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RÉSUMÉ DE LA THÈSE

Introduction

Les microorganismes, et en particulier les bactéries, sont prépondérants dans de nom-
breux écosystèmes, dont le corps humain. Les technologies de séquençage haut-débit ont
joué un rôle majeur dans leur caractérisation, notamment en métagénomique, en donnant
accès à la totalité de leur information génétique et à leur potentiel fonctionnel. Les études
qui s’intéressent aux communautés microbiennes dans le domaine de la santé humaine
par exemple, ont le plus souvent pour objectif d’identifier des biomarqueurs signatures en
associant des caractères phénotypiques à l’abondance de gènes ou d’espèces bactériennes
dans une population. Cependant, un niveau de résolution plus fin est désormais nécessaire,
ces signatures pouvant être indétectables en restant à l’échelle de l’espèce car en réalité
dépendantes de souches microbiennes spécifiques. L’étude des communautés microbiennes
à l’échelle de la souche présente donc un grand intérêt et soulève de nombreux défis bioin-
formatiques.

Ce travail de thèse se propose d’explorer ce domaine d’étude grandissant et ses thé-
matiques associées telles que la représentation de multiple séquences génomiques par des
graphes, ainsi que de proposer une nouvelle solution bioinformatique aux défis actuels.

Concepts biologiques et approches méthodologiques

Le développement des technologies de séquençage nouvelle génération, qui permettent
de lire les séquences ADN, est à l’origine de l’essor des domaines tels que l’étude des
maladies génétiques ou la médecine de précision, grâce au haut-débit des séquences que
ces machines peuvent traiter. Parmi les technologies les plus utilisées, le séquençage Il-
lumina qui produit des lectures de séquençage courtes, environ 150 paires de bases (pb),
reste dominant (Goodwin et al., 2016). Le séquençage Illumina permet également de pro-
duire des lectures appariées, offrant une plus grande couverture horizontale du fragment
séquencé. Les lectures de séquençage sont par la suite assemblées pour reconstruire tout
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(génome complet) ou partie (contigs) d’un génome de référence. Ces génomes de référence
servent de base à de nombreuses études et développements en bioinformatique, dont le
travail de thèse présenté.

Cette thèse se focalise sur l’étude des bactéries. Leur génome est généralement composé
d’un unique chromosome, mais de l’information génétique peut également être portée par
des plasmides dont le nombre est variable. Qu’il s’agisse du chromosome ou des plasmides,
la structure ADN est généralement circulaire. Plusieurs méthodologies, notamment sur des
caractères morphologiques, ont été utilisées pour classifier les bactéries ainsi qu’établir une
taxonomie. Les technologies de séquençage ont justement apporté de nouvelles informa-
tions pour raffiner ces classifications, basées cette fois sur des caractéristiques génétiques.
Le nombre croissant de séquences bactériennes disponible a permis par des études de
génomique comparative de mettre en évidence la diversité qui existe au sein d’une même
espèce bactérienne (Fraser-Liggett, 2005; Tettelin et al., 2005; Lefébure and Stanhope,
2007), conduisant à une nouvelle échelle taxonomique que sont les souches. Cependant,
encore aujourd’hui, il n’existe pas de définition consensus pour une souche. En 1995, Ten-
over et al. propose de définir une souche comme « un isolat ou groupe d’isolats pouvant
être distinguer d’autres isolats du même genre ou de la même espèce par des caractères
phénotypiques, des caractères génétiques, ou les deux » (Tenover et al., 1995).

En parallèle de la notion de souche, l’observation des variations génomiques au sein
d’une même espèce a introduit le concept de pangenome. Le pangenome est l’ensemble
des gènes retrouvés chez une espèce, et est généralement divisé en deux grandes caté-
gories. Tout d’abord le génome cœur, qui correspond à l’ensemble des gènes retrouvés
chez toutes les souches de l’espèce étudiée. Et le génome accessoire, qui correspond aux
gènes présents chez une seule souche ou un nombre limité de souches (Tettelin et al.,
2005). Cependant, d’autres travaux ont rafiné cette catégorisation en s’intéressant au
pangénome à des échelles taxonomiques plus élevées (Makarova et al., 2007; Koonin and
Wolf, 2008). Les études en pangénomique s’intéressent essentiellement à caractériser la
composition en gènes d’une souche ou encore l’impact des transferts horizontaux de gènes
d’un point de vue évolutif. Bien que ce travail de thèse n’emploie pas à proprement parler
une approche pangénomique, il existe un lien clair avec les questions que soulève une réso-
lution à l’échelle de la souche. Cet aspect sera notamment re-détaillé dans les perspectives.
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Si la génomique peut être élargie au concept de pangénomique à l’échelle d’une espèce,
à l’échelle d’une communauté d’espèces elle est élargie au concept de métagénomique. En
métagénomique, un échantillon environnemental est séquencé, révélant les génomes de
tous les individus présents dans l’échantillon. Dans un écosystème microbien, l’ensemble
des microbes retrouvé est appelé microbiome et l’ensemble des génomes de ces microbes
est le métagénome. En particulier, le séquençage métagénomique shotgun, qui consiste
à décomposer aléatoirement l’ADN en plusieurs fragments, permet (en théorie et avec
une profondeur de séquençage suffisante) une couverture quasi-exhaustive de toutes les
espèces présentes ainsi que leurs variations génétiques, des informations indispensables
pour permettre des analyses allant jusqu’à une résolution au niveau des souches.

Les analyses en métagénomique s’intéressent à différentes questions reflétant les di-
verses caractéristiques d’une communauté microbienne, en particulier sa composition, sa
dynamique, ou encore les réseaux métaboliques impliqués. Dans cette thèse, on s’intéressera
à la question de la composition de la communauté, c’est-à-dire à mettre en évidence les
souches présentes dans un échantillon, faisant ainsi le lien avec les intérêts à long-terme
présentés en introduction que sont la découverte de biomarqueurs. La section suivante
présente le contexte qui existe déjà, au niveau espèce, dans cet objectif d’analyse de la
composition, puis les outils développés pour des analyses au niveau souche seront abordés
dans l’état de l’art.

Contexte scientifique et objectifs

Dans le but de répondre à la question de la composition d’un échantillon métagénomique
au niveau espèce, deux principales approches sont utilisées : les approches basées sur
des références, qui sont particulièrement adaptées pour identifier des espèces présentes
dans une base de données de référence, et les approches sans référence, qui sont utiles
lorsqu’aucune espèce proche n’est disponible (Comin et al., 2021).

Une méthode d’analyse classique, et qui a contribué à poser le contexte de ce projet de
thèse du fait de ses limitations, repose sur l’utilisation d’un catalogue de gènes représen-
tatif de l’écosystème étudié. Cette approche utilise à la fois des éléments des méthodes
basées sur des références et des méthodes sans référence. Brièvement, et pour prendre
l’exemple de la construction du catalogue de 3.3 millions de gènes du microbiote instesti-
nal (Qin et al., 2010), des échantillons fécaux humains ont été séquencés puis les lectures de
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séquençages assemblées en contigs. À partir des contigs, les gènes ont été extraits à l’aide
d’outils de prédiction de gènes puis regroupés par similarité en familles de gènes. Afin de
réduire la redondance, un seul gène au sein d’une famille de gènes est sélectionné comme
représentant. Cette étape de réduction de la redondance élimine alors les variations qui
auraient été indispensables à l’identification de souches bactériennes. Ces catalogues de
gènes peuvent ensuite être utilisés pour reconstruire des espèces métagénomiques (Nielsen
et al., 2014), et plus récemment des pangénomes d’espèces métagenomiques (Oñate Plaza
et al., 2019), distinguant les gènes cœur des gènes accessoires, un premier pont vers la
pangénomique et vers l’échelle des souches.

Étant donné l’intérêt grandissant et la nécessité de procéder à des analyses mé-
tagénomiques au niveau souche, ce projet de thèse propose un nouveau cadre d’exploration
permettant un profilage individuel d’échantillons métagénomiques, c’est-à-dire identifier
et quantifier les souches dans une communauté bactérienne d’un écosystème donné ainsi
qu’inférer de nouvelles souches.

Les catalogues de gènes sont construits à partir de sous-ensembles d’échantillons tandis
que de nouveaux sont sans cesse disponibles. La prise en compte de ces nouveaux échantil-
lons implique de mettre à jour ces catalogues. Les catalogues de gènes sont donc des bases
de données figées qui nécessitent de repasser par toutes les étapes de construction pour
constituer de nouveaux catalogues mis à jour. De cette limite nait alors une première né-
cessité d’avoir une structure de données pouvant être mise à jour de manière dynamique.
C’est pourquoi nous nous sommes tournés vers les structures de graphe, qui permettent
cette fonctionnalité. L’état de l’art ci-dessous détaille les approches par graphe.

De plus, une autre limite déjà abordée est la suppression de variations lors de la
sélection du gène représentant de la famille de gènes. À nouveau, les graphes semblent
être une structure adéquate pour représenter un ensemble de séquences similaires, et ainsi
conserver toutes les variations apportées par toutes les séquences.

Les objectifs principaux de la thèse sont donc (i) d’utiliser une structure plus globale,
pouvant être requêtée et dynamique, appliquée à la métagénomique (ii) identifier et in-
dexer les gènes de souches bactériennes (iii) calculer les abondances des souches présentes
dans l’échantillon et prédire la présence de nouvelles souches.

Bien qu’ils ne répondent pas entièrement aux objectifs de la thèse, d’autres outils ont
déjà été développés dans le but de s’intéresser aux souches bactériennes et sont détaillés
dans l’état de l’art.
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Etat de l’art

Les graphes ne sont pas une nouvelle structure de données en bioinformatique, ils sont
notamment utilisés par les outils d’assemblage. Un graphe est une structure composée de
nœuds reliés par des arêtes. Une succession de nœuds liés par des arêtes est communé-
ment appelée un chemin. Dans le cas de l’assemblage, ce sont généralement les graphes
de de Bruijn qui sont utilisés. Dans cette structure, les nœuds contiennent des k-mers
des séquences d’origine, et les arêtes relient les k-mers se chevauchant sur k − 1 bases.
Cependant, les graphes sont désormais également utilisés pour représenter les génomes
de multiples individus, permettant alors de capturer toutes les variations au sein d’une
espèce tout en fusionnant les régions identiques entre ces différents génomes. Ce sont les
graphes de génomes, une sous-catégorie de graphe de séquences dans lesquels les nœuds
contiennent des sous-séquences des séquences d’origine et les arêtes décrivent la succession
non-chevauchante de ces différents segments. Étant donné les limites détaillées dans la sec-
tion précédente et les graphes ayant gagné en intérêt ces dernières années pour représenter
des génomes, ils semblent être un meilleur cadre d’analyse pour répondre à ces défis.

Plusieurs outils utilisant des représentations sous forme de graphe ont déjà été dévelop-
pés. Cependant, ils sont généralement utilisés dans des buts très spécifiques qui ne sont
pas adaptés aux objectifs de cette thèse. Cortex (Iqbal et al., 2012) est utilisé pour de
l’assemblage de novo ainsi que la découverte et le génotypage de variations génétiques.
BayesTyper (Sibbesen et al., 2018) et GraphTyper2 (Eggertsson et al., 2019) sont des out-
ils de génotypage pour petites variations et les variants de structure. Pandora (Colquhoun
et al., 2021) est spécifiquement dédié au génotypage des variants de structure. Bien que
ces outils démontrent l’activité de la recherche dans le domaine et l’utilité des graphes
pour représenter des séquences génomiques, dans le cadre de cette thèse, il est nécessaire
de se tourner vers des développements de frameworks complets.

HISAT2 (Kim, Paggi, et al., 2019) crée un graphe linéaire à partir d’un seul génome
de référence puis incorpore les variations en tant que chemins alternatifs. Cependant,
HISAT2 n’a pas été pensé pour représenter de manière exhaustive les variations retrouvées
chez une espèce, ce qui est limitant pour une analyse au niveau souche telle que recher-
chée dans cette thèse. Minigraph (H. Li, Feng, et al., 2020) s’intéresse essentiellement
à conserver un système de coordonnées stable dans le graphe comme cela est possible
avec une représentation linéaire. Cependant, minigraph est plutôt adapté pour des anal-
yses à l’échelle d’une population d’une part, et pour représenter des variants de structure
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d’autre part, ce qui là encore est limitant pour les objectifs de la thèse. Au final, c’est
vg toolkit (Garrison, Sirén, et al., 2018) qui a semblé l’outil le plus adéquate. Il permet
de construire des graphes de variations, c’est-à-dire un graphe de génome bidirectionnel
(les nœuds peuvent être lus dans les deux sens, correspondant ainsi aux sens de chacun
des brins d’ADN) dont les génomes utilisés en entrée sont des chemins colorés dans le
graphe. Contrairement aux autres outils mentionnés, les graphes de variations permet-
tent de représenter sans perte toutes les séquences et toutes les variations. En plus de la
construction de graphe, d’autres outils font partie de vg toolkit ou ont été développés
pour fonctionner avec. Seqwish (Garrison, 2022) utilise les alignements de séquence deux
à deux obtenus via minimap2 pour construire un graphe de variations. Aussi, vg toolkit
intègre son propre outil de mapping de courtes lectures de séquençage sur graphe.

En parallèle, des outils ont également déjà été développés afin de s’intéresser à la
question de l’identification de souches bactériennes dans des échantillons métagénomiques.

DESMAN (Quince et al., 2017) utilise comme référence des gènes cœur d’espèces micro-
biennes connus et présents en une seule copie. À partir de ces références et d’un ensemble
d’échantillons métagénomiques, DESMAN reconstitue des haplotypes de souches et en prédit
les abondances. Cette approche ne s’applique pas au projet de thèse puisque l’un des objec-
tifs est de pouvoir analyser les échantillons de manière individuelle. StrainPhlan (Truong
et al., 2017) utilise des génomes de référence ou des marqueurs spécifiques dans les
références, ainsi qu’un ensemble d’échantillons. Cependant, StrainPhlan n’est capable
d’identifier que les souches dominantes et ne propose pas d’abondance. StrainEST (Al-
banese and Donati, 2017) et DiTASiC (Fischer et al., 2017) utilisent un ensemble de
génomes de référence et permettent l’identification et la quantification de souches parmi
les références. Enfin, mixtureS (X. Li et al., 2020) utilise un seul génome de référence
à partir duquel il infère et quantifie le nombre de souches différentes (sans les identifier)
présentes dans un échantillon donné.

En intégrant les deux aspects principaux de cet état de l’art, il apparait, à notre con-
naissance, qu’aucun outil n’utilise les graphes pour représenter de multiples séquences
dans le but d’être ensuite utilisés pour réaliser un profilage complet d’échantillons mé-
tagénomiques, c’est-à-dire identifier les souches présentes parmi les références disponibles,
inférer de nouvelles souches et estimer leurs abondances. Afin de répondre à ces objectifs,
j’ai développé StrainFLAIR.
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StrainFLAIR: Profilage d’échantillons métagenomiques
au niveau souche en utilisant des graphes de variations

Notre outil StrainFLAIR (STRAIN-level proFiLing using vArIation gRaph) a fait
l’objet d’une publication scientifique (Da Silva et al., 2021). Il exploite plusieurs outils ex-
istants et propose de nouvelles solutions algorithmiques dans le but d’indexer des génomes
bactériens au niveau souche ainsi que de les requêter.

Pour la partie indexation, StrainFLAIR utilise Prodigal (Hyatt et al., 2010) afin de
prédire les gènes présents dans un ensemble choisi de génomes de référence. Puis, les gènes
sont regroupés en familles de gènes à l’aide de CD-HIT (W. Li and Godzik, 2006). Pour
chaque famille de gènes, les séquences des gènes sont alignées deux à deux via minimap2,
dont le résultat est converti en graphe de variations grâce à seqwish. Les chemins colorés
du graphe correspondent ainsi à des gènes.

Pour la partie requête, les lectures de séquençage d’un échantillon métagénomique sont
alignées sur le graphe en utilisant un des outils de mapping de vg toolkit. Le résultat de
ce mapping produit des alignements eux-mêmes sous forme de graphe qui a nécessité que
nous développions un algorithme pour (i) récupérer les meilleurs alignements sous forme
linéaire et (ii) attribuer les lectures aux chemins colorés du graphe en fonction de ces
alignements. À partir des lectures couvrant les chemins colorés du graphe, une abondance
est calculée pour chacun des chemins colorés. Enfin, l’abondance de la souche est estimée
à partir de la moyenne des abondances des gènes spécifiques de la référence. Néanmoins,
cette abondance est automatiquement nulle si la proportion de gènes spécifiques d’une
souche ne dépasse pas un certain seuil défini par l’utilisateur.

La stratégie de StrainFLAIR a été validée sur des données simulées et sur un mock (jeu
de données réel mais contrôlé). J’ai ainsi démontré la capacité de notre méthode à identifier
et de correctement estimer l’abondance de souches bactériennes dans des échantillons mé-
tagénomiques. De plus, dans une des expériences incluant dans le mélange métagénomique
une souche absente des références utilisées, j’ai pu mettre en évidence la présence de cette
nouvelle souche et estimer son abondance relative. À l’inverse, une des expériences menait
à l’indexation de plusieurs souches absentes de l’échantillon requêté, ainsi j’ai démontré
que StrainFLAIR n’identifiait pas de faux positifs. Les résultats obtenus par StrainFLAIR
ont été principalement comparés aux résultats de Kraken2. StrainFLAIR, dans le cas d’un
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mélange de plusieurs souches, a montré une meilleure estimation des abondances relatives.

Vers la résolution des chemins ambiguës et l’inférence
de souches

Suite à la première version de StrainFLAIR et la publication de son article associé,
j’ai considéré deux nouveaux développements immédiats.

Le premier nouveau développement fut la prise en compte des lectures de séquençage
à extrémité appariée. En effet, dans la première version de StrainFLAIR, les lectures,
même à extrémité appariée, étaient considérées comme des singletons. Or, ce type de
lectures permettent une plus grande couverture horizontale des séquences et peuvent aider
à lever des ambiguïtés. Dans le cas de notre approche, des ambiguïtés étaient observées
durant l’étape d’attribution des lectures à des chemins colorés. Les lectures peuvent alors
correspondre avec plusieurs chemins colorés, entrainant une distribution de la lecture entre
ces différents chemins colorés pour le calcul des abondances. Or, il est probable que certains
de ces chemins colorés associés à la lecture ne soient des faux positifs, introduisant alors
du bruit dans le calcul des abondances. J’ai donc mis en place une méthode prenant en
compte les attributions de chemins colorés de chaque lecture d’une paire pour ne conserver
que les informations cohérentes entre les deux lectures.

Cette nouvelle méthodologie a été validée sur des jeux de données simulés et a dé-
montré une nette amélioration des proportions de gènes détectés et des estimations des
abondances relatives dans le cas d’un mélange ne contenant que des souches indexées
dans le graphe de référence. Les résultats restaient corrects pour un mélange contenant
une souche inconnue, avec à la fois une amélioration des résultats d’abondance pour cer-
taines souches et une légère détérioration pour d’autres. Cette nouvelle méthodologie a
également été validée sur un mock, sans amélioration ni détérioration des résultats, sauf
pour la souche Thermotoga sp. RQ2 au niveau de la proportion de gènes spécifiques dé-
tectés. Kraken2 proposait des résultats laissant suggérer la présence de cette souche dans
l’échantillon et la première version de StrainFLAIR détectait presque 50% (le seuil choisi
au-delà duquel une souche est considérée présente) de gènes spécifiques détectés, alors
même que Thermotoga sp. RQ2 était censée être absente de l’échantillon d’après les don-
nées théoriques. Avec cette nouvelle version, la proportion de ces gènes détectés tombe à
environ 20%, confirmant l’absence de cette souche et levant une certaine ambiguïté.
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Le second nouveau développement fut la prise en compte des lectures de séquençage
qui ne s’alignaient avec aucun chemin coloré du graphe de référence mais qui s’alignaient
néanmoins sur un chemin (non coloré) du graphe. Ces lectures apportent des informations
sur les nouvelles souches présentes dans un échantillon et non indexées dans le graphe.
J’ai donc mis en place un algorithme qui définit des lectures de séquençage compatibles
ou incompatibles entre elles selon leur chevauchement et qui estime le nombre minimum
attendu de nouvelles souches compte tenu de la structure d’un graphe décrivant les in-
compatibilités entre lectures, et ce, à l’échelle de chaque famille de gènes. Cet algorithme
inclut également une étape de filtrage des lectures, car en plus des lectures émanant de
nouvelles souches, peuvent également se retrouver des lectures de régions intergéniques
ou des lectures avec des erreurs de séquençage s’alignant par hasard à des chemins non
colorés du graphe de variations.

Cette nouvelle méthodologie a été validée sur des jeux de données simulés comprenant
un nombre croissant de souches nouvelles à détecter. Bien qu’il subsiste encore quelques
familles de gènes pour lesquelles le nombre de nouvelles souches est surestimé, elles con-
stituent un nombre négligeable parmi le nombre de familles analysées. Les résultats sont
donc prometteurs mais l’algorithme nécessitera encore des ajustements afin d’améliorer
les prédictions.

Conclusion

Les limites des approches actuelles au niveau espèce pour décrire la composition d’un
échantillon métagénomique reposent principalement sur la réduction de la redondance
lors de la construction de catalogues de gènes, rendant impossible des analyses au niveau
souche. D’autre part, même si des outils ont déjà été développés pour s’intéresser aux
souches dans un échantillon métagénomique, aucun ne semble proposer une exploration
complète comprenant l’identification de souches connues (via des références), la détec-
tion de nouvelles souches, et l’estimation de l’abondance de toutes ces souches. A fortiori,
aucun outil ne semble non plus proposer d’utiliser des graphes pour répondre à cette prob-
lématique, alors même qu’ils constituent une structure de donnée efficace pour représenter
des génomes similaires tels que les génomes des souches d’une même espèce.

C’est pourquoi j’ai développé StrainFLAIR, un outil de profilage d’échantillons mé-
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tagénomiques au niveau souche. Il permet d’indexer des gènes sous forme de graphes de
variations puis de les requêter à partir de lectures de séquençage. Notre approche permet
de détecter les souches présentes dans l’échantillon parmi les références, d’identifier de
nouvelles souches proches de ces mêmes références et d’estimer l’abondance relative de
ces souches.

Les principales perspectives pour StrainFLAIR seront d’élargir les validations à des
jeux de données plus complexes ainsi que de proposer une application avec un jeu de
données réel. D’autre part, certains des nouveaux développements nécessitent d’être encore
explorés et améliorés, notamment pour la détection de nouvelles souches et l’estimation
de leur abondance. Les perspectives plus à long terme viseront principalement à exploiter
la dynamicité des graphes de variations, en les mettant à jour avec les nouvelles variations
trouvées dans un échantillon, ainsi que d’ajouter une composante pangénomique. En effet,
la représentation sans perte des graphes de variations est particulièrement adaptée pour
étudier les acquisitions/pertes de gènes au sein d’une espèce et pour analyser plus finement
les variations, permettant alors de mettre en évidence l’organisation des génomes et des
régions de plasticité au sein d’une espèce.
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INTRODUCTION

Microorganisms, and especially bacteria, are preponderant in many ecosystems, in-
cluding the human body. The high-throughput sequencing technologies played a major
role in their characterization, notably in metagenomics, by giving access to their whole
genetic information and their functional potential. Studies of bacterial communities in
the field of human health for example often aim at identifying biomarker signatures by
associating phenotypic characteristics to gene abundances or bacterial species abundances
in a cohort of individuals. However, a more refined resolution is now needed, as those sig-
natures might be invisible at the species level and be in fact strain-dependant. Studying
bacterial communities at the strain level is of great interest and arise various bioinformatic
challenges.

This thesis work proposes to explore this growing field and associated thematic like
multiple genome sequence representations as graphs, and offers a new bioinformatic solu-
tion to the current challenges.

This thesis manuscript is decomposed into five chapters. The first chapter lays the
foundation of all biological concepts and related methodological approaches required to
fully understand every implication of this work. The second chapter details the scientific
context with the current and most popular approaches to study metagenomic samples, at
the species level, drawing the challenges in the field and highlighting the main objectives
of the thesis. The third chapter describes the state of the art precisely on the concern of
graph representation for a set of genome and on the strain-level analysis of metagenomic
samples, placing this work relatively to the field and emphasizing my contribution. The
fourth chapter presents the main work realized for this thesis and published, the proposed
solution to the challenges raised and considering the already existing approaches. Called
StrainFLAIR, its pipeline is detailed and its results on various datasets are commented.
Finally, the fifth chapter reports the developments realized on StrainFLAIR after its pub-
lication and release. The manuscript ends with a conclusion summarizing the challenges,
contributions, limitations, and perspectives of this project.
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Chapter 1

BIOLOGY CONCEPTS AND

METHODOLOGICAL APPROACHES

The first chapter of this thesis focuses on defining all the pre-required concepts and
presents their history in order to fully understand the following context, challenges, and
state of the art for this work.

This chapter is divided into three parts, starting with all genomics-related definitions
and notions. Then, as illustrated in Figure 1.1, at a single species level on one hand,
genomics is extended to pangenomics, and, at a community level on the other hand,
genomics is extended to metagenomics.

Figure 1.1 – Illustration of the link between Genomics, Pangenomics, and Metagenomics.
Made partially from smart.servier.com images.
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Chapter 1 – Biology concepts and methodological approaches

1.1 Genomics

Genomics is an interdisciplinary field of biology that studies the structure and function
of the genome, as well as related sub-fields such as evolution. This section gets back to
the definition of genome and the main methodological and bioinformatic approaches that
have been developed to study it, and describes one of the main characteristics for this
thesis that are the variations in the genome, leading to the focus on strains.

1.1.1 The genome

Definition and structure

The genome is the whole set of genetic information carried by every living organ-
ism. The study of the genome is what is called genomics. Depending on the species, the
genome is organized into one or several chromosomes (Figure 1.2a). Chromosomes are
themselves organized into genes (Figure 1.2b), the basic unit coding for proteins, key
actors of all chemical reactions essential to life. A chromosome is a condensed molecule
of deoxyribonucleic acid (DNA) which holds the genetic material for protein synthesis
(Figure 1.2c).

Figure 1.2 – From a chromosome to a DNA molecule. a. Example of a cell in which the nu-
cleus contains several chromosomes. b. A compacted chromosome in which several genes are localized,
illustrated by different colors. c. A double-stranded DNA molecule composed of the four nucleotides,
illustrated by different colors. The forward and reverse strands are paired from their 5’ to their 3’ ends.
Made partially from smart.servier.com images.

DNA has two strands organized as a double helix structure. Each strand is composed
of four elementary bricks called nucleotides (or bases) and symbolized by single letters:
A for Adenine, T for Thymine, C for Cytosine, and G for Guanine. Because the nucleotides
from one strand form bonds with particular other nucleotides from the other strand, the
two strands are described as complementary. Indeed, A and T are paired together, as are
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1.1. Genomics

C and G. When mentioning length measures in the DNA, it is then usual to address them
in base pairs (bp).

Moreover, the DNA strands are oriented according to their two distinct ends. The
5’ end is a phosphate group and the 3’ end is a ribose group. During DNA synthesis,
nucleotides are incorporated from the 5’ end to the 3’ end. Often, one of the strand is
called the forward strand while the other is called the complementary strand.

The genome size is highly variable across species and can represent a large volume of
data. Among the most studied model organisms, can be mentioned: Escherichia coli with
a genome of 4.6 Megabases (Mb), Caenorhabditis elegans with a genome of 100 Mb, or
Homo sapiens with a genome of 3.1 Gigabases (Gb).

Studying genomics aims to identify the information contained in genomes and thus
better understand the biological functions involved. This is of great interest in many
research fields such as in phylogenetic studies to understand the evolutionary relationships
among species, in ecology studies to understand the interactions between organisms, or
in human health to understand the causes and mechanisms of diseases for example. Part
of this identification of information also involves looking into variations in the genome.

Variations

The genome is unique to each individual and can undergo several mutations (changes
in the DNA) caused intrinsically by errors during biological events (e.g. DNA replication)
or by external factors (mutagen agents). Identifying and characterizing those variations
are also a major concern when studying genomics, particularly in comparative genomics
where the genomic characteristics of different organisms are compared.

When variations among the same species occur on the same gene, each possible version
is called an allele. The co-existence of different alleles in a population is what is called
genetic polymorphism. Different alleles can also co-exist within the same individual. This
is the case for diploid or polyploid organisms, that is to say organisms that have paired sets
of two chromosomes or more, respectively. For instance, the human genome is diploid, i.e.
each chromosome is present in two copies (except for the sexual chromosomes) and called
homologous chromosomes. The composition of the set of alleles constitutes the genotype. If
the alleles are identical for a given locus (a fixed position on a chromosome), the genotype
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Chapter 1 – Biology concepts and methodological approaches

is said homozygous, as opposed to heterozygous. The specific combination of alleles of the
whole set of genes located on a single chromosome corresponds to an haplotype (see
Figure 1.3). Several types of variations exist and affect the genome in different ways.

Figure 1.3 – Illustration of multiple SNPs defining haplotypes between two individuals.
Considering two haploid individuals, the locus represented shows three SNPs at the first, fourth and
sixth position of the forward strand. The set of those particular SNPs, GTC for the first individual and
CGG for the second, defines the two possible haplotypes.
Made partially from smart.servier.com images.

As previously mentioned, the DNA molecule codes for proteins. Briefly, the DNA is
read during a transcription process, resulting in a messenger ribonucleic acid (mRNA)
that is itself read during a translation process by sets of three successive (ribo)nucleotides
called codons. The way of dividing the DNA sequence into triplets of consecutive and
non-overlapping nucleotides defines the reading frame. The codons are the ones coding for
amino acids, the basic units of the proteins. Because various different codons can code for
the same amino acid, the genetic code is said to be redundant. As a result, the types of
variations affect differently the genome.

Variations limited to a single base pair are called single nucleotide polymorphism
(SNP). However, this terminology usually implies specifically substitutions, that is to say
the replacement of one base by another one (see Figure 1.3). Because of the redundancy
of the genetic code, substitutions are more likely to induce silent mutations that does not
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1.1. Genomics

affect the resulting protein neither the resulting function. On the other hand, insertions
or deletions of nucleotides, conjointly referred as indels, are more likely to induce a shift
in the reading frame of the DNA, producing truncated proteins. This can result in mal-
functions or even no functions at all. Finally, indels of more than 50 bp long are called
structural variants (SVs). Due to their length, SVs are likely to have more important con-
sequences on biological functions (Mills et al., 2011). Similarly to smaller variations, SVs
can be insertions or deletions. They can also involve more complex rearrangements like
inversions (the sequence segment orientation is inverted) or translocations (the sequence
segment is found in another region in the genome), and even combinations of multiple
different rearrangements.

Accessing DNA sequences and exploring their variations have been made possible
thanks to the development of sequencing technologies and bioinformatic tools. The next
sections detail those advances before discussing more focused aspects of genomics in bac-
teria.

Across species, variations in the genome are observed and are highly
valuable information. They are used for classification and as mark-
ers of biological functions or dysfunctions for example.

Highlights

1.1.2 Sequencing DNA

DNA sequencing consists in determining the base pair sequence of a DNA fragment.
To access this information, several sequencing technologies have been developed over the
years.

DNA fragmentation

Despite the progress in sequencing technologies, they still cannot read the genome
sequence in a single piece. Hence, the DNA needs to be fragmented beforehand. The size
of the fragments is one of the main characteristics distinguishing the sequencing tech-
nologies. Those fragments are then sequenced, resulting in multiple copies of the molecule
read called sequencing reads. Most often, DNA fragmentation uses a whole-genome
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shotgun approach that consists in fragmenting randomly and several times the genome
(see Figure 1.4).

Figure 1.4 –Whole-genome shotgun sequencing. The genome is fragmented into random fragments
several times. This allows for overlapping fragments that reconstruct the initial sequence.

Following the sequencing, the set of reads corresponds to the whole molecule of DNA
sequenced. Since multiple copies have been generated, each position of the genome is
covered by a certain number n of reads. Averaged, it defines the sequencing depth. Ad-
ditionally, the percentage of sequence covered by at least one read defines the breadth of
coverage of the genome.

First generation sequencing

Developed in 1977, Sanger sequencing has been the gold standard for DNA sequenc-
ing for almost 40 years. After a culture of identical cells as a source of DNA, the prin-
ciple consists in using a DNA polymerase to generate a complementary copy to a single
stranded DNA template. Four separate sequencing reactions are realized, each one adding
only one of the four dideoxynucleotides (ddNTPs). Dideoxynucleotides resemble the DNA
monomers enough to allow incorporation into the growing strand. However, they lack a
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3’ hydroxyl group which is required for DNA extension, leading to the synthesis reaction
termination. Moreover, each dideoxynucleotide bears a specific fluorescent label which
will serve for automatic detection of the DNA base. As a result of both of these charac-
teristics, many DNA fragments of different length are generated and are terminated at
all base positions of the template by one of the fluorescent dideoxynucleotide. The DNA
fragments are then separated by size using electrophoresis techniques.

Thus, Sanger sequencing provided genomic information as fragments called sequenc-
ing reads of few hundred bases long. In parallel, the ribosomal ribonucleic acid (rRNA)
was described as a marker for classification of bacterial species (often the 16S rRNA gene).
Here, the rRNA is directly sequenced from the environment, without going through a bac-
terial cultivation step, a considerate advantage since cultivation is not always possible.
This approach revealed the bias of the cultivation-based methods, as they led to an un-
derstanding of microbial biodiversity shifted towards the easiest cultivable species (J. T.
Staley and Konopka, 2003). The vast majority of microbial biodiversity had then been
missed (Hugenholtz et al., 1998; Rappé and Giovannoni, 2003).

Most recent Sanger sequencing instruments use capillary-based electrophoresis. It al-
lows up to 96 sequencing reactions to be analyzed simultaneously. This limits the number
of generated sequencing reads and therefore increases the cost for a large sequencing
project. However, in the past decades, next-generation sequencing systems have been in-
troduced and, this time, allow millions of sequencing reactions to be analyzed at the
same time. Nevertheless, Sanger sequencing is still extensively used today for small-scale
projects or to validate next-generation sequencing data.

Next-generation sequencing

Next-generation sequencing (NGS) has enabled the sequencing of thousands of DNA
molecules simultaneously, given them also the denomination of high-throughput technolo-
gies. Those technologies have been revolutionizing the fields of genetic diseases, clinical
diagnostics, and personalized medicine from their ability to sequence multiple individuals
at the same time.

Although different machines have been developed, they share common features. NGS
platforms require a library preparation step. This library is obtained by amplification or
ligation with custom adapter sequences. Then, each library fragment is amplified on a
solid surface with covalently attached DNA linkers that hybridize the library adapters.
The amplification creates clusters of DNA, each originating from a single library fragment,
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and each cluster then acts as an individual sequencing reaction. The output is a collection
of DNA fragments (sequencing reads) generated at each cluster. Those fragments length
is between 75 bp and 400 bp, hence their “short-reads” denomination. The differences
between the various NGS machines lie mainly in the technology for the sequencing reac-
tion and can be categorized into four groups: pyrosequencing, sequencing by synthesis,
sequencing by ligation, and ion semiconductor sequencing. Additionally to sequencing re-
action differences, those high-throughput sequencing technologies outputs differ in three
essential aspects: the length of the reads obtained, their quantity, and their error rate (see
Table 1.1; Goodwin et al., 2016).

The first pyrosequencing approach was the 454 pyrosequencing (Roche; Margulies
et al., 2005). Like Sanger sequencing, a single nucleotide is incorporated at a time. The
incorporation of a dNTP into a strand results in the release of the pyrophosphate which
induces an enzymatic cascade leading to a bioluminescence signal. A camera detects each
burst of light, that can be attributed to the incorporation of one or more identical dNTPs.
The 454 sequencing offers a greater read length compared to other short-read sequencing
technologies, with reads up to around 700 bp, providing advantages for repetitive or
complex DNA. However, a major drawback is the dominance of indel errors rate, despite
the overall error rate being equal compared to the other technologies. Eventually, the 454
platform has been unable to compete in terms of yield or cost.

The Ion Torrent (Rothberg et al., 2011) is similar to the 454 sequencing, as it relies on
adding a single nucleotide at a time. For this reason, they also share the same advantages
and limits. The difference between the two technologies lies in the way of detecting the
dNTP incorporation. The Ion Torrent uses ion semiconductor sequencing. As each dNTP
is incorporated, the platform detects the H+ ions that are released through the pH change
induced. This sequencing technology produces sequencing reads of around 400 bp.

The best known sequencing by ligation technology is the SOLiD platform (Thermo
Fisher; Valouev et al., 2008). It uses two-base-encoded probes with fluorometric signals
ligated to anchors. Four fluorescent signals are used, each covering a subset of four com-
binations of dinucleotides over all sixteen. Several cycles of probe–anchor binding and
ligation, with different offsets to ensure every base is sequenced, are realized to elongate
the complementary strand. SOLiD sequencing can produce reads up to 75 bp.

Finally, among the sequencing by synthesis technologies, the Illumina platform is the
best known (Bentley et al., 2008). Similarly to Sanger sequencing, it uses fluorescent ter-
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minator molecules. The OH group on the 3’ end is blocked, preventing further elongation
of the complementary strand. However, once the colors corresponding to the bases have
been detected, the fluorophores are cleaved and washed, and the OH group regenerated,
leading to the continuation of the hybridation of untransformed nucleotides and the elon-
gation of the complementary strand. Because Illumina does not rely on single nucleotide
incorporation, it is less susceptible to homopolymer (same consecutive bases) errors, as
opposed to 454 or Ion Torrent sequencing. Illumina produces reads of around 150 bp.

Considering the cost, the fewer limitations, and the high level of cross-platform com-
patibility, Illumina dominates the short-read sequencing industry. The works presented
in this thesis use or are inspired by Illumina short-read sequencing, as it is still one of
the most used platform in the field. Nevertheless, new strategies and new sequencing
technologies have emerged to produce longer reads.

From longer reads to third generation sequencing technologies

Complex and long repetitive elements, copy number alterations, and SVs are partic-
ularly relevant to adaptation and diseases (McCarroll and Altshuler, 2007; Mirkin, 2007;
Stankiewicz and Lupski, 2010). However, those elements are so long that short-read tech-
nologies cannot resolve them (Mahmoud et al., 2019). Hence the need for longer reads.

Figure 1.5 – Single-end and Paired-end sequencing. In single-end sequencing, the sequencing
starts on only one end (represented by the green read). On the contrary, in paired-end sequencing, the
fragment is sequenced from both ends on opposing strands (represented by the green and yellow reads).
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One of the first attempt to overcome such limitations is the use of paired-end reads
(see Figure 1.5). For instance, Illumina offers such technology. As opposed to single-end
reads, paired-end reads correspond to the sequencing of two ends from opposing strands.
The distance between the two ends can be controlled, from overlapping to being a given
size apart. Other technologies, based on NGS but looking for short reads coming from the
same long DNA molecule, have also been developed. For example, Moleculo technology
developed what they called synthetic long reads (Voskoboynik et al., 2013), and 10X Ge-
nomics technology produced linked-reads (Zheng et al., 2016).

Going further, in the last decade, third generation sequencing technologies emerged.
Instead of using amplification processes, the DNA molecule is directly sequenced and
in real-time, producing reads of several kb long. There are two prominent long-read se-
quencing: single-molecule real-time sequencing by Pacific Biosciences (PacBio) released in
2011 and Nanopore sequencing by Oxford Nanopore Technologies released in 2014. Both
sequence a single molecule, abolishing amplification bias (Heather and Chain, 2016). How-
ever, they suffer from a high error rate averaging about 13% (Dohm et al., 2020), at least
in first pass. While several methodologies and error correction tools have allowed to lower
to 5% of error rate (Goodwin et al., 2016) or even 1% with PacBio HiFi reads (Wenger
et al., 2019), this is still higher than the current NGS technologies. Moreover, since third
generation sequencing is still emerging, the technologies are continuously improved and
require new methodological developments that need to evolve with those advances. Fi-
nally, the cost per Gb is still higher than NGS sequencing as shown Table 1.1, slowing its
global use.

While the work presented do not use long reads, they are of particular interest for the
perspectives they will bring in the field.

Whole-genome shotgun and Illumina short-read sequencing are the
most popular strategies for sequencing DNA molecules.
Sequencing reads length are usually around 150 bp, but paired-end
reads allow for a longer breadth of coverage.

Highlights
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Technology Read length (bp) Error rate Cost per Gb
(US$)

First gen. Sanger 400-900 <0.1% NA

Second gen. Illumina 150 (single-end)
300 (paired-end) <0.1% $7

Roche 454 700 1% $9,500
SOLiD 75 <0.1% $70

Third gen. Pacific Bioscience 10,000 5% $1,000
Oxford Nanopore 10,000 5% $750

Table 1.1 – Sequencing technologies characteristics. Read length, error rate and cost for each
main technologies in 2016. Third generation sequencing is now capable to generate reads with even lower
error rates (around 1%).
Adapted from Goodwin et al., 2016.

1.1.3 Assembly and reference genomes

As seen, sequencing DNA produces overlapping fragments. In order to resolve the
complete sequence of the initial genome sequenced, those fragments have to be ordered
and correctly overlapped. This process is called assembly. Since each position is covered by
n reads depending of the sequencing depth and since genomes are constituted of repetitive
sequences that can exceed the size of the reads, assembly is confronted to this complexity
and often leaves gaps between longer overlapped fragments. Those assembled fragments
are called contigs. Methodologies, like the use of paired-end reads, also allow to order
those contigs, leading to scaffolds.

Most of the assemblers (tools for assembly) use graph representations to reconstruct
the contigs. Those graph structures are of particular interest in this thesis and are further
presented in Chapter 3.

The development of high-throughput technologies and assembly approaches have led
to an increasing availability of reference genomes. A reference genome is the result of
the assembled sequencing reads from a number of individual donors and therefore used as
a representative of one idealized organism of a species. Reference genomes have been and
still are core bases of many studies and bioinformatic developments, in particular as the
input for aligning (or mapping) sequencing reads, as presented in the following sections
and chapters.
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1.1.4 Prokaryote genomics

In the three-domain system represented in the tree of life, Archaea and Bacteria are
called prokaryotes, while Eukarya are called eukaryotes. The main difference lies in the
existence of a enveloped nucleus containing the DNA in the case of eukaryotes. This
thesis focuses on prokaryotes, especially bacteria, and this section presents their specific
characteristics.

Genome structure specificities

One of the main characteristics to note in prokaryotes is the existence of only one
chromosome. Although they do not have a nucleus delimited by a membrane, the chro-
mosome is still located in a specific region of the cell called nucleoid. However, the nucleoid
does not contain all the genetic material. Additionally to the chromosome, smaller DNA
molecules called plasmids can be found in the cell.

While plasmids are not exclusive to prokaryotes, they are most commonly found in
bacteria. Plasmids can replicate independently and carry genes that, despite not being
essential for the cell functions, benefit their survival. Indeed, those genes usually confer
selective advantages like antibiotic resistance or virulence factors that can be disseminated
in the bacterial population through a process called horizontal gene transfer.

In both chromosome and plasmids, the DNA molecule is usually circular (linear plas-
mids also exists). As opposed to eukaryotes that have linear chromosomes.

Another main characteristic of prokaryotes is the organization of genes into operons.
While this is not exclusive to prokaryotes, operons are still most commonly found in those
cells. An operon is a set of co-localised and co-expressed genes. The distance between the
genes of an operon is then close to zero or sometimes even negative when overlapping each
other (Koonin and Wolf, 2008). And because they are controlled by the same promoter
(DNA sequence where proteins bind to start the transcription), they are expressed (or
inhibited) together.

Finally, the size of the genome is not only very variable across species of the different
domains as mentioned in Section 1.1.1, but also within the prokaryotes. Approximately,
it scales from 160 Kb (Carsonella ruddii; Katsir et al., 2018) to 15 Mb (Sorangium cellu-
losum; Schneiker et al., 2007). Additionally, the distribution of the prokaryotic genomes
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size reveals two peaks. One around 2 Mb and a smaller one around 5 Mb (Koonin and
Wolf, 2008).

The prokaryotic genome is usually composed of a single chromo-
some, and none, one or multiple plasmids. Both structures are usu-
ally circular.

Highlights

Classification

Initially, prokaryotes were considered as a single species capable of expressing various
shapes. The first attempts for classification were then based on morphological observa-
tions.

With the development of the cultivation techniques, new tests to distinguish bacteria
were developed, and permitted the phenotypic description of these organisms (Woese,
1992; Logan, 2009; Brenner et al., 2015). Morphology can relate to cellular characteristics
such as the shape of the bacteria, the presence or absence of an endospore (a structure
found during dormant states), the presence or absence of flagella (a structure used for
mobility) or, one of the best known, Gram staining. It is used to classify bacterial species
into gram-positive bacteria and gram-negative bacteria, based on the chemical and phys-
ical properties of their cell walls. Gram-positive cells have a cell wall composed of a thick
layer of peptidoglycan that retains the violet-colored stain. Gram-negative cells have a
cell wall composed of a thinner peptidoglycan layer that less retains the stain and appears
pink under microscope (Coico, 2006). Some prokaryotes do not have cell walls and cannot
be colored at all. Morphology can also refers to characters relative to the colony such
as color, dimensions or form. In addition to the morphological observations, phenotypic
description includes physiological and biochemical features. Physiological features include
data related to the culture medium: liquid or solid nature of the medium in order to grow,
growth temperature, pH values, salt concentrations, or atmospheric conditions (e.g. aer-
obic/anaerobic). Biochemical features include data on sources of energy in order to grow
or products of the metabolic activity (Rossellö -Mora and Amann, 2001).

Close to morphological characteristics, bacteria can be classified into serotypes that
define subspecies. A serotype is a group of organisms that have the same surface structures.
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Two bacteria may look the same under microscope but present different surface antigens
(molecule capable of initiating an immune response). For instance, for the Salmonella
bacteria, more than 2,600 serotypes have been described based on two antigenic struc-
tures (Grimont and Weill, 2007): the O antigen on the lipopolysaccharidic cell surface
and the H antigen part of the flagella. Determining the serotype, or serotyping, consists
in observing through a microscope the presence or absence of aggregates. In contact with
the serum of a patient, if the antibodies present in the sample are specific to the serotype
of the cells studied, the bond between them will form aggregates. Otherwise, in the ab-
sence of aggregates, antibodies are not specific and the cells are from a different serotype.
Those surface structures are particularly involved in the virulence or antibiotic resistance
of the bacteria.

Prokaryotes are also classified according to clinical considerations. Therefore, they are
classified as pathogens when associated with diseases, and non-pathogens, themselves di-
vided into commensals when sharing the same nutrients of other organisms, or saprophytes
when processing decayed organic matter. Classification according to pathogenicity is, in
fact, of limited value for two main reasons. Firstly, many species considered as commensals
may cause diseases depending on circumstances. This is the case with Escherichia coli,
Staphylococcus saprophyticus or Streptococcus viridans for example. The pathogenicity
depends on the host (e.g. age or genetic factors) as well as on microbial factors, and the
interaction between both of them (Shanson, 1989). Secondly, because of clinical criteria for
classification, some prokaryotes are considered as different species while being extremely
close according to other criteria. For example, this is the case for Bacillus cereus and
Bacillus anthracis. While being genetically close, B. anthracis has two plasmids (pX01
and pX02) absent in B. cereus. Those two plasmids are responsible for the pathogenicity
of B. anthracis that lead to the anthrax disease (Helgason et al., 2000).

While classification has long been based on phenotypic characteristics, the sequencing
of the first bacterial genome in 1995 (Fleischmann et al., 1995) has been a game changer
and opened the way for sequence comparisons. The main disadvantage of phenotype-based
classifications is that the whole information potential of a prokaryotic genome is not used,
since gene expression is directly related to the environmental conditions. Sequencing gave
access to the whole genetic repertoire of microorganisms and DNA sequences from differ-
ent microorganisms could then be compared leading to similarity measures. Historically
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at specific loci level and now at the complete genome level. The Needleman–Wunsch algo-
rithm is one of the best known and still used algorithm in bioinformatics to align protein
or nucleotide sequences (Needleman and Wunsch, 1970). From the comparison of several
genomes, phylogenetic trees can then be inferred, giving new insights about the species
evolution.

Classifying groups of biological organisms based on shared characteristics is called
taxonomy. Each group, or taxon, corresponds to a taxonomic rank. The highest rank,
mentioned previously, is the domain rank (Archaea, Bacteria and Eukarya) which is then
decomposed into: kingdom, phylum, class, order, family, genus, and species, which has
been the main focus of the discussions until now. Serotypes allow for an even lower rank,
the subspecies. However, only classification using genetic characteristics can fully access
the whole potential of the information contained in the genome. In that respect, the
following section details a rank under subspecies and using genetic characteristics: strains,
that will be applied more specifically to bacteria in this thesis.

1.1.5 Bacterial strains

Thanks to the expansion of sequencing techniques and the resulting increased number
of bacterial genome sequences available, comparative genomics highlighted the genetic
diversity within bacterial species (Fraser-Liggett, 2005; Tettelin et al., 2005; Lefébure and
Stanhope, 2007). Those genomic variations defined the strain rank. They typically consist
of SNPs and acquisition or loss of genomic elements (genes, operons, or plasmids; Tettelin
et al., 2005).

In fact, the definition of a bacterial strain is not trivial. Theoretically, a strain lin-
eage is composed of genetically identical genomes. According to the Bergey’s Manual of
Systematic Bacteriology “A strain is made up of the descendants of a single isolation in
pure culture and usually is made up of a succession of cultures ultimately derived from an
initial single colony” (J. Staley and Krieg, 1984). However, in practice, very close genomes
are also considered as the same strain. While mutations and acquisition/loss of genes are
expected within the same strain, the increasing number of these genomic events can lead
the strain to evolve into what will be considered to be a different strain. Hence the need to
also add specific phenotypic or genotypic traits, including serotyping or functional traits,
to the definition. Tenover et al. defined a strain as “an isolate or group of isolates that
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Figure 1.6 – Within-species stratification. Bacterial species may be stratified according to the
number of single nucleotide variations (SNV) in the whole genome. This is also related to sequence
similarity measures like the ANI score presented on the top of the figure. The colored portions of the bars
represent the recommended scope of use of the term, while the grey parts their common but unspecific
use. Taken from Van Rossum et al., 2020.
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can be distinguished from other isolates of the same genus and species by phenotypic
characteristics or genotypic characteristics or both” (Tenover et al., 1995).

To conclude, a universal definition of strain based on strong biological characteristics
has not been established and may not exist. While a genome correspond to an individual,
the distinction between strain, subspecies, and species might be seen as a spectrum rather
than discrete categories as illustrated in Figure 1.6.

In parallel to the concept of strains, those genomic variations found at the single species
level introduced the concept of pangenome that is detailed in the following section.

While there is no universal definition, a strain lineage usually refers
to genetically identical or very close genomes.

Highlights

1.2 Pangenomics

1.2.1 History and definition

The pangenome of a species is the whole set of genes found within this species. The
pangenome concept emerged from the first comparative studies. In 1998, when studying
Helicobacter pylori, several DNA fragments from various strains were found while absent
from the known reference (Akopyants et al., 1998). Another study compared a pathogenic
strain of Escherishia coli O157 to a commensal strain K12 and showed a substantial gain
in the O157 genome called pathogenicity islands (Perna et al., 2001). The term of microbial
pangenome was actually first used in 2005 (Medini et al., 2005) to describe the union of
the shared genes found in the genome set of interest.

As a result, the pangenome was first divided into core genome (genes present in all
strains of the species) and accessory genome, also known as dispensable genome or flexible
genome (genes present solely in one or some strains; Tettelin et al., 2005). A schematic
representation of the pangenome is provided in Figure 1.7. The core genome typically in-
cludes housekeeping genes for the cell envelope or regulatory functions while the accessory
genome includes genes for specific adaptations (e.g. antibiotic resistance).
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Figure 1.7 – Schematic representation of pangenomes as Venn diagrams. Each colored circle
represents the set of genes of a single strain. The size of the pangenome differs among the species. Closed
pangenomes have a larger proportion of core genes, as opposed to open pangenomes.
Taken from McInerney et al., 2017.
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However, other works (Makarova et al., 2007; Koonin and Wolf, 2008) have extended
the study of pangenome not only at the level of a single species, but at the kingdom
taxonomic level. The distribution of the number of organisms sharing genes in orthologous
gene families (genes found in different species but inherited from the same last common
ancestor) formed a U-shape higher on the left (see Figure 1.8). This distribution could be
decomposed into three parts:

— The core genome: corresponding to the right part of the distribution, lower than
the left part. As with the previous classification into core/accessory genomes, the
core genome here still refers to the genes common to all strains/species considered;

— The shell genome: corresponding to the middle part of the distribution. It refers
to the moderately shared gene families;

— The cloud genome: corresponding to the left part of the distribution. It refers to
rare genes families.

Figure 1.8 – Gene commonality in prokaryote genomes. A plot of sharing of orthologs (gene
commonality) between prokaryote genomes shows an asymetric U-shape. It also shows three distinct
tangents (dashed lines) corresponding to the three sub-divisions of the genome into core, shell and cloud.
The number of organisms has been converted into a scale from 0 to 1 representing the fraction of genomes
while the number of gene families has been log-transformed.
Taken from Koonin, Makarova, et al., 2021.
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A negative correlation is usually found between the size of the pangenome (total num-
ber of genes in the pangenome) and the proportion of core genes. This led to the definition
of “open” and “closed” pangenomes. An open pangenome is a large pangenome with a low
proportion of core genes (see Figure 1.7). Species with an open pangenome are associated
with higher rates of horizontal gene transfers allowing them to extend their set of genes. A
closed pangenome, on the contrary, is a small pangenome with a high proportion of core
genes. Hence species with a closed pangenome are less subject to horizontal gene transfer,
usually because they are species living in isolated niches (McInerney et al., 2017).

The pangenome is dominated by gain/loss of adaptative genes and, as such, reflects
the species response to selective pressure (Brockhurst et al., 2019). Thus, the analysis of
a species pangenome has many applications in functional, evolutionary or epidemiological
studies (Tettelin et al., 2005; Medini et al., 2005).

1.2.2 Pangenome analysis

Microbial pangenome analyses serve several purposes. As previously seen, pangenome
is closely related to the strain taxonomic rank. Hence, one of the first important aim is to
characterize bacterial strains by their set of genes. This is of particular interest to uncover
strain-specific antibiotic resistance or virulence factors for example. This can also be ap-
plied to the identification of new strains in whole metagenomics samples, which will be
further discussed in the following sections and chapters. Moreover, pangenome analyses
are used to study the impact of horizontal gene transfer on evolution.

Pangenome profiling (determining the pangenome of a species) usually uses genomic
homology-based strategies, an approach that is also used in this thesis and that will be
further described in Chapter 4. Briefly, genes are clustered into gene families by sequence
similarity and, for each strain, a profile of presence/absence of families is often generated.

For example, Roary (Page et al., 2015), PanOCT (Fouts et al., 2012) or PGAP (Zhao
et al., 2012) have been developed for orthologs clustering. Another recent example is
PPanGGOLiN (Gautreau et al., 2020), that builds pangenomes through a graph representa-
tion and a statistical method to partition gene families in persistent (a less strict definition
of core genome), shell and cloud genomes.

While this thesis work cannot be labeled as being a pangenomic approach, there is
a clear and close link with strain-level resolution concerns that will be raised here. The
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pangenomic dimension is especially of great interest for the perspectives point of view.
Most of the current tools provide good pangenome profiling for isolates, but cannot

resolve species relationships at the community level. The next section presents this other
aspect of the extended field of genomics.

1.3 Metagenomics

1.3.1 History and definition

In 1998, Handelsman et al. suggested the term metagenomics to refer to the direct
sequencing of DNA in an environment, potentially revealing the genomes of all individuals
present in the sample (Handelsman et al., 1998). More precisely, metagenomics is the
study of genetic material recovered directly from environmental samples in an untargeted
way. The complete set of microbes found in a particular microbial ecosystem is called
microbiome. While the collection of genomes from those microbes is called metagenome.

Before the emergence of metagenomics, the first studies of microorganisms in envi-
ronments such as water, soil, or human tissues at a resolution beyond the human eye
were made using direct observation through microscopes. It allowed to view single-cell
organisms and observe morphological characteristics. With the further development of
more powerful microscopes and staining techniques, imagery-based methods were widely
used for bacteria classification (Madigan et al., 2014). The microbiology field then relied
on microbial isolates since isolation and cultivation became the most common approach
for microbial characterization (Ben-David and Davidson, 2014). Even today, cultivation-
dependent methods are still used to determine characteristics of microbial species. Asso-
ciated with this, the field of molecular biology also experienced an expansion with DNA
sequencing techniques allowing for a larger-scale screening of the existing microbes.

1.3.2 16S and shotgun metagenomics

As previously mentioned in Section 1.1.2, 16S rRNA gene sequencing (shortened here
as “16S sequencing” for readability) has been used for taxonomic profiling. In the NGS
era, 16S sequencing is still used and constitutes what is called metataxonomics or metabar-
coding. It is important to note that in fact, metataxonomics and metagenomics are now
often distinguished (Esposito and Kirschberg, 2014). Indeed, the strict definition empha-
sizes the untargeted nature of metagenomics, which conflicts with the sequencing of a
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particular gene in 16S sequencing. Yet, both relate to studies of genetic content in a en-
vironmental sample. The 16S sequencing uses PCR to target and amplify portions of the
gene encoding for the 16S rRNA. This gene contains nine hypervariable regions. Their
sequences can be unique and thus can be used to separate species and to identify bacteria
present in a complex community. After sequencing, a data processing step is realized by
assigning sequences to Operational Taxonomic Units (OTUs). OTU assignment can be
reference-based or de novo. For reference-based methods, reads are mapped to known 16S
genes from a reference database and assigned to the closest match. De novo methods
are usually applied to the reads that did not mapped using a reference-based approach.
Those previously unmapped reads are clustered by their similarity and the taxonomy can
be inferred by various strategies that will not be detailed here (Westcott and Schloss,
2015; Rideout et al., 2014).

While 16S sequencing is a targeted approach, shotgun metagenomics is, however, ded-
icated for whole-genome sequencing. Similarly to whole-genome shotgun presented in Sec-
tion 1.1.2, shotgun metagenomics consists in fragmenting DNA from a sample in a ran-
dom manner. Instead of fragmenting a single genome, all genomes present in the sample
are fragmented. Those fragments are then sequenced using NGS technologies. Shotgun
metagenomics allows a detailed characterization of entire microbial communities as it
targets all DNA material from all the species present in the sample. Similarly to 16S
sequencing, reference-based or de novo methods can be used to produce a species-level
profile of the sample. This will be further discussed in Chapter 2.

One sequencing technique has no absolute advantage over the other one and depends
solely on the objectives of the study. The following reviews the pros and cons of both
sequencing techniques.

Firstly, bacterial coverage depends on the species coverage of available reference databases.
Those references are constructed from assembly of sequencing data. In the case of 16S
sequencing, assembly requires few sequencing reads as only the 16S gene needs to be
assembled for characterization of the species present in the sample. On the contrary, shot-
gun metagenomics depends on assembling entire genomes thus requiring more sequencing
and more computation. As a result, 16S databases contain references for more species
than shotgun one’s. Therefore, 16S sequencing identifies more diverse bacterial phyla and
families than shotgun sequencing (Shah et al., 2011; Tessler et al., 2017).

44



1.3. Metagenomics

Secondly, in terms of taxonomic identification, because 16S sequencing targets a bac-
terial marker gene, it is limited to bacterial identification only. Shotgun sequencing on the
other hand is able to identify all taxonomic domains (bacteria, eukaryotes, and archaea).

Finally, and one of the main key point for this thesis, 16S and shotgun sequencing
do not reach the same taxonomic resolution. Using 16S sequencing, usually only genus-
level identification is reached. However, combination of errors correction tools, optimized
primers and curated reference database allows for up to species-level identifications. For
shotgun sequencing, since it covers all genetic variations, it should in theory allow for
strain-level resolution. In practice, bioinformatic tools for strain-level profiling are under
active development and this aspect will be further discussed in Chapter 3. Overall, shot-
gun sequencing provides more information but harder to interpret.

Unless stated otherwise, the rest of the manuscript will only consider whole-genome
shotgun sequencing, its applications and outputs, as it is the required methodology for the
strain-level resolution aimed in this thesis. Hence, mentions of metagenomics or metage-
nomics sequencing will refer to the strict definition previously given.

Metagenomics sequencing allow the study of complete microbial
communities directly from environmental samples.
Additionally to the close-to-exhaustive coverage of all the present
species, all genetic variations can also be covered, opening the pos-
sibilities for strain-level resolution analysis.
More bioinformatic developments are needed in this direction.

Highlights

1.3.3 Metagenomics analysis

Metagenomics can be used for taxonomic and functional analysis. For example, it has
been used to study the microbiome composition of the human body, such as the gut (Solé
et al., 2021). The imbalance of the gut microbiome, also known as dysbiosis, has been
implicated in several diseases including metabolic disorders, obesity, diabetes or autoim-
mune diseases (Carding et al., 2015). This imbalance may be the result of a gain/loss of
community members or changes in their relative abundance. The role of the microbiome
is then of great interest for human health and requires to develop downstream analysis to
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both explore and query those microbiomes. When performing microbiome studies, three
main questions arise (see Figure 1.9; Zhong et al., 2021).

Figure 1.9 – In-depth understanding of microbial communities. Metagenomics analysis can be
summarized into three concerns to address: Who is in the community? What are they doing in it? and
how they do it?
Taken from Zhong et al., 2021.

First is the question of “who” composes the sample, implying a focus on the compo-
sition, structure, and diversity of the microbial community. This can be addressed as a
general overview using richness (“How many microbes?”) or using diversity metrics (“How
are microbes balanced to each other?”). Richness of the gut microbiota, for instance, is
strongly correlated to metabolic markers and a high richness is often associated to an
healthy gut microbiome (Le Chatelier et al., 2013). At a more detailed level, present
microbes in the sample can be described at different taxonomic levels by the relative pro-
portion (or abundance) of the community members.

The second question that can be addressed is what are they doing in the ecosystem of
interest. This implies to understand how microbes interact with the environment or the
host on one hand, and how they interact between each other in the other hand. Those
interactions can be described as the functional chemistry carried out by the microbes, by
characterizing the products consumed from and excreted to the environment.

The third question is to understand how they do what they have been found doing in
the previous question. This relates to determining the enzymatic pathways activated or
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overexpressed, and how they are distributed among the present microorganisms.

For the purpose of this thesis, only the analysis of the composition will be addressed,
especially in terms of relative abundance of the community members. Hence, the next
chapter focuses on the existing context for detection and quantification of species in
metagenomics.
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Chapter 2

SCIENTIFIC CONTEXT AND OBJECTIVES

Microorganisms are predominant in most of the ecosystems. They are found in the
ocean (Sunagawa et al., 2015) or, of particular interest in this thesis, the human body (Clemente
et al., 2012). They play major functioning roles in those ecosystems (New and Brito, 2020)
that high-throughput sequencing, as seen in the previous chapter, allowed to study as a
whole, especially in terms of composition at the species level (Jovel et al., 2016).

Metagenomics analyses and resolving the species present in a sample with their rel-
ative abundances have highlighted associations with phenotypes, particularly in human
health (Ehrlich, 2011; Vieira-Silva et al., 2020; Solé et al., 2021). Notably, some diseases
are characterized by the presence of potentially pathogenic bacteria, whereas others result
from the depletion of health-associated species.

However, while existing analyses mainly focus on a species-level resolution, charac-
terizing samples at the strain level has a growing interest. For example, Escherichia coli
has a highly variable genome and is well known for presenting commensal strains (thus
harmless) whereas others are pathogens (Rasko et al., 2008; Loman et al., 2013). Strain-
level analyses are therefore crucial to highlight new associations with penotypes and will
provide a better understanding of their functional impact in host-microbe interactions
and advances towards personalized medicine.

This chapter presents the current methodologies in metagenomics to detect and quan-
tify bacterial species in a environmental sample, as well as their limits that have led to
the strain-oriented purpose of this thesis.
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2.1 Overview on species detection and quantification
in metagenomics

As previously mentioned, one of the major objective when studying metagenomics
samples is to be able to describe the species they contain. This description usually consists
in identifying the species present on one hand, and to quantify them on the other hand.
The methods used for this purpose can be divided into two main approaches: reference-
based and reference-free approaches.

2.1.1 Reference-based methods

Reference-based methods are also known as taxonomic classification or taxonomic
binning. With reference-based methods, the input sequences are clustered into bins that
correspond to a taxonomic identifier. Since they rely on reference genomes, these ap-
proaches are particularly useful to identify exact genomes or close relatives present in the
sample compared to the reference database. Among the reference-based methods, several
approaches can also be distinguished: alignment-based methods, marker-based methods
and sequence-composition-based methods.

Alignment-based methods

Alignment-based methods use sequence alignment approaches. Sequence alignments
consist in identifying regions of similarity between two sequences. At a position, if the
bases of the two sequences are identical, it is a match, otherwise, it is a mismatch. If one
of the two sequences has no bases at the considered position, it is a gap. Considering a score
function, all those matches, mismatches, or gaps define an alignment score that represents
the similarity between the two sequences. However, aligning correctly and finding the best
alignment score for two sequences are not trivial tasks. In 1970, the Needleman-Wunsch
algorithm was proposed for the global alignment problem (Needleman and Wunsch, 1970)
which aims at finding the best alignment of two sequences over their whole lengths. The
Needleman-Wunsch algorithm uses dynamic programming (a mathematical optimization
method that simplifies a problem into sub-problems in a recursive manner) to find the best
solution (best alignment score). In 1981, the Smith-Waterman algorithm was proposed
for the local alignment problem (Smith and Waterman, 1981) which aims at finding the
best alignment over only regions of the two sequences. The Smith-Waterman algorithm
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also relies on dynamic programming to find the best solution. Those algorithms have set
the foundations for the current state-of-the-art alignment tools.

BLAST (Altschul et al., 1990) has developed a seed-and-extend strategy in which highly
similar regions (called seeds) between the two sequences are first searched. Then, using
dynamic programming, the alignment is extended from these seeds. Such strategy has
been since widely adopted by other tools. While BLAST is particularly adapted to find
local similarities, it is also important to mention, for the following sections, that when
working with sequencing reads, the goal is often to map them on reference genomes. That
is to say, to find their unique location in the genome with a high similarity. The cur-
rent state-of-the-art tools for short read mapping are Bowtie 2 (Langmead and Salzberg,
2012) and BWA (H. Li and Durbin, 2009).

Initially, in order to identify species present in a sample, BLAST was used to align the
sequencing reads against all sequences in GenBank (a public DNA sequences database).
In the mean time, new methods have been developed to allow for faster computations.

For instance, MegaBlast (Zhang et al., 2000) uses a greedy algorithm for the alignment
that, instead of using the similarity between two sequences with a dynamic programming
grid, uses the difference between them (usually a smaller metric compared to the number
of identities) and the alignment is defined as the minimum number of differences. Another
well known tool is Megan (Huson et al., 2007). Alignments are still realized using BLAST
as a pre-processing step, then Megan is used to explore the taxonomical content of the
dataset by assigning reads to the lowest common ancestor of the set of taxa found through
the BLAST results.

One of the main limitations of these approaches is due to the expansion of sequencing
techniques, that allowed for an increase of the available sequences. The reference databases
are growing and it is more and more computationally demanding, if not infeasible, to align
to all possible sequences. Hence, other methods presented below have been developed to
provide faster results.

Marker-based methods

Marker-based methods rely on specific sequences (marker sequences), usually genes,
to identify the species. Those markers act as taxonomic references and can then be used
to detect the taxa present in a sample. Compared to the previous approach that uses
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sequences databases, partially or completely composed of full genomes, markers allow for
a smaller database and therefore faster assignments.

For instance, MetaPhlan (Segata et al., 2012) uses Bowtie 2 to align reads on a pre-
viously constructed catalog of markers. From a set of almost 3,000 genomes, the authors
identified 2 million potential markers, that were filtered to get a subset of around 400,000
genes most representative of each taxonomic unit. More than thousands of species were
covered with around 200 markers per species. Another example is PhyloSift (Darling
et al., 2014). It uses LAST (Kiełbasa et al., 2011) to align reads in order to search for se-
quence similarity against a database of known reference gene families, adds the sequences
to a multiple alignment with the reference genes, and places them onto a phylogenetic
tree of the reference genes.

One of the main limitations of these approaches is that they do not exploit the full
potential of the sequencing data. Because reads are aligned solely on marker genes, most of
them are not classified. An even more promising approach resides in sequence-composition-
based methods (Lindgreen et al., 2016).

Sequence-composition-based methods

Sequence-composition-based methods are based on the nucleotide composition. The
reference genome, additionally to its taxonomic label, is represented by k-mers. K-mers
are substrings of length k contained within the genome sequence. Successive k-mers over-
lap over k − 1 nucleotides. The sequencing reads are then searched and classified using a
k-mers database.

For instance, Kraken (Wood and Salzberg, 2014) builds a taxonomic tree from reference
genomes in which k-mers are associated to each nodes and leafs of the tree. This association
relies on the representativeness of the k-mer towards the considered taxonomic level. Reads
are themselves decomposed into k-mers that are searched in the taxonomic tree. Finally,
classification is determined by finding the highest-weighted path in the tree. Another
popular tool is Clark (Ounit et al., 2015). Specific k-mers at the species or genus level are
used to build the reference database. However, as opposed to Kraken, k-mers associated
to higher taxonomic levels are not used. Then, Clark uses a similar approach compared
to Kraken by searching the reads k-mers in the created database.
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Other tools have been developed with various optimization objectives. In order to
reduce the size of the k-mers database, Centrifuge (Kim, Song, et al., 2016) uses an
indexing scheme based on a FM-index, an index based itself on the Burrows-Wheeler
transform, to compress the k-mers database. Kraken2 (Wood, Lu, et al., 2019), on the
other hand, uses minimizers (a method to sample k-mers from a long string). In order to
increase the sensitivity of the classification, SKraken (Qian et al., 2017), which is inspired
from Kraken, filter out less representative k-mers for each species. Other strategies pro-
pose to use spaced k-mers (Břinda et al., 2015), a strategy inspired from spaced seeds used
in the seed-and-extend approach for sequence comparison. Instead of using contiguous k-
mers, k-mers interleaved with spaces are used and such strategy showed classification
improvements.

Despite those efforts for optimization, the construction of the databases is still a very
demanding step, both for RAM and disk space. Nevertheless, the main limitation of
reference-based methods is the necessity itself of existing references. Most bacteria found
in environmental samples cannot be cultured and remain unknown (Eisen, 2007), without
an available reference. For this reason, reference-free methods have been developed.

2.1.2 Reference-free methods

Reference-free methods are usually based on binning strategies. The data used (reads
or contigs) are clustered into groups (or bins) that originate from the same species.

Reads clustering

The clustering can be realized directly from the sample sequencing reads. The tools
employing this approach, like MetaCluster (Wang et al., 2012) or BiMeta (VanVinh et al.,
2015), are usually based on k-mer distributions, since those distributions are expected to
be more similar for reads belonging to the same genome than from different ones. However,
those tools are limited to situations with even proportions of species in the sample (their
relative abundance), which is a requirement usually not met with real samples. On the
contrary, other tools, like AbundanceBin (Wu and Ye, 2011), work better when there is
no species with the same abundance.
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Contigs clustering

Instead of clustering directly the sequencing reads, other methods focus on adding an
assembly step and cluster contigs. Similarly to the reads clustering approaches, bins of
contigs are expected to come from the same species. For instance, MetaBAT 2 (Kang et
al., 2019) uses a graph structure where the contigs are the nodes and the edges between
them represent their similarity. A graph partitioning algorithm is then used to cluster
the contigs. GroopM (Imelfort et al., 2014) map reads onto an assembly realized from the
same reads. A coverage profile is then obtained for each contig. The binning is based on
the co-varying coverage profiles across multiple samples. CONCOCT (Alneberg et al., 2014)
clusters contigs by using a combination of sequence composition and coverage, also across
multiple samples.

The main limitation of those methods is related to the assembly step. Because of
the sequencing errors and/or repetitive regions, reconstructing accurate and long contigs
is more challenging, and, by extension, such strategies cannot reconstruct full genomes
associated to identified species. Moreover, similar species and strains of the same species
are hardly distinguishable.

In conclusion, detection and quantification of species in a sample can be carried out
with or without reference genomes. Reference-based methods are best use for identification
of species with close relatives in the reference database, while reference-free approaches are
particularly useful in the absence of close relatives (Comin et al., 2021). The next section
details an approach for the detection and quantification of species in a metagenomic
sample that uses similar methods as described up to this point, and will highlight even
more the limits and concerns around the identification of strains.

2.2 Reference gene catalog

One of the classic analyses, and the one that laid the foundation of this thesis project,
is to use a gene catalog representative of the studied ecosystem. Considering the different
strategies defined in the previous sections, this is not actually a reference-based method
since it does not rely, at least not only, on known reference genomes. However, a gene
catalog is still a reference database in the same way genomes or k-mers are used as
databases for these approaches.
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2.2.1 The 3.3 million genes catalog

To illustrate the methodology behind the gene catalogs, the field of human gut mi-
crobiota is taken as an example. The first gene catalog contained 3.3 million microbial
genes (Qin et al., 2010). Human faecal samples from 124 individuals were collected and
sequenced using Illumina sequencing (shotgun sequencing with paired-end short reads). In
order to construct the most comprehensive catalog, samples were collected from healthy
individuals and patients (with various phenotypes expressed or diseases).

The high-quality reads were assembled using the SOAPdenovo assembler (R. Li et al.,
2010). The assembler uses a popular data structure, the de Bruijn graph, to represent the
overlapping reads. The de Bruijn graph will be detailed in Chapter 3. Briefly, it is an ori-
ented graph that represents the overlaps of length k−1 between all the words of length k.
One of the pipeline step consists in removing erroneous connections (e.g. removing short
tips, merging bubbles) in this de Bruijn graph. However, it is important to note that
those short tips or bubbles in the graph are caused by the sequencing errors and/or the
genetic variations that exist between strains. Thus, this is a first drawback for exploring
the strain-level composition of a sample. Ultimately, the graph was broken at the repeat
boundaries and the resulting parts of the graph were linear sequences, the contigs.

The reads were realigned onto the assembled contigs. Since the sequencing technology
used output paired-end reads, this paired information was used to order the contigs into
scaffolds. The alignment and paired information were also used to fill the gaps between
the contigs when possible.

From the contigs obtained, genes were predicted using MetaGene (Noguchi et al., 2006).
Open Reading Frames (ORFs) are extracted from the contig sequences and associated to
a score based on base composition and length. ORFs are defined, at least in this context
by the authors of MetaGene, as a sequence starting by a start codon and ending by a stop
codon. The set of extracted ORFs also included partial ORFs (located at the extremities
of the sequence or the entire sequence itself). During a second step, among all ORFs or
partial ORFs extracted, an optimal combination of them was computed according to the
previously mentioned scores. This approach is particularly useful to predict overlapping
genes.
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Finally, redundant ORFs (or genes) were removed by pairwise comparison using BLAST
with stringent thresholds of identity score of 95% and overlap of 90%. Through this
process, only one sequence among the multiple similar ones is selected as a representative
gene. It is important to note that those thresholds get rid of the potential sequencing
errors, but also interesting variations that again could have been crucial information for
strains identification.

2.2.2 Updated gene catalogs

While the previous catalog allowed for a consequent set of gut microbiome genes, it
was still based on a limited cohort which restricted the coverage of the global diversity. To
overcome this, an integrated gene catalog (IGC) was established (J. Li et al., 2014). Sev-
eral additional cohorts, alongside the samples from the previous catalog, were sequenced
and used to build this catalog. Notably cohorts from different countries that highlighted
country-specific gut microbial signatures.

The pipeline to generate this integrated catalog was similar to the pipeline used for
the previous catalog (see Figure 2.1). It was first applied to each cohort independently,
resulting in intermediate country-specific gene catalogs. Then, the three catalogs were
merged together and also with genes found in sequenced genomes and draft genomes
(set of scaffolds) from human gut–related prokaryotes available in well known databases
(NCBI and EMBL Bank here). This updated gene catalog contains almost 9.9 million
genes from the gut microbiota.

The IGC has itself been updated into the IGC2 (Wen et al., 2017). Genes from ankylos-
ing spondylitis patients and healthy controls have been assembled. The genes not present
in the IGC were added, leading to a new catalog of almost 10.4 million genes.

Recently, and untied to a unique ecosystem, a new non-redundant gene catalog of 303
million species-level genes (again clustered at 95% of nucleotide identity) has been con-
structed from 13,174 publicly available metagenomes (Coelho et al., 2021). This highlights
how catalogs continue to grow with the increasing number of samples sequenced.

Such catalogs can be used to identify and quantify (in terms of relative abundance)
genes in a metagenomic sample. However, another relevant use is to reconstruct species
to properly describe the community composition of the sample.
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Figure 2.1 – Construction of the integrated gene catalog. The pipeline includes data processing
and integration. The approach is similar to the construction of the 3.3 million genes catalog but applied
to different cohorts independently. Those intermediate catalogs are then integrated into a single gene
catalog.
Taken from J. Li et al., 2014.
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2.2.3 Reconstructing species

Despite the popularity of Metagenome-Assembled Genomes (MAGs; Eren et al., 2015)
reconstruction, reference gene catalogs are still an essential and well-established resource.
A MAG is a bin of contigs assumed to represent a single species, therefore they can also
be used as reference databases for species identification. However, MAGs present several
drawbacks addressed by the current gene catalogs. For instance, short assembled sequences
are excluded, while they potentially correspond to genes or partial genes, or biases have
been observed, like low genome coverage, preventing the reconstruction of low-abundance
organisms (Borderes et al., 2021).

The IGC became the most used publicly available catalog to identify and quantify
species in the gut microbiota. While there is no consensus for a catalog of species and
thus a consensus on the binning method to use to construct it, this section details both ap-
proaches that served as the foundations to initiate the thesis objectives and that proved to
be among the best performing binning strategy (by comparison with a gold standard; Bor-
deres et al., 2021).

From a set of samples, the sequencing reads are mapped onto the genes of the gene
catalog, resulting in an abundance profile across the samples for each gene.

The first approach uses the canopy clustering algorithm (Nielsen et al., 2014), an un-
supervised pre-clustering algorithm, on the gene catalog and the genes abundance profile
(see Figure 2.2). Iteratively, a seed gene is chosen among the not yet clustered genes,
and genes that share similar abundance profiles (according to distance thresholds) are
clustered with it. Once all genes have been clustered, clusters showing close median abun-
dance profiles are merged. Clusters with no sufficient support evidence (e.g. with two or
less genes, for which the abundance is in majority driven by a small amount of samples, or
for which the abundance profile is not detected in enough samples) are discarded. Clusters
with more than 700 genes are called Metagenomic species (MGS). Afterwards, for a single
metagenomic sample study, the abundance of an MGS can be computed based on the
mean abundance of the genes contained in the MGS. This methodology has been success-
fully used to highlight that the gut microbiota composition is influenced by antibiotics
and tyrosine kinase inhibitors, and impacts the success of cancer immunotherapy (Derosa
et al., 2020), or to describe the relationship between the gut microbiome and cirrhosis, as
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Figure 2.2 – Overview of co-abundance clustering. Sequencing reads are mapped onto the gene
catalog, providing an abundance profile for multiple samples that can be used to infer metagenomic
species.
Taken from Nielsen et al., 2014.
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well as its prognosis (Solé et al., 2021), for example.

Figure 2.3 – Simplified model behind MSPminer. Six samples are represented with five carrying
a different strain of the same species. On the bottom right of the strains represented as circles are
their absolute abundances. The colored parts correspond to genes. Core genes in red, blue, and yellow.
Accessory genes in green and purple. Core genes read count are proportional across samples, while this
proportionality for accessory genes is only observed across the subset of samples sharing those accessory
genes.
Taken from Oñate Plaza et al., 2019.

The second approach, implemented as the tool MSPminer (Oñate Plaza et al., 2019),
is also based on clustering methods from the genes profile abundance across samples (see
Figure 2.3). However, it adds a pangenomic component. The core genes of a microbial
species is expected to be consistently detected in samples where it is present, and accessory
genes are expected to have proportional counts only in the samples where a certain strain
is present. Briefly, MSPminer identifies sets of co-occurring genes, as well as proportional in
terms of read counts. According to their presence across the samples, seeds corresponding
to core genes are identified. Finally, genes associated to a core seed are grouped, with the
seed, into a Metagenomic Species Pangenome (MSP). As for an MGS, an MSP is thus
a set of genes. However, those genes are labeled as core or accessory. This methodology
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has been successfully used to show how interactions between diet and gut microbiome are
associated with irritable bowel syndrome (Tap et al., 2021), or how a Mediterranean diet
positively impacts the gut microbiota (Meslier et al., 2020), for example.

Despite those efforts in order to get closer to a strain-level resolution by distinguishing
core and accessory genomes, as previously seen, the limitations emerged from the gene
catalog construction itself. All this scientific background and challenges raised in the field
of ecosystems analysis have led to this thesis project.

Both reference-based and reference-free methods have proved to be
effective for species identification or inference of putative species.
However, problems arise when the sequenced sample is composed
of closely related species or, even more challenging, composed of a
mix of different strains of a species.
Current approaches using gene catalogs get rid of the redundancy
when selecting a representative sequence for each genes clusters.
Concomitantly, variations, crucial to identify strains of a species,
are also lost in the process.

Highlights

2.3 Thesis objectives

Considering the growing interest and necessity of a strain-level resolution in metage-
nomic analyses, this thesis work aims at developing a new framework allowing to profile
single metagenomic samples, that is to say identify and quantify the strains in the ecosys-
tem community, as well as inferring new strains.

As seen by switching from the 3.3 million genes catalog to the 9.9 million genes catalog
(IGC) and the following ones, a major characteristic to note is that each catalog required
a set of metagenomic samples. In fact, it is usually a subset of samples, since new samples
are often available and will only be used for a following potential update of the catalog.
Thus, one of the main limitation of gene catalogs is their frozen nature, highlighting the
need for another structure allowing for a more dynamic updating process. In this direction,
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we foresaw the graph structures and their ability to be dynamically updated with new
information to be a major key to address this concern. The state of the art in Chapter 3
details and reviews those graph representations.

Additionally, the clustering methods used and their thresholds on identity and overlap
between sequences imply to select a unique representative sequence among the multiple
similar genomes from the same cluster. This results in losing sequences with variations
compared to the selected representative and, thus, losing essential information to identify
strains. Again, we foresaw the graph structures to be adequate to represent multiple sim-
ilar sequences. Indeed, as presented in the beginning of the chapter, aligning sequencing
reads towards large databases of references is computationally consuming, hence the de-
velopment of alternatives. Applied to the gene catalogs, it was therefore not conceivable
to ignore the redundancy removing step by simply keeping all possible sequences. The
graph structure offers a way to compact and represent multiple similar sequences.

Finally, despite the limitations raised from the current approaches presented and how
we suggest to address them through graph representations, other tools have been devel-
oped specifically for strain-level identification and quantification in metagenomic samples.
The state of the art in Chapter 3 also details and reviews those existing tools and their
own limitations.

The main objectives of this thesis are as follow:
— Use a more global data structure, that can be queried, and

dynamically applied to metagenomics;
— Identify and represent all genes from bacterial strains;
— Compute the abundance of strains present in a sample and

predict the presence of novel strains.

Highlights
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STATE OF THE ART

The development of high-throughput sequencing technologies has shaped the way ge-
nomics studies are conducted. As seen in the first chapter, many methodologies are based
on a reference genome that serves as a guide for reconstructing new genomes or for vari-
ation identification. A reference genome is never an accurate representation of any single
organism genome. Yet, it still represents an approximation of the full genome of any indi-
vidual and can be used for guided genomic assembly, variant calling or mapping sequencing
reads. Moreover, reference genomes provide a unique coordinate system that facilitates
sharing of information on variations localization. However, reference genomes represented
as flat sequences have demonstrated their limits (Ballouz et al., 2019), especially for the
keystone of this thesis, that is to capture the whole genomic variability between multi-
ple similar genomes in order to reach a strain-level resolution in metagenomic analyses.
Firstly, read mapping is biased towards the reference. Reads from non-reference alleles
may be mis-mapped or not mapped at all. Secondly, even by using multiple reference
genomes for the same species, due to the high similarity between them, the mapping
would also result in mis-mapped reads or ambiguous alignments generating noise in the
downstream analysis (Na et al., 2016).

In this chapter, the state of the art to address the challenges and limitations empha-
sized here is detailed. The first part is dedicated to the graph representations that have
become a popular structure to replace linear reference sequences. The second part is dedi-
cated to the existing tools for strain-level profiling of metagenomic samples, that is to say
identifying and/or estimating abundances of strains in a sample. Finally, the third part
puts the thesis work relatively to this state of the art.
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3.1 Graph representations and alignments

3.1.1 Graph data structures

The graph model

A graph is a structure made up of vertices (or nodes) connected by edges (or links). A
set of successive connected nodes is usually called a path. Using graphs to represent DNA
sequences is not a new concept. Most of the assembly softwares use graph representations
and related algorithms to assemble reads into contigs. The most popular structures are
string graphs (Myers, 2005) and de Bruijn graphs (see Table 3.1).

Term Description
Overlap graph Nodes are sequences, and edges are overlap between the sequences
String graph An overlap graph for which the redundancy has been removed
de Bruijn graph Nodes are sequence k-mers, and directed edges connect k-mers

whose k − 1 suffix overlaps with other k–mers k − 1 prefix
Sequence graph Edges or nodes are labelled with sequences. Used to compress se-

quence representation and express contiguity between segments
with directed or bidirected edges

Bidirected graph Each edge has a discrete endpoint on either the left or right of a
node

Genome graph A sequence graph relating a genome’s sequence information to itself
or other genomes

Pangenome graph A genome graph explicitly involving more than one genome
Variation graph A pangenome bidirected graph which embed linear sequences as

paths

Table 3.1 –Overview of graphs terminology. Adapted from Outten and Warren, 2021.

A string graph is an overlap graph without the redundancy, the nodes are sequences
of variable size and the edges describe the overlap between the nodes. In the case of an
assembly, it corresponds to the overlap between reads, and the length of the overlap needs
to be tuned.

In a de Bruijn graph, the nodes are sequences of the same size k and the edges describe
the overlap between the nodes, also of the same size k− 1. In the case of an assembly, the
reads are decomposed into k-mers that will serve as the nodes.

However, graphs can also be used to represent genomes of multiple individuals in
order to capture all the variations found in a species while collapsing identical sequences
between genomes.
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Genome graphs

Considering the limitations mentioned in the introduction of the chapter, a better
framework for the analysis of multiple genomes seems required rather than using indi-
vidual reference genomes. This is why a shift between linear representations to graph
representations has been observed during the recent years. Most of those representations
are called genome graphs, variation graphs or pangenome graphs (see Table 3.1).

A common way to construct a genome graph is to use a compacted de Bruijn graph
(cDBG) from a set of genomes (Beller and Ohlebusch, 2016; Chikhi et al., 2016; Minkin,
Pham, et al., 2017). A cDBG is a de Bruijn graph where all unitigs (paths with all but the
first node having in-degree 1 and all but the last node having out-degree 1) are compacted
into a single node. This structure is particularly relevant for representing and indexing
repetitive sequences. Repetitive sequences of length k or more are represented only once.
This allows to considerably speed up alignments compared to classic aligners like BWA,
especially for genomes composed of many repetitive regions (Liu et al., 2016).

However, cDBG does not keep sample information. For this reason, colored cDBG has
been proposed (Iqbal et al., 2012), where each color corresponds to a sample or a popula-
tion. Eventually, DBG are directed graphs with labeled nodes such that a DNA sequence
is defined by the node labels when walking along the graph. This configuration does not
allow to distinguish between the forward and reverse complement orientation of the DNA.
Hence, directed graphs can be generalized to bidirected graphs so each node can be tra-
versed in both orientations. As opposed to directed graphs, complex DNA rearrangements,
like inversions, can be represented in a bidirected configuration without creating separate
nodes for the forward and reverse complement orientations (Paten, A. M. Novak, et al.,
2017).

For this thesis, proposed graph models as new frameworks for analyses are the main
interest. Nevertheless, it is worth mentioning that tools have been developed for specific
purposes by relying on graph representations.

Cortex (Iqbal et al., 2012) introduced the cDBG previously mentioned and aims at
both realizing de novo assembly and discovering/genotyping genetic variants in an indi-
vidual or population. Taking into account the graph structure locally and genome-wide,
the likelihood of each possible genotype is calculated.
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BayesTyper (Sibbesen et al., 2018) is a genotyping software. In order to genotype
SNPs, indels, and SVs, BayesTyper uses exact alignment of read k-mers on a graph con-
structed from a reference and variants. In practice, close variants are clustered together
and a graph is constructed for each cluster. The nodes represent the reference or allelic se-
quences, and edges represent possible haplotypic links between the sequences. The graph
construction uses the reference sequence and all variants in the cluster without collapsing,
leading to redundancies of some sequences. The genotyping step is based on a probabilistic
model that uses the k-mer profiles generated by traversing the graph.

GraphTyper2 (Eggertsson et al., 2019) is a genotyping software for small variations
and structural variants. It is also able to discover small variations, but relies on external
resources for SV discovery. GraphTyper2 constructs a graph from a reference genome and
a set of sequence variants in variant-call format (VCF). The graph is a directed acyclic
graph (DAG), and a path in the graph represents a possible haplotype. Sequencing reads
are aligned to the reference genome and then locally realigned to the graph. Genotyping
is done by selecting the two most likely haplotypes in the graph based on the read data.
The genotype called is the one that has the highest relative likelihood for each sample.

Paragraph (Chen et al., 2019) is a genotyping software for SVs. It uses a sequence
graph in which the nodes represent a sequence and edges represent haplotypic connec-
tions. Each path represents an allele (either the reference allele or the alternative allele).
Paragraph constructs the graph from a reference genome and a VCF file that specifies
the SVs breakpoints and alternative allele sequences. Sequencing reads are aligned to the
reference genome and realigned to the graph near the breakpoints. Therefore, Paragraph
uses a very similar approach compared to GraphTyper2, even for the genotyping step that
also relies on a likelihood maximization based on read counts. The main difference is that
Paragraph builds the graph and realigns reads on limited specific regions of the genome
and not the whole genome.

Pandora (Colquhoun et al., 2021) is a tool for detecting the presence/absence of genes,
and genotyping SNPs and indels in bacterial genomes. Pandora relies on a pangenome
reference graph, as a collection of local graphs. Indeed, Pandora focuses on representing
only particular loci by constructing the graph from the multiple sequence alignment of
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the known alleles for this locus. Sequencing reads are quasi-mapped to the graph, that is
to say Pandora only compares the minimizers of the read and the local graph, instead of
the whole sequence. Thus, each locus has a coverage profile, where regions of low coverage
are detected. A de novo assembly is used locally in those regions to generate new alleles
added to the graph. Reads are quasi-mapped again, generating a presence/absence matrix
of the loci.

Gramtools (Letcher et al., 2021) implements a genome graph-based model to discover
and genotype SNPs and SVs in a sample. From a set of references (multiple sequence align-
ment of several reference genomes or one reference genome with a VCF file) Gramtools
builds a genome graph. Sequencing reads from a sample are mapped onto the graph.
Genotyping is realized by calling alleles at each variant site which allows to infer the
closest path representative of the sample. This path is then used as a new and person-
alized haploid reference genome. Discovery of new variants is realized by using standard
reference-based variant callers on this personalized reference. Those new variants can af-
terwards be used to augment (update) the graph.

In conclusion, while those tools have demonstrated the relevance and advantages to
use graph structures in genomics, they have been developed for specific purposes, mostly
for genotyping, which is not suitable for the thesis objectives. Therefore, on the other
hand, other tools have developed a complete framework.

HISAT2 (Kim, Paggi, et al., 2019) is a method that implements a graph-based FM-
index (GFM). HISAT2 starts by creating a linear graph from a single reference genome.
Mutations, deletions, and insertions are incorporated in the graph as alternative paths.
However, only insertions of up to 20 bp can be incorporated. Any path of the graph defines
a string of bases corresponding to the reference genome or its variants. The GFM is used
to index the reference genome, one large GFM for the whole genome, and many smaller
GFMs to index overlapping portions of the genome. Another significant characteristic is
that repetitive sequences in the reference genome are combined into one. The HISAT2
approach works particularly well for model organisms with available variants. However,
HISAT2 is not intended to represent the exhaustive variations found in a species, and fo-
cuses on the most common SNPs, which would be a drawback in the context of this thesis
for strain-level profiling.
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Minigraph (H. Li, Feng, et al., 2020) is a graph model aiming at representing multiple
genomes while preserving the coordinate of the linear reference genome. As previously
mentioned, linear representations have the advantage of offering a unique coordinate sys-
tem. Graph models use the Graphical Fragment Assembly (GFA) format in which each
base can be indexed by a segment ID and an offset on the segment. Therefore, the bases
have coordinates at the segment level. However, those coordinates are unstable, if the
segment is split during the iterative graph construction, the coordinates change. This is
why one of the main contribution of minigraph is a new reference GFA format. For its
graph model, minigraph uses a bidirected sequence graph. First from a reference genome,
minigraph iteratively constructs the graph by mapping each assembly to the reference or
the existing graph and augments it with long poorly mapped sequences in the assembly.
Hence, minigraph mainly captures only long variations between samples. For those rea-
sons, minigraph is more adapted to population-scale analyses and/or to represent SVs,
and even more specifically for human genome. This is also not suitable for the purpose of
this thesis.

Eventually, the vg toolkit (Garrison, Sirén, et al., 2018) and associated tools seemed
like the most promising softwares and the most adapted for the objectives of the thesis.
The next section details the characteristics of vg.

Variation graphs

The variation graph model developed by Garrison, Sirén, et al., 2018 aims at com-
bining the three main elements of a pangenomic data structure. Thus, a variation graph is
a graph G = (N, E, P ) composed of a set of nodes N = n1...nM , a set of edges E = e1...eL,
and a set of paths P = p1...pQ. The genomes (paths) embedded into the graph are walks
through the graph, linking (edges) the DNA sequences (nodes built from an alphabet
A = {A, C, G, T}) between them (see Figure 3.1).

Nodes have numeric identifiers and paths have text string names. The variation graph
is a bidirected graph, better suited as mentioned above to represent both strands of
DNA, therefore there are four kinds of edges depending on how each of the linked nodes
are traversed (forward or reverse complement).
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Figure 3.1 – Example of a variation graph. A variation graph is composed of nodes and edges.
Paths can be embedded into the graph.
Taken from Garrison, 2019.

The variation graph model is intentionally simple, as there are neither assertions about
the graph structure nor coordinates (as opposed to minigraph for which coordinates are
its main focus for example). The vg toolkit builds a variation graph from VCF files
and linear references. Actually, a genome graph can be viewed as an alignment of linear
sequences. As such, while vg toolkit does not implement coordinates, linear sequences
are embedded into the graph and results obtain at the graph level can be projected on
the linear sequences. Graphs are implemented into a .vg format, an equivalent of GFA.
The vg toolkit has also its own alignment implementation that is further discussed in
Section 3.1.2.

Although graphs built from VCF files and linear sequences were the primary focus of
the vg toolkit, other tools from the same authors have been developed to expand its
use.

Particularly relevant for this thesis, seqwish (Garrison, 2022) uses pairwise sequence
alignments from minimap2, available in GFA format, to losslessly generate the varia-
tion graph implied by the initial collection of sequences. Here, losslessly means that
the paths embedded in the graph completely and accurately reconstruct the input se-
quences. The topology of the graph, on the other hand, represents the variations found
in the alignment. This method has demonstrated to be faster than other similar ap-
proaches like Cactus (Armstrong et al., 2020), and to be more flexible than approaches
like SibeliaZ (Minkin and Medvedev, 2020) that uses DBGs (Garrison, 2019).

In conclusion, the vg toolkit provides a graph structure allowing for the reduction
of data redundancy without loss of significant information, namely all variations found
among the input reference sequences, which is particularly relevant for this thesis.
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3.1.2 Sequence-to-graph alignments

As seen in Section 2.1.1, comparing and aligning sequences are at the core of many
genomic and bioinformatic analyses. And while consensual state-of-the-art tools exist for
linear sequences, the classic algorithms behind them, like the Smith–Waterman algorithm,
cannot be applied directly to genome graphs. Hence, mapping sequencing reads to a graph
requires specific softwares.

Among the previously cited tools, or related to them, graph alignment heuristics have
been developed.

The de Bruijn Graph-based Aligner (deBGA; Liu et al., 2016) is based on a graph-
based seed-and-extension algorithm to align reads onto a DBG. The DBG may have been
constructed from one or more genomes. The k-mers from the sequencing reads are used
as “seeds” to match to the nodes of the DBG. One of the specificity of deBGA is that it
merges the seeds that correspond to similar putative read positions if they are localized
on the same non-branched path. If the sub-sequences hit by each group of merged seeds
also follow a non-branched path, the read is aligned to this path.

HISAT2 implemented a graph FM-index, considered less memory-intensive than k-
mer-based indexes (used by the vg toolkit for example). The whole-genome FM-index
is used to anchor each alignment while the smaller indexes are used for its rapid extension.
Otherwise, HISAT2 is based on the state-of-the-art aligner Bowtie2.

Minigraph is based on the same algorithm used by minimap2. Ignoring its topology,
minigraph finds local hits to segments in the graph. If they are connected by edges in the
graph, those hits are chained together, giving an approximate mapping location. Due to
the strategy chosen to construct the graph stated previously (capturing only long varia-
tions), the alignment is not realized at the base level, which is again a drawback for the
use of minigraph in this thesis work.

The vg toolkit has also developed its own sequence-to-graph mapper. Read align-
ments are represented into a Graph Alignment/Map (GAM) format which is a generaliza-
tion of the Sequence Alignment/Map (SAM) and Binary Alignment/Map (BAM) classic
formats used by the popular sequence-to-sequence mappers like Bowtie2.

Similarly to classic read mappers, and thus similarly to the already described minigraph
method, the approach finds matching seeds and clusters them if they are close. Exact
match queries for the seeds are performed in linear time independently of the graph size

70



3.2. Tools for strain-level profiling

by using a GCSA2 index, a k-mer index of a variation graph represented as a DBG (Sirén,
2016). The alignment is realized around the region of each seed cluster.

As opposed to minigraph, the vg toolkit aligns read at the base level, and also
uses the base qualities in alignment score to compute adjusted mapping quality scores.
The mapping qualities are computed by comparing the scores of optimal and suboptimal
alignments under a probabilistic alignment model, similarly to another state-of-the-art
mapper BWA (H. Li and Durbin, 2009).

Actually, the vg toolkit offers two sequence-to-graph mappers. The first one, vg
map, outputs one or several paths for each alignment. However, in case of several align-
ments with equal mapping scores and in the same region, only one is randomly chosen.
This thesis work uses the other mapper, vg mpmap, to map reads on the variation graph
and get more complete results as it is further presented in Chapter 4.

All the presented mappers are mainly dedicated to NGS reads, that is to say short
sequencing reads. While this thesis focuses on short reads, it is worth mentioning that
other sequence-to-graph mappers have already been developed for long reads. The most
popular ones have been developed around the vg framework or can be used with a variation
graph built from the vg toolkit. This is the case of GraphAligner (Rautiainen and
Marschall, 2020) and PaSGAL (Jain, A. Dilthey, et al., 2019).

The vg toolkit provides a complete environment from a graph
data structure (the variation graphs) to sequence-to-graph mappers
that suits especially well the challenges around the use of multiple
similar genomes.

Highlights

3.2 Tools for strain-level profiling

In the recent years, several tools have already been developed with various inputs and
methodologies to address the issue of a strain-level resolution in a metagenomic sample
or several metagenomic samples. The following presents the state of the art on strain-
oriented tools, their principle, and the key points in their strategies that are particularly
relevant for the thesis rational further detailed in the next section. A summary table is
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presented in Table 3.2.

Tool Inputs Strain-level outputs
References Samples Identification Abundance

DESMAN Single copies
core species
gene

Multiple Haplotype
inference

Yes

StrainPhlan Markers from
reference
genomes

Multiple Dominant
strain

No

StrainEST Set of reference
genomes

One Yes (from refer-
ences)

Yes

DiTASiC Set of reference
genomes

One or Two Yes (from refer-
ences)

Yes

mixtureS One reference
genome

One Number of dif-
ferent strains

Yes

Table 3.2 – Summary of the input and output characteristics of the existing
strain-level profiling tools.

DESMAN (Quince et al., 2017) is a tool for de novo extraction of strains from metagenomes.
The rational behind DESMAN is that no method was developed to resolve strain-level vari-
ations in MAGs from assembled contigs and thus without the need for reference genomes.
The main challenge being that those MAGs are aggregates of multiple strains.

Before using DESMAN, it is assumed that multiple samples have been sequenced, the
resulting reads have been co-assembled (assembly using the pooled set of reads from
all samples), the generated contigs binned into MAGs, and the reads from each sample
individually have been mapped back onto the contigs.

Firstly, DESMAN identifies core genes present in a MAG in a single copy, based on genes
known to be core for all prokaryotes. Those are called single-copy core genes (SCGs).
Core genes can also be identified from reference genomes from the same species or related
taxa if available. In this case, they are called single-copy core species genes (SCSGs). This
identification step on reference genomes is optional, hence the denomination as a de novo
method, since DESMAN can operate solely on the SCGs, based only on the samples reads.

From the results of read mapping, at each position on SCGs or SCSGs, the base
frequency is computed. A likelihood ratio test is applied to those frequencies, summed
across samples, in order to determine the positions of the variations. The null hypothesis
for the test is that the observed bases have been generated from a single true base under a
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multinomial distribution, with an error matrix position-independent. The alternative hy-
pothesis is that two true bases are present. To each variation position, a p-value (corrected
for multiple testing) is assigned. Through a probabilistic model applied to the detected
variations (selected according to their p-value) across multiple samples, haplotypes are
inferred as well as their relative abundance.

Since this first step focuses on core genes, the second component of DESMAN consists in
resolving the accessory genome. In a highly similar way, a probabilistic model is applied
to the variation frequencies. Although, instead of working only on SCGs or SCSGs, the
approach is applied to all genes with now also the information of the number of strains
present.

In summary, the key characteristics are that DESMAN is a de novo method, that oper-
ates on multiple samples, and that seeks to resolve haplotypes and their abundance.

StrainPhlan (Truong et al., 2017) is a tool for strain-level population genomics us-
ing markers as references. When bacterial communities are not sufficiently supported by
existing reference genomes or by using existing marker-based approaches, it is difficult,
if not impossible, to profile strains from metagenomes. StrainPhlan offers a strain-level
resolution profiling for each sample from a set of metagenomic samples.

Before using StrainPhlan, MetaPhlan2 is used to identify species-specific markers
from reference genomes. The sequencing reads from each metagenomic sample are mapped
onto those markers. From the mapping data and by using a majority rule on each nu-
cleotide of the marker, a consensus sequence is built for each marker. For each species
and each sample, the consensus sequences are aligned against reference genomes and con-
catenated into larger alignments. The presence of multiple strains from a species in a
single sample is revealed by the evidence of polymorphic sites on the alignments, suggest-
ing multiple alleles. However, while multiple strains can be detected, due to the use of
dominant consensus sequences, only the dominant strain can be further described in the
next steps of the workflow. RAxML (Ott et al., 2007), a maximum-likelihood phylogenetic
inference software, processes the previously mentioned concatenated alignments and infer
the corresponding phylogenetic tree. StrainPhlan also generates heatmaps of strain-level
genetic relation.

In summary, the key characteristics are that StrainPhlan operates on a set of metage-
nomic samples and with references, and provides a strain-level phylogeny for the domi-
nant strains of each analyzed species for each single sample. It is also worth noting that
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StrainPhlan is often used alongside PanPhlan (Scholz et al., 2016). PanPhlan uses a
similar approach compared to StrainPhlan but aims at identifying strain-specific gene
content whereas StrainPhlan is based on nucleotide substitutions.

StrainEST (Albanese and Donati, 2017) is a reference-based tool for identifying strains
and determining their abundance in metagenomic samples. While marker-based tools often
assume or are able to only detect the presence of a single dominant strain, StrainEST is
based on a set of reference genomes from a species and uses the single-nucleotide variant
(SNV) profiles from them to access all strains. In fact, two reference databases are required.
One for the SNV profiling and one for the metagenomic reads mapping. As stated in its
corresponding paper, the choice of the sets depends on the goals of the study.

During the SNV profiling step, the Mash (Ondov et al., 2016) distance (an approxi-
mation of the mutation rate) between each pair of representative genomes is computed.
Among the set of representative genomes, one is selected as a species representative, and
other representative genomes too distant from the species representative are discarded.
All remaining representative genomes are aligned to the species representative, describing
a matrix of all variable positions, a SNV profile.

The Mash distance matrix is re-used to define the set of representative genomes for
reads mapping through a complete linkage hierarchical clustering. For each cluster, the
selected representative genome is selected as the one with the lowest average distance from
the other genomes of the cluster. The number of reference genomes to include depends on
the genomic variability of the species and needs specific parameters tuning, that can also
be guided by a priori knowledge if available. Like in the previous step, the representative
genomes are aligned to the species representative. The metagenomic reads are mapped
onto those representative genomes.

Finally, the two previous steps are combined. For each SNV position identified in the
first step, the frequency of occurrences of each nucleotide is extracted from the mapping
output of the second step. The relative abundance profile is inferred by a Lasso regression.

In summary, the key characteristics are that StrainEST operates on a single metage-
nomic sample with two sets of reference genomes, and provides a strain-level abundance
profile for each species. Moreover, its methodology is based on strain-specific character-
istics of the core genome of a species, and as such, is not able to identify features in the
dispensable genome.
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DiTASiC (Fischer et al., 2017) is a reference-based tool for abundance estimation and
to compute differential abundance of individual taxa in metagenomics samples. As seen
in the previous chapter, recent approaches evolved to the use of k-mers over alignments
to alleviate the cost of computation. However, they showed a reduction in resolution for
strain-level read assignments. For this reason, DiTASiC aims at combining both by relying
on pseudo-alignments for faster mapping, and by using a generalized linear model to
resolve ambiguities in read assignments.

While not mandatory, DiTASiC strongly recommends a first step of pre-filtering ref-
erences to start the pipeline with a set of reference genomes of species expected in the
sample.

Sequencing reads from the metagenomic sample are mapped to each reference genome
and the number of reads assigned to a genome defines its mapping abundance. Considering
the high similarity between genomes from strains of the same species, some reads might
map equally well on multiple genomes.

Then, a generalized linear model is used to predict the mapping abundances (response
variable) from the references similarity matrix (predictor), resulting in a corrected abun-
dance that takes into account the read count ambiguities. The differential abundance
between two samples will not be further detailed here as it does not strictly relate to the
thesis project. Briefly, the corrected abundances are formulated as distributions and com-
pared assuming Poisson distributions. For each taxa, a p-value reports the significance of
the difference.

In summary, the key characteristics are that DiTASiC operates on a single metage-
nomic sample with a set of reference genomes, and provides a strain-level abundance
profile for each taxa. However, missing or unknown taxa may introduce bias, hence the
recommendation of an initial step of adequate selection and pre-filtering of the references
used.

mixtureS (X. Li et al., 2020) is a tool for de novo identification of bacterial strains from
shotgun reads of a metagenomic sample. The rational behind mixtureS is that most of
the existing methods depends on known strains and/or does not work on a single sample.

Before using mixtureS, it is assumed that a sample has been sequenced, and the
resulting reads have been mapped to a species genome. Here, it is important to clarify
that, similarly to DESMAN that uses known core genes, mixtureS uses a type of reference,
yet the de novo nature of the methodology refers to using sequencing reads to infer
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non-identified haplotypes, and does not mean it is completely reference-free. Moreover,
in order to simplify the computations behind the algorithm used, two assumptions are
made. It is assumed that different strains of a species have different abundances and that
a polymorphic site can only be biallelic.

mixtureS operates in three steps. Firstly, all positions in the reference revealing vari-
ations according to the mapped reads are identified. Secondly, among the detected posi-
tions, those of low-coverage are removed. Finally, an expectation-maximization algorithm
is applied to infer the strains from those variations positions.

In summary, the key characteristics are that mixtureS is a de novo method, that op-
erates on a single sample, and that seeks to resolve haplotypes and their abundance.

Several other strain-oriented tools could have been cited. For instance, ConStrains (Luo
et al., 2015) that, similarly to StrainPhlan, uses MetaPhlan2 to work on marker genes.
However, StrainPhlan proved to produce better results in terms of overall strain-tracking
accuracy compared to ConStrains. MetaSNV (Costea et al., 2017) and inStrain (Olm et
al., 2021) compare SNVs across several samples to conclude on the existence of different
strains across populations. However, they do not provide extended profiles as described for
the tools previously presented. StrainsGE (Dijk et al., 2021) is not published yet. While it
aims to characterize the strain abundances in microbial communities, the first estimated
strain abundance is always biased, making further comparisons difficult. Finally, others
tools like StrainSeeker (Roosaare et al., 2017) are used for strain identification but only
on isolates, and are not applicable to complex metagenomic samples.

Finally, tools that are not specifically dedicated to strain resolution analysis may be
used.

Kraken2 (Wood, Lu, et al., 2019) is one of the tools, as previously mentioned, that
uses k-mer approaches to accelerate read assignments. Kraken2 is a reference-based tool,
that requires a set of reference genomes and their taxon information from the NCBI
taxonomy database that form a classification tree. The reference database is compressed
into a k-mers database, and the sequencing reads from a metagenomic sample are also
decomposed into k-mers. Each k-mer of the read is mapped to the lowest common ancestor
of the genomes in the reference database. Each node of the classification tree has a weight
equal to the k-mers that mapped the associated sequence taxon. Finally, each root-to-
leaf paths has a score equal to the sum of the traversed nodes weight. The classification
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selected corresponds to the leaf with the maximal score path.
KrakenUniq (Breitwieser et al., 2018) works in a similar way, but focuses only on

unique k-mers identified for each taxon, allowing for a better distinction betwen false-
positive and true-positive matches.

Kraken2 and KrakenUniq, as they are, only provide a classification output, that is
to say an information of presence/absence. To perform abundance estimation, the same
authors have developed Bracken (Lu et al., 2017), that is complementary to Kraken. Un-
fortunately, Bracken can only estimate species/genus-level abundances.

This review on the state of the art related to the strain-level resolution issue, asso-
ciated with their year of publication, shows how this is still an active field of research.
While Kraken2 is the popular tool for classification, there is no similar consensus tool
for strain-level profiling as there is still a variety of inputs used and concerns to address
(identification of known strains, inference of haplotypes, etc).

3.3 Thesis rational

In conclusion to this state of the art, graph representations are well defined, and tools
to build and manipulate graphs are still under active development. A graph structure al-
lows to reduce the data redundancy and to highlight variations, key advantages compared
to the current approaches that are biased towards the references, that bias read map-
ping because of the high similarity of closely related sequences, or that discard sequences
or some variations. Moreover, as seen with the existing strain-level profiling tools, some
tools focus on the dominant strain only, whereas it has been shown that, for instance,
the human microbiota is often a complex mixture of strains (Oh et al., 2016). In other
cases, some tools need a set of multiple metagenomic samples, while for this thesis we are
interested in profiling samples independently.

To our knowledge, no strain-level profiling tool uses graph structure despite their
obvious advantages when working with similar sequences. In parallel, those new graph
frameworks also arise new challenges: updating a graph with novel sequences, adapting
existing efficient algorithms for read mapping, and, directly related to the concern of ex-
ploring strain-level resolution, developing new ways to analyse sequence-to-graph mapping
results for downstream analyses.
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For these reasons, and in order to address the thesis objectives, we developed StrainFLAIR,
a tool that uses variation graph representation of gene sequences for strain identification
and quantification.
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Chapter 4

STRAINFLAIR: STRAIN-LEVEL

PROFILING OF METAGENOMICS SAMPLE

USING VARIATION GRAPHS

The fourth chapter of this thesis aims at describing the major contribution of my
work. This has been published and the chapter is adapted from the resulting scientific
paper (Da Silva et al., 2021).

We present StrainFLAIR, a novel method and its implementation that uses variation
graph representation of gene sequences for strain identification and quantification. We
proposed novel algorithmic and statistical solutions for managing ambiguous alignments
and computing an adequate abundance metric at the graph node level. Results on simu-
lated data and on real sequencing data have shown that we could correctly identify and
quantify strains present in a sample. Notably, in the controlled experimental design that
we investigated, we could also detect the existence of a strain close to, but absent from
those in the reference.

StrainFLAIR is available at http://github.com/kevsilva/StrainFLAIR

4.1 Pipeline

4.1.1 Overview

We propose here a description of our tool StrainFLAIR (STRAIN-level proFiLing using
vArIation gRaph). This method exploits various state-of-the-art tools and proposes novel
algorithmic solutions for indexing bacterial genomes at the strain-level. It also permits
to query metagenomes for assessing and quantifying their content, in regards to the in-
dexed genomes. An overview of the index and query pipelines are presented on Figure 4.1.
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Figure 4.1 – StrainFLAIR overview.
a. Indexing. Input is a set of known reference genomes of various bacterial species and strains.
StrainFLAIR uses a graph for indexing genes of those reference genomes. b. Read mapping on the
previously mentioned graph. c. Mapped reads analysis. StrainFLAIR assigns and estimates species
and strain abundances of a bacterial metagenomic sample represented as short reads.
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In a few words, StrainFLAIR works as follows: First, it indexes genes of input reference
genomes. Similar genes from several genomes are grouped into a gene family. Each gene
family is represented as a part (a connected component) of a variation graph. The path
described in this variation graph by the sequence of any gene of any indexed genome is
called a “colored-path”. Note that, conversely, any path of the variation graph does not
necessarily correspond to an indexed gene. At query time, the mapping of a queried read on
the graph results on a subset of the graph in which each mapped nodes is associated with
a mapping score. This set of nodes is called a “multipath-alignment”. From a multipath-
alignment we extract a set of so called “single-path-alignments” that are paths with a
mapping score higher than a threshold.

Then, in a step called “colored-path attribution”, each of the previously determined
single-path-alignments is, when possible, attributed to the most probable colored-path of
the variation graph, hence determining to which input genome the mapped read belongs
to. Once all read are mapped, the careful analysis of mapped colored-paths enables to
draw a profile to the queried metagenomic sample.

We now provide more details on each of the StrainFLAIR steps.

4.1.2 Indexing strains

Gene prediction

As non-coding DNA represents 15% in average of bacterial genomes and is not well
characterized in terms of structure, StrainFLAIR focuses on protein-coding genes in order
to characterize strains by their gene content and nucleotidic variations of them. Moreover,
non-coding DNA regions can be highly variable (Thorpe et al., 2017) and taking into
account complete genomes would then lead to highly complex graphs, and combinatorial
explosions when mapping reads. Additionally, complete genomes are not always available.
Focusing on the genes allows to use also drafts and metagenome-assembled genomes or a
pre-existing set of known genes (Qin et al., 2010; J. Li et al., 2014).

Hence, StrainFLAIR indexes genes instead of complete genomes in graphs.

Genes are predicted using Prodigal (Hyatt et al., 2010), a tool for prokaryotic protein-
coding genes prediction.
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Knowing that some reads map at the junction between the gene and intergenic regions,
by conserving only gene sequences, mapping results are biased towards deletions and
drastically lower the mapping score. In order to alleviate this situation, we extend the
predicted gene sequences at both ends. Hence, StrainFLAIR conserves predicted genes
plus their surrounding sequences. By default, and if the sequence is long enough, we
conserve 75 bp on the left and on the right of each gene.

Gene clustering

Genes are clustered into gene families using CD-HIT (W. Li and Godzik, 2006), similar
to the pipeline used in the IGC construction seen in Chapter 2. For the clustering step, the
genes without extensions are used in order to strictly cluster according to the exact gene
sequences and no parts of intergenic regions. CD-HIT-EST is used to realize the clustering
with an identity threshold of 0.95 and a coverage of 0.90 on the shorter sequence. The
local sequence identity is calculated as the number of identical bases in alignment divided
by the length of the alignment. Sequences are assigned to the best fitting cluster verifying
these requirements.

Graph construction

Each gene family is represented as a variation graph (see Figure 4.2). As a reminder,
variation graphs are bidirected DNA sequence graphs that represent multiple sequences,
including their genetic variations. Each node of the graph contains sub-sequences of the
input sequences, and successive nodes draw paths on the graph. Paths corresponding to
reference sequences are specifically called “colored-paths”. Each colored-path corresponds
to the original sequences of a gene in the cluster.

In the case of a cluster composed of only one sequence, vg toolkit (Garrison, A.
Novak, et al., 2017) is used to convert the sequence into a flat graph. Alternatively,
when a cluster is composed of two sequences or more, minimap2 (H. Li, 2018) is used to
generate pairwise sequence alignments. Then seqwish (Garrison, 2022) is used to convert
these pairwise sequence alignments into a variation graph.

vg toolkit allows to modify the graph including a normalization step. Normalization
consists in deleting redundant nodes (nodes containing the same sub-sequence and having
the same parent and child nodes), removing edges that do not introduce new paths, and
merging nodes separated by only one edge. For each cluster, if the colored paths of the
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Figure 4.2 – Illustration of a variation graph structure and colored-paths. Each node of the
graph contains a sub-sequence of the input sequences and is integer-indexed. A path corresponding to an
input sequence is called a colored-path, and is encoded by its succession of node ids, e.g. 1,3,5,6 for the
colored-path 1 in this example.

corresponding graph still describe their respective input sequences, the graph is normal-
ized.

All the so-computed graphs (one per input cluster) are then concatenated to produce
a single variation graph where each cluster of genes is a connected component.

After the concatenation of all computed graphs (one for each cluster), the final single
variation graph is indexed using vg toolkit. Indexing a graph allows a fast querying of
the graph when mapping reads. Indexing uses two file formats: XG, which is a succinct
graph index which presents a static index of nodes, edges and paths of a variation graph,
and GCSA, a generalized FM-index to directed acyclic graphs. A SNARLS file is also
generated, describing snarls (a generalization of the superbubble concept; Paten, Eizenga,
et al., 2018) in the variation graph and similarly allowing faster querying.

The index is created once for a set of reference genomes. Afterward, any set of se-
quenced reads can be queried at the strain-level based on this index.

4.1.3 Querying variation graphs

The so-created variation graphs is queried by sequencing reads. Each read is mapped
on the graph. Then each mapped read is associated, when possible, to a gene of one of
the indexed genome. This is the “read attribution” step, itself composed of the “single-
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path-alignments attribution” and the “colored-path attribution” steps, detailed below.

Mapping reads

To map reads on the previously described reference graph, we used the sequence-to-
graph mapper vg mpmap from vg toolkit. It produces a so-called “multipath-alignment”.
A multipath-alignment is a graph of partial alignments and can be seen as a sub-graph (a
subset of edges and vertices) of the whole variation graph (see Figure 4.3). The mapping
result describes, for each read, the nodes of the variation graph traversed by the align-
ment and the potential mismatches or indels between the read and the sequence of each
traversed node.

The mapping results are given in GAMP format, then converted into JSON format
with vg toolkit, describing, for each read, the nodes of the graph traversed by the
alignment.

Reads attribution

When mapping a read on a graph with colored-paths, two key issues arise, as illustrated
on Figure 4.3. As mapping generates a sub-graph per mapped read, the most probable
mapped path(s) have to be defined. Meanwhile, the most probable mapped path(s) cor-
responding to a colored-path also have to be defined.

Hence we developed an algorithm to analyse and convert, when possible, a mapping
result into one or several single-path-alignments (successive nodes joined by only one
edge) per mapped read. In addition, we propose an algorithm to attribute each such
single-path-alignment to most probable colored-path(s).

Single-path-alignments attribution.
A breadth first search on the multipath-alignment is proposed. It starts at each node of

the alignment with a user-defined threshold on the mapping score. A single-path-alignment
with a mapping score below this threshold is ignored, and the single-path-alignment with
the best mapping score is retained. Additionally, for each alignment, nodes are associated
with a so-called “horizontal coverage” value. The horizontal coverage of a node by a read
corresponds to the proportion of bases of the node covered by the read.

Hence, a node has an horizontal coverage of 1 if all its nucleotides are covered by the
read with or without mismatches or indels.
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Figure 4.3 – Illustration of the multipath-alignment concept and the read attribution pro-
cess. The region of the read in blue aligns un-ambiguously to a node of the graph while the dark and
light red parts can either align to the top or the bottom nodes of their respective mapping localization
(due to mismatches that can align on both nodes for example), drawing an alignment as a sub-graph
of the reference variation graph, and thus opening the possibility of four single-path-alignments. (A)
Single-path-alignments attribution. First, from the multipath-alignment (all four read sub-paths),
the breadth search finds the possible corresponding single-path-alignment(s) while respecting the map-
ping score threshold imposed by the user. Here, for the example, all four possible paths are considered
valid. (B) Colored-path attribution. Second, each single-path-alignment is compared to the colored-
paths from the reference variation graph. Two single-path-alignments matched the colored-paths (4-6-8
and 5-6-7). As it mapped equally more than one colored-path, this read is not processed during the first
step of the algorithm which focuses on reads mapping uniquely on a single colored-path, but falls in the
multiple mapped reads case which is processed during the second step and will be considered shared by
both matched colored-paths.
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Because of possible ties in mapping score, the search can result in multiple single-
path-alignments, as illustrated Figure 4.3(A). This situation corresponds to a read with
a sequence found in several different genes or to a read mapping onto the similar region
of different versions of a gene.

To take into account ambiguous mapping affectations, as shown below, the parsing of
the mapping output is decomposed into two steps. The first step processes the reads that
mapped only a unique colored-path (called “unique mapped reads” here), corresponding
to a single gene. The second step processes the reads with multiple alignments (called
“multiple mapped reads” here).

Colored-path attribution.
Once a read is assigned to one or several single-path-alignments, it still has to be

attributed, if possible, to a colored-path.
The following process attributes each mapped read to a colored-path and various

metrics for downstream analyses are computed. In particular, an absolute abundance for
each node of the variation graph, called the “node abundance”, is computed, first focusing
on unique mapped reads (first step). For a given single-path-alignment, the successive
nodes composing this path are compared to the existing colored-paths of the variation
graph.

If the alignment matches part of a colored-path, the number of mapped reads on this
path is incremented by one (i.e. reads raw count). The node abundance for each node of
the alignment is incremented with its horizontal node coverage defined by this alignment.
Alignments with no matching colored-paths are skipped.

Then, we focus onmultiple mapped reads (second step), as illustrated Figure 4.3(B).
During this step, a single-path-alignment matches multiple colored-paths. Hence, the

abundance is distributed to each matching colored-path relatively to the ratio between
them. This ratio is determined from the reads raw count of each path from the first step.
For example, if 70 unique mapped reads were found for path1 and 30 for path2 during
the first step, a read matching ambiguously both path1 and path2 during the second step
counts as 0.7 for path1 and 0.3 for path2. This ratio is applied to increment both the raw
count of reads and the coverage of the nodes.
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Gene-level and strain-level abundances

StrainFLAIR output is decomposed into an intermediate result describing the queried
sample and gene-level abundances, and the final result describing the strain-level abun-
dances.

Gene-level.
After parsing the mapping result, the first output provides information for each colored-

path, i.e. each version of a gene. Thereby, this first result proposes gene-level information
including abundances. For each colored path, StrainFLAIR provides the following items:

— The corresponding gene identifier.
— For each reference genome, the number of copies of the gene. Since each unique

version of a gene is represented once in the graph, whereas it can exist in sev-
eral copies in the genome (duplicate genes), the counts and abundances computed
correspond to the sum of those copies. Keeping track of the number of copies is
important to normalize the counts.

— The cluster identifier to which the colored path belongs.
— For unique mapped reads: their raw number and their number normalized by the

sequence length (further detailed below).
— For unique plus multiple mapped reads: their raw number and their number nor-

malized by the sequence length (further detailed below).
— The mean abundance of the nodes composing the path.
— The mean abundance without the nodes of the path never covered by a read.
— The ratio of covered nodes.

We further detail here the three major metrics outputted by StrainFLAIR.
Themean abundance of the nodes composing the path. Instead of solely count-

ing reads, we make full use of the graph structure and we propose abundances computation
for each node as previously explained, and as already done for haplotype resolution (Baai-
jens et al., 2019). Hence, for each colored-path, the gene abundance is estimated by the
mean of the nodes abundance.

In order to not underestimate the abundance in case of a lack of sequencing depth
(which could result in certain nodes not being traversed by sequencing reads), the mean
abundance without the nodes of the path never covered by a read is also out-
putted.

87



Chapter 4 – StrainFLAIR: strain-level profiling of metagenomics sample using variation graphs

The mean abundance with and without these non-covered nodes are computed using
unique mapped reads only or all mapped reads.

The ratio of covered nodes, defined as the proportion of nodes from the path with
an abundance strictly greater than zero.

Strain-level.
A colored-path associated to only one strain is called “strain-specific”. Strain-level abun-

dances are obtained by exploiting the results of reads mapped on strain-specific colored-
paths.

First, for each genome, the proportion of detected genes is computed, as the proportion
of specific genes on which at least one read maps. Then, the global abundance of the
genome is computed as the mean or median of all its specific gene abundances. However,
if the proportion of detected genes is less than a user-defined threshold, the genome is
considered absent and hence its abundance is set to zero.

StrainFLAIR final output is a table where each line corresponds to one of the refer-
ence genomes, containing in columns the proportion of detected specific genes, and our
proposed metrics to estimate their abundances (using mean or median, with or without
never covered nodes as described for the gene-level result).

As presented in Section 4.2.3, we validated and motivated the proposed abundance
metric by comparing it to the expected abundances and other estimations using linear
models.

4.2 Validation

We validated our method on both a simulated and a real dataset. All computations
were performed using StrainFLAIR, version 0.0.1, with default parameters. The relative
abundances estimation was based on the mean of the specific gene abundances, computed
by taking into account all the nodes (including non-covered nodes), and using a 50%
threshold on the proportion of detected specific genes.

The presented results are compared to Kraken2 considered as one of the state-of-the-art
tool dedicated to the characterization of read set content, and based on flat sequences as
references. Read counts given by Kraken2 were normalized by the genome length and con-
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verted into relative abundances. Other tested tools either suffer from unfair comparisons
as their features differ from StrainFLAIR or show weaker results than those obtained
by Kraken2. Considering StrainFLAIR was designed to query a single sample, DESMAN
was not suitable for this work as it needs multiple samples in order to compute vari-
ant co-occurrences. Similarly, considering StrainFLAIR was designed to compute strain
relative abundances, PanPhlan and StrainPhlan were not suitable as they do not pro-
vide such output. StrainEst, DiTASiC, KrakenUniq and mixtureS had similar inputs
and outputs compared to StrainFLAIR. Those tools were tested on two of the simulated
datasets described in the following. It was enough to highlight their main differences with
StrainFLAIR (see Section 4.2.1).

Here we present a proof of concept of the variation graph application for the microbial
strain detection. While the aim is not to provide a benchmark of the state-of-the-art tools,
computing setup and performances are also indicated (see Section 4.2.4).

4.2.1 Validation on a simulated dataset

We first validated our method on simulated data, focusing on a single species with
multiple strains. Our aim was to validate the StrainFLAIR ability to identify and quantify
strains given sequencing data from a mixture of several strains of uneven abundances, and
with one of them absent from the index.

Results presented in this section can be reproduced using data and commands available
from the github website.

Reference variation graph

We selected complete genomes of Escherichia coli, a predominant aerobic bacterium
in the gut microbiota (Tenaillon et al., 2010), and a species known for its phenotypic
diversity (pathogenicity, antibiotics resistance) mostly resulting from its high genomic
variability (Dobrindt, 2005).

Eight strains of E. coli were selected for this experiment from the NCBI 1. Seven were
used to construct a variation graph (E. coli IAI39, O104:H4 str. 2011C-3493, str. K-12

1. https://www.ncbi.nlm.nih.gov/genome/?term=txid562[orgn]
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substr. MG1655, SE15, O157:H16 str. Santai, O157:H7 str. Sakai, O26 str. RM8426), and
one was used as an unknown strain in a strains mixture (E. coli BL21-DE3).

For ease of reading, in the following, K-12 substr. MG1655 is simply designed by “K12”
and BL21-DE3 is designed by “BL21”.

Distance between the selected genomes

We estimated the distance between the complete genomes of the selected strains using
fastANI (Average Nucleotide Identity; Jain, Rodriguez-R, et al., 2018). FastANI uses
an alignment-free algorithm to estimate the average nucleotide identity between pairs of
sequences.

K-12 IAI39 O104:H4 Sakai SE15 Santai BL21-DE3 RM8426
K-12 100 97.0652 98.3769 97.8703 96.8716 98.0362 98.9365 98.3657
IAI39 97.037 100 96.9742 96.7417 97.1289 96.9295 97.0197 96.8987

O104:H4 98.3059 96.9521 100 97.4788 96.8007 97.8896 98.249 98.7212
Sakai 97.7497 96.8627 97.5094 100 96.6657 98.1523 97.7455 97.6125
SE15 96.8453 97.1064 96.9211 96.7362 100 96.7575 96.8141 96.7763
Santai 98.0073 97.0372 97.9584 98.1797 96.8199 100 97.9279 97.9077

BL21-DE3 98.9983 97.1721 98.4048 97.8227 96.8448 97.9616 100 98.3204
RM8426 98.306 96.9037 98.6801 97.5815 96.6907 97.8353 98.2567 100

Table 4.1 – Distance between each pair of complete genome sequences from
eight strains of E. coli as computed by fastANI.

All pairs showed a distance at least greater than 95%, highlighting the strong sim-
ilarities between the strains. As a threshold, we although considered that beyond 99%,
sequences were too similar to be considered and distinguished, additionally to the effect
of sequencing errors. The fastANI results showed that none of the pairs exceeded this
similarity threshold.

The strain BL21 was chosen as the unknown strain while the seven others would be
used to build the reference variation graph. According to the results of fastANI, the
strain BL21 closest genome in the present references is the strain K-12 with a similarity
of 98.9%. Hence we expected to find evidences of the strain K-12 while analyzing a sample
containing the unknown strain BL21.
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Mixtures and sequencing simulations

Our aim was to simulate the co-presence of several E. coli strains. Mixtures of three
strains were used to mimic complex single species composition in metagenomic samples.
We simulated short sequencing reads of 150 bp using vg sim from vg toolkit with a
probability of sequencing errors set to 0.1%. Two batches of simulations were conducted in
order to highlight the detection and quantification of strains in the mixture. The first sim-
ulation was a mixture composed of strains indexed in the reference graph (O104:H4, IAI39
and K-12) while the second simulation (O104:H4, IAI39 and BL21) had one absent from
the reference variation graph (BL21) thus simulating a strain absent from the reference
graph to be identified and quantified. For each simulation, we tested our StrainFLAIR
with various read coverage (see Table 4.2), with K-12 or BL21 in equal abundance of
IAI39, potentially making it more difficult to distinguish, or in lower abundance, poten-
tially making it more difficult to detect at all.

Samples O104:H4 IAI39 K-12 or BL21
1 200,000 (6.5x)
2 100,000 (3x)
3 50,000 (1.6x)
4 300,000 (8.5x) 200,000 (5.8x) 25,000 (0.8x)
5 10,000 (0.3x)
6 5,000 (0.2x)
7 1,000 (0.03x)

Table 4.2 –Composition of the mixtures described in number of reads simulated
and the corresponding coverage (in parentheses). For each simulation (including
either K-12, indexed in the variation graph, or BL21, not indexed), seven mixtures were
simulated.

Strain-level abundances

As explained in Section 4.1, we computed the strain-level abundances using the specific
gene-level abundance table obtained by mapping the simulated reads onto the variation
graph. We compared our results to the expected simulated relative abundances.

Simulation 1: mixtures with K-12, present in the reference graph
StrainFLAIR successfully estimated the relative abundances of the three strains present

in the mixture (see Table 4.3), the sum of squared errors between the estimation given
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#reads
K-12 Method O104:H4 IAI39 K-12 Sakai SE15 Santai RM8426

Expected 59.88 39.92 0.2 0 0 0 0

1,000 StrainFLAIR 56.47
(0.995)

43.53
(0.989)

0
(0.309)

0
(0.189)

0
(0.151)

0
(0.188)

0
(0.212)

Kraken2 38.91 60.72 0.22 0.04 0.07 0.03 0.02
Expected 57.14 38.1 4.76 0 0 0 0

25,000 StrainFLAIR 52.14
(0.994)

40.58
(0.989)

7.27
(0.878)

0
(0.208)

0
(0.153)

0
(0.215)

0
(0.234)

Kraken2 37.23 58.1 4.51 0.04 0.07 0.03 0.02
Expected 42.86 28.57 28.57 0 0 0 0

200,000 StrainFLAIR 38.12
(0.993)

29.81
(0.988)

32.08
(0.99)

0
(0.211)

0
(0.159)

0
(0.219)

0
(0.237)

Kraken2 28.31 44.18 27.35 0.04 0.08 0.03 0.02

Table 4.3 – Reference strains relative abundances expected and computed by
StrainFLAIR or Kraken2 for each simulated experiment with variable coverage
of the K-12 strain. Best results are shown in bold. For StrainFLAIR, the proportion
of specific genes detected is shown in parentheses. Complete results are presented in the
Appendix, Table A1.

by our tool and the expected relative abundance was between 25 and 45 for all the
experiments. However, it did not detect the very low abundant strain in the case of the
mixture with 1,000 simulated reads for K-12 (coverage of ≈0.03x).

With our methodology, the threshold on the proportion of detected genes (see Sec-
tion 4.1) lead to set relative abundance to zero of likely absent strains. This reduces both
the underestimation of the relative abundances of the present strains and the overestima-
tion of the absent strains.

In comparison, Kraken2 did not provide this resolution. Applied to our simulated mix-
tures, while Kraken2 was slightly better for K-12 abundance estimation, it overestimated
IAI39 relative abundance and underestimated O104’s one, leading to an overall higher
sum of squared errors (between 456 and 872) compared to the expected abundances.
Moreover, it set relative abundances to all the seven reference strains whereas four of
them were absent from the mixture. This was expected as some reads (from intergenic
regions for example) can randomly be similar to regions of genes from absent strains.

Simulation 2: mixtures with BL21, absent from the reference graph
Here, BL21 was considered an unknown strain, not contributing to the variation graph.

The closest strain of BL21 in the graph, according to fastANI, was K-12 (98.9% of identity,
see Table 4.1). Thus we expected to find signal of BL21 through the results on K-12.
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#reads
BL21-DE3 Method O104:H4 IAI39 K-12 Sakai SE15 Santai RM8426

Expected 59.88 39.92 0.2* 0 0 0 0

1,000 StrainFLAIR 56.48
(0.995)

43.52
(0.989)

0
(0.254)

0
(0.189)

0
(0.151)

0
(0.192)

0
(0.214)

Kraken2 38.93 60.76 0.11 0.05 0.08 0.04 0.03
Expected 57.14 38.1 4.76* 0 0 0 0

25,000 StrainFLAIR 54.12
(0.995)

41.72
(0.989)

4.16
(0.584)

0
(0.266)

0
(0.177)

0
(0.282)

0
(0.298)

Kraken2 37.75 58.93 2.16 0.28 0.34 0.25 0.29
Expected 42.86 28.57 28.57* 0 0 0 0

200,000 StrainFLAIR 46.96
(0.993)

35.32
(0.988)

17.72
(0.711)

0
(0.318)

0
(0.211)

0
(0.346)

0
(0.351)

Kraken2 31.14 48.83 13.53 1.57 1.67 1.58 1.68

Table 4.4 – Reference strain relative abundances expected and computed by
StrainFLAIR or Kraken2 for each simulated experiment with variable coverage
of the BL21 strain, absent from the reference variation graph. BL21 strain
expected abundances are followed by an asterisk in the K-12 column. Best results are
shown in bold. For StrainFLAIR, the proportion of specific genes detected is shown in
parentheses. Complete results are presented in the Appendix, Table A2.

As with the K-12 mixtures, StrainFLAIR successfully estimated the relative abun-
dances of the two known strains present in the mixture (see Table 4.4), the sum of squared
errors between the estimation given by our tool and the expected relative abundance was
between 22 and 180 for all the experiments. Labelled as K-12, it also gave close estima-
tions for BL21 in this controlled experimental design. Again, it did not detect the very
low abundant strain in the case of the mixture with 1,000, 5,000, and 10,000 simulated
reads for BL21. Also similarly to the K-12 mixtures experiments, Kraken2 overestimated
IAI39 relative abundance and underestimated O104’s one (sum of squared errors between
751 and 873), even less precisely than in the previous experiment. With sufficient coverage
(here from the 0.8x for BL21), StrainFLAIR was closer to the expected values for all the
reference strains than Kraken2.

Interestingly, the proportion of detected specific genes for each strain (see Figure 4.4)
seems to highlight a pattern allowing to distinguish - in this specific experiment - present
strains, absent strains and likely new strains close to the reference in the graph. According
to the experiments with enough coverage (from 25,000 simulated reads for BL21), three
groups of proportions could be observed: proportion of almost 100% (O104:H4 and IAI39
: strains present in the mixtures and in the reference graph), proportion under 30-35%
(Sakai, SE15, Santai, and RM8426 : strains absent from the mixtures), and an in-between
proportion around 60-70% for K-12 (closest strain to BL21).
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Figure 4.4 – Proportion of detected specific genes for each simulated experiment with
variable coverage of the BL21 strain, absent from the reference graph.
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It was expected that an absent strain would have specific genes detected as StrainFLAIR
detects a gene once only one read mappped on it. However, all absent strains had a pro-
portion at around 30% except K-12 which proportion was twice higher. Conjointly with
the non-null abundance estimated for the reference K-12, this suggests the presence of a
new strain whose genome is highly similar to K-12.

Comparison to other tools

As previously mentioned, other strain-oriented tools have been tested.

Mixture Method O104:H4 IAI39 K-12 Sakai SE15 Santai RM8426
Expected 50 33.33 16.67 0 0 0 0
StrainFLAIR 44.66 35.05 20.29 0 0 0 0
StrainEst 48.64 32.97 18.39 0 0 0 0

with K-12 DiTASiC 50.27 33.38 16.35 0 0 0 0
Kraken2 32.8 51.19 15.85 0.04 0.07 0.03 0.02

KrakenUniq 38.27
(0.99)

26.14
(0.50)

15.28
(0.93)

5.08
(0.0017)

5.08
(0.0017)

5.08
(0.0017)

5.08
(0.0014)

Expected 50 33.33 16.67* 0 0 0 0
StrainFLAIR 50.47 38.64 10.89 0 0 0 0
StrainEst 56.65 36.71 0 0 0 0 6.64

with BL21 DiTASiC 53.34 34.72 8.52 0.66 0.03 1.06 1.67
Kraken2 34.53 54.03 7.68 0.91 0.98 0.91 0.96

KrakenUniq 27.9
(0.99)

19.24
(0.50)

11.12
(0.34)

10.1
(0.02)

10.42
(0.02)

10.28
(0.03)

10.94
(0.04)

Table 4.5 – Reference strains relative abundances expected and computed by
StrainFLAIR or other tools for each simulated experiment. BL21-DE3 being sim-
ilar at 98.9% to K-12 strain, we expect that reads from BL21-DE3 will map this strain,
hence its expected value is followed by an asterisk, as it corresponds to BL21-DE3 strain
abundance and not K-12. For KrakenUniq, additionally to the relative abundances com-
puted from the average number of times each unique k-mer has been seen, the coverage
value of the k-mers of the clade in the database was added in parenthesis. Best results
are shown in bold.

StrainEst
Similarly to StrainFLAIR, StrainEst uses a set of reference genomes. E. coli K-12

MG1655 was used as the species reference needed in the StrainEst pipeline. It was also
added for the clustering step of the representative genomes. The output is a relative
abundance associated to each reference genome. Results are presented in Table 4.5.

While StrainEst gives slightly closer relative abundance estimations to the expected
ones when the three strains from the mixture are represented in the references, it does not
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perform well with the mixture composed of an unknown strain (BL21-DE3). Aside from
the relative abundances values that are farther than the ones provided by StrainFLAIR,
the main issue is that StrainEst assigns an abundance to the strain RM8426 and not
K-12 which is the closest strain to Bl21-DE3 and thus expected to capture the signal.

DiTASiC
Similarly to StrainFLAIR, DiTASiC uses a set of reference genomes. The output is a

table of read count estimates for each reference genomes associated with a standard error
and p-value for those estimates. Read counts have been converted into relative abundances
(percentages). Results are presented in Table 4.5.

While DiTASiC gives accurate relative abundance estimations when the three strains
from the mixture are represented in the references, it does not perform well with the
mixture composed of an unknown strain (BL21-DE3). Although in lower abundance than
the three present strains in the sample, the absent strains are considered present even
considering the p-values associated with the read count estimates, except for the strain
SE15 (p-value = 0.55).

KrakenUniq
KrakenUniq assesses the coverage of unique k-mers found in each species in a dataset. It

has been used by building a custom database containing the same set of reference genomes
as with StrainFLAIR. The output is a table of, among others, the average number of
times each unique k-mer has been seen, and the coverage of the k-mers of the clade in
the database, for each reference genome and their higher taxonomic levels. The number
of times each unique k-mer has been seen has been converted into relative abundances
(percentages). Results are presented in Table 4.5 with the coverage in parentheses.

Coverage values show a high discrimination between present and absent strains, with
absent strains being in less than 0.1% in coverage. By using a threshold on this cover-
age, discarding the false-positive strains (Sakai, SE15, Santai and RM8426), the relative
abundances computed are close to expected. However, IAI39 has a coverage of 0.5 while
the two other present strains are at over 0.9, which could mislead the conclusion of IAI39
being the exact strain present in the sample, as it can been observed for the simulation
with BL21-DE3 reads, the coverage associated with K-12 (0.34) is also higher than the
absent strains and lower compared to present strains.

KrakenUniq was also used on the mock dataset and showed similar results compared to
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Kraken2 (sum of squared errors around 16 between KrakenUniq and Kraken2) except for
two genomes which were drastically lower in abundance and close to abundances estimated
by Kraken2 for absent strains. Desulfovibrio piger ATCC 29098 estimated abundance was
around 1,000 times lower with KrakenUniq compared to Kraken2, andMethanobrevibacter
oralis DSM 7256 around 60 times lower.

mixtureS
mixtureS uses a single reference genome. The output is the inference of the number

of haplotypes and an estimate of their relative abundance. Inferred haplotypes are not
associated with known references. For both simulated datasets, mixtureS gave similar
results with 5 haplotypes predicted with abundances between 11 and 31% overall. Thus,
those results could not be matched with the ones given by StrainFLAIR, StrainEst or
DiTASiC, and consequently did not allowed accurate estimations in terms of number of
strains in the mixtures nor in terms of abundances.

4.2.2 Validation on a real dataset

We used a mock dataset available on EBI-ENA repository under accession number
PRJEB42498, in order to validate our method on real sequencing data from samples
composed of various species and strains. The mock dataset is composed of 91 strains of
bacterial species for which complete genomes or sets of contigs are available, including
plasmids. Among the species, two of them contained each two different strains. Three
mixes had been generated from the mock, and we used the “Mix1A” in the following
results.

Even though 20 out of 91 strains were absents in this mix, we indexed the full set of 91
genomes. This was done in order to mimic a controlled StrainFLAIR use case where the
the reference graph contains a mix of strains present and absent in the queried data. The
metagenomic sample was sequenced using Illumina HiSeq 3000 technology and resulted
in 21,389,196 short paired-end reads.

We compared our results to the expected abundances of each strain in the sample
defined as the theoretical experimental DNA concentration proportion. As such, it has to
be noted that potential contamination and/or experimental bias could have occurred and
affected the expected abundances.
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Strain detection

Among the 91 strains used in the reference variation graph, StrainFLAIR detected
65 strains. All of these 65 strains were indeed sequenced in Mix1A. Hence, StrainFLAIR
produced no false positive. From the 26 strains considered absent by StrainFLAIR, 20
were not present in the sample (true negatives) and 6 should have been detected (false
negatives). However, the term false negative has to be soften as the ground truth remains
uncertain. Among those 6 undetected strains, all of them had theoretical abundance below
0.1%.

More precisely, among the 6 strains undetected by StrainFLAIR, 5 had some detected
genes, but below the 50% threshold. In this case, by default, StrainFLAIR discards these
strains. Finally, only one of the undetected strains (Desulfovibrio desulfuricans ND 132)
should have been theoretically detected (even if its expected coverage was below 0.1%), but
no specific gene was identified. Considering that StrainFLAIR uses a permissive definition
of detected gene (at least one read maps on the gene), having strictly no specific genes
detected for Desulfovibrio desulfuricans ND 132 suggests that this strain might in fact be
absent from Mix1A. This is also supported by the result from Kraken2 which estimated
a relative abundance of ≈ 9e−5, almost 500 times lower than the theoretical result.

As in the simulated dataset validation, Kraken2 affected non-null abundances to all
the references.

Strain relative abundances

For the estimated relative abundances, StrainFLAIR gave more similar results com-
pared to the state-of-the-art tool Kraken2 than the experimental values (see Figure 4.5).
The sum of squared error between StrainFLAIR and Kraken2 was around 11. StrainFLAIR
and Kraken2 gave similar results compared to the experimental values, with sum of
squared errors of around 209 and 211 respectively.

Interestingly, Thermotoga petrophila RKU-1 is the only case where results from StrainFLAIR
and Kraken2 differs greatly, with, in addition, the theoretical abundance being in-between.
Moreover, Thermotoga sp. RQ2 is the strain expected to be absent that Kraken2 estimates
with the highest relative abundance among the other expected absent strains, and the only
one exceeding the relative abundances of two present strains. Considering the previous re-
sults on the simulated mixtures and that Thermotoga petrophila RKU-1 and Thermotoga
sp. RQ2 are close species (fastANI around 96.6%) it could be an additional indicator of
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Figure 4.5 – Experimental relative abundance compared to relative abundance as computed
by StrainFLAIR and Kraken2. A selection of relevant results is shown here, see the Appendix, Figure A1
for the complete results. (A) Represents a case where StrainFLAIR and Kraken2 give similar results to
the experimental value (18 cases over 91). (B) Represents a case where StrainFLAIR and Kraken2 give
similar results, but lower than the experimental value (26 cases over 91). (C) Represents a case where
StrainFLAIR and Kraken2 give similar results, but greater than the experimental value (16 cases over
91). (D, E, F, G) Represent the two species represented by two strains each. (H, I) Represent two
atypical cases.
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how tools like Kraken2 can be misled by too close species or strains.
In the sample, the species Methanococcus maripaludis was represented by two strains

(S2 and C5) and the species Shewanella baltica likewise (OS223 and OS185).
StrainFLAIR successfully distinguished and estimated the relative abundances of each

strain of these two genomes. In this very situation and contrary to results on E. coli strains,
Kraken2 was also able to correctly estimate the abundances.

4.2.3 Abundance metrics validation

The output of StrainFLAIR provides several metrics to estimate the abundance of the
genes detected in the sample.

For validation, we used a combination of LASSO (least absolute shrinkage and selection
operator) model and linear model on the simulated dataset to estimate the abundances
at the strain-level, as the abundance of a gene is a linear combination of the abundances
of the strains it belongs to. As such, we expect no intercept value for those models and
have forced the intercept at zero for the following modeling.

First, a LASSO model was used to perform strain selection. The response variable
of the model was the presence or absence of the genes according to the selected metric
while the strains, described as their genes content (number of copies), were the predictors.
Then, a linear model was constructed with the raw selected metric as the response vari-
able, and only the strains selected by the LASSO model as the predictors. The estimate
of the strains relative abundance was thus the coefficients of the linear model associated
to the strains and transformed into relative values. For each metric, the sum of squared
errors between the real relative abundances and the estimated relative abundances from
the linear model was computed. The best metric was then defined as the one minimizing
this sum of squared errors.

For the mixtures containing E. coli K-12 MG1655, the three expected strains were se-
lected and thus detected using LASSO, except for the mixture containing only 1,000 reads
of K-12 MG1655 (representing 0.002% of the mixture, hence very negligible). For all the
mixtures, the best metric was the mean abundance computed from the node abundances
and by taking into account the multiple mapped reads.

For the mixtures containing E. coli BL21-DE3, BL21 being absent from the refer-
ence but very close to K-12, we expected to get some detection of K-12 in the results.
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The three expected strains were selected and thus detected using LASSO, except for the
mixture containing only 1,000 reads of BL21 (representing 0.002% of the mixture, hence
very negligible). For the mixtures at 200,000, 100,000, and 50,000 reads of BL21, the
best metric was the mean abundance computed from the node abundances without the
abundances at zero, and by taking into account the multiple mapped reads. While for the
others, the best metric was the mean abundance computed from the node abundances
(including the abundances at zero), and by taking into account the multiple mapped reads.

This approach using linear models was particularly appropriate for this situation where
the reference variation graph and the sample contained a small number of strains and thus
a small number of predictors for the model. However, this can hardly transpose to a whole
metagenomic sample with various species and various strains that would lead to too many
predictors and probably confusing the heuristics behind the models. This was confirmed
by applying the same methodology above on the mock dataset leading to abundances
estimation hardly comparable to expected. Compared to Kraken2 results, the sum of
squared errors of our methodology was approximately 6 whereas for the results with the
LASSO model it was around 236. Nevertheless, those results highlighted the relevance of
(i) using a metric taking into account the multiple mapped reads and not only the unique
mapped reads, and (ii) using our metric of abundance based on the node abundances over
raw read counts.

4.2.4 Performances

Our benchmarks were performed on the GenOuest platform on a machine with 48 Xeon
E5-2670 2.30 GHz with 500 GB of memory and 16 CPUs. Time results (see Table 4.6)
are the wall-clock times. We provided rough computation time, mainly in the purpose to
show that StrainFLAIR can be applied on usual datasets.
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Dataset Step Items processed Time Disk used (GB) Max mem. (GB)
Gene prediction 7 genomes 0m20 0 1.2
Gene clustering 34,011 genes 0m22 0 0.36
Graph construction 8,596 clusters 2m44 0.04 1.31
Graph concatenation 8,596 graphs 0m51 0 0.25

Simulated Indexing graph 1 graph 6m23 0.16 4.24
Mapping reads 350,000 short reads 15m15 0.16 0.99
JSON conversion 1 GAMP file 3m58 4.2 0.03
JSON parsing 1 JSON file + 1 GFA file + 1 pickle file 12m44 0 0.55
Abundance computing 1 Gene abundances table 0m2 0 0.04
Gene prediction 91 genomes 1m43 1.02 6.7
Gene clustering 280,174 genes 3m38 0.14 0.98
Graph construction 270,712 clusters 41m54 1.12 9.1
Graph concatenation 270,712 graphs 14m38 0 1.05

Mock Graph indexation 1 graph 75m19 1.98 30.4
Mapping reads 21,389,196 short read pairs 147m28 7 17.5
JSON conversion 1 GAMP file 53m21 75 0.12
JSON parsing 1 JSON file + 1 GFA file + 1 pickle file 110m44 0 5.7
Abundance computing 1 Gene abundances table 0m4 0 0.68

Table 4.6 – StrainFLAIR performances on simulated and mock datasets.

4.3 Conclusion

We developed StrainFLAIR, a tool for downstream analysis using a graph data struc-
ture. Our approach permits strain-level profiling of metagenomic samples, using variation
graphs to represent multiple reference genomes. We validated our method on simulated
datasets and a mock, and StrainFLAIR showed expected results compared to the theo-
retical ones. Results and perspectives are fully discussed in the Conclusion of the thesis.

However, besides the intended perspectives, two immediate additions to StrainFLAIR
were considered. As seen during the description of the pipeline, sequencing reads may be
attributed to multiple colored-paths, while being in fact from a single strain or a smaller
subset of strains represented by the colored-paths. This introduces noise in the data,
giving abundance to absent strains in the sample and/or underestimating the abundance
of present strains. We expected that paired-end reads could decrease the paths ambiguities
and lower the bias on the abundance estimations.

The second addition was to make use of the reads that could not match colored-paths
but still match paths in the graph. Those reads are likely to originate from new strains
present in the sample and unknown in the reference graph. Therefore they are crucial
information to guide towards the inference of new strains.

The next chapter details those additions to StrainFLAIR.
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Chapter 5

TOWARDS PATHS DISAMBIGUATION AND

STRAINS INFERENCE

The first release of StrainFLAIR set the basis of our approach using variation graphs
to profile metagenomic samples at the strain level. Two immediate new developments
were considered. Firstly, using paired-end reads information instead of considering them
as single-end, and secondly, using the mapped reads that could not match any existing
colored-path.

The fifth and last chapter of this thesis describes those new developments.

5.1 Path attributions disambiguation

5.1.1 Rational

All previous results presented in Chapter 4 were obtained using simulated single-end
reads or Illumina paired-end reads each treated as single-end in StrainFLAIR’s algorithm.
However, as seen in Section 1.1.2, paired-end reads are a way to get longer breadth of
coverage and can be used to resolve ambiguities.

In this work, those ambiguities appeared during the colored-path attribution step.
Reads may be shared by several colored-paths and therefore follow the shared count
heuristic (second pass of StrainFLAIR’s algorithm). Eventually, some of those shared
paths might be false positive attributions due to the high similarity between strain se-
quences, and would decrease the accuracy of the subsequent relative abundance compu-
tation.

By taking into account the colored-path attributions of both reads of the same pair,
the list of shared colored-paths may be reduced, or all ambiguities may even be completely
resolved by obtaining only one possible colored-path.
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The next section details the algorithm I used in order to take into account paired-end
sequencing reads.

5.1.2 Algorithm

In order to resolve path attribution ambiguities, the detailed algorithm intersects the
information yield by both reads of a pair. Similarly to the single-end version, a breadth
first search on the multipath-alignment is realized for both reads of a pair, still with a
user-defined mapping score threshold. Then, the algorithm has different steps to search
and resolve ambiguities depending on the combination of attributions held by each read
(see Figure 5.1).

The first step depends on the reads alignments mapping score.
If both reads mapping score are below the user-defined threshold, the reads are re-

moved, like in the single-end version. Since StrainFLAIR only indexes genes, this case
especially occurs for reads corresponding to intergenic regions, misannotated genes, or
unindexed genes (if some genes could not be predicted or genes other than coding DNA
sequences).

If only one of the two reads does not pass the threshold, only this read is removed while
the other follows the single-end version of the algorithm, exactly as described in Chap-
ter 4. This case might occur for reads localized at the junction between an intergenic
region and a gene, for example. However, we cannot exclude that it might also correspond
to a pair of reads originating from a new strain not referenced in the variation graph. In
this case, one read could be highly similar to a close strain while the other could have a
low mapping score.

The second step of the algorithm is explored when both reads have one or more single-
path-alignments exceeding the mapping score threshold.

Here, I followed the same “colored-path attribution” step previously described, in
which each of the determined single-path-alignments is, when possible, attributed to the
matching colored-path of the variation graph. As a result, to each read of the pair corre-
sponds a list of matching colored-path(s).

If none of the reads matches colored-paths, they are designated as unassigned. Those
sequencing reads might correspond to intergenic region sequences similar enough to gene
sequences to pass the mapping score threshold. However, more interestingly, they could
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Chapitre5/figures/disambig.png

Figure 5.1 – Colored-path attributions disambiguation pipeline. This approach can be decom-
posed into four steps. The first step checks the mapping score of the single-path-alignments, determining
if the reads are removed, considered as single-end or continue to the next step. The second step checks
the matching colored-paths of each read of the pair, determining if the reads are considered unassigned,
as single-end or continue to the next step for potential disambiguation. The third step tries a first disam-
biguation by checking the intersection of the matching colored-paths from both reads. This intersection
may reduce the number of potential colored-paths considered for the rest of StrainFLAIR’s pipeline. The
fourth and last step tries another disambiguation in case of empty intersection in the previous step. For
each read, the list of strains associated to the matching colored-paths are retrieved, then, the disambigua-
tion is done by checking the intersection of these lists from both reads. This intersection may reduce the
number of potential strains considered. The matching colored-paths used for the rest of StrainFLAIR’s
pipeline are only the ones associated with the strains found in the intersection.
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also correspond to sequences from new strains not referenced in the variation graph, and
as such, are a key information for the inference of new strains. Those unassigned reads
were used in the second feature added to StrainFLAIR and further detailed in Section 5.2
below. Unassigned reads are not used for relative abundances computation.

If only one of the two reads has no colored-paths, the situation is similar to the case of
one of the two reads not reaching the mapping score threshold. The one with no match-
ing colored-paths is considered as unassigned, while the other read follows the single-end
version of the algorithm. It is then used for the relative abundances computation. Again,
such reads might originate from intergenic regions or from a new strain.

The third step of the algorithm is performed if both reads have matching colored-paths.
At this stage, the first attempt for colored-path attribution disambiguation is realized and
depends on the intersection between the lists of colored-paths of both reads. Indeed, we
assumed that, the reads being from the same pair and, as such, originate from the same
DNA fragment, the most likely accurate colored-paths (genes) were the ones common to
both reads. Hence, “false positive” colored-paths for a single read are discarded.

If the previously mentioned intersection has more than one colored-path, reads follow
the second pass of the algorithm as detailed in Chapter 4, dedicated to multiple mapped
reads. Once the lists of colored-paths have been updated, each read follow the same steps
as single-end reads in the case of multiple mapped reads. It must be noted that, if both
reads have exactly the same matching colored-paths in common, the initial list of colored-
paths for each read might not change, leading to no disambiguation at all.

If the intersection has only one colored-path, there is no ambiguity on colored-path
attribution and the reads are used for the relative abundances computation in the exact
same way as single-end reads.

The fourth step of the algorithm is performed if the reads have no colored-paths in
common, i.e. the intersection of the matching colored-paths is empty. This situation may
occur if the reads originate from different genes physically close enough in the genome to
be both covered by the paired-end reads. However, here also, the pair may come from a
new strain. This step of the algorithm takes advantage of the references used. Since the
colored-paths cannot be used for disambiguation, this means that the reads do not come
from the same genes. We then consider that the reads instead come from the same strain.

For each read, the strains corresponding to their matching colored-paths are retrieved.
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Hence, instead of lists of colored-paths, each read has a list of matching strains. Then,
the disambiguation depends on the intersection between the lists of matching strains of
both reads.

If the previously mentioned intersection has at least one strain, only the colored-
paths related to the strains present in the intersection are kept. Here again, it must be
noted that the initial list of colored-paths for each read might not change, leading to
no disambiguation at all. This may occur if both reads have exactly the same matching
strains in common. Once the lists of colored-paths have been updated (with no changes
or reduced), each read follow the same steps as single-end reads.

If the intersection is empty, the reads are called discordant since they are considered to
originate from different strains, which should not be possible. Those reads are discarded.

5.1.3 Validation

I validated my method with the same reference variation graphs, on a similar simulated
dataset, and the same real dataset as used in Chapter 4. I also used the same default
parameters. The relative abundance estimation was based on the mean of the strain-
specific gene abundances, computed by taking into account all the nodes (including non-
covered nodes), and using a 50% threshold on the proportion of detected specific genes.

The presented results are compared to the results obtained with the first release of
StrainFLAIR.

Validation on a simulated dataset

I first validated my method on simulated data, focusing on the single species E. coli
with multiple strains. I simulated short sequencing paired-end reads of 150 bp and given a
fragment length of 500 pb using vg sim from vg toolkit with a probability of sequencing
errors set to 0.1%. Like in the previous experiments, the first simulation was a mixture
composed of strains indexed in the reference graph (O104:H4, IAI39 and K-12) while the
second simulation (O104:H4, IAI39 and BL21) had one absent from the reference variation
graph (BL21) thus simulating a novel strain to be identified and quantified.

Here, the simulations tested were generated as mixtures of 300,000 reads (150,000
pairs) for O104:H4, 200,000 reads (100,000 pairs) for IAI39, and 100,000 reads (50,000
pairs) for K-12 or BL21.
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Proportion of disambiguations
The first results I wanted to highlight were the proportion of reads involved in disam-

biguations that could be addressed.
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For the mixture containing K-12:
— 600,000 reads were processed (300,000 pairs). Among them, 92,602 reads did not

met the mapping score threshold. Also, 980 reads were dropped for being discon-
cordant. As a reminder, reads are defined as disconcordant when the two reads
of the same pair has no common strains attributed. Moreover, 2,190 reads were
unassigned. As a reminder, it corresponds to reads for which no matching colored-
path was found. Finally, 556 reads could not be used because of multiple possible
alignments that could not be resolved.

— In total, 503,672 reads (83.9%) were used. The percentages presented below are
based on this total.

— For 70,901 reads (14.1%), their colored-path attribution ambiguities were resolved.
Here, “resolved” means that, initially, the reads matched more than one colored-
path and my method could reduce this list to a single colored-path.

— For 16,571 reads (3.3%), their strain attribution ambiguities were resolved. Again,
“resolved” means that the lists of matching strains was reduced to one strain.

— For 10,265 reads (2%), their strain attribution ambiguities were reduced but not
resolved.

For the mixture containing BL21:
— 600,000 reads were processed (300,000 pairs). Among them, 99,789 reads did not

met the mapping score threshold. Also, 5,456 reads were dropped for being discon-
cordant. Moreover, 10,738 reads were unassigned. Finally, 501 reads could not be
used because of multiple possible alignments that could not be resolved.

— In total, 483,516 reads (80.6%) were used. The percentages presented below are
based on this total.

— For 66,213 reads (13.4%), their colored-path attribution ambiguities were resolved.
— For 15,193 reads (3.1%), their strain attribution ambiguities were resolved.
— For 10,261 reads (2.1%), their strain attribution ambiguities were reduced but not

resolved.

Except for the number of reads defined as unassigned that was higher in the case of the
mixture with BL21 (which was expected since it is the mixture containing an unknown
strain, thus more reads would not be able to map onto the indexed reference sequences),
both experiments showed similar results in terms of proportion of disambiguations. This
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likely suggests that the existence of those ambiguities and their amount are not dependent
on whether or not unknown strains are present in the queried sample, but rather depends
on the reference strains indexed and their sequence similarity.

Interestingly, a non-negligible amount of reads (more than 10%) had their ambiguities
completely resolved, avoiding sharing counts of reads. To a lesser extent (less than 5%),
some ambiguities could also be reduced. The next sections present the impact of these
disambiguations on StrainFLAIR’s primary outputs.

Proportion of detected genes
I tested the impact of my updated methodology on the proportion of specific genes

detected for each indexed genomes. Those proportions were computed exactly the same
way as described in Chapter 4. Similarly, close to 100% of the genes detected for the
strains present in the sample were expected and close to 0% for the referenced strains
absent in the sample, if the coverage was sufficient (which was the case considering the
results obtained using the first release of StrainFLAIR with the selected samples). The
results are presented in Table 5.1.

Mixture Method O104:H4 IAI39 K-12 Sakai SE15 Santai RM8426
K-12 StrainFLAIR 0.994 0.989 0.979 0.202 0.152 0.207 0.229

StrainFLAIR-PE 0.993 0.982 0.982 0.045 0.023 0.046 0.06
BL21 StrainFLAIR 0.993 0.988 0.687 0.3 0.196 0.324 0.338

StrainFLAIR-PE 0.994 0.983 0.62 0.15 0.058 0.18 0.188

Table 5.1 – Reference strains proportion of specific genes detected computed
by the first release of StrainFLAIR and the new version (StrainFLAIR-PE) for
each simulated experiment. Best results are shown in bold. Is considered best if the
proportion is closer to the expected value, that is to say higher for the strains present in
the mixture and lower for the strains absent.

For the present strains in the mixture (O104:H4, IAI39, and K-12 for the mixture
containing K-12), the proportion of specific genes detected were already very close to
100%, thus my new methodology had little impact on those results. However, for the
referenced strains absent in the mixture, the benefits of using the paired information
were clearly visible. Notably for the mixture with K-12 (all strains in the mixture are
referenced in the variation graph), almost all the expected absent strains had less than
5% of their genes detected, whereas this proportion was around 20% with the first release
of StrainFLAIR. This gain in accuracy was also visible for the mixture with BL21. The
expected absent strains (except K-12) had between 6% and 19% of genes detected, whereas
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it was between 19% and 34% with the first release of StrainFLAIR.

Strain-level abundances
I tested the impact of my updated methodology on the estimated relative abundances.

Those abundances were computed exactly the same way as described in Chapter 4. The
results are presented in Table 5.2.

Mixture Method O104:H4 IAI39 K-12 Sakai SE15 Santai RM8426
Expected 50 33.33 16.67 0 0 0 0

K-12 StrainFLAIR 44.67 35.04 20.29 0 0 0 0
StrainFLAIR-PE 47.96 32.21 19.83 0 0 0 0
Expected 50 33.33 16.67* 0 0 0 0

BL21 StrainFLAIR 50.5 38.63 10.87 0 0 0 0
StrainFLAIR-PE 54.72 35.63 9.64 0 0 0 0

Table 5.2 – Reference strains relative abundances expected and computed by
StrainFLAIR or the new methodology based on paired-end reads (StrainFLAIR-
PE) for each simulated experiment. BL21’s expected abundance is followed by an
asterisk in the K-12 column. Best results are shown in bold. Is considered best if the
abundance is closer to the expected value.

For the mixture with only known strains, all estimations were closer to the expected
relative abundances compared to the first release of StrainFLAIR, demonstrating the
gain in accuracy by using paired-end reads and my disambiguation approach. The sum of
squared differences compared to the expected values were of 44.4 for the first release of
StrainFLAIR and decreased to 15.4 with my new methodology.

For the mixture with one unknown strain, only the estimation for IAI39 relative abun-
dance improved, while the others were less close than the expected values compared to the
first release of StrainFLAIR. The sum of squared differences compared to the expected
values were of 62 for the first release of StrainFLAIR and increased to 77 with my new
methodology. Hence, the loss in accuracy was slightly lower in this experiment than the
gain in accuracy observed with the mixture containing only known strains.

Validation on a real dataset

I used the same mock dataset as in Chapter 4 (available on EBI-ENA repository under
accession number PRJEB42498), in order to evaluate the impact of taking into account
the reads as pairs in a more complex mixture.
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Proportion of disambiguations
Again, I first wanted to highlight the proportion of reads involved in disambiguations

that could be addressed:
— 42,778,364 reads were processed. This corresponded to 21,389,168 pairs, however

vg could not map all pairs and 28 reads were mapped as single-end reads. Among
all the reads processed, 9,952,234 reads did not reach the mapping score thresh-
old. Also, 29,198 reads were dropped for being disconcordant. Moreover, 22,050
reads were unassigned. Finally, 42,789 reads could not be used because of multiple
possible alignments that could not be resolved.

— In total, 32,732,093 reads (76.5%) were used. The percentages presented below are
based on this total.

— For 311,392 reads (0.95%), their colored-path attribution ambiguities were resolved.
— For 40,942 reads (0.13%), their strain attribution ambiguities were resolved.
— For 2,514 reads (0.008%), their strain attribution ambiguities were reduced but not

resolved.

Here, while my approach still allowed to resolve some ambiguities, it corresponded to
a negligible amount of reads (less than 1%). Whereas the mock dataset is a more complex
mixture with several species and some strains of the same species mixed together, it
probably lacks similarity complexity such as this approach could actually benefit this
sample.

Proportion of detected genes
I tested the impact of my updated methodology on the proportion of specific genes de-

tected. Those proportions were computed exactly the same way as described in Chapter 4.

As expected by the analysis of the proportion of disambiguation that showed a limited
impact on the number of reads concerned, this new approach did not alter the results on
the proportion of detected genes. For this reason, the detailed results are not showed, the
sum of squared errors between the proportions computed in Chapter 4 and the proportions
obtained from this updated method was equal to 0.17.

Nevertheless, interestingly, one genome had a notable change. Thermotoga sp. RQ2
had 42.3% of specific genes detected with the first release of StrainFLAIR. As a reminder,
Thermotoga sp. RQ2 genome was used to construct the reference variation graph but was
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absent from the queried sample. Moreover, Thermotoga sp. RQ2 was the strain expected
to be absent that Kraken2 estimated with the highest relative abundance among the
other expected absent strains, and the only one exceeding the relative abundances of two
present strains. Since 42.3% is close to the threshold of 50% of detected genes to consider
the strain present, and considering the results from Kraken2, this could question the
possibility of a contamination of the sample with Thermotoga sp. RQ2. However, with my
paired-end reads approach, the proportion of specific genes detected decreased to 26%,
strengthening the fact that Thermotoga sp. RQ2 is absent from the sample as expected
from the theoretical values.

Strain-level abundances
I tested the impact of my updated methodology on the estimated relative abundances.

Those abundances were computed exactly the same way as described in Chapter 4.

As expected by the analysis of the proportion of disambiguation that showed a limited
impact on the number of reads concerned, this new approach did not alter the results on
the estimated abundances. For this reason, the detailed results are not showed, the sum
of squared errors between the abundances computed in Chapter 4 and the abundances
obtained from this updated method was equal to 0.004. Hence, the difference was so
negligible that it would not be visible in figures using the same representations as in
Chapter 4.

5.1.4 Conclusion

As seen by comparing the results between the simulated datasets and the mock dataset,
using paired-end information is particularly relevant for complex mixtures of highly simi-
lar genomes. My approach had almost no impact on the mock dataset, probably because
it was less complex in terms of strains mixture than the simulated datasets. However, it
highlighted that it did not negatively alter the estimated abundances either and strength-
ened the results for absent strains as seen with Thermotoga sp. RQ2.

While the results were improved with the simulated dataset containing only known
strains, a slight decrease was observed with an unknown strain. This is probably due to the
increase of accuracy and the use of relative abundance. Indeed, because paired-end reads
consideration permits less noise in the data, fewer reads from the strain BL21 would be
attributed to the closest strain K-12, leading to a decrease of its estimated abundance and
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therefore, because they are relative abundance, an increase of the other strain abundances.
Eventually, this paired-end approach is now the default parameter for StrainFLAIR,

however the user can still choose to force a single-end approach, as it may be interesting
to compare both depending on the study.

5.2 Inference of new strains

5.2.1 Rational

One of the main advantage of the graph structure, is that reads can map to non-colored-
paths, revealing new sequences absent from the references without being discarded due
to a low mapping score. In this work, those reads have been called unassigned and were
not used in the first release of StrainFLAIR.

Although they were considered unassigned, those reads still matched paths in the
graph and more specifically paths in particular connected components of the variation
graph, that represent clusters of genes. By analyzing the reads at the cluster level, I
assumed that it would be possible to determine the presence of one or more new strains
depending on the compatibility or incompatibility (defined below) of the reads present in
each cluster. Moreover, those reads might also be used to infer the abundance of those
new strains.

Here, the terms compatibility and incompatibility describe how two reads are related.
Two reads are said to be compatible if the paths they describe (the successive nodes they
traverse in the graph) are overlapping with identical nodes in the overlapped part. On the
contrary, two reads are said to be incompatible if their lists of nodes are overlapping on at
least one node but with at least one distinct node (see Figure 5.2). In practice, among the
common nodes between the two reads, one is used as a seed. For each position of this seed
in the reads list of nodes, the overlapped part corresponds to the seed plus its left and right
successive nodes until the end of one of the two reads. Of note, a node can be traversed
twice or more by a read and thus appear several times in the list of nodes. The reads
are compatible if among those different positions, at least one shows identical overlapped
part (identical list of nodes). If the two reads have no node in common (no overlap),
there is no conclusion on whether they are compatible or incompatible. Eventually, two
compatible reads might originate from the same gene or strain, whereas two incompatible
reads cannot originate from the same gene.
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5.2. Inference of new strains

Figure 5.2 – Compatibility and incompatibility between reads. A. The read A traverses the
nodes 1-2-3-4-5 in the variation graph, while the read B traverses 3-4-5-6. Thus those two reads overlap
without any distinct node (3-4-5) and are considered compatible. B. The read A traverses the nodes
1-2-3-4-5 in the variation graph, while the read C traverses 3-7-5-8. Thus those two reads overlap on the
nodes 3 and 5, however the node 4 from read A does not match the node 7 from read C, hence they are
considered incompatible.

The algorithm uses a graph to represent the incompatibilities between all unassigned
reads associated to a cluster of genes. The length of the maximal clique (subset of nodes
such that every two distinct nodes in the clique are connected) then provides the minimum
number of new genes and therefore potential new strains. For example, if two reads are
incompatible (leading to a clique of length 2 in the graph of incompatibilities), as already
mentioned they cannot originate from the same gene, indicating the existence of at least
two genes.

The following sections present the detailed algorithm and the results on simulated
datasets.

5.2.2 Algorithm

The algorithm detailed below characterizes the compatibility or incompatibility of
each pair of reads within a connected component (cluster of genes). Moreover, due to
the sequencing of the whole-genome, reads that originate from intergenic regions might
map with a score good enough to pass the user-defined threshold and be considered as an
unassigned read.

This would lead to incorrect incompatibility conclusions and an overestimation of the
number of new strains. This might also happen with reads that originate from genes but
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because of sequencing errors, they map on non-colored-paths. Therefore, the algorithm
also includes a crucial filter step to remove the reads that likely introduce noise.

Figure 5.3 – Inference of new strains pipeline. A. The unassigned reads of each cluster are filtered.
First by the number of their compatible reads, and then according to the homogeneity of the abundance
signal computed from the overlapping compatible reads. B. The remaining reads after the filter step are
represented into a graph of incompatibilities. In the illustration, the read C is compatible with all the other
reads, however, reads A and B are incompatible, as well as reads D and E. The graph of incompatibilities
then reveals two cliques of length 2, implying at least two new strains in the sample. Indeed, there is no
combination of those reads allowing for only one solution. Although, the result provided is a minimum,
as more than 2 combinations could be realized with this configuration (ACD, ACE, BCD, BCE).

As previously mentioned, the algorithm operates on each cluster of genes (see Fig-
ure 5.3), after the reads attribution step of the pipeline. Each cluster is associated with
a pool of reads that could not match a colored-path but matched a non-colored-path of
the cluster.

Firstly, for each read, the list of its compatible reads among the other unassigned ones is
determined. In order to exclude isolated reads that might originate from intergenic regions
or due to sequencing errors, a first filter is applied on the number of compatible reads. For
this first filter only, other reads identical or representing a subset of the traversed nodes
of the current read are not considered compatible. Hence, the read is removed if it has
not at least two compatible reads. Then, a second filter is applied inspired by the signal
processing field. The same way the first release of StrainFLAIR applies an abundance to
each node of a path when a read maps on it, here, each node of a read is given a abundance
which is the count of the compatible reads traversing it. The abundances along the nodes
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5.2. Inference of new strains

traversed by the read can thus be viewed as a signal (as schematized in Figure 5.3A). In
order to remove noise, reads that do not display an homogeneous signal are discarded.
For this, I used the signal processing function find_peaks from the Scipy module to detect
drops in the read abundance signal.

Secondly, the remaining reads that have passed both filters are used to build a graph
representation of their incompatibilities. Here, the nodes are the reads and the edges
correspond to the existence of an incompatibility between two reads.

Finally, all cliques from the incompatibility graph are determined, and the length
of the maximal clique determines the minimum number of new strains represented in
the cluster. Actually, it determines the minimum number of new genes and it cannot be
excluded that it may correspond to two genes (likely paralogs) from the same new strain
that are similar enough to map to the same genes family. However, I assumed that it is
a minor event compared to the number of clusters analyzed, and for simplification, the
following sections will mention new strains instead of new genes. This will also be further
discussed in the Conclusion of the thesis.

The final estimation of novel strains for the queried sample is computed as the maxi-
mum among all estimated minimum numbers of new strains inferred for each cluster.

5.2.3 Validation

I validated my method with the same reference variation graph as used in Chapter 4 for
the simulated experiments, and used some identical and new simulated datasets, focusing
on the single species E. coli with multiple strains. I also used the same default parameters
for StrainFLAIR. I simulated paired-end reads and used my new algorithm as described
in Section 5.1. For all the presented mixtures, I simulated short sequencing paired-end
reads of 150 bp and given a fragment length of 500 pb using vg sim from vg toolkit
with a probability of sequencing errors set to 0.1%.

No new strains

I simulated a mixture with only referenced strains, identical to one of the mixtures
used in Chapter 4: 300,000 reads (150,000 pairs) for O104:H4, 200,000 reads (100,000
pairs) for IAI39, and 100,000 reads (50,000 pairs) for K-12. Thus, I expected that no new
strain would be inferred.
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As presented in Table 5.3, I first highlighted the relevance of using the filters described
in Section 5.2.2. Without any filters, my algorithm inferred up to minimum 4 new strains
while none was expected. The filters had drastically decreased the number of clusters
inferring more than zero strains.

No new strain 1 new strain 2 new strains 3 new strains 4 new strains
No filters 7,470 1,059 62 4 1
With filters 8,388 203 5 0 0

Table 5.3 – Number of clusters that infers a certain minimum number of new
strains, for a mixture with no unknown strain.

There were still 208 clusters remaining that inferred more than zero strains. How-
ever, two points should be mentioned to mitigate those results. Firstly, those 208 clusters
represented only 2% of the total number of clusters analyzed (8,596) and could be con-
sidered as negligible, orienting towards the development of another filter at the clusters
level. Secondly, most of those unexpected inferences were realized with a small number of
reads. Only 10 clusters among the 208 had more than 10 reads mapped on them, while
the maximum number of reads mapped among all clusters was 27 (see Figure 5.4). This
could also orient to the development of another filter on the number of reads mapped to
a cluster.
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5.2. Inference of new strains

Figure 5.4 – Boxplot of the number of reads mapped to each cluster according to the
minimum number of new strains inferred for a mixture with no unknown strains.

One new strain

I simulated a mixture of two referenced strains and one unknown strain, identical to
one of the mixtures used in Chapter 4: 300,000 reads (150,000 pairs) for O104:H4, 200,000
reads (100,000 pairs) for IAI39, and 100,000 reads (50,000 pairs) for BL21. Thus, I ex-
pected that only one new strain would be inferred.

As presented in Table 5.4, I again highlighted the relevance of using filters. Without any
filters, my algorithm inferred up to minimum 4 new strains while only one was expected.
The filters had drastically decreased the number of clusters inferring more than one strain.
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No new strain 1 new strain 2 new strains 3 new strains 4 new strains
No filters 6,412 1,931 243 9 1
With filters 7,184 1,374 38 0 0

Table 5.4 – Number of clusters that infers a certain minimum number of new
strains, for a mixture with one unknown strain.

There were still 38 clusters remaining that inferred more than one strain. Again,
38 clusters represented a negligible proportion of the total number of clusters analyzed
(0.4%). It also represented a negligible amount of the total number of clusters inferring
more than zero strains (2.7%). Moreover, while less significant than in the previous ex-
periment, those 38 clusters had between 4 and 26 reads mapped on them, with 18 having
more than 10 reads (max 46 reads, see Figure 5.5).

Figure 5.5 – Boxplot of the number of reads mapped to each cluster according to the
minimum number of new strains inferred for a mixture with one unknown strain
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Two new strains

I simulated a mixture of two referenced strains and two unknown strains: 300,000
reads (150,000 pairs) for O104:H4, 200,000 reads (100,000 pairs) for IAI39, 100,000 reads
(50,000 pairs) for BL21, and 100,000 reads (50,000 pairs) for UTI89. Thus, I expected
that two new strains would be inferred.

The sequence from Escherichia coli UTI89 (NC_007946.1) was a new strain added in
the mixture as an unknown strain additionally to BL21. In order to be able to infer that
at least two new strains were present in the sample, I choose a strain that was not too
similar to the referenced strains or to BL21, and not the most similar to K-12 like BL21.
All similarity scores from fastANI with the other strains were between 96.4 and 98.5.
Among the referenced strains, SE15 was the closest to UTI89 according to this similarity
score.

As presented Table 5.5, I again highlighted the relevance of using filters. Without
any filters, my algorithm inferred up to minimum 4 new strains while only two were
expected. The filters had drastically decreased the number of clusters inferring more than
two strains.

No new strain 1 new strain 2 new strains 3 new strains 4 new strains
No filters 5,131 2,307 1,057 96 5
With filters 5,749 2,428 415 4 0

Table 5.5 – Number of clusters that infers a certain minimum number of new
strains, for a mixture with two unknown strains.

There were still 4 clusters remaining that inferred more than two strains. Again, 4 clus-
ters represented a negligible proportion of the total number of clusters analyzed (0.05%).
It also represented a negligible amount of the total number of clusters inferring more than
one strain (1%). Moreover, those 4 clusters had between 8 and 35 reads mapped to them,
with 3 having more than 10 reads (max 70 reads, see Figure 5.6).
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Figure 5.6 – Boxplot of the number of reads mapped to each cluster according to the
minimum number of new strains inferred for a mixture with two unknown strains

Three new strains

I simulated a mixture of two referenced strains and three unknown strains: 300,000
reads (150,000 pairs) for O104:H4, 200,000 reads (100,000 pairs) for IAI39, 100,000 reads
(50,000 pairs) for BL21, 100,000 reads (50,000 pairs) for UTI89, and 100,000 reads (50,000
pairs) for LF82. Thus, I expected that three new strains would be inferred.

The sequence from Escherichia coli LF82 (NC_011993.1) was a new strain added in
the mixture as an unknown strain additionally to BL21 and UTI89. All similarity scores
from fastANI with the other strains were between 96.65 and 98.9, assuring that the strain
would still be distinguishable among the others. However, as opposed to the previous ex-
periment, the new strain LF82 was the closest to another unknown strain (UTI89) instead
of a referenced one.
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As presented Table 5.6, I again highlighted the relevance of using filters. Without
any filters, my algorithm inferred up to minimum 5 new strains while only three were
expected. The filters have drastically decreased the number of clusters inferring more
than three strains.

No new strain 1 2 3 4 5 new strains
No filters 4,933 1,944 1,325 375 17 2
With filters 5,386 2,353 818 39 0 0

Table 5.6 – Number of clusters that infers a certain minimum number of new
strains, for a mixture with three unknown strains.

This experiment fully gave the expected results. While 39 clusters inferring a minimum
of three new strains represent a small proportion of the total number of clusters analyzed
(0.5%), they had between 8 and 95 reads mapped on them, with only one having less
than 10 reads (max 95 reads, see Figure 5.7). Therefore, despite their small proportion,
the number of reads mapped strengthen the robustness of this result.

However, it is important to note that this favorable result might be due to LF82 being
too close to UTI89, leading to the algorithm to not be able to distinguish them and
cancelling the difference of 1 strain between the observed and expected results found in
the previous experiments.

123



Chapter 5 – Towards paths disambiguation and strains inference

Figure 5.7 – Boxplot of the number of reads mapped to each cluster according to the
minimum number of new strains inferred for a mixture with three unknown strains

5.2.4 Conclusion

The results on the various simulated datasets emphasize the relevance of this ap-
proach. However, it also showed the importance of a cleaning step to remove noisy reads.
The current strategy has demonstrated important improvements on the results compared
to the results without any filters, although not completely as expected from the simu-
lations. Yet, the remaining incorrect results represent a small fraction of the whole set
of results, suggesting that some minor additional filters should be required to correct them.

While the results are promising, this observation is mainly based on the decrease of the
number of clusters overestimating the minimum number of new strains after applying the
filters. However, there is also an important decrease of the number of clusters estimating
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the expected minimum number of new strains, especially in the case of mixtures with two
or three new strains. For the mixture with two new strains, 243 clusters estimated two
new strains without any filters, while it decreased to 38 with filters. For the mixture with
three new strains, 375 clusters estimated three new strains without any filters, while it
decreased to 39 with filters, and 1,325 clusters estimated two new strains without any
filters, while it decreased to 818 with filters. More exploration is needed to determine if
the filters have induced the loss of clusters that correctly estimated the minimum number
of new strains or, on the contrary, if they contributed to also correct the estimation from
those clusters.

125





CONCLUSION

Challenges and objectives

Metagenomics studies the genomic composition of microorganisms present in a sample.
Recent advances in sequencing technologies have provided large resources from diverse en-
vironments. The main advantage of metagenomics lies in allowing to sample all microor-
ganisms, and more importantly those that cannot be cultured. Metagenomics analyses
have notably been applied to gain insights on human health and diseases, mainly by re-
vealing the species composition of samples and its association to phenotypes. And while
those species-level analysis are well established, from the construction of metagenome-
assembled genomes or from the construction and use of genes and metagenomic species
catalogs, new methodological approaches are needed to characterize metagenomics sam-
ples at the strain level.

Microbial communities are usually highly diverse, representing multiple taxonomic
levels. The next challenge of the metagenomics field is then to capture the variations at
the strain level in order to even more accurately describe the composition of a sample.
New associations with diseases or with efficiency/toxicity of drugs, for instance, may be
highlighted by considering the strain composition of an individual’s microbiota whereas
they are currently masked by considering only the species level. Targeting specific bacte-
rial strains will open the field of precision medicine (Albanese and Donati, 2017; Marchesi
et al., 2016).

The main limitations with the current species-level approaches lie in the reduction of
the redundancy, a unique sequence is considered as the representative for other similar
sequences, getting rid of the variations that could characterize strains of the same species.
Metagenomics allows to capture the whole diversity of a sample but can hardly process all
this information, mostly because of the lack of a computationally efficient representation.
Representation and integration of multiple genome are under active development and led
to graph-based frameworks and softwares. Integrating highly similar genomes from the
same species provides new opportunities to represent and analyse strains.
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The existing strain-level tools are either specialized in haplotype inference or in in-
ferring the number of strains, rely on multiple samples, or only identify strains from the
references used. Eventually, no tool combines the needed requirements for a strain-level
profiling of a metagenomic sample: able to operate on a single sample, identify known
present and new strains, identify all of them and not only the dominant ones, and able
to provide relative abundances of each strain. Moreover, while graph representations are
becoming popular, there is still a need to develop downstream analysis using them.

Contributions

We developed StrainFLAIR, a tool for strain-level profiling of metagenomic samples
that uses variation graphs. StrainFLAIR had two main objectives. Firstly, to test the
feasibility of characterizing a metagenomic sample at the strain-level by indexing highly
similar genomes in a variation graph. Secondly, to offer a tool allowing to perform the
indexing of genomes and the query of a metagenomic sample by the analysis of sequencing
reads mapped onto the graph. StrainFLAIR exploits state-of-the-art tools additionally to
novel algorithmic solutions.

In controlled experiments, we have demonstrated that StrainFLAIR was able to iden-
tify and estimate the abundance of strains in metagenomic samples, even when the graph
was built using references of strains absent from the sample, that could have generated
false positive calls like the results obtained with Kraken2. From the validation on sim-
ulated datasets, we notably showed that we were also able to suggest the presence of a
novel strain (absent from the references) close to one of the reference used to build the
graph, as well as to estimate its relative abundance. Furthermore, we have demonstrated
that we could use paired-end reads information in order to resolve or reduce ambiguities
existing when attributing reads to colored-paths of the graph, that led to less noise in the
data and resulting in better abundance estimations when the strains present in the sample
are represented by a reference in the graph, and a slight decrease when novel strains exist
in the sample.

Moreover, due to the use of a threshold on the proportion of specific genes detected,
StrainFLAIR tended to set to zero the predicted abundance of low abundant strains
(whereas a tool like Kraken2 was able detect them). Therefore, it appears that currently
StrainFLAIR is not able to detect very low abundant strains. However, in the presented
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simulations, it was still relevant to maintain such strategy as this situation corresponded
to coverages of 0.03x or less, representing a strain for which not all genomic content was
present. Hence, it might be better suited to consider such a strain absent.

Detecting strains as absent in the queried sample is of great interest in metagenomics.
No prior knowledge is usually available on the sample, leading to the use of the most
exhaustive references, including unnecessary genomes. Strain-level profiling tools then re-
quire to avoid false positive calls that would biased the downstream analysis. StrainFLAIR
operates in this direction.

Additionally to the abundance estimation, we started to explore the unassigned reads
at the cluster level in order to add a novel strain inference feature to StrainFLAIR. While
the first release of StrainFLAIR allowed to imply the presence of at least one new strain
close to one the indexed reference in the graph, there was still a need to better characterize
those new strains, at least in terms of number. We showed in simulated experiments that
we estimate a number of strains very close to the actual number of unknown strains, and
that the incorrect estimations were supported by a limited amount of gene clusters.

In conclusion, and considering the results presented in Chapter 4 and in Section 5.1,
our approach that takes into account single and multiple mapped reads and that imposes
a threshold allowing for some strains abundances to be set to zero seems more adequate
and closer to what is expected (experimental data or ground truth) compared to other
tools. Furthermore, our implementations presented in Chapter 4 and in Section 5.2 set
promising paths to fully detect, distinguish and estimate the relative abundance of novel
strains.

Perspectives

Firstly, I detail the perspectives towards direct and short-term developments for StrainFLAIR,
considering the results and limitations presented in this thesis.

Although StrainFLAIR showed convincing results on simulated and real datasets,
exploring more complex situations is still required. Notably, the mock dataset was a
controlled sample, and while we also included reference genomes absent from the queried
sample, we still had prior knowledge of the sample composition to build the reference set.
Actually, this can be reproduced for real situations by pre-filtering a genome database,
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with Kraken2 for example. Nevertheless, overall, further work is needed to evaluate the
scalability of our method with larger reference sets in terms of species and strains. This
may include to construct a variation graph for a single species like in the simulated
experiments but with variable proximity between the selected strains, to construct a graph
with several strains for each species known to be present in the mock dataset instead of
only using the genomes provided, or test the scalability by constructing a variation graph
with thousands of references.

In this same direction, StrainFLAIR needs to be used in the context of a real biological
application. For instance, Solé et al. used the genes catalog methodology as described in
Section 2.2 and showed that the progression of the disease in patients with cirrhosis was
associated with a decrease of gene and species richness. Various species were found to be
associated with different specific symptoms of the disease or related complications (Solé
et al., 2021). And they also built a model to predict the mortality 3 months after hospi-
talization using the gut microbiota species as predictors. An analysis on strain level with
StrainFLAIR might highlight new or more specific associations and/or improve predictive
models.

StrainFLAIR integrates a threshold on the proportion of specific genes detected that is
required to estimate abundances at zero and conclude to the absence of a strain. However,
this threshold needs to be further explored to refine which strain abundances are set to
zero as it is still challenging to distinguish between low abundant strains, insufficient
sequencing depth, and reads from intergenic regions or other genes randomly matching
genes.

Currently, StrainFLAIR uses only the strain-specific genes in order to compute relative
abundances. New strategies need to be developed to take into account non strain-specific
genes (core and shell genome), hence the potential ties between this thesis project and
pangenomics. For each cluster, StrainFLAIR outputs the number of genes from each
reference strain indexed in the variation graph. This information might be used to refine
the abundances and the detection of new strains. Additionally, existing pangenomic tools
like PPanGGOLiN, which conserves the genomic organization along genomes (synteny),
could be used to add another layer on resolving ambiguities as seen in Section 5.1 by
taking into account the distance between the genes if the paired-end reads map different
genes.

StrainFLAIR provides two distinct insights for detection of novel strains. The first
one, present in the first release of the tool, is the proportion of specific genes detected
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for the references. Neither close to 100% like the expected present strains, nor under our
50% threshold like the absent strains (as seen in Section 4.2.1), this output indicates that
there is at least one new strain close to the reference concerned, with an estimated relative
abundance. Consequently, in case of more than one novel strain close to the same reference,
this estimated abundance will correspond to the sum of the abundances of those strains.
With only the first released version, distinguishing those strains is not yet possible. On the
other hand, our new developments after the first release of StrainFLAIR have permitted
to estimate the minimum number of novel strains in the sample (as seen in Section 5.2.3).
Moreover, an estimated abundance from the reads used to infer this number of strains
was computed and remains to be exploited. Eventually, these results need to be combined
to output a more characterized profile of the novel strains. In addition, as a reminder, we
simplified the fact that our approach infers the minimum number of strains whereas it
would be more accurate to describe it as the inference of the minimum number of genes,
since several genes from the same novel strain could map the same cluster. Similarly to
the previous paragraph, the number of genes from each reference strain indexed and a
pangenomic approach might help to statistically untangle these situations.

StrainFLAIR can analyse million reads in a few hours, which is sufficient for rou-
tine analyses of small read sets. Nevertheless, new development are needed to reduce
the computation time in order to scale-up to very large datasets. Worth noting, af-
ter StrainFLAIR’s first release, the authors of the vg toolkit released a new mapper
Giraffe (Sirén et al., 2020, not published yet). Giraffe is an haplotype-aware mapper
that is ten times faster than their original mapper vg map. While StrainFLAIR needs the
vg mpmap mapper to operates, this shows the rapid development in the field and fore-
shadows new opportunities to scale-up.

Secondly, I detail more long-term perspectives, either for StrainFLAIR or for the field
in general.

StrainFLAIR does not use a pangenomic approach. However, as mentioned above, this
direction might help for the current limitations observed and, overall, variation graphs
seem to be an adequate framework to explore the pangenome of a species. Genomic
plasticity and diversity is of increasing importance in microbiology, hence the interest in
pangenomics. Pangenomics is usually explored in two ways. First, from the gene pres-
ence/absence perspective, also allowing to characterize core and accessory genome of a
species. Then, from fine analysis of genomic variations. From the use of variation graphs
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to index clusters of genes, StrainFLAIR has the potential to cover both of those aspects.
Graph structures that represent a set of similar sequences allow to capture all informa-
tion on presence/absence of genes and variation/similarity of sequences, leading to new
highlights on genome organization and regions of plasticity in a species. In other words,
StrainFLAIR might have the potential to integrate pangenomics and metagenomics for
microbial community profiling.

Despite the limitations raised in Section 2.2.3, the number of MAGs reconstructed and
available is growing and gut databases, for example, are alimented by MAGs. As a result,
some reference genomes will be represented by MAGs, more especially for sub-dominant
strains. It will then be crucial to explore the impact of using MAGs as references for
StrainFLAIR.

Another aspect that as yet to be fully used in our approach is the variability provided
by the sequencing reads from new genomes. Although we used the reads that did not
match any colored-path which is a first step to consider new genomes, the mismatches
found in the alignments have not been used. This variability need to be integrated into
the graphs, which assumes a dynamic structure. Therefore, a natural continuation of
the thesis project would be related to the dynamical update of the reference graph used
with StrainFLAIR when novel species or strains are detected. Additionally, all along this
work, we saw how sequencing reads with different behaviour towards mapping have been
used, notably in order to use all information available from them: reads matching a single
colored-path, reads matching multiple colored-paths, and reads not matching colored-
paths but still mapping the graph. The next step, which is also related to the detection of
novel strains, would be to also use the non-mapped reads. Reads from these so-detected
novel species or strains may be assembled using third-party haplotype-aware assemblers
and the assembled sequences of genes will have to be added to the reference variation
graph, updating clusters and path colors.

This thesis work focused exclusively on the use of short sequencing reads, as short-read
sequencing technologies are still the most used, particularly in metagenomics. However,
as described in Section 1.1.2, long reads are becoming more popular with decreasing
rates of sequencing errors. Therefore, a long-term perspective points towards a future
shift to long-read sequencing technologies or at least to the need for profiling tools ca-
pable to operate with long reads. In the field of strain-level profiling using long reads,
MetaMaps (A. T. Dilthey et al., 2019) or ORI (Siekaniec et al., 2021) have been developed,
a lesser range of tools compared to what exists for short-reads. Despite the existence
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of long-reads sequence-to-graph alignment tools (like the previously cited GraphAligner
and PaSGAL), to our knowledge, no tool for strain-level analysis using variation graphs
and long reads has been developed.

To conclude, StrainFLAIR and the use of variation graphs overall have still many
opportunities for new developments and new advances in pangenomics and metagenomics.
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APPENDIX

Mentioned in Section 4.2.1, Table A1 provides exhaustive results on simulated datasets
when all queried strains are indexed in the variation graph. Table A2 provides exhaustive
results on simulated datasets when one of the queried strain (BL21-DE3) is not indexed
and highly similar to strain K-12.

Mentioned in Section 4.2.2, Figure A1 shows full results obtained on the mock dataset.
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#reads
K-12 Method O104:H4 IAI39 K-12 Sakai SE15 Santai RM8426

Expected 59.88 39.92 0.2 0 0 0 0

1,000 StrainFLAIR 56.47
(0.995)

43.53
(0.989)

0
(0.309)

0
(0.189)

0
(0.151)

0
(0.188)

0
(0.212)

Kraken2 38.91 60.72 0.22 0.04 0.07 0.03 0.02
Expected 59.41 39.6 0.99 0 0 0 0

5,000 StrainFLAIR 54.93
(0.995)

42.46
(0.989)

2.6
(0.546)

0
(0.202)

0
(0.153)

0
(0.2)

0
(0.227)

Kraken2 38.61 60.25 0.99 0.04 0.07 0.03 0.02
Expected 58.82 39.22 1.96 0 0 0 0

10,000 StrainFLAIR 54.12
(0.994)

41.96
(0.989)

3.92
(0.709)

0
(0.21)

0
(0.155)

0
(0.211)

0
(0.234)

Kraken2 38.26 59.69 1.9 0.04 0.07 0.03 0.02
Expected 57.14 38.1 4.76 0 0 0 0

25,000 StrainFLAIR 52.14
(0.994)

40.58
(0.989)

7.27
(0.878)

0
(0.208)

0
(0.153)

0
(0.215)

0
(0.234)

Kraken2 37.23 58.1 4.51 0.04 0.07 0.03 0.02
Expected 54.55 36.36 9.09 0 0 0 0

50,000 StrainFLAIR 49.25
(0.994)

38.5
(0.989)

12.24
(0.949)

0
(0.203)

0
(0.15)

0
(0.208)

0
(0.23)

Kraken2 35.63 55.6 8.62 0.04 0.07 0.03 0.02
Expected 50 33.33 16.67 0 0 0 0

100,000 StrainFLAIR 44.67
(0.994)

35.04
(0.989)

20.29
(0.979)

0
(0.202)

0
(0.152)

0
(0.207)

0
(0.229)

Kraken2 32.8 51.19 15.85 0.04 0.07 0.03 0.02
Expected 42.86 28.57 28.57 0 0 0 0

200,000 StrainFLAIR 38.12
(0.993)

29.81
(0.988)

32.08
(0.99)

0
(0.211)

0
(0.159)

0
(0.219)

0
(0.237)

Kraken2 28.31 44.18 27.35 0.04 0.08 0.03 0.02

Table A1 – Reference strains relative abundances expected and computed by
StrainFLAIR or Kraken2 for each simulated experiment with variable coverage
of the K-12 MG1655 strain. Best results are shown in bold. For StrainFLAIR, the
proportion of specific genes detected is shown in parentheses.
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#reads
BL21-DE3 Method O104:H4 IAI39 K-12 Sakai SE15 Santai RM8426

Expected 59.88 39.92 0.2* 0 0 0 0

1,000 StrainFLAIR 56.48
(0.995)

43.52
(0.989)

0
(0.254)

0
(0.189)

0
(0.151)

0
(0.192)

0
(0.214)

Kraken2 38.93 60.76 0.11 0.05 0.08 0.04 0.03
Expected 59.41 39.6 0.99* 0 0 0 0

5,000 StrainFLAIR 56.46
(0.995)

43.54
(0.989)

0
(0.387)

0
(0.216)

0
(0.16)

0
(0.218)

0
(0.239)

Kraken2 38.72 60.42 0.5 0.09 0.13 0.08 0.07
Expected 58.82 39.22 1.96* 0 0 0 0

10,000 StrainFLAIR 56.46
(0.995)

43.54
(0.989)

0
(0.471)

0
(0.236)

0
(0.169)

0
(0.243)

0
(0.262)

Kraken2 38.47 60.05 0.92 0.14 0.19 0.12 0.13
Expected 57.14 38.1 4.76* 0 0 0 0

25,000 StrainFLAIR 54.12
(0.995)

41.72
(0.989)

4.16
(0.584)

0
(0.266)

0
(0.177)

0
(0.282)

0
(0.298)

Kraken2 37.75 58.93 2.16 0.28 0.34 0.25 0.29
Expected 54.55 36.36 9.09* 0 0 0 0

50,000 StrainFLAIR 52.77
(0.994)

40.62
(0.989)

6.61
(0.652)

0
(0.284)

0
(0.187)

0
(0.307)

0
(0.321)

Kraken2 36.59 57.17 4.15 0.51 0.57 0.48 0.53
Expected 50 33.33 16.67* 0 0 0 0

100,000 StrainFLAIR 50.5
(0.993)

38.63
(0.988)

10.87
(0.687)

0
(0.3)

0
(0.196)

0
(0.324)

0
(0.338)

Kraken2 34.53 54.03 7.68 0.91 0.98 0.91 0.96
Expected 42.86 28.57 28.57* 0 0 0 0

200,000 StrainFLAIR 46.96
(0.993)

35.32
(0.988)

17.72
(0.711)

0
(0.318)

0
(0.211)

0
(0.346)

0
(0.351)

Kraken2 31.14 48.83 13.53 1.57 1.67 1.58 1.68

Table A2 – Reference strains relative abundances expected and computed by
StrainFLAIR or Kraken2 for each simulated experiment with variable coverage
of the BL21-DE3 strain, absent from the reference graph. BL21-DE3 being similar
at 98.9% to K-12 strain (highest similarity compared to the other references), we expect
that reads from BL21-DE3 will map this strain, hence its expected values are followed
by an asterisk, as they correspond to BL21-DE3 strain abundances and not K-12. Best
results are shown in bold. For StrainFLAIR, the proportion of specific genes detected is
shown in parentheses.

137



Figure A1 – Experimental relative abundance compared to relative abundance
computed by StrainFLAIR and Kraken2.
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Titre : Identification et quantification de souches microbiennes dans des échantillons métagé-
nomiques par utilisation de graphes de variations

Mot clés : Métagénomique, Graphes de variations, Abondances au niveau souche, Mapping

Résumé : Les études actuelles se tournent
vers l’utilisation de graphes au lieu de réfé-
rences linéaires afin de représenter plusieurs
génomes. En parallèle, calculer les abon-
dances des souches dans des échantillons
métagénomiques suscite un intérêt croissant.
Cela permettrait de mettre en évidence de
nouvelles associations entre souches et phé-
notypes ouvrant des avancées pour le diag-
nostique et thérapeutiques. Nous avons dé-
veloppé StrainFLAIR, démontrant l’utilisation
de graphes de variations dans ce contexte
en indexant des séquences génomiques si-
milaires telles que retrouvées entre souches
d’une même espèce, et nous proposons de
nouvelles solutions algorithmiques afin d’iden-

tifier et quantifier les souches à partir d’un en-
semble de génomes séquencés en requêtant
le graphe. Nous avons validé notre approche
sur des données simulées constituées d’un
mélange de souches d’une seule espèce. Les
résultats montrent que StrainFLAIR a pu iden-
tifier les souches présentes dans l’échantillon
parmi les références utilisées, détecter la pré-
sence de nouvelles souches proches de ces
références, et estimer les abondances de ces
souches. Nous avons également validé notre
approche sur un mock composé de plusieurs
espèces et souches. Les résultats montrent à
nouveau que StrainFLAIR a pu profiler cor-
rectement l’échantillon même dans une confi-
guration plus complexe.

Title: Identification and quantification of microbial strains in metagenomic samples using vari-
ation graphs

Keywords: Metagenomics, Variation graphs, Strain-level abundances, Read mapping

Abstract: Current studies are shifting from the
use of single linear references to graph struc-
tures in order to represent multiple genomes.
In parallel, resolving strain-level abundances
within metagenomic samples is of growing in-
terest for microbiome studies, as it would high-
light new associations between strain vari-
ants and phenotypes that suggest major steps
for diagnostic and therapeutic purposes. We
developed StrainFLAIR that shows the use
of variation graphs in this context by in-
dexing highly similar genomic sequences as
found with strains of a species, and we pro-
pose novel algorithmic solutions to identify

and quantify strains in a set of sequenced
genomes by querying this graph. We validated
our approach first on simulated datasets which
focused on a mixture of strains from a single
species. The results show that StrainFLAIR
was able to identify the present strains among
the existing references, to detect new strains
close to the existing references, and to esti-
mate their relative abundances. We also val-
idated StrainFLAIR on a mock composed of
several species and strains. The results show
again StrainFLAIR’s ability to profile correctly
the sample even in this more complex config-
uration.
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