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Introduction & Résumé en français

La cryptographie, des mots grecs κρυπτ óς (kruptós, “caché, secret”) et γράϕειν (graphein,
“écrire”) est la pratique et l’étude des techniques de protection du secret. Avant l’avènement des
systèmes d’information, le rôle de la cryptographie était principalement de fournir des systèmes
de confidentialité. La cryptographie est utilisée depuis l’antiquité dans les opérations militaires,
la diplomatie et l’espionnage. L’un des plus célèbres chiffrement de l’époque est le chiffrement de
César (voir Table 1), qui consiste à décaler les lettres de l’alphabet d’un nombre fixe d’éléments,
les éléments de ponctuation n’étant pas remplacés. Par exemple, la phrase : Caesar's cipher
chiffrée avec un décalage de 3 (A devient D) est Fhdvdu'v flskhu.

Le chiffrement de César est dit monoalphabétique, chaque caractère est toujours remplacé par le
même caractère, e.g. le caractère A sera toujours remplacé par le caractère D. Les chiffrements
monoalphabétiques sont très sensibles aux attaques par analyse de fréquence (Figure 1). Comme
les lettres de l’alphabet n’apparaissent pas uniformément dans les langues, il est possible d’effectuer
une analyse de fréquence sur les symboles du texte chiffré pour établir des correspondances.
L’approche du chiffrement par substitution polyalphabétique, comme le chiffrement autokey
[Bel53] (également connu sous le nom de chiffrement de Vigenère), peut résister à ce type
d’analyse.

Les chiffrements par substitution polyalphabétique permettent de coder un même caractère en
plusieurs caractères différents. Dans le cas du chiffrement autokey, qui a été conçu par Giovan
Battista Bellaso en 1553, le caractère chiffré dépend du caractère en clair, de sa position et d’une
clé de chiffrement. Même simple à mettre en œuvre, ce chiffrement a résisté avec succès aux
attaques jusqu’en 1863, date à laquelle Friedrich Kasiski a publié une méthode [Kas63] pour le
déchiffrer.

Au cours du 19e siècle, Kerckhoffs a publié deux articles de journaux “La Cryptographie Militaire”
[Ker83a; Ker83b] dans lesquels il définit les six principes de conception pour les chiffres militaires.
L’un des plus importants est “Il faut qu’il (le système) n’exige pas le secret, et qu’il puisse sans
inconvénient tomber entre les mains de l’ennemi”. Ce principe a été repris par Claude Shannon

Texte clair A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Text chiffré D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Table 1: Exemple du chiffrement de César avec un décalage de 3. Chaque lettre de l’alphabet est remplacée
par une version décalée de l’alphabet.

1



abcde f gh i j k lmnopqr s tuvwxyz0%

2%

4%

6%

8%

10%

12%

(a) L’analyse fréquencielle de Roméo et Juli-
ette (version anglaise) (le texte est diponible à
http: // shakespeare. mit. edu/ romeo_ juliet/
full. html ).

abcde f gh i j k lmnopqr s tuvwxyz0%

2%

4%

6%

8%

10%

12%

(b) L’analyse fréquentielle des quatre premières
phrases l’introduction (version anglaise) “Cryptogra-
phy, from [. . . ] not replaced.” chiffrées avec le chiffre-
ment de César.

abcde f gh i j k lmnopqr s tuvwxyz0%

2%

4%

6%

8%

10%

12%

de f gh i j k lmnopqr s tuvwxyzabc

(c) La superposition des deux analyses fréquentielles
lorsque les symboles du texte chiffré sont décalés de
3 à gauche.

Figure 1: Une simple analyse de fréquence d’un texte chiffré avec César. Comme les lettres sont toujours
chiffrées avec le même symbole, la fréquence des symboles doit correspondre à la distribution naturelle
des lettres d’une langue spécifique, dans notre cas, la langue anglaise. Dans cet exemple, nous analysons
les fréquences des lettres de Roméo et Juliette, ce qui donne la Figure 1a. Ensuite, nous analysons les
fréquences des symboles d’un texte chiffré par César (Figure 1b). Comme montre la Figure 2c, les deux
analyses correspondent assez bien lorsqu’on déplace l’analyse des fréquences du texte chiffré de 3 symboles
vers la gauche. Comme nous savons que C n’effectue qu’un décalage, nous pouvons interpoler que la clé du
texte chiffré est 3.

2 Introduction
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sous la forme “l’ennemi connaît le système” dans [Sha49]. Depuis lors, les chiffrements ont été
conçus de manière à ce que la clé soit le seul élément maintenu secret (en théorie) qui soit
nécessaire pour déchiffrer les messages, en supposant que l’attaquant ait connaissance du système
de chiffrement utilisé.

Le développement des moyens de communication, télégraphe, téléphone et radio, ainsi que les
deux guerres mondiales ont porté la cryptographie à un rang supérieur. Elle devient alors un
outil stratégique indispensable. En 1917, le ministre allemand des Affaires étrangères Arthur
Zimmermann a envoyé un télégramme crypté à l’ambassadeur allemand au Mexique, Heinrich
von Eckardt. Ce télégramme demande à l’ambassadeur de contacter les autorités mexicaines
pour créer une alliance contre les États-Unis. Ce télégramme est déchiffré par les Britanniques et
transmis aux États-Unis, ce qui accélère l’entrée du pays dans le conflit.

Alors que le chiffrement/déchiffrement était souvent effectué à la main pendant la Première
Guerre mondiale, ce qui entraînait des erreurs et des retards, la Seconde Guerre mondiale a
apporté l’automatisation nécessaire à l’utilisation généralisée de la cryptographie. L’utilisation
massive des machines Enigma, Lorenz SZ 40 et SZ 42 par l’armée et les officiers supérieurs
allemands a placé la cryptanalyse sur la liste des priorités des Alliés. Le développement de bombes
cryptographiques par les Polonais, puis la reprise de leurs travaux par Alan Turing à Bletchley
Park (Royaume-Uni), ont conduit à l’essor de la cryptographie et de la cryptanalyse à l’aide de
systèmes informatiques. Cela a conduit, par exemple, aux ordinateurs électroniques Colossus
Mark I et Colossus Mark II, conçus pour casser le code Lorenz.

De nos jours, la cryptanalyse a un historique sans cesse croissant de failles et d’attaques auxquelles
les nouveaux chiffrements doivent faire face. Dans ce contexte, il devient important de trouver de
nouvelles méthodes et de nouveaux outils permettant à la fois de trouver les failles lorsqu’elles
existent et, si possible, les moyens de les corriger.

D’autre part, le développement de l’informatique et des techniques algorithmiques a permis de
résoudre des problèmes de plus en plus complexes.

La programmation par contraintes (CP) est l’un des paradigmes de programmation visant
à résoudre des problèmes NP-difficiles. Elle a deux facettes : la modélisation, qui consiste à
représenter les problèmes au moyen de variables et de contraintes, et la résolution, qui consiste à
trouver les solutions. L’une des premières utilisations des contraintes se trouve dans la thèse de
doctorat d’Ivan Sutherland, où il décrit le système Sketchpad [Sut63]. Ce système permettait aux
utilisateurs de dessiner et de manipuler des objets graphiques contraints sur un écran d’ordinateur.
Depuis lors, la programmation par contraintes a été développée et appliquée à une grande variété
de domaines, allant de la planification et du routage de véhicules à la bio-informatique en passant
par d’autres domaines. Deux autres approches déclaratives bien connues pour résoudre des
problèmes NP-difficiles sont la programmation linéaire en nombres entiers (ILP) et le problème
de satisfaisabilité booléenne (SAT).

Dans des recherches récentes, ces approches déclaratives ont été efficacement appliquées aux
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problèmes de cryptanalyse [SNC09; Mou+11; GMS16]. Les approches déclaratives permettent de
modéliser les problèmes de cryptanalyse dans une formulation proche des outils utilisés par les
cryptographes tout en bénéficiant de techniques de résolution éprouvées. Cette approche permet
de concilier efficacité de calcul, simplification de la modélisation et fiabilité.

Résumés des Chapitres
Cette thèse a été réalisée dans le cadre du projet ANR Décrypt, dont les enjeux principaux sont :

• d’étudier et de comparer les performances des approches déclaratives existantes (SAT,
ILP et CP) ;

• d’améliorer le passage à l’échelle des solveurs CP pour résoudre les problèmes de crypt-
analyse symétrique ;

• concevoir de nouvelles procédures d’explication
• améliorer les attaques existantes et construire de nouveaux algorithmes qui résistent à ces

attaques en utilisant les solveurs CP.

Nos principaux objectifs dans cette thèse étaient d’améliorer le passage à l’échelle des solveurs
CP, ce qui est effectué dans les Chapitres 4 et 5, et d’améliorer les attaques existantes, ce qui
est fait dans les Chapitres 4, 6 et 7.

État de l’art
Cette thèse commence par un aperçu scientifique des connaissances nécessaires à la compréhension
de ce travail.

Cryptanalyse
Dans le Chapitre 1 nous présentons ce que sont les chiffrements et plus particulièrement les
chiffrements symétriques par blocs qui sont les chiffrements sur lesquels nous avons travaillé.
Nous introduisons également les notions d’attaques différentielles qui sont des attaques largement
répandues de nos jours.

Programmation par contraintes
Le Chapitre 2 introduit les notions essentielles de la programmation par contraintes ainsi que les
méthodes de résolution de base.

4 Introduction



Modèles de CP existants pour résoudre problèmes de cryptanalyse différentielle
Le Chapitre 3 présente deux modèles CP existants qui ont été améliorés et adaptés dans le cadre
de cette thèse, à savoir le modèle d’attaque différentielle à clés apparentées de Gérault et al. pour
l’AES, et le modèle d’attaque boomerang de Delaune et al. pour Skinny.

Contributions
Cryptanalyse différentielle de Rijndael
Dans le Chapitre 4, nous étendons le modèle de Gerault et al. [Gér+20] du cas d’AES au
cas Rijndael (AES et Rijndael sont présentés dans la Section 1.2.1), qui inclut davantage de
configurations disponibles. Nous améliorons également les performances en entrelaçant mieux
les deux étapes du processus de résolution, ce qui nous permet de résoudre toutes les instances
de Rijndael sauf une. Nous donnons de nouvelles limites pour les distinguateurs de Rijndael et
trouvons deux nouvelles attaques sur ce chiffrement.

Abstract XOR
Dans le Chapitre 5, nous introduisons une nouvelle contrainte globale, nommée AbstractXOR,
permettant de mieux propager un ensemble d’équations xor lors de la recherche d’une car-
actéristique différentielle tronquée. Nous prouvons que la vérification de la contrainte globale
AbstractXOR est un problème NP-complet et nous fournissons un algorithme en temps poly-
nomial pour résoudre un problème relaxé. Nous appliquons nos nouvelles contraintes à la fois
aux chiffrements AES et Midori (qui est présenté dans section 1.2.2). Nous concluons ce chapitre
par une comparaison entre cet outil et un processus de résolution en deux étapes utilisant les
solveurs SAT et CP.

Attaques boomerang automatiques sur Rijndael
Dans le Chapitre 6, nous adaptons le modèle d’attaque boomerang de Delaune et al. [DDV20] au
chiffrement Rijndael en utilisant la modélisation effectuée dans le Chapitre 4. Ce Chapitre est
composé de deux parties principales. Premièrement, nous décrivons comment nous l’adaptons
à Rijndael. Ensuite, nous donnons de nouvelles limites pour les distinguateurs boomerang de
Rijndael et une nouvelle attaque sur 9 tours de Rijndael avec la taille de bloc = 128 bits et la
taille de clé = 160 bits.

Attaques rectangles automatiques sur les chiffrements Feistel: Application à
WARP
Dans le Chapitre 7, nous étendons le modèle boomerang de Delaune et al. aux chiffres de Feistel
en utilisant le travail de Boukerrou et al. [Bou+20]. Nous appliquons notre modélisation aux
chiffrements WARP, TWINE et LBlock–s. Cette modélisation nous permet de trouver de nouveaux
distinguateurs pour ces trois chiffrements. Nous intégrons également la phase KeyRecovery dans
notre modèle pour le chiffrement WARP, ce qui nous permet de trouver une nouvelle attaque
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rectangle pour ce chiffrement.

Conclusion
Enfin, nous concluons cette thèse de doctorat par un examen et une analyse de nos contributions
et nous indiquons les éventuelles possibilités de recherches futures.

Publications.
• Les contributions décrites dans Differential Cryptanalysis of Rijndael ont été publiées dans

[RS22; Rou+22].
• Les contributions décrites dans Abstract XOR ont été publiées dans [RS19; RS20].
• Les contributions décrites dans Automatic Boomerang Attacks on Rijndael sont en cours

de soumission.
• Les contributions décrites dans Automatic rectangle attacks on Feistel ciphers: Application

to WARP ont été publiées dans [LMR22].
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Introduction

Cryptography, from the Greek words κρυπτ óς (kruptós, “hidden, secret”) and γράϕειν (graphein,
“to write”) is the practice and study of secret communication techniques. Before the advent of
information systems, the role of cryptography was mainly to provide systems of confidentiality.
Cryptography has been used since antiquity in military operations, diplomacy and espionage.
One of the most famous ciphers of the time being Caesar’s cipher (see Table 2), which consists
in shifting the letters of the alphabet by a fixed number of elements, the punctuation elements
are not replaced. For example, the sentence: Caesar's cipher encrypted with a shift of 3 (A
becomes D) is Fhdvdu'v flskhu.

Caesar’s cipher is called monoalphabetic, each character is always replaced by the same character,
e.g. the character A will always be replaced by the character D. Monoalphabetic ciphers are very
susceptible to frequency analysis attacks (Figure 2). As the letters of the alphabet do not appear
uniformly in languages, it is possible to perform frequency analysis on the ciphertext symbols to
establish matches. The polyalphabetic substitution cipher approach, such as the autokey cipher
[Bel53] (also known as Vigenère cipher), can withstand this type of analysis.

Polyalphabetic substitution ciphers allow the same character to be encoded into several different
characters. In the case of the autokey cipher, which was designed by Giovan Battista Bellaso in
1553, the encrypted character depends on the plaintext character, its position and an encryption
key. Even simple to implement the cipher resisted sucessfully to attacks until 1863 when Friedrich
Kasiski published a method [Kas63] for deciphering it.

During the 19th century, Kerckhoffs published two journal articles “La Cryptographie Militaire”
[Ker83a; Ker83b] in which he defined the six design principles for military ciphers. One of the
most important state is “It (the system) must not require secrecy, and must be able to fall into
the hands of the enemy without difficulty”. This has been taken by Claude Shannon as “the
enemy knows the system” in [Sha49]. Since then, ciphers have been designed so that the key is
the only element (in theory) that can be used to decipher messages, assuming that the attacker
has knowledge of the encryption system used.

Plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Ciphertext D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Table 2: Exemple of caesar’s cipher when the shift is 3. Each letter of the alphabet is replaced with a
shifted version of the alphabet.
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abcde f gh i j k lmnopqr s tuvwxyz0%

2%

4%

6%

8%

10%

12%

(a) The frequency analysis of Romeo and Juliet
(the text is available at http: // shakespeare. mit.
edu/ romeo_ juliet/ full. html ).

abcde f gh i j k lmnopqr s tuvwxyz0%

2%

4%

6%

8%

10%

12%

(b) The frequency analysis of the four first sentences
of this thesis “Cryptography, from [. . . ] not replaced.”
ciphered with caesar.

abcde f gh i j k lmnopqr s tuvwxyz0%

2%

4%

6%

8%

10%

12%

de f gh i j k lmnopqr s tuvwxyzabc

(c) Superposition of the two frequency analysis when
shifting the ciphertext symbols of 3 to the left.

Figure 2: A simple frequency analysis of a ciphertext ciphered with caesar. As letters are always ciphered
to the same symbol, the frequency of the symbols should match the natural distribution of the letters of
a specific language, in our case the english language. In this example we analyze the letter frequencies
of Romeo and Juliet, which gives the Figure 2a. Then we analyze the symbol frequencies of a ciphertext
ciphered by caesar (Figure 2b). As shown in Figure 2c, the two analysis match quite well when shifting the
frequency analysis of the ciphertext of 3 symbols to the left. As we know that caesar only performs a shift,
we can interpolate that the key of the ciphertext is 3.

8 Introduction

http://shakespeare.mit.edu/romeo_juliet/full.html
http://shakespeare.mit.edu/romeo_juliet/full.html


The development of the means of communication, telegraph, telephone, and radio, as well as the
two world wars brought cryptography to a higher rank. It then became an indispensable strategic
tool. In 1917, the German Foreign Minister Arthur Zimmermann sent an encrypted telegram to
the German ambassador to Mexico, Heinrich von Eckardt. The telegram asked the ambassador to
contact the Mexican authorities to create an alliance against the United States. The telegram was
deciphered by the British and forwarded to the United States, which accelerated the country’s
entry into the conflict.

While encryption/decryption was often done by hand during the First World War, leading to
errors and delays, the Second World War brought the automation necessary for the widespread
use of cryptography. The massive use of the Enigma, Lorenz SZ 40 and SZ 42 machines by the
German army and senior officers put cryptanalysis on the priority list of Allies. The development
of cryptographic bombs by the Poles, and the subsequent revival of their work by Alan Turing at
Bletchley Park (UK), led to the rise of cryptography and cryptanalysis using computer systems.
This led, for example, to the Colossus Mark I and Colossus Mark II electronic computers, designed
to break the Lorenz code.

Nowadays, cryptanalysis has an ever-growing history of flaws and attacks that new ciphers have
to deal with. In this context, it becomes important to find new methods and tools to both find
flaws when they exist and, if possible, ways to fix them.

On the other hand, the development of computer science and algorithmic techniques has made it
possible to solve increasingly complex problems.

Constraint programming (CP) is one of the programming paradigms aimed at solving NP-Hard
problems. It has two faces: modelling, which consists in representing the problems by means of
variables and constraints, and solving, which consists in finding the solutions. One of the first
uses of constraints was in the PhD thesis of Ivan Sutherland, where he described the Sketchpad
system [Sut63]. This system allowed users to draw and manipulate constrained graphical objects
on a computer screen. Since then, constraint programming has been developed and applied to
a wide variety of fields, ranging from planning and vehicle routing to bioinformatics and other
areas. Two other well known declarative approaches for solving NP-Hard problems are Integer
Linear Programing (ILP) and Satisfiability Boolean formula (SAT).

In recent research, these declarative approaches have been effectively applied to cryptanalysis
problems [SNC09; Mou+11; GMS16]. Declarative approaches allow cryptanalysis problems to
be modelled in a formulation close to the tools used by cryptographers while benefiting from
proven solution techniques. This approach allows to reconcile computational efficiency, modelling
simplification and reliability.

This thesis was carried out within the framework of the ANR Decrypt project, the main issues of
which are:

• to study and compare the performances of existing declarative approaches (SAT, ILP and
CP);
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• to improve the scaling of CP solvers to solve symmetric cryptanalysis problems;
• to design new explanation procedures;
• to improve existing attacks and build new algorithms that resist these attacks using CP

solvers.

Our main goals in this PhD thesis were to improve the scaling of CP solvers, which is done in
Chapters 4 and 5, and to improve existing attacks, which is done in Chapters 4, 6 and 7.

This thesis starts with a scientific overview of the knowledge needed to understand this work.

In Chapter 1 we present what ciphers are and more specifically symmetric block ciphers which
are the ciphers we have been working on. We also introduce the notions of differential attacks
which are widely known attacks nowadays.

Chapter 2 introduces the essential notions of constraint programming as well as the basic solution
methods.

Chapter 3 introduces two already existing CP models that have been improved and adapted in
this PhD thesis, i.e., the related-key differential attack model of Gérault et al. for the AES, and
the boomerang attack model of Delaune et al. for Skinny.

In Chapter 4 we extend the model of Gerault et al. [Gér+20] from the AES case to the Rijndael case
(AES and Rijndael are presented in Section 1.2.1), which includes more available configurations.
We also improve the performance by better interleaving the two Steps of the solution process which
allows us to solve all Rijndael instances but one. We give new bounds for Rijndael distinguishers
and find two new attacks on this cipher.

In Chapter 5 we introduce a new global constraint, named AbstractXOR, allowing to better
propagate a set of xor equations when searching for a truncated differential characteristic. We
prove that checking the global constraint AbstractXOR is an NP-complete problem and we
provide a polynomial time algorithm to solve a relaxed problem. We apply our new constraints on
both Rijndael and Midori (which is presented in section 1.2.2) ciphers. We conclude this chapter
by a comparison between this tool and a two Step solution process using both SAT and CP
solvers.

In Chapter 6 we adapt the boomerang attack model of Delaune et al. [DDV20] to the Rijndael
encryption using the modelling done in Chapter 4. The chapter is composed of two main parts.
Firstly we describe how we adapt it to Rijndael. Secondly we give new bounds for boomerang
distinguishers of Rijndael and one new attack on 9 rounds of Rijndael with the block size = 128
and the key size = 160.

In Chapter 7 we extend the boomerang model of Delaune et al. to the Feistel ciphers using
the work of Boukerrou et al. [Bou+20]. We apply our modelling to the WARP, TWINE and
LBlock–s ciphers. This modelling allows us to find new distinguishers for the three ciphers. We
also integrate the KeyRecovery phase in our model for the WARP cipher, which allows us to find
a new rectangle attack for this cipher.
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Finally, we conclude this PhD thesis with a review and analysis of our contributions and indicate
possible further research opportunities.

Publications.
• The contributions described in Differential Cryptanalysis of Rijndael have been published

in [RS22; Rou+22].
• The contributions described in Abstract XOR have been published in [RS19; RS20].
• The contributions described in Automatic Boomerang Attacks on Rijndael are currently

under submission.
• The contributions described in Automatic rectangle attacks on Feistel ciphers: Application

to WARP have been published in [LMR22].
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Notations

For iterative block cipher states, we define the following index notations:

• i stands for the round index,
• j stands for the row index,
• k stands for the column index.

Unless stated otherwise, all the data collections are indexed from 0.

Symbol Description

⊕ is the bitwise xor operation
x[k] is the kth value of the sequence x. X[i] stands for the binary matrix of the state at round i

when X denotes the state of an iterative block cipher.
x[y..z] is the subsequence from the yth to the zth (included) element of x
x[y..z[ is the subsequence from the yth to the zth (excluded) element of x
M [j, k] is the element at the jth row and the kth column of the matrix M
S[i, j, k] is the element at the ith round, the jth row and the kth column of the state S
Pr[E] is the probability of the event E

#S is the cardinality of the set S
[x; y] is the closed range from x to y
[x; y[ is the half-open range from x to y (exclusive)
A||B is the binary string concatenation of A and B
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1 Cryptanalysis
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Cryptography is the science of making communications secure against possible threats. It has
many goals such as:

• data integrity, i.e. ensuring accuracy and consistency of the data,
• data authenticity, i.e. ensuring the data sources,
• data confidentiality, i.e. ensuring that data is accessible only to authorized entities,
• non-repudiation, i.e. ensuring that an author cannot revoke the paternity of his production,

and his ownership cannot be disputed.

Cryptanalysis is the mirror twin of cryptography since its aim is to check cryptography rules by
trying to break them. In our case, we are mainly focused on the analysis of symmetric ciphers,
and our goal is to challenge ciphers about the first rule: data confidentiality.
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Cryptography

Asymmetric ciphers ProtocolsSymmetric ciphers

Block ciphers Stream ciphers

Figure 1.1: Overview of the field of cryptology [Chr10, p.3]

Since our work is only focused on symmetric ciphers, we introduce in this chapter the notion
of symmetric ciphers. We also present two main classes of symmetric cipher constructions that
are Substitution–Permutation Networks (SPN) and Feistel constructions and we describe
the different ciphers considered in the thesis, i.e. Rijndael, Midori, WARP, TWINE and LBlock–s.
Finally, we introduce differential cryptanalysis [BS91] which exploits relations between input and
output differences to mount attacks.

1.1 Symmetric Ciphers
Symmetric ciphers, or secret key ciphers, are so called in contrast to asymmetric ciphers. While
asymmetric ciphers use separate keys for ciphering and deciphering, symmetric ciphers use the
same (secret) key to cipher and decipher messages. The key for symmetric ciphers is called the
secret key because it can decipher any message ciphered by it (provided the same cipher is used)
and thus must be kept secret. Two main kinds of symmetric ciphers are block ciphers and stream
ciphers (Figure 1.1). While block ciphers work on fixed length plaintexts, stream ciphers [PP10]
work on plaintexts with arbitrary lengths. In this PhD. thesis, we focus on block ciphers. Indeed,
block ciphers may be transformed into stream ciphers by using modes of operations.

1.1.1 Modes of operation
Block ciphers can only cipher plaintexts with a fixed size. In practice we want to cipher data for
which we do not control the size. Modes of operation are functions that transform block ciphers
into stream ciphers by indicating how to apply the block ciphers to a plaintext stream.

The example below, which is not secure, uses the Electronic Codebook (ECB) encryption mode:
each input block is therefore a sub-part of size n of the original message and each ciphered block
corresponds to the ciphering of the corresponding input block.
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Example 1.1

We try to cipher the message: "helloworld", with a custom - unsafe - block cipher with
n = 32 bits. If we represent the message with the ASCII encoding, we can encode each
symbol with 8 bits and the decimal representation of the message becomes:

[104, 101, 108, 108, 111, 119, 111, 114, 108, 100]

As our block cipher works on n = 32 bits blocks, we will cipher the message by grouping
the bits in chunks of 32 bits (note that we must fill the last chunk with defined values to
reach the n bits), the message is then sliced in three sub-parts:

hell owor ldaa

[[104, 101, 108, 108], [111, 119, 111, 114], [108, 100, 97, 97]]

After applying the cipher on each block we obtain three ciphered blocks of 32 bits :

[[117, 115, 97, 98], [98, 107, 100, 104], [121, 114, 112, 113]]

Finally we concatenate the three ciphered blocks, convert them with our initial ASCII
encoding and get the following ciphered text: usabbkdhyrpq.

Modes of operation must be strongly defined as they may introduce weakness in the cipher
process. As shown in Figure 1.2, the plaintext message “SECRET” represented in the picture
can be seen after being ciphered by AES and the Electronic CodeBook (ECB) [MVV18] mode
of operation, while the same message looks like random noise after being ciphered by AES and
the Cipher Block Chaining Mode (CBC) [Ehr+78]. The main known modes of operation are:
the Electronic CodeBook, the Cipher Block Chaining Mode, the Output Feedback Mode (OFB)
[Mod80], the Cipher Feedback Mode (CFB) [Mod80] and the Counter Mode (CTR) [Dwo01].

(a) The plaintext bitmap picture. (b) The ciphertext bitmap picture
ciphered with AES and ECB. We ob-
serve that the mode of operation is
not efficient, since anyone can see
the original pattern through the ci-
phertext directly.

(c) The ciphertext bitmap picture ci-
phered with AES and CBC, here the
picture appears to be more like ran-
dom noise and doesn’t give much in-
formations to the attacker.

Figure 1.2: The ciphering of a bitmap picture using AES and two mode of operations: ECB and CBC.
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1.1.2 Block ciphers
Block ciphers are so called because they cipher messages in portions of a fixed size. More formally,
a block cipher is defined by a ciphering function E that takes two inputs, i.e. a key K of size k
bits and a block input M , called plaintext, of size n bits. It returns a ciphertext C of size n bits.

Definition 1.1: Block cipher

EK(M) = E(K,M) : {0, 1}k × {0, 1}n → {0, 1}n and C = EK(M)

The deciphering function associated to E, denoted D, is the inverse function of E. It takes as
input a ciphertext C of size n, the same key (used for ciphering) K of size k and returns the
original plaintext M of size n.

Definition 1.2: Associated deciphering function of a block cipher

DK(C) = D(K,C) = E−1
K (C) : {0, 1}k × {0, 1}n → {0, 1}n

with M = DK(C) and ∀K,DK(EK(M)) = M

1.1.3 Building a cipher function
In 1949, Shannon identifies two important properties in a cipher method:

the diffusion property: which means how much the plaintext bits are shuffled with the ci-
phertext bits,

the confusion property: which means how much it is complicated to find back the key bits
from the plaintext bits.

To ensure that these two properties are satisfied in a cipher algorithm, a common approach is to
use simple cipher function composition to create a more complex cipher function. One of the most
common approaches is to create an iterative block cipher. A round function round is repeated for
a given number of times Nr, hence the cipher function is EK = roundNr−1 ◦ ... ◦ round1 ◦ round0.
To avoid repeating the exact same function Nr times it is possible to add sub-keys generated
from the master key K between each round function. The cipher becomes:

cipher0 = round0(M,k0)

cipheri = roundi(cipheri−1, ki)

EK(M) = cipherNr−1

To generate such sub-keys k0, k1, ..., kNr−1 cipher algorithms include a KeySchedule function
(Figure 1.3) that generates sub-keys from the initial key K. In such case, the initial key is called
master key and the Nr keys are called sub-keys or round-keys. Moreover it is necessary to add
round constants to avoid slide attacks [BW99] that could differentiate each round.
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Figure 1.3: Iterative construction of a block cipher [Jea15].

1.2 Substitution-Permutation Network
SPN, for Substitution-Permutation Network, is a well known family of block ciphers that works
with two components which are the substitution layer and the permutation layer. The alternation
of the substitution layer and the permutation layer multiple times ensures the diffusion and the
confusion properties because of the avalanche effect [Fei73].

The substitution layer is generally composed of parallel S-Boxes, which are bijective. Each S-Box
takes as input a fixed sequence of m bits, generally a byte (8 bits) or a nibble (4 bits), of the
text and transforms it into another word of m bits. It is possible to encode the S-Boxes with a
lookup table of 2m words of m bits each, in such case the output value sx = SB[x] where SB is the
lookup table. S-Boxes are an important function in cipher algorithms. They must be non-linear
and carefully designed to avoid cryptanalysis attacks.

The permutation layer is typically classified as compression, expansion and straight. It is classified
as compression when it takes more input bits than it generates output bits, on the opposite it
is classified as expansion when it takes less input bits than it generates output bits and it is
classified as straight when it has as many input bits as it generates output bits. In SPN, since
the round function must be invertible, the only permutation layers that can be used are straight
permutation layers. In the case of the Rijndael [DR99], the permutation layer is composed of a
shift row function which moves the bytes of the internal state and a mixcolumn operation which
multiplies the internal state by a given matrix M .

1.2.1 Rijndael
The Rijndael [DR99] family is a block cipher family denoted RijndaelClen−Klen

where Clen is the
block size and Klen is the key size. Both Clen and Klen must be in {128, 160, 192, 224, 256}. The
standardized version AES [01] is less permissive and only accepts blocks of 128 bits and keys of
128, 192 or 256 bits. Each instance varies according to the block size and to the key size but the
ciphering process is the same for all variants, except for the ShiftRow operation (given in Table
1.1) and the number of rounds (given in Table 1.2).

For all the versions, the current block at the input of the round i is represented by a 4×Nb

matrix of bytes X[i] where Nb = (Clen/32) is the number of columns and where each byte at

211.2. Substitution-Permutation Network



Row 0 1 2 3
Clen = 128 0 1 2 3
Clen = 160 0 1 2 3
Clen = 192 0 1 2 3
Clen = 224 0 1 2 4
Clen = 256 0 1 3 4

Table 1.1: ShiftRow table PClen
.

This table specifies the required num-
ber of byte shifts to the left according
to the row number and Clen.

Clen 128 160 192 224 256
Klen = 128 10 11 12 13 14
Klen = 160 11 11 12 13 14
Klen = 192 12 12 12 13 14
Klen = 224 13 13 13 13 14
Klen = 256 14 14 14 14 14

Table 1.2: The number of rounds Nr of RijndaelClen−Klen
.

Notation Description
X[i] the state at the beginning of round i.

Note that X[i] is also the state after applying the AddRoundKey
function on the previous round X[i− 1].

SX[i] the state of round i, after applying SubBytes.
Y [i] the state of round i, after applying ShiftRow.
Z[i] the state of round i, after applying MixColumns.

RK[i] the subkey of round i.

Table 1.3: The summary of the notations of the different internal states of Rijndael.

row j and column k is denoted by X[i, j, k]. The other states use the same notations and are
depicted in Table 1.3.

The round function, repeated Nr − 1 times, involves four elementary mappings, all linear except
the first one. Round i consists of the following transformations:

• SubBytes. A bytewise transformation is applied on each byte of the current block using
an 8-bit to 8-bit non linear S-box, denoted by S:

SX[i, j, k] = S[X[i, j, k]],∀j ∈ [0; 3], ∀k ∈ [0; Nb[.

• ShiftRows. A linear mapping rotates to the left all the rows of the current matrix SX[i].
The values of the shifts denoted PClen

(given in Table 1) depend on Clen:

Y [i, j, k] = SX[i, j, (PClen
[j] + k) mod Nb], ∀j ∈ [0; 3], ∀k ∈ [0; Nb[.

• MixColumns is a linear multiplication of each column of the current state by a constant
matrix M in the Galois field GF (28), that provides the corresponding column of the new
state. For a given column k ∈ [0; Nb[, if we denote by ⊗ the multiplication in GF (28), we
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have:

Z[i, j, k] =
3⊕

j=0
M [l, j]⊗ Y [i, j, k] with M =




2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



, ∀k ∈ [0; Nb[

• AddRoundKey performs a bitwise xor between the subkey RKi+1 and the current state Zi:

X[i+ 1, j, k] = Z[i, j, k]⊕RK[i+ 1, j, k], ∀j ∈ [0; 3], ∀k ∈ [0; Nb[.

The subkeys RKi are generated from the master key K using a KeySchedule algorithm composed
of byte shifting, S-Box substitutions and xors which is fully described in Algorithm 1.1. We
denote by Nk = Klen/32 the number of columns of the master key K. Note that each subkey
RKi is extracted from a main register WK in the following way:

RK[i, j, k] = WK[j, i×Nb + k], ∀j ∈ [0; 3], ∀k ∈ [0; Nb[.

Those Nr − 1 rounds are surrounded at the top by an initial key addition with the subkey RK0

and at the bottom by a final transformation composed by a call to the round function where
the MixColumns operation is omitted. The global function is represented in Figure 1.4 for the
Clen = 128 and Klen = 128 variant.

Maximum Distance Separable Property
To ensure good diffusion in the cipher, the matrix associated to the matrix multiplication should
have certain mathematical properties. The matrix M of Rijndael has the Maximum Distance
Separable (MDS) property, which ensures that there is:

• 0 modification, when the input column Y [i, ∗, k] is zero (all bytes are zero),
• at least 5 out of 8 non-zero bytes, when Y [i, ∗, k] has at least one non-zero byte.

In other words, at each round i and each column k ∈ [0; Nb[, we have the following property:

3∑

j=0
is_non_zero(Y [i, j, k]) + is_non_zero(Z[i, j, k]) ∈ {0, 5, 6, 7, 8}

where is_non_zero(B) is equal to 0 if the byte B is equal to 0, and to 1 otherwise.
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input :A key matrix K of 4×Nb bytes
output :The expanded key WK of 4×Nb(Nr + 1) bytes

1 for k ∈ [0; Nb[ and j ∈ [0; 3] do
2 WK[j, k] ← K[j, k]
3 end
4 for k ∈ [Nb; Nb × (Nr + 1)[ do
5 if k mod Nk = 0 then
6 WK[0, k] = WK[0, k - Nk] ⊕ S[WK[1, k - 1]] ⊕ RCi
7 for j ∈ [1; 3] do
8 WK[j, k] = WK[j, k - Nk] ⊕ S[WK[(j + 1) mod 4, k - 1]]
9 end

10 else if k > 6 ∧ k mod Nk = 4 then
11 for j ∈ [0; 3] do
12 WK[j, k] = WK[j, k - Nk] ⊕ S[WK[j, k - 1]]
13 end
14 else
15 for j ∈ [0; 3] do
16 WK[j, k] = WK[j, k - Nk] ⊕ WK[(j + 1) mod 4, k - 1]
17 end
18 end
19 end
20 return WK

Algorithm 1.1: Rijndael KeySchedule function. The round constants RCi is given in appendix
(Figure A.1). In differential cryptanalysis these constants are ignored since they are cancelled when
applying the xor operator.
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Figure 1.4: Schema of Rijndael128−128.

251.2. Substitution-Permutation Network



block size (Clen) key size cell size number of rounds (Nr)
Midori64 64 128 4 (nibble) 16
Midori128 128 128 8 (byte) 18

Table 1.4: The possible configurations of Midori.

Notation Description
X[i] the state at the beginning of round i.

Note that X[i] is also the state after applying the KeyAdd
function on the previous round X[i− 1].

SX[i] the state of round i, after applying SubCell.
Y [i] the state of round i, after applying ShuffleCell.
Z[i] the state of round i, after applying MixColumns.

RK[i] the subkey of round i.

Table 1.5: The summary of the notations of the different internal states of Midori.

1.2.2 Midori
Midori [Ban+15] is a block cipher family denoted MidoriClen

where Clen is the block size. Clen
must be either 64 or 128. The possible configurations for Midori are shown in Table 1.4.

The number of rounds Nr depends on the block size Clen and is either 16 or 18. For all the
versions, the current block at the input of the round i is represented by a 4×4 matrix of nibbles
(resp. bytes) for Midori64 (resp. Midori128) and is denoted X[i] (the other states are depicted in
Table 1.5). Each cell (either nibble or byte depending on the block size) at row j and column
k is denoted by X[i, j, k]. The round function, repeated Nr − 1 times, involves four elementary
mappings, all linear except the first one. Round i consists of the following transformations:

• SubCell. A bytewise transformation is applied on each cell of the current block using a
4-bit to 4-bit non linear S-box Sb0 (given in Table 1.6) for Midori64. Midori128 uses four
8-bit to 8-bit non linear S-Boxes SSb[x] (available in [Ban+15]):

SX[i, j, k] = Sb0[X[i, j, k]], ∀j ∈ [0; 3],∀k ∈ [0; 3] for Midori64,

SX[i, j, k] = SSb[(j×4+k) mod 4][X[i, j, k]],∀j ∈ [0; 3],∀k ∈ [0; 3] for Midori128.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
Sb0[x] C A D 3 E B F 7 8 9 1 5 0 2 4 6

Table 1.6: 4-bit bijective S-Box Sb0 in hexadecimal form.
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• ShuffleCell. Each cell of the state is permuted as follows:

if Y [i] =




s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15




then SX[i] =




s0 s10 s5 s15

s14 s4 s11 s1

s9 s3 s12 s6

s7 s13 s2 s8




• MixColumns is a linear multiplication of each column of the current state by a constant
matrix M in the Galois field GF (24) (resp. GF (28)) for Midori64 (resp. Midori128), that
provides the corresponding column of the new state. For a given column k ∈ [0; 3], we have:

Z[i, j, k] =
3⊕

j=0
M [l, j]⊗ Y [i, j, k] with M =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




• KeyAdd performs a bitwise xor between the subkey RKi of round i and the current state
Zi:

X[i+ 1, j, k] = Z[i, j, k]⊕RK[i, j, k],∀j ∈ [0; 3], ∀k ∈ [0; 3].

The subkeys RKi are generated from the master key K using a round key generation algorithm.
For Midori64, the master key K is decomposed into two subkeys K[0] and K[1], where K[0] is
composed of the bits of first half of K and K[1] of the second half, then:

WK = K[0]⊕K[1]

RK[i] = K[(i mod 2)]⊕ α[i]

where α[i] is a 4× 4 constant binary matrix (available in [Ban+15]).

For Midori128 we have:

WK = K

RK[i] = K ⊕ α[i]

Those Nr − 1 rounds are surrounded at the top by an initial key addition with WK and at
the bottom by a final transformation composed by a call to the round function where the
ShuffleCell and MixColumns operations are omitted as depicted in Figure 5.4.
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Figure 1.6: Feistel diagram

Quasi-Maximum Distance Separable Property
As with Rijndael, Midori uses a multiplication matrix M for the MixColumns operation. In the
case of Midori, the multiplication matrix contains only 0’s and 1’s which does not allow the MDS
property. However, the Midori matrix M has the Quasi-MDS property, which ensures that there
is:

• 0 modification, when the input column Y [i, ∗, k] is zero (all bytes are zero),
• at least 41 out of 8 non-zero bytes, when Y [i, ∗, k] has at least one non-zero byte.

In other words, at each round i and each column k ∈ [0; Nb[, we have the following property:

3∑

j=0
is_non_zero(Y [i, j, k]) + is_non_zero(Z[i, j, k]) ∈ {0, 4, 5, 6, 7, 8}

1.3 Feistel networks
Feistel networks [Fei74] are a second family of block ciphers. In the same way as SPN, Feistel
networks use the notion of round functions, but the overall construction is done differently: the
plaintext is sliced into two parts called L and R (see Figure 1.6). At each iteration i, the round
function F is applied to a part of the internal state and its output is xored with the second
part of the internal state, then the two parts are inverted:

Li+1 = F (Ki, Li)⊕Ri
Ri+1 = Li

Whereas SPN round functions must be invertible, Feistel network allows to use non-invertible
round functions as the decryption function can be computed with:

Li = Ri+1

Ri = F (Ki, Ri+1)⊕ Li+1

The Feistel network is able to transform functions into permutations.
1Versus 5 for the MDS property.
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C A D 3 E B F 7 8 9 1 5 0 2 4 6

Table 1.7: 4-bit S-box of WARP.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
π(x) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26

Table 1.8: Shuffle π mixing the 32 branches of WARP.

1.3.1 WARP
WARP[Ban+20] is a lightweight block cipher that has been recently presented at SAC 2020 by
Banik et al. The main objective of the designers was to propose a cipher that could be used as
a direct replacement of AES128 (thus with a 128-bit block and key) but that would be lighter
in terms of hardware footprint. This challenge was met with flying colours as evidenced by the
impressive reported number of around 800 Gate Equivalents (GEs) for a serialized circuit of
WARP.

Description. The cipher follows a variant of a Type-2 Generalized Feistel Network (GFN) [Shi+07;
ZMI90] using 32 branches of 4 bits each. Special care was taken to the selection of the 32-branch
permutation π in order to optimize both the diffusion and the number of active S-Boxes in a
differential or linear trail. The cipher iterates 41 rounds, where the final round misses π.

In detail, the 128-bit internal state is split over 32 branches of 4 bits. At the input of round
r, the values of the 32 nibbles are denoted X[i, 0] to X[i, 31]. They go through five elementary
mappings in each (full) round, as depicted in Figure 1.7. Each nibble with an even index X[i, 2k]
is modified by the F function, which consists of the application of a 4-bit S-box (denoted S in the
following, and given in Table 1.7) followed by a round key addition. The result is then XORed
with X[i, 2k+1], a constant is added to X[i, 1] and X[i, 3] and finally the 32 branches are shuffled
by the π permutation given in Table 1.8. Since the values of the round constants have no impact
on our analysis we do not include them. To have the full description of the cipher, the reader
may refer to the specification [Ban+20] of WARP.

The key schedule is linear and relies on a 128-bit master key seen as the concatenation of two
64-bit keys: K = K0||K1. Each half is used alternatively as the round key, starting with the 16
nibbles of K0 that are used in the first round.
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Figure 1.7: One Round of WARP. The constant addition in blue (—) plays no role when searching for
differential properties, and the round key addition in green (—) can be ignored when considering the single
key scenario.

Notation Description
X[i] the state at the beginning of round i.

Note that X[i] is also the state after applying the ShuffleCell
function on the previous round X[i− 1].

ARK[i] the state of round i, after applying AddRoundKey.
SX[i] the state of round i, after applying SubCell.

XSX[i] the state of round i, after applying XORState.
RK[i] the subkey of round i.

Table 1.9: The summary of the notations of the different internal states of TWINE.

1.3.2 Twine
TWINE [Suz+13] is a 64-bit block cipher with 80 or 128-bit key. We write TWINE80 or TWINE128

to denote the key length. The global structure of TWINE is a variant of Type-2 GFN [Shi+07;
ZMI90] with 16 4-bit sub-blocks X[i], the other states are depicted in Table 1.9.

A round function of TWINE consists of a nonlinear layer F using a 4-bit S-box and a diffusion
layer, which is a permutation on 16 blocks.

• AddRoundKey. The AddRoundKey is a key addition (⊕) between the internal state X[i] and
the round key RK[i].

ARK[i, k] = X[i, (2× k)]⊕RK[i, k], ∀k ∈ [0; 7]

• SubCell. A transformation is applied on each cell of the current block using a 4-bit to 4-bit
non linear S-Box (given in Table 1.10).

SX[i, k] = S(ARK[i, k]), ∀k ∈ [0; 7]

• XORState performs a xor between the half state which goes through the F function and
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

Table 1.10: 4-bit S-Box of TWINE

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 5 0 11 6 3 12 3 8 13 6 9 2 15 10 11 14

Table 1.11: Shuffle π mixing the 16 branches of TWINE.

the other half.

XSX[i, 2× k] = X[i, 2× k]
XSX[i, 2× k + 1] = SX[i, k]⊕X[i, 2× k + 1]

,∀k[0; 7]

• ShuffleCell is a cell permutation using the permutation table π given in Table 1.11.

X[i+ 1, π[k]] = XSX[i, k], ∀k ∈ [0; 15]

The round function is applied 36 times for both versions, in the last round the ShuffleCell
operation is omitted.

Since we only implement single key distinguisher search on TWINE we do not describe the
KeySchedule algorithm of TWINE which would add unnecessary complexity. Readers that want
more details about it can find it in [Suz+13].

1.3.3 LBlock-s
LBlock–s is a simplified version of LBlock [WZ11] used as sub-cipher in LAC [Zha+14]. It can be
represented as a Type-2 GFS [Shi+07; ZMI90] as shown in [SN14], this representation allows to
represent LBlock–s in the same structure as WARP and TWINE (see Figure 1.8).

LBlock–s is a 64-bit block cipher which accepts an 80-bit secret key. The number of iterations is
either 16 or 32 depending on the position of the cipher in LAC. Instead of LBlock, which uses 10
different S-Boxes, LBlock–s only use one S-Box depicted in Table 1.12.

The round function is composed of AddRoundKey, an S-Box layer (using the S-Box in Table 1.12)
and a permutation layer using the permutation given in Table 1.13). We do not describe the
KeySchedule here as it is not used in this thesis. Readers who want to go deeper into the subject
can refer to [Zha+14; WZ11].
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Figure 1.8: One round of LBlock–s. On the left, the round function of LBlock–s is represented in the
same structure as the one given in the LBlock specifications [WZ11; Zha+14]. On the right, the round
function of LBlock–s is represented as a Type-2 GFS [SN14].

1.4 Analysis and Security of symmetric ciphers
Cryptanalysis refers to the process of understanding information systems in order to expose
its hidden aspects. It’s used to breach cryptographic security systems and gain access to the
contents of encrypted messages, even if the encryption key remains is unknown. A cryptanalysis
attack can be classified according to the data it requires which will be described now.

1.4.1 Amount of information available to the attacker
An encryption scheme C = E(K,M) is secure if for any ciphertext, the probability of identifying
M is negligible. In practice, the attacker can access different levels of information, e.g. it may be
possible to collect ciphertexts by sniffing network packages or cipher chosen plaintexts through a
public API. The security of the encryption scheme can be represented in terms of games where
the attacker has only some capabilities and his target is to break the encryption system:

Ciphertext-only attacks: the attacker has access only to a collection of ciphertexts, it is one
of the most difficult cryptanalysis;

Known-plaintext attacks: the attacker has a set of ciphertexts to which he knows the corre-
sponding plaintexts;

Chosen-plaintext attacks: the attacker can obtain the ciphertexts corresponding to a set of

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] E 9 F 0 D 4 A B 1 2 8 3 7 6 C 5

Table 1.12: 4-bit S-Box of LBlock–s.

x 0 1 2 3 4 5 6 7
π(x) 2 0 3 1 6 4 7 5

Table 1.13: Shuffle π mixing the 8 branches of LBlock–s.
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plaintexts of his own choosing;

Chosen-ciphertext attacks: the attacker can obtain the plaintexts corresponding to a set of
ciphertexts of his own choosing.

The common representation of the game is to have an oracle containing either a random
permutation or the encryption scheme E with a probability of 0.5 each. The ability of the oracle
is fixed by the attack type. The attacker can send various queries to the oracle. After all the
requests sent by the attacker, if he cannot tell, with a high probability, whether the oracle is
using a random permutation or the encryption scheme E we say that the encryption scheme is
indistinguishable under the attack conditions.

1.4.2 Distinguishers
For a given attack model, which is defined by the kind of requests that the attacker may
submit to the oracle, a distinguisher is an algorithm that breaks, with a high probability, the
indistinguishability property of ciphers. Distinguishers are usually made by looking for relations
between plaintexts and ciphertexts.

1.4.3 Differential cryptanalysis
In 1990, Biham and Shamir introduced the notion of differential cryptanalysis [BS91] on the
Data Encryption Standard (DES) [77]. The main idea of differential cryptanalysis is to analyse
the relation between input differences and output differences. For a pair of messages m0, m1

where m1 is constructed by injecting a difference δin into m0, i.e. m1 = m0 ⊕ δin, we compute
the probability Pr[EK(m0) ⊕ EK(m1) = δout] to observe a given output difference δout. For
every linear operation l, the differential output can be computed in a deterministic way with
l(m0)⊕ l(m1) = l(m0 ⊕m0 ⊕ δin) = l(δin), but for non linear operations, such as the S-Boxes, it
is not possible - in the general case - to compute deterministically the output value. In the case
of iterative ciphers, a stronger attacker can also inject differences in the key, this kind of attack
is called related-key differential attacks [Bih94]. In a perfect cipher, the probability to observe a
given output difference should be near to 2−n where n is the size of the plaintext.

Computing the exact probability to observe a given output difference for a given input difference
is not possible in practice since we should enumerate 22n values. To approximate the computation
of the distinguisher probability, the notion of differential characteristic (Figure 1.9) has been
introduced [BS91]. The idea is to fix, not only the input differences and the output differences,
but also all the differences that are propagated in the internal states of the cipher. The probability
of the differential can then be computed as the sum of the different differential characteristics
that have the same inputs and outputs. A common approach is to consider the probability of the
best differential characteristic to be a close enough approximation of the differential probability.
Usually to compute the probability of a differential characteristic, we consider that the different
non-linear operators are independent, so the total probability can be computed as a product of the
different non-linear transition probabilities. In Figure 1.9, the probability of the first differential
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Figure 1.9: Differential and differential characteristics on a simple toy - unsafe - cipher. The SB
operator is a non-linear mapping working on a 4-bit sequence. Its differential transitions are available in
Figure 1.10. The SR operator performs a shift on the rows and ARK performs a XOR between the
text and the key. On the top the differential represents the (δin, δout) pair of differences with a probability
close to 2−2.4. On the bottom three differential characteristics have been computed; the first one uses the
transitions 2 C  E with a probability close to 2−2.8, the second one uses the transitions 2 A E
with a probability 2−5 and the last one uses the transitions 2 F  E with a probability 2−6.

characteristic is equal to 2−2.8 = 2−1.4 × 2−1.4 which are the probabilities to have the transition
0x2 0xC and the probability to have the transition 0xC 0xE, assuming that the S-Boxes are
independent. Since the SR operation is linear, its transition probability is either equal to 1, when
the output difference is valid or 0 when the output difference is invalid. Moreover if we compute
a single key distinguisher the probability of the ARK operator is also equal to 1 since all the key
differential bits are equal to 0 (differences are not allowed in the key).

To compute the substitution layer probability, we generate for each non-linear operator S a
Difference Distribution Table (DDTS [BS91]) which represents the probability to observe a pair
(δin, δout) of differential variables where δin is the input of the non-linear operator and δout is its
output. Figure 1.10 represents the number of transitions of a chosen SubBytes. For each δin it is
possible to compute the probability to observe δout by counting the number of good transitions
divided by the total number of possible transitions, for an n-bit to n-bit function:

DDTS(δin, δout) = #{x ∈ {0, 1}n | S(x)⊕ S(x⊕ δin) = δout}
2n (1.1)

We can observe in Figure 1.10 that we have a special case of 16 out of 16 valid transitions for the
transition 0 0 which comes from ∀x, S(x)⊕ S(x⊕ 0) = 0.

351.4. Analysis and Security of symmetric ciphers



δout

δ i
n
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6

7

8

9

A

B

C

D

E

F

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 2 0 0 0 2 0 0 4 0 4 0 2

0 0 0 0 2 0 0 2 0 0 4 0 6 0 0 2

0 2 2 2 0 0 0 6 2 0 0 0 0 0 0 2

0 0 0 0 2 0 2 4 0 2 0 2 0 0 0 4

0 0 2 2 4 0 0 0 0 2 0 2 2 0 0 2

0 2 0 4 0 2 0 0 2 0 0 4 2 0 0 0

0 0 0 2 2 2 2 0 6 0 0 0 2 0 0 0

0 4 0 0 0 2 0 2 2 0 6 0 0 0 0 0

0 2 2 0 0 2 0 2 0 2 2 0 2 0 2 0

0 0 2 0 0 2 4 0 0 0 0 2 0 2 2 2

0 0 2 0 0 2 4 0 2 2 0 2 0 2 0 0

0 2 0 0 0 2 0 0 0 0 2 0 0 4 6 0

0 0 0 4 0 2 2 0 0 2 2 0 0 0 4 0

0 4 2 0 4 0 2 0 0 2 0 0 0 2 0 0

0 0 4 0 0 0 0 0 0 4 0 0 2 2 2 2

Figure 1.10: The number of transitions from δin to δout for an unsecure random substitution used in
Figure 1.9.

Truncated Differential. To improve the scalability of the differential computation, in 1995 Knudsen
introduced the notion of truncated differential [Knu95]. The core idea is to solve the problem in
two steps. In the first step we abstract the internal state differences to represent if a word contains
a difference or not, i.e. if the difference δx is equal to 0 or not. To do so, for each word variable δx
we use an abstraction variable ∆x with ∆x = 0 ⇐⇒ δx = 0 and ∆x = 1 ⇐⇒ δx ∈ [1; 2n − 1],
where n is the word size. We say that transition is active when it has an input difference different
from 0. We can reach the probability 1 in two cases, the first is the use of a valid linear transition,
the second is the use of a non-linear transition with no input difference. Therefore, we can
compute an upper bound approximation of the probability by counting the number of non-linear
active transitions while ensuring that only valid transitions are used. For each non-linear function
S of the cipher, we can compute the maximum transition probability for non null values with
the formula:

PDDTS = max
(δin,δout)∈[1; 2n−1]2

DDTS(δin, δout)

Let be a cipher function EK that uses only one kind of non-linear function NL. We denote #NL
the number of non-null sequences that pass through NL. The upper bound probability (pUB) of
the truncated characteristic (TEK ) can then be computed with:

pUB(TEK ) = (PDDTS )#NL
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When using different S-Boxes in the same cipher, it is possible to use the same technique with the
DDT of each of the S-Boxes. Once the first step is computed, we obtain a truncated differential
characteristic which tells us for each word that goes through a non linear operator whether it
contains a difference or not. The aim of the second step is to compute, for each truncated solution,
the maximum probability by fixing concrete values in the active sequences. It may be possible
that truncated solutions do not lead to a valid Step-2 solution since abstractions are done during
the first step. Indeed, it is possible that the truncated differential forces equalities, or inequalities,
that are impossible to hold in Step-2 because the values of some sequences are incompatible in
the concrete domain.

1.4.4 Boomerang attacks [Wag99]
In differential cryptanalysis the highest probability of the distinguishers considerably decreases as
the number of rounds increases. It is due to the fact that each round will add a (non strict) positive
number of active non linear operations. To try to mitigate this drawback Wagner introduces in
1999 the notion of boomerang attacks [Wag99]. The idea is to see the cipher EK as a composition
of two functions: EK(M) = (E1K ◦ E0K)(M), hence the number of rounds of each differential
remains lower. To construct the boomerang, we choose a pair of plaintexts (P, P ′) that is ciphered
into (C,C ′). We xor a difference γ on (C,C ′) to obtain a pair (D,D′) and we decipher them in
order to obtain (Q,Q′) as depicted in Figure 1.11. Given that, if we use a differential characteristic
α β for E0K and a differential characteristic δ  γ for E−1

1K we have the following equations:

E0K(Q)⊕ E0K(Q′) = E0K(P )⊕ E0K(P )⊕ E0K(P ′)⊕ E0K(P ′)⊕ E0K(Q)⊕ E0K(Q′)
= E0K(P )⊕ E−1

1K(C)⊕ E0K(P ′)⊕ E−1
1K(C ′)⊕ E−1

1K(D)⊕ E−1
1K(D′)

= (E0K(P )⊕ E0K(P ′))⊕ (E−1
1K(C)⊕ E−1

1K(D))⊕ (E−1
1K(C ′)⊕ E−1

1K(D′))
= β ⊕ γ ⊕ γ
= β

To construct a boomerang we choose the plaintext P and we generate the second plaintext P ′

with P ′ = P ⊕ α then we cipher them to obtain C and C ′. D (resp. D′) can be computed from
C (resp. C ′) with D = C ⊕ δ (resp. D′ = C ′ ⊕ δ). Then we decipher them in order to obtain Q
and Q′. At the end we can compute the boomerang distinguisher probability with:

Pr[E−1
K (EK(P )⊕ δ)⊕ E−1

K (EK(P ⊕ α)⊕ δ) = α] = p2q2

Where p is the differential characteristic probability of E0K and q is the differential characteristic
probability of E−1

1K .
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Figure 1.11: A schematic of the basic boomerang attack [Wag99].
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1.4.5 Attacks implementation
Finding good distinguishers may be not enough to mount efficient cryptanalysis attacks. Some
time non-optimal distinguishers may be used to mount more efficient attacks and the attacker
has to implement smart approaches to hope to have a lower complexity than brute force attacks.
It is sometimes possible to use specific data structures or redundant information to speed up the
computation process or the memory usage. We will see here how to compute time complexity
based on a differential distinguisher, thus deciding if they are feasible in real world situations.

Differential Attacks [BS91]
We consider a differential attack example from [Hey02], for which the attacked cipher is presented
in Figure 1.12. The cipher is composed of three operations. The notations for the cipher are the
following: P stands for the plaintext, C for the ciphertext. Variables X, SX and R represent
the internal state of the cipher. X is the input state of the round function (or the state after
the key_mixing function). SX is the state after the substitution function and R the state
after the permutation function. The SK variables stand for round sub-keys. We consider only
a single key attack, thus we do not present the KeySchedule to avoid introducing additional
concepts. The overall algorithm of the cipher is given in Algorithm 1.2.

We note X[i, k] the kth bit of the sequence of the ith round of X and X[i, a..b] the subsequence
from the ath bit to the bth bit of the ith round of X, with a ≤ b.

KeyMixing: The KeyMixing operation performs a xor between the bits of the text and the
SubKey of the round, this is done in lines 2, 12 and 19 of Algorithm 1.2.

Substitution: The Substitution operation is composed of 4 identical 4→ 4 S-Boxes (4 input
bits to 4 output bits) performed in parallel (Table 1.14). This is done in lines 6 and 16 of
Algorithm 1.2.

Permutation: The Permutation operation is composed of a permutation at the bit level using
the permutation table π (Table 1.15). This is done in line 9 of Algorithm 1.2.

Knowing the best differential (δin  δout) over r − 1 rounds of encryption of a cipher, if the
attacker could request ciphers on plaintexts of his choice, it is possible - depending on the
probability of the distinguisher - to find the key faster than exhaustive search. In our example
(Figure 1.13), we consider the distinguisher to be:

[0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0]
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Data: A plaintext P of 16 bits and a subkeys matrix SK of 4× 16 bits.
Result: A ciphertext C of 16 bits

1 for k ← 0 to 15 do
2 X[0, k]← P [k]⊕ SK[0, k]
3 end
4 for i← 0 to 2 do
5 for k ← 0 to 3 do
6 SX[i, k × 4..(k + 1)× 4− 1] ← S(X[i, k × 4..(k + 1)× 4− 1])
7 end
8 for k ← 0 to 15 do
9 R[i, π[k]]← SX[i, k]

10 end
11 for k ← 0 to 15 do
12 X[i+ 1, k]← R[i, k]⊕ SK[i+ 1, k]
13 end
14 end
15 for k ← 0 to 3 do
16 SX[3, k × 4..(k + 1)× 4] ← S(X[3, k × 4..(k + 1)× 4− 1])
17 end
18 for k ← 0 to 15 do
19 C[k]← SX[3, i]⊕ SK[4, i]
20 end
21 return C

Algorithm 1.2: The overall description of the toy example cipher of [Hey02].

input 0 1 2 3 4 5 6 7 8 9 A B C D E F
output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Table 1.14: The S-Box representation in hexadecimal

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

Table 1.15: The permutation table π

40 Chapter 1. Cryptanalysis



Initial Round

Round 1

Round 2
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Final Round

P

X0

SX0
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SX1
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SX2

R2

X3

SX3

C

S11 S12 S13 S14

SK0

S21 S22 S23 S24

SK1

S31 S32 S33 S34

SK2

S41 S42 S43 S44

SK3

SK4

Figure 1.12: Toy cipher example [Hey02]. The cipher is composed of three functions, key_mixing,
substitution and permutation which are done in 5 rounds. The final round has less operations than
the other rounds, as a final round would add no strength.
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Attack steps.

1. The attacker asks the oracle the encryption of two plaintexts m and m′ for which the
difference is δin. The difference of fk(m) and fk(m′) is noted δC , where fk(m) is the
encryption of a plaintext m using a cipher function f with a secret key k.

As δout has a higher probability to appear than other output differences, the attacker should find
δout with a high probability if he computes the differences before the last round encryption. We
call the partial key, the bits of the last subkey which are xored with an active S-Box during the
last round. In our example, the partial key is composed of SK5[4..7] and SK5[12..15].

2. The attacker enumerates all the possible values for the partial key. Each time the decryption
of the last round of m and m′ leads to a difference of δout the attacker increments the score
of the partial key.

3. The attacker restarts phases 1 and 2 until he has enough information, the number of pairs
of required plaintexts depends on the distinguisher probability and the construction of the
S-Boxes used in the cipher.

4. For each partial key, sorted in descending order, the attacker enumerates all the possible
values for the other bits - which are not in the partial key - and tries to cipher a fixed
message for which he knows the ciphertext. If the ciphertext used with the generated key
matches the ciphertext given by the oracle, then the attacker has found the key. If the
attacker did not find the valid ciphertext after enumerating all the possible values, he tries
the next partial key.

1.5 Discussion
In this chapter, we have seen the basics of differential cryptanalysis. As we have seen, computing
differential characteristics in a naïve implementation is not possible in practice since the exhaustive
search will have a complexity of 22n. To counter this drawback dedicated approaches [FJP13;
BN10] have been studied to speed up the solving time. This type of approaches is generally
specific for a given attack applied to a given cipher. In 2011, Mouha et al. use the Integer
Linear Programming (ILP) approach to compute maximal linear and differential characteristics
[Mou+11]. The novel idea is to use generic solvers, such as ILP, Boolean satisfiabiliy (SAT) or
Constraint Programming (CP), to solve cryptanalysis problems. Since then, several publications
have been made using SAT [MP13; KLT15; SWW18], ILP [Sun+14; Abd+17] and CP [GMS16;
Sun+17; Gér+18] solvers to solve linear and differential cryptanalysis problems.

In the next chapter, we will introduce Constraint Programming, Boolean satisfiability and Integer
Linear Programming.
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δin = [ 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 ]

δout = [ 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 ]

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

SK0

SK1

SK2

SK3

S41 S42 S43 S44

R−1(δC) = δout?

SK4 = 0 0 0 0 ? ? ? ? 0 0 0 0 ? ? ? ?

δC = [ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 ]
Figure 1.13: Making a differential attack. Knowing a differential characteristic (δin  δout), the attacker
chooses two messages (m,m′) such that m⊕m′ = δin. The output difference is δC . The attacker can then
go back to the last round to try to evaluate the value of the last subkey used by checking if it is possible to
meet the δout difference at the round r − 1.
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2 Constraint Programming

Chapter

“ ”Constraint programming represents one of the closest
approaches computer science has yet made to the Holy Grail of
programming: the user states the problem, the computer solves
it.

— Eugene C. Freuder
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Combinatorial problems may be solved by using declarative approaches: the problem to be solved
is modelled by means of variables and constraints, and the model is solved by a generic solver.
There are three main kinds of declarative approaches:

• Boolean satisfiability (SAT), where models are logical formulae defined over Boolean
variables;

• Integer Linear Programming (ILP), where models are linear inequalities over Integer
variables;

• Constraint Programming (CP), where a wide range of variables and constraints are available,
the only limitation being their implementation in the considered CP solver.

In this chapter we will see what is a Constraint Satisfaction Problem (CSP) and what is a
Constrained Optimization Problem (COP). We will then introduce the notion of computation
complexity and what are the mechanisms used to solve CP problems.
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2.1 Modelling by means of variables and constraints
In this section we see what are Constraint Satisfaction and Constrained Optimization problems.
We also introduce the notion of solution for this kind of problems.

2.1.1 Constraint Satisfaction Problems
A CSP is a mathematical problem defined as below:

Definition 2.1: Constraint Satisfaction Problem (CSP) [RVW06]

A constraint satisfaction problem (CSP) is defined by a triplet (X,D,C) where :
• X = {x1, ..., xn} is the set of variables of the problem;
• D = {D1, ..., Dn} is the set of domains of the variables, i.e. Dk is the set of values

that may be assigned to xk;
• C = {C1, ..., Cm} is a set of constraints. A constraint Ci = (Xi, Ri) is defined

by a tuple Xi = (xi1 , ..., xik) of variables (called the scope) and a relation Ri ⊆
Di1 × ...×Dik which defines the set of values allowed simultaneously for the variables
of Xi. This relation may be defined either in extension, by listing all the allowed
tuples (or, conversely, all the forbidden tuples), or in intention by using mathematical
operators.

In this chapter, we only consider finite domain CSPs, such that variable domains only contain a
finite set of values.

Example 2.1

Let us take a toy example to represent how constraint programming works. We want to
solve a 3× 3 simple sudoku. The rules are easy, the board game is defined by a 3× 3
matrix of cells, each cell must take a value in [1; 3]. Moreover for all cells in the same
row and for all cells in the same columns, the cells must have a different values. We can
represent the game by a matrix of 9 variables, each variable representing a cell:

x0 x1 x2

x3 x4 x5

x6 x7 x8

In our case, the CSP will be defined as (X, D, C), with:
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X = {x0, x1, x2, x3, x4, x5, x6, x7, x8},
D = {[1; 3], [1; 3], [1; 3], [1; 3], [1; 3], [1; 3], [1; 3], [1; 3], [1; 3]},
C = {(X0, R0), (X1, R1), (X2, R2), (X3, R3), (X4, R4), (X5, R5)}

where X0 = {x0, x1, x2}, X1 = {x3, x4, x5}, X2 = {x6, x7, x8},
where X3 = {x0, x3, x6}, X4 = {x1, x4, x7}, X5 = {x2, x5, x8}
and R0 = R1 = ... = R5 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

The pair (X0, R0) (resp. (X1, R1) and (X2, R2)) represents the all different constraint on
the first (resp. second and third) row. The pair (X3, R3) (resp. (X4, R4) and (X5, R5))
represents the constraint all different on the first (resp. second and third) column.
The constraint (X0, R0) can also be represented in intention by using the 6= operator:

X0 = (x0, x1, x2), R0 = (x0 6= x1) ∧ (x0 6= x2) ∧ (x1 6= x2)

To indicate what is a valid solution, we need to introduce first the notion of instantiation.

Definition 2.2: Instantiation [RVW06]

Given a CSP = (X,D,C), and a tuple of variables Y = (x1, ..., xk) ⊆ X
• An instantiation I on Y is an assignment of values (v1, ..., vk) to the variables x1, ..., xk.
I can be denoted by ((xi, vi), ..., (xk, vk)) where (xi, vi) denotes the value vi for xi.
A projection of I on the tuple of variable Y , denoted projY (I) is the tuple of values
defined by: projY (I) = (v1, ..., vk).

• An instantiation I on Y is valid if for all (xi, vi) ∈ I, vi ∈ Di.
• When Y = X we say the instantiation is total, otherwise, the instantiation is said to

be partial.
• A total instantiation I is consistent if ∀ci = (Xi, Ri) ∈ C, the projection of I on Xi

belongs to Ri.

A solution is a total and consistent instantiation. The set of solutions of the CSP is denoted by
sol(X,D,C).

Once the CSP has been formally defined, solvers may have three aims:

1. to answer if the CSP has a solution or not, which is called a decision problem [Pap94];
2. to return a solution for the given CSP, if it has a solution;
3. to enumerate all the solutions for the given CSP.

Below, we show how to check whether an instantiation is a solution or not.
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Example 2.2

We want to check if the following instantiation is a solution:



(x0, 1), (x1, 2), (x2, 3),
(x3, 2), (x4, 3), (x5, 1),
(x6, 3), (x7, 1), (x8, 2)




The instantiation can be represented by the n-tuple T = (1, 2, 3, 2, 3, 1, 3, 1, 2). To check if
the n-tuple is valid, for all constraints Cj in the CSP, we need to check if the projection of
the n-tuple onto Xj belongs to the relation Rj .

projX0(T ) = (1, 2, 3) and (1, 2, 3) ∈ R0,

projX1(T ) = (2, 3, 1) and (2, 3, 1) ∈ R1,

projX2(T ) = (3, 1, 2) and (3, 1, 2) ∈ R2,

projX3(T ) = (1, 2, 3) and (1, 2, 3) ∈ R3,

projX4(T ) = (2, 3, 1) and (2, 3, 1) ∈ R4,

projX5(T ) = (3, 1, 2) and (3, 1, 2) ∈ R5

In our case, all the projections projXj belong to their respective relation Rj , thus the
instantiation is a solution of the problem.

Special case of SAT. SAT is a special case of CSP that only accepts Boolean variables and
Boolean formulae. Those restrictions allow to use dedicated algorithms such as the DPLL [DP60;
DLL62] and the CDCL [SS96; SS99] algorithms which provide very good performances. In
differential cryptanalysis, SAT is efficient to compute truncated differential characteristics since
they contain a lot of Boolean variables and formulae. The non-Boolean part of the model can be
translated into a Boolean one by introducing temporary variables and transforming constraints
into Boolean formulae. Even if this can generate an exponential number of variables, it scales
pretty well in practice.

2.1.2 Constrained Optimization Problems
A variant of CSP is Constrained Optimization Problem. Now the goal is not to say whether a
solution exists or not, but to find the best solution with respect to a given objective function.

Definition 2.3: Constrained Optimization Problem (COP) [RVW06]

A Constrained Optimization Problem (COP) is defined by a quadruplet (X,D,C, f) where
(X, D, C) is a CSP and f : X → R is a function which is to be maximized or minimized.

A solution of a COP = (X,D,C, f) is a solution of the CSP = (X,D,C), and a solution is
optimal if it minimizes or maximizes (in regards to the objective) f(X).
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Example 2.3

We take the same example as in Example 2.1 and we add the objective function that
consists in minimizing the values of the top-left bottom-right diagonal variables, such that
COP = (X,D,C, f) where (X,D,C) is the same tuple as in Example 2.1 and

f(X) =
2∑

i=0
x4i

In such case, the instantiation given in Example 2.2 is still a solution but is not an optimal
solution of the COP since 1 + 3 + 2 is not the optimal value.
An optimal solution of the COP is:




(x0, 1), (x1, 2), (x2, 3),
(x3, 3), (x4, 1), (x5, 2),
(x6, 2), (x7, 3), (x8, 1)




Special case of ILP. ILP is a special case of COP where the variables are Integer variables,
constraints are restricted to linear inequations and the objective function f is linear. As with
SAT, the type of variables and the restriction of constraints allow the use of dedicated algorithms
such as Cutting-plane [Gom58], the Branch and bound [LD10; LW66] or the Branch and cut
[PR91] methods.

2.1.3 Computational complexity
While the modelling part is interested in how to represent problems the solving part focuses on
the solving techniques for solving these problems. In computer science it can be interesting to
study the computational complexity to know how difficult a problem is to solve a-priori.

Some particular kinds of CSPs, such as the linear assignment problem [FT87], can be solved
in polynomial time, i.e. there exists an algorithm whose computation time is polynomial with
respect to the instance size, the size being the number of bits necessary to represent the input
data. CSPs with finite domains are NP-complete in the general case, i.e, they cannot be solved
in polynomial time unless P = NP, but it is possible the verify that a solution is valid in
polynomial time.

In the modeling phase, the only limit to the expressiveness of the model is the list of constraints
that are implemented in the solvers. In some cases, it may be useful to create new constraints
that will be able to solve or to model a particular problem more efficiently, e.g. the alldifferent
constraint [Rég94]. When creating a new constraint, it is interesting to analyze the complexity of
checking the satisfiability of this constraint. For example, we can decide in polynomial time if
there exists a valid instantiation for an alldifferent constraint [Rég94], whereas this problem is
NP-complete for the setSum global constraint, which ensures that the sum of the values assigned
to a set of variable equals a given sum [Bes+04].
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Data: A CSP (X,D,C) and a partial and consistent instantiation I
Result: A solution (if I may be extended to a solution of (X, D, C)), or ∅ (overwise)

1 fn branch-and-propagate(X,D,C, I) {
2 if len(I) = len(X) then // I is complete
3 return I
4 else
5 select an unassigned variable xi ∈ X
6 for vi ∈ D(xi) do
7 (X,D′, C ′, I ′)← propagate(X,D,C, I ∪ (xi, vi))
8 sol← branch-and-propagate(X,D′, C ′, I ′)
9 if sol 6= ∅ then

10 return sol
11 end
12 end
13 return ∅
14 end
15 }

Algorithm 2.1: Branch and propagate algorithm. The ordering heuristics are used at lines 5 and
6 when the algorithm needs to select the next variable and the next value to test. The constraints
propagation phase is at line 7.

To prove that a new problem A is NP-complete, we must first prove that it belongs to the NP
class, which contains all problems that may be solved in polynomial time by a non deterministic
Turing machine [Pap94]. This basically involves showing that there exists a polynomial time
algorithm to check whether a given certificate is a solution or not. Then, we must prove that A
is at least as hard as any other NP-complete problem, and this is done by defining a polynomial
algorithm that transforms any instance I of a know NP-complete problem to an instance I ′ of
A in such way that a solution of I ′ may be used to build the solution of I in polynomial time.

2.2 Solving CSPs and COPs
As mentioned earlier, SAT and ILP solvers use dedicated algorithms, which will not be pre-
sented here. In this section, we present algorithms for solving CSPs and COPs in Constraint
Programming.

2.2.1 Branch & Propagate
CP solvers work with algorithms that contain two phases, as described in Algorithm 2.1: branching
and propagation. The first phase contains heuristic algorithms to select the next variables and
values to explore (l. 5 and 6 of Algorithm 2.1). The propagation phase (l. 7 of Algorithm 2.1)
includes algorithms to reduce the domains of the variables in regards of the constraints they have
and the assignments that have already been made. Such algorithms are called propagators and
perform a tightening of the CSP.
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2.2.2 Constraint propagation
Constraint propagators are algorithms that are designed to filter variable domains in order to
ensure some local consistency (or detect inconsistency), they are the software component that
links the model expressiveness and solution computation. The most known local consistency is
Generalized Arc Consistency (GAC) [Rég94].

Given a constraint ci = (Xi, Ri) such that Xi = (xi1, ..., xir), and a tuple t ∈ Ri such that
t = (vi1, ...vir), let t↓xij denote the value associated with xij in t, i.e, t↓xij = vij .

A constraint ci = (Xi, Ri) is GAC if and only if for every variable xj ∈ Xi and every value
vj ∈ Dj , the couple (xj , vj) has a support in Ri, i.e., there exists a tuple t ∈ Ri such that t↓xj = vj

and for every other variable xk ∈ Xi \ {xj}, t↓xk ∈ Dk.

A better filtering allows to filter variable domains earlier in the search, therefore pruning the
search tree more efficiently. Unfortunately, in the general case, better filtering implies a higher
computation time. Therefore, it is necessary to find a compromise between filtering quality and
solving time in order to improve the global solving time.

A common approach to improve the filtering process is to create constraints that have an higher
level of knowledge. This can be done by using global constraints. For example, in Example 2.1
we modelled the first row by:

X0 = (x0, x1, x2)

R0 = (x0 6= x1) ∧ (x1 6= x2) ∧ (x0 6= x1)

but the model can also be represented by the global constraint alldifferent.

X0 = (x0, x1, x2)

R0 = alldifferent(x0, x1, x2)

Ensuring the GAC of this global constraint is stronger than ensuring the GAC of each binary
different constraint separately, and this may be done in polynomial time by using dedicated
propagator [Rég94]. In such case, while the computational complexity remains low, the pruning
quality is increased, which leads to a considerable saving in computing time.
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2.2.3 Branch & Bound
Constrained Optimization Problems do not only require finding a solution, but require finding
an optimal solution with respect to a given objective function. A common technique used is the
branch and bound technique. The problem solving is done in the same way as for the branch and
propagate algorithm but adds a cutting technique allowing to prune the search tree earlier and
thus limit the number of states to visit.

To explain the flow of the algorithm, we consider that the objective function f is to minimize.
The first step of the search consists in finding a solution s0. If there is no solution, the search
stops. The first solution will be an upper bound for the optimal solution s∗, i.e. f(s∗) ≤ f(s0).
After finding this solution, the algorithm continues the search. At each decision node, thanks
to a bound function, the algorithm evaluates if the current partial solution still allows to find a
better solution than the best solution found until now. Once a new solution is found, the upper
bound is updated and the search continues. This is done until it is no longer possible to find a
new solution. At the end of the search, the last solution is then the best possible solution.

2.3 Discussion
In this chapter we have introduced the Constraint Satisfaction and Constrained Optimization
Problems. We have also detailed why they are generally hard to solve and spoke about solving
techniques on generic problems. Two special cases of CSPs and COPs can also be defined, i.e.
SAT and ILP. In SAT problems, only Boolean variables and Boolean formulae are allowed,
while in ILP only Integer variables with inequalities are allowed. Although the subsets are less
expressive than Constraint Programming, it is possible to move from one paradigm to another
by changing the model of the problem. Some tools are available to convert models into different
representations, e.g. picat [ZK16] is able to transform a flatzinc CP model into SAT or ILP
problems and then solve them by using different backend solvers, lingeling [Bie] for SAT and
Gurobi [Gur22] for ILP. Since SAT and ILP have specific type of variables and constraints, the
solvers include dedicated solving approaches.

In this thesis, the main contribution to constraint programming was the creation of a new global
constraint called AbstractXOR. This work is described in Chapter 5. In other chapters, SAT has
been used to solve some models particularly adapted to the Boolean formulation while CP has
been used to model differential characteristics which require to model Difference Distribution
Tables (DDTs) efficiently.
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In this chapter we present the two models from which we started our work. The first model, by
Gérault et al., is a model to compute related-key differential attacks on AES. It uses a two-stage
solving with a Step-1 model for truncated differential characteristics and a Step-2 model for
differential characteristics. The second model, by Delaune et al., is used to compute boomerang
attacks on Skinny. It also works with the two-step solving process.

3.1 Gérault et al.’s model [Gér+20]
The model of Gérault et al. [Gér+20] aims at computing the optimal differential characteristics
for AES. The solution of the problem follows the two steps of [Knu95], namely:

• the computation of truncated differential characteristics (Step-1),
• the computation of the optimal differential characteristics (Step-2) from the truncated ones

computed in Step-1.
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To understand how the Step-1 model is created, it is first important to understand how to
transform the specification of a cipher into a model for computing differential characteristics.

3.1.1 Build a CP model from a cipher specifications
In this section, we will see how to transform the specifications of a cipher, AES128 in our case,
into a CP model allowing to compute differential characteristics.

As a reminder, constraint programming makes it possible to define a set of variables and the
relationships that rule them. These relationships can be represented implicitly or explicitly. In
the case of the operator xor we can represent the equation:

a⊕ b⊕ c = 0

• implicitly with: a⊕ b⊕ c = 0, if the solver has the constraint modelling the xor,
• explicitly with: (a, b, c) ∈ TXOR, where TXOR is the set of tuples of values that can be taken

by a, b and c simultaneously.

Even if Step-1 is computed before Step-2, it is simpler to start with the modelling of Step-2
before presenting the modelling of Step-1.

Variables introduction
AES is an iterative symmetrical block cipher working on matrices of 4× 4 bytes on Nr rounds.
In the case of a differential attack, we want to know how an input difference δin is transformed
into an output difference δout. To know this propagation, it is necessary to track the successive
values of the differences throughout the encryption process, i.e. to know the differences between
each byte of the internal state. These differential bytes δ can be represented by an integer in
[0; 255]. Knowing that AES (described in Section 1.2.1) contains the states X,SX, Y, Z,WK

and SWK (see Table 1.3 and Algorithm 1.1), we introduce the variables δX , δSX , δY , δZ , δWK

and δSWK to represent those differences, e.g.:

δX [i, j, k] = X0[i, j, k]⊕X1[i, j, k]

(considering the computation of a differential between X0 and X1).

We also introduce the variables δRK and δSRK which correspond to the bytes of the various
round-keys of the KeySchedule. The variables δRK and δSRK are strictly equivalent to the δWK

and δSWK variables and can be linked to them with the formulae:

∀i ∈ [0; Nr],∀j ∈ [0; 3], ∀k ∈ [0; 3],

δRK [i, j, k] = δWK [j, i× 4 + k]

∀i ∈ [0; Nr],∀j ∈ [0; 3], ∀k ∈ [0; 3],

δSRK [i, j, k] = δSWK [j, i× 4 + k]
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Plaintext and ciphertext differences are not modelled as they are condition free and can be
recovered from the other variables.

In summary, we have:

• δX , a 3-dimensional matrix of Nr× 4× 4 integer variables,
• δSX , a 3-dimensional matrix of Nr× 4× 4 integer variables,
• δY , a 3-dimensional matrix of Nr× 4× 4 integer variables,
• δZ , a 3-dimensional matrix of Nr − 1× 4× 4 integer variables, knowing that MixColumns

is not omitted in the last round,
• δWK , a 2-dimensional matrix of 4× 4(Nr + 1) integer variables,
• δSWK , a 2-dimensional matrix of 4× 4(Nr + 1) integer variables,
• δRK , a 3-dimensional matrix of Nr + 1× 4× 4 integer variables,
• δSRK , a 3-dimensional matrix of Nr + 1× 4× 4 integer variables.

Note: knowing that KeySchedule passes only the last columns of the round keys in S-Boxes, it is
possible to model δSRK only for the third column.

Round constants. In the case of differential attacks, constants that are added (using the xor
operator) to the state or to the key can be ignored, since C ⊕ C = 0. In the case of AES the
round constants used in the KeySchedule are ignored.

Once the variables have been set we also need to model the cipher operations.

Operations modelling
SubBytes.
. The SubBytes operation passes all the bytes of X through the Rijndael S-Box. Since this
operation is non-linear, it is necessary to model the transition probability between the δX
state and the δSX state. To do this, we introduce additional variables p[i, j, k] where p[i, j, k] =
−log2(Pr[δX [i, j, k]  δSX [i, j, k]]) (see Equation 1.1) for each pair of (δX [i, j, k], δSX [i, j, k]).
This relationship is represented using a table constraint:

∀i ∈ [0; Nr[, ∀j ∈ [0; 3],∀k ∈ [0; 3],

(δX [i, j, k], δSX [i, j, k], p[i, j, k]) ∈ TDDT

where TDDT is the set of triples (δin, δout,−log2(DDT (δin, δout))) such that δin ∈ [0; 255],
δout ∈ [0; 255] and DDT (δin, δout) > 0. Since we only want to have possible transitions, TDDT
does not include transitions of probability 0. In the case of AES, the possible values for p[i, j, k]
are {0, 6, 7} (which represent the probabilities: 20, 2−6 and 2−7).

The same reasoning can be carried out for the variables δWK and δSWK , with the difference that
only some columns of the KeySchedule pass through S-Boxes. The values associated with δWK

and δSWK are named pWK . pWK can be translated to pRK by using the same formula as for
δWK and δRK .
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ShiftRow.
ShiftRow is a leftward byte shift. It can be represented using the equality constraint:

∀i ∈ [0; Nr[,∀j ∈ [0; 3],∀k ∈ [0; 3],

δY [i, j, k] = δSX [i, j, (j + k) mod 4]

MixColumns.
MixColumns is the multiplication of Y by the matrix M . This multiplication requires to model

the xor operator as well as the Galois field GF (28) multiplication, noted ⊗, and can be
represented in several ways.

One of the simplest methods is to calculate the values associated with δY for the different values
of M , i.e. 2δY (where 2δY = 2⊗ δY ) and 3δY (where 3δY = 3⊗ δY ) using table constraints, then
combine them to calculate the values of δZ :

∀i ∈ [0; Nr − 2],∀j ∈ [0; 3],∀k ∈ [0; 3],

(δY , 2δY ) ∈ Tgmul2 ,
where Tgmul2 = {(δY , 2δY ) ∈ [0; 255]2 | 2δY = 2⊗ δY }

(δY , 3δY ) ∈ Tgmul3 ,
where Tgmul3 = {(δY , 3δY ) ∈ [0; 255]2 | 3δY = 3⊗ δY }

∀i ∈ [0; Nr − 2],∀k ∈ [0; 3],

(δZ [i, 0, k], 2δY [i, 0, k], 3δY [i, 1, k], δY [i, 2, k], δY [i, 3, k]) ∈ TXOR5

(δZ [i, 1, k], δY [i, 0, k], 2δY [i, 1, k], 3δY [i, 2, k], δY [i, 3, k]) ∈ TXOR5

(δZ [i, 2, k], δY [i, 0, k], δY [i, 1, k], 2δY [i, 2, k], 3δY [i, 3, k]) ∈ TXOR5

(δZ [i, 3, k], 3δY [i, 0, k], δY [i, 1, k], δY [i, 2, k], 2δY [i, 3, k]) ∈ TXOR5

where TXOR5 is the set of 5-ary tuples (a, b, c, d, e) where a⊕ b⊕ c⊕ d⊕ e = 0.

In practice, TXOR5 is too large to be used as is. Therefore, MixColumns is not implemented in
this way but the underlying idea remains the same. For example, it is possible to introduce
temporary variables to decompose xor equations into smallest ones.

AddRoundKey.
AddRoundKey performs a xor between the state and the round-key. It can also be represented

by a constraint table.

∀i ∈ [0; Nr[,∀j ∈ [0; 3],∀k ∈ [0; 3],

(δX [i+ 1, j, k], δRK [i+ 1, j, k], δZ [i, j, k]) ∈ TXOR3

TXOR3 has the same meaning as TXOR5 for 3-ary equations.
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KeySchedule.
The KeySchedule contains both xor and S-Boxes, it can be modelled with constraint tables

for the xor and the technique presented in fro SubBytes.

Objective function
Under the assumption that the S-Boxes are independent, we can compute the differential
characteristic probability by summing the p and pRK values (as they are in log2). The objective
function is so to minimize obj (which maximizes the real probability) with:

obj =
Nr−1∑

i=0

3∑

j=0

3∑

k=0
p[i, j, k]+

Nr−1∑

i=0

3∑

j=0
pRK [i, j, 3]

Note we only sum on pRK [i, j, 3] since the last column of RK[i] is the only column in the
KeySchedule that passes through an S-Boxes for AES128.

3.1.2 Computation of truncated characteristics (Step-1)
The previous Step-2 model allows to compute optimal differential characteristics for AES128.
However, it is not sufficient to carry out the search. Indeed, the search is too complex to be solved
in a reasonable amount of time by using only this model. A common technique is to compute
previously truncated differential characteristics and use them to fix differential byte values. In
truncated differential characteristics each differential byte δA is abstracted by a differential
Boolean ∆A with ∆A = 0 ⇐⇒ δA = 0 and ∆A = 1 ⇐⇒ δA ∈ [1; 255[. In this section, we
introduce the model of Minier et al. [MSR14] which is a first abstraction of the previous modelling,
then we continue with the model of Gérault et al. [Gér+20] which uses advanced abstraction
techniques that improve tightness of the model.

Variables abstractions
During Step-1, we are only aware of the ∆A variables and we want to minimize the hamming
weight of variables passing through S-Boxes (i.e. ∆SX and ∆SRK). In the case of AES128, we
have the ∆X ,∆SX ,∆Y ,∆K ,∆WK ,∆SWK ,∆RK and ∆SRK variables which correspond to their
respective differential bytes, e.g. ∆X [0, 0, 0] corresponds to δX [0, 0, 0].
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Operation abstractions
SubBytes. In many ciphers, as in AES, the S-Boxes are bijective, so we have S(x)⊕S(x⊕ 0) = 0
for any x. This means that if there is a difference at the input of the S-Box, then a difference
necessarily remains at the output of the S-Box. When there is no difference at the input of the
S-Box, then there can be no difference at the output of the S-Box. This can be translated by:

∀i ∈ [0; Nr[, ∀j ∈ [0; 3], ∀k ∈ [0; 3],

∆X [i, j, k] = ∆SX [i, j, k]

The same constraint can be used for the ∆WK and the ∆SWK variables.

ShiftRow.
ShiftRow is a leftward byte shift. It can be represented directly using the equality constraint:

∀i ∈ [0; Nr[,∀j ∈ [0; 3],∀k ∈ [0; 3],

∆Y [i, j, k] = ∆SX [i, j, (j + k) mod 4]

MixColumns.
The abstraction of MixColumns is a quite more complex due to the mix of xors and Galois

Field multiplications. Usually the MDS property (see Section 20) is used to model this operation.
We remind that the MDS property ensures that the sum of non-null input and output differences
is either 0 or greater than 4:

∀i ∈ [0; Nr − 2],∀k ∈ [0; 3],
3∑

j=0
∆Y [i, j, k] +

3∑

j=0
∆Z [i, j, k] ∈ {0, 5, 6, 7, 8}

AddRoundKey.
The add round key performs a xor between the state and the key. This requires to focus how

to abstract the xor operator properly.

For three differential Boolean ∆A,∆B and ∆C with δa ⊕ δb ⊕ δc = 0, the set of possible solutions
for ∆A,∆B and ∆C is depicted in Table 3.1.

To match this solutions, the xor abstraction can be modelled by the following constraint:

XOR(∆A,∆B,∆C) = ∆A + ∆B + ∆C 6= 1.

The AddRoundKey is then:

∀i ∈ [0; Nr[,∀j ∈ [0; 3],∀k ∈ [0; 3],

XOR(∆X [i+ 1, j, k],∆RK [i+ 1, j, k],∆Z [i, j, k])

58 Chapter 3. Existing declarative models for solving differential cryptanalysis problems



dom(δA) dom(δB) dom(δA ⊕ δB) ∆A ∆B ∆A ⊕abs ∆B

{0} {0} {0} 0 0 0
{0} [1; 255] [1; 255] 0 1 1

[1; 255] {0} [1; 255] 1 0 1

[1; 255] [1; 255] [0; 255] 1 1
{

1 when A 6= B

0 when A = B

Table 3.1: The abstraction of the xor operator. The possible values of a difference δX is denoted by
dom(δX). When both bytes are equals to 0, then the output is also equals to 0. When only one of the two
bytes is equal to 0, then we know that the output is strictly positive. When both bytes are positive, we
cannot know if the output should be in {0} or in [1; 255].

KeySchedule.
Like for Step-2, the abstraction of the KeySchedule can be modelled using the techniques used

for SubBytes and AddRoundKey.

3.1.3 Summary
The AES model that uses the techniques above has been presented by Minier et al. in [MSR14]
and then taken over in [Gér+20] under the name of CPBasic model. It is fully detailed in Model
3.1 and its constraints are explained below:

• C1 models the function to minimize, here we want to activate the less S-Boxes as possible,
• C2 models the SubBytes operation and the S-Box translations in the KeySchedule,
• C3 models the AddRoundKey operation,
• C4 models the ShiftRow operation,
• C5 and C6 model the MixColumns operation. The first constraint uses the MDS property

of M , the second is used to model the special case for the final round of AES, for which
MixColumns is omitted,

• C7 and C8 model the KeySchedule.

This model is not tight enough to compute truncated solutions as it generates a lot of infeasible
truncated differential characteristics, leading in a waste of computation time during Step-2 when
the process will try to instantiate these invalid solutions. This lack is mainly due to the bad
quality of the xor abstraction as depicted in the next example.
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Example 3.1

We abstract the two following equations:

δA ⊕ δB ⊕ δC ⊕ δD = 0

δC ⊕ δD ⊕ δE = 0

and obtain the two constraints:

∆A + ∆B + ∆C + ∆D 6= 1
∆C + ∆D + ∆E 6= 1

If we try the instantiation I = ((∆A, 1), (∆B, 0), (∆C , 1), (∆D, 1), (∆E , 0)), we obtain the
system:

1 + 0 + 1 + 1 6= 1
1 + 1 + 0 6= 1

In the abstract representation, the system is valid since both sums are different of one, but
the concrete system is invalid since if we xor the two equations we obtain: δA⊕δB⊕δE = 0
which should be abstracted by ∆A + ∆B + ∆E = 1 + 0 + 0 6= 1 which is invalid.
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Improving the model tightness
To counter this drawback Gérault et al. use advanced constraints to tighten the Step-1 model.

Firstly they introduce new xor equations generated from the KeySchedule called xorEql. Hence
the new equations are redundant in the concrete representation, they are not in the abstract one
and can filter invalid cases such as the one shown just before.

In addition to that, they introduce diff variables which indicate whether two differential bytes
are different or not. This work leads to the Model 3.2, which will be explained here.

The new introduced constraints are:

• C′9 introduces the notion of diff variables. The diff variables are new variables that represent
whether two bytes are different or not, i.e. diff δA,δB = 1 ⇐⇒ δA 6= δB. The constraint C′7
models the symmetry of the difference relation, i.e., A 6= B ⇐⇒ B 6= A,

• C′10 ensures the transitivity of the equality property for the diff variables, i.e. ((δA = δB) ∧
(δB = δC)) =⇒ (δA = δC). This can be modelled with diff δA,δB + diff δB ,δC + diff δA,δC 6= 1
since it avoids to have only one active difference: either there is no difference and δA = δB =
δC or there is at least two differences because we cannot have something like (δA = δB) ∧
(δB = δC) ∧ (δA 6= δC),

• C′11 links the diff variables to their corresponding ∆ variables,
• C′12 asserts that the xor result of a variable δA = δB⊕δC (resp. δB and δC) is only strictly

positive if there is a difference between δB and δC (resp. (δA and δC) and (δA and δB)),
• C′13 performs the same reasoning on equations with four variables,
• C′14 encodes the MDS property over the differences in the Y and the Z states. Since

MixColumns is linear we have δZ⊕δZ′ = MixColumns(δY )⊕MixColumns(δ′Y ) = MixColumns(δY⊕
δ′Y ), thus the MDS property also holds on the diff variables for Y and Z. This constraint
is the one that eliminates the most inconsistent solutions during Step-1.

• C′15 links the diff variables for the X, Z and K states which are linked by the AddRoundKey
operation.
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(C1) objStep1 =
∑

δB∈Sboxesl

∆B

(C2) ∀δB ∈ Sboxesl,∆SB = ∆B

(C3) ∀i ∈ [0; Nr − 2],∀j, k ∈ [0; 3], XOR(∆Z [i, j, k],∆K [i+ 1, j, k],∆X [i+ 1, j, k])
(C4) ∀i ∈ [0; Nr[,∀j, k ∈ [0; 3],∆Yi[j][k] = ∆SX [i, j, (j + k) mod 4]

(C5) ∀i ∈ [0; Nr − 2],∀k ∈ [0; 3],




3∑

j=0
∆Y [i, j, k] + ∆Z [i, j, k]


 ∈ {0, 5, 6, 7, 8}

(C6) ∀j, k ∈ [0; 3],∆Z [r − 1, j][k] = ∆Y [r − 1, j, k]
(C7) ∀i ∈ [0; Nr[,∀j ∈ [0; 3],

XOR(∆K [i+ 1, j, 0],∆[i, j, 0],∆SRK [i, (j + 1) mod 4][3])
(C8) ∀i ∈ [0; Nr[,∀j ∈ [0; 3],∀k ∈ [1, 3],

XOR(∆K [i+ 1, j, k],∆K [i+ 1, j, k − 1],∆K [i, j, k])

Model 3.1: Constraints of the CPBasic model for Step-1 of AES128. [Gér+20]

(C ′9) ∀D ∈ {DKj , DYj , DZj : j ∈ [0; 3]},∀{δB1, δB2} ⊆ D,
diff δB1,δB2 = diff δB2,δB1

(C ′10) ∀D ∈ {DKj , DYj , DZj : j ∈ [0; 3]},∀{δB1, δB2, δB3} ⊆ D,
diff δB1,δB2 + diff δB2,δB3 + diff δB1,δB3 6= 1

(C ′11) ∀D ∈ {DKj , DYj , DZj : j ∈ [0; 3]},∀{δB1, δB2} ⊆ D,
diff δB1,δB2 + ∆B1 + ∆B2 6= 1

(C ′12) ∀(δB1 ⊕ δB2 ⊕ δB3 = 0) ∈ xorEql,
(diff δB1,δB2 = ∆B3) ∧ (diff δB1,δB3 = ∆B2) ∧ (diff δB2,δB3 = ∆B1)

(C ′13) ∀(δB1 ⊕ δB2 ⊕ δB3 ⊕ δB4 = 0) ∈ xorEql,
(diff δB1,δB2 = diff δB3,δB4) ∧ (diff δB1,δB3 = diff δB2,δB4) ∧ (diff δB1,δB4 = diff δB2,δB3)

(C ′14) ∀i1, i2 ∈ [0; Nr − 2],∀k1, k2 ∈ [0; 3],
3∑

j=0
diff δY [i1,j,k1],δY [i2,j,k2] + diff δZ [i1,j,k1],δZ [i2,j,k2] ∈ {0, 5, 6, 7, 8}

(C ′15) ∀i1, i2 ∈ [0; Nr − 2],∀j, k1, k2 ∈ [0; 3],
diff δK [i1+1,j,k1],δK [i2+1,j,k2] + diff δZ [i1,j,k1],δZ [i2,j,k2] + ∆X [i1 + 1, j, k1] + ∆X [i2 + 1, j, k2] 6= 1

Model 3.2: Constraints of the CPXOR model for Step-1 [Gér+20]. The model reuses the constraints (C1)
to (C8) of the CPBasic model
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3.1.4 Incomplete Step-1 Solutions
As pointed out in [Gér+20], some AES instances have a huge number of Step-1 solutions. Many
of these solutions have exactly the same values for the Boolean variables in ∆B (corresponding to
S-Boxes), and they only differ on the values of other Boolean variables (that do not correspond
to S-Boxes). For example, when the key has 192 bits and the number of rounds is equal to 10,
there are 27,548 different Step-1 solutions. However, there are only 7 different assignments of
values to the variables in ∆B. In order to list only solutions with different S-Boxes, we add, at
the beginning of each search, a constraint that prohibits having the same set of active S-Boxes as
the previous solutions. Since the other variables may have different values between two Step-1
solutions, only the S-Box variables are taken into account when initialling the Step-2 domains.

3.1.5 Computation of optimal characteristics for a given truncated characteris-
tics
When we have the Step-1 model and the Step-2 model, we need an interface to switch from the
first one to the second one. This is done by reducing the differential byte domains knowing their
abstract counterparts. During the Step-1 process, only S-Box variables are instantiated, thus the
initialization of the Step-2 variable domains is done in the following way:

1 if δB ∈ Sboxesl then
2 given δSB = S(δX) and p = − log2(Pr[δB  δSB])
3 if ∆B = 0 then
4 dom(δB) ← {0}
5 dom(δSB) ← {0}
6 dom(p) ← {0}
7 else
8 dom(δB) ← [1; 255]
9 dom(δSB) ← [1; 255]

10 dom(p) ← {6, 7}
11 end
12 else
13 dom(δB) ← [0; 255]
14 end

Since probability variables with null values do not enter into account when summing the − log2

probabilities, they can be discarded from the Step-2 model.

The complete procedure then consists of (i) finding the truncated differential characteristic with
the minimum number of S-Boxes, (ii) enumerating the set of different truncated differential
characteristics with the minimum number of S-Boxes found in (i) and (iii) calculating for each
truncated differential characteristic the optimal Step-2 solution. The best solution is then the
best solution among the optimal solutions found in Step-2.

In the next section, we see the model proposed by Delaune et al. to compute boomerang
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distinguishers.

3.2 Delaune et al.’s model [DDV20]
In [DDV20], Delaune et al. propose a model divided into two steps to search for optimal boomerang
distinguishers (described in Section 1.4.4) on SPN ciphers. In Step-1, a MILP model searches
for truncated boomerangs where each S-Box is represented by 6 Boolean variables (described
below). The solutions of Step-1 are the input of a Step-2 search that tries to instantiate those
truncated boomerangs with concrete nibble (4-bit sequence) differences so that the distinguisher
has the highest possible probability.

A boomerang distinguisher uses two differential trails, one is called the upper trail and determines
α, the input difference of the distinguisher. The other one is called the lower trail and determines
δ, the output of the distinguisher (see Figure 1.11). In the model proposed in [DDV20] the
division as a sandwich [DKS10; DKS14] is not made but the upper and lower trails are searched
on all the rounds. In what follows we denote by δX [i, k] the nibble difference at the input of an
S-Box and by δSX [i, k] the corresponding output difference of the S-Box.

3.2.1 The S-Box abstraction in truncated boomerangs
The boomerang model of [DDV20] on Skinny uses six variables for each S-Box in its Step-1: 3
variables relate to the upper trail (in the encryption direction) whereas the 3 others relate to the
lower trail (in the decryption direction). These variables are used to select the proper boomerang
transition tables (described right after) and are defined as:

• ∆Xup[i, k]1 (respectively ∆X lo[i, k]) is a Boolean variable that indicates if the nibble dif-
ference δX [i, k] is active in the upper (resp. lower) trail, considering that it represents the
S-Box input,

• freeXup[i, k] (respectively freeX lo[i, k]) is a Boolean variable that indicates if the nibble
difference δX [i, k] is free of conditions, i.e. it can take any value with a uniform probability
in the upper (resp. lower) trail,

• freeSXup[i, k] is a Boolean variable that indicates if the nibble difference δSX [i, k] can
take any value with a uniform probability in the upper trail as an output of the S-Box.
freeSX lo[i, k] is a Boolean variable that indicates if the nibble difference δSX [i, k] can take
any value with a uniform probability in the lower trail.

Note that the freeSXup[i, k] variable represents the state of the variable after the S-Box in the
encryption direction, so freeSX lo[i, k] can be seen as the input state of the S-Box in the decryption
direction.

Several constraints describe the relations between these variables, starting with the one modelling
the propagation of the free states through the S-Boxes: if a variable is free before an S-Box, it is

1These variables are called isActiveX in [DDV20], but we call them ∆X to be consistent with the notations
introduced in [Gér+20] and this PhD thesis.
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also free after the S-Box. Since the propagation is done in the opposite direction for the lower
trail, the implication is in the other direction for the lo variables.

freeXup =⇒ freeSXup

freeSX lo =⇒ freeX lo

The second rule ensures that if an S-Box output is free then the S-Box input must be non-zero.
Again the lower trail is reversed since it represents the decryption direction.

freeSXup =⇒ ∆Xup

freeX lo =⇒ ∆X lo

The third rule ensures that we can compute the probability of the S-Box by setting a minimum
number of parameters.

¬(freeXup ∧ freeX lo)

¬(freeSXup ∧ freeSX lo)

Finally, for any linear operation there is a constraint stating that if any input variable is free
then all the output variables on which it depends are also free.

Boomerang transition tables
As for the differential attacks, boomerang attacks use transition tables to compute S-Box transition
probabilities. In the case of boomerang attacks, we have several tables which depend on the
S-Box states. Variables and rules seen just before ensure that each input and output of an S-Box
of a trail may have 3 different states. These three states are: fixed to 0, fixed to a positive value
or free. This states allow to use one of the transitions depicted in Figure 3.1. In the model, a
transition table is chosen if its corresponding predicate is true (see Model 3.3).

Given this set of constraints, the solver is going to choose the best truncated trail among the
ones with a valid propagation of differences, where the quality of a trail is measured by the best
probability it might reach. Based on this, the probability of the Step-1 solution is calculated by
assuming that the best transition in each table is met. Once the best solution for Step-1 is found
it is given as input to the Step-2 model, which looks for a concrete instance of the upper and
lower trails, again with the objective of reaching the best possible probability.
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(a) A pair of S-Boxes representation in Delaune et al. model with α, β, γ and δ
parameters. α is the upper trail S-Box input difference, β the upper trail S-Box
output difference, γ is the lower trail S-Box output difference (in S−1 direction)
and δ the lower trail input S-Box difference (in S−1 direction). In the following
figures, hidden variables are variables fixed to 0, black variables are positive fixed
variables and gray variables are free.
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(b) Transition representing a DDT
for the upper trail. This transition
requires to known α and β param-
eters. The γ and δ parameters are
also known but fixed to 0.
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(c) Transition representing a DDT
for the lower trail. This transition
requires to known γ and δ parame-
ters. The α and β parameters are
also known but fixed to 0.
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(d) Transition representing a DDT2
for the upper trail. This transition
requires to known α and β param-
eters.
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(e) Transition representing a DDT2
for the lower trail. This transition
requires to known γ and δ parame-
ters.
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(f) Transition representing a BCT.
This transition requires to known
α and δ parameters.
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(g) Transition representing an
UBCT. This transition requires to
known α, β and δ parameters.
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(h) Transition representing a LBCT.
This transition requires to known
α, γ and δ parameters.
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(i) Transition representing an
EBCT. This transition requires to
known α, β, γ and δ parameters.

Figure 3.1: The different transitions used in the model of Delaune et al.. Each transition requires a set
of variables to be calculated.
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predicate isBCTX(i, j, k) =(
∆Xup [i, j, k] ∧ ¬freeXup [i, j, k] ∧ freeSXup [i, j, k]

∧ ∆Xlo [i, j, k] ∧ freeXlo [i, j, k] ∧ ¬freeSXlo [i, j, k]

)

predicate isDDTX(i, j, k) = isDDTXup(i, j, k) ∨ isDDTXlo(i, j, k)

predicate isDDTXup(i, j, k) =
(
∆Xup [i, j, k] ∧ ¬∆Xlo [i, j, k] ∧ ¬freeXup [i, j, k] ∧ ¬freeSXup [i, j, k]

)

predicate isDDTXlo(i, j, k) =
(
¬∆Xup [i, j, k] ∧ ¬freeXlo [i, j, k] ∧ ¬freeSXlo [i, j, k] ∧ ∆Xlo [i, j, k]

)

predicate isDDT2X(i, j, k) = isDDT2Xup(i, j, k) ∨ isDDT2Xlo(i, j, k)

predicate isDDT2Xup(i, j, k) =(
∆Xup [i, j, k] ∧ ¬freeXup [i, j, k] ∧ ¬freeSXup [i, j, k]

∧ ∆Xlo [i, j, k] ∧ freeXlo [i, j, k] ∧ freeSXlo [i, j, k]

)

predicate isDDT2Xlo(i, j, k) =(
∆Xup [i, j, k] ∧ freeXup [i, j, k] ∧ freeSXup [i, j, k]

∧ ∆Xlo [i, j, k] ∧ ¬freeXlo [i, j, k] ∧ ¬freeSXlo [i, j, k]

)

predicate isLBCTX(i, j, k) =(
∆Xup [i, j, k] ∧ ¬freeXup [i, j, k] ∧ freeSXup [i, j, k]

∧ ∆Xlo [i, j, k] ∧ ¬freeXlo [i, j, k] ∧ ¬freeSXlo [i, j, k]

)

predicate isUBCTX(i, j, k) =(
∆Xup [i, j, k] ∧ ¬freeXup [i, j, k] ∧ ¬freeSXup [i, j, k]

∧ ∆Xlo [i, j, k] ∧ freeXlo [i, j, k] ∧ ¬freeSXlo [i, j, k]

)

predicate isEBCTX(i, j, k) =(
∆Xup [i, j, k] ∧ ¬freeXup [i, j, k] ∧ ¬freeSXup [i, j, k]

∧ ∆Xlo [i, j, k] ∧ ¬freeXlo [i, j, k] ∧ ¬freeSXlo [i, j, k]

)

Model 3.3: Link between binary variables and tables: for each table T ∈ {BCT, DDT, DDT2, LBCT, UBCT, EBCT},
the predicate isTX(i, j, k) is true iff table T must be used to link δXup[i, k], δSXup[i, j, k], δX lo[i, k] and
δSX lo[i, k].
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3.2.2 Step-2 boomerang
The Step-2 modelling of boomerang attacks reuses the modelling techniques seen for simple
differential attacks but has some special features.

The first difference is the doubling of variables and constraints. Indeed, one differential must be
modelled for the upper trail and another one for the lower trail. We will see later how these two
trails are linked using the transitions between the S-Boxes.

The second difference is the appearance of free variables. Since these variables can take any value
uniformly without impacting the results they can be removed from the model. In addition, the
set of equations containing a free variable can also be removed from the model.

The last feature is the modelling of S-Boxes, which leads us to see how to link Step-1 and Step-2.

3.2.3 Linking Step-1 and Step-2 boomerang
The link between Step-1 and Step-2 is made in the similar way as presented for differentials.
The main difference is that Step-1 defines which transitions will be used in Step-2. Let be δB a
variable of the model, we have:

1 if ∆B = 0 then
2 dom(δB) ← {0}
3 else
4 if freeB then
5 dom(δB) ← [0; 16[ // The variable may be removed.
6 else
7 dom(δB) ← [1; 16[
8 end
9 end

As in the differential models, only S-Boxes are enumerated during Step-1. In the case of non
S-Box variables, it is possible to compute their ∆ and free values by propagating the ∆ and free
states of the S-Boxes through the linear part of the cipher. Once we have recovered these states,
we can use the previous technique to obtain their concrete domain.
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Linking the two trails. Like in differential model, we use table constraints to constraint the
S-Boxes. These table constraints are also the constraints responsible for the consistency between
the two trails.

Let be the following example:

Example 3.2

Let be a pair of S-Boxes (δXup, δX lo) where δX lo is the lower trail counterpart of δXup.
The Step-1 model returns these values:

∆Xup = 1 freeXup = 0 freeSXup = 1
∆X lo = 1 freeX lo = 0 freeSX lo = 0

The variable domains are:

dom(δXup) = [1; 16[ dom(δSXup) = [0; 16]
dom(δX lo) = [1; 16[ dom(δSX lo) = [1; 16[

If we refer to Model 3.3, we have to use the LBCT table which relates to the δXup, δX lo and
δSX lo variables. So we add the following constraint to the model:

(δXup, δX lo, δSX lo) ∈ TLBCT

As can be seen, the variable δSXup is not constrained by the LBCT table. Moreover, since
its free state is propagated by the cipher, it cannot be constrained anymore and may be
removed from the model.

Additional information on the propagation of free variables. In the linear part of encryption, as
with S-boxes, the appearance of a free input parameter in a function automatically causes all its
output variables to become free. This state is then propagated for all successive states. Therefore,
when a state goes to the free state, it becomes unconstrained and can be removed from the model.

3.3 Conclusion
In this chapter we have seen two advanced models for calculating differential characteristics. The
first, by Gérault et al., is a model for calculating differential characteristics in related-key mode.
It uses advanced constraints in Step-1 in order to obtain good performances that allow reaching
the last rounds of AES. The second model, by Delaune et al. is used to automate the search for
boomerang distinguishers on Skinny. Here again, the model uses advanced techniques to calculate
the probability of a boomerang return with great accuracy. Although both models are powerful,
they can be improved or extended. During this thesis, we extended the work of Gérault et al.
to Rijndael while improving the performance on AES in Chapter 4. We also took an orthogonal
approach by trying to develop new solving techniques during Step-1 in Chapter 5. We took up
the work of Delaune et al. in order to adapt it to Rijndael in a first step (Chapter 6), then to
extend it to the Feistel family in a second step (chapter 7). In order to prove the viability of our

693.3. Conclusion



model on Feistel ciphers we applied it to WARP, TWINE and LBlock–s.
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Scaling from the AES to Rijndael can only be made with a tight model for Step-1. Models
described in [BN10; FJP13] do not scale when increasing the block size and the key size. Only
the model [Gér+20] which is described in section 3.1 has a sufficiently small number of solutions
found at Step-1 to hope that the computational time will be reasonable.

In this chapter, we show how to adapt the two-step solving process of [Gér+20] dedicated to the
AES to compute optimal related-key differential characteristics for Rijndael [01]. Both steps are
solved with Constraint Programming (CP) solvers: Picat-SAT for Step-1 and Choco for Step-2.
We improve the approach of [Gér+20] by better interleaving Steps 1 and 2 and exploiting bounds
to stop the search sooner. We also improve the Step-2 process of [Gér+20] by decomposing the
constraints associated with MixColumns. These improvements allow us to compute the optimal
differential characteristics for all Rijndael instances but one within a reasonable amount of time.

Rijndael, which is fully described in Section 1.2.1, is a family of block ciphers (more precisely it is
composed of 25 instances of the same cipher where the block size and the key size vary) originally
proposed at the AES competition. But the NIST only retained as a standard its 128-bit-block
version under the key sizes 128, 192 and 256 bits and studying the security of Rijndael may be
interesting to enlighten the AES standardization process. Among the most interesting results, we
obtain a 12-round (over 13 rounds) related-key differential distinguisher and attack for Rijndael
with a block size equal to 128 bits and a key size equal to 224 bits. We also obtain an 11-round
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related-key differential distinguisher for Rijndael with a block size equal to 160 bits and a key
size equal to 256 bits leading to an attack on 12 rounds out of 14.

When looking at the state of the art concerning the cryptanalysis of Rijndael, some of the results
are in the single key scenario [NP07; Zha+08; GM08], [Wan+13; Min17; Liu+19] or in the
related-key scenario [Wan+15] and none of those attacks exceeds 10 rounds.

The rest of this chapter is organized as follows: in Section 4.1, we detail the methods and our CP
models; in Section 4.2, we sum up all the related-key differential characteristics distinguishers
we obtained, give all solving times and compare them with those of [Gér+20]; in Section 4.3,
we present two attacks based on the most efficient distinguishers and finally, in Section 4.4, we
conclude this chapter.

4.1 The solving process
In this section, we describe how to compute the optimal related-key differential characteristics
for Rijndael by adapting and improving the approach introduced in [Gér+20] for the AES. We
first describe the two-step solving process; then, we describe the CP models associated with each
of these two steps.

4.1.1 Two-step solving process
Finding the best related-key differential characteristic is a highly combinatorial problem. In
1995, Knudsen has introduced truncated differentials [Knu95] that can be used to improve the
scalability of the attacks. The core idea is to solve the problem in two steps: In Step-1, we
compute a truncated differential characteristic S1 where each differential byte δA of the ciphering
process is replaced with a boolean variable ∆A that indicates whether δA contains a difference
or not (i.e., ∆A = 0 ⇐⇒ δA = 0 and ∆A = 1 ⇐⇒ δA ∈ [1; 28 − 1]); In Step-2, we instantiate
S1 into a differential characteristic S2: for each boolean variable ∆A, if ∆A is equal to 0 in S1,
then δA is equal to 0 in S2; otherwise δA must belong to [1; 28 − 1]. Note that some truncated
characteristics cannot be instantiated to a characteristic because some abstractions are done at
Step-1.

As SubBytes is the only non-linear operation, the probability of a differential characteristic only
depends on the values of the differential bytes that pass through S-Boxes, under the Markov
assumption that rounds are independent. We denote δSB this set of bytes (including those in the
KeySchedule), and ∆SB the corresponding set of Boolean variables.

A theoretical upper bound on the probability of the best differential characteristic may be
computed by searching for the truncated differential characteristic which minimizes the number
of active S-Boxes NBSB = #{∆A | ∆A ∈ ∆SB ∧∆A = 1}. As 2−6 is the maximal differential
probability of the Rijndael S-Box, the best probability is upper bounded by UB = 2−6·NBSB .

UB may be larger than the actual best probability because it may be possible that the best
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Data: The size Klen of the key, the size Clen of the block and the number r of rounds
Result: An optimal related-key differential characteristic S∗

1 NBSB ← step1-opt(Nk, Nb, r)
2 UB ← 2−6·NBSB

3 LB ← 0
4 while LB < UB do
5 S1 ← step1-next(Nk, Nb, r,NBSB)
6 if S1 6= null then
7 S2 ← step2-opt(Nk, Nb, r, LB, S1)
8 if S2 6= null then
9 S∗ ← S2

10 LB ← probability of S2
11 end
12 else
13 NBSB ← NBSB + 1
14 UB ← 2−6·NBSB

15 end
16 end
17 return S∗

Algorithm 4.1: Computation of optimal related-key differential characteristics for Rijndael.

truncated differential characteristic cannot be instantiated into a differential characteristic, or
because some non null differential bytes that go through S-Boxes have a probability equal to 2−7

instead of 2−6. Hence, the best differential characteristic is searched by alternating Step-1 and
Step-2 in an iterative process which is described in Algorithm 4.1. First, we call Step1-opt to
compute NBSB, a lower bound of the number of active S-Boxes in a truncated differential, and
this number is used to compute a first upper bound UB on the probability. The lower bound LB
on the probability is initialised to 0. Then, at each iteration of the while loop, we call Step1-next
to compute the next truncated differential characteristic with NBSB active S-Boxes: each time this
function is called, it returns a new Step-1 solution with NBSB active S-Boxes until they all have
been computed (in this latter case, Step1-next returns null). If a new Step-1 solution S1 has been
computed, then Step2 is called to search for the differential characteristic S2 corresponding to S1

whose probability is larger than LB and maximal: if such a characteristic exists, then the best
characteristic S∗ is updated to S2 and LB is updated to the probability of S2. When Step1-next
returns null, all truncated characteristics with NBSB active S-Boxes have been enumerated. In
this case, we increment NBSB and update consequently the upper bound UB. We stop iterating
when UB becomes smaller than or equal to LB: in this case S∗ is equal to the optimal differential
characteristic.

Algorithm 4.1 is different from the one used in [Gér+20]: it avoids computing useless Step-1
solutions by updating LB and UB and stopping the process when LB ≥ UB. Step1-opt, Step1-next
and Step2 are implemented with CP solvers and the corresponding CP models are described in
the next two sections.

754.1. The solving process



4.1.2 Step-1
Both Step1-opt and Step1-next compute truncated differential characteristics: Step1-opt searches
for the truncated characteristic that minimises NBSB, whereas Step1-next searches for the next
truncated characteristic given NBSB. Both problems share the same constraints which are described
in this section. Step1-opt is a COP which is obtained by adding the objective function: minimise
NBSB. Step1-next is a CSP which is obtained by assigning the variable NBSB to the optimal
solution of Step1-opt.

A key point for Algorithm 4.1 to be efficient is to avoid as much as possible computing truncated
characteristics which cannot be instantiated at Step-2. To this aim, we consider the model
introduced in [Gér+20] which is tighter than the model of [GMS16], i.e., it computes fewer
truncated characteristics that cannot be instantiated at Step-2. This model has been defined for
the AES, and we show in this section how to extend it to Rijndael.

4.1.3 Constraints associated with Rijndael transformations
A basic Step-1 model for Rijndael is displayed in Model 4.1. It is a straightforward adaptation of
the model described in Section 3.1.2: the only differences are the constraints (A3), (A5), (A6)
and (A7), which model ShiftRow and the KeySchedule.

Constraint (A1) relates NBSB with the number of active S-Boxes. The other constraints are
derived from Rijndael round function transformations.

SubBytes: As SubBytes is bijective, there is an output difference if and only if there is an input
difference. The SubBytes transformation at Boolean level is thus abstracted by an identity
mapping ∆Xi and ∆SXi (Constraint (A2)).

ShiftRow: As ShiftRow is just a shift at byte level, its abstraction in Step-1 is directly expressed
as the equivalent shift as defined in Constraint (A3).

MixColumns: Multiplications of MixColumns cannot be mapped into the Boolean domain as the
coefficients of M belong to GF(28). Thus, instead of encoding multiplications, we exploit
the MDS (Maximum Distance Separable explained in Paragraph Maximum Distance
Separable Property of Section 1.2.1) property of the MixColumns transformation as defined
in Constraint (A4).

KeySchedule: the whole KeySchedule process of Rijndael is described in Algorithm 1.1. The
variables that pass through S-Boxes are unchanged, as stated in Constraint (A6). xors
are modelled by Constraint (A7) which prevents every triple of boolean variables involved
in a same xor from having exactly one difference.

However, this simple model generates many truncated characteristics which cannot be instan-
tiated at Step-2. This mainly comes from the fact that xors performed by AddRoundKey and
KeySchedule modelled by constraints which simply prevent the sum of differences to be equal to
1.
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NBSBox =
∑

∆A∈∆SB

∆A

∀i ∈ [0;Nr[,∀j ∈ [0; 3],∀k ∈ [0;Nb[,

∆SX [i, j, k] = ∆X [i, j, k]

∀i ∈ [0;Nr[,∀j ∈ [0; 3],∀k ∈ [0;Nb[,

∆Y [i, j, k] = ∆SX [i, j, PNb
[j] + k mod Nb]

∀i ∈ [0;Nr[,∀k ∈ [0;Nb[,
∑

j∈[0;3]
∆Z [i, j, k] +

∑

j∈[0;3]
∆Y [i, j, k] ∈ {0, 5, 6, 7, 8}

∀i ∈ [0;Nr[,∀j ∈ [0; 3],∀k ∈ [0;Nb[,

∆RK [i, j, k] = ∆WK [j, (i + 1)×Nb + k]
∆X [i + 1, j, k] + ∆Z [i, j, k] + ∆RK [i, j, k] 6= 1

∀ω ∈ [Nb;Nb × (Nr + 1)[ such that isSbCol(ω),∀j ∈ [0; 3],

∆SWK [j, ω] = ∆WK [j, ω]

where predicate isSbCol(ω) = ω > Nk − 1 ∧ ω < Nb × (Nr + 1)− 1 ∧
(ω mod Nk = Nk − 1 ∨ (Nk > 6 ∧ ω mod Nk = 3))

∀ω ∈ [Nb;Nb × (Nr + 1)[,∀j ∈ [0; 3],

if ω mod Nk = 0 : ∆WK [j, ω] + ∆WK [j, ω −Nk] + ∆SWK [(j + 1) mod 4, ω − 1] 6= 1
else if Nk > 6 ∧ ω mod Nk = 4 : ∆WK [j, ω] + ∆WK [j, ω −Nk] + ∆SWK [j, ω − 1] 6= 1

else : ∆WK [j, ω] + ∆WK [j, ω −Nk] + ∆WK [j, ω − 1] 6= 1

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

Model 4.1: Basic Step-1 model for Rijndael
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Thus, we show how to refine this in the next two paragraphs.

Inference of new XOR equations from the KeySchedule
In Model 4.1, every xor equation δA ⊕ δB ⊕ δC = 0 is represented by a sum constraint
∆A+ ∆B + ∆C 6= 1. This simple model is not sharp enough and generates a lot of truncated
solutions that cannot be instantiated at Step-2. For example, the two xor equations

δA⊕ δB ⊕ δC = 0 and δB ⊕ δC ⊕ δD = 0

are represented by the two sum constraints

∆A+ ∆B + ∆C 6= 1 and ∆B + ∆C + ∆D 6= 1 .

When reasoning at the byte level, we easily infer that we cannot have δA = 0 and δD 6= 0,
whatever the values of δB and δC are. However, when reasoning at the boolean level, the two
sum constraints may be satisfied when ∆A = 0 and ∆D = 1 (e.g., when ∆B = ∆C = 1).

To sharpen the Step-1 model and reduce the number of Step-1 solutions that cannot be instantiated
at Step-2, we generate new xor equations from the initial set of equations, by xoring them.
These new equations do not change the set of solutions at the byte level. However, at the boolean
level, they remove some of the truncated solutions that cannot be instantiated at Step-2. For
example, when xoring the two xor equations of our previous example, we obtain the equation
δA⊕ δD = 0. When adding the constraint ∆A+ ∆D 6= 1 to the two sum constraints, we prevent
the search from generating solutions with ∆A = 0 and ∆D = 1.

This trick has been introduced in [Gér+20] for the AES and detailled in Section 3.1.3 of Chapter
3, and we extend it to Rijndael in a straightforward way. More precisely, we consider the set of all
xor equations coming from the KeySchedule (this set corresponds to Constraint (A7) of Model
4.1). From this set, we generate all possible equations that involve no more than 4 variables by
recursively xoring these equations1. This set of new equations is denoted ExtXOR.

Introduction to diff variables
As done in [Gér+20], we also introduce diff variables to reason on differences at the byte level,
this new Model is presented in Model 4.2.

Constraints (E1) (for KeySchedule) and (E2) (for the MixColumns) relate diff variables to their
respective ∆. These constraints also ensure symmetry, i.e., diffA,B = diffB,A. Constraints (E3)
and (E4) ensure transitivity (i.e., if δA = δB and δB = δC, then δA = δC) by constraining the
sum of the corresponding diff variables to be different from 1.

Constraint (E5) relates diff variables associated with the subkey RK i with diff variables associated
1We do not generate equations with more than 4 variables as the number of new equations grows exponentially

with respect to their size.
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with the expanded key WK .

Constraints (E6) and (E7) are associated with the new xor equations in ExtXOR. Two
cases are considered: equations with three variables in Constraint (E6), and equations with four
variables in Constraint (E7). In both cases, if at least one variable involved in the equation
belongs to ∆SB, then the constraint simply prevents the sum of the variables to be equal to 1.
Otherwise, we exploit {diff} variables to tighten the constraint.

Finally, Constraints (E8) and (E9) ensure the MDS property of MixColumns on differences
between pairs of columns (this constraint is partly equivalent with the linear incompatibility of
[FJP13]).

Incomplete Step-1 Solutions
As Rijndael is a generalization of the AES, this is also true for Rijndael. Hence, as proposed in
[Gér+20] and explained in Section 3.1.4, we enumerate incomplete solutions such that only the
variables in ∆SB are assigned.

Step-2
Given a Step-1 solution (corresponding to a truncated characteristic), Step-2 aims at searching
for the corresponding characteristic which has the largest probability, and such that this largest
probability is larger than the best probability found so far (LB).

The CP model used to solve Step-2 is described in Model 4.3. The main difference with the
model of Gérault et al. is the modelling of ShiftRow, KeySchedule and MixColumns. As Rijndael
allows some parameters that are not allowed in AES, ShiftRow and KeySchedule for Rijndael
may be sightly different from ones of AES. The modelling change of MixColumns is a design
choice to try to speed up the solving process.

KeySchedule. The main difference between the KeySchedule of Rijndael and the KeySchedule of
AES if the addition of a S-Box transition when Klen > 192. Constraint (C9) models the S-Boxes
using constraint tables. Constraint (C10) models the xors of the KeySchedule, using table
T⊕. Note that we do not represent xors with constants as they are cancelled by differential
cryptanalysis.

ShiftRow. Constraint (C3) models the ShiftRow operation for Rijndael. Since the performed
shift depends of the block length parameter, the operation may differ from the one of AES. We
adapt the constraint of [Gér+20] to match this modification.

MixColumns. Constraints (C4) to (C7) represent the MixColumns operation. We introduce new
integer variables to represent the result of applying the Galois Field multiplication to a byte: for
each value v ∈ {2, 3}, and each byte δYi[j, k], the variable vδYi[j, k] is constrained to be equal to
v ⊗ δYi[j, k] by the table constraint (C4), where TMULv contains every couple (δA, δB) ∈ [0; 255]2

such that δB = v ⊗ δA. Then, Constraint (C5) ensures that δZi[j, k] is equal to the result of
xoring four bytes (corresponding to the bytes at column k of δYi multiplied by the coefficients
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∀ω1, ω2 ∈ [0;Nb × (Nr + 1)[,∀j ∈ [0; 3] where ω2 > ω1

diff WK[j,ω1],WK[j,ω2] + ∆WK [j, ω1] + ∆WK [j, ω2] 6= 1
diff WK [j,ω1],WK [j,ω2] = diff WK [j,ω2],WK [j,ω1]

∀i1, i2 ∈ [0;Nr − 2],∀j ∈ [0; 3],∀k1, k2 ∈ [0;Nb[ where (i2, k2) > (i1, k1)

diff Y [i1,j,k1],Y [i2,j,k2] + ∆Y [i1, j, k1] + ∆Y [i2, j, k2] 6= 1
diff Y [i1,j,k1],Y [i2,j,k2] = diff Y [i2,j,k2],Y [i1,j,k1]

diff Z[i1,j,k1],Z[i2,j,k2] + ∆Z[i1, j, k1] + ∆Z[i2, j, k2] 6= 1
diff Z[i1,j,k1],Z[i2,j,k2] = diff Z[i2,j,k2],Z[i1,j,k1]

∀ω1, ω2, ω3 ∈ [0;Nb × (Nr + 1)[,∀j ∈ [0; 3] where ω3 > ω2 > ω1

diff WK [j,ω1],WK[j,ω2] + diff WK [j,ω1],WK [j,ω3] + diff WK [j,ω2],WK [j,ω3] 6= 1

∀i1, i2, i3 ∈ [0;Nr − 2],∀j ∈ [0; 3],∀k1, k2, k3 ∈ [0;Nb[ where (i3, k3) > (i2, k2) > (i1, k1)

diff Y [i1,j,k1],Y [i2,j,k2] + diff Y [i2,j,k2],Yi3 [j,k3] + diff Yi3 [j,k3],Y [i1,j,k1] 6= 1
diff Z[i1,j,k1],Z[i2,j,k2] + diff Z[i2,j,k2],Zi3 [j,k3] + diff Zi3 [j,k3],Z[i1,j,k1] 6= 1

∀i1, i2 ∈ [0;Nr[,∀j ∈ [0; 3],∀k1, k2 ∈ [0;Nb[

diff RK [i1,j,k1],RK [i2,j,k2] = diff WK[j,(i1+1)×Nb+k],WK [j,(i2+1)×Nb+k]

For each equation δB1 ⊕ δB2 ⊕ δB3 = 0 in ExtXOR,

if {∆B1,∆B2,∆B3} ∩∆SB 6= ∅ then ∆B1 + ∆B2 + ∆B3 6= 1
if {∆B1,∆B2} ∩∆SB = ∅ then diff B1,B2 = ∆B3
if {∆B2,∆B3} ∩∆SB = ∅ then diff B2,B3 = ∆B1
if {∆B1,∆B3} ∩∆SB = ∅ then diff B1,B3 = ∆B2

For each equation δB1 ⊕ δB2 ⊕ δB3 ⊕ δB4 = 0 in ExtXOR,

if {∆B1,∆B2,∆B3,∆B4} ∩∆SB 6= ∅ then ∆B1 + ∆B2 + ∆B3 + ∆B4 6= 1
else diff B1,B2 = diff B3,B4

diff B1,B3 = diff B2,B4
diff B1,B4 = diff B2,B3

∀i1, i2 ∈ [0;Nr − 2],∀k1, k2 ∈ [0;Nb[ where (i2, k2) > (i1, k1)
∑

j∈[0;3]
diff Y [i1,j,k1],Y [i2,j,k2] +

∑

j∈[0;3]
diff Z[i1,j,k1],Z[i2,j,k2] ∈ {0, 5, 6, 7, 8}

∀i1, i2 ∈ [0;Nr − 2],∀j ∈ [0; 3],∀k1, k2 ∈ [0;Nb[ where (i2, k2) > (i1, k1)

diff RK [i1,j,k1],RK [i2,j,k2] + diff Z[i1,j,k1],Z[i2,j,k2] + ∆X[i1 + 1, j, k1] + ∆X[i2 + 1, j, k2] 6= 1

(E1)

(E2)

(E3)

(E4)

(E5)

(E6)

(E7)

(E8)

(E9)

Model 4.2: Additional constraints for the refined Step-1 model for Rijndael
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obj =
∑

δA∈δSB

pA

∀i ∈ [0;Nr[,∀j ∈ [0; 3],∀k ∈ [0;Nb[,

〈δX[i, j, k], δSX [i, j, k], pXi [j, k]〉 ∈ TSBOX

∀i ∈ [0;Nr[,∀j ∈ [0; 3],∀k ∈ [0;Nb[,

δY [i, j, k] = δSX [i, j, PNb
[j] + k mod Nb]

∀i ∈ [0;Nr − 2],∀k ∈ [0;Nb[,∀j ∈ [0; 3],∀v ∈ {2, 3}

〈δY [i, j, k], vδY [i, j, k]〉 ∈ TMULv

∀i ∈ [0;Nr − 2],∀k ∈ [0;Nb[,

〈2δY [i, 0, k], 3δY [i, 1, k], a[i, k]〉 ∈ T⊕ 〈δY [i, 2, k], δY [i, 3, k], b[i, k]〉 ∈ T⊕ 〈a[i, k], b[i, k], δZ[i, 0, k]〉 ∈ T⊕
〈δY [i, 0, k], 2δY [i, 1, k], c[i, k]〉 ∈ T⊕ 〈3δY [i, 2, k], δY [i, 3, k], d[i, k]〉 ∈ T⊕ 〈c[i, k], d[i, k], δZ[i, 1, k]〉 ∈ T⊕
〈δY [i, 0, k], δY [i, 1, k], e[i, k]〉 ∈ T⊕ 〈2δY [i, 2, k], 3δY [i, 3, k], f [i, k]〉 ∈ T⊕ 〈e[i, k], f [i, k], δZ[i, 2, k]〉 ∈ T⊕
〈3δY [i, 0, k], δY [i, 1, k], g[i, k]〉 ∈ T⊕ 〈δY [i, 2, k], 2δY [i, 3, k], h[i, k]〉 ∈ T⊕ 〈g[i, k], h[i, k], δZ[i, 3, k]〉 ∈ T⊕

∀i ∈ [0;Nr − 2],∀k ∈ [0;Nb[,∀j ∈ [0; 3],∀v ∈ {9, 11, 13, 14}

〈δZ[i, j, k], vδZ[i, j, k]〉 ∈ TMULv

∀i ∈ [0;Nr − 2],∀k ∈ [0;Nb[,

〈14δZ[i, 0, k], 11δZ[i, 1, k],m[i, k]〉∈T⊕ 〈13δZ[i, 2, k], 9δZ[i, 3, k], n[i, k]〉 ∈ T⊕ 〈m[i, k], n[i, k], δY [i, 0, k]〉∈T⊕
〈9δZ[i, 0, k], 14δZ[i, 1, k], o[i, k]〉 ∈ T⊕ 〈11δZ[i, 2, k], 13δZ[i, 3, k], p[i, k]〉 ∈ T⊕ 〈o[i, k], p[i, k], δY [i, 1, k]〉 ∈ T⊕
〈13δZ[i, 0, k], 9δZ[i, 1, k], q[i, k]〉 ∈ T⊕ 〈14δZ[i, 2, k], 11δZ[i, 3, k], r[i, k]〉 ∈ T⊕ 〈q[i, k], r[i, k], δY [i, 2, k]〉 ∈ T⊕
〈11δZ[i, 0, k], 13δZ[i, 1, k], s[i, k]〉 ∈ T⊕ 〈9δZ[i, 2, k], 14δZ[i, 3, k], t[i, k]〉 ∈ T⊕ 〈s[i, k], t[i, k], δY [i, 3, k]〉 ∈ T⊕

∀i ∈ [0;Nr − 2],∀j ∈ [0; 3],∀k ∈ [0;Nb[,

〈δXi+1[j, k], δZ[i, j, k], δWK [j, (i+ 1)×Nb + k]〉 ∈ T⊕

∀ω ∈ [Nb;Nb × (Nr + 1)[ such that isSbCol(ω),∀j ∈ [0; 3],

〈δWK [j, ω], δSWK [j, ω], pWK [j, ω]〉 ∈ TSBOX

∀j ∈ [0; 3],∀ω ∈ [Nb;Nb × (Nr + 1)[,

if ω mod Nk = 0 then 〈δWK [j, ω], δWK [j, ω−Nk], δSWK [(j + 1) mod 4, ω−1]〉 ∈ T⊕
elsif Nk > 6 ∧ k mod Nk = 4 then 〈δWK [j, ω], δWK [j, ω−Nk], δSWK [j, ω−1]〉 ∈ T⊕

else 〈δWK [j, ω], δWK [j, ω−Nk], δWK [j, ω−1]〉 ∈ T⊕

(C1)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

(C9)

(C10)

Model 4.3: Step-2 model for Rijndael.
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at row j of M). Again, this is done by using table constraints. The main novelty with respect
to the model introduced in [Gér+20] for the AES is that we introduce new variables (denoted
ai[k], bi[k], etc), and we decompose the relation into three constraints such that each constraint
ensures that the xor of three variables is equal to zero. For example, the relation

δZi[0, k]⊕ 2δYi[0, k]⊕ 3δYi[1, k]⊕ δYi[2, k]⊕ δYi[3, k] = 0

is decomposed into the three following constraints:

〈2δYi[0, k], 3δYi[1, k], ai[k]〉 ∈ T⊕
〈δYi[2, k], δYi[3, k], bi[k]〉 ∈ T⊕
〈ai[k], bi[k], δZi[0, k]〉 ∈ T⊕

where T⊕ is the table which contains every triple (δA, δB, δC) ∈ [0; 255]3 such that δA⊕ δB ⊕
δC = 0. This decomposition allows us to remove some variables and simplify constraints when
we know that some variables are equal to 0. For example, if ∆Yi[0, k] = 0 in the truncated
characteristic, then we infer that 2δYi[0, k] = 0 (because 2⊗0 = 0) and ai[k] = 3δYi[1, k] (because
0⊕ δYi[1, k]⊕ ai[k] = 0). Hence, in this case the three previous constraints are replaced with:

〈δYi[2, k], δYi[3, k], bi[k]〉 ∈ T⊕ and 〈3δYi[1, k], bi[k], δZi[0, k]〉 ∈ T⊕.

Constraints (C6) and (C7) are redundant constraints that model the MixColumns−1 operation:
They do not change the solutions, but they speed up the solution process by allowing the solver
to propagate in both forward (from the plaintext to the ciphertext) and backward (from the
ciphertext to the plaintext) directions.

4.2 Results
The Step-1 model is implemented with the MiniZinc 2.4.3 modelling language2. This language
is accepted by many CP solvers and preliminary experiments have shown us that the best
performing solver is Picat-SAT3 2.8.6: This solver first translates the MiniZinc model into a SAT
instance and then uses the Lingeling SAT solver to solve the SAT instance. The Step-2 model is
implemented and solved with the CP library Choco4 v4.10.2.

In Figure 4.1, we compare solving times of the approach of [Gér+20] with those of our new
approach on the AES instances in order to evaluate the interest of our two modifications, i.e., (i)
the interleaving of Steps 1 and 2 and the active use of LB and UB to stop the search whenever
LB≥UB (see Section Two-step solving process), and (ii) the decomposition of the MixColumns
constraint into 3 smaller table constraints (see Section MixColumns). For this experiment, all runs
have been performed on a single core of an Intel Xeon CPU E3 at 3.50 GHz with 4 cores under

2https://github.com/MiniZinc/MiniZincIDE/releases/tag/2.4.3
3http://picat-lang.org/download/picat28_6_linux64.tar.gz
4https://github.com/chocoteam/choco-solver/releases/tag/4.10.2
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Figure 4.1: Comparison of the approach of [Gér+20] (in green) with our new approach (in red), our new
approach without MixColumns decomposition (in orange), and our new approach without exploiting bounds
(in purple). Each point (x, y) corresponds to an AES instance (with Klen = 128 on the left, Klen = 192 on
the middle, and Klen = 256 on the right): y gives the CPU time in seconds needed to solve it (logscale)
when there are Nr = x rounds.

a Linux Ubuntu 20.04.1 (Focal Fossa) using at most 16 GB of RAM. There are two instances
for which our new approach needs slightly more time than the approach of [Gér+20]: AES128

when Nr = 3 (48s instead of 23s) and AES256 when Nr = 13 (567s instead of 479s). For the 21
remaining instances our new approach is faster and, in some cases the difference is very large, e.g.,
4, 217s instead of 95, 389s for AES128 when Nr = 5, or 5, 163s instead of 30, 059s for AES192 when
Nr = 10. To evaluate the interest of each of our two modifications separately, we also display our
new approach without (ii), and our new approach without (i). In many cases, each modification
improves the solution process, and the combination of these two modifications is even better.
However, modification (i) deteriorates the solution process when Nr ≥ 10 for AES256. This comes
from the fact that, for these instances, the optimal solution is strictly smaller than 2−6·NBsbox

so that the lower bound LB cannot be used to stop the search.

We give in Tables 4.1 and 4.2 the results of Algorithm 4.1 for every key length Klen ∈
{128, 160, 192, 224, 256}, every block size Clen ∈ {128, 160, 192, 224, 256}, and every number
of rounds Nr ∈ [3;x] where x is the maximum number of rounds authorized (i.e., the maximal
number of rounds for which NBSBOX is smaller than the key length divided by 6 and the number
of active S-Boxes in the plaintext part is smaller than the block length divided by 6). For this
experiment, all runs have been performed on a single core of an Intel Xeon E5-2630 v4 at 3.10
Ghz with 10 cores under a Linux Debian 10 (Buster) using at most 16 GB of RAM (default JVM
configuration). This architecture was provided by the Grid5000 cluster [Bal+13].

834.2. Results



Please note that there is a slight difference between the model used for Figure 4.1 and the model
used for Tables 4.1 and 4.2. Indeed, the model in [Gér+20] ignores the S-Boxes of the last round
subkey. When the key has 128 or 256 bits, this does not change anything. However, when the key
has 192 bits this may change results. To allow a fair comparison with [Gér+20], we also ignore
the S-Boxes of the last round key in all models compared in Figure 4.1. However, in Tables 4.1
and 4.2, we do consider the S-Boxes of the last round subkey. Therefore, when the key has 192
bits and the text 128 bits, some probabilities may be greater than those reported in [Gér+20],
e.g., for the instance Rijndael128−192 with 7 rounds the maximal probability is 2−84 instead of
2−78.

One instance (when Clen = 128, Klen = 160, and Nr = 8) was stopped after 38 days of
computation. For this instance, the output value of Step1-opt is 23. Step1-enum has enumerated
7 truncated characteristics with 23 active S-Boxes and none of them can be instantiated into a
Step-2 characteristic. So far, we have enumerated 213 truncated characteristic with 24 active
S-Boxes and none of them can be instantiated into a Step-2 characteristic. Hence, for this instance
the current upper bound is UB = 2−150. We have computed 189 instances with 25 active S-Boxes
and 1048 instances with 26 active S-Boxes and the smaller probability is LB = 2−160.

All other instances have been solved within a reasonable amount of time: 82 are solved within
1, 000s; 24 need more than 1, 000s and less than 10, 000s (i.e., less than three hours); 10 need
more than 10, 000s and less than 100, 000s (i.e., less than 28 hours); and finally 2 need more than
28 hours and less than 3 days.

In Tables 4.1 and 4.2, o1 is the output value of Step1-opt (called at line 1 of Algorithm 4.1),
i.e., the initial value of NBSB; p is the output value of Algorithm 4.1, i.e., the probability of the
optimal related-key differential characteristic; and time is the total CPU time spent by Algorithm
4.1 in seconds (this time both includes the running times of Picat-SAT and of Choco). We also
report the number o2 of active S-Boxes in the optimal differential characteristic. In most cases
(91 out of 122 cases), o1 = o2 and p > 2−6·(o1+1). In these cases, Algorithm 1 has enumerated
Step-1 solutions for only one value of NBSB, and LB became larger than or equal to UB the first
time NBSB has been incremented.

In 17 cases (marked with c just after o2), o1 = o2 but it has been necessary to increment NBSB at
least once in order to check that no better characteristic can be found with more active S-Boxes.
For example, when Clen = 128, Klen = 224, and r = 9, the best differential characteristic has
22 active S-Boxes and its probability is 2−139. As 2−139 < 2−6·23, Algorithm 1 has incremented
NBSB in order to check that it is not possible to have a larger probability (equal to 2−139) with
23 active S-Boxes.

In 2 cases (marked with ! just after o2), o2 ≥ o1 + 1 because none of the Step-1 truncated
characteristic with o1 active S-Boxes can be instantiated into a Step-2 characteristic. In these
two cases, Algorithm 1 has incremented NBSB in order to enumerate Step-1 solutions with o1 + 1
active S-Boxes and find the best differential characteristic.
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Finally, in 13 cases (marked with ↑ just after o2), o2 ≥ o1 + 1 because a better characteristic has
been found with o1 + n active S-Boxes (though at least one Step-1 solution can be instantiated
into a Step-2 solution).

4.3 Attacks
We describe in this section the best attacks we could mount based on the distinguishers found in
the previous section. More precisely, two particular distinguishers have a real interest in terms
of attacks. The first one is an 11-round related-key differential characteristic distinguisher on
Rijndael128−224 (presented in Table 4.3 that allows us to mount an attack on 12 rounds (out of
13) of this cipher. There also exists a 12-round distinguisher for Rijndael-128-224 but due to
its very low probability (equal to 2−127) for the data path, we do not manage to transform this
distinguisher into an attack. And second, we also mount an attack on 12 rounds of Rijndael160−256

(it has 14 rounds) based on the 11-round related-key differential characteristic distinguisher
(presented in Table 4.4).

4.3.1 Weak key attack on 12 rounds of Rijndael-128-224
First, remember that the 12th round of Rijndael-128-224 is the last round for our attack so it
does not contain a MixColumns operation. We base our attack on the distinguisher presented in
Table 4.3. This distinguisher has a probability equal to 2−169: 2−103 coming from the state and
2−66 coming from the key.

Thus, the attack process is the following one. We submitM = 2103+ε pairs of plaintexts X and X ′

with the difference specified in the first line of Table 4.3 under the keys K and K ′ = K⊕ δK with
the difference specified in the first line (second column) of Table 4.3. Then a possible propagation
of the difference is the one shown in Table 4.3, and we obtain the corresponding ciphertexts C
and C ′.

We know from Table 4.3 that the output of the 11th round (and the beginning of the 12th round)

is of the form δX12 =




01 01 1F 1F
0 0 0 0
0 0 0 0
0 0 0 0



. After passing through SubBytes and ShiftRows, it

becomes: δSX12 =




? ? ? ?
0 0 0 0
0 0 0 0
0 0 0 0



. From the keyschedule, the subkey difference δK12 will be of

the form




21 A⊕ 01 A A⊕ 01
1F B B B

1F C C C

21 D D D




where A,B,C and D are unknown difference. Thus the
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Results when Clen = 128 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time
Nr = 3 5 5 2−31 13 4 4 2−24 5 1 1 2−6 1
Nr = 4 12 12 2−75 31 5 5 2−30 21 4 4 2−24 6
Nr = 5 17 17 2−105 8,304 10 10 2−60 12 5 5 2−30 8
Nr = 6 17 17 2−108 641 10 10 2−60 17
Nr = 7 19 19 2−120 1,089 14 14 2−84 46
Nr = 8 23 ≥ 24! 2−160 ≤ p ≤ 2−150 > 106 18 18 2−108 83
Nr = 9 24 24 2−146 1,800

Results when Clen = 128 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time
Nr = 3 1 1 2−6 1 1 1 2−6 1
Nr = 4 3 3 2−18 3 3 3 2−18 3
Nr = 5 6 6 2−36 8 3 3 2−18 5
Nr = 6 8 8 2−48 14 5 5 2−30 13
Nr = 7 13 13 2−78 35 5 5 2−30 18
Nr = 8 18 18 2−112 1,593 10 10 2−60 32
Nr = 9 22 22c 2−139 2,425 15 15 2−92 346
Nr = 10 24 24c 2−151 1,834 16 16 2−98 159
Nr = 11 27 27c 2−169 1,823 20 20 2−122 330
Nr = 12 34 34c 2−212 9,561 20 20 2−122 277
Nr = 13 24 24 2−146 420
Nr = 14 24 24 2−146 557

Results when Clen = 160 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time
Nr = 3 9 9 2−54 6 5 5 2−30 880 4 4 2−24 4
Nr = 4 18 18 2−112 49,501 10 10 2−60 11 6 6 2−36 7
Nr = 5 17 17 2−107 621 9 9 2−54 15
Nr = 6 21 22! 2−138 36,788 15 15 2−90 62
Nr = 7 19 19 2−117 600
Nr = 8 23 23 2−141 2,059

Results when Clen = 160 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time
Nr = 3 2 2 2−12 2 1 1 2−6 2
Nr = 4 5 5 2−31 16 4 4 2−24 4
Nr = 5 10 10 2−60 18 6 6 2−36 14
Nr = 6 15 15 2−90 40 12 12 2−72 42
Nr = 7 20 20 2−124 402 15 15 2−93 226
Nr = 8 24 24 2−148 783 20 20 2−124 755
Nr = 9 30 30c 2−190 13,081 23 23c 2−146 2,284
Nr = 10 27 27c 2−169 4,927
Nr = 11 32 32c 2−204 15,497

Table 4.1: Summary of the best related-key differential characteristics for Rijndael when Clen ∈ {128, 160}.
The time is given in seconds.
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Results when Clen = 192 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time
Nr = 3 9 9 2−54 7 6 6 2−37 20 5 5 2−30 199
Nr = 4 15 15 2−94 92 9 9 2−54 15
Nr = 5 19 19 2−118 183 14 15↑ 2−90 146
Nr = 6 19 19 2−117 864
Nr = 7 25 25 2−153 2,101

Results when Clen = 192 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time
Nr = 3 4 4 2−24 7 1 1 2−6 2
Nr = 4 8 8 2−48 13 5 5 2−30 10
Nr = 5 15 15 2−95 387 12 12 2−72 84
Nr = 6 16 17↑ 2−103 1,349 17 17 2−106 452
Nr = 7 24 24c 2−157 11,908 18 18 2−112 551
Nr = 8 32 33↑c 2−205 91,983 24 24 2−149 951
Nr = 9 29 29 2−179 3,397
Nr = 10 38 38c 2−236 88,076

Results when Clen = 224 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time
Nr = 3 9 9 2−54 13 9 9 2−54 9 6 6 2−37 39
Nr = 4 19 19c 2−122 2,742 13 13 2−78 35
Nr = 5 20 20 2−124 1,040
Nr = 6 28 29↑ 2−179 18,632

Results when Clen = 224 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time
Nr = 3 6 6 2−36 8 4 4 2−24 10
Nr = 4 13 13 2−79 121 8 8 2−48 22
Nr = 5 16 17↑ 2−103 1,562 15 16↑ 2−97 3,267
Nr = 6 23 23c 2−150 1,511 18 19↑ 2−115 5,049
Nr = 7 31 31c 2−196 49,429 20 21↑ 2−128 1,378
Nr = 8 28 30↑ 2−182 18,377
Nr = 9 37 37c 2−241 210,290

Results when Clen = 256 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time
Nr = 3 9 9 2−54 15 9 9 2−54 13 9 9 2−54 12
Nr = 4 20 21↑ 2−130 4,157 18 18 2−110 824
Nr = 5 24 24 2−148 4,624

Results when Clen = 256 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time
Nr = 3 6 6 2−37 33 5 5 2−30 34
Nr = 4 18 18c 2−115 65,672 13 13 2−79 276
Nr = 5 28 29! 2−179 455,210 16 17↑ 2−103 3,084
Nr = 6 20 21↑ 2−128 2,170
Nr = 7 27 29↑ 2−176 9,237
Nr = 8 37 37c 2−240 191,581

Table 4.2: Summary of the best related-key differential characteristics for Rijndael when Clen ∈
{192, 224, 256}. The time is given in seconds.
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Round δXi = Xi ⊕X ′i (before SBOX) δRKi Pr(States) Pr(Key)
δSBXi (after SBOX)

i = 0 005D005D 00A300A3 00A300A3 00FE00FE 015C005D 00A300A3 00A300A3 00FE00FE − −
i = 1 01010000 00000000 00000000 00000000 21210001 1F1F0000 1F1F0000 21210000 2−2×6 −

1F1F0000 00000000 00000000 00000000
2 1F1F0001 00000000 00000000 00000000 5D5D0021 A3A3001F A3A3001F FEFE0021 2−3×6 −

A3A3001F 00000000 00000000 00000000
3 0000001F 00000000 00000000 00000000 0000015C 000000A3 000000A3 000000FE 2−6 −

000000A3 00000000 00000000 00000000
4 00001F1F 00000000 00000000 00000000 01013E3E 00001F1F 00001F1F 00002121 22×(−6) 2−6

00001F1F 00000000 00000000 00000000
5 01010000 00000000 00000000 00000000 3E5C0001 1FA30000 1FA30000 21FE0000 2−6−7 2−6−3×7

1FA30000 00000000 00000000 00000000
6 00010001 00000000 00000000 00000000 003E003E 001F001F 001F001F 00210021 22×(−6) 2−6−3×7

001F001F 00000000 00000000 00000000
7 00000000 00000000 00000000 00000000 01010000 00000000 00000000 00000000 − −

00000000 00000000 00000000 00000000
8 01010000 00000000 00000000 00000000 3E3E0001 1F1F0000 1F1F0000 21210000 22×(−6) −

1F1F0000 00000000 00000000 00000000
9 00000001 00000000 00000000 00000000 0000003E 0000001F 0000001F 00000021 2−6 −

0000001F 00000000 00000000 00000000
10 00000000 00000000 00000000 00000000 00000101 00000000 00000000 00000000 − −

00000000 00000000 00000000 00000000
11 00000101 00000000 00000000 00000000 01012121 00001F1F 00001F1F 00002121 22×(−6) 2−6

00001F1F 00000000 00000000 00000000
output 01013E3E 00001F1F 00001F1F 00002121

Table 4.3: The Best related key differential characteristic we found on 11 rounds of Rijndael128−224 with
probability equal to 2−169. The four words represent the four rows of the state and are given in hexadecimal
notation. Note that the last round does not contain the MixColumns operation.

difference between C and C ′ will be of the form δC =




? ? ? ?
1F B B B

1F C C C

21 D D D



.

So the attack works as follows:

• We filter on the values 1F , 1F , and 21 at positions (1, 0), (2, 0), and (3, 0) in δC before the
last ShiftRows. It remains 2103+ε−20 = 283+ε pairs of plaintexts/ciphertexts. Moreover, we
know that the three bytes at positions (1, 1), (1, 2) and (1, 3) must be equal (this remark
also holds for the second and the third rows). This leads to another filter of 48 bits.

• We guess the byte value of K12 at position (0, 0) with a cost of 28. Then, we decipher this
byte from C and C ′ to check if it is equal to 01 at the input of the 12th round. Then, it
filters 2−8 values. Moreover, the known byte at position (0, 0) in K12 gives us the difference
D (due to the keyschedule construction).

• We can guess the byte at position (1, 0) in K12 and check the value at the input of the
12th round at position (1, 0), by deciphering from C and C ′. Then, it filters 2−8 values.
Moreover, we can compute the difference A.

• We can guess the three bytes at positions (0, 1), (0, 2), and (0, 3) in K12 and check the
value at the input of the 12th round at the same position knowing the difference A, by
deciphering from C and C ′. Then, it filters 2−24 values.

88 Chapter 4. Differential Cryptanalysis of Rijndael



• We can guess the byte at position (3, 0) in K12 and check the value at the input of the 12th
round at position (3, 0), by deciphering from C and C ′. Then, it filters 2−8 values.

• We can guess the byte at position (2, 0) in K12 and check the value at the input of the 12th
round at position (2, 0), by deciphering from C and C ′. Then, it filters 2−8 values.

Then, we have guessed 7 bytes of the subkey K12, 56 bits of key, and we have filtered an equivalent
of 68 bits, leading to keep 2103+ε−68 = 235+ε pairs of plaintexts/ciphertexts. After guessing the
7-byte difference in the subkey K12, δK12 is fully determined. Thus, guessing the bytes of one key
state could determine the bytes of the related-key state.

The related-key differential characteristic given in Table 4.3 has a probability to happen for
the state part equals to 2−103. Thus, if we use 2104 plaintexts/ciphertexts in the related-key
differential attack on 12 rounds of Rijndael128−224, then the right difference of the 56 bits of the
last subkey will be counted at least twice on average whereas the probability that a bad key
appears twice is really low (around 232−68 = 2−34). The success probability computed using the
results of [Sel08] is around 97%. The time complexity of the attack is about 2105 encryptions and
the attack succeeds if the key follows the characteristic described in Table 4.3. In other words,
we have a set of weak keys of size 2224−66 = 2158.

The 168 remaining bits of the master key can be guessed through guessing more bytes in K11

and in K12 and filtering according to the remaining values in δX11 and the S-Boxes of the
KeySchedule.

4.3.2 Weak key attack on 12 rounds of Rijndael-160-256
Round δXi = Xi ⊕X ′i (before SBOX) δRKi Pr(States) Pr(Key)

δSBXi (after SBOX)
i = 0 E094E0E082 7000700041 1400700041 701F9000C3 E000E0E000 7000700041 7000700041 70909000C3 − −
i = 1 0094000082 0000000000 6400000000 008F000000 008282E0E0 0041007070 0041007070 00C3000090 24×(−6) 2−6

0041000070 0000000000 2000000000 0010000000
2 000082D000 0000000000 0000000000 0000000000 00E0828200 0000414100 0000414100 0000C3C300 22×(−7) 2−6

0000414100 0000000000 0000000000 0000000000
3 00E0000000 0000000000 0000000000 0000000000 82E00000E0 0070000000 0070000000 0090000000 2−7 2−6−7

0070000000 0000000000 0000000000 0000000000
4 82000000E0 0000000000 0000000000 0000000000 00828200E0 4100000070 4100000070 C300000090 22×(−7) −

4100000070 0000000000 0000000000 0000000000
5 8282820000 0000000000 0000000000 0000000000 E0E0000082 7070700000 7070700000 9090900000 23×(−6) 23×(−7)

7070700000 0000000000 0000000000 0000000000
6 0000E00082 0000000000 0000000000 0000000000 0000E000E0 0000700070 0000700070 0000900090 2−6−7 −

0000700070 0000000000 0000000000 0000000000
7 0000000000 0000000000 0000000000 0000000000 E082000000 0000000000 0000000000 0000000000 − 2−6

0000000000 0000000000 0000000000 0000000000
8 E082000000 0000000000 0000000000 0000000000 E0E000E000 7070000000 7070000000 9090000000 2−6−7 2−6

7070000000 0000000000 0000000000 0000000000
9 000000E000 0000000000 0000000000 0000000000 000000E000 0000007000 0000007000 0000009000 2−7 −

0000007000 0000000000 0000000000 0000000000
10 0000000000 0000000000 0000000000 0000000000 00E0828282 0000000000 0000000000 0000000000 − 2−6

0000000000 0000000000 0000000000 0000000000
11 00E0828282 0000000000 0000000000 0000000000 82E0E0E000 0070707070 0070707070 00E0E0E0E0 24×(−6) 2−6

0082707070 0000000000 0000000000 0000000000
Output ?????????? 00F20000?? 00F20000?? 000D0000??

Table 4.4: The Best related key differential characteristic we found on 11 rounds of Rijndael160−256 with
probability equal to 2−204. The four words represent the four rows of the state and are given in hexadecimal
notation. Note that the last round does not contain the MixColumns operation.
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In the same way, from the related-key differential characteristic distinguisher on 11-round of
Rijndael160−256 presented in Table 4.4, we can easily mount a 12-round attack against Rijndael160−256

that has 14 rounds. Note that the 12th round does not contain the MixColumns operation as it
is the last round of our attack. The 11-round related-key differential characteristic distinguisher
presented in Table 4.4 has a probability equal to 2−204: 2−128 coming from the difference in the
state and 2−76 coming from the key.

Thus, the attack process is the following one. We submitM = 2128+ε pairs of plaintexts X and X ′

with the difference specified in the first line of Table 4.4 under the keys K and K ′ = K⊕ δK with
the difference specified in the first line (second column) of Table 4.4. Then a possible propagation
of the difference is the one shown in Table 4.4. Then, we obtain the corresponding ciphertexts C
and C ′.

Then, we know from Table 4.4 that the output of the 11th round (and the beginning of the 12th

round) is of the form δX12 =




82 FF 0 0 E0
0 F2 0 0 0
0 F2 0 0 0
0 ED 70 70 70



. After passing through SubBytes and

ShiftRows, it becomes: δSX12 =




? ? 0 0 ?
? 0 0 0 0
0 0 0 0 ?
? ? 0 ? ?



. From the keyschedule, the subkey differ-

ences δK12 will be of the form




82 0 82 0 F

A A A A D

B B B B E

C C C C E0




where A,B,C,D,E and F are unknown

difference. Thus the difference between C and C ′ will be of the form δC =




? ? 82 0 ?
? A A A D

B B B B ?
? ? C ? ?



.

So the attack works as follows:

• For all the 2128+ε encrypted pairs of plaintexts/ciphertexts, we filter on the values 82 and
0 at positions (0, 2) and (0, 3) in δC. This filters 2−16 values. Then, it remains 2112+ε

encrypted pairs of plaintexts/ciphertexts.
• We guess the three bytes at positions (1, 4), (2, 4), and (3, 4) in K11 for a cost of 224.

This gives us the values of differences A, B and C. With those known values, we filter
on δSX12 on the 8 positions that are equal to 0 after removing A, B, and C (positions
(1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3) and (3, 2)). This filters 2−64 values.

• We guess 6 bytes of K12 (those at positions (0, 0), (0, 1), (1, 0), (3, 0), (3, 1) and (3, 3)). We
filter the corresponding 2−48 values on δX12 (before the S-Boxes) at the same positions.

• We guess the byte at position (2, 3) in K12 to get one new byte in δK12 at position (1, 4)
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equal to D and check if the difference is equal to 0 at position (1, 4) in δX12. It filters 2−8

values.
• We guess the byte at position (3, 4) in K12 to filter one byte of value in δX12 at position

(3, 4). We guess another byte at position (2, 4) in K12 to filter the byte value at position
(2, 4) in δX12. And finally, we guess the two bytes at positions (1, 3) and (0, 4) in K12 to
filter the byte value at position (0, 4) in δX12.

We have guessed a total of 112 key bits and we have filtered, in the initial step 16 bits and the
equivalent of 32 bits in the second step and the last step leading to stay with 280+ε pairs of
plaintexts/ciphertexts.

The related-key differential characteristic given in Table 4.4 has a probability to happen for
the state part equals to 2−128. Thus, if we use 2129 plaintexts/ciphertexts in the related-key
differential attack on 12 rounds of Rijndael160−256, then the right difference of the 112 bits of the
last subkey will be counted at least twice on average whereas the probability that a bad key
appears twice is really low (around 281−112 = 2−31). The success probability computed using the
results of [Sel08] is around 97% also. The time complexity of the attack is about 2130 encryptions
and the attack succeeds if the key follows the characteristic described in Table 4.4. In other
words, we have a set of weak keys of size 2256−76 = 2180.

The 144 remaining bits of the master key can be guessed through guessing more bytes in K11 and
in K12 and filtering according the remaining values in δX11 and the S-Boxes of the key schedule.

4.4 Conclusion
In this chapter, we have extended and improved the models initially proposed in [Gér+20] for the
AES to the 25 instances of Rijndael. This allowed us to compute optimal related-key differential
characteristics for all Rijndael instances but one (and provide upper and lower bounds for the
remaining one). We sum up in Table 4.5 the best attacks described in this chapter.

Instance Nb rounds Nr Time Number of keys
Rijndael128−224 12 13 2105 2158

Rijndael160−256 12 14 2130 2180

Table 4.5: Summary of the best related-key differential attacks we found on different Rijndael instances.
The last column displays the number of keys for which the attack works.

Those results are obtained using a two-step strategy that is feasible in terms of memory usage
and time consumption. This strategy is modelled in MiniZinc, and it is solved by combining two
solvers: Picat-SAT for Step-1 and Choco for Step-2.

As the reader can see, abstracting the ciphers to model Step-1 can be complicated. Moreover,
using multiple solvers can be a source of errors, e.g. when transforming a solution from one solver
to the model of another solver. Although generic solvers are like black boxes, it is necessary to
know how they work in order to fully exploit their power. Indeed, a model could very well be
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efficient on a SAT solver whereas it would not be efficient on ILP or CP solvers.

In the next chapter, we propose a new constraint named abstractXOR dedicated to the abstraction
of the xor operator in Step-1 in order to simplify the work of cryptographers; this allows them
(i) to use only one CP solver, (ii) to transcribe more directly the cipher in the model without
going through intermediate variables or new equations.
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5.1 Motivations
To motivate the introduction of a global constraint for propagating abstract xors during Step-1,
let us consider the CP model for computing a maximum differential characteristic (MDC) on
Midori, displayed in Model 5.1. This model is derived in a straightforward way from the definition
of the cipcher algorithm, which is detailed in 1.2.2. The goal is to maximise the sum of all log2

probabilities P [i, k]. Constraints (C1) to (C4) correspond to the 4 operations applied at each
round:

• (C1) is the table constraint corresponding to SubBytes;
• (C2) corresponds to ShiftRow, which moves bytes from position b in δSX[i] to position
f(b) in δY[i];

• (C3) and (C4) correspond to MixColumns and AddRoundKey, respectively, and only involve
xor operations.
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Maximise
r−1∑

i=0

15∑

k=0
P [i, k] (C0)

∀i ∈ [0; r[, ∀k ∈ [0; 15]:

(δX [i, k], δSX [i, k], P [i, k]) ∈ subBytesTablek (C1)

δY [i, f(k)] = δSX [i, k] (C2)

δZ [i, k]⊕ δY [i, (k + 4)%16]⊕ δY [i, (k + 8)%16]⊕ δY [i, (k + 12)%16] = 0 (C3)

δZ [i, k]⊕ δK [k]⊕ δX [i+ 1, k] = 0 (C4)

Model 5.1: MDC problem for Midori128.

When considering a two-step solving process, a basic Step-1 model is displayed in Model 5.2. It
is very similar to the problem of Model 5.1. The main difference is that log2 probability variables
(P [i, k]) are removed, and the objective function and constraint C1 are replaced with constraint
(A0) which ensures that the number of ∆[Xi][b] variables assigned to 1 is equal to a given value
n. Constraint A1 comes from the fact that δX [i, k] = 0 iff δSX [i, k] = 0. Finally, xor constraints
C3 and C4 are replaced with abstract xor constraints A3 and A4: an abstract xor constraint
∆1 ◦ . . . ◦∆l = 0 is satisfied iff, for each ∆j assigned to 1 there exists an integer value in [1; 255]
such that the xor of all these values is equal to 0.

When encoding each abstract xor constraint ∆1 ◦∆l = 0 by suml
i=1∆i 6= 1, the resulting model

has a lot of solutions ant most of these solutions cannot be instantiated into Step-2 solutions. In
his PhD thesis [Gér18], Gerault introduced a new model that has far fewer solutions. This model
reuses the same techniques as those presented in Chapter 3.1 and is therefore more complicated
than the basic one.

Our goal is to ease the design of CP models for computing MDCs, while ensuring an efficient
solving process. To this aim, we introduce a global constraint which propagates xors in a global
way in order to reduce the number of Step2-inconsistent solutions.

In Section 5.2, we introduce notations and preliminary definitions.

In Section 5.3, we introduce the abstractXOR constraint which ensures that a set of abstract xor
constraints is Step2-consistent. We show that deciding of abstractXOR feasibility is NP-complete
when differential variables are constrained to belong to [0; 255] whereas it is polynomial when the
domain of differential variables is not upper bounded. Hence, we relax abstractXOR by removing
this upper bound. In Section 5.4, we introduce two propagators for abstractXOR: the first one
simply ensures feasibility, and the second one ensures Generalised Arc Consistency (GAC).

94 Chapter 5. Abstract XOR



n =
r−1∑

i=0

15∑

k=0
∆X [i, k] (A0)

∀i ∈ [0; r[,∀k ∈ [0; 15]:

∆X [i, k] = ∆SX [i, k] (A1)

∆Y [i, k] = ∆SX [i, f(k)] (A2)

∆Z [i, k] ◦∆Y [i, (k + 4)%16] ◦∆Y [i, (k + 8)%16] ◦∆Y [i, (k + 12)%16] = 0 (A3)

∆Z[i, k] ◦∆K [k] ◦∆X [i+ 1, k] = 0 (A4)

Model 5.2: Step-1 problem for Midori128.

In Section 5.6, we experimentally evaluate them on two MDC problems (related-key and single-
key) for Midori and AES. We also provide their the evaluation of abstractXOR on Rijndael against
the model shown in the previous Chapter.

5.2 Notations and definitions
Given two integer values a and b, [a; b] denotes the set of all integer values ranging from a to
b. [a; b[ denotes the set of all integer values ranging from a to b− 1. N+ denotes the set of all
natural numbers (excluding 0).

A denotes a set of variables such that the domain of each variable ∆k ∈ A is D(∆k) ⊆ {0, 1}. ∆k

is assigned iff #D(∆k) = 1, and an assignment is complete if all variables of A are assigned. A0

denotes the set of variables assigned to 0 and A \ A0 denotes the set of variables that are either
assigned to 1 or not yet assigned.

C denotes a set of abstract xor constraints defined on A, where each abstract xor constraint
is of the form ∆1 ◦ . . . ◦∆l = 0 and corresponds to a xor equation δ1 ⊕ . . .⊕ δl = 0.

C↓A0 denotes the set of xor constraints obtained from C by (i) replacing each ∆k ∈ A0 with 0,
(ii) replacing each ∆k ∈ A \ A0 with an integer variable δk whose domain is D(δk) = N+, and (iii)
replacing each abstract xor ◦ with the bitwise xor ⊕. Examples are displayed in Figure 5.1
(equations of C↓A0 are simplified by replacing δk ⊕ 0 with δk).

C↓A0 is represented by a matrix M which contains one row for each equation and one column for
each variable in A \ A0: M [j, k] = 1 if δk occurs in the equation j of C↓A0 ; otherwise, M [j, k] = 0.
We denote n and m the numbers of rows and columns of M .

For each row j ∈ [0;n[, we define nonZeroj = {k ∈ [0;m[ |M [j, k] = 1}, pivotj = minnonZeroj ,
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Equations:
A = {∆0,∆1,∆2,∆3,∆4,∆5,∆6}

C =





∆0 ◦∆3 ◦∆5 ◦∆6 = 0,
∆1 ◦∆3 ◦∆4 ◦∆6 = 0,

∆2 ◦∆4 ◦∆5 = 0





Example 5.1

C↓A0 : M : δ0 δ1 δ2 δ3 δ4 δ5
δ0 ⊕ δ3 ⊕ δ5 = 0 1 0 0 1 0 1
δ1 ⊕ δ3 ⊕ δ4 = 0 0 1 0 1 1 0
δ2 ⊕ δ4 ⊕ δ5 = 0 0 0 1 0 1 1

Example 5.2

C↓A0 : M : δ0 δ3 δ4 δ5
δ0 ⊕ δ3 ⊕ δ5 = 0 1 1 0 1

δ3 ⊕ δ4 = 0 0 1 1 0
δ4 ⊕ δ5 = 0 0 0 1 1

Figure 5.1: Top: A set A of variables and a set C of abstract xor constraints. Bottom: C↓A0 and
M when ∆6 is assigned to 0 (Example 5.1, on the left) and when ∆1, ∆2, and ∆6 are assigned to 0
(Example 5.2, on the right). In Example 5.1, M is in RRE form and nonZero0 = {0, 3, 5}, pivot0 = 0,
and nonPivot0 = {3, 5}. In Example 5.2, M is not in RRE form because the pivot columns of rows 1 and
2 have two non-zero cells.

and nonPivotj = nonZeroj \ {pivotj}.

M is in reduced row-echelon (RRE) form iff, for every row j ∈ [0;n[, there is exactly one non-zero
cell in column pivotj , i.e.,

∑n−1
j′=0M [j′, pivotj ] = 1 (see examples in Figure 5.1).

5.3 Definition and complexity of Abstract XOR
When computing MDCs in a two-step process, we aim at minimizing as much as possible the
number of Step-1 solutions which are Step2-inconsistent. As many Step2-inconsistencies come
from the fact that xor constraints are poorly abstracted at Step-1, we introduce a global constraint
to obtain a tighter Step-1 model.

Definition 5.1
Given an integer value u > 0, the constraint abstractXORu,C(∆) is satisfied by a complete
assignment iff C↓∆0 ∪ {∆k ≤ u : ∆k ∈ ∆ \∆0} is consistent.

Let us consider Example 5.1 of Figure 5.1. If u = 3, then abstractXORu,C(∆) is satisfied because
there exists a solution of C↓∆0 such that every δk belongs to [1; 3] (e.g., δ0 = δ4 = 1, δ1 = δ5 = 2,
and δ2 = δ3 = 3).

However, if u = 2, then abstractXORu,C(∆) is not satisfied because C↓∆0 has no solution when
every δk must belong to [1; 2].

In Example 5.2, abstractXORu,C(∆) is not satisfied because (δ3 ⊕ δ4 = 0∧ δ4 ⊕ δ5 = 0)⇒ (δ3 =
δ4 = δ5)⇒ (δ3⊕ δ5 = 0). Therefore, δ1 must be equal to 0, which is impossible as δ1 must belong
to [1, u].

abstractXOR allows us to easily model Step-1 problems. For example, for Midori128, we replace
constraints (A3) and (A4) with abstractXOR255,C(∆) where C = {(A3), (A4)}, and ∆ contains
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all variables involved in (A3) or (A4). The resulting model has less Step2-inconsistent solutions
than the basic model obtained by replacing (A3) and (A4) with constraints that ensure that
the sum is different from 1: abstractXOR ensures the consistency of (C3) and (C4) at Step-2,
whereas the basic model only ensures the feasibility of each xor separately.

However, checking the feasibility of abstractXOR is intractable.

Theorem 5.1
Deciding if a complete assignment satisfies abstractXORu,C(∆) is an NP-complete prob-
lem.

Proof 5.1
To decide whether abstractXORu,C(∆) is satisfied by a complete assignment, we must
decide whether C↓∆0 is consistent when all δk variables occurring in C↓∆0 are constrained
to belong to [1, u]. This problem trivially belongs to NP as we can decide in polynomial
time whether a given assignment of all δk variables satisfies C↓∆0 .
To show that it is NP-complete, we give a reduction from the graph colouring problem,
which aims at deciding if we can assign a colour cj ∈ [1; u] to each vertex j of a graph so
that cj 6= ck for each edge (j, k). Given a graph G, we associate a variable δj (resp. δjk)
with every vertex j (resp. edge (j, k)) of G, and we define the xor constraints:
C = {δj ⊕ δk ⊕ δjk = 0 : (j, k) is an edge of G}.
If each variable must belong to [1; u], then each xor constraint associated with an edge
(j, k) ensures that δj 6= δk (because δj = δk ⇔ δjk = 0). Hence, we can show that every
solution of C corresponds to a valid colouring of G, and vice-versa.

Now, let us show that we can decide if abstractXOR is satisfied in polynomial time when δk

variables are not upper bounded. In this case, we have to decide if C↓∆0 is consistent. We first
show how to put the matrix M associated with C↓∆0 in RRE form. This is done by Algorithm
5.1, which uses a principle similar to Gaussian elimination of linear equations.

Algorithm 5.1 does not change the set of solutions because it only removes empty rows (line 4),
or replaces a row j′ with the result of xoring it with another row j (line 7).

To show that Algorithm 5.1 puts M in RRE form, we show that the comment after line 2 is an
invariant property of the loop lines 2-7. This property is trivially satisfied at the first iteration
when j = 0 and, if it is satisfied at some iteration, then it is satisfied at the next iteration: if
row j is empty (line 3) then it is removed and j is not incremented so that the property is still
satisfied; otherwise (lines 4-7), every row j′ 6= j which contains a non-zero cell on column pivotj
is xored with row j so that column pivotj only contains one non-zero cell on row j just after
lines 5-6.

The complexity of this algorithm is O(mn2).

We use Property atLeast2 (defined below) to decide if C↓∆0 is consistent.
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1 j ← 0
2 while j < n do
3 /* every row j′ ∈ [0; j − 1[ is in RRE form, i.e., ∑n−1

j′′=0M [j′′, pivot′j ] = 1 */
4 if nonZeroi = ∅ then remove row j and decrement n
5 else
6 for each row j′ ∈ [0; n[ such that j′ 6= j and M [j′, pivotj ] = 1 do
7 for each column k′ ∈ [0; m[ do M [j′, k′]←M [j′, k′]⊕M [j, k′]
8 end
9 j ← j + 1

10 end
11 end

Algorithm 5.1: RRE form of an n×m matrix M

Definition 5.2: Property atLeast2

A matrix M in RRE form satisfies Property atLeast2 if each row has at least two non-zero
cells, i.e., ∀j ∈ [0; n[,#nonZeroj ≥ 2.

Theorem 5.2
C↓∆0 is consistent iff its associated matrix M in RRE form satisfies Property atLeast2.

Proof 5.2
If M does not satisfy Property atLeast2, then it contains a row with exactly one non-zero
cell, i.e., there exists an equation of the form δk = 0. In this case C↓∆0 is inconsistent as
D(δk) = N+.
If M satisfies Property atLeast2, then we can always build a solution for C↓∆0 . The idea is
to first assign values to variables associated with non-pivot columns, and then compute
values of variables associated with pivot columns by xoring the corresponding non-pivot
variables. To ensure that values computed for pivot variables are always different from 0,
we have to choose carefully the values of non-pivot variables. More precisely, non-pivot
variables are assigned one after the other. When choosing a value for a non-pivot variable
δk, for each row j such that k ∈ nonPivotj , if all variables of nonPivotj but δk are already
assigned, then we must choose a value different from the result of the xor of these assigned
variables. As the domains of δk variables are not upper bounded, we can always build a
solution.

A consequence of Theorem 5.2 is that we can decide in polynomial time if a complete assignment
satisfies abstractXOR∞,C(∆). Indeed, this amounts to deciding whether C↓∆0 is consistent. This
can be done by using Algorithm 5.1 to put the matrix M associated with C↓∆0 in RRE form,
and then checking that Property atLeast2 is satisfied.
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5.4 Propagation of Abstract XOR
As deciding of the satisfaction of abstractXORu,C(∆) is polynomial when u =∞, we consider
that u =∞ from now on.

In this section, we introduce an algorithm that checks feasibility (Section 5.4.1), an algorithm
that ensures Generalised Arc Consistency (Section 5.4.2), and we discuss implementation and
complexity issues (Section 5.4.3).

5.4.1 Checking feasibility of Abstract XOR

1 for each row j ∈ [0; n[ such that nonPivotj = ∅ do
2 if D(∆pivoti) = {1} then return failure
3 else
4 remove 1 from D(∆pivoti)
5 remove row j and decrement n
6 remove column pivotj and decrement m
7 end
8 end
9 return success

Algorithm 5.2: Check Property atLeast2 of an n×m matrix M in RRE form

Before starting the search, we build the matrix M associated with C↓∆0 and use Algorithm 5.1
to put it in RRE form. During the search, we maintain M in RRE form: each time a variable
∆k ∈ ∆ is assigned to 0, we remove column k from M and, if k is the pivot column of a row j,
we execute lines 3-6 of Algorithm 5.1.

Once M is in RRE form, we check feasibility by exploiting Theorem 5.2, as shown in Algorithm
5.2: for each row j with only one non-zero cell, if ∆pivotj is assigned to 1 we trigger failure,
otherwise we assign 0 to ∆pivotj and remove row j and column pivotj from M .

5.4.2 Ensuring the Generalized Arc Consistency of Abstract XOR
To ensure GAC, we must ensure that for each variable ∆k ∈ ∆ and each value v ∈ D(∆k), the
couple (∆k, v) has a support, i.e., there exists a consistent assignment which assigns v to ∆k and
a value v′ ∈ D(∆k′) to every other variable ∆k′ ∈ ∆ \ {∆k}. By maintaining M in RRE form and
ensuring Prop. atLeast2, we ensure that (∆k, 1) has a support for each variable ∆k ∈ ∆ such that
1 ∈ D(∆k). Also (∆k, 0) has a support for every variable ∆k ∈ ∆ assigned to 0. However, when
∆k is not assigned, (∆k, 0) may not have a support. This occurs when there exist ∆k,∆k′ ∈ ∆\∆0

such that D(∆k) = {0, 1} ∧D(∆k′) = {1} ∧ C↓∆0 ⇒ (δk = δk′). In this case, the couple (∆k, 0)
has no support because C↓∆0 ∧ (δk = 0) ∧ (δk′ = 1) is inconsistent. Hence, to ensure GAC we
need to identify cases where the equality of two variables is a logical consequence of C↓∆0 . This
is done by the following theorem.
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Theorem 5.3

For each pair of variables {∆k,∆k′} ⊆ ∆ \∆0, C↓∆0 ⇒ (δk = δk′) iff one of the following
cases holds in the matrix M in RRE form associated with C↓∆0 :
Case 1: ∃j ∈ [0; n[, nonZeroj = {k, k′}
Case 2: ∃j, j′ ∈ [0; n[, (pivotj = k) ∧ (pivotj′ = k′) ∧ (nonPivotj = nonPivot′j)

Proof 5.3
Case 1 occurs when M contains a row j with exactly two non-zero cells, and this row
corresponds to the equation δk = δk′ .
Case 2 occurs when M contains 2 rows j and j′ such that nonPivotj = nonPivotj′ . These
rows imply that δpivotj = δpivotj′ because both δpivotj and δpivotj′ are equal to the result of
xoring a same set of variables.
There is no other case where C↓∆0 ⇒ (δk = δk′) because, when M is in RRE form, every
row j has a different pivot column pivotj . Therefore, every equation in C↓∆0 contains a
different pivot variable δpivotj . Hence, δk and δk′ are constrained to be equal either because
they occur in a same equation without any other variable, or because they are the pivot
variables of two different equations which share the same non-pivot variables.

Let us illustrate these two cases on Example 5.1:

• If ∆0 = {∆4,∆6} then C↓∆0 contains the equation δ1 ⊕ δ3 = 0, and if D(∆3) = {1} and
D(∆1) = {0, 1}, then (∆1, 0) has no support.

• If ∆0 = {∆2,∆4,∆5}, then

C↓∆0 is equal to: δ0 ⊕ δ3 ⊕ δ6 = 0
δ1 ⊕ δ3 ⊕ δ6 = 0

M is equal to:
δ0 δ1 δ3 δ6

 1 0 1 1
0 1 1 1




This implies that the pivot variables δ0 and δ1 are both equal to δ3 ⊕ δ6, and if D(∆0) = {1}
and D(∆1) = {0, 1}, then (∆1, 0) has no support.

To maintain GAC during the search, we call Algorithm 5.3 each time a variable must be assigned
to 1. This algorithm uses a queue Q of variables that must be assigned to 1. At each iteration of
the loop lines 2-11, a variable ∆k is dequeued from Q, and it is assigned to 1. This assignment
is propagated on every variable ∆k′ such that C↓∆0 ⇒ (δk = δk′). We exploit Theorem 5.3 to
identify these variables:

• Case 1 has two sub-cases: if k is the pivot column of a row j, we simply check if nonPivotj
is reduced to a singleton (line 5); otherwise, we have to search for every row j′ such that
nonPivotj′ only contains k (lines 10-11).
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1 let Q be an empty queue; enqueue ∆k in Q
2 while Q is not empty do
3 dequeue a variable ∆k from Q and remove 0 from D(∆k)
4 if k is the pivot column of a row j then
5 if nonPivotj = {k′} and D(∆k′) = {0, 1} then enqueue ∆k′ in Q
6 else
7 for each j′ ∈ [0; n[ such that nonPivotj = nonPivotj′ do
8 if D(∆pivotj′ ) = {0, 1} then enqueue ∆pivotj′ in Q
9 end

10 end
11 else
12 for each j ∈ [0; n[ such that nonPivotj = {k} do
13 if D(∆pivotj′ ) = {0, 1} then enqueue ∆pivotj′ in Q
14 end
15 end
16 end

Algorithm 5.3: Propagation of the assignment of 1 to a variable ∆k

• Case 2 only holds when k is the pivot column of a row j, and we have to search for every
row j′ such that nonPivotj = nonPivotj′ (lines 7-8).

Also, each time a variable is assigned to 0, we proceed as explained in Section 4.1 to check
feasibility. Then, for each line which has been modified when executing lines 3-6 of Algorithm
5.1, we check if cases 1 or 2 of Theorem 5.3 hold and imply that δk = δk′ with D(∆k) = {0, 1}
and D(∆k′) = {1}: in this case, we call Algorithm 5.3 to propagate the assignment of 1 to ∆k.

5.4.3 Implementation and Complexities
Sparse Sets. Our propagators mainly involve traversing non-zero cells of rows and columns of M .
As M is very sparse, we represent its rows and columns with sparse sets [Le +13]: each sparse
set contains the non-zero cells of a row or a column. This allows us to visit every non-zero cell of
a column (resp. row) in linear time with respect to the number of non-zero cells instead of O(m)
(resp. O(n)), and to decide in constant time if an element belongs to a set. Sparse sets also allow
to restore sets in constant time when backtracking, provided that we only remove elements at
each choice point. Unfortunately, this is not the case here as new non-zero cells may appear when
xoring lines. Hence, when backtracking, we undo all operations done before the recursive call.

Time complexity of the propagators. Let n1 (resp. m1) be the maximum number of non-zero cells
in a row (resp. a column) of M . When using sparse sets, the complexity of putting M in RRE
form, as described by Algorithm 5.1, becomes O(nn1m1).

The complexity of the propagation of the assignment of a variable to 0 is O(n1m1). Indeed, when
a variable ∆k is assigned to 0, we have to (i) remove column k, (ii) execute lines 3-7 of Algorithm
5.1 if k is a pivot column, and (iii) run Algorithm 5.2. The complexity of this depends on whether
k is a pivot column or not:
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• if k is a pivot column, then (i) is achieved in O(1) as column k only contains one non-zero
cell; (ii) is achieved in O(n1m1); and (iii) is achieved in O(n1) provided that we keep track
of the rows that have been modified at step (ii);

• if k is not a pivot column, then (i) is achieved in O(n1) and (iii) is achieved in O(n1)
provided that we keep track of the rows that have been modified at step (i).

The complexity of the propagation of the assignment of a variable to 1 by Algorithm 5.3 is
O(mn1m1).

Indeed, in the worst case, this implies to assign 1 to every other variable. Hence, the loop lines
2-11 is performed O(m) times. The loop lines 7-8 is iterated O(n1) times (we traverse non-zero
cells of the column of a variable in nonPivotj to identify the rows j′ for which we have to check
if nonPivotj = nonPivotj′), and we decide if nonPivotj = nonPivotj′ in O(m1). The loop lines
10-11 is iterated O(n1) times as we only have to consider the non-zero cells of column k.

Implementation. Our global constraint has been implemented in Java and integrated in Choco
4 [PFL16]. As its propagators are rather expensive, we give a low priority to abstractXOR so
that, at each node of the search tree, Choco propagates all other constraints before propagating
abstractXOR.

The source code is available at https://gitlab.inria.fr/lrouquet/abstract-xor-library.

5.5 Advanced Techniques for Rijndael
In most cases, CP solvers use backtrack methods as seen in the Chapter 2. These algorithms
require two heuristics to work: the variable ordering heuristic and the value ordering heuristic. The
variable ordering heuristic aims at defining what should be the next variable to be instantiated
when the solver has to extend the current partial solution. The value heuristic has the same
objective, but for values.

The setSum constraint [Bes+04], which is used in the objective function, is hard to propagate
efficiently. To counter this problem, we add higher level information as described in Section 5.5.1
and we show how to adapt DomOverWDeg [Bou+04] - which is a good performing and commonly
accepted variable ordering heuristic - to our problem in Section 5.5.2.

5.5.1 Higher level constraints
AES performs the xors (AddRoundKey and KeySchedule) column by column. In this case, it is
interesting to see if it is possible to gain information about the abstraction of the xor at the
column level (Figure 5.2).

As we saw earlier, the abstraction of the xor operator is complex. The first abstraction of the
operator xor for three variables δA, δB and δC such that: δA ⊕ δB = δC (which is equivalent to
δA ⊕ δB ⊕ δC = 0) is ∆A + ∆B + ∆C 6= 1. This abstraction can also be represented using these
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two constraints:
∆A + ∆B ≥ ∆C

∆C =⇒ (∆A = ∆B)

The first constraint indicates that there can only be a difference in the output of the xor if
there is at least one difference in the input. The second constraint indicates that if ∆C is equal
to zero then necessarily ∆A = ∆B (since we have: δC = 0 =⇒ δA = δB).

The interest of this decomposition is that it can be extended to vectors, i.e. three vectors VA, VB
and VC of size n, such that: ∀j ∈ [0; n[, VA[j]⊕ VB[j]⊕ VC [j] = 0, we have:

∀(X,Y, Z) ∈ {(A,B,C), (C,A,B), (B,C,A)},
n−1∑

j=0
(VX [j] + VY [j]) ≥

n−1∑

j=0
VZ [j]

n−1∑

j=0
VZ [j] = 0 =⇒



n−1∑

j=0
VX [j] =

n−1∑

j=0
VY [j]




This information can be used to filter out inconsistent states more quickly and to better propagate
the number of active differential bytes through the vectors. It can also be used to help the
DomOverWDeg heuristic [Bou+04] as we will see below.

5.5.2 Custom heuristic
Variable ordering heuristic
As shown in Figure 5.3, the value of the ∆ variables is summed up by column and by round.
This representation has two advantages:

1. it decomposes the sum of active S-boxes to more effectively maintain the setSum constraint
which is related to the objective function,

2. it makes it possible to group the variables by sets. As a result, each ∆ variable now belongs
to three levels of constraint, constraints on the ∆ variables, constraints on the sums of
columns and constraints on the sums of rounds, which makes it possible to disuniformize
the score of the ∆ variables between the columns and between the turns, which was not
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possible using abstractXOR alone.

The main modification we have made to DomOverWDeg is the aggregation of the costs of the
variables. Indeed, the weight of a variable is no longer calculated only from its own information,
but from its decomposition. In the case of the variable ∑3

j=0
∑3
k=0 ∆X [j, k], the score of the

variable is calculated from the set of variables {∑3
j=0 ∆X [y, 0], ∑3

j=0 ∆X [y, 1], ∑3
j=0 ∆X [y, 2],

∑3
j=0 ∆X [y, 3]} whose own score is calculated from the variables ∆[j, k] as shown in Figure 5.3.

weight(
3∑

j=0

3∑

k=0
∆X [j, k])

=
3

Agg
j=0

weight(
3∑

k=0
X[j, k])

=
3

Agg
j=0

3
Agg
k=0

weight(∆X [j, k])

where the aggregation function Agg is an aggregation of the DomOverWDeg score of the variable
and its decomposition variables.

After some empirical tries, the last formula we used is:

weight(v) = (1.0 +DomOverWDeg(v))×
∏

d∈dV ars of v
weight(v)

where dV ars of v means the decomposition variables of v.

Value ordering heuristic
We use the knowledge of the problem to create a value ordering heuristic. Since our goal is to
maximize the overall probability, we can select S-box values that maximize this probability. When
a value associated with a variable belonging to an S-box, δin, δout or p is to be chosen we select
the best possible value for that variable. The DDT of Rijndael have only three non-null values:
1, 2−6 and 2−7. If we denote vin and vout the values of δin and δout, for each vin (excepted 0),
there is only one transition vin  vout where Pr[vin  vout] = 2−6 and 126 transitions where
Pr[vin  vout] = 2−7. The value ordering heuristic works like this:

• in the case of a p variable, we select the highest remaining probability first,
• in the case of a δin variable:

1. if possible we select the value 0 first in order to reach the probability 1,
2. else if its relative δout is fixed, we try to the select the value of the only transition

which have a 2−6 probability,
3. else we use the default solver heuristic, as we can only reach the 2−7 probability,

• in the case of a δout variable we use the same techniques as for δin variables.
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Figure 5.3: Round sum decomposition.
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5.6 Experimental evaluation
In this section, we experimentally evaluate the interest of abstractXOR. We first consider the
related-key MDC problem, where differences can be injected both in the key and the input text,
and we report results for Midori in Section 5.6.1 and for AES in Section 5.6.2. In Section 5.6.3,
we consider the single-key MDC problem, where differences are injected only in the input text.
All experiments have been done on a single core of an Intel Xeon E3-1270v3 (3.50 GHz) with 32
GB RAM.

5.6.1 Related-Key MDC for Midori
Description of the problem. The related-key MDC for Midori is described in Section 5.1 for the
case where the input text X0 is a sequence of 128 bits (denoted Midori128). Midori is also defined
for 64 bit texts (denoted Midori64). In this case, SubBytes and subBytesTable are defined for 4
bit sequences instead of 8 bit sequences as depicted in Section 1.2.2. Also, a KeySchedule is used
to compute a new subkey at each round (see [Ban+15] for details).

We consider different values for r, ranging from 3 to the number of rounds defined in [Ban+15],
i.e., 16 (resp. 20) for Midori64 (resp. Midori128). For each value of r, the constant n used in
constraint (A0) of Model 5.2 is set to the smallest value for which there exists a solution, as this
is the most difficult instance: instances with smaller values of n are often trivially inconsistent,
whereas instances with larger values are useless.

We report results on two problems: Enum1 aims at enumerating all solutions of the Step-1
problem described in Model 5.2 for Midori128; Opt1+2 aims at finding the MDC whose probability
is maximal as described in Model 5.1 for Midori128.

Models for Enum1. We consider two models. The first one, denoted Enum1 Global, is derived
from Model 5.2 in a straightforward way, by replacing (A3) and (A4) with abstractXOR∞,C(∆)
where C = {(A3), (A4)} and ∆ contains all variables occurring in (A3) or (A4). It is implemented
in Java with Choco 4 [PFL16], and we consider two propagators:GlobalFeas only checks feasibility,
as described in Section 5.4.1, and GlobalGAC ensures GAC, as described in Section 5.4.2. In
both cases, as the model of Midori is enough faster with the DomOverWDeg variable ordering
heuristic [Bou+04], we do not use the advanced heuristics presented in Section 5.5.

The second model, denoted Enum1 Advanced, is introduced in [Gér18] and uses the same advanced
techniques used for AES presented in Section 3.1. This model is much more difficult to design
than Global. For this model, we report results obtained by Picat-SAT [ZK16], which encodes the
problem into a SAT formula and then uses the SAT solver Lingeling [Bie]. We made experiments
with other CP solvers (such as Choco, Gecode or Chuffed, for example), and we only report
results obtained with Picat-SAT because it scales much better.
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Figure 5.4: Comparison of GlobalFeas ( ), GlobalGAC ( ), and Advanced ( ) for Midori. The
x-axis gives the number of rounds r, and the y-axis the number of choice points for Enum1 (up), and the
run time for Enum1 (Middle) and for Opt1+2 (bottom). Times are in seconds.

Models for Opt1+2. The problem described in Model 5.1 cannot be solved within a reasonable
amount of time (even for the smallest value of r) without decomposing it into two steps, as
described in Section 5.1. We consider two models for this two step process. Opt1+2 Global simply
merges Enum1 Global with the model of Model 5.1, and adds a constraint which relates δk and
∆k variables, i.e., δk = 0 ⇔ ∆k = 0. Also, we add a variable ordering heuristic to assign ∆k

variables before δk variables. This model is implemented in Choco 4.

Opt1+2 Advanced uses Enum1 Advanced to search for Step-1 solutions. However, we do not merge
this model with the Step-2 model of Model 5.1 and use a single solver to solve the two steps
because CP solvers like Choco cannot efficiently solve Enum1 Advanced whereas SAT solvers like
Lingeling cannot efficiently solve Step-2 [Gér+20]. Hence, Opt1+2 Advanced uses Picat-SAT to
solve Enum1 Advanced, and each time a Step-1 solution s is found, it uses Choco with the model
of Model 5.1 to search for the best Step-2 solution associated with s. This process is stopped
either when there is no more Step-1 solution, or when an optimal Step-2 solution is found (i.e., a
solution such that all P [i, k] variables are assigned to −2 as this is the largest possible value).

Results. On the top row of Figure 5.4, we display the number of choice points needed to enumerate
all Step-1 solutions. GlobalGAC explores less choice points than GlobalFeas, though the difference
is very small for Midori64 when r ≥ 12.

In the middle row of Figure 5.4, we display the CPU time spent to enumerate all Step-1 solutions.
For Midori64, the two Global variants have very similar times whereas, for Midori128, GlobalGAC

is faster than GlobalFeas. Advanced is much slower than Global.

In the bottom row of Figure 5.4, we display the CPU time needed to solve the full MDC
problem. For Midori64, GlobalFeas and GlobalGAC have very similar results, and are much faster
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than Advanced. For Midori128, GlobalGAC is faster than GlobalFeas, which is faster than Advanced,
especially when r increases.

5.6.2 Related-Key MDC for AES
Like in Section 5.6.1, we consider two problems: Enum1 aims at enumerating all Step-1 solutions,
and Opt1+2 aims at finding the optimal MDC.

Models for Enum1. We consider two CP models. Global is derived in a straightforward way
from the definition of AES and the MDS property by replacing all xor equations with an
abstractXOR global constraint. It is implemented with Choco 4, and we consider two propagators
(ensuring feasibility and GAC, respectively). Both models use the heuristic techniques described
in Section 5.5.

Advanced is the model introduced in [Gér+20] and recalled in Section 3.1. It uses a preprocessing
step to infer new xor equations from the KeySchedule, and it adds new variables and constraints
to remove Step2-inconsistent solutions by reasoning on equality relations between ∆k variables.
This model is much more difficult to design than Global. It is implemented with Picat-SAT.

Models for Opt1+2. Like in Section 5.6.1, Global solves the two steps with a single model
implemented with Choco 4 whereas Advanced enumerates Step-1 solutions with Picat-SAT and
searches for optimal MDCs with Choco 4.

Extending the AES model to Rijndael
In order to further analyse abstractXOR, we compared the GlobalGAC version on Rijndael against
our SAT / CP model described in the previous chapter. The time limit is set to 2 time the
solving time of the SAT / CP model with a minimum of 10 seconds to compensate for the
start-up of the Java virtual machine. The results tables are available in Appendix A.2. On
the majority of small instances, GlobalGAC performs better than the SAT / CP version, but
GlobalGAC performs less well on larger instances where the hybrid model is mostly faster.

5.6.3 Experimental results for the single-key problem
In the single-key differential attack, differences are introduced only in the initial text X0, and no
difference is introduced in the key, i.e., δK = 0. Like for related-key, we consider two problems:
Enum1 (to enumerate all Step-1 solutions), and Opt1+2 (to find the optimal MDC). We also
consider two block ciphers, i.e., Midori and AES. In all cases, we consider Global and Advanced
models, and these models are obtained from related-key models by assigning 0 to all variables
associated with the key.

CPU times are reported in Table 5.1. For AES, the problem is the same whatever the length of
the key (128, 192, or 256), as there is no difference in the key. For Midori, Enum1 is the same
whatever the length of the initial text (64 or 128) as bit sequences are abstracted by Boolean
values. However, Opt1+2 is different for Midori64 and Midori128.
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Figure 5.5: Comparison of GlobalFeas ( ), GlobalGAC ( ), and Advanced ( ) for AES. The
x-axis gives the number of rounds r, and the y-axis the number of choice points for Enum1 (up), and the
run time for Enum1 (Middle) and Opt1+2 (bottom). Times are in seconds.

Surprisingly, single-key problems are much harder to solve than related-key ones, though the size
of the search space is smaller (as all variables associated with the key are assigned to 0). This
comes from the fact that the number of differences (defined by the constant n in Model 5.2) is
strongly increased: n is increased from 3 (resp. 4 and 5) to 7 (resp. 16 and 23) when r = 3 (resp.
4 and 5) for Midori, and from 5 (resp. 12) to 9 (resp. 25) when r = 3 (resp. 4) for AES.

Results for Midori. Advanced finds much more Step-1 solutions than Global: it finds 64 (resp.
4,908) solutions when r = 3 (resp. 4), whereas Global finds 16 (resp. 68) solutions. Every solution
found by Advanced and not by Global is Step2-inconsistent and Advanced spends a lot of time to
enumerate these useless solutions. Hence, Advanced is not able to solve Midori within one hour
when r > 3. When r = 4, Advanced is able to solve Enum1 in 59,036s, but it is not able to solve
Opt1+2 within a reasonable amount of time because most Step-1 solutions are Step2-inconsistent.

Global is able to solve up to r = 5 (resp. r = 4) for Midori64 (resp. Midori128). Step-2 is much
harder for Midori128 than for Midori64 because differential variables associated with the text take
their values in [0; 255] for Midori128 and in [0; 16] for Midori64.
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Enum1 Opt1+2
Midori 64 and 128 Midori64 Midori128

r GFeas GGAC Adv GFeas GGAC Adv GFeas GGAC Adv
3 0.6 0.6 8.7 0.7 0.6 11.1 1.3 8.1 12.5
4 22.4 8.0 - 17.6 11.1 - 434.9 290.5 -
5 2897.8 686.8 - 2608.1 689.7 - - - -

AES 128, 192, and 256
Enum1 Opt1+2

GFeas GGAC Adv GFeas GGAC Adv
3 1.3 0.7 7.5 1.1 1.0 55.0
4 - - - 1.2 1.4 -

Table 5.1: Single-Key results: Time (in seconds) needed by GlobalFeas (GFeas), GlobalGAC (GGAC), and
Advanced (Adv) for Midori (left) and AES (right). We report ‘-’ when time exceeds 3600s.

Results for AES. When r = 3, both Enum1 and Opt1+2 are quickly solved, and Global is an
order faster than Advanced. When r = 4, there is a huge number of Step-1 solutions (we have
enumerated 1,715,652 solutions within a 24 hour time limit with GlobalGAC, and all these solutions
are Step2-consistent). Hence, Global fails at enumerating all Step-1 solutions within a reasonable
amount of time. However, when merging Step-1 and Step-2 models to solve Opt1+2, we find an
optimal solution in less than 2s (the optimality proof is trivial because all P [i, k] variables are
assigned to the largest possible value).

When r = 4, the probability of the optimal MDC is equal to 2−150, which is smaller than 2−128.
Hence, this MDC is useless to mount attacks. However, the fact that Global is able to enumerate
a huge number of Step-1 solutions in a reasonable amount of time opens new perspectives: we
can search for a set of MDCs that share the same values in the initial text δX0 and in the cipher
text δXr, and combine these MDCs to find better differentials.

5.7 Conclusion
We have introduced a new global constraint which eases the design of models for computingMDCs:
these models are straightforwardly derived from problem definitions. This global constraint allows
us to compute MDCs much faster than advanced models (which are much more difficult to design
and which combine SAT and CP solvers) for single-key and related-key Midori, and for single-key
AES. However, for related-key AES, it fails at solving the two largest instances of AES192 within
a reasonable amount of time, and SAT has better scale-up properties for enumerating Step-1
solutions. As pointed out in [Gér+20], clause learning is a key ingredient for solving this problem,
and further work will aim at improving scale-up properties of Choco on this problem by adding
clause learning to Choco. Moreover improvements of the model SAT / CP presented in the
previous Chapter widens the gap between the use of the SAT / CP hybrid model against the
GlobalGAC model. However, even if the overall performance is not competitive with hybrid models,
the abstractXOR constraint significantly improves Choco’s performance on this type of modeling.

We believe our new global constraint opens promising perspectives for cryptographs, and we aim
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at using it to solve new differential cryptanalysis problems such as those studied in [Cid+18] or
[Tod+17], and new symmetric block ciphers such as Skinny [Bei+16].

As the models in the following chapters become even more complex, we favour the hybrid SAT /
CP approach of the previous chapter. We start with the modelling of the boomerang attack on
Rijndael in the next Chapter and continue with the generalization of the Delaune et al. model to
Feistel ciphers in Chapter 7.
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6 Automatic Boomerang Attacks on
Rijndael
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6.1 Introduction
The boomerang attack [Wag99] was introduced at FSE’99 as a variant of differential attacks
[BS91]. A cipher E is seen as the decomposition of two subciphers: E = E1 ◦ E0 where the
differential analysis takes place in each subcipher. Boomerang attacks are efficient when the cipher
E has short differentials with high probabilities. They have been generalized to the related-key
case in [BDK05]. Recently, new insights on what exactly happens in the middle (at the junction
of E1 and E0) have been investigated. First, in [Cid+18], a special table named Boomerang
Connectivity Table (BCT) has been introduced for Substitution-Permutation-Networks (SPN) to
compute the probability of the middle round. Second, a careful analysis of the Skinny cipher has
been provided in [DDV20] to automatically take into account more possible dependencies that
could happen in the middle part of the cipher considering or not related-key. As in the previous
chapters, the proposed search is divided in two steps: in a first step, the possible differences are
modeled by Boolean variables and this step aims at minimizing an upper bound of the probability
of the truncated boomerang distinguisher; in a second step that takes as input the trails found at
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Step-1, the model aims at maximizing the overall probability considering that the active S-boxes
depend on the output of the Step-1.

Thus, in Step-1, we compute a truncated related-key boomerang S1 where each differential byte δA
of the ciphering process is replaced by a Boolean variable ∆A that indicates whether δA contains
a difference or not. In Step-2, we instantiate S1 into a related-key boomerang distinguisher.
Note that some truncated boomerangs cannot be instantiated to a boomerang because some
abstractions are done at Step-1.

In this chapter, we implement and adapt for the Rijndael case [DR99] the two-step solving process
of [DDV20] originally proposed for Skinny for computing related-key boomerang differential
characteristics. Those problems are solved with Constraint Programming (CP): for the first step,
we use Picat-SAT [ZK16], and for the second step, Choco [PFL16].

When looking at the state of the art concerning the cryptanalysis of Rijndael, some of the results
are in the single key scenario [NP07; Zha+08; GM08], [Wan+13; Min17; Liu+19] or in the
related-key scenario [Wan+15] and none of those attacks does better than the results presented
here.

The rest of this Chapter is organized as follows: in Section 6.2, we detail the methods and our
CP models; in Section Section 6.3, we sum up all the related-key boomerang distinguishers we
obtained and we present two attacks based on the most efficient distinguishers; and finally, in
Section 6.4, we conclude this chapter.

6.2 Automatic Search of Related-Key Boomerangs Distinguishers on
Rijndael
In this section, we detail the way we implemented the model presented in Section 3.2 to fit the
case of Rijndael. In the same way, we divided our search into two steps: in Step-1, we search for
truncated boomerang distinguishers with minimal hamming weight whereas in Step-2, given the
output Boolean differences of Step-1, we search for the instantiated boomerang distinguisher
with the best probability. We describe in this Section each of these two steps.

6.2.1 Step1: Automatic Search of Related-Key Truncated Boomerang Distin-
guishers
The first step of a related-key boomerang attack may be divided into two parallel searches of
related-key truncated differential characteristics (one for the upper trail and one for the lower trail)
and some glue needs to be added for the middle part using the Boolean free variables propagation.
For each differential byte δA (where A ∈ {X[i, j, k], SX[i, j, k], Y [i, j, k], Z[i, j, k], RK[i, j, k] : i ∈
[0; Nr[, j ∈ [0; 3], k ∈ [0; Nb[}), we define 4 Boolean variables, i.e., ∆Aup , freeAup , ∆Alo , and
freeAlo . The meaning of these variables is the same as in [DDV20] and detailed in Section 3.2.

As Rijndael also has S-Boxes in the KeySchedule, we also introduce 4 Boolean variables for each
RoundKey differential byte δRK [i, j, k] that passes through an S-Boxes (as defined in algorithm
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1.1), denoted ∆SRKup [i, j, k], freeSRKup [i, j, k], ∆SRKlo [i, j, k], and freeSRKlo [i, j, k]: these variables
model the fact that there is an output difference and that this output difference is free of condition
for the upper and lower trails, respectively.

Since Rijndael’s KeySchedule is represented by a 2-dimensional matrix, we introduce the same
∆ and free variables for WKup, WKlo, SWKup and SWKlo which correspond to the variables
RKup, RKlo, SRKup and SRKlo. The RK and WK variables are linked by the equations:

∆RKtrail
[i, j, k] = ∆WKtrail

[j, (i+ 1)×Nb+ k]
freeRKtrail

[i, j, k] = freeWKtrail
[j, (i+ 1)×Nb+ k]

∆SRKtrail
[i, j, k] = ∆SWKtrail

[j, (i+ 1)×Nb+ k]
freeSRKtrail

[i, j, k] = freeSWKtrail
[j, (i+ 1)×Nb+ k]

where trail can be either up or lo.

Constraints are added between ∆ variables to model Rijndael operators, and we use the same
constraints as those introduced in Model 4.1 and Model 4.2, except that these constraints are
duplicated for the upper and the lower trail, respectively. For example, the constraint associated
with AddRoundKey in Model 4.1 is:

∆X [i+ 1, j, k] + ∆Z [i, j, k] + ∆RK [i, j, k] 6= 1

In our model, this constraint becomes:

∆Xup [i+ 1, j, k] + ∆Zup [i, j, k] + ∆RKup [i, j, k] 6= 1

∆Xlo [i+ 1, j, k] + ∆Zlo [i, j, k] + ∆RKlo [i, j, k] 6= 1

We do not detail these constraints here and refer the reader to Model 4.1 and Model 4.2.

Besides these constraints, we add the new constraints defined in Model 6.1:

• Constraints (B1) to (B5) relate free variables together: (B1) corresponds to AddRoundKey,
(B2) to ShiftRow, (B3) to MixColumns, (B4) and (B5) to the KeySchedule. Note that for
each round operation (AddRoundKey, ShiftRow, and MixColumns), we have one constraint
in the encryption direction for the upper trail, and one constraint in the decryption direction
for the lower trail. For the KeySchedule, there are also two constraints but they are both
in the encryption direction because subkeys are all computed from the master key, in both
trails.

• Constraints (B6) and (B7) define the S-Box rules that glue the two trails as done in
[DDV20].

• Constraint (B8) defines the objective function obj that must be minimized (as we con-
sider − log2 values). There are 6 tables implied in the computation of the objective
function: DDT, DDT2, BCT, EBCT, LBCT, and UBCT. The predicates used to choose the cor-
rect tables are given in Model 3.3. These predicates are extended to RK variables in
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a straightforward way, by replacing X with RK. Each predicate isTX and isTRK (with
T ∈ {DDT, DDT2, BCT, EBCT, LBCT, UBCT}) is multiplied by the − log2 of the maximum proba-
bility of table T, denoted PT.

Implementation Our Step-1 model has been implemented in MiniZinc [Net+07], which is a
high-level and solver-independent language for modeling constraint satisfaction and optimization
problems. MiniZinc models are then compiled into FlatZinc, a solver input language that is
understood by a wide range of solvers (such as Choco [PFL16], Chuffed [CS14], or Picat-SAT
[ZK16]). In our experiments, we have used Picat-SAT as it is the most efficient for our Step 1
problem.

6.2.2 Step 2: Instantiating the Related-Key Truncated Boomerang Distinguish-
ers
In this section, we describe how to solve Step-2, which aims at computing the maximal probability
of a related-key boomerang distinguisher corresponding to a given truncated distinguisher
computed in Step 1 (as explained in the previous section). We first describe the mathematical
model and then show how it may be easily implemented using a constraint programming language.

For each round i ∈ [1; Nr[1, each row j ∈ [0; 3] and each column k ∈ [0; Nb[, if freeAup [i, j, k] (resp.
freeAlo [i, j, k]) is true in the Step-1 solution then the corresponding differential byte δAup [i, j, k]
(resp. δAlo [i, j, k]) at Step-2 may take any value with uniform probability and is free of constraints.
Hence we do not introduce differential byte δA for these truncated variables. Otherwise, when
freeAup [i, j, k] (resp. freeAlo [i, j, k]) is false, we introduce an integer variable δAup [i, j, k] (resp.
δAlo [i, j, k]) in the Step-2 model.

For S-Box variables, the possible values of this integer variable depends on the value of its
associated ∆ Boolean variable (assigned at Step 1): if ∆Xup [i, j, k] (resp. ∆Xlo [i, j, k],∆SXup [i, j, k]
and ∆SXlo [i, j, k]) is false, then δXup[i, j, k] (resp. δXlo [i, j, k], δSXup [i, j, k] and δSXlo [i, j, k]) is
assigned to 0; otherwise, its set of possible values is [1; 255]. The same operation is done for the
δRKup , δRKlo , δSRKup and δSRKlo variables.

Considering that ShiftRow, MixColumns and AddRoundKey are linear functions, it is possible to
infer the free state of the δYup , δYlo , δZup and δZlo variables from the free state of δXup , δXlo , δSXup ,
δSXlo , δRKup , δRKlo , δSRKup and δSRKlo variables. Hence, the δYup , δYlo , δZup and δZlo differential
variables are only introduced in Step-2 when they are not free.

Finally, we introduce integer variables that represent − log2 probabilities associated with S-boxes.
For each round i ∈ [1; Nr[, and each row j ∈ [0; 3] and column k ∈ [0; Nb[, we define an integer
variable p[i, j, k] which corresponds to the − log2 probability of crossing both the upper trail S-box
(from δXup[i, j, k] to δSXup[i, j, k] and the lower trail S-box (from δSXlo[i, j, k] to δXlo[i, j, k]). The
values of ∆ and free Boolean variables computed at Step-1 are used to determine which constraint
must be used to link p[i, j, k] variables with their corresponding differential variables as defined

1The distinguisher is computer from round 1 to round Nr − 1.
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ROUNDS:
∀i ∈ [0;Nr − 2],∀j ∈ [0; 3],∀k ∈ [0;Nb[,

freeXup [i + 1, j, k] = freeZup [i, j, k] ∨ freeRKup [i, j, k]
freeZlo [i, j, k] = freeXlo [i + 1, j, k] ∨ freeRKlo [i, j, k]

∀i ∈ [0;Nr[,∀j ∈ [0; 3],∀k ∈ [0;Nb[,
freeYup [i, j, k] = freeSXup [[i, j, PNb

[j] + k mod Nb]]
freeYlo [i, j, k] = freeSXlo [[i, j, PNb

[j] + k mod Nb]]

∀i ∈ [0;Nr[,∀j ∈ [0; 3],∀k ∈ [0;Nb[,
freeZup [i, j, k] = freeYup [i, 0, k] ∨ freeYup [i, 1, k] ∨ freeYup [i, 2, k] ∨ freeYup [i, 3, k]
freeYlo [i, j, k] = freeZlo [i, 0, k] ∨ freeZlo [i, 1, k] ∨ freeZlo [i, 2, k] ∨ freeZlo [i, 3, k]

KEY:
∀i ∈ [0;Nr[,∀j ∈ [0; 3],∀k ∈ [0;Nb[,

freeRKup [i, j, k] = freeWKup [j, (i + 1)×Nb + k]
freeRKlo [i, j, k] = freeWKlo [j, (i + 1)×Nb + k]

∀j ∈ [0; 3],∀ω ∈ [0;Nb × (Nr + 1)[,
if ω mod Nk = 0 : freeWKup [j, ω] = freeWKup [j, ω −Nk] ∨ freeSWKup [(j + 1) mod 4, ω − 1]
else if Nk > 6 ∧ k mod Nk = 4 : freeWKup [j, ω] = (freeWKup [j, ω −Nk] ∨ freeSWKup [j, ω − 1])

else : freeWKupr[j, ω] = (freeWKup [j, ω −Nk] ∨ freeWKup [j, ω − 1])

if ω mod Nk = 0 : freeWKlo [j, ω] = freeWKlo [j, ω −Nk] ∨ freeSWKlo [(j + 1) mod 4, ω − 1]
else if Nk > 6 ∧ k mod Nk = 4 : freeWKlo [j, ω] = (freeWKlo [j, ω −Nk] ∨ freeSWKlo [j, ω − 1])

else : freeWKlor[j, ω] = (freeWKlo [j, ω −Nk] ∨ freeWKlo [j, ω − 1])

OVERALL CONSTRAINTS IN BOTH DIRECTIONS:
∀i ∈ [0;Nr[,∀j ∈ [0; 3],∀k ∈ [0;Nb[,

freeSXup [i, j, k] =⇒ ∆Xup [i, j, k], freeXlo [i, j, k] =⇒ ∆Xlo[i, j, k]
freeXup [i, j, k] =⇒ freeSXup [i, j, k], freeSXlo [i, j, k] =⇒ freeXlo [i, j, k]
freeXup [i, j, k] + freeXlo [i, j, k] + freeSXup [i, j, k] + freeSXlo [i, j, k] ≤ 2

∀j ∈ [0; 3],∀ω ∈ [0;Nb × (Nr + 1)[ such that isSbCol(ω)
freeSWKup [i, ω] =⇒ ∆WKup [i, ω], freeWKlo [i, ω] =⇒ ∆WKlo [i, ω]

freeWKup [i, ω] =⇒ freeSWKup [i, ω], freeSWKlo [i, ω] =⇒ freeWKlo [i, ω]
freeWKup [i, ω] + freeSWKlo [i, ω] + freeWKup [i, ω] + freeSWKlo [i, ω] ≤ 2

where predicate isSBCol(ω) = (ω mod Nk = 0)∨(Nk > 6∧ω mod Nk = 4).

OBJECTIVE FUNCTION:

obj =
Nr−2∑

i=1

3∑

j=0

Nb−1∑

k=0




PDDT × isDDTX[i, j, k] + PDDT 2 × isDDTX2[i, j, k] +
PBCT × isBCTX[i, j, k] + PUBCT × isUBCTX[i, j, k] +

PEBCT × isEBCTX[i, j, k]




+
Nr−1?∑

i=1

3∑

j=0

Nb−1?∑

k=0




PDDT × isDDTRK[i, j, k] + PDDT 2 × isDDTRK2[i, j, k] +
PBCT × isBCTRK[i, j, k] + PUBCT × isUBCTRK[i, j, k] +

PEBCT × isEBCTRK[i, j, k]




? where i×Nb + k is an S-Box column in the KeySchedule

(B1)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

Model 6.1: Model linking together the free variables for a related-key boomerang computation.
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isDDTXup(i, j, k) =⇒ (δXup [i, j, k], δSXup [i, j, k], p[i, j, k]) ∈ TDDT
isDDTXlo(i, j, k) =⇒ (δXlo [i, j, k], δSXlo [i, j, k], p[i, j, k]) ∈ TDDT
isDDT2Xlo(i, j, k) =⇒ (δXup [i, j, k], δSXup [i, j, k], p[i, j, k]) ∈ TDDT 2

isDDT2Xup(i, j, k) =⇒ (δXlo [i, j, k], δSXlo [i, j, k], p[i, j, k]) ∈ TDDT 2

isBCTX(i, j, k) =⇒ (δXup [i, j, k], δSXlo [i, j, k], p[i, j, k]) ∈ TBCT
isLBCTX(i, j, k) =⇒ (δXup [i, j, k], δXlo [i, j, k], δSXlo [i, j, k], p[i, j, k]) ∈ TLBCT
isUBCTX(i, j, k) =⇒ (δXup [i, j, k], δSXup [i, j, k], δSXlo [i, j, k], p[i, j, k]) ∈ TUBCT

isEBCTX(i, j, k) =⇒
(δXup [i, j, k], δSXup [i, j, k], δXlo [i, j, k], δSXlo [i, j, k], p[i, j, k]) ∈ TEBCT

Model 6.2: Constraints that relate p[i, j, k] integer variables with differential variables (using predicates
defined in Model 3.3). For each table t ∈ {DDT2, DDT, BCT, UBCT, EBCT, LBCT}, Tt denotes the
set of all tuples with a non null probability. For example, TDDT contains all triples (δin, δout, p) such that
− log2(DDT (δin, δout)) = p and p 6= 0.

in Model 6.2. The same operation can be applied to the S-Box columns of the KeySchedule by
introducing pRK [i, j, k] variables. pRK [i, j, k] is the probability for the RoundKey byte at round i,
row j and column k to pass its S-Box. Knowing that not all the RoundKey columns go through
an S-Box, we only introduce a pRK [i, j, k] variable when necessary.

δX , δSX , δY , δZ , δK , and δRK variables are constrained with respect to SubBytes, ShiftRow,
MixColumns, AddRoundKey, and KeySchedule as described in Model 4.3, using table constraints.
However, this model is duplicated for the upper and lower trails, respectively.

The objective function is then the sum of all p[i, j, k] and pRK [i, j, k] integer variables and the
goal is to minimize this sum.

Implementation Our Step-2 model widely uses table constraints, which are constraints of the
form (x1, . . . , xn) ∈ T where x1, . . . , xn are integer variables and T is a set of allowed tuples (of
arity n). Table constraints are one of the main advantage of using CP because those tables can
be defined on large alphabet and are directly handled by CP solvers.

This model has been implemented with the Choco CP library version 4.10.6 [PFL16].

6.2.3 Combining the two Steps
Step-1 is in fact composed of two different sub-problems: the first one, Step1-Opt, searches for
the best possible objective value of obj (denoted obj∗), and the second one, Step1-Next, searches
for Step-1 solutions with the obj value fixed to obj∗. As there are usually many Step-1 solutions,
we do not compute all of them at once, but we enumerate them one at a time and, for each
enumerated Step-1 solution, Step-2 is performed to search for the best related-key boomerang
differential characteristic corresponding to it, as done in the previous Chapter. This search that
interleaves Step1-next and Step 2 is iterated until finding the optimal related-key boomerang
differential characteristic, or detecting that the optimal probability exceeds the block or key
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exhaustive search according to the Rijndael instance. Note that it may be possible that the
optimal related-key boomerang differential characteristic has more than obj∗ active S-boxes
(either because there is no Step-2 solution with obj∗ active S-boxes, or because it is possible to
have a larger probability with more active S-boxes). Hence, the interleaved process increases obj∗
until proving optimality of the best found differential characteristic.

Note also that in the original paper [DDV20], the authors also propose a way to compute the
clusters induced. One of the main differences between Rijndael and Skinny relies on the fact that
the linear part of Skinny is composed of xor whereas the one of Rijndael includes multiplication
in a finite field. As stated in [CR15; DR06], it is out of computational reach to compute such
clusters for the AES and thus Rijndael. So, due to the very high computational cost of our method
without the cluster computation, we do not include any cluster in our approach.

6.3 Attacks
6.3.1 From the Distinguisher to the Attack

Once an efficient related-key boomerang distinguisher between rounds 1 and Nr − 2 is found,
there exist several techniques to extend it to a key recovery attack (see for example [Don+21]
for a complete survey). We focus here on the method proposed in [Zha+20] even if it concerns
algorithms with linear key schedule but it could be adapted for algorithms with non linear key
schedule. Thus, we will apply their techniques to recover master key bits in round 0 and round
Nr − 1 that does not contain MixColumns operation. Due to the very high diffusion of Rijndael,
we do not investigate to add more rounds at the beginning or at the end of the cipher. So, let us
first introduce the technique described in [Zha+20].

The parameters on which the complexities of an attack are computed are the following ones:

• The distinguisher Ed with Nd rounds is placed in the middle of the attack. The input
difference of the distinguisher is α whereas the output difference is δ.

• We add Na rounds Ea at the beginning and Nf rounds Ef at the end.
• At the beginning, in the deciphering direction, for Na rounds, the difference α is extended

backward and with probability 1 to a truncated difference α′ with ra possibly active bits
and n− ra inactive bits.

• At the end, in the ciphering direction, for Nf rounds, the difference δ is extended with
probability one to a truncated difference δ′, with rf possibly active bits and n− rf inactive
bits.

Then, the attack could work on Na +Nd +Nf rounds by guessing some key materials appearing
before and after the distinguisher and by counting how many times the distinguishing property
happens. The correct key bits have the higher counters. In the following, the guessed key bits at
the beginning are denoted by ma and the guessed key bits at the end are denoted by mf .

The attack of [Zha+20] works as follows where s is the expected number of right pairs:
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1. Build y =
√
s · 2n/2−ra/

√
p2q2r structures of 2ra plaintexts each, and store them with their

associated plaintexts.
2. For each possible value of the ma key bits:

• Initialize 2mf key counters.
• Partially encrypt each plaintext M1 of each structure using the guessed ma key

bits up to the beginning of Ed. Add α to the computed value and decrypt it up
to the plaintext, to obtain M2. Construct the set S (of size y · 2ra) given by: S =
{(M1, C1,M2, C2) such as Ea(M1,K1)⊕ Ea(M2,K2) = α}.

• Insert S into a hash table H indexed by the n− rf bits that are inactive in δ′. Each
collision defines a quartet (C1, C2, C3, C4).

• Use these quartets to determine the correct mf key bits. The time complexity of this
stage is denoted ε.

The time complexity of the attack is dominated by stage 2.(b) or stage 2.(d). The complexity,
given in number of encryptions, for stage 2.(b) is

2ma+ra · y · µ = 2ma+n/2 · √s · 1√
p2q2r

· µ

whereas the complexity of stage 2.(d) is

s · 2ma−n+2rf /(p2q2r) · ε

Then, the success probability of the related-key boomerang attack could be approximated by the
success probability of a differential attack given in [Sel08]:

Ps = Φ(
√
sSN − Φ−1(1− 2−h)√

SN + 1
),

where SN is the signal-to-noise ratio, so is equal to p2q2r/2−n and h is the advantage.

To adapt this attack to the case of a non-linear key-schedule, one has just to compute the correct
quartet of keys before the attack. Then, the probability to have a correct quartet only depends
on the probability of the S-boxes induced by the KeySchedule and could be directly computed
from the distinguisher. And the probability of the distinguisher is thus computed without the
probability appearing in the KeySchedule. Then, it could be maybe more considered as a weak
key attack because all the keys could not provide a right quartet. If we denote by PKeySchedule

the probability of the KeySchedule and by PEd
the probability of the encryption path, then, the

cost of this stage is about 4/PKeySchedule.
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6.3.2 Results
All experiments are run on a virtual machine Ubuntu 18.04.5 LTS x86_64 with an Intel Xeon
Gold 5118 processor and 32 Gio of RAM. The requirements are : Java 10.0.12 OpenJDK,
Gradle 6.8, MiniZinc 2.5.5, Picat 3.1.2 and Choco 4.10.6. Each instance is run on a
single thread.

We put a time out of 6 months. After, those 6 months, the results we obtained are summed
up in Table A.1 in Appendix A for both Step-1 and Step-2 computations for the related-key
boomerang distinguisher on Rijndael.

Even if our models could not reach the largest instances of Rijndael, we obtain the following
results:

• Rijndael128−160 with 7 rounds, best probability: 2−95. The version with 8 rounds is not
reachable.

• Rijndael160−128 with 4 rounds, best probability: 2−18. Rijndeal-160-128 with 5 rounds is not
reachable.

• Rijndael192−160 with 5 rounds, best probability: 2−73. The version with 6 rounds is not
reachable.

Moreover, we have those partial results (only Step 1 have finished to run) for:

• Rijndael160−160 for 6 rounds with an upper bound equal to 2−118;
• Rijndael160−192 for 7 rounds with an upper bound equal to 2−102;
• Rijndael160−224 for 8 rounds with an upper bound equal to 2−114;
• Rijndael160−256 for 9 rounds with an upper bound equal to 2−120;
• Rijndael192−128 for 4 rounds with an upper bound equal to 2−36;
• Rijndael192−192 for 6 rounds with an upper bound equal to 2−84.

The Step 2 for each instance has taken between 8 and 15 days. For example, for Rijndael192−160

for 6 rounds the computation for Step 2 has taken 8 days.

Figure 6.1 displays some statistics about computation times. The upper part of the Figure
represents which Step over the three is the most time consuming while the lower part of the
Figure represents the computation time. We can see that the Step-1 (Step1-Opt + Step1-Enum)
step is the most time consuming in general, expected for 6 (over 37) instances. Moreover, we see
that the instances where Step-2 is the most time consuming are not among the most difficult
instances. Hence improvements should target Step-1 modelling and resolution to improve the
overall performances.
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Figure 6.1: Computation times for instances Xb − Yk where X is the block length and Y is the key
length. The upper part of the chart represents the computation time proportion (in percentage of the total
computation time) between Step-1-Opt ( ), Step-1-Enum ( ) and Step2-Opt ( ). In the lower part, the
chart represents the computation time (in seconds) for each step: Step1-Opt (-·-), Step1-Enum (- -) and
Step2-Opt (- -) and the cumulative total time (—).

6.3.3 Attack on 9 rounds of Rijndael128−160
The 9 rounds attack of Rijndael128−160 is presented in Figure A.7 in Appendix A. The distinguisher
works for rounds 1 to 8 and has a probability of 2−56 for the encryption part and of 2−39 for the
KeySchedule.

Thus, the attack implies the following parameter: Na = 1, ra = 32, n− ra = 96, Nf = 1, rf = 32,
n− rf = 96, ma = 32, mf = 32, PEd

= 2−56 and PKeySchedule = 2−39. Thus, applying the previous
attack, with s = 4, we need to cipher 261 structures of 232 plaintexts. The complexity of the
attack is dominated by stage 2.(b) and is equal to 2122 encryptions. The success probability of
the attack is equal to 97,67%. The probability that a right quartet of keys is found is equal to
239 and the complexity to find such a quartet is equal to 241 encryptions. An other way to say
that is that the number of keys that work for our attack is equal to 2160−39 = 2121.

6.4 Conclusion
In this chapter, we have presented the related-key boomerang distinguishers and the related-key
boomerang attacks we obtained for some of the 25 instances of the block cipher Rijndael. Among
our most significant results, we obtained a 9-round attack on Rijndael128−160 which has 11 rounds.

However, the computational costs of our models are prohibitive for the largest Rijndael instances.
So, we plan to try to improve those models and notably the way the Step-1 is computed to try
to reach the missing instances.

In the next Chapter, we see how to adapt the same techniques to Feistel ciphers.
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As said before, Boomerang distinguishers [Wag99] were introduced at FSE’99 as a variant of
differential distinguishers [BS91] taking advantage of the existence of short differentials of high
probability. In its simplest version, the attacker sees the cipher E as the composition of two
subciphers (E = E1 ◦ E0) and makes use of a differential for each part.

If at first it was thought that these two differentials can be selected freely, following advances
like [Mur11] showed that the interdependence should be carefully treated, as incompatibilities or
better-than-expected probabilities might occur.

As a result, searching for the best boomerang distinguisher does not simply reduce to finding two
differentials of high probability, and thus emerged a need for automated tools that would take
into account the possible events in the middle, later formalized by the BCT [Cid+18] (for SPNs)
and FBCT [Bou+20] (for Feistels) theories. Two techniques have been proposed recently to address
this issue. In[HBS21], the authors proposed to give as input to a MILP model the size of the
middle part (where dependencies happen) and to take into account one type of dependency (the
so-called ladder switch [BK09]). A more precise approximation of the probability of the middle
rounds was then obtained with the BCT framework or experimentally. A second technique has
been proposed in [DDV20], that directly takes into account all the possible middle dependencies
and does not require that the attacker specifies the size of the middle part.
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If many papers start by looking for the best distinguisher to next turn it into an attack, better
results might be obtained by taking into account the incidence of the distinguisher on the key
recovery phase. An example of this was given in [ZDJ19] when building a rectangle attack on
Deoxys, and further discussions were provided in [Qin+21] with results on Skinny. The latter
presents an automated tool that takes the model provided in [DDV20] and adds relations to
include the dominating factors of the key-recovery phase so that the resulting model directly
looks for an optimization of the attack as a whole.

7.1 Introduction
In this chapter, we propose to study the security of the recently published block cipher WARP
[Ban+20] against boomerang techniques. To do so, we start by showing how to adapt the model
developed in [DDV20] to the case of Feistel ciphers, since the original tool was developed for
SPN ciphers in general and for Skinny in particular.

Since the execution time of the simple model is exponential in the number of rounds, covering
more than 20 rounds of WARP is out of reach. We thus propose several techniques to speed up
the model and to guide it to the solutions. By counting different solutions with the same input
and output differences, we were able to find a 23-round distinguisher that covers 2 more rounds
than the best result to date.

Second, we show how to extend this model to search for rectangle attacks, following the method
developed in [Qin+21]. This extra step ensures that both the key recovery part and the dis-
tinguisher are optimized together to reach a (close to) optimal attack as a whole. Finally, we
describe a 26-round attack on WARP, again reaching the best result to date.

Our analysis shows that the designers’ choice of positioning the key addition after the S-box in
the Feistel round function (which is justified by the need to avoid complementation properties)
turns in favour of the attacker.

Our results on WARP with a comparison with previous works are summarized in Table 7.1. The
code of our tool is available at: https://gitlab.inria.fr/lrouquet/boomerang-warp-fse-23.

Outline. Section 7.2 is dedicated to the description of our model searching for boomerang
distinguishers and to the discussion of our result on 23 rounds, that we can easily extend by 2
rounds. Our techniques to improve the execution time of the model are presented.

Section 7.3 shows how to turn the previous model into one searching for rectangle attacks and in
particular how the position of the key addition turns favorable to the attacker, leading us to a
26-round attack.
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Technique Rounds Probability Time Data Mem. Ref.
DC distinguisher 18 2−122 - - - [KY21]
DC distinguisher 20 2−122.71 - - - [TB21a]
ID distinguisher 21 1 - - - [Ban+20]

Boomerang distinguisher 21 2−121.11 - - - [TB21a]
Boomerang distinguisher 23 2−124 - - - Subsection 7.2.2
Boomerang distinguisher 23 2−115.59 - - - [HNE22]

Differential attack 21 - 2113 2113 272 [KY21]
Differential attack 23 - 2106.68 2106.62 2106.62 [TB21a]
Rectangle attack 24 - 2125.18 2126.06 2127.06 [TB21a]
Rectangle attack 26 - 2115.9 2120.6 2120.6 Section 7.3

Table 7.1: Complexities of the existing results on WARP. Note that for all the distinguishers presented
here we can add 2 rounds for free, see Subsection 7.2.2. ID = Impossible Differential, DC = Differential
Characteristic.

Previous results. The designers of WARP claimed single-key security and did not claim any security
in related-key and known/chosen-key settings. They provided a rather comprehensive security
analysis of their design, with a discussion of differential, linear, impossible differential, integral,
meet-in-the middle and invariant subspace attacks. The longer distinguisher they mentioned is a
21-round impossible differential distinguisher.

To the best of our knowledge, two external cryptanalyses have been reported to date, both
studying differential-based attacks. In the article [KY21] by Kumar and Yadav, a 21-round
differential attack is presented (based on a 16-round differential characteristic), with a time
and data complexity of 2113. Concurrently with our work, a 23-round differential attack and a
24-round rectangle attack were reported by Teh and Biryukov in [TB21a]. The work done by
Hadipour et al. [HNE22] was published after this chapter was written.

7.1.1 Boomerang attacks on Feistel ciphers
As shown for instance in the analysis of Sean Murphy [Mur11], the naive approximation of the
probability of a boomerang distinguisher might turn wrong due to an incompatibility between the
upper and the lower differentials. To solve this problem, Dunkelman et al. introduced the sandwich
attack [DKS10] which adds a middle part Em in the rewriting of E (namely E = E1 ◦ Em ◦ E0)
to isolate and study separately the rounds where the two differentials are interdependent. This
middle part is called boomerang switch [BK09]; if we denote by r the probability that Em
connects the upper and the lower trails, the final probability of the distinguisher becomes p2q2r.
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Computing the middle part probability. A recent line of works showed how to approximate the
value of r with the use of various tables. The first to be introduced is the BCT [Cid+18], developed
by Cid et al. to deal with 1-round boomerang switches in the case of SPN ciphers. In this Chapter
we focus on the Feistel case and thus recall the FBCT, the FBDT and the FBET, introduced in
[Bou+20]. The notation is recalled in Definition 7.1.

Definition 7.1: FBCT, FBDT and FBET [Bou+20]

Let S be a function from Fn2 to itself, and (∆i, δ,∇o, α) be elements of (Fn2 )4. The Feistel
Boomerang Connectivity Table (FBCT), Feistel Boomerang Difference Table (FBDT) and
Feistel Boomerang Extended Table (FBET) of S are given by:

FBCT (∆i,∇o) = # {x ∈ Fn2 |S(x)⊕ S(x⊕∆i)⊕ S(x⊕∇o)⊕ S(x⊕∆i ⊕∇o) = 0} .

FBDT (∆i, δ,∇o) = #



x ∈ Fn2

∣∣∣∣∣∣
S(x)⊕ S(x⊕∆i)⊕ S(x⊕∇o)⊕ S(x⊕∆i ⊕∇o) = 0,
S(x)⊕ S(x⊕∆i) = δ.



 .

FBET (∆i, δ,∇o, α) = #




x ∈ Fn2

∣∣∣∣∣∣∣∣

S(x)⊕ S(x⊕∆i)⊕ S(x⊕∇o)⊕ S(x⊕∆i ⊕∇o) = 0,
S(x)⊕ S(x⊕∆i) = δ,

S(x⊕∆i)⊕ S(x⊕∆i ⊕∇o) = α.




.

The table used to compute the 1-round probability depends on which input and output differences
of the S-box are fixed: for instance, the FBCT is chosen when only the inputs ∆i and ∇o are fixed
(see Figure 7.1).

∆i

L1 R1

L2 R2

L3 R3

R4L4S

L

S S S S

S

L

S S S S

S

L

S S S S

S

L

S S S S

· · ·

· · ·· · ·

· · ·

1

2

3

4

δ

x

∇o

α

Figure 7.1: View of the parameters of the tables: ∆i is the input difference and δ is the output difference
of S when looking at the difference between state 1© and 2©. ∇o is the input difference of the same S-box
S when looking at the difference between state 1© and 3© and α is its output difference. We focus on the
case where the differences are the same on parallel sides.

From the distinguisher to the Attack Once an efficient boomerang distinguisher is found, there
exist several techniques to extend it to a key recovery attack, as summarized for instance in
[Don+21]. In this Chapter we focus on the technique devised by Zhao et al. in [Zha+20].

The parameters on which the complexities of an attack depend are shown on the right in Figure
7.2. The key recovery works by adding few rounds before and after the Nd distinguisher rounds
Ed. We denote Eb the Nb rounds prepended and by Ef the Nf appended rounds. The attacker
extends backward with probability one the input difference α, obtaining a truncated difference
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Figure 7.2: Sandwich distinguisher (left) and setting for an attack, including the key recovery (right).

α′ with rb possibly active bits and n− rb inactive bits. In the same way, δ is extended forward
with probability one over the Nf rounds, giving a truncated difference equal to δ′, with n− rf
inactive bits.

Depending on the parameters, two factors might be dominating the time complexity; either
the cost of stage 2.(b) or the cost of the last stage. Their time complexity is respectively
2mb+rb · y · µ = 2mb+n/2 · √s · 1√

p2q2r
· µ and s · 2mb−n+2rf /(p2q2r) · ε encryptions. Since stage

2.(b) does partial encryptions over Eb, µ can be approximated by Nb
Nb+Nd+Nf

while ε corresponds
to the cost of gradually decrypting rounds to check the validity of a key guess, so we decide to
approximate it by 1

s .

Sucess probability. We use the formula devised in [Sel08] for differential cryptanalysis (and later
used in the context of rectangle attacks) to evaluate the probability of finding the correct key:

Ps = Φ(
√
sSN − Φ−1(1− 2−h)√

SN + 1
),

where SN is the signal-to-noise ratio, so is equal to p2q2r/2−n and h is the advantage.

7.2 Automatic Search of Boomerang Distinguishers
7.2.1 Automatic Search of Truncated Boomerang Distinguishers for Feistel

Ciphers

This section describes how to build an automated tool that searches for truncated boomerang
distinguishers for Feistel ciphers. Our method follows the idea developed by Delaune et al. for
Skinny in [DDV20] but makes the required adjustments to fit the Feistel structure.

The model presented in [DDV20] for SPN ciphers treats differently the S-boxes of the lower and
upper trail to take into account the direction in which they are computed. Given the specific
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(a) Feistel forward round.

Blo Alo

F

A′lo Blo

F

(b) Feistel backward round.

Figure 7.3: Encryption (7.3a) and decryption (7.3b) procedure of a classical Feistel cipher. Note that the
F function is never inverted and that the only difference comes from the direction in which the xor is
computed.

property of Feistel ciphers (that are their own inverse) and as illustrated in figure 7.3, our model
does not have to make this distinction, so we end up with the same constraints for the S-boxes
in the upper and in the lower trail:

freeXup =⇒ freeSXup

freeXlo =⇒ freeSXlo

(R1)

For the same reason we change the second constraint as follows:

freeSXup =⇒ ∆Xup

freeSXlo =⇒ ∆Xlo

(R2)

Knowing which input and output differences are fixed for every S-box allows to select the correct
table from Definition 7.1 to compute the associated boomerang probability. For instance, if the
two input differences ∆i and ∇o are fixed while α and δ are free parameters, the required table
is FBCT (∆i,∇o).

For the model, it corresponds to the case where the input value of Xup and the input value of
Xlo are fixed, so where freeXup and freeXlo are assigned to false. α and δ being free means that
freeSXup and freeSXlo are equal to true, so we end up with constraint 7.1 that indicates when the
FBCT table is required to compute a 1-round probability.

predicate isFBCT(i, k) =




∆Xup [i, 2× k] ∧ ¬freeXup [i, 2× k] ∧ freeSXup [i, k]
∧

∆Xlo [i, 2× k] ∧ ¬freeXlo [i, 2× k] ∧ freeSXlo [i, k]




Model 7.1: isFBCT predicate.
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Other tables are built in the same way and we obtain constraints F1 to F5 of Model 7.2 that
select the correct table according to which variables are fixed or not.

To ensure that the probability of each S-box can be computed using one of the Feistel boomerang
transitions, we add the following constraint:

freeXup + freeSXlo ≤ 1
freeXlo + freeSXup ≤ 1

(R3)

While S-boxes are treated in the same way in the upper and lower trail, special care has to be
taken to correctly propagate knowledge through the xor operations. In the upper trail (Figure
7.3a) we have the following equation: A′ = F (B)⊕A while for the lower trail (Figure 7.3b) we
have: A = F (B)⊕A′. This leads to the following distinction in the constraints:

freeA′up = (freeF (Bup) ∨ freeAup)
freeAlo = (freeF (Blo) ∨ freeA′ lo)

(R4)

Constraints R1 to R3 are the core mechanisms of the boomerang model for Feistel ciphers. They
must be applied on every S-box transition. Constraint R4 must be used on the parts of the state
that are xored together.

Resulting model. The complete model is provided in Model 7.2. Its first half is dedicated to the
selection of the correct boomerang table. The second part starts with constraint F6 which ensures
that the trails are active (i.e. that there is at least one difference in α and δ). Constraints F7
to F10 define the propagation from one round to the other, while the block of constraints F11
corresponds to the constraints R1, R2 and R3 explained at the beginning of this section and
model the S-box transition. The model ends with the objective F12 given here in its naive form
and that can be simplified as we now discuss.

Improvements
Weighted sum simplification. Given a model looking for differential characteristics, an upper
bound of the probability is obtained by multiplying the number of active S-boxes found during
Step-1 by the log2 of the maximum probability of the transition of an active S-box, that is
UB = 2−PDDT×#SB.

Similarly, for a model looking for boomerang distinguishers, the upper bound has to take into
account the various tables that are possible (the ones that can be selected in the first half of
Model 7.2) and for each of them their maximum probability, denoted PDDT , PDDT 2 , ..., PFBDT .
The objective (and consequently the bound) thus corresponds to a weighted sum, as shown in
F12, Model 7.2.

1297.2. Automatic Search of Boomerang Distinguishers



predicate isDDT(i, k) =



¬∆Xup [i, 2× k]
∧

∆Xlo [i, 2× k] ∧ ¬freeXlo [i, 2× k] ∧ ¬freeSXlo [i, k]




∨



∆Xup [i, 2× k] ∧ ¬freeXup [i, 2× k] ∧ ¬freeSXup [i, k]
∧

¬∆Xlo [i, 2× k]




(F1)

predicate isDDT2(i, k) =



∆Xup [i, 2× k] ∧ freeXup [i, 2× k] ∧ freeSXup [i, k]
∧

∆Xlo [i, 2× k] ∧ ¬freeXlo [i, 2× k] ∧ ¬freeSXlo [i, k]




∨



∆Xup [i, 2× k] ∧ ¬freeXup [i, 2× k] ∧ ¬freeSXup [i, k]
∧

∆Xlo [i, 2× k] ∧ freeXlo [i, 2× k] ∧ freeSXlo [i, k]




(F2)

predicate isFBCT(i, k) =



∆Xup [i, 2× k] ∧ ¬freeXup [i, 2× k] ∧ freeSXup [i, k]
∧

∆Xlo [i, 2× k] ∧ ¬freeXlo [i, 2× k] ∧ freeSXlo [i, k]


 (F3)

predicate isFBDT(i, k) =



∆Xup [i, 2× k] ∧ ¬freeXup [i, 2× k] ∧ ¬freeSXup [i, k]
∧

∆Xlo [i, 2× k] ∧ ¬freeXlo [i, 2× k] ∧ freeSXlo [i, k]




∨



∆Xup [i, 2× k] ∧ ¬freeXup [i, 2× k] ∧ freeSXup [i, k]
∧

∆Xlo [i, 2× k] ∧ ¬freeXlo [i, 2× k] ∧ ¬freeSXlo [i, k]




(F4)

predicate isFBET(i, k) =



∆Xup [i, 2× k] ∧ ¬freeXup [i, 2× k] ∧ ¬freeSXup [i, k]
∧

∆Xlo [i, 2× k] ∧ ¬freeXlo [i, 2× k] ∧ ¬freeSXlo [i, k]


 (F5)

Model 7.2: Model searching for truncated boomerangs on WARP, part 1/2: table selection.
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31∑

k=0

(
∆Xup [first distinguisher round, k]

) 6= 0
31∑

k=0
(∆Xlo [last distinguisher round, k]) 6= 0

(F6)

∀i ∈ all rounds?,∀k ∈ [0; BR/2[

freeXup [i+ 1, πeven[k]] = freeXup [i, 2× k]
freeXup [i+ 1, πodd[k]] = (freeXup [i, 2× k + 1] ∨ freeSXup [i, k]) (F7)

∀i ∈ all rounds,∀k ∈ [0; BR/2[

freeXlo [i, 2× k] = freeXlo [i+ 1, πeven[k]]
freeXlo [i, 2× k + 1] = (freeXlo [i+ 1, πodd[k]] ∨ freeSXlo [i, k]) (F8)

∀i ∈ all rounds,∀k ∈ [0; BR/2[

∆Xup [i+ 1, πeven[k]] = ∆Xup [i, 2× k]
∆Xup [i+ 1, πodd[k]] + ∆Xup [i, 2× k + 1] + ∆Xup [i, 2× k] 6= 1 (F9)

∀i ∈ all rounds, ∀k ∈ [0; BR/2[

∆Xlo [i+ 1, πeven[k]] = ∆Xlo [i, 2× k]
∆Xlo [i+ 1, πodd[k]] + ∆Xlo [i, 2× k + 1] + ∆Xlo [i, 2× k] 6= 1 (F10)

∀i ∈ all rounds, ∀k ∈ [0; BR/2[

freeSXup [i, k] =⇒ ∆Xup [i, 2× k]
freeSXlo [i, k] =⇒ ∆Xlo [i, 2× k]
freeXup [i, 2× k] =⇒ freeSXup [i, k]
freeXlo [i, 2× k] =⇒ freeSXlo [i, k]
freeXup [i, 2× k] + freeSXlo [i, k] ≤ 1
freeXlo [i, 2× k] + freeSXup [i, k] ≤ 1

(F11)

obj =
∑

i∈distinguisher
rounds

15∑

k=0




PDDT × isDDT[i, k] + PDDT 2 × isDDT2[i, k] +
PFBCT × isFBCT[i, k] + PFBDT × isFBDT[i, k] +
PFBET × isFBET[i, k]


 (F12)

minimize obj

?: all rounds include Eb, Ed and Ef rounds of Figure 7.2 while distinguisher rounds only include
Ed rounds.

Model 7.2: Model searching for truncated boomerangs on WARP, part 2/2. πeven and πodd correspond
to the subparts of the π permutation for even and odd inputs only. BR is the number of branches of the
cipher, so is equal to 32 in the case of WARP.
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Even if the semantic remains the same, reordering this weighted sum may have a huge impact on
the solving time.
The first simplification that can be done corresponds to cases where a table has a maximum
probability of 1. In such a setting, the table can simply be ignored during Step-1. This happens for
the FBCT of WARP. The second simplification occurs when different tables have the same maximum
probability, in which case they can be grouped by their respective maximum probabilities. For
WARP, such an equality happens for the DDT, the FBDT and the FBET which have the same
maximum denoted PisTable. Also, the DDT2 can be handled by counting them twice more than
the DDT in the sum. Thus, the obj function can be simplified as follows:

obj =
∑

i∈distinguisher
rounds

15∑

k=0


 PisTable × (isDDT[i, k] ∨ isFBDT[i, k] ∨ isFBET[i, k] ∨ isDDT2[i, k]) +

PisTable × isDDT2[i, k]




In addition to this, since there is a single maximum probability for all the tables (except for the
FBCT removed previously), we can rewrite the weighted sum as:

obj = PisTable ×
∑

i∈distinguisher
rounds

15∑

k=0

(
(isDDT[i, k] ∨ isFBDT[i, k] ∨ isFBET[i, k] ∨ isDDT2[i, k]) + isDDT2[i, k]

)

Finally, once the objective function is simplified we can use the Quine-McCluskey algorithm to
create a minimized Boolean predicate isTable[i, k] = (isDDT[i, k] ∨ isFBDT[i, k] ∨ isFBET[i, k] ∨
isDDT2[i, k]) and use it in the weighted sum:

obj = PisTable ×
∑

i∈distinguisher
rounds

15∑

k=0
((isTable[i, k]) + isDDT2[i, k])

Incremental search. In our model, the objective function non-strictly decreases as the number
of rounds r increases, since if we do not add an active S-box we will have the same optimal
probability while if we do add one S-box the probability will always be equal (if the maximal
possible probability of the table is 1) or lower (if the maximum possible probability is strictly
less than 1). We can use this information to lower bound the objective function for r + 1 rounds
when we know the optimal probability for r rounds:

PisTable ×
Nb+r∑

i′=Nb

15∑

k=0
((isTable[i′, k]) + isDDT2[i′, k]) ≥ objr

This observation allows to give the model additional information about the minimum bound,
which makes it stop the search earlier and therefore save execution time.
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Forcing the pattern of the solution. The previous model allows to find distinguishers for up to 20
rounds of WARP(in both Step-1 and Step-2), but more rounds are out of reach as the computation
time grows exponentially in the number of rounds.

However, we found out that all the optimal solutions returned for Nd = 15 to Nd = 20 have
a specific pattern of the form 1-1-0-1-1, that is contain a sequence of 5 rounds with 1 active
S-box in the first round, 1 active S-box in the second round, 0 in the third one, and so on.

While we cannot formally prove that this pattern is going to appear in the optimal solutions for
21 rounds and more, we believe that there are high chances that it does, so we decided to add a
Step-1 constraint that forces the solutions to follow this specific pattern. This assumption seems
reasonable as we did not observe a break in the probability chart.

Formally, it gives (note that we do not fix the position where the pattern appears):

Nb+Nd−5∨

i=Nb

(
i+4∧

i′=i
(

15∑

k=0
∆Xup [i′, 2× k] = pattern[i′])

)
with pattern = [1, 1, 0, 1, 1]

Instantiating the Truncated Boomerang Distinguishers
As mentioned before, we decompose our analysis into two steps. The first one (described above)
implements the search of truncated boomerang distinguishers and is written in Picat SAT [ZK16],
the SAT compiler in the Picat system. Each S-box of each round is associated to 6 bits: 3 for
the upper trail and 3 for the lower trail. They indicate if an S-box is active or not, if the S-box
input is free or not and if the S-box output is free or not.

The second step looks for concrete instantiations of the previous truncated solutions. It is written
in the open source Java constraint programming library Choco [PFL16]. This step is also inspired
from the one of [DDV20].

CP Model
The Constraint Programming model of Step-2 takes as input the results of Step-1 to know
the general shape of the distinguisher, in particular which nibbles are inactive. To transform a
truncated solution into a concrete one we need to assign values to the nibbles. For each pair
of nibble abstraction (∆X , freeX) we create a variable δX whose domain depends on the Step-1
solution:

δX ∈





[0, 16[ if freeX = true

{0} else if ∆X = false

[1; 16[ else

In the same way, δSX variables are created depending on the value of the pair (∆X , freeSX). As
the free variables can take any value from the nibble domain and are not constrained by the
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model we ignore them in Step-2.

The exact probability of each round is computed by using table constraints, which are tables
containing all the possible (or impossible) transitions. For instance, describing that x⊕ y = z for
binary variables could be done with the table constraint:

(x, y, z) ∈ Tab⊕ where Tab⊕ = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

One table constraint is created for each of the tables appearing in the probability computation
(DDT, DDT2, FBCT, FBDT and FBET), and we also make one to handle the xor over nibbles. In
addition to indicating the valid transitions, it also contains a third variable corresponding to the
absolute value of the base 2 logarithm of its probability. The truncated solutions outputted by
Step-1 completely define which table is used.
For example if we have: (∆Xup [i, 2 × k] ∧ ¬freeXup [i, 2 × k] ∧ ¬freeSXup [i, k] ∧ ¬∆Xlo [i, 2 × k]),
which corresponds to a DDT transition in the upper trail, we add the constraint: (δXup [i, 2 ×
k], δSXup [i, k], p[i, k]) ∈ TabDDT. The objective function is then the following sum:

obj2 =
∑

i∈distinguisher
rounds

15∑

k=0

(
p[i, k]

)

Combining the two Steps. Step-1 is composed of two different strategies: Step1−Opt that searches
for the truncated boomerang with the best objective obj and Step1 − Next that enumerates
one by one the solutions that reach this minimum obj. The best obj value is an upper bound
(UB) that can not always be reached as Step-1 is an abstraction (some truncated solutions may
not have concrete instances). The lower bound (LB) is fixed to 0 since it is the lowest possible
value. For a given number of rounds, we first run Step1−Opt to find UB, and we next interleave
Step1−Next with Step-2 to obtain a concrete boomerang with the best probability. Once done,
we update LB with this new value and repeat the process for all the Step-1 optimal solutions. If
a Step-2 is returned it means that the solution has a better probability than the given LB, so
we update LB and we continue the search. If no Step-1 is found it means that we have already
seen all the Step-1 solutions that can match UB, so we degrade UB and we continue the search
with Step1−Opt. If LB = UB we have found the best solution available. Note that the model
generates many solutions in Step-1 and most of the time we stop the search when LB = UB

instead of enumerating all possible Step-1 solutions.
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Clusters.
Once the optimal solution has been found for Step-1 and Step-2 (this solution is hereafter denoted
< S1opt, S2opt >), the goal is to obtain a better approximation of the actual probability of the
boomerang distinguisher by considering clusters. Indeed, the solution returned by Step-2 has
most of its S-box transitions fixed, while the only differences that matter when considering a
boomerang distinguisher are the input and output differences (α and δ in Figure 7.2).

To get closer to this actual probability, we start by generating multiple Step-1 solutions that
have their truncated differences in the first round and in the last round equal to the ones of
S1opt. The objective is to take into account many solutions that are all different one from the
others. We need to be carefull about what being different means in our context as the situation
is a bit more subtil than for a differential attack (for which the only two possible S-box status
are “active” and “inactive”).

In our model, we have the special case of the free S-box inputs that can take any value uniformly.
If we focus on one particular S-box, the case of a fixed active input difference can be seen as
contained in this one, so we must not count these cases as two independent ones. To be on the
safe side, we choose to consider that two Step-1 solutions are different if at least one of their
S-boxes is not free and inactive in one while it is not free and active in the other.

We thus search for the Step-2 solutions corresponding to these, with the additional condition that
the nibble differences in the first and last rounds are the one of S2opt. We sum over the different
values of obj2 in a variable called OBJ . To avoid counting solutions with too low probabilities
we leave out the solutions of probability lower than 2−10 × p(S1opt) for both Step-1 and Step-2.
Still, the large number of solutions forces us to set a limit on the number of solutions enumerated
in Step-2 for a given Step-1 solution: we set this limit to 220.

To check the validity of our approach, we wanted to compare the result of the simple model and
of the model with the clusters with what can be experimentally observed. To do so, we decided
to pick a Feistel cipher with a smaller block size than WARP with the hope that the clustering
effect would be easier and faster to observe. We selected the 64-bit block cipher TWINE [Suz+13]
reduced to 12 rounds. We first computed its experimental probability by fixing the differences α
and δ and we counted how many times the boomerang comes back. For the considered example,
we obtained a probability close to 2−25.68 when testing 230 plaintexts with 24 keys with a Rust
experiment (Figure 7.4). The corresponding optimal Step-1 solution has a probability of 2−26 and
is instantiated in Step-2 with a trail of probability 2−26. When aggregating solutions with the
same input and output differences we obtain an approximation of the distinguisher probability of
2−25.15 which is close to the experimental result, albeit slightly exceeding it. We also test our
model for WARP (Figure 7.3). These tests were realized without taking the cluster effect into
account since the gain is starting to be observable for too small probabilities.
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Rounds Cluster objstep2 gain
18 2−54 2−58 24

19 2−66 2−70 24

20 2−76 2−84 28

21 2−96 2−104 28

22 2−108 2−120 212

22 2−124 2−140 216

Table 7.2: Best distinguishers found after 2 days when summing up boomerang characteristics in the
same cluster for the best Step-1 solutions on WARP.

7.2.2 23-round Distinguisher on WARP
Implementation details. The Step-1 is written in MiniZinc [Net+07] and runs on Picat [ZK16]
which uses the Lingeling solver [Bie] under the hood, the Step-2 is written in Choco [PFL16]
version 4.10.6 which is a dedicated framework for Constraint Programming running on the Java
Virtual Machine. We choose the Picat solver to solve the Step-1 as it is a SAT solver, so is
especially suited to problems on Boolean formulae. Previous works like [Lib+21] have shown that
Picat has good performances on multiple Step-1 models. Since the Step-2 contains a lot of table
constraints, it appears that CP solvers are more adapted. The experiments are run on a virtual
machine Ubuntu 18.04.5 LTS x86_64 with an Intel Xeon Gold 5118 processor and 32 Gio
of RAM. The requirements are : Java 10.0.12 OpenJDK, Gradle 6.8, MiniZinc 2.5.5, Picat
3.1.2 and Choco 4.10.6. Each instance is run on a single thread.

We found 20 instances (from 3 rounds up to 22 rounds) with a probability better than 2−128.
They all took less than 48 hours to solve.
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Figure 7.4: Execution time of Step-1 Opt enforcing the 1-1-0-1-1 pattern (in seconds) ( ), execution
time of Step-1 Enum + Step-2 Opt ( ), Total time ( ). Best probability found with Step-1 Opt ( ).
Time of Step-1 Opt without the 1-1-0-1-1 pattern (· · ·). The black line corresponds to the probability
2−128.

Without taking into account the clusters, the longest distinguisher that can be obtained is a
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22-round boomerang of probability 2−120. By summing up several boomerang trails inside one
23-round solution we are able to build a distinguisher of 23 rounds with probability 2−124. By
exploiting the position of the key addition, it can easily be extended to a 25-round distinguisher,
thanks to the easy trick that we now present1.

The distinguisher is depicted in Appendices B.3.1 and B.3.2. Its 32 nibbles of input and output
differences are given by:

α = 57 00 00 07 00 00 57 57 07 57 00 07 00 00 57 00
δ = 70 05 00 70 05 00 70 70 00 00 70 70 00 00 00 05

(note that for simplicity we kept the last round permutation in the figures and here). To exploit this
distinguisher, an attacker would ask for the encryption of a large number of pairsM1,M2 verifying
M1⊕M2 = α, and build two new ciphertexts by computing C3 = E(M1)⊕δ and C4 = E(M2)⊕δ.
She would then ask for the corresponding plaintexts and check if E−1(C3)⊕ E−1(C4) = α.

Since the round keys are added after the application of the S-boxes, an attacker can compute the
difference entering the second round of the upper trail, and similarly the difference at the input
of the S-boxes of the penultimate round of the lower trail. This easily leads to an extension of
two rounds of any boomerang distinguisher. The attacker starts by picking a random message
M1 = M1[0],M1[1], · · · ,M1[31], and computes M2 according to the difference she wants to
observe one round later. For instance, it would give the begining of M2 to be

M2 = M1[0],M1[1],M1[2]⊕ 0x7,M1[3]⊕ 0x5⊕ S(M1[2])⊕ S(M1[2]⊕ 0x7), · · ·

A similar idea gives C3 in function of C1 and C4 in function of C2, and the boomerang returns
if M3 and M4 verify

M4 = M3[0],M3[1],M3[2]⊕ 0x7,M3[3]⊕ 0x5⊕ S(M3[2])⊕ S(M3[2]⊕ 0x7), · · · .

7.3 Automatic Search of Rectangle Attacks
As already discussed in [ZDJ19] in the case of Deoxys–BC, the best rectangle distinguishers
do not always lead to the best attacks, and choosing a sub-optimal (in terms of probability)
distinguisher might allow to cover more rounds in the key recovery phase, and then to attack a
bigger version of the cipher.

Following this idea, Lingyue Qin et al. proposed an automatic model that directly searches for
an attack [Qin+21] by taking into account the dominating factors of the key-recovery step. The
model simply minimizes the time complexity of the attack instead of maximizing the probability
of the distinguisher, while making sure that the data complexity does not exceed the full codebook.

1Note that a similar trick can be used to extend the 21-round impossible differential distinguisher proposed by
the designers of WARP to a 23-round distinguisher.
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Rounds Model Experiment Number of tries
3 20 20 24 × 16
4 20 20 24 × 16
5 20 20 24 × 16
6 20 20 24 × 16
7 20 20 24 × 16
8 20 20 24 × 16
9 20 20 24 × 16
10 2−2 2−1.93 26 × 16
11 2−4 2−3.94 28 × 16
12 2−8 2−6.39 212 × 16
13 2−12 2−8.80 216 × 16
14 2−20 2−18.02 224 × 16
15 2−28 2−25.65 228 × 16
16 2−38 2−35.65 236 × 111

Table 7.3: The experimental evaluation of our Model on WARP. The table gives the experimental
probability of the distinguishers computed by our model compared to their expected value. The number of
tries is the number of pairs of plaintext × the number of key tried. As the reader can see, the model is
close to the experimental evaluation. The code used for the experimental evaluation passes the test vectors
given by the WARP authors. The source code is available at https: // gitlab. inria. fr/ lrouquet/
boomerang-distinguisher-experimental-evaluation-on-WARP . 1The computation time was too long
and stopped after 11/16 keys.

Rounds Model Experiment Number of tries
3 2−0 2−0 24 × 16
4 2−0 2−0 24 × 16
5 2−0 2−0 24 × 16
6 2−2 2−1.84 26 × 16
7 2−4 2−3.56 28 × 16
8 2−6 2−5.90 210 × 16
9 2−8 2−7.81 212 × 16
10 2−14 2−13.66 218 × 16
11 2−20 2−17.54 224 × 16
12 2−26 2−25.68 230 × 16
13 2−34 2−32.93 238 × 16

Table 7.4: The experimental evaluation of our Model on TWINE80. The table gives the experimental
probability of the distinguishers computed by our model compared to their expected value. The number
of tries is the number of pairs of plaintext × the number of key tried. As the reader can see, the model
is really close to the experimental evaluation. The code used for the experimental evaluation passes the
test vectors given by the TWINE authors. The source code is available at https: // gitlab. inria. fr/
lrouquet/ boomerang-distinguisher-experimental-evaluation-on-TWINE .
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The number of rounds on which is run the model is gradually increased until the returned time
complexity exceeds the cost of an exhaustive search of the secret key. This technique turned
effective as it leads to improved attacks on the SPN ciphers Skinny and ForkSkinny [Qin+21].

In this section we study how to apply a similar idea to find good attack parameters for WARP and
show that when considering the attack technique introduced by Zhao et al. in [Zha+20] there are
at least two possible improvements in comparison to a variant of WARP with the key addition
positioned before the S-box. The first one is the reduction of the value of mb (the number of key
bits that have to be guessed in the upper rounds), and the second one is the potential growth of
the number of filtering bits, that is of n− rf .

These two improvements are crucial since the two predominating factors of the time complexity
of the attack of [Zha+20] are 2mb+n/2 · √s · 1√

p2q2r
· Nb
Nb+Nd+Nf

and 2mb−n+2rf /(p2q2r).

Taking Advantage of the Structure of WARP
Reduction of mb. To understand the first point, we look at a simple example that considers
Nb = 3 rounds of key recovery prepended to the distinguisher, where α, the top difference of the
boomerang distinguisher, has only two active nibbles, in position 1 and 4 (see the bottom of
Figure 7.5).

To determine the value of rb (the number of active bits in the plaintext structures), an attacker
starts by propagating backwards the difference α to know which nibbles might be active and
which are inactive for sure. This process is rather straightforward, and in our example it returns
rb = 32 active nibbles (denoted in green in Figure 7.5).
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Figure 7.5: Determining the required key bits to apply [Zha+20] over 3 rounds.

The next step is the determination of the key bits that are required to compute M2 from M1. In
the description given in [Zha+20], the attacker starts from M1, computes partially the state at
the input of the boomerang distinguisher so that she can add α to it, and decrypts the result to
get M2. Put differently, it can be seen as guessing the necessary key bits to uniquely determine
the difference to add to M1 to get M2 knowing that after Nb rounds the internal states differ of
α, which can also be seen as being able to uniquely propagate α backwards.

Consequently, the attacker starts from α, and takes note of the information needed: in round 2,
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the exact difference at the output of the second S-box has to be uniquely determined, so the
input value of this S-box is needed. This is denoted by the dashed lines in Figure 7.5. Knowing
this value in round 2 implies that the two inputs of the xor number 6 of round 1 are known,
which in particular forces to make a guess on the key nibble added after the S-box. The rest of
the backward propagation is processed similarly, and we obtain that 4 nibbles of key are required
in total. In the case where round keys are added before the S-boxes, this computation would
have return a total of 10 nibbles of key (we consider here that the round keys are independent).

Improved filtering process. For some specific shapes of output difference δ′, the attacker is able to
increase the number of bits on which she looks for collision in step number 2(c) of the attack. An
example of this is given in Figure 7.6 with Nf = 2: by counting the number of active nibbles
at the output, we obtain rf = 21× 4 = 84, which means that the hash table is used to look for
collisions over 2× (128− 84) = 88 bits.

In our example, the F functions number 4 to 9, 12 and 13 in the last round all have a similar
difference pattern where the input of the S-box (X[i, 2k]) is active while the right part (X[i, 2k+1])
is not.

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F F

F F F F F

F F F F F F F F

Figure 7.6: Example of difference propagation over Nf = 2 rounds.

The inactivity of X[i, 2k + 1] can be translated into the equality

F (C1[2k])⊕ C1[2k + 1]⊕ F (C3[2k])⊕ C3[2k + 1] = 0.

Given that F is the application of an S-box followed by a sub-key addition it can be simplified
into: S(C1[2k])⊕ C1[2k + 1] = S(C3[2k])⊕ C3[2k + 1] which does not depend on a secret value.
Thus, the idea is to simply add as index the value of S(C[2k])⊕ C[2k + 1] when building the H
table of Step-2.(c), in addition to the value of the bits where the difference is expected to be 0 in
the ciphertexts. In our example, it means that we are colliding on 32 additional bits, and thus
that the filter for quartets is of size 2× (128− 52) = 152 bits.

Model for Searching a Rectangle Attack
In this subsection, we briefly go over the main characteristics of the model searching for the
rectangle attack. The detailed model is given in Model B.1 in Appendix B. It takes as input the
number of rounds covered by the distinguisher and by the prepended and appended rounds of
key recovery (respectively Nd, Nb and Nf ) and returns the complexities of the best attack that
can be found.

The intermediate values that are needed to evaluate the time and data complexity of the attack
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are mb, rf , and the probability of the distinguisher (previously denoted p2q2r). This latter is
determined with the same constraints as in the model searching for the best distinguisher, and
we simply add constraints to model the additional Nb and Nf rounds.

• rb and rf are computed by propagating with probability one the difference at the input
and at the output of the boomerang distinguisher, see constraints (FA6) and (FA10). To
take into account the above described trick on the filtering process, we define rf as the
number of active nibbles entering the last round.

• The data complexity is computed so that s right quartets are found, see constraint (FA3).
To make sure that it does not exceed was is available, one may add a constraint stating
that

√
s·2n/2√
p2q2r

< 2n.

• As it is impossible to compute the cluster at this stage, we introduce a variable clustergain
which is set by the attacker to represents the expected gain obtained with clusters. Its
value is precisely computed afterwards, once a solution to the model is obtained.

• The time complexity is computed as the maximum between the two most expensive stages
detailed in section 7.1.1, see constraint (FA3). Again, one may add a constraint saying that
the resulting time complexity has to be smaller than the cost of an exhaustive search of
the key.

• Constraint (FA5) makes the link between the known variables and the guesskey variables.

• We take into account the simple key schedule of WARP to precisely compute the value of
mb. We start by determining the states that have to be known in value (denoted known in
the model, constraints (FA7), (FA8) and (FA9)) and then link them to the keys and to mb,
taking into account the key schedule (constraints (FA4) and (FA5)).

All the values (except t which is related to the distinguisher probability and clustergain which
is first only approximated) can be computed during Step-1. As a result all the constraints are
computed in Step-1 and only the constraints that imply 2t or t are modeled in Step-2.

Results: A 26-round Attack on WARP
We apply the previous model to search for rectangle attacks on WARP with various values for
the parameters Nb, Nd and Nf . As the execution time rapidly increases with the number of
rounds, we added another constraint (proposed in [DDV20]) which consists in using the bounds
obtained for differential distinguishers. The idea is that the upper trail (resp. lower trail) cannot
be better than a differential trail, i.e. the number of active S-boxes in the upper trail (resp.
lower trail) cannot be lower than the minimal number of active S-boxes of a differential trail
(optimaldiff ). To implement this idea for WARP we use the lower bound of the number of active
S-boxes computed in [Ban+20].

The best attack we found covers 26 rounds of WARP based on a Nd = 22 rounds distinguisher,
Nb = 1 round added before and Nf = 3 rounds added after (Appendices B.4.1 and B.4.2). The

1417.3. Automatic Search of Rectangle Attacks



model took 6 days to solve this instance, and returned the following values: mb = 0 , rb = 72,
rf = 60 and a distinguisher probability of 2−128. This search was made by assuming that s is
equal to 4 and that the value of the cluster gains would be the ones given in 7.2, so in the case of
a 22-round distinguisher equal to a factor of 212.

We next run the cluster search on the 22-round distinguisher. We obtained a probability approxi-
mation of 2−111.2 (so with a cluster gain a bit larger than what was expected), resulting in the
associated attack having a data complexity of 2120.6 messages, and a time complexity of little
less than 2116 encryptions when following the key recovery method introduced by Zhao et al.
[Zha+20].

The success probability of the attack is equal to 97.67%.

On the Impact of the Key Addition Position
We now briefly discuss a variant of WARP with a round key addition made before the S-box
application, and consider an attack using the same 22-round distinguisher, and the same number
of rounds Nb and Nf added before and after the distinguisher. The different round structure
changes the value of mb and rf , as the improvements discussed in Section 7.3 cannot be applied
anymore. mb increases (from 0) to 32, while rf is now equal to 88 instead of 60. The data
complexity of an attack with such parameters would still be 2120.6, but the dominating factor of
the time complexity becomes 2191.2.

This example shows the importance of the key addition position and of the techniques discussed
in Section 7.3 that save a factor of 275.3 in the time complexity.

7.4 Conclusion
In this Chapter, we propose the adaptation of two recent techniques to the case of Feistel
ciphers to find boomerang distinguishers and rectangle attacks. Our analysis reveals a 23-round
distinguisher and a 26-round attack of WARP, beating by 2 rounds the recent results of [TB21b].
Our code is public and can be used as a basis to attack other Feistel ciphers, and we actually
demonstrate its versatility by providing results for TWINE and LBlock–s (see Appendix B.2).

Secondarily, while studying WARP we show how to take advantage of the key addition position to
reduce the complexity of the attack. In our specific case, this design decision allows to reduce by
a factor of 275 the time complexity of the attack in comparison to a variant of WARP that would
have the key addition positioned before the S-box (and thus would have the complementation
property).
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Outlooks and Conclusion

Our main issues in this work were to improve the scaling of CP solvers, which was done in
Chapters 4 and 5, and improving existing attacks, which was done in Chapters 4, 6 and 7.

In Chapter 4 we extended the work of [Gér+20] to the Rijndael case, which required extending
the generation of redundant equations to the different cases of the KeySchedule as well as
adapting the ShiftRows operation to take into account the different shifts. We have simplified
the equations in Step-2 by using the information extracted from Step-1 in a more efficient way.
We also improved the interleaving of the two computational steps by using the minimum and
maximum bounds of the two steps to:

1. stop the search at the earliest when the solution is proven to be the optimal solution;
2. speed up the search in step 2 by prohibiting the search for solutions worse than the best

known solution.

These improvements allowed us to find two new bounds for the complexity of attacks on the
Rijndael128−224 and Rijndael160−256 instances.

This chapter highlights a technique to speed up the search. Many papers using declarative
approaches in the differential cryptanalysis community use the two-step method: truncated
differential characteristic search and then differential characteristic optimization by using two
different solvers. In most cases, the first step is done by a SAT or (M)ILP solver and the second by
a (M)ILP or CP solver. Our method, being solver agnostic, can be adapted to many configurations
currently in use, which would improve the solving process speed for many problems.

In chapter 5, we created a new global constraint AbstractXOR to model truncated differential
features more easily. This global constraint strongly improves Choco’s performance for Step-1
and makes Choco competitive with SAT. We point out that the xor operator is one of the
most commonly used operators in encryption and is the operator generally used for calculating
differentials. Therefore a correct modelling of this operator is an important issue. However,
global constraints have some disadvantages. The main drawback is the loss of efficiency of the
DomOverWDeg heuristic due to the standardization of the scores of the different variables.
This drawback can be mitigated by adopting certain techniques such as implementing custom
heuristics that take into account the structure of the problem underlying the global constraint.
Furthermore, a better quality of filtering in the first step of the computation of a differential
feature can have a significant impact since it can avoid the search for impossible concrete solutions
(a case where a truncated solution is considered valid even if it has no concrete instantiation).
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Simplifying the modelling also allows the use of more complex attack models by reducing the
risk of errors.

A possible improvement of our approach would be to generalize the modelling of the xor
operator in order to better capture the linear and non-linear operators in the equation system. In
the case of Rijndael, for example, it could be interesting to model the multiplication in the Galois
field in order to decompose MixColumns and thus allow AbstractXOR to check more advanced
equations. It would also be interesting to add inference rules when the relations between binary
sequences have specific properties, e.g. transitivity, symmetry, reflexivity.

In Chapter 6 we developed a tool for searching for boomerang distinguisher applied to Rijndael
encryption. To do so, we merged the Boomerang model of Delaune et al. and the model of
Chapter 4. This allows us to create new attacks for the 9 over 11 rounds of the Rijndael128−160

instance.

In Chapter 7 we adapted the Delaune et al. model to Feistel’s schemes. Indeed, the model of
Delaune et al. was designed to work on SPNs, which assumes that the non-linear operations are
reversed during decryption. In the case of Feistel’s schemes, the functions are not inverted, which
implies that the calculation of probabilities in the boomerangs is different. We therefore used the
work of Lallemand et al. to generalize the Delaune et al. model to support Feistel schemes as
well. Our model was mainly developed for WARP, but being adaptable to other Feistel schemes.
So we also applied it to Twine and LBlock-s ciphers. We have also taken automation to the next
level as we have integrated the calculation of the complexity of attacks into the model instead of
doing this step separately. This model was able to find a new state-of-the-art distinguisher for 23
rounds on WARP and a new state-of-the-art attack on 26 rounds on WARP. We also find new
best distinguishers for 15 and 16 rounds of Twine and 16 rounds of LBlock-s.

This chapter shows how to apply some of the techniques developed for SPNs to Feistel schemes.
In addition, we show how to integrate the KeyRecovery into the model in order to optimize the
total complexity of the attack and not only the probability of the distinguisher which is only one
parameter among others.

As this thesis shows, modelling cryptanalysis problems is both complex and tedious. While
attacks can be applied to a wide range of ciphers, each cipher has specific operations that require
the complete rewriting of a new model.

One track for further research would be to integrate the attacks presented in this thesis into
automatic template generation mechanisms such as [Lib+21] (see Figure 7.7). The main idea is
to represent attacks and ciphers independently. The attacks are represented by models applied to
an abstract graph. Ciphers are represented by translating their specification into a specific graph.
The solution search then consists in solving the attack model applied to the specific graph related
to the cipher. This would make it easier to test new attacks on existing ciphers. Conversely, when
developing new ciphers, it would then be possible to test more quickly whether the specifications
are resistant to already known attacks.
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Figure 7.7: The generic representation of an attack search using a declarative approach. The encryption
specification must be translated into a mathematical model. This model must be adapted to the attack
search, for example by removing constants in the case of differential analysis or by removing operations
that involve the key in the case of single-key attacks. The attack itself must be modelled and adapted to
the cipher, e.g. a boomerang attack is not represented the same way in the case of an SPN and a Feistel
cipher. Finally, the search may involve more or less steps and include more or less automation, e.g. by
including the KeyRecovery part and the attack complexity computation.
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A Rijndael

Appendix

A.1 Round constants
0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
00 01 02 04 08 10 20 40 80 1B 36 6C D8 AB 4D 9A 2F 5E BC 63 C6 97 35 6A D4 B3 7D FA EF C5 91 39

Figure A.1: Round constants (in hexadecimal) for the key generation of Rijndael
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A.2 GlobalGAC vs our SAT / CP model on Rijndael
A.2.1 Results for Block length = 128
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Figure A.2: Solving time for GlobalGAC (full CP) and SAT / CP models on Rijndael128−Klen
. Each

instance is denoted 128−Klen where Klen is the key size in bits. The GlobalGAC model (Chapter 5) is in
red ( ), the SAT / CP model (Chapter 4) is in green ( ) and the time limit (2× the time of SAT /
CP model) is in purple ( ). The x axis is the number of rounds and the y axis is the time in seconds,
measures that are above the time limit are not depicted.
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A.2.2 Results for Block length = 160 and 192
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Figure A.3: Solving time for GlobalGAC (full CP) and SAT / CP models on Rijndael160−Klen
. Each

instance is denoted 160−Klen where Klen is the key size in bits.
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Figure A.4: Solving time for GlobalGAC (full CP) and SAT / CP models on Rijndael192−Klen
. Each

instance is denoted 192−Klen where Klen is the key size in bits.
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A.2.3 Results for Block length = 224 and 256
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Figure A.5: Solving time for GlobalGAC (full CP) and SAT / CP models on Rijndael224−Klen
. Each

instance is denoted 224−Klen where Klen is the key size in bits.
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Figure A.6: Solving time for GlobalGAC (full CP) and SAT / CP models on Rijndael256−Klen
. Each

instance is denoted 256−Klen where Klen is the key size in bits.
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A.3 Related-key boomerang distinguisher computation time
Klen Nr Dr objs1 objs2 optimality
128 3 1 20 2−6 ×
128 4 2 20 2−5 ×
128 5 3 20 20 X
128 6 4 2−12 2−20 ×
128 7 5 2−59

160 3 1 20 2−29 ×
160 4 2 20 20 X
160 5 3 20 20 X
160 6 4 20 20 X
160 7 5 2−18 2−35 ×
160 8 6 2−56 2−104 ×
160 9 7 2−84 2−95 ×
192 3 1 20 20 X
192 4 2 20 2−5 ×
192 5 3 20 20 X
192 6 4 20 20 X
192 7 5 20 20 X
192 8 6 2−12 2−12 X
192 9 7 2−47 2−51 ×
192 10 8 2−76 2−136 ×
192 11 9 2−119

224 3 1 20
224 4 2 20
224 5 3 20
224 6 4 20
224 7 5 20
224 8 6 2−24

224 9 7 2−47

224 10 8 2−78

224 11 9 2−90

224 12 10 2−155

256 3 1 20
256 4 2 20
256 5 3 20
256 6 4 20
256 7 5 20
256 8 6 2−12

256 9 7 2−35

256 10 8 2−48

256 11 9 2−64

256 12 10 2−88

256 13 11 2−114

(a) Clen = 128

Klen Nr Dr objs1 objs2 optimality
128 3 1 20 2−12 ×
128 4 2 20 2−5 ×
128 5 3 20 20 X
128 6 4 2−12 2−18 X
160 3 1 20 2−6 ×
160 4 2 20 20 X
160 5 3 20 20 X
160 6 4 2−11 2−12 X
160 7 5 2−41 2−45 ×
160 8 6 2−118

192 3 1 20
192 4 2 20
192 5 3 20
192 6 4 20
192 7 5 20
192 8 6 2−47

192 9 7 2−102

224 3 1 20
224 4 2 20
224 5 3 20
224 6 4 20
224 7 5 20
224 8 6 2−12

224 9 7 2−42

224 10 8 2−114

256 3 1 20
256 4 2 20
256 5 3 20
256 6 4 20
256 7 5 20
256 8 6 2−18

256 9 7 2−36

256 10 8 2−87

256 11 9 2−120

(b) Clen = 160
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Klen Nr Dr objs1 objs2 optimality
128 3 1 20 20 X
128 4 2 20 20 X
128 5 3 20 20 X
128 6 4 2−36 2−36 X
160 3 1 20 2−6 ×
160 4 2 20 20 X
160 5 3 20 20 X
160 6 4 2−6 2−6 X
160 7 5 2−46 2−73 ×
192 3 1 20
192 4 2 20
192 5 3 20
192 6 4 20
192 7 5 2−28

192 8 6 2−84

224 3 1 20
224 4 2 20
224 5 3 20
224 6 4 20
224 7 5 2−29

224 8 6 2−54

256 3 1 20
256 4 2 20
256 5 3 20
256 6 4 20
256 7 5 2−6

256 8 6 2−35

(c) Clen = 192

Klen Nr Dr objs1 objs2 optimality
128 3 1 20
128 4 2 20
128 5 3 20
128 6 4 2−24

160 3 1 20
160 4 2 20
160 5 3 20
160 6 4 20
160 7 5 2−54

192 3 1 20
192 4 2 20
192 5 3 20
192 6 4 20
192 7 5 2−36

(d) Clen = 224

Table A.1: The probabilities found for the different versions of Rijndael. Each table represents a variant
Clen of Rijndael. Nr is the number of rounds, Dr is the number of rounds for which we compute the
probability of distinction (Dr = Nr − 2). objs1 is the upper bound found by Step1-Opt. objs2 is the best
probability found with Step2-Opt. objs2 is not given either when we did not perform the computation or
when the computation did not finish. The optimality column indicates whether the algorithm has found
(X) the optimal bound (complete search) or not (×) (incomplete search).
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A.4 Related-Key Boomerang Distinguisher on 9 rounds for
Rijndael128−160
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Figure A.7: The Rijndael128−160 9 rounds attack. The distinguisher works for rounds 1 to 8 and has a
probability of 2−56 for the encryption part and of 2−39 for the KeySchedule.
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B WARP

Appendix

B.1 Model Searching for Rectangle Attacks with the Technique of
[Zha+20]

New variables

2t = obj−clustergain . we pose that: p2q2r = 2−2t

t = d2t/2e

rb =
31∑

k=0

∆Xup [0, k]× 4

rf =
31∑

k=0

∆Xlo [Nr − 1, k]× 4

data = σ + 64 + t

t1 = σ + 64 + t+mb− 4 . we pose that: s = 22σ

t2 = 2σ +mb− 128 + 2rf + 2t
time = max(t1, t2)

mb =
∑

alt∈{0,1}

15∑

k=0

guesskey[alt, k]× 4

New constraints

∀k ∈ [0; BR/2[,

guesskey[0, k] = # {known[i, 2× k + 1] | i ∈ [0;Nb[ ∧ i mod 2 = 0} ≥ 1∧
guesskey[1, k] = # {known[i, 2× k + 1] | i ∈ [0;Nb[ ∧ i mod 2 = 1} ≥ 1

∀i ∈ [0;Nb[, ∀k ∈ [0; BR/2[,

(∆Xup [i+ 1, πodd[k]] ∨∆Xup [i, 2× k]) =⇒ ∆Xup [i, 2× k + 1]

∀i ∈ [0;Nb − 1[, ∀k ∈ [0; BR/2[,

known[i+ 1, πodd[k]] =⇒ (known[i, 2× k] ∧ known[i, 2× k + 1])

∀i ∈ [0;Nb[, ∀k ∈ [0; BR/2[,

∆Xup [i+ 1, πeven[k]] =⇒ known[i, 2× k]

∀k ∈ [0; BR/2[

known[Nb − 1, 2× k + 1] = false

∀i ∈ [Nb +Nd, Nr[, ∀k ∈ [0; BR/2[,

∆Xlo [i, 2× k + 1] ∨∆Xlo [i, 2× k] =⇒ ∆Xlo [i+ 1, πodd[k]]

(FA1)

(FA2)

(FA3)

(FA4)

(FA5)

(FA6)

(FA7)

(FA8)

(FA9)

(FA10)

Model B.1: Attack extension for the attack technique of Zhao et al. [Zha+20].
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B.2 Application of our Technique to TWINE and LBlock–s
To illustrate the flexibility of our tool, this section reports the results obtained when applying
it to two well-known Feistel ciphers, TWINE and LBlock–s. TWINE [Suz+13] is a 64-bit block
cipher with a Type-II GFN structure and LBlock–s is used in the authenticated encryption
LAC [zhang2014lac] submitted to the CAESAR competition. LBlock–s is a simplified version of
the original cipher LBlock [WZ11] which uses only one S-box instead of the 8 original ones and
admits 16 rounds or 32 rounds according to where it is used in LAC. It is also a 64-bit cipher and
it could also be represented as a Type-II GFN as shown in [SN14]. This is that representation
that we used for our models. Then, for those two ciphers, we apply our method for computing
the boomerang clusters and the results are summed up in Table B.1.

Cipher Distinguishers Rounds Probability Ref.
TWINE Boomerang distinguisher 15 2−58.92 [TB21b]
TWINE Boomerang distinguisher 16 2−61.62 [TB21b]
TWINE Boomerang Distinguisher + Clustering 15 2−47.7 This PhD thesis
TWINE Boomerang Distinguisher + Clustering 16 2−59.8 This PhD thesis
LBlock-s Boomerang distinguisher 15 2−58.64 [TB21b]
LBlock-s Boomerang Distinguisher + Clustering 16 2−56.14 [Bou+20]
LBlock-s Boomerang Distinguisher + Clustering 16 2−54.8 This PhD thesis

Table B.1: Summary of the results for computing the best boomerang clusters for TWINE and LBlock–s.
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B.3 23-round Boomerang distinguisher on WARP
B.3.1 Upper trail
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Figure B.1: Upper trail of the 23-round Boomerang distinguisher on WARP.
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B.3.2 Lower trail
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Figure B.2: Lower trail of the 23-round Boomerang distinguisher on WARP.
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B.4 26-round Rectangle attack on WARP
B.4.1 Upper trail
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Figure B.3: Upper trail of the 26-round Rectangle attack on WARP.
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B.4.2 Lower trail
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Figure B.4: Lower trail of the 26-round Rectangle attack on WARP.
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