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Résumé

Dans cette thèse, nous nous intéressons à la résolution de problèmes d’ordonnancement
par Inclusion-Exclusion. La formule d’Inclusion-Exclusion est une formule de combinatoire,
encore peu utilisée en ordonnancement. Appliquée à des données informatiques, elle permet
de dénombrer, par une somme comportant un nombre exponentiel de termes, le nombre
de solutions de problèmes de couverture ou de permutation, et par contrecoup d’expliciter
des solutions optimales de tels problèmes.

D’un point de vue théorique, notre principale contribution est de démontrer qu’une
grande classe de problèmes d’ordonnancement peut se résoudre, par Inclusion-Exclusion,
à l’optimalité et avec une complexité au pire cas modérément exponentielle en temps et
pseudopolynomiale en espace. Ce résultat s’applique à tout problème d’ordonnancement à
machines parallèles ainsi qu’à tout problème d’atelier à cheminement unique, en présence
de n’importe quelle contrainte temporelle d’intervalle, et prend en compte n’importe quel
objectif régulier du type coût maximum ou coût total.

La formule d’Inclusion-Exclusion permet de simplifier des problèmes en relâchant leur
contrainte de couverture, mais nécessite de résoudre un nombre exponentiel de problèmes
relâchés. D’un point de vue pratique, nous étudions une piste pour bénéficier des avantages
de l’Inclusion-Exclusion sans en supporter les inconvénients. Nous décrivons une méthode
itérative, exploitable dans un algorithme de branchement, pour minorer l’objectif optimum
d’un problème de permutation, fondée uniquement sur la résolution de problèmes relâchés.

Mots clefs : ordonnancement, complexité au pire cas, méthodes exactes, approximation,
Inclusion-Exclusion.
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Abstract

In this thesis, we are interested in solving scheduling problems by Inclusion-Exclusion. The
Inclusion-Exclusion formula is a combinatorial formula, still not much used in scheduling.
Applied to computer science, it enables to count, by means of a sum involving an exponen-
tial number of terms, the number of solutions of coverage or permutation problems, and
in turn to build explicit optimal solutions of such problems.

From a theoretical point of view, our main contribution is to demonstrate that a large
class of scheduling problems can be solved to optimality by Inclusion-Exclusion, and with
a moderate-exponential worst-case time complexity and a pseudopolynomial worst-case
space complexity. This result applies to any parallel-machine scheduling problem as well
as any permutation flowshop problem, in the presence of any interval time constraint, and
takes into account any regular maximum or total cost objective.

The Inclusion-Exclusion formula enables to simplify problems by relaxing their coverage
constraint, but it requires solving an exponential number of relaxed problems. From a
practical point of view, we are studying a way to benefit from the advantages of Inclusion-
Exclusion without bearing the disadvantages. We describe an iterative method, usable in a
branching algorithm, to compute a lower bound on the optimum objective of a permutation
problem, based only on the solution of relaxed problems.

Keywords: scheduling, worst case complexity, exact methods, approximation, Inclusion-
Exclusion.
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Introduction

This thesis deals with Inclusion-Exclusion for scheduling. More precisely, it establishes
a link between these three fields, which we describe hereafter: Scheduling, Exponential
Algorithms and Combinatorics.

Scheduling is the art of matching over time jobs to be processed with resources to pro-
cess them, in order to optimize an objective. Scheduling problems have major practical
applications in, e.g., production systems, information systems, and project management.
Scheduling is a subfield of Operations Research, which consists in analyzing and solving
problems in order to help decision-making and management. Scheduling problems are very
challenging, and often intractable, in a way we are about to precise.

Exponential Algorithmics aims to precise the notion of intractability. On a theoretical point
of view, the hardness of an algorithm is characterized by its worst-case complexity, i.e. the
maximum consumption of resources (e.g. time or space) with respect to the size of its
data, and the intrinsic hardness of a problem is the hardness of the best algorithm to solve
it. Under well-known and widely accepted conjectures (namely the P 6= NP conjecture,
see Cook [17] and Levin [51], and the Exponential Time Hypothesis by Impagliazzo and
Paturi [38]), many scheduling problems are intrinsically exponential in time. Exponential
Algorithmics aims to design an algorithm to solve such a problem with the lowest possible,
though exponential, worst-case time complexity.

Combinatorics is the art of counting mathematical objects. This field of mathematics has
tight connections with probabilities, number theory, algebra, group theory, and graph the-
ory, one of the mathematical foundations of Operations Research. Combinatorics brings
together a set of very varied techniques: binomial coefficients and related notions, gen-
erating series, convolution and Fourier analysis, convexity and entropy theory, Möbius
inversion, and Inclusion-Exclusion.

Inclusion-Exclusion is a combinatorial formula, dating back to the 18th century. In its
mathematical form, it expresses the cardinal of a union of sets given the cardinals of
their partial intersections. Its application to computer science enables to count how many
instances of a given data structure may be built without explicitly building them, and
constitutes a means to avoid brutal enumeration.
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INTRODUCTION

Inclusion-Exclusion has a very special and unusual connection with computer science: usu-
ally, algorithms do not use combinatorics to compute their results, and combinatorics is
used only to analyze algorithms and count the number of elementary operations they re-
quire, thus deriving their complexities. On the contrary, the Inclusion-Exclusion formula
is concretely computed inside algorithms, in order to derive the number of solutions of a
problem and therefore to decide whether this problem is solvable or not.

Historically, Inclusion-Exclusion was first applied to computer science independently by
Kohn et al. [43], Karp [42], and Bax [5], essentially to solve the Traveling Salesman Prob-
lem. Later on, Inclusion-Exclusion enabled Bjorklund and Husfeldt [8], and independendly
Koivisto [44] to achieve a major improvement in the solution of the Maximum Independent
Set problem. Thus, Inclusion-Exclusion gained in popularity, and several books, e.g. Fomin
and Kratsch [23], dedicated a whole chapter to this technique. Nederlof [59, 60, 61, 62]
described many algorithms and showed the theoretical interest of this technique for Oper-
ations Research.

Despite its new popularity for Operations Research, Inclusion-Exclusion is not yet much
used for scheduling. The purpose of this thesis is to study how the field of scheduling can
benefit from the Inclusion-Exclusion technique.

Contributions

As a first contribution, we identify a very common way of applying Inclusion-Exclusion
to a scheduling problem: we apply Inclusion-Exclusion to sets of jobs, relax the problem
accordingly, and solve each relaxed problem by dynamic programming. This requires
computing many correlated dynamic programming schemes. We introduce a new technique,
zero sweeping, to exploit correlations between dynamic programming schemes and compute
all schemes together faster than separately.

As a second contribution, we prove that a wide class of scheduling problems, including any
parallel-machine or flowshop problem with any deadline and release date constraint and
any regular objective, can be solved to optimality with a moderate-exponential worst-case
time complexity combined with a pseudopolynomial worst-case space complexity, using
Inclusion-Exclusion. This contribution enhances the state of the art in two ways: first,
our result is very general, whereas many state-of-the-art algorithms are specialized to a
very specific subproblem. Second, most state-of-the-art algorithms achieve a moderate
exponential-time complexity at the expense of an exponential-space complexity, whereas
the algorithms we propose keep a pseudopolynomial space complexity.

As a third contribution, we establish a link between Inclusion-Exclusion and Lagrangian
relaxation based on job penalties. For a permutation problem, where the aim is to de-
termine in which order jobs must be scheduled, we describe a new iterative method to
compute a better approximation of the dual Lagrangian optimum objective than the tradi-
tional subgradient descent method, therefore deriving a better lower bound of the optimum
objective.
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INTRODUCTION

Outline

In chapter 1, we introduce the notations of scheduling, in particular Gantt [26] charts
and Graham’s [32] three-field notation, and we describe several scheduling environments
with examples. Then, we present computational complexity and related notions, and we
review the complexity classes of several scheduling problems. Finally, we review the state-
of-the-art techniques of exponential-time algorithmics and their application to scheduling
problems. We emphasize the interest of exponential algorithmics to solve scheduling prob-
lems to optimality.

In chapter 2, we describe the principles of Inclusion-Exclusion, and we explain how and
in which circumstances Inclusion-Exclusion enables to save space and enhance worst-case
space complexity without degrading worst-space time complexity. We review several tech-
niques to accelerate Inclusion-Exclusion, from a theoretical and practical point of view:
Bonferroni inequalities, Möbius inversion, Abstract Tubes, Index space trimming, and fi-
nally we contribute to a new one: zero sweeping.

In chapter 3, we provide a generic algorithm for solving unrelated parallel machine schedul-
ing problems in presence of job release dates and deadlines, to minimize general regular
maximum and sum objective functions. Thanks to the use of Inclusion-Exclusion combined
with generating series and convolution, this algorithm runs with moderate exponential time
and pseudopolynomial space worst-case complexities, and enhances the state of the art.

In chapter 4, we provide another Inclusion-Exclusion based generic algorithm for
solving permutation flowshop scheduling problems in presence of job release dates and
deadlines, to minimize general regular maximum and sum objective functions. Again, this
algorithm runs with moderate exponential time and pseudopolynomial space worst-case
complexities, and enhances the state of the art. Several extensions of this algorithm
are discussed.

In chapter 5, we study a way to benefit from the advantages of Inclusion-Exclusion, which
enables to relax and thus simplify a problem, without bearing the inconveniences. We
express, in essence, Inclusion-Exclusion through Lagrangian penalties, instead of expressing
it with a sum across subsets. We contribute to a new iterative method to derive a lower
bound of the optimal objective of a permutation scheduling problem based only on the
solution of the relaxed problem.
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Chapter 1

Scheduling and Exponential Algorithms

Topics

• We describe the basics and the notations of scheduling.

• We recall the notions of computational complexity, complexity classes and polynomial
reduction between problems.

• We review the complexity classes of many well-known scheduling problems, along
with their reduction graph.

• We review the state-of-the-art techniques of exponential-time algorithmics and their
application to scheduling problems.

• These techniques show the interest of exponential algorithmics to solve scheduling
problems to optimality.

1.1 Scheduling Problems

The domain of scheduling aims at modeling and optimizing problems such as the man-

agement of projects, of stocks, the organization of a production line, the management of

transport or energy networks.

Scheduling is involved when some work has to be done using some resources and when

there are several possible organizations to achieve it. The elementary units of work are

called operations, and the resources are generically called machines, even if they correspond

to human workers. Scheduling aims at finding the best allocation of machines to process

operations in order to minimize a cost, called the objective.

We introduce basic scheduling notions, as defined in e.g. Pinedo [64] or Brucker [12].
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CHAPTER 1. SCHEDULING AND EXPONENTIAL ALGORITHMS

1.1.1 Basics of Scheduling

An operation is an elementary amount of work to be done. It has to be processed at once
by a machine. A job is the user-level notion of work to be done. Depending on the context,
it is either a single operation, or a group of operations.

There are n jobs to be scheduled on m machines. Each job is labeled by an integer
j ∈ {1, . . . , n}, and each machine is labeled by an integer i ∈ {1, . . . ,m}.

Operations of job j are labeled using j preceded by any useful index, e.g. O1j , O2j , . . . or
Oj in the case of a single-operation job. For the sake of simplicity, we describe notations
in the case where jobs are single-operation, so operations are written Oj . The notations
we define are straightforward to extend to the case of jobs with multiple operations.

It takes some time for a resource to process an operation. This duration is called the
processing time pj of the operation Oj . All times and durations are non-negative integers
and are expressed in an arbitrary time unit. The number of jobs and machines, and the
processing times are always implicitly part of the instance of a scheduling problem.

As a result, a schedule S is defined by the placement of all operations. The placement
of operation Oj is defined by the machine Ij(S) which actually processes it and by its
completion time Cj(S). When there is no ambiguity, it is usual to remove the reference to
S in the notation and thus to write Ij and Cj . The start time of an operation Oj is most
often derived from its completion time: it is (Cj − pj).

Graphically, a schedule is represented via a Gantt chart [26], a chronogram in which each
line corresponds to a machine and each column corresponds to a time unit. Figure 1.1
shows a sample Gantt chart with 4 jobs on 2 machines.

C2−p2 p2 C2

Machine n◦ 1 job 3 job 2

Machine n◦ 2 job 4 job 1
0 5 10 15

Figure 1.1: A sample Gantt chart

On a timeline, operation Oj corresponds to the interval [Cj − pj , Cj [ or actually to its
integer counterpart N∩ [Cj − pj , Cj [. As we always restrict to integer times and durations,
we hereafter write [a, b[ as an abbreviation for the integer interval [a, b[ = {a, . . . , b−1}.
Notice the use of a semi-open interval, which makes notations easy and consistent with
their real counterpart. With these notations, all interval operations are easy to express:

• Countings elements: for a 6 b, [a, b[ = {a, . . . , b−1} contains exactly b− a elements.

• Splitting an interval: for a 6 b 6 c, we can split [a, c[ into the disjoint union
[a, c[ = [a, b[ ] [b, c[

• Checking whether two intervals are disjoint: for a 6 b and c 6 d, we have
[a, b[ ∩ [c, d[ = ∅ ⇐⇒ b 6 c ∨ a > d.
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1.1. SCHEDULING PROBLEMS

We now define the notion of precedence relation between operations. An operation Oj

is said to precede another operation Oj′ , which we write Oj ≺ Oj′ , when Oj is already
completed when Oj′ starts. That is:

Oj ≺ Oj′ ⇐⇒ Cj 6 Cj′ − pj′ (1.1)

Precedence constraints between operations can be deduced from a particular situation,
i.e. specified within an instance, or they can be intrinsic to a problem, i.e. specified by
the structure of the problem. In the latter case, they are part of the so-called routing
constraints.

More generally, a problem stipulates constraints of any nature on operations. A schedule is
said to be admissible when all problem constraints are answered by its operations. We al-
ways consider scheduling models where a machine can process only one operation at a time.
So, every admissible schedule must answer the so-called disjunctive constraints: intervals
representing operations in a Gantt chart can not overlap, hence must be disjoint. Formally,
for two distinct operations Oj 6= Oj′ scheduled on the same machine (i.e. Ij = Ij′), we
must have:

[Cj−pj , Cj [ ∩ [Cj′−pj′ , Cj′ [ = ∅

The Graham Notation

The field of scheduling is extremely vast, and, from this point of view, is comparable to
the field of partial differential equations. A partial differential equation is very simple to
express a general way: given a function f , consider its derivatives with respect to some
variables, usually space (x, y, z) and time (t), and require that a particular expression
involving certain derivatives of f is null: X(f, ∂f∂x , . . . ,

∂f
∂t ,

∂2f
∂x2

, ∂
2f

∂x∂y , . . .) = 0. Hence, the
description of a differential problem reduces to a single equation. But this conciseness hides
very different solution techniques on a case by case basis. A single particular equation can
constitute an area of research, e.g. Maxwell and electromagnetism, or Navier-Stokes and
fluid mechanics.

The same is true for scheduling. Consequently, schedulers extensively use the notation of
Graham [32] to refer to particular scheduling problems. It is a three-field notation α|β|γ,
where α describes the machine environment, β describes extra constraints, and γ presents
the objective functions or costs to minimize.

Table 1.2 p. 22 summarizes usual values for these three fields, but we describe them precisely
in sections 1.1.2 p. 22, 1.1.3 p. 24, 1.1.4 p. 25. There are many other possible values
described in the literature.
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CHAPTER 1. SCHEDULING AND EXPONENTIAL ALGORITHMS

Table 1.2: Some usual values of Graham’s notation α|β|γ

α β γ
machine environment extra constraints objective to minimize

1: single machine
P : identical parallel machines
R: unrelated parallel machines

F : (non-permutation) flowshop
J : jobshop
O: openshop

rj : release time
d̃j : deadline
dj : due date
prec, chains: precedences
prmu: permutation (flowshop)
pmtn: preemption
nowait: no waiting time
noidle: no idle time

γ= maxj fj or γ=
∑
jwjfj

wj : weight
fj : individual cost
Cj : completion time
Lj : lateness
Tj : tardiness
Uj : tardiness indicator
Ej : earliness

1.1.2 Machine environments

In Graham’s notation of a scheduling problem, the field α describes the machine envi-
ronment. There are basically two families of machine environments: parallel machine
environments (α ∈ {1, P,R}), including the single machine environment α = 1 as a par-
ticular case, and shop environments (α ∈ {F, J,O}). Whenever the number of machines
m is fixed, its value is appended to the environment α, as in e.g. P2 or F3.

Parallel machine environments

In parallel machine environments, each job has a single operation, which can be scheduled
on any machine. Such environments notably include:

Single-machine (1): there is a single machine, i.e. m = 1. This environment is denoted
by 1 rather than by P1. This is in fact a sequential environment.

Identical parallel machines (P ): there are m machines with identical features, so the
processing time pj of a job j and all other parameters do not depend on the machine
i which processes the job.

Unrelated parallel machines (R): each machine has its own features, so the processing
time pij of a job depends not only on the job j but also on the machine i. This may
also be the case for other parameters.

Shop environments

In these environments, there are m machines i and n jobs j, each one being divided into m
operations Oij : operation Oij is the part of job j which must be processed by machine i. So,
each job is processed by the m machines, and each machine processes one operation of each
job. We distinguish between shop environments based on the order in which operations
have to be processed, i.e. based on the routing constraints.

In flowshop environments, each job is processed successively by machines 1, 2, . . . ,m, in
this order. That is, there is a precedence relation, called the routing, between operations
of each job j: O1j ≺ O2j ≺ . . . ≺ Omj . Graphically, operations of each job form a sort of
diagonal on a Gantt chart, as shown on Figure 1.3 p. 23.
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1.1. SCHEDULING PROBLEMS

a b

a b

a b

a b

M1

M2

M3

M4

(a) Permutation flowshop F |prmu, β|γ:
jobs cannot overtake eachother

a b

a b

ab

ab

M1

M2

M3

M4

(b) Non-permutation flowshop F |β|γ:
jobs can overtake eachother

Figure 1.3: Flowshop environments

The simplest flowshop environment is the permutation flowshop. In this environment, all
machines i process the operations Oij in the same job order: Oi,j1 , Oi,j2 , . . . , Oi,jn . Each
schedule is therefore characterized by a common order, or common permutation: π =

(j1, j2, . . . , jn). This permutation is not imposed in the instance and does not correspond
to a set of precedence constraints. On the opposite, the aim is usually to find a permutation
π which minimizes the objective.

Since the order of jobs is the same on each machine, jobs can not overtake each other from
one machine to the other. Graphically, diagonals formed by operations of each job on a
Gantt chart can not be interlaced, as shown on Figure 1.3a. The permutation flowshop
environment is denoted by F |prmu. The indication “prmu” is written as a constraint, but
permutation flowshop F |prmu is specific and conceptually distinct from non-permutation
flowshop.

The (non-permutation) flowshop environment is denoted by F . In this environment, each
machine processes operations in its own job order: Oi,ji1 , Oi,ji2 , . . . , Oi,jin . That is, each
machine i has its own permutation πi = (ji1, ji2, . . . , jin), and the aim is usually to find a
tuple of permutations (π1, . . . , πm) which minimizes the objective. Jobs can overtake each
other from one machine to the other. Graphically, diagonals formed by operations of each
job on a Gantt chart can be interlaced, as shown on Figure 1.3b.

In jobshop and openshop environments, jobs are not necessarily processed by machines
1 to m in this order. In the jobshop environment, denoted by J , each job j has its
own routing. That is, the instance contains n imposed precedence chains of the form
Oij1,j ≺ Oij2,j ≺ . . . ≺ Oijm,j . The non-permutation flowshop environment F is a par-
ticular case of the jobshop environment J , where precedence chains have the same form
for all jobs, i.e. when ∀ k ∈ {1, . . . ,m}, ijk = ik, and we can take ik = k without loss of
generality.

In the openshop environment O, there are no routing constraints between operations of
the same job. Figure 1.4 p. 24 shows an admissible schedule with 2 jobs j ∈ {a, b} for an
openshop problem. It is also an admissible schedule for a jobshop problem with routings
O1a ≺ O4a ≺ O2a ≺ O3a and O2b ≺ O3b ≺ O4b ≺ O1b.
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a b

ab

ab

a b

M1

M2

M3

M4

Figure 1.4: Job shop and Open shop environments

1.1.3 Additional constraints

In Graham’s notation of a scheduling problem, the field β describes additional constraints.
Some of them reduce the set of admissible schedules. Some others may signal a particular
case, modify a problem or even relax other constraints. We describe them hereafter:

Release date (rj): Operation Oj cannot start before the date rj .

Deadline (d̃j): Operation Oj cannot complete after the date d̃j .

Together, release date and deadline form interval constraints: the processing in-
terval of operation Oj must be included in the interval defined by the constraint:
[Cj−pj , Cj [ ⊂ [rj , d̃j [.

Due date (dj): Operation Oj may complete after date dj , but in this case the job is late
which may induce a penalty. So, this indication is not a constraint, it is a supple-
mentary data of the instance used to compute some objectives (lateness, tardiness,
tardiness indicator, see section 1.1.4).

Precedence (prec): Some operations must precede others. Generally, precedences are
expressed as a directed acyclic graph (DAG). The chains constraint corresponds
to the case where the precedence graph is a disjoint union of chains of the form
Oj1 ≺ Oj2 ≺ . . . ≺ Oj` .

Preemption (pmtn): Normally, operations are atomic or indivisible. In this setting, an
operation may be interrupted and resumed later, without penalty. So, operations
may be divided into fragments. This setting is often used to compute lower bounds
for non-preemptive problems.

No idle time (noidle): No machine may be idle until all its operations have been sched-
uled. That is, there can be no delay between two consecutive operations processed
by a machine i.

No wait time (nowait): There cannot be any delay between two consecutive operations
of a same job. So, if two operations O1,j and O2,j of a same job j are consecutive,
we must have C1,j = C2,j − p2,j .

Custom constraints Any particular constraint can be specified as a condition. For ex-
ample, the constraint “pj = p” actually means ∀ j, pj = p, i.e. all processing times
are equal, and their common value is p.
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1.1.4 Objective Functions

In Graham’s notation, the field γ describes the objective function. The objective function
γ usually computes a positive integer cost based on a schedule. The aim is to minimize
this cost among all admissible schedules.

It is possible to specify a trivial objective function, whose result is a constant. It is denoted
by the symbol “-”. In this case, there is nothing to optimize, the problem just consists in
finding an admissible schedule. In other cases, although there is no strict convention, an
objective function γ is most often computed as the maximum or weighted sum of elementary
costs fj > 0, with weights wj > 0. We describe hereafter how:

The elementary cost of an operation Oj is systematically computed from its completion
time. So, given a schedule S, the elementary cost of Oj is fj(Cj(S)). The objective value
γ(S) is then computed using one of these three formulas:

maximum: γ(S) = maxj∈S fj(Cj(S)) abbreviated into γ = fmax

sum: γ(S) =
∑

j∈S fj(Cj(S)) abbreviated into γ =
∑
fj

weighted sum: γ(S) =
∑

j∈S wjfj(Cj(S)) abbreviated into γ =
∑
wjfj

As an extension, it is possible to assign an infinite cost to an operation, i.e. to declare
that fj(Cj) = +∞ for some Cj . Such an assignation prevents operation Oj from ending
exactly at date Cj , because if fj(Cj(S)) = +∞ then γ(S) = +∞ and S cannot be an
optimal schedule.

Figure 1.5 represents the most usual elementary costs. These costs are non-decreasing with
respect to completion times Cj , and are said to be regular. Several elementary costs fj are
computed from a due date, denoted by dj and described in section 1.1.3.

Cj

0 dj Cj

(a) Completion time:
Cj

Lj

0 dj Cj

(b) Lateness:
Lj=Cj−dj

Tj

0 dj Cj

(c) Tardiness:
Tj= max(Lj , 0)

Uj

0 dj Cj
]
]1

(d) Unit cost:
Uj=1⇔ Tj>0

Figure 1.5: Some usual regular elementary cost functions

Regular elementary costs include:

Completion time (Cj): It is at the same time an integer (used as parameter of all
elementary cost functions) and a cost function (actually the identity function).

Lateness (Lj): It is defined as Lj = Cj − dj . Its value can be negative (operation Oj is
early or exactly on time) or non-negative (operation Oj is tardy).
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Notice that an objective function is usually required to be non-negative. The late-

ness does not meet this requirement, but it is easy to transform a lateness-based

objective into a non-negative objective: it suffices to add a large enough constant K,

or equivalently to replace each dj with dj −K.

Tardiness (Tj): It is defined as Tj = max(Lj , 0) = Cj − dj , if Cj > dj ; 0 otherwise. Its

value can be null (operation Oj is early or exactly on time) or non-negative (operation

Oj is tardy).

Tardiness Indicator or Unit cost (Uj): It is defined as Ui = 1, if Cj > dj ; 0 otherwise.

Some combinations, as Tmax and Umax are irrelevant: we have Tmax = max(0, Lmax) and

Umax = 1 if Lmax > 0, 0 otherwise. Their optimal value and the corresponding optimal

schedules are derived from the optimization of Lmax. Actually, in the very common case

where Lmax is guaranteed to be positive, Tmax is equal to Lmax, and referring to either

objective name is a matter of taste. Many scheduling articles (e.g. Jackson [39] about the

famous Jackson’s rule) refer to Tmax, but in this document we choose to refer to Lmax. The

combination
∑

j Lj is not relevant either: minimizing
∑

j Lj is equivalent to minimizing∑
j Cj (up to the additive constant

∑
j dj). The same rationale applies for the weighted

sum. Finally, there are 8 basic combinations summarized in table 1.6:

Table 1.6: Most basic regular objective functions

objective name

Cmax makespan
Lmax maximum lateness∑
Cj total completion time∑
wjCj total weighted completion time∑
Tj total tardiness∑
wjTj total weighted tardiness∑
Uj number of tardy jobs∑
wjUj weighted number of tardy jobs

We now define the earliness Ej as: Ej = max(−Lj , 0) = Cj − dj if Cj > dj , 0 otherwise.

Contrary to the elementary costs fj ∈ {Cj , Lj , Tj , Uj}, Ej is not a non-decreasing function

of Cj and it is said to be non-regular. Earliness is used for just in time scheduling, which

consists in minimizing the time elapsed between a due date and the completion date, i.e.

|Cj − dj |. This elapsed time can also be written Ej + Tj . Figure 1.7 p. 27 shows earliness

and some of its applications for just-in-time scheduling.
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Ej

0 dj Cj

(a) Earliness:
Ej = max(−Lj , 0)

Ej + Tj

0 dj Cj

(b) Just in time scheduling:
Ej + Tj = |Cj − dj |

wjEj+w
′
jTj

0 dj Cj

(c) Just in time scheduling
with different weights

Figure 1.7: Earliness and its applications for just-in-time scheduling

1.1.5 Regularity and dominance

Except those based on job earliness, all the objective functions defined in section 1.1.4
have an interesting property: the earlier the operations are completed, the lower the costs.
This is a property induced by the fact that these objectives are regular [64]. With regular
objectives, it is worth scheduling operations as soon as possible, without changing their
sequencing on the machines. We hereafter formalize these notions.

Consider, for example, an instance of the P2|rj |γ problem, regardless of the objective
function γ. Figure 1.8 shows an admissible schedule S of this problem.

M1

M2

3 2
4 1

r3 r4 r2 r1

0 5 10 12

(a) Schedule S on a Gantt chart

S =
(
(11, 2), (12, 1), (3, 1), (7, 2)

)
S =

[ (
(3, 2)
(4, 1)

)
︸ ︷︷ ︸

jobs

,

(
(3, 12)
(7, 11)

)
︸ ︷︷ ︸
completions

]

(b) List representations of S

Figure 1.8: Two representations of a schedule S as a list of values

A schedule S is defined by the placement of all its operations. It is a list S =

((C1, I1), . . . , (Cn, In)) whose each couple (Completion time, Machine) = (Cj , Ij) forms
the coordinates of the end of the segment corresponding to operation Oj on a Gantt chart.
Another representation can be used, closer to the Gantt chart: sort the operations by
machine and then by chronological order, and store the completion times in another list
with the same structure, as shown in figure 1.8b.

An admissible schedule is said to be semi-active when no operations can be scheduled earlier
without violating a constraint and without changing the relative ordering of operations (i.e.
their machines and chronological order). Figure 1.9 shows a semi-active schedule S′.

M1

M2

3 2
4 1

r3 r4 r2 r1

0 5 10 12

(a) A semi-active schedule S′

S′ =

(
(3, 2)
(4, 1)

)

(b) List representations of S′

Figure 1.9: A semi-active schedule and its representation as a list of jobs

27



CHAPTER 1. SCHEDULING AND EXPONENTIAL ALGORITHMS

A semi-active schedule is defined without ambiguity by the placement of all its operations,
i.e. by the list S = (jik)i,k where i is the machine number and et k represents the chrono-
logical order. Indeed, taking into account precedences and release times, completion times
of all operations can be computed step by step following the chronological order.

In an optimization problem that consists in minimizing an objective γ, we denote by S

the set of solutions, and let D ⊂ S be a solution subset. The set D dominates S when
mins∈D γ(s) = mins∈S γ(s), i.e. when D contains an optimal solution. If we identify a
set D dominating S , then we can find an optimal solution by restricting the search to
elements of D .

With a regular objective γ, the set of semi-active schedules is dominant. To find an
optimal solution, we can restrict to semi-active schedules and use the representation in
which a schedule is a list of jobs indexed by machines and chronological order.

1.1.6 Examples

We describe several classic examples, which model distinct settings in scheduling. Some
of them are famous because there exists a rule to solve them in polynomial time (the
notions of complexity theory we use are recalled in section 1.2). These examples serve as
introduction to a global picture of the field of scheduling, but also introduce the reader to
the problems dealt with in the remainder of this document.

Example 1.1: Sequencing with interval constraints.

job 3 job 2job 1

job 3 job 1 job 2
0 5 10 15 20

job 3 job 2job 1

job 3job 1 job 2
0 5 10 15 20

Figure 1.10: Two solutions of an instance of the 1|rj , d̃j |- problem

This problem is denoted by 1|rj , d̃j |- and is strongly NP-hard. There is no objective to
minimize, and the problem consists in finding an admissible schedule, or more simply a
job order which leads to an admissible schedule. The brutal algorithm tries the n! possible
orders, but since 1982, the state of the art algorithm is a Branch and Bound procedure
due to Carlier [14].

The 1|rj , d̃j |- and 1|rj |Lmax problems are equivalent, i.e. there is a polynomial reduction
from one to another. The 1|rj , d̃j |- problem is often considered as an optimization block
used to solve many other problems, e.g. shop problems.

Example 1.2: Some classic rules for sequencing problems.

The 1|dj |Lmax problem consists in sequencing jobs to minimize the maximum lateness. It
is solved to optimality by the Jackson’s rule [39], which consists in sequencing jobs in EDD
order, i.e. Earliest Due Date First.

The 1|dj |Lmax problem is a particular case of the 1|prec|fmax problem, where f is a reg-
ular individual cost. The 1|prec|fmax problem consists in sequencing jobs in presence of
precedence constraints to minimize a maximum regular cost. This problem is solved to
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optimality in polynomial time by Lawler’s algorithm [47], or LCL (Lowest Cost Last) rule:
from the end to the beginning, schedule the job with a minimal cost among jobs without
a successor.

The 1|dj |
∑
Uj problem consists in sequencing jobs to minimize the number of tardy jobs.

This problem is solved to optimality in polynomial time by Moore’s algorithm [55]: schedule
jobs in EDD order. Then, each time a job is scheduled tardy, sacrifice the longest of already
scheduled jobs by moving it to the end of the schedule.

The interest of these rules goes beyond the specific problems they solve. Many heuristics
or lower bounds used in Branch-and-Bound procedures (described in section 1.3.3) exploit
these rules. For example:

• In example 1.3, Smith’s rule polynomially solves the 1||
∑
wjCj problem to optimal-

ity. A straightforward extension of this rule is applied as a heuristic (called Smith’s
heuristic) for the NP-hard problem 1|d̃j |

∑
wjCj .

• In example 1.5 p. 30, Johnson’s rule polynomially solves the F2||Cmax problem to
optimality. Many heuristics are derived from this rule to cope with the NP-hard
problem F |prmu|Cmax.

• Moore’s algorithm polynomially solves the 1|dj |
∑
Uj problem to optimality. Della

Croce et al. [20] use Moore’s algorithm to analyze the NP-hard problem P |dj |
∑
Uj

which appears in example 1.7 p. 31.

Example 1.3: Sequencing to minimize the total weighted completion time.

Let us consider a pier in a harbor on which boats are docked one after the other. The
end of the pier is the exit of the harbor. Each boat j has a length pj , a speed 1/wj , a
draught that forces it to be at a distance of at most d̃j from the exit. How to park boats
to minimize the average time to exit the harbor?

This real situation is modeled by the 1|d̃j |
∑
wjCj problem. This is a strongly NP-hard

sequencing problem, in which a schedule is uniquely defined by the order of jobs. So, the
brutal algorithm tries the n! possible job orders. The current state of the art algorithm is
due to Shang et al. [81].

The 1|d̃j |
∑
wjCj problem has two well-known polynomial sub-problems: the 1||

∑
wjCj

and 1|d̃j |
∑
Cj problems. The former is solved to optimality in polynomial time by Smith’s

rule [82], which consists in sorting jobs in increasing order of pj/wj , or WSPT (Weighted
Shortest Processing Time first). The latter is solved to optimality in polynomial time by
an extension of Smith’s rule: from the end to the beginning, among jobs which do not
violate their deadline, schedule the one with the largest ratio pj/wj .

Example 1.4: Just-in-time scheduling.

This problem is denoted by 1|dj |
∑
Ej+Tj . There are n jobs j to schedule on one machine.

For each job j, there is a due date dj . This problem models a usual real-life situation,
where a job j represents a hard to store product needed at some date dj . It is obviously
a disadvantage if the product is delivered late, so there is a tardiness penalty Tj , but it is
also a disadvantage if the product is delivered early, because it is difficult to store, so there
is an earliness penalty Ej .
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Ideally, we would like that each job j ends exactly at date dj , which corresponds to the
ideal 1|Cj=dj |- problem, but this problem is trivial to solve and potentially unfeasible:
there is only one possible ideal schedule, and it is rarely admissible. We therefore try, as
a best approximation of this ideal solution, to minimize the sum of the distances between
the nominal end date i.e. the due date dj and the actual end date i.e. the completion
time Cj . The value of each distance is |Cj − dj | = Ej + Tj . Notice that this objective is
not regular, so standard techniques are powerless to solve scheduling problems aimed at
minimizing it.

Example 1.5: permutation flowshop to minimize makespan.

This problem, denoted by F |prmu|Cmax, models for example an assembly line for agricul-
tural machinery. All the devices share a common platform but have a multitude of options
depending on their intended use. It is therefore necessary to produce small series, estab-
lished in advance by the order book. In the assembly line, all the devices go, in the order
of the conveyor and without overtaking each other, through the same assembly stations,
but with different processing times depending on the options.

It turns out that for this objective and for 2 and 3 machines, the optimal solutions of the
permutation flowshop are also optimal for the non-permutation flowshop. In other words
the F2|prmu|Cmax and F2||Cmax problems are equivalent, and the F3|prmu|Cmax and
F3||Cmax problems are equivalent.

For 2 machines, the F2||Cmax problem is solved to optimality in polynomial time by John-
son’s rule [41] also called SPT(1)–LPT(2) rule: schedule at the beginning the jobs whose
1st operation is shorter than the 2nd one, and sort them by shortest processing time of the
1st operation first; schedule at the end the jobs whose 1st operation is longer than the 2nd

one, and sort them by longest processing time of the 2nd operation first.

The F3||Cmax problem is strongly NP-hard and is one of the reference problems in schedul-
ing, and even in Operations Research.

The F |prmu, nowait|Cmax problem is the version where there must be no delays between
two consecutive operations of a same job. It models situations such as the cold chain or
conversely steel or glass factories, the treatment of unstable chemical or biological products.
It also models a maintenance chain of devices whose capital cost is preponderant (e.g.
planes). Figure 1.11 shows a comparison between semi-active schedules with the same job
ordering, for the same instance of F3||Cmax and F3|prmu, nowait|Cmax problems.

1 2 3 4
1 2 3 4

1 2 3 4
0 10 20

(a) F3||Cmax problem

1 2 3 4
1 2 3 4

1 2 3 4
0 10 20

d(J3, J4)

(b) F3|nowait|Cmax problem

Figure 1.11: Same job ordering for the F3||Cmax and F3|nowait|Cmax problems

The F |prmu, nowait|Cmax problem reduces to the Asymmetric Traveling Salesman Prob-
lem. The distance between two consecutive jobs j and j′ is the difference (Cj′−Cj) between
their completion times, which only depends on the processing times of j and j′.
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Example 1.6: Bin Packing.

m

B

6 1 4
3

2 5
0 5 10 15 20

Figure 1.12: Correspondence between the P ||Cmax problem and bin packing

The bin packing problem can be stated as follows: given bins, all with capacity B, and n
objects of sizes p1, . . . , pn how many bins are needed to store the objects in the bins (and
how to distribute them)?

There is a direct correspondence between the bin packing problem and the makespan
minimization problem with identical parallel machines: an object corresponds to a job and
a bin corresponds to a machine, as shown on Figure 1.12.

The P ||Cmax problem and the bin packing problem both reduce to the same decision
problem Pdec: we define Pdec(m,B) as true if and only if there exists a distribution into m
bins with capacity B, or if and only if there exists an admissible schedule on m machines
and with makespan at most B.

Bin packing consists in finding min{m | Pdec(m,B)} for a fixed B. The P ||Cmax problem
consists in finding min{B | Pdec(m,B)}, for a fixed m. The decision problem Pdec, and
therefore the P ||Cmax and bin packing problems are strongly NP-hard (in the general case
where m and B are unbounded).

Example 1.7: Parallel machine scheduling to minimize penalties.

A factory, with several identical production lines must deliver to clients, and each client
has been promised a due delivery date dj . We try to minimize the penalties for delay.
All these problems are modeled by a problem of type P ||

∑
fj . Table 1.13 details them

according to the penalty mode (flat-rate or daily, same for all clients or on a per client
basis). These four problems are NP-hard.

Table 1.13: Modeling of penalties

penalties are flat-rate daily

same for all P ||
∑
Uj P ||

∑
Tj

per client P ||
∑
wjUj P ||

∑
wjTj

1.2 Complexity of algorithms and problems

The theory of computational complexity is a very vast domain. We recall basic notions,
as defined e.g. in Garey and Johnson [27], and we adapt the notations to the domain of
scheduling.
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A problem P can be specified as a function P : D −→ R, which takes as parameter a data,
or instance I ∈ D, and which computes a result P(I) ∈ R. An algorithm A solving P is
a concrete list of instructions implementing the function P on a machine.

A problem can be solved by many different algorithms, with many different performances.
The (computational) complexity of an algorithm translates its consumption in resources
(time, space) when the instance varies.

We recall well-known notions, while precisely defining the notations. Section 1.2.1 deals
with asymptotic comparison and Landau’s notations. Section 1.2.2 deals with the size
and measure of an instance. Section 1.2.4 deals with the worst-case complexity of algo-
rithms and problems, the main complexity classes, and the notion of polynomial reduction.
Finally, section 1.2.6 deals with polynomial reductions between scheduling problems.

1.2.1 Landau notations

Landau’s notations enable to compare asymptotically expressions of a variable when the
variable becomes large. There are many variants of this notation, so it is necessary to
define precisely the one we use in the context of the complexity study.

We use the very standard O (upper bound) and Θ (tight upper bound) notations, and
we express them using the limit of a supremum (lim sup). We do not use the notation
Ω, whose definition for algorithmics is controversial (according to some authors, f = Ω(g)

means that f is not negligible compared to g, i.e f 6= o(g); according to some others, it
means g = O(f)).

In its usual definition, the Landau notation O refers to a variable, say x, real or integer,
and asymptotically compares two real expressions f(x) and g(x). It states that f(x) is
bounded up to a multiplicative constant by g(x) when x becomes large. We usually define:

f(x) = O
x→+∞

(g(x)) ⇐⇒ ∃U > 0, ∃x0, ∀x > x0, |f(x)| 6 U |g(x)| (1.2)

In a context where the functions to be compared f(x) and g(x) are always (strictly) positive,
which will always be the case for us, this definition is equivalent to studying f(x)/g(x).
By symmetry, we write the constant U as the ratio of two constants U = Uf/Ug. This
symmetrical writing will be useful later. We have:

f(x) = O
x→+∞

(g(x))⇐⇒ ∃Uf > 0, Ug > 0, ∃x0, ∀x > x0,
f(x)

g(x)
6
Uf
Ug

⇐⇒ ∃Uf > 0, Ug > 0, ∃x0, ∀x > x0,
f(x)

Uf

Ug
g(x)

6 1

⇐⇒ ∃Uf > 0, Ug > 0, ∃x0, sup
x>x0

f(x)

Uf

Ug
g(x)

6 1 (1.3)

We will adapt these definitions in the case of worst-case complexities. We assume a pre-
defined function | · | which, to each instance I, associates a size |I|. This size intuitively
represents the data volume of the instance, but it does not need to be precisely defined now.
We only require that there exist instances of arbitrarily large sizes: ∀x0, ∃ I, |I| > x0. In
other words, {I | |I| > x0} is never empty.
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We group the instances by equal sizes and compare expressions f(I)>0 and g(I)>0, rep-
resenting complexities, when the size becomes large. In the case of complexities, smaller is
better, so the worst case corresponds to studying, for a given size x, the largest ratio
among instances of this size, i.e. sup|I|=x f(I)/g(I). Precisely, this supremum com-
bines nicely with the supremum of the formula (1.3) p. 32. We define the notation
f(I) = O|I|→+∞(g(I)) meaning that g is a worst case (upper) bound of f :

f(I) = O
|I|→+∞

(g(I))⇐⇒ ∃Uf > 0, Ug > 0, ∃x0, sup
|I|>x0

f(I)

Uf

Ug
g(I)

6 1 (1.4)

On the same principle, we also define the notation f(I) = Θ|I|→+∞(g(I)) meaning that g
is a worst case tight bound of f :

f(I) = Θ
|I|→+∞

(g(I))⇐⇒


∃Uf > 0, Ug > 0, ∃x0, sup

|I|>x0

f(I)

Uf

Ug
g(I)

6 1

∃Lf > 0, Lg > 0, ∃x0, sup
|I|>x0

f(I)

Lf

Lg
g(I)

> 1
(1.5)

In practice, g is an (upper) bound for f when, up to a multiplicative constant, f(I) 6 g(I)

for all sufficiently large instances. The bound is tight when, in addition, there are instances
of arbitrarily large sizes for which f(I) ' g(I).

The traditional O and Θ notations mean “bounded up to a constant”. The star-notations
O∗ and Θ∗, introduced by Woeginger [90], mean “bounded up to a polynomial in the size of
the instance”. They are very useful to simplify the calculations in the case of exponential
bounds. The definitions are transposed by replacing the constants by polynomials (with
positive values for a sufficiently large instance size):

f(I) = O∗

|I|→+∞
(g(I))⇐⇒ ∃Pf , Pg : poly, ∃x0, sup

|I|>x0

f(I)

Pf (x)

Pg(x)

g(I)
6 1 (1.6)

f(I) = Θ∗

|I|→+∞
(g(I))⇐⇒


∃Pf , Pg : poly, ∃x0, sup

|I|>x0

f(I)

Pf (x)

Pg(x)

g(I)
6 1

∃Qf , Qg : poly, ∃x0, sup
|I|>x0

f(I)

Qf (x)

Qg(x)

g(I)
> 1

(1.7)

It is very common to abbreviate the symbol I and the indication of limit in the notations.
For example, the phrase t = O∗(2n) actually means t(I) = O∗ |I|→+∞

(
2n(I)

)
.

1.2.2 Size of an instance

An instance must be encoded as a word made up of symbols belonging to an alphabet.
This encoding is purely conventional, as long as it is “reasonable”, a term that we will
specify later. Consider a simple but representative example, where an instance can be seen
as a list of values, say natural numbers: I = (v1, . . . , v`). It is agreed that the alphabet
contains as symbols the parentheses, the comma and the digits, and we choose to encode
the instance by copying exactly the mathematical notation of the list. For example, the
instance I = (5, 1, 8) is encoded as “(5,1,8)”.

We define the size |I| of the instance I as asymptotically proportional to the number
of symbols used to encode the instance, definition very well suited to the Landau’s O
notation. For our representative example I = (v1, . . . , v`), we take |I| = `+

∑
i log vi. We
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can now clarify the notion of “reasonable” encoding: it is an encoding where the number
of symbols depends only logarithmically on the instance values. Specifically, this involves
coding them, for example, in binary or decimal, but not in unary.

In the complexity calculations, we consider that the size |I| goes to +∞, but the expression
|I| rarely appears explicitly in calculations, because it suffers from two disadvantages.
On the one hand |I| depends (logarithmically) on the data value because of the term
(
∑

i log vi). Due to this, in the calculations it is much easier to use the number of instance
values (the length `) rather than the size |I| itself. On the other hand, the number of
instance values depends a lot on the encoding. For example, a graph with n vertices is
encoded by n2 values with an adjacency matrix, but potentially much less with the list of
edge ends.

To avoid these disadvantages, we choose by convention parameters, called size parameters,
which characterize, depending on the problem, the fundamental number of data of an
instance regardless of its encoding, and it is used to express the complexities. Thus, it is
necessary to choose once for all a reasonable encoding, and then focus on the essential:
these parameters. Traditionally, the main size parameter is systematically called n, and
we can introduce others. For example, in the case of a graph, the main size parameter is
the number n of vertices, and it is common to use as 2nd size parameter the number m of
edges.

1.2.3 Measure of an instance

As we have seen, the size of an instance is asymptotically proportional to the number
of symbols used to encode it. This notion is valid only if the instance is encoded in a
reasonably compact way. In particular, the integers that appear in the instance must be
encoded in binary (or any other base b > 2).

On the same principle, the measure of an instance is asymptotically proportional to the
number of symbols used to encode it when numbers are written in unary, i.e. when each
number is written with as many groups of symbols than its value. For example, the instance
I = (5, 1, 8) can be encoded in unary as “(0+1+1+1+1+1, 0+1, 0+1+1+1+1+1+1+1+1)”. The
measure of an instance is therefore its number of symbols in a deliberately unreasonable
encoding.

It may seem artificial to write integers in unary. Yet this is what we do without realizing
it, each time we list the elements of a multiset one by one instead of listing them with their
order of multiplicity. For example, writing 80 = 2 × 2 × 2 × 2 × 5 instead of 80 = 24 × 5

is equivalent to writing the exponent 4 in unary. Similarly, writing a polynomial in the
form P = (X − r1) · · · (X − rn) instead of P = (X − z1)m1 · · · (X − zk)mk is equivalent to
writing all the multiplicities mi in unary.

The notion of measure is used to capture this kind of situation. As well as the size of an
instance is essentially defined as |I| = ` +

∑
i log vi, likewise the measure of an instance

is essentially defined as ||I|| = `+
∑

i vi. We use the measure of an instance in a context
where the sum of the values is preponderant compared to their number, we then have
||I|| = Θ(

∑
i vi). Note that the maximum and the sum are polynomially related, so in the

end, for an instance I = (v1, . . . , v`), we have ||I|| = Θ(
∑

i vi) = Θ∗(maxi vi). We also
have that log ||I|| is polynomial in |I|, i.e. log ||I|| = O∗(1).
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1.2.4 Worst case complexity

The two main resources used by an algorithm are time and space (memory). We describe
time complexity, but the principle is the same for space complexity. Given an algorithm
A and an instance I, we define tA(I) as the time, expressed in an arbitrary unit, e.g.
the number of steps on an abstract Turing machine, used by the algorithm A to achieve
its computation on instance I. Therefore, this defines a function tA : D −→ ]0,+∞[.
Complexity is concerned with asymptotic behavior of the function tA when the size of the
instance becomes large, and consists in comparing the function tA to a reference function
f : D −→ ]0,+∞[. For this, we use the Landau notations and we are looking to write
formulas of the form tA = O(f) or similar.

The (intrinsic) complexity of a problem is, by definition, the lowest complexity (the infi-
mum) which it is possible to reach for an algorithm that solves it. As with algorithms,
we focus on worst-case complexities in time and space. For the purpose of definitions,
we restrict ourselves to decision problems, i.e. to problems Pdec : D −→ B whose answer
is a boolean, “yes” or “no”. An instance I such that Pdec(I) = “yes” is by definition a
“yes-instance” of the problem Pdec.

The complexity class P contains the decision problems of worst case time complexity at
most polynomial, i.e. in O∗(1). Problems outside P therefore have super-polynomial
complexities.

The class NP is defined as follows: a verifier of problem Pdec is a decision problem V :

D × C −→ B which takes as parameter an instance and a “certificate”, such that ∀ I ∈
D, Pdec(I) ⇐⇒ ∃ c ∈ C | V(I, c). Class NP contains the decision problems that admit a
polynomial worst-case time checker with respect to |I|.

The complexity class EXPTIME contains the decision problems whose worst-case time
complexity is bounded by the exponential of a polynomial, therefore in O∗(2n

d
) for a

certain degree d. This is the case for complexities in O∗(1), O∗(αn) with α > 1, O∗(n!),
O∗(nn), O∗(2n2

) but not O∗(22n).

We now define the notion of polynomial reduction between two decision problems: a prob-
lem Pdec : D −→ B reduces polynomially to a problem P ′dec : D′ −→ B if there is a function
f : D −→ D′ computable in polynomial time, which transforms an instance of Pdec into
an equivalent instance of P ′dec, i.e. ∀ I,Pdec(I) ⇐⇒ P ′dec(f(I)). In this case we write
Pdec ∝ P ′dec, and we say that P ′dec is at least as difficult as Pdec.

A problem is said to be NP-hard when it is at least as hard as any problem in NP. A
NP-complete problem is a problem which is both in NP and NP-hard. We have P ⊂
NP ⊂ EXPTIME and the famous conjecture P 6= NP asserts that the inclusion is strict.
Equivalently, it asserts that no NP-complete problem can be solved in polynomial time.
This conjecture is widely accepted.

Among the NP-hard problems, we make a new distinction: problems which are polynomial
with respect to the instance measure ||I|| are said to be pseudopolynomial or weakly
NP-hard; problems which remain NP-hard under these conditions are said to be strongly
NP-hard. Finally, we can classify decision problems in increasing order of theoretical
difficulty: polynomial, weakly NP, strongly NP, exponential. Figure 1.14 p. 36 illustrates
the nesting of complexity classes, assuming that P 6= NP.
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P NP
weakly NP-hard

strongly NP-hard

Figure 1.14: Venn Diagram of some basic complexity classes, assuming P 6= NP

All these definitions extend to general problems, because the solution of a general problem
can be reduced, under reasonable assumptions, to the solution of a polynomial number
of decision problems. As an example, consider a generic problem Pgen : D −→ B∗ whose
results are expressed in the form of a sequence of booleans. Suppose the length of the
result is polynomial in the instance size: |Pgen(I)| = O∗(1). We define this decision
problem Pdec : D × B∗ −→ B by: for any instance I, for any sequence π, Pdec(I, π) tests
whether π is a prefix of the result Pgen(I), i.e. Pdec(I, π) ⇐⇒ ∃σ∈B∗ | π·σ=Pgen(I). By
trying longer and longer prefixes, Pgen(I) is determined in at most 2|Pgen(I)| steps.

1.2.5 Application to scheduling problems

In scheduling, the size of the instance is systematically the number of jobs n, and possibly
the number of machines m. So, the symbol n defined in section 1.1.1 as the number of jobs
coincides with the symbol n as the instance size. We take as measure of the instance the
sum of the values of the instance: processing times, release dates, due dates or deadlines,
weight of individual costs of the objective function.

Scheduling problems are optimization problems, which consist in minimizing an objective
function. In some cases, the function to be minimized is part of the instance, and we have
to encode this function in a reasonable way. We explain the issue hereafter:

Let γ : N −→ N be an objective function to encode. We must avoid encoding γ in an
extensional way, for example by a list (γ(0), γ(1), γ(2), . . . , γ(Cmax)) in the case of a single-
machine problem. Indeed, the number of values to be stored is of the order of magnitude of
the sum of processing times

∑
pj . This encoding is unreasonable: it is of pseudopolynomial

length instead of polynomial length and therefore its length is potentially exponential in n.

On the contrary, γ must be encoded by its calculation formula, mostly of constant size,
except for the weights wj whose list is of size n. The computation time of γ is therefore
part of the computation time of the algorithm and, as long as scheduling is concerned, can
be achieved in polynomial time.

It is convenient to add another assumption, on the value of γ itself: we will system-
atically assume that the value of the optimum objective γopt is pseudopolynomial, i.e.
γopt = O∗(||I||d) for some degree d fixed once for all.

These assumptions are not restrictive. They are trivially verified by all the usual cost
functions. Each classic individual cost function fj ∈ {Cj , Lj , Tj , Uj , Ej} is calculated in
constant time. Their maximum or sum is calculated in time O(n). The value of each
classic individual cost fi is bounded by the maximum completion time of a schedule, itself
in O∗(||I||). The value of their sum or maximum, therefore the value of γopt, is also in
O∗(||I||). For weighted versions, we have to multiply by the weights, in O∗(||I||), which
gives a γopt in O∗(||I||2).
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1.2.6 Reductions among scheduling problems

As we have seen in section 1.2.4, we write A ∝ B to mean that the problem A reduces
polynomially to B. We also write A ∝0 B to refer to the specific case when A is a simple
subproblem of B, i.e. any instance of A is also an instance of B. In this case, there is a
trivial polynomial reduction from A to B.

There are many elementary reductions between scheduling problems, and the advantage of
Graham’s notation is to make them easily readable: they apply field by field. We describe
the simplest ones:

Environments: The single-machine environment is a particular case of all other environ-
ments, we have 1 ∝0 P ∝0 R, 1 ∝0 F |prmu, 1 ∝0 F ∝0 J .

Constraints: For each constraint set β, we have β ∝0 β, chains ∝0 β, prec (consider
precedence graphs), β ∝0 β, rj (take rj = 0), β ∝0 β, d̃j (take d̃j = +∞ or a formula
of the kind d̃j = maxj′ rj′ +

∑
j′ pj′ which bounds the makespan of any semi-active

schedule).

Objectives: Sums reduce to their weighted version: (
∑

j fj) ∝0 (
∑

j wjfj). Completion
time reduces to lateness and tardiness, by taking dj = 0, i.e. Cj ∝0 Lj and Cj ∝0 Tj .
Proposition 1.8 hereafter introduces and proves two non trivial reductions, cited in
Pinedo [64] and Brucker [12]: Lmax ∝

∑
j Uj and Lmax ∝

∑
j Tj . Figure 1.15 shows

the reduction graph between usual objectives:

Cmax

∑
j Cj Lmax

∑
j wjCj

∑
j Tj

∑
j Uj

∑
j wjTj

∑
j wjUj

Figure 1.15: Polynomial reductions between usual objectives.

Proposition 1.8. For each environment α and constraint set β, α|β|Lmax ∝ α|β|
∑

j Uj
and α|β|Lmax ∝ α|β|

∑
j Tj .

Proof.
Let us consider an instance I of the α|β|Lmax problem. This instance contains due
dates (d1, . . . , dn). We denote by I(d′1, . . . , d

′
n) the same instance in which due dates are

(d′1, . . . , d
′
n). It is not only an instance of the α|β|Lmax problem but also of the α|β|

∑
j Uj

and α|β|
∑

j Tj problems. All instances I(d′1, . . . , d
′
n) share the same admissible schedules

independently of the due dates and objectives.
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Let z ∈ N be a due date shift and S an admissible schedule for I. We have:

Lmax(S) 6 z for I(d1, . . . , dn)⇐⇒∀ j, Cj(S) 6 dj + z

⇐⇒∀ j, Uj(S) = 0 for I(d1+z, . . . , dn+z)

⇐⇒
∑

j Uj(S) = 0 for I(d1+z, . . . , dn+z)

Taking the optimum, i.e. minimum values, we get:

Loptmax = min{z ∈ N | ∃S admissible | Lmax(S) 6 z for I(d1, . . . , dn)}
= min{z ∈ N | ∃S admissible |

∑
j Uj(S) = 0 for I(d1+z, . . . , dn+z)}

= min{z ∈ N |
(∑

j Uj
)opt

= 0 for I(d1+z, . . . , dn+z)} (1.8)

So, given an algorithm to solve the α|β|
∑

j Uj problem, here is an algorithm to solve the
α|β|Lmax problem: determine by a binary search the minimum z of equation (1.8). An op-
timal schedule of α|β|

∑
j Uj for I(d1+z, . . . , dn+z) is also an optimal schedule of α|β|Lmax

for I. The binary search takes O(logLmax) = O(log ||I||) = O∗(1) steps, hence the poly-
nomial reduction. The same rationale holds for

∑
j Tj , because

∑
j Tj=0⇔

∑
j Uj=0.

Figures 1.16 and 1.17 p. 39 show the reduction graphs for each class of problems α ∈ {1, P}
and for each constraint set β ⊂ {rj , prec}. For each problem it is also indicated if it is
polynomial (Poly), pseudopolynomial (PseudoP) or strongly NP-hard (StrongNP).
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(d) Reductions for 1|rj |γ

Figure 1.16: Reduction graphs and complexity classes of single-machine problems
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Figure 1.17: Reduction graphs and complexity classes of parallel-machine problems

1.3 Exact Exponential algorithms

We describe state-of-the-art exact algorithms for scheduling. We focus on deterministic,
exact, exponential time algorithms, with a proved upper bound on worst case complexities.
So, there are no heuristics, nor probabilistic or stochastic algorithms. Exact Exponential
algorithms can be divided into four main classes: dynamic programming (section 1.3.1),
Sort and Search (section 1.3.2), branching (section 1.3.3), and Inclusion-Exclusion (sec-
tion 1.3.4, further developed in chapter 2).

1.3.1 Dynamic Programming

Generally speaking, dynamic programming consists in computing a function defined by
recursive equations, and remembering intermediate computations, called states. Dynamic
programming across the subsets of a job set is well suited for permutation scheduling prob-
lems, including single-machine and flowshop problems. But it is very memory consuming,
because the number of subsets, thus the number of states, grows exponentially with the
number of jobs.

Table 1.18 p. 40 shows some scheduling problems solved using this technique. A direct
application of this technique is described by Fomin and Kratsch [23]. Shang et al. [80]
apply it to the flowshop problem, and bound the number of states thanks to a fine analysis
of the number of critical paths in a schedule. Lenté et al. [50] use a tricky version of
dynamic programming across the subsets, applying it to a variable set of 2k machines
together. Cygan et al. [18] also use dynamic programming across the subsets, but they
modify the recurrence equations to avoid some subsets which are guaranteed not to lead
to an optimal solution. They also apply an appropriate treatment to certain special cases.
Then, they count the subsets explored by the dynamic programming procedure and show
that their algorithm runs in time O∗(2− ε)n, with ε > 0 but small (ε ' 5 · 10−16 in their
proof).
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Table 1.18: Time and space worst-case complexity bounds of some scheduling problems
solved by Dynamic Programming

problem reference time space

1||fmax Fomin and Kratsch [23] O∗(2n) O∗(2n)

1||
∑

j fj Fomin and Kratsch [23] O∗(2n) O∗(2n)

F3|prmu|Cmax Shang et al. [80] O∗(3n) O∗(3n)

F3|prmu|Cmax Shang et al. [80] O∗(2n||I||) O∗(2n||I||)
F3|prmu|fmax Shang et al. [80] O∗(5n) O∗(5n)

F3|prmu|fmax Shang et al. [80] O∗(2n||I||2) O∗(2n||I||2)

F3|prmu|
∑

j fj Shang et al. [80] O∗(5n) O∗(5n)

F3|prmu|
∑

j fj Shang et al. [80] O∗(2n||I||2) O∗(2n||I||2)

P ||fmax Lenté et al. [50] O∗(3n) O∗(2n)

P ||
∑

j fj Lenté et al. [50] O∗(3n) O∗(2n)

F2||Ckmax Lenté et al. [50] O∗(
√

2
n
) O∗(

√
2
n
)

1|prec|
∑

j Cj Cygan et al. [18] O∗((2− ε)n) O∗((2− ε)n)

1.3.2 Sort and Search

We can separate searching techniques into two main families: global and local. Local
search essentially consists in restricting the search for an optimum to the neighborhood of
an initial solution. Local search is very valuable to derive efficient heuristics, but it usually
offers no guarantee of optimality. We now focus on global searching techniques.

The Sort and Search technique has been introduced by Horowitz and Sahni [36]. It consists
in viewing an O∗(2αn) sized search space S as the product of two O∗(2αn/2) sub-spaces
S = A × B related by a function f such that solutions (a, b) verify f(a) = b. By sorting
B and searching in B each f(a), a ∈ A, time complexity can be shrunk from O∗(2αn) to
O∗(2αn/2). Table 1.19 shows some scheduling problems solved using this technique.

Table 1.19: Time and space worst-case complexity bounds of some scheduling problems
solved by Sort and Search

problem reference time space

1|dj |
∑

j wjUj Lenté et al. [49] O∗(
√

2
n
) O∗(

√
2
n
)

P2||Cmax Lenté et al. [49] O∗(
√

2
n
) O∗(

√
2
n
)

P3||Cmax Lenté et al. [49] O∗(
√

3
n
) O∗(

√
3
n
)

P |dj |
∑

j wjUj Lenté et al. [49] O∗((m+1)
n
2 (n2 )m+2) O∗((m+1)

n
2 (n2 )m+2)

P2|dj |
∑

j wjUj Lenté et al. [49] O∗(
√

3
n
) O∗(

√
3
n
)

P ||Cmax Lenté et al. [49] O∗(m
n
2 (n2 )m+1) O∗(m

n
2 (n2 )m+1)

1 |dj = d >
∑

j pj
|
∑

j wj(Ej+Tj)
T’kindt et al. [86] O∗(

√
2
n
) O∗(

√
2
n
)

Continued on next page
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Table 1.19 – continued from previous page

problem reference time space

P |dj = d >
∑

j pj
|
∑

j wj(Ej+Tj)
T’kindt et al. [86] O∗(3n) O∗((1 +

√
2 )n)

P |dj |Cmax, Lmax Shang and T’Kindt [79] O∗(|P|m
n
2 (n2 )2m+2) O∗(|P|m

n
2 (n2 )2m+2)

P |dj |Cmax,
∑
j wjUj Shang and T’Kindt [79] O∗(|P|(m+1)

n
2 (n2 )3m) O∗(|P|(m+1)

n
2 (n2 )3m)

Note: the last two lines refer to multi-objective problems, and |P| is the number of Pareto optima.

1.3.3 Branching Algorithms

Branching consists in decomposing a problem into subproblems, recursively solving the
subproblems and combining their solutions into a solution of the original problem. Each
recursion step is represented by a node in a branching tree.

As described by Fomin and Kratsch [23, chap. 4], several branching algorithms use well
defined rules, which lead to a precise evaluation of their worst-case complexity bounds.
They are called Branch and Reduce algorithms. Their complexity analysis can be refined
by the measure and conquer technique [23, chap. 6], enabling to derive better complexity
bounds without changing the algorithm. Unfortunately, these algorithms are very rare
when applied to scheduling problems as designing, for instance, a reduction rule is not
straightforward.

Table 1.20 lists the branching algorithms applied to scheduling with an interesting worst-
case complexity bound. Unlike the other tables, it only contains the work of Garraffa
et al. [29]. They introduce a node merging mechanism to detect identical sub-problems
in a branching tree and thus to avoid solving them multiple times. It is one of the few
branching algorithms in scheduling with a proven non-trivial worst-case time complexity
bound.

Table 1.20: Time and space worst-case complexity bounds of a scheduling problem solved
by a branching algorithm

problem reference time space

1|dj |
∑

j Tj Garraffa et al. [29] O∗(2n) O∗(1)

Branch-and-Bound are particular branching algorithms, in which each node represents a
set of solutions, and where we bound the optimum between a lower bound (LB) and an
upper bound (UB). The quality of the lower bound is crucial for the performance of the
algorithm.

We have a very poor knowledge about how to analyze the worst-case complexity bounds
of Branch and Bound algorithms. Most Branch and Bound algorithms therefore have the
same worst-case complexity bounds as brute-force enumeration solutions, i.e. in O∗(n!)

or O∗(nn) time. However, Branch-and-Bound algorithms turn out to be state-of-the-art
in practice. That’s why Branch-and-Bound algorithms are very popular. In their review,
Tomazella and Nagano [87] enumerate about 120 Branch and Bound algorithms, only for
flowshop problems.
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Table 1.21: A review of Branch and Bound algorithms for two sequencing problems

(a) The 1|d̃j |
∑
wjCj problem

year reference

1967 Burns [13]

1980 Bansal [4]

1983 Potts and Van Wassenhove [75]

1985 Posner [73]

1987 Bagchi and Ahmadi [3]

1988 Abdul-Razaq and Potts [1]

2003 Pan [63]

2004 T’kindt et al. [85]

2021 Shang et al. [81]

(b) The F |prmu|Cmax problem

year reference

1965 Ignall and Schrage [37]
1965 Lomnicki [52]
1966 Brown and Lomnicki [11]
1967 McMahon and Burton [54]
1970 Ashour [2]
1978 Lageweg et al. [46]
1980 Potts [74]
1991 Brah and Hunsucker [10]
1996 Carlier and Rebaï [15]
1997 Cheng et al. [16]
2005 Ladhari and Haouari [45]
2016 Ritt [76]
2020 Gmys et al. [30]

Branch-and-Bound is very successful when applied to sequencing problems, i.e. scheduling
problems reducing to finding a job order. For example, the state-of-the-art exact method
concerning the 1|rj , d̃j |- problem is a Branch-and-Bound algorithm proposed by Carlier
[14].

Table 1.21 summarizes the history of Branch-and-Bound algorithms for two emblematic
problems: 1|d̃j |

∑
wjCj and F ||Cmax. Shang et al. [81] and Gmys et al. [30] proposed the

currently fastest known exact algorithms in practice among all algorithms.

1.3.4 Inclusion-Exclusion

We briefly describe the principles of the Inclusion-Exclusion technique. The whole chapter 2
is devoted to an accurate description of this technique and its relatives.

Given a scheduling problem, the Inclusion-Exclusion technique consists in deciding whether
there exists or not a solution whose objective value is bounded by a given threshold. Here
are its main steps, in principle and omitting the details. (1) Relax the problem by allowing
duplicate jobs. (2) Count relaxed solutions when only certain jobs (potentially duplicate)
are allowed. (3) Apply the Inclusion-Exclusion formula (a sum over job subsets) to count
relaxed solutions which encompass non-relaxed solutions. (4) Thus, decide whether there
exists a non-relaxed solution or not. This approach has two advantages: (1) it transforms
the solution of a problem with a sequencing part in O∗(n!) into the solution of O∗(2n)

relaxed problems; (2) a relaxed problem can be solved in pseudopolynomial time and
space using dynamic programming. Finally, we can derive from the Inclusion-Exclusion
technique an algorithm whose worst case complexity bounds are moderately exponential
in time and most often pseudo-polynomial in space.
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Table 1.22: Time and space worst-case complexity bounds of some scheduling problems
solved by Inclusion-Exclusion

problem reference time space

1|rj , d̃j |- Karp [42] O∗(2n||I||) O∗(||I||)
P |Cmax 6 B|- Karp [42] O∗(2nB) O∗(B)

R|rji, d̃ji|fmax Chapter 3 O∗(2n||I||) O∗(||I||)
R|rji, d̃ji|

∑
j fj Chapter 3 O∗(2n||I||γopt) O∗(||I||γopt)

F |prmu, rj , d̃j |fmax Chapter 4 O∗(2n||I||m) O∗(||I||m)

F |prmu, prec, rj , d̃j |fmax Chapter 4 O∗(2n||I||m) O∗(2n−µ||I||m)

F |prmu, rj , d̃j |
∑

j fj Chapter 4 O∗(2n||I||mγopt) O∗(||I||mγopt)
F |prmu, prec, rj , d̃j |

∑
j fj Chapter 4 O∗(2n||I||mγopt) O∗(2n−µ||I||mγopt)

Notes: B represents the bin capacity in the bin-packing problem.
γopt is the optimal objective value, a pseudopolynomial factor.
µ is the number of maximal jobs i.e. jobs without successors.

1.4 Conclusions

In this chapter we have shown the interest of exponential algorithmics to solve scheduling
problems to optimality.

Numerous scheduling problems are NP-hard. Assuming P 6= NP, there is no worst-case
polynomial time algorithm to solve such problems to optimality. As a consequence, only
super-polynomial algorithms can solve such problems to optimality. And most super-
polynomial algorithms are actually exponential. Exponential algorithmics aims at design-
ing an exact algorithm, ideally with a worst case time complexity in O∗(cn) with c as small
as possible.

Among the various techniques we have seen, some, like Branch-and-Bound, are often very
effective in practice but offer few theoretical guarantees and have high, often factorial,
worst-case time complexities. Others, like dynamic programming across subsets or Sort
and Search, guarantee exponential time complexities but also have exponential space com-
plexities. Finally, Inclusion-Exclusion guarantees moderate exponential time complexities,
together with pseudopolynomial space complexities, which makes it particularly interesting
from a theoretical point of view.

We shall apply Inclusion-Exclusion to the very challenging field of scheduling. Chapter 2
is devoted to the study of the Inclusion-Exclusion technique in general. In chapters 3
and 4, we apply this technique to very general classes of parallel machine and flowshop
scheduling problems with regular objectives and we derive moderately exponential time
and pseudopolynomial space algorithms to solve these problems.
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Chapter 2

Inclusion-Exclusion for Scheduling

Topics

• We describe the principles of Inclusion-Exclusion: how to transform a dynamic pro-
gramming scheme across subsets running in exponential time and space into an
Inclusion-Exclusion algorithm running, for most problems, in moderate exponential
time and only pseudopolynomial space.

• As an application, we give a detailed description of two representative examples: the
Shortest Directed Hamiltonian Path problem and the Interval Sequencing problem.

• We review several techniques to accelerate Inclusion-Exclusion, from a theoretical and
practical point of view: Bonferroni inequalities, Möbius inversion, Abstract Tubes,
Index space trimming and Zero sweeping.

The Inclusion-Exclusion technique, derived from a rather old combinatorics formula, re-
ceived a pioneer application to computer science by Kohn et al. [43], Karp [42] and Bax [6].
More recently, Inclusion-Exclusion gained in popularity in Operations Research (see for ex-
ample Bjorklund and Husfeldt [8], and Koivisto [44]). Nederlof [59, 61] showed the interest
of this technique to get polynomial or pseudopolynomial space and moderate exponential
time algorithms.

In this chapter, we focus on the application of Inclusion-Exclusion to scheduling. In
section 2.1, we describe how to solve an optimization problem to optimality using the
Inclusion-Inclusion technique. In section 2.2, we describe two representative examples,
the Shortest Directed Hamiltonian Path problem and Interval Sequencing. In section 2.3,
we review techniques related to Inclusion-Exclusion and their application to permutation
scheduling problems.

2.1 Principles

As we saw in section 1.3.1, many scheduling problems can be solved by dynamic program-
ming across subsets. Unfortunately, we often get algorithms whose memory consumption
is exponential. From a theoretical point of view, Inclusion-Exclusion enables to have
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comparable time complexities, while maintaining pseudopolynomial space complexity, and
without increasing the difficulty of the recurrence equations. This technique is well-suited
for coverage problems, particularly for permutation problems.

In section 2.1.1, we show how an optimization problem can be polynomially reduced to a
decision problem. Of course, this decision problem itself reduces to a counting problem. In
section 2.1.2, we introduce the Inclusion-Exclusion formula in its mathematical version. In
section 2.1.3, we introduce the Inclusion-Exclusion formula in its computer science version.
We see how to solve a coverage counting problem by relaxing it, and thus how to solve the
associated decision problem.

2.1.1 From solution existence to an explicit optimal solution

Let us consider an optimization problem Popt. From the mathematical point of view, this
problem is specified by two functions: a function S which gives all the solutions of the
problem, and an objective function γ to be minimized. For any instance I, the aim is to
compute an optimal solution Popt(I) = minS∈S (I) γ(S).

The set of solutions S (I) always has a structure. To simplify the explanations, we will
consider that each solution S ∈ S (I) is a sequence of ` elements, each in {1, . . . , h}, i.e.
S = (s1, . . . , s`) with ∀ i, si ∈ {1, . . . , h} and that S (I) ⊂ {1, . . . , h}`. For example, for
a permutation problem one can imagine that h = ` = n and that S (I) is the set Sn of
permutations of n elements, i.e. S (I) = Sn ⊂ {1, . . . , n}n. We also assume that h and `
are polynomial with respect to the instance size.

In theory, to solve Popt, we can use the brute-force algorithm consisting in listing all the
solutions and choosing the best one. For this, we can simply list all the first possible
elements, then recursively all possible second elements, and so on. We obtain a search
tree in which each node is the set of sequences that start with a certain prefix π, which
we denote by {π∗}. In this tree, each leaf node corresponds to a complete solution S.
Figure 2.1 shows the branching tree we get.

{∗}

{1∗}

{11∗} {12∗} . . . {1h∗}

{2∗}

. . .

. . . {h∗}

{h1∗} {h2∗} . . . {hh∗}

Figure 2.1: Forward branching tree of solutions of a sequencing problem

The brute-force algorithm enumerates all nodes in the tree, so it has a time complexity in
Θ∗(card S (I)), which is often of the order of magnitude of n! or nn. To avoid this issue,
we will use a well suited decision problem as an oracle to know whether to cut a node or
whether to explore it.

We now define the decision problem Pdec associated with Popt in a more precise version than
usual: given an instance I, a prefix π and a threshold value of the objective ε, Pdec(I, π, ε)
is true when there exists a solution S with prefix π and objective value of at most ε. In
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other words:

Pdec(I, π, ε) ⇐⇒ ∃S ∈ S (I) ∩ {π∗} | γ(S) 6 ε (2.1)

Note that this is an existence problem, i.e. an implicit problem: we are not trying to build
an explicit solution S, but we are only trying to know whether there exists one or not.
Note also that the decision problem usually associated with an optimization problem does
not take any prefix into account, which is equivalent to consider this prefix as empty. The
usual problem is denoted by Pdec(I, ε), it is defined by

Pdec(I, ε) ⇐⇒ ∃S ∈ S (I) | γ(S) 6 ε (2.2)

and we obviously have Pdec(I, ε)⇐⇒ Pdec(I, (), ε), where () denotes the empty prefix.

As a decision problem, Pdec can be straightforwardly reduced to a counting problem P#,
corresponding to a counting function N . We introduce the following definition:

Definition 2.1. We call an implementation of the decision problem Pdec any function N
computing an integer such that

∀ I, π, ε, Pdec(I, π, ε) ⇐⇒ N(I, π, ε) > 0 (2.3)

As an extension, the parameters of N do not need to match exactly the parameters of Pdec
as in this equation. Of course, it is not necessary in general to reduce a decision problem to
a counting problem, but that is what we will do every time we use the Inclusion-Exclusion
technique.

Because Pdec is an existence problem, the most straightforward implementation of Pdec
consists in determining the very precise number N of solutions S selected by Pdec, that is:

N(I, π, ε) = card{S ∈ S (I) ∩ {π∗} | γ(S) 6 ε} (2.4)

but this is not the only possible implementation. For example, in chapter 3, our solution
of parallel machine scheduling problems is based on an alternate implementation.

Reducing Popt to Pdec

Let us suppose that we know how to solve the decision problem Pdec associated with Popt.
We will show that we can solve Popt, i.e. compute an explicit optimal solution, using only
a polynomial number of calls to Pdec.

First, we can determine the optimum objective value γopt. It is:

γopt = min{ε ∈ N | Pdec(I, (), ε)} (2.5)

Algorithm 2.2 p. 48 details the concrete calculation of γopt = OptimumObjective(I).
Stage 1 is used to enclose γopt between a lower bound εmin and an upper bound εmax,
but if we already know bounds we can use them instead. Stage 2 is a simple binary search.
Note that this algorithm performs a polynomial number of steps. Indeed, since γopt is
polynomial with respect to ||I|| there are O(log γopt) = O(log ||I||) = O∗(1) steps.
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Algorithm 2.2: Computation of the optimum objective value γopt

Function OptimumObjective(I):
// Stage 1: bound γopt

εmax ← 1
while Pdec(I, (), εmax) = 0 do

εmax ← 2 εmax

εmin ← 0
// Stage 2: binary search
while εmin < εmax do

ε← d1
2(εmin + εmax)e

if Pdec(I, (), ε) > 0 then
[εmin, εmax]← [εmin, ε]

else
[εmin, εmax]← [ε+ 1, εmax]

return εmin // γopt = εmin = εmax

Algorithm 2.3 is used to compute an optimal solution. We denote sequences by
(s1, s2, . . .) and the sequence concatenation operator by (·). After calculating γopt, we
use Pdec(I, π, γopt) as an oracle to predict whether a search tree path passing through the
node {π∗} leads to an optimal solution or not, and we can immediately explore or cut this
node. As a loop invariant, it is guaranteed that the search for an element s to add to π is
successful. Finally, we walk in the search tree, without ever backtracking, through a path
of length ` from the root to a leaf node corresponding to an optimal solution.

Algorithm 2.3: Computation of an optimal solution

Function OptimalSolution(I):
γopt ← OptimumObjective(I)
π ← ()
repeat ` times

find s ∈ {1, . . . , h} such that Pdec(I, π · (s), γopt)
π ← π · (s)

return π

Remark 2.2. Due to the structure of Algorithm 2.3, the oracle Pdec is always called with
an admissible prefix π, i.e. there always exists a suffix σ such that π · σ is a solution. So,
an implementation of Pdec never needs to test the admissibility constraints of the problem
on π, they are automatically answered.

Clearly, the number of calls to Pdec in Algorithm 2.3 is in O(log γopt) = O∗(1) for the
computation of γopt and in O(h`) = O∗(1) for the computation of the optimal solution: it
is therefore polynomial, which justifies the following proposition.

Proposition 2.3. An optimal solution of Popt can be computed using a polynomial number
of calls to Pdec, i.e. Popt ∝ Pdec.

We now define the concept of self-reducibility:
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Definition 2.4. A problem is said to be self-reducible when the solution of an instance
can be reduced to the solution of a simpler instance of the same problem. Put otherwise,
a problem is self-reducible when it can be expressed using simple recursive equations.

Remark 2.5. The key point is to determine the effect of appending an element v to a prefix
π, i.e. to find a simple recurrence relation of the form Pdec(I, π · (v), ε)⇐⇒ Pdec(I ′, π, ε′)
for some I ′ and ε′. Such a relation often enables at the same time not only to define a
dynamic programming scheme across subsets, but also to define a dynamic programming
scheme to count admissible relaxed lists, and finally to implement the decision problem
and solve the optimization problem by Inclusion-Exclusion.

Notice that Fomin and Kratsch [23, chap. 4] define self-reduction as any method enabling
to derive an optimal solution from a polynomial number of calls to a counting function
as N , usually implemented via Inclusion-Exclusion. Proposition 2.3 p. 48 combined with
Definition 2.1 p. 47 shows that any self-reducible problem in the sense of Definition 2.4
leads to a self-reduction method as defined by Fomin and Kratsch.

For the sake of explanations, we have taken the particular case where the solutions are
sequences, but in the general case the explanations remain valid whenever we can define
notions of concatenation, prefix and suffix of solutions. For example, in chapter 3, we
define a special concatenation in the case of scheduling with parallel machines.

We also focused on solution prefixes, which correspond to forward branching. This is not
the only possibility as we can also branch backwards, but we have chosen this presentation
because it is more intuitive in scheduling, where it is common to proceed in chronological
order.

2.1.2 The Inclusion-Exclusion formula

The Inclusion-Exclusion formula is attributed to the French mathematician Abraham de
Moivre (1667–1754). It enables to express the cardinal of a union of sets as an alternating
sum of the cardinals of their partial intersections. All the sets that we will handle are
implicitly finite.

For two sets A1, A2 we have this well-known formula, deduced from the partition into
regions of the Venn diagram representing the union of the two sets (Figure 2.4):

card(A1 ∪A2) = card(A1) + card(A2)− card(A1 ∩A2) (2.6)

A1\A2 A2\A1A1∩A2

A1∪A2A1 A2

card (A1) = card(A1\A2) + card(A1∩A2)
card (A2) = card(A1∩A2) + card(A2\A1)
card (A1∪A2) = card(A1\A2) + card(A1∩A2) + card(A2\A1)

Figure 2.4: Venn diagram to relate cardinals of union and intersection of two sets

For 3 sets A1, A2 and A3 we have the following formula:

card(A1 ∪A2 ∪A3) = + card(A1) + card(A2) + card(A3)

− card(A1 ∩A2)− card(A1 ∩A3)− card(A2 ∩A3)

+ card(A1 ∩A2 ∩A3) (2.7)
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which can be intuitively interpreted as:

cardinal of union of 3 sets = + sum of cardinals of intersections of 1 set
− sum of cardinals of intersections of 2 sets
+ sum of cardinals of intersections of 3 sets

This formula can be generalized. To state the general case, we use sets Ai containing
elements, indices i and sets of indices I. We denote card(Ai) when we count elements
but |I| when we count indices. We make this distinction for two reasons: first, from
a mathematical point of view, the cardinal of a set Ai is proportional to a probability
measure P, and the formulas remain valid when we change this measure. Second, from a
computational point of view, index sets are limited in size. This size is much less than the
capacity of a machine word, so indices can be typed as machine native integers, whereas
the cardinals of sets Ai that we manipulate can take very large values and should be typed
as big integers. Here is the Inclusion-Exclusion formula in the general case.

Proposition 2.6: Inclusion-Exclusion formula.
The cardinal of the union of sets is the alternating sum of the cardinals of their partial
intersections, excluding the empty intersection. For sets A1, . . . , An, we have:

card
( n⋃
i=1

Ai

)
=
∑
I⊂{1,...,n}
I 6=∅

(−1)|I|−1 card
(⋂
i∈I

Ai

)
(2.8)

Considering the family (Ai)i∈J with |J | = n, the formula becomes:

card
(⋃
i∈J

Ai

)
=
∑
I⊂J
I 6=∅

(−1)|I|−1 card
(⋂
i∈I

Ai

)
(2.9)

Although this result is well known (see e.g. Mazur [53]), for the sake of completeness we
provide a proof of its correctness.

Proof. We prove the result by induction on n. It’s trivially true for n = 0 (0 = 0) and for
n = 1 (card(A1) = card(A1)). Now, we suppose it is true for n and we prove it for n+ 1.

First, notice that for all sets Ai and B, the value of the union
(⋃

iAi∩B
)
does not depend

on parenthesis grouping: (
⋃
iAi) ∩ B =

⋃
i(Ai ∩ B) =

⋃
iAi ∩ B. Similarly, for a (non-

empty) intersection: (
⋂
iAi) ∩ B =

⋂
i(Ai ∩ B) =

⋂
iAi ∩ B. Thus, we apply the two-set

Formula (2.6) p. 49 to both sets
⋃n
i=1Ai and An+1. Then, we apply twice the recurrence

hypothesis: to
⋃n
i=1Ai on the left, and to

⋃n
i=1(Ai ∩An+1) on the right. We derive:

card
( n⋃
i=1

Ai ∪An+1

)
= card

( n⋃
i=1

Ai

)
+ card

(
An+1

)
− card

( n⋃
i=1

Ai ∩An+1

)
=
∑
I⊂{1,...,n}
I 6=∅

(−1)|I|−1 card
(⋂
i∈I

Ai

)
+ card

(
An+1

)
−

∑
I′⊂{1,...,n}
I′ 6=∅

(−1)|I
′|−1 card

(⋂
i∈I′

Ai ∩An+1

)

On the left, we rearrange the set of sum indices without changing it. In the middle, we write
the single term as a sum. On the right, we make the variable change I = I ′ ∪ {n + 1} ⇔
I ′ = I \ {n + 1}, and we have − (−1)|I

′|−1 = + (−1)|I|−1. Sets of sum indices combine
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nicely and we get:

card
( n⋃
i=1

Ai ∪An+1

)
=
∑
I⊂{1,...,n+1}
n+1 /∈ I
I 6=∅

(−1)|I|−1 card
(⋂
i∈I

Ai

)
+
∑
I⊂{1,...,n+1}
n+1∈ I
I={n+1}

(−1)|I|−1 card
(⋂
i∈I

Ai

)
+
∑
I⊂{1,...,n+1}
n+1∈ I
I 6={n+1}

(−1)|I|−1 card
(⋂
i∈I

Ai

)

=
∑
I⊂{1,...,n+1}
I 6=∅

(−1)|I|−1 card
(⋂
i∈I

Ai

)

It is often preferable to express unions as intersections of complements. So, let E be
a (finite) universe containing all Ai and we define, as usual, the complement of Ai by
Āi = E \Ai. An empty intersection is the universe:

⋂
i∈∅Ai = E. We derive the following

proposition.

Proposition 2.7: Inclusion-Exclusion, alternate form.
The cardinal of an intersection of complements is expressed as an alternating sum of the
cardinals of their partial intersections, including the empty intersection. For a universe E
and (Ai)i∈J ⊂ E, we have:

card
(⋂
i∈J

Āi

)
=
∑
I⊂J

(−1)|I| card
(⋂
i∈I

Ai

)
(2.10)

Proof. We have:

card
(⋂
i∈J

Āi

)
= card

(
E
)

− card
(⋃
i∈J

Ai

)
= card

(⋂
i∈∅

Ai

)
−

∑
I⊂J
I 6=∅

(−1)|I|−1 card
(⋂
i∈I

Ai

)

=
∑
I⊂J
I=∅

(−1)|I| card
(⋂
i∈I

Ai

)
+

∑
I⊂J
I 6=∅

(−1)|I| card
(⋂
i∈I

Ai

)

=
∑
I⊂J

(−1)|I| card
(⋂
i∈I

Ai

)

2.1.3 The relaxation principle

An important use case of Inclusion-Exclusion consists in applying it to data lists and
solving coverage problems, and among them, permutation problems. Before developing
further, we need some technical paragraphs to formally define, from a mathematical point
of view, the lists to which Inclusion-Exclusion can be applied.

A list is a collection of elements spotted by a position (we reserve the term “index” for
labeling sets involved in Inclusion-Exclusion). From a mathematical point of view, a list
L is a family (Lp ∈ V )p∈S , i.e. a function which to each position p associates a value Lp
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in some set V . The set S of positions is the shape of the list (e.g. S = {1, . . . , n} for a
sequence of length n and S = {1, . . . , n} × {1, . . . ,m} for a n×m matrix). We denote (as
usual) by V S the set of lists of shape S on the set V .

We often need to manipulate sets of lists of variable shape on a set V . It is just a (disjoint)
union of sets of fixed-shape lists on V . In other words, we introduce a set S of possible
shapes, and we consider the set

⋃
S∈S V

S . In particular, we define the set of linear lists
(sequences) of length exactly n on V by V n = V {1,...,n} and the set of lists of length at
most n on V by V (n) =

⋃n
`=0 V

`, which amounts to setting S =
{
{1, . . . , `}, 0 6 ` 6 n

}
and V (n) =

⋃
S∈S V

S .

For Inclusion-Exclusion, the precise shape of the lists does not matter. From now on, we
write V ∗ to mean that we have chosen once and for all a set S of shapes and that we have
defined V ∗ =

⋃
S∈S V

S .

As an extension of set notation, we write v ∈ L to mean that the value v appears in the
list L, in other words: v ∈ (Lp)p∈S ⇐⇒ ∃ p ∈ S | Lp = v ⇐⇒ v ∈ {Lp, p ∈ S}. We also
define covering lists as lists where all the values appear (these lists are also the surjective
functions from S to V ). The set of covering lists is denoted by CV , or just C whenever
there is no ambiguity. It is defined by:

C = {L ∈ V ∗ | ∀ v ∈ V, v ∈ L} (2.11)

Counting covering lists

Consider a counting problem P# (similar to the one defined in section 2.1.1), and suppose
that it is also a coverage problem: there is some set V to cover, and P# counts covering
lists on V , which in addition satisfy a given admissibility criterion A specific to the P#

problem.

So, solving P# leads to compute card(S ) where S is the set of covering admissible lists,
which we will also call strict lists: S = {L ∈ C | A (L)}. Let us now relax the coverage
constraint and define the set R of relaxed admissible lists by: R = {L ∈ V ∗ | A (L)}.
Obviously, we have: S = R ∩ C , i.e. the strict admissible lists are the covering relaxed
admissible lists.

We will now apply the Inclusion-Exclusion formula. We take as universe the set
of relaxed admissible lists: E = R, and we consider the sets (Av)v∈V defined by:
∀ v,Av = {L ∈ R | v /∈ V }. Note that the indices of the Inclusion-Exclusion formula
are the values appearing in the lists, i.e. the elements of V . After variable renaming, the
alternate formula (2.10) p. 51 transforms into:

card
(⋂
v∈V

Āv

)
=
∑
W⊂V

(−1)|W | card
( ⋂
v∈W

Av

)
(2.12)

On the left, we have Āv = {L ∈ R | v ∈ V }, so⋂
v∈V

Āv = {L ∈ R | ∀ v ∈ V, v ∈ L}
= {L ∈ R | L ∈ C }
= R ∩ C (2.13)
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On the right, we have: ⋂
v∈W

Av = {L ∈ R | ∀ v ∈W, v /∈ L}

= {L ∈ R | ∀ v ∈ L, v /∈W}

= {L ∈ R | ∀ v ∈ L, v ∈ V \W}

= R ∩ (V \W )∗ (2.14)

By replacing these intersections by their values in Formula (2.12) p. 52, we get:

card (R ∩ C )︸ ︷︷ ︸
covering

admissible lists

=
∑
W⊂V

(−1)|W | card (R ∩ (V \W )∗)︸ ︷︷ ︸
relaxed admissible lists
with no value in W

(2.15)

In the sequel, we find it easier to consider relaxed admissible lists using only (optional)
values of a subset X instead of relaxed admissible lists with no value in a subset W (i.e.
no withdrawn value), so we apply the variable change X = V \W ⇔W = V \X, and we
have |W | = |V | − |X|. We derive:

card (R ∩ C )︸ ︷︷ ︸
covering

admissible lists

=
∑
X⊂V

(−1)|V |−|X| card (R ∩X∗)︸ ︷︷ ︸
relaxed admissible lists
using only values in X

(2.16)

It is convenient to defineN as card(R∩C ) and, for each subsetX of V , NX as card(R∩X∗).
Finally, we derive the following proposition.

Proposition 2.8: Relaxation Principle. Consider a problem P# that relates to counting
admissible lists which cover a set V . Relax the coverage constraint, and calculate, for all
X ⊂ V , the number NX of admissible lists, covering or not, using only elements of X.
Then, the number N of covering admissible lists is given by:

N
↑

# covering
(i.e. strict)

admissible lists

=
∑
X⊂V

(−1)|V |−|X|NX

↑
# admissible lists
(i.e. relaxed)

using only values in X

(2.17)

We have detailed the rationale using the setsW of withdrawn values because it is commonly
used in the literature (see e.g. Fomin and Kratsch [23] or Nederlof [59]). Here is another
way of thinking: in V ∗ the covering lists are the lists L which do not belong to any X∗

with X ( V . Indeed, the lists of X∗ are the lists that do not hit the set (V \ X). So,
the covering lists are the elements of the universe which are not in the union of X∗, X=V

excluded, and we have:

R ∩ C = R \
⋃
X(V

R ∩X∗ (2.18)

This formula becomes very intuitive when illustrated by a Venn diagram, as in Fig-
ure 2.5 p. 54. It enables to directly derive the formula (2.16) by applying the Inclusion-
Exclusion formula (2.8) p. 50.
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Counting permutations

Among covering lists, permutations are a very useful particular case. When viewed as a
list, a permutation on a set V is a list of elements, i.e. a family L = (vp ∈ V )p∈V , which
is covering (∀ v,∃ p | v = vp) and without duplicate (p 6= p′ ⇒ vp 6= vp′). Note that V
constitutes both the set of positions and values: L ∈ V V . We denote by SV the set of
permutations on V , and by Sn the set of permutations on {1, . . . , n}.

We just defined a permutation as a covering list and without duplicates, but this definition
is redundant: for a list of V V it is equivalent to be covering and without duplicates (just like
for a function from V to V , it is equivalent to be surjective and injective). As a consequence,
there is no need to consider duplicates, and a permutation is simply a covering list of V V .
Thus, a relaxed admissible permutation is an ordinary list, with no constraint other than
admissibility, which gives the relaxed admissible permutation sets very simple structures.

Figure 2.5 illustrates counting permutations of 3 elements which are the covering lists of
V 3 where V = {1, 2, 3}. The figure does not reproduce the Venn diagram of all X ⊂ V but
the Venn diagram of all X3, X ⊂ V , which has the same structure because for X1, X2 ⊂ V ,
X3

1 ⊂ X3
2 ⇐⇒ X1 ⊂ X2. The entire universe V 3 is represented by the outer square.

{}3

{1}3
111

{2}3 {3}3
222 333

{2, 3}3
233
232
223

322
323
332

{1, 2}3

221
212
211

112
121
122

{1, 3}3

113
131
133

331
313
311

{1, 2, 3}3 123
213
312

132
231
321

permut

(a) all permutations π = (π1, π2, π3)

{}3

{1}3
111

{2}3 {3}3
222 333

{2, 3}3
233
232
223

322
323
332

{1, 2}3

221
212
211

112
121
122

{1, 3}3

113
131
133

331
313
311

{1, 2, 3}3 123
213
312

132
231
321

permut

(b) permutations π such that π1 and π2 are odd

Figure 2.5: Counting of permutations via Inclusion-Exclusion

In Figure 2.5a we count all the permutations, so we take as set of relaxed (admissible) lists
R = V 3, and the number N of (admissible) permutations is given by:

N = +N{1,2,3} −N{1,2} −N{1,3} −N{2,3} +N{1} +N{2} +N{3} −N{}
= +27 −8 −8 −8 +1 +1 +1 −0 = 6

In figure 2.5b we count the permutations π such that π1 and π2 are odd, so we take as set
of relaxed admissible lists R = {(v1, v2, v3) ∈ V 3 | v1, v2 odd} = {1, 3} × {1, 3} × {1, 2, 3},
and the number N of admissible permutations is given by:

N = +N{1,2,3} −N{1,2} −N{1,3} −N{2,3} +N{1} +N{2} +N{3} −N{}
= +12 −2 −8 −2 +1 +0 +1 −0 = 2
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Of course, the special case n = 3 is only useful for demonstration purposes. In the general
case of permutations on n values, the formula transforms a counting of permutations (in n!

steps by brutal enumeration) into 2n countings on X∗ sets. So, this formula is useful when
you can efficiently count the particular elements of each set X∗. For example, if every
counting is pseudopolynomial, we obtain a moderately exponential complexity instead of
a factorial one. The challenge is to achieve this.

2.2 Application examples

The most classic example of the application of Inclusion-Exclusion is the Shortest Di-
rected Hamiltonian Path problem. Note that this problem is very close to the Asymmetric
Traveling Salesman problem, himself a direct generalization of the F |prmu, nowait|Cmax

problem, as we have seen in Example 1.5 p. 30. We also study the Interval Sequencing
1|rj , d̃j |- problem, seen in Example 1.1 p. 28, which can be considered as the prototype of
all scheduling problems for Inclusion-Exclusion.

The first example deals with list of vertices whereas the second example deals with list
of jobs, but notice how similar the solution methods for these two examples are. Both
examples are self-reducible, which implies that we can derive a dynamic programming
scheme across subsets and an Inclusion-Exclusion based algorithm.

Inclusion-Exclusion does not dictate how to count solutions of relaxed problems, and any
counting technique can be used a priori. But, as we will see in chapters 3 p. 73 and 4 p. 91, in
the case of scheduling problems, the main technique consists in counting relaxed schedules
by dynamic programming, in pseudopolynomial time and space for each relaxed problem,
even though it may be combined with other techniques, as e.g. generating series convolu-
tion.

To the best of our knowledge, the only problem whose counting of relaxed solutions admits
an alternative to dynamic programming consists in finding a Hamiltonian path in a directed
graph (with unweighted arcs). To solve this problem, Bax [5, 6] defines (the usual way) the
adjacency matrix M of a graph as follows: for two vertices u and v, Muv = 1 if (u, v) is an
arc, and 0 otherwise. Then, the number of paths of length k from u to v is the coefficient
(Mk)uv of the k-th power of M . As this method is dedicated to unweighted graphs, it is
not directly suitable for optimization problems, which are related to weighted graphs. So,
we will not develop it.

2.2.1 Shortest Directed Hamiltonian Path

The Shortest Directed Hamiltonian Path problem can be stated as follows: let G = (V,A)

be a directed graph with vertices in V and arcs in A. Consider a distance d(v, v′) ∈
N∗,∀ (v, v′) ∈ A. Set n = |V |, and d(v, v′) = +∞ if (v, v′) /∈ A. Let s 6= t ∈ V be a
starting vertex and a terminating vertex. The problem consists in finding a Hamiltonian
path from s to t, i.e. a n-vertex list (v1=s, v2, . . . , vn=t) with {v1, . . . , vn} = V , which
minimizes the distance

∑
i d(vi, vi+1). We represent an instance I of this problem as a

tuple I = (V,A, d, s, t).
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Dynamic programming across subsets

We describe the dynamic programming scheme across the subsets of V , which is the tra-
ditional algorithm by Held and Karp [35]. Let Opt[u,X] be the minimal distance from
vertex u to the terminating vertex t when X is the set of intermediate vertices in any
order. We are interested in paths from s to t, so the minimal distance we are looking for
is Opt[s, V \{s, t}]. We have:

Opt[u, ∅] = d(u, t) (2.19)

Opt[u,X] = min
v∈X

(d(u, v) + Opt[v,X \ {v}]) for X 6= ∅ (2.20)

To obtain a solution of the problem, we compute the backtrace of the dynamic programming
scheme. It is a state graph whose arcs are labeled by vertices, of the form [u,X]

v∗←− [u′, X ′].
Each time we compute a minimum in Equation (2.20), we keep track of a vertex v∗ for
which the minimum is reached, i.e. v∗ = arg minOpt. Finally, we obtain a (reversed)
critical path of the form [s, V \{s, t}] v2←− · · · vn−1←−−− [vn−1,∅], and we deduce a solution
(s, v2, . . . , vn−1, t).

Inclusion-Exclusion

The Inclusion-Exclusion method to solve the Shortest Directed Hamiltonian Path problem
(or its direct relative, the Asymmetric Traveling Salesman problem) has been described
independently by Kohn et al. [43], Karp [42], and Bax [5, 6].

As shown in section 2.1.1, in order to solve the Shortest Directed Hamiltonian Path
problem Popt, it is sufficient to solve the decision problem Pdec(I, π, ε) defined by Equa-
tion (2.1) p. 47, where I is an instance, π is a path prefix containing vertices and ε is a
threshold distance.

We now implement the Pdec decision problem, as in Definition 2.1 p. 47. Given a vertex
subset V ′ ⊂ V , a vertex u, and a threshold distance ε, we define N(u, V ′, ε) as the number
of Hamiltonian paths from u to t, whose set of intermediate vertices is V ′, whose total
distance is lower or equal to ε. Imposing a prefix amounts to subtracting the distance of
π from ε and to impose that the remaining vertices but u and t are out of the prefix. We
derive:

Pdec
(
I, (π1, . . . , πh), ε

)
⇐⇒ N

(
πh, V \ π, ε−

h−1∑
i=1

d(πi, πi+1)
)
> 0 (2.21)

The paths counted by N(u, V ′, ε) are permutations. We relax the permutation constraint,
equivalent to a coverage constraint. The set of relaxed paths R is composed of all paths
from u to t with missing or duplicate vertices (i.e. loops). Notice that taking d(v, v′) = +∞
if (v, v′) /∈ A ensures that all (vi, vi+1) are in A. We take n′ = |V ′| and we derive:

R =
{

(v1, . . . , vn′) ∈ V n′
∣∣∣ n′∑
i=0

d(vi, vi+1) 6 ε where v0 = u and vn′+1 = t
}

(2.22)
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Let NX [u, `, ε] be the number of (relaxed) paths from u to t, with ` intermediate
vertices, all in X, and with total distance at most ε. We derive from Formula (2.17) p. 53:

N(u, V ′, ε) =
∑
X⊂V ′

(−1)|V
′|−|X|NX [u, n′, ε] (2.23)

We now just have to compute NX [u, `, ε] by dynamic programming. For ` = 0 there is only
one possible path, from u to t, provided it is short enough. For ` > 0, we try all possible
vertices v in first intermediate position. The distance d(u, v) is removed from ε and we
recursively count suffixes. Once again, notice that taking d(v, v′) = +∞ if (v, v′) /∈ A

ensures that our relaxed paths are actually formed of arcs of the graph. We derive:

NX [u, 0, ε] = 1 if d(u, t) 6 ε, 0 otherwise (2.24)

NX [u, `, ε] =
∑
v∈X

d(u,v)6ε

NX [v, `−1, ε−d(u, v)] for ` > 0 (2.25)

As we can see, Formula (2.25) is derived from the same idea as the dynamic programming
formula (2.20) p. 56. However, the computation of N is in O∗(||I||) time and space,
where ||I|| is the sum of the distances. Therefore, Inclusion-Exclusion solves the problem
of the Shortest Directed Hamiltonian Path problem in O∗(2n||I||) time and O∗(||I||) i.e.
pseudopolynomial space, while dynamic programming across subsets solves it in O∗(2n)

time and O∗(2n) i.e. exponential space.

2.2.2 Interval Sequencing

We are interested in the 1|rj , d̃j |- problem, described in Example 1.1 p. 28. The set of jobs
is J = {1, . . . , n} and an instance is of the form I = (pj , rj , d̃j)j∈J . There is no objective
to minimize, which amounts to minimizing the trivial objective (γ = 0), which is regular.
So, it is sufficient to restrict ourselves to semi-active schedules, defined by the list of their
jobs in chronological order. Thus, a schedule S is a permutation S = (j1, . . . , jn) ∈ Sn.
The completion time of each job j is defined by ∀ j, Cj = max(Cj−1, rj) + pj with C0 = 0,
and a schedule S is admissible i.e. is a feasible solution when ∀ j, rj + pj 6 Cj 6 d̃j .

Figure 2.6 shows how to decompose a schedule S = (j1, . . . , jn) into a prefix π and a suffix
σ with S = π · σ. We define B as the completion time of the last job of the prefix, and B
is also a lower bound of the release times of all the jobs of the suffix. This simple notion
actually plays a great role in all scheduling problems.

︸ ︷︷ ︸
π = (j1, . . . , jh) already scheduled

︸ ︷︷ ︸
σ = (jh+1, . . . , jn) to be scheduled

Bcompletion time of jh = = release time bound for jh+1, . . . , jn

Figure 2.6: A time bound between a schedule prefix and a schedule suffix

Notice that, following Remark 2.5 p. 49, adding a job j to the prefix π by setting π′ = π ·(j)
amounts to scheduling j and shifting the bound B by setting B′ = Cj = max(B, rj) + pj .
This idea serves both for dynamic programming across subsets and for Inclusion-Exclusion.
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Dynamic programming across subsets

For a release time bound B as defined in Figure 2.6 p. 57 and for a job set X ⊂ J , we
define Opt[B,X] as the best objective γ of an admissible schedule suffix σ = (jh+1, . . . , jn)

starting at time B and formed of jobs of X, i.e. such that X = {jh+1, . . . , jn}. Recall that
a minimum taken on an empty set equals +∞ (our minimum is actually an infimum), so,
knowing that γ = 0, Opt[B,X] equals 0 if there is such a schedule and +∞ otherwise.

We have: γopt = Opt[0, J ]. The expression Opt[B,X] is defined by recurrence, so is
computed by dynamic programming: the set X = ∅ corresponds to the empty schedule
suffix, always admissible. For X 6= ∅, we try all possible jobs j in first position. Their
completion time Cj becomes the release bound of the others. We derive:

Opt[B,∅] = 0 (2.26)

Opt[B,X] = min
Cj6d̃j where

Cj=max(B,rj)+pj

Opt[Cj , X \ {j}] for X 6= ∅ (2.27)

In the context of this decision problem, one can simplify the way equations are written by
setting Exist[B,X]⇐⇒ Opt[B,X] 6= +∞⇐⇒ Opt[B,X] = 0. The 1|rj , d̃j |- problem has
a solution when Exist[0, J ] and we have:

Exist[B,∅] = True (2.28)

Exist[B,X] =
∨

Cj6d̃j where
Cj=max(B,rj)+pj

Exist[Cj , X \ {j}] for X 6= ∅ (2.29)

To obtain a solution of the problem, we compute the backtrace of the dynamic programming
scheme. It is a state graph whose arcs are labeled by jobs, of the form [B,X]

j∗←− [B′, X ′].
Each time we compute a minimum in Equation (2.27), we retain a job j∗ for which the
minimum is reached, i.e. j∗ = arg minOpt. Finally, we obtain a (reversed) critical path of
the form [0, J ]

j1←− · · · jn←− [Cjn ,∅], and we deduce a solution S = (j1, . . . , jn).

Inclusion-Exclusion

The Inclusion-Exclusion method to solve the 1|rj , d̃j |- problem has been first described by
Karp [42], and then enhanced by Nederlof [59].

As shown in section 2.1.1, in order to solve the Popt = 1|rj , d̃j |- problem, it is sufficient to
solve the decision problem Pdec(I, π, ε) defined by Equation (2.1) p. 47. Notice that we
only use the value ε = 0 here.

We now implement the Pdec decision problem, as in Definition 2.1 p. 47. Given a release
bound B and a job set J ′ ⊂ J , we count the number N(B, J ′) of schedules starting from
B and formed of jobs of J ′. As shown in Figure 2.6 p. 57, imposing a prefix amounts to
imposing that the remaining jobs are outside the prefix and have a release time bound B
equal to the completion time of the prefix. Formally:

Pdec
(
I, (π1, . . . , πh), ε

)
⇐⇒ N

(
Cπh , J \ π

)
> 0 (2.30)
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The schedules counted byN(B, J ′) are permutations. We relax the permutation constraint,
equivalent to a coverage constraint. The set of relaxed schedules R is composed of lists of
n′ = |J ′| jobs potentially containing duplicate or missing jobs. It is:

R =
{

(jk)16k6n′ | ∀ k,max(B,Cjk−1
) + pjk 6 Cjk 6 d̃jk

}
(2.31)

For a subset of jobsX ⊂ J ′, we define NX [B, `] as the number of relaxed schedules of length
` starting from B and using only jobs of X, and we derive from Formula (2.17) p. 53:

N(B, J ′) =
∑
X⊂J ′

(−1)|J
′|−|X|NX [B,n′] (2.32)

We now just have to compute NX [B, `] by dynamic programming. For ` = 0 there is only
one schedule, the empty one, which is admissible. For ` > 0, we try all possible jobs j in
the first position. Their completion Cj becomes the release bound of the jobs of the suffix
and we recursively count these suffixes. We derive:

NX [B, 0] = 1 (2.33)

NX [B, `] =
∑

j∈X, Cj6d̃j where
Cj=max(B,rj)+pj

NX [Cj , `− 1] for ` 6= 0 (2.34)

As we can see, Formula (2.34) is derived from the same idea as the dynamic programming
formula (2.27) p. 58. However, the computation of N is in O∗(||I||) time and space.
Therefore, Inclusion-Exclusion solves the 1|rj , d̃j |- problem inO∗(2n||I||) time andO∗(||I||)
space, i.e. pseudopolynomial space, while dynamic programming across subsets solves it
in O∗(2n) time and space, i.e. exponential space.

2.3 Related techniques

A lot of scheduling problems are strongly NP-hard permutation problems, for which a
brute-force resolution algorithm runs in O∗(n!) time. For these problems, Inclusion-
Exclusion can often provide an algorithm running in O∗(2n||I||O(1)) time and O∗(||I||O(1))

space, as we will show in chapter 4. We review some techniques to improve theoretical and
practical complexities.

Because they are of major importance for scheduling problems, we are particularly inter-
ested in permutation problems, where the aim is essentially to find in which order the
elements of a list must be scheduled.

We reuse all the notations of section 2.1. In particular, we consider a coverage decision
problem whose solutions are lists of elements of V with |V | = n. The set of relaxed
solutions is R and the set of covering lists is C . Then, the set of covering (i.e. strict)
solutions is S = R ∩ C .

In this section, we will frequently have to handle partial sums of binomial coefficients. We
recall some useful formulas (see e.g. Graham et al. [33]).

For α ∈ ]0, 1[, we define h(α) as the binary entropy of α:

h(α) = −α log2 α− (1−α) log2(1−α) (2.35)
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This formula extends by continuity to h(0) = h(1) = 0. We have 0 6 h(α) 6 1, h(1
2) = 1

and ∀α, h(1− α) = h(α). Moreover, for a single binomial coefficient, we have:(
n

bαnc

)
= Θ∗

(
2h(α)n

)
(2.36)

This result extends to partial sums of binomials. The close-to-middle binomial
(

n
bn/2c

)
is in

Θ∗(2n), so any sum including this term, i.e. any sum
∑b(n)

k=a(n)

(
n
k

)
with a(n) 6 n

2 6 b(n),
is also in Θ∗(2n).

We now consider a sum involving either the first or the last binomials, excluding the middle
term. We have:

bαnc∑
k=0

(
n

k

)
=

n∑
k=n−bαnc

(
n

k

)
= Θ∗

(
2h(α)n

)
for α 6

1

2
(2.37)

These formulas still hold when replacing bαnc with any expression f(n) close to αn up do
an additive constant, i.e. f(n) = αn+O(1).

2.3.1 Bonferroni inequalities

These inequalities (see e.g. Galambos and Simonelli [25]) apply on partial sums where
index subsets have a limited cardinal k. Depending on the evenness of k, they give an
upper or lower bound on the Inclusion-Exclusion sum.

Here is an intuitive presentation of the Bonferroni formula for small values of k. The
notation

∑
card(

⋂
k sets) denotes the sum of the cardinals of the intersections of k sets.

card union > 0 (k = 0)

6
∑

card(
⋂

1 set) (k = 1)

>
∑

card(
⋂

1 set)−
∑

card(
⋂

2 sets) (k = 2)

6
∑

card(
⋂

1 set)−
∑

card(
⋂

2 sets) +
∑

card(
⋂

3 sets) (k = 3)

In the general case, we have these inequalities, to be compared with Equation (2.8) p. 50:

card
( n⋃
i=1

Ai

) k even
6

>
k odd

∑
I⊂{1,...,n}
I 6=∅
|I|6k

(−1)|I|−1 card
(⋂
i∈I

Ai

)
(2.38)

Applied to a coverage problem, where R is the set of relaxed solutions, and S = R ∩ C

is the set of strict i.e. covering solutions, we have these inequalities, to be compared with
Equation (2.8) p. 50:

card (R ∩ C )︸ ︷︷ ︸
covering
solutions

k even
6

>
k odd

∑
X⊂I
|X|>|I|−k

(−1)|I|−|X| card (R ∩X∗)︸ ︷︷ ︸
relaxed solutions

using only values in X︸ ︷︷ ︸
partial Bonferroni sum Sk

(2.39)
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We define Sk as the partial Bonferroni sum, right-hand side of inequality (2.39) p. 60.

Notice that the smaller k is, the larger the sets X are. In particular, S0 is the cardinal of

the whole set of relaxed solutions, i.e. S0 = card R.

These inequalities may be used to decide whether or not there exists a strict i.e. covering

solution without computing the 2n terms of the Inclusion-Exclusion sum. Set n = |I|
and let k vary from 0 to n. If k is even and Sk60, then card(S )60 and there is no

covering solution. If k is odd and Sk>0, then card(S )>0 and there is at least one covering

solution. This is implemented in Algorithm 2.7, where Function ExactBonferroni() returns

True when there exists a covering solution. We recall that each card(R ∩X∗) is obtained

by computing NX .

Algorithm 2.7: An exact decision procedure using Bonferroni inequalities

Function ExactBonferroni():
S ← 0 // At each step, S = Sk
for k ← 1, . . . , n− 1 do

S ← S +
∑

X⊂I,|X|=n−kNX

if k even then
if S 6 0 then return False

else
if S > 0 then return True

S ← S +
∑

X⊂I,|X|=0NX // trivial, computes S ← Sn = Sn−1 +N∅
if S > 0 then return True else return False

Clearly, Algorithm 2.7 has the same worst-case time complexity as the standard algorithm

which computes the whole Inclusion-Exclusion sum. But it can compute less terms, so

there is hope for a practical improvement. It has been extensively tested on the F3||Cmax

problem discussed in chapter 4. Unfortunately, the results do not show any substantial

practical improvement compared to the standard algorithm.

We could imagine deriving an approximation scheme from Bonferroni inequalities. For

some fixed coefficient 0 < α < 1
2 , take k = 2

⌊
αn
2

⌋
+ 1, i.e. k ' αn and k odd. Compute

the Bonferroni partial sum Sk. If Sk > 0, there is a solution. If Sk 6 0, declare, perhaps

wrongly, that there is no solution. This is implemented in Algorithm 2.8 p. 62 as Function

ApproxBonferroni(). This decision procedure is pessimistic and leads to a guaranteed

correct but potentially non-optimal solution when it is used to solve a problem by self-

reduction, but it can be computed using O∗(2h(α)×n) terms, where h(α) is the binary

entropy of α.
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Algorithm 2.8: An approximate decision procedure using Bonferroni inequalities

Function ApproxBonferroni():
k ← 2

⌊
αn
2

⌋
+ 1

Compute Sk
if Sk > 0 then

return True // exact
else

return False // pessimistic

Again, this approximation scheme has been tested on the F3||Cmax problem discussed in
chapter 4. Unfortunately, the results show unbounded approximation ratios. We actually
do not know any permutation problem leading to good approximation ratios with this
approach.

To explain the two previous negative conclusions, we can see that alternating sums often
lead to numerically very unstable results. For example, the expansion of the exponential
gives e−x =

∑+∞
i=0

(−x)i

i! , but it is well known that this series converges very badly for x > 1.

Figure 2.9 compares the evolution of two partial sums as a function of k. On the left,
Figure 2.9a shows the successive partial Bonferroni sums for a small but representative
instance of the F3||Cmax problem, with n = 10 jobs. On the right, Figure 2.9b shows
successive partial sums

∑k
i=0

(−2)i

i! approaching e−2.

(a) Bonferroni partial sums (b)
∑k
i=0

(−2)i
i! ' e−2 partial sums

Figure 2.9: Comparison between Bonferroni and partial sums of a negative exponential.

As we can see, both diagrams look alike. In both cases, the alternating sign (−1)n makes
the limit of the sum very small compared to the amplitude of the oscillations, thus it is
very difficult to accurately estimate the limit without computing many terms.

There are other techniques that can potentially exploit Bonferroni inequalities, in particular
Abstract Tubes, described in section 2.3.3.
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2.3. RELATED TECHNIQUES

2.3.2 Möbius inversion

This technique (see Mazur [53], Nederlof [60]) is a way of simplifying Inclusion-Exclusion
formulas. As an introductory example, Figure 2.10 shows the Venn diagramm of 3 sets
A1, A2, A3 in a universe E. In its traditional form (on the left), the Venn diagram represents
the 23 = 8 partial intersections, which correspond to the interior of a closed curve: a square,
3 circles, 3 lenses, and a curved triangle. We can also (on the right) partition the Venn
diagram into 23 = 8 regions, which are disjoint from eachother and whose union form the
universe E. The idea of Möbius inversion is to express an Inclusion-Exclusion sum using
the regions and no longer the sets.

E
A1

A2 A3A2 ∩A3

A1∩A3A1∩A2

A1 ∩A2

∩A3

(a) Sets

Ā1 ∩ Ā2

∩ Ā3
A1 ∩ Ā2

∩ Ā3

Ā1 ∩A2

∩ Ā3

Ā1 ∩ Ā2

∩A3Ā1 ∩A2

∩A3

A1∩Ā2

∩A3

A1∩A2

∩Ā3
A1 ∩A2

∩A3

(b) Regions

Figure 2.10: A Venn Diagram composed of three sets and partitioned into regions

Consider the Venn diagram associated with the set family (A1, . . . , An) with Ai ⊂ E.
It contains (2n − 1) regions (excluding the outside of the union). Each region is the
intersection of each Ai or its complementary Āi. To each index set R ⊂ I we associate the
region ER =

⋂
i∈RAi ∩

⋂
i/∈R Āi =

⋂
i∈RAi \

⋃
i∈F Ai where F = I \R. Elements of Ai for

i ∈ R are required, elements of Ai for i ∈ F are forbidden.

Notice that some regions may be empty. Let us consider only index sets R corresponding
to non-empty regions ER, and let us enumerate them in decreasing inclusion order: we
get a suite R1 . . . RK with K < 2n and ∀ i, j, Ri ⊃ Rj ⇒ i 6 j. We define the ζ-matrix
Z of size K by taking ∀ i, j 6 K,Zij = 1 if Ri ⊃ Rj , 0 otherwise. This matrix has a
determinant equal to 1, it is invertible and its inverse Z−1 has integer coefficients. Let us
state (Möbius inversion):

(α1
···
αK

)
= Z−1

(
1
···
1

)
, with values αk being potentially exponential

in n. Then, we have:

card
⋃
i∈I

Ai =

K∑
k=1

αk card
⋂
i∈Rk

Ai. (2.40)

Goaoc et al. [31] described further enhancements of this method.

Formula (2.40) is computationally interesting only if the number of non-empty regions of
the Venn diagram is exponentially smaller than 2n. We did statistics on the F3||Cmax

problem discussed in chapter 4. On typical instances, the proportion of non-empty regions
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is close to 50 %, i.e. the number of non-empty regions is close to 50 % × 2n, so in this
case this technique leads to no improvement. We don’t know any permutation problem for
which this technique significantly improves the worst-case time complexity bound.

Venn diagram regions and branching

Venn diagram regions are useful, not only to derive simplified Inclusion-Exclusion formulas,
but also to derive branching schemes. This technique has been introduced by Bax [6] and
considerably developed by Nederlof et al. [62].

The idea is to consider index sets R ⊂ I of required properties and index sets F ⊂ I
of forbidden properties. Together, they correspond to the set

⋂
i∈RAi \

⋃
i∈F Ai. The

regions in the Venn diagram correspond to the case where F = I \R, but we can consider
any couple (R,F ) such that R ∩ F = ∅ without imposing R ∪ F = I. The index set
X = I \ (R ∪ F ) corresponds to optional properties: neither required, nor forbidden. This
way, one can deduce recurrence formulas usable in a branch-and-reduce algorithm, whose
complexity may be analyzed by measure-and-conquer (see e.g. Fomin and Kratsch [23]).

This technique fruitfully applies to numerous graph algorithms, in which solutions are ex-
pressed as sets and data order in solutions has no importance. But it seems difficult to
manage required properties inside a polynomial counting scheme for a permutation prob-
lem, as it is impossible to impose an ordering constraint between elements (this ordering
is indeed the result to compute).

2.3.3 Abstract Tubes

We refer to Dohmen [21], Naiman and Wynn [56], Narushima [57, 58]. The theory of
abstract tubes aims at producing simplified but exact Inclusion-Exclusion formulas. It
relies on algebraic topology, where a multigraph is identified with a solid in a multidimen-
sional space. According to the algebraic topology notations, the solid is called a concrete
simplicial complex and the multigraph is called an abstract simplicial complex.

We first recall the definition of a multigraph, which is a generalization of a graph. A
multigraph is built upon a set of indices I. Each singleton {i} for i ∈ I is identified to a
vertex, each pair of indices {i 6= i′} is identified to an edge, and in general, each index set
F ⊂ I is identified to a generalized edge, called a face. So, formally, a multigraph is a set
of faces F ⊂ P(I). Moreover, in a graph, the extremities of all edges must be vertices.
The same way, the set of faces F of a multigraph is supposed to be stable by inclusion: if
F ′ ⊂ F and F ∈ F then F ′ ∈ F .

To establish a correspondence between an abstract simplicial complex, i.e. a multigraph,
and a concrete simplicial complex, i.e. a solid, we define a multidimensional affine space
S and we assign a point Pi ∈ S to each index i ∈ I. Then, each abstract face F ⊂
I corresponds to the convex hull of the points {Pi, i ∈ F}, called a simplex, and the
multigraph corresponds to the solid formed by the union of simplices, hence the term of
simplicial complex. When the concrete solid associated with the abstract multigraph is
connected and without hole, the abstract multigraph is said to be contractible.

We now consider a family (Ai)i∈I of subsets of a universe E, and an abstract simplicial
complex, i.e. a set of faces F ⊂P(I), stable by inclusion, whose set of vertices is precisely
derived from I, i.e. {i | {i} ∈ F} = I.
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For each element x ∈ E of the universe, we define the subcomplex Fx formed by the faces
i.e. index sets F corresponding to partial intersections of Ai which contain x. Formally:

Fx = {F ∈ F | x ∈
⋂
i∈F

Ai} (2.41)

Then, by definition, F is said to be an abstract tube (with respect to (Ai)i∈I ⊂ E) when
each Fx for x ∈ E is contractible.

The main interest of abstract tubes is due to this relation: if F is an abstract tube with
respect to (Ai)i∈I ⊂ E, then the following equality holds:

card
(⋃
i∈I

Ai

)
=
∑
F∈F

(−1)|F |−1 card
(⋂
i∈F

Ai

)
(2.42)

As a consequence, card
(⋃

i∈I Ai
)
can be computed as a sum with |F | terms instead of 2n.

Notice that Bonferroni inequalities also hold in an abstract tube. The abstract simplicial
complex F = P(I) is a trivial abstract tube for which formula (2.42) reduces to the usual
Inclusion-Exclusion sum. In general, formula (2.42) is interesting only in the case of an
abstract tube with a small number of faces.

The most spectacular result is due to Naiman and Wynn [56], who show how to compute
the volume of the union of balls in a d-dimension Euclidean space in O

(∑d
k=1

(
n
k

))
terms.

This means O(nd) terms if d is independent of n, or O∗(2h(α)n) terms if d ∼ αn, where
0 < α < 1 and h(α) is the binary entropy of α. This result is to be compared with the
O(2n) terms of the traditional Inclusion-Exclusion formula.

Naiman and Wynn use an abstract tube based on the Delaunay triangulation. Figure 2.11
shows their example for 5 disks A,B,C,D,E on a plane (d=2). The surface measure
(µ) replaces the cardinal (card). They achieve a 17-term sum whereas there are 25=32
non-empty partial intersections.

•A •B

•C•D

•E

Voronoï diagram
Delaunay complex

• 5 vertices: {A}, {B}, {C}, {D}, {E}.

• 8 edges: {AB}, {BC}, {CD}, {DA},
{AE}, {BE}, {CE}, {DE}.

• 4 faces: {ABE}, {BCE}, {CDE}, {DAE}.

µ(A∪B∪C∪D∪E)
= µ(A) + µ(B) + µ(C) + µ(D) + µ(E)
− µ(A∩B)− µ(B∩C)− µ(C∩D)− µ(D∩A)
− µ(A∩E)− µ(B∩E)− µ(C∩E)− µ(D∩E)
+ µ(ABE) + µ(BCE) + µ(CDE) + µ(DAE)

Figure 2.11: Surface of a union of disks using a Voronoï/Delaunay based abstract tube

We can use a discrete measure µ concentrated at some points, so that the measure of a
disk is the number of points inside it instead of its surface. But an Euclidean distance is
derived from a norm with a strict form: from a computational point of view, we must have
||(x1, . . . , xd)||2 =

∑
i(
∑

kMikxk)
2 where M is an invertible matrix. So, unfortunately,

relating this result to a scheduling or operational research problem turns to be very difficult.
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The most promising abstract tubes are produced by Dohmen’s theorems [21, pp. 28, 34].
Unfortunately, they are valid only under the assumption that, for many index subsets R,⋂
i∈RAi ⊂

⋃
i/∈RAi ⇐⇒

⋂
i∈RAi ∩

⋂
i/∈R Āi = ∅ ⇐⇒ ER = ∅, where ER is the Venn

diagram region defined in section 2.3.2. So, these theorems suppose that many Venn
diagram regions are empty. Hence, we may expect abstract tubes based formulas to be not
significantly shorter than Möbius inversion based ones.

To the best of our knowledge, although the theory of abstract tubes is often perceived as
being promising, there is no concrete application to operational research in the literature.

2.3.4 Index space trimming

This technique consists in cleverly choosing enumerations such that index sets X outside
some well defined and easily iterable index set collection are mathematically guaranteed
to produce null terms. For example, if we exhibit two subsets X1 ⊂ X2 ⊂ I such that
for all X ⊂ I, card

⋂
i∈X Ai = 0 unless X1 ⊂ X ⊂ X2, then we derive a formula with

2|X2|−|X1| terms. This way, Nederlof [61, p. 881] counts the number of perfect matchings in
a n-vertex graph in O∗

(
2

1
2

(h( 1
3

)+1)n
)
' O∗

(
20.9591n

)
' O∗(1.945n) time instead of O∗(2n).

Once again, it happens that the technique we are going to expose cannot apply to permu-
tation problems, because there is a need to impose an order in the relaxed lists, whereas in
a permutation problem this order is the result we are looking for. But it’s worth describing
the algorithm by Nederlof, not only because it illustrates the index trimming technique,
but also because it is an anthology of counting techniques around Inclusion-Exclusion.

We consider an undirected graph G = (V,E) with E ⊂P2(V ), where P2 denotes the set
of parts with exactly 2 elements. We also define, for V ′ ⊂ V , G[V ′] as the subgraph of G
composed of the vertices of V ′ and the corresponding edges, and for a vertex v, dG(v) as
the degree of v in G (0 if v is not a vertex of G). For A ⊂ V and B ⊂ V , an A−B edge is
an edge whose endpoint is in A and the other in B.

The problem is stated as follows: count the number of perfect matchings of G. A perfect
matching M ⊂ E is a set of edges which covers all vertices, and in which 2 distinct edges
do not have a common vertex. In other words, if |V | = n, a perfect matching M of G is a
partition of V of the form V = {u1, v1} ] . . . ] {up, vp}, with ∀ i, {ui, vi} ∈ E, where ] is
the union of disjoint sets. Obviously this implies that n is even, with n = 2p.

To determine the number nM of perfect matches, the straightforward application of the
Inclusion-Exclusion formula consists in counting in (V 2)p the covering lists of the form
((u1, v1), . . . (up, vp)) with ∀ i, {ui, vi} ∈ E. A relaxed list is made up of p independent
pairs (ui, vi). There are p! possible orders for pairs and 2 orders per pair. So, applying
Formula (2.16) p. 53 without trying to simplify it, we obtain:

nM =
1

p!2p

∑
X⊂V

(−1)2p−|X|
(

card{(u, v) ∈ X2 | {u, v} ∈ E}︸ ︷︷ ︸
2 card(E ∩P2(X))

)p
(2.43)

This formula can be computed in O∗(22p) = O∗(2n) steps.

Here is now the method used by Nederlof to get a better complexity: let us arbitrarily
partition V into 2 subsets of same size: V = A ] B with |A| = |B| = p, and consider a
perfect matching M , as in Figure 2.12 p. 67. We define the “left bridge side” L(M) as the
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set of extremities in A of the edges A−B, i.e. L(M) = {a | {a, b} ∈ M ∧ b ∈ B}. We
define `(M) as the number of edges A−B, q(M) as the number of edges A−A (equal to the
number of edges B−B), and k(M) as the number of edges that hit A, i.e. the edges A−A
or A−B. We get: `(M) = |L(M)| 6 p, q(M) = p+`(M)

2 , k(M) = q(M) + `(M) = p+`(M)
2 ,

p and `(M) have same parity. Whenever there is no ambiguity we will write `, q, k instead
of `(M), q(M), k(M).

A B

L

A−A A−B B−B

Figure 2.12: Edges of a perfect matching with set vertex partitioned into 2 halves

The method by Nederlof consists in computing, ` by `, the number n` of matchings M
such that `(M) = `, and adding them. We can compute n` by two auxiliary algorithms:
one in O∗

((
p
`

)
2p
)
and one in O∗

((
p
k

)
2p
)
. We choose the best algorithm for each `, the worst

case is when `(M) ' k(M) ' p
3 , which finally gives, according to Formula (2.36) p. 60, a

complexity in O∗
(( p
p/3

)
2p
)

= O∗
(
2(h( 1

3
)+1)p

)
= O∗

(
2

1
2

(h( 1
3

)+1)n
)
.

Computation of n` in O∗
((p

`

)
2p
)
time

We express n` as n` =
∑
|L|=` nL and we calculate each nL. For this computation, we

present a different (and simplified) version of the one by Nederlof. As shown in Figure 2.12,
a perfect matching M with left bridge side L is the concatenation of a perfect matching
MA of G[A \ L] with a perfect matching MB of G[L ∪B] of which each vertex of L is the
extremity of a unique edge. We define nA as the number of possible MA and nB as the
number of possibleMB. We therefore have nL = nA×nB, and nA is computed in O∗(2p−`)
by Formula (2.43) p. 66.

It remains to compute nB. We index the elements of L by writing L = {L1, . . . , L`}. Com-
puting nB amounts to counting the covering lists in B of the form ((x1, . . . , x`), (u1, v1), . . . ,
(uq, vq)), where each {Li, xi} and each {uj , vj} is an edge. Taking into account the possible
orders for the q pairs, we have:

nB =
1

q!2q

∑
X⊂B

(−1)p−|X|
∏̀
i=1

card

{
x ∈ X |

{Li, x} ∈ E}

}
︸ ︷︷ ︸

dG[L∪X](Li)

×
(

2 card(E ∩P2(X))
)q

(2.44)

This formula is computed in O∗(2p), so nL = nA × nB is computed in O∗(2p). Finally,
n` =

∑
|L|=` nL is a sum of

(
p
`

)
terms, and it is computed in O∗(

(
p
`

)
2p).

Computation of n` in O∗
((p

k

)
2p
)
time

In this computation the order of the elements plays an important role. We order the
elements of A arbitrarily by writing A = a1 < . . . < ap. We represent a perfect matching
M by a list containing on the left the edges {xi, yi} hitting A, therefore of the form A−A
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and A−B, and on the right the edges {ui, vi} of the form B−B. In addition, for the
purposes of the algorithm, we impose x1 < . . . < xk. We therefore want to count the lists
covering V of the form ((x1, y1), . . . , (xk, yk), (u1, v1), . . . , (uq, vq)), with xi ∈ A, yi ∈ A∪B,
ui ∈ B, yi ∈ B, {xi, yi} ∈ E, {uj , vj} ∈ E. We recognize the concatenation of (xi, yi) and
(uj , vj). By taking into account the two possible orders per couple for the 2q edges A−A
and B−B and the q! possible enumeration orders of edges B−B:

n` =
1

q!22q

∑
X⊂V
|X∩A|>k

(−1)2p−|X| NX ×
(

2 card(E ∩P2(X))
)q

(2.45)

where NX is defined as the number of lists of the form ((x1, y1), . . . , (xk, yk)) with ∀ i,
yi ∈ X, xi ∈ A ∩ X, {xi, yi} ∈ E and x1 < . . . < xk. This is where we use the index
trimming technique: the property x1 < . . . < xk is unfeasible if A∩X does not contain at
least k elements. By decomposing X = (X∩A) ] (X∩B), and knowing that k > p

2 , there
are, following Formula (2.36) p. 60,

∑
k′>k

(
p
k′

)
= O∗

((
p
k

))
possibilities for (X∩A) and 2p

possibilities for (X∩B), so O∗
((
p
k

)
2p
)
terms to compute in the sum.

It remains to show how to compute NX in polynomial time. We have NX = nX [p, k] where
nX [r,m] is the number of lists with m pairs of the form ((x1, y1), . . . , (xm, ym)) with ∀ i,
yi ∈ X, xi ∈ A ∩ X, {xi, yi} ∈ E, x1 < . . . < xm, and in addition xm 6 ar. And nX is
calculated by dynamic programming in at most pk = O∗(1) states, as described below.

If m > r, we cannot have xm 6 ar, so no sequence is admissible and nX [r,m] = 0. If
m 6 0, there is a unique empty sequence, so nX [r, 0] = 1. Otherwise, consider the last
element xm, which is also the biggest. Let xm < ar, and then xm 6 ar−1, there are
nX [r− 1,m] possibilities for ((x1, y1), . . . , (xm, ym)). Let xm = ar, and then um−1 6 ar−1,
there are nX [r − 1,m− 1] possibilities for ((x1, y1), . . . , (xm−1, ym−1)) to be multiplied by
the number of pairs {xm, ym} = {ar, ym} ∈ E which equals dG[X](ar). Finally, we get:

nX [r,m] = 0 if m > r (2.46)
nX [r,m] = 1 if m 6 0 (2.47)
nX [r,m] = nX [r − 1,m] + nX [r − 1,m− 1]× dG[X](ar) otherwise (2.48)

This completes the description of the algorithm by Nederlof.

2.3.5 Zero sweeping

As we saw in the examples of section 2.2, we frequently compute an Inclusion-Exclusion
sum whose terms are themselves calculated by dynamic programming. While the index
trimming technique consists in detecting in advance, by mathematical analysis, that certain
terms of a sum of Inclusion-Exclusion are necessarily zero, the zero sweeping technique
consists in detecting null terms on the fly and sweeping them out. It is in fact a question
of detecting as soon as possible that a whole class of terms is zero and to avoid calculating
them.

The Zero Sweeping Technique mixes two approaches: on the one hand avoid brute-force
enumeration of the 2n subsets used as summation index; on the other hand exploit the
fact that the backtrace graphs of dynamic programming are nested within each other to
compute them incrementally. While the former technique takes up the ideas of Bax and
Nederlof, the latter technique does not appear, to the best of our knowledge, anywhere
explicitly in the literature, so this is one of our contributions.
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A recursion scheme for Inclusion-Exclusion sums

Following Equations (2.16) p. 53 and (2.17) p. 53, given a set V of elementary values and
a set R of relaxed admissible lists, the aim is to compute the Inclusion-Exclusion sum
S =

∑
X⊂V (−1)|V |−|X|NX where NX = card(R ∩ X∗). So, NX is a non-negative and

non-decreasing function of X. Thus, if NX = 0, then ∀X ′ ( X,NX′ = 0. These numbers
do not have to be computed, which saves up to (2|X|−1) computations.

In the spirit of Bax and Nederlof branching studied in section 2.3.2, but without considering
any set of required jobs, which are hard to count with permutation problems, we now
define job intervals Vk = {1 . . . k}, and the partial Inclusion-Exclusion sum P (k, Y ), for
each k 6 n and Y such that Vk ∩ Y = ∅:

P (k, Y ) =
∑

Y ⊂ X ⊂ Vk∪Y
(−1)|Vk∪Y |−|X|NX (2.49)

We have S = P (n,∅), and we derive the following recurrence equations:

P (0, Y ) = NY (2.50)

P (k, Y ) = P (k−1, Y ∪ {k})− P (k−1, Y ) for k > 0 (2.51)

We introduce (Algorithm 2.13) an extra parameter N with the invariant that N = NVk∪Y .
Notice that any NX for Y ⊂ X ⊂ Vk∪Y and thus P (k, Y ) is null as soon as NVk∪Y is null.
Finally, we have S = P (n, {}, NV ).

Algorithm 2.13: Recursive computation of an Inclusion-Exclusion sum

Function P(k, Y , N): // invariants: Vk ∩ Y = ∅, N = NVk∪Y
if N = 0 then

return 0 // saves 2k − 1 computations
else if k = 0 then

return N

else
return P (k−1, Y ∪ {k}, N)− P (k−1, Y,NVk−1∪Y )

Incremental dynamic programming state space reduction

The previous technique can be combined with incremental reduction of the dynamic pro-
gramming state space. We denote by s a dynamic programming state. The initial (root)
state r corresponds to NX = NX [r], and recursive equations follow this scheme, in which
state′ and condition are to be replaced according to the problem to be solved:

NX [s] = 1 if s is a final state (2.52)

NX [s] =
∑
v∈X | condition(s,v)

NX [state′(s, v)] otherwise (2.53)

Let us define GX as the backtrace of the dynamic programming scheme, i.e. as the graph
of recursive calls of function NX . It is an n-ary tree with node sharing. Nodes are states,
the root of the tree is r, and links are labeled by values v ∈ V : we denote them by s v←− s′
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and they are derived from Equation (2.53) p. 69. Notice that, given GX and v ∈ X, it is
easy to derive GX\{v}: withdraw links s v←− s′ and keep states which can reach root. We
denote by G \ {v} the graph obtained by removing v, so GX \ {v} = GX\{v}.

To compute NX , we can proceed in two phases: first build GX , and then apply dynamic
programming itself by traversal of GX (with caching): NX [s] =

∑
s′| s→s′ NX [s′]. During

this second phase, we can safely remove states s such that NX [s] = 0 and derive a simplified
but correct graph G′X . Notice that the simplification benefits to the (2|X|−1) computations
of all NX′⊂X since ∀ s,NX [s]=0 =⇒ NX′ [s]=0, and G′X′ ⊂ G′X .

We call dynprog the function which returns the simplified graph and the result of dynamic
programming, i.e. dynprog(GX) computes the couple (G′X , NX). We adapt the function
P in Algorithm 2.14, and, as a result, the number S of covering admissible lists is given
by S = P (n, {}, dynprog(GV )).

Algorithm 2.14: Inclusion-Exclusion sum with incremental dynamic programming state
space reduction

Function P(k, Y , (G′, N)): // invariants: Vk∩Y=∅, G′=G′Vk∪Y , N=NVk∪Y
if N = 0 then

return 0 // saves 2k − 1 computations
else if k = 0 then

return N

else
return P (k−1, Y ∪ {k}, (G′, N))− P (k−1, Y, dynprog(G′ \ {k}))

// dynprog withdraws many states

This technique multiplies memory consumption by n, but it can improve the actual running
time and it cannot degrade the worst-case time complexity bound. From a practical point of
view, it has been tested on the F3||Cmax problem, discussed in chapter 4, whose worst-case
time complexity bound is in O∗(2n||I||). The results show a significant speed improvement
by a constant factor due to incremental dynamic programming, but unfortunately they
show no improvement in the number of terms of the Inclusion-Exclusion sum, leading to
the same worst-case complexity. We do not know any permutation problem for which it is
improved.

2.4 Conclusions

In this chapter, we described the principles of Inclusion-Exclusion, and we compared this
technique with dynamic programming across subsets. Both these techniques exploit the
same idea: the self-reducibility of a problem. Starting from the same recurrence equations
describing the effect of appending an element to a prefix, we can derive both a dynamic
programming scheme across subsets and an Inclusion-Exclusion process. But Inclusion-
Exclusion has a pseudopolynomial worst-case space complexity. From a theoretical point
of view, this is a major improvement over dynamic programming across subsets, which has
an exponential worst-case space complexity.
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Using dynamic programming across subsets, Jansen et al. [40] showed that a wide class of
scheduling problems with n jobs can be solved in O∗(cn||I||O(1)) time and O∗(cn||I||O(1))
space, for some constant c. By combining Inclusion-Exclusion and dynamic programming
on relaxed schedules, we can solve several of these problems in O∗(2n||I||O(1)) time and
O∗(||I||O(1)) space, notably parallel machine problems in Chapter 3 and permutation flow-
shop problems in Chapter 4.

In the context of permutation problems, where the aim is essentially to determine in
which order elements have to be placed, we reviewed in the literature several techniques to
accelerate Inclusion-Exclusion: Bonferroni inequalities, Möbius inversion, Abstract Tubes,
and Index space trimming. We also contributed to a new one, called Zero Sweeping.

From a theoretical point of view, in the usual case where each counting of relaxed solutions
has a pseudopolynomial time complexity. the standard application of Inclusion-Exclusion
achieves a proven worst-case time complexity in O∗(2n||I||O(1)), with an exponential grow-
ing rate of 2, It seems rather difficult to improve this growing rate. All improvements
introduced by Nederlof [61] exploit ordering constraints incompatible with permutation
problems.

From a practical point of view, the standard application of Inclusion-Exclusion is a quite
brute-force method requiring computation of an exponential number of terms. The tech-
niques we reviewed do not exponentially improve the practical computation time. In
Chapter 5 we attempt another approach: use an Inclusion-Exclusion based Lagrangian
relaxation.

Contributions

Beyond presenting the Inclusion-Exclusion approach, we have reviewed and experimented
techniques described in the literature to accelerate Inclusion-Exclusion computations.
Among these techniques, we have two original contributions:

• Exploit Bonferroni inequalities to derive an approximation scheme.

• Save calculations by exploiting the fact that, during the computation of the terms of
the sum of Inclusion-Exclusion, dynamic programming backtrace graphs are nested
inside each other.

These studies produced negative results, which explains why they have not been published.
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Chapter 3

Parallel machine scheduling

Topics

• We deal with unrelated parallel machine scheduling problems in presence of job
release dates and deadlines, to minimize general regular maximum and sum objective
functions.

• Using Inclusion-Exclusion, we provide a generic algorithm for solving these problems,
while running with moderate exponential-time and pseudopolynomial-space worst-
case complexities.

• We emphasize the importance of reducing a relaxed problem withm parallel machines
to m independent single-machine relaxed problems, in order to reduce complexities.

• This reduction is quite classical for a maximum-type objective, but more elaborate
for a sum-type objective, requiring to use generating series and convolution.

• We also emphasize the importance of adapting dynamic programming schemes to
cope with large cardinals involved in Inclusion-Exclusion, in order to reduce com-
plexities.

In this chapter we are interested in scheduling a set of jobs on unrelated parallel machines in
the presence of job release dates and deadlines, while minimizing general regular maximum
or total cost objective functions. Using Graham’s notations, these problems are denoted
by R|rij , d̃ij |fmax or R|rij , d̃ij |

∑
fij . They have been described in section 1.1.1 but we

hereafter recall the precise notations we will use throughout this chapter.

In the R|rij , d̃ij |fmax and R|rij , d̃ij |
∑
fij problems, there are n jobs to be scheduled on

m unrelated machines, i.e. machines with different features. Each job can be processed
by any machine, but each machine can process only one job at a time. When scheduled
on machine i, job j has a processing time pij , cannot start before its release time rij ,
cannot complete after its deadline d̃ij , and is associated with an individual cost function
fij . The individual cost functions fij that we consider are regular, i.e. non-decreasing
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with respect to the completion time they take as argument. For any given schedule S,

we define Cj(S) as the completion time of j and Ij(S) as the machine assigned to j in

schedule S. Then, the objective function is defined as γ(S) = max16j6n
(
fIj(S),j(Cj(S))

)
or

γ(S) =
∑

16j6n

(
fIj(S),j(Cj(S))

)
. The aim is to find an optimal solution which minimizes

the objective function γ(S). Whenever there is no ambiguity we will drop off the mention

to S in the notations.

We define J = {1, . . . , n} as the set of jobs to be scheduled. An instance I of the

R|rij , d̃ij |fmax or R|rij , d̃ij |
∑
fij problem is of the form I = (pij , rij , d̃ij , fij)16i6m, j∈J .

While particular cases of the R|rij , d̃ij |fmax and R|rij , d̃ij |
∑
fij problems have been ex-

tensively studied, as reviewed in section 1.3, few attempts have been done to cope with

the general case. Fomin and Kratsch [23] describe an algorithm for the single machine

problems 1||fmax and 1||
∑
fj with an O∗(2n) time and space complexity. Lenté et al.

[50] describe an algorithm for the parallel machine problems P ||fmax and P ||
∑
fj with

an O∗(3n) time complexity and an O∗(2n) space complexity. Jansen et al. [40] describe a

very general algorithm class, with an O∗(2O(n)||I||O(1)) = O∗(cn||I||O(1)) time and space

complexity for some c.

Besides, under the Exponential Time Hypothesis introduced by Impagliazzo and Paturi

[38], Jansen et al. [40] showed that the two sub-problems denoted by P2||Cmax and

P ||
∑
wjCj do not have sub-exponential algorithms, thus justifying the design of exact

exponential algorithms, including Inclusion-Exclusion based ones, for the R|rij , d̃ij |fmax

and R|rij , d̃ij |
∑
fij problems.

Our main contribution is to provide a generic algorithm to minimize γ = fmax and

γ =
∑
fij objective functions, while running with moderate exponential-time and

pseudopolynomial-space worst-case complexities. Let γopt be the optimum objective value,

for any instance I. Then, our algorithm solves the R|rij , d̃ij |fmax problem in O∗(2n||I||)
time and O∗(||I||) space, and the R|rij , d̃ij |

∑
fij problem in O∗(2n||I||γopt) time and

O∗(||I||γopt) space.

The algorithm we describe for the R|rij , d̃ij |fmax problem follows up but generalizes Karp’s

ideas [42]. Actually, as developed in Remark 3.3 p. 82, specialization of our algorithm to

the P ||Cmax problem and the 1|rj , d̃j |- problem (1|rj , d̃j |fmax with the trivial cost fj = 0)

leads to a close but enhanced version of Karp’s one. In his paper, Karp considers that

operations on cardinals take constant time, which seems optimistic because cardinals can

be rather large. If we consider that arithmetic operations take quasi-linear time with

respect to their result size in bits, computing on cardinals induces a hidden complexity of

O∗(||I||). Using an equivalent yet more precise counting scheme, we reduce this hidden

complexity to O∗(1).
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3.1. PRINCIPLES

In section 3.1, we describe how to apply the Inclusion-Exclusion principle to unrelated
parallel machine scheduling problems, and how to transform a relaxed problem with m

parallel machines into m independent single-machine relaxed problems. These principles
are illustrated through the fundamental example of the P ||Cmax problem.

In sections 3.2 p. 80 and 3.3 p. 83 we apply these principles to the R|rij , d̃ij |fmax and
R|rij , d̃ij |

∑
fij problems. As we will see in this chapter, but also in chapter 4, we can

distinguish two radically different phases in the solution of the scheduling problems we
consider: the easiest phase, where one applies almost mechanically the Inclusion-Exclusion
method by relaxing the problem and counting the relaxed schedules; and the most in-
teresting phase, where the method is adapted to the specificities of the problem. About
the specificities of the problems we consider, solving the generic R|rij , d̃ij |fmax problem
is a direct extension of solving the particular P ||Cmax problem, but solving the generic
R|rij , d̃ij |

∑
fij problem requires introducing generating series and convolution.

3.1 Principles

In this chapter we consider a large class of parallel machine problems whose objectives are
regular. As we have seen in section 1.1.5, semi-active schedules form a dominant set, and it
is possible to represent them unambiguously by a list of jobs (jik)i,k indexed by machines i
and by chronological order k.

Before we solve the R|rij , d̃ij |
∑
fij and R|rij , d̃ij |fmax problems, we have to tackle an

issue: due to the presence of deadlines, it may happen that there is no solution. To
determine whether or not there exists a solution, we remove the costs and replace them
with the trivial, null costs, i.e. we take as objective function γ = 0 = maxj 0 =

∑
j 0.

So, we consider the fake optimization problem P0
opt = R|rij , d̃ij |-, which has the same

set of admissible schedules as the R|rij , d̃ij |
∑
fij and R|rij , d̃ij |fmax problems. As we

saw in section 2.1.1, an optimization problem reduces to a decision problem. To the fake
optimization problem P0

opt is associated a decision problem P0
dec(I, ε), which we will solve

in section 3.2 or 3.3 p. 83. Then, R|rij , d̃ij |
∑
fij and R|rij , d̃ij |fmax have a solution if and

only if P0
opt has a solution, if and only if P0

dec(I, 0) is true.

As noted in Remark 2.5 p. 49, the equations are simplified if one demonstrates that the
problem is self-reducible. That is what we will do in section 3.1.1. Then, in section 3.1.2,
we study as a fundamental example the P ||Cmax problem consisting in minimizing the
makespan. Notice that it is equivalent to the Bin Packing problem, as we have seen
in Example 1.6 p. 31. This fundamental example is very important for us, because it
illustrates a difficulty: the direct relaxation of the coverage constraint leads to a suboptimal
complexity. Karp [42] used a more subtle relaxation enabling to derive a much better
complexity.
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3.1.1 Self reducibility

We define the concatenation of two schedules as the concatenation of their job lists machine

by machine. Thus, for a prefix π and a suffix σ representing schedules, we have:(π 1 1, . . . , π 1h1 )
...

(πm1, . . . , πmhm)


︸ ︷︷ ︸

π

·

(σ 1 1, . . . , σ 1 `1 )
...

(σm1, . . . , σm`m)


︸ ︷︷ ︸

σ

=

 (π 1 1, . . . , π 1h1 , σ 1 1, . . . , σ 1 `1 )
...

(πm1, . . . , πmhm , σm1, . . . , σm`m)

 (3.1)

Figure 3.1 shows how to make a parallel machine scheduling problem self-reducible: we

consider, machine by machine, the last jobs of the prefix, which form what Jansen et al.

[40] call the outline. The outline is therefore the vector
(π 1h1

. . .
πmhm

)
. We then define ~B as the

vector formed by the completion times of the outline, which are also lower bounds on the

starting times of all the jobs of the suffix.

prefix with outline suffix~B

~B =

Cπ 1h1

. . .
Cπmhm



Figure 3.1: Self reducibility of a three parallel machine scheduling problem

From now on we will call ~B a “release bound front”. A parallel machine scheduling problem

is therefore self-reducible as soon as it takes into account release dates rij which depend

on the job j but also on the machine i. Notice that taking ~B into account merely consists

in replacing rj with max(Bi, rj).

The letter ~B has been chosen because it fits well with the vocabulary used in its definition:

it is a Border or Barrier between the prefix and the suffix: each Bi is a lower Bound on

the release dates of all suffix operations on machine i and machines are Busy Before ~B.

We need an upper bound, say Bmax, for the components of all possible release bound fronts.

Since a release bound front is also a completion time front, we just have to take an upper

bound from the makespan of any schedule (i.e. ∀S : schedule, Cmax(S) 6 Bmax). So, we

define Bmax by this formula, corresponding to the worst case where the first job is the one

with the longest release time:

Bmax = max
i

(
max
j
rij +

∑
j

pij

)
(3.2)

Notice that Bmax = O∗(||I||). This will be useful for bounding the number of states of

dynamic programming schemes.
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To solve the optimization problem, i.e. to compute an explicit optimal solution, we propose
a straightforward adaptation of Algorithm 2.3 p. 48. We denote by (i : j) the schedule
containing a single job j on machine i, i.e. the list of job lists containing, at position i the
list (j) with the single job j, and empty lists elsewhere. We also denote by () the empty
prefix, actually the list of empty job lists. Using these notations, Algorithm 3.2 shows the
adapted algorithm, using function OptimumObjective implemented by Algorithm 2.2 p. 48
to compute the optimal objective value γopt:

Algorithm 3.2: Computation of an optimal schedule on parallel machines

Function OptimalSolution(I):
γopt ← OptimumObjective(I)
π ← ()
repeat n times

find i ∈ {1, . . . ,m}, j /∈ π such that Pdec(I, π · (i : j), γopt)
π ← π · (i : j)

return π

3.1.2 Makespan minimization on identical machines

In this section we focus on the P ||Cmax problem, equivalent to the Bin Packing problem
as seen in Example 1.6 p. 31. Machines are identical, there are neither release times nor
deadlines, and the objective to minimize is the makespan.

As shown in section 2.1.1, in order to solve the Popt = P ||Cmax problem, it is suffi-
cient to solve, for each schedule prefix π and threshold makespan ε, the decision problem
Pdec(I, π, ε) defined by Equation (2.1) p. 47. To implement this decision problem, we count
the number N( ~B, J ′, ε) of admissible schedules formed of jobs of J ′, starting from release
bound front ~B and with makespan at most ε. As shown in Figure 3.1 p. 76, imposing a
prefix amounts to imposing that the remaining jobs are outside the prefix and have release
time bounds Bi equal to the completion times of the prefix on each machine. We derive:

Pdec
(
I,

(
(π 1 1, . . . , π 1h1

)
. . .

(πm1, . . . , πmhm )

)
, ε

)
⇐⇒ N

((
Cπ 1h1
. . .

Cπmhm

)
, J \ π, ε

)
> 0 (3.3)

We now compare two ways of applying the Inclusion-Exclusion formula to compute
N( ~B, J ′, ε).

Inclusion-Exclusion: a first attempt

The (strict) schedules we consider are two-dimensional job lists covering the job set J ′ and
with makespan at most ε. We relax the coverage constraint. The set of admissible relaxed
schedules R is composed of job lists with makespan at most ε, containing potentially
duplicate or missing jobs, but with exactly n′ = |J ′| jobs. As we consider two dimensional
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lists, this means that the sum of the numbers of jobs `i per machine is equal to n′. We

derive:

R =
{

(jik)16i6m,16k6`i

∣∣∣ m∑
i=1

`i = n′ ∧ ∀ i, Cji `i 6 ε
}

(3.4)

From a scheduling point of view, this means that our admissible relaxed schedules are usual

parallel machine schedules, where jobs are distributed over the machines, with the special

property that jobs may be absent or duplicated. Figure 3.3 shows an example with n′=6

jobs scheduled after the release bound front ~B:

4 3 3

2

1 3

~B ε

Figure 3.3: A sample relaxed schedule with exactly 6 jobs

For a job subset X ⊂ J ′ and a threshold makespan ε, we define NX,ε[ ~B, `] as the number

of admissible relaxed schedules with exactly ` jobs, using only jobs from X, starting from
~B, and with makespan at most ε. Then, we derive from Formula (2.17) p. 53:

N( ~B, J ′, ε) =
∑
X⊂J ′

(−1)|J
′|−|X|NX, ε[ ~B, n

′] (3.5)

We now just have to compute NX, ε[ ~B, `] by dynamic programming. For ` = 0 there is

only one schedule, the empty one, and it is admissible. For ` > 0, we try each possible

job j in the first position on each possible machine i. There are admissible schedules to

count if the completion time Cj of job j is not larger than ε, in which case it becomes

the release bound of the suffix jobs scheduled on machine i, and we recursively count the

possible suffixes. We derive:

NX, ε[ ~B, 0] = 1 (3.6)

NX, ε[ ~B, `] =
m∑
i=1

∑
j∈X
Cj6ε
where Cj=Bi+pj

NX, ε[ ~B
′, `−1] where

{
B′i′ = Bi′ for i′ 6= i
B′i = Cj

}
for ` 6= 0 (3.7)

Because each Bi is bounded by ||I||, the number of states of this dynamic programming

scheme, and therefore the time and space complexity bounds to compute each separate

NX, ε, are in O∗(||I||m). We are about to describe a much more efficient relaxation and

dynamic programming scheme.
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Inclusion-Exclusion: a better solution

The method we now describe is due to Karp [42]. The presentation we adopt is very
different from his article, for two reasons: on the one hand, Karp focuses on the Bin
Packing problem whereas we focus on the equivalent scheduling problem. On the other
hand, Karp uses a backward dynamic programming scheme to count relaxed solutions,
whereas, as stated at the end of section 2.1.1, we prefer forward schemes.

As in the first attempt, the strict schedules we consider are two-dimensional job lists
covering the job set J ′ and with makespan at most ε. Again, we take n′ = |J ′| and we
relax the coverage constraint, but in addition we apply a further relaxation: instead of
requiring to schedule exactly n′ jobs distributed on all machines, we require to schedule at
most n′ jobs per machine.

From a mathematical point of view, this means that we consider a very simple list shape,
as defined in section 2.1.3: our schedules are elements of J ′∗ where J ′∗ is the set of lists of
m lists of at most n′ jobs, i.e. J ′∗ =

(
J ′(n

′))m.
In comparison, we used a much more complicated set of list shapes in the first attempt:
the corresponding J ′∗ was implicitly the union of products of job lists whose sum of lengths
equals n′, i.e. J ′∗ =

⋃
`1+...+`m=n′ J

′`1 × · · · × J ′`m .

The set of admissible relaxed schedules R is composed of job lists with makespan at most
ε, containing potentially duplicate or missing jobs, with at most n′ jobs per machine. We
derive:

R =
{

(jik)16i6m,16k6`i

∣∣∣ ∀ i, `i 6 n′ ∧ ∀ i, Cji `i 6 ε
}

(3.8)

From a scheduling point of view, this means that our admissible relaxed schedules may have
from 0 to m · n′ jobs, potentially absent or duplicated. Figure 3.4 shows an example with
n′=6 jobs scheduled after the release bound front ~B, to be compared with Figure 3.3 p. 78.

4 3 3 1 1 1

2

1 3 1 4 2 1

~B ε

Figure 3.4: A sample relaxed schedule with at most 6 jobs per machine

We define the number N ′( ~B, J ′, ε) of covering relaxed admissible schedules formed of jobs
of J ′, starting from ~B and with makespan at most ε. We must be very careful because,
due to the relaxation of list lengths, covering relaxed admissible schedules are not exactly
strict admissible schedules i.e. N ′( ~B, J ′, ε) 6= N( ~B, J ′, ε).
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Any strict schedule is also a covering relaxed admissible schedule, so N ′( ~B, J ′, ε) >

N( ~B, J ′, ε). On the other way, given a covering relaxed admissible schedule, we can de-
rive a strict admissible schedule with a lower or equal makespan by removing any of its
duplicate jobs. So, N ′( ~B, J ′, ε) > 0 =⇒ N( ~B, J ′, ε) > 0. Finally, N ′( ~B, J ′, ε) > 0 ⇐⇒
N( ~B, J ′, ε) > 0. Following Definition 2.1 p. 47, we can safely compute N ′( ~B, J ′, ε) instead
of N( ~B, J ′, ε), and test whether N ′( ~B, J ′, ε) > 0 to implement the Pdec decision problem.

For a job subset X ⊂ J ′ and a threshold makespan ε, we define N ′X,ε( ~B) as the number of
admissible relaxed schedules using only jobs from X, starting from ~B, and with makespan
at most ε. Then, we derive from Formula (2.17) p. 53:

N ′( ~B, J ′, ε) =
∑
X⊂J ′

(−1)|J
′|−|X|N ′X, ε(

~B) (3.9)

The special relaxation of list lengths removes any correlation between job lists of different
machines. It is a way of transforming a m-machine parallel problem into m independent
single-machine problems. We define M ′X, ε[b, `] as the number of admissible relaxed sched-
ules on X, starting at release time bound b on a single machine, with at most ` jobs, and
with makespan at most ε. The maximum objective is globally bounded by ε if and only if
it is bounded by ε on each machine, hence we have:

N ′X, ε(
~B) =

m∏
i=1

M ′X, ε[Bi, n
′] (3.10)

We now just have to compute M ′X, ε[b, `] by dynamic programming. For ` = 0 there is only
one schedule, the empty one, and it is admissible. For ` > 0, we try each possible job j in
the first position. There are admissible schedules to count if the completion time Cj of job
j is not larger than ε, in which case it becomes the release bound of the other jobs, and
we recursively count the possible suffixes. We derive:

M ′X, ε[b, 0] = 1 (3.11)

M ′X, ε[b, `] =
∑
j∈X
Cj6ε
where Cj=Bi+pj

M ′X, ε[Cj , `−1] for ` 6= 0 (3.12)

Because b is bounded by ||I||, the number of states of this dynamic programming scheme,
and therefore the time and space complexity bounds to compute each separate M ′X, ε and
their product N ′X, ε are in O∗(||I||). This is far better than the first attempt, and we shall
generalize this technique to other parallel machine schedules.

3.2 Minimizing a maximum cost

In this section, we focus on the R|rij , d̃ij |fmax problem. We solve this problem by using
the same technique as for the P ||Cmax problem tackled in section 3.1.2.
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3.2.1 Problem relaxation

In order to solve the Popt = R|rij , d̃ij |fmax problem, it is sufficient to solve, for each
prefix π and objective threshold ε, the decision problem Pdec(I, π, ε) defined by Equa-
tion (2.1) p. 47. To implement Pdec, We define the number N( ~B, J ′, ε) of (strict) admissible
schedules formed of jobs of J ′, starting from ~B and with objective at most ε. As shown
in Figure 3.1 p. 76, imposing a prefix amounts to imposing that the remaining jobs are
outside the prefix and have release time bounds Bi equal to the completion times of the
prefix on each machine.

Pdec
(
I,

(
(π 1 1, . . . , π 1h1

)
. . .

(πm1, . . . , πmhm )

)
, ε

)
⇐⇒ N

((
Cπ 1h1
. . .

Cπmhm

)
, J \ π, ε

)
> 0 (3.13)

The strict schedules we consider are two-dimensional job lists covering the job set J ′ and
with objective at most ε. We set n′ = |J ′|, relax the coverage constraint, and allow to
schedule at most n′ jobs per machine (instead of exactly n′ jobs globally). So, the job
lists we consider are elements of J ′∗ =

(
J ′(n

′))m. The set of admissible relaxed schedules
R ⊂ J ′∗ is composed of job lists containing potentially duplicate or missing jobs, with at
most n′ jobs per machine, with no deadline violation, and with objective i.e. maximum
cost γ = max fij at most ε. We denote by `i the actual number of jobs on machine i and
we derive:

R =
{

(jik)16i6m,16k6`i

∣∣∣ ∀ i, `i6n′ ∧ ∀ i, k, Cjik6d̃i,jik ∧ ∀ i, k, fijik(Cjik)6ε
}

(3.14)

We define the number N ′( ~B, J ′, ε) of covering relaxed admissible schedules formed of jobs
of J ′, starting from ~B and with objective at most ε. Due to the relaxation of list lengths,
covering relaxed admissible schedules are not exactly strict relaxed schedules, but a strict
schedule is also a covering relaxed admissible schedule, and, given a covering relaxed ad-
missible schedule, we can derive a strict relaxed schedule with a lower or equal makespan
value by removing any of its duplicate jobs. So, the number N ′ is suitable to solve the Pdec
decision problem as defined by Equation (3.13).

3.2.2 Counting Relaxed Schedules

For a job subset X ⊂ J ′ and a threshold makespan ε, we define N ′X,ε( ~B) as the number of
admissible relaxed schedules using only jobs from X, starting from ~B, and with objective
value at most ε. Then, we derive from Formula (2.17) p. 53:

N ′( ~B, J ′, ε) =
∑
X⊂J ′

(−1)|J
′|−|X|N ′X, ε(

~B) (3.15)

We define M ′X,i, ε[b, `] as the number of admissible relaxed schedules on X, starting at
release time bound b on the single machine i, with at most ` jobs, and with objective value
at most ε. The maximum objective value is globally bounded by ε if and only if it is
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bounded by ε on each machine, hence we have:

N ′X, ε( ~B) =

m∏
i=1

M ′X,i, ε[Bi, n
′] (3.16)

We now just have to compute M ′X,i, ε[b, `] by dynamic programming. For ` = 0 there is
only one schedule, the empty one, and it is admissible. For ` > 0, we try each possible
job j in the first position. There are admissible schedules to count if j does not violate its
deadline and if the cost of job j is not larger than ε, in which case the completion time
of j becomes the release bound of the other jobs, and we recursively count the possible
suffixes. We derive:

M ′X,i, ε[b, 0] = 1 (3.17)

M ′X,i, ε[b, `] =
∑
j∈X
Cj6d̃ij
fij(Cj)6ε
where Cj=max(Bi,rij)+pj

M ′X,i, ε[Cj , `−1] for ` 6= 0 (3.18)

3.2.3 Worst-case complexity bounds

Our algorithms are now completely described, and we are about to evaluate their worst-
case complexities. We must be careful, because they manipulate big integers, and we
cannot assume constant time and space arithmetic operations. An arithmetic operation
has a quasi-linear time and space complexity with respect to the logarithm (or size in bits)
of the result.

Lemma 3.1. The size in bits of eachMX,i,ε[b, `] is polynomially bounded: logMX,i,ε[b, `] =

O∗(n log n) = O∗(1).

Proof. There are at most n jobs in a sequence and n values per job, so MX,i, ε[b, `] =

O∗(nn), thus logMX,i, ε[b, `] = O∗(log nn) = O∗(n log n).

Lemma 3.2. Each MX,i, ε[Bi, n
′] involved in Formula (3.16) can be computed in O∗(||I||)

time and space.

Proof. Each value of b involved in the dynamic programming scheme to compute
MX,i, ε[Bi, n

′] is bound by Bmax as defined by Equation (3.2) p. 76, so dynamic program-
ming requires computing of O∗(Bmax × n′) values, each of size O∗(1), hence a time and
space complexity in O∗(Bmax × n′ × 1) = O∗(Bmax) = O∗(||I||).

Remark 3.3. Following equations of Karp [42], removing the length parameter ` in the
dynamic programming states, i.e. computing MX,i, ε[b] instead of MX,i, ε[b, `] may appear
as an obvious simplification. But it makes complexity worse by allowing sequences of any
length, instead of allowing sequences of length at most n′ 6 n. Consider a fixed machine
i and suppose there are two jobs j 6= j′ with pij = pij′ = 1 and fij(C) 6 ε, fij′(C) 6 ε

82



3.3. MINIMIZING A TOTAL COST

for any C. Starting from b = 0, any sequence (j1∈{j, j′}, . . . , jBmax∈{j, j′}) is valid, hence
MX,i,ε[0] > 2Bmax , so logMX,i,ε[0] > Bmax = Θ(||I||), and all complexities have to be
multiplied by the instance measure ||I||.

Proposition 3.4. An optimal schedule can be computed in O∗(2n||I||) time and O∗(||I||)
space.

Proof. To proceed, we use Algorithm 2.2 p. 48 to compute γopt and Algorithm 3.2 p. 77
to compute an optimal schedule, which imply O∗(log γopt) = O∗(log ||I||) = O∗(1) com-
putations of N ′( ~B, J ′, ε). Each computation of N ′( ~B, J ′, ε) is a sum over the 2n

′ subsets
of J and requires 2n

′
6 2n computations of NX(~0, ε). Each NX(~0, ε) requires (products

and) computation of the m = O∗(1) factors MX,i, ε[Bi, n
′], each in O∗(||I||) time. Hence

the time complexity in O∗(2n)×O∗(||I||)×O∗(1) = O∗(2n||I||). The space complexity is
dominated by the computation of MX,i, ε[Bi, n

′], in O∗(||I||).

3.3 Minimizing a total cost

In this section, we focus on the R|rij , d̃ij |
∑
fij problem. While our solution of this problem

relies on Inclusion-Exclusion, counting relaxed schedules to minimize a total cost is radically
different from counting relaxed schedules to minimize a maximum cost.

3.3.1 Problem relaxation

In order to solve the Popt = R|rij , d̃ij |
∑
fij problem, it is sufficient to solve, for each

prefix π and objective threshold ε, the decision problem Pdec(I, π, ε) defined by Equa-
tion (2.1) p. 47. To implement Pdec, We define the number N( ~B, J ′, ε) of (strict) admissible
schedules formed of jobs of J ′, starting from ~B and with objective at most ε. As shown
in Figure 3.1 p. 76, imposing a prefix amounts to imposing that the remaining jobs are
outside the prefix and have release time bounds Bi equal to the completion times of the
prefix on each machine. Notice that, because the objective is a sum of elementary costs,
the jobs of the prefix consume a part of the total available objective ε and this part has to
be subtracted from ε.

Pdec
(
I,

(
(π 1 1, . . . , π 1h1

)
. . .

(πm1, . . . , πmhm )

)
, ε

)
⇐⇒ N

((
Cπ 1h1
. . .

Cπmhm

)
, J \ π, ε−

∑
16i6m
16k6hi

fiπik(Cπik)

)
> 0 (3.19)

The strict schedules we consider are two-dimensional job lists covering the job set J ′ and
with objective at most ε. We set n′ = |J ′|, relax the coverage constraint, and allow to
schedule at most n′ jobs per machine (instead of exactly n′ jobs globally). So, the job
lists we consider are elements of J ′∗ =

(
J ′(n

′))m. The set of admissible relaxed schedules
R ⊂ J ′∗ is composed of job lists containing potentially duplicate or missing jobs, with at
most n′ jobs per machine, with no deadline violation, and with objective i.e. total cost
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γ =
∑
fij at most ε. We denote by `i the actual number of jobs on machine i and we

derive:

R =
{

(jik)16i6m,16k6`i

∣∣∣ ∀ i, `i6n′ ∧ ∀ i, k, Cjik6d̃i,jik ∧ ∑
i,k

fijik(Cjik)6ε
}

(3.20)

We define the number N ′( ~B, J ′, ε) of covering relaxed admissible schedules formed of jobs

of J ′, starting from ~B and with objective at most ε. Although covering relaxed admissible

schedules are not exactly strict relaxed schedules, the number N ′ is suitable to solve the

Pdec decision problem as defined by Equation (3.19) p. 83.

Unfortunately, the number N ′( ~B, J ′, ε) is too difficult to compute so, instead of computing

it, we compute the number N=( ~B, J ′, ε) of covering relaxed admissible schedules formed of

jobs of J ′, starting from ~B and with objective exactly equal to ε. We must be very careful,

because N= lacks some nice properties of N ′: a complete relaxed solution corresponds

to a strict solution with a potentially smaller, not necessarily equal objective value; the

condition (N=( ~B, J ′, ε) > 0) is not equivalent to (N( ~B, J ′, ε) > 0), so N= is not an

implementation of Pdec. Notice however that N ′ and N= are related by simple formulas:

N=( ~B, J ′, ε) = N ′( ~B, J ′, ε)−N ′( ~B, J ′, ε−1) (3.21)

N ′( ~B, J ′, ε) =
∑
ε′6ε

N=( ~B, J ′, ε′) (3.22)

These formulas are useful from a theoretical point of view, but from a computational

point of view, using them as-is to derive N ′ from N= would uselessly increase the time

complexity bound, because of the summation for all ε′ 6 ε. So, it is better to derive an

optimal schedule directly from N= without computing N ′ as an intermediate value. We

hereafter describe how to compute N=( ~B, J ′, ε) and how to adapt the rationale to derive

an optimal schedule.

3.3.2 Counting Relaxed Schedules

For a job subset X ⊂ J ′ and a threshold makespan ε, we define N=
X ( ~B, ε) as the number of

admissible relaxed schedules using only jobs from X, starting from ~B, and with objective

value exactly ε. Then, we derive from Formula (2.17) p. 53:

N=( ~B, J ′, ε) =
∑
X⊂J ′

(−1)|J
′|−|X|N=

X ( ~B, ε) (3.23)

As we will see later, instead of applying this formula separately to each N=
X ( ~B, ε), we will

group several N=
X ( ~B, ε) together to form a vector and apply a vectorial version of this

formula.
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The algorithm to compute N=
X, ε(

~B) relies on the following relation: the total objective

value of a schedule is equal to ε if and only if there exists ε1 . . . εm such that ε1+. . .+εm = ε

and the total objective on each machine i is equal to εi. Formally:∑
i,j

fij = ε ⇐⇒
∑
i

(∑
j

fij

)
︸ ︷︷ ︸

εi

= ε

⇐⇒ ∃ ε1 . . . εm

∣∣∣ ∑
i

εi = ε ∧ ∀ i,
∑
j

fij = εi (3.24)

We define MX,i[b, `, ε] as the number of admissible relaxed schedules on X, starting at

release time bound b on the single machine i, with at most ` jobs, and with objective value

exactly ε. We set n′ = |J ′|, and we derive from relation (3.24):

N=
X ( ~B, ε) =

∑
ε1+...+εm=ε

MX,1[B1, n
′, ε1]× . . .×MX,m[Bm, n

′, εm] (3.25)

This is a convolution, or Cauchy product, corresponding to the product of generating

power series on an indeterminate Z, where each N=
X ( ~B, ε) and each MX,i[Bi, n

′, ε] is the

coefficient of Zε, which leads to:(∑
ε∈N

N=
X ( ~B, ε)Zε

)
=

m∏
i=1

(∑
ε∈N

MX,i[Bi, n
′, ε]Zε

)
(3.26)

From a computational point of view, it is convenient to fix a maximum objective εmax, and

to restrict to ε 6 εmax, which corresponds to multiplying polynomials modulo Zεmax+1.

We identify a vector (U0, . . . , Uεmax) and the polynomial U =
∑εmax

ε=0 UεZ
ε.

The standard convolution operator ∗ takes two polynomials U and V , and computes the

polynomial W such that W = U ∗ V = UV mod Zεmax+1. So, conceptually, a convolu-

tion is a mere polynomial product (with modulo), but practically a convolution explicitly

calculates the coefficients of this polynomial product:

( U︷ ︸︸ ︷
εmax∑
ε=0

UεZ
ε

)( V︷ ︸︸ ︷
εmax∑
ε=0

VεZ
ε

)
mod Zεmax+1 =

U ∗ V︷ ︸︸ ︷
εmax∑
ε=0

(∑
α+β=ε

UαVβ︸ ︷︷ ︸
(U∗V )ε

)
Zε (3.27)

That is: ∀ ε 6 εmax, (U ∗ V )ε =
∑

α+β=ε UαVβ . Notice how this convolution formula

resembles Formula (3.25), justifying our interest for generating series and convolution.

Computing U ∗ V by straightforward evaluation of each (U ∗ V )ε requires O(ε2
max) opera-

tions, but U ∗V can be computed in O(εmax log εmax log log εmax) by using the traditional

algorithm of Schönhage and Strassen [77] and even in O(εmax log εmax) by using the very

recent algorithm of Harvey and Van Der Hoeven [34].
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To apply the convolution formula we need vectors indexed by ε. Let us define
~N=
X ( ~B)=

(
N=
X ( ~B, 0), . . . , N=

X ( ~B, εmax)
)
and ~MX,i(b)=

(
MX,i[b, n

′, 0], . . . ,MX,i[b, n
′, εmax]

)
.

Using the standard convolution operator ∗, we have:

~N=
X ( ~B) = ~MX,1(B1) ∗ . . . ∗ ~MX,m(Bm) (3.28)

Due to this convolution formula, computing ~N=
X ( ~B), i.e. all N=

X ( ~B, ε) together for ε 6

εmax, is not more costly than computing NX( ~B, εmax) alone. We must apply the Inclusion-
Exclusion formula as a sum of vectors, instead of applying the scalar formula for each
ε. Our aim is to compute N=( ~B, J ′, ε) for any ε, so we define the vector ~N=( ~B, J ′) =(
N=( ~B, J ′, 0), . . . , N=( ~B, J ′, εmax)

)
and we derive from Formula (2.17) p. 53:

~N=( ~B, J ′) =
∑
X⊂J ′

(−1)|J
′|−|X| ~N=

X ( ~B) (3.29)

To finalize the computation of each N=( ~B, J ′, ε), we now just have to computeMX,i[b, `, ε]

by dynamic programming. Notice that, for a fixed X and a fixed i, allMX,i[b, `, ε] together
i.e. the whole vector ~MX,i(b) involved in Formula (3.28) can be computed at once inside
the same dynamic programming scheme.

For ` = 0 there is only one schedule, the empty one, and its objective is null, so it counts
as one relaxed admissible schedule if ε = 0 and no relaxed admissible schedule otherwise,
which we write 1ε=0. For ` > 0, we try each possible job j in the first position. There are
admissible schedules to count if j does not violate its deadline and if the cost of job j is not
larger than ε. In this case, this cost has to be subtracted from ε and the completion time
of j becomes the release bound of the other jobs, and we recursively count the possible
suffixes. We derive:

MX,i[b, 0, ε] = 1ε=0 (3.30)

MX,i[b, `, ε] =
∑
j∈X
Cj6d̃ij
fij(Cj)6ε
where Cj=max(Bi,rij)+pj

M ′X,i[Cj , `−1, ε−fij(Cj)] for ` 6= 0 (3.31)

3.3.3 Optimal schedule computation

The whole procedure we just described to compute N=( ~B, J ′, ε) for any ε relies on εmax

being an upper bound on all the possible values of ε we need. Moreover, Algorithm 2.2 p. 48
is powerless to compute the optimum objective value γopt since it relies on N ′ instead of
N=. So, the rationale to determine the optimum objective value has to be deeply revised.

We can actually compute both εmax and γopt as follows: choose an arbitrary εmax and
compute ~N=( ~B, J ′) for this εmax, i.e. ~N=( ~B, J ′) =

(
N=( ~B, J ′, 0), . . . , N=( ~B, J ′, εmax)

)
.

Then, the minimum objective is the lowest ε, if it exists, such that N=( ~B, J ′, ε) is not
null. If no such ε exists, this means that εmax is too small and must be increased. During
this computation, we don’t need any prefix π, because such a prefix is only required to
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compute an optimal schedule. So, we only need to take ~B = ~0, i.e. no release bound, and
J ′ = J = {1, . . . , n}, i.e. the whole set of jobs. The computation of an optimal schedule is
given in Algorithm 3.5.

Algorithm 3.5: Computation of the optimum objective value for a total cost objective

Function OptimumSumObjective :
~B ← ~0
J ′ ← {1, . . . , n}
εmax ← 1
~N= ← (N=( ~B, J ′, 0), N=( ~B, J ′, εmax))
while ~N= = ~0 do

εmax ← 2 εmax
~N= ← (N=( ~B, J ′, 0), . . . , N=( ~B, J ′, εmax))

γopt ← min{0 6 ε 6 εmax | ( ~N=)ε > 0}
return γopt

Once γopt has been computed, we can safely take εmax = γopt for further computations.
To compute an optimal solution, we call Algorithm 3.2 p. 77 (itself a straightforward
adaptation of Algorithm 2.3 p. 48), which calls Pdec, which is in turn calls N ′. We derive
N ′( ~B, J ′, ε) from ~N=( ~B, J ′, ε) using Formula (3.22) p. 84. Notice that this formula is in fact
trivial and does not correspond to an actual computation of N ′, because, in the context
of Algorithm 3.2 p. 77, ε is the smallest possible objective value for covering schedules
starting from ~B and with jobs in J . So, we have: ∀ ε′ < ε,N=( ~B, J ′, ε) = 0 and thus
N ′( ~B, J ′, ε) = N=( ~B, J ′, ε).

3.3.4 Worst-case complexity bounds

Lemma 3.5. For a given εmax, all MX,i[b, `, ε] for ε 6 εmax can be computed together in
O∗(||I||εmax) time and space.

Proof. The dynamic programming scheme common to all MX,i requires to compute
O∗(Bmax×n× εmax) values, each value being a big integer of size O∗(1), hence a time and
space complexity in O∗(Bmax × n× εmax × 1) = O∗(Bmax × εmax) = O∗(||I|| × εmax).

Lemma 3.6. For a given εmax, each vector ~N=
X ( ~B) indexed by ε 6 εmax can be computed

in O∗(||I||εmax) time and space.

Proof. Computing ~N=
X ( ~B) requires computation of all MX,i[b, `, ε], and O(m) =

O∗(1) convolutions on vectors of length O(εmax), hence (by Lemma 3.5) a space
complexity in O∗(||I||εmax) and (using the traditional algorithm of Schönhage and
Strassen) a time complexity in O∗(||I||εmax + εmax log εmax log log εmax) = O∗(εmax(||I||+
log εmax log log εmax)) = O∗(||I||εmax).
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Lemma 3.7. For a given εmax, each vector ~N=( ~B, J ′) indexed by ε 6 εmax can be com-
puted in O∗(2|J ′|||I||εmax) time and O∗(||I||εmax) space.

Proof. Computing ~N=( ~B, J ′) requires 2|J
′| computations of ~N=

X ( ~B) by Inclusion-
Exclusion.

Proposition 3.8. The optimum objective value γopt (and εmax) can be computed in
O∗(2n||I||γopt) time and O∗(||I||γopt) space.

Proof. Computing εmax and γopt using Algorithm 3.5 p. 87 consists in trying the succes-
sive powers of 2 for εmax, i.e. εmax = 20, 21, 22, . . . , 2k, . . . , 2`, while a criterion equivalent
to εmax < γopt holds. So, we always have εmax 6 2` < 2γopt, so εmax = O(2`) = O(γopt).
At each iteration k, we compute ~N=( ~B, J ′) with ε 6 εmax = 2k and J ′ = {1, . . . , n}.
So, by Lemma 3.7, the k-th stage is in O∗(2n||I||2k) time and O∗(||I||2k) space. The
overall space complexity is the maximum of the space complexities at each iteration,
in O∗(||I||2`) = O∗(||I||γopt). The overall time complexity is the sum of the time
complexities at each iteration, i.e. this time complexity is in O∗(2n||I||(20+21+. . .+2`)) =

O∗(2n||I||2 · 2`) = O∗(2n||I||γopt).

Proposition 3.9. An optimal schedule can be computed in O∗(2n||I||γopt) time and
O∗(||I||γopt) space.

Proof. Once γopt has been computed, an operation in O∗(2n||I||γopt) time and
O∗(||I||γopt) space, computation of an optimal schedule by Algorithm 3.2 p. 77 requires to
compute a polynomial number of vectors ~N=( ~B, J ′) with ε 6 εmax = γopt, each operation
being in O∗(2n||I||γopt) time and O∗(||I||γopt) space.

3.4 Conclusions

In this chapter, we studied exact algorithms to minimize objective functions defined as a
maximum or total regular cost, for unrelated parallel machine scheduling problems with
release dates and deadlines, i.e. the R|rij , d̃ij |fmax and R|rij , d̃ij |

∑
fij problems. From a

theoretical point of view, we focus on bounding worst-case time and space complexities.

The best general complexity bounds proved so far are due to Lenté et al. [50]. They are in
O∗(3n) time and O∗(2n) space in case of identical parallel machines without release times
nor deadlines, i.e. for the P ||fmax and P ||

∑
j fj problems. Jansen et al. [40] get a more

general but less precise result: for the general R|rij , d̃ij |fmax and R|rij , d̃ij |
∑
fij problems,

they prove that there exists an algorithm with time and space worst-case complexities in
O∗(cn||I||O(1)) for some constant c.

We described an Inclusion-Exclusion based algorithm for the general R|rij , d̃ij |fmax and
R|rij , d̃ij |

∑
fij problems, using dynamic programming for enumerations. In addition to

the techniques usually associated with Inclusion-Exclusion, such as self-reducibility or the
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relaxation of the coverage constraint, we transform relaxed problems with m parallel ma-
chines into m independent relaxed single-machine problems. This transformation is very
important because it reduces the pseudopolynomial factor of the complexities from ||I||m

to ||I||.

In addition to these techniques, we take care to limit the overhead due to the calculations
on the cardinals of sets involved in the Inclusion-Exclusion formula. If we are not careful,
these cardinals can be of the order of 2||I|| and multiply the complexity by ||I||. By a simple
technique, we guarantee that cardinals are bounded by nn and, thus, we only multiply the
complexity by a polynomial factor.

While the algorithm we describe to cope with the generalR|rij , d̃ij |fmax problem generalizes
the ideas initiated in the article of Karp [42], the algorithm we describe to cope with the
general R|rij , d̃ij |

∑
fij problem uses a more elaborate combinatorial technique, involving

generating series and convolutions.

Finally, our main result is to describe an algorithm with a moderately exponential time
complexity, comparable to that of Jansen et al., yet more precise, and especially with
a worst-case space complexity bound which is only pseudopolynomial. We described an
algorithm with a worst-case space complexity bound in O∗(||I||) for the R|rij , d̃ij |fmax

problem and in O∗(||I||γopt) for the R|rij , d̃ij |
∑
fij problem, and with a worst-case time

complexity bound in O∗(2n||I||) for the R|rij , d̃ij |fmax problem and in O∗(2n||I||γopt) for
the R|rij , d̃ij |

∑
fij problem, where γopt, the optimum objective value, is itself a pseu-

dopolynomial factor.

Contributions

• From a theoretical point of view, we demonstrate that a very general class of parallel
machine problems with regular objectives can be solved with an exponential time
worst-case complexity and a pseudopolynomial space worst-case complexity.

• The overhead induced by the computations on large cardinals involved in Inclusion-
Exclusion is often neglected. We take this overhead into account and provide a simple
method to guarantee that it is polynomially bounded.

• These results were the subject of two presentations: one at the ROADEF2021 [67]
french conference, another at the PMS2022 [69] international conference.

• These results are published in the Journal of Combinatorial Optimization [72].
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Chapter 4

Flowshop scheduling

Topics

• We deal with permutation flowshop scheduling problems in presence of job release
dates and deadlines, to minimize general regular maximum and sum objective func-
tions.

• Using Inclusion-Exclusion, we provide a generic algorithm for solving these problems,
while running with moderate exponential-time and pseudopolynomial-space worst-
case complexities.

• In order to cope with precedence constraints between jobs, we propose a hybrid
algorithm in which Inclusion-Exclusion interacts nicely with dynamic programming
across subsets.

• As a first step towards the solution of non-permutation flowshop problems, we study
the application of Inclusion-Exclusion on a per-operation basis instead of a per-job
basis.

In this chapter, we are interested in minimizing the maximal or total cost of jobs in
a permutation flowshop schedule, in presence of operation dependent release times and
deadlines. Using Graham’s notations, these problems are denoted by F |prmu, rij , d̃ij |fmax

or F |prmu, rij , d̃ij |
∑
fj . Graham’s notations have been described in section 1.1.1 and

flowshop problems have been described in section 1.1.2 and in Example 1.5 p. 30, but
hereafter we recall the precise notations we will use throughout this chapter.

In the F |prmu, rij , d̃ij |fmax and F |prmu, rij , d̃ij |
∑
fj problems, there are n jobs to be

scheduled on m machines. Each job must be processed on machines 1 to m, in this order.
Each machine can process only one job at a time. All machines must process jobs in
the same order, and a schedule is essentially defined by this order. We denote by Oij ,
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, the operation of job j on machine i, which has a non-
negative integer processing time pij . For any given schedule S, we define Cij(S) as the
completion time of Oij in S. To each job j is assigned a cost, obtained by computing
a regular i.e. non-decreasing cost function fj of the completion time Cmj(S) of the last
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operation of j. Then, the objective function is defined as γ(S) = max16j6n fj(Cmj(S)) or
γ(S) =

∑
16j6n fj(Cmj(S)). The aim is to find an optimal solution which minimizes the

objective function. Whenever there is no ambiguity we will drop off the mention to S in
the notations.

We define J = {1, . . . , n} as the set of jobs to be scheduled. An instance I
of the F |prmu, rij , d̃ij |fmax or F |prmu, rij , d̃ij |

∑
fj problem is of the form I =

(pij , rij , d̃ij , fj)16i6m, j∈J .

In the literature, the most studied objective is the makespan, i.e. the maximum completion
time. The F |prmu|Cmax problem is strongly NP-hard (Garey et al. [28]). The brute
force algorithm obviously has a time complexity in O∗(n!). The very specific sub-problem
F2|prmu|Cmax can be polynomially solved by Johnson’s rule [41], while the F3|prmu|Cmax

(Garey et al. [28]), and even the 2-machine problem with constraints, as F2|chains|Cmax

or F2|rj , d̃j |Cmax, are strongly NP-hard (Lenstra et al. [48]).

Unless P = NP, this implies that there are no polynomial time, and even no pseudopoly-
nomial time, exact algorithms for the F |prmu|Cmax problem, hence for the F |prmu|fmax

problem. To get around this issue, numerous heuristics have been proposed in the litera-
ture to produce approximate solutions. We refer to Framinan et al. [24] for a survey on
heuristics for the flowshop scheduling problem.

Williamson et al. [89] proved that no polynomial time heuristic for the flowshop problem
with makespan objective may have a better approximation ratio than 5/4. So, it is nec-
essary to use a super-polynomial algorithm in order to get a guaranteed optimal solution
of the problem, or even an algorithm with a worst-case ratio smaller than 5/4. More-
over, under the Exponential Time Hypothesis introduced by Impagliazzo and Paturi [38],
Jansen et al. [40] and independently Shang [78] showed that the flowshop problem cannot
be solved by any sub-exponential algorithm, thus justifying the design of exact exponential
algorithms.

As we have seen in section 1.3.3, Branch-and-Bound based algorithms solving permuta-
tion flowshop problems are very popular. While efficient in practice, they often have a
worst-case time complexity bound comparable to the O∗(n!) complexity of the brute-force
algorithm. From a theoretical point of view, few algorithms have been proposed in order
to provide better worst-case complexity bounds. Jansen et al. [40] described a very general
algorithm class, in which they apply a dynamic programming technique on (unordered)
sets of jobs. They get time and space worst-case complexities with respect to the number
of operations m·n, which translates into 2O(n)||I||O(1) for each fixed number of machines.
Shang et al. [80] gave a more precise result in the particular case of the F3|prmu|Cmax
problem, by a fine analysis of the number of critical paths in a schedule. They obtained
time and space complexities in O∗(2n||I||).

Our main contribution is an algorithm which, for any fixed number of machines, runs with
a moderate exponential worst-case time complexity and requires only pseudopolynomial
space to minimize the general γ = fmax or γ =

∑
fj objective functions. More precisely,

for the F |prmu, rij , d̃ij |fmax problem, the time complexity bound is in O∗(2n||I||m) and
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the space complexity bound is in O∗(||I||m). For the F |prmu, rij , d̃ij |
∑
fj problem, these

bounds have to be multiplied by the optimum objective value γopt, which is a pseudopoly-
nomial factor.

We also describe an extension of this algorithm to the F |prmu, prec, rij , d̃ij |fmax prob-
lem. For general job precedences, the space bound turns out to be exponential, but the
time bound is unchanged. The same extension applies to the F |prmu, prec, rij , d̃ij |

∑
fj

problem with a time bound multiplied by the pseudopolynomial factor γopt.

As as we have experienced in chapter 3, the solution of the scheduling problems we con-
sider comprises a rather mechanical phase and a more specific phase. In section 4.1, we
describe how to apply the Inclusion-Exclusion principle to permutation flowshop prob-
lems. In sections 4.2 and 4.3, we apply these principles to the F |prmu, rij , d̃ij |fmax and
F |prmu, rij , d̃ij |

∑
fj problems. In section 4.4, we discuss an adaptation of the algorithm

to the case of job precedence constraints. Finally, in section 4.5, we adapt the Inclusion-
Exclusion principle to manage operations instead of jobs. This adaptation is a first step
towards the solution of non-permutation flowshop problems.

4.1 Principles

In this chapter we consider a large class of permutation flowshop problems whose objectives
are regular. As we have seen in section 1.1.5, semi-active schedules form a dominant set,
and it is possible to represent unambiguously a semi-active schedule S by a list of jobs
(jk)16k6n indexed by chronological order k. Such a list is a permutation of jobs, i.e.
S ∈ Sn.

Before we solve the F |prmu, rij , d̃ij |
∑
fj and F |prmu, rij , d̃ij |fmax problems, we have to

tackle an issue: due to the presence of deadlines, it may happen that there is no solution.
To determine whether there exists a solution, we remove the costs and replace them with
the trivial, null costs, i.e. we take as objective function γ = 0 = maxj 0 =

∑
j 0. So, we

consider the fake optimization problem P0
opt = F |prmu, rij , d̃ij |-, which has the same set

of admissible schedules as the F |prmu, rij , d̃ij |
∑
fj and F |prmu, rij , d̃ij |fmax problems.

As we saw in section 2.1.1, an optimization problem reduces to a decision problem. To
the fake optimization problem P0

opt is associated a decision problem P0
dec(I, ε), which we

will solve in section 4.2 or 4.3 p. 98. Then, F |prmu, rij , d̃ij |
∑
fj and F |prmu, rij , d̃ij |fmax

have a solution if and only if P0
opt has a solution, if and only if P0

dec(I, 0) is true.

4.1.1 Self-reducibility

Following Remark 2.5 p. 49, we study the effect of appending a job to a prefix. Fig-
ure 4.1 p. 94 shows a permutation flowshop schedule with a job j, the completion front ~B
before j i.e. the completion front of the previous job, and the completion front ~C of j:
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j1 jk−1 jk jk+1

j1 jk−1 jk jk+1

j1 jk−1 jk jk+1

job
j=jk

release front: ~B ~B′= ~C: completion front

Figure 4.1: Time fronts in a permutation schedule

Given a job j, we consider the time front ~Cj = (C1j , . . . , Cmj) of completion times of all
operations of j. The cost of a job is computed according to the completion time of its last
operation so, as a notation we extend cost functions from completion times to completion
fronts by defining:

fj(~C) = fj(Cmj) (4.1)

These completion times are also lower bounds of the starting times, i.e. release dates, of
operations of all jobs scheduled after j. As in section 3.1.1, we denote such a time front by
~B and call it a release bound front. Considering a release bound front ~B = (B1, . . . , Bm)

before a job j is scheduled amounts to replace the release dates of its operations rij by
max(Bi, rij).

We need an upper bound, say Bmax, for the components of all possible release bound fronts.
Since a release bound front is also a completion time front, we just have to take an upper
bound of the makespan of any schedule (i.e. ∀S,Cmax(S) 6 Bmax). So, we define Bmax

by the following formula, which is a very loose upper bound, where we add the maximum
release time and the sum of all processing times:

Bmax = max
i,j

rij +
∑
i,j

pij (4.2)

Notice that Bmax = O∗(||I||). This will be useful for bounding the number of states of
dynamic programming schemes.

We define an operator • such that, given a completion front ~B and a job j, ~B′ = ~B • j

is the completion front we get by processing job j after the release bound front ~B. Due
to the precedences between operations implied by the permutation flowshop problem, we
have, with the convention that B′0 = 0:

B′i = max(B′i−1, Bi) + pi,j ∀ i = 1, . . . ,m (4.3)

Assume a schedule S = (j1, . . . , jn) is given and let us define ~Bjk as the release bound
front of jk, i.e. the completion front of jk−1, with the convention that ~Bj1 contains the
initial times. The completion front ~Bjk+1

is uniquely determined by the completion front
~Bjk , and we have:

~Bj1 = ~0 = (0, . . . , 0) (4.4)
~Bjk+1

= ~Bjk • jk for k > 1 (4.5)
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The completion front of the whole schedule S = (j1, . . . , jn) is the completion front of its
last job, i.e:

~C((j1, . . . , jn)) = ~Cjn = ~Bjn+1 = ~0 • i1 • . . . • in (4.6)

This formula straightforwardly extends to any schedule prefix π = (j1, . . . , jh) instead of
S = (j1, . . . , jn). A flowshop scheduling problem is made self-reducible by considering the
completion times of any prefix π as release bounds of operations of any job scheduled after
π. We will apply this principle to derive precise formulas to implement Pdec in sections 4.2
and 4.3 p. 98. Then, the optimum objective value γopt is derived from Algorithm 2.2 p. 48
and an optimal schedule is derived from Algorithm 2.3 p. 48, as explained in section 2.1.1.

Notice that the • operator is non-decreasing with respect to release bound fronts (or equiva-
lently completion fronts): we define the (partial) chronological order on release bound fronts
as the chronological order on each machine, i.e. ~B 6 ~B′ ⇐⇒ ∀ i ∈ {1, . . . ,m}, Bi 6 B′i.
Then, appending a job j preserves this order, i.e. ~B 6 ~B′ =⇒ ~B • j 6 ~B′ • j. Actually,
any variant of the F |prmu|fmax or F |prmu|

∑
fj problems for which a non-decreasing •

operator exists can be solved by the algorithms proposed in this chapter.

4.1.2 Comparison with dynamic programming across subsets

As stated in Remark 2.5 p. 49, Equations (4.4) p. 94 and (4.5) p. 94 enable to derive not only
self-reducibility, but also a dynamic programming scheme and an Inclusion-Exclusion based
algorithm. As an example, we focus on dynamic programming schemes across subsets to
solve the F |prmu|fmax and F |prmu|

∑
fj problems (with no release times nor deadlines).

As the objective value of a schedule S = (j1, . . . , jn) is the maximum or total cost, we
have:

fmax = max(fj1(~0 • j1), . . . , fjn(~0 • j1 • . . . • jn)) (4.7)∑
fj = fj1(~0 • j1) + . . .+ fjn(~0 • j1 • . . . • jn) (4.8)

Given a release bound front ~B and a job subset J ⊂ {1, . . . , n}, we define opt[ ~B, J ] as the
minimal objective of permutation schedules starting from ~B and using exactly once the
jobs of J . We have, for the F |prmu|fmax problem:

opt[ ~B,∅] = 0 (4.9)

opt[ ~B, J ] = min
j∈J

(
max(fj( ~B • j), opt[ ~B • j, J\{j}])

)
∀ J 6=∅ (4.10)

and, for the F |prmu|
∑
fj problem:

opt[ ~B,∅] = 0 (4.11)

opt[ ~B, J ] = min
j∈J

(
fj( ~B • j) + opt[ ~B • j, J\{j}]

)
∀ J 6=∅ (4.12)

Then, for an instance with |J | = n jobs, the minimal objective of a permutation schedule
using the jobs of J is opt[~0, J ], and a corresponding optimal schedule can be found by
computing the backtrace of the dynamic programming scheme. This scheme uses simple
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equations, but it explores completion fronts and subsets J ′ ⊂ J , with |J | = n, thus leading
to an algorithm with a time and space complexity in O∗(2n||I||m). An enhancement of
this dynamic programming scheme based on Pareto fronts is proposed by Shang et al. [80].

Once again, as we have seen in section 2.2 and as we will see in sections 4.2 and 4.3 p. 98,
the interest of Inclusion-Exclusion is to lead to an algorithm with a pseudo-polynomial
worst-case space complexity bound while preserving the worst-case time complexity bound
and the simplicity of the equations of a dynamic programming scheme across subsets.

4.2 Minimizing a maximum cost

In this section, we focus on the Popt = F |prmu, rij , d̃ij |fmax problem. In order to solve it,
it is sufficient to solve, for each prefix π and objective threshold ε, the decision problem
Pdec(I, π, ε) defined by Equation (2.1) p. 47. We define the number N( ~B, J ′, ε) of admis-
sible schedules formed of jobs in J ′ ⊂ J , starting from bound front ~B and with objective
at most ε. As shown in Figure 4.1 p. 94, imposing a prefix amounts to imposing that
the remaining jobs are outside the prefix and have release time bounds Bi equal to the
completion times of the prefix on each machine, as defined by Equation (4.6) p. 95. We
derive:

Pdec
(
I, (π1, . . . , πh), ε

)
⇐⇒ N

((
C1, πh
. . .

Cm,πh

)
, J \ π, ε

)
> 0 (4.13)

4.2.1 Inclusion-Exclusion

The strict schedules we consider are permutations of jobs, i.e. elements of SJ ′ , viewed as
job lists. So, the job lists we consider are elements of J ′∗ = J ′ n

′
, where n′ = |J ′|, We relax

the coverage constraint, i.e. we allow job lists with missing or duplicate jobs. The set of
admissible relaxed schedules R ⊂ J ′∗ is composed of lists of exactly n′ jobs, containing
potentially duplicate or missing jobs, with no deadline violation, and with objective, i.e.
maximum cost γ = max fj , at most ε. We derive:

R =
{

(j1, . . . , jn′)
∣∣∣ ∀ i, k, Ci,jk 6 d̃i,jk ∧ ∀ k, fjk(Cm,jk) 6 ε

}
(4.14)

In our case, permutations are exactly covering lists, so the number N( ~B, J ′, ε) of (strict)
admissible schedules is also the number of admissible covering relaxed schedules. For a
job subset X ⊂ J ′ and a threshold objective value ε, we define NX,ε[ ~B, `] as the number
of admissible relaxed schedules composed of ` jobs, all in X, starting from ~B, and with
objective value at most ε. Then, we derive from Formula (2.17) p. 53:

N( ~B, J ′, ε) =
∑
X⊂J ′

(−1)|J
′|−|X|NX,ε[ ~B, n

′] (4.15)

We now just have to compute NX,ε[ ~B, `] by dynamic programming. For ` = 0 there is
only one schedule, the empty one, and it is admissible. For ` > 0, we try each possible
job j in the first position. There are admissible schedules to count if j does not violate its
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deadlines and if the cost of job j is not larger than ε, in which case the completion times
of j become the release bounds of the other jobs, and we recursively count the possible
suffixes. We derive:

NX,ε[ ~B, 0] = 1 (4.16)

NX,ε[ ~B, `] =
∑
j∈X
∀ i,Cij6d̃ij
fj(Cmj)6ε

where ~Cj= ~B•j

NX,ε[~Cj , `−1] for ` 6= 0 (4.17)

4.2.2 Worst-case complexity bounds

Lemma 4.1. Each value N( ~B, J ′, ε) can be computed, for every m, in O∗(2n||I||m) time
and O∗(||I||m) space.

Proof. Each state involved in the dynamic programming scheme to compute NX,ε[ ~B, `] is
formed with a number of jobs ` 6 n′ 6 n and m components Bi 6 Bmax = O∗(||I||), so
there are at most (n+1)(||I||+1)m = O∗(||I||m) states. Consequently, it takes O∗(||I||m)

time and space to compute eachNX,ε[ ~B, `] by dynamic programming. Due to the Inclusion-
Exclusion formula, N( ~B, J ′, ε) is obtained by summing 2n

′
6 2n terms NX,ε[ ~B, `], giving

the result.

Remark 4.2. The numbers computed inside the dynamic programming scheme are poten-
tially large cardinals, so their computation time and space is not constant. But their values
are bounded by n||I||m, so their computation induces an overhead of O(log n+m log ||I||),
and this polynomial overhead is hidden by the O∗ notation.

Proposition 4.3. The optimal objective value can be computed, for every m, in
O∗(2n||I||m) time and O∗(||I||m) space.

Proof. As shown in section 2.1.1, Algorithms 2.2 p. 48 and 2.3 p. 48 use a polynomial
number of calls to N( ~B, J ′, ε) to compute an optimal schedule.

4.2.3 An enhancement for makespan minimization

For the specific F |prmu, rij , d̃ij |Cmax problem, i.e. makespan minimization, we can avoid
the binary search carried out by Algorithm 2.2 p. 48 and save a polynomial factor log(||I||)
in the time complexity bound. Given a job set X ⊂ J , we define, for each number of jobs
k and completion front ~C, N∗X,k[~C] as the number of relaxed schedules with k jobs, all in
X, whose completion front is ~C. We also define, for each objective value ε, N∗X [ε] as the
number of relaxed schedules with n jobs, all in X, whose objective Cmax is exactly ε.

These definitions are implemented as association tables (from keys to values) computed
by Algorithm 4.2 p. 98. There is one schedule with 0 job and its completion front is ~0.
All schedules with (k − 1) jobs and completion front ~C followed by a job j form schedules
with k jobs and completion front (~C • j), so their number N∗X,k−1[~C] adds up to N∗X,k[~C • j],
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provided that (~C • j) is compatible with the deadlines of j. Likewise, all schedules with the

same completion front ~C share the same objective Cmax = Cm, so their number N∗X,n[~C]

adds up to N∗X [Cm]. Notice that this reasoning does not hold for a general fmax objective.

Algorithm 4.2: Computation of the N∗X table

Procedure ComputeTables(X):
// Values are implicitly null for undefined keys
N∗X,0[~0]← 1

for k = 1 to n do
for each ~C key of N∗X,k−1 do

for each j ∈ X do
if ∀ i, (~C • j)i 6 d̃ij then

N∗X,k[
~C • j]← N∗X,k[

~C • j] +N∗X,k−1[~C]

for each ~C key of N∗X,n do
N∗X [Cm]← N∗X [Cm] +N∗X,n[~C]

We now define, for each objective value ε, N∗[ε] as the number of covering sched-

ules with n jobs, whose objective Cmax is exactly ε. It can be computed by apply-

ing Inclusion-Exclusion on tables N∗X considered as vectors indexed by ε, i.e. N∗ =∑
X⊂J(−1)|J |−|X|N∗X . Finally, the optimum objective is Copt

max = min{ε ∈ N | N∗[ε] > 0}.

4.3 Minimizing a total cost

In this section, we focus on the Popt = F |prmu, rij , d̃ij |
∑
fj problem. In order to solve it,

it is sufficient to solve, for each prefix π and objective threshold ε, the decision problem

Pdec(I, π, ε) defined by Equation (2.1) p. 47. We denote by N( ~B, J ′, ε) the number of

admissible schedules formed of jobs of J ′, starting from ~B and with objective at most ε.

As shown in Figure 4.1 p. 94, imposing a prefix amounts to imposing that the remaining

jobs are outside the prefix and have release time bounds Bi equal to the completion times

of the prefix on each machine, as defined by Equation (4.6) p. 95. Notice that, because the

objective is a sum of elementary costs, the jobs of the prefix consume a part of the total

available objective ε and this part has to be subtracted from ε. We derive:

Pdec
(
I, (π1, . . . , πh), ε

)
⇐⇒ N

((
C1, πh
. . .

Cm,πh

)
, J \ π, ε−

h∑
k=1

fπk(Cm,πk)

)
> 0 (4.18)
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4.3.1 Inclusion-Exclusion

The strict schedules we consider are permutations of jobs, i.e. elements of SJ ′ , viewed as

job lists. So, the job lists we consider are elements of J ′∗ = J ′ n
′
, where n′ = |J ′|, We relax

the coverage constraint, i.e. we allow job lists with missing or duplicate jobs. The set of

admissible relaxed schedules R ⊂ J ′∗ is composed of lists of exactly n′ jobs, containing

potentially duplicate or missing jobs, with no deadline violation, and with objective, i.e.

total cost γ =
∑

j fj , at most ε. We derive:

R =
{

(j1, . . . , jn′)
∣∣∣ ∀ i, k, Ci,jk 6 d̃i,jk ∧

n′∑
k=1

fjk(Cm,jk) 6 ε
}

(4.19)

In our case, permutations are exactly covering lists, so the number N( ~B, J ′, ε) of (strict)

admissible schedules is also the number of admissible covering relaxed schedules. For a

job subset X ⊂ J ′ and a threshold objective value ε, we define NX [ ~B, `, ε] as the number

of admissible relaxed schedules composed of ` jobs, all in X, starting from ~B, and with

objective value at most ε. Then, we derive from Formula (2.17) p. 53:

N( ~B, J ′, ε) =
∑
X⊂J ′

(−1)|J
′|−|X|NX [ ~B, n′, ε] (4.20)

We now just have to compute NX [ ~B, `, ε] by dynamic programming. For ` = 0 there is

only one schedule, the empty one, and it is admissible. For ` > 0, we try each possible

job j in the first position. There are admissible schedules to count if j does not violate

its deadlines and if the cost of job j is not larger than ε, in which case this cost has to be

subtracted from ε and the completion times of j become the release bounds of the other

jobs, and we recursively count the possible suffixes. We derive:

NX [ ~B, 0, ε] = 1 (4.21)

NX [ ~B, `, ε] =
∑
j∈X
∀ i,Cij6d̃ij
fj(Cmj)6ε

where ~Cj= ~B•j

NX [~Cj , `−1, ε−fj(Cmj)] for ` 6= 0 (4.22)

4.3.2 Computation of the optimal objective value

We could use the standard algorithm based on a binary search, i.e. Algorithm 2.2 p. 48,

to compute the optimal objective value γopt. But this is not the best we can do, because,

as the objective threshold ε is part of the dynamic programming state involved in Equa-

tion (4.22), computing a single value NX [ ~B, `, ε] is as costly as computing together all

values NX [ ~B, `, ε′] for ε′ 6 ε.
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As for the solution of the R|rij , d̃ij |
∑
fij problem in section 3.3, we apply a vectorial

version of Inclusion-Exclusion. Given a maximum objective threshold εmax, we define
these vectors indexed by all ε 6 εmax:

~N( ~B, J ′, εmax) =
(
N( ~B, J ′, 0), . . . , N( ~B, J ′, εmax)

)
(4.23)

~NX( ~B, `, εmax) =
(
NX( ~B, `, 0), . . . , NX( ~B, `, εmax)

)
(4.24)

and we derive from Formula (2.17) p. 53:

~N( ~B, J ′, εmax) =
∑
X⊂J ′

(−1)|J
′|−|X| ~NX( ~B, n′, εmax) (4.25)

We can actually compute both εmax and γopt as follows: choose an arbitrary εmax and
compute ~N = ~N( ~B, J ′, εmax). Then, the minimum objective is the lowest ε, if it exists,
such that ~Nε = N( ~B, J ′, ε) is not null. If no such ε exists, this means that εmax is too small
and must be increased. During this computation, we do not need any prefix π, because such
a prefix is only required to compute an optimal schedule. So, we take ~B = ~0, i.e. no release
bounds, and J ′ = {1, . . . , n}, i.e. the whole set of jobs. Similarly to Algorithm 3.5 p. 87,
we propose Algorithm 4.3 to compute the optimum total cost objective value:

Algorithm 4.3: Computation of the optimum objective value for a total cost objective

Function OptimumTotalCost :
~B ← ~0
J ′ ← {1, . . . , n}
εmax ← 1
~N ← ~N( ~B, J ′, εmax)
while ~N = ~0 do

εmax ← 2 εmax
~N ← ~N( ~B, J ′, εmax)

γopt ← min{0 6 ε 6 εmax | ~Nε > 0}
return γopt

When γopt has been computed, an optimal solution can be derived from Algorithm 2.3 p. 48
and without any vectorial computation.

4.3.3 Worst-case complexity bounds

Lemma 4.4. Each vector ~N( ~B, J ′, ε) and thus each single value N( ~B, J ′, ε) can be com-
puted, for every m, in O∗(2n||I||mε) time and O∗(||I||mε) space.

Proof. Each state involved in the dynamic programming scheme to compute NX [ ~B, `, ε′]

is formed with a number of jobs ` 6 n′ 6 n, m components Bi 6 Bmax = O∗(||I||), and
a threshold value ε′ 6 ε, so there are at most (n+1)(||I||+1)mε = O∗(||I||mε) states.
Consequently it takes O∗(||I||mε) time and space to compute each vector ~NX [ ~B, `, ε] by
dynamic programming. Due to the Inclusion-Exclusion formula, ~N( ~B, J ′, ε) is obtained by
summing 2n

′
6 2n terms ~NX [ ~B, `, ε], giving the result.
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As stated in Remark 4.2 p. 97, the values of N are potentially large cardinals, but their
computation induces a polynomial only overhead.

Proposition 4.5. The optimal objective value can be computed, for every m, in
O∗(2n||I||mγopt) time and O∗(||I||mγopt) space.

Proof. Algorithm 4.3 p. 100 makes successive computations of ~N( ~B, J ′, εmax) with εmax =

20, 21, 22, . . . , 2k, . . . , 2` and εmax < 2γopt. The k-th stage is in O∗(2n||I||m2k) time and
O∗(||I||m2k) space. The overall space complexity is the maximum of the space complexities
at each iteration, in O∗(||I||m2`) = O∗(||I||mγopt). The overall time complexity is the sum
of the time complexities at each iteration, i.e. it is in O∗(2n||I||m(20 + 21 + . . . + 2`)) =

O∗(2n||I||m2 · 2`) = O∗(2n||I||mγopt).

Then, as shown in section 2.1.1, Algorithm 2.3 p. 48 uses a polynomial number of calls to
N( ~B, J, ε), each in O∗(2n||I||mγopt) time and O∗(||I||mγopt) space as ε 6 γopt, to compute
an optimal schedule.

4.4 Extension to the case of precedences between jobs

Job precedence constraints are defined by a partial order ≺ on jobs, with j ≺ j′ meaning
that job j must be scheduled before j′.

We focus on the F |prmu, prec, rij , d̃ij |fmax problem, i.e. the problem of minimizing a
maximal cost under job precedences. Although its structure is similar to the one of the
F |prmu, rij , d̃ij |fmax problem, precedences lead to the use of hybrid Inclusion-Exclusion
formulas, which work in a traditional way while integrating dynamic programming across
subsets of jobs. We provide below details on how it works.

In order to solve the Popt = F |prmu, prec, rij , d̃ij |fmax problem, we implement, for each
instance I, prefix π and objective threshold ε, the decision problem Pdec(I, π, ε), defined by
Equation (2.1) p. 47. We denote by N( ~B, J ′, ε) the number of admissible schedules formed
of jobs of J ′ ⊂ J , starting from ~B and with objective at most ε. A schedule prefix can
be completed into a schedule satisfying precedences if the prefix itself satisfies precedences
and if no job appended to the prefix precedes any job of the prefix. We derive:

Pdec
(
I, (π1, . . . , πh), ε

)
⇐⇒


∀ k, k′ ∈ {1, . . . , h}, πk ≺ πk′ =⇒ k < k′ (4.26)
∀ j ∈ π, ∀ j′ ∈ J \ π, j � j′ (4.27)

N

((
C1, πh
. . .

Cm,πh

)
, J \ π, ε

)
> 0 (4.28)

These equations do not strictly conform to our definition 2.1 p. 47 of an implementation,
but notice that the extra conditions (4.26) and (4.27) are computed in polynomial time.
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4.4.1 Inclusion-Exclusion

We set n′ = |J ′| and we relax the problem as in section 4.2. The set of admissible relaxed
schedules R ⊂ J ′ n

′
is composed of lists of exactly n′ jobs but containing potentially

duplicate or missing jobs, with no deadline violation, no precedence violation, and with an
objective value at most ε. We derive:

R =
{

(j1, . . . , jn′)
∣∣∣ ∀ i, k, Ci,jk 6 d̃i,jk ∧ ∀ k, k

′, jk≺jk′ ⇒ k<k′ ∧ ∀ k, fjk(Cm,jk) 6 ε
}

(4.29)

For a job subset X ⊂ J ′, we define NX( ~B, J ′, ε) as the number of admissible
relaxed schedules using only jobs of X and we derive from Formula (2.17) p. 53:

N( ~B, J ′, ε) =
∑
X⊂J ′

(−1)|J
′|−|X|NX( ~B, J ′, ε) (4.30)

In our case, this formula is oversized and we will simplify it.

We need some definitions to deal with precedences in the computation of NX( ~B, J ′, ε). We
only have to consider jobs of J ′, so we restrict the partial order ≺ to J ′. Let Prec(j) =

{j′ ∈ J ′ | j′ ≺ j} be the set of predecessors of j, and Succ(j) = {j′ ∈ J ′ | j ≺ j′} be the
set of successors of j. We define M as the set of maximal jobs for ≺, i.e. jobs without
successors, and the set J ′ \M of non-maximal jobs is also the set of predecessors of other
jobs. So, we have:

M = {j ∈ J ′ | Succ(j) = ∅} (4.31)

J ′ \M = {j ∈ J ′ | Succ(j) 6= ∅} =
⋃
j∈J ′

Prec(j) (4.32)

As stated in section 2.1.1, we proceed by forward dynamic programming: each dynamic
programming state contains a history, derived from already scheduled jobs forming an
implicit schedule prefix π′ = (j1, . . . , jh), and recurrence equations model the effect of
appending a job jh+1 to this prefix π′. All predecessors of jh+1 must belong to the prefix,
otherwise there exists a predecessor of jh+1 scheduled outside the prefix, so after jh+1,
which is not admissible. Thus, we must have Prec(jh+1) ⊂ π′. This relation forces us to
keep track of jobs of π′ which can be predecessors of other jobs, i.e. non-maximal jobs, or
jobs of π′ \M . So, each state used in the dynamic programming scheme must incorporate
the set P ⊂ J ′ \M of previously scheduled non-maximal jobs.

We introduce a hybrid dynamic programming scheme to compute NX( ~B, J ′, ε). Each state
contains a set P ⊂ J ′ \M of previously scheduled non-maximal jobs, conforming to the
principle of dynamic programming across the subsets, and each state also contains usual
data for scheduling: a release bound front ~B and a remaining length `. We define the
corresponding number of schedules NX,ε[P, ~B, `] and we derive:

NX( ~B, J ′, ε) = NX,ε[∅, ~B, n′] (4.33)
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Recurrence equations (4.34) and (4.35) mimic equations (4.16) p. 97 and (4.17) p. 97:

NX,ε[P, ~B, 0] = 1 if P = J ′ \M, 0 otherwise (4.34)

NX,ε[P, ~B, `] =
∑
j∈X
j/∈P
Prec(j)⊂P
∀ i,Cij6d̃ij
fj(Cmj)6ε

where ~Cj= ~B•j

NX,ε[P ∪ {j} \M, ~Cj , `− 1] for ` 6= 0 (4.35)

In Equation (4.35), a job j is suitable if all its predecessors have already been scheduled,
i.e. if Prec(j) ⊂ P , and if j itself has not already been scheduled, i.e. if j /∈ P . Then, job
j is added to the set of previously scheduled non-maximal jobs only if it is non-maximal,
hence justifying the term P ∪ {j} \M in Equation (4.35).

Notice that each set P computed during our dynamic programming scheme is a downward
closed set of the poset J ′ \M :

∀ j, j′, j′ ≺ j ∧ j ∈ P =⇒ j′ ∈ P (4.36)

Maximal jobs, i.e. jobs of M , are conceptually handled by Inclusion-Exclusion whereas
non-maximal jobs are conceptually handled by dynamic programming across the subsets
of J ′ \M . The aim of Inclusion-Exclusion is to ensure the coverage of J ′. We split this
coverage constraint into two parts: M and J ′ \M . The coverage of J ′ \M is ensured
by Equation (4.34): an empty schedule suffix preceded by jobs of P can correspond to
a covering schedule only if all non-maximal jobs have already been scheduled, i.e. if
P = J ′ \M .

As all computations end up with Equation (4.34) due to the structure of recursive equa-
tions, the schedules counted by NX( ~B, J ′, ε) necessarily cover J ′ \ M , or equivalently
schedules which do not cover J ′ \M are withdrawn from the counting. Intuitively, the
remaining work to be done by Inclusion-Exclusion is to ensure coverage ofM , so we expect
a sum with 2|M | instead of 2|J

′| terms. This intuition agrees with the trimming technique
of Nederlof [61] described in section 2.3.4: we remark that NX( ~B, J ′, ε) is null whenever
X ( J ′ \ M , because we always have P ⊂ X. So, the Inclusion-Exclusion formula to
compute NX( ~B, J ′, ε) reduces to:

N( ~B, J ′, ε) =
∑

J ′\M⊂X⊂J ′
(−1)|J

′|−|X|NX( ~B, J ′, ε) =
∑
Y⊂M

X=(J ′\M)]Y

(−1)|J
′|−|X|NX( ~B, J ′, ε) (4.37)

Notice that the hybrid Inclusion-Exclusion procedure we use enables interleaving of max-
imal and non-maximal jobs, as shown on Figure 4.4 p. 104. Thus, it does not reduce
to a dynamic programming scheme across subsets calling an auxiliary Inclusion-Exclusion
computation, in which jobs managed by dynamic programming across subsets, i.e. non-
maximal jobs, are scheduled before jobs managed by Inclusion-Exclusion, i.e. maximal
jobs.
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j1 j2 j3 j4 j5 j6 j7 j8 j9

maximal jobs

non-maximal jobs

(a) hybrid Inclusion-Exclusion

j1 j2 j3 j4 j5 j6 j7 j8 j9

non-maximal jobs

maximal jobs

(b) DP across subsets calling IE

Figure 4.4: Mixing Inclusion-Exclusion and Dynamic Programming across subsets

We derive the following complexity result.

Proposition 4.6. For an instance I of the F |prmu, prec, rij , d̃ij |fmax problem with |M |
maximal elements, the algorithm computes an optimal solution in O∗(2n||I||m) time and
O∗(2n−|M |||I||m) space.

Proof. There are O∗(2|J ′\M |) = O∗(2n−|M |) downward closed sets of J ′ \M . So, there
are O∗(2n−|M |||I||m) dynamic programming states, and it takes O∗(2n−|M |||I||m) time
and space to compute each NX( ~B, J ′, ε). Besides there are 2|M | terms in the reduced
Inclusion-Exclusion sum corresponding to Equation (4.37) p. 103.

Job precedences do not increase the time bound of the algorithm. But the space bound is
no longer pseudopolynomial. Note that for some particular cases like outtree, where each
job has at most one predecessor and precedences form a forest whose leaves are maximal
jobs, (n− |M |) can be substantially smaller than n. The symmetric situation, intree, can
be managed by reverting jobs and reverting machines.

4.4.2 The case of chains

We now turn to the case where precedences are defined by a set of chains. Suppose there are
c chains of length `1, . . . , `c (possibly 1 for trivial chains). The chains form a partition of the
set of jobs: J = {j1,1 ≺ . . . ≺ j1,`1 , . . . , jc,1 ≺ . . . ≺ jc,`c}. The set of maximal elements
isM = {j1,`1 . . . jc,`c} and |M | = c. For J ′ ⊂ J , downward closed sets of J ′\M are disjoint
unions of beginning of chains, of the form {j1,1 ≺ . . . ≺ j1,n1 , . . . , jc,1 ≺ . . . ≺ jc,nc}
with 0 6 n1 < `1, . . . , 0 6 nc < `c. There are `1 × · · · × `c such sets, which implies the
following result.

Proposition 4.7. For an instance I of the F |prmu, chains, rij , d̃ij |fmax problem,
with c chains of length `1, . . . , `c, the algorithm computes an optimal solution in
O∗(2c`1 · · · `c||I||m) time and O∗(`1 · · · `c||I||m) space.

Note that the result of Proposition 4.7 is not altered when considering, in addition to the
chains, precedence constraints of the form j′ ≺ j where j′ is not the end of a chain and j is
not the beginning of a chain: downward closed sets P are necessarily unions of beginning of
chains, and the additional precedence constraints discard some of them. So, the expression
(`1 · · · `c) remains an upper bound on the number of downward closed sets.
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Proposition 4.7 p. 104 obviously reduces to the result of Proposition 4.3 p. 97 for n trivial
chains of length 1. Knowing only the number c of chains, we derive the following result.

Proposition 4.8. For an instance I of the F |prmu, chains, rij , d̃ij |fmax problem with
c chains, the algorithm computes an optimal solution in O∗(2c 3

√
3
n||I||m) time and

O∗( 3
√

3
n||I||m) space, with 3

√
3 ' 1.4422.

Proof. A product `1 · · · `c of non-negative integers knowing their sum s = `1 + · · ·+ `c is
maximal when all integers (but possibly one) are equal to 3, and the product is bound by
O(3s/3). In our case, s = n.

Minimizing a total cost

The study for the F |prmu, prec, rij , d̃ij |fmax problem can be straightforwardly adapted to
the F |prmu, prec, rij , d̃ij |

∑
fj problem. with time and space complexities multiplied by

the optimum objective value γopt. We derive the following results.

Proposition 4.9. For an instance I of the F |prmu, prec, rij , d̃ij |
∑
fj problem with |M |

maximal elements, the algorithm computes an optimal solution in O∗(2n||I||mγopt) time
and O∗(2n−|M |||I||mγopt) space.

Proposition 4.10. For an instance I of the F |prmu, chains, rij , d̃ij |
∑
fj problem,

with c chains of length `1, . . . , `c, the algorithm computes an optimal solution in
O∗(2c`1 · · · `c||I||mγopt) time and O∗(`1 · · · `c||I||mγopt) space.

Proposition 4.11. For an instance I of the F |prmu, chains, rij , d̃ij |
∑
fj problem with

c chains, the algorithm computes an optimal solution in O∗(2c 3
√

3
n||I||mγopt) time and

O∗( 3
√

3
n||I||mγopt) space.

4.5 Towards non-permutation flowshop

In this section we focus on the F ||Cmax problem which consists in minimizing the makespan
in a non-permutation flowshop.

In the F |prmu|Cmax permutation flowshop problem, operations of different jobs can-
not overtake each other. In other words, there is a common permutation π such that,
for any fixed machine index i, operations (Oij)j are scheduled in chronological or-
der (Oi, π(1), Oi, π(2), . . . , Oi, π(n)). On the contrary, in the non-permutation flowshop
problem F ||Cmax, there are m potentially different permutations π1 . . . πm such that,
for any fixed machine index i, operations (Oij)j are scheduled in chronological order
(Oi, πi(1), Oi, πi(2), . . . , Oi, πi(n)).

The two problems F |prmu|Cmax and F ||Cmax are not equivalent. Fig 4.5 p. 106 shows
a minimal example, taken from Emmons and Vairaktarakis [22], for which the minimal
makespan is smaller in the non-permutation flowshop than in the permutation flowshop.
We consider an instance I, common to both problems, with 4 machines but only 2 jobs. The
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optimal makespan for this instance of the F |prmu|Cmax problem equals 17. We describe the
2! = 2 (semi-active) schedules, both optimal, corresponding to the permutations π = (1, 2)

and π = (2, 1).

π = (1, 2)

1 2
1 2

1 2
1 2

0 5 10 15 17

π = (2, 1)

2 1
2 1
2 1

2 1
0 5 10 15 17

Figure 4.5: An instance of the F4|prmu|Cmax problem and its two optimal solutions

The optimal makespan for the same instance I of the F ||Cmax problem equals 14. We
can therefore improve the makespan by allowing several independent permutations, and
the F ||Cmax problem does not reduce in general to the F |prmu|Cmax problem. Figure 4.6
shows an optimal solution.

1 2
1 2

2 1
2 1

M1

M2

M3

M4

π1 = (1, 2)

π2 = (1, 2)

π3 = (2, 1)

π4 = (2, 1)

}
class A = {M1,M2}}
class B = {M3,M4}

0 5 10 14

Figure 4.6: An instance of the F4||Cmax problem and one of its optimal solutions

On the example of Figure 4.6 we can see that both first permutations are equal and that
both last permutations are equal. It is not a coincidence. According to Emmons and
Vairaktarakis [22], there is always an optimal schedule of the problem F ||Cmax whose first
two permutations are equal and whose last two permutations are equal. Consequently,
the F2||Cmax problem reduces to the F2|prmu|Cmax problem, and the F3||Cmax problem
reduces to the F3|prmu|Cmax problem. As we have seen, this is not the case for a number
of machines m > 4.

4.5.1 Inclusion-Exclusion formulation

We now describe an Inclusion-Exclusion formula suitable for non-permutation flowshop.
For the sake of simplicity, we focus on the F4||Cmax problem, but the formula can be
adapted to other non-permutation flowshop problems.

As we have seen, in this problem we consider 4 machines but only 2 classes of identical
permutations which we call A and B, containing machine numbers, as shown in Figure 4.6.
We choose a representative from each class, for example the machine numbers a = 1 ∈ A
and b = 3 ∈ B. Normally, a (semi-active) schedule S is defined by its operations on all
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machines, but we can reconstitute it from operations on machines a and b only, and finally
it reduces to the list of operations S =

(
(Oa,j1 , . . . , Oa,jn )
(Ob,j′1

, . . . , Ob,j′n )

)
and it is characterized by two

permutations π = (j1, . . . , jn) and π′ = (j′1, . . . , j
′
n).

We consider an admissibility criterion A (S) applied to schedules S. We now seek to cal-
culate, by the Inclusion-Exclusion formula, the number N of (strict) admissible schedules.
As in section 2.1.3, we define a set V of values to cover, a set V ∗ of relaxed schedules, and
the set R = {S ∈ V ∗ | A (S)} of admissible relaxed schedules. We derive N as the number
of covering admissible relaxed schedules.

We actually cannot apply Inclusion-Exclusion to jobs, so instead of jobs we apply it to
operations. From now on we identify the operations and their indices, i.e. we write (i, j)

instead of Oij . Denoting by J = {1, . . . , n} the set of all jobs and by ] the union of two
disjoint sets, we define the set of values to be covered as the set of operations, and we have:

V = {(a, j), j ∈ J} ] {(b, j′), j′ ∈ J} = {a}×J ] {b}×J = {a, b} × J (4.38)

We take for V ∗ the set of lists made of a list of n operations on the machine a and a list
of n operations on machine b, so we define:

V ∗ = ({a} × J)n × ({b} × J)n (4.39)

This amounts to imposing an additional admissibility criterion: operations must be pro-
cessed by machines associated to a in the 1st list and to b in the 2nd list. We use the
name Ω for subsets of operations, i.e. Ω⊂V , and we derive from the Inclusion-Exclusion
formula (2.16) p. 53:

N =
∑
Ω⊂V

(−1)|V |−|Ω| card(R ∩ Ω∗) =
∑

Ω⊂{a,b}×J

(−1)2|J |−|Ω| card(R ∩ Ω∗) (4.40)

This formula can be written in a more symmetric and more explicit way by performing the
change of variables X = {j | (a, j) ∈ Ω}, Y = {j′ | (b, j′) ∈ Ω} ⇐⇒ Ω = {a}×X ] {b}×Y :

N =
∑
X⊂J

∑
Y⊂J

(−1)|J |−|X|(−1)|J |−|Y | card (R ∩ ({a}×X)n × ({b}×Y )n)︸ ︷︷ ︸
NXY

(4.41)

The expression NXY counts the number of admissible relaxed schedules whose jobs of the
1st class of permutations are in X and whose jobs of the 2nd class of permutations are in
Y .

4.5.2 Counting of relaxed schedules

To compute the quantity NXY defined in Equation (4.41), the straightforward idea is to
use a dynamic programming scheme involving release bound fronts ~B. Unfortunately, the
release bound front now depends not only on the previously scheduled operations, but also
on the job of the next operation to be scheduled, as shown by Figure 4.7 p. 108.
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1 2
1 2

∗

~B
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(a) new operation (∗) of job 1

1 2
1 2

∗

~B

0 5 10 14

(b) new operation (∗) of job 2

Figure 4.7: Different release bound fronts when scheduling a new operation

So, a dynamic programming scheme has to integrate a release bound front per job, i.e. we
must compute a number of the form NXY [ ~B1, . . . , ~Bn] instead of NXY [ ~B]. This leads to a
space and time complexity to compute a single NXY quantity in O∗(||I||mn) which is of
no interest. We do not know any better scheme to compute NXY .

4.6 Conclusions

In this chapter, we study exact algorithms to minimize objective functions defined as a
maximum or total regular cost, for permutation flowshop scheduling problems with release
dates and deadlines, i.e. the F |prmu, rij , d̃ij |fmax and F |prmu, rij , d̃ij |

∑
fj problems.

From a theoretical point of view, we focus on bounding worst-case time and space com-
plexities.

The best general time and space complexity bound proved so far is due to Lenté et al.
[50]. It is in O∗(3n) or in O∗(2n||I||) time and space in case of 3-machine permutation
flowshop to minimize makespan without release time nor deadline, i.e. for the F3||Cmax

problem. As for parallel machine scheduling, Jansen et al. [40] get a more general but less
precise result: for the general F |prmu, rij , d̃ij |fmax and F |prmu, rij , d̃ij |

∑
fj problems,

they prove a time and space worst-case complexity in O∗(cn||I||O(1)) for some constant c.

We describe an Inclusion-Exclusion based algorithm for the general F |prmu, rij , d̃ij |fmax

and F |prmu, rij , d̃ij |
∑
fj problems, using dynamic programming for enumerations. As for

parallel machine scheduling, we take care to limit to a polynomial factor the overhead due
to the calculations on the cardinals of sets involved in the Inclusion-Exclusion formula.

Finally, our main result is to describe an algorithm which, for any fixed number of machines
m, runs with a moderately exponential time complexity, comparable to that of Jansen
et al., yet more precise, and especially with an only pseudopolynomial space worst-case
complexity bound. In addition, we extend our algorithm to the case of precedences between
jobs. While the worst-case space complexity of our algorithm is no more polynomial, our
algorithm saves an exponential amount of space compared to the state-of-the-art algorithm
based on dynamic programming across subsets, without degrading the worst-case time
complexity.
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Table 4.8 summarizes the worst-case complexity bounds of our algorithm. We recall that
the optimal objective value γopt is a pseudo-polynomial quantity, and we define µ as the
number of jobs without a successor for the precedence partial order.

Table 4.8: Worst-case complexities for the permutation flowshop problem

problem space time

F |prmu, rij , d̃ij |fmax O∗(||I||m) O∗(2n||I||m)

F |prmu, rij , d̃ij |
∑
fj O∗(||I||mγopt) O∗(2n||I||mγopt)

F |prmu, prec, rij , d̃ij |fmax O∗(2n−µ||I||m) O∗(2n||I||m)

F |prmu, prec, rij , d̃ij |
∑
fj O∗(2n−µ||I||mγopt) O∗(2n||I||mγopt)

Contributions

• From a theoretical point of view, we demonstrate that a very general class of per-
mutation flowshop problems with regular objectives can be solved with a moderately
exponential time worst-case complexity and a pseudopolynomial space worst-case
complexity.

• We extend these results to the case of precedences between jobs, and we derive a
worst-case space complexity which is exponential but lower than the state-of-the-art
complexity, without degrading the worst-case time complexity.

• These results were the subject of three presentations: one at the ROADEF2020 [65]
french conference, another at the PMS2021 [66] international conference, and the
specific result with precedences at the MAPSP2022 [68] international conference.

• These results are pubished in the Journal of Scheduling [71].
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Chapter 5

Inclusion-Exclusion and
Lagrangian Relaxation

Topics

• The great strength of Inclusion-Exclusion is to make it possible to work on schedules
whose permutation constraint has been relaxed. In exchange, it needs to compute
a very expensive, difficult to simplify, sum across subsets, including an exponential
number of terms.

• To benefit from the advantages of Inclusion-Exclusion without bearing the incon-
veniences, we express Inclusion-Exclusion through Lagrangian penalties, instead of
expressing it with a sum across subsets.

• We describe iterative methods to bound the optimal objective of a permutation
scheduling problem based only on the solution of the relaxed problem.

As we saw in chapters 2 and 3, Inclusion-Exclusion is a valuable technique from a theoretical
point of view, which solves a large class of scheduling problems with a moderate-exponential
worst-case time complexity and a pseudopolynomial worst-case space complexity. But from
a practical point of view, Inclusion-Exclusion turns out to be difficult to exploit in its direct
form for the following reasons:

• It requires counting. Obviously, counting the number of schedules which satisfy a
criterion is more difficult than simply knowing if there are any.

• The Inclusion-Exclusion formula requires the computation of a sum with an exponen-
tial number of terms. As we have seen in chapter 2, this sum is difficult to simplify,
especially since it is an alternating sum.

• In general, counting is achieved by evaluating expressions involving sums, which are
difficult to simplify, because all nonzero terms, even of low value, influence the result.
Expressions involving minimums or maximums are easier to simplify, because many
terms are dominated and do not affect the result. This is what makes the success of
techniques like Branch-and-Bound.
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The essence of Inclusion-Exclusion is to enable to relax the permutation constraint. This
is its strength, because it is much easier to work on relaxed schedules than on strict ones.
In particular, from the same mathematical equation we can derive a dynamic program-
ming scheme on strict schedules and another one on relaxed schedules. But the dynamic
programming scheme on strict schedules must include a job subset, which leads to an
exponential number of states, while the same dynamic programming scheme on relaxed
schedules has a pseudopolynomial number of states.

In its traditional form, the principle of Inclusion-Exclusion applied to schedules requires
brutal enumeration of all possible job subsets. In this chapter, we propose to express
the inclusion or exclusion of certain jobs through penalties instead of subsets: a negative
penalty favors the inclusion of a job in a schedule, a positive penalty favors its exclusion.

We restrict ourselves to pure permutation problems, that is, to problems whose solution is
entirely determined by the order of jobs. This is, in particular, the case of single-machine
problems and permutation flowshop problems.

We recall the notations we use: given a job set J = {1, . . . , n}, a strict schedule is a schedule
in which each job appears once and only once, so it is a permutation S = (j1, . . . , jn) ∈ Sn.
On the contrary, a relaxed schedule is a schedule in which the jobs can be absent or
duplicated, so it is an arbitrary list S = (j1, . . . , j`) ∈ J∗ where J∗ =

⋃
`∈N J

`. Note that
the length ` of a relaxed schedule is arbitrary and can be different from n.

Given a problem P = α|β|γ, a schedule, strict or relaxed, is feasible when it meets all the
constraints β of the problem. We denote by R ⊂ J∗ the set of feasible relaxed schedules,
and the set of feasible strict schedules is therefore R∩Sn. The problem P = α|β|γ consists
in finding a strict feasible schedule which minimizes the objective γ.

5.1 Lagrangian relaxation of the permutation constraint

In a founding article, Abdul-Razaq and Potts [1] perform a Lagrangian relaxation of the
permutation constraint of schedules. They are particularly interested in the 1|no-idle|

∑
fj

problem, but their method can be generalized to any permutation problem. We describe
it in general terms, i.e. for a permutation problem P = α|β|γ.

5.1.1 Principles

Each job j is assigned with a penalty λj ∈ R. We denote by λ = (λ1, . . . , λn) the penalty
vector. Penalties are added to the objective to be minimized, and we define the objective
with penalties γλ by:

∀S = (j1, . . . , j`), γλ(S) = γ(S) +
∑
j∈S

λj −
n∑
j=1

λj (5.1)

Note that we subtract the term
∑n

j=1 λj . This term does not depend on the schedule S,
but rather on λ. It will have no influence in the minimization of γλ. But for any strict
schedule S ∈ Sn, the sums

∑
j∈S λj and

∑n
j=1 λj are equal and compensate each other.

So, in this case, we get this very handy equality:

∀S ∈ Sn, γλ(S) = γ(S). (5.2)
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It is useful to define nj(S) as the number of occurrences of job j in schedule S. Formally:

∀ j ∈ J, ∀S = (j1, . . . , j`), nj(S) =
∣∣∣{k ∈ {1, . . . `} | jk = j

}∣∣∣ (5.3)

A schedule is strict if and only if each job appears once and only once:

∀S ∈ J∗, S ∈ Sn ⇐⇒ ∀ j ∈ J, nj(S) = 1 (5.4)

Equation (5.1) p. 112 can be rewritten as:

∀S = (j1, . . . , j`), γλ(S) = γ(S) +

n∑
j=1

(nj(S)− 1)λj (5.5)

and for a strict schedule S, we always have nj(S) = 1 which gives again γλ(S) = γ(S).

Since we have introduced Lagrangian penalties, we are about to solve the Lagrangian dual
problem resulting from the relaxation of the permutation constraint, and there appears
a direct correspondence between Lagrangian problem and Inclusion-Exclusion, which we
develop hereafter.

The primal problem from the Lagrangian point of view corresponds to the strict problem
from the point of view of Inclusion-Exclusion, and consists of computing the strict optimum
objective γopt and a corresponding strict optimal schedule Sopt. Formally:

strict optimum objective: γopt = min
S∈Sn∩R

γ(S) (5.6)

strict optimal schedule: Sopt ∈ Sn ∩R | γ(Sopt) = γopt (5.7)

The Lagrangian dual problem consists in maximizing, when the penalties λ vary, the La-
grangian L(λ) which is the optimum objective of the primal problem in which the permu-
tation constraints are relaxed and replaced by penalties. This latter problem corresponds,
from the point of view of Inclusion-Exclusion, to the relaxed problem with penalties, which
consists of calculating the optimum relaxed objective γoptλ = L(λ) and a corresponding op-
timal relaxed schedule Soptλ . Formally:

relaxed optimum objective: γoptλ = min
S∈R

γλ(S) (5.8)

relaxed optimal schedule: Soptλ ∈ R | γλ(Sopt) = γoptλ (5.9)

We now assume that we can efficiently solve the relaxed primal problem: with fixed penal-
ties λ, compute γoptλ and Soptλ . Ideally, the aim is to solve the strict optimization problem,
i.e. to calculate γopt and to obtain a strict optimal schedule Sopt. Failing this, the aim is
to obtain a lower bound LB 6 γopt as precise as possible, therefore as large as possible.

As γ and γλ coincide on Sn and as R ∩ Sn ⊂ R, we have ∀λ, γoptλ 6 γopt. The idea
is to approach the best possible lower bound derived from a λ, i.e. the Lagrangian dual
optimum supλ γ

opt
λ . Like all Lagrangian methods, this method provides a lower bound

whose quality is limited by the “duality gap” G = γopt − supλ γ
opt
λ .
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5.1.2 Iterations

Abdul-Razaq and Potts approach the Lagrangian optimum supλ γ
opt
λ by a sub-gradient

descent method. Algorithm 5.1 summarizes the method they propose. Some instructions,
such as the computation of coefficient k or the stopping criterion, are left undefined and
will be precisely described later on.

Algorithm 5.1: Computation of a lower bound of the optimum objective by a sub-gradient
descent method

Procedure SubGradientLB :
∀ j, λj ← 0
LB ← LB0 // any lower bound
Initialize coefficient k > 0
repeat

S ← Soptλ // relaxed problem
LB ← max(LB, γoptλ )
if S is strict then

Strict problem solved, S optimal. Stop.
∀ j, λj ← λj + k · (nj(S)− 1) (5.10)
Update coefficient k > 0

until stop criterion;
Result: LB is a lower bound of γopt

Equation (5.10), which corresponds to the sub-gradient descent, is intuitive: for a job j

absent from S, we have (nj(S)− 1) < 0 so, at the next iteration the penalty λj is reduced,
which favors j. On the contrary, for a job j duplicated in S, we have (nj(S)− 1) > 0 so,
λj is increased which penalizes j.

In the ideal case, the algorithm finds a strict optimal schedule, but in general the relaxed
schedule S does not converge towards a strict schedule, and the main result of the algorithm
is therefore LB, a lower bound of γopt. The LB variable can be initialized to any lower
bound of γopt, for example 0 or any easy to compute lower bound, but it is in our interest
to start from a lower bound which is close to the optimum.

The sub-gradient descent method is known for its convergence issues. If the coefficient
k is too small, the method converges slowly. If k is too large, the method oscillates
without converging. So, this method requires fine tuning, which has been the subject of
many studies, in particular by van de Velde [88, p.27], whose formulas are directly used in
Abdul-Razaq and Potts [1]. Here is a possible computation for k: we start by computing
an upper bound UB of the strict optimum objective. It is a priori very easy, as any strict
schedule S ∈ Sn ∩R provides an upper bound UB = γ(S) > γopt. It is still advantageous
to get as close as possible of the strict optimum objective. Once the upper bound UB has
been computed, we consider a variable h > 0 and we take:

k = h
UB − γλ(S)
n∑
j=1

(nj(S)− 1)2

(5.11)
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We start from h = 2, and we divide h by 2 if the computed lower bound does not improve
for a certain number of iterations (e.g. 5). Iterations end when h gets too small (for
example after 10 divisions of h by 2, which corresponds to h 6 2−9 ' 2.10−3). This
completes the description of Algorithm 5.1 p. 114.

5.2 Permutation classes

We introduce a new method to approach the Lagrangian optimum supλ γ
opt
λ . Like the

method of Abdul-Razaq and Potts, it performs an iterative computation of the penalties
λ, and it only requires, at each step, to compute an optimal relaxed schedule for the
corresponding penalties.

5.2.1 Principes

Consider the following relaxed schedule S = (1, 2, 3, 3) which contains 4 jobs and in which
the job 3 is duplicated. Now let us look at all the relaxed schedules which we can form by
swapping the jobs of S. We obtain:

(1, 2, 3, 3) (1, 3, 2, 3) (1, 3, 3, 2) (2, 1, 3, 3)

(2, 3, 1, 3) (2, 3, 3, 1) (3, 1, 2, 3) (3, 1, 3, 2) (5.12)

(3, 2, 1, 3) (3, 2, 3, 1) (3, 3, 1, 2) (3, 3, 2, 1)

All these relaxed schedules are equal to S up to a permutation and their set forms the
permutation class of S. It turns out that the notion of permutation class is a notion of
great importance.

In this example, schedules equal to S up to a permutation are also characterized by this
property: these are the schedules containing exactly one job 1, one job 2, two jobs 3, and
no other job.

Definition 5.1. Two relaxed schedules S and S′ are equivalent, or equal up to a permuta-
tion, which we note S ∼ S′, when each job j appears the same number of times in S and
in S′. Formally:

∀S, S′ ∈ R, S ∼ S′ ⇐⇒ ∀ j ∈ {1, . . . , n}, nj(S) = nj(S
′) (5.13)

The ∼ relation is clearly an equivalence relation, i.e. it is reflexive (S ∼ S), symmetric
(S ∼ S′ ⇔ S′ ∼ S) and transitive (S ∼ S′ ∼ S′′ ⇒ S ∼ S′′). So, we can define the
equivalence classes:

∀S ∈ R, Cl(S) = {S′ ∈ R | S ∼ S′}

As usual with classes, two schedules are equivalent when they share the same class: S ∼
S′ ⇔ Cl(S) = Cl(S′). Moreover, classes form a partition of the set R of feasible relaxed
schedules: R =

⋃
S Cl(S) and S 6∼ S′ ⇒ Cl(S)∩Cl(S′) = ∅. Any schedule S ∈ R belongs

to its class (S ∈ Cl(S)) and only to it. Note that strict schedules form a single class.
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There are far fewer equivalence classes than relaxed schedules. Instead of eliminating non-
optimal schedules individually, we have an interest in eliminating them class by class. For
this, we will exploit the following proposition, very easy but very useful:

Proposition 5.2. The difference between objectives with penalties of two equivalent sched-
ules does not depend on the penalties. Formally:

∀S ∼ S′, ∀λ, γλ(S′)− γλ(S) = γ(S′)− γ(S) independently of λ (5.14)

Proof. Following Equation (5.5) p. 113, we have:

γλ(S′)− γλ(S) = γ(S′)− γ(S) +
n∑
j=1

(nj(S
′)− nj(S))︸ ︷︷ ︸

0

λj

We have S ∼ S′, so ∀ j, nj(S) = nj(S
′) and each coefficient of λj in the sum is null.

In order to concretely visualize this result, we represent on a diagram, in Figure 5.2, the
objectives with penalties of the relaxed schedules, with classes on the horizontal axis and
objectives on the vertical axis. Each dash represents a schedule. We assume that there
are two classes: Cl(S) = {S, S1, S2, S3} and Cl(S′) = {S′, S′1, S′2}. The diagram on the
left corresponds to a penalty vector λ. The diagram on the right corresponds to another
penalty vector λ′.

permutation class

γ
λ

S

S′

∑n
j=1(nj(S)− 1)(λ′j − λj)

∑n
j=1(nj(S

′)− 1)(λ′j − λj)

permutation class

γ
λ′

S

S′

Figure 5.2: Evolution of two permutation classes when penalties change

Here is the geometric translation of Proposition 5.2: when we change penalties from vector
λ to λ′, we shift the class Cl(S) by a certain height (precisely

∑n
j=1(nj(S)− 1)(λ′j − λj))

keeping its shape and the relative position of its schedules. Similarly, we shift the Cl(S′)

class by another height (precisely
∑n

j=1(nj(S
′) − 1)(λ′j − λj)) keeping its shape and the

relative position of its schedules. Changing from λ to λ′ modifies the relative position of
classes but not the relative position of schedules within each class.

The following proposition will enable us to detect that entire classes are dominated, and
to eliminate them of the search for the optimal schedule among the relaxed ones:
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Proposition 5.3. Let S ∈ R be a relaxed schedule, λ and λ′ penalty vectors. If S is
optimal for λ but not for λ′ then no S′ ∼ S is optimal for λ′, in other words the whole
class Cl(S) is dominated for λ′.

Proof. Let S′ ∼ S. As S is optimal for λ, we have γλ(S′) > γλ(S) i.e. γλ(S′)−γλ(S) > 0.
By Proposition 5.2 p. 116, we have γλ′(S′) − γλ′(S) = γλ(S′) − γλ(S) > 0; moreover S is
not optimal for λ′, so γλ′(S′) > γλ′(S) > γoptλ′ , therefore S

′ is not optimal for λ′.

Our aim is to find a lower bound LB which approaches the Lagrangian dual optimum
supλ γ

opt
λ . Thanks to Proposition 5.3, we get a principle to refine our search. Suppose that

a vector of penalties λ and a lower bound LB are already known. We partition the set
R of feasible relaxed schedules in equivalence classes, and we represent schedules, as in
Figure 5.3a, with classes on the horizontal axis and objectives on the vertical axis.

permutation class

γ
λ

LB

S

stricts

(a) Initially: S optimal for λ

permutation class

γ
λ′

LB
S

stricts

(b) Case S optimal for λ′

permutation class

γ
λ′

LB
S

stricts

(c) Case S not optimal for λ′

Figure 5.3: Refining a search for a dual Lagrangian optimum

We solve the relaxed problem for λ, so we find an optimal schedule S = Soptλ for λ. Now,
we assume that we can choose a new penalty vector λ′ which improves the bound, i.e.
such that γλ′(S) > LB. There are two cases: either S remains optimal for λ′, or it is not
anymore.

In the case where S remains optimal for λ′ (Figure 5.3b), we have γoptλ′ = γλ′(S) > LB so,
we increase the bound by taking LB ← γλ′(S), which improves it.

In the case where S is no longer optimal for λ′ (Figure 5.3c), it is guaranteed by Propo-
sition 5.3 that the whole class Cl(S) is dominated. This class is eliminated of the search,
which simplifies the problem.

5.2.2 Algorithm

We derive an iterative method (Algorithm 5.4 p. 118) to compute a lower bound of the
Lagrangian dual optimum. This algorithm is very close in structure to the sub-gradient de-
scent (Algorithm 5.1 p. 114), but the way to update the penalties in statement (5.15) p. 118
is radically different.
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Algorithm 5.4: Computation of a lower bound of the optimum objective by elimination of
permutation classes

Procedure PermutClassLB :
∀ j, λj ← 0
LB ← LB0 // any lower bound
for t← 1, 2, 3, . . . do

St ← Soptλ // relaxed problem
LB ← max(LB, γoptλ )
if S is strict then

Strict problem solved, S optimal. Stop.
Find a new λ such that ∀ t′ 6 t, γλ(St′) > LB (5.15)
if there is no such λ then

Stop

Result: LB is a lower bound of γopt

Each constraint γλ(St′) > LB appearing in instruction (5.15) is a linear inequality of
continuous variables λ1, . . . λn. Indeed, according to Equation (5.5) p. 113, we have:

γλ(St′) > LB ⇐⇒
n∑
j=1

(nj(St′)− 1)︸ ︷︷ ︸
coefficient

λj > LB − γ(St′)︸ ︷︷ ︸
right hand side

(5.16)

Since solving a system of strict inequalities makes little sense with continuous variables, we
transform these strict inequalities into inclusive inequalities by choosing at each iteration
t a value LBt > LBt, where LBt is the value of variable LB at iteration t. Obviously, the
choice of LBt influences the algorithm, and requires tuning: if LBt is too large, there is a
risk of not finding new penalties; if LBt is too small and therefore too close to LBt, the
algorithm may converge very slowly. This tuning is presented in section 5.2.4.

It is convenient to introduce an additional variable M which represents the maximum of
LB during iterations, i.e. M = maxt′6t LBt′ at iteration t. This way, instruction (5.15) is
translated into the following system with continuous variables λ1, . . . , λn and M . Recall
that St is the optimal relaxed schedule found at iteration t, and that γ(St) is its strict
objective.

n∑
j=1

(nj(S1)− 1)λj −M > −γ(S1) (E1)

· · ·
n∑
j=1

(nj(St)− 1)λj −M > −γ(St) (Et)

M > LB1 (E′1)

· · ·
M > LBt (E′t)
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This system of linear inequalities is incremental: variables, i.e. λ1, . . . , λn andM , are fixed
once and for all and we do not add any during the iterations. At each iteration t, we add
a constraint (Et) on λ and M and a constraint (E′t) on M , which reduce the polytope of
solutions. If LB is chosen to be, like LB, increasing during the iterations, then the last
inequality (E′t) on M supersedes all other inequalities (E′1), . . . , (E′t−1).

As it is possible to solve systems of continuous variable inequalities in polynomial time,
and since we are not obliged to recalculate from scratch the solutions of this incremental
system, we can hope to quickly perform each iteration in Algorithm 5.4 p. 118. A linear
system has in general several solutions forming a polytope, therefore it remains to set the
effective choice of a particular solution of this polytope. This setting will be presented in
section 5.2.4.

5.2.3 A simple example

As an example, we run Algorithm 5.4 p. 118 on a small instance of the 1|d̃j |
∑

j wjCj
problem. We are not going into the details now, they will be specified in section 5.3
where this problem will be studied more deeply. This is a strongly NP-hard permutation
problem. Obviously, the makespan of any strict schedule is independent on the order of
jobs and equals Cmax =

∑n
j=1 pj . As a special relaxation, we accept that a relaxed schedule

does not contain exactly n jobs, but we impose that it has the same makespan as a strict
schedule. So, a relaxed schedule S is feasible when it answers the deadlines and when∑

j∈S pj =
∑n

j=1 pj .

We consider an instance with n = 6 jobs, described by Table 5.5. A systematic exploration
of all feasible relaxed schedules shows that there are 3146 schedules, but they are divided
into only 15 classes.

Table 5.5: Sample instance of the 1|d̃j |
∑

j wjCj problem

j pj wj dj

1 47 5 416
2 74 7 252
3 32 1 413
4 90 2 236
5 84 1 376
6 53 6 400

We initially choose the upper bound UB as the objective of a strict feasible schedule, and
we take at each iteration LB = UB + 1. So, we have LB 6 γopt < LB. We take a strict
feasible ordering at random, e.g. S = (6, 4, 2, 5, 1, 3), with objective γ(S) = 4544, yielding
LB = 4545. In a real situation we would use a better heuristic to obtain an upper bound
close to the optimum objective.

Figure 5.6 p. 121 below describes in 5 tables the evolution of penalty vectors and objectives
class by class. The class of strict schedules is represented on the right. For the sake of
simplicity, we do not represent the individual schedules but the classes, by a rectangle de-
scribing the interval of the objectives of its schedules, i.e. class Cl(S) is represented by the
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interval [minS′∼S γλ(S),maxS′∼S γλ(S)]. Classes eliminated during successive iterations
are shown in gray. Of course, this representation is artificial and is not actually computed
by Algorithm 5.4 p. 118; it only illustrates its iterations.
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Iteration # 1:

λ = (0, 0, 0, 0, 0, 0)

Soptλ = (3, 3, 3, 5, 5, 5, 3)

γoptλ = 1364 = new LB

n1...6(Soptλ ) = (0, 0, 4, 0, 3, 0)

Cl(Soptλ ) = class # 3

LB

LB

New λ for iteration # 2:

λ = (0, 0, 1060.3, 0, 0, 0)

γλ

permutation class
0000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration # 2:

λ = (0, 0, 1060.3, 0, 0, 0)

Soptλ = (4, 4, 5, 5, 3)

γoptλ = 1532 = new LB

n1...6(Soptλ ) = (0, 0, 1, 2, 2, 0)

Cl(Soptλ ) = class # 2

LB

LB

New λ for iteration # 3:

λ = (0, 0, 0, 0, 3013.0, 0)
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Iteration # 3:

λ = (0, 0, 0, 0, 3013.0, 0)

Soptλ = (1, 1, 1, 1, 3, 3, 3, 3, 3, 3)

γoptλ = 1137, LB unchanged

n1...6(Soptλ ) = (4, 0, 6, 0, 0, 0)

Cl(Soptλ ) = class # 14

LB

LB

New λ for iteration # 4:

λ = (0, 0, 681.6, 0, 3013.0, 0)
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Iteration # 4:

λ = (0, 0, 681.6, 0, 3013.0, 0)

Soptλ = (6, 4, 4, 6, 1, 1)

γoptλ = 2656 = new LB

n1...6(Soptλ ) = (2, 0, 0, 2, 0, 2)

Cl(Soptλ ) = class # 7

LB

LB

New λ for iteration # 5:

λ = (0, 0, 861.6, 944.3, 2068.7, 0)
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Iteration # 5:

λ = (0, 0, 861.6, 944.3, 2068.7, 0)

Soptλ = (6, 2, 4, 1, 5, 3)

γoptλ = 3689 = new LB

n1...6(Soptλ ) = (1, 1, 1, 1, 1, 1)

Cl(Soptλ ) = class # 15
LB

LB

Soptλ is strict and optimal:

Strict problem solved. Stop.

Figure 5.6: Iterations on permutations classes to derive a lower bound

As can be seen in figure 5.6, the objective of each class evolves iteration after iteration.
The objective of the dominated classes continues to evolve, but above the LB limit. In our
example, iteration #3 does not improve the lower bound, but improves the internal state
of the algorithm because it eliminates class #14 by making it dominated. At iteration #5,
the optimal relaxed schedule is also strict, so the problem is solved to optimality. It is not
always the case: if the duality gap is not null, this situation does not occur and iterations
stop when the system of linear inequalities does not provide a new solution λ.

5.2.4 Penalty update policy

As we saw in section 5.2.2, the solution of strict inequalities (5.16) p. 118 used for updating
λ penalties requires tweaking. Which solution λ shall we choose in the polytope of solutions
of the system of inequalities? How much shall we increase the limit LBt which determines
the right hand sides of strict inequalities to transform them into inclusive inequalities? We
hereafter provide answers to these questions.
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Tuning of the linear inequations

We can simplify the presentation of the system (E1. . . Et, E′1. . . E′t) page 118: the set of
inequalities (E′t′) is equivalent to the single inequality M 6 maxt′∈{1,...,t} LBt′ . Since we
assume that the bounds LBt are increasing during the iterations, this inequality is reduced
to M 6 LBt.

Also, variable M was introduced only to exhibit the incremental character of the system.
Its value does not interest us, and there is always a solution whereM is the largest possible,
i.e. where M = LBt. From a theoretical point of view, we keep the inequality, but from
a practical point of view it is possible to replace it with an equality. Finally, the system
(E1. . . Et, E′1. . . E′t) can be translated as:


n∑
j=1

(nj(St′)− 1)λj −M > − γ(St′) ∀ t′ ∈ {1, . . . , t}

M 6 LBt

 (5.17)

In order to ensure a certain numerical stability, we want to keep the absolute values of λj
as small as possible. With a linear system, it is possible to minimize the absolute value
of a variable v ∈ R: it suffices to write it in the form of two variables: v = v+ − v−

with v+ > 0 and v− > 0, and minimize the linear expression v+ + v−. Thus, we have
v+ = max(0, v), v− = max(0,−v) = −min(0, v) and v+ + v− = |v|. We apply this trick
to each of the variables λj and we get this linear optimization system with 2n continuous
variables λ+

j > 0, λ−j > 0, without counting M > 0:

min
n∑
j=1

(λ+
j +λ−j ) s.t.


n∑
j=1

(nj(St′)−1)(λ+
j −λ

−
j )−M > −γ(St′) ∀ t′∈{1, . . . , t}

M 6 LBt

 (5.18)

In order to save variables, we can mutualize the negative part by considering a single λ−,
equal in absolute value to the largest negative part of a λj , which amounts to setting
λ− = max(0,maxj −λj) = −min(0,minj λj), and ∀ j, λj = λ+

j −λ−, so λ
+
j = λj +λ− > 0.

We get this linear optimization system with n+1 continuous variables λ+
j > 0, λ− > 0

without counting M > 0:

minλ−j +

n∑
j=1

λ+
j s.t.


n∑
j=1

(nj(St′)−1)(λ+
j −λ

−)−M > −γ(St′) ∀ t′∈{1, . . . , t}

M 6 LBt

 (5.19)

In practice, we will systematically use this system. We now have to study the compu-
tation of the bound LBt > LBt imposed, at iteration number t, on the linear system
(E1. . . Et, E′1. . . E′t). We propose three policies: constant bound, constant increment, and
adaptive increment.
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5.2. PERMUTATION CLASSES

Constant bound policy

We have a very great interest, if possible, in making that the optimal relaxed schedule for
penalties λ is in fact strict, because in this case we solve the problem to optimality, which
is much better than just deriving a lower bound on γopt.

In order to promote this possibility, it is in our interest to push the optimum of dominated
relaxed classes beyond the γopt optimum of the strict class. We initially choose any upper
bound UB of γopt, for example the objective of a strict schedule or any other value resulting
of a heuristic. We deduce a strict bound UB > UB. We take at each iteration LBt = UB,
we therefore have LBt 6 γopt < LBt.

The main interest of the constant bound policy is to reduce the number of iterations.
Without this policy, in Algorithm 5.4 p. 118, an optimal class Cl(S) for some penalties
at some iteration may still be optimal at a following iteration: during the iterations, the
objective γλ(S) can only increase, but the objectives γλ(S′) of the schedules S′ 6∼ S of the
others classes can increase even more and exceed γλ(S).

On the contrary, with the constant bound policy, we impose LBt > γopt, so an optimal
relaxed class at an iteration t is necessarily dominated by the strict class in following
iterations, and can never again be the optimal of a relaxed problem, whatever the evolution
of the penalties. Consequently, each iteration definitively eliminates at least one class and
the number of iterations is bounded by the number of classes.

The constant bound policy offers guarantees on the number of iterations but it is a rather
aggressive method in the sense that it imposes a bound LBt potentially much higher
than the dual Lagrangian optimum. We therefore have the risk of obtaining a system of
unfeasible inequalities, to prematurely stop iterations and finally to obtain a bound LB of
perfectible quality.

We now specify the choice of UB. All values UB > γopt are suitable to prevent a non-strict
class from being multiple times optimal. Taking a large value for the bound UB is unlikely
to accelerate the convergence of LB, and strongly constrains the linear system, so risks
to prematurely stop the iterations and to give in the end a poor lower bound LB. We
therefore have an interest in choosing UB close to γopt, or equivalently close to UB, and
we can set UB = UB + δ by adding a value δ > 0, small but numerically not negligible
with respect to UB.

Constant increment policy

This simple policy consists in choosing an increment ∆LB > 0, and systematically setting
LBt = LBt + ∆LB. It can be improved in a simple way, by noticing, as for the constant
bound policy, that it is useless to increase LBt if it already exceeds γopt. So we initially
choose a strict upper bound UB > γopt, and we take:

LBt = min(UB,LBt + ∆LB) (5.20)
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The trouble with this policy is that the choice of increment ∆LB is tricky. If ∆LB is too
large, we risk stopping the iterations too early and to miss the opportunity to improve the
LB bound. There is also a risk of quickly deviating towards the constant bound policy,
although this is not necessarily a disadvantage. According to Equation (5.20) p. 123, the
constant increment policy meets the constant bound policy as soon as LB > UB −∆LB,
which can happen quickly if ∆LB is large.

If, on the contrary, the increment ∆LB is too small, we increase the chances to iterate
and increase the bound LB, but we risk trampling: It may happen that the same relaxed
schedule remains optimal for hundreds of iterations, during which the bound LB increases
by ∆LB at each step. Such a situation leads the method to produce a bound LB of good
quality, but very slowly.

Adaptive increment policy

In order to benefit from the best of the two policies that we have just studied, we propose
an adaptive increment policy. The principle is as follows: we chain phases of constant
increment policy. We start with a large enough increment so that the first phase reduces
to a constant bound policy. Whenever the system of inequalities becomes unsolvable,
we divide the increment by a quotient q, e.g. q = 2, and we go back to the system of
inequalities. Iterations stop when ∆LB becomes too small, i.e. ∆LB < ∆LBmin, where
∆LBmin is a fixed parameter, e.g. ∆LBmin = 1

q .

More precisely, we recall that at each iteration t we solve a system with t constraints
on the λj ’s, determined by the optimal relaxed schedules already seen, and an additional
constraint imposed by the bound LBt. If the system becomes unfeasible at iteration t, we
replace LBt = LBt + ∆LB by LBt = LBt + ∆LB

q < LBt + ∆LB, which has the effect of
decreasing LBt, to relax the system and make it potentially feasible.

This relaxation is perfectly supported by the translation of the system in equa-
tion (5.19) p. 122. It is expensive because the solver must recalculate a new polytope
of solutions instead of reducing it incrementally, but this is the only case where LB de-
creases. In all other cases it increases as initially expected in Algorithm 5.4 p. 118, and
the system is incremental. Note that, under reasonable conditions, e.g. if the ratio ∆LB

γopt is

initially bounded, the number of relaxations is bounded by logq(
γopt

∆LBmin
), so it is low, and

polynomial in the instance size at fixed q and ∆LBmin.

We extend Algorithm 5.4 p. 118 by integrating the adaptive increment policy, and we
obtain Algorithm 5.7 p. 125, parameterized by the constants q and ∆LBmin, as well as by
the initial values LB0 6 γopt, UB0 > γopt, and ∆LB0 > 0.
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Algorithm 5.7: Computation of a lower bound using permutation classes and adaptive
increment policy

Procedure ExtendedPermutClassLB :
∀ j, λj ← 0
LB ← LB0 // any lower bound of γopt

UB ← UB0 // any strict upper bound of γopt

∆LB ← ∆LB0 // any non-negative value
for t← 1, 2, 3, . . . do

St ← Soptλ // relaxed problem
LB ← max(LB, γoptλ )
if S is strict then

Strict problem solved, S optimal. Stop.
λ← optimum of system (5.19) p. 122 with LB = min(UB,LB + ∆LB)
while there is no such λ do

∆LB ← ∆LB/q
if ∆LB < ∆LBmin then

Stop
// the only case where linear system relaxation happens
λ← optimum of system (5.19) p. 122 with LB = min(UB,LB + ∆LB)

Result: LB is a lower bound of γopt

In the general case, Algorithm 5.7 extends Algorithm 5.4 p. 118 in that it does its bests to
resume iterations when a system is unfeasible. Logically, and as we will see in section 5.3,
it performs more iterations but it returns bounds of much better quality.

The constant bound policy and constant increment policy can be easily derived as particular
cases of the adaptive increment policy. To emulate the constant bound policy, choose UB0

and take LB0 = 0, ∆LB0 = UB0, q = 2 and ∆LBmin = ∆LB0 to prevent any linear
system relaxation. The same way, to emulate the constant increment policy, choose ∆LB0

and choose UB0, potentially UB0 = +∞, and take q = 2 and ∆LBmin = ∆LB0. In the
following, we will only use the adaptive increment policy.

5.3 Application to sequencing with no idle times

As a proof of concept, we study the application of permutation class based iterations
(Agorithm 5.7) on some permutation scheduling problems, and we compare the computa-
tion time and the quality of the result compared to the iterative reference method from
Abdul-Razaq and Potts (Agorithm 5.1 p. 114). These two methods are comparable be-
cause they produce the same type of result, i.e. a lower bound of the Lagrangian dual
optimum, based on the same foundations, i.e. the solution of the same relaxed problems
with penalties.

The main difficulty is to efficiently solve relaxed problems with penalties. Since penalties
are a sum of individual costs, it is difficult to combine them with a maximum cost objective,
and easy to combine them with a total cost objective.
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In section 5.3.1, we study the generic solution of Abdul-Razaq and Potts, which applies to
sequencing problems without idle times to minimize a total cost. Then, in section 5.3.2, we
test it on the 1|d̃j |

∑
j wjCj problem consisting in sequencing with deadline to minimize

total weighted completion time. This problem is classic and well known, which makes it a
good platform for experimentation. In particular, we can solve this problem to optimality,
and therefore know, as an indication, the optimal objective, and evaluate the quality of
the lower bounds of our algorithms.

5.3.1 Solution of the relaxed problem

In their article, Abdul-Razaq and Potts [1] propose a method which applies to the
general 1|no-idle|

∑
j fj problem, with individual costs fj not necessarily regular, and

which we straightforwardly extend to the 1|no-idle, d̃j |
∑

j fj problem. Note that, in the
case where the individual costs fj are regular, the 1|d̃j |

∑
j fj problem reduces to the

1|no-idle, d̃j |
∑

j fj problem, because earliest schedules have no idle times and form a dom-
inant set.

The 1|no-idle, d̃j |
∑

j fj problem is a permutation problem with an interesting property: as
idle times are prohibited, the completion time of a job only depends on the set of previously
scheduled jobs, instead of depending on their sequence. In particular, the makespan of a
schedule is necessarily the sum of the processing times of its jobs, regardless of their order.

The makespan of any strict schedule S = (j1, . . . , jn) ∈ Sn is Cmax =
∑n

k=1 pjk which
simplifies to Cmax =

∑n
j=1 pj regardless of S. Abdul-Razaq and Potts [1] exploit this fact,

by relaxing the permutation constraint in a special way. The usual relaxation consists
in accepting all the lists containing exactly n jobs and respecting the deadlines, which
amounts to requiring, if we denote by J∗ the set of job lists of any length:

R =
{

(j1, . . . , j`) ∈ J∗ | ∀ k 6 `,
∑
k′6k

pjk′ 6 d̃jk ∧ ` = n
}

(5.21)

Instead, the relaxation by Abdul-Razaq and Potts consists in accepting the lists of jobs
whose makespan, or sum of processing times, is equal to the common makespan of any
strict schedule, which amounts to requiring:

R =
{

(j1, . . . , j`) ∈ J∗ | ∀ k 6 `,
∑
k′6k

pjk′ 6 d̃jk ∧
∑̀
k=1

pjk =

n∑
j=1

pj

}
(5.22)

Notice that R contains all strict schedules: Sn ⊂ R, and that all elements of R are feasible
schedules.

We recall that the relaxed problem with penalties defined in section 5.1 consists, when
penalties λ are fixed, in minimizing γλ(S) =

∑
j∈S λj+fj −

∑n
j=1 λj therefore to compute

γoptλ = minS∈R γλ(S). Abdul-Razaq and Potts define opt[C] as the minimum objective of
schedules of any length and completion time C. So, we have γoptλ = opt[

∑n
j=1 pj ], and

opt[C] is calculated by dynamic programming.

The only schedule with makespan C = 0 is the empty schedule, whose objective is the
constant γλ(()) = −

∑n
j=1 λj . A non-empty schedule consists of a last job j, preceded by a

prefix. The makespan C is greater than or equal to the processing time of j and less than
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or equal to its deadline. The optimum is the minimum over all feasible j, it can be infinite
if no job j is possible. We derive:

optλ[ 0 ] = −
∑n

j=1 λj (5.23)

optλ[C] = min
j∈{1,...,n}
pj6C6d̃j

(
optλ[C − pj ] + fj(C) + λj

)
for C > 0 (5.24)

The main advantage of this dynamic programming scheme is to be quite efficient: the
number of states does not depend on the cost function and is bounded by the sum of the
processing times. In practice, for benchmarks where the pj ’s are randomly chosen from a
uniform distribution between 1 and 100, the sum of n terms pj is of the order of 50n.

5.3.2 Computational experiments

We focus on the sequencing problem with deadlines to minimize total weighted completion
time, denoted by 1|d̃j |

∑
j wjCj , and introduced in Example 1.3 p. 29. This problem is

strongly NP-hard. As we have seen in section 1.3.3, the state-of-the-art exact algorithm
to solve this problem is due to Shang et al. [81]. It can solve to optimality instances with
up to approximately 130 jobs.

We evaluate iterative algorithms which compute lower bounds. For comparison, we take as
a reference the state-of-the-art algorithm, i.e. the algorithm which computes, by analytical
means, the best lower bound in very short time (say at most O(n2)). To the best of our
knowledge, it is the algorithm of Posner [73] improved by Bagchi and Ahmadi [3]. We
denote this reference algorithm by (REF).

We now describe the algorithms we compare and the values we assign to the param-
eters they use. We denote by (ARP) the method of Abdul-Razaq and Potts (Algo-
rithm 5.1 p. 114), which uses the lower bound LB0, and the upper bound UB appearing in
equation (5.11) p. 114. We denote by (IE) our method resulting from Inclusion-Exclusion,
based on permutation classes, with adaptive increment policy (Algorithm 5.7 p. 125), which
uses the lower bound LB0, the strict upper bound UB0, the initial increment ∆LB0, the
increment divisor q and the minimum increment ∆LBmin.

To determine UB > γopt, we use Smith’s heuristic: from the end to the beginning, among
jobs which do not violate their deadline, schedule the one with the largest ratio pj/wj .
This determines a schedule S, and we take UB = γ(S). To determine the initial value
LB0 of the lower bound, we use the bound provided by the reference algorithm (REF). In
a rather conservative way, we take as strict upper bound UB0 = UB + 1. We also take
∆LB0 = UB0 − LB0, q = 4 and ∆LBmin = 1

q = 1
4 .

Notice that we only present results of our (IE) method for the adaptive increment policy
with these well-balanced parameters. The constant bound policy tends to produce low
quality bounds, and the constant increment policy tends to be slow compared to the
adaptive increment policy, without improving the bound quality. So, the corresponding
results are not worth presenting.

We have implemented the three algorithms (REF), (ARP) and (IE) in C++, using CPLEX
version 20.1 to solve systems of linear inequalities, on a 3Ghz Intel Core processor limited to
a single thread. We tested 1200 randomly selected samples following a protocol described

127



CHAPTER 5. INCLUSION-EXCLUSION AND LAGRANGIAN RELAXATION

by Abdul-Razaq and Potts [1] and taken over by Shang et al. [81], intended to produce
instances with varying levels of difficulty. For each instance, we calculated, by the algorithm
of Shang et al. [81], the exact value γopt of the optimum objective, and the lower bounds.

For each instance size n and each algorithm tested, we have computed the average CPU
time, and the average deviation with respect to the optimum dev = γopt−LB

γopt . Table 5.8
summarizes the results we got. Notice that we do not indicate the memory consumption,
because it is moderate for all the algorithms tested and it is not a bottleneck, so there is
no memory issue.

Table 5.8: Evaluation of the Inclusion-Exclusion based lower bound

CPU deviation
n (ARP) (IE) (REF) (ARP) (IE) (REF)

40 0.6s 3.0s 0.0s 0.58% 0.29% 0.47%
50 1.6s 8.5s 0.0s 0.55% 0.21% 0.33%
60 2.4s 22.3s 0.0s 0.60% 0.19% 0.28%
80 9.4s 94.6s 0.0s 0.63% 0.14% 0.20%

Experimentally, the computation time of our Inclusion-Exclusion based method (IE) seems
to be in Θ(n5), which is quite slow but polynomial. The (ARP) method is faster, but only
10 times faster, regardless of n. The deviation of the bound calculated by our method (IE)
is excellent. It is not only much better than the bound calculated by the (ARP) method,
but it is also systematically better than the reference method (REF).

5.4 Conclusions

Inspired by the concepts of Inclusion-Exclusion, and in particular the relaxation of the
permutation constraint, we have developed a new iterative approach to derive a lower
bound on the optimum objective of a permutation problem.

We conducted testings on the 1|d̃j |
∑

j wjCj problem, i.e. sequencing with deadlines to
minimize total completion times. These tests experimentally showed a computation time
of Θ(n5), which is high but polynomial, and moderate memory consumption. They also
demonstrated that our new method based on Inclusion-Exclusion leads to a better ap-
proximation of the Lagrangian dual optimum than the sub-gradient method, and thus
produces better quality bounds. Additionally, lower bounds produced by this approach
beat in quality the state-of-the-art analytic bounds.

From a theoretical point of view, we applied our method to single-machine problems with
no idle times. We can imagine applying it to other classes of problems, as two-machine
flowshop problems, i.e. F2||

∑
j fj . In this case, the main issue is to solve efficiently the

relaxed problem. Indeed, the straightforward dynamic programming scheme is inefficient,
because it needs to store completion times on both machines, which induces a number of
states quadratic instead of linear in the sum of processing times.
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Our tests were performed in vitro, i.e. standalone. There is still a lot of work to perform
in vivo tests, i.e. to harmoniously integrate our technique in concrete programs. Such
programs must exploit lower bounds and are therefore probably based on the Branch-
and-Bound technique or its extensions. Since most lower bounds are based on analytical
calculations and are therefore very fast, the main challenge is to identify when computing
an Inclusion-Exclusion-based lower bound to cut a branch is worth the extra computation
time.

Since the Inclusion-Exclusion based method constitutes an as-is replacement for the sub-
gradient method, it seems possible to adapt a program exploiting the work of Abdul-Razaq
and Potts. For example, their work has been extended and integrated by Tanaka et al. [83],
who wrote a very efficient program to solve sequencing problems without idle-time, and
which even constitutes the current state of the art in practice for the weighted tardiness
minimization problem.

Thus, there are many perspectives for improving the Inclusion-Exclusion based technique of
permutation classes and integrate it into programs to efficiently solve permutation schedul-
ing problems.

Contributions

• In the context of permutation scheduling problems, we establish a link between
Inclusion-Exclusion and Lagrangian penalties associated with jobs: both use the
same relaxation of the initial problem.

• We develop a new iterative method to compute a lower bound of the optimum ob-
jective of a permutation problem, exploiting only the relaxed problem.

• Compared to sub-gradient methods, this method approaches the Lagrangian dual
optimum more closely and therefore produces better quality lower bounds.

• These results were presented at the ROADEF2022 [70] conference
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Conclusions

In this thesis, we have adapted the Inclusion-Exclusion technique to the field of scheduling.
This technique consists of transforming he initial problem into a multitude of correlated re-
laxed problems and, most of the time, solving each relaxed problem by a pseudopolynomial
dynamic programming scheme. By exploiting the correlations between relaxed problems,
we contributed to a new technique, zero sweeping, enabling to solve all the relaxed problems
together more efficiently than separately.

We have designed Inclusion-Exclusion based algorithms to solve a wide class of scheduling
problems, with any unrelated parallel machine or permutation flowshop environment, with
any release or deadline constraint, with any regular maximum or total cost objective.
From a theoretical point of view, these algorithms achieve a moderate-exponential worst-
case time complexity, along with a pseudopolynomial worst-case space complexity, and
therefore enhance the state of the art of the literature.

More precisely, table 5.9 summarizes the worst-case complexities of our algorithms, in
function of the number of machines m, the instance size n, the instance measure ||I||,
and the optimum objective value γopt, itself polynomial in the instance measure. Thus,
our algorithms achieve a worst-case space complexity in O∗(||I||d) and a worst-case time
complexity in O∗(2n||I||d), where the degree d depends on the problem and on the objective
function.

Table 5.9: Worst-case complexities for parallel machine and permutation flowshop problems

problem space time

R|rij , d̃ij |fmax O∗(||I||) O∗(2n||I||)
R|rij , d̃ij |

∑
fij O∗(||I||γopt) O∗(2n||I||γopt)

F |prmu, rij , d̃ij |fmax O∗(||I||m) O∗(2n||I||m)

F |prmu, rij , d̃ij |
∑
fj O∗(||I||mγopt) O∗(2n||I||mγopt)

We have studied another way of applying Inclusion-Exclusion. The strength of Inclusion-
Exclusion is to replace a permutation problem, intrinsically difficult to solve, by a set
of relaxed problems, much simpler to solve individually. We have made explicit the
link between Inclusion-Exclusion and Lagrangian penalties, based on the same prob-
lem relaxation. We have introduced the notion of Inclusion-Exclusion based permuta-
tion classes, and we have contributed to a new iterative method to approximate the
Lagrangian dual optimum, therefore deriving a lower bound on the optimal objective of a
permutation problem.
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Publications

This thesis has been an opportunity to submit publications to journals, and to expose
presentations at conferences. Table 5.10 summarizes them. Titles have been adapted and
translated.

Table 5.10: Publications submitted and conferences attended during this thesis

reference title

ROADEF2020 [65] An exponential, Inclusion-Exclusion based algorithm
for permutation flowshop to minimize makespan

JOSH [71] Moderate worst-case complexity bounds
for the permutation flowshop scheduling problem
using Inclusion-Exclusion

ROADEF2021 [67] Inclusion-Exclusion based solution
of parallel machine scheduling problems

PMS2021 [66] An Inclusion-Exclusion based algorithm
for the permutation flowshop scheduling problem
with regular objective

JOCO [72] Exponential-time algorithms
for parallel machine scheduling problems

ROADEF2022 [70] Inclusion-Exclusion based Lagrangian iterations
to solve permutation scheduling problems

PMS2022 [69] An Inclusion-Exclusion based
general exponential-time algorithm for the solution
of unrelated parallel machine scheduling problems

MAPSP2022 [68] An Inclusion-Exclusion based algorithm for
permutation flowshop scheduling with job precedences

Perspectives

This work leads us to develop some perspectives, both from theoretical and practical point
of views, both short term and long term. We develop them below.

From a theoretical point of view, chapters 3 and 4 show that parallel machines as well
as permutation flowshop problems can be solved with a worst-case time complexity in
O∗(2n||I||d) and a worst-case space complexity in O∗(||I||d), where the degree d depends
on the problem and the objective, and is derived from table 5.9. Is it possible to combine
both problems together? In this case, we would solve the hybrid flowshop problem, where
each job is processed in m successive stages i = 1, . . . ,m in this order, and where each
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stage i comprisesmi parallel machines. The first difficulty is to combine both problems in a
unified dynamic programming scheme. The second difficulty is to keep the optimization of
chapter 3 with parallel machines, i.e. to obtain a pseudopolynomial part of the complexity
in O∗(||I||) instead of O∗(||I||mi).

Is it possible to extend the results of chapters 3 and 4 to multi-criteria objectives? Multi-
criteria scheduling was popularized by T’kindt and Billaut [84]. It consists in minimizing
several criteria at the same time. The difficulty is that optimization does not lead to a
single minimum objective value, but to several tuples of minimal criteria, called the Pareto
optima. Taking these Pareto optima into account makes countings harder.

In chapter 4, we took into account precedences between jobs, at the cost of a no longer
pseudopolynomial worst-case space complexity, but gaining an exponential factor on the
worst-case space complexity and without degrading the worst-case time complexity. Is
it possible to adapt the management of precedences to parallel machine problems? The
main difficulty is that precedences only influence the order of the jobs in a permutation
flowshop problem, whereas they also influence the assignment of machines to jobs in a
parallel machine problem.

In chapters 3 and 4, we gave upper bounds on worst-case time and space complexities
for parallel machine or permutation flowshop problems. It would be interesting to give
some lower bounds on these complexities. Admitting the Exponential Time Hypothesis
of Impagliazzo and Paturi [38], Jansen et al. [40] showed in general that many scheduling
problems can not be solved in sub-exponential time, i.e. in o(cn) with c > 1. Shang [78]
independently got the same result in the particular case of the three machine flowshop
problem F3||Cmax. Is it possible to get more accurate results, especially to explicit a
constant c? It is a question of fine-grained complexity, and some articles, e.g. Cygan et al.
[19], are investigating similar issues, but much work remains to be done before getting a
response.

Every time we used Inclusion-Exclusion to solve a scheduling problem, we were brought
to apply it to sets of jobs, or possibly tasks, and to count the relaxed schedules by a
dynamic programming scheme involving time fronts. This way of proceeding seems the
most natural, but are there other ways (for example on sets of machines or time intervals),
and if so are they effective?

Moreover, we only used dynamic programming to count relaxed schedules, because count-
ings naturally induce recurrence formulas involving sums, which themselves are expressed
naturally by dynamic programming. As mentioned in section 2.2, we can replace dynamic
programming by power calculations on adjacency matrices in the case of unweighted di-
rected graphs. It seems possible to extend this technique to scheduling problems, consid-
ering, in the usual way, the (weighted) scheduling graph whose nodes are jobs or tasks and
whose arcs are weighted by the processing times, and turning it into an unweighted graph
by adding dummy nodes. Is it possible to get benefits from this technique?

There are other radically different counting techniques. For example, Burnside’s and
Pólya’s theorems allow to perform fine countings in the case of groups operating on sets
(see e.g. Beekman [7]). It seems difficult to apply this technique to scheduling problems,
because, in order to get a group structure, it is necessary to identify symmetries, which
are rare for scheduling problems. But is it really impossible?
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From a more practical point of view, we studied in chapter 5 an iterative algorithm to derive
a lower bound on the optimum objective value of a permutation problem. For now, we
have focused on the 1|d̃j |

∑
wjCj problem. We need to study the speed of convergence and

the quality of the lower bounds obtained for other sequencing problems, as the 1||
∑
wjTj

or 1|rj , no-idle|
∑
fj problems. We can also study permutation flowshop problems, such

as the F2||
∑
Cj problem.

For iterative methods, based on Inclusion-Exclusion or on subgradient descent, to be ef-
ficient, we must be able to quickly solve relaxed problems with penalties. We have an
efficient method using dynamic programming for problems of type 1|no-idle|

∑
fj , but

dynamic programming is inefficient in the case of flowshop problems. Moreover, objec-
tives of type fmax are incompatible with dynamic programming, because a problem of type
α|β|fmax results in a relaxed problem with penalties of type α|β|(maxj fj +

∑
j λj), which

is not nicely handled by dynamic programming. Are there efficient alternative methods to
solve relaxed problems with penalties, such as constraint programming or mixed integer
linear programming?

In the case where the iteration based method we presented in chapter 5 produces bounds
of better quality than the analytical lower bounds, the most promising way to use it is to
integrate it into a Branch-and-Bound algorithm. The challenge is to use this method only
when the improvement of the lower bound compensates the slowness of the computation.
In a Branch-and-Bound algorithm, we know in advance a threshold lower bound ε not
to be exceeded, and we save time by cutting a node of the branching tree when we can
demonstrate that the lower bound LB at this node meets the condition LB > ε. Knowing
ε in advance, we can hope to demonstrate that LB > ε without fully computing LB, thus
saving many iterations.

Finally, our iterative method based on Inclusion-Exclusion is a direct replacement for the
subgradient method, so we can adapt to Inclusion-Exclusion any algorithm exploiting a
lower bound based on the sub-gradient. The current state of the art in practice for the
1||
∑
wjTj problem is due to Tanaka et al. [83], and it explicitly exploits the sub-gradient

based method. It therefore seems promising to adapt this algorithm to our Inclusion-
Exclusion based lower bound.

Here are now some longer-term perspectives for continuing this work: from a theoretical
point of view, we have to develop better mathematical tools for complexity analysis. Cur-
rently, we are often at a loss to analyze the complexity of algorithms. Our upper bounds
are often very coarse, and it may happen to improve the worst-case complexity bounds of
well-known algorithms by improving their analysis, but without modifying them. This is
for example what Björklund et al. [9] did for the traveling salesman problem with a graph
of bounded degree.

Moreover, the worst-case analysis, though very interesting from a theoretical point of view,
is often too disconnected from the real efficiency, and therefore from the practical interest
of an algorithm. Inclusion-Exclusion is an example of this: an Inclusion-Exclusion based
algorithm is often close to the worst case scenario, whereas a Branch-and-Bound based
algorithm is often extremely far from it and more effective in practice, without anyone
knowing how to prove it.
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The average case analysis, the one that best reflects the real efficiency, relies on the ex-
pectation of time and space required to process an instance. It more difficult and less well
mastered than the worst-case analysis, and moreover it relies on the probability of each
instance to occur. It is therefore necessary to integrate these probabilities from the very
beginning of the modeling process of a problem.

From a practical point of view, we must put more efforts on concretely improving scheduling
algorithms and allow them to solve instances of larger sizes. We are only at the beginning:
a lot of problems are currently solved to optimality only for instances of very small sizes.

By comparison, huge progress has been made in Operations Research on problems pre-
viously known for their intractability: we now solve instances of the traveling salesman
problem with several tens of thousands of nodes, and instances of the boolean satisfiability
problem with several tens of thousands of variables, whereas these achievements seemed
forever out of reach a few decades ago.

There is hope in the long term: on some problems, enormous progress has been made. For
example, Carlier’s algorithm [14] enables to solve instances with several thousand jobs for
the sequencing problem 1|rj , d̃j |- with interval constraints. Similarly, the F3||Cmax three-
machine flowshop problem to minimize makespan is solved more and more effectively, and
the current state of the art, due to Gmys et al. [30], solves instances with several thousands
of tasks.

This quest for improvement also involves identifying compromises to accelerate the solution
of problems while keeping them close to reality. For example, considering planar graphs
accelerated the solution of the traveling salesman problem in gigantic proportions. So
there is a lot to be gained by developing models which result in less difficult problems
while remaining realistic.

This thesis is a link in a long scientific chain to bring answers to some of these ques-
tions. The thesis of Shang [78], entitled “Exact Algorithms With Worst-case Guarantee
For Scheduling: From Theory to Practice”, is the previous link in this chain. I am eager
to see the next one.
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Olivier PLOTON

Apports de l’Inclusion-Exclusion à la résolution exacte
ou approchée de problèmes d’ordonnancement

Résumé :
Nous étudions la résolution de problèmes d’ordonnancement par Inclusion-Exclusion.
Cette formule de combinatoire permet d’évaluer le nombre de solutions de problèmes de
couverture ou de permutation, et par contrecoup d’en expliciter des solutions optimales.
D’un point de vue théorique, nous résolvons à l’optimalité et avec une complexité
au pire cas modérément exponentielle en temps et pseudopolynomiale en espace, tout
problème d’ordonnancement à machines parallèles ou d’atelier à cheminement unique,
avec n’importe quelle contrainte temporelle d’intervalle et n’importe quel objectif
régulier du type coût maximum ou coût total.
La force de l’Inclusion-Exclusion est de simplifier des problèmes en relâchant leur
contrainte de couverture. Nous établissons un lien entre Inclusion-Exclusion et pé-
nalités Lagrangiennes, et nous décrivons une nouvelle méthode itérative pour minorer
l’objectif optimum d’un problème de permutation, fondée uniquement sur la résolution
de problèmes relâchés.

Mots clefs: ordonnancement, complexité au pire cas, méthodes exactes, approxima-
tion, Inclusion-Exclusion.

Abstract:
We study the resolution of scheduling problems by Inclusion-Exclusion. This combi-
natorial formula makes it possible to evaluate the number of solutions of coverage or
permutation problems, and consequently to explicit optimal solutions.
From a theoretical point of view, we solve to optimality and with a moderately exponen-
tial worst-case time complexity and a pseudopolynomial worst-case space complexity,
any parallel machine or permutation flowshop scheduling problem, with any interval
time constraint and any maximum cost or total cost regular objective.
The strength of Inclusion-Exclusion is to simplify problems by relaxing their coverage
constraint. We establish a link between Inclusion-Exclusion and Lagrangian penalties,
and we describe a new iterative method to derive a lower bound of the optimum objective
of a permutation problem, based only on the resolution of relaxed problems.

Keywords: scheduling, worst case complexity, exact methods, approximation,
Inclusion-Exclusion.
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