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Résumé

Ce manuscrit d’HDR présente des résultats récents de Théorie de l’Information qui apportent un
éclairage nouveau sur des problèmes de Théorie des Jeux, tels que la coordination des actions des joueurs
ou le traitement de l’information stratégique. Bien que la Théorie de l’Information et la Théorie des
Jeux aient des champs d’application distincts, ces deux théories s’appuient sur des outils mathématiques
similaires. Les problèmes de coordination et d’information stratégique se posent pour la conception
de réseaux d’appareils autonomes et pour l’étude du comportement d’agents rationnels. Les nouvelles
générations de réseaux de communication intègrent des appareils qui prennent des décisions avec une plus
grande autonomie. Ces machines observent leur environnement, interagissent, coopèrent avec d’autres
machines ou avec des humains, s’adaptent dynamiquement à leur environnement et à la topologie du
réseau.

Le théorème de codage de source avec perte de Shannon (1959) est la pierre angulaire de notre étude.
Etant donnée une contrainte de capacité de communication, ce théorème caractérise le schéma de codage
optimal pour compresser une source d’information. Les performances du codage sont évaluées via un
critère de fidélité que nous interprétons comme une fonction de coût à minimiser. Nous revisitons ce
problème de codage en adoptant le point de vue de la Théorie des Jeux, dans lequel chaque joueur
optimise sa propre fonction de coût qui dépend des actions des autres joueurs.

Tout d’abord, nous étudions la capacité d’un encodeur et d’un décodeur à coordonner leurs actions avec
les symboles générés par une source d’information. A cet effet, la suite d’actions de l’encodeur encapsule
une version dégradée des symboles de source, qui sert à coordonner les futures actions du décodeur. Nous
caractérisons les solutions de plusieurs instances du problème de coordination au Chap. IV, et au Chap. V,
nous étendons ces résultats dans plusieurs directions, pour des problèmes de fuite d’état de canal, pour des
problèmes de contrôle décentralisé et pour des problèmes de coordination forte. Le caractère stratégique
de la transmission de l’information est étudié au Chap. VI lorsque les joueurs communiquent à travers
un canal bruité. Nous considérons un encodeur s’engage à mettre en œuvre une stratégie, avant que les
symboles de sources soient tirés, comme dans le jeu de persuasion Bayésienne.

En guise de perspectives, nous étudierons l’impact des contraintes de communication sur la transmis-
sion d’informations stratégiques dans les problèmes de “mechanism design” de Jackson and Sonnenschein
(2007), et dans les jeux de “cheap talk” de Crawford and Sobel (1982). Une autre direction de recherche
consiste à approfondir les problèmes d’optimisation qui apparaissent pour le codage stratégique, en util-
isant des outils issus de la Théorie des Graphes et de l’Optimisation Convexe. Nous pensons que ces
résultats apporteront un point de vue nouveau sur les problèmes ouverts en jeux répétés avec observation
imparfaite et information incomplète. L’objectif est de construire une théorie qui englobe les résultats de
codage standard en théorie de l’information et les résultats pour les jeux “sender-receiver”.





Abstract

This HDR manuscript presents recent Information-Theoretic tools that bring new insights into Game
Theoretical problems, such as the coordination of players’ actions and the processing of strategic infor-
mation. Although Information Theory and Game Theory have distinct fields of application, these two
theories rely on similar mathematical tools. Such problems arise for the design of autonomous devices
and for the study of the behavior of rational agents. New generations of communication networks involve
devices that take decisions with greater autonomy. These machines observe their environment, inter-
act, cooperate with other machines or with humans, adapt dynamically to their environment and to the
topology of the network.

The lossy source coding theorem of Shannon (1959) is the cornerstone of our study. Given a com-
munication capacity constraint, this theorem characterizes the optimal coding scheme to compress an
information source. The coding performances are evaluated via a fidelity criterion which we interpret as
a cost function to be minimized. We revisit this coding problem by adopting a Game-Theoretical point of
view, in which each player optimizes his own cost function which depends on the actions of other players.

First, we investigate the capacity of an encoder and a decoder to coordinate their actions with the
symbols of an information source. For this purpose, the action sequence of the encoder encapsulates a
degraded version of the source symbols, which serves to coordinate the future actions of the decoder. We
characterize the solutions of several instances of the coordination problem in Chap. IV, and in Chap. V, we
extend these results in several directions, i.e. for channel state leakage problems, for decentralized control
problems and for strong coordination problems. The strategic nature of the information transmission is
studied in Chap. VI when the communication is passed through a noisy channel. We consider that the
encoder commits to implementing a signalling strategy before it observes the source symbols, as in the
Bayesian persuasion game.

As perspectives, we will study the impact of communication constraints on the transmission of strategic
information in mechanism design problems, as in Jackson and Sonnenschein (2007), and in cheap talk
games, see Crawford and Sobel (1982). Another direction of research consists in deepening optimization
problems that arise in strategic coding, by using tools from Graph Theory and Convex Optimization. We
believe that these results will also bring a new point of view on open problems in repeated games with
imperfect observation and incomplete information. The goal is to build a theory that encompasses the
standard coding results in Information Theory, and the results for the sender-receiver games.
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Chapter II

Introduction

This manuscript presents an overview of the results
obtained at the interplay between Information The-
ory and Game Theory. The goal is to build a the-
ory that encompasses the standard coding results in
Information Theory, and the results for the sender-
receiver games. Our findings will be applied to
decentralized decision-making problems and digital
communication networks. Specific topics of inter-
est include Convex Optimization, Graph Theory and
zero-error coding, repeated game with incomplete in-
formation and imperfect monitoring.

(The Cardsharps, Caravaggio)

Contents
II.1 Research activity review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II.1.a Point-to-point scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II.1.b Coordination problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

II.1.c Coordination and channel state masking with Matthieu Bloch . . . . . . . . . 15

II.1.d Coordination and decentralized control with Tobias Oechtering . . . . . . . . 16

II.1.e Persuasion game with restricted communication with Tristan Tomala . . . . . 16

II.1.f HARQ protocols with Leszek Szczecinski . . . . . . . . . . . . . . . . . . . . . 17

II.2 Supervision of PhD students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.2.a Strong coordination with Giulia Cervia, Laura Luzzi and Matthieu Bloch . . 18

II.2.b Multi-decoders Bayesian persuasion with Rony Bou Rouphael . . . . . . . . . 18

II.2.c Zero-error source coding problems with Nicolas Charpenay and Aline Roumy 19

II.3 Content of this manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

11



CHAPTER II. INTRODUCTION

II.1 Research activity review

Although Information Theory and Game Theory have distinct fields of application, they rely on similar
mathematical tools from Probability, Statistics, Convex Optimization, Graph Theory, Combinatorial
Optimization. Information Theory has applications in Electrical Engineering and Computer Science
for compression, storage, image processing and digital communication problems. Game Theory has
applications in Economics, in Social Sciences, in Biology and in Computer Science for decentralized
decision-making problems.

This manuscript presents recent Information Theoretic tools in order to study the coordination of
players’ actions and the processing of strategic information in Game Theory. This question is at the
intersection of many current research directions regarding the design of autonomous devices and the
study of the behavior of rational agents. New generations of communication networks involve devices
or agents that take into account the communication constraints and that make decisions with greater
autonomy. They observe their environment, interact, cooperate with other machines or humans, adapt
dynamically to their environment and to the topology of the network.

II.1.a Point-to-point scenario

To address this problem, we revisit seminal point-to-point results such as the channel coding theorem
of Shannon (1948) and the lossy source coding theorem of Shannon (1959). This last problem depends
of a fidelity criterion which we interpret as a decision maker’s cost function to be minimized. In this
direction, the scenario depicted in Fig. III.3 is of particular interest.

In this manuscript, the sender and the receiver are referred to as the encoder and the decoder. We
denote by ∆(X ) the set of probability distributions PX over the finite set X , and by ∆(Y)|X | the set
of conditional probability distributions PY |X . The information source (U ,PU ) is defined by a finite set
U and a probability distribution PU ∈ ∆(U) such that the symbol u ∈ U is selected with probability
PU (u) ∈ [0, 1]. The cost function c : U × V → R is evaluated over U and the finite set of decoder actions
V . The channel (X ,Y, TY |X) is defined by two finite sets of channel inputs X and channel outputs Y,
and a conditional probability distribution TY |X ∈ ∆(Y)|X | such that when the encoder chooses input
symbol x, the decoder receives output symbol y with probability TY |X(y|x) ∈ [0, 1]. Throughout this
manuscript, calligraphic fonts, e.g. X , stand for finite sets, capital letters, e.g. X , denote random
variables while lowercase letters, e.g. x ∈ X denote the realizations. Sequences of length n ∈ N⋆ =
N \ {0} of random variables and realizations are denoted respectively by Xn = (X1, . . . , Xt, . . . , Xn) and
xn = (x1, . . . , xt, . . . , xn), for t ∈ {1, . . . , n}.

Un Xn Y n V n

PU Enc TY |X Dec

c(u, v)

Figure II.1 – Point-to-point scenario with an information source (U ,PU ), a channel (X ,Y, TY |X) and a
cost function c : U × V → R.

The information source generates an i.i.d. sequence Un of length n ∈ N⋆. The encoder observes the
realization un ∈ Un and selects a sequence of channel inputs xn ∈ Xn. The channel generates an output
sequence Y n according to the i.i.d. conditional distribution TY |X evaluated with respect to xn ∈ Xn.
The decoder observes the realization yn ∈ Yn and selects a sequence of actions vn ∈ Vn. The encoding
function σ : Un → Xn and the decoding functions τ : Yn → Vn are selected in order to minimize the
expected long-run cost. The coding problem is defined by

Cn = min
σ,τ

E

[
1

n

n∑

t=1

c(Ut, Vt)

]
. (II.1)
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In Shannon (1948) and Shannon (1959), the asymptotic value of Cn is characterized by

C⋆ = min
QV |U∈∆(V)|U|,

I(U;V )≤max
PX

I(X;Y )

E
[
c(U, V )

]
, (II.2)

where the mutual information

I(U ;V ) =
∑

(u,v)∈suppPUQV |U

PU (u)QV |U (v|u) log2
QV |U (v|u)∑

u′ PU (u′)QV |U (v|u′)
, (II.3)

measures the correlation of U and V . An important feature of (II.2) is the restriction imposed on the
set of achievable conditional distributions QV |U ∈ ∆(V)|U|, by the information constraint I(U ;V ) ≤
maxPX I(X ;Y ). This captures the restrictions imposed by the repeated use of the channel (X ,Y, TY |X),
on the empirical distribution of the random variables U and V .

In the Game Theory literature, the optimization problem of (II.2) gave rise to as the rational inat-
tention problem, formulated in Sims (2003). The goal is to determine the optimal trade-off between the
cost of information extraction I(U ;V ) and the benefit of information exploitation for the minimization of
E[c(U, V )]. Note that the setting of Fig. III.3 is also related to the model of repeated game of incomplete
information Aumann and Maschler (1995) and of the sender-receiver game Crawford and Sobel (1982).

We present a brief summary of the different problems under study in this manuscript and the main
contributions.

II.1.b Coordination problem

An intriguing information constraint I(U ;V ) ≤ H(X |U, V ) was stated in Gossner et al. (2006) for a
repeated game problem with incomplete information. The encoder and the decoder are the players of
the game, the decoder actions only depends on past channel outputs, and the channel (X ,Y, TY |X) is
perfect, i.e. X = Y and TY |X(y|x) = 1{x = y}, where the indicator function is equal to 1 if x = y, and
0 otherwise.

The main difference with the model of Sec. II.1.a is the cost function

c : U × X × V → R, (II.4)

which also depends on the encoder action X , i.e. the channel input symbol.
When selecting the actions, the encoder faces a trade-off between minimizing of the cost function with

X and sending information to the decoder so that it can also minimize the cost function with V . The
goal of the players is to implement sequences of actions that are empirically correlated with the source of
information. The authors show that the optimal solution is characterized via the information constraint
I(U ;V ) ≤ H(X |U, V ). This problem has given rise to a literature on empirical coordination problems in
Information Theory, see Cuff et al. (2010). The key is to control the empirical distribution of symbols of
source U and actions (X,V ), induced by the coding scheme.

A series of contributions consists in characterizing the solutions of several instances of the coordina-
tion problem, when the observation of actions is imperfect, when the decoder also observes past source
symbols, when the decoder or the encoder operates in a strictly causal, causal or non-causal manner,
when the channel and the sources depend on state parameters partially observed by the encoder and by
the decoder. We show that the coordination problem is related to the joint source-channel coding problem
with two-sided state information, which is a famous object of study in Information Theory, see Merhav
and Shamai (2003). We notice that the source symbol observed by the encoder must be considered as
the state of a state-dependent channel, as in Gel’fand and Pinsker (1980), whereas the channel output
must be considered as side information of the decoder, as in Wyner and Ziv (1976). This research work
resulted in the following publications:

[J6] Le Treust, M. Empirical Coordination for Joint Source-Channel Coding, IEEE Transactions on In-
formation Theory, Volume 63, Issue 8, Pages 5087 - 5114, Aug. 2017.
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[IC14] Le Treust, M., Empirical Coordination with Channel Feedback and Strictly Causal or Causal En-
coding, IEEE Proc. of the International Symposium on Information Theory (ISIT), Hong-Kong,
China, 2015.

[IC13] Le Treust, M., Empirical Coordination with Two-Sided State Information and Correlated Source
and State, IEEE Proc. of the International Symposium on Information Theory (ISIT), Hong-Kong,
China, 2015.

[IC12] Le Treust, M., Correlation between channel state and information source with empirical coordi-
nation constraint, IEEE Proc. of the Information Theory Workshop (ITW2014), Hobart, Australia,
2014.

[NC6] Le Treust, M., Coordination d’appareils autonomes dans un réseau décentralisé., Actes de la Con-
férence du Groupement de Recherche en Traitement du Signal et des Images (GRETSI), Lyon, France,
2015.

[W1] Le Treust, M. Coding Theorems for Empirical Coordination: Technical Report, [on-line] available:
https://hal.archives-ouvertes.fr/hal-01865569, Apr. 2015.

II.1.c Coordination and channel state masking with Matthieu Bloch

The study of state-dependent channels can be traced back to the early works of Shannon (1958) and
Gel’fand and Pinsker (1980), which identified optimal coding strategies to transmit reliably in a noisy
environment when the encoder has some observation of the noise random variable, referred to as the state
of the channel. In Kim et al. (2008), the authors design a coding scheme that conveys the channel state
to the decoder, on top of the message transmission. They characterize the optimal trade-off between the
rate capacity of reliable communication and the reduction of uncertainty about the channel state. In
Merhav and Shamai (2007), the goal of the coding scheme is to hide the channel state variable from the
decoder by minimizing the channel state leakage, while guaranteeing a certain transmission rate. The
rate-leakage capacity region of state masking has been successfully characterized for both causal and
non-causal state knowledge.

With Matthieu Bloch, Professor at Georgia Tech Atlanta and member of GeorgiaTech-CNRS IRL
2958, we revisit the problems of state masking and state amplification through the lens of empirical
coordination. We introduce a channel state estimation zero-sum game in which the decoder minimizes
the channel state estimation cost function. The coordination approach allows us to characterize the
optimal solution of this zero-sum game, which was considered to be difficult, see (Merhav and Shamai,
2007, 2 pp. 2255). We characterize the optimal trade-offs between the coordination capacity, the channel
state information leakage and the information rate transmitted to the decoder. We extend the results
of (Le Treust, 2015b, [IC14]) when the encoder has noisy channel output feedback. This research work
resulted in the following publications:

[J10] Le Treust, M. and Bloch, M. State Leakage and Coordination of Actions, IEEE Transactions on
Information Theory, Volume: 67, Issue: 2,Pages 805-823, Feb. 2021.

[IC16] Le Treust, M. and Bloch, M., Empirical Coordination, State Masking and State Amplification:
Core of the Decoder’s Knowledge, IEEE Proc. of the International Symposium on Information Theory
(ISIT), Barcelona, Spain, 2016.

[NC9] Le Treust, M. and Bloch, M., Jeu d’estimation de l’état de canal et coordination, Actes de la
Conférence du Groupement de Recherche en Traitement du Signal et des Images (GRETSI), Lille,
France, 2019.
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II.1.d Coordination and decentralized control with Tobias Oechtering

Distributed decision-making systems arise in many engineering problems where decentralized agents
choose actions based on locally available information, so as to minimize a common cost function. The
design of optimal strategies for such problems is considered to be notoriously difficult. In Witsenhausen
(1968), the author introduces an outstanding toy example that help to grasp the fundamental difficulty
when the actions serve two purposes, a control purpose affecting the system state and a communication
purpose where information is sent to other agents, see Yüksel and Başar (2013). The coordination
approach of Sec. II.1.b offers a new perspective on decentralized control problems.

With Tobias Oechtering, Professor at KTH Stockholm, we consider the vector version of the Witsen-
hausen’s counterexample introduced in Grover and Sahai (2010). We extend the finite alphabet coding
scheme of (Le Treust, 2017, [J6]) to continuous alphabet by adapting the notion of weak typicality. We
determine new coding strategies and we evaluate their performances. Interestingly, we show that a pair of
discrete and continuous auxiliary random variables, outperforms both Witsenhausen’s two point strategy
and the best affine policies. This research work resulted in the following publications:

[IC27] Le Treust, M. and Oechtering, T., Continuous Random Variable Estimation is not Optimal for
the Witsenhausen Counterexample, IEEE Information Symposium on Information Theory (ISIT),
Melbourne, Australia, July 2021.

[IC23] Oechtering, T. and Le Treust, M., Coordination Coding with Causal Decoder for Vector-valued
Witsenhausen Counterexample Setups, IEEE Information Theory Workshop (ITW), Visby, Aug. 2019.

[IC22] Le Treust, M. and Oechtering, T. Optimal Control Designs for Vector-valued Witsenhausen Coun-
terexample Setups, IEEE 56th Allerton Conference on Control Communication and Computing, Mon-
ticello, Illinois, 2018.

II.1.e Persuasion game with restricted communication with Tristan Tomala

The nature of the problem changes when the encoder and the decoder, see Fig. III.3, selfishly optimize
distinct cost functions

ce : U × V → R 6= cd : U × V → R. (II.5)

The transmission of information becomes strategic. The encoder and the decoder are the players of a
game with incomplete information. This framework has been well explored in the Game Theory literature,
when the encoder can send a large number of messages that are perfectly received by the decoder.

In the cheap talk game of Crawford and Sobel (1982), the encoder observes a Gaussian random
variable and selects a real number, which is transmitted and perfectly received by the decoder. The
communication is unrestricted and the signals do not affect the cost functions. In this model, neither the
encoder nor the decoder commit to a strategy. The natural solution concept is the Nash equilibrium, see
Nash (1951).

In the Bayesian persuasion game of Kamenica and Gentzkow (2011), the encoder commits to imple-
menting a coding strategy before the game plays. By knowing the encoding scheme, the decoder selects
a best response action that depends on its posterior beliefs. The natural solution is the Stackelberg
equilibrium, see von Stackelberg (1934), in which the encoder is the Stackelberg leader and the decoder
is the Stackelberg follower.

With Tristan Tomala, Professor at HEC Paris and member of GREGHEC UMR 2959, we investi-
gates the Bayesian persuasion problem when the encoder and the decoder communicate through a noisy
channel, when the number of messages is restricted, and when the decoder observes a degraded version
of the information source. This research work resulted in the following publications:

[J8] Le Treust, M. and Tomala, T. Persuasion with limited communication resources, Journal of Economic
Theory, vol. 184, page 104940, Nov. 2019.
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[IC28] Le Treust, M. and Tomala, T., Strategic Communication with Decoder Side Information, IEEE
Information Symposium on Information Theory (ISIT), Melbourne, Australia, July 2021.

[IC26] Le Treust, M. and Tomala, T., Point-to-Point Strategic Communication, IEEE Information Theory
Workshop (ITW), Riva del Garda, Italy, 2020.

[IC20] Le Treust, M. and Tomala, T. Strategic Coordination with State Information at the Decoder,
International Zurich Seminar on Information and Communication, Zurich, Switzerland, 2018.

[IC18] Le Treust, M. and Tomala, T., Information Design for Strategic Coordination of Autonomous
Devices with Non-Aligned Utilities, IEEE Proc. of the 54th Allerton conference, Monticello, Illinois,
2016.

[NC8] Le Treust, M. and Tomala, T., Persuasion Bayésienne pour la Coordination Stratégique d’Appareils
Autonomes ayant des Objectifs Non-Alignés., Actes de la Conférence du Groupement de Recherche
en Traitement du Signal et des Images (GRETSI), Juan-les-Pins, France, 2017.

[W3] Le Treust, M. and Tomala, T. Strategic Communication with Side Information at the Decoder,
preliminary draft, [on-line] available: https://arxiv.org/abs/1911.04950, Nov. 2019.

[W2] Le Treust, M. and Tomala, T. Information-Theoretic Limits of Strategic Communication, prelimi-
nary draft, [on-line] available: https://arxiv.org/abs/1807.05147, Jul. 2018.

II.1.f HARQ protocols with Leszek Szczecinski

During my post-doc at INRS, in Montreal in 2012 to 2013 under the supervision of Leszek Szczecinski,
I worked on Hybrid Automatic Retransmission reQuest (HARQ) protocols for digital communication. In
a fading environment, the channel capacity is a random variable which might be observed by the decoder
only. When the rate parameter of the coding scheme exceeds the channel capacity, the decoder sends a
NACK feedback to the encoder, that retransmits the codeword, as in Caire and Tuninetti (2001). We
investigate several HARQ protocols that are able to adapt dynamically to the changes in the channel
capacity. Following the work of Tang et al. (2009), we design a HARQ protocol tailored to ensures the
secrecy of the transmission. This research work resulted in the following publications:

[J7] Le Treust, M. and Szczecinski, L. and F. Labeau Rate Adaptation for Secure HARQ Protocols, IEEE
Transactions on Information Forensics and Security, Volume 13, Issue 12, Pages 2981 - 2994, May
2018.

[J5] Jabi, M. and Benyouss, A. and Le Treust, M. and Pierre-Doray, M. and Szczecinski, L. Adaptive
Cross-Packet HARQ, IEEE Transactions on Communication, Volume 65, Issue 5, Pages: 2022-2035,
May 2017.

[J4] Mheich, Z. and Le Treust, M. and Alberge, F. and Duhamel, P. Rate Adaptation for Incremental
Redundancy Secure HARQ, IEEE Transactions on Communications, Volume 64, Issue 2, pp 765-777,
Feb. 2016.

[IC15] Benyouss, A. and Jabi, M. and Le Treust, M. and Szczecinski, L., Joint Coding/Decoding for
Multi-message HARQ, IEEE Proc. of the Wireless Communications and Networking Conference
(WCNC), Doha, Quatar, 2016.

[IC11] Mheich, Z. and Le Treust, M. and Alberge, F. and Duhamel, P and Szczecinski, L. Rate-adaptive
secure HARQ protocol for block-fading channels, IEEE Proc. of the 22nd European Signal Processing
Conference (EUSIPCO), 2014.
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[IC9] Le Treust, M. and Szczecinski L. and Labeau F., Secrecy & Rate Adaptation for Secure HARQ
Protocols, IEEE Proc. of the Information Theory Workshop (ITW2013), Sevilla, Spain, 2013.

II.2 Supervision of PhD students

II.2.a Strong coordination with Giulia Cervia, Laura Luzzi and Matthieu
Bloch

From 2015 to 2018, Giulia Cervia was PhD student at ETIS UMR 8051 in Cergy, under the direction
of Inbar Fijalkow and the supervision of Laura Luzzi and myself. We worked in collaboration with
Matthieu Bloch on the problem of strong coordination introduced in Cuff et al. (2010). Contrary to the
notion of empirical coordination presented in Sec. II.1.b and II.1.c, strong coordination requires that the
probability distribution of the sequences of symbols converges to a target i.i.d. probability distribution.

Giulia Cervia investigates a joint source-channel coding problem in which both encoder and decoder
have state information, as in (Le Treust, 2015c, [IC13]). She proposes a practical coding scheme based
on polar codes that ensures the strong coordination of the symbols of source and channel. This research
work resulted in the following publications:

[J9] Cervia, G. and Luzzi, L. and Le Treust, M. and Bloch, M. Strong coordination of signals and actions
over noisy channels with two-sided state information , IEEE Transactions on Information Theory,
Volume: 66, Issue: 8, Pages: 4681-4708, Aug. 2020.

[IC21] Cervia, G. and Luzzi, L. and Le Treust, M. and Bloch, M. Strong Coordination Over Noisy
Channels with Strictly Causal Encoding, IEEE 56th Allerton Conference on Control Communication
and Computing, Monticello, Illinois, 2018.

[IC19] Cervia, G. and Luzzi, L. and Le Treust, M. and Bloch, M. Strong Coordination of Signals and
Actions over Noisy Channels, IEEE International Symposium on Information Theory (ISIT), Aachen,
Germany, 2017.

[IC17] Cervia, G. and Luzzi, L. and Bloch, M. and Le Treust, M. Polar coding for empirical coordination
of signals and actions over noisy channels, IEEE Proc. of the Information Theory Workshop (ITW),
Cambridge, UK, 2016.

[NC7] Cervia, Giulia and Luzzi, Laura and Le Treust, Mael and Bloch, Matthieu R., Polar codes for
empirical coordination over noisy channels with strictly causal encoding, Actes de la Conférence du
Groupement de Recherche en Traitement du Signal et des Images (GRETSI), Juan-les-Pins, France,
2017.

[P1] Cervia, G., Luzzi, L., Bloch, M., and Le Treust, M., Polar coding for empirical coordination of
signals and actions over noisy channels, European School on Information Theory, Gothenburg (ESIT),
Sweden, April 4-8, 2016

II.2.b Multi-decoders Bayesian persuasion with Rony Bou Rouphael

From 2019 to 2022, Rony Bou Rouphael is doing a PhD at ETIS UMR 8051 in Cergy under the
direction of Inbar Fijalkow and my supervision. He works on three extensions of the Bayesian persuasion
model of (Le Treust and Tomala, 2019, [J8]), with several decoders and restricted communication.

In the model of successive refinement of Equitz and Cover (1991) and Rimoldi (1994), the encoder
uses a common channel to both decoders and a private channel to the first decoder. Rony Bou Rouphael
characterizes the single-letter solution of the Bayesian persuasion game where the encoder performs a
successive refinement coding. In the model of Gray and Wyner (1974), an additional private channel
is linked to the second decoder. Rony Bou Rouphael provides lower and upper bounds on the optimal
cost of the encoder, by assuming that the decoder cost functions depend on the actions of the other
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decoder. He also investigates the strategic version of the cascade multiple description network problem
of Yamamoto (1981). This research work resulted in the following publications:

[IC31] Bou Rouphael, R., Le Treust, M., Strategic Communication with Cost-Dependent Decoders via the
Gray-Wyner Network, IEEE Information Theory Workshop (ITW), Mumbai, 2022.

[IC29] Bou Rouphael, R. and Le Treust, M., Strategic Successive Refinement Coding for Bayesian Per-
suasion with Two Decoders, IEEE Information Theory Workshop (ITW) 2021, Kanazawa, Japan.

[IC24] Bou Rouphael, R. and Le Treust, M., Impact of Private Observation in Bayesian Persuasion,
International Conference on NETwork Games, Control and Optimisation (NETGCOOP), Cargèse,
Corsica, France on March 18-20, 2020.

[NC10] Bou Rouphael, R. and Le Treust, M., Communication stratégique via le réseau Gray-Wyner, Actes
de la Conférence du Groupement de Recherche en Traitement du Signal et des Images (GRETSI),
Nancy, France, 2022.

[P2] Bou Rouphael, R. and Le Treust, M., Impact of Private Observation in Persuasion Game,
GAMENET Conference 2019, Prague, Czech Republic, Nov. 21-22, 2019

[W5] Bou Rouphael, R. and Le Treust, M., Strategic Successive Refinement for Bayesian Persuasion with
Cost-Dependent Decoders, submitted to IEEE JSAIT, Apr. 2022.

II.2.c Zero-error source coding problems with Nicolas Charpenay and Aline
Roumy

From 2020 to 2023, Nicolas Charpenay is doing a PhD at IRISA UMR 6074 in Rennes under the
direction of Aline Roumy and my supervision. He works on zero-error source coding problems with
side information at the decoder, that are related to the video compression. The zero-error assumption
requires that the probability of error in the coding, is exactly zero. The optimal compression rate of this
difficult open problem corresponds to the minimal entropy of a coloring of the characteristic graph, see
Witsenhausen (1976) and Alon and Orlitsky (1996).

Nicolas Charpenay characterizes the zero-error coding rate for the successive refinement coding prob-
lem, i.e. with several decoders, in which the encoder observes the decoder side information. This scenario
arises in interactive compression, where the user can randomly access part of the data directly in the
compressed domain. He also investigates the model with one decoder and two-sided state-information,
i.e. when the encoder observes a degraded version of the decoder side information. Following up the work
of Orlitsky and Roche (2001), he determines the appropriate graph to study the problem of zero-error
coding for computing. During the Master internship, Nicolas Charpenay used to work on zero-error
channel coding problem, introduced in Shannon (1956). This research work resulted in the following
publications:

[IC30] Charpenay, N., Le Treust, M. and Roumy, A., Zero-error source coding when side information
may be present, International Zürich Seminar, March, 2022.

[IC25] Charpenay, N. and Le Treust, M., Zero-Error Coding with a Generator Set of Variable-Length
Words, IEEE International Symposium on Information Theory (ISIT), Los Angeles, June 2020.

[NC11] Charpenay, N. and Le Treust, M. and Roumy, A., Codage de source zéro-erreur pour un réseau de
Gray-Wyner lorsque l’information adjacente peut être présente, Actes de la Conférence du Groupement
de Recherche en Traitement du Signal et des Images (GRETSI), Nancy, France, 2022.

[W6] Charpenay, N., Le Treust, M. and Roumy, A., Zero-error source coding with two-sided side-infor-
mation, submitted to IEEE JSAIT, Apr. 2022.
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[W4] Charpenay, N. and Le Treust, M. Variable-Length Coding for Zero-Error Channel Capacity, pre-
liminary draft, [on-line] available: https://arxiv.org/abs/2001.03523, Jan. 2020.

II.3 Content of this manuscript

This manuscript is organized as follows.
Chap. III presents some key results from the Information Theory literature such as the lossy source

coding theorem of Shannon (1959), the channel coding theorem of Shannon (1948) and show the connec-
tion to the problem of rational inattention of Sims (2003) in Game Theory.

Chap. IV introduces the coordination problem of Gossner et al. (2006) and its reformulation in Cuff
et al. (2010) and Cuff and Zhao (2011). We present the main contributions to the coordination problem
described in Sec. II.1.b, when the channel between the encoder and the decoder is noisy.

Chap. V presents three different research directions that are extensions of the coordination results: 1)
the channel state masking problem of Merhav and Shamai (2007) described in Sec. II.1.c, 2) the decen-
tralized control problem of Witsenhausen (1968) described in Sec. II.1.d and 3) the strong coordination
problem of Cuff et al. (2010) described in Sec. II.2.a.

Chap. VI details the contributions of Sec. II.1.e and II.2.b regarding the Bayesian persuasion game of
Kamenica and Gentzkow (2011) with restricted communication, with decoder side information and with
several decoders.

Chap. VII presents the on-going research work on zero-error source coding of II.2.c, on convex opti-
mization algorithms for coordination problems, and on mechanism design and cheap talk problems. Our
information theoretic approach will further be used to study repeated games with imperfect monitoring
and incomplete information.
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Chapter III

Information Theory review

In this chapter, we recall the lossy source coding
result of Shannon (1959), the notion of channel ca-
pacity of Shannon (1948) and the “separation re-
sult” for the joint source-channel coding problem
(El Gamal and Kim, 2011, Sec. 3.9). We discuss
the connection with the problem of rational inat-
tention of Sims (2003) and we present the opti-
mality conditions of the distortion-rate function in
(Steiner et al., 2017, Theorem 1). We extend the
lossy source coding result to several cost functions.

(Fig. 1 in Shannon (1948))
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CHAPTER III. INFORMATION THEORY REVIEW

III.1 Shannon’s separation results

We recall some notations. We denote by ∆(X ) the set of probability distributions PX over the finite
set X , i.e. the symbol x ∈ X is selected with probability PX(x) ∈ [0, 1]. We denote by ∆(Y)|X | the set
of conditional probability distributions PY |X .

III.1.a Perfect channel of restricted cardinality

Consider a source of information (U ,PU ) with |U| = 3 symbols and a perfect channel (X ,Y, TY |X),
i.e. TY |X(y|x) = 1{x = y}, with |X | = |Y| = 2 symbols. Is it possible to convey a source of information
through a perfect channel which has fewer symbols?

Information Theory provides an answer to this question by applying the law of large numbers and
by considering a repeated version of this problem. Unlikely sequences having an incorrect empirical
distribution ũn ∈ Un are assigned to a single sequence of channel symbols x̃n ∈ Xn, while the sequences
with a correct empirical distribution un ∈ Un are perfectly recovered with high probability. The number
of sequences with a correct empirical distribution scales exponentially with the Shannon’s entropy of the
source distribution PU ∈ ∆(U). We present seminal results of Shannon (1948, 1959) addressing this
question.

In this section, we consider a source of information (U ,PU ), a perfect channel X of fixed cardinality
|X |, a finite set of decoder actions V , and a cost function

c : U × V → R. (III.1)

The information source generates an i.i.d. sequence Un of length n ∈ N⋆. The encoder observes the
realization of the source sequence un ∈ Un and selects a channel inputs sequence xn ∈ Xn. The decoder

Un Xn V n

PU Enc Dec

c(u, v)

Figure III.1 – Perfect channel of restricted cardinality |X |.

perfectly observes xn ∈ Xn and returns a sequence of actions vn ∈ Vn.
In this manuscript, we define the encoding and decoding functions by

σ : Un −→ ∆(Xn), (III.2)

τ : Xn −→ ∆(Vn). (III.3)

Note that the encoding and decoding functions are stochastic, i.e. they generate the sequences of random
variablesXn and V n. In some scenarios, e.g. in the Bayesian persuasion game of Kamenica and Gentzkow
(2011) and in Physical Layer Security Bloch and Barros (2011), it is important to consider stochastic
encoding and the decoding functions.

The coding scheme, depicted in Fig. III.1, induces a probability distribution over the sequences of
symbols (Un, Xn, V n) given by

Pr
(
(Un, Xn, V n) = (un, xn, vn)

)
=

(
n∏

t=1

PU (ut)

)
σ(xn|un)τ(vn|xn), ∀(un, xn, vn). (III.4)

Definition 1 Given n ∈ N⋆, the minimum expected long-run cost is defined by

Cn
p = min

σ,τ
E

[
1

n

n∑

t=1

c(Ut, Vt)

]
, (III.5)

where the probability distribution of the random variables (Ut, Vt), for t ∈ {1, . . . , n}, is given by (III.4).
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Note that the sequence (n ·Cn
p )n∈N⋆ is subadditive, i.e. ∀(n,m) ∈ N⋆2, (n+m)Cn+m

p ≤ nCn
p +mCm

p .
This property is obtained by considering the concatenation of the optimal coding scheme (σ, τ) in (III.5)
for some n ∈ N⋆, with the optimal coding scheme for some m ∈ N⋆.

Definition 2 The optimal single-letter cost is defined by

C⋆
p = min

QV |U ,

I(U;V )≤log2 |X|

E [c(U, V )] , (III.6)

where the mutual information is defined by

I(U ;V ) =
∑

(u,v)∈suppPUQV |U

PU (u)QV |U (v|u) log2
QV |U (v|u)∑

u′ PU (u′)QV |U (v|u′)
. (III.7)

Beside its definition in (III.7), the mutual information I(U ;V ) = DKL

(
PUQV |U

∣∣∣∣PUQV

)
is also the

KL-divergence, see Kullback and Leibler (1951), between the joint distribution PUQV |U ∈ ∆(U ×V) and
the product of marginal distributions PUQV ∈ ∆(U)×∆(V), where QV =

∑
u′ PU (u

′)QV |U (·|u′).

Theorem 1

lim
n→+∞

Cn
p = inf

n∈N⋆
Cn

p = C⋆
p . (III.8)

The proof of Theorem 1, see Shannon (1948, 1959), consists of two parts:

1. The achievability proof, which relies on a coding construction, shows that lim
n→+∞

Cn
p ≤ C⋆

p .

2. The converse proof shows that C⋆
p ≤ inf

n∈N⋆
Cn

p .

The sequence (n · Cn
p )n∈N⋆ is subadditive, Fekete (1923)’s Lemma shows that inf

n∈N⋆
Cn

p = lim
n→+∞

Cn
p . In

conclusion, we have

C⋆
p ≤ inf

n∈N⋆
Cn

p = lim
n→+∞

Cn
p ≤ C⋆

p . (III.9)

Theorem 1 provides an answer to the question in the beginning of Sec. III.1.a. When n ∈ N⋆ is large
enough, it is possible to convey the source random variable U via the perfect channel X with |X | < |U|
if and only if H(U) ≤ log2 |X | where Shannon’s entropy function is defined by

H(U) =
∑

u∈suppPU

PU (u) log2
1

PU (u)
. (III.10)

More precisely, we have the following proposition.

Proposition 1 Consider that V = U and c(u, v) = 1{u 6= v}.

C⋆
p = 0 ⇐⇒ H(U) ≤ log2 |X |. (III.11)

Proof. [Prop. 1] We denote by Q̃V |U the distribution that achieves the minimum in (III.6). Therefore

0 = EQ̃V |U

[
1{U 6= V }

]
=
∑

u

PU (u)
∑

v

Q̃V |U (v|u)1{u 6= v} ⇐⇒ ∀u ∈ U , supp Q̃V |U (·|u) = {u}.

(III.12)

This implies that the conditional entropy satisfies

H(U |V ) =
∑

(u,v)∈suppPU Q̃V |U

PU (u)Q̃V |U (v|u) log2
1

Q̃V |U (v|u)
=
∑

u

PU (u) log2 1 = 0, (III.13)
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and therefore, by definition,

log2 |X | ≥ I(U ;V ) = H(U)−H(U |V ) = H(U). (III.14)

The converse holds since I(U ;V ) ≤ H(U) is true for all distribution QV |U ∈ ∆(V)|U|. Hence the above

distribution Q̃V |U satisfies

I(U ;V ) ≤ H(U) ≤ log2 |X |, EQ̃V |U

[
1{U 6= V }

]
= 0. (III.15)

Example 1 Consider an information source with U = {0, 1, 2}, PU = (1 − α, α/2, α/2) and the perfect
channel X = {0, 1}. Let α⋆ ∈ [0, 1] the unique solution of 1−α = hb(α) where the binary entropy function
is defined by hb(α) = α log2

1
α + (1− α) log2

1
1−α for all α ∈]0, 1[ and hb(α) = 0 for α ∈ {0, 1}. Then for

all α ∈ [0, α⋆], we have H(U) ≤ log2 |X | which implies that lim
n→+∞

Cn
p = inf

n∈N⋆
Cn

p = 0. This shows that the

decoder can perfectly recover the information source.

III.1.b General noisy channel

We consider a general noisy channel (X ,Y, TY |X), i.e. where TY |X 6= 1{x = y}. The encoder wants
to send n ∈ N⋆ symbols of source (U ,PU ) by using k ∈ N⋆ times the channel (X ,Y, TY |X). The encoding
and decoding functions are defined by

σ : Un −→ ∆(X k), (III.16)

τ : Yk −→ ∆(Vn). (III.17)

Un Xk Y k V n

PU Enc TY |X Dec

c(u, v)

Figure III.2 – Point-to-point scenario with n ∈ N⋆ uses of the source (U ,PU ) and k ∈ N⋆ uses of the
channel (X ,Y, TY |X).

The coding scheme, depicted in Fig. III.2, induces a probability distribution given by for all
(un, xk, yk, vn)

Pr
(
(Un, Xk, Y k, V n) = (un, xk, yk, vn)

)
=

(
n∏

t=1

PU (ut)

)
σ(xk|un)

(
k∏

t=1

TY |X(yt|xt)
)
τ(vn|yk). (III.18)

Definition 3 Given n ∈ N⋆, the minimum expected long-run cost is defined by

Cn,k
c = min

σ,τ
E

[
1

n

n∑

t=1

c(Ut, Vt)

]
. (III.19)

Definition 4 Given a parameter r ≥ 0, we define the optimal single-letter cost by

C⋆
c (r) = min

QV |U ,

I(U;V )≤r·max
PX

I(X;Y )

E [c(U, V )] . (III.20)
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The channel capacity is defined by

max
PX

I(X ;Y ) = max
PX

∑

(x,y)∈suppPXTY |X

PX(x)TY |X(y|x) log2
TY |X(y|x)∑

x′ PX(x′)TY |X(y|x′) , (III.21)

where the maximum is taken over the set of probability distribution ∆(X ). Note that when the channel
is perfect, i.e. TY |X(y|x) = 1{x = y} for all (x, y), the channel capacity satisfies

max
PX

I(X ;Y ) = max
PX

H(X) = log2 |X |, (III.22)

and we recover the result of Theorem 1.
We now introduce the notation ⌊x⌋ for the floor function, i.e. the greatest integer less than or equal

to x ∈ R.

Theorem 2 1. For all (n, k) ∈ N⋆2, we have

C⋆
c

(
k

n

)
≤ Cn,k

c . (III.23)

2. Suppose that k = ⌊rn⌋ for some parameter r ≥ 0, we have

lim
n→+∞

Cn,k
c ≤ C⋆

c (r). (III.24)

The Theorem 1 is referred to as the “separation result” for the joint source-channel coding problem
in (El Gamal and Kim, 2011, Sec. 3.9). For k = ⌊rn⌋ with r ≥ 0, Theorem 2(1.&2.) implies that

lim
n→+∞

Cn,k
c = inf

n∈N⋆
Cn,k

c = C⋆
c (r). (III.25)

III.1.c Entropy formulas

We recall the definitions of the entropy function and the mutual information. We present some
properties, the proofs are detailed in (Cover and Thomas, 2006, Chap. 2), (El Gamal and Kim, 2011,
Chap. 2), (Csiszár and Körner, 2011, Chap. 1).

Definition 5 Given a distribution PUV ∈ ∆(U × V) we define the mutual information I(U ;V ), the
conditional entropy H(U |V ) and the entropy H(U, V ) by

I(U ;V ) =
∑

(u,v)∈suppPUV

PUV (u, v) log2
PUV (u, v)

PU (u)PV (v)
, (III.26)

H(U |V ) =
∑

(u,v)∈suppPUV

PUV (u, v) log2
1

PU|V (u|v)
, (III.27)

H(U, V ) =
∑

(u,v)∈suppPUV

PUV (u, v) log2
1

PUV (u, v)
. (III.28)

For a distribution PUVW ∈ ∆(U × V ×W), the conditional mutual information I(U ;V |W ) is defined by

I(U ;V |W ) =
∑

(u,v,w)∈suppPUV W

PUV W (u, v, w) log2
PUV |W (u, v|w)

PU|W (u|w)PV |W (v|w) . (III.29)

These formulas are related through the chain rule for the entropy.
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Proposition 2 Given a discrete probability distribution PUV ∈ ∆(U × V), we have

0 ≤ H(U, V ) =H(V ) +H(U |V ) = H(U) +H(V |U) ≤ log2 |U × V|, (III.30)

0 ≤ I(U ;V ) =H(V )−H(V |U) = H(U)−H(U |V )

=H(U) +H(V )−H(U, V ) = DKL

(
PUV

∣∣∣∣PUPV

)
≤ min(H(U), H(V )), (III.31)

where DKL

(
PUV

∣∣∣∣PUPV

)
denotes the KL-divergence Kullback and Leibler (1951). We have H(U, V ) =

log2 |U × V| if and only if PUV is the uniform distribution.

Proposition 3 For a distribution PUV W ∈ ∆(U × V ×W), we have

0 ≤ I(U ;V |W ) =H(V |W )−H(V |U,W ) = H(U |W )−H(U |V,W )

=H(U |W ) +H(V |W )−H(U, V |W ), (III.32)

0 ≤ I(U ;V,W ) =I(U ;W ) + I(U ;V |W ) = I(U ;V ) + I(U ;W |V ). (III.33)

Definition 6 A distribution PUVW ∈ ∆(U ×V ×W) satisfies the Markov chain property U −
−V −
−W
if

PU|V W = PU|V ⇐⇒ PW |UV = PW |V . (III.34)

Proposition 4 A distribution PUVW ∈ ∆(U ×V ×W) satisfies the Markov chain property U −
−V −
−W
if and only if

I(U ;W |V ) = 0. (III.35)

III.2 Perfect channel of fixed capacity

III.2.a Lossy source coding

In this section, we consider the lossy source coding problem introduced in Shannon (1959). The
channel is perfect and has a fixed capacity R ≥ 0, also referred to as the “rate of the code”. This
parameter R ≥ 0 is the increase rate of the number of messages 2⌊nR⌋ used by the coding scheme.

Definition 7 Given n ∈ N⋆ and R ≥ 0, a (R, n)-code is a pair of functions (σ, τ) defined by

σ : Un −→ ∆
(
{1, . . . , 2⌊nR⌋}

)
, (III.36)

τ : {1, . . . , 2⌊nR⌋} −→ ∆(Vn). (III.37)

We denote by C(R, n) the set of (R, n)-codes.

Un M ∈ {1, . . . , 2⌊nR⌋} V n

PU Enc Dec

c(u, v)

Figure III.3 – The source (U ,PU ) and the perfect channel of rate R ≥ 0.

Note that R = log2 |X | is equivalent to 2nR = |Xn|. Note also that 1
n⌊nR⌋ −→ R, when n → +∞. A

(R, n)-code (σ, τ) ∈ C(R, n) induces a probability distribution given by,

Pr
(
(Un,M, V n) = (un,m, vn)

)
=

( n∏

t=1

PU (ut)

)
σ
(
m
∣∣un
)
τ
(
vn
∣∣m
)
, ∀(un,m, vn). (III.38)
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Definition 8 Given n ∈ N⋆, the minimum expected long-run cost is defined by

Cn(R) = min
(σ,τ)∈C(R,n)

E

[
1

n

n∑

t=1

c(Ut, Vt)

]
. (III.39)

The sequence
(
n · Cn(R)

)
n∈N⋆ is subadditive. Since ⌊nR⌋+ ⌊mR⌋ ≤ ⌊(n+m)R⌋ for all (n,m) ∈ N⋆2,

the concatenation of (σn, τn) ∈ C(R, n) with (σm, τm) ∈ C(R,m) generates a strategy which belongs to
C(R, n+m).

Definition 9 The optimal single-letter cost is defined by

C⋆(R) = min
QV |U ,

I(U;V )≤R

E [c(U, V )] . (III.40)

When the cost function c(u, v) is a distortion function d(u, v), the expression C⋆(R) is referred to as
the “distortion-rate function”, see (Cover and Thomas, 2006, pp. 306). We recover C⋆

p , resp. C⋆
n , by

replacing by replacing R = log2 |X |, resp. R = maxPX I(X ;Y ), in the expression of C⋆(R).

Theorem 3

lim
n→+∞

Cn(R) = inf
n∈N⋆

Cn(R) = C⋆(R). (III.41)

Theorem 3 is stated in Shannon (1959), a proof can be found in (El Gamal and Kim, 2011, Sec. 3.6).

III.2.b Rational inattention

The expression C⋆(R) of (III.40) is related to the rational inattention problem in (Sims, 2003, Sec. 3),
in the Game Theory literature. The rate parameter R ≥ 0 captures the information-processing capacity
of a decision maker who faces a signal extraction problem. She decides how much effort to put in order
get a finer information about the source (U ,PU ). The conditional distribution QV |U determines the
signal extraction strategy. The decision maker is rationally inattentive when she optimizes the trade-off
between the information extraction cost I(U ;V ) and the information exploitation to lower E [c(U, V )].

In (Steiner et al., 2017, Eq. (3)-(5)), the authors forumate the Lagrangian of C⋆(R). For all conditional
distribution QV |U ∈ ∆(V)|U| and Langrange parameter λ ≥ 0, they define

L(QV |U , λ) = E [c(U, V )] + λI(U ;V ). (III.42)

Note that

C⋆(R) = min
QV |U

max
λ≥0

(
L(QV |U , λ)− λR

)
. (III.43)

For a given Lagrange parameter λ ≥ 0, the problem of interests writes

min
QV |U

L(QV |U , λ). (III.44)

The optimality conditions are stated in (Steiner et al., 2017, Theorem 1).

Theorem 4 We denote by Q⋆
V |U the optimal solution to problem (III.44) with marginal distribution

Q⋆
V =

∑
u PU (u)Q⋆

V |U (·|u) ∈ ∆(V). For all (u, v) ∈ U × V, the optimal solution satisfies

Q⋆
V |U (v|u) =

Q⋆
V (v) exp

(
− c(u,v)

λ

)

∑
v′ Q⋆

V (v
′) exp

(
− c(u,v′)

λ

) . (III.45)

A similar characterization of Q⋆
V |U is proposed in (Blahut, 1972, Theorem 5) for the related problem

R
⋆(C) = min

QV |U,

E[c(U,V )]≤C

I(U ;V ), (III.46)

which depends of a target cost value C ∈ R.
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III.2.c Multi-objective coding problem

In this section, we consider a coding problem in which the encoder and the decoder are endowed with
distinct cost functions

ce : U × V −→ R 6= cd : U × V −→ R. (III.47)

In this section, we assume that a unique decision-maker selects the pair of encoding and decoding strategies
(σ, τ). Therefore the decision problem has no strategic feature. This problem is not a game, it is a multi-
objective coding problem.

Definition 10 Given the pair of strategies (σ, τ) ∈ C(R, n), the encoder and decoder long-run cost func-
tions cn

e
(σ, τ) and cn

d
(σ, τ) are defined by

cne (σ, τ) =
∑

un,vn

Pσ,τ
UnV n

(
un, vn

)
·
[
1

n

n∑

t=1

ce(ut, vt)

]
, (III.48)

cnd (σ, τ) = Eσ,τ

[
1

n

n∑

t=1

cd(Ut, Vt)

]
. (III.49)

Un M ∈ {1, . . . , 2⌊nR⌋} V n

PU Enc Dec

ce(u, v) cd(u, v)

Figure III.4 – Two cost functions ce : U × V −→ R and cd : U × V −→ R.

Definition 11 The pair (C⋆
e , C

⋆
d
) is achievable if

∀ε > 0, ∃n̄ ∈ N⋆, ∀n ≥ n̄, ∃(σ, τ) ∈ C(R, n), |C⋆
e
− cn

e
(σ, τ)| + |C⋆

d
− cn

d
(σ, τ)| ≤ ε. (III.50)

We denote by A(R) the set of achievable pairs (Ce, Cd).

Theorem 5 Given R ≥ 0,

A(R) =

{(
EQ
[
ce(U, V )

]
,EQ

[
cd(U, V )

])
, Q ∈ Q(R)

}
, (III.51)

where the set of probability distribution is defined by

Q(R) =
{
PUQV |U , I(U ;V ) ≤ R

}
. (III.52)

The proof of Theorem 5 is a consequence of the lossy source coding theorem of Shannon (1959)
with two cost functions. For the converse proof, we recall that the information constraint I(U ;V ) ≤ R

needs to be satisfied. For the achievability proof, given a probability distribution PUQV |U ∈ Q, we
use the standard arguments to show the existence of a coding scheme that achieves the pair of costs(
EQ[ce(U, V )],EQ[cd(U, V )]

)
.

The key aspect of the solution is the set of achievable probability distributions Q, which is the main
object of study of Chap. IV.
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Empirical coordination with a

strictly causal or a causal decoder

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Probability parameter γ

In
fo

rm
at

io
n 

C
on

st
ra

in
t

 

 
Lower Bound: ε = 0
Upper Bound: ε = 0
Lower Bound: ε = 0.25
Upper Bound: ε = 0.25
Lower Bound: ε = 0.5

u*(ε = 0.25)  ∈   [ 0.54,  0.575]
γ*(ε = 0.25)  ∈   [ 0.54,  0.575]

u*(ε = 0) = 0.81
γ*(ε = 0) = 0.81

u*(ε = 0.5) = 0.25
γ*(ε = 0.5) = 0.25

In the previous chapter, we have seen that the restrictions of
communication are captured by an entropy constraint that af-
fects the set of probability distributions. In a decentralized net-
work, it is essential that the devices or the agents cooperate
and coordinate their actions in order to achieve a common goal,
to ensure the reliability and the stability of the network. More
specifically, it is required that the sequences of actions and states
follow a prescribed empirical distribution. This problem was in-
vestigated in Gossner et al. (2006) when the encoder actions are

perfectly observed by the decoder. We extend these results by assuming that the decoder im-
perfectly monitors encoder actions. Our point-to-point model involves an information source,
a noisy channel and a common objective function for the encoder and the decoder. We wonder
how this simple network operates when the devices have incomplete information about the
state and imperfect monitoring of the actions. In this chapter, we present various empiri-
cal coordination problems under study in (Le Treust, 2017, [J6]), (Le Treust, 2015b, [IC14]),
(Le Treust, 2015c, [IC13]), (Le Treust, 2014, [IC12]), (Le Treust, 2015a, [NC6]) (Le Treust,
2015, [W1]),
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CHAPTER IV. EMPIRICAL COORDINATION WITH A STRICTLY CAUSAL OR A CAUSAL DECODER

IV.1 Introduction

A decentralized network is composed of communication devices that sense their environment and that
choose autonomously the best transmission scheme to implement. The decision process is decentralized
and does not require a central controller. However, it is essential that the communication devices cooper-
ate and coordinate their actions, in order to ensure the reliability of the transmissions and the stability of
the network. We investigate the problem of the coordination of two autonomous devices, by considering
a point-to-point model, represented by Fig. IV.1, with an information source and a noisy channel. In the
classical scenario, both encoder and decoder have the same objective: to implement a reliable transmis-
sion scheme. We wonder how this simple network operates when the devices are autonomous and try to
coordinate their actions in order to achieve a common objective.

We study this problem using a two-step approach. First, we characterize the set of empirical distri-
butions of actions and source symbols that are achievable via a coding scheme. Second, we optimize the
expected common cost function with respect to the set of achievable distributions. In this chapter, we
focus on the first task, i.e. determining the coordination possibilities of the encoder and the decoder by
characterizing the set of achievable distributions.

Based on their observations, the encoder and the decoder choose the sequences of channel input and
decoder’s output. We require that the empirical distribution of all the sequences of symbols, converges
to a target joint probability distribution. The aim is to determine the minimal amount of information
to exchange such that the symbols of both transmitters are coordinated with the symbols of the source
and of the channel. From an information theoretic point of view, this problem is closely related to
the joint source-channel coding problem with two-sided state information and correlated source and
state (Le Treust, 2015c, [IC13]). We characterize the set of achievable joint probability distributions
using a single-letter information constraint that is related to the compression and to the transmission of
information.

Un Xn Y i−1 ViPU Enc TY |X Dec

c(u, x, v)

Figure IV.1 – Empirical coordination problem for the source (U ,PU ), the channel (X ,Y, TY |X), the cost
function c : U × X × V → R and the decoder is strictly causal, i.e. at each instant t ∈ {1, . . . , n}, it
returns a symbol Vt = τt(Y

t−1). The encoder and the decoder implement a coding scheme such that, the
empirical distribution of symbols Qn

UXY V are close to the target joint probability distribution QUXY V ,
high probability.

We consider that the devices are equipped with a cost function, capturing their objective. The set of
achievable values of the cost function is the image, by the expectation operator, of the set of achievable
probability distributions. A cost value is achievable if and only if it corresponds to the expected cost,
with respect to some achievable probability distribution. This approach simplifies the optimization of
the long-run cost function, since the whole set of possible codes of large block-length reduces to the set
of achievable target probability distributions, expressed with a single-letter formulation. As a particular
case, our results boil down to the classical results of Shannon (1948) and Shannon (1959), when considering
the minimal distortion for the information source or the minimal cost for the channel inputs. The main
difference with the results of Shannon (1948) and Shannon (1959) is In this chapter, we consider a cost
function that is common to both encoder and decoder.

Related literature

The notion of target probability distribution has been proposed in Wyner (1975) for determining
the common information of two correlated random variables. In the framework of quantum coding, the
authors of Kramer and Savari (2002) and Kramer and Savari (2007) prove the existence of a code with
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minimal amount of information exchanged, such that the empirical distribution of the sequences of sym-
bols is close to the target probability distribution. The problem of empirical coordination is studied in
Cover and Permuter (2007) for a three-node cascade network, for a multi-agent chain and for a multiple
description setting. A stronger definition of coordination is considered in Cuff (2008) and Cuff (2013) for
the problem of simulating and synthesizing a discrete memoryless channel, also related to the “reverse
Shannon Theorem” Bennett et al. (2002) and “channel resolvability” Han and Verdú (1993). The concept
of “coordination capacity” is introduced in Cuff et al. (2010), as a measure of the minimal amount of
information transmitted, such that the nodes of a network can coordinate their actions. The authors con-
sider two different notions of coordination, referred to as empirical coordination and strong coordination.
For some networks, both notions coincide if the nodes have enough common randomness. Coordination
over a network is also related to the multi-agent control problem with common randomness Anantharam
and Borkar (2007). In Gohari and Anantharam (2011), the authors investigate strong coordination of
the actions, assuming that the nodes have multiple rounds of noise-free communication. Empirical dis-
tribution of sub-codewords of length k of a good code is considered in Weissman and Ordentlich (2004)
and Weissman and Ordentlich (2005), and the authors prove that it converges to the product of the opti-
mal probability distribution Shamai and Verdú (1997). Polar codes are under investigation for empirical
coordination in Blasco-Serrano et al. (2012), and for strong coordination in Bloch et al. (2012). In Chou
et al. (2015), the authors provide encoding and decoding algorithms that are based on polar codes, and
that achieve the empirical and the strong coordination capacity. In (Cervia et al., 2016, [IC17]), the au-
thors construct a polar code for empirical coordination with a noisy channel. Empirical coordination for
triangular multi-terminal network is investigated in Bereyhi et al. (2013). Strong coordination is studied
for a multi-hop line network in Vellambi et al. (2015) and Vellambi et al. (2016), for a three-terminal line
network in Satpathy and Cuff (2013) and Bloch and Kliewer (2013), for a three-terminal relay network
in Bloch and Kliewer (2014), for two-way communication with a relay in Haddadpour et al. (2012), and
for signal’s coordination in (Cervia et al., 2017b, [IC19]). The source coding problem of Ahlswede-Körner
Ahlswede and Körner (1975) is investigated in Goldfeld et al. (2014), with a coordination requirement.
The results for empirical coordination are extended to general alphabets in Raginsky (2010) and Raginsky
(2013), by considering standard Borel spaces. The problems of zero-error coordination Abroshan et al.
(2015) and of strong coordination with an evaluation function Orlitsky and Roche (2001) are both related
to graph theory.

The problem of the coordination of actions is also investigated in the Game Theory literature Gossner
and Vieille (2002), Gossner and Tomala (2006), Gossner and Tomala (2007), Gossner et al. (2009),
Gossner et al. (2006) using the notion of implementable probability distribution, that is related to empirical
coordination. In Gossner et al. (2006), the authors consider a point-to-point scenario with an encoder
that observes the sequence of symbols of source, called “state of the nature”, and that chooses a sequence
of actions. The channel is perfect and the decoder is strictly causal i.e., it returns an action based on
the observation of the past actions of the encoder and past symbols of the source. The objective is to
coordinate the actions of both players together with the symbols of the source. The main difference with
the settings described previously is that the channel inputs are also coordinated with the symbols of the
source and the decoder’s actions. The encoder chooses a sequence of channel inputs that conveys some
information and that is coordinated with the sequences of symbols of source. The authors characterize the
set of implementable target joint probability distributions and evaluate the long-run cost function of the
players, by considering the expected cost. The results of Gossner et al. (2006) are extended in Larrousse
and Lasaulce (2013), Larrousse et al. (2018), by considering a noisy channel. The authors characterize the
set of implementable probability distributions and apply their result to the interference channel in which
the power control is used to encode embedded data about the channel state information. This approach is
further applied to the two-way channel in Larrousse et al. (2015a), and to the case of causal encoding and
decoding in Larrousse et al. (2015b). The results of Gossner et al. (2006) have also been extended in Cuff
and Zhao (2011) by considering the notion of empirical coordination and by removing the observation
by the decoder of the past symbols of source. The tools for empirical coordination with a cascade of
controllers Cuff and Zhao (2011) are also used in Asnani et al. (2013), for the problem of cooperation in
multi-terminal source coding with strictly causal, causal, and non-causal cribbing. In (Le Treust et al.,
2011, [IC7]), the authors investigate the empirical correlation for two dependent sources and a broadcast
channel with an additional secrecy constraint. The problem of empirical coordination for a joint source-
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channel coding problem is solved in Cuff and Schieler (2011), for strictly causal and causal encoder with
non-causal decoder. These results are based on hybrid coding Minero et al. (2011), Lim et al. (2010), and
are closely related to the problem of state communication under investigation in Choudhuri et al. (2010),
Choudhuri et al. (2011), Choudhuri and Mitra (2012a). The results stated in Cuff and Schieler (2011)
are extended in (Le Treust, 2015b, [IC14]) by considering channel feedback available at the encoder.
Channel feedback improves the coordination possibilities and simplifies the information constraint. For
this problem, the authors of (Le Treust and Bloch, 2016, [IC16]) characterize of the region of achievable
triple of information rate, empirical distribution and state leakage, with and without state information
and noisy channel feedback. The problem of empirical coordination for non-causal encoder and decoder
is not yet completely solved, but the optimal solutions are characterized in (Le Treust, 2014, [IC12]) for
lossless decoding and in (Le Treust, 2015c, [IC13]) for perfect channel and for independent source and
channel, based the separation result of Merhav and Shamai (2003). The duality Cover and Chiang (2002)
between the channel coding of Gel’fand Pinsker Gel’fand and Pinsker (1980) and the source coding of
Wyner Ziv Wyner and Ziv (1976) induces some similarities in the information constraints for lossless
decoding (Le Treust, 2014, [IC12]) and for perfect channel (Le Treust, 2015c, [IC13]). This open problem
is closely related to the problem of non-causal state communication, under investigation in Sutivong et al.
(2005), Choudhuri et al. (2013) and Sutivong (2003). The problem of empirical coordination is a first
step towards a better understanding of decentralized communication networks, in which the devices have
different cost functions (Le Treust and Tomala, 2016, [IC18]) and choose autonomously the transmission
power (Le Treust and Lasaulce, 2010, [J1]), Belmega et al. (2009) and the transmission rates Berry and
Tse (2011), Perlaza et al. (2012), depending on their observation structure (Le Treust and Lasaulce, 2013,
[J2]).

In this chapter, we investigate a point-to-point coordination problem involving an i.i.d. information
source and a memoryless channel, represented by Fig. IV.1. The encoder and the decoder choose their
sequences of actions i.e., channel input and decoder output, so that the empirical distribution of the
symbols converges to a target probability distribution. We assume that the decoder is strictly causal or
causal i.e., at each instant, it returns a symbol, also called an action, based on the observation of the past
and current channel outputs. This on-line coordination assumption is related to the game theoretical
framework of Gossner et al. (2006), in which the encoder and the decoder are the players that choose
their actions simultaneously, based on their past observations. We characterize the set of achievable
target joint probability distributions for non-causal encoder and strictly causal decoder and we relate
the corresponding information constraint to the previous results from the literature, especially with the
problem of source distortion and channel cost (El Gamal and Kim, 2011, pp. 47, 57 and 66). We analyze
the optimization of some cost function over the set of achievable target probability distributions and
we prove that this problem is convex. We also characterize the information constraint corresponding to
causal decoder instead of strictly causal decoder. In that case, the actions of the decoder may also be
coordinated with the current channel output.

This chapter is organized as follows. The coordination problem with strictly causal decoder is under
study in Sec. IV.2. The system model is presented in Sec. IV.2.a. In Sec. V.2.b, we characterize the set
of achievable target probability distributions for non-causal encoder and strictly causal decoder. In Sec.
VII.2, we characterize the set of achievable utilities and we prove that the corresponding optimization
problem is convex. We investigate two examples: the coordination game in Sec. IV.2.d and the trade-off
between source distortion and channel cost in Sec. IV.2.e. In Sec. IV.3, we investigate the coordination
problem for general decoding functions, with causal decoding and source feedforward in Sec. IV.3.a,
with strictly causal decoding and source feedforward in Sec. IV.3.b. In Sec. IV.4, we investigate the
coordination problem for state-dependent source and channel. The case of non-causal encoder and non-
causal decoder under study in Sec. IV.4.a is still an open problem. We characterize the sets of achievable
distributions when either the decoder is causal in Sec. IV.4.b, or the encoder is causal in Sec. IV.4.c.
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IV.2 Empirical coordination with strictly causal decoder

IV.2.a Problem statement

We consider the setting of Fig. IV.1 in which a sequence of random variables Un ∈ Un is drawn i.i.d.
according to PU ∈ ∆(U), as in (IV.1). The non-causal encoder observes Un ∈ Un and sends a sequence
of channel inputs Xn ∈ Xn. The sequence of channel outputs Y n ∈ Yn is drawn i.i.d. according to
TY |X ∈ ∆(Y)|X |, as in (IV.2).

Pr(Un = un) =

n∏

t=1

PU (ut), ∀un ∈ Un, (IV.1)

Pr(Y n = yn|Xn = xn) =

n∏

t=1

TY |X(yt|xt), ∀(xn, yn) ∈ Xn × Yn. (IV.2)

We consider that the decoder is strictly causal. At instant t ∈ {1, . . . , n}, it observes the sequence of
past channel outputs Y t−1 = (Y1, . . . , Yt−1) ∈ Yt−1 and returns an output symbol Vt ∈ V .

Definition 12 Given n ∈ N⋆, we define the n-length code with non-causal encoder and strictly-causal
decoder by a pair (σ, τ) where τ = {τt}nt=1 and

σ : Un −→ Xn, (IV.3)

τt : Yt−1 −→ V , t ∈ {1, . . . , n}. (IV.4)

We denote by C(n) the set of n-length code with non-causal encoder and strictly-causal decoder.

The code (σ, τ) ∈ C(n) induces a probability distribution Pστ
UnXnY nV n defined, for all (un, xn, yn, vn),

by

Pc
UnXnY nV n(un, xn, yn, vn) =

( n∏

t=1

PU (ut)

)
1

{
xn = σ(un)

}( n∏

t=1

TY |X(yt|xt)
)( n∏

t=1

1

{
vt = τt(y

t−1)
})

.

(IV.5)

We evaluate the empirical frequencies of symbols induced by the code.

Definition 13 Given the sequences of realizations (un, xn, yn, vn), the empirical distribution qnUXY V ∈
∆(U × X × Y × V) is defined by

qnUXY V (u, x, y, v) =
1

n

n∑

t=1

1

{
(ut, xt, yt, vt) = (u, x, y, v)

}
, ∀(u, x, y, v) ∈ U × X × Y × V . (IV.6)

We denote by Qn
UXY V ∈ ∆(U × X × Y × V) the random variable of the empirical distribution of

(Un, Xn, Y n, V n).

We aim at characterizing the asymptotic behavior of the empirical distribution Qn
UXY V induced by

sequences of codes.

Definition 14 A target probability distribution QUXV Y ∈ ∆(U ×X ×Y ×V) is achievable if there exists
a sequence of codes (σ, τ) ∈ C(n) such that (Qn

UXY V )n∈N⋆ converges in probability to QUXV Y , i.e.

∀δ > 0, lim
n→+∞

min
(σ,τ)∈C(n)

Pr

(∣∣∣
∣∣∣Qn

UXV Y −QUXV Y

∣∣∣
∣∣∣
1
> δ

)
= 0. (IV.7)

We denote by A ⊂ ∆(U × X × Y × V) the set of achievable distributions.
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The concept of achievable distribution was introduced in (Cuff et al., 2010, Definition 5). In Gossner
et al. (2006), a distribution QUXV Y is said to be implementable if there exists a sequence of codes (σ, τ) ∈
C(n) such that the average distribution

(
1
n

∑n
t=1 Pc

UtXtYtVt

)
n∈N⋆ converges to the target distribution

QUXV Y . Note that for all (u, x, y, v), we have

1

n

n∑

t=1

Pc
UtXtYtVt

(u, x, y, v) =
1

n

n∑

t=1

E
[
1
{
(Ut, Xt, Yt, Vt) = (u, x, y, v)

}]
(IV.8)

=E
[ 1
n

n∑

t=1

1
{
(Ut, Xt, Yt, Vt) = (u, x, y, v)

}]
(IV.9)

=E
[
Qn

UXV Y (u, x, y, v)
]
. (IV.10)

The following Lemma is stated in (Larrousse et al., 2018, App. A).

Lemma 1 If the distribution QUXV Y is achievable, then it is implementable, i.e.

QUXV Y ∈ A =⇒ lim
n→+∞

min
(σ,τ)∈C(n)

∣∣∣∣E
[
Qn

UXV Y

]
−QUXV Y

∣∣∣∣ = 0. (IV.11)

Proof. [Lemma 1] The convergence in probability implies the convergence in distribution. Therefore there
exists a sequence of codes (σ, τ) ∈ C(n) such that

(
E
[
Qn

UXV Y

])
n∈N⋆ converges to QUXV Y .

IV.2.b Characterization of the set of achievable distributions

We characterize the set of achievable distributions for non-causal encoder and strictly-causal decoder.
The following result is stated in (Le Treust, 2017, [J6], Theorem III.1).

Theorem 6 A target probability distribution QUXY V ∈ ∆(U × X × Y × V) is achievable if and only if

QUXY V = PUQXV |UTY |X , (IV.12)

and there exists an auxiliary random variable W1 ∈ W1 with |W1| ≤ |U ×X ×V|+1, distributed according
to some conditional distribution Q̃W1|UXV ∈ ∆(W1)

|U×X×V| such that

I(W1;Y |V )− I(U ;V,W1) ≥ 0. (IV.13)

Note that the joint probability distribution decomposes as

PUQXV |UQ̃W1|UXV TY |X ∈ ∆(U × X ×W1 × Y × V). (IV.14)

The proof of Theorem 6 is stated in (Le Treust, 2015, [W1]). Note that the Markov chain Y −
−X −

− (U, V,W1) comes from the hypothesis of strictly causal decoder. Indeed, the decoder returns a symbol
Vt = τt(Y

t−1) before the channel output Yt is generated.

Remark 1 As mentioned in (IV.12), an achievable distribution QUXY V must have the marginals given
by the source distribution PU and the channel distribution TY |X . Otherwise, it is not achievable. This
remark is valid for all the coding results in this document.

Theorem 7 The set of achievable distributions is compact and convex, and it is characterized by

A =

{
PUQXV |UTY |X , max

Q̃W1|UXV ,

|W1|≤|U×X×V|+1

(
I(W1;Y |V )− I(U ;V,W1)

)
≥ 0

}
. (IV.15)

Moreover, the function

Ψ : ∆(X × V)|U| −→ R, (IV.16)

QXV |U −→ max
Q̃W1|UXV ,

|W1|≤|U×X×V|+1

(
I(W1;Y |V )− I(U ;V,W1)

)
, (IV.17)

is concave in QXV |U ∈ ∆(X × V)|U|.
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The proof of Theorem 7 is stated in (Le Treust, 2017, [J6]). We compare the result of Theorem 6
with previous results from the literature. When, the channel is not noisy, i.e. TY |X = 1{Y = X}, the
set of implementable distributions of (Gossner et al., 2006, Theorems 1 and 2) coincides with the set of
achievable distributions of (Cuff and Zhao, 2011, Theorem 5.1). We show that the information constraints
of (Gossner et al., 2006, Eq. (1)) and of (Gossner et al., 2006, Theorem 5.1) coincide with (IV.13).

Corollary 1 When TY |X = 1{Y = X}, we have

max
Q̃W1|UXV ,

|W1|≤|U×X×V|+1

(
I(W1;Y |V )− I(U ;V,W1)

)
= H(X |V )− I(U ;X,V ), (IV.18)

and the maximum in the left-hand side of (IV.18) is achieved by W1 = X.

Proof. [Corollary 1] When Y = X , for all distribution Q̃W1|UXV we have

I(W1;X |V )− I(U ;V,W1) = I(W1;X |V, U)− I(W1;U |V,X)− I(U ;V ) (IV.19)

≤ H(X |V, U)− I(U ;V ) = H(X |V )− I(U ;X,V ). (IV.20)

We obtain the equality by replacing W1 = X .
According to the separation result of Shannon (1959), the source random variables (U, V ) must be

independent of the channel random variables (X,Y ).

Corollary 2 Assume that (U, V ) are independent of (X,Y ), we have

A∩∆(U × V)×∆(X × Y) =
{
PUQV |UQXTY |X , I(X ;Y )− I(U ;V ) ≥ 0

}
. (IV.21)

Proof. [Corollary 2] For all distribution Q̃W1|UXV , we have

I(W1;Y |V )− I(U ;V,W1) ≤I(W1, V ;Y )− I(U ;V ) (IV.22)

≤I(X ;Y )− I(U ;V ), (IV.23)

where (IV.23) comes from the Markov chain property Y −
−X −
− (U, V,W1) of the channel. We have
equality in (IV.22) and (IV.23) when choosing W1 = X independent of (U, V ).

Corollary 2 also shows that strictly causal decoding has no impact on the information constraint
I(X ;Y ) − I(U ;V ) ≥ 0, stated in Shannon (1959). In fact this information constraint characterizes the
optimal solution for non-causal encoding and strictly causal, causal or non-causal decoding. However,
when we impose that the random variables (X,Y ) are correlated with (U, V ), the information constraint
depends on whether the decoder works strictly causally, causally or non-causally.

Remark 2 (Coordination is more restrictive than information transmission) Equations
(IV.22)-(IV.23) imply that the information constraint corresponding to QXV |U is stronger than the one
corresponding to the product of marginals QV |UQX . We conclude that the empirical coordination is more
restrictive than lossless or lossy transmission of the information source.

IV.2.c Evaluation of an arbitrary expected cost function

By building on the repeated game approach of Gossner et al. (2006), we consider that the encoder
and the decoder implement a coding scheme in order to minimize an arbitrary cost function φ defined by

φ : U × X × Y × V −→ R. (IV.24)

This cost function φ may capture the different objectives of the encoder and the decoder. We may
also consider multiple cost functions (φ1, φ2, . . . , φK). For example, we consider a distortion function
d : U × V −→ R, a channel input cost function c : X −→ R. Note that the maximization of the payoff
function π : U × X × Y × V −→ R of a repeated game as in Gossner et al. (2006), corresponds to the
minimization of the cost function −π. Given a code (σ, τ) ∈ C(n), we define the associated n-stage cost.
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Definition 15 The n-stage cost φn(c) of the code (σ, τ) ∈ C(n) is defined by

φn(c) =E

[
1

n
·

n∑

t=1

φ(Ut, Xt, Yt, Vt)

]
. (IV.25)

A cost value φ ∈ R is achievable if for all ε > 0, there exists a n̄ ∈ N⋆, such that for all n ≥ n̄, there
exists a code c ∈ C(n) such that

∣∣∣∣∣φ− E

[
1

n
·

n∑

t=1

φ(Ut, Xt, Yt, Vt)

]∣∣∣∣∣ ≤ ε. (IV.26)

We denote by Φ the set of achievable cost values.

Theorem 8 We have

Φ =

{
φ ∈ R, ∃ QUXY V ∈ A, E

[
φ(U,X, Y, V )

]
= φ

}
. (IV.27)

Moreover, the optimization problem

min
QUXY V ∈A

E
[
φ(U,X, Y, V )

]
, (IV.28)

is a convex optimization problem.

The proof of Theorem 8 is stated in (Le Treust, 2017, [J6]). In Sec. IV.2.e, we study the coordination
game of Gossner et al. (2006) and we investigate the trade-off between the source distortion d : U ×V −→
R, and the channel input cost function c : X −→ R.

IV.2.d Example #1: coordination game of Gossner et al. (2006)

We consider the binary sets of symbols U = X = Y = V = {0, 1}, a binary information source
PU = (p, 1− p), with p ∈ [0, 1] and a binary symmetric channel TY |X = (1− ε)1{Y = X}+ ε1{Y 6= X},
with cross-over probability parameter ε ∈ [0, 1], as depicted in Fig. IV.2.

p

1− p

U

0

1
Enc

X

0

1

1− ε

1− ε

ε

Y

0

1
Dec

V

0

1

Figure IV.2 – Binary information source PU and binary symmetric channel TY |X .

The encoder and the decoder seek to coordinate their actions X and V with the information source
U , in order to maximize the utility function π : U × X × V 7→ R defined by Fig. IV.3.

0 0

0 1

X = 0

X = 1

X = 0

X = 1

V = 0 V = 1V = 0 V = 1

U = 0 U = 1

1 0

0 0

Figure IV.3 – Utility function π : U × X × V 7→ R of Gossner et al. (2006).
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Figure IV.4 – The optimal distribution for π, depending on γ ∈ [0, 1].

Since the decoder is strictly causal, it is clear from Gossner et al. (2006), that the distribution
PU1{X = V = U} which maximizes E[π(U,X, V )] is not achievable. We suppose that the source
parameter is p = 1

2 . By symmetry, the optimal achievable distribution QXV |U is of the form of Fig. IV.3
which depends on some parameter γ ∈ [0, 1]. We consider lower and upper bounds on the information
constraint (IV.13) that do not involve an auxiliary random variable W1.

Proposition 5 For all QXV |U ∈ ∆(X × V)|U|, we have

I(X ;Y |V )− I(U ;V,X) ≤ max
Q̃W1|UXV ,

|W1|≤|U×X×V|+1

(
I(W1;Y |V )− I(U ;V,W1)

)
≤ I(X ;Y |U, V )− I(U ;V ).

(IV.29)

The difference between the upper bound and the lower bound in (IV.29) is equal to I(U ;X |V, Y ). When
the channel is not noisy TY |X = 1{Y = X}, the two bounds coincides since I(U ;X |V, Y ) = 0, and
correspond to the information constraint H(X |V )− I(U ;V,X) ≥ 0 of Gossner et al. (2006) and Cuff and
Zhao (2011).

Proposition 6 For a distribution QXV |U ∈ ∆(X × V)|U| of the form of Fig. IV.4 with γ ∈ [0, 1], we
have

I(X ;Y |V )− I(U ;V,X)

= hb(γ) + (1 − γ) · log2(3)− 1− hb(ε)− hb

(
2

3
(1− γ)

)
+ hb

(
2

3
(1− γ) + ε · 4γ − 1

3

)
, (IV.30)

I(X ;Y |U, V )− I(U ;V )

= hb(γ) + (1 − γ) · log2(3)− 1− hb(ε) +
2γ + 1

3

(
hb

(
(1− ε) · 3γ

2γ + 1
+ ε · 1− γ

2γ + 1

)
− hb

(
3γ

2γ + 1

))
.

(IV.31)

Remark 3 Note that when ε = 0, the information constraints (IV.30) and (IV.31) reduce to the one
stated in Gossner et al. (2006) and Cuff and Zhao (2011):

H(X |V )− I(U ;V,X) = hb(γ) + (1− γ) · log2(3)− 1. (IV.32)

Fig. IV.5 and IV.6 represent the lower and the upper bounds of equations (IV.30) and (IV.31),
depending on γ ∈ [0, 1], for different values of ε ∈ [0, 1]. The maximum of the information constraint
is achieved by parameter γ = 0.25, that corresponds to the uniform probability distribution over the
symbols U × X × V . The maximum of the cost is achieved by a distribution Q⋆

XV |U of the form of Fig.
IV.4 with parameter γ⋆ ∈ [0, 1] such that Ψ(Q⋆

XV |U ) = 0.

• If the channel is perfect i.e., ε = 0, the optimal solution corresponds to the one stated in Gossner
et al. (2006) where the optimal distribution Q⋆

XV |U has parameter γ⋆ ≃ 0.81 which is the solution
of hb(γ) + (1− γ) · log2(3) = 1.
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Figure IV.5 – Equations (IV.30) and (IV.31) as functions of γ ∈ [0, 1] for ε ∈ {0, 0.25, 0.5}.
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Figure IV.6 – Parameter γ⋆ ∈ [0, 1] solution to Ψ(Q⋆
XV |U ) = 0, depending on ε ∈ [0, 0.5].

• If the channel parameter is ε = 0.5, then the channel outputs are statistically independent of the
channel inputs. The optimal utility is obtained when U , X and V are uniformly distributed. In
that case, no information is transmitted.

• If the channel parameter is ε = 0.25, the optimal cost belongs to the interval [0.54, 0.575]. Even if the
channel is noisy, the symbols of the encoder, the decoder and the source are perfectly coordinated
more than half of the time.

IV.2.e Example #2: Hamming distortion and channel cost

We investigate the relationship between the result stated in Theorem 6 for empirical coordination and
the separation result of Shannon (1959) for the joint source-channel coding problem, see also (El Gamal
and Kim, 2011, pp. 47, 57 and 66). We consider a distortion function d : U × V 7→ R and a cost function
c : X 7→ R.
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Definition 16 The pair of distortion-cost (D⋆,C⋆) is achievable if

lim
n→+∞

min
(σ,τ)∈C(n)

(∣∣∣∣∣E
[
1

n

n∑

t=1

d(Ut, Vt)

]
− D

⋆

∣∣∣∣∣ +
∣∣∣∣∣E
[
1

n

n∑

t=1

c(Xt)

]
− C

⋆

∣∣∣∣∣

)
= 0. (IV.33)

Without loss of generality, we consider exact distortion and cost rather than upper bounds on the
distortion E

[
1
n

∑n
t=1 d(Ut, Vt)

]
≤ D

⋆ + ε, and cost E
[
1
n

∑n
t=1 c(Xt)

]
≤ C

⋆ + ε, as in (El Gamal and Kim,
2011, pp. 47 and 57). Theorem 6 provides a characterization of the achievable pairs of distortion-cost
(D⋆,C⋆).

Corollary 3 The following assertions are equivalent:

1. The pair of distortion-cost (D⋆,C⋆) is achievable, (IV.34)

2. ∃QUXY V ∈ A, EQ
[
d(U, V )

]
= D

⋆, EQ
[
c(X)

]
= C

⋆, (IV.35)

3. max
PX,

EQ[c(X)]=C⋆

I(X ;Y )− min
QV |U ,

EQ[d(U,V )]=D⋆

I(U ;V ) ≥ 0. (IV.36)

Remark 4 Unlike in (El Gamal and Kim, 2011, pp. 43, Remark 3.5), Corollary 3 establishes that the
pair of distortion-cost (D⋆,C⋆) is achievable when equation (IV.36) is also equal to zero. More details are
provided in (Le Treust, 2017, [J6]).

Proof. [Corollary 3] The equivalence between 1. and 2. follows from Theorem 8. We prove the equivalence
between 2. and 3. We consider a distribution QUXY V ∈ A that satisfy (IV.35) and we define the product

of the marginal distributions Q̃UXY V = QUV QXY . Then, EQ̃

[
d(U, V )

]
= EQ

[
d(U, V )

]
= D

⋆ and

EQ̃

[
c(X)

]
= EQ

[
c(X)

]
= C

⋆. Moreover,

0 ≤ max
Q̃W1|UXV ,

|W1|≤|U×X×V|+1

(
IQ(W1;Y |V )− IQ(U ;V,W1)

)
≤ IQ(X ;Y )− IQ(U ;V ) = IQ̃(X ;Y )− IQ̃(U ;V ).

(IV.37)

Therefore, (IV.36) is satisfied.
Now we consider the distributions QX and QV |U that achieve respectively the maximum and the

minimum in (IV.36). By Corollary 2, we have PUQV |UQXTY |X ∈ A ∩ ∆(U × V) × ∆(U × V) ⊂ A.

Moreover, EQ
[
d(U, V )

]
= D

⋆ and EQ
[
c(X)

]
= C

⋆, which imply (IV.35).

Example 2 (Trade-off distortion-cost) We consider the coordination problem of Fig. IV.2 with p ∈
[0, 1], ε ∈ [0, 1] and the distortion function is d(u, v) = 1{u 6= v} and cost function is c(x) = 1{x = 0}.
We consider the distributions QX = (α, 1−α), with α ∈ [0, 1] and QV |U = (1−β)1{V = U}+β1{V 6= U},
with β ∈ [0, 1]. The expected distortion and the expected cost are given by:

E
[
d(U, V )

]
=p · β + (1− p) · β = β, (IV.38)

E
[
c(X)

]
=
∑

x

QX(x) ·1{x = 0} = α. (IV.39)

Note that a target pair of distortion-cost (D⋆,C⋆) induces a unique pair of parameters (β, α). The infor-
mation constraint (IV.36) of Corollary 3 is equal to:

I(X ;Y )− I(U ;V ) =hb

(
α · ε+ (1 − α) · (1− ε)

)
+ hb

(
β
)
− hb

(
ε
)
− hb

(
β · p+ (1− β) · (1 − p)

)
.

(IV.40)

Fig. IV.7 represents the regions of achievable pairs of exact distortion-cost, for parameters (ε, p) ∈
{(0.05, 0.5); (0.25, 0.25); (0.25, 0.5)}. This illustrates the trade-off between minimal source distortion and
minimal channel cost. The boundary of the three regions corresponds to the pairs of distortion and cost
(D⋆,C⋆), that satisfy the equality I(X ;Y ) = I(U ;V ).
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Figure IV.7 – The set of achievable Distortion-Cost (D⋆,C⋆) depending on source and channel parameters
(ε, p) ∈ {(0.05, 0.5); (0.25, 0.25); (0.25, 0.5)}.

IV.3 General decoding functions

We investigate the empirical coordination problem for general decoding functions.

IV.3.a Causal decoding with source feedforward

We consider the setting depicted in Fig. IV.8 in which the decoder observes causally the channel
output symbols, i.e. the past and the current symbols Y t = (Y t−1, Yt), and we consider four scenarios of
source feedforward, i.e. the decoder observes the source symbols either strictly causally U t−1, or causally
U t, or non-causally Un, or does not observes any source symbol ∅.

Un Xn Y t

{∅, U t−1, U t, Un}

VtPU Enc TY |X Dec

Figure IV.8 – Causal channel output Y t and four different scenarios of source feedforward {∅, U t−1, U t,
Un}.

Definition 17 Given n ∈ N⋆, we define the non-causal encoder σ and four different decoding functions
τ ct , τ

cs
t , τ cct , τ cnt , for t ∈ {1, . . . , n}.

σ : Un −→ Xn, (IV.41)

τ ct : Yt −→ V , t ∈ {1, . . . , n}, (IV.42)

τ cst : Yt × U t−1 −→ V , t ∈ {1, . . . , n}, (IV.43)

τ cct : Yt × U t −→ V , t ∈ {1, . . . , n}, (IV.44)

τ cnt : Yt × Un −→ V , t ∈ {1, . . . , n}. (IV.45)

We denote by Ccs(n) (resp. Ccc(n), Ccn(n), Cc(n)) the set of n-length code with causal channel output and
strictly causal (resp. causal, non-causal, absent) source feedforward.

The sets of achievable target probability distributions Acs ⊂ ∆(U × X × Y × V) (resp. Acc, Acn,
Ac) are defined similarly as in Definition 14, with respect to the set of code Ccs(n) (resp. Ccc(n), Ccn(n),
Cc(n)). By definition, we have Ac ⊂ Acs ⊂ Acc ⊂ Acn ⊂ ∆(U × X × Y × V).
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When considering a code (σ, τ) ∈ Ccn(n), both encoder and decoder have non-causal observation of
the source sequence Un. Therefore, the decoder can replicate the encoding function and select a sequence
V n that is empirically correlated with (Un, Xn, Y n). Thus, the set of achievable target probability
distributions is given by

Acn =
{
PUQX|UTY |XQV |UXY

}
. (IV.46)

In the following, we characterize the sets Acs, Acc and Ac, that are subsets of Acn. The following
results are stated in (Le Treust, 2015b, [IC14], Sec. IV), (Le Treust, 2017, [J6], Theorem 4), the proof is
also stated in (Le Treust, 2015, [W1]).

Theorem 9 1. A distribution QUXY V ∈ Acc if and only if QUXY V = PUQX|UTY |XQV |UXY and
there exists an auxiliary random variable W2 ∈ W2 where |W2| ≤ |U × X × V| + 1 and a joint
distribution

Q̃UXW2Y V = PUQX|UQ̃W2|UXTY |XQ̃V |UY W2
, (IV.47)

that satisfies

QV |UXY =
∑

w2

Q̃W2|UX(w2|·, ·)Q̃V |UY W2
(·|·, ·, w2), (IV.48)

I(X ;Y |U,W2)− I(W2;U) ≥ 0. (IV.49)

2. A distribution QUXY V ∈ Acs if and only if QUXY V = PUQX|UTY |XQV |UXY and there exists an
auxiliary random variable W2 ∈ W2 where |W2| ≤ |U × X × V|+ 1 and a joint distribution

Q̃UXW2Y V = PUQX|UQ̃W2|UXTY |XQ̃V |YW2
, (IV.50)

that satisfies

QV |UXY =
∑

w2

Q̃W2|UX(w2|·, ·)Q̃V |YW2
(·|·, w2), (IV.51)

I(X ;Y |U,W2)− I(W2;U) ≥ 0. (IV.52)

3. A distribution QUXY V ∈ Ac if and only if QUXY V = PUQX|UTY |XQV |UXY and there exists a pair
of auxiliary random variables (W1,W2) ∈ W1 ×W2 where max(|W1|, |W2|) ≤ |U × X × V|+ 1 and
a joint distribution

Q̃UXW1W2Y V = PUQX|UQ̃W1W2|UXTY |XQ̃V |YW2
, (IV.53)

that satisfies

QV |UXY =
∑

(w1,w2)

Q̃W1W2|UX(w1, w2|·, ·)Q̃V |YW2
(·|·, w2), (IV.54)

I(W1;Y |W2)− I(W1,W2;U) ≥ 0. (IV.55)

The only difference between the sets Acc and Asc comes from the conditional distributions Q̃V |UY W2

and Q̃V |YW2
. This is due to the observation of the current symbol Ut in the decoding functions τ cct ,

which is not the case for the decoding functions τ cst , for t ∈ {1, . . . , n}. When the decoder has no source
feedforward, another auxiliary random variable W1 ∈ W1 is needed in order to tune the state-dependent
channel, as in Gel’fand and Pinsker (1980).
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IV.3.b Strictly causal decoding with source feedforward

For the seek of completeness, we characterize the set of achievable distributions for strictly causal
decoding with source feedforward, similarly as in Sec. IV.3.a. We consider the setting depicted in Fig.
IV.9 in which the decoder observes strictly causally the channel output symbols Y t−1, and we consider
four scenarios of source feedforward, i.e. the decoder observes the source symbols either strictly causally
U t−1, or causally U t, or non-causally Un, or does not observes any source symbol ∅.

Definition 18 Given n ∈ N⋆, we define the non-causal encoder σ and four different decoding functions
τ st , τ

ss
t , τ sct , τ snt , for t ∈ {1, . . . , n}.

σ : Un −→ Xn, (IV.56)

τ st : Yt−1 −→ V , t ∈ {1, . . . , n}, (IV.57)

τ sst : Yt−1 × U t−1 −→ V , t ∈ {1, . . . , n}, (IV.58)

τ sct : Yt−1 × U t −→ V , t ∈ {1, . . . , n}, (IV.59)

τ snt : Yt−1 × Un −→ V , t ∈ {1, . . . , n}. (IV.60)

We denote by Csc(n) (resp. Css(n), Csn(n), Cs(n)) the set of n-length code with strictly causal channel
output and causal (resp. strictly causal, non-causal, absent) source feedforward.

Un Xn Y t−1

{∅, U t−1, U t, Un}

VtPU Enc TY |X Dec

Figure IV.9 – Strictly causal channel output Y t−1 and four different scenarios of source feedforward {∅,
U t−1, U t, Un}.

The sets of achievable target probability distributions Asc ⊂ ∆(U×X ×Y×V) (resp. Ass, Asn, As) are
defined similarly as in Definition 14, with respect to the set of code Csc(n) (resp. Css(n), Csn(n), Cs(n)).
By definition, we have As ⊂ Ass ⊂ Asc ⊂ Asn ⊂ ∆(U × X × Y × V).

When considering a code (σ, τ) ∈ Csn(n), both encoder and decoder have non-causal observation of
the source sequence Un. Therefore, the decoder can replicate the encoding function and therefore select
a sequence V n that is empirically correlated with (Un, Xn). For all t ∈ {1, . . . , n}, the decoder must
return Vt before it observes Yt. Thus, we have the Markov chain property Y −
−X −
− (U, V ) and the set
of achievable distributions is given by

Asn =
{
PUQXV |UTY |X

}
. (IV.61)

In the following, we characterize the sets As, Ass and Asc.

Theorem 10 1. A distribution QUXY V ∈ Asc if and only if QUXY V = PUQXV |UTY |X and there
exists an auxiliary random variable W2 ∈ W2 where |W2| ≤ |U ×X ×V|+1 and a joint distribution

Q̃UXW2Y V = PUQX|UQ̃W2|UXQ̃V |UW2
TY |X , (IV.62)

that satisfies

QV |UX =
∑

w2

Q̃W2|UX(w2|·, ·)Q̃V |UW2
(·|·, w2), (IV.63)

I(X ;Y |U,W2)− I(W2;U) ≥ 0. (IV.64)
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2. A distribution QUXY V ∈ Ass if and only if QUXY V = PUQXV |UTY |X and

I(X ;Y |U, V )− I(V ;U) ≥ 0. (IV.65)

3. A distribution QUXY V ∈ As if and only if QUXY V = PUQXV |UTY |X and there exists an auxiliary
random variables W1 ∈ W1 where |W1| ≤ |U × X × V|+ 1 and a joint distribution

Q̃UXW1Y V = PUQXV |UQ̃W1|UXV TY |X , (IV.66)

that satisfies

I(W1;Y |V )− I(W1, V ;U) ≥ 0. (IV.67)

The Theorem 10 (2.) was stated for achievable distributions in (Le Treust, 2017, [J6], Corollary 3) and
for implementable distributions in (Gossner et al., 2006, Eq. (11)), and (Larrousse et al., 2018, Theorem
4 and Corollary 12). The Theorem 10 (3.) corresponds to the Theorem 7 in Sec. IV.2.

Remark 5 An inner bound to the set Asc was stated in (Larrousse et al., 2015a, Theorem 2) with a pair
of auxiliary random variables (W1,W2). When using our notations for (S0, S1, S2, U, V,X1, X2, Y1, Y2) =
(∅, U, U,W2,W1, X, V, Y,∅), we obtain the decomposition of the distribution

Q̃UXW1W2V Y = PUQX|U Q̃W1W2|UXQ̃V |UW2
TY |X , (IV.68)

and the information constraint

I(W1;Y |W2)− I(W1,W2;U) ≥ 0. (IV.69)

However, the decoder may exploit the causal observation of the source which may lead to a weaker infor-
mation constraint

I(W1;Y |W2)− I(W1,W2;U) ≤ I(W1;U, Y |W2)− I(W1,W2;U) = I(W1;Y |W2, U)− I(W2;U), (IV.70)

for which it is optimal to take W1 = X.

IV.4 State-dependent source and state-dependent channel

In this section, we investigate the empirical coordination problem for state-dependent source and
channels. The state-dependent source generates a triple of sequences (Un, Sn, Zn) ∈ Un × Sn × Zn,
drawn i.i.d. according to PUSZ ∈ ∆(U × S × Z), as in (IV.71). We denote by Un ∈ Un the sequence of
source symbols, Sn ∈ Sn the sequence of channel states symbols and Zn ∈ Zn the sequence of decoder
state information symbols. The state-dependent channel generates an output sequence Y n ∈ Yn drawn
i.i.d. according to TY |XS ∈ ∆(Y)|X×S|, as in (IV.72).

Pr
(
(Un, Sn, Zn) = (un, sn, zn)

)
=

n∏

t=1

PUSZ(ut, st, zt), ∀(un, sn, zn) ∈ Un × Sn ×Zn, (IV.71)

Pr
(
Y n = yn

∣∣(Xn, Sn) = (xn, sn)
)
=

n∏

t=1

TY |XS(yt|xt, st), ∀(xn, sn, yn) ∈ Xn × Sn × Yn. (IV.72)

In this section, we consider strictly causal, causal and non-causal encoding and decoding functions.

IV.4.a Non-causal encoder and non-causal decoder

We consider the setting depicted in Fig. IV.10.
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Definition 19 Given n ∈ N⋆, we define the n-length code with non-causal encoder and non-causal decoder
by a pair (σ, τ) of deterministic functions

σ : Un × Sn −→ Xn, (IV.73)

τ : Yn ×Zn −→ Vn. (IV.74)

We denote by Cnc(n) the set of n-length code with non-causal encoder and non-causal decoder.

The code (σ, τ) ∈ Cnc(n) induces a probability distribution Pc
UnSnZnXnY nV n defined, for all

(un, sn, zn, xn, yn, vn), by

Pc
UnSnZnXnY nV n(un, sn, zn, xn, yn, vn)

=

( n∏

t=1

PUSZ(ut, st, zt)

)
1

{
xn = σ(un, sn)

}( n∏

t=1

TY |XS(yt|xt, st)
)
1

{
vn = σ(yn, zn)

}
. (IV.75)

We evaluate the empirical frequencies of symbols induced by the code.

Un

Sn

Zn

Xn Y n V n

PUSZ Enc TY |XS Dec

Figure IV.10 – Non-Causal Encoding function f : Un×Sn → Xn and Decoding function g : Yn×Zn → Vn.

We refer to the Definition 13 for the random empirical distribution Qn
USZXY V . We define the notion

of achievable distribution similarly to Def. 14.

Definition 20 A target probability distribution QUSZXV Y ∈ ∆(U×S×Z×X×Y×V) is achievable if there
exists a sequence of codes (σ, τ) ∈ Cnc(n) such that the sequence of empirical distributions (Qn

USZXY V )n∈N⋆

converges in probability to QUSZXV Y , i.e.

∀δ > 0, lim
n→+∞

min
(σ,τ)∈Cnc(n)

Pr

(∣∣∣
∣∣∣Qn

USZXV Y −QUSZXV Y

∣∣∣
∣∣∣
1
> δ

)
= 0. (IV.76)

We denote by Anc ⊂ ∆(U × S × Z × X × Y × V) the set of achievable distributions.

We aim at characterizing the asymptotic behavior of the empirical distribution Qn
USZXY V induced by

sequences of codes.

Theorem 11 1. A target probability distribution QUSZXY V ∈ ∆(U × S ×Z ×X ×Y × V) is achievable
if

QUSZXY V = PUSZQX|USTY |XSQV |USZXY , (IV.77)

and there exist an auxiliary random variable W ∈ W with |W| ≤ |U × S × Z × X × V|+ 2 such that

max
Q̃USZWXY V

∈Qnc(QV |USZXY )

(
I(W ;Y, Z)− I(W ;U, S)

)
≥ 0, (IV.78)

where for every QV |USZXY ,

Qnc(QV |USZXY ) =

{
Q̃USZWXY V = PUSZQX|USQ̃W |USXTY |XSQ̃V |Y ZW ,

QV |USZXY =
∑

w∈W
Q̃W |USX(w|·, ·, ·)Q̃V |Y ZW (·|·, ·, w)

}
. (IV.79)

43



CHAPTER IV. EMPIRICAL COORDINATION WITH A STRICTLY CAUSAL OR A CAUSAL DECODER

2. If a target probability distribution QUSZXY V ∈ ∆(U × S × Z × X × Y × V) is achievable, then

QUSZXY V = PUSZQX|USTY |XSQV |USZXY , (IV.80)

and

max
Q̃USZWXY V

∈Qnc(QV |USZXY )

(
min

(
I(X,U, S;Y, Z), I(X,S;Y ) + I(U ;Z)

)
− I(W ;U, S)

)
≥ 0. (IV.81)

The Theorem 11 (1.) is stated in (Le Treust, 2015c, [IC13], Theorem III.1) and in (Le Treust, 2015,
[W1]). The Theorem 11 (2.) is stated in (Cervia et al., 2020, [J9], Theorem 2). When there is no state
information S = Z = ∅, Theorem 11 (1.) boils down to (Cuff and Schieler, 2011, Theorem 1). Any
distribution Q̃USZWXY V ∈ Qnc(QV |USZXY ) satisfies the Markov chains

Y −
− (X,S)−
− (U,Z,W ), (IV.82)

Z −
− (U, S)−
− (X,Y,W ), (IV.83)

V −
− (Y, Z,W )−
− (U, S,X). (IV.84)

Remark 6 The mutual informations in (IV.81) and (IV.81) are continuous over the set of probability
distributions Qnc(QV |USZXY ), for all QV |USZXY . Moreover, Qnc(QV |USZXY ) is compact since |W| <
+∞. As mentioned in (Cuff, 2013, pp. 7083) and in (Wyner and Ziv, 1976, pp. 9), the supremum is a
maximum in (IV.81) and (IV.81).

Perfect Channel

We consider that the state-dependent channel is not noisy, i.e. TY |XS = 1{Y = X} depicted in Fig.
IV.11. We characterize the set of achievable distributions.

Un

Sn

Zn

Xn V n

PUSZ Enc Dec

Figure IV.11 – The perfect channel is defined by TY |XS = 1{Y = X} and the decoding is lossy.

Theorem 12 A target probability distribution QUSZXV ∈ ∆(U × S × Z × X × V) is achievable if and
only if

QUSZXY V = PUSZQX|USQV |USZX , (IV.85)

and there exist an auxiliary random variable W2 ∈ W2 with |W2| ≤ |U × S × Z × X × V|+ 2 such that

max
Q̃USZW2XV

∈Qp(QV |USZX )

(
I(W2;Z|X) +H(X)− I(X,W2;U, S)

)
≥ 0, (IV.86)

where for every QV |USZX ,

Qp(QV |USZX) =

{
Q̃USZW2XV = PUSZQX|USQ̃W2|USXQ̃V |XZW2

,

QV |USZX =
∑

w2∈W2

Q̃W2|USX(w2|·, ·, ·)Q̃V |XZW2
(·|·, ·, w2)

}
. (IV.87)
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This result is stated in (Le Treust, 2015c, [IC13], Theorem IV.1)and in (Le Treust, 2015, [W1]). Any
distribution Q̃USZW2XV ∈ Qp(QV |USZX) satisfies the Markov chains

Z −
− (U, S)−
− (X,W ), (IV.88)

V −
− (X,Z,W )−
− (U, S). (IV.89)

Remark 7 This result generalizes the coding theorem for state-dependent source of Wyner and Ziv
(1976).

Lossless reconstruction at the decoder

We restrict our attention to the case where the decoder must recover the source symbol, as depicted
in Fig. IV.12. We characterize the set of achievable distributions QUSZXY V for which QV |USZXY =
1{V = U}.

Un

Sn

Zn

Xn Y n V n = Un

PUSZ Enc TY |XS Dec

Figure IV.12 – The decoder must recover the source symbol, i.e. QV |USZXY = 1{V = U}.

Theorem 13 A target probability distribution QUSZXY 1{V = U} ∈ ∆(U × S × Z × X × Y × V) is
achievable if and only if

QUSZXY 1{V = U} = PUSZQX|USTY |XS1{V = U}, (IV.90)

and there exist an auxiliary random variable W1 ∈ W1 with |W1| ≤ |U × S × Z × X × V|+ 2 such that

max
Q̃USZW1XY V ∈Ql

(
I(U,W1;Y, Z)− I(W1;S|U)−H(U)

)
≥ 0, (IV.91)

where

Ql =

{
Q̃USZW2XY V = PUSZQX|USQ̃W1|USXTY |XS1{V = U}

}
. (IV.92)

This result is stated in (Le Treust, 2015c, [IC13], Eq. (11)) and in (Le Treust, 2015, [W1]). Any
distribution Q̃USZW1XY V ∈ Ql satisfies the Markov chains

Y −
− (X,S)−
− (U,Z,W1), (IV.93)

Z −
− (U, S)−
− (X,Y,W1). (IV.94)

Another formulation is stated in (Le Treust, 2014, [IC12]) with a more restrictive lossless decoding
constraint: P(Ûn 6= Un) → 0.

Remark 8 This result generalizes the coding theorem for state-dependent channel of Gel’fand and
Pinsker (1980).
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Un

Sn

Zn

Xn Y n V n

PUZ

PS

Enc TY |XS Dec

Figure IV.13 – The source random variables (U,Z, V ) are independent of the channel random
variables(X,S, Y ).

Separation between Source and Channel

We restrict our attention to the case where the source distribution satisfies PUSZ = PUZPS and
we investigate the achievability of target distributions such that the random variables of the source
(U,Z, V ) are independent of the random variables of the channel (X,S, Y ), as depicted in Fig. IV.13.
We characterize the set of achievable distributions of the form QUZV QXSY .

Theorem 14 A target probability distribution QUZV QXSY ∈ ∆(U×Z×V)×∆(X ×S×Y) is achievable
if and only if

QUZV = PUZQV |UZ , QXSY = PSQX|STY |XS , (IV.95)

and there exist a pair of auxiliary random variables (W1,W2) ∈ W1 ×W2 with |W1| ≤ |U × Z × V| + 2
and |W2| ≤ |S × X × Y|+ 2 such that

max
Q̃USZW1W2XY V

∈Qs(QV |UZ )

(
I(W1;Y )− I(W1;S) + I(W2;Z)− I(W2;U)

)
≥ 0, (IV.96)

where for every QV |UZ ,

Qs(QV |UZ) =

{
Q̃USZW1W2XY V = PUZQ̃W2|U Q̃V |ZW2

PSQX|SQ̃W1|XSTY |XS ,

QV |UZ =
∑

w2∈W2

Q̃W2|U (w2|·)Q̃V |ZW2
(·|·, w2)

}
. (IV.97)

This result is stated in (Le Treust, 2015c, [IC13], Theorem IV.2) and (Le Treust, 2015, [W1]). Any
distribution Q̃USZW1W2XY V ∈ Qs satisfies (U,Z,W2, V ) is independent of (S,X,W1, Y ) and the Markov
chains

Z −
− U −
−W2, (IV.98)

V −
− (Z,W2)−
− U, (IV.99)

Y −
− (X,S)−
−W1. (IV.100)

Remark 9 This separation result was already stated in Merhav and Shamai (2003), given a distortion
level and a channel cost.

IV.4.b Causal decoder and non-causal encoder

We consider the case where the decoder is causal, as depicted in Fig. IV.14.
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Definition 21 Given n ∈ N⋆, we define the n-length code with non-causal encoder and causal decoder by
a pair (σ, τ) where τ = {τt}t∈{1,...,n}) of deterministic functions

σ : Un × Sn −→ Xn, (IV.101)

τt : Yt ×Zt −→ V , ∀t ∈ {1, . . . , n}. (IV.102)

We denote by Ccd(n) the set of n-length code with non-causal encoder and causal decoder.

The code (σ, τ) ∈ Ccd(n) induces a probability distribution Pc
UnSnZnXnY nV n defined, for all

(un, sn, zn, xn, yn, vn), by

Pc
UnSnZnXnY nV n(un, sn, zn, xn, yn, vn)

=

( n∏

t=1

PUSZ(ut, st, zt)

)
1

{
xn = σ(un, sn)

}( n∏

t=1

TY |XS(yt|xt, st)
)( n∏

t=1

1

{
vt = σt(y

t, zt)
})

. (IV.103)

We refer to the Definitions 13 and 14 for the random empirical distribution Qn
USZXY V and the notion

of achievable distribution. We denote by Acd the set of target distributions that are achievable by using
a code (σ, τ) ∈ Ccd(n) with non-causal encoder and causal decoder.

Un

Sn

Zt

Xn Y t VtPUSZ Enc TY |XS Dec

Figure IV.14 – The encoding function σ is non-causal and the decoding function is causal τt for t ∈
{1, . . . , n}.

Theorem 15 A target probability distribution QUSZXY V ∈ Acd if and only if

QUSZXY V = PUSZQX|USTY |XSQV |USZXY , (IV.104)

and there exist a pair of auxiliary random variables (W1,W2) ∈ W1 × W2 with max(|W1|, |W2|) ≤
|U × S × Z × X × V|+ 2 such that

max
Q̃USZW1W2XY V

∈Qcd(QV |USZXY )

(
I(W1;Y, Z|W2)− I(W1,W2;U, S)

)
≥ 0, (IV.105)

where for every QV |USZXY ,

Qcd(QV |USZXY ) =

{
Q̃USZW1W2XY V = PUSZQX|USQ̃W1W2|USXTY |XSQ̃V |Y ZW2

,

QV |USZXY =
∑

w2∈W2

Q̃W2|USX(w2|·, ·, ·)Q̃V |Y ZW2
(·|·, ·, w)

}
. (IV.106)

This result is stated in (Le Treust, 2015c, [IC13], Eq. (16)) and in (Le Treust, 2015, [W1]). Any
distribution Q̃USZW1W2XY V ∈ Qcd satisfies the Markov chains

Y −
− (X,S)−
− (U,Z,W1,W2), (IV.107)

Z −
− (U, S)−
− (X,Y,W1,W2), (IV.108)

V −
− (Y, Z,W2)−
− (U, S,X,W1). (IV.109)
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Strictly causal decoder and non-causal encoder

Definition 22 Given n ∈ N⋆, we define the n-length code with non-causal encoder and strictly causal
decoder by a pair (σ, τ) where τ = {τt}t∈{1,...,n}) of deterministic functions

σ : Un × Sn −→ Xn, (IV.110)

τt : Yt−1 ×Zt−1 −→ V , ∀t ∈ {1, . . . , n}. (IV.111)

We denote by Csd(n) the set of n-length code with non-causal encoder and strictly causal decoder.

We denote by Asd, the set of target distributions that are achievable by using a code (σ, τ) ∈ Csd(n) with
non-causal encoder and strictly causal decoder.

Theorem 16 A target probability distribution QUSZXY V ∈ Asd if and only if

QUSZXY V = PUSZQXV |USTY |XS (IV.112)

and there exist an auxiliary random variables W1 ∈ W1 with |W1| ≤ |U × S × Z × X × V|+ 2 such that

max
Q̃USZW1XY V ∈Qsd

(
I(W1;Y, Z|V )− I(W1, V ;U, S)

)
≥ 0, (IV.113)

where

Qsd =

{
Q̃USZW1XY V = PUSZQXV |USQ̃W1|USXV TY |XS

}
. (IV.114)

This result is stated in (Le Treust, 2015c, [IC13], Eq. (16)) and in (Le Treust, 2015, [W1]). The
solution of (IV.113) can be obtained by replacing W2 by V in the solution of (IV.105) in Theorem 15.
Any distribution Q̃USZW1XY V ∈ Qsd satisfies the Markov chains

Y −
− (X,S)−
− (U,Z,W1, V ), (IV.115)

Z −
− (U, S)−
− (X,Y,W1, V ). (IV.116)

IV.4.c Causal encoder and non-causal decoder

We consider the case where the decoder is causal, as depicted in Fig. IV.15.

Definition 23 Given n ∈ N⋆, we define the n-length code with causal encoder and non-causal decoder by
a pair (σ, τ) where σ = {σt}t∈{1,...,n} of deterministic functions

σt : U t × St −→ X , ∀t ∈ {1, . . . , n}, (IV.117)

τ : Yn ×Zn −→ Vn, . (IV.118)

We denote by Cce(n) the set of n-length code with causal encoder and non-causal decoder.

The code (σ, τ) ∈ Cce(n) induces a probability distribution Pc
UnSnZnXnY nV n defined, for all

(un, sn, zn, xn, yn, vn), by

Pc
UnSnZnXnY nV n(un, sn, zn, xn, yn, vn)

=

( n∏

t=1

PUSZ(ut, st, zt)

)( n∏

t=1

1

{
xt = σt(u

t, st)
}( n∏

t=1

TY |XS(yt|xt, st)
)
1

{
vn = τ(yn, zn)

})
. (IV.119)

We refer to the Definitions 13 and 14 for the random empirical distribution Qn
USZXY V and the notion

of achievable distribution. We denote by Ace the set of target distributions that are achievable by using
a code (σ, τ) ∈ Cce(n) with non-causal encoder and causal decoder.

48



CHAPTER IV. EMPIRICAL COORDINATION WITH A STRICTLY CAUSAL OR A CAUSAL DECODER

U t

St

Zn

Xt Y n V n

PUSZ Enc TY |XS Dec

Figure IV.15 – The encoding function is causal σt for t ∈ {1, . . . , n} and the decoding function τ is
non-causal.

Theorem 17 A target probability distribution QUSZXY V ∈ Ace if and only if

QUSZXY V = PUSZQX|USTY |XSQV |USZXY , (IV.120)

and there exist a pair of auxiliary random variables (W1,W2) ∈ W1 × W2 with max(|W1|, |W2|) ≤
|U × S × Z × X × V|+ 2 such that

max
Q̃USZW1W2XY V

∈Qce(QUSZXY V )

(
I(W1,W2;Y, Z)− I(W2;U, S|W1)

)
≥ 0, (IV.121)

where for every QUSZXY V ,

Qce(QUSZXY V ) =

{
Q̃USZW1W2XY V = PUSZQ̃W1Q̃X|USW1

Q̃W2|USW1
TY |XSQ̃V |Y ZW1W2

,

QUSZXY V =
∑

(w1,w2)∈W1×W2

Q̃USZW1W2XY V

}
. (IV.122)

This result is stated in (Le Treust, 2015c, [IC13], Theorem V.1) and in (Le Treust, 2015, [W1]). Any
distribution Q̃USZW1W2XY V ∈ Qce satisfies the properties

(U, S) are independent of W1, (IV.123)

X −
− (U, S,W1)−
−W2, (IV.124)

Y −
− (X,S)−
− (U,Z,W1,W2), (IV.125)

Z −
− (U, S)−
− (X,Y,W1,W2), (IV.126)

V −
− (Y, Z,W1,W2)−
− (U, S,X). (IV.127)

Strictly causal encoder and non-causal decoder

Definition 24 Given n ∈ N⋆, we define the n-length code with causal encoder and non-causal decoder by
a pair (σ, τ) where σ = {σt}t∈{1,...,n} of deterministic functions

σt : U t−1 × St−1 −→ X , ∀t ∈ {1, . . . , n}, (IV.128)

τ : Yn ×Zn −→ Vn, . (IV.129)

We denote by Cse(n) the set of n-length code with causal encoder and non-causal decoder.

We denote by Ase, the set of target distributions that are achievable by using a code (σ, τ) ∈ Cse(n)
with non-causal encoder and strictly causal decoder.

Theorem 18 A target probability distribution QUSZXY V ∈ Ase if and only if

QUSZXY V = PUSZQXTY |XSQV |USZXY (IV.130)
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and there exist an auxiliary random variables W2 ∈ W2 with |W2| ≤ |U × S × Z × X × V|+ 2 such that

max
Q̃USZW2XY V ∈Qse

(
I(X,W2;Y, Z)− I(W2;U, S|X)

)
≥ 0, (IV.131)

where

Qse =

{
Q̃USZW2XY V = PUSZQXQ̃W2|USXTY |XSQ̃V |Y ZXW2

,

QV |USZXY =
∑

w2∈W2

Q̃W2|USX(w2|·, ·, ·)Q̃V |Y ZXW2
(·|·, ·, ·, w)

}
. (IV.132)

This result is stated in (Le Treust, 2015c, [IC13], Theorem V.1) and in (Le Treust, 2015, [W1]). The
solution of (IV.131) can be obtained by replacing W1 by X in the solution of (IV.121) in Theorem 17.
Any distribution Q̃USZW1XY V ∈ Qse satisfies

(U, S) are independent of X, (IV.133)

Y −
− (X,S)−
− (U,Z,W2), (IV.134)

Z −
− (U, S)−
− (X,Y,W2), (IV.135)

V −
− (Y, Z,X,W2)−
− (U, S). (IV.136)

IV.5 Chapter summary

In this chapter, we investigate the coordination problem posed by Gossner et al. (2006), and revisited
in the Information Theory literature by Cuff et al. (2010). We characterize the optimal solutions to
various point-to-point scenarios, e.g. when the decoder or the encoder are strictly causal, causal, non-
causal, when the source and the channel are state-dependent, and with source feedforward and channel
output feedback.

One setting remains unsolved, when both encoder and decoder perform non-causally. This open
question seems related to the distributed lossy source coding problem, in which the pair of random
variables (U, Y ) are correlated information sources observed by the encoder and the decoder. Inner and
outer bounds for the distributed lossy source coding problem are stated in Berger (1978) and Tung (1978).

In the next chapter, we present several extensions and applications of the coordination results.
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Chapter V

Impact of empirical

coordination results

In this chapter, we explore the consequences of the re-
sults of Chap. IV. The first section presents the contri-
butions for the channel state masking problem, stated
in (Le Treust and Bloch, 2021, [J10]), (Le Treust and
Bloch, 2016, [IC16]), (Le Treust and Bloch, 2019, [NC9]).
In the second section, we use coordination coding for a
decentralized control problem called the Witsenhausen’s
counterexample. This corresponds to (Le Treust and
Oechtering, 2021, [IC27]), (Oechtering and Le Treust,
2019, [IC23]), (Le Treust and Oechtering, 2018, [IC22]),

(Le Treust and Oechtering, 2022, [W9]). The third section presents some of Giulia Cervia’s
PhD contributions on strong coordination problems, i.e. when the probability distribution
induced by the coding converges to a target i.i.d. probability distribution. This corresponds to
(Cervia et al., 2020, [J9]), (Cervia et al., 2018, [IC21]), (Cervia et al., 2017b, [IC19]), (Cervia
et al., 2016, [IC17]), (Cervia et al., 2017a, [NC7]).
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V.1 State leakage and coordination with causal state knowledge

at the encoder

The study of state-dependent channels can be traced back to the early works of Shannon (1958)
and Gel’fand and Pinsker (1980), which identified optimal coding strategies to transmit reliably in the
presence of a state known at the encoder causally or non-causally, respectively. The insights derived from
the models have since proved central to the study of diverse topics including wireless communications,
see Costa (1983); Keshet et al. (2008), information-hiding and watermarking as in Moulin and O’Sullivan
(2003), and information transmission in repeated games in Gossner et al. (2006). The present work
relates to the latter application and studies state-dependent channels with causal state knowledge from
the perspective of empirical coordination Cuff et al. (2010).

Previous studies that have explored the problem of not only decoding messages at the receiver but also
estimating the channel state, are particularly relevant to the present work. The state masking formulation

M

St

Xt Y n (M̂, V n)PM

PS

ft T g, h

Figure V.1 – The memoryless channel TY |XS depends on the state drawn i.i.d. according to PS . The
encoding function is causal ft : M×St → X , for all t ∈ {1, . . . , n} and the decoding functions g : Yn → M
and h : Yn → ∆(Vn) are non-causal.

of the problem, see Merhav and Shamai (2007), aims at characterizing the trade-off between the rate of
reliable communication and the minimal leakage about the channel state. The rate-leakage capacity region
of state masking has been successfully characterized for both causal and non-causal state knowledge. The
state amplification formulation of Kim et al. (2008), in which the state is conveyed to the receiver instead
of being masked, aims at characterizing the trade-off between the rate of reliable communication and
the reduction of uncertainty about the state. The rate-uncertainty reduction capacity region of state
amplification has also been successfully characterized for causal and non-causal state knowledge. The
state amplification formulation was subsequently extended in the causal case by replacing the reduction
of uncertainty about the state by an average cost function in Choudhuri et al. (2013) (this model was
dubbed causal state communication). Note that, in such a scenario, the channel output feedback at the
encoder increases the region of achievable rate-cost pairs, as in Bross and Lapidoth (2018). The rate-cost
capacity region of state communication has been successfully characterized for causal and strictly causal
state knowledge, and has been characterized for noiseless and noisy non-causal state knowledge in the
case of Gaussian channels with a quadratic cost, see Sutivong et al. (2005); Tian et al. (2015). Both
formulations have been combined in Koyluoglu et al. (2016) to study the trade-off between amplification
and leakage rates in a channel with two receivers having opposite objectives. The amplification-leakage
capacity region has been investigated for non-causal state knowledge, via generally non-matching inner
and outer bounds. As a perhaps more concrete example, in Tutuncuoglu et al. (2014), the authors have
studied the trade-off between amplification and leakage in the context of an energy harvesting scenario.
An extreme situation of state masking, called state obfuscation, in which the objective is to make the
channel output sequence nearly independent of the channel states, has recently been investigated in Wang
and Wornell (2020).

We revisit the problems of state masking and state amplification with causal and strictly causal state
knowledge through the lens of empirical coordination, see Cuff et al. (2010), Kramer and Savari (2007).
Empirical coordination refers to the control of the joint histograms of the various sequences such as states,
codewords, that appear in channel models, and is related to the coordination of autonomous decision
makers in game theory as in Gossner et al. (2006). Specifically, the study of empirical coordination
over state-dependent channels is a proxy for characterizing the utility of autonomous decision makers
playing a repeated game in the presence of an environment variable (the state), random Gossner et al.
(2006); Gossner and Vieille (2002) or adversarial Gossner et al. (2009); Gossner and Tomala (2006, 2007),
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and of an observation structure (the channel) describing how agents observe each other’s actions. The
characterization of the empirical coordination capacity requires the design of coding schemes in which
the actions of the decision makers are sequences that embed coordination information. The empirical
coordination capacity has been studied for state-dependent channels under different constraints including
strictly causal and causal encoding Cuff and Schieler (2011), for perfect channel Cuff and Zhao (2011),
for strictly causal and causal decoding (Le Treust, 2017, [J6]), with source feedforward Larrousse et al.
(2018), for lossless decoding (Le Treust, 2014, [IC12]), with secrecy constraint Schieler and Cuff (2014),
with two-sided state information (Le Treust, 2015c, [IC13]) and with channel feedback (Le Treust, 2015b,
[IC14]). Empirical coordination is also a powerful tool for controlling the Bayesian posterior beliefs of the
decoder, e.g. in the problems of Bayesian persuasion (Le Treust and Tomala, 2019, [J8]) and strategic
communication (Le Treust and Tomala, 2019, [W3]).

The main contribution of the present work is to show that empirical coordination provides a natural
framework in which to jointly study the problems of reliable communication, state masking, and state
amplification. This connection highlights some of the benefits of empirical coordination beyond those
already highlighted in earlier works Cuff and Schieler (2011)–(Le Treust, 2015b, [IC14]). In particular,
we obtain the following.

• We introduce and characterize the notion of core of the receiver’s knowledge, which captures what
the decoder can exactly know about the other variables involved in the system. For instance, this
allows us to characterize the rate-leakage-coordination region for the causal state-dependent channel
(Theorem 19). Our definition of leakage refines previous work by exactly characterizing the leakage
rate instead of only providing a single-sided bound. When specialized, our result (Theorem 20)
simultaneously recovers the constraints already established both in (Merhav and Shamai, 2007,
Section V) and (Kim et al., 2008, Theorem 2).

• We revisit the problem of causal state communication and characterize the normalized KL-
divergence between the decoder’s posterior beliefs and a target belief induced by coordination
(Theorem 21). This allows us to characterize the rate-cost trade-off for a zero-sum game, in which
the decoder attempts to estimate the state while the encoder tries to mask it (Theorem 22).

• We extend the results to other models, including two-sided state information (Theorem 23), noisy
feedback (Theorem 24), and strictly causal encoding (Theorem 25).

The rest of the section is organized as follows. In Section V.1.a, we formally introduce the model, along
with necessary definitions and notation, and we state our main results. In Section V.1.c, we investigate the
channel state estimation problem by introducing the KL-divergence and the decoder’s posterior beliefs.
In Section V.1.d and Section V.1.e, we present some extensions of our results to different scenarios.

V.1.a Problem statement

The problem under investigation is illustrated in Figure V.1. A uniformly distributed message repre-
sented by the random variable M ∈ M is to be transmitted over a state dependent memoryless channel
characterized by the conditional distribution TY |XS and a channel state S ∈ S drawn according to the
i.i.d. distribution PS . For n ∈ N⋆, the messageM and the state sequence Sn are encoded into a codeword
Xn ∈ Xn using an encoder, subject to causal constraints to be precised later. Upon observing the output
Y n ∈ Yn of the noisy channel, the receiver uses a decoder to form an estimate M̂ ∈ M of M and to
generate actions V n ∈ Vn, whose exact role will be precised shortly. For now, V n can be thought of as
an estimate of the state sequence Sn but more generally captures the ability of the receiver to coordinate
with the transmitter and the channel state. Both TY |XS and PS are assumed known to all parties. We
are specifically interested in causal encoders formally defined as follows.

Definition 25 A code with causal encoding (f, g, h) consists of

ft :M×St −→ ∆(X ), ∀t ∈ {1, . . . , n}, (V.1)

g :Yn −→ M, (V.2)

h :Yn −→ ∆(Vn), (V.3)
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where f = (ft)t∈{1,...,n} are stochastic encoding functions, g is a deterministic decoding function and h
is a stochastic receiver action function. The set of codes with causal encoding with length n and message
set M is denoted Cc(n,M).

A code (f, g, h) ∈ Cc(n,M), the uniform distribution of the messages PM , the source PS and the
channel TY |XS, induce a distribution on (M,Sn, Xn, Y n, V n, M̂) given by

PM

n∏

t=1

[
PStfXt|StMTYt|XtSt

]
hV n|Y n1

{
M̂ = g(Y n)

}
. (V.4)

Since the sequences (Sn, Xn, Y n, V n) are random, the empirical distribution Qn
SXY V is also a random

variable. The performance of codes is measured as follows.

Definition 26 Fix a target rate R ≥ 0, a target state leakage E ≥ 0 and a target distribution QSXY V .
The triple (R,E,QSXY V ) is achievable if for all ε > 0, there exists n̄ ∈ N⋆, for all n ≥ n̄, there exists a
code (f, g, h) ∈ Cc(n,M) that satisfies

log2 |M|
n

≥R − ε,
∣∣∣∣Le(c)− E

∣∣∣∣ ≤ε, with Le(c) =
1

n
I(Sn;Y n),

Pe(c) =Pr

(
M 6= M̂

)
+ Pr

(∣∣∣
∣∣∣Qn

SXY V −QSXY V

∣∣∣
∣∣∣
1
> ε

)
≤ ε.

We denote by Ac the set of achievable triples (R,E,QSXY V ).

In layman’s term, performance is captured along three metrics: i) the rate at which the message M
can be reliably transmitted; ii) the information leakage rate about the state sequence Sn at the receiver;
and iii) the ability of the encoder to coordinate with the receiver, captured by the empirical coordination
with respect to QSXY V . The need to coordinate with receiver action V is motivated by problems in
which the terminals represent decision makers that choose actions (X,V ) as a function of the system
state S, as in Gossner et al. (2006). The state can also be used to represent a system to control, in which
case coordination also ties to the Witsenhausen’s counterexample Grover et al. (2015), (Oechtering and
Le Treust, 2019, [IC23]).

b

b

bb

b
I(S,W1;Y )

H(S)

I(S;Y,W1,W2)

I(W1,W2;Y )− I(W2;S|W1) R

E

0

H(S) < I(S,W1;Y )

Figure V.2 – The region of achievable (R,E) ∈ Ac for a given distribution QSW1W2XY V for which H(S) <
I(S,W1;Y ).

V.1.b Characterization of achievable triples of rate, leakage and distribution

We now state the main result.
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Theorem 19 Consider a target distribution QSXY V that decomposes as
QSXY V = PSQX|STY |XSQV |SXY . Then, (R,E,QSXY V ) ∈ A

c
if and only if there exist two auxiliary

random variables (W1,W2) with distribution QSW1W2XY V ∈ Qc satisfying

I(S;W1,W2, Y ) ≤ E ≤ H(S), (V.5)

R + E ≤ I(W1, S;Y ), (V.6)

where Qc is the set of distributions QSW1W2XY V with marginal QSXY V that decompose as

PSQW1QW2|SW1
QX|SW1

TY |XSQV |YW1W2
, (V.7)

and such that max(|W1|, |W2|) ≤ |S × X × Y × V|+ 1.

The achievability and converse proofs are provided in (Le Treust and Bloch, 2021, [J10]). The key
idea behind the achievability proof is the following. The encoder operates in a Block-Markov fashion
to ensure that the transmitted signals, the state, the received sequence, and the receiver actions are
coordinated subject to the causal constraint at the encoder. This requires the use of two auxiliary
codebooks, captured by the auxiliary random variables W1 and W2, where the first codebook is used for
reliable communication while the second one is used to coordinate with the state. Simultaneously, the
encoder quantizes the channel state and transmits carefully chosen bin indices on top of its messages to
finely control how much the receiver can infer about the channel state. The region of achievable pairs
(R,E) is depicted in Fig. V.2 for a given distribution QSW1W2XY V , assuming H(S) < I(S,W1;Y ).

Remark 10 Equation (V.6) and the first inequality of (V.5) imply the information constraints of
(Choudhuri et al., 2013, Theorem 3) for causal state communication and of (Cuff and Schieler, 2011,
Theorem 2) for empirical coordination.

R ≤ I(W1,W2;Y )− I(W2;S|W1). (V.8)

Indeed, both Markov chains X−
− (S,W1)−
−W2 and Y −
− (X,S)−
− (W1,W2) imply Y −
− (W1, S)−
−W2.

Theorem 19 has several important consequences. First, the coordination of both encoder and decoder
actions according to PSQX|STY |XSQV |SXY is compatible with the reliable transmission of additional
information at rate R ≥ 0. Second, the case of equality in the right-hand-side inequality of (V.5)
corresponds to the full disclosure of the channel state S to the decoder. Third, for any (R,QSXY V ), the
minimal state leakage E

⋆(R,QSXY V ) such that (R,E⋆(R,QSXY V ),QSXY V ) ∈ Ac, if it exists, is given by

E
⋆(R,QSXY V ) = min

QSW1W2XY V ∈Qc,

s.t. R≤I(W1,W2;Y )−I(W2;S|W1)

I(S;W1,W2, Y ). (V.9)

The reliable transmission of information requires the decoder to know the encoding function, from
which it can estimate the channel state S. In Section V.1.c, we investigate the relationship between the
state leakage Le(c) and the decoder’s posterior belief PSn|Y n induced by the encoding process.

Special case without receiver actions

We now assume that the decoder does not return an action V coordinated with the other symbols
(S,X, Y ), in order to compare our setting with the problems of “state masking” (Merhav and Shamai,
2007, Section V) and “state amplification” (Kim et al., 2008, Section IV). Note that these earlier works
involve slightly different notions of achievable state leakage. In Merhav and Shamai (2007), the state
leakage is upper bounded by Le(c) =

1
nI(S

n;Y n) ≤ E + ε. In Kim et al. (2008), the decoder forms a list
Ln(Y

n) ⊆ Sn with cardinality log2 |Ln(Y
n)| = H(S) − E such that the list decoding error probability

Pr(Sn /∈ Ln(Y
n)) ≤ ε is small, hence reducing the uncertainty about the state. Here, we require the

leakage Le(c) =
1
nI(S

n;Y n) induced by the code to be controlled by
∣∣Le(c) − E

∣∣ ≤ ε. Nevertheless, we
shall see that our definition allows us to obtain the rate constraints of Kim et al. (2008); Merhav and
Shamai (2007) as extreme cases.
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Definition 27 A code without receiver actions consists of stochastic encoding functions ft : M×St −→
∆(X ), ∀t ∈ {1, . . . , n} and a deterministic decoding function g : Yn −→ M. The set of such codes with
length n and message set M is denoted Cd(n,M). The corresponding set of achievable triples (R,E,QSXY )
is defined as in Definition 26 and is denoted Ad.

Note that the target distribution is here restricted to QSXY ∈ ∆(S × X × Y) since the receiver does
not take an action.

Theorem 20 Consider a target distribution QSXY that decomposes as QSXY = PSQX|STY |XS. Then,
(R,E,QSXY ) ∈ Ad if and only if there exists an auxiliary random variable W1 with distribution QSW1XY ∈
Qd that satisfies

I(S;W1, Y ) ≤ E ≤ H(S), (V.10)

R + E ≤ I(W1, S;Y ), (V.11)

where Qd is the set of distributions QSW1XY with marginal QSXY that decompose as

PSQW1QX|SW1
TY |XS , (V.12)

and such that |W1| ≤ |S × Y|+ 1.

The achievability proof is obtained from Theorem 19 by setting W2 = ∅ and by considering a single
block coding instead of block-Markov coding. The converse proof is similar to the converse of Theorem 19
and is provided in the Supplementary Materials.

Remark 11 When setting W2 = ∅, (V.8) in Remark 10 simplifies to

R ≤ I(W1;Y ), (V.13)

which, together with the first inequality in (V.10), coincides with the information constraints of (Merhav
and Shamai, 2007, pp. 2260). Furthermore, (V.13), (V.11) and the second inequality of (V.10) correspond
to the region R0 stated in (Kim et al., 2008, Lemma 3). Formally, the region characterized by Theorem 20
is the intersection of the regions identified in (Merhav and Shamai, 2007, pp. 2260) and (Kim et al.,
2008, Lemma 3).

V.1.c Channel state estimation via cost function

Decoder posterior belief

In this section, we provide an upper bound on the KL-divergence between the decoder posterior belief
PSn|Y n induced by an encoding, and the target conditional distribution QS|YW1W2

.

Theorem 21 (Channel state estimation) Assume that the distribution QSW1W2XY has full support.
For any conditional distribution PWn

1 Wn
2 Xn|Sn , we have

1

n
D

(
PSn|Y n

∣∣∣∣

∣∣∣∣
n∏

t=1

QSt|YtW1,tW2,t

)
(V.14)

≤Le(c)− I(S;W1,W2, Y ) + α1δ + α2Pr

(∣∣∣
∣∣∣Qn

SW1W2Y −QSW1W2Y

∣∣∣
∣∣∣
1
> δ

)
, (V.15)

where the constant parameters α1 =
∑

s,w1,
w2,y

log2
1

Q(s|w1,w2,y)
and α2 = log2

1
mins,y,w1,w2 Q(s|y,w1,w2)

are

strictly positive.

The proof of Theorem 21 is given in (Le Treust and Bloch, 2021, [J10]). Consider a target leakage
E = I(S;W1,W2, Y ) and a pair (R,QSXY V ), and assume there exists a distribution QSW1W2XY V ∈ Qc

with full support, satisfying (V.5) and (V.6). By Theorem 19, for all ε > 0 and for all δ > 0, there
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exists n̄ ∈ N⋆ such that for all n ≥ n̄ there exists a code (f, g, h) ∈ C(n,M) with two auxiliary sequences
(Wn

1 ,W
n
2 ), such that

∣∣∣∣Le(c)− I(S;W1,W2, Y )

∣∣∣∣ ≤ ε and

Pr

(∣∣∣
∣∣∣Qn

SW1W2Y −QSW1W2Y

∣∣∣
∣∣∣
1
> δ

)
≤ ε. (V.16)

Hence, by Theorem 21 we have

1

n
D

(
PSn|Y n

∣∣∣∣
∣∣∣∣

n∏

t=1

QSt|YtW1,tW2,t

)
≤ε+ α1δ + α2ε, (V.17)

where ǫ and δ may go to zero when n goes to infinity. This shows that the posterior belief PSn|Y n

approaches the single-letter distribution QS|YW1W2
. Based on the triple of symbols (Y,W1,W2), the

decoder generates action V using the conditional distribution QV |YW1W2
, and infers the channel state S

according to the conditional distribution QS|YW1W2
. In that regard, the random variables (Y,W1,W2)

capture the "core of the receiver’s knowledge," regarding other random variables S and V . The bound on
the KL-divergence in (V.15) relates to the notion of strategic distance (Gossner and Vieille, 2002, Section
5.2), later used in several articles on repeated game Gossner and Tomala (2006), Gossner and Tomala
(2007), Gossner et al. (2009), on Bayesian persuasion (Le Treust and Tomala, 2019, [J8]) and on strategic
communication (Le Treust and Tomala, 2019, [W3]).

Channel state estimation zero-sum game

We now introduce a cost function c : S × V → R and the channel state estimation zero-sum game,
in which the encoder and decoder are opponents, i.e. the decoding is selected in order to minimize the
cost function, which is maximize by the encoder. Although the encoder and the decoder cooperate in
transmitting reliably at rate R, the encoder seeks to prevent the decoder from returning a good estimate
v ∈ V of the channel state s ∈ S by maximizing the expected long-run cost, while the decoder attempts
to minimize it.

Definition 28 A target rate R ≥ 0 and a target cost C ≥ 0 are achievable if for all ε > 0, there exists
n̄ ∈ N⋆ such that for all n ≥ n̄, there exists a code in Cd(n,M) such that

log2 |M|
n

≥R − ε, (V.18)

Pr

(
M 6= M̂

)
≤ε, (V.19)

∣∣∣∣ min
hV n|Y n

1

n

n∑

t=1

E
[
c(St, Vt)

]
− C

∣∣∣∣ ≤ε. (V.20)

We denote by Ag the set of achievable pairs (R,C) ∈ Ag.

Theorem 22 (Zero-sum game) A pair of rate and cost (R,C) ∈ Ag is achievable if and only if there
exists an auxiliary random variable W1 with distribution QSW1XY ∈ Qd that satisfies

R ≤ I(W1;Y ), (V.21)

C = min
PV |W1Y

E
[
c(S, V )

]
, (V.22)

where the set Qd is defined in Theorem 20.

The proof of Theorem 22 is provided in (Le Treust and Bloch, 2021, [J10]). The achievability proof
is a consequence of Theorem 20 and Theorem 21, and of (Le Treust and Tomala, 2019, [J8], Lemma A.8,
Lemma A.21).
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Remark 12 (Maximin-minimax result) The optimal cost-rate function C
⋆(R) reformulates as a max-

imin problem

C
⋆(R) = max

QW1
,QX|SW1

R≤I(W1;Y )

min
PV |W1Y

E
[
c(S, V )

]

= min
PV |W1Y

max
QW1

,QX|SW1
R≤I(W1;Y )

E
[
c(S, V )

]
. (V.23)

The maximum and the minimum are taken over compact and convex sets and the cost function is linear.
Hence by Sion’s Theorem Sion (1958) the maximin is equal to the minimax and the value of this channel
state estimation zero-sum game is C

⋆(R).

Remark 13 (One auxiliary random variable) The formulation of Theorem 22 is based on the set
of distributions Qd with only one auxiliary random variable W1, instead of the two random variables
(W1,W2) of the set Qc. When the encoder tries to mask the channel state, it does not require the
auxiliary random variable W2 anymore, since

C
◦ = max

QW1
,QX|SW1

,QW2|SW1
R≤I(W1,W2;Y )−I(W2;S|W1)

min
PV |W1W2Y

E
[
c(S, V )

]
(V.24)

≤ max
QW1

,QX|SW1
,QW2|SW1

R≤I(W1,W2;Y )−I(W2;S|W1)

min
PV |W1Y

E
[
c(S, V )

]
(V.25)

≤ max
QW1

,QX|SW1
R≤I(W1;Y )

min
PV |W1Y

E
[
c(S, V )

]
= C

⋆, (V.26)

where (V.25) comes from taking the minimum over PV |W1Y instead of PV |W1W2Y ; (V.26) comes from the
Markov chain Y −
− (S,W1)−
−W2 stated in (V.7), that ensures I(W1,W2;Y )− I(W2;S|W1) ≤ I(W1;Y ).
Hence, the information constraint R ≤ I(W1,W2;Y )−I(W2;S|W1) is more restrictive than R ≤ I(W1;Y ).

Remark 14 (Zero rate case) In the special case R = 0, which corresponds to a channel estimation
game without communication, the encoding functions reduce to fXt|St instead of fXt|StM . The channel
state estimation zero-sum game becomes the maximin problem

max
{fXt|S

t}t∈{1,...,n}

min
hV n|Y n

E

[
1

n

n∑

t=1

c(St, Vt)

]
, (V.27)

in which the encoder chooses {fXt|St}t∈{1,...,n} and the decoder chooses hV n|Y n . Theorem 22 shows that

the single-letter solution is maxQW1 ,QX|SW1
minPV |W1Y

E
[
c(S, V )

]
.

If the objectives of both encoder and decoder were aligned, i.e., they would both try to minimize the
long term average cost

min
{f

Xt|S
t}t∈{1,...,n},

hV n|Y n

E

[
1

n

n∑

t=1

c(St, Vt)

]
, (V.28)

the problem would become the causal channel state communication studied in Choudhuri et al. (2013).

V.1.d Extensions to more general scenarios

Two-sided state information

The case of two-sided state information is illustrated in Fig. V.3. The channel state Sn, information
source Un and decoder state information Zn are jointly distributed according to the i.i.d. distribution
PUSZ ∈ ∆(U × S × Z).
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Definition 29 A code with two-sided state information consists of stochastic functions ft : M × U t ×
St −→ ∆(X ) ∀t ∈ {1, . . . , n}, a deterministic decoding function g : Yn × Zn −→ M, and a stochastic
receiver action function h : Yn ×Zn −→ ∆(Vn). The set of codes with causal encoding with length n and
message set M is denoted Cs(n,M).

Zn

U t

M

St

Xt Y n (M̂, V n)
PM

P

ft T g, h

Figure V.3 – The causal encoding function is ft : M × U t × St → X , for all t ∈ {1, . . . , n} and the
non-causal decoding functions are g : Yn ×Zn → M and h : Yn ×Zn → ∆(Vn).

A code (f, g, h) ∈ Cs(n,M), the uniform distribution of the messages PM , the source PUSZ and the
channel TY |XS induce a distribution on (M,Un, Sn, Zn, Xn, Y n, V n, M̂) given by

PM

n∏

t=1

[
PUtStZtfXt|UtStMTYt|XtSt

]
hV n|Y nZn1

{
M̂ = g(Y n, Zn)

}
. (V.29)

We denote by As the set of achievable triples (R,E,QUSZXY V ), defined similarly as in Definition 26.

Theorem 23 (Two-sided state information) Consider a target distribution QUSZXY V that decom-
poses as QUSZXY V = PUSZQX|USTY |XSQV |USZXY . Then, (R,E,QUSZXY V ) ∈ As if and only if there
exist two auxiliary random variables (W1,W2) with distribution QUSZW1W2XY V ∈ Qs satisfying

I(U, S;W1,W2, Y, Z) ≤ E ≤ H(U, S), (V.30)

R + E ≤ I(W1, U, S;Y, Z), (V.31)

where Qs is the set of distributions QUSZW1W2XY V that decompose as

PUSZQW1QW2|USW1
QX|USW1

TY |XSQV |Y ZW1W2
, (V.32)

and such that max(|W1|, |W2|) ≤ d+ 1 with d = |U × S × Z × X × Y × V|.

The achievability proof follows directly from the proof of Theorem 19, by replacing the random variable
of the channel state S by the pair (U, S) and the random variable of the channel output Y by the pair
(Y, Z). The converse proof is provided in the Supplementary Materials.

Remark 15 The Markov chains X −
− (U, S,W1) −
−W2, Y −
− (X,S) −
− (U,Z,W1,W2) and Z −
−
(U, S)−
− (X,Y,W1,W2) imply another Markov chain property (Y, Z)−
− (W1, U, S)−
−W2. Indeed, for
all (u, s, z, w1, w2, x, y) we have

P(y, z|w1, w2, u, s)

=
∑

x∈X
Q(x|u, s, w1)T (y|x, s)P(z|u, s) = P(y, z|w1, u, s).

By combining (V.30) and (V.31) with the Markov chain (Y, Z) −
− (W1, U, S) −
−W2, we recover the
information constraint of (Le Treust, 2015c, [IC13], Theorem V.1):

R ≤ I(W1,W2;Y, Z)− I(W2;U, S|W1). (V.33)
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M

St

Xt Y n
1

Y t−1
2

(M̂, V n)
PM

P

ft T g, h

Figure V.4 – The noisy feedback sequence Y t−1
2 is drawn i.i.d. according to TY1Y2|XS. The encoding is

ft : M×St × Yt−1
2 → X , ∀t ∈ {1, . . . , n}.

Noisy channel feedback observed by the encoder

In this section, we consider that the encoder has noisy feedback Y2 from the state-dependent channel
TY1Y2|XS , as depicted in Fig. V.4. The encoding function becomes ft : M×St×Yt−1

2 → X , ∀t ∈ {1, . . . , n}
while the decoding functions and the definition of the state leakage remain unchanged. The corresponding
set of achievable triples (R,E,QSXY1Y2V ) is denoted Af .

Theorem 24 (Noisy channel feedback) We consider a target distribution QSXY1Y2V that decomposes
as QSXY1Y2V = PSQX|STY1Y2|XSQV |SXY1Y2

. Then, (R,E,QSXY1Y2V ) ∈ Af if and only if there exist two
auxiliary random variables (W1,W2) with distribution QSW1W2XY1Y2V ∈ Qf that satisfy

R ≤ I(W1,W2;Y1)− I(W2;S, Y2|W1), (V.34)

I(S;W1,W2, Y1) ≤ E ≤ H(S), (V.35)

R + E ≤ I(W1, S;Y1), (V.36)

where Qf is the set of distributions with marginal QSW1W2XY1Y2V that decompose as

PSQW1QX|SW1
TY1Y2|XSQW2|SW1Y2

QV |Y1W1W2
,

and such that max(|W1|, |W2|) ≤ d+ 1 with d = |S × X × Y1 × Y2 × V|.

The achievability proof of Theorem 24 follows directly from the proof of Theorem 19, by replacing the
pair (Sn,Wn

1 ) by the triple (Sn,Wn
1 , Y

n
2 ) in order to select Wn

2 . The decoding functions and the leakage
analysis remain unchanged. The converse proof is stated in the Supplementary Materials.

Remark 16 (Noisy feedback improves coordination) The channel feedback increases the set of
achievable triples, i.e. Ac ⊂ Af , since the conditional distribution QW2|SW1Y2

depends on channel
outputs Y2. The information constraints of Theorem 24 are reduced to that of Theorem 19 since
QW2|SW1Y2

= QW2|SW1
⇐⇒W2 −
− (S,W1)−
−Y2 ⇐⇒ I(W2;Y2|S,W1) = 0. This was already pointed out

for the coordination problem in (Le Treust, 2015b, [IC14]), and for the rate-and-state capacity problem
in Bross and Lapidoth (2018).

M

St−1

Xt Y n (M̂, V n)PM

P

ft T g, h

Figure V.5 – The strictly causal encoding function is ft : M×St−1 → ∆(X ), for all t ∈ {1, . . . , n} and
the non-causal decoding functions are g : Yn → M and h : Yn → ∆(Vn).

V.1.e Strictly causal encoding

Definition 30 A code with strictly causal encoding consists of stochastic encoding functions ft : M ×
St−1 −→ ∆(X ) ∀t ∈ {1, . . . , n}, a deterministic decoding function g : Yn −→ M, and a stochastic
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receiver action function h : Yn −→ ∆(Vn). The set of codes with strictly causal encoding with length n
and message set M is denoted Csc(n,M). The corresponding set of achievable triples (R,E,QSXY V ) is
defined similarly as in Definition 26 and is denoted Asc.

Theorem 25 (Strictly causal encoding) Consider a target distribution QSXY V that decomposes as
QSXY V = PSQXTY |XSQV |SXY . Then, (R,E,QSXY V ) ∈ Asc if and only if there exists an auxiliary
random variable W2 with distribution QSW2XY V ∈ Qsc that satisfies

I(S;X,W2, Y ) ≤ E ≤ H(S), (V.37)

R + E ≤ I(X,S;Y ), (V.38)

where Qsc is the set of distributions QSW2XY V with marginal QSW2XY V that decompose as

QSW2XY V = PSQXQW2|SXTY |XSQV |XYW2
(V.39)

and such that |W2| ≤ |S × X × Y|+ 1.

The achievability proof is obtained from Theorem 19 by replacing the auxiliary random variable W1

by the channel input X . The converse proof is provided in the Supplementary Materials.

Remark 17 Equation (V.38), the first inequality of (V.37), the Markov chain Y −
− (X,S)−
−W2, and
the independence between S and X imply

R ≤ I(X,W2;Y )− I(W2;S|X). (V.40)

Corollary 4 (Without receiver’s outputs) A pair of rate and state leakage (R,E) is achievable if
and only if there exists a distribution QX that satisfies

I(S;Y |X) ≤ E ≤ H(S), (V.41)

R + E ≤ I(X,S;Y ). (V.42)

The achievability proof of Corollary 4 comes from the achievability proof of Theorem 25. The converse
proof is based on standard arguments. Equations (V.41) and (V.42) imply R ≤ I(X ;Y ).

V.2 Decentralized control: Witsenhausen’s counterexample

In this section, we investigate the impact of the coordination results of Chap. IV in decentralized
control problem. In Witsenhausen (1968), the author introduce a famous counterexample that shows
that the best affine policy is outperformed by non-linear policies. Since then the example serves as study
object illustrating the importance of the information pattern in distributed decision making, see Yüksel
and Başar (2013) for a comprehensive discussion.

The first vector-valued extension considering a non-causal setup was studied in Grover and Sahai
(2008) followed by a series of works, e.g. Grover et al. (2013); Grover and Sahai (2010); Grover et al.
(2015). A comprehensive overview on the corresponding results is provided in Le Treust and Oechtering
(2018), where we also discuss its close relation to the coordination problem. Optimal coding schemes for
relevant setups are derived in Le Treust (2017), which also provides a review on the related literature.
Most of the results were derived for finite alphabet setup where the concept of strong typicality provides
the Markov Lemma. A rigorous extension to the Gaussian case has been done in Grover and Sahai (2010).
The main result was proved to be optimal in Choudhuri and Mitra (2012b).

In this work we extend the finite alphabet coding scheme based on the concept of weak typicality,
as in Cover and Thomas (2006) that we extend so that the need of the Markov Lemma can be avoided.
Conceptually, the extension is similar to an extension as done in Vu et al. (2019), where also the approach
of Wyner (1978) on how to analyze the average estimation error has been used. We extend this approach
in this work since the second decision maker estimates the interim state and not the i.i.d. source.

In the following we show that also in this vector-valued setup the best affine policies can be outper-
formed by non-linear policies. In more detail, there exists parameter configurations where our coordina-
tion coding outperforms a simple amplification strategy.
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+ +

b b
Xn

0 ∼ N (0, QI)

Xn
0 Un

1 Xn
1 Y t

1

Zn
1 ∼ N (0, NI)

U2,t

X1,t

C1 C2

Figure V.6 – The state and the channel noise are drawn according to the i.i.d. Gaussian distributions
Xn

0 ∼ N (0, QI) and Zn
1 ∼ N (0, NI).

V.2.a System model

We consider the vector-valued Witsenhausen setup depicted in Fig. V.6. The notations X0, U1, X1,
Y1, U2 stand for the sets of states, channel inputs, interim states, channel outputs, receiver outputs, that
are all equal to the real line R. For n ∈ N⋆, the n-time Cartesian product of sets is denoted by Xn

0 .
The sequences of states and channel noises are drawn independently according to the i.i.d. Gaussian
distributions Xn

0 ∼ N (0, QI) and Zn
1 ∼ N (0, NI) with min(Q,N) > 0, where I ∈ Rn×n denotes the

identity matrix. We denote by X1 the interim state and Y1 the output of the noisy channel, defined by

X1 =X0 + U1 with X0 ∼ N (0, Q), (V.43)

Y1 =X1 + Z1 = X0 + U1 + Z1 with Z1 ∼ N (0, N). (V.44)

We denote by PX0 = N (0, Q) the Gaussian probability distribution of the state random variable X0,
and we denote by PX1Y1|X0U1

the conditional probability distribution corresponding to (V.43) and (V.44).

Definition 31 For n ∈ N⋆, a “control design” with non-causal encoder and causal decoder is a tuple of
stochastic functions c = (f, {gt}t∈{1,...,n}) defined by

f : Xn
0 −→ Un

1 , gt : Yt
1 −→ U2, ∀t ∈ {1, . . . , n}, (V.45)

which induces a distribution over the sequences of symbols given by
( n∏

t=1

PX0,t

)
fUn

1 |Xn
0

( n∏

i=t

PX1,tY1,t|X0,tU1,t

)( n∏

t=1

gU2,t|Y t
1

)
. (V.46)

We denote by Cd(n) the set of control designs with non-causal encoder and causal decoder.

The counterexample of Witsenhausen (1968) allows to investigate the trade-off between two cost
functions, a power cost for the channel input U1, and a decoder estimation cost of the interim state X1.
We evaluate these two costs by considering their respective averages over the sequences of symbols.

Definition 32 We define the n-stage costs associated with control design c ∈ Cd(n) by

γnp (c) =

{
E
[
1
n

∑n
t=1 U1,t

2
]

if it exists,

+∞ otherwise,
(V.47)

γns (c) =

{
E
[
1
n

∑n
t=1(X1,t − U2,t)

2
]

if it exists,

+∞ otherwise.
(V.48)

The pair of costs (P, S) ∈ R2 is achievable if for all ε > 0, there exists n̄ ∈ N⋆ such that for all n ≥ n̄,
there exists a control design c ∈ Cd(n) such that

∣∣∣P − γnp (c)
∣∣∣ +
∣∣∣S − γns (c)

∣∣∣ ≤ ε. (V.49)

The goal is to characterize the set of achievable pair of costs (P, S) ∈ R2, which we call the Witsen-
hausen costs.
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V.2.b Coding Result

In this section, we extend the coordination coding result of (Le Treust, 2017, Theorem 4) to the case
where state and channel noise are Gaussian random variables, other random variables are real-valued, and
we consider the power and estimation cost functions of the vector-valued Witsenhausen counterexample.
We provide a characterization of the achievable pairs of costs (P, S).

Theorem 26 The pair of Witsenhausen costs (P, S) is achievable if and only if there exists a joint
probability distribution that decomposes according to

PX0QU1W1W2|X0
PX1Y1|X0U1

QU2|W2Y1
, (V.50)

such that

I(W1;Y1|W2)− I(W1,W2;X0) ≥ 0, (V.51)

P = EQ
[
U2
1

]
, S = EQ

[
(X1 − U2)

2
]
, (V.52)

where W1 and W2 are discrete or continuous auxiliary random variables.

The achievability proof of Theorem 26 relies on a block-Markov coding scheme and an adequate notion
of weak typicality, inspired from the techniques of Vu et al. (2019). The achievability and converse proofs
are stated in (Le Treust and Oechtering, 2022, App. A, [W9]). Entropy and mutual information are
defined using the Radon-Nikodym derivative, which is briefly recapitulated in the preliminaries.

Remark 18 The probability distributions in (V.50) satisfy the Markov chains

{
(X1, Y1)−
− (X0, U1)−
− (W1,W2),

U2 −
− (Y1,W2)−
− (X0, X1, U1,W1).
(V.53)

The causality condition prevents the controller C2 to recover W1 which induces the second Markov chain
of (V.53). The first and second Markov chains are induced by the network topology.

Remark 19 The information constraint (V.51) reformulates as

I(W1;Y1,W2)− I(W1;X0,W2) ≥ I(X0;W2). (V.54)

The terms I(X0;W2) corresponds to the quantization of the state X0 via the auxiliary random variable
W2. The expression I(W1;Y1,W2)− I(W1;X0,W2) stands for the capacity of a two-sided state dependent
channel where the encoder observes (X0,W2) and the decoder observes W2. Intuitively, W1 is used to
tune the state-dependent channel so as to increase its capacity, as in Gel’fand and Pinsker (1980), in
order to refine the quantization of the state X0, via the auxiliary random variable W2.

In order to investigate the region of achievable pairs of Witsenhausen costs (P, S), we focus on its
boundary. We fix the power cost to some parameter P ≥ 0, and we investigate the optimal estimation
cost at the decoder.

Definition 33 Given a power cost parameter P ≥ 0, the optimal estimation cost MMSE(P ) is the solu-
tion of the optimization problem

MMSE(P ) = inf
Q∈Q(P )

EQ
[
(X1 − U2)

2
]
, (V.55)

Q(P ) =

{(
QU1W1W2|X0

,QU2|W2Y1

)
s.t. P = EQ

[
U2
1

]
,

I(W1;Y1|W2)− I(W1,W2;X0) ≥ 0

}
. (V.56)
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The notation MMSE(P ) in (V.55) recalls that the decoder estimation cost is the Minimum Mean
Square Error estimation cost. For such objective, the decoder optimal decision policy is well known and
given by the conditional expectation stated in the following lemma.

Lemma 2 Given a power cost parameter P ≥ 0, the optimal estimation cost MMSE(P ) satisfies

MMSE(P ) = inf
Q∈Qc(P )

EQ
[
(X1 − E[X1|W2, Y1])

2
∣∣∣W2, Y1

]
, (V.57)

Qc(P ) =

{
QU1W1W2|X0

s.t. P = EQ
[
U2
1

]
,

I(W1;Y1|W2)− I(W1,W2;X0) ≥ 0

}
. (V.58)

Proof. [Lemma 2] For all probability distribution QX1W2Y1 , the random variable U2 = E[X1|W2, Y1]
minimizes EQ

[
(X1 − U2)

2
]
.

Note that the remaining optimization problem (V.57) is difficult to solve since the domain is the set
of real-valued distributions. In the next section, we investigate this optimization problem by considering
additional assumptions that restrict the set of conditional distributions QU1W1W2|X0

.

V.2.c Control schemes of particular interest

We restrict our attention to specific choices for the auxiliary random variables W1 and W2. We
consider both W1 and W2 are Gaussian in Sec. V.2.c, whereas in Sec. V.2.c, the random variable W2 is
discrete and W1 is Gaussian.

Gaussian auxiliary random variables W1 and W2

We focus our attention to the class of jointly Gaussian random variables (X0, U1,W1,W2, X1, Y1, U2).

Definition 34 Given a power cost parameter P ≥ 0, we define the optimal estimation cost obtained with
Gaussian random variables

MMSEG(P ) = inf
Q∈QG(P )

EQ
[
(X1 − E[X1|W2, Y1])

2
∣∣∣W2, Y1

]
, (V.59)

QG(P ) =

{
QU1W1W2|X0

is conditionally Gaussian and P = EQ
[
U2
1

]
,

I(W1;Y1|W2)− I(W1,W2;X0) ≥ 0

}
. (V.60)

Note that if (X0, U1,W2) are Gaussian, then E[X1|W2, Y1] is also Gaussian.

Definition 35 Given a power cost parameter P ≥ 0, we consider the linear scheme defined by

U1,ℓ(P ) =

{
−
√

P
QX0 if P ∈ [0, Q],

−X0 +
√
P −Q otherwise.

(V.61)

The linear estimation cost function given by

MMSEℓ(P ) =





(√
Q−

√
P
)2

·N(√
Q−

√
P
)2

+N
if P ∈ [0, Q],

0 otherwise.

(V.62)

Note that if P ≥ Q, the interim state X1 can be canceled and the offset
√
P −Q is only included to

meet the power constraint with equality, as in (V.49). In the linear scheme U1,ℓ(P ), the channel input
is used to cancel the state X0. The next lemma is a reformulation of (Witsenhausen, 1968, Lemma 11),
which shows that MMSEℓ(P ) is obtained by using the best linear scheme.
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Lemma 3 We consider the linear strategy

U1 = a ·X0 + b, (V.63)

with parameters (a, b) ∈ R2, such that to match the power cost constraint E
[
U1

2
]
= a2Q + b2 = P . The

optimal estimation cost is given by

inf
(a,b)∈R2 ,

a2Q+b2=P

E
[
(X1 − E[X1|Y1])2)

∣∣∣Y1
]
= MMSEℓ(P ), (V.64)

which is achieved by the strategy U1,ℓ(P ) defined in (V.61).

For the sake of clarity, we also provide the proof of Lemma 3, in (Le Treust and Oechtering, 2022, App. B,
[W9]).

Theorem 27 Suppose that Q > 4N , we define the parameters

P1 =
1

2

(
Q − 2N −

√
Q · (Q− 4N)

)
, (V.65)

P2 =
1

2

(
Q − 2N +

√
Q · (Q− 4N)

)
. (V.66)

The optimal estimation cost obtained with Gaussian random variables is given by

MMSEG(P ) =

{
N ·(Q−N−P )

Q if Q > 4N and P ∈ [P1, P2],

MMSEℓ(P ) otherwise.
(V.67)

The proof of Theorem 27 is stated in (Le Treust and Oechtering, 2022, App. C, [W9]). The estimation
cost in (V.67) can be obtained by using, either a time sharing strategy between the two linear schemes
U1,ℓ(P1) and U1,ℓ(P2), when Q > 4N and P ∈ [P1, P2], and otherwise with the linear scheme U1,ℓ(P ). This
result shows that, under the Gaussian assumption, memoryless policies are optimal so that these policies
are also optimal for the original scalar Witsenhausen counterexample setup restricted to Gaussian random
variables. However, as pointed out by Witsenhausen in Witsenhausen (1968), the Gaussian assumption
is a strong restriction in the original scalar model which induces control designs that are generally not
optimal.

Gaussian auxiliary random variable W1 and discrete W2

In this section, we assume that P ≤ Q and we consider that W2 is a discrete auxiliary random variable,
equal to the sign of the interim random variable X1,

W2 =sign(X1). (V.68)

We assume that the random variables (X0, U1) are centered jointly Gaussian, distributed according to
N (0,K), with covariance matrix

K =

(
Q ρ

√
PQ

ρ
√
PQ P

)
, (V.69)

depending on the correlation parameter ρ ∈ [−1, 1].
Given a correlation parameter ρ ∈ [−1, 1], we reformulate the pair of correlated Gaussian random

variables (X0, U1) into a pair of independent Gaussian random variables (S̃, X̃) such that the sum is
preserved, i.e. X0+U1 = S̃+X̃, and the auxiliary channel input X̃ is independent of the auxiliary channel

state S̃. Since (X0, U1) ∼ N (0,K), we have U1 = ρ
√

P
QX0 + X̃ with X̃ ∼ N (0, P (1− ρ2)) and X̃ ⊥ X0.
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Therefore, we introduce two Gaussian random variables X̃ ∼ N (0, P (1−ρ2)) and S̃ ∼ N (0, (
√
Q+ρ

√
P )2)

such that

S̃ =

√
Q+ ρ

√
P√

Q
·X0, (V.70)

X̃ ⊥ (S̃, X0), (V.71)

X1 = X0 + U1 = X̃ + S̃. (V.72)

Then, the state-dependent channel reformulates

Y1 =X0 + U1 + Z = X̃ + S̃ + Z, (V.73)

for which Costa’s auxiliary random variable for Dirty Paper Coding (DPC), see Costa (1983), writes

W1 =X̃ + αS̃, with α =
P (1− ρ2)

P (1− ρ2) +N
. (V.74)

By combining (V.70) and (V.74), we reformulate the auxiliary random variable

W1 =X̃ +
P (1− ρ2)(

√
Q+ ρ

√
P )

(P (1− ρ2) +N)
√
Q

·X0, where X0 ⊥ X̃ ∼ N (0, P (1− ρ2)). (V.75)

Note that the correlation parameter ρ ∈ [−1, 1] is a free parameter that we use to minimize the
decoder estimation cost.

Definition 36 Given P ≥ 0, we consider the auxiliary random variables (W1,W2) defined by (V.75) and
(V.68), the optimal estimation cost is defined by

MMSEcoord(P ) = min
ρ∈[−1,1]

E
[(
X1 − E[X1|W2, Y1]

)2∣∣∣W2, Y1

]
, (V.76)

s.t. I(W1;Y1|W2)− I(W1;X0|W2) ≥ I(X0;W2). (V.77)

In the information constraint (V.77), the quantization rate I(X0;W2) must be smaller than the state
dependent channel capacity I(W1;Y1|W2)− I(W1;X0|W2).

Proposition 7 Given P ≥ 0, we consider the auxiliary random variables (W1,W2) defined by (V.75)
and (V.68) and we use the change of variable T = P +Q+ 2ρ

√
PQ. We have

MMSEcoord(P ) = min
ρ∈[−1,1]

TN

T +N
·
(
1− 2√

T +N
· 1

2π

∫ φ
(
y1 ·

√
2T+N

N(T+N)

)

Φ
(
y1 ·

√
T

N(T+N)

)dy1

)
, (V.78)

s.t.
1

2
log2

(
1 +

P (1 − ρ2)

N

)
−Ψ

(√
T

N

)

+Ψ

(√
T (

√
Q+ ρ

√
P )2N + P (1− ρ2)(T +N)2

(
√
Q+ ρ

√
P )2N2

)
≥ 1, (V.79)

where the entropy reduction function Ψ : R → [0, 1] is defined by

Ψ(α) =

∫
2Φ
(
α · x

)
· log2

(
2Φ
(
α · x

)) 1√
2π

exp
(
− x2

2

)
dx, (V.80)

and Φ(x) = 1√
2π

∫ x

−∞ exp
(
− t2

2

)
dt, is the Gaussian cumulative distribution function.

The proof of Prop. 7 is stated in (Le Treust and Oechtering, 2022, App. D, [W9]). The first term of (V.79)
corresponds to the capacity of a Gaussian state-dependent channel with channel input power P (1 − ρ2)
and noise variance N . The entropy reduction function Ψ(α) corresponds to the entropy penalty term of
skew normal distribution with the skewness factor α ∈ R.
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Ψ(α)

α0

1

5−5

Figure V.7 – Entropy reduction function Ψ(α) defined in (V.80).

V.2.d Numerical Results

We compare the performances of the control schemes of Sec. V.2.c and Sec. V.2.c, to the Witsen-
hausen two-point strategy (Witsenhausen, 1968, Sec. 5). In Grover and Sahai (2010), Grover and Sahai
investigate a vector-version of the Witsenhausen counterexample in which the decoder is non-causal and
implements the DPC scheme of Costa (1983), for a specific channel state. We compare the control schemes
of Sec. V.2.c and Sec. V.2.c to the DPC based scheme of Grover and Sahai (2010).

Witsenhausen two-point strategy

Proposition 8 (Two-point strategy) For some parameter a ≥ 0, Witsenhausen two-point strategy is
defined by

U1 =a · sign
(
X0

)
−X0. (V.81)

The power and estimation costs are given by

Ptwo(a) =Q + a
(
a− 2

√
2Q

π

)
, (V.82)

MMSEtwo(a) =

√
2π

N
a2φ

(
a√
N

)∫ φ
(

y√
N

)

cosh
(
ay
N

)dy, (V.83)

where φ(x) = 1√
2π

exp
(
− x2

2

)
and the optimal receiver’s strategy is given by E[X1|Y = y] = a tanh

(
ay
N

)
.

For the sake of clarity, we also provide the proof of Proposition 8, in (Le Treust and Oechtering, 2022,
App. E, [W9]). By letting N = 1 and a =

√
Q, we recover the equations in the proof of (Witsenhausen,

1968, Theorem 2). Note that the function Ptwo(a) decreases over the interval
[
0,
√

2Q
π

]
, where it reaches

the minimal value Q
(
1− 2

π

)
, and then increases for a ≥

√
2Q
π . Note that this two-point strategy requires

a power cost P ≥ Q
(
1 − 2

π

)
in order to be implemented. This strategy induces a binary interim state

X1 = a ·sign
(
X0

)
∈ {−a, a} for which the estimation cost outperforms, in some cases, the best estimation

cost obtained via the linear scheme, see (Witsenhausen, 1968, Theorem 2).

Dirty Paper Coding (DPC) based scheme for non-causal decoder

In Grover and Sahai (2010), the authors investigate a vector version of Witsenhausen counterexample
in which the decoder is non-causal.

Definition 37 For n ∈ N⋆, a “control design” with non-causal encoder and non-causal decoder is a tuple
of stochastic functions c = (f, g) defined by

f : Xn
0 −→ Un

1 , g : Yn
1 −→ Un

2 . (V.84)

We denote by Cnc(n) the set of control designs with non-causal encoder and non-causal decoder.

In (Grover and Sahai, 2010, App. D.1-D.7), the authors investigate a Dirty Paper Coding (DPC)
based scheme by using a Gaussian channel input U1 ∼ N (0, P ), U1 ⊥ X0 and the auxiliary random
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variable W = U1 + αX0. The leads to

I(W ;Y1)− I(W ;X0) =
1

2
log2

(
P (P +Q +N)

PQ(1− α)2 +N(P + α2Q)

)
, (V.85)

H(U1 +X0|W,Y1) =
1

2
log2

(
(2πe) · NPQ(1− α)2

PQ(1− α)2 +N(P + α2Q)

)
. (V.86)

Since the random variables are jointly Gaussian, the optimization problem writes

MMSEdpc(P ) = min
α∈R,

P(P+Q+N)≥PQ(1−α)2+N(P+α2Q)

NPQ(1− α)2

PQ(1− α)2 +N(P + α2Q)
. (V.87)

Proposition 9 Let P ⋆ ≥ 0, the unique positive root of equation P 2(P +Q+N) = QN2.
• If P ≤ P ⋆, the estimation cost for DPC is given by

MMSEdpc(P ) =
N
(
N
√
Q − P

√
P +Q+N

)2

(P +N)2(P +Q+N)
, (V.88)

which is achieved with α⋆ = P (
√
Q+

√
P+Q+N)√

Q(P+N)
.

• If P > P ⋆, then MMSEdpc(P ) = 0 which is achieved with α⋆ = 1.

This result is proved in (Grover and Sahai, 2010, App. D.1-D.7), we recall the main proof arguments in
(Le Treust and Oechtering, 2022, App. F, [W9]). In (Grover and Sahai, 2010, App. D.8), the authors
additionally investigate a combination between the linear scheme and the DPC scheme. Given a parameter

−
√

P
Q ≤ β ≤

√
P
Q , the transmit power P is divided into a linear part U1,1 = −βX0 and a part U1,2 used to

implement DPC against the state (1−β)X0 ∼ N (0, (1−β)2Q) with power constraint E[U2
1,2] ≤ P −β2Q.

By using the change of variable β = −ρ
√

P
Q , we obtain the correlation matrix of (V.69) and the auxiliary

state-dependent channel Y1 = X̃ + S̃ + Z where X̃ + S̃ = X0 + U1, the channel state S̃ is defined in
(V.70), and X̃ ⊥ (S̃, X0) with E[X̃2] ≤ P (1− ρ2). Therefore, we replace P and Q in (V.88), respectively
by P (1− ρ2) and (

√
Q + ρ

√
P )2, and we obtain

MMSElin+dpc(P ) = min
ρ∈[−1,1]

N
(
P (1− ρ2)

√
P +Q+ 2ρ

√
PQ+N −N(

√
Q+ ρ

√
P )
)2

(P (1 − ρ2) +N)2(P +Q + 2ρ
√
PQ+N)

. (V.89)

In the next section, we will see that this estimation cost MMSElin+dpc(P ) outperforms all other esti-
mation costs.

V.2.e Discussion

In Figure V.8, we compare the estimation cost proposed in Sec. V.2.c and Sec. V.2.c, with the
estimation costs from the literature, for (Q,N) = (0.1, 0.01).

• The blue curve corresponds to the estimation cost of the best linear scheme MMSEℓ(P ) defined in
(V.62), see also (Witsenhausen, 1968, Lemma 11).

• The green curve depicts the estimation cost of Witsenhausen two point strategy (Ptwo,MMSEtwo)
defined in (V.82) and (V.83), see also (Witsenhausen, 1968, Sec. 5).

• The red curve presents the estimation cost of the Grover and Sahai’s combination of the linear
scheme and DPC scheme MMSElin+dpc(P ) defined in (V.89), when the decoder is non-causal, see
also (Grover and Sahai, 2010, App. D.1-D.8).

The coordination coding scheme we propose in Sec. V.2.c is restricted to Gaussian random variables.
The estimation cost MMSEG(P ) defined in (V.67) consists of the brown line when Q > 4N and P ∈
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b bb b

bbb

b

P1 P20 P

Q = 0.2

N = 0.01

Figure V.8 – Blue: optimal linear scheme MMSEℓ(P ) in (V.62), Brown: time sharing N ·(Q−N−P )
Q in

(V.67), Green: two-point strategy (Pw,MMSEw) in (V.82) and (V.83) ; Red: combination DPC and
linear scheme MMSElin+dpc(P ) in (V.89) ; Orange: MMSE when W2 = sign(X1) and W1 is Costa’s
auxiliary random variable MMSEcoord(P ) in (V.78).

[P1, P2], and of the estimation cost MMSEℓ(P ) represented by the blue line, otherwise. Note that the
function P 7→ MMSEG(P ) is the convexification of the linear estimation cost function P 7→ MMSEℓ(P ).

We reduce the estimation cost by using the auxiliary random variableW2 = sign(X1) that encapsulates
the sign of the interim state, see Sec. V.2.c. This strategy requires a certain power cost level for the first
controller to transmit the sign of X1 to the second controller. The Fig. V.8, shows the existence of
some weight parameter κ ∈ [0, 1], such that our coordination coding scheme of Sec. V.2.c, outperforms
Witsenhausen two point strategy

κP + (1 − κ)MMSEcoord(P ) ≤ κPtwo + (1− κ)MMSEtwo. (V.90)

Note also that the power cost required to implement our coordination coding scheme of Sec. V.2.c, is
strictly less than the minimal power cost Q

(
1 − 2

π

)
needed to implement the Witsenhausen two point

strategy.
When the decoder is non-causal, the combination between the linear scheme and the DPC scheme

MMSElin+dpc(P ) proposed in Grover and Sahai (2010), Pareto-dominates all the other solutions.

V.3 Strong coordination of signals and actions

A general information-theoretic framework to study coordination in networks was put forward in Cuff
et al. (2010), related to earlier work on “Shannon’s reverse coding theorem” Bennett et al. (2002) and the
compression of probability distribution sources and mixed quantum states Kramer and Savari (2007); Sol-
janin (2002); Winter (2002). This framework also relates to the game-theoretic perspective on coordina-
tion Gossner et al. (2006) with applications, for instance, to power control Larrousse et al. (2018). Recent
extensions of the framework have included the possibility of coordination through interactive communica-
tion Gülcü and Barg (2016); Haddadpour et al. (2017); Yassaee et al. (2015). Two information-theoretic
metrics have been proposed to measure the level of coordination: empirical coordination, introduced in
Chap. IV, which requires the joint histogram of the devices’ actions to approach a target distribution, and
strong coordination, which requires the joint distribution of sequences of actions to converge to an i.i.d.
target distribution, e.g., in ℓ1 distance Cuff (2013); Cuff et al. (2010). Empirical coordination captures an
“average behavior” over multiple repeated actions of the devices, in contrast, strong coordination captures
the behavior of sequences. A byproduct of strong coordination is that it enforces some level of “security,”
in the sense of guaranteeing that sequence of actions will be unpredictable to an outside observer beyond
what is known about the target joint distribution of sequences.
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Strong coordination in networks was first studied over error free links in Cuff et al. (2010) and later
extended to noisy communication links in Haddadpour et al. (2017). In the latter setting, the signals that
are transmitted and received over the physical channel become a part of what can be observed, and one
can therefore coordinate the actions of the devices with their communication signals Cuff and Schieler
(2011), (Le Treust, 2017, [J6]).

To illustrate the relevance of this joint coordination problem, we can consider the situation in which
two stockbrokers who work for two competing companies decide to collude. One stockbroker, Agent 1,
has access to a source of information on future market developments: he sees the symbol 0 when it is
profitable to buy and the symbol 1 when it is profitable to sell. Agent 1 can accordingly act to buy or sell,
which is represented by 0 or 1, respectively. The other stockbroker, Agent 2, takes similar actions but
is less informed and only sees the actions of Agent 1. Both agents are assumed to benefit from helping
each other but their cooperation would be illegal and any coordination should therefore be kept secret.
Secrecy is achieved by keeping the signal distributions to be statistically indistinguishable from i.i.d., so
that an outside observer working for a regulating entity would not be able to prove that an exchange of
information takes place.

As the stockbrokers example above suggests, the joint strong coordination of signals and actions with
a noisy link is particularly interesting if security is required: if for example we require the actions of the
agents to appear independent of the communication, a malicious eavesdropper who observes the output
of the channel cannot infer anything about the source and the reconstruction without having access
to the source of common randomness. This “secure coordination” was investigated for error-free links
in Satpathy and Cuff (2016).

In this section, we address the problem of strong coordination in a two-node network comprised of
an information source and a noisy channel, in which both nodes have access to a common source of
randomness. This scenario presents two conflicting goals: the encoder needs to convey a message to the
decoder in order to coordinate the actions, while simultaneously coordinating the signals that encode the
message.

Up to now, the coordination problem assumes that the source and the channel follow distributions
which are fixed ahead of time and known by the agents. However, this constraint prevents us from
modeling situations in which the agent reacts to an external stimulus, and in which the channel statistics
depend on the environment. For instance, consider a situation where the actions of an agent might
be constrained by obstacles that prevent it from making certain choices. In this case the probability
distributions given by nature could change with time and would be partially if not completely unknown
to some of the agents. To include such situations in the coordination framework, we introduce a random
state capturing the effect of the environment, to model actions and channels that change with external
factors, and we consider a general setting in which we have a state-dependent channel and a source with
decoder’s side information as in (Le Treust, 2014, [IC12]), (Le Treust, 2015c, [IC13]), Larrousse et al.
(2015a).

We derive an inner and an outer bound for the strong coordination region by developing a joint
source-channel scheme in which an auxiliary codebook allows us to satisfy both coordination of signals
and actions. Since the two bounds do not match, the optimality of our general achievability scheme
remains an open question. However, we succeed in characterizing the strong coordination region in some
special cases: i) when the channel is noiseless, ii) when the decoder is lossless, and iii) when the random
variables of the channel are independent from the random variables of the source. In all these cases,
the sets of achievable target distributions are the same as for empirical coordination (Le Treust, 2015c,
[IC13]), but we show that a positive rate of common randomness is required for strong coordination.

The remainder of this section is organized as follows. Section V.3.a describes a simple model in
which there is no state and no side information and derives an inner and an outer bound for the strong
coordination region. The information-theoretic modeling of coordination problems relevant to this work
is best illustrated in this simplified scenario. Section V.3.b extends the inner and outer bounds to the
general case of a noisy channel with state and side information at the decoder. Section V.3.c characterizes
the strong coordination region for three special cases and shows that the separation principle does not
hold for strong coordination.
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V.3.a Inner and outer bounds for the strong coordination region

Before we consider the general model with a state and side information, it is helpful to focus on the
simpler model depicted in Figure V.9 to understand the nature of the problem. Two agents, the encoder
and the decoder, wish to coordinate their behaviors: the stochastic actions of the agents should follow a
known and fixed joint distribution.

Figure V.9 – Coordination of signals and actions for a two-node network with a noisy channel with
non-causal encoder and decoder.

Given a rate parameter R0 ≥ 0, we suppose that the encoder and the decoder have access to a shared
source of uniform randomness C ∈ J1, 2nR0K. Let Un ∈ Un be an i.i.d. source with distribution P̄U . The
encoder observes the sequence Un ∈ Un and selects a signal Xn = fn(U

n, C), where fn : Un×J1, 2nR0K →
Xn is a stochastic map. The signalXn is transmitted over a discrete memoryless channel parametrized by
the conditional distribution P̄Y |X . Upon observing Y n and common randomness C, the decoder selects
an action V n = gn(Y

n, C), where gn : Yn × J1, 2nR0K → Vn is a stochastic map. For block length n, the
pair (fn, gn) constitutes a code.

We recall the definitions of empirical and strong coordination Cuff (2009); Cuff et al. (2010).

Definition 38 A distribution P̄UXY V is achievable for empirical coordination if there exists a sequence
{(fn, gn)}n≥1 of encoders-decoders such that

∀δ > 0, lim
n→+∞

min
(fn,gn)n≥1

Pr

(∣∣∣
∣∣∣Qn

UXV Y − P̄UXV Y

∣∣∣
∣∣∣
1
> δ

)
= 0, (V.91)

where Qn
UXV Y is the empirical distribution of the random variables (Un, Xn, Y n, V n) induced by the code.

The empirical coordination region Re is the set of achievable distributions P̄UXY V .

Definition 39 A pair (P̄UXY V , R0) is achievable for strong coordination if there exists a sequence
{(fn, gn)}n≥1 of encoders-decoders with rate of common randomness R0, such that

lim
n→∞

∣∣∣∣Pc
UnXnY nV n − P̄⊗n

UXY V

∣∣∣∣
1
= 0

where Pc
UnXnY nV n ∈ ∆(Un × Xn × Yn × Vn) is the joint distribution induced by the code, and P̄⊗n

UXY V

denotes the i.i.d. probability distribution. The strong coordination region R is the closure of the set of
achievable pairs (P̄UXY V , R0).

Our first result is an inner and outer bound for the strong coordination region R (Cervia et al., 2017b,
[IC19]).

Theorem 28 Let P̄U and P̄Y |X be the given source and channel parameters, then R′
in ⊆ R ⊆ R′

out

where:

R′
in :=






(P̄UXY V , R0) such that:

P̄UXY V = P̄U P̄X|U P̄Y |X P̄V |UXY

∃ W taking values in W
P̄UXY WV = P̄U P̄W |U P̄X|UW P̄Y |X P̄V |WY

I(W ;U) ≤ I(W ;Y )

R0 ≥ I(W ;UXV |Y )






(V.92)
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R′
out :=





(P̄UXY V , R0) such that:

P̄UXY V = P̄U P̄X|U P̄Y |X P̄V |UXY

∃ W taking values in W
P̄UXY WV = P̄U P̄W |U P̄X|UW P̄Y |X P̄V |WY

I(W ;U) ≤ I(X ;Y )

R0 ≥ I(W ;UXV |Y )

|W| ≤ |U × X × Y × V|+ 4





. (V.93)

The proof of Theorem 28 is provided in (Cervia et al., 2020, [J9]).

Remark 20 Observe that the decomposition of the joint distributions P̄UXY V and P̄UWXY V is equiva-
lently characterized in terms of Markov chains:

Y −X − U,

{
Y −X − (U,W )

V − (Y,W )− (X,U)
. (V.94)

Remark 21 The empirical coordination region for the setting of Figure V.9 was investigated in Cuff
and Schieler (2011), in which the authors derived an inner and outer bound. Note that the in-
formation constraint I(W ;U) ≤ I(W ;Y ) and the decomposition of the joint probability distribution
P̄U P̄W |U P̄X|UW P̄Y |XP̄V |WY are the same for empirical coordination (Cuff and Schieler, 2011, Theo-
rem 1). The main difference is that strong coordination requires a positive rate of common randomness
R0 > I(W ;UXV |Y ).

V.3.b Strong coordination region with state and side information

Figure V.10 – Coordination of signals and actions for a two-node network with a noisy channel with state
and side information at the decoder.

The problem of source coding with side information at the receiver was notably considered in Wyner
and Ziv (1976), while Gel’fand and Pinsker (1980) studies channel coding with non-causal state infor-
mation available at the encoder. In practice, it is realistic to assume that the encoder and the decoder
have access to some side information, without having full knowledge of it as in Cover and Chiang (2002);
Merhav and Shamai (2003).

In this paper, we study a joint source-channel strong coordination system whose encoder has the chan-
nel state information available and whose decoder has access to side information that may be correlated
to the source.

More precisely, in this section we consider the model depicted in Figure V.10, where the noisy channel
depends on a state Sn, and the decoder has access to non-causal side information Zn.

The encoder selects a signal Xn = fn(U
n, C), with fn : Un × J1, 2nR0K → Xn a stochastic map, and

transmits it over the discrete memoryless channel P̄Y |XS where S represents the state. The decoder then
selects an action V n = gn(Y

n, Zn, C), where gn : Yn ×Zn × J1, 2nR0K → Vn is a stochastic map and Zn

represents the side information available at the decoder.

Remark 22 The channel state information and side information at the decoder are represented explicitly
by the random variables Sn and Zn respectively, and we make no assumptions on the correlation of
(Un, Sn, Zn). This includes scenarios where the encoder has access to partial, perfect or noisy channel
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state information, since the variables Un and Sn are possibly correlated. Moreover, the decoder side
information Zn can contain partial, perfect or noisy information on the channel state, on the source, or
on both of them.

We recall the notions of empirical and strong coordination in this setting Cuff (2009); Cuff et al.
(2010).

Definition 40 A distribution P̄USZXY V is achievable for empirical coordination if there exists a se-
quence {(fn, gn)}n≥1 of encoders-decoders such that

∀δ > 0, lim
n→+∞

min
{(fn,gn)}n≥1

Pr

(∣∣∣
∣∣∣Qn

USZXV Y − P̄USZXV Y

∣∣∣
∣∣∣
1
> δ

)
= 0, (V.95)

where Qn
USZXV Y is the empirical distribution of the random variables (Un, Xn, Y n, V n) induced by the

code. The empirical coordination region Re is the closure of the set of achievable distributions P̄USZXY V .
A pair (P̄USZXY V , R0) is achievable for strong coordination if there exists a sequence {(fn, gn)}n≥1 of
encoders-decoders with rate of common randomness R0, such that

lim
n→∞

∣∣∣∣PUnSnZnXnY nV n − P̄⊗n
USZXY V

∣∣∣∣
1
= 0

where Pc
UnSnZnXnY nV n is the joint distribution induced by the code. The strong coordination region R

is the closure of the set of achievable pairs (P̄USZXY V , R0).

In the case of non-causal encoder and decoder, the problem of characterizing the strong coordination
region for the system model in Figure V.10 is still open, but we establish the following inner and outer
bounds.

Theorem 29 Let P̄USZ and P̄Y |XS be the given source and channel parameters, then Rin ⊆ R ⊆ Rout

where:

Rin :=






(P̄USZXY V , R0) such that:

P̄USZXY V = P̄USZ P̄X|U P̄Y |XSP̄V |UXY SZ

∃ W taking values in W
P̄USZWXY V = P̄USZ P̄W |U P̄X|UW P̄Y |XSP̄V |WY Z

I(W ;U) ≤ I(W ;Y Z)

R0 ≥ I(W ;USXV |Y Z)






, (V.96)

Rout :=





(P̄USZXY V , R0) such that:

P̄USZXY V = P̄USZ P̄X|U P̄Y |XSP̄V |UXY SZ

∃ W taking values in W
P̄USZWXY V = P̄USZ P̄W |U P̄X|UW P̄Y |XSP̄V |WY Z

I(W ;U) ≤ min{I(XUS;Y Z),
I(XS;Y ) + I(U ;Z)}

R0 ≥ I(W ;USXV |Y Z)
|W| ≤ |U × S × Z × X × Y × V|+ 5





. (V.97)

The proof of Theorem 29 is stated in (Cervia et al., 2020, [J9]).

Remark 23 As in Theorem 28, even if inner and outer bound do not match, they only differ on the
upper bound on I(W ;U). Note that we cannot compare I(XUS;Y Z) and I(XS;Y ) + I(U ;Z). Hence,
in Rout the upper bound on the mutual information I(W ;U) is the minimum of the two.
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Remark 24 Observe that the decomposition of the joint distributions P̄USZXY V and P̄USZWXY V is
equivalently characterized in terms of Markov chains:

{
Z − (U, S)− (X,Y )

Y − (X,S)− U
,





Z − (U, S)− (X,Y,W )

Y − (X,S)− (U,W )

V − (Y, Z,W )− (X,S, U)

. (V.98)

V.3.c Characterization of the strong coordination region for special cases

Although the inner and outer bounds in Theorem 29 do not match in general, we characterize the
strong coordination region exactly in three special cases: perfect channel, lossless decoding and separation
between the channel and the source.

The empirical coordination region for these three settings was derived in (Le Treust, 2015c, [IC13]),
(Le Treust, 2015, [W1]). In this section we recover the same information constraints, but we show that
for strong coordination a positive rate of common randomness is also necessary. This reinforces the
conjecture, stated in Cuff et al. (2010), that with enough common randomness the strong coordination
capacity region is the same as the empirical coordination capacity region for any specific network setting.

Perfect channel

Figure V.11 – Coordination of signals and actions for a two-node network with a perfect channel.

Suppose we have a perfect channel as in Figure V.11: P̄Y |XS(y|x, s) = 1X=Y {x = y}. In this
case Xn = Y n and Zn plays the role of side information at the decoder. We characterize the strong
coordination region RPC.

Theorem 30 In the setting of Theorem 29, suppose that P̄Y |XS(y|x, s) = 1X=Y {x = y}. Then the
strong coordination region is

RPC :=





(P̄UZXV , R0) such that:

P̄UZXV = P̄UZ P̄X|U P̄V |UXZ

∃ W taking values in W
P̄UZWXV = P̄UZ P̄W |U P̄X|UW P̄V |WXZ

I(WX ;U) ≤ H(X) + I(W ;Z|X)

R0 ≥ I(W ;UV |XZ)
|W| ≤ |U × Z × X × V|+ 4





(V.99)

The proof of Theorem 30 is stated in (Cervia et al., 2020, [J9]).

Remark 25 Observe that the decomposition of the joint distributions P̄UZXV and P̄UZWXV is equiva-
lently characterized in terms of Markov chains:

Z − U −X,

{
Z − U − (X,W )

V − (X,Z,W )− U
. (V.100)
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Case H(Y |X) = 0 Suppose that, instead of assuming that there is a perfect channel between the
encoder and the decoder, we consider the more general case H(Y |X) = 0. Then, we recover a very similar
result to RPC.

Proposition 10 Consider the setting of Theorem 29 and suppose that H(Y |X) = 0. Then the strong
coordination region is

RH(Y |X) :=






(P̄USZXY V , R0) such that:

P̄USZXY V = P̄USZ P̄X|U P̄Y |XSP̄V |USZXY

∃ W taking values in W
P̄USZWXY V = P̄USZ P̄W |U P̄X|UW

P̄Y |XSP̄V |WZY

I(WX ;U) ≤ H(X) + I(W ;Z|X)

R0 ≥ I(W ;UV |XZ)
|W| ≤ |U × Z × X × V|+ 4






Lossless decoding

Figure V.12 – Coordination of signals and actions for a two-node network with a noisy channel and a
lossless decoder.

Suppose that the decoder wants to reconstruct the source losslessly, i.e., V = U as in Figure V.12.
Then, we characterize the strong coordination region RLD.

Theorem 31 Consider the setting of Theorem 29 and suppose that P̄V |USXY Z(v|u, s,x,y, z) =
1V=U{u = v}. Then the strong coordination region is

RLD :=






(P̄USZXY , R0) such that:

P̄USZXY V = P̄USZ P̄X|U P̄Y |XS1V=U

∃ W taking values in W
P̄USZWXY V = P̄USZ P̄W |U P̄X|UW P̄Y |XS1V=U

I(W ;U) ≤ I(W ;Y Z)

R0 ≥ I(W ;USX |Y Z)
|W| ≤ |U × S × Z × X × Y|+ 3






(V.101)

The proof of Theorem 31 is stated in (Cervia et al., 2020, [J9]).

Remark 26 Observe that the decomposition of the joint distributions P̄USZXY V and P̄USZWXY V is
equivalently characterized in terms of Markov chains:

{
Z − (U, S)− (X,Y )

Y − (X,S)− U
,

{
Z − (U, S)− (X,Y,W )

Y − (X,S)− (U,W )
. (V.102)
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Remark 27 An equivalent characterization of the region is:

RLD :=






(P̄USZXY , R0) such that:

P̄USZXY = P̄USZ P̄X|U P̄Y |XS

∃ W taking values in W
P̄USZWXY = P̄USZ P̄W |U P̄X|UW P̄Y |XS

H(U) ≤ I(WU ;Y Z)

R0 ≥ I(W ;USX |Y Z) +H(U |WYZ)

|W| ≤ |U × S × Z × X × Y|+ 1






(V.103)

The region in (V.103) is achievable since with the choice of the auxiliary random variable W ′′ = (W,U),
the constraints in (V.101) become

I(WU ;U) = H(U) ≤ I(WU ;Y Z) (V.104)

R0 ≥ I(WU ;USX |Y Z)
= I(W ;USX |Y Z) + I(U ;USX |WYZ)

= I(W ;USX |Y Z) +H(U |WY Z)−H(U |USXWYZ)

= I(W ;USX |Y Z) +H(U |WY Z). (V.105)

Moreover, the converse in the proof of Theorem 31 is still valid with the identification W =
(C,U∼T , Y∼T , Z∼T , T ).

Note that (Le Treust, 2015c, [IC13], Section IV.B) gives a characterization of the empirical coordi-
nation region and the constraint for the mutual information is

0 ≤ I(WU ;Y Z)−H(U) = I(WU ;Y Z)−H(U)− I(W ;S|U)

which is the same as in (V.104) because of the Markov chain SZ − U −W .

Independence between source and channel

Suppose that the channel state PSn is independent of the source and side information PUnZn , and
that the target joint distribution is of the form P̄⊗n

UZV P̄
⊗n
SXY . For simplicity, we will suppose that the

encoder has perfect state information (see Figure V.13). Then we characterize the strong coordination
region RIND.

Note that in this case the coordination requirements are three-fold: the random variables (Un, Zn, V n)
should be coordinated, the random variables (Sn, Xn, Y n) should be coordinated and finally (Un, Zn, V n)
should be independent of (Sn, Xn, Y n). We introduce two auxiliary random variables W1 and W2, where
W2 is used to accomplish the coordination of (Un, Zn, V n), while W1 has the double role of ensuring the
independence of source and state as well as coordinating (Sn, Xn, Y n).

Figure V.13 – Coordination of signals and actions for a two-node network with a noisy channel where the
source is separated from the channel.
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Theorem 32 Consider the setting of Theorem 29 and suppose that P̄USXY ZV = P̄UZV P̄SXY . Then, the
strong coordination region is

RIND :=





(P̄USZXY , R0) such that:

P̄USZXY V = P̄UZ P̄V |UZ P̄SP̄X|SP̄Y |XS

∃ (W1,W2) taking values in W1 ×W2

P̄USZW1W2XY V = P̄UZ P̄W2|U P̄V |ZW2

P̄SP̄X|SP̄W1|SX P̄Y |XS

I(W1;S) + I(W2;U) ≤ I(W1;Y ) + I(W2;Z)

R0 ≥ I(W1;SX |Y ) + I(W2;UV |Z)
(|W1|, |W2|) ≤ |U × S × Z × X × Y × V|+ 4.





(V.106)

The proof of Theorem 32 is stated in (Cervia et al., 2020, [J9]).

Remark 28 Observe that the decomposition of the joint distribution P̄USZW1W2XY V is equivalently char-
acterized in terms of Markov chains:






Z − U −W2

Y − (X,S)−W1

V − (Z,W2)− U

. (V.107)

Coordination under secrecy constraints

In this section we briefly discuss how in the separation setting of Section V.3.c, strong coordination
offers additional security guarantees “for free”. In this context, the common randomness is not only useful
to coordinate signals and actions of the nodes but plays the role of a secret key shared between the two
legitimate users.

To simplify the notation, we do not consider channel state and side information at the decoder.
Suppose there is an eavesdropper who observes the signals sent over the channel. We will show that not
knowing the common randomness, the eavesdropper cannot infer any information about the actions.

Figure V.14 – Wiretap channel: strong coordination implies secrecy.

Lemma 4 In the setting of Theorem 32, without state and side information at the decoder, suppose that
there is an eavesdropper that receives the same sequence Y n as the decoder but has no knowledge of the
common randomness. There exists a sequence (fn, gn) of strong coordination codes achieving the pair
(P̄UV P̄XY , R0) ∈ RIND such that the induced joint distribution PRC

UnV nXnY n satisfies the strong secrecy
condition Bloch and Barros (2011):

lim
n→∞

D(PRC
UnV nY n‖PRC

UnV nPRC
Y n ) = lim

n→∞
I(UnV n;Y n) = 0. (V.108)

V.3.d Is separation optimal?
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Figure V.15 – Coordination of the actions Un and V n for a two-node network with an error-free link of
rate R.

Strong coordination over error-free channels was investigated in Cuff (2008); Cuff et al. (2010). When
extending this analysis to noisy channels, it is natural to ask whether some form of separation theorem
holds between coding for coordination and channel coding. In this section, we show that unlike the case
of empirical coordination, separation does not hold for strong coordination.

If the separation principle is still valid for strong coordination, by concatenating the strong coordi-
nation of the source and its reconstruction with the strong coordination of the input and output of the
channel we should retrieve the same mutual information and rate constraints. In order to prove that
separation does not hold, first we consider the optimal result for coordination of actions in Cuff (2008);
Cuff et al. (2010) and than we compare it with our result on joint coordination of signals and actions. In
particular, since we want to compare the result in Cuff (2008); Cuff et al. (2010) with an exact region, we
consider the case in which the channel is perfect and the target joint distribution is of the form P̄⊗n

UV P̄
⊗n
X .

The choice of a perfect channel might appear counterintuitive but it is motivated by the fact that we are
trying to find a counterexample. As a matter of fact, if the separation principle holds for any noisy link,
it should in particular hold for a perfect one.

We start by considering the two-node network with fixed source P̄U and an error-free link of rate R
(Figure V.15). For this setting, Cuff (2008); Cuff et al. (2010) characterize the strong coordination region
as

RCuff :=





(P̄UWV , R,R0)such that

P̄UV = P̄U P̄V |U
∃ W taking values in W
P̄UWV = P̄U P̄W |U P̄V |W

R ≥ I(U ;W )

R+R0 ≥ I(UV ;W )

|W| ≤ |U × V|+ 1





. (V.109)

The result in Cuff (2008); Cuff et al. (2010) characterizes the trade-off between the rate R0 of available
common randomness and the required description rate R for simulating a discrete memoryless channel
for a fixed input distribution. We compare this region to our results when the requirement to coordinate
the signals Xn and Y n in addition to the actions Un and V n is relaxed. We consider, in the simpler
scenario with no state and no side information, the intersection RUV ⊗X := RPC ∩ RIND. The following
result characterizes the strong coordination region.

Proposition 11 Consider the setting of Theorem 28 and suppose that P̄Y |X(y|x) = 1X=Y {x = y} and
P̄UXV = P̄UV P̄X . Then, the strong coordination region is

RUV ⊗X :=





(P̄UXV , R0) such that:

P̄UXV = P̄U P̄V |U P̄X

∃ W taking values in W
P̄UWXV = P̄U P̄W |U P̄V |W P̄X

I(W ;U) ≤ H(X)

R0 ≥ I(UV ;W )

|W| ≤ |U × V|+ 1





. (V.110)

To compare RCuff and RUV ⊗X , suppose that in the setting of Figure V.15 we use a codebook to send
a message to coordinate Un and V n. In order to do so we introduce an i.i.d. source Xn with distribution
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PX over X in the model and we use the typical sequences of Xn as a codebook C. Note that the codebook
C can be seen as an optimal channel code for the perfect channel. Hence, asymptotically R = H(X) and
we rewrite the information constraints in (V.109) as

H(X) ≥ I(U ;W ),

R0 ≥ I(UV ;W )−H(X).

This defines a new region:

RCuff,H(X) :=






(P̄UXV , R0) such that:

P̄UV = P̄U P̄V |U
X generated according to P̄X

∃ W taking values in W
P̄UWV = P̄U P̄W |U P̄V |W P̄X

I(W ;U) ≤ H(X)

R0 ≥ I(UV ;W )−H(X)

|W| ≤ |U × V|+ 1






. (V.111)

The distributions P̄UXV in RCuff,H(X) coordinate separately Xn and (Un, V n). In Cuff (2008) the joint
distribution PUnV n should be ε-close to the i.i.d. distribution P̄⊗n

UV , and we have imposed that Xn is
generated according to the uniform distribution.

Observe that, while the information constraint is the same in the two regions (V.110) and (V.111),
the rate of common randomness R0 required for the strong coordination region in (V.110) is larger than
the rate of common randomness in (V.111). In fact, in the setting of Figure V.15 both Xn and the pair
(Un, V n) achieve coordination separately (i.e. Pn

X is close to P̄⊗n
X and PUnV n is close to P̄⊗n

UV ), but there
is no extra constraint on the joint distribution PUnXnV n . On the other hand, the structure of our setting
in (V.110) is different and requires the control of the joint distribution PUnXnV n which has to be ε-close
to the i.i.d. distribution P̄⊗n

UV P̄
⊗n
X . Since we are imposing a more stringent constraint, it requires more

common randomness.

Remark 29 We found RUV ⊗X as the intersection of two regions, but we can give it the following in-
terpretation starting from RCuff. By identifying R = H(X) in RCuff, we find that the rate of common
randomness has to be greater than I(UV ;W ) − H(X). But this is not enough to ensure that Xn is
independent of (Un, V n). In order to guarantee that, we apply a one-time pad on Xn (which requires an
amount of fresh randomness equal to H(X)) and we have

R0 ≥ I(UV ;W )−H(X) +H(X) = I(UV ;W )

which is the condition on the rate of common randomness in (V.110).

The following example shows that, unlike the case of empirical coordination (Le Treust, 2017, [J6]),
separation does not hold for strong coordination.

Example 3 The difference in terms of rate of common randomness R0 is better shown in an example:
when separately coordinating the two blocks Xn and (Un, V n) without imposing a joint behavior PUnV nXn ,
the same bits of common randomness can be reused for both purposes, and the required rate R0 is lower.
We consider the case, already analyzed in Cuff (2008, 2013), of a Bernoulli-half source U , and V which
is an erasure with probability pe and is equal to U otherwise. In Cuff (2013) the authors prove that the
optimal choice for the joint distributed PUWV is the concatenation of two erasure channels P̄W |U and
P̄V |W with erasure probability p1 and p2 respectively. Then we have

p2 ∈ [0,min{1/2; pe}], p1 = 1− 1− pe
1− p2

,
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Figure V.16 – Comparison of the joint coordination region RUV ⊗X with RCuff Cuff (2008, 2013): bound-
aries of the regions for a binary erasure channel with erasure probability pe = 0.75 and a Bernoulli-half
input.

and therefore we obtain

I(U ;W ) = 1− p1,

I(UV ;W ) = h(pe) + (1− p1)(1 − h(p2)),

where h is the binary entropy function. Figure V.16 shows the boundaries of the regions (V.109) (red)
and (V.110) (red) for pe = 0.75 and a Bernoulli-half input. The dotted bound R ≥ I(U ;V ) comes directly
from combining R ≥ I(U ;W ) with the Markov chain U −W − V . At the other extreme, if R0 = 0 in
(V.109), R + R0 ≥ I(UV ;W ) ≥ C(U ;V ) where C(U ;V ) := minU−W−V I(U, V ;W ) is Wyner’s common
information Cuff (2008). On the other hand, in our setting (V.110), R0 ≥ I(UV ;W ) ≥ C(U ;V ) for any
value of R = H(X).

Moreover, note that as R = H(X) tends to infinity, there is no constraint on the auxiliary random
variable W (aside from the Markov chain U − V −W ) and similarly to Lapidoth and Wigger (2016) the
minimum rate of common randomness R0 needed for strong coordination is Wyner’s common informa-
tion C(U ;V ). In particular to achieve joint strong coordination of (U,X, V ) a positive rate of common
randomness is required. The boundaries of the rate regions only coincide on one extreme, and RUV ⊗X is
strictly contained in RCuff.

V.4 Chapter summary

In this chapter, we present three research directions that are based on the coordination results of
Chap. IV. First, we revisit the problems of state masking of Merhav and Shamai (2007) and state
amplification Kim et al. (2008) through the lens of empirical coordination. Second, we extend the
coordination result for finite alphabet to the Gaussian case, and we provide fundamental bounds for a
long-standing open problem in the control literature, the counterexample of Witsenhausen (1968). Third,
we study a finer notion of coordination, namely the strong coordination introduced in Cuff et al. (2010),
which builds a bridge with Physical Layer Security problems, see Bloch and Barros (2011).

In the next chapter, we will consider that the encoder and decoder select their coding strategies in a
strategic manner, i.e. they optimize their own cost function.
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Chapter VI

Bayesian persuasion with

restricted communication

We consider a game of information transmission in which the encoder
and the decoder optimize their respective cost functions. As in the
Bayesian persuasion model of Kamenica and Gentzkow (2011), we
assume that the encoder commits to a strategy and we study the
incentive constraints of the decoder. The natural solution concept
is the Stackelberg equilibrium in which the encoder is the leader
and the decoder is the follower. In the first section, we study the
restrictions imposed by the channel on this strategic communication,
see also (Le Treust and Tomala, 2019, [J8]), (Le Treust and Tomala,

2016, [IC16]), (Le Treust and Tomala, 2020, [IC26]), (Le Treust and Tomala, 2017, [NC8]). The
strategic nature of the problem changes when the decoder privately observes a random variable
correlated with the source. This aspect is treated in the second section, that corresponds to
(Le Treust and Tomala, 2018b, [IC20]), (Le Treust and Tomala, 2021, [IC28]), (Le Treust and
Tomala, 2018a, [W2]), (Le Treust and Tomala, 2019, [W3]). The third section presents Rony
Bou Rouphael’s PhD contributions on persuasion problems with two decoders via the Gray and
Wyner (1974) communication network. These contributions are presented in (Bou Rouphael
and Le Treust, 2020, [IC24]), (Bou Rouphael and Le Treust, 2021, [IC28]), (Bou Rouphael and
Le Treust, 2022c, [IC31]), (Bou Rouphael and Le Treust, 2022b, [W7]), (Bou Rouphael and
Le Treust, 2022a, [NC5]), (Bou Rouphael and Le Treust, 2022d, [W5]).
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CHAPTER VI. BAYESIAN PERSUASION WITH RESTRICTED COMMUNICATION

VI.1 Persuasion with limited communication capacity

In modern internet societies, pieces of information are repeatedly and continuously disclosed to deci-
sion makers by informed agents. Information transmission is affected by at least two sources of friction.
First, the encoder and the decoder of a given signal may have nonaligned incentives, in which case the
encoder might be unwilling to transmit truthful information. Second, communication between agents is
often imperfect. the encoder and the decoder may have time constraints to write or read signals, forcing
the encoder to summarize his arguments and making him unable to convey all the details. Further, there
might be discrepancies between the informational content of a signal that is intended by the encoder
and the one understood by the decoder. For instance, if the mother tongue of the encoder and of the
decoder are different, there are possible translation errors (See Blume et al., 2007). Additionally, signals
travelling in a network of computers might be subject to random shocks, internal errors or protocol fail-
ures. Studying the effect of noise in communication channels is the starting point of Information Theory
(Shannon, 1948).

How does imperfect communication reduce the possibilities of persuasion in a sender-receiver game?
When the encoder communicates many pieces of information, to what extent does tying the pieces together
help in overcoming the communication limitations?

We consider an encoder and a decoder who communicate over an imperfect channel and are engaged in
a series of n ∈ N⋆ persuasion problems. the encoder observes n independent and identically distributed
pieces of information and sends k ∈ N⋆ signals to the decoder. Messages are sent through a channel
(X ,Y, TY |X) that consists of two finite sets X , Y of respectively inputs and outputs signals and of a
transition probability TY |X ∈ ∆(Y)|X | such that when the encoder chooses input symbol x, the decoder
receives output symbol y with probability TY |X(y|x) ∈ [0, 1]. Upon receiving k output signals from the
channel, the decoder chooses n actions, one for each problem. Cost functions are additively separable
across persuasion problems. We assume that the encoder is able to commit to a disclosure strategy that
maps sequences of pieces of information to distributions of sequences of input signals.

We study the optimal average cost secured by the encoder by committing to a strategy. We give
an upper bound on this optimal cost and show that this bound is achieved asymptotically when the
numbers n and k grow large. To prove this latter statement, we borrow techniques from Information
Theory, namely, the coding and decoding schemes of Shannon (1948, 1959). This machinery allows to
transmit a sequence of signals over a noisy channel with the property that the decoder recovers almost
all signals correctly. The information theoretic literature typically considers an obedient decoder who
calculates the decoded signals and takes them at face value. In the persuasion game framework, the
decoder is strategic and may not follow any prescribed scheme. Rather, the decoder takes into account
the strategy of the encoder and the received outputs, calculates its Bayesian belief about the sequence
of states, and chooses a sequence of actions that minimizes its cost. Our technical contribution is to
construct a strategy of the encoder for which we are able to estimate and to control those Bayesian
beliefs in order to ensure that the strategic decoder chooses a desired sequence of actions.

Our upper bound is the value of an optimal splitting problem with information constraint, which
represents the best cost that the encoder can achieve by sending a signal, subject to the constraint that
the mutual information between the state and the signal is no more than the capacity of the channel.
We show that this value is given by the convex closure of the cost function of the encoder, subject to a
constraint on the entropy of posterior beliefs. This is also given by the convex closure of a modified cost
function, where the encoder pays a cost proportional to the mutual information between the state and
the signal.

Motivating example.

There are relevant situations where an encoder discloses information about a large number of indepen-
dent state parameters. For instance, one can think of testing product quality: a firm has many items to
sell, which are ex-ante identical, and the authorities (e.g., the FDA for drugs) design quality tests 1. One
can also think about designing and grading exams to assess the quality of a large number of students2.

1See e.g., Perez-Richet and Skreta, 2022.
2See Boleslavsky and Cotton, 2015 for a model of grading standards through Bayesian persuasion.
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As an example, consider an innovating firm that has several projects to be financed by investors. The
board of investors audits the firm, which is given a limited amount of time to present all the projects.
How to best structure arguments in order to get the maximum number of projects approved?

To be specific, let us assume that all projects are ex-ante identical and equally likely to be of good or
bad quality. When a project is approved, it yields a cost of −1 to the investors if it is good, and a cost of
7 if it is bad; rejecting a project yields a cost of 0. The objective of the firm is to get a minimum number
of projects approved.

Suppose that the firm commits to an information disclosure mechanism, i.e., distributions of signals
conditional on states (as in Kamenica and Gentzkow, 2011) and faces no restriction on the number of
signals. To invest, the board of investors must be persuaded that the project is good with probability at
least 7/8. Thus, for each project, the firm would optimally draw a good signal g or a bad signal b with
the following probabilities:

Pr(g | project is good) = 1, Pr(g | project is bad) = 1/7.

This way, the belief that the project is good upon receiving the good signal is as follows:

Pr(project is good | g) = 7/8,

and the project is accepted with probability 4/7 (see Section VI.1.e).
Now, suppose that the auditing board gives the firm only half the time it would require to talk about

all projects. Namely, there is an even number n of projects, but the firm has only n/2 signals available.
A simple strategy the firm can adopt would be to select half of the projects, focus on them, and

communicate optimally for each of them. With this strategy, half of the projects are accepted with
probability 4/7 each, so in expectation, the average number of accepted projects is 2/7. This is not
optimal, and a better strategy would be to pair projects by two and to draw one signal g, b for each pair
in the following way:

Pr(g | both projects are good) = 1, Pr(g | both projects are bad) = 0,

Pr(g | only one project is good) = 1/6.

The total probability of g is 1/3 and upon observing this signal, the beliefs about quality are as follows:

Pr(both projects are good | g) = 6/8,

Pr(only project 1 is good | g) = Pr(only project 2 is good | g) = 1/8.

Therefore, each project is believed to be good with probability 7/8 and both projects are accepted when
g is received. Thus, the expected average number of accepted projects is 1/3 > 2/7.

We thus see that tying projects together improves upon communication about each project separately.
Suppose that the number of projects is large. Is it possible to find a more complex strategy that further
lowers the cost?

Our main result, Theorem 33, gives an upper bound on the expected average number of accepted
projects when the number of signals is half the number of projects. The upper bound is tight: the
optimal value approaches it as the number of project increases. In this example, the upper bound is λ⋆

where (λ⋆, p⋆) is the unique solution in [0, 1]× [0, 12 ] of the system of equations:

1

2
= λ⋆

7

8
+ (1− λ⋆)p⋆,

1

2
= λ⋆H

(
7

8

)
+ (1 − λ⋆)H(p⋆),

where H(p) = −p log(p) − (1 − p) log(1 − p) is the binary entropy function. The first equation is Bayes
plausibility (Kamenica and Gentzkow, 2011) coming from Bayes’ rule, saying that the expected posterior
belief is the prior belief. The second equation requires the expected entropy of the posterior to be 1

2 ,
which means that the mutual information between the quality of the project and the signal sent to the
decoder is equal to the number of signals per project that the firm is able to transmit.

Numerically λ⋆ ≈ 0.519 < 4
7 ≈ 0.571. Thus, for large n, the expected number of projects is higher

than 1/3 but bounded away from the value obtained with unrestricted communication.
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Related literature

We now describe the relationships between our contribution and the literature. This work is at the
junction of Bayesian persuasion and Information Theory.

The traditional game theoretic approach to strategic information disclosure assumes perfect com-
munication and analyzes in isolation the problem of sending a single signal. These are the well-known
sender-receiver games where an informed player, the encoder, communicates once with a decoder who
takes an action. In the cheap talk version of this game, the signal sent by the encoder is costless and
unverifiable; see for instance the seminal paper of Crawford and Sobel (1982). In the Bayesian persuasion
game (Kamenica and Gentzkow, 2011), the encoder chooses verifiably an information disclosure device
prior to learning his information. That is, the encoder is an information designer (Bergemann and Mor-
ris, 2016, 2017; Taneva, 2019) who chooses, without knowledge of the state, the information or signaling
structure which releases information to the decision maker.

In parallel, Information Theory considers agents with perfectly aligned interests and analyzes the rate
of information transmission. the encoder observes an information flow, which is a stochastic process,
and sends signals to the decoder over an imperfect channel represented by a transition probability from
input to output signals. Truthful information transmission is the common goal of the encoder and the
decoder. The rate of information transmission is the average number of correct guesses made by the
decoder. Shannon’s theory (Shannon, 1948, 1959) determines whether a source of information can be
transmitted over the channel with arbitrarily small probability of error and shows that the rate of the
source of information has to be smaller than the capacity of the channel defined as the maximal mutual
information between input and output signals.

Our model of persuasion has two essential features. the encoder and the decoder are engaged in a large
number of identical copies of the same game and communication is restricted to an imperfect channel. As
Kamenica and Gentzkow (2011), we consider the cost obtained by the encoder as a function of the belief
of the decoder, when the decoder takes optimal actions. With unrestricted communication, that is on a
perfect channel with large set of inputs, the optimal cost for the encoder is given by the convex closure
of this function. Then, solving any number of identical games amounts to solving each copy separately.
With a single copy, the game of persuasion with a noisy channel is studied by Tsakas and Tsakas (2021)
who prove the existence of optimal solutions and show monotonicity of the encoder’s cost with respect to
the noise of the channel. Considering many copies of the base game and restricted communication, we
show that linking independent problems together yields a better cost to the encoder: the optimal strategy
correlates all signals with the state parameters of all problems. In this respect, our work bears some
similarity with Jackson and Sonnenschein (2007), who showed that a mechanism designer can achieve
more outcomes in an incentive compatible manner by linking many identical problems together.

The optimal cost that we characterize is related to models where the cost of information is measured by
mutual information. Such information costs have been introduced in the literature on rational inattention
by Sims (2003), (See also Martin, 2017; Matejka and McKay, 2015; Steiner et al., 2017). The use of mutual
information has been axiomatized in Morris and Strack (2019) and Hebert and Woodford (2018). In the
context of persuasion, Gentzkow and Kamenica (2014) consider a model where the encoder gets his cost
from the game, minus a cost that is proportional to the mutual information between the state and the
signal; see also Matyskova (2018). With Lagrangian methods, we find that the value of our optimal
splitting problem with information constraint is the convex closure of the cost function, net of such an
information cost, a similar convexification problem is found in Caplin and Dean (2013)

Different from those papers, the mutual information is not a primitive of our model. Our finding is that
the noise and limitations in communication induce a shadow cost measured by the mutual information.
Entropy and mutual information appear endogenously in several papers on repeated games where players
have bounded rationality (Neyman and Okada, 1999, 2000), are not able to freely randomize their actions
(Gossner and Vieille, 2002), or observe actions imperfectly (Gossner and Tomala, 2006, 2007). A related
paper is Gossner et al. (2006), henceforth GHN, who also consider a sender-receiver game. In GHN, the
encoder and the decoder play an infinitely repeated game with common interests: both the encoder and
the decoder want to choose the action that matches the state. the encoder knows the infinite sequence
of states and can communicate with the decoder only through his actions. GHN characterize the best
average cost that the encoder (and the decoder) can achieve. Their solution resembles ours: the optimal
value is the cost obtained when the encoder can send a direct signal to the decoder, subject to an
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information constraint.

VI.1.a Bayesian persuasion model

In this section, we briefly present the Bayesian persuasion model of Kamenica and Gentzkow (2011),
depicted on Fig. VI.1. The encoder and the decoder are endowed with distinct costs functions ce : U×V →
R and cd : U × V → R. The main difference with the Information-Theoretic models of Chap. III is that:

1. the perfect channel has a large cardinality |X | ≥ |U|,

2. the sequences of symbols have length n = 1.

U X VPU Enc Dec

ce(u, v) cd(u, v)

Figure VI.1 – Bayesian persuasion model

The encoding and decoding functions are defined by

σ : U −→ ∆(X ), τ : X −→ ∆(V), (VI.1)

and induce a probability distribution given by

Pr
(
(U,X, V ) = (u, x, v)

)
= PU (u)σ(x|u)τ(v|x), ∀(u, x, v). (VI.2)

Given an encoder strategy σ, we define the set of decoder best responses by

BR(σ) = argmin
τ

E [cd(U, V )] . (VI.3)

If the set BR(σ) contains several strategies, we assume that the decoder selects the worst one for the
encoder cost function. Note that in case of indifference in the model of Kamenica and Gentzkow (2011),
the decoder selects the best response strategy τ ∈ BR(σ) that also minimizes the encoder cost function.

Definition 41 The robust Bayesian persuasion problem writes

C⋆
e = inf

σ
max

τ∈BR(σ)
E [ce(U, V )] . (VI.4)

In this strategic communication scenario, the encoder commits to implementing the strategy σ, by
anticipating that the decoder selects a best response τ ∈ BR(σ).

Definition 42 Given the source probability distribution p ∈ ∆(U), the decoder selects a best response
action v in

V⋆(p) = argmin
v∈V

Ep

[
cd(U, v)

]
. (VI.5)

Given p ∈ ∆(U), we define the robust cost function by

ψe(p) = max
v∈V⋆(p)

Ep

[
ce
(
U, v

)]
. (VI.6)

The next results is a reformulation of (Kamenica and Gentzkow, 2011, Prop. 1), where vex f : ∆(U) →
R∪{−∞} denotes the convex closure of a function f , i.e. the largest convex function everywhere smaller
than f on ∆(U).
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Proposition 12 If |X | ≥ |U|, we have

C⋆
e = vexψe

(
PU

)
. (VI.7)

Proof. [Prop. 12] The main argument comes from the splitting lemma of Aumann and Maschler (1995),
also referred to as Bayes plausibility in Kamenica and Gentzkow (2011). We recall the definition of convex
closure,

vexψe

(
PU

)
= inf

{∑

x∈X
λxψe(px),

∑

x∈X
λxpx = PU

}
, (VI.8)

where the infimum is taken over the parameters (λx, px)x∈X with |X | = |U|, such that for each x ∈ X ,
px ∈ ∆(U), λx ∈ [0, 1], and

∑
x∈X λx = 1.

Given an encoder strategy σ, we define for all x ∈ X ,

λx =
∑

u∈U
PU (u)σ(x|u), (VI.9)

px(u) =
PU (u)σ(x|u)∑

u′∈U PU (u′)σ(x|u′)
, ∀u ∈ U . (VI.10)

This implies that λxpx(u) = PU (u)σ(x|u) for all (u, x) ∈ U × X , and thus

min
τ

E [cd(U, V )] =min
τ

∑

u,x,v

PU (u)σ(x|u)τ(v|x)ce(u, v) (VI.11)

=min
τ

∑

u,x,v

λxpx(u)τ(v|x)ce(u, v) (VI.12)

=
∑

x

λx min
v

∑

u

px(u)ce(u, v) (VI.13)

=
∑

x

λx min
v

Epx [ce(U, v)] . (VI.14)

BY using similar arguments, we have

max
τ∈BR(σ)

E [ce(U, V )] =
∑

x

λx max
v∈argminEpx [cd(U,v)]

Epx [ce(U, v)] =
∑

x∈X
λxψe(px), (VI.15)

and thus C⋆
e ≥ vexψe

(
PU

)
.

Given the parameters (λx, px)x∈X , we define the encoder strategy by

σ(x|u) = λxpx(u)∑
u′ λxpx(u′)

, (VI.16)

for which (VI.15) is also satisfied. Then, we obtain C⋆
e ≤ vexψe

(
PU

)
.

VI.1.b Persuasion model with restricted communication

We consider an encoder and a decoder engaged in a series of identical persuasion problems and where
the communication technology is fixed exogenously, depicted in Fig. VI.2. More specifically, we consider
a fixed communication channel (X ,Y, TY |X), where X ,Y are finite sets of signals and TY |X ∈ ∆(Y)|X | is
a transition probability from X to Y.

Given two integers n, k, we define a repeated persuasion problem where the uncertainty is about a
sequence un = (u1, . . . , un) drawn i.i.d. from PU ∈ ∆(U). The decoder chooses a sequence of actions
vn = (v1, . . . , vn) and the cost for player i = e, d is as follows:

c̄i(u
n, vn) =

1

n

n∑

t=1

ci(ut, vt).
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Un Xk Y k V n

PU Enc TY |X Dec

ce(u, v) cd(u, v)

Figure VI.2 – Repeated persuasion problem via a noisy channel (X ,Y, TY |X).

To disclose information, the encoder can use the channel k times by choosing a sequence of input signals
xk = (x1, . . . , xk). The channel then draws a sequence of output signals yk with probability T k

Y |X(yk|xk) =
∏k

t=1 TY |X(yt|xt) and sends it to the decoder. This defines the following persuasion game Γ(n, k):

1. The encoder chooses a strategy σ : Un → ∆(Xk) which is announced to the decoder.

2. A sequence of states un is drawn i.i.d. from the prior PU , a sequence of input signals xk is drawn
with probability σ(xk|un), a sequence of output signals yk is drawn with probability T k

Y |X(yk|xk)
and is observed by the decoder.

3. the decoder chooses a sequence of actions vn.

Then, player i = e, d gets the average cost c̄i(un, vn).
Notice that for n = k = 1, this is the model of Tsakas and Tsakas (2021) of a single persuasion problem

with noisy communication. An interesting particular case is given by perfect channels where X = Y and
TY |X(y|x) = 1{y=x} for all (x, y). In such a case, the only limitation is given by the number of signals. If
we let n = k = 1 and choose a perfect channel with sufficiently many signals |X | = |Y| ≥ |U|, the model
encompasses the standard persuasion game of Kamenica and Gentzkow (2011).

Optimal robust cost

As a solution concept, we study the best cost the encoder can secure, regardless of which best reply
is chosen by the decoder. A strategy of the decoder is a mapping τ : Yk → Vn. Knowing σ, the decoder
chooses a best reply τ , which minimizes the expected cost. That is, for each yk:

τ(yk) ∈ argmin
vn∈Vn

∑

un,xk

Pn
U (u

n)σ(xk |un)T k
Y |X(yk|xk)c̄d(un, vn).

Denote BRd(σ) the set of best replies of the decoder to the strategy σ.

Definition 43 The optimal robust cost of the encoder in this problem is as follows:

Cn,k
e (PU , TY |X) = inf

σ
max

τ∈BRd(σ)

∑

un,xk,yk

Pn
U (u

n)σ(xk|un)T k
Y |X(yk|xk)c̄e(un, τ(yk)).

This definition differs from the conventional solution to Bayesian persuasion of Kamenica and
Gentzkow (2011) where the decoder takes the best reply which is preferred by the encoder. Our choice
is motivated by robustness; we ask the solution to be robust to the way the decoder breaks ties3. We
stress that this choice does not matter for generic problems. Indeed, with slight perturbations of the cost
function of the decoder, we can make sure that indifferences occur only at interior beliefs. When this is
the case, the encoder can slightly change his strategy in order to avoid the indifference region.

The goal is to give an upper bound for the optimal robust cost and to characterize its limit when n
and k tend to infinity.

3A similar approach is followed by Inostroza and Pavan (2021) and Mathevet et al. (2020).
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Optimal splitting problem with information constraint

To state our main results, we introduce some definitions.

Definition 44 A splitting of PU ∈ ∆(U) is a finite family (λw, νw)w∈W , where for each w ∈ W, νw ∈
∆(U), λw ∈ [0, 1],

∑
w λw = 1 such that:

PU =
∑

w

λwνw. (VI.17)

A splitting of PU is a distribution of posterior beliefs whose average equals the prior. An “information
structure” which draws a signal w with probability Pr(w|u) in state u, induces a splitting (λw , νw)w
with λw =

∑
u′ PU (u

′)Pr(w|u′) and νw(u) =
PU (u)Pr(w|u)∑

u′ PU (u′)Pr(w|u′) . From the splitting lemma (Aumann and

Maschler, 1995) or Bayes plausibility (Kamenica and Gentzkow, 2011), for each decomposition of the
prior belief into a convex combination of posterior PU =

∑
w λwνw, the splitting (λw, νw)w is induced by

some information structure, for example, Pr(w|u) = λwνw(u)/PU (u) for all (u,w) ∈ U ×W .
For each posterior belief ν ∈ ∆(U), let the set of optimal actions of the decoder be:

V⋆(ν) = argmin
v∈V

∑

u

ν(u)cd(u, v).

We denote by c⋆e (ν) = minv∈V⋆(ν)

∑
u ν(u)ce(u, v) the robust cost of the encoder at the belief ν ∈ ∆(U),

i.e., the cost of the encoder when the decoder chooses the optimal action, which is worst for the encoder.
We now introduce tools borrowed from Information Theory; the reader is referred to Cover and

Thomas (2006).

Definition 45 1. The (Shannon) entropy of a probability distribution q ∈ ∆(S) over a finite set S is
as follows:

H(q) = −
∑

s∈S
q(s) log q(s),

where the logarithm has basis 2 and 0 log 0 = 0.

2. Given a distribution pX ∈ ∆(X ), the mutual information between two random variables (X,Y ),
drawn from the joint probability distribution pXTY |X ∈ ∆(X × Y) is as follows:

I(X ;Y ) = H
(∑

x

pX(x)TY |X(·|x)
)
−
∑

x

pX(x)H(TY |X(·|x)) = H(Y )−H(Y |X).

3. The capacity of the channel (X,Y, TY |X) is defined by:

C(TY |X) = max
pX∈∆(X)

I(X ;Y ).

The channel capacity C(TY |X) is the minimal mutual information between two random variables
(X,Y ), respectively the input and output of the channel, drawn from the joint probability distribution
pX(x)TY |X(y|x), where the minimum is over the marginal distribution pX(x). Intuitively, this is the
minimal number of bits of information that can be transmitted reliably through the channel (see Cover
and Thomas, 2006).

Equipped with these tools, our main definition is the following.

Definition 46 For any C ≥ 0, the optimal splitting problem with information constraint is:

C⋆
e (PU ,C) = inf

∑

w

λwc
⋆
e (νw)

s.t.
∑

w

λwνw = PU ,

and H(U)−
∑

w

λwH(νw) ≤ C.
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This is the best cost that the encoder can secure by choosing a splitting of the prior belief (i.e., an
information structure) under the constraint that the expected reduction of entropy does not exceed the
capacity C of the channel. The entropy reductionH(U)−∑w λwH(νw) = H(U)−H(U |W ) is nonnegative.
It is equal to the mutual information I(U ;W ) between a random state U and a random signal W , drawn
from the joint distribution

(
λwνw(u)

)
(u,w)

, see Prop. 2. The interpretation is thus that the encoder
optimizes over a set of information structures that convey bounded information about the state.

Notice that C⋆
e (PU ,C) is greater than or equal to the convex closure (or convexification) of c⋆e at PU

which is the unconstrained infimum vex c⋆e (PU ) := inf
{∑

w λwc
⋆
e (νw) :

∑
w λwνw = PU

}
.

VI.1.c Results

The main result shows that the value of the optimal splitting problem with information constraint
provides an upper bound to the optimal robust cost and that the bound is achieved asymptotically.

Theorem 33 1. The optimal robust cost of the encoder is no more than the value of the optimal
splitting problem with information constraint. For each pair of integers n, k:

Cn,k
e (PU , TY |X) ≤ C⋆

e

(
PU ,

k

n
C(TY |X)

)
.

2. The optimal robust cost of the encoder converges to the value of the optimal splitting problem with
information constraint in the following sense. For each r ∈ [0,+∞], for each pair of sequences of

integers (kj , nj)j∈N⋆ such that lim
j→∞

min(nj , kj) = ∞ and lim
j→∞

kj

nj
= r, we have:

lim
j→∞

C
nj ,kk
e (PU , TY |X) = C⋆

e

(
PU , rC(TY |X)

)
.

The proof of Theorem 33 is stated in (Le Treust and Tomala, 2019, [J8]). On the one hand, this result
shows communication restrictions limits the cost that can be achieved through Bayesian persuasion. On
the other hand, it quantifies the extent to which repeating the same problem and linking the copies
together helps in overcoming those restrictions.

Sketch of proof

We give an intuition for the main arguments of the proof; the technical details are in the appendix.

First point, upper bound. The argument is that regardless of which strategies are used, the mutual
information between the states and the signals to the decoder cannot exceed the capacity of the channel.

For simplicity, consider the case n = k = 1 where the result says C1,1
e (PU , TY |X) ≤ C⋆

e (PU ,C(TY |X)).
Take any strategy σ of the encoder. This induces the splitting PU =

∑
y Prσ(y)νy where Prσ(y) =∑

u,x PU (u)σ(x|u)TY |X(y|x) is the probability of the signal y and

νy(u) = Prσ(u|y) =
∑

x PU (u)σ(x|u)TY |X(y|x)
Prσ(y)

is the posterior belief conditional on y. The mutual information of this splitting is:

H(U)−
∑

y

Prσ(y)H(νy) := I(U ;Y )

where (U,X, Y ) denotes a random triple of state, input and output signals drawn from the joint distri-
bution PU (u)σ(x|u)TY |X(y|x). With an abuse of notation, we denote I(U ;Y ) the mutual information
between U and Y without explicit reference to the distribution.

Since X is a sufficient statistic for Y , X is more informative4 about Y than U , that is I(U ;Y ) ≤
I(X ;Y ). Then, the mutual information between the input and the output is no more than C(TY |X) from
the definition of the channel capacity.

4See Cover and Thomas, 2006, Theorem 2.8.1, p. 34.
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The proof for general n and k is an elaboration of this argument. Since states are i.i.d., we can prove
that for any strategy, the average cost is the one induced by some splitting whose mutual information is
no more than k

nC(TY |X). The trick is to introduce an auxiliary random variable T uniformly distributed
over {1, . . . , n} and known by the decoder. Then, we regard the average cost over stages 1, . . . , n as the
expected cost for the randomly selected stage.

Second point, asymptotic construction. To make the intuition simple, let us consider a sequence
of pairs of integers (kj , nj)j∈N⋆ such that kj = nj and let k = n be a large term of this sequence.
Take a splitting (λw, νw)w of the prior PU which satisfies the information constraint. We want to show
that for large n, there is a strategy σ of the encoder such that for any best reply τ ∈ BRd(σ) of
the decoder, the cost of the encoder is at least about

∑
w λwc

⋆
e (νw). Let also v⋆w ∈ V⋆(νw) such that

c⋆e (νw) =
∑

u νw(u)ce(u, v
⋆
w).

A first intuition for the construction is as follows. From Shannon’s coding Theorem5, if I(U ;W ) <
C(TY |X), then for large n, there exists functions f1 : Un → Wn, f2 : Wn → Xn and g : Yn → Wn,
altogether a coding/decoding scheme, with the following properties. Given a sequence of states un, the
encoder calculates a sequence of signals wn = f1(u

n) such that with probability close to one, the empirical
frequency of the (ut,mt)’s is approximately the theoretical one λwνw(u). the encoder then calculates a
sequence of inputs xn = f2(m

n) and sends them into the channel. If the decoder calculates m̂n = g(yn),
then the signals are recovered with probability close to one: Pr(mn = m̂n) ≈ 1.

This argument is standard in Information Theory but is not sufficient for proving our result. The proof
is actually more complicated because the strategic decoder actually calculates the Bayesian posterior
Pr(un|yn) and chooses at stage t an action vt ∈ V⋆(Pr(ut|yn)). Thus, the main task is to refine the
construction in such a way that for any best reply of the decoder, with probability close to one, the
optimal action vt ∈ V⋆(Pr(ut|yn)) is equal to the recommended action v⋆m̂t

at most stages, that is, for a
set of stages whose proportion is close to one. This implies that the cost is approximately the target one.

The proof consists of three main steps. In the first step, we show that for each ε > 0, we can find
a splitting ε-optimal for C⋆

e (PU ,C), which satisfies the information constraint with strict inequality and
such that for each posterior νw, the action v⋆w which minimizes the encoder cost over V⋆(νw) is unique
in a neighborhood of νw. This latter property ensures that the decoder plays v⋆w whenever its belief is
close to νw. We deduce that the difference between the realized cost and the target cost is bounded by
the number of times t where the Bayesian posterior Pr(ut|yn) is far away from νm̂t . The goal is then to
show that this number is small with probability close to one.

The second step consists in defining Shannon’s strategy for this splitting. There, we adapt known
construction from Information Theory to our setting.

At the third step, we prove that, under our construction, with probability close to one, the Bayesian
posteriors Pr(ut|yn) are close enough to the target posteriors νmt at most stages. This allows us to
conclude that with probability close to one, the decoder plays the recommended actions at most stages
and that the expected cost is close to the target one. This step, where we estimate the realized Bayesian
beliefs, is new compared to the information theoretic literature, which typically focuses on the average
number of mistakes in decoding. Summing up, our construction is similar to the ones found in this
literature but is adapted to the context where the decoder is minimizing its cost. �

We now provide some direct implications of the theorem.

Large capacity. Reordering the information constraint as
∑

w λwH(νw) ≥ H(U) − C, we see that if
C ≥ H(U), the constraint is satisfied by all splittings. The value of the problem is thus the unconstrained
convexification of c⋆e :

C ≥ H(U) =⇒ C⋆
e (PU ,C) = vex c⋆e (PU ).

As a consequence, if we fix n and TY |X and choose k large enough such that k
nC(TY |X) ≥ H(U), then

the encoder can achieve approximately the unconstrained minimum vex c⋆e (PU ).
The intuition is simple: for fixed size of the state space U , if the imperfect channel can be used a large

number of times, then the encoder is able to convey the state u ∈ U with arbitrarily high probability.

5See Cover and Thomas, 2006, Theorem 10.4.1, p. 318.
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More precisely, suppose C(TY |X) > 0 that is to say, TY |X(·|x) is not constant with respect to x. There
exist distributions of inputs puX ∈ ∆(X) for u ∈ U , that statistically identify the state:

u 6= u′ =⇒
∑

x

puX(x)TY |X(·|x) 6=
∑

x

pu
′

X (x)TY |X(·|x).

For each state u ∈ U , the encoder can draw an i.i.d. sequence of signals x1, . . . , xk from puX and sends
them through the channel. The posterior belief of the decoder conditional on y1, . . . , yk then converges
to the truth (the Dirac mass on u). Thus, asymptotically, the distributions of actions of the decoder will
be close to the one under perfect communication.

Small capacity. When C is close to 0, the information constraint H(U) −∑w λwH(νw) ≤ C implies
that the splitting is almost nonrevealing since:6

∑

w

λw‖νw − PU‖1 ≤
√
2 ln 2

(
H(U)−

∑

w

λwH(νw)
)
.

It follows that C⋆
e (PU ,C) is approximately c⋆e (PU ), the cost obtained without any information transmis-

sion.
As a consequence, if we fix TY |X and k, then for large n, the encoder cannot get substantially more

than c⋆e (PU ).

Perfect channels. Our result applies to communication channels without noise. A communication
channel has two sources of imperfection: the noise and the number of available signals, which is given
exogenously. One insight of our work is that all that matters for the analysis is the capacity of the
channel.

A channel (X,Y, TY |X) is called perfect if X = Y and TY |X(y|x) = 1{x=y}. For each integer |X | ≥ 2,
we denote T ⋆

|X | the perfect communication channel with |X | signals where |X | = |Y|. Its capacity is7

C(T ⋆
|X |) = log |X |. We apply our results to the optimal robust cost Cn,1

e (PU , T ⋆
|X |) of the game where

the persuasion problem is repeated n times and where the encoder can send one signal from a set with
cardinality |X |. Our method applies since for large |X |, the channel T ⋆

|X | can be seen as having the use
of a binary perfect channel k times, with k = log2 |X |.

There are two simple extreme cases. First, if |X | = 1, the capacity of the channel is 0 and the encoder
cannot convey any information. Thus, Cn,1

e (PU , T ⋆
|X |) = C⋆

e (PU , 0) = c⋆e (PU ). Second, if |X | ≥ |U|n, then

the encoder can secure the unconstrained persuasion cost Cn,1
e (PU , T ⋆

|X |) = C⋆
e (PU , log |U|) = vex c⋆e (PU )

by treating each of the n problems separately and getting the cost vex c⋆e (PU ) for each instance. The first
point of Theorem 33 shows that this is the best possible cost.

More generally, Theorem 33 implies the following.

Corollary 5 Consider a persuasion problem repeated n times, where the encoder sends one signal from
a set of cardinality |X |. Then:

1. Cn,1
e (PU , T ⋆

|X |) ≤ C⋆
e (PU ,

log |X |
n ), for all n ∈ N⋆.

2. For any pair of sequences of integers (|Xj |, nj)j∈N⋆ such that lim
j→∞

min(|Xj |, nj) = ∞ and

lim
j→∞

log |Xj|
nj

= C, we have lim
j→∞

C
nj ,1
e (PU , T ⋆

|Xj|) = C⋆
e (PU ,C).

Proof. The first point follows directly from Theorem 33. To see the second point, it is enough to
remark that a perfect channel T ⋆

|X | is “close” to k copies of a perfect binary channel T ⋆
2 with k such that

2k ≤ |X | < 2k+1, that is k = ⌊log |X |⌋. Having more signals at disposal is beneficial for the encoder and
thus Cn,1

e (PU , T ⋆
|X |) is weakly increasing with |X |. It follows that:

Cn,k
e (PU , T ⋆

2 ) ≤ Cn,1
e (PU , T ⋆

|X |) ≤ Cn,k+1
e (PU , T ⋆

2 )).

6See Cover and Thomas, 2006, Lemma 11.6.1, p. 370.
7See Cover and Thomas, 2006, p. 184.
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Take a sequence (mj , nj)j∈N⋆ such that lim
j→∞

min(mj , nj) = ∞ and lim
j→∞

log |Xj|
nj

= C, and define kj =

⌊log |Xj |⌋. We have lim
j→∞

min(kj , nj) = ∞, lim
j→∞

kj

nj
= C and the conclusion follows from Theorem 33.

VI.1.d Convexification with information constraint

In this section, we give some properties of the optimal splitting problem under information constraint.
The motivation for this part of the results is two-fold. First, it is known than in a convexification problem,
the number of posteriors (or of signals) can be chosen less than or equal to the number of states. One
might wonder whether this remains true when there is a constraint on the feasible splittings. Second,
models with costly information often use the mutual information as information cost (see e.g. Sims, 2003).
We will see that in our case, this is derived by writing a Lagrangian for C⋆

e (PU ,C).
Consider the optimal splitting under information constraint:

inf
{∑

w

λwc
⋆
e (νw) :

∑

w

λwνw = PU ,
∑

w

λwH(νw) ≥ H(U)− C

}
.

This is a special instance of the following optimization problem. Let f, g : S → R∪{−∞} be two functions
defined on a convex set S ⊆ Rd, where S represents an abstract set of posteriors, f is a cost function and
g is a constraint capturing the feasible splittings. For s ∈ S and γ ∈ R consider the problem:

F g(s, γ) := inf
{∑

w

λwf(sw) :
∑

w

λwsw = s,
∑

w

λwg(sw) ≥ γ
}
.

Let fg : S × R → R ∪ {+∞} defined by:

fg(s, γ) =

{
f(s) if γ ≤ g(s),

+∞ otherwise.

Theorem 34 Then, for each (s, γ) ∈ S × R,

1. F g(s, γ) = vex fg(s, γ).

2. F g(s, γ) = supt≥0

{
vex(f + tg)(s)− tγ

}
.

The proof of Theorem 34 is stated in (Le Treust and Tomala, 2019, [J8]). Applying this result to the
optimal splitting under information constraint, we get:

Corollary 6 For each PU ∈ ∆(U) and C ≥ 0,

1. C⋆
e (PU ,C) is the convexification of the function cHe : ∆(U)× R → R defined as:

cHe (ν, η) =

{
c⋆e (ν) if η ≤ H(ν),

+∞ otherwise,

calculated at (ν, η) = (PU , H(U)− C).

2. C⋆
e (PU ,C) = supt≥0

{
vex(c⋆e + tH)(PU )− t(H(U)− C)

}
.

Since it might be useful in other contexts, Theorem 34 is stated for general functions rather than
specifically for the entropy function. This result has recently been generalized by Doval and Skreta
(2018) to splitting problems with several constraints. The first point of the theorem states that the
convexification with constraint, is the convexification of a bivariate function where an additional variable
is added for the constraint (many variables when there are many constraints, see Doval and Skreta, 2018).
The second point states that a Lagrangian function can be introduced and that the convexification under
constraint is the convexification of the Lagrangian for some multiplier. The proof is in (Le Treust and
Tomala, 2019, [J8], Appendix).
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A direct implication of the second point of Corollary 6 is that there exists t⋆ = t⋆(PU ,C) such that:

C⋆
e (PU ,C) = vex(c⋆e + t⋆H)(PU )− t⋆(H(U)− C).

To see the existence of t⋆, notice that vex(c⋆e + tH)(PU )− t(H(U)−C) ≥ (c⋆e + tH)(PU )− t(H(U)−C) =
c⋆e (PU ) + tC, which tends to +∞ as t→ +∞. Therefore, t 7→ vex(c⋆e + tH)(PU )− t(H(U)− C) reaches a
minimum at some t⋆.

If (λ⋆w, ν
⋆
w)w is an optimal splitting, let I⋆ = H(U) −∑w λ

⋆
wH(ν⋆w) be its mutual information. We

have the following:

C⋆
e (PU ,C) =

∑

w

λ⋆wc
⋆
e (ν

⋆
w)− t⋆(I⋆ − C). (VI.18)

We then find the usual Kuhn-Tucker slackness conditions. If I⋆ < C, then t⋆ = 0 and the unconstrained
optimum is feasible. If t⋆ > 0, the constraint is binding. The Lagrange multiplier t⋆ can be interpreted
as the shadow price of capacity, that is, the marginal value of an extra unit of communication capacity.

This characterization can be related with the cost of information considered in the literature on ra-
tional inattention (See Sims, 2003) where the agent pays a cost proportional to the mutual information
between the state and the signal he observes. In particular, Caplin and Dean (2013) consider the con-
vexification of a utility function net of such an information cost. For persuasion games, Gentzkow and
Kamenica (2014) assume that the encoder pays a cost for choosing a disclosure strategy which is also
related to the mutual information and also take the convexification of the net utility function.

Equation (VI.18) can be seen as a microfoundation of the use of mutual information as the information
cost: the limit optimal value of persuasion for a large number of copies of problems with communication
over an imperfect channel, has the same value as a problem of persuasion with an information cost.
There are some differences, however. First, the information cost is not the mutual information, but the
difference between the mutual information and the capacity of the channel. That is, a cost reduces the
cost only when the encoder would like to send more information bits than the capacity. Second, the unit
price of capacity is endogenous and given by the Lagrange multiplier of the information constraint.

A direct implication is an upper bound of the number of posteriors needed to achieve the convexifi-
cation.

Corollary 7 In the optimization problem,

C⋆
e (PU ,C) = inf

{∑

w

λwc
⋆
e (νw) :

∑

w

λwνw = PU ,
∑

w

λwH(νw) ≥ H(U)− C

}
,

the number of posteriors can be chosen to be at most min{|V|, |U|+ 1}.
The proof of Corollary 7 is stated in (Le Treust and Tomala, 2019, [J8]). Without the information

constraint, the usual bound is min{|V|, |U|}, i.e. the number of posteriors or of signals can be upper
bounded by the number of actions and the number of states. For the number of actions, the argument
is that two signals for which the decoder chooses the same action can be merged into one and the
corresponding two posteriors replaced by the average. The argument still holds due to the concavity of
the entropy function: replacing two posteriors by their average increases the expected entropy and thus
helps in satisfying the information constraint.

For the bound given by the number of states, the usual technical argument is that any point in the
convex hull of the epigraph of a function on ∆(U) is a convex combination involving |U| points. From
Corollary 6, we consider the convexification of a function defined on ∆(U)× R a domain with one extra
dimension; thus, an extra posterior might be needed. A similar observation is made in Boleslavsky and
Kim (2018), where due to an incentive constraint, an extra posterior is needed. In Section VI.1.e, we
provide an example where |U|+ 1 posteriors are used at the optimum.

VI.1.e Illustrating example

Unrestricted communication

In this example, the encoder is a firm that persuades the decoder to invest in a risky project. If the
decoder does not invest (action v0), the cost is 0 for both players. If the decoder invests (action v1), the
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project has a cost 7 in the bad state u0 and −1 in the good state u1. Both states are equally likely. the
encoder obtains the cost −1 only if the decoder invests. The cost table is as follows, the entries are pairs
of costs for the players i = e, d depending on the state and action.

v0 v1 PU

u0 0, 0 −1, 7 1
2

u1 0, 0 −1,−1 1
2

The decoder invests for sure only when he holds a belief ν such that ν(u1) > 7/8. If ν(u1) = 7/8 he is
indifferent. Assuming that in case of indifference he does not invest, the robust cost of the encoder c⋆e (ν)
is 0 if ν(u1) > 7/8 and −1 otherwise.

c⋆e (ν)

0

−1

10 ν(u1)7
8

1
2

vex c⋆e (
1
2 ) = − 4

7

b

b

b

Figure VI.3 – Convexification.

The convexification function vex c⋆e (ν) is continuous and equal to − 8
7ν(u1) for ν(u1) ≤ 7

8 and 0
otherwise. It is easy to see that it does not depend on the action chosen by the decoder at ν(u1) = 7

8 ,
see Fig. VI.3. If the decoder were to choose v1 at the point of indifference, then the optimal splitting for
the encoder would be as follows:

(
1

2
,
1

2

)
=

3

7

(
1, 0
)
+

4

7

(
1

8
,
7

8

)
,

where a belief is denoted ν = (ν(u0), ν(u1)). This yields a cost of 3
7 which is the lowest that the encoder

can achieve given the uniform prior. For any small ε > 0, we can perturb the previous splitting and get
the following: (

1

2
,
1

2

)
=

3 + 8ε

7 + 8ε

(
1, 0
)
+

4

7 + 8ε

(
1

8
− ε,

7

8
+ ε

)
,

which achieves the cost − 4ε
7+8ε irrespective of the tie-breaking rule. Letting ε tend 0, we see that the

encoder achieves a cost arbitrarily close to − 4
7 , which is the optimal robust cost.

Restricted and noisy communication

We consider binary sets of signals X = {x0, x1}, Y = {y0, y1} and we assume that the channel has a
noise level ε ∈ [0, 12 ], that is TY |X(yj |xi) = ε for j 6= i, see Fig. VI.4. The generic case is ε ∈]0, 12 [ where
the label of the signal (0 or 1) is changed with positive probability but observing a label 1 is still more
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x1

x0

b

b

b

b

y1

y0

1− ε

1− ε

ε

ε

Figure VI.4 – Binary symmetric channel.

likely when the input label is 1. When ε = 1
2 , the distribution of the output signal is independent from

the input signal, so the channel completely disrupts the communication.
A special case is the binary perfect channel when ε = 0: identifying together the sets X and Y,

an input signal x is received with certainty. Communication is then restricted only by the number of
available signals, i.e. the cardinality of X .

The capacity of the binary symmetric channel8 is 1−H(ε) where the entropy of the binary probability
distribution (ε, 1 − ε) is defined by H(ε) = ε log2

1
ε + (1 − ε) log2

1
1−ε for ǫ ∈]0, 1[, and H(ε) = 0 for

ǫ ∈ {0, 1}.

One-shot scenario k = n = 1

Let a strategy σ of the encoder be parametrized by σ(x0|u0) = 1 − α and σ(x1|u1) = 1 − β; see
Fig. VI.5.

u1

u0

PU (u1)

PU (u0)

b

b

b

b

b

x1

x0

b

b

b

b

y1

y0
1− ε

1− ε

ε

ε

1− α

1− β

α

β

Figure VI.5 – Strategy on the binary symmetric channel.

Then, Prσ(y1|u0) = α(1 − ε) + (1 − α)ε, Prσ(y0|u1) = β(1− ε) + (1− β)ε and from Bayes’ rule,

Prσ(u1|y1) =
PU (u1)(1 − Prσ(y0|u1))

PU (u0)Prσ(y1|u0) + PU (u1)(1 − Prσ(y0|u1))
,

Prσ(u1|y0) =
PU (u1)Prσ(y0|u1)

PU (u0)(1− Prσ(y1|u0)) + PU (u1)Prσ(y0|u1)
.

It is easy to see that the numbers Prσ(y1|u0), Prσ(y0|u1), Prσ(u1|y1), Prσ(u1|y0) all belong to the interval
[ε, 1− ε].

A pair of posteriors (ν0, ν1) is said to be feasible in the one-shot scenario if there exists a number
λ ∈ [0, 1] such that:

(PU (u0),PU (u1)) = λ(ν0(u0), ν0(u1)) + (1− λ)(ν1(u0), ν1(u1)).

The feasible splittings can be characterized as follows.

8Cover and Thomas, 2006, Example 2.1.1, p. 15.
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Figure VI.6 – For a noise parameter ε = 1
4 , the green lenses correspond to the feasible posteriors (ν0, ν1)

characterized in Lemma 5 for the one-shot scenario k = n = 1. The blue and green regions correspond to
the feasible posteriors (ν0, ν1) in the asymptotic scenario where k = n→ ∞. The red point corresponds
to the optimal splitting, also depicted in Fig. VI.7. The hatched areas correspond to the nonfeasible
posteriors (ν0, ν1).

Lemma 5 We consider the one-shot problem where n = k = 1. A pair of posteriors (ν0, ν1) is feasible if
and only if ν1 = ν0 = PU or,

ε ≤ ν0(u1)(ν1(u1)− PU (u1))

PU (u1)(ν1(u1)− ν0(u1))
≤ 1− ε

and

ε ≤ (1− ν0(u1))(PU (u1)− ν0(u1))

(1− PU (u1))(ν1(u1)− ν0(u1))
≤ 1− ε.

The proof is in (Le Treust and Tomala, 2019, [J8], Appendix). As an illustration, take the uniform prior
(12 ,

1
2 ) and a level of noise ε = 1

4 . The feasible posteriors are shown by the colored green regions on
Fig. VI.6.

From the previous discussion, it is impossible to induce beliefs with ν(u1) > 3
4 . Therefore, the decoder

will never be confident enough to invest and the cost is 0 for the encoder.

Asymptotic scenario with k = n→ ∞
We consider the case where k = n tends to infinity with a noise level of ε = 1

4 and compute the value
of the optimal splitting problem with information constraint. The capacity of the channel is 1−H(14 ), the
entropy of the uniform prior is 1; therefore, the information constraint is

∑
w λwH(νw) ≥ H(14 ). Under

this constraint the optimal splitting for the encoder satisfies:
(
1

2
,
1

2

)
= λ

(
1

8
,
7

8

)
+ (1− λ)(ν0(u0), ν0(u1))

and

H

(
1

4

)
= λH

(
7

8

)
+ (1− λ)H(ν0(u1)).
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Figure VI.7 – For a noise parameter ε = 1
4 , the optimal splitting is given by ν0(u1) ≈ 0.340 and ν1(u1) = 7

8 .

To see why it is optimal, first observe that the encoder has to bring on some posterior, denoted by ν1,
with ν1(u1) >

7
8 in order to get some cost. To get it with the highest probability, he should aim for

ν1(u1) = 7
8 . Among the posteriors that induce investment, this is also the one with highest entropy.

Second, to minimize expected costs, the remaining posteriors must be as far away as possible from the
prior; that is, the information constraint should bind. Additionally, note that only one posterior, denoted
by ν0, will be optimally generated in the region ν0(u1) < 7

8 . Since the entropy is strictly concave, replacing
two posteriors on this region by their average does not change the cost and increases the entropy.

Solving these two equations numerically we get, ν0(u1) ≈ 0.340 and C⋆
e (PU , TY |X) = −λ ≈ −0.298

instead of the cost 0 for the one-shot scenario and about 52.1% of the unconstrained optimum − 4
7 .

This is shown in Fig. VI.7 which plots the cost function and the entropy function. The splitting of PU

into ν0, ν1 is shown by the three points on the horizontal axis. On the vertical line PU (u1) =
1
2 , we can

read the average cost with the red line and the average entropy with the green line. To see optimality on
the picture, if we move ν0(u1) to the right, then the average cost decrease, and if we move it to the left,
the average entropy will fall below H(14 ) and the information constraint will be violated.

The optimal splitting is also marked on Fig. VI.6 which shows the set of pairs of posteriors for the
splittings that satisfy the information constraint (union of green and blue regions).

On Fig. VI.8, we represent the value C⋆
e (PU ,C(TY |X)) of the optimal splitting problem as a function

of the prior PU , for different values for the noise parameter ε ∈
{

1
20 ,

3
20 ,

1
4 ,

7
20 ,

9
20 ,

99
200

}
. It is found by

solving the following system for ν0:

(PU (u0),PU (u1)) = λ

(
1

8
,
7

8

)
+ (1 − λ)(ν0(u0), ν0(u1))

and

H(PU (u1))− 1 +H(ε) = λH

(
7

8

)
+ (1− λ)H(ν0(u1)).

When PU (u1) =
1
2 and ε = 1

4 , we recover the value C⋆
e (PU ,C(TY |X)) ≈ −0.298 as in Fig. VI.7.

Observe that the function C⋆
e (PU ,C(TY |X)) is not concave with respect to the prior PU . From Corol-

lary 6, C⋆
e (PU ,C) is the convexification of the function cHe calculated at (PU , H(U)−C), so this composed

function need not be concave.
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Figure VI.8 – Value of the optimal splitting problem as a function of the prior PU , for different noise
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}
.

Perfect binary channel with k = n
2 → ∞

We consider the same example as before, repeated n times with the uniform prior PU = (12 ,
1
2 ). In

line with the motivating example from the introduction, we consider a perfect channel and assume that
the encoder has at its disposal half as many signals as needed to communicate perfectly, that is k = n

2 .
Since the capacity of the binary perfect channel is one, k

n = 1
2 and H(U) = 1, the information constraint

is:

H(U)−
∑

w

λwH(νw) ≤
1

2
⇐⇒

∑

w

λwH(νw) ≥
1

2
.

Observe that this constraint is identical to the one obtained with a binary symmetric channel with noise
ε such that H(ε) = 1

2 (i.e., ε ≈ 0.110). Therefore, the optimal splitting is given by the following system:

(PU (u0),PU (u1)) = λ

(
1

8
,
7

8

)
+ (1 − λ)(ν0(u0), ν0(u1))

and
1

2
= λH

(
7

8

)
+ (1− λ)H(ν0(u1)).

Solving numerically, we find C⋆
e (PU ,

1
2 ) ≈ −0.519.

On the number of posteriors

We give now an example showing the tightness of the bound min{|V|, |U| + 1} on the number of
posteriors, given in Corollary 7. The cost table is as follows:

v0 v1 v2
u0 0, 0 −1, 7 −1,−1 1

2
u1 0, 0 −1,−1 −1, 7 1

2
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There are two risky projects (v1 and v2) and the encoder wants to persuade the decoder to invest in any
of them. The decoder invests only if ν(u1) > 7/8 or ν(u1) < 1/8.

With unrestricted communication, the solution is clear: the encoder fully discloses the state and gets
a cost of -1. However, with a binary symmetric channel with noise ε = 1/4, the encoder gets 0 in the
one-shot scenario. Consider now the case where k = n→ ∞.

The “one-sided” solution of Section VI.1.e is feasible. Recall that this is the splitting such that:
(
1

2
,
1

2

)
= λ

(
1

8
,
7

8

)
+ (1− λ)(ν0(u0), ν(u1))

and

H

(
1

4

)
= λH

(
7

8

)
+ (1− λ)H(ν0(u0), ν0(u1)).

with ν0(u1) ≈ 0.340 and λ ≈ 0.298. It is easy to see that this is optimal among the splittings with
two posteriors. Indeed, it is not possible that the two posteriors induce investment while satisfying the
information constraint.

However, this is not optimal. The optimal splitting has three posteriors and is as follows:
(
1

2
,
1

2

)
= (1 − λ)

(
1

2
,
1

2

)
+
λ

2

(
1

8
,
7

8

)
+
λ

2

(
7

8
,
1

8

)

with

H

(
1

4

)
= (1− λ)H

(
1

2

)
+
λ

2
H

(
1

8

)
+
λ

2
H

(
7

8

)
.

This pins down a unique λ and solving numerically yields λ ≈ 0.413. Since λ is the probability of
investment, we get C⋆

e (PU , TY |X) ≈ −0.413 which is about 38% better than what is achieved with a
splitting with two points.

To see that this is optimal, first since there are two states, we know that three posteriors are sufficient.
Second, it is not possible to have all posteriors in the investment region and to satisfy the information
constraint. If there is only one posterior in the investment region, then the splitting achieves no more
than the “one-sided” solution. Therefore, it is optimal to have two posteriors in the investment region
and one outside of it. However, then, it is optimal to choose the point in the middle region to be (12 ,

1
2 ),

since this is the one with the highest entropy.

VI.1.f Beyond identical problems

The main result can be extended to series of persuasion problems which are not all identical, but such
that each type of problem is repeated many times. Suppose that we have a family of persuasion problems
indexed by a type parameter z in a finite set Z. That is, for every z ∈ Z, there is a prior probability
distribution PU|Z(·|z) ∈ ∆(U) and cost functions ci : U×V×Z → R for each player i = e, d. The series of
persuasion problems is given by a sequence zn = (z1, . . . , zn) which is commonly known by both players.
The distribution of states is as follows:

Pn
U (u

n|zn) :=
n∏

t=1

PU (ut|zt).

If the sequence of states and actions are respectively un, vn, the cost for player i is 1
n

∑n
t=1 ci(ut, vt, zt).

The communication technology is still given by a channel (X ,Y, TY |X) used k times, so that the strategy
sets are the same as before for both players. The optimal robust cost of the encoder is defined as before
and is denoted by Cn,k

e (PU , TY |X , z
n).

For each posterior belief ν ∈ ∆(U) and type z ∈ Z, the set of optimal actions of the decoder
is V∗z(ν) = argminv∈V

∑
u ν(u)cd(u, v, z) and we denote by cze (ν) = minv∈V∗z(ν)

∑
u ν(u)ce(u, v, z) the

robust cost of the encoder at the belief ν.
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Definition 47 For π ∈ ∆(Z) and C ≥ 0, the optimal splitting problem with information constraint is as
follows:

CZ
e (PU|Z ,C, π) = inf

∑

z

π(z)
∑

m

λzwc
z
e (ν

z
w)

s.t.
∑

w

λzwν
z
w = PU|Z(·|z), ∀z ∈ Z,

and
∑

z

π(z)
(
H(PU|Z(·|z))−

∑

w

λzwH(νzw)
)
≤ C.

The interpretation is as follows. Suppose that π(z) represents the probability, or frequency, of occurrence
of z. Conditional on z which is known by both players, the encoder performs a spitting of PU|Z(·|z),∑

w λ
z
wν

z
w = PU|Z(·|z), and gets the cost

∑
m λzwc

z
e (ν

z
w). The information constraint imposes the condi-

tional mutual information I(U ;W |Z) to be less than or equal to the capacity C.
Given a sequence zn ∈ Zn, let πn ∈ ∆(Z) be the empirical frequency induced by the sequence: for

each z ∈ Z, πn(z) = 1
n |{t : zt = z}|.

Theorem 35 1. The optimal robust cost of the encoder is no more than the value of the optimal
splitting problem with information constraint. For each pair of integers n, k:

Cn,k
e (PU , TY |X , z

n) ≤ CZ
e (PU|Z ,

k

n
C(TY |X), πn).

2. The optimal robust cost of the encoder converges to the value of the optimal splitting problem with
information constraint in the following sense. For each π ∈ ∆(Z) and r ∈ [0,+∞], for each pair of

sequences of integers (kj , nj)j∈N⋆ such that lim
j→∞

min(nj , kj) = ∞, lim
j→∞

kj

nj
= r and lim

j→∞
πnj = π,

we have:

lim
j→∞

C
nj ,kj
e (PU , TY |X , z

nj) = CZ
e (PU|Z , rC(TY |X), π).

Given a sequence zn, πn is the empirical distribution of types of problems. The optimal cost of the
encoder is bounded above by the value of optimal splitting under information constraint. Suppose that
the distribution of types is held fixed (or converges to) π, then when n and k grow large, the encoder is
able to secure approximately this value.

This extension applies to the case where the proportions of types of problems are fixed. Alternatively,
the sequence zn could be drawn i.i.d. from a prior distribution π ∈ ∆(Z).

Notice the channel T k
Y |X is used for transferring information about all problems. Thus, Theorem 35

does more than merely patching up distinct families of problems together. The capacity of the channel
bounds the total amount of information, across all problems. Thus, all problems, even of different types,
are linked together in the signals.

We have analyzed a persuasion game where the encoder communicates with the decoder through a
fixed and imperfect channel. The optimal cost of the encoder is bounded above by the value of the optimal
splitting problem with information constraint. When the encoder and the decoder are engaged in many
repetitions of identical persuasion games, the optimal cost for the encoder converges to the upper bound
as the number of repetitions increases.

VI.2 Persuasion game with side information at the decoder

In the previous section, it is assumed that the information about the state if fully controlled by the en-
coder. To model private information of the decoder, we consider that the nature draw pairs (ut, zt)t=1,...,n

and assume that un is the private information of the encoder and zn is the private information of the
decoder, as depicted in Fig. VI.9. Our methods generalize to this case provided that we use the correct
information constraint. A random signal W can be transmitted over the channel provided that its mutual
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information with the state, conditional on the private information of the decoder I(U ;W |Z) ≤ C is less
than or equal to the capacity, where

I(U ;W |Z) :=
∑

z

Pr(z)I(U ;W |Z = z)

is the expectation over Z of the mutual information conditional on {Z = z}.
Communication between autonomous devices that have distinct objectives is under study. This prob-

lem, referred to as the strategic communication problem, is at the crossroads of different disciplines such
as Control Theory Sarıtaş et al. (2017), Sarıtaş et al. (2020), Computer Science Dughmi et al. (2019)
and Information Theory (Le Treust and Tomala, 2016, [IC7]), (Le Treust and Tomala, 2018b, [IC20]),
(Le Treust and Tomala, 2018a, [W2]), Sarıtaş et al. (2019), Vora and Kulkarni (2020), Vora and Kulkarni
(2020), Kazıklı et al. (2021), where it was introduced by Akyol et al. in Akyol et al. (2016), Akyol et al.
(2017).

Three different formulations of the strategic communication problem are originally proposed in the
Game Theory literature, see (Le Treust and Tomala, 2020, [IC26]). The cheap talk game of Crawford
and Sobel Crawford and Sobel (1982) relies on the Nash equilibrium solution. In the mechanism design
problem of Jackson and Sonnenschein Jackson and Sonnenschein (2007) the receiver commits to a pre-
scribed decoding strategy, as the leader of a Stackelberg game. The hypothesis of decoder commitment
is also related to the mismatched rate-cost problem in Lapidoth (1997), Scarlett et al. (2020). In the
persuasion game of Kamenica and Gentzkow (2011), it is the sender who commits to a strategy whereas
the decoder computes its Bayesian posterior belief and selects the optimal output symbol. In (Le Treust
and Tomala, 2019, [J8]), we characterize the impact of the channel noise in the solution to the persuasion
problem.

In this section, we extend these previous results with encoder commitment by considering that the
decoder has side information. More specifically, we formulate a joint source-channel coding problem with
decoder side information in which the encoder and the decoder are endowed with distinct cost functions.
Given an encoder strategy, the decoder selects an optimal strategy for its cost function. The encoder
anticipates the mismatch of the cost functions and commits to implementing the encoding strategy that
minimizes its cost.

The technical novelty consists in controlling the distance of the posterior beliefs induced by Wyner-
Ziv’s coding to the target posterior beliefs. This demonstrates that the Wyner-Ziv’s encoding reveals
nothing but the exact amount of information needed to implement the optimal decoding strategy. Con-
sequently at the optimum the decoder produces a sequence of outputs which is almost the same as the
one generated by the coding of Wyner and Ziv (1976), for a specific probability distribution.

Zn

Un Xn Y n V n

PUZ TY |XEnc Dec

ce(u, v) cd(u, v)

Figure VI.9 – The source PUZ is i.i.d., the channel TY |X is memoryless. The encoder and the decoder
have arbitrary distinct cost functions ce(u, v) 6= cd(u, v).

VI.2.a System model

We denote by U , Z, X , Y, V , the finite sets of information source, side information, channel inputs,
channel outputs and decoder’s outputs. We consider the information source (U×Z,PUZ) and the channel
(X ,Y, TY |X), as depicted in Fig. VI.9.
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Definition 48 We define the encoding and the decoding strategies by

σ : Un −→ ∆(Xn), (VI.19)

τ : Yn ×Zn −→ ∆(Vn). (VI.20)

The strategies (σ, τ) induces the distribution

Pσ,τ
UnZnXnY nV n =

( n∏

t=1

PUtZt

)
σXn|Un

( n∏

t=1

TYt|Xt

)
τV n|Y nZn , (VI.21)

where σXn|Un , τV n|Y nZn denote the distributions of the strategies σ, τ .

Definition 49 The encoder and decoder are endowed with distinct cost functions

ce : U × V −→ R, cd : U × V −→ R. (VI.22)

The long-run cost functions cne (σ, τ), c
n
d
(σ, τ) are defined by

cne (σ, τ) =E

[
1

n

n∑

t=1

ce(ut, vt)

]
,

cnd (σ, τ) =
∑

un,vn

Pσ,τ
(
un, vn

)
·
(
1

n

n∑

t=1

cd(ut, vt)

)
.

Definition 50 Given n ∈ N⋆, we define:
1. the set of decoder best responses to strategy σ by

BRd(σ) =argmin
τ

cn
d
(σ, τ), (VI.23)

2. the long-run encoder cost value by

Cn
e = inf

σ
max

τ∈BRd(σ)
cne (σ, τ). (VI.24)

In case BRd(σ) is not a singleton, we assume that the decoder selects the worst strategy for the encoder
cost maxτ∈BRd(σ)

cne (σ, τ), so that the solution is robust to the exact specification of the decoding strategy.
We aim at characterizing the asymptotic behavior of Cn

e .

Definition 51 We consider an auxiliary random variable W ∈ W with |W| = min
(
|U| + 1, |V||Z|) and

we define

Q =
{
PUZQW |U , max

PX

I(X ;Y )− I(U ;W |Z) ≥ 0
}
. (VI.25)

Given QUZW , we define the single-letter best responses

Ad

(
QUZW

)
= argmin

QV |ZW

E QUZW
QV |ZW

[
cd(U, V )

]
. (VI.26)

The encoder optimal cost C⋆
e

is given by

C⋆
e = inf

QUZW∈Q
max

QV |ZW ∈

A
d
(QUZW )

E QUZW
QV |ZW

[
ce(U, V )

]
. (VI.27)

If Ad

(
QUZW

)
is not a singleton, the decoder selects the worst distribution QV |ZW from the encoder

perspective.
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Theorem 36

∀n ∈ N⋆, Cn
e
≥ C⋆

e
, (VI.28)

∀ε > 0, ∃n̄ ∈ N⋆, ∀n ≥ n̄, Cn
e ≤ C⋆

e + ε. (VI.29)

The proof of Theorem 36 is stated in (Le Treust and Tomala, 2019, [W3], App. B and C).
Sketch of proof of (VI.28). For all n ∈ N⋆, the converse result relies on the identification of the

auxiliary random variables W = (Y n, ZT−1, Zn
T+1, T ) and (U,Z, V ) = (UT , ZT , VT ), where T is uni-

formly distributed over {1, . . . , n}. We denote by Qσ
UZW , Qτ

V |ZW the distributions induced by (σ, τ) over
(U,Z,W, V ). In Merhav and Shamai (2003), it is proved that the Markov chain Z −
−U −
−W holds and
that I(U ;W |Z) ≤ maxPX I(X ;Y ), hence Qσ

UZW ∈ Q. We show that

cne (σ, τ) =E Qσ
UZW

Qτ
V |ZW

[
ce(U, V )

]
, (VI.30)

{PV |ZW , ∃τ ∈ BRd(σ), Qτ
V |ZW = PV |ZW } =Ad(Qσ

UZW ). (VI.31)

Then for any σ̃, we have

max
τ∈BRd(σ̃)

cne (σ̃, τ) = max
PV |ZW ,∃τ∈BR

d
(σ̃)

Qτ
V |ZW

=PV |ZW

E Qσ̃
UZW

PV |ZW

[
ce(U, V )

]
(VI.32)

= max
QV |ZW ∈

A
d
(Qσ̃

UZW
)

E Qσ̃
UZW

QV |ZW

[
ce(U, V )

]
(VI.33)

≥ inf
QUZW∈Q

max
QV |ZW ∈

A
d
(QUZW )

E QUZW
QV |ZW

[
ce(U, V )

]
= C⋆

e , (VI.34)

which implies (VI.28).
Note that the sequence (nCn

e )n∈N⋆ is sub-additive. Indeed, when σ is the concatenation of several
encoding strategies, the optimal τ in (VI.24) is the concatenation of the optimal decoding strategies.
Theorem 36 and Fekete’s lemma, show that

C⋆
e = lim

n→+∞
Cn

e = inf
n∈N⋆

Cn
e . (VI.35)

VI.2.b Convex closure formulation

Recall that we denote by vex f : X → R ∪ {−∞} the convex closure of a function f , i.e. the largest
convex function everywhere smaller than f on X . We reformulate C⋆

e in terms of a convex closure,
similarly to (Kamenica and Gentzkow, 2011, Corollary 1).

Lemma 6 For all QW |U ∈ ∆(W)|U|, for all (u, z, w) ∈ supp
(
PUZQW |U

)
we have

QU|WZ(u|w, z) =
QU|W (u|w)PZ|U (z|u)∑
u′ QU|W (u′|w)PZ|U (z|u′)

. (VI.36)

The proof is direct. The conditional distribution QU|WZ ∈ ∆(U)|W×Z| reformulates in terms of QU|W ∈
∆(U)|W|.

Definition 52 Given the probability distribution p ∈ ∆(U), the decoder selects a best response action v
in

V⋆(p) = argmin
v∈V

Ep

[
cd(U, v)

]
. (VI.37)

Given p ∈ ∆(U), we define the robust cost function by

ψe(p) = max
v∈V⋆(p)

Ep

[
ce
(
U, v

)]
. (VI.38)
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Definition 53 For p ∈ ∆(U), the average cost function Ψe(p) and the average entropy function h(p) are
defined by

Ψe(p) =
∑

u,z

p(u)PZ|U (z|u) · ψe

(
p(·)PZ|U (z|·)∑

u′ p(u′)PZ|U (z|u′)

)
, (VI.39)

h(p) =
∑

u,z

p(u)PZ|U (z|u) log2
∑

u′ p(u′)PZ|U (z|u′)
p(u)PZ|U (z|u)

. (VI.40)

The function h(p) is the conditional entropy H(U |Z) evaluated with respect to p · PZ|U instead of PUZ .

Lemma 7 The function h(p) is concave in p ∈ ∆(U).

Proof. [Lemma 7] The entropy H(U) is concave in p ∈ ∆(U), the mutual information I(U ;Z) is convex
in p ∈ ∆(U) for fixed PZ|U and moreover H(U |Z) = H(U)− I(U ;Z).

Theorem 37

C⋆
e = inf

{ ∑

w∈W
λwΨe(pw),

∑

w∈W
λwpw = PU ,

∑

w∈W
λwh(pw) ≥ H(U |Z)−max

PX

I(X ;Y )

}
, (VI.41)

where the infimum is taken over (λw , pw)w∈W with |W| = min
(
|U|+1, |V||Z|), such that for each w ∈ W,

pw ∈ ∆(U), λw ∈ [0, 1], and
∑

w∈W λw = 1.

The proof of Theorem 37 is stated in (Le Treust and Tomala, 2019, [W3], App. A). It is a consequence
of the Markov chain property Z−
−U−
−W . Note that all the channels such that maxPX I(X ;Y ) ≥ H(U |Z)
lead to the same value for C⋆

e . The optimal parameters (λ⋆w , p
⋆
w)w∈W in (VI.41) are referred to as the

optimal splitting of the prior distribution PU , see Aumann and Maschler (1995). When removing the
decoder side information, e.g. |Z| = 1, and changing the infimum into a supremum, we recover the value
of the optimal splitting problem of (Le Treust and Tomala, 2019, [J8], Definition 2.4).

• Since
∑

w λwh(pw) = H(U |Z,W ), the information constraint in (VI.41) is a reformulation of
I(U ;W |Z) ≤ maxPX I(X ;Y ).

• The dimension of the problem (VI.41) is |U|+1. Caratheodory’s Lemma (Rockafellar, 1970, Corol-
lary 17.1.5, pp. 157) induces the cardinality bound |W| ≤ |U|+ 1.

• The cardinality of W is also restricted by the vector of recommended symbols |W| ≤ |V||Z|, telling
to the decoder which symbol v ∈ V to select when the side information is z ∈ Z.

The encoder optimal cost C⋆
e can be reformulated in terms of Lagrangian and in terms of the convex

closure of

Ψ̃e(p, ν) =

{
Ψe(p), if ν ≤ h(p),

+∞, otherwise.
(VI.42)

Theorem 38

C⋆
e =sup

t≥0

{
vex

[
Ψe + t · h

](
PU

)
− t ·

(
H(U |Z)−max

PX

I(X ;Y )
)}

(VI.43)

=vex Ψ̃e

(
PU , H(U |Z)−max

PX

I(X ;Y )
)
. (VI.44)
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Equation (VI.43) is the convex closure of a Lagrangian with the information constraint. Equation
(VI.44) corresponds to the convex closure of a bi-variate function where the information constraint requires
an additional dimension. The proof follows directly from (Le Treust and Tomala, 2019, [J8], Theorem
3.3, pp. 37) by replacing concave closure by convex closure.

Remark 30 When ce = cd, then ψe(p) = minv Ep

[
ce
(
U, v

)]
and we reformulate the solution of Wyner

and Ziv (1976) in terms of a splitting problem, whose optimal solution is computed as in Sec. VI.2.c.

C⋆
e = inf

(λw,pw)w∈W ,∑
w λw=1

{ ∑

w∈W
λw
∑

u,z

pw(u)PZ|U (z|u)×min
v

E pw(·)PZ|U (z|·)
∑

u′ pw(u′)PZ|U (z|u′)

[
ce
(
U, v

)]
,

∑

w∈W
λwpw = PU ,

∑

w∈W
λwh(pw) ≥ H(U |Z)−max

PX

I(X ;Y )

}
. (VI.45)

When ce = −cd, then V⋆(p) = argmaxv Ep

[
ce(U, v)

]
and both functions ψe(p), Ψe(p) are convex in

p ∈ ∆(U). By Jensen’s inequality, the infimum in (VI.41) is achieved by p⋆w = PU , ∀w ∈ W, i.e. no
information is transmitted and C⋆

e
= maxv EPU

[
ce
(
U, v

)]
.

VI.2.c Doubly symmetric binary source

We consider the doubly symmetric binary source (DSBS) example introduced in (Wyner and Ziv,
1976, Sec. II), depicted in Fig. VI.10 with parameters (p0, δ0, δ1) ∈ [0, 1]3. The cardinality bound is
|W| = min

(
|U| + 1, |V||Z|) = 3, hence the random variable W is drawn according to the conditional

probability distribution QW |U with parameters (αk, βk)k∈{1,2,3} ∈ [0, 1]6 such that
∑

k αk =
∑

k βk = 1.

u1

u0

b

b

b

b

b

b

b

b

b

w3

w1

w2

z1

z0
α1

β3

1− p0

p0

α3
α2

β1 β2

1− δ0

δ0

1− δ1

δ1

Figure VI.10 – Joint probability distribution PUZ(u, z)QW |U (w|u) with |W| = 3 depending on parameters
p0, δ0, δ1, (αk, βk)k∈{1,2,3} that belong to [0, 1].

u1

u0

v0 v1

0

1

1

0

Figure VI.11 – Encoder cost ce(u, v).

u1

u0

v0 v1

0

1

1 + κ

κ

Figure VI.12 – Decoder cost cd(u, v).

The cost functions are given by Fig. VI.11 and VI.12 for which the extra cost κ ∈ [0, 1] in the decoder
cost may capture a computing cost, an energy cost, or the fact that an estimation error of the symbol v1
is more harmful than an estimation error of the symbol v0.

The optimal decision for the decoder depends on the posterior belief QU|WZ(·|w, z) ∈ ∆(U) after
observing the symbols (w, z). We denote by γ = 1+κ

2 = 7
8 the belief threshold at which the decoder

changes from symbol v0 to v1, as in Fig. VI.13. The decoder chooses v⋆0 (resp. v⋆1) when the posterior
belief belongs to [0, γ] (resp. ]γ, 1]).

The correlation of (U,Z) is fixed whereas the correlation of (U,W ) is selected by the encoder. Lemma 6
formulates the posterior belief QU|WZ in terms of the iterim belief QU|W . For the symbols w ∈ W , z0 ∈ Z,
z1 ∈ Z we have

Q(u1|w, z0) =
qδ1

(1 − q)(1− δ0) + qδ1
=: p0(q), (VI.46)

Q(u1|w, z1) =
q(1− δ1)

(1 − q)δ0 + q(1− δ1)
=: p1(q). (VI.47)
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0 1 p

Ep

[
cd(U, v)

]

1 + κ = 7
4

κ = 3
4

1

v1

v0

γ

b

Figure VI.13 – Decoder’s expected cost Ep

[
cd(U, v)

]
= (1 − p) · cd(u0, v) + p · cd(u1, v) for v ∈ {v0, v1}

depending on the belief Q(u1|w, z) ∈ [0, 1].

0

1

1 qp
0

p0

P(u1|z0)

P(u1|z1)

b

b

b

b

b b

b

γ

ν
0

ν
1

bb

bb b

b

b

b

b p0(ν1)

p1(ν0)

p1(q)

p0(q)

Figure VI.14 – Equations (VI.46) and (VI.47), depending on the interim belief q ∈ [0, 1], for p0 = 0.5,
δ1 = 0.05, δ2 = 0.5 and γ = 0.875.

Equations (VI.46) and (VI.47) are depicted on Fig. VI.14. Given the belief threshold γ = 7
8 , we define

ν0 and ν1 such that

γ = p0(ν0) ⇐⇒ ν0 =
γ(1− δ0)

δ1(1− γ) + γ(1− δ0)
, (VI.48)

γ = p1(ν1) ⇐⇒ ν1 =
γδ0

γδ0 + (1− δ1)(1 − γ)
. (VI.49)

Without loss of generality, we assume that δ0 + δ1 < 1 ⇐⇒ ν1 < ν0. The robust and average cost
functions writes

ψe(p) =p ·1
(
p ≤ γ

)
+ (1− p) · 1

(
p > γ

)
, (VI.50)

Ψe(q) =Prq(z0) · ψe

(
p0(q)

)
+ Prq(z1) · ψe

(
p1(q)

)
(VI.51)

=q ·1
(
q ≤ ν1

)
+ (1− q) ·1

(
q > ν0

)
+
(
qδ1 + (1 − q)δ0

)
·1
(
ν1 < q ≤ ν0

)
. (VI.52)

The average cost function Ψe(q) is depicted by the orange lines in Fig. VI.15 and Fig. VI.16, where the

black curve is the average entropy h(q) = Hb(q)+ (1− q) ·Hb(δ0)+ q ·Hb(δ1)−Hb

(
(1− q)δ0 + q(1− δ1)

)

and Hb denotes the binary entropy.
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3q
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q ⋆
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b b C⋆
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Figure VI.15 – The optimal splitting has three posteriors when C ∈ [0, H(U |Z)− h(q⋆)], with p0 = 0.5,
δ0 = δ1 = 0.3, C = 0.2, κ = 0, then C⋆

e = 0.2098.

0 1 q
b
q
2 =

p
0

b b
ν
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ν
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δ0 = δ1
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b b
H(U |Z)− C

h(q⋆)
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b b
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q ⋆

q ⋆ q
3

q
1

b bb b

b C⋆
e

Figure VI.16 – The optimal splitting has only two posteriors when C ∈ [H(U |Z)− h(q⋆), H(U |Z)], with
p0 = 0.5, δ0 = δ1 = 0.3, C = 0.4, κ = 0, then C⋆

e = 0.1212.

The optimal splitting has posteriors (q1, q2, q3) ∈ [0, 1]3 with respective weights (λ1, λ2, λ3) ∈ [0, 1]3

that satisfy

1 =λ1 + λ2 + λ3, (VI.53)

p0 =λ1q1 + λ2q2 + λ3q3, (VI.54)

H(U |Z)− C =λ1 · h(q1) + λ2 · h(q2) + λ3 · h(q3). (VI.55)

Equation (VI.55) is satisfied when the information constraint is binding, therefore we obtain (Le Treust
and Tomala, 2019, [J8], Eq. (58)-(60)). Without loss of generality, we assume that q1 ∈ [0, ν1[, q2 ∈
[ν1, ν2[, q3 ∈ [ν2, 1] and characterize the optimal solution in three different scenarios. According to the
Splitting Lemma Aumann and Maschler (1995), we have for k ∈ {, 1, 2, 3},

Q(wk|u0) =Q(wk)
1 −Q(u1|wk)

1− P(u1)
= λk

1− qk
1− p0

= αk, (VI.56)

Q(wk|u1) =Q(wk)
Q(u1|wk)

P(u1)
= λk

qk
p0

= βk. (VI.57)

Wyner-Ziv’s example with equal cost functions

We consider p0 = 0.5, δ0 = δ1 = 0.3, κ = 0, hence both encoder and decoder minimize the Hamming
cost and hence γ = 1

2 . The average cost and average entropy write

Ψe(q) =q · 1
(
q ≤ δ

)
+ δ ·1

(
δ < q ≤ 1− δ

)
+ (1− q) · 1

(
q > 1− δ

)
, (VI.58)

h(q) =H(U |Z) +Hb(q) −Hb

(
q ⋆ δ

)
, (VI.59)
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with the notation q ⋆ δ = (1 − q)δ + q(1 − δ).

Proposition 13 We denote by q⋆ the unique solution to

h′(q) =
H(U |Z)− h(q)

δ − q
. (VI.60)

1) If C ∈ [0, H(U |Z)− h(q⋆)] then at the optimum (Fig. VI.15)

q1 =q⋆ = 1− q3, q2 =
1

2
, (VI.61)

λ1 =
1

2
· C

H(U |Z)− h(q⋆)
= λ3 =

1− λ2
2

, (VI.62)

which correspond to the distribution parameters α1 = (1−q⋆)· C
H(U|Z)−h(q⋆) = β3, α2 = 1− C

H(U|Z)−h(q⋆) =

β2, α3 = q⋆ · C
H(U|Z)−h(q⋆) = β1, and to the optimal cost

C⋆
e =δ − C · δ − q⋆

H(U |Z)− h(q⋆)
. (VI.63)

2) If C ∈ [H(U |Z)− h(q⋆), H(U |Z)] then at the optimum (Fig. VI.16) q1 = h−1
(
H(U |Z)− C

)
= 1− q3,

q2 = 1
2 , λ1 = 1

2 = λ3, λ2 = 0, which correspond to the distribution parameters α1 = 1−h−1
(
H(U |Z)−

C
)
= 1− α3 = β3 = 1− β1 and α2 = β2 = 0 and to the optimal cost

C⋆
e =h−1

(
H(U |Z)− C

)
, (VI.64)

where the notation h−1
(
H(U |Z) − C

)
stands for the unique solution q ∈ [0, 1] of the equation h(q) =

H(U |Z)− C.
3) If C > H(U |Z), then the optimal splitting rely on the two extreme posterior beliefs (0, 1) and C⋆

e = 0.

0

C

1 C⋆
e

b
p
0

q ⋆ δ
b

b

b

b

b

b b

H(U |Z)

H(U |Z)− h(q⋆)

H(U |Z)− h(δ)

Figure VI.17 – Optimal trade-off between the capacity C and the optimal cost C⋆
e for the DSBS with

parameters p0 = 0.5, δ0 = δ1 = 0.3, κ = 0.

The proof of Proposition 13 is provided in (Le Treust and Tomala, 2019, [W3], App. D). When C ≤
H(U |Z)−h(q⋆), the optimal strategy consists of a time-sharing between (C⋆

e ,C) =
(
q⋆, H(U |Z)− h(q⋆)

)

and the zero rate point (δ, 0), as depicted in Fig. VI.17.
According to Fig. VI.15 and Fig. VI.16, the optimal distribution of the Wyner-Ziv problem for DSBS

has two regimes, either with two posteriors or with three posteriors, i.e. with |W| = 2 or |W| = 3.

Distinct cost functions without side information

We consider p0 = 0.5, C = 0.2, κ = 3
4 and δ0 = δ1 = 0.5 so that Z is independent of U , as in (Le Treust

and Tomala, 2019, [J8]). We have Hb(δ0) = Hb(δ1) = Hb

(
(1− q)δ0+ q(1− δ1)

)
= 1 and ν1 = ν2 = γ = 7

8 .
The average entropy and average cost write

h(q) =Hb(q), (VI.65)

Ψe(q) =ψe(q) = p · 1
(
p ≤ γ

)
+ (1− p) ·1

(
p > γ

)
, (VI.66)
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Figure VI.18 – For p0 = 0.5, δ0 = δ1 = 0.5, C = 0.2, κ = 3
4 , C⋆

e = 0.2668.

and are depicted in Fig. VI.18. Applying (Le Treust and Tomala, 2019, [J8], Corollary 3.5), the optimal
splitting has two posteriors, i.e. |W| = 2, and satisfy

p0 − q2
q1 − q2

·Hb(q1) +
q1 − p0
q1 − q2

·Hb(q2) ≥ H(U)− C. (VI.67)

By numerical optimization, the above inequality is satisfied for p0 = 0.5, δ0 = δ1 = 0.5, C = 0.2,
κ = 3

4 , hence the optimal cost is achieved by using q2 = γ, as in Fig. VI.18.

0

1

1 q
b
p
0

b b
q ⋆
3 =

ν
1

q ⋆
2 =

ν
2

bb

b
q ⋆
1

H(U |Z)− C

b

b b

b

b b

bbC⋆
e

Figure VI.19 – p0 = 0.5, δ0 = 0.05, δ1 = 0.5, C = 0.2, κ = 3
4 , C⋆

e = 0.1721.

Distinct cost functions with side information

We consider p0 = 0.5, δ0 = 0.05, δ1 = 0.5, C = 0.2, κ = 3
4 . By numerical simulation, we determine

the optimal triple of posteriors (q1, q2, q3) represented by the red dots in Fig. VI.19, corresponding to
C⋆

e = 0.1721. The parameters of the optimal strategy in Fig. VI.10, are given by the following table.

q1 = 0.0715 q2 = 0.4118 q3 = 0.9301
λ1 = 0.1288 λ2 = 0.6165 λ3 = 0.2548

α1 = 0.2392 α2 = 0.7252 α2 = 0.0356
β1 = 0.0184 β2 = 0.5077 β3 = 0.4739
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VI.3 Bayesian persuasion with several decoders

In this section, we investigate the Bayesian persuasion problem with two decoders via a the commu-
nication network of Gray and Wyner (1974), as in Fig. VI.20. The encoder may use three restricted
communication channels. One channel of capacity R0 is public, i.e. both decoder observe its output, and
the two other channels of capacity R1 and R2 are private to each decoders. We assume that the encoder
commits to an encoding strategy and the actions taken by each decoder do not affect the cost function
of the other decoder.

Information design with multiple designers interacting with a set of agents is studied in Koessler et al.
(2022). In Sarıtaş et al. (2017), Sarıtaş et al. (2019), the Nash equilibrium solution is investigated for
multi-dimensional sources and quadratic cost functions, whereas the Stackelberg solution is studied in
Sarıtaş et al. (2020). The strategic communication problem with a noisy channel is investigated in Akyol
et al. (2015), Akyol et al. (2017). The case where the decoder privately observes a signal correlated
to the state, also referred to as the setting of Wyner and Ziv (1976), is studied in Akyol et al. (2016),
Bou Rouphael and Le Treust (2020) and Le Treust and Tomala (2021). Vora and Kulkarni investigate
the achievable rates for the strategic communication problem in Vora and Kulkarni (2020), Vora and
Kulkarni (2020) where the decoder is the Stackelberg leader.

ce(U, V1, V2)

E

c1(U, V1)

D1

c2(U, V2)

D2

V n
2

V n
1

Un M0

M1

M2

R0

R2

R1

Figure VI.20 – Gray-Wyner Network with Cost-Independent Decoders.

VI.3.a System model

In this section, we introduce the coding problem depicted in Fig VI.20.

Definition 54 Let R0, R1, R2 ∈ R3
+ = [0,+∞[3, and n ∈ N⋆ = N\{0}. We denote by M0 ∈ {1, ..2⌊nR0⌋},

M1 ∈ {1, ..2⌊nR1⌋}, M2 ∈ {1, ..2⌊nR2⌋} the random variables of the public and private messages send by
the encoder and perfectly received by the decoders, as in Fig. VI.20.

The encoding function σ and the decoding functions τi of the encoder E and decoders Di for i ∈ {1, 2}
respectively, are given by

σ : Un 7→ ∆
(
{1, ..2⌊nR0⌋} × {1, ..2⌊nR1⌋} × {1, ..2⌊nR2⌋}

)
,

τi : ({1, 2, ..2⌊nR0⌋} × {1, 2, ..2⌊nRi⌋}) 7→ ∆(Vn
i ).

The coding triplets (σ, τ1, τ2) are stochastic and induce a joint probability distribution

Pσ,τ1,τ2
UnM0M1M2V n

1 V n
2
=

( n∏

t=1

PUt

)
Pσ
M0M1M2|UnPτ1

V n
1 |M0M1

Pτ2
V n
2 |M0M2

. (VI.68)

Definition 55 Single-letter cost functions ce : U × V1 × V2 7→ R of the encoder and ci : U × Vi 7→ R of
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decoder Di for i ∈ {1, 2} induce Long-run cost functions cne (σ, τ1, τ2) and cni (σ, τi),

cne (σ, τ1, τ2) =
∑

un,vn
1 ,vn

2

Pσ,τ1,τ2
UnV n

1 V n
2
(un, vn1 , v

n
2 ) ·

[
1

n

n∑

t=1

ce(ut, v1,t, v2,t)

]
,

cni (σ, τi) =Eσ,τi

[
1

n

n∑

t=1

ci(Ut, Vi,t)

]
.

where Pσ,τ1,τ2
UnV n

1 V n
2

denotes the marginal distributions of Pσ,τ1,τ2 over the n-sequences (Un, V n
1 , V

n
2 ).

Definition 56 Given σ the set of best-responses strategies of decoder Di, i ∈ {1, 2} is defined by

BRi(σ) =
{
τi, cni (σ, τi) ≤ cni (σ, τ̃i), ∀ τ̃i

}
. (VI.69)

In case several pairs of strategies are best-responses, we consider the decoders select the worst (τ1, τ2) ∈
BR1(σ) × BR2(σ) for the encoder cost function. Given (R0, R1, R2) ∈ R3

+ et n ∈ N⋆, the coding problem
under study is defined by

Cn
e (R0, R1, R2) = inf

σ
max

τ1∈BR1(σ),

τ2∈BR2(σ)

cne (σ, τ1, τ2). (VI.70)

Equation (VI.70) corresponds to the persuasion game that plays as follow:

• The encoder E selects and announces the strategy σ.

• The sequence Un is drawn i.i.d. according to PU .

• The messages (M0,M1,M2) are encoded according to Pσ
M0M1M2|Un .

• The decoder D1 implements τ1 ∈ BR1(σ): by knowing σ, it observes (M0,M1), reactualises its
Bayesian posterior belief Pσ

Un|M0M1
and selects a sequence of actions V n

1 that minimizes its expected
cost function.

• Similarly, D2 implements τ2 ∈ BR2(σ).

• We consider the players expected cost values given by cne (σ, τ1, τ2) , cn1 (σ, τ1) , cn2 (σ, τ2).

Lemma 8 The sequence
(
nCn

e (R0, R1, R2)
)
n∈N⋆ is sub-additive, i.e. ∀n,m ∈ Z, we have

(n+m)Cn+m
e (R0, R1, R2) ≤ nCn

e (R0, R1, R2) +mCm
e (R0, R1, R2). (VI.71)

To prove Lemma 8, we show that the concatenation of the strategy σn that achieves
nCn

e (R0, R1, R2), with the strategy σm that achieves mCm
e (R0, R1, R2), leads to an upper bound on

(n+m)Cn+m
e (R0, R1, R2).

VI.3.b Main result

We investigate the asymptotic behaviour of Cn
e (R0, R1, R2).

Definition 57 We consider three auxiliary random variables W0 ∈ W0 , W1 ∈ W1 and W2 ∈ W2 with
|W0| = |V1| × |V2|+ 1 and |Wi| = |Vi|, for i ∈ {1, 2}. Given (R0, R1, R2) ∈ R3

+ , we define

Q0(R0, R1, R2) =

{
QW0|UQW1|W0UQW2|W0U , R0 ≥ I(U ;W0),

R0 + R1 ≥ I(U ;W1,W0), R0 +R2 ≥ I(U ;W2,W0)

}
, (VI.72)

Q̃0(R0, R1, R2) =

{
QW0W1W2|U , R0 ≥ I(U ;W0),

R0 + R1 ≥ I(U ;W1,W0), R0 +R2 ≥ I(U ;W2,W0)

}
(VI.73)
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A distribution in Q0(R0, R1, R2) must satisfy the Markov chain property W1 −
− (U,W0)−
−W2. For each
QW0W1|U and QW0W2|U , we define

Q1(QW0W1|U ) = argmin
QV1|W0W1

E
[
c1(U, V1)

]
, (VI.74)

Q2(QW0W2|U ) = argmin
QV2|W0W2

E
[
c2(U, V2)

]
. (VI.75)

We define lower and upper bounds on the encoder optimal cost

C⋆
e (R0, R1, R2) = inf

QW0|UQW1|W0UQW2|W0U

∈Q0(R0,R1,R2)

max
QV1|W0W1

∈Q1(QW0W1|U )

QV2|W0W2
∈Q2(QW0W2|U )

E
[
ce(U, V1, V2)

]
, (VI.76)

C̃e(R0, R1, R2) = inf
QW0W1W2|U

∈Q̃0(R0,R1,R2)

max
QV1|W0W1

∈Q1(QW0W1|U )

QV2|W0W2
∈Q2(QW0W2|U )

E
[
ce(U, V1, V2)

]
. (VI.77)

Therefore the infimum in (VI.77) has a larger domain which implies C̃e(R0, R1, R2) ≤ C⋆
e (R0, R1, R2).

Lemma 9 If the encoder cost function satisfies

ce(u, v1, v2) = ce1(u, v1) + ce2(u, v2), ∀(u, v1, v2), (VI.78)

for some ce1 : U × V1 7→ R and ce2 : U × V2 7→ R, then

C⋆
e (R0, R1, R2) = C̃e(R0, R1, R2), (VI.79)

for all (R0, R1, R2) ∈ R3
+.

Theorem 39 Let (R0, R1, R2) ∈ R3
+, we have

∀ε > 0, ∃n̄ ∈ N, ∀n ≥ n̄, Cn
e (R0, R1, R2) ≤ C⋆

e (R0, R1, R2) + ε, (VI.80)

∀n ∈ N, Cn
e (R0, R1, R2) ≥ C̃e(R0, R1, R2). (VI.81)

The proof of Theorem 39 is stated for the case R2 = 0 in (Bou Rouphael and Le Treust, 2021, [IC28])
and (Bou Rouphael and Le Treust, 2022d, [W5]), and for the general case in (Bou Rouphael and Le Treust,
2022a, [NC5]). By applying Fekete’s Lemma for the sub-additive sequence

(
nCn

e (R0, R1, R2)
)
n∈N⋆ , for

all (R0, R1, R2) ∈ R3
+, we have

C̃e(R0, R1, R2) ≤ lim
n→∞

Cn
e (R0, R1, R2) = inf

n∈N⋆
Cn

e (R0, R1, R2) ≤ C⋆
e (R0, R1, R2).

VI.4 Chapter summary

In this chapter, we characterize the optimal solutions of Bayesian persuasion games when the com-
munication is passed through a noisy channel, when the decoder has side information and when there are
two decoders and a common message.

In the scenarios with one encoder and one decoder, the optimal solution reformulates as the convexi-
fication of an auxiliary function, that depends on the decoder posterior beliefs. As a side result, this new
formulation allows us to determine when Wyner-Ziv’s auxiliary random variable for the DSBS, must be
binary.
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Chapter VII

Conclusion and perspectives

Information is crucial in decision making problems, the infor-
mation asymmetries in Game Theory raise new scenarios and
new open questions. In this chapter, we present on-going re-
search directions and a long-term perspectives that will deepen
the connection between Game Theory and Information The-
ory, and also with Graph Theory and Convex Optimization.

In Sec. VII.1, we present some of Nicolas Charpenay’s PhD contributions on zero-error source
coding problems with decoder side information. This question is related to the long-standing
open problem of the zero-error Shannon capacity of a graph, see Shannon (1956). We study
the zero-error version of the coding for computing problem of Orlitsky and Roche (2001), by
coloring an appropriate product of graphs. Nicolas’s results are stated in (Charpenay et al.,
2022b, [IC30]), (Charpenay and Le Treust, 2020, [IC25]), (Charpenay et al., 2022a, [NC11]),
(Charpenay et al., 2022c, [W6]), (Charpenay et al., 2023, [W9]). In Sec. VII.2, we study the
convex optimization problem of (IV.28) that involves the information constraint of Gossner
et al. (2006), by using a recent convex optimization algorithm that computes efficiently the
optimal cost. We will adapt this algorithm in order to compute the solution of various co-
ordination solutions, stated in Chap. IV. In Sec. VII.3, we present a sender-receiver game
in which the commitment is at the decoder side, instead of being at the encoder side. This
assumption changes the strategic nature of the problem, it is a mechanism design problem, sim-
ilar to the one of Jackson and Sonnenschein (2007), in which the communication is restricted.
This problem can also be seen as a reformulation of the mismatched rate-distortion problem of
Lapidoth (1997). The goal is to understand the incentive constraints of both players in order
to generalize the cheap talk problem of Crawford and Sobel (1982).
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CHAPTER VII. CONCLUSION AND PERSPECTIVES

VII.1 Zero-error coding for computing problem

Consider the source coding scenario depicted in Fig. VII.1 where two correlated sequences (Xn, Y n)
of discrete i.i.d. random source symbols are drawn with a source distribution PX,Y ∈ ∆(X × Y). The
encoder knows the source sequence Xn, and has the sequence (g(Yt))t≤n as side information, where g is
a deterministic function. The encoder transmits information to the decoder through a perfect channel
of capacity R ≥ 0. The decoder has the side information Y n and wants to reconstruct the sequence
(f(Xt, Yt))t≤n, where f is deterministic. What is the minimal capacity R ≥ 0 such that (f(Xt, Yt))t≤n

can be retrieved by the decoder with probability of error 0?

Encoder Decoder

(g(Yt))t≤n Y n

(f(Xt, Yt))t≤nXn �
R

Figure VII.1 – Zero-error coding for computing with side information at the encoder.

This problem can be seen as a zero-error variant of the “coding for computing” problem of Orlitsky
and Roche (2001) with side information at the encoder. This problem is difficult, as it has the “restricted
inputs” zero-error problem of Alon and Orlitsky (1996) as a particular case, i.e. by taking g constant and
f(X,Y ) = X .

More precisely, the optimal rate in “restricted inputs” is given by asymptotic chromatic entropies of
graph products, for which no single-letter expression is known. It is shown in Koulgi et al. (2003) that
this optimal rate is equal to the complementary graph entropy introduced in Körner and Longo (1973).
In Marton (1993), the author show that finding a single-letter expression for the complementary graph
entropy would give a single-letter formula for the Shannon capacity of a graph, see Shannon (1956),
which is a wide open problem. Bounds for the “restricted inputs” zero-error setting can be obtained with
achievability results in the “unrestricted inputs” zero-error setting of Alon and Orlitsky (1996), where
(X,Y ) can take values outside the support of PX,Y . For the “unrestricted inputs” case, the authors
gave a single letter characterization of the optimal rate: the Körner graph entropy, introduced in Körner
(1973).

Now the scheme of Fig. 1 has been studied for lossless, lossy and zero-error “unrestricted inputs”
coding. More precisely, in Orlitsky and Roche (2001) the authors give a single-letter characterization
of the lossless variant of this problem; in Yamamoto (1982), the author studies the lossy variant and
determines the rate-distortion function; and the optimal rate in the zero-error “unrestricted inputs”
based on an extension of the Körner graph entropy is characterized in Shayevitz (2014). The results from
“unrestricted inputs” settings can only be used as bounds here: the zero-error “restricted inputs” problem
depicted in Fig. VII.1 does not have a characterization of the optimal rate.

Under some hypothesis on PX,Y and g, we derive single letter characterization of the optimal rate.
Our hypothesis, called “pairwise shared side information”, requires that every pair of source symbols
“share" at least one side information symbol for all output of g. Under this hypothesis, we show that
the characteristic graph is a as disjoint union of OR products for which a single-letter characterization is
available.

VII.1.a Problem statement

Given the sequence length n ∈ N⋆, we denote by ∆n(X ) ⊂ ∆(X ) the set of empirical distributions of
sequences from Xn. We denote by {0, 1}∗ the set of binary words. We say that two words w 6= w′ are not
prefix if w is not a prefix of w′ and w′ is not a prefix of w. Let S ⊂ {0, 1}∗, we say that S is prefix-free
if for all w,w′ ∈ S, the words w,w′ are not prefix. The setting of Fig. VII.1 is described by:

• Four finite sets X , Y, U , Z, a tuple of random variables (X,Y ) ∈ X ×Y drawn from the distribution
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PX,Y (with PX and PY full-support), and deterministic functions

f : X × Y → U , (VII.1)

g : Y → Z. (VII.2)

• The encoder observes the realizations of Xn, (g(Yt))t≤n and sends information to the decoder over
a noiseless channel of capacity R ≥ 0.

• The decoder recover (f(Xt, Yt))t≤n based on the encoder message and the side information Y n.

Definition 58 (Zero-error source code, achievable rates) Given n ∈ N⋆, a (n,Rn)-zero-error
source code consists of an encoding function φe : Xn × Zn → {0, 1}∗ and a decoding function
φd : Yn × {0, 1}∗ → Un such that:

1. the set φe(Xn ×Zn) is prefix-free;

2. Rn = 1
nE
[
l ◦ φe(Xn, (g(Yt))t≤n)

]
, where l(·) denotes the length of a binary word;

3. the “restricted inputs” zero-error property is satisfied:

∀(xn, yn) ∈ suppPn
X,Y , φd

(
yn, φe(x

n, (g(yt))t≤n)
)
= (f(xt, yt))t≤n. (VII.3)

A rate R is achievable if there exists a sequence of (n,Rn)-zero-error source codes such that limnRn = R.
The optimal rate is denoted by R∗ = inf{R ≥ 0 |R is achievable}.

The prefix-free hypothesis guarantees that the decoder knows when the encoder’s message stops and
decode correctly with probability one.

VII.1.b General setting

A probabilistic graph G is a tuple (V , E , PV ), where V is the set of vertices, E is the set of edges, and
PV ∈ ∆(V) is an underlying probability distribution on the vertices. A graph coloring is a mapping that
assigns different colors to adjacent vertices. We will make use of graph colorings as the colorings of a
specific graph correspond directly to zero-error encoding functions.

Definition 59 (Coloring, independent subset) Let G = (V , E , PV ) be a probabilistic graph. A subset
S ⊆ V is independent if xx′ /∈ E for all x, x′ ∈ S. Let C be a finite set (the set of colors), a mapping
c : V → C is a coloring if c−1(i) is an independent subset for all i ∈ C.

Definition 60 (Chromatic entropy Hχ) The chromatic entropy of a probabilistic graph G =
(V , E , PV ) is defined by

Hχ(G) = inf
{
H
(
c(V )

) ∣∣∣ c is a coloring of G
}
. (VII.4)

The chromatic entropy of a probabilistic graph is the smallest entropy of a coloring of that graph.
As in Witsenhausen (1976), we build the characteristic graph G[n] that captures the zero-error encoding
constraints on a given number n of source uses.

Definition 61 (Characteristic graph G[n]) The characteristic graph G[n] is defined by:

• Xn ×Zn as set of vertices with distribution Pn
X,g(Y ),

• (xn, zn)(x′n, z′n) are adjacent if zn = z′n and there exists yn ∈ g−1(zn) such that:

∀t ≤ n, PX,Y (xt, yt)PX,Y (x
′
t, yt) > 0, (VII.5)

and ∃t ≤ n, f(xt, yt) 6= f(x′t, yt); (VII.6)

where g−1(zn) = {yn ∈ Yn | (g(yt))t≤n = zn} is the preimage of zn.
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The characteristic graph G[n], differs from the graphs used in Shayevitz (2014), as we do not need
a cartesian representation of these graphs to study the optimal rates. Furthermore, it has vertices that
correspond to the possible realizations of (Xn, (g(Yt))t≤n) known at the encoder, instead of Xn like in
Witsenhausen (1976) and Alon and Orlitsky (1996). It is also designed to take f and g into account, with
the same core idea: if two pairs of symbols (xn, zn), (x′n, z′n) are adjacent in G[n], then the encoder must
map them to different codewords, otherwise the decoder will decode erroneously with positive probability.

Theorem 40 (Optimal rate in general setting) The optimal rate writes:

R∗ = lim
n→∞

1

n
Hχ(G[n]). (VII.7)

A general single-letter expression for R∗ is missing, due to the lack of intrinsic structure of G[n]. In
Section VII.1.c, we introduce a hypothesis called “pairwise shared side information", that gives structure
to G[n] and allows us to derive a single-letter expressions for R∗.

Remark 31 In the case f(X,Y ) = X and g constant, we obtain the “restricted inputs” source coding
problem from Alon and Orlitsky (1996). The adjacency condition in the graph G[n] becomes:

xnx′n are adjacent if xn 6= x′n and ∀t ≤ n, ∃yt ∈ Y, PX,Y (xt, yt)PX,Y (x
′
t, yt) > 0. (VII.8)

VII.1.c Pairwise shared side information

Definition 62 The distribution PX,Y and the function g satisfy the “pairwise shared side information”
if

∀z ∈ Z, ∀x, x′ ∈ X , ∃y ∈ g−1(z), PXY (x, y)PXY (x
′, y) > 0. (VII.9)

Every pair of source symbols “share" at least one side information symbol for all output of g.

Note that any distribution PX,Y with full support satisfies the “pairwise shared side information”
hypothesis.

Definition 63 (Characteristic graph Gf
z ) For all z ∈ Z, we define the characteristic graph Gf

z by

• X as set of vertices with distribution PX|g(Y )=z,

• xx′ are adjacent if f(x, y) 6= f(x′, y) for some y ∈ g−1(z) ∩ suppPY |X=x ∩ suppPY |X=x′ .

Under the “restricted inputs” assumption of Alon and Orlitsky (1996) (resp. “unrestricted inputs”),
the n-shot characteristic graph can be expressed as an iterated AND (resp. OR) product of the one-shot
characteristic graph.

Definition 64 (AND, OR product) Let G1 = (V1, E1, PV1), G2 = (V2, E2, PV2) be two probabilistic
graphs; their AND (resp. OR) product denoted by G1 ∧G2 (resp. G1 ∨G2) is defined by: V1 × V2 as set
of vertices, PV1PV2 as probability distribution on the vertices, and (v1v2), (v

′
1v

′
2) are adjacent if

v1v
′
1 ∈ E1 AND v2v

′
2 ∈ E2, (VII.10)

resp. (v1v
′
1 ∈ E1 and v1 6= v′1) OR (v2v

′
2 ∈ E2 and v2 6= v′2);

with the convention that all vertices are self-adjacent. We denote by G∧n
1 (resp. G∨n

1 ) the n-th AND
(resp. OR) power.

Introduced in Körner (1973), the Körner graph entropy relates to the limit of the normalized chromatic
entropy of an OR product of graphs.
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Definition 65 For all probabilistic graph G = (V , E , PV ), let Γ(G) be the collection of independent sets
of vertices in G. The Körner graph entropy of G is defined by

Hκ(G) = min
V ∈W∈Γ(G)

I(W ;V ), (VII.11)

where the minimum is taken over all distributions PW |V ∈ ∆(W)V , with W = Γ(G) and with the con-
straint that the random vertex V belongs to the random independent set W with probability 1; this is
denoted by V ∈W ∈ Γ(G) in (VII.11).

Proposition 14 (Alon and Orlitsky, 1996, Theorem 5) For all probabilistic graphs G and G′,

Hκ(G) = lim
n→∞

1

n
Hχ(G

∨n), (VII.12)

Hκ(G ∨G′) = Hκ(G) +Hκ(G
′). (VII.13)

There does not exists such a characterization for limn→∞
1
nHχ(G

∧n) defined with respect to the AND
product. By using a convex combination of Körner graph entropies, we provide a single-letter expression
for the optimal rate R∗.

Theorem 41 (Optimal rate with pairwise shared side information) If PX,Y and g satisfy
(VII.9), the optimal rate writes:

R∗ =
∑

z∈Z
Pg(Y )(z)Hκ(G

f
z ). (VII.14)

The proof of Theorem 41 is stated in (Charpenay et al., 2023, [W8]).

Perspective 1 Nicolas Charpenay’s PhD research work focuses on zero-error coding for computing prob-
lems with two-sided state information. We will further investigate several extensions of this problem, e.g.
by considering the joint source-channel coding and the coding with secrecy constraints.

Perspective 2 Zero-error problems in Information Theory raise new questions in Graph Theory and
in Combinatorial Optimization. We will investigate the design of algorithms in order to compute the
obtained graph-based solutions, as in (VII.14).

VII.2 Convex optimization algorithm for coordination problems

In this section, we propose a numerical approach for solving the cost optimization problem of (IV.28)
in the empirical coordination framework, under the information constraint I(U ;V ) ≤ H(X |U, V ) of
Gossner et al. (2006). This is a joint work with Luis Briceño Arias, Associate Prof. at Univ. Técnica
Federico Santa María, Santiago, Chile and member of CMM IRL 2807.

VII.2.a Problem formulation

Problem 1 Let U , X , and V be nonempty finite sets such that |X | ≥ 2 and, let (cuxv)u∈U , x∈X v∈V that
corresponds to the cost function c : U ×X ×V → R and denote by p = (pu)u∈U = PU ∈ ri∆(U) the source
distribution, where ri stands for the relative interior. The problem is to

minimize
q∈C

∑

u,x,v

puc
u
xvq

u
xv, (VII.15)

where

C =

{
q ∈ ∆(X × V)|U|

∣∣∣∣
∑

u,x,v

puq
u
xv ln

(
quxv∑

x′,u′

pu′qu
′

x′v

)
≤ 0

}
(VII.16)

with the convention 0 · ln 0 = 0 and the logarithm has basis e.
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Problem 1 belongs to the class of optimization problems under entropy constraints, that comes to light
in several fields such as Information Theory via rate-distortion problems Shannon (1959), coordination
problems Cuff et al. (2010); Cuff and Zhao (2011); (Le Treust, 2017, [J6]), see Chap IV, in Economics via
rational inattention problems Sims (2003), Bayesian persuasion problems (Le Treust and Tomala, 2019,
[J8]) and Repeated Games with asymmetric information Gossner et al. (2006), with finite automata and
bounded recall Neyman and Okada (1999, 2000), with private observation Gossner and Vieille (2002), or
with imperfect monitoring Gossner et al. (2009); Gossner and Tomala (2006, 2007).

We now interpret Problem (1). For every (u, x, v) ∈ U × X × V , the variable quxv represents a target
conditional probability of (x, v) given u, thus the objective function is the expected cost with respect
to the joint probability distribution {puquxv}uxv ∈ ∆(U × X × V). In Gossner et al. (2006), the authors
prove that the probability distribution {puquxv}uxv satisfies the non-linear constraint of (VII.16) if and
only if there exists a coding strategy (σ, τ) ∈ Σ that induces an empirical distribution over the sequences
(ut, xt, vt)t∈N⋆ ∈ U∞ × X∞ × V∞, that converges to {puquxv}uxv. We denote by U , X , V the random
variables drawn according to {puquxv}uxv, thus the function appearing in (VII.16) reformulates as:

∑

u,x,v

puq
u
xv ln

(
quxv∑

x′,u′ pu′qu
′

x′v

)
= I(U ;V )−H(X |U, V ), (VII.17)

where

I(U ;V ) =
∑

u,x,v

puq
u
xv ln

∑
a′ qsx′v∑

x′,u′ pu′qu
′

x′v

and H(X |U, V ) =
∑

u,x,v

puq
u
xv ln

∑
a′ qsx′v

quxv
(VII.18)

have the following interpretation: the mutual information I(U ;V ) measures the correlation between
random variables V and U ; the conditional entropy H(X |U, V ) measures the capacity of a perfect
channel where the input X must be correlated with (U, V ). More details are stated in Chap. III and IV.

VII.2.b Connection with Blahut-Arimoto’s algorithm

Now assume that, for every (u, x, v) ∈ U × X × V , cuxv = cuv ∈ R and define quv :=
∑

x q
u
xv. In this

particular instance, it can be proved that Problem 1 is equivalent to

min
q∈Ξ

∑

u,v

puc
u
vq

u
v , (VII.19)

where

Ξ =

{
q ∈ ∆(V)|U|

∣∣∣∣
∑

u,v

puq
u
v ln

(
quv∑

u′ pu′qu′

v

)
≤ ln |X |

}
.

This problem is deeply related to the Shannon’s lossy source coding problem (see, e.g., (Cover and
Thomas, 2006, Chap. 10)) where the non-linear constraint reformulates as: I(V ;U) − ln |X | ≤ 0. The
set of solutions of (VII.19) is nonempty (El Gamal and Kim, 2011, Section 3.6.1) and every solution q⋆

to (VII.19) satisfies

(∀v ∈ V)(∀u ∈ U) quv
⋆ =

t⋆ve
−cuv/λ

⋆

∑
v′ t⋆v′e

−cu
v′
/λ⋆ , (VII.20)

where
(∀v ∈ V) t⋆v =

∑

u

puq
u
v
⋆

and λ⋆ ≥ 0 is the Lagrange multiplier associated to the nonlinear constraint. In Arimoto (1972); Blahut
(1972), the authors provide an algorithm for solving (VII.19) whose convergence is proved in (Csiszár,
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1974, Theorem 1). Given a starting probability (tv,0)v∈V ∈ ∆(V), the algorithm iterates

For n = 0, 1, 2, ... (VII.21)


For v ∈ V

For u ∈ U⌊
quv,n =

tv,ne−cuv/λ⋆

∑
v′ tv′,ne

−cu
v′

/λ⋆

tv,n+1 =
∑

u puq
u
v,n.

(VII.22)

Note that, in order to solve (VII.19), the previous algorithm needs the Lagrange multiplier λ⋆, which is not
known a priori. In order to estimate λ⋆ usually some heuristics, as bisection methods, are implemented.
This means that Blahut-Arimoto’s algorithm has to be implemented for several values of λ. As far as
we know, the problem (VII.19) cannot be solved directly by methods proposed in the literature without
adding additional loops for estimating λ⋆.

VII.2.c Original optimization algorithm

Problem 1 has been solved explicitly for a specific cost function with |U| = |X | = |V| = 2 (Gossner
et al., 2006, Example 2.1) but, it seems that Problem 1 has not been explicitly found in its whole
generality. On the other hand, since the set C is convex and the objective function is smooth (even
linear), Problem 1 can be solved by the projected gradient method. However, this algorithm needs to
compute efficiently the projection onto C, which is not easy in our case.

Perspective 3 We will provide an explicit optimization algorithm that exploits the structure of the prob-
lem for solving it.

Perspective 4 We will generalize our optimization algorithm by considering the information constraints
of the various scenario of Chap. IV, corresponding to Theorems 6, 9-18.

VII.3 Mechanism design and cheap talk problems

We consider the sender-receiver game described in Fig. VII.2. In the Bayesian persuasion game of
Kamenica and Gentzkow (2011), see Chap. VI, the encoder commits to implementing a strategy, as the
leader of the Stackelberg game.

In this section, it is the decoder that is the leader of the Stackelberg game, i.e. the decoder commits
to implement a decoding strategy before the game plays. This new model is closely related to the
mechanism design of Jackson and Sonnenschein (2007) and to the lossy source coding with mismatch
distortion functions of Lapidoth (1997).

By studying the mechanism design problem, we investigate the incentive constraints of the decoder.
Then, the goal will be to characterize the set of the Nash equilibria of the cheap talk game, as in Crawford
and Sobel (1982). A detailed study of the incentive constraints of both encoder and decoder is mandatory.

Un Xn Y n V n

PU TY |XEnc Dec

ce(u, v) cd(u, v)

Figure VII.2 – The source (U ,PU ) is i.i.d. and the channel (X ,Y, TY |X) is memoryless. The encoder and
the decoder are endowed with distinct cost functions ce(u, v) 6= cd(u, v).
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VII.3.a System model

We consider an i.i.d. information source (U ,PU ) and a memoryless channel (X ,Y, TY |X), as depicted
in Fig. VII.2.

Definition 66 We define the encoding and decoding strategies by

σ : Un −→ ∆(Xn), (VII.23)

τ : Yn −→ ∆(Vn). (VII.24)

The strategies (σ, τ) induce a distribution defined by

Pσ,τ
UnXnY nV n =

( n∏

t=1

PUt

)
σXn|Un

( n∏

t=1

TYt|Xt

)
τV n|Y n , (VII.25)

where σXn|Un , τV n|Y n denote the distributions of σ, τ .

Definition 67 The encoder and decoder cost functions ce : U × V −→ R and cd : U × V −→ R induce
long-run cost functions cne (σ, τ) and cn

d
(σ, τ) defined by

cn
e
(σ, τ) =Eσ,τ

[
1

n

n∑

t=1

ce(Ut, Vt)

]
, (VII.26)

cn
d
(σ, τ) =

∑

un,vn

Pσ,τ
UnV n

(
un, vn

)
·
[
1

n

n∑

t=1

cd(ut, vt)

]
. (VII.27)

Definition 68 Given n ∈ N⋆, we define
1. the set of encoder best responses to strategy τ by

BRe(τ) =argmin
σ

cne (σ, τ), (VII.28)

2. the long-run decoder cost value by

Cn
d
= inf

τ
max

σ∈BRe(τ)
cn
d
(σ, τ). (VII.29)

The value Cn
d corresponds to the optimal cost of the decoder for fixed n ∈ N⋆. In case there are

several best responses, we assume the encoder selects the worst strategy σ for the decoder cost. We aim
at characterizing the asymptotic behaviour of Cn

d

VII.3.b Upper bound

Definition 69 Given an auxiliary random variable W ∈ W with |W| = min
(
|U|+1, |V|

)
with distribution

PW , we define

P(PW ) =
{
QUW ∈ ∆(U ×W), QU = PU , QW = PW , max

PX

I(X ;Y )− I(U ;W ) ≥ 0
}
. (VII.30)

Given PWV , we define the single-letter encoder best responses

Ae(PWV ) = argmin
QUW∈P(PW )

E QUW
PV |W

[
ce(U, V )

]
. (VII.31)

The decoder optimal cost C⋆
d

is given by

C⋆
d = inf

PWV

max
QUW ∈

Ae(PWV )

E QUW
PV |W

[
cd(U, V )

]
. (VII.32)
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In (VII.32), it is the decoder, i.e. the Stackelberg leader, who selects the marginal distribution PW ,
whereas the incentive constraints affect the Stackelberg follower, i.e. the encoder. In both settings, the
encoder selects the distribution QUW ∈ P(PW ) that satisfies the information constraint and the decoder
selects PV |W .

Theorem 42 (Achievability)

∀ε > 0, ∃n̄ ∈ N⋆, ∀n ≥ n̄, Cn
d
≤ C⋆

d
+ ε. (VII.33)

The achievability proof of Theorem 42, see (Le Treust and Tomala, 2020, [IC26]), relies on similar
arguments as in (Lapidoth, 1997, Step 1) and (Scarlett et al., 2020, Lemma 4.3). The sequence (nCn

d )n∈N⋆

is sub-additive, thus Theorem 42 and Fekete’s lemma show that

C⋆
d ≥ lim

n→+∞
Cn

d = inf
n∈N⋆

Cn
d . (VII.34)

Perspective 5 We investigate the converse argument in order to show that

∀n ∈ N⋆, C⋆
d
≤ Cn

d
. (VII.35)

We already know that (VII.35) is valid under several hypothesis: when the encoder cost function ce(u, v)
does not depend on the state variable u ∈ U , when ce(u, v) = −cd(u, v) or when |U| = |V| = 2.

Perspective 6 Inspired by the model of Crawford and Sobel (1982), the cheap talk version of this problem
corresponds to the scenario where neither the encoder nor the decoder is able to commit to a strategy.
We will investigate the cheap talk solution of this problem when the communication is passed through an
arbitrary channel (X ,Y, TY |X). The goal is to build a theory that encompasses the standard results for
the joint source-channel coding problem in Information Theory, see Shannon (1948, 1959), and for the
repeated sender-receiver game model, see Crawford and Sobel (1982), Kamenica and Gentzkow (2011),
Jackson and Sonnenschein (2007).

VII.4 Repeated games with imperfect monitoring and incomplete

information

The information asymmetries in Game Theory raise new communication scenarios and new open
questions. In a general formulation of the problem, each player Pk, k ∈ K senses its environment,
observes signals sk that depend on the system state s0 and signals yk that depend on the actions of
the other players, and takes action ak in order to minimize its own cost function ck(s0, a1, . . . , ak), as
depicted in Fig. VII.3.

a1 y2

y1 a2

s1 s2s0

P

TP1 P2

c1(s0, a1, a2) c2(s0, a1, a2)

Figure VII.3 – Repeated game with imperfect monitoring and incomplete information. The states are
distributed according to PS0S1S2 ∈ ∆(S0×S1×S2) and the observation structure TY1Y2|S0A1A2

∈ ∆(Y1×
Y2)

|S0×A1×A2| depends on the state s0. The players have distinct cost functions c1 : S0 ×A1 ×A2 → R

and c2 : S0 ×A1 ×A2 → R.
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Repeated game models focus on incentives of players involved in long-term interactions, see Sorin
(1992) and Mertens et al. (2015). The players strategies induce sequences of actions which are evaluated
via long-term average cost functions. The perfect monitoring of the actions is crucial to incite the players
to cooperate and make the threat of long-term punishment credible. Indeed, the set of Nash equilibrium
costs in repeated games of imperfect monitoring is unknown. In Lehrer (1991), the players use the
observation structure, e.g. TY1Y2|S0A1A2

in Fig. VII.3, in order to construct a correlation device robust to
unilateral deviations, that induces a correlated equilibrium, see Aumann (1974). Note that a correlated
equilibrium is a Nash equilibrium of an extended game, in which players observe correlated signals before
choosing their actions.

Perspective 7 We will revisit the jointly controlled correlation procedure of Lehrer (1991) through the
lens of Information Theory. By using coding arguments, we will try to describe the set of correlation
devices robust to the unilateral deviations, that the players can induce via their sequence of plays, when
they have imperfect monitoring.

The players are said to have incomplete information when the cost functions depend on a state variable
which is uncertain to some players, as in Fig. VII.3. In a repeated game of incomplete information, see
Aumann and Maschler (1995), Forges (1992), and Renault (2012), the state variable remains fixed along
the course of the game, whereas it evolves dynamically in response of the players’ actions in stochastic
repeated games, see Neyman and Sorin (2003).

The concept of communication equilibrium, introduced in Forges (1986) and Myerson (1986), gen-
eralizes the notion of Nash equilibrium and correlated equilibrium. After partially observing the state
variable, the players communicate via a communication device that generates correlated signals before
they select their actions.

Definition 70 A communication device ({Xk}k∈K, {Yk}k∈K, TY |X) is a collection of inputs {Xk}k∈K
and outputs Yk, for each player k ∈ K, and a conditional probability distribution TY |X ∈ ∆(Y)|X | where
X =

∏
k∈K Xk and Y =

∏
k∈K Yk.

In the two-player case, the communication device of Def. 70 is a two-way channel, see Han (1984),
for which the capacity region is unknown. A communication device is also referred to as the multi-way
channel, see van der Meulen (1977)

For infinitely repeated game with imperfect monitoring, the set of communication equilibrium costs
is characterized in Renault and Tomala (2004). Such a characterization is not available for Nash and
correlated equilibria. The authors reformulate the communication equilibrium of a |K| players repeated
game by using a correlated equilibrium of an auxiliary two-player repeated game, for which the solution
is characterized in Lehrer (1992).

Perspective 8 The communication equilibrium concept of Forges (1986) and Myerson (1986) gave us
keys to understand the strategic aspects in games with imperfect monitoring and incomplete information.
To which extend is it possible to implement a communication equilibrium when the players have a restricted
number of available messages? Are such capacity restrictions useful for characterizing the sets of correlated
equilibria and Nash equilibria solution? We will explore the impact of the restricted number of messages
for communication devices through the lens of information theoretical results for the two-way channel, see
Han (1984) and for the multiway channel, see van der Meulen (1977).
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