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Résumé

De nombreux phénomènes physiques peuvent être décrits par des modèles mathématiques similaires: cristaux liquides, supraconductivité, micromagnétisme, elasticité, formation de motifs, etc. Les états d'équilibre minimisent une certaine énergie, caractérisée par la compétition entre deux effets: un terme pénalise les déformations, mais un autre terme favorise les transitions de phases. Cette compétition encourage la formation de singularités: des déformations abruptes dans de petites régions où se concentrent les transitions de phases, et des déformations minimales en dehors. Les méthodes mathématiques du calcul des variations et des équations aux dérivées partielles permettent d'étudier les propriétés de ces états et de leurs singularités.

Les travaux présentés dans ce mémoire portent sur l'analyse de deux types de singularités: singularités ponctuelles ou linéaires dans des systèmes de dimension 3, et singularités linéaires dans des systèmes de dimension 2. Cette distinction reflète aussi leurs liens avec deux types d'équations aux dérivées partielles: elliptiques ou hyperboliques.

L'étude des singularités du premier type est motivée ici essentiellement par la physique des cristaux liquides, et structurée en deux axes de recherche: comprendre l'effet de l'immersion de particules étrangères, et celui d'une anisotropie dans la pénalisation des déformations. Pour le premier axe, la présence de particules impose des déformations au cristal liquide, et l'objectif est de décrire les singularités engendrées par ces déformations, ainsi que les interactions entre particules immergées. Pour le deuxième axe, l'anisotropie des déformations, physiquement plus réaliste, restreint considérablement les outils mathématiques disponibles: le défi principal est de développer de nouvelles techniques qui permettent d'analyser efficacement les modèles anisotropes.

L'étude des singularités du second type est motivée par de très divers phénomènes physiques: cristaux liquides, élasticité, micromagnétisme, formation de motifs, physique statistique. L'objectif est de comprendre les phénomènes de concentration de singulartiés linéaires: peuvent-elle s'accumuler au point de former des structures fractales? L'accent est mis ici sur la quantification des déformations admissibles et la stabilité de structures élémentaires bien identifiées. Du point de vue mathématique, ces questions présentent l'originalité d'aborder des équations hyperboliques par le biais du calcul des variations.

Chapter 1

Introduction

This memoir contains a survey of my post-PhD work on singularities arising in phase transition models of Ginzburg-Landau type. I divided these models in two big categories depending on the type of singularities they feature: singularities of codimension 2 or 3, motivated mostly by the physics of liquid crystals; and line singularities in two dimensions, which can have various physical motivations (liquid crystals, but also micromagnetism, elasticity, statistical physics, etc.).

All variational models under consideration are characterized by the competition, at a typically small length-scale ε, of at least two terms: an elastic term penalizing deformations, and a potential term penalizing values away from a given manifold. A classical example is the Ginzburg-Landau energy

ˆ 1 2 |∇u| 2 + 1 ε 2 (1 -|u| 2 ) 2 dx,
where the potential penalizes values away from S 1 ⊂ R 2 . More generally, the potential can penalize values away from a submanifold N ⊂ R k , and additional terms can be present. The limiting objects, as ε → 0, are energy-minimizing manifold-valued maps, which solve an elliptic PDE. They can have singularities of codimension 2 (with infinite energy), and of codimension 3 or higher (with finite energy).

In some cases, an additional divergence constraint can be imposed (directly or via other terms in the energy), and we obtain a second type of models, where the limiting objects are divergence-free manifold-valued vector-fields. The corresponding PDE is usually hyperbolic, and they typically have singularities of codimension one.

In Chapter 2 I present results on models of the first type arising in the description of liquid crystals, and in Chapter 3 on two-dimensional models of the second type.

The type of models studied in Chapter 2 has a rich mathematical history, which includes the theory of harmonic maps -see for instance the monograph [Simon, 1996] -and the analysis of the Ginzburg-Landau energy initiated in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. I focus here on two specific lines of research motivated by the physics of liquid crystals: in § 2.2 I present results about exterior problems modelling the presence of foreign particles immersed in liquid crystals, and in § 2.3 about the effects of elastic anisotropy on the regularity and qualitative properties of minimizing configurations.

In Chapter 3, the limiting objects are weak solutions of the eikonal |∇u| = 1 (equivalently, divergence-free S 1 -valued vector fields m = ∇ ⊥ u), or of Burgers' equation u t + (u 2 /2) x = 0. These are extremely classical equations, with a well-studied class of specific solutions: viscosity solutions for the eikonal equation, entropy solutions for Burgers' equation. Here, however, the variational models under study lead to a much larger class of solutions which are still far from being well-understood. I present results on their regularity, and about rigidity and stability properties of specific solutions within that class.

• "Saturn ring defect around a spherical particle immersed in nematic liquid crystal", with S. Alama, L. Bronsard and D. Golovaty. Calc. Var. Partial Differential Equations, 2021. Chapter 2

Defects in liquid crystals

2.1 Introduction

Order parameters

Liquid crystals are a state of matter characterized by their orientational order. There are many different types of liquid crystals with different levels of order and symmetries.

Here we focus mostly on nematic liquid crystals, which present the most basic type of orientational order : roughly speaking, molecules are elongated and tend to align in the same direction. Two types of macroscopic order parameter can be used to describe the nematic phase:

• a unit director n ∈ S 2 , giving the local direction of alignment of the molecules,

• or a so-called Q-tensor Q ∈ R 3×3 sym , tr(Q) = 0, whose eigendirections and eigenvalues reflect the local alignment (via the anisotropic response to external fields caused by orientational order), and which can be related to the statistics of alignement of the molecules at the microscopic level [De Gennes and Prost, 1993].

The Q-tensor order parameter can describe phase transitions between non-ordered and ordered states. One can distinguish three types of phases depending on their symmetry:

• Isotropic: Q commutes with all rotations; all eigenvalues are equal and Q = 0.

• Uniaxial: Q commutes with rotations of a given axis n ∈ S 2 ; two eigenvalues are equal but nonzero, and one can write Q in the form

Q = s n ⊗ n - 1 3 I , s ∈ R \ {0}, n ∈ S 2 .
(2.1)

• Biaxial: Q does not commute with any nontrivial rotation; its three eigenvalues are distinct.

The director description can be interpreted via (2.1) as considering only uniaxial phases with fixed eigenvalues. Because n and -n are equivalent in this context (in agreement with head-to-tail symmetry of nematic molecules), it is actually more accurate to consider n ∈ RP 2 = S 2 /{±1}. (This leads to interesting lifting issues which we will not discuss here in detail, see e.g. [START_REF] Bethuel | Some questions related to the lifting problem in Sobolev spaces[END_REF], Ball and Zarnescu, 2011, Bedford, 2016, Ignat and Lamy, 2019, Canevari and Orlandi, 2019].)

Energy functionals

A nematic configuration in a domain Ω ⊂ R 3 will be described by a map

n : Ω → S 2 , or Q : Ω → S 0 = Q ∈ R 3×3 sym : tr Q = 0 .
Singularities of the map n, or of the map Q's eigenvectors, are called defects. Equilibrium configurations are expected to be local minima of a certain energy, and we wish to exploit this variational characterization to gain insight into the physics of defects.

In a simplified setting, the energy of a director configuration is given by

E(n) = ˆΩ |∇n| 2 dx,
and minimizing configurations (with respect to their own boundary conditions) are S 2valued harmonic maps. They are smooth away from a discrete set of point singularities [Schoen andUhlenbeck, 1982, Schoen andUhlenbeck, 1983], all modeled on the radial map ±x/|x| [START_REF] Brezis | Harmonic maps with defects[END_REF].

Again in a simplified setting, the energy of a Q-tensor configuration is of the form

E ε (Q) = ˆΩ 1 2 |∇Q| 2 + 1 ε 2 f (Q) dx, (2.2) 
where f (Q) ≥ 0 is a potential accounting for phase transitions, and ε > 0 is the characteristic length scale at which the two terms compete.

The potential f (Q) is a quartic polynomial whose coefficients depend on material properties. Most relevant to us here is that it is frame invariant, f (RQR -1 ) = f (Q) for any isometry R ∈ O(3), and minimized by uniaxial Q-tensors:

f -1 ({0}) = s * n ⊗ n - 1 3 I : n ∈ S 2 =: U * ≈ RP 2 , (2.3)
where s * > 0 depends on the precise expression of f . Moreover that minimum is nondegenerate: the Hessian of f at any element Q * ∈ U * is positive definite in directions orthogonal to the tangent plane T Q * U * .

Hence for ε 1 one expects minimizers of the energy (2.2) to satisfy

Q(x) ≈ s * n(x) ⊗ n(x) - 1 3 I ,
where n : Ω → S 2 minimizes the Dirichlet energy. This approximation is very good away from singularities of n [Majumdar andZarnescu, 2010, Nguyen andZarnescu, 2013], and the fine properties of singularities can be understood by zooming in at scale ε, which leads to the study of entire solutions of the Euler-Lagrange equations ∆Q = ∇f (Q). Such considerations are extremely similar to the analysis of the Ginzburg-Landau energy, pioneered in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], where R 2 -valued maps approach S 1 -valued maps. Yet several differences arise, due for instance to the different topological properties of S 1 and RP 2 , the higher codimension of the embedding RP 2 ⊂ S 0 versus S 1 ⊂ R 2 , and the specific symmetries and phases of Q-tensors. Moreover, physical applications motivate new types of questions.

In the above simplified models, the elastic energy densities |∇n| 2 and |∇Q| 2 are highly symmetric. More realistic models must, however, take into account elastic anisotropy: |∇n| 2 may be replaced by the Oseen-Frank energy density

k 1 (∇ • n) 2 + k 2 (n • ∇ × n) 2 + k 3 |n × (∇ × n)| 2 ,
for some elastic constants k 1 , k 2 , k 3 > 0 respectively associated to splay, twist and bend deformations (configurations for which only the corresponding term is nonzero). For k 1 = k 2 = k 3 (the one-constant approximation) one recovers an energy density proportional to |∇n| 2 , up to a null Lagrangian term. Similarly, |∇Q| 2 may be replaced by A(Q) [∇Q], where A(Q) is a positive definite quadratic form on gradients of S 0 -valued maps. The reduced symmetry of these more general models strongly restrict the available mathematical tools, and many questions are open.

In the rest of this chapter I will describe my and my coauthors' contributions on two types of problems about minimizers of these energy functionals:

• understanding the effects of foreign particles immersed in nematic configurations ( § 2.2),

• and understanding the effects of elastic anisotropy ( § 2.3).

Nematic colloids

Nematic colloids are systems composed of foreign particles immersed in nematic liquid crystal. Nematic alignment is modified by these particles via their anchoring properties: liquid crystal molecules are forced to align in a certain way at the particles' surfaces. Different aspects of such systems lead to different types of mathematical questions. One can for instance consider densely packed colloid particles and study them from a homogenization perspective [START_REF] Berlyand | Homogenization of a Ginzburg-Landau model for a nematic liquid crystal with inclusions[END_REF], Calderer et al., 2014[START_REF] Canevari | Polydispersity and surface energy strength in nematic colloids[END_REF], Canevari and Zarnescu, 2020a]. Here we concentrate instead on the effect of a single particle, with the long-term goal of characterizing interactions between particles that are not too densely packed. This is motivated by the so-called electrostatic analogy, an approximation that can be found in the physics literature, where each particle is replaced by a singular forcing term in a linearized equation: the form of the singular term depends on the type of defects and long-range deformations induced by the single particle (see e.g. the review article [Muševič, 2019]).

To fix ideas, consider a spherical particle represented by the unit ball B ⊂ R 3 , so the liquid crystal is contained in the exterior domain Ω = R 3 \ B, and assume that the particle's surface promotes radial anchoring: within a director description, this amounts to n = e r on ∂B, where e r = x |x| .

Far away from the particle, uniform alignment is favored, say along the e 3 direction:

n(x) → e 3 for |x| → +∞.
The topological constraint imposed by these boundary conditions forces the appearance of singularities: the map e r : S 2 → S 2 is not homotopic to a constant within S 2 -valued maps. Two types of defects are observed in experiments:

• a single point singularity forming a dipole with the particle,

• or a line singularity forming a 'Saturn ring' around the particle. Remark 2.1. To understand how the topological constraint is resolved by such singularities, it is convenient to think about axisymmetric configurations, fully determined by their restriction to a planar slice containing the e 3 axis,

n : R 2 \ D → S 1 ,
where D ⊂ R 2 is the unit disk. The boundary datum n ∂D = e r has winding number, or degree, equal to 1. This topological charge needs to be cancelled in π 1 (S 1 ) ≈ Z in order to match the degree 0 constant map at infinity. The simplest way to do that is to create one point singularity of degree -1, placed on the e 3 axis: this gives the dipole configuration; see Figure 2.1. To describe the Saturn ring configuration, recall that n and -n should actually be equivalent, so singularities of half-integer degree are allowed (half a turn brings n to -n). Therefore the degree 1 boundary data can also be cancelled by two point singularities of degree -1/2, to the left and the right of D: in the three-dimensional axially symmetric picture, these are the trace of a ring singularity around the particle; see Figures 2.1 and 2.3. (Similarly, in the absence of a foreign particle, a +1 point defect is topologically equivalent to a +1/2 ring defect, and determining the occurrence of both configurations has motivated several interesting works [Dipasquale et al., 2021a, Dipasquale et al., 2020[START_REF] Dipasquale | Toruslike solutions for the Landau-de Gennes model[END_REF], Yu, 2020].)

• Figure 2
.2: Schematic view of a (-1/2) defect in a planar slice, to the right of the particle's equator. Along a horizontal ray, the director goes from e r at the particle's surface, to e 3 at infinity. Rotating this picture around the vertical axis gives a Saturn ring as in Figure 2.1.

There are two important qualitative differences between these topologically admissible configurations: their symmetry and orientability properties. First, unlike the dipole, the Saturn-ring is mirror-symmetric across the equatorial plane. Second, the dipole configuration is orientable: it can be described by an S 2 -valued map continuous outside the singular point. But the Saturn ring requires an RP 2 -valued map: an S 2 -valued map would be singular on the full equatorial plane.

In my PhD thesis, we gave, in collaboration with S. Alama and L. Bronsard, a mathematical justification of the occurrence of these two configurations depending on the particle's radius [START_REF] Alama | Minimizers of the Landau-de Gennes energy around a spherical colloid particle[END_REF]: within the Q-tensor description, we proved that minimizers have a Saturn ring structure if the particle is much smaller than the characteristic length scale ε, and a dipole structure if the particle is much larger. Among many questions left open by that work, one concerns the description of Saturn ring structures around not-so-small particles, which seem stable in experiments; and another one is the asymptotic description of nematic alignment far away from the particle, which is at the basis of the aforementioned electrostatics analogy. These questions are the subject of the three works I describe in the rest of this section:

• In [START_REF] Alama | Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime[END_REF] with S. Alama and L. Bronsard we investigate the stabiliz-ing effect of an external magnetic field on the Saturn ring structure.

• In [START_REF] Alama | Saturn ring defect around a spherical particle immersed in a nematic liquid crystal[END_REF] with S. Alama, L. Bronsard and D. Golovaty we obtain Saturn ring configurations around large particles as minimizers subject to a mirror symmetry constraint.

• In [START_REF] Alama | Far-field expansions for harmonic maps and the electrostatics analogy in nematic suspensions[END_REF] with S. Alama, L. Bronsard and R. Venkatraman we study the far-field expansion of minimizing configurations and characterize its first coefficient as a function of the particle and its anchoring properties.

The effect of an external field

Experiments [START_REF] Gu | [END_REF]Abbott, 2000, Loudet and[START_REF] Loudet | [END_REF] and numerical simulations [Fukuda et al., 2004a, Fukuda andYokoyama, 2006] have demonstrated that applying a strong enough electric or magnetic field stabilizes the Saturn-ring defect around a colloid particle. A heuristic explanation is proposed in [Stark, 2002, Fukuda andYokoyama, 2006]: the applied field favorizes uniform alignment, hence confines deformations to a thin region around the particle. Under this confinement, conjectured orders of magnitude suggest that the Saturn ring costs less energy than the dipole, provided the external field has high enough amplitude. In this section, we present energy bounds proved in [START_REF] Alama | Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime[END_REF] and showing that, although the orders of magnitude conjectured in [Stark, 2002, Fukuda andYokoyama, 2006] seem incorrect, the minimizing configuration should indeed be a Saturn ring when the field's amplitude is well above a critical value.

Following [Fukuda et al., 2004a, Fukuda andYokoyama, 2006] we make the simplifying assumption that the external field is constant throughout the system: very far from the challenging mathematical analysis of interactions between electromagnetic field and nematic material (see e.g. the monograph [START_REF] Sandier | Vortices in the magnetic Ginzburg-Landau model[END_REF] for superconductors), we simply want to identify, in the most elementary mathematical setting, the confinement mechanism described in [Stark, 2002]. This amounts to adding a symmetrybreaking term to the Landau-de Gennes energy (2.2):

E ε,η (Q; Ω) = ˆΩ 1 2 |∇Q| 2 + 1 ε 2 f (Q) + 1 η 2 g(Q) dx.
(2.4)

Here the new characteristic length η is related to the amplitude h of the applied field

via η ∼ ε/h. The potential g(Q) = 2/3 -Q 33 /|Q| (and g(0) = 0) satisfies g(Q) ≥ 0 and g -1 ({0}) = {λ Q ∞ : λ ≥ 0} , Q ∞ = e 3 ⊗ e 3 - 1 3 I ,
hence induces alignment along the direction e 3 of the applied field. Recall that the domain Ω = R 3 \ B is the exterior of the unit ball representing the (rescaled) particle.

The uniform alignment favored by the external field competes with radial anchoring conditions at the particle surface:

Q = Q b = s * e r ⊗ e r - 1 3 I on ∂Ω = ∂B.
(2.5)

Here s * > 0 is uniquely determined by the potential f via (2.3). The confinement effect comes from the competition between field-induced alignment and boundary anchoring, which suggests a boundary layer of width η.

One way of characterizing the Saturn ring configuration is via its mirror symmetry with respect to the equatorial plane {x 3 = 0}, which is completely broken by the dipole configuration. For a high enough external field, this symmetry is satisfied asymptotically by the energy of minimizers:

Theorem 2.2. If η ε > 0 is such that 0 < η ε 1 | ln ε| as ε → 0,
and Q ε : Ω → S 0 minimizes E ε,ηε with radial anchoring conditions (2.5), then

E ε,ηε (Q ε ; Ω ∩ {x 3 > 0}) ∼ E ε,ηε (Q ε ; Ω ∩ {x 3 < 0}) as ε → 0.
In terms of external field amplitude, the condition η 1/| ln ε| corresponds to h ε| ln ε|, in agreement with the critical value h c ≈ ε| ln ε| conjectured in [START_REF] Fukuda | Stability of the director profile of a nematic liquid crystal around a spherical particle under an external field[END_REF]]. Theorem 2.2 is proved in [START_REF] Alama | Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime[END_REF] as a consequence of more precise energy asymptotics: we show that the energy is concentrated in a boundary layer of size η, where a one-dimensional transition takes place, along radial rays, from the boundary value Q b to a field-aligned state proportional to Q ∞ .

The energy of such one-dimensional transition is given by

F λ (Q) = ˆ∞ 1 dQ dr 2 + λ 2 f (Q) + g(Q) dr,
where λ ∈ [0, ∞] is the limit of the ratio η/ε. The case λ = ∞ should be understood as imposing that Q takes values in U * = f -1 ({0}). The energy of the boundary layer is then described via the function D λ : S 0 → [0, ∞] given by

D λ (Q 0 ) = min F λ (Q) : Q ∈ H 1 loc ([1, ∞); S 0 ), Q(1) = Q 0 . (2.6)
The existence of a minimizer can be shown using the direct method of the calculus of variations. Moreover the function D λ is continuous on its domain {D λ < ∞}, and its values depend continuously on λ. (The degenerate case λ = 0 was left aside in [START_REF] Alama | Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime[END_REF] because finite-energy maps do not necessarily have a limit as r → ∞, but this constitutes in fact no obstacle and that case can be included with minor modifications.)

The main result of [START_REF] Alama | Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime[END_REF] states that, to main order, the energy corresponds indeed to that boundary layer.

Theorem 2.3. Let η ε > 0 be such that 0 < η ε 1 | ln ε| and η ε ε → λ ∈ [0, ∞] as ε → 0,
and Q ε : Ω → S 0 minimize E ε,ηε with radial anchoring conditions (2.5). For any measurable U ⊂ S 2 , the energy in the cone

C(U ) = {tω : t > 1, ω ∈ U } ⊂ Ω satisfies E ε,ηε (Q ε ; C(U )) ∼ 1 η ε ˆU D λ (Q b (ω)) dH 2 (ω), as ε → 0.
This implies the asymptotic mirror symmetry stated in Theorem 2.2 because the boundary condition Q b is itself symmetric.

The proof of Theorem 2.3 relies on a lower bound obtained via an elementary scaling argument, and a matching upper bound, obtained via different methods for λ < ∞ and λ = ∞. We focus here on the case λ = ∞, which is more interesting because η is closer to the critical value 1/| ln ε|. Moreover we have a more precise description in that case, because minimizers of F ∞ can be determined explicitly:

Proposition 2.4. For n b ∈ S 2 of spherical coordinates (θ, ϕ) ∈ [0, π] × [0, 2π) with θ = π/2, and Q b = s * (n b ⊗ n b -I/3) ∈ U * , the minimum D ∞ (Q b ) in (2.6) is attained exactly by a map r → Q(r, θ, ϕ) of the form Q(r, θ, ϕ) = s * n(r, θ, ϕ) ⊗ n(r, θ, ϕ) - 1 3 I ,
where n(r, θ, ϕ) ∈ S 2 is

• axisymmetric: n(r, θ, ϕ) = R ϕ n(r, θ, 0), for R ϕ the rotation of axis e 3 and angle ϕ,

• and mirror-symmetric: n(r, π -θ, ϕ) = Sn(r, θ, ϕ), for S the reflection across e ⊥ 3 .

Moreover, in the upper half domain {r ≥ 1, 0 ≤ θ < π/2}, the map n is smooth, and

|n -e 3 | 2 + |∇n| 2 ≤ Ce -κr ,
for some constants C, κ > 0 depending only on s * .

Remark 2.5. The map n is given explicitly, for 0 ≤ θ < π/2, by n(r, θ, ϕ) = (cos ϕ sin Θ(r, θ), sin ϕ sin Θ(r, θ), cos Θ(r, θ)) ,

Θ(r, θ) = 2 arctan e κ 2 (1-r) tan θ 2 , κ = (24) 1 4 s * .
The proof follows classical ideas for the existence of heteroclinic connections, see e.g. [Sternberg, 1991]. This also provides the explicit value

D ∞ (Q b ) = s * κ(1 -| cos θ|). For θ = π/2, the problem D ∞ (Q b
) admits two minimizers, described by the left and right limits n(r, (π/2) + , ϕ) and n(r, (π/2) -, ϕ).

The upper bound in Theorem 2.3 for λ = ∞ is obtained by constructing a comparison map with a boundary layer given by Proposition 2.4:

Q(r, θ, ϕ) ≈ Q 1 + r -1 η , θ, ϕ .
Because Q is discontinuous at the equatorial plane {x 3 = 0} = {θ = π/2}, this needs to be modified around that plane, and replaced by a Saturn ring defect with energy cost of order | ln ε|, hence the upper bound

min E ε,η ≤ 1 η ˆS2 D ∞ (Q b ) dH 2 + s 2 * π 2 | ln ε| + O (1) .
(2.7)

The map providing this upper bound is U * -valued, except in the defect core of the Saturn ring, of thickness ε. The second term is negligible if | ln ε| 1/η, and this is where the critical value η ∼ 1/| ln ε| comes from.

One can be slightly more precise concerning this critical value, by recalling that Saturn ring and dipole can be distinguished not only via their symmetry, but also through their orientability properties. Because in the regime ε η (λ = ∞) we expect the boundary layer to be mostly U * -valued, it makes sense to consider U * -valued competitors. We call a U * -valued map Q orientable if it can be written in the form

Q = s * n ⊗ n - 1 3 I ,
where n : Ω → S 2 has finite energy ´Ω |∇n| 2 dx < ∞. In that case, the value of n outside the boundary layer must choose one of the two orientations ±e 3 (which would be equivalent in the nonorientable RP 2 -valued setting). With this restriction, the minimization of F ∞ provides a value twice as high (not four times, as erroneously stated in [Alama et al., 2018, Proposition 1.6]), and we deduce that

min {E ε,η (Q; Ω), Q : Ω → U * orientable} ≥ 2 η ˆS2 D ∞ (Q b ) dH 2 .
Comparing with (2.7), this suggests that the Saturn ring configuration has lower energy whenever η < β c /| ln ε|, where

s 2 * π 2 β c = ´S2 D ∞ (Q b ) dH 2
, that is, s * β c = 2κ/π. Following our work [START_REF] Alama | Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime[END_REF], the critical regime η ∼ β/| ln ε| has been studied in much greater detail in [START_REF] Alouges | The Saturn ring effect in nematic liquid crystals with external field: effective energy and hysteresis[END_REF], which the authors even generalize later on to non-spherical geometries [START_REF] Alouges | Convergence to line and surface energies in nematic liquid crystal colloids with external magnetic field[END_REF]. They perform a complete Γ-convergence analysis and are able to describe the regimes in which Saturn ring or dipole are minimizing or locally minimizing. Their conclusions confirm in particular the critical value s * β = 2κ/π (with κ = 2c * in their notations) as the value at which both configurations have the same asymptotic energy.

Saturn-ring configurations under a symmetry constraint

In the absence of an external field, we proved in [START_REF] Alama | Minimizers of the Landau-de Gennes energy around a spherical colloid particle[END_REF] with S. Alama and L. Bronsard that very small particles with radial anchoring generate a Saturn ring defect around them. Since the particle is represented by the unit ball B, this corresponds to the regime ε 1 in the Landau-de Gennes energy (2.2). This approach provides a very good description of the Saturn ring, but is not entirely satisfactory because Saturn rings are observed in practice around quite larger particles [START_REF] Lubensky | Topological defects and interactions in nematic emulsions[END_REF]. In this section we present a description of a Saturn ring configuration for ε 1, obtained in [START_REF] Alama | Saturn ring defect around a spherical particle immersed in a nematic liquid crystal[END_REF] by minimizing the Landau-de Gennes energy under a mirror symmetry constraint. The main result of [START_REF] Alama | Saturn ring defect around a spherical particle immersed in a nematic liquid crystal[END_REF] can be split in two parts:

• Precise energy asymptotics consistant with the presence of a single ring defect in the equatorial plane, at distance ∼ 1/| ln ε| from the particle. This is essentially an adaptation of now-standard arguments from the study of the 2D Ginzburg-Landau functional [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], Struwe, 1994, Jerrard, 1999, Sandier, 1998], and weighted versions of it [START_REF] André | [END_REF]Shafrir, 1998, Beaulieu andHadiji, 1998], together with recent adjustments for the Q-tensor setting [Golovaty andMontero, 2014, Canevari, 2015].

• A refined study of the limit configuration ruling out the possible presence of point defects, under an extra axisymmetry assumption. This part is much less standard, as point defects are not "seen" by the energy asymptotics of the first part, and it is well known that energy-minimizing S 2 -valued maps may have many point singularities even in the absence of topological constraints [Hardt and Lin, 1986].

In [START_REF] Alama | Saturn ring defect around a spherical particle immersed in a nematic liquid crystal[END_REF] axisymmetry is imposed all along, but is really needed only for the second part, as we will explain below. We first introduce some notations. As in the previous section, we work in the exterior domain Ω = R 3 \ B. We impose radial boundary conditions at the particle's surface (2.5), and uniform alignment at infinity:

ˆΩ |Q -Q ∞ | 2 r 2 dx < ∞, Q ∞ = s * e 3 ⊗ e 3 - 1 3 I .
Moreover we impose a mirror symmetry constraint:

Q(Sx) = SQ(x)S -1 ∀x ∈ Ω,
where S = I -e 3 ⊗ e 3 is the reflection across the equatorial plane e ⊥ 3 . We denote by H mirror the space of maps Q ∈ H 1 loc (Ω; S 0 ) satisfying these constraints. The Landau-de Gennes energy

E ε (Q; Ω) = ˆΩ 1 2 |∇Q| 2 + 1 ε 2 f (Q) dx,
admits a minimizer Q ε in this space (as can be seen with the direct method of the calculus of variations, using Hardy's inequality to obtain coercivity).

Energy asymptotics

A first important remark is that, in the equatorial plane {x 3 = 0}, mirror symmetry forces e 3 to be an eigenvector of Q(x 1 , x 2 , 0). There is no continuous path in U * going from Q b (x 1 , x 2 , 0) to Q ∞ while having e 3 as an eigenvector: therefore, at least one singularity will form in each radial direction in the equatorial plane, creating a singular ring around the particle.

The energetic cost of an interior ring defect of degree (-1/2) should be of order (π/2)| ln ε|, where is the length of the ring. If the ring is at distance σ from the equator, that length is = 2π(1 + σ), so one would like to take σ → 0, and the ring defect is no longer interior: from scale ε to σ its cost is (π/2) ln(σ/ε), and from scale σ to 1 it has the cost 0 π| ln σ| of a boundary ring defect of degree (-1/2), with 0 = 2π. The total energy cost, divided by 2π, is therefore of order

π 2 ln σ ε + σ π 2 ln 1 ε + π ln 1 σ .
Minimizing this with respect to σ gives σ = 1/| ln ε|. This type of reasoning is standard in the study of weighted Ginzburg-Landau energies [START_REF] André | [END_REF]Shafrir, 1998, Beaulieu andHadiji, 1998].

Note that it actually does not distinguish between a ring defect of degree -(1/2), which is the configuration we expect, or degree +(1/2), which could be compensated by point singularities of negative degrees: the lower energy cost of point singularities would not change the main order asymptotics. These heuristic considerations lead to the following energy bounds.

Theorem 2.6. Let Q ε minimize E ε in H mirror . We have, as

ε → 0, 1 2π E ε (Q ε ; Ω) = π 2 | ln ε| + π 2 ln | ln ε| + O(1),
and the energy is concentrated near the equatorial circle C = ∂B ∩ {x 3 = 0}. Specifically, for any δ > 0, its δ-neighborhood

Ω int δ = Ω ∩ {dist(•, C) ≤ δ} satisfies the energy lower bound 1 2π E ε (Q ε ; Ω int δ ) ≥ π 2 | ln ε| + π 2 ln | ln ε| -π| ln δ| -C,
for some absolute constant C > 0.

The upper bound in the energy asymptotics of Theorem 2.6 is obtained by constructing an axisymmetric configuration with a ring defect at distance σ = 1/| ln ε| from the particle. By axisymmetric we mean, using cylindrical coordinates (ρ, ϕ, z), that

Q(ρ, ϕ, z) = R ϕ Q(ρ, 0, z)R -1 ϕ , (2.8)
where R ϕ is the rotation of axis e 3 and angle ϕ. The proof of the lower bound starts by writing

E ε (Q; Ω) = ˆ2π 0 ¨ρ2 +z 2 >1 |∇ ρ,z Q| 2 + 1 ρ 2 |∂ ϕ Q| 2 + 1 ε 2 f (Q) ρ dρdz dϕ ≥ ˆ2π 0 E 2D ε (Q(•, ϕ, •); U ) dϕ,
where U = (ρ, z) : ρ > 0, ρ 2 + z 2 > 1 is the 2D azimuthal slice of Ω, and

E 2D ε (Q; U ) = ¨U |∇Q| 2 + 1 ε 2 f (Q) ρ dρdz,
is a weighted Landau-de Gennes functional, with weight ρ. For almost every azimuthal angle ϕ, the trace

Q = Q(•, ϕ, •) inherits the radial boundary conditions (2.5) on the half-circle ∂U ∩ {ρ > 0}, uniform far-field alignment ¨U |Q -Q ∞ | 2 ρ 2 + z 2 ρ dρdz,
and the mirror symmetry

Q(ρ, -z) = SQ(ρ, z)S -1 .
Studying minimizers of E 2D ε among configurations satisfying these constraints, the heuristic arguments outlined above Theorem 2.6 can be made rigorous using ideas from [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], Struwe, 1994, Jerrard, 1999, Sandier, 1998, André and Shafrir, 1998, Beaulieu and Hadiji, 1998, Golovaty and Montero, 2014, Canevari, 2015], and this provides the lower bound

min E 2D ε (•; U ) ≥ π 2 | ln ε| + π 2 ln | ln ε| + O(1).
After integrating with respect to ϕ this gives the energy asymptotics in Theorem 2.6. Moreover, because of the matching upper bound, the lower bound on E 2D ε must be saturated on a.e. azimuthal slice, and this saturation implies that the energy is in fact concentrated near (ρ, z) = (1, 0):

E 2D ε (Q ε (•, ϕ, •; U int δ ) ≥ π 2 | ln ε| + π 2 ln | ln ε| -π| ln δ| -C, where U int δ = U ∩ {(ρ -1) 2 + z 2 < δ}.
Integrating with respect to ϕ concludes the proof of the last assertion in Theorem 2.6.

Limit configuration in the axisymmetric case

The above energy asymptotics provide the upper bound

1 2π E ε (Q ε ; Ω ext δ ) ≤ π| ln δ| + O(1),
where

Ω ext δ = Ω \ Ω int δ = Ω ∩ {dist(•, C) > δ}
Here, recall that C = ∂Ω ∩ {x 3 = 0} is the equatorial circle. Classically, this allows one to extract a sequence

Q ε → Q * in H 1 loc (Ω \ C; S 0 )
, and Q * is a U * -valued maps which is energy minimizing with respect to compact perturbations in Ω \ C. This implies [Schoen andUhlenbeck, 1982, Schoen andUhlenbeck, 1983] that Q * is smooth away from a set of point singularities isolated in Ω \ C. We would like to show that Q * is actually smooth in Ω \ C, but are not able to do so in that generality: we restrict ourselves to axisymmetric maps.

Because the energy asymptotics of Theorem 2.6 rely on an axisymmetric upper bound and on a lower bound for azymuthal slices, it is also valid when considering minimizers subject to the axisymmetry constraint (2.8), and this is in fact the way it is stated in [START_REF] Alama | Saturn ring defect around a spherical particle immersed in a nematic liquid crystal[END_REF]. In that case we obtain an axisymmetric U * -valued limit Q * which can be written in the form

Q * (ρ, ϕ, z) = s * R ϕ n(ρ, z) ⊗ R ϕ n(ρ, z) - 1 3 I , for a map n : U → S 2 (recall U = {(ρ, z) : ρ > 0, ρ 2 + z 2 > 1}) which minimizes the energy Ê(n; U ext δ ) = ˆUext δ |∇n| 2 + n 2 1 + n 2 2 ρ 2 ρ dρdz, U ext δ = U \ U int δ = U ∩ (ρ -1) 2 + z 2 > δ , among maps m : U ext δ → S 2 such that m ⊗ m is mirror symmetric and equal to n ⊗ n on ∂U ext δ .
The second term in the energy Ê comes from the azimuthal derivative |∂ ϕ Q * | 2 , and makes the far-field alignment condition superfluous. The choice of an orientation (n is S 2 -valued and not RP 2 -valued) is possible because U is simply connected [Bethuel andChiron, 2007, Ball andZarnescu, 2011], and it forces the radial boundary conditions to take the following form:

n = +e r on ∂U ∩ {ρ > 0, z > 0} , -e r on ∂U ∩ {ρ > 0, z < 0} .
(2.9)

On the equatorial plane, the mirror symmetry imposes

n = τ e 3 on U ∩ {z = 0} , τ ∈ {±1}, (2.10)
Similarly to the regularity of minimizing harmonic maps in two dimensions, one can show that n is smooth away from the Saturn-ring at (ρ, z) = (1, 0) and from the vertical axis {ρ = 0}, where the weight in the energy degenerates. The second main result of [START_REF] Alama | Saturn ring defect around a spherical particle immersed in a nematic liquid crystal[END_REF] states that n is actually smooth also on the vertical axis.

Theorem 2.7. The map n is smooth in U \ {(1, 0)}. Moreover it satisfies the additional symmetry property n 2 (ρ, z) = 0.

The symmetry property n 2 (ρ, z) = 0 implies that R ϕ n(ρ, z) takes values in the azimuthal plane generated by e ρ , e z , and the azimuthal vector e ϕ is an eigenvector of Q * (ρ, ϕ, z). The fact that this symmetry is valid is similar to why geodesics on S 2 are contained in a plane: projecting the values of n onto {n 2 = 0} decreases the energy. However, a bit of work is required to make that simple argument work, because boundary conditions are not explicit on the small circle arc ∂U ext δ ∩ U , so one cannot be sure that the projection preserves them. This difficulty is dealt with by taking advantage of the upper bound

Ê(n; U ext δ ) ≤ π| ln δ| + O(1), (2.11)
which is inherited from the analogous bound on E ε (Q ε ; Ω ext δ ). To explain how to exploit (2.11), it is convenient to use polar coordinates (r, θ) around the point (1, 0),

ρ = 1 + r cos θ, z = r sin θ.
The circle arc ∂U ext δ ∩ U corresponds to r = δ and θ ∈ (-θ 0 (r), θ 0 (r)), where θ 0 ≈ π/2. Along that arc, the boundary conditions (2.9)-(2.10) force n to go from n 0 ≈ -e 1 at θ ≈ -π/2 to n 1 ≈ e 1 at θ ≈ π/2, via τ e 3 at θ = 0; see Figure 2.3. The corresponding geodesic on S 2 has energy ≈ π, and this provides a lower bound which matches the upper bound (2.11). Hence this lower bound is saturated, and thanks to stability properties of geodesics on S 2 this imposes n(r, θ) ≈ (sin θ, 0, τ cos θ)

for r 1.

This closeness, in an appropriate sense, can be used to make the above energy comparison argument work and show that n 2 = 0 everywhere. The proof that n is smooth on the vertical axis is inspired by a similar statement in [START_REF] Alama | Minimizers of the Landau-de Gennes energy around a spherical colloid particle[END_REF]. Since n is constrained by the second energy term to be equal to ±e 3 on the vertical axis, singularities correspond to jump between those two values. On the other hand, if the sets {n 3 ≥ 0} or {n 3 ≤ 0} have connected components which don't touch the boundary ∂U ext δ ∩ {ρ > 0}, one can reflect n at no cost of energy and make that connected component disappear. If n 3 does not change sign on ∂U ext δ ∩ {ρ > 0}, this is enough to rule out any sign change of n 3 on the vertical axis, and therefore any singularity. We have n 3 > 0 on ∂U ∩ {0 < ρ < 1}, so it remains to understand what happens on small circle arcs surrounding the singular point (ρ, z) = (1, 0). There one can take advantage again of the rigidity provided by the energy bound (2.11), which imposes

n 3 ≈ τ cos θ on ∂U ext δ ∩ U = {r = δ, -θ 0 (r) < θ < θ 0 (r)}.
If τ = +1 this is enough to conclude that n 3 > 0, by carefully studying what happens near θ = ±θ 0 (r).

But if τ = -1 we conclude that n has two mirror-symmetric point singularites on the vertical axis. That configuration is perfectly allowed by topological constraints: it corresponds to a positively charged ring of degree +1/2 (whose two traces on a meridian plane provide a +1 topological charge), compensated by two -1 charges on the vertical axis, and the +1 charge of the radial boundary conditions. Moreover, it doesn't seem possible to rule out that possibility using only the minimizing properties of the map n. Instead we go back to the energy asymptotics of Theorem 2.6 and compute more precisely the O(1) remainder. This is the most technical part of the argument, achieved in [Alama et al., 2021, § 4.3.2], and it enables us to rule out the case τ = -1 and to prove Theorem 2.7.

Remark 2.8. One may think that determining the O(1) remainder is very similar to the classical Ginzburg-Landau analysis [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]], but it is not obvious that it could be directly transposed. Consider for instance that the radial scaling property of an interior vortex, reflected in the identity | ln(ε/r)| = | ln ε| -| ln r|, is crucially used in [Bethuel et al., 1994, Chapter VIII]. Here the singularity is deformed when approaching the boundary and that nice scaling behavior is lost: the energy expansion of Theorem 2.6 does not behave well when replacing ε by ε/r.

Far-field asymptotics

Interactions between particles suspended in nematic liquid crystals are commonly described in the physics literature using the so-called electrostatics analogy [Muševič, 2019]. This approximation originates in [Brochard and de Gennes, 1970] and replaces each single particle by a singular forcing term in a linearized equation, which allows to explicitly compute the interactions. The precise form of the singular forcing term depends on the properties of the corresponding particle, via the far-field deformation it generates in the nematic alignment. This relies on two implicit assumptions:

• far away from the particle, the asymptotic expansion of the order parameter solves a linearized equation (around a fixed uniform alignment),

• and the first nontrivial term of that expansion is characterized by the properties (size, symmetry, etc.) of the particle.

This legitimizes replacing the particle by a singular forcing term (derivatives of a Dirac mass) which generates the same asymptotic behavior in the linearized equation. The second assumption is the most mathematically challenging, this is where all the nonlinear nature of the original problem is retained. In this section we present results of [START_REF] Alama | Far-field expansions for harmonic maps and the electrostatics analogy in nematic suspensions[END_REF] which provide a precise statement regarding the first assumption, and a first step towards justifying the second assumption. We represent the particle by a smooth bounded domain G ⊂ R 3 , and describe nematic alignment by a director field n : R 3 \ G → S 2 . Its energy is given by

F (n) = ˆR3 \G |∇n| 2 dx + F s (n ∂G ), (2.12)
where

F s : H 1 2 (∂G; S 2 ) → [0, ∞],
is a weakly lower semicontinuous surface energy, with non-empty domain {F s < ∞}, which describes the particle's anchoring properties. For instance the domain of F s may consist of one map n b : ∂G → S 2 , which corresponds to Dirichlet boundary conditions n ∂Ω = n b , but F s can be much more general. Uniform far-field alignment is imposed by requiring

ˆR3 \G |n -n 0 | 2 1 + r 2 dx < ∞, (2.13)
for some n 0 ∈ S 2 . We denote by H n 0 (G) the space of maps n ∈ H 1 loc (R 3 \ G; S 2 ) satisfying this far-field alignment condition. The direct method of the calculus of variations ensures the existence of a map n minimizing the energy F over H n 0 (G). Such map satisfies the harmonic map equation

-∆n = |∇n| 2 n in R 3 \ G,
whose linearization around the constant n 0 is simply ∆n = 0. The asymptotic expansion can be split into a harmonic part, which solves that linearized equation, and a nonharmonic correction.

Theorem 2.9. As r = |x| → +∞, we have

n = n 0 + n harm + n corr + O 1 r 4 ,
where

n harm = 1 r v 0 + 3 j=1 p j ∂ j 1 r + 1≤k, ≤3 c k ∂ k ∂ 1 r ,
for some coefficients v 0 , p j , c k ∈ R 3 , and

n corr = - |v 0 | 2 r 2 n 0 - |v 0 | 2 2r 3 v 0 - 1 3r 3 j=1 v 0 • p j ∂ j 1 r n 0 .
Moreover, the coefficients v 0 , p j are orthogonal to n 0 .

One could of course obtain an expansion to any order, which would consist of a harmonic part, and a non-harmonic correction depending on the coefficients of the harmonic part. The interesting feature of the expansion up to O(1/r 4 ) is that, if the first term in n harm vanishes, v 0 = 0, which, as we will see, is a natural assumption, then n corr = 0.

Consider for instance an axisymmetric situation: assume RG = G for all rotations R of axis n 0 , and n minimizes F in H n 0 (G) subject to the axisymmetry constraint

n(Rx) = Rn(x) ∀x ∈ R 3 \ G,
for all rotations R of axis n 0 . Theorem 2.9 is still valid for that constrained minimizer, and plugging the expansion into the axisymmetry constraint imposes Rv 0 = v 0 for all rotations of axis n 0 , so v 0 = 0 because v 0 ⊥ n 0 . Therefore in that setting, the physicists' first assumption, that the asymptotic expansion solves the linearized equation, is correct up to O(1/r 4 ).

The proof of Theorem 2.9 is obtained by applying iteratively a standard surjectivity property of the Laplace operator:

f = O 1 r γ for some non-integer γ > 3, ⇒ ∃u = O 1 r γ-2 such that ∆u = f.
Applying this to f = ∆n provides a harmonic part n-u which has an expansion in terms of derivatives of the fundamental solution 1/r. That expansion can be plugged back into the equation -∆n = |∇n| 2 n in order to identify the non-harmonic correction. One can then repeat this operation to improve the order of the expansion. The orthogonality conditions on v 0 , p j simply come from the constraint |n| 2 = 1.

The only technical issue is that one needs to get the iteration started, by showing that ∆n = O 1 r γ for some γ > 3.

A simple rescaling of small energy estimates for harmonic maps [Schoen, 1984] provides the decay ∆n = o(1/r 3 ), which is just not enough. We present in [START_REF] Alama | Far-field expansions for harmonic maps and the electrostatics analogy in nematic suspensions[END_REF] two different proofs of a starting decay estimate ∆n = O(1/r 4 -). The first proof is by adapting small energy estimates of [Hardt et al., 1986, Luckhaus, 1988], to compare the energy decay of S 2 -valued minimizing maps with the energy decay of T n 0 S 2 -valued minimizing maps. The latter behave well since they solve a linear equation. The second proof, inspired by [Schoen, 1983], is obtained by differentiating the Euler-Lagrange equation -∆n = |∇n| 2 n, which provides a linearized equation for w = ∂ j n. A rescaled Cacciopoli's inequality then allows to improve the initial decay |w| 2 = o(1/r 3 ). The first proof is slightly more flexible in the sense that it adapts directly to a more general class of energies (than the Dirichlet energy). The next question is to understand the link between the expansion provided by Theorem 2.9, and properties of the particle, given by the domain G and its anchoring energy F s appearing in (2.12). We succeed to do so only for the first coefficient v 0 : Theorem 2.10. Recall that H n 0 (G) is the space of maps n ∈ H 1 loc (R 3 \ G; S 2 ) aligned with n 0 at far-field, in the sense of (2.13). The function F : S 2 → [0, ∞), defined by

F (n 0 ) = min {F (n) : n ∈ H n 0 (G)} ,
is Lipschitz, and for a.e. n 0 ∈ S 2 we have

∇ F (n 0 ) = -8πv 0 (n 0 ),
(2.14)

where v 0 (n 0 ) = lim r→∞ r(n-n 0 ) for any minimizing map n ∈ H n 0 (G) such that F (n 0 ) = F (n).
Moreover F is semiconcave: for all n 0 ∈ S 2 , any v 0 as above, and all m 0 ∈ S 2 , we have

F (m 0 ) ≤ F (n 0 ) -8πv 0 • (m 0 -n 0 ) + C|m 0 -n 0 | 2 , for some constant C = C(G, F s ) > 0.
This shows in particular that, if n 0 is a differentiable point of F , then the coefficient v 0 is unique, although minimizing maps n need not be unique. At a hypothetical nondifferentiable point, there may be several possible v 0 , and they are all admissible in the semiconcavity inequality.

The validity of (2.14) is suggested by formal calculations in [Brochard and de Gennes, 1970] showing, in an axisymmetric setting, that the torque applied by particle G on the nematic is proportional to n 0 × v 0 . These formal calculations can be interpreted as follows. Given n t 0 ≈ n 0 for t ≈ 0, assume that the minimization problem for F (n t 0 ) is attained a map n t ∈ H n t 0 (G) depending smoothly on t. Then one may write

d dt t=0 F (n t 0 ) = d dt t=0 F (n t ) = DF (n 0 )[ ṅ0 ],
where ṅ0 = (d/dt)| t=0 n t . But because n 0 minimizes F over H n 0 (G), we have DF (n 0 )[v] = 0 for any perturbation v which preserves (infinitesimally) the space H n 0 (G). The map v = ṅ0 does not have that property, because it moves the condition at infinity, but this tells us that the result should only depend on the far-field behavior of the minimizing map n 0 . In fact, performing these calculations on a finite ball B R , we are left only with a boundary term on ∂B R , which gives (2.14) when sending R → +∞.

Here we have no hope of showing that minimizing maps in H n 0 (G) depend smoothly on n 0 , so this argument does not apply. Instead we construct rather natural comparison maps which enable us to prove the semiconcavity inequality, and then (2.14) follows at any differentiable point n 0 .

Theorem 2.10 has the advantage of telling us that the first asymptotic coefficient v 0 is uniquely determined by the far-field condition n 0 , generically. It does express v 0 by a formula (2.14) depending only on n 0 , G and F s , but that formula is not easy to calculate in practice. Nevertheless, it has some simple corollaries which do seem to bring valuable information.

First consider that, at equilibrium, a given particle should tend to align itself in a position that minimizes the energy. From the physical point of view, rotating the particle or the far-field alignment is totally equivalent, so we may view that equilibrium condition as requiring that n 0 be a local minimizer of F . Moreover the semiconcavity condition ensures that F is differentiable at a local minimum, and therefore v 0 = 0 as a consequence of (2.14).

Corollary 2.11. If n 0 ∈ S 2 is locally minimizing for F , then any map n minimizing F over H n 0 (G) has an asymptotic expansion

n = n 0 + n harm + O 1 r 4 , ∆n harm = 0, n harm = O 1 r 2 , as r = |x| → +∞.
Second, consider the case of symmetric particles. We say that G is axisymmetric around u ∈ S 2 if, for any rotation R of axis u, we have RG = G and F s (Rn•R -1 ) = F s (n) for all n ∈ H 1/2 (∂G; S 2 ). And G is spherically symmetric if this is true for any rotation R, of any axis. The function F inherits the same invariances: F (Rn 0 ) = F (n 0 ) for all n 0 ∈ S 2 and rotation R in the symmetry group of G. Differentiating this identity automatically gives us, via (2.14), information about v 0 .

Corollary 2.12. If G is axisymmetric around u ∈ S 2 , then for a.e. n 0 ∈ S 2 we have

v 0 (n 0 ) • (u × n 0 ) = 0. If in addition F is differentiable at u then v 0 (u) = 0. If G is sperically symmetric, then v 0 (n 0 ) = 0 for all n 0 ∈ S 2 .
As in Corollary 2.11, one could also write down corresponding consequences concerning the asymptotic expansion given by Theorem 2.9. Note that we do not know whether there exist axisymmetric particles such that F would not be differentiable at u. In that case, the semiconcavity of F would force it to have a local maximum at u, with its graph looking locally like a cone.

Remark 2.13. All results presented in this section for the isotropic Dirichlet energy can be directly generalized to more general energies, for instance the anisotropic Oseen-Frank energy, and also to higher dimensions.

Perspectives

The main motivation of the works presented here about nematic colloids is to eventually gain a rigorous understanding of interactions between immersed particles. So far we have concentrated on the effect of a single particle, and I present here some further perspectives about this question, before evoking the next step of determining interactions.

Single particle

In § 2.2.2 we describe a Saturn-ring configuration obtained by minimizing under a mirror-symmetry constraint. The equatorial defect line arising in the limit ε → 0 is a length-maximizing closed curve on the sphere, and as such we would expect the Saturn-ring configuration to be unstable. But numerical evidence [Fukuda et al., 2004b, Lubensky et al., 1998] indicates that it is stable. That apparent paradox is resolved if we consider that the Saturn ring configuration is stable only in a neighborhood that shrinks as ε → 0, and this phenomenon may be due to boundary effects. Tools developed in [Serfaty, 2005, Canevari andOrlandi, 2021] are related to this stability issue and will provide a starting point to investigate it.

In § 2.2.3, Corollary 2.12 can be interpreted as a result of symmetry at infinity for minimizing maps. It is natural to expect that this can be used, at least in the sperically symmetric setting, to prove that minimizers are axisymmetric: examples were asymptotic symmetry is used to deduce full symmetry can be found in [Mironescu, 1996, Millot andPisante, 2010]. (Note that methods of [START_REF] Sandier | On the symmetry of minimizing harmonic maps in N dimensions[END_REF] to prove axisymmetry of S 2 -valued maps will not apply here.)

Finally, it seems important in view of applications to adapt the analysis of § 2.2.3 to the Q-tensor description: obtain far-field asymptotics uniform with respect to ε, and an equivalent of Theorem 2.10. The methods of [START_REF] Contreras | Singular perturbation of manifold-valued maps with anisotropic energy[END_REF] will provide a technical framework to resolve the first step.

Interactions

In the absence of a full understanding of the next terms in the asymptotic expansion of Theorem 2.9, a reasonable way to approach the problem of estimating interactions between particles is suggested by the phenomenological model proposed in [Lubensky et al., 1998, § 5]. There, the presence of particles is modeled by additional singular terms in the energy, but without linearizing the equation. In that context, justifying the electrostatic analogy amounts to a linearization procedure where the issue of boundary anchoring and accompanying defects has been hidden in that simplified energy. A first step will be to consider two particles and obtain an asymptotic expansion of the full energy as their mutual distance grows to infinity: this amounts to a rigorous justification of formal arguments in [Lubensky et al., 1998, § 5]. It is then natural to move on to the case of many particles.

The effects of elastic anisotropy

As mentioned in the introduction of this chapter, within the director description, the isotropic Dirichlet energy

E(n) = ˆΩ |∇n| 2 dx, n : Ω → S 2 ,
is a simplification of the more general Oseen-Frank model,

E OF (n) = ˆΩ k 1 |∇ • n| 2 + k 2 (n • ∇ × n) 2 + k 3 |n × (∇ × n)| 2 dx, (2.15)
which we call anisotropic whenever k 1 , k 2 , k 3 > 0 are distinct. In contrast with isotropic harmonic maps, minimizers of the anisotropic Oseen-Frank energy are not that well understood: their singular set has dimension strictly less than one [Hardt et al., 1986, Hardt et al., 1988], but is not known whether it is discrete (unless the constants are almost equal [START_REF] Almgren | Singularities of energy minimizing maps from the ball to the sphere: Examples, counterexamples, and bounds[END_REF]), and it is not known for all values of k 1 , k 2 , k 3 whether the map x/|x| is minimizing [Hélein, 1987, Lin, 1987, Cohen and Taylor, 1990, Kinderlehrer and Ou, 1992, Ou, 1992, Alouges and Ghidaglia, 1997].

More generally, one may consider anisotropic energies (with elliptic integrands) for maps with values into a given submanifold. In addition to the unknown dimension of a minimizing map's singular set, there is a long list of questions that are solved in the isotropic case and open for anisotropic integrands: smoothness of critical maps in a two-dimensional domain [Hélein, 2002, Rivière, 2007], regularity of stationary critical maps [Evans, 1991, Bethuel, 1993], regularity of anisotropic minimal surfaces [De Lellis et al., 2021, De Rosa andTione, 2022], etc.

These difficulties are due to important structural properties that are absent in the anisotropic case. Let us illustrate this with two basic observations:

• The isotropic Euler-Lagrange system -∆n = |∇n| 2 n, is, at main order, determined by the scalar operator -∆ which acts diagonally on n. This specific diagonal structure is absent in the anisotropic case: all that remains is a quasilinear strongly elliptic system with a right-hand side quadratic in ∇n.

• The isotropic energy density enjoys a decoupling

|∇n| 2 = |∂ r n| 2 + 1 r 2 |∇ ω n| 2 ,
into radial and angular derivatives. This ensures that tangent maps (limits of rescaled maps n r (x) = n(rx) along sequences r → 0) are 0-homogeneous, by providing a monotonicity formula for the energy of rescaled maps. Such decoupling is absent in the anisotropic case (see [START_REF] Allard | [END_REF] in the case of anisotropic minimal surfaces).

Another interesting observation is that, like geodesics, isotropic harmonic maps are intrinsic geometric objects: the energy density

|∇n| 2 = j |∂ j n| 2
depends only on the riemannian structure of S 2 (to define the norm of the tangent vectors ∂ j n), but not on the isometric embedding S 2 ⊂ R 3 . In contrast, the anisotropic Oseen-Frank energy does depend on that embedding: applying a rotation changes in general the value of the energy [START_REF] Kinderlehrer | The elementary defects of the Oseen-Frank energy for a liquid crystal[END_REF]. These structural properties also play an important role in the analysis of minimizers and critical points of the Landau-de Gennes energy (2.2). In the anisotropic case, new tools are needed to circumvent the non-diagonal form of the Euler-Lagrange system and the lack of monotonicity formula. In the rest of this section I describe three works where such new tools are developed, and anisotropy-related phenomena are unveiled:

• in [START_REF] Contreras | Singular perturbation of manifold-valued maps with anisotropic energy[END_REF] with A. Contreras we prove uniform convergence of minimizers of an anisotropic version of (2.2) towards minimizers of the Oseen-Frank energy, away from singularities;

• in [START_REF] Lamy | On the stability of radial solutions to an anisotropic Ginzburg-Landau equation[END_REF] with A. Zùñiga and in [START_REF] Kowalczyk | Entire vortex solutions of negative degree for the anisotropic Ginzburg-Landau system[END_REF] with M. Kowalczyk and P. Smyrnelis we study two-dimensional entire solutions (which describe the fine structure of defects) of an anisotropic Ginzburg-Landau system.

Small energy estimates for Landau-de Gennes

In [Majumdar andZarnescu, 2010, Nguyen andZarnescu, 2013] (see also [START_REF] Contreras | On the convergence of minimizers of singular perturbation functionals[END_REF]) the authors consider minimizers of the Landau-de Gennes energy

E ε (Q; Ω) = ˆΩ 1 2 |∇Q| 2 + 1 ε 2 f (Q) dx
in a bounded domain Ω ⊂ R 3 , with fixed smooth U * -valued boundary conditions on ∂Ω. They prove that, along a sequence ε → 0, these converge uniformly away from a finite number of points, to a U * -valued map Q * = s * (n ⊗ n -1 3 I). The map n : Ω → S 2 is a minimizing harmonic map, which is smooth away from said finite set of point.

The main tool of the proof is a small-energy estimate for smooth solutions of the Euler-Lagrange equation

∆Q = 1 ε 2 ∇f (Q), (2.16)
which asserts the existence of δ > 0 such that

r 2 sup B r/2 |∇Q| 2 ≤ C 1 r E ε (Q; B r ) if 1 r E ε (Q; B r ) ≤ δ 2 , (2.17)
for any ball B r ⊂ Ω and ε 1. Inspired by similar arguments in [Schoen, 1984, Chen and Struwe, 1989, Bethuel et al., 1993, Chen and Lin, 1993], this small energy estimate is obtained as a consequence of a Bochner inequality for the energy density:

-∆[e ε (Q)] ≤ Ce ε (Q) 2 , e ε (Q) = 1 2 |∇Q| 2 + 1 ε 2 f (Q).
Note that here the operator -∆ acting on scalar-valued functions is related to the specific diagonal form of the Euler-Lagrange system (2.16), and this argument seems therefore constrained to the isotropic setting. That Bochner inequality can then be combined with the energy monotonicity formula (another specifically isotropic ingredient) as in [START_REF] Chen | Evolution of harmonic maps with Dirichlet boundary conditions[END_REF], Majumdar and Zarnescu, 2010, Nguyen and Zarnescu, 2013], or with a Moser iteration as in [Haslhofer and Müller, 2011, Lemma 3.3], to prove the small-energy estimate (2.17).

Remark 2.14. Methods in [START_REF] Bethuel | Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions[END_REF]] also use the isotropic structure, and are moreover tailored for C-valued maps converging to S 1 -valued maps. In that case, the smallness requirement in (2.17) can be relaxed to a logarithmic bound with small factor, see e.g. [START_REF] Bethuel | Improved estimates for the Ginzburg-Landau equation: the elliptic case[END_REF]. For the isotropic Landau-de Gennes energy, this is achieved in [Canevari, 2017].

In the anisotropic setting where |∇Q| 2 is replaced by a general positive definite quadratic form A(Q)[∇Q], there is no known equivalent of a Bochner inequality. In a two-dimensional domain, one can take advantage of Sobolev embeddings to avoid using that inequality [START_REF] Bauman | Analysis of nematic liquid crystals with disclination lines[END_REF], but this does not seem easily generalizable to higher dimensions. In [START_REF] Contreras | Singular perturbation of manifold-valued maps with anisotropic energy[END_REF] we propose a different argument leading to analogous estimates and uniform convergence results, in the presence of elastic anisotropy.

For any positive definite quadratic form A on (S 0 ) 3 , we consider maps Q : Ω → S 0 minimizing (with respect to their own boundary conditions) the anisotropic energy

E A ε (Q; Ω) = ˆΩ A[∇Q] + 1 ε 2 f (Q) dx.
We may allow the coefficients of A to depend smoothly on x, but not on Q at this stage (although it would be desirable in view of applications, see e.g. [START_REF] Golovaty | A novel Landau-de Gennes model with quartic elastic terms[END_REF]).

A widely used example is the quadratic form

A[∇Q] = L 1 |∇Q| 2 + L 2 |∇ • Q| 2 ,
where the divergence ∇ • Q is taken row-wise, and 3L 1 + 5L 2 > 0.

Any sequence Q ε of minimizing maps with bounded energy [Canevari, 2017]) and converges, along a subsequence, to a minimizing U * -valued map. Thanks to the regularity theory of anisotropic harmonic maps [Hardt et al., 1986, Hardt et al., 1988, Luckhaus, 1988], that U * -valued map is smooth away from a closed singular set of dimension strictly less than one. We show that the convergence is uniform away from that singular set, as a consequence of the following small-energy estimate.

E A ε (Q ε ; Ω) ≤ C as ε → 0, is precompact in H 1 loc (Ω; S 0 ) (see e.g.
Theorem 2.15. For any α ∈ (0, 1), there exist δ, ε 0 > 0 such that, for any map Q : B r → S 0 minimizing the anisotropic energy E A ε (•; B r ), we have

r 2α |Q| C α (B r/2 ) ≤ C 1 r E A ε (Q; B r ) if 1 r E A ε (Q; B r ) ≤ δ 2 , (2.18) provided 0 < r ≤ 1 and 0 < ε < ε 0 r.
The proof of Theorem 2.15 starts from the observation that it is true in the limit, that is, for U * -valued energy-minimizing maps [Hardt et al., 1986, Hardt et al., 1988, Luckhaus, 1988]. But, in contrast with the limit problem, the energy E A ε is not scaleinvariant, due to the presence of the potential term and the characteristic length scale ε > 0. Roughly speaking, at large scales r ε one expects a minimizing map Q to "look like" a U * -valued map, but at small scales r ≤ ε it should simply look like a solution of the rescaled Euler-Lagrange system L A Q = ∇f (Q), where L A is the elliptic operator naturally associated to A. In both cases, there is a regularity theory, and the proof of Theorem 2.15 follows that dichotomy: we obtain energy decay estimates at large scales by adapting the regularity theory of manifold-valued maps, and at small scales using classical elliptic regularity.

An unexpected difficulty concerns the small scales, which boil down to regularity estimates for the semilinear elliptic system L A Q = ∇f (Q). One needs an initial bound in order to start bootstrapping. In the isotropic case it is very easy to obtain L ∞ bounds under reasonable boundary conditions, but in general this seems surprisingly hard. We rely instead on ad hoc estimates exploiting the low dimension and the specific form of the potential (a quartic polynomial).

Remark 2.16. Let us describe more specifically the issue of L ∞ bounds. In the isotropic case

A[∇Q] = |∇Q| 2 , if a potential f ≥ 0 has the coercivity property that sup |Q|≤R 0 f (Q) ≤ inf |Q|≥R 0 f (Q) for some R 0 > 0,
then any map Q minimizing E ε (•; Ω) in a bounded domain Ω satisfies the maximum principle

Q L ∞ (Ω) ≤ max(R 0 , Q L ∞ (∂Ω) ).
The reason is simple: projecting the values of Q orthogonally onto the ball {|Q| ≤ R 0 } decreases both terms in the energy. This is no longer true when the elastic term is anisotropic. In fact, a maximum principle in this form cannot be valid for a truly anisotropic A, because the homogeneous linear system L A Q = 0 does not even enjoy the sharp maximum principle [START_REF] Kresin | Maximum principles and sharp constants for solutions of elliptic and parabolic systems[END_REF]. Only a weaker form with a multiplicative constant C > 1 is valid: this indicates that the projection argument will not be easily adaptable to the anisotropic case. Nevertheless, it seems reasonable to conjecture that for a potential f which is "coercive enough", any minimizer

Q L ∞ (Ω) ≤ Q L ∞ (∂Ω)
Q of E A ε (•, Ω) will satisfy Q L ∞ (Ω) ≤ C max(R 0 , Q L ∞ (∂Ω) ),
for some constants C > 1, R 0 > 0 depending on A and f . We were, however, not able to prove that conjecture.

The method used to prove the interior estimate of Theorem 2.15 can also be applied to obtain boundary estimates. We consider in [START_REF] Contreras | Singular perturbation of manifold-valued maps with anisotropic energy[END_REF] two types of boundary conditions:

• Dirichlet boundary conditions Q = Q b on ∂Ω,
for a fixed smooth map Q b : ∂Ω → U * . In that case, small-energy estimates at the boundary are valid, similar to Theorem 2.15.

• Weak anchoring conditions described by a surface energy: the energy to minimize becomes

E A ε (Q; Ω) + ˆ∂Ω g(x, Q) dx,
for some smooth map g : Ω × S 0 → [0, ∞[. In that case, we are only able to prove small-energy estimates under the additional assumption of an a priori uniform L ∞ bound. This assumption is verified for a large class of anchoring energy densities g(x, Q) in the isotropic setting. Even in that restrictive case, the result seems new, because the method based on Bochner's inequality is not adapted to treat weak anchoring conditions.

Two-dimensional vortex profiles

In this section we concentrate on a simplified two-dimensional model, in order to obtain a more precise understanding of the qualitative differences introduced by elastic anistropy. For a domain Ω ⊂ R 2 and maps u : Ω → R 2 , the anisotropic Ginzburg-Landau energy is given by

E δ ε (u; Ω) = ˆΩ A δ [∇u] + 1 4ε 2 (1 -|u| 2 ) 2 dx, A δ [∇u] = 1 2 |∇u| 2 + δ 2 (∇ • u) 2 -(∇ × u) 2 , |δ| < 1. (2.19)
The parameter δ ∈ (-1, 1) quantifies the anisotropy, the isotropic case δ = 0 corresponds to the classical Ginzburg-Landau functional. The identity

A δ [∇u] = (1 + δ)(∇ • u) 2 + (1 -δ)(∇ × u) 2 -2 det(∇u),
where the last term is a null Lagrangian, allows to interpret this elastic energy as a two-dimensional version of the anisotropic Oseen-Frank energy (2.15). It arises naturally as a model for two-dimensional liquid crystal configurations [START_REF] Lee | Textural transformations in islands on free standing smectic-C* liquid crystal films[END_REF], Barboza et al., 2016, Barboza et al., 2013, Clerc et al., 2014], and various mathematical aspects have been studied in [START_REF] Colbert-Kelly | Analysis of a Ginzburg-Landau type energy model for smectic C * liquid crystals with defects[END_REF], Colbert-Kelly et al., 2017, Golovaty et al., 2020, Golovaty et al., 2019]. In particular, an equivalent of the analysis of minimizers of the classical Ginzburg-Landau energy [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] has been obtained in [START_REF] Colbert-Kelly | Analysis of a Ginzburg-Landau type energy model for smectic C * liquid crystals with defects[END_REF] when the boundary condition has positive degree, but is open for negative degrees. The reason for this is that anisotropic vortices of degree +1 behave very differently from vortices of other degrees (in particular, from vortices of degree -1). This difference will also be apparent in the results presented in this section about vortex profiles: entire solutions of the Euler-Lagrange equation with prescribed degree at infinity. Entire vortex solutions arise when zooming in at scale ε around a singularity, which has the effect of setting ε = 1, hence we consider solutions of the Euler-Lagrange system

L δ u = -1 -|u| 2 u in R 2 , (2.20)
where the operator L δ is defined by

L δ u = ∆u + δ ∇(∇ • u) -∇ ⊥ (∇ × u) ,
with the notation

∇ ⊥ = (-∂ 2 , ∂ 1 ). Given a weak solution u ∈ H 1 loc (R 2 ; R 2 ) of (2.20), if it has finite potential energy ˆR2 (1 -|u| 2 ) 2 dx < ∞, (2.21)
then one can show (see e.g. [Kowalczyk et al., 2022, § 3]) that u is smooth and |u(x)| → 1 as |x| → ∞. This allows to define its degree, or winding number,

deg(u) = deg u |u| , ∂D R ∈ Z ∀R 1,
and we are interested here in solutions with a prescribed degree d ∈ Z.

In the isotropic case δ = 0, the classical Ginzburg-Landau equation

∆u = -(1 -|u| 2 )u in R 2 ,
admits, for any given degree d ∈ Z \ {0}, a radial solution

u d (re iθ ) = f d (r)e idθ , f d ≥ 0, f d (0) = 0, lim +∞ f d = 1,
and the radial profile f d is uniquely determined via the ordinary differential equation that it must satisfy [Hervé andHervé, 1994, Chen et al., 1994]. Each solution u d generates, by invariance under translations and rotations, a three-dimensional family of solutions

e iα u d (• + a), α ∈ R, a ∈ R 2 .
There are no other entire solutions of degree d = ±1 [Mironescu, 1996], but for higher degrees it is open whether there exist nonradial solutions.

In the anisotropic case δ = 0, the situation is different. The only solutions of (2.20)-(2.21) of the form u(re iθ ) = f (r)e iα e iθ with a real-valued radial profile f (r) are of degree d = 1, and phase shift α ≡ 0 mod π/2 [START_REF] Clerc | Symmetry breaking of nematic umbilical defects through an amplitude equation[END_REF]. This can be partially interpreted in terms of symmetries of the equation: radial functions of the form f (r)e idθ can be characterized as invariant under the transformations u(z) → e -idα u(e iα z) for all α ∈ R, but these transformations preserve the equation (2.20) if and only if δ = 0 or d = 1.

Remark 2.17. More specifically, it is instructive to make a list of the elementary symmetries of (2.20), which are the transformations

u(z) -→ τ e -iα u(e iα z), α ∈ R, τ ∈ {±1}, u(z) -→ u(z), u(z) -→ u(z + a), a ∈ R 2 ,
associated to rotation equivariance, reflection equivariance, and translation invariance.

In the isotropic case δ = 0, the equation is, in addition, invariant under rotation and reflection, separately in the variable and in the target. For instance, u(z) → e iα u(z) preserves the isotropic equation for any α ∈ R, but for δ = 0 this is only true if α ≡ 0 mod π.

From the physical point of view, the most important vortex profiles are those of degree ±1, since they correspond to defects that are stable in experiments (see e.g. [START_REF] Lee | Textural transformations in islands on free standing smectic-C* liquid crystal films[END_REF], Barboza et al., 2013, Clerc et al., 2014]). In the isotropic case δ = 0, the two degrees d = ±1 are essentially equivalent since the transformation u → ū maps one to the other, and their uniqueness [Mironescu, 1996] and stability properties [Mironescu, 1995] are well understood. In the anisotropic case δ = 0, the two cases d = ±1 are quite different:

• For d = 1 there is a radial solution, but its stability and uniqueness properties are not fully understood. In [START_REF] Lamy | On the stability of radial solutions to an anisotropic Ginzburg-Landau equation[END_REF] we show that it is linearly stable for small anisotropy but loses stability when the anisotropy is higher.

• For d = -1 there is no radial solution, and the mere existence of an entire solution is already an issue. In [START_REF] Kowalczyk | Entire vortex solutions of negative degree for the anisotropic Ginzburg-Landau system[END_REF] we prove such existence for small anisotropy |δ| < δ 0 .

Degree +1: linear stability analysis

In the isotropic case δ = 0, nondegenerate linear stability of the radial solution u = f (r)e iθ has been proved in [Mironescu, 1995, Del Pino et al., 2004] and recently upgraded to a nonlinear stability estimate [START_REF] Gravejat | On the stability of the Ginzburg-Landau vortex[END_REF]]. Here we consider the radial solution of the anisotropic equation (2.20) given by

u δ rad (re iθ ) = f δ (r)e iθ , f δ (r) = f r √ 1 + δ ,
where f (r) = f 0 (r) is the radial profile of the isotropic vortex.

The second variation of the energy E δ 1 at u δ rad is the quadratic form

Q δ rad [v] = ˆR2 A δ [∇v] -(1 -(f δ ) 2 )|v| 2 + 2(f δ ) 2 (e iθ • v) 2 dx,
associated to the linear operator obtained by linearizing the equation (2.20) around u δ rad . Taking into account the expansion f (r) = 1 + O(r -2 ) ar r → ∞, the quadratic form Q δ rad is well defined on the space

H lin = v ∈ H 1 loc (R 2 ; R 2 ) : ˆR2 |∇v| 2 + |v| 2 r 2 + (e iθ • v) 2 dx < ∞ .
Invariance by translation provides two elements of the kernel of Q rad , namely ∂ j u δ rad (j = 1, 2), and we denote by K the linear subspace of H lin generated by these two functions.

Theorem 2.18. There exists δ 1 ∈ (0, 1) such that u δ rad is

• nondegenerately stable if δ ∈ (-δ 1 , 0]: Q δ rad [v] > 0 for all v ∈ H lin \ K. • unstable if δ ∈ (-1, -δ 1 ) ∪ (0, 1): Q δ rad [v] < 0 for some v ∈ H lin . Remark 2.
19. The asymmetry between δ > 0 and δ < 0 is due to the fact that e iθ is energy-minimizing (among S 1 -valued maps depending only on θ) if and only if δ ≤ 0. There is another radial solution, ũδ rad (re iθ ) = f -δ (r)ie iθ , which is stable for 0 ≤ δ < δ 1 and unstable otherwise. This completes at the end a symmetric picture: for |δ| < δ 1 exactly one of the two radial solutions is stable, and for δ 1 < |δ| < 1 they are both unstable.

The proof of Theorem 2.18 is very close to the stability analysis of the isotropic case [Mironescu, 1995] (see also [Del Pino et al., 2004, Ignat et al., 2016a[START_REF] Ignat | Stability of point defects of degree ± 1 2 in a two-dimensional nematic liquid crystal model[END_REF]), based on separation of variables: the Fourier decomposition v = e iθ n≥0 w n (r)e inθ + w -n (t)e -inθ , turns out to be orthogonal for the quadratic form Q δ rad , hence it suffices to study each mode separately. The lower modes n = 0, 1 play a special role and can be studied via a decomposition introduced in [Mironescu, 1995], using the equation satisfied by the radial profile f . They are both stable for δ ∈ (-1, 0], and the n = 0 mode is unstable for δ > 0.

The main novelty, with respect to the isotropic case, is the mechanism of instability for δ close to -1. In the isotropic case, the higher modes n ≥ 2 are automatically stable as a consequence of the stability of lower modes, but here this principle is broken: for -1 < δ < -δ 1 , the lower modes are stable and instability is caused by high modes. Note that stability of the high modes for δ close to 0 can be obtained by a perturbation argument from the isotropic case δ = 0, but direct careful estimates of the anisotropic quadratic form provide a quantitative range of stability: we know that δ 1 ≥ 1/ √ 5.

Degree -1: existence

When trying to prove existence of an entire solution with prescribed degree d, a natural strategy is to obtain solutions on finite disks D R by minimizing the energy with some boundary condition of degree d, and then let R → ∞. The hard part is to check that the degree constraint is conserved in that limit. For radial solutions f (r)e idθ this is not an issue, since the symmetry constraint passes easily to the limit. But in the anisotropic case δ = 0, one cannot look for radial solutions unless d = 1. To obtain the existence of solutions of degree -1, we use instead a discrete symmetry constraint: we impose

u(e i π 2 z) = -e i π 2 u(z) ∀z ∈ R 2 . (2.22)
Since it is compatible with the symmetries of (2.20) (see Remark 2.17), minimizing under this constraint does provide solutions of (2.20), which are energy-minimizing with respect to compact modifications. Moreover, one can check that, if u has a well-defined degree, then the constraint (2.22) implies

deg(u; ∂D r ) ≡ -1 mod 4.
This is not enough to fix the degree, but ensures at least that it is nontrivial. Moreover, in the equivalence class -1 + 4Z, the degree with the lowest modulus is precisely -1, hence energy-minimizing configurations are likely to have degree -1, at least if the anisotropy is not too large.

Theorem 2.20. There exists δ 0 > 0 such that, for |δ| < δ 0 , the anisotropic Ginzburg-Landau equation (2.20) admits an entire solution u : R 2 → R 2 with finite potential energy (2.21) and deg(u) = -1.

Remark 2.21. The same ideas apply to construct solutions of any negative degree d ≤ -1 (but not for d ≥ 2). Moreover, imposing in addition one of the two different symmetry constraints u(z) = ±u(z), we can obtain two distinct solutions (modulo the elementary symmetries of Remark 2.17). These two solutions converge, as δ → 0, to u d and iu d , where u d = f d (r)e idθ is the isotropic radial solution of degree d.

The proof of Theorem 2.20 follows the two steps described above:

• The first step is to obtain an entire solution of (2.20)-(2.21) which minimizes the energy under the symmetry constraint (2.22). This follows by imposing well-chosen boundary conditions on ∂D R and using a Pohozaev identity to bound the potential energy uniformly in R. This does not require any restriction on δ ∈ (-1, 1).

• The second step is to take advantage of the minimal modulus property of -1 in the equivalence class -1 + 4Z in order to show that this solution actually has degree -1. This is the most technical part of the proof, and where we need the smallness assumption on |δ|.

Let us describe more precisely the second step. The main idea comes from the proof in [Shafrir, 1994] that nontrivial minimizing entire solutions of the isotropic Ginzburg-Landau equation must have degree ±1, relying on the quantization effect proved in [START_REF] Brezis | Quantization effects for -∆u = u(1 -|u| 2 ) in R 2[END_REF]: a solution of degree d has energy of order πd 2 ln R on a large disk D R . But one can modify such solution inside D R to obtain a configuration of energy π|d| ln R, with one central vortex of degree ±1 and (|d| -1) escaping vortices of degree ±1 (say on a circle of radius R/4). The minimizing property therefore implies d 2 ≤ |d|, so d = ±1.

One difficulty we face in our case is that it is not obvious at all that a quantization effect could be valid in the anisotropic case. In fact in degree d = +1 there are two solutions with different energy asymptotics. However we can obtain non-sharp upper and lower bound by simply using the fact that A δ [∇u] = (1 + O(δ))|∇u| 2 . Accordingly, we will only be able to prove that d 2 ≤ (1 + O(δ))|d|, and this implies |d| = 1 only under a smallness assumption on δ.

Another difficulty is of a more technical nature: in order to perform a construction similar to [Shafrir, 1994], one must modify the original solution in a boundary layer D R \ D R/2 with low energy cost. For this, it is enough to have a logarithmic bound on the energy, which in the isotropic case is a byproduct of the quantization result of [START_REF] Brezis | Quantization effects for -∆u = u(1 -|u| 2 ) in R 2[END_REF]. Here we don't know if such bound could be proved for all solutions with finite potential energy (2.21), but we obtain it using again the minimizing property and constructing a competitor based on harmonic extensions of phase and modulus. This argument also makes use of A δ [∇u] = (1 + O(δ))|∇u| 2 and therefore requires a smallness assumption on δ. Note however that the threshold δ 0 in Theorem 2.20 is completely explicit.

Perspectives

One central open problem about anisotropic energies is the regularity of anisotropic harmonic maps: could the singular set of anisotropic Oseen-Frank minimizers be larger than locally finite? An answer to this question seems out of reach at this stage, and the stand point adopted in this chapter is to explore a variety of physically motivated questions about anisotropic energies in order to develop new methods and understand anisotropy-specific phenomena. I present here some perspectives concerning the twodimensional Ginzburg-Landau energy (2.19) of § 2.3.2, and the radial defect x/|x| in three dimensions.

Two-dimensional Ginzburg-Landau

Concerning the radial vortex profile of degree one, a natural follow-up to the linear stability study in Theorem 2.18, is to establish a nonlinear stability estimate analog to [START_REF] Gravejat | On the stability of the Ginzburg-Landau vortex[END_REF], in the linearly stable regime. An interesting feature is that the rotational symmetry which plays an important role in [START_REF] Gravejat | On the stability of the Ginzburg-Landau vortex[END_REF] is broken as soon as δ = 0: a nonlinear stability estimate will provide a quantitative insight into that phenomenon.

Concerning entire vortex profiles of degree -1, an outstanding question left unresolved by Theorem 2.20 is their existence for all values |δ| < 1. We plan to achieve this by applying continuation methods in the spirit of [START_REF] Kowalczyk | The space of 4-ended solutions to the Allen-Cahn equation in the plane[END_REF]. To that end, the first step is to obtain, for |δ| 1, good asymptotic estimates of the solution provided by Theorem 2.20. This is related to another important issue: the asymptotic analysis of negative degre minimizers of the anisotropic Ginzburg-Landau energy E δ ε (2.19). To gain insight into that question, an even more basic problem is that of S 1 -valued minimizers of E δ ε in an annulus. In a work in preparation with A. Contreras, we investigate all 0-homogeneous (that is, r-independent) S 1 -valued critical points of degree -1: we find that, in a annulus with small hole, they are not minimizing with respect to their own boundary conditions for 0 < |δ| 1. This seems connected to the regularity issue for general anisotropic harmonic maps in dimension n ≥ 3: improved estimates in the isotropic case are due to the fact that tangent maps must be 0-homogeneous, but here we have a situation where 0-homogeneous maps can not be minimizing.

Still regarding the asymptotic analysis of E δ ε , for positive degrees a renormalized energy is obtained in [START_REF] Colbert-Kelly | Analysis of a Ginzburg-Landau type energy model for smectic C * liquid crystals with defects[END_REF]], but it is not explicit enough to understand how the classical logarithmic Coulomb interaction is modified. In another work in preparation with A. Contreras, we obtain a description of the anisotropic interaction for small |δ|, and it will be interesting to investigate how the corresponding crystallization phenomena are modified.

The radial singularity in three dimensions

There is a range of values of the elastic constants in the anisotropic Oseen-Frank energy (2.15) for which the radial map x/|x| is known to be linearly stable, but whether it is minimizing (even locally) with respect to its own boundary conditions is an open question. One reason why the linear stability does not provide enough information is that, for perturbations which move the central singularity, the linear stability does not control the next nonlinear terms [START_REF] Cohen | Weak stability of the map x/|x| for liquid crystal functionals[END_REF]. This motivates studying the effect of inner variations, which we do in a work in preparation with P. Bousquet and R. Rodiac. Another interesting direction is to study the stability of the radial profile in a Ginzburg-Landau approximation (there, stability does imply local minimality), which should be attainable by combining methods of [Cohen andTaylor, 1990, Kinderlehrer andOu, 1992] and of [START_REF] Ignat | Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals[END_REF].

A related question is to obtain, in the range where x/|x| is known to be minimizing, nonlinear stability estimates with respect to boundary perturbations, in the spirit of [START_REF] Hardt | Stability of singularities of minimizing harmonic maps[END_REF]. That work relies very much on the monotonicity formula, and generalizations to an anisotropic setting are therefore all the more interesting. Here there is a hope to obtain such generalization because the linearized equation is completely explicit, and bad solutions that are usually ruled out by the monotonicity formula are simply not present.

Chapter 3

Line-energy models in 2D

Introduction

Eikonal equation and energy concentration

Several two-dimensional physical models have in common to exhibit concentration phenomena on one-dimensional subsets, corresponding to singularities of the eikonal equation

|∇u| 2 = 1 in Ω ⊂ R 2 ,
or, for the two-dimensional vector-field m = ∇ ⊥ u,

∇ • m = 0 in D (Ω), |m| = 1 a.e. in Ω. (3.1)
Subject to the boundary conditions u = 0 on ∂Ω, the gradient of the viscosity solution u(x) = dist(x, ∂Ω) has bounded variation, which is enough to ensure energy concentration on a one-dimensional subset (in a sense precised below). However, for the physical models under consideration here, the relevant class of solutions is larger, and energy concentration is not fully understood. Let us focus here on one model, the Aviles-Giga functional

AG ε (m; Ω) = ˆΩ ε 2 |∇m| 2 + 1 2ε (1 -|m| 2 ) 2 dx, m : Ω → R 2 , ∇ • m = 0.
Via the identification m = ∇ ⊥ u, which can be made in any simply connected domain, this functional can also be seen as a second-order Ginzburg-Landau energy. Proposed in [START_REF] Aviles | A mathematical problem related to the physical theory of liquid crystal configurations[END_REF] as a model for smectic liquid crystals, it is related to several physical applications (thin-film elasticity, micromagnetism, pattern formation), and we refer to the introduction of [Jin and Kohn, 2000] for a review of these applications. When imposing tangential boundary conditions m • n ∂Ω = 0, it is conjectured in [START_REF] Ortiz | The morphology and folding patterns of buckling-driven thin-film blisters[END_REF]] that minimizers of AG ε (•; Ω) converge to the viscosity solution m = ∇ ⊥ dist ∂Ω . That conjecture is proved only in the case of an ellipse or very similar domains [Marconi, 2021a]; see also [START_REF] Ignat | Entropy method for lineenergies[END_REF], where counterexamples in nonconvex domains are given. Given a sequence of bounded energy AG ε (m ε ) ≤ C, it is shown in [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF], DeSimone et al., 2001, Jabin and Perthame, 2001] that (m ε ) is precompact in L 1 (Ω), and therefore any limit m = lim m ε solves the eikonal equation (3.1). Moreover, the calibration method developed in [Jin and Kohn, 2000] provides the lower bound

lim inf AG ε (m ε ; Ω) ≥ 1 6 ˆJm |m + -m -| 3 dH 1 , (3.2) 
where J m ⊂ Ω is the 1-rectifiable jump set of m, with traces m ± on each side of it. This makes sense if m is of bounded variation (BV ), but also for any limit m = lim m ε of a bounded energy sequence thanks to results of [De Lellis and Otto, 2003]. If m ∈ BV (Ω), a matching upper bound (in the sense of Γ-convergence) is available [Conti andDe Lellis, 2007, Poliakovsky, 2007], thus showing energy concentration on the 1D set J m . The construction providing that upper bound is done by replacing the sharp jumps between m + and m -with one-dimensional transitions at scale ε in the direction normal to the jump set.

Performing this modification and estimating its energy requires fine information about the structure of m, provided in this case by the theory of BV functions. If m / ∈ BV (Ω), validity of a matching upper bound is a long-standing open question: this, and related open questions, are the central theme of the present chapter. The main difficulty is to understand the fine structure, ideally BV -like, of solutions of the eikonal equation (3.1) which are limits m = lim m ε of bounded energy sequences.

Entropy productions

To understand that class of solutions, an important concept, introduced in [DeSimone et al., 2001] and borrowed from scalar conservation laws, is that of entropy: a smooth map Φ : S 1 → R 2 is an entropy for the eikonal equation (3.1) if ∇ • Φ(m) = 0 for any smooth solution m of (3.1). This is equivalent to the condition

e iθ • d dθ Φ(e iθ ) = 0 ∀θ ∈ R.
For a general weak solution m, the entropy production ∇ • Φ(m) is a distribution, which should "detect" singularities. Here we are interested in solutions m = lim m ε which are limits of bounded energy sequences. This imposes a finite-entropy condition: entropy productions are finite real-valued Radon measures [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF]. Moreover, their absolute variation is bounded by the energy:

|∇ • Φ(m)|(U ) ≤ C Φ C 2 lim inf ε→0 AG ε (m ε ; U ) ∀U ⊂ Ω. (3.3)
In fact, the lower bound (3.2) is obtained by the same principle, using a specific family of entropies.

A first outcome of the bound (3.3) is that zero-energy states (limits m = lim m ε of vanishing energy sequences E ε (m ε ; Ω) → 0) have zero entropy production. As a consequence, they satisfy a a kinetic formulation

e is • ∇1 m•e is >0 = 0 in D (Ω), ∀s ∈ R. (3.4)
This follows from the fact that Φ s (z) = e is 1 z•e is >0 can be approximated by smooth entropies [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF], Jabin et al., 2002]. The kinetic equation (3.4) can be interpreted as a weak way of expressing that m is constant along characteristics of direction m ⊥ , and this is used in [Jabin et al., 2002] to obtain a rigid characterization of zero-energy states:

• in Ω = R 2 , m must be a constant, or any translation of a vortex m(x) = ±ix/|x|;

• in a smooth bounded simply connected domain Ω, with the natural boundary condition m • n ∂Ω = 0 (m tangent at the boundary), Ω must be a disk and m a centered vortex.

As another consequence of the bound (3.3), concentration properties of the energy imply concentration properties of the entropy production measures. Therefore, it becomes crucial to understand the following question concerning the structure of finite-entropy solutions: are entropy productions supported on a 1-rectifiable subset ?

A first result in that direction, proved in [De Lellis and Otto, 2003], is that the onedimensional part of the entropy production is countably rectifiable. More precisely, the Radon-Nikodym decomposition of the measure ∇ • Φ(m) with respect to H 1 is given by

∇ • Φ(m) = (Φ(m + ) -Φ(m -)) • ν H 1 Jm + η Φ , η Φ ⊥ H 1 ,
where J m is a countably 1-rectifiable subset of Ω, with unit normal ν, on each side of which m admits strong L 1 traces m ± . A more precise description of the higherdimensional part η Φ has been given recently in [Marconi, 2021a], but it is still not enough to conclude that η Φ = 0. All these results are relevant for the Aviles-Giga functional presented here, but also for micromagnetics models studied in [START_REF] Rivière | Limiting domain wall energy for a problem related to micromagnetics[END_REF], Rivière and Serfaty, 2003, Alouges et al., 2002]. In the case of [Rivière andSerfaty, 2001, Rivière andSerfaty, 2003] the setting can be slightly simplified, an equivalent of the rectifiability results of [De Lellis and Otto, 2003] can be found in [START_REF] Ambrosio | On the rectifiability of defect measures arising in a micromagnetics model[END_REF], and it is shown in [START_REF] Marconi | Rectifiability of entropy defect measures in a micromagnetics model[END_REF] that η Φ = 0.

Burgers' equation

Questions very similar to the ones presented above arise when the eikonal equation (3.1) is replaced by Burgers' equation

∂ t u + ∂ x u 2 2 = 0. (3.5)
Formally, the connection with the eikonal equation (3.1) can be seen by considering

u = -m 1 , m 2 = √ 1 -u 2 , so that ∇ • m = 0 becomes ∂ 1 u -∂ 2 f (u) = 0, where f (u) = √ 1 -u 2 ≈ -u 2 /2 for |u| 1.
Weak solutions of Burgers' equation (3.5) arise in limits of several variational models: large deviation principles for some stochastic processes [Varadhan, 2004, Mariani, 2010, Bellettini et al., 2010], variational characterizations of vanishing viscosity solutions [Poliakovsky, 2008] (see also [START_REF] Blaser | A minimality property for entropic solutions to scalar conservation laws in 1 + 1 dimensions[END_REF]), smectic liquid crystals [START_REF] Novack | A smectic liquid crystal model in the periodic setting[END_REF]. Again, the relevant solutions are those whose entropy productions

∂ t η(u) + ∂ x q(u), η ∈ C 2 (R), q (v) = vη (v),
are finite measures. This is a strictly larger class than that of Kruzkov's entropy solutions [Kružkov, 1970], whose entropy productions are nonpositive measures for convex entropies η (and which constitute an analog of viscosity solutions of the eikonal equation). Also there, 1-rectifiability of the entropy productions plays a central role. This rectifiablity has been established recently in [Marconi, 2022b], which constitutes major progress on the type of questions considered in this chapter. However, completing the Γ-convergence of the corresponding variational models does still seem to require more information on the structure of finite-entropy solutions.

Outline

In the rest of this chapter I present several results which help understand the structure of finite-entropy solutions to the above equations:

• In [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF] with F. Ghiraldin we characterize finite-entropy solutions of the eikonal equation in terms of Besov regularity.

• In [START_REF] Lamy | Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture[END_REF] with A. Lorent and G. Peng, we characterize zero-entropy solutions of the eikonal equation as solutions of a differential inclusion.

• In [START_REF] Lamy | On the regularity of weak solutions to burgers' equation with finite entropy production[END_REF] with F. Otto, in [Contreras Hip andLamy, 2021, Contreras Hip et al., 2022] with A. [START_REF] Contreras Hip | Generalized characteristics for finite entropy solutions of Burgers' equation[END_REF]] with E. Marconi, we prove various stability results for solutions of Burgers and the eikonal equation.

Optimal regularity estimates

It has been remarked in [START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF] that limits m = lim m ε of bounded energy sequences AG ε (m ε ; Ω) ≤ C satisfy a kinetic formulation similar to (3.4), but with a forcing term:

e is • ∇ x 1 m(x)•e is >0 = ∂ s σ in D (Ω × S 1 ), (3.6) 
where σ is a finite Radon measure on Ω × S 1 . Here and in the sequel we systematically identify S 1 and R/2πZ. This kinetic formulation can be interpreted in terms of entropy productions: for any g ∈ C ∞ (S 1 ), the map

Φ g (z) = ˆS1 g(s)e is 1 z•e is >0 ds, (3.7) 
is an entropy, and according to (3.6) its entropy production is the finite measure

∇ • Φ g (m) = - ˆS1 g (s) dσ(•, s).
Kinetic equations of the form (3.6) have been long known to enjoy regularity properties via averaging lemmas (see e.g. [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]), which are usually obtained by arguments of harmonic analysis. As a consequence, solutions of (3.6) belong to W

(1/3)-,(3/2)loc [Jabin and Perthame, 2002]. Another type of averaging lemmas, based on identities reminiscent of compensated compactness, has been used in [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] to show that finite-entropy solutions of Burgers' equation have the Besov regularity B This, and examples in [De Lellis and Westdickenberg, 2003], suggests that the optimal regularity of finite-entropy solutions of the eikonal equation should be m ∈ B

1/3 3,∞ .
1/3 3,∞ , that is, h → m(• + h) -m L 3 |h| 1 3 ∈ L ∞ .
This is indeed what we prove in [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF], locally. Note that the finite-entropy condition (i) is satisfied by limits of bounded energy sequences thanks to (3.3). Its link with the kinetic formulation is explained above via the family of entropies (3.7), which makes it clear that (ii) implies (i). The reverse implication is crucial in our argument and follows from a beautiful application of Banach-Steinhaus' uniform boundedness principle that we learnt from [De Lellis et al., 2003], and a generalized Riesz representation theorem for Radon measures (see [Lorent and Peng, 2021, Appendix B] for details to the originally very succinct proof of [Ghiraldin and Lamy, 2020, Lemma 3.4]).

The fact that (iii) implies (i) follows from a commutator argument similar to the proof of energy conservation for regular enough solutions of Euler's equation [START_REF] Constantin | Onsager's conjecture on the energy conservation for solutions of Euler's equation[END_REF] (note that our regularity exponent 1/3 is the same as in Onsager's conjecture). That commutator argument has already been used in the context of the eikonal equation to prove rigidity (vanishing of all entropy productions) for regular enough solutions [De Lellis and Ignat, 2015]. In [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF] we simply remark that the threshold regularity B 1/3 3,∞ implies that entropy productions are finite measures. The idea is to use a regularization m ε of m at scale ε, and to estimate ∇•Φ(m ε ) for an appropriate extension of the entropy Φ to R 2 . The map m ε is smooth and divergence free, but it is not S 1 -valued, so ∇ • Φ(m ε ) is not zero (as it would be for a smooth solution of the eikonal equation), but can be estimated in terms of the error 1 -|m ε | from solving the equation, which can be viewed as a commutator |m| ε -|m ε |.

The fact that (i)-(ii) implies (iii) follows from adapting smart calculations of [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF], and the way they are revisited in [START_REF] Goldman | New bounds for the inhomogenous Burgers and the Kuramoto-Sivashinsky equations[END_REF]. There, specific identities allow to express integrals of the increment |D h m| 3 = |m(• + h) -m| 3 in terms of the kinetic measure σ in (3.6) and lead to the Besov estimate (iii). Let us explain here in more details the link with compensated compactness: the starting point is the div-

curl estimate ˆX1 × X 2 dx pp X L p ∇ • X W -1 ,p , 1 < p < ∞, valid for smooth vector fields X 1 , X 2 ∈ C ∞ c (R 2 ; R 2 ), where ∇ • X denotes the vector (∇ • X 1 , ∇ • X 2 ).
Applying this to the increments

X j = χD h Φ j (m) = χ (Φ j (m(• + h)) -Φ j (m))
for some entropies Φ 1 , Φ 2 and a smooth cut-off χ, and using the finite-entropy property, leads to the bound

ˆχ2 D h Φ 1 (m) × D h Φ 2 (m) dx pp Φ L ∞ (1 + Φ C 2 )|h| 1-2/p ,
for all p > 2. Taking linear combinations of such bounds, for different entropies Φ 1 , Φ 2 , it turns out that one can obtain a left-hand side where the integrand is bounded below by |D h m| 3 + , leading to the regularity B

(1/3)-3+,∞ . This type of argument, already present in [Golse, 2010], is used in [START_REF] Goldman | Compactness and structure of zero-states for unoriented aviles-giga functionals[END_REF] to prove regularity of zero-energy states of an unoriented Aviles-Giga energy. The borderline regularity B 1/3 3,∞ in Theorem 3.1 is attained replacing that argument with integration by parts reminiscent of the same div-curl structure, but directly in the kinetic formulation. Remark 3.2. In [Lamy et al., 2022a[START_REF] Lamy | On optimal regularity estimates for finite-entropy solutions of scalar conservation laws[END_REF] we prove generalizations of Theorem 3.1 to finite-entropy solutions of degenerate equations. For entropy solutions, we also obtain new averaging lemmas in [START_REF] Gess | Regularity of solutions to scalar conservation laws with a force[END_REF].

Zero-energy states as solutions of a differential inclusion

A particular set of two entropies plays a distinguished role for the Aviles-Giga energy: the Jin-Kohn entropies

Σ 1 (z) = 2 3 (z 3 2 , z 3 1 ), Σ 2 (z) = e i π 4 Σ 1 (e -i π 4 z),
introduced in [Jin and Kohn, 2000] as calibrations to prove the lower bound (3.2), which is conjectured to be sharp. Their link with that lower bound is made apparent by the identity

1 6 |m + -m -| 3 H 1 Jm = |∇ • Σ(m)| if m ∈ BV,
where |∇•Σ(m)| is the absolute variation of the vector-valued measure

(∇ • Σ 1 (m), ∇ • Σ 2 (m)).
Note that this can be used to give a sense to the right-hand side of (3.2) when m / ∈ BV .

Remark 3.3. The absolute variation |∇•Σ(m)| can also be viewed as the supremum measure of the entropy productions ∇•Σ θ (m) of all rotated entropies Σ θ (z) = e iθ Σ 1 (e -iθ z) = cos(2θ) Σ 1 (z) + sin(2θ) Σ 2 (z).

If the total variation |∇ • Σ(m)|(Ω) is indeed the Γ-limit of the Aviles-Giga energy AG ε (•; Ω), it should be possible to characterize zero-energy states by imposing only ∇ • Σ(m) = 0. This is indeed what is proved in [START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF]: if a solution of (3.1) is such that its Jin-Kohn entropy productions vanish, then all its entropy productions vanish. One of the main ideas in [START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF] is to view the condition ∇ • Σ(m) = 0 as a differential inclusion: there exists w = (w 1 , w 2 ) such that ∇w k = iΣ k (m), and therefore

∇w ∈ K = Σ ⊥ (S 1 ) ⊂ R 2×2 , (3.8) 
where Σ ⊥ (z) is the matrix whose two rows are iΣ 1 (z), iΣ 2 (z).

The set K has no rank-one connections, which implies that the differential inclusion (3.8) has no obvious irregular solutions where ∇w would jump across a line. But tangent lines to K do have rank-one connections, and it is therefore not elliptic (in the sense of [Šverák, 1993]), so classical methods to obtain regularity of w are not available. This is of course no surprise, since we know that the zero-energy state m = ix/|x| provides a solution w which is singular at the origin. Nevertheless, the differential inclusion (3.8) retains a degenerate form of ellipticity:

det(A -B) |A -B| 4 ∀A, B ∈ K, (3.9) 
and this can be used to obtain some starting Besov regularity. This can also be formulated via the div-curl arguments of Section 3.2, since (3.9) implies

D h Σ 1 (m) × D h Σ 2 (m) |D h m| 4 .
Compared to Section 3.2, here we know that ∇ • Σ(m) = 0, so the div-curl estimate can be improved to obtain m ∈ B 1/3 4,∞ . This is then smartly combined with algebraic identities satisfied by entropies, to conclude that all entropy productions vanish.

A natural question to ask is: does the differential inclusion, by itself, enjoy the same rigidity as zero-energy states? We answer this positively in [START_REF] Lamy | Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture[END_REF].

Theorem 3.4. Let Ω ⊂ R 2 and w : Ω → R 2 satisfy the differential inclusion (3.8) almost everywhere. Then ∇w = Σ ⊥ (m), with m is a zero-energy state.

In particular, the characterization of zero-energy states in [Jabin et al., 2002] implies that ∇w is Lipschitz outside a discrete set of singular points, and in any convex neighborhood of a singular point ∇w(x) = Σ ⊥ (±ix/|x|) (in coordinates centered at the singular point). This seems to be the first rigidity result of that kind for a non-elliptic differential inclusion.

For the study of the Aviles-Giga functional, one interesting consequence of Theorem 3.4 is that stability estimates for zero-energy states may now be approached from the point of view of differential inclusion, where a large variety of tools have been developed for that purpose: see for instance [John, 1961, Reshetnyak, 1994, Friesecke et al., 2002, Faraco and Zhong, 2005, Lewicka and Müller, 2016, Luckhaus and Zemas, 2022]. In that perspective, the non-elliptic nature of our differential inclusion is a major obstacle to overcome, and we will comment more on that in Section 3.5.

Let us now comment on the proof of Theorem 3.4. The result of [START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF]] can be phrased as

(|m| = 1, ∇ • m = 0, ∇ • Σ(m) = 0) ⇒ ∇ • Φ(m) = 0,
for any entropy Φ, and Theorem 3.4 reaches the same conclusion without the assumption that m is divergence-free. Therefore it boils down to the implication

(|m| = 1, ∇ • Σ(m) = 0) ⇒ ∇ • m = 0.
(3.10)

The very starting point is that this implication is true if m is a smooth vector field, thanks to the identity

∇ • m = -2m 1 m 2 ∇ • Σ 1 (m) + (m 2 1 -m 2 2 )∇ • Σ 2 (m)
, valid for any smooth m : Ω → S 1 . When m is not smooth, it is natural to consider its regularization m ε at scale ε, and perform similar calculations. But the map m ε is not S 1 -valued anymore, so extra error terms appear, related to the commutator 1 -|m ε | = |m| ε -|m ε |. One would like to show that these error terms tend to zero: this requires quite a lengthy process, in which we involve all the entropy productions ∇ • Φ(m).

We explain here the main underlying idea. Information about ∇•Φ(m) is obtained by studying the approximation ∇ • Φ(m ε ), where Φ is an extension of Φ ∈ C 2 (S 1 ; R 2 ) to the unit disk D, where m ε takes its values. The crucial observation we make is that different extensions may provide different information. Accordingly, we consider two types of extensions: either we simply extend radially, or by solving an appropriate elliptic boundary value problem (which already played an important role in [START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF]). It turns out that the only way to reconcile the different informations provided by these two types of extension is that ∇ • m = 0. Interestingly, to reach that conclusion we make use of the fact that the Hilbert transform is not bounded from C 0 (S 1 ) to L ∞ (S 1 ) [Zygmund, 2002, § VII].

Stability estimates

One way to gain insight into the structure of general finite-entropy solutions is to establish quantitative stability estimates which measure, in terms of the energy, how far a finite-entropy solution may be from specific well-understood solutions: zero-energy states, elementary jump solutions, entropy or viscosity solutions, etc.

Let us discuss first the case of Burgers' equation

∂ t u + ∂ x u 2 2 = 0.
Entropy solutions are bounded weak solutions such that their entropy productions

µ η = ∂ t η(u) + ∂ x q(u), η ≥ 0, q (v) = vη (v),
are nonpositive measures µ η ≤ 0. Natural initial-value problems are well-posed in the class of entropy solutions [Kružkov, 1970]. It turns out that a single convex entropy is sufficient to characterize entropy solutions: if a bounded weak solution u of Burgers' equation is such that

µ = ∂ t u 2 2 + ∂ x u 3 3 , (3.11)
is a nonpositive measure, then u is an entropy solution [Panov, 1994, De Lellis et al., 2004]. This leads to the natural stability question: if the positive part of the measure µ is small, can we quantify how close u is to an entropy solution? We provide a first answer in [START_REF] Lamy | On the regularity of weak solutions to burgers' equation with finite entropy production[END_REF].

Theorem 3.5. Let u be a bounded weak solution of Burgers' equation (3.5) in Q = (-1, 1) t × (-1, 1) x , such that the entropy production µ (3.11) is a measure. Then there exists a bounded entropy solution u ent of (3.5) in Q, such that

ˆ1 2 Q u -u ent 4 dtdx ≤ C µ + (Q) 4 35 ,
where C > 0 depends only on u ∞ .

In [START_REF] Lamy | On the regularity of weak solutions to burgers' equation with finite entropy production[END_REF] we use this stability estimate to obtain information about Lebesgue points of u: using the fact that entropy solutions are one-sided Lipschitz, together with scaling arguments, we deduce from Theorem 3.5 that the set of non-Lebesgue points of a finite-entropy solution has Hausdorff dimension at most one. More precisely, any point z 0 = (t 0 , x 0 ) at which the entropy production satisfies |µ|(B r (z 0 )) = O(r 1+α ) as r → 0 + , for some α > 0, is a Lebesgue point, and a standard covering argument implies the dimension estimate. This is reminiscent of what a BV solution satisfies: H 1 -a.e. point z 0 at which |µ|(B r (z 0 )) = o(r) is a Lebesgue point. Here we miss the points at which |µ|(B r )/r decays to 0 more slowly than algebraically. Since then, another proof of that Lebesgue point property has been given in [Marconi, 2022a], which applies to more general scalar conservation laws, but a complete analog of the Lebesgue point properties of BV solutions is still missing.

The proof of Theorem 3.5 is in two main steps: first we obtain a weaker estimate (essentially a W -1,1 estimate), then we improve it to an L 4 estimate using the regularity provided by the finite-entropy condition. The first step is the most original and relies on the correspondence between Burgers equation and the Hamilton-Jacobi equation

∂ t h + 1 2 (∂ x h) 2 = 0, u = ∂ x h.
The strategy consists in refining estimates of [De Lellis et al., 2004], to obtain a quantitative version of the fact that a weak solution h is a viscosity solution if µ + = 0.

Besides obtaining information about Lebesgue points, another motivation of such stability estimate is even more directly related to the open question of proving upper bounds for the associated variational models: this requires constructing approximations of u whose energy is very precisely controlled. An approach proposed in [START_REF] Bellettini | Γ-entropy cost for scalar conservation laws[END_REF] is to separate regions were µ is mostly positive or mostly negative, and use a backward or forward (depending on the sign of µ) vanishing viscosity approximation. Then one needs to quantify how close u is to an entropy (or a backward entropy) solution in the corresponding regions, and to do so in a way that all errors can be summed. This motivates looking for sharp stability estimates (the exponent 4/35 in Theorem 3.5 is most probably not sharp).

It is not clear which norm is the most adapted to sharp estimates: for instance, the classical theory of entropy solutions suggests using L 1 distances, and the arguments of [Marconi, 2022a] employ Wasserstein distances. Relative entropy methods, which first arose in [Dafermos, 1979, DiPerna, 1979] to prove weak-strong stability results, provide an L 2 -based framework. In [Contreras Hip andLamy, 2021, Contreras Hip et al., 2022] we adapt the relative entropy methods of [Leger, 2011, Leger and Vasseur, 2011, Krupa and Vasseur, 2019, Krupa and Vasseur, 2020] to study the stability of shock waves, which are particular entropy solutions of Burgers' equation of the form

S(t, x) = S 0 (x -vt), S 0 (x) = u 1 x<0 + u r 1 x>0 , v = u + u r 2 ,
for some u > u r . We prove that the L 2 distance of u(t) = u(t, •) to a small drift of a shock wave τ h(t) S(t) = S(t, • -h(t)), is estimated by the initial distance, plus the positive part of the entropy production.

Theorem 3.6. Let u a bounded finite-entropy solution of Burgers' equation (3.5) on (0, T ) × R. For any shock wave S, any t ∈ [0, T ] and R > 0 we have

ˆR -R |u(t) -τ h(t) S(t)| 2 dx ≤ ˆR+tV -R-tV |u 0 -S 0 | 2 dx + C µ + ([0, t] × [-R -tV, R + tV ]), where V = max {|u |, |u r |, u ∞ }, C > 0 is an absolute constant, and h(t) is a Lipschitz drift controlled by 1 C (u -u r ) ˆt 0 h (τ ) 2 dτ ≤ ˆ2V t -2V t |u 0 -S 0 | 2 dx + µ + ([0, t] × [-2V t, 2V t]).
This generalizes results of [START_REF] Krupa | On uniqueness of solutions to conservation laws verifying a single entropy condition[END_REF], where it is assumed that µ ≤ 0 (µ + = 0) and that u satisfies an additional trace assumption. The necessity of introducing a drift, at least in the case µ ≤ 0, is proved in [Vasseur, 2016].

The relative entropy method is based on the identity

1 2 ∂ t (u -v 0 ) 2 = µ -∂ x q(u; v 0 ),
for any constant v 0 and some polynomial q(u; v 0 ), whenever u is a weak solution of Burgers' equation. This automatically provides estimates on the L 2 distance to a constant solution. When dealing with shocks, applying this on both sides of the shock provides an estimate with additional boundary terms, and it was realized in [Leger, 2011] that a well-chosen drift can make these extra terms nonpositive, when u is an entropy solution. To prove Theorem 3.6 we check that the positive part of these extra terms can be controlled by the entropy production. Moreover, an extra trace assumption on u is needed in [Leger, 2011] in order to construct the drift h(t). We are able to remove that trace assumption by showing in [Contreras Hip et al., 2022] that any finite-entropy solution admits generalized characteristic curves. These generalized characteristics are obtained via a Lagrangian representation introduced in [Marconi, 2022a], and which is the main tool in the proof of rectifiability of the entropy production [Marconi, 2022b]. Roughly speaking, the Lagrangian representation describes the evolution of the hypograph H t = {(x, v) : v < u(t, x)} by decomposing it into particles (γ x (t), γ v (t)) which evolve according to the characteristic equation γx = γ v . Generalized characteristics should do the same for the evolution of the graph G t = {(x, v) : v = u(t, x)}. The Lagrangian representation provides fairly natural candidates (essentially "infima" of Lagrangian curves), and the difficulty is to show that these candidates do satisfy the characteristic equation γ = u(γ) (which needs to be interpreted correctly since u is not continuous). To achieve this, our main new ingredient is a formula expressing the entropy flux across a curve (or a hypersurface for higher dimensional scalar conservation laws) in terms of the Lagrangian representation.

Remark 3.7. Combining the two estimates of Theorem 3.6 gives a drift-less estimate of the form

ˆR -R |u(t) -u sh (t)| 2 dx ≤ ˆR+St -R-St |u 0 -u sh 0 | 2 dx + C µ + + CS 3 2 √ t ˆ2St -2St |u 0 -u sh 0 | 2 dx + C µ + .
Approximating initial conditions by piecewise constant functions, we also prove similar estimates on the L 2 -distance to entropy solutions with BV initial data. Next, one could use the regularity provided by the finite-entropy condition to approximate u 0 with BV functions, iterate the above estimates on small time-intervals, and deduce for instance

ˆ1 -1 |u(t) -u ent (t)| 2 dx ≤ C µ + ([-1, t] × [-1 -2t, 1 + 2t]), if u ∞ ≤ 1
, where u ent is the entropy solution equal to u at t = 0, and C > 0 an absolute constant. This gives a strong improvement of Theorem 3.5, but a really useful estimate should not have a square root in the right-hand side.

We turn now to the eikonal equation, and to the question of making quantitative the rigidity statement of [Jabin et al., 2002]: if m is a zero-energy state in a smooth bounded simply connected domain Ω, with tangent boundary conditions m • n ∂Ω = 0, then Ω must be a disk, and m a vortex.

The first (non-sharp) quantitative version of that rigidity result was obtained in [Lorent, 2014] (see also [Lorent, 2012]), under the extra assumptions that Ω is convex, and that the trace m ∂Ω does not jump (between the two opposite unit tangents). In [START_REF] Lamy | Stability of the vortex in micromagnetics and related models[END_REF] we obtain a sharp stability estimate and remove the convexity and extra trace assumptions: Theorem 3.8. Let Ω ⊂ R 2 a C 1,1 simply connected domain with H 1 (∂Ω) = 2π, and m : Ω → R 2 a finite-entropy solution of the eikonal equation such that m • n ∂Ω = 0 on ∂Ω. Then, up to translating Ω, we have

ˆ∂Ω n ∂Ω (x) - x |x| 2 dH 1 (x) ≤ C σ ,
where C > 0 depends on the maximal absolute curvature of ∂Ω, and σ is the total variation on Ω × S 1 of the kinetic defect measure (3.6).

Recall that σ ≤ c lim inf AG ε (m ε ; Ω) if m = lim m ε thanks to (3.3) and the interpretation of σ in terms of the entropies (3.7), so Theorem 3.8 really implies a bound in terms of the energy. Moreover, this is valid for other types of energies, as the one considered in [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF]. This estimate is sharp in the sense that, if Ω is a smoothed out N -gon and m = ∇ ⊥ dist ∂Ω , then both sides of the inequality are of order N -2 . As a corollary, we obtain other estimates which are, however, probably not sharp:

dist(∂Ω; ∂D 1 ) ≤ C σ 1 2 , ˆΩ m -αi x |x| 4 dx ≤ C σ 2 3 ,
for some α ∈ {±1}, up to translating Ω.

The main tool that allows us to prove Theorem 3.8 is a Lagrangian representation constructed in [Marconi, 2021a], inspired by the superposition principle for transport equations [Ambrosio and Crippa, 2014]. That tool has already been very successfully applied to solve a variety of questions related to the present chapter [Marconi, 2022b[START_REF] Marconi | Rectifiability of entropy defect measures in a micromagnetics model[END_REF]. It allows to disintegrate the kinetic dissipation measure σ along Lagrangian trajectories (γ x (t), γ s (t)) taking values in {m(x)•e is > 0} ⊂ Ω×S 1 , and solving the characteristic equation γx = e iγs . Along each curve γ, the disintegrated dissipation corresponds to the total variation of γ s : how much the curve γ x turns.

In the absence of dissipation (σ = 0), the Lagrangian curves would be straight lines. Following them from the boundary, elementary geometric arguments provide the rigidity of zero-energy states, in the spirit of [Jabin et al., 2002]. If the domain is not a disk, the same elementary geometric arguments show that the curves must turn, and this creates dissipation. The main technical achievement in [START_REF] Lamy | Stability of the vortex in micromagnetics and related models[END_REF] is to quantify that dissipation along well-chosen packets of Lagrangian curves, whose contributions can then be summed to bound from below the total dissipation σ , in terms of how much the unit normal n ∂Ω deviates from being radial.

Perspectives

As explained in this chapter's introduction, the central question is to complete the Γ-convergence of the Aviles-Giga energy or similar models [START_REF] Rivière | Limiting domain wall energy for a problem related to micromagnetics[END_REF], Rivière and Serfaty, 2003, Alouges et al., 2002, Varadhan, 2004, Bellettini et al., 2010], that is, construct approximating sequence with an energy upper bound matching the lower bound (3.2) -or similar lower bounds for other models.

In the literature, the focus has been placed mostly on proving BV -like properties of finite-entropy solutions: rectifiability of the jump set, rectifiability of the entropy productions, Lebesgue points outside the jump set. The state of the art depends on the model, and this program is more advanced for Burgers equation or solutions of the eikonal equation coming from the micromagnetics model [Rivière andSerfaty, 2001, Rivière andSerfaty, 2003], than for the Aviles-Giga energy or [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF] where rectifiability of the entropy productions and one-dimensionality of non-Lebesgue point are still open. The main perspectives I propose here concern sharp stability estimates and techniques related to E. Marconi's Lagrangian representation.

Lebesgue points

In a work in preparation with E. Marconi, we will extend the results of [Lamy andOtto, 2018, Marconi, 2022a] on Lebesgue points for Burgers' equation, to finite-entropy solutions of the eikonal equation. We do this by building on the strategy of [Marconi, 2022a]. That strategy does not directly work for finite-entropy solutions of the eikonal equation, basically because S 1 is not ordered, while R is. As a consequence, configurations that are impossible in the case of Burgers are not obviously ruled out here: essentially, oscillations between two opposite directions ±m 0 ∈ S 1 . This is also why the rectifiability results of [Marconi, 2022b[START_REF] Marconi | Rectifiability of entropy defect measures in a micromagnetics model[END_REF] are not known for finite-entropy solutions of the eikonal equation (as made apparent in the expression of the kinetic measure in [Marconi, 2021a]).

We will complement the arguments of [Marconi, 2022a] by proving that such oscillations, if they happen, can be quantified in a way to contradict the vanishing mean oscillation property which is satisfied at H 1 -a.e. non-jump point thanks to the structure result of [De Lellis and Otto, 2003]. We achieve this quantitative oscillation property by exploiting the Lagrangian formulation, much in the spirit of Theorem 3.8's proof.

Stability and differential inclusions

We would like to extend the stability of zero-energy states of Theorem 3.8 to a case without any boundary conditions. Theorem 3.4 suggests approaching that question from the point of view of differential inclusions: show for instance that

inf ∇ϕ∈K ˆB1/2 |∇w -∇ϕ| 2 dx ≤ C ˆB1 dist 2 (∇w, K) dx α ,
for some α ∈ (0, 1). What we gain here, compared to solutions of the eikonal equation, is the possibility of starting out by looking at smooth perturbations of exact solutions ∇ϕ ∈ K (which are in correspondence with zero-energy states) -since here we do not have the constraint to satisfy the eikonal equation.

Because the set K ⊂ R 2 is not elliptic, we know that, unlike what happens for K = SO(2) [START_REF] Friesecke | A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity[END_REF], Faraco, 2004], the exponent α cannot be equal to 1. Instead, it seems reasonable to conjecture that α = 1/2, and to follow the general strategy of [John, 1961, Reshetnyak, 1994, Friesecke et al., 2002, Faraco, 2004], which is in two main steps: first, prove an infinitesimal version for smooth perturbations of exact solutions; second, deduce the general case.

As a training ground to gain insight into these issues, in [START_REF] Lamy | Quantitative rigidity of differential inclusions in two dimensions[END_REF] we prove a general stability result for arbitrary closed curves K ⊂ R 2×2 which are elliptic, going beyond the explicit case of K = SO(2) [START_REF] Friesecke | A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity[END_REF]. The first step of the above strategy follows directly from general Korn-type inequalities of [John, 1961], and the second step uses ideas related to a well-studied correspondence between quasiconformal mappings and quasilinear elliptic equations in two dimensions [START_REF] Astala | Quasiregular mappings and Young measures[END_REF], Faraco, 2004, Faraco and Székelyhidi, 2008, Astala et al., 2009, Astala et al., 2020, Astala et al., 2012, Astala et al., 2017, Astala et al., 2019].

To apply that strategy for the nonelliptic differential inclusion (3.8), the first step will not reduce directly to the linear estimates of [John, 1961] (or their recent generalizations in [Arroyo-Rabasa, 2021]), but we will probably need to combine these with some interpolation inequalities. The second step should be significantly harder, and require new regularity estimates for degenerate quasilinear elliptic equations, in the spirit of [START_REF] Santambrogio | Continuity in two dimensions for a very degenerate elliptic equation[END_REF], Colombo and Figalli, 2014a[START_REF] Colombo | Regularity results for very degenerate elliptic equations[END_REF], Bousquet and Brasco, 2018].

Stability estimates for Burgers

Theorem 3.6 about the stability of elementary shock waves is not entirely satisfactory because of the presence of the drift. It is proved in [Vasseur, 2016] that this drift is necessary, in the case where µ + = 0. It could very well be that the extra freedom provided by the µ + term removes the necessity of that drift: there is a hope of proving a drift-less version of Theorem 3.6. To do so will definitely require new ingredients. One promising approach is to relax the L 2 -norm setting to allow for more general quantities which are bounded above and below by multiples of the L 2 -norm, as done e.g. in [Kang, 2021] with a weighted relative entropy method.

Another, completely different approach to optimal stability estimates for Burgers is suggested by [Marconi, 2022a]: use Wasserstein distances which arise naturally in connection with the kinetic formulation of finite-entropy solutions. In that setting, one thing that would have to be understood before considering stability estimates among finite-entropy solutions, is whether such distances behave well among entropy solutions, an issue possibly related to the methods in [Brenier, 1984, Gigli and Otto, 2013, Esselborn et al., 2016].

Résumé

De nombreux phénomènes physiques peuvent être décrits par des modèles mathématiques similaires: cristaux liquides, supraconductivité, micromagnétisme, elasticité, formation de motifs, etc. Les états d'équilibre minimisent une certaine énergie, caractérisée par la compétition entre deux effets: un terme pénalise les déformations, mais un autre terme favorise les transitions de phases. Cette compétition encourage la formation de singularités: des déformations abruptes dans de petites régions où se concentrent les transitions de phases, et des déformations minimales en dehors. Les méthodes mathématiques du calcul des variations et des équations aux dérivées partielles permettent d'étudier les propriétés de ces états et de leurs singularités.

Les travaux présentés dans ce mémoire portent sur l'analyse de deux types de singularités: singularités ponctuelles ou linéaires dans des systèmes de dimension 3, et singularités linéaires dans des systèmes de dimension 2. Cette distinction reflète aussi leurs liens avec deux types d'équations aux dérivées partielles: elliptiques ou hyperboliques.

L'étude des singularités du premier type est motivée ici essentiellement par la physique des cristaux liquides, et structurée en deux axes de recherche: comprendre l'effet de l'immersion de particules étrangères, et celui d'une anisotropie dans la pénalisation des déformations. Pour le premier axe, la présence de particules impose des déformations au cristal liquide, et l'objectif est de décrire les singularités engendrées par ces déformations, ainsi que les interactions entre particules immergées. Pour le deuxième axe, l'anisotropie des déformations, physiquement plus réaliste, restreint considérablement les outils mathématiques disponibles: le défi principal est de développer de nouvelles techniques qui permettent d'analyser efficacement les modèles anisotropes.

L'étude des singularités du second type est motivée par de très divers phénomènes physiques: cristaux liquides, élasticité, micromagnétisme, formation de motifs, physique statistique. L'objectif est de comprendre les phénomènes de concentration de singulartiés linéaires: peuvent-elle s'accumuler au point de former des structures fractales? L'accent est mis ici sur la quantification des déformations admissibles et la stabilité de structures élémentaires bien identifiées. Du point de vue mathématique, ces questions présentent l'originalité d'aborder des équations hyperboliques par le biais du calcul des variations.
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 21 Figure 2.1: Schematic representations of a dipole (left) and a Saturn ring (right) configuration [Stark and Ventzki, 2001].

Figure 2

 2 Figure 2.3: The domain U ext δ (left), and zoom near the equator (right): coordinates (r, θ) and oriented boundary conditions.

Theorem 3. 1 .

 1 Let m : Ω → R 2 a weak solution of the eikonal equation (3.1). Then the following are equivalent:(i) ∇ • Φ(m) ∈ M loc (Ω) for all C 2 entropies Φ,(ii) m satisfies the kinetic formulation (3.6) with σ ∈ M loc (Ω × S 1 ),
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