
HAL Id: tel-03904652
https://hal.science/tel-03904652

Submitted on 17 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal approach for role-based modeling of business
collaboration processes

Rodrigue Aimé Djeumen Djatcha

To cite this version:
Rodrigue Aimé Djeumen Djatcha. A formal approach for role-based modeling of business collaboration
processes. Software Engineering [cs.SE]. Université de Douala (Cameroun), 2022. English. �NNT : �.
�tel-03904652�

https://hal.science/tel-03904652
https://hal.archives-ouvertes.fr

University of Douala
Postgraduate School for Pure and Applied Sciences

Postgraduate Training Unit for Mathematics, Applied Computer Science and Pure Physics
Applied Computer Science Laboratory

Thesis

A formal approach for role-based
modeling of business collaborationprocesses

by
Rodrigue Aimé DJEUMEN DJATCHA

Directed by
Eric BADOUEL, Research Director, INRIA, France
Samuel BOWONG, Professor, University of Douala

Auguste NOUMSI, Senior Lecturer, University of Douala

Defended in fulfillment of the requirements for the degree of
Doctor of Philosophy (Ph.D) in Computer Science.

Date: December 15, 2022

Before the jury made up of:

President

Leandre NNEME NNEME, Professor, University of Douala

Referees

Alessandra AGOSTINI, Associate Professor, University of Milan-Bicocca

Georges E. KOUAMOU, Associate Professor, University of Yaoundé I

Jean Gaston TAMBA, Associate Professor, University of Douala

Members

Eric BADOUEL, Research Director, University of Rennes I (INRIA)

Samuel BOWONG, Professor, University of Douala

Auguste NOUMSI, Senior Lecturer, University of Douala

Academic Year: 2021 - 2022

ABSTRACT

Business collaboration defined as working together to achieve a common goal, is

suitably specified in terms of where collaboration takes place (context), those who

are involved (contributors), what they do both individually (skills) and collectively

(production processes), and finally, what is the expected purpose of this collabo-

ration (business goal). We assume a clear separation between skills and effective

contribution to collaboration (i.e role). Technically, a context can the be defined

by the set of roles involved, offering a formal basis for reasoning. Considering

business collaborative processes, involved contributor’s behaviors set is similar to

a software components, possibly abstracted as role i.e services or group of services

provided with their production rules. A collaborative context is then viewed as

a user-centered service oriented architecture where every stakeholder could be as-

signed one or more roles. We address the problem of a formal design approach

for such business collaboration processes in that context, facing components reuse

and process management challenges as unambiguously describing business roles, role

composition and dynamic collaborative process management.

Key words: Business Collaboration, Role-Based Design, Service Oriented Design, Soft-

ware Reuse, Interface of Role, Guarded Attribute Grammar

i

RÉSUMÉ

La collaboration métier, définie comme le fait de travailler ensemble pour atteindre un ob-

jectif commun, se spécifie convenablement en termes du lieu de la collaboration (contexte),

de ceux qui y sont impliqués (contributeurs), ce qu’ils font à la fois individuellement

(compétences) et collectivement (processus de production) enfin, le but attendu de cette

collaboration (objectif métier). On suppose une franche séparation entre la compétence et

la contribution effective dans la collaboration. Techniquement, un contexte peut se décrire

par l’ensemble des rôles en présence, offrant ainsi une base de raisonnement formelle. Con-

sidérant un processus de collaboration métier, l’ensemble des comportements de contribu-

teurs, est similaire à un composant logiciel, pouvant s’abstraire comme un rôle i.e. des

services ou des groupes de services fournis ainsi que les règles de production associées.

Un contexte de collaboration s’apparente alors à une architecture orientée service centrée

utilisateur où chaque contributeur pourrait se voir attribuer un ou plusieurs rôles. Nous

abordons la problématique d’une approche formelle de conception, pour les processus de

collaboration métier dans un tel contexte confrontés aux même défis que ceux de la réutil-

isation et le management de processus de composants, à savoir la description non ambiguë

de rôles métiers, la composition de rôles et la gestion dynamique de processus.

Mots clés: Collaboration métier, Conception Rôle-Centrée, Conception Orientée Service,

Réutilisation, Interface de rôle, Grammaire Attribuée Gardée.

ii

ACKNOWLEDGMENTS

I would like with these words to express my deep gratitude and appreciation to Pro-

fessor Eric Badouel, for his patience and his availability. A thanks also to Professor

Claude Tangha of late memory for his advice; Finally, thanks to Professor Samuel

Bowong and Doctor Auguste Noumsi for accepting the new co-direction of this work.

I would also like to say a special thank you to a number of natural and legal

persons without whom the completion of this work would not have been possible:

• LIRIMA (International Laboratory for Research in Computer Science and

Applied Mathematics),

• The FUCSHIA research team,

• The Faculty of Sciences of the University of Douala,

• My colleagues at the Department of Mathematics and Computer Science of

the University of Douala.

Let all those who are not mentioned by name here, in particular brothers, friends

and acquaintances, know that in some way they have supported me in the context

of this work and receive all my gratitude.

iii

DEDICATION

To the DJATCHA’s

My late dad(Jean-Marc), mum(Louisette), all sisters and brothers;

AND TO the DJEUMEN’s

Elisabeth Reine, Axel, Lucas, Noemie and Florin.

iv

CONTENTS

Abstract i

Résumé ii

Acknowledgements iii

Dedication iv

Introduction 1

1 Related Works and Useful Background Theories 7

1.1 Introduction . 7

1.2 Roles, contributors and mechanisms 7

1.2.1 The role approach . 7

1.2.2 Common definitions and terminologies 8

1.2.3 Constraints on roles . 9

1.3 Business processes Modeling . 9

1.3.1 Processes and workflows . 9

1.3.2 Business processes . 10

1.3.3 Dynamism in Business Process 11

1.4 System design principles . 11

1.4.1 Separation of concerns . 11

1.4.1.1 Definitions and goal 11

1.4.1.2 SoC mechanisms, principles and properties 12

vi

A formal approach for role-Based modeling of business collaboration processes

1.4.1.3 Soc design approaches 13

1.4.2 Service Oriented Design . 13

1.4.2.1 Definitions, principles and properties 13

1.4.2.2 SOD architecture 14

1.4.2.3 SOD interactions . 14

1.4.3 User-Centered design . 16

1.5 Guarded attribute grammar . 16

1.5.1 Concepts and principles . 16

1.5.2 Formal definitions . 17

1.5.2.1 Grammar and derivation relation 17

1.5.2.2 Reduced grammar 18

1.5.3 Data, Variables, Attributes and Guards 18

1.5.4 Artifacts . 19

1.6 Conclusion . 21

2 Business collaboration: Pillars, taxonomy, use cases and tasking models 22

2.1 Introduction . 22

2.2 Pillars, criteria and strategies . 23

2.2.1 Pillars of collaboration . 23

2.2.1.1 Requester . 23

2.2.1.2 Contributors . 23

2.2.1.3 Tasks . 24

2.2.1.4 Interaction scheme 25

2.2.2 Skills orchestration strategies 26

2.2.2.1 Market strategy . 26

2.2.2.2 Contest strategy . 26

2.2.2.3 Auction strategy . 26

2.2.3 Classification criteria for collaboration 26

2.2.3.1 Process organization 26

2.2.3.2 Participation . 27

2.2.3.3 Business goal categories 28

2.2.3.4 Types of collaboration 28

2.3 Coworking . 29

Ph.D thesis in Computer Science - University of Douala (2022) vii

A formal approach for role-Based modeling of business collaboration processes

2.3.1 Team coworking . 29

2.3.2 Opened coworking . 29

2.4 Service supplying collaboration . 29

2.4.1 Team servicing . 29

2.4.2 Crowdsourcing . 30

2.5 Formalizing business collaboration 31

2.5.1 contributor in a business collaboration 31

2.5.2 Business collaboration tasking model 32

2.5.2.1 Preliminaries and properties 32

2.5.2.2 Intrinsic skills and services 33

2.5.2.3 Crowd tasks . 34

2.5.2.4 Business skills . 34

2.5.3 Tasking model use cases . 34

2.5.3.1 Issuing civil status certificates 34

2.5.3.2 Crowdsourced road maintenance activity 35

2.6 Conclusion . 36

3 An interface of role theory for collaboration 37

3.1 Introduction . 37

3.2 Modeling interface of role . 38

3.2.1 Potential dependencies . 38

3.2.2 Grammar interface . 39

3.2.3 Interface of role . 39

3.3 Properties, conventions, basic operations 41

3.3.1 Property and conventions . 41

3.3.2 Sequential composition . 42

3.3.3 Restriction and Co-restriction 42

3.3.4 Union of interfaces, quasi-interface and acyclicity 42

3.4 Interface of role composition . 44

3.4.1 Concept and principles . 44

3.4.2 Composition operation . 44

3.4.3 Associativity of the composition 45

3.4.4 Cascade product . 46

Ph.D thesis in Computer Science - University of Douala (2022) viii

A formal approach for role-Based modeling of business collaboration processes

3.4.5 Direct product . 47

3.4.6 Componentization test . 48

3.5 Implementation order . 48

3.6 Residual specification . 49

3.7 Non-deterministic Interfaces . 54

3.8 Conclusion . 57

4 A role-based business collaboration design approach 59

4.1 Introduction . 59

4.2 Context, role and collaboration . 60

4.2.1 Context of collaboration . 60

4.2.2 A grammatical modeling of role concept 61

4.2.3 Role collaboration . 61

4.2.4 Potential direct collaborations of a role 61

4.3 Collaboration schemes, service workflow 62

4.3.1 Induced potential dependencies graph (iPDG) 62

4.3.2 Potential workflow of a service 63

4.3.3 Factorizing a workflow . 64

4.4 Activity in collaborative context . 66

4.4.1 Formal definition . 66

4.4.2 Atomicity of an activity . 67

4.4.3 Activities functional decomposition 67

4.4.4 Activity realizability . 69

4.5 Contributor of a business collaborative process 70

4.5.1 Concept and definitions . 70

4.5.2 Constraints on contributor’s potential roles 71

4.5.3 Relation ”play a role” . 71

4.5.3.1 Case 1: Playing several roles in an activity 71

4.5.3.2 Case 2: crowdsourced role played by several con-

tributors . 72

4.5.3.3 Case 3: Competing activities 72

4.5.4 Implementation of the ”play” relation 73

4.6 Conclusion . 74

Ph.D thesis in Computer Science - University of Douala (2022) ix

A formal approach for role-Based modeling of business collaboration processes

Conclusion 75

References 78

A Haskell implementations 86

A.1 Implementing a relation . 86

A.2 Implementation of a role interface . 89

A.3 Implementing a collaboration . 91

A.4 Implementing an F -collaboration . 93

A.5 Implementing activity . 94

B Articles, Book chapters and Conferences 97

Publications 97

Ph.D thesis in Computer Science - University of Douala (2022) x

LIST OF FIGURES

1.1 GAG layered architecture with associated goals 17

1.2 Artifact construction by rewriting rules 20

1.3 Data handling by an artifact . 21

2.1 Business collaboration taxonomy . 28

2.2 Administrative collaboration in civil status certificate issuance 30

2.3 A crowdsourced road maintenance activity 31

3.1 Grammar of a role providing service A 39

3.2 An interface of role associated with the role on figure 3.1 40

3.3 Interface of a Declarer role . 41

3.4 Sequential composition of two interfaces 42

3.5 Interface induced by a quasi-interface 43

3.6 Composition of two interfaces. 44

3.7 A counter-example showing that, associativity of composition does

not hold, if interfaces shared some provided services. 45

3.8 Cascaded product of two roles R1 and R2 47

3.9 Direct product of two roles R1 and R2 48

3.10 Residual composition . 51

4.1 Running collaboration context of a system 60

4.2 Direct potential collaborations of role r3, in figure 4.1 context 62

4.3 Service u potential workflow . 64

xi

A formal approach for role-Based modeling of business collaboration processes

4.4 Factorizing a workflow - (a) a collaboration scheme. (b) the factorized

collaboration scheme equivalent to the one on (a). 65

4.5 Activity activityu workflow . 66

4.6 Decomposition of the previous activity on figure 2.3, into two sub-

activities, csDelivrance0 and csDelivrance1 69

4.7 A contributor playing several roles in an activity 72

4.8 Several contributors playing same role r2 in an activity 72

4.9 A contributor involved in two parallel activities 73

Ph.D thesis in Computer Science - University of Douala (2022) xii

LIST OF TABLES

2.1 Some usual primitives . 24

xiii

INTRODUCTION

Context

The dazzling development of ICTs in recent years has considerably contributed on

the one hand, to develop and even create new types of behavior and, on the other

hand, has broken down barriers geographically , economically, culturally, technolog-

ically, etc. Thus contributing not only to bringing together individuals, institutions

and organizations in their daily functioning; but also to qualitatively improve their

respective managerial approaches. Among the behaviors whose evolution is closely

linked to ICT’s evolution, we have business collaboration or simply collaboration.

Etymologically, collaboration is defined as working together to achieve a common

goal. Intuitively, it follows from this definition, that collaboration is suitably de-

scribed in terms of (1) those who are involved (contributors) i.e. who they are and

how to integrate them into the collaboration; (2) what they do both individually

(skills) and collectively (production processes); (3) where collaboration takes place

(context) and finally, (4) what is the expected purpose of this collaboration (business

goal). In addition, depending on the purpose sought in the collaboration, there are

two subcategories of collaborations [1, 2, 3]: collaboration for service delivery, in

which functional rules are structured processes clearly defined a priori; and collabo-

ration for co-creation, innovation and knowledge sharing, where the functional rules

are unstructured processes defined as the collaboration is deployed.

Designing collaboration is a very complex exercise. The complexity here, is in-

1

A formal approach for role-Based modeling of business collaboration processes

herent to the heterogeneity of the four intrinsic elements of a collaboration, taken

separately and collectively. Indeed, the context of a collaboration is strongly in-

fluenced among other things by contributors diversity, in terms of their individual

skills; but also by the evolving nature of business goals, which in turn greatly influ-

ences production processes involved. In such a fairly dynamic context, two major

almost recurring needs emerge; namely effectively taking into account the recurrent

reorganization of work within collaborative structures on the one hand, and the pos-

sibility of incrementally integrating particularly heterogeneous sectors of activity in

the collaboration, on the other hand. So a business collaboration design tool, must

own dynamism, scalability and flexibility properties among others.

Motivations and Objectives

contributor’s behaviors in a business collaborative process, are similar to software

components, possibly abstracted roles i.e. services or group of services with asso-

ciated production rules. A collaborative context is then similar to a user-centered

service oriented architecture where every contributor could be assigned one or more

roles. In this role-based design approach a role can be encapsulated by a module

whose interface specifies provided services exported by the module and imported

external services required. Usually, modules in service oriented design are hierarchi-

cally organized; rather the modules in role-based design approach often depend on

one another (although cyclic dependencies between services should be avoided). In

addition, the activated services can work as routines and a service call can activate

new services in a way that may depend on user’s choice on how the service is to be

provided. Designing collaboration in the context above faces similar challenges as

those of components reuse [4] and dynamic process management. A design activity,

then requires the ability to discover services unambiguous choice a given service

among potential services. Hence the motivation to have a precise description of

tasks involved, a notion of a richer role interface and lastly means to dynamically

manage and monitor collaboration evolution.

Ph.D thesis in Computer Science - University of Douala (2022) 2

A formal approach for role-Based modeling of business collaboration processes

Contributions

Collaboration spectrum been wide and diverse choice has been made to focus on

collaborative processes for service delivery. Thereby, our contribution has the form

of three main extensions to GAG concept. Firstly the definition of a flexible task-

ing model. Secondly, the definition of composition and reuse mechanisms for role

interfaces, inferred from tasking models specifications in GAG formalism. Thirdly,

the introduction of a role-based design approach and its mechanisms, suitable to

business collaboration design. More specifically, our contribution can be summed

up with the three salient points below:

• A definition of a tasking model, for service delivery business collaboration:

A business process model formally defining tasks, services, crowd tasks, and

contributor’s intrinsic skills involved and their orchestration as business skills

needed to complete a collaborative job.

• A definition of an interface of role theory for collaboration: Here business

skills are encapsulated component behaviors, described by interfaces, termed

interface of role. In a contract-based service-oriented and user-centric context

we design components interfaces and provides three main operations: inter-

faces composition specifying how components behaves to the environment, an

implementation order for been able to state when a component satisfies an

interface, finally a residual operation checking systems needed for realizing a

global specification, when composed with a given component.

• A definition of a role-based design approach for collaboration: In this ap-

proach a clear separation is made between contributor’s intrinsic skills and his

explicit contribution (role) in a given collaboration. A role is then viewed as

a particular concern of a domain. In a dynamic context roles involved offers

a formal abstract basis for reasoning; but traditional role-based systems lack

flexibility, because only role static description mechanisms are available. We

introduce improvements by providing various mechanisms for business skills

dynamic choreography, role switching, workflow monitoring and checking.

Ph.D thesis in Computer Science - University of Douala (2022) 3

A formal approach for role-Based modeling of business collaboration processes

Publications

(1) A Stable and Consistent Document Model Suitable for Asynchronous Co-

operative Edition [5, 6]: Complex structured documents can be intentionally

represented as a tree structure decorated with attributes. Ignoring attributes

in the context of a cooperative edition (these are related to semantic aspects

that can be treated separately from purely structural aspects on interest here).

Legal structures are characterized by a document model (an abstract gram-

mar) and each intentional representation can be manipulated independently

and possibly asynchronously by several co-authors through various editing

tools that operate on “partial replicas ”. For unsynchronized edition of a par-

tial replica concerned co-author must have a syntactic document local model

that constraints him to ensure minimum consistency of local representation

with respect to the global model. This consistency is synonymous with the ex-

istence of one or more (global) intentional representations towards the global

model, assuming the current local representation as her/their partial replica.

The purpose of this work is to present grammatical structures, which are gram-

mars permitting not only to specify a (global) model for documents published

in a cooperative manner, but also to derive automatically via a so call projec-

tion operation, consistent (local) models for each co-authors involved in the

cooperative edition. Some properties that meet these grammatical structures

are also shown.

(2) Modular Design of Domain-Specific Languages using Splittings of Catamor-

phisms [7]: Language oriented programming is an approach to software compo-

sition based on domain specific languages (DSL) dedicated to specific aspects

of an application domain. In order to combine such languages we embed them

into a host language (namely Haskell, a strongly typed higher-order lazy func-

tional language). A DSL is then given by an algebraic type, whose operators

are the constructors of abstract syntax trees to which one can associate a

polynomial functor. Algebras (respectively co-algebras) express how to eval-

uate/interpret/execute programs (resp. generate/construct programs) where

Ph.D thesis in Computer Science - University of Douala (2022) 4

A formal approach for role-Based modeling of business collaboration processes

programs are viewed as abstract syntax trees. Using Bekîc theorem we de-

fine a modular decomposition of algebras that leads to a class of parametric

abstract context-free grammars, associated with regular functors, allowing for

the modular design of domain-specific embedded languages.

(3) A Calculus of Interfaces for Distributed Collaborative Systems: The Guarded

Attribute Grammar Approach [8, 9] We address the problem of component

reuse in the context of service-oriented programming and more specifically

for the design of user-centric distributed collaborative systems modeled by

Guarded Attribute Grammars. Following the contract-based specification of

components we develop an approach to an interface theory for the components

of a collaborative system in three stages: we define a composition of interfaces

that specifies how the component behaves with respect to its environment,

we introduce an implementation order on interfaces and finally a residual op-

eration on interfaces characterizing the systems that, when composed with a

given component, can complement it in order to realize a global specification.

(4) A role-based collaborative process design on crowdsourcing systems [10]: Crowd-

sourcing is a collaborative business process model, in which tasks are carried

out by a crowd. In crowdsourcing systems, there are two types of stakeholders

namely, requesters who outsources tasks and the crowd, or contributors, per-

forming those tasks. We consider a stakeholder as an actor, or a standalone

software component, evolving on a platform and having both mechanisms of

interaction with its environment and business skills. A set of stakeholders

interacting in a dynamic context for solving a problem is a distributed col-

laborative system and we term it crowdsourcing system. In such a system

the role concept is central, because each stakeholder must have a specific

framework within which he collaborate. Traditionally, collaborative systems

lose flexibility if their design is role-based, because only static role descrip-

tion mechanisms based on intuitive concepts are available. We propose in this

paper an improvement consisting of four things: (1) defining clearly what an

outsourceable task or crowd task is, (2) specifying roles clearly and rigorously,

while ensuring flexibility for collaboration, (3) providing role switching mech-

Ph.D thesis in Computer Science - University of Douala (2022) 5

A formal approach for role-Based modeling of business collaboration processes

anisms, and (4) providing an abstract basis for crowdsourcing system design

and workflow monitoring and checking mechanisms, for potential activities,

dynamically carried out by a system.

Document organization

The remainder of this document, is organized as follow:

• Chapter 1: devoted to the presentation of fundamental theoretical concepts

necessary and useful in this work, as role and contributor concepts, business

process modeling (BPM), system design approaches and principles, guarded

attributes grammars (GAG).

• Chapter 2: presents principles, classifications, and mechanisms of business

collaboration. A general tasking model for service delivery collaboration, de-

scribed in GAG formalism, is also provided.

• Chapter 3: presents an extension made to GAGs, by defining the role interface

notion and associated mechanisms, useful for components composition.

• Chapter 4: introduces a role-based approach, the design of service delivery

business collaboration processes.

• Conclusion: to this work, with future perspectives and challenges.

• Appendix A: provides implementations of main concepts presented in this

work, in the purely functional programming language Haskell1.

• Appendix B: lists all publications made in the context of this work.

1https://www.haskell.org

Ph.D thesis in Computer Science - University of Douala (2022) 6

https://www.haskell.org

CHAPTER 1

RELATED WORKS AND USEFUL

BACKGROUND THEORIES

1.1 Introduction

This chapter introduces some founding basic key concepts, useful for various ideas

developed in the next part. Specifically, we will introduce concepts of role and con-

tributors of a dynamic system, as the desired approach in this work is role oriented.

Then business process modeling will be presented with an emphasis on it definition,

taxonomy, characterization and its usual mechanisms, since business processes de-

sign in a dynamic environment is also a major concern. Next, focus will be made

on system design principles. Finally, we introduce guarded attribute grammar, the

formal tool capturing characteristic principles of a user-centric collaboration.

1.2 Roles, contributors and mechanisms

1.2.1 The role approach

The concept of role is crucial in any collaborative or cooperative work system. Im-

portance here is related to the fact that, each stakeholder or contributor in this type

of system, must have a clear framework within which he collaborates with others. In

this context, the role specifies both what the system expects from the contributor,

7

A formal approach for role-Based modeling of business collaboration processes

but also what the contributor expects from the system; preventing a contributor

from being overwhelmed by information (or tasks) that is not necessary. In prac-

tice, the role-based approach is variously used, such as in UML design (use case

diagram, class diagram, etc.), access controls modeling [11, 12], and collaborative

or cooperative systems modeling such as a company, multi-agent systems [13, 14],

business processes [15], social media, etc.

1.2.2 Common definitions and terminologies

Role and role type

A role type is the perception that one contributor has of another contributor [16]. A

role type is specified uniquely and a contributor plays at a given time a role specified

by a role type. A role is therefore defined as one of the instances of a given role

type, played by a contributor. This separation between contributors (i.e. the one

that intervenes in the system), and a role (i.e. what an actor does in the system),

brings dynamism to the system described as a dynamic role [17].

Foundation and semantic rigidity

Depending on the case, it may not always be easy to differentiate between a role

and a contributor. For instance, consider the use case below :

Use case 0. According to laws in Cameroon, civil-status certificates are issued by

a civil status officer (csOfficer). Depending on the context, a user could apply to a

Mayor, if he is locally based in the country; or rather to the embassy if he is abroad.

Mayor and csOfficer entities, are part of the business collaboration within an

organization. Being able to distinguish between these entities, which is role type (or

simply role) and which is contributor, can be rather complex. The sharp distinction

between a contributor and a role type is based on both concepts of foundation and

semantic rigidity [18].

Definition 1.2.1 (Foundation & Rigidity). An entity is considered to be founded, if

its specification implies a dependency or relationship with another entity. While an

Ph.D thesis in Computer Science - University of Douala (2022) 8

A formal approach for role-Based modeling of business collaboration processes

entity is semantically rigid, if its identity depends on certain characteristics, and

can not exist without them.

Thus, it will be said that Mayor is unfounded and semantically rigid (and there-

fore Mayor is a contributor), whereas csOfficer is founded and semantically non-rigid

(csOfficer is a role). In other words, a Mayor plays the csOfficer role. Hence a con-

tributor is unfounded and semantically rigid, while a role is founded and semantically

non-rigid. From the above we consider in this work that concepts of role type and

role are equivalent, and will simply be called role.

1.2.3 Constraints on roles

Considering a contributor and his potential roles, constraints can be defined over

those roles, as predicates which if necessary, return the value ”acceptable” or ”not

acceptable”, applicable to the play relationship between contributor’s roles. Let r0

and r1 be two roles, four constraints can be defined over those roles [16, 19]:

1. Dcr (Don’t care) for no constraints on contributors playing each of the roles.

2. Impl(r0, r1) (Prerequisite or Implied) a contributor playing a role r0 should

always be able to play a role r1 (the reverse is not always necessary).

3. Eqv(r0, r1) (Equivalence) the implied constraint is checked for both the pair

(r0, r1) and the pair (r1, r0).

4. Phb(r0, r1) (Prohibited or mutual exclusion) a contributor playing a role r0

never plays a role r1 and vice versa.

1.3 Business processes Modeling

1.3.1 Processes and workflows

A process is a set of repeatable activities, that need to be carried out by contributors

in order to accomplish some sort of organizational goal. Depending on the context

a process can be structured or unstructured [20]. Structured processes (or static

processes) are those processes unchangeable in form, as well as those which change

Ph.D thesis in Computer Science - University of Douala (2022) 9

A formal approach for role-Based modeling of business collaboration processes

over a long period of time. Their structure is known beforehand and are completely

automatized. Conversely, unstructured processes (or dynamic processes) are pro-

cesses the course of which is dependent on individual condition of execution or which

contain such a large amount of variables that it is impossible to model them. They

requires to factor in at design the possibility of process contributors making individ-

ual decisions that are not able to foresee before hand and integrating contributor’s

knowledge in design and improvement of processes.

A workflow [21] is a series of repeatable activities needed to be carried out to

perform a task. A workflow is developed in support to a process and describes how

to get a process accomplished. A workflow is equivalent to a process if, and only if,

the task carried out by that workflow is an organizational goal. A workflow gather

several elements as [22, 23, 24]:

(1) conditions: which decides when a given action should be performed;

(2) activities: which determines the functionality of the workflow. Each activity

performs a different task, can succeed or fail;

(3) activity content: being the different information units as data, object, docu-

ments, artifacts, etc. Content help articulating workflow progression;

(4) sequence activity: that is, part of multiple activities of a workflow, useful for

organizing several successive activities into one major step, and implemented

as a function;

(5) decision nodes: which enables a workflow to make a selection on the execution

path to follow, it behavior can be seen as a switch-case statement.

1.3.2 Business processes

A business process is a set of organized activities or tasks potentially performed

in an environment or organization. Those activity jointly realize a business goal

as delivering values for internal or external contributors. Each business process is

enacted by a single contributor but it may interact with other business processes

performed by other contributors [25, 26, 27]. A business process is modeled by

explicitly defining it’s two components, in particular a related workflow describing

Ph.D thesis in Computer Science - University of Douala (2022) 10

A formal approach for role-Based modeling of business collaboration processes

the targeted process and associated contributors with respect to understandability

and maintainability properties [28].

1.3.3 Dynamism in Business Process

The dynamism of a business process is the ability to react to changing conditions

(internal or external) of operation, according to needs, in a appropriate timely man-

ner, at process instance runtime without having a negative impact on the process

existence or its expected completion [23, 29]. A dynamic business process can then

be defined as a business process whose related workflows components and contribu-

tors may vary and, if necessary, change with low latency at runtime due to changes

of the context [24].

Technically there are two ways perception of process dynamism [29]. On one

hand, horizontal perception or implementation perspective where the process is

viewed at different stage of it life cycle (execution, simulation, automation). On

the other hand, vertical perception or layered dynamism as the ability of a business

process to adapt to changes in the environment. From the last perception, there are

three dynamism implementation levels:

(1) Using decision points: human or automated systems decides what to do next,

according to predefined rules (a user-centric approach).

(2) Automatic configuration of business process: construct a process from a num-

ber of reusable fragments, depending on conditions change.

(3) Goal-driven business process: constructing a business process from a number

of possible and reusable tasks at runtime.

1.4 System design principles

1.4.1 Separation of concerns

1.4.1.1 Definitions and goal

Separation of concerns (SoC) [30] is an abstract concept of system decomposition,

difficult to define. The difficulty here is mainly due to the complexity of the targeted

Ph.D thesis in Computer Science - University of Douala (2022) 11

A formal approach for role-Based modeling of business collaboration processes

system, but also due to the exact definition of what is a concern in that system.

Craftsman [31] defines separation of concerns as a delineation and correlation of

system elements, in order to establish a well organized system where each part fulfills

a meaningful and intuitive role while maximizing its ability to adapt to change. It

follows from this definition that a concern as part of the target system, is a set

of clearly defined responsibilities making it possible to achieve a single purpose;

but in practice, not all concerns are easily separable and they are termed cross-

cutting concerns. SoC is an important design principle in many areas such as urban

planing, architecture and information design. Well achieved, it promotes a better

understanding, design and management of complex interdependent systems, so that

parts can be reused, optimized independently of other parts, and insulated from the

potential failure of other parts.

1.4.1.2 SoC mechanisms, principles and properties

According to SoC definition above, three interrelated and complementary mecha-

nisms emerges: (i) delineation i.e. the action of indicating the exact position of

a border or boundary. In practice, boundaries might be methods (functions), ob-

jects, components, services, etc. Delineation mechanism ensures exclusivity and

singularity of purpose and boundaries between elements. (ii) Correlation i.e. mu-

tual relationship or connection (interface) between concerns and (iii) adaptation to

change (evolutivity). Those mechanisms are captured by the single responsibility

and interface segregation principles in Martin’s SOLID principles [32, 33, 34, 35, 36]

as:

(1) Single responsibility (Cohesion and Coupling) [37]: A concern should have one

and only one reason to change, and should be isolated from complexities of

the system as a whole. Changes can only originate from a single concern, or

rather a single tightly coupled group of concerns, representing a single narrowly

defined business goal. So each concern or group of concerns is responsible of

one business goal. The single responsibility principle, details the cohesion and

coupling mechanism as the goal is to gather together concerns that change for

the same reasons, and separates those changing for different reasons.

Ph.D thesis in Computer Science - University of Douala (2022) 12

A formal approach for role-Based modeling of business collaboration processes

(2) Interface segregation (Scalability)[38]: Systems evolve by dynamically redefin-

ing interfaces involved. For that purpose, interface segregation principle, rec-

ommends the implementation of several specific interfaces, instead of one gen-

eral purpose interface. However, if such an approach considerably reduces the

frequency of necessary changes to the system, it could cause side effects if,

while designing interfaces, not only useful methods are expressed each time.

A concern gathers several properties [39] as: canonicity, composability, reusability,

adequation and closure, wich in turn guarantee maintainability, robustness, adapt-

ability and evolutivity properties to the system.

1.4.1.3 Soc design approaches

Systems must usually satisfy multiple properties, perform multiple functions simul-

taneously, and satisfy multiple purposes [40]. With that high level complexity, the

main difficulty in designing those systems, is achieving separation of concerns; Var-

ious separation techniques exists [41, 42, 31]: (i) horizontal separation or layered

separation, i.e grouping processing concerns based on their role within application.

The process is to divide an application into logical layers of functionality that fulfill

the same role within the system. This is an organization of concerns which mini-

mizes the level of dependencies with application. (ii) Vertical separation i.e dividing

an application into modules of functionalities that relate to the same feature or sub-

system within an application. This clarifies the responsibility and dependencies of

each features. Boundaries may be defined logically to aid in organization, or physi-

cally to enable independent development and maintenance. (iii) Aspect separation

i.e. segregating an application’s cross-cutting concerns [43] or aspects, from its core

concerns. This approach is known as aspect-oriented programming [44].

1.4.2 Service Oriented Design

1.4.2.1 Definitions, principles and properties

Service oriented design (SOD), is a particular client/server design approach where

architecturally, design units are services. Each meaningful service is implemented

as an autonomous component, sufficiently equipped to work alone for a desired goal.

Ph.D thesis in Computer Science - University of Douala (2022) 13

A formal approach for role-Based modeling of business collaboration processes

Components publish services availability in a repository and make service calls in

a peer-to-peer manner [45, 46, 47, 48]. This could be abstracted as an integrated

business application where services represent steps of a business process and one the

main application is the composite business application, also viewed as a distributed

computing environment. Properties gained from this approach are: (i) ability to use

or combine services in ways not conceived by their originators (conjonctivity), (ii)

ability to deploy or reuse a component in any compatible environment (portability,

deployability), (iii) possibly redundant networked resources (availability, failure han-

dling), (iv) ability of components from different sources to use each others services

(interoperability) [49].

1.4.2.2 SOD architecture

Service Oriented Architecture (SOA) is a distributed computing environment, orga-

nized around five main elements [50, 49, 51, 52]:

(1) Context: i.e. an environment for deploying plug and play components, pre-

scribing details of installation, security, discovery and lookup;

(2) Component: reusable element providing services independently to platforms,

protocols and context;

(3) Container: an environment executing components that manages availability

and code security;

(4) Contract: an interface, that contractually defines the syntax and semantics of

single behavior;

(5) Connector: autonomous element encapsulating transport specific details for a

specified contracts.

1.4.2.3 SOD interactions

Interactions describes how, through the connector, components make their services

available or request those of others and how, collaboration takes place between

components. Concretely there are two interaction pattern forms: communication

Ph.D thesis in Computer Science - University of Douala (2022) 14

A formal approach for role-Based modeling of business collaboration processes

pattern and services composition pattern elements of Service Oriented Computing

(SOC) [53].

Communication pattern These patterns describes mechanisms used to publish and

discover services. Service subscribers should possibly express their interest to a

service event or may be a service event pattern and be notified when they occur, i.e

published [54]. Technically three main implementations exist presented below, the

least developed to the most elaborate:

• Messaging: subscribers send asynchronous messages through a common canal

to publishers who processes the service synchronously.

• Remote Procedure Call (RPC): subscribers make asynchronous blocking ser-

vice call which are synchronously processed by publishers.

• Publish/Subscribe: it is an event oriented style with total de coupling in time

i.e. stakeholders are not supposed to take part actively in the interaction

at the same time, space i.e. stakeholders does not know each other, and

synchronization i.e publishing and subscribing are not locked parallel events.

There could be many pub/sub categories: topic-based, content-based, type-

based [55].

Services composition pattern Describes those patterns used to select and bind ser-

vices, for a particular goal. In a layered architecture context, vertical service com-

position takes place at all layers of the architecture, it is a component deployment;

rather horizontal service composition take place at the same layer. Composition can

be static when occurring at design step (i.e service orchestration), or dynamic when

occurring at execution, then services are substituted on demand, without rebuilding

the whole system, providing more flexibility to the system (service choreography)

[47, 56].

• Service orchestration: is a behavior that a service provider performs internally

to realize a service that it provides. It describes tasks that a service provider

performs internally.

Ph.D thesis in Computer Science - University of Douala (2022) 15

A formal approach for role-Based modeling of business collaboration processes

• Service choreography: it is a goal focus approach, describing common goal in-

teractions and tasks (flow relations) among service providers and between ser-

vice providers and service requester. It does not describe sub-tasks performed

internally, because those tasks are not essential to collaboration. Finally, it

covers the perspective of a stakeholder that wishes to have an overview of a

collaboration.

1.4.3 User-Centered design

A User-Centered Design is an iterative design process framework that incorporate

validation from the user every step of the way [57]. Thereby, it is an optimistic

approach to invent new solutions [58] by designing from user’s perspective. This

closeness and frequent interaction, helps understand user’s needs.

1.5 Guarded attribute grammar

1.5.1 Concepts and principles

Guarded attribute grammar (GAG)[59] is a formal framework, inspired from Knuth’s

attribute grammar concepts [60, 61, 62], also viewed as a process grammar [63],

and designed to model open user-centric architectures where data and rules requires

flexibility. GAG help designing business processes by allowing dynamic task creation

and data handling. Tasks competitive execution is implemented by a declarative

approach where task dependencies are specified without any order.

The GAG system offers a process model with three levels of stratification [64]:

(i) the business services (or tasks) level which identifies all of the existing tasks

(known or inferred) in the target domain; this level does not evolve much, it

is these tasks that act on the artifacts, according to the rules;

(ii) the business rules level, used to aggregate services together in a declarative

language;

(iii) the business artifact level which offers the ultimate stage of abstraction, by

combining data and processes.

Ph.D thesis in Computer Science - University of Douala (2022) 16

A formal approach for role-Based modeling of business collaboration processes

Figure 1.1: GAG layered architecture with associated goals

By their layered and flexible architecture (figure 1.1), GAGs helps modeling the

two main forms of business collaboration, namely collaboration in order to bring out

new knowledge and innovate (section 2.3), and collaboration for service supplying

(section 2.4).

1.5.2 Formal definitions

1.5.2.1 Grammar and derivation relation

Definition 1.5.1. (Grammar): A Grammar G = (S, P) is given by a set of grammati-

cal symbols S and a set of productions P ⊆ S×S∗ expressed as rulei : s0 → s1 · · · sn
(i ∈ N), rulei is production label, symbol s0 is the left-hand side (lhs) and s1 · · · sn
is the right-hand side (rhs).

A symbol is said to be used, (respectively defined) when it appears in the right-

hand side (resp. left-hand side) of some production. We let •G and G• denote

respectively the set of used but not defined symbols, and the set of defined but not

used symbols respectively.

Definition 1.5.2. (Derivation relation): We let the derivation relation →⊆ S∗ × S∗

given by w → w′ iff exist u1, u2 ∈ S∗ and (X, u) ∈ P such that w = u1 ·X · u2 and

Ph.D thesis in Computer Science - University of Douala (2022) 17

A formal approach for role-Based modeling of business collaboration processes

w′ = u1 · u · u2; and we let →∗, be its reflexive and transitive closure.

1.5.2.2 Reduced grammar

Let ♯B(u) denotes the number of occurrences of symbol B in word u.

Definition 1.5.3. (Reduced grammar): A grammar is reduced if

(i) every symbol is accessible:

(∀B ∈ S) (∃A→∗ u) A ∈ G• ∧ ♯B(u) ̸= 0

and,

(ii) for every symbol A exists a derivation A→∗ u leading to a word u all of whose

symbols are in •G.

1.5.3 Data, Variables, Attributes and Guards

Data are arbitrarily typed piece of information needed to complete the execution of a

task or produced as the result of the execution of a task. The GAG model associates

data to pending task, using attributes. Each pending task is associated with two

types of attributes, namely inherited attributes (inh) as incoming data to pending

task context and synthesized attributes (syn) produced during task resolution and

used by the context.

Each attribute ai is associated with a term or pattern and given by an equation

of the form ai = ti, where ti is a data record, simply presented in a functional [65]

manner and can be recursively defined by equations 1.1 below

ti = c(t1, . . . , tn) | v | cte (1.1)

where c is a data constructor or record, t1, . . . , tn are subterms or field of the

record, v is a variable; variables in terms represent holes or place-holders which

identify parts of the term that remain to be filled. Finally cte is a constant value of

a given basic type which can be identified with zero arity data constructor. A term

is said to be closed, if it contains only data constructors, filled with constant values

Ph.D thesis in Computer Science - University of Douala (2022) 18

A formal approach for role-Based modeling of business collaboration processes

carrying some meaning in the context in which they are used.

We let V ar(t) be the set of variables occurring in term t, then t is closed iff

V ar(t) = ∅. We also let p : s0 → s1 · · · sn be a business rule, with inh(s) and syn(s)

being respectively inherited and synthesized attributes associated to symbol s; then

we define

V arinh(s) = {x ∈ V ar(ta) | a ∈ inh(s)}

V arsyn(s) = syn(s)

V ar(s) = V arinh(s) ∪ V arsyn(s)

V arinh(p) = V arinh(s0)

V arsyn(p) = V arsyn(s0)

V ar(p) =
∪

∀s∈lhs(p)∪rhs(p)

V ar(s)

(1.2)

as well as a guard (condition affecting inherited information) which specifies

when production is activated.

1.5.4 Artifacts

An artifact is an abstract structure obtained by combining data and operations

(processes), so as to form a monolithic block. Offering as advantages, several levels

of abstraction, modularity and flexibility in the composition of business operations.

The description of an artifact first requires a data model that describes the internal

structure of business objects; and secondly a model life cycle which describes the

possible paths and timing for the execution of these objects.

GAGs are artifact-centric as they offers a high level of abstraction, while pro-

moting varied and rich communication between the stakeholders of the system in

the performance of an activity. The models obtained by this approach is said to be

actionable [64, 66], i.e. can be used to automatically generate executable.

Formally, an artifact is seen as a tree with typed nodes termed as X :: s where

X is the node of type s. Each node associated with the left hand side of a grammar

Ph.D thesis in Computer Science - University of Douala (2022) 19

A formal approach for role-Based modeling of business collaboration processes

rule. An artifact is given by a set of equations of the form X = P (X1 · · ·Xn)

indicating that the node X :: s is labeled by the production P : s → s1 · · · sn and

having as successors X1 :: s1 · · ·Xn :: sn respectively; and two equations cannot

have the same left hand side. There are two types of nodes, namely open nodes or

tasks being resolved and closed nodes or resolved tasks.

Figure 1.2: Artifact construction by rewriting rules

A closed node is a node labeled with the name of the rule that made it possible

to carry out the associated task. It is described by an equation of the form

X = R(X1 · · ·Xn) where X :: s and Xi :: si with the underlying rule U(R) =

s → s1 · · · sn. A closed node state that task s is completed using rule P , as

shown on figure 1.2.

An opened node is a X :: s node associated to a pending task for which, per-

forming rules are not yet known, and given by an equation on the form

X = s(t1, . . . tn)⟨u1 . . . um⟩ where s is the pending task, t1, . . . tn are inputs

and u1 . . . um are outputs; we say an opened node is a form to fill out later.

On figure 1.2, X1 :: s1 · · ·Xn :: sn are opened nodes.

The life cycle of an artifact is implicitly given by the set of all productions.

Initially, an artifact is reduced to an open node. This open node can then be refined

by the choice of an appropriate rule or rewrite rule. An artifact will be said to be

closed when it no longer contains open nodes. Task invocation, is done by filling

the inherited positions (entries) of the form and, by indicating variables which will

receive the results after task execution, we talk of variable subscription as shown on

figure 1.3 above.

Ph.D thesis in Computer Science - University of Douala (2022) 20

A formal approach for role-Based modeling of business collaboration processes

Figure 1.3: Data handling by an artifact

1.6 Conclusion

This chapter presented the founding elements of this work, that is the role approach

and its mechanisms, business process modeling, systems design principles and ap-

proaches, with the separation of concerns and service-oriented design. But also, the

formal modeling framework that are the GAGs, used in this work was introduced.

The next chapter will complete the basic concepts, by describing the two various

forms of business collaboration.

Ph.D thesis in Computer Science - University of Douala (2022) 21

CHAPTER 2

BUSINESS COLLABORATION:

PILLARS, TAXONOMY, USE CASES

AND TASKING MODELS

2.1 Introduction

A business collaboration or more simply collaboration is the process of two or more

people or organizations working together to complete a task, or to achieve a shared

goal. Collaboration allows diverse skill sets both internally and externally, to be

harnessed together, to set comprehensive content strategy designed to achieve busi-

ness goals. As a process, a collaboration is completely defined by four elements:

(1) its process organization, i.e the way work will be carried out; (2) those involved

namely contributors; (3) the reason for the existence of collaboration or business

goals; (4) the context of collaboration.

Collaboration and its deployment environment is a distributed collaborative sys-

tem (or simply collaborative system) as it is a set of independent entities or con-

tributors either moral, human, machine or software components, providing precise

services each individually. Every contributor in the system has personal intrin-

sic skills, i.e he is equipped with various mechanisms, namely for data storage, for

communication (by message, Restful like, SOAP like,...) with his environment, for

22

A formal approach for role-Based modeling of business collaboration processes

service discovery, sensing, etc. A contributor, by using a contextual assigned busi-

ness skills, also plays a specific role in the accomplishment of some system business

goal. In collaborative systems contributors can enter or go out from the system as

they pleased. Same services occurrences can be provided by several contributors in

the system. This chapter is devoted to business collaboration, for characterization

and classification purpose, and to deduce both a formal definition,properties and

describe associated tasking models for collaboration.

2.2 Pillars, criteria and strategies

2.2.1 Pillars of collaboration

A collaboration deployment process relationies on five pillars, namely: requester,

contributors, tasks, interactions and outsourcing [47, 67].

2.2.1.1 Requester

The requester is a natural or legal person, who requests the power and wisdom of a

contributor or a group of contributors, for the performance of a given service. To this

end, the requester, among other things, can encourage contributors by gratification

or social motivation (public recognition), outsource tasks, check the compliance

of results with predefined standards and finally ensure project contributor’s data

confidentiality.

2.2.1.2 Contributors

A group of contributors is a community of actors or persons, taking part in a col-

laborative activity. A group of contributors must gather these four characteristic

properties:

(1) Diversity: expressed here in terms of expertise (expertise and variety of skills),

spatiality (geographic and disparate profiles), gender and age of contributors,

etc.

(2) Anonymity: because contributors of a project, do not necessarily know each

other, and do not necessarily know the requester.

Ph.D thesis in Computer Science - University of Douala (2022) 23

A formal approach for role-Based modeling of business collaboration processes

(3) Importance: in terms of contributors numbers.

(4) Completeness or adequacy: i.e. contributors gather skills necessary to com-

plete a task. However, an abundance in this context leads to overload, confu-

sion and management difficulties.

2.2.1.3 Tasks

Within the framework of collaboration, three types of tasks can be distinguished, in

particular primitives, services and outsourced tasks.

• Primitives are basic skills or intrinsic skills (or basics know how), acquired

(or developed) by (for) contributors. They are atomic tasks. These skills

cover various types of activities namely, communication, geolocation, object

assessment, voting, etc. By convention, all primitives names are written in

bold capital letters and, table 2.1 below summarizes some common primitives.

Primitives Purposes
SEND for sending data

RECEIVE receiving data
INPUT input data or fill a form
SNAP get pictures

LOCATION geo-localize a place
CONTEXT describing an object context

TRANSCRIPT record data in a register
SIGNUP put a signature

CORRECT update previous data
· · · · · ·

Table 2.1: Some usual primitives

• Services are (de)-composable pieces of work, possibly described in terms of

primitives, outsourced tasks and services. A service is a goal or a targeted

functionality offered by a role (by convention, a service names starts with a

lower case letter).

• Outsourced task or crowd task is a decomposable service described only in

terms of primitives. They are those types of services, requiring only contrib-

utor’s intrinsic skills. When contributors are massively used to perform the

same task within an activity they are called a crowd, and that task is a crowd

Ph.D thesis in Computer Science - University of Douala (2022) 24

A formal approach for role-Based modeling of business collaboration processes

task. Crowd task is an activity in which the crowd participates. This activ-

ity can be a large-scale data collection, a co-creation task, or an innovation

task. By convention, their names are overlined. The association mechanism

between a crowd and a crowd task is called outsourcing. A crowd task can be

characterized by the five major properties defined below:

(1) Modularity i.e. a crowd task can be either atomic or decomposable.

(2) Complexity i.e. level of difficulty in carrying out this task. The complex-

ity here is different from modularity in that a task can be complex, while

remaining atomic.

(3) Solvability i.e. a crowd task is simple enough to be solved by humans,

but complex for computers.

(4) Automaticity i.e. a crowd task is either difficult to automate, or expensive

in automation.

(5) Contributor-centric i.e it is controlled and carried out by contributors.

2.2.1.4 Interaction scheme

An interaction represents the existing pairwise relation between requester, contrib-

utors and task in a collaborative system in order to perform a given goal. It is an

explicitness of collaboration between those entities. Different forms of interaction

are distinguished: between requester and contributors termed tasking relation, be-

tween tasks and requester or requesting relation, between tasks and contributors or

supplying relation and finally between tasks or dependency relation.

An interaction scheme is a description of all interactions existing in a given col-

laborative system. To this end, there are two levels of interaction description: first

level, describing interactions between required services (requested by requesters) and

provided services (supplied by contributors) termed service choreography. Second

level, describing how contributors render their services and term service orchestra-

tion.

Ph.D thesis in Computer Science - University of Douala (2022) 25

A formal approach for role-Based modeling of business collaboration processes

2.2.2 Skills orchestration strategies

Skills orchestration consists in tasks distribution to contributors, aggregating results

and resuming the process based on the partial result obtained. According to task

complexity, results acceptance and gratification granted criteria; there are mainly

3 strategies for orchestrating collaborative activities namely market, contest and

auction strategies [68, 69]:

2.2.2.1 Market strategy

Contributors freely participate to tasks, according to their skills and gratification

is not very important. This strategy is suitable for limited complexity micro-tasks

(photo marking, text translation, etc.) for which a large number of responses are

expected. Here acceptance criterion for results is simple and is mainly based on

statistical methods.

2.2.2.2 Contest strategy

The requester has a task to perform, funds to allocate, but does not have acceptance

criteria for the result. Contributors are invited to participate in a competition,

proposing their solutions to this problem. According to a well-established criterion

(number of contributions, deadline, ...), requester chooses the best solution and the

winner; this strategy is suitable for creative tasks.

2.2.2.3 Auction strategy

Requester publishes his needs, contributors express the respective amounts of the

gratuity expected for this work, and the best bidder is chosen to do the work. This

strategy is suitable when the acceptance criteria for the solutions are known, but

we cannot estimate the gratification to be associated with them.

2.2.3 Classification criteria for collaboration

2.2.3.1 Process organization

In collaboration organization or governance is the internal mechanism by which the

production process is structured; it is also seeing as the distribution of decision-

Ph.D thesis in Computer Science - University of Douala (2022) 26

A formal approach for role-Based modeling of business collaboration processes

making power, on the evaluation of work carried out, choice between proposals for

solutions, ideas, work orientation. In practice, there are two governance modes:

hierarchical governance mode and flat governance mode:

• Top-down mode or hierarchical governance: in this mode, to supply a given

service, related tasks are assigned in an hierarchical manner progressively down

to the base, and results are also assembled until the complete delivery of the

desired service. Such approach is said to be a top-down hierarchical process

and control rules are pre-established, control is operated at different stages of

the system.

• Bottom-up mode or flat governance: by this mode, no control rule is es-

tablished in advance. It consists in being able to provide a required service

without prior organization. So it is according to needs that a task is carried

out and results obtained are assembled progressively. Such an approach is

said to be basic bottom-up process.

2.2.3.2 Participation

Participation defines properly the way contributors enter the collaborative activity;

it can possibly be closed or opened.

• Closed participation: In this case, according to some system needs, contribu-

tors are explicitly invited, based on their skills. This casting approach provides

a form of homogeneity of skills in the system, since contributors are chosen

such grouping their skills, may cover the needs of entire targeted collaboration.

This form of collaboration is also said to be internal collaboration [70, 71].

• Opened participation: contributors can freely access the collaborative process

according to their feelings, skills and knowledge; in that context, skills can

be hardly heterogeneous in the sense that possibly, there may be several oc-

currences of the same skills; but also, the set of skills involved may not cover

the collaboration needs. This form of collaboration is also said to be external

collaboration [71].

Ph.D thesis in Computer Science - University of Douala (2022) 27

A formal approach for role-Based modeling of business collaboration processes

2.2.3.3 Business goal categories

As stated earlier, a collaboration is orchestrated for a given goal. Technically, there

are three main goal categories for collaboration. Namely service supplying, knowl-

edge sharing and co-creation (innovation). However, it should be noted that a choice

made on a goal type for a collaboration also influences the choices in organization

and participation criteria.

• Service supplying: process is clearly defined and structured, so organization is

top-down; but participation could either be closed or opened.

• Knowledge sharing: organization could be top-down, as in learning case, where

some contributors teach others; rather could also be flat as in social media.

participation could either be closed or opened.

• Co-creation and innovation: organization is flat, contributors jointly define

rules as things progress. participation could either be closed or opened.

2.2.3.4 Types of collaboration

Figure 2.1: Business collaboration taxonomy

Depending on above organization criteria (section 2.2.3.1), two business collab-

oration families emerge [1, 2]. When there is no pre-established organization, and

rules are defined by needs, it is a coworking. Rather, when production is hierarchi-

cally organized i.e. the business process is well defined, we talk of service supplying

collaboration (see figure 2.1 above).

Ph.D thesis in Computer Science - University of Douala (2022) 28

A formal approach for role-Based modeling of business collaboration processes

2.3 Coworking

Coworking is an arrangement in which several contributors from different area, share

a common space [72, 73]. There is no pre-established rules, and contributors are

business partners as they freely contribute to an activity. When participation is

closed, we talk of team coworking, rather when participation is opened, it is a

opened coworking.

2.3.1 Team coworking

Team coworking is a form of collaboration, where members are chosen related to their

skills. It is a form of collaboration in which contributors jointly choose a problem,

determine the organization of work and select results. This type of collaboration is

suite for cases where an organization has a case, but doesn’t know how to manage

it, as in innovation and co-creation cases.

2.3.2 Opened coworking

Opened coworking or communitarianism is a case of a crowdsourcing for innovation,

as an opened community where members freely join. It is a form of collaboration

in which everyone proposes problems and solutions as in a knowledge sharing case;

governance is flat and the participation of contributors is open.

2.4 Service supplying collaboration

Participation criteria applied to service supplying collaboration, leads to two sub-

types of collaboration. Namely, when participation is closed, we talk of team ser-

vicing; while when participation is open, it is crowdsourcing.

2.4.1 Team servicing

It is a form collaboration where, contributors have complementary skills and are

chosen by an organization to carry out a project. Everyone knows everybody else,

their skill sets and their contribution to work. Governance here is hierarchical,

with business processes well defined; while participation remains closed. Deadlines

Ph.D thesis in Computer Science - University of Douala (2022) 29

A formal approach for role-Based modeling of business collaboration processes

are set and achievements are equally recognized. This type of collaboration is the

most common, due to service supplying e.g health management cases [65], software

development, administrative managements, etc.

As an illustration case, consider an E-administration application for issuing civil

status certificates, with the process described on figure 2.2, showing collaborations

between roles Declarer, Secretary, csOfficer and Judiciary_Authority; roles played

respectively by the actors Citizen, Agent, (Mayor, Diplomat) and Prosecutor as

contributors in an issuance civil status certificate (birth, marriage, death) activity

according to laws in Cameroon. this example is a cross-functional collaboration case,

as Mayor and Diplomat can issue certificate deliverance, but in different contexts.

Figure 2.2: Administrative collaboration in civil status certificate issuance

2.4.2 Crowdsourcing

The crowdsourcing concept, introduced by Jeff Howe [74], is a collaborative business

process model, in which tasks are carried out by a crowd. Simply, an organization

wishing to carry out a task can requests an online community for a voluntary ac-

complishment of the task, according to what both parties have a mutual benefit.

In crowdsourcing, organizational objectives are top-down, while creative activity is

bottom-up. We therefore say that crowdsourcing is a mixed mode organized process

[1, 75, 76, 3, 77], as it is a combination of top-down and bottom-up processes.

Ph.D thesis in Computer Science - University of Douala (2022) 30

A formal approach for role-Based modeling of business collaboration processes

Figure 2.3: A crowdsourced road maintenance activity

As crowdsourcing use case, consider a city participatory management case [78,

79], with processes depict on figure 2.3, where citizens (Bob, Jane, Alice,etc.) via

the urban information system (UrbanIS), provide information on the state of city

roads and determine which ones to maintain as a priority. Cleaning is done (by

Cleaning_CO) on the targeted roads, while municipal executive (MunicipalExecutive)

contracts with a company (Road_CO) in order to carry out the work.

Crowdsourcing can also be defined as an activity (either costly in time or in re-

sources) outsourcing process, towards a large number of anonymous actors termed

the crowd. A crowdsourcing system is then an environment, on which a crowdsourc-

ing process is deployed. It integrates the practices of business process modeling, and

establishes the connection between the crowd, different individual actors and ma-

chines.

2.5 Formalizing business collaboration

2.5.1 contributor in a business collaboration

Definition 2.5.1. (contributor): A contributor of a business collaborative process, is

an active entity gathering four things:

(1) an interface describing required services (or data) and provided services (or

data),

Ph.D thesis in Computer Science - University of Douala (2022) 31

A formal approach for role-Based modeling of business collaboration processes

(2) a storage for persistence within the contributor,

(3) business rules or functionalities targeted by the contributor, lastly

(4) communication resources and mechanisms by which a contributor exchanges

with others.

Building collaboration, requires to identify capabilities that must be added to in-

dividual contributors so that they can work with others [80]. So when considering a

contributor, a clear separation is made between its infrastructure (storage, commu-

nication mechanisms, sensing,etc.) and its functional goal in the system (interface,

business rules). The contributor infrastructure is thus perceived as an actor part,

while its functional goal is a role part. In fact, within a collaboration, each entity

can be assigned a single role, or rather play several roles at a moment. In addition,

due to potential unavailability of entities (maybe caused by failure, saturation, etc.)

at a given time, a complete process reconfiguration may occurred, which strongly

impacts the nature of potential services carried out. Contributors may not have the

same skills, and several occurrences of a role could exist at the same time; for those

reasons, collaboration is said to be a dynamic process.

2.5.2 Business collaboration tasking model

2.5.2.1 Preliminaries and properties

At this step we focus on service supplying collaboration types. Recall that, as the

goal is to describe processes, we are just interested with grammar structure in GAG

concept, mainly business service and business rules levels. A production is inter-

preted as an action that is performed in order to (partially) solve the task A in its

left-hand side, and the symbols in its right-hand side represent the residual tasks

that should in turn be solved in order to get a full completion of A. Thus a deriva-

tion A→∗ u is interpreted as a process (a partially ordered set of actions) directed

towards the resolution of task A, and this process is complete if u is the empty word.

The process is conditionally complete if u contains only external services (sym-

bols in •G) since its completion is then conditioned by the complete execution of

Ph.D thesis in Computer Science - University of Douala (2022) 32

A formal approach for role-Based modeling of business collaboration processes

these services by its environment. If •G = ∅, i.e. the grammar represent a stan-

dalone application that relies on no external services, and if the grammar is reduced

then every partial resolution of a task can be extended in order to reach completion.

This property is called soundness. One can define a relative notion of conditional

soundness stating that any provided service can indeed be rendered using external

services irrespective of the way the computation started.

The soundness property that can easily be checked by a fixed point computa-

tion is nonetheless undecidable for guarded attribute grammars due to fact that

data attached to services can dynamically restrict the set of potentially applicable

productions [59]. Note moreover that the soundness of its underlying grammar is

neither a sufficient nor a necessary condition for the soundness of a guarded attribute

grammar due to the non-monotony of this property arising from the combination of

a universal and an existential quantifier in its definition:

∀A→∗ u ∃u→∗ ε

2.5.2.2 Intrinsic skills and services

Consider a production or business rule of a given grammar G = (S, P) below

s0 → T0· · ·Tms1 · · · sn with n, p ∈ N (2.1)

• s0 ∈ S is a defined service, i.e service carried out by processing the rule 2.1

above.

• s1 · · · sn are used services in that rule, and they must be completed before

completing s0.

• T0 · · ·Tm are intrinsic skills, implemented as primitives (see section 2.2.1.3).

Within a role and considering business rules, services defined but not used, are

called provided services, those used but not defined are required services, lastly

services defined and used are internal services.

Ph.D thesis in Computer Science - University of Douala (2022) 33

A formal approach for role-Based modeling of business collaboration processes

2.5.2.3 Crowd tasks

Definition 2.5.2 (Crowd task). A crowd task si with i ∈ N is defined by a business

rule like si → T0· · ·Tm i.e they are type of services requiring only contributors

intrinsic skills, to be carried out and thus are autonomous services.

Consider a business rule s0 → T0· · ·Tm one may ask the difference between

services s0 and s0. In fact s0 is a potentially outsourceable task, it can be defined

and used in the same role (or used by another role); rather s0 is an outsourced task,

so it is only defined in an autonomous role, termed crowd role, and only used by

a requester role. By convention, a crowd role only define outsourced tasks, and we

say a crowd role supply only crowd services.

2.5.2.4 Business skills

Definition 2.5.3 (Business skills). A business skill is a set of business rules, describing

job decomposition in the form

s0 → T0· · ·Tm s1 · · · sn s0 · · · sp (2.2)

where:

• s0 is a defined service,

• s1 · · · sn are used services

• T0· · ·Tm are contributor’s intrinsic skills, finally

• s0 · · · sp are crowd tasks.

According to rule 2.2, to supply service s0, services s1 · · · sn and s0 · · · sp must be

achieved and skills T0· · ·Tm are needed by contributor playing that role.

2.5.3 Tasking model use cases

2.5.3.1 Issuing civil status certificates

Reconsider the e-administration application for issuing civil status certificates, de-

scribed on figure 2.3,

Ph.D thesis in Computer Science - University of Douala (2022) 34

A formal approach for role-Based modeling of business collaboration processes

• Any Declarer, can trigger the process of establishing a civil status certificate,

by a declaration which can be either normal (dcl) or special (sDcl), following

business skills expressed by rules (2.3) below.

br0 : dcl → INPUT withnessing

| INPUT hospital

| INPUT reading

br1 : sDcl → INPUT

(2.3)

• A Secretary according to business skills in rule (2.4), is responsible of decla-

rations correction and transcription in related registers, whether these decla-

rations are normal (normAscr) or special (spAscr).

br2 : normAscr → TRANSCRIPTION dcl

br3 : spAscr → TRANSCRIPTION sDcl judgment

br4 : reading → CORRECT dcl

(2.4)

• Lastly according to rule (2.5), a CsOfficer is responsible of issuing civil status

certificates and certain checks. Checks rules are not yet expressed and may

be done later.

br5 : csDelivrance → SIGNUP normAscr

| SIGNUP spAscr

br6 : check → ε

(2.5)

2.5.3.2 Crowdsourced road maintenance activity

If we reconsider the crowdsourcing activity described on figure 2.3,

• Any Sensor, can snap an object, in a predefined context (state of the object)

and (geographic) location (clSnap) on the one hand or quite simply according

to the circumstances of the moment (snap), following business skills expressed

by business rules in (2.6).

Ph.D thesis in Computer Science - University of Douala (2022) 35

A formal approach for role-Based modeling of business collaboration processes

clSnap → CONTEXT LOCATION SNAP

snap → SNAP
(2.6)

• A Citizen according to business skills in rule (2.7), can tag a picture and assess

object, in both cases by inputting some data.

tagP icture → INPUT

assessObject → INPUT
(2.7)

• an IS i.e information system is responsible of data collection, selecting targeted

road for maintenance, and sending some alerts (rules are not yet defined).

selectRoad → clSnap snap tagP icture

alert → ε
(2.8)

2.6 Conclusion

This chapter was devoted to business collaboration concepts, particularly on defi-

nition, characterization, taxonomy, as well as use cases illustrating some real world

situations. Ultimately, a collaboration is implemented as a set of independent ten-

ants, qualified to offer specific services, in a given context. Among the four types of

collaboration presented, we focused for the family of collaborations with an hierar-

chical organization (team servicing and crowdsourcing) for which a business tasking

model has been described, in guarded attribute grammars formalism. The next

chapter will define role interface, i.e. an extension made to GAGs, with the aim of

providing them with (de) composition mechanisms, conducive to flexible description

of collaborations.

Ph.D thesis in Computer Science - University of Douala (2022) 36

CHAPTER 3

AN INTERFACE OF ROLE THEORY

FOR COLLABORATION

3.1 Introduction

This chapter focuses on service-oriented design, for collaboration modeled by GAG,

with the purpose of providing a reasoning base. Even if the objectives differ (service-

oriented design versus verification) as well as the models used (user-centric collabo-

rative systems versus reactive systems) we are largely inspired by works that have

been carried out on behavioral interfaces of communicating processes. Three main

ingredients have been put forward here, which will serve as our guideline. First,

an interface is mainly used to formalize a contract-based reasoning for components.

Second, an interface is viewed as an abstraction of a component, a so-called be-

havioral type. Third, given a specification G of the desired overall system and a

specification C of a given component, we seek for a specification X, for those systems

that, when composed with the component C, satisfies the global property (residual

specification concept).

37

A formal approach for role-Based modeling of business collaboration processes

3.2 Modeling interface of role

Considering a very simple extension of interface concept, obtained by adding a

binary relation on a set of services, indicating for each of provided services, the

list of services that are potentially required to carry it out. This relation gives only

potential dependencies because a service can be provided in various ways and relying

on a variety of external services.

Recall that as the goal is to describe processes, we are just interested with gram-

mar structure in GAG concept. Business skills are expressed as grammar production

rules (or business rules), describing job decomposition, in the form

s0 → T0· · ·Tm s1 · · · sn s0 · · · sp (3.1)

where s0 is a defined service, s1 · · · sn are used services and T0· · ·Tm are contributor’s

intrinsic skills, finally s0 · · · sp are crowd tasks (see section 2.5.2).

3.2.1 Potential dependencies

In a business collaboration, a service is potentially provided in different ways, de-

scribed by business rules. However, the manner of rendering this service is dictated

both, on the one hand, by choices made by the contributor of this service and, on

the other hand, by the availability of required services.

declaration0 : dcl → INPUT withnessing

| INPUT hospital

| INPUT reading

declaration1 : sDcl → INPUT

(3.2)

Reconsidering rule declaration0 above for example, we can observe that service

dcl could be rendered in three different ways. It will be said that dcl potentially

depends on services withnessing, hospital and reading respectively. At a given

moment, the effective way of rendering this service dcl, will depend on the choice

made by contributor Citizen, playing role Declarer.

Ph.D thesis in Computer Science - University of Douala (2022) 38

A formal approach for role-Based modeling of business collaboration processes

Definition 3.2.1. Potential dependencies are over-approximations of relations be-

tween provided services and required services.

3.2.2 Grammar interface

The goal is to define an abstraction of grammar, called an interface for grammar,

specifying which services are provided, which external services are required to per-

form them, and potential dependencies; in particular, the interface ignores internal

tasks.

br1 : A→ ε
br2 : A→ B C
br3 : B → ε
br4 : B → D

Figure 3.1: Grammar of a role providing service A

Figure 3.1 above shows a grammar of a role, providing service A by using ex-

ternal services C and D. B is an internal service, related to the role, and can be

renamed. In order to process service A that is a pending task in his workspace, rule

br1 can be chosen and applied (which corresponds to a certain action or activity)

and this decision ends execution of service A (since the right part is empty). Al-

ternatively, rule br2 can also be chosen. In that case, two new (residual) services,

namely B and C are created and A will end as soon as B and C are completed.

It is considered that provided service s0, potentially depend on required service

s1, if there is a derivation s0 →∗ u where the word u contains an occurrence of s1.

Definition 3.2.2. An interface for grammar G = (S, P) is I(G) = (•G, R(G),G•) where

R(G) = {(s1, s0) | ∃u ∈ S∗ s0 →∗ u ∧ ♯s1(u) ̸= 0} and ♯s1(u) denotes occurrences

number of symbol s1 in the word u.

3.2.3 Interface of role

An interface of role [8, 9] is some abstraction of the guarded attribute grammar

G associated to a role, whose aim is to specify what services are provided, which

Ph.D thesis in Computer Science - University of Douala (2022) 39

A formal approach for role-Based modeling of business collaboration processes

external services are required to carry them out and an over-approximation of the

dependencies between required and provided services termed potential dependencies.

Interface disregards internal services.

Figure 3.2: An interface of role associated with the role on figure 3.1

The interface of role given on figure 3.2, is the relation R = {(C,A) , (D,A)}, an

over-approximation of dependencies, because according to business rules on figure

3.1, it may happen that A uses none of the services C and D (in using the A→∗ ε

derivation) or only C (using the A →∗ C derivation). But calling service A does

not require knowing how the service will be performed, and must therefore assume

availability of all potentially required services used. Nevertheless, We will assume

that the grammar is reduced.

Definition 3.2.3. Let Ω a fixed set of services. An interface (•R,R,R•) consist

of a finite binary relation R ⊆ Ω × Ω of disjointed sub-sets •R and R• from Ω,

such that •R = R−1(Ω) = {s0 ∈ Ω | ∃s1 ∈ Ω, (s0, s1) ∈ R} and R• ⊇ R(Ω) =

{s1 ∈ Ω | ∃ s0 ∈ Ω, (s0, s1) ∈ R}.

Set R• represents services provided (or defined) by the interface and •R is the

set of required (or used) services. Relation (A,B) ∈ R indicates that service B

potentially depends upon service A. Thus A ∈ R• \ R(Ω) is a service provided by

the interface that requires no external services.

Note that, since •R is the domain of the R relation, the set of required services

may remain implicit. This is not the case for all the services provided because it

can strictly encompass the co-domain of the relation. Nevertheless, we will use the

same symbol to designate an interface and its underlying relation.

The Declarer interface of rules 3.2 above, is then defined by figure 3.3 and equa-

tion 3.3 below.

Ph.D thesis in Computer Science - University of Douala (2022) 40

A formal approach for role-Based modeling of business collaboration processes

Figure 3.3: Interface of a Declarer role

•DECLARER = {hospital, whitnessing, reading}

DECLARER• = {dcl, sDcl}

DECALER = {(hospital, dcl), (whitnessing, dcl), (reading, dcl), (_, sDcl)}
(3.3)

3.3 Properties, conventions, basic operations

3.3.1 Property and conventions

Autonomy or closure: An interface is closed (or autonomous) if relation R (and

therefore also •R) is empty. Thus, a closed interface is given by all services it

(autonomously) provides.

In order to facilitate ratings and calculations, we will use the following conventions:

Emptiness: The empty interface that does not provide any service is noted ∅ =

(∅, ∅, ∅).

Transitivity: We will first identify a relation R ⊆ Ω×Ω such that R(Ω)∩R−1(Ω) = ∅

with interface (•R,R,R•) such that •R = R−1(Ω) and R• = R(Ω). We also

identify a set of X ⊆ Ω with the restriction of the identity relation to the whole

X, i.e., the diagonal {(A,A) ∈ Ω2 |A ∈ X}. In doing so, it is possible, for

example, to express the condition B ∈ Y ∧(∃C ∈ X (A,C) ∈ R ∧ (C,B) ∈ Y)

for R,S ⊆ Ω × Ω et X,Y ⊆ Ω since (A,B) ∈ R;X;S;Y where operator (;)

denotes sequential composition defined below in section 3.3.2 Note also that

with this convention we have X ∩ Y = X;Y for X and Y sub-sets of Ω.

Ph.D thesis in Computer Science - University of Douala (2022) 41

A formal approach for role-Based modeling of business collaboration processes

3.3.2 Sequential composition

Let R1 and R2 two interfaces, a sequential composition of those interfaces, denoted

R1;R2 is defined when •R1 ∩R•
2 = ∅ and given by

R1;R2 =
{
(s0, s2) ∈ Ω2 | ∃s1 ∈ Ω (s0, s1) ∈ R1 ∧ (s1, s2) ∈ R2

}

Figure 3.4: Sequential composition of two interfaces

the composition of their underlying relations with •(R1;R2) = R−1
1 (•R2) ⊆• R1

and (R1;R2)
• = R2(R

•
1) ⊆ R•

2. Sequential composition, simply solves transitivity in

potential dependencies between services.

3.3.3 Restriction and Co-restriction

Let O ⊆ Ω a subset of services. A restriction of interface R to O denoted by R � O
is given as

R � O = {(s1, s0) ∈ R | s0 ∈ O}

With (R � O)• = O ∩ R• and •(R � O) = R−1(O ∩ R•) respectively. In fact,

considering any system having a role r interfaced by R, and a subset of services

O, the restriction operation reconfigures role r so that, only its provided services

elements of O are enabled; other provided services are inhibited. In practice, this

operator is useful when you are interested just by some skills of a multi-skilled role.

3.3.4 Union of interfaces, quasi-interface and acyclicity

The union of interfaces is an interface if none of the services defined by one interface

is used by another. In the general case, R = (∪•iRi,∪iRi,∪iR•
i) meets the conditions

of the definition 3.2.3 of interface, but •R ∩ R• = ∅. If the R relation is acyclic,

it is said to be a quasi-interface since it induces an interface given by the following

definition.

Ph.D thesis in Computer Science - University of Douala (2022) 42

A formal approach for role-Based modeling of business collaboration processes

Definition 3.3.1. If R = (•R,R,R•) is a quasi-interface, i. e. R is an acyclic relation,
•R = R−1(Ω) and R• ⊇ R(Ω), let’s put ⟨R⟩ = R∗ ∩ (I ×O), where I =• R \R• and

O = R•. ⟨R⟩ is an interface with •⟨R⟩ = I and ⟨R⟩• = O.

Figure 3.5: Interface induced by a quasi-interface

Example 1. For instance if R1 = (∅, ∅, {A}) is an autonomous interface that

provide service A and R2 = ({A} , {(A,B)} , {B}) uses A to define another service

B. Then they jointly provide an autonomous interface ⟨R1 ∪ R2⟩ = (∅, ∅, {A,B})

that provides services A and B. Note that the information that B requires A is

lost: the meaningful information is that the interface exports A and B and has no

imports. If we assume that interface R1 rather produces service A from B, namely

R1 = ({B} , {(B,A)} , {A}), then the computation of the composition would also

give ⟨R1 ∪ R2⟩ = (∅, ∅, {A,B}) even though these two interfaces when combined

together cannot render any service.

This is the rationale for assuming that a quasi-interface must be acyclic. More

specifically, what example 1 above, shows is the (simplest) illustration of two gram-

mars that are reduced but whose union is not. This is due to the cycle created when

we put them together. It is immediate that the union of two reduced grammars

whose union of interfaces is acyclic is also reduced. Our objective is to be able

to present an autonomous grammar as the gathering of subgrammars. The global

grammar will thus be reduced (and therefore sound) if each of the subgrammars

is reduced and if the operation of union (whose associativity we will seen below)

preserves this property. Hence the importance of this acyclicity hypothesis, even

though it is somewhat pessimistic. In a way, this assumption imposes a constraint

on how to break down a system into sub-modules, i.e. how to structure our spec-

ification. In practice, as we have experienced in our previous studies [81], these

Ph.D thesis in Computer Science - University of Douala (2022) 43

A formal approach for role-Based modeling of business collaboration processes

constraints are reasonable. Nevertheless, if we give ourselves finer abstractions of

grammars, which will be done further by introducing non-deterministic interfaces,

we can end up with less constrained forms of composition.

3.4 Interface of role composition

3.4.1 Concept and principles

An interface is mainly used to formalize a contract-based reasoning for components.

The idea is that a component of a reactive system [82] is required to behave correctly

only when its environment does. The correctness of composition is stated in terms of

a contract given by assume-guarantee conditions: the component should guarantee

some expected behaviour when plugged into an environment that satisfies some

properties. The principle of composition is however made subtle by the fact that

each component takes part in the others’ environment [83]. Safety and liveness

properties, which are not relevant in our case, are crucial issues in this context and

largely contribute to the complexity of the resulting formalisms. The underlying

models of a component range from process calculi [84] to I/O automata and games

[85]. These interface theories have also been extended to take some qualitative

aspects into account (time and/or probability).

3.4.2 Composition operation

Note that (R1 ◃▹ R2)
• = R•

1 ∪ R•
2. In

addition, since R•
i ∩R•

i = ∅ for i = 1, 2
we get

•(R1 ◃▹ R2) = (•R1 \R•
2)∪ (•R2 \ •R1)

Figure 3.6: Composition of two interfaces.

Definition 3.4.1. Two interfaces R1 and R2 are said to be composable (figure ??)

if their union R1 ∪ R2 is an acyclic relation and R•
1 ∩ R•

2 = ∅. Then we’ll denote

Ph.D thesis in Computer Science - University of Douala (2022) 44

A formal approach for role-Based modeling of business collaboration processes

R1 ◃▹ R2 = ⟨R1 ∪R2⟩ their composition.

It follows directly from the definition that the composition of interfaces is com-

mutative and has the empty interface as a neutral element. Note that we can have
•R1 ∩ •R2 ̸= ∅, so that both interfaces may require common external services.

3.4.3 Associativity of the composition

The following example shows that composition is not associative, if we do not require

that composable interfaces have disjoint outputs. Of course, the hypothesis of having

an associative interface composition operation is a matter of choice. One could

alternatively have chosen to drop the assumption that composable interfaces have

disjoint output sets and to deal with a non-associative composition operation.

Figure 3.7: A counter-example showing that, associativity of composition does not
hold, if interfaces shared some provided services.

Example 2. Let R1, R2, and R3 three interfaces given by figure 3.7. If R1 ◃▹

(R2 ◃▹ R3) = (R1 ◃▹ R2) ◃▹ R3 we would expect this interface to be given by

R = ⟨R1 ∪R2 ∪R3⟩, so R = {(A,D), (C,D), (A,E), (B,E), (C,E)}. It should be

noted that service D could be produced either by R1 or R3 so that we have both

(A,D) and (C,D) as dependencies in R. It follows that E potentially depends

on both A, B, and C. However, if we compute R1 ◃▹ (R2 ◃▹ R3) we get Rr =

{(A,D), (C,D), (B,E), (C,E)} because in R2 required service D is no longer an en-

try in R2 ◃▹ R3. Symmetrically Rl = (R1 ◃▹ R2) ◃▹ R3 = {(A,D), (C,D), (A,E), (C,E)}.

Ph.D thesis in Computer Science - University of Douala (2022) 45

A formal approach for role-Based modeling of business collaboration processes

Remark 2. ⟨R⟩ = {(A,B) ∈ R∗ | ¬ (∃C ∈ Ω. (C,A) ∈ R)}. Thus (A,B) ∈ ⟨R⟩ is

associated to path in the graph R leading to B ∈ R• and cannot be extended to the

left. Note that such a path is of the form A = A0 → A1 → · · · → An = B, with

A ∈ •R \ R• and ∀1 ≤ i ≤ n (Ai−1, Ai) ∈ R. Note that ∀1 ≤ i ≤ n Ai ∈ R•, i.e. all

the elements of this path, except the first one, A, belong to R•.

Proposition 3.4.1. The composition of the interfaces is associative. More precisely,

if R1 · · ·Rn are interfaces that can be pairwise composed, then ◃▹ni=1 Ri = ⟨R1∪· · ·∪

Rn⟩.

Proof. Using the commutativity of composition, the proposal follows by induction

on n as soon as it was verified that (R1 ◃▹ R2) ◃▹ R3 = ⟨R1 ∪R2 ∪R3⟩ for interfaces

that can be composed in pairs R1, R2 and R3. So we have to show ⟨⟨R1∪R2⟩∪R3⟩ =

⟨R1 ∪ R2 ∪ R3⟩ or more generally than ⟨⟨R⟩ ∪ R′⟩ = ⟨R ∪ R′⟩ where R ⊆ Ω × Ω

is a finite binary relation with possibly •R ∩ R• ̸= ∅, and R′ is an interface such

that (R ∪ R′)∗ is acyclic, and •R ∩ (R′)• = ∅. First of all, note that ⟨R⟩• = R• and

(R ∪ R′)• = R• ∪ (R′)• And so ⟨⟨⟨∪R′⟩• = ⟨R ∪ R′⟩•. By condition R• ∩ (R′)• = ∅

we deduce R ∩R′ = ∅. More specifically, a transition from (A,B) ∈ R ∩R′ belongs

(exclusively) either to R or R′ depending respectively of B ∈ R• or B ∈ (R′)•.

According to the remark 1, i. e. π = A0 → A1 → · · · → An a path in R ∪ R′ (i.e.

∀1 ≤ i ≤ n (Ai−1, Ai) ∈ R ∪ R′ and A0 ∈ •(R ∪ R′) \ (R ∪ R′)• considering that

(A0, An) ∈∈ ⟨R ∪ R ∪ R′⟩. Let’s say π′ = Ai → · · · → Aj be a maximum subpath

of π made of R transitions only (i.e., ∀i ≤ k ≤ j ≤ j Ak ∈ R•). So either Ai = A0

or (Ai−1, Ai) ∈ R′. In both cases Ai ∈ •R \ R• And so π′ is a path that shows that

(Ai, Aj) ∈ ⟨R⟩ which means that π is a path that shows that (A0, An) ∈ ⟨⟨⟨R⟩∪R′⟩,

showing ⟨R ∪ R′⟩ ⊆ ⟨⟨R⟩ ∪ R′⟩ and so ⟨⟨⟨R⟩ ∪ R′⟩ = ⟨R ∪ R′⟩ since the reverse

inclusion is immediate.

The following two cases of composition are to be distinguished: the cascaded

product and the direct product.

3.4.4 Cascade product

Let R1 and R2 two composable role interfaces, as stated in definition 3.4.1. If

R•
1∩•R2 = ∅ we denote R1 o R2 their cascaded composition or semi-direct product

Ph.D thesis in Computer Science - University of Douala (2022) 46

A formal approach for role-Based modeling of business collaboration processes

(or R2 n R1 since this operation, as a special case of ◃▹ remains commutative). So
•(R1 oR2) = (•R1 \R•

2) ∪ •R2, and (R1oR2)
• = R•

1 ∪R•
2.

Figure 3.8: Cascaded product of two roles R1 and R2

The cascaded product of interfaces R1 and R2 is a form of role interfaces composition,

in which R2 requires no service from R1. The composite interface obtained has as

provided services, the union of the various provided services of R1 and R2. The

composite interface required services is then defined as the union of required services

of R1 and R2, where those provided by R2 and required by R1 are removed.

Remark 2. The underlying relation of the cascaded product is given by

R1 oR2 = (I1 ×R2) ; (R1 ×O2)

where I1 =
•R1 \R•

2 et O2 = R•
2 \ •R1.

3.4.5 Direct product

Let R1 and R2 two composable role interfaces, as stated in definition 3.4.1. If

R•
1∩•R2 = ∅ and R•

2 ∩ •R1 = ∅ are verified, we say that the composition is the

product (direct) of R1 and R2, denoted by R1 × R2. Note that R1 × R2 = R1 ∪ R1

and so •(R1 ×R2) =
•R1 ∪ •R2 and (R1 ×R2)

• = R•
1 ∪R•

2.

Direct product of interfaces R1 and R2, is a special case of composition, where

both associated roles requires no services from each other. Composition operation, is

then assumed as a pooling skills operation, since required services of the composition,

is the union of R1 and R2 required services, and the same for the composition

provided services.

Ph.D thesis in Computer Science - University of Douala (2022) 47

A formal approach for role-Based modeling of business collaboration processes

Figure 3.9: Direct product of two roles R1 and R2

3.4.6 Componentization test

Componentization which is the process of breaking into separate components, is

an approach to software development that involves breaking software down into

identifiable pieces, independently implements and deploy, these components are then

stitched together with network connections and workflows. We gain flexibility in

design and ease of component reuse. Precisely, in a context of role-based approach,

having two interfaces R and R1, it may be useful to know if their skills encompass,

or may be if R1 can be used in a context where R is expected; then R1 is said to be

a component of R.

Definition 3.4.2. R1 is a component of R, noted R1 ⊑ R, if there is an interface R2

such as R = R1◃▹ R2. R1 is a strict component of R, noted R1@R, if there is an

interface R2 such as R = R1 ×R2.

3.5 Implementation order

An interface is viewed as an abstraction of a component, a so-called behavioral type.

Thus we must be able to state when a component satisfies an interface, viewed as

an abstract specification of its behavior. A relation of refinement, given by a pre-

order I1 ≤ I2, indicates that any component that satisfies I2 also satisfies I1. In the

context of service-oriented programming we would say that interface I2 implements

interface I1.

An interface environment is a component that provides all the services required

by the interface and uses only the services provided by the interface for this purpose.

Definition 3.5.1. An E interface is an eligible environment for an R interface if

both interfaces are composable and the composition is a closed interface, namely
•(R ◃▹ E) = ∅. We let Env (R) refers to all eligible environments of the R interface.

Ph.D thesis in Computer Science - University of Douala (2022) 48

A formal approach for role-Based modeling of business collaboration processes

Definition 3.5.2. An interface R2 is a implementation of the interface R1, noted

R1 ≤ R2, when R•
2 = R•

1 and R2 ⊆ R1.

Thus, R2 is an implementation of R1 if it provides the same services as R1 using

only those services already available to R1 and with fewer dependencies 1. The

following proposition shows that R2 is an implementation of the R1 interface if and

only if it can be substituted to R1 in any eligible environment for R1.

Proposition 3.5.1. R1 ≤ R2 if and only if Env (R1) ⊆ Env (R2).

Proof. We first show that the condition is necessary. For this reason, let’s assume

R1≤ R2 (which means that R•
2 = R•

1 and R2 ⊆ R1) and prove that any eligible

environment E for R1 is a qualifying environment for R2. Since E is composable

with R1 we have R•
1 ∩E• = ∅ and E ∪R1 is acyclic. Then we also have R•

2 ∩E• = ∅

and E ∪ R2 is acyclic since R•
2 = R•

1 and R2 ⊆ R1. Thus E is composable with R2.

Moreover, for the same reasons, •(E ◃▹ R2) = (•E \ R•
2) ∪ (•R2 \ E•) ⊆ (•E \ R•

1) ∪

(•R1 \ E•) = •(E ◃▹ R2) = ∅. Hence E ∈ Env (R2). We show that the condition

is sufficient by contradiction. Since R1≤ R2 implies R•
2 = R•

1 you have to build

E ∈ Env (R1) \ Env (R2) assuming that R1 ̸⊇ R2. Let’s say (A,B) ∈ R2 \ R1 then

the interface we’re looking for is E such as •E = {B}, E• = •R2, and E = {(B,A)}.

Indeed, E can be composed with R1 but not with R2 because of the B → A → B

cycle in (R1 ∪ {(B,A)}∗. In addition, the composition of E with R1 gives a closed

interface.

3.6 Residual specification

Third, a notion of residual specification has also proved to be useful. The problem

was first stated in [86] as a form of equation solving on specifications. Namely,

given a specification G of the desired overall system and a specification C of a given

component we seek for a specification X for those systems that when composed

with the component satisfies the global property. It takes the form of an equation

C ◃▹ X ≈ G where ◃▹ stands for the composition of specifications and ≈ is some
1In practice, an interface used as an implementation can define additional services: R2 is a

implementation low of the R1 interface, in notation R1 ≤w R2, if R•
2⊇ R•

1 and R1 ≤ R2 � (R•
1).

However, the additional services provided by R2 must be masked so that they cannot conflict with
the services in any environment compatible withR1.

Ph.D thesis in Computer Science - University of Douala (2022) 49

A formal approach for role-Based modeling of business collaboration processes

equivalence relation. If ≈ is the equivalence induced by the refinement relation

the above problem can better be formulated as a Galois connection [87] G/C ≤

X ⇐⇒ G ≤ C ◃▹ X stating that the residual specification G/C is the smallest

(i.e. less specific or more general) specification that when composed with the local

specification is a refinement of the global specification. Since C ◃▹ − is monotonous

(due to Galois connection) it actually entails that a component is an implementation

of the residual specification if and only if it provides an implementation of the global

specification when composed with an implementation of the local specification .

Proposition 3.6.1. If R1⊑ R then R = R1 o (R ↙ R1) or R ↙ R1, called the strict

residue of R per R1, is given as the restriction from R to R• \ R•
1. If R = R1 o R2

then R � R•
2 = R↙ R1 = R2 and R = (R↙ R)× (R↙ R1).

Proof. It must be shown that if R1 and R2 are two relations that can be composed

with R = R1 ◃▹ R2 then R = R1 o R ↙ R1 and R = (R ↙ R1) × (R ↙ R1) or

R ↙ Ri = R � R•
j for {i, j} = {1, 2}. By the remark 1 R1 ◃▹ R2 is (the only) 2

solution of the equation system.

R1 ◃▹ R2 = (A ∪ I1);R1 ∪ (B ∪ I2);R2

où I1 =
•R1 \R•

2

I2 =
•R2 \R•

1

O1 = R•
1 ∩ •R2

O2 = R•
2 ∩ •R1

A = (B ∪ I2);R2;O2

B = A ∪ I1);R1;O1

So it is immediate (see Figure 3.10a) that R1o (R1 ◃▹ R2) � R•
2 is the solution of

the same ’equations system and thus the two relations coincide. The same system

of equations is associated to (R↙ R2)× (R↙ R1) as shown in figure 3.10b.

It remains to be shown that if R = R1oR2 then R↙ R1 = R � R•
2 coincides with

R2, and indeed R � R•
2 = ((•R1 \R•

2) ∪R2) ; (R1 ∪ R•
2) � R•

2 = ((•R1 \R•
2) ∪R2) �

R•
2 = R2 by the remark 2 and because R•

1 ∩R•
2 = ∅.

2The uniqueness comes from the fact that we only consider finite paths due to acyclicity.

Ph.D thesis in Computer Science - University of Douala (2022) 50

A formal approach for role-Based modeling of business collaboration processes

(a) R = R1 o (R↙ R1) when R = R1 ◃▹ R2

(b) (R↙ R2)× (R↙ R1)

Figure 3.10: Residual composition

Corollary. Si R• = O1 ∪ O2 with O1 ∩ O2 = ∅ then R = (R � O1) × (R � O2)

et R � Oi = R ↙ (R � Oj) for {i, j} = {1, 2} and the following conditions are

equivalent:

• R1 is a strict component of R: ∃R2 · R = R1 ×R2,

• R1 is a left component in the cascaded decomposition of R: ∃R′ · R = R′oR2,

• R1 is a restriction of R: R1 =� (R•
1), and

• R1 is a strict residue of R: ∃R2 · R1 = R↙ R2.

Lemma 3.6.2. R1 ≤ R2 implies that R ◃▹ R1 ≤ R ◃▹ R2 each time R1 and R2 are

both components of R.

Proof. By the remark 1 (A,B) ∈ R ◃▹ Ri if and only if there is a finite sequence

A0, . . . , An such that A = A0 ∈ •R \ R•
i ∪ •Ri \ R•, (Ak−1, Ak) ∈ R ∪ Ri for all

1 ≤ k ≤ n, and B = An ∈ R• ∪ R•
i . The monotony of R ◃▹ − then results from the

fact that R•
1 = R•

2.

Lemma 3.6.3. R1 ≤ R2 implies that R1 ↙ R ≤ R2 ↙ R each time R is a respective

component of R1 and R2.

Proof. R1 ≤ R2 means that R•
1 = R•

2 et R2 ⊆ R1. Then R1 ↙ R = R1 � (R•
1 \R•) ≤

R2 � (R•
2 \R•) because R•

1 \R• = R•
2 \R• and R2 ⊆ R1.

Ph.D thesis in Computer Science - University of Douala (2022) 51

A formal approach for role-Based modeling of business collaboration processes

Proposition 3.6.4. If R1 is a component of R and R′ is an interface then

R↙ R1 ≤ R′ ⇐⇒ R ≤ R1 oR′.

Proof. By the proposal 3.6.1 and the lemma 3.6.2 we have R↙ R1 ≤ R′ =⇒ R =

R1 o (R ↙ R1) ≤ R o R′. The opposite direction follows by the lemma 3.6.3 and

the proposal 3.6.1: R ≤ R1 oR′ =⇒ R↙ R1 ≤ (RoR′)↙ R1 = R′.

As a corollary 3.6 the above proposal implies that an implementation of a strict

residue R ↙ R1 is a strict component of R and therefore cannot capture all the

components of an implementation of R, i.e. all interfaces R′ such as R ≤ R1 ◃▹ R′.

To do this, we must add to the residue all dependencies between the respective

outputs of the component and the residue that do not contradict the dependencies

in R:

Definition 3.6.1. if R1 ⊑ R the residual R/R1 of R by R1 is given by

(R/R1)
• = R• \R•

1 et R/R1 = R↙ R1 ∪R↗ R1 where

R↗ R1 =
{
(A,B) ∈ R•

1 × (R• \R•
1) |R−1({A}) ⊆ R−1({B})

}
.

Lemma 3.6.5. if R1 is a component ofe R then R1 ◃▹ (R/R1) = R

Proof. Since (R/R1)
• = R•\R•

1 = (R↙ R1)
• and R/R1 ⊇ R↙ R1 we have R/R1 ≤

R ↙ R1 and by the lemma 3.6.2 R1 ◃▹ (R/R1) ≤ R1 ◃▹ (R ↙ R1) = R1 o (R ↙

R1) = R. We still have to prove that R1 ◃▹ (R/R1) ⊆ R. Let (A,B) ∈ R1 ◃▹ (R/R1)

then by the remark 1 there exists a sequence A0, . . . , An such that A = A0 ∈
• (R1 ◃▹ (R/R1)), B = An ∈ (R1 ◃▹ (R/R1))

• = R•, and (Ai−1, Ai) ∈ R1 ∪ (R/R1)

for all 1 ≤ i ≤ n. On a • (R1 ◃▹ (R/R1)) =
•R1 \ (R• \ R•

1) ∪ •(R/R1) \ R•
1. Thus

A ∈ •R because •R1 and •(R/R1) are subsets of •R. There are three possibilities

for each transition (Ai−1, Ai):

1. (Ai−1, Ai) ∈ R1 if Ai ∈ R•
1,

(a) (Ai−1, Ai) ∈ R↙ R1 if Ai ∈ R• \R•
1 and Ai−1 ∈ •R \R•

1, or

(b) (Ai−1, Ai) ∈ R↗ R1 if Ai ∈ R• \R•
1 and Ai−1 ∈ R•

1,

Ph.D thesis in Computer Science - University of Douala (2022) 52

A formal approach for role-Based modeling of business collaboration processes

Proof. Note that if the sequence does not contain any transition of the latter cat-

egory, it then witnesses the fact that (A,B) ∈ R because R1 ◃▹ (R ↙ R1) =

R1 o (R ↙ R1) = R. We’re going to phase out all transitions of type (3). To do

this, let us consider the leftmost transition that belongs to this type if it exists.

Thus, i is the smallest index such as (Ai−1, Ai) ∈ R ↗ R1. Since R•
1 is a subset of

R• and thus disjoint from •R we deduce that Ai−1 ̸= A and i − 1 ≥ 1. Now the

sequence σ : A = A0 → · · · → Ai−1, which contains only type transitions (1) or (2),

shows that A ∈ R−1({Ai−1}). Since (Ai−1, Ai) ∈ R↗ R1 we deduct A ∈ R−1({Ai}).

And so by replacing the sequence σ by the transition (A,Ai) we get a sequence with

a transition less R ↗ R1 and thus we end up with a sequence without transition

R↗ R1 showing that (A,B) ∈ R.

Lemma 3.6.6. If R1 and R2 are composable then (R1 ◃▹ R2)/R1 ≤ R2.

Proof. Let R1 and R2 be composable interfaces, in particular R•
1 ∩ R•

2 = ∅, and

R = R1 ◃▹ R2. Then (R/R1)
• = (R•

1 ∪ R•
2) \ R•

1 = R•
2. (A,B) ∈ R2 \ (R ↙ R) =

R2 \ (R � R2) if and only if (A,B) ∈ R2 hence B ∈ R•
2, and A ∈ •R2 ∩ R•

1. then

necessarily R−1({A}) ⊆ R−1({B}) and therefore (A,B) ∈ R ↗ R1. it follows that

R/R1 = R↙ R1 ∪R↗ R1 ⊇ R2 and thus R/R1 ≤ R2.

Lemma 3.6.7. R1 ≤ R2 implies R1/R ≤ R2/R whenever R is a component of both

R1 and R2.

Proof. Recall that Ri ↗ R = {(A,B) ∈ R• × (R•
i \R•)R−1 | ({A}) ⊆ R−1({B})}

et Ri/R = Ri ↙ R∪Ri ↗ R. R1 ≤ R2 means that R•
1 = R•

2 et R2 ⊆ R1 from which

it follows that R• × (R•
1 \R•) = R• × (R•

2 \R•) and thus R ↗ R ⊆ R1 ↗ R. The

result then follows lemma 3.6.3 and (R1/R)• = R•
1 \R• = R•

2 \R• = (R2/R)•.

Proposition 3.6.8. If R1 is a component R and R′ is an interface, then

R/R1 ≤ R′ ⇐⇒ R ≤ R1 ◃▹ R′.

Proof. By lemma 3.6.5 and lemma 3.6.2 we get R/R1 ≤ R′ =⇒ R = R1 ◃▹

(R/R1) ≤ R ◃▹ R′. The converse direction follows by lemma 3.6.7 and lemma 3.6.6:

R ≤ R1 ◃▹ R′ =⇒ R/R1 ≤ (R ◃▹ R′)/R1 ≤ R′.

Ph.D thesis in Computer Science - University of Douala (2022) 53

A formal approach for role-Based modeling of business collaboration processes

Hence residual R/R1 characterize the interfaces of the components that, when

composed with R1, provide an implementation of R.

3.7 Non-deterministic Interfaces

The notion of interface presented so far is still a somewhat rough abstraction of the

roles described by a GAG specification. In particular, we would like to be able to

take into account the non-determinism that results from the choices offered to the

user on how to solve a task. For that purpose we replace relation R ⊆ Ω × Ω by a

map R : Ω → ℘(℘(Ω)) that associates each service A ∈ Ω with a finite number of

alternative ways to carry it out, and each of these with the set of external services

that it requires.

Definition 3.7.1. A non-deterministic quasi interface on a set Ω of services is a map

R : Ω → ℘(℘(Ω)). We let R• = {A ∈ Ω | R(A) ̸= ∅} and •R = ∪{R(A) | A ∈ Ω}.

It is a non-deterministic interface when •R ∩R• = ∅.

Definition 3.7.2. The non-deterministic interface of a grammar G = (S, P) is the

function R = NI(G) : Ω→ ℘(℘(Ω)) where Ω = •G ∪G• (i.e. grammatical symbols

that correspond to internal tasks are abstracted) and R(A) = {π(u) ⊆ •G | A→∗ u}

where π(u) = {A ∈ S | ♯A(u) ̸= 0} is the set of grammatical symbols that occur in

word u. Thus a set of symbols is in R(A) if and only if it is the set of symbols of

a word in (•G)∗ that derives from A. Note that if the grammar is reduced one has
•R = •G and R• = G•.

This new representation of interfaces is richer than its deterministic counterpart.

It is more precise and might indeed been considered too much precise in some situ-

ations since it requires to handle more information. Nonetheless non-deterministic

interfaces are in many respect more easy to handle than deterministic interfaces

and they lead to simplified definitions and easier proofs as shown next. In particu-

lar, and by contrast with deterministic interfaces, both sets •R and R• can be left

implicit. This is due to the fact that services A provided by a non-deterministic

interface that requires no external services are now explicitly given as those such

that R(A) = {∅} (which should not be confused with R(A) = ∅ which corresponds

Ph.D thesis in Computer Science - University of Douala (2022) 54

A formal approach for role-Based modeling of business collaboration processes

to A ̸∈ R•). Thus the following operations can straightforwardly be defined for

non-deterministic quasi-interfaces.

• Sequential composition: R1;R2(A) = {∪iXi | {A1, . . . , An} ∈ R2(A) and Xi ∈ Ai}.

• Restriction: R�O(A) = R(A) if A ∈ O and R�O(A) = ∅ otherwise.

• Union: (∪iRi)(A) = ∪iRi(A).

• Transitive closure: R∗(A) = ∪∞i=1R
i(A) where Rn+1 = Rn;R. Note that

R∗ = R if R is an interface.

• Composition: R1 ◃▹ R2 = ⟨R1∪R2⟩ where ⟨R⟩(A) = R∗(A)∩℘(℘(Ω\R•)) is the

non-deterministic interface induced by the non-deterministic quasi-interface R.

Note that (R1 ◃▹ R2)
• ⊆ R•

1 ∪ R•
2 and •(R1 ◃▹ R2) ⊆ (•R1 \R•

2) ∪ (•R2 \R•
1).

A quasi-interface R is said to be reduced when •⟨R⟩ = •R and •⟨R⟩ = •R.

We say that two interfaces R1 and R2 are safely composable 3 when their

union (the quasi-interface R1 ∪ R2) is reduced. Two interfaces R1 and R2 are

safely composable if and only if (R1 ◃▹ R2)
• = R•

1 ∪ R•
2 and •(R1 ◃▹ R2) =

(•R1 \R•
2) ∪ (•R2 \R•

1).

It is readily shown that the composition of non-deterministic quasi-interfaces is

associative and one does not need to require that the individual components have

disjoint output sets to ensure that property. Thus non-deterministic quasi-interfaces

equipped with this composition operation is a commutative monoid (whose neutral

element is the empty interface). Moreover R ◃▹ R = ⟨R⟩ and since ⟨R⟩ = R when

R is an interface, we deduce that the composition of interfaces is idempotent.

The natural extension of the implementation order in the non-deterministic case is

to let

R1 ≤ R2 ⇐⇒ (∀A ∈ Ω) (∀X ∈ R1(A)) (∃Y ∈ R2(A)) · Y ⊆ X

expressing that anything that R1 can do R2 can do better (namely, it can do the

same using fewer external services). This is a pre-order (reflexive and transitive
3Safely composability is the natural extension to the non-determinstic case of the composability

of deterministic interfaces. However since we first defined the operation of composition of non-
deterministic (quasi-) interfaces we felt obliged to add this qualifying term.

Ph.D thesis in Computer Science - University of Douala (2022) 55

A formal approach for role-Based modeling of business collaboration processes

relation) where two non-deterministic interfaces are equivalent when their images

for each A have the same sets of minimal elements (for set inclusion) or equivalently

have identical upward closures. Say that an interface is saturated if R(A) is upward-

closed for every A ∈ Ω. And it is reduced is for every A ∈ Ω any two elements of

R(A) are incomparable. Thus any non-deterministic interface is equivalent to its

upward-closure (a saturated interface) and to its restriction to its set of minimal

elements (a reduced interface). The order relation on saturated interfaces is simply

given by the pointwise set-theoretic inclusion:

R1 ≤ R2 ⇐⇒ (∀A ∈ Ω) R1(A) ⊆ R2(A)

Thus their least upper bounds are given by pointwise set-theoretic union: (
∨

i Ri)(A) =∪
i Ri(A) and their greatest lower bounds by pointwise set-theoretic intersection:

(
∧

i Ri)(A) =
∩

i Ri(A). The following properties then immediately follow:

• distributivity:
∨

i

∧
j Ri,j =

∧
j

∨
i Ri,j.

• (
∨

i Ri)
• =

∪
i R

•
i but also (

∧
i Ri)

• =
∩

i R
•
i because the sets Ri(A) are upper

closed sets and thus all those which are not empty contain Ω and thus have

non empty intersection.

Note that the greatest lower bound of an arbitrary set of (saturated and non-

deterministic) interfaces is also given by (
∧

i Ri)(A) = {∪iXi | ∀i Xi ∈ Ri(A)}.

Lemma 3.7.1. The composition commutes with joins:

R ◃▹ (
∧

i Ri) =
∧

i(R ◃▹ Ri).

Proof. The operation ◃▹ is monotonic in each of its argument and thus R ◃▹ (∧iRi) ≤

∧i(R ◃▹ Ri). We are left to prove the converse relation. By definition of the

sequential composition of relations and the greatest lower bound of interfaces it

follows that R; (∧iRi) = ∧i(R;Ri), and thus ∧iRn
i = (∧iRi)

n by induction on n.

Hence ∧iR
∗
i = ∧i(∨nRn

i) = ∨n(∧iRn
i) = ∨n(∧iRi)

n = (∧iRi)
∗. It follows that

⟨∧iRi⟩(A) = (∧iRi)
∗(A) ∩ ℘(℘(Ω \ (∧iRi)

•)) = (∩iR∗
i (A)) ∩ ℘(℘(Ω \ ∩iR

•
i)) =

Ph.D thesis in Computer Science - University of Douala (2022) 56

A formal approach for role-Based modeling of business collaboration processes

(∩iR∗
i (A)) ∩ ℘(℘(∪i(Ω \ R•

i))) ⊇ (∩iR∗
i (A)) ∩ (∩i℘(℘(Ω \ R•

i))) = ∩i⟨Ri⟩(A) i.e.

⟨∧iRi⟩ ≥ ∧i⟨Ri⟩. Thus R ◃▹ (∧iRi) = ⟨R ∨ (∧iRi)⟩ = ⟨∧i(R ∨ Ri)⟩ ≥ ∧i⟨R ∨ Ri⟩ =

∧i(R ◃▹ Ri).

Since we can compute the least upper bound of an arbitrary family of (saturated

and non-deterministic) interfaces, one can directly define the residual operation as:

Definition 3.7.3. The residual of two interfaces is given by:

R/R1 =
∧
{R′ | R ≤ R1 ◃▹ R′}

which satisfies (almost by definition!) the required property of residuals:

Proposition 3.7.2. R/R1 ≤ R′ ⇐⇒ R ≤ R1 ◃▹ R′.

Proof. R ≤ R1 ◃▹ R′ ⇒ R/R1 ≤ R′ by definition of the residual. Conversely let us

assume that R/R1 ≤ R′ then by monotony R1 ◃▹ R/R1 ≤ R1 ◃▹ R′. By lemma 3.7.1

R1 ◃▹ R/R1 = R1 ◃▹ ∧{R′′ | R ≤ R1 ◃▹ R′′} = ∧{R1 ◃▹ R′′ | R ≤ R1 ◃▹ R′′} ≥ R

(since R is a lower bound of the given set). Hence R ≤ R1 ◃▹ R′.

3.8 Conclusion

This work is a first attempt to develop an interface theory for distributed collabo-

rative systems in the context of service-oriented programming. We defined a notion

of interface in order to explicit how a module can be used in a given environment

using an assume/guarantee approach: we describe the set of services that can be

provided by the module under the assumption that some other services are available

in its environment. We have then defined a residual operation on interfaces charac-

terizing the systems that, when composed with a given component, can complement

it in order to realize a global specification. We intend to use residuation to define

and structure the activities of crowdsourcing system actors. The residual operation

can be used to identify the skills to be sought in the context of existing services in

order to achieve a desired overall behavior. Such a system can be implemented by

Guarded Attribute Grammars and interfaces can be used to type applications.

We have mainly worked with basic (deterministic) interfaces. We have nonethe-

less shown how to extend the approach to non-deterministic interfaces. In the non-

deterministic case it becomes possible to define an additional operation, namely an

Ph.D thesis in Computer Science - University of Douala (2022) 57

A formal approach for role-Based modeling of business collaboration processes

operation that gives the co-restriction R�I of an interface R to a set of services

I ⊆ Ω by letting (R�I)(A) = {X ⊆ I | X ∈ R(A)}. That operation states how a

role can be used when the set of services actually provided by the environment is

known (to be I). This operation can be used to identify the usefulness of a com-

ponent given by its interface knowing which services are actually available in the

environment. Note that one can define the corresponding operation on grammars

with NI(G�I) = NI(G)�I: G�I by deleting all productions whose right-hand side

contains a grammatical symbol in •G \ I.

On that basis one can enrich the information to take qualitative information

into account to cope with uncertainty or time constraints. Actually it might be

possible that we have only a partial knowledge of the set of available services in

the environment in the form of a believe function [88] or a possibilistic distribution

[89]. The interface should then allow us to quantify the possibility of realizing a

service given this information on the environment. Similarly information can also

be added on time execution, for instance by limiting behavior to ensure that services

are delivered within certain time constraints..

Ph.D thesis in Computer Science - University of Douala (2022) 58

CHAPTER 4

A ROLE-BASED BUSINESS

COLLABORATION DESIGN

APPROACH

4.1 Introduction

The concept of role is central in any collaborative or cooperative system. This im-

portance is motivated by the fact that each contributor must have a clear framework

within which he collaborates with other contributors. In this context, a role specifies

both what the system expects from contributors, but also what contributors expects

from the system; thus avoiding that a contributor be overwhelmed by information

(or tasks) that he doesn’t need. Traditionally, collaborative systems lose flexibil-

ity as soon as their design makes use of roles; because only static role description

mechanisms, based on intuitive concepts, are available [90, 19]. Indeed, a dynamic

context of collaboration further complicates a design of such systems, since involved

entities evolve over time in number and in skills. An improvement would be to

provide two things: firstly being able to specify roles clearly and rigorously, while

ensuring flexibility for collaboration, and secondly provide an abstraction basis, for

dynamic collaborative system design with tools for dynamic workflow management;

in order to make collaboration more productive and effective. This design approach

59

A formal approach for role-Based modeling of business collaboration processes

implies a prior rigorous definition, of the set of roles and the relations between them,

necessary to describe the functioning of a target domain. The role is seen here as

a particular concern in the system to be modeled. In fact, a role-based design ap-

proach is similar to a separation of concern technique [91, 15, 92], applied to business

process design, and enables inter-organizational flexible process design [93, 94, 95].

It is implemented by specifying activities defining the process steps, as well as flows

describing coordination of these activities, as it may be done with BPMN [96, 97] or-

chestration or UML collaboration or activities diagrams [98]. Applying a role-based

approach requires a clear separation of infrastructure mechanisms (communication,

storage, service discovery, etc.) seen as primitives, necessary for its collaboration

within its environment on the one hand, and functional goal i.e its effective con-

tribution to collaboration on the other hand. By considering all functional goals

present in a given system context, we get a formal basis for business objectives of

the whole dynamic system.

4.2 Context, role and collaboration

4.2.1 Context of collaboration

In a targeted domain, a context of collaboration is the set of roles readily available

for the realization of some activity. A context of collaboration is dynamic, i.e roles

involved vary over time. For instance, we will consider the context on Figure 4.1 as

a running collaborative context for the next parts of this work.

Figure 4.1: Running collaboration context of a system

Ph.D thesis in Computer Science - University of Douala (2022) 60

A formal approach for role-Based modeling of business collaboration processes

4.2.2 A grammatical modeling of role concept

Each role is associated with a grammar describing its business skills, i.e. it’s contri-

bution in a given collaborative process. We recall that a production of the grammar

is given by a left part, indicating the non-terminal to be expanded and a right part,

describing how to expand this non-terminal. We interpret a production as a means

of decomposing a task, the symbol on the left-hand side, as sub-tasks associated

with the symbols on the right-hand side. A role specifies the set of actions that a

given contributor can take in the system. For simplification purpose, consider role

type and role as equivalent, simply called role (see section 1.2.2 for more details).

A role specifies the set of actions or business skills devolved to a given actor in the

system. We also recall that, as the goal is to describe processes, we are not yet

interested with attributes in guarded attribute grammars.

Definition 4.2.1. A role r is given by a couple (G, R) where G is a guarded attribute

grammar (GAG) [59] specifying role r business skills, and R it’s associated interface

of role.

4.2.3 Role collaboration

We talk about collaboration between two roles, when there is a service dependency

between these two roles. This dependency can be direct, in which case it is a direct

collaboration, likewise, the dependency can be indirect and in that case it is an

indirect collaboration.

Definition 4.2.2. Two roles r1 = (G1, R1) and r2 = (G2, R2) are in a direct collabo-

ration iff R1 oooR2 holds. We denote (•R1 ∩R•
2, r2, r1) that collaboration, labeled by

•R1 ∩ R•
2, the set of services for which r1 and r2 collaborate; r1 being the services

requester, while r2 is the provider of those services.

Thus r1 and r2 will be in an indirect collaboration iff ∃rk = (Gk, Rk) such that

R1 oooRk oooR2 holds.

4.2.4 Potential direct collaborations of a role

A potential direct collaborations of a role, is a graph showing all potential services

providers for that role in a collaborative context. Let r0 be a given role; algorithm

Ph.D thesis in Computer Science - University of Douala (2022) 61

A formal approach for role-Based modeling of business collaboration processes

1, determines potential direct collaborations (or potential dependencies) of r0, in a

context R, in which r is member and such that ∀ri ∈ R, ri = (Gi, Ri).

1 input: r0 = (G0, R0) , R
2 output: C //set of potential collaborations of role r0.
3

4 C ← ∅
5 rPDG(r0,R) =

6 forall ri in R

7 if R0 oooRi then C ∪ {(•R0 ∩R•
i , ri, r0)}

Algorithm 1: Role potential dependencies graph (rPDG) calculus

In our running context of figure 4.1, applying algorithm 1 to determine potential

dependencies of role r3, will result to graph below figure 4.2, given in extension by

C below.

Figure 4.2: Direct potential collaborations of role r3, in figure 4.1 context

C = {({x} , r0, r3) , ({x} , r4, r3) , ({t} , r2, r3) , ({w} , r1, r3)}

4.3 Collaboration schemes, service workflow

4.3.1 Induced potential dependencies graph (iPDG)

A role collaboration scheme is a potential dependencies graph, induces by a context.

From any context R, an induced potential dependencies graph (iPDG) is obtained

by grouping, step by step, all the potential dependencies of the various roles in

the context, as implemented by the algorithm 2. Applying that algorithm on the

previous context R, we obtain collaboration scheme given by equation 4.1.

Ph.D thesis in Computer Science - University of Douala (2022) 62

A formal approach for role-Based modeling of business collaboration processes

1 input: R

2 R′ //roles whose rPDG have already been determined, initially empty.

3 output: C
4

5 R′ ← ∅
6 iPDG(R,R′) =

7 if (ri in R) and (R ̸= ∅) then
8 rPDG(ri,R ∪ {R′ ∪ {ri}}) ∪ iPDG(R \ {ri},R′)

9 else iPDG(R \ {ri},R′)

Algorithm 2: Context R induced potential dependencies graph (iPDG)

C = { ({a} , r5, r0) , ({m} , r6, r4)

({y} , r0, r2) , ({z} , r1, r2)

({w} , r1, r3) , ({x} , r4, r3)

({x} , r0, r3) , ({t} , r2, r3)

}

(4.1)

4.3.2 Potential workflow of a service

The induced workflow of a service s0, describes how this service will be issue; and

is implemented as a dependency subgraph, derived from the induced potential de-

pendencies graph (iPDG) of the role providing service s0.

Consider a predicate depend(l, s0) with l, s0 ∈ Ω, which returns true if service s0

depends on the service l and false otherwise. We define function dependOn(s0,R) =

{(L, r) | L ⊂ Ω∗, r ∈ R and ∀l ∈ L depend(l, s0)} which seeks in context R, all the

roles involved in the process of providing service s0, as well as the associated required

services, and returns a list of couples with on one hand a set of required services L

and the role r requesting these services on the other hand.

We also let

iPDG(R, ∅) � Lk

= {(l0, ri, rj) | ∀(Lk, rk) ∈ dependOn(s0,R), l0 ∈ Lk and rj = rk}

be a filtering made on the induced potential dependencies graph, concerning

Ph.D thesis in Computer Science - University of Douala (2022) 63

A formal approach for role-Based modeling of business collaboration processes

collaborations (l0, ri, rj) such as for any couple (Lk, rk) ∈ dependOn(s0,R), rk being

requester of service l0 with (l0 ∈ Lk et rj = rk).

1 Inputs: Serv = ∅ ∪ {s0} ,R
2 output: C //a set of potential collaborations needed to provide the service s0.

3

4 workflow(Serv,R) =

5 if si in Serv then – i ∈ {1, · · · , |Serv|}
6 ns = Serv \ {si} ∪ {s | (s, r) ∈ dependOn(si,R)}
7 {iPDG(R, ∅) � Lk} ∪ workflow(ns,R, iPDG(R, ∅))
8 where (Lk, rk) ∈ dependOn(s0,R)

Algorithm 3: Determining a potential workflow for a service

Algorithm 3, generates the potential workflow of a given service s0, from a con-

text (R), having the associated induced potential dependencies graph (iPDG(R, ∅)).

For instance, the potential workflow of the service u, obtained by applying that al-

gorithm in the context of previous figure 4.1, is presented in the figure 4.3 below, in

which unnecessary services and dependencies are watermarked.

Figure 4.3: Service u potential workflow

4.3.3 Factorizing a workflow

A collaboration scheme can include several alternatives in supplying the same ser-

vice. Such a case corresponds to the one of figure 4.4(a), where service x is provided

by roles r0 and r4 respectively.

Ph.D thesis in Computer Science - University of Douala (2022) 64

A formal approach for role-Based modeling of business collaboration processes

Figure 4.4: Factorizing a workflow - (a) a collaboration scheme. (b) the factorized
collaboration scheme equivalent to the one on (a).

In a given context factorizing, is to be able to transform cases such as for a role r3,

requesting service x, so that we have service x potential suppliers list; as it is shown

on figure 4.4(b).

Definition 4.3.1. An F − collaboration is a triplet (•R0 ∩R•
i , {ri, · · · rk} , r0), where

r1, · · · rk are potential providers of services elements of set •R0 ∩ R•
i and r0 is the

requester for those services (with •R0 ∩R•
i = · · · = •R0 ∩R•

k), for some i and j.

A factorized collaboration scheme is then a potential dependency graph, possibly

consisting of collaborations (i.e (•R0 ∩ R•
1, r1, r0)), and F − collaboration ((•R0 ∩

R•
i , {ri, · · · rk} , r0)) if necessary.

1 input: C
2 output: C′

3 C′ ← ∅
4 factorize(C) =
5 forall c in P (C)
6 if |c| ==1 then //c is like

{
(•R0 ∩R•

1 , r1, r0)
}

7 C′ ∪ c

8 else if |c| > 1 then //c is like {(•R0 ∩R•
1 , r1, r0), · · · , (•R0 ∩R•

|c|, r|c|, r0)}

9 C′ ∪
{
(•R0 ∩R•

1, {r1, · · · , r|c|}, r0) |
10 r1≤i≤|c| ∈ provider

(
•R1 ∩R•

|c|, c
)
and r0 == requester(c)

}
Algorithm 4: Factorizing a service

Let P (C) ⊆ P(C) a subset of parts of set C, where elements are grouped subsets

of all identically labeled collaborations. Algorithm 4 transforms a C collaborations

scheme to a C ′ factorized collaborations scheme. Where function provider
(
•R1 ∩R•

|c|, c
)

returns the list of service providers, labeled by elements of set •R1 ∩ R•
|c| in a c

Ph.D thesis in Computer Science - University of Douala (2022) 65

A formal approach for role-Based modeling of business collaboration processes

collaboration set, while requester(c) checks if r0 is the requester in each case of

collaboration.

4.4 Activity in collaborative context

4.4.1 Formal definition

An activity is a process description in term of a role collaboration scheme, by

which a given service s0 can be rendered. Activity is then given by the pair

(s0, workflow({s0},R)), where workflow({s0},R) is service s0 potential workflow,

derived from the context R.

Definition 4.4.1. An activity for a given service s0, in a context R, is a couple denoted

activitys0 = (s0, workflow({s0},R)), and is the process of supplying service s0,

described by workflow({s0},R) his potential workflow.

Let us consider the process of delivering service u, given by equation (4.2) and

described graphically in the figure 4.5 below.

activityu =
(
u,
[
(x, r4, r3),

(x, r0, r3), (t, r2, r3),

(m, r6, r4), (a, r5, r0),

(y, r0, r2), (z, r1, r2)
])

(4.2)

Figure 4.5: Activity activityu workflow

An activity can have several occurrences of the same role (indifferently sup-

plier or requester). If two roles r0 and r1 respectively, provide the same service s0

within an activity, then they do not necessarily use the same required services i.e.

rPDG(r0,R) ̸= rPDG(r1,R).

Ph.D thesis in Computer Science - University of Douala (2022) 66

A formal approach for role-Based modeling of business collaboration processes

Proposition 4.4.1. Two activities activitys0 and activitys1 are equivalent, denoted by

activitys0 ≡ activitys1 , iff s0 = s1 and workflow({s0},R) ∼= workflow({s1},R) i.e

they deliver the same service in context R, with s0, s1 ∈ Ω.

Proof. Consider R1 . . . Rm as pairwise composable role interfaces involved in a given

workflow({s0},R) and R
′
1 . . . R

′
n those of workflow({s1},R) respectively, with

m ̸= n. Let R = om
i=1Ri and R′ = on

i=1Ri their respective cascade compositions.

By proposition 4.5 in [8, 9], those compositions are associative. As by hypothesis

those workflows render same services, we have s0 = s1 and s0 ∈ R• ∩R′•, two cases

can be distinguished: whether m > n and then R′ ⊆ R, we say R′ realizes service

s0 with less business rules than R; or m < n so R ⊆ R′ and as R′, R realizes service

s0 with less business rules.

4.4.2 Atomicity of an activity

An activity for a given service s0, is said to be atomic [15], if it has only one

occurrence of role supplier for each required service in that activity. For example,

the atomic forms of activity activityu in the previous equation 4.2, are respectively:

activityu0 =
(
u,
[
(x, r0, r3),

(t, r2, r3), (a, r5, r0),

(y, r0, r2), (z, r1, r2)
]) (4.3)

activityu1 =
(
u,
[
(x, r4, r3),

(t, r2, r3), (m, r6, r4),

(y, r0, r2), (z, r1, r2)
]) (4.4)

Definition 4.4.2. An activity activitys0 = (s0, workflow(s0,R)) is atomic, iff for all

(s0, ri, rj) and (s0, rk, rj) in workflow(s0,R), ri = rk.

4.4.3 Activities functional decomposition

An activity can be progressively fragmented into a set of atomic activities. The

principle of decomposition, is based on roles (concerns), and states that, as long

as there are several occurrences of the same role r in an activity, this activity is

broken down into new activities containing a single role occurrence r. This principle

Ph.D thesis in Computer Science - University of Douala (2022) 67

A formal approach for role-Based modeling of business collaboration processes

is repeated until all the activities obtained are atomic [15]. For this, the associated

workflow must be factorized; if at the end of this, F − collaborations exist, that

means the activity is decomposable, according to the principle described by the

algorithm 5.

Proposition 4.4.2. Consider activitys0 = (s0, workflow0(s0,R)) and activity′s0 =

(s0, workflow1(s0,R)) two activities, where activitys0 ≡ activity′s0 . activitys0 is

decomposable to activity′s0 iff workflow0(s0,R) ̸= workflow1(s0,R)

and factorize(workflow0(s0,R)) = workflow1(s0,R)

Proof. As the two activities are equivalents by hypothesis, the demonstration is

equivalent to show that a in a workflow, several collaborations for given service, is

equivalent to an F−collaboration on the same service; and this is done by definition

4.3.1.

1 input: C′ //factorized workflow of the activity .

2 output: C //set of potential atomic workflows.

3 C← ∅
4 decomp(C′,C) =
5 forall c in C′
6 if |provider(c)| == 1 then //c is like

{
(•R0 ∩R•

1 , {r1}, r0)
}

7 decomp(C′ \ {c} , insert (c,C))
}

8 else if |provider(c)| > 1 then //c is like (•R0 ∩R•
1 , {r1, · · · , r|c|}, r0)

9 decomp(C′ \ {c} ,mdup (c,C))
}

Algorithm 5: Atomic decomposition of an activity’s workflow

Function insert (c,C), insert collaboration c, in the different atomic workflows

of C, for which c is necessary. mdup
({

(•R0 ∩R•
1, {r1, · · · , r|c|}, r0)

}
,C

)
add in each

atomic workflow of C, collaborations (•R0 ∩R•
1, r, r0) with r ∈ {r1, · · · , r|c|}, as long

as these collaborations are useful, for the realization of the service associated with

that workflow.

Application of algorithm 5 on collaboration scheme of previous figure 2.3, result

to two distinct way of carrying out activity csDelivrance as shown on figure 4.6

Ph.D thesis in Computer Science - University of Douala (2022) 68

A formal approach for role-Based modeling of business collaboration processes

(a) Process of issuing a civil status certificate by the mayor

(b) Process for the issuance of a civil status certificate by a diplo-
mat

Figure 4.6: Decomposition of the previous activity on figure 2.3, into two sub-
activities, csDelivrance0 and csDelivrance1

below. Mainly, csDelivrance0 and csDelivrance1 are atomic activities describing

the issuing of civil status certificate process, either by a Mayor or by a Diplomat

respectively.

4.4.4 Activity realizability

The question of feasibility here, refers to the possibility of carrying out an activity,

in a finite number of stages, and rendering provided service. This assumes that all

the roles necessary for carrying out that activity must be available; we say it is a

favorable context.

Termination of an activity, is conditioned by the fact that its workflow must

contain autonomous roles at the start of the chain. These autonomous roles, playing

activity trigger role, we also say they are service trigger roles. Algorithm 6 below,

describes principle of test of feasibility for a workflow, by applying a filtering pattern

Ph.D thesis in Computer Science - University of Douala (2022) 69

A formal approach for role-Based modeling of business collaboration processes

mechanism. A workflow is realizable if that algorithm returns True and its required

services queue(Serv) is empty. In case that False is returned. Required service

queue contains a list of services, still to be provided, for completing activity.

1 input: Serv //set of required services

2 C //activity workflow

3 output: (Bool, Serv)

4 realizable(∅,_) = (True, ∅) //the workflow is realizable

5 realizable(Serv, ∅) = (False, Serv) // not realizable, Serv are required services
6 realizable(Serv, c ∈ C)
7 | Serv ∩ label(c) == ∅ =realizable(Serv ∪ req, C \ {c})
8 | Serv ∩ label(c) ̸= ∅ =realizable(Serv′ ∪ req, C \ {c})
9 where

10 Serv′ = Serv � (x ∈ Serv ∧ x /∈ label(c))
11 req = dependOn(label(c), provider(c))

Algorithm 6: Checking realizability of activitys0

For a given collaboration c = (•Ri ∩R•
k, rk, ri), label(c) returns set •Ri ∩ R•

k

of services labeling that collaboration, and provider(c) returns rk providing those

services.

Remark 0. An activity activitys0 = (s0, workflow(s0,R)) is said to be almost real-

izable, if at least one of its atomic forms obtained by decomposition, ends; i.e there

is a C ∈ decomp(workflow(s0,R), ∅) such that realisable({s0} , C) = (True, ∅).

Similarly the activity activitys0 is said realizable, if all atomic forms end; i.e. what-

ever C ∈ decomp(workflow(s0,R), ∅), realisable({s0} , C) = (True, ∅).

4.5 Contributor of a business collaborative process

4.5.1 Concept and definitions

A contributor is any entity in a system capable of acquiring information, commu-

nicating with its environment and processing. For this, a contributor has several

primitive. He can also play one or more roles in the system. Since a contributor

knows how to instrument, communicate and process information he is considered an

intelligent active space [59].

In this work, since a contributor is an entity which intervenes in a process by playing

Ph.D thesis in Computer Science - University of Douala (2022) 70

A formal approach for role-Based modeling of business collaboration processes

a predetermined role, we will assume that it has an internal mechanism of commu-

nication with its environment. Similarly we will assume that it also has persistence

mechanisms for its data, and finally, a publication and service discovery mechanism.

Definition 4.5.1. A contributor aτ is given by a couple (Rτ ,Cτ), where Rτ is the set

of potential roles the contributor can play, and Cτ is the set of constraints on those

potential roles.

4.5.2 Constraints on contributor’s potential roles

Let aτ = (Rτ ,Cτ) an actor, ri and rj two roles; an association between contributor

aτ and roles ri and rj is materialized by the fact that ri, rj ∈Rτ . We will say for

instance that ri,rj are contributor’s aτ potential roles.

It is possible to define constraints, on the potential roles of a contributor [16].

Consider role pairs (ri, rj) such that ri, rj ∈Rτ with 1 ≤ i, j ≤ |Rτ |; four constraint

values can be associated with these pairs roles (see section 1.2.3), namely:

Dcr or nothing, for no constraint;

Imp (ri, rj) indicating that if actor aτ plays role ri, then he must also play role rj;

Eqv (ri, rj) in case both Imp (ri, rj) and Imp (rj, ri) holds;

Phb (ri, rj) in this case, actor aτ playing role ri, cannot play role rj.

4.5.3 Relation ”play a role”

A contributor can play one or more roles, within an activity, or in several paral-

lel activities. So one can distinguishes several cases of implementation of ”play”

relation.

4.5.3.1 Case 1: Playing several roles in an activity

A contributor actor can play more than one role within an activity; provided that

those roles do not provide the same services.

Ph.D thesis in Computer Science - University of Douala (2022) 71

A formal approach for role-Based modeling of business collaboration processes

(a) Contributor aτ playing two roles (b) Workflow simplified by the direct
product of R0 and R1

Figure 4.7: A contributor playing several roles in an activity

A contributor aτ playing several roles r0 and r1 respectively, in activitys0 =

(s0, [· · · , (B, r1, r2), (C, r2, r0), · · ·]), see figure 4.7(a), is multi-skilled in that activity.

Therefore, the different roles of aτ can be pooled into a single macro-role r
′
0 whose

interface is R0×R1. So activity activitys0 can undergo a transformation to become

activity
′
s0
=

(
s0,

[
· · · , (B, r

′
0, r2), (C, r2, r

′
0), · · ·

])
, as illustrated in the figure 4.7(b).

4.5.3.2 Case 2: crowdsourced role played by several contributors

Several contributors can play the same role within an activity.

Figure 4.8: Several contributors playing same role r2 in an activity

Within an activity, several contributors can play the same role; which assumes

that several instances of this same role can be created. In a workflow, if role r is

played by several actors (figure 4.8), then any collaboration with r will be on a

crowded task.

4.5.3.3 Case 3: Competing activities

A contributor can play roles (identical or different) concomitantly in several parallel

activities.

Ph.D thesis in Computer Science - University of Douala (2022) 72

A formal approach for role-Based modeling of business collaboration processes

Figure 4.9: A contributor involved in two parallel activities

A contributor can participate in several activities at the same time, either by

playing the same role each time (see figure 4.9), or by having different roles. In all

these cases, each of these activities is implemented individually as in case 1 above.

4.5.4 Implementation of the ”play” relation

Consider three primitives play
(
aτ , {ri}1≤i≤|Rτ | , activitys0

)
{cstrk}1≤k≤N

indicating that

aτ potentially can play roles {ri}1≤i≤|Rτ | in activity activitys0 , with constraints

{cstrk}1≤k≤N ; play (aτ , ri, activitys0)cstrk to express that aτ potentially can play the

roles ri in activity activitys0 , according to the constraint cstrk, with

play
(
aτ , {ri}1≤i≤|Rτ | , activitys0

)
{cstrk}1≤k≤N

=
∪

1≤i≤|Rτ |

play (aτ , ri, activitys0)cstrk

and finally play (aτ , Ri, activitys0) expressing that aτ actually plays the role ri

whose interface is Ri, in activity activitys0 .

Possible implementations of the ”play” relation while taking account of con-

straints on roles, are described by equations 4.5 given below:

play (aτ , ri, activitys0)Dcr = play (aτ , Ri, activitys0)

play (aτ , ri, activitys0)Imp(ri,rj)
= play (aτ , Ri ×Rj, activitys0)

play (aτ , ri, activitys0)Eqv(ri,rj)
= play (aτ , Ri ×Rj, activitys0)

or play (aτ , Rj ×Ri, activitys0)

play (aτ , ri, activitys0)Phb(ri,rj)
= play (aτ , Ri, activitys0)

and not play (aτ , Rj, activitys0)

(4.5)

Ph.D thesis in Computer Science - University of Douala (2022) 73

A formal approach for role-Based modeling of business collaboration processes

4.6 Conclusion

The main interest in this chapter, was to outline a role-based design approach, for

business collaboration processes. The role concept has been formally defined, as

well as associated readjustment and switching mechanisms, to provide a certain

flexibility to design. Collaboration scheme was formally defined, in the form of a

given service workflow, thus making it possible to describe what is an activity in a

given context. Finally, the notion of contributor and it’s interaction mechanisms was

presented, thus offering the whole range of tools necessary for this design approach.

Architecturally, role-based design approach is similar to agent design approach, but

differ on how job is carried out. In agent systems, a contributor will do the job

according to its knowledge to the whole system [99, 90, 14], while here, a contributor

will ordinarily accomplish his tasks according to his own decisions.

Ph.D thesis in Computer Science - University of Douala (2022) 74

CONCLUSION AND PERSPECTIVES

Summary of thesis achievements

At this point of our dissertation, let us recall that the initial problem was to formalize

a role-based approach for the design of business collaboration processes in a dynamic

context where recurrent reorganization of work within collaborative structures oc-

cur, but also the need of incrementally integrating particularly heterogeneous sectors

of activity in the collaboration. Our approach made a clear separation between con-

tributor capabilities (intrinsic skills) and what he does in a collaboration (business

role). Considering all roles involved in a particular context of collaboration offers

a formal basis for reasoning. As there are mainly two goal-oriented collaborative

approaches, we focused on servicing collaboration types and we benefited from the

GAG formal framework, the collaboration processes description mechanisms. We

improved GAG by adding three extension elements, namely: (1) a tasking model

making it possible to describe a design for services provision without ambiguity and

for any form of business collaboration process. (2) a notion of role interface, as

an integration of single responsibility and interface segregation principles in GAGs,

thus offering flexible mechanisms for services composition. (3) A role-based design

approach, which is a form of user-centered approach, with roles assigned to each

contributor in the process. Thus a contributor is perceived both in terms of its

intrinsic skills and the role he plays in the collaboration. This approach allows us

to monitor and manage all the roles present in a given context, to substitute roles,

to compose them, in order to choreograph a given activity.

75

A formal approach for role-Based modeling of business collaboration processes

To conclude, we discuss the key features of our design approach and draw some

future research directions.

Assessment of the design approach

Guarded attribute grammars provide a modular, declarative, user-centric, data-

driven, distributed and reconfigurable formal design tool for business collaboration.

It favors flexible design and execution of business process since it possesses con-

currency, modularity, reconfiguration, distribution, interoperability properties [65].

These properties are directly inherited by the role-based approach, since it has GAGs

as a basis. In addition, this approach guarantees many of the design principles and

properties set out in section 1.4; also as a process modeling, those of understand-

ability and maintainability [28, 100].

Cohesion and coupling: our approach design unit is a role. A role is described

in terms of services provided, services required, internal services and relationship

between them; that is, a role wrap together semantically close elements. Thus,

within a role, cohesion is strong. Also, interface of role and its mechanisms, provides

flexibility in composition, making coupling weak. These requirements of cohesion

and coupling, being necessary for a good design, guarantee the single responsibility

principle; and then one could say that the role-based approach encapsulate the

separation of concerns principle.

Scalability: as setting operators like restriction, helps to hide not needed function-

alities of an interface, together with composition mechanisms associated with role

interfaces, this approach facilitates the dynamic redefinition of roles available in a

context, thus respecting the principle of interface segregation.

Reusability: this approach is concerned with building collaboration, based on use

of existing roles in the collaborative process. These roles are designs and byproducts

of the design life cycle, viewed as stand alone units.

Ph.D thesis in Computer Science - University of Douala (2022) 76

A formal approach for role-Based modeling of business collaboration processes

Maintainability: as a role is single responsible, possible failures in processes may

be easily detected, identified, isolated and corrected.

Future works

Defining a data model for business collaboration: An immediate extension of this

work is to include data handling in the design approach. For this, it is necessary

to define a graphical syntax for the business artifacts, as well as to explain the

interaction mechanisms between them, which can highlight the data manipulated in

the business collaboration, and define data aggregation and splitting operators; [6]

could be a basis to this work.

A dynamic tasking model for a coworking context: the coworking approach to col-

laboration is goal oriented; it assumes an unstructured production process, and it is

through contributors interactions that production rules are defined. From the GAG

architecture (see section 1.5.1) describing such a business collaboration approach

supposes starting from business artifacts, in order to infer the rules that have fa-

vored their evolution. Then the business rules life cycle is therefore closely linked

to artifacts life cycle. It would be interesting to propose a design approach for such

cases.

Modular DSL for roles and collaborations: We will be dealing here with the seri-

alization of collaboration schemes, in a role-based design context. As we have seen

previously, this approach favors the use of modules or libraries considered as a tool-

box, for the assembly line development, of products conforming to a specific field

of application. Since the role implementation (library) is seen as a domain specific

language (DSL), capturing the semantics of an application domain, a collaboration

scheme can reasonably be seen as a composition of DSLs. This is not achieved with-

out certain difficulties, in particular the difficulty of conceiving and implementing

new languages on the one hand, the little flexibility that a language offers in order to

facilitate its evolution, and finally the collaboration between languages. This work

can be carried out on the basis of the precedent work done on modular language

design [7].

Ph.D thesis in Computer Science - University of Douala (2022) 77

BIBLIOGRAPHY

[1] Thierry Burger-Helmchen and Julien Pénin. Crowdsourcing: Définition, enjeux, typologie.

Management & avenir, Management Prospective Ed., 41:254–269, 2011.

[2] Gary P. Pisano and Roberto Verganti. Which kind of collaboration is right for you? Harvard

Business Review, December 2008.

[3] Jacki O’Neill and David Martin. Relationship-based business process crowdsourcing? In

Paula Kotzé, Gary Marsden, Gitte Lindgaard, Janet Wesson, and Marco Winckler, editors,

Human-Computer Interaction – INTERACT 2013, pages 429–446, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[4] J.A. Goguen. Reusing and interconnecting software components. Computer; (United States),

19:2, 2 1986.

[5] Maurice Tchoupé Tchendji, Marcellin Atemkeng T., and Djeumen D. Rodrigue. Un modèle

de documents stable par projections pour l’édition coopérative asynchrone. In Actes du

Colloque Africain pour la Recherche en Informatique, pages 325–332, octobre 2014.

[6] Tchoupe Tchendji M., Djeumen Djatcha R., and Atemkeng M. A stable and consistent

document model suitable for asynchronous cooperative edition. Journal of Computer and

Communications, 5:69–82, 2017.

[7] Eric Badouel and Rodrigue Djeumen Djatcha. Modular Design of Domain-Specific Languages

using Splittings of Catamorphisms. In Bernd Fischer and Tarmo Uustalu, editors, Theoretical

Aspects of Computing – ICTAC 2018., volume 11187 of Lecture Notes in Computer Science,

pages 62–79. Springer, Cham., October 2018.

[8] Eric Badouel and Rodrigue Djeumen Djatcha. Interfaces of Roles in Distributed Collab-

orative Systems. In CARI 2018 - Colloque Africain sur la Recherche en Informatique et

Mathématiques Appliquées, pages 182–193, Stellenbosch, South Africa, October 2018.

[9] Eric Badouel and Rodrigue Aimé Djeumen Djatcha. A Calculus of Interfaces for Distributed

Collaborative Systems: The Guarded Attribute Grammar Approach. Revue Africaine de la

78

A formal approach for role-Based modeling of business collaboration processes

Recherche en Informatique et Mathématiques Appliquées, Volume 31 - 2019 - CARI 2018,

2020.

[10] Rodrigue Aimé Djeumen Djatcha. A role-based collaborative process design on crowdsourcing

systems. In Africain Conference on Research in Computer Science and Applied Mathematics,

Thiès, Senegal, October 2020. Polytech School of Thiès.

[11] David Ferraiolo and Richard Kuhn. Role-based access control. In In 15th NIST-NCSC

National Computer Security Conference, pages 554–563, 1992.

[12] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based

access control models. Computer, 29(2):38–47, February 1996.

[13] Haiping Xu, Xiaoqin Zhang, and Rinkesh J. Patel. Developing role-based open multi-

agent software systems. Technical report, INTERNATIONAL JOURNAL OF COMPU-

TATIONAL INTELLIGENCE THEORY AND PRACTICE (IJCITP, 2007.

[14] O Kazik. Role-based approaches to development of multi-agent systems: A survey. In

WDS’10 Proceedings of Contributed Papers, pages 19–24, 01 2010.

[15] Artur Caetano, Antonio Rito Silva, and José Tribolet. Business process decomposition -

an approach based on the principle of separation of concerns. Enterprise Modelling and

Information Systems Architectures, 5(1):44–57, July 2010.

[16] Dirk Riehle and Thomas Gross. Role model based framework design and integration. SIG-

PLAN Not., 33(10):117–133, October 1998.

[17] W. Keith Edwards. Policies and roles in collaborative applications. In Proceedings of the

1996 ACM Conference on Computer Supported Cooperative Work, CSCW ’96, pages 11–20,

New York, NY, USA, 1996. ACM.

[18] Nicola Guarino. Concepts, attributes and arbitrary relations: Some linguistic and ontological

criteria for structuring knowledge bases. Data & Knowledge Engineering, 8(3):249 – 261,

1992.

[19] Stephan Bögel, Stefan Stieglitz, and Christian Meske. A role model-based approach for

modelling collaborative processes. Business Process Management Journal, 20(4):598–614,

2014.

[20] Marek Szelagowski. Static and dynamic processes. bpmleader, August 2014.

[21] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow

patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[22] Jörg Becker, Michael Rosemann, and Christoph von Uthmann. Guidelines of Business Pro-

cess Modeling, pages 30–49. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

Ph.D thesis in Computer Science - University of Douala (2022) 79

A formal approach for role-Based modeling of business collaboration processes

[23] Dongsoo Kim, Minsoo Kim, and Hoontae Kim. Dynamic business process management based

on process change patterns. In 2007 International Conference on Convergence Information

Technology (ICCIT 2007), pages 1154–1161, 2007.

[24] Toma RUSINAITE, Olegas VASILECAS, and Diana KALIBATIENE. A systematic liter-

ature review on dynamic business processes. Baltic J. Modern Computing, 4(3):420–427,

2016.

[25] Wil M. P. van der Aalst. Business process management: A comprehensive survey. Hindawi

Publishing Corporation, ISRN Software Engineering, February 2013.

[26] Mathias Weske. Business Process Management: Concepts, Languages, Architectures.

Springer-Verlag, Berlin, Heidelberg, 2007.

[27] Mathias Kirchmer. Business Process Management: What Is It and Why Do You Need It?,

pages 1–28. Springer International Publishing, Cham, 2017.

[28] Barbara Weber Simon Forster, Jakob Pinggera. Collaborative business process modeling,

2012.

[29] Olegas Vasilecas, Diana Kalibatiene, and Dejan Lavbič. Rule- and context-based dynamic

business process modelling and simulation. Journal of System and Software, 122(C):1–15,

December 2016.

[30] Edsger W. Dijkstra. On the Role of Scientific Thought, pages 60–66. Springer New York,

New York, NY, 1982.

[31] Aspiring Craftsman. The art of separation of concerns.

https://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/, January 2008.

[32] Robert C. Martin. OCP: The Open-Closed Principle(Object Mentor SOLID Design Papers).

objectmentor.com, 1996.

[33] Robert C. Martin. LSP: The Liskov Substitution Principle(Object Mentor SOLID Design

Papers). objectmentor.com, 1996.

[34] Robert C. Martin. DIP: The Dependency Inversion Principle(Object Mentor SOLID Design

Papers). objectmentor.com, 1996.

[35] Robert C. Martin. Design Principles and Design Patterns(Object Mentor SOLID Design

Papers). objectmentor.com, 2000.

[36] Robert C. Martin. Clean Architecture: A Craftsman’s Guide to Software Structure and

Design. Robert C. Martin Series. Prentice Hall, Boston, MA, 2017.

[37] Robert C. Martin. SRP: The Single Responsibility Principle(Object Mentor SOLID Design

Papers). objectmentor.com, 2005.

[38] Robert C. Martin. ISP: The Interface Segregation Principle(Object Mentor SOLID Design

Papers). objectmentor.com, 1996.

Ph.D thesis in Computer Science - University of Douala (2022) 80

A formal approach for role-Based modeling of business collaboration processes

[39] Mehmet Aksit, Bedir Tekinerdogan, and Lodewijk Bergmans. The six concerns for separation

of concerns. In Workshop on Advanced Separation of Concerns (ECOOP 2001), 01 2001.

[40] Daniel Jackson and Michael Jackson. Separating concerns in requirements analysis: An

example. In Rigorous Development of Complex Fault-Tolerant Systems [FP6 IST-511599

RODIN project], pages 210–225, 2006.

[41] Colin Atkinson and Thomas Kuehne. Separation of concerns through stratified architectures,

2000.

[42] Jonathan Aldrich. Challenge problems for separation of concerns. In In OOPSLA 2000

Workshop on Advanced Separation of Concerns, 2000.

[43] Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting concerns using composition

filters. Communications of the ACM, 44:51–57, 2001.

[44] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit

and Satoshi Matsuoka, editors, ECOOP’97 - Object-Oriented Programming, 11th European

Conference, Jyväskylä, Finland, June 9-13, 1997, Proceedings, volume 1241 of Lecture Notes

in Computer Science, pages 220–242. Springer, 1997.

[45] Alberto Sillitti, Tullio Vernazza, and Giancarlo Succi. Service oriented programming: A new

paradigm of software reuse. In Proceedings of the 7th International Conference on Software

Reuse: Methods, Techniques, and Tools, ICSR-7, pages 269–280, Berlin, Heidelberg, 2002.

Springer-Verlag.

[46] Miroslaw Malek. The NOMADS republic - a case for ambient service oriented computing. In

2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE 2005),

20-21 October 2005, Beijing, China, pages 9–12, 2005.

[47] Remco Dijkman and Marlon Dumas. Service-oriented design: a multi-viewpoint approach.

International Journal of Cooperative Information Systems, 13(4):337–368, 2004.

[48] Didier Parigot and Baptiste Boussemart. Architecture orientée services dynamique: D-

soa. Technical Report inria-00342310, Inria, 004, route des Lucioles BP 93 F-06902 Sophia-

Antipolis cedex, France, November 2008.

[49] Guy Bieber, Lead Architect, and Isd Ci. Introduction to service-oriented programming. In

Openwings, URL = http://www.openwings.org, 2001.

[50] E. A. Brewer, R. H. Katz, Y. Chawathe, S. D. Gribble, T. Hodes, Giao Nguyen, M. Stemm,

T. Henderson, E. Amir, H. Balakrishnan, A. Fox, V. N. Padmanabhan, and S. Seshan. A

network architecture for heterogeneous mobile computing. IEEE Personal Communications,

5(5):8–24, Oct 1998.

[51] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice

Hall PTR, Upper Saddle River, NJ, USA, 2005.

Ph.D thesis in Computer Science - University of Douala (2022) 81

A formal approach for role-Based modeling of business collaboration processes

[52] Thomas Erl, Ricardo Puttini, and Zaigham Mahmood. Cloud Computing: Concepts, Tech-

nology & Architecture. Prentice Hall Press, Upper Saddle River, NJ, USA, 1st edition,

2013.

[53] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-

oriented computing: State of the art and research challenges. Computer, 40(11):38–45,

November 2007.

[54] Eiko Yoneki. ECCO: Data centric asynchronous communication. Technical Report UCAM-

CL-TR-677, University of Cambridge, Computer Laboratory, December 2006.

[55] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The

many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, June 2003.

[56] Ralph Mietzner, Christoph Fehling, Dimka Karastoyanova, and Frank Leymann. Combining

horizontal and vertical composition of services. In Proceedings of the IEEE International

Conference on Service-Oriented Computing and Applications, SOCA 2010. IEEE Computer

Society, 2010.

[57] Tony Ho Tran. User-centered design: Definition, examples, and tips.

https://www.invisionapp.com/inside-design/user-centered-design-definition-examples-

and-tips/, June 2019.

[58] Sergey Gladkiy. User-centered design: Process and benefits. https://uxplanet.org/user-

centered-design-process-and-benefits-fd9e431eb5a9, June 2018.

[59] Eric Badouel, Loïc Hélouët, Georges-Edouard Kouamou, Christophe Morvan, and

Nsaibirni Robert Fondze, Jr. Active workspaces: Distributed collaborative systems based

on guarded attribute grammars. ACM SIGAPP Applied Computing Review, 15(3):6–34,

October 2015.

[60] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline for grammar-

ware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380, July 2005.

[61] Donald Knuth. Semantics of context-free languages. MATHEMATICAL SYSTEMS THE-

ORY, 2(2):127–145, 1968.

[62] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars. SIGPLAN

Not., 24(7):131–145, June 1989.

[63] Jintae Lee, George M. Wyner, and Brian T. Pentland. Process grammar as a tool for business

process design. MIS Quarterly, 32(4):757–778, December 2008.

[64] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and Jianwen Su. Towards

formal analysis of artifact-centric business process models. In Proceedings of the 5th In-

ternational Conference on Business Process Management, BPM’07, page 288–304, Berlin,

Heidelberg, 2007. Springer-Verlag.

Ph.D thesis in Computer Science - University of Douala (2022) 82

A formal approach for role-Based modeling of business collaboration processes

[65] Robert Nsaibirni. A Guarded Attribute Grammar Based Model for User Centered, Dis-

tributed, and Collaborative Case Management Case of the Disease Surveillance Process.

Theses, Université de Yaoundé I, April 2019.

[66] David Cohn and Richard Hull. Business artifacts: A data-centric approach to modeling

business operations and processes. IEEE Data Eng. Bull., 32:3–9, 2009.

[67] Mahmood Hosseini, Keith Phalp, Jacqui Taylor, and Raian Ali. The four pillars of crowd-

sourcing: A reference model. In Marko Bajec, Martine Collard, and Rébecca Deneckère,

editors, RCIS, pages 1–12. IEEE, 2014.

[68] Pavel Kucherbaev, Florian Daniel, Stefano Tranquillini, and Maurizio Marchese. Crowd-

sourcing processes: A survey of approaches and opportunities. IEEE Internet Computing,

20(2):50–56, 2016.

[69] Stefano Tranquillini, Florian Daniel, Pavel Kucherbaev, and Fabio Casati. Modeling, enact-

ing, and integrating custom crowdsourcing processes. ACM Trans. Web, 9(2):7:1–7:43, May

2015.

[70] Fares Laroui. Definition and types of collaboration in business.

https://www.exoplatform.com/blog/2020/11/11/definition-and-types-of-collaboration-

in-business/, November 2020.

[71] William Johnson and Roberto Filippini. Internal vs. external collaboration: What works.

Research-Technology Management, 52, 05 2009.

[72] Andrej Rus and Marko Orel. Coworking: A community of work. Teorija in Praksa,

52(6):1017–1038, December 2015.

[73] Clay Spinuzzi. Working alone, together: Coworking as emergent collaborative activity. Jour-

nal of Business and Technical Communication, pages 399–441, 2012.

[74] Jeff Howe. The rise of crowdsourcing. Wired Magazine, 14(6), 06 2006.

[75] Anand Pramod Kulkarni, Matthew Can, and Björn Hartmann. Collaboratively crowdsourc-

ing workflows with turkomatic. In Steven E. Poltrock, Carla Simone, Jonathan Grudin,

Gloria Mark, and John Riedl, editors, CSCW, pages 1003–1012. ACM, 2012.

[76] Daren C. Brabham. Using crowdsourcing in governement. IBM Center for the Business of

Government, 2013.

[77] Katarzyna Kubiak and Anna Wziatek-Kubiak. Business models innovation based on crowds:

a comparative study. International Journal of Management and Economics, 55(2):127–147,

2019.

[78] K. Benouaret, R. Valliyur-Ramalingam, and F. Charoy. Crowdsc: Building smart cities with

large-scale citizen participation. IEEE Internet Computing, 17(6):57–63, Nov 2013.

Ph.D thesis in Computer Science - University of Douala (2022) 83

A formal approach for role-Based modeling of business collaboration processes

[79] Tatiana De Feraudy and Mathieu Saujot. Une ville plus contributive et durable: crowd-

sourcing urbain et participation citoyenne numérique. Studies N◦04/17, Iddri, Paris,

France(04/17):72p, 2017.

[80] Barbara J. Grosz. Collaborative systems (aaai-94 presidential address). AI Magazine,

17(2):67, Mar. 1996.

[81] Jr Nsaibirni Robert Fondze and Gaetan Texier. User interactions in dynamic processes:

Modeling user intractions in dynamic collaborative processes using active workspaces. In

Proceedings of CARI 2016, pages 109–116, 2016.

[82] D. Harel and A. Pnueli. Logics and models of concurrent systems. chapter On the Develop-

ment of Reactive Systems, pages 477–498. Springer-Verlag, Berlin, Heidelberg, 1985.

[83] Martín Abadi and Leslie Lamport. Composing specifications. ACM Trans. Program. Lang.

Syst., 15(1):73–132, January 1993.

[84] Martin Abadi and Gordon D. Plotkin. A logical view of composition. THEORETICAL

COMPUTER SCIENCE, 114:3–30, 1993.

[85] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of the Ninth

Annual Symposium on Foundations of Software Engineering (FSE), ACM, pages 109–120.

Press, 2001.

[86] Philip Merlin and Gregor V. Bochmann. On the construction of submodule specifications

and communication protocols. ACM Trans. Program. Lang. Syst., 5(1):1–25, January 1983.

[87] Jean-Baptiste Raclet. Residual for component specifications. Electronic Notes in Theoretical

Computer Science, 215:93 – 110, 2008. Proceedings of the 4th International Workshop on

Formal Aspects of Component Software (FACS 2007).

[88] Glenn Shafer. A mathematical theory of evidence. Princeton University Press, 1976.

[89] Lofti Zadeh. Fuzzy sets as the basis for a teory of possibility. Fuzzy sets and Systems, 1:3–28,

1978.

[90] H. Zhu. Role mechanisms in collaborative systems. International Journal of Production

Research, 44(1):181–193, 2006.

[91] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming - methods, tools

and applications. Addison-Wesley, 2000.

[92] Oppl Stefan and Rothschädl Thomas. Separation of concerns in model elicitation – role-based

actor-driven business process modeling. In Zehbold C. (eds) S-BPM ONE - Application Stud-

ies and Work in Progress. S-BPM ONE 2014. Communications in Computer and Information

Science, volume 422. Springer, Cham, 2014.

Ph.D thesis in Computer Science - University of Douala (2022) 84

A formal approach for role-Based modeling of business collaboration processes

[93] Oumaima Saidani and Selmin Nurcan. A role-based approach for modeling flexible business

processes. In Workshop on Business Process Modelling, Development, and Support, pages

111 – 120, Luxembourg, 2006.

[94] Devis Bianchini, Cinzia Cappiello, Valeria De Antonellis, and Barbara Pernici. Semantic ser-

vice design for collaborative business processes in internetworked enterprises. In Carlos Al-

berto Heuser and Günther Pernul, editors, Advances in Conceptual Modeling - Challenging

Perspectives, pages 2–11, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[95] Devis Bianchini, Cinzia Cappiello, Valeria De Antonellis, and Barbara Pernici. P2s: A

methodology to enable inter-organizational process design through web services. In Pascal

van Eck, Jaap Gordijn, and Roel Wieringa, editors, Advanced Information Systems Engi-

neering, pages 334–348, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[96] Mike Winters. Bpmn and microservices orchestration, part 1 of 2: Flow languages, engines,

and timeless patterns. https://zeebe.io/blog/2018/08/bpmn-for-microservices-orchestration-

a-primer-part-1/, August 2018.

[97] Bernd Rücker. The microservices workflow automation cheat sheet. https://blog.bernd-

ruecker.com/the-microservice-workflow-automation-cheat-sheet-fc0a80dc25aa, November

2018.

[98] Object Management Group (OMG). Documents associated with unified modeling lan-

guage(uml) version 2.5 - beta 2. http://www.omg.org/spec/UML/2.5/Beta2/.

[99] Haibin Zhu. A role agent model for collaborative systems. In in Proc. Int. Conf. Inf. and,

pages 438–444, 2003.

[100] A. Hermann, Hendrik Scholta, S. Bräuer, and J. Becker. Collaborative business process

management - a literature-based analysis of methods for supporting model understandability.

Wirtschaftsinformatik und Angewandte Informatik, 2017.

Ph.D thesis in Computer Science - University of Douala (2022) 85

APPENDIX A

HASKELL IMPLEMENTATIONS

A.1 Implementing a relation

module Relation where

import qualified Data.Set as Set

import qualified Data.List as List

import Util

type Relation a = [(a,a)]

--Knowing required and provided services of a relation

toSet::(Eq a,Ord a) => ((a,a) -> a) -> Relation a -> Set.Set a

toSet _ [] = Set.empty

toSet f (r:rs) = Set.insert (f r) (toSet f rs)

-- getting provided services of a relation

provided::(Eq a,Ord a) => Relation a -> Set.Set a

provided = toSet snd

-- getting required services of a relation

required::(Eq a,Ord a) => Relation a -> Set.Set a

86

A formal approach for role-Based modeling of business collaboration processes

required = toSet fst

-- Sequential composition of two R1 and R2

seqComp::Eq a => Relation a -> Relation a -> Relation a

seqComp [] _ = []

seqComp _ [] = []

seqComp (l:ls) rs = oneComp l rs ++ seqComp ls rs

-- Checking composition possibility between a relation instance (x,y)

-- and a relation R2

oneComp::Eq a => (a,a) -> Relation a -> Relation a

oneComp _ [] = []

oneComp (x,y) (r:rs)= if y == fst r then

(x,snd r): oneComp (x,y) rs else oneComp (x,y) rs

-- restriction of a relation R to a subset of provided services O in Out(R)

restriction::Eq a => [a] -> Relation a -> Relation a

restriction [] _ = []

restriction (l:ls) rs = toSelect snd l rs ++ restriction ls rs

--Checking relations providing a given provided service

toSelect::Eq a => ((a,a) -> a) -> a -> Relation a -> Relation a

toSelect _ _ [] = []

toSelect f l (r:rs) = if l == f r then

r: toSelect f l rs else toSelect f l rs

--Reflexive-Transitive closure of a relation

refTransClosure::(Eq a,Ord a) => Relation a -> Relation a

refTransClosure = refClosure.transClosure

-- reflexive closure

refClosure:: (Eq a,Ord a) => Relation a -> Relation a

Ph.D thesis in Computer Science - University of Douala (2022) 87

A formal approach for role-Based modeling of business collaboration processes

refClosure [] = []

refClosure (x:xs) = List.nub ((x:xs)

++ [(y,y) | y <- Set.toAscList (required (x:xs))

++ Set.toAscList (provided (x:xs))])

-- transitive closure

transClosure::(Eq a) => Relation a -> Relation a

transClosure [] = []

transClosure closure

|closure == closureUntilNow = closure

|otherwise = transClosure closureUntilNow

where closureUntilNow =

List.nub $ closure ++ [(a,c)|(a,b)<-closure, (b',c)<-closure, b == b']

-- cyclicity test

isCyclic::(Eq a,Ord a) => Relation a ->Bool

isCyclic [] = False

isCyclic r =

hasCycle (Set.toAscList (Set.union (required r) (provided r))) r

-- is a quasi-Interface ?

isQuasi::(Eq a,Ord a) => Relation a -> Bool

isQuasi [] = False

isQuasi r = not(isCyclic (refTransClosure r))

-- relations union

union::(Eq a) => Relation a -> Relation a -> Relation a

union xs ys = List.nub (xs ++ ys)

-- checking dependencies within a relation

depend::(Eq a) => a -> Relation a -> [a]

Ph.D thesis in Computer Science - University of Douala (2022) 88

A formal approach for role-Based modeling of business collaboration processes

depend _ [] = []

depend s (r:rs) =

if s == snd r then fst r : depend s rs else depend s rs

A.2 Implementation of a role interface

module Interface where

import qualified Data.Set as Set

import Data.List()

import Relation

type Interface a = (Set.Set a,Relation a,Set.Set a)

-- is closed interface?

isClosed::Interface a -> Bool

isClosed (x,r,_) = null x && null r

-- is empty interface?

isEmpty::Interface a -> Bool

isEmpty (x,r,y) = null x && null r && null y

--get empty interface

empty::Interface a

empty = (Set.empty,[],Set.empty)

--check interfaces composability

areComposable::(Eq a,Ord a) => Interface a -> Interface a -> Bool

areComposable (_, x1, o1) (_,x2,o2) =

not(isCyclic (transClosure (x1 `union` x2)))

&& Set.null (Set.intersection o1 o2)

-- check possible collaboration

Ph.D thesis in Computer Science - University of Douala (2022) 89

A formal approach for role-Based modeling of business collaboration processes

-- i.e check possibility of cascede composition between two interfaces

collaborate:: (Eq a,Ord a) => Interface a -> Interface a -> Bool

collaborate x1 x2 =

areComposable i1 i2

&& not (Set.null (Set.intersection (output x2) (input x1)))

-- Union of two interfaces

unionI::(Eq a,Ord a) => Interface a -> Interface a -> Interface a

unionI x1 x2 = (x,y,z)

where

x = Set.union (input x1) (input x2)

y = relation x1 `union` relation x2

z = Set.union (output x1) (output x2)

-- getting required services of an interface

input:: Interface a -> Set.Set a

input (i,_,_) = i

-- getting provided services of an interface

output:: Interface a -> Set.Set a

output (_,_,o) = o

-- getting interface relation

relation:: Interface a -> Relation a

relation (_,r,_) = r

-- checking service dependencies whithin an interface

dependOn::(Eq a) => a -> Interface a -> [a]

dependOn s i = depend s (relation i)

sdependOn::(Eq a) => [a] -> Interface a -> [a]

sdependOn [] _ = []

Ph.D thesis in Computer Science - University of Douala (2022) 90

A formal approach for role-Based modeling of business collaboration processes

sdependOn (x:xs) i =

if null req then sdependOn xs i else req ++ sdependOn xs i

where req = depend x (relation i)

dependOn0::(Eq a) => a -> Interface a -> ([a], Interface a)

dependOn0 s i = (depend s (relation i), i)

mdependOn::(Eq a) => [a] -> [Interface a] -> [a]

mdependOn [] _ = []

mdependOn _ [] = []

mdependOn (x:xs) crowd =

concatMap (dependOn x) crowd ++ mdependOn xs crowd

mdependOn0::(Eq a) => [a] -> [Interface a] -> [([a],Interface a)]

mdependOn0 [] _ = []

mdependOn0 _ [] = []

mdependOn0 (x:xs) crowd =

filter (\(f,_)-> f/=[]) (map (dependOn0 x) crowd) ++ mdependOn0 xs crowd

A.3 Implementing a collaboration

module Collaboration where

import Interface

import qualified Data.Set as Set

import Data.List(intersect)

type Collaboration a = ([a],Interface a,Interface a)

label::Collaboration a -> [a]

label (xs ,_,_) = xs

requester:: Collaboration a -> Interface a

Ph.D thesis in Computer Science - University of Douala (2022) 91

A formal approach for role-Based modeling of business collaboration processes

requester (_ ,_,r) = r

provider:: Collaboration a -> Interface a

provider (_,r,_) = r

whoSupply::(Ord a) => a -> [Interface a] -> [Interface a]

whoSupply s = seekService s output

whoNeeds::(Ord a) =>a -> [Interface a] -> [Interface a]

whoNeeds s = seekService s input

--

seekService::(Ord a) => a -> (Interface a -> Set.Set a)

-> [Interface a] -> [Interface a]

seekService _ _ [] = []

seekService s h (i:is) =

if Set.member s (h i) then i : seekService s h is

else seekService s h is

rGDPi::(Eq a, Ord a) => Interface a -> [Interface a] -> [Collaboration a]

rGDPi _ [] = []

rGDPi r (i:is) =

if not (collaborate r i) then rGDPi r is

else (x,y,z) : rGDPi r is

where

x = Set.toAscList (Set.intersection (input r) (output i))

y = i

z = r

gDPi::(Eq a, Ord a) => [Interface a] -> [Interface a] -> [[Collaboration a]]

gDPi [] _ = []

Ph.D thesis in Computer Science - University of Douala (2022) 92

A formal approach for role-Based modeling of business collaboration processes

gDPi (i:is) prec = rGDPi i (xs++is) : gDPi is xs where

xs = i:prec

sGDPi::(Eq a, Ord a) => a -> [Interface a] -> [Collaboration a]

sGDPi _ [] = []

sGDPi s crew = hx [s] crew (concat (gDPi crew []))

decidable::(Eq a, Ord a) => [a] -> [Collaboration a] ->(Bool,[a])

decidable [] _ = (True, [])

decidable xs [] = (False, xs)

decidable xs (c:cs)

| null (xs `intersect` label c) = decidable (xs++req) cs

| not (null (xs `intersect` label c)) = decidable (xxs ++ req) cs

where

xxs = [x | x <- xs, x `notElem` label c]

req = sdependOn (label c) (provider c)

A.4 Implementing an F -collaboration

module TCollaboration where

import Interface

import Collaboration

import qualified Data.Set()

import Data.List()

data TCollaboration a = NoCol

| Col [a] (Interface a) (Interface a)

| OrCol [a] [Interface a] (Interface a)

deriving Show

Ph.D thesis in Computer Science - University of Douala (2022) 93

A formal approach for role-Based modeling of business collaboration processes

groupCol::(Eq a, Ord a) => [Collaboration a] -> [[Collaboration a]]

groupCol [] = []

groupCol (c:cs) =

fst (subCol (label c) (c:cs)) : groupCol (snd (subCol (label c) (c:cs)))

subCol:: (Eq a, Ord a) => [a] -> [Collaboration a]

-> ([Collaboration a],[Collaboration a])

subCol xs cs = (x,c) where

x = filter(\(l,_,_)-> l == xs) cs

c = filter(\(l,_,_)-> l /= xs) cs

ortransform::(Eq a, Ord a) =>[Collaboration a] -> [TCollaboration a]

ortransform cs = ortrans (groupCol cs)

ortrans::[[Collaboration a]] -> [TCollaboration a]

ortrans = map orT

orT::[Collaboration a] -> TCollaboration a

orT [] = NoCol

orT [c] = Col (label c) (provider c) (requester c)

orT (c:cs) = OrCol (label c) (map provider (c:cs)) (requester c)

A.5 Implementing activity

module Activity where

import Interface

import TCollaboration

import Collaboration

type Activity a = (a,[Collaboration a])

Ph.D thesis in Computer Science - University of Douala (2022) 94

A formal approach for role-Based modeling of business collaboration processes

process::Activity a -> [Collaboration a]

process = snd

svce::Activity a -> a

svce = fst

decomposable::TCollaboration a -> Bool

decomposable NoCol = False

decomposable Col {} = False

decomposable OrCol{} = True

isDecomposable::(Eq a, Ord a) => Activity a -> Bool

isDecomposable act =

foldr ((||).decomposable) False (ortransform (process act))

decomp::Eq a =>[TCollaboration a] -> [[TCollaboration a]]

-> [[TCollaboration a]]

decomp [] prefix = prefix

decomp (NoCol:cs) prefix = decomp cs prefix

decomp (OrCol s p r :cs) prefix = decomp cs (mdup (s,p,r) prefix)

decomp (Col s r0 r1:cs) prefix = decomp cs (inser (Col s r0 r1) prefix)

inser::Eq a => TCollaboration a -> [[TCollaboration a]]

-> [[TCollaboration a]]

inser _ [] = []

inser (Col s p r) (xs:xss) =

pref : inser (Col s p r) xss where

pref = if isSupplied r xs then xs ++ [Col s p r] else xs

Ph.D thesis in Computer Science - University of Douala (2022) 95

A formal approach for role-Based modeling of business collaboration processes

isSupplied::Eq a => Interface a -> [TCollaboration a] -> Bool

isSupplied _ [] = False

isSupplied r (Col _ _ r0:cs) = r == r0 || isSupplied r cs

dup::([a],[Interface a],Interface a) -> [TCollaboration a]

-> [[TCollaboration a]]

dup (_,[],_) _= []

dup (_,_,_) [] = []

dup (s,p:ps,r) cs = (cs ++ [Col s p r]) : dup (s,ps,r) cs

mdup::([a],[Interface a],Interface a) -> [[TCollaboration a]]

-> [[TCollaboration a]]

mdup (_,[],_) _= []

mdup (s,p:ps,r) [] = [Col s p r] : mdup (s,ps,r) []

mdup (s,ps,r) (cs:css) = dup (s,ps,r) cs ++ mdup (s,ps,r) css

dec::(Eq a, Ord a) => Activity a -> (Bool,[a])

dec(_,[]) = (True,[])

dec(s0,cs) = decidable [s0] cs

Ph.D thesis in Computer Science - University of Douala (2022) 96

	Abstract
	Résumé
	Acknowledgements
	Dedication
	Introduction
	Related Works and Useful Background Theories
	Introduction
	Roles, contributors and mechanisms
	The role approach
	Common definitions and terminologies
	Constraints on roles

	Business processes Modeling
	Processes and workflows
	Business processes
	Dynamism in Business Process

	System design principles
	Separation of concerns
	Definitions and goal
	SoC mechanisms, principles and properties
	Soc design approaches

	Service Oriented Design
	Definitions, principles and properties
	SOD architecture
	SOD interactions

	User-Centered design

	Guarded attribute grammar
	Concepts and principles
	Formal definitions
	Grammar and derivation relation
	Reduced grammar

	Data, Variables, Attributes and Guards
	Artifacts

	Conclusion

	Business collaboration: Pillars, taxonomy, use cases and tasking models
	Introduction
	Pillars, criteria and strategies
	Pillars of collaboration
	Requester
	Contributors
	Tasks
	Interaction scheme

	Skills orchestration strategies
	Market strategy
	Contest strategy
	Auction strategy

	Classification criteria for collaboration
	Process organization
	Participation
	Business goal categories
	Types of collaboration

	Coworking
	Team coworking
	Opened coworking

	Service supplying collaboration
	Team servicing
	Crowdsourcing

	Formalizing business collaboration
	contributor in a business collaboration
	Business collaboration tasking model
	Preliminaries and properties
	Intrinsic skills and services
	Crowd tasks
	Business skills

	Tasking model use cases
	Issuing civil status certificates
	Crowdsourced road maintenance activity

	Conclusion

	An interface of role theory for collaboration
	Introduction
	Modeling interface of role
	Potential dependencies
	Grammar interface
	Interface of role

	Properties, conventions, basic operations
	Property and conventions
	Sequential composition
	Restriction and Co-restriction
	Union of interfaces, quasi-interface and acyclicity

	Interface of role composition
	Concept and principles
	Composition operation
	Associativity of the composition
	Cascade product
	Direct product
	Componentization test

	Implementation order
	Residual specification
	Non-deterministic Interfaces
	Conclusion

	A role-based business collaboration design approach
	Introduction
	Context, role and collaboration
	Context of collaboration
	A grammatical modeling of role concept
	Role collaboration
	Potential direct collaborations of a role

	Collaboration schemes, service workflow
	Induced potential dependencies graph (iPDG)
	Potential workflow of a service
	Factorizing a workflow

	Activity in collaborative context
	Formal definition
	Atomicity of an activity
	Activities functional decomposition
	Activity realizability

	Contributor of a business collaborative process
	Concept and definitions
	Constraints on contributor's potential roles
	Relation "play a role"
	Case 1: Playing several roles in an activity
	Case 2: crowdsourced role played by several contributors
	Case 3: Competing activities

	Implementation of the "play" relation

	Conclusion

	Conclusion
	References
	Haskell implementations
	Implementing a relation
	Implementation of a role interface
	Implementing a collaboration
	Implementing an F-collaboration
	Implementing activity

	Articles, Book chapters and Conferences
	Publications

