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Presentation of the thesis

Avant-propos

This dissertation is about the research I have done since I arrived in Toulouse in 2011, after my Ph.D.

My Ph.D. (2007)(2008)(2009)(2010) was about the high-frequency dissipative Helmholtz equation. More precisely, I proved high-frequency resolvent estimates in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF], and I studied in [START_REF] Royer | Semiclassical measure for the solution of the dissipative Helmholtz equation[END_REF] the semiclassical measure for the solution when the source term concentrates on a bounded submanifold of the Euclidean space. The two papers [START_REF] Royer | Uniform resolvent estimates for a non-dissipative Helmholtz equation[END_REF][START_REF] Royer | Semiclassical measure for the solution of the Helmholtz equation with an unbounded source[END_REF] were published later, but they were already partially contained in my Ph.D. thesis. The work [START_REF] Royer | Uniform resolvent estimates for a non-dissipative Helmholtz equation[END_REF] is about the resolvent estimates when the damping can take negative values, and [START_REF] Royer | Semiclassical measure for the solution of the Helmholtz equation with an unbounded source[END_REF] is a generalization of [START_REF] Royer | Semiclassical measure for the solution of the dissipative Helmholtz equation[END_REF] to the case of an unbounded submanifold. These works will not be discussed in this report (except for their links with more recent papers). Neither will be [START_REF] Berthelin | A trafficflow model with constraints for the modeling of traffic jams[END_REF], which is an undergraduate work on a completely different subject (modelization of the traffic flow).

The Helmholtz equation is the stationary version of the damped wave equation. After these works, I was motivated by the time-dependent problem. However, to state a result for high frequencies only, one needs a spectral localization. This is an example among many others of an issue completely insignificant in the selfadjoint setting which becomes a real obstacle with damping.

When I arrived in Toulouse, I discussed this question with Jean-Marc Bouclet, and our conclusion was that instead of trying to localize on high-frequencies, we should prove resolvent estimates for low frequencies and then consider the damped wave equation without spectral localization. Since Jean-Marc had just proved low frequency resolvent estimates for the Schrödinger and undamped wave equations at that time, it was a perfect question to begin a collaboration. And it turned out to be a very rich subject.

Il était une fois l'équation des ondes amorties... An important part of this thesis will be devoted to the damped wave equation. An introduction on the subject will be given in Chapter 1. Several settings will be considered. On the Euclidean space R d , the damped wave equation reads

B 2 t u `P u `apxqB t u " 0, on R `ˆR d ,
where P is a general Laplace operator (see (1.8) below) and apxq ě 0 is the absorption index. I have been interested in the local energy decay for this damped wave equation. In the first results, the purpose was to recover in this setting the results known for the undamped wave equation. As explained above, the main part of the work was the analysis of the contribution of low frequencies.

To see the damped wave equation as a perturbation of the undamped case, we had to assume that the absorption index apxq decays at infinity. It turned out that when the damping is effective at infinity (for instance if apxq goes to 1 at infinity) the large time behavior of the solution is different. I studied this new phenomenon in various contexts. Since the technical issues raised by these two aspects are completely different, the discussion about the damped wave equation is split into two chapters. The case of the wave equation with localized damping is discussed in Chapter 1 while the results about a damping effective at infinity are described in Chapter 2.

Together with the wave equation, I have also considered the local energy decay for the Schrödinger equation. These two problems share many similarities, and it is relevant to discuss them together. In some situations the Schrödinger equation can be simpler, and it has been used as an intermediate step toward the analysis of the wave equation. And finally, the ideas developed for the damped wave equation had an important application to a result about the usual (conservative) Schrödinger equation.

... et d'autres problèmes (pas toujours) linéaires impliquant des opérateurs (pas toujours) non-autoadjoints.

In parallel with my main research work on the damped wave equation, I have also developed various collaborations on other topics. They are often questions which arose from scientific discussions with friends and finally turned into a collaboration.

I would say that my field of research is the analysis of partial differential equations involving non-selfadjoint operators, but this is of course not restrictive. Thus in most of these problems there emerges a non-selfadjoint operator, but in some others only selfadjoint operators are involved. Most results are about a particular PDE, but some are about abstract spectral theory. And most problems are linear, but some are about non-linear equations.

All these various settings will be presented separately in Chapter 3. Some are closely related to my favorite topics, some are quite different, but they all could be the starting points of new perspectives for future research.

Finally, the last chapter will be devoted to a description of my preprints, some works in progress, and some discussions about possible future projects. As for my past research, some are questions about the damped wave equation, and some others go in different directions.

I have chosen to present in this thesis all my papers which are not included in or closely related to my Ph.D. However, since it is not possible to give a detailed description for all of them, some will be emphasized with scientific context, mains ideas of the proofs and comments, and for others I will only briefly describe the results.

A list of my publications and pre-publications, labeled from [START_REF] Berthelin | A trafficflow model with constraints for the modeling of traffic jams[END_REF] to [START_REF] Bon-Lavigne | On Duclos-Exner's conjecture about waveguides in strong uniform magnetic fields[END_REF], is given at page 91. The other references used in the text, labeled from [START_REF] Aafarani | Large time behavior of solutions to Schrödinger equation with complexvalued potential[END_REF] to [START_REF] Zworski | Semiclassical Analysis[END_REF], are given at the end of the manuscript.

Chapter 1 Local Energy Decay for the damped wave equation with localized damping

In this chapter and the following, we discuss the local energy decay for the damped wave equation on unbounded domains.

There are several difficulties. Because of the damping, the corresponding operator is not selfadjoint, which raises some technical issues compared to the undamped case. In the first result (see Theorem 1.1) the purpose was to generalize to this setting some estimates already known without damping. In a second step, I considered problems specific to the dissipative case (see all the results of Chapter 2). And finally, the strategies developed for these dissipative settings gave some new ideas useful even for the selfadjoint setting (see Section 1.7).

The damped wave equation was already well studied on compact domains. In this case, there is no problem with the contribution of low frequencies (from the spectral point of view, 0 does not belong to the spectrum of the corresponding operator). In all my works, I consider the wave equation on unbounded domains. Results about the contribution of high frequencies are essentially contained in my Ph.D. [START_REF] Royer | Analyse haute fréquence de l'équation de Helmholtz dissipative[END_REF] and will not be discussed in details here. My research after my Ph.D. mostly concerns the contribution of low frequencies, and the analysis is completely different. This is the main subject of this thesis.

Finally, an important difficulty is due to the wave equation itself. In many aspects, the problems of the local energy decay for the wave and Schrödinger equations are similar. However, we will see all along this thesis that there are difficulties specific to the wave equation, especially in the dissipative case.

We begin in this chapter with the damped wave equation with localized damping and closely related problems. We will discuss the papers [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF][START_REF] Bouclet | Low frequency resolvent estimates on asymptotically conical manifolds[END_REF][START_REF] Royer | Mourre's commutators method for a dissipative form perturbation[END_REF][START_REF] Khenissi | Local energy decay and smoothing effect for the damped Schrödinger equation[END_REF][START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF][START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF]. The earlier results proved in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF][START_REF] Royer | Semiclassical measure for the solution of the dissipative Helmholtz equation[END_REF][START_REF] Royer | Uniform resolvent estimates for a non-dissipative Helmholtz equation[END_REF][START_REF] Royer | Semiclassical measure for the solution of the Helmholtz equation with an unbounded source[END_REF], that we do not present in this report, are also related to this setting.

Local energy decay for the wave equation

The model case. In this first chapter, we consider the wave equation in an asymptotically Euclidean setting. Given f 0 in H 1 pR d q and g 0 in L 2 pR d q, the model case is the usual free wave equation on R d B 2 t u 0 ´∆u 0 " 0, (

with initial condition u 0 p0q " f 0 , B t u 0 p0q " g 0 .

(1.2) This is the simplest model for the description of waves. In many propagation phenomena, there are also important non-linear effects, but this simple model is already suitable in many concrete situations, such as the propagation of acoustic or electromagnetic waves (if the electromagnetic field does not depend on time then the Maxwell equations can be decoupled in two wave equations for the electric and magnetic fields).

A large part of this thesis deals with the long time behavior of a solution of the wave equation. A relevant way to measure the evolution of a wave is to look at the localization of its energy:

E 0 pu 0 ; tq " ˆRd `|∇u 0 pt, xq| 2 `|B t u 0 pt, xq| 2 ˘dx. (1.3)
The global energy is a constant of the motion. However, we can look at the distribution of the quantity |∇u 0 ptq| 2 `|B t u 0 ptq| 2 to see where the wave is propagating.

An important property of the wave equation is the finite speed of propagation. With all the physical constants set to 1, a wave propagates at speed at most 1. If f 0 and g 0 are supported in the ball Bp0, Rq of radius R ą 0, then u 0 ptq is supported in Bp0, R `tq.

In odd dimension, the wave actually propagates exactly at speed 1. This is the strong Huyghens principle. This implies that there is no diffusion of waves. If a light bulb is turned on for one second, someone looking at the bulb will see it for exactly one second, even from very far away.

At least for regular initial data, we have an explicit expression for the solution of (1.1)-(1.2) (see for instance [START_REF] Courant | Methods of Mathematical Physics[END_REF][START_REF] Evans | Partial Differential Equations[END_REF]). For d " 3, we have u 0 pt, xq " 1 |BBpx, tq| ˆBBpx,tq `f0 pyq `∇f 0 pyq ¨py ´xq `tg 0 pyq ˘dy.

If the initial condition pf 0 , g 0 q is supported in the ball Bp0, Rq, then u 0 ptq is supported in Bp0, t `RqzBp0, t ´Rq, and in particular the energy in any compact of R d vanishes after finite time. For instance, @t ě 2R, }∇u 0 ptq} 2 L 2 pBp0,Rqq `}B t u 0 ptq} 2 L 2 pBp0,Rqq " 0.

(1.4)

The same applies in any odd dimension d ě 3. In dimension 1, it is still true that B x u 0 ptq and B t u 0 ptq are supported in r´t ´R, ´t `Rs Y rt ´R, t `Rs, but this is not necessarily the case for the solution itself, as can be seen from the classical d'Alembert formula u 0 pt, xq " f 0 px `tq `f0 px ´tq 2 `1 2 ˆx`t x´t g 0 psq ds.

The behavior is slightly different in even dimension. If one drops at time t " 0 a pebble in a (two dimensional) pond, a circular wave will emanate outward. The pond is perfectly calm outside this circular wave, but not inside as would be the case with the strong Huyghens principle. Even if the magnitude decays rapidly, the excited state will persist indefinitely. Oral communication would be quite difficult in even dimension.

In this case, the free wave equation can be solved by the descent method (we can see a wave in dimension 2 as the trace on R 2 ˆt0u of a wave in dimension 3 which does not depend on the last variable). We can see, as expected, that with f 0 and g 0 compactly supported the wave does not vanish in a fixed compact, even for large times. However, the wave mostly propagates at speed close to 1 and the energy on a compact goes to 0 as t Ñ `8. More precisely, we can show that for R ą 0 there exists C R ą 0 such that for pf 0 , g 0 q supported in Bp0, Rq the solution u 0 of (1.1)-(1.2) satisfies

}∇uptq} 2 L 2 pBp0,Rqq `}B t uptq} 2 L 2 pBp0,Rqq ď C R t ´2d `}∇f 0 } 2 L 2 pR d q `}g 0 } 2 L 2 pR d q ˘. (1.5)
This is what we call the local energy decay. In any dimension, the energy of a wave in any compact goes to 0 or, equivalently (since the global energy is constant), the energy of the wave spreads to infinity. Notice that we have to consider localized initial data. Otherwise, a wave coming from far away could reach a fixed compact after a long time and (1.4)-(1.5) could not hold.

It is then natural to wonder if the same phenomenon occurs for waves in more general settings, when explicit descriptions of the solutions are not available. Thus, the first question is whether the energy of the wave on any compact still goes to 0 for any (localized) initial condition in perturbed settings. When this is the case, the next issues are the rate of decay and the uniformity with respect to the initial data (the time T " 2R in (1.4) and the constant C R in (1.5) depend on R but not on f 0 , g 0 supported in Bp0, Rq, and in particular the righthand side in (1.5) is proportional to the initial energy).

These questions are interesting for themselves, since they give qualitative properties for the long time behavior of the solutions. For instance, if we measure a wave on a bounded subdomain, it can be useful to know for how long there is a relevent information in this region. But the local energy decay, and the resolvent estimates that we develop for the proofs, are also crucial for the mathematical analysis of other important properties (scattering theory, non-linear problems, etc.).

Together with the wave equation, we also consider the Schrödinger equation, which plays a central role in quantum mechanics. The model problem is

# ´iB t u 0 ´∆u 0 " 0, on R `ˆR d , u 0|t"0 " f 0 , on R d , (1.6) 
for some f 0 P L 2 pR d q. The L 2 -norm of the solution is constant:

}u 0 ptq} 2 L 2 pR d q " }f 0 } 2 L 2 pR d q .
There is no analog of the Huyghens principle for the Schrödinger equation. However, the mass also escapes to infinity: for R ą 0 there exists C R ą 0 such that if f 0 is supported in Bp0, Rq then the solution u 0 ptq of (1.6) satisfies

}uptq} 2 L 2 pBp0,Rqq ď C R t ´d }u 0 } 2 L 2 pR d q . (1.7)
This is similar to (1.5). The difference is that there is no distinction due to the parity of the dimension d. As for the wave equation, we are interested in this local energy decay for the Schrödinger equation in more general settings.

The asymptotically Euclidean setting. Our main purpose in this chapter is to discuss the local energy decay for the damped wave equation in an aymptotically Euclidean setting. We introduce simultaneously the setting for the Schrödinger equation.

We consider on R d a general Laplacian of the form P " ´1 wpxq div Gpxq∇, (1.8) where the matrix Gpxq and the scalar wpxq are positive and bounded. More precisely, we assume that there exist G min , G max , w min , w max ą 0 such that, for all x P R d and ξ P R d ,

G min |ξ| 2 ď xGpxqξ, ξy R d ď G max |ξ| 2
and w min ď wpxq ď w max .

(1.9)

We also set ´∆G " ´div Gpxq∇.

The definition of P includes in particular the case of the standard Laplace operator (with Gpxq " Id and wpxq " 1), a Laplacian in divergence form (with wpxq " 1, so that P " ´∆G ) or the Laplacian associated with a metric. We recall that the Laplace-Beltrami operator associated with the metric gpxq " pg j,k pxqq 1ďj,kďd is given by div g ∇ g " 1

|gpxq| 1 2 d ÿ j,k"1 B Bx j |gpxq| 1 2 g j,k pxq B Bx k ,
where |gpxq| " |detpgpxqq| and pg j,k pxqq 1ďj,kďd " gpxq ´1. Then P g " ´div g ∇ g is of the form (1.8) with w " |g| We assume that P is associated with a long range perturbation of the flat metric. This means that Gpxq and wpxq are long range perturbations of Id and 1, respectively. For some ρ 0 Ps0, 1s there exist constants C α ą 0, α P N d , such that for all x P R d , ˇˇB α pGpxq ´Idq ˇˇ`ˇˇB α pwpxq ´1q ˇˇď C α x ´ρ0´|α| .

(1.10)

Here and everywhere below we use the standard notation x " p1 `|x| 2 q 1 2 .

For the wave equation we also introduce the absorption index apxq. It is smooth, bounded, takes non-negative values, and it is of short range: choosing the constants C α larger if necessary, we have ˇˇB α apxq ˇˇď C α x ´1´ρ0´|α| .

(1.11)

The short range assumption is not just a technical issue. If a decays slower at infinity, then the results are different. This will be discussed in the next chapter.

On the other hand, the case a " 0 is allowed in this setting, so the results about the damped wave equation presented in this chapter include in particular the case of the undamped wave equation.

We consider on R d the (possibly) damped wave equation # B 2 t u `P u `apxqB t u " 0, on R `ˆR d , pu, B t uq| t"0 " pf, gq, on R d , (1.12)

where pf, gq P H 1 pR d q ˆL2 pR d q. For f P L 2 pR d q we also consider the Schrödinger equation This is equivalent to the usual energy (1.3), in the sense that there exists C ě 1 such that C ´1E 0 pu; tq ď Epu; tq ď CE 0 pu; tq. This definition of the energy is adapted to the geometry of the problem, since with this choice a solution of (1.12) has a non-increasing energy. More precisely, we formally have d dt Epu; tq " ´ˆR d apxqwpxq |B t upt, xq| 2 dx ď 0.

# ´iB t u `P u " 0, on R `ˆR d , u |t"0 " f, on R d . ( 1 
For the damped wave equation, the decay of the global energy is already an interesting issue. However, the damping can be 0, and in any case it is small at infinity, so the waves at infinity are not really damped and we cannot expect a uniform decay for the global energy.

Here we are interested in the local energy decay. We are going to prove this property about the time dependent problem via a spectral approach. In particular, we can separate the contributions of high and low frequencies.

The non-trapping condition. The contribution of high frequencies, though highly non-trivial, is now quite well understood. It is known that the propagation of a high frequency wave is well approximated by the classical rays of light (for instance, the geometric optics is a good approximation of wave optics if the wavelength is very small compared to the other lengths of the problem). This is made rigorous with semiclassical analysis (see for instance [START_REF] Zworski | Semiclassical Analysis[END_REF]). For a free wave, rays of light follow straight lines at constant speed (and necessarily escape to infinity). With an obstacle, they bounce on the obstacle following the laws of geometric optics (there are subtle behaviors for rays tangent to the boundary, which we do not discuss here). For a metric g (corresponding to an inhomogeneous refraction index), the rays of light are the geodesics. In general, for px, ξq P R 2d » T ˚Rd we set ppx, ξq " @ wpxq ´1Gpxqξ, ξ D R d .

(1.15)

Then rays of light are the solutions of the Hamiltonian problem associated with p. For px 0 , ξ 0 q P R 2d we denote by pxpt; x 0 , ξ 0 q, ξpt; x 0 , ξ 0 qq the solution of

$ ' & ' %
x 1 ptq " B ξ ppxptq, ξptqq, ξ 1 ptq " ´Bx ppxptq, ξptqq, xp0q " x 0 , ξp0q " ξ 0 .

Since high frequency waves follow these classical trajectories, one expects that they all escape to infinity if and only if all rays of light go to infinity (for the space variable). This is the non-trapping condition: @px 0 , ξ 0 q P p ´1pt1uq, |xpt; x 0 , ξ 0 q| Ý ÝÝÝ Ñ tÑ˘8 `8.

(

The motion of rays of light in the phase space is only an approximation and, in fact, the local energy always goes to 0. However, the higher the frequency is, the more accurate the approximation is. So without (1.16) the high frequency wave stays trapped for a long time, and the local energy decay is very slow. Thus, without (1.16), the estimate is not uniform (proportional to Epu; 0q) but we have a loss of derivative (it is proportional to }f } for some s ą 0).

The behavior of the contribution of low frequencies is completely different. Compared to high frequencies, the local energy decay for the contribution of low frequencies is always uniform with respect to the initial data. On the other hand, while the contribution of high frequencies decays very fast (at least for regular initial data) the contribution of low frequencies is responsible for the lack of time decay. For instance, the rate of decay in (1.5) is governed by low frequencies. This question will be the main issue in this and the next chapters.

Literature about the undamped case.

There is an important literature about the local energy decay for the wave equation. An early result is [START_REF] Morawetz | The decay of solutions of the exterior initial-boundary value problem for the wave equation[END_REF], where decay at rate 1{t is proved by a mutiplier method for the free wave outside a star-shaped obstable in dimension 3 (with a Dirichlet boundary condition). Then exponential decay is proved in [START_REF] Lax | Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle[END_REF] via an analysis of the corresponding semigroup. In [START_REF] Lax | The wave equation in exterior domains[END_REF] it is proved that the local energy for the wave in a general exterior domain goes to 0. See also [START_REF] Zachmanoglou | The decay of solutions of the initial-boundary value problem for hyperbolic equations[END_REF] for more general hyperbolic equations. In [START_REF] Lax | Scattering theory for the acoustic equation in an even number of space dimensions[END_REF], the Lax-Phillips method is adapted to even dimensions. We refer to the book [START_REF] Lax | Scattering Theory[END_REF] (or the revised version [START_REF] Lax | Scattering theory[END_REF]) for a review of this theory. The non-trapping condition is already mentioned there.

It is proved in [START_REF] Ralston | Solution of the wave equation with localized energy[END_REF] that this non trapping condition is necessary to have uniform local energy decay. Local energy decay outside non-trapping obstacles is considered in [START_REF] Morawetz | Decay for solutions of the exterior problem for the wave equation[END_REF][START_REF] Strauss | Dispersal of waves vanishing on the boundary of an exterior domain[END_REF][START_REF] Morawetz | Decay of the solution of the wave equation outside non-trapping obstacles[END_REF], via the existence of an escape function (an escape function is a function on the phase space which is increasing along the Hamiltonian flow). It is proved in [START_REF] Morawetz | Decay of the solution of the wave equation outside non-trapping obstacles[END_REF] that we have decay at rate t ´1 in even dimension, and exponential decay in dimension 3. This question is then discussed in [START_REF] Vainberg | On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as t Ñ 8 of solutions of non-stationary problems[END_REF]. Compared to the previous strategies, the properties of the time-dependent problem are now deduced from the analysis of the stationary problem. Another important step is the analysis of [START_REF] Melrose | Singularities and energy decay in acoustical scattering[END_REF], based on the propagation of singularities of [START_REF] Melrose | Singularities of boundary value problems I[END_REF]). In particular, a decay at rate t ´d is proved in even dimensions. This has then been improved in [START_REF] Kawashita | On the decay rate of local energy for the elastic wave equation[END_REF]. We also refer to [START_REF] Vodev | On the uniform decay of the local energy[END_REF] for a more general setting. Finally, it is proved in [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] that outside any compact smooth obstable we have at least logarithmic decay if we allow a loss of regularity.

The stationary problem of the wave equation (the Helmholtz equation) is closely related to the one for the Schrödinger equation. Then local energy decay has also been proved for the latter. See [START_REF] Rauch | Local decay of scattering solutions to Schrödinger's equation[END_REF] for an exponentially decaying potential, [START_REF] Jensen | Spectral properties of Schrödinger operators and time-decay of the wave functions[END_REF] for more precise asymptotics (of the resolvent and the propagator) and [START_REF] Murata | Asymptotic expansions in time for solutions of Schrödinger-type equations[END_REF] for more general operators. The case of an exterior domain is discussed in [START_REF] Tsutsumi | Local energy decay of solutions to the free Schrödinger equation in exterior domains[END_REF].

Finally, most of the recent papers deal simultaneously with the Schrödinger and wave equations. We refer to [START_REF] Bouclet | Low frequency estimates and local energy decay for asymptotically Euclidean laplacians[END_REF][START_REF] Bony | Local Energy Decay for Several Evolution Equations on Asymptotically Euclidean Manifolds[END_REF] for estimates with an ε-loss on an asymptotically Euclidean setting (the Laplacian is a Laplace-Beltrami operator associated with a long-range perturbation of the standard metric on R d ). This means that the decay rate for the local energy is of size Opt ´d`ε q for the Schrödinger equation and Opt ´2d`ε q for the wave equation. The ε-loss has finally been removed in [START_REF] Bouclet | Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds[END_REF]. The method does not see the parity of the dimension, so this final result is optimal for Schrödinger or for the wave in even dimension, but not for the wave in odd dimension. However, it is proved [START_REF] Bony | Improved local energy decay for the wave equation on asymptotically Euclidean odd dimensional manifolds in the short range case[END_REF] that if the metric goes faster to the flat metric at infinity then we can recover a better estimate on the local energy in odd dimensions.

In these works, the time decay is proved from resolvent estimates. And the main contributions of these papers is the analysis of low frequency resolvent estimates. High frequency resolvent estimates were already understood for the Schrödinger operator in close settings. See for instance [START_REF] Robert | Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections[END_REF] for the Schrödinger operator with a potential, [START_REF] Robert | Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien[END_REF] for a second order perturbation of the Laplacian and [START_REF] Burq | Semi-classical estimates for the resolvent in nontrapping geometries[END_REF] for a general compactly supported perturbation of the Laplacian in an exterior domain (via the contradiction argument using semiclassical defect measures [START_REF] Gérard | Microlocal defect measures[END_REF], as also used in [START_REF] Lebeau | Équation des ondes amorties[END_REF]). Low frequency resolvent estimates were also already discussed in [START_REF] Bouclet | Low frequency estimates for long range perturbations in divergence form[END_REF][START_REF] Bony | Low Frequency Resolvent Estimates for long range perturbations of the Euclidean Laplacian[END_REF]. Earlier papers also considered the limiting absorption principle at zero energy in some particular settings (see for instance [START_REF] Wang | Asymptotic expansion in time of the Schrödinger group on conical manifolds[END_REF][START_REF] Dereziński | Quantum scattering at low energies[END_REF] and references therein).

About the damped wave equation. Here we are mainly interested in the damped wave equation. The stabilization of the wave equation also has a long history on compact domains. In this case, we consider the global energy. The wave cannot escape to infinity, but it is dissipated and we similarly study the decay to 0. In this setting there is no difficulty with low frequencies, but the analysis of high frequencies is similar. In particular, the analog of the non-trapping condition is the so-called geometric control condition. The energy decays uniformly if and only if all the classical trajectories go through the damping region.

We refer to [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF] for exponential decay with dissipation in the compact manifold and to [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] for dissipation at the boundary (see also [START_REF] Burq | A necessary and sufficient condition for the exact controllability of the wave equation[END_REF]). For logarithmic decay with loss of regularity without the control condition we refer to [START_REF] Lebeau | Équation des ondes amorties[END_REF] for internal damping and to [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF] for damping at the boundary. Then there have been several results about intermediate situations, where the geometric control condition does not hold, but the set of undamped rays of light is small in some suitable sense. See for instance [START_REF] Burq | Energy decay for damped wave equations on partially rectangular domains[END_REF] for the problem on the stadium (giving polynomial decay of the energy), [START_REF] Christianson | Semiclassical non-concentration near hyperbolic orbits[END_REF] for a situation where the decay is exponential but not uniform, [START_REF] Léautaud | Energy decay for a locally undamped wave equation[END_REF] for the so-called open book and [START_REF] Burq | Stabilization of wave equations on the torus with rough dampings[END_REF] for a rough damping. We also refer to [START_REF] Sjöstrand | Asymptotic distribution of eigenfrequencies for damped wave equations[END_REF][START_REF] Anantharaman | Spectral deviations for the damped wave equation[END_REF] for more results on manifolds without boundary.

In an unbounded domain we have additional difficulties, in particular due to the contribution of low frequencies. As said above, we only consider the local energy decay in this chapter.

In this setting, the energy on a compact has now two reasons to decay. Either because it escapes to infinity, or because it is dissipated. The expected corresponding condition on classical trajectories is that they should all escape to infinity or go through the damping region. This means that we can allow trapped trajectories if they are damped. We set Ω b " " px 0 , ξ 0 q P p ´1pt1uq : sup tPR |xpt; x 0 , ξ 0 q| ă `8* .

Then the condition on classical trajectories (which we can call geometric damping condition) reads @px 0 , ξ 0 q P Ω b , Dt P R, apxpt, x 0 , ξ 0 qq ą 0.

(1.17)

In [START_REF] Aloui | Stabilisation pour l'équation des ondes dans un domaine extérieur[END_REF], L. Aloui and M. Khenissi have considered the wave equation in an exterior domain, with a compactly supported damping, via the theory of Lax-Philipps and the contradiction argument with semiclassical measures. They recover, under the assumption analogous to (1.17) in an exterior domain, the exponential decay of the local energy in odd dimension. A polynomial decay is obtained in [START_REF] Khenissi | Équation des ondes amorties dans un domaine extérieur[END_REF] in even dimension.

The main result. The local energy decay for the damped wave equation (1.12) (in dimension d ě 3) has been proved in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF]. This is a collaboration with Jean-Marc Bouclet. It has then been slightly improved in [START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF].

Instead of considering compactly supported initial data and the energy on a compact, we choose initial data which decay at infinity and consider a weighted energy, which gives slightly better results. For δ P R we denote by L 2,δ pR d q the weighted space L 2 p x 2δ dxq and for k P N we denote by H k,δ pR d q the corresponding Sobolev space. The main result about the damped wave equation is the following. Theorem 1.1. Assume that the geometric damping condition (1.17) holds. Let ε ą 0 and δ ą d `1 2 . There exists C ą 0 such that for pf, gq P H 1,δ pR d q ˆL2,δ pR d q and t ě 0 we have

› › x ´δ ∇uptq › › L 2 pR d q `› › x ´δ B t uptq › › L 2 pR d q ď C t ´pd´εq `› › x δ ∇f › › L 2 pR d q `› › x δ g › › L 2 pR d q ˘,
where u is the solution of (1.12).

Notice that in even dimension we have an ε-loss compared to (1.5) (where the squares of the norms are considered). When [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] and [START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF] were written, this was the best known result even for the undamped case. Now the ε-loss has been removed in the undamped case in [START_REF] Bouclet | Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds[END_REF], and it is one of the perspectives to improve this result in the general case (see Section 4.1.1).

We discuss this theorem in the next three sections (notice that the presentation is slightly different than in the original papers), and then we will turn to the Schrödinger equation (see in particular the local energy decay for (1.13) in Theorem 1.25 below).

Resolvent estimates for the wave operator

Theorem 1.1 is proved from the spectral point of view. More precisely, we deduce estimates on the time-dependent problem from resolvent estimates for the corresponding wave operator.

The wave operator

As usual for a wave equation, we rewrite (1.12) as a first order problem of the form # B t U ptq ´WU ptq " 0, @t ě 0, U p0q " F.

(1.18)

At least formally, uptq is a solution of (1.12) if and only if U ptq " `uptq, wB t uptq ˘satisfies (1.18) with F " pf, wgq and

W " ˆ0 w ´1 ∆ G ´a ˙. (1.19)
We set H " H 1 pR d q ˆL2 pR d q. It is endowed with the natural norm. We also define the energy space E as the Hilbert completion of S " SpR d q ˆSpR d q for the norm defined by

}pu, vq} 2 E " ˆRd xGpxq∇upxq, ∇upxqy R d dx `ˆR d |vpxq| 2 wpxq dx.
In particular, H is dense in E . We set

DompWq " tU P E : WU P E u , (1.20) 
where WU is understood in the sense of distributions. Then we consider on E the operator W defined by (1.19) on the domain DompWq.

Notice that if u is a solution of (1.12) then its energy Epu; tq (see (1.14)) is equal to }puptq, wB t uptqq} 2 E , while the usual energy E 0 (see (1.3)) corresponds to the square of the usual norm on 9

H 1 pR d q ˆL2 pR d q. As already observed for the energy, this choice of norm on E is equivalent to the usual one, but it is adapted to the operator W, in the sense that with this Hilbert structure the operator W is skew-adjoint if a " 0, and iW is dissipative in the general case a ě 0.

There are two possible conventions for dissipativeness. We choose the convention which is usual for Schrödinger operators. We set C ˘" tz P C : ˘Repzq ą 0u and C ˘" tz P C : ˘Impzq ą 0u . Definition 1.2. We say that the operator T on the Hilbert space H is dissipative if @ϕ P DompT q, Im xT ϕ, ϕy H ď 0.

Similarly, T is accretive if @ϕ P DompT q, Re xT ϕ, ϕy H ě 0.

Then we say that the dissipative (accretive) operator T is maximal dissipative (maximal accretive) if its resolvent set contains some -hence any-z in C `(z P C ´).

The other possible definition for dissipativeness, satisfied by W on E , is the property Re xT ϕ, ϕy H ď 0 (in this case T is dissipative if p´T q is accretive).

With the convention of Definition 1.2, iW is dissipative (or p´Wq is accretive) on E since @U " pu, vq P DompWq, Im xiWU, U y E " Re xWU, U y E " ´xav, vy L 2 pR d q ď 0. We also have

pW ´ζq ´1F " ˆ´ζ ´1`1 `Rpiζq∆ G ˘´Rpiζq ´wRpiζq∆ G ´ζRpiζq ˙F. (1.23)
For Rpzq we have again chosen a convention consistent with the Schrödinger setting (z belongs to the upper half-plane and Rpzq looks like the resolvent of the Schrödinger equation if a " 0). With this convention we have Rpiζq " p´∆ G `awζ `wζ 2 q ´1. All this can be made rigorous. We first prove that Rpzq is well defined and then we check that the right-hand side of (1.21) or (1.23) defines a bounded inverse of pW ´ζq ´1.

Proposition 1.3. The operator `´∆ G ´iawz ´wz 2 ˘with domain H 2 pR d q has a bounded inverse on L 2 pR d q for all z P C `. Moreover, its inverse Rpzq extends to a bounded operator from H ´1pR d q to H 1 pR d q and there exists C ą 0 such that for z P C `and β 1 ,

β 2 P N d with |β 1 | ď 1, |β 2 | ď 1, we have › › B β1 x RpzqB β2 x › › LpL 2 q ď C |z| |β1|`|β2|´1 Impzq . (1.24)
Proposition 1.4. The operator iW is maximal dissipative on E . Moreover, for ζ P C `the resolvent pW ´ζq ´1 is given by (1.23), and for F P H we also have (1.21).

By the Hille-Yosida Theorem, we deduce from Proposition 1.4 that W generates a contractions semigroup on E , and in particular the problem (1.18) is well posed. Then we can rewrite Theorem 1.1 with W in the weighted energy spaces. For δ P R we denote by E δ the Hilbert completion of S for the norm given by }pu, vq}

2 E δ " › › x δ ∇u › › 2 L 2 pR d q `› › x δ v › › 2 L 2 pR d q .
Theorem 1.5. Assume that the geometric damping condition (1.17) holds. Let ε ą 0 and δ ą d `1 2 . There exists C ą 0 such that for F P E δ we have

› › e tW F › › E ´δ ď C t ´pd´εq }F } E δ .
The main ingredients of the proof described below are given in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF]. However, in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] there is a loss of regularity, and the estimate also depends on the L 2 -norm of the initial condition u 0 . Then the estimate of [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] is

› › x ´δ ∇uptq › › L 2 pR d q `› › x ´δ B t uptq › › L 2 pR d q ď C t ´pd´εq `}u 0 } H 2,δ pR d q `}u 1 } H 1,δ pR d q ˘.
Theorem 1.5 is the version proved in [START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF].

Remark 1.6. The fact that 9 H 1 is not included in L 2 raises some difficulties, and one might prefer to work in H instead of E . This is in some sense more convenient, but this will not give the same results. If we estimate U in (a weighed version of) H , we are not only considering the sizes of the derivatives of the wave (the energy), but also the size of the solution itself, estimated with respect to the initial energy but also the size of the initial condition f in L 2 pR d q. This can be considered -or not-as a drawback. We are also loosing the nice structural properties of the operator W, but the resolvent pW ´ζq ´1 is still defined on C `and the propagator e tW is still defined for t ě 0. We will work in H in the next chapter, see Section 2.2.1.

Of course, this discussion is irrelevant in situations where 9 H 1 and H 1 are equal as sets with equivalent norms, for instance on a bounded domain with Dirichlet boundary condition. In unbounded domains, the same applies if we work with initial data supported in some fixed compact, as is usually the case in results about the local energy decay. Similarly, if pf, gq is not compactly supported but belongs to some weighted space H 1,δ pR d q ˆL2,δ pR d q, and if we are ready to work in a slightly more restrictive space, then we can use the following generalization of the Hardy inequality (see Lemma 4.1 in [START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF]). For ε ą 0 there exists C ą 0 such that for all u 0 P SpR d q we have

} x δ u 0 } L 2 pR d q ď C} x δ`1`ε ∇u 0 } L 2 pR d q .
(1.25)

Remark 1.7. In the literature about the undamped wave equation, it is usual to diagonalise the operator W, and the analysis reduces to a problem involving the operator ? P on L 2 pR d q. We will not use this possibility, since with the damping it is no longer possible to diagonalise W. We could certainly deal with the non-diagonal terms, but the gain is not clear at all and we prefer to stay in the (possibly) unconvenient but (certainly) natural space E . Moreover, it seems slightly more natural to prove estimates on } x ´δ ∇uptq} L 2 pR d q rather than on } x ´δ ? P uptq} L 2 pR d q for the local energy decay.

From resolvent estimates to local energy decay

To deduce properties on the wave equation from resolvent estimates for W, we write the propagator e tW in terms of the resolvent pW ´ζq

´1, ζ P C `.
By density, it is enough to prove Theorem 1.5 for F P S . Let φ P C 8 pR, r0, 1sq be equal to 0 on s ´8, 1s and equal to 1 on r2, `8r. For ζ P C `we set

F ζ " ˆR φ 1 psqe spW´ζq F ds.
(1.26)

We can see F ζ as a "regularized in time" version of F (we recover F if we replace φ by 1 R`, hence φ 1 by δ 0 ). Then we have

pW ´ζq ´1F ζ " ´ˆR φpsqe spW´ζq F ds.
We still have propagation at finite speed for a wave in our perturbed setting, so for δ ě 0 and T ą 0 there exists C ě 0 such that for s P r0, T s and F P S we have (see [START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF]Lemma 5

.1]) › › e sW F › › E δ ď C }F } E δ .
Thus there exists C ą 0 such that, for all F P S and ζ P C `,

}F ζ } E δ ď C }F } E δ .
Let µ ą 0. Given τ P R we write ζ for µ ´iτ . The interest of considering F ζ instead of F is that pW ´ζq ´1F ζ decays rapidly as |τ | Ñ 8. Then the Fourier inversion formula gives

φptqe tW F " 1 2iπ ˆRepζq"µ e tζ pW ´ζq ´1F ζ dζ, (1.27) 
where the line Repζq " µ is oriented from top to bottom (from µ `i8 to µ ´i8). Since › › e tW › › LpE q ď 1, the estimate of Theorem 1.5 is clear for t in a compact. It is then enough to estimate (1.27), which coincides with e tW F for t ě 2.

We deal separately with the contributions of high and low frequencies. We consider χ low P C 8 0 pR, r0, 1sq equal to 1 on a neighborhood of 0, and χ high " 1´χ low . For ˚P tlow, highu and t ě 2 we set U ˚,µ ptqF " 1 2iπ ˆRepζq"µ χ ˚pImpζ qqe tζ pW ´ζq ´1F ζ dζ.

(1.28)

We set D " tz P C : |z| ď 1u. To estimate U high,µ ptqF , we need estimates for pW ´ζq ´1. We have the following result.

Theorem 1.8. Assume that the geometric damping condition (1.17) holds. Let n P N ˚and δ ą n ´1 2 . There exists C ą 0 such that for ζ P C `zD we have

› › pW ´ζq ´n› › LpE δ ,E ´δ q ď C.
The uniform estimates of Theorem 1.8 are not enough to estimate directly the integral U high,µ ptqF . This is the reason why we had a loss of derivative in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF]. This point has been improved in [START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF], and we finally have the following result. Proposition 1.9. Let γ ě 0 and δ ą γ `1 2 . There exists C ě 0 such that for F P S , µ Ps0, 1s and t ě 1 we have }U high,µ ptqF } E ´δ ď C t ´γ e tµ }F } E δ .

Notice that under the geometric condition (1.17), we can estimate uniformly as many derivatives as we wish for the resolvent if the weight is strong enough. Then we get a fast decay for U high,µ ptqF . This is not the case for the contribution of U low,µ ptqF , which depends on the resolvent estimates for ζ P C `close to 0. Theorem 1.10. Let n P N ˚, δ ą n ´1 2 and ε ą 0. There exists C ą 0 such that for

ζ P C `X D we have › › pW ´ζq ´n› › LpE δ ,E ´δ q ď C |ζ| minp0,d´n´εq .
For low frequencies, it is not difficult to convert the resolvent estimates into time decay. We refer to [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF][START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF] or [BB21, Section 5].

Proposition 1.11. Let δ ą d `1 2 and ε ą 0. There exists C ą 0 such that for all F P S and µ ą 0 we have

}U low,µ ptqF } E ´δ ď C t ´pd´εq e tµ }F } E δ .
Applying Propositions 1.9 and 1.11 and letting µ go to 0, we deduce Theorem 1.5. Now we focus on the main ingredients for the proofs of the resolvent estimates. In Section 1.3 we introduce the abstract commutators method, and in Section 1.4 we explain how it is used to prove Theorems 1.8 and 1.10.

The Mourre commutators method 1.3.1 Introduction

A classical argument to prove resolvent estimates for a selfadjoint Schrödinger operator near the real axis is the commutators method of Mourre.

Let H be a selfadjoint operator on a Hilbert space H. Given another selfadjoint operator A (the conjugate operator) we have formally

d dt @ Ae ´itH ϕ, e ´itH ϕ D H " @ irH, Ase ´itH ϕ, e ´itH ϕ D H .
Thus if iad A pHq " irH, As is a positive operator, the observation @ Ae ´itH ϕ, e ´itH ϕ D H is an increasing function of time. In particular, it is easy to see that if irH, As ě c 0 for some c 0 ą 0 then H cannot have an eigenvalue. Before E. Mourre, there were already important results about the nature of the spectrum of H based on a positive commutator assumption (see for instance [START_REF] Putnam | Commutation properties of Hilbert space operators and related topics[END_REF]).

The great contribution of Mourre in [START_REF] Mourre | Absence of singular continuous spectrum for certain self-adjoint operators[END_REF] is that the positive commutator assumption is localized in energy with respect to H. Given an interval J of R, the assumption is then

1 J pHqrH, iAs1 J pHq ě c 0 1 J pHq, (1.29) 
where c 0 ą 0 and 1 J pHq is the spectral projection of H on J.

For the free Laplacian H " ´∆ on H " L 2 pR d q, we can use the generator of dilations

A " ´x ¨i∇ `i∇ ¨x 2 " ´id 2 ´x ¨i∇. (1.30)
This is the quantization of the symbol px, ξq Þ Ñ x ¨ξ, which is an escape function for the Laplacian (the Poisson bracket tξ 2 , x ¨ξu is positive on p ´1pt1uq " tpx, ξq : |ξ| " 1u). In this case we have irH, As " 2H. This is not greater than a positive constant, but (1.29) holds for any J ĂĂ R ˚"s0, `8r with c 0 " 2 infpJq ą 0. From (1.29), Mourre deduced important properties such as the limiting absorption principle and the absolute continuity of the spectrum of H in J. For this, he proves in particular uniform resolvent estimates of the form

› › A ´δ pH ´zq ´1 A ´δ › › LpHq ď C, (1.31) 
where δ ě 1 (then for δ ą 1 2 in [START_REF] Mourre | Opérateurs conjugués et propriétés de propagation[END_REF]) and z P CzR has real part in I ĂĂ J.

The idea is to prove estimates uniform with respect to z and ε ą 0 for

F ε pzq " A ´1 pH ε ´zq ´1 A ´1 , where H ε " H ´iε1 J pHqrH, iAs1 J pHq. (1.32)
The operator H ε is dissipative. The dissipative part is not bounded below by a positive constant, but with the positivity given by (1.29) we can prove an estimate of the form

› › ›1J pHqpH ´zq ´1 A ´1› › › À }F ε pzq} 1 2 ? ε .
And for Repzq P I ĂĂ J we have a uniform estimate for p1 ´1J pHqqpH ´zq ´1 A ´1 by the spectral theorem. Since this does not give an estimate for F ε pzq uniform in ε small, we also estimate the derivative of F ε pzq with respect to ε. After having removed the factors 1 J pHq we have to estimate

A ´1 pH ε ´zq ´1rH, AspH ε ´zq ´1 A ´1 .
This is where we use the fact that the dissipative part of H ε is a commutator of H. The factor H is absorbed by one of the resolvents, and the weight A ´1 is used to absorb the factor A. We finally get an estimate for the derivative, from which we deduce that the limit F 0 pzq is bounded uniformly in z. We also refer to [START_REF] Ch | A proof of the abstract limiting absorption principle by energy estimates[END_REF] for an alternative approach.

The flexibility of the assumption (1.29) makes the result applicable in many situations, and the Mourre method has been extended in many directions. We refer to the book [START_REF] Amrein | C0-groups, Commutator Methods and Spectral theory of N -body Hamiltonians[END_REF] for a general overview on the subject.

Here we are only interested in the uniform estimates, but for the resolvent and its derivatives. The multiple resolvent estimates for a selfadjoint operator are given in [START_REF] Jensen | Multiple commutator estimates and resolvent smoothness in quantum scattering theory[END_REF][START_REF] Jensen | Propagation estimates for Schrödinger-type operators[END_REF] under additional assumptions about the multiple commutators ad n A pHq, n P t1, . . . , N `1u, for some given N ě 2. The idea is to use other resolvent estimates involving the spectral projections 1 R˘p Aq. For δ 1 , δ 2 ě 0 such that δ 1 `δ2 ă N ´1 and δ P ‰ 1 2 , N " there exists C ą 0 such that for z P C `with Repzq P I we have

› › › A δ1 1 R´p AqpH ´zq ´11 R`p Aq A δ2 › › › LpHq ď C, (1.33) › › › A ´δ pH ´zq ´11 R`p Aq A δ´1 › › › LpHq ď C, (1.34) › › › A δ´1 1 R´p AqpH ´zq ´1 A ´δ › › › LpHq ď C. (1.35)
Then we can deduce similar estimates (with different conditions for the weights) for the powers of pH ´zq ´1. For instance, for δ ą 3 2 we can write

› › › A ´δ pH ´zq ´2 A ´δ › › › ď › › › A ´δ pH ´zq ´1 A ´pδ´1q › › › › › › A δ´1 1 R´p AqpH ´zq ´1 A ´δ › › › `› › › A ´δ pH ´zq ´11 R`p Aq A δ´1 › › › › › › A ´pδ´1q pH ´zq ´1 A ´δ › › › ,
and use (1.31), (1.34), (1.35) and (1.31) again. We similarly prove analogs of (1.33)-(1.35) for pH ´zq ´2 and then we prove by induction estimates for higher powers of the resolvent.

The dissipative Mourre method

In [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF], I generalized (1.31) to a parameter-dependent dissipative operator, of the form

H λ " H 1,λ ´iV λ (1.36)
where H 1,λ is selfadjoint and semi-bounded, and V λ is selfadjoint, non-negative and H 1,λbounded with relative bound smaller than 1. There is no convenient and general way to localize with respect to the spectrum of a non-selfadjoint operator, so the assumption of positive commutator is localized with respect to the selfadjoint part H 1,λ . A key observation in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] is that the positive commutator is used to give some dissipativeness to the operator H ε in (1.32). Thus, if the operator is already dissipative, we can use the dissipative part of the operator to weaken the assumption (1.29) on the commutator. More precisely, in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] the estimate (1.31) is proved under an assumption of the form

1 J pH 1,λ q `rH 1,λ , iA λ s `βλ V λ ˘1J pH 1,λ q ě c 0 1 J pH 1,λ q, (1.37) 
for some β λ P r0, 1s. We do not give too much details here since [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] is already described in [START_REF] Royer | Analyse haute fréquence de l'équation de Helmholtz dissipative[END_REF].

For the proofs of Theorems 1.8 and 1.10 we need resolvent estimates for the powers (or, equivalently, for the derivatives) of the resolvent. Thus, we first have to generalize (1.33)-(1.35) and then the estimates for the powers of the resolvent to a dissipative setting.

But this is not enough. The commutators method cannot be applied directly to the operator iW, for instance because its selfadjoint part is not semibounded. Thus, we first estimate the derivatives of Rpzq by the Mourre method, and then we deduce estimates for the derivative of pW ´ζq ´1 by (1.21). Notice that compared to the usual settings, the derivatives of Rpzq are not given by its powers. We have R 1 pzq " Rpzq `iapxqwpxq `2zwpxq ˘Rpzq, and we see by induction on m P N that R pmq pzq can be written as a sum of terms of the form T k;j1,...,j k pzq " Rpzqpiaw `2zwq j1 Rpzq . . . piaw `2zwq j k Rpzq, (1.38) where k P t0, . . . , mu and j 1 , . . . , j k P t0, 1u are such that 2k ´řk "1 j " m. Thus, we also have to take into account the factors piaw `2zwq inserted between the factors Rpzq (they do not commute with Rpzq). We proved in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] that under some suitable behavior between these inserted factors and the conjugate operator (basically, the commutators with the conjugate operator extend to bounded operators), we can generalize to this kind of setting the multiple commutator estimates.

After [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF][START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF], I have been interested in the wave equation in a domain Ω with boundary, in particular in wave guides, with damping at the boundary. This will be discussed with more details in the next chapter, but this motivated the analysis of a Schrödinger operator with dissipative Robin boundary condition. Given a P W 1,8 pBΩ; R `q, we consider on Ω the operator H a " ´∆, DompH a q " u P H 2 pΩq, B ν u " iau on BΩ ( .

(1.39)

In this case, we cannot write H a as the sum of a selfadjoint operator and a dissipative part as in (1.36), so we cannot apply the results of [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF][START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF]. However, we can write such a sum for the quadratic form corresponding to H a on H 1 pΩq:

Q α puq " ˆΩ |∇upxq| 2 dx ´i ˆBΩ apxq |upxq| 2 dσpxq.
In [START_REF] Royer | Mourre's commutators method for a dissipative form perturbation[END_REF], I generalized the dissipative Mourre method to such operators (note that this includes the previous cases). This is inspired by [START_REF] Amrein | Notes on the N -body problem, Part I[END_REF] about a similar question for selfadjoint operators. This version of the dissipative Mourre method has been applied to wave guides in [START_REF] Royer | Mourre's commutators method for a dissipative form perturbation[END_REF]. It also had an unexpected application to the dissipative Schrödinger equation on R d (see Remark 1.24 below).

Finally, in [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] I again had to use the Mourre method in a setting which was not included in the previous versions. More details will be given in Section 1.7 below, but for this problem we have to apply the multiple resolvent estimates simultaneously for two different operators. This means that we have to estimate a product with factors given by different resolvents, and with inserted factors as above.

Moreover, in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF][START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF] we have applied the Mourre method to (1.22) with w " 1, so it was still possible to see Rpzq as the resolvent of the parameter-dependant operator ´∆G ´iza with spectral parameter z 2 . In [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] (see Section 1.7), there is no damping but w is not necessarily equal to 1, so we include the spectral parameter in the operator, and just see the resolvent as the inverse of a parameter-dependent dissipative operator. Thus, we need a dissipative version of the commutators method even if the operator under study is selfadjoint.

The statement

Since it includes all the previous versions, we give here the statement of [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] for the commutators method. Notice that the proofs given in [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] are self-contained.

Let H and K be two Hilbert spaces. We assume that K is densely and continuously embedded in H. We denote by K ˚the space of continuous semilinear forms on K (we have ϕpu 1 `λu 2 q " ϕpu 1 q `λϕpu 2 q for ϕ P K ˚, u 1 , u 2 P K and λ P C). We refer to [START_REF] Edmunds | Spectral Theory and Differential Operators[END_REF] for a discussion about this choice. We identify H with H ˚(with this convention, the identification is linear). Then K is naturally (linearly) identified with a subset of K ˚.

We consider a selfadjoint operator A on H with domain D H . We set D K " tϕ P K X D H : Aϕ P Ku .

(1.40) By restriction, A defines an operator A K on K with domain D K . Then D K is endowed with the graph norm of A K . We can see A K as an operator in LpD K , Kq and A K maps K ˚to D K.

For S P LpK, K ˚q we set ad 0 A pSq " S. Then, by induction on n P N ˚, if the commutator ad n´1

A pSqA K ´AK ad n´1 A pSq P LpD K , D Kq extends to an operator in LpK, K ˚q, then we denote this extension by ad n A pSq. We can similarly define commutators in LpH, Kq. For Q P LpK, K ˚q we set RepQq " pQ `Q˚q {2 and ImpQq " pQ ´Q˚q {2i. We say that Q P LpK, K ˚q is non-negative if for all ϕ P K we have xQϕ, ϕy K ˚,K ě 0.

All this being set, we consider Q P LpK, K ˚q with negative imaginary part: there exists c 0 ą 0 such that Q `:" ´ImpQq ě c 0 I, where I P LpK, K ˚q is the natural embedding. By the Lax-Milgram Theorem, Q has an inverse Q ´1 P LpK ˚, Kq Ă LpHq.

Example 1.12. If H is a selfadjoint semibounded operator and z P C `is a spectral parameter, we recover the usual setting by choosing Q " Qpzq " H ´z, seen as an operator from the form domain K of H to K ˚. Then Q `" Impzq. If H is a dissipative operator of the form H " H 1 ´iV , with H 1 selfadjoint and V ě 0, then Q `" V `Impzq.

Our purpose is to prove estimates on Q ´1. For this, we use the following notion of conjugate operator. Definition 1.13. Let N P N ˚and Υ ě 1. Let A be a selfadjoint operator on H. We say that A is Υ-conjugate to Q up to order N if the following conditions are satisfied. (H1) For ϕ P K we have }ϕ} H ď Υ }ϕ} K .

(H2) For all θ P r´1, 1s the propagator e ´iθA P LpHq defines by restriction a bounded operator on K.

(H3) The commutator ad n A pQq is well defined in LpK, K ˚q and satisfies }ad n A pQq} LpK,K ˚q ď Υ for all n P t1, . . . , N `1u.

(H4) There exist Q K P LpK, K ˚q with ImpQ K q ď 0, Q K P LpK, K ˚q non-negative and Π P LpH, Kq such that [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] by choosing Π " χpH 1 q (with χ P C 8 0 pR, r0, 1sq supported in J and equal to 1 on a neighborhood of I), Q K " H 1 ´z and Q K " V . Then Q ´1 K Π K " pH 1 ´zq ´1p1 ´χqpH 1 q is bounded uniformly in z by the spectral theorem. Now we can state the result for a single resolvent. In these estimates, it is important that the constants C do not depend on Q but only on the parameter Υ.

(a) Q " Q K ´iQ K , (b) › › Q K › › LpK,K ˚q ď Υ,
Theorem 1.15. Let N P N ˚and Υ ě 1. Assume that A is Υ-conjugate to Q up to order N . (i) Let δ ą 1
2 . There exists C ą 0 which only depends on Υ and δ such that

› › A ´δ Q ´1 A ´δ › › LpHq ď C. (1.42) 
(ii) Assume that N ě 2 and let δ 1 , δ 2 ě 0 such that δ 1 `δ2 ă N ´1. There exists C ą 0 which only depends on N , Υ, δ 1 , δ 2 and such that

› › A δ1 1 R´p AqQ ´11 R`p Aq A δ2 › › LpHq ď C. (1.43) (iii) Assume that N ě 2 and let δ P ‰ 1 2 , N " 
. There exists C ą 0 which only depends on N , Υ and δ such that

› › A ´δ Q ´11 R`p Aq A δ´1 › › LpHq ď C (1.44) and › › A δ´1 1 R´p AqQ ´1 A ´δ › › LpHq ď C. (1.45)
Then we use the following abstract lemma to deduce multiple resolvent estimates from the estimates of Theorem 1.15. Lemma 1.16. Let H be a Hilbert space. Let n P N ˚and T 1 , . . . , T n P LpHq. For j P t0, . . . , nu we consider on H a selfadjoint operator Θ j ě 1, and Π j , Π j P LpHq such that Π j `Πj " Id H . Let N P N ˚. For j P t1, . . . , nu we assume that there exist ν j ě 0, σ j P r0, ν j s and a collection C j " tC j ; pC j,δ1,δ2 q; pC j,δ qu of constants such that for δ 1 , δ 2 ě 0 with δ 1 `δ2 ă N ´νj and δ P rσ j , N s we have

› › Θ ´σj j´1 T j Θ ´σj j › › LpHq ď C j , (1.46) 
› › Θ δ1 j´1 Π j´1 T j Π j Θ δ2 j } LpHq ď C j,δ1,δ2 , (1.47) 
› › Θ δ´νj j´1 Π j´1 T j Θ ´δ j › › LpHq ď C j,δ , (1.48) 
› › Θ ´δ j´1 T j Π j Θ δ´νj j › › LpHq ď C j,δ .
(1.49)

Let T " T 1 . . . T n . We set ν " n ÿ j"1 ν j , σ `" n´1 ÿ j"1 ν j `σn , σ ´" σ 1 `n ÿ j"2 ν j .
Assume that N ą ν. We set Π ´" Π 0 and Π `" Π ǹ . There exists a collection of constants C " tC; pC δ´,δ`q ; pC δ q; pC δ qu which only depend on the constants C j , 1 ď j ď n, and such that

› › Θ ´σ0 T Θ ´σń › › LpHq ď C, (1.50) 
for δ ´, δ `ě 0 such that δ ´`δ `ă N ´ν we have

› › Θ δ0 Π ´T Π `Θδǹ › › LpHq ď C δ´,δ`, (1.51) 
for δ P rσ ´, N r we have

› › Θ δ´ν 0 Π ´T Θ ´δ n › › LpHq ď C δ , (1.52) 
and finally, for δ P rσ `, N r we have

› › Θ ´δ 0 T Π `Θδ´ν n › › LpHq ď C δ . (1.53)
It is important that the constants in the conclusions of the lemma only depend on the constants in the assumptions. Thus, if for some operators T j pzq, 1 ď j ď n, the estimates (1.46)-(1.48) are independent of the parameter z, then so are the estimates (1.50)-(1.53).

Theorem 1.15 allows to apply Lemma 1.16 with ν j " 1, σ j P ‰ 1 2 , 1 ‰ , Θ j " A , Π j " 1 R ˚pAq and Π j " 1 R`p Aq, where A is the conjugate operator. Notice that the assumptions of Definition 1.13 are used to prove Theorem 1.15 but no longer play a role to get the multiple resolvent estimates.

Since Lemma 1.16 is completely abstract, it can also be applied to the inserted factors. Roughly, if the commutators of T j with A are bounded on H, then the assumptions of Lemma 1.16 hold with ν j " σ j " 0 (see Proposition 3.11 in [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF]).

Thus, we can apply Lemma 1.16 to a product of resolvents and inserted factors as in (1.38). Moreover, the resolvents do not have to be associated with the same operator, and they do not even have to be indeed resolvents.

Strategy for the proofs of the resolvent estimates

In this paragraph we explain how we use the dissipative commutators method of Section 1.3 to prove Theorems 1.8 and 1.10. This is an occasion to rewrite some arguments of [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF][START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF] in the spirit of [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF].

Contribution of intermediate frequencies

The first step is to prove uniform estimates on Rpzq and then on pW `izq ´1 for Impzq positive and Repzq in a compact subset of R ˚" Rz t0u. For z P C we set P R pzq " Re `´∆ G ´iawz ´wz 2 ˘" ´∆G `awImpzq ´wRepz 2 q.

With the generator of dilations A defined in (1.30) we have rP R pzq, iAs " 2P R pzq `Kpzq `2Repz 2 q, where Kpzq " divpx ¨∇Gpxqq∇ ´Impzqpx ¨∇qpawq `Repz 2 qpx ¨∇qw ´2awImpzq `2Repz 2 qpw ´1q.

Then we apply a compactness argument. Let τ P R ˚. Since 0 is not an eigenvalue of P R pτ q (see [START_REF] Koch | Carleman estimates and absence of embedded eigenvalues[END_REF]), the operator 1 r´η,ηs pP R pτ qq goes weakly to 0 as η Ñ 0. On the other hand, 1 r´1,1s pP R pτ qqKpτ q1 r´1,1s pP R pτ qq is compact, so 1 r´η,ηs pP R pτ qqKpτ q1 r´η,ηs pP R pτ qq goes to 0 as η Ñ 0. For η ą 0 small enough we get 1 r´η,ηs pP R pτ qqrP R pτ q, iAs1 r´η,ηs pP R pτ qq ě 3τ 2 2 1 r´η,ηs pP R pτ qq.

Then for χ P C 8 0 pR, r0, 1sq supported in s ´η, ηr and equal to 1 on

" ´η 2 , η 2 ‰ we get for z P C close to τ χpP R pzqqrP R pzq, iAsχpP R pzqq ě τ 2 χpP R pzqq 2 . (1.54)
This is the main assumption in Definition 1.13 (see (1.41) with Q " p´∆ G ´iawz ´wz 2 q, Π " χpP R pzqq and β " 0). We get the estimates of Theorem 1.15 with Q ´1 " Rpzq.

Then we use (1.21) to deduce estimates on pW `izq ´1. With (1.10) and (1.11) it is classical that the estimates of Theorem 1.15 also hold with Q ´1 replaced by a or w, for any δ, δ 1 , δ 2 ě 0, and δ ´1 replaced by δ in (1.44) and (1.45)). Then the assumptions of Lemma 1.16 are satisfied with Θ j " A and ν j " σ j " 0. Using also the good commutation properties of D " p1´∆q 1 2 with A, we can finally prove with Lemma 1.16 that the estimates of Theorem 1.15 hold for Q ´1 " pW `izq ´1 and A replaced by the operator

A " ˆ D ´1 A D 0 0 A ˙,
which is selfadjoint on H . Applying once more Lemma 1.16, we deduce the multiple resolvent estimates for pW `izq ´n with weight A ´δ in H . Notice that A does not have to be conjugate to iW in the sense of Definition 1.13 (and it is not). Using the regularity given by the resolvents of W to remove the derivatives in the weights A δ (see the discussion about low frequencies below), we can finally prove the following estimates.

Proposition 1.17. Let K be a compact subset of C ˚. Let n P N ˚and δ ą n ´1 2 . There exists

C ą 0 such that for ζ P K X C `we have › › pW ´ζq ´n› › LpE δ ,E ´δ q ď C.

Contribution of high frequencies

In this paragraph we briefly discuss the proof of Theorem 1.8. With Proposition 1.17, it is enough to consider spectral parameters z " iζ such that Impzq ą 0 and |Repzq| " 1.

As explained in the introduction, the behavior of the contribution of high frequencies depends on the geometries of the domain and the damping region. It was the main motivation of [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] to prove in a slightly different context the following estimate for a single resolvent.

Theorem 1.18. Assume that the geometric damping condition (1.17) holds. Let δ ą 1 2 . There exist τ 0 ą 0 and c ą 0 such that for z P C `with Repzq ě τ 0 we have

› › › x ´δ B β1 x RpzqB β2 x x ´δ › › › LpL 2 pR d qq ď c |z| 1´|β1|´|β2| .
In [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] the estimate was given for the semiclassical Schrödinger operator with potential ´h2 ∆ `V1 pxq ´ihV 2 pxq (and without the additional derivatives), but the strategy is the same for a Laplacian associated with a metric (see [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF]Section 8]). We do not give details for Theorem 1.18 since the proof is essentially the same as in [START_REF] Royer | Analyse haute fréquence de l'équation de Helmholtz dissipative[END_REF], but we can at least recall that we apply the Mourre method with a conjugate operator given by the Weyl quantization of a symbol f which satisfies for some β ě 0 tp, f u `βa ě c 0 ą 0, on p ´1pt1uq

(1.55) (p is the symbol defined in (1.15)). The positivity of the Poisson bracket tp, f u means that f is increasing along the Hamiltonian flow associated with p. With the second term in the left-hand side of (1.55) (which corresponds to the second term in the left-hand side of (1.37) or (1.41)), the symbol does not have to be increasing along the flow in the damping region. This is why we can allow bounded classical trajectories if they go through this damping region (see (1.17)).

Then, as explained in Section 1.3, Theorem 1.18 was generalized in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] to multiple resolvent estimates with inserted factors, to deal with terms of the form (1.38). From this we can deduce Theorem 1.8. We omit the details and refer to [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF]Section 8] and [11, 

Contribution of low frequencies

The main result in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] is the resolvent estimates for the contribution of low frequencies. The commutators method does not directly give uniform bounds for the resolvent of a Schrödinger operator near 0. We see from (1.54) that the estimate becomes bad when τ Ñ 0. We can apply the commutators method to the operator |z| ´2 p´∆ ´izaw ´z2 wq for z small, but we only get an estimate of size Op|z| ´2q for Rpzq in weighted spaces. This is at least uniform with respect to Impzq close to 0, but we need an additional argument to get a uniform bound when Repzq Ñ 0.

A key argument to recover some smallness in the low frequency analysis is a generalization of the Hardy inequality, which roughly says that in dimension d ě 3 the multiplication by |x| ´1 behaves like a derivative. And for low frequencies, a derivative can be seen as a small operator.

In this report, I present the results of [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF][START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF] with the point of view developed recently in [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] 

}zapxqwpxq} LpH s`1 z ,H s´1 z q `› › z 2 pwpxq ´1q › › LpH s`1 z ,H s´1 z q À |z| 2`ρ . (1.59)
Thus the corresponding terms are perturbations of ´∆ ´z2 in LpH s`1 z , H s´1 z q when z is small. Notice that it is important here that a is of short range.

Even if Gpxq ´Id also decays by (1.10), the same does not apply to p∆ G ´∆q. Indeed, this term is already of order 2 and we cannot pay more regularity to get some smallness in LpH s`1 r , H s´1 r ) for z small. The idea is then to consider first the case where }Gpxq ´Id} S ´ρ is small enough, and then to add a compactly supported contribution for the metric. In [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] this is done in Section 7.3. In [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] (for the Schrödinger equation) we deal with this compactly supported perturbation in each intermediate result. This is an important technical difficulty that we omit here for simplicity. Thus we proceed as if }Gpxq ´Id} S ´ρ were already small enough.

Ideas of proof for Theorem 1.10. We see with (1.59) that p´∆ G `raw `r2 wq is a small perturbation of ´∆ `r2 in LpH s` Now we turn to the terms of the form (1.62). In such a term we still have a factor pW ´ζq ´ν as at the begining, but the interest of the decomposition (1.61)-(1.62) is that in (1.62) we now have the factors pW ´rq ´N which give ellipitic regularity. The main step of the proof remains the commutators method. Notice that we have omitted here the fact that G ´Id is only small at infinity. In general, to take this into account for the commutators method, we can as in [START_REF] Bouclet | Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds[END_REF] replace the usual generator of dilations (1.30) by a generator of dilations at infinity

A z " ´p1 ´χz qx ¨i∇ `i∇ ¨xp1 ´χz q 2 , (1.64) 
where χ z pxq " χp|z| xq for some χ P C 8 0 pR d , r0, 1sq equal to 1 on a neighborhood of 0. Following Sections 1.3 and 1.4.1, beging careful with the dependance on z going to 0, we prove that A z is Υ-conjugate to |z| 2 p´∆ ´izaw ´z2 wq for some Υ independent of z P C close to 0 (and with Repz 2 q Á |z| 2 ). We get in particular an estimates of the form

› › › A z ´δ Rpzq A z ´δ › › › LpL 2 pR d qq À 1 |z| 2 .
See [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF]Sec. 5.2] for the case a " 0. Then, as in Section 1.4.1, we can deduce with successive uses of Lemma 1.16 an estimate of the form

› › › A z ´δ pW `izq ´ν A z ´δ › › › LpH 0 z q À 1 |z| ν , A z " ˆ D z A z D z ´1 0 0 A z ˙. (1.65)
It remains to use the factors pW ´rq ´N to recover some smallness for (1.62). We also use this regularity to compensate the derivatives used in the weights A z . More precisely, for s P " 0, d 2 " and δ ą s we can prove

› › ›pW ´rq ´N A ζ δ › › › LpH 0 z ,E ´δ q À r s´N , › › › A ζ δ pW ´rq ´N › › › LpE δ ,H 0 z q À r s´N . (1.66)
Notice that we cannot directly use pseudodifferential calculus to prove these estimates, since the commutators of two operators are usually not smaller than the products. We can do the computation by hand. Finally, with (1.65) and (1.66) we obtain that (1.62) also satisfies the estimate of Theorem 1.10.

As said above, the ideas of the proof are not presented here with the point of view of [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF][START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF]. For instance, in these papers we did the decomposition (1.61)-(1.62) on the expression (1.38), and not directly on the resolvent of W. On the other hand, in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF][START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF] we rescaled the operators and not the Sobolev spaces. This is equivalent.

Optimal resolvent estimate for the Schrödinger equation in an asymptotically conical setting

In this paragraph, we briefly discuss the paper [START_REF] Bouclet | Low frequency resolvent estimates on asymptotically conical manifolds[END_REF] about sharp low frequency resolvent estimates on asymptotically conical manifold. This is a collaboration with Jean-Marc Bouclet.

It is related to the other works presented in this chapter since it is about low frequency resolvent estimates for a Laplace operator, but the motivations are of different nature.

The setting is a connected and asymptotically conical manifold M with Riemannian metric G (possibly with boundary). Asymptotically conical means that there exists a compact subset K of M such that pMzK, Gq is isometric to sR 0 , `8rˆS for some R 0 ą 0 and some closed Riemannian manifold S. This product is endowed with a metric approaching the metric dr 2 `r2 h 0 , where h 0 is a Riemannian metric on S. More precisely, there exists a diffeomorphism κ :

" MzK Ñ sR 0 , `8rˆS m Þ Ñ prpmq, ωpmqq
through which we can write

G " κ ˚`aprqdr 2 `2rbprqdr `r2 hprq ˘,
where aprq is a function on S going to 1, bprq is a 1-form on S going to 0 and hprq is a Riemannian metric on S going to h 0 , in the sense that there exists ρ ą 0 such that for j P N we have

› › B j r paprq ´1q › › Γ 0 pSq `› › B j r bprq › › Γ 1 pSq `› › B j r phprq ´h0 q › › Γ 2 pSq À r ´j´ρ ,
Γ k pSq being any seminorm on the space of smooth sections of pT ˚S q b k . This setting is more general than the scattering metrics of [START_REF] Melrose | Geometric Scattering theory[END_REF]. Moreover, even if M " R d , the assumption on the metric is more general than being asymptotically flat since h 0 does not have to be the usual metric on the sphere S " S d´1 .

We denote by P the Laplace-Beltrami operator on M (with Dirichlet boundary condition if BM ‰ H). The main results in [START_REF] Bouclet | Low frequency resolvent estimates on asymptotically conical manifolds[END_REF] are the following resolvent estimates.

Theorem 1.20. There exist a neighborhood U of 0 in C and C ą 0 such that for z P UzR we have

› › › r ´1 pP ´zq ´1 r ´1› › › LpL 2 pMqq ď C.
Theorem 1.21. Let N P N ˚and let J be a compact interval of s0, `8r. There exists C ą 0 and ε 0 ą 0 such that for ε Ps0, ε 0 s and z P CzR with Repzq P J we have

› › › εr ´N pε ´2P ´zq ´N εr ´N › › › LpL 2 pMqq ď C.
The two main interests of these results are the general geometric setting and the optimal weight r ´1. The best weight in the previous papers about the low frequency resolvent estimates was of the form r ´s for s ą 1. It was in particular motivated by the Strichartz estimates written later in [BM].

Notice that the second result corresponds to what we would get for the free Laplacian on R d from an estimate on r ´N p´∆ ´zq ´N r ´N by a scaling argument. Thus Theorem 1.21 says that the same estimate holds in a setting where such a scaling is meaningless.

We do not go into the details of the proofs here. The first important step is to reduce the problem to resolvent estimates for a Schrödinger operator on the pure cone s0, `8rˆS. Then the main part of the proof is to develop the Mourre theory on this pure cone for such an operator.

The damped Schrödinger equation

In [START_REF] Khenissi | Local energy decay and smoothing effect for the damped Schrödinger equation[END_REF] we have considered with Moez Khenissi the local energy decay for a damped Schrödinger equation.

Local energy decay for a dissipative Schrödinger equation has already been studied on exterior domains, with some potential damping in the domain (α " 0 with the notation of (1.67) below) in [START_REF] Aloui | Stabilization of Schrödinger equation in exterior domains[END_REF] or at the boundary in [START_REF] Aloui | Boundary stabilization of the wave and Schrödinger equations in exterior domains[END_REF]. See also [START_REF] Bortot | Asympotic stability for the damped Schrödinger equation on noncompact Riemannian manifolds and exterior domains[END_REF] for a Schrödinger equation with non-linear damping at infinity. Nevertheless, a potential damping is not strong enough to have the smoothing effect typical for the usual Schrödinger equation. For the regularized Schrödinger equation (α " 1 in (1.67)), we can recover the usual gain of half a derivative (see [START_REF] Aloui | Smoothing effect for regularized Schrödinger equation on compact manifolds[END_REF][START_REF] Aloui | Smoothing effect for regularized Schrödinger equation on bounded domains[END_REF]), or a H 1 2 ´ε-smoothing effect if a few classical trajectories fail to satisfy the geometric damping condition (see [START_REF] Aloui | Smoothing effect for the regularized Schrödinger equation with non-controlled orbits[END_REF], see also [START_REF] Burq | Smoothing effect for Schrödinger boundary value problems[END_REF] for a similar result in the selfadjoint case).

In [START_REF] Khenissi | Local energy decay and smoothing effect for the damped Schrödinger equation[END_REF], we consider this damped Schrödinger equation in the asymptotically Euclidean setting. We consider on R d the problem

# ´iB t u `P u ´iapxq D α apxqu " 0, @t ě 0, @x P R d , u |t"0 " u 0 , (1.67) 
where P " ´∆G is a Laplacian in divergence form, D " ? ´∆, α P r0, 2r and a is of short range as in (1.11). Since a appears twice, the dissipative term actually decays at least like x ´2´2ρ0 with respect to the space variable.

For the Schrödinger equation, it is the L 2 -norm of the solution which is constant without damping and non-increasing in general. Formally,

d dt }uptq} 2 L 2 pR d q " ´2 x D α auptq, auptqy L 2 pR d q ď 0.
We set P α " P ´iapxq D α apxq, DompP α q " H 2 pR d q.

The strength of the damping depends on the parameter α. This only plays a role for the contribution of high frequencies (for low frequencies we have D » 1).

Under the non-trapping condition (1.16), the damping should not play an important role. And indeed, we recover in this dissipative setting what was at that time the best result known even in the undamped case for the local energy decay (the ε loss has been removed later in [START_REF] Bouclet | Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds[END_REF]), and the smoothing effect. Now assume that (1.16) does not hold but the geometric damping condition (1.17) does. If the damping is strong enough (α ě 1), we recover the same results as under the non-trapping condition. Of course, we cannot get a better estimate even with a stronger damping (α ą 1) since the classical trajectories at infinity do not see the damping.

If the damping is weak (α ă 1), then the high-frequency resolvent estimates are weaker in the presence of bounded trajectories. However, if we have a strong weight or if we can allow a loss of regularity, then we can recover the same decay for large times (remember that the rate of decay is actually limited by the contribution of low frequencies). However the regularizing effect (governed by high frequencies) will be weaker than usual in this case.

More precisely, we prove in [START_REF] Khenissi | Local energy decay and smoothing effect for the damped Schrödinger equation[END_REF] the following local energy decay and smooting effect for (1.67).

Theorem 1.22 (Local energy decay

). Let ε ą 0. Let δ ą d`1 2 if d is even and δ ą d 2 `1 if δ is odd.
Let N P N and σ P r0, 2s. Assume that (i) the non-trapping condition (1.16) holds, (ii) or the geometric damping condition (1.17) holds, N minp1, αq `σ ě 2 and δ ą N ´1 2 .

Then there exists C ě 0 such that for u 0 P H σ,δ pR d q and t ě 0 we have

› › e ´itPα u 0 › › L 2,´δ pR d q ď C t ´d 2 `ε }u 0 } H σ,δ pR d q .
The condition N minp1, αq `σ ě 2 means that even if α is small, we can apply the high-frequency resolvent estimate (see (1.68) below) with N large, or we can pay a loss of derivative (typically if α " 0). Theorem 1.23 (Global smoothing effect). Assume that the geometric damping condition (1.17) holds. Then there exists C ě 0 such that for all u 0 P L 2 pR d q we have

ˆ`8 0 › › › x ´1 D minp1,αq{2 e ´itPα u 0 › › › 2 L 2 pR d q dt ď C }u 0 } 2 L 2 pR d q .
Moreover, under the non-trapping condition (1.16), we can replace minp1, αq by 1.

Notice that to have the weight x ´1 in Theorem 1.23 we use the optimal resolvent estimate at low frequencies deduced from Theorem 1.20.

For high frequencies, we use the same strategy as in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF][START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] (see Section 1.4.2), except that the damping is not necessarily strong enough. For N P N ˚and δ ą N ´1 2 we get an estimate of the form

› › › x ´δ pP α ´zq ´N x ´δ › › › LpL 2 pR d qq À |z| ´N minp1,αq 2 
.

(1.68)

For low frequencies, we adapt the proof of [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] to a dissipative perturbation of the Laplacian which is of different nature. In particular, there is no time derivative in the dissipative term, hence no factor z in the corresponding term for the resolvent. This is why we need more spatial decay for the absorption index. Thus we use Proposition 1.19 in an even more crucial way than for the wave equation, and the restriction on the Sobolev indices therein could have been a serious difficulty. We do not discuss all the details and only emphasize the fact that we unexpectedly had to use the dissipative Mourre theory in the sense of forms: Remark 1.24. To apply the first version of the dissipative commutators method given in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] to the operator P α at low frequencies, the dissipative part apxq D α apxq has to be uniformly relatively bounded with respect to the selfadjoint part P . For this we use the decay of apxq at infinity and Proposition 1.19. P defines an operator of size Op|z| 2 q in LpH 2 z , L 2 q. By Proposition 1.19, apxq can be seen as an operator of size Op|z|q in LpH s`1 z , H s z q and in LpH s z , H s´1 z q (we omit D α which does not play an important role). To have a dissipative part of size Op|z| 2 q in LpH 2 z , L 2 q, we have to apply this with s " 1. Because of the restriction of Proposition 1.19, this is only possible if d ě 5.

However, for d ě 3 we can proceed similarly with s " 0, which means that we see the dissipative part as an operator from H 1 z to H ´1 z . Thus, even if P α is the sum of a selfadjoint operator and a dissipative part as in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] (see also (1.36)), for d " 3, 4 we can only apply the Mourre method is the sense of forms as in [START_REF] Royer | Mourre's commutators method for a dissipative form perturbation[END_REF].

Finally, the smoothing effect can be directly deduced from the resolvent estimates via the theory of relatively smooth operators, which is classical for selfadjoint operators (see [RS79, Sec. XIII.7]). For dissipative operators, this relies on the theory of selfadjoint dilations. For this we refer to Proposition 6.2 in [START_REF] Royer | Mourre's commutators method for a dissipative form perturbation[END_REF].

Asymptotic behavior for the Schrödinger equation

We finish this chapter with the most recent result about low frequency resolvent estimates. In [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF], we improve the results known for the usual selfadjoint Schrödinger equation (1.13) about the local energy decay and low frequency resolvent estimates.

The optimal low frequency resolvent estimates and then the optimal local energy decay have been proved in [START_REF] Bouclet | Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds[END_REF]. We go beyond and prove that the solution of (1.13) behaves (for low frequencies and hence for large times) like the solution of the free Schrödinger equation (1.6) for some f 0 P L 2 pR d q. More precisely, we prove that the local energy of the difference uptq ´u0 ptq decays faster than the local energy of u 0 ptq. This means that u 0 ptq is the leading term for the asymptotic expansion of uptq for large t. We recover in particular the same local energy decay for uptq as for u 0 ptq. We denote by P 0 the usual Laplacian on R d . The precise result is the following. Theorem 1.25. Assume that the non-trapping condition (1.16) holds. Let ρ 1 P r0, ρ 0 r and δ ě d 2 `2. There exists C ě 0 such that for t ě 0 we have

› › › x ´δ `e´itP ´e´itP0 w ˘ x ´δ › › › LpL 2 pR d qq ď C t ´d 2 ´ρ1 2 .
The factor w next to e ´itP0 means that for f P L 2 pR d q we compare the solution u of (1.13) with the solution u 0 of (1.6) with f 0 " wf .

Since the decay at rate t ´d 2 is optimal for the free Schrödinger equation, Theorem 1.25 indeed says that the difference e ´itP ´e´itP0 w decays faster than e ´itP0 w (in the sense of the local energy). Moreover, as a corollary we recover the optimal decay at rate t ´d 2 for the solution of (1.13).

We already know that under the non-trapping condition (1.16), the contributions of high frequencies for both problems decay fast, so Theorem 1.25 is again mostly a result about low frequencies. Thus we have to compare the resolvents of P and P 0 near 0. Theorem 1.26. Let ρ 1 P r0, ρ 0 r, n P N ˚and δ ą n `1 2 . There exists C ą 0 such that for ζ P DzR `we have

› › › x ´δ `pP ´ζq ´n ´pP 0 ´ζq ´nw ˘ x ´δ › › › LpL 2 pR d qq ď C |ζ| minp0, d`ρ 1 2
´nq .

Notice that asymptotic expansions for the resolvent of a Schrödinger operator at the low frequency limit, and then the expansion of the propagator for large times, have already been studied for perturbations by a potential. We have already mentioned [START_REF] Jensen | Spectral properties of Schrödinger operators and time-decay of the wave functions[END_REF]. We also refer to the recent papers [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] and [START_REF] Aafarani | Large time behavior of solutions to Schrödinger equation with complexvalued potential[END_REF] for complex-valued potentials. The difficulty in these cases is that we can have an eigenvalue or a resonance at the bottom of the spectrum, which gives a singularity for the resolvent. This is why these results require strong decay assumptions on the potential.

We have already more or less used the setting of [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] to explain the results of [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF][START_REF] Royer | Local decay for the damped wave equation in the energy space[END_REF] in Sections 1.3 and 1.4. Therefore, in this section we only add some comments specific to the fact that we not only estimate resolvents but compare the resolvents of two different operators.

In particular, one of the difficulties for the proof is that we have to use the commutators method simultaneously for the two operators P and P 0 . We have already explained in Section 1.3 that this is one of the improvements of the method developed for [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF].

Another problem is that the operator P and P 0 are selfadjoint, but they are not selfadjoint on the same Hilbert space (even if L 2 pR d , dxq and L 2 pR d , w dxq are equal as sets and have equivalent norms).

We replace pP ´ζq ´1 by p´∆ G ´ζwq ´1w. The operator p´∆ G ´ζwq ´1 is no longer the resolvent of a selfadjoint operator, but for ζ P C `it is still the inverse of the dissipative operator ´∆G ´ζw. It is dissipative on the usual space L 2 pR d q, as is ´∆ ´ζ. Thus we can work in L 2 pR d q endowed with its usual structure. This is why in Theorem 1.15 we no longer consider resolvents but the inverse of parameter-dependent dissipative operators. In particular, even for this selfadjoint problem we have to use the dissipative version of the commutators method.

Replacing pP ´ζq ´1 by p´∆ G ´ζwq ´1 is not just a technical issue, and it is really p´∆ G ´ζwq ´1 that is close to p´∆ ´ζq ´1 in a suitable sense. Then pP ´ζq ´1 is close to p´∆ ´ζq ´1w, which explains the additional factor w in Theorem 1.26 and then in Theorem 1.25.

Ideas of proof.

We have to estimate pP ´ζq ´nw ´1 ´pP 0 ´ζq ´n for ζ " z 2 close to 0. We first multiply this difference by |z| 2n to have a spectral parameter of order 1.

For n P N ˚we set R rns pzq " ˜P |z| 2 ´z2 |z| 2 ¸´n w ´1 " |z| 2n `p´∆ G ´z2 wq ´1w ˘n´1 p´∆ G ´z2 wq ´1, (1.69)
and for consistancy we also set R rns 0 pzq " |z| 2n p´∆ ´z2 q ´n. Since the Mourre method is designed to estimate products of resolvents, we use the resolvent identity to rewrite the difference R rns pzq ´Rrns 0 pzq as

n´1 ÿ k"1 R rn´ks pzqθ 0 pzqR rks 0 pzq ´n ÿ k"1 R rn´k`1s pzqθ 1 pzqR rks 0 pzq, (1.70) 
where we have set

θ 0 pzq " w ´1 and θ 1 pzq " p´∆ G ´z2 wq ´p´∆ ´z2 q |z| 2 .
(1.71)

The fact that the difference R rns pzq ´Rrns 0 pzq is smaller than R rns 0 pzq for z P C `close to 0 is due to the smallness of θ 0 pzq and θ 1 pzq in the suitable rescaled Sobolev spaces (see (1.56)), given once more by Proposition 1. [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF].

Notice that we have factors w, θ 0 pzq and θ 1 pzq between the resolvents, but thanks to the analysis of the damped wave equation we know that this is not a problem for the commutators method. We get for instance the following estimate (with A z being the generator of dilations at infinity defined in (1.64)):

Proposition 1.27. Let ρ P r0, ρ 0 r, n 1 , n 2 P N ˚, δ ą n 1 `n2 ´1 2 and σ P t0, 1u. There exists C ą 0 such that for z P D `we have › › › A z ´δ R rn1s pzqθ σ pzqR rn2s 0 pzq A z ´δ › › › LpL 2 pR d q ď C |z| ρ .
The factor |z| ρ which appears in this estimate is due the small factor θ σ pzq and gives the extra smallness in Theorem 1.26 compared to the estimate of R rns 0 pzq or R rns pzq alone. However, this is an estimate on the rescaled resolvents and the estimate on the resolvents would be of size Op|z| ρ´2n1´2n2 q. As in Section 1.4.3, we recover some smallness with the weights x ´δ by ellipitic regularity and Proposition 1.19. And this regularity is also used to compensate the derivatives which appear in the powers of the conjugate operator A z .

Theorems 1.25 and 1.26 are important for at least two reasons. The first is that ten years ago the motivation of [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] was to recover in a non-selfadjoint setting estimates which were already known in the selfadjoint case. Now we have reached the point where ideas developed for the dissipative case are also used to improve the analysis of the selfadjoint Schrödinger operator.

On the other hand, for the low frequency resolvent estimates, this result re-opens a topic which seemed to be closed by the optimal estimates of [START_REF] Bouclet | Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds[END_REF]. Perspectives in that direction will be discussed in Section 4.1.1.

Chapter 2

The damped wave equation with damping at infinity

In this chapter we continue the analysis of the damped wave equation (1.12). However, instead of assuming that the damping is localized, we now consider settings for which the damping is effective at infinity. This gives completely different properties. The results discussed in this chapter are published in [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF][START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF][START_REF] Malloug | Energy decay in a wave guide with damping at infinity[END_REF][START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF][START_REF] Royer | Energy decay for the Klein-Gordon equation with highly oscillating damping[END_REF].

Introduction

We have seen in Theorem 1.1 that if the damping is small enough at infinity (in the sense of (1.11)), the contribution of low frequencies for the damped wave equation (1.12) behaves as for the undamped case. We will see in this chapter that this is no longer the case if the damping is effective at infinity. Our model case in this chapter is the free wave equation (P " ´∆) with constant damping apxq " a 1 ą 0: # B 2 t u ´∆u `a1 B t u " 0, pu, B t uq |t"0 " pf, gq.

(

With damping everywhere, it is clear that the damping condition (1.17) is satisfied, and as expected the local energy of the contribution of high frequencies will decay rapidly. The difference is that all the classical trajectories go through the damping region, and not only the bounded ones, so for high frequencies the global energy decays uniformly exponentially. As one could have guessed, a stronger damping implies stronger decay properties for the energy.

The most interesting part is the contribution of low frequencies, whose behavior is not that simple.

We first observe that for a very slowly oscillating solution u, the damping term a 1 B t u is small, but the second order term B 2 t u is even smaller. Neglecting this term leads to the conjecture that u should behave like a solution of the heat equation

# a 1 B t u 0 ´∆u 0 " 0, u 0|t"0 " f 0 . (2.2)
And this is precisely what happens. This is sometimes called the diffusive phenomenon. And since the local energy decay is slower for the heat equation than for the standard wave equation (see Proposition 2.2 below), it turns out that the decay for the contribution of low frequencies is not as fast with damping everywhere as it is without any damping.

There is also a rich literature about the wave equation with damping at infinity. The local energy decay for (2.1) has been discussed in [START_REF] Matsumura | On the asymptotic behavior of solutions of semi-linear wave equations[END_REF]. Matsumura proves L p ´Lq estimates by explicit computations on the Fourier transform. The corresponding semilinear problem is also discussed (see Section 4.5.2 for this question). Then the comparison with the heat equation (2.2) has been studied in many papers. More precisely, it is proved that the solution u of (2.1) behaves for large times like the solution u 0 of (2.2) with

f 0 " f `g a 1 . (2.3)
Then u 0 is the asymptotic profile of u for large times. We refer to [START_REF] Nishihara | L p -L q estimates of solutions to the damped wave equation in 3dimensional space and their application[END_REF] for a result in dimension 3, [START_REF] Marcati | The L p -L q estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media[END_REF] in dimension 1, [START_REF] Hosono | Large time behavior and L p -L q estimate of solutions of 2-dimensional nonlinear damped wave equations[END_REF] in dimension 2 and a more general discussion in [START_REF] Narazaki | L p -L q estimates for damped wave equations and their applications to semi-linear problem[END_REF].

The same problem has been studied in an exterior domain. See [START_REF] Ikehata | Diffusion phenomenon for linear dissipative wave equations in an exterior domain[END_REF] for a result with constant coefficients and [START_REF] Aloui | Energy decay for linear dissipative wave equations in exterior domains[END_REF] for an absorption index equal to 1 outside a compact subset.

A question that will not be discussed here is the case of a slowly decaying damping. This means that a goes to 0 at infinity, but it is not of short range as in (1.11). We refer to [START_REF] Todorova | Weighted L 2 -estimates for dissipative wave equations with variable coefficients[END_REF] for the energy decay when apxq » x ´α for some α P r0, 1r, to [START_REF] Ikehata | Optimal decay rate of the energy for wave equations with critical potential[END_REF] for the critical case α " 1 and to [START_REF] Wakasugi | On diffusion phenomena for the linear wave equation with spacedependent damping[END_REF] for the asymptotic profile when apxq " x ´α, α P r0, 1r (which is as expected a solution of x ´α B t u 0 ´∆u 0 " 0). Finally, we refer to [START_REF] Sobajima | Diffusion phenomena for the wave equation with spacedependent damping in an exterior domain[END_REF] for the same question in an exterior domain.

There are also some abstract results in [CH04, RTY11, Nis16, RTY16]. For instance, in [START_REF] Radu | Diffusion phenomenon in Hilbert spaces and applications[END_REF] the Laplacian is replaced by a general nonnegative selfadjoint operator, while in [START_REF] Radu | The generalized diffusion phenomenon and applications[END_REF] another operator C acts on B 2 t u. In [START_REF] Nishiyama | Remarks on the asymptotic behavior of the solution to damped wave equations[END_REF], a general damping operator acts on B t u, and an application closer to our setting is provided, since the wave equation with a Laplacian in divergence form and an absorption index which can vanish is considered. Only the decay of the full energy is discussed in this setting.

My contributions for this problem are about the wave equation on a wave guide and in an asymptotically periodic setting.

The original motivation was to consider the wave equation on a straight wave guide, with damping at the boundary. See the setting of Section 2.3. I first tried to apply the Mourre theory. This gave the paper [START_REF] Royer | Mourre's commutators method for a dissipative form perturbation[END_REF], already discussed in Section 1.3, but this was not enough to get the local energy decay. Then, as an intermediate step, I considered the case of the Schrödinger equation with a one-dimensional cross-section, which is a much simpler model. This has been published in [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF], which is discussed in Section 2.7 below. The problem of a wave guide with constant damping on the boundary has finally been solved in [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF]. This is discussed in Section 2.3.

After this, I invited in Toulouse Mohamed Malloug, who was at that time a Ph.D. Student in Sousse with Moez Khenissi. We discussed together the case of a wave guide with internal damping at infinity. This is a simpler setting, but it was an occasion to deal with a damping which does not satisfy the geometric damping condition (1.17). See Section 2.4. It is only then that, as a byproduct of the analysis, we wrote a result about the problem on the full Euclidean space (where apxq is a long-range perturbation of 1), which is actually much easier.

After wave guides, I considered with Romain Joly the wave equation in an asymptotically periodic setting. This raised different difficulties, which will be detailed Section 2.5.

Since this report is an opportunity to rewrite history, we begin here with the Euclidean case and present in Section 2.2 some ideas on the model problem (2.1). Then, in the following sections, we will discuss the difficulties coming from wave guides and the periodic setting.

On the Euclidean space

In this paragraph, we discuss some general ideas on the model case (2.1). More precisely, we show from a spectral point of view why the solution of (2.1) behaves for large times like the solution of (2.2) with f 0 given by (2.3). This is not written like this in any paper, since there were already other proofs for this case in the literature. However, we use this simple setting to show some ideas used in the papers [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF][START_REF] Malloug | Energy decay in a wave guide with damping at infinity[END_REF][START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF], without the difficulties specific to these more sophisticated cases.

The wave operator in the inhomogeneous energy space

We are going to compare a solution of the damped wave equation with a solution of the heat equation. However, for the wave equation we usually consider the first derivatives (with respect to space and time) of the solution, while for the heat equation we estimate the solution itself. Thus, in addition to the energy space E " 9 H 1 pR d q ˆL2 pR d q, we also consider the Hilbert space H " H 1 pR d q ˆL2 pR d q to rewrite the wave equation (1.12) in the form (1.18).

We define the wave operator W E by (1. [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF])- (1.20). Notice that we denote by W E the operator denoted by W in the previous chapter. In particular, by Proposition 1.4 the operator iW E is maximal dissipative and W E generates a contractions semigroup on E . Moreover, the resolvent of W E is given by (1.23).

In this chapter, we denote by W the operator defined by (1.19) on H , with domain DompWq " tU P H : WU P H u. This is convenient to consider the solution and not only the derivatives, but iW is no longer a dissipative operator. However, we will still be able to write (1.27) in H . (iii) W generates a C 0 -semigroup on H . Moreover, for ν Ps0, 1s there exists M ν ě 0 such that › › e tW › › LpH q ď M ν e tν for all t ě 0.

Local energy decay for the heat equation

We have said that we compare the solution of (2.1) with a solution of (2.2). Before going further, we recall the local energy decay for a solution of the heat equation. For the solution itself and its first derivatives.

Proposition 2.2. Let s 1 , s 2 P " 0, d 2 ‰
and s P r0, 1s. Let κ ą 1. There exists C ą 0 such that for t ą 0 we have

› › x ´κs1 e t∆ x ´κs2 › › LpL 2 pR d qq ď C t ´1 2 ps1`s2q , › › x ´κs1´s ∇e t∆ x ´κs2´s › › LpL 2 pR d qq ď C t ´1 2 p1`s1`s2`sq , › › x ´κs1 B t e t∆ x ´κs2 › › LpL 2 pR d qq ď C t ´1 2 p2`s1`s2q .
In [START_REF] Malloug | Energy decay in a wave guide with damping at infinity[END_REF] we provided a proof based on the explicit kernel for the heat equation (see Proposition 3.1 therein). Here we describe on this model case a more general strategy which will also be used to estimate the difference between the solutions of (2.1) and (2.2) below, following [START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF]Prop. 4.12]. See also [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF]Prop. 3.3] for a third approach.

In Proposition 2.2 we give estimates in weighted L 2 -spaces, but in the proof they are deduced from L p -L q estimates. This means that we can also directly state L p -L q estimates in this context.

The first estimate can be rewritten as

› › x ´κs1 e t∆ φ › › L 2 pR d q À t ´1 2 ps1`s2q › › x κs2 φ › › L 2 pR d q , φ P L 2,κs2 pR d q.
The parameter s 2 measures how localized is the initial data φ. With s 2 " 0 we are considering a general φ P L 2 pR d q, while if φ is compactly supported we get a better estimate by choosing

s 2 " d 2 .
Notice that we do not get a better estimate by considering a stronger weight, see Remark 2.3. Similarly, s 1 gives the weight for the energy. If s 1 " 0 we consider the L 2 norms of uptq, ∇uptq and B t uptq " ∆uptq, but if we are only interested in the L 2 norms of these quantities in a compact subset of R d we get better estimates with s 1 " d 2 . All the intermediate situations

s 1 , s 2 P ‰ 0, d 2 "
are also possible. There is a parameter κ ą 1 in the weights since if

s j P ‰ 0, d 2 ‰
we need a weight x ´δj with δ j ą s j , while no weight is necessary (δ j " 0) when s j " 0. Finally, as we will see in the last step of the proof, we can get an extra power of t ´1 2 for the gradient if we can pay an extra weight x ´1 on both sides of the estimate. This is the role of the parameter s.

Proof. We first notice that in the third estimate we can replace B t e t∆ by ∆e t∆ . Let f 0 P SpRq. For t ě 0 we set u 0 ptq " e t∆ f 0 . Let

p 1 " 2d d ´2s 1 P r2, `8s and p 2 " 2d d `2s 2 P r1, 2s. (2.4)
We denote by p 1 1 P r1, 2s and p 1 2 P r2, `8s the conjugate exponents of p 1 and p 2 , respectively. Let α P N d . Since L p1 pR d q is continuously embedded in L 2,´κs1 pR d q, and by continuity of the (inverse) Fourier transform (with respect to the space variable) from L p 1 1 pR d q to L p1 pR d q, we have

}D α u 0 ptq} L 2,´κs 1 pR d q À }D α u 0 ptq} L p 1 pR d q À › ›{ D α u 0 ptq › › L p 1 1 pR d q . (2.5) Similarly, } f0 } L p 1 2 pR d q À }f 0 } L p 2 pR d q À }f 0 } L 2,κs 2 pR d q . (2.6) 
Let p 1 0 P r1, `8s be such that 1

p 1 0 " 1 p 1 1 ´1 p 1 2 " 1 p 2 ´1 p 1 " s 1 `s2 d .
By the Hölder inequality and the change of variable η " ? tξ we get

› ›{ D α u 0 ptq › › L p 1 1 pR d q ď }ξ α e ´t|ξ| 2 } L p 1 0 ξ pR d q } f0 } L p 1 2 pR d q ď t ´|α| 2 ´d 2p 1 0 }η α e ´|η| 2 } L p 1 0 η pR d q } f0 } L p 1 2 pR d q .
Finally, › › D α u 0 ptq › › L 2,´κs 1 pR d q À t ´1 2 p|α|`s1`s2q }f 0 } L 2,κs 2 pR d q , and the three estimates follow if s " 0. Now we assume that s " 1. Only the estimate for the gradient is concerned. Let j P t1, . . . , du and x P R d . We compute `´x j pe t∆ f 0 qpxq `et∆ py j f 0 qpxq ˘.

B xj u 0 pt,
Then, using the first estimate of the proposition,

› › B xj u 0 ptq › › L 2,´κs 1 ´1pR d q À t ´1´s 1 `s2 2 ´}f 0 } L 2,κs 2 pR d q `}y j f 0 } L 2,κs 2 pR d q À t ´1´s 1 `s2 2 }f 0 } L 2,κs 2 `1pR d q .
This gives the estimate for the gradient when s " 1. The case s Ps0, 1r follows by interpolation.

Remark 2.3. The estimates of Proposition 2.2 are optimal in the sense that we do not get better decay even if we consider stronger (for instance compactly supported) weights. Indeed, for f 0 P C 8 0 pR d q, the explicit expression for u 0 gives uniformly for x in a compact f 0 pyq dy.

u 0 pt,
Our purpose is now to prove that the decay of the difference between the solutions of (2.1) and (2.2) is faster than the decay given by Proposition 2.2.

The contribution of high frequencies

We begin with high frequencies. As already said, since we have damping everywhere, all the classical trajectories and not only the bounded ones see the damping. From this we can prove uniform estimates for the resolvent pW ´ζq ´1 directly in the energy space, and not in weighted versions. This implies in particular that the imaginary axis (except 0) is included in the resolvent set of W, with uniform estimates for the resolvent (away from a neighborhood of 0). It is classical that if the imaginary axis is included in the resolvent set with uniform estimates for the resolvent, then the propagator decays uniformly exponentially (by the Gearhart-Prüss-Greiner Theorem, see [EN00, Th. V. 1.11]). We cannot apply this result directly to W because of the problem at 0, but it is not surprising to recover a uniform and exponential decay for the contribution of high frequencies. (2.7)

The eigenvalues of M pξq are

λ ˘pξq " ´a1 ˘aa 2 1 ´4ξ 2 2 ,
where we have set a

a 2 1 ´4ξ 2 " i a 4ξ 2 ´a2 1 if 4ξ 2 ą a 2 1 .
Then ζ P ipRzs ´1, 1rq is not an eigenvalue of M pξq and we see that pM pξq ´ζq ´1 is bounded in LpC 2 ξ q uniformly in ζ and ξ, with }pα, βq}

2 C 2 ξ " `1 `|ξ| 2 ˘|α| 2 `|β| 2 .
Then pW ´ζq ´1F is the inverse Fourier transform of ξ Þ Ñ pM pξq ´ζq ´1 F pξq and we deduce Theorem 2.4 by the Parseval identity.

A first change of contour -Separation of low and high frequencies

As with a localized damping (see Section 1.2.2), we write the propagator e tW in terms of the resolvent pW ´ζq ´1. See (1.27). Since the integrand is holomorphic in ζ, we can change the contour of integration tImpζq " µu by Γ µ defined as follows (see Figure 2.1). Given θ P C 8 0 pR, r0, 1sq supported in ]-2,2[ and equal to 1 on [-1,1] we set Γ µ : τ P R Þ Ñ ´iτ `µθpτ q ´γp1 ´θpτ qq.

(2.8) (2.9)

This is analogous to (1.28). In particular, we use the notation F ζ introduced in (1.26). Notice that it is important to write the integral on the contour Γ µ before separating the contributions of low and high frequencies, since the integrands in U ˚ptqF are no longer holomorphic in the region t2 ď |Impζq| ď 3u. It is still possible to change the contour for U low ptq in the strip t|Impζq| ď 2u. In particular U low ptqF , as U high ptqF , does not depend on µ.

We finish the analysis of high frequencies. Following the same idea as for Proposition 1.9, we can deduce from Theorem 2.4 that U high ptqF decays uniformly exponentially. Proposition 2.5. Let γ ą 0 be given by Theorem 2.4. There exists C ą 0 such that for t ě 0 and F P H we have

}U high ptqF } H ď Ce ´tγ 2 }F } H .

The contribution of low frequencies -Comparison with the diffusive profile

We turn to the contribution of low frequencies. Replacing F by F ζ in (2.9) is convenient for the analysis of U high ptqF , but to obtain a precise expression of the asymptotic profile, we go back to F for low frequencies. For t ě 1 we set

U 7 ptq " 1 2iπ ˆΓµ e tζ χ low pImpζqqpW ´ζq ´1F dζ.
For ζ P C `we have pW ´ζq ´1pF ζ ´F q " ˆ2 0 `1 ´φpsq ˘espW´ζq F ds, so with integration by parts we can see that U low ptqF ´U7 ptqF is small: Proposition 2.6. Let m P N. There exists C ě 0 such that for F P H and t ě 1 we have

}U low ptqF ´U7 ptqF } H ď C t ´m }F } H .
To estimate U 7 ptqF we now have several possibilities.

First strategy. The first option is to compare the resolvent Rpzq " R a1 pzq " p´∆ ´iza 1 ´z2 q

´1

of the wave equation (2.1) to the resolvent R h pzq " p´∆ ´iza 1 q ´1 corresponding to the heat equation (2.2). This is what led to the ideas recently developed in [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] and explained in Section 1.7.

Proposition 2.7. Let s 1 , s 2 P " 0, d 2 
"
and κ ą 1. Let β P N d with |β| ď 1. Let m P N. There exists C ą 0 such that for z P C `X D we have q. An important difference with the setting of Chapter 1 is that for z P C `the spectral parameter is iza 1 . Since distpiza 1 , R `q Á |z| ´1, we do not need the limiting absorption principle and we will not use the commutators method of Section 1.3 in this chapter. The weights x ´δ are only used to convert the elliptic regularity given by the resolvents into powers of z. By Proposition 1.19 we have

› › › x ´κs1 B β x B m z `Rpzq ´Rh pzq ˘ x ´κs2 › › › LpL 2 pR d qq ď C |z| 1 2 minp0,
› › x ´δ1 › › LpH s 1 |z| 1{2 ,L 2 pR d qq À |z| s 1 2 and › › x ´δ2 › › L 2 pR d q,LpH ´s2 |z| 1{2 q À |z| s 2 2 . (2.11)
This is the analog of (1.63) used for (1.61). We do not go further in the details of the proof, but the rough conclusion is that we have better estimates on Rpzq ´Rh pzq than on R h pzq. Notice that we can iterate (2.10) and get an expansion of Rpzq in terms of R h pzq up to a rest of any order. With (1.21) we can similarly write an expansion of the resolvent pW ´ζq ´1.

All the arguments above with the operator W on H can be reproduced with the operator ∆{a 1 on L 2 pR d q. Then, up to rapidly decaying terms, the solution e t∆ a 1 f 0 of (2.2) is equal to

1 2iπ ˆΓµ e tζ χ low pImpζqq ˆ∆ a 1 ´ζ˙´1 f 0 dζ " ´a1
2iπ ˆΓµ e tζ χ low pImpζqqR h piζqf 0 dζ.

In view of (1.21) (replacing Rpzq by R h pzq, removing the terms with extra powers of ζ and removing the constant term in the bottom left coefficient), we see that the leading term for the first component of U 7,µ ptq is the solution of (2.2) with f 0 as given by (2.3) (and the leading term for the second component is its time derivative). This kind of strategy has been used in [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF] and [START_REF] Malloug | Energy decay in a wave guide with damping at infinity[END_REF] for wave guides. The interest is that we can in particular consider an absorption index apxq which is a long-range perturbation of the constant a 1 , since we can similarly estimate the difference R a pzq ´Ra1 pzq, using Proposition 1.19 again.

The drawback with this strategy is that we have to know in advance what the asymptotic profile will look like. This can lead to an impasse with a wrong guess. This is what happened for [START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF]. More important, in the periodic setting the perturbation does not decay at infinity and we can no longer use a result like Proposition 1.19 to recover some smallness for low frequencies. For [START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF], we had to proceed with a different idea. Here we explain this new strategy on the model case. This is also what gave the idea used in the proof of Proposition 2.2.

Second strategy. The alternative approach uses the symmetries of the problem. Here, with constant coefficients, we use again the Fourier transform. We can write

U 7 ptqF " 1 2iπ ˆξPR d ˆζPΓµ
e ix¨ξ e tζ χ low pImpζqqpM pξq ´ζq ´1 F pξq dζ dξ.

For ρ ą 0 (to be chosen small enough) there exists ε ą 0 such that Repλ ˘pξqq ď ´2ε if |ξ| ě ρ.

Then for |ξ| ě ρ we can replace the contour Γ µ by Γ ´ε and the corresponding contribution decays exponentially. It remains the contribution U ρ ptqF , defined as U 7 ptqF with the integral on ξ over the ball Bpρq instead of R d . For ξ small, M pξq has one simple eigenvalue λ `pξq close to 0 and the other one close to ´a. We define Ũρ ptqF as U ρ ptqF with Γ µ replaced by Γ ´a{2 . It decays uniformly exponentially. The difference between U ρ ptq and Ũρ ptq is given by the Residue Theorem (see the third contour in Figure 2.1). We obtain that, up to exponentially decaying terms, U 7 ptqF is equal to ˆξPBpρq e ix¨ξ e tλ`pξq Πpξq F pξq dξ, (2.12)

where Πpξq " ´1 2iπ ˆζPCpλ`pξq,rq pM pξq ´ζq ´1 dζ is the Riesz projection on the eigenspace of M pρq corresponding to the eigenvalue λ `pξq (the integral is over a small circle around λ `pξq, oriented in the direct sense, while the circle in Figure 2.1 is oriented in the clockwise direction). For G P C 2 we have

ΠpξqG " xΨpξq, Gy C 2 Φpξq, Φpξq " ˆ1 λ `pξq ˙, Ψpξq " 1 a a 2 1 ´4ξ 2 ˆa1 `λ`p ξq 1 ˙.
Notice that

λ `pξq " ´ξ2 a 1 `Opξ 4 q, Φpξq " ˜1 ´ξ2 a1 `Opξ 4 q ¸, and @ Ψpξq, F pξq D C 2 " f pξq `ĝpξq a 1 `Opξ 2 } F pξq}q.
In particular, if in (2.12) we replace each factor by the leading term in its Taylor expansion, we expect that U ρ ptq should be close to

U heat ptqF " ˆBpρq e ix¨ξ e ´tξ 2 a 1 p f 0 pξq ˜1 ´ξ2 a1 ¸dξ, (2.13) 
with f 0 given by (2.3). Up to the contribution of |ξ| ě ρ, which is exponentially decaying, we see that the first component of (2.13) is the solution of (2.2)-(2.3) and the second component is its time derivative. To prove that (2.12) is close to (2.13) we apply the idea given in the proof of Proposition 2.2.

Conclusion.

We finally obtain the following result, where for δ P R we have set H δ " H 1,δ pR d q ˆL2,δ pR d q.

Theorem 2.8. Let s 1 , s 2 P " 0, d 2 ‰ and κ ą 1. Let s P r0, 1s. There exists C ą 0 such that for pf, gq P H κs2 and t ě 0 we have

}uptq ´u0 ptq} L 2,´κs 1 pR d q ď C t ´1 2 p2`s1`s2q }F } H κs 2 , › › ∇ `uptq ´u0 ptq ˘› › L 2,´κs 1 ´s pR d q ď C t ´1 2 p3`s1`s2`sq }F } H κs 2 `s , › › B t `uptq ´u0 ptq ˘› › L 2,´κs 1 pR d q ď C t ´1 2 p4`s1`s2q }F } H κs 2 ,
where uptq is the solution of (2.1) and u 0 ptq is the solution of (2.2) with f 0 given by (2.3).

Combining Theorem 2.8 and Proposition 2.2 we deduce in particular that the estimates of Proposition 2.2 also hold for uptq.

We have already observed that the local energy of the wave equation decays slowly with a strong damping compared to the case without damping. We furthermore notice that the decay for the heat equation (2.2) is slower when a 1 becomes large.

On a wave guide with damping on the boundary

As said in the introduction of the chapter, my first work about a damped wave equation with damping at infinity was not on the Euclidean space but on a wave guide.

More precisely, after a discussion with D. Krejcirik and P. Siegl on my earlier results about the resolvent estimates by the commutator method, I was interested in the analysis of the problem on a wave guide, with damping at the boundary.

On a waveguide we have bounded classical trajectories at infinity, so the geometric damping condition is not satisfied if the damping is localized. It seemed simpler to consider the case of a constant damping. This led to the first question with damping at infinity (even if I finally first wrote [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF] about the Schrödinger equation, see Section 2.7).

Notice that there are now recent results [Wanb, Wanc] about the global energy decay for the damped wave equation on (more general) wave guides with damping at the boundary.

The setting

Let Ω " R d ˆω be a straight wave guide in R d`n . The cross section ω is a smooth, bounded, connected and open subset of R n . A general point of Ω will be denoted by px, yq with x P R d and y P ω.

We consider on Ω the wave equation

$ ' & ' % B 2 t u ´∆u " 0, on R `ˆΩ, B ν u `aB t u " 0, on R `ˆBΩ,
pu, B t uq| t"0 " pf, gq, on Ω, (2.14) where a ą 0 is a constant absorption index on the boundary and pf, gq belongs to H 1 pΩq L2 pΩq. The energy is still a non-increasing function of time:

d dt ˆΩ `|∇uptq| 2 `|B t uptq| 2 ˘" ´2a ˆBΩ |B t uptq| 2 ď 0.
It is still possible to rewrite the wave equation in the form (1.18). For this we now define on E " 9 H 1 pΩq ˆL2 pΩq the operator

W " ˆ0 1 ∆ 0 ˙, (2.15) 
with domain DompWq " tpu, vq P E : pv, ∆uq P E and B ν u `av " 0 on BΩu .

(2.16)

We can check that iW is a dissipative operator on E . Then we introduce the analog of (1.22). It is given by Rpzq " pH az ´z2 q ´1, (2.17)

where for α P C we have defined on L 2 pΩq the operator H α as in (1.39)

H α " ´∆, DompH α q " u P H 2 pΩq : B ν u " iαu on BΩ ( . (2.18) 
One of the difficulty in [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] was that the derivatives of Rpzq (as defined by (1.22)) are not its powers. Here it is even worse since the operator pH az ´z2 q depends on z via its domain. Thus its derivatives only make sense if it is seen as a form on H 1 pΩq.

In the sense of forms it becomes clearer that H az ´z2 is the analog of p´∆´izapxq´z 2 q for a damping at the boundary. Indeed, the quadratic form on H 1 pΩq associated with H az ´z2 is ´∆ ´izΘ a ´z2 P LpH 1 pΩq, H 1 pΩq ˚q, where Θ a is defined by

@ϕ, ψ P H 1 pΩq, xΘ a ϕ, ψy H 1 pΩq ˚,H 1 pΩq " a ˆBΩ ϕ ψ.
The fact that the boundary condition is a good model for a damping concentrated at the boundary has been discussed in more details for a quantum graph in [26, Section 4]. Thus, in addition to Rpzq we also have to consider, at least for z P C `,

Rpzq " `´∆ ´izΘ a ´z2 ˘´1 P LpH 1 pΩq ˚, H 1 pΩqq.

The link between Rpzq and Rpzq is that for ϕ P L 2 pΩq and ψ P H 1 pΩq then u " Rpzqpϕ`Θ a ψq is the unique solution in H 2 pΩq of the problem # p´∆ ´z2 qu " ϕ on Ω, B ν u " iazu `aψ on BΩ.

In particular, Rpzqϕ " Rpzqϕ for all ϕ P L 2 pΩq.

Then we can check that the operator iW is maximal dissipative in E , and that for F P H 1 pΩq ˆL2 pΩq its resolvent is given by pW ´ζq ´1F " ˆ´R piζqpΘ a `ζq ´Rpiζq 1 ´RpiζqpζΘ a `ζ2 q ´ζ Rpiζq ˙F.

(2.19)

We want to understand the long time behavior of the solution of (2.14), in particular the local energy decay and the asymptotic profile. Compared to (2.1) we cannot just "remove" the term B 2 t u in (2.14) to get a heat equation which should describe the asymptotic behavior of uptq.

Spectral properties of H α

It is Rpzq which appears in (2. [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF]), but since Rpzq and Rpzq are closely related, we can look at the properties of Rpzq, hence at the spectral properties of the operator H α . For this we use the symmetries of Ω. We write the Laplacian H α as the sum of the second derivatives in the x and y directions. We denote by L the usual Laplacian on R d and by T α the Robin Laplacian on the cross section ω:

T α " ´∆ω , DompT α q " u P H 2 pωq : B ν u " iαu on Bω ( . (2.20) 
Then, if we identify L with L b Id L 2 pωq and T α with Id L 2 pR d q b T α , we have

H α " L `Tα .
The spectrum of L is the half-line r0, `8r. On the other hand, T α has a non-empty resolvent set and its domain DompT α q is compactly embedded in L 2 pωq, so its spectrum is given by a sequence pλ k pαqq kPN of isolated eigenvalues of finite multiplicities. Then it is a general result (see for instance [RS79, §XIII.9]) that σpH α q " σpLq `σpT α q " ď kPN tλ k pαq `r, k P N, r P R `u .

(2.21)

Thus σpH az q is a sequence of half-lines which depend on the spectral parameter z.

In a selfadjoint setting it is not difficult to combine the properties of the longitudinal and transverse operators to get information on the wave guide. We can proceed similarly if we have a Riesz basis of L 2 pωq made with eigenvectors of the transverse operator (see (2.54) below, see also [START_REF] Borisov | PT-symmectric waveguides[END_REF] for another non-selfadjoint context). Here we have to proceed differently.

Let τ P R ˚. The eigenvalues of T aτ have negative imaginary parts. Then τ 2 is in the resolvent set of H aτ , so the resolvent Rpτ q is well defined and ´iτ P ρpWq. The two important steps of the proof are then to show that the resolvent pW `iτ q ´1 is uniformly bounded for |τ | Ñ 8 and to understand the behavior of the resolvent for τ close to 0.

Contribution of low frequencies

We begin with the contribution of low frequencies. Notice that T 0 is the Neumann Laplacian on ω, so λ 0 p0q " 0 is a simple eigenvalue of T 0 and the corresponding eigenprojection is the orthogonal projection on constant functions. Seen as an operator on L 2 pΩq it reads

P ω upx, yq " 1 |ω| ˆω upx, θq dθ. (2.22)
The other eigenvalues of T 0 are positive. Since T α is analytic with respect to α (family of type B in the sense of Kato [START_REF] Kato | Perturbation Theory for linear operators[END_REF]), the spectrum of T α is a holomorphic function of α. In particular, there exists a neighborhood V of 0 such that for z small the operator T az has exactly one (geometrically and algebraically) simple eigenvalue λ 0 pazq in V.

If λ is another eigenvalue of H az and r P σpLq " R `, then the sum λ `r (see (2.21)) is "far" from 0, so the intuition is that only the contribution of the "first" transverse eigenvalue λ 0 pazq of T az should play a role in the behavior of pH az ´z2 q ´1 when z is small. To make this more precise, we would like to use a kind of spectral localization, but we cannot use spectral projections given by functional calculus (H az is not selfadjoint) or Riesz projections (the spectrum of H az close to 0 is not separated from the rest of the spectrum). However, we can use simultaneously the facts that L is selfadjoint and T az has discrete spectrum.

We can choose η ą 0 in such a way that if we set G " tζ P C : Repζq ă η, |Impζq| ă ηu , then for α small enough we have G XσpT α q " tλ 0 pαqu and BG XσpT α q " H. Let ζ P G XρpH α q and σ P BG. We have ζ ´σ P CzR `" ρpLq, so we can write the resolvent identity pH α ´ζq ´1pT α ´σq ´1 " pT α ´σq ´1pL ´pζ ´σqq ´1 ´pH α ´ζq ´1pL ´pζ ´σqq ´1. (2.23) We set

P α :" ´1 2iπ ˆBG pT α ´σq ´1 dσ.
This is the Riesz projection of T α on its one-dimensional eigenspace kerpT α ´λ0 pαqq. On the other hand, since L is selfadjoint we have for ζ P G ´1 2iπ ˆBG pL ´pζ ´σqq ´1 dσ " Id.

Finally we can check (see [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF]Prop.4.5]) that the operator

B α pζq " 1 2iπ ˆBG pT α ´σq ´1pL ´pζ ´σqq ´1 dσ
is a holomorphic function of ζ P G. Thus, after integration of (2.23) with respect to σ P BG we have pH α ´ζq ´1 " pH α ´ζq ´1P α `Bα pζq " pL `λ0 pαq ´ζq ´1P α `Bα pζq, and for z small we get

Rpzq " pH az ´z2 q ´1 " pL `λ0 pazq ´z2 q ´1P az `Baz pz 2 q.

Then we compute

λ 1 0 p0q " ´iΥ, Υ " |Bω| |ω| .
At this point, we expect that the wave resolvent Rpzq should behave like pL ´iaΥzq ´1P ω for z small. This is the resolvent corresponding to a heat equation in the x-direction, and the projection on constant functions with respect to y. We can indeed prove the following result.

Theorem 2.9. For z P D `we have

Rpzq " pL ´iaΥzq ´1P ω `Rpzq " ´1 aΥ ˆ´L aΥ `iz

˙´1 P ω `R1 pzq,
where R 1 pzq satisfies the following property. For m P N, s P " 0, d 2 " , δ ą s and

β x P N d , β y P N n such that |β x | `|β y | ď 1 there exists C ą 0 such that for z P D X C `we have } x ´δ B βx x B βy y R pmq 1 pzq x ´δ } L 2 pΩq ď C |z| minp0,´m`s`| βx | 2 q .
We can also write the Taylor expansions of λ 0 pazq and P az up to any order to get a more precise expansion of Rpzq. Then from (2.19) we deduce the asymptotics for the resolvent of W near 0.

Contribution of high frequencies

Since we are not on the Euclidean space as in the previous chapter or in Section 2.2, we also have to discuss the contribution of high frequencies.

The classical trajectories follow straight lines in Ω, bouncing on the boundary according to the laws of geometrical optics. The rays of light parallel to the boundary never see the damping, so we do not expect uniform exponential decay for the global energy. However, all the bounded rays reach the boundary, so we should have uniform decay of the local energy (notice that the set of undamped classical trajectories is unstable, so we should have a good estimate on the global energy decay with loss of regularity, but I did not go in that direction in [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF]).

We already know that the resolvent pH aτ ´τ 2 q ´1 is well defined for any τ ‰ 0. To prove uniform estimates for |τ | " 1 we again have to combine the properties of L and T aτ . We begin with the transverse operator. We have the following resolvent estimates. The proof, inspired by [START_REF] Miller | Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary[END_REF], is based on the usual contradiction argument with semiclassical measures on the compact domain ω. Compared to my previous results about high frequencies, the damping is at the boundary (as in [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]).

To prove estimates for Rpzq, we separate the contributions of high frequencies close to longitudinal directions and high frequencies close to transverse directions.

Let χ P C 8 0 pR, r0, 1sq be supported in s ´γ, γr and equal to 1 on

‰ ´γ 2 , γ 2 "
. We use the functional calculus, available for L, and we estimate separately χpL{τ 2 qRpτ q and p1 ´χqpL{τ 2 qRpτ q.

For the first term, the idea is that with this localization with respect to L, Rpτ q is in some sense not too far from pT aτ ´τ 2 q ´1. And, indeed, from Proposition 2.10 we can prove that

› › χpL{τ 2 qRpτ q › › LpL 2 pΩqq À 1 τ . (2.24)
This is Proposition 7.3 in [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF]. We gave a proof based on (2.23), but we can also use the Fourier transform with respect to the x variable to conclude. Notice that we are dealing with the contribution of frequencies which are not too large in the direction x. In terms of classical trajectories, this corresponds to rays of light going in a direction transverse to the wave guide, so they see the damping. It is no surprising that there is no weight in (2.24). This is of course different for p1 ´χqpL{τ 2 qRpτ q, which corresponds to the contribution of rays of light not far from being parallel to the wave guide.

Assume that we can replace T aτ by one of its eigenvalues λ k paτ q. Then we have to estimate p1 ´χqpL{τ 2 qpL `λk paτ q ´τ 2 q ´1. If τ 2 ´Repλ k paτ qq ď γτ 2 {4, then we can apply the spectral theorem for L. If τ 2 ´Repλ k paτ qq ě γτ 2 {4 then, since Impλ k paτ qq ă 0, we can apply the (high-frequency) limiting absorption principle with the spectral parameter τ 2 ´λk paτ q for the usual Laplacian L on R d .

The rigorous proof does not work this way, since we cannot just sum the contributions of each λ k paτ q. Nevertheless, we can adapt the strategy known for the uniform resolvent estimates for L in the setting of the wave guide to prove directly that for δ ą 1 2 we have

› › › x ´δ p1 ´χqpL{τ 2 qRpτ q x ´δ › › › LpL 2 pΩqq À 1 |τ | . (2.25) 
Summing (2.24) and (2.25) gives the following result.

Proposition 2.11. Let δ ą 1 2 . There exist τ 0 ą 0 and c ą 0 such that for |τ | ě τ 0 we have

› › › x ´δ Rpτ q x ´δ › › › LpL 2 pΩqq ď c |τ | .
With (2.19) we can get a uniform estimate for pW `iτ q ´1 in weighted space. Because of the weights, we cannot apply the same strategy as in Section 2.2. We apply the same strategy as in Chapter 1 instead. In particular, we have to prove uniform estimates for the derivatives of Rpτ q. As explained above, this is not obvious, and this can only be done in the sense of forms. To apply a result like Lemma 1.16, we need for instance estimates of Rpτ q in incoming and outgoing regions. For this, we have to adapt all the proofs known in the Euclidean setting (we omit this part of the proof, see [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF]Sec. 7.3]). We finally get the following result. Proposition 2.12. Let n P N and δ ą n ´1 2 . There exists C ą 0 such that for |τ | ě 1 we have

› › pW `iτ q ´n› › LpE δ ,E ´δ q ď C.

Local energy decay and asymptotic profile

Now that we have estimated the resolvent, we can deduce the large time behavior for the solution of (2.14). Since the contribution of high frequencies decays fast, the result depends as usual on low frequencies. By Theorem 2.9 we expect that the asymptotic profile should be a solution of aΥB t u 0 `Lu 0 " 0, (2.26) seen as a problem on Ω. By (2.19) and Theorem 2.9, the initial data for u 0 should be given by f 0 " 1 aΥ P ω pΘ a f `gq.

(2.27)

We can compute

P ω Θ a f " aΥP Bω f, where P Bω f px, yq " 1 |Bω| ˆBω f px, θq dσpθq.
This defines a function P Bω f P L 2 pΩq which only depends on x P R d . Then we set

f 0 " P Bω f `1 aΥ P ω g. (2.28)
This is analogous to (2.3). Since f is "multiplied" by the damping in (2.27), only its values at the boundary play a role in the expression of f 0 , while f 0 depends on the values of g on the whole Ω (notice that g is only in L 2 pΩq and its trace on BΩ does not make sense).

On the other hand, the strength of the damping is given by the product aΥ. The coefficient a is the strength of the damping at each point of the boundary, and Υ depends on the shape of the cross-section. If we normalize the section ω by |ω| " 1, then Υ is the size of Bω. It is not surprising that for a fixed value of a, the effect of the damping in Ω is stronger when Υ is large.

Compared to Theorem 2.8 we cannot give estimates without weights (case s 1 " s 2 " s " 0) since we also need weights for the contribution of high frequencies. Of course, even for high frequencies we can get weaker decay with weaker weights, but for simplicity we do not detail this possibility and only write the statement which gives the best local energy decay in this case.

We observe in particular that the power of t only depends on the number d of longitudinal dimensions.

Theorem 2.13. Let δ ą d 2 `2. There exists C ą 0 such that for F " pf, gq P H δ and t ě 0 we have

› › x ´δ ∇ `uptq ´u0 ptq ˘› › L 2 pΩq `› › x ´δ B t `uptq ´u0 ptq ˘› › L 2 pΩq ď C t ´d 2 ´2 }F } H δ ,
where uptq is the solution of (2.14) and u 0 ptq is the solution of (2.26)-(2.28).

On a wave guide with damping at infinity

After [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF], we discussed with Mohamed Malloug the wave equation with damping inside the waveguide Ω. Since there are less technical problems than with damping at the boundary, it was an occasion to consider other difficulties. Thus, in [START_REF] Malloug | Energy decay in a wave guide with damping at infinity[END_REF] we consider a situation where the damping is not constant (and in particular breaks the symmetry of the wave guide) and the geometric damping condition is not satisfied.

The setting. Let Ω " R d ˆω Ă R d`n be a straight wave guide as in the previous section. We consider on Ω an absorption index apx, yq ě 0 which is a long range perturbation of a positive constant a 1 : for some ρ Ps0, 1s we have, for β P N d and px, yq P Ω,

ˇˇB β x papx, yq ´a1 q ˇˇď C β x ´ρ´|β| .
(2.29)

Then we consider on Ω the damped wave equation with Neumann boundary conditions

$ ' & ' % B 2 t u ´∆u `aB t u " 0, on R `ˆΩ, B ν u " 0, on R `ˆBΩ,
pu, B t uq |t"0 " pf, gq.

(2.30)

Notice that we can also consider Dirichlet boundary conditions. This is actually much easier since in this case 0 is not in the spectrum of the corresponding operator, so there is no difficulty with low frequencies (see Theorem 4.2 in [START_REF] Malloug | Energy decay in a wave guide with damping at infinity[END_REF]).

In this problem, a is a perturbation of a constant damping, but it can vanish in a bounded subset of Ω. In particular, we may have undamped bounded classical trajectories. This is only possible for rays of light going in a transverse direction, so the set of undamped rays is unstable. For the contribution of high frequencies, this problem is actually similar to the problem on the stadium with damping on the half-disks (see [START_REF] Burq | Energy decay for damped wave equations on partially rectangular domains[END_REF]).

In this setting the resolvent of the wave equation is

Rpzq " `´∆ N ´iapx, yqz ´z2 ˘´1 ,
where ´∆N the Neumann Laplacian in Ω.

Resolvent for a damping independent of the transverse variable. Even if a depends on y, we use in the proof the case where it does not. Let α be a bounded function on Ω which only depends on x P R d . We can write

´∆N ´iαpxq " `L ´iαpxq ˘`T N ,
where L is as above the standard Laplacian on R d and the transverse operator T N is the usual non-negative and selfadjoint Neumann Laplacian on L 2 pωq. Compared to the setting of the previous paragraph, we consider here the damping as part of the longitudinal operator.

We denote by pλ k q kPN the non-decreasing sequence of eigenvalues (repeated according to multiplicities) of T N , and we consider a corresponding orthonormal basis of eigenvectors pϕ k q kPN . Compared to the previous section, the fact that we have an orthonormal basis for the transverse operator simplifies the analysis. We have λ 0 " 0, λ 1 ą 0 and ϕ 0 is constant.

For f P L 2 pΩq we can write f " ř kPN f k b ϕ k with f k P L 2 pR d q, and for ζ in the resolvent set of ´∆N ´iαpxq we have

`´∆ N ´iαpxq ´ζ˘´1 f " ÿ kPN `L ´iαpxq ´pζ ´λk q ˘´1 f k b ϕ k . (2.31)
Thus we can deduce estimates for `´∆ N ´iαpxq ´ζ˘´1 in LpL 2 pΩqq from similar estimates for `L ´iαpxq ´pζ ´λk q ˘´1 , k P N, in LpL 2 pR d qq.

Contribution of low frequencies. Now we go back to the analysis of Rpzq. We begin with the contribution of low frequencies. If a only depends on x, then we see that in (2.31) (with α " az and ζ " z 2 ) only the first term should play a role for z small (the other terms are holomorphic around z " 0). We have not assumed that apx, yq only depends on x, but for low frequencies only the values at infinity play an important role. Thus it is expected that, up to a rest, we can replace apx, yq by a 1 (and remove the term z 2 ) in Rpzq when z is small. In other words, for z small the resolvent Rpzq should be close to the resolvent of the heat equation

R h pzq " p´∆ N ´iza 1 q ´1.
On the other hand, by (2.31), R h pzq should be close to R h pzqP ω , where P ω (defined by (2.22)) is the orthogonal projection on spanpϕ 0 q. All this holds in the following precise sense. 

› › › x ´κs1 B β x,y B m z `Rpzq ´Rh pzqP ω ˘ x ´κs2 › › › LpL 2 pΩqq ď C |z| minp0, 1 2 ps1`s2`ρ1`|β|q´m´1q .
Ideas of proof. To estimate the difference between Rpzq and R h pzq we write the resolvent identity Rpzq ´Rh pzq " R h pzq `izpa ´a1 q `z2 ˘Rpzq.

Then we proceed as in the previous chapter (see Section 1.7) or for Proposition 2.7. Here the rescaled Sobolev spaces (recall (1.56)) are only in the x direction. More precisely, for s P R and z P C ˚we set

}u} H s z L 2 pΩq " › › a L{ |z| s u › › L 2 pΩq .
For any s P R and z P C `, the resolvent R h pzq is of size Op|z| ´1q in LpH s´1 z L 2 pΩq, H s`1 z L 2 pΩqq. On the other hand, by an analog of Proposition 1.19, we see that pizpa ´a1 q `z2 q is of size Op|z|

1`ρ 1 2 q in LpH s2 z L 2 pΩq, H s1 z L 2 pΩqq if s 1 , s 2 P ‰ ´d 2 , d 2 
"
are such that s 2 ´s1 ě ρ 1 . In particular Rpzq ´Rh pzq is smaller than R h pzq for z small, and Rpzq is of size Op|z| ´1q in

LpH s´1 z L 2 pΩq, H s`1 z L 2 pΩqq for any s P ‰ ´d 2 , d 2 
"
. Notice also that ∇ x is of size Op|z| 

› › B β1 Rpτ qB β2 › › LpL 2 pΩqq ď C |τ | |β1|`|β2|`1 and › › pW `iτ q ´1› › LpE q ď Cτ 2 .
(2.32)

Ideas of proof.

As is usual for high frequencies, we can replace apx, yq by a smaller damping. We choose ãpxq which only depends on x and such that ãpxq ď apx, yq for all px, yq P Ω.

Then we can use (2.31). Since we can take ã going to 1 at infinity, it satisfies the damping assumption on R d , so pL ´iτ ã ´τ 2 q ´1 if of size Opτ ´1q in LpL 2 pR d qq. We get a similar estimate for pL ´iτ ã ´pτ 2 ´λk qq ´1 if τ 2 ´λk is large. The loss is due to the contributions of k such that τ 2 ´λk is small. This corresponds to rays of light orthogonal to the boundary, possibly undamped, and explains why we do not have a uniform bound in (2.32).

Local energy decay. Finally, we have to convert resolvent estimates to large times estimates.

For high frequencies we adapt the method of [START_REF] Lebeau | Équation des ondes amorties[END_REF][START_REF] Burq | Energy decay for damped wave equations on partially rectangular domains[END_REF]. Notice that there are abstract results in the case where (2.32) holds for all τ P R (with τ 2 replaced by τ 2 , see for instance [BEPS06, BD08, BT10]), but we cannot apply them because of the problem at 0. For the contribution of low frequencies, the method is similar to the previous cases. From Proposition 2.14 we can deduce that the asymptotic profile u 0 ptq for the solution of (2.30) is the function on Ω which does not depend on y P ω and is solution with respect to x to the heat equation a 1 B t u 0 ptq `Lu 0 ptq " 0, with initial condition f 0 " P ω pf `g{a 1 q: There exists C ą 0 such that for F " pf, gq P H κs2 pΩq X DompW k q we have

u 0 ptq " e ´tL a 1 P ω ˆf `g a 1 ˙. ( 2 
› › › x ´κs1 B α t B β x,y `uptq ´u0 ptq ˘› › › L 2 pΩq ď C ˜ t ´1 2 ps1`s2`2α`|β|`ρ1q }F } H κs 2 `lnptq k 2 `1 t k 2 › › pW ´1q k F › › E ¸,
where uptq is the solution of (2.30) and u 0 ptq is given by (2.33).

In a periodic medium

The motivation for [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF] was the analysis of the damped wave equation on a wave guide.

It is only while proving this result that I realized that the damped wave equation with damping at infinity was a really exciting problem in itself. When Romain Joly wrote a paper about the damped Klein-Gordon equation with periodic damping (then improved to a more general setting with Nicolas Burq in [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF]), giving the behavior of the contribution of high frequencies for the corresponding damped wave equation, it was a natural question to study the contribution of low frequencies for the damped wave equation with periodic damping. This is what we did together in [START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF].

The asymptotically periodic setting

We consider the damped wave equation (1.12) on the Euclidean space, with a general Laplace operator P as in (1.8), but the coefficients (including the absorption index) are now asymptotically periodic. This means that we can write Gpxq " G p pxq `G0 pxq, wpxq " w p pxq `w0 pxq and apxq " a p pxq `a0 pxq, where G p , w p and a p are Z d -periodic and G 0 , w 0 and a 0 are of long range: there exist ρ G , ρ a ą 0 (we use two parameters since ρ G and ρ a will not play the same role in (2.46) below) and C G , C a ě 0 such that |G 0 pxq| ď C G x ´ρG and |w 0 pxq| `|a 0 pxq| ď C a x ´ρa .

(2.34)

We first consider the purely periodic case, G 0 " 0, w 0 " 0 and a 0 " 0. We denote by W p the wave operator (1.19) with coefficients G p , w p and a p .

The damped wave equation with periodic metric had already been studied in [START_REF] Orive | Asymptotic expansion for damped wave equations with periodic coefficients[END_REF]. Compared to our setting, the initial condition is localized (at least in L 1 ) and the absorption index is constant (in particular it does not vanish and we can use some tools of the selfadjoint problem).

Our absorption index a p cannot be identically zero, but it is allowed to vanish. This means that at infinity it takes positive values but it can also be 0. This is an intermediate situation between the setting of Chapter 1, where a is small at infinity, and the settings of Sections 2.2 and 2.4, where a is asymptotically close to a positive constant.

We will see that we recover in this case the diffusive phenomenon typical for the damped wave equation with damping effective at infinity.

Under the geometric damping condition for high frequencies (see (2.45) below), the large time behavior of the wave is as usual given by the contribution of low frequencies. And if the wave length of the solution is very large compared to the period of the medium, this solution only sees, in some sense, the mean value of a p . This mean value is positive. Thus, as above the solution of the periodic damped wave equation should look like the solution of some heat equation. It is natural to expect that the corresponding heat equation is obtained by removing the second derivative in time in the wave equation. After multiplication by w this gives ´∆Gp u `ap pxqw p pxqB t u " 0 on R `ˆR d .

(2.35) This is indeed the case, but we want to go further. As said above, the low frequency wave only sees the mean value of a p w p . We expect that in (2.35) we can replace a p w p by its mean value. Similarly, we would like to replace G p by a simpler (constant) matrix. The reader familiar with homogenization (which was not our case when starting this work) knows that the mean value of G p is not the good guess.

The Floquet-Bloch decomposition and spectral properties on the torus

All the coefficients of the equation are Z d -periodic, but this is not the case for the initial condition pf, gq P H 1 pR d q ˆL2 pR d q. The solution itself will not be periodic, so the problem does not reduce to a problem on the torus. In this kind of context it is usual to use the Bloch waves (see for instance [BLP78, Sec. 4.3]). Compared to the plane waves e ix¨ξ used for the Fourier transform (suitable for linear problems with constant coefficients), the Bloch waves are of the form ψpxq " e ix¨σ φpxq where φ is Z d -periodic. They can be chosen in such a way that ψ is an eigenfunction of ´∆Gp . Then φ is an eigenfunction for the operator ´∆Gp,σ :" ´pdiv `iσ qG p pxqp∇ `iσq.

Compared to the undamped case (or with constant damping), we cannot use a basis of Bloch waves which are eigenfunctions of our operator, but we can still use the Floquet-Bloch decomposition. Let T d " " ´1 2 , 1 2 ‰ d . For u P SpR d q and x P R d we write upxq " ˆσP2πT d e ix¨σ u σ pxq dσ, where u σ pxq "

1 p2πq d ÿ nPZ d upx `nqe ´ipx`nq¨σ .
(2.36)

Notice that u σ is periodic for all σ P R d . This decomposition naturally shares some useful properties with the Fourier transform. In particular, we have the Parseval identity for the Floquet-Bloch decompostion: for u, v P SpR d q we have xu, vy L 2 pR d q " p2πq d ˆσP2πT d

xu σ , v σ y L 2 p dσ, (2.37)

where the space L 2 p of Z d -periodic and L 2 loc functions is endowed with the natural Hilbert structure. We also define the periodic Sobolev spaces H k p for k P N. Now for U " pu, vq P S and x P R d we have

pW p U qpxq " ˆσP2πT d e ix¨σ W σ U σ pxq dσ,
where for σ P R d we have set U σ " pu σ , v σ q and

W σ " ˆ0 w ´1 p ∆ Gp,σ ´ap ˙.
This defines a family pW σ q σP2πT d of operators on H 1 p ˆL2 p with domain H 2 p ˆH1 p . The interest of this decomposition is that each operator W σ has a compact resolvent, so its spectrum is given by a sequence of isolated eigenvalues. For U " pu, vq P H 2 p

ˆH1

p and λ P C we have

W σ U " λU ðñ # p´∆ Gp,σ `λa p w p `λ2 w p qu " 0, v " λw p u.
(2.38)

Then we proceed as explained on the model case in Section 2.2. We first observe that 0 is the only possible purely imaginary eigenvalue of W σ , and this happens if and only if σ " 0. Moreover, 0 is a (geometrically and algebraically) simple eigenvalue of W 0 and a corresponding eigenvector is given by Φ 0 " p1, 0q (notice that we would have difficulties to work with Φ 0 in the periodic energy space 9 H 1 p ˆL2 p ). By continuity of the spectrum with respect to σ, we deduce that only one simple eigenvalue of W σ for σ small will play a role for the contribution of low frequencies. Proposition 2.17. There exist r ą 0 and γ 0 , γ 1 , γ 2 ą 0 such that (i) for σ P 2πT d zBp0, rq the eigenvalues of W σ with imaginary parts in r´3, 3s have real parts smaller than ´γ0 ;

(ii) for σ P Bp0, rq the operator W σ has a unique simple eigenvalue λ σ such that |λ σ | ď γ 1 , and the other eigenvalues of W σ with imaginary parts in r´3, 3s have real parts smaller than ´γ2 (γ 1 ă γ 2 ).

We denote by Π σ the Riesz projection of W σ corresponding to λ σ and Φ σ " Π σ Φ 0 { }Π σ Φ σ }. Then for some ϕ σ P H 2 p (smooth with respect to σ) we have Φ σ " pϕ σ , λ σ w p ϕ σ q . Then, up to exponentially decaying terms, we see that the important contribution is the analog U r,p ptqF of (2.12), defined for t ě 0 and F P S by U r,p ptqF " ˆσPBp0,rq e ix¨σ e tλσ Π σ F σ dσ.

(2.39)

The next step is to replace λ σ , Φ σ and Π σ by their Taylor expansions for σ small. From (2.38) we can prove the following properties.

Proposition 2.18. (i) Let iψ σ be the linear term in the Taylor expansion of ϕ σ at σ " 0.

Then we have ´div G p pxqpσ `∇ψ σ q " 0.

(2.40)

We denote by W pxq the Z d -periodic matrix such that, for all ξ P R d , W pxqξ " ξ `∇ψ ξ pxq.

( 

Π σ F " xΨ σ , F y L 2 p ˆL2 p Φ σ .
Then Ψ σ is a smooth function of σ and we have

Ψ 0 " 1 a h w h ˆap w p 1 ˙.
The definition of G h is classical in homogenization theory (the matrix W pxq is the socalled corrector matrix). It is interesting to notice how it appears as the Hessian matrix of the eigenvalue λ σ at σ " 0.

Comparison with the asymptotic profile

From the eigenelements of W σ for σ small we can define the asymptotic profile for the contribution of low frequencies. Since the contribution of high frequencies decays fast under the suitable geometric condition, we finally get a result of local energy decay for the difference between the solution of the damped wave equation and the asymptotic profile. For this we use the strategy of Proposition 2.2, actually first developed for this point in [START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF] (see Proposition 4.12 therein). We replace the continuity of the Fourier transform (remember (2.5)-(2.6) with notation (2.4)) by the following property of the Floquet-Bloch transform (see also [START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF]Cor. 4.2])

The asymptotic profile

}u} L 2,´κs 1 pR d q À }u σ } L p 1 1 p2πT d ;L 2 p q , }u σ } L p 1 2 p2πT d ;L 2 p q À }u} L 2,κs 2 pR d q .
This can be proved with (2.37) and the following equality for u P SpR d q and ψ P L 2 p :

xu σ , ψy L 2 p " ˆxPR d e ix¨σ upxqψpxq dx.
The first component of (2.43) gives the asymptotic profile (the second component gives its time derivative, multiplied by w p ). For t ě 0 we set u h ptq " e ´t a h w h P h u h p0q, where u h p0q " xF, Ψ 0 y " a p w p f `wp g a h w h .

(2.44)

To get the asymptotic profile for ∇uptq, we cannot just take the gradient of u h ptq. Indeed, the leading term for ϕ σ is just ϕ 0 " 1, but the leading term of ∇ϕ σ is i∇ψ σ (see Proposition 2.18). With the factor iσ coming from the factor e ix¨σ we see that ∇u p ptq should be compared with ˆσPBp0,rq e ix¨σ e ´txG h σ,σy a h w h xF σ , Ψ 0 y ipσ `ψσ q dσ. This is why we compare ∇u p ptq with W pxq∇u p ptq in Theorem 2.19 below. Notice also that we cannot apply the trick of Proposition 2.2 to get an extra power of t ´1 2 with stronger weight (case s " 1). Then, with a strong weight, the estimate of ∇u p ptq ´W ∇u h ptq in Theorem 2.19 is the same as the estimate of ∇u h ptq in Proposition 2.2. Thus, it is not clear that W ∇u h ptq is the asymptotic profile for ∇u p ptq, but this still gives at least the optimal decay for ∇u p ptq.

Contribution of high frequencies. For the contribution of high frequencies, we can deduce Proposition 2.5 from the high frequency resolvent estimates given in [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF]. Notice that we cannot use the assumption (1.17) in this context. In (1.17), it is only assumed that each bounded classical trajectory goes once through the damping region. However, since bounded trajectories live in a compact subset in the context of Chapter 1, the time needed to reach the damping region in uniform, and each ray of light actually goes regularly through the damping region. This is no longer automatic if we consider classical trajectories at infinity, so we have to be more precise about the damping condition. With the same notation as for (1.17), we assume DT ą 0, Dα ą 0, @px 0 , ξ 0 q P p ´1pt1uq, ˆT 0 apxpt; x 0 , ξ 0 qq dt ě α.

(2.45)

It is clear that (2.45) (for all trajectories, of for the bounded ones) implies (1.17), and on the other hand we can check that if (1.17) holds in the context of Chapter 1 then bounded trajectories satisfy (2.45).

Local energy decay. Now that the contributions of low and high frequencies are understood, we can state the main result of [START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF].

Theorem 2.19. Assume that the geometric damping condition (2.45) holds. Let s 1 , s 2 P " 0, d 2 ‰ and κ ą 1. There exists C ą 0 such that for t ě 0 and F " pf, gq P H κs2 we have

}u p ptq ´uh ptq} L 2,´κs 1 pR d q ď C t ´1 2 ´s1 `s2 2 }F } H κs 2 , }∇u p ptq ´W ∇u h ptq} L 2,´κs 1 pR d q ď C t ´1´s 1 `s2 2 }F } H κs 2 , }B t u p ptq ´Bt u h ptq} L 2,´κs 1 pR d q ď C t ´3 2 ´s1 `s2 2 }F } H κs 2 ,
where u p ptq is the solution of (1.12) with coefficients pG p , w p , a p q and u h ptq is given by (2.44).

As for Theorem 2.8, we could expand λ σ and Π σ further in (2.39) to get a more precise asymptotics for u p ptq and its derivatives.

By a perturbative argument, we get the following result for the general case with asymptotically periodic coefficients. Proposition 2.20. Assume that the damping condition (2.45) holds. Let κ ą 1 and s 1 , s 2 , η ě 0 be such that

maxps 1 , s 2 q `η ă min ˆd 2 , ρ G , ρ a `1˙. ( 2 

.46)

Then there exists C ě 0 such that for U 0 " pu 0 , u 1 q P H κs2 and t ě 0 we have

}uptq ´up ptq} L 2,´κs 1 pR d q ď C t ´s1 `s2 2 ´η 2 }U 0 } H κs 2 , }∇uptq ´∇u p ptq} L 2,´κs 1 pR d q ď C t ´1 2 ´s1 `s2 2 ´η 2 }U 0 } H κs 2 ,
}B t uptq ´Bt u p ptq} L 2,´κs 1 pR d q ď C t

´1´s 1 `s2 2 ´η 2 }U 0 } H κs 2 ,
where uptq and u p ptq are the solutions of (1.12) with coefficients pG, w, aq and pG p , w p , a p q, respectively.

Because of the restriction (2.46), this proposition is probably far from being optimal. The purpose was to show that even if the proof of Theorem 2.19 strongly depends on the symmetry of the setting, the result is actually robust with respect to perturbations.

Nonetheless, Proposition 2.20 gives in any case a result for the global energy and for a general initial data (s 1 " s 2 " 0). It also provide interesting estimates for a rapidly decaying perturbation (ρ G and ρ a not too small).

The wave equation with highly oscillating damping

The discussions above mostly concern the contribution of low frequencies for the wave equation. However, while preparing [START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF], a technical detail about the high frequencies estimates in [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF] drew my attention.

The analysis of high frequencies is based on semiclassical analysis, which requires quite a lot of regularity for all the coefficients. However, contrary to the case of low frequencies for which the overdamping phenomenon occurs, for high frequencies we have better decay properties with a stronger damping, so if the absorption index a is not smooth, it is enough to prove the estimates with a replaced by a smooth ã such that ã ď a.

However, some regularity is still required on a. In [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF] it is assumed that a is at least uniformly continuous. Similarly, in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] we had to apply the Mourre theory with the original absorption index a, so we assumed existence and boundedness of its first two radial derivatives.

In [START_REF] Royer | Energy decay for the Klein-Gordon equation with highly oscillating damping[END_REF], I have tried to show on a very simple model case that a highly oscillating absorption index should not be a problem, and that the only important quantity is the average damping seen by the classical rays of light, as measured by the integral in (2.45). Note that a more refined analysis of the damped wave equation with rough damping on the torus has then been published in [START_REF] Burq | Stabilization of wave equations on the torus with rough dampings[END_REF].

We consider the Klein-Gordon equation with a periodic damping whose period goes to 0. Let a P C 8 pR d , R `q be periodic. For η ě 1 and x P R d we set a η pxq " apηxq. For some m ą 0 and pf, gq P H we consider the problem

# B 2 t u ´∆u `mu `aη pxqB t u " 0, on R `ˆR d , pu, B t uq |t"0 " pf, gq, on R d . (2.47)
The interest of considering the Klein-Gordon equation is that it behaves exactly as the wave equation for high frequencies (the additional term mu is much smaller than the others) but there is no problem with low frequencies, since 0 is not in the spectrum of the operator

ˆ0 1 ∆ ´m ´aη ˙,
defined on H with natural domain. Since we consider the free Laplacian in (2.47), we have ppx, ξq " |ξ| 2 and classical trajectories are given by φ t px 0 , ξ 0 q " px 0 `2tξ 0 , ξ 0 q.

We have said that under the geometric damping condition on all classical trajectories we have uniform exponential decay for the Klein-Gordon equation (see [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF]). The first result in [START_REF] Royer | Energy decay for the Klein-Gordon equation with highly oscillating damping[END_REF] is that if (2.45) is uniform in η ě 1, then the solution u η of (2.47) decays exponentially, uniformly in the initial condition and uniformly in η ě 1. Even if the sizes of the derivatives of the absorption index a η blow up with η. Thus we assume DT ą 0, Dα ą 0, @η ě 1, @px 0 , ξ 0 q P R d ˆSd´1 , ˆT 0 a η px `2tξq dt ě α.

(2.48)

In our particular case, we observe that if the damping condition (2.45) holds for η " 1, then it holds uniformly in η ě 1.

Theorem 2.21. Assume that the uniform geometric damping condition (2.48) holds. Then there exist γ ą 0 and C ą 0 such that for η ě 1, pf, gq P H and t ě 0 we have

}uptq} H 1 pR d q `}B t uptq} L 2 pR d q ď Ce ´γt `}f } H 1 pR d q `}g} L 2 pR d q ˘,
where uptq is the solution of (2.47).

The second part of the paper is about the case where (2.48) is not satisfied. We know that we cannot have a uniform decay, but we can still have energy decay if we allow a loss of regularity.

Since the damping is regularly distributed for any η ě 1, we can apply [BJ16, Th. 1.3] to see that we have at least logarithmic decay. The particular case of a periodic damping has been analysed in [START_REF] Wunsch | Periodic damping gives polynomial energy decay[END_REF], and in this case we actually have polynomial decay, with the loss of one derivative. This is consistent with the fact that in the periodic setting the set of rays of light which do not see the damping is unstable. We look at the dependence in η for this polynomial decay.

The second result of [START_REF] Royer | Energy decay for the Klein-Gordon equation with highly oscillating damping[END_REF] is again that despite of the sizes of the derivatives of a η , we recover the same result as in [START_REF] Wunsch | Periodic damping gives polynomial energy decay[END_REF], uniformly in η ě 1. Moreover, the estimate is even better for large η. This is in fact natural, since for large η the classical rays of light see in some sense the same quantity of damping, but this damping is more uniformly distributed in R d . Theorem 2.22. There exists c ą 0 such that for η ě 1, pf, gq P H and t ě 0 we have

}uptq} H 1 pR d q `}B t uptq} L 2 pR d q ď c ? 1 `t ˜}f } H 1 pR d q `}g} L 2 pR d q `}∆f } L 2 pR d q `}∇g} L 2 pR d q η 2 ¸,
where uptq is the solution of (2.47).

The damped Schrödinger equation on a wave guide

In this paragraph we present the results of [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF], which was actually written before all the papers discussed in this chapter.

We consider the Schrödinger equation on a straight wave guide with one dimensional cross section. Given d ě 2 and ą 0, we set Ω " R d´1 ˆs0, r. Then for a ą 0 and f P L 2 pΩq we consider on Ω the Schrödinger equation

$ ' & ' % ´iB t u ´∆u " 0, on R `ˆΩ, B ν u " iau, on R `ˆBΩ, u |t"0 " f. (2.49)
The L 2 -norm of the solution is a non-increasing function of time. We have in fact uniform exponential decay: Theorem 2.23. There exist γ ą 0 and C ě 0 such that for any f P L 2 pΩq the solution u of (2.49) satisfies @t ě 0, }uptq} L 2 pΩq ď Ce ´γt }f } L 2 pΩq .

Instead of a constant damping, we can consider a such that a 0 ď a ď a 1 on BΩ, for some positive constants a 0 and a 1 . The same result also holds if a satisfies this property on one side of the boundary and vanishes on the other side. We can even consider the case where the damping is a positive constant on one side and a negative one on the other side (with a positive sum, so that the damping is positive on average, in the spirit of [START_REF] Royer | Uniform resolvent estimates for a non-dissipative Helmholtz equation[END_REF]).

It is remarkable that even if the classical trajectories parallel to the boundary never see the damping, we can have a uniform decay for the global energy of the Schrödinger equation.

The operator corresponding to (2.49) is the Laplacian with Robin boundary condition H a , as defined by (1.39) or (2.18). To prove Theorem 2.23, we show that we have a spectral gap for H a . Theorem 2.24. There exist γ 1 ą 0 and C 1 ě 0 such that any z P C with Impzq ě ´γ1 belongs to the resolvent set of H a and

› › pH a ´zq ´1› › LpL 2 pΩqq ď C 1 .
As in Section 2.3, we can deduce the spectral properties of the Laplacian on the wave guide Ω from the properties of the transverse operator T a (see (2.20)) on L 2 p0, q. In dimension 1 it reads T a " ´B2 y , DompT a q " u P H 2 p0, q : u 1 p0q " ´iaup0q, u 1 p q " iaup q ( .

Then [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF] is mainly about the spectral properties of T a .

Since T a is a Laplacian in dimension 1, we can get many spectral properties by explicit computations. In particular, for z P C ˚we can check that z 2 is an eigenvalue of T a if and only if

e 2iz " ˆz ´a z `a ˙2 .
(2.50)

From this, we deduce some qualitative properties for the sequence of eigenvalues and in particular its asymptotic behavior. We recall that T 0 is the Neumann Laplacian on s0, r. The spectrum of T 0 is given by the sequence of simple eigenvalues pn 2 ν 2 q nPN , where ν " π .

Let n P N ˚. By the Implicit Function Theorem there exists an analytic function a Þ Ñ z n paq defined on a neighborhood V n of 0, such that z n p0q " nν and z n paq is a solution of (2.50) for a P V n . Moreover,

z n paq " nν ´2ia πn `γa 2 `O aÑ0 pa 3 q, with Repγq " 4 n 3 π 3 .
In particular, Repz n paqq Psnν, pn `1qνr for a ą 0 small. On the other hand, we can check that for a in a fixed compact the solutions of (2.50) are in a horizontal strip of C and cannot be on the vertical lines Repζq P νN. Then, by continuity of the solutions of (2.50) (using for instance the Rouché Theorem), we can deduce that for any a ą 0 there is exactly one solution of (2.50) with real part in snν, pn `1qνr. It is denoted by z n paq. Finally, we check that for a ą 0 fixed and n large, we have the same asymptotic expansion as above:

z n paq " nν ´2ia πn `Opn ´2q.
(2.51)

Thus if we set λ n paq " z n paq 2 , the spectrum of T a is given by the sequence pλ n paqq nPN and we have λ n paq " n 2 ν 2 ´4ia `O nÑ`8 pn ´1q.

(2.52)

Since the operator T a depends analytically on a (in the sense of Kato [START_REF] Kato | Perturbation Theory for linear operators[END_REF]), since the eigenvalues of T 0 are simple, and since the eigenvalues of T s for s P r0, as never meet, we deduce that the eigenvalues of T a are simple. In particular, there is no Jordan block.

Then we discuss the properties of the eigenfunctions of T a . An eigenvector corresponding to the eigenvalue λ n paq is given by ϕ n pyq " ϕ n pa; yq " A n paq ˆeiznpaqy `zn paq `a z n paq ´a e ´iznpaqy ˙, y Ps0, r, where A n paq is for instance chosen positive and such that }ϕ n paq} L 2 p0, q " 1. With (2.51) we see that ϕ n paq is close to ϕ n p0q for large n. Since the family pϕ n p0qq is orthonormal, we deduce from a perturbation argument (see [Kat80, Th. V.2.20]) that the family pϕ n paqq is a Riesz basis of L 2 p0, q.

We recall that a sequence pβ k q in a Hilbert space H is a Riesz basis if there exist an orthonormal basis pe k q and a bounded operator Θ P LpHq with bounded inverse such that β k " Θe k for all k P N. In particular, for ψ P H there exists a unique sequence pψ k q kPN P 2 pNq such that ψ " ř 8 k"0 ψ k β k and we have, for some C ě 1 independent of ψ,

C ´1 8 ÿ k"0 |ψ k | 2 ď }ψ} 2 H ď C 8 ÿ k"0 |ψ k | 2 .
(2.53)

With this Riesz basis property, we can use the symmetry of the domain Ω almost the same way as with a selfadjoint Laplacian (or as in (2.31)). In particular, we can write the resolvent of H a in terms of the resolvent of L. For u " upx, yq in L 2 pΩq we write upx, yq " ř nPN u n pxqϕ n pyq and for z P ρpH a q we have pH a ´zq ´1u " ÿ nPN `pL ´pz ´λn paqqq ´1u n ˘b ϕ n .

(2.54) Theorem 2.23 can be seen as the consequence of the Riesz basis property for pϕ n q (see (2.53)), the spectral gap for the eigenvalues pλ n q (given by (2.52)) and the fact that all the eigenvalues have negative imaginary parts), and the estimate for the resolvent of the selfadjoint operator L on L 2 pR d´1 q.

Even if it was the original motivation, it was not possible to adapt the ideas of [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF] to deal with the wave equation in [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF]. First, the Riesz basis property is probably wrong if the cross section has dimension greater than 1. But even with a one dimensional cross section, the difficulty with the wave equation is that we have to deal with a Robin parameter proportional to the frequency. All the results given above are valid for any a ą 0, but they are not uniform with respect to a going to `8. In particular, the size of the strip which contains σpH a q or the constant C a which appears in the Riesz basis property have no reason to be uniform with respect to a. This is why I finally used other ideas in [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF].

All this being said, it is still interesting to understand the behavior of σpH a q for large values of a.

The first observation is that for a fixed n the map a P r0, `8rÞ Ñ Repz n paqq is increasing from nν to pn `1qν, while Impz n paqq is 0 for a " 0, it is negative for all a ą 0, and it goes to 0 when a Ñ `8. Thus, with a strong damping, we recover the behavior of an undamped problem. More precisely, when a goes from 0 to `8, λ n paq goes from the n-th Neumann eigenvalue n 2 ν 2 to the n-th Dirichlet eigenvalue pn `1q 2 ν 2 , through the lower half-plane (it goes through the upper half-plane if a ď 0 goes from 0 to ´8).

But all this is not uniform with respect to n. Roughly speaking, z n paq is close to nν if a ! n and close to pn `1qν if a " n. But for the wave equation, a is precisely proportional to the frequency, hence of order n. We can be more precise. We have 

1 ln ˇˇˇ1 `γ 1 ´γ ˇˇˇa nd Rez n pγnνq ´nν Ý ÝÝÝÝ Ñ nÑ`8 # 0 if γ ă 1, ν if γ ą 1.
These results were finally written in an appendix of [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF].

These last properties were not used in [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF]. They gave an intuition for [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF] but could not be used directly since the cross section was no longer of dimension 1. However, it is interesting to have a good picture of the behavior of the eigenvalues in this quite simple setting, since being able to localize (even roughly) the eigenvalues of a Robin-type non-selfadjoint Schrödinger operator for any Robin coefficient will be an important issue for the Schrödinger and wave equations on (one dimensional) quantum graphs. See the discussions in Sections 3.1 and 4.4.2. See also Section 4.1.2 about the generalization of [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF] to a system of two coupled equations on the wave guide. 

Related topics

The analysis of the damped wave equation has been the main topic of my research, but I have also worked on slightly or completely different problems. In this chapter we will discuss quantum graphs, Agmon estimates, magnetic Laplacians, abstract spectral theory, a problem of control and some non-linear problems. These works opened new directions of research and give interesting perspectives for the future.

Spectrum of a non-selfadjoint quantum star graph

We begin with the analysis of the spectrum of a non selfadjoint quantum graph. With Gabriel Rivière, we were interested in the spectral properties of quantum graphs. Since we were also both interested by the damped wave equation, we chose to look at the damped wave equation on graphs. In [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF] we started with a toy model, namely a non-selfadjoint Schrödinger operator on a star graph.

Quantum graphs

A discrete graph is defined by a set V of vertices and a set E of edges, which can be seen as a subset of V ˆV. Two edges v 1 and v 2 are connected if and only if the pair pv 1 , v 2 q belongs to E. The graph can be oriented (the pairs pv 1 , v 2 q and pv 2 , v 1 q are distinct) or not. For spectral properties of discrete graphs, we refer for instance to [START_REF] Chung | Spectral Graph Theory[END_REF][START_REF] De Verdière | Spectres de Graphes. Number 4 in Cours spécialisés -Collection SMF[END_REF] and references therein.

In our context the edges have lengths. Then an edge e P E of length e ą 0 is identified with s0, e r and a natural distance can be defined between the points of the graph (vertices or points on edges). We use the terminology quantum graph when we consider a (differential) operator on the Hilbert space given by a metric graph. More precisely, the edge e is endowed with the Hilbert structure of L 2 p0, e q. Then Γ is endowed with the Hilbert structure defined by

L 2 pΓq " à ePE L 2 p0, e q.
Then we can consider a differential operator on each edge, usually of Schrödinger type, with boundary conditions at the vertices. For a complete introduction about quantum graphs we refer to [START_REF] Berkolaiko | Introduction to quantum graphs[END_REF].

In [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF], we consider the graph Γ with the simplest non-trivial topology. Given N P N ˚, it is defined by a set of N `1 vertices v, v 1 , . . . , v N and N edges e 1 , . . . , e N . The edge e j joins the vertex v j to the central vertex v. Then v has degree N and the other vertices have degree 1.

Our graph is not oriented, but we have to choose a convention for the parametrization of the edges. The edge e j has length j ą 0 and is parametrized by x j P r0, j s, with x j " 0 corresponding to the vertex v j and x j " j corresponding to the vertex v.

Then, given α P C, we define a Schrödinger operator H α on L 2 pΓq with (possibly) nonselfadjoint Robin condition at the central vertex. Its domain DompH α q is the set of functions u " pu j q 1ďjďN in À N j"1 H 2 p0, j q which satisfy the Dirichlet boundary condition at the exterior vertices @j P t1, . . . , N u , u j p0q " 0, (3.1) continuity at the central vertex v @j, k P t1, . . . , N u , u j p j q " u k p k q, (3.2)

and the Robin condition

N ÿ j"1 u 1 j p j q `αupvq " 0, (3.3) 
where upvq stands for the common value u j p j q, j P t1, . . . , N u. Finally, for u " pu j q 1ďjďN in DompH α q we define H α u P L 2 pΓq by pH α uq j " ´u2 j , @j P t1, . . . , N u .

(3.4)

The quadratic form associated with the operator H α is given by

xH α u, uy L 2 pΓq " N ÿ j"1 }u 1 j } 2 L 2 p0, j q `α |upvq| 2 . (3.5)
The vertex condition (3.3) is the analog of the usual Robin boundary condition B ν u`αu " 0 for Schrödinger operators on domains of R d (see (2.18), with a different convention for α). When α " 0 we recover the usual Kirchhoff (or Neumann) condition, and we see from (3.5) that the perturbation when α ‰ 0 corresponds to a Dirac potential at the central vertex v.

Notice that the particular case N " 1 corresponds to the Schrödinger operator on a bounded interval with mixed Dirichlet and Robin conditions at the boundary, while the case N " 2 is the Dirichlet Schrödinger operator on a bounded interval with a singular potential in the interval. 

Main spectral results

Our purpose in [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF] is to discuss some spectral properties of the operator H α . We are mainly motivated by the non-selfadjoint case α R R. Contrary to the selfadjoint case (see for instance [START_REF] Berkolaiko | Introduction to quantum graphs[END_REF]), little is known about the spectral properties of Schrödinger operators on graphs in the non-selfadjoint case (see however [START_REF] Hussein | Maximal quasi-accretive Laplacians on finite metric graphs[END_REF][START_REF] Hussein | Non-self-adjoint graphs[END_REF] for some general properties).

Here we only consider a model case, and considering more general graphs will be a natural perspective. However, this allows us to give results without any restriction on the lengths p j q 1ďjďN , when many results about quantum graphs are only given for rational lengths or for a generic family of lengths.

We are interested in the qualitative behavior of the large eigenvalues. The main motivation is the behavior of the imaginary parts, which are related to the decay for the corresponding time-dependent problem, but the results also give information about the real parts (and in particular we obtain new information even in the selfadjoint case). We describe the spectrum of H α by comparison with the spectrum of the Kirchhoff operator H 0 . We denote by pλ n p0qq nPN ˚the non-decreasing sequence (with λ 1 p0q ą 0) of eigenvalues of H 0 repeated according to their multiplicities.

We say that an operator T on the Hilbert space H is sectorial if there exists γ P R and θ P " 0, π 2 " such that the numerical range of T is included in the sector Σ γ,θ " tζ P C : |argpζ ´γq| ď θu. Then T is said to be maximal sectorial if σpT q Ă Σ γ,θ .

We begin with a rough localization of the eigenvalues of H α .

Proposition 3.1. Let α P C. The operator H α is maximal sectorial and its spectrum is given by an infinite sequence pλ n pαqq nPN ˚of isolated eigenvalues whose geometric and algebraic multiplicities are finite and coincide. These eigenvalues (repeated according to multiplicities) can be labeled in such a way that for n P N ˚large enough we have |λ n pαq ´λn p0q| ď dist `λn p0q, σpH 0 qz tλ n p0qu ˘.

Moreover, if τ P πZ j X πZ k (non-empty if j { k P Q) for some j, k P t1, . . . , N u, then τ 2 is a common eigenvalue of H 0 and H α , with the same multiplicities.

This proposition says that the Robin eigenvalues are in some sense not so far from the corresponding eigenvalues of the Kirchhoff operator. This gives in particular a Weyl law, already known for the latter. For R ą 0 we set N α pRq " Card tn P N ˚: Repλ n pαqq ď Ru .

The Weyl law for a Laplacian on a domain Ω of R d (or a manifold) depends on the dimension d and the size of the domain:

N Ω pRq " RÑ`8 |Ω| ω d R d 2 p2πq d ,
where ω d is the volume of the unit ball. Here the size of the metric graph is the sum of the lengths of the edges: |Γ| " ř N j"1 j . The following result agrees with the result already known on manifold or for selfadjoint quantum graphs. Theorem 3.2 (Weyl Law). Let α P C. We have

N α pRq " |Γ| ? R π `O RÑ`8 p1q.
For α P C and n P N ˚we set η n pαq " λ n pαq ´λn p0q. For Theorem 3.2 we only need a uniform bound on η n pαq. The main result in [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF] is a refined analysis of this difference. We set " p 1 , . . . , N q. Theorem 3.3. There exists a probability measure µ on C such that for any α P C ˚we have in the weak sense for measures

1 n n ÿ k"1 δ η k pαq α Ý ÝÝÝÝ Ñ nÑ`8 µ .
Moreover µ satisfies the following properties. (ii) If j { k P Q for all j, k P t1, . . . , N u then µ is a linear combination of Dirac distributions, including the one at 0.

(iii) If κ ¨ ‰ 0 for all κ P Z d z t0u then µ is absolutely continuous with respect to the Lebesgue measure on r0, 2 |Γ| ´1s and its support is exactly r0, 2 |Γ| ´1s.

If s belongs to the support of µ there exists an increasing sequence pn k q in N ˚such that η n k pαq goes to sα as k Ñ 8. The last result is about the rate of convergence for this limit. (i) There exists an increasing sequence pn k q kPN ˚such that

η n k pαq " O kÑ8 ˆ1 n 2 k ˙.
(ii) There exists Ω Ă pR ˚qN of Lebesgue measure 0 such that for P pR ˚qN zΩ, α P C, s P r0, 2 |Γ| ´1s and ε ą 0 we can find an increasing sequence pn k q kPN ˚such that

η n k pαq " sα `O kÑ8 ˜1 n 1 N ´ε k ¸.
By the last statement of Proposition 3.1, the sequence (η n pαq) has a vanishing subsequence except in the last case of Theorem 3.3, so the first statement essentially concerns the purely irrational case. Notice in particular that 0 always belongs to the support of µ .

In these results, we only describe the eigenvalues of H α by comparison with those of H 0 . However, since Impλ n pαqq " Impη n pαqq, this gives a direct description of the imaginary parts, which was our original motivation. The spacing between the real parts of λ 0 pαq and λ n pαq is nevertheless also an important result.

Ideas of proof

In the rest of this section, we comment some ideas of the proof of Theorem 3.3.

Comparison with the Dirichlet eigenvalues. We denote by H D the operator defined as H α with (3.3) replaced by the Dirichlet condition upvq " 0 at the central vectex (this corresponds to α " 8). Then the edges are disconnected, and it is easy to identify the non-decreasing sequence pλ D,n q nPN ˚of eigenvalues for H D (repeated according to multiplicities). By a standard argument based on the Min-max Theorem (see for instance [BK13, Th. 1.3.8]) we have

λ 1 p0q ď λ D,1 ď λ 2 p0q ď λ D,2 ď . . . ď λ n p0q ď λ D,n ď . . . (3.6)
Moreover, we have a similar result with λ n pαq instead of λ n p0q if α is real. Since the eigenvalues of the Dirichlet problem are easily identified, this gives a rough localization of λ n pαq when α is real. We cannot use this idea when α R R. Nevertheless, we can check that the two following facts remain valid in general. If λ is an eigenvalue of H D of multiplicity m P N ˚, then it is an eigenvalue of H α of (geometric and algebraic) multiplicity m ´1. On the other hand, the eigenvalues of H α which do not coincide with an eigenvalue of H D are of (geometric and algebraic) multiplicity 1. The difficulty is then to localize these other eigenvalues.

The secular equation. Let z P C ˚. Assume that z 2 is an eigenvalue of H α and that u is a corresponding eigenvector. By the Dirichlet condition (3.1), u j is necessarily of the form u j px j q " β j sinpzx j q, x j P r0, j s, (3.7)

for some β j P C. With this information only, we can already prove that lim sup

λPσpHαq RepλqÑ`8 |Impλq| ď 2 |Γ| |Impαq| . (3.8)
This implies in particular that σpH α q is included in a horizontal strip of C.

The conditions (3.2) and ( 3.

3) at the central vertex v give N linear equations with respect to the N coefficients β j , j P t1, . . . , N u. Then z 2 is an eigenvalue of H α if and only if the corresponding determinant is 0. In general, the determinant is some polynomial in sinpz j q and cospz j q, j P t1, . . . , N u. Here, with a star-graph, everything can be explicited. We obtain the secular equation F 0 pz q `α z F D pz q " 0, (3.9)

where for y " py 1 , . . . , y d q P C d we have set

F 0 pyq " N ÿ j"1 cospy j q ź k‰j sinpy k q and F D pyq " N ź j"1 sinpy j q.
The determinant F 0 pz q corresponds to the case α " 0. This is the determinant for the Kirchhoff operator. On the other hand, F D pz q is the determinant corresponding to the Dirichlet condition at v. For y P C N and z P C such that F D pyq ‰ 0 and F D pz q ‰ 0 we set Ψpyq " ´F0 pyq F D pyq " ´N ÿ j"1 cotanpy j q and ψpzq " Ψpz q.

Then z 2 P CzσpH D q (remember that σpH α q X σpH D q is already understood) is an eigenvalue of H α if and only if ψpzq " α z .

(3.10)

Perturbation of the Kirchhoff eigenvalues. The family of operators pH α q αPC is analytic with respect to α (family of type B in the sense of [START_REF] Kato | Perturbation Theory for linear operators[END_REF]). At least for α small the eigenvalues of H α are in some sense close to the eigenvalues of H 0 . The next step is to show that the eigenvalues of H 0 cannot move too far as long as α stays in a compact set of C.

Let n P N ˚such that λ n p0q ‰ λ D,n (in particular, λ n p0q is a simple eigenvalue of H 0 ). The idea is to find a bounded domain ω n such that ω n XσpH 0 q " tλ n p0qu and Bω n XH tα " H for t P r0, 1s. By continuity of the spectrum, this will imply that H α has exactly one simple eigenvalue in ω n . For the star graph, we can use the explicit expression for ψ. Using the Taylor expansion around τ n " a λ n p0q, we can prove that (3.10) with α replaced by tα cannot have a solution on the circle C `τn , 8|α| τnψ 1 pτnq ˘when n is large. In particular there is an eigenvalue λ n pαq of H α which remains "close" to λ n p0q. Then, by Taylor expansion again, we can deduce that η n pαq " 2α ψ 1 pτ n q `Opτ ´1 n q.

(3.11)

At this stage, we have roughly localized some eigenvalues of H α . For n P N ˚, if λ n p0q coincides with a Dirichlet eigenvalue, then it is also an eigenvalue of H α and we set λ n pαq " λ n p0q (the multiplicities agree), otherwise there is an eigenvalue λ n pαq close to λ n p0q (both are simple).

We have used the continuity of the eigenvalues of H tα to see how the eigenvalues of H 0 move to those of H α . It could also happen that some new eigenvalues appear at infinity. From the analysis of ψ again, we check that the eigenvalues of H tα for t P r0, 1s all stay in a region of C which only has bounded connected components, so this phenomenon cannot occur here. Thus, we have identified all the eigenvalues of H α . For some of them we have η n pαq " 0 (this happens if some lengths are commensurable), and for the others the difference η n satisfies (3.11).

The Barra-Gaspard measure and definition of µ . We observe that the leading term in (3.11) is simply linear with respect to α. For a better understanding of the sequence pη n pαqq nPN ˚, the next step is the analysis of the sequence pψ 1 pτ n qq nPN ˚. This is a quantity which only depends on the τ n , n P N ˚.

For this we use the measure introduced by Barra and Gaspard in [START_REF] Barra | On the level spacing distribution in quantum graphs[END_REF] to study the level spacing of H 0 . See also [START_REF] Keating | Value distribution of the eigenfunctions and spectral determinants of quantum star graphs[END_REF][START_REF] Berkolaiko | Relationship between scattering matrix and spectrum of quantum graphs[END_REF]. We see F 0 as a function on the N -dimensional torus T N . We set Z " y P T N : F 0 pyq " 0 ( , so that τ 2 is an eigenvalue of H 0 if and only if τ P Z. For t ě 0 we set ϕ t " rt s in T N .

Here we focus on the case where κ¨ ‰ 0 for all κ P Z d z t0u (otherwise ϕ t lives in a subtorus of T N , the general case is considered in [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF]). In this case Z 0 " Zz t0u is a submanifold of dimension N ´1 in T N to which any with positive components is transverse. For this last property we use again the explicit expressions available for the case of a star graph. The contribution of a small neighborhood of 0 in Z will be small and will not play any role. On Z 0 we consider the Barra-Gaspard measure

µ BG " | ¨νpyq| µ Z0 , (3.12) 
where µ Z0 is the Lebesgue measure on Z 0 and νpyq is a normal unit vector. Using in particular unique ergodicity, we see that if g is a continuous and compactly supported function on Z 0 we have 1

n n ÿ k"1 gpϕ τ k q ÝÝÝÑ nÑ8 π |Γ| |T N | ˆZ0 g dµ BG .
Then the measure µ of Theorem 3.3 is given by

µ " π |Γ| |T N | Φ ˚µBG , where Φpyq " 2 ∇Ψpyq ¨ .
When some lengths are commensurable, ˇˇT N ˇˇhas to be replaced by the size of the sub-torus in which the flow ϕ t is dense, and there is in µ a Dirac mass at 0, corresponding of the eigenvalues which do not move with α.

From the expression of µ we can then prove the properties given in Theorem 3.3. We do not discuss this part of the proof here.

It is natural to wonder if we can recover the same results on a more general quantum graph. Some possible extansions of the results of [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF] will be discussed in Section 4.4.2.

Agmon estimates for non-accretive Schrödinger operators

In this paragraph we briefly discuss the result of [START_REF] Krejčiřík | Non-accretive Schrödinger operators and exponential decay of their eigenfunctions[END_REF] about some non-accretive Schrödinger operators. This is a joint work with David Krejčiřík, Nicolas Raymond and Petr Siegl.

The motivation for this paper was the Agmon estimates for a large class of non-selfadjoint Schrödinger operators. The so-called Agmon estimates measure the decay of the eigenfunctions of a Schrödinger operator in the classically forbidden region.

If we consider on R the case of a confining real valued potential V with minimum at 0 (for instance, V pxq " x 2 ), then a classical particle of energy E will necessarily stay in the neighborhood of 0 defined by tx P R : V pxq ď Eu. This is not the case for a quantum particle, but an eigenfunction of the operator ´B2

x `V pxq corresponding to the eigenvalue E decays exponentially fast outside this region, and the rate of decay is given by the distance to the classical region as defined by the Agmon (pseudo) metric a pV pxq ´Eq `dx 2 .

More generally, in a non-confining setting and for more general operators, the decay of eigenfunctions was studied for eigenvalues smaller than the bottom of the essential spectrum. We refer for instance to [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Scrödinger operators[END_REF]. See also [START_REF] Hislop | Introduction to Spectral Theory with applications to Schrödinger Operators[END_REF]Ch. 3]. The Agmon estimates have then been extended in many settings. For a review, see for instance the talk [START_REF] Helffer | Agmon estimates along 40 years[END_REF] and references therein.

The purpose of [START_REF] Krejčiřík | Non-accretive Schrödinger operators and exponential decay of their eigenfunctions[END_REF] is to show that we have a similar phenomenon when the particle is confined by the imaginary part of the potential. We also consider magnetic Laplacians, and it turns out that the magnetic field actually plays exactly the same role. We can even go further and show that if the imaginary part of the potential or the magnetic field becomes large, then we can allow a (smaller) negative real part for the potential. As a typical example, we can consider on L 2 pRq the operator

´d2 dx 2 ´x2 `ix 3 ,
whose numerical range covers the whole complex plane. In fact, much wilder potentials are allowed. The setting of [START_REF] Krejčiřík | Non-accretive Schrödinger operators and exponential decay of their eigenfunctions[END_REF] is the following. We consider an open and connected subset Ω of R d , V P C 1 p Ω, Cq and A P C 2 p Ω, R d q. The magnetic matrix is B " pB j A k ´Bk A j q 1ďj,kďd . We set

B; V " a 1 `|B| `|V |.
Conditions sufficient for all the results of the paper are

pReV q ´" o |x|Ñ`8 ` B; V |∇V | `|∇B| " o |x|Ñ`8 ` B; V 3 2 

˘.

The second assumption prevents strong osclillations for the coefficients. The power 3 2 is an improvement compared to previous papers on related subjects. The first condition says that the negative real part has to be small at infinity compared to the imaginary part or the magnetic matrix, as discussed above. The purpose is then to define and give spectral properties for the electromagnetic operator L " p´i∇ `Aq 2 `V.

We are thus considering Schrödinger operators which are not even accretive. We first define the operator. The form domain is

V " ! u P L 2 pΩq : p´i∇ `Aqu P L 2 pΩq, B; V 1 2 u P L 2 pΩq
) .

We cannot apply a standard version of the representation theorem, so we use a generalized version given in [START_REF] Almog | On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent[END_REF]. This defines a closed operator L with domain

DompL q " u P V : p´i∇ `Aq 2 u `V u P L 2 pΩq ( .
The next step is to prove that we have separation of the spectrum, namely DompL q " u P V : p´i∇ `Aq 2 u P L 2 pΩq and V u P L 2 pΩq ( .

The main result is then the following. For E P R we set Σ E " tζ P C : Repζq `|Impζq| ă Eu . B; V pxq then any ζ P Σ γ1µ´γ2 is such that pL ´ζq is Fredholm with index 0 and the spectrum of L in Σ γ1µ´γ2 consists of isolated eigenvalues with finite algebraic multiplicities.

(ii) Given λ P Σ γ1µ´γ2 we define the corresponding Agmon distance on Ω by d Ag,λ px, yq " inf γPC 1 px,yq ˆ1 0 a pγ 1 B; V pγptqq ´γ2 ´Repλq ´|Impλq|q `ˇγ 1 ptq ˇˇdt,

where C 1 px, yq is the set of continuous and piecewise C 1 path γ : r0, 1s Ñ Ω with γp0q " x and γp1q " y. Let x 0 P Ω be fixed. If λ is an eigenvalue of L then for any ψ in the corresponding algebraic eigenspace we have e 1´ε 3 d Agp¨,x 0 q ψ P L 2 pΩq.

Absence of embedded eigenvalues for a magnetic Laplacian

In this paragraph we present [START_REF] Raymond | Absence of embedded eigenvalues for translationally invariant magnetic Laplacians[END_REF]. This joint work with Nicolas Raymond is about the absence of embedded eigenvalues in the essential spectrum of a magnetic Laplacian on R 2 . We consider a magnetic field B which is invariant with respect to one variable. We set Bpx, yq " bpxq for some b P C 1 pR; Rq. A corresponding vector potential A " pA 1 , A 2 q is given by A 1 px, yq " 0 and, for some a 0 P R,

A 2 px, yq " apxq " a 0 `ˆx 0 bpsq ds. (3.13) 
Then we consider the (selfadjoint) operator L " p´i∇ ´Aq 2 " ´B2

x ``´iB y ´apxq ˘2, defined on the domain DompL q " u P L 2 pR 2 q : p´i∇ ´Aqu, p´i∇ ´Aq

2 u P L 2 pR 2 q ( .
The spectrum of L is purely essential. The purpose is to prove, under some assumptions on b, that there are no eigenvalues in (some parts of) the spectrum of L . In some cases, the spectrum of L can even be purely absolutely continuous. Such results cannot be true in general since for a constant and non-zero magnetic field B, the spectrum of L consists of eigenvalues of infinite multiplicities, given by the Landau levels p2n ´1q |B|, n P N ˚(so σpL q " σ ess pL q " σ p pL q in this case).

Let φ ˘" lim xÑ˘8 apxq.
It is already known [START_REF] Iwatsuka | Examples of absolutely continuous Schrödinger operators in magnetic fields[END_REF] that if φ `" φ ´" ˘8 or if bpxq has two distinct finite and non-zero limits at ´8 and `8, then L has an absolutely continuous spectrum (and in particular, no eigenvalues). Our two main results in [START_REF] Raymond | Absence of embedded eigenvalues for translationally invariant magnetic Laplacians[END_REF] are the following.

Theorem 3.6. Assume that the limit φ ´exists in R Y t˘8u. Assume that there exist α P s ´1, `8rz t0u and c 1 , C ą 0 such that bpxq "

xÑ`8 c 1 x α and ˇˇb 1 pxq ˇˇď C x α´1 , x ě 0.

Then L has no eigenvalue.

We could similarly consider the cases where b is replaced by ´b or where the behavior of b is prescribed near ´8. Notice that Theorem 3.6 covers in particular situations where bpxq goes to 0 or to `8 for x Ñ `8.

In the second theorem, we consider situations where b goes faster to 0 at infinity. We assume that φ ´and φ `are finite but with φ `´φ ´" 1 (the case φ ´´φ `" 1 is similar). For instance, we assume φ ´" 0 and φ " φ `" 1.

Theorem 3.7. Assume that b takes positive values, that it is integrable and that b 1 pxq " Opx N q for some N ě 0 as x Ñ `8. We choose a 0 " ´0 ´8 bpsq ds in (3.13), so that φ ´" 0 and φ :" φ `" }b} L 1 pRq . Then we assume that a P L 1 pR ´q and a ´φ P L 1 pR `q.

(i) σpL q " r0, `8r.

(ii) L " L φ has no eigenvalue in " φ 2 4 , `8" . 
(iii) Let η φ be such that η φ " oplnpφq ´6q as φ Ñ `8. Then there exists φ 0 ą 0 such that for φ ě φ 0 the operator L " L φ has no eigenvalue smaller than η φ φ 2 .

The question of existence of eigenvalues in

" η φ φ 2 , φ 2 4 "
remains open in this case.

The proofs of these two results are based on a Fourier transform with respect to y and a careful analysis of the family of one-dimensional Schrödinger operators L ξ " ´B2

x ``ξ ´apxq ˘2.

In particular, a refined version of the harmonic approximation is provided to give a precise description of the eigenvalues of L ξ .

Reduction of dimension in an abstract setting

This paragraph is devoted to the paper [START_REF] Krejčiřík | Reduction of dimension as a consequence of norm-resolvent convergence and applications[END_REF], written with David Krejčiřík, Nicolas Raymond and Petr Siegl.

This work was motivated by a Schrödinger operator with non-selfadjoint Robin condition in a shrinking layer. More precisely, we consider a closed, orientable, smooth hypersurface Σ in R d without boundary, and we denote by ν : Σ Ñ S d´1 a unit normal vector field which specifies the orientation of Σ. We assume that Σ has a tubular neighborhood: for some ε ą 0 the map Θ ε : ps, tq Þ Ñ s `εtνpsq is injective on Ω " Σ ˆr´1, 1s and defines a diffeomorphism from Ω to its image Ω ε " Θ ε pΩq.

We set Σ ˘,ε " Θ ε pΣ ˆt˘1uq. Given a smooth function α : Σ Ñ C we define α ˘,ε on Σ ˘,ε by α ˘,ε ps ˘ενpsqq " αpsq. Then we consider on L 2 pΩ ε q the operator P ε defined as the usual Laplace operator on Ω ε subject to the Robin boundary condition

B ν u `α˘,ε u " 0 on Σ ˘,ε .
This is a very particular (PT-symmetric) choice of Robin coefficients, but a more general setting could be similarly considered. Then the purpose is to prove that when ε Ñ 0 the spectral properties of P ε are close to those of an effective operator P eff " ´∆Σ `Veff on L 2 pΣq. Here ´∆Σ is the usual Laplace-Beltrami operator on Σ and V eff is a potential which depends on the geometry and the Robin coefficient α:

V eff " |α| ´2αRepαq ´αpκ 1 `¨¨¨`κ d´1 q,
where κ 1 , . . . , κ d´1 are the principal curvatures.

The convergence of P ε to P eff is in the sense of the norm of the resolvent. More precisely, we denote by Π the projection of L 2 pΩq on functions which do not depend on t. For u P L 2 pΩq and ps, tq P Ω we set pΠuqps, tq " 1 2 ´1 ´1 ups, θq dθ. Moreover, for ε ą 0 small enough, an explicit unitary operator U ε : L 2 pΩ ε q Ñ L 2 pΩ, w ε ds dtq is defined, for some w ε : Ω Ñ R bounded and bounded away from 0 uniformly in ε. In the following result, P eff is seen as an operator on ΠL 2 pΩq. Theorem 3.8. Let K be a compact subset of ρpP eff q. There exist ε 0 ą 0 and C ě 0 such that for z P K and ε Ps0, ε 0 s we have z P ρpP ε q and

› › pP ε ´zq ´1 ´U ´1 ε pP eff ´zq ´1ΠU ε › › LpL 2 pΩεqq ď Cε.
Notice that the convergence in the sense of the norm-resolvent is very strong and we can deduce important properties for P ε with ε ą 0 small from the properties of P eff . We say that we have reduced the dimension since a d-dimensional problem is reduced to a pd ´1qdimensional problem, which can be significantly simpler.

There were already many results of this kind in the literature for selfadjoint operators. The common aspect is that the spectral properties of a parameter-dependent operator are well described by those of an effective operator when the parameter goes to some limit. However, in the previous literature, this similarity is hidden in the various technical steps specific to each situation. In [START_REF] Krejčiřík | Reduction of dimension as a consequence of norm-resolvent convergence and applications[END_REF], we give a unified abstract result, described below. This includes various settings such as the semiclassical Born-Oppenheimer approximation, a problem on a shrinking tubular neighborhood as above, or the similar problem on a fixed domain but for a large Robin parameter α. Reduction of dimension is already known in some of these contexts, but the abstract result also provides new results. Here we only describe the abstract result, but these examples of applications are discussed in [START_REF] Krejčiřík | Reduction of dimension as a consequence of norm-resolvent convergence and applications[END_REF].

The abstract setting is the following. Given a measure space Σ and a family of Hilbert spaces H s , s P Σ, we set H " À sPΣ H s . A vector in H is a family pφ s q sPΣ , where each φ s belongs to H s , and ´sPΣ }φ s } 2 Hs dσpsq ă `8. We consider on H a selfadjoint operator of the form

L " S ˚S `à sPΣ T s ,
where S is densely defined and T s is selfadjoint and non-negative for all s P Σ.

Typically, if we consider on R 2 an operator of the form ´h2 ∆ `V with V ě 0 then we can take Σ " R, S " ´ihB s and T s " ´B2 t `V ps, tq for each s P R. Then we consider a function s P Σ Ñ γ s such that γ s ě γ for some γ ą 0. For s P Σ we denote by Π s the spectral projection of T s on r0, γ s r. We define Π P LpHq by Πφ " pΠ s φ s q sPΣ for φ " pφ s q sPΣ , and we set Π K " Id ´Π. We assume that DompSq is invariant under Π.

In a typical example, the bottom of the spectrum of T s is given by a simple eigenvalue and γ s is the second eigenvalue of T s , so that Π s is the orthogonal projection on the eigenspace corresponding to the first eigenvalue. After having chosen a corresponding eigenvector, Π s φ s is characterized by a scalar and Πφ can be identified with a function on Σ.

We set L eff " ΠL Π. This is an operator on ΠH with domain ΠHXDompL q. The purpose is to compare L with the simpler operator L eff . As an intermediate step we consider the operator x L " L eff `L K , where L K " Π K L Π K on H. Then we have σp x L q " σpL eff q Y σpL K q and for z P ρp x L q such that z R rγ, `8r we have

› › ›p x L ´zq ´1 ´pL eff ´zq ´1Π › › › LpHq ď 1 distpz, rγ, `8rq .
Thus the main result is about the difference between L and x L . We consider η 1 pzq, η 2 pzq, η 3 pzq and η 4 pzq which are explicit functions of z P C, γ and }rS, Πs} LpHq (see (1.5) in [START_REF] Krejčiřík | Reduction of dimension as a consequence of norm-resolvent convergence and applications[END_REF]). Then we have the following estimate. Theorem 3.9. Let z P ρp x L q. Assume that

1 ´η1 pzq › › p x L ´zq ´1› › ´η2 pzq ą 0.
Then z P ρpL q and

› › pL ´zq ´1 ´p x L ´zq ´1› › ď η 1 pzq › › pL ´zq ´1› › › › p x L ´zq ´1› › `η2 pzq › › pL ´zq ´1› › `η3 pzq › › p x L ´zq ´1› › `η4 pzq.
Combining these two results we get information on the resolvent of L from properties on the resolvent of L eff .

The regret with Theorem 3.9 is that even if it is quite general, it does not include the non-selfadjoint setting of Theorem 3.8. However, the proofs follow the same ideas and use common intermediate results. It would be interesting to be able to prove an abstract theorem which also includes non-selfadjoint settings.

Observability for a Kolmogorov equation

In this paragraph we consider a question of control for a degenerate evolution equation. This is a joint work with Jérémi Dardé [START_REF] Dardé | Critical time for the observability of Kolmogorov-type equations[END_REF].

Setting and main result

We consider a two-dimensional domain Ω of the form T ˆI, where T " R{2πZ and I " s ´ ´, `r for some ˘ą 0. A general point in Ω is denoted by px, yq with x P T and y P I. Let q P C 3 p Ī, Rq such that qp0q " 0 and minpq 1 q ą 0. The model case is qpyq " y. Let T ą 0. We consider a Kolmogorov equation of the form $ ' & ' % B t u `qpyq 2 B x u ´Byy u " 0, on s0, T rˆΩ, u " 0, on s0, T rˆBΩ, u |t"0 " u 0 P L 2 pΩq.

(3. [START_REF] Royer | Local energy decay and diffusive phenomenon in a dissipative wave guide[END_REF] We say that the Kolmogorov equation (3.14) is observable through BΩ in time T ą 0 if there exists C ą 0 such that for any u 0 P L 2 pΩq the solution u of (3.14) satisfies

}upT q} 2 L 2 pΩq ď C ˆT 0 }B ν uptq} 2 L 2 pBΩq dt. (3.15) 
We can replace BΩ by any non-empty open subset of BΩ. We can also consider observability through a non-empty open subset ω of Ω. In this case, we replace (3.15) by

}upT q} 2 L 2 pΩq ď C ˆT 0 }uptq} 2 L 2 pωq dt. ( 3.16) 
The critical time T c P r0, `8s for the observability of (3.14) through BΩ is the infimum of the times T ą 0 for which we have observability. In particular, (3.14) is not observable in time T ą 0 through BΩ if T ă T c . Moreover, since (3.14) is dissipative (the norm of uptq is a non-increasing function of time), (3.14) is observable in any time T ą T c .

The main motivation is the null-controllability by the boundary for the adjoint problem. Given f P L 2 p0, T ; L 2 pBΩqq we consider the problem

$ ' & ' % B t u ´qpyq 2 B x u ´Byy u " 0, on s0, T rˆΩ, u " f,
on s0, T rˆBΩ, u |t"0 " u 0 P L 2 pΩq.

(3.17) Then we say that the Kolmogorov equation (3.17) is null-controllable by BΩ in time T ą 0 if for any u 0 P L 2 pΩq there exists f P L 2 p0, T ; L 2 pBΩqq such that the solution u satisfies upT q " 0. It is classical in control theory (see for instance [Cor07, Th. 2.44]) that the nullcontrollability for (3.17) is equivalent to the observability for (3.14). This problem is similar to the better understood Grushin equation (see Section 4.2 below). For the Kolmogorov equation, it is proved in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF] that (3.14) is observable through any open subset of Ω if qpyq 2 is replaced by y, and that there is a critical time T c ě a 2 2 for the observability when qpyq 2 " y 2 and ω " T ˆra, bs for some 0 ă a ă b ă `. With the same ω, it is also proved in [START_REF] Beauchard | Degenerate parabolic operators of Kolmogorov type with a geometric control condition[END_REF] that (3.14) cannot be observable in any time for qpyq 2 replaced by y n with n ě 3. There are also many results about parabolic equations generated by ge neral quadratic operators, including the usual Kolmogorov equation (see for instance [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] and references therein).

Our purpose in [START_REF] Dardé | Critical time for the observability of Kolmogorov-type equations[END_REF] is to prove for the Kolmogorov equation a result similar to the result of [START_REF] Beauchard | Minimal time issues for the observability of Grushin-type equations[END_REF] about the Grushin equation. The main result is the following. Theorem 3.10. Let

T

´" 1 q 1 p0q ˆ0 ´ ´|qpsq| ds and T `"

1 q 1 p0q ˆ 0 qpsq ds.

There exists

T c P " minpT ´, T `q, maxpT ´, T `q‰ such that the Kolmogorov equation (3.14) is observable through BΩ in any time T ą T c , but not in time T ă T c .
We observe that we get exactly the critical time T c in any configuration for which

T ´" T `.
This is in particular the case in a symmetric setting ( ´" `and q is odd).

Since the coefficients in (3.14) do not depend on x, we can consider the Fourier series of the solutions with respect to x. Setting upt, x, yq " ÿ nPZ u n pt, yqe inx , u n pt, yq " 1 2π ˆT e ´inx upt, x, yq dx, the Fourier coefficients u n pt, yq are solutions of

$ ' & ' %
B t u n ´Byy u n `inqpyq 2 u n " 0, on s0, T rˆI, u n pt, ´ ´q " u n pt, `q " 0, for t Ps0, T r, u n p0q P L 2 pIq.

(3.18) Then (3.15) holds if and only if we have observability for u n uniformly in n P Z. This means that there exists C ą 0 such that for n P N (the case n negative follows by complex conjugation of (3.18)) and a solution u n of (3.18) we have

}u n pT q} 2 L 2 pIq ď C ˆT 0 `|B y u n pt, ´ ´q| 2 `|B y u n pt, `q| 2 ˘dt. (3.19) 

Spectral properties of the Kolmogorov operator

The analysis of (3.18) depends on the spectral properties of the non-selfadjoint operator K n " ´Byy `inqpyq 2 , with domain DompK n q " H 2 pIq X H 1 0 pIq Ă L 2 pIq.

In particular we use the decay of the corresponding semigroup.

Proposition 3.11. Let γ ă q 1 p0q ? 2 .

There exists C ą 0 such that for n P N, a solution u n of (3.18) and θ 1 , θ 2 P r0, T s with

θ 1 ď θ 2 , one has }u n pθ 2 q} 2 L 2 pIq ď Ce ´2γ ? npθ2´θ1q }u n pθ 1 q} 2 L 2 pIq .
We notice that the semigroup e ´tKn is regularizing, even if it is not as small as the propagator of the heat equation for high frequencies.

We also give spectral properties for the operator K " ´B2 y `qpyq 2 B x on Ω, and deduce that (3.14) is well posed, dissipative and regularizing (in particular the normal trace in (3.15) makes sense).

Near y " 0 (where the problem is degenerate) the coefficient qpyq 2 looks like q 1 p0q 2 y 2 . To prove Proposition 3.11, we compare K n with the Davies operator H n on L 2 pRq:

H n " ´B2 y `inq 1 p0q 2 y 2 , DompH n q " tu P H 2 pRq : y 2 u P L 2 pRqu.
The basic spectral properties of H n are well known (see for instance [Hel13, §1.3]). The spectrum of H n is given by a sequence pλ n,k q kPN ˚of (geometrically and algebraically) simple eigenvalues given by λ n,k " p2k ´1q ? nq 1 p0qe iπ 4 . As is often the case for a non-selfadjoint operator, the size of the resolvent of H n is far from being controled by the distance between the spectral parameter and the spectrum (see [START_REF] Pravda-Starov | A complete study of the pseudo-spectrum for the rotated harmonic oscillator[END_REF][START_REF] Hitrik | Resolvent estimates for elliptic quadratic differential operators[END_REF][START_REF] Krejčiřík | Pseudospectra in non-Hermitian quantum mechanics[END_REF]). However, given γ ă q 1 p0q ? 2 there exists c ą 0 such that sup

Repzqďγ ? n › › pH n ´zq ´1› › LpL 2 pRqq ď c ? n . (3.20) 
To recover similar properties for K n , we compare the resolvents of K n and H n . More precisely, with the natural restriction operator 1 I : L 2 pRq Ñ L 2 pIq we have the following estimate.

Proposition 3.12. Let γ ă q 1 p0q 2 . Then for n large enough the eigenvalues of K n have real parts greater that γ ? n. Moreover,

sup Repzqďγ ? n › › pK n ´zq ´1 ´1I pH n ´zq ´11 I › › LpL 2 pIqq " o nÑ`8 ˆ1 ? n ˙.
We deduce Proposition 3.11 from Proposition 3.12 and the standard semigroup theory (see for instance [EN00, Th. V. 1.11]).

Another consequence of Proposition 3.12 is that the spectrum of K n is in some sense "close" to the spectrum of H n . More precisely, we are interested in the "smallest" eigenvalue. By perturbation theory, we get the following result. Proposition 3.13. There exists a sequence pλ n q nPN in C such that λ n is an eigenvalue of K n for all n and λ n " ? nq 1 p0qe iπ 4 `o nÑ`8 p ? nq.

(3.21)

Positive result: observability in large time

To prove that we have observability in time T ą maxpT ´, T `q we proceed in two steps. The first step consists in proving that (3.19) actually holds in arbitrarily small time. But not uniformly in n. For large n we have the following estimate.

We see that ψ 2 has to be negative. Moreover, |ψ 1 | has to be bounded away from 0, but the sign of ψ 1 is not important. We also see from (3.23) that if ψ 1 is positive it is enough to observe on the left, and that it is enough to observe from the right if ψ 1 is negative. We could indeed observe from one side only, but it would be expansive to go through 0. Since we observe from both sides, we proceed as follows. Given ε ą 0 and then δ ą 0 small enough, we apply Proposition 3.15 with ψ 1 ą 0 on r´ ´, δs and with ψ 1 ă 0 on r´δ, `s. What we need is an estimate on upτ 2 q. However, since upτ 2 q is smaller that upsq for any s P rτ 1 , τ 2 s, we have

}upτ 2 q} 2 L 2 pIq ď 3e κ ? n τ 2 ´τ1 ˆτ1 `2τ 2 3 2τ 1 `τ2 3 › › ›e ´?nϕ upsq › › › 2 L 2 pIq ds. (3.25) 
We only use the estimate for s P " 2τ1`τ2 3 , τ1`2τ2 3 ‰ since otherwise θ (and hence φ) can be large. Proposition 3.14 follows.

Negative result: non-observability in small time

In this paragraph, we discuss the non-observability for (3.14) when T ă minpT ´, T `q. For this, we construct a sequence of solutions which contradicts (3.15). We need a solution of (3.14) which is small at the boundary. Since the (imaginary) potential nqpyq 2 is large away from 0 when n is large, we use the Agmon estimates described in Section 3.2. Following [START_REF] Krejčiřík | Non-accretive Schrödinger operators and exponential decay of their eigenfunctions[END_REF], we prove the following estimate. There exists C ą 0 such that for n P N, u P DompK n q and λ P C with |Repλq|`|Impλq| ď E ? n, we have

› › e Wn,ε u 1 › › 2 L 2 pIq `?n › › e Wn,ε u › › 2 L 2 pIq ď C ? n }u} 2 L 2 pIq `C ? n › › e Wn,ε pK n ´λqu › › 2 L 2 pIq .
For large n we see that W n,ε pyq is close to ? nκ ε pyq, where κ ε pyq " p1 ´εq ? 2 ˆy 0 qpsq ds.

We consider the eigenvalue λ n of K n given by Proposition 3.13 and a corresponding normalized eigenfunction ψ n . Since ψ 2 n " ´λn ψ n `inqpyq 2 , we can deduce the following estimate.

Proposition 3.17. There exists C ą 0 such that for n P N ˚we have

› › e ? nκε ψ 1 n › › 2 L 8 pIq ď Cn }ψ n } 2 L 2 pIq .
Finally, we set u m pt, x, yq " e ´λmt e imx ψ m pyq, and we get a sequence of solutions of (3.14) for which (3.15) cannot hold if T ă minpT ´, T `q.

3.6 Nonlinear evolution equations with singular potentials 3.6.1 A singularly perturbed Gross-Pitaevskii equation Most of my works concern spectral theory and linear PDEs. I have also developed with Stefan Le Coz a collaboration around some non-linear problems. The starting point was a question of Stefan about the spectral properties of the linearized operator which appeared in one of his problems. We discussed more and more about it and, one thing leading to another, I was aware of the whole problem and I finally joined the project.

The purpose of [START_REF] Ianni | On the cauchy problem and the black solitons of a singularly perturbed gross-pitaevskii equation[END_REF] (with Isabella Ianni and Stefan Le Coz) is the analysis of the black solitons of the Gross-Pitaevskii equation with Dirac potential ´iB t u ´B2

x u `γδu " p1 ´|u| 2 qu, (3.27) subject to the boundary condition

|upt, xq| Ý ÝÝÝ Ñ |x|Ñ8 1, @t P R. (3.28) 
The difficulty is then twofold. Technical problems arise from the presence of the singular potential and the non standard condition at infinity. For instance, one of the difficulties due to (3.28) is that we have to work in a functional space which is not even a vector space:

E " ! u P H 1 loc pRq : B x u P L 2 pRq, p1 ´|u| 2 q P L 2 pRq ) .

It can however be endowed with a complete metric structure with the distance

d 0 pu, vq " }B x u ´Bx v} L 2 pRq `› › |u| 2 ´|v| 2 › › L 2 pRq `|up0q ´vp0q| .
This work has been an occasion to get familiar with questions and technics of non-linear analysis. The question here is the stability of the stationary solutions (or black solitons), solutions of ´B2 x u `γδu " p1 ´|u| 2 qu.

The solutions can be explicited. Up to phase shift, they are given by

κpxq " tanh ˆx ? 2 ˙, b γ pxq " tanh ˆ|x| ´cγ ? 2 ˙, bγ pxq " coth ˆ|x| `cγ ? 2 ˙,
where c γ is an explicit parameter ( bγ is only defined for γ ă 0). We get a first result of stability by minimization of the energy (i) The energy E reaches its (finite) minimum on

Epuq " 1 2 ˆR |B x u| 2 dx `1 4 ˆR `1 ´|u| 2 ˘2 dx `γ 2 |up0q| 2 . ( 3 
G γ " # te iθ b γ , θ P Ru if γ ą 0, te iθb γ , θ P Ru if γ ă 0. (ii)
The set G γ is stable for the flow of (3.27):

@ε ą 0, Dδ ą 0, @u 0 P E, d 0 pu 0 , G γ q ă δ ùñ sup tPR d 0 puptq, G γ q ă ε.

The other stationary solutions are expected to be unstable. In r12s we prove the linear instability of κ. If we write u " κ `η, then the perturbation η satisfies an equation of the form B t η `Lη `N pηq " 0 where N pηq is non-linear in η and Lη " ´i`B 2 x η ´γδη `p1 ´κ2 qη ´2κ 2 Repηq ˘.

Then κ is said to be linearly unstable if 0 is an unstable solution of the linear equation B t η `Lη " 0.

Theorem 3.19. If γ ą 0 then κ is linearly unstable.

The proof relies on the spectral analysis of the R-linear operator L. We can rewrite L as a R-linear matrix operator acting on pRepηq, Impηqq:

L " ˆ0 ´Lγ Ĺγ `0 ˙, L γ
´" ´B2 x ´p1 ´κ2 q, L γ `" ´B2

x `2 ´3p1 ´κ2 q.

The operators L γ ´and L γ `are defined on the same domain

D γ " u P H 2 pR ˚q X H 1 pRq : u 1 p0 `q ´u1 p0 ´q " γup0q ( . (3.30) 
Then a careful spectral analysis of L γ ´and L γ `shows that L has a negative eigenvalue whenever γ ą 0.

Unexpectedly, the main difficulty and hence the main part in [START_REF] Ianni | On the cauchy problem and the black solitons of a singularly perturbed gross-pitaevskii equation[END_REF] turned out to be the analysis of the Cauchy problem (see already [START_REF] Gérard | The Cauchy problem for the Gross-Pitaevskii equation[END_REF] without singular potential). Before all the discussion above, we check that the problem (3.27) is globally well posed and that the energy E is conserved. The first step is the analysis of the propagator of the linear part, generated by the operator associated with the quadratic form u Þ Ñ }u 1 } 2 L 2 pRq `γ |up0q|

2 . It is given by H γ " ´B2

x , DompH γ q " D γ . The difficulty is to deal with this not so usual operator in the completely unusual space E. By Fourier transform we can see that e ´itH0 ´Id maps E to H 1 pRq. Since E `H1 pRq " E, we deduce that e ´itH0 maps E into itself.

We cannot use the Fourier transform for e ´itHγ when γ ‰ 0. Instead, we compute explicitely the kernel of Γptq " e ´itHγ ´e´itH0 . For instance, for γ ă 0 it is given by Γpt; x, yq " ´|γ| 2 Conservation of the energy is also a non-trivial issue. Finally, the analysis of the Cauchy problem follows the standard strategy but, again, this standard strategy had to be adapted to our non standard setting. We finally have a well-posedness result. Theorem 3.20. For u 0 P E there exists a unique solution u P C 0 pR, E q of (3.27) such that up0q " u 0 . Moreover Epuptqq " Epu 0 q for all t P R.

ˆ
Here, a solution is in the sense given by the Duhamel formula. For a more regular u 0 we have a solution in a stronger sense (in particular with B t uptq P C 0 pR, L 2 pRqq). We also have a result of continuity with respect to the initial condition, but for a slightly different distance on E.

Notice that a problem on R with singular potential can be seen has a problem on a graph with two edges of infinite length. The jump condition which appears in (3.30) is then the analog of the Robin condition at the unique vertex (see (3.3)).

A nonlinear Klein-Gordon equation with delta potentials

After [START_REF] Ianni | On the cauchy problem and the black solitons of a singularly perturbed gross-pitaevskii equation[END_REF], we started to discuss with François Genoud and Elek Csobo (who was at that time Ph.D. student under the supervision of F. Genoud and S. Le Coz) another problem of stability for standing waves, suggested by a question of Masahito Ohta.

We now consider a non-linear Klein-Gordon equation, again on the real line with a singular potential. We also consider a singular term involving B t u. This looks like a singular damping, but with a purely imaginary (conservative) coefficient. More precisely, given m ą 0 and γ, α P R, the problem considered in [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF] is

$ ' ' & ' ' % B 2 t u ´B2 x u `m2 u `γδu `iαδB t u ´|u| p´1 u " 0, on R `ˆR, upt, xq Ý ÝÝÝ Ñ |x|Ñ8 0, @t ą 0,
pu, B t uq |t"0 " pf, gq P H 1 pRq ˆL2 pRq.

(3.31)

The first step in the analysis of (3.31) is again the Cauchy problem. Here there is a subtility due to the term γδu, which is not usual for a wave equation. The operator corresponding to the linear part is

W " ˆ0 1 B 2 x ´m2 0 ˙,

with domain

DompWq " pu, vq P `H2 pR ˚q X H 1 pRq ˘ˆH 1 pRq : u 1 p0 `q ´u1 p0 ´q " γup0q `iαvp0q

( .

This defines a skew-adjoint operator on the space H " H 1 pRq ˆL2 pRq, endowed with the norm defined by

}pu, vq} 2 
H ,m,γ " › › u 1 › › 2 L 2 pRq `m2 }u} 2 L 2 pRq `γ |up0q| 2 `}v} 2 L 2 pRq .
The problem is that if γ is too negative, this norm is not a norm. In this case, we replace m by some µ ě m large enough. We loose the skew-adjointness, but W still generates on pH , }¨} H ,µ,γ q a strongly continuous semigroup. Then we can proceed with the local well-posedness for (3.31). Moreover, the following energy is a constant of the motion for pu, vq " pu, B t uq:

Epu, vq " 1 2 }B x u} 2 L 2 pRq `m2 2 }u} 2 L 2 pRq `1 2 }v} 2 L 2 pRq `γ 2 |up0q| 2 ´1 p `1 ˆR |u| p`1 dx.
The charge is another constant of the motion:

Qpu, vq " Im ˆR uv dx ´α 2 |up0q| 2 .
The main issue of [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF] is then the question of orbital stability for the standing waves. For this we follow the general theory of Grillakis, Shatah and Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF].

A standing wave is a solution of (3.31) of the form e iωt Φ ω pxq, where Φ ω " pϕ ω , iωϕ ω q is a solution of the stationary equation E 1 pΦ ω q `ωQ 1 pΦ ω q " 0.

Non-trivial solutions exist if and only if m 2 ´ω2 ą pγ ´αωq 2 {4. A standing wave e iωt Φ ω ptq is said to be orbitally stable if for any ε ą 0 there exists δ ą 0 such that the following property holds for any solution U ptq of (3.31):

}U p0q ´Φω } H ď δ ùñ sup t inf θPR › › U ptq ´eiθ Φ ω › › H ď ε.
This property implies in particular that a solution starting close to Φ ω is defined for all t P R.

The method is based on the symplectic structure of the problem (see [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF]). We can rewrite (3.31) in the form J U 1 ptq " E 1 pU ptqq, U ptq " puptq, B t uptqq, where J pu, vq P H Þ Ñ p´iαδv, uq P H ˚is skew-symmetric.

Then the criterion for orbital stability of the standing wave e itω0 Φ ω0 depends on two quantities. The first is the sign of dQpΦ ω q dω ˇˇω "ω0

.

Since Φ ω is explicitely known, this can be analysed by tedious but straightforward computations. To conclude to orbital stability or instability (we also discuss linear stability and instability), we also need some spectral properties for the operator R´1 L 2 ω pΦ ω q, where R : H Ñ H ˚is defined by p´B 2

x `1, Id L 2 q and L ω " E `ωQ. I do not detail the assumptions here, but it concerns the positiveness of essential spectrum and the number of negative eigenvalues. This is the main part of the paper [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF]. However, all these properties depend on the parameters γ, α and ω (the strength p of the non-linearity also plays a role), so the results of stability and instability have to be splitted into many different cases and I choose not to give the precise statements here. See Section 4 in [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF].

Chapter 4

Projects and perspectives

After having discussed my past research in the previous chapters, the remaining part of this thesis is devoted to the present and the future. In this last chapter I present unpublished (submitted) results, works in progress and some longer term perspectives.

Some perspectives discussed here are parts of ongoing projects and can be continuations of results already mentioned above, but this thesis is also an occasion to propose new directions of research.

New questions about local energy decay

We begin with the projects which are close to the main subject of this thesis, namely the local energy decay for wave or Schrödinger equations.

Asymptotic profile for the wave equation

In [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] (see the discussion in Section 1.7), it is proved that the solution of the Schrödinger equation (1.13) behaves for large times like a solution of the free problem (1.6), in the sense of Theorem 1.25. There are two natural continuations for this work.

These two questions, though quite different, are expected to be related to the same difficulty. This difficulty is in fact already present in [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF]. The time decay in Theorem 1.25 depends on the parameter ρ 0 which measures the spatial decay of the coefficients in (1.10). This parameter is assumed to be not greater than 1. It is not the purpose of this report to go into technical details, but the reason is that the smallness given by the decay of the coefficients of the operators θ σ pzq in (1.71) is limited (as always because of the restriction of the Sobolev indices in Proposition 1. [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF]), and our proof would not give a better result with ρ 0 ą 1. In [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] this is not a problem since we are mostly interested in the case ρ 0 ą 0 small, but this becomes a more serious problem for the following two perspectives.

The main perspective in that direction is to prove an analog of Theorem 1.25 for the wave equation (1.12). The proof of Theorem 1.25 is written in such a way that it is robust with respect to dissipative perturbations, and adding a damping should not be a major problem. However, even for the undamped case, the asymptotic profile is not completely clear, and the problem comes from the gradient of the solution.

The method of [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] should work for the solution itself and its time derivative. We expect that they should look like a solution of the free wave equation (1.1). From (1.21) we can guess what should be the initial condition pf 0 , g 0 q for the asymptotic profile. However, there is an additional difficulty for the gradient of the solution. We have said above that we cannot gain as much as we wish with the inserted factors. Here, because of the gradient, the method does not give anything at all. There is something more to understand. In particular, we could be in the same situation as for Theorem 2.19, where the asymptotic profile for the gradient is not the gradient of the asymptotic profile.

The motivation for having such a result for the wave equation is twofold. In even dimension, we already have the optimal decay in [START_REF] Bouclet | Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds[END_REF] for the undamped case (for the solution itself but not for its derivatives), so a result like Theorem 1.25 would give the leading term of the asymptotic expansion (which would be new in any case) and in particular the optimal decay (which is not known in the dissipative case). This would already be an important improvement.

In odd dimension, the situation is different. The proofs of resolvent estimates and local energy decay based on the Mourre method do not see the parity of the dimension, so the results in odd dimensions are actually limited. Comparing the solution of the perturbed problem to the solution of the model case (which decays much faster in odd dimensions) is a way to reintroduce the difference of parity in the method, which is necessary to improve the results in odd dimensions. A generalization of [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] to the wave equation would improve the estimates of [START_REF] Bouclet | Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds[END_REF] in odd dimensions, even for the undamped equation.

Another natural continuation of [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] is to give a more precise asymptotic expansion for the solution of the Schrödinger equation (1.13). In [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF], we only give the first term of the expansion. It could be interesting to go further.

The leading term for the resolvent is simply given by the resolvent identity (1.70). We can apply the resolvent identity once more to get rests with two factors θ σ pzq. The same strategy should work to estimate these rests, and we can iterate as many times as we wish. In fact, the restriction in the proof of [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] is not about the number of terms in the asymptotic expansion, but about the size of the rest. As above, we could problably consider N factors θ σ pzq in the rests, but we would not get an optimal result if N ρ 0 ě 1. Going further would require a new improvement in the proof.

Finally, a related question is to consider the settings of Chapter 2. With damping at infinity we have already worked by comparison with a model problem, this is even what motivated [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] and the perspectives above. But I have never considered a general metric perturbation of the Laplacian. We have proved a result for a perturbed setting in [START_REF] Joly | Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation[END_REF] (see Proposition 2.20), but the assumptions on the perturbation are too strong. This is something I have not tried yet, but considering a long range perturbation of (2.1) would probably raise the same kind of difficulties as the long range perturbation of (1.12).

We could also consider all the intermediate situations (see the introduction of Chapter 2). In particular, not much is known and I am still curious about the critical case apxq » C x ´1.

We can also consider problems with a damping going to infinity (see [START_REF] Freitas | The damped wave equation with unbounded damping[END_REF] for some basic properties of the wave operator in this case).

Systems on non-selfadjoint equations

I have recently started to consider questions of energy decay for a system of two equations. So far I have only considered model problems, but this kind of systems naturally appear in physics. For instance, there are already results about the energy decay for the Lamé system in [START_REF] Burq | Microlocal defect measures, application to the Lamé system[END_REF][START_REF] Daoulatli | Local energy decay for the elastic system with nonlinear damping in an exterior domain[END_REF].

System of Schrödinger equations on a wave guide In 2019, I invited Radhia Ayechi and Ilhem Boukhris for two months in Toulouse. They were at that time Ph.D. students in Sousse with Moez Khenissi. I suggested to look together at a generalization of [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF] (see Section 2.7). Then 2020 was a complicated time, but Ilhem came one more month. We finally finished the work at the end of 2021, which gave the preprint [START_REF] Ayechi | Energy decay for a system of Schrödinger equations in a wave guide[END_REF].

The setting in [START_REF] Ayechi | Energy decay for a system of Schrödinger equations in a wave guide[END_REF] is as in [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF] a straight wave guide with one-dimensional cross section: Ω " R d´1 ˆs0, rĂ R d for some ą 0. We consider on Ω a system of two Schrödinger equations with damping and coupling at the boundary. Here they are only effective on R d´1 ˆt0u, and we consider a Neumann boundary condition on the other side (as in [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF], various situations could be similarly considered). Given a ą 0 (the absorption coefficient) and b P R ˚(the coupling coefficient), we consider the problem

# ´iB t u ´∆u " 0, ´iB t v ´∆v " 0, on R `ˆΩ, (4.1) 
with boundary conditions

$ ' & ' %
B ν upt; x, 0q " iaupt; x, 0q `ibvpt; x, 0q, B ν vpt; x, 0q " ´ibupt; x, 0q, B ν upt; x, q " B ν vpt; x, q " 0, @t ą 0, @x P R d´1 , (

and with initial data pu, vq |t"0 " pf, gq P L 2 pΩq ˆL2 pΩq.

Notice that only the first component u is dissipated at the boundary. However, the second component v is indirectly dissipated through the coupling terms. The masses of u and v separately have no reasons to be non-increasing, but it is the case for their sum:

d dt `}uptq} 2 L 2 pΩq `}vptq} 2 L 2 pΩq ˘" ´2a ˆRd´1 |upt; x, 0q| 2 dx ď 0.
The question is the decay of this total mass. The answer is that even if neither the damping nor the coupling satisfies the geometric condition (the rays of light parallel to the boundary do not see the boundary), and even if the second component v is not dissipated, we have exponential decay for both components. 

˘,

where pu, vq is the solution of (4.1)-(4.3).

As in [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF], the analysis on the wave guide is related to the properties on L 2 p0, qˆL 2 p0, q » L 2 p0, ; C 2 q of the transverse operator

T a,b " ˆ´B 2 0 0 ´B2 ˙,
defined on the domain

U P H 2 p0, ; C 2 q : U 1 p0q `iM a,b U p0q " 0, U 1 p q " 0 ( , M a,b " ˆa b ´b 0 ˙.
We prove that we have a spectral gap for the eigenvalues of T a,b , and that we have a Riesz basis of L 2 p0, ; C 2 q made with corresponding (generalized) eigenfunctions.

In [START_REF] Royer | Exponential decay for the Schrödinger equation on a dissipative wave guide[END_REF], the eigenvalues pλ n p0qq of T 0 are simple, and a square root z n paq of λ n paq cannot cross the lines Repzq P Nν (remember that ν " π{ ), so by continuity it is possible to conclude that the eigenvalues of T a remain simple with a rough localization.

Here it is no longer that simple. The model operator T 0,0 has double eigenvalues pnνq 2 , n P N. We can check that for pa, bq small the eigenvalue pnνq 2 splits into two simple eigenvalues if a 2 ‰ 4b 2 and it stays a double eigenvalue if a 2 " 4b 2 (in this case we have a Jordan block if a ‰ 0). Moreover, the square roots of the eigenvalues can cross the lines Repzq P νN and even for large n the (generalized) eigenfunctions are not close to being orthogonal. However, despite of these additional difficulties, we can prove that we indeed have a spectral gap and the Riesz basis property.

As a byproduct of this analysis, we also deduce the Weyl Law for the eigenvalues of T a,b . We can see T a,b as a Schrödinger operator on a graph with two edges of same length , with a non-standard vertex condition between them. We denote by N a,b pRq the number of eigenvalues of T a,b (counted with multiplicities) with real part smaller than R. Then the following result is analogous to Theorem 3.2 with |Γ| " 2 :

N a,b pRq " 2 ? R π `O RÑ`8 p1q. (4.4) 
Even if it was not necessary for the proof of Theorem 4.1 or for (4.4), we have continued the analysis of the localization of the eigenvalues of T a,b , and in particular the question of the number of square roots of eigenvalues in the region C n " tRepzq Psnν, pn `1qνru. We prove in particular the following observations.

• pnνq 2 is a double eigenvalue of T 0,0 . Its square root nν splits into z `pa, bq and z ´pa, bq such that z `pa, bq 2 and z ´pa, bq 2 are eigenvalues of T a,b .

• One (say z `pa, bq) always belongs to C n .

• If a 2 ą 4b 2 ą 0, then it is also the case for z ´pa, bq and z ´pa, bq ‰ z `pa, bq. The eigenvalues of T a,b are simple.

• If a 2 " 4b 2 , then z `pa, bq " z ´pa, bq and the eigenvalues of T a,b have algebraic multiplicities 2 (but geometric mutiplicities 1). This kind of additional remarks is motivated by curiosity (this is already a good reason), but not only. For Theorem 4.1 it is enough to understand the eigenvalues λ n pa, bq for n " a `|b|, but this is not the case for the wave equation. Thus such a localization of all the eigenvalues is an interesting step toward the analysis of the wave equation.

A natural continuation of this work would be to consider a system of wave equations on a wave guide. We will discuss this issue in the Euclidean space in the next paragraph. But, as will be discussed in Section 4.4.2, we are also interested in the wave equation in general quantum graphs.

It would be interesting to prove rough localization of the eigenvalues on a general compact quantum graphs. To get a better intuition, we could begin by computing what happens for the same problem with N equations, or considering only 2 edges but with a general nonselfadjoint vertex. We will continue this discussion in Section 4.4.2.

System of wave equations

In Chapter 2, we have discussed several problems about the wave equation with damping at infinity. Each situation (Euclidean space, wave guide, periodic setting) raised different and challenging difficulties. A new question, which turns out to be again different and challenging, is the case of a system of several equations with coupling.

With Lassaad Aloui and Moez Khenissi, we have started to discuss the simplest case, namely a system of two wave equations with constant coupling and damping on R d . More precisely, given a ą 0 and b P R ˚as above, we consider on R d the system

# B 2 t u ´∆u `m1 u `bB t v `aB t u " 0, B 2 t v ´∆v `m2 v ´bB t u " 0, (4.5) 
with initial conditions pu, B t uq| t"0 " pf 0 , f 1 q and pv, B t vq| t"0 " pg 0 , g 1 q in H 1 pR d q ˆL2 pR d q.

The coefficients m 1 and m 2 are non-negative. When m j " 0 the corresponding equation is a wave equation, while m j ą 0 gives a Klein-Gordon equation.

Compared to the previous case, we have damping and coupling everywhere. However, as above, only the first component is dissipated and v can only be dissipated via the coupling.

We look at the decay of the energy

Epu, v; tq " }B t uptq} 2 L 2 pR d q `}∇uptq} 2 L 2 pR d q `m1 }uptq} 2 L 2 pR d q `}B t vptq} 2 L 2 pR d q `}∇vptq} 2 L 2 pR d q `m2 }vptq} 2 L 2 pR d q .
The first result is that the contributions of high frequencies for the global energy decay uniformly and exponentially, so both components are dissipated.

For low frequencies, the wave and Klein-Gordon equations have different properties, and the four situations (m 1 " 0{m 1 ‰ 0 and m 2 " 0{m 2 ‰ 0) will give four completely different behaviors.

When m 1 ą 0 and m 2 ą 0, there is no difficulty with low frequencies and the global energy of u and v decays exponentially. On the other hand, if m 1 " 0 or m 2 " 0 then 0 belongs to the spectrum of the corresponding operator

W " ¨0 1 0 0 ∆ ´m1 ´a 0 ´b 0 0 0 1 0 b ∆ ´m2 0 ‹ ‹ ' ,
defined on the Hilbert completion E of SpR d q 4 for the norm

}pu 0 , u 1 , v 0 , v 1 q} 2 E " }∇u 0 } 2 L 2 `m1 }u 0 } 2 L 2 `}u 1 } 2 L 2 `}∇v 0 } 2 L 2 `m2 }v 0 } 2 L 2 `}v 1 } 2 L 2 .
We have to understand the contribution of low frequencies. As in Section 2.2 we can use the Fourier transform. Let M pξq, ξ P R d , be defined as W with ´∆ replaced by |ξ| 2 (as in (2.7)). For a system Wave-Klein-Gordon (m 1 " 0, m 2 ą 0), 0 is a simple eigenvalue of M p0q and we recover a behavior similar to the case of a single equation. In particular, we can observe that u behaves like a solution of the heat equation. If m 2 " 0 then 0 is a double eigenvalue of M p0q. The behavior of the contribution of low frequencies is governed by the behavior of these two eigenvalues (counted with multiplicities) for ξ ‰ 0 small (as well as the corresponding eigenprojections). And this strongly depends on the parameters m 1 , m 1 , a and b. We should get the asymptotic profile in each case, but with a much wilder behavior than with a single equation.

We have already four parameters in all the computations, but we could (should) consider another one. Everywhere, we have considered the speed of propagation c normalized to 1. This is harmless for a single equation, but for (4.5) this means that we consider the same speed for the two components u and v. It would be interesting to introduce the quotient of these two speeds and see how the results would depend on this new parameter.

The problem (4.5) is the simplest possible system of wave equations on an unbounded domain. It will then be natural to consider more evolved settings, as is done for a single equation, and systems of equations which appear in concrete problems.

Local energy decay in more general geometric settings

Most of my works about the damped wave equation are set on asymptotically Euclidean settings. I also considered the problem on a wave guide and on an asymptotically periodic setting, and this highlighted new interesting phenomena.

In [START_REF] Bouclet | Low frequency resolvent estimates on asymptotically conical manifolds[END_REF] (see Section 1.5) we have proved resolvent estimates for the Schrödinger equation on an asymptotically conical manifold. It would be interesting to generalize the results about the wave equation to this setting.

Recently, V. Grasselli has proved in this setting all the results of [START_REF] Bouclet | Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds[END_REF]. See [Gra]. Thus, she proved in this context low frequency resolvent estimates and the corresponding local energy decay for the Schrödinger and wave equations. In a similar context, R. Wang [Wana] has also generalized the results of [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF] about the exponential decay for the Klein-Gordon equation.

Concerning the Schrödinger equation, the obvious question is the adaptation of the result of [START_REF] Royer | Low frequency asymptotics and local energy decay for the Schrödinger equation[END_REF] to this setting. Is it true that solution of the Schrödinger equation on an aymptotically conical manifold M looks like (in the sense of Theorem 1.25) the solution of the free Schrödinger equation on the corresponding conical model M 0 for large times ? And how does the geometry affect the initial condition for the asymptotic profile ?

Similarly, a result analogous to those of Chapter 2 could be proved on asymptotically conical manifolds with damping at infinity, or on more general wave guides. And, again, it would be interesting to see what would be the asymptotic profiles in these settings.

The results on the asymptotically conical manifold are expected to be proved with the technics developed in this setting on the one hand, and the strategy developed for the Euclidean setting on the other hand.

A less marked path would be to consider more general space-time geometries, in the spirit of the recent papers [START_REF] Metcalfe | Local energy decay for scalar fields on time dependent non-trapping backgrounds[END_REF] and [Kof] (the later being in some sense a generalization of [START_REF] Bouclet | Local energy decay for the damped wave equation[END_REF] on a Lorentzian manifold).

Null-controllability for a Grushin equation

In 2021, a few months after the publication of [START_REF] Dardé | Critical time for the observability of Kolmogorov-type equations[END_REF] about observability for a Kolmogorov equation (see Section 3.5), Armand Koenig arrived as a post-doc in Toulouse. Armand had already several results on similar problems (see [START_REF] Koenig | Non-null-controllability of the Grushin operator in 2D[END_REF][START_REF] Duprez | Control of the Grushin equation: non-rectangular control region and minimal time[END_REF]), so it was natural to continue this study together with Jérémi Dardé. In this paragraph, we discuss the preprint [START_REF] Dardé | Null-controllability properties of the generalized two-dimensional Baouendi-Grushin equation with non-rectangular control sets[END_REF] and further perspectives on the subject.

Let T ą 0, ˘ą 0, I "s ´ ´, `r and Ω " I ˆT. Given an open subset ω of Ω, we are interested in the null-controllability for the following Baouendi-Grushin equation

$ ' & ' % B t u ´B2
x u ´qpxq 2 B 2 y u " 1 ω f, on s0, T rˆΩ, upt, ¨q " 0, on BΩ, for all t Ps0, T r, u |t"0 P L 2 pΩq. (4.6) This is analogous to (3.17), except that the degenerate term is now a diffusive term. Less important, the control is in the domain and not at the boundary (and not important at all, we have also switched the roles of x and y). The coefficient q is again regular and vanishes at and only at 0. Then (4.6) is a heat equation which is degenerate on the line x " 0.

In the first results about the Grushin equation, the control (or observability) region ω is usually rectangular (of the form ra, bs ˆT, for ra, bs Ă I). In [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF], for qpxq 2 " |x| γ and 0 ă a ă b ă `, it is proved that there is always observability if γ ă 2 (for any open ω in this case), never if γ ą 2, and that there is a finite critical time T c ě a 2 2 if γ " 2. In [START_REF] Beauchard | 2d Grushin-type equations: minimal time and null controllable data[END_REF], it is proved that T c " 0 if a " 0 and that the critical time is exactly a 2 2 if ω " T ˆpr´b, ´as Y ra, bsq. Finally, [BDE20] deals with the case where q is general and the observation is on one side of the boundary, which is essentially equivalent to observing throught a rectangular neighborhood of the boundary (this is the result that we have proved for the Kolmogorov equation in [START_REF] Dardé | Critical time for the observability of Kolmogorov-type equations[END_REF]).

In [START_REF] Koenig | Non-null-controllability of the Grushin operator in 2D[END_REF][START_REF] Duprez | Control of the Grushin equation: non-rectangular control region and minimal time[END_REF], results are given for more general control domains. However, these results are only proved for the model case qpxq " x. Our purpose in [START_REF] Dardé | Null-controllability properties of the generalized two-dimensional Baouendi-Grushin equation with non-rectangular control sets[END_REF] is to extend this analysis for more general coefficients (see the precise assumptions for each result). In this picture, a domain of control ω as in Theorem 4.4, a path γ as in Theorem 4.2 (dotted line, with δpγ x q " maxpδpγ x psqqq) and a line segment ra, bs ˆty 0 u as in Theorem 4.3. We can choose a and γ x arbitrarily close to γ 2 , which gives the critical time T c " δpγ 2 q{q 1 p0q. Theorem 4.2 is a positive result of null-controllability. It gives a sufficient condition on ω to prove observability for large times, which gives an upper bound for the critical time of null-controllability.

On the contrary, Theorem 4.3 provides a condition on ω for which we have a positive lower bound for the critical time, which means than we cannot have null-controllability in small times.

Finally, Theorem 4.4 gives a family of domains ω which satisfy the assumptions of both results and for which the lower and upper bounds for the critical time coincide. In this case, we have the precise critical time for the null-controllability of the Baouendi-Grushin equation (4.6).

For these statements we set δpxq " ˆx 0 qpsq ds, @x P I, and δp˘ ˘q " `8.

Theorem 4.2. Assume that q P C 3 pIq is such that qp0q " 0 and inf I q 1 ą 0. Assume that there exists a closed path γ " pγ x , γ y q P C 0 pT; ωq such that t´ ´u ˆT and t `u ˆT are included in different connected components of pI ˆTqzγpTq. Then the Baouendi-Grushin equation (4.6) is null-controllable on ω in any time T such that

T ą 1 q 1 p0q max sPT δ `γx psq ˘.
The main result in [START_REF] Dardé | Null-controllability properties of the generalized two-dimensional Baouendi-Grushin equation with non-rectangular control sets[END_REF] is the following.

Theorem 4.3. Assume that q P C 2 pIq is such that qp0q " 0, q 1 p0q ą 0 and qpxq ‰ 0 whenever x ‰ 0. Let ω be an open subset of I ˆT. Assume that there exist a P r´ ´, 0r, b Ps0, `s and y 0 P T such that, in Ī ˆT, `ra, bs ˆty 0 u ˘X ω " H.

Then the generalized Baouendi-Grushin equation (4.6) is not null-controllable on ω in time T such that T ă 1 q 1 p0q min `δpaq, δpbq ˘.

In particular, we never have null-controllability if s ´ ´, `rˆty 0 u X ω " H for some y 0 P T. Theorem 4.4. Assume that q P C 3 pIq is such that qp0q " 0 and inf I q 1 ą 0. Let γ 1 , γ 2 P C 0 pT; Iq such that γ 1 pyq ă γ 2 pyq for all y P T. We set

γ 1 " max ´0, max T γ 1 ¯and γ 2 " min ´0, min T γ 2 ¯.
Then the critical time for the null-controllability of (4.6) on ω " tpx, yq P I ˆT : γ 1 pyq ă x ă γ 2 pyqu is

T c " 1 q 1 p0q max `δpγ 2 q, δpγ 1 q ˘.
We do not discuss the general strategy of the proof but only emphasize one argument of the proof of Theorem 4.3. Instead of the (non-selfadjoint) operator K n which appeared in the analysis of the Kolmogorov equation in Section 3.5, we get after Fourier transform the (selfadjoint) operator P n " ´B2

x `n2 qpxq 2 (with DompP n q " H 1 0 pIq X H 2 pIq). To prove Theorem 4.3 we contradict the corresponding observability estimate (see (3.16)) if T is too small.

A key argument depends on the first eigenvalue λ n of P n (which is again close to the eigenvalue q 1 p0qn of the harmonic oscillator), and a corresponding eigenfunction ϕ n . Setting, for some ε ą 0, γ t,x pnq " e ´tpλn`1´q 1 p0qpn`1qq ϕ n`1 pxqe pn`1qδpxqp1´εq

we have to prove the following estimate on polynomials

› › › ÿ γ t,x pnqa n z n › › › L 8 pXq À › › › ÿ a n z n › › › L 8 pV q
, uniformly in t Ps0, T r and x P I, where X is a compact subset of C and V is an open and star-shaped (with respect to 0) neighborhood of X. For this, we use a result (see [START_REF] Koenig | Non-null-controllability of the Grushin operator in 2D[END_REF]Th. 18]) which requires estimates on a holomorphic extension of γ t,x on some domain of C. In particular, we need properties on the analytic extensions of λ ν and ϕ ν for Repνq ą 0. Thus we have to study P ν for some non-real parameters ν and, even in this setting, spectral properties of non-selfadjoint operators play an important role.

The results about null-controllability for the Grushin (discussed here) or the Kolmogorov (see Section 3.5) equations still only concern particular situations. Even if more and more general control domains ω and coefficients qpxq are considered, much remains to be understood.

In [START_REF] Dardé | Null-controllability properties of the generalized two-dimensional Baouendi-Grushin equation with non-rectangular control sets[END_REF], we have provided examples of control domains ω which are not covered by our results. Some geometries are not so complicated and it is frustrating not to be able to conclude in these cases.

Similarly, another assumption that we would like to relax is the increasingness of q in Theorem 4.2. We could also consider the case where q vanishes twice (then q 2 would form a double-well potential). The difficulty does not come from the arguments based on spectral theory, since these more general settings are more or less already understood. The main obstacle is probably the Carleman estimate used for the positive result (Proposition 3.14 in the context of [START_REF] Dardé | Critical time for the observability of Kolmogorov-type equations[END_REF]).

Of course, we would like to go further. For me, this first means a better understanding of the classical technics in control theory (Carleman estimates, the method of moments, how we can use the classical tools of microlocal analysis in this kind of context, etc.). This is a very interesting possible perspective.

Discrete spectrum at the strong magnetic field limit on a curved wave guide

In this section we discuss the preprint [START_REF] Bon-Lavigne | On Duclos-Exner's conjecture about waveguides in strong uniform magnetic fields[END_REF], written with Engerran Bon-Lavigne, Loïc Le Treust and Nicolas Raymond. This started with a discussion at the CIRM in June 2021.

The question is about the existence of discrete spectrum under the essential spectrum for a magnetic Laplacian on a two dimensional curved wave guide, at the strong magnetic field limit.

We consider a smooth and injective curve γ : R Ñ R 2 with |γ 1 | " 1. We assume that the algebraic curvature κ of γ is compactly supported. Then our curved wave guide is defined by Ω " Ω γ,δ " ΘpΩ 0,δ q, Ω 0,δ " Rˆs ´δ, δr, Θps, tq " γpsq `tN psq, where δ ą 0 is small enough and N psq " γ 1 psq K (with pa, bq K " p´b, aq).

We consider on Ω γ,δ a uniform magnetic field of intensity h ´1, with 0 ă h ! 1. If A is a well chosen vector potential corresponding to a field equal to 1, we consider on L 2 pΩq the operator P h,γ,δ " p´ih∇ ´Aq 2 , DompP h,γ,δ q " H 1 0 pΩq X H 2 pΩq. Without magnetic field, the Dirichlet Laplacian always has discrete spectrum if the wave guide is not straight [START_REF] Duclos | Curvature-induced bound states in quantum waveguides in two and three dimensions[END_REF]. However, it is also known that the magnetic field plays against the existence of discrete spectrum. It has even been conjectured by P. Duclos and P. Exner in the mid-nineties that the discrete spectrum of P h,γ,δ should be empty when h is small enough. In that direction, it is proved in [START_REF] Krejčiřík | Magnetic effects in curved quantum waveguides[END_REF] that if the magnetic field is compactly supported then there is no discrete spectrum in the strong field limit.

However, we give in [START_REF] Bon-Lavigne | On Duclos-Exner's conjecture about waveguides in strong uniform magnetic fields[END_REF] a sufficient condition to have discrete spectrum for a strong uniform magnetic field. Theorem 4.5. Assume that κ 2 has a unique maximum, which is non-degenerate. There exist δ 0 ą 0 and h 0 ą 0 such that for δ Ps0, δ 0 s and h Ps0, h 0 s we have inf σpP h,γ,δ q ă inf σ ess pP h,γ,δ q.

In particular, P h,γ,δ has non-empty discrete spectrum.

For the essential spectrum, we prove that it is equal to the essential spectrum of the straight wave guide Ω 0,δ , for which we can compute a lower bound. On the other hand, we use the Min-max Theorem to get an upper bound for the minimum of the spectrum. The argument is based on the equality inf σpP h,γ,δ q ´h " inf

ψPH 1 0 pΩqzt0u }p´ih∇ ´Aqψ} 2 L 2 pΩq ´h }ψ} 2 L 2 pΩq }u} 2 " inf uPH 1 0 pΩqzt0u 4h 2 ´Ω e ´2φ h |B z u| 2 dx ´Ω e ´2φ h |u| 2 dx .
The main parts of the proof are the construction of a good function φ and then the definition of a suitable fonction u which is in particular holomorphic on Ω except near the boundary (to satisfy the Dirichlet condition). This function φ already plays an important role in the choice of the vector field A.

In addition to its own interest for the Duclos-Exner conjecture, this result is a step toward the understanding of a similar property for the magnetic Dirac operator

P h,γ,δ " `p´ihB x1 ´A1 qσ 1 `p´ihB x2 ´A2 qσ 2 ˘2 " ˆ|´ih∇ ´A| 2 ´h 0 0 |´ih∇ ´A| 2 ´h˙.
This is the model Hamiltonian for a non-relativistic spin-1 2 particle, constrained to move in Ω, interacting with a magnetic field that is perpendicular to the plane. Spectral properties of this operator are studied in [START_REF] Barbaroux | On the semiclassical spectrum of the Dirichlet-Pauli operator[END_REF] when Ω is bounded. Our project is to consider as above the operator on a wave guide.

A first step could be as in [START_REF] Bon-Lavigne | On Duclos-Exner's conjecture about waveguides in strong uniform magnetic fields[END_REF] the existence of discrete spectrum, but the perspective is to prove as in [START_REF] Barbaroux | On the semiclassical spectrum of the Dirichlet-Pauli operator[END_REF] more precise asymptotics for the first eigenvalues. For the Duclos-Exner conjecture an upper bound for the bottom of the spectrum was enough, but we would like to prove asymptotic properties for the k-th eigenvalue at the strong field limit, both for the magnetic Laplacian and the Dirac operator. This is much more precise and would require in particular a better understanding on our wave guides of the functional spaces used in [START_REF] Barbaroux | On the semiclassical spectrum of the Dirichlet-Pauli operator[END_REF] and wave-guide versions of classical results such as the Paley-Wiener theorem.

4.4 Spectral theory on discrete and quantum graphs 4.4.1 Spectrum of the wave equation on a non-compact star-graph In Section 3.1, we have discussed the spectrum of a non-selfadjoint compact star graph. Here we discuss the result of the preprint [START_REF] Krejčiřík | Spectrum of the wave equation with Dirac damping on a non-compact star graph[END_REF] about the damped wave equation on a non-compact star-graph. This is a joint work with David Krejčiřík.

We have already seen that the energy of the wave does not necessarily decrease faster with a stronger damping. A natural question is then the optimal damping which will give the best decay.

This question has been addressed in [START_REF] Bamberger | A model for harmonics on stringed instruments[END_REF] in the case of a wave on a finite interval with singular damping in the middle. This was motivated by the analysis of stringed instruments. They argue that there is indeed an optimal strength for the damping. The problem of the wave on a finite string with Dirac damping has also been analysed in [ATH00, AHT01, CH08] (see also [START_REF] Ammari | Stabilization of elastic systems by collocated feedback[END_REF]§4.1.1]). The damped wave equation has also been discussed in star-shaped graphs in [START_REF] Ammari | Stabilization of star-shaped networks of strings[END_REF] (damping at the central vertex), [START_REF] Ammari | Stabilization of generic trees of strings[END_REF] (damping at a boundary vertex) or [START_REF] Assel | Optimal decay rate for the local energy of a unbounded network[END_REF] (local energy decay with one infinite edge).

In [START_REF] Krejčiřík | Spectrum of the wave equation with Dirac damping on a non-compact star graph[END_REF] we consider a star-graph with N infinite edges and damping at the only vertex. The graph can be identified with pR ˚qN (the edges are parametrized from the vertex to infinity). Given any α P C we consider the wave equation

B 2
t u j pt, xq ´B2 x u j pt, xq " 0, 1 ď j ď N, t ě 0, x ą 0, (

with continuity at the vertex u j pt, 0q " u k pt, 0q, 1 ď j, k ď N, t ě 0, (

(we denote by upt, 0q this common value) and the damping vertex condition N ÿ j"1 B x u j pt, 0q `αB t upt, 0q " 0. (4.9)

We really have damping when α ă 0 (the case α ą 0 would correspond to a supply of energy, while the case α P iR is conservative and has an interpretation in quantum mechanics, see Section 7 in [START_REF] Krejčiřík | Spectrum of the wave equation with Dirac damping on a non-compact star graph[END_REF]). Notice that the case N " 1 corresponds to a semi-infinite string with damping at the end, while the case N " 2 is an infinite string with singular damping. The corresponding operator is defined as follows. We denote by E the set of pairs pu, vq such that u 1 j , v j P L 2 p0, 8q for all j and u j p0q " u k p0q for all j, k (we denote by up0q this common value). This is a Hilbert space if the first component is quotiented by the space of constant functions on the graph. For u P 9

H 2 pR ˚qN we set u 2 " pu 2 j q. Then we define the operator W by We are interested in the spectral properties of this operator W, and the corresponding counterparts for the time dependent problem (4.7)-(4.9). We can check that ˘W is maximal accretive if ˘Repαq ě 0 (it is skew-adjoint if Repαq " 0). In particular, if Repζq ‰ 0 and RepζqRepαq ď 0 then ζ P ρpWq and

› › pW ´ζq ´1› › LpE q ď 1 |Repζq| .
We are interested in the spectrum in the half-plane where Repζq and Repαq have the same sign. This is a difficult question in general and little is known in that direction, but for this model setting we can proceed with explicit computation.

As already observed for a finite string, there is an abrupt change of properties for particular values of α. More precisely, we have the following result about the spectrum of W. Moreover, iR contains no eigenvalue nor residual spectrum of W α , and if α " ˘N then any ζ P C ˘is an eigenvalue of W α of geometric multiplicity 1 and infinite algebraic multiplicity.

To understand this behavior, we compute the resolvent of W. As expected, for ζ P C the norm of pW ´ζq ´1 in LpE q goes to `8 when α Ñ ˘N . The values α " ˘N also have a particular role for the wave equation (4.7)-(4.9). Notice that on each edge, the wave has an outgoing part which never sees the damping and behaves as the free wave equation on R. We are interested in the incoming part of the wave, which hits the vertex. The vertex conditions describe how the waves coming from all edges are reflected. In particular, the sum of the energies of all the reflected waves is equal (smaller, larger, respectively) than the energies of the incident waves if Repαq " 0 (Repαq ă 0, Repαq ą 0, respectively). It turns out that in the particular case α " ´N the incident waves are completely absorbed. And the problem is ill posed in the case α " N (we have no solution or an infinite number of solutions for positive times, depending on the initial conditions). Of course, these properties are reversed if we go backward in time. We refer to [START_REF] Krejčiřík | Spectrum of the wave equation with Dirac damping on a non-compact star graph[END_REF]Th. 2.4] for a more quantitative statement.

Other model problems on non-compact quantum graphs

The paper [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF] and the preprint [START_REF] Krejčiřík | Spectrum of the wave equation with Dirac damping on a non-compact star graph[END_REF] were about particular cases of non-selfadjoint quantum graphs, and it would be interesting to go further in various directions.

The first obvious question is the generalization of [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF] to more general graphs. The difficulties will come from the steps of the proof where we have used the explicit expression for the secular equation (3.9). For instance, it has been used to prove that the Neumann eigenvalues cannot escape too far (see the discussion before (3.11)) or to see that is always transverse to the submanifood Z 0 of T N (see before (3.12)). We have already thought about this while writing [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF]. Considering general compact quantum graphs will not be trivial, but we can certainly go beyond the star-graph.

Another natural continuation of [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF] is to consider the spectrum of the wave operator on a compact star graph (and then in a more general situation).

The main difference between the Schrödinger and wave equations is that instead of the operator H α defined by (3.1)-(3.4), we have to consider the operator H az where a is the absorption coefficient and z is the spectral parameter (this is completely similar to the wave with damping at the boundary, see (2.18)). Thus we have to work with the parameter α " az which goes to infinity when the spectral parameter z itself goes to infinity. Then the key argument that the eigenvalues of H α cannot go too far from those of H 0 is no longer valid.

We have seen as a byproduct of studies on wave guides that for one edge (see Section 1.6) or for two edges with particular vertex conditions (see Section 4.1.2) we can prove that eigenvalues stay in some bounded region of C for any α, but these results were again based on explicit computation (and we already had more difficulties with two edges than with one), so we have to find a more general argument to deal with more general graphs.

Notice that when all the edges have the same length, it is proved in [START_REF] Freitas | Eigenvalue asymptotics for the damped wave equation on metric graphs[END_REF] that there is a finite number of so-called spectral abscissas. With the terminology of Theorem 3.3, this means that the corresponding measure µ is a linear combination of Dirac masses (this is the analog of the second case therein). We expect that a similar result will hold with damping at the vertices. The difficulty, as in [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF], is to give a precise statement for any set of lengths (or at least a generic set of lengths, but including the case of irrationally dependent lengths). For a review of some known results about the stabilization of the wave equation on quantum graphs, we also refer to [START_REF] Zuazua | Control and stabilization of waves on 1-d networks[END_REF].

All the questions around [START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF] concern the contribution of high frequencies. If we consider non-compact quantum graphs, there will also be interesting phenomena for the contribution of low frequencies, as is the case for the wave on non-compact manifolds.

A non compact graph can be a graph with a finite number of infinite edges, as in [START_REF] Krejčiřík | Spectrum of the wave equation with Dirac damping on a non-compact star graph[END_REF], or a graph with an infinite number of edges. We give several examples (all with finite edges of equal length) in Let us briefly discuss for instance the case of trees. This is a particular example of quantum graph which has many applications.

Again, there is less literature on the spectral properties of quantum graphs than on the discrete ones, but this is now an active field. We refer for instance to [START_REF] Carlson | Hill's equation for a homogeneous tree[END_REF][START_REF] Solomyak | On the spectrum of the Laplacian on regular metric trees[END_REF] (and references therein) for early works about the spectrum of the Laplacian on quantum trees, and to [START_REF] Anantharaman | Absolutely continuous spectrum for quantum trees[END_REF] for an example of recent development.

It would be interesting to see what happens if we add some damping on the edges or at the vertices. Since I have not started the analysis, I have to remain vague about what can be expected, but this is a setting that I find exciting and that I would like to explore.

Another question which could be tested on a simple graph is the wave equation with random damping. Consider for instance the case of a wave equation on the line R with random singular damping at each integer. The damping coefficient a n at n P Z could be independent random variables (for instance they could all follow a Bernouilli distribution, so that there is damping with probability p and nothing with probability p1 ´pq). As usual, we could start with the Schrödinger operator, in which case we are closer to the classical Anderson model (see for instance [START_REF] Kirsch | An invitation to random Schrödinger operators[END_REF] for an introduction to random Schrödinger operators).

Resolvent estimates for the Schrödinger operator on a discrete graph

When I mention graphs, I mainly think about quantum graphs. However, even if discrete graphs have already been extensively studied, there are still exciting questions to be discussed.

As for quantum graphs, we can consider many different interesting settings, but I will only consider one problem in this parapraph. This is a project that I have started with Olivier Bourget and Diomba Sambou.

With Amal Taarabt, they have studied in [START_REF] Bourget | On the spectral properties of non-self-adjoint discrete Schrödinger operators[END_REF] various spectral properties (limiting absorption principle, resonances, etc.) for a non-selfadjoint Schrödinger operator on 2 pZq.

The Cauchy problem is completed by an initial condition u 0 at time t " 0. Notice that since γ is real, the generator of the linear part (the Laplacian on each edge, with these vertex conditions in the domain) is selfadjoint. Two constants of the motion are given by the mass and the energy: Our question on this model is the existence of blowing-up solutions. It is known that for the equation on the line, ´iB t u ´B2

M puq " }u}
x u ´|u| 4 u " 0, u |t"0 " u 0 , (4.11) the threshold between global existence of all the solutions and existence of blowing-up solutions is the mass of the ground state Q : x Þ Ñ 3

1 4 sechp2xq 1 2
(solution of Q 2 ´Q `Q5 " 0). If M pu 0 q ă M pQq then the solution of (4.11) is well defined for all times, and there exists u 0 with }u 0 } L 2 pRq " }Q} L 2 pRq such that the corresponding solution of (4.11) blows up in finite time. Indeed, given T ą 0 we can consider the solution given by pseudo-conformal transform of the standing wave e it Qpxq, given by upt, xq " 1 ?

T ´t e i T ´t e ´ix 2 4pT ´tq Q ˆx T ´t ˙.

Then we have }uptq} L 2 pRq " }Q} L 2 pRq and }B x uptq} L 2 pRq " tÑT ´1 T ´t .

On the graph, it is expected that the blowing-up solution with minimal mass has a similar behavior with blow-up at some point of one of the edges. If we only consider radial solutions (u j pt, xq does not depend on j), then the threshold for global existence is increased. With γ " 0, we can construct a similar solution by replacing Q by Q Γ , defined by considering a copy of Q |R`o n each edge. This is no longer a solution if γ ‰ 0. Our purpose is to construct a blowing-up solution at the minimal mass M pQ Γ q. The idea is still to construct a blowing-up solution based on the profile Q Γ . More precisely, we apply the method of [START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS[END_REF][START_REF] Le Coz | Minimal mass blow up solutions for a double power nonlinear schrödinger equation[END_REF], where the existence of minimal mass blowing-up solutions is proved in other contexts. We also refer to the recent preprint [TX], dealing with the problem on the line.

The expected result is that given E ‹ P R there exists T ą 0 and a radial solution u on r0, T r such that M puq " M pQ Γ q, Epuq " E ‹ , and

}B x uptq} L 2 pΓq "
tÑT ´1 pT ´tq .

Nonlinear damped wave equations

All the works about the damped wave equation presented in Chapters 1 and 2 concern in various settings the linear equation (1.12). I have also worked on some non-linear problems (see Sections 3.6 and 4.5.1), but it was not about the damped wave equation. As said in introduction, in many physical situations, propagation of waves is modeled by an equation involving nonlinear terms. A possible perspective for the future is to consider some questions about non-linear damped wave equations. I have not started anything in that direction yet, so I am essentially ignorant, but one can at least discuss some natural questions on the subject.

A first perspective is to continue the analysis of one-dimensional problems with singular potential. In particular, the paper [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF] discussed in Section 3.6 is about the non-linear As for the linear problem, it is a different issue to consider the wave equation in an unbounded domain. Moreover, if the damping is effective at infinity, it is natural to wonder if we have a diffusive phenomenon as described in Chapter 2 for the linear equation. As for the linear equation, there are many results about the problem with constant coefficients (apxq " 1 in (4.13)). The results are different in the defocusing (typically, (4.12) with b " ´1) of focusing (b " 1) cases.

We begin with the case where f puq is equal to or of the form ´|u| p´1 u. The paper [START_REF] Matsumura | On the asymptotic behavior of solutions of semi-linear wave equations[END_REF], which is one of the firsts about the linear problem (see the discussion in Chapter 2), also dealt with the semilinear equation. The results have been refined in [START_REF] Kawashima | On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term[END_REF] (in particular, general initial data are allowed). In [START_REF] Karch | Selfsimilar profiles in large time asymptotics of solutions to damped wave equations[END_REF] (see Theorem 2.3 therein), the diffusion phenomenon has been proved for initial data in pH 1 X L 1 q ˆpL 2 X L 1 q, when d ď 3 and for p ą 1 `4 d such that (4.14) holds. Then the asymptotic profile is given by a solution of the heat equation as in the linear case. In dimension 1, a better result is given in [START_REF] Hayashi | Asymptotics for nonlinear damped wave equations with large initial data[END_REF]. In [START_REF] Ikehata | Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption[END_REF], the large time asymptotics for the supercritical case p ą 1 `2 d is proved in dimension d ď 3. The solution is actually close to a solution of the semilinear heat equation

B t v ´∆v `v |v|
p´1 " 0, which behaves itself as a solution of the linear heat equation in the supercritical case (the critical exponent p " 1 `2 d is known as the Fujita's critical exponent [START_REF] Fujima | On the blowing up of solutions of the cauchy problem for ut " δu `u1`α[END_REF]). The result has then been improved for d " 3 and extended to d " 4 in [START_REF] Nishihara | Global asymptotics for the damped wave equation with absorption in higher dimensional space[END_REF]. Less is known in the critical and subcritical cases. For results about the critical exponent we refer to [START_REF] Hayashi | On the critical nonlinear damped wave equation with large initial data[END_REF][START_REF] Hayashi | Damped wave equation with a critical nonlinearity[END_REF][START_REF] Hayashi | Damped wave equation with a critical nonlinearity in higher space dimensions[END_REF]. For the subcritical case we refer to [START_REF] Hamza | Asymptotically self-similar solutions of the damped wave equation. Nonlinear Anal[END_REF]. Notice that in these cases the problem is not necessarily globally well posed. Now we turn to the focusing case, where f puq is typically of the form |u| p or u |u| p´1 . In general, the solution blows up in finite times for large initial data (see [START_REF] Levine | Instability and nonexistence of global solutions to nonlinear wave equations of the form P utt " ´Au `F puq[END_REF]Section IV]). Results about the existence of global solutions or blow-up (for small initial data) can be found in [START_REF] Nakao | Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations[END_REF][START_REF] Li | Breakdown of solutions to ˝u `ut " |u| 1`α[END_REF][START_REF] Todorova | Critical exponent for a nonlinear wave equation with damping[END_REF][START_REF] Zhang | A blow-up result for a nonlinear wave equation with damping: the critical case[END_REF]. It is proved that for p ą 1`2 d the solution with "small" initial data is defined for all time, while there are solutions which blow up when p ď 1 `2 d . These results were proved under strong decay assumption in the initial data (typically, compactly supported). We refer to [START_REF] Nakao | Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations[END_REF] for the analysis on an exterior domain with a damping which can vanish.

Then there have been several papers with results about local well-posedness for large initial data and global well-posedness for small initial data in pH 1 X L r q X pL 2 X L r q under some conditions on r and p. We do not mention them all and refer to the introduction of the recent paper [START_REF] Ikeda | The Cauchy problem for the nonlinear damped wave equation with slowly decaying data[END_REF], which study the large data local well-posedness and the small data global well-posedness with slowly decaying initial data.

The asymptotic behavior in terms of solutions of the heat equation is also proved in [START_REF] Ikeda | The Cauchy problem for the nonlinear damped wave equation with slowly decaying data[END_REF]. There are many references dealing with the large time asymptotics in more and more general settings. We mention for instance an early result in dimension 1 [START_REF] Th | Scaling variables and asymptotic expansions in damped wave equations[END_REF], [START_REF] Kawakami | Asymptotic profiles to the solutions for a nonlinear damped wave equation[END_REF] (d ď 3), [START_REF] Hayashi | Damped wave equation with super critical nonlinearities[END_REF] (any dimension, small solutions in particular in L 1 ) or [START_REF] Narazaki | Asymptotic behavior of solutions for the damped wave equation with slowly decaying data[END_REF] (slowly decaying data). The recent paper [START_REF] Ikeda | L p -L q estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data[END_REF] improves the results for the linear and the non-linear problems. Higher order expansions are also available [START_REF] Kawakami | Higher order asymptotic expansions to the solutions for a nonlinear damped wave equation[END_REF].

All the papers mentioned above concern the semilinear wave equation with linear damping (ρ " 1 in (4.13)). If ρ ą 1, we notice that if the energy of the wave becomes small, the damping term becomes smaller than in the linear case. Here re-emerges the question whether the energy goes to 0 as t Ñ `8 (even with f " 0). Depending on the precise setting and on the initial conditions, there are results of decay (the energy goes to 0) and results of non-decay (it does not) for this kind of problem, on the Euclidean space or an exterior domain. It is expected that in the nondecay case, that is when the damping term becomes very small, the solution of (4.13) behaves like a solution of the undamped wave equation. This is indeed the case and it is proved under suitable assumptions in the literature. For more precise statements we refer to [MM95, MM96, Mat03, TY07, TUY09, Dao18]. See also [START_REF] Nakao | Existence of global decaying solutions to the exterior problem for the Klein-Gordon equation with a nonlinear localized dissipation and a derivative nonlinearity[END_REF][START_REF] Todorova | On the regularizing effect of nonlinear damping in hyperbolic equations[END_REF] for results with non-linear damping and a non-linear potential.

There are actually many other variants of the non-linear damped wave equation in the literature. For instance, various systems of wave equations [GR14, BD13, BR20], friction and viscoelastic damping [START_REF] Mezadek | Semilinear wave models with friction and viscoelastic damping[END_REF], wave equation with non-linear boundary damping [START_REF] Cavalcanti | Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction[END_REF], higher order problems [START_REF] Chen | Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity[END_REF], time-dependent damping [START_REF] Ikeda | Global well-posedness for the semilinear wave equation with time dependent damping in the overdamping case[END_REF], delayed damping [START_REF] Kafini | On the decay of a nonlinear wave equation with delay[END_REF],variable exponents for the non-linear terms [START_REF] Messaoudi | Nonlinear damped wave equation: existence and blow-up[END_REF], etc.

We also refer to results about more or less general damped hyperbolic equations: see [LS97, LPS98, CTR21] (global existence of solutions), [START_REF] Ghisi | Optimal decay estimates for the general solution to a class of semi-linear dissipative hyperbolic equations[END_REF] (decay estimates), [START_REF] Ghisi | Finding the exact decay rate of all solutions to some second order evolution equations with dissipation[END_REF] (asymptotic behavior), [START_REF] Ghisi | Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation[END_REF] (smoothing effect of solutions with strong damping). See also the (older) lecture notes [START_REF] Haraux | Nonlinear evolution equations -global behavior of solutions[END_REF] and the book [START_REF] Haraux | Semi-linear hyperbolic problems in bounded domains[END_REF].

Finally, to make the link with the quantum graphs, we mention the paper [ABM21] about the non-linear damped wave equation on a star-graph, with damping at infinity on one edge.

Even if this bibliography is far from being complete, we already see that there is a very wide variety of problems about the non-linear damped wave equation. Of course, for future works, it would be reasonable to begin with questions closely related to my centers of interest.

The most natural perspective about the non-linear damped wave equation is to continue with the settings introduced in Chapters 1 and 2. As for the linear problem, the difficulty compared to the previous literature is to deal with the contributions of low frequencies in quite general geometric settings. The papers mentioned above about the wave equation on an unbounded domain essentially consider the equation with constant coefficients, sometimes in an exterior domain. It would be interesting to generalized these results, as is done for the linear problem.

An important tool for the analysis of non-linear dispersive equations are the Strichartz estimates, which are space-time integrability properties. They are estimates on the solution of the linear problem, but they are used to estimate the integral term given by the Duhamel formula, which can be crucial for the well-posedness of the Cauchy problem for the non-linear equation. See again [START_REF] Tao | Nonlinear dispersive equations. Local and global analysis[END_REF][START_REF] Th | Semilinear Schrödinger equations[END_REF][START_REF] Ch | Lectures on nonlinear wave equations[END_REF] for an introduction to the Strichartz estimates. There are again many papers on this question, for the Schrödinger or the (undamped) wave equations. We can mention for instance the original work [START_REF] Strichartz | Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations[END_REF] and the proof of the important endpoint cases in [START_REF] Keel | Endpoint Strichartz estimates[END_REF]. See also [BGT04] in an exterior domain and [START_REF] Bouclet | On global Strichartz estimates for non trapping metrics[END_REF] in the asymptotically Euclidean setting. We finally refer to the recent work [BM].

It seems that not much is known about the Strichartz estimates for the damped wave or Schrödinger equations. Some estimates about the regularized Schrödinger equation (1.67) are given in [START_REF] Karmous | Strichartz estimates for regularized Schrödinger equations in exterior domains[END_REF]. There are also recent results about the damped wave equation (2.1), see [START_REF] Watanabe | Strichartz type estimates for the damped wave equation and their application[END_REF][START_REF] Inui | The Strichartz estimates for the damped wave equation and the behavior of solutions for the energy critical nonlinear equation[END_REF][START_REF] Inui | Endpoint strickartz estimate for the damped wave equation and its application[END_REF].

These Strichartz estimates are dispersive estimates, in the spirit of the local energy decay presented in Chapters 1 and 2. Before considering general non-linear problems, it would be completely natural to begin with Strichartz estimates for the damped wave equation (1.12).

It is already a problem which is far from simple, since the standard arguments for the Strichartz estimates as in [START_REF] Keel | Endpoint Strichartz estimates[END_REF] do not apply to a non-selfadjoint setting.
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 21 The operator W satisfies on H the following properties.

  (i) i `W ´1 2 ˘is maximal dissipative on H .(ii) C `Ă ρpWq, and for ζ P C `the resolvent pW ´ζq ´1 is given by (1.21) or (1.23).
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 24 There exist γ ą 0 and C ą 0 such that for all ζ P C with Repζq ě ´2γ and |Impζq| ě 1 we have ζ P ρpWq and › › pW ´ζq ´1› › LpH q ď C. Ideas of proof. Since the model case (2.1) is a problem with constant coefficients on R d , we can use the Fourier transform. For F P S and ξ P R d we have y WF pξq " M pξq F pξq, where M pξq "
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 21 Figure 2.1: Contours tRepzq " µu, Γ µ and Γ ´a{2 Y Cpλ `pξq, rq. (in grey, a region which contains the spectrum of W in the first two pictures, and the eigenvalues of M pξq or W σ , for ξ or σ small, in the third)
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 210 There exist τ 0 ą 0, γ ą 0 and c ą 0 such that for |τ | ě τ 0 and ζ P C with ˇˇRepζq ´τ 2 ˇˇď γτ 2 and Impζq ě ´γ |τ | the resolvent pT aτ ´ζq ´1 is well defined and we have › › pT aτ ´ζq ´1› LpL 2 pωqq ď c |τ | .
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 21421 Let s 1 , s 2 P " 0Let ρ 1 Ps0, ρr. Let β P N d`n with |β| ď 1. Let m P N ˚. There exists C ą 0 such that for z P D X C `we have

  a Þ Ñ z n paq goes deeper and deeper in the lower half-plane for large n. This upper bound is obtained when a " nν. More precisely, for β P R we have Re `zn `nν `β lnpnq ˘˘´nν Ý ÝÝÝÝ Ñ nÑ`8
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 228 Figure 2.2: The eigenvalues of H a for a going from 0 to `8 On the left, the eigenvalues λ 1 paq and λ 2 paq for various values of a. On the right, the graphs of a Þ Ñ Impλ n paqq for n P t0, . . . , 4u.
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 31 Figure 3.1: The quantum star graph with N " 6 edges.

  (i) µ is supported in r0, 2 |Γ| ´1s.
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 34 Let α P C.

Theorem 3 . 5 .

 35 (i) There exist γ 1 ą 0 and γ 2 P R such that for µ ă lim inf |x|Ñ`8
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 3162 Let E ą 0 and ε Ps0, 1r. For n P N and y P Ī we set W n,ε pyq " ?npE `εq ˘`ds ˇˇˇ.(3.26)
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 318 Let γ P R ˚.

Theorem 4 . 1 . 2 L 2 pΩq `}vptq} 2 L 2 2 L 2

 4122222 Let a ą 0 and b P R ˚. There exist γ ą 0 and C ą 0 such that for pf, gq P L 2 pΩq ˆL2 pΩq and t ą 0 we have}uptq} pΩq ď Ce ´γt `}f } pΩq `}g} 2 L 2 pΩq
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 41 Figure 4.1: A domain of control and the corresponding critical time.In this picture, a domain of control ω as in Theorem 4.4, a path γ as in Theorem 4.2 (dotted line, with δpγ x q " maxpδpγ x psqqq) and a line segment ra, bs ˆty 0 u as in Theorem 4.3. We can choose a and γ x arbitrarily close to γ 2 , which gives the critical time T c " δpγ 2 q{q 1 p0q.
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 47 There exist c 0 , C ą 0 such that for α P C ˘z t˘N u and ζ P C ˘we have
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 42 Figure 4.2: Examples of non-compact graphs

  Now let ζ P C `and F P H . If we solve formally the equation pW ´ζqU " F for U P DompWq

	we get			
	pW ´ζq ´1F "	ˆ´Rpiζqpaw `ζwq w ´wRpiζqpζaw `ζ2 wq ´ζwRpiζq ´Rpiζq	˙F,	(1.21)

where for z P C `we have set Rpzq " `´∆ G ´iawz ´wz 2 ˘´1 .

(

1

.22) 

  }Π} LpH,Kq ď Υ, }ad A pΠq} LpH,Kq ď Υ, and for ϕ P H we have}Πϕ} K ď Υ }Πϕ} H , (c) Q K has an inverse R K P LpK ˚, Kq which satisfies }pId K ´ΠqR K } LpK ˚,Kq ď Υ and }R K pId K ˚´Π ˚q} LpK ˚,Kq ď Υ. LpK,K ˚q ď Υ, }ad A pM q} LpK,K ˚q ď Υ,and in the sense of quadratic forms on

	(H5) There exists β P r0, Υs such that if we set	
	M " Repiad A pQqq `βQ `,	
	then }M } H we have	
	Π ˚M Π ě Υ ´1Π ˚I Π.	(1.41)
	Example 1.14. For the dissipative operator H " H 1 ´iV (as in Example 1.12) and Repzq P
	I ĂĂ J, we recover the setting of	

  We can similarly estimate pW ´ζq ´m by |ζ| ´m if Repζq Á |ζ|. LpE δ , E ´δ q) to convert the elliptic regularity given by (1.60) into smallness.

						r	1	, H s´1 r	q for any s P	‰	´d 2 , d 2	" , and in particular
						}Rpirq} LpH s´1 r	,H s`1 r	q À	1 r 2 .
	From (1.23) we deduce, for s P	‰	´d 2 `1, d 2 r,
					› › pW ´rq ´1› › LpH s´1 r	,H s r q À	1 r	.
	Thus, for s 1 , s 2 P	" 0, d 2	"	and m P N ˚such that s 1 `s2 ď m we have
				› › pW ´rq	´m› › LpH ´s2 r	,H	s 1 r q À	1 r m .	(1.60)
	In general, we set r " |ζ| and we observe that, by the resolvent identity, we can write
	pW ´ζq ´n as a sum of terms of the form
							pζ ´rq m´n pW ´rq ´m	(1.61)
	for some m ě n, or					
		pζ ´rq 2N `ν´n pW ´rq ´N pW ´ζq ´ν pW ´rq ´N ,	(1.62)
	for ν ď n and N as large as we wish.
	The idea to estimate a term of the form (1.61) is to use the weight (remember that we need
	an estimate in						

By Proposition 1.19 and (1.25) we can prove that for s P " 0, d 2 " and δ ą s we have }U } E ´δ À r s }U } H s r and }U } H ´s r À r s }U } E δ . (1.63) With (1.60) and (1.63) applied with s 1 " s 2 " s " 1 2 minpd ´ε, mq, we obtain that (1.61) satisfies the estimate of Theorem 1.10.

  s1`s2´2m`|β|q . Ideas of proof. Here, for the model case, the resolvent identity gives Rpzq ´Rh pzq " z 2 RpzqR h pzq. On the other hand, Rpzq and R h pzq are of size Op|z| ´1q in LpH s´1 |z| 1{2 , H s`1 |z| 1{2

(2.10) 

As in Section 1.

[START_REF] Royer | Uniform resolvent estimates for a non-dissipative Helmholtz equation[END_REF] 

we work in the rescaled Sobolev space, except that we now use H s |z| 1{2 instead of H s |z| . A derivative is now of size Op|z| 1 2 q in LpH s |z| 1{2 , H s´1 |z| 1{2 q for any s P R.

  L 2 pΩqq and we can use (2.31) to see that ∇ y R h pzq is bounded in a neighborhood of z " 0. Finally, we use the weights x ´κsj to convert regularity into powers of |z| as in(2.11).

	1 2 q in
	LpH s z L 2 pΩq, H s´1 z
	Contribution

of high frequencies. We turn to the contribution of high frequencies. Since we have damping everywhere at infinity, we can consider the global energy, and hence resolvent estimates without weights. On the other hand, since the geometric damping condition (the analog of (1.17) in Ω) does not necessarily hold, we cannot expect an estimate as good as in the previous settings. Proposition 2.15. Let β 1 , β 2 P N d`n with |β 1 | ď 1 and |β 2 | ď 1. Let τ 0 ą 0. There exists C ě 0 such that for τ P Rzr´τ 0 , τ 0 s we have

  We compare (2.39) with

	U r,h ptqF "	ˆσPBp0,rq	e ix¨σ e	´txG h σ,σy a h w h	xF σ , Ψ 0 y Φ 0 dσ.	(2.43)

  The constants ε ą 0 and c ˘ě 0 are chosen in such a way that ψ ´p0q " ψ `p0q ď κ. Since w does not vanish at ˘δ, we have to use cut-off functions to apply Proposition 3.15 on r´ ´, δs and r´δ, `s. Then g is no longer 0 in(3.23), but the corresponding term on the right can be absorbed by the left-hand side. Gluing the two estimates, we get for u ˆτ2

								More precisely,
	for y P r´δ, `s we set						
	ψ `pyq " ˆ1 ? 2	`ε˙ˆ ỳ `qpsq	`ε˘d s `c`,
	and for y P r´ ´, δs						
	ψ ´pyq " ˆ1 ? 2	´`´qpsq `ε˙ˆy	`ε˘d s `c´.
	ˆI `n 3 2 |u| 2 `?n |u y | 2 ˘e´2	?	nϕ dy dt À	?	n	ˆτ2	`|u y pt, ´ ´q| 2 `|u y pt, `q| 2 ˘dt.
	τ1							τ1

  pt, ζq is the kernel of the free Schrödinger equation. By tedious computation, we can show in particular that Γptq maps E to H 1 pRq (and }Γptqu} H 1 pRq is controled by }B x u} L 2 pRq |up0q|).

	`8 0	e ´|γ|s 2 K 0 pt, s ´|x| ´|y|q ds	`|γ| 2	e	iγ 2 t 4 e	´|γ|p|x|`|y|q 2	,
	where K 0						

•

  If a 2 ă 4b 2 , then z ´pa, bq can go to C n or C n´1 depending on the value of θ P

			‰ a 2ν ,	`8"
	such that		
	4b 2 " a 2 `a2 4θ 2 π 2 ln	ˆ2θν 2θν	`a ´a ˙2 .

Then z ´pa, bq is in C n´1 if θ ă n, in C n if θ ą n and Repz ´pa, bqq " n if θ " n.

Remerciements

´ ´|qpsq| ds ¸" q 1 p0q ? 2 maxpT ´, T `q.

There exist n 0 P N and C ą 0 such that for n ě n 0 and a solution u n of (3.18) we have The estimate is not uniform for high frequencies, but we control the dependence in n. Then, the second step consists in... waiting. We see from Proposition 3.11 that for large times the contribution of high frequencies is actually small. The time maxpT ´, T `q is precisely how long we have to wait to ensure that the smallness in Proposition 3.11 (applied with θ 2 " T and θ 1 " τ 2 ) compensates the bad estimate of Proposition 3.14 (applied with τ 2 small enough). Proposition 3.14 can be seen as a quantified version of a unique continuation result (in particular, if u is a solution of (3.18) with B ν u " 0 on r0, T s ˆBI then uptq " 0 for all t P r0, T s). It is usual to use a Carleman estimate for this kind of result.

Ideas of proof. Given n P N and a solution u of (3.14) (we omit the index n) we set w " e ´φu for some φ ě 0. We prove estimates on w and then deduce estimates on u (then φ should be chosen as small as possible).

If φ is large near t " τ 1 and t " τ 2 , then w satisfies the assumptions of the following proposition with ra, bs " r´ ´, `s and g " 0.

Proposition 3.15. Let n P N, τ 1 , τ 2 ą 0 with τ 1 ă τ 2 , a, b P R with a ă b, and g P L 2 psτ 1 , τ 2 rˆsa, brq. Let φ P C 4 psτ 1 , τ 2 rˆra, bs, R `q. We consider w P C 0 prτ 1 , τ 2 s, H 2 pa, bqq X C 1 prτ 1 , τ 2 s, L 2 pa, bqq such that where

With g " 0 we can deduce an observability estimate for w if Φ 0 and Φ 1 are positive. Thus the purpose is to construct φ ě 0 as small as possible and such that Φ 0 and Φ 1 are bounded away from 0. We construct φ in such a way that the first terms in Φ 0 and Φ 1 are positive. Because of the last terms in the expressions of Φ 0 and Φ 1 , φ should be at least of size ? n. We construct φ of the form φpt, yq " ? nθptqψpyq. The second to fourth terms in Φ 0 will be smaller for large n.

The function θ is chosen in such a way that θ ě 1 (otherwise the first term in each expression would be too small), θ goes to `8 near τ 1 and τ 2 (for the boundary conditions in Proposition 3.15) and θ " 1 on

Then it remains to define ψ to have, for some ε ą 0,

We recall that the one-dimensional discrete Laplacian on 2 pZq is defined by pH 0 uq n " 2u n ´un´1 ´un`1 , n P Z, for u P 2 pZq (we could also consider the analog on 2 pZ d q for any dimension d P N ˚). Its spectrum is σpH 0 q " σ ac pH 0 q " r0, 4s.

In [START_REF] Bourget | On the spectral properties of non-self-adjoint discrete Schrödinger operators[END_REF] they add a complex potential V (a potential simply acts as a diagonal matrix on 2 pZq: pV uq n " V n u n ).

In particular, they prove the limiting absorption principle with the Mourre commutators method.

We recall that this method requires a suitable conjugate operator. In the papers discussed in Chapter 1, the operator was always a perturbation of the usual Laplacian on R d , and the conjugate operator was always a perturbation of the generator of dilations. Dilations have no obvious analog in the discrete setting. However, if we set A 0 " ImpSqX `XImpSq, where X is the position operator (defined by pXuq n " nu n ) and S is the shift operator (pSuq n " u n`1 ), then we have ad iA0 pH 0 q " 4H 0 ´H2 0 . With this conjugate operator, they are able to apply the Mourre theory away from the thresholds 0 and 4 (notice that there are more thresholds in higher dimensions).

This naturally raises the question of the properties (such as resolvent estimates) near the thresholds. This is precisely the analog of studying the resolvent of usual Schrödinger operators near 0.

The discussion is only at its early stage, but it is natural to try to adapt the strategy described in Chapter 1. As for the use of the generator of dilations, many arguments used in the Euclidean setting are meaningless in the discrete case, but there is a reasonnable hope that we can adapt the ideas to get resolvent estimates for a discrete Schrödinger operator. Of course it is also possible to consider the wave equation in this setting.

Non-linear problems 4.5.1 A non linear problem on a quantum graph

After [START_REF] Ianni | On the cauchy problem and the black solitons of a singularly perturbed gross-pitaevskii equation[END_REF] and [START_REF] Csobo | Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials[END_REF] (see Section 3.6), I have started a new project with François Genoud and Stefan Le Coz. It is again about a non-linear problem in dimension 1. Another common feature between our two previous works was the singular potential. As observed above, a problem on the real line with a singular potential can be seen as a problem on a graph with two infinite edges, the singular potential being interpreted as a "boundary condition" at the vertex.

Here we really consider a graph. Since our analysis should be essentially local, we consider the model case: a star graph Γ, with N infinite edges (as in Section 4.4.1). We recall that Γ can be seen as N copies of R ˚, and we define L 2 pΓq accordingly.

Given γ P R, we consider on Γ the non-linear Schrödinger equation

where δ is the Dirac distribution at the central vertex. A solution on the interval I of R is a function u " pu j q 1ďjďN P C 0 pI, H 1 pR ˚qN q X C 1 pI, pH 1 pR ˚q˚qN q such that u j is a solution on each edge, uptq is continuous at the vertex (as in (4.8)) for all t P I, and it satisfies the Robin condition

Klein-Gordon equation. It would be quite natural to consider the same kind of setting, for Klein-Gordon or the wave equation, but with dissipation. This corresponds to replacing iα by a ą 0 in (3.31). Beginning with one-dimensional settings would be quite convenient, and the difficulties due to the singular potentials are, as already discussed, related to quantum graphs which is another aspect that I would like to develop. The natural first questions are the analysis of the local and global existence of solutions, and the decay of the energy. One remembers from Section 4.4.1 that there are already strange behaviors for the linear problem for some particular values of the damping, and it would be interesting to know what happens if we add a non-linear perturbation.

Nevertheless, the long term perspective is to start to add non-linear terms to the general damped wave equation (1.12). The typical example is to consider a source term of the form

for some p ą 1. Another possibility is to consider a non-linear dissipative term. The model example with both non-linearities is then an equation of the form

for some ρ ě 1.

The first question is the local well-posedness for the Cauchy problem. Then comes the question of global well-posedness or existence of blowing-up solutions. When the solution is globally defined, we can look at the long time behavior of the energy

As for the linear problem, it is natural to wonder if it goes to 0 and, in this case, what is the rate of decay. It is too early to state a conjecture here, but this report is an occasion to look at the literature. It is of course impossible to be exhaustive about the non-linear wave equation (or the related Schrödinger equation). We refer to the books [START_REF] Tao | Nonlinear dispersive equations. Local and global analysis[END_REF][START_REF] Th | Semilinear Schrödinger equations[END_REF][START_REF] Ch | Lectures on nonlinear wave equations[END_REF] for introductions to nonlinear dispersive equations and many references, and in this paragraph we only mention some papers dealing with the damped wave equation.

As for the linear setting, the problem is much better understood on compact domains (typically with Dirichlet boundary conditions), or for the Klein-Gordon equation (with an additional term mu on the left in (4.13)). We refer to [START_REF] Haraux | Decay estimates for some semilinear damped hyperbolic problems[END_REF] for the inhomogeneous equation. In [START_REF] Georgiev | Existence of a solution of the wave equation with nonlinear damping and source terms[END_REF] it is proved that for

then (4.13)-(4.12) is globally well-posed if p ď ρ (in the sense that u P C 0 pR `, H 1 0 pΩqq and B t u P C 0 pR `, L 2 pΩqq X L ρ`1 loc pΩq), while there exists a solution which blows up in L 8 pΩq if p ą ρ.

Concerning the decay of the energy, we refer for instance to [Har85, HZ88, Zua88, Zua90, JL13, JL20] for results on a bounded domain and [Zua91, Deh01, DLZ03, AIN11] for the Klein-Gordon equation. Typically, these works use multipliers method or the method based on semiclassical defect measures. Notice that in addition to the geometric condition, the proofs rely on an assumption of unique continuation. Moreover, an important observation used in many of these articles is that once the solution is small, the non-linear term no longer play any important role and the solution of the non-linear problem has the same decay properties as a solution of the linear problem (see [START_REF] Gérard | Oscillations of concentration effects in semilinear dispersive wave equations[END_REF]).