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Introduction

This manuscript presents a summary of the main line of research I have been leading in the last years, in particular since 2015, when I started my position as chargée de recherche (research scientist) Inria in Inria Nancy Grand Est / Loria1 . The new position also marked an important event for Inria and for the Loria laboratory, which is the funding of the Larsen team, by Fran cois Charpillet, Francis Colas, Jean-Baptiste Mouret and myself, with the willingness to establish a new research group in robotics and artificial intelligence. The team project was articulated around the different research lines of the funding members, with the shared objective of advancing the skills of robots in terms of autonomy and interaction.

In this context, I was able to put forward my main research topic since my Ph.D., which is humanoid robotics, and the topics that I started to develop during my postdoctoral research studies in ISIR/UPMC (Paris, France) and TU-Darmstadt (Germany), which are human-robot collaboration and robot learning. In this manuscript, I will present some important contributions in these fields. In Inria/Loria I mostly worked with my sixth iCub2 , iCubNancy01 (see Figure 1.1), which we acquired with the funding of the European project CoDyCo and the CPER IT2MP.

Humanoid robotics is not only about designing and controlling human-like structures, but rather about understanding the principles of perception, learning, and control that enable the human to be "intelligent" by trying to solve human problems with the robot. In my view, this is the quintessence of humanoid robots: they are tools to better understand humans. Of course, they are also complex platforms that enable us to advance the fundamental research in robotics, control, learning, and so on, but they are unique in investigating how humans learn from and interact with their peers and their environment. This view is certainly due to the teaching of Giorgio Metta and Giulio Sandini during my Ph.D. at the Italian Institute of Technology, who created a multi-disciplinary environment where robotics, psychologists and neuroscientists were striving to collaborate. Over the years, I have maturated this view and had the chance to collaborate with psychologists and sociologists to tackle some issues of human-robot collaboration, such as digging into individual factors and studying acceptance and trust towards robots. At the same time, I have had the chance to advance the control and interaction skills of humanoid robots using machine learning, which I rediscovered during my postdoc. During my Ph.D. thesis, I worked on neural networks to learn model predictive controllers for moving a humanoid's arm towards a moving target in real-time; then, Francesco Nori made me discover robot dynamics and my efforts diverted to computing the iCub's whole-body dynamics, which had the potential to enable force control. Physical interaction with humans was now possible, and this is why I got interested in human-robot collaboration during my postdoc: finally, the robot could help the human (although Vincent Padois made sure I was careful not to dream too much and question how robots can really help the human). But model-based control is powerful and limited at the same time when it comes to humanoid robots, especially in dealing with contacts: thanks to Olivier Sigaud and later Jan Peters, I rediscovered machine learning and how it could be useful to humanoid robotics. Francois Charpillet then made me re-discover artificial intelligence, which will be useful for the next chapters of my research journey about humanoid robots. Most of my work was focused on advancing whole-body control to enable human-robot collaboration, considering the human's status and goals, and introducing whole-body teleoperation with human anticipation (for the first time in the case of iCub).

Human-robot collaboration requires a multi-disciplinary approach because it develops around humans and their behavior during an interaction with the robot. As such, this kind of research is intertwined with humanoid robotics and at the same time rich with new challenges. Humanoid robotics provides also a set of control and modeling tools that are useful to study human movement and behavior, so the two research lines are nurturing each other and it makes sense from my point of view to develop them together.

Collaboration encompasses physical and social interaction. It necessitates to reason about humans, modeling their behavior, predicting it, anticipating it, and considering this information in the robot planning, learning and control, at a high and low level. On the human side, I have been mostly focusing on predicting human activities and movements and conducting many experimental studies where potential end-users evaluate robotic technologies. On the robot side, I have been mostly focusing on combining machine learning and whole-body control to improve the collaboration and control skills of robots, with particular attention to humanoid robots.

From now on I will drop "I" and "my", and rather use "we" and "our": not because I have a liking for pluralis maiestatis, but because the work presented in this manuscript is the result of a team effort. It would not have been possible without my colleagues and collaborators, and most importantly all the students, interns, Ph.D., and postdocs, who have been working with me these years. I think we share most of our ideas, so it seems fair to use "we".

In almost 6 years, we have grown in terms of a research group, projects, robotics equipment and, most importantly, research questions and results. The road towards the truly collaborative robots seamlessly integrated within our society, as I dream of since I first read "The Caves of Steel'3 , is still long and windy, but I am sure it will also be fun.

Context

Recent years have seen a proliferation of applications of new robotic technologies in manufacturing and industry, contributing to the success of the so-called "Industry 4.0". In this context, we have witnessed a transition from robots (manipulators and mobile robots) to cobots (collaborative robotics manipulators) and exoskeletons, largely motivated by economic factors (increased productivity and flexibility) and health factors (reduction of physical stress and musculoskeletal diseases). Cobots are the descendants of industrial manipulators, capable of safely interacting and "coexisting" (i.e., sharing the same workspace) with operators, used for boosting productivity and at the same time improving the workers' ergonomy at work.

Exoskeletons are wearable robotics devices that physically assist the operators in their motions. They can be passive, semi-active (or hybrid) and active, depending on the way the physical assistance is designed and actuated. Usually, they are designed for very specific tasks, such as helping to lift or carry heavy weights, or assisting during overhead work.

Humanoid robots, though versatile, are still experimental platforms, thus they have been so far only considered for specific applications such as aircraft construction [com].

The new platforms and their applications have driven research in many fundamental topics for robotics, such as safety [START_REF] Lacevic | Safety assessment and control of robotic manipulators using danger field[END_REF], synchronization and coordination [START_REF] Shah | Improved human-robot team performance using chaski, a human-inspired plan execution system[END_REF], control of contacts and physical interaction [START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF], learning by demonstrations [START_REF] Stulp | Learning Compact Parameterized Skills with a Single Regression[END_REF], etc. In particular, the major concern when cobots were introduced was to ensure safety during physical interaction. Most of the research in cobotics over recent decades has focused on collision avoidance, human-aware planning and re-planning of robot motions, control of contact, safe control of physical collaboration and so on, contributing to the formulation of ISO norms on safety for collaborative robots, such as the ISO/TS 15066:2016.

The introduction of these new technologies at work has changed the way operators may perceive interaction with robots: robots are no longer confined to their own areas; instead, they are sharing space with humans, modifying workstations, and influencing gestures at work (see Figure 1.2).

It has become clear that the problem of human-robot collaboration cannot be merely reduced to the problem of controlling the physical interaction between the human and the robot, and that the human dimension needs to be investigated further.

At the same time, research in social robotics has made tremendous progress in understanding the behaviour and the intricacy of verbal and non-verbal signals exchanged by robots and humans during interaction [Anzalone et al., 2015[START_REF] Ajoudani | Progress and prospects of the human-robot collaboration[END_REF], highlighting critical aspects such as trust [START_REF] Gaudiello | Trust as indicator of robot functional and social acceptance. An experimental study on user conformation to the iCub's answers[END_REF], mutual awareness [START_REF] Khambhaita | Assessing the social criteria for human-robot collaborative navigation: A comparison of human-aware navigation planners[END_REF]Alami, 2017, E. A. Sisbot et al., 2007] and turn-taking [Ivaldi et al., 2014a]. These studies were initially motivated by the growing assistance and service robotics application, ranging from the introduction of robots in malls and shops to hospitals and homes, but are now becoming crucial for the acceptance of new intelligent robotics technologies in industrial domains, such as logistic and manufacturing.

The robotics research community is thus advancing both physical and social interaction skills for robots. The proof of the convergence of both skills is the new industrial robots such as Sawyer, where an industrial compliant arm (similar to the KUKA iiwa or the Franka Emika) is coupled with a face emulating referential gaze and social behavior, to facilitate collaboration with humans.

But aesthetic appearance is only one criterion: anthropomorphism and human-likeness are important features also for the robot's behavior and movement, both for a mobile robot navigating among humans and for a robotic arm handling objects to humans. The new robotic collaborators require advanced skills in physical interaction, adaptation and intelligence, but these advances bring also some drawbacks. The robots' appearance has an increased level of anthropomorphism, which may seem a positive feature but often raises the expectations of humans and cause deception. On the other side, the robots' behavior becomes more human-like to facilitate interaction with humans. Such improvements bring a radical change in the way the workers see cobots: not only simple machines, but robotic agents with some intelligence, which is a potential asset, but a threat to their jobs at the same time.

In this sense, operators may be driven to interact with them in a different manner than from the one they use with cobots or manipulators: the simple addition of a head with a face displaying information about the robot's status, or moving along with the human, may create the illusion of a more "intelligent" form of human-robot interaction that goes beyond physical assistance. Expectations may increase, both in terms of the complexity of the interaction and the capacity of the system to properly react to the human and communicate its status. When such interactions occur, and they involve collaborative tasks or decision-making tasks, it is important to take a human-centered approach and make sure that the operators trust the system, learn how to use it, provide feedback and finally evaluate the system. As roboticists, we often imagine that humans wish to interact with intelligent systems that can anticipate and adapt, but our experiments show that when humans see the robot as a cognitive and social agent they tend to mistrust it [START_REF] Gaudiello | Trust as indicator of robot functional and social acceptance. An experimental study on user conformation to the iCub's answers[END_REF]. Taking into account the human dimension for cobots is critical: one cannot decou-ple the developments of robotic behaviors from the problem of evaluating their impact on human behavior. We need to develop collaborative robotics technologies that are co-designed and validated by the end-users; otherwise, we run the risk of developing robots that will fail to gain acceptance and adoption.

We highlight the intrinsic multidisciplinarity of the problem. Even in industrial sectors such as manufacturing, it is clear that the problem of introducing collaborative robots cannot be merely reduced to the problem of ensuring safety and controlling their physical interaction with humans. A multitude of sub-problems must be taken into account for collaborative robots to be accepted and widely adopted: from rethinking the whole software and hardware architecture to enabling natural communication.

The transition from robots to cobots also raises several issues from psychological and cognitive perspectives. First, there is the problem of technology acceptance and trust in the new technologies on the part of the operators. Second, there is the problem of achieving a more advanced form of interaction, realized with a multi-modal system that takes into account human cues, movements and intentions in the robot control loop, that can differentiate between work-related intentional and non-intentional human gestures, make appropriate decisions together with the human, and adapt to the human.

The diversity of challenges and topics to be addressed also reflects in the research we have carried out in the last years. Collaborative robots need to safely control their physical interaction with humans. However, in order to provide physical assistance to humans, they need to be able to predict their intent, future behavior and movements to anticipate the partner's need and decide the appropriate assistance action. To address this issue, our approach has been largely inspired by the observations on how humans collaborate.

If we observe two humans collaborating, we quickly realize that their synchronous movements, almost like a dance, are the outcome of a complex mechanism that combines perfect motor control, modeling and prediction of the human partner and anticipation of our collaborator's actions and reactions. While this fluent exchange is straightforward for us humans, with our ability to "read" our human partners, it is extremely challenging for robots.

Take, for example, two humans collaborating to move a big, bulky, heavy couch. How do the two partners synchronize to lift the couch at the same time, in a way that does not result in a back injury? Typically, the two assume an ergonomically efficient posture, ensure a safe haptic interaction, then use a combination of verbal and non-verbal signals, to synchronize their movement and move the couch toward the new desired location. While this collaborative action could, in principle, be done exclusively by exchanging haptic cues, humans leverage their other signals to communicate their intent and make the partner aware of their status, intention and their upcoming actions. Visual feedback is used to estimate the partner's current posture and effort; non-verbal cues such as directed gaze are used to communicate the intended direction of movement and the final position; speech is used to provide high-level feedback and correct eventual mistakes.

In other words, collaboration undoubtedly needs good physical interaction, but it also needs to leverage social interaction: it is a complex bidirectional process that efficiently works if both humans have a good idea of the model of their partner and can predict his/her intentions, future movements and efforts. Such a capacity is a hallmark of the human central nervous system that uses internal models to plan accurate actions as well as to recognize the ones of the partner.

But how can these abilities be translated into a collaborative robotic system? First, the robots need the ability to not only estimate the motion of humans but to fully describe and predict the whole-body dynamics of their interaction with humans. This ability is necessary to create anticipatory robot controllers that take into account the prediction of human dynamics during collaboration to provide appropriate physical assistance. This idea has driven our recent research, carried out within the European project AnDy, where we develop the idea of anticipatory control for three different collaborative robotics platforms: industrial cobots, exoskeletons and humanoid robots. The three platforms allow us to study the problem of collaboration from different angles, with platforms that are more critical in terms of physical interaction (e.g., exoskeletons) and more critical in terms of cognitive interaction (e.g., cobots and humanoids).

The main objective of exoskeletons is to provide physical assistance and reduce the risk of work-related musculoskeletal diseases. It is critical that an exoskeleton is safe, assistive when needed, and "transparent" when not required. One of the challenges for an exoskeleton is the detection of current and future human activity and the onset of the kind of activity that requires assistance. While in the laboratories this can be easily detected by using several sensors (e.g., EMG sensors, motion tracker markers), it is more difficult to achieve in the field with a reduced set of sensors. Challenges for the acceptance of this kind of technology include a systematic evaluation of the effects of the exoskeleton on the human body, in terms of movement, efforts, and ergonomics, but also on the perceived utility, trust towards the device and cognitive effort in using it. In a recent paper [Maurice et al., 2018], we listed the ethical issues related to the acceptance of this technology.

For a collaborative robot (manipulator or more complex articulated robot such as a humanoid), the problems are similar in terms of physical interaction and safety. The cobot needs to be able to interact safely with the human and provide assistance when needed. Typically, cobots provide strength and endurance (e.g., they can be used to lift heavy tools and end-effectors) that complement human dexterity, flexibility and cognitive abilities in solving complex tasks. An interesting type of assistance that robots can offer is helping to improve the ergonomics of the human operator at work: this can be done by reducing the effort, but also influencing the human posture. To provide suitable assistance, here the robot needs to be able to perceive human posture and efforts, estimate the current task performed by the operator and predict future movements and efforts. Again, this is easily achieved in laboratory settings with RGB-D cameras, force plates and EMG sensors, but it is more challenging, if not impossible, to do in real working conditions such as in manufacturing lines with several occlusions and reduced external sensing. Wearable sensors provide, in this case, a viable solution for postural estimation and activity recognition [Malaisé et al., 2018[START_REF] Malaisé | Activity Recognition for Ergonomics Assessment of Industrial Tasks with Automatic Feature Selection IEEE Robotics and Automation Letters[END_REF]: while their use during regular activity on a manufacturing line is possible, they are most useful during the workers training or the improvement of workstations, where ergonomy is evaluated.

If assisting the human requires the knowledge of the human status, better assistance requires the prediction of the human intention: this information is necessary to anticipate the human's need and to compute suitable assistance. To predict the future intended movement, one way is describing the problem as the inference over a probabilistic skill model given early observations of the action. During many types of human-robot interaction characterized by coordination, the prediction is done at the level of movement trajectories, using Cartesian positions or joint angles. In the case of physical collaboration, haptic information must also be considered, to detect the start of the cooperative movement, the role in the interaction and eventually to provide corrections. However, the problem requires a multi-modal approach [Dermy et al., 2017a]: in a similar way as humans communicate during collaboration, humans also use anticipatory directed gaze with robots to signal the target location for goal-directed actions. This information can be used as input to the robot controller, to take into account the prediction of human intent in the planned robot motions.

Predicting human intention is therefore a major problem for collaborative robots and exoskeletons, because of their proximity to the human. The same holds for humanoid robots if they are engaged in physical interaction with humans. Interestingly, predicting the human is also fundamental in another case of human-humanoid interaction where there is not (or at least, not necessarily) a physical interaction nor proximity (rather, a long distance): it is the case of teleoperation, where the humanoid robot is acting as the physical avatar of the human in a remote location. The problem becomes relevant once there are significant communication delays that make it difficult for the human to receive visual feedback that is "aligned" with their commands: in this case, the robot may anticipate the human operator.

Overview of the main contributions

In the last years, we addressed some problems that robots face to interact with and assisting humans. On one side, we have developed algorithms for controlling the whole-body motion of the robot, considering the human intention and status, and combined machine learning and control to increase the robot's performance in motion and interaction. On the other side, we have proposed a method to understand and predict human behavior and motions and use this information to provide input to the robot. We have also conducted several human-robot interaction experiments, of different natures, to have a better understanding of how humans interact with robots in real and laboratory situations. The majority of this research has been funded by the European projects CoDyCo and AnDy, in which I was one of the principal investigators.

The manuscript cannot report all the body of research that we did: the focus is on the main methods that we developed to address human-humanoid collaboration. Figure 1.3 provides an overview of the main modules of a simplified robot control architecture for human-robot collaboration, with reference to the chapters. On the experimental side, we only reported on the experiments conducted with iCub.

To produce appropriate controls, the robot needs information about the context and the collaborative mission with the human. Across this manuscript, those will be considered as fixed and known by hypothesis. Instead, we will focus mostly on the robot's controller, on how to optimize its parameters and consider the human dynamics, and how to predict the human's movements and current actions. The evaluation of the robot's and the human behavior and performance during interactions must consider both objective and subjective data (typically questionnaires and interviews): this methodological approach for carrying out experiments highlights the fact that the human is at the center of our research.

The manuscript is organized into 6 main chapters. Chapters 2 to 6 present scientific contributions and robotics experiments in the topics of (2) human-aware controllers for interaction, (3) automated tuning of whole-body controllers, (4) human activity recognition and intention prediction, [START_REF] Penco | A Multi-Mode Teleoperation Framework for Humanoid Loco-Manipulation[END_REF] learning from humans, (6) anticipatory or prescient teleoperation. Each of these chapters has a short summary and links to the main papers that contain the published material of the chapter. The final chapter (7) outlines the future research directions, sketching some of the main objectives of the future Inria team that I am proposing to lead.

Chapter 2 presents our contribution to the problem of designing a human-aware controller for physical human-robot interaction. In particular, a controller that considers the dynamics model of the human and reasons about the coupled dynamics of robot and humans when they are physically linked. Our solution, far from being perfect, enabled us to advance in humanoid control and understand how important it is to have a prediction of the human's desired or intended trajectories.

Chapter 3 describes our efforts toward the automated tuning of whole-body controllers for humanoids and more generally redundant robots. This is a necessary tool to make robot controllers easier to program, easier to deploy, and to rapidly prototype new behaviors without requiring extensive tuning in simulation and on the real robot. It is also a fundamental step to obtain generic whole-body controllers for teleoperation.

Chapter 4 is focused on the recognition of the current human activity and prediction of the human's future intended movement. These are two fundamental skills that the robot needs to synthesize appropriate behaviors for the current activity, to anticipate and adapt to the human intended movement at the control level.

Chapter 5 discusses how the robot can benefit from learning from humans. Just as adults teach children, humans can teach robots. In the first scenario, the human will be a tutor, helping the robot to learn to recognize objects. In the second scenario, the human will be a demonstrator or a teleoperator, which shows the robot how it should move its entire body. This technique will lay the foundations to teach by demonstrating very complex (collaborative or not) behaviors to humanoids quickly and intuitively.

Chapter 6 describes our first step towards anticipatory human-humanoid collaboration, in the form of prescient teleoperation. This contribution is built on the results described in the previous chapters since it requires a whole-body controller for the robot, a teleoperation framework and machine learning tools to predict the human intended motion.

Each Chapter will end with a short discussion focused on the specific themes, providing some insights about the pros and cons of the methods and some personal reflections about the work done and to be done in the future. The reader may find some of these questions again elaborated in Chapter 7, which outlines the research project, i.e. the plan for our future work. There, we will present the main research directions that we wish to investigate in the next years, with emphasis on the next challenges for human-humanoid and more generally human-robot collaboration.

Towards a human-aware controller for physical human-robot interaction and collaboration

Collaboration relies on two pillars: physical and social interaction. When people collaborate, for example, to pick and carry an object, they continuously exchange and regulate forces and they communicate their intent using the entire set of social signals (e.g., speech, gaze, gestures). The reason is that humans need to act based on their prediction of the partner's status and intent. If robots want to collaborate with humans to assist them in tasks requiring physical effort, they undoubtedly need to control precisely and safely the physical interaction with their partner, but they need to leverage all the sensory sources of information to estimate the human status, and generate appropriate controls that are "human-aware".

This chapter presents some contributions in this direction, precisely it presents three controllers for physical interaction that have a crescendo of complexity.

In the first contribution, we present an experimental study where naive participants interacted physically with the iCub to assemble an object. The robot was passively controlled in a zerotorque mode, to enable people to manipulate completely the robot without feeling resistance from it. The study was useful in obtaining insights about the behavior of the naive participants when interacting haptically with the robot, in terms of contact forces, for example, and robot trajectories; as well as to learn how social signals, precisely gaze and speech, are produced and vary with individual factors during physical human-robot interaction.

In the second contribution, we present the CoDyCo whole-body controller, which is a first attempt to synthesize a humanoid controller considering that the robot is physically coupled at the contact level with another dynamics system (the human).

In the third contribution, we present an extension (in a sense) of the previous controller, which is the multi-robot quadratic programming controller that was developed within the AnDy project to study the generation of assistive whole-body behaviors. In this controller, both humans and robots are modeled as robots and their dynamics is coupled at the contact level. However, the synthesis of the robot controls explicitly takes into account human motion. This work makes strong hypotheses that make it suitable to test controllers offline; however, it provides a good starting solution toward the problem of designing reactive controllers that consider human dynamics and kinematics and optimize for human-related quantities.

The work presented in this Chapter is based on the research conducted within the FP7 project CoDyCo ( [J11], [J15]) and the H2020 project AnDy ( [C28], [C27]).

The main references are:

• Ivaldi, S.; Lefort, S.; Peters, J.; Chetouani, M.; Provasi, J.; Zibetti, E. ( 2017) Towards engagement models that consider individual factors in HRI: on the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task. International Journal of Social Robotics. Vol 9, No 1, Pages 63-86. Overview of the physical human-robot interaction controllers, and their applications, presented in this chapter. Section 2.1.1: The assembly experiment of [START_REF] Ivaldi | Towards engagement models that consider individual factors in hri: On the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task[END_REF] within the CoDyCo project, where the robot interacts with the human only through the contact forces applied to his arms/hands. Section 2.1.2:

The final demo of CoDyCo [START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF], where the human helps the robot to stand up from a chair. The robot interacts with the human through the contact forces applied to his arms/hands, but it is "aware" of the human through the dynamical model, measured by a motion tracking suit and force plates. Section 2.1.3: The multi-robot QP controller proposed in AnDy [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF], used to compute assistive robot actions that do not make the human fall. The robot interacts with the human through the contact forces applied to his arms/hands, and it is "aware" of the human through the dynamic model. The human motion, recorded offline by a motion tracking suit, is replayed in simulation. The contact situation is similar, but the way the human model is used in the QP controller is different.

Physical interaction with a humanoid robot: the case of iCub

This section presents different experiments where humans physically interact with the robot iCub to perform some tasks, in a crescendo of complexity. The following sections present the experiment, the hypothesis for the physical interaction and the associated robot controller. Figure 2.1 overviews the physical human-robot interaction scheme and their applications: it is useful to see the increasing complexity of the physical interaction and how the human is modeled and considered in the robot controller. Section 2.1.1 will detail the experiment of [START_REF] Ivaldi | Towards engagement models that consider individual factors in hri: On the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task[END_REF] within the CoDyCo project, where human participants grab the iCub's arms to demonstrate an assembly action: here the robot arm is controlled in zero torque. The robot interacts with the human only through the contact forces applied to his arms/hands: it is not "aware" of the human presence, i.e., it does not know that the forces are produced by a human for a reason. Section 2.1.2 presents the results of the final demo of CoDyCo [START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF], where the human was helping to lift the robot from a (simplified) chair. Here, the robot interacts with the human through the contact forces applied to his arms/hands, but it is "aware" of the human through the dynamical model. In the experiments, the human is equipped with an Xsens MVN suit tracking his/her posture and is standing on force plates that measure her contact wrenches at the feet, while the contact wrenches at the hands are estimated using the force/torque sensors of the iCub's arms. Section 2.1.3 finally presents the multi-robot QP controller proposed in AnDy [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF], to generate assistive robot actions to support the human balance.

Here, the robot interacts with the human through the contact forces applied to his arms/hands, but it is "aware" of the human presence and its dynamic model. The interaction scheme follows the same model as before, but the way the human model is used in the QP controller is different. In the simulated experiment, the human motion is recorded with the Xsens MVN suit, then it is simulated in the digital human model, which is physically coupled with the humanoid robot HRP4. The robot's motions are generated as if the simulated human was performing the recorded motion.

It is interesting to present how the evolution of these controllers is intertwined with the evolution of the research in the projects CoDyCo and AnDy, which provide the context and background for this research.

One of the goals of the CoDyCo project was to study balancing controllers for humanoids that were able to cope with compliant contacts including dynamic contacts produced by a human. In the first part of the project we focused on learning to contact models [START_REF] Calandra | Learning inverse dynamics models with contacts[END_REF] and improving torque control in presence of contacts [Calandra et al., 2015a]. In the beginning, there was no precise plan for modeling the human contacts as the result of an intentional process, but it was clear that the human was to be modeled as a dynamic system that was creating a force when in contact with the robot. But how are the contacts between the human and the robot? Are there maximum values of forces, do the forces change in time, and is the contact location changing through interaction? We realized that we did not have any dataset or experience in acquiring human contact forces. And for this reason, we designed a user study to acquire such a piece of knowledge.

In the first pHRI experiments of CoDyCo, the human was essentially controlling the robot's motion through physical contact (grabbing) at the level of the iCub's forearm, and the robot had to cope with the external contact wrenches. In the experiments of [START_REF] Ivaldi | Towards engagement models that consider individual factors in hri: On the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task[END_REF] shown in Figure 2.1-Section 2.1.1 the robot was only passively following the human manipulation of the arms -technically it was controlled in impedance all the time to comply with physical contacts, then in zero torque when the human was grabbing the robot arms to provide demonstrations of a task: it was the simplest way to cope with contacts, and it enabled us to collect a significant amount of data about the contact forces and locations of the humans interacting with the robot. At this point, it was clear that to move forward in physical human-robot interaction we needed to provide more information about the human partner and move towards a "human aware" formulation of the robot controller. "Human aware" planning techniques were already used for robot navigation and planning of high-level interaction gestures such as handovers [START_REF] Mainprice | Sharing effort in planning human-robot handover tasks[END_REF][START_REF] Dragan | Legibility and predictability of robot motion[END_REF], and the analogous was somehow missing for low-level robot controllers. Our motivation was to answer the following question:

"How can we synthesize robot controllers that are aware of and can react to the human presence and intentions?"

The most common methods to estimate human intention are mainly based on imitation learning techniques, where movements recorded from human actors, using motion capture techniques, are clustered in motion databases and learned in the form of motion and interaction primitives [START_REF] Amor | Interaction primitives for human-robot cooperation tasks[END_REF][START_REF] Mandery | Unifying representations and large-scale whole-body motion databases for studying human motion[END_REF]. We adopted the same approach to have modules for predicting the intention during the interaction, exploiting the ProMP formalism: this prediction technique will be presented in Chapter 4.

However, including this method in the robot controller was a bit premature at the time: this kind of prediction has certainly an effect at the low-level control (i.e., the one running typically at 1kHz) but it should be rather considered at a lower frequency, typically at the mid-level control (i.e., running at 1-10Hz, for example, a Model Predictive Controller as in Section 5.2) that makes short term plans about the desired trajectories.

So we decided first to act on the low-level controller, by first including a model of the human dynamics during the interaction, so that the robot can reason about both models to produce meaningful control torques. Given a human model, and measurements provided by wearable sensors, we want first to estimate the current human configuration (state) and intention in a way that can be used by the robot controller, in that way "aware" of the human, to act accordingly. In [START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF], described in Section 2.1.2, we considered that the intention information were dynamical quantities (force-torques, accelerations, etc.) extracted from a human state estimator, and same we did in a sense in [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF], described in Section 2.1.3.

The augmented state, consisting of robot and human, enables generating robot motions that cause a desired effect in the human state: for example, reduce the torque in some joints. The final demonstration of CoDyCo was about a human helping the robot iCub to stand-up from a chair, shown in Figure 2.1-Section 2.1.2, which was the mirror example of a robot helping a human to stand up 1 . An attempt to include the human intention was made by including the estimation of the goal of the human assistive motion, using the ProMP intention estimation described in Chapter 4 but the nature of the task (lifting the iCub from the chair) was such that using intention prediction with the controller had a minor impact on the performance, if not at all.

In AnDy we started to exploit the human dynamics model to generate robot controls that consider also the human when reasoning about dynamics. In particular, the robot not only considers its own balance but reasons in terms of "the balance of the connected systems". This enables generating assistive motions that prevent the duo from falling [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF].

The multi-robot QP controller presented in Section 2.1.3 provides a very powerful formulation that enables generating robot motions that consider both the human kinematics and its dynamics. In this sense, it is possible to generate controls that are "human-aware", even if the method requires the knowledge of the entire human motion. This knowledge is required and thus makes the method ideal for planning human-aware motions and prototyping robot controllers for pHRI, rather than using it for real-time control. The latter is possible, however, if a prediction of the future intended human movement is available.

Although we are still far from a controller formulation that has a chance of working in a realtime human-in-the-loop experiment at a very high rate, we have made significant steps towards this goal and accumulated knowledge about the limits of our intermediate solutions that we will share in the next sections.

Physical interaction for a collaborative assembly

In order to collaborate proficiently and safely with humans, humanoid robots need to advance their social and physical interaction skills. We cannot simply generalize the control laws for physical interaction that are designed for cobots or robotic manipulators in general, for many reasons. First, a humanoid robot is balancing and while it regulates the interaction with a human it also has to stand and not fall: this means that controlling the contact forces at the end-effector alone is not enough. Second, a humanoid robot is highly anthropomorphic and people interacting with it not only have high expectations but they will have a natural tendency to interact displaying a complex behavior that mixes social and physical signals. For example, people may seek eye contact, may look at the different body parts and may address the robot talking as if it were an "intelligent" agent.

When we approached physical interaction with a humanoid robot during the CoDyCo project, we realized that our knowledge at the time (we wrote the project proposal between 2011 and 2012, just after I had obtained my PhD) of how a human physically interacts with a humanoid robot was very limited. There were examples of human-humanoid interaction in the literature, such as assistance during robot stand-up [START_REF] Ikemoto | Physical interaction learning: Behavior adaptation in cooperative human-robot tasks involving physical contact[END_REF] and kinesthetic teaching [Calinon et al., 2007b[START_REF] Lee | Physical human robot interaction in imitation learning[END_REF], but the large majority of physical human-humanoid interaction and collaboration work emerged in the last decade [Vianello et al., 2021b].

In the specific case of iCub, we had no prior information about how the physical interaction with human participants would happen (except for the interaction we had as robotics programmers dealing with dynamics and control), and we did not have any dataset that could provide us information about the contacts that we could expect to observe, the exchanged contact forces and so on. We did not know whether people were worried about touching the robot; if they would accept to manipulate the robot and physically move its arms to cooperate; if people would make and break contact frequently (which could have made the interaction control complicated); if the exchanged forces (pushes or pulls) would be so large to compromise the robot's balance in case it would have been standing on its feet. We had no empirical data to even speculate about the possible behavior of the humans interacting with the robot, yet this information would have been crucial to developing an appropriate whole-body controller for physical interaction with humans.

For this reason, we decided to acquire empirical evidence of how people interact physically with the iCub, as a first step, and then use the information about the exchanged forces -at the very least-to inform a future whole-body controller. We designed an experimental study where people were collaborating with the iCub to assemble an object: given the child-like appearance of the robot, we designed the experiment where participants would teach the robot how to assemble a simple object, made of two tubes fixed by tape, and the teaching required the human to physically manipulate the robot's arms to demonstrate how to align the two tubes.

The experiment was designed within the project "Engagement during human-humanoid interactions" (EDHHI)2 , to investigate the acceptance, engagement and spontaneous behavior of ordinary people interacting with a robot. The experimental protocol used in this work (Ivaldi et al., "Engagement during human-humanoid interaction", IRB n.20135200001072) received approbation by the local Ethics Committee (CERES) in Paris, France. Figure 2.2 illustrates the rationale of the project: the objective was to study the multitude of verbal and non-verbal signals produced by the human during the physical interaction with the robot, with individual factors that are known to relate to some signals, such that we could build better models for HRI.

Among the individual factors, we considered extroversion [START_REF] Rolland | A psychometric examination of the french translations of neo-pi-r and neo-ffi[END_REF]], a particular dimension of a personality trait that is known to correlate with the production of speech and gaze in human-human interaction [Iizuka, 1992, Scherer and[START_REF] Scherer | Speech behavior and personality[END_REF]. We measured the extraversion with the Revised Personality Inventory (NEO-PIR) questionnaire [START_REF] Rolland | A psychometric examination of the french translations of neo-pi-r and neo-ffi[END_REF], which is used to assess personality traits according to the Big Five model [START_REF] Raad | The big five personality factors: the psycholexical approach to personality[END_REF]. We also considered the negative attitude towards robots, measured by the NARS questionnaire [START_REF] Nomura | Measurement of negative attitudes toward robots[END_REF] by Nomura and colleagues, who demonstrated in a series of studies the effect of a negative attitude towards robots on communication, in particular on the time of the verbal response, which increases with the more the negative attitude of an individual. The experimental setup. The participant is standing in front of the robot iCub; their interaction is recorded by a Kinect, two standard HD cameras (front and side view of the scene). The experimenter monitors the interaction from the side, not too far but close enough to be able to push the safety button and intervene in case of emergencies. The operator is hidden behind a wall, and he controls the robot monitoring the interaction through a webcam placed over the robot. The power supply and cluster of the robot are hidden behind a cabinet.

The experiments were conducted in the Institut des Systèmes Intelligents et de Robotique (ISIR, Paris, France), with the humanoid robot iCub of ISIR. The robot is approximately 104 cm high, weighs about 24 kg, and has the shape of a 4 years old child. At the time of the experiment, whole-body control with physical interaction capabilities was still experimental and not available yet on the ISIR's robot. The upper body could be controlled in impedance and zero-torque, enabling physical interaction with humans, while the robot was standing on a pole.

The experimental setup was organized as depicted in Figure 2.3. The robot was standing on a fixed pole so that it could not fall. The robot was semi-autonomous, i.e., it was controlled by an operator hidden behind a reflective wall (a plastic divider with a reflective surface), built to prevent the participants to see the operator and the experimenter, while giving the experimenter the possibility to monitor the interaction and intervene promptly in case of problems3 .

To facilitate the control of the robot by the operator, we developed a graphical user interface (GUI) to quickly send high-level commands to the robot in a wizard-of-Oz mode (WoZ). The operator was constantly monitoring the status of the robot, and could intervene to send highlevel or low-level commands to the robot, in prompt response to unexpected actions or requests of the participants, using a dedicated graphical interface, called WoZ GUI.

The WoZ GUI was organized into several tabs, each dedicated to a specific task, such as controlling the robot's movements (gaze, hand movements, posture), speech, face expressions etc. The GUI events were elaborated by the actionServer module and others developed by the authors in previous studies [START_REF] Ivaldi | Object learning through active exploration[END_REF]. All the developed software is open source4 .

Figure 2.4-A shows the tab related to the control of head gaze and hand movements. The gaze direction is controlled in the Cartesian space, with relative movements with respect to the fixation position (joints at zero degrees in both eyes and neck). The hands can be quickly controlled by a list of available pre-defined grasps, plus primitives for rotating the palm orientation (towards the ground, skywards, facing each other). It is also possible to control the hands' position and orientation in the Cartesian space, providing relative movements of the current position with respect to the Cartesian base frame of the robot (the origin located at the base of the torso, with x-axis pointing backward, y-axis pointing towards the right side of the robot and z-axis pointing towards the robot head). Some buttons allow the operator to control the whole posture of the robot and bring it back to pre-defined configurations.

Figure 2.4-B shows the part of the GUI dedicated to switching the control mode of the arms: position, zero-torque, then impedance with high, medium and low stiffness. In compliant mode, which is the case of impedance and zero-torque control, the joint low-level controller implements the following control law:

τ d = k sti f f (q d -q) -k damp * ( qd -q) + τ o f f set (2.1)
where τ is the joint torque (at the low level, this torque is translated into a desired current, since there are no joint torques), k sti f f and k damp are respectively the joint stiffness and damping, q d , qd = 0 are the desired joint position and velocity, and τ o f f set is the gravitational torque, computed to compensate for the arm's weight (it is the torque used for gravity compensation: if the human does not physically pull or push the arm, the arm is still in the air if the arm's dynamic model is known with accuracy). The impedance values for the 5 joints of the arm in these modes are reported in Table 2.1. The impedance control implementation of Eq. 2.1 on the robot requires the estimation of the robot's whole-body dynamics, which relies on the use of the proximal force-torque sensors in the two upper arms [Ivaldi et al., 2011a, Fumagalli et al., 2012, Ivaldi et al.]. The default values of the module demoForceControl5 for stiffness and damping were used. During the experiments, the arms were controlled in the "medium compliance" impedance mode, which allows the robot to exhibit good compliance in case of unexpected contact with the human participant. When the participant grabbed the robot arms to start the teaching movement, the operator switched the control to zero-torque, which made the arms move under the effect of human guidance.

For safety issues, the operator could stop the robot motion at any time by simply switching the robot to position control, and at the same time the experimenter monitored the whole interaction and was able to intervene and stop the robot in case of urgency at any time using the robot safety button. Facial expressions and speech were enabled. The robot always assumed the same neutral/positive expressions, to avoid confusing the participant or suggesting an underlying robot "emotional status".

The experiments were carried out with N=56 voluntary healthy adults: : 37 women, 19 men, aged 19 to 65 (mean=36.95, σ =14.32).

After watching an introductory video about iCub, each participant was introduced to the robot by the experimenter. The experimenter explained that the goal of the task was to create an object in collaboration with the robot. To create the object, they simply had to assemble two paper rolls and fix them with some tape. The participant could grab the robot arms to demonstrate the bi-manual movement necessary to align the two rolls, as shown in Figure 2.6.

As the task required a physical interaction with the robot, for safety reasons the experimenter had to provide a short demonstration to show the participant how to grab the robot arms safely and how to "move" the robot arms by guidance to teach the robot the desired movement6 . This demonstration was necessary to make sure that the participants would grab the robot forearm on the cover parts covered by the skin, for their own security and to prevent damaging cables and robot hands (see Figure 2.5). All the participants received an identical demonstration. We remark that the interaction between the participant and the robot was not scripted, and we aimed to let it be as much as spontaneous as possible for the first human-humanoid interaction.

The experimenter then gave the participants the first two colored paper rolls and invited the participant to start the assembly task with the robot; the task had to be repeated three times with three pairs of paper rolls, to build three objects. The paper rolls and the tape were conveniently placed on a table next to the participants. The participant was free to start at his/her convenience A B Figure 2.4.: WoZ GUI. A: the tab dedicated to the quick control of gaze, grasps and hands movements in the Cartesian space. The buttons sends pre-defined commands to the ac-tionsServer module, developed in [START_REF] Ivaldi | Object learning through active exploration[END_REF]. The buttons of the bottom row allow the operator to bring the robot in pre-defined postures (whole-body joint configurations): they were pre-programmed to simplify the control of the iCub during the experiments, in case the operator had to "bring it back" to a pre-defined configuration that could simplify the interaction for the participants. They were useful also for prototyping and testing the experiments. B: part of the GUI dedicated to switching the compliant control mode of the arms -position, zero-torque, then impedance control with low, medium and high stiffness [START_REF] Fumagalli | Force feedback exploiting tactile and proximal force/torque sensing. Theory and implementation on the humanoid robot iCub[END_REF]. and to make each trial last as much as he/she wanted to. More details on the experimental procedure are reported in [START_REF] Ivaldi | Towards engagement models that consider individual factors in hri: On the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task[END_REF].

Once the participants finished the assembly task, repeated three times, the experimenter led the participant back to a computer to make him/her fill a post-experiment questionnaire and then get feedback and impressions through a short interview.

In the following, we report on the main findings of this study (detailed results and discussion are in [START_REF] Ivaldi | Towards engagement models that consider individual factors in hri: On the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task[END_REF]).

We found that there is a positive and significant correlation between the extroversion score and the frequency and duration of utterances. The more the individual is extroverted, the more often and longer he/she will tend to address the robot during the interaction. This result is consistent with observations of human-human interactions, showing that introverts tend to talk less than extroverts [START_REF] Scherer | Speech behavior and personality[END_REF]. Conversely, we did not find a significant correlation between extroversion and gaze frequency or duration. This finding is partially contrary to what has been observed in [START_REF] Iizuka | Extraversion, introversion, and visual interaction[END_REF], where the author found a relationship between extroversion and the amount of time spent gazing while listening. However, the author also observed that the gaze duration was not related to extroversion when people were speaking. Since in our task, the participants were supposed to talk to the robot to explain the task, we can presume that this could be one possible cause of the non-effect of the extroversion on gaze duration. Furthermore, our assembly task induced the participants to focus their attention also on the robot's hands, while we can presume that a different task will let people gaze at the robot's face more frequently. Another element that might explain this result is the lack of a proper joint attention system implemented on the robot for this experiment, particularly for mutual gaze: once the human touched the robot's arms to start its kinesthetic demonstration, the robot was simply shifting its gaze from the human face to its own hands and was not seeking eye-contact during the teaching phase.

We found that the negative attitude towards robotics tends to be related to the time spent looking at the robot's face and the robot's hands during the interaction. A closer inspection of the results concerning the sub-scales of NARS suggests that the participants were probably Figure 2.6.: Demonstration of the assembly task: 1) the participant asks the robot to grasp the two cylinders; 2) the participant grabs the robot arms and demonstrates how to move them to align the two cylinders; 3) the participant fixes the cylinders with some tape while the robot is holding them; 4) the participant retrieves the assembled object from the robot.

Extract from the post-experimental questionnaire for evaluation of the human-humanoid collaborative task with physical interaction Questionnaire Item Subjective score (mean ± stdev)

Questions related to the physical interaction (e.g., touching the robot) I was worried to must touch the robot to assemble the objects with it.

2.13 ± 1.46 I was afraid to touch the hands of the robot.

2.36 ± 1.72 I was afraid to damage the robot.

3.57 ± 1.91 The robot does not look dangerous.

6.00 ± 1.57 The robot is not threatening.

6.02 ± 1.49

Table 2.2.: The subjective evaluation scores of the post-experimental questionnaire for evaluating the interaction with the iCub in the assembly task. Only the questions related to physical interaction are reported (the full questionnaire is in [START_REF] Ivaldi | Towards engagement models that consider individual factors in hri: On the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task[END_REF]).

The second column reports the mean and standard deviation of the scores attributed on a 7-items Likert scale (from 1=totally disagree to 7=totally agree) by the N=56 participants in this study. We highlight in bold the questions where the score is close to the maximum or the minimum score. not apprehensive facing the interaction, while they were likely mildly concerned regarding the social and emotional aspects of the interaction. We did not find any significant correlation with the verbal signal. Overall, we expected the negative attitude to have a stronger influence on the amount of verbal and non-verbal signals exchanged during the interaction. We expected that the physical contact with the robot and the close interaction would particularly highlight the effect of the negative attitude. As we found few studies dealing with attitudes towards robots and social signals, this part of our work may be considered exploratory.

The participants did not seem to be particularly worried about the physical interaction with the robot. The subjective evaluations and the feedback from the interviews encourage us to think that the interaction with the robot was pleasant and the participants were spontaneous in their behavior. The subjective evaluation scores of the post-experimental questionnaire indicate that the participants evaluated positively the experiment with the robot and the robot itself, they found the task quite interesting and easy to do, and they also had a positive impression of the robot. Interestingly, the results in Table 2.2 suggest that the participants were not afraid to touch or interact physically with the robot (e.g., not worried to touch the robot, not afraid to touch the hands), and the robot was not looking dangerous to their eyes. Considering that the experiment was their first live interaction with the robot, this score was quite surprising for us: we expected the novice/naive people to report some anxiety in front of the robot. However, when we interrogated the participants about this, most of them said that the safety demonstration reassured them about the fact that it was possible to touch the robot without problems; others said that the robot's size and child-like appearance made them suppose that it was safe to touch it as the robot "won't hurt". We asked the participants if they thought or had the impression that the robot was operated by someone else: all the participants denied this possibility.

We analyzed the physical interaction between the human and robot at the level of the forearms by looking at the normalized forces and the skin measures, for all the participants' trials.7 Figure 2.9 shows a collage of samples for the first trial of the assembly. While looking at individual plots is not always informative, looking at the whole set of recordings shows evidence of the variety of the demonstrations: in terms of duration, in terms of peaks of forces and in skin measurements. We checked whether the skin values (max, mean or median) would change across trials and we did not find any significant change; we also did not find any significant correlation between skin measures and extraversion, nor between skin measures and NARS or its sub-scales.

We computed heatmaps of the forearm skin sensors across trails, for all the participants' trials. 8 Figure 2.10 shows some examples of left and right forearm heatmaps. We found that in some cases, the contact location could be easily identified as the fingers left a clear mark on the sensors, and their location did not change during the physical interaction part of the task. However, in other cases the participants made and broke contact several times, sometimes the fingers changed their contact point over the forearm and so the overall contact was less clear. We studied the normalized contact force estimated by the whole-body dynamics module [Ivaldi et al., 2011b], across the three trials, for all the participants, in relation to individual factors. We did not find a significant difference in the maximum or median forces with respect to gender (Figure 2.11). However, the analysis of the forces across trials revealed that there is a learning effect on the median forces, which increase regardless of the gender and age of the participant.

We studied whether the contact forces were related to extraversion and NARS. We found that the median forces applied by very extrovert people were smaller than those of introverts and people with a lower extraversion score. We found that people with a higher negative attitude towards the interaction with robots (i.e., people with higher NARS NS1) applied slightly larger forces, especially in the first trial. However, looking at the effect size, we can see in Figure Finally, we analyzed the trajectories of the robot's end-effectors to evaluate their potential to be used for learning from demonstration [Calinon et al., 2007a]. Regardless of the particular technique used to learn motion primitives from demonstrations (for example dynamic systems, DMP, ProMP, etc.), it is fundamental to have a good dataset of trajectories to train the models, as the quality of the learned models strongly depends on the quality of the training dataset. Kinesthetic teaching is often used to demonstrate trajectories to industrial robotic manipulators, which have dedicated compliant interfaces that enable the human to drive the robot effortlessly. In the majority of the papers in the literature, these demonstrations are done by robotics experts and researchers, and most often the data are post-processed to eliminate "bad" demonstrations or to select those that better catch the movement, with a focus or not on the variability of the observed movements if required. Moving the iCub arms was not difficult and did not require effort: however, since the participants were naive, their knowledge of the robot's kinematics was probably too vague to imagine how to move the arms to realize the assembly task. We hypothesized that the smoothness of the demonstrated movement would improve after the first trial. The movement smoothness is a quality related to the continuity or non-intermittency of a movement, independent of its amplitude and duration [START_REF] Balasubramanian | On the analysis of movement smoothness[END_REF]. There are several different measures to estimate smoothness, but for this study, we used the log dimensionless 

LDJ = -ln - (t 2 -t 1 ) 5 v 2 peak t 2 t 1 d 2 v(t) dt 2 2 dt (2.2)
where v(t) is the movement velocity, t 1 ,t 2 are the start and end time of the movement, and v peak is the peak or maximum velocity in [t 1 ,t 2 ]. Smoothness values with this indicator are negative.

The closer to zero they get, the smoother the movement is. As shown in Figure 2.13, our hypothesis was confirmed: the smoothness of the demonstrated trajectories gradually improves over the three trials. In our experimental study, we only had three trials, because in the pilot study we found that participants were disengaging from the robot task with more repetitions; however, the plot suggests that with more attentive demonstrations they could have improved even more. However, a deeper inspection of the demonstrated trajectories found that there can be strong differences between the demonstrations of a naive user and those of an expert user, to the point that most of the naive demonstrations cannot be used for learning primitives from demonstrations. Sometimes trajectories are very irregular, and jerky, the gesture is repeated back and forth, and so on: all these problems highlight the fact that naive demonstrations cannot be trusted and a post-processing inspection is needed.

Overall, the assembly study brought new significant results in the understanding of the physical and social dynamics of physical interaction between a human and a humanoid robot. The study has of course several limitations. The first limitation is of course the use of a single robot, iCub, which has a peculiar child-like appearance. We do not know if the same results would be found with humans interacting with a different robot, for example, bigger and more powerful such as the Talos. Second, the results are specific to the assembly task that we designed, and we cannot generalize them to other tasks involving more or less physical interaction. Finally, participants were naive, i.e., not robotics experts or "robot users". Our findings could change if we considered people with different levels of exposure to robotics and technology and expertise with iCub or other robots.

Despite the limitations, the study in [START_REF] Ivaldi | Towards engagement models that consider individual factors in hri: On the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task[END_REF] was the first case of an experiment References Controller Intention (q, ν) ( q, ν), ν, f human state est. for the human-aware controller that commands the robot torques. Thanks to the wearable sensors, we can estimate the human state and dynamical quantities and provide them as feedback to the controller. A human Intention predictor may be used to detect the human intention given the estimated human dynamics.

where the iCub was physically interacting with a large group of naive users. It enabled us to gain precious insights about the physical interaction, such as verifying that the contact forces involved in the collaborative task at the level of the arms were not causing saturation at the arms' force/torque sensors, or that we should expect a large variability in the value of contact forces during repetitions and across participants, and that the trajectories that were physically demonstrated to the robot had to be post-processed in case we would want to use them for learning gestures from demonstrations. This kind of knowledge enable us to advance in the CoDyCo project and lead to the use of interaction forces to assist the iCub in standing up from a chair, which was one of the main results of the consortium [START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF]. The controller used for this experiment is presented in the next Section.

Towards "human-aware" pHRI: the CoDyCo controller

The robot needs to have an estimate of the interaction forces that are necessary to assist the human. For example, when a nurse lifts a patient from a chair, he/she generates a combination of pulling forces and motions that takes into account the dynamics of the patient; while there are recommendations for doing this particular assistive gesture, the nurse has a prediction of how the patient will respond to his/her action and uses this prediction to provide the correct assistance while controlling the interaction at the same time in a reactive way, to quickly adapt his/her action.

The same mechanism should be implemented in a robot that physically interacts with humans to assist: the robot should have a real-time reactive controller that deals with interaction forces at a low level and a fast frequency (e.g., 1kHz) and at the same time have mid-level and highlevel controllers that generate desired trajectories and commands at a lower frequency (e.g., 1-10Hz and 0.1-1Hz) that consider the predicted intention of movement of the human. All these controllers should have access to the human state and to the intention prediction while using the different information in different ways. The general idea for this controller is depicted in Figure 2.14. In [START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF] we proposed a low-level robot controller that is "human-aware", in the sense that has access to and considers the human state and dynamics. It was designed for the humanoid robot iCub, which is unable to provide significant assistance forces to a human, because of its mechanical constraints: therefore, instead of using it to assist a human partner, we used it in a mirror experiment to assist the robot to stand up from a chair, as shown in Figure 2.15. Considering the task, we proposed a momentum-based balancing controller that exploits the interaction forces created by the human at the contacts. Concerning the scheme in Figure 2.14, it had access to the real-time estimation of the human state and dynamics, leveraging the motion tracking measurements from the Xsens MVN suit [Roetenberg et al., 2009, Xsens], and was receiving as input the desired center of mass trajectory and joint trajectories that were optimized for the robot starting from a human demonstration, as we also did in [START_REF] Modugno | Safe trajectory optimization for whole-body motion of humanoids[END_REF]. For more detail on these methods, we refer the reader to [START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF], while some initial results on the dashed module "Intention Prediction" (not yet used in the experiments at the time of the experiments of [START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF]) are reported in Section 4.2.

The first step for the "human-aware" controller is to model both the robot and the human with the same mathematical formalism. We adopt a rigid-body model formulation that is classically used to describe Digital Human Models (DHM) [START_REF] Maurice | Virtual ergonomics for the design of collaborative robots[END_REF]. This kind of model is of course very simple and especially in terms of actuation, it is "far" from the real human, whose motion is controlled by muscles. Musculoskeletal models to simulate and study human movement do exist (e.g., OpenSim [START_REF] Delp | Opensim: open-source software to create and analyze dynamic simulations of movement[END_REF], AnyBody [START_REF] Lund | On validation of multibody musculoskeletal models[END_REF]) but they are computationally expensive and not suited to be used in a fast control loop. For this reason, modeling the human as a "humanoid" with suitable kinematics and dynamics parameters is a better choice.

We consider the following notation. The state of an n (internal) degrees of freedom (DoF) free-floating dynamical system (humanoid robot or digital human model -they are both freefloating dynamical systems in our problem formulation) is composed of its configuration q ∈ SE(3) × R n and its velocity ν ∈ R 6+n . The matrix M and vector h are the mass matrix and nonlinear bias vector respectively, while actuation is provided by the internal torques τ. Note that, while the formalism remains the same, the quantities and degrees of freedom of the two systems (robot and human) are in general different, i.e. all quantities related to the human are denoted with the (•) symbol. The Jacobians J ∈ R 6k e ×n+6 and J I ∈ R 6k×n+6 , similarly, group all the Jacobians corresponding to the k e contact force-torques with the environment, f e ∈ R 6k e , and the k interaction force-torques, f ∈ R 6k .

The application of the Euler-Poincaré formalism [START_REF] Marsden | Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems[END_REF] to the interacting agents, leads to a set of four equations:

rClM(q) ν + h(q, ν) -J ⊤ (q) f e -J ⊤ I (q) f = 0 τ (2.3) M(q) ν + h(q, ν) -J ⊤ (q) f e -J ⊤ I (q) f = 0 τ (2.4) C e (q, q, ν, ν, ν, ν) = 0 (2.5) C (q, q, ν, ν, ν, ν) = 0. (2.6)
which describe:

• the dynamics of the robot -Equation 2.3;

• the dynamics of the human -Equation 2.4;

• the contacts between agents and environment -Equation 2.5;

• the contacts between human and robot -Equation 2.6.

It is worth noting that the interaction force-torques f are the same in both agents described by Equation 2.3, and all contacts are assumed as rigid: Equations 2.5 and 2.6 represent a set of equations that define the contact constraints of the problem.

For the formulation of the whole-body controller, we adopted a constrained multi-task quadratic programming approach based on [START_REF] Nava | Stability analysis and design of momentum-based controllers for humanoid robots[END_REF], with two stages of optimization. The first stage aims at controlling the robot's momentum by finding the optimal value for the contact forces at the feet f * . The second stage aims at tracking the desired robot trajectories, and is often named the "postural task".

The essence of the whole-body controller is as follows. The first stage is responsible of controlling the robot momentum that, when expressed at the center of mass and with the inertial frame orientation, is defined by

H := m ẋ⊤ c H ⊤ ω ⊤
, with m the total mass of the robot, x c ∈ R 3 the position of the robot center of mass, and H ω the angular momentum of the multi-body system. The dynamics of the momentum is linearly related to all the external forces and torques acting on the system, i.e.

rCl Ḣ = mg + k ∑ i=0 c X i f i = mg + X f , (2.7)
where mg is the force due to gravity, c X i ∈ R 6×6 is a proper frame transformation matrix and f i is the i-th external force-torque. All the force-torques and transformation matrices can be compactly written with f ∈ R 6k and X ∈ R 6×6k respectively. Ideally, we can consider these force-torques as virtual control inputs and one can choose f so that Ḣ = Ḣ * , where Ḣ * ensures that x c → x d c and H ω → 0. Additional constraints are usually enforced on the variable f , so that the problem is generally formulated as a QP optimisation problem. Once f * , the optimal value for f is determined, the second stage consists in computing the joint torque required to reach the desired value for the contact force-torques at the feet. This computation is achieved by solving a constrained QP, with f * and torques τ related by Equations 2.3 and 2.5. The secondary postural task is used to track the desired configuration: in the case of standing up from a chair, it is the one corresponding to a standing posture, and implemented as an impedance controller in joint space, i.e. such that τ * posture = K p,posture (q d jq j ) -K d,posture q j , (2.8) with q j the joint coordinates. The postural task is usually attained with a lower priority for the realization of the desired contact force-torque f * . More details and properties of this kind of controller can be found in [START_REF] Nava | Stability analysis and design of momentum-based controllers for humanoid robots[END_REF]. Now, before considering the effect of human assistance on lifting the robot, we must analyze what is the effect of external forces, other than those at the feet, applied on the robot. Additional, unpredictable forces, i.e. the one applied by the human to the robot, act on the robotic system. Consider Equation 2.7 and add the additional human force-torque f hum , expressed in the same frame of the momentum:

rCl Ḣ = mg + X f + f hum .
(2.9)

Given a measure of f hum , one possibility is to completely cancel out this term by using the controllable force-torques f . The macroscopic effect of this cancellation is that if a user would like to help the robot stand up, the robot motion would be invariant to the help provided by the user since the effects of the external force-torques are canceled out. An alternative approach is to cancel out only a part of the human force-torque while keeping the component that may help the robot stand. Recall that Ḣ * , i.e. Ḣ * = Ḣd -K d H -K p t 0 H ds with H := H -H d , renders the energy-based Lyapunov function

RCLV = 1 2 H 2 + K p 2 t 0 H ds 2
(2.10) negative semi-definite, i.e. V = -k d H 2 . This equation stresses the fact that eventual help from a user to lift the robot up is useless: the rate of change of V does not depend upon the external force-torques, so the standing-up motion is invariant to the user interactions. The modification proposed here is based on a decomposition of the external force-torque f hum that highlights the component of this external force-torque that helps decrease the function V . More precisely, one can decompose the external supportive force-torque as follows:

RCL f hum = α H∥ + β H⊥ (2.11) H∥ = H ∥ H∥ , (2.12) α = H⊤ f hum ∥ H∥ .
(2.13)

Note that the scalars α and β are the components of the external force-torque f hum along and perpendicular to the momentum error H. Now, one can re-define Ḣ * as follows

Ḣ * = Ḣd -K d H -K p t 0 H ds if α > 0 Ḣd -K d H -K p t 0 H ds + α H∥ if α ≤ 0 (2.14)
and choose the control input f such that Ḣ( f ) = Ḣ * . By computing the time derivative of (2.10) along the system evolution (2.9)-(2.11), one easily verifies that:

V = -K d H 2 + 0 if α > 0 α H if α ≤ 0.
(2.15)

The fact that the external supportive force-torques help the robot stand up is encompassed in the right-hand side of the above equation: a negative α, i.e. the external force-torques are in the direction of motion, makes the Lyapunov function decrease faster. Hence, (2.14) can be used to compute the f * needed to help the robot during standing up motions. The only input necessary for the controller is the desired center of mass trajectory and joint references for the postural task. In [START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF] we planned these trajectories via offline optimization, bootstrapped by human demonstrations of stand-up motions suitably scaled for the iCub size.

We validated all the elements both in the Gazebo simulator and on the real iCub humanoid robot.

In the experimental scenario, a human participant stands in front of the robot agent to help it stand up from being seated on a bench. Figure 2.15 shows some snapshots of the different phases of the experiment. Only the main 23 degrees of freedom of iCub are torque controlled, the remainder of the 53 being position controlled. The momentum-based balancing controller is implemented in Simulink ® by using the WB-Toolbox [START_REF] Romano | A whole-body software abstraction layer for control design of free-floating mechanical systems[END_REF]. References to the controller are coordinated by an internal state machine, whose states trigger depending on external signals, such as changes in the contact force-torque. We first tested the proposed controller and references by using the Gazebo simulator [START_REF] Koenig | Design and use paradigms for gazebo, an open-source multi-robot simulator[END_REF] together with the YARP-based plugins to connect the iCub simulated model to the controller. Interaction with the human partner is simulated by using the Geomagic touch haptic device, which has been integrated with the YARP middleware. The frame corresponding to the tip of the Geomagic is virtually attached to the end-effectors of the simulated iCub, to simulate the human grasping the robot arms at this location. When the human clicks and holds the button of the Geomagic and moves the device at the same time, the new position of the tip is used to compute the interaction force to apply to the robot, following a linear spring model whose constant value is determined by the max force that can be applied (chosen by the user, e.g. 30N). No force feedback is provided to the user. The reference frame is chosen with the origin on the left foot while the robot is standing; the z axis points against gravity, the x axis points forward, and the y axis completes the right-handed base. Figure 2.16 shows the results of the stand-up experiment with and without human assistance. An initial interaction force ≥ 10N in the x-direction is used to trigger the stand-up movement, whereas the proper assistive force is in the z-direction. Even if the applied forces are not very big, it is possible to notice the effect of the assistive force on the CoM vertical position.

Then we proceeded to the real tests with the robot helped by human participants. The experiments were performed by the CoDyCo team at the Italian Institute of Technology. The human participant was equipped with the Xsens MVN suit while standing on the two force plates by positioning each foot on a platform. This configuration of sensors enables us to measure the ground reaction force-torque and therefore estimate the entire human dynamics. We performed 10 trials where the robot stands without human assistance. We then repeated the experiments in the presence of the human. In this second scenario, we asked 6 subjects of different heights, gender and experience in interacting with robots to perform each 7 different trials trying to help the robot stand up, and 7 trials trying to hamper the robot's action, as a test for the robustness of the controller.

To understand if the human provides help during the stand-up, we used, as a basis for comparison, the norm of the robot torques that can be assimilated to the electric power used by the robot motors, i.e. P e ∝ ∥τ∥. Indeed, as the iCub robot is equipped with electric motors, motor torques are proportional to motor currents and, as they are driven by constant voltage, also to electric power. Fig. 2.17 shows the robot torque norm average, together with the 95% confidence region, in both scenarios. Notice that the robot needs to provide less torque when helped by the human, which means the controller is not only working but enabling the human to assist the robot.

There are two main research avenues after this work.

The first research direction is to include the prediction of intention both at the level of the whole-body controller and at a mid-level, where desired reference trajectories for CoM and joints are designed. This would correspond to working on the connecting lines and dashed block of Figure 2.14. As mentioned before, we developed in parallel the methods for predicting the intention based on ProMPs, described in Section 4.2. We developed only later the integration between the prediction and the QP controller: first, we developed a new QP controller, and then we integrated the prediction of the human intention in it, demonstrating the use of prediction for a particular case of human-robot collaboration which is tele-operation. It may seem counterintuitive since it is a human-robot interaction that does not have a physical interaction part, but it makes sense as it enables to better study the use of motion prediction in a collaborative setting without the complexity of the force component. This work is presented in Section 6.1.

The second research direction is to control human-related quantities via the robot's actuation. For instance, assume that the above task for keeping the robot balance leaves some free robot control actuation. Then, several questions arise: Can we use the robot input redundancy to control the human body? How can we make sure that the human will actually be "influenced" by the robot's action since the human is by definition a non-controllable system?

In the next section, we present another piece of work in this direction. We discuss a "humanaware" controller that, with the same line of reasoning as the one just presented, considers both the human and the robot as coupled dynamical systems, but computes "controls" for both systems. The interest in this kind of formulation will be explained in the next section.

2.1.3. Assistive "human-aware" pHRI: the multi-robot QP control in AnDy

In [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF] we proposed a humanoid robot controller for physical human-robot interaction (pHRI) tasks that can produce optimal motions in real-time, considering both the robot's balance and human assistance goals. We achieved this using a multi-robot quadratic program controller, which maintains an internal representation of the human's whole-body dynamics along with those of the robot and any other manipulated objects.

Intuitively, this corresponds to how humans adjust their motions based on the anticipated effects of interactions with other objects on their own dynamics. For example, we lean back and pull harder when trying to help an adult stand up, than when helping a small child, and we reason in terms of the balance of the coupled bodies when we pull. By incorporating a wholebody dynamics model of the human in our controller, we take the first step towards proactive human-humanoid interaction, as opposed to reactive interaction and exclusive control of the robot based on recent force contact data.

Our approach makes use of the multi-robot QP (MRQP) controller introduced by Vaillant et al for animated characters [START_REF] Vaillant | Multi-character physical and behavioral interactions controller[END_REF], and applied to real robots in [START_REF] Bouyarmane | Multi-robot and task-space force control with quadratic programming[END_REF]. The MRQP extends QP-based humanoid controllers to consider the combined dynamics of multiple robots -in this case a robot and a digital human model based on a rigid body model.

We used an MRQP controller to explicitly model the whole-body dynamics of both the human and the robot. This allows for real-time control of a humanoid robot physically coupled with a simulated human (i.e., a digital human model), generating motions that simultaneously keep the robot balanced and may assist the human.

In the following, we will use the notation used in [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF] to describe humanoid robot controllers. We define q the joints positions including its 6D free-floating base, q the generalized acceleration, τ are the actuation joint torques, and λ the coefficients of contact forces basis vectors along linearized friction cones.

We first introduce the QP controller, which is the low-level controller of the robot used to compute the command to its motors. It is often at the bottom of a planning hierarchy, whose top layers produce higher-level plans using simplified models of the robot [START_REF] Feng | Online Hierarchical Optimization for Humanoid Control[END_REF].

A weighted multi-task QP controller for humanoid robots consists in solving, at each control time-step, the following optimization problem: The decision variables of this problem are the generalized acceleration q9 . By using a linear approximation of the friction cones at the contact points, and writing the joint limits and collision-avoidance constraints to be linear in the decision variables, the optimization problem above is a QP [START_REF] Bouyarmane | Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations[END_REF], that can be solved inside online control loops at frequencies above 100Hz. y k here denotes the tasks, i.e., quadratic objectives that encode desired motion, while w k is the weight/soft priority of the task. A thorough explanation of the mean of these weights and methods to tune them will be explained in Chapter 3. The tasks can be mapped from the configuration space to any kind of 'operational space' with Jacobians, as shown in [START_REF] De Lasa | Feature-based locomotion controllers[END_REF]. One possible mapping is with PD regulation towards a set point:

min q,τ,λ ∑ k w k || ÿk -ÿd k || 2 ,
ÿdes k = k p (y re f k -y k ) -k v ẏk (2.17) qdes = J -1 k ( ÿdes k -Jk q) (2.18)
In [START_REF] Bouyarmane | Multi-robot and task-space force control with quadratic programming[END_REF], the QP control framework is extended to control systems of multiple "robots" interacting among each other or with a dynamic environment, resulting in the so-called MRQP framework. Let n be the number of such entities. In a collaborative robot-robot co-manipulation scenario, n = 3 (two robots and the manipulated object). The MRQP framework is based on the assumption that each entity i (i = 1 . . . n) can be modeled with the general dynamics equation of motion, that applies both to humanoid robots, digital human models (that are basically humanoid robots) as well as floating objects (e.g. boxes) or articulated passive environments objects (e.g. doors).

The n entities physically interact with each other by exchanging contact forces, which come in action-reaction pairs according to Newton's second law. Each contact force f i,p on entity i is either applied by the fixed inertial environment, or by one of the other entities j and appears with an opposite sign in that entity's equation as f i,p =f j,p ′ .

By rearranging the forces, we can keep exactly one representative of each action-reaction pair ( f i,p , f j,p ′ ) as decision variables of the MRQP, showing that there exists a permutation matrix Ψ such that we can combine all of the equations of motion of the n entities in one single equation:

M(q) q + N(q, q) = J ⊤ 0 F 0 + (J --Ψ ⊤ J + ) ⊤ F -+ Sτ , (2.19)
where q, τ, N denote the stacked vectors of generalized configurations, actuation torques, and nonlinear effects respectively, M and S are the stacked block-diagonal matrices of M i and S i respectively, F 0 is the stacked vector of fixed inertial environment contact forces with corresponding stacked block-diagonal Jacobian matrix J 0 , F -the stacked vector of single representatives of forces between entities, J -and J + are Jacobian matrices corresponding to the contact points between the different entities of the multi-robot system. We can also derive no-slip contact constraints between the different entities and with the environment as (J --ΨJ + ) q = 0 and J 0 q = 0. More detail about the derivation of the aforementioned components is reported in [START_REF] Bouyarmane | Multi-robot and task-space force control with quadratic programming[END_REF].

Once the combined dynamics are formed, the formulation of the control problem is equivalent to a single-robot QP controller with an "augmented" robotic system, with the addition of the constraints for contacts and collision avoidance between the entities. Denoting λ 0 and λ -as the coefficients along the linearized friction cone generators of F 0 and F -respectively, we can write it as:

min q,τ,λ 0 ,λ -∑ k w k || ÿk -ÿd k || 2 , s.t. M q + N = J T 0 F 0 + (J --Ψ T J + ) T F -+ Sτ J 0 q + J0 q = 0 (J --Ψ T J + ) q + ( J--Ψ T J+ ) q = 0 λ = (λ 0 , λ -) ≥ 0 q min ≤ q ≤ q max qmin ≤ q ≤ qmax τ min ≤ τ ≤ τ max (2.20)
This optimization problem thus computes the control commands to be sent to the different robots. This means that the human model is also controlled, which is a strong limitation for this formulation since the real human is not controllable: however, it is a reasonable assumption for testing the human-aware controller in simulation. Differently from a single QP, the tasks can be written for the combined system (e.g. combined center-of-mass) or imply desired behavior of the whole system through a task on a single robot (e.g. task on the position of the co-manipulated object that drives all the robots in contact with the object).

Concerning the human model, it is possible, for example, to use the tasks to track demonstrations of movements captured by motion tracking sensors, such as in [START_REF] Otani | Adaptive whole-body manipulation in human-to-humanoid multicontact motion retargeting[END_REF] with the Xsens MVN suit. This is what was done in [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF] to replicate human demonstrations of co-manipulations recorded between two human partners.

Indeed, the simulated human tracks the real human's motions, which the robot then uses as a virtual approximation of the real human to reason about the human-robot system's combined dynamics.

The Xsens motion capture data is mapped onto our simulated human model, which is a 22joint rigid body tree model, described in a URDF format. The limb lengths and masses are parametrized as a function of the subject's height and weight, based on average anthropomet-ric coefficients [START_REF] Chaffin | Occupational biomechanics[END_REF], with further customization possible to match a subject's specific measurements.

To accurately reconstruct human motion with our MRQP, we build on the ideas from [START_REF] Di Fava | Multi-contact motion retargeting from human to humanoid robot[END_REF] and set high-weight motion tracking objectives on the human "robot", which take motion capture data as time-varying setpoints.

We use a posture task (objective on desired generalized configuration q des ) to track the joint angles of the human's motion. On top of that, we set human motion tracking tasks on end effector pose (position and orientation tasks), since this is the most important feature of human motion for applications involving physical interaction (these are the links most often in contact with the human and external environment). These two tasks combine to produce an approximation of the motion capture data on our simulated human model.

To integrate the human motion reconstruction into an MRQP, we investigated two methods (illustrated in Figure 2.18):

• Single MRQP: the human motion reconstruction is done directly in the multi-robot QP, ensuring that the simulated human closely tracks the real human's motion by setting human motion tracking task weights to be significantly higher than the robot's task weights.

• Cascaded QP-MRQP: First a single-robot QP ensures human motion tracking with the simulated human (QP1), and then a multi-robot QP is used for calculating the robot's motion given the simulated human's dynamics (QP2). The solution for the human motion qhuman from QP1 is set as an equality constraint on the human model's motion in QP2.

Interaction forces on the human model in QP2 λ human are used to constrain virtual forces on the human model's end effectors in QP1.

The first method (Single MRQP) has the advantage that it is simpler to implement and is less computationally expensive (it only solves one QP). The disadvantage of this method is that it requires tuning of the weights to trade off between rigidly tracking human motion (so the controller has an accurate estimate of the real human's motion) and achieving the robot's tasks. We refer to Chapter 3 for methods to automatically tune these weights. In [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF] we did not have yet the automatic tuning of these parameters, so we manually tuned them. In practice, we found that this method could reconstruct human motion with reasonable accuracy but often errors were too large, as shown in Figure 2.20.

The second method (Cascaded QP-MRQP) decouples the human model's motion from the optimization for the robot's motion, which allows stricter tracking of the motion capture data by the simulated human. However, in the experiments of [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF] we found that it was less stable and more sensitive to the weight and gains tuning. We often saw the QP fail because of violated constraints, especially for fast movements. Based on our investigations, we believe this is because accumulated numerical errors lead to drift between the simulated human's states q human in QP1 and QP2, which means that large qhuman commands cause discrepancies in end effector motions large enough for other QP2 constraints (friction cone, no-slip contact) to be violated. In this context, the Single MRQP can be interpreted as a way to allow some "slack" in the human motion tracking to make the QP solvable. But more experiments are necessary to confirm and there is a non-negligible possibility that by optimizing weights and gains in a safe way as described in Chapter 3 we could improve the results. [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF]. In both methods, the motion capture data is mapped onto our parametrized 22-joint human model, which is then used to compute the robot's controls.

For the reasons above, we report the simulation results for the Single MRQP case applied to a collaborative pick & place task of a large object.

The quadratic objectives in the MRQP controller define the metrics that the robot seeks to minimize in its motions. The tasks that we use in our approach can be separated into two categories: individual objectives for the robot, and interaction objectives that define the robot's behavior as a function of the human's motion.

For the robot's individual tasks, we set objectives that keep the robot balanced and in a natural posture away from singularities.

Balance is encoded in a center-of-mass (CoM) task, which encourages the robot to keep its CoM above the center of its support polygon, and a CoM bound constraint, which limits pdes CoM to ensure that the ground projection of the robot's CoM does not go outside its support polygon. The CoM bounds are defined in hyperplane representation {p CoM | Ap CoM ≥ b}, and implemented as a damping behavior that slows down the CoM as it nears the boundaries of the convex hull:

ḋ

+ d∆t ≥ -ξ d -d s d i -d s (2.21)
with d as the distance between p CoM and the nearest hyperplane, d i the interaction distance at which damping turns on, d s the security distance (minimum distance by which to stay inside the convex hull), ξ the damping coefficient. We include a posture (full configuration space) task on the robot, whose reference is set to a resting posture q 0 with a low weight. This task ensures that the optimization is well-conditioned. In practice, it also acts as a prior on reasonable motions and helps generate more natural-looking movements.

The tasks described above encourage the robot to be individually balanced. We then add objectives that define the desired interaction between the robot and the human. These objectives define the robot's motion as an implicit function of the human's motion, which is solved by the MRQP at each timestep.

The first interaction task is a regularization/minimization objective on the robot's contact forces with other entities (λ -in Equation 2.20), to avoid unrealistic behaviors in which the humanoid leans on/pushes other entities excessively.

For the experiments in this paper, we assumed that the human and the robot are performing a symmetric motion in which they face each other and perform mirrored versions of each other's motions. To achieve this, we set the desired pose of the robot's end effector to be a mirrored version of the human's end effector pose.

To derive the mirrored pose, we perform mirroring operations on the transform (where T = {x, y, z, q w , q x , q y , q z }) from the human's reference frame to their end effector T H hand H ref , which is then projected from the robot's reference frame to T R hand R ref .

The reference frames in world frame

{T H ref W , T R ref W
} are chosen to be at the midpoints between each robot's feet at initialization, with x, y, z axes pointing in the forward, left, and up directions respectively. We defined a "mirroring" operation T mirrored = Mirror(T H ) on position and orientation:

q H = {w, x, y, z} → q mirrored = {z, y, x, w} x mirrored = x H z mirrored = z H y mirrored = y H if no contact y R 0 + (y H 0 -y H ) if contact (2.22)
where y 0 are the coordinates of the end effectors when the contact is initially established. The mirroring rule for the y direction amounts to "mirror when there's no contact, move together in the longitudinal direction when there is contact". The desired robot end effector position is calculated with:

(T R hand W ) des = Mirror(T H hand H ref ) • T R ref W (2.23)
Some other interaction tasks that can be used are: collision avoidance between robots, minimizing the distance/orientation errors between human and robot end-effectors (e.g. for a handoff), and simulating human joint torque -inducing the robot to carry more load.

To demonstrate the effectiveness of our pHRI framework, we performed several experiments in dynamics simulation with an HRP-4 humanoid robot in the mc rtc software.

The first experiment is a collaborative pick-and-place experiment, in which the human and robot work together to move a pole from one side of their bodies to the other. The task was first recorded by two humans, one being equipped with the Xsens MVN suit for motion recording: shows some screen-shots of the simulation. This task shows a simple application of the mirroring heuristic for generating robot follower motion. The pole is modeled as a floating-base unarticulated robot whose dynamics are incorporated into the combined dynamical system when contact is established. Figure 2.20 shows the tracking error for two tasks, for the two candidate controllers.

The second experiment shows the advantage of reasoning in terms of the coupled dynamics for balancing and providing physical assistance. The human leans their CoM (note: the CoM of the couple, not his/her own one alone) outside of their own support polygon while holding onto a pole together with the robot. In the initial recording of the human-human motion, this required the partner (whom the robot replaces) to pull back on the pole, keeping the human in balance.

The simulation results (depicted in Figures 2.21) show that our controller calculates the effect that the human's leaning will have on the combined system, and generates a motion in which the robot leans back and braces itself to pull on the barbell/human. This assistive behavior emerges This experiment shows the advantage gained from modeling the whole-body dynamics of the human and generating control commands for both systems. Other approaches that use a less complete representation of the human would have a hard time cleanly formulating the robot's assistive behavior in this situation.

We refer to [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF] for more details about the tasks and weights.

Our experiments were done in simulation, using the pre-recorded motion of a human during a human-human collaborative task. Thus, our experiments show how a robot running our controller would react to a predetermined human motion. This means that motions that actively affect human's motion (pushing/pulling CoM, encouraging human to lower arms, etc.) were excluded from these experiments. The experiments shown here demonstrate our controller's ability to generate motions/forces that are similar to what the human partner executed during the initial recording of the human-human motion. We also assume that the robot knows the goals of the task a priori, e.g. symmetric motion with the human.

With our current approach we make a priori assumptions about the type of motion the human will want to make. Integration of intent prediction algorithms into our framework would allow the robot to be more flexible; it won't have to make strong assumptions on the type of motion to be performed. Instead, the robot can be trained to perform a diverse set of collaborative motions, and infer the human's intended motion online. Thereafter, the robot will be able to actively help the human achieve the task with motion-specific interaction objectives as briefly described in the previous section. Some hints about including prediction of future intended motions will be discussed in Chapter 4.

To apply our framework in real pHRI scenarios, the robot's low-level motor control must allow some compliance so that the human can influence the robot's motion, and account for small errors in the MRQP's human motion reconstruction (shown in Figure 2.20).

Furthermore, there is an underlying assumption that the human would be influenced by the robot's motions in the same way as it is computed by the MRQP in our simulation environment. But the human is not entirely controllable, and the way he/she could react to the robot's motions could change from time to time, even if the robot's behavior would be always consistent. This means the problem is not yet solved, and further research in the human-aware controller is needed.

Discussion

Human aware control: at which level? At all levels! The central element of a good collaborative robot is the robot controller. The word "controller" is often used to refer to the reactive, low-level controller of the robot, which is the module sending actuation commands to the joints (position, velocities, torques or currents). However, we should rather refer to the "global" robot decision & control system that is responsible for planning the activities at high level, and breaking them into plans or trajectories that are executed at a lower level.

In this chapter, we presented only low-level controllers, concluding with a possible formulation for a low-level "human-aware" controller. But, a collaborative robot needs a "global" human aware controller: the "human aware" component should intervene both at a high level (e.g., planning common actions, defining objectives that take into account human motivations) and at a low level (e.g., generating control actions that are safe for the human).

For our future work, we will strive to formalize the global human aware controller, finding a way to compound the high and the low-level control.

At a low level, the idea is to build on the multi-robot QP control formulation, to overcome one of the main limitations which is the full knowledge of the human status. The objective here is to have a continuous control process that generates controls that are safe for human interaction. Possibly, to integrate some Model Predictive Control to have a preview of the future finite horizon -in the same way it is used, classically, for generating robust trajectories for the robot's center of mass.

At a medium level, the idea is to look at human-aware motion planners, that could simply feed desired trajectories to the QP control [START_REF] Sisbot | A human-aware manipulation planner[END_REF]. The objective here is to generate trajectories considering the human kinematics and the shared workspace and optimize for relevant features for interaction, such as legibility.

At a high level, the idea is to formalize the problem of taking human-aware decisions: a possible way is to formalize the problem as a two-agent POMDP problem [START_REF] Nikolaidis | Planning with verbal communication for human-robot collaboration[END_REF]. At this level, probably the problem will have a discrete formulation, differently from the previous steps that are continuous. Including the human in this process means taking into account his/her intentions, motivations, expectations, and the amount of information that is shared between the human and the robot. We discussed about these plans in [Vianello et al., 2021b].

The knowledge of the human "state" is required by both the high and the low-level control to build human-aware control plans: Figure 2.22 from [Vianello et al., 2021b] shows the interconnection between the key building blocks for human-humanoid collaboration, which enable a robot to make complex decisions and take actions to cooperate with a human, considering the [Vianello et al., 2021b]).

information about the human status and goals.

Simulating humans: a reality gap problem The work in Section 2.1.3 proposes a method to control the robot's motion while considering the human kinematics and dynamics and the constraints related to the two partners interacting. We experimentally proved that the method is appropriate to generate reactive controls that satisfy a certain set of constraints of the simulated human, which was considered basically as a second robot.

The proposed method, in my view, is appropriate to test collaborative robot controllers in simulation. Indeed, when we design a collaborative robot controller, it is not advisable to deploy it immediately on the real robot and test it in direct interaction with a human. It is better, in my view, to simulate the human and test the robot controller interacting with the simulated human. One could argue that a simulated human is far from the real one: it is true, but this is yet another reality gap. The reality gap is there also for the simulated robot, the physics environment and so on. On the other hand, simulating human behavior can be made more realistic by using more complex human models (e.g., a rigid-body dynamics model with more DOF, with anthropomorphic dimensions, and so on, up to the complex musculoskeletal model) and retargeting human movements acquired via motion capture. The latter will be discussed more in Chapter 5.

Our experience with musculoskeletal models via the Anybody software (used in the AnDy project) is that it is possible to simulate quite precisely human movements and efforts at a very low level, but these simulations many minutes (up to hours for complex movements) and are therefore not suitable in an online loop for control. It is possible to use these simulations to train reduced models in a compressed latent space, and re-use this in an online control loop, as proposed in [START_REF] Marin | Optimizing contextual ergonomics models in human-robot interaction[END_REF].

In any case, how precise and bio-mechanically accurate the human model should be for a col-laborative robot is an open question and in our view depends on what we are simulating and what for. For example, if we want to simulate the effect of an exoskeleton on the human trunk, and compute the effect of the assistance on the wrench at some point in the back, probably we need a good musculo-skeletal model, with a good model of the contact between the exoskeleton and the body (rigid model, or soft model? the debate continues). If we want to simulate a collaborative transportation task between a humanoid and a human, simulating the effect on the kinematics of the human (i.e., his posture), probably a simplified rigid body model can be sufficient. In any case, there will be a reality gap problem. In some cases, we could address it by using domain randomization as we did in [Charbonneau et al., 2018a] for generating parametrized controllers that are robust to changes in the dynamical models of the robot.

Assisting the human: an ergonomics perspective The next step for the controller of Section 2.1.3 is to generate assistive controls that optimize for human-related quantities, for example human ergonomics. The idea comes from a discussion with ergonomics experts in the context of the European Project AnDy. We want to address the question: "how should a robot behave during a collaborative task in order to maximize human ergonomy?".

As an example, let us consider the case of a human collaborating with a robot (mobile manipulator or humanoid), for example for moving a large object, e.g., a long bar. We would like to position the object in a comfortable location for the human: if the object is too high, then the human is forced to lift the elbows, his arms will be in an uncomfortable position, he/she will experience pain in the shoulder.

The main ergonomics criteria consider postures and forces, i.e., a movement is ergonomically acceptable if some conditions regarding the human posture, its kinematics and dynamics are verified. Some of these criteria were deeply investigated during the European project AnDy [Ivaldi et al., 2017a]. Each criterion can be formalized as an objective to minimize, or a constraint to avoid, for example:

• Objectives to minimize (considering our task):

- Including these objectives and constraints in a multi-robot QP formulation is relatively easy because the ergonomics objectives could be part of the cost function and ergonomics constraints could be part of the set of system constraints. This is of course a simplification of the problem.

However, it enables us to formalize the ergonomics control problem as a constrained optimization problem.

Remarkably, encoding too many objectives in the cost function of a multi-robot QP controller is not a viable solution, because it leads to poorly optimized trajectories because of conflicting objectives. For this reason, it seems appropriate to leverage constrained stochastic optimization techniques outside the QP control loop, in a reinforcement learning approach based on roll-outs as we did in [START_REF] Modugno | Safe trajectory optimization for whole-body motion of humanoids[END_REF], as shown in Figure 2.23. We will discuss this offline optimization method in Chapter 3. Integrating social signals in the QP controller Physical collaboration is not exclusively a matter of exchanging wrenches: when people collaborate, they continuously exchange social cues and high-level signals to communicate their intent. In the assembly experiments [START_REF] Ivaldi | Towards engagement models that consider individual factors in hri: On the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task[END_REF] described in Section 2.1.1 we could observe people using referential gaze to indicate the next actions; different postures (far or close to the robot) that could indicate stress in interacting with the robot; variability in the spoken language toward the robot. The robot controller was very primitive and did not use at all these signals. However, several HRI studies revealed the importance of social signals to improve robot behavior [START_REF] Fiore | Toward understanding social cues and signals in human?robot interaction: effects of robot gaze and proxemic behavior[END_REF][START_REF] Loth | Ghost-in-the-machine reveals human social signals for human?robot interaction[END_REF].

In the future, we should integrate social cues into robot control. This is not an easy task, because different social cues can mean different things depending on the context and application, and because their dynamics are often different from the one of the robot control.

However, certain steps forward can be done: for example, we could integrate referential gaze for the goal-directed movements, using them to inform the medium-level trajectory planner. Speech commands could be used for stopping the controller (at least), and to modulate certain actions (e.g., walk slower). Gestures could also be used at a higher level to specify the actions decided by the human, in an interactive setting where the human is leading for example. An interesting question for interaction (and for gesture recognition) is how to distinguish between intentional and non-intentional gestures and how to integrate them into a global controller.

Legible interfaces One of the key aspects we have realized during the several interaction experiments with the iCub is that we need to enrich the communication skills of the robots.

Even during collaborative tasks where the focus is on physical interaction and controlling the exchanged forces, one cannot simply ignore the multitude of verbal and non-verbal signals that are exchanged by partners in collaboration, and that humans are somehow expecting to exchange with the robot. When participants are interacting with our robots, they immediately notice with disappointment if some channels are missing: "the robot is not speaking", "the robot is not looking at me", "did it understand", and so on. Even the robotics operators and engineers sometimes miss this kind of exchange with the robot: it would ease the interaction! From a wider perspective, we believe there is a lack of legible interfaces that would make it easier for a human to interact with a humanoid. The humanoid does not come with instructions, it does not have buttons that make it easier to figure out the tasks that it can do and command them. Without necessarily thinking of a command interface and buttons, one way to address this issue could be to design legible gestures and behaviors [START_REF] Dragan | Legibility and predictability of robot motion[END_REF].

Optimization of safe and robust humanoid controllers

Generating complex whole-body movements for redundant robots and particularly humanoid robots is classically achieved with multi-task whole-body controllers based on quadratic programming. To perform on the real robot, such controllers often require a human expert to tune or optimize the many parameters of the controller related to the tasks and to the specific robot with a time-consuming trial-and-error procedure, which requires expert knowledge of the controller, the robot, and the task. A possible way to solve this problem is to automatically optimize the controller's parameters on a simulated robot, with an offline process. Then re-optimize on the real robot, if necessary, using a data-efficient learning process that can learn in few trials.

This chapter presents some contributions in this direction. We first describe our proposed framework where constrained stochastic optimization is applied to optimize the controller's parameters with respect to a fitness computed on roll-outs of the robot executing a given task.

Constraint satisfaction is guaranteed by a careful choice of the constrained optimization algorithm. Second, we discuss how to optimize for parameters that are both safe and robust, thanks to a careful choice of the fitness and domain randomization over the simulated robot. This makes a step further in the direction of guaranteeing that parameters optimized in simulation will also be optimal for the real robot. Finally, we present a method to optimize the entire robot controller configuration, i.e., its structure and its parameters, for a variety of possible desired trajectories, in a way that greatly facilitates the transfer of solutions optimized offline on the real robot.

The work we have been doing goes in the direction of automatically tuning loco-manipulation controllers without requiring manual tuning with a trial and error testing procedure on the robot, which is time-consuming and potentially dangerous for the robot.

The work presented in this Chapter is based on the research conducted within the FP7 project CoDyCo ( [C23], [C21]) and the H2020 project AnDy ([C35], [C26], [C25], [J24]), in particular within the PhD thesis of Valerio Modugno and Luigi Penco.

The main references are: 

Learning safe and robust task priorities for control of humanoid robots

Generating complex whole-body movements for humanoid robots is now most often achieved with multi-task whole-body controllers based on quadratic programming, where multiple operational tasks must be fulfilled to achieve a complex behavior while satisfying constraints. Solving in real-time this problem is one of the challenges of whole-body control of redundant manipulators and humanoid robots. For example, let us consider the humanoid iCub (Figure 3.1) that must fulfill a "global task" by reaching its hands towards two goal positions behind a wall while avoiding collisions. The global task can be decomposed as a combination of simpler elementary tasks (for example: control the end-effector, control the pose of a particular link, etc.) and constraints that guarantee a condition of feasibility over the generated motions (for example: torque and joint limits, collisions, external forces etc.). More generally, elementary tasks can include tracking desired trajectories, regulating contact forces, controlling the center of mass for balancing etc. Constraints range from mechanical limitations (e.g., joint and torque limits) to safety specifications (e.g., collision avoidance, limiting the exchange of mechanical forces with the environment) and balance keeping for floating base platforms.

In the literature, this constrained control problem is usually solved with prioritized controllers, where a set of operational tasks are organized according to strict priorities in a hierarchy or "stack" [START_REF] Saab | Dynamic whole-body motion generation under rigid contacts and other unilateral constraints[END_REF], Del Prete et al., 2015], or combined with weighting functions, also known as soft task priorities [START_REF] Salini | Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions[END_REF][START_REF] Liu | Generalized hierarchical control[END_REF]. Constraints are either formulated as high-priority tasks or taken into account by quadratic programming solvers. The task priorities and their evolution in time are usually defined a priori and frequently manually tuned by experts.

To perform on the real robot, indeed, such controllers often require a human expert to tune or optimize the many parameters of the controller related to the tasks and to the specific robot, which is generally reported as a tedious and time-consuming procedure. This problem can be tackled by automatically optimizing some parameters such as task priorities or task trajectories, while ensuring constraints satisfaction, through simulation.

Our main goal in the last years has been to design methods to automatize this tuning process, with the objectives to:

• automatically learn the best soft task priorities or task weights, for a given problem with a given performance metrics, with known tasks and their trajectories [Modugno et al., 2016b];

• same as before, but learning the task weights that ensure that the optimized controller is "safe" in that it does not violate any problem constraint during execution in simulation [Modugno et al., 2016a];

• same as before, but providing "robust" task priorities that are optimized for a variety of conditions, perturbations and robot models [Charbonneau et al., 2018b];

• to optimize for the number of tasks, their priorities and gains for a variety of possible robot movements [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF].

There is a practical motivation for our approach. The optimization of humanoid controllers requires an offline development and testing process in simulation, on a simulated robot model that is inevitably different from the real robot. Ensuring that the optimization process yields a safe solution -where "safety" here means "never violating any constraints at least in simulation" -becomes mandatory if we want to test these solutions on a real robot [START_REF] Berkenkamp | Safe controller optimization for quadrotors with Gaussian processes[END_REF]. In other words: if it is not safe in simulation, in principle it is not safe to test on the robot.

We will detail in this chapter the main steps to approach this problem:

• Finding "safe" task priorities using constrained stochastic optimization, to ensure that the task priorities do not violate constraints in simulation;

• Finding "robust" and "safe" task priorities, building on the constrained stochastic optimization framework and using domain randomization, to ensure that the task priorities do not violate constraints in simulation for different robot models. The humanoid robot iCub performing a bimanual task with several tasks and constraints. The goal is to optimize the task priorities guaranteeing that the global robot behavior is safe, i.e., that it never violates any of the robot, environment or task constraints.

Optimizing task priorities in this way does not guarantee that the optimized task priorities will always transfer to the real robot, but certainly helps in the transfer from simulation to the real world. The underlying assumption is that the desired task trajectories are known. This is the case, for example, of tele-operation where the task trajectories are a direct consequence of the desired movement commanded by the human operator.

It must be noted that our approach is complementary, and not alternative, to model learning or identification [START_REF] Calandra | Learning inverse dynamics models with contacts[END_REF], nor to computational approaches that seek a diversity of controllers to adopt those that transfer from simulation to reality [START_REF] Cully | Robots that can adapt like animals[END_REF].

Learning safe task priorities

We propose to automatically learn the task priorities (or task weight functions) of a multi-task controller to maximize the robot's performance ensuring that the optimized priorities lead to behaviors that always satisfy the constraints. The global robot movement is evaluated by a fitness function φ that is used as a measure of the ability of the robot to fulfill its mission without violating the constraints.

Our proposed method outlined in Figure 3.2 extends the framework that we first introduced in [Modugno et al., 2016b], where we first proposed to learn the task weights. In that work, we learned the task priorities of a multi-task controller for a redundant manipulator, with few tasks and no constraints. Each elementary task considered by the controller is modulated by a task priority or task weight function α i (t). To automatically find the optimal n t task priorities {α i (t)} i=1,...,n t , we transform the functional optimization problem into a numerical optimization problem by representing the task priorities with parametrized functional approximators α i (t) → αi ( π π π i ,t), where π π π i is the set of parameters that shape the temporal profile of the i-th task weight function. Following the scheme of Figure 3.2, given n t elementary tasks the final controller is given by:

u(q, q,t) = n t ∑ i=1 αi ( π π π i ,t) u i (q, q) . (3.1)
where u i (q, q) ∈ R n is the vector of the commanded torques of the i-th task (see [Modugno et al., 2016a] for more detail on the controller). We model the task priorities as a weighted sum of normalized Radial Basis Functions (RBFs):

αi ( π π π i ,t) = S ∑ n r k=1 πik ψ k (µ k , σ k ,t) ∑ n r k=1 ψ k (µ k , σ k ,t) , (3.2) where ψ k (µ k , σ k ,t) = exp -1/2[(t -µ k )/σ k ] 2
, with fixed mean µ k and variance σ k of the basis functions, n r is the number of RBFs and π π π i = ( πi1 , . . . , πin r ) ⊆ R n P is the set of parameters for each task priority. S(•) is a sigmoid function that squashes the output to the range [0, 1]. The elementary task is fully activated when the task priority is equal to 1, otherwise, the control action fades out until a full deactivation occurs when the priority goes to 0. The free parameters π π π i of each task weight function (Eq. 3.2) constitute the current parameters set to optimize: π π π = ( π π π 1 , . . . , π π π n t ). In the case of humanoids, ensuring constraints becomes critical. For example, the equilibrium of the platform is paramount and it requires the controller to be formulated as a constrained optimization problem where a certain number of equality and inequality constraints must be always fulfilled, such as ZMP constraints, joint torque limits and so on. More generally, the constraints g, h determine the admissible controls to be applied to the robot. They can be dependent on the robot structure (e.g. maximum joint torques and joint ranges), on the environment (e.g. obstacles and collisions), on the tasks (e.g. safety limits and couplings), etc.

Learning the parameters π π π ∈ Π Π Π ⊆ R n P is therefore formalized as a constrained optimization problem, where we need to find the optimal parameters π π π • that maximize the objective function J(π π π) : R n P → R (by default, equivalent to the fitness φ ) under the inequality and equality constraints g, h:

π π π • = arg max π π π J(π π π) (3.3) s.t. g i (π π π) ≤ 0 i = 1, . . . , n IC (3.4) h i (π π π) = 0 i = 1, . . . , n EC (3.5)
Following our approach in [Modugno et al., 2016b], we do not constrain the fitness structure nor its differentiability properties, hence we keep solving the problem with derivative-free methods.

Considering our positive experience with CMA-ES in [Modugno et al., 2016b], to choose the most appropriate constrained stochastic optimization algorithm to solve our problem we investigated three variants of CMA-ES: one with vanilla constraints, one with adaptive constraints [START_REF] Collange | Multidisciplinary optimization in the design of future space launchers[END_REF] and the (1+1)-CMA-ES with covariance constrained adaptation [START_REF] Arnold | A (1+1)-CMA-ES for constrained optimisation[END_REF]. We compared these methods with a baseline constrained optimization algorithm, (the fmincon function in Matlab). To compare the algorithms, we explicitly looked for methods that can find good solutions while ensuring zero constraint violations within a reasonable computation time.

Interestingly, there exist standard benchmarks for constrained optimization, consisting in analytic problems with several variables and constraints and known optimal solutions. For example, Arnold & Hansen [START_REF] Arnold | A (1+1)-CMA-ES for constrained optimisation[END_REF]] tested (1+1)-CMA-ES on seven different problems with a number of variables ranging from 2 to 10, and a number of constraints between 1 to 9. However, in robotics the number of constraints usually grows with the number of degrees of freedom (DOF) of the robot: for example, with a 7-DOF robot, the joint position range (7 × 2) and the torque limits (7 × 2) already introduce 28 constraints. In humanoids and highly articulated systems, the number of DOF is higher (e.g., 32 DOF for the iCub) and so is the number of constraints. Furthermore, the number of tasks increases with the complexity of the action, especially for bimanual or whole-body movements. Therefore in [START_REF] Modugno | Safe trajectory optimization for whole-body motion of humanoids[END_REF] we designed two new benchmarks RB1,RB2 tailored for robotics applications to make a pondered decision about the algorithm that is most suited to solve our problem while ensuring that the constraints are never violated. We considered five different benchmarks:

-g07:

n P = 10, n IC = 8, n EC = 0 -g09: n P = 7, n IC = 4, n EC = 0 -HB: n P = 5, n IC = 6, n EC = 3 -RB1: n P = 15, n IC = 32, n EC = 0 -RB2: n P = 15, n IC = 50, n EC = 0
The first three are classical benchmarks for constrained optimization (see the Appendix of [START_REF] Arnold | A (1+1)-CMA-ES for constrained optimisation[END_REF] for their formulations and solutions), that is analytic problems with known optimal solutions; the last two are new benchmarks that we designed ad hoc to evaluate the performance of the algorithms on robotic problems with growing complexity. RB1 is a problem inspired by our previous work [Modugno et al., 2016b] where a KUKA LWR (7DOF) has to reach a goal position with its end-effector behind an obstacle, while satisfying constraints of joint position limits, joint torque limits and obstacle avoidance. RB2 has a similar setting with the addition of a second obstacle to avoid and another set of constraints coming from joint velocity limits. 1 To compare the performance of the algorithms on these benchmarks, we define the following metrics:

• m 1 : distance from the optimal solution, defined as m 1 = ∥π π π •π π π * ∥, where π π π • is the optimal solution (known) and π π π * the best solution found by the constrained optimization algorithm;

• m 2 : constraint violations, defined as

m 2 = ∑ n C i=1 | ê(i, π π π * )|
, where ê(i, π π π) = 1 g i (π π π)>0 g i (π π π) for the inequality constraints and ê(i, π π π) = 1 h i (π π π)̸ =0 h i (π π π) for the equality constraintsbasically it sums all the constraints that are violated;

• m 3 : number of steps to converge, or settling time, defined as m 3 = n sc (δ ), the number of steps after which the fitness function reaches a steady state condition, i.e., its value is bounded between ±δ % of the steady state value -here, we set δ = 2.5;

• m 4 : best fitness, defined as m 4 = J(π * ), i.e., the fitness of the best solution found by the constrained optimization algorithm.

To provide a baseline, we use the (deterministic) constrained optimization function fmincon in Matlab, using the SQP method. This is a suitable choice because it does not require the gradient of the objective function for non-linear constrained optimization problems with nonlinear constraints.

Since (1+1)-CMA-ES with covariance constrained adaptation needs a feasible candidate solution as a starting point, in order to make a fair comparison all the algorithms start from the same initial position. We perform 40 repetitions of the optimization process per each test problem for each algorithm with an exploration rate of 0.1 and a 5000 samples to assure the convergence of the methods.

Figure 3.3 shows the results of the numerical experiments with the five benchmarks. The top row reports on the results for g07, g09 and HB with metrics m 1 , m 2 , m 3 , while the bottom row reports on the results for the robotics benchmarks RB1 and RB2, with metrics m 2 , m 3 , m 4 (m 1 cannot be used in this case because the optimal solution π π π • is not known). We also compared the four algorithms in terms of computational time, and did not find significant differences (for example, the optimal solution for RB2 is found on average in ≊1.7e+04 s for the CMA-ES variants and 1.9e+04 s for fmincon on a i5 laptop with Matlab).

(1+1)-CMA-ES with covariance constrained adaptation offers the best trade-off between performance and constraints' satisfaction both on the analytic and the robotic benchmarks. It always ensures full satisfaction of the constraints while the other methods sometimes fail, as shown by the constraints violation boxplot in Figure 3.3. Its settling time is comparable to the other stochastic algorithms, while fmincon converges faster. fmincon could seem more appealing, but, on the robotic benchmarks, its best fitness is lower and quite close to the fitness of the starting point (meaning that the algorithm does not really "explore"). Therefore fmincon does not seem a suitable candidate for solving robotic problems with a lot of constraints.

The different performances of the algorithms in the analytic and robotic benchmarks confirm the benefit gained by designing two new robotics benchmarks RB1,RB2. Overall, considering the zero constraint violations and the capability of finding a good solution, we choose to use (1+1)-CMA-ES with covariance constrained adaptation for our experiments with the iCub robot.

We designed two experiments using the 17 DOF of the upper body of the robot (arms and torso). In the experimental scenario, a rectangular obstacle similar to a wall, that is as large as the robot's chest and 2 cm thick, is placed about 20 cm in front of the robot.

The first experiment, shown in Figure 3.4, is aimed at reaching a goal Cartesian position behind the wall with one hand. There are three elementary tasks. The first is about reaching the desired Cartesian position p * r = [0.35, -0.15, 0.7] (m) with the right hand frame of the robot. The second task is reaching a desired Cartesian position p * elbr = [0.24, -0.23, 0.7] (m) with the elbow frame. The third task is keeping the initial joint configuration q * = [0, 45, 0, 0, -20, 30, 0, 0, 45, 0, 0, 0, 30, 0, 0, 0, 0] (deg). In sum, the goal is hidden behind the wall, and to reach it with the hand the robot must bend its elbow around the wall corner; the third task should prevent the robot from moving the right arm and the torso. The task priorities are approximated by RBFs with n r = 5, therefore n P = 5 × 3 = 15. There are n C = n IC = 73 inequality constraints: joint position limits, joint torque limits and distance constraints to avoid collisions between the robot and the obstacle. Precisely, a minimal distance of 3 cm is required between the obstacle and a set of pre-defined collision checkpoints (located at the origin of the frames of the right shoulder, elbow, wrist, hand and head). For this experiment we use the following fitness function:

φ = - 1 2 ∑ T i ∥p r,i -p * r ∥ ε max + ∑ T i u 2 i u max (3.6)
where φ ∈ [-1, 0], T is the number of control steps (the task duration is 20 s, and we control at 1 ms), p r,i is the right hand frame position at time i, p * r the goal position for the hand frame and ε max = 120 and u max = 3.5 * 10 5 are two scaling factors. The first term of φ penalizes the cumulative distance from the goal, while the second term penalizes the global control effort.

The second experiment, shown in Figure 3.5, complicates the first by adding 2 more tasks. The aim is to reach a Cartesian goal position with both robot hands. Two Cartesian goal tasks for each hand and elbow are set symmetrically with respect to iCub's sagittal plane. A fifth posture task is set as to keep the torso as straight as possible during the movement. .68] (m) • Task 5 : q * = [0, 45, 0, 0, -20, 30, 0, 0, 45, 0, 0, 0, 30, 0, 0, 0, 0] (deg)

The task priorities are approximated by RBFs with n r = 5, therefore n P = 5 × 5 = 25. The optimization is carried out under the same constraints as in the first experiment with the addition of the left arm collision checks. This means we have n C = n IC = 77 inequality constraints. The fitness is: where p l,i is the left hand frame position at time i, p * l the goal position for the left hand frame. In all the experiments, we seek the best solutions that do not violate any of the constraints. We employ (1+1)-CMA-ES with the exploration rate set to 0.1 (this is the only parameter to tune and this is the default value!).

φ = - 1 2 ∑ T i ∥p r,i -p * r ∥ ε max + ∑ T i ∥p l,i -p * l ∥ ε max + ∑ T i u 2 i u max (3.
Figure 3.4 and Figure 3.5 show the median fitness and constraint violation obtained by 25 experiments for the two experiments. The fitness grows nicely (φ = 0 would be the optimum). Most importantly, the constraints are never violated, which is exactly what we wanted to obtain. We also show the task priorities and the joint torques from one of the best solutions; they are both smooth, and it is clear that optimizing the task priorities manually would be very difficult if these solutions were to be achieved.

In summary, the proposed framework can be used to generate optimized whole-body movements that always comply with safety requirements, at least in simulation. The limit of this approach is the computation time (one or more hours in a single laptop, much lower on a computing cluster but still far from real-time applications), which makes it suitable only for offline optimization of whole-body controllers for humanoid robots. Nevertheless, this is the intended use for this kind of technique: on the contrary, it is quite suitable for offline optimization of controllers when their tasks and trajectories are known, which is often the case for complex motions of humanoid robots such as walking, squatting and even lifting from a chair [START_REF] Modugno | Safe trajectory optimization for whole-body motion of humanoids[END_REF].

Learning robust task priorities

Optimizing the task priorities in simulation, even ensuring that the problem constraints are never violated, does not guarantee that the optimized solution will be also optimal for the real robot, not even that it will transfer on the real robot (which means execute without errors and with similar performance). This issue is known and is generally due to the reality gap.

To perform on the real robot, whole-body controllers optimized in simulation often require a human expert to manually optimize their many parameters for the specific robot, a non-trivial and time consuming procedure that requires many roll-outs on the robot.

As a solution, we proposed in [Charbonneau et al., 2018b] to optimize task priorities in a robust way, by looking for solutions which achieve desired tasks under a variety of conditions and perturbations. This approach, which in the learning community is usually referred to as domain randomization, can greatly facilitate the transfer of optimized solutions from simulation to a real robot. Also, since QP solvers often allow for constraint relaxation, strict constraint satisfaction is not always ensured by the frameworks presented above. In [Modugno et al., 2016a], the learning procedure guarantees strict constraints fulfillment, offline, but transferring knowledge from simulation to reality did not fully achieve the desired behavior. This implies that constraint satisfaction is beneficial, but not enough to achieve transferability: solutions which are robust rather than optimal are needed, in order to achieve a better generalization.

Domain randomization (DR) [START_REF] Tobin | Domain randomization for transferring deep neural networks from simulation to the real world[END_REF] consists in randomizing some aspects of the simulation to enrich the range of possible environments experienced by the learner. For example, in [START_REF] Antonova | Reinforcement learning for pivoting task[END_REF] robust policies for pivoting a tool held in the robot's gripper were learned in simulation, given random friction and control delays, such that the learned policies proved to be effective on the real robot as well. In [Charbonneau et al., 2018b] we proposed to apply the idea of DR to whole-body controllers. In this context, we want to ensure that balance is maintained while performing a task, even if large differences exist between the learning domain and the testing domain. Figure 3.6.: Overview of the method for optimizing task priorities with domain randomization, presented in [Charbonneau et al., 2018b]. Given task priorities w, the QP-based controller computes a control input u under a set of conditions j (e.g. desired trajectories, disturbances, noise). An outer learning loop allows the optimization of the task weights. To achieve this result, we combine a DR approach with fitness functions promoting the robustness of the learned controller, and learn robust task priorities which achieve desired goals, while allowing to facilitate the transfer of results from simulation to reality. We demonstrated the idea by optimizing parameters in simulation for the goal of making the iCub perform steps (a challenging task from the point of view of constraints -for balancing-and task priorities due to contact transitions), and showing that it is possible to overcome issues related to the transferability problem.

The method proposed for learning robust task priorities is outlined in Figure 3.6. It relies on two main parts: (i) a QP-based whole-body torque-controller which tracks desired task trajectories and sends joint torque commands to the robot, and (ii) a black-box constrained stochastic optimization procedure, posing no restriction on the structure of the learning problem. It is used to optimize task priorities w as follows: at the end of a roll-out (i.e. execution of a footstep), the fitness of the obtained robot behavior is evaluated, allowing the optimization algorithm to update the task weights.

The QP controller takes the form of a stack of tasks, with the following objectives:

- The terms w CoM , w stance , w swing , w neck ∈ R refer to weights associated to the CoM, stance foot, swing foot and neck Cartesian tasks, and w s , w τ ∈ R to the weights associated to the postural task and joint torque regularization. The control architecture described above can thus be formulated as the following optimization problem.

u * = arg min u 1 2 cost (3.9a) subject to Cu ≤ b (3.9b)
where the constraint Equation 3.9b ensures that the contact forces remain within the associated friction cones. The cost function (Equation 3.9a) is computed as the weighted sum of all task objectives: cost = ∑ T w T XT (u)

2 + w s s(u) 2 + w τ τ(u)
2 , in which w T ∈ R refers to weights associated to Cartesian tasks. Reorganizing the terms in the cost function, one can easily verify that it has the form of a QP problem.

Learning the task weights w w w • ∈ W W W ⊆ R n P is cast as before as a black-box constrained optimization problem, that we solve again with (1+1)-CMA-ES with CCA.

Experiments were conducted in simulation using the open-source robot simulator Gazebo, using two distinct models of the iCub with different inertial properties: the first one with a tethered power supply and the second one with a battery pack on the back.

We focused on the task of performing steps, i.e. performing the following sequential movements for each step: move the CoM above the stance foot, move the swing foot up by 0.025m, move the swing foot back to its initial pose, and move the CoM back to its initial position.

Table 3.2 summarizes the experiments and their results. Training and testing were performed with different robot models and stepping tasks, as well as under different randomized conditions (RC) as described in Table 3.1.

In order to optimize task weights, three different fitness functions were compared. The first one, φ p , favored performance on the Cartesian tasks and less deployed effort. The second one, φ r , focused on robustness, by favoring solutions with smaller excursion of the ZMP position P ZMP 

(m) δ | δ ∈ R + , δ ≤ 0.02 5. n F external wrenches applied on chest n F | n F ∈ Z, n F ≤ 7
and for each wrench i: 

at time t F i (s, with 1 × 10 -2 precision) t F i | t F i ∈ R + ,t F i ≤ 10 duration d F (s, with 1 × 10 -2 precision) d F i | d F i ∈ R + , d F i ≤ 1 direction (γ F i , θ F i , ϕ F i ) (rad) γ F i | γ F i ∈ R, γ F i ≤ 2π θ F i | θ F i ∈ R, θ F i ≤ 2π ϕ F i | ϕ F i ∈ R, ϕ F i ≤ 2π force magnitude F F i (N) F F i | F F i ∈ R, F F i ≤ 10 torque magnitude τ F i (Nm) τ F i | τ F i ∈ R, τ F i ≤
φ p = - 1 X T max t end ∑ t=0 ∑ T XT 2 - 0.0001 τ max t end ∑ t=0 |τ| 2 (3.10a) φ r = - 1 P ZMP max t end ∑ t=0 |P ZMP -O SP | 2 (3.10b) φ pr = 1 2 (φ p + φ r ) (3.10c)
X T max , τ max and P ZMP max are normalization factors. Inequality constraints to the learning problem were defined on joint position limits and torque limits: they act as an extra safety built on top of the QP controller. The task used for the optimization is to perform 1 step. The simulation was limited to 10 seconds, allowing the robot to perform one step and shift its weight to the side in order to start a second one, making sure that the robot remained stable after foot touchdown.

Early termination of a simulation took place in cases where the robot fell or the QP in Equation 3.9 could not be successfully solved (which may happen when the weights being tested are far from being optimal, and lead to a configuration in which the QP solver simply can not find a solution). In these cases, a penalty of -1.5 was added to the fitness in Equation 3.10.

Optimized task priorities were obtained by performing 200 iterations of (1+1)-CMA-ES [START_REF] Arnold | A (1+1)-CMA-ES for constrained optimisation[END_REF] applied to the control framework, with an exploration rate of 0.1; each learning experiment was repeated 10 times. Since task priorities are relative to each other, w CoM was Table 3.2.: Summary of performed experiments and achieved results 3.2. Furthermore, the weight values w 0 = [1, 1, 1, 0.1, 110 -3 , 110 -4 ] obtained by hand were verified to allow the tethered iCub model to successfully perform the desired stepping motion, and were therefore used as a starting point.

Scenario

Moreover, to achieve robustness through domain randomization and enable the controller to eventually cope with real-world data, the robot was subjected to the randomized conditions 1 to 5 (see Table 3.1) at each learning iteration. These conditions constitute the set of conditions j under which the controller had to perform. In particular, tests performed in simulation showed that applying a force of 10N on the chest for no more than 1 second was sufficient to destabilize the robot when using unoptimal weights. Thus, using such disturbances during learning can encourage the generation of robust task priorities. An additional set of learning experiments was performed for φ pr without using DR, to assess the contribution of DR.Results showed that 200 iterations were sufficient to achieve strong convergence. Weights obtained with each of the fitness functions in Equation 3.10 are shown in Table 3.2.

In order to validate the robustness achieved with the optimized weights, each set of them were tested on the same iCub model (the tethered one) used for training, but not submitted to randomized conditions. The testing task in this case was to achieve 6 consecutive steps. The success rates achieved with the optimized weights from each fitness function are shown in Table 3.2, and typical trajectories achieved using each fitness function are shown in the left part of Figure 3.7 and in Figure 3.8.

In order to replicate conditions similar to performing experiments on the real robot, we prepared a second model of the iCub, with a battery pack installed on its back. This model was subjected randomized conditions 5 to 7 (see Table 3.1), with the testing task to achieve 6 consecutive steps. The success rates achieved with the optimized weights from each fitness function are shown in Table 3.2. Successful CoM and feet trajectories obtained with φ pr , using DR and not, are shown in Figure 3.7. As could be expected, due to the addition of noise, ZMP trajectories showed to be highly noisy and are therefore not shown. These results show that weights obtained with φ pr allow for a higher robustness of the controller. Additionally, the rate of success achieved with DR shows to be significantly higher than without DR, demonstrating that DR did have a measurable impact on the achieved robustness.

In summary, the proposed method generated task priorities for successful whole-body control of different robot models, in 200 learning iterations. We observed superior results in learning using φ pr , a fitness function combining robustness and performance, rather than using fitness that favor either performance or robustness.

With φ pr , the swing foot placement, crucial for stability at touchdown, was given high importance, while the neck orientation task a lesser one, allowing compliance to external forces, which thus facilitates recovery from external perturbations and contact switching. As for the postural task, its allotted low priority allows it to be used as regularization (just as joint torques), instead of competing with Cartesian tasks. Such a solution is interesting, as it may not have been a priori self-evident to an expert defining task priorities. Furthermore, the ranges over which sets of optimized weights were obtained show that the problem has multiple local minima. Therefore, although task priorities require proper tuning, the controller is not highly sensitive to a single precise adjustment of task weights.

The robustness achieved with the proposed method has the potential to allow higher success when passing from a simulated to a real robot. However, better performance could in principle be achieved by randomizing further values associated to the dynamics of the system, control delay, or measurement noise amplitude and delay. The extension of the proposed method to additional parameters such as feedback gains, typically tuned on the real robot with a trial and error procedure, could also improve the transfer of solutions.

Learning whole-body controllers with multi-objective optimization

In the previous section we presented a general method to optimize the task priorities of a wholebody controller for a given robot mission (or global task), with the hypothesis that such a task is known and so are its desired elementary task trajectories. Incidentally, optimizing such trajectories for a given controller is a complementary work and we proposed a very similar learning scheme to address it [START_REF] Modugno | Safe trajectory optimization for whole-body motion of humanoids[END_REF].

There are two main limits to the aforementioned approaches. The first is that, by design, they can only optimize the controller for a simulated robot model and do not include a validation on the real robot. Using domain randomization it is possible to find robust parameters that ease the transfer of solutions from simulations to reality, but the final validation on the real robot is still not accounted for. The second is that they optimize for a single global task, i.e., they provide an optimized controller that is task-specific: if the robot must perform a complex mission with a sequence of different actions (e.g., walking, opening a drawer, reaching for an object, opening a door, lifting a box, etc.), each action shall have its own optimized controller. While this line of reasoning can lead to very efficient behaviors and can be effective in many situations where the robot mission is structured and known in advance, there are many cases in which we may want the robot to just have a generic controller that performs on a variety of possible tasks: a sort of "default" controller. Figure 3.9.: A hand-tuned controller tuned in simulation for many motions can easily fail when transferred on the real humanoid and when performing different tasks that challenge its balance. The same problem can occur with a controller automatically optimized in simulation for a specific task, even in a robust way: it may transfer well on the robot for that specific task, but it may be not suitable for other type of tasks. With the multi-objective optimization approach we proposed in [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF] the learned controller can transfer on the real robot iCub on different test motions.

The effect of these issues is well illustrated in Figure 3.9. A hand-tuned controller or even one optimized for a specific task using the previous methods can still fail once deployed on the real robot: in particular, it could transfer for the tasks for which it was optimized for, but it could be unsuitable for other tasks.

Differently from previous work, in [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF] we proposed to automatically learn both the structure of the controller (i.e., the position of each task in the hierarchy) and all its parameters (i.e., the task weights and Convergence Gains), which we will later define as "control configuration", for a variety of different reference motions (for a given category of movements, e.g. double support). We look for a "generic" control configuration that trades-off performance on several motions, rather than a "motion-specific" controller that is highly optimized for a given movement but requires the optimization to be re-run for every other motion.

We also want the result of the optimization procedure to be transferable onto the real robot. We look for solutions that are both high-performing in executing desired trajectories (low tracking error) and "robust" (reducing the tipping moment of the robot). The reason for this dual objective is that any state-of-the-art motion generator [START_REF] Carpentier | Multi-contact Locomotion of Legged Robots in Complex Environments -The Loco3D project[END_REF] still synthesizes dynamically balanced trajectories for inaccurate robot models, without guarantees that a perfect tracking of these desired trajectories is possible on the real robot. At the same time, reactive whole-body controllers have often a very conservative design in terms of balancing, which prevents the robots to track desired trajectories that are instantaneously challenging for balance. It seems appropriate to reason in terms of compromise between tracking performance and balancing/robustness to look for controllers that can effectively work on real humanoid robots. Instead of arbitrarily combining the two objectives (performance and robustness) into a single cost function, we follow a multi-objective optimization approach: we seek to obtain in a single optimization run the set of the Pareto-optimal solutions, i.e., the optimal trade-offs between the objectives. This enables the robot user to test candidate controllers from the Pareto front directly on the robot, without requiring further optimization or manual tuning. tion sequence is generated. The optimization algorithm searches for the best controller configurations that make the simulated robot execute the reference motion sequence. The algorithm computes a set of Pareto-optimal control configurations, i.e. optimal trade-offs between robustness and performance. Bottom: Testing process (online). The user selects the most appropriate control configuration from the Pareto-optimal solutions for the real robot, getting a valid working solution in few trials.

Figure 3.10 is a flowchart of the learning procedure. First, a multi-objective optimization process based on roll-outs performed on a simulated robot model computes off-line a set of Pareto-optimal solutions. Each solution is a control configuration that trades-off different performance criteria (i.e., tracking score and a robustness/balancing score), optimized on a training sequence. Then the user selects candidate solutions from the Pareto front and validates them on the real robot using test motion sequences. Here, the purpose is to find transferable solutions that are high-performing and well-balanced, or "robust", i.e., reducing the tipping moment of the robot.

In the following, we detail all the steps of the proposed method. First we need to introduce the concept of "control configuration", which is linked to our generic multi-task controller formulation. In the previous section, we used first a controller based on soft task priorities, then one based on strict ones. Here, we want to provide a generic formulation that enables us to easily consider strict and soft task priorities in the same controller.

For a given elementary task T k , we solve the following QP optimization problem at each control time step: min

u u u ∥A A A k u u u -b b b k ∥ 2 + ε∥u u u∥ 2 s.t. c ≤ C C Cu u u ≤ c u u u min ≤ u u u ≤ u u u max (3.11)
where u u u is the control input vector, e.g. the joint velocities q q q for Inverse Kinematics (IK) control, or the joint torques τ τ τ for Inverse Dynamics (ID) control; A A A k is the equivalent Jacobian matrix of the task k, e.g. the Jacobian matrix J J J k for IK control or J J J k B B B -1 for ID control (with B B B being the inertia matrix); b b b k the reference value for the task, ε a regularization factor used to handle singularities, u u u min and u u u max the control input limits and c ≤ C C Cu u u ≤ c are other equality and inequality constraints, e.g. dynamics, collision avoidance, and contact related constraints.

If we consider n levels of hierarchies, we can solve n QP problems including local equality constraints to ensure the strict priorities between the tasks in each hierarchy i, i.e.

A A A i-1 u u u i-1 = A A A i-1 u u u, ... , A A A 0 u u u 0 = A A A 0 u u u 2 .
At a given level i of the hierarchy, we can also consider a weighted combination of tasks: min

u u u ∑ k w k (∥A A A k u u u -b b b k ∥ 2 + ε∥u u u∥ 2 ) s.t. c ≤ C C Cu u u ≤ c u u u min ≤ u u u ≤ u u u max (3.12)
For each task T k , a reference is defined, e.g. in IK control b b b k = ṗ p p d k + λ k e e e, where ṗ p p d k is a feedforward velocity term and e e e is a Cartesian pose error, computed as in [START_REF] Nakanishi | Operational space control: A theoretical and empirical comparison[END_REF], multiplied by the Convergence Gain λ k ; while in Inverse Dynamics control b b b k = p p p d k -J J J k q q q + λ P k e e e + λ D k ė e e, where p p p d k is the desired task acceleration, ė e e the Cartesian velocity error, J J J k the derivative of the Jacobian of task k, q q q the derivative of the actual joint configuration and λ P k , λ D k the Convergence Gains. We define as stack S a set of n tasks {T 1 , . . . , T n } organized according to different soft or strict priorities:

S = (w 1 T 1 + ... + w i T i )/ . . . (w j T j + ... + w n T n ); (3.13)
where T a + T b means that the tasks T a and T b are in a soft priority relation with w a , w b being the corresponding weights, while T a /T b means that the two tasks are in a strict priority relation (T b acts in the null space projection of T a ).

We define as "control configuration" of a controller with n tasks {T 1 , . . . , T n }, the set of the Soft Priorities Weights w k , the task Converge Gain λ k and the strict priority relations between the tasks, formalized as the level of each task T k in their stack S .

Our objective in the following is to find the Pareto-optimal control configurations. We consider a set of tasks T k associated to desired robot movements, defined by reference trajectories b b b k . The latter can be the result of any motion planning algorithm, or, like in our case, be derived from retargeting of human motions as we do for tele-operation (see Section 5.2). For each task T k , we want to learn its Soft Priority Weight (SPW) w k , its Convergence Gains (CG) (position error gain λ k and orientation error gain σ k for Cartesian tasks, postural error gain µ k for joint tasks) and its position in the stack/hierarchy. A specific task T k can be either active in one level S i of the stack S or completely deactivated (i.e., not in the stack). The parameter l k called Hierarchy Level Selector (HLS) encodes the activation of the k-th task in S in the three level of priorities (a reasonable assumption for humanoid robot controllers, though the number is arbitrary):

           T k ⊆ S 1 if (0 ≤ l k ≤ 0.25) T k ⊆ S 2 if (0.25 < l k ≤ 0.5) T k ⊆ S 3 if (0.5 < l k ≤ 0.75) T k deactivated if (0.75 < l k ≤ 1) (3.14)
Since humanoid robots exhibit bilateral symmetry, we used the same values for the weights w k and the activation levels l k for tasks related to the left and right parts of the robot. The control parameters all consist of real values ∈ [0, 1]. The entire list of tasks and parameters we considered in our experiments is reported in Table 3.3. The main features that should characterize our "generic" controller are high-performance (tracking of the reference motions) and robustness (reduction of the tipping moment of the robot during the motion). These two objectives may be antagonistic (e.g., when the desired motions are particularly challenging for the robot balance) hence the problem is naturally posed as a multi-objective optimization problem.

Multi-objective optimization relies on the Pareto dominance concept [START_REF] Deb | Multi-Objective Optimization Using Evolutionary Algorithms[END_REF]]: a solution x 1 dominates x 2 if and only if x 1 is better than x 2 for all the objectives; if x 2 is better for at least one objective, then x 1 and x 2 are equally interesting as they represent different trade-offs. Using this definition, optimizing means finding the set of the non-dominated solutions of the search space, that is, solutions that cannot be improved with respect to one objective without decreasing their score with respect to the other. This set is called the "Pareto front". Although we select a single solution to be used on the robot, the knowledge of multiple Paretooptimal solutions, "helps the user to compare, choose a trade-off solution, avoiding multiple optimization runs and artificial fix-ups" [START_REF] Deb | Multi-Objective Optimization Using Evolutionary Algorithms[END_REF]. To solve our problem, we adopt the Non-dominated Sorting Genetic Algorithm II (NSGA II) [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF], one of the most efficient stochastic multi-objective optimization methods.

The objective functions are the accumulated tracking error f 1 , and a robustness score f 2 , i.e. a measure of the ZMP position inside the Support Polygon (SP). We additionally considered a third objective function f 3 , consisting of a fall avoidance score. f 3 is not strictly necessary since this information is already encoded by f 1 and f 2 , but we included it to avoid getting initially stuck in some local optimum, as we explain later on. The goal of the algorithm is to minimize f 1 and f 2 while maximizing f 3 :

Minimize ( f 1 (x x x), f 2 (x x x), -f 3 (x x x)),
where x x x are the control parameters. These objectives are never combined together, since we use Pareto-based multi-objective optimization. The objective functions are initialized at zero and change at each time step i as follows:

             f 1 i = f 1 i-1 + (∑ k Φ k i -Φ k i ) f 2 i = f 2 i-1 + x SP + y SP if (robot fallen) f 2 i = f 2 i-1 + x cz i + y cz i if (robot not fallen) f 3 i = f 3 i-1 -α 3 if (robot fallen) (3.15)
where Φ k i and Φ k i are respectively the reference and the actual value measured on the simulated robot of task k at time step i; x cz i is the distance in the frontal direction of the ZMP from the center of the SP at time step i, while y cz i is the distance in the horizontal direction of the ZMP from the line connecting the feet; x SP ,y SP are the dimensions of the SP and α 3 an arbitrary positive value. The cost function f 1 includes both position, orientation and postural tracking errors, which have to be properly combined. The Cartesian positions are computed in cm; for postural and orientation tasks, we consider for each angle the arc length in cm of the circle having as radius the child link of the joint (for postural tasks) or the distance from the global frame to the link frame (for Cartesian orientation tasks). In this way, each task error in f 1 has approximately the same relative impact in the Cartesian space.

In [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF] we report more detail on the algorithm initialization and configuration, in particular on the penalties used to deal with unfeasible stacks and improve convergence of the algorithm.

The optimization process produces a set of Pareto-optimal solutions, optimized for the simulated robot. All the final dominant solutions composing the Pareto front have f 3 = 0, i.e. the robot does not fall. We can then analyze the 2D Pareto front related to f 1 and f 2 (see Figure 3.11). To select the solutions to test on the real robot (thus checking how they transfer), we start from the most high-performing solution (i.e. lowest f 1 and highest f 2 ) and try if the solution works on the real robot. If not, we move progressively to solutions that are less high-performing and more "robust" until we get to a solution that achieves balance on the real robot.

This trial-and-error procedure may discourage the experimenter, but it turns out that very few trials (e.g, 3) on the real robot are needed to find a satisfactory solution, as demonstrated for our experiments with iCub and shown in the video at https://youtu.be/RJW67SU6Yf0. In our experience, though limited, the number of robot tests is much lower than those we ever counted in any manual controller tuning on the real robot.

We performed the experiments with the iCub robot, controlling 32 DOF with our inverse kinematics implementation of a multi-task QP controller based on OpenSoT [Rocchi et al., 2015]. The constraints considered in the controller are joint position and velocity limits, and the center of mass (CoM) kept inside the support polygon.

In the offline learning phase we use Dart for the physical simulation [START_REF] Lee | Dart: Dynamic animation and robotics toolkit[END_REF] and our retargeting framework for tele-operation and the Xsens MVN suit to generate a 68 seconds training sequence with a variety of double support motions and three validation sequences (S1, S2, S3) with a squat and two reaching motions challenging the equilibrium.

To show that our approach does not depend on the number or type of tasks (e.g., Cartesian, postural), we seek solutions for two different types of controllers, namely C1 and C2. They are specified by the set of tasks considered for their control configuration, reported in Table 3.3. C1 takes as references (from the motion generator) mainly Cartesian tasks, while C2 mostly postural trajectories. Both controllers can be used by the humanoid to realize double support motions, but C2 replicates the controller that we have been using for tele-operating the iCub robot to perform human-like motions in our previous work [Penco et al., 2018a], where the postural tasks are critical for imitating the human. For this reason, we will validate both controllers on the real robot with the aforementioned sequences S1, S2 and S3, but only C2 will be further validated for the real-time robot tele-operation.

The parameters of the two controllers C1 and C2 are learnt by the algorithm NSGA-II implemented in Sferes v2 [START_REF] Mouret | Sferesv2: Evolvin' in the multi-core world[END_REF], with a population p of 100 individuals with 300 generations g (for a total of 30100 evaluations); we execute 20 parallel runs. robustness f 2 , with f 3 = 0, as a result of the convergence of the algorithm.

For curiosity, we report here the structure of the stack of C1 that represents the most frequent solution, given f 2 = 22:

S C1 = (w f (T l f + T r f ) + w h T h )/ (w cxy T cxy + w cz T cz + w t T t + +w wo T wo + w ha (T lh + T rh ))/ (w la (T lla + T rla ));
(3.16)

while for C2 we have:

S C2 = (w f (T l f + T r f ) + w o T wo + w n T n )/ (w cxy T cxy + w wh T wh + w t T t + w a (T la + T ra ))/
(w c T c );

(3.17)

The corresponding median gains and soft weights are reported in Table 3.4 and 3.5, along with the interquartile range (IQR) of these parameters in the 20 learned configurations. Table 3.6 indicates the frequency of each task in the different levels of the hierarchy in the 20 runs.

We tried on the real robot different solutions from the Pareto front starting from those associated to the lowest tracking error. The video at https://youtu.be/RJW67SU6Yf0 shows the testing procedure on the real robot. The learned (median) controller C1 with a squat motion with straight torso reference is not robust enough to be transferred onto the real robot, which falls. After trying the solutions with f 2 = 37, f 2 = 32 and f 2 = 27 we found that the median solution with associated robustness score f 2 = 22 is transferable to the real robot.

In [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF] we also report on the comparison between the optimized controller and a manually hand-tuned controller as a baseline, showing the advantage of our approach in finding a solution that is more robust for different sequences besides improving tracking performance, as shown, as an example, in Figure 3.12 for the sequence S1.

To show how the controller optimized through our approach can be used for generic motionsnot previously encountered in the learning sequence, though from the same category (i.e., double support) -we used the optimized controller of C2 in our tele-operation framework [Penco et al., 2019b]. We tele-operate the iCub to perform several actions: spacing the legs and picking up a box, pushing a ball in a box, pushing aside a box, opening and closing the door of a container, dancing and hitting a ball (see Figure 3.13). The human operator generates the movements in real-time, his movement being tracked by the Xsens MVN suit and retargeted to the robot. The tele-operated sequence, lasting more than 2 minutes of continuous movements, is visible at https://youtu.be/U29pek0qEHQ, and another example of tele-operation with this controller is visible at https://youtu.be/Gzt-7GZfI78?t=399.

C1 C2 Task S 1 S 2 S 3 Task S 1 S 2 S 3 T lh , T rh 2 1 1 18 8 8 0 T la , T ra 3 1 1 17 7 7 0 T l f , T r f 1 1 18 8 8 2 0 T l f , T r f 1 1 19 9 9 1 0 T cxy 4 1 1 16 6 6 0 T cxy 3 1 1 17 7 7 0 T wo 6 8 8 8 0 T wo 6 1 1 14 4 4 0 T h 1 1 11 1 1 0 1 T h 6 1 0 T n 9 1 1 T n 9 9 9 4 0 T t 3 1 1 17 7 7 0 T t 1 1 1 17 7 7 2 T lla , T rla 1 3 1 1 16 6 6 T ll , T rl 0 0 5 T cz 4 1 1 16 6 6 0 T wh 3 1 1 17 7 7 0 T c 0 1 9 9 9
In conclusion, we advocate that the procedure of finding multiple Pareto-optimal control configurations can facilitate and accelerate the deployment of robust controllers for humanoid robots. The robot user can conveniently choose from the Pareto-front a pre-optimized solution to test on the real robot: this reduces considerably the number of test trials on the real robot and improves the parameters tuning. To give the reader an example, to find a suitable controller configuration for humanoid tele-operation it only took us 3 test trials on the real robot. Before our method, tuning such a controller was a time consuming trial-and-error procedure.

In this work we limited our approach to double support motions and we adopted a very light QP controller structure that does not include friction cones, contact wrenches and centroidal dynamics in the constraints [START_REF] Kuindersma | Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[END_REF]]. Those will be added in future work, to deal with more complex and dynamics motions, such as walking, manipulating heavy weights and interacting with humans. And of course, we will optimize the controllers for other robots: in [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF] we already did it for the COMAN robot, in simulation, and we will do it for the Talos humanoid robot that recently joined our team.

Discussion

The research presented in this chapter goes in the direction of automatically optimizing a humanoid controller for loco-manipulation tasks, an activity that often requires time consuming trial-and-error tuning and expert knwoledge of the tasks and the robotic platform. Our research, leveraging our results with retargeting and tele-operation, enables to greatly simplify the deploy of humanoid controllers.

My final goal is to obtain a toolbox that the humanoid robot users can easily adopt, as it will enable the human to demonstrate complex movements, then optimize them for any humanoid and generate the associated suitable controller.

A "universal" controller or a "universal" controller optimization method Our framework proved to be useful to automatically tune the soft task priorities, or task weights, with the underlying assumptions that the tasks were known in advance. We demonstrated in [Modugno et al., 2016a] that redundant tasks that are not useful to fulfill the robot mission were implicitly excluded, since the learning process was attributing a task weight almost equal to zero. However, the approach is not scalable to complex robots missions where multiple tasks and constraints must be considered.

One important question to address is therefore how to automatically select the proper set of tasks and establish the task priorities, when performing hierarchical control. Indeed, while weighted combinations of tasks enable smooth transitions if the task weights are also timevarying smooth functions (which creates problems in case of contact transitions in any case), continuously rearranging priorities within a prioritized controlle can be problematic. Changing the structure of a hierarchy can cause discontinuities in the control problem [START_REF] Mansard | Continuity of varying-feature-set control laws[END_REF][START_REF] Keith | Analysis of the discontinuities in prioritized tasks-space control under discreet task scheduling operations[END_REF], even if tracking smooth and feasible tasks. Different solutions for a continuous task transition exist [START_REF] Kim | Continuous task transition approach for robot controller based on hierarchical quadratic programming[END_REF][START_REF] Jarquin | Real-time smooth task transitions for hierarchical inverse kinematics[END_REF]: recently, Dehio and Steil proposed a dynamically-consistent Generalized Hierarchical Control that allows to choose, for each pair of tasks, between a soft or a hard priority with one task having null effect on the other one [START_REF] Dehio | Dynamically-consistent generalized hierarchical control[END_REF]. However, the controller structure depends on the robot mission, i.e., the gloabl "tasks" it has to solve. If it is walking, or manipulating an object, or carrying a load, there is little chance that a single controller structure be "universal" or "generic". More likely the structure depends on the robot activity and goals.

A possible way to address the problem could be to generate robust activity-specific controllers, and carry out a robust optimization process to select the tasks, their priority and hierarchy, in a way that the resulting controller is able to execute different desired trajectories for solving that activity. In other words, if we had N desired demonstrations of the task to be done, would we be able to design a "robust" controller that make the robot execute successfully all the demonstrations? Since long robotic missions (such as those of the Darpa Robotics Challenge) were basically segmented in sequences of smaller activities, it would make sense to have specific controllers for each specific activity. Rather than aiming for a "universal " controller we should aim towards a "universal" method for designing activity-specific controllers.

Robustness, but maximizing the computations offline Testing controllers and executing experiments on the real robot is expensive. "You do not want to try a controller on the robot unless you have verified it in simulation first": this is a mantra that we repeat from the first day we do experiments with a robot. However, we all know that a success in simulation often does not mean that it will be the case on the real robot, especially when contacts, balancing, torques and forces are involved.

In [Charbonneau et al., 2018a] we tackled this problem by optimizing for a "robustness" term in the fitness and using domain randomization to find the best parameters that were successful for different conditions of the simulated robotic setup. This procedure has become quite common in the robot learning and deep learning community, where simulation is also used for data augmentation.

In the case of humanoids, exploiting simulation is surely a very promising solution for autotuning the robot controllers (at low and higher level, i.e., from the reactive QP controller to the MPC controllers, the footstep planners, etc.). We should push the idea of domain randomization to concurrently optimize taking into account the noisy sensors, delays in the communication, errors in the dynamical model (e.g., link inertias, frictions...), joint and torque tracking errors, and so on. We could even do more and optimize for different robots, to have the same controller working on, for example, both the iCub and the Talos robot, or even try meta-learning techniques to re-learn from one robot to the other more efficiently [START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF].

However, it is clear that we can only optimize up to a point if we stay in a simulated world. It will be interesting to use reinforcement learning techniques to re-optimize in a data-efficient

Action recognition and prediction

Collaboration requires understanding what the partner is doing and will do in the future. A collaborative robot needs to predict the current human activity, predict the goal of the actions, anticipate the future intended movement, so that it can reason and generate appropriate actions that can assist the human partner.

This chapter presents two key contributions in this direction.

The first contribution concerns the recognition of the current human activity. This work was motivated by the necessity to compute an automatic ergonomics assessment of the human activity, which is necessary for collaborative robots to compute assistance actions that maximize the human ergonomics and minimize their efforts. The knowledge of the current human activity is necessary to for the computation of the costs associated to the ergonomics metrics. To obtain the activity information, we reasoned in probabilistic terms. We used probabilistic models of the activities, described by Hidden Markov Models, that are based on a set of features derived by the human posture (such as center of mass, joint angles, etc.). We proposed a taxonomy to describe the human activities, then a method to automatically find the best set of features for the activity models. This technique enables to automatically determine the features necessary to learn an activity model, hence to provide indications about the necessary sensors (wearable or environmental) to monitor the human activity. Finally, it provides an online estimate of the human activity to the robot.

The second contribution concerns the prediction of the human intention, formalized as predicting the future intended movement and the goal of the action from initial observations of it. We used a probabilistic description of the actions, formalized by Probabilistic Movement Primitives (ProMPs), to capture the variability of the human actions from several demonstrations. First, we proposed to predict the goal of collaborative reaching and goal-directed actions initiated by kinesthetic teaching with a robotic arm: with a multimodal approach, we exploited the end-effector position, the contact wrench and the referential human gaze directed towards the target. Second, we scaled the prediction of future intended movements from a single arm to the whole-body of the human: we proposed to carry the prediction in a latent space of the human postures. To this end, we proposed the AE-ProMPs method, which combines the dimensionality reduction of Auto-Encoders with the prediction capabilities of ProMPs. This technique enables the robot to have, after few observations of the human activity, a prediction of the future whole-body movement. This prediction can be used by the robot to generate suitable controls that consider the entire human posture in the future, for example in a model predictive control scheme. This technique became central in our work, and we will see how it will be used in Chapter 6 to anticipate the human during a particular (remote) collaboration.

The work presented in this chapter is based on the research conducted within the European Projects CoDyCo (FP7) and AnDy (H2020), in particular within the PhD thesis of Oriane Dermy ([J14], [B5], [C34]) and Adrien Malaisé ([J19,[START_REF] Malaisé | Activity recognition with multiple wearable sensors for industrial applications[END_REF]).

The main references are: 

Activity recognition

Recognizing the current activity performed by humans is an important skill for robots that must collaborate or simply co-exist with other humans. For example, a mobile robot assistant in a factory may need to know if the worker is waiting for a tool; a robot for elderly care may need to know if a human is walking, cooking or sitting, to monitor his/her daily activities; an exoskeleton may need to know when the human is bending forward, lifting the arms overhead or manipulating objects to decide the appropriate amount of assistance.

In the context of the AnDy project [Ivaldi et al., 2017b], we studied how to provide a robotic system with real-time information about human activities and postures, captured through wearable sensors. The main motivation in AnDy was to provide real-time feedback about the ergonomic posture of the workers, to help decrease the risk of musculoskeletal disorders [START_REF] Vignais | Innovative system for real-time ergonomic feedback in industrial manufacturing[END_REF]. Ergonomic assessment, which is currently evaluated offline with standard pen-andpaper worksheets filled by experts observing the workers doing their job [START_REF] Li | Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods[END_REF], requires both postural information and activity information. Digital human modeling software can provide automatic filling of these ergonomic worksheets [START_REF] Bossomaier | Scientific approaches for the industrial workstations ergonomic design: A review[END_REF], but only based on a digital simulation of the activity to evaluate. This software is intended for workstation design: they do not work in real-time, and identification of actions performed is done manually by the user. A possible solution to automatize the filling of ergonomic worksheets is to use activity recognition algorithms to infer the actions and postures that are considered in these worksheets.

In [Malaisé et al., 2018], we proposed to use Hidden Markov Models (HMM) to automatically recognize different activities during an industrial pick-and-place task. The input of the HMMs was the postural information extracted from wearable sensors; more in detail, we used a set of manually defined features (e.g., the center of mass, hand position) to describe the activity models, which requires expert knowledge of the relevant task and movement descriptors.

To obtain robust and generic activity recognition models, one cannot rely on a small set of hand-picked features, because there is no guarantee that these features are the optimal set that maximizes the performance of the learned recognition models. On the other hand, using all the possible features is not a viable solution, since it requires to use of a large number of wearable and environmental sensors, whereas in industrial applications the number of sensors should be optimized. Motivated by these problems, in [START_REF] Malaisé | Activity Recognition for Ergonomics Assessment of Industrial Tasks with Automatic Feature Selection IEEE Robotics and Automation Letters[END_REF] we proposed to automatically identify the best-performing subsets of features used as input for our recognition algorithm. Incidentally, we also propose a generic taxonomy (i.e., a set of activities to recognize) that is compatible with the postures and actions evaluated in standard ergonomic assessment worksheets and propose to automatically find the best features for the different models. We apply our proposed method to the recognition of activities relevant to ergonomics evaluation of industry tasks, which we recorded in a lab environment with 13 participants. The outcome of our study is the list of features to be used to classify the activities according to our taxonomy. Both the dataset1 , described in detail in [Maurice et al., 2019b], and our software2 are also publicly available.

The procedure is illustrated in Figure 4.1. First, we define the taxonomyi.e., the set of activities that need to be recognized by our activity recognition algorithm, that is used to classify the activities. Our taxonomy was defined based on the EAWS ergonomic assessment worksheet, which is widely used in the industry for ergonomics assessment of workstations and workers' activities. The ergonomic assessment of EAWS is largely based on the evaluation of the posture, with contextual information about the action being performed (e.g., does the task involve vibrations, does the person carry a load). Our taxonomy, detailed in Table 4.1), is organized into four main categories, each with differ- ent levels of detail concerning both postures and goal-directions actions. In GEPOS we extend the main postural categories as in EAWS (standing, kneeling/crouching, sitting, lying). In DET we list the subcategories corresponding to arms and torso configuration: upright, bent, strongly bent, shoulder level work, and overhead work. In DEPOS we have a detailed postural classification that combines GEPOS and DET, enabling to have specific models that differentiate specific activities, such as standing bent forward and standing strongly bent forward, or crouching overhead work and crouching shoulder level work. In the fourth category CUACT we list (non exhaustively) the goal-directed actions performed by the human worker, e.g., carrying a load, screwing. The set of labels for the actions was adapted to our dataset, corresponding to a use case of a workstation in a car manufacturing production line; of course, new labels can be added if new actions need to be identified (e.g., drilling).

In order to automatically infer the "activities" (postures and actions) proposed in our taxonomy, we use classifiers for human activity recognition that we first proposed in [Malaisé et al., 2018], based on Hidden Markov Models. The models are defined by N states representing the "activities", which are the possible states for each category of taxonomy. For example, in the model of GEPOS the "activities" are standing (St), walking (Wa) e and so on; all the "activities" are presented in Table 4.1. S = {s 1 , s 2 , ..., s N } represents the set of possible states. For each instant t, the goal is to infer the activity, such as q t = s i . The model is trained based on several time series sequences, each represented by a series of discrete states Q = {q 0 , q 1 , ..., q t , ...q T }, obtained by manual annotations of a dataset by independent experts (more details about this annotation are reported in [Maurice et al., 2019b]), and a series of T observations X = {x 1 , ..., x t , ..., x T } corresponding to features extracted from the available (wearable) sensors. Table 4.2 lists the dif- ferent possible features that we considered, which could be obtained by our wearable devices: the Xsens MVN suit and the e-glove. The observations are modeled based on a Gaussian probability distribution, with a full covariance matrix, and the incoming data from the wearable sensors are filtered with a sliding window of 250 ms with a 50% overlap to reduce noise [START_REF] Bao | Activity recognition from user-annotated acceleration data[END_REF].

To train and evaluate a model, we first need a training dataset. The activity recognition algorithm is based on supervised learning, therefore a labeled dataset must be provided for the training stage. We conducted a campaign of in-lab data collection of tasks inspired by an industrial use case, where participants performed various manual tasks. Whole-body kinematics and hand contact forces were recorded. The data were then manually annotated by three independent annotators to generate the appropriate labels for every frame of sensor data.

Our dataset was split randomly into a training set (70% of the sequences) and a testing set (30% of the sequences). Two parameters of the HMM are learned based on the data from the sequences of the training set: the modeled observations and the transition matrix. Cross validation with ten iterations is computed in order to evaluate the recognition performance for each model with the mean and standard deviation of the F1-score.

While training HMMs in a supervised way is relatively straightforward, the key element in this work has been to automatically identify the relevant features to use for each model. This is critical for the successful use of the HMM-based method since the quality of the model critically depends on the set of features used to describe the activities. Table 4.2 reports the list of all the features we considered, which in our case can be computed from the wearable sensors we used in our experimental setup (the motion capture system Xsens MVN and an e-glove).

To automatically determine the best set of relevant features for each activity recognition model, among the entire set of possible ones, we used a feature selection method. Three methods were considered: a wrapper-based method [Mandery et al., 2016a], a filter-based method [START_REF] Li | Feature selection: A data perspective[END_REF] and a simple dimensionality reduction based on Principal Component Analysis (PCA). This allows comparing the subsets of "raw" features obtained with feature selection algorithms and subsets of features derived from all the available dimensions with the PCA. The resulting subsets of features are evaluated in terms of recognition performance. Fig. 4.3 displays the evolution of the recognition performance (F1-score) with the number of features included in the recognition model, for all 3 feature selection methods (wrapperbased, filter-based and PCA) and for each of the 4 taxonomy levels. We limited the size of the subsets to 15 features since we aim to use low-dimensional sets of features to increase computational efficiency and reduce the number of sensors needed. For all 4 levels of the taxonomy, the wrapper-based method identifies better-performing subsets than both the filter-based method and the PCA. The recognition scores are nevertheless close with all 3 methods, except for the CUACT level where the wrapper-based method set largely outperforms the 2 other sets of features. Fig. 4.3 shows that adding new features to subsets selected with the filter-based method sometimes degrades the recognition performance (e.g., for DEPOS and DET). This is likely due to the underlying Gaussian assumption in the observation model of the HMM: if the distribution of the data related to one feature strongly differs from a Gaussian distribution, the inclusion of this feature in the model might deteriorate the performance. The wrapper-based method is less sensitive to the violation of the Gaussian assumption in features because features are then selected directly based on the recognition performance of the model. Overall, the wrapper-based List of all features available with the motion capture system and the glove. Segments and IMUs' orientation are defined with quaternions. The "norm" features (marked with a *) correspond to the norm of the vector containing the velocity or acceleration of all joints or segments. method is more robust, but its feature selection process is computationally much more expensive than the filter-based and PCA methods. However, since this kind of procedure is run offline and only once, time is not a concern.

In order to check whether identifying sets of features specific to the proposed taxonomy is needed, we compared our best-performing subsets of features (with the wrapper-based method) with subsets proposed by Mandery et al. [Mandery et al., 2016a] for human activity recognition, and with high-dimensional sets of features (all features, 3D position of each segment, and angle of each joint). Since the 2 subsets proposed in [Mandery et al., 2016a] are of dimensions 4 and 8, we used our best-performing subsets of similar dimensions to make the results comparable. Table 4.3 presents the recognition performance obtained with those different sets of features. First, using high-dimensional sets of features does not result in better performance compared to using reduced sets of selected features, while it is likely computationally less efficient and may require more sensors. Hence smaller sets of features are advantageous. Second, among the reduced sets of features, our best-performing subsets greatly outperform the generic subsets proposed by [Mandery et al., 2016a] for all 4 levels of the taxonomy. Hence, using a set of features dedicated to our taxonomy is recommended in order to optimize the performance of the recognition module. It should nevertheless be noted that the scores presented here are obtained with subsets of features optimized separately for each level of the taxonomy. If all levels are to be used simultaneously, and if a goal is to reduce the number of sensors required, a subset of features common to all 4 levels may be preferable.

Table 4.4 lists the subsets of features that allows reaching 2% of the maximum recognition rate for each taxonomy level. The GEPOS and DET subsets both contain only features that can be obtained with a reduced number of sensors. GEPOS features correspond to lower-body movements, while DET features are related to back and arm movements, per the labels of each of these 2 levels of the taxonomy. Conversely, several features in the DEPOS and CUACT subsets require all IMUs sensors for their computation (center of mass and "norm" features). These "aggregated" features were included in the initial set because Mandery et al. [Mandery et al., 2016a] identified them as useful for human motion recognition (and our results suggest that they are indeed useful features). Nevertheless, when the number of sensors is a concern, a new set of features should be identified by excluding all "aggregated" features from the initial set of available features.

It must be noted that our algorithm selects the set of features that maximize the recognition of all the activities in the dataset: while this has certain advantages, it may not be ideal to accurately recognize activities that are not frequent, such as being strongly bent crouched (a posture that is not frequent and thus has few occurrences in the dataset) or lifting 10kg above the shoulders (an action that may happen frequently but last few milliseconds, and thus has few points in the dataset). In such cases, and for more precise detection of certain activities, it may be more convenient to train dedicated models with manually selected features.

To summarize, we showed that activity recognition is possible with data-driven models based on HMM with automatic feature selection and that the latter improves the performance as it allows the optimization of the features for the specific activity models without requiring manual handcrafting of the features.

Our method was demonstrated in an online activity recognition demo during the review meet- Recognition performance using different subsets of features: 4 and 8-dimension bestperforming subsets for each level of our taxonomy (features differ for each level of the taxonomy), subsets recommended in [Mandery et al., 2016a], and high-dimensional subsets.

ings of the European Project AnDy, and was shown at Automatica 20213 in the AnDy booth. A video showing the recognition is visible at https://youtu.be/CSTsM2xJjxg.

Prediction of intention and whole-body movements

An important skill that allows humans to collaborate efficiently is their ability to predict the future movement of their partners [Ivaldi, 2018]. This ability not only entails the "prediction of intention", often formalized as predicting the goal of an action, but the "prediction of the future intended movement", which we recently formalized as predicting the future trajectory given early observations of it [Dermy et al., 2017b].

The ability to predict the future intended movement is also crucial for collaborative robots to anticipate human actions and for assistive technologies to alert if a particular movement is nonergonomic and potentially dangerous for human health [Ivaldi et al., 2017c]. To consequently act, this prediction must be very fast from the few available observations, despite the variability and the high dimensionality of human movement.

The problem that we address in this section is illustrated in Figure 4.4: we want to predict the future intended human whole-body movements given early observations or partial trajectories, and fast enough for a robot to plan a suitable assistive action if needed. Our proposed solution is based on Probabilistic Movement Primitives (ProMPs) which captures the probability distribution of demonstrated trajectories over time, with several features such as co-activation, coupling and temporal scaling [Paraschos et al., 2013a]. In [START_REF] Maeda | Learning interaction for collaborative tasks with probabilistic movement primitives[END_REF], Maeda et al. showed that ProMPs are more efficient than DMPs for prediction, while [START_REF] Ewerton | Learning motor skills from partially observed movements executed at different speeds[END_REF]][Paraschos et al., 2013b] showed that ProMPs are better at generalizing trajectories into primitives.

In our previous work [Dermy et al., 2017b,a], we used ProMPs to infer the future intended trajectories during human-robot interaction, using haptic signals and gaze cues: we were able to predict the future trajectories despite variations in the demonstrated trajectories and their duration, and considerable noise. We showed that a robot can use an initial portion of a trajectory, which we call "partial trajectory", to infer its continuation up to the goal [Dermy et al., 2017b]. The trajectories were demonstrated to the robot using physical interaction, visual cues or both [Dermy et al., 2017a]. These experiments concerned only the robot's arm movements: though combining kinematics and dynamics signals, the dimension was small (e.g., 6) whereas here we need to infer the future of whole-body movements with a bigger dimension. In particular, we want to predict the future trajectories for all the human segments representing the performed action; our prediction is performed in a high dimensional space (e.g., 69 and more)4 and our previous method [Dermy et al., 2017b] is computationally inefficient, hence not suitable for the targeted real-time applications.

To solve this issue, we propose to predict the continuation of the high-dimensional trajectories mapped into a low-dimensional latent space, using autoencoders (AE). The ProMPs are learned directly in this latent space, in which we also compute the predicted future trajectories. The compression is done using autoencoders (AE), which enable encoding the original trajectories into the latent space and decoding the predicted trajectories from the latent space to the original high-dimensional space. This notably reduces the computational time for the prediction to occur and hence enables to use this method in real-time applications. We call this method AE-ProMPs.

The method is illustrated in Figure 4.5. AE-ProMPs consists of two phases.

In the first phase, offline, we build the latent space by learning to reconstruct the posture with an autoencoder. We then learn the ProMPs of the actions that we want to predict: we do this by learning the trajectory distributions of the several demonstrations of the actions. The output of this phase is the ProMPs learned in the latent space, which is our prior. In this second phase, online, we can perform recognition and prediction given some movement observations. When the human starts an action, his/her postures are mapped in the latent space (cf. black dots in the plot of Figure 4.5) and used to condition the prior models of the ProMPs to identify the most probable primitive and predict its future evolution (cf. red dots in the plot of Figure 4.5). The predicted latent postures are then mapped into the original postural space using the decoder. This predicted whole-body trajectory can later be used by the robot as input for its controller, in the case of pHRI, or to evaluate the human movement, for example in terms of ergonomics or effort.

The procedure is outlined in Figure 4.6.

The AE is a multilayer perceptron in which the output layer, of the same dimension as the input layer, is trained to reconstruct the input [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. For this reason, we can say that the AE has an encoding and a decoding part: the first transforms the input x t of dimension N, in our case the whole-body kinematic posture, into a value z t in a non-linear compressed latent space of dimension R ≪ N; the second does the opposite, that is mapping a point in the latent space into the original space by decoding, which provides an estimation or a reconstruction of x t , denoted by xt , in the original input space. Let us consider a sequence of movements of t f frames {x 1 , . . . , x t f }. Each point x t , corresponding to a posture, is mapped into the latent space using the encoder: z t = enc(x t ). Each latent point z t is then reconstructed as xt = dec(z t ). We We can then compute the continuation of the observed trajectory Ξ = [ ξn o +1 . . .

ξt f ] ⊤ , from n o + 1 to t f 5 : ∀t ∈ [1 : t f ], ξ (t) = Φ t μω ω ω k
with the duration of the trajectory t f , which corresponds to the number of frames used to represent the trajectories. More details on the computation of the posterior distribution, prediction through conditioning on the observations, estimation of t f etc. can be found in [Dermy et al., 2017b, Paraschos et al., 2013a].

Once we obtain the predicted future trajectory in the latent space Ξ, the AE decoding is performed to obtain the prediction of the future whole-body movement in the original input space:

dec( Ξ) = [ xn o +1 . . . xt f ] ⊤ .
To evaluate AE-ProMPs for predicting the future movements of a human performing different whole-body movements, we used the actions dataset from [Malaisé et al., 2018], consisting of ten movement demonstrations for seven different actions: bending forward, bending strongly forward, lifting a box, kicking, opening a window, walking and standing. Some examples of postures from the different actions are shown in Figure 4.7. The trajectories were recorded with the XSens MVN suit, which tracks human motion with a 23DOF skeleton model. From these recordings, using XSens MVN Studio, we retrieve the 3D Cartesian positions of the human segments. Thus, the posture of the human operator is represented by 3 × 23 = 69 Cartesian position variables. Each trajectory demonstration has been re-sampled to the last seventy frame steps (t f = 70), to enable the comparison with VTSFE that needs a fixed duration trajectory, as explained in [START_REF] Chaveroche | A Variational Time Series Feature Extractor for Action Prediction[END_REF].

We use AEs to compress the 69-dimensional original posture data into a low-dimensional latent space, where we learn the ProMPs to make our predictions.

The AE is composed of different layers: an input layer with N units x = {x 1 , . . . , x 69 } for the entire posture values (i.e., 69 units); a compression layer (latent space) with a variable number R (e.g, 10 units) of units z = {z 1 , . . . , z R }; an output layer with the decoded posture that has the same dimension N of the input layer (i.e., 69 units) -we call these units x rec = {x 1,rec , . . . , x 69,rec }; finally, two hidden layers, one between the input and the compressed layers and the other between the compressed and the output layers (e.g., 500 units) -we call these layers h j with j ∈ [1, . . . , R] and its ith unit: h jx i . The weights of this neural network are initialized using the Xavier initialization [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF], where weights are scaled by a uniform distribution. For the activation function of all units, we choose the "leaky ReLU" [START_REF] Xu | Empirical evaluation of rectified activations in convolutional network[END_REF]: it is similar to "ReLU" (rectified linear unit), but the function is not zero for negative values, it has a small negative slope (i.e., f (x) = 1 x<0 αx + 1 x>=0 x, with α = 0.5 in our case). We choose this function after having compared its performance with the sigmoid and ReLu activation functions. Finally, the neural networks are learned by using the least mean square error between x and x rec as loss function and ADAM as gradient descent optimizer [START_REF] Kingma | A method for stochastic optimization[END_REF]. The AE was trained using 2/3 of all the postures of the 70 trajectory demonstrations, that is 30916 postures. Then, reconstruction was tested using the last 1/3 postures.

Once the latent space was trained to reconstruct the original posture, we learned the ProMPs from the encoded trajectories (i.e., from the latent space of the AEs), with for example ξ (t) = [z 1 (t), z 2 (t)] ⊤ when R = 2. We used 69 encoded trajectory demonstrations, and we tested 5 samples from each of the 7 actions using the leave-one-out cross-validation. The critical parameter for AE-ProMPs is the dimension of the latent space. Figure 4.8 shows the prediction error (distance between the real and predicted trajectory) for AE-ProMPs in relation to the percentage of observations for different dimensions of the latent space. As expected, the error decreases with the latent space dimension, and the plots suggest that a latent space dimension of 5 is a good compromise between performance in prediction and computation time, which is in line with the dimension of the postural latent space used by Chen et al. in [START_REF] Chen | Dynamic movement primitives in latent space of timedependent variational autoencoders[END_REF]. One can remark that after 60% of observations, the method can infer the future whole-body trajectory with a distance error in the order of 1cm, which is a very good performance for our targeted application. Figure 4.9 shows the prediction of human trajectories encoded in a 5-dimensional latent space. Again, the frames were taken at representative moments of the movement, from the video attachment. Figure 4.10 shows an extract from the latent space trajectories for z 1 : the few irregularities in the trajectories do not negatively affect the ProMPs, therefore not causing problems in the prediction phase. : Comparing the prediction of future trajectories with ProMPs and AE-ProMPs with a 5-dimensional latent space: mean and variance of the distance error between the ground truth trajectories and the predicted ones and mean computation time.

A critical feature for prediction is the computation time: since we target real-time applications, we need to trade off the time for computing a prediction with the accuracy of the predicted trajectory. We compared the prediction performance of the ProMPs applied on the entire skeleton trajectories with one of AE-ProMPs with reduced latent space. Table 4.5 provides a comparison between the two methods in terms of accuracy and computation time necessary for the prediction of the future whole-body movement, for a 5-dimensional latent space and after 20% of observations. While the predicted trajectories with ProMPs are more accurate, the time required for computing the prediction is too high for real-time applications. The computation time with AE-ProMPs is more adapted, though it can certainly be reduced with some code optimization.

The loss of using compression in a latent space in terms of accuracy is acceptable for our targeted applications (ergonomic alerts, human-robot collaboration): therefore AE-ProMPs is an appropriate technique to address the issue of predicting whole-body trajectories for anticipation.

Though promising, AE-ProMPs still require several improvements: for example, the prediction of trajectories of different duration, as we did in [Dermy et al., 2017b]; improving the accuracy of the encoding-decoding by automatically setting the latent space dimension; the latent space could also be improved, notably by using variational AEs instead of pure AEs, in particular focusing on the continuity of the postural trajectories in the latent space.

Discussion

The integration of activity recognition and movement prediction has not yet been achieved, and there are numerous open issues that needs to be solved. Some are listed above.

How long til the next action?

To plan suitable assistance actions, the robot needs to be aware of the current human activity but also estimate how long the human will perform this activity, and what will be the next action performed by the human. This information can inform also higher decision levels, and be used in discrete models of sequences of activities that enable reasoning about high-level tasks that the robot should do to assist the human (for example, give a screwdriver if the human is placing a screw on a hole).

In this context, we found some promising results in the use of hidden semi-Markov Models, an extension of HMM where the duration of stay in each state is explicitly defined and is a variable. We plan to continue addressing this problem in the context of the ANR project Flying Co Worker, where a robot must estimate when to fetch a tool to the human worker based on the estimation of when he/she will finish the current action and will need the tool.

Can we recognize sneezing? One of the limits of data-driven supervised learning for action recognition is that we can only recognize what is captured by the dataset. In other words, we are limited by our dataset. If a human never sneezed in the dataset, if a corresponding "sneezing" label does not exist, then this particular action will never be represented in our system. And what if the human scratches the head? There are many small actions and involuntary movements that we would like to recognize, for many reasons. In some cases, they are simply not useful. For example, they are parasite actions that do not contribute to the automatic evaluation of the task performed by a worker: in the context of AnDy, where we want to automatically estimate ergonomic indicators, the frames corresponding to these activities should be ignored. On the contrary, in other cases, such actions are very informative. For example, a robot approaching a human worker may want to know if the worker is scared and makes an unexpected gesture that may indicate fear, like bending backward. This action may not be in the dataset! Having worked on activity recognition made me realize that it has great use for human-robot interaction: not only in recognizing known activities but in spotting the parasite activities or the "unusual" activities that may help the robot to stop or trigger safety routines in case the human wants to withdraw from the interaction. This case is never considered in HRI and it is something that needs to be addressed at some point.

How to incorporate the prediction into the robot controller? To generate appropriate actions, the robot needs to incorporate the prediction of intention in its controller.

The simplest solution is to incorporate the prediction of the goal for collaborative co-manipulation, which makes sense for goal-directed tasks and reaching movements, such as in a pick & place scenario. This can be done by using the estimated movement goal as a target for a tracking task of the end-effector, e.g., (x tx goal ) (with abuse of notation). For any tasks that is not necessarily realized by goal-directed actions, we can incorporate the entire predicted trajectory to follow the human during co-manipulation. In that case, the tracking task could be (x tx predicted t

). The future predicted goal or trajectory can also be exploited in a model predictive control scheme, where at each step the estimation is updated, a sequence of optimal controls for that specific prediction is computed, then the first control is applied.

I am planning to address this problem in the context of the H2020 project AnDy. We plan to realize a pick & place task where the robot assists a human to transport a long bar from A to B. Estimating B from the initial observations of the human trajectory should make the robot compliantly follow the human. We plan user studies to verify if humans can detect whether the robot is using the prediction of the intended trajectory or not, and check whether the human prefers or not that the robot exhibits this intelligent behavior. In fact, it is not known if a predictive robot would be accepted more positively or negatively than a robot that simply follows the human movement in a purely reactive "zero torque" mode.

A similar concept can be used to improve the tele-operation of robots in case of intermittent or broken connection since the robot can use the prediction of the intention of the tele-operator to continue the current motion.

How to define and detect the human intention? In our studies, we defined intention as the future intended movement until its goal (if the action is goal-directed). This is a rather "low-level" definition, referring to the action representation as joint or Cartesian trajectories. However, this definition is agnostic of tasks, contexts and mission or " motivation" of the agents, which are more "high-level" and certainly provide important priors. Is it possible to reconcile the "execution" level to the "decision" level?

Another open question is how to choose the timescale of the prediction of the future movement. For a robot controller, it can be important to predict human movement in the next 500ms, every 10ms; whereas for a drone fetching a tool it may be useful to predict human activity in the next 5s, every 200ms. The prediction frequency and timescales play a role.

Can we predict if the intended movement is ergonomically safe and then act? Since we can compute the future whole-body movement of the human, we can easily determine if the movement is ergonomically safe just by looking at the instantaneous predicted posture and computing postural ergonomics score measures. This information can be used to provide alerts to the human, to stop a potentially dangerous motion; it can also be used by the robot to compute assistance motions that aim at improving ergonomics.

We started to explore these two ways in the user studies within the H2020 project AnDy. In particular, within the master internship of C. Amiot we identified possible interfaces to inform a worker that he/she must stop the movement, while in the Ph.D. of A. Malaisé we developed the concept of the "ergonomic maps", which are 2D latent representations of the ergonomics score of a human during his/her motion (see Figure 4.11). The advantage of these maps is that they are very intuitive to understand: one can quickly see if his/her current posture is ergonomically good or not following the color code.

Since latent trajectories of the human can be collected in the 2D space, in principle it is possible to train a ProMP over these trajectories and use the trained ProMP to predict the future of a movement from initial observations, following the procedure we described in Section 4.2. There are several issues that need to be solved first, like the continuity of the human postural representation in the 2D latent space, but we think it is promising research that may lead to application in industry. The color code in the maps reflects the ergonomic score associated with each posture. This graphical representation has the advantage of being very intuitive and easy to use for a human even without particular knowledge of ergonomics.

Learning from and with human experts

Should robots learn autonomously from their own exploration or from human demonstrations? During my postdoc in UPMC, I was part of a ANR project called Macsi, where this question was one of the many that we were addressing. The project was about developmental robotics. We were getting inspiration from the way babies learn to recognize and use objects, starting from visual cues and then gradually building more complex concepts such as the affordances. We came up with a series of experiments where the robot, the humanoid iCub, was learning the appearance of objects by observation, then with autonomous, intrinsically-motivated exploration. The human, in these experiments, was acting like a tutor: showing objects like a parent would do to a newborn, then interactively doing actions that the robot could not do. The human tutor, with her actions, improved the learning process when she was acting as a "good teacher", and the robot exploration was helpful to compensate for "poor teaching" actions. Thanks to Macsi, we advanced our understanding of how should robots learn models of their environment, acquire skills, and so on. Retrospectively, we could have exploited the human feedback a lot more than what we did. After all, even babies receive a constant help from their parents and caregivers during their development: demonstrations, positive and negative feedback, rewards, and so on. Learning from exploration with mechanisms based on intrinsic motivation was a very promising way to make robots more autonomous and at the same time to try to understand how humans learn, which is a fundamental question for science. In some situations, the robot must necessarily be able to learn some models of the environment on its own, for example to improve its dynamics models and control of its body.

In hindsight, we gained in terms of understanding how learning should happen, but he skills we were able to acquire with this kind of science were very limited in terms of "how they can be useful to advance the deployment of robots in the real world". One reason is because we really did not fully exploit the human expertise and knowledge.

For the sake of advancing the robot skills, one promising way is to leverage the human demonstrations of the tasks/actions and incorporate the human feedback in the reinforcement learning process of the robot for local improvement/optimization. Imitation learning and kinesthetic teaching have been disruptive for manipulators. Whole-body motion retargeting and teleoperation have the potential to be the same for humanoid robots. There is almost no limit to the number of skills that we can teach to the robots, provided that we have a good controller that enables the robot to perform a variety of movements in its own environment.

This chapter presents two key contributions in this direction. The first contribution concerns the experiments of Macsi, where the human was tutoring the iCub to learn the appearance of many objects from scratch. The second contribution concerns a retargeting and tele-operation framework that we have been using to demonstrate complex whole-body movements to the iCub.

The work presented in this Chapter is based on the research conducted within the ANR project Macsi ([J3], [J8], [C8], [C12], [C14]), during my postdoc in UPMC, and within the European Project AnDy H2020 ( [C28], [C36]), in relation with the PhD thesis of Luigi Penco.

The main references are: 

The human as a tutor: the case of object learning

A fundamental question for artificial intelligence is how to design machines that learn like children and that are educated [START_REF] Sterrett | Bringing up turing's 'child-machine[END_REF]. In its seminal paper [START_REF] Turing | Computing machinery and intelligence[END_REF], Turing spoke of dividing the problem of building a machine that imitates the human brain process in two main parts, namely "the child program", "the education process" and the "other experience to which it has been subjected". These concepts have largely inspired the developmental robotics research, whose holy grail is to implement the cognitive learning process of the human taking inspiration exactly from the development of children.

The MACSi1 project originated in this context. We addressed the problem of active object learning by a humanoid child-like robot, using a developmental approach. We designed vision, manipulation and learning algorithms and conducted experiments with the iCub robot (iCub-Paris01) interacting with a human teacher to learn to recognize several objects by acquiring models of their visual features. Our methods was inspired by some observations about the coupling of vision and manipulation in infants, particularly how they focus on the most informative objects.

In our cognitive architecture, the visual representation of the objects is built incrementally through three steps: observation, active exploration and interaction with a human "teacher". In the first step, the robot collects information about the objects by pure observation of the table scene where the objects are placed. In the second step, the robot actively interacts with its environment and performs simple manipulation actions (e.g., pushing) to acquire more information on the objects in the scene. In the third step, the robot combines social guidance with exploration driven by "intrinsic motivation", an internal guiding mechanism assimilated to curiosity that is essentially based on the discrepancy between the observed and the predicted. This combined strategy allows the robot to learn the properties of objects by actively choosing the type of manipulation and concentrating its efforts on the most difficult (or the most informative) objects.

The approach to the object learning process is outlined in Figure 5.1. The primary source for object detection is a RGB-D sensor placed over the area where the interaction with objects and human takes place. The object learning and recognition module has been designed with the constraints of developmental robotics in mind. It uses minimal prior knowledge of the environment: in particular, it can incrementally learn the robot's and the teacher's hands, and the object's appearance during interaction with them.

All information about the visual scene is incrementally acquired during the robot's experiments. Figure 5.2 and Figure 5.3 illustrate the two main steps of visual processing. In the first step, the visual scene is segmented into proto-objects that correspond to units of visual attention defined from coherent motion and appearance. Assuming that the visual attention of the robot is mostly attracted by motion, proto-object detection starts from optical flow estimation, while ignoring the regions of the scene that are far away according to the constraints of the robot's workspace. Then, the Shi and Tomasi tracker is used to extract features inside moving regions and to group them based on their relative motion and distance. Each cluster of coherently moving points is associated with one proto-object and its contour is defined according to the variation of depth. Each proto-object is therefore tracked across frames and finally identified as an already Views are encoded by the occurrence frequency of extracted mid-features. An overall entity appearance is characterized by a multi-view model constructed by tracking an entity across frames and collecting its views occurrence frequency. Besides tracking, the association of the current view to an entity can also be based on appearance recognition when an object appears in the field of view. In this case, appearance-based view recognition is performed first, using all extracted mid-features to participate in a voting procedure that uses the TF-IDF (Term-Frequency -Inverse Document Frequency) and a maximum likelihood approach. If the recognition likelihood is high, the view is identified as the most probable among already known views; otherwise, a new view is created. Then, appearance-based entity recognition is performed using the same approach based on the occurrence statistics of views among known entities. During experiments on interactive object exploration, objects are often grasped and therefore they move together with a human or a robot hand. In that case, our system needs to pay attention to distinguishing the features belonging to the hands from those of the object to avoid polluting the model of the objects with features from the hands. To this end, our approach performs a double-check recognition to identify simultaneously moving connected entities, so that each segmented proto-object is recognized either as a single view or several connected views, where each view corresponds to one entity. This entire processing pipeline, represented in Figure 5.2 enables the incremental creation of the object models. Actually, at this stage there is not really a concept of "object" but rather entities that could be the objects in the scene, but not exclusively. It seems appropriate to be able to classify the physical entities into three categories of interest: robot parts, human parts or manipulable objects. Figure 5.2.: The image processing pipeline for extracting object features, collected as views of "entities". There is no real concept of "object" at this stage: the human hand is also an "object", for example.

The categorization method, represented in Figure 5.3 takes on a multimodal approach by considering the vision and the proprioception information, and relies on statistics on the motion of physical entities. Among the remaining entities, we assume that each object moves only when it is connected to another entity, either a robot or a human, and each object is static and independent of robot actions when it is single. Thus, the object category is identified from the statistics on its simultaneous motion with robot and human parts. Using the ability to categorize entities, the models of objects previously constructed during their observation can be improved during robot interactive actions. Since the manipulated object does not change during the robot action, its corresponding model can be updated with recognized views connected to the robot hand or with new views created from the features that do not belong to the robot hand. The updates with recognized views reduce noise in object models, while the updates with new views allow the robot to accumulate views corresponding to unseen perspectives of the objects.

This simple yet effective strategy has been fundamental to increase the quality of the models that are incrementally built, hencre increase the object recognition performance, as shown in Figure 5.4. Remarkably, this approach is robust with respect to partial occlusions of the entities and particularly to the numerous visual appearances that the hand can assume when it interacts with the objects, because the continuous collection of view contributes to the creation of a better model for recognizing it. For example, this approach allows the robot to collect features when the object is manipulated in the hand: for example, when the robot picks an object, rotates the hand and looks at the object while it is held.

The only necessary "trick" to make this system work is to teach the hand model first, before introducing any other object. This is done by moving the human hand in the visual field before showing any object, and at the same time making the robot move its hand in its visual space. Therefore, we start each experiment by showing the hand first to the robot -so the robot can Figure 5.3.: Using the robot proprioception information to distinguish between entities and attribute categories: objects, robot body parts and human body parts. A simple strategy enables to distinguish between the three categories: if the robot is movingwhich is known from the changing joint values-and an entity is moving in the camera view, then it is a robot part; if an entity is moving but the robot is not, then it is a human body part; if there is no movement, then it is an object.

gather enough data to build a good model of it. More details about the visual learning system can be found in [START_REF] Lyubova | From passive to interactive object learning and recognition through self-identification on a humanoid robot[END_REF].

To to collect more visual features of the objects, hence to improve the visual models, the robot cannot simply observe the objects (which is the first step of the learning process, shown in Figure 5.1) but it must actively explore the objects. Some objects are more informative than others in terms of visual appearance, and the robot needs to actively manipulate these objects to gather all their views, because manipulation causes changes in the way the objects appear to the robot. Improving vision through manipulation is a well-established idea in robotics, also related to results in neuroscience [START_REF] Metta | Better vision through manipulation[END_REF]. In our work, Improving vision models is done by performing active exploration and socially-guided exploration and interaction (the second and third step of Figure 5.1). Incidentally, our approach has much in common with experimental observations about the way infants learn to recognize objects through feature tracking across actions and social cues [START_REF] Wu | Infants learn about objects from statistics and people[END_REF].

Active exploration means that the robot performs some manipulation actions on the objects. The limit to the number and type of manipulations is basically set by the platform constraints. In our experiments, we used the iCubParis01 robot, which has 5 actuated fingers (9 DOF in total, since some joints are coupled), no force sensors or tactile sensors. We implemented different Figure 5.4.: Being able to distinguish features belonging to different but connected entities, the robot can collect more views of the object even when it is held in his own or the human's hand. As a consequence, the object recognition considerably improves.

manipulation mechanisms, such as dropping, pushing and rotating the objects in the hand. The arm/hand performing the action was decided according to the location of the object with respect to the robot's base frame: an object on the right/left was manipulated with the right/left hand. Figure 5.5 (bottom-right) illustrates an example of the first two actions: in the first row, the robot is reaching, grasping, lifting and then releasing the object to make it fall, which results in an action similar to the common "throwing" or "dropping" done by babies; in the second row, the robot is pushing objects from the side, to make them roll or fall. Instead of implementing a purely random exploration, we implemented a decision-making system based on intrinsic motivation [START_REF] Lopes | Guest editorial active learning and intrinsically motivated exploration in robots: Advances and challenges[END_REF], which combines social guidance with active exploration. The idea is that exploratory and social motives can maintain the robot in a continuous state of excitation and acquisition of new stimuli, which nourish its learning process. The robot can exploit social guidance for bootstrapping or boosting its learning processes. The human is not only technically necessary for the object learning experiment because he/she is fetching the objects2 , but it can perform some manipulation actions that the robot cannot easily do (e.g., flipping the object on a particular side), and by showing the objects in a particular way it can boost the learning process: showing the objects in a novel pose, to unveil novel objects views to learn, helps the robot, whereas showing the objects on the same side does not help.

Independently of the human's behavior, the robot should be able to decide autonomously which objects to explore and how. Given the huge space of visual and motor possibilities, selection and guidance are necessary to narrow down the exploration, and orient the robot to-Figure 5.5.: The object learning experiment of [Ivaldi et al., 2014]: the active exploration strategy is defined by SGIM-ACTS, an algorithm inspired by the concept of intrinsic motivation.

wards "interesting' objects and events. The expression intrinsic motivation, closely related to the concept of curiosity, was first used in psychology to describe the spontaneous attraction of humans toward different activities for the pleasure that they experience [START_REF] Deci | Intrinsic Motivation and self-determination in human behavior[END_REF]. These mechanisms are crucial for humans to autonomously learn and discover new capabilities [START_REF] Ryan | Intrinsic and extrinsic motivations: Classic definitions and new directions[END_REF]. In robotics, they inspired the creation of meta-exploration mechanisms monitoring the evolution of learning performances [START_REF] Schmidhuber | Formal theory of creativity, fun, and intrinsic motivation (1990-2010[END_REF], Oudeyer et al., 2007[START_REF] Schmidhuber | Curious model-building control systems[END_REF], with heuristics defining the notion of interest used in an active learning framework [START_REF] Fedorov | Theory of Optimal Experiment[END_REF][START_REF] Cohn | Active learning with statistical models[END_REF][START_REF] Roy | Towards optimal active learning through sampling estimation of error reduction[END_REF].

The implementation of the intrinsic curiosity mechanism is done by the Socially Guided Intrinsic Motivation with Active Choice of Teacher and Strategy (SGIM-ACTS) algorithm [START_REF] Nguyen | Active choice of teachers, learning strategies and goals for a socially guided intrinsic motivation learner[END_REF] that combines interactive learning [START_REF] Rich | Recognizing engagement in human-robot interaction[END_REF] and intrinsic motivation [Oudeyer and Kaplan, 2007]. It achieves hierarchical active learning in a setting where multiple tasks and multiple learning strategies are available, thus instantiating Strategic Learning as formalized in [START_REF] Lopes | The Strategic Student Approach for Life-Long Exploration and Learning[END_REF]. It learns to complete different types of tasks by actively choosing which tasks/objects to focus on, and which learning strategy to adopt to learn local inverse and forward models between a task space and a state space. SGIM-ACTS is separated into two levels:

• A Strategy and Task Space Exploration level which decides actively which task/object to manipulate and which strategy to perform (Select Task and Strategy). To motivate its choice, it maps the task space in terms of interest level for each strategy (Goal Interest Mapping). More details of SGIM-ACTS are reported in [START_REF] Nguyen | Active choice of teachers, learning strategies and goals for a socially guided intrinsic motivation learner[END_REF]. We performed several experiments where the iCub incrementally learns the visual models of the object, deciding at each step which object, which action and which agent (human or robot) is acting on the object. Since our exploration strategy is driven by curiosity, the robot could focus on the objects that are more "rich" in terms of features and that need more manipulation to be learned. Interestingly, we proved that our exploratory mechanism can cope with "good" and "bad" teachers in the object recognition task. The intrinsic motivation system can counterbalance their actions, by making the robot choose at each time the best exploration strategy for its task that can exploit or not the human input.

A "good" teacher help consistently the robot during its learning process, for example showing different objects and presenting them in an informative way (e.g. showing all its sides). A "bad" teacher presenting objects the same way all times can be little helpful for the robot. Humans interacting with robots often behave as "bad' 'teachers: this often happens with naive partners, i.e., human partners that have no prior experience with the robot or do not know what the goal of the interaction process is and therefore have no clear idea of how to facilitate the robot in its task. In our experiments, the "good" teacher, called "unbiased", manipulates the objects each time the robot asks, simply translating the object or showing a different side of it; whereas the "bad" teacher, called "biased", does not manipulate the objects when asked (i.e. he/she does not alter their appearance) and when asked to show a new object, always shows the same side.

We report the experiments of [Ivaldi et al., 2014], where the task is to recognize five objects: a gray dog-like toy, a blue/violet ball, a red bear, a yellow car and a patchwork of yellow-red-green plastic cubes. This set of objects is a mix of items that are easy and difficult to recognize because of their color and shape properties. The patchwork of colored plastic cubes is the trickiest object to recognize because its side views change the perceived dimension of the object, and because of the different colors of the four cubes, the features of the global object can be confused with the ones of the car and the bear. An experiment consists of a sequence of interactions with the human partner and the objects: the number of interactions and their type change depending on the exploration strategy, the learning progress and the type of teacher. Since the robot asks the teacher to switch the objects, it knows which object is currently manipulated, so it can collect views for the specified object label. Views are collected when the objects are immobile on the table, hence before (pre) and after (post) the actions. The learning progress is evaluated on the classification accuracy of the system on an image database (see Appendix B in [Ivaldi et al., 2014]), made up of 64 images of each object in different positions and orientations. 3To have a fair comparison about the effectiveness of the curiosity-based algorithm, we compared its learning progress with the one produced by a random exploration strategy. We present and compare one exemplifying experiment for each of the four aforementioned conditions. Figure 5.6 detail the learning progress and the decision of the exploration strategies over time: each Figure 5.6.: Typical results of the object learning experiment of [Ivaldi et al., 2014], comparing the random exploration and the one guided by intrinsic motivation, with a "helpful" and "bad" teacher. Our algorithm compensates for the teacher behavior as it promotes actions on objects that are more difficult to learn.

graph shows the progress in the f-measure for the five objects during time, while the bottom rows represent with a color code the chosen object and action at each decision time. The three actions are labeled push, lift, and show. Not surprisingly, when exploration is random, the object is changed more frequently, whereas when exploration is autonomous the robot focuses on objects for longer periods. In the random case, the robot does not focus on any particular object: since it explores equally all objects, the recognition performance at the end of the experiment is worse, because the "difficult" objects (such as the cubes -green line) are not sufficiently explored. Conversely, the SGIM-ACTS learning algorithm focuses more on the difficult objects such as the cubes, especially when their competence progress increases. The mechanism is clear: the red bear (cyan line) is easily recognized, hence the robot does not ask again to interact with the object once it is learned; conversely, the cubes (green line) are difficult to recognize, since their appearance changes substantially depending on the action, hence the robot focuses more on them. For both teachers, the robot spent 54% and 51% of its time learning about cubes when exploration was curiosity-driven, proving that intrinsic motivation makes the robot focus on the most difficult objects to learn. With the "good" teacher (unbiased) the robot decided to autonomously do 50.85% push, 23.73% take/lift/throw, and asked the human to do 25.42% manipulate/show. With the "bad" teacher (biased) the robot did autonomously 22.97% push, 40.54% take/lift/throw, and asked the human to do 36.49% manipulate/show. Notably, with the "bad" teacher the robot takes and throws more the objects (41% vs 24%) to compensate with its active manipulation the lack of informative input from the teacher. A "good" teacher can thus have a catalyzing effect: the learning process is 25% faster with an unbiased teacher than with the biased one, and the robot can focus on manipulating more complex objects. But, thanks to the curiosity mechanism, the teaching component is not fundamental to determine the outcome of the learning process: the curiosity-driven exploration allows the robot to learn efficiently all the objects with both types of teachers.

In conclusion, the curiosity-based exploration compensates for good or bad teaching actions. This is a critical feature that can have impact in the way robots learn from interaction with any kind of human partners, enabling the robot to take advantage of the coaching of experienced researchers while not preventing them to interact with naive people.

The human as a demonstrator: the case of tele-operation

One approach to the design of collaborative policies for the robot is to use learning by demonstration and reinforcement learning, as it is often done for manipulators to teach new behaviors. In the case of the humanoid, tele-operation and retargeting provide the whole-body equivalent of kinesthetic teaching for imitation learning. tele-operation and motion retargeting are powerful tools to demonstrate desired complex trajectories to the robot; coupled with robust multi-task controllers, we can easily generate complex movements for the robot that were taking days or weeks to manually tune. If programming new behaviors can be simply done by demonstrating the movements via motion retargeting or tele-operation, then humanoid robots can be deployed in real-world scenarios as "human avatars" even if they are not fully autonomous.

Despite the many successful cases of tele-operating mobile robots and manipulators, even in space, tele-operating humanoid robots is still very challenging. While humanoid robots are designed to resemble as close as possible the structure of the human body, differences in kinematics (e.g., joint limits) and dynamics (e.g., mass distribution, inertia) are still significant. Another crucial point is ensuring the dynamic balance of the robot while trying to imitate the human's motion. This is not straightforward for locomotion tasks, in which dynamics is highly involved. That is why semi-autonomous approaches represent a valid alternative solution.

The combination of different modes of tele-operation will make it considerably easier to control robots, and give humanoid robots the flexibility to adapt to complex situations which cannot be handled by a fully autonomous system. In this line of thought, in [Penco et al., 2019a] we proposed a framework for tele-operating humanoids, based on two levels: a low level for manipulation, realized via whole-body tele-operation, and a high level for locomotion, based on the generation of reference velocities that are then tracked by the robot. This combination of different modes of tele-operation is designed to considerably ease the burden of controlling humanoid robots, and at the same time exploit offline optimization to generate specific movements that would be difficult for the human tele-operator to perform. The approach is represented in Figure 5.7.

The low-level tele-operation method was developed in [Penco et al., 2018c]. It allows the robot to replicate the motion of the human operator, acquired by a wearable motion capture Figure 5.7.: Our approach for the tele-operation of humanoid robots [Penco et al., 2019a].

Figure 5.8.: Pipeline of the whole-body retargeting approach for iCub as done in [Penco et al., 2018c].

suit, while maintaining the whole-body balance. It consists of five main modules as shown in Figure 5.8: three modules for retargeting the human posture into the robot one, that maps joints, body segments and center of mass; a ZMP-based "stabilizer" that "filters" and forbid dangerous motions that could make the robot fall; then a QP controller that implements an inverse kinematics control scheme. Joint positions are measured and grouped into subcategories: head, torso, left arm, right arm, left leg and right leg. Also, the ground projection of the CoM, the height of the waist, the orientation of the head and the position of the feet are controlled. The human motion is tracked by the wearable Xsens MVN suit, which provides values for the human postural variables. In the joint retargeting module, the Xsens skeleton degrees of freedom are assigned to the corresponding ones of the iCub robot according to the mapping. Then, we consider the joint angle variations of the human with respect to the starting posture to compute the corresponding instantaneous values of the robot joint angles Figure 5.9.: Joint mapping as in [Penco et al., 2018c].

q k R = q 0 R + (q k H -q 0 H )
where q is the joint positions vector, the superscripts 0 and k refer to measurements at an initial time and at time k, and the subscripts H and R indicate measurements on the human and the robot, respectively. The same approach is used to retarget the relative Cartesian position p BS of a body segment with respect to a base link, with the difference that the variation of the human positions has to be properly scaled by the human-robot limb length ratio, as explained in [Penco et al., 2018c]. To track the human CoM we use normalized offsets, from which we then reconstruct the robot CoM ground position. We consider the ground projection of the human CoM p g CoM . Its position with respect to an arbitrary foot (e.g., the left) is projected onto the line connecting the two feet. The result is then normalized to obtain an offset o ∈

[0, 1] o = (p g CoM -p g lFoot ) • (p g rFoot -p g lFoot ) || p g
rFootp g lFoot || 2 where p g lFoot and p g rFoot are the ground projections of the left and right foot respectively. When the human is in a symmetric pose, the offset o has a value around 0.5 and when the human stands on a single foot, it is either 0 (left foot) or 1 (right foot). The robot CoM ground projection is then reconstructed on the line connecting its feet through this offset value. To retarget also changes of the CoM that are not on the line connecting the feet, we can apply the same concept while considering the maximum backward and forward CoM displacement in the orthogonal direction of the line connecting the feet as done in [Penco et al., 2018c].

The resultant retargeted motion is not guaranteed to be dynamically balanced and different "stabilizers"4 can be used to correct it. In our tele-operation approach, we want a dynamically balanced CoM trajectory and we adopt the LIP model to properly modify the reference trajectory. Dynamic balance is enforced by keeping this point at all times within the robot support polygon. By neglecting rotational terms and assuming a constant height h CoM for the CoM, the moment balance equation of the robot leads to the LIP,

x ZMP = x CoM - 1 η 2 ẍCoM (5.1)
where η = g/h CoM , with g the gravitational constant, while x CoM and x ZMP are respectively the CoM and ZMP positions along x (similarly for y).

By employing the dynamic equation of the LIP it is possible to set up a QP optimization problem that provides at each control iteration a correction of the desired CoM that satisfies the balance condition on the humanoid min are the lower and upper bound of the support polygon of the robot and the first constraint is derived from Equation 5.1 using the Euler approximation. An example of "corrected" CoM and ZMP for a double support motion is shown in Figure 5.10. The stabilized CoM reference, Cartesian tasks and postural tasks are set as reference tasks in the multi-task QP controller that generates the controls for the robot. We opted for a velocitybased QP controller based on OpenSoT [START_REF] Hoffman | Robot control for dummies: Insights and examples using OpenSoT[END_REF], an open-source library implementing QP controllers based on the stack-of-tasks [START_REF] Hoffman | Whole-Body Compliant Control of iCub: first results with OpenSoT[END_REF]. At each time step, it solves a linearly constrained QP optimization problem to minimize the given cost function characterizing the motion tracking, subject to the system constraints such as the joint and torque limits.

x ZMP ( ẋre f CoM -ẋCoM ) 2 subject to: ẋCoM = ẋm CoM + δ g h m CoM (x CoM -x ZMP ) x min ZMP < x ZMP < x max ZMP
More detail about the QP controller can be found in [START_REF] Hoffman | Robot control for dummies: Insights and examples using OpenSoT[END_REF]. It must be noted that QP controllers can handle various types of constraints that, depending on the chosen formulation, may include robot dynamics, friction cones, self-collision avoidance, joint limits and many more (see for example [START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF]).

Our tele-operation method has been validated on the iCubNancy01 platform on a variety of double support motions, showing that the robot does not fall when the human operator falls back, as shown in Figure 5.11. It has been used to demonstrate a complex sequence of motions, and notably to validate automatically optimized parametrized controllers for long sequences of double support motions such as opening doors, and picking up boxes, as shown in Figure 5.12.

The low-level tele-operation that we described so far is a powerful tool for demonstrating double support motions and performing whole-body manipulations; however, in our experience, it is not suitable for walking. Retargeting walking -more precisely, footsteps-is not a good idea. In our experience, retargeting of walking is not a viable solution for many reasons: first, the stride of the robot is typically shorter than the operator's; second, the robot foot trajectory is 123 : Some examples of tele-operated motions with iCubNancy01. Specifically, these motions were used to validate parametrized whole-body controllers, to find a "generic" controller configuration that enables the robot to perform the different motions [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF].

often optimized for balance and impacts, while the trajectory retargeted from the human is not compliant with these requirements; third, since humanoids cannot walk as fast as humans, in a retargeting context the operator would be forced to walk unnaturally, ultimately leading to inefficient robot locomotion. For these reasons, it is better to rely on a pre-optimized walking behavior and avoid retargeting altogether in this phase. In [Penco et al., 2019a], for example, we used an MPC-based gait generation. The operator gives direction and velocity references for the humanoid gait through the analog sticks: these are translated into a timed sequence of footsteps, swinging foot and CoM trajectories through an MPC-based control scheme. The desired references are then sent to the low-level QP controller as shown in Figure 5.7. Similar considerations can be made for many motion primitives or task trajectories that impact or leverage the robot dynamics, such as stepping or serving in tennis: in our view, this kind of motion should be pre-optimized offline as it is specific to the robot dynamics. The operator can use the joystick buttons to select one among different pre-defined task trajectories. The corresponding trajectories, which have been pre-optimized offline, are sent as a reference to the robot controller and then simply reproduced. Optimizing specific trajectories can be done with any motion planning or motion optimization framework. In the case of our robot, we used the methods described in [?], which were inherited from the developments described in Chapter 3. Videos showing the robot iCub being tele-operated by different operators are visible at the following links: https://youtu.be/MokoPcHvhlQ?t=156 and https://youtu.be/ aCXoDCMd_v4. Another video at https://youtu.be/D3Uvle2WF5A?t=535 shows also the output of the robot cameras in the Oculus video input.

In conclusion, motion retargeting and tele-operation are powerful technologies to teach complex motion behaviors to robots, particularly to humanoids.

Discussion

Is retargeting human motions sufficient to make a humanoid make complex movements? Unfortunately no. Teleoperation and motion retargeting are powerful tools to demonstrate desired complex trajectories to the robot: with some little effort from the human, if the robot has a robust multi-task controller that enables whole-body teleoperation, we can easily demonstrate complex movements to the robot, that were taking days or weeks to manually design and tune.

However, this pipeline generates "bootstrap" behaviors that have two problems: first, they are not optimized for the robot; second, they are just "trajectories", they are not situated behaviors that consider the placement of the objects, the environment, and the tasks to be done.

The retargeted human movements must be re-optimized to maximize robustness (e.g., optimize the center of mass trajectory to stay closer to the center of the support polygon) and minimize energy consumption/torques. We should also exploit the robot's redundancy to change the trajectories of the joints to stay away from joint limits or to avoid critical postures. Finally, in the case of collaborative policies, we should optimize also for human-related quantities, when appropriate. This means that the tele-operated trajectories should be seen as a bootstrap solution for an optimization process, in line of what we presented in Chapter 3.

Besides, retargeting and tele-operation can often generate discontinuous motions, not at all optimized for the robot nor continuous in time, because the human often pauses and thinks about the next action to demonstrate, hence the entire motion sequence is interspersed with pauses. Therefore, re-optimizing retargeted motion is often a necessary step.

The operator can make mistakes. True! In the work reported in this chapter, we have not considered the case where the operator makes a "bad" demonstration. In a teaching-bydemonstration scenario, where demonstrations are recorded offline, we can simply inspect the demonstrations and discard those that we do not want to use, for example, those that are not suitable for learning primitives (as discussed in Section 2.1.1 in reference to the trajectories of naive participants). To our knowledge, this "selection" is also often done even when recording demonstrations for cobots or manipulators.

In a continuous learning or interactive learning scenario, however, cherry-picking demonstrations is not possible or suitable. Considering that the operator is human and can make mistakes, or provide imperfect demonstrations [START_REF] Ewerton | Learning trajectory distributions for assisted teleoperation and path planning[END_REF] because of hesitations or because of the simple embodiment problem [START_REF] Koc | Learning to serve: An experimental study for a new learning from demonstrations framework[END_REF], is a necessary step to use tele-operation for interactive task learning.

Finally, in Section 5.1 we concluded that socially-guided learning based on intrinsic motivation can make the robot learn independently of the help provided by the human. I believe there is a point of convergence for the two approaches, where we could make the robot autonomously decide if more demonstrations from the human are needed, or if it has to discover how to optimize the tasks on its own: a sort of trade-off between learning by demonstration and reinforcement learning.

How to provide human feedback during a continuous learning process? During the experiments in the MACSI project, the human was basically a "teacher" or "tutor" providing good demonstrations of the objects to learn, accelerating the robot's learning process. Inspired by the babies' development, the tutor was mimicking what parents do with their children (although the feedback was not used by the robot).

The question is not only how to introduce a simple positive or negative reinforcement, as the general problem is in fact an inverse reinforcement learning problem. The autonomous exploration and actions of the robot are always driven by a cost function that determines the reward and the final policy. Ideally, we should design a reward function that generates a policy matching human expectations, but designing reward functions by hand requires extensive task knowledge and the human reward function is often simply unknown or difficult to translate into clear objectives (for example: how do you translate into a reward function a preference?).

In [START_REF] Daniel | Active reward learning[END_REF], Daniel et al. proposed to learn the reward function through active learning, querying human expert knowledge for a subset of the agent's rollouts. In their framework, the human expert can assign numerical values to observed robot rollouts, i.e., ratings or scores, to indicate strong preferences over demonstrations. Since human ratings are highly noisy [START_REF] Cakmak | Designing robot learners that ask good questions[END_REF] they learn a probabilistic model of the reward function, using Gaussian Processes and Bayesian Optimization to minimize the number of interactions with the human expert.

In [Griffith et al., 2013], Griffith et al. argued for a different strategy to integrate human feedback with reinforcement learning: instead of mapping human information into reward and value signals to indicate a preference, they propose "Policy Shaping", i.e., to formalize the meaning of human feedback as policy feedback. When a human assigns a binary label (e.g., "right" or "wrong"), it is not converted into a numeric value (e.g., -1/+1) to modify the Q-values, but it is used to estimate the probability that the policy is optimal. Their method, called Advise, makes several assumptions, such as the fact that the human provides labels as comments on the optimality of the action, making possible mistakes with a certain likelihood, and that the robot is in a reinforcement learning process (with Bayesian Q-Learning, in their case). The two aforementioned approaches represent possible ways to integrate human feedback in several robotics tasks where we have difficulty in translating our desiderata into rewards or fitness functions. Let us take the example of robotic grasping. Sometimes humans grasp objects in a particular way, because they have an affordance in mind, or they know that the object is fragile, that its weight is not uniform, or they have a particular manipulation to do with the object in mind, and so on. Designing a fitness function that considers all these aspects is difficult. It seems more efficient to learn the preference of grasps from human ratings, like in [START_REF] Daniel | Active reward learning[END_REF] or even binary preferences [START_REF] Fleytoux | Data-efficient learning of objectcentric grasp preferences[END_REF]] (as we recently did). Incidentally, human ratings could be easily compared with those automatically provided by state-of-the-art grasping algorithms such as Dexnet [START_REF] Mahler | Learning ambidextrous robot grasping policies[END_REF], providing useful insights for inverse reward learning [START_REF] Hadfield-Menell | Inverse reward design[END_REF].

Another case of application is shaping/optimizing the loco-manipulation and navigation policies of robots. Specifying reward functions or fitness functions to optimize whole-body movements, as we discussed in Chapter 3, is not always straightforward. If the robot's mission has clear, measurable objectives to pursue and constraints to avoid, (e.g., minimize energy consumption, do not bend the torso more than 20 degrees) then designing the fitness is relatively easy. But often, even reasoned fitness produces behaviors that are not entirely satisfactory. This is critical if we want the robot to interact with a human collaborator. For example, we would like humanoid motions to be efficient, but also legible and predictable [START_REF] Dragan | Legibility and predictability of robot motion[END_REF], and "not intimidating". How do you quantify or define "intimidating"? Is "intimidating" related to the jerk of the trajectories? Or to the trajectory of the arm approaching the human? Or to a physiological response of the human (e.g., increased heart rate)? Is the concept of "intimidating" the same for a humanoid or for a flying robot (e.g., a drone)? In this case, human feedback shaping the policies as in [Griffith et al., 2013] seems a promising method to optimize the robot trajectories.

Finally, we have the intuition that improving the operator interfaces (or human interfaces, or HMI) to enable less experienced users to interact with the robots would accelerate many learning processes. We expect that the big leap forward will be done when we will be capable of using natural language processing to provide corrections and instructions [START_REF] Mirchandani | Ella: Exploration through learned language abstraction[END_REF], and when we will be able to have conversations with the robot [START_REF] Alayrac | Flamingo: a visual language model for few-shot learning[END_REF].

How can we help the human teacher that helps the robot? Quoting Turing [START_REF] Turing | Computing machinery and intelligence[END_REF]:

An important feature of a learning machine is that its teacher will often be very largely ignorant of quite what is going on inside, although he may still be able to some extent to predict his pupil's behavior. This should apply most strongly to the later education of a machine arising from a child machine of well-tried design (or programme). This is in clear contrast with normal procedure when using a machine to do computations one's object is then to have a clear mental picture of the state of the machine at each moment in the computation. This object can only be achieved with a struggle. The view that "the machine can only do what we know how to order it to do,"' appears strange in face of this. Most of the programmes which we can put into the machine will result in its doing something that we cannot make sense (if at all, or which we regard as completely random behaviour.

When the human is teaching to the robot, in a sense he/she is expecting the robot to replicate the demonstration, or to incorporate the given feedback. However, the robot may not be capable of contingently updating its models and policies to demonstrate that the new knowledge has been effectively used, and the status of the learning process of the robot may remain unknown to the teacher. How can we design learning robots whose learning progress and status is understandable by the human teacher? How can we design robots that communicate their status to humans? Which interfaces and communication channels should we use? These questions relate to the design of explainable models/algorithms and legibile robot behaviors.

Towards anticipatory collaboration: prescient teleoperation

This chapter presents the "prescient teleoperation": it consists in using learned motion primitives to anticipate the intention of motion of a human operator that is remotely teleoperating a humanoid robot.

Teleoperation of robots has been studied for decades, to enable robot intervention in places that are typically dangerous for humans, such as in presence of radiation, chemicals and even in space. Classical teleoperated robots are manipulators mounted on a fixed or mobile base. Teleoperating humanoid robots is more difficult, because of the inherent complexity of the platform. Pioneering work from [START_REF] Evrard | Intercontinental, multimodal, wide-range tele-cooperation using a humanoid robot[END_REF] showed that it was possible to teleoperate a humanoid robot between two continents, but only few degrees of freedom were controlled. During the Darpa Robotics Challenge in 2015 several teams teleoperated different humanoid platforms controlling all their degrees of freedom to realize locomotion and manipulation tasks.

Their performances were limited by the operator interfaces, that often required a lot of work before deploying a command, and by the communication delays, which challenged the operators in taking decisions and dealing with a delayed feedback. Solving these challenges would enable to use humanoid robots as human avatars in remote locations, breaking the barriers of the possible use of such robots in many applications, ranging from exploration, maintenance and emergency intervention. Our current thinking is that all these applications cannot be executed by autonomous robots, because of the complexity that such robots have to deal with. An autonomous robot may be extremely proficient in one or few task (for example, navigation or exploration), but it cannot make autonomous plans and take complex decisions about manipulations to be done in the real world in response of a variety of unexpected situations. Until more advanced cognitive capabilities are built, teleoperation seems a very viable solution to put humanoid robots to a good use.

In Chapter 5 we already presented our teleoperation solution, which enables the human to control the entire robot body in a very intuitive way. In this chapter, we tackle the problem of compensating delays, leveraging our algorithms for prediction of intention of the human operator. This technique not only enables a smooth teleoperation of the robot thanks to anticipation, but it enables remote whole-body teleoperation of a humanoid robot in presence of large communication delays up to 2s, which means it could be used also for space applications.

This work was the result of the convergence of three lines of research: first, the development of robust whole-body controllers for humanoids through parameters optimization, which was discussed in Chapter 3; second, the development of the teleoperation framework based on motion retargeting, presented in Chapter 5; finally, our work on whole-body prediction of the intention using ProMPs, presented in Chapter 4. The unique combination of the previous pieces of research gave birth to a fundamental scientific progress for teleoperation of redundant platforms in presence of delays, and from the technological point of view a great demonstration of the possibilities that humanoid robots offers for remote presence and space exploration.

This work was developed within the H2020 project AnDy as a proxy for anticipatory control of physical collaboration [START_REF] Penco | Prescient teleoperation of humanoid robots[END_REF], in particular within the PhD thesis of Luigi Penco.

The main reference is:

• Penco, L.; Mouret, J.-B.; Ivaldi, S. Prescient teleoperation of humanoid robots. arXiv preprint arXiv:2107.01281

Introduction

Humanoid robots are some of the most versatile machines ever created [START_REF] Yamane | Humanoid Robotics: A Reference, chapter A Comparative Study Between Humans and Humanoid Robots[END_REF]. Thanks to their anthropomorphism, they can perform bimanual manipulation like grasping large boxes, they can bend to pick up objects from the ground, or reach high places by the ceiling; they can also walk on rough terrain, crawl, climb stairs or push objects. Differently from other robotic platforms, they have a kinematic structure that allows them to enter narrow or cluttered spaces, and operate in environments that were primarily designed for humans. In short, humanoid robots have the potential of being as versatile as humans, being currently limited only by their mechatronics, which need to be further developed to match the human flexibility. This versatility is especially important when robots are sent to truly unexpected situations in which they have to perform a task for which they were not designed [START_REF] Atkeson | What Happened at the DARPA Robotics Challenge Finals[END_REF]. While robots in the manufacturing industry perform well-defined tasks in known environments, many situations in the outside world involve some creative adaptation of the tasks. For instance, working in remote places like in space or on an oil platform very often requires performing tasks in unexpected ways. Similarly, disasters -natural or industrial -are events that are, by definition, out of the ordinary routine, and during which robots could be critical to save lives.

However, autonomous robots are far from being the creative problem solvers that humans are; this is why humanoid robots are most useful when they are teleoperated [START_REF] Atkeson | What Happened at the DARPA Robotics Challenge Finals[END_REF][START_REF] Stilman | Humanoid teleoperation for whole body manipulation[END_REF]: the capabilities of the robot and of the operator are combined to solve complex problems remotely. While humanoid robots can be operated from high-level commands and classic joysticks [START_REF] Stilman | Humanoid teleoperation for whole body manipulation[END_REF], they can exploit their human-like morphology to directly replicate the human posture and gestures, captured by a motion tracking system. This technique coupled with the intelligence of the human operator makes them realize tasks fluently as human avatars. With such a whole-body teleoperation, the entire body of the robot can be controlled precisely while the human operator, equipped with a virtual reality headset, can feel as if they have been "projected" to the remote situation. Additionally, there is a good match between teleoperation and humanoid robots because they are typically considered for high-risk missions (life-or-death situations, nuclear accidents, ...) for which the wage of an operator is negligible, but the stakes are too high to let a robot decide everything by itself.

Two main challenges are raised by humanoid teleoperation for remote presence and intervention: (1) how to map a whole-body motion of the human to a robot that has close, but different physical constraints and dynamics [Penco et al., 2018b, Penco et al., 2020]? and (2) how to cope with the unavoidable communication delays between the movement of the operator and the feedback? We addressed the first question in Chapter 5, where we presented our teleoperation framework for the iCub based on whole-body retargeting [Penco et al., 2018b, Penco et al., 2019]. In this Chapter, we build on that framework but focus on delay compensation, leveraging our expertise in whole-body motion and intention prediction presented in Chapter 4.

The first studies with robot manipulators [Ferrell, 1965] suggested that the typical user behavior in a teleoperation system with time delays is to adopt a "move-and-wait" strategy to avoid overcompensation for the delayed perceived errors. However, follow-up experiments Ferrell and Sheridan [1967] showed that this strategy is not effective, even with time delays around 0.3s. This is in sharp contrast to the typical delays that are considered in real applications, for instance 1 second on average (30s maximum) during the DARPA Robotics Challenge [START_REF] Atkeson | What Happened at the DARPA Robotics Challenge Finals[END_REF], 10 seconds (20s maximum) for the NASA Space Challenge [NRS], or 0.8s (3s maximum) in the METERON project [START_REF] Lii | 2 and meteron supvis justin space telerobotic missions[END_REF], during which a robot was teleoperated on Earth from the International Space Station.

Time-delayed teleoperation almost exclusively uses predictive displays [Peñin et al., 2002, Hernando and[START_REF] Hernando | Advances in Telerobotics, chapter Teleprograming: Capturing the Intention of the Human Operator[END_REF], which are virtual displays representing a model of the robot and its environment, to compensate for the delayed visual feedback. In these systems, the operator performs the task on the display, controlling the simulated robot without any time delay, while sending the same commands -which will be delayed -to the real robot. More complex pre- dictive displays overlay the predicted graphics on the delayed video [Bejczy et al., 1990, Mitra and[START_REF] Mitra | Mediating time delayed teleoperation with user suggested models: Implications and comparative study[END_REF], which can be achieved by identifying a model of the environment and transmitting it back to the operator side [START_REF] Mitra | Mediating time delayed teleoperation with user suggested models: Implications and comparative study[END_REF]. However, in most cases, the predicted graphics and the delayed video signals are kept in different displays, due to the difficulty of mixing video and graphics with enough quality and robustness. In all these cases, since perfect modeling is impossible, there is always going to be a difference between the real and modeled environment, which has to be coped with by some local robot autonomy. Hence, these techniques just offer approximate cues until the actual feedback information is available, and should be considered as support tools rather than standalone solutions.

Here, we introduce a novel teleoperation approach in which the operator gets a synchronized video feed of real images, even when the communication channel imposes a 1 to 2 seconds delay.

Our key idea is that if the robot executes the desired movement before the operator performs it, then the operator will watch a delayed video feed that will be almost indistinguishable from a real-time feed (Figure 6.1). At each time-step, the robot analyzes the data that it has received so For each of the 6 demonstrations, the motion of the operator is first "retargeted" to the robot using the whole-body controller (ignoring delays). The trajectories of each body/joint of the robot is then recorded. From this set of demonstrations (thin lines), a ProMP is fitted for each trajectory; this ProMP is represented here as a thick line (the mean) and a light zone (the standard deviation). The computed mean is a smooth trajectory that averages all the demonstrations and the standard deviation captures the variability of the demonstrations.

far, measures the communication time, estimates the communication time to send the feedback, and predicts what the operator is most likely to do in the next seconds. This prediction makes it possible to execute the command with enough anticipation so that the user receives a video feed that correspond to the past of the robot, but that matches the present time for the operator. We call this prediction-based feedback scheme prescient teleoperation.

Overview of the prescient teleoperation system

The whole-body motion of the operator is captured with a real-time motion tracking system. In this work, we used the Xsens MVN motion capture suit that computes both the joint angles and the Cartesian positions of the operator. In principle, any device or system that provides an analog human state estimation can be used: for example, vision based skeleton tracking systems, such as OpenPose [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF][START_REF] Cao | Openpose: Realtime multiperson 2d pose estimation using part affinity fields[END_REF] coupled with Digital Human Models may be used. 1As explained in Chapter 5, this captured human cannot be directly used as reference for the robot because of the difference in kinematics (e.g., joint limits, body dimensions) and dynamics (e.g., mass distribution). The system therefore needs to "retarget" the motion [Penco et al., 2018b, Penco et al., 2020, 2019], that is, to compute references that make sense for the robot. To do so, Cartesian references are first scaled using a fixed factor (0.4) that accounts for the size difference between the human and the operator (see Chapter 5). This means that when the operator moves the hands by 10cm, the robot might move them by only 5cm. The angular references encourage the robot to take the same posture as the operator when it is possible; they are retargeted by mapping each joint of the operator to the robot and computing angular positions relative to the initial joint positions. Last, the reference of the center of mass is computed from the human reference to fit the robot kinematics, as explained in [Penco et al., 2018b].

We use the humanoid robot iCub [Natale et al., 2017, Metta et al., 2010], which has 32 degrees of freedom (ignoring the hands and the eyes) and is position-controlled. The whole-body motion of the robot is defined by the trajectories of the center of mass ground projection, the waist height, the hands positions, and the posture of the arms, of the neck and of the torso. Each of these trajectories has a different priority which determines how the robot's controller executes the entire movement: the top priority is given to the center of mass (to avoid falling) and the feet poses (which should not move in our experiments, since we only target double support motions), and the postural trajectories have the lowest priority. The exact hard and soft priorities were found in previous work with a multi-objective stochastic optimizer so that the robot is unlikely to fall but tracks the trajectories as precisely as possible [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF].

At each time-step, the robot searches for the joint positions by solving a hierarchical constrained quadratic problem with inequality and equality constraints [Escande et al., 2014b, Rocchi et al., 2015] that minimizes the tracking error, i.e., the distance to the references, while taking into account the priorities and the constraints (kinematic model, joint velocities and zero moment point bounds). Our controller runs at 100Hz and is based on the OpenSOT framework [Rocchi et al., 2015] and the qpOASES quadratic programming solver [START_REF] Ferreau | [END_REF].

Precisely, the whole-body motion of the robot is defined by the following trajectories: center of mass ground projection, waist height, hands positions, arms postures, neck posture, torso posture, which are either given by the delayed retargeted human motion, or generated by the delay compensation algorithm during the execution of the main task. Each sample of each of these trajectories represents a control reference ŷ y y. Given ŷ y y, the robot commands q q q are generated by solving the redundant inverse kinematics, which can be formulated as a constrained quadratic programming problem with equality and inequality constraints [Escande et al., 2014b, Penco et al., 2020]: arg min q q q ∑ i w i f i + ∑ j w j g j +C C C q q q f i = ||J J J i q q q -ẋ x x i || 2 g j = || q q q j -q q q r j || 2 subject to J J J q q q = ẋ x x A A A q q q ≤ b b b (6.1)

The cost function consists of terms f i with relative weight w i concerning the pose of a specific body link i, where J J J i is the Jacobian matrix for body link i and ẋ x x i = ẏ y y i are the reference velocities for body link i. Additionally terms g j with relative weight w j concern the posture of certain joints j, where q q q r j = ẏ y y j are the reference joint velocities for joints j. C C C q q q is a regularization term used to get a unique solution and avoid singularities, where C C C is a linear cost vector. In our implementation, we considered in the terms f i the hand positions with w i = 1 and the waist height with w i = 0.65. Instead, the terms g j include the head posture with w j = 1 and the torso posture with w j = 0.72, the elbow and wrist postures with w j = 0.11. We computed optimal priorities with a multi-objective stochastic optimization that was run in simulation [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF]. More details about the whole-body controller can be found in [START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF] and Section 3.2. The equality constraints correspond to the highest priority task, which should be solved exactly. In our implementation, these include the center of mass x position and the feet poses. The inequality constraints contain the robot joint velocity bounds and zero moment point bounds, which is constrained to stay inside the support polygon.

In absence of delays, when prediction is not necessary, the references are the trajectories retargeted from the human operator [Penco et al., 2019].

To operate with delays, the system predicts at each time-step the most likely future trajectory of the most likely task given the commands received so far from the operator (for instance, the 3D trajectories of the hands, etc.). The system is trained beforehand on a few example trajectories that encode the different ways of executing a task, using the principle of "motion primitives": for instance, the human is likely to reach for a bottle on the table with a similar straight hand trajectory at all times, but the trajectory may be more or less curved in presence of an obstacle. Though human gestures are generally stereotyped, the intrinsic motor noise, the human preference of movement and the small differences in the task executed in the real world (e.g., a displacement of a target object) induce variability in the human motion trajectories to realize a specific task. Even if the trajectory asked by the operator is different from the training set but included in the distributions of what has been previously demonstrated, accurate predictions can still be generated on a short time-scale.

Numerous generic machine learning techniques have been proposed to predict the future of time-series, especially with neural networks [Parmezan et al., 2019, Lim and[START_REF] Lim | [END_REF]. Nevertheless, the robotics community has been working for a long time on regression techniques that are well-suited for robot trajectories. In particular, Movement Primitives (MPs) are a well-established approach for representing and learning motion trajectories in robotics. They provide a data-driven representation of movements and support generalization to novel situations, temporal modulation and sequencing of primitives. Several kinds of MPs have been proposed in the literature. Dynamic Movement Primitives (DMPs) [START_REF]Adaptive Motion of Animals and Machines, chapter Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics[END_REF] are a formulation of movement primitives with autonomous nonlinear differential equations. The linear parameterization of DMPs makes them suitable for supervised learning from demonstration. Moreover, the temporal, scale, and translation invariance of the differential equations with respect to these parameters provides a useful means for movement recognition.

Our system is based on Probabilistic Movement Primitives (ProMPs) [START_REF] Paraschos | [END_REF], which extend the concept of dynamic movement primitives to model the variance of the demonstrations (Chapter 4). A ProMP is a distribution over trajectories, which makes it ideal tool to model the variability of human demonstrations in the form of motion primitives [START_REF] Paraschos | [END_REF]. This represents an advantage over deterministic approaches, that can only represent the mean solution.

Another advantage of working with distributions is that the properties of motion primitives can be translated into operations from probability theory. For example, modulation of a movement to a novel target can be realized by conditioning on the desired target's positions or partial trajectories [START_REF] Maeda | [END_REF]. Specifically, our system uses the ProMP's conditioning operator to adapt the predictions according to the incoming observations, hence obtaining at each timestep an updated prediction (posterior) for the prosecution of the current movement given the learned model of its associated primitive (prior). In other words, a ProMP predicts the mean trajectory of prior demonstrations when there is no conditioning data, but when some data is available, such as observations of the current movement, it adapts its prediction to resemble the most likely trajectories from the training set. These properties and the corresponding mathematical operations to compute the prediction from observations were described in Chapter 4.

Training and test sets

To train our system, an operator teleoperated the iCub humanoid robot in a local network, which we consider as an approximation of an ideal network without any delay, and performed several tasks wearing the Xsens MVN inertial motion capture suit to get motion references, and a virtual reality headset (Okulus) to get the visual feedback. For each motion, we recorded the trajectories of the center of mass ground projection, the waist height, the hands positions, the arms posture (shoulder rotation, elbow flexion, forearm rotation), the neck posture (flexion and rotation) and the torso posture (flexion, rotation and abduction). For each of these trajectories, a ProMP was learned (Figure 6.3). Hence, for each task, we have a set of ProMPs associated to the whole-body motion.

We considered several scenarios, which resulted in the acquisition of three different datasets, each consisting of a training and a testing set. In the first dataset (Multiple Tasks, Figure 6.2), the We evaluated the difference between the actual trajectory (commands retargeted from the operator) and the predicted trajectory for the 20 testing motions from the bottle reaching scenario and the 21 testing motions from the box handling scenario. To understand the influence of the conditioning of the ProMPs, we computed the mean error by following the mean of the ProMP selected by hand ('no obs'), after the initial recognition ('recognition') that takes around 1s, after a fourth of the motion (1/4 motion) and after half of the motion (1/2 motion). Thanks to the conditioning, when more data is used, the prediction is more accurate, which means that the prediction is adjusted to suit the particular motions of the operator (that is, the robot does not simply follow the mean trajectory once it has recognized it). Examples of predicted trajectories are displayed in Figure 6.4.

tasks correspond to reaching a bottle (scenario 1) or picking a box with the two hands (scenario 2). The test trajectories correspond to different repetitions of the tasks used for training, and encode the intrinsic movement variability of the operator. In the second dataset (Obstacles), the test trajectories correspond to different ways of reaching a bottle while avoiding obstacles that were not considered during training, that is, performing the same task but in different ways. In the last dataset (Goals), each motion correspond to reaching a bottle at different positions, and the test trajectories are for positions that were not used for training.

Evaluation of the predicted trajectories

Using testing data from the dataset Multiple Tasks, we evaluated the ability of conditioned ProMPs to predict the future motion of the operator, independently of any consideration for teleoperation. At each time-step, the robot identifies which ProMP best describes the current motion by selecting the ProMP that minimizes the distance between the observations so far and the mean of each ProMP (Methods), and it continuously updates the posterior distribution with the observation. The most relevant predicted trajectories (light colored lines) are compared to the non-delayed trajectories at the operator's side (dark colored lines), after observing different portions of the motion; a perfect prediction would mean that the light line (green/blue/red) line matches the dark line (green/blue/red). The non-delayed trajectories are from the testing scenario of dataset Multiple Tasks and the experiment corresponds to a particular case of those reported in Table 6.1. From left to right, the figure shows the prediction given by the ProMPs learned from the demonstrations, the prediction updated after observing the first portion of motion used to infer the task and its duration, the prediction updated after observing a fourth of the motion, and after observing half of the motion. After less than 1s of observation, the light trajectory is similar to the dark trajectory, whereas it might have been far from the ProMP mean (see, for instance, the elbow in experiment (b)). In most cases, 2 seconds is enough to obtain very accurate predictions for the next 4-5 seconds.

dataset Multiple Tasks in different situations due to the observed data: after observing a sufficient portion of the trajectory (around 1s) that identifies the ProMP that best describes the current motion, after a fourth of the trajectory, and after half the trajectory. The robot uses the data received so far to predict the trajectory up to the end of the experiment. Visually, the predictions match the actual trajectory very well, although it is smoother, even after less than 1s of observations. In addition, the real trajectory is almost always contained in the distribution of possible trajectories of the prediction (visualized with the variance of the ProMP). To quantitatively compare the prediction to the ground truth, we considered the whole-body motions from the testing set of the dataset Multiple Tasks and reported in Table 6.1 the corresponding prediction error between the two. The error decreases over time as more observations become available to update the prediction, reaching an error around half centimeter for the Cartesian trajectories after observing half of the motion. After observing only half of the motion, the quality of the prediction improves by one and a half centimeters in the Cartesian trajectories of the hands with respect to the first prediction available after the recognition, which means that the ProMPs not only recognized the motion but also identified the specific execution of movement by the operator. A significant improvement can also be observed in the postural trajectories. These results show that continuously updating the prediction allows the operator to influence the predicted motion so that it matches better their intentions. Put differently, the system is not simply recognizing the motions then executing the mean of the learned demonstrations: it accurately predicts the future trajectories given the data received so far.

Delay generation and compensation

The time-varying round-trip delay over the network is made of a forward delay τ f (t) in the communication from the operator to the robot, and a backward delay τ b (t) between the robot and the operator. The round-trip delay τ(t) at time-step t is then τ(t) = τ f (t) + τ b (t). Each oneway delay is made of two components, one deterministic, mainly caused by the transmission and propagation time, and one stochastic [Gurewitz et al., 2006], often called the "jitter". In our experiments, we generate forward delays with a deterministic component between 100 and 1000 ms (depending on the experiment) and a stochastic component that follows a normal distribution. We generate similar deterministic backward delays but no stochastic backward delay, because we assume that the video streaming system implements a "jitter buffer" that in effect transforms the jitter into an additional constant delay. This is a reasonable assumption, as this is well implemented in existing video streaming systems. The robot needs to know both the forward and backward delay. It computes the forward delay exactly (both in its deterministic and stochastic components) thanks to time-stamps attached to the packets sent by the operator and synchronized clocks. The robot can easily ask the operator's computer for the average backward delay because timestamps are included in most video streaming protocols, but it cannot know the stochastic part of the backward delay before sending the packet. This is why the robot relies on the jitter buffer on the operator side to transform this stochastic delay into a deterministic delay. In our implementation, we assume that the robot knows both the deterministic backward delay (average delay) and the length of the jitter buffer (and additional constant delay). In a deployed system, these data would be gathered by the operator's computer and sent periodically to the robot. More details about our delay generation are To compensate for the delays, the right sample (orange dot) from the prediction has to be selected as reference for the robot controller at each time. (A) The sample corresponding to the last received observation is an estimate of the delayed command. (B) By knowing the forward delay τ f (t), a sample from the prediction can be selected so as to achieve a synchronization between the operator's movement and the robot movements. (C) By knowing the forward τ f (t) and backward delay τ b (t), the robot can select the right sample from its prediction so as to achieve a synchronization between the operator's movement and the feedback from the robot side. A policy blending arbitrates the delayed observations with the samples selected from the prediction, which guarantees a smooth transition from delayed to compensated teleoperation. erator together with the equipment required to control and perceive the robot, (iv) the motion retargeting module, (v) the delayed network, (vi) the delay compensation module, (vii) dataset of whole-body trajectories retargeted from human motions, with their corresponding trained ProMPs that can be used to predict future trajectories given observations, (viii) a blending to keep the trajectory smooth, at the start of a trajectory or in case of changes of delays, (ix) a video streaming system that uses a jitter buffer to cope with the stochastic part of the backward delay. We evaluated the system on the iCub robot with a time-varying round-trip delay around 1.5s, given by a stochastic forward delay following a normal distribution with 750ms as mean and 100ms as standard deviation, and a constant backward delay of 750ms (Figure 6.6). We used a constant backward delay in these experiments because we relied on an existing video streaming system that cannot artificially delay images randomly. Nevertheless, when a jitter buffer is used, the resulting video feedback is delayed by a constant delay, hence our implementation has not affected the final outcome of the experiments. The images from the cameras at the robot side are delayed by using the open source application Kinovea [kin], which allows the user to set a constant delay for the streaming of the video. The resulting delayed streaming is projected onto the VR headset through the application Virtual Desktop [vrd].

All the experiments are presented in [START_REF] Penco | Prescient teleoperation of humanoid robots[END_REF], in which different tasks are performed under stochastic round-trip delays ranging from 200ms to 2s. In all our experiments, the operator was able to successfully complete the tasks in spite of these large delays (Figure 6.6) thanks to the compensation.

If the operator decides to stop or to perform a different movement from the one that has begun, then the predicted trajectories are blended into the delayed trajectories in a way similar to that adopted to switch from delayed to predicted references, hence avoiding any undesired prolonged mismatch. More details are in [START_REF] Penco | Prescient teleoperation of humanoid robots[END_REF].

To quantify the quality of the compensation, we compared the compensated trajectory to the non-delayed trajectory in the 20 testing motions from the bottle reaching scenario of the dataset Multiple Tasks and for the 21 testing motions from the box handling scenario of the dataset Multiple Tasks, with time-varying forward delay following a normal distribution with 750ms as mean and 100ms as standard deviation and backward delay being equal to 750ms (Table 6.2). The comparison is performed once the prediction is available and after the transition from delayed signals to prediction. In the box handling scenario, the results show that the error is around or less than 1cm for all the considered references (in particular for the hands) whereas without compensation the error is about three times higher (about 3cm for the hands). Similarly, in the bottle reaching task, the error of the compensated trajectory is about 1 to 1.4cm for the hands versus about 4cm for the hands and 1cm for the center of mass when there is no compensation. The angular errors show a similar pattern. While an error of about 1cm is often enough to achieve a task, for instance grasping an object, an error of 3 to 4cm makes it very likely to miss the object, in addition to frustrating and disorienting the operator.

We then evaluated the performance of the compensation when the communication delay increases (Figure 6.8A). To do so, we compared the compensated trajectory to the non-delayed trajectory, for the right hand, in the task of reaching the bottle on the table of the dataset Multiple Tasks. During the synchronization, the error is roughly proportional to the delay (Figure 6.5), which adds up to the prediction errors. In that case, we observe a mean error of about Table 6.2.: Difference (root mean square error) with the non-delayed trajectories, for both the compensated and the non-compensated (delayed) trajectories (average delay: 1.5 s).

The error is computed for the 20 testing motions from the bottle reaching scenario of the dataset Multiple Tasks, and for the 21 testing motions from the box handling scenario of the dataset Multiple Tasks. The compensated trajectories are temporally realigned with the non-delayed trajectories for computing the error, which is considered only once the prediction starts, and once the blended transition from delay to compensation is over (Figure 6.5). The time-varying forward follows a normal distribution with 750ms as mean and 100ms as standard deviation. The backward delay is set equal to 750ms. 2.5cm for 1s delay, but more than 10cm for a 3s delay, because the transition time takes a significant amount of time on a short trajectory (30% for a delay of 3s and a trajectory of 10s).

In longer movements or in an actual teleoperation session where the operator commands longer sequences of movements, this synchronization time should become negligible. When we exclude the synchronization time, the results show that the compensated tracking error is less than 2cm for delays around 0.5s, about 2.5cm for delays around 1.5s, and increases to about 5cm for delays of 3s and 4s. Qualitatively, the operator found the system difficult to use with a delay of more than 2s, for which the error is about 3cm after the transition and around 7cm including the transition. The tracking error of the compensated trajectories is considered both including the transition from the delayed phase to the synchronization phase (Figure 6.5), which adds a non-compensable error, and without transition. The RMS of the error is computed from the 10 testing motions of the task of reaching the bottle on the table from dataset Multiple Tasks.(B) The tracking error of the compensated trajectories for the right hand position with respect to the non-delayed ones (after the transition phase) is evaluated also on the testing trajectories from the dataset "Obstacles" with different obstacles. and the dataset Goals with different reaching goals. The tracking error is computed as the Euclidean distance between the evaluated trajectory and the reference trajectory. The compensated trajectories are temporally realigned with the non-delayed trajectories for computing the error, which is evaluated with different round-trip delays τ(t): 0s, around 0.5s, 1s, 1.5s, 2s, 3s and 4s. The time-varying forward delay follows a normal distribution with mean τ f = τ/2 and standard deviation equal to 2 15 τ f . The backward delay is set equal to τ f .

Discussion

Humanoids can only be deployed at their full potential if they can exploit their whole-body to perform non-trivial, high-value tasks. Whole-body teleoperation is the ideal framework to achieve this goal because it provides an intuitive and flexible approach to operate the robot, provided that the operator can rely on a synchronized feedback. By leveraging machine learning to anticipate the commands of the operator, we showed that it is possible to compensate for delays of 1-2 seconds, which typically correspond to the round-trip communication time between Earth and space [START_REF] Lii | Command robots from orbit with supervised autonomy: An introduction to the meteron supvis-justin experiment[END_REF] and between continents on the Internet [START_REF] Høiland-Jørgensen | Measuring latency variation in the internet[END_REF].

Limitations of the approach

To achieve the synchronization between the human motion and the visual feedback as soon as possible, our approach strongly relies on fast motion recognition. In fact, if this step were to take too long, the motion would be over by the time any compensation algorithm could be applied.

In our experiments we leveraged the ProMPs to represent human gesture primitives and also to predict the operator's intention of movement. In the past, we had already used ProMPs with success for real-time prediction of whole-body movements [Dermy et al., 2017c] and robot's gestures [Dermy et al., 2018]. They only require a few robot/operator demonstrations to be trained, and the posterior update that enables to predict the future trajectory also requires a relatively small set of observations. For the above elements, they are a suitable and valid technique for predicting the operator's intention in our teleoperation problem. Other data-driven methods for predicting gestures as time-series could be used in principle, for example LSTM-RNN [START_REF] Zhao | Collaborative human-robot motion generation using LSTM-RNN[END_REF][START_REF] Anvaripour | [END_REF][START_REF] Corona | Context-aware human motion prediction[END_REF], at the expense of more training data and potentially less smooth movements. Put differently, the concept of prescient teleoperation can be implemented with any other predictor, including neural networks.

We showed that the robot follows the specific execution of motion, i.e., the particular way the human is performing the task, by continuously updating the prediction of the current motion (thanks to the conditioning operator of the ProMPs). In the experiments, we were able reach a bottle in ways that had not been demonstrated before (but included in the distribution of the training demonstrations), avoiding new obstacles and reaching new object positions that were not included during the training phase. This feature is extremely valuable because it allows the operator to adapt the commands on the fly to situations different from those in the training. For instance, there might be an obstacle that forces the operator to approach an object with the hand from the right, and prevent them from following a straight path. Or there might be a low ceiling that constrains the operator to bend the torso more or flex the legs more. More importantly, there are many different objects and many different environments and the operator will adapt their movement to the local condition, from a different target position to a different body posture. Thanks to a diverse set of ProMPs and the "conformation" of the prediction to the observations, our system should be able to handle most of these cases. The main limitation is that our approach assumes that the received data is enough to update the predictions; this is often the case, because humans tend to anticipate their change in a trajectory, that is, the beginning of the trajectory changes when a future goal changes. Nevertheless, the system is not capable of anticipating a last-second change when the beginning of the trajectory is always the same. Future work should evaluate how many demonstrations (and how many ProMPS) are needed to adapt to as many situations as possible.

As shown in Figure 6.6, we were able to identify the current motion with less than a second of data, time during which the delayed signals were used to teleoperate the robots. However, our experimental setup included a limited amount of possible tasks (see Figure 6.2). If the dataset of possible tasks was larger, the recognition would take a considerable and prohibitive amount of time. In this case, one could resort to other data-driven prediction methods or exploit the fact that human actions are mostly vision-guided and identify the object that is about to be manipulated. In such a way, the set of possible tasks would be reduced to those related to that object, accelerating significantly the motion recognition. This can be done by using object recognition algorithms [START_REF] Tan | Efficientdet: Scalable and efficient object detection[END_REF] or by attaching ArUco markers [Romero-Ramirez et al., 2018] on the objects of interest. Then, if the number of tasks related to an object was similar to the number of tasks we considered in our experiments, the motion recognition would take an amount of time close to that of our experiments. Instead, if a considerably larger amount of tasks was related to an object, another strategy to reduce the recognition time could be to examine first the initial position of the hand trajectories in order to limit the recognition computation to those tasks having those initial positions in their distribution.

The proposed compensation algorithm also relies on the fact that the delay is not comparable to the duration of motion. Indeed, it would not be possible to apply any compensation, if the motion was over before computing any prediction. This is an additional reason for executing the teleoperated tasks at a slow pace (the humanoid robot in our experiments is never teleoperated with fast or rough movements anyway, to avoid damaging the platform). In our experiments we were able to compensate for the delays while following the way the human performs the task with delays around 1.5s. For delays around 2s, we were still able to compensate for the delay but the robot was not following the human precise movements, rather the mean of the learned motions. For longer delays the performance deteriorates critically, producing robot behaviors that cannot adequately compensate for the delay.

In addition, the execution speed of a task has to be similar to those recorded during the demonstrations. Once estimated the duration of the current motion, our algorithm does not take into account any duration variation while carrying out the task. A real-time adaptation of the speed execution could be addressed by constantly updating the time modulation of the ProMPs based on the last observations and updating the posterior distribution of the original learned ProMPs based on these observations [Dermy et al., 2017c].

Finally, all the experiments reported here were performed by a highly experienced user, who is very familiar with the teleoperation system and the iCub robot. While novice users would not have the same proficiency with the proposed system, they are very unlikely to be trusted to operate a highly expensive humanoid robot in a high-value mission, such as an intervention in a damaged chemical plant or in a remote Moon base. Like drone pilots who are trained extensively before their first mission, one should expect actual humanoid operators to be expert users with a long training period.

Future steps: haptic feedback, more cameras

The next natural step is to include haptic feedback in addition to visual feedback. First, wholebody feedback would require the operator to wear a full-body exoskeleton [START_REF] Ramos | [END_REF] or to use less intuitive distributed vibrotactile feedback [START_REF] Brygo | Humanoid robot teleoperation with vibrotactile based balancing feedback[END_REF]. In bilateral systems the force signal is directly coupled between robot and human [START_REF] Ramos | [END_REF], while in master-slave systems the human operator can receive kinesthetic cues not directly related to the contact force being generated by the robot, or as indirect forces in a passive part of her/his body [START_REF] Brygo | Humanoid robot teleoperation with vibrotactile based balancing feedback[END_REF]. Our approach could certainly be extended to the latter case, where ProMPs could be learned for the force signals. The extension to bilateral techniques represents a more complex challenge, since these systems can be very unstable under time-delays. Several approaches have been proposed to stabilize these systems under time delays [Xu andSteinbach, 2019, Singh et al., 2020] but the extension to platforms with a high number of degrees of freedom like humanoid robots and their robustness to packet loss and jittering is still an open challenge. A promising research avenue is to combine our approach with the one proposed in [Valenzuela-Urrutia et al., 2019], in which a haptic feedback is produced using the point cloud data obtained with an RGB-D camera. So far, our robot has been streaming images, but it could very similarly stream a point a cloud. Like with images, this point cloud would correspond to past perceptions of the robot but the operator would perceive it as synchronized because the robot anticipated the commands. The haptic feedback from the point cloud would then not appear to be delayed.

In this sense, both visual and haptic feedback could be improved by using more cameras. In our experiments, we had to use an external camera (in addition to the robot cameras) to provide a better situational awareness to the operator about the robot's status in the environment. In fact with the limited field of view of the cameras in the iCub's eyes, the human can hardly see the environment and the robot's body at the same time, which makes it extremely difficult to grasp objects without making any errors. More situation awareness could also be provided to the operator by integrating our method with already existing predictive-display-based techniques [START_REF] Mitra | Mediating time delayed teleoperation with user suggested models: Implications and comparative study[END_REF]: during the non-compensated intervals the predictive display could guide the human operator with a gradual shift from the virtual graphics to the real images of the robot cameras once the synchronization with the user commands has been achieved by our approach.

Overall, this new approach will help deploy more robust, effective teleoperated systems. It is demonstrated here with a motion capture suit, a virtual reality headset and a state-of-the-art humanoid robot; but this is a general framework that could be used in any other robot, from manipulators to cars, as any of these could all anticipate remote commands provided that there is a good enough predictor.

Perspectives

"On ne fait jamais attention à ce qui a été fait ; on ne voit que ce qui reste à faire."

-Marie Curie

In the past years, we made progress in some important building blocks that enable humanrobot collaboration, following our view of robotics that is centered on the human.

In Chapter 2, we designed human-aware controllers that consider the human dynamics to generate suitable interaction forces. In Chapter 3, we proposed automated procedures to automatically tune the controller's many parameters, to obtain generic controllers that can handle a variety of interactions with humans. In Chapter 4, we developed activity recognition and wholebody motion prediction algorithms that leverage data from wearable motion tracking sensors, with the objective to inform the robot's decision and control systems. In Chapter 5, we addressed the problem of how robots can learn from human teachers or demonstrators, in a collaborative scenario or in a teleoperation scenario. Finally, in Chapter 6, the building blocks developed in the previous chapters led to significant progress in human-robot collaboration, in the form of prescient teleoperation: the robot anticipates the human operator, thanks to its motion prediction models, and is able to execute the whole-body motion intended by the operator before the human actually shows it to the robot. This is possible because our teleoperation framework enables a human to safely demonstrate complex whole-body motions (Chapter 5), the robot's whole-body controller is optimized to execute many whole-body tasks (Chapter 3), and we have powerful tools to predict the human intended motion given few observations (Chapter 4).

Besides teleoperation and interaction with humanoids, our research has led to several other contributions in fields related to human-centered and humanoid technologies, which were not presented in this manuscript but deserve to be mentioned as they bring clarity into the research directions that we want to pursue in the next years. We have acquired experience in conducting human-robot interaction experiments of different natures, addressing different questions ranging from impedance behavior [START_REF] Vianello | Latent Ergonomics Maps: Real-Time Visualization of Estimated Ergonomics of Human Movements[END_REF] to trust [START_REF] Gaudiello | Trust as indicator of robot functional and social acceptance. An experimental study on user conformation to the iCub's answers[END_REF]. The interest in the study of human behavior and movement from the physiological and biomechanical point of view has also grown, leading to several contributions related to the evaluation and use of exoskeletons [Maurice et al., 2019a, Ivaldi et al., 2021, Settembre et al., 2020] and the optimization of human movements with respect to ergonomics criteria [Gomes et al., 2021]. Finally, one of the distinctive features of our research has become the use of machine learning techniques in combination with whole-body control to find original solutions to collaborative robotics problems. For example, we used probabilistic models for activity recognition [START_REF] Malaisé | Activity Recognition for Ergonomics Assessment of Industrial Tasks with Automatic Feature Selection IEEE Robotics and Automation Letters[END_REF], prediction of human postures during physical interaction [Vianello et al., 2021a] and prediction of human whole-body motion [Dermy et al., 2018]. We used auto-encoders to obtain low-dimensional representations of postures [Dermy et al., 2018] and images [START_REF] Fleytoux | Data-efficient learning of objectcentric grasp preferences[END_REF], Ma et al., 2022] for prediction purposes. All these techniques require a substantial amount of training data: while our efforts are focused on data-efficient learning [START_REF] Fleytoux | Data-efficient learning of objectcentric grasp preferences[END_REF] and probabilistic models that require few demonstrations of the movements [Dermy et al., 2018][Gomes et al., 2021], training latent spaces typically requires a considerable dataset. For this reason, we led efforts in collecting new large and reusable datasets to support our research and to share them to the community. Among the most notable, there is the AnDy dataset, containing more than 5 hours of recorded movements inspired by industrial activities [Maurice et al., 2019b], and the HEAP datasets [START_REF] Fleytoux | Data-efficient learning of objectcentric grasp preferences[END_REF], Ma et al., 2022] with labeled images of objects and actions.

While we have certainly achieved many good results and advanced in our research and associated software development, there are still several questions that need to be addressed to achieve the human-robot collaboration that we have in mind, and in particular to give humanoid robots the ability to proficiently interact with humans in the way we dream of since we read about R. Daneel Olivaw in Asimov's books. In the next sections, I will try to outline the main research directions we would like to pursue in the coming years.

From teleoperation to interactive autonomy

In Chapter 6 we argued that humanoid robots make perfect avatars to enable humans to act in remote environments: they are versatile, they can walk in rough environments, in narrow corridors, climb stairs, pick objects on the ground and up on a shelf, manipulate objects with one or two hands, and so on. Their limit is the hardware, which is expensive, fragile and complex, and the control, which has many intricate layers and cognitive components that hardly scale to the complexity of decisions in a real environment.

Despite decades of research in humanoid robotics, these platforms are still far from being able to act autonomously on large-scale missions. In laboratory settings and with one or few tasks, researchers have shown incredibile abilities of robots in terms of walking [START_REF] Viceconte | Adherent: Learning human-like trajectory generators for wholebody control of humanoid robots[END_REF], jumping [START_REF] Kojima | A robot design method for weight saving aimed at dynamic motions: Design of humanoid jaxon3-p and realization of jump motions[END_REF], learning affordances [START_REF] Mar | Self-supervised learning of grasp dependent tool affordances on the icub humanoid robot[END_REF] and object manipulation [Ivaldi et al., 2013], even realizing long missions such as simulating an IED response [START_REF] Jorgensen | Deploying the nasa valkyrie humanoid for ied response: An initial approach and evaluation summary[END_REF].

However, in real conditions, the greatest achievements so far have been realized when robots are teleoperated. In the Darpa Robotics Challenge, several humanoids competed to execute a sequence of different tasks, such as driving a car, opening doors and climbing stairs: the humanoid robots were teleoperated by skilled human engineers through complex graphical interfaces that enabled to position the end-effectors and execute skills matched on the perceptual feedback from the robot [START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF]. Many robots were successful in executing all the tasks, but one outcome of the challenge was that robots were actually idle for a lot of time, because the operators were busy taking decisions and tuning the actions that the robot had to execute. The executed sequences could have been "accelerated" if robots would have been controlled by operators in a more intuitive way, such as with the whole-body teleoperation framework that we proposed in Chapter 5. In the last years, other research teams have also proposed similar interfaces that enable teleoperation and telepresence, propelled by the competition ANA Avatar Xprize. For example, a solution based on a virtual reality system, a motion tracking suit and an omnidirectional treadmill has been used in an experiment where the humanoid robot iCub3 is used to visit a museum from a laboratory [START_REF] Dafarra | icub3 avatar system[END_REF]. Another immersive telepresence setup consisted instead of an operator station with a symmetric bimanual exoskeleton, providing force feedback for accurate manipulation to the operator, with a 3D rudder to control the robot navigation [START_REF] Schwarz | Nimbro avatar: Interactive immersive telepresence with force-feedback telemanipulation[END_REF]. All these interfaces and systems have demonstrated the possibility of using robots as avatars, able to interact with their surroundings and with other humans and to give sufficient feedback to the operator to take online decisions concerning the actions to be done.

However, many issues remain to be solved. The first improvement we plan to do is about the operator's interface, which we would like to simplify to the point of getting close to the interface that is used in role-playing video games. The second improvement is about having better prediction models, more accurate, faster to compute, and that leverage multimodal data from the robot and the environment's sensors to make contextual predictions. Finally, to achieve our goal of a simpler interface, we would like to leverage teleoperation to learn autonomous skills (which seems a contradiction here, but it is not!). Teleoperation can be used to collect demonstrations of human actions, contextualized, hence to build a continuous database of motions from which to train models of motion primitives and skills. With an appropriate encoding of various levels of abstractions, it will be possible to create a database of high-level skills that can be commanded by the operator.

Operator's interfaces

In our experience, the operator's hardware interface must be greatly simplified. Our main idea so far has been to delegate the control of the physical interaction to the robot, without necessarily involving the human in the low-level control. In our view, there is no reason to equip the human operator with cumbersome exoskeletons and devices if we can leverage robot intelligence to deal with its local dynamics and its environment. Haptic feedback may be necessary for some tasks, but there may be simpler ways to provide information about contacts and forces to the human, such as visual cues or display of force patterns.

To achieve human-like gestures and whole-body movement, we relied on a motion tracking suit Xsens (Chapter 5). However, this motion tracking device is not ideal for long missions: it is subject to drift, sometimes it needs re-calibration, and it is not comfortable to wear (for example, it increases the body temperature). One possibility could be to have it replaced by human pose tracking from RGB or RGB-D cameras, which has greatly progressed in the last years in terms of accuracy and even dynamics estimation [START_REF] Pavllo | 3d human pose estimation in video with temporal convolutions and semi-supervised training[END_REF]. The loss in terms of humanlikeness of the whole-body motion might be acceptable for the tasks at hand: the postural task in the teleoperation controller has a low priority, and the high accuracy is mostly needed just for tracking the Cartesian pose of the hands, which can be accurately tracked with VR joysticks (e.g., HTC Vive joysticks).

In our experience, another major problem for the operator is situation awareness, that is having a good picture of the robot's situation in its environment, which is very difficult with the embodied visual feedback that is usually provided with VR headsets. We faced this problem during the experiments of [START_REF] Penco | Prescient teleoperation of humanoid robots[END_REF] (Chapter 6): with the visual feedback of the iCub's eyes alone projected in the first-person camera view on the VR headset, the human operator had great difficulty in executing precise manipulation and even picking objects, which is why we added an environmental camera feed to provide a third-person point of view of the scene. The additional camera greatly improved the operator's performance; subjective feedback indicated that it particularly improved the depth perception and the reasoning about the robot's interaction with the environment.

One straightforward improvement would be to increase the number of environmental cameras and give humans the possibility to switch between camera views to choose the best view for each task. A more interesting form of assistance to operators could consist in automatically selecting the best camera that provides the most informative view to the operator: this can be formalized as an optimization problem that seeks to maximize the information associated to a view related to a particular task. Another interesting form of assistance could be to have a second robot equipped with a camera that can move around the first robot, and that can be teleoperated by the operator to provide the best possible view: for example, a flying robot with a camera, which would be perceived by the operator as a third-person camera that can be moved around the robot to control as in videogames.

Teleoperation like playing a videogame

Taking again inspiration from video games, one exciting direction of research consists in providing more abstraction to the interface. In video games, when virtual characters are close to an object (e.g., the bottle) the player can often simply click on the object, select the action, and the character will automatically generate the action associated with the object (e.g., grasp the bottle). Similarly, instead of teleoperating the robot by showing the entire action, the operator could simply say "grasp the bottle".

To execute the verbal command, our teleoperation system would first need a natural language processing system, that enables us to identify the object in the sentence (e.g., the bottle) and the action (e.g., grasp). The object in the scene could be associated with the label of the item identified in the visual image by an object detection algorithm, such as YOLO [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF], and its position retrieved by a 6D object pose estimation algorithm, such as PoseCNN [START_REF] Xiang | Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes[END_REF]. The action label could be associated with a motion primitive: if we were using, for example, the ProMPs presented in Chapter 4, we could condition the reaching ProMP to the object location, then the grasping ProMP to the object type and pose. This pipeline is technically sound and relatively easy to debug, although it would be limited by the choice of vocabulary, objects list, actions and so on. A different strategy inspired by open-ended learning could consist in learning the mapping between images, natural speech and primitives (or trajectories, or parameters of the primitives): this is close to what has been recently proposed in [START_REF] Mirchandani | Ella: Exploration through learned language abstraction[END_REF], using natural language to abstract corrections over trajectories.

Regardless of the method used to associate natural language instructions to trajectories or primitives, it is clear that providing a more abstract representation of the actions would bring benefit to the teleoperation experience. Actions, in the form of motion primitives or any other parametric model, could be learned directly from teleoperated demonstrations, then stored as "skills", forming a library of skills that could be simply recalled by the operator at the right time when they are needed1 . The scientific challenge here would be to learn from teleoperated data, which are typically scarce (few demonstrations, as opposed to dozens of demonstrations that are typically acquired by kinesthetic teaching, or thousand and even more demonstrations generated by simulations) and highly irregular. It is hard to predict whether ProMPs will be the best modeling technique in this case, or whether other models will be more adapted: probably, hybrid models containing attractive terms will be more adapted if goal-directed motions are targeted. Teleoperated data have also been used to speed up self-supervised learning of skills, organized in latent spaces, which is a promising way to see the acquisition of skills without imposing any structure [START_REF] Lynch | Learning latent plans from play[END_REF]. Figure 7.1 sketches a generic teleoperation setup, where an operator demonstrates complex behaviors to a robot (not necessarily a humanoid: a mobile manipulator or flying manipulator may benefit of the same system, despite having different anthropomorphic features) that we could use to collect demonstrations of complex behaviors that can be used for autonomous skill learning.

Prediction: leveraging contextual and multimodal data

In Chapter 6 we showed how the prediction of the intended action can be fundamental to improving the operator performance in presence of delays. Even short delays in the visual feedback can create confusion in the operator's actions and ultimately lead to failure in the tasks. However, An augmented reality system displays extra information that facilitates the task. The ground control operator monitors the robot and the entire system. He/she has access to more detailed information about the robot's status and environment and can command the robot through a high-level interface. This setup can be used for teleoperation and data collection through teleoperation for skill learning and transfer.

our prediction was limited in that it was only considering motion data: it was completely agnostic of the context, the environment, the tasks and the objectives of the motion. In this sense, the human operator had to incorporate this information into the generation of the appropriate motion: again, this approach is acceptable but it overloads the operator.

We already suggested that it will be possible to condition the motion primitives with additional information, such as the final goal location or the object pose. In [START_REF] Penco | Prescient teleoperation of humanoid robots[END_REF] we showed with several experiments with the iCub that the prediction can consider different goals and obstacles, which is a way to incorporate contextual information in the prediction.

A more general approach could consist of conditioning the prediction to multimodal data that represent the context or the environment: for example, we could condition the prediction to the camera images or even to the point cloud representations of the surrounding of the robot. However, such data representations have high dimensions, which means we will have to resort to more compact latent representations. In our prior work [START_REF] Droniou | Deep unsupervised network for multimodal perception, representation and classification[END_REF], we used gated autoencoders to learn multimodal representations of actions, as this could provide a possible way to address this problem. Recently, the vision and the autonomous driving community have been addressing a similar problem, pedestrian and traffic forecasting, with several types of deep neural networks and transformers [START_REF] Casas | Intentnet: Learning to predict intention from raw sensor data[END_REF], [START_REF] Liu | Multimodal motion prediction with stacked transformers[END_REF], [START_REF] Ngiam | Scene transformer: A unified multi-task model for behavior prediction and planning[END_REF], which is worthy of attention.

An interesting perspective is to use these models to predict the intended human behavior during human-robot collaboration: for example, the prediction of the human's intended trajectory could be conditioned to the robot's actions. This kind of model could be useful to inform a human-aware robot controller for better collaboration.

Challenges for collaboration: many humans, many robots, many constraints

With the advent of new mobile robotics platforms, legged or wheeled, we expect robots to be progressively introduced in the future, interacting more and more with humans in their daily endeavors [Ivaldi, 2018]. We support the idea of active exoskeletons to assist humans at work during physically strenuous tasks, minimizing the job-related risks to their health. We work for mobile humanoids (legged or not) to replace humans in dangerous and remote places and to collaborate or cooperate with humans to help them in demanding tasks, improving their life and health.

In this scenario, how do we design robots that collaborate proficiently with humans? Shall we design them in a way that is close to how humans would collaborate with each other? Should we target behaviors that are robot-specific, context or task-specific, and at the same time consider individual differences?

There is no unique answer (or a right answer) to these questions. Figure 7.2 illustrates the kind of experiments we would like to do in the next years, to investigate the questions related to human-robot collaboration.

First, we would like to conduct more human-human collaboration experiments, to understand how collaborative policies emerge during a human-human interaction: if the interaction is not structured, does a stable collaborative behavior emerge? How can we measure collaboration High level of anthropomorphism and human-like movements -------------------------------------------------------------→ Increasing mobility and complexity of physical interaction and whole-body control -------------------------------------------------------------→ (i.e., what are the metrics for collaboration?) and how could a robot detect in perspective how collaborative the human is? Second, we would like to investigate to which extent the robot should collaborate in a way that mimics human collaborative behavior. Do we want to collaborate with robots in the same way we collaborate with other humans? Is the answer influenced by the level of anthropomorphism of the robot? One may argue that a robot is a machine, and therefore we should impose the rules of collaboration as they are often imposed with computers and other machines or appliances. However, we know from experience that humans often expect human-like behaviors when interacting with our humanoid robots [Ivaldi et al., 2015, Gaudiello et al., 2016], so we can reasonably expect that there will be a relation between the level of anthropomorphism of the platform and their expected human-like behavior.

Third, we would like to improve collaboration by improving the prediction of human movement, and the interfaces that enable the robot to communicate its intent. First, in the case of humanoids such as Talos or iCub, we should target legible, predictable, human-like behavior in terms of whole-body movements, gestures, and their coordinated production of verbal and non-verbal behaviors. Second, in the case of exoskeletons, we should aim for the most accurate prediction of the human whole-body movement, to produce the most transparent and assistive actions. In this sense, the controllers developed in Chapter 2 and Chapter 6 are not yet adequate: on one side, there is the need to advance in the integration between low-level controllers and high-level controllers [Vianello et al., 2021b], and on the other side there is the problem of accurately predicting the human intended movement with considerably accuracy and within a longer horizon.

Collaborative robot controllers that handle the variety of human behaviors

In Chapter 2 we discussed the problem of controlling the physical human-robot interaction with a "human-aware" approach that considers the human dynamics in the whole-body robot control problem, formulated as a reactive optimization problem. We proposed a reactive multi-task QP controller (the same type of controller is also used, with a different configuration, for optimizing whole-body movements and teleoperation in Chapter 3 and 5), which has become in the last decade the consensual approach for controlling humanoid and legged robots, which combines online optimization and model-based control. In a few words, the control problem is formulated as a numerical optimization problem, in which at each time step the algorithm minimizes a given cost function that describes the task objectives, subject to constraints that take into account both the robot dynamics and its interaction with the environment and the human. The optimization process is also able to predict future states, which are computed by unrolling over a future time horizon the system dynamics under a sequence of possible controls. This approach, though fitting, has still too many limits to be used in practice for collaboration: first, it heavily relies on perfectly known dynamic models; second, it requires the knowledge of the human dynamics model and human behavior; third, it assumes that the human is "controllable" and will behave as the model predicts.

More in general, this kind of control approach suffers from inaccurate dynamics models, which leads to brittle behaviors. For instance, it is common that a finely tuned controller works on the hard floor of a lab but not on a soft carpet in the corridor; or that the generated trajectories need hours of manual tuning for specific environments. Contacts with compliant and deformable environments (such as contacts between robots and human bodies) are computationally expensive and difficult to be accurately modeled and exploited for real-time control computation.

In our view, we need to relax the assumption of a perfect model for the optimization-based robot control, considering the use of learned models (we proved that it is possible to learn contact models in [Calandra et al., 2015b,a]) learned offline and refined online, and to incorporate uncertainty and non-linear models in the optimization. The idea is that a robot should behave differently when it is or not "confident" (in probabilistic terms) that its own and the human dynamics are correct. Also, it should reason in probabilistic terms about the possible ways the human will act and react to its behavior. A possible solution could be to test controllers to be able to handle a variety of possible human behaviors, using multi-objective optimization as we did for optimizing the iCub's controller (Chapter 3), to generate simulated behaviors using quality diversity as done in [START_REF] Fontaine | Evaluating human-robot interaction algorithms in shared autonomy via quality diversity scenario generation[END_REF], or to look for adversarial human behaviors that challenge the robot controller [START_REF] Nishimura | Human interaction behavior modeling using generative adversarial networks[END_REF].

Human-aware controllers for collaboration should leverage existing data and simulated human behaviors to be automatically optimized offline: however, it is reasonable to expect that, once the controller is deployed on the real robot in situated real interactions, the reality gap would be still very large. While we could simulate a variety of human movements, it is not possible to predict the emotional response of the human in a real situation with the robot, and how this can lead to erratic or inconsistent behaviors that could severely challenge the robot's controller. At the same time, nonlinear dynamics, and interactions with the environment, may still impact the controller's performance.

For the above reasons, we should implement human-in-the-loop optimization of robot controllers: that is, there should be a continuous learning and optimization process that updates models and controllers to achieve the desired human performance of the collaborative dyad. This concept is valid for human-robot physical interaction and teleoperation. In particular, it is critical for active exoskeletons, as they should be optimized to fit the behavior of the carrier as much as possible to prevent injuries.

The role of roles

One critical problem for physical collaboration is the role identification and role adaptation. The problem of roles has been often simply seen as setting the robot's behavior to leader or follower of the human partner, reflecting its status on the compliance of the robotic arm. As a leader, the robot is stiff and leads the movement, and considers the contact with the human as a perturbation to counter. As a follower, the robot is very compliant and uses contact with the human as a cue to determine the desired motion. The human partner interacting with the robot usually sets their mutual roles and defines the robot's behavior accordingly.

In some specific cases, the human partner could set their mutual roles a priori, for example, if their common task is known and fixed. But in a scenario where the robot is intelligent and versatile and can collaborate with many partners, the robot should have the ability to determine its role given the one exhibited by the human. The question is then how to estimate the role with limited sensing capabilities?

The identification of continuous roles during a haptic exchange, going beyond the classical fixed roles attribution (leader/follower or master/slave) is one of the main scientific challenges for pHRI. In our human-human interaction experiments [START_REF] Gomes | Multi-objective Trajectory Optimization to Improve Ergonomics in Human Motion[END_REF] we estimated roles essentially with the co-contraction of the human arm, measured by surface EMG (Electromyography). We used the same sensors and the same method to estimate the human co-contraction during a human-robot experiment [START_REF] Vianello | Latent Ergonomics Maps: Real-Time Visualization of Estimated Ergonomics of Human Movements[END_REF]. However, using such sensors is practically difficult outside the laboratory environment, such as in the case of exoskeletons worn by firefighters or industrial workers. [START_REF] Gribovskaya | Motion learning and adaptive impedance for robot control during physical interaction with humans[END_REF] used haptic information to identify the roles of a human interacting with a cobot. This solution is more viable, especially for cobots since they are already equipped with force/torque sensing, but again difficult for exoskeletons that do not necessarily have force sensing or a pervasive torque sensing that might provide an accurate estimation of the exchanged forces. An interesting experimental setting that challenges the role estimation, even more, is in the case of interaction with a "flying co-worker", i.e., a flying manipulator (which is the object of our study in the ANR Flying Co-Worker project2 ). Because of the nature of the interaction that the human can have with the flying co-worker, it is not straightforward to apply the same role estimation models. In particular, vibrations may induce co-contractions in the human arm, trying to resist perturbations. Errors and ambiguities in the role estimation may occur because of uncertainties in the contact force estimation (the force sensor being mounted on the robot) and difficulties of the human in predicting the robot motions, which may induce sudden co-contractions and movement changes. Overall, accurately estimating the role during a haptic exchange with limited sensing is a challenge that we will have to tackle in the forthcoming years.

The other question concerning roles is about whether they should be fixed or changed during the collaboration, both during single trajectories (for example, while moving an object together) or across several sequences of interactions (for example, during the entire day, when the two partners carry different objects together). Should the robot adapt its role and behavior during the collaboration?

There are examples of role adaptation in the literature. [START_REF] Gribovskaya | Motion learning and adaptive impedance for robot control during physical interaction with humans[END_REF] proposed to adapt a manipulator's impedance behavior at the end-effector to exhibit a continuous role adaptation during single trajectories. Nikolaidis et al. [START_REF] Nikolaidis | Human-robot mutual adaptation in collaborative tasks: Models and experiments[END_REF] proposed to change the role of a mobile robot helping to carry a table using probabilistic decision models (based on Partially Observable Markov Decision Processes -POMDP) with bounded memory to determine at each step the leader of the interaction. It still remains unclear how this adaptation should happen, when, and whether it is useful and how it is perceived by the human partner. Indeed, our experiments [START_REF] Marichal | [END_REF] suggest that humans tend to desire to be (or feel to be) in control when interacting with the robot, and thus may reject a robot that exhibits a leader behavior and prefer interacting with a compliant robot. This desire for control was partially confirmed in our investigation during the AnDy project when we interviewed industrial workers about the introduction of collaborative robots and exoskeletons [Maurice et al., 2018].

At the same time, it can be debated whether the robots should adapt their role: maybe not at all. The contrary seems more likely to lead to better acceptance by human partners. If the robot continuously adapts its role -which means adapting its control policy and its behavior -the human partner is forced to continuously update his/her internal model of the robot, and optimize his/her motor behavior to comply with the change. This is similar to what happens in human motor control when a subject is forced to reach a target by moving the arm in a force field subject to perturbations [START_REF] Shadmehr | Adaptive representation of dynamics during learning of a motor task[END_REF]Mussa-Ivaldi, 1994, Burdet et al., 2001]. Across trials, the subject learns progressively the model of the new environment and re-optimizes the movement. But if the environment changes all the time, the subject does not learn the environment dynamics, and he/she is forced to consider it as a disturbance to reject, with the consequence of stiffening the arm to reject the perturbations. If the same happens between a robot and a human partner, we can reasonably expect that the human will be incapacitated to learn the robot's behavior and will just put effort, both physical and cognitive, in resisting the robot's motions, ultimately leading to the non-acceptance of the robot. This is a hypothesis, however, because there are, to our knowledge, no evident proofs that this mechanism happens.

If we really need the robot to adapt -which is still to be proved -the question will be when and how to adapt.

While the robot adapts to the human, it is observed in fact a mutual adaptation in time, because the human at the same time adapts to the new robot behavior, trying to infer a model of its decision-making process. These mutual adaptations may converge in theory toward equilibrium, but this has never been shown or demonstrated. Furthermore, even if an adaptive robot can be considered "intelligent", it has not yet been experimentally demonstrated that such a robot would be beneficial in a collaborative scenario, nor that it could improve the health of workers. Our preliminary investigations [Maurice et al., 2018] indicate that workers would rather collaborate with a cobot that does not adapt at all, to avoid a cognitive overload.

One possible way to formalize the problem of adaptation is to cast it as an optimal decision problem, where one has to determine at each decision step whether to adapt and how [Vianello et al., 2021b].

A further element to be considered is to optimize the robot's behavioral policy to provide assistance in such a way that the human does not realize he/she is being assisted or his/her movement is not "manipulated" by the robot. This relates to the concept of the sense of agency [START_REF] Grynszpan | The sense of agency in human-human vs human-robot joint action[END_REF][START_REF] Wen | The sense of agency in driving automation[END_REF], which captures the fact the human feels to be the one determining his/her movements even when interacting physically with a robot.

At any rate, this line of research requires a considerable amount of experimental studies, to test hypotheses and collect experimental evidence of the adaptation mechanisms and the individual and contextual factors that can influence such adaptation. Recently, we started to conduct such studies in the context of the projects AnDy and C-shift, addressing a simple example of comanipulation [START_REF] Vianello | Latent Ergonomics Maps: Real-Time Visualization of Estimated Ergonomics of Human Movements[END_REF]. This is only the first of many future human-human and human-robot studies.

Prescient control of active exoskeletons

In the project AnDy [Ivaldi et al., 2017b], our initial objective was to lay the foundations of control of active exoskeletons through anticipatory control (which is the generic term for the prescient control we presented in Chapter 6), but, in the end, we just focused on passive exoskeletons. Precisely, we designed the evaluation of the passive exoskeleton Paexo as an intermediate step towards the development of an active or semi-active exoskeleton. As a result, we only implemented anticipatory control for the humanoid teleoperation, as described in Chapter 6.

In hindsight, it was the right course of action: it was too premature to address anticipatory control of an active exoskeleton (that was yet to be built): this not only requires i) an efficient prediction of the human movement, but also ii) a precise human-aware whole-body controller that commands the exoskeleton while reasoning on the coupled system (human and exoskeletons are physically coupled), and iii) a suitable methodology for evaluating the subjective and objective effects of the exoskeleton on the human.

The prediction of the intended movement for an active exoskeleton is critical because the robot needs to compute the appropriate assistive torque that corresponds to the desired movement. Not only this computation must be very precise (to avoid the risk of injuries on the human body shall the commanded torque be unsuitable for the task and the human), but it must be computed fast, typically on the onboard CPU that has limited resources, and using only a very limited set of sensors. In such a case, we are far from the laboratory conditions of Chapter 4 where we could use a motion tracking system such as the Xsens MVN and a desktop computer (or a good laptop) to run our predictions. If computing the prediction requires a certain time ∆ pred and the low-level control requires a certain time ∆ mot to regulate the torque to the desired values, then to assist the human in an ideal way, the exoskeleton needs at time t to plan for the assistance that will be required at time t + ∆ pred + ∆ mot . This means the exoskeleton controller needs to anticipate the future intended motion and command the assistive torque for time t at time t -∆ mot . This situation is much similar to the case of prescient teleoperation described in Chapter 6. The critical moment for the prediction will be when a movement is just starting and it requires a big assistive torque from the onset of the motion: this is, for example, the case of lifting a big payload from the ground. While we have shown in Chapter 4 that it is possible to predict future trajectories from early observations with probabilistic movement primitives, in this case, we will need to predict the trajectory and the type of actions ideally after one frame, and possibly before the start of the movement. We will have to explore other techniques for predicting time series, to account for past observations that can provide information about the onset of the movement to assist. One possibility will be to use recent frameworks based on neural networks [START_REF] Schydlo | Anticipation in human-robot cooperation: A recurrent neural network approach for multiple action sequences prediction[END_REF], similar to those we explored in the context of visual image prediction [START_REF] Ma | A "Light" Action-Conditioned Visual Prediction Model for Grasping Objects[END_REF].

The exoskeleton controller will have then to account for the predicted human movement, and plan for suitable torques. In a sense, this is another instance of the human-aware controller for physical interaction developed in Chapter 2. However, with exoskeletons, there is a particular difficulty which is the modeling of the numerous contacts between the exoskeleton and the human body. Indeed, in Chapter 2 we were in the "simple" condition of physical interaction localized at the level of the end-effectors of the two partners. In the case of the exoskeleton, there are several contacts between the robot's structure and the human body, typically located at the fixations points (e.g., where straps and belts are used to fix the exoskeleton to the human limbs, for example in the arms or tights), but there can be parasitic or undesired contacts appearing in a discontinuous manner due to specific postures. Moreover, contacts with the human body are by definition to be considered soft contacts, which make the resolution of the whole-body controller much more complicated. As a result, we shall expect that the dynamics model of the coupled system exoskeleton with humans will be largely inaccurate.

Finally, evaluating the impact of an anticipatory active controller on an exoskeleton will be another challenge. In the AnDy project, we acquired experience in the evaluation of a passive back-support exoskeleton [Maurice et al., 2019a]: this study, involving all the partners, was edifying and laid the foundation of several follow-up studies probing the use of passive exoskeletons for ergonomics and healthcare. The most notable study was conducted in the context of the Exoturn project, with the Intensive Care Unit of the University Hospital of Nancy, to support physicians in prone positioning [START_REF] Settembre | The use of exoskeletons to help with prone positioning in the intensive care unit during COVID-19[END_REF], Ivaldi et al., 2021]. To evaluate the contribution of the prediction and the contribution of the active controller we will need to compare the different control modes in different conditions (for example, with/without prediction). Interestingly, we could discover if the contributions we have in mind are really necessary in terms of assistance: it may be the case, in fact, that the robot's motors will not be able to produce the necessary torque anyway, and so the errors we can produce in the assistance absolute values have little impact. Nonetheless, we expect that the most critical prediction will be the one of the movement's onset since it will determine whether the exoskeleton can assist the human at the beginning of the movement, where actually the big assistance is needed, and not only later on.

The vision

In the previous sections, I outlined two main research directions.

The first direction is about leveraging teleoperation to obtain multimodal and situated demonstrations of how the robot should behave, to create a large dataset that can be harnessed to learn skills and behaviors. While the final goal is building a large database of skills, that robots can download (like downloading jujitsu in The Matrix), an intermediate goal is to build an intuitive, simple yet powerful teleoperation system that facilitates the work of the human operators.

The second direction is about understanding how robots can collaborate with humans at their best, and implementing suitable robot controllers that enable collaborative behaviors. Here the goal is first methodological, i.e., to find a good formulation of the control problem at different levels (low to high), and then experimental, with the challenge of realizing it on humanoid robots, mobile manipulators and active exoskeletons.

The two directions intersect each other: there are many common control and estimation problems, but most importantly they serve each other. If we are successful in building the fundamental elements for a robot to collaborate, we will always need behavior models and ground the behaviors in the current situation. For this, we need the interaction skills that we will have learned from teleoperation.

Of course, I only sketched some problems that must be addressed, yet a reader may find the list already too big for a single researcher. There is a reason why I have been using the "we" since the beginning of this manuscript, and there is a reason why this "we" is even more relevant now: I will work on these research problems with a team. The story of this manuscript started in Chapter 1 with the creation of the Inria team Larsen: in the next years, the story will continue with the Inria team HuCeBot3 that we are planning to create with my colleagues Jean-Baptiste Mouret and Pauline Maurice.

I don't know yet where our next steps will bring us, but I always keep in mind my dream of seeing a humanoid robot on the Moon: maybe not like R. Daneel Olivaw4 , something closer to Speedy5 would be already fantastic. 

A.3. Work experience

Figure 1

 1 Figure 1.1.: The six iCubs I have been working with in the past years.

Figure 1

 1 Figure 1.2.: Evolution of collaborative robots.

  Figure 1.3.: A simple schema that situates the scientific challenges and the contributions for human-robot collaboration presented in this manuscript.

  Figure 2.1.: Overview of the physical human-robot interaction controllers, and their applications, presented in this chapter. Section 2.1.1:The assembly experiment of[START_REF] Ivaldi | Towards engagement models that consider individual factors in hri: On the relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task[END_REF] within the CoDyCo project, where the robot interacts with the human only through the contact forces applied to his arms/hands. Section 2.1.2:The final demo of CoDyCo[START_REF] Romano | The CoDyCo Project achievements and beyond: Towards Human Aware Whole-body Controllers for Physical Human Robot Interaction[END_REF], where the human helps the robot to stand up from a chair. The robot interacts with the human through the contact forces applied to his arms/hands, but it is "aware" of the human through the dynamical model, measured by a motion tracking suit and force plates. Section 2.1.3: The multi-robot QP controller proposed in AnDy[START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF], used to compute assistive robot actions that do not make the human fall. The robot interacts with the human through the contact forces applied to his arms/hands, and it is "aware" of the human through the dynamic model. The human motion, recorded offline by a motion tracking suit, is replayed in simulation. The contact situation is similar, but the way the human model is used in the QP controller is different.

Figure 2

 2 Figure 2.2.: Conceptual representation of the exploratory pHRI experiment in the project ED-HHI: we study the relation of individual factors, such as extroversion and negative attitude toward robots, on haptic (contact forces) and social signals (speech and gaze) during a cooperative assembly task between a human and the iCub.

  Figure 2.3.: The experimental setup. The participant is standing in front of the robot iCub; theirinteraction is recorded by a Kinect, two standard HD cameras (front and side view of the scene). The experimenter monitors the interaction from the side, not too far but close enough to be able to push the safety button and intervene in case of emergencies. The operator is hidden behind a wall, and he controls the robot monitoring the interaction through a webcam placed over the robot. The power supply and cluster of the robot are hidden behind a cabinet.
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 25 Figure 2.5.: Demonstration on how to safely grab the robot arms for kinesthetic teaching in the assembly task: the hands of the experimenter grasp the robot forearms on a part covered by the skin. On the left, distributed tactile sensors underneath the cover.
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 2 Figure 2.7.: Some participants performing the assembly task (screenshots from the front camera). The three images show the participants giving the cylinders to the robot (left), grabbing the robot's arms (center) then moving the arms to align the cylinders (right).
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 2 Figure 2.8.: Some participants show the final object to the robot, after the collaborative assembly.

Figure 2

 2 Figure 2.9.: Measures from the assembly demonstration, second trial. Top: skin sensor measures (mean; y-axis in the dimensionless sensor range 0-250; x-axis in frames (100 per second on average, since the skin driver runs at 100Hz). Bottom: contact force (mean, normalized; y-axis in [N]; x-axis in frames (100 per second on average, since the dynamics estimation module runs at 100Hz).

  Figure 2.11.: Max and median contact forces across trials, in relation to gender (gender 1: female; gender 2: male) and age (1: 1-26, 2: 27-42, 3: 43+).
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 2 Figure 2.13.: Mean smoothness of the demonstrated Cartesian trajectories of the robot's endeffector, computed by Equation 2.2, across trials for all the participants..

  Figure 2.14.: Collaboration between robot and human. High-level objectives generate referencesfor the human-aware controller that commands the robot torques. Thanks to the wearable sensors, we can estimate the human state and dynamical quantities and provide them as feedback to the controller. A human Intention predictor may be used to detect the human intention given the estimated human dynamics.

  Figure 2.15.: pHRI experiment of [Romano et al., 2018]. iCub stands up from a chair/bench with the help of a human subject wearing a sensorized Xsens MVN suit. The visualisation in rViz (b) shows the external forces acting on the human and the effort estimated at the human joints as grayscale coloured spheres.
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 2 Figure 2.16.: Center of Mass (CoM) trajectory during the stand-up motion simulated in Gazebo with and without human assistance.
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 2 Figure 2.17.: Norm of the iCub torques during the "stand-up from the chair" experiment with and without human assistance. The experiments were conducted with the iCub robot in IIT. The lines show the sample means across different trials. The shaded regions represent the associated 95% confidence region.
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 2 Figure 2.18.: Diagram showing the difference between the two methods for human motion reconstruction investigated in[START_REF] Otani | Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller[END_REF]. In both methods, the motion capture data is mapped onto our parametrized 22-joint human model, which is then used to compute the robot's controls.
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 22 Figure 2.19.: Steps of the pick & place experiment. Full video at https://youtu.be/C41I4_ TXzlw.HUMAN HAND POSEHUMAN COM
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 2 Figure 2.21.: Robot assisting human with balance in Experiment 2. Left: Forces on robot and human shown in red arrows. Right: Interaction forces (forces felt by the robot) in the x-direction (forward/backward) on the robot's right end effector. Our controller generates interaction forces that keep the collaborative task balanced.

  Upright + arms above head -Upright + bending ≥ 20 deg -Trunk rotation ≥ 25 deg -Lateral bending ≥ 25 deg • Constraints to avoid (considering our task): -Whole-body forces ≥ 40 N -Load handling ≥ 3 kg -Wrist bending ≥ 45 deg
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 2 Figure 2.23.: A constrained stochastic optimization loop for optimizing the reference trajectories of a simulating human, to be used to test ergonomics controllers.

  Figure 3.1.: The humanoid robot iCub performing a bimanual task with several tasks and con-straints. The goal is to optimize the task priorities guaranteeing that the global robot behavior is safe, i.e., that it never violates any of the robot, environment or task constraints.

  Figure3.2.: Overview of the constrained optimization method proposed in[Modugno et al., 2016a]. The controller consists of a weighted combination of elementary tasks, where the weight functions represent the soft task priorities. An outer learning loop enables the optimization of the task weight parameters, taking into account the constraint violations in an explicit way.

•

  Task 1 : p * r = [0.35, -0.15, 0.68] (m) • Task 2 : p * elbr = [0.21, -0.25, 0.68] (m) • Task 3 : p * l = [0.3, 0.0248, 0.68] (m) • Task 4 : p * elbl = [0.21, 0.1138, 0

  Figure 3.3.: Performance comparison of the three constrained CMA-ES algorithms and the baseline fmincon algorithm from Matlab using the SQD method.The left column reports on the results on three standard analytical constrained optimization benchmarks (g07, g09, HB -see[START_REF] Arnold | A (1+1)-CMA-ES for constrained optimisation[END_REF]). The right column reports on the results on two robotics benchmarks (RB1, RB2) that we designed ad hoc to evaluate the performance of the algorithms on robotics problems.

  Stabilize the center of mass position X CoM ∈ R 3 -Stabilize the stance foot pose X stance ∈ R 6 -Stabilize the swing foot pose X swing ∈ R 6 -Stabilize the neck orientation X neck ∈ R 3 -Track joint positions (postural task) s -Minimize joint torques τ A set of task weights is defined, in order to attribute each task a priority, with w w w = w CoM , w stance , w swing , w neck , w s , w τ (3.8)

  10 6. Gaussian noise on joint velocity signals On 7. Gaussian noise on F/T sensor signals On with respect to the center of the support polygon O SP . The third fitness function, φ pr , was a combination of the first two:

  to 1. The remaining task priorities were attributed bounds as shown in the bottom of Table

  Figure 3.7.: Typical CoM and feet trajectories obtained for 6 strides performed with the tethered and backpacked iCub models, given initial weights w 0 or weights optimized using DR (except for "no DR") with φ p , φ r , φ pr . Each color denotes the use of a different set of optimized weights. The x, y and z axes correspond respectively to the sagittal, frontal and vertical axes.

Figure 3

 3 Figure 3.8.: Typical ZMP trajectories obtained for 6 steps performed with the tethered iCub model, from left to right: given initial weights, weights optimized with φ p , φ r , φ pr . Each color (blue, red or yellow) denotes the use of a different set of optimized weights. The x, y and z axes correspond respectively to the sagittal, frontal and vertical axes.

Figure 3 .

 3 Figure 3.10.: Overview of the approach. Top: Optimization process (offline). A training mo-tion sequence is generated. The optimization algorithm searches for the best controller configurations that make the simulated robot execute the reference motion sequence. The algorithm computes a set of Pareto-optimal control configurations, i.e. optimal trade-offs between robustness and performance. Bottom: Testing process (online). The user selects the most appropriate control configuration from the Pareto-optimal solutions for the real robot, getting a valid working solution in few trials.

Figure 3 .

 3 Figure 3.11.: Median Pareto front (thick line) and associated IQR (shaded region) computed by NSGA-II in 20 runs with a population of 100 individuals and 300 generations for the controllers C1 (blue) and C2 (green).

Figure 3 .

 3 Figure 3.12.: Comparison of the tracking performance of the median learned controller C1 andthe hand-tuned controller HT (with w ht = 1) in sequence S1, on some significant tasks (in simulation). More detail on the HT controller and the comparison can be found in[START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF].

Figure 3 .

 3 Figure 3.13.: The iCub robot controlled with the learned configuration C2 while performing different teleoperated tasks. A video showing the controller in action when the robot is tele-operated in visible at https://youtu.be/U29pek0qEHQ.

  Figure 4.1.: Human activity recognition module. Data from both wearable sensors form the set of all available features, among which the feature selection module enables to select the best-performing ones with either a filter-based method or a wrapper-based method. Parameters of the HMM models are learned based on the selected features and using an annotated training dataset (supervised learning). The feature selection and training processes are both performed offline. Once the classifier is trained, recognition can be done either offline or online.

Figure 4

 4 Figure 4.2.: 4 of the 6 tasks performed by participants during the collection of the dataset of [Maurice et al., 2019b] used for training activity recognition models, with associated camera frames and corresponding posture and action following the taxonomy proposed in Table4.1.

Figure 4

 4 Figure 4.3.: Evolution of F1-score with the number of features used for the recognition. Full lines and shaded areas represent respectively the mean of the F1-Score and the standard deviation. The wrapper-based method allows reaching the maximum of performance with a low number of features. With the filter-based method, the addition of certain features can decrease the performance such as for the DET and DEPOS levels.

Figure 4

 4 Figure 4.4.: Concept of our work: the goal is to predict at time t the future human whole-body movement (t + 1, . . . ,t f ) given t partial observations of this movement. AE-ProMPs is used to make this prediction.

Figure 4

 4 Figure 4.5.: Concept of our proposed method to predict future trajectories. We encode highdimensional postures (with AEs) into a low-dimensional latent space (in the figure, 2-dimensional with latent space axes z 0 and z 1 ). From several low-dimensional encoded trajectories, the ProMPs learn a trajectory distribution for each action. This prior information is used to predict the future trajectory (in red) given some initial observations (in black).

Figure 4

 4 Figure 4.7.: The 7 actions of the dataset of [Malaisé et al., 2018], with the kinematic estimation of the human posture by Xsens MVN Studio.

Figure 4

 4 Figure 4.8.: AE-ProMPs -Accuracy according to the latent space dimension and the percentage of observations.

Figure 4

 4 Figure 4.9.: AE-ProMPs: experiment with a 5-D latent space. Inferred postures after 60% of partial observations.

Figure 4 .

 4 Figure 4.11.: "Ergonomic maps" are graphical representations of one's ergonomic score for any posture represented in a 2D latent space. Each human posture is a 2D point in the space, and therefore when one is moving a trace (blue line in the figure) appears.The color code in the maps reflects the ergonomic score associated with each posture. This graphical representation has the advantage of being very intuitive and easy to use for a human even without particular knowledge of ergonomics.

Figure 5 .

 5 Figure 5.1.: Outline of the approach for object learning exploiting autonomous exploration and interaction with a human teacher. This research was conducted in the context of the MACSi project (during my postdoc in ISIR/UPMC -2011-2013).

Figure 5 .

 5 Figure 5.10.: Effect of the "stabilizer" on the CoM and ZMP during the motion of picking up an object from the ground. The robot's feet are shown in black. Right: CoM reference position reconstructed from the human reference (red) and corresponding stabilized value (blue). Left: ZMP of the LIP model associated to the CoM reference without (red) and with (blue) stabilization. From [Penco et al., 2019a].

Figure 5 .

 5 Figure 5.11.: Some snapshots of the tele-operation experiments with iCubNancy01. Remarkably, the robot does not fall when the human operator falls back (frame on the bottom right). A video of the experiments can be seen at https://www.youtube. com/watch?v=iZVAacyvYhM&t=2s.

Figure 5 .

 5 Figure5.12.: Some examples of tele-operated motions with iCubNancy01. Specifically, these motions were used to validate parametrized whole-body controllers, to find a "generic" controller configuration that enables the robot to perform the different motions[START_REF] Penco | Learning Robust Task Priorities and Gains for Control of Redundant Robots[END_REF].

  Figure 6.1.: Concept of prescient teleoperation. The operator wears a motion capture suit and a virtual reality headset. They teleoperate a humanoid robot over a network with communication delays (up to 2 seconds). To send a synchronized visual feedback to the operator, the robot anticipates the commands thanks to data-driven predictors that are trained from a few examples beforehand: the robot executes commands that the operator has not given yet by predicting the most likely commands in the next few seconds.

Figure 6 Figure 6

 66 Figure 6.2.: Some tasks performed by the robot during the experiments (dataset "Multiple tasks"). In the first scenario (4 left images), the robot is teleoperated to reach a bottle at different locations and in different ways; in the second scenario (2 right images), the robot has to pick up a box from different locations then placing it in another location.

Figure 6

 6 Figure 6.4.: Prediction update according to observations. (A) The robot is picking up a box in front of it at a mid height. (B) The robot is reaching a bottle located on top of a box.The most relevant predicted trajectories (light colored lines) are compared to the non-delayed trajectories at the operator's side (dark colored lines), after observing different portions of the motion; a perfect prediction would mean that the light line (green/blue/red) line matches the dark line (green/blue/red). The non-delayed trajectories are from the testing scenario of dataset Multiple Tasks and the experiment corresponds to a particular case of those reported in Table6.1. From left to right, the figure shows the prediction given by the ProMPs learned from the demonstrations, the prediction updated after observing the first portion of motion used to infer the task and its duration, the prediction updated after observing a fourth of the motion, and after observing half of the motion. After less than 1s of observation, the light trajectory is similar to the dark trajectory, whereas it might have been far from the ProMP mean (see, for instance, the elbow in experiment (b)). In most cases, 2 seconds is enough to obtain very accurate predictions for the next 4-5 seconds.

Figure 6

 6 Figure6.5.: Round-trip delay compensation. Given the past delayed observations, the robot produces at each time a prediction ( μw k ) of the current command. To compensate for the delays, the right sample (orange dot) from the prediction has to be selected as reference for the robot controller at each time. (A) The sample corresponding to the last received observation is an estimate of the delayed command. (B) By knowing the forward delay τ f (t), a sample from the prediction can be selected so as to achieve a synchronization between the operator's movement and the robot movements. (C) By knowing the forward τ f (t) and backward delay τ b (t), the robot can select the right sample from its prediction so as to achieve a synchronization between the operator's movement and the feedback from the robot side. A policy blending arbitrates the delayed observations with the samples selected from the prediction, which guarantees a smooth transition from delayed to compensated teleoperation.

Figure 6

 6 Figure 6.6.: Teleoperation with compensation of a round-trip delay around 1.5s. The robot is picking up a box in front of it at mid-height. The forward delay follows a normal distribution with 750ms as mean and 100ms as standard deviation, while the backward delay is 750ms. The trajectories retargeted from the human to the robot without any delay are the dark-colored red-green-blue lines. The orange-teal-gray lines are the corresponding delayed trajectories and the light-colored red-green-blue lines are the compensated trajectories. The compensated trajectories (light red-green-blue lines) are the final robot reference trajectories. These, first follow the delayed teleoperated signals (orange-teal-grey lines). Then, when the prediction is available, they anticipate the teleoperated motion (dark-colored red-green-blue lines) so to get a visual feedback at the user side coherent with what the operator is doing .

  RMS error right hand position [cm] Average delay tracking error of compensated trajectories after transition (Dataset Multiple Tasks*) tracking error of compensated trajectories with transition (Dataset Multiple Tasks*) tracking error of non-compensated trajectories (Dataset Multiple Tasks*) compensated trajectories after transition (Dataset Goals) tracking error of compensated trajectories after transition (Dataset Obstacles) tracking error of compensated trajectories after transition (Dataset Multiple Tasks*) the task "Bottle on table"

Figure 6

 6 Figure 6.8.: Scalability of the delay compensation with respect to increasing time delays. (A)Tracking error of the compensated trajectories for the right hand position with respect to the non-delayed ones compared to the tracking error of the corresponding non-compensated (delayed) trajectories with respect to the same non-delayed ones.The tracking error of the compensated trajectories is considered both including the transition from the delayed phase to the synchronization phase (Figure6.5), which adds a non-compensable error, and without transition. The RMS of the error is computed from the 10 testing motions of the task of reaching the bottle on the table from dataset Multiple Tasks.(B) The tracking error of the compensated trajectories for the right hand position with respect to the non-delayed ones (after the transition phase) is evaluated also on the testing trajectories from the dataset "Obstacles" with different obstacles. and the dataset Goals with different reaching goals. The tracking error is computed as the Euclidean distance between the evaluated trajectory and the reference trajectory. The compensated trajectories are temporally realigned with the non-delayed trajectories for computing the error, which is evaluated with different round-trip delays τ(t): 0s, around 0.5s, 1s, 1.5s, 2s, 3s and 4s. The time-varying forward delay follows a normal distribution with mean τ f = τ/2 and standard deviation equal to 2 15 τ f . The backward delay is set equal to τ f .

Figure 7

 7 Figure 7.1.: Teleoperation can be used to demonstrate complex behaviors to different robots, with different anthropomorphic characteristics, interacting or not with other humans. The human operator has a live feed from the robot's cameras (or other environmental cameras, if they are accessible) and can control the robot through a multimodal interface, either triggering automatic behaviors or commanding directly the robot through motion retargeting.An augmented reality system displays extra information that facilitates the task. The ground control operator monitors the robot and the entire system. He/she has access to more detailed information about the robot's status and environment and can command the robot through a high-level interface. This setup can be used for teleoperation and data collection through teleoperation for skill learning and transfer.

Figure 7

 7 Figure 7.2.: Humans collaborating with humans and with different robots: cobots, mobile manipulators, flying manipulators, humanoids, exoskeletons.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Table 2.1.: The stiffness-damping parameters of the impedance control implemented in the iCub's arms at the joint level, following Equation 2.1.

	Impedance parameters for the arm joints j0-j4					
	Control mode	Parameters	j0	j1	j2	j3	j4
	Impedance soft	Stiffness [Nm/deg]	0.2	0.2	0.2	0.2 0.1
		Damping [Nm/deg/s] 0.0	0.0	0.0	0.0 0.0
	Impedance medium Stiffness [Nm/deg]	0.4	0.4	0.4	0.2 0.2
		Damping [Nm/deg/s] 0.03 0.03 0.03 0.01 0.0
	Impedance hard	Stiffness [Nm/deg]	0.6	0.6	0.6	0.3 0.2
		Damping [Nm/deg/s] 0.06 0.06 0.06 0.02 0.0
	Zero-torque	Stiffness [Nm/deg]	0.0	0.0	0.0	0.0 0.0
		Damping [Nm/deg/s] 0.0	0.0	0.0	0.0 0.0

Table 3 .

 3 1.: Randomized set of conditions j

	Randomized Condition (RC) in j	Random value
	1. Gaussian noise on F/T sensor signals On / Off
	2. Appointed swing foot	Left / Right
	3. Direction in which swing foot is moved Front / Back
	4. X CoM d moved forward by δ	

Table 3 .

 3 3.: Tasks, associated symbols and control parameters (Soft Priority Weight (SPW), Hierarchy Level Selector (HLS) and Converge Gain (CG)) for the humanoid controllersC1 and C2 of [Penco et al., 2020].

	Task		Control Parameters
	Description	Symbol SPW HLS	CG
	left foot pose	T l f	w f	l f	λ f eet , σ f eet
	right foot pose	T r f	w f	l f	λ f eet , σ f eet
	left hand position	T lh	w ha	l ha	λ hand
	right hand position	T rh	w ha	l ha	λ hand
	com height	T cz	w cz	l cz	λ com
	com (x,y)	T cxy	w cxy	l cxy	λ com
	waist orientation	T wo	w wo	l wo	σ waist
	waist height	T wh	w wh	l wh	λ waist
	head orientation	T h	w h	l h	σ head
	chest orientation	T c	w c	l c	σ chest
	neck posture	T n	w n	l n	µ posture
	torso posture	T t	w t	l t	µ posture
	left arm posture	T la	w a	l a	µ posture
	right arm posture	T ra	w a	l a	µ posture
	left lower arm posture	T lla	w la	l la	µ posture
	right lower arm posture	T rla	w la	l la	µ posture
	left leg posture	T ll	w l	l l	µ posture
	right leg posture	T rl	w l	l l	µ posture

Table 3 .

 3 4.: Convergence Gains (CG) associated to the 20 learned configurations given f 2 = 22

		C1			C2	
	CG	Median	IQR	CG	Median	IQR
	λ hand	0.0191 0.033	λ waist	0.5491 0.3791
	λ f eet	0.0577 0.064	λ f eet	0.2486 0.0983
	σ f eet	0.0051 0.0059	σ f eet	0.0983 0.1231
	λ com	0.4426 0.1664	λ com	0.5911 0.1946
	σ waist	0.0591 0.042	σ waist	0.0652 0.0472
	σ head	0.0796 0.0234	σ head	0.2778 0.2560
	µ posture 0.5605 0.2145 µ posture 0.5162 0.0821
				σ chest	0.6052 0.4009
	Table 3.5.: Soft Priority Weights (SPW) associated to the 20 learned configurations given f 2 = 22
		C1			C2	
	SFW Median	IQR	SFW Median	IQR
	w ha	0.639 0.2131	w a	0.8406 0.296
	w f	0.5357 0.1786	w f	0.5835 0.2144
	w cxy	0.8368 0.1941 w cxy	0.9519 0.1984
	w wo	0.8674 0.4832 w wo	0.1613 0.2337
	w h	0.3343 0.3101	w h	0.5357 0.2465
	w n	0.3256 0.2893	w n	0.406 0.2419
	w t	0.9258 0.245	w t	0.0656 0.2138
	w la	0.3599 0.3133	w l	0.1145 0.3756
	w cz	0.7684 0.2191 w wh	0.1879 0.1785
				w c	0.9902 0.091

Table 3

 3 

.6.: Task frequency in each level of the hierarchy in the 20 learned configurations, given f 2 = 22. (Most frequent solution in bold)

Table 4 .

 4 1.: DESCRIPTION OF THE TAXONOMY FOR ACTION RECOGNITION FROM [MALAIS É ET AL., 2019].

	State	Label	Description
	GEPOS		Main posture
	Standing Walking Kneeling Crouching Sitting Lying	St Wa Kn Cr Si Ly	Ends when feet start moving Starts when one foot start moving, ends when both feet are still At least one knee on the floor No knee on the floor Buttock on a chair or support Torso on the floor or horizontal surface
	DET		Torso and arms configuration
	Upright Bent forward Strongly bent forward BS U BF Shoulder level work OS Overhead work OH	Torso straight Torso flexion angle between 20 and 60 degrees Torso flexion angle greater than 60 degrees Elbow(s) at or above shoulder level with hand(s) at or below head level Hand(s) above head level
	DEPOS		Full postural information: combination of GEPOS and DET
		St U St BF St BS St OS St OH Wa U Wa BF ...	Standing upright Standing bent forward Standing strongly bent forward Standing shoulder level work Standing overhead work Walking upright Walking bent forward ...
	CUACT		Goal-oriented action
	Reaching Picking Placing Release Carrying Fine manipulation Screwing Idle	Re Pi Pl Rl Ca Fm Sc Id	Moving an arm towards a target, no object in hand Picking-up an object, starts when touching the ob-ject, ends when arm stops moving with respect to the body Placing an object, similar to Re but with an object in hand Bringing arm back after any manipulation task Carrying an object. Starts at the end of Pi, ends at the beginning of Pl Dexterous manipulation of an object A special case of Fm: rotational screwing move-ment of the hand Not doing anything with hands

Table 4 .

 4 2.: LIST OF FEATURES CONSIDERED FOR ACTIVITY RECOGNITION.

	Group	Name	Dimensions
	IMUs	orientation linear acceleration linear acceleration norm*	17 * 4 = 68 17 * 3 = 51 1
	human model 3-DoF joints	angle angular velocity angular velocity norm* angular acceleration angular acceleration norm* 1 22 * 3 = 66 22 * 3 = 66 1 22 * 3 = 66
	human model segments origin 3D position 3D orientation 3D velocity velocity norm* 3D acceleration acceleration norm* 3D angular velocity angular velocity norm* 3D angular acceleration angular acceleration norm* 1 23 * 3 = 69 23 * 4 = 92 23 * 3 = 69 1 23 * 3 = 69 1 23 * 3 = 69 1 23 * 3 = 69
	human model center of mass	3D position 3D velocity velocity norm* 3D acceleration acceleration norm*	3 3 1 3 1
	e-glove	finger/palm pressure finger flexion	4 3

Table 4

 4 

	.3.: PERFORMANCE OF DIFFERENT SUBSETS OF FEATURES
			GEPOS DET	DEPOS CUACT
	Features	Dim. F1	F1	F1	F1
	Our subsets				
	Best subset dimension 4*	4	95.75	92.01 91.84	75.65
	Best subset dimension 8*	8	96.19	94.30 92.72	81.00
	Mandery et al. [Mandery				
	et al., 2016a]				
	Center of mass velocity, Seg-	4	88.61	32.10 30.63	23.75
	ments velocity norm				
	Center of mass velocity, Seg-	8	48.59	82.35 67.22	55.12
	ments velocity norm, Veloc-				
	ity norm of hands and feet				
	High-dimensional				
	All available features	779	93.95	93.16 89.30	81.39
	All segment positions	69	93.34	95.62 91.15	71.56
	All joint angles	66	91.37	93.74 90.12	73.51

Table 4 .

 4 4.: DETAILS OF THE FINAL SELECTED SUBSETS OF FEATURES.

	Taxonomy Dim. F1-score Subsets of features
	GEPOS	3	94.53	Pelvis position (z)
				Pelvis velocity (z)
	DET	6	94.00	Left lower leg acceleration (x) Angular acceleration pelvis (y)
				L5 vertebra orientation (q1, q3)
				Right shoulder orientation (q2)
				Left forearm position (z)
	DEPOS	5	92.61	Right hand position (x) Center of mass position (z)
				Segments velocity norm
				Right shoulder orientation (q1)
				Right ankle joint angle (z)
	CUACT	11	83.36	Right upper leg position (z) Segments velocity norm
				IMU acceleration norm
				Angular acceleration head (z)
				Right elbow joint angle (z)
				Pelvis orientation (q3)
				Left hand position (x)
				Left hand orientation (q3)
				Head velocity (z)
				Neck velocity (z)
				Right forearm velocity (z)
				Right hand velocity (z)
	Subsets of features that reach 2% of the maximum recognition rate for each of taxonomy
	levels.			

Table 4 .

 4 5.

	Inference from 20% observation	Accuracy prediction [m]	Computation time [s]
	ProMPs (69 dimensions)	mean var	0.0145 1.0038e-04	2.5378 0.0357
	AE-ProMPs (L.S.= 5)	mean var	0.02793 0.003	0.0516 0.0028

  • A State Space Exploration level that explores according to the task-strategy couple chosen by the Strategy and Task Space Exploration level. With each chosen strategy, different samples state-task are generated to improve the estimation of the model. It finally returns the measure of error to the Strategy and Task Space Exploration level.

Table 6 .

 6 1.: Prediction error after observing different portions of the commanded trajectories (dataset Multiple Tasks).

	Bottle reaching

  Full list with URL of the workshops' website is at https://members.loria.fr/SIvaldi/ cv/: -RSS 2022: Workshop on "Scaling Robot Learning". -ICRA 2022: Workshop on "Shared Autonomy in Physical Human-Robot Interaction: Adaptability and Trust". -ICRA 2022: 4th Workshop on" Integrating Multidisciplinary Approaches to Advance Physical Human-Robot Interaction: Challenges of Interfacing Wearable Robots with the Human". -ICRA 2022: Workshop on" Scaling Robot Learning". -ICRA 2021: 3rd Workshop on "Integrating Multidisciplinary approaches for physical humanrobot interaction". -ICRA 2021 : Workshop on "Teleoperation of Dynamic Legged Robots in Real Scenarios". -ROMAN 2020: Workshop "Cognitive Robotics for Interaction?". -ICRA 2020: 2nd Workshop "Integrating Multidisciplinary Approaches to Advance Physical Human-Robot Interaction". -ICRA 2020: Workshop "Shared Autonomy: Learning and Control". -ICRA 2019: Workshop "Human movement science for Physical Human-Robot Collaboration". -RSS 2019: Workshop "Women in Robotics V". Co-organizer and co-manager of travel grants (also obtained Google donation + USA Office of Naval Research grant as PI for travel grants for female researchers). -HUMANOIDS 2019: Workshop "Teleoperation of humanoid robots". -IEA 2018: Workshop "Collaborative robotics and Ergonomics". -HUMANOIDS 2017: Workshop "Human-humanoid collaboration: the next industrial revolution". -IROS 2016: Workshop "H-R Collaboration: Towards Co-Adaptive Learning Through Semi-Autonomy and Shared Control". -ICRA 2015: co-organizer of Workshop "Tactile and force sensing for autonomous, compliant and intelligent robots". -BMVA 2015: co-organizer of Workshop on "Visual, tactile and force sensing for robot manipulation". -ICRA 2013: co-organizer of Workshop "Whole-body compliant dynamical contacts for humanoid robotics". -IROS 2012: co-organizer of Workshop "Optimality principles and adaptation to humanoid robotics control". National Conference organization: -JNRR 2019: co-chair of the Simulation, Tele-operation track. Web: http://jnrr2019. loria.fr/ -JNRH 2018: co-organizer of Journees Nationales de la Robotique Humanoide. Web: http: //jnrh2018.loria.fr/ -ROB&IA 2018: co-organizer of Journee Robotique & IA @ PFIA 2018. Web: http:// pfia2018.loria.fr/journee-robotique/ -evaluator for the UK Best PhD Award (2020) judge of the international robotics competition ANA Avatar Xprize on robotics telepresence/teleoperation (2021-2022) A.6.4. Participation to Committees Inria Committee member -GT Europe (Groupe de Travail Europe) in Inria Nancy, to promote participation of Inria researchers to Horizon calls (since 2015). -GT AER (Groupe de Travail sur les AER) in Inria, to change the job description and the missions of the team assistants (2022). CNRS Committee member -Groupe de Discussion pour le renouvellement de la liste des candidats section 07 CNRS (Spécif Campus, GRETSI & Club EEA) -invited by Spécif Campus, 2016. International Committees member -IEEE-CIS Technical Committee on Autonomous Mental Development, Task Force Web presence (April 2015 -December 2018) -IEEE-RAS Technical Committees on Cognitive Robotics (since 2015) -IEEE-RAS Technical Committees on Human Movement Understanding (since 2015) -IEEE-RAS Technical Committees on Model-Based optimization for robotics (since 2014) -IEEE-RAS Women in Engineering (WIE) -iCub community (robotcub-hackers, 2009-2018) -Topic Group Natural Interaction with Social Robots -EU TG for Horizon2020 (2014-2018) Ivaldi, S.; Nguyen, S.M.; Lyubova, N.; Droniou, A.; Padois, V.; Filliat, D.; Oudeyer, P.-Y.; Sigaud, O. (2013) Object learning through active exploration. IEEE Transactions on Autonomous Mental Development. Pages 1-18.This journal paper is about developmental learning of objects through curiosity-driven exploration and interaction with a human tutor. It is a good summary of the work done during my postdoc in ISIR/UPMC, when I was working in the ANR project MACSi.2. Penco, L.; E. Mingo Hoffman; Gomes, W.; Modugno, V.; Mouret, J.-B.; Ivaldi, S. (2020) Learning robust task priorities and gains for control of redundant robots. IEEE Robotics and Automation Letters. This journal paper describes a great algorithm for automatic tuning of whole-body controllers configurations and parameters; it was important to obtain a generic whole-body controller for iCub, to enable teleoperation. It was later adapted to the Talos ([C45]). It was developed during the PhD thesis of Luigi Penco, but it is the result of a body of work that started with the PhD of Valerio Modugno. 3. Dermy, O.; Chaveroche, M.; Colas, F.; Charpillet, F.; Ivaldi, S. (2018) Prediction of Human Whole-Body Movements with AE-ProMPs. Proc. IEEE/RAS International Conf. on Humanoid Robots. This is a conference paper that presents the best result, in my view, of the PhD thesis of Oriane Dermy. It presents a technique to predict the whole-body movements of humans given some observations. It enabled follow-up work, in particular the prescient teleoperation. 4. Malaisé, A.; Maurice, P.; Colas, F.; Ivaldi, S. (2019) Activity Recognition for Ergonomics Assessment of Industrial Tasks with Automatic Feature Selection IEEE Robotics and Automation Letters. Volume: 4 , Issue: 2 , Pages 1132-1139. This is a journal paper that presents one of the most important results of the PhD thesis of Adrien Malaisé, about the automatic feature selection for activity recognition. The work in this paper enabled online activity recognition that we demonstrated in several occasions including EU project AnDy review meetings and Automatica 2021.
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For the non-French readers: Loria is a "Unité Mixte de Recherche (UMR)", i.e., a research unit of the University of Lorraine that is "mixed", in the sense that it consists of teams of professors from the University of Lorraine, CNRS and Inria researchers. At the same time, Inria researchers are part of the Inria research center "Inria Nancy Grand Est" (Inria NGE), but not all Inria researchers are necessarily part of Loria. In my case, I am an Inria researcher working in a team that belongs to both Inria NGE and Loria.

I worked with other robots too (e.g., Kinova, Franka, Talos) and also with exoskeletons, but I will not report on all the research I have been doing with them. The interested reader can read the papers at https://members. loria.fr/SIvaldi/publications.

"The Caves of Steel" is the first book of the "Cycle of Robots" series, written by Isaac Asimov. I read it when I was 14 years old. In this book, the reader travels to a future where robots pervade our society. Two rather peculiar robots are fundamental for the unraveling of the story across the books from the "Cycle of Robots" to the "Foundation" series: Giskard and R. Daneel Olivaw. The latter is undoubtedly the most fascinating robot I have ever read about in science fiction, mostly because of the Zero-th Law of Robotics that the robot itself explains in "Foundation and Earth". As of today, the robots I would like to build are inspired by the Zero-th law, that is the robots should collaborate with humans to improve humanity, to better their society and their life.

From the theoretical point of view the problems are the same: it is a physical agent trying to generate controls to assist another physical agent

https://members.loria.fr/SIvaldi/projets/eddhi-2013-2014/

This was done as a safety measure. However, nothing happened during the experiments: the experimenter never had to push the safety button, and never had to stop the physical interaction between the robot and the subject.

See download instructions at http://eris.liralab.it/wiki/UPMC_iCub_project/MACSi_Software

https://github.com/robotology/icub-basic-demos/tree/master/demoForceControl

The demonstration was also part of the safety measures required by the Ethics Committee to approve our protocol.

Due to several technical difficulties, in post-processing we identified several issues in the recordings, or the sensors' recorded values and therefore we have less data than the total number of participants in the study. If these problems occurred during the task execution, the experimenter could not interrupt the experiment and ask the participant to re-do the trial. It would have changed the spontaneous behavior of the human towards the robot, and, at the study design stage, we decided that the experimenter would not intervene. This choice made us lose a lot of data in the end; in hindsight, we could have made a different choice.

 8 Unfortunately the skin sensors had many technical issues during the experiments, so many participants had no reliable data and these data, analyzed in post-processing, were discarded.

Here, q is an abuse of notation; the part corresponding to the free-floating base orientation not being the second time-derivative of the orientation but the time-derivative of the angular velocity, see the discussion in[START_REF] Bouyarmane | On the dynamics modeling of free-floating-base articulated mechanisms and applications to humanoid whole-body dynamics and control[END_REF].

More details about the new benchmarks and their implementation in Matlab are available in http://github. com/serena-ivaldi/learnOptimWBC.

Learning methods often use a random exploration over numerous experiments, which could be problematic to perform on hardware. For this reason, training is preferably performed in simulation. However, inherent differences between simulated and real robots can render an optimal solution untransferrable from one to the other. This gap between reality and simulation needs to be accounted for, in order to achieve automatic parameter tuning. Solutions to this problem have recently been addressed by trial-and-error algorithms[START_REF] Cully | Robots that can adapt like animals[END_REF], Spitz et al., 2017]. In[START_REF] Cully | Robots that can adapt like animals[END_REF], prior knowledge from simulations was exploited to find acceptable behaviors on the real robot, in a few trials. In[START_REF] Spitz | Trial-and-Error Learning of Repulsors for Humanoid QP-based Whole-Body Control[END_REF], a trial-and-error learning algorithm encouraged exploration of the task space, allowing adaptation to inaccurate models, also in a few trials.

Notice that there are also other ways to solve hierarchical problems using a single QP instead of a cascade of QPs[Escande et al., 2014a], however this goes out the scope of the present work.

Available on Zenodo: https://zenodo.org/record/3254403.

Available on github: https://github.com/inria-larsen/activity-recognition-prediction-wearable.

Renamed Automatica Sprint 2021, since the 2020 was canceled because of COVID-19.

Our data size is 69, since we only consider the kinematics of the human skeleton model, but the size could grow considerably if we were considering also joint torques and wrenches.

To simplify, we consider trajectories that have all the same duration t f , but as explained in[Dermy et al., 2017b,a] it is easy to relax this hypotheses and predict at the same time the most probable duration for the observed trajectory.

http://macsi.isir.upmc.fr/

In our experiments, we learned more than 20 objects, and the robot was not able to walk and take the objects. The teacher was there to show the objects to the robot.

The use of this database is necessary for evaluating the progress of the robot in this object recognition task because we need a ground truth to evaluate our progress. However, we do know that it is not the best way to evaluate the learning progress in a generic exploration or reinforcement learning scenario. In this sense, an interesting question to research is how to design autonomous learning mechanisms where the robot sets its own goals and autonomously evaluates its progress.

The use of the term "stabilizer" is improper, because it evokes the "stability", which is a known and welldefined property of automatic control systems. But the term "stabilizer" is often used in the humanoid community to indicate a module that processes the reference trajectories or the commands to improve the robot's balance, often conservatively, making the robot's CoM dynamics more "stable" when the robot is subject to perturbations.

Visual tracking systems may be used, provided that there is a physical consistency of the estimated angles, i.e., the estimated joint angles and/or Cartesian segments fit to a Digital Human Model that represents the human body. Failure to do so may result in retargeting trajectories that are not consistent with the operator's motion, and may be detrimental for the robot's motion too. The retargeting part of our method may address this issue, but will require some work.

A funny parallel from science fiction comes from the movie The Matrix: Neo can download the set of skills of "jujitsu" and suddenly he can use them. After many hours in the Matrix he wakes up and says "I know Kung Fu".

https://www.laas.fr/projects/flying_coworker/

Human Centered Robotics: this is the tentative name of the new team.

The interested reader can enjoy the last chapters of Foundation and Earth by I. Asimov.

The interested reader can enjoy the novel Runaround by I. Asimov.
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can consider xt = dec(enc(x t ) = x t + ε v t , ∀t ∈ [1 : t f ], with ε v t the reconstruction error, measuring the distance between the original and reconstructed trajectory. The AE is trained to minimize the reconstruction error.

Once the latent space is trained, we can use it to learn N A ProMPs associated with the N A actions, using the sets of demonstrated trajectories of Figure 4.7, but taking the compressed postures in the latent space {z t } instead of the original postures {x t }. A ProMP is a Bayesian parametric model:

where:

• ξ t ∈ R N is the vector containing all the variables to be learned at time t, in this case the values of the trajectories in the latent space;

• the matrix Φ t corresponds to the M Radial Basis Functions (RBFs) evaluated at time t, with Φ t = [ψ 1 (t), ψ 2 (t), . . . ., ψ M (t)];

• ω ω ω ∈ R M is a time-independent parameter vector that weighs the Φ matrix;

• ε ξ ∼ N (0, β ) is the trajectory noise variable.

During the learning phase, the weights ω ω ω are learned from the set of trajectory demonstrations {Ξ 1 , . . . , Ξ n 1 }, where the i-th trajectory is Ξ i = {ξ (1), . . . , ξ (t f i )}. The weights encode the probability distribution over the trajectories. The N A different actions are therefore represented by N A ProMPs, which are used as prior knowledge for the online phase.

Once the ProMPs are learned, we can use them to predict the future whole-body trajectories given partial observations of early movements. This phase can be performed online and uses the entire data flow of Figure 4.6.

We retrieve n o early observations of the movement initiated by the human {x 1 , . . . , x n o } and we encode them in the pre-trained latent space: {z 1 , . . . , z n o }. We define Ξ o = {ξ 1 , . . . , ξ t }. We determine the current action k ∈ [1 : N A ] by computing the most likely ProMP from the ones learned, as done in [Dermy et al., 2017b,a]. Once the current k-th ProMP is identified, we update the distribution of the recognized ProMP, our "prior":

in [START_REF] Penco | Prescient teleoperation of humanoid robots[END_REF].

To compensate for the delay, once the robot has identified the best ProMP that matches the observations, it has to select the predictions that correspond to the right time-step from the mean of the ProMP. By computing the round-trip delay, the robot chooses the right samples from the current movement prediction, i.e. posterior ProMPs' distributions (Figure 6.5). At the beginning of the motion, before any ProMP is recognized, the robot uses the delayed commands; however, once a ProMP is recognized, the robot can start compensating for the delays, but first the delayed trajectory needs to catch up with the ProMP. To keep the trajectory smooth, we take inspiration from the shared control literature [START_REF] Losey | [END_REF] and use blending between the current trajectory and the mean of the selected ProMP.

The references for the robot controller are generated at each time based on the updated ProMPs' mean trajectories μ µ µ w w w k . For a given ProMP, the sample μ µ µ w w w k (t * ) corresponding to the last conditioned observation, is a reconstruction of the past retargeted human input μ µ µ w w w k (t * ) = ŷ y y(tτ f (t)).

(6.

2)

The sample μ µ µ w (t * + τ f (t)) is an estimate of the current retargeted human input μ µ µ w w w k (t * + τ f (t)) = ŷ y y(t), (6.3) and can be used to synchronize the human movement with that of the robot, compensating only the forward delay (see Figure 6.7). In our case, we want to synchronize the motion of the human operator with what is seen from the robot side, thus compensating for both the forward and backward delays. To do so, we select the sample μ µ µ w (t * + τ f (t) + τb (t)) as a control reference, which corresponds to a future prediction of the retargeted human movements:

..] are also given to the controller. They are used as control references if a new reference cannot be computed in the next control step due to packet losses or jitter.

After generating a first prediction, the transition from delayed to predicted references can be discontinuous (Figure 6.5). To smoothen the transition, a policy blending arbitrates the delayed received references y y y(tτ f (t)) and the predicted ones ŷ y y(t + τb (t)|tτ f (t)), determining the adjusted reference (Figure 6.5):

where y y y d = y y y(tτ f (t)), y y y p = ŷ y y(t

, (6.6) i = {0, 1, ..., ∆y n } and ∆y n is the initial difference between a delayed reference and the corresponding prediction expressed in mm (for Cartesian trajectories) or deg × 10 -1 (for postural trajectories).

Prescient teleoperation experiments

Our prescient teleoperation system combines several major components (Figure 6.7): (i) the humanoid robot, (ii) its whole-body controller, based on quadratic optimization, (iii) the op- The links to (almost all) my interventions and videos are listed on my website: https:// members.loria.fr/SIvaldi/media/.

A. Curriculum Vitae

Grand public talks:

-2022: Une journée avec n.39 : une chercheuse en robotique. Video by the Youtuber Ludovic B visiting our robotics lab to promote Inria, at https://youtu.be/Y_84HUkGNks. Demos and events for the grand public:

-Experimental demonstrations of robots for documentaries and scientific communications (for example "Vivre avec les robots", Le Monde, etc).

-Experimental demonstrations of robots at Fête de la Science in ISIR (Paris), IIT(Genoa, Italy) and Loria/Inria (Nancy).

-Demonstrations of our AnDy technology at the Inria Days for industry (2018).

- 

A.11. Invited talks

The slides of keynotes and talks can be found on my website:

https://members.loria.fr/SIvaldi/slides/.

A.11.1. Invited keynote at international conferences This is a journal paper that presents our first framework for real-time tele-operation of humanoids, realized during the PhD of Luigi Penco. It describes our technique for teleoperating the iCub, which was a great result for show-casing our walking algorithm (enabling iCub to walk up to 41 cm/s) and controller for whole-body manipulation.