graph with an infinite number of edges. We give several examples (all with finite edges of
equal length) in Figure 4.2.

Figure 4.2: Examples of non-compact graphs

Let us briefly discuss for instance the case of trees. This is a particular example of
quantum graph which has many applications.

Again, there is less literature on the spectral properties of quantum graphs than on the
discrete ones, but this is now an active field. We refer for instance to [Car97, Sol04] (and
references therein) for early works about the spectrum of the Laplacian on quantum trees,
and to [AISW21] for an example of recent development.

It would be interesting to see what happens if we add some damping on the edges or at
the vertices. Since I have not started the analysis, I have to remain vague about what can
be expected, but this is a setting that I find exciting and that I would like to explore.

Another question which could be tested on a simple graph is the wave equation with
random damping. Consider for instance the case of a wave equation on the line R with
random singular damping at each integer. The damping coefficient a,, at n € Z could be
independent random variables (for instance they could all follow a Bernouilli distribution, so
that there is damping with probability p and nothing with probability (1 —p)). As usual, we
could start with the Schrodinger operator, in which case we are closer to the classical Anderson
model (see for instance [Kir08] for an introduction to random Schrédinger operators).

4.4.3 Resolvent estimates for the Schridinger operator on a discrete graph

When I mention graphs, I mainly think about quantum graphs. However, even if discrete
graphs have already been extensively studied, there are still exciting questions to be discussed.
As for quantum graphs, we can consider many different interesting settings, but I will only
consider one problem in this parapraph. This is a project that I have started with Olivier
Bourget and Diomba Sambou.
With Amal Taarabt, they have studied in [BST20] various spectral properties (limiting
absorption principle, resonances, etc.) for a non-selfadjoint Schrédinger operator on ¢2(Z).
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We recall that the one-dimensional discrete Laplacian on ¢?(Z) is defined by
(HOu)n = 2un —Up—1 — Up41, MNE Za

for u € ¢2(Z) (we could also consider the analog on ¢?(Z%) for any dimension d € N*). Its
spectrum is
o(Hop) = 0ac(Ho) = [0,4].

In [BST20] they add a complex potential V' (a potential simply acts as a diagonal matrix on
(Z): (Vu)y = Viauy).

In particular, they prove the limiting absorption principle with the Mourre commutators
method.

We recall that this method requires a suitable conjugate operator. In the papers discussed
in Chapter 1, the operator was always a perturbation of the usual Laplacian on R?, and the
conjugate operator was always a perturbation of the generator of dilations. Dilations have no
obvious analog in the discrete setting. However, if we set Ag = Im(S)X +XIm(S), where X is
the position operator (defined by (Xu), = nu,) and S is the shift operator ((Su), = tun+1),
then we have

ad;a, (Ho) = 4Hy — HZ.

With this conjugate operator, they are able to apply the Mourre theory away from the thresh-
olds 0 and 4 (notice that there are more thresholds in higher dimensions).

This naturally raises the question of the properties (such as resolvent estimates) near
the thresholds. This is precisely the analog of studying the resolvent of usual Schrédinger
operators near 0.

The discussion is only at its early stage, but it is natural to try to adapt the strategy
described in Chapter 1. As for the use of the generator of dilations, many arguments used
in the Euclidean setting are meaningless in the discrete case, but there is a reasonnable hope
that we can adapt the ideas to get resolvent estimates for a discrete Schrodinger operator.
Of course it is also possible to consider the wave equation in this setting.

4.5 Non-linear problems

4.5.1 A non linear problem on a quantum graph

After [12] and [19] (see Section 3.6), I have started a new project with Frangois Genoud and
Stefan Le Coz. It is again about a non-linear problem in dimension 1. Another common
feature between our two previous works was the singular potential. As observed above, a
problem on the real line with a singular potential can be seen as a problem on a graph with
two infinite edges, the singular potential being interpreted as a “boundary condition” at the
vertex.

Here we really consider a graph. Since our analysis should be essentially local, we consider
the model case: a star graph I', with N infinite edges (as in Section 4.4.1). We recall that T
can be seen as N copies of R* | and we define L?(T") accordingly.

Given v € R, we consider on I' the non-linear Schrédinger equation

—i0pu; — aijuj + you — |uj\4uj =0, 1<j<N, (4.10)

where ¢ is the Dirac distribution at the central vertex. A solution on the interval I of R is a
function u = (u;)1<j<n € CO(L, HY(R*)N) A CH(I, (H(R*)*)N) such that u; is a solution
on each edge, u(t) is continuous at the vertex (as in (4.8)) for all ¢ € I, and it satisfies the
Robin condition

DT, 0) = yu(t,0).

N
Jj=1
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The Cauchy problem is completed by an initial condition uy at time ¢ = 0. Notice that since
~ is real, the generator of the linear part (the Laplacian on each edge, with these vertex
conditions in the domain) is selfadjoint. Two constants of the motion are given by the mass
and the energy:

2 6
_ |0z ul 72 ry N ~ [u(0))? B lulz6ry
2 2 6 '

2
_ HUHL2(F)

M) = 50,

E(u)
Our question on this model is the existence of blowing-up solutions. It is known that for
the equation on the line,

—idyu — 0%u — |ul* u =0, Uj—g = U, (4.11)

the threshold between global existence of all the solutions and existence of blowing-up solu-
tions is the mass of the ground state Q : z +— 37 sech(2x)% (solution of Q" — Q + Q°® = 0). If
M (up) < M(Q) then the solution of (4.11) is well defined for all times, and there exists ug
with [[uop2(z) = [|Ql 2, such that the corresponding solution of (4.11) blows up in finite
time. Indeed, given T' > 0 we can consider the solution given by pseudo-conformal transform
of the standing wave e¢*Q(z), given by

1 i _iz?
u(t,x) = T—teﬁe =0 () (Tait> .

Then we have

1
Hu(t)HLZ(R) = HQHL2(R) and Hazu(t)HL’z(R) - T — ¢
On the graph, it is expected that the blowing-up solution with minimal mass has a similar
behavior with blow-up at some point of one of the edges. If we only consider radial solutions
(uj(t,z) does not depend on j), then the threshold for global existence is increased. With
v = 0, we can construct a similar solution by replacing @) by Qr, defined by considering a
copy of Qg on each edge. This is no longer a solution if v # 0. Our purpose is to construct a
blowing-up solution at the minimal mass M (Qr). The idea is still to construct a blowing-up
solution based on the profile Qr. More precisely, we apply the method of [RS11, LMR16],
where the existence of minimal mass blowing-up solutions is proved in other contexts. We
also refer to the recent preprint [TX], dealing with the problem on the line.

The expected result is that given E* € R there exists T > 0 and a radial solution u on
[0, T such that M(u) = M(Qr), E(u) = E*, and

1

lozu®) 2wy | (DR

4.5.2 Nonlinear damped wave equations

All the works about the damped wave equation presented in Chapters 1 and 2 concern in
various settings the linear equation (1.12). I have also worked on some non-linear problems
(see Sections 3.6 and 4.5.1), but it was not about the damped wave equation.

As said in introduction, in many physical situations, propagation of waves is modeled by
an equation involving nonlinear terms. A possible perspective for the future is to consider
some questions about non-linear damped wave equations. I have not started anything in that
direction yet, so I am essentially ignorant, but one can at least discuss some natural questions
on the subject.

A first perspective is to continue the analysis of one-dimensional problems with singu-
lar potential. In particular, the paper [19] discussed in Section 3.6 is about the non-linear
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Klein-Gordon equation. It would be quite natural to consider the same kind of setting, for
Klein-Gordon or the wave equation, but with dissipation. This corresponds to replacing i«
by a > 0 in (3.31). Beginning with one-dimensional settings would be quite convenient, and
the difficulties due to the singular potentials are, as already discussed, related to quantum
graphs which is another aspect that I would like to develop. The natural first questions are
the analysis of the local and global existence of solutions, and the decay of the energy. One
remembers from Section 4.4.1 that there are already strange behaviors for the linear problem
for some particular values of the damping, and it would be interesting to know what happens
if we add a non-linear perturbation.

Nevertheless, the long term perspective is to start to add non-linear terms to the general
damped wave equation (1.12). The typical example is to consider a source term of the form

flu) =buluf™", (4.12)

for some p > 1. Another possibility is to consider a non-linear dissipative term. The model
example with both non-linearities is then an equation of the form

0%u — Au + adyu ol = f(u), (4.13)

for some p > 1.

The first question is the local well-posedness for the Cauchy problem. Then comes the
question of global well-posedness or existence of blowing-up solutions. When the solution is
globally defined, we can look at the long time behavior of the energy

1 1
Bust) = 5 1orulzae + 5 IVulzae = o7 llEi o) -
As for the linear problem, it is natural to wonder if it goes to 0 and, in this case, what is the
rate of decay.

It is too early to state a conjecture here, but this report is an occasion to look at the
literature. It is of course impossible to be exhaustive about the non-linear wave equation (or
the related Schrodinger equation). We refer to the books [Tao06, Caz03, Sog08] for introduc-
tions to nonlinear dispersive equations and many references, and in this paragraph we only
mention some papers dealing with the damped wave equation.

As for the linear setting, the problem is much better understood on compact domains
(typically with Dirichlet boundary conditions), or for the Klein-Gordon equation (with an
additional term mu on the left in (4.13)). We refer to [HZ88] for the inhomogeneous equation.
In [GT94] it is proved that for

d .

1<p<{d_2 %fdz?,’ (4.14)
+oo fd<2

then (4.13)-(4.12) is globally well-posed if p < p (in the sense that u € CO(R,, H}(Q)) and

dru € CO(Ry, L3(Q)) n LEE'(€2)), while there exists a solution which blows up in L® () if

P> p.

Concerning the decay of the energy, we refer for instance to [Har85, HZ88, Zua88, Zua90,
JL13, JL20] for results on a bounded domain and [Zua91, Deh01, DLZ03, AIN11] for the
Klein-Gordon equation. Typically, these works use multipliers method or the method based
on semiclassical defect measures. Notice that in addition to the geometric condition, the
proofs rely on an assumption of unique continuation. Moreover, an important observation
used in many of these articles is that once the solution is small, the non-linear term no longer
play any important role and the solution of the non-linear problem has the same decay prop-
erties as a solution of the linear problem (see [Gér96]).
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As for the linear problem, it is a different issue to consider the wave equation in an un-
bounded domain. Moreover, if the damping is effective at infinity, it is natural to wonder
if we have a diffusive phenomenon as described in Chapter 2 for the linear equation. As
for the linear equation, there are many results about the problem with constant coefficients
(a(x) = 1in (4.13)). The results are different in the defocusing (typically, (4.12) with b = —1)
of focusing (b = 1) cases.

We begin with the case where f(u) is equal to or of the form — |u["~" u. The paper [Mat76],
which is one of the firsts about the linear problem (see the discussion in Chapter 2), also dealt
with the semilinear equation. The results have been refined in [KNO95] (in particular, general
initial data are allowed). In [Kar00] (see Theorem 2.3 therein), the diffusion phenomenon
has been proved for initial data in (H' n L') x (L* n L'), when d < 3 and for p > 1+ 3 such
that (4.14) holds. Then the asymptotic profile is given by a solution of the heat equation
as in the linear case. In dimension 1, a better result is given in [HKNO7a]. In [INZ06], the
large time asymptotics for the supercritical case p > 1+ % is proved in dimension d < 3. The
solution is actually close to a solution of the semilinear heat equation

o —Av+ oot =0,

which behaves itself as a solution of the linear heat equation in the supercritical case (the
critical exponent p = 1 + % is known as the Fujita’s critical exponent [Fuj66]). The re-
sult has then been improved for d = 3 and extended to d = 4 in [Nis06]. Less is known
in the critical and subcritical cases. For results about the critical exponent we refer to
[HKNO7b, HKN06, HN17]. For the subcritical case we refer to [Ham10]. Notice that in these
cases the problem is not necessarily globally well posed.

Now we turn to the focusing case, where f(u) is typically of the form |ul” or u|u/’"". In
general, the solution blows up in finite times for large initial data (see [Lev74, Section IV]).
Results about the existence of global solutions or blow-up (for small initial data) can be found
in [NO93, 1LZ95, TY01, Zha01]. It is proved that for p > 1 +§ the solution with “small” initial
data is defined for all time, while there are solutions which blow up when p <1 + %. These
results were proved under strong decay assumption in the initial data (typically, compactly
supported). We refer to [Nak01] for the analysis on an exterior domain with a damping which
can vanish.

Then there have been several papers with results about local well-posedness for large
initial data and global well-posedness for small initial data in (H* n L") n (L? n L") under
some conditions on r and p. We do not mention them all and refer to the introduction of
the recent paper [IIW17], which study the large data local well-posedness and the small data
global well-posedness with slowly decaying initial data.

The asymptotic behavior in terms of solutions of the heat equation is also proved in
[ITW17]. There are many references dealing with the large time asymptotics in more and
more general settings. We mention for instance an early result in dimension 1 [GR98],
[KU13] (d < 3), [HKNO4] (any dimension, small solutions in particular in L') or [NNOS§]
(slowly decaying data). The recent paper [[IOW19] improves the results for the linear and
the non-linear problems. Higher order expansions are also available [KT16].

All the papers mentioned above concern the semilinear wave equation with linear damp-
ing (p = 1in (4.13)). If p > 1, we notice that if the energy of the wave becomes small,
the damping term becomes smaller than in the linear case. Here re-emerges the question
whether the energy goes to 0 as t — +o0 (even with f = 0). Depending on the precise setting
and on the initial conditions, there are results of decay (the energy goes to 0) and results
of non-decay (it does not) for this kind of problem, on the Euclidean space or an exterior
domain. It is expected that in the nondecay case, that is when the damping term becomes
very small, the solution of (4.13) behaves like a solution of the undamped wave equation.
This is indeed the case and it is proved under suitable assumptions in the literature. For
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more precise statements we refer to [MM95, MM96, Mat03, TY07, TUY09, Dao18]. See also
[Nak13, TY15] for results with non-linear damping and a non-linear potential.

There are actually many other variants of the non-linear damped wave equation in the
literature. For instance, various systems of wave equations [GR14, BD13, BR20], fric-
tion and viscoelastic damping [MMR20], wave equation with non-linear boundary damping
[CDCLO07], higher order problems [CX20], time-dependent damping [TW20], delayed damping
[Kaf21],variable exponents for the non-linear terms [MTAS17], etc.

We also refer to results about more or less general damped hyperbolic equations: see
[LS97, LPS98, CTR21] (global existence of solutions), [GGH16¢] (decay estimates), [GGH16a]
(asymptotic behavior), [GGH16b] (smoothing effect of solutions with strong damping). See
also the (older) lecture notes [Har81] and the book [Har87].

Finally, to make the link with the quantum graphs, we mention the paper [ABM21] about
the non-linear damped wave equation on a star-graph, with damping at infinity on one edge.

Even if this bibliography is far from being complete, we already see that there is a very
wide variety of problems about the non-linear damped wave equation. Of course, for future
works, it would be reasonable to begin with questions closely related to my centers of interest.

The most natural perspective about the non-linear damped wave equation is to continue
with the settings introduced in Chapters 1 and 2. As for the linear problem, the difficulty
compared to the previous literature is to deal with the contributions of low frequencies in
quite general geometric settings. The papers mentioned above about the wave equation on
an unbounded domain essentially consider the equation with constant coefficients, sometimes
in an exterior domain. It would be interesting to generalized these results, as is done for the
linear problem.

An important tool for the analysis of non-linear dispersive equations are the Strichartz
estimates, which are space-time integrability properties. They are estimates on the solution
of the linear problem, but they are used to estimate the integral term given by the Duhamel
formula, which can be crucial for the well-posedness of the Cauchy problem for the non-linear
equation. See again [Tao06, Caz03, Sog08] for an introduction to the Strichartz estimates.
There are again many papers on this question, for the Schrédinger or the (undamped) wave
equations. We can mention for instance the original work [Str77] and the proof of the im-
portant endpoint cases in [KT98]. See also [BGT04] in an exterior domain and [BT08] in the
asymptotically Euclidean setting. We finally refer to the recent work [BM].

It seems that not much is known about the Strichartz estimates for the damped wave
or Schrodinger equations. Some estimates about the regularized Schrédinger equation (1.67)
are given in [Karl5]. There are also recent results about the damped wave equation (2.1),
see [Wat17, Inul9, IW].

These Strichartz estimates are dispersive estimates, in the spirit of the local energy decay
presented in Chapters 1 and 2. Before considering general non-linear problems, it would be
completely natural to begin with Strichartz estimates for the damped wave equation (1.12).

It is already a problem which is far from simple, since the standard arguments for the
Strichartz estimates as in [KT98] do not apply to a non-selfadjoint setting.
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