N
N

N

HAL

open science

Tabular Data Integration for Multidimensional Data
Warehouse

Yuzhao Yang

» To cite this version:

Yuzhao Yang. Tabular Data Integration for Multidimensional Data Warehouse. Computer Science
[cs]. Université Toulouse 1 Capitole (UT1 Capitole); Université de Toulouse; IRIT - Institut de

Recherche en Informatique de Toulouse, 2022. English. NNT: . tel-03903570

HAL Id: tel-03903570
https://hal.science/tel-03903570
Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/tel-03903570
https://hal.archives-ouvertes.fr

R
.

&
!

0% —

THESE

En vue de ’obtention du

Universiteé
de Toulouse

DOCTORAT DE L’UNIVERSITE DE

TOULOUSE

Délivré par : [’Université Toulouse 1 Capitole (UT1 Capitole)

Présentée et soutenue le 15 Décembre 2022 par :

Yuzhao YANG

Tabular Data Integration for Multidimensional Data

Warehouse
JURY
AgNES FRONT Professeure, Université Grenoble Alpes Rapportrice
MAGUELONNE TEISSEIRE Professeure, INRAE Rapportrice
LapJeL BELLATRECHE Professeur, ENSMA Examinateur
Ouvier TESTE Professeur, Université Toulouse 2 Jean Jaures Examinateur
JEROME DARMONT Professeur, Université Lumiere Lyon 2 Co-directeur
FrRANCK RAVAT Professeur, Université Toulouse 1 Capitole Directeur

Ecole doctorale et spécialité :
EDMITT - Ecole Doctorale Mathématiques,

Informatique et

Télécommunications de Toulouse : Informatique et Télécommunications

Unité de Recherche :

IRIT: Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur(s) de These :
Franck RAVAT et Jérome DARMONT

Rapportrices :
Agnés FRONT et Maguelonne TEISSEIRE

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Franck RAVAT
for the quality of his supervision with his profound knowledge, rigorous attitude and strong
work enthusiasm. He sacrificed his time to give me pertinent advice and revise my work
with high standards which helped me to look for perfection. He kept me motivated when
I was slack, encouraged me when I was down. He also generously offered his praises to me
when I got advancement, which render me a deeper passion for my research. Moreover,
he actively introduced me to French culture and cuisine, so that I enjoyed a wonderful
French life.

I would like to gratefully acknowledge my co-supervisor Professor Jérome DAR-
MONT for the quality of his supervision, his valuable advice, constant support, and
remarkable patience during my PhD study. His elaborate guidance has allowed me to
make continuous progress on my research, his careful revision of my work has lead my
achievements to a higher quality. I would also like to thank him for giving me the oppor-
tunity to be a part of the Bl4people project, with this interesting research subject and
for the well-prepared project meetings that he organised where I largely benefited.

I would like to express my deep appreciation to all the members of the defense com-
mittee for making my defense be an enjoyable moment. 1 would like to give my warm
thanks to my thesis reviewers Professor Agnés FRONT and Professor Maguelonne
TEISSEIRE for evaluating and approving my work. Their attentive reviews, valuable
comments, and enlightening questions have contributed greatly to polishing my work.

I am deeply grateful to my thesis examiners, Professor Ladjel BELLATRECHE
and Professor Olivier TESTE, for their brilliant comments, helpful ideas and inspiring
suggestions, enabling me to optimize my work.

Special thanks to Professor Olivier TESTE, head of SIG research team, for hosting
me in the warm home of Institut de Recherche en Informatique de Toulouse (IRIT). 1
would also like to thank him for his insightful guidance and constructive advice on my
research. I am also thankful to Doctor Fatma ABDELHEDI for her valuable remarks
and helpful suggestions to my work.

My sincere thanks also goes to all my fellow colleagues in Univertité Toulouse I
Capitole, IRIT, for the company, exchange and joy they brought.

I would like to thank to my family for their love, support as well as their tremen-
dous understanding and encouragement. My love and gratitude for them can hardly be

expressed in words.

Finally, I would like to acknowledge the French National Research Agency (ANR)
[for the funding of the BI4PEOPLE project to which my PhD thesis is attached.

Thttps://anr.fr/Project-ANR-19-CE23-0005

https://anr.fr/Project-ANR-19-CE23-0005

Abstract

Business Intelligence (BI) plays an important role in companies to support decision making
processes. Nowadays, small companies, organizations or even individuals can exploit
numerous data. However, the lack of experts prevents them from carrying BI projects
out. It is thus necessary to automate the Bl design process to make BI accessible for
everyone. In BI architectures, data are integrated into Data Warehouses (DWs) usually
modeled in a multidimensional way. Yet, tabular data widely exist in small enterprises,
organizations and in the open data world. As a result, we intend to automate the DW

design from tabular data.

Automatic DW design from tabular data requires the detection of different multidimen-
sional components (facts, dimensions, hierarchies...). In case of multiple sources, several
DWs may be generated. If they share common information, it is necessary to merge them
as one integrated DW. During DW merging, missing data imputation should be carried
out to achieve a better data analysis. Therefore, we propose a solution composed of three
parts: (i) automatic DW design, (ii) automatic DW merging and (iii) dimensional data

imputation.

Automatic DW design from tabular data is composed of measure detection and dimen-
sion detection for constructing facts and dimensions, respectively. For measure detection,
we propose a machine learning-based approach that extracts three categories of features
from numerical columns. Dimension detection includes functional dependency-based hier-
archy detection and the distinction of parameters and weak attributes based on syntactic
and semantic rules. We carry out experiments to validate that our approach is able to

detect measures and different dimension elements with high effectiveness and efficiency.

For automatically merging DWs, we propose a process at both the schema and instance
levels, consisting of level merging, hierarchy merging, dimension merging and star schema
merging. Our approach takes the different DW structure elements into account. Moreover,
our approach considers different cases and may generate star or constellation schemas. We
conduct experiments to validate that our DW merging solution can correctly merge DWs
at both schema and instance levels.

Finally, to address dimensional missing data, we propose a hybrid imputation ap-
proach named Hie-OLAPKNN that combines a hierarchical imputation (Hie) and a K-
nearest neighbors-based imputation (OLAPKNN). Hierarchical imputation is based on
functional dependencies between hierarchy levels and is launched first. The remaining
missing data can then be completed by OLAPKNN, which applies a specific dimension
instance distance and considers hierarchy dependency constraints. Our experiments show
that Hie-OLAPKNN outperforms other approaches in terms of effectiveness, efficiency
and respect of hierarchy strictness.

i

Résumé

La Business Intelligence (BI) joue un role important dans les entreprises pour soutenir
les processus de prise de décision. Aujourd’hui, les petites entreprises, les organisa-
tions ou méme les particuliers peuvent exploiter de nombreuses données. Cependant,
le manque d’experts les empéche de mener a bien des projets de BI. Il est donc nécessaire
d’automatiser le processus de conception et d’implémentation de systemes de Bl afin de
le rendre accessible a tous. Dans les architectures BI, les données sont intégrées dans des
entrepots de données (EDs) généralement modélisés de maniére multidimensionnelle. De
plus, les données tabulaires sont largement répandues dans les petites entreprises, les or-
ganisations et dans le monde des données ouvertes. Par conséquent, nous avons l'intention
d’automatiser la conception d’EDs multidimensionnels a partir de données tabulaires sans

connaissance a priori des schémas.

La conception automatique d’EDs a partir de données tabulaires nécessite la détection
de différents composants multidimensionnels (faits, dimensions, hiérarchies...). En cas de
sources multiples, plusieurs EDs peuvent étre générés. S’ils partagent des informations
communes, il est nécessaire de les fusionner en un seul ED intégré. Pendant la fusion
d’EDs, I'imputation de données manquantes doit étre effectuée pour permettre une analyse
de données de meilleure qualité. Par conséquent, nous proposons une solution composée
de trois parties : (i) la conception automatique d’EDs, (ii) la fusion automatique d’EDs

et (iii) I'imputation de données multidimensionnelles.

La conception automatique d’EDs a partir de données tabulaires comprend la détection
de mesure et la détection de dimension pour définir respectivement le fait et les dimensions.
Pour la détection de mesures, nous proposons une approche basée sur 'apprentissage
automatique qui extrait trois catégories de caractéristiques. La détection de dimensions
comprend la détection de hiérarchies (basée sur des dépendances fonctionnelles) et la
distinction des parametres et des attributs faibles (basée sur des régles syntaxiques et
sémantiques). Nous avons réalisé des expérimentations pour valider que notre approche est
capable de détecter les mesures et les différents éléments de dimension avec une efficacité
et une efficience élevées.

Concernant la fusion automatique d’EDs, nous proposons un processus basé sur les
schémas et les instances, composé de la fusion de niveaux, la fusion de hiérarchies, la
fusion de dimensions et la fusion de schémas en étoile. Les expérimentations ont permis

de valider notre solution de fusion d’EDs.

Enfin, pour traiter les données manquantes multidimensionnelles, nous proposons une
approche d’imputation hybride appelée Hie-OLAPKNN qui combine une imputation hiérarchique
(Hie) et une imputation basée sur les K-voisins les plus proches (OLAPKNN). L’'imputation
hiérarchique est basée sur les dépendances fonctionnelles entre les niveaux hiérarchiques.
OLAPKNN applique une distance d’instances de dimension et tient compte des con-
traintes de dépendance hiérarchique. Nos expérimentations montrent que Hie-OLAPKNN

1ii

surpasse les autres approches en termes d’efficacité, d’efficience et de respect des con-
traintes hiérarchiques.

Publication List

National Conference

Yang, Y., Darmont, J., Ravat, F., & Teste, O. (2020). Automatic Integration Issues of
Tabular Data for On-Line Analysis Processing. In 16e jounées EDA Business Intelligence
& Big Data (EDA), vol. RNTI-B-16, pp.5-18

International Conference

Yang, Y., Darmont, J., Ravat, F., & Teste, O. (2021). An Automatic Schema-Instance Ap-
proach for Merging Multidimensional Data Warehouses. In 25th International Database
Engineering & Applications Symposium (IDEAS) (pp. 232-241).

Yang, Y., Abdelhedi, F., Darmont, J., Ravat, F., & Teste, O. (2021). Internal Data
Imputation in Data Warehouse Dimensions. In International Conference on Database
and Expert Systems Applications (DEXA) (pp. 237-244). Springer, Cham.

Yang, Y., Abdelhédi, F., Darmont, J., Ravat, F., & Teste, O. (2022). Automatic Machine
Learning-Based OLAP Measure Detection for Tabular Data. In International Conference
on Big Data Analytics and Knowledge Discovery (DaWak) (pp. 173-188). Springer,
Cham.

Yang, Y., Darmont, J., Ravat, F., & Teste, O. (2022). Dimensional Data KNN-Based
Imputation. In European Conference on Advances in Databases and Information Systems
(ADBIS) (pp. 315-329). Springer, Cham.

v

Contents

I__Introductionl 1
[Research Context] 2
2 Problem Definition| 3
[3 Manuscript Outline| 3

[(IT Automatic Data Warehousing] 6
(1 [ntroduction| 8

1.1 Contextl 8
(1.2 Challenges of Measure Detectionl 9
(1.3 Challenges ot Dimension Detection| 10
1.4 Our Process Overview] 10
1.5 Qutlinel 10
[2 Preliminary| 11
B Related Workl 13
[3.1 Approaches| 13
[3.2 Comparative Analysis| 0oL 20
[3.3 SUMMATY| « .« v v v v o e v e e e e e 26
[3.4 Automatic DW Design for Simple-structured Tabular Datal 26
M Measure Detectionl 26
4.1 OVEIVIEWl o v v o s e e 27
(4.2 Preprocessing|o 28
4.3 Feature Extractionl00 28
[4.4 Machine Learning Classification| 32
[4.5 User Validationl 33
b Dimension Detectionlo oo 33
(5.1 Functional Dependency Detection| 33
(5.2 Functional Dependency Treel 35
(5.3 Functional Dependency Tree Element Setf. 35
(5.4 Hierarchy Detection|. 38
0.5 Distinction between Parameters and Weak Attributes/ 39
5.6 Construction of DWIo 41
(6 Experimental Assessment tor Measure Detection| 43

(6.1 Experimental Conditions| 44

(6.2 Experimental Results| 0000 47

(7 Experimental Assessment tor Dimension Detection|. 50
[f.1 Datasetl 50

(7.2 Metrics 52

[7.3 Experimental results and analysis| 53

8 Conclusionl. 56
(III Data Warehouse Merging| 58
(I Introductionl 59
1.1 Contextl 59

(1.2 Challenges ot DW merging| 59

1.3 Our Process Overview] 60

1.4 Outlinel 60

2 Related Workl 61
(2.1 Multidimensional Schema Matchingl 62

[2.2 Multidimensional Schema and Instance Merging| 62

2.3 Analysis of Merging Approaches| 64

[3 Level Merging| 65
(3.1 Record of Matched Parameters 65

(3.2 Merging of Weak Attributes| 65

{4 Hierarchy Merging| oo 66
(4.1 Generation of Sub-hierarchy Pairs| 67

(4.2 Merging of Sub-hierarchies| 69

[4.3 Generation of Final Hierarchy Set| 70

(5 Dimension Merging| 73
(5.1 Schema Merging| 73

(5.2 Instance Merging| oL 74

(6 Star Schema Merging| L 76
(7 Experimental Assessment|. 80
(7.1 Datasetd 80

[7.2 DW Generation Strategy| 80
(.3 Star Schema Generation| oL 81

[r.4 Constellation Schema Generationl 84

8 Conclusion|. 88
(IV Data Warehouse Imputation| 90
(1 [ntroduction| 92
1.1 Contextl 92

(1.2 Challengel 92

(1.3 Our Approach Overview| 92

1.4 Outlinel 93

2 Related Workl 94

vi

(2.1 General Imputation Approaches| 94

[2.2 Analysis of the Approaches| 98

[2.3 Imputation Approaches for DW| 101

[3 Hierarchical Dimension Imputation| 102
(3.1 Intra-dimensional Imputation| 102

[3.2 Inter-dimensional Imputation| 103

[3.3 Hierarchical Imputation Order|. 105

M Dimension Instance Distancel. o000 106
4.1 Attribute Distancel oo 108

[4.2 Hierarchy Level Instance Distance] 109

[4.3 Hierarchy Instance Distance| 109
44 Dimension Instance Distancel. o000 110

[4.5 Using Dependency Degree as Hierarchy Weight| 111
................................... 112
(5.1 OLAPKNN Overviewl. 112

(5.2 Imputation for Parameters by OLAPKNN| 113

(5.3 Imputation of Weak Attributes 117

(6 Experimental Assessments|o oo oL 118
6.1 Dataset] 118

(6.2 Experimental methodology|. 0. 119

6.3 Results and analysis for Experimentl| 122

[Conclusionl. 134
[V Implementation| 136
(I Introduction| 137
(L1 Functional Architecturel 137
(.2 Technical Architecturel 138

1.3 Outlinel 139

[2 Automatic DW Design and Implementation| 140
(2.1 Front-endl 140

2.2 Back-endl 145

[3 Automatic DW Merging] 145
(3.1 Front-endl 145

.2 Back-end o 149

{4 Dimensional Data Imputation| 149
(4.1 Front-endl 149

42 Back-endl 152

B Conclusionl. 153
VI Conclusion| 154
(1 Contributions 155
(1.1 Contributions on Automatic DW Design from Tabular Data] 155

(1.2 Contributions on Automatic DW Merging 156

vii

(1.3 Contributions on Dimensional Data Imputation| 156

(1.4 Contributions on Automatic Data Warehousing System| 157

2 Future Workl.o 157
RI1 Short-term Planl. 157

22 Mid-term Plan| 158

[2.3 Long-term Plan|00 158
[Annexes| 159
[Appendix A Ground truth and Detected Schemas in Dimension Detection{160
(1 Dataset - Examplel00 160
2 Dataset - SalesI| 161
B Dataset - Sales2) 161

{4 Dataset - DevApp|. 162

(5 Dataset - Countriesl 163

6 Dataset - Covidl 163
[Appendix B DW Schemas in Imputation Experiments| 164

viil

List of Figures

[[I.1 Two types of DW design processes|. 9
L2 Process overviewl e 11
[[1.3 Automatic DW design process for simple-structured tabular datal. 26
L4 Measure detection for tabular datal 27
[[I.5 Example of CSV table] 28
[[I.6 Example of extracted features| 33
[([I.7 Examples of FD trees|., 36
[[I.8 Example of hierarchy detection| 39
([L9 Final schemal 43
[[I.10 Implementation result| 43
[([I.11 Experiment overview| 44
[L.12 Cross validation distributionl 48
[[I.13 Performance with respect to source and domain with RF| 50
[[I.14 Feature importance| 51
[[I[.1 Overview of the merging process|. 61
[[IT.2 Example of generation of sub-hierarchy pairsf 69
[[IT.3 Example of hierarchy merging| 69
[[IT.4 Example of hierarchy instance| 70
[[I[.5 Example of hierarchy mergingl 71
[[I[.6 Hierarchy merging example] 72
[[I1.7 Hierarchy merging example, 72
[[I1.8 Dimension merging example (schema)|. 74
[[I1.9 Dimension merging example (schema)l. 75
[[II.10Dimension merging example (instance)| 75
[[II.11Dimension merging example (instance)| 76
[[II.12Star merging example (schema) 79
[[II.13Star merging example (instance)|. 80
[[II.14Star merging example (schema) 81
[[I[.155tar schema generation| 83
[[IT.16Constellation schema generation| 86
[([IT.17Summary of the merging process| 88

ix

[[V.1 Overview of the Hie-OLAPKNN imputation approach|. 93

[[V.2 Hierarchical intra-dimensional imputationl 103
[[V.3 Hierarchical inter-dimensional imputation|. 105
[[V.4 Example of first launching intra-dimensional imputation| 106
[[V.5 Example of first launching inter-dimensional imputation|. 107
IV.6 Schema and instances of dimension Productl 108
IV.7 Distance between 77 and 2o 108
[[V.8 Effectiveness results of single attribute imputation of experimentl| 123
[[V.9 Effectiveness results of multiple attribute imputation of experimentl|. . . . 123
[[V.10Effectiveness results of with second missing data generation strategy|. . . . 125
[[V.11Run time results of single attribute imputation of experimentl| 126
[[V.12Run time results of multiple attribute imputation ot experimentl] 127
[[V.13Run time results second missing data generation strategy| 127
[[V.14Effectiveness results of single attribute imputation| 130
[[V.15Eftfectiveness results of multiple attribute imputation| 131
[[V.16Run time results of single attribute imputationl. 132
[[V.17Run time results of multiple attribute imputation| 133
[[V.185trictness results of single attribute imputation| 134
[[V.195trictness results of multiple attribute imputation| 135
(V.1 Technical architecturel oo 137
(V.2 Technical architecturel o 138
(V.3 Upload files| 140
V.4 Files uploaded successtully| 141
[V.5 Measure detection in non-expert version| 141
[V.6 Measure detection in expert version| 142
V.7 Dimension detection in non-expert version| 142
[V.8 Date granularity selection| 143
[V.9 Dimension detection in expert version|. 143
[V.10 Schema editing] 144
(V.11 DW implementation| 144
[V.12 Back-end illustration of automatic DW design and implementation|. 145
(V.13 DW selectionl 146
(V.14 DW schema informationl oo oL 146
(V.15 Confirmation windowl 147
V16 Merged DW] 147
VI7Merged DW| 148
[V.18 Analysis form|o 148
[V.19 Back-end illustration of automatic DW mergingl 149
V.20 DW selectionl o 150
(V.21 Attribute selectionlo 150
[V.22 Imputation confirmation in non-expert version| 151

[V.23 Imputation confirmation in expert version| 151

[V.24 Imputation result|00 152
[V.25 Back-end illustration of data imputation| 152
[A.1 Ground truth schema of dataset Examplel. 160
[A.2 Detected schema of dataset Examplel 160
A3 _Ground truth schema of dataset Salesll 161
[A.4 Detected schema of dataset dSalesIl. 161
[A.5 Ground truth schema of dataset Sales?2l 161
[A.6 Detected schema of dataset Sales2l 161
[A.7 Ground truth schema of dataset DevApp| 162
[A.8 Detected schema of dataset DevApp| 162
[A.9 Ground truth schema of dataset Countries| 163
[A.10 Detected schema of dataset Countries 163
[A.11 Ground truth schema of dataset Cowidl 163
[A.12 Detected schema of dataset Covidl 163
[B.1 Schema of dataset TPCHI. 164
[B.2 Schema of dataset Adventurel L. 164
B.3_Schema of dataset 1. 164
[B.4 Schema of dataset GoSales 165
[B.5 Schema of dataset Organisation| 165

X1

List of Tables

[[I.1 Comparison of different automatic DW design approaches|. 25
[[I.2 Number of files by domains| 45
IL3 Data source characteristics L. 46
(L4 Global results 47
[[I.5 Performance of feature categories and their combinations] 49
[[[.6 Dataset information|. oo 52
[([I.7 Dimension ID aspect results| 54
[[I.8 Dimension attribute aspect results[. 55
[[I.9 Relationship aspect results| 55
(10 Run time results] 56
[[I[.1 Comparison of different approaches| 65
[[IT.2 Results of star generation| 84
[[I[.3 Results of constellation schema generation| 87
[[V.1 Comparison of impuation approaches| 100
[[V.2 Algorithms” parameters|. 122

Xii

Chapter 1

Introduction

Contents

13 Manuscript Outline|

1. RESEARCH CONTEXT 2

1 Research Context

Business intelligence (BI) systems are widely used in the industry, especially in large
companies (Llave, 2017)), combining operational data with analytical tools to present
information in a structured and effective way to support decision making for planners
and decision makers (Negash and Gray, [2008; Nelson, 2010). |Chugh and Grandhi| (2013)
summarize the advantages of the application of BI systems in companies including (1)
allowing companies to analyse data from multiple sources in multiple dimensions; (2)
creating intelligence for decision making by seeking out patterns and meanings in data; (3)
improving management strategies by rapidly rendering accurate reporting; (4) supporting
in identifying the causes of operational problems to reduce inventory costs; and (5) helping
to make accurate predictions to find future opportunities.

With the current digitization trend, small companies, organizations or even individuals
can exploit a large number of data every day (Grabova et al. 2010; Raj et al., [2016)) and
the rise of open data makes various data even more accessible (Braunschweig et al., [2012)).
To be competitive and obtain valuable information from such data, these small entities
are also interested in BI systems (Grabova et al., 2010).

Nevertheless, the design and implementation of a BI system need to be realized by
experts who have the professional knowledge and deep skills in BI technologies, such as
data warehousing and data visualization (Romero and Abelld| [2010)). However, there is
a general lack of such technical expertise in small entities (Raj et al., 2016)). Moreover,
commercial BI tools are expensive and are not affordable for them. Despite the existence
of open source BI platforms (Lapa et al. |2014; Tutunea and Rus| 2012), they are still
technically out of the reach of our target users (Abell6 et al., 2013)). As a result, the
project Bl4people E] aims at bringing the power of BI systems to the largest possible
audience, by automating the BI design and implementation process from data integration

to On-Line Analytical Processing (OLAP) analysis and data visualization.

In current BI systems, data are integrated into Data Warehouses (DWs) in a multidi-
mensional way (Chaudhuri et al| [2011). Data warehousing is the most challenging aspect
of BI, requiring about 80% of the time and effort and generating more than 50% of the
unexpected project costs (Watson and Wixom, 2007). Thus, automating the DW design
and implementation process is an indispensable task in the Bl4people project.

There exist various forms of data, but most of the data in small enterprises and orga-
nizations, as well as most of open data, are in tabular form (Roman et al., 2016; Borisov
et al., 2021)). There are different automatic DW design approaches [Romero and Abelld
(2009). Most of these methods focus on data sources with schema: relational data with
Entity-Relationship (ER) schema, XML data with Document Type Definitions (DTDs),
etc. Automatic DW design from tabular data without schema arises little attention and
is not well addressed in the literature.

"https://anr.fr/Project-ANR-19-CE23-0005

https://anr.fr/Project-ANR-19-CE23-0005

2. PROBLEM DEFINITION 3

Therefore, as a part of the Bl4people project, in this manuscript, we intend to automate
the DW design and implementation process from tabular data to allow small enterprises,
organizations and even individuals without deep technical expertise to easily analyse data

with BI systems.

2 Problem Definition

As we discussed in Section [I] we focus on tabular data, which are usually without schema.
The lack of schema makes it hard to discover the relationships between attributes to design
DW multidimensional schemas. Tabular data bear simple or complex structures (Adelfio
and Samet,, [2013)). It is thus important to analyse the characteristics of different tabular
data structures and customize different automatic DW design solutions. A DW is usually
modelled as a multidimensional schema, which is composed of analysis subjects (facts)
containing indicators (measures). These subjects are analysed according to different axes
of analysis (dimensions) that are composed of attributes modeled through different views
(hierarchies) (Ravat et al), 2008a). Therefore, we have to identify attributes in
tabular data as different elements such as measures or dimension attributes
and detect the relationships between the attributes to create hierarchies.

Users may have data coming from multiple sources and a DW may be constructed for
each one of them. If there are DWs having common information, users may need to merge
the DWs for analysing the data in a consolidated way. However, merging multidimensional
DWs is challenging because it is not only necessary to merge them at the schema level,
but also to merge the values of different attributes. Complex DW structure also requires
to the consider different multidimensional components when merging DWs. Therefore,
we have to automatically merge these DWs into one integrated DW at both
schema and instance levels by considering the multidimensional structure.
Moreover, a DW may be modelled as a star or constellation schema according to the
number of facts and their association to the dimensions. We must take this into account.

During the merging process, there may be missing values in attributes of the merged
DW. Missing data make aggregated data incomplete and thus have an impact on OLAP
analyses. These missing data produce dashboards containing erroneous values and may
thus lead to decision-making that can negatively impact the company. Therefore, it is
indispensable to carry out data imputation to replace missing data for the sake
of a more complete and accurate data analysis. Missing data imputation requires taking
the DW structure and dependency constraints among hierarchy levels into account.

3 Manuscript Outline

Facing the various problems discussed in Section [2| this PhD thesis aims to automate
the DW design and implementation to enable non-expert users take advantage of BI

3. MANUSCRIPT OUTLINE 4

by integrating data into DWs for further OLAP analyses and data visualisation. To
do so, we propose a complete solution covering not only the automatic DW design and
implementation from tabular data, but also the follow-up tasks in case of multiple sources
including automatic DW merging and data imputation. Furthermore, we implement our
solution and develop an application that allows users to implement the designed DW and
carry out the merging and imputation processes.

The manuscript is organized as follows.

o In Chapter we propose a solution for automatic DW design and implementa-
tion from tabular data. The solution is composed of measure detection for the
construction of facts and dimension detection for the construction of dimensions.
Regarding measure detection, we consider numerical columns as candidate measures
and propose a machine learning-based approach by defining general, statistical and
inter-column features extracted from numerical attributes. Regarding dimension de-
tection, we first propose an algorithm to create hierarchies by detecting functional
dependencies. We then propose some syntactic and semantic rules to identify di-
mension attributes as parameters or weak attributes. We carry out experiments to
validate our solution. Measure detection is validated by comparing the effectiveness
of different machine learning algorithms with baseline approaches and by analysing
the feature category effectiveness, model generality and feature importance. Dimen-
sion detection is validated by the efficiency and the effectiveness for the detected
dimensions at dimension aspect, dimension attribute aspect and relationship as-

pects.

o In Chapter [[TI, we propose a process for merging two DWs modelled as star schemas
at both schema and instance levels. Our process is composed of level merging,
hierarchy merging, dimension merging and star merging. The process considers
different multidimensional components and generates a merged DW modelled as
a star or constellation schema in different cases. We carry out experiments with
the TPC-H benchmark’s data to validate the process in both star and constellation
schema generation cases. We verify the merged schema and instance results to
validate the correct merging.

« In Chapter [[V] we propose an approach named Hie-OLAPKNN for DW dimensional
data imputation. The approach is hybrid and combines a hierarchical imputation
(Hie) and a k-nearest neighbors-based imputation (OLAPKNN). Hierarchical im-
putation is carried out first. It is a reliable approach based on actual functional
dependencies among intra- and inter-dimensional hierarchy levels. OLAPKNN is
then carried out to replace the remaining missing data. Since OLAPKNN replaces
missing data by nearest neighbors, we define a specific distance metric for dimension
instances by considering dimensions’ structure. Moreover, the OLAPKNN algorithm
takes hierarchy dependency constraints into account. We conduct experiments to

compare Hie-OLAPKNN with other approaches from the literature by verifying the

4

3. MANUSCRIPT OUTLINE)

effectiveness, efficiency and respect of hierarchy strictness.

o In Chapter [V we implement a complete solution by integrating the approaches of
automatic DW design and implementation, automatic DW merging and data impu-
tation. We first present the functional and technical architecture of the application.
We then explain the different functionalities with the presentation of the front-end

and back-end.

Chapter 11

Automatic Data Warehousing

Contents
(1 [ntroduction| 8
1.1 Contextl e 8
(1.2 Challenges of Measure Detectionl 9
(1.3 Challenges of Dimension Detection| 10
1.4 Our Process Overviewl e 10
1.5 Outlinel 10
[2 Preliminary| 11
B Related Workl 13
(3.1 Approaches| 13
[3.2 Comparative Analysis| 20
[3.3 SUMMATY| « .« o o v v e e e e e e e e e e e 26
[3.4 Automatic DW Design for Simple-structured Tabular Datal 26
M4 Measure Detectionl 26
4.1 OVEIVIEW] . v v v v v v e e e e e e e e e e 27
(4.2 Preprocessing| 28
(4.3 Feature Extraction| 28
[4.4 Machine Learning Classification| 32
(4.5 User Validationl 33
(b Dimension Detectionl oL 33
(5.1 Functional Dependency Detection| 33
(5.2 Functional Dependency Treel 35
(5.3 Functional Dependency Tree Element Setf. 35
(5.4 Hierarchy Detection|. 38
0.5 Distinction between Parameters and Weak Attributes/ 39
5.6 Construction of DW|o 41
(6 Experimental Assessment tor Measure Detection| 43
(6.1 Experimental Conditions| 44

CONTENTS 7
(6.2 Experimental Results| 47

[7 Experimental Assessment for Dimension Detection|. 50
(1 Datasetl 50

7.2 Metrics 52

(7.3 Experimental results and analysig 53

8 Conclusionl. o 56

1. INTRODUCTION 8

1 Introduction

1.1 Context

Data Warehouse is the core of the BI system which models the data by a multidimen-
sional way allowing decision makers to analyse data by On-Line Analytical Processing
(OLAP) (Golfarelli and Rizzi, [2009). With the development of information systems and
the availability of numerous open datasets, various data become much more accessible to
small enterprises, organizations and even individuals, who have data analysis needs by
BI tools to help them take decisions. However, the DW design is normally carried out
manually and requires experts with Bl experience (Romero and Abelld, 2010). So the
DW design process is typically costly and time-consuming. However, these users do not
have enough budget or BI experts. Thus, it is difficult for them to take advantage of BI.
Moreover, they may not necessarily know or anticipate precise requirements. They may
also have some requirements but do not know how to express them in a proper way which
help for the DW design. Therefore, it is necessary to automate the DW design process to
make the non-expert users to carry out analysis with warehoused data.

DW design is an important part of information system design (Céret et all 2013)).
There are different approaches of DW design (Romero and Abelld, 2009), which can be
classified into data-driven approaches and demand-driven approaches as shown in Fig. [[L.1]
In the data-driven approaches (Fig. , the DW schema is generated from the data
sources by analysing the data and schema. The user may also get involved in the processes
by validating the results. The data-driven DW design processes are mostly automatic or
semi-automatic solutions. Meanwhile there are demand-driven approaches (Fig.
which start from user requirements and map the data sources to generate the schema
satisfying these requirements manually or automatically. Moreover, there are hybrid ap-
proaches taking both user requirements and the data source into account. Since there
are various DW design difficulties for our target user as we analysed, our work focuses on
the data-driven approaches by proposing automatically DW schema and ask the user’s

participation for the validation.

Most of the data-driven approaches focus on data sources with an explicit schema
(Romero and Abelld, 2009), e.g. relational data with Entity-Relationship (ER) schema,
XML data with Document Type Definitions (DTDs), etc. Nevertheless, tabular data
such as spreadsheet data and Comma Separated Value (CSV) files are very common
in enterprises, and even more in the open data world. We thus focus on tabular data
whose schemas are not available. Thus we have to detect the different multidimensional
components based on the data instances which may arise several challenges. A DW is
composed of fact(s) and dimensions which contain particular multidimensional elements.
In the fact(s), there are measures; in the dimensions there are hierarchies and different
types of attributes including parameters and weak attributes. Thus we have to detect
these different multidimensional components.

1. INTRODUCTION 9

XML
Tabular
Data
N Data-driven -
N—1 approach Data Warehouse .
Demand-driven
Database ' User approach Data Warehouse
N : User requirement
H e User
i validation
Others
Others
User
e . M % v
sources Data sources

-/

(a) Data-driven) Demand-driven

Figure I1.1: Two types of DW design processes

In addition, tabular data may bear quite simple or very complex structures (Adelfio
and Samet|, [2013). Simple structures consist of one header row followed by rows containing
data values. Headers label the data rows below, while data rows contain tuples akin to
relational database tuples. Most CSV files bear a simple structure, while spreadsheet
files and HTML tables can be more complex, e.g., cross tables (Lautert et al., 2013).
Such tables contain two or several dimensions, and may also contain several dimension
levels. Moreover, there also exists other complex structures such as concise tables, nested
tables, multivalued tables and split tables (Lautert et al., |2013). For tabular data of
complex structure, the most important task is to identify the table structure to extract
DW elements or transform them into simple structure. These tasks can be solved by some
existing algorithms (Chen and Cafarella, |2013; Du et al., 2021} [Koci et al., 2016; [Wang
et al., 2021)). Thus, in the following, we focus on the automatic DW design for tabular
data of simple structure.

We then discuss the challenges for the detection of the different multidimensional

components from tabular data of simple structure.

1.2 Challenges of Measure Detection

In simple-structured tabular data without schema or metadata, DW elements cannot be
directly extracted as the data do not bear a particular layout. Measures are usually
numerical data, but numerical columns are not necessarily measures, since there also
exists descriptive numerical attributes. Moreover, a column with the same semantic may
be treated differently in different contexts. For example, the population of a country may
be a measure if the analysis subject is the country information. But if the country is a
hierarchical level in a geographical dimension, population is just a descriptive, so-called
weak attribute, and not a measure. Thence, it is also difficult to detect measures based

1. INTRODUCTION 10

on the semantics of the column

1.3 Challenges of Dimension Detection

To detect dimensions, we should identify the hierarchical relationships between attributes
to create dimension hierarchies. Moreover, we have also to decide which attributes are

parameters and which ones are weak attributes.

For tabular data of simple structure, there is no layout particularity. There is no
schema where we can get the cardinalities neither. We thus have to derive the hierarchi-
cal relationships by discovering the functional dependencies among the attributes. For
the distinction of parameters and weak attributes, a parameter can be regarded as the
identifier of its level. Thus the weak attributes are functionally determined by their pa-
rameters. However, in the functional dependency relationships, we can not simply tell
whether an attribute determined by another attribute is a parameter of a level or a weak
attribute of its determinant attribute. Furthermore, sometimes several attributes of a
same level may all be candidates of parameter, we have to choose the most appropriate

one.

1.4 Our Process Overview

Facing to these challenges, we propose a process to resolve them. The overview of our
process is shown in Fig.

For tabular data of complex structure, existing algorithms (Chen and Cafarella, 2013}
Du et al| 2021; Koci et al., 2016; [Wang et al., [2021) can be used for the identification of
table structure. For cross tables, measures can be extracted from data region. Headers
can be viewed as DW dimensions, and the different levels of hierarchical headers form
hierarchies. The other types of complex structures can be converted into simple structures.

Since the DW design for complex structure tabular data can be solved by existing
approaches, we focus on that of simple structure. We propose an automatic DW design
process for tabular data of simple structure as shown in the red-framed part. To solve the
challenges of measure detection, we propose a machine learning-based measure detection
approach. Then to solve the challenges of dimension detection, we propose a functional
dependency-based hierarchy detection and a rule-based approach for distinction of pa-
rameters and weak attributes.

1.5 Outline

The remainder of this chapter is organized as follows. In Section [3| we review and compare
the related works about data-driven automatic DW design. In Section [}, we detail and
discuss the measure detection process and the machine learning features we propose. In
Section [} we explain how to build hierarchies from functional dependency trees and how

10

2. PRELIMINARY 11

- Cross table Eb:
1 =

—_—

v

Data region as measures (excluding aggregations)

Data warehouse
Tables headers as dimensions

Complex structure Detection of the table structure

% < Other types
¢

Tabular data E_‘ Fj
A Measure detection —_ ==
i U —

Bt

Facts
Simple structure Data warehouse
Dimensions

Figure I1.2: Process overview

to decide whether an attribute is a parameter or a weak attribute. In Section [6] and
Section [7, we present and interpret our experimental results respectively for measure
detection and dimension detection. Finally, in Section [§, we conclude this chapter.

2 Preliminary

We introduce in this section, basic concepts of a DW (Ravat et al., |2008a) that we use
throughout this manuscript.

Definition 2.1 (Data warehouse). A data warehouse, denoted by DW , is defined as
(NPW FPW DPW StarPW) where

NPW s the data warehouse’s name,
o FPW (P .., F,} is a set of facts,

« DPW — {Dz, ..., D,} is a non-empty set of dimensions,

o StarPW . pPW _y oDPV 4o g mapping associating each fact to its linked dimensions.
The notation 2% denotes the powerset of the set X.

A DW can be modelled by a star or a constellation schema. In a star schema, there
is a single fact connected with different dimensions, i.e. |FPW| > 1. A constellation

schema consists of more than one fact which share one or several common dimensions,
ie. |FPV| =1,

A dimension models an analysis axis and is composed of attributes.

Definition 2.2 (Dimension). A dimension, denoted by D, € DPW is defined as
(NPe AP
HPe IPe) where

o NPe s the dimension’s name,

11

2. PRELIMINARY 12

o APe = {aPe . aPYU{idP<} is a non-empty set of attributes, where idPe represents

the dimension’s identifier, which is also the parameter of the lowest level and called

the root parameter.
o HPe = {HP" .. HP:} is a non-empty set of hierarchies,

o I[Pe = {il*,...,iD<} is a set of dimension instances. The value of an attribute al*

of the instance i?c is denoted as iqDC.auDC.

A hierarchy represents a particular vision (perspective) of a dimension. Each attribute
represents one data granularity according to which measures could be analysed.

Definition 2.3 (Hierarchy). A hierarchy of a dimension D., denoted by H, € HP<, is
defined as (N, Param®e, Weak®), where

o N is the hierarchy’s name,

o Param™c =< idP, pie, <oy PHe > s a non-empty ordered set of dimension attributes,

called parameters, which set granularity levels along the dimensions: Vk € [1...1}],10?e €
AP The roll up relationship between two parameters can be denoted by pte =H, Py

He

for the case where pi* roll up to p¥e in H.. For Param®, we have id” =u.,

H, H, H, H H.
P1%P1° jHe P25 Dy jHe Py ©-

e WeakHe = Paramfe — 2AP =Param™) o 0 mapping possibly associating each pa-
rameter with one or several weak attributes, which are also dimension attributes
providing additional information. WeakHe[pfle] = {w’ffe ...,wé’fe} is the weak at-
tribute set for parameter p;'c. All parameters and weak attributes of H, constitute the
hierarchy attributes of H,, denoted by Afe = Param®eU(U WeakHe [pHe]).

py ¢ €EParamte

There exists different types of hierarchy, but the most basic and common one is the

strict hierarchy (Malinowski and Zimanyi, 2004) where a value at a hierarchy’s lower-
granularity level belongs to only one higher-granularity level value (Trujillo et al., [2001)).
Thus in this manuscript, we only consider the case of the strict hierarchy:.

A fact reflects information that has to be analysed according to dimensions and is
modelled through one or several indicators called measures.

Definition 2.4 (Fact). A fact, denoted by F, € FPV, is defined as (N*e, M*s, [*s [Starts),
where

o Nt9 is the fact’s name,
F, .
o MY ={m* ...mls} is a set of measures.

o ITs = {47°, ...,zfg} is a set of fact instances. The value of a measure mts of the
instance 1}7 is denoted as ifo.mls.

12

3. RELATED WORK 13

e IStar®s : I's — D s a function associating each fact instances to their linked
dimension instances, where Dfs is the cartesian product over sets of dimension

instances, which is defined as D¥s = Ip,estarrw (r,) TPk,

3 Related Work

In this section, we present the different data-driven automatic DW creation approaches
in chronological order. We also analyse these approaches by comparing them in different
aspects including the input source, the pre-processing, the detection of different DW
elements, the DW implementation and user intervention.

3.1 Approaches
3.1.1 Boehnlein and Ulbrich-vom Ende| (1999)

The authors propose an approach to derive a multidimensional DW schema from a Struc-
tured Entity Relationship Model (SERM) that is an extension of ER which allows design-
ing extensive data models, visualizing the dependency order between data objects and
avoiding inconsistencies and unnecessary relationships. This approach consists of three
stages as follows.

1. Identification of Business Measures Measures are determined by business goals.
This stage requires business knowledge about the company’s services. Then by

analysing how services can be evaluated for the business goals, adequate measures
can be defined.

2. Identification of Dimensions and Hierarchies To identify potential dimensions
and hierarchies, the authors propose to enclose the data objects by the dependencies
in the SERM. The starting point is the data objects assigned to the chosen measures.
Data objects are then connected to form different dimensions. Data objects with
one-to-many cardinalities form different hierarchies.

3. Identification of Integrity Constraints Along Dimension Hierarchies In
this stage, the authors transform the identified multidimensional structure into a
star schema. They include primary keys of the dimensions in the fact tables. They
also propose the alternative to create a snowflake schema by the normalization of

dimension tables.

3.1.2 Moody and Kortink (2000)

This paper depicts an approach to create a multidimensional schema from an Entity
Relationship (ER) schema. The approach includes four following steps.

1. Entity Classification In this step, the authors propose to classify entities in the
ER schema into three categories:

13

3. RELATED WORK 14

(a) Transaction Entities contain business events such as orders, payments and
bookings. This category of entities contain measures that are used to construct
fact tables.

(b) Component Entities define the components and details of a business transac-
tion. A component entity is directly connected to a transaction entity via a
one-to-many relationship. They are entities that help for the construction of
dimension tables.

(c) Classification Entities are connected to component entities via one-to-many
relationships. A classification entity is functionally dependent on a component
entity and is useful for constructing dimension tables, especially dimension
hierarchies.

To remove ambiguities in case an entity can be classified into multiple classes, the
authors also define a precedence rule. The transaction entity has the highest prece-

dence and the component entity has the lowest.

2. Hierarchy Identification Hierarchies are identified by the sequence of entities
joining one-to-many relationships. The authors propose to create maximal hierar-

chies that cannot be extended upwards with other entities.

3. Dimension Model Production Knowing the identified entity categories and hi-
erarchies, the authors propose various dimensional models including flat, terraced,
star, snowflake and star cluster schemas. The generation of a star schema starts with
fact table for each transaction entity whose keys are linked to component entities.
A dimension table is created for each component entity. The related classification

entities are also included in the dimension to form hierarchies.

4. Evaluation and Refinement The authors argue that DW modelling is an iterative
process. Thus, other operations may be needed after the generation of the first

schema. These operations include
(a) combining fact tables with the same primary keys;

(b) combining related dimension tables into a single dimension to avoid a large

number of dimension tables;

(c) dealing with many-to-many relationships to avoid breaks in the hierarchical
chain;

(d) converting sub/supertype relationships into dimension hierarchies.

3.1.3 |Golfarelli et al.| (2001)

The authors propose an approach for building DW conceptual schema starting from an
Extensible Markup Language (XML) source with a Document Type Definition (DTD).

14

3. RELATED WORK 15

They focus on the DTD, modelling relationships by sub-elements. The output is a star

schema. The approach is composed of four following steps.

1.

DTD Simplification This step simplifies some details in the DTD, such as trans-
forming a nested definition into a flat representation, grouping sub-elements with

same name and transforming many unary operators into single unary operators, e.g.

Wk

transforming all “+” operators into operators.

. DTD Graph Creation In this step, a DTD graph representing the DTD structure

is created by methods from the literature such as the CPI algorithm (Lee and Chu,
2000).

. Fact Definition The user chooses one or many vertices in the DTD graph as

measures, so that each one of them becomes the root of a fact schema.

. Attribute Tree Creation Based on the one-to-many relationships between the

sub-elements, an attribute tree is created. It can then be transformed into a star

schema.

3.1.4 Phipps and Davis.| (2002)

In this paper, the authors propose an automatic DW design approach whose input is an

ER schema. The output of the approach is a Multidimensional Entity-Relationship Model

(MERM). The approach is composed of following steps.

1.

Fact Node Creation The authors claim that numerical fields are more likely to
be measures. Thus the more numerical fields an entity contains, the more likely it is
to be a fact. Therefore, in this step, they order the entities with numerical fields in
descending order. Then, they create a fact node for each entity and create a MERM

for each fact node. We thus get a list of candidate schemas.

. Fact Attribute Creation In this step, the fact node of each candidate MER

schema is added to the numerical fields of the original entity as the fact’s attributes.

. Date Dimensions Creation The date or time fields in each selected entity help

create a date dimension and its levels. The date granularity is decided by the user.

Other Dimension Creation If there are remaining fields in a selected entity, they
are normally text fields. A dimension and a corresponding hierarchy level node are

created for each remaining field.

. Add Hierarchy Levels In this step, the authors recursively include the many

side of one-to-many relationships to create hierarchies. Each candidate schema is

completed after this step.

Candidate Schema Selection and Refinement The final validation of the
schema involves the user. Candidate schemas are evaluated by queries to decide

15

3. RELATED WORK 16

which schemas best meet users’ needs. Selected schemas are also refined according

to users’ requirements. Refinements includes
(a) verifying whether the identified measures are actual measures;
(b) determining the granularity of date information;
(c) determining whether there are calculated measures;
(d) determining whether there are schemas that can be merged;
(e) verifying whether there are unnecessary fields that can be eliminated;

(f) verifying whether there are required data not existing in the original OLTP
database.

3.1.5 |Vrdoljak et al. (2003)

This paper describes a semi-automatic process for DW design from XML sources modelled
by XML schemas. It follows a similar process as (Golfarelli et al., 2001), but with a
different XML model. It includes the following steps.

1.

XML Schema Preprocessing The XML schema may be sometimes complex and
bear redundancy, so this step simplifies the schema as in (Golfarelli et al., |2001).

Schema Graph Creation and Transformation In this step, a graph is created
based on the XML schema. Two transformations are carried out. First, functional
dependencies are explicitly expressed by key attributes. Second, vertices not storing

any value are eliminated.

. Fact Selection Facts are chosen among the vertices and the arcs representing a

many-to-many relationship by the user.

Dependency Graph Creation For each fact, a dependency graph whose root is
the fact is built based on the schema graph. Vertices are inserted into the depen-
dency graph by verifying the one-to-many cardinalities. When cardinalities are not
provided, XQueries are performed to look for to-one relationships. Many-to-many
relationships may be chosen with respect to users’ interest. The dependency graph

helps building hierarchies.

. Logical Schema Creation With measures and facts being already chosen, dimen-

sions and hierarchies are derived by the dependency graph.

3.1.6 |Jensen et al. (2004)

In this paper, the authors present an approach aiming to discover multidimensional

snowflake schemas from relational databases. The approach includes three following steps.

16

3. RELATED WORK 17

1. Metadata Collection A metadata model is firstly proposed where there are meta-
data about tables, including attribute information, keys, cardinalities, etc. For each
2 [44

attribute, there is also a metadata “role” being “key”, “measure” or “descriptive”

determined by a Bayesian network taking the collected metadata as inputs.

2. Database Structure Discovery In this step, the authors discover candidate keys
and foreign keys by detecting functional dependencies and inclusion dependencies,
with the help of metadata. These keys are applied for the construction of dimensions
in the snowflake schema.

3. Multidimensional Schema Construction The fact table is identified in the pre-
vious step before the detection of inclusion dependencies. It is a semi-automatic
process requiring the user’s participation. For the construction of dimensions, in-
clusion dependencies can form different connected graphs. If there is an inclusion
dependency that connects an attribute of the fact table and another attribute in a
connected graph, then this connected graph may be a dimension. This attribute on
the connected graph is the root parameter of the dimension. For the construction of
hierarchies, the authors sort the attributes in the dimension by distinct descending
order. Then, the authors verify roll-up relationships via SQL queries to create the
hierarchies.

3.1.7 [1.-Y.Song et al.| (2007)

A semi-automatic method named SAMSTAR is proposed in this paper, which generates
star schema from ER schema. SAMSTAR can be summarized by the following steps.

1. ER schema to binary ER schema Conversion In this step, the authors propose
to split the ER schema into a binary ER schema, by splitting ternary relationships
into three binary ones and splitting many-to-many relationships into two one-to-

many relationships with a new intersection entity.

2. Facts CTV Creation The Connection Topology Value (CTV) is proposed by the
authors, which is a composite function of the topology value of direct and indirect
many-to-one relationships. The CTV is calculated for each entity. A threshold is
set and the entities whose CTV are higher than it are identified as candidate fact
tables.

3. Dimension Creation Dimensions are created by identifying the entities having
direct and indirect many-to-one relationships with a fact entity. Synonyms in the
Wordnet and Annotated Dimensional Design Pattern (A_DDP) are also used to
extend the dimension list.

4. Generated Schema Post-processing Finally, they post-process the generated
schema by requiring the users’ intervention. The user choose the final dimension
entities based on their requirement. The user also checks redundant time dimen-

17

3. RELATED WORK 18

sions, possibly merge related dimensions and rename tables. The final star schema
is then generated.

3.1.8 Romero and Abelld| (2007)

The authors propose a semi-automatic multidimensional design approach from OWL on-
tology representing heterogeneous data sources, and express multidimensional patterns
with Description Logic (DL).

1. Fact Creation The authors consider that a concept is more likely to be a fact if
it is related to many potential dimensions and measures. So, they first discover po-
tential dimensions and measures. Dimensions are discovered by deriving functional
dependencies from the ontology and finding many-to-one relationships. Measures
are pointed out by finding the numerical concepts related to one-to-one relation-
ships. Facts can be found. The user chooses the facts according to subjects of
interest.

2. Potential Bases Discovery The authors define a minimal set of levels functionally
determining a fact as a base. This step aims to point out sets of concepts that are
likely to be bases of each identified fact. So they search for the concepts being able
to identify all instances of a fact to be potential bases. The user finally chooses the
bases making sense to her/him. The concepts in the bases form the identifiers of

the dimensions.

3. Dimension Hierarchy Creation In this step, the authors look for the to-one roll-
up relationships and create a directed graph following the paths of these relationships
to build the hierarchies.

3.1.9 |Usman et al. (2010}, 2013)

The authors propose an automatic method to generate a star schema from a tabular data.

It is based on data mining techniques and contains two layers.

1. Data Mining Layer This is a pre-processing layer. The authors use the hierar-
chical agglomerative clustering to generate clustered data with their hierarchical

relationships.

2. Automatic Schema Generation Layer In this layer, the authors identify di-
mensions and facts. Numerical data form the fact table and nominal data form
dimensional tables. The hierarchical relationships obtained in the previous layer
are employed to build the hierarchies.

3.1.10 |Ouaret et al.| (2014)

This paper describes a rule-based approach generating a star schema from an XML

schema. The idea is to transform the XML schema into a UML diagram and then derive

18

3. RELATED WORK 19

a star schema. The approach is composed of the following steps:

1. UML Class Diagram Generation In this first step, the authors transform the
XML schema into a UML class diagram by pre-defined rules.

2. UML Class Diagram Reduction They reduce the generated UML diagram by
removing some redundant, isolated, trivial classes and merge one-to-one relation-

ships.

3. Star Schema Creation Based on the UML schema, they define rules to construct

different multidimensional elements including
e measures: numerical no-key attribute are potential measures,
« facts: classes with a large number of numerical attributes are potential facts,

o dimensions: the classes having many-to-one and one-to-one relationships with
facts are considered as dimensions.

A tool is developed allowing users to generate an XML multidimensional schema from an
XML schema and create an XML DW from the XML data sources.
3.1.11 |Sautot et al. (2015

This paper introduces an automatic hierarchy design method for OLAP schema from
ecological database based on data mining techniques. The paper focuses on the context
of ecological data, where measures and dimensions are normally clearly identified. Their

method for detecting hierarchies can be summarized as follows.

1. Data and Metadata Collection The authors collect the data and metadata that
are to be used for the creation of hierarchies from the database. Then, the data

type of each attribute is identified, which is necessary for the clustering algorithm.

2. Hierarchical Clustering They propose to use the hierarchical agglomerative clus-
tering with Gower index as a distance metric to cluster the data.

3. Dimension Hierarchy Construction They use the obtained hierarchical rela-

tionships to construct dimension hierarchies.

3.1.12 |[Elamin et al. (2017)

This paper proposes a heuristic-based approach for generating a star schema from an ER
model. The authors define several heuristic rules for different parts of the process.

1. Database Schema Extraction In this phase, they extract table names, column
types, keys, etc.

2. Schema Reverse Engineering Several rules are proposed to identify each table

19

3. RELATED WORK 20

as an entity, a relationship or a weak entity that contains partial keys.

3. Multidimensional Schema Generation Then they define rules for the identifi-

cation of different multidimensional components.

Facts can be discovered from relationship tables and weak entity tables.
Measures are identified from numerical non-key attributes in fact tables.

Dimensions are identified from the tables referred by foreign keys in a fact

table. Date and time attributes are also transformed into dimensions.

Hierarchies are created by the foreign key references between tables. Parame-
ters are assigned to tables’ primary keys. The rest of the attributes are weak

attributes.

3.1.13 |Sanprasit et al. (2021)

In this paper, an automatic approach to generate a star schema from semi-structured

data (CSV files and spreadsheets) is proposed using semantic techniques. The approach

contains steps as follows.

1. Attribute Metadata Extraction and Analysis

(a)

(b)
()

The authors propose to use an arithmetic data encoding technique to infer
column names based on the training dataset. Wordnet is used to handle het-

erogeneous terminologies.
Then, they infer the attribute data types by referencing to a data type ontology.

Measures are identified through constraints from the domain ontology.

2. Star Schema Construction

(a)

Attributes that can be semantically classified into a same domain ontology
class construct a dimension.

Hierarchical relationships in the domain ontology help to build up dimension
hierarchies.

The fact table is created based on measures.

Surrogate keys are created to associate the dimension and fact tables.

3.2 Comparative Analysis

Table shows a comparison of the related works accounted for in the previous sections.

We provide an analysis concerning the input source and schema, pre-processing, fact

20

3. RELATED WORK 21

generation, dimension generation, DW implementation and user intervention.

3.2.1 Inputs

Approaches’ input can be mainly classified into structured data with schema, semi-

structured data with schema and semi-structured data without schema.

o Structured data with schema We can observe that many approaches (7 out of
12) treat structured data (database data) with schema (Boehnlein and Ulbrich-vom|
Endel [1999; Moody and Kortinkl, [2000} [Phipps and Davis., 2002} [Jensen et al., 2004}
[.-Y.Song et al., 2007; [Sautot et al., 2015, Elamin et al., [2017)).

o Semi-structured data with schema There are 4 approaches taking semi-structured
data as inputs. Some of them take semi-structured data with schema such as XML
files with DTD (Golfarelli et al., 2001)) or XML schema (Vrdoljak et al., 2003} Ouaret|

et al, [2014) or ontology with OWL (Romero and Abelld| 2007).

e Semi-structured data without schema It is a challenge to deal with semi-

structured flat data since they do not have explicit schema. This is also the data
type on which we focus. However there are only 2 approaches dealing with flat data
without schema (Usman et al., 2010, 2013} Sanprasit et al. 2021)).

3.2.2 Preprocessing

All approaches addressing structured and semi-structured data sources with schema in-
clude preprocessing at the schema level. The approaches whose inputs are semi-structured

data without schema conduct preprocessing at the instance level.

« Schema-level preprocessing Some approaches (5 out of 12) transform the orig-
inal schema or create new schemas (Boehnlein and Ulbrich-vom Ende, 1999;

Y.Song et all, 2007 [Golfarelli et al., 2001} [Vrdoljak et all [2003; [Ouaret et al.

2014])). Other approaches perform the classification of schema elements (Moody and
[Kortink|, [2000; Elamin et al., [2017) or the collection of schema information

et al., 2004} Sautot et al) 2015). The other preprocessings include creating candi-
date star schema from the identified facts (Phipps and Davis., 2002) and describing
the multidimensional patterns by DL (Romero and Abelld; 2007)).

o Instance-level Preprocessing The instance level pre-processing for semi-structured
data without schema includes carrying out hierarchical clustering on the data (Us-
man et al), 2010, 2013) and inferring column name from column data
2021)). Such preprocessing can be regarded as extracting schema elements

from data instances.

21

3. RELATED WORK 22

3.2.3 Fact Generation

Since the measures are key element of a fact, the main task in fact generation is to

identify measures. A fact is predefined in Sautot et al. (2015). Some approaches consider

the identification of measures and facts as the same process (Boehnlein and Ulbrich-|
vom Ende], 1999; Moody and Kortink, [2000; Phipps and Davis., 2002 [.-Y.Song et al.,
2007; |Jensen et al), 2004} Usman et al., 2010, 2013} Sanprasit et al.), 2021)), while the
others distinguish measure and fact detection (Elamin et al., 2017; Golfarelli et al., 2001}
'Vrdoljak et al., [2003; |Ouaret et al., 2014).

Facts are the analysis subjects and are strongly related to user requirements. Moreover,
fact measures are normally numerical data. Thus, measure or fact detection is mainly
based on user participation and numerical attributes.

o User Participation-based generation There are 6 approaches where measures

and facts are selected manually by the user (Boehnlein and Ulbrich-vom Endeé)
11999; Moody and Kortink, 2000} (Golfarelli et al., 2001; |[Vrdoljak et al., [2003}; |Jensen|
et al. [2004; Romero and Abelld| 2007) and 3 approaches need the user’s validation
(L.-Y.Song et al., 2007; Ouaret et al., [2014}; Elamin et al., 2017)).

o Numerical attribute-based generation There are 5 approaches approaches that

identify measures and facts based on numerical data (Phipps and Davis., 2002}
Romero and Abelld, [2007; [Usman et al., 2010, 2013} (Ouaret et al., [2014).

e Others The other techniques for detecting together measures and facts include

calculating CTV based on many-to-one relationships (I-Y.Song et all [2007) and

exploiting a domain ontology (Sanprasit et al), 2021). The other technique for

detecting facts is considering the number of foreign keys within the primary key
(Elamin et al., [2017)).

User participation decreases the degree of automation. However it can better sat-
isfy user requirements. Numerical-based methods cannot guarantee that all numerical
attributes are appropriate measures. The ontology-based approach is limited because it

requires the appropriate domain ontology to get a good result.

Most of the approaches consider the generation of multi-facts, which means that they

are able to generate star or constellation schemas. There are 3 approaches (Boehnlein and|
'Ulbrich-vom Ende, |1999; [Usman et al. 2010, 2013; [Sanprasit et al.,[2021)) considering only
the generation of one fact. Thus they are only able to generate star schemas. In these

approaches, several schemas are generated in case of multiple analysis subjects, which
increase the workload.

3.2.4 Dimension Generation

Dimension generation is realized by the following techniques:

22

3. RELATED WORK 23

¢ One-to-many relationship-based generation Dimensions are identified from
one-to-many relationships associated with facts in 5 approaches out of 12 (Moody
and Kortink, 2000; |Goltarelli et al., 2001; [.-Y.Song et al., [2007; |Romero and Abello,
2007; Ouaret et al., 2014).

« Dependency-based generation 4 approaches are based on functional or inclusion
dependencies to detect dimensions (Boehnlein and Ulbrich-vom Ende| [1999; |Jensen
et al., 2004; Elamin et al., |2017; [Romero and Abelld, 2007)).

o Data Type-based generation There are 2 approaches that consider textual and
date attributes to create dimensions (Phipps and Davis., 2002; Usman et al.| 2010,
2013)).

« Others An ontology (Sanprasit et al., 2021) can also be applied for the creation of
dimensions. Queries (Vrdoljak et al. 2003 can be employed for the validation of
the created dimensions.

One-to-many relationship-based, dependency-based and query-based dimension detec-
tion rely on database constraints and are thus more reliable. Data type and ontology-
based approaches do not verify these constraints and may thus detect wrong dimensions.
Moreover, the ontology-based approach suffers from the problem of getting an appropriate
domain ontology, as we mentioned for the measure and fact detection.

Hierarchy detection is a complex task where we must decide the hierarchical order
of attributes. However, it is not considered or not explained in [[.-Y.Song et al.| (2007)),
Golfarelli et al. (2001)) and |Ouaret et al. (2014). In the approaches considering hierarchy
detection, many approaches are based on one-to-many relationships. The others use

hierarchical clustering or ontology for hierarchy detection.

e One-to-many relationship-based generation There are 7 approaches based
on one-to-many relationships to construct hierarchies (Boehnlein and Ulbrich-vom
Ende), [1999; Moody and Kortink, 2000; Phipps and Davis., 2002} Romero and Abello,
2007). Some other techniques based on SQL queries (Jensen et al., 2004)), foreign
keys (Elamin et al., [2017) and dependency graph (Vrdoljak et al. 2003) can essen-
tially be also regarded as variants of applying one-to-many relationships.

o Hierarchical clustering-based Dimension attributes can be clustered by hier-
archical clustering to form different hierarchies. It is applied in 2 approaches for
detecting hierarchies in a dimension (Sautot et al., 2015; |[Usman et al.; 2010, 2013).

« Ontology-based Domain ontology can also be helpful (Sanprasit et al., 2021) for
hierarchy detection. Dimension attributes can be related to concepts in a domain
ontology. Hierarchies can be generated according to hierarchical relationships of the
domain ontology.

One-to-many relationships exist between different hierarchy levels. This is why it is

23

3. RELATED WORK 24

the most applied criterion for hierarchy detection. However, the hierarchy clustering
based approaches provide hierarchical relationships based on instance similarity. They
can be semantically correct but may not match with the cardinality relationships between

hierarchy levels. The ontology-based approach still has the same limit as mentioned above.

The distinction of parameters and weak attributes is only taken into account in |Elamin
et al.| (2017) and Romero and Abelld| (2007). In|Elamin et al.|(2017), the attributes which
are originally primary keys in the ER schema are identified as parameters. In (Romero
and Abelld, [2007)), the distinction is decided manually by the user.

3.2.5 Data Warehouse Implementation

Most of the approaches do not consider DW implementation and focus only on multi-
dimensional schema design. Only Ouaret et al.| (2014), [Usman et al.| (2010, |2013) and
Sanprasit et al.| (2021)) mention an implementation part where Ouaret et al.| (2014]) create
a XML database. However, implementation details are not mentioned in the other two
approaches.

3.2.6 User intervention

Only Ouaret et al|(2014)’s approach does not need the user’s intervention and is claimed
to be fully automatic. However, the authors plan to integrate user requirements in future
works. All the other approaches are semi-automatic, which demand user intervention.

+ Measure/Fact Selection and Validation Most approaches (7 out of 12) ask the
user for measure/fact selection and validation (Boehnlein and Ulbrich-vom Ende,
1999; Moody and Kortink, [2000; Goltarelli et al.l 2001; Vrdoljak et al., 2003; |Jensen
et al., 2004; Romero and Abelld, |2007; |[Elamin et al., 2017).

e Schema or Schema Element Validation In 4 approaches, the user is asked
for validating or selecting the generated schema or schema elements (attributes,

dimensions, etc.).

e Others Other user intervention operations include threshold definition (L.-Y.Song
et al., 2007) and algorithm parameter tuning (Usman et al., 2010} 2013)).

User intervention makes the approaches not fully automatic, yet it is important because

it makes the identified schema conform to user requirement (Ravat et al.; 2009).

24

25

RELATED WORK

3.

S 5 ds
ASojoguo) - o QOURIJUL R (s30atysprax ‘0 30 psvadung
uoryepIfeA Vi - EL:O a ssepo £3o[ojuo oureg - ASopoquo uremo QUIRU UWN[0)) ‘ASD feos (1
Sureisnpo Surisnpo .
wremered 2 - aATyeIOWO[SSe S9INALI})E [RUTIION - S9INALI}YE [EILIOUWIN N dATYRIOUWIO[SSR - Joseyep B[| (706 |1V 92 uvwWs)[(0T0c) |1V 320 uvwisy)
Surigsny) [eOTyDIRIOI] [eo1yoIRIDTH
sdrysuorjefox Cypempren (018077 Gmw:mq&q
[LJUREIEH . 9U0-0} Ty » [entepy $3doo10d QCEQCow@,QV 1a A8010910 ASojoju() LO0G) (01129 pu oLauLoyy
0%, /oImnsea]\ ey Jo ydeis TeoLum N Aq uroyyed QM)
: j porarl Aouspuadep TeuOIIOUN | [BUOISTOTIPIIMY MO
moﬁﬁcﬁmo soINqLI}Ye UOT}eIoUdS
eCrele eOLIOWNU . . |-
- oseqeep - - Aypeurpre)) 2 L m.:E o3 Mﬁ v Koxj-uou wreaserp 7108) |10 12 194000
TINX q [RoLIOWIN N TINO
THM SO @NMO
ProTy— TOTIONLIPSUOD
AHDAWWQAM:. nww.A@ﬂG Qﬁﬂhm rUWLYDS X
i . - ydes + » enuely [enuepy RWLYDG + WIS TN £003) |10 12 yvLjopiA
+ Kouepuada(] Ayerurpres uoryeoryduirs
uor309[os ydeis ewoyog .d\/,CA ’
1084 /o1mseoly TOTYONLI)SUOD (uonyruga(y oIy TINX
. i ydeid q.q + adA7,] 1 19 V19uD10
LEIEBEIEH _ - - Ayreurpres ydeis g M Tenuey renuey uonyeogdans Juoummoo(]) 1002) |10 42 ya40fj09H
10R, /oImsea]\ I fpdun
TINX drda
XopUl 10MOY) Aprerary
wosowﬂm i + Suwejsnp pouyopoid uoryeoyruopt ,,Svoﬁ\:ws mﬂ%ﬂwéa ¢102) | 10 10m0g
InqrIyye B oaryeIoWO[SFe : od4y eye(q TUOTYRI[O)SUO)) req
%&oﬁwhcmm [eOTIRISTH \ﬁﬁw
so[qey so[qel A11ue
Ay1yuo eom Jeom
UOLBPIEA stojourered sioy] skox ure)100 FRAE | pue dmsuonpen Bues LI0Z) |V 12 wu)iy
+ - se sy uSo10§ uSo10§ 2 N Aon-uou “Syyuo [eot80] :
Uorjo9es Arewrta g UOISUOUII(] IBLEE | soqqes [eotpmn N j0
10v,] /o1msea]y dmsuonyepoy TOT)ROYTIUOP]
souopuadop
019908 SOLIONY) uorsnou| » P UOT199[[0D poutorIou r00e) | 19 wasuap
1ov] /oImses]y 108 + eyePRIDIN 10N
[euoryoun,
uoryepIreA (ALD) enrep .)
) o Areulq oy 10 19 BUOG 1 -
+ - - - Aypeurpare)) 2 £Sofodof, ToneuLORTEL], L00GY |10 ¥ SA-T
proyseIuy TUOTYOOUTO)) /[eNURA ’
ALD
SOMALIYY UOTyedyIiuspt
[enyxay, sonqrIjye PUOU0S 2002 |'swnq puv sddwyg
, - - Anypeurpre » o k ’
UoKepIRA BrepIes + [eoLIowm N 238 oyepIpEs,
oreqd (drysuoryeroy
, Lypeurpre)) fyyug)
HORUPIIEA+ + Sonye 2 [eneyy uoryeOISse[D A 0003) uarioz] puv fipoopy
U0RI9Les B) SOIIJUD juouoduro)) ' Ly oseqeyep
1ov] /oImses]y uoryenyIsser)) (@suorery Teuorjeray
TYSUOT)e:
2O)14 HAS 03 Anug : -1yl uD UWDJUYIO
uoryod[os . ¢ . SOTNSTOUL (LA . enuey e 666T) [PPus woa-yspiql) puv wiuyaog
aUdﬁH\@p:md@H&) >p:dQ:u<:ko UOTIRIOOSSY [N UorjeurIoysuely, Tﬂmmwrv\ammmv
uorousI(q uory0039(] uoro9e (I joey uoree uo139939(L1080)0 p T adAyT,
uoljejew | 9INqLIIIy eI\ Ayorerorgy uorsuswI([-I9INIAL 1oeq aanseaA 923anog ejeq 92INn0g
uonjueAIdjuy | -ordwy /1ojemrered i Surssoooxd-o1g o
198 MAd uorIsusdwI(] Peq 3 I

soyoeordde uSrsep AA(T d13ewoINe JUSISPIp Jo uostredwo)) 111 9[qRL

25

4. MEASURE DETECTION 26

3.3 Summary

There are few approaches addressing the semi-structured data without schema, since the
detection of multidimensional elements can be challenging without a schema. The only
two existing approaches have several limits. Usman et al.| (2010, 2013) only consider data
types for the generation of facts and dimensions. Hierarchies are generated by hierarchical
clustering. The authors do not consider any database constraint, which may render the
result unreliable. (Sanprasit et al., [2021) rely on a domain ontology, the DW element
detection result depends on whether appropriate ontologies can be obtained. Parameter
and weak attribute distinction as well as DW implementation are not widely discussed
neither, which needs to attract more attention.

3.4 Automatic DW Design for Simple-structured Tabular Data

The proposed automatic DW design process from tabular data of simple structure is
composed of measure detection and dimension detection where there are hierarchy de-
tection and distinction of parameters and weak attributes. For the measures detection,
we intend to find the numerical columns that conform to the characteristics of measures.
We hypothesize that there are differences in terms of features between numerical data
that are potential measures and those that are not. Therefore, in this chapter, we define
specific features for numerical columns and propose a machine learning-based method to
automatically detect measures. We then detect dimensions. For the detection of hier-
archies, since there are functional dependencies among different levels of a hierarchy, we
propose to detect functional dependencies and model them as trees to derive hierarchies.
Then we define several syntactic and semantic rules based on characteristics of parame-
ters and weak attributes to identify each attribute as one of them. Finally, the detected

multidimensional components are linked to construct a multidimensional schema.

%
Hierarchy 0«0
detection Functional
6%6 dependency-based = =
> cli::::tl:;i Ly Dimension 5 8
@ Machine detection —:tﬁ—:
learning-based Parameter and = =
weak attribute

distinction
Rule-based

Figure I1.3: Automatic DW design process for simple-structured tabular data

4 Measure Detection

In this manuscript, as mentioned that we focus on tabular data of simple structure. As
analysed in Section [} there are various challenges to detect measures from tabular data
without schema. Machine learning algorithms can be employed to solve these challenges

26

4. MEASURE DETECTION 27

since models can be trained according to some features of the numerical columns and
capture the characteristics of measures. Therefore, we propose a machine learning-based

process for measure detection.

4.1 Overview

Figure|lI.4{shows an overview of our measure detection process for simple structure tabular
data. We first give a precise definition of measures as Definition and tabular data of
simple structure as Definition [4.2]

Since measures are numerical, we regard all numerical columns as candidates. So first,
preprocessing the dataset is necessary for the selection of numerical columns. Second,
to distinguish between measure and non-measure numerical columns, we extract features
from numerical columns. Third, we use machine learning classifiers to estimate whether
they are measures. Finally, users are asked to get involved for the validation of the

proposed detected measures.

........

m|m— %—’5%6—10—”(7)

Simple structure extraction from numerical columns Machine learning classifier User validataion Measures

Figure I1.4: Measure detection for tabular data

Definition 4.1 (Measure). We define a measure as a numerical and quantitative at-
tribute of the analysis subject evaluating the activities of an organisation that can be aggre-
gated with respect to dimensions. It can be additive, semi-additive or non-additive (Horner
et al.l, [2004).

Definition 4.2 (Simple structure). A tabular dataset of simple structure T is defined as
{C,R, A, V}, where:

o C={C,0,..Cy,} is a set of columns, where n. is the number of columns in T'S.
For a given column C; € C, index i corresponds to the column’s position in T.
The number of non-null values in column C; is denoted as ny(C;). The number of

non-null distinct values is denoted as n,(C;);

e R={Ry,Ry,....,R,.} is a set of rows (excluding the first, header row), where n, is
the number of non-header rows in T'S. For a given row R; € R, j represents the

index of the row corresponding to its position in T'S;

o A={Ac,,Acy, ..., Ac,.} is a set of attribute headers which is usually the first line.
For a given attribute header Ac, € A, C; represents the column labeled by Ac,;

o Vs a matrix of cell values whose dimension is n, X n.. For a given cell value
Vr,c; € V, Rj and C; are the row and the column where the cell is located, respec-
tively.

27

4. MEASURE DETECTION 28

Example 4.1. In Fig.[IL.3, there is a CSV tabular dataset of simple structure. It contains
several rows where Ry is the first row. It contains several columns where Cy is the fifth
column whose header is Ac, (City). The value of the first row and fifth column is Vg, ¢,
(Barcelone).

Vr1,cs Acs Cs

IdCus NameCus Age Email [City Region Country MemLevel IdProd NameProd Brand CompSize IdSubcat Subcat IdCat Cat Date Price Qty
R14’[1001 Louis 25 Louis@gm.com frgarcelongl Catalonia Spain 2 AP233 Iphonel3 Apple Large PH Phone TN Technology 01/06/2022 819.99 € 1]
1001 Louis 25 Louis@gm.com | Barcelone [Catalonia Spain 2 AP233 Iphonel3 Apple Large PH Phone TN Technology 05/06/2022 825€n/a

1002 Gabriel 57 Gabriel@gm.com| Toulouse Pccitanie France 155112 Galaxy S10 Samsung Llarge PH Phone TN Technology 03/06/2022 450€ 3
1003 Pierre 34 Pierre@hm.com | Paris le-de-France France 0 HFO08 Computer table Homefine Medium TB Table OF Office 24/05/2022 125€
1003 Pierre 34 Pierre@hm.com | Paris le-de-France France 0 SS467 Galaxy Book2 Samsung Large LP Laptop TN Technology 03/06/2022 1599.99 €
1004 Anna 45 Anna2@gm.com | Barcelone [Catalonia Spain 1SS467 Galaxy Book2 Samsung Large LP Laptop TN Technology 29/05/2022 1500 €
1005 Louis 22 Gab@hm.com ccitanie France 1 SH002 Ergonomic chair SIHOO Small CH Chair OF Office 01/06/2022 248.50 €

1006 Lucas 30 Luca@gm.com ombardy Italy 2 NK112 Air Max Nike Large SH Shoe CL Clothing 06/06/2022 1000 €

NN RN W

Figure I1.5: Example of CSV table

4.2 Preprocessing

As candidate measures are numerical columns, we must firstly identify numerical columns.
If all values of a column are numerical, we easily identify numerical columns. However,
there are sometimes columns containing numerical values with their unit or columns
containing both numerical and textual values used for replacing empty cells. Such mixed

values must lead to numerical columns and require preprocessing.

Columns containing values with a unit are identified by verifying whether each cell bear
the same structure, e.g., “text + number” or “number + text”. We also verify whether
the text of each column is the same or if it is categorical by using the algorithm proposed
by |Alobaid et al. (2019)). Then, we extract numerical values via regular expressions and
tag the column as numerical. Eventually, numerical columns containing empty values

b

replaced by some text, e.g., “n/a”, “null” or “unknown”; are treated as numerical, with

textual values being removed.

Example 4.2. For the CSV tabular dataset in Fig. [II.3, we preprocess the data. We can
find that for the column of Price, the values are composed of “number + text” which are
indeed the price with the unity. So it is considered as a numerical column and we remove
the textual values of “$” for the feature extraction. Then by verifying the data, we can
find in the column of Qty, there is textual value “n/a” representing missing value. It is

thus also removed.

4.3 Feature Extraction

After the preprocessing phase, we extract the numerical columns’ features. When defin-
ing features, we analyse both general information and some statistical characteristics of
numerical columns. Since tabular data of simple structure may exhibit specific column po-
sitional habits, we also consider column inter-relationships. Features are thus subdivided
into three categories: general features, statistical features and inter-column features. For

a given numerical column C;, we define the following features.

28

4. MEASURE DETECTION 29

4.3.1 General Features

These features reflect basic information on numerical columns. Such general features may
help check whether a numerical column is likely to be quantitative and help evaluate
business activities. General features follow.

1 if type(C;) = integer

h t C;) is C;’s data t .
0 if type(C;) = float , where type(C;) is C;’s data type

o Data type: type = {

Intuitively, float data are more likely to be quantitative and to allow evaluating activi-
ties. For example, temperature, salary and sales amount are float data can be considered
as measures in most cases.

» Positive/Negative/Zero value ratio: rpos = %L(Ci), rneg = nnL(Ci)
n:(C) n:(C;)
nzero(oi)
n¢(C)

tive and zero values in C}, respectively, and n;(C;) is the number of non-null values

in Oz

,rzero =

, where 705 (C;), Tneg(C;) and n.eo(C;) are the number of positive, nega-

We get respectively the ratio of the positive, negative and zero values of the column.
These features may help identifying both qualitative and quantitative columns. Qualita-
tive data values, e.g., ID or zip code, are rarely negative or equal to zero. Thus, when

there are many zero and negative values in a column, it is more likely to be a measure.

nt(Ci).

e Unique value ratio: runique =

The unique value ratio can reveal some typological information about a column. For
example, in a descriptive dataset, IDs are always unique, so the unique value ratio is
always equal to 1. In a dataset containing fact table data, keys and descriptive data may
be repetitive, but equal measures should be quite scarce.

Example 4.3. Given the numerical column IdCus of the CSV table from Fig. we
_ n,(IdCus) 6 .
can get runique = —————— = — = 0.75. There are 8 values in the columns and 6
ny(IdCus) 8
distinct values {1001, 1002, 1003, 1004, 1005, 1006}. Given the numerical column Price,
n.(Price) 8

= —=1 1.e. every value in the column is distinct.

we get runique = ——
g 1 ni(Price) 8

o Same digital number:
1 if Vi € [1,n4(C;) — 1], ndg; ¢, = ndr,,, c; N type(C;) = integer
sdn = ¢ 0 if (3i € [1,n,(C;) — 1}, ndg, ¢, # ndr,., c, Ntype(C;) = integer) , where
V(type(C;) = float)
ndg, c; is the number of digits in cell value Vx, ¢,, which is calculated as ndg; ¢, =
VRr..c;
floor(log,y” ") + 1.

This feature tells whether all the values of an integer column have the same number

29

4. MEASURE DETECTION 30

of digits. If it is the case, the column is likely to be a nominal number (Alobaid et al.
2019) representing the name or identifier of an element that cannot be a measure. For

example, the French social security number always contains 15 digits.

Example 4.4. Given the numerical column Price, sdn = 0 since it is a float column.
Given the numerical column IdCus, sdn = 1 since it is a column of integers and each

value has the same size of 4 digits.

4.3.2 Statistical Features

Since candidate columns are numerical, statistical features must be considered, because
they reflect the distribution of column values, which may be different for quantitative and

qualitative attribute values. Statistical features follow.

« Average/Minimum/Maximum/Median/Upper quartile/Lower quartile val-
ues: avg = avg(C;), min = min(C;), maxr = maz(C;), median = median(C;),
upquar = upquar(C;) and lowquar = lowquar(C;) represent the average, minimum,
maximum, median, upper quartile and lower quartile of C}, respectively.

We consider these basic statistical metrics as features. In some specific columns, their
values always vary in a certain range. Using these features can thus be helpful for cap-
turing such statistical behaviours.

o Coefficient of variation:
standdev(C;) if avg(C;) =0
coevar = standdev(C;) , where standdev(C;) is C;’s standard
————— ifavg(C;) #0
avg(Ch)

deviation.

The standard deviation can depict the amount of dispersion of a column values. Mea-
sures and descriptive attributes may have different degrees of dispersion, but by using the
coefficient of variation, which is the ratio of the standard deviation by the average, we
achieve a standardized degree of dispersion. For example, given two attributes “price of
phone” and “temperature of city”, the average price is much higher than that of tempera-
ture. A price variation of 10 is relatively much lower than that of temperature. Since the
coefficient of variation is a ratio, when the average is equal to 0, it does not exist. Here,
we define that when the average is 0, the feature is equal to the standard deviation of the

column.

Example 4.5. Given the numerical column Price, we can get avg(Price) = 821.06, and
365.44

821.06

the standard deviation standdev(Price) = 365.44, we can thus get coevar =
0.445.

maxr — min " o .
« Range ratio: rrange = m if ny(Cs) >
0 if n,(C;) =1

30

4. MEASURE DETECTION 31

The range ratio calculates the range of values with respect to the number of distinct
values. It is useful to identify some ordinal data, even if they occur repetitively. For
example, if we have student numbers ranging from 1000 to 2000 in a tabular dataset, but
also courses and grades, a student number may occur many times while the range ratio
is always 1 no matter the number of occurrences.

Example 4.6. Given the numerical column IdCus, the number of non-null distinct val-
ues 1s ny,(IdCus) = 6. We can also get max(IdCus) = 1006 and min(IdCus) = 1001,
1006 — 1001

so we obtain rrange = %1 = 1. Given the numerical column Price, the number

of non-null distinct values is n,(Price) = 8. We can also get max(Price) = 1599.99 and
1599.99 — 125

min(Price) = 125, so we obtain rrange = —s-1 210.71.

4.3.3 Inter-Column Features

Measures are aggregatable and are normally accompanied with attributes by which they
are aggregated, as per the “group by” SQL clause. Typically, attributes linked to aggrega-
tions are located before measures in the source file. Therefore, we consider inter-column
features that take inter-column relationships into account in the whole dataset.

1—1

ne—1

e Location ratio: rloc =

In many tables, the identifier and some other basic information usually lie at beginning
positions, while measures are usually in the latter positions. Thus, we also take column
location into account. However, different datasets have different number of columns, so
we must normalize the location feature as a ratio ranging between 0 and 1 by adding
minus 1 in the calculation.

Example 4.7. The numerical column IdCus is the first column of the table, so i = 1.
1-1

There are 19 columns in the table, so we have n. = 19. We thus obtain rloc = To_1- 0

In the same way, for the numerical column MemLevel, we have rloc = 19;1 = 0.39
19 —

and for Qty, rloc = = 1. Thus, we can see that the location ratio for the first

19 -1

column is 0 and for the last is 1, and that the location ratio for a column in middle is

between 0 and 1.

. . nnum
¢ Numerical column ratio: rnum =

, where n,,,,, is the number of numerical
Ne
columns in the whole dataset.

The numerical column ratio is the ratio of numerical column number by total column
number. This is a feature at the global level of the table, so the value of the feature is

the same for the numerical columns in the same tabular data. We consider this feature

31

4. MEASURE DETECTION 32

because when there are measures in tabular data, the ratio of the numerical columns may
be increased.

e Multiple functional dependencies:

1 if . = Ag, ' . 1

several fds — if 3fd 6 fdset, (fd.rhs o) A (size(fd.lhs) > 1)
0 otherwise

where fdset is the set of functional dependencies containing one attribute on the

right-hand side, fd.rhs is the right hand side attribute of functional dependency fd

and size(fd.lhs) is the number of attributes in the left hand side of fd.

In existing methods that exploit data sources with schemas, many-to-many relation-
ships are usually employed for measure detection. In a DW, we usually analyse a fact
with respect to different dimensions and measure values depend on dimensions’ identi-
fier. Thus, we consider whether there is a functional dependency with A¢, depending on
several attributes as a feature.

Example 4.8. Given the numerical column Price, we have the functional dependency
{IdCus, IdProd, Date} — Price where the right-hand side is Price and there are 3
attributes in the left-hand side. Therefore, several fds = 1.

e Numerical neighbor:

1 if (i =1 Atype(Cit1) € num) V (i = n. A type(Ci_1) € num)
V(i # 1A #ne. Atype(Cipr) € num A type(Ci—1) € num)

numn = ¢ 0.5 if (i 1A i # n.Atype(Cip1) € num A type(Ci—1) & num)
V(i # 1 AQ# n. Atype(Cipr) & num A type(Ci—1) € num)

0 otherwise

where num = {integer, float}.

In a tabular dataset, the columns describing similar information are often clustered
together. Measures are also likely to be located close together, meaning that there are
numerical columns in neighboring positions. Thus, we define this feature to see whether

neighbors of a column are also numerical. If so, the column is likely to be a measure.

Example 4.9. The numerical column MemULevel has 2 neighbors and none of them is
numerical, so numn = 0. Price has 2 neighbors and one of them is numerical (Qty), so
numn = 0.5. Qty has one neighbor that is a numerical column, so we have numn = 1.

4.4 Machine Learning Classification

To predict if a numerical column can be measure with the proposed features, we need
to have a reliable model. Thus we should collect datasets, then we extract the proposed
features and label the classes (“measure” or “not measure”) for the numerical columns.
The user can collect datasets from open data sites and also use her/his own datasets.
Next, the feature values can be fed into machine learning classifiers to train a model.
However, if the non-expert user is not able to collect datasets and label the numerical

32

5. DIMENSION DETECTION 33

columns, they can use the model that we obtain in the experiments for measure detection.
Having the trained model, for given tabular data, feature values of the numerical columns
can be extracted to detect measures.

Example 4.10. We train a model by numerous datasets by random forest classifier. For
the csv table in Fig. we extract the proposed features for the numerical columns
including IdCus, Age, MemULevel, Price and Qty like shown in Fig. [[[6, We can
then use the trained model to classify each numerical columns and we finally detect the
measures Price and Qty.

A B = D E F G H | J K L M N c P Q R S
1 |column type rpos rmeg rzero runigue sdn avg min max median upquar lowguar coevar rrange rloc rnum severalfds numn
2 |ldCus 1 1 o o 0.75 1 1003.125 1001 1006 1003 1001L.75 1004.25 0.00180209 1 0 0.263157895 1 o
3 Age 1 1 o o 0.75 1 34 22 37 32 25 36.75 0.346581335 7 0.111111111 0.263157895 1 o
4 \MemLevel 1075 0 0.25 0.375 1 1.125 o 2 1 0.75 2 0.741798187 1 0.388888889 0.263157895 1 o
5 |Price(€) o 1 o o 1 0 821.06 125 1599.99 822455 399.625 1125 0.6559060412 210.7128571 0.944444444 (.263157895 1 0.5
6 |Qty 1 1 o o 0.375 1 1.875 1 3 2 1 2.25 0.445073912 1 1 0.263157895 1 1

Figure I1.6: Example of extracted features

4.5 User Validation

The result of automatic measure detection cannot be 100% accurate. Thus, we have to
ask the user to validate the detected measures. The validation includes two checks. First,
we ask the user to check whether there are attributes that are detected as measures, but
which are actually dimension attributes. Then, we ask the user to check whether there
are attributes that are measures for users but that are not detected. After the validation,
we can finally obtain all the measures.

5 Dimension Detection

The objective of this section is to detect DW dimensions. First, we discover the func-
tional dependencies to detect the hierarchies. Then, we decide whether an attribute is
a parameter or a weak attribute. Finally, we create dimensions based on the detected

hierarchies.

5.1 Functional Dependency Detection

In a hierarchy, the values of a higher-granularity level is dependent of the values of its
lower-granularity levels. In other words, there is functional dependency relationships
(Ullman), |1983) between different levels of a hierarchy. We detect hierarchies with the
help of the functional dependencies between non-measures columns of a table. Functional
dependency is formally defined in Definition [5.1]

Definition 5.1 (Functional dependency). Let A be the attribute set of a dataset, X C A
be a set of attributes and Y € A be an attribute. X is said to functionally determine Y
if and only if Yt1,ta € T, t1[X]| = t2[X]| = t1[Y]| = t2[Y]. This relationship between X

33

5. DIMENSION DETECTION 34

and Y is called a functional dependency (FD), denoted by X — Y. X is called the
left-hand side and Y is called the right-hand side of the functional dependency.

However, the FDs of a simple structure table is not obvious. We should use the FD
detection algorithm to discover the FDs. We choose to apply HyFD (Papenbrock and
Naumann) 2016) because it achieves the best performance at both run time and memory
consumption aspects and has the best row and column scalability against the seven most
cited and important algorithms that are tested in (Papenbrock et al., 2015b)).

For the creation of hierarchies, we do not need all detected FDs. Useful FDs should
satisfy the following criteria for the hierarchy detection.

e In a dimension, FDs hold between two parameters or between a parameter and
a corresponding weak attribute. Thus, we are only interested in the FDs whose
left-hand side has one attribute.

o Let X,Y,Z € A, according to Armstrong’s axioms (Armstrong, |1974), if X — Y
and Y — Z, then X — Z (transitivity). We must remove the transitivity, i.e., we
retain only X — Y and Y — Z since X — Z can be inferred.

e Wecall X|Y € A equivalent attributes if X — Y and Y — X, denoted by X <> Y.
Given a FD containing one of the equivalent attributes, it also holds for the other
one, i.e., 3Z € A, it X — Z, thenY — Z. In this case, we consider X and Y as a
same attribute and treat them as one attribute X/Y i.e. we remove Y — Z and
retain only X/Y — Z.

Example 5.1. In the CSV table from Fig. we remove the detected measures Price
and Qty. Then, we detect the FDs of the remaining attributes. By launching the HyFD
algorithm and filtering the FDs by the above criteria, we first obtain 4 equivalent attribute
groups: IdCus < Age < Email, IdProd < NameProd, IdSubcat < Subcat and
IdCat <+ Cat. We can then consider attributes of each equivalent attribute groups as one
attribute: IdCus/Age/Email, IdProd/NameProd, IdSubcat/Subcat and IdCat/Cat.
Then we obtain the following FDs: 1dCus/Age/Email — NameCus, IdCus/Age/ Email
— MemLevel, 1dCus/Age/Email — Clity, City — Region, Region — Country,
IdProd/NameProd — Brand, Brand — ComSize, IdProd/NameProd — IdSubcat
/Subcat, IdSubcat/Subcat — [dCat/Cat.

To make sure that the FDs we discover conform to the actual dependency relationship
of attributes in the real world, we hypothesize that there is enough data in terms of
quantity and variety so as to represent real dependency relationships. Moreover, there
should be no error in data, but if this is the case, we can detect approximate FDs (Liu
et al., 2012)).

34

5. DIMENSION DETECTION 35

5.2 Functional Dependency Tree

Dimension hierarchies can be represented by tree structures (Markl et al., [1999). There-
fore, we can build functional dependency trees to construct different hierarchies and di-
mensions. The advantage of using functional dependency trees is that they have similar
tree structure as hierarchies, so that we can easily detect hierarchies by finding the root-to-
leaf paths. Functional dependency trees (Deﬁnition are built by connecting functional

dependencies.

Definition 5.2 (Functional dependency tree). A functional dependency tree (FD
tree) is a directed tree denoted by T = {V,, V|, V}, E}, where:

o V. is a singleton set of the root node, with |V,| =1 and v, € V, is the root node of

the tree,

V; is a set of all leaf nodes,

Vi is a set of all branch nodes,

V=V, UVUV, is a set of all tree nodes containing all the attributes of FDs,

E is a set of directed edges. e15 = (v1,v2) € E denotes an edge connecting two nodes

vy and vy with from vy to vo. It also means that the FD vy — vy holds.

Example 5.2 (Functional dependency tree). The detected FDs in Example can form
two functional dependency trees (Fig.[II.7). For instance, T\ = {V;1, Vi1, Vi, E1}, where:

Vi1 = {IdCus/Email | Age},

Vii = {NameCus, Mem Level, Country},

%1 = {CZtya Region},

Ey; = {(IdCus/Email |Age, NameCus), (IdCus/Email /| Age, MemLevel),
(IdCus/Email/Age, City), (City, Region), (Region, Country)}.

Then, we should extract hierarchies from the FD trees. The problem of finding a
hierarchy is equivalent to the problem of finding a root-to-leaf path of a tree. Root-to-leaf
path retrieval is similar to the depth-first search algorithm for graph traversal (Skiena,,
2008). So we apply the depth-first search algorithm for root-to-leaf path retrieve. The
depth-first search algorithm visits each node from the root to each leaf. We can thus

record the nodes in the order of appearance in the path and retrieve the hierarchy.

5.3 Functional Dependency Tree Element Set

FDs of a tabular dataset may form different FD trees and then form different hierarchies
and dimensions. To construct each tree, we have to find all the FDs that have links
among them and group them together, which is costly. So, instead, we directly obtain a

35

5. DIMENSION DETECTION 36

T1 T2
IdCus/Email/Age IdProd/NameProd
m /\
NameCus MemLevel City Brand IdSubcat/Subcat

l]

Region CompSize IdCat/Cat
l

Country

Figure I1.7: Examples of FD trees

functional dependency tree element set containing all the elements of the FD trees derived
from the detected FDs.

Definition 5.3 (Functional dependency tree element set). A functional dependency
tree element set is a set of elements of a functional dependency tree set (T'S =
{FDT,, FDTy, ...,

FDT,}), denoted by TETS = {VIS VTS VIS PCTS}, where:

VTS s a root node set containing all root nodes of the FD trees, VIS = U Vi,

V'S is a leaf node set containing all leaf nodes of the FD trees, V'S = [LJ Vii,
i=1

VIS is a branch node set containing all branch nodes of the FD trees, V,I'S = 6 Viis

PCTS = VTS — VIS is a parent-children map associating each parent node to its
child nodes VIS =vISuVT and VI = VTS U VTS,

Example 5.3 (Functional dependency tree element set). The FD trees from Fig. bears
a FD tree set T'S = {T1,T>}. It is obtained by the FDs of Example . To create the two
FD trees, we have to separate the FDs and group the FDs having the same attributes on
any side together. However, given these FDs, we can directly get the functional dependency
tree element set TETS = {VTS VTS VIS PCTS} where:

o VIS ={IdCus/Email/Age, IdProd/NameProd},

o VTS = {NameCus, MemLevel, Country, CompSize,idCat/Cat},

36

5. DIMENSION DETECTION 37

o VI'S = {City, Region, Brand, IdSubcat/Subcat},

o PCTS = {IdCus/Email/Age : {NameCus, MemLevel, City}, City : { Region},
Region : {Country}, [dProd/NameProd : { Brand, IdSubcat/Subcat},
Brand : {CompSize}, IdSubcat/Subcat : {IdCat/Cat}}.

Algo. [1] describes the creation of the FD tree element set. We first construct an empty
FD tree element set TETS (line;). We also create a list for all left-hand sides of FDs
(lineg) and a list for all right-hand side of FDs (lines). For each FD in the FD set (liney),
its left-hand side is put into the left-hand side list (lines) and its right-hand side is put
into the right-hand side list (lineg). The right-hand side is added into a map as the
left-hand side key value (line;_g). When the loop of the FDs ends, we get the complete
left-hand and right-hand side lists, as well as the parent-children map. Root node has
no any other attribute determining it, which means that it does not act as a right-hand
side in any FD. Thus, the left-hand side list is lhsList = VIS U VIS, A leaf node has
no any other attribute determined by it, which means that it does not act as a left-hand
side in any FD. Thus the right-hand side list is rhsList = V75 U V,7. Finally, we thus
get the branch node set, the root node set and the leaf node set of the FD tree element
set (liney_13).

Algorithm 1: getF'DTreeElems(FDS)
Input : Set of detected functional dependencies F'DS

Output: Functional dependency tree element set T ET

1 TETS « {0,0,0,0} ;
2 lhsList < 0 ;
3 rhsList <+ () ;
for FD € FDS do

lhsList < lhsList + FD.lhs ;
rhslList < rhslList + F'D.rhs ;
if FD.lhs ¢ PCTS keys() then

| PCTS[FD.lhs] - FD.rhs

o =N O Ot B

9 else
10 | | PCTS[FD.hs| « PCTS[FD.lhs| + FD.rhs

11 V;T'S < lhsList NrhsList ;
12 VIS « |hsList — VIS ;

13 Vi < rhsList — V,I'9;

14 return TETS

Example 5.4 (Creation of an FD tree element set). FDs from Ezample are each
scanned to get lhsList = {IdCus/Email/Age, IdProd/NamePro, City, Region, Brand,
IdSubcat/Subcat}, rhsList = {C'ity, Region, Brand, IdSubcat/Subcat, NameCus,

MemLevel, Country, CompSize,idCat/Cat} and PCTS, as in Ezample . We thus

37

5. DIMENSION DETECTION 38

obtain V;I'S = lhsList N rhsList = {City, Region, Brand, [dSubcat/Subcat}, and then
VTS = [hsList — ;' and V;T = rhsList — V,' as in Example .

5.4 Hierarchy Detection

Algo. [2] describes the detection of hierarchies from a FD tree element set by using depth-
first search. It is a recursive algorithm. The inputs also include the node, the hierarchy
to be detected and the hierarchy set containing all detected hierarchies. Here, since we
are not yet in the step of parameter and weak attribute distinction, we simplify the
representation of the hierarchies by using only their ordered parameter sets. In the first
recursion of the algorithm, the node is the root node, the hierarchy and the hierarchy set
are empty sets (Algo. [2] lines). We add the attribute into the hierarchy when we pass a
node (liney). If the node is not a leaf node (lines), we continue to recursively pass the
next level (linesz_4). If the node is a leaf node (lines), a root-to-leaf path is found and a
hierarchy is completely retrieved. Then, we can add the hierarchy into the hierarchy set
(lineg).

Example 5.5 (Hierarchy detection). We take the example of the root node IdCus/Email |
Age of the functional dependency tree element set TETS from Example . We call
Algo. |2 by getHierarchy(TET®, IdCus/Email/Age,0,0). Fig. illustrates the re-
trieval of the hierarchies where v represents the current executed node. H represents
the current retrieved hierarchy. leaf mode denotes whether the current node is a leaf
node. HS represents the current hierarchy set. Each recursion loop ends when the leaf
node and the retrieved hierarchy are added into the hierarchy set. The result is returned
up to the result of the first recursion as shown with the dashed lines and we finally obtain
3 hierarchies: < 1dCus/Email/Age, NameCus >, < IdCus/Email /Age, Mem Level >
and

< IdCus/Email [Age, City, Region, Country >.

Algorithm 2: getHierarchies(TETS v, H, HS)
Input : Functional dependency tree element set TE”®, node v and hierarchy H,
hierarchy set HS
Output: Hierarchy set HS
1 H<+ H+ v;
2 if v € V,'¥ then

3 | for vy € PCT5v] do

4 L HS < HS U getHierarchie(TETS v, H, HS)
5 else

¢ | HS+ HS+H

7 return HS

38

5. DIMENSION DETECTION 39

v: [dCus/Email/Age
H: [IdCus/Email/Age]
leaf node : False
R R L L L L LT HS>»{[IdCus/Email/Age, NameCus],
! [IdCus/Email/Age, MemLevel],«-----:
[ldCus/Email/Age, City, Region,County]} € === === === === === ===mmmmmmem oo '

1st Recursion

v: NameCus v: MemLevel v v: City
2nd Recursion H: [IdCus/Email/Age, NameCus] H: [IdCus/Email/Age, MemLevel] + H: [IdCus/Email/Age, City]
ecursio leaf node : True leaf node: True 1 leaf node: False

- HS: {[IdCus/Email/Age, NameCus]} HS: {{IdCus/Email/Age, MemLevel]} ---* HS: {{ldCus/Email/Age, City, Region,Country] '{.'_'_'_’_E

v: Region

H: [IdCus/Email/Age, City, Region]
leaf node : False !
HS: {[IldCus/Email/Age, City, Region,Country]} <

3rd Recursion

v: Country
H: [IdCus/Email/Age, City, Region,Country]
leaf node: True

4th Recursion !
HS: {[IdCus/Email/Age, City, Region,Country]} ------:

Figure I1.8: Example of hierarchy detection

5.5 Distinction between Parameters and Weak Attributes

Our hierarchy detection method considers all attributes as the same, i.e., without distin-
guishing whether an attribute is a parameter or a weak attribute. Thus, in this section,
we define rules for making this distinction.

The value of a weak attribute is determined by its parameter and usually does not
determine the value of any other attributes.

o the group of equivalent attributes, or
o the highest-granularity level of hierarchies.

So we must address both cases.

5.5.1 Equivalent Attributes

Equivalent attributes that are not on the highest-granularity level are attributes of the
same level. Thus, there must be one parameter and the other attributes are weak at-
tributes. The parameter should be the attribute that can be an identifier. We define the
following rules to choose the parameter.

o At the schema level, we look for the attribute whose name contains some strings
that indicate that the attribute could be a parameter, such as “code”, “id”, etc.

o If there is no such attribute, we look at the instance level. We look for the attribute
whose values can be abbreviations of other attributes by seeing if its strings consist
of other attribute values of the same instance.

39

5. DIMENSION DETECTION 40

o If there is no such attribute, we look for the remaining string attributes. We look
for the attribute that is of nominal or ordinal numerical types (Alobaid et al., 2019).

o If there is no such attribute, we look for the attribute whose values are composed
of both strings and numerical data.

o If there is no such attribute, we look for the attribute that has the shortest string
length.

o Date type data are treated as weak attributes.

We search the parameter with respect to the above rules in order. All the remaining
attributes are weak attributes.

5.5.2 Highest-granularity Level

We must decide whether each highest-granularity level attribute is a parameter or a
weak attribute. To do so, we have to verify whether the attribute really has a semantic
hierarchical relationship with the other attributes of the hierarchy, so we define these
following rules.

o At the schema level, we verify the hierarchical relationships between the highest-
granularity level attribute and the other attributes by checking whether their names
or subset of names match the semantic hierarchy relationship in Wordnet (Miller,
1995). If so, the attribute is a parameter.

o If there is no such attribute, we look at the instance level. We also verify their
hierarchical relationships with Wordnet, but with the instance values, to decide

whether it is a parameter.

o If not, we verify whether the attribute is categorical by setting a threshold on the
distinct value ratio (distinct value number divided by total value). If the distinct

value ratio is lower than the threshold, then it is treated as a parameter.
o Date type data are treated as weak attributes.
If none of the rules is satisfied, then the attribute is a weak attribute.

Example 5.6. The detected hierarchies from FExample have an equivalent attribute
group (1dCus, Email, Age) that is not on the highest-granularity level. We find the string
“Id” in attribute name “IdCus”, so attribute 1dCus is a parameter. Conversely, Email
and Age are weak attributes. Then, we look at the highest-granularity level attributes of
the 8 detected hierarchies. Hierarchy < IdCus, City, Region, Country > matches the hi-
erarchical relationship City, Region and Country, so Country is a parameter. Hierarchies
< IdCus, NameCus > and < IdCus, MemLevel > do not bear hierarchical relationships
in Wordnet between the highest-granularity level attributes and the other attributes at both

schema (attribute name) and instance level. MemLevel is of ordinal numerical type, so it

40

5. DIMENSION DETECTION 41

is a parameter. NameCus is not of numerical type, so we verify whether it is categorical
by setting a threshold of 0.6. The distinct ratio of NameCus is 5/6 = 0.83 > 0.6, so it

cannot be a parameter. It is thus a weak attribute.

5.6 Construction of DW

Algo. [3] describes the full process of automatic DW design and implementation by com-
bining the previous steps to construct a DW. It is to be noted that the names of the
components are not assigned in the algorithm since they can be assigned automatically
or by the user.

Given a tabular data of simple structure 7', the measure detection is first carried out
(line1). Then FDs are obtained by HyFD algorithm from the non-measure attributes

(lines).

A FD tree element set is created based on the detected FDs (lines). Each FD tree
can be considered as a dimension where the root node is the dimension identifier. Thus
for each root node, we create a dimension (lineg_ss) by detecting hierarchies (lineg_1o)
and applying the proposed rules to identify dimension attributes as parameters or weak
attributes (linejg_g0).

A fact is created with the detected measures (lineg). A star schema is then generated
by linking the fact to the dimensions (lines;). The constellation schema contains more
than one fact, however, normally a tabular data contains only one fact, which is the case

we assume. Thus we only consider the generation of a star schema.

In terms of the implementation, we apply the R-OLAP architecture (Kimball and
Ross|, 2011)), which is the most used OLAP implementation (Pujolle et al., 2011). we first
implement the tabular data in the database as a table T' (linez). For the dimensions, we
create a table for each dimension and extract the dimension instances by projecting the
distinct attribute instances from the table T' (linesy). For the fact, we create a fact table
and project the measure instances from 7' (liney7) and link them with the corresponding

dimension instances (lineys) by adding foreign keys.

Example 5.7. The measure detection, the detection of certain hierarchies and the identi-
fication of certain attributes as parameters/weak attributes of the CSV table from Fig.
are illustrated in the previous examples. A fact can be created based on the detected mea-
sures. By carrying out the hierarchy detection and parameter and weak attribute distinc-
tion for all nodes of the FD tree element set obtained in Example we obtain three
dimensions. There is a dimension of date, thus we ask the user to choose the date gran-
ularities. We then ask the user to rename the fact, dimension and hierarchy names. We

can finally obtain a star schema like shown in Fig. [II.9

The implementation result is shown in Fig. |I1.10). Three tables are created respectively
for three dimensions. Fach table contains the attributes of its corresponding dimension.

41

d.

DIMENSION DETECTION

42

Algorithm 3: autoDW (T')

N

© 00 N O ok~ W

10
11
12
13
14
15

16
17
18
19
20

21
22

23
24
25

26
27

28
29
30
31
32

Input : Tabular data of simple structure T

Output: A data warehouse DW

Launch measure detection to obtain M

Launch HyFD for non-measure attributes to obtain functional dependency set
FDS;

Implement tabular data 7" in database as table T’

TETS < getF DTreeElems(FDS);

DPW « ();

for V,; € V;TS do

APi

ParamSet < getHierarchies(TETS V,;, 0, ParamSet);

for Param®i € ParamSet do

AP« APi U Param™i,

Weak" H; < 0;

for k =0 to |Param'i| — 1 do

if Param®i[k] is an equivalent attribute combination then

Apply the rules in Section to identify a parameter p and a

| weak attribute set Weaki[p]

f Param™i(k] is a highest-granularity level parameter then

Apply the rules in Section ;

if Param!i[k] is a weak attribute then
L WeakHi[Paramfi[k — 1]].add(Param™i|k]);

=y

Param®i delete(Param®i[k]);

H; <+ (N Param™i, Weak*:);
| HPi.add(H,);
.[Di — HADiT;
D; + (NPi AP |{Di [DPi):
| DPW.add(D;);
IY « TyrT;
IStar® « {if — iy il € I" Nig € [Ip,cpow IP" Ail,iq are in the same tuple of
T}
F «+ (NF MY IF [Star®);
FPW — {F};
StarPW|[F] + DPV;
DW < (NPW FPW DDW StarPW),
return DW

42

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 43

The dimension identifiers are assigned as primary keys. A fact table is created containing

the measures as well as the foreign keys which associate the fact table to the dimensions.

[NameProd] [SubCat] [Cat]

NameCus Product
Age
Email

IdSubCat IdCat

Country

Region City Brand CompanySize

Customer

MemLevel

bw Date Month Year
Figure I1.9: Final schema
777 Ty
IdCus NameCus Age Email City Region Country | MemLevel
1001 Louis 25 Louis@gm.com Barcelone Catalonia Spain 2
1002 Gabriel 57 Gabriel@gm.com Toulouse Occitanie France 1
1003 Pierre 34 Pierre@hm.com Paris lle-de-France France 0
1004 Anna 45 Anna2@gm.com Barcelone Catalonia Spain 1
1005 Louis 22 Louis@hm.com Castres Occitanie France 1
1006 Lucas 30 Lucas@gm.com Milan Lombardy Italy 2
Customer
T
IdProd NameProd Brand |CompanySize | IdSubCat SubCat IdCat Cat
AP233 Iphone13 Apple Large PH Phone TN Technology
SS112 Galaxy S10 | Samsung Large PH Phone ™ Technology
HF008 | Computer table | Homefine Medium B Table OF Office
SS8467 | Galaxy Book2 |Samsung Large LP Laptop TN Technology
""""" SH002 |Ergonomic chair| SIHOO Small CH Chair OF Office
NK112 Air Max Nike Large SH Shoe CL Clothing
IdCus IdProd Date Price Qty
1001 AP233 01/06/2022 819.99 1 Product
1001 AP233 05/06/2022 825 SN
1002 S$5112 03/06/2022 450 3 Date Month Year
1003 HF008 24/05/2022 125 3 24/05/2022) 05/2022 2022
1003 S8467 03/06/2022 1599.99 2 29/05/2022 05/2022 2022
1004 SS8467 29/05/2022 1500 1 01/06/2022 06/2022 2022
1005 SH002 01/06/2022 2485 2 03/06/2022 06/2022 2022
1006 NK112 06/06/2022 1000 2 05/06/2022 06/2022 2022
06/06/2022 06/2022 2022
Sales
Date

Figure II.10: Implementation result

6 Experimental Assessment for Measure Detection

The process of our experiments for measure detection is shown in Fig. We carry
out experiments with various datasets and algorithms to validate the proposed measure
detection approach. The objectives of the experiments include: (1) validating the effec-
tiveness of the proposed MIL-based approach for measure detection, (2) validating the

43

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 44

effectiveness of the different proposed feature categories, (3) validating the generality of
the trained mode with the proposed features and (4) analysing the importance of the

proposed features in each algorithms.

6.1 Experimental Conditions

Datasets Algorithms Analysis

- -)
7 . Effectiveness of the algorithms:
AFD ?[Baseline \ Recall (R)
Precision (P)
CDC 23) TP Fmeasure (F))
CA—>| ¢ FD
30 5])
FR —>» 2 . Effectiveness of the feature
106 = ML algorithms .
KG—> —g categories
2313 (RF)
NZ 1 @ [Generality of the model:
UK —™» SVM ' 4 By data source
US 71 DT L By domain)
7 5 KNN
WB \ \ / | Feature importance

_ /

Figure II.11: Experiment overview

6.1.1 Technical Environment

Our experiments are conducted on an Intel(R) Core(TM) i5-10210U 1.60 GHz CPU with
16 GB RAM. The programming language that we apply is Python 3.7. This is also the

technical environment for the other experiments in this manuscript.

6.1.2 Datasets

We use 9 datasets in our experiments, The objective of employing data coming from
different sources is to guarantee that our datasets cover different domains, topics and
languages so that the result is more convincing. The datasets come from sources including
the governmental open data sites of France (FR) Canada (CA), UK (UK)f| and US
(US)EL the French Development Agency (AFD)ﬂ the New Zealand’s official data agency
(NZ)P| the American Center for Disease Control and Prevention (CDC), the World

"https://www.data.gouv.fr
’https://open.canada.ca
3https://data.gov.uk
“https://www.data.gov
Shttps://opendata.afd.fr
Shttps://www.stats.govt.nz
"https://data.cdc.gov

44

https://www.data.gouv.fr
https://open.canada.ca
https://data.gov.uk
https://www.data.gov
https://opendata.afd.fr
https://www.stats.govt.nz
https://data.cdc.gov

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 45

Bank (WB)F| and Kaggle (KG)|

The datasets that we choose contain at least one numerical column. In our corpus,
there are files that are used for other specific purpose, e.g., machine learning, which are
not suitable to DW creation. We discard them. There are also files with very poor data
quality or completely lacking the information to understand the semantic meaning of
columns, which makes it difficult to tell whether a column can be a measure. We also
discard such files.

Each dataset contains numerous tables with numerical columns on which features are
extracted to feed the algorithms. Data are classified into five domains including Economy
(ECO), Health (HLT), Government (GOV), Environment (ENV) and Society (SOC).
Each domain includes a different number of files (Table . Eventually, the languages
used in data sources differ, i.e., files from AFD and FR are in French while the others
are in English. The number of the CSV files in the datasets is 346 and there are 3524
columns including 1382 numerical columns. There are 900 numerical columns that can
be considered as ground truth measures.

Table I1.2: Number of files by domains

Domain ECO HLT GOV ENV SOC
File Number 143 57 80 28 38

Table shows information about each data source and all data sources (Total),
including the number of files (N), the number of numerical columns (N.), the number of
measures (IN,,) and the ratio of number of measures by the number of numerical columns
(R,,). Figures in brackets are the minima and maxima. The original datasets can be
found in our github™]

For each dataset, we compute all our features for each numerical column, and label

them to build the training and test sets. Empty values in columns are ignored.

6.1.3 Baseline Methods

Numerical Typology-Based Method (TP) In a previous work, we propose to select
measures with respect to the type of numerical attributes (YANG, Y. et al., [2020).
Numerical data may be classified into nominal data, ordinal data, intervals and ratios
(Alobaid et al., 2019).

Nominal data are labels composed of digits which are used instead of names to identify
things. Ordinal data implies an order among a set of elements but with no regard to the
difference between the elements. Interval is used to denote the increase or expansion in
some way on a scale such as the temperature. Ratio is the scale that we use to measure

Shttps://data.worldbank.org
Ynttps://www.kaggle.com
Ohttps://github.com/Implementationill/measure-detection

45

https://data.worldbank.org
https://www.kaggle.com
https://github.com/Implementation111/measure-detection

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 46

Table I1.3: Data source characteristics

Data Source Ny N, Rg. N,. Rg,. Rt,. N,, Rg. Rt, L

AFD 7 8 (6,18) 15 (1,14) 1829 8 (0,3) 5333 Fr
CDC 28 247 (3,30) 100 (1,12) 4049 70 (1,6) 70.00 En
CA 23 285 (5,29) 156 (2,28) 54.74 113 (0,28) 7244 En
FR 30 410 (2,54) 123 (1,38) 3000 39 (0,7) 31.71 Fr
KG 106 1041 (2,29) 394 (1,17) 37.85 271 (0,10) 68.78 En
NZ 22 162 (3,15) 62 (1,13) 3827 43 (0,12) 69.35 En
UK 42390 (2,39) 137 (1,9) 3513 99 (0,8) 72.26 En
US 71 714 (2,28) 311 (1,20) 4356 194 (0,18) 62.38 En
WB 17 193 (5,26) 84 (1,18) 4352 63 (0,13) 75.00 En
Total 346 3524 (2,54) 1382 (1,38) 39.22 900 (0,28) 65.12 En

things and which contain a real zero like the number of students. Among all these kinds
of numerical data, the interval and ratio type is most likely to be measures.

Algorithms are proposed to detect the different numerical type (Alobaid et al., [2019).
So we implement these algorithms and apply them on each numerical column to get its
numerical type. Then we choose the columns of interval and ratio types to be measures.

Functional Dependency-Based Method (FDB) As we already mentioned, in ex-
isting methods aimed at data with schemas, measures are selected in tables exhibiting
many-to-many relationships; in other words, columns that are functionally dependent on
dimension primary keys. With this idea in mind, we detect functional dependencies (FDs)
in tabular data and select as measures the numerical columns that are functionally de-
termined by several, other attributes. The FD detection algorithm that we use is HyFD
(Papenbrock and Naumann| 2016) as we explained in Section

We take advantage of the Metanome toolbox (Papenbrock et al., [2015a), which is de-
veloped by the team of the HyFD designers and which integrate different FD detection
algorithms including HyFD. The tool is developed by Java and we extract the code con-
cerning HyFD. Then we integrate the Java code in our implementation Python code and
use an API to execute them to obtain the FDs. The extracted FDs are also used for
generating the values of feature severalfds.

6.1.4 Application of ML Algorithms

To validate the proposed machine learning-based solution and the proposed features, we
apply the following widely used Machine Learning (ML) classification algorithms (Sen
et al., 2020):

« arandom forest classifier (RF),

 a support vector machine classifier with an Radial Basis Function (RBF) kernel

(SVM),

46

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 47

o a decision tree classifier based on the CART (Classification and Regression Trees)
algorithm (DT),

« a k-nearest neighbors classifier (KININ)

Deep learning models are not employed because they are more suitable for interpreting
images, sounds and texts (LeCun et al., 2015), while we analyse numerical columns.

We define the ground truth by analysing each dataset context according to its web-
site’s description, header semantics and metadata. We also uphold the criteria from
Definition [4.1] Since we are in the context of data-driven DW design without specific re-
quirement, we consider numerical columns that can be potential measures in all possible

cases.

6.2 Experimental Results
6.2.1 Algorithm Effectiveness

We run the two baseline methods from (Section [6.1.3)) and train models with our features
with four ML algorithms (Section on all datasets (Section [6.1]). The ML algorithms
are run by pycaret [[[] Python library where the hyperparameters are tuned automatically.

For the model generality and feauture importance experiments, we run ML algorithms
from the sklearn@ Python library.

We use three performance metrics to verify the effectiveness of different algorithms:
Recall (R), Precision (P) and F-score (F). Let Ny, and N,,,, be the number of measures
predicted as measures and non-measures, respectively; and N,,, and N,, the number of
non-measure predicted as non-measures and measures, respectively.

Ny Ny 2 x Precision x Recall

Then R=——— P=———and F =
et N + N Ny + Nom, a Precision + Recall

Table [I1.4] shows the resulting values of R, P and F where the results of ML algorithms
are obtained through a 10-fold cross validation by merging all datasets and randomly
split them into 10 folds. The distribution of the cross validation results is depicted in

Figure [[1.12,

Table I1.4: Global results

Metric TP FDB RF SVM DT KNN
R(%) 80.05 7543 96.64 04.77 94.08 90.16
P(%) 73.57 T77.50 90.89 7844 8344 87.61
F(%) 76.67 7645 93.65 8576 91.12 88.78

We observe that RF exhibits the best F-score (94.82%) and the result is not more

Uhttps://pycaret.org/
2https://scikit-learn.org

47

https://pycaret.org/
https://scikit-learn.org

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 48

- igﬁ -

0.9

0.85

0.8

' -
0.75 |

Recall Precision F-measure

==RF ==SVM ==DT ==KNN

Figure 11.12: Cross validation distribution

dispersed than that of the other algorithms. Thus, RF shows the best performance on
the measure detection problem. We also observe that TP and FDB do not have a good
effectiveness when predicting measures, but FDB performs better than TP. TP’s bad

performance is due to

e interval and ratio numerical columns are not all measures, e.g., longitude and lati-
tude;

« numerical typology detection algorithms are not flexible enough to cope with real-
world data, because they are based on fixed rules.

Regarding FDB, a numerical column that is functionally determined by several other
columns may not always be a measure. For example, let us consider a table describing
sale facts with respect to customers and products, where sale amount is indeed a measure.
The customer ID is the customer dimension’s primary key, but the customer’s name and
email may uniquely identify a customer, and thus may functionally determine the age of

the customer, a numerical column that is not a measure.

Our ML-based measure detection method takes different types of features into account
and can thus better handle the above exceptions and achieve better results.

6.2.2 Feature Category Effectiveness

To verify the effectiveness of each feature category we propose, we test different com-
binations of feature categories with our RF-based method. We first test single feature
categories, combinations of two categories and then we compare the effectiveness of all
categories. The result is shown in Table [[.5] where GE represents general features, ST
represents statistical features and IC represents inter-column features (Section . ST

48

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION

49

Table I1.5: Performance of feature categories and their combinations

ML Algorithms Metrics GE ST IC GE4+ST GE+IC ST+IC ALL
R(%) 88.10 94.27 92.68 95.30 93.67 91.93 96.64

RF P(%) 83.59 86.28 80.91 88.21 86.13 91.14 90.89
F(%) 85.69 90.01 86.37 91.57 89.67 91.50 93.65

R(%) 9220 93.96 88.89 94.07 92.86 93.70 94.77

SVM P(%) 7445 76.80 75.47 76.85 76.90 76.71 78.44
F(%) 8232 84.35 81.63 84.45 84.47 84.23 85.76

R(%) 89.05 89.16 89.90 89.97 88.47 89.12 91.20

DT P(%) 7853 86.24 83.62 89.22 88.26 87.15 89.17
F(%) 83.29 87.59 86.54 89.55 88.28 88.07 90.12

R(%) 84.13 91.95 92.07 85.56 92.57 92.08 90.16

KNN P(%) 83.73 8245 81.48 86.06 84.14 83.65 87.61
F(%) 83.82 86.90 86.42 85.68 88.11 87.59 88.78

exhibits the best individual contribution. Yet, we can clearly see that combining feature
categories achieves better performance in terms of recall, precision and F-score, than us-
ing single feature categories. Ultimately, combining all feature categories yields the best
performance. The results of applying other ML algorithms can be found in our github.

6.2.3 Model Generality

To verify that the trained model achieved with our RF-based method is generic, we train
data by excluding the datasets of one source and test on them. We also carry out the same
test by domain, i.e., economy (ECO), health (HLT), government (GOV), environment
(ENV) and society (SOC). The results are shown in Figure[[L.13] where the charts depict
the results by source and domain, respectively. By comparing with former results, the
difference of F-score ranges from -5.02% to 4.23% for the test with respect to the source
and from -3.17% to 3.36% for the test with respect to the domain. The trained model is
thus generic regardless of the source and data domains.

6.2.4 Feature Importance

To analyse our different features, we compute the permutation importance, i.e., the de-
crease in prediction accuracy when a feature is permuted (Fisher et al., [2019) of each
feature for all ML algorithms. Figure shows that the importance of a feature varies
with respect to the algorithm. For example, with SVM and KNN, the statistical fea-
tures are more important than others, while with RF and DT, the features bearing the
highest importance values are more equally distributed in each feature category. There
are also features that bear negative importance values with some algorithms, e.g., nu-
merical neighbor in algorithm DT, but not every time, while they always have positive
importance values with other algorithms. There is no feature that always bears zero or
negative importance values with one single algorithm, which means that all our features
have a contribution to the ML classifiers. With RF, which bears the best performance,

49

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 50

100 e - -

9% I im.....]
X80 - :
70 g :

60

100
90
80
70
60

T
|

[%]

T
|

GOV —
ENV
SOC
ECO
HLT
GOV
ENV
SOC

Recall Precision F-measure

Figure I1.13: Performance with respect to source and domain with RF

the most important feature is the location ratio. By checking the CSV files, we observe
that most of the measures are situated at the last part of the file, while most of the
columns in the front part are descriptive, which probably explains the importance of the
location ratio.

7 Experimental Assessment for Dimension Detection

In order to validate the effectiveness and efficiency of our dimension detection algorithms,
we conduct experiments with different tests by applying various datasets.

7.1 Dataset

In our experiments, we use 8 datasets including 1 synthetic data Example containing the
same data as the example in this chapter and 5 real-world datasets. Among these real-
world datasets, 3 datasets come from KaggleEl including Salesl, Sales2 which contain
sales data but with different information of different supermarkets and DevApp which
contains data about some application development projects; 2 datasets come from the
site of the World BankE| including Countries containing various indicator data about
different countries and Covid containing data about the covid pandemic in different
countries.

Table [[L6 shows the information of these datasets. The information includes the
number of columns after excluding the measures of each dataset (IV.), the number of rows
(N;), the number of the dimensions (N4) and hierarchies (Ny,).

Bhttps://www.kaggle.com/
Yhttps://data.worldbank.org/

50

https://www.kaggle.com/
https://data.worldbank.org/

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 51

severalfds

neighnum | % -

numcol |

Inter-column

loc

frm—
e
range |

e ——
| —————
P ——
-
|
(=

max

Statistical

avg -
sdn
runique |
rzero |

rneg |

[
o | b *
b

General

type

0.025 0.06 0.075 0.1 0125 0.15 0.175 0.2

= RF = SVM = DT = KNN

Figure I1.14: Feature importance

51

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 52

Table I1.6: Dataset information

Dataset N, N, N; Ny

Example 17 9 3 4
Salesl 16 9918 3 4
Sales2 8 794 2 3

DevApp 11 2752 2 3

Countries 4 84 1 1
Covid 12 128041 2 6

7.2 Metrics

To carry out the experiments, we first remove the measures for each file. We then execute

the dimension detection algorithms.

We analyse the data in the files and the descriptions in the sources to manually design
multidimensional schemas as the ground truth. To evaluate the effectiveness, we use the
metrics recall (R), precision (P) and F-score (F) defined as follow:

{Detected} N {True} {Detected} N {True} 2 x Precision X Recall

and F =

{T'rue} T {Detected} Precision + Recall

Where {Detected} is the set of the detected elements and {True} is the set of the
true elements of ground truth. Here, the elements may be different, we evaluate the

effectiveness at three aspects containing six levels of elements:

« Dimension aspect: We verify the effectiveness for the detection of dimensions
by checking if we detect the correct dimensions and if they contain the correct

attributes.

— Dimension ID: We verify if we detect the correct dimensions by verifying the
dimension identifiers. So here, the elements are the dimension identifiers.

— Attribute: We verify for each detected dimension, if it contains the same at-
tributes as the ground truth dimension. So here, the elements are the attributes

of a dimension.

« Dimension attribute aspect: Then we verify if the attributes in the dimensions
are correctly distinguished as parameters and weak attributes.

— Parameter: We verify if we detect the correct parameters. So here, the

elements are the parameters.

— Weak attributes: We verify if we detect the correct weak attributes. So here,
the elements are the weak attributes.

« Relationship aspect: We also verify the relationships in dimensions including
the hierarchical relationships between parameters and the same level relationships

52

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 53

between a parameter and the corresponding weak attributes.

— Hierarchical relationship: We verify if we detect the correct hierarchical
relationships between the levels. So here, the elements are the binary relation-
ships between the levels. More precisely, we look at the binary relationships
between the parameters. However, there may be the case where the true pa-
rameter of a level is identified as a weak attribute, and its equivalent attribute
is identified as the parameter. In this case, we can regard the relationship
between this detected parameter and another parameter as the relationship
between the true parameter and another parameter since the distinction be-
tween parameters and weak attributes is evaluated by dimension attribute

aspect metrics.

— Same level relationship: We verify if we detect the correct potential same
level relationships. So here, the elements are the same level relationships.
For the detected binary relationships, we consider the equivalent attributes
as having the same level relationships. We also consider an attribute and its
neighboring determinant attributes which do not determine any other attribute
as having the same level relationships. We consider these potential same level
relationships instead of the truly detected same level attributes because the
same level attributes are detected based on (1) the same level relationships
and (2) the distinction of the parameters and weak attributes. However, the
distinction of the parameters and weak attributes is evaluated by dimension

attribute aspect metrics.

To evaluate the efficiency, we test the run time of the dimension detection process for

each dataset.

7.3 Experimental results and analysis

The ground truth schema and detected schema of each DW are shown in Appendix [A]

7.3.1 Dimension aspect effectiveness

Table [[1.7] shows the results of the dimension aspect effectiveness. We can observe that
the precision, the recall and the F-score are all 100% with respect to the effectiveness
of the detection of dimension IDs and dimension attributes. Thus, our algorithm is able
to correctly detect all dimensions and is able to detect the correct attributes for each
dimension.

7.3.2 Dimension attribute aspect effectiveness

Table shows the results of the dimension attribute aspect effectiveness. For the
datasets Example, DevApp and Countries, the effectiveness metrics are all 100%,
which means that the parameters and weak attributes are correctly distinguished. For the

33

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 54

Table I1.7: Dimension ID aspect results

Dataset Element Precision (%) Recall (%) F-score (%)
Dimension ID 100.00 100.00 100.00
Example Attribute (D1) 100.00 100.00 100.00
Attribute (D2) 100.00 100.00 100.00
Attribute (D3) 100.00 100.00 100.00
Salesl Dimension ID 100.00 100.00 100.00
Attribute (D1) 100.00 100.00 100.00
Dimension 1D 100.00 100.00 100.00
Sales2 Attribute (D1) 100.00 100.00 100.00
Attribute (D2) 100.00 100.00 100.00
Attribute (D3) 100.00 100.00 100.00
Attribute (D4) 100.00 100.00 100.00
Attribute (D5) 100.00 100.00 100.00
Dimension ID 100.00 100.00 100.00
DevApp Attribute (D1) 100.00 100.00 100.00
Countries Dimension ID 100.00 100.00 100.00
Attribute (D1) 100.00 100.00 100.00
Dimension ID 100.00 100.00 100.00
Covid Attribute (D1) 100.00 100.00 100.00
Attribute (D2) 100.00 100.00 100.00

other two datasets whose parameters and weak attributes are not correctly distinguished,
we study the original data to find the reasons.

In the dataset Salesl, according to the domain knowledge, there may be several postal
codes for a city. Therefore, the attribute Postal Code should be a weak attribute of the
identifier Customer ID and City should be the neighboring higher parameter of Customer
ID in the geographical hierarchy. However, in this dataset, there is one postal code
value for a city, so the algorithm consider Postal Code and City as equivalent attributes.
Since Postal Code contains "Code”, it is identified as the neighboring higher parameter
of Customer ID and City is identified as its weak attribute.

In the dataset Sales2, there is the same problem of Postal Code and City. Moreover,
the attribute Product name is supposed to be the weak attribute of the identifier Product
ID. However, there exists the functional dependency of Product Name — SubCategory,

which makes it become a parameter in the hierarchy of category where it should not be.

In the dataset DevApp, the attribute Suffiz is the type of road for Address, which
should be a weak attribute of the dimension identifier APNQO. However, it is detected
as the highest level attribute and is a categorical data. It is thus wrongly detected as a

parameter.

In the dataset Covid, the attribute indicatordescription should be a weak attribute
of the identifier indicator. However, besides the functional dependency of indicator —

o4

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 55

indicatordescription, there is also a functional dependency of indicatordescription —
indicatortopic, which make it become a parameter in a hierarchy. In addition, the at-
tribute unitmeasure should be a weak attribute of the identifier indicator according to

the domain knowledge. But it is a categorical data and is thus identified as a parameter.

Table I1.8: Dimension attribute aspect results

Dataset Element Precision (%) Recall (%) F-score (%)
Example Parameter 100.00 100.00 100.00
Weak attribute 100.00 100.00 100.00
Salesl Parameter 83.33 100.00 90.91
Weak attribute 100.00 50.00 66.67
Sales2 Parameter 92.86 100.00 96.30
Weak attribute 100.00 66.67 80.00
DevApp Parame?er 85.71 100.00 92.31
Weak attribute 100.00 80.00 88.89
Countries Parameter 100.00 100.00 100.00
Weak attribute 100.00 100.00 100.00
Covid Parameter 77.78 100.00 87.50
Weak attribute 100.00 60.00 75.00

7.3.3 Relationship aspect effectiveness

Table shows the results of the relationship aspect effectiveness. For the datasets
Example and Countries, the effectiveness metrics are all 100%, which means that the
hierarchical relationships and the same level relationships are correctly detected. For the
other datasets, the wrongly detected relationships are generated due to the same reason

as explained for the dimension attribute aspect effectiveness.

Table I1.9: Relationship aspect results

Dataset Element Precision (%) Recall (%) F-score (%)

Example Hierarchical 100.00 100.00 100.00
Same level 100.00 100.00 100.00

Salesl Hierarchical 100.00 100.00 100.00
Same level 50.00 66.67 57.14

Sales? Hierarchical 87.50 100.00 93.33
Same level 66.67 80.00 72.73

DevApp Hierarchical 83.33 100.00 90.91
Same level 100.00 83.33 90.91

Countries Hierarchical 100.00 100.00 100.00
Same level 100.00 100.00 100.00

Covid Hierarchical 57.14 80.00 66.67
Same level 100.00 75.00 85.71

35

8. CONCLUSION 56

Table I1.10: Run time results

Dataset Example Salesl Sales2 DevApp Countries Covid
Run Time (s) 1.26 0.93 40.67 102.19 0.05 105.07

7.3.4 Efficiency

Table [T.10 shows the run time of the dimension detection for each dataset. We can see
that the run time for the applied datasets ranges from 0.05s to 105.07s, which is enough
efficient for the users.

8 Conclusion

Tabular data do not have specific schema and particular layout, making it hard to perform
data-driven automatic DW design. However, by analysing the literature, we observed that
few approaches consider tabular data without schema and their solutions have several
limits. Thus in this chapter, we proposed an automatic DW design process from tabular
data. For tabular data of complex structure, their structure can be identified or can
be transformed to simple structure tabular data by existing algorithms. Therefore, in
our process, we mainly focus on tabular data of simple structure. Our process includes
the machine learning-based measure detection, functional dependency-based dimension
detection and rule-based parameter and weak attribute distinction.

Our solution is able to treat the various challenges that we analysed. To solve the
challenges of measure detection, we proposed a machine learning-based method by defining
three categories of features for numerical columns. Compared to the other approaches
in the literature, which mostly simply select the numerical attributes as measures, the
advantage of our solution is that the training of machine learning models using these
features allows to capture some characteristics of measures. We carried out experiments
with numerous real-world csv tables coming from different sources and divers domains.
We applied four classical machine learning classifiers and two baseline approaches. From
the results, we observe that the machine learning classifiers applying the proposed features
outperforms the baseline approaches. The random forest algorithm performs best among
all ML algorithms which reaches a F-score of 93.65% and has an augmentation of F-score of
up to 17.2% with respect to the baseline methods, which means that it is able to correctly
detect more measure. The model generality with respect to different sources and domains
was also verified in our experiments. The results show that the model trained with our
proposed features also works well for the data having different source and domain from
the training data. Moreover, in our experiments, the feature importance of each feature
in each ML algorithm was also analysed. The results help us to understand the features
and explain the trained model. The measure detection approach is validated through a
paper in the international conference Dawak2022 (YANG, Y. et al., 2022a)).

To solve the challenges of dimension detection, we proposed a functional dependency-

56

8. CONCLUSION 57

based approach for building hierarchies. The approach filters the detected FDs and forms
FD trees to discover hierarchies. Most approaches from the literature build hierarchies
based on one-to-many cardinality relationships for data with schema and based on hier-
archical clustering for those without schema. We rely on functional dependencies since
the discovery of functional dependencies can help us find one-to-many relationships to
derive hierarchies for tabular data without schema. Compared to the hierarchical cluster-
ing, the advantage of relying on functional dependencies is that they disclose the indeed
hierarchical relationships detected and validated by the instances, while hierarchical clus-
tering can only find semantically correct hierarchical relationships, but which may not
be correct at the cardinality level. The distinction of parameters and weak attributes
received little attention in the literature and is also considered in our process. The only
solution mentioned in the literature is to assign primary keys as parameters, which is only
suitable for relational databases. In our context of tabular data, we proposed a rule-based
solution dealing with different cases (equivalent attributes and highest-granularity level
parameters) and based on the syntax, semantic and data type of data. We conducted
experiments by applying one synthetic dataset and five real-world datasets. We validated
our approach in terms of effectiveness and efficiency. The effectiveness is evaluated at
three aspects containing six levels. The dimension aspect gets 100% for all metrics, while
the dimension attribute and relationship aspects have some wrongly detected elements.
By analysing the results and datasets, we summarized two main reasons. The first reason
is there may be particular cases at the instance level so that the functional dependencies
discovered from data may not always conform to the actual hierarchical relationships in
the real-world. The second reason is that there are also some particular cases for the dis-
tinction of parameter and weak attribute that our rules cannot all cover. The efficiency
is validated by the run time and our approach is proved to be efficient. This dimen-

sion detection approach is validated through a paper in the national conference EDA2020

(YANG, Y. et al., |2020)

It is to be noted that in this chapter, we only discussed the automatic DW design from
one single source. However, in real-world cases, a user may have several sources which
have some common information. We should thus create a DW for each one of them and
then merge them together to carry out consolidated analyses.

o7

Chapter I1I

Data Warehouse Merging

Contents
(1 [ntroduction| 59
1.1 Contextl 59
(1.2 Challenges of DW merging 59
1.3 Our Process Overview] 60
1.4 OQutlinel 60
2 Related Workl 61
[2.1 Multidimensional Schema Matching| 62
[2.2 Multidimensional Schema and Instance Merging| 62
[2.3 Analysis of Merging Approaches| 64
[3 Level Merging| 65
(3.1 Record of Matched Parameters 65
[3.2 Merging of Weak Attributes 65
[4 Hierarchy Merging| 66
[4.1 Generation of Sub-hierarchy Pairs| 67
(4.2 Merging of Sub-hierarchies| 69
[4.3 Generation of Final Hierarchy Set| 70
[5 Dimension Merging| 73
(5.1 Schema Merging| 73
(5.2 Instance Mergingl o o 74
(6 Star Schema Merging| oo 76
[7 Experimental Assessment|.o 0oL 80
[[1 Datasets 80
[7.2 DW Generation Strategy| L. 80
(7.3 Star Schema Generation| 81
7.4 Constellation Schema Generationl 84
8 Conclusionl. 88

o8

1. INTRODUCTION 29

1 Introduction

1.1 Context

Data warehouse merging is the process of merging DWs having common information into
a unified DW to enable the user to analyse the consolidated data. When we have multiple
sources, we can apply the proposed automatic DW design process to generate a DW
schema for each source. The implementation of the DWs can be carried out according
to the schemas. We can then merged the DWs having common information to analyse
data at more complete viewpoints. We do not first merge these different sources and
then generate a DW because of two reasons. First, the merged table may contain too
many attributes, which may give rise to functional dependencies that do not semantically
correct. Second, too many missing values may be generated when merging the sources,
which may impact the results of the detected functional dependencies (Papenbrock and
Naumann|, 2016).

Moreover, the DW merging is also helpful in general case. For example, in a company,
various independent DWs containing some common elements and data may be built for
different geographical regions or functional departments. There may also exist common el-
ements and data between the DWs of different companies. The ability to accurately merge
diverse DWs into one integrated DW is therefore considered as a major issue (Kwakye
et al., 2013). Multidimensional DWs merging constitutes a promising solution to have
more opportunities of analysing the consistent data coming from these different sources.
Automating the DW merging process can facilitate the tasks of the DW designers. It
can make the DWs merged more efficiently for decision-makers. Companies can thus gain
benefits at both time and cost aspects. As a result, it is necessary to propose an automatic
DW merging process.

1.2 Challenges of DW merging

Merging two multidimensional DWs is a complex task which should answer some problems.
The first consists in identifying the common basic components (dimension attributes,
measures) and defining semantic relationships between these components. The second is to
merge schemas which have common components. But merging two multidimensional DWs
is difficult because two dimensions can (1) be completely identical in terms of schema but
not necessarily of instances, (2) have common hierarchies or have sub-parts of hierarchies
in common without necessarily sharing common instances. Likewise, two schemas can
deal with the same fact or different facts and even if they deal with the same, they may

or may not have measures in common without necessarily having common data.

Moreover, the final merged DW should respect the constraints of the original multi-
dimensional elements especially the hierarchical relationships between attributes. When
we merge two dimensions having matched attributes of two DWs, the final DW should
preserve all the partial orders of the original hierarchies (i.e. the binary relationships of

39

1. INTRODUCTION 60

aggregation between parameters) of these two dimensions. It’s also necessary to integrate
all the original instances of the DWs, which may cause the generation of empty values in
the final DW. Thus, the merging approach should be able to allow the proper analysis
with empty values.

Furthermore, the original DWs may have common or different dimensions. Therefore,

merged DW may have a star or constellation schema.

1.3 Our Process Overview

As a result, we define in this chapter an automatic approach to merge two multidimen-
sional DWs especially modelled by star schema (i.e. schema containing one fact) at both
schema and instance levels, which (1) generates an integrated DW conforming to the
multidimensional structures of the original DWs, (2) integrates the original instances into
the integrated DW and is compatible with empty values generated during the merging
process, (3) generates a star or constellation schema in different cases.

Merging two DWs implies matching steps and steps dedicated to the merging of di-
mensions and facts. The matching of parameters and measures are based on syntactic
and semantic similarities (Meng et al., 2013)(Elavarasi et al., 2014) for the attribute or
measure names. Since the matching is intensively studied in the literature, we focus in
this paper only on the merging steps like illustrated in Fig [I[.1l A DW is composed of
dimensions and facts, a dimension contains different hierarchies where there are different
levels. So in regard to the merging, first, we define an algorithm for merging a matched
level of two hierarchies at the schema level. Second, we propose an algorithm of hierarchy
merging by applying the level merging at the schema level. Third, we define an algorithm
of dimension merging concerning both instance and schema levels and by applying the
hierarchy merging. Finally, we define an algorithm of star schema merging which may is
based on dimension merging and which generate a star schema or a constellation schema
and which merge the fact instances.

1.4 Outline

The remainder of this chapter is organized as follows. In Section [2| we review the related
works about the matching and merging of DW. In Section [3] 4, [5] and [6], we explain our
proposed automatic approach to merge different DWs including respectively the merging
of hierarchy levels, hierarchies, dimensions and facts by giving algorithms concerning
both the schema and instance levels. In Section (7, we present our experiments in order
to validate our approach. Finally, in Section |8 we conclude this chapter.

60

2. RELATED WORK 61

Level merging .
(Schema) [. . = .

Hierarchy merging
(Schema)

))) =>
Dimension merging
(Schema and instance)

=

2 l i
8- 8

Fact merging
and i

Figure III.1: Overview of the merging process

2 Related Work

The DW merging process concerns matching tasks and merging tasks. The matching task

consists in generating correspondences between similar elements (dimension attributes

and fact measures) of schemas (Bernstein et al., [2011a)) to retrieve links of two DWs.

The merging task is more complex. The merging should be carried out at two levels:

the schema level and the instance level. Schema merging is the process of integrating

several schemas into a common, unified schema (Quix et al., 2007). Thus DW schema

merging aims at generating a merged unified multidimensional schema. The instance
level merging treats the integration and the handling of the instances. In the following of
the chapter, “matching” will be used to designate schema matching without considering

instances, while “merging” will be used to refer to the complete merging of schema and

the corresponding instances. The general data matching (Rahm and Bernstein) 2001}
Bernstein et al., 2011b; Dorneles et al., 2011) and merging (Lin and Mendelzon| |1998;
Pottinger and Bernstein| [2003; Bleiholder and Naumann, [2009) techniques are already

widely researched in the literature. However, these matching or merging processes are
mainly dedicated to the relational database, XML and flat data which are different from
DW. They do not have multidimensional structure and constraints, such as the hierarchies
in the DW. So we focus on the specific DW matching and merging. The approaches with
respect to the DW matching and merging are as follows.

61

2. RELATED WORK 62

2.1 Multidimensional Schema Matching

(Bergamaschi et al., [2011) propose an approach for matching aggregation levels of DW
dimensions. Their technique is based on the fact that the cardinality ratio of two aggre-
gation levels which are in a same hierarchy is nearly always the same no matter in which
dimension they are. So they create and manipulate the cardinality matrix for different
dimensions to discover the matched attributes. However, this approach only consider the

dimension level matching.

A process to automatically match multidimensional schemas is proposed in (Banek
et al., 2007). They match two multidimensional schemas by evaluating the semantic
similarity of the multidimensional component names. For attributes and measures, they
also compare the data type. They use the selection metric of bipartite graph to determine
the mapping choice and define rules aiming at preserving the partial orders of hierarchies
for the mapping of hierarchies. (Riazati and Thom) 2011)) aim to match star schemas by
proposing a new representation model of star schema. The model is described by UML
and it adds supplementary metadata inferred from the relational schema. Then existing
matching systems can be used to match the schemas. In (Elamin et al.; 2018]), the authors
propose an approach for multidimensional schema matching in the context of matching a
set of star schemas generated from business requirement and another one generated from
the data sources. They use semantic similarity based on Wordnet to find the matched
fact and dimension names. The DW designer will intervene to check the set of common
facts and manually match the unmatched elements in the other sets.

To summarize, these approaches match multidimensional schemas based on the car-
dinality ratio, similarity of multidimensional elements or metadata. However, the car-
dinality based approach is not reliable because (1) to have the similar cardinality ratio
between same real-world entities, we should make sure that there are enough categories
of the entities and (2) not all pairs of real-world entities have fix cardinality ratio. So the
typical similarity-based matching should be used. It is applied in most of the matching
systems and is well studied. We thus focus on the merging of multidimensional schemas
and instances.

2.2 Multidimensional Schema and Instance Merging

The merging part directs at merging multidimensional DW schemas into one consolidated
schema and merging the instances together. The following approaches concern multidi-

mensional schema and instance merging.

2.2.1 [Feki et al/ (2005)

In this paper, an approach for automatic multidimensional schema merging is proposed.
The approach is composed of two phases: (1) transforming multidimensional schemes

into UML class diagrams, and (2) merging the UML class diagrams. They define several

62

2. RELATED WORK 63

rules to explain how to translate each element of a multidimensional schema into an UML
class diagram element. Then for the merging of the classes in the UML class diagrams,
they propose two linguistic criteria. The first one is based on the class name comparison,
they propose four types of relations including equivalence, generalization, composition
and variation. The classes’ name should be the first three types to be able to be merged.
The second criterion is based on the ratio of the common attributes between classes, the
classes should have the attribute relationship of equivalent, inclusion or strong intersection
to be merged. Finally the classes which satisfy these two types of criteria can be merged

into one class.

2.2.2 |Torlone| (2008)

In (Torlone, 2008), two approaches for merging heterogeneous DWs are proposed. The first
one is called “loosely coupled approach” which aims to select shared data between sources.
Dimensions having common attributes are merged together and only the intersection
of these dimensions are reserved. The other is called “tightly couple approach” which
combines the data of different sources by taking the union of the matched dimensions to
merge two DWs. The common attributes are merged together, the hierarchies remain the
same as the original ones. They do not merge the hierarchies by creating new ones. The

instance merging of the two approaches is realized by a d-chase procedure.

2.2.3 Kwakye et al.| (2013)

An approach of DW merging at the schema and instance levels is proposed in this paper.
They match attributes based on the lexical similarity of schema names and instances
and by considering the schema data types and constraints. Having the mapping corre-
spondences, dimensions or facts having the matched attributes are merged together with
matched attributes merged together. The instance data are then populated by consider-
ing some conflicts. Solutions are also given, such as creating new surrogate keys for the
identifier conflicts.

2.2.4 |Olaru and Vincini| (2014)

In this paper, an approach for merging multidimensional dimensions is proposed. The
merging of hierarchies is based on the cardinality ratio between different dimension levels.
They suppose that the cardinality ratio between same real-world concepts is approach.
Thus they model hierarchies as directed labeled graphs and create a connectivity matrix
whose values are cardinality ratios to find equivalent levels as well as drill-down and roll-
up relationships of the levels to merge dimensions. The merging at the instance level is
realized by clustering the data based on their semantic and syntactic similarities.

63

2. RELATED WORK 64

2.3 Analysis of Merging Approaches

Table [[II.1] shows the comparison of the different DW merging approaches. We compare
these approaches in three aspects: merging level, schema type and considered multidi-

mensional element.

2.3.1 Merging Level

Regarding the merging level aspect, we analyse whether the approaches consider the
merging at both schema and instance levels or at only one level. We can see that (Feki
et al.l |2005) merge DWs at only schema level while the other approaches counter both

schema and instance levels.

2.3.2 Schema Type

Regarding the schema type aspect, we compare the input and output schema type of
each approach. We can observe that the input schema of the four approaches are all
star schema except that (Olaru and Vincini, 2014) only focus on the dimensions. So
the output of (Olaru and Vincini, 2014) is also star schemas with merged dimensions.
(Feki et al., 2005) obtain a UML class diagram as output since they transform the star
schemas into UML class diagrams for the merging. However, the UML representation is
not an universal model of star schema and it should be retransformed into a star schema.
The outputs of (Torlone, 2008)) and (Kwakye et al., |2013) are respectively a constellation
schema and a star schema. However, the merged output schema may not always be one
form, it may be a constellation or a star schema according to the link between the original
facts and dimensions.

2.3.3 Multidimensional Element

Regarding the multidimensional element aspect, we evaluate if each approach takes into
account the merging of all possible multidimensional elements including fact, dimension,
hierarchy and weak attribute. Only (Feki et al., [2005)) consider all these elements, since
they all can be represented in the UML class diagrams. None of the other three approaches
consider the merging of weak attributes. (Torlone, 2008) and (Olaru and Vincini, |2014)) do
not consider the merging of fact tables and only concern about dimensions. The hierarchy
merging is a tough task as we mentioned in Section [1.1] The approach of (Kwakye et al.,
2013)) does not include the hierarchy merging. In (Feki et al. 2005)) and (Torlone, 2008)),
only equivalent levels are merged together, but they do not consider the merging of the
other levels by detecting their possible hierarchical relationships. (Olaru and Vincini,
2014) use cardinality ratio for the hierarchy merging which we do not believe reliable as
we argued in Section [2.1]

64

3. LEVEL MERGING 65

Table II1.1: Comparison of different approaches

Merging Level Schema Type Mutidimensional Element
. . . ‘Weak
) Schema | Instance Input Output Fact | Dimension | Hierarchy Attribute
Feki et al.| (2005) v - Star UML class v v v v

schemas diagram

Torlone| (2008) v v Star Constellation) v v
I A schemas schema

Kwakye et al.| (2013) v v Star Star v v

| A | schemas schema

Olaru and Vincini| (2014) v v Star schema dimensions | Star schema dimensions - v v

2.3.4 Analysis Conclusion

After analysing these approaches, we observe that all the of approaches have the prob-
lem of being incomplete in term of the merging level or in terms of the multidimensional
elements. None of the approaches proposes an appropriate hierarchy merging technique.
Moreover, none of the approaches generates an output schema may be a star or constel-
lation schema.

3 Level Merging

We first discuss about the level merging of two hierarchies at the schema level. When two
parameters of two hierarchies are matched, they can be merged into one parameter. They
also represent the same granularity level. So we should then merge their weak attributes.
Algo. [4] describes the level merging process. We first define an ordered set of map which
will save the matched parameters and the merged weak attributes of the merged level
(line;). Then we loop through each parameters of the two hierarchies (lines_3) and
process two steps composed of the record of matched parameters and the merging of
weak attributes.

3.1 Record of Matched Parameters

The first step consists in finding the matched parameters of the two hierarchies (liney)
and record the matched parameters of Hy and H, into the map (lineg_7). The matched
parameters will later be used for the hierarchy merging.

3.2 Merging of Weak Attributes

For the merged parameters, they may contain different weak attributes. So we have to
merge their weak attributes. The merging of the weak attributes is to take their union:
each two matched weak attributes are merged together into one weak attribute; the merged
weak attributes and the other non-matched weak attributes constitute the merged weak
attribute set of the merged parameter (liner). It is then added into the map (lines). We
can thus update the ordered set of map M (lineg).

Example 3.1. In Fig. ([I[.10, when merging Hy and Hs, for the matched parameters
H,.1dCus and H3.1dCus, they can be merged together. For the weak attributes { NameC'us,

65

4. HIERARCHY MERGING 66

Algorithm 4: mergeLevel(Hy, Hs)
Input : Two hierarchies to be merged H;, H,

Output: An ordered set of map containing of matched parameters and merged
weak attributes M

1 M <« 0;

2 for p/* € Param™ do

3 for p]H2 € Param™ do

4 if pfh :pf"’ then

5 mapM['pi] = pi"*;

6 mapM{'py] = pi;

7 Weakys < Weak™ [p["] UWeak™[pl"];
8 mapM ['weak'] = Weaks;

9 M < M + mapM,;

10 return M;

Age, Email} of Hy and { NameCus, Phone} of Hs, we have H;.NameCus ~ Hs.NameC'us,
they are merged into one weak attribute. So we can get the merged weak attribute set:
{NameCus, Age, Email, Phone}.

The merging example with weak attributes at the schema and instance level are only
shown in Fig. and in Fig. As we already know how to merge weak attributes
of matched parameters, in the following algorithms and examples, for a hierarchy level,
we only keep the parameter for the simplicity.

4 Hierarchy Merging

In this section, we define the schema merging process of two hierarchies coming from
two different dimensions. There are two challenges in this process. The first challenge is
that we should preserve the partial orders of the parameters. The second one is how to
decide the partial orders of the parameters coming from different original hierarchies in
the merged hierarchies. These challenges are solved in algorithm |5(which is achieved by
3 steps: generation of sub-hierarchy pairs, merging of sub-hierarchy pairs and generation
of final hierarchy set.

A sub-hierarchy is a continuous sub-part of a hierarchy which we call the parent hierar-
chy of the sub-hierarchy. This concept will be used in our algorithm. A sub-hierarchy has
the same elements as a hierarchy, but its root parameter is not considered as an identifier.
All parameters of a sub-hierarchy are contained in its parent hierarchy and have the same
partial orders than those in the parent hierarchy. By “continuous”, we mean that in the
parameter set of the parent hierarchy of a sub-hierarchy, between the lowest- and highest-
granularity level parameters of the sub-hierarchy, there is no parameter which is in the
parent hierarchy but not in the sub-hierarchy. We give the following formal definition for

66

4. HIERARCHY MERGING 67

sub-hierarchy.

Definition 4.1 (Sub-hierarchy). A sub-hierarchy SH of a hierarchy H € H® in a di-
mension D is defined as SH = Sub(H,p{™ pSH) =< pPH .. p57 > which is an ordered
set of parameters, Yk € [1..v], py® € Param®™. According to the relationship between a

sub-hierarchy and its parent hierarchy, we have:
1. v pst e SH, pi"" <sm p5™ = p?", p3" € Param™ Api" <y p37,
2. vpi',p3' py' € Param™, pi' Xy py' Api' 2m p Api' pi € SH = pi € SH.

In Algo. |5, we first call the algorithm of level merging to find the matched parameters
(lineq). If there is no matched parameter (liney), the merged results will be two hierarchy
sets containing respectively the two original hierarchies (lines_s5). In the case where there
are matched parameters, we can carry out the merging of the two hierarchies. We then

explain each step of the hierarchy merging.

4.1 Generation of Sub-hierarchy Pairs

The algorithm generates pairs containing 2 sub-hierarchies (SH; and S Hs) of the original
hierarchies whose lowest and highest level parameters are adjacent in the ordered set
M that we obtain (linejs_14). The last parameters of the two hierarchies are the last
parameters of the last sub-hierarchy pair. However, if they are not matched, they are not
added into M so that we are not able to create the last sub-hierarchy pair. So in this

case where the last parameters of the two hierarchies do not match, they are add into M

(lineg,n).

Example 4.1. In Figure we have two hierarchies Hy and Hy, and H,.IdCus ~
Hy. IdCus, Hi.Clity ~ Hy.Clity, H,.Country ~ Hy.Country. So for the first sub-hierarchy
pair, the first parameter of SH{ and SHJ is IdCus and their last parameter is Ciity, thus
we have: SH} =< IdCus, City >, SH} =< IdCus, City >. In the second sub-hierarchy
pair, we get the sub-hierarchy of Hy from City to Country : SH? =< City, Region, Country >,
and the sub-hierarchy of Hy from City to Country : SH2 =< City, Country >. In Fig-
ure[IIL.28, we also have the hierarchy Hy, and we have another hierarchy Hs. The matched
parameters are Hy.I1dCus ~ Hs.IdCus, Hi.Region ~ Hs.Region and H,.Country =~
Hs.Country. So we get the first parameter pair Shi =< IdCus, City, Region >, SH} =<
IdCus, Deparment, Region > and the second parameter pair SH? =< Region, Country >,
SH? =< Region,Country >. The last parameters of Hy, and Hs do not match, <
Country, Continent > is thus added into the matched parameter pair M of the algorithm
so that the last sub-hierarchies of Hy and Hz are SH? =< Country > and SH3 =<
Country, Continent >.

67

4. HIERARCHY MERGING 68
Algorithm 5: mergeHierarchies(Hy, Hy)
Input : Two hierarchies to be merged H,, H,
Output: A set of merged hierarchies H,, or two sets of merged hierarchies H,,;
and H,,»
1 M < mergeLevels(Hy, Hs);
2 if M = () then
3 Hml < {Hl},
4 ng < {HQ},
5 return Hy, Hy,
6 else
7 H,, + 0;
8 | mapMy.|'p)] = Param™[|Param™| — 1];
9 mapMy,s|'py] = Param™[|Param™2| — 1];
10 if mapM,qs:|'p)] # mapM,[py] then
11 | M« M + mapMiqq;
12 for i=1 to |[M|—1do
13 SHj = Sub(Hy, [M[i —1]['py], M[i]['P]]);
|| SHS « Sub(Hy, [M[i — R, MELR)):
15 if SH; C SH} then
16 L SHj, «+ {SH}};
17 else if SH: C SHi then
18 | SHj, < {SH}};
/* FD(SH},SH}) returns FDs of the parameters of SHj, SH} */

19 else if FD(SH!, SHi) # FD(SH!)U FD(SH}) then
20 SHiy + 0;
21 for SH, € getAllHierarchies(FD(SH{, SH})) do
22 L SHi, + SHi,+ SH,;
23 else
24 | SH}, < {SHy,SH,};
25 H,, < {H,.extend(SH,) : H, € H,,, SH, € SHi,};
26 | if idPt ~ id”? then
27 HmFHmU{Hl,HQ},
28 return H,,
29 else
30 SHY < Sub(Hy,pi™, M[0]['p)]);
31 SH « Sub(Hy, py, M[0]['ph));
32 H, < {SHY.extend(H,) : Hy € H,, } U{H,};
33 H,o < {SHY.extend(Hy) : Hy, € H,,} U{H,};
34 return H,,1, H,.»

68

4. HIERARCHY MERGING 69

~Count 77— Gountr
T s @I

A S
; | - “ SH22
Ré ion
SHi? (p :;g

'“‘“R,égion

S

Dé artment
i SHp!

s QY

SH' LT

Id:Cus

H1 H2 Hq H2

Figure I11.2: Example of generation of sub-hierarchy pairs

4.2 Merging of Sub-hierarchies

We then merge each sub-hierarchy pair to get a set of merged sub-hierarchies and combine
each of these sub-hierarchy sets to get a set of merged hierarchies (linejs_s5). The matched
parameters will be merged into one parameter, so it’s the unmatched parameters that we

should deal with. We have 2 cases in terms of the unmatched parameters.

First Case In the sub-hierarchy pair, if one of the sub-hierarchies has no unmatched
parameter, we obtain a sub-hierarchy set containing one sub-hierarchy whose parameter
set is the same as the other sub-hierarchy (linejs_1g).

Example 4.2. For the first parameter pair SH? and SH2 of Hy and Hy in Fig. III.2d,
we see that SHZ does not have any unmatched parameter, so the obtained sub-hierarchy
set contains one sub-hierarchy whose parameter set is the same as SH} which is SH, =<

City, Region, Country >.

Country Country

Region Country Region

City City City
SH42 SH2? SHq2?

Figure I11.3: Example of hierarchy merging

Second Case The second case is that both two sub-hierarchies have unmatched pa-
rameters (linejg_s5). We then see if these unmatched parameters can be merged into

69

4. HIERARCHY MERGING 70

one or several hierarchies and discover their partial orders. Our solution is also based on
the functional dependencies (FDs) of these parameters. To be able to detect FDs of the
parameters of the two sub-hierarchies, we should make sure that there are intersections
between the instances of these two sub-hierarchies which means that they should have
same values on the root parameter of the sub-hierarchies. If it is able to detect FDs, and
we can discover new FDs apart from the original FDs (linejg), we can apply the Algo.
in the Chapter Ll to get a set of sub-hierarchies (linegy_92). If it is not possible to discover
FDs, the two sub-hierarchies are impossible to be merged and we obtain a sub-hierarchy
set containing the two original sub-hierarchies (liness_o4).

Example 4.3. For the first sub-hierarchy pair SH{ and SH; of H, and Hy in Fig.
we suppose that their instances are like presented in Figure[[II.Jl There is an unmatched
parameter City in SH} and an unmatched parameter Department in SHi. We have
to decide their partial order. So we take the intersection of their instance which is the
dashed framed part in Fig. [IIL4. By detecting FDs, we can find the relationship Clity —
Departement. So we obtain SH{, =< IdCus, City, Department, Region >.

IdCus | City |Region | Country IdCus | Department | Region |Country| Continent
¢t feTi] R |iceNt ffcr | o1 | R1 |icNt | cTNt
C2 |CT2| R1 CN1 Cc2 D3 R1 ECN1 CTN1
C3 |CT2| R1 CN1 C3 D3 R1 ECN1 CTN1
C4 CT3 R3 CN2 C4 D4 R3 ECN2 CTN1
C5 |CT5| R2 CN1 C6 | D4 | R3 ECN2 CTN1
oo ot m [one | [os| o2 | m |ow | om
C7 |CT3| R3 CN2 Cc9 D5 R4 CN3 CTN2
Instance of Hq Instance of H3
IdCus| City |Department|Region
C1 | CT1 D1 R1
C2 | CT2 D3 R1
C3 | CT2 D3 R1
C4 | CT3 D4 R3
C6 | CT4 D4 R3

Instance of intersection of
SH," and SH5'

Figure I11.4: Example of hierarchy instance

After the merging of each sub-hierarchy pair, we extend the final merged hierarchy set
by the new merged result (liness).

4.3 Generation of Final Hierarchy Set

The generation of the final hierarchy set is depicted in liness_34. The two original hier-
archies may have different instances, so there may be empty values in the instances of
the merged hierarchies. Some empty values can be replaced, which will be presented in

70

4. HIERARCHY MERGING 71

Region
Region Region Department
City Department City
IdCus IdCus IdCus
SH' SHy' SHyy!

Figure II1.5: Example of hierarchy merging

the next chapter. But not all empty values can be replaced. The empty values generate
incomplete hierarchies and make the analysis difficult. Inspired by the concept of struc-
tural repair (Ariyan and Bertossi, 20<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>