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A B S T R A C T

Graph-structured datasets arise naturally in many fields including
biology with protein-to-protein interaction networks, ecology with
predator-prey networks, and economy with financial market networks.
In order to extract relevant information from these networks, one of-
ten uses clustering methods to gather nodes having similar connectiv-
ity patterns into communities. Numerous clustering algorithms have
been proposed in the past decade and have been analyzed under the
Stochastic Block Model (SBM), a popular random graph model. How-
ever, in practice, one often has access to side information, and it is
typically unclear how this information can be incorporated into exist-
ing methods and to what extent it can help to improve the clustering
performance.

We will first address this question under the Contextual Stochastic
Block Model (CSBM) – a simple extension of the SBM with indepen-
dent Gaussian covariates associated with each node – and propose an
iterative refinement method that is fast and achieves the information-
theoretic threshold for exact recovery. Our method is inspired by the
Generalized Power Method (GPM) and principles of Expectation Max-
imization (EM) type algorithms.

Next, we extend the method to be applied to networks with hetero-
geneous degrees or mixed-membership, but also with different kinds
of covariates like multilayer graphs with possibly missing values, or
high dimensional bipartite graphs, hence showing the flexibility of
the approach.

Lastly, we consider the graph matching problem where the addi-
tional graphs can be considered as correlated side information. We
show that we can also use the GPM for this problem to significantly
improve the matching obtained by state-of-the-art methods, and pro-
vide consistency guarantees for the GPM under the Correlated Wigner
Model (CoWM).
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N O TAT I O N S

• The cardinality of a set C is denoted by |C|.

• The all-ones vector of size n is denoted by 1n.

• The indicator function of an event A is denoted by 1A.

• The set of permutation over n elements is denoted by Sn and
the corresponding set of matrices is denoted by Pn

• The empty set is denoted by ∅.

• The column j of A will be denoted by A:j, and the (i, j)th entry
by Aij. The i-th row of a matrix A will be denoted as Ai: and
depending on the context can be interpreted as a column vector.

• The transpose of A is denoted by A⊤ and A⊤
:j corresponds to

the jth row of A⊤ by convention.

• Ik denotes the k× k identity matrix.

• The number of non zero entries of a matrix A is denoted by
nnz(A).

• For matrices, we use ||.|| and ||.||F to respectively denote the spec-
tral norm (or Euclidean norm in case of vectors) and Frobenius
norm.

• The trace of a matrix A is denoted by Tr(A).

• We use lowercase letters (ϵ,a,b, . . .) to denote scalars and vec-
tors, except for universal constants that will be denoted by c1, c2,
. . . for lower bounds and C1,C2, . . . for upper bounds. We use
uppercase letters to denote matrices and random variables (with
possible local exceptions).

• For any sequences (an)n⩾1 and (bn)n⩾1 if there is a constant
C > 0 such that an ⩽ Cbn (resp. an ⩾ Cbn), we will use the
notation an ≲ bn (resp. an ≳ bn). If the inequalities only hold
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acronyms xvii

for n large enough, we will use the notation an = O(bn) (resp.
an = Ω(bn)). If an ≲ bn (resp. an = O(bn)) and an ≳ bn
(resp. an = Ω(bn)), then we write an ≍ bn (resp. an = Θ(bn)).





1
I N T R O D U C T I O N

Identifying and recognizing patterns is a natural task for the hu-
man brain. It helps to extract relevant information from one’s envi-
ronment and discover general laws in nature. Hence, clustering – the
act of gathering objects by similarities – is a fundamental activity that
lies at the root of knowledge elaboration. This is probably why one
spends so much time trying to organize one’s library by sorting one’s
books by topic, color, shape, etc.

However, even if the ability of human brain to categorize and orga-
nize information is remarkable, it is not capable of processing large
amounts of data and can fail to detect some patterns. This is a reason
why one has tried to automate this procedure and started to develop
clustering algorithms. The first systematic numerical approaches were
developed for applications in social sciences (Czekanowski, 1909; Zu-
bin, 1938). More historical references can be found in the introduction
of the book of Bouveyron et al., 2019. Most of the initially proposed
methods were based on the definition of a distance between the ob-
jects of interest. Then, for a given distance, one can use optimization
methods to obtain a partition of the objects such that the objects be-
longing to the same class have a small distance between them and a
large distance with objects from another class. It is exemplified by the
k-means algorithm, one of the most popular clustering methods.

The previous heuristic approach has several drawbacks. The choice
of the distance is arbitrary and it is impossible to assess the quality of
the resulting clustering. Also, methods that usually work in practice
can fail in particular instances. This is for example the case of the
spectral method applied on the cockroach graph (Luxburg, 2004).

A way to overcome these issues is to introduce a probabilistic model
for the data and formulate the clustering problem as a statistical in-
ference problem.

1.1 a statistical approach of clustering

The first generative model proposed for clustering numerical vector
data (Xi)

n
i=1 ⊂ Rd of dimension d is the Gaussian Mixture Model

(GMM). Each vector Xi is assigned to a community k ∈ [K] and then
generated from a Gaussian probability distribution than only depends
on k, independently of the other vectors. More formally, for each i, as-
sign to i a label zi ∈ [K] and generate Xi by

Xi = µzi + ϵi, where ϵi
ind.
∼ N(0,Σzi)

1



2 introduction

where for all k ⩽ K, µk ∈ Rd and Σk ∈ Rd×d is a positive definite
matrix. Clustering (Xi)

n
i=1 is now equivalent to estimate the latent

partition given by z : [n]→ [K] that associates i to zi.
A natural approach is to maximize the likelihood associated with

the problem. For example, under the isotropic case where all Σk =

Id, one can easily check that the (complete) Maximum Likelihood
Estimator (MLE) associated to the GMM is related to the one provided
by the k-means optimization problems

arg min
µ1,...,µK∈Rd,C

K∑
k=1

∑
i∈Ck

∥Xi − µk∥2 (1.1.1)

where C is a partition of [n] into K sets C1, . . . ,CK.
Unfortunately, solving (1.1.1) requires doing an exhaustive search

over all the possible Kn partitions and cannot be done in a reasonable
time (i.e. polynomial in n). Even if k is fixed to 2, k-means clustering
is a NP-hard problem as shown in Dasgupta, 2008. So in practice,
one has to use other strategies. For example, there are approximate
k-means algorithms, see for example Kumar et al., 2004, that run in
polynomial time in n and produce an output with an estimation er-
ror proportional to the error associated with the optimal solution. In
the following section, we will describe an alternative strategy, partic-
ularly useful when one can obtain a first rough estimate of the latent
partition.

1.2 alternating optimization

A popular approach to solve (1.1.1) is to use Lloyd’s algorithm: start-
ing from a first estimate C(0) = {C

(0)
1 , . . . ,C(0)

K } of the latent partition
one can estimate the centroids of the partition by

µ
(0)
k =

1

|C
(0)
k |

∑
i∈C

(0)
k

Xi

and then update the partition to obtain C(1) by assigning each Xi to
the closest centroid. One can check that this is equivalent to solve
(1.1.1) by alternatively fixing C or µ.

This approach for solving nonconvex optimization problems is re-
ferred to as alternating optimization. It has been used with success
in discrete optimization problems including approximate ranking,
group synchronization, and multireference alignment (see Gao et al.,
2019) as well as for continuous optimization problems, e.g. matrix
completion, phase retrieval (Chi et al., 2019) or Principal Component
Analysis (PCA) with missing data (Zhu et al., 2019). This principle
is also at the core of model-based approaches: EM-like algorithms
(Dempster et al., 1977) use alternating optimization to maximize a
proxy of the likelihood, the Evidence Lower Bound (ELBO).
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One of the drawbacks of this approach is that it requires an initial
estimate of the partition. But one can often use spectral methods to
obtain a cheap initial estimate. One can also rely on random sampling
strategies. This is a very common approach in the model-based liter-
ature and it can be proved to work under some assumptions, see for
example Wu et al., 2022.

1.3 network structured data

The past two decades have witnessed the increase of network struc-
tured data with the rise of social networks. Contrary to the previously
discussed vector data setting where each measurement Xi is indepen-
dent of the other, networks encode pairwise interactions between the
agents of interest represented by nodes, and hence there are struc-
tural dependencies among the observations. This is a fundamental
difference. But before discussing its algorithmic implications, let us
first introduce a generative model to give a statistical meaning to the
clustering task.

The most popular random graph model that incorporates a commu-
nity structure is the SBM. It was introduced by (Holland et al., 1983)
and is often used as a benchmark to evaluate clustering algorithms
on graphs. It is defined by the following parameters.

• The set of nodes N = [n].

• Communities C1, . . . ,CK, of respective sizes n1, . . . ,nK, forming
a partition of N.

• A membership matrix Z ∈ Mn,K where Mn,K denotes the class
of membership matrices. Here, Zik = 1 if node i belongs to Ck,
and is 0 otherwise. Each membership matrix Z can be associated
bijectively with a function z : [n] → [K] such that z(i) = zi = k

where k is the unique column index satisfying Zik = 1.

• A symmetric, connectivity matrix of probabilities between com-
munities

Π = (Πkk ′)k,k ′∈[K] ∈ [0, 1]K×K.

Denoting by P = (pij)i,j∈[n] := ZΠZT , a graph G is distributed
according to SBM(Z,Π) if the entries of the corresponding symmetric
adjacency matrix A are generated by

Aij
ind.
∼ B(pij), 1 ⩽ i ⩽ j ⩽ n,

where B(p) denotes a Bernoulli distribution with parameter p. Hence
the probability that two nodes are connected depends only on their re-
spective community membership. Here we allowed self-loop for anal-
ysis convenience, but usually the diagonal of the matrix A is removed.
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Usually observed networks are sparse – most of the entries are ze-
ros – and the sparsity level of a SBM is measured by pmax = maxi,j pij.

A direct application of Lloyd algorithm to this setting will require
to estimate the centroids µk := Πk:Z

⊤ by averaging the rows of the
adjacency matrix A that belong to the same community. By doing that
we completely ignore the fact that the columns of A have a similar
block structure. Typically, we would expect that such an approach
won’t be robust to noise since it doesn’t take into account the low-
rank structure of the problem.

An alternative is to solve the following optimization problem that
takes into account the row and columns block structure:

arg min
Z∈Mn,K,Π∈[0,1]K×K

∥∥∥A−ZΠZ⊤
∥∥∥2 . (1.3.1)

Unfortunately, this is again an hard combinatorial optimization prob-
lem. But we can try an alternating optimization strategy. If the parti-
tion Z were known, the solution Π̂ of (1.3.1) will be given by Z⊤AZ.
But for a fixed Π, (1.3.1) is still difficult to solve due to the quadratic
nature of the objective function in Z. We will show in Chapter 3 that
it can be done by using a low-rank embedding of A computed from
an initial estimate of the latent partition. Another possible approach
would be to relax the condition Z ∈Mn,K to Z ∈ On,K where

On,K = {M ∈ Rn×K such that M⊤M = IK}

is the set of matrices with orthonormal columns and then use contin-
uous optimization tools such as gradient descent. This approach is
a special case of the Orthogonal Linked Matrix Factorization (OLMF)
method developed for multilayer graphs or multiview clustering, see
e.g. (Paul et al., 2020; Dong et al., 2014). We will discuss in more detail
the existing method for clustering graphs in Chapter 2.

One can also wonder why one should use a least square criterion
instead of the likelihood as an objective function. We will show in
Chapter 3 that using a least square proxy of the likelihood doesn’t
induce any loss of accuracy – under some parameter regimes – com-
pared to the solution obtained by solving the MLE using a similar
alternating optimization strategy. Moreover, it leads in practice to a
significant gain in term of computational time. Popular model-based
approaches rely on variational EM algorithm (Celisse et al., 2011) and
stochastic variant (Brault et al., 2014).

1.4 side information

In practice, real-world networks often come with side information in
the form of nodes or edges covariates. For example, when analyzing
interactions among people on a social network, we have access to ad-
ditional features such as gender, age, or ethnicity that can be relevant
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for the clustering task. Whereas several algorithms have been pro-
posed to incorporate nodes or edges side information, little is known
about the value of this side information to improve the clustering
performance. The question has not only a theoretical interest but also
practical implications on the design of algorithms that should incor-
porate optimally the available side information.

In this dissertation we will consider several kinds of side informa-
tion

• nodes side information provided by a GMM;

• edges side information that can be represented by a multilayer
graph;

• edges side information that comes from correlated but unla-
beled graphs.

We will further discuss the last setting in the next section.

1.5 graph matching

In many applications, one observes several correlated realizations of
a graph. For example, in computer vision, one can observe different
images of an object – than can be modeled by a graph – in different
positions. In order to connect these observations it is necessary to
align the graphs, that is to say, find the permutations that maximize
the similarity between each pair of graphs. When there are only two
graphs, this optimization problem can be formulated as follows. Let
A and B two adjacency matrices associated with graphs G and H. The
permutation that best aligns G and H is given by the solution of

max
x∈Sn

∑
i,j

AijBx(i)x(j) (1.5.1)

where Sn denotes the set of permutations over [n] or equivalently

min
X∈Sn

∥∥∥A−XBX⊤
∥∥∥2
F

. (1.5.2)

This is a hard combinatorial optimization problem known as the
Quadratic Assignment Problem (QAP). Indeed the problem is known
to be NP-hard (Sahni et al., 1976). Fortunately, under some generative
models it can be solved exactly. The most studied models for corre-
lated random graphs are the following.

correlated wigner model CoWM(n , σ , x∗) . The following
Gaussian model has been proposed in Ding et al., 2021.

Aij ∼

N(0, 1n) if i ̸= j,

N(0, 2n) if i = j,
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and Bx∗(i)x∗(j) =
√
1− σ2Aij + σZij, where Z d

= A. Both A and B

are distributed as the Gaussian Orthogonal Ensemble (GOE). Here
the parameter σ > 0 should be interpreted as the noise parameter
and in that sense, B can be regarded as a “noisy perturbation” of A.
Moreover, x∗ ∈ Sn is the ground-truth (or latent) permutation that
we seek to recover. It is not difficult to verify that the problem (1.5.1)
is in fact the MLE of x∗ under the CoWM.

correlated erdös-renyi model CoERM(n , q , s , x∗) . For q, s ∈
[0, 1], the correlated Erdos-Renyi model with latent permutation x∗ ∈
Sn can be described in two steps.

1. A is generated according to the Erdös-Renyi model ERM(n,q):

for all i, j ∈ [n] such that i < j, Aij
ind.
∼ B(q).

2. Conditional on A, the entries of B are i.i.d according to the law

Bx∗(i),x∗(j) ∼

B(s) if Aij = 1,

B
(
q
1−q(1− s)

)
if Aij = 0.

(1.5.3)

The graph matching problem (1.5.2) share a lot of similarities with
the clustering problem (1.3.1). The main difference is that the latter
involves a latent low-dimension structure since usually K ≪ n. But
if K = n and the matrix Π were given, the two problems would
be equivalent. So it is not surprising that there are strong links be-
tween methods used for addressing each of these problems. How-
ever, graph matching is generally harder. It is usually difficult to find
a good enough initial matching. This can be explained intuitively by
the absence of a latent low-dimension structure. We will discuss the
information-theoretic limits and techniques used for graph matching
in more detail in Chapter 6.

1.6 thesis contribution and outline

In this dissertation, we investigate the value of side information in
clustering and matching problems on graphs from an information-
theoretic perspective but also from a practical aspect by developing
efficient algorithms. The first part of this thesis is devoted to cluster-
ing problems where independent side information is available in the
form of nodes or edges covariates.

In Chapter 2, we provide an overview of the relevant literature
on graph clustering– with a focus on theoretical results – and present
the principal methods: spectral and Semi-Definite Programming (SDP)
relaxations, variational methods, and approximate message passing
algorithms.

In Chapter 3 we study a simple model – the CSBM – where each
node of a graph generated from a SBM is associated with Gaussian
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covariates generated from an GMM, independent of the graph but
sharing the same latent partition. We propose an algorithm that itera-
tively estimates the model parameters and refines the partition based
on a least square criterion. We show that our algorithm achieves the
threshold for exact recovery under a symmetric version of the CSBM,
and that up to a constant factor, its rate of convergence is minimax
optimal in the general setting. The technical tools introduced in this
chapter will be further used in the following chapters.

In Chapter 4, we consider multilayer graphs where each layer de-
scribes a different modality of the pairwise interactions between the
agents of interest. Multilayer graphs can be thought of as a way to
represent networks with edges side information. We further assume
that each node doesn’t appear on each layer and propose a genera-
tive model for this setting based on the Multi-Layer Stochastic Block
Model (MLSBM). We study an extension of classical methods used for
clustering multilayer graphs and derive consistency guarantees. We
also explain how the method developed in Chapter 3 to this setting
can be applied to the multilayer setting and provide some numerical
experiments.

In Chapter 5, we study an extension of our iterative refinement
method to graphs that are not generated by a SBM. First, we con-
sider high-dimensional bipartite graphs – generated from the Bipar-
tite Stochastic Block Model (BiSBM) – and show that our method can
achieve the minimax optimal rate of convergence, up to a constant
factor. Secondly, we show how to adapt the algorithm to graphs with
heterogeneous degrees and overlapping communities.

The second part of the thesis is devoted to graph matching prob-
lems. In this setting, we observe two, or more, graphs that are gener-
ated from the same parent graphs but where the node labels are not
known and consequently the graph cannot be directly aligned. Find-
ing the permutation that best aligns these graphs is the goal of match-
ing algorithms. If this permutation could be found, then we would
obtain a multilayer graph. But contrary to the setting developed in
Chapter 4, the layers are no longer independent but correlated. Hence,
graph matching can be used as a subroutine for clustering tasks. For
example, it has recently been shown (Racz et al., 2021; Gaudio et al.,
2022) that the side information provided by correlated graphs can
help to improve the threshold for exact recovery under the Corre-
lated Stochastic Block Model (CoSBM). Unfortunately, the proposed
algorithm to achieve this task is not implementable in polynomial
time.

In Chapter 6 we further discuss the literature on graph matching
and present the main methods and associated theoretical guarantees.

In Chapter 7 we analyze an iterative refinement matching method
under the CoWM. Provided that one can have access to an initial esti-
mate of the ground-truth permutation that correctly matches a suffi-
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ciently large proportion of nodes, one can show that this refinement
method – based on the GPM – significantly improves the matching.

Finally, the appendix gathers some general results that are used in
different chapters.

1.7 publications

This dissertation is in large parts based on the following publications
and technical reports. The publications relevant to each chapter will
be precised at the appropriate places.

Araya, Ernesto, Guillaume Braun, and Hemant Tyagi (2022). Seeded
graph matching for the correlated Wigner model via the projected power
method. arXiv: 2204.04099 [math.ST].

Braun, Guillaume and Hemant Tyagi (2022a). Minimax Optimal Clus-
tering of Bipartite Graphs with a Generalized Power Method. arXiv:
2205.12104 [math.ST].

Braun, Guillaume, Hemant Tyagi, and Christophe Biernacki (2021).
“Clustering multilayer graphs with missing nodes.” In: Proceed-
ings of The 24th International Conference on Artificial Intelligence and
Statistics. Vol. 130, pp. 2260–2268.

Braun, Guillaume, Hemant Tyagi, and Christophe Biernacki (2022b).
“An iterative clustering algorithm for the Contextual Stochastic
Block Model with optimality guarantees.” In: Proceedings of the
39th International Conference on Machine Learning. Vol. 162, pp. 2257–
2291.

https://arxiv.org/abs/2204.04099
https://arxiv.org/abs/2205.12104


Part I

C L U S T E R I N G G R A P H S W I T H S I D E
I N F O R M AT I O N

In the first part of this dissertation, we will investigate the
adding value of side information for clustering graphs.
First we will study a simple setting where each node is
associated to vector covariates. Then we will show that
the proposed optimal strategy to tackle this problem can
be extended to other settings involving edges covariates
(multilayer graphs) and also adapted to more general ran-
dom graphs models incorporating degree heterogeneity
and overlapping communities.





2
I N T R O D U C T I O N T O G R A P H C L U S T E R I N G

In this chapter, we will first present the information-theoretic limits
of clustering under the SBM in Section 2.1. Then, we will discuss the
principal methods used for clustering in Section 2.2. Finally, we will
give an overview of the possible extensions of the SBM that incorpo-
rate properties often observed in real-life networks but not modeled
by the SBM. Interestingly, some of the clustering strategies used for
SBM can be extended to some of these more complex random graph
models.

2.1 information theoretic limits of clustering

In this section, to simplify the exposition, we will only present the
information-theoretic thresholds associated with the Symmetric SBM
(SSBM), a particular instance of the SBM satisfying the following con-
straints.

• The communities have the same size : |Ck| = n
K for all k ∈ [K].

• The connectivity matrix Π = (p− q)IK + q1K1
⊤
K where 1 ⩾ p >

q ⩾ 0.

This model will be referred to as SSBM(n,K,p,q). It is often used
in theoretical analysis since the simplicity of the model allows some
simplification in the calculations due to symmetries. Also, the differ-
ent information-theoretic thresholds are easier to interpret for this
model since they only depend on the difference p− q, than for the
general SBM that involves the Chernoff-Hellinger divergence. A more
complete presentation can be found in Abbe, 2018.

The usual way to quantify (for theoretical purposes) the accuracy of
an estimate ẑ of the latent partition is the following quantity referred
to as the misclustering rate

r(ẑ, z) =
1

n
min
π∈S

∑
i∈[n]

1{ẑ(i) ̸=π(z(i))}.

One can have different recovery requirements.

• Exact recovery: r(ẑ, z) = 0 with probability 1− o(1) when n →∞, that is to say one recovers exactly the partition w.h.p. This
condition is also referred to in the literature as strong consis-
tency.

11
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• Almost exact recovery: r(ẑ, z) = o(1) with probability 1− o(1)
when n → ∞, that is to say the proportion of misclustered
nodes goes to zero when n→∞. This condition is also referred
to in the literature as weak consistency.

• Partial recovery: r(ẑ, z) ⩾ αwith probability 1−o(1) when n→∞, that is to say one can correctly classify at least a proportion
α of the nodes w.h.p. This regime is interesting only if α > 1/K,
i.e. we can do better than a random guess of the communities.
This last regime is referred to as the detection regime in the
literature.

For exact recovery, we need to be in a regime where pmax =

Θ(
logn
n ). The following theorem gives a more precise statement.

Theorem 1 (Abbe et al., 2015a). Under the SSBM(n,K, a logn
n , b logn

n ),
exact recovery is possible only when

(
√
a−
√
b)2

K
> 1.

Moreover, in this parameter regime there are polynomial time algorithms
that efficiently recover the latent partition.

For almost exact recovery, the necessary condition is relaxed to
npmax →∞.

Theorem 2 (Zhang et al., 2016a). Assume that K is a constant. Under
the SSBM(n,K,p,q), a sufficient and necessary condition for almost exact
recovery is

n(p− q)→∞.

On the other hand, partial recovery only requires pmax = Ω( 1n).

Theorem 3 (Abbe et al., 2015b). Under the SSBM(n,K, an , bn), it is pos-
sible to detect communities in polynomial time if

SNR :=
(a− b)2

K(a+ (K− 1)b)
> 1.

When K > 4 and SNR < 1, it is still possible to detect communities with a
non-efficient algorithm.

Remark 1. There are several algorithms, including spectral methods and
SDP relaxation that have been shown to achieve the threshold for exact re-
covery or lead to almost exact recovery. However, the partial recovery regime
is usually more challenging. We will discuss these methods in Section 2.2.
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2.2 clustering methods

2.2.1 Spectral methods

Spectral methods rely on the computation of the eigenvectors of a
wisely chosen matrix that contains information about the community
structure. Their popularity comes from the fact that they are usually
fast (one can compute quickly the top K eigenvalues and associated
eigenvectors of a matrix), easy to implement, and often accurate. It
is also common to use an additional refinement step to the estimate
provided by a spectral method.

Let us explain the method when directly applied to the adjacency
matrix. In this case, the method will be referred to as the vanilla spec-
tral method. Assume that A ∼ SSBM(n, 2,p,q) where p− q = Ω(p)

and np→∞. In expectation, A has a block structure1

E(A) =

p1n/21⊤n/2 q1n/21
⊤
n/2

q1n/21
⊤
n/2 p1n/21

⊤
n/2

 .

It is easy to check that E(A) has two non zero eigenvalues λ1 =

n(p+q)/2 and λ2 = n(p−q)/2 associated with eigenvectors u1 = 1n

and
u2 = ( 1, . . . , 1︸ ︷︷ ︸

n/2 times

,−1, . . . ,−1︸ ︷︷ ︸
n/2 times

)⊤.

Hence if there were no noise, communities could be identified by
the sign of the entries of u2. One can show that this argument also
works when there is noise. Let û2 the eigenvector associated with
the second largest eigenvalue of A denoted by λ̂2. By using Weyl’s
inequality (Weyl, 1912) we have for k = 1, . . . ,n

|λk − λ̂k| ⩽ ∥A− E(A)∥

where λ̂k is the kth largest eigenvalue of A. By concentration inequal-
ities, when npmax ≳ logn, ∥A− E(A)∥ ≲

√
np w.h.p. This shows

that the spectrum of A is close to the spectrum of E(A) because the
largest eigenvalues are of magnitude np ≫ √np in the almost exact
recovery regime. Moreover Davis-Kahan theorem (Yu et al., 2014) im-
plies that the angles θi between the eigenvectors corresponding to the
ith eigenvalue have a sinus bounded by

sin θi ≲
∥A− E(A)∥

mini ̸=j |λ̂j − λ̂i|
≲

1
√
np

.

Consequently ∥û2 ± u2∥ = o(1) and one can consistently use the sign
of the entries of û2 to estimate the community membership. This idea
can be generalized to general SBM, see Lei et al., 2015.

1 We can assume w.l.o.g that the first n/2 entries are in community 1.
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This proof technique only leads to weak consistency guarantees.
But one can use recent results (Abbe et al., 2020c; Lei, 2019) on en-
trywise perturbation of eigenvectors to show that the vanilla spectral
method achieves the threshold for exact recovery.

A popular alternative is to use the Laplacian L = D−A or the sym-
metric2 Laplacian Lsym = I−D−1/2AD−1/2 where D is a diagonal
matrix defined by Dii = Ai:1n. Spectral clustering on the Laplacian
can be interpreted as a relaxation of the (normalized or not) Ratio Cut
optimization problem as explained in Luxburg, 2004. Strong consis-
tency guarantees for this algorithm have been derived in the recent
work of (Deng et al., 2021).

However, in the detection regime, the vanilla spectral method will
fail because nodes with high degrees prevent the eigenvectors from
concentrating on the communities. A simple way to fix this problem
is to use regularization by reducing the degree of the problematic
nodes of A (Le et al., 2017) (or adding ϵ1n1⊤n for an appropriate
choice of ϵ to the Laplacian). Unfortunately, this approach doesn’t
achieve the information-theoretic threshold for detection. But instead
of using the adjacency matrix or a regularized version, on can use the
non-backtracking matrix (Bordenave et al., 2018) – a matrix indexed
by oriented edges where cycles of order two are removed – or the
powered adjacency (Abbe et al., 2020a). The main idea is to incorpo-
rate more information about the neighborhood of a node at a certain
depth and use the fact that Erdös-Renyi like graphs have a local tree
structure.

2.2.2 Semi-definite programming (SDP)

A semi-definite program is an optimization program of the form

min
X∈Rn×n

⟨A,X⟩

s.t. X ⪰ 0
and ⟨Bi,X⟩ ⩽ bi for i = 1, . . . ,m

where A,B1, . . . ,Bm ∈ Rn×n and bi ∈ R for all i ∈ [m]. It is a convex
optimization problem since the set of positive semi-definite matrices
is a cone. Consequently, such optimization problems can be solved in
polynomial time by using for example interior point methods (Van-
denberghe et al., 1996; Huang et al., 2021). But the computational cost
of SDP methods is usually expensive. Recent works proposed differ-
ent strategies to solve SDP optimization problem more efficiently. In
particular, the Burer-Monteiro method (Burer et al., 2001) has surged
in popularity during the past decade.

A common strategy to solve NP-hard combinatorial problems is
to relax them into a SDP optimization problem. This approach has

2 One can also use the random-walk Laplacian Lw = I−D−1A.
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been used for example to solve phase synchronization problem (Gao
et al., 2022), clustering sub-Gaussian mixtures (Giraud et al., 2019) or
community detection (Li et al., 2021). Let us illustrate the principle
of the method for a SSBM(n, 2,p,q) where the diagonal elements are
removed.

Let us define the binary variable Xij equal to 1 when i and j are
in the same cluster and 0 otherwise and X = (Xij)i,j∈[n] ∈ Rn×n be
the corresponding partition matrix. The set of all partition matrices is
denoted by Xn. It is easy to show (Li et al., 2021) that maximizing the
likelihood of the model is equivalent to

max
X∈Xn

∑
i<j

(
Aij − λ

)
Xij (2.2.1)

where λ =
log 1−p1−q

log p(1−q)(1−p)q

and the maximum is taken over all partition

matrices X. We can now relax the constraints on X and only use the
following properties of X:

1. X is positive semi-definite;

2. Xij ⩾ 0 for all i, j;

3. Xii = 1 for all i.

Then the optimization problem (2.2.1) can be relaxed to

max
X∈Rn×n

⟨A− λJn,X⟩ (2.2.2)

s.t. X ⪰ 0,Xii = 1 for all i and X ⩾ 0

where Jn = 1n1
⊤
n .

Under some noise regime, one can show that the solution X̂ of
(2.2.2) is equal to X∗, the ground truth partition matrix. The proof
strategy is as follows. First one can show by using KKT conditions
and constructing a dual certificate (it is generally difficult) that X∗ is
indeed a solution of (2.2.2). It remains then to show that the solution
is unique. One can also have weaker requirement and show that X̂ is
close to X∗.

2.2.3 Variational Expectation Maximization (VEM)

EM algorithms are a family of iterative methods for finding a local
maximum of the log-likelihood when the statistical model depends
on unobservable latent variables. VEM algorithms involve an addi-
tional approximation to approximate a posterior distribution which
computation is usually intractable. Let us detail the algorithm for the
SBM. It was first proposed by Daudin et al., 2008.
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Let assume that A ∼ SBM(Z,Π) and that Zi
i.i.d.
∼ Multi(α1, . . . ,αK)

where Multi(α1, . . . ,αK) is a multinomial distribution with parame-
ters

(αk)k∈[K] ∈ [0, 1]K such that
∑
k

αk = 1.

In other words, we added a prior distribution over the partition. The
coefficients αK can be interpreted as the proportion of each commu-
nity. In the approximately equal size case, we will choose α1 = . . . =

αK = 1/K. Let us denote θ = (Π,α1, . . . ,αK).
The complete log-likelihood of the model logLθ(A,Z) can be writ-

ten as

logLθ(A,Z) =
∑
i,k

Zik logαk +
∑
i,k,k ′

j>i

ZikZjk ′ logb(Aij,Πkk ′) (2.2.3)

where b(Aij,Πkk ′) = Π
Aij
kk ′(1−Πkk ′)1−Aij is the density of a Bernoulli

with parameter Πkk ′ .
One can show that for every distribution Q on Z

logLθ(A) = log EZLθ(A,Z) ⩾ EZ∼Q(logLθ(A,Z)) − EZ∼Q(logZ)︸ ︷︷ ︸
Jθ(A,Q)

.

This lower bound of the observed likelihood is often called the evi-
dence lower bound (ELBO). By using the identity

Jθ(A,Q) = logLθ(A) −KL(Q||Lθ(Z|A))

one can see that the ELBO is maximised when Q correspond to the
posterior distribution Lθ(Z|A). Unfortunately, due to dependencies in
the model one cannot compute this posterior distribution. This is why
we use a variational approximation: we will restrict the optimization
problem to the probability distributions Q that can be factorized

Q(Z) =
∏
i

Qi(Zi).

This approximation is also often referred to as the mean field approx-
imation. Now we can use alternative optimization to find the couple
(θ,Q) that maximizes Jθ(A,Q).

ve-step. Assume that the model parameter θ is fixed. The distri-
bution Q is by definition fully characterised by the the variational
parameters τik = PQ(Zik = 1) for all i ∈ [n],k ∈ [K] that satisfies the
constraint

∑
k τik = 1 for all i. It is easy to check that

Jθ(A,Q) =
∑
i,k

τik(logαk − log τik) +
∑
i,k,k ′

j>i

τikτjk ′ logb(Aij,Πkk ′).
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By the KKT conditions, the solution τ̂ = (τ̂ik)i,k that maximizes
Jθ(Q,A) satisfies for all i ∈ [n] and k ∈ [K]

τ̂ik ∝ αk
∏
j̸=i

∏
k ′

b(Aij,Πkk ′)τ̂jk ′ .

Consequently, τ̂ can be estimated by solving a fixed point problem
and using the constraint

∑
k τik = 1.

m-step. When the distribution Q is fixed, it is easy to check that
the parameter θ that maximizes Jθ(Q,A) is given by

α̂k =

∑
i τik
n

Π̂kk ′ =

∑
i<j τikτjk ′Aij∑
i<j τikτjk ′

∀k,k ′ ∈ [K].

The VE-step and the M-steps are repeated until convergence of the
algorithm.

The consistency of the estimator provided by this VEM-algorithm
has been analyzed in Celisse et al., 2011 then extended by Bickel et
al., 2013. The analysis has been extended to more general models
including SBM with missing observations (Mariadassou et al., 2020;
Gaucher et al., 2021), the Latent Block Model (Brault et al., 2020) and
dynamic SBM (Longepierre et al., 2019). Whereas the previously men-
tioned work focus on estimating the model parameters, the accuracy
of the method for estimating the partition has been investigated in
Zhang et al., 2020a. An alternative to the mean field approximation
has been proposed by Yin et al., 2020. The effect of random initializa-
tion has been studied in Sarkar et al., 2021.

In practice, the VEM-algorithm can handle graphs with tens of thou-
sands of nodes, but the running time becomes prohibitive for very
large networks.

2.2.4 Modularity based clustering

A popular way to measure the quality of the partition of a graph
into communities is to rely on the quality function Q (Newman et al.,
2004) defined by

Q =
1

|E|

∑
i,j

(Aij − Pij)1zi=zj

where |E| is the number of edges in A, zi ∈ [K] denotes the commu-
nity i belongs to, and Pij correspond to a choice of a null model (a
common choice is deg(i)deg(j)2|E| ). In general, it is NP-hard to find the
partition that minimizes Q. However, there is a popular heuristic to
solve this problem: the Louvain algorithm (Blondel et al., 2008). It
consists of several steps that are repeated iteratively.

1. Start with an initial partition C = (C1, . . . ,CK).
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2. For each vertex i and k ∈ [K] define a partition Ck,i where i is
removed from the cluster it was previously associated with and
is added to the cluster k.

3. Define Qk,i the modularity function associated with Ck,i minus
Q and let be k∗i = arg maxkQk,i (breaking ties arbitrarily).

4. For all vertices i such that Czi ̸= Ck∗i pick a pair (i, j) at random
such that Czi = Ck∗j and Czj = Ck∗i , and define a new partition
C ′ by moving i to Ck∗i and j to Ck∗j .

5. Repeat the previous steps until convergence.

This is a local search algorithm that aims at optimizing the modu-
larity Q. In practice, the algorithm is fast and can be parallelized. Re-
cently, the work of Cohen-Addad et al., 2020 established consistency
guarantees of this algorithm under the SBM.

2.2.5 Methods for partial recovery

The previously described will usually fail in the very sparse regime
where pmax = O(1/n). Even if SDP approaches can achieve detec-
tion in some regimes, they don’t reach the threshold for partial re-
covery (Ricci-Tersenghi et al., 2016). One of the invoked reason of
this failure is that these methods were developed to approximate the
Maximum A Posteriori (MAP) (or minimum bisection when K = 2),
a global criterion that is not suitable for this regime as explained in
Abbe, 2018, Section 2.6. Instead of maximizing a global criterion, one
should try to maximize the posterior distribution of each singular
vertex maxẑi P(ẑi = zi|A). One can approximate this posterior dis-
tribution by using a belief propagation algorithm. A linear approxi-
mation of this algorithm is related to the nonbacktracking operator
studied in Bordenave et al., 2018. See also Abbe et al., 2016. Instead
of counting nonbacktracking walks, Abbe et al., 2020a showed that
one can use spectral method on the new adjacency matrix where two
nodes are connected if there is a path of a certain length connecting
the two nodes in the original graph. Another simpler matrix related
to the nonbacktracking operator is the Bethe-Hessian matrix Saade
et al., 2014.

2.3 beyond sbm : other random graphs models

2.3.1 Degree Corrected SBM (DCSBM)

Under the SBM assumptions, all the nodes within the same commu-
nity are exchangeable. But in real-life networks, nodes often have het-
erogeneous degrees. For example, in social networks, there are often
hubs corresponding to very popular people. A way to integrate this
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property is to add a degree correction parameters θi > 0 for each
node i ∈ [n]. A graph G is distributed according to DCSBM(Z,Θ,Π)
if the entries of the corresponding symmetric adjacency matrix A are
generated by

Aij
ind.
∼ B(θiθjΠz(i)z(j)), 1 ⩽ i ⩽ j ⩽ n.

So in expectation we have E(A) = ΘZΠZ⊤Θ where Θ is the diago-
nal matrix with Θii = θi. For identifiability, we can further assume∑
i∈Ck

θi = 1 for all k (if it were different from 1, then we can ab-
sorb this factor in the connectivity matrix Π). A particular case of
this model is analyzed in Gao et al., 2018. They proposed a feasible
two-stage algorithm that achieves the threshold for exact recovery.

2.3.2 Mixed Membership SBM (MMSBM)

The assumption that each node belongs to only one community can
be too restrictive. For example, in a citation network, it would be
more realistic to assume that some articles can cover several topics.
To overcome the expressive limitation of the SBM, Airoldi et al., 2008

introduced the MMSBM. Here, each node is associated with a proba-
bility distribution over the different communities. This can be inter-
preted geometrically. Pure nodes – the ones that are associated with
only one community – correspond to the extremal points of a poly-
tope, and the positions of the other nodes on this polytope are given
by their associated probability distributions that can be interpreted as
barycentric coordinates.

More formally, instead of requiring Z ∈MK we will consider matri-
ces Z ∈Mc

K where Mc
K is the set of mixed membership matrix defined

as follows: Z ∈Mc
K if and only if Z ∈ [0, 1]n×K and:

• ||Zi:||1 = 1 for all 1 ⩽ i ⩽ n;

• for all k ∈ [K], there is at least one index i such that Zik = 1

(these indices correspond to pure nodes).

Other models like the Overlapping SBM (OSBM) (Latouche et al.,
2011), the Overlapping Continuous Community Assignment Model
(OCCAM) (Zhang et al., 2020b), or SBM with Overlap (SBMO) (Kauf-
mann et al., 2018) have also been proposed, but we will focus on the
MMSBM because it is easier to interpret than OCCAM and more general
than the OSBM or SBMO. The MMSBM can also be interpreted in certain
cases as a RDPG (Athreya et al., 2018).

2.3.3 Random Dot Product Graph (RDPG)

RDPGs are a particular case of latent position graphs where each node
is associated with an unknown latent position in some space and
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the connectivity probability between two nodes is determined by the
distance (or a measure of similarity) between the corresponding latent
positions. Formally, let us define X = (X1, . . . ,Xn)⊤ ∈ Rn×d where
Xi is the latent position associated with the node i. Further assume
that for each i, j ∈ [n],X⊤

i Xj ∈ [0, 1]. Then an adjacency matrix A is
generated from a RDPG(n,X) if

Aij
ind.
∼ B(X⊤

i Xj), 1 ⩽ i ⩽ j ⩽ n.

RDPG encompasses the DCSBM and MMSBM as special cases. More in-
formation can be found in the survey of Athreya et al., 2018.



3
C L U S T E R I N G U N D E R T H E C O N T E X T U A L

S T O C H A S T I C B L O C K M O D E L

This chapter is based on Braun et al., 2021a where we introduce a new
clustering method for graphs that incorporate nodes side information.
In contrast to previously proposed methods, our algorithm comes
with strong consistency guarantees under the CSBM and is minimax
optimal under the Contextual Symmetric SBM (CSSBM). The theoreti-
cal results are confirmed by experiments on synthetic data that show
that our algorithm significantly outperforms concurrent methods. We
also show that it can be applied to weighted graph and demonstrate
the practical interest of our method on real data.

The chapter is organized as follows. In Section 3.1 we introduce
the problem and discuss the related work. The statistical framework
is presented in Section 3.2 and the algorithms in Section 3.3. We then
state our main results and outline the proofs in Section 3.4. Experi-
mental results are presented in Section 3.5. Possible extensions of our
framework is discussed in Section 3.6. The additional proofs details
are gathered in Section 3.7.

3.1 introduction

Real-world networks often come with side information in the form
of nodes covariates which can be used to improve clustering perfor-
mance. For example, when analyzing interactions among people on a
social network, we have access to additional features such as gender,
age, or ethnicity that can be relevant for the clustering task. Other
examples, including biological networks and predator-prey interac-
tion networks are discussed in Newman et al., 2015. The Contextual
Stochastic Block Model (CSBM) is a simple extension of the SBM that
incorporates such side information: each node is associated with a
Gaussian vector of parameters depending only on the community to
which the node belongs; see Section 3.2 for details.

Several variants of this model and clustering algorithms have been
proposed in the literature to incorporate side information. These meth-
ods include model-based approaches (Yang et al., 2013; Weng et al.,
2022; Hric et al., 2016; Emmons et al., 2019; Stanley et al., 2019; Con-
tisciani et al., 2020; Fajardo-Fontiveros et al., 2022), spectral methods
(Binkiewicz et al., 2017; Mele et al., 2019; Abbe et al., 2020b), modu-
larity based optimization methods (Zhang et al., 2016b), belief prop-
agation Deshpande et al., 2018 and SDP based approaches (Yan et al.,
2020). Even if some of these algorithms come with certain theoretical

21
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guarantees, the added value of side information is in general not well
understood. The recent works of Abbe et al., 2020b, Lu et al., 2020

and Ma et al., 2021 clarify the situation by establishing information
theoretic thresholds for exact recovery and detection in a special case
with two communities. However, the algorithm presented in Abbe et
al., 2020b is not likely to be extended to a general CSBM with more
than two (possibly unequal-sized) communities, while the latter two
results focus on detection rather than consistency.

3.1.1 Our contributions

We make the following contributions in this paper.

• We propose a new iterative algorithm for clustering networks
that is fast and is applicable to various settings including the
general CSBM and also signed weighted graphs as shown in ex-
periments.

• The proposed algorithm is theoretically analyzed under the CSBM,
and we show that its rate of convergence is statistically optimal
under the CSSBM. As a byproduct, we derive the threshold for ex-
act recovery with K communities under the CSSBM, thus extend-
ing the recent result of Abbe et al., 2020b which was obtained
for K = 2.

• We confirm the theoretical properties of our algorithm through
experiments on simulated data showing that our method out-
performs existing algorithms, not only under the CSBM but also
under the Signed SBM the latter of which models community
structure in signed networks (Cucuringu et al., 2019). Finally,
we provided a real data application of our algorithm.

3.1.2 Related work.

As outlined earlier, covariate-assisted clustering methods have been
studied from various perspectives and it is outside the scope of this
work to provide an exhaustive survey. Here, we will discuss the liter-
ature that is most relevant to our work.

Our iterative method can be thought of as a Classification-EM al-
gorithm (Celeux et al., 1992), hereafter referred to as C-EM, where
instead of using the likelihood we use a least squares criterion. Such
ideas were first applied and analyzed under various models includ-
ing associative SBM by Lu et al., 2016 and then extended to a general
framework by Gao et al., 2019. Recently, such ideas were also success-
fully applied to the Gaussian Tensor Block Model (Han et al., 2020)
and a general GMM (Chen et al., 2021). However, the above results
can not be directly applied to the CSBM due to the heterogeneity of
the data.
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Iterative refinement methods can also be derived naturally from the
Power Method (Wang et al., 2021; Ndaoud et al., 2022) or alternative
optimization methods (Chi et al., 2019). They have been successfully
deployed in other settings as well, e.g., SBM (Wang et al., 2021), group
synchronization (Boumal, 2016), joint alignment from pairwise differ-
ences (Chen et al., 2018), graph matching (Onaran et al., 2017) and
low-rank matrix recovery (Chi et al., 2019).

Despite the huge amount of work on covariate-assisted clustering,
there are only limited consistency results. Binkiewicz et al., 2017 and
Yan et al., 2020 obtained some weak consistency guarantees that de-
pend on both sources of information, but as noted in Abbe et al.,
2020b, those bounds are not tight. Abbe et al., 2020b were the first
to propose a method that achieves the threshold for exact recovery,
but their algorithm only works when K = 2 and it seems difficult to
extend it to a more general setting.

3.2 the statistical framework

The CSBM consists of a graph encoded in an adjacency matrix A ∈
{0, 1}n×n and nodes covariates forming a matrix X = [X1 X2 · · ·Xn]⊤ ∈
Rn×d where d is the dimension of the covariate space. The graph and
the covariates are generated as follows.

• The graph part of the data is generated from a SBM(Z,Π) with
Z ∈Mn,K as defined in Section 1.3.

We further assume in this chapter that the communities are approx-
imately well balanced and that the sparsity level of the graph pmax
is of order logn/n.

Assumption A1. There is a constant α such that for all k ∈ [K]

n

αK
⩽ nk ⩽

αn

K
.

This is a common assumption in the literature. The problem be-
comes harder when the communities have very unbalanced sizes.

Assumption A2. We will assume throughout that pmax ≍ logn/n.

If the graph is denser, we are in the exact recovery regime and
the problem is easy. If we are in a sparser regime, we would need
to regularize the adjacency matrix to enforce concentration, or use
completely different methods (see e.g. Lu et al., 2020).
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For the analysis, we will also consider a special case of the SBM

where the communities are equal sized, i.e., nk = n/K for all k ∈ [K],
and the connectivity matrix is given by

Π =


p q . . . q

q p . . . q
...

...
. . .

...

q q . . . p

 ∈ [0, 1]K×K.

We will further assume that p = p ′ logn
n and q = q ′ logn

n for constants
p ′,q ′ such that p ′ > q ′ > 0. This model will be referred to as the
Symmetric SBM (SSBM) and denoted by SSBM(n,K,p,q).

• The nodes covariates are generated by a GMM, independent of
A conditionally on the partition Z. More formally, for each i,

Xi = µzi + ϵi, where ϵi
ind.
∼ N(0,σ2Id)

with µk ∈ Rd for all k ⩽ K and σ > 0. We assume that d = O(n).

Remark 2. For ease of exposition we further assume that σ is known but
our method can be extended to anisotropic GMM with unknown variance as
in Chen et al., 2021. We also assume K to be known – this assumption is
common in the clustering literature. Estimating K is a non-trivial task which
is outside the scope of this work, see Jin et al., 2021 for a procedure for SBM.
We also leave as further work the incorporation of other forms of covariates,
e.g., discrete covariates as in Ahn et al., 2018.

3.3 how to integrate heterogeneous sources of infor-
mation?

The use of side information should intuitively help to recover clusters
that are not well separated on each individual source of information.
However, it is not well understood how to integrate two heteroge-
neous sources of information in the clustering process. Previous at-
tempts (Binkiewicz et al., 2017; Yan et al., 2020) proceed by directly
aggregating the adjacency matrix and a Gram matrix (or Kernel ma-
trix) formed by the covariates, but a lot of information can be lost
in the aggregation process. Moreover, it is not clear what is the best
linear combination of the two matrices. Here, we propose a different
approach based on a two step algorithm (see Algorithm 1) that fully
exploits all information. In the first step, we obtain a rough estimate
of the model parameters from the previous estimate of the partition;
the initialization methods that can be used are discussed in Section
3.3.2. Then, in the second step, we iteratively refine the partition, as
further explained in Section 3.3.1. In Section 3.5.1 we illustrate via ex-
periments that Algorithm 1 outperforms existing methods for cluster
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recovery in the setting where the clusters are insufficiently separated
on a single source of information.

Algorithm 1 Iterative Refinement with Least Squares

Input: A ∈ Rn×n, X ∈ Rn×d,K ∈N∗, σ > 0, Z(0) ∈ {0, 1}n×K a
membership matrix and T ⩾ 1.

1: for 0 ⩽ t ⩽ T − 1 do
2: Given Z(t), estimate the model parameters: n(t)

k = |C
(t)
k |,

W(t) = Z(t)(D(t))−1 where D(t) = diag(n(t)
k )k∈[K], Π(t) =

W(t)⊤AW(t) , and µ(t)k =W
(t)⊤
k: X, for all k ⩽ K.

3: Refine the partition by solving for each i ∈ [n]

z
(t+1)
i = arg min

k
||(Ai:W

(t) −Π
(t)
k: )

√
Σ

(t)
k ||2+

||Xi−µ
(t)
k ||2

σ2

where

Σ
(t)
k =


diag(

n
(t)

k ′

Π
(t)

kk ′
)k ′∈[K] (IR-LS)

mink ′ n
(t)

k ′

maxk ′ ,k ′′ Π
(t)

k ′k ′′
IK (sIR-LS)

n
K(p(t)−q(t))

log(p
(t)(1−q(t))

q(t)(1−p(t))
)IK (IR-LSS)

with p(t) = K−1
∑
k∈[K]Π

(t)
kk and q(t) = (K2 −

K)−1
∑
k̸=k ′∈[K]Π

(t)
kk ′ .

4: Form the matrices Z(t+1) from z(t+1).
5: end for

Output: A partition of the nodes Z(T).

3.3.1 The refinement mechanism

At each step t, Algorithm 1 estimates the model parameters given a
current estimate of the partition (W(t)), then updates the partition by
reassigning each node to its closest community. Here, the proximity
of a node i to a community k is measured by the distance between
its estimated (graph) connectivity profile (Ai:W(t)) and its covariates
(Xi) to the current estimate of the community parameters (Π(t)

k: ,µ(t)k ).
Instead of using the MAP estimator as in C-EM algorithms, we use
a least-square criterion. In a model-based perspective, this can be in-
terpreted as a Gaussian approximation of the connectivity profile of
each node. We will see later in the experiments that this doesn’t lead
to a loss of accuracy (see Section 3.5), and is also faster (see Table 1).

Different variants of our algorithm are possible depending on the
way the variance of each community is estimated and integrated in
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the criterion used for the partition refinement. The general method
will be referred as IR-LS, the simplified spherical version is denoted
by sIR-LS (it assumes implicitly that each community has the same
variance) and the version of the algorithm used for CSSBM is denoted
by IR-LSS(the optimal choice in this setting to balance the weight
attributed to each source of information).

Computational cost. In each iteration, the complexity of estimat-
ing the parameters is O(nnz(A) + nd) while that of estimating the
partition is O(nK(K+ d)). So the total cost of IR-LS is O(T(nnz(A) +
nK(max(K,d))). In our setting A is sparse, hence nnz(A) ≍ n logn.

Remark 3. Algorithm 1 can also be used for clustering weighted signed
graphs, as shown later in the experiments. Moreover, it is interesting to note
that when there are no covariates, the algorithm can be applied to graphs
generated from a general SBM. This is in contrast to the iterative algorithm
proposed by Lu et al., 2016 that can only be applied to assortative SBMs (see
appendix).

3.3.2 Initialization

Different strategies can be adopted for initialization. If we assume
that the communities are separated on each source of information and
that the Signal-to-Noise Ratio (SNR) is large enough to recover a suffi-
cient proportion in each cluster, we can use a spectral method on one
source of information (the graph for example). However, it is in gen-
eral better to combine both sources of information. While one could
use the methods proposed in Yan et al., 2020 or Binkiewicz et al., 2017

that also come with some theoretical guarantees, we instead use Algo-
rithm 2 to initialize the partition. This algorithm will be referred to as
EM-Emb. In our experiments, we used the package clusterR (Mouse-
limis, 2022) for estimating the Gaussian mixture with an EM algo-
rithm. This algorithm is fast, provides a sufficiently accurate estimate
of the partition, and avoids hyperparameter tuning. As shown in the
experiments (see Section 3.5.4.2), under some parameters regime, we
can also use a random initialization strategy.

3.4 main results and analysis principle

In this section, we analyze the variants sIR-LS and IR-LSS of Algo-
rithm 1. While it is possible to extend the analysis to IR-LS, it would
be considerably more technical and tedious due to its non-spherical
structure. Hence, we will assume here that the covariance matrix Σ(t)

k

in Algorithm 1 has the form λ(t)Ik where λ(t) is an appropriate scalar
depending on whether we use sIR-LS or IR-LSS.

In Section 3.4.1 we will present the general principle for the analy-
sis. Then we will specialize it for analyzing IR-LSS (under the CSSBM)
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Algorithm 2 EM on graph embedding and covariates (EM-Emb)

Input: The number of communities K, the adjacency matrix A,
covariates X.

1: Compute UK ∈ Rn×K the matrix formed by the eigenvectors as-
sociated with the top-K eigenvalues (in absolute order) of A.

2: Merge the columns ofUK with the columns of X to obtain a matrix
X ′.

3: Cluster the rows of X ′ by using an EM algorithm for GMM.
Output: A partition of the nodes Z(0).

in Section 3.4.2, and prove that the convergence rate obtained is opti-
mal in Section 3.4.3. Finally we show that the same framework can be
used to bound the convergence rate of sIR-LS (under the CSBM) in
Section 3.4.4. The details of the proofs are outlined in the appendix.

3.4.1 Analysis principle

Our analysis is motivated by the general framework recently devel-
oped by Gao et al., 2019, and also borrows some decomposition tech-
niques used for analyzing Gaussian tensors from Han et al., 2020.
However, these results are not directly applicable to our setting due
to dependencies arising from symmetry in the SBM. Moreover, we
need tighter control of the error terms then provided by these works.

We will assume w.l.o.g. that σ = 1 (since σ is assumed to be known
in our framework) and that the permutation π that minimizes the
distance between z(0) and z is the identity (if not, then replace z by
π−1(z)). Hence there is no label switching ambiguity in the commu-
nity labels of z(t) because they are determined from z(0).

The first step is to analyze the event “after one refinement step, the
node i will be incorrectly clustered given the current estimation of
the partition z(t) at time t". This corresponds to the condition

a ̸= arg min
k

||Xi − µ
(t)
k ||2 + λ̂(t)||Ai:W

(t) −Π
(t)
k: ||

2

for a node i such that zi = a. One can see that this condition is
equivalent to the existence of b ∈ [K] \ a such that

⟨ϵi, µ̃a − µ̃b⟩+ λ⟨Ei:W, Π̃a: − Π̃b:⟩︸ ︷︷ ︸
Ci(a,b)

⩽
−∆2(a,b)

2
+ Err

(t)
ib .

Here,

∆2(a,b) = ||µa − µb||
2 + λ||Πa: −Πb:||

2,

µ̃k = X⊤W:a, Π̃k: =W⊤
k:AW,
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and λ =
nmin
pmax

or
n

K(p− q)
log
(
p(1− q)

q(1− p)

)
depending whether we are analyzing sIR-LS or IR-LSS. Moreover,
Err

(t)
ib is an error term that can be further decomposed as a sum F

(t)
ib +

G
(t)
ib +H

(t)
ib of different kinds of error terms which will be controlled

in different ways. If we ignore the error term, we obtain the condition
corresponding to having an incorrect result after one iteration starting
from the ground truth partition. The errors occurring in this way will
be quantified by the ideal oracle error

ξ(δ) =

n∑
i=1

∑
b∈[K]\zi

∆2(zi,b)1
{Ci(a,b)⩽−(1−δ)∆2(zi ,b)

2 }
.

Let us denote
∆min = min

a̸=b∈[K]
∆(a,b)

to quantify the separation of the parameters associated with the dif-
ferent communities. If ∆min = 0, it would imply that at least two
communities are indistinguishable and the model would not be iden-
tifiable. For t ⩾ 1 and δ ∈ [0, 1), let

δ(t) = max
(
7

8

τ(t−1)

τ(0)
, δ
)

, τ(t) = τ(0)δ(t)

be sequences where τ(0) = ϵn∆2min/K for a small enough constant
ϵ > 0.

In general the rate of decay of ξ(δ) leads to the convergence rate of
iterative refinement algorithms, hence it is important to control this
quantity.

Condition C1 (ideal error). Assume that

ξ(δ(t)) ⩽
3

4
τ(t−1), for all t ⩾ 1

holds with probability at least 1− η1.

We now have to analyze the error terms and prove that their con-
tribution is negligible compared to the ideal oracle error rate. Let

l(z, z ′) =
∑
i∈[n]

∆2(zi, z ′i)1{zi ̸=z ′i}

be a measure of distance between two partitions z, z ′ ∈ [K]n. We will
control the error terms by showing that the following conditions are
satisfied.

Condition C2 (F-error type). Assume that

max
{z(t):l(z,z(t))⩽τ(0)}

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆2(zi,b)l(z, z(t))
⩽
δ2

256

for all t ⩾ 0 holds with probability at least 1− η2.
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Condition C3 (GH-error type). Assume that

max
i∈[n]

max
b∈[K]\zi

|H
(t)
ib |+ |G

(t)
ib |

∆(zi,b)2
⩽
δ(t+1)

4

holds uniformly on the event {z(t) : l(z, z(t)) ⩽ τ(t)} for all t ⩾ 0 with
probability at least 1− η3 .

We can now show under these conditions that there is a contraction
of the error if the initial estimate of the partition is close enough to
the ground truth partition.

Theorem 4. Assume that l(z(0), z) ⩽ τ(0) and δ < 1. Additionally assume
that Conditions C1, C2, and C3 hold. Then with probability at least 1 −∑3
i=1 ηi

l(z(t), z) ⩽ ξ(δ(t)) +
1

8
l(z(t−1), z), ∀t ⩾ 1. (3.4.1)

Remark 4. This is an adaptation of Theorem 3.1 in Gao et al., 2019 where
we allow at each step to choose a different δ(t). It allows us to obtain a weaker
condition for initialization than the one used in Theorem 4.1 in Gao et al.,

2019. Indeed, they require l(z(0), z) = o(n∆
2
min

K ) in order to have δ = o(1),

but we only need l(z(0), z) = O(n∆
2
min

K ).

Proof of Theorem 4. By definition δ(t) < 1 for all t ⩾ 1. Let i ∈ [n] such
that zi = a and assume that l(z(t−1), z) ⩽ τ(t−1) for some given t ⩾ 1.
Denoting I(t)i (a,b) := 1

{Ci(a,b)⩽−(1−δ(t))∆2(a,b)
2 }

, observe that

1
{z

(t)
i =b}

(1)

⩽ 1
{Ci(a,b)⩽−∆2(a,b)

2 +F
(t−1)
ib +G

(t−1)
ib +H

(t−1)
ib }

(2)

⩽ I
(t)
i (a,b) + 1

{ δ
(t)

2 ∆
2(a,b)⩽F(t−1)ib +G

(t−1)
ib +H

(t−1)
ib }

(3)

⩽ I
(t)
i (a,b) + 1

{ δ
(t)

4 ∆
2(a,b)⩽F(t−1)ib }

⩽ I(t)i (a,b) + 1
{ δ4∆

2(a,b)⩽F(t−1)ib }

(4)

⩽ I
(t)
i (a,b) +

32(F
(t−1)
ib )2

δ2∆4(a,b)
.

The inequality (1) follows from the definition of z(t)i and the er-
ror decomposition. Inequality (2) comes from a union bound while
(3) uses Condition C3. Finally, (4) follows from Markov inequality.
Hence,

l(z(t), z) =
∑
i∈[n]

∑
b∈[K]\{zi}

∆2(zi,b)1{z(t)i =b}

⩽
∑
i∈[n]

∑
b∈[K]\{zi}

∆2(zi,b)1
{Ci(a,b)⩽−(1−δ(t))∆2(zi ,b)

2 }
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+
∑
i∈[n]

∑
b∈[K]\{zi}

∆2(zi,b)1{z(t)i =b}

32(F
(t−1)
ib )2

δ2∆4(zi,b)

⩽ ξ(δ(t)) +
∑
i∈[n]

max
b∈[K]\{zi}

32(F
(t−1)
ib )2

δ2∆2(zi,b)

⩽ ξ(δ(t)) +
1

8
l(z(t−1), z).

Using Condition C1, we hence obtain

l(z(t), z) ⩽ ξ(δ(t)) +
1

8
τ(t−1) ⩽

7

8
τ(t−1).

Thus τ(t) is an upper bound for l(z(t), z) and the theorem is proved
by induction.

By iteratively unwrapping (3.4.1) we obtain for t large enough the
following bound on l(z(t), z).

Corollary 1. Assume that the assumptions of Theorem 1 hold. Denoting
t∗ = ⌈ log(1/δ)

log(8/7)⌉, we have for all t ⩾ t∗ that τ(t) = τ, δ(t) = δ and

l(z(t), z) ⩽
8

7
ξ(δ) +

3

28
τ(0)

(
1

8

)t−t∗
.

This bound shows that if t is suitably large, then the estimation
error is of the order of the oracle error.

Proof of Corollary 1. For convenience, denote τ = τ(0)δ. Let t∗ be the
smallest integer such that τ ⩾ (78)

tτ(0); clearly, t∗ = ⌈ log(1/δ)
log(8/7)⌉. Then

for t ⩾ t∗, we have τ(t) = τ = τ(0)δ, and hence (from the definition
of δ(t)), δ(t) = δ. Therefore Theorem 4 implies that for t ⩾ t∗,

l(z(t), z) ⩽ ξ(δ(t)) +
1

8
ξ(δ(t−1)) + . . .+

(
1

8

)t−t∗
ξ(δ(t

∗))

+

[(
1

8

)t−t∗+1
ξ(δ(t

∗−1)) + . . .+

(
1

8

)t−1
ξ(δ(1))

]

⩽
8

7
ξ(δ) +

[(
1

8

)t−t∗+1
ξ(δ(t

∗−1)) + . . .+

(
1

8

)t−1
ξ(δ(1))

]
(since δ(t) = δ for t ⩾ t∗)

⩽
8

7
ξ(δ) +

3

4
τ(0)

[(
1

8

)t−1
+ . . .+

(
1

8

)t−t∗+1]
(since for all t, ξ(δ(t)) ⩽ 3

4τ
(0) by Condition C1)

⩽
8

7
ξ(δ) +

3

28
τ(0)

(
1

8

)t−t∗
.
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3.4.2 Convergence guarantees for IR-LSS under the CSSBM

Let us define the SNR

∆̃2 =
1

8
min
k̸=k ′

||µk − µk ′ ||2 +
logn
K

(
√
p ′ −

√
q ′)2.

It is easy to see that ∆̃ ≍ ∆min. The following lemma shows that ξ(δ)
decreases exponentially fast in ∆̃ provided ∆min is suitably large.

Lemma 1. Assume that K1.5/∆min → 0 and δ = δ(n) → 0 at a suitably
slow rate. Then with probability at least 1− exp(−∆̃), we have

ξ(δ) ⩽ n exp(−(1+ o(1))∆̃2).

The following theorem shows that if z(0) is close enough to z, then
the misclustering rate decreases exponentially fast with the SNR ∆̃

after O(logn) iterations.

Theorem 5. Assume that K1.5/∆min → 0 and ∆̃2 ≍ logn/K. Under the
CSSBM(n,K,p,q) assumption, if z(0) is such that

l(z, z(0)) ⩽
ϵn∆2min

K

for a constant ϵ small enough, then with probability at least 1−n−Ω(1) we
have for all t ≳ logn

r(z(t), z) ⩽ exp(−(1+ o(1))∆̃2).

Sketch of proof. We first show that Conditions C2 and C3 are satisfied.
Then we show that Condition C1 is satisfied for the sequences δ(t)

and τ(t), hence Theorem 4 can be applied to obtain a contraction of
the error at each step.

Remark 5. By assumption ∆̃2 ≳ logn/K, and so the condition ∆̃2 ≍
logn/K is not very restrictive. Indeed, if the information provided by the
GMM part was not of the same order as the graph part, it would not be
useful to aggregate information. If ∆̃2 ≫ logn then we would be in the
exact recovery setting and the problem becomes easy.

Remark 6. The initial condition implies that h(z(t), z)/n ⩽ ϵ/K where h
denotes Hamming distance, see appendix for details. This is a detection condi-
tion. It is outside the scope of this work to analyze an algorithm that achieves
this condition under CSBM. The numerical experiment done in Section 3.7
suggests that the algorithm can still work with a random initialization, at
least in particular cases.
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3.4.3 Minimax lower-bound for CSSBM

We are going to establish that the convergence rate established in
Theorem 5 is optimal. Let

Θ = {(µk)k∈[K] ∈ RK,p,q ∈ [0, 1] such that p > q}

be the admissible parameter space.

Theorem 6. Under the assumption ∆̃/ logK→∞, we have

inf
ẑ

sup
θ∈Θ

E(r(ẑ, z)) ⩾ exp(−(1+ o(1))∆̃2).

If ∆̃ + logK = O(1), then infẑ supθ∈ΘE(
r(ẑ,z)
n ) ⩾ c for some positive

constant c.

Remark 7. This lower-bound shows that if ∆̃2 < logn then every esti-
mator fails to achieve exact recovery with a probability bounded below from
zero because supθ∈ΘE(r(ẑ, z)) > nϵ for some ϵ > 0. On the other hand,
Theorem 5 shows that when ∆̃2 > logn then IR-LSS achieves exact recov-
ery. Hence the threshold for exact recovery is ∆̃2/ logn. When K = 2 and
µ1 = −µ2 = µ this matches the result obtained by Abbe et al., 2020b.

Sketch of proof. We can use the same argument as in Theorem 3.3 Lu
et al., 2016 to reduce the problem to a hypothesis testing problem.
The solution of the latter is given by the maximum likelihood test
according to the Neyman-Pearson lemma. Then the probability of
error can be controlled by using concentration inequalities.

3.4.4 Convergence guarantees for sIR-LS under the CSBM

The proof techniques used in the previous section can be extended in
a straightforward way to obtain consistency results for sIR-LS under
the CSBM. The main difference is that the specialized concentration
inequality used to prove Lemma 1 can no longer be applied to this
setting.

Theorem 7. Assume that

K1.5

∆min
→ 0, ∆2min ≍ logn/K and max

a,b∈[K]
∆2(a,b) ≲ ∆2min.

Under the CSBM with approximately balanced communities, if for some small

enough constant ϵ > 0, l(z, z(0)) ⩽ ϵn∆2min
K , then with probability at least

1−n−Ω(1) we have

r(z(t), z) ⩽ exp
(
−
1

8
∆2min

)
for all t ≳ logn.
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3.4.5 Comparison with existing theoretical results

Abbe et al., 2020b obtain the same bound as us when K = 2. Their
method – which is an aggregated spectral method – requires com-
puting the largest eigenvector of XX⊤ (with diagonal set to zero)
which has a complexity O(n2). In contrast, our method has complex-
ity O(n logn+ nd) and is thus faster when d = o(n). Binkiewicz et
al., 2017 consider a spectral method applied on a regularized Lapla-
cian. When d ≍ polylog(n) they show that the misclustering rate is
O(1/polylog(n)). Yan et al., 2020 used a similar regularization idea
but with a SDP and obtain an error bound (in Frobenius norm) for es-
timating a clustering matrix. Their bound depends on the two sources
of information, but as also noted by Abbe et al., 2020b, it is unclear
how the bound improves with side information. Moreover the bounds
in Binkiewicz et al., 2017; Yan et al., 2020 are not optimal.

3.5 numerical experiments

We now empirically evaluate our method on both synthetic and real
data1. Section 3.5.1 contains simulations for the CSBM and Section
3.5.2 contains results for clustering signed networks under a Signed
SBM. In Section 3.5.3, we test our method on a dataset consisting of
a (weighted) signed graph along with covariate information for the
nodes.

3.5.1 CSBM with not well separated communities

In this experiment the graph is generated from a SBM with parameters

n = 1000, K = 3, Zi
i.i.d
∼ Multinomial(1; 1/3, 1/3, 1/3), and

Π = 0.02 ∗

 1.6 1.2 0.05

1.2 1.6 0.05

0.05 0.05 1.2

 .

The covariates are generated from a GMM with variance σ2 = 0.2
and class centers µ1 = (0, 0, 1),µ2 = (−1, 1, 0), µ3 = (0, 0, 1). Note
that C1,C3 cannot be separated by the covariate information, while
C1,C2 are not well separated in the graph information (as seen from
Π). Hence, one would expect in this example that using only a sin-
gle source of information should not yield good clustering results. To
demonstrate this, we use the Normalized Mutual Information (NMI)
criterion to measure the quality of the resulting clusters. It is an in-
formation theoretic measure of similarity taking values in [0, 1], with
1 denoting a perfect match, and 0 denoting the absence of correlation
between partitions.

1 The source code is available on https://github.com/glmbraun/CSBM

https://github.com/glmbraun/CSBM
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Figure 1: Average performance over 40 runs of different algorithms under
CSBM.

3.5.1.1 Performance comparison

We will use K-SC and L-SC to denote respectively the results ob-
tained by applying spectral clustering on the Gaussian kernel matrix
K formed from the covariates, and spectral clustering (SC) applied
on the Laplacian of the graph. Additionally, SDP-Comb refers to the
method proposed by Yan et al., 2020; IR-MAP is similar to IR-LS but
with the least-square criterion replaced by the MAP to update the par-
tition; ORL-SC (Oracle Regularized Laplacian SC) corresponds to SC
applied on A+ λK where λ is chosen to maximize the NMI between
the (oracle known) true partition and the one obtained by using SC
on A+ λK. For the implementation of SDP-Comb, we used the Matlab
code provided by Yan et al., 2020 with λ given by ORL-SC. We limited
our comparison to the aforementioned methods for concreteness; a
comparison with all existing methods from the literature would need
a separate study and is outside the scope of the paper.

Figure 1 shows that the three iterative methods considered (IR-MAP,
IR-LS, sIR-LS), initialized with EM-Emb, provide significantly better
clustering performance compared to the other methods. The variance
of sIR-LS is a bit larger than IR-LS. On the other hand, other meth-
ods based on aggregating the two sources of information (SDP-Comb
and ORL-SC ) lead to a limited improvement in clustering performance.
Additional experiment results in the appendix suggest that the itera-
tive methods considered also work with random initialization.
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3.5.1.2 Computational cost

We took the average of CPU time (in seconds) over 20 repetitions.
There is an important gain in speed obtained by replacing the MAP
objective by a least square criterion. Moreover, the initialization ob-
tained with EM-Emb is very fast. The results are gathered in Table 1.

L-SC ORL-SC EM-Emb IR-LS IR-MAP

Time 1.4 7.9 0.5 1.2 37.1

Ratio 2.7 15 1 2.3 70

Table 1: Comparison between computation times (averaged over 20 runs).

3.5.2 Signed SBM

A graph is generated from the Signed SBM as follows. First we gener-
ate an Erdös-Renyi graph where each edge appears with probability
p and each edge takes the value 1 if both extremities are in the same
community and −1 otherwise. Then we flip the sign of each edge in-
dependently with probability η ∈ [0, 1/2). Our method sIR-LS can be
directly applied to this setting, but we can also use the fact that the
connectivity matrix Π is assortative to design a more specialised algo-
rithm IR-SSBM (see Algorithm 3) that assigns a node to the commu-
nity which maximizes its intra-connectivity estimated probability. For
initialization, we use Sponge-sym (Cucuringu et al., 2019) for cluster-
ing signed graphs. Figure 2 shows that 20 refinement steps improve
the clustering.

Algorithm 3 IR-SSBM

Input: The number of communities K, initial partition z(0), T ⩾ 1.

1: for 0 ⩽ t ⩽ T − 1 do
2: Compute W(t) = Z(t)(D(t))−1 where D(t) = diag(n(t)

k )k∈[K],
and C(t) = AW(t).

3: Update the partition for each i ⩽ n

z
(t+1)
i = arg max

k
C
(t)
ik

4: end for
Output: A partition of the nodes z(T).
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Figure 2: NMI versus η (noise) under signed SBM, K = 20, n = 10000, p =

0.01.

Figure 3: Sorted adjacency matrices and maps for Australian rainfall dataset
(K = 5).

3.5.3 Australia Rainfall Dataset

We consider the time series data of historical rainfalls in locations
throughout Australia, this was also studied in Cucuringu et al., 2019.
Edge weights are obtained from the pairwise Pearson correlation,
leading to a complete signed graph on n = 306 nodes. We use the
longitude and latitude as covariates X, and Sponge (Cucuringu et al.,
2019) to obtain an initial partition for sIR-LS and Iter-SBM (the ver-
sion of sIR-LS without covariates). We exclude IR-LS here due to
its relative instability on this dataset (see appendix). This shows that
in some situations it can be better to use sIR-LS rather than IR-LS.
Figure 3 illustrates the clustering obtained with Sponge (using only
the graph), sIR-LS (integrating the covariates), Iter-SBM (refinement
without covariates), and K-means applied on the covariates. The use
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of covariates in the refinement steps reinforces the geographical struc-
ture (orange points in the bottom right part of the map disappeared),
increases the size of the smallest cluster (the violet cluster on the
three first maps), and strengthens the original clustering as seen in
the sorted adjacency matrix, whereas Iter-SBM ignores the geogra-
phy and K-means ignores the graph structure. We reproduced the
experiment for different choices of K ∈ {3, 7, 10} in Figure 4, 5 and 6

Figure 4: Sorted adjacency matrices of the Australian rainfall data set and
corresponding maps for K = 3.

Figure 5: Sorted adjacency matrices of the Australian rainfall data set and
corresponding maps for K = 7.



38 clustering under the contextual stochastic block model

Figure 6: Sorted adjacency matrices of the Australian rainfall data set and
corresponding maps for K = 10.

3.5.4 Random initialization

In this subsection, we show that under some parameters regime, our
method can work in practice with a random initialization. But in gen-
eral it seems better to use EM-Emb.

3.5.4.1 Comparison between IR-MAP and IR-LS

In this experiment we fix K = 2 and n = 1000. Let c > 0 and define
p = 4c logn/n and q = c logn/n. Also define a Gaussian mixture
in R with centers 1 (for community 1) and 2 (for the second commu-
nity). The variance parameter σ is chosen such that the information
provided by the Gaussian part of the model is equal to the one pro-
vided by the graph. More precisely, we set σ2 = 1

2c logn . The value
c = 0.5 corresponds to the threshold for exact recovery.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
c

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
M
I

IR-MAP
sIR-LS

Figure 7: Average performance measured by NMI obtained with random
initialization over 20 runs.
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Figure 7 shows that when initialized with a partition Z(0) where
each entry is generated independently from a Multinomial(1; 1/2, 1/2),
sIR-LS performs slightly better than IR-MAP, has less variability, and
is robust to random initialization, hence justifying the Gaussian ap-
proximation.

3.5.4.2 Comparison between random initialization and initialization with
EM-Emb

We use a similar experimental setting as the one described in Section
5.1. We only slightly change the connectivity matrix

Π = 0.02 ∗

1.6 1.2 0.5

1.2 1.6 0.5

0.5 0.5 1.2

 .

Figure 8 shows that when randomly initialized ours algorithms
IR-LS and sIR-LS can suffer from numerical instability. That’s why
we recommend to use EM-Emb instead. But it could interesting to de-
velop a strategy based on random initialization by identifying and
disregarding the random initialization that lead to atypical results.

Figure 8: Average performance over 20 runs of our algorithms under the
experimental setting of Section 5.1. Here (rd) indicates random
initialization.

3.5.5 Heterophilic SBM

If we disregard the covariates, our algorithm can be used for inference
under a general SBM, in contrast to the method proposed by Lu et
al., 2016 which was restricted to the assortative setting. In particular,
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our algorithm also works for networks with heterophilic communi-
ties. The following experiment illustrates the gain in term of accuracy
for IR-LS initialized with A-SC (spectral clustering on the adjacency
matrix). It also shows the interest of using more than one iteration in
the refinement step with the MAP (this corresponds to IR-MAP(1)).

We consider n = 1000,K = 3, Zi
i.i.d
∼ Multinomial(1; 1/3, 1/3, 1/3)

and

Π =

 0.2 0.05 0.1

0.05 0.15 0.05

0.1 0.05 0.03

 .

The NMI is averaged over 40 repetitions; the results are shown in
Figure 9. We also considered the Variational Expectation Maximiza-
tion (VEM) algorithm implemented in the R package blockmodels

(Léger, 2016), but the running time was prohibitive (approximately
one hour for a single Monte Carlo run, whereas our algorithm takes
a few seconds). It nevertheless returned the exact partition as IR-LS.

Figure 9: Average performance of different algorithms on a heterophilic
SBM, over 40 Monte Carlo runs.

3.6 possible extensions and future work

Although commonly used as a benchmark for clustering on graphs,
the SBM doesn’t encode several properties often observed in real-life
networks such as degree heterogeneity, mixed-membership, power-
law, and so on. In this section, we will discuss how the method we
proposed can be extended to other models.

3.6.1 Degree-corrected SBM

The DCSBM has been defined in Section 2.3.1. Due to the degree het-
erogeneity, the refinement mechanism used in IR-LS won’t work. But
it can be fixed in the following manner. Due to the property that
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ZTΘW = IK since
∑
i∈Ck

θi = 1 for all k, we can still estimate Π(t) by
W(t)⊤AW(t). But now we have to take into account the fact that each
node connectivity profile Ai:W(t) scale differently. A solution could
be to update according to the following rule

arg min
k∈[K],θ∈R

∥∥∥AiW(t) − θΠ
(t)
k:

∥∥∥2 .

It can be solved by testing all the possibilities for k and computing
the corresponding θ (solution of a least square problem).

A similar idea using angles (but that could be rewritten in this
form) has been proposed by the independent work of Hu et al., 2022

in the same time as we released the present work. They used this
method for clustering tensors with heterogeneous degrees and their
results don’t apply directly to DCSBM but we believe that one could
show that by incorporating in this way nodes heterogeneity in the
refinement process, the output of the algorithm is minimax optimal
under the model considered in Gao et al., 2018.

3.6.2 Mixed-Membership SBM

We can also adapt IR-LS to MMSBM (see Section 2.3.2 for the definition
of the model) by Algorithm 4. This leads to an algorithm close to the
one proposed by Arroyo et al., 2021, but that doesn’t involve hyper-
parameter tuning.

3.6.2.1 Algorithm description

Algorithm 4 Generalized Power Method (GPM)

Input: A ∈ Rn×n, K ∈N∗, Z(0) ∈ [0, 1]n×K a mixed membership
matrix, a threshold parameter δ and T ⩾ 1, the number of iterations.

1: for 0 ⩽ t ⩽ T − 1 do
2: Given Z(t), form the matrix W(t) = Z(t)(Z(t)⊤Z(t))−1 esti-

mate the model parameters: Π(t) =W(t)⊤AW(t)

3: Refine the partition by solving for each i ∈ [n]

Z
(t+1)
i = PC(AiW

(t)Π(t)−1) (3.6.1)

where C = {x ∈ RK+ : ||x||1 = 1}.
4: Form the matrices Z(t+1) from (Z

(t+1)
i )i.

5: end for
Output: Z(T).

At each step t, Algorithm 4 first estimates the model parameters (Π(t))
given a current estimate of the partition (W(t)), and then updates the
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latent position of each node by projecting AiW(t)Π(t)−1 onto the sim-
plex C. It can be shown using some properties of the pseudo-inverse
that the matrix T̃t in the work of Arroyo et al., 2021 corresponds to
AW(t)Π(t)−1. This latter way of writing T̃t can be interpreted in a
easy way: AiW(t) corresponds to the estimated connectivity profile
of node i. In the noiseless case it would be equal to PiW = ZiΠ. So
in order to obtain Zi, it only remains to multiply by right with the
inverse of Π.

The main difference with the GPM presented in Arroyo et al., 2021

lies in the projection step. We directly project on the simplex, whereas
Arroyo et al., 2021 first applies a thresholding operator and then nor-
malize the rows of the resulting matrix. It is unclear to us if the
composition of these operations is a projection. Moreover, due to a
difference in the model considered, we use the l1 norm to impose a
constraint on the rows of Z instead of the l2 norm.

computational complexity. Computing Z(t)⊤Z(t) has a com-
plexityO(K2n) and the inverting a K×Kmatrix has complexityO(K3),
so this operation is negligible. Hence, computingW(t) has a complex-
ity O(nK2). The complexity of estimating Π(t) is O(Knnz(A) + K2n).
Under the sparsity assumption pmax ≍ logc n/n, c > 1, we have
nnz(A) ≍ n logc n and since K ≪ logn the dominant term in the
complexity is Knnz(A). So computing AW(t)Π(t)−1 has complexity
O(Knnz(A)). Finally, since there are T iterations we get a total com-
plexity of O(TKnnz(A)). Usually T is of the order logn, so in a rela-
tively sparse regime, the computational cost of the refinement proce-
dure is O(npolylog(n)). As shown in the experiments, there are fast
spectral methods to get a rough initial estimate Z(0), but still good
enough to lead to accurate estimate after applying GPM.

3.6.2.2 Numerical experiments

We considered the following methods to compare with: SPACL (Mao
et al., 2021b) a fast spectral method, M-SCORE (Jin et al., 2017) a method
based on a vertex hunting algorithm that is shown to outperform
previously proposed methods and sPCA (Arroyo et al., 2021) an algo-
rithm based on a generalization of the power method.

We didn’t add the method proposed by Mao et al., 2018 since the
authors only provide a Matlab implementation of their algorithm re-
quiring a licence to run. We also tried the method proposed by Maj-
mudar et al., 2020 with inputs A and the normalized correlation ma-
trix D−1/2A2D−1/22, but the algorithm didn’t return any estimate of
the latent positions.

2 The algorithm proposed by Majmudar et al., 2020 is for weighted adjacency matrix,
and the matrix D−1/2A2D−1/2 can be interpreted as a Gram matrix
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The accuracy of the clustering is measured by

||Ẑ−Z||1 := min
σ∈SK

∑
i

||Ẑi:σ−Zi:||1

where SK is the set of permutation matrices in [0, 1]K×K. The per-
mutation that best aligns Ẑ and Z is found by solving a Linear As-
signment problem with the cost matrix C ∈ RK× defined by Ckk ′ =

||Z:k − Ẑ:k ′ ||.
The latent positions (Zi) are generated by independent Dirichlet

random variables with parameter α = (1/K, . . . , 1/K). We then apply
T1/K so that ||Zi||1 = 1. The connectivity matrix Π as the symmetric
form Π = (p− q)1K1⊤K + qIK where p > q > 0. In the following, the
parameter δ of our algorithm is set to 1/(1.1K).

initialization We considered two methods for initializing our
algorithm. First we used SCORE+, a spectral method proposed by Jin
et al., 2022 for clustering SBM. When initialized with this method, Al-
gorithm 4 will be referred as IR-SCORE. Since SCORE+ is not designed
for MMSBM, we also considered the fast spectral method SPACL (Mao
et al., 2021b) to initialize Algorithm 4. In this case, the algorithm is
referred as IR-SPACL.
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Figure 10: Estimation error associated to a MMSBM with parameters n,K =

3,p,q and n0 (x-axis) averaged over 20 runs.

influence of the number of anchor nodes For this exper-
iment we fixed K = 3. As shown in Figure 10, SPACL is not sensi-
tive to the number of pure nodes. While having better performances,
M-SCORE suffers from the same drawback. In particular, its perfor-
mances deteriorate when almost all the nodes are pure. On the other
hands, the iterative methods IR-MM, IR-SPACL and sPCA have better
performances and achieve exact recovery when there are only pure
nodes. Even in the case when n0 = 0 our methods perform well
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suggesting that the assumption that there exists pure node is not nec-
essary provided that the columns of Z are enough separated.

influence of the number of communities Since the com-
putational complexity of M-SCORE is exponential in the number of
communities, we didn’t integrate this algorithm in this experiment.
For this experiment we fix n = 5000. Figure 11 shows that IR-MM has
the best performances when the number of communities increases.
When the number of communities is small, whether we initialize our
algorithm with Score+ or SPACL we get the same result. On the other
hand, if the number of communities is large and the latent positions
not enough separated (n0 small) iterative methods can suffer from
numerical instability and does no longer provide accurate estimates.
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Figure 11: Estimation error associated to a MMSBM with parameters n =

5000,K (x-axis),p,q and n0 averaged over 20 runs.

3.6.3 Other extensions

In Chapter 4 we study a setting where partial contextual information
is provided by multilayer graphs. The iterative strategy considered in
this chapter can be adapted to this setting, see Section 4.7. Instead
of considering Gaussian covariates, we can have access to discrete,
high-dimensionnal covariates. A first step to extend the method to
this setting is presented in Chapter 5.

It would be also interesting to further study when random initial-
ization based strategies could work and develop variant of IR-LS ro-
bust to missing values and outliers.
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3.7 additional proofs

3.7.1 Proof of Lemma 1

Let δ, δ̄ > 0 . The ideal oracle error term can be upper bounded as
follows

ξ(δ) ⩽
n∑
i=1

∑
b∈[K]\zi

∆2(zi,b)1
{⟨ϵi,µzi−µb⟩+λ⟨Ei:W,Πzi:−Πb:⟩⩽

−(1−δ−δ̄)∆2(zi ,b)
2 }︸ ︷︷ ︸

M1

+

n∑
i=1

∑
b∈[K]\zi

∆2(zi,b)1
{⟨ϵi,µ̃zi−µzi⟩+λ⟨Ei:W,Π̃zi:−Πzi:⟩⩽

−δ̄∆2(zi ,b)
4 }︸ ︷︷ ︸

M2

+

n∑
i=1

∑
b∈[K]\zi

∆2(zi,b)1
{⟨−ϵi,µ̃b−µb⟩−λ⟨Ei:W,Π̃b:−Πb:⟩⩽

−δ̄∆2(zi ,b)
4 }︸ ︷︷ ︸

M3

.

We will first obtain upper bounds for each E(Mi), i = 1 . . . 3. In par-
ticular we will show that the dominant term is E(M1). Then, we will
use Markov inequality to control ξ(δ) with high probability.

upper bound of E(M1) . Let us denote for any given i ∈ [n] and
b ∈ [K] \ zi the event

Ω1 =

{
⟨ϵi,µzi − µb⟩+ λ⟨Ei:W,Πzi: −Πb:⟩ ⩽

−(1− δ− δ̄)∆2(zi,b)
2

}
.

By using an analogous argument as the one presented in Lemma 7

we obtain
P(Ω1) ⩽ exp(−(1+ o(1))∆̃2).

Thus by taking δ = δ̄ going to zero as n→∞, we obtain

E(M1) ⩽
n∑
i=1

∑
b∈[K]\zi

∆2(zi,b) exp(−(1+ o(1))∆̃2)

⩽ nK exp(−(1+ o(1))∆̃2)

⩽ n exp(−(1+ o(1))∆̃2).

In the second line we used the fact that ∆2(zi,b) = ∆min ≲ ∆̃2 for
all zi ̸= b and ∆̃ ≍

√
logn/K → ∞. In the third line we used the

assumption ∆̃2/ log(K)→∞.

upper bound of E(M2) . Let us denote for any given i ∈ [n] and
b ∈ [K] \ zi the events

Ω2 =

{
⟨ϵi, µ̃zi − µzi⟩+ λ⟨Ei:W, Π̃zi: −Πzi:⟩ ⩽

−δ̄∆2(zi,b)
4

}
,
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Ω ′
2 =

{
⟨ϵi, µ̃zi − µzi⟩ ⩽

−δ̄∆2(zi,b)
8

}
,

and

Ω ′′
2 =

{
λ⟨Ei:W, Π̃zi: −Πzi:⟩ ⩽

−δ̄∆2(zi,b)
8

}
.

Clearly P(Ω2) ⩽ P(Ω ′
2) + P(Ω ′′

2 ) by a union bound argument.
Let us first upper bound P(Ω ′

2). Recall that nk = n/K under the
CSSBM by assumption, let us also define nmin := mink nk. We keep
this general notation because it is shorter and indicates how the proof
can be generalized to the unbalanced setting. By definition µ̃zi −

µzi =
∑
j∈Czi

ϵj
nzi

, hence

⟨ϵi, µ̃zi − µzi⟩ =
||ϵi||

2 + ϵ⊤i
∑
j∈Czi
j̸=i

ϵj

nzi
.

This last quantity is lower bounded by ϵ⊤i ηi where ηi =
∑
j∈Czi

, j̸=i ϵj

nzi
.

In particular ϵi and ηi are independent and their entries are also inde-
pendent. Moreover ηi is a centered gaussian random variables with
independent entries such that Var((ηi)k) ⩽ 1/nk. So by Bernstein
inequality, it holds for all x > 0 that

P

(
||ηi||

2 ⩾
1

nk
(K+ 2

√
Kx+ 2x)

)
⩽ exp(−x)

which in turn implies

P

(
ϵ⊤i ηi ⩽ −

δ̄∆2min
8

)
⩽ P

(
ϵ⊤i ηi ⩽ −

δ̄∆2min
8

∣∣∣∣ ||ηi||2 ⩽ 1

nk
(K+ 2

√
Kx+ 2x)

)
+ P

(
||ηi||

2 ⩾
1

nk
(K+ 2

√
Kx+ 2x)

)
⩽ exp

(
−c

nk(δ̄∆
2
min)

2

K+ 2
√
Kx+ 2x

)
+ exp(−x).

Setting x =
√
nkδ̄∆

2
min we obtain P(Ω ′

2) ⩽ 2 exp(−Cδ̄
√
nk∆

2
min).

Since δ̄ → 0 (as n → ∞) at a suitably slow rate, we have δ̄
√
n/K →

+∞. Consequently,

P(Ω ′
2) = o(exp(−(C+ o(1))∆2min) = o(exp(−(1+ o(1))∆̃2)).

Let us now bound P(Ω ′′
2 ). Since Π̃kk ′ −Πkk ′ =

∑
i∈Ck, j∈Ck ′

Eij
nknk ′

=

W⊤
:kEW:k ′ , we obtain the decomposition

λ⟨Ei:W, Π̃zi: −Πzi:⟩ = λ⟨Ei:W,W⊤
zi:
E(i)W⟩+ λ⟨Ei:W,W⊤

zi:
E(−i)W⟩

where E(i) is obtained from E by only keeping the ith row and col-
umn, and E−i is the matrix obtained from E by replacing the ith
row and column by zero. In particular, E(−i) is independent from
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Ei:. The second term can be controlled by using the same techniques
as before. Indeed, the entries of W⊤

zi:
E(−i)W are independent and

Var(W⊤
zi:
E(−i)W:k) ⩽ Cpmax

n2min
for all k. Denoting η ′ik = W⊤

zi:
E(−i)W:k

and η ′i = (η ′ik)k∈[K], this implies

P

(
λ⟨Ei:W,η ′i⟩ ⩽ −

δ̄∆2min
16

)
⩽

P

(
λ⟨Ei:W,η ′i⟩ ⩽ −

δ̄∆2min
16

∣∣∣∣ ∀k, |η ′ik|
2 ⩽ C

pmax

n2k
(K+ x)

)
+ P

(
∃k, |η ′ik|

2 ⩾ C
pmax

n2min
(K+ x)

)
⩽ K exp

(
−C

n3min(δ̄∆
2
min)

2

pmaxλ2(K+ x)

)
+K exp(−x).

Here, we used a union bound argument for the first inequality. The
second inequality uses Lemma 33 – which provides a concentration
bound for binomial random variables – along with the fact λ ≍ n

Kpmax
.

Setting x = C
√
nkpmaxδ̄∆

2
min we obtain

P

(
λ⟨Ei:W,η ′i⟩ ⩽ −

δ̄∆2min
16

)
⩽ 2 exp(−c

√
nkpmaxδ̄∆

2
min)

= o(exp(−∆̃2))

since δ̄ can be chosen such that
√
nkpmaxδ̄ → +∞ (because by as-

sumption npmax ≍ logn≫ K4) and ∆min ≍ ∆̃.
It remains to control ⟨Ei:W,W⊤

zi:
E(i)W⟩. Using the fact

(W⊤
zi:
E(i)W)k =


∑
j ′∈Ck

Eij ′
nzink

if k ̸= zi

2
∑
j ′∈Ck

Eij ′

n2zi
if k = zi

we have

⟨Ei:W,W⊤
zi:
E(i)W⟩ =

∑
k̸=zi

∑
j∈Ck
j ′∈Ck

Eij

nk

Eij ′

nzink
+ 2nzi

 ∑
j∈Czi

Eij ′

n2zi

2

=
1

nzi

∑
j∈Ck

Eij

nk

2 + 2nzi
 ∑
j∈Czi

Eij ′

n2zi

2

⩾ 0.

Consequently, P
(
Ω ′′
2

)
can be bounded as

P
(
Ω ′′
2

)
⩽ P

(
λ⟨Ei:W,η ′i⟩ ⩽ −

δ̄∆2min
16

)
= o(exp(−∆̃2)).
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upper bound of E(M3) . Let us denote for any given i ∈ [n] and
b ∈ [K] \ zi the event

Ω3 =

{
⟨−ϵi, µ̃b − µb⟩− λ⟨Ei:W, Π̃b: −Πb:⟩ ⩽

−δ̄∆2(zi,b)
4

}
.

First observe that

⟨ϵi, µ̃b − µb⟩ =
ϵ⊤i

∑
j∈Cb

ϵj

nzi
,

therefore this term can be handled in the same way as before. More-
over, we have

λ⟨Ei:W, Π̃b: −Πb:⟩ = λ⟨Ei:W,W⊤
b:E

(i)W⟩+ λ⟨Ei:W,W⊤
b:E

(−i)W⟩.

The second term can be handled in the same way as before by using
a conditioning argument. Now observe that

⟨Ei:W,W⊤
b:E

(i)W⟩ = 1

n2zinb

∑
j∈Cb

Eij

 ∑
j ′∈Czi

Eij ′


where

∑
j∈Cb

Eij and
∑
j ′∈Czi

Eij ′ are independent subgaussian ran-
dom variables. Thus this term can also be controlled by using the
same conditioning argument as before.

conclusion. The previously obtained upper bounds imply

E(ξ(δ)) ⩽ 3E(M1) ⩽ n exp(−(1+ o(1))∆̃2).

Finally, by Markov inequality, we obtain

P(ξ(δ) ⩾ exp(∆̃)Eξ(δ)) ⩽ exp(−∆̃).

But since
exp(∆̃)Eξ(δ) ⩽ n exp(−(1+ o(1))∆̃2)

we obtain that with probability at least 1− exp(−∆̃)

ξ(δ) ⩽ n exp(−(1+ o(1))∆̃2).

3.7.2 Proof of Theorem 5

The general proof strategy has been presented in Section 3.4.1. In
Section 3.7.2.1 we will make the error decomposition explicit. Then,
we will control the different error terms in Sections 3.7.2.2, 3.7.2.3 and
3.7.2.4. Finally, we will conclude by applying Theorem 4 in Section
3.7.2.5.
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3.7.2.1 Error decomposition for the one-step analysis of IR-LSS

We will assume without lost of generality that σ = 1 to simplify the
exposition. Let i ∈ [n] and a ∈ [K] be such that3 zi = a, and let

λ(t) =
n

K(p(t) − q(t))
log
(
p(t)(1− q(t))

q(t)(1− p(t))

)
denote the scalar corresponding to the diagonal entry of the inverse
covariance matrix Σ(t)

k . Similarly, let us denote

λ =
n

K(p− q)
log
(
p(1− q)

q(1− p)

)
.

Given the current estimator of the partition Z(t), node i will be incor-
rectly estimated after one refinement step if

a ̸= arg min
k

||Xi − µ
(t)
k ||2 + λ̂(t)||Ai:W

(t) −Π
(t)
k: ||

2

or equivalently, if there exists b ∈ [K]\a such that

||Xi − µ
(t)
b ||2 + λ̂(t)||Ai:W

(t) −Π
(t)
b: ||

2

⩽ ||Xi − µ
(t)
a ||2 + λ̂(t)||Ai:W

(t) −Π
(t)
a: ||

2.

The above inequality is equivalent to

⟨ϵi, µ̃a − µ̃b⟩+ λ⟨Ei:W, Π̃a: − Π̃b:⟩ ⩽
−∆2(a,b)

2
+ F

(t)
ib +G

(t)
ib +H

(t)
ib

where

∆2(a,b) = ||µa − µb||
2 + λ||Πa: −Πb:||

2,

µ̃k = X⊤W:a,

and Π̃k: =W⊤
k:AW

for all k ∈ [K]. Furthermore, the terms F(t)ib ,G(t)
ib and H(t)

ib are given
by

F
(t)
ib = ⟨ϵi, (µ̃a − µ

(t)
a ) − (µ̃b − µ

(t)
b )⟩+

λ(t)⟨Ei:W(t), (Π̃a: −Π
(t)
a: ) − (Π̃b: −Π

(t)
b: )⟩

+ λ(t)⟨Ei:(W −W(t)), Π̃a: − Π̃b:⟩

+ (λ− λ(t))⟨Ei:W, Π̃a: − Π̃b:⟩,

2G
(t)
ib = (||µa − µ

(t)
a ||2 − ||µa − µ̃a||

2)

− (||µa − µ
(t)
b ||2 − ||µa − µ̃b||

2)

+ λ(t)(||Pi:W
(t) −Π

(t)
a: ||

2 − ||Pi:W
(t) −W⊤

a:AW
(t)||2)

3 Depending on the context we will interchangeably use the notation zi and a.
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− λ(t)(||Pi:W
(t) −Π

(t)
b: ||

2 − ||Pi:W
(t) −W⊤

b:AW
(t)||2)

and 2H
(t)
ib = ||µa − µ̃a||

2 − ||µa − µ̃b||
2 + ||µa − µb||

2

+ λ(t)(||Pi:W
(t) −W⊤

a:AW
(t)||2

− ||Pi:W
(t) −W⊤

b:AW
(t)||2 + ||Πa: −Πb:||

2)

+ (λ− λ(t))||Πa: −Πb:||
2.

The main term in this decomposition is

⟨ϵi, µ̃a − µ̃b⟩+ λ⟨Ei:W, Π̃a: − Π̃b:⟩ ⩽
−∆2(a,b)

2

and corresponds to the error when the current estimation of the par-
tition is the ground truth partition. It is controlled by Lemma 1

The three error terms will be controlled in different ways. The error
term F

(t)
ib depends in a crucial way on i and t, it will be controlled

with a l2-type norm (see Condition C2). The square of the error terms
G

(t)
ib and |H

(t)
ib | will be controlled uniformly (see Condition C3).

3.7.2.2 Bounding the error term F
(t)
ib

In this section we are going to show that Condition C2 is satisfied.

Lemma 2. Under the assumptions of Theorem 7 (that are also satisfied by
Theorem 5) we have w.h.p. that for all z(t) such that l(z(t), z) ⩽ τ(0),

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆2(zi,b)l(z, z(t))
⩽
δ2

256
.

Proof. We need to upper-bound of

F = max
{z(t):l(z,z(t))⩽τ(0)}

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆(zi,b)2l(z, z(t))
.

To this end, we can decompose F(t)ib = F
1,(t)
ib + F

2,(t)
ib where

F
1,(t)
ib = ⟨ϵi, (µ̃a − µ

(t)
a ) − (µ̃b − µ

(t)
b )⟩

is the error arising from the GMM part of the model and

F
2,(t)
ib = λ(t)⟨Ei:W(t), (Π̃a: −Π

(t)
a: ) − (Π̃b: −Π

(t)
b: )⟩

+ λ(t)⟨Ei:(W −W(t)), Π̃a: − Π̃b:⟩+ (λ− λ(t))⟨Ei:W, Π̃a: − Π̃b:⟩

is the error coming from the SBM part of the model. We have

F ⩽ 2 max
{z(t):l(z,z(t))⩽τ(0)}

n∑
i=1

max
b∈[K]\zi

(F
1,(t)
ib )2

∆(zi,b)2l(z, z(t))︸ ︷︷ ︸
F
(t)
1
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+ 2 max
{z(t):l(z,z(t))⩽τ(0)}

n∑
i=1

max
b∈[K]\zi

(F
2,(t)
ib )2

∆(zi,b)2l(z, z(t))︸ ︷︷ ︸
F
(t)
2

and it is sufficient to individually control each term.

control of F1 . We follow the same steps as in Gao et al., 2019,
the only difference is that we use a different definition for ∆. To begin
with,

F
(t)
1 ⩽

n∑
i=1

∑
b∈[K]\zi

⟨ϵi, (µ̃zi − µ
(t)
zi ) − (µ̃b − µ

(t)
b )⟩2

∆(zi,b)2l(z, z(t))

⩽
∑
b∈[K]

∑
a∈[K]\b

∑
i∈Ca

⟨ϵi, (µ̃a − µ
(t)
a ) − (µ̃b − µ

(t)
b )⟩2

∆(a,b)2l(z, z(t))

⩽
∑
b∈[K]

∑
a∈[K]\b

||
∑
i∈Ca

ϵiϵ
⊤
i ||

||(µ̃a − µ
(t)
a ) − (µ̃b − µ

(t)
b )||2

∆(a,b)2l(z, z(t))
.

We first need to control ||
∑
i∈Ca

ϵiϵ
⊤
i || which can be done using the

following lemma.

Lemma 3. Let ϵi
i.i.d
∼ N(0, Id). With probability at least 1− exp(−0.5n),

we have
||
∑
i∈[n]

ϵiϵ
⊤
i || ≲ n+ d.

Proof. See Lemma A.2 in Lu et al., 2016.

Next, we need to control ||µ̃a − µ
(t)
a ||2 for all a ∈ [K], this can be

done with the following lemma.

Lemma 4. Under the assumptions of Theorem 5, the following holds with

probability at least 1−n−Ω(1). If z(t) satisfies l(z(t), z) ⩽ τ(0) = ϵn∆2min
K

then it implies

1. maxk∈[K] ||µ̃k − µk|| ≲
√
K(d+logn)

n ,

2. maxk∈[K] ||E(X)⊤(W
(t)
:k −W:k)|| ≲

K
n∆min

l(z(t), z),

3. max
k∈[K]

||(X− E(X))⊤W
(t)
:k || ≲

K
√
(d+n)l(z(t), z)
n∆min

+
K
√
K(d+ logn)l(z(t), z)
n
√
n∆2min

,

4. ||µ̃k − µ
(t)
k || ⩽ C3

K
√

(d+n)l(z(t),z)
n∆min

.

Proof. Straightforward adaptation the proof of Lemma 4.1 in Gao et
al., 2019.
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By combining the different bounds, we can now conclude that with
high probability,

max
{z(t):l(z(t),z)⩽τ(0)}

F
(t)
1 ≲

K2(Kd/n+ 1)

∆2min

(
1+

K(d/n+ 1)

∆2min

)
.

This quantity goes to zero when ∆2min/K
3 → +∞.

control of F
(t)
2 . Here we can not directly apply the framework

developed by Gao et al., 2019. Different changes are necessary and
we need to deal with additional dependencies.

Let b ∈ [K] ̸= zj, we then have the bound

(F
2,(t)
ib )2 ⩽ 3(λ(t)⟨Ei:W(t), (Π̃a: −Π

(t)
a: ) − (Π̃b: −Π

(t)
b: )⟩)

2

+ 3(λ(t)⟨Ei:(W −W(t)), Π̃a: − Π̃b:⟩)2

+ 3(λ− λ(t))2⟨Ei:W, Π̃a: − Π̃b:⟩2

= F221 + F
2
22 + F

2
33.

We drop the superscript (t) in the notation for the terms F21, F22 and
F23 for convenience, but clearly they depend on t as well. We will
now bound each of the terms F2i for i = 1 . . . 3 separately. Starting
with F21, first note that

|⟨Ei:W(t), (Π̃a: −Π
(t)
a: ) − (Π̃b: −Π

(t)
b: )⟩|

2 ⩽ 4||Ei:W
(t)||2max

k
||Π̃k: −Π

(t)
k: ||

2.

With high probability, for all z(t) such that l(z(t), z) ⩽ τ(0) we have

max
k∈[K]

||Π̃k: −Π
(t)
k: ||

2 ⩽ 2 max
k∈[K]

||(W:k −W
(t)
:k )⊤AW||2

+ 2 max
k∈[K]

||W
(t)⊤
:k A(W −W(t))||2

≲

(
K2
√
pmaxl(z

(t), z)
n1.5∆min

)2
(by Lemma 11)

≲
K4pmaxl(z

(t), z)2

n3∆2min

and since λ(t) ≲ λ (by Lemma 13) it follows that

n∑
i=1

max
b∈[K]\zi

F221
∆2(zi,b)l(z, z(t))

≲ λ2
∑
i

||Ei:W
(t)||2

K4pmaxl(z
(t), z)2

n3∆2min

≲ λ2||EW(t)||2F
K4pmaxl(z

(t), z)
n3∆4min

≲ λ2K||EW(t)||2
K4pmaxl(z

(t), z)
n3∆4min
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≲ λ2K2pmax
K4pmaxl(z

(t), z)
n3∆4min

(by a consequence of Lemma 11, fifth item)

≲
K4l(z(t), z)
n∆4min

( since λ ≲ n
Kpmax

)

≲
K3

∆2min
→ 0

where we used the fact Kl(z
(t),z)

n∆2min
⩽ ϵ for the last line. Indeed, Kl(z

(t),z)
n∆2min

⩽

Kτ(0)

n∆2min
= ϵ.

Let us define ∆22(a,b) := ∥Πa: −Πb:∥2 for a,b ∈ [K]. Since

F222 ≲ λ
2||Ei:(W −W(t))||2||Π̃zi: − Π̃b:||

2

≲ λ2||Ei:(W −W(t))||2||Πzi: −Πb:||
2

hence we have w.h.p. for all z(t) such that l(z(t), z) ⩽ τ(0)

n∑
i=1

max
b∈[K]\zi

F222
∆(zi,b)2l(z, z(t))

≲ λ
∑
i

||Ei:(W −W(t))||2
1

l(z(t), z)
max

b∈[K]\zi

λ||Πzi: −Πb:||
2

∆(zi,b)2

≲ ||E(W −W(t))||2F
λ

l(z(t), z)
(because ∆2(zi,b) ⩾ λ∆22(zi,b))

≲ K||E(W −W(t))||2
λ

l(z(t), z)

≲ λKnpmax
K3l(z(t), z)
n3∆4min

( by Lemma 11)

≲
K3

∆2min
→ 0.

Using the same proof technique as in Lemma 1

(⟨Ei:W, Π̃a: − Π̃b:⟩)2 ≲ Kpmax∆22(a,b)

holds w.h.p. Since by Lemma 13 we have w.h.p. that for all z(t) such
that l(z(t), z) ⩽ τ(0)

|λ(t) − λ| ≲ λ
K2l(z(t), z)

√
npmaxn∆min

,

we obtain

n∑
i=1

max
b∈[K]\zi

F223
∆(zi,b)2l(z, z(t))
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≲ λ2
(

K2l(z(t), z)
√
npmaxn∆min

)2∑
i

||Ei:W||2
maxb∈[K]\zi ||Π̃zi: − Π̃b:||

2

∆2(zi,b)l(z(t), z)

≲ λ
K4l(z(t), z)
n3pmax∆

2
min

||EW||2F max
b∈[K]\zi

λ||Πzi: −Πb:||
2

∆2(zi,b)

≲
n

Kpmax

K4l(z(t), z)
n3pmax∆

2
min

Kpmax (by Lemma 35)

≲
K4l(z(t), z)
n2pmax∆

2
min

≲
K3

npmax

≲
K3

∆2min
→ 0.

Consequently, we have established that Condition C2 holds for all
δ = o(1) such that δ2 = ω(K3/∆2min).

3.7.2.3 Error term G
(t)
ib

In this section we are going to show that the G - error term satisfied
condition C3.

Lemma 5. Under the assumptions of Theorem 7 (that are also satisfied by
Theorem 5) we have w.h.p. for all z(t) such that l(z(t), z) ⩽ τ(t)

max
i∈[n]

max
b∈[K]\zi

|G
(t)
ib |

∆(zi,b)2
⩽
δ(t+1)

8
.

Proof. As for F(t)ib we can split G(t)
ib = G

1,(t)
ib +G

2,(t)
ib where

G
1,(t)
ib = ||µa − µ

(t)
a ||2 − ||µa − µ̃a||

2) − (||µa − µ
(t)
b ||2 − ||µa − µ̃b||

2)

G
2,(t)
ib = λ(t)(||Pi:W

(t) −Π
(t)
a: ||

2 − ||Pi:W
(t) −Wa:AW

(t)||2)

− λ(t)(||Pi:W
(t) −Π

(t)
b: ||

2 − ||Pi:W
(t) −Wb:AW

(t)||2).

By the proof of Lemma 4.1 in Gao et al., 2019 (last inequality of page
46, equations (115) and (118)), we have w.h.p. for all z(t) such that
l(z(t), z) ⩽ τ(t),

|G
1,(t)
ib |

∆2(a,b)
≲

Kl(z(t), z)
n∆min

+K

√
Kl(z(t), z)
n∆min

2∆−2
min

+

Kl(z(t), z)
n∆min

+K

√
Kl(z(t), z)
n∆min

 Kl(z(t), z)
n∆min

∆−2
min

+

Kl(z(t), z)
n∆min

+K

√
Kl(z(t), z)
n∆min

∆−1
min
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≲
Kl(z(t), z)2

n2∆4min
+K

l(z(t), z)
n∆2min

≲ K
l(z(t), z)
n∆2min

(since K l(z
(t),z)

n∆2min
< 1 and Kl(z(t),z)2

n2∆4min
< 1
K )

≲
Kτ(t)

n∆2min

≲ max
(
7

8

Kτ(t−1)

n∆2min
,
Kτ

n∆2min

)
(by definition of τ(t))

≲ max
(
7

8
(
8

7
ϵ)δ(t), ϵδ

)
(using τ = τ(0)δ and also the definition of δ(t))

≲ ϵδ(t). (since δ ⩽ δ(t))

Now by choosing ϵ to be a suitably small constant (< 1), since δ(t+1) ⩽
7
8δ

(t) we obtain
|G
1,(t)
ib |

∆2(a,b)
⩽
δ(t+1)

16
.

To bound G2,(t)
ib we will adapt the method developed in Han et al.,

2020. We have by direct calculation

G
2,(t)
ib

λ(t)
= (||Π

(t)
a: −W⊤

a:AW
(t)||2 − ||Π

(t)
b: −Wb:AW

(t)||2)

+ 2⟨Pi:W(t) −Wa:AW
(t),W⊤

:aAW
(t) −Π

(t)
a: ⟩

− 2⟨Pi:W(t) −Wb:AW
(t),W⊤

:bAW
(t) −Π

(t)
b: ⟩

⩽
∣∣∣||Π(t)

a: −W⊤
:aAW

(t)||2 − ||Π
(t)
b: −W⊤

:bAW
(t)||2

∣∣∣
+ 4 max

a∈[K]

∣∣∣⟨W⊤
:aEW

(t), (W:b −W
(t)
:b )⊤AW(t)⟩

∣∣∣
+ 2

∣∣∣⟨(Πa: −Πb:)Z⊤W(t), (W:b −W
(t)
:b )⊤AW(t)⟩

∣∣∣
=: G21 +G22 +G23.

We drop the superscript (t) in the notation for the terms G21,G22
and G23 for convenience, but clearly they depend on t as well. First
observe that w.h.p, it holds for all z(t) such that l(z(t), z) ⩽ τ(t) that

G21 ⩽ max
a∈[K]

||Π
(t)
a: −W⊤

:aAW
(t)||2 = max

a∈[K]
||(W

(t)
a: −W:a)

⊤AW(t)||2

≲
K3pmaxl(z

(t), z)2

n3∆2min

where we used Lemma 11 for the last inequality. This implies by
Lemma 12 that

max
b∈[K]\zi

λ(t)G21
∆2(zi,b)

≲
K2l(z(t), z)2

n2∆4min
⩽
K2(τ(0)δ(t))2

n2∆4min
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which implies maxb∈[K]\zi
λ(t)G21
∆2(zi,b)

⩽ (δ
(t+1)

16 )2 using the same argu-
ment used earlier (for suitably small constant ϵ < 1). Next, in or-
der to bound G22, note that w.h.p, it holds for all z(t) such that
l(z(t), z) ⩽ τ(t) that

G22 ⩽ 4 max
a∈[K]

||W⊤
:aEW

(t)|| max
a∈[K]

||(W:b −W
(t)
:b )⊤AW(t)||

≲
K
√
pmax√
n

K1.5√pmaxl(z(t), z)
n1.5∆min

(by Lemma 11)

≲ K2.5pmax

n

l(z(t), z)
n∆min

which in turn implies

max
b∈[K]\zi

λ(t)G22
∆(zi,b)2

≲

√
K

∆min

Kl(z(t), z)
n∆2min

(since λ(t) ≲ n/(Kpmax))

= o(δ)

as
√
K/∆min → 0 and K l(z

(t),z)
n∆2min

< 1.

Finally, in order to bound G23, note that w.h.p, it holds for all z(t)

such that l(z(t), z) ⩽ τ(t),

G23 ≲ ||Πa: −Πb:)Z
⊤W(t)|| max

b∈[K]
||(W:b −W

(t)
:b )⊤AW(t)||

≲ ∆2(a,b)
K1.5√pmaxl(z(t), z)

n1.5∆min

which implies

max
b∈[K]\zi

λ(t)G23
∆(zi,b)2

≲ λ
∆2(zi,b)
∆(zi,b)

K1.5√pmaxl(z(t), z)
n1.5∆2min

≲
√
λ

√
Kpmax√
n

Kl(z(t), z)
n∆2min

≲
Kl(z(t), z)
n∆2min

. (since λ ≲ n
Kpmax

)

For a suitably constant ϵ < 1, this then implies

max
b∈[K]\zi

λ(t)G23
∆(zi,b)2

⩽
δ(t+1)

16
.

3.7.2.4 Error term H
(t)
ib

In this section we are going to show that the H - error term satisfied
condition C3.
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Lemma 6. Under the assumptions of Theorem 7 (that are also satisfied by
Theorem 5) we have w.h.p. that for all z(t) such that l(z(t), z) ⩽ τ(t),

max
i∈[n]

max
b∈[K]\zi

|H
(t)
ib |

∆(zi,b)2
⩽
δ(t+1)

8
.

Proof. As before, we can split H(t)
ib = H

1,(t)
ib +H

2,(t)
ib where

2H
1,(t)
ib = ||µa − µ̃a||

2 − ||µa − µ̃b||
2 + ||µa − µb||

2

2H
2,(t)
ib = λ(t)(||Pi:W

(t) −W⊤
a:AW

(t)||2 − ||Pi:W
(t) −W⊤

b:AW
(t)||2

+ ||Πa: −Πb:||
2) + (λ− λ(t))||Πa: −Πb:||

2.

By an immediate adaptation of Lemma 4.1 in Gao et al., 2019 it
holds w.h.p. that for all z(t) such that l(z(t), z) ⩽ τ(t),

|H
1,(t)
ib |

∆(zi,b)2
≲
K(d+ logn)
n∆2min

+

√
K(d+ logn)
n∆2min

→ 0

as long as K/∆2min → 0.
It remains to uniformly control H2,(t)

ib , let us split it4 as H2,(t)
ib =

λ(t)H1 +H2. First note that by Lemma 13 it holds w.h.p. that for all
z(t) such that l(z(t), z) ⩽ τ(t),

H2 := (λ− λ(t))||Πa: −Πb:||
2 ≲ λ

Kl(z(t), z)
n∆2min

∆22(a,b)

which implies

|H2|

∆(zi,b)2
≲
Kl(z(t), z)
n∆2min

.

Then, we obtain |H2|

∆(zi,b)2
⩽ δ(t+1)

16 for a small enough constant ϵ < 1.
Now observe that

H1 : = ||Pi:W
(t) −W⊤

a:AW
(t)||2 − ||Pi:W

(t) −W⊤
b:AW

(t)||2

+ ||Πa: −Πb:||
2

= ||W⊤
a:EW

(t)||2

+ (||Πa: −Πb:||
2 − ||Pi:W

(t) −W⊤
b:PW

(t)||2)

− (||Pi:W
(t) −W⊤

b:AW
(t)||2 − ||Pi:W

(t) −W⊤
b:PW

(t)||2)

= (||Πa: −Πb:||
2 − ||Pi:W

(t) −W⊤
b:PW

(t)||2)

+ (||W⊤
a:EW

(t)||2 − ||W⊤
b:EW

(t)||2)

+ 2⟨Pi:W(t) −W⊤
b:PW

(t),W⊤
:bEW

(t)⟩

= H
(t)
11 +H

(t)
12 +H

(t)
13 .

4 We drop the superscript (t) in the notation for H1,H2 for convenience, but clearly
they both depend on t as well.
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By writing

Pi:W
(t) −W⊤

b:PW
(t) = (Πa: −Πb:)Z

⊤W(t),

we obtain w.h.p. that for all z(t) such that l(z(t), z) ⩽ τ(t),

|H
(t)
13 | ≲ ||Pi:W

(t) −W⊤
b:PW

(t)||||W⊤
:bEW

(t)||

≲ ||Πa: −Πb:||
K
√
pmax√
n

≲ ||Πa: −Πb:||
2 K
√
npmax

.

In particular,

λ(t)|H
(t)
13 |

∆2(zi,b)
≲

λ∆22(zi,b)K
∆2(zi,b)

√
npmax

≲
K

√
npmax

→ 0.

Next observe that w.h.p., it holds for all z(t) such that l(z(t), z) ⩽ τ(t)

that∣∣∣||W⊤
a:EW

(t)||2 − ||W⊤
b:EW

(t)||2
∣∣∣ ⩽ max

k∈[K]
||W⊤

k:EW
(t)||2≲

K2pmax

n

where the last inequality uses Lemma 11. This implies

λ(t)|H
(t)
12 |

∆2(zi,b)
≲

K

∆2min
→ 0.

Finally, it remains to bound |H
(t)
11 |. To begin with,

|H
(t)
11 | :=

∣∣∣||Πa: −Πb:||2 − ||Pi:W
(t) −W⊤

b:PW
(t)||2

∣∣∣
=
∣∣∣||Πa: −Πb:||2 − ||(Πa: −Πb:)Z

⊤W(t)||2
∣∣∣ .

Using the fact∣∣∣||Πa: −Πb:||2 − ||(Πa: −Πb:)Z
⊤W(t)||2

∣∣∣
⩽

(∥∥∥Z⊤W(t) − I
∥∥∥2 + 2 ∥∥∥Z⊤W(t) − I

∥∥∥) ∥Πa: −Πb:∥2 ,

we obtain by the proof of part 1 of Lemma 11 that w.h.p., it holds for
all z(t) such that l(z(t), z) ⩽ τ(t)

|H
(t)
11 | ≲ ||Πa: −Πb:||

2Kl(z
(t), z)

n∆2min

which implies

λ(t)|H
(t)
11 |

∆2(zi,b)
≲
Kl(z(t), z)
n∆2min

.

Then as before, for a suitably small constant ϵ < 1, this implies

λ(t)|H
(t)
11 |

∆2(zi,b)
⩽
δ(t+1)

16
.

By summing all these inequalities we see that G(t)
ib and H(t)

ib satisfy
Condition C3.
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3.7.2.5 Conclusion

By Lemma 2, 5 and 6 the Conditions C2 and C3 are satisfied. In or-
der to apply Theorem 4, we also need to show that Condition C1 is
satisfied. To this end, let us define the events

Ω(δ(t)) := {Ci(a,b) ⩽ −

(
1− δ(t)

2

)
∆2(a,b)}, t ⩾ 1,

where we recall that

Ci(a,b) = ⟨ϵi, µ̃a − µ̃b⟩+ λ⟨Ei:W, Π̃a: − Π̃b:⟩.

Note that by definition of δ(t), we have for all t ⩾ 1

Ω(δ(t)) ⊆ Ω(δ(1)) =⇒ 1Ω(δ(t)) ⩽ 1Ω(δ(1)) =⇒ ξ(δ(t)) ⩽ ξ(δ(1)).
(3.7.1)

Hence it suffices to bound ξ(δ(1)). To achieve this, it is crucial to
bound P(Ω(δ(1))) since the bound on ξ(δ(1)) then follows via an
easy adaptation of Lemma 1.

We can bound P(Ω(δ(1))) by an immediate adaptation of Lemma
7 – we just need to replace ∆2/4 by (1− δ(1))∆2/4 in the last step of
the lemma, leading to

P(Ω(δ(1))) ⩽ exp(−(1− δ(1) + o(1))∆̃2).

Then as mentioned earlier, an easy adaptation of Lemma 1 along with
(3.7.1) implies that w.h.p., it holds for all t ⩾ 1 that

ξ(δ(t)) ⩽ n exp(−(1− δ(1) + o(1))∆̃2).

But we know that

n exp(−(1− δ(1) + o(1))∆̃2) ⩽
3

4
τ =

3

4
τ(0)δ

for n large enough, by a suitable choice of δ = o(1), and the fact
that ∆̃2 ≍ logn/K → ∞. Hence the assumptions of Theorem 4 are
satisfied. Moreover, for all t ≳ log(1/δ), Corollary 1 yields the bound

l(z(t), z) ≲ ξ(δ) + τ(0)(1/8)t−Θ(log(1/δ))

≲ ne−(1+o(1))∆̃2 + τ(0)(1/8)t−Θ(log(1/δ)).

Since τ(0) ≲ n logn/K and δ can be chosen such that log(1/δ) ≲ logn,
we obtain that for t ≳ logn

l(z(t), z) ⩽ ne−(1+o(1))∆̃2 .
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3.7.3 Proof of Theorem 6

Proof. The proof follows the same steps as in the proof of Theorem 3.3
in Lu et al., 2016, only the last part needs to be changed. For the sake
of completeness, we reproduce the arguments below. Let us denote

h(z ′, z ′′) =
∑
i∈[n]

1{z ′(i) ̸=z ′′(i)} (3.7.2)

to be the unnormalized Hamming distance between z ′, z ′′ ∈ [K]n.
Without lost of generality we can assume that

min
k,k ′

||µk − µk ′ || = ||µ1 − µ2||.

For each k ∈ [K], let Tk a subset of Ck with cardinality 3n
4K . Define

T = ∪Kk=1Tk and

Z = {ẑ : ẑi = zi for all i ∈ T }.

For all ẑ ̸= z̃ ∈ Z we have

h(ẑ, z̃)
n

⩽
1

4

and for all permutations σ ∈ SK,σ ̸= Id ( where Id denotes the
identity permutation) we have

h(σ(ẑ), z̃)
n

⩾
1

2
.

Thus r(ẑ, z̃) =
h(ẑ,z̃)
n . Then following the same arguments as in the

proof of Theorem 2 in Gao et al., 2018 we can obtain

inf
ẑ

sup
θ∈Θ

E(r(ẑ, z)) ⩾
1

6|Tc|

∑
i∈Tc

1

2K2
inf
ẑi
(P1(ẑi = 2) + P2(ẑi = 1))

(3.7.3)
where Pk denotes the probability distribution of the data when zi = k.
By the Neyman Pearson Lemma, the infinimum of the right hand
side of (3.7.3) is achieved by the likelihood ratio test. From Section
3.1 in Zhang et al., 2016a, the log-likelihood of the SBM part can be
rewritten as

log
(
p(1− q)

q(1− p)

)∑
i<j

Aij1{zi=zj} + f(A)

where f(A) doesn’t depend on z. Consequently,

1

2
inf
ẑi

(P1(ẑi = 2) + P2(ẑi = 1)) =

P(−0.5||ϵi||2 + log
(
p(1− q)

q(1− p)

) ∑
j∈C1

Aij ⩽ −0.5||µ1 + ϵi − µ2||2
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+ log
(
p(1− q)

q(1− p)

) ∑
j∈C2

Aij) (3.7.4)

Let us denote Zi = log(p(1−q)q(1−p))(
∑
j∈C2

Aij −
∑
j∈C1

Aij), this is a
random variable independent of ϵi. So we get

(3.7.4) = P(0.5||µ1 − µ2||2 −Zi ⩽ −⟨ϵi,µ1 − µ2⟩)
⩾ P(0.5||µ1 − µ2||2 −Zi ⩽ −⟨ϵi,µ1 − µ2⟩ | Zi > 0)P(Zi > 0)

⩾ P(||µ1 − µ2||
2 ⩽ −2⟨ϵi,µ1 − µ2⟩)P(Z > 0)

⩾ exp
(
−
∆21
8

)
exp

(
−n

(1+ o(1))(
√
p−
√
q)2

K

)
⩾ exp(−(1+ o(1))∆̃2).

Here we used for the penultimate inequality a result from the proof
of Theorem 3.3 in Lu et al., 2016 and also use Lemma 5.2 in Zhang
et al., 2016a.

3.7.4 Proof of technical lemmas

Lemma 7 (Concentration rate for the ideal oracle error under CSSBM).
Recall that

Ω1 =

{
⟨ϵi,µzi − µb⟩+ λ⟨Ei:W,Πzi: −Πb:⟩ ⩽

−(1− δ− δ̄)∆2(zi,b)
2

}
and suppose that δ, δ̄ = o(1). Then under the assumptions of Theorem 5, we
have

P(Ω1) ⩽ exp(−(1+ o(1))∆̃2)

where
∆̃2 =

1

8
min
k,k ′

||µk − µk ′ ||2 +
logn
K

(
√
p ′ −

√
q ′)2.

Proof. We are going to bound the m.g.f of

Z = ⟨ϵi,µzi − µb⟩+ λ⟨Ei:W,Πzi: −Πb:⟩

and use Chernoff method. We have for all t < 0

log EetZ ⩽ log Eet⟨ϵi,µzi−µb⟩ + log Eetλ⟨Ei:W,Πzi:−Πb:⟩

(by independence)

⩽ ||µzi − µb||
2 t
2

2
+
n

K
log(petλ(p−q)K/n + 1− p)

+
n

K
log(qe−tλ(p−q)K/n + 1− q) − tλ(p− q)2.

By choosing t = −1/2 we get

etλ(p−q)K/n =

√
q(1− p)

p(1− q)
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and thus

log(petλ(p−q)K/n + 1− p)(qe−tλ(p−q)K/n + 1− q)

= log(pq+ (1− p)(1− q) + 2
√
pq
√
(1− p)(1− q)).

log(petλ(p−q)K/n + 1− p)(qe−tλ(p−q)K/n + 1− q)

= log(pq+ (1− p)(1− q) + 2
√
pq
√
(1− p)(1− q)).

This last quantity is equal to −(1 + o(1))(
√
p −
√
q)2. We can now

conclude by remarking that

P(Ω1) ⩽ P

(
−
1

2
⟨ϵi,µzi − µb⟩−

1

2
λ⟨Ei:W,Πzi: −Πb:⟩ ⩾ (1+ o(1))

∆2min
4

)
hence

P(Ω1) ⩽ Ee−
Z
2−

∆2
min
4

⩽ exp(
||µzi − µb||

2

8

−
n

K
(1+ o(1))(

√
p−
√
q)2 +

λ

2
(p− q)2 − (1+ o(1))

∆2min
4

)

⩽ exp(−(1+ o(1))∆̃2),

since ∆2min = ||µzi − µb||
2 + 2λ(p− q)2.

Lemma 8. Recall the definition of Ω1 from the previous lemma. Under the
assumptions of Theorem 7 we have

P(Ω1) ⩽ exp
(
−
1

8
∆2min

)
.

Proof. First observe that

tλ⟨Ei:W,Πzi: −Πb:⟩ = tλ
∑
k∈[K]

(Πzik −Πbk)

∑
j∈Ck

Eij

nk

=
∑
k∈[K]

tλ(Πzik −Πbk)

∑
j∈Ck

Aij −Πzik

nk
.

The sum over k involves independent random variables so in order
to bound the m.g.f. of ⟨Ei:W,Πzi: −Πb:⟩ it is sufficient to control the

m.g.f. of
∑
j∈Ck

Aij − Πzik for each k. Setting t ′ = λt
|Πzik−Πbk|

nk
, we

have

log E(e
t ′

∑
j∈Ck

(Aij−Πzik)) = log(Πzike
t ′ + 1−Πzik) −nkt

′Πzik

⩽ nkΠzik(e
t ′ − t ′ − 1)
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⩽ nkΠzik
e(t ′)2

2
( by Taylor-Lagrange inequality)

⩽ 1.5nkpmax(λt
Πzik −Πbk

nk
)2

⩽ 1.5λ|Πzik −Πbk|
2t2.

For the second inequality we used the fact that for 0 < x < 1, log(1−
x) ⩽ −x.

Consequently,

log EetZ ⩽ ||µzi − µb||
2 t
2

2
+ 1.5λ||Πzi: −Πb:||

2t2

and

P(Ω1) ⩽ e
||µzi−µb||

2 t2

2 +1.5λ||Πzi:−Πb:||
2t2−

∆2(zi ,b)
4 .

For t = 1/2 we then obtain

P(Ω1) ⩽ e
−

||µzi
−µb||

2

8 −λ
8 ||Πzi:−Πb:||

2

⩽ e−
1
8∆

2
min .

Recall the Hamming distance h defined in (3.7.2).

Lemma 9. For all z, z ′ ∈ [K]n we have

h(z, z ′) ⩽
l(z, z ′)
∆2min

.

Proof. ∑
i∈[n]

1zi ̸=z ′i ⩽
∑
i∈[n]

∆(zi, z ′i)
2

∆2min
1zi ̸=z ′i =

l(z, z ′)
∆2min

.

Lemma 10. Assume that for some α > 1
n

αK
⩽ nk ⩽

αn

K
.

If l(z, z(t)) ⩽ n∆2min/(2αK) then for all k ∈ [K]

n

2αK
⩽ n(t)

k ⩽
2αn

K
.

Proof. Since for all k ∈ [K] we have n/(αK) ⩽ nk ⩽ αn/K,∑
i∈C

(t)
k

1 ⩾
∑

i∈Ck∩C
(t)
k

1 ⩾
∑
i∈Ck

1−
∑
i∈[n]

1
zi ̸=z

(t)
i

⩾
n

αK
− h(z, z(t))

Lemma 9
⩾ α

n

K
−
l(z, z(t))
∆2min

⩾
αn

2K

by assumption. The other inequality is proved in a similar way.
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Lemma 11. Assume that A ∼ SBM(Z,Π) with equal size communities and
suppose that the conditions of Theorem 7 are satisfied5. Then with probability
at least 1− n−Ω(1) the following holds for all z(t) such that l(z(t), z) ⩽
τ(0).

1. maxk∈[K] ||W
(t)
:k −W:k|| ≲

K1.5

n1.5∆2min
l(z(t), z),

2. maxk∈[K] ||(W
(t)
:k −W:k)

⊤AW|| ≲ K1.5√pmax
n1.5∆min

l(z, z(t)),

3. maxk∈[K] ||W
(t)⊤
:k A(W −W(t))|| ≲ K2

√
pmaxl(z

(t),z)
n1.5∆min

,

4. maxk∈[K] ||(W
(t)
:k −W:k)

⊤AW(t)|| ≲ K1.5√pmaxl(z(t),z)
n1.5∆min

,

5. ||Z⊤W(t)|| ≲ 1.

Proof. This is a rather straightforward adaptation of Lemma 4 in Han
et al., 2020, but for completeness we include a proof adapted to our
setting with our notations.

proof of 1 . First observe that Z is rank K and λK(Z) =
√
nmin so

that
||W

(t)
:k −W:k|| ⩽ n

−1/2
min ||I−Z⊤W(t)||.

For any k ∈ [K], denote δk = 1− (Z⊤W(t))kk. Since for all k,k ′ ∈ [K]

(Z⊤W(t))kk ′ =

∑
i∈Ck

1
z
(t)
i =k ′

n
(t)
k ′

,

we have
0 ⩽ δk ⩽ 1,

∑
k ′∈[K]\k

(Z⊤W(t))k ′k = δk.

Therefore,

||Z⊤W(t) − I|| =

√√√√√ ∑
k∈[K]

δ2k + ∑
k ′∈[K]\k

(Z⊤W(t))2k ′k



⩽

√√√√√√ ∑
k∈[K]

δ2k +
 ∑
k ′∈[K]\k

(Z⊤W(t))k ′k

2


⩽
√
2

∑
k∈[K]

δ2k ⩽
√
2

∑
k∈[K]

δk

=
√
2

∑
k∈[K]

∑
i∈C

(t)
k

1zi ̸=k

n
(t)
k

⩽
√
2max

k
(n

(t)
k )−1

∑
i∈[n]

1
zi ̸=z

(t)
i

5 These assumptions are clearly satisfied by Theorem 5 as well.
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Lemma 10

≲
K

n
h(z, z(t))

Lemma 9

≲ K
l(z, z(t))
n∆2min

. (3.7.5)

proof of 2 . Observe that with probability at least 1−n−Ω(1) we
have

max
k∈[K]

||(W
(t)
:k −W:k)

⊤AW|| ⩽ max
k∈[K]

||(W
(t)
:k −W:k)

⊤PW||

+ max
k∈[K]

||(W
(t)
:k −W:k)

⊤EW||

⩽ max
k∈[K]

||(W
(t)
:k −W:k)

⊤ZΠ||

+ ||EW|| max
k∈[K]

||(W
(t)
:k −W:k)||

⩽ ||Πb: −
∑
j∈C

(t)
b

Πzj:

n
(t)
b

||

+C
√
Kpmax max

k∈[K]
||(W

(t)
:k −W:k)||

≲ ||Πb: −
∑
j∈C

(t)
b

Πzj:

n
(t)
b

||+
K2
√
pmax

n1.5∆2min
l(z(t), z).

Recall that ∆22(a,b) := ∥Πa: −Πb:∥2. Then we have

∥∥∥∥∥∥∥Πb: −
∑
j∈C

(t)
b

Πzj:

n
(t)
b

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥
∑
j∈C

(t)
b

b ′∈[K]\b

1{zj=b ′}

n
(t)
b

(Πb: −Πb ′:)

∥∥∥∥∥∥∥∥∥∥
⩽ C

K

n

∑
j∈C

(t)
b

b ′∈[K]\b

max
b,b ′

∆2(b,b ′)1{zj=b ′}

⩽ C
K

n
max
b,b ′

∆2(b,b ′)h(t, t(t))

⩽ C
K∆min√
λn∆2min

l(z, z(t))

( since maxb,b ′ ∆2(b,b ′) ≲ ∆min√
λ

for SBM)

⩽ C
K1.5√pmax
n1.5∆min

l(z, z(t)).

Consequently, by summing the previous bounds and using the first
inequality of the Lemma we get

max
k∈[K]

||(W
(t)
:k −W:k)

⊤AW|| ≲
K1.5√pmax
n1.5∆min

l(z, z(t))+
K2
√
pmax

n1.5∆2min
l(z(t), z).

In our setting ∆2min ≍ logn so the first term is dominant.
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proof of 3 . First let’s bound maxk∈[K] ||W
(t)⊤
:k P(W −W(t))||. By

Lemma 10 we have ||W
(t)
k || ≲

√
K/n, so

max
k∈[K]

||W
(t)⊤
:k P(W −W(t))|| ⩽ max

k∈[K]
||W

(t)⊤
:k Z||||ΠZ⊤(W −W(t))||

≲ ||ΠZ⊤(W −W(t))||F

≲
√
K max
k∈[K]

||(W
(t)
:k −W:k)

⊤ZΠ||

≲
K2
√
pmax

n1.5∆min
l(z, z(t)).

(by the proof of part 2)

We now give an upper bound for maxk∈[K] ||W
(t)⊤
:k E(W −W(t))||.

By triangle inequality,

||W
(t)⊤
:k E(W−W(t))|| ⩽ ||W⊤

:kE(W−W(t))||+ ||(W
(t)
:k −Wk:)

⊤E(W−W(t))||.

First we have

||W⊤
:kE(W −W(t))|| ⩽ ||W:k||||E||||(W −W(t))||

≲
K2
√
pmax

n1.5∆2min
l(z(t), z).

On the other hand, we also have

||(W
(t)
:k −Wk:)

⊤E(W −W(t))|| ⩽ ||W:k −W
(t)
:k ||||E(W −W(t))||

⩽ ||E||
√
Kmax

k
||W:k −W

(t)
:k ||2

≲
K3.5√npmaxl(z(t), z)

n2∆2min

l(z(t), z)
n∆2min

≲
K3.5√pmaxl(z(t), z)

n1.5∆2min

where the last inequality comes from the fact that by assumption

l(z, z(t)) ⩽ τ ⩽ ϵn∆
2
min

K .
Thus it follows that

max
k∈[K]

||W
(t)⊤
:k P(W −W(t))|| ≲

K2
√
pmaxl(z

(t), z)
n1.5∆min

.

proof of 4 . First note that

||(W
(t)
:k −W:k)

⊤PW(t)|| ⩽ ||(W
(t)
:k −W:k)

⊤ZΠ||||Z⊤W(t)||

≲
K1.5√pmaxl(z(t), z)

n1.5∆min
.

Furthermore, by the same argument as before,

||(W
(t)
:k −W:k)

⊤EW(t)|| ⩽ ||(W
(t)
:k −W:k)

⊤E(W(t) −W)||
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+ ||(W
(t)
:k −W:k)

⊤EW||

≲ K||E||max
k

||W:k −W
(t)
:k ||2

+
K2
√
pmax

n1.5∆2min
l(z(t), z)

≲
K2
√
pmax

n1.5∆2min
l(z(t), z).

We obtain the result by triangle inequality.

proof of 5 . Since Z⊤W = IK we have

||Z⊤W(t)|| ⩽ 1+ ||Z⊤(W(t) −W)||

≲ 1+ ||I−Z⊤W(t)||

≲ 1+K
l(z(t), z)
n∆2min

(by Equation (3.7.5))

≲ 1. (by assumption on τ(0))

Lemma 12. For sIR-LS we have with probability at least 1−n−Ω(1) that
for all z(t) such that l(z(t), z) ⩽ τ(0)

max
k∈[K]

|n
(t)
k −nk| ⩽

l(z(t), z)
∆2min

, |λ(t) − λ| ≲ λ
Kl(z(t), z)
n∆2min

.

Proof. First observe that

max
k∈[K]

|n
(t)
k −nk| = max

k∈[K]
|
∑
i

1
{Z

(t)
i =k}

− 1{Zi=k}| ⩽ h(z
(t), z).

Moreover by Lemma 9 we have h(z(t), z) ⩽ l(z(t),z)
∆2min

.
Then note that we have

|p
(t)
max − pmax| ⩽ max

k,k ′
||(W

(t)
:k )⊤AW

(t)
:k ′ −W

⊤
:kPW:k ′ ||

(the max is 1-Lipschitz)

⩽ max
k,k ′

(||(W
(t)
:k )⊤EW

(t)
:k ′ ||+ ||(W

(t)
:k −W:k)

⊤PW
(t)
:k ′ ||

+ ||W⊤
:kP(W

(t)
:k ′ −W:k ′)||)

≲ max
k

||W
(t)
:k ||2||E||+

K1.5√pmaxl(z(t), z)
n1.5∆min

(by the proof of Lemma 11)

≲
K
√
pmax√
n

+
K1.5√pmaxl(z(t), z)

n1.5∆min

≲
K1.5√pmaxl(z(t), z)

n1.5∆min
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≲

√
K

npmax

Kl(z(t), z)
n∆min

pmax

≲
Kl(z(t), z)
n∆2min

pmax

since ∆min ≍
√

logn/K ≍
√
npmax/K. Consequently,∣∣∣∣λ(t)λ − 1

∣∣∣∣ ⩽
∣∣∣∣∣n

(t)
min

nmin

pmax

p
(t)
max

− 1

∣∣∣∣∣
⩽

∣∣∣∣∣n
(t)
min −nmin
nmin

pmax

p
(t)
max

∣∣∣∣∣+
∣∣∣∣∣pmax − p(t)maxp

(t)
max

∣∣∣∣∣
≲
Kl(z(t), z)
n∆2min

+
Kl(z(t), z)
n∆2min

≲
Kl(z(t), z)
n∆2min

.

Lemma 13. For IR-LSS, we have with probability at least 1−n−Ω(1) that
for all z(t) such that l(z(t), z) ⩽ τ(0)

|λ(t) − λ| ≲ λ
Kl(z(t), z)
n∆2min

Proof. By a similar argument as the one used in Lemma 12 we have
with probability at least 1−n−Ω(1) that

|p(t) − p| ≲
Kl(z(t), z)
n∆2min

p, |q(t) − q| ≲
Kl(z(t), z)
n∆2min

q.

This implies

p(t) − q(t)

p− q
= 1+O

(
(p+ q)Kl(z(t), z)
(p− q)n∆2min

)
= 1+O

(
Kl(z(t), z)
n∆2min

)
because p− q ≳ p. Thus,∣∣∣∣log

(
p(t)

q(t)

)
− log

(
p

q

)∣∣∣∣ = ∣∣∣∣log
(
p(t)

p

q

q(t)

)∣∣∣∣
= 2 log

(
1+O

(
Kl(z(t), z)
n∆2min

))
= O

(
Kl(z(t), z)
n∆2min

)
.

Hence ∣∣∣∣∣∣
log(p

(t)

q(t) )

log(pq)
− 1

∣∣∣∣∣∣ = O
(
K1.5l(z(t), z)
n∆2min

)
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since log(p/q) is bounded above by assumption. Consequently,

λ(t)

λ
− 1 = O

(
Kl(z(t), z)
n∆2min

)
.





4
C L U S T E R I N G M U LT I L AY E R G R A P H S W I T H
M I S S I N G N O D E S

In this chapter we consider partial side information given by graphs
instead of Gaussian covariates as in the previous chapter. This work
is based on Braun et al., 2021b where we propose different extensions
of existing clustering methods for multilayer graphs to the setting
were each node doesn’t appear in all the layers. We then complete
this work by showing how the method studied in Chapter 1 can be
extended to this setting.

The chapter is organized as follows. Section 4.1 motivates the prob-
lem and discusses the related work. The generative model is intro-
duced in Section 4.2. In Section 4.3 we propose a final aggregation
method for the missing nodes setting. In Section 4.4 we study an
early aggregation method based on the sum of adjacency matrices
and in Section 4.5 we propose an extension of an intermediate fu-
sion method to the missing nodes setting. We then explain how the
method of Chapter 3 can be applied to this problem in Section 4.7.
Finally we perform numerical experiments in Section 4.6. Technical
results are gathered in Section 4.8

4.1 introduction

Graphs are a powerful tool to represent relationships between agents.
Due to applications in a wide array of fields including biology, sociol-
ogy, ecology and economics (see for e.g., Braun et al., 2015; Han et al.,
2015; Kivelä et al., 2014; Kim et al., 2015), the analysis of networks
has received significant interest over the last two decades. One fun-
damental problem of network analysis is clustering which involves
detecting communities by regrouping nodes having similar connec-
tivity properties. Numerous clustering algorithms have been devel-
oped over the years based on different approaches such as modular-
ity maximization, maximum likelihood, random walks, semi-definite
programming and spectral clustering (see for instance the survey ar-
ticles by Fortunato, 2010 and Abbe, 2018).

Often, relationships are better understood through different modal-
ities. These multiple aspects of relationships can be represented by a
multilayer graph where each layer is a graph representing the inter-
actions between agents for one modality. For e.g., social interaction
between a set of people can be recorded via email exchanges, phone
calls, professional links, and so on. Each level of interaction can be
encoded into a simple graph and the collection of these graphs leads

71



72 clustering multilayer graphs with missing nodes

to a multilayer representation. Another important example of a mul-
tilayer graph is given by a time-varying network where each view of
the network at a given time corresponds to a different layer.

Over the last decade, many methods have been proposed for clus-
tering multilayer graphs such as those based on matrix factorization,
spectral methods, maximisation of a modularity function or probabil-
ity model-based approaches; see Kim et al., 2015 for a survey. Con-
sistency results for the recovery of the partition under a stochastic
generative model have also been shown for some algorithms, see for
example Paul et al., 2020, Pensky et al., 2019, Lei et al., 2022 and
Bhattacharyya et al., 2018.

Most existing approaches assume that all the layers share the same
set of nodes. In practice, however, data are often incomplete; in par-
ticular, the set of observed nodes can clearly vary across layers. For
example, in social networks evolving over time, the set of nodes can
change due to people leaving/joining the network. This is the setting
considered in the present paper.

4.1.1 Related work

clustering on multi-layer graphs . As noted by Paul et al.,
2020, clustering strategies for multilayer graphs can be roughly cat-
egorized into three groups: early fusion methods where all views
are aggregated and then clustering is performed, intermediate fu-
sion methods where the algorithm finds a factor common to all the
views, and final aggregation methods where each individual view is
processed separately and a consensus partition is formed. In the com-
plete setting, different algorithms have been proven to be consistent
under a multilayer stochastic block model assumption (see Section
4.2.1). Among them are spectral clustering on the sum of adjacency
matrices (e.g., Bhattacharyya et al., 2018; Paul et al., 2020) or on the
sum of squared adjacency matrices with bias correction (e.g., Lei et
al., 2022; Bhattacharyya et al., 2020), orthogonal linked matrix factor-
ization (e.g., Paul et al., 2020), and co-regularized spectral clustering
(e.g., Paul et al., 2020). Existing misclustering bounds for these meth-
ods are gathered in the supplementary material.

incomplete multi-view clustering (imvc). Recently a sim-
ilar problem has been addressed in the context of IMVC, see for ex-
ample Liu et al., 2021, Hu et al., 2019 and references therein. To the
best of our knowledge, no consistency results for the recovery of the
ground truth clustering structure are shown in this line of work. Algo-
rithms designed for the IMVC framework cannot be directly applied
to our setting since they apply to a collection of feature vectors. How-
ever they could possibly be adapted, in a non trivial manner, to our
framework. For example, in the complete setting, the OMVC method
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proposed by Hu et al., 2019 can be considered as a variant of the
OLMF estimator proposed by Paul et al., 2020 where the optimiza-
tion problem is modified in order to take into account the symmetry
of the inputs. Similarly, if there were no missing views, the algorithm
proposed by Liu et al., 2021 resembles a variant of the co-regularized
spectral clustering method of Paul et al., 2020 for clustering multi-
layer graphs. We leave the adaptation of the algorithm proposed by
Liu et al., 2021 to our setting for future work.

4.1.2 Contributions

We consider the problem of clustering multilayer graphs with miss-
ing nodes under a Multi-Layer Stochastic Block Model (MLSBM) de-
scribed in Section 4.2. Our contributions are as follows.

• In Section 4.3.1 we propose a final aggregation method based
on a variant of k-means for incomplete data (Algorithm 5), and
derive a bound for the misclustering rate.

• Section 4.4 extends a popular early fusion method – based on
spectral clustering applied to the sum of adjacency matrices – to
the missing nodes setting. Section 4.4.1 studies this by imputing
the missing entries with zeros (Algorithm 6), and contains an
upper bound for the misclutering rate. Section 4.4.2 proposes an
alternative method (Algorithm 7) wherein the missing entries
are imputed iteratively. This method is shown to perform well
in our experiments.

• Section 4.5.2 proposes an extension of an intermediate fusion
method – namely the Orthogonal Linked Matrix Factorization
(OLMF) method studied by Paul et al., 2020 – to the missing
nodes setting.

• In Section 4.6 we empirically evaluate our algorithms on syn-
thetic data, and also on real datasets.

4.2 problem setup

A multilayer graph is a sequence of graphs G = (G(1), . . . ,G(L)). If all
the graphs are defined on the same set of nodes N indexed by [n],
then G is said to be pillar. Throughout, we will assume that for all
l ⩽ L each graph G(l) is undirected and has no self-loop. This implies
that its associated adjacency matrix A(l) ∈ {0, 1}n×n is symmetric
with A(l)

ii = 0 for all i.
Given G as input, our goal is to recover a partition of N into K

disjoint sets (or communities), so that nodes belonging to the same
community share a similar connectivity profile. To make the setup
more precise, we will study this problem in the setting where G is
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generated via an underlying (unknown) stochastic model, with a la-
tent community structure. This model is a common extension of the
well-studied stochastic block model (SBM) for the unilayer case which
we now describe.

4.2.1 Multilayer Stochastic Block Model (MLSBM)

We now describe the multilayer stochastic block model (MLSBM),
which is a common extension of the SBM to the setting of multilayer
graphs (see for e.g., Paul et al., 2020; Bhattacharyya et al., 2018; Lei
et al., 2020). The MLSBM is parametrized by the number of layers
L, a common block membership matrix Z ∈ Mn,K, and connectivity
matrices Π(1), . . . ,Π(L) ∈ [0, 1]K×K.

Similar to the unilayer case, let us denote P(l) = ZΠ(l)ZT for l =
1, . . . ,L. A multilayer graph G is distributed according to the model
MLSBM(Z,Π(1), . . . ,Π(L)) if the adjacency matrix A(l) of each layer is
distributed according to a SBM(Z,Π(l)) for l = 1, . . . ,L. Hence, while
the probability that two nodes are connected can vary across layers,
the block membership of each node remains unchanged. As in the
unilayer case we can define the quantities p(l)max = maxi,j p

(l)
ij , pmax =

maxl p
(l)
max.

4.2.2 Missing nodes

The assumption that all the layers share the same set of nodes is
quite restrictive since real world multilayer networks are often ‘non-
pillar’. We propose to deal with such networks by considering nodes
present in some layers but not in others as missing. Let w(l)

i be a bi-
nary variable that records the presence of node i in the layer l where
w

(l)
i = 1 if node i is observed in layer l and 0 otherwise. Denoting

w(l) = (w
(l)
1 , . . . ,w(l)

n )T , let Ω(l) = w(l)(w(l))T be the mask matrices
and Ã(l) = A(l) ⊙Ω(l) for l ⩽ L where ⊙ is the usual Hadamard
product. Let Jl denote the set of non-missing nodes in layer l with
nJl = |Jl|. By a slight abuse of notation we will denote by AJl the ma-
trix A(l)

Jl
. The number of observed nodes in Ck will also be denoted by

nJl,k. Throughout, we assume that the missing nodes are generated

as w(l)
i

ind.
∼ B(ρ) for i = 1, . . . ,n.

4.3 final aggregation methods

A natural way to extend unilayer graph clustering to the multilayer
setting is to analyze each layer separately and then find a consen-
sus partition – such approaches are referred to as final aggregation
methods. For example, one can apply any clustering method on each
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individual layer, take one layer’s labels as a reference, find for each re-
maining layer the permutation of its labels that maximizes the agree-
ment with the reference layer, and then define a consensus commu-
nity by majority voting as discussed in Han et al., 2015. There exist
alternative ways to avoid the cumbersome issue of label switching
ambiguity such as the ‘aggregate spectral kernel’ considered in Paul
et al., 2020. Such methods rely on the quality of each individual layer
and are often empirically outperformed by other methods as shown
in Paul et al., 2020; Han et al., 2015.

Final aggregation methods are still relevant in the missing nodes
context. Indeed, if we have exact recovery for each layer, and if for all
k there is at least one common node between two layers belonging
to Ck, then we can easily reconstruct the whole partition even when
the set of common nodes is very small. Hence such methods can be
considered as baseline methods.

4.3.1 A method based on a variant of k-means for incomplete data

We now propose a final aggregation method for clustering multilayer
graphs in the incomplete setting; it avoids the aforementioned label
switching problem.

For each layer l, we can compute the matrix ÛJl of size |Jl|×K cor-
responding to the eigenvectors associated with the top K eigenvalues
(in absolute value) of AJl ∈ R|Jl|×|Jl|. The matrix ÛJl can be trans-
formed to a matrix Û(l) of size n× K by completing with zeros the
rows of the nodes that haven’t been observed1. Let Û be the n× KL
matrix obtained by stacking Û(l).

Analogously, letUJl be the matrix formed by the K eigenvectors cor-
responding to non-zero eigenvalues of ZJlΠ

(l)ZTJl , U
(l) be the n× K

matrix obtained from UJl by filling the rows corresponding to unob-
served nodes with the row corresponding to an observed node (be-
longing to the same community), and U be the matrix obtained by
stacking all the matrices U(l). For each l, let Ol be a K×K orthogonal
matrix such that

Ol ∈ argmin
OTO=Ik

||ÛJl −UJlO||F.

As in the unilayer setting, k-means could be applied on the rows of
Û(l) in order to recover the community structure for each l. But in
order to avoid the label switching problem we propose to apply on
the rows of Û a variant of k-means described in Chi et al., 2015 that
can handle missing values, see Algorithm 5.

1 It is easy to verify that Û(l) is also the eigenvector matrix corresponding to the top
K eigenvalues (in absolute value) of A(l) ⊙Ω(l).
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Let us describe the principle behind this algorithm. The classical
k-means problem seeks a partition Z and centroid values (encoded in
the matrix C) that solves

min
Z∈Mn,K
C∈RK×KL

||Û−ZM||2F.

When there are missing values one can instead solve

min
Z∈Mn,K
C∈RK×KL

||(Û−ZM)⊙ΩU||2F (4.3.1)

where ΩU = (w(1) ⊗ 1K · · · w(L) ⊗ 1K) is the n× KL mask matrix
with 1K ∈ R1×K denoting the all ones vector. It is a matrix composed
of L blocks where the rows of each block are 1 if the corresponding
node is observed and 0 otherwise.

Algorithm 5 k-pod clustering

Input: The number of communities K, the sets Jl and the adjacency
matrices AJl .

1: Form Û(l) from AJl as explained at the beginning of Section 3.1.
2: Form the matrix Û by stacking the matrices Û(l).
3: Initialize the partition Ẑ and the centroid matrix M̂.
4: repeat
5: Replace Û by Û⊙ΩU + (ẐM̂)⊙ (11T −ΩU).
6: Apply k-means on the complete matrix Û and update M̂ and
Ẑ.

7: until convergence.
Output: A partition of the nodes N = ∪Ki=1Ci based on Ẑ.

In the worst case, the complexity of the algorithm is O((L+ K)n2).
But in practice the layers are often sparse and so the complexity will
be much less2.

Theorem 8. Consider the missing nodes MLSBM in Section 4.2.2, and
suppose that ρL ⩾ 1, KL ⩽ C0n, ρnmin ⩾ C1K

2max(log2 n,
√
npmax)

and np(l)max ⩾ C2ρ
−1 logn. Let λ(l)K be the K-th largest singular value of

Π(l) and recall that β = nmax/nmin. If

1

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

< (30C3β
4K3)−1

then with probability at least 1 −O(n−1), it holds that the solution Ẑ ∈
Mn,K of (4.3.1) satisfies

r(Ẑ,Z) ⩽ C4 exp(−c ′ρL) +
C5β

3K2

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

.

2 This remark regarding the complexity applies to our other methods as well.
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Remark 8. The assumption ρL ⩾ 1 is natural since ρL corresponds to
the expected total number of times a node is observed, and a node needs to
be observed at least once in order to be classified. The condition ρnmin ⩾
C1K

2 log2 n ensures that ρ and nmin are not too small. If the communities
are well-balanced and the parameters ρ and K are fixed independently of n,
then the previous condition is satisfied for n large enough.

Remark 9. Our analysis assumes that each layer is sufficiently informative,
and doesn’t use the fact that there is more information contained in the
whole set of layers than in individual layers. This is why the bound does
not improve when L increases. The obtained upper-bound is unlikely to be
optimal since as shown in the experiments, the clustering performance does
seem to improve a bit when L increases.

Proof. Let Ẑ and Ĉ be solutions of the optimization problem (4.3.1)
and write Ū := ẐĈ. Define U ′ as the block matrix obtained by stack-
ing the matrices U(l)Ol, Li = {l ∈ [L] : i ∈ Jl} be the indices of layers
where the node i appears, and Nu = {i : |Li| ⩾ ρL/c} where c > 1

is a constant that will be fixed later. Let Sk be the set of ‘bad nodes’
defined as

Sk := {i ∈ Ck ∩Nu : ∀l ∈ Li, ||U
(l)
i∗ Ol − Ū

(l)
i∗ || ⩾ δ(l)k /2}

where

δ
(l)
k := min

i∈Ck
i ′∈Ck ′
k ′ ̸=k

||U
(l)
i ′∗ −U

(l)
i∗ || = min

i∈Ck
i ′∈Ck ′
k ′ ̸=k

||U
(l)
i ′∗Ol −U

(l)
i∗ Ol||

is the smallest distance between two rows of U(l) corresponding to
different communities. Let Tk := (Ck \ Sk) ∩Nu be the complement
of Sk in Nu ∩ Ck and T = ∪kTk.

Step 1. First let us show by contradiction that if for all k, |Tk| >
nk/30 and nk satisfies the assumptions of the theorem, then all the
nodes in T are well classified with probability at least 1 −O(n−1).
Assume that there exist i ∈ Tk and j ∈ Tk ′ such that Ūi = Ūj. If
Li ∩ Lj ̸= ∅, every l ∈ Li ∩ Lj satisfies

max(δ(l)k , δ(l)k ′ ) ⩽ ||U
(l)
i∗ −U

(l)
j∗ ||

⩽ ||U
(l)
i∗ − Ū

(l)
i∗ ||+ ||U

(l)
j∗ − Ū

(l)
j∗ ||

<
δ
(l)
k

2
+
δ
(l)
k ′

2

contradicting the fact that i ∈ Tk and j ∈ Tk ′ . It remains to treat
the case Li ∩ Lj = ∅. Let C1 be a cluster induced by Ū containing
the nodes i and j. If there were other nodes belonging to Ck and
Ck ′ but appearing in a common layer, the previous argument can be
used to obtain a contradiction. So we can assume that all the nodes
of community Ck in C1 and all nodes of community Ck ′ in C1 appear
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on distinct layers. We are going to show this property implies that
for all k the size of Ck ∩ C1, and thus the size of C1, is small with
high probability. Let l1 be a layer where a node in Ck ′ ∩C1 appears.
The probability that none of the nodes in Ck ∩ C1 appears in l1 is
(1−ρ)|Ck∩C1| and this probability is O(1/n2) if |Ck ∩C1| ⩾ 2ρ−1 logn
(we used the fact that − log(1−ρ) ⩾ ρ). By symmetry, the result holds
for every k such that |Ck ∩ C1| > 0. Therefore we can assume that
|C1 ∩Ck| ⩽ 2ρ−1 logn. Since for all k, |Tk| ⩾ nk/30 ⩾ 3K2ρ−1 logn by
assumption, there are nodes in Tk and Tk ′ that are not in C1. Hence
there is another cluster C2 induced by Û containing nodes from two
different communities. The same argument can be applied to C2 and
iteratively to C3, . . . ,CK. At the end, since the Ck form a partition of
the set of nodes, we obtain

|Tk ′ | =
∑
k

|Ck ∩ Tk ′ | ⩽ 2K2ρ−1 logn

contradicting the fact that |Tk| ⩾ 3K2ρ−1 logn.
We are now going to show that under the assumptions of the the-

orem, for all k, Tk satisfies |Tk| > nk/30 with probability at least
1−O(n−1). In order to prove this result we will first show that |Sk| is
small (Step 2) and then show that Nu ∩ Ck is large (Step 3).

Step 2. Observe that if i ∈ Sk then ∀l ∈ Li, 4(δ
(l)
k )−2||(U(l)Ol)i∗ −

Ū
(l)
i∗ ||2 ⩾ 1. So for all k,

|Sk|δ
2
k ⩽ 4

∑
i∈Ck∩Nu

min
l∈Li

||(U(l)Ol)i∗ − Ū
(l)
i∗ ||2

⩽ 4
∑

i∈Ck∩Nu

∑
l∈Li ||(U

(l)Ol)i∗ − Ū
(l)
i∗ ||2

|Li|
(4.3.2)

where we used the fact δ(l)k ⩾ δk for the first inequality, and the fact
that the minimum is always bounded by the mean for the second
inequality.

By summing over k, and using the fact that |Li| ⩾ ρL/c for i ∈ Nu,
we get ∑

k

|Sk|δ
2
k ⩽

4c

ρL

∑
i∈Nu

∑
l∈Li

||(U(l)Ol)i∗ − Ū
(l)
i∗ ||2

⩽
C

ρL
||(U ′ − Ū)⊙ΩU||2F. (4.3.3)

Using triangular inequality we get

||(U ′ − Ū)⊙ΩU||2F ⩽ ||(U ′ − Û)⊙ΩU||2F + ||(Û− Ū)⊙ΩU||2F
⩽ 2||(Û−U ′)⊙ΩU||2F (4.3.4)

where the second inequality follows from the fact that U ′ is feasible
for (4.3.1), i.e., it can be written as a product of a membership matrix
Z and a centroid matrix C ∈ RK×KL.
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Notice that

||(Û−U ′)⊙ΩU||2F =
∑
l

||ÛJl −UJlOl||
2
F.

Let λK,Jl be the Kth largest singular value of ZJlΠ
(l)ZTJl . This last

quantity depends on the missing patterns, but the concentration re-
sults established in Lemma 14 shows that for all l, nJl ⩽ 1.5ρn
with probability at least 1 − O(n−1) and Lemma 17 applied with
ZJl instead of Z and nJl,min instead of nmin shows that λK,Jl ⩾

nJl,minλ
(l)
K ⩾ 0.5ρnminλ

(l)
K with probability at least 1−O(n−1). The

concentration inequality used in Lemma 16 and Lemma 14 shows that

with probability at least 1−O(n−1), ||AJl −E(AJl)|| ⩽ C
√
nJlp

(l)
max ⩽

C

√
ρnp

(l)
max. But ρnminλ

(l)
K ⩾ 4C

√
ρnp

(l)
max for all l due to our as-

sumptions. Moreover, since with high probability, nJlp
(l)
max ⩾ c logn

for each l (using the fact that w.h.p, nJl ⩾ c ′ρn for each l, the condi-
tion in the theorem statement suffices), hence Lemma 16 applies and
we get that for for each l that with probability 1−O(n−2)

||ÛJl −UJlOl||
2
F ⩽

C||AJl − E(AJl)||
2
F

λ2K,Jl

⩽ CK
nJlp

(l)
max

λ2K,Jl

. (4.3.5)

So by Lemma 17 and Lemma 14 there exists C > 0 such that with
probability at least 1−O(Ln−2) (via union bound), we have for all
l ⩽ L that

nJlp
(l)
max

λ2K,Jl

⩽ C
np

(l)
max

ρ(nminλ
(l)
K )2

. (4.3.6)

Plugging equations (4.3.3), (4.3.4), (4.3.6) and (4.3.5) into (4.3.2) we
obtain with probability at least 1−O(n−1)

∑
k

|Sk|δ
2
k ⩽ CK

∑
l

np
(l)
max

ρ2L(nminλ
(l)
K )2

.

We have δk = minl δ
(l)
k = minl

√
1
nk,Jl

by Lemma 2.1 in Lei et al., 2015.

Moreover minl
√

1
nk,Jl

⩾ c√
ρnk

with probability at least 1−O(n−1)

by Lemma 14 since ρnk ⩾ C log2 n by assumption. Thus we obtain

∑
k

|Sk| ⩽
∑
k

|Sk|(c
−1√ρnk)2(δk)2 ⩽ CKnmax

∑
l

np
(l)
max

ρL(nminλ
(l)
K )2

.

Observe that nmaxn ⩽ β
K . If

∑
l

np
(l)
max

ρL(nminλ
(l)
K )2

< (30Cβ2K)−1,
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then |SK| < nk/30 for all k By using nmin ⩾ n
βK this last condition

can be simplified as

1

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

< (30Cβ4K3)−1.

Step 3. We are now going to show that |Nu ∩ Ck| is large. Let
p(ρ,L) = P(|Li| < ρL/c). For the choice c = 25, we always have
p < 8/10 since ρL ⩾ 1 by assumption. Chernoff bound (Lemma 32)
shows that p(ρ,L) ⩽ e−ρL(1−c

−1)/3. If ρL > 12 logn then with proba-
bility at least 1−O(n−2), Nu = N and |Ncu| = 0. Let us assume that
ρL < 12 logn. The number of nodes in Ncu ∩ Ck can be written as a
sum nk independent Bernoulli variables with parameter p = p(ρ,L)
(we will omit the dependence on ρ and L in the following for notation
convenience):

|Ncu ∩ Ck| =
∑
i⩽nk

bi.

In expectation E(|Ncu ∩ Ck|) = pnk and Hoeffding’s bound implies
that P(||Ncu ∩ Ck|− pnk| ⩾ t) ⩽ 2e−t

2/nk for any choice of t > 0. So
we can take t = C

√
nk logn = o(nk) and obtain that with probability

at least 1−O(Kn−2) for all k

|Ncu ∩ Ck| ⩽ nkp+C
√
nk logn.

Thus |Ck ∩ Nu| ⩾ nk(1 − p −
√
C logn
nk

). If n is large enough, then√
C logn
nk

< 1/30.
Since the sets Sk have cardinalities at most nk30 we obtain that |Tk| ⩾

5nk
30 .

Conclusion. Steps 1,2 and 3 show that all nodes that belong to Tk
are well classified with probability at least 1 − O(n−1). Hence the
number of misclustered nodes is bounded by the sum of the cardi-
nalities of Sk plus |Ncu|. So with probability at least 1−O(n−1) we
get

r(Ẑ,Z) ⩽
1

n
(|Ncu|+

∑
k

|Sk|)

⩽
31

30
p(ρ,L) +Cβ

∑
l

np
(l)
max

ρL(nminλ
(l)
K )2

⩽ C exp(−c ′ρL) +
Cβ3K2

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

.

4.4 early fusion methods : spectral clustering on sum

of adjacency matrices

Late fusion methods rely heavily on the quality of each layer. How-
ever, by simultaneously using all the information contained in all lay-
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ers, the clustering performance can be improved in some settings (see
the numerical experiments in Paul et al., 2020 or Han et al., 2015). One
way to do this is to aggregate the information across layers and then
apply a suitable clustering method. This approach will be referred to
as an early fusion method. One simple but popular way to do this is
to take the mean of the adjacency matrices (see for e.g., Bhattacharyya
et al., 2018; Paul et al., 2020). Then, the k-means algorithm can be ap-
plied to the rows of the n×K eigenvector matrix associated with the
top K eigenvalues (in absolute value) of A = L−1

∑
lA

(l).

4.4.1 Imputing missing entries with zeros

A natural way to extend the aforementioned approach to the setting
of missing nodes is to fill the missing entries with zeros, thus leading
to Algorithm 6. The worst-case complexity of the algorithm is O((L+
K)n2).

Algorithm 6 Sum of adjacency matrices with missing entries filled
with zeros

Input: The number of communities K, the matrices A(l) and Ω(l).

1: Compute A = L−1
∑
lA

(l) ⊙Ω(l).
2: Compute the eigenvectors u1, . . . ,uK associated with the K

largest eigenvalues of A (ordered in absolute values) and form
UK = [u1 u2 · · · uK].

3: Apply k-means on the rows of UK to obtain a partition of N into
K communities.

Output: A partition of the nodes N = ∪Ki=1Ci.

Let us denote Ã = ρ−2L−1
∑
lA

(l) ⊙Ω(l) (clustering on A or Ã is
equivalent since the two matrices are proportional, but for the anal-
ysis it is more convenient to work with Ã). Since the diagonal en-
tries of A(l) are zero, E(Ã) = L−1

∑
lE(A(l)). Denote by E(X|Ω)

to be the expectation of X conditionally on Ω = (Ω(1), . . . ,Ω(L))

and let λK denote the Kth largest singular value of E(Ã). We have
E(Ã|Ω) = ρ−2L−1

∑
lE(A(l))⊙Ω(l). Using the same kind of pertur-

bation arguments and concentration inequalities as in Lei et al., 2015,
we can relate Ã to E(Ã|Ω) and then use Bernstein inequality to relate
E(Ã|Ω) with E(Ã). This leads to the following bound on the misclus-
tering rate.
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Theorem 9. Under the missing nodes MLSBM in Section 4.2.2, there exist
constants C0,C1 > 0 such that with probability at least 1−O(n−1), the
solution Ẑ ∈Mn,K obtained from Algorithm 6 satisfies

r(Ẑ,Z) ⩽
C0K

ρ4λ2K

(
npmax

L
+

logn
L

)
︸ ︷︷ ︸

noise error

+

C1K
(ρ−2 − 1)2

λ2K

(
(npmax)

2 log(n)
L

+

(
npmax logn

L

)2)
︸ ︷︷ ︸

missing data error

.

If L is small then the missing data error could be larger than one
making the upper bound trivial. In the best case scenario, we expect
that λK scales as npmax. So we need at least C logn layers to get a
non trivial upper bound. In order to obtain asymptotic consistency,
it is necessary that L ≫ logn. However, experiments show that even
when L is small, Algorithm 6 gives good results as long as the layers
are dense enough and the number of missing nodes is not too large.

When ρ = 1 and npmax ⩾ logn, r(Ẑ,Z) = O( 1
Lnpmax

). That im-
proves the one obtained by Bhattacharyya et al., 2018 under a more
general setting. See the supplementary material for other compar-
isons.

In order to prove Theorem 9, we are going to show that Ã is close
to E(Ã|Ω) with high probability for every realization of Ω and that
E(Ã|Ω) concentrates around E(Ã) if L is large enough. These results
are summarized in the following proposition.

Proposition 1. There exist constants c1 and c2 such that the following
holds.

1. P

(
||Ã− E(Ã|Ω)|| ⩾ c1ρ−2

(√
npmax
L +

√
logn
L

)
|Ω

)
⩽ n−1;

2. ||E(Ã|Ω) −E(Ã)|| ⩽ c2(ρ−2− 1)

[
npmax

(√
logn
L +

logn
L

)]
with

probability at least 1− o(n−1).

Proof. The proof of the first statement is the same as the proof of the
corresponding inequality if there are no missing values. Since we rea-
son conditionally to the missingness mechanism, the zero entries of
Ã can also be considered as the realization of independent Bernoulli
variables with parameter zero.

Let E = ρ2(Ã− E(Ã|Ω)) and E ′ be an independent copy of E. De-
fine Es = E− E ′ as the symmetrized version of E. Jensen’s inequality
implies that ||E|| = ||E(E − E ′|E)|| ⩽ E(||Es|| | E), so it is enough to
control ||Es||.

The ψ2 norm (see for example Vershynin, 2016, Proposition 1.2.1)
of each entry of Es is bounded by KL := C

√
L−1K where

K = max
i,j,l

||A
(l)
ij ||ψ2
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and A
(l)
ij are centered Bernoulli random variables with parameters

p
(l)
ij . By definition of the ψ2 norm there exists a constant c0 such that

for each i, j ⩽ n

P(|Esij| ⩾ c0KL
√

logn) ⩽ n−4.

Define Tij = Esij1|Esij|⩽c0KL
√

logn and let T = (Tij) ∈ Rn×n. By a

union bound argument the matrix Es− T has entries that are not zero
with probability at most n−2, thus ||Es|| = ||T || with probability at
least 1−O(n−2). Since the entries of Es are symmetric, the matrix T
is centered and has entries bounded by c0KL

√
logn by construction.

So we can apply the bound from Lemma 15 to T and obtain

||T || ⩽ C

√
npmax

L
+KL logn

with probability at least 1−O(n−1). We can use the following theo-
rem to get a sharp bound for KL.

Theorem 10 (Buldygin et al., 2013, Theorem 2.1, Lemma 2.1 (K6)). Let
Y be a centered Bernoulli random variable with parameter p, i.e., Y = 1− p

with probability p, and Y = −p with probability 1− p. Then,

∥Y∥2ψ2 =


0 ; p ∈ {0, 1} ,

1/4 ; p = 1/2,
1−2p

2 log( 1−pp )
; p ∈ (0, 1) \

{
1
2

}
.

In particular, it holds that ∥Y∥ψ2 ⩽
1√

2|log(min{2p,2(1−p)})|
.

If npmax ⩽ log2 n, then KL ⩽ C(L logn)−1/2 and we obtain the
first part of the proposition by dividing by ρ2. If npmax ⩾ log2 n
then we can bound use the trivial bound KL ⩽ CL−1/2 to see that
KL logn ⩽ C

√
npmax
L . Hence

||Ã− E(Ã|Ω)|| ⩽ Cρ−2
(√

npmax

L
+

√
logn
L

)
with probability at least 1−O(1/n) for all Ω.

It remains to bound the difference between E(Ã|Ω) and E(Ã). We
do so using the matrix Bernstein inequality (Lemma 34). Let Xl :=

ρ−2E(A(l)) ⊙Ω(l) − E(A(l)); clearly each Xl is centered. Moreover
||Xl|| ⩽ ||Xl||F ⩽ pmaxn(ρ−2 − 1).

For notation convenience, we will write X instead of Xl. We have
E(X2)ij =

∑
k⩽n XikXjk because X is symmetric. Recall that Xik =

aik(ρ
−2ωiωk − 1) where aik corresponds to A(l)

ik . A simple calcula-
tion shows that

E(X2)ij =
∑
k

E(aikajk(ρ
−2ωiωk − 1)(ρ

−2ωjωk − 1)))
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=
∑
k

aikajkE((ρ−2ωiωk − 1)(ρ
−2ωjωk − 1))).

If i = j, E((ρ−2ωiωk − 1)
2) = ρ−2 − 1 and if i ̸= j, E((ρ−2ωiωk −

1)(ρ−2ωjωk−1))) = ρ
−1−1. So in both cases, |E(X2)ij| ⩽ np2max(ρ

−2−

1). We can now bound ||E(X2l )|| by ||E(X2l )||F ⩽ [npmax(ρ
−2 − 1))]2

and σ2 := ||
∑
lE(X2l )|| by L[npmax(ρ−2 − 1)]2.

Therefore matrix Bernstein inequality implies that

||
∑
l

Xl|| ⩽ C(ρ
−2 − 1)(npmax

√
L logn+npmax logn)

with probability at least 1−O(n−1) for a constant C chosen appropri-
ately.

Proof of Theorem 9. Triangle inequality gives

||Ã− E(Ã)|| ⩽ ||Ã− E(Ã|Ω)||+ ||E(Ã|Ω) − E(Ã)||

and we can use Proposition 1 to bound with high probability each
term. So with probability at least 1−O(n−1)

||Ã− E(Ã)|| ⩽
C

ρ2

(√
npmax

L
+

√
logn
L

)

+C(ρ−2 − 1)

(
npmax

√
logn
L

+
npmax logn

L

)
.

We can now use the relation established in Lei et al., 2015, Lemma
2.1, and an immediate adaptation of Lemma 16 to conclude as in
Theorem 8.

4.4.2 Iteratively imputing the missing entries

When the number of missing nodes is important, filling missing en-
tries with zero can lead to a huge bias and hence poor clustering
performances. In order to reduce the bias we propose an alternative
way of imputing the missing values (outlined as Algorithm 7) based
on the fact that each adjacency matrix is a noisy realization of a struc-
tured matrix.

At iteration t, given an initial estimate ÛtK ∈ Rn×K of the common
subspace we can estimate the membership matrix Ẑt by applying k-
means on ÛtK. Then, we can estimate the connectivity matrix Π̂(l),t

for each l as

Π̂(l),t = ((Ẑt)T Ẑt)−1(Ẑt)TA(l),tẐt((Ẑt)T Ẑt)−1. (4.4.1)

Given Ẑt and Π̂(l),t we estimate the rows and columns corresponding
to missing nodes. Indeed, the connectivity profile of a node i in layer
l is given by the ith row of ẐtΠ̂(l),t(Ẑt)T . By replacing the rows and
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columns of missing nodes by their estimated profiles, and leaving the
value of observed nodes unchanged, we obtain the updated imputed
matrix A(l),t+1. Applying spectral clustering on L−1

∑
lA

(l),t+1 then
leads to an updated estimate Ût+1K of the common subspace. The pro-
cedure can be repeated using Ût+1K and A(l),t+1, thus iteratively im-
puting the missing values in order to obtain “completed” adjacency
matrices that share the same K rank structure across layers. In the
worst case, the complexity of the algorithm run with T iterations is
O((K+ L)n2T + LKnT).

Similar iterative imputation methods have been studied in the con-
text of principal component analysis, see for e.g., Zhang et al., 2022;
Zhu et al., 2019. In our experiments, Algorithm 7 is seen to perform

Algorithm 7 Sum of adjacency matrices with missing entries filled
iteratively

Input: Number of communities K; Jl and AJl ∈ Rn×n for each l;
initial estimate of the common subspace Û0K ∈ Rn×K (with
orthonormal columns) obtained from Algorithm 6; number of
iterations T .

1: Initialize t = 0 and A(l),0 = AJl for all l.
2: repeat
3: Given ÛtK, estimate the membership matrix Ẑt and the con-

nectivity parameters Π̂(l),t for all l by using (4.4.1).
4: For each l, replace rows (and corresponding columns) of A(l)

corresponding to a missing node i by the ith row of ẐtΠ̂(l),tẐt
T

to form A(l),t+1.
5: Compute the eigenvector matrix Ût+1K = [ut+11 ut+12 · · · ut+1K ]

associated with the K largest (in absolute order) eigenvalues of
L−1

∑
lA

(l),t+1. Update t← t+ 1.
6: until t ⩽ T
7: Apply K-means on ÛTK to get a partition of N.

Output: A partition of the nodes N = ∪Ki=1Ci.

significantly better than other methods when ρ decreases. While we
do not currently have any statistical performance guarantee for Algo-
rithm 7, establishing this is an interesting direction for future work.

4.5 intermediate fusion methods : olmf estimator

Orthogonal Linked Matrix Factorization (OLMF) is a clustering method
for multilayer graphs that originated in the work of Tang et al., 2009

in the complete data setup, and was later analysed in Paul et al., 2020.
It shows good performance in various settings and outperforms spec-
tral clustering when the multilayer network contains homophilic and
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heterophilic communities (see the numerical experiments in Paul et
al., 2020).

4.5.1 The complete data setting

In the complete data setting, the OLMF estimator is a solution of the
following optimization problem

(Q̂, B̂(1), . . . , B̂(L)) ∈ argmin
QTQ=Ik
B(1),...,B(L)

∑
l

||A(l) −QB(l)QT ||2F, (4.5.1)

where Q ∈ Rn×K, B(l) ∈ RK×K. Note that there is no constraint on
the values taken by the entries of B(l).

A little algebra (see Paul et al., 2020) shows that the optimization
problem (4.5.1) is equivalent to

Q̂ ∈ argmax
QTQ=Ik

∑
l

||QTA(l)Q||2F, B̂(l) = Q̂TA(l)Q̂ (4.5.2)

for l = 1, . . . ,L. The OLMF estimator can be computed with a gradient
descent on the Stiefel manifold (see Paul et al., 2020 and supplemen-
tary material therein). The community estimation is then obtained by
applying K-means on the rows of Q̂.

4.5.2 Extension to the missing nodes setting

We now present an extension of the OLMF estimator to the setting
of missing nodes. By replacing the matrices A(l), Q in the objective
function in (4.5.1) with AJl ∈ Rn×n, QJl ∈ Rn×K, we end up with
the following modification for the incomplete setting

(Q̂, B̂(1), . . . , B̂(L)) ∈ argmin
QTQ=Ik
B(1),...,B(l)

∑
l

||AJl −QJlB
(l)QTJl ||

2
F. (4.5.3)

In our experiments, we employ a BFGS algorithm for solving (4.5.3).
The worst-case complexity of the algorithm is O(LK(n2 + Kn)). De-
noting the objective function in (4.5.2) by F, its gradients are given
by

∂F

∂Q
= −2

∑
l

(AJl −QJlB
(l)QTJl)QJlB

(l),

∂F

∂B(l)
= −QTJl(AJl −QJlB

(l)QTJl)QJl .

We relax the constraint that the gradient remains on the Stiefel man-
ifold of n × k matrices, and initialize the parameters using Algo-
rithm 6.
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The optimization problem in (4.5.2) can be motivated via the miss-
ing nodes MLSBM as follows. If we replace the noisy realization AJl
with (ZΠ(l)ZT )⊙Ω(l) then one can show (under some conditions)
that the solution Q̂ of (4.5.3) has the same column span as the ground
truth Z ∈Mn,K. This is shown formally in the following proposition.

Proposition 2. Assume that Π(l) is full rank for each l, and that for each
l, l ′ the sets Jl ∩ Jl ′ intersect all communities. Then if AJl = (ZΠ(l)ZT )⊙
Ω(l), it holds that the solution of (4.5.3) is given by Q̂ = Z(ZTZ)−1/2

and B̂(l) = (ZTZ)1/2Π(l)(ZTZ)1/2 and is unique up to an orthogonal
transformation. Moreover if i, j belong to the same community, then Q̂i∗ =

Q̂j∗.

The matrix E(A(l)) can be considered as a slight perturbation of
ZΠ(l)ZT since the former has zeros on the diagonal. Thus the propo-
sition shows that when there is no noise, the column-span of Q̂ (the
solution of (4.5.3)) is the same as the ground truth partition Z.

4.6 numerical experiments

4.6.1 Synthetic data

We now describe simulation results when the multilayer graph is gen-
erated from the missing nodes MLSBM. The Normalized Mutual Infor-
mation (NMI) criterion is used to compare the estimated community
to the ground truth partition. It is an information theoretic measure of
similarity taking values in [0, 1], with 1 denoting a perfect match, and
0 denoting completely independent partitions. Nodes that are not ob-
served at least once are removed. The diagonal (resp. off-diagonal) en-
tries of the connectivity matrices are generated uniformly at random
over [0.18, 0.19] (resp. 0.7 ∗ [0.18, 0.19]). The ground truth partition is
generated from a multinomial law with parameters 1/K. While K = 3

is fixed throughout, the parameters n, ρ and L are varied suitably. The
average NMI is reported over 20 Monte Carlo trials. As shorthand, we
denote Alg. 5 by k-pod, Alg. 6 by sumAdj0, Alg. 7 by sumAdjIter, and
(4.5.3) by OLMFm.

Figure 12 shows that sumAdj0 gives good results unless ρ is too
small. Then, the performance of this method decreases quickly. This
suggests that there is a threshold involving ρ and the difference be-
tween intra and inter connectivity parameters. Figure 14 supports this
claim. When ρ is small, the performance of sumAdj0 doesn’t improve
when n increases. So even if the separation between communities im-
proves, the intra and inter connectivity parameters remain the same
suggesting a link between these parameters and ρ.

When L increases (see Figs. 12 and 13), the performance of all meth-
ods improves. However, performance of k-pod improves less quickly
than other methods. This is expected since contrary to other methods,
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k-pod relies more on the quality of each individual layer. OLMFm and
sumAdjIter exhibit better performance than others in the challeng-
ing situation when ρ is small, and perform as well as the others when
ρ ≈ 1. They perform significantly better than k-pod, especially when
L is large.

Figure 12: NMI vs ρ for different values of L.

Figure 13: NMI vs L for different values of ρ.

4.6.2 MIT Reality Mining dataset

This dataset records interactions (measured by cell phones activities)
between 96 students and staff at MIT in the 2004-05 school year (see
Eagle et al., 2006). We used the dataset as provided by the R package
‘GreedySTBM’. As in Han et al., 2015 we removed the first and last
layers, then discretized the time into one week intervals. The number
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Figure 14: NMI vs n for different values of ρ.

of times two persons had an interaction during the week is not con-
served in order to have a simple undirected graph corresponding to
each layer. In total we obtained 32 layers. For different values of ρ, we
randomly removed nodes in each layer of the multilayer network. The
average NMI over 50 Monte Carlo trials is reported in Table 2 for our
methods. The ground truth partition here is taken to be that obtained
from sumAdj0 when ρ = 1. We disregarded k-pod because even

ρ sumAdj0 OLMFm sumAdjIter

1 1.00 1.00 1.00

0.9 0.99 0.96 0.99

0.8 0.97 0.86 0.97

0.7 0.96 0.93 0.96

0.6 0.94 0.79 0.94

0.5 0.89 0.91 0.90

0.4 0.76 0.73 0.78

0.3 0.56 0.57 0.62

0.2 0.26 0.41 0.36

0.1 0.09 0.10 0.11

Table 2: NMI vs ρ for MIT Reality Mining dataset.

when ρ = 1, its performance was disappointing and very sensitive to
the initialization. This is not very surprising since this method works
only if each layer is informative enough while we have a multilayer
network where individual layers can be very sparse.

The performance of the other three methods studied are quite sim-
ilar when ρ is not too small (ρ ⩾ 0.4). However, the performance
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of OLMFm seems to be quite sensitive to initialization since for ρ ∈
{0.6, 0.8} its performance is worse than sumAdj0 and sumAdjIter. Even
if we remove half of the nodes in each layer we can still approximately
recover the partition.

4.6.3 Malaria parasite genes network

The dataset was constituted by Larremore et al., 2013 to study the
var genes parasite Plasmodium falciparum involved in Malaria. The
nodes of the dataset correspond to 307 different amino acid sequences
and each of the 9 layers corresponds to a highly variable region
(HVR). Two nodes are linked in a given layer if there is a common
block sequence between the corresponding amino acid sequences within
the HVR associated to the layer. The analysis in Larremore et al., 2013

and Jing et al., 2021 shows that the first six layers share the same
community structure with K = 4. Hence we restrict our study to the
first six layers with K = 4. We use the same procedure as before
to delete nodes and to select the ground truth partition. k-pod was
disregarded for the same reason as the previous experiment. As ρ de-

ρ sumAdj0 OLMFm sumAdjIter

1 1.00 0.99 1.00

0.9 0.75 0.75 0.72

0.8 0.63 0.62 0.58

0.7 0.47 0.49 0.47

0.6 0.32 0.37 0.34

0.5 0.22 0.20 0.26

0.4 0.13 0.07 0.16

Table 3: NMI vs ρ for Malaria parasite genes network.

creases, the clustering performance decreases rapidly due to a weak
separation between the clusters.

4.7 possible extensions and concluding remarks

4.7.1 Extension of IR-LS to the multilayer setting

In this section, we will describe how to extend the algorithm designed
for clustering the CSBM to the multilayer graph with missing nodes
setting.

The principle of the method is similar to the one exposed in Sec-
tion 3.3. Instead of having Gaussian covariates, we have graph side in-
formation given by the other layers. Consequently, we need to change
the criterion used to refine the partition at each step. But this is quite
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straightforward, it is sufficient to take the sum of the least square cri-
terion used for individual SBM in Algorithm 1. Since a node i may not
appear in each layer, we should disregard the layer were i is missing
since these layers doesn’t provide any information about the commu-
nity i belong to.

Algorithm 8 Iterative Refinement for MLSBM (IR-MLSBM)

Input: Adjacency matrices A(l) ∈ Rn×n for l ⩽ L and a initial
estimate of the latent partition Z(0) ∈ {0, 1}n×K.

1: for 0 ⩽ t ⩽ T − 1 do
2: Given Z(t), estimate the model parameters: n(t)

k = |C
(t)
k |,

W(t) = Z(t)(D(t))−1 where D(t) = diag(n(t)
k )k∈[K], Π(l,t) =

W(t)⊤A(l)W(t) for all l ⩽ L.
3: Refine the partition by solving for each i ∈ [n]

z
(t+1)
i = arg min

k

∑
l⩽L

||(A
(l)
i: W

(t) −Π
(l,t)
k: )

√
Σ
(l,t)
k ||21i∈Jl

where

Σ
(l,t)
k =


diag(

n
(t)

k ′

Π
(l,t)
kk ′

)k ′∈[K] (IR-LS’)

mink ′ n
(t)

k ′

maxk ′ ,k ′′ Π
(l,t)
k ′k ′′

IK (sIR-LS’)

n
K(p(l,t)−q(l,t))

log(p
(l,t)(1−q(l,t))

q(l,t)(1−p(l,t))
)IK (IR-LSS’)

with p(l,t) = K−1
∑
k∈[K]Π

(l,t)
kk and q(l,t) = (K2 −

K)−1
∑
k̸=k ′∈[K]Π

(l,t)
kk ′ .

4: Form the matrices Z(t+1) from z(t+1).
5: end for

Output: A partition of the nodes Z(T).

This algorithm can be thought as an intermediate fusion method.
But contrary to OLMF that optimizes on the set of orthogonal matrices
of rank K, Algorithm 8 optimize directly on the discrete set Mn,K.

We have shown in Chapter 3 that under the SBM, the misclustering
rate associated with the output of Algorithm 1 decreases exponen-
tially in npmax (up to a constant factor). So it is natural to conjecture
that under the MLSBM the signal contained in each layer will add up
and we would obtain a convergence rate of order e−Θ(Lnpmax). When
we delete some node with probability ρ, in average each node will
appear in ρL layers and will have an average degree of order ρnpmax
instead of npmax. This leads to the following conjecture.
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Conjecture 1. Under the MLSBM with missing nodes, if ρ2Lnpmax →∞
and L is large enough, the output Z(T) of Algorithm 8 initialized with a
estimate Z(0) such that r(Z(0),Z) = O(1/K) satisfies

r(Z(T),Z) ⩽ e−Θ(ρ2Lnpmax).

To prove this conjecture one could use the same proof techniques
as used in Chapter 3. We believe that the adaptation is quite straight-
forward, but requires some effort to be presented with all the details.
We leave that for further work.

However, the preliminary numerical experiments results presented
in Figure 15 are not very encouraging. We considered a similar set-
ting as in Section 4.6.1: L = 3,K = 3, ρ = 0.9 and the connectivity
matrices are the diagonal (resp. off-diagonal) entries of the connectiv-
ity matrices are generated uniformly at random over [0.18, 0.19] (resp.
0.7 ∗ [0.18, 0.19]). We initialized Algorithm 8 with sumAdj0. The perfor-
mances are averaged over 20 Monte-Carlo simulations. Contrary to
our expectation, the performance of the clustering slightly decreases
after using IR-MLSBM.
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Figure 15: NMI for varying n with ρ = 0.9.

4.7.2 Other research direction

We assumed for simplicity that the nodes are missing under a Bernoulli
sampling scheme, but other missing patterns could be considered.
Another important direction would be to relax the strong condition
imposed by MLSBM that all layers share the same common partition.
For example, it would be more realistic to assume that the partition
of networks evolving over time also evolves slowly. It would also be
interesting to study the case where missing values are missing not at
random (MNAR). In this case, the positions where there is a missing
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value could contain information about the underlying communities
and hence be considered as side information.

4.8 additional proofs

4.8.1 Auxiliary Lemmas

We first recall the standard Chernoff bound for sum of independent
Bernoulli random variables.

Lemma 14. Under the assumptions of Theorem 8, with probability at least
1−O(KL/n2), it holds for each k = 1, . . . ,K and l = 1, . . . ,⩽ L that

ρ

2
nk ⩽ nk,Jl ⩽ 2ρnk.

Proof. Recall that nk,Jl =
∑
i∈Ck

1i∈Jl is a sum of nk independent
Bernoulli random variables with parameter ρ. By applying Lemma
32 with δ = 1/2 we get

nk,Jl ⩾
ρ

2
nk

and
nk,Jl ⩽ 2nk

with probability at least 1 −O(1/n2), provided that nkρ ⩾ C logn
for a constant C large enough as assumed in Theorem 8. The lemma
follows from a union bound.

Lemma 15. Let X be an n × n symmetric matrix whose entries Xij are
independent centered random variables. Then there exists for any 0 < ϵ ⩽
1/2 a universal constant cϵ such that for every t ⩾ 0

P(||X|| ⩾ 2(1+ ϵ)σ̃+ t) ⩽ exp
(
−
t2

c̃ϵσ̃∗

)
where σ̃ = maxi

√∑
jE(X2ij) and σ̃∗ = maxi,jE||Xij||∞.

Proof. See Bandeira et al., 2016, Corollary 3.12 and Remark 3.13.

Lemma 16. LetA ∈ Rn×n be an adjacency matrix generated by a SBM(Z,Π).
Denote λK to be the Kth largest singular value of P = ZΠZT . If λK >

2||A− E(A)||, then with probability at least 1−O(n−2)

||Û−UO||F ⩽ C
√
K

√
max(npmax, logn)

λK

where Û is the matrix formed by the first K left singular vectors of A, U =

Z(ZTZ)1/2 and O is the orthogonal matrix that aligns Û and U.
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Proof. By Remark 3.13 in Bandeira et al., 2016 we get that

||A− E(A)|| ⩽ C
√

max(npmax, logn)

with probability at least 1−O(n−2). Moreover, since Û and UO are
at most rank K matrices we have

||Û−UO||F ⩽
√
2K||Û−UO||.

Wedin’s theorem (see Wedin, 1972) implies that

||Û−UO|| ⩽
||A− E(A)||

δ
(4.8.1)

where δ := |λK(A) − λK+1(E(A))| represents the spectral gap. By
Weyl’s inequality,

|λK+1(E(A)) − λK+1(ZΠZ
T )| ⩽ ||E(A) −ZΠZT ||.

Since E(A)−ZΠZT is a diagonal matrix, its spectral norm is bounded
by its largest coefficient that is bounded by pmax. Moreover since
λK+1(ZΠZ

T ) = 0 we get λK+1(E(A)) ⩽ pmax. The same argument
can be used to show that λK(E(A)) ⩾ λK(ZΠZT ) − pmax.

Weyl’s inequality also implies that

|λK(E(A)) − λK(A)| ⩽ ||A− E(A)||.

Thus

λK(A) ⩾ λK(E(A)) − ||A− E(A)||

⩾ λK(ZΠZ
T ) − pmax − ||A− E(A)||

⩾
1

2
λK(ZΠZ

T ) − pmax.

The last inequality follows from the assumption that λK(ZΠZT ) ⩾
2||A − E(A)||. Since pmax ⩽ ϵ(n)λK(ZΠZ

T ) where ϵ(n) → 0 when
n→∞, λK(A) ⩾ cλK(ZΠZT ) and then δ ⩾ cλK(ZΠZT ). Therefore the
concentration bound stated at the beginning of the proof and (4.8.1)
implies

||Û−UO||F ⩽
√
2K

||A− E(A)||

δ
⩽ C
√
K

√
max(npmax, logn)

λK

with probability at least 1−O(n−2).

Lemma 17. We have λK(ZΠZT ) ⩾ nminλK(Π).

Proof. Let µ1 ⩾ µ2 ⩾ · · · ⩾ µK be the K non-zero eigenvalues of ZΠZT .
By the variational characterization of eigenvalues we have for all k =

1, . . . ,K
µk(ZΠZ

T ) = min
V⊂Gn−k+1

max
x∈V

||x||=1

xTZΠZTx (4.8.2)
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where Gn−k+1 denotes the set of n− k+ 1 dimensional subset of Rn.
Observe that ker(ZT ) = Im(Z)⊥. An element x ∈ ker(ZT ) cannot be
a solution because ZΠZT is a rank K matrix and thus µk(ZΠZT ) ̸= 0,
so for k ⩽ K the optimization problem (4.8.2) is equivalent to

µk(ZΠZ
T ) = min

V⊂Gn−k+1
max

x∈V∩Im(Z)
||x||=1

xTZΠZTx. (4.8.3)

It implies in particular that any eigenvector of ZΠZT associated with
µk belongs to Im(Z), so it has a block structure. Let v be an eigen-
vector associated with µk(ZΠZT ) for 1 ⩽ k ⩽ K. Then v = Zu where
u ∈ RK. In particular ZΠZTv = Zw where w = ΠZTZu. Thus

µ2k(ZΠZ
T ) = ||ZΠZTv||2 ⩾ nmin||w||

2

⩾ nminλ
2
K(Π)||Z

TZu||2

⩾ n2minλ
2
K(Π)||v||

2

because the least singular value of Z is
√
nmin. Clearly, this in partic-

ular implies that λK(ZΠZT ) ⩾ nminλK(Π).

4.8.2 Comparison between misclustering bound under MLSBM in the com-
plete setting

Here we compare existing bounds for the misclustering rate under
the MLSBM in the complete data setting. In order to simplify the
comparison between the existing bounds, we will assume that K is
a constant, the communities are well balanced and p(l)max ≈ pmax for
each l.

• Co-regularized spectral clustering. This algorithm was intro-
duced by Kumar et al., 2011. It is an intermediate fusion method
that aims to find the best set of eigenvectors that simultane-
ously approximate the set of eigenvectors associated with each
individual layer. It was shown later by Paul et al., 2020 that if
Lnpmax ⩾ C logn and Π(l) is full rank for all l, then with high
probability (w.h.p)

rcoreg = O

(√
logn
Lnpmax

)
.

• OLMF. This estimator was discussed earlier in Section 4.5.1. It
was shown by Paul et al., 2020 that if npmax ⩾ C logn and at
least one of the matrices Π(l) is full rank then w.h.p.

rOLMF = O

(
1

√
npmax

max

{
1,

(logn)2+ϵ
√

logL
L1/4

})
.
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• Sum of adjacency matrices. It was shown by Paul et al., 2020

that if Lnpmax ⩾ logn and λK(
∑
lΠ

(l)) ≈ Lpmax then w.h.p.

rsum = O

(
logn
Lnpmax

)
.

Bhattacharyya et al., 2018 showed that if Lnpmax ⩾ logn and
λK(

∑
lΠ

(l)) ≈ LλK(Π(1)) then w.h.p.

rsum = O

(
1√

Lnpmax

)
.

The condition Lnpmax ⩾ logn is not stated in Bhattacharyya
et al., 2018 and is only assumed here for simplification. This
last bound is better than the former in the sparse case when
Lnpmax ≈ logn. But when npmax ≫ logn2 the first bound is
sharper.

• Bias adjusted sum of the squared adjacency matrices. Sum of
adjacency matrices performs badly when some layers are asso-
ciative and other disassociative. Taking the sum of the square
of adjacency matrices instead permits us to overcome this is-
sue. However the diagonal entries of these squared matrices
introduce bias, so they are often removed. More involved debi-
asing strategies have also been considered by Zhang et al., 2022

and Giraud et al., 2019. Assume L = O(n). In the sparse case
when

√
Lnpmax ⩾ C

√
logn and npmax = O(1), Lei et al., 2022

showed that w.h.p.

rsq = O

(
1

n
+

logn
L(npmax)2

)
.

If npmax ⩾ C
√

logn they showed that w.h.p.

rsq = O

(
logn√
Lnpmax

)
.

This method was also analyzed by Bhattacharyya et al., 2020.
They showed that if Lnpmax ⩾ C logn then w.h.p.

rsq = O

(
1

(Lnpmax)1/2

)
.



5
M I N I M A X O P T I M A L C L U S T E R I N G O F
H I G H - D I M E N S I O N A L B I PA RT I T E G R A P H S

This chapter is based on Braun et al., 2022. We show that a similar it-
erative refinement algorithm as the one used for clustering CSBM can
be used to cluster bipartite graphs in the high-dimensional regime
where the number of columns n2 is larger than the number of rows
n1. Our work extends the work of Ndaoud et al., 2022 in several ways.
First our algorithm can be applied to a more general bipartite graph
model contrary to the one proposed by Ndaoud et al., 2022 that is
limited to a particular case where the columns (resp. rows) can be
partitioned into L (resp. K) communities with K = L = 2. Secondly
we derive a minimax lower bound on the misclustering on the mis-
clustering error when K = L = 2, which matches the corresponding
upper bound up to a constant factor.

In Section 5.1 we introduce the problem and discuss the related
work. The statistical framework is presented in Section 5.2 and the al-
gorithms in Section 5.3. In Section 5.4 we analyze the spectral method
used for initialization. In Section 5.5 we analyze the GPM algorithm
used to refine the estimate of the partition. In Section 5.6 we derive
a minimax lower bound on the misclustering error. Experimental re-
sults are presented in Section 5.7 and the additional proofs details are
gathered in Section 5.8.

5.1 introduction

The interactions between objects of two different types can be natu-
rally encoded as a bipartite graph where nodes correspond to objects
and edges to the links between the objects of different type. One can
find examples of such data in various fields, e.g., interactions between
customers and products in e-commerce (Huang et al., 2007), interac-
tions between plants and pollinators (Young et al., 2021), investors
and assets networks (Squartini et al., 2017), judges vote predictions
(Guimerà et al., 2011) and constraint satisfaction problems (Feldman
et al., 2015).

Clustering is one of the most important analysis tasks on bipar-
tite graphs aimed at gathering nodes that have similar connectivity
profiles. To this end, several methods have been proposed in the
literature, e.g., convex optimization approaches (Lim et al., 2015),
spectral methods (Zhou et al., 2019), modularity function maximiza-
tion (Beckett, 2016), pseudo-likelihood (Zhou et al., 2020) and varia-
tional approaches (Keribin et al., 2015). The performance of the algo-

97
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rithms are generally evaluated under the Bipartite Stochastic Block
Model (BiSBM), a variant of the SBM, where the partitions of the rows
and the columns are decoupled. In particular, edges are independent
Bernoulli random variables with parameters depending only on the
communities of the nodes.

When the number of rows n1 (corresponding to type I objects) and
the number of columns n2 (corresponding to type II objects) of the
adjacency matrix associated to a bipartite graph are of the same order,
the BiSBM behaves similarly to the SBM. However, in the high dimen-
sional setting where n2 ≫ n1, classical methods that are applicable
when n1 is of the same order as n2 can fail. In particular, when the
bipartite graph is very sparse, it becomes impossible to consistently
estimate the latent partition of the columns, whereas it is still possi-
ble to estimate the latent partition of the rows. Hence, methods based
on estimating the latent partitions of both rows and columns will
necessarily fail in the high dimensional regime when the bipartite
graph is very sparse. However, the high dimensional regime appears
in many applications, e.g. hypergraphs where the number of columns
corresponds to the number of hyperedges, or in e-commerce where
the number of customers could be much smaller than the number of
products (or vice-versa). Hence it is important to understand how to
design statistically optimal algorithms in this regime.

Recently, the work of Ndaoud et al., 2022 improved the state-of-
the-art conditions for exact recovery of the latent partition of the
rows under the BiSBM when n2 ≳ n1 logn1. Unfortunately, their
method, which can be understood as a generalized power method,
uses a centering argument that only works in the special case where
there are K = 2 latent communities for the rows and L = 2 latent com-
munities for the columns. Moreover, they only consider a Symmetric
BiSBM (SBiSBM) where the edge probabilities can take two values (see
Section 5.2). It is not clear how their method can be extended to the
more general setting where K ̸= L ⩾ 2, and with more general con-
nectivity matrices. To overcome this limitation, we propose a new
algorithm – also based on the generalized power method – that can
be applied to general BiSBMs, and has similar theoretical guarantees
when specialized to the setting of Ndaoud et al., 2022.

5.1.1 Main contributions

Our results can be summarized as follows.

• We present a novel iterative clustering method that can be ap-
plied to general BiSBMs, unlike the one proposed by Ndaoud
et al., 2022. We analyze our algorithm under the BiSBM with-
out restrictions on K and L, and derive an upper bound on the
misclustering error. In particular, we show that our algorithm
achieves exact recovery when the sparsity level pmax of the
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graph satisfies p2max = Ω(
logn1
n1n2

) for fixed K,L. This is the same
sparsity regime obtained in Ndaoud et al., 2022 for the SBiSBM

with K = L = 2. We remark that our bounds are non-asymptotic
and showcase the full dependence on K,L.

• We derive a minimax lower bound for the misclustering error
in the special case of an SBiSBM with L = K = 2 that matches
the corresponding upper bound of our algorithm, and is the
first such lower bound for this problem. It completes the work
of Ndaoud et al., 2022 which only shows that an oracle version
of their algorithm fails to achieve exact recovery when p2max ⩽

ϵ
logn1
n1n2

where ϵ is a small enough constant.

• As part of our analysis, we derive a concentration inequality for
matrices with independent centered Binomial entries (see part
3 of Lemma 36) that could be of independent interest.

Our findings are complemented by numerical experiments on syn-
thetic data.

5.1.2 Related work

A clustering strategy based on the MAP estimate for discrete weighted
bipartite graphs that can encompass the BiSBM as a special case has
recently been proposed by Jo et al., 2021. However, their method re-
quires estimating the latent partition of the columns and hence re-
quires the sparsity level of the graph pmax to satisfy pmax ≳ logn2

n1
.

In contrast, we need a far weaker condition pmax ≫ 1√
n1n2

in the
high dimensional regime. This highlights one of the difficulties we
face in the high dimensional regime – while it is impossible to cor-
rectly estimate all the model parameters, it is still possible to exactly
recover the row partition. A similar phenomenon is known for Gaus-
sian mixture models, see Ndaoud, 2018.

Our algorithm design is based on the GPM which has been applied
successfully in various statistical learning problems in recent years.
This includes, e.g., group synchronization (Boumal, 2016), joint align-
ment from pairwise difference (Chen et al., 2018), graph matching
(Onaran et al., 2017), low rank matrix recovery (Chi et al., 2019) and
SBM (Wang et al., 2021).

The work of Ndaoud et al., 2022 which we extend in the present
paper is also based on the GPM. However, there are significant dif-
ferences between the algorithms. We do not need the centering step
used in (Ndaoud et al., 2022) and since we encode the community
memberships in a n1 × K matrix (instead of using the sign), our al-
gorithm can be applied when K > 2. Our algorithm is closer to the
one proposed by Wang et al., 2021 for clustering graphs under the
SBM. In contrast to Wang et al., 2021, we do not add any constraints
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on the columns, and instead of solving a linear assignment problem,
we directly project on the extreme points of the unit simplex.

The GPM is also related to alternating optimization, a common strat-
egy used to solve non-convex optimization problems in an iterative
way. For example, EM-type algorithms (Dempster et al., 1977) have
been used since decades. In general, these methods are not guaran-
teed to achieve a global optimum. However, a recent line of research
has show that under various statistical models, alternating optimiza-
tion can actually lead to consistent estimators (Lu et al., 2016; Chen
et al., 2019; Gao et al., 2019; Han et al., 2020; Chen et al., 2021; Braun
et al., 2021a). Our proof techniques are based on the work of Braun
et al., 2021a which itself is based on a general framework developed
by Gao et al., 2019.

5.2 the statistical framework

The BiSBM is defined by the following parameters.

• A set of nodes of type I, N1 = [n1], and a set of nodes of type II,
N2 = [n2].

• A partition of N1 into K communities C1, . . . ,CK and a partition
of N2 into L communities C ′

1, . . . ,C ′
L.

• Membership matrices Z1 ∈Mn1,K and Z2 ∈Mn2,L where Mn,K

denotes the class of membership matrices with n nodes and K
communities. Each membership matrix Z1 ∈Mn1,K (resp. Z2 ∈
Mn2,L) can be associated bijectively with a partition function
z : [n]→ [K] (resp. z ′ : [n]→ [L]) such that z(i) = zi = k where k
is the unique column index satisfying (Z1)ik = 1 (resp. (Z2)ik =

1). To each matrix Z1 ∈ Mn1,K we can associate a matrix W by
normalizing the columns of Z1 in the ℓ1 norm: W = Z1D

−1

where D = Z⊤
1 1n1 . This implies that W⊤Z1 = IK = Z⊤

1W.

• A connectivity matrix of probabilities between communities

Π = (πkk ′)k∈[K],k ′∈[L] ∈ [0, 1]K×L.

Let us write P = (pij)i,j∈[n] := Z1Π(Z2)
⊤ ∈ [0, 1]n1×n2 . A graph

G is distributed according to BiSBM(Z1,Z2,Π) if the entries of the
corresponding bipartite adjacency matrix A are generated by

Aij
ind.
∼ B(pij), i ∈ [n1], j ∈ [n2],

where B(p) denotes a Bernoulli distribution with parameter p. Hence
the probability that two nodes are connected depends only on their
community memberships. We will frequently use the notation E for
the centered noise matrix defined as Eij = Aij − pij, and denote the
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maximum entry of P by pmax = maxi,j pij. The latter can be inter-
preted as the sparsity level of the graph. We make the following as-
sumptions on the model.

Assumption A3 (Approximately balanced communities). The commu-
nities C1, . . . ,CK, (resp. C ′

1, . . . ,C ′
L) are approximately balanced, i.e., there

exists a constant α ⩾ 1 such that for all k ∈ [K] and l ∈ [L] we have

n1
αK

⩽ |Ck| ⩽
αn1
K

and
n2
αL

⩽
∣∣C ′
l

∣∣ ⩽ αn2
L

.

Assumption A4 (Full rank connectivity matrix). The smallest eigen-
value of ΠΠ⊤, denoted by λK(ΠΠ⊤), satisfies

λK(ΠΠ
⊤) ≳ p2max and

∥∥∥ΠΠ⊤
∥∥∥ ≲ p2max.

Assumption A5 (Diagonal dominance). There exist β > 0 and η ⩾ 1

such that for all k ′ ̸= k ∈ [K], we have

(ΠΠ⊤)kk −α
2(ΠΠ⊤)kk ′ ⩾ βp2max

and
(ΠΠ⊤)kk −

1

α2
(ΠΠ⊤)kk ′ ⩽ ηβp2max.

Remark 10. When all communities C ′
l have size equal to n2/L, the first

condition in Assumption A5 simplifies to (ΠΠ⊤)kk− (ΠΠ⊤)kk ′ ⩾ βp2max
and corresponds to a diagonal dominance assumption. The second condition
in Assumption A5 is useful to show that β is (up to a parameter η that could
depend on L as discussed in the remark below) the parameter that measures
the minimum difference between the diagonal and off-diagonal entries of
ΠΠ⊤.

symmetric bisbm . A particular case of interest is where L = K

and Π = (p− q)IK + q1K1⊤K where 1 ⩾ p > q ⩾ 0 and q = cp for
some constant 0 < c < 1. This model will be referred to as the SBiSBM,
denoted by SBiSBM(Z1,Z2,p,q). For K = 2 this corresponds to the
model analyzed in the work of Ndaoud et al., 2022. Since we now
have (for k ′ ̸= k)

(ΠΠ⊤)kk = p2 + (K− 1)q2 and (ΠΠ⊤)kk ′ = 2qp+ (K− 2)q2

the following observations are useful to note.

• We have (ΠΠ⊤)kk − (ΠΠ⊤)kk ′ = (p − q)2 ⩽ p2max, and also
(p− q)2 ⩾ (1− c)2p2max. Hence Assumption A5 is satisfied for
η = 1

(1−c)2
and β = (1− c)2 in the equal-size community case

(α = 1). Additionally, λK(ΠΠ⊤) = (1− c)pmax.

• In the unequal-size case, we need to show choices of β,η under
which Assumption A5 holds. To this end, note that

(ΠΠ⊤)kk −α
2(ΠΠ⊤)kk ′ = p2max((1− c)

2 − (α2 − 1)K),
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and

(ΠΠ⊤)kk −
1

α2
(ΠΠ⊤)kk ′ = p2max((1− c)

2 − (
1

α2
− 1)K)

⩽ p2max((1− c)
2 + (α2 − 1)K).

Hence if, for instance, α2 = 1+ (1−c)2

2K , we see that Assumption

A5 is satisfied for β =
(1−c)2

2 and η = 3.

Remark 11. One of the parameters β or η can scale with L as shown in
the following examples. Assume L is even and α = 1. Let us consider p =

(p1, . . . ,pL/2), q = (q1, . . . ,qL/2) where pl > ql for all l ⩽ L/2 and

Π =

(
p q

q p

)
∈ [0, 1]2×L.

Then

Lmax
l

(pl − ql)
2 ⩾ min

k̸=k ′
(ΠΠ⊤)kk − (ΠΠ⊤)kk ′

= ∥p− q∥2

⩾ Lmin
l

(pl − ql)
2,

hence β = Θ(L) and η = Θ(1). Let us define q ′ = (q ′
1,q ′

2,q3, . . . ,qL/2)
for q ′

1 = 0.5q1 and q ′
2 = 0.5q2 If we now consider

Π =

 p q

q p

q ′ p

 ∈ [0, 1]3×L.

where qi and pi are as before and q ′
1 ̸= q1, q ′

2 ̸= q2. Then it is easy to
check that maxk̸=k ′(ΠΠ⊤)kk − (ΠΠ⊤)kk ′ ⩽ Lp2max but

min
k̸=k ′

(ΠΠ⊤)kk − (ΠΠ⊤)kk ′ = (ΠΠ⊤)22 − (ΠΠ⊤)23 =
q21 + q

2
2

2

is independent of L. Hence β = Θ(1) and η = Θ(L).

Remark 12. As already mentioned in the introduction, we will focus in
this work on the regime where n2 ≫ n1 logn1 and

√
n1n2pmax ≳√

logn1. In this parameter regime there is no hope to accurately recover
Z2 because the columns of A are too sparse. Indeed, consider the setting
where

√
n1n2pmax ≍

√
logn1. Then in expectation, the sum of the en-

tries of each column is n1pmax ≍
√
n1 logn1
n2

→ 0. But by analogy to the
SBM, we would need a condition n1pmax →∞ in order to recover Z2. This
is actually a necessary condition obtained in a related setting by Jo et al.,
2021. While it is impossible to estimate Z2 in this sparsity regime, it is still
possible to accurately estimate Z1. We will focus on this problem from now
onwards.
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5.3 algorithm

5.3.1 Initialization with a spectral method

We can use a spectral method on the hollowed Gram matrix B to
obtain a first estimate of the partition Z1. This is similar to the algo-
rithm in Florescu et al., 2016; we only use a different rounding step so
the algorithm can be applied to general bipartite graphs with K > 2
communities, in contrast to Florescu et al., 2016.

Algorithm 9 Spectral method on H(AA⊤) (Spec)

Input: The number of communities K and the adjacency matrix A.

1: Form the diagonal hollowed Gram matrix B := H(AA⊤) where
H(X) = X− diag(X).

2: Compute the matrix U ∈ Rn1×K whose columns correspond to
the top K-eigenvectors of B.

3: Apply approximate (1+ ϵ̄) approximate k-means on the rows of
U and obtain a partition z(0) of [n1] into K communities.

Output: A partition of the nodes z(0).

computational complexity of spec. The cost for comput-
ing B is O(n1nnz(A)) and for U is1 O(n21K logn1). Applying the (1+

ϵ̄) approximate k-means has a complexity O(2(K/ϵ̄)
O(1)
n1K), see Ku-

mar et al., 2004. In practice, this operation is fast and the most costly
operation is the computation of Bwhich has complexityO(n21n2pmax),
since one can show that nnz(A) = O(n1n2pmax) with high probabil-
ity.

5.3.2 Iterative refinement with GPM

Our algorithm is based on the Generalized Power Method. In contrast
to the power method proposed recently by Ndaoud et al., 2022, we do
not require to center the adjacency matrix A and, instead of using the
sign to identify the communities, we project on Mn1,K. Consequently,
our algorithm can be applied to bipartite graphs with K > 2 and
K ̸= L while Ndaoud et al., 2022 require K = L = 2.

In the first step we form the diagonal hollowed Gram matrix B. This
is natural since in the parameter regimes we are interested in, there
is no hope to consistently estimate Z2. Then, we iteratively update
the current estimate of the partition Z(t)

1 by a row-wise projection of

1 The logn1 term comes from the number of iterations needed when using the power
method to compute the largest (or smallest) eigenvector of a given matrix.
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BZ
(t)
1 onto the extreme points of the unit simplex of RK denoted by

SK. The projection operator P : RK → SK is formally defined by

P(x) := arg min
y∈SK

∥x− y∥ for all x ∈ RK. (5.3.1)

This implies that (Z
(t+1)
1 )ik = 1 for the value of k that maximizes

Bi:Z
(t)
:k . Ties are broken arbitrarily.

Algorithm 10 Generalized Power Method (GPM)

Input: Number of communities K, adjacency matrix A, an estimate
of the row partition Ẑ(0)

1 and, number of iterations T .

1: Form the diagonal hollowed Gram matrix B := H(AA⊤) where
H(X) = X−diag(X) and computeW(0) = (Ẑ

(0)
1 )⊤(D(0))−1 where

D(0) = diag((Ẑ(0)
1 )⊤1n1).

2: for 0 ⩽ t ⩽ T do
3: Update the partition Z(t+1)

1 = P(BW(t)) where P is the opera-
tor in (5.3.1) applied row-wise.

4: Compute D(t+1) = diag((Z(t+1)
1 )⊤1n1). Then form W(t+1) =

(Z
(t+1)
1 )⊤(D(t+1))−1.

5: end for
Output: A partition of the nodes Z(T+1)

1 .

computational complexity of gpm. Computing B has a cost
O(n1nnz(A)), as mentioned earlier. For each t, the cost of computing
BW(t) is O(n21K) and the cost of the projection is O(Kn1). The cost
of computing D(t+1) and W(t+1) is O(Kn1). So the total cost over T
iterations is O(Tn21K) and doesn’t depend on n2.

Remark 13. The recent work of Wang et al., 2021 proposed a power method
for clustering under the SBM, but instead of using a projection on the simplex
as we did, they add an additional constraint on the column on Z so that each
cluster has the same size. They showed that computing this projection is
equivalent to solving a Linear Assignment Problem (LAP). But the cost of
solving this LAP is O(K2n1 logn1) whereas the cost of the projection on the
simplex is O(Kn1). Moreover, their algorithm requires to know in advance
the size of each cluster and it is not straightforward to extend their theoretical
guarantees to the approximately balanced community setting.

5.4 spectral initialization

We show that Algorithm 9 can recover an arbitrary large proportion of
community provided that the sparsity level pmax is sufficiently large,
and n2/n1 →∞ sufficiently fast, as n1 →∞.
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Proposition 3. Assume thatA ∼ BiSBM(Z1,Z2,Π) and Assumptions A3,
A4 are satisfied. For any 0 < ε < 1, suppose additionally that

n2
n1

≳ max(L logn1, log2 n2), p2max ⩾
KL logn1
εn1n2

, (5.4.1)

KL

logn1
= o(1),

(KL)3

n2
n1

logn1
= o(1) as n1 →∞. (5.4.2)

Then the output z(0) of Algorithm 9 satisfies with probability at least 1−
n−Ω(1) the bound r(z(0), z) ≲ Kε2.

Proof. First, we will control the noise
∥∥B− PP⊤

∥∥ using Lemma 36.
Note that the conditions in (5.4.1) imply the conditions on n1,n2 and
pmax in Lemma 36. Since H(·) is a linear operator and B = H(B), we
have the decomposition

B = H(PP⊤) +H(PE⊤) +H(EP⊤) +H(EE⊤),

which leads to the following bound by triangle inequality∥∥∥B− PP⊤
∥∥∥ ⩽

∥∥∥H(PE⊤) +H(EP⊤)
∥∥∥+ ∥∥∥H(EE⊤)

∥∥∥+ ∥∥∥H(PP⊤) − PP⊤
∥∥∥

⩽ 4 ∥EZ2∥
∥∥∥Π⊤Z⊤

1

∥∥∥+ ∥∥∥H(EE⊤)
∥∥∥+ ∥∥∥H(PP⊤) − PP⊤

∥∥∥ .

(5.4.3)

Now let us observe that∥∥∥H(PP⊤) − PP⊤
∥∥∥ =

∥∥∥H(Z1ΠZ
⊤
2 Z2Π

⊤Z⊤
1 ) −Z1ΠZ

⊤
2 Z2Π

⊤Z⊤
1

∥∥∥
=
∥∥∥diag(Z1ΠZ⊤

2 Z2Π
⊤Z⊤

1 )
∥∥∥

⩽
αn2
L

(Lp2max)

⩽ αn2p
2
max,

while, ∥∥∥Π⊤Z⊤
1

∥∥∥ ⩽ ∥Z1∥ ∥Π∥ ⩽
√
n1
K
∥Π∥F ⩽

√
n1Lpmax.

Using these bounds along with the bounds on ∥EZ2∥ and
∥∥H(EE⊤)

∥∥
from Lemma 36, and applying them in (5.4.3), it holds with probabil-
ity at least 1−n−Ω(1) that∥∥∥B− PP⊤

∥∥∥ ≲ max(logn1 +
√
n1n2pmax) +

√
n2n1p

1.5
max +n2p

2
max.

Let us denote by Û (resp. U) to be the matrix of top-K eigenvectors of
B (resp. PP⊤). Denoting λK(PP⊤) to be the Kth largest eigenvalue of
PP⊤, it is not difficult to verify that

λK(PP
⊤) ⩾

n2
L
λK(Z1)

2λK(Π)
2 ≳

n1n2p
2
max

KL
.
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Then by the Davis-Kahan Theorem (Yu et al., 2014), there exists an
orthogonal matrix Q ∈ RK×K such that

∥∥Û−UQ
∥∥ ≲

∥∥B− PP⊤
∥∥

λK(PP⊤)
≲
KL logn1
n1n2p2max

+
KL

√
n1n2pmax

+
KL

√
n2pmax

+
KL

n1
.

(5.4.4)

where we bounded the max operation by the sum. Now on account of
the conditions in (5.4.1) and (5.4.2), it is easily seen that KL logn1

n1n2p2max
≲ ε,

while the remaining three terms in the RHS of (5.4.4) are o(1) as
n1 → ∞. Finally, we conclude by using the same argument as in the
proof of Theorem 3.1 in Lei et al., 2015 to show that

r(ẑ, z) ≲
∥∥Û−UQ

∥∥2
F
≲ K

∥∥Û−UQ
∥∥2 ≲ Kε2.

Remark 14. As shown in Section 5.7, Spec has very good empirical perfor-
mance. This suggests that the previous proposition is far from being optimal
and doesn’t capture the true rate of convergence of this spectral method. Also
note that Proposition 3 gives a meaningful bound only when ε = O( 1√

K
).

5.5 analysis of gpm

Our analysis strategy is similar to the one recently considered by
Braun et al., 2021a for clustering under the contextual SBM, which
in turn is based on the framework recently developed by Gao et al.,
2019. There are however some additional technical difficulties due to
the fact that there are more dependencies in the noise since the ma-
trix B is a Gram matrix.

We will assume w.l.o.g. that π∗ the permutation that best aligns
z(0) with z is the identity, if not, then replace z by (π∗)−1(z). Hence
there is no label switching ambiguity in the community labels of z(t)

because they are determined from z(0).
First we will decompose the event “after one refinement step, the

node i will be incorrectly clustered given the current estimation of
the partition z(t) at time t" into an event independent of t, and events
that depend on how close z(t) is from z. Then we will analyze these
events separately. Finally, we will use these results to show that the
error contracts at each step.

5.5.1 Error decomposition

By definition, a node i is misclustered at step t+ 1 if there exists a
k ̸= zi ∈ [K] such that

Bi:W
(t)
:k ⩾ Bi:W

(t)
:zi . (5.5.1)
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By decomposing B as

B = H(PP⊤)︸ ︷︷ ︸
P̃

+H(EP⊤ + PE⊤ + EE⊤)︸ ︷︷ ︸
Ẽ

one can show that condition (5.5.1) is equivalent to

Ẽi:(W:zi −W:k) ⩽ −∆2(zi,k) + F
(t)
ik +G

(t)
ik (5.5.2)

where

∆2(zi,k) = P̃i:(W:zi −W:k),

F
(t)
ik = ⟨Ẽi:(W(t) −W), ezi − ek⟩,

and G(t)
ik = ⟨P̃i:(W(t) −W), ezi − ek⟩.

Here e1, . . . , eK denotes the canonical basis of RK. The terms F(t)ik
and G(t)

ik can be interpreted as error terms (due to W(t) ̸= W) while
∆2(zi,k) corresponds to the signal. Indeed, let us denote

Q = Π(Z⊤
2 Z2)Π

⊤.

Then we obtain PP⊤ = Z1QZ
⊤
1 which implies

∆2(zi,k) = P̃i:(W:zi −W:k) = Qzizi −Qzik − (PP⊤)ii(Wizi −Wik)

= (1−
K

n1
)Qzizi −Qzik.

We have for all k,k ′ ∈ [K] that

n2
αL

(ΠΠ⊤)kk ′ ⩽ Qkk ′ ⩽
αn2
L

(ΠΠ⊤)kk ′

which implies

n2
αL

(
(ΠΠ⊤)zizi −α

2(ΠΠ⊤)zik

)
⩽ ∆2(zi,k) ⩽

αn2
L

(
(ΠΠ⊤)zizi −

1

α2
(ΠΠ⊤)zik

)
for n1 large enough. By Assumption A5 this implies

β
n2p

2
max

αL
⩽ ∆2(zi,k) ⩽ ηβ

αn2p
2
max

L
. (5.5.3)

when n1 is large enough.

5.5.2 Oracle error

We want to show that the condition (5.5.2) cannot occur with high
probability. First we will show that this is indeed the case when we
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ignore the F and G error terms; the subsequent error will be referred
to as the oracle error

ξ(δ) =

n1∑
i=1

∑
k∈[K]\zi

∆2(zi,k)1Ωi,k(δ) for δ ∈ (0, 1)

where

Ωi,k(δ) =
{
Ẽi:(W:zi −W:k) ⩽ −(1− δ)∆2(zi,k)

}
.

Let us denote
∆min = min

a̸=b∈[K]
∆(a,b)

to be the minimal separation of the parameters associated with the
different communities. We will also denote by

∆̃2 :=
β2

12eLα3
n1n2p

2
max

KL
,

to be the approximate signal-to-noise ratio (SNR) associated with the
model.

In general the rate of decay of ξ(δ) leads to the convergence rate of
iterative refinement algorithms, hence it is important to control this
quantity by showing that the following condition is satisfied. Let us
define

τ(0) = ϵ ′δmin(1,β2)
n1∆

2
min

K

for a small enough constant ϵ ′ > 0. This parameter will be referred to
as the minimal error required for the initial estimate of our algorithm.

Condition C4 (oracle error). Assume that there exists δ ∈ (0, 1) such that

ξ(δ) ⩽
3

4
τ(0)

holds with probability at least 1− η1.

5.5.3 Contraction of the error at each step

Let
l(z, z ′) =

∑
i∈[n]

∆2(zi, z ′i)1{zi ̸=z ′i}

be a measure of the distance between two partitions z, z ′ ∈ [K]n. We
want to show that l(z(t), z) decreases until reaching the oracle error.
To this end, we will need to control the noise level. In particular, we
are going to show that the following two conditions are satisfied.

Condition C5 (F-error type). Assume that

max
{z(t):l(z,z(t))⩽τ(0)}

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆2(zi,b)l(z, z(t))
⩽
δ2

256

holds with probability at least 1− η2.
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Condition C6 (G-error type). Assume that

max
i∈[n]

max
b∈[K]\zi

|G
(t)
ib |

∆2(zi,b)
⩽
δ

4

holds uniformly on the event {z(t) : l(z, z(t)) ⩽ τ(0)} with probability at
least 1− η3 .

Under these conditions, we can show that the error contracts at
each step.

Theorem 11. Assume that l(z(0), z) ⩽ τ(0). Additionally assume that Con-
ditions C4, C5, and C6 hold. Then with probability at least 1−

∑3
i=1 ηi

l(z(t), z) ⩽ ξ(δ) +
1

8
l(z(t−1), z), ∀t ⩾ 1. (5.5.4)

In particular, we have for all t ≳ log(1/δ) that

l(z(t), z) ≲ ξ(δ) + τ(0)(1/8)t−Θ(log(1/δ)).

Proof. It is an immediate adaptation of Theorem 3.1 in Gao et al.,
2019. The last part can be derived in the same way as in Corollary 1

in Braun et al., 2021b.

5.5.4 Application to BiSBM

When applied to the BiSBM the previous theorem leads to the follow-
ing result.

Theorem 12. Assume that A ∼ BiSBM(Z1,Z2,Π), K2L ⩽ ∆̃2, ∆̃ → ∞,
(5.4.1) and (5.4.2) are satisfied. Then, under Assumption A3, A4 and A5, if
GPM is initialized with a z(0) such that

l(z, z(0)) ⩽ τ(0) = ϵ ′δmin(1,β2)
n1∆

2
min

K

for a small enough constant ϵ ′ > 0 and δ = 1
4ηα . Then with probability at

least 1−n−Ω(1)
1 we have for all t ≳ logn1

r(z(t), z) ⩽ exp(−(1− o(1))∆̃2).

In particular, if ∆̃2 > logn1, we can exactly recover Z1.

Corollary 2. Under the assumptions of Theorem 12, Spec returns an esti-
mate z(0) such that

l(z, z(0)) ⩽ ηβ
αn1n2p

2
max

L
r(z, z(0)) ≲ ηβK2ε2

n1∆
2
min

K

and hence satisfies l(z, z(0)) ⩽ τ(0) for ε = O(min(1,β2)
Kη

√
ηβ

).
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Remark 15. Specialized to the SBISBM case where K = 2 = L, q = cp for
some 0 < c < 1, the condition ∆̃2 = Ω(logn1) needed for exact recovery

in the above theorem is equivalent to the condition pmax = Ω(
√

logn1
n1n2

)

needed by Ndaoud et al., 2022. We will show in the next section that this
rate is optimal.

Remark 16. The condition n1n2p2max ≳ KL logn1 is needed because we
used the concentration inequality ||H(EE⊤)|| ≲ max(logn1,

√
n1n2pmax)

in Lemma 36. If this last condition could have been replaced by ||H(EE⊤)|| ≲√
n1n2pmax then we would only need the condition ∆̃ → ∞. This is the

principal step that needs to be improved in order to get more general weak
consistency guarantees. A possible way to obtain this tighter concentration
inequality would be to adapt the combinatorial method of Friedman et al.,
1989 similarly to what have been done to obtain a tight concentration in-
equality for similarity matrices formed from an hypergraph in Lee et al.,
2020.

Proof of Theorem 12. In order to apply Theorem 4, we need to show
that Conditions C4, C5 and C6 are satisfied.

oracle error . Let δ = 1
4ηα . We obtain by Lemma 19 (see Section

5.8) and Assumption A5 that

E(ξ(δ)) ⩽ αηβKn1
n2
L
p2maxe

−∆̃2 ≲
α4

β
K2L∆̃2e−∆̃

2

= e−(1−o(1))∆̃2

by assumptions on ∆̃ and KL. Then, by Markov inequality, we obtain

P
(
ξ(δ) ⩾ exp(∆̃)Eξ(δ)

)
⩽ exp(−∆̃).

Consequently we get

exp(∆̃)Eξ(δ) ⩽ exp(−(1− o(1))∆̃2)

and hence with probability at least 1− exp(−∆̃)

ξ(δ) ⩽ exp(−(1− o(1))∆̃2) ⩽
3

4
τ(0)

because exp(−(1 − o(1))∆̃2) = o(1) ≪ τ(0) = Ω(1) for n1 large
enough. This shows that Condition C4 is satisfied.

f-error term . W.h.p, for all z(t) such that l(z(t), z) ⩽ τ(0) we
have

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆2(zi,b)l(z, z(t))

⩽
∑
i

∥∥∥Ẽi:(W(t) −W)
∥∥∥2 max
b∈[K]\zi

∥ezi − eb∥
2

∆2(zi,b)l(z, z(t))

(by Cauchy-Schwartz)
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⩽
2
∥∥Ẽ(W(t) −W)

∥∥2
F

∆2minl(z
(t), z)

⩽ 2

∥∥Ẽ∥∥2 ∥∥W(t) −W
∥∥2
F

∆2minl(z
(t), z).

By Lemma 36, we have w.h.p.∥∥∥H(EE⊤)
∥∥∥ ≲

∥∥∥EE⊤ − E(EE⊤)
∥∥∥ ≲ max(logn1,

√
n1n2pmax)

and ∥∥∥EP⊤∥∥∥ ⩽ ∥EZ2∥
∥∥∥ΠZ⊤

1

∥∥∥ ≲

√
n1n2pmax

L
pmax

√
n1
K

= (
√
n1n2pmax)

√
n1pmax

KL
.

Since
∥∥Ẽ∥∥ ≲

∥∥H(EE⊤)
∥∥+ ∥∥EP⊤∥∥ we obtain

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆2(zi,b)l(z, z(t))

≲
max

(
log2 n1,n1n2p2max, (KL)−1n21n2p

3
max

)
K3l(z(t), z)

n31∆
6
min

≲ K2
max

(
log2 n1,n1n2p2max, (KL)−1n21n2p

3
max

)
n21∆

4
min

Kτ(0)

n1∆
2
min

≲
K2L2max

(
log2 n1,n1n2p2max, (KL)−1n21n2p

3
max

)
β2n21n

2
2p
4
max

ϵ ′δβ2

(by definition of τ(0) and (5.5.3))

≲
K2L2

(
log2 n1 +n1n2p2max + (KL)−1n21n2p

3
max

)
n21n

2
2p
4
max

ϵ ′δ.

By assumptions, we have KL
n2pmax

= o(1) and

K2L2 log2 n1
n21n

2
2p
4
max

= O(1),
K2L2

n1n2p2max
≲

KL

logn1
= o(1).

Hence for an appropriately small choice of ϵ ′ Condition C5 is satis-
fied.

g-error term . W.h.p, for all z(t) such that l(z(t), z) ⩽ τ(0) we
have

|G
(t)
i |

∆2(zi,b)
⩽
√
2

∥∥P̃i:(W(t) −W)
∥∥

∆2min
. ( by Cauchy-Schwartz)
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But since
∥∥P̃i:∥∥ ≲

∥∥Pi:P⊤∥∥ ⩽ ∥Π∥2
∥∥Z⊤
2 Z2

∥∥ ∥Z1∥ ⩽ αn2
L p2max

√
n1
K we

obtain

|G
(t)
i |

∆2(zi,b)
≲
n2p

2
max

√
n1
∥∥(W(t) −W)

∥∥
L
√
K∆2min

≲
n2p

2
max

L∆2min

Kl(z(t), z)
n1∆

2
min

( by Lemma 11)

≲ K
l(z(t), z)
βn1∆

2
min

≲
Kτ(0)

βn1∆
2
min

.

Now by choosing ϵ ′ to be a suitably small constant (< 1), we obtain

|G
(t)
i |

∆2(zi,b)
⩽
δ

4
.

This shows that Condition C6 is satisfied.

5.6 minimax lower bound

Let us denote the admissible parameters space by

Θ = {P ∈ [0, 1]n1×n2 : P = Z1ΠZ
⊤
2 where Π = q1K1

⊤
K + (p− q)IK,

1 > p > 0,q = cp for some constant c ∈ (0, 1),Z1 ∈Mn1,K,

Z2 ∈Mn2,K with α = 1+O

(√
logn1
n1

)
}.

We want to lower bound infẑ supθ∈ΘE(r(ẑ, z)) where ẑ is an esti-
mator of Z1. For simplicity, we will assume that K = 2, but we believe
that the same argument can be extended to SBiSBM with an arbitrary
number of communities K. In the supervised case, i.e. when Z2 is
known, we can use the same strategy as the one use for the degree-
corrected SBM by Gao et al., 2018 and obtain a lower bound of the
order e−(1+o(1))n2(p−q)/2 corresponding to the failure probability of
the optimal test associated to the following two hypothesis problem

H0 :⊗
n2/2
i=1 B(p)⊗n2

i=n2/2+1
B(q), vs

H1 :⊗
n2/2
i=1 B(q)⊗n2

i=n2/2+1
B(p).

However when n2 ≫ n1 logn1 the error associated with this hypothe-

sis testing problem is of order exp(−n2(p−q)/2) ≈ exp(−
√
n2 logn1
n1

)

but this is far smaller than exp(−n1n2p2max), the misclustering rate
obtained for our algorithm. A similar phenomena appears for high-
dimensional Gaussian mixture models. Indeed, as shown in Ndaoud,
2018, it is essential to capture the hardness of estimating the model
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parameters in the minimax lower bound in order to get the right rate
of convergence. The argument developed for obtaining a lower bound
of the minimax risk in Ndaoud, 2018 relies heavily on the Gaussian
assumption (they set a Gaussian prior on the model parameters and
use the fact that the posterior distribution is also Gaussian) and can-
not directly be extended to this setting.

Our lower bound result is summarised in the following theorem.

Theorem 13. Suppose that A ∼ SBiSBM(Z1,Z2,p,q) with K = L = 2,
n2 ≫ n1 logn1, n1n2p2max → ∞ and n1n2p2max = O(logn1). Then
there exists a constant c1 > 0 such that

inf
ẑ

sup
θ∈Θ

E(r(ẑ, z)) ⩾ exp(−c1n1n2p2max)

where the infimum is taken over all measurable functions ẑ of A. Moreover,
if n1n2p2max = Θ(1), then infẑ supθ∈ΘE(r(ẑ, z)) ⩾ c2 for some positive
constant c2.

Remark 17. This lower-bound shows that the rate of convergence of our
estimator is optimal up to a constant factor. Indeed, for exact recovery, the
minimax lower bound implies that n1n2p2max ≳ logn1 is necessary, while
for weak recovery, we need n1n2p2max → ∞. It also shows that when
n1n2p

2
max = O(1) it is not possible to consistently estimating Z1.

Remark 18. For simplicity, we only write the proof for K = L = 2 but we
believe it can be extended to the case K = L > 2 by reducing the problem to
test between two fixed communities as in Gao et al., 2018.

Proof. The general idea of the proof is to first lower bound the min-
imax risk by an error occuring in a two hypothesis testing problem
and then to replace this hypothesis testing problem by a simpler one.
The steps are detailed below.

step 1 . Recall that z, z ′ denote the partition functions associated
with Z1 and Z2 respectively. We choose as a prior on z and z ′ a
product of independent, centered Rademacher distributions. Since
the marginals of z, z ′ are sign invariant, By using standard arguments
the results in Gao et al., 2018 or Ndaoud, 2018 show that

inf
ẑ

sup
θ∈Θ

E(r(ẑ, z)) ≳
2

n1

⌈n1/2⌉∑
i=1

inf
ẑi

Ez,z ′EA|z,z ′(ϕi(A))

where ẑ is a measurable function in A and ϕi(A) = 1ẑi ̸=zi .

step 2 . We can write

Ez,z ′EA|z,z ′(ϕi(A)) = Ez−iEziEz ′EA|z,z ′(ϕi(A)) = Ez−iEziEA|z(ϕi(A))︸ ︷︷ ︸
Ri
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where z−i := (zj)j̸=i and EX|Y means that we integrate over the ran-
dom variable X conditioned on Y. Since z ′ is random, the entries of
A are no longer independent (this is the reason why we use an un-
informative prior on z ′). Note that the quantity Ez ′EA|z,z ′(ϕi(A)) =

EA|z(ϕi(A)) only depends on f(A|z) the density of A conditionally
on z. Since the columns of A are independent conditionally on z (be-
cause (z ′j)

n2
j=1 are independent) we have that

f(A|z) =
∏
j

f(A:j|z),

i.e. f(A|z) is the product of the densities of the columns A:j condi-
tionally on z. Let us denote A−ij := (Ai ′j)i ′ ̸=i and A−i: = (Ai ′j)i ′ ̸=i,j.
Now for each j we can write

f(A:j|z) = f(Aij|A−ij, z)f(A−ij|z).

Since A−ij doesn’t depend on zi we have f(A−ij|z) = f(A−ij|z−i).
Assume that zi = 1. Then Aij ∼ B(p) if z ′j = 1 or Aij ∼ B(q) if
z ′j = −1. This in turn implies

P(Aij = 1|A−ij, z) = pP(z ′j = 1|A−ij, z) + qP(z ′j = −1|A−ij, z)

= pP(z ′j = 1|A−ij, z−i) + qP(z ′j = −1|A−ij, z−i)

Let us denote by αj the random variable P(z ′j = 1|A−ij, z−i). When
zi = −1, similar considerations imply

P(Aij = 1|A−ij, z−i) = qαj + p(1−αj).

This shows that the conditional distribution

Aij|A−ij, z ∼ B(αjp+ (1−αj)q) when zi = 1 (5.6.1)

and

Aij|A−ij, z ∼ B(αjq+ (1−αj)p) when zi = −1. (5.6.2)

We can write Ri as

Ri = Ez−iEziEA−i:|zEAi:|z,A−i:
(ϕi(A))

= Ez−iEziEA−i:|z−iEAi:|z,A−i:
(ϕi(A))

= Ez−iEA−i:|z−i EziEAi:|z,A−i:
(ϕi(A))︸ ︷︷ ︸

R ′
i

.

The term R ′
i corresponds to the risk associated with the following

two hypothesis testing problem (conditionally on (Ai ′j)i ′ ̸=i and z−i)

H0 : ⊗n2j=1B(αjp+ (1−αj)q) vs H1 : ⊗n2j=1B(αjq+ (1−αj)p). (5.6.3)

Our goal is to replace this two-hypothesis testing problem by a sim-
pler hypothesis test associated with a smaller error. The proof strat-
egy is the following. When αj is very close to 1/2 it is not possible to
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statistically distinguish (B(αjp+ (1−αj)q) from (B(αjq+ (1−αj)p)

and these factors can be dropped. When αj is significantly different
from 1/2, then the risk associated to the test can be lower bounded by
a the risk of testing between a product of B(p) vs. a product of B(q).
More precisely, we will show that the number of indices j for which
αj is significantly different from 1/2 is of order n1n2p and hence the
risk is lower bounded by the one associated by the two hypothesis
testing problem

H ′
0 : ⊗

n2n1p
i=1 B(p)⊗n2n1pi=1 B(q) vs H ′

1 : ⊗
n2n1p
i=1 B(q)⊗n2n1pi=1 B(p).

It is well known that the error associated with the above testing prob-
lem is of the order e−Θ(n2n1p

2) (see e.g. Gao et al., 2018) which cor-
responds to the rate of convergence of our algorithm. Let us now
formalize the above argument.

step 3 . First, let us define

C+ = {i ′ ̸= i : zi ′ = 1},
C− = {i ′ ̸= i : zi ′ = −1},

θj =
αj

1−αj
for j = 1 . . . n2,

ϵ = Θ(p
√
n1 logn1) = o(1),

Jb = {j ∈ [n2] : θj ∈ [1− ϵ, 1+ ϵ]},

Jg = {j ∈ [n2] : θj /∈ [1− ϵ, 1+ ϵ]},

Tj
ind.
∼ B(αj), for all j ∈ Jg,

and the events

E1 =
{
|C+|− |C−| ∈ [−C

√
n1 logn1,C

√
n1 logn1]

}
(for some constant )C > 0,

E2 =

∑
j

1{
∑
i ′∈C+

Ai ′j−
∑
i ′∈C−

Ai ′j ̸=0} = Θ(n2n1p)

 ,

E3 =

∑
j∈Jb

Aij = Θ(n2p)

 .

We will show later that these events occur with high probability. They
are useful for obtaining a lower bound on the densities f(Aij|A−ij, z).
Since we are integrating over positive functions one can write

Ri ⩾ Ez−i1E1EA−i:|zi1E2EziEAi:|z,A−i:
(1E3ϕi(A)). (5.6.4)

step 4 . For all j ∈ Jb, the set for which αj ≈ 1
2 , we are going to

lower bound the densities f(Aij|A−ij, z) by g(Aij) corresponding to
the density of B(p+q2 ). A simple calculation shows that
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θj =
αj

1−αj
=∏

i ′ ̸=i:zi ′=1 p
Ai ′j(1− p)1−Ai ′j

∏
i ′ ̸=i:zi ′=−1 q

Ai ′j(1− q)1−Ai ′j∏
i ′ ̸=i:zi ′=1 q

Ai ′j(1− q)1−Ai ′j
∏
i ′ ̸=i:zi ′=−1 p

Ai ′j(1− p)1−Ai ′j
.

The previous expression can be rewritten as

θj =

(
p(1− q)

q(1− p)

)∑
i ′∈C+

Ai ′j−
∑
i ′∈C−

Ai ′j
(
1− p

1− q

)|C+|−|C−|

.

We also have the relation αj =
θj
1+θj

, so αj is close to 1/2 if and
only if θj is close to 1. If z−i were an exactly balanced partition, i.e.,
|C+| − |C−| = 0, then θj = 1 would be equivalent to

∑
i ′∈C+

Ai ′j −∑
i ′∈C−

Ai ′j = 0. However the contribution of the term
(
1−p
1−q

)|C+|−|C−|

is small under E1. Indeed, we have

|C+|− |C−| ∈ [−C
√
n1 logn1,C

√
n1 logn1]

. Note that log(1−p1−q) ∈ [−c(p−q), c(p−q)] by using Taylor’s formula
for some constant c > 0. Hence, under E1(

1− p

1− q

)|C+|−|C−|

∈ [e−c
′
√
n1 logn1p, ec

′
√
n1 logn1p]

for some constant c ′ > 0. But we have

max(|ec
′p
√
n1 logn1 − 1|, |e−c

′p
√
n1 logn1 − 1|) ⩽ c ′p

√
n1 logn1 := ϵ.

Therefore, it follows that (1−p1−q)
|C+|−|C−| ∈ [1− ϵ, 1+ ϵ] under E1. It is

easy to check θj ∈ [1− ϵ, 1+ ϵ] implies αj ∈ [1/2− ϵ ′, 1/2+ ϵ ′] for ϵ ′

proportional to ϵ. Since the constant involved here doesn’t matter, we
won’t make a distinction between ϵ and ϵ ′.

Now recall that by (5.6.1) and (5.6.2) we have when zi = 1

f(Aij|A−ij, z) = αjpAij(1− p)1−Aij + (1−αj)q
Aij(1− q)1−Aij

and when zi = −1

f(Aij|A−ij, z) = αjqAij(1− q)1−Aij + (1−αj)p
Aij(1− p)1−Aij .

• When zi = 1, we have for all j ∈ [n2] such that αj ∈ [1/2 −

ϵ, 1/2+ ϵ] that

αjp
Aij(1− p)1−Aij + (1−αj)q

Aij(1− q)1−Aij ⩾

(1− ϵ)
p+ q

2
1Aij=1 + (1− pϵ)

1− p+ 1− q

2
1Aij=0

and∏
j∈Jb

αjp
Aij(1− p)1−Aij + (1−αj)q

Aij(1− q)1−Aij ⩾

(1− ϵ)
∑
j∈Jb

Aij(1− pϵ)
∑
j∈Jb

(1−Aij)

×
∏
j∈Jb

pAij(1− p)1−Aij + qAij(1− q)1−Aij

2
.
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• When zi = −1, we have for all j ∈ [n2] such that αj ∈ [1/2−

ϵ, 1/2+ ϵ]

αjq
Aij(1− q)1−Aij + (1−αj)p

Aij(1− p)1−Aij ⩾

(1− ϵ)
p+ q

2
1Aij=1 + (1− qϵ)

1− p+ 1− q

2
1Aij=0

and∏
j∈Jb

αjq
Aij(1− q)1−Aij + (1−αj)p

Aij(1− p)1−Aij ⩾

(1− ϵ)
∑
j∈Jb

Aij(1− qϵ)
∑
j∈Jb

(1−Aij)

×
∏
j∈Jb

pAij(1− p)1−Aij + qAij(1− q)1−Aij

2
.

Since on E3,
∑
j∈Jb Aij = Θ(n2p) we obtain that

(1− ϵ)
∑
j∈Jb

Aij ⩾ 1−n2ϵp = 1− o(1)

and similarly

(1− pϵ)
∑
j∈Jb

(1−Aij) ⩾ 1− o(1) and (1− qϵ)
∑
j∈Jb

(1−Aij) ⩾ 1− o(1).

This implies the lower bound

1E3

∏
j∈Jb

f(Aij|A−ij, z) ⩾ (1− o(1))1E3

∏
j∈Jb

g(Aij).

Consequently, we obtain the lower bound

EziEAi:|z,A−i:
(1E3ϕi(A))

⩾ (1− o(1))

∫
zi

∫
Ai:

1E3ϕi(A)
∏
j∈Jb

g(Aij)
∏
j∈Jg

f(Aij|A−ij, z)dAi:dP(zi)

≳
∫
zi

∫
(Aij)j∈Jb

∫
(Aij)j∈Jg

∏
j∈Jb

g(Aij)

ϕi(A) ∏
j∈Jg

f(Aij|A−ij, z)d(Aij)j∈Jg

d(Aij)j∈JbdP(zi)

− P̃Ai:|A−i:,z(E
c
3)

≳
∫
zi

∫
(Aij)j∈Jb

∏
j∈Jb

g(Aij)

∫
(Aij)j∈Jg

ϕi(A) ∏
j∈Jg

f(Aij|A−ij, z)d(Aij)j∈Jg

d(Aij)j∈JbdP(zi)

− P̃Ai:|A−i:,z(E
c
3) (since Jb and Jg are disjoint)

≳
∫
(Aij)j∈Jb

∏
j∈Jb

g(Aij)

∫
zi

∫
(Aij)j∈Jg

ϕi(A)
∏
j∈Jg

f(Aij|A−ij, z)d(Aij)j∈Jg


︸ ︷︷ ︸

R ′′
i

d(Aij)j∈JbdP(zi)

− P̃Ai:|A−i:,z(E
c
3) (since g(Aij) is independent from zi)

where P̃Ai:|A−i:,z is the conditional distribution corresponding to the
density product ∏

j∈Jb

g(Aij)
∏
j∈Jg

f(Aij|A−ij, z)dP(zi).
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step 5 . R ′′
i corresponds to risk associated to the testing problem

(5.6.3) where the product is restricted to the set Jg. One can lower
bound this risk as follows.

By definition of Tj, we have when zi = 1 by equation (5.6.1)

f(Aij|A−ij, z) = ETj
(
Tjp

Aij(1− p)1−Aij + (1− Tj)q
Aij(1− q)1−Aij

)︸ ︷︷ ︸
:=ETj

(
fTj(Aij)

) .

A similar result holds when zi = −1. Since Tj is independent of zi (it
only depends on A−ij and z−i through αj) we can write

R ′′
i = ETEzi

∫
(Aij)j∈Jg

ϕi(A)
∏
j∈Jg

fTj(Aij)d(Aij)j∈Jg︸ ︷︷ ︸
R ′′′
i

= ET (R
′′′
i )

where T = (Tj)j∈Jg . But now R ′′′
i is the risk associated with the fol-

lowing two hypothesis testing problem

H ′′
0 :⊗Tj=1 B(p)⊗Tj=0 B(q), vs

H ′′
1 :⊗Tj=1 B(q)⊗Tj=0 B(p).

The error associated with this test is lower bounded by the error as-
sociated with the test

H ′′′
0 :⊗j∈Jg B(p)⊗j∈Jg B(q), vs

H ′′′
1 :⊗j∈Jg B(q)⊗j∈Jg B(p).

since adding more information can only decreases the error (more
formally, the lower bound follows from the fact that we multiply by
density functions inferior to one). Under E2 ∩ E1 we have

|Jg| = Θ(n1n2p) and |Jb| = (1− o(1))n2. (5.6.5)

Hence, by Lemma 4 in Gao et al., 2018 the risk is lower bounded by
R ′′
i ⩽ e−Θ(n1n2p

2).

conclusion. It remains to integrate over all the events we condi-
tioned on. We have shown sor far that

Ri ⩾ Ez−i1E1EA−i:|z−i1E2e
−Θ(n1n2p

2)

− Ez−i1E1EA−i:|z−i1E2P̃Ai:|A−i:,z(E
c
3)

⩾ e−Θ(n1n2p
2)Ez−i(1E1PA−i:|z−i(E2))

− Ez−i1E1EA−i:|z−i1E2P̃Ai:|A−i:,z(E
c
3). (5.6.6)

We can control these probabilities with the following lemma proved
in the appendix, see Section 5.8.2.

Lemma 18. We have
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1. Pz−i(E1) ⩾ 1−n
−Ω(1)
1 ;

2. for all realizations z−i, PA−i:|z−i(E2) ⩾ 1− e
−Ω(n1n2p);

3. for all z−i ∈ E1 and A−i: ∈ E2, P̃Ai:|A−i:,z(E3) ⩾ 1− e
−Ω(n2p).

Lemma 18 and (5.6.6) directly imply Ri ≳ e−Θ(n1n2p
2) since

e−Θ(n2p) = o(e−Θ(n1n2p
2))

under the assumption on p.
When n1n2p2max = Θ(1), we can use the same proof except that

now the final two hypothesis testing problem we reduced to has a
non vanishing risk (see e.g. Zhang et al., 2016a).

5.7 numerical experiments

In this section, we empirically compare the performance of our al-
gorithm (GPM) with the spectral algorithm (Spec) and the algorithm
introduced by Ndaoud et al., 2022 (referred to as HL).

case K = L = 2 . In this setting, we generate a SBiSBM with pa-
rameters n1 = 500, n2 = ⌈Cn1 logn1⌉ (where C ⩾ 1 is a constant),
p ∈ (0, 1), and q = cp where c > 0 is a constant. The accuracy of
the clustering is measured by the NMI; it is equal to one when the
partitions match exactly and is zero when they are independent. The
results are averaged over 20 Monte-Carlo runs. For the experiment
presented in Figure 16, we fixed C = 10; for the experiment in Fig-
ure 17, we fixed C = 3 and c = 0.5. For the experiment presented
in Figure 18, we fixed p = 0.01 and c = 0.5. We observe that HL

and GPM have similar performance in all the aforementioned exper-
iments. Thus, there is no gain in using the specialized method HL

instead of the general algorithm GPM. The spectral method Spechas
only slightly worst performance than the iterative methods HL and
GPM. In particular, when approaching the threshold for exact recov-
ery, the performance gap disappears. This suggests that Spec also
reaches the threshold for exact recovery. It would be interesting to ob-
tain stronger theoretical guarantees to explain the good performance
of Spec.

case K = L ̸= 2 . We fix n1 = 1000,n2 = 10000,p = 0.05 and
c = 0.5 and vary K from 2 to 10. As can be seen from Figure 19, the
performance of Spec decreases faster than GPM when K increases.
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Figure 16: Relative performance of Spec, HL and GPM for varying c.
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Figure 17: Relative performance of Spec, HL and GPM for varying p.
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Figure 18: Relative performance of Spec, HL and GPM for varying C.
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Figure 19: Relative performance of Spec, HL and GPM for varying K.
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5.8 additional proofs

5.8.1 Concentration of the oracle error

Lemma 19. Assume that the assumptions of Theorem 12 hold. Recall that

Ωi,k(δ) =
{
Ẽi:(W:zi −W:k) ⩽ −(1− δ)∆2(zi,k)

}
.

We have for all 0 < δ ⩽ 1
4ηα , k ̸= zi ∈ [K] and i ∈ [n1]

P(Ωi,k(δ)) ⩽ e
− β2

12eLα3
n1n2p

2
max

KL = e−∆̃
2

.

Proof. The event Ωi,k(δ) holds if and only if

Bi:(W:k −W:zi) ⩾ −δ∆2(zi,k).

But we can decompose this quantity as

Bi:(W:k −W:zi) =
∑
j̸=i

Bij(Wjk −Wjzi)

= |Ck|
−1

∑
j∈Ck\{i}

⟨Ai:,Aj:⟩− |Czi |
−1

∑
j∈Czi\{i}

⟨Ai:,Aj:⟩

= ⟨Ai:, Ãk − Ãzi⟩

where Ãk = 1
|Ck|

∑
j∈Ck

Aj: and Ãzi =
1

|Czi |

∑
j∈Czi\{i}

Aj: are indepen-
dent random variables. Since the index i doesn’t appear in the second
sum, Ãzi is independent from Ai:. By definition the entries of Ãk and
Ãzi are independent normalized binomial random variables whose
parameters vary depending on the community associated with the
entry.

We are now going to bound the moment generating function of
M := ⟨Ai:, Ãk− Ãzi⟩, conditionally on Ai:. Observe thatM is a sum of
independent random variables. Recall that if X ∼ B(p) then E(etX) =

(etp+ 1− p). Hence, for t > 0, conditionally on Aij, each summand
has a m.g.f equal to

log E(etAij(Ãkj−Ãzij)|Aij) =

|Ck| log(e
tAij
|Ck| Πkz ′j + 1−Πkz ′j) + (|Czi |− 1) log(e

−
tAij
|Czi

|Πziz ′j + 1−Πziz ′j)

⩽ |Ck|Πkz ′j(e
tAij
|Ck| − 1) + (|Czi |− 1)Πziz ′j(e

−
tAij
|Czi

| − 1)

by using the fact that log(1+ x) ⩽ x for all x > −1.
Fix t = t∗ = ϵ n1αK for a parameter ϵ ∈ (0, 1) that will be fixed later.

We have by Taylor Lagrange formula for all t ⩽ n1
αK

e
t

|Ck| − 1 ⩽
t

|Ck|
+
e

2

(
t

|Ck|

)2
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and

e
−t

|Czi
| − 1 ⩽ −

t

|Czi |
+
e

2

(
t

|Czi |

)2
.

By using these upper bounds we get

log E(et
∗Aij(Ãkl−Ãzij)|Aij) ⩽(
Πkz ′j −

|Czi |− 1

|Czi |
Πziz ′j

)
t∗Aij +

e

2
(t∗)2Aij

(
Πkz ′j
|Ck|

+
Πziz ′j
|Czi |

)
.

Hence by using independence we obtain

log E(et
∗M|Ai:) ⩽

∑
j∈[n2]


(
Πkz ′j −

|Czi |− 1

|Czi |
Πziz ′j

)
t∗ +

e

2
(t∗)2

(
Πkz ′j
|Ck|

+
Πziz ′j
|Czi |

)
︸ ︷︷ ︸

tij

Aij.

Using Markov inequality and the fact that ∆2(zi,k) ⩽ ηβαn2p2max/L
by (5.5.3) leads to

P(Ωi,k(δ)|Ai:) ⩽ e
δϵ

n1
αK∆

2(zi,k)E(et
∗M|Ai:)

⩽ eδϵ
βn1n2p

2
max

LK

∏
j

E(etijAij).

But since Aij is a Bernoulli random variable with parameter Πziz2j
we have

E(etijAij) = (etij − 1)Πziz2j + 1.

By our choice of t∗, tij = O(n1pmax) = o(1) so that∏
j

(
(etij − 1)Πziz2j + 1

)
⩽ e

∑
j(e

tij−1)Πziz2j .

Here we use the fact that for x1, . . . , xn > −1 we have
∏
i∈[n](1 +

xi) ⩽ e
∑
i∈[n] xi . But again, by using Taylor Lagrange formula, we

have etij − 1 = tij +O(t2ij). Consequently∏
j

E(etijAij) ⩽ e
∑
j(tij+o(tij))Πziz2j .

We can write
∑
j tijΠziz2j as t∗A1 +

e(t∗)2

2 A2 where

A1 =
∑
l∈[L]

|C ′
l|

(
ΠzilΠkl −Π

2
zil

(
|Czi |− 1

|Czi |

))
and

A2 =
∑
l∈[L]

|C ′
l|

(
ΠzilΠkl

|Ck|
+Π2zil

(
|Czi |− 1

|Czi |
2

))
.
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By Assumption A3 and A5 we have

−A1 ⩾
n2
αL

(
βp2max + o(p

2
max)

)
and

A2 ⩽
αK

n1
n2p

2
max

Let ϵ = β
3eLα (recall that t∗ = ϵ n1αK ). By this choice of ϵ we have

eϵn1
2αK

A2 ⩽
|A1|

2
.

Consequently we have for all δ ⩽ 1/(4ηα)

P(Ωi,k(δ)) ⩽ e
− ϵβ

2α2
n1n2p

2
max

KL +δϵ
n1
αK∆

2(zi,k)

⩽ e−
ϵβ

4α2
n1n2p

2
max

KL

⩽ e−
β2

12eLα3
n1n2p

2
max

KL .

5.8.2 Proof of Lemma 18

The first inequality is a direct consequence of Hoeffding concentra-
tion inequality. For the second inequality, observe that

PA−i:|z−i(E2) = Ez ′PA−i:|z−i,z ′(E2)

and

PA−i:|z−i,z ′

 ∑
i ′∈C+

Ai ′j −
∑
i ′∈C−

Ai ′j = 0

 ⩾ P(Ai ′j = 0 for all i ′)

≳ (1− p)n1 = 1−n1p.

To obtain an upper bound on this probability, we can use Paley-
Zigmund inequality as follows. Let us denote Z = |

∑
i ′∈C+

Ai ′j −∑
i ′∈C−

Ai ′j|. We then have

PA−i:|z−i,z ′(Z = 0) = 1− PA−i:|z−i,z ′(Z > 0)

⩽ 1− PA−i:|z−i,z ′(Z > θEZ)

⩽ 1− (1− θ)2
(EA−i:|z−i,z ′(Z))

2

EA−i:|z−i,z ′(Z
2)

for θ ∈ (0, 1) by Paley-Zigmund inequality. It is easy to check that

EA−i:|z−i,z ′Z ≳ n1(p− q) and EA−i:|z−i,z ′(Z
2) ≍ n1p.
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Consequently, PA−i:|z−i,z ′(Z = 0) = 1 − Θ(n1p). By using indepen-
dence over j and Chernoff’s multiplicative bound we obtain that

PA−i:|z−i ,z′

∑
j

1{
∑

i′∈C+
Ai′j−

∑
i′∈C−

Ai′j ̸=0} = Θ(n2n1p)

 ⩾ 1− e−cn2n1p

for any realization of z−i and z ′. Hence the stated bound follows.
Finally it remains to control the probability of E3. Under P̃Ai:|A−i:,z,

for each j ∈ Jb, Aij are independent and distributed as a mixture
of Bernoulli of parameters p and q. The size of the set Jb is also
controlled by the assumption A−i: ∈ E2 (see equation (5.6.5)). Since
under P̃Ai:|A−i:,z for all j ∈ Jb, Aij are independent r.v. with density
g, we obtain by stochastic domination (we can replace a mixture of
Bernoulli with parameters p and q by a Bernoulli of parameter p) and
Chernoff’s bound that P̃Ai:|A−i:,z(E3) ⩾ 1− e

−Θ(n2p).
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6
I N T R O D U C T I O N T O G R A P H M AT C H I N G

The objective of the graph matching problem is to find a bijective corre-
spondence between the vertices of two graphs G and H such that the
alignment between the edges of G and H is maximized (see Section
1.5). This problem appears in many applications such as computer
vision (H. Sun et al., 2020), network de-anonymization (Narayanan
et al., 2009), pattern recognition (Conte et al., 2004; Emmert-Streib
et al., 2016), protein-protein interactions and computational biology
(Zaslavskiy et al., 2009b; Singh et al., 2009). In computer vision, for
example, it is used as a method of comparing two objects (or im-
ages) encoded as graph structures or to identify the correspondence
between the points of two discretized images of the same object at
different times. In network de-anonymization, the goal is to learn in-
formation about an anonymized (unlabeled) graph using a related
labeled graph as a reference, exploiting their structural similarities.
For example, Narayanan et al., 2006 show that it was possible to ef-
fectively de-anonymize the Netflix database using the IMDb (Internet
Movie Database) as the “reference” network. It also contains the ubiq-
uitous graph isomorphism as a special case.

In general, the graph matching problem is NP-hard. But under gen-
erative models such as the CoERM and CoWM (see Section 1.5 for a
precise description) there exists efficient algorithms. Recently, other
models of correlation have been proposed for random graphs with a
latent geometric structure (Kunisky et al., 2022; Wang et al., 2022a),
community structure (Racz et al., 2021) and with power law degree
profile (Yu et al., 2021b).

In this thesis, we will focus on the Correlated Erdös-Renyi Model
(CoERM) and the Correlated Wigner Model (CoWM). In Section 6.1, we
will present the information-theoretic limits of the graph matching
problem under these generative models. Then, in Section 6.2 we will
discuss the principal efficient methods that have been proposed in
the literature.

6.1 information theoretic limits of matching

The accuracy of an estimated permutation x̂ to the ground-truth per-
mutation x∗ is usually measured by the fraction of well-matched
nodes

overlap(x, x∗) :=
|{i ∈ [n] : x(i) = x∗(i)}|

n
. (6.1.1)

Similarly to the clustering problem, one can have different recovery
requirements.

129
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• Exact recovery: overlap(x̂, x∗) = 1with probability 1−o(1) when
n → ∞, i.e. one can recover exactly the latent permutation
w.h.p.

• Almost exact recovery: overlap(x̂, x∗) = 1 − o(1) with proba-
bility 1 − o(1) when n → ∞, i.e. the proportion of correctly
matched nodes goes to zero when n→∞.1

• Partial recovery: overlap(x̂, x∗) ⩾ α with probability 1 − o(1)
when n→∞, i.e. one can correctly classify at least a proportion
α of the nodes w.h.p.

6.1.1 Correlated Wigner Model (CoWM)

In the Gaussian setting, a sharp phase transition phenomenon occurs.
There is a threshold involving n and the noise level σ above which
exact recovery of x∗ is possible and below which even partial recovery
is impossible. Recall that the MLE is given by

x̂MLE ∈ arg max
x∈Sn

∑
i,j

AijBx(i)x(j).

Theorem 14 (Wu et al., 2021). Assume that (A,B) ∼ CoWM(n,σ, x∗)
and let us define ρ =

√
1− σ2. If for some constant ϵ > 0

ρ2 ⩾
(4+ ϵ) logn

n
,

then x̂MLE = x∗ w.h.p. Conversely, if for some constant ϵ > 0

ρ2 ⩽
(4− ϵ) logn

n
,

then for any estimator x̂ and fixed constant δ > 0, P(overlap(x̂, x∗) ⩽ δ) =
1− o(1).

6.1.2 Correlated Erdös-Renyi Model (CoERM)

In the dense regime, the recovery of x∗ exhibits a sharp phase transi-
tion similar to the Correlated Wigner model: there is no partial recov-
ery regime.

Theorem 15 (Wu et al., 2021). Assume that (A,B) ∼ CoERM(n,q, s, x∗)
where q is bounded away from 1 and q = n−o(1). If for some ϵ > 0

nqs2 ⩾
(2+ ϵ) logn
log 1q − 1+ q

,

1 There is an alternative definition where we only require to be able to correctly match
an arbitrary large fraction of nodes. See Wu et al., 2021. Here we preferred to use an
analogous definition to the one used for clustering.
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then for any constant δ < 1, P(overlap(x̂MLE, x∗) ⩾ δ)) = 1 − o(1).
Conversely, if for some ϵ > 0

nqs2 ⩽
(2− ϵ) logn
log 1q − 1+ q

,

then for any estimator x̂ and any constant δ > 0, P(overlap(x̂MLE, x∗) ⩽
δ) = 1− o(1).

The threshold for exact-recovery in the Erdös-Renyi model when q
is bounded away from 1 is given by

nqs2(1−
√
q)2

logn
= 1

as shown in Theorem 4 in Wu et al., 2021.
However, in the sparse regime, there is an interesting regime where

partial recovery is possible but almost exact recovery impossible.

Theorem 16 (Wu et al., 2021). Assume that (A,B) ∼ CoERM(n,q, s, x∗)
where q = n−Ω(1). If for some constant ϵ > 0

nqs2 ⩾ (2+ ϵ)max(
logn

log(1/q)
, 2),

then there exists a constant δ > 0 such that P(overlap(x̂MLE, x) ⩾ δ) =

1− o(1). Conversely, assuming nq = ω(log2 n), if for some ϵ > 0

nqs2 ⩽ 1− ϵ,

then for any estimator x̂ and any constant δ > 0, P(overlap(x̂, x) ⩽ δ) =

1− o(1).

Indeed, this theorem implies that the threshold for partial recovery
is at nqs2 ≍ 1, but it has been shown by Cullina et al., 2018 that
one needs nqs2 → ∞ in order to get almost exact recovery. So there
is a regime where partial recovery is possible but not almost exact
recovery.

Remark 19. While the statistical limits of graph matching under the CoERM

or CoWM are well understood, it is not known if there are polynomial time
algorithms that achieve the threshold for exact recovery. Usually the existing
methods that come with consistency guarantees assume that the correlation
level is asymptotically one. The only exception is the recent work of Mao
et al., 2021a, that proposed a polynomial time algorithm that comes with
consistency guarantees for a constant level of correlation s < 1 under the
CoERM.
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6.2 matching methods

6.2.1 Convex Quadratic Programming (CQP) relaxation

As saw in Chapter 1, Section 1.5, QAP is a NP-hard problem. A pop-
ular approach is to consider a relaxation of the set of permutations
to a continuous domain, leading to a tractable optimization problem.
There are several ways to do this, we recall some of them below. First
observe that (1.5.2) can be rewritten in the following form

min
X∈Sn

∥∥∥A−XBX⊤
∥∥∥2
F
⇔ min
X∈Sn

∥AX−XB∥2F .

If we replace the set of permutations Sn by the space of doubly
stochastic matrices

Pn = {X ∈ Rn×n : X1n = 1n,X⊤1n = 1n,Xij ⩾ 0}

as proposed by Aflalo et al., 2015 we reduce the original problem to
the following optimization problem

arg min
X∈Pn

∥AX−XB∥F . (6.2.1)

Since Pn is a convex set (it is the Birkhoff polytope and is the tightest
convex relaxation possible), the previous optimization problem can
be solved in polynomial time and leads to a solution X̃. Since in gen-
eral X̃ is not a permutation, one needs to project X̃ on Sn. This can
be done by solving the following LAP

X̂ = arg max
X∈Sn

Tr(X⊤X̃).

In practice, the method performs well. But it remains an open prob-
lem to derive consistency guarantees for this algorithm. Besides, the
computational cost of this method can be prohibitive for large graphs.

6.2.2 SDP relaxation

The QAP can be rewritten in a vectorial form

arg max
XSn

Tr((B⊗A)vec(X)vec(X)⊤)

where ⊗ denotes the Kronecker product and vec(X) ∈ Rn
2

is the
column-wise version of X. Zhao et al., 1997 proposed to relax the con-
straints on X by replacing Sn by Pn as before and replace vec(X)vec(X)⊤

by a matrix Q satisfying some constraints. More precisely, they con-
sider the following optimization problem.

max
Q,P∈Rn×n

Tr((B⊗A)Q) s.t. P ∈ Pn
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Q− vec(P)vec(P)⊤ ⪰ 0,∑
i

Q(i, i) = In,

Tr(Q(i, j)) = 0 for i ̸= j,
Tr(Q(i, j)1n1⊤n) = 1 for all i, j,

all entries of Q are non-negative,

(Q(i, i))jj = Pji,

where Q(i, j) ∈ Rn×n is the block (i, j) of size n× n that constitutes
Q. See also S. Bravo Ferreira et al., 2018 for other relaxations.

From a computational point of view, this approach is feasible since
it requires solving an SDP problem in a space of dimension n2.

6.2.3 Spectral methods

The spectral method GRAMPA introduced by Fan et al., 2019 can be
related view as a solution of a relaxed and regularized version of the
QAP for a given hyperparameter η > 0

min
X∈Rn×n

∥AX−XB∥2F +
η2

2
∥X∥2F − 1⊤nX1n. (6.2.2)

Since it is a convex quadratic optimization problem, we can write the
solution X̂ in closed form. Write the spectral decomposition of A and
B as

A =
∑
i∈[n]

λiuiu
⊤
i and B =

∑
j∈[n]

µjvjv
⊤
j

where the eigenvalues λ1 ⩾ . . . ⩾ λn of A (resp. µ1 ⩾ . . . ⩾ µn of B)
are ordered in decreasing order. Then, as shown in Corollary 2.2 in
Fan et al., 2019,

X̂ =
∑
i,j∈[n]

w(λi,µj)uiu⊤i 1n1
⊤
nvjv

⊤
j

where w(x,y) is the Cauchy Kernel of bandwidth η defined by

w(x,y) =
1

(x− y)2 + η2
.

It can be shown that under the correlated Wigner modelW(n,σ, x∗),
with a noise level σ of order at most O( 1

logn), GRAMPA exactly recovers
the ground-truth permutation x∗ for a suitable choice of η (see Theo-
rem 2.1 in Fan et al., 2019). In practice, GRAMPA has good performance,
but its computational cost is O(n3). A faster (but less robust to noise)
spectral method has also been proposed by Ganassali et al., 2022a.

Another popular approach is Umeyama’s algorithm (Umeyama,
1988). Here we construct a similarity matrix X̂ based on the absolute
value of the eigenvectors of A and B. More precisely

X̂ =

n∑
i=1

|ui||vi|
⊤



134 introduction to graph matching

where |v| denotes the entrywise absolute value of vector v.

6.2.4 Message passing algorithm

Let (A,B) ∼ CoERM(n,q, s, x∗). Recently Ganassali et al., 2022b and
independently Piccioli et al., 2022 proposed a matching method based
on a message passing algorithm for Correlated ER model that are
sparse enough, i.e. when the sparsity q satisfies q = λ

n for some
constant λ. The idea, as explained in Piccioli et al., 2022, is to take
advantage of the local tree-like structure of the extended neighbor-
hood of each node in order to approximate the posterior distribu-
tion P(x∗(i) = i ′|A,B) for each i, i ′ (where x∗ is generated uniformly
at random). If instead of conditioning on A and B we only con-
dition on Ai,d (resp. Bi ′,d) the set of nodes at distance d from i

(resp i ′) in A (resp. B) one can show that the posterior distribution
P(x∗(i) = i ′|Ai,d,Bi ′,d) can be written in close form when n → ∞
and d is chosen such that the neighborhoods of i and i ′ at distance d
are trees. More precisely for any trees T , T ′ of length d

lim
n→∞ P(x∗(i) = i ′|Ai,d = T ,Bi ′,d = T ′) = n

P
(d)
1 (T , T ′)

P
(d)
0 (T)P

(d)
0 (T ′)

(6.2.3)

where P
(d)
0 (T) is the distribution of a Galton-Watson (GW) tree (of

length d) with offspring given by a Poisson law with parameter λ
and P

(d)
1 (T , T ′) is the distribution associated to a colored GW tree

where edges can be red, blue or bicolored. The offsprings associated
with red edges (resp. blue and bicolored) are drawn by independent
Poisson law with parameter λ(1− s) (resp. λ(1− s) and λs).

By (6.2.3), determining if the posterior distribution

P(x∗(i) = i ′|Ai,d = T ,Bi ′,d = T ′)

is superior or inferior to 1/2 is equivalent to testing between the dis-
tributions P

(d)
1 (T , T ′) (T and T ′ are generated in a correlated way)

and P
(d)
0 (T)P

(d)
0 (T ′) (T and T ′ are generated independently). One

can write the likelihood ratio

L(d)(T , T ′) =
P

(d)
1 (T , T ′)

P
(d)
0 (T)P

(d)
0 (T ′)

in a recursive form so that it can be computed in polynomial time.
But in practice, the algorithm has limited applications because due
to its complexity that is exponential in λ. From a theoretical point of
view, Ganassali et al., 2022b have shown that a one-sided test between
the two hypotheses can succeed when the Kullback-Leibler (KL) di-
vergence between the two probabilities goes to infinity with d and
λs > 1.
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6.2.5 Signature matching

In their groundbreaking work, Mao et al., 2021a proposed a matching
method based on signatures which are statistics associated with each
node that captures some of their particularities. The basic idea shares
some similarities with the message passing approach: locally most of
the nodes’ neighborhood is a tree. Hence, in order to match nodes,
it would be sufficient to match trees. Unfortunately, since these trees
can have at each level number of nodes, it is not possible to compute
all the possible permutations to find the one that best matches the
tree. The idea is to construct for node i a partition tree rooted at i and
use the information provided by the degrees of the neighbors to label
the tree.

More formally, let (A,B) ∼ CoERM(n,q, s, x∗) and G,G ′ the associ-
ated graphs. Given a node i and a depth m we iteratively construct
sets Tks for k ∈ [m] and s ∈ {−1, 1}k as follows. We start with the root
T0∅ = {i}. Assume that all Tks have been constructed. Let us denote by
N(T) the set of neighbors in G of all the nodes belonging in the set T
and S(i, l) the sets of nodes that are exactly at distance l from i in G.
Then we can define the two children Tk+1(s,−1) and Tk+1(s,+1) of Tsk by

Tk+1(s,−1) =
{
j ∈ N(Tks )∩ S(i,k+ 1) : deg(j) < np

}
and

Tk+1(s,+1) =
{
j ∈ N(Tks )∩ S(i,k+ 1) : deg(j) ⩾ np

}
.

The collection of sets (Tks )s,k encodes information about the path
of length m starting from i. These paths are labeled with s depending
on the degrees of the nodes on the path. Based on these paths we can
associate to each node i a signature (f(i), v(i)) ∈ R2

m ×R2
m

defined
by f(i) = (fs(i))s and v(i) = (vs(i))s with

fs(i) =
∑

j∈N(Tms )∩S(i,m+1)

(deg(j) − 1−np)

and
vs(i) = np(1− p)|N(Tms )∩ S(i,m+ 1)|.

Then two nodes i ∈ G and i ′ ∈ G ′ are matched if

T :=
1

|J|

∑
s∈J

(fs(i) − f
′
s(i

′))2

vs(i) + v ′s(i
′)

<

(
1−

1√
logn

)

where J is a subset of {−1, 1}m chosen uniformly at random and
(f ′(i ′), v ′(i ′)) is the signature associated to the node i ′ in G’. The
intuition is as follows. When there is no noise, s = 0, the graphs G
and G ′ are the same and consequently if i ′ = x∗(i) the signature of
i and i ′ should be the same. On the other hand, if i ′ ̸= x∗(i) the sig-
natures are likely to be different and hence the variance measured by
the statistic T should be larger than in the case where i ′ = x∗(i).
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It has been shown by Mao et al., 2021a that even when the noise s is
of constant order, the previously described method works. This is the
first theoretical result in graph matching that allows a constant order
noise, all the previous results assumed that s = o(1). The computa-
tional cost of the algorithm is O(n2 lognc) for some constant c > 0.
So it is faster than GRAMPA.



7
S E E D E D G R A P H M AT C H I N G W I T H T H E
G E N E R A L I Z E D P O W E R M E T H O D

This chapter is based on the article Araya et al., 2022.

7.1 introduction

In this chapter, we will focus on the setting where side information is
provided under the form of a noisy seed, which is a partial matching
between the graphs. The seeded version of the problem is motivated
by the fact that in many applications, a set of correctly matched ver-
tices can be available as prior information. Several algorithms, based
on different techniques, have been proposed for seeded graph match-
ing. In Pedarsani et al., 2011; Yartseva et al., 2013, the authors use
a percolation based method to “grow” the seed to recover (at least
partially) the ground-truth matching. Other algorithms (Lubars et al.,
2018; Yu et al., 2021a) construct a similarity matrix between the ver-
tices of both graphs and then solve the maximum linear assignment
problem (either optimally or by a greedy approach) using the similar-
ity matrix as the cost matrix. The latter strategy has also been success-
fully applied in the case described below, when no side information
is provided.

In this chapter we analyse the performance of the projected power
method (PPM) for the seeded graph matching problem in the context
of the correlated Wigner model. This family of iterative algorithms
has recently been successfully applied to several problems in machine
learning and statistics (Chen et al., 2018; Boumal, 2016; Wang et al.,
2021), in clustering in particular (see Chapter 3). We prove that PPM
can exactly recover the ground-truth permutation provided that a suf-
ficiently good initial permutation is provided. Our analysis extends
the analysis of the refinement algorithm Mao et al., 2021a, Alg.4 to the
case of (dense) Wigner graphs and represents, to best of our knowl-
edge, the first analysis of PPM in the dense regime. The main techni-
cal difficulty in proving the convergence of PPM lies in proving that
each step of the algorithm is a contraction, which requires establish-
ing a uniform bound for the error in a neighborhood of the ground
truth. As a byproduct of our analysis, we see that PPM provides a
general framework which generalizes some of the state-of-the-art al-
gorithms in the seeded case, such as Yu et al., 2021a, Alg.1, Lubars
et al., 2018, Alg.2 and Mao et al., 2021a, Alg.4.

137
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contributions . The main contributions of this work can be sum-
marized as follows.

• We provide (see Theorems 17, 18) exact and partial recovery
guarantees under the Gaussian Wigner model when the PPM
is initialized with a given data-independent seed, and only one
iteration of the PPM algorithm is performed. For this result to
hold, it suffices that the overlap of the seed with the ground-
truth permutation isΩ(

√
n logn). This matches the best-known

bound for the sparse Erdös-Renyi case (Yu et al., 2021a), for
which an overlap of Ω(

√
n logn) is required to obtain exact

recovery.

• We prove (see Theorem 19) that when multiple iterations are al-
lowed, then PPM converges to the ground-truth matching in
O(logn) iterations provided that it is initialized with a seed
with overlap Ω

(
(1−κ)n

)
, for a constant κ small enough, even if

the initialization is data-dependent or adversarial. This extends
the results in (Mao et al., 2021a) from the sparse Erdös-Renyi
setting, to the dense Wigner case.

• We complement our theoretical results with experiments on syn-
thetic data showing that PPM can help to significantly improve
the accuracy of the matching (for correlated Wigner model) com-
pared to that obtained by a standalone application of existing
seedless methods.

7.1.1 Related work

projected power method (ppm). PPM, which is also often re-
ferred to as a generalized power method (GPM) in the literature, is a
family of iterative algorithms for solving constrained optimization
problems. It has been used with success for various tasks including
clustering SBM (Wang et al., 2021), group synchronization (Boumal,
2016; Gao et al., 2021), joint alignment from pairwise difference (Chen
et al., 2018), low rank-matrix recovery (Chi et al., 2019) and the gener-
alized orthogonal procrustes problem (Ling, 2021). It is a useful itera-
tive strategy for solving non-convex optimization problems as shown
in the previous chapters, but it usually requires a good enough ini-
tial estimate. The use of PPM for graph matching was first proposed
and experimentally analysed in (Onaran et al., 2017) and it has been
subsequently been analysed in the case of sparse Erdös-Renyi graphs
in (Lubars et al., 2018; Yu et al., 2021a) (only for one iteration) and
in (Mao et al., 2021a) (although the connection with PPM is not men-
tioned in those works).

graph matching . When no side information is available, several
polynomial time algorithms have been proposed recently relying on
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spectral methods (Umeyama, 1988; Fan et al., 2019; Ganassali et al.,
2022a; Feizi et al., 2020; Cour et al., 2006), degree profiles (Ding et
al., 2021; Dai et al., 2018), other vertex signatures (Mao et al., 2021a),
random walk based approaches (Rohit Singh et al., 2008; Kazemi et
al., 2016; Gori et al., 2004), convex and concave relaxations (Aflalo et
al., 2015; Lyzinski et al., 2016; Zaslavskiy et al., 2009a), and other non-
convex methods (Yu et al., 2018; Xu et al., 2019; Onaran et al., 2017).
Most of the previous algorithms have theoretical guarantees only in
the low noise regime. A more complete discussion of the problem can
be found in Chapter 6.

seeded algorithms . Different algorithms have been proposed
when a seed of the the form S = {(i, i ′) : i ∈ V(G), i ′ ∈ V(H)}

is given as side information (Pedarsani et al., 2011; Yartseva et al.,
2013; Mossel et al., 2019; Fishkind et al., 2019; Lubars et al., 2018;
Yu et al., 2021a). Many algorithms in this class work under the as-
sumption that the information provided by the seed corresponds per-
fectly to the ground truth permutation, i.e., (i, i ′) ∈ S if and only if
x∗(i) = i ′. Some algorithms relax this requirement allowing “noisy”
seeds, where for some (i, i ′) in S it happens that x∗(i) ̸= i (Yartseva
et al., 2013; Kazemi et al., 2015; Lubars et al., 2018; Yu et al., 2021a;
Mao et al., 2021a). Most of the previous work on the seeded version
of the problem has been devoted to the Erdös-Renyi model, under
different assumptions on the sparsity. To the best of our knowledge,
the state-of-art algorithm in this category is the j-hop algorithm (Yu
et al., 2021a, Alg.1), although it shares similarities with (Lubars et al.,
2018, Alg.2) and (Mao et al., 2021a, Alg.4). On the other hand, it will
be evident from our analysis of PPM for graph matching that those
algorithms can also be seen as examples of the PPM.

7.2 algorithm

7.2.1 Projected power method for Graph matching

The projected power method (PPM) has been used to solve the graph
matching problem, and its variants, by several authors (Onaran et al.,
2017). Most of the work so far has been empirical and, to the best
of our knowledge, theoretical guarantees have been obtained only in
the case of sparse Erdös-Renyi graphs, such as in (Mao et al., 2021a,
Thm.B) in the case of multiple iterations, and (Yu et al., 2021a; Lubars
et al., 2018) in the case of one iteration. Interestingly, the connection
with the PPM is not explicitly stated in any of these works.

We start by defining the projection operator onto Pn for a ma-
trix C ∈ Rn×n. We will use the greedy maximum weight matching
(GMWM) algorithm introduced in (Lubars et al., 2018), for the prob-
lem of graph matching with partially correct seeds, and subsequently
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used in (Yu et al., 2021a). The steps are outlined in Algorithm 11. No-

Algorithm 11 GMWM (Greedy maximum weight matching)
Input: A cost matrix C ∈ Rn×n.

1: Select (i1, j1) such that Ci1j1 is the largest entry in C (break ties
arbitrarily). Define C(1) ∈ Rn×n by C(1)

ij = Cij1i ̸=i1,j̸=j1 −∞ ·
1i=i1or j=j1 .

2: for k = 2 to N do
3: Select (ik, jk) such that C(k−1)

ik,jk
is the largest entry in C(k−1).

4: Define C(k) ∈ Rn×n: C
(k)
ij = C

(k−1)
ij 1i ̸=ik,j̸=jk − ∞ ·

1i=ikor j=jk .
5: end for
6: Define X ∈ {0, 1}n×n: Xij =

∑N
k=1 1i=ik,j=jk .

7: return X
Output: A permutation matrix X.

tice that the original version of GMWM works by erasing the row
and column of the largest entry of the matrix C(k) at each step k. We
change this to assign −∞ to each element of the row and column of
the largest entry (which is equivalent), mainly to maintain the origi-
nal indexation. The output of Algorithm 11 is clearly a permutation
matrix, hence we define

τ(C) := {Output of GMWM with input C} (7.2.1)

which can be considered a projection since τ2(C) = τ(C) for all C ∈
Rn×n. Notice that, in general, the output of GMWM will be different
from solving the linear assignment problem

τ̃(C) := argmin{∥C−X∥F | X ∈ Pn} = argmax
Π∈Pn

⟨Π,C⟩F

which provides an orthogonal projection, while τ corresponds to an
oblique projection in general.

Algorithm 12 PPMGM (PPM for graph matching)

Require: Matrices A,B, an initial point X(0) and N the maximum
number of iterations.

Ensure: A permutation matrix X.
1: for k = 0 to N− 1 do
2: X(k+1) ← τ(AX(k)B).
3: end for
4: return X = X(N)

The PPM is outlined in Algorithm 12. Given the estimate of the
permutation X(k) from step k, the power step corresponds to the op-
eration AX(k)B while the projection step is given by the application
of the projection τ on AX(k)B. The similarity matrix Ck+1 := AX(k)B
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is the matrix form of the left multiplication of [X(k)] by the matrix
B⊗A. Indeed, given that A and B are symmetric matrices, we have
[AX(k)B] = (B⊗A)[X(k)], by (Schäcke, 2004, eqs. 6 and 10). All previ-
ous works related to the PPM for graph matching use (B⊗A)[X(k)]

in the power step, which is highly inconvenient in practice. Also, a
power step of the form AX(k)B connects the PPM with the seeded
graph matching methods proposed for correlated Erdös-Renyi graphs
(Lubars et al., 2018; Yu et al., 2021a; Mao et al., 2021a) where related
similarity matrices are used, thus providing a more general frame-
work. Indeed, the set of elements correctly matched by the initial per-
mutation x(0) ∈ Sn can be considered as the seed of the problem, i.e.,
we take the set of seeds S := {(i, i ′) : x(0)(i) = i ′}. Thus, the num-
ber of correct seeds will be the number of elements i ∈ [n] such that
x(0)(i) = x∗(i). Observe that the definition of the seed as a permuta-
tion is more general than a set S of bijectively pre-matched vertices,
because S can be augmented (arbitrarily) to a permutation.

initialization. We prove in Section 7.3 that Algorithm 12 recov-
ers the ground truth permutation x∗ provided that the initialization
x(0) is sufficiently close to x∗. The initialization assumption will be
written in the form

∥X(0) −X∗∥F ⩽ θ
√
n (7.2.2)

for some θ ∈ [0,
√
2). Here, the value of θ measures how good X(0) is

as a seed. Indeed, (7.2.2) can be equivalently stated as: the number of
correct seeds is larger than n(2− θ2). The question of finding a good
initialization method can be seen as a seedless graph matching prob-
lem, where only partial recovery guarantees are necessary. In practice,
we can use existing seedless algorithms such as those in (Umeyama,
1988; Fan et al., 2019; Feizi et al., 2020) to initialize Algorithm 12. We
compare different initialization methods numerically, in Section 7.5.

Remark 20 (PPM as a gradient method). The projected power method
can be seen as a projected gradient ascent method for solving the MLE for-
mulation in (1.5.1). This can be reformulated in a vectorial form as

max
[X]∈[Pn]

[X]TB⊗A[X] (7.2.3)

where [Pn] is the set of permutation matrices in vector form. From the for-
mulation (7.2.3) it is clear that the gradient of the likelihood evaluated on
X ∈ Pn is 2B⊗A[X] or, equivalently, 2AXB in matrix form. This inter-
pretation of PPM has been acknowledged in the context of other statistical
problems (Journée et al., 2010; Chen et al., 2018).

Remark 21 (Optimality). Algorithms based on PPM or GPM have been
shown to attain optimal, or near-optimal, statistical guarantees for several
problems in statistics, including community detection (Wang et al., 2021;
Wang et al., 2022b), group syncronization (Boumal, 2016; Gao et al., 2019)
and generalized orthogonal procrustes problem (Ling, 2021).
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Remark 22 (Complexity). The computational time complexity of Algo-
rithm 12 is O(nω logn+n2 log2 n), where O(nω) is the matrix multipli-
cation complexity and O(n2 logn) is the complexity of Algorithm 11 (Yu
et al., 2021a). In (Le Gall, 2014), the authors establish the boundω ⩽ 2.373.

7.3 main results

Our goal in this section is to prove recovery guarantees for Algo-
rithm 12 when the input matrices A,B are realizations of the corre-
lated Wigner model. In what follows, we will assume without loss of
generality that X∗ = In.

7.3.1 Exact recovery in one iteration

For any given seed x(0) that is close enough to x∗, the main result
of this section states that x∗ is recovered exactly in one iteration of
Algorithm 12 with high probability. Let us first introduce the follow-
ing definition: we say that a matrix M is diagonally dominant1 if for
all i, j with i ̸= j we have Mii > Mij. This notion will be used in
conjunction with the following lemma, its proof is in Appendix 7.8.

Lemma 20. If a matrix C satisfies the diagonal dominance property, then the
greedy algorithm GMWM with input C will return the identical permutation.
Consequently, for C = AXB and Π = τ(C), we have

P(Π ̸= In) ⩽ P(C is not diag. dominant) (7.3.1)

The next theorem allows us to control the probability that C is not
diagonally dominant and, in turn, proves that Algorithm 12 recovers
the ground truth permutation with high probability. The proof of
Theorem 17 is outlined in Section 7.4.1.

Theorem 17. Let A,B ∼ CoWM(n,σ, id) and X ∈ Pn with ∥X− Id ∥F ⩽
θ
√
n, with 0 ⩽ θ ⩽

√
2(1− 10

n ) and n ⩾ 10. Then the following holds.

1. For C = AXB we have

P(C is not diag. dominant ) ⩽ 5n2e−c(σ)
(
1−θ2

2

)2
n

where c(σ) = 1
384(

1−σ2

1+2σ
√
1−σ2

).

2. Denote Π as the output of Algorithm 12 with input (A,B,X(0) =

X,N = 1), then

P(Π = Id) ⩾ 1− 5n2e−c(σ)
(
1−θ2

2

)2
n.

1 This is weaker than the usual notion of diagonal dominance, where for all i ∈ [n]

|Mii| ⩾
∑
j̸=i |Mij|.
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In particular, if ∥X− Id ∥2F ⩽ 2
(
n−

√
1
c(σ)n log (5n3)

)
then

P(Π = Id) ⩾ 1−n−1.

Remark 23. The assumption ∥X− Id ∥2F ⩽ 2(n−
√

1
c(σ)n log (5n3)) can

be restated as |SX| ⩾
√

1
c(σ)n log 5n3, where SX is the set of fixed points

of X. That is, for this assumption to hold, we need that X has a number of
fixed points of order Ωσ(

√
n logn). Also note that c(σ) is decreasing with

σ, which is consistent with the intuition that larger levels of noise make it
more difficult to recover the ground truth permutation. We include a plot of
c(σ) (rescaled) in Figure 20.
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Figure 20: The constant c(σ) (re-scaled multiplying by 384) appearing in
Theorem 17.

discussion. Given an initial seed X(0) ∈ Pn, the case N = 1 in Al-
gorithm 12 can be alternatively interpreted as the following two step
process: first, compute a similarity matrix AX(0)B and then round the
similarity matrix to an actual permutation matrix. This strategy has
been frequently applied in graph matching algorithms in both the
seeded and seedless case (Umeyama, 1988; Fan et al., 2019; Lubars
et al., 2018; Yu et al., 2021a). In terms of the quality of the seed,
Theorem 17 gives the same guarantees obtained by Yu et al., 2021a,
Thm.1 which requiresΩ(

√
n logn) vertices in the seed to be correctly

matched. However the results of (Yu et al., 2021a) are specifically for
the correlated Erdös-Renyi model.

7.3.2 Partial recovery in one iteration

In the partial recovery setting, we are interested in the fraction of
nodes that are correctly matched. To this end let us define the follow-
ing measure of performance

overlap(ν,ν ′) :=
1

n
|{i ∈ [n] : ν(i) = ν ′(i)}| (7.3.2)

for any pair ν,ν ′ ∈ Sn. Recall that we assume that the ground truth
permutation is x∗ = id and π is the output of Algorithm 12 with
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input (A,B,X(0) = X,N = 1) where Π = GMWM(AXB). Observe
that overlap(π, x∗ = id) = sπ is the fraction of fixed points of the
permutation π. It will be useful to consider the following definition.
We say that Cij is row-column dominant if Cij > Ci ′j for all i ′ ̸= i and
Cij > Cij ′ , for all j ′ ̸= j. The following lemma relates the overlap of
the output of GMWM with the property that a subset of the entries of C
is row-column dominant, its proof is outlined in Appendix 7.8.

Lemma 21. Let C be a n× n matrix with the property that there exists a
set {i1, · · · , ir}, with 1 ⩽ r ⩽ n such that Cik,ik is row-column dominant
for k ∈ [r]. Let π ∈ Sn be permutation corresponding to GMWM(C) ∈ Pn.
Then it holds that π(ik) = ik for k ∈ [r] and, in consequence, the following
event inclusion holds

{overlap(π, id) < r/n} ⊂
⋂

Ir⊂[n]
|Ir|=r

⋃
i∈Ir

{Cii is not row-column dominant }.

(7.3.3)

Equipped with this lemma, we can prove the following generaliza-
tion of Theorem 17, its proof is detailed in Section 7.4.2.

Theorem 18. Let A,B ∼W(n,σ, id) and X ∈ Pn with ∥X− Id ∥F ⩽ θ
√
n,

where 0 ⩽ θ ⩽
√
2(1− 10

n ) and n ⩾ 10. Let π ∈ Sn be the output of

Algorithm 12 with input (A,B,X(0) = X,N = 1). Then, for r ∈ [n]

P(overlap(π, id) > r/n) ⩾ 1− 16rne−c(σ)
(
1−θ2

2

)2
n.

In particular, if x ∈ Sn is the map corresponding to X and

|SX| ⩾

√
1

c(σ)
n log (16rn2),

then
P(overlap(π, id) > r/n) ⩾ 1−n−1.

7.3.3 Exact recovery after multiple iterations, uniformly in the seed

The results in Sections 7.3.1 and 7.3.2 hold for any given seed X(0),
and it is crucial that the seed does not depend on the graphs A,B. In
this section, we provide uniform convergence guarantees for PPMGM

which hold uniformly over all choices of the seed in a neighborhood
around x∗.

Theorem 19. Let σ ∈ [0, 1), A,B ∼W(n,σ, id) and let X(0) be a – possibly
random and data dependent – permutation such that |SX(0) | ⩾ (1− κ)n for
a constant κ > 0 such that

√
1− σ2 > 48κ. Then by applying PPMGM

with input (H(A),H(B),X(0),N = 2 logn) where H(X) corresponds to
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the matrix X with the diagonal removed, when n is large enough, we obtain
a permutation X(N) such that

P(X(N) ̸= Id) ⩾ 1− 6 logn
n2

.

The diagonal of the adjacency matrices A and B in Algorithm 12

was removed in the above theorem only for ease of analysis. Its proof
is detailed in Section 7.4.3.

Remark 24. Contrary to our previous theorems, here the strong consistency
of the estimator holds uniformly over all possible seeds that satisfy the condi-
tion |SX(0) | ⩾ (1− κ)n. For this reason, we need a stronger condition than
|SX| = Ω(

√
n logn) as was the case in Theorem 17. Our result is non triv-

ial and cannot be obtained from Theorem 17 by taking a union bound. The
proof relies on a decoupling technique adapted from Mao et al., 2021a that
used a similar refinement method for Erdös-Renyi graphs.

Remark 25. Contrary to the results obtained in the seedless case that re-
quire σ = o(1) for exact recovery (Fan et al., 2019), we can allow σ to be of
constant order. The condition

√
1− σ2 > 48κ seems to be far from optimal

as shown in the experiments in Section 7.5. For example, PPMGM can achieve
exact recovery when κ = 0.08 and σ = 0.6. But interestingly, this condition
shows that when the noise σ increases, PPMGM needs a more accurate initial-
ization, hence a larger κ, to recover the latent permutation. This is confirmed
by our experiments.

7.4 proof outline

7.4.1 Proof of Theorem 17

For A,B ∼ W(n,σ, id), the proof of Theorem 17 relies heavily on
the concentration properties of the entries of the matrix C = AXB,
which is the matrix that is projected by our proposed algorithm. In
particular, we use the fact that C is diagonally dominant with high
probability, under the assumptions of Theorem 17, which is given by
the following result. Its proof is delayed to Appendix 7.7.1.

Proposition 4 (Diagonal dominance property for the matrix C = AXB).
LetA,B ∼W(n,σ, id) with correlation parameter σ ∈ [0, 1) and let X ∈ Pn
with SX the set of its fixed points and sx := |SX|/n. Assume that sx ⩾ 10/n
and that n ⩾ 10. Then the following is true.

1. Noiseless case. For a fixed i ∈ [n] it holds that

P
(
∃j ̸= i : (AXA)ij > (AXA)ii

)
⩽ 4ne−

s2x
96n.

2. For C = AXB and i ∈ [n] it holds

P(∃j ̸= i : Cij > Cii) ⩽ 5ne−c(σ)s
2
xn

where c(σ) = 1
384

1−σ2

1+2σ
√
1−σ2

.
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With this we can proceed with the proof of Theorem 17.

Proof of Theorem 17. To prove part (i) of the theorem it suffices to no-
tice that in Proposition 4 part (ii) we upper bound the probability
that C = AXB is not diagonally dominant for each fixed row. Using
the union bound, summing over the n rows, we obtain the desired
upper bound on the probability that C is not diagonally dominant.
We now prove part (ii). Notice that the assumption ∥X− In∥F ⩽ θ

√
n

for θ <
√
2 implies that sx is strictly positive. Moreover, from this

assumption and the fact that ∥X− In∥2F = 2(n− |SX|) we deduce that

sx ⩾
(
1−

θ2

2

)
. (7.4.1)

On the other hand, we have

P(Π ̸= Id) ⩽ P(C is not diag.dom)

= P(∃i, j ∈ [n], i ̸= j : Cii < Cij)

⩽ 5n2e−c(σ)s
2
xn

⩽ 5n2e−c(σ)
(
1−θ2

2

)2
n

where we used Lemma 20 in the first inequality, Proposition 4 in the
penultimate step and, (7.4.1) in the last inequality.

7.4.1.1 Proof of Proposition 4

In Proposition 4 part (i) we assume that σ = 0. The following are the
main steps of the proof.

1. We first prove that for all X ∈ Pn such that sx = |SX|/n and for
i ̸= j ∈ [n] the gap Cii −Cij is of order sx in expectation.

2. We prove that Cii and Cij are sufficiently concentrated around
its mean. In particular, the probability that Cii is smaller than
sx/2 is exponentially small. The same is true for the probability
that Cij is larger than sx/2.

3. We use the fact P(Cii ⩽ Cij) < P(Cii ⩽ sx/2) + P(Cij ⩾ sx/2)

to control the probability that C is not diagonally dominant.

The proof is mainly based upon the following two lemmas.

Lemma 22. For the matrix C = AXA and with sx = |SX|/n we have

E[Cij] =

sx + 1
n1i∈SX for i = j,

1
n1x(j)=i for i ̸= j,

and from this we deduce that for i, j ∈ [n] with i ̸= j

sx −
1

n
⩽ E[Cii] − E[Cij] ⩽ sx +

1

n
.
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Lemma 23. Assume that sx ∈ (10/n, 1] and n ⩾ 10. Then for i, j ∈ [n]

with i ̸= j we have

P(Cii ⩽ sx/2) ⩽ 4e
−
s2x
48n, (7.4.2)

P(Cij ⩾ sx/2) ⩽ 3e
−
s2x
96n. (7.4.3)

With this we can prove Proposition 4 part (i).

Proof of Prop. 4 (i). Define the event Ej = {Cii <
sx
2 } ∪ {Cij >

sx
2 } and

note that for j ̸= i, we have {Cij > Cii} ⊂ Ej. With this and the bounds
(7.4.2) and (7.4.3) we have

P
(
∃j ̸= i : Cij > Cii

)
= P(∪j̸=i{Cij > Cii})
⩽ P(∪j̸=iEj)

⩽ P(Cii ⩽
sx

2
) +

∑
j̸=i

P(Cij ⩾
sx

2
)

⩽ 4e−
s2x
96n + 3(n− 1)e−

s2x
96n

⩽ 4ne−
s2x
96n.

The proof of Lemma 22 is short and we include it in the main body
of the paper. On the other hand, the proof of Lemma 23 mainly uses
concentration inequalities for Gaussian quadratic forms, but the de-
tails are quite technical. Hence we delay its proof to Section 7.7.1.1.
Before proceeding with the proof of Lemma 22, observe that the fol-
lowing decomposition holds for the matrix C.

Cij =
∑
k,k ′

AikXk,k ′Ak ′i =


∑
k∈SX A

2
ik +

∑
k/∈SX AikAix(k) for i = j,∑n

k=1AikAx(k)j for i ̸= j.
(7.4.4)

Proof of Lemma 22. From (7.4.4) we have that

E[Cii] =
∑
k∈SX

E[A2ik] +
∑
k/∈SX

E[A2ik] =
|SX|

n
+
1i∈SX
n

.

Similarly, for j ̸= i it holds

E[Cij] =

n∑
k=1

E[AikAx(k)j] =
1

n
1i,j/∈SX,x(j)=i =

1x(j)=i

n

from which the results follows easily.

The proof of Proposition 4 part (ii) which corresponds to the case
σ ̸= 0 uses similar ideas and the details can be found in Appendix 7.7.1.2.
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7.4.2 Proof of Theorem 18

The proof of Theorem 18 will be based on the following lemma, which
extends Proposition 4.

Lemma 24. For a fixed i ∈ [n], we have

P(Cii is not row-column dominant) ⩽ 16ne−c(σ)s
2
xn.

The proof of Lemma 24 is included in Section 7.7.2. We now prove
Theorem 18. The main idea is that for a fixed i ∈ [n], with high
probability the term Cii will be the largest term in the i-th row and
the i-th column, and so GMWM will assign π(i) = i. We will also use the
following event inclusion, which is direct from (7.3.3) in Lemma 21.

{overlap(π, id) < r/n} ⊂
r⋃
i=1

{Cii is not row-column dominant }.

(7.4.5)

Proof of Theorem 18 . Fix i ∈ [n]. By (7.4.5) we have that

P(overlap(π, id) ⩽ r/n) ⩽
r∑
i=1

P(Cii is not row-column dominant)

⩽
r∑
i=1

P(∃j ̸= i, s.t Cij ∨Cji > Cii)

⩽ 16rne−c(σ)s
2
xn

where we used Lemma 24 in the last inequality.

Remark 26. Notice that the RHS of (7.4.5) is a superset of the RHS of
(7.3.3). To improve this, it is necessary to include dependency information.
In other words, we need to ‘beat Hölder’s inequality’. To see this, define

Ei := 1Cii is not row-column dominant , εI := 1
∑
i∈I Ei>0

, for I ⊂ [n];

then εI ′ , for I ′ = [r], is the indicator of the event in the RHS of (7.4.5). On
other hand, the indicator of the event in the RHS of (7.3.3) is

∏
I⊂[n],|I|=r

εI.

If E
[
εI
]

is equal for all I, then Hölder inequality gives

E
[ ∏
I⊂[n],|I|=r

εI

]
⩽ E[εI ′ ]

which does not help in quantifying the difference between (7.3.3) and (7.4.5).
This is not surprising as we are not taking into account the dependency
between the events εI for the different sets I ⊂ [n], |I| = r.
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7.4.3 Proof of Theorem 19

The general proof idea is based on the decoupling strategy used by
(Mao et al., 2021a) for Erdös-Renyi graphs. To extend their result from
binary graphs to weighted graphs, we need to use an appropriate
measure of similarity. For i, i ′ ∈ [n],W ⊂ [n] and g ∈ Pn, let us
define

⟨Ai:,Bi ′:⟩g,W :=
∑
j∈W

Aig(j)Bi ′j

to be the similarity between i and i ′ restricted to W and measured
with a scalar product depending on g (the permutation used to align
A and B). When g = id or W = [n] we will drop the corresponding
subscript(s). If A and B were binary matrices, we would have the
following correspondence

⟨Ai:,Bi ′:⟩g,W = |g(NA(i)∩W)∩NB(i ′)|.

This last quantity plays an essential role in Proposition 7.5 of (Mao
et al., 2021a). Here g(S) denotes the image of a set S ⊆ [n] under
permutation g.

step 1 . The algorithm design relies on the fact that if the matrices
A and B were correctly aligned then the correlation between Ai: and
Bi: should be large and the correlation between Ai: and Bi ′: should
be small for all i ̸= i ′. The following two Lemmas precisely quantify
these correlations when the two matrices are well aligned.

Lemma 25 (Correlation between corresponding nodes). Let (A,B) ∼

W(n,σ, x∗ = id) and assume that the diagonals of A and B have been
removed. Then for n large enough, we have with probability at least 1−n−2

that
⟨Ai:,Bi:⟩ ⩾

√
1− σ2(1− ϵ1) − σϵ2 for all i ∈ [n],

where ϵ1, ϵ2 = O(
√

logn
n ).

Lemma 26 (Correlation between different nodes). Let (A,B) ∼W(n,σ, id)
and assume that the diagonals of A and B have been removed. Then for n
large enough, we have with probability at least 1−n−2 that

|⟨Ai:,Bi ′:⟩| ⩽
√
1− σ2ϵ2 + σϵ3 for all i, i ′ ∈ [n] such that i ′ ̸= i,

where ϵ3 = O(
√

logn
n ).

The proofs of Lemmas 25 and 26 can be found in Section 7.8.1.

step 2 . Since the ground truth alignment between A and B is un-
known, we need to use an approximate alignment (provided by X(0)).
It will suffice that X(0) is close enough to the ground truth permu-
tation. This is linked to the fact that if |SX(0) | is large enough then



150 seeded graph matching with the generalized power method

the number of nodes for which there is a substantial amount of in-
formation contained in Sc

X(0) is small. This is shown in the following
lemma.

Lemma 27 (Growing a subset of vertices). Let G a graph generated from
the Wigner model with self-loops removed, associated with an adjacency ma-
trix A, and let I be a random subset of [n] (possibly depending on A) with
|I| ⩾ (1− κ)n where κ ∈ (0, 1/2). Let δ = 8κ and define a random subset
of vertices

Ĩ = {i ∈ [n] : ∥Ai:∥2Ic < δ}.

Then for n large enough, we have

P

(
|Ĩc| ⩽

1

4
|Ic|

)
⩾ 1− e−c

′κn

for some constant c ′ > 0.

In order to prove this lemma we will need the following decoupling
lemma.

Lemma 28 (An elementary decoupling). Let M > 0 be a parameter and
G be a weighted graph on [n], with weights of magnitude bounded by 1
and without self loops, represented by an adjacency matrix A ∈ [−1, 1]n×n.
Assume that there are two subsets of vertices Q,W ⊂ [n] such that

∥Ai:∥2W ⩾M for all i ∈ Q.

Then there are subsets Q ′ ⊆ Q and W ′ ⊆ W such that Q ′ ∩W ′ = ∅,
|Q ′| ⩾ |Q|/5 and

∥Ai:∥2W ′ ⩾M/2 for all i ∈ Q ′.

Proof. If |Q \W| ⩾ |Q|/5 then one can take Q ′ = Q \W and W ′ =

W. So we can assume that |Q ∩W| ⩾ 4|Q|/5. Let W̃ := W \Q and
Q̂ be a random subset of Q ∩W where each element j ∈ Q ∩W
is selected independently with probability 1/2 in Q̂. Consider the
random disjoint sets Q̂ and W ′ := W̃ ∪ ((Q ∩W) \ Q̂). First, we will
show the following claim.

Claim 1. For every i ∈ Q∩W, we have P(∥Ai:∥2W ′ ⩾M/2|i ∈ Q̂) ⩾ 1/2.

Indeed, we have by definition

∥Ai:∥2W ′ =
∑
j∈W ′

A2ij =
∑

j∈W∩Q
A2ij1j̸∈Q̂ +

∑
j∈W̃

A2ij.

By taking the expectation conditional on i ∈ Q̂, we obtain

E
(
∥Ai:∥2W ′

∣∣∣i ∈ Q̂) =
∑

j∈W∩Q

A2ij

2
+

∑
j∈W̃

A2ij ⩾
1

2

∑
j∈W

A2ij ⩾
M

2
.
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But since
∑
j∈W∩QA

2
ij(1j̸∈Q̂− 1

2) is a symmetric random variable we
have that

P
(
∥Ai:∥2W ′ ⩾ E(∥Ai:∥2W ′)

∣∣∣i ∈ Q̂) = 1/2

and hence

P

(
∥Ai:∥2W ′ ⩾

M

2

∣∣∣∣i ∈ Q̂) ⩾ 1/2.

Consequently, we have

E

 ∑
i∈Q∩W

1
{∥Ai:∥2W ′⩾M/2}

1i∈Q̂

 =
∑

i∈Q∩W
P(i ∈ Q̂)E

(
1
{∥Ai:∥2W ′⩾M/2}

∣∣∣i ∈ Q̂)
⩾

|Q∩W|

4
⩾

|Q|

5
.

Therefore, there is a realization Q ′ of Q̂ such that Q ′ and W ′ satisfy
the required conditions.

Proof of Lemma 27. By considering sets W = Ic and Q ⊂ Ĩc we obtain
the following inclusion

{|Ĩc| >
1

4
|Ic|} ⊂ E := {∃Q,W ⊂ [n] : |W| ⩽ κn, |Q| ⩾ |W|/4 ̸= 0, ∥Ai:∥2W ⩾ δ for all i ∈ Q}.

According to Lemma 28, E is contained in

E ′ := {∃Q ′,W ′ ⊂ [n] : |W ′| ⩽ κn, |Q ′| ⩾ |W|/20 ̸= 0,Q ′∩W ′ = ∅, ∥Ai:∥2W ′ ⩾ δ/2 for all i ∈ Q ′}.

For given subsets Q ′ and W ′, the random variables (∥Ai:∥2W ′)i∈Q ′

are independent. So, by a union bound argument we get

P

(
|Ĩc| >

1

4
|Ic|

)
⩽

⌈κn⌉∑
w=1

∑
|W ′|=w

n∑
k=⌈w/20⌉

(
n

k

)
P
(
∥Ai:∥2W ′ ⩾ δ/2

)k
.

According to Lemma 37, for the choice t = κn we have for all W ′

P
(
∥Ai:∥2W ′ ⩾ δ/2

)
⩽ P

(
n ∥Ai:∥2W ′ ⩾ |W|+

√
|W|t+ 2t

)
⩽ e−κn.

Consequently, for n large enough, we have

P

(
|Ĩc| >

1

4
|Ic|

)
⩽

⌈κn⌉∑
w=1

n∑
k=⌈w/20⌉

(en
w

)w (en
k

)k
e−kκn < e−cκn

for a constant c > 0. Indeed, since

en

keκn
< 1

for n large enough we have

n∑
k=⌈w/20⌉

(en
k

)k
e−kκn ⩽ C

( en
eκn

)⌈w/20⌉
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by thw property of geometric series, where C > 0 is a constant. But
by the same argument

⌈κn⌉∑
w=1

(en
w

)w((en)1/20

eκn/20

)w
⩽

(en)1/20

eκn/20
⩽ e−cκn

where c > 0 is a constant.

step 3 . We are now in position to show that at each step the set of
fixed points of the permutation obtained with PPMGM increases.

Lemma 29 (Improving a partial matching). Let G and G ′ two graphs
as before, and g be a random permutation possibly depending on G and G ′.
Further assume that

√
1− σ2 > 48κ. Let

E := {|i ∈ [n] : g(i) = i| ⩾ (1− κ)n}

be the event that the number of fixed point of g is large enough. Define a
random permutation g̃ and a random set J̃ as follows. Let δ = 8κ, we say
that a vertex i ∈ [n] belongs to J̃ if there is a unique i ′ ∈ [n] such that

• ⟨Ai:,Bi ′:⟩g ⩾ 3δ;

• |⟨Ai:,Bj:⟩g| < 3δ for all j ̸= i ′;

• |⟨Aj:,Bi ′:⟩g| < 3δ for all j ̸= i.

Then we set g̃(i) = i ′ for any such pair of vertices. We complete g̃ into a
permutation in an arbitrary way.

If n is sufficiently large and κ sufficiently small, we have with probability
at least P(E) − 3

n2
,

|{i ∈ [n] : g̃(i) = i}| ⩾
n

2
+

|{i ∈ [n] : g(i) = i}|

2
.

It implies in particular that the set of fixed points of g̃ is strictly larger than
the set of fixed points of g.

Remark 27. The description of GMWM doesn’t involve the use of a threshold,
but for the nodes that satisfy the conditions described in Lemma 29, GMWM
provides by definition the same matching (this can be seen using the notion of
row-column dominance and Lemma 21). Since the nodes that do not satisfy
these conditions can be matched in an arbitrary way, we can use GMWM instead
of the thresholding procedure and the analysis remains valid.

Proof. Define the random sets

I :={j ∈ [n] : g(j) = j},

Ĩ :={j ∈ [n] : ∥Ai:∥2Ic < δ},

Ĩ ′ :={j ∈ [n] : ∥Bi:∥2Ic < δ},
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where δ = 8κ and consider the event E ′ = E ′
1 ∩ E ′

2 ∩ E ′
3 where

E ′
1 := {|Ĩc| ∨ |(Ĩ ′)c| ⩽

1

4
|Ic|}

E ′
2 := {∀i ∈ [n] : ⟨Ai:,Bi:⟩ ⩾ 0.9

√
1− σ2}

E ′
3 := {∀i ̸= i ′ ∈ [n] : |⟨Ai:,Bi ′:⟩| < C logn/n}

for a suitably large constant C > 0 (which is the constant hidden in
the O(·) symbol in Lemma 26). If n is sufficiently large and κ satisfies√
1− σ2 > 48κ, one can show that

P(E ′ ∩ E) ⩾ P(E) −
3

n2

by combining Lemma 25, 26 and 27. Condition on any realization of
G,G ′,g such that the event E ′ ∩ E holds. Let i ∈ Ĩ ∩ Ĩ ′. By definition
of E ′ ∩ E, we have

⟨Ai:,Bi:⟩g ⩾ ⟨Ai:,Bi:⟩g,I − |⟨Ai:,Bi:⟩g,Ic |

⩾ ⟨Ai:,Bi:⟩− |⟨Ai:,Bi:⟩Ic |− |⟨Ai:,Bi:⟩g,Ic |

⩾ 3δ.

Here we used the fact that for all permutations g, |⟨Ai:,Bi:⟩g,Ic | ⩽
∥Ai:∥Ic ∥Bi:∥Ic (because g(Ic) = Ic by definition of I).

On the other hand, for every i ′ ∈ [n] \ i we have

|⟨Ai:,Bi ′:⟩g| ⩽ |⟨Ai:,Bi ′:⟩g,I|+ |⟨Ai:,Bi ′:⟩g,Ic |

< 3δ.

Similarly we have |⟨Ai ′:,Bi:⟩g| < 3δ. Hence Ĩ∩ Ĩ ′ ⊂ J̃ and g̃(i) = i for
all i ∈ Ĩ∩ Ĩ ′. Moreover we have by the first condition on E ′

|Ĩ∩ Ĩ ′| ⩾ n− |Ĩc|− |(Ĩ ′)c| ⩾ n−
|I|c

2
=
n

2
+

|I|

2
,

so the result follows.

conclusion. By Lemma 29, if the initial number of fixed points is
(1− κ)n then after one iteration step the size of the set of fixed points
of the new iteration is at least (1−κ/2)nwith probability greater than
1− 3

n2
. So after 2 logn iterations the set of fixed points has size at least

(1− κ/22 logn)n > n− 1 with probability greater than 1− 6 logn
n2

.

7.5 numerical experiments

In this section, we present numerical experiments to assess the per-
formance of the PPMGM algorithm and compare it to the state-of-art
algorithms for graph matching, under the correlated Wigner model.
We divide this section into two parts. In Section 7.5.1 we generate
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correlated Wigner graphs A,B ∼ W(n,σ, x∗) for a random permuta-
tion x∗, and apply to A,B the spectral algorithms Grampa (Fan et al.,
2019) and the classic Umeyama (Umeyama, 1988), both of which work
in the seedless case. As a second step, we apply algorithm PPMGM

with the initialization given by the output of Grampa and Umeyama. We
show experimentally that by applying PPMGM the solution obtained
in both cases improves, when measured as the overlap (defined in
(7.3.2)) of the output with the ground truth. We also run experiments
by initializing PPMGM with X(0) randomly chosen at a certain distance
of the ground truth permutation X∗. Specifically, we select X(0) uni-
formly at random from the set of permutation matrices that satisfy
∥X(0) −X∗∥F = θ ′

√
n, and vary the value of θ ′ ∈ (0, 1).

In Section 7.5.2 we run algorithm PPMGM with different pairs of input
matrices. We consider the Wigner correlated matrices A,B and also
the pairs of matrices (Aspar1 ,Bspar1), (Aspar2 ,Bspar2) and (Aspar3 ,Bspar3),
which are produced from A,B by means of a sparsification proce-
dure (detailed in Section 7.5.2). The main idea behind this setting is
that, to the best of our knowledge, the best theoretical guarantees
for exact graph matching have been obtained in Mao et al., 2021a
for relatively sparse Erdös-Renyi graphs. The algorithm proposed in
Mao et al., 2021a has two steps, the first of which is a seedless type
algorithm which produces a partially correct matching, that is later
refined with a second algorithm Mao et al., 2021a, Alg.4. Their pro-
posed algorithm RefinedMatching shares similarities with PPMGM and
with algorithms 1-hop (Lubars et al., 2018; Yu et al., 2021a) and 2-hop

(Yu et al., 2021a). Formulated as it is, RefinedMatching (Mao et al.,
2021a) (and the same is true for 2-hop for that matter) only accepts bi-
nary edge graphs as input and also uses a threshold-based rounding
approach instead of Algorithm 11, which might be difficult to cali-
brate in practice. With this we address experimentally the fact that
the analysis (and algorithms) in Mao et al., 2021a do not extend au-
tomatically to a simple binarization of the (dense) Wigner matrices,
and that specially in high noise regimes, the sparsification strategies
do not perform very well.

7.5.1 Performance of PPMGM

In Figure 21 we plot the recovery fraction, which is defined as the
overlap (see (7.3.2)) between the ground truth permutation and the
output of: Grampa, Umeyama, Grampa+PPMGM, Umeyama+PPMGM and PPMGM.
The algorithms Grampa+PPMGM and Umeyama+PPMGM use the output of
Grampa and Umeyama as seeds for PPMGM, which is performed with N =

1. In the algorithm PPMGM, we use an initial permutation x(0) ∈ Sn
chosen uniformly at random in the set of permutations such that
overlap (x(0), x∗) = 0.08; this is referred to as ‘PPMGM rand.init’. We
take n = 800 and consider the average overlap over 25 Monte Carlo
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Figure 21: Performance of PPMGM as a refinement of Grampa and Umeyama
algorithms, compared with PPM with a random initialization
x(0), such that overlap(x(0), x∗) = 0.08.

runs. In Figure 22 we plot the performance of the PPMGM algorithm
for randomly chosen seeds and with different number of correctly
pre-matched vertices. More specifically, we consider an initial per-
mutation x(0)j ∈ Sn (corresponding to initializations X(0)

j ∈ Pn) for

j = 1, · · · , 4 with overlap(x(0)1 , x∗) = 0.05, overlap(x(0)2 , x∗) = 0.1,
overlap(x(0)3 , x∗) = 0.15 and overlap(x(0)4 , x∗) = 0.5. Equivalently, we

have ∥X(0)
j − X∗∥F = θ ′j

√
n, where θ ′j =

√
2
(
1− overlap(x(0)j , x∗)

)
.

Each permutation x
(0)
j is chosen uniformly at random in the sub-

set of permutations that satisfy each overlap condition. We observe
that initializing the algorithm with an overlap of 0.1 with the ground
truth permutation already produces perfect recovery in one iteration
for levels of noise as high as σ = 0.6.

varying the number of iterations N . We experimentally
evaluate the performance of PPMGM when varying the number of iter-
ations N in Algorithm 12. In Figures 23 and 24 we plot the recovery
rate of PPMGM, initialized with x(0), with an overlap of 0.1 with the
ground truth. In Figure 23 we see that adding more iterations in-
creases the performance of the algorithm for n = 500; however the
improvement is less pronounced in the higher noise regime. In other
words, the number of iterations cannot make up for the fact that the
initial seed is of poor quality (relative to the noise level). We use
N = 1, 2, 4, 8, 30 iterations and we observe a moderate gain between
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Figure 22: Performance of PPMGM with different initializations. Here
in.1, in.2, in.3, in.4 corresponds to and overlap of x(0) with the
ground truth of 0.05, 0.1, 0.15 and 0.5 respectively.

N = 8 and N = 30. In Figure 24 we use a matrix of size n = 1000 and
we see that the difference between using N = 1 and N > 1 is even
less pronounced ( we omit the case of 30 iterations for readability
purposes, as it is very similar to N = 8).

7.5.2 Sparsification strategies

Here we run PPMGM using different input matrices which are all trans-
formations of the Wigner correlated matrices A,B. Specifically, we
compare PPMGM with A,B as input with the application of PPMGM to
three different pairs of input matrices (Aspar1 ,Bspar1), (Aspar2 ,Bspar2)
and (Aspar3 ,Bspar3) that are defined as follows.

A
spar1
ij = 1|Aij|<τ; Bspar1

ij = 1|Bij|<τ,

A
spar2
ij = Aij1|Aij|<τ; Bspar2

ij = Bij1|Bij|<τ,

A
spar3
ij = Aij1|Aij|∈topk(Ai:); B

spar2
ij = Bij1|Bij|∈topk(Bi:),

where τ > 0 and for k ∈ N and a n× n matrix M, topk(Mi:) is the
set of the k largest elements (breaking ties arbitrarily) of Mi: (the i-th
row of M). The choice of the parameter τ is mainly determined by
the sparsity assumptions in (Mao et al., 2021a, Thm.B), i.e., if G,H are
two Erdös-Renyi graphs to be matched with connection probability p
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Figure 23: PPMGM with an initialization such that overlap(x(0), x∗) = 0.1.
Here it.1, it.2, it.3, it.4, it.5 corresponds to 1, 2, 4, 8 and 30 itera-
tions respectively.
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Figure 24: Here it.1, it.2, it.3, it.4 corresponds to 1, 2, 4 and 8 iterations re-
spectively.
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Figure 25: Initial overlap is equal to 0.5

(which is equal to qs in the definition (1.5.3)), then the assumption is
that

(1+ ϵ)
logn
n

⩽ p ⩽ n
1

R log logn−1 (7.5.1)

where ϵ > 0 is arbitrary and R is an absolute constant. We refer the
reader to (Mao et al., 2021a) for details. For each p in the range de-
fined by (7.5.1) we solve the equation

P(|Aij| ⩽ τp) = 2Φ(−τp
√
n) = p (7.5.2)

where Φ is the standard Gaussian cdf (which is bijective so τp is
well defined). In our experiments, we solve (7.5.2) numerically. No-
tice that Aspar1 and Bspar1 are sparse correlated Erdös-Renyi graphs
with a correlation that depends on σ. For the value of k that defines
Aspar3 ,Bspar3 we choose k = Ω(logn) or k = Ω(no(1)), to maintain
the sparsity degree in (7.5.1). In Figures 25 and 26 we plot the per-
formance comparison between the PPMGM without sparsification, and
the different sparsification strategies (initialized with overlap 0.5 and
0.1). We see that the use of the full information A,B outperforms the
sparser versions in the higher noise regimes and for small overlap
of the initialization. On the other hand, the performance tends to be
more similar for low levels of noise and moderately large number of
correct initial seeds. In theory, sparsification strategies have a moder-
ate denoising effect (and might considerably speed up computations),
but this process seems to destroy important correlation information.
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Figure 26: Initial overlap is equal to 0.1

7.5.2.1 Choice of the sparsification parameter τ

Solving (7.5.2) for p in the range (7.5.1) we obtain a range of possible
values for the sparsification parameter τ. To choose between them,
we use a simple grid search where we evaluate the recovery rate for
each sparsification parameter on graphs of size n = 1500, and take
the mean over 25 independent Monte Carlo runs. In Figure 27, we
plot a heatmap with the results. We see that the best performing pa-
rameter in this experiment was for τ5 corresponding to a probability
p5 = 51× 10−3, although there is a moderate change between all the
choices for p.

7.6 concluding remarks and futur work

In this work, we analysed the performance of the projected power
method (proposed in Onaran et al., 2017) as a seeded graph match-
ing algorithm, in the correlated Wigner model. We proved that for
a non-data dependent seed with O(

√
n logn) correctly pre-assigned

vertices, the PPM exactly recovers the ground truth matching in one it-
eration. This is analogous to the state-of-the-art results for algorithms
in the case of relatively sparse correlated Erdös-Renyi graphs. We
additionally proved that the PPM can exactly recover the optimal
matching in O(logn) iterations for a seed that contains Ω

(
(1− κ)n

)
correctly matched vertices, for a constant κ ∈ (0, 1), even if the seed
can potentially be dependent on the data. For the latter result, we ex-
tended the arguments of Mao et al., 2021a from the (sparse) correlated
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Figure 27: Heatmap for the recovery rate of PPMGM algorithm with input
(Aspar1 ,Bspar1 ) for different threshold values τi(y axis); i =

1, · · · , 6, and different values of σ (x axis). Here τi corresponds to
the solution of (7.5.2) with n = 1500 and pi for i = 1, 2 · · · , 6 in a
uniform grid between p1 = 42× 10−3 and p6 = 54× 10−3.

Erdös-Renyi model to the (dense) correlated Wigner case, providing
a uniform control on the error when the seed contains Ω

(
(1− κ)n

)
fixed points. This provides theoretical guarantees for the use of PPM
as a refinement algorithm (or a post-processing step) for other seed-
less graph matching methods.

An open question is to find an efficient initialization method which
outputs a permutation with order (1− κ)n correctly matched vertices
in regimes with higher σ (say for σ > 1/2). For those noise levels,
spectral methods do not seem to perform well (at least in the experi-
ments). An idea could be to adapt the results Mao et al., 2021a from
the sparse Erdös-Renyi case to the Wigner case. In that paper, the
authors construct for each vertex a signature containing the neighbor-
hood information of that vertex and which is encoded as tree. Then
a matching is constructed by matching those trees. It is however un-
clear how to adapt those results (which heavily rely on the sparsity)
to the dense Wigner case.

It would also be interesting to compare in numerical experiments
the performance of the algorithm proposed by Ma et al., 2021 to other
state-of-the-art methods for graph matching to see if the main contri-
bution of Mao et al., 2021a is on the theoretical analysis or if their
work can also lead to an efficient algorithm in practice. We are cur-
rently working on the implementation of this algorithm and possible
improvements.
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7.7 additional proofs

7.7.1 Proof of Proposition 4

We divide the proof into two subsections. In Appendix 7.7.1.1 we
prove Lemma 23 and in Appendix 7.7.1.2 we prove part (ii) of Propo-
sition 4. Before proceeding, let us introduce and recall some notation.
Define C ′ := AXA and C ′′ := AXZ, then C = AXB =

√
1− σ2C ′ +

σC ′′. Recall that for a permutation x, SX will denote the set of fixed
points of x (the set of non-zero diagonal terms of its matrix represen-
tation X) and we will often write sx = |SX|/n = Tr(X)/n. We will say
that a real random variable Y ∼ χ2K if it follows a central Chi-squared
distribution with K degrees of freedom.

7.7.1.1 Proof of Lemma 23

The proof of Lemma 23 mainly revolves around the use of concentra-
tion inequalities for quadratic forms of Gaussian random vectors. For
that, it will be useful to use the following representation of the entries
of C.

Cij = ⟨A:i,XA:j⟩ (7.7.1)

where we recall that A:k represents the k-th column of the matrix A.

Proof of Lemma 23.

high probability bound for Cii . Define ãi to be a vector in
Rn such that

ãi(k) =

Aki, for k /∈ i, x−1(i),
1√
2
Aii, for k ∈ i, x−1(i).

Using representation (7.7.1) we have

Cii = ⟨ãi,Xãi⟩+Zi

where
Zi :=

1

2
Aii
(
Ax(i)i) +Ax−1(i)i

)
.

It is easy to see that
√
nãi is a standard Gaussian vector. Using

Lemma 38 we obtain

n⟨ãi,Xãi⟩
d
=

n1∑
i=1

µig
2
i −

n2∑
i=1

νig
′2
i

where (µi)
n1
i=1, (−νi)

n2
i=1, (with µi ⩾ 0, νi ⩾ 0 and n1 + n2 = n) is

the sequence of eigenvalues of 12(X+XT ) and g = (g1, · · · ,gn1), g
′ =

(g ′
1, · · · ,g ′

n2
) are two independent sets of i.i.d standard Gaussians.
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Lemma 38 tell us in addition that ∥µ∥1 − ∥ν∥1 = sxn, ∥µ∥2 + ∥ν∥2 ⩽√
2n and ∥µ∥∞, ∥ν∥∞ ⩽ 1. Using Corollary 3 (A.0.2), we obtain

P(n⟨ãi,Xãi⟩ ⩽ sxn− 2
√
2nt− 2t) ⩽ e−t (7.7.2)

for all t ⩾ 0. To obtain a concentration bound for Zi we will distin-
guish two cases.
(a)Case i ∈ SX. In this case, we have Zi = a2i (i), which implies that
Cii ⩾ ⟨ãi,Xãi⟩. Hence

P(nCii ⩽ sxn− 2
√
2nt− 2t) ⩽ 2e−t.

Replacing t = t := n
2 (
√
1+ sx

2 − 1)2 in the previous expression, one
can verify2 that t ⩾ n

48s
2
x, for sx ∈ (0, 1], hence

P(Cii ⩽ sx/2) ⩽ 2e
−
s2x
48n

which proves (7.4.2) in this case.
(b) Case i /∈ SX. Notice that in this case, ai(i) is independent from

(ai(x(i)) + ai(x
−1(i)), hence nZi

d
= g1g2, where g1,g2 are indepen-

dent standard Gaussians. Using the polarization identity g1g2 = 1
4(g1+

g2)
2 − 1

4(g1 − g2)
2, we obtain

nZi
d
=
1

2
(g̃21 − g̃

2
2)

where g̃1, g̃2 are independent standard Gaussians. By Corollary 3 we
have

P
(
2nZi ⩽ −4

√
t− 2t

)
⩽ 2e−t. (7.7.3)

Using (7.7.2) and (7.7.3), we get

P(nCii ⩽ sxn− 2(
√
2n+ 1)

√
t− 3t) ⩽ 4e−t

or, equivalently

P

(
Cii ⩽ sx − 2(

√
2+ 1/

√
n)

√
t

n
− 3

t

n

)
⩽ 4e−t. (7.7.4)

Replacing t = t := n
36

(√
d2 + 6sx − d

)2, where d = 2(
√
2+ 1/

√
n),

in the previous expression and noticing that t ⩾ 1
6s
2
xn, we obtain the

bound
P(Cii ⩽ sx/2) ⩽ 4e

−
s2x
6 n.

2 Indeed, the inequality (
√
1+ x− 1)2 ⩾ 1

6x
2, follows from the inequality x2 + (2

√
6−

6)x ⩽ 0, which holds for 0 < x ⩽ 1.
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high probability bound for Cij , i ̸= j . Let us first define the
vectors ãi, ãj ∈ Rn as

ãi(k) :=

Aki, for k /∈ {j, x−1(i)},

0, for k ∈ {j, x−1(i)},

and

ãj(k) :=

Akj, for k /∈ {j, x−1(i)},

0, for k ∈ {j, x−1(i)}.

Contrary to ai and aj which share a coordinate, the vectors ãi and ãj
are independent. With this notation, we have the following decompo-
sition

Cij = ⟨ãi,Xãj⟩+Aji
(
Ax(j)j +Ax−1(i)i

)
.

For the first term, we will use the following polarization identity

⟨ãi,Xãj⟩ = ∥
1

2
(ãi +Xãj)∥2 − ∥

1

2
(ãi −Xãj)∥2. (7.7.5)

By the independence of ãi and ãj, it is easy to see that ãi + Xãj
and ãi − Xãj are independent Gaussian vectors and E[⟨ãi,Xãj⟩] = 0.

Using (7.7.5) and defining Zij := Aji

(
Ax(j)j+Ax−1(i)i

)
n, it is easy to

see that

nCij
d
=

n−1∑
i=1

µig
2
i −

n−1∑
i=1

νig
′2
i +Zij (7.7.6)

where g1, · · · ,gn−1 and g ′
1, · · · ,g ′

n−1 are two sets of independent
standard Gaussian variables and µi,νi ∈ {12 , 34 , 1}, for i ∈ [n − 1].
The sequences (µi)

n−1
i=1 , (νi)n−1i=1 will be characterised below, when

we divide the analysis into two cases x(j) = i and x(j) ̸= i. We first
state the following claim about Zij.

Claim 2. For i ̸= j, we have

Zij
d
=

qij(ζ1 − ζ2) if x(j) ̸= i,

2ζ3 if x(j) = i,

where ζ1, ζ2 and ζ3 are independent Chi-squared random variables with one
degree of freedom and

qij =



√
3
2 if i ∈ SX, j /∈ SX or i /∈ SX, j ∈ SX,

√
2 if i, j ∈ SX,
1√
2

if i, j /∈ SX.

We delay the proof of this claim until the end of this section. From
the expression (7.7.6), we deduce that the vectors g = (g1, · · · ,gn−1),
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g ′ = (g ′
1, · · · ,g ′

n−1) and Zij are independent. Hence, by Claim 2 the
following decomposition holds

nCij
d
=

n∑
i=1

µig
2
i −

n∑
i=1

νig
′2
i

where

µn =

qij if x(j) ̸= i,

2 if x(j) = i,
and νn =

qij if x(j) ̸= i,

0 if x(j) = i.

Let us define µ := (µ1, · · · ,µn) and ν := (ν1, · · · ,νn). We will now
distinguish two cases.
(a) Case x(j) ̸= i. In this case, we can verify that one of the µ1, · · · ,µn−1
is equal to 0 (and the same is true for the values ν1, · · · ,νn−1). As-
sume without loss of generality that µ1 = ν1 = 0. Also, one of the fol-
lowing situations must happen for the sequence µ2, · · · ,µn−1 (resp.
ν2, · · · ,νn−1): either n− 3 of the elements of the sequence are equal
to 1
2 and one is equal 1 or n− 4 are equal to 1

2 and two are equal to 3
4

or n− 3 are equal to 1
2 and one is equal to 3

4 . In either of those cases,
the following is verified

∥µ∥1 − ∥ν∥1 = 0,

∥µ∥2 + ∥ν∥2 ⩽
√
2n,

∥µ∥∞, ∥ν∥∞ ⩽
√
2,

where the first equality comes from Lemma 22, the inequality on the
norm ∥ · ∥2 comes from the fact that in the worst case ∥µ∥2 = ∥ν∥2 ⩽√
n+1
4 . The statement about the norm ∥ · ∥∞ can be easily seen by the

definition of µ and ν. Using (A.0.1), we obtain

P(nCij ⩾ 4
√
nt+ 4t) ⩽ 2e−t.

Replacing t = t := n
4 (
√
1+ sx

2 − 1)2 in the previous expression and
noticing that t ⩾ 1

96s
2
xn for sx ∈ (0, 1] leads to the bound

P(Cij ⩾ sx/2) ⩽ 2e
−
s2x
96n.

(b) Case x(j) = i. In this case, we have that for the sequence µ1, · · · ,µn−1
(resp. ν1, · · · ,νn−1): either n− 2 of the elements of the sequence are
equal to 1

2 and one is equal 1 or n − 3 are equal to 1
2 and two are

equal to 3
4 . In either case, the following holds

∥µ∥1 − ∥ν∥1 = 2,
∥µ∥2 + ∥ν∥2 ⩽ 2

√
n,

∥µ∥∞, ∥ν∥∞ ⩽ 2.
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Here, the inequalities for the norms ∥ · ∥1, ∥ · ∥∞ follow directly from
the definition of µ and ν, and the inequality for ∥ · ∥2 follows by the

fact that, in the worst case, ∥µ∥2 + ∥ν∥2 =
√
n+6
4 +

√
n+2
4 . Using

(A.0.1), we get

P(nCij ⩾ 2+ 4
√
nt+ 4t) ⩽ 2e−t.

Replacing t = t := n
4 (
√
1+ sx

2 − 2
n − 1)2 in the previous expression

and noticing that t ⩾ 1
20s

2
xn for sx ∈ (10/n, 1] we get

P(Cij ⩾ sx/2) ⩽ 2e
−
s2x
20+4/n ⩽ 3e−

s2x
20 ,

where we used that n ⩾ 10.

Proof of Claim 2. Observe that when x(j) = i (or equivalently x−1(i) =
j) we have Zij = 2nA2ij. Given that i ̸= j by assumption, it holds

A2ij ∼ N(0, 1n), which implies that Zij
d
= 2ζ3 for ζ3 ∼ χ21. In the case

x(j) ̸= i, let us define

ψ1 :=
√
nAij, ψ2 :=

√
nAjx(j), ψ3 :=

√
nAix−1(i),

which are all independent Gaussians random variables. Moreover,
ψ1 ∼ N(0, 1) and

ψ2 +ψ3 ∼


N(0, 2) if i, j /∈ SX,

N(0, 3) if i ∈ SX, j /∈ SX or i /∈ SX, j ∈ SX,

N(0, 4) if i, j ∈ SX.

Consider the case i, j /∈ SX. In this case, it holds

Zij =
√
2ψ1

(ψ2 +ψ3√
2

)
=

1√
2

(ψ1√
2
+
ψ2 +ψ3

2

)2
−
1√
2

(ψ1√
2
−
ψ2 +ψ3

2

)2
.

Notice that ψ1√
2
+ ψ2+ψ3

2 and ψ1√
2
− ψ2+ψ3

2 are independent standard

normal random variables, hence Zij
d
= 1√

2
(ζ1 − ζ2), where ζ1 and ζ2

are independent χ21 random variables. The proof for the other cases
is analogous.

7.7.1.2 Proof of Proposition 4 part (ii)

Now we consider the case where σ ̸= 0. It is easy to see that here the
analysis of the noiseless case still applies (up to re-scaling by

√
1− σ2)

for the matrix C ′ = AXA. We can proceed in an analogous way for
the matrix C ′′ = AXZ which will complete the analysis (recalling that
C =

√
1− σ2C ′ + σC ′′).
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Before we proceed with the proof, we explain how the tail analysis
of entries of C ′ in Prop.4 part (i) helps us with the tail analysis of C ′′.
Observe that for each i, j ∈ [n] we have

C ′′
ij =

∑
k,k ′

AikXk,k ′Zk ′,j =

n∑
k=1

AikZx(k)j = ⟨A:i,XZ:j⟩.

The term C ′′
ij, for all i, j ∈ [n], can be controlled similarly to the term

C ′
i ′j ′ (when i ′ ̸= j ′). Indeed, we have the following

Lemma 30. For t ⩾ 0 we have

P(C ′′
ij ⩽ −4

√
nt− 2t

)
= P(C ′′

ij ⩾ 4
√
nt+ 2t

)
⩽ 2e−t.

Consequently,

P(C ′′
ij ⩾ sx/2) ⩽ 2e

−
s2x
96n.

Proof. We define h1 := 1
2(A:i+XZ:j) and h2 := 1

2(A:i−XZ:j). It is easy
to see that h1 and h2 are two i.i.d Gaussian vectors of dimension n.
By the polarization identity, we have

n⟨A:i,XZ:j⟩ = n(∥h1∥2 − ∥h2∥2)
d
=

n∑
i=1

µig
2
i −

n∑
i=1

νig
′2
i

where g = (g1, · · · ,gn) and g ′ = (g ′
1, · · · ,g ′

n) are independent stan-
dard Gaussian vectors and the vectors µ = (µ1, · · · ,µn),ν = (ν1, · · · ,

νn) have positive entries that satisfy, for all i ∈ [n], µi,νi ∈ { 1√
2

,
√
3
4 , 1}.

For µi (and the same is true for νi) the following two cases can hap-
pen: either n− 1 of its entries are 1/

√
2 and one entry takes the value

1 (when i = j) or n− 2 of its entries are 1/
√
2 and two entries take

the value
√
3/4 (when i ̸= j). In any of those cases, one can readily

see that

∥µ∥1 = ∥ν∥1, ∥µ∥2 + ∥ν∥2 ⩽
√
n, ∥µ∥∞, ∥ν∥∞ ⩽ 1.

Using Corollary 3 we obtain

P
(
n(∥h1∥2 − ∥h2∥2) ⩾ 4

√
nt+ 2t

)
⩽ 2e−t,

P
(
n(∥h1∥2 − ∥h2∥2) ⩽ −4

√
nt− 2t

)
⩽ 2e−t.

Arguing as in the proof of Proposition 4 part (i) we obtain the bound

P(C ′′
ij ⩾ sx/2) ⩽ 2e

−
s2x
96n.

Now we introduce some definitions that will be used in the proof.
We define sσ,x := 1

2

√
1− σ2sx, and for δ > 0, i, j ∈ [n], we define the

following events

Eiδ := {
√
1− σ2C ′

ii ⩽ sσ,x + δ}∪ {σC ′′
ii ⩽ −δ},
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Eij := {
√
1− σ2C ′

ij ⩾ sσ,x/2}∪ {σC ′′
ij ⩾ sσ,x/2} , for i ̸= j.

One can easily verify that {Cii ⩽ sσ,x} ⊂ Eiδ, hence it suffices to
control the probability of Eiδ. For that we use the union bound and the
already established bounds in Lemmas 23 and 30. To attack the off-
diagonal case, we observe that the following holds {Cij ⩾ sσ,x} ⊂ Eij.
The following lemma allows us to bound the probability of the events
Eiδ and Eij.

Lemma 31. Let δ be such that 0 ⩽ δ ⩽ sx
2

√
1− σ2. Then for i, j ∈ [n] with

i ̸= j have the following bounds

P(Eiδ) ⩽ 4e
− 1
96 (

sx
2 − δ√

1−σ2
)2n

+ 2e−
1
96 (

δ
σ )
2n (7.7.7)

P(Eij) ⩽ 4e−
1
384s

2
x(
1−σ2

σ2
∧1)n. (7.7.8)

In particular, we have

P(Eiδσ,x
) ⩽ 6e

− 1
384s

2
x(

1−σ2

1+2σ
√
1−σ2

)n
(7.7.9)

where δσ,x = σ
√
1−σ2

σ+
√
1−σ2

sx
2 .

Proof. Using (7.7.4), we have that

P
(√

1− σ2Cii ⩽
√
1− σ2

(
sx − 2(

√
2+ 1/

√
n)

√
t

n
− 3

t

n

))
⩽ 4e−t.

Replacing t = t := n
36

(√
d2 + 6sx −

12δ√
1−σ2

− d
)2 in the previous ex-

pression, where d = 2(
√
2+ 1/

√
n), and observing that t ⩾ 1

6(
sx
2 −

δ√
1−σ2

)2, which is valid for 0 ⩽ δ ⩽ sx
2

√
1− σ2, we obtain

P
(√

1− σ2C ′
ii ⩽ sσ,x + δ

)
⩽ 4e

− 1
6 (
sx
2 − δ√

1−σ2
)2n

.

Using this and Lemma 30 we have

P(Eiδ) ⩽ P(
√
1− σ2C ′

ii ⩽ sσ,x + δ) + P(σC ′′
ii ⩽ −δ)

⩽ 4e
− 1
6 (
sx
2 − δ√

1−σ2
)2n

+ 2e−
1
96 (

δ
σ )
2n.

Similarly, to prove (7.7.8) we verify that

P(Eij) ⩽ P(C ′
ij ⩾

sx

4
) + P(C ′′

ij ⩾

√
1− σ2

σ

sx

4
)

⩽ 2e−
1
384s

2
xn + 2e

− 1
384s

2
x(
1−σ2

σ2
)n

⩽ 4e−
1
384s

2
x(
1−σ2

σ2
∧1)n.

To prove (7.7.9) it suffices to use (7.7.7) with the choice of δ = δσ,x =
σ
√
1−σ2

σ+
√
1−σ2

sx
2 .
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With this we prove the diagonal dominance for each fixed row of
C.

Proof of Prop. 4 part (ii). Define Ẽj := {Cii ⩽ sσ,x}∪ {Cij ⩾ sσ,x}, which
clearly satisfies {Cii ⩽ Cij} ⊂ Ẽj. Then by the union bound,

P(∪j̸=iẼj) ⩽ P(Cii ⩽ sσ,x) +
∑
j̸=i

P(Cij ⩾ sσ,x)

⩽ P(Eiδσ,x
) +

∑
j̸=i

P(Eij)

⩽ 6e
− 1
384s

2
x(

1−σ2

1+2σ
√
1−σ2

)n
+ 4(n− 1)e

− 1
384s

2
x(
1−σ2

σ2
∧1)n

⩽ 5ne
− 1
384s

2
x(

1−σ2

1+2σ
√
1−σ2

)n

where in the third inequality we used Lemma 31, and in the last
inequality we used the fact that 1−σ

2

σ2
∧ 1 ⩾ 1−σ2

1+2σ
√
1−σ2

.

7.7.2 Proof of Lemma 24

The proof of Lemma 24 uses elements of the proof of Proposition 4.
The interested reader is invited to read the proof of Proposition 4

first.

Proof of Lemma 24. It will be useful to first generalize our notation.
For that, we denote

Cij,x = (AXB)ij, C ′
ij,x = (AXA)ij, C ′′

ij,x = (AXZ)ij

for x ∈ Sn, and

E
ij

x−1
:= {
√
1− σ2C ′

ij,x−1 ⩾ sσ,x/2}∪ {σC ′′
ij,x−1 ⩾ sσ,x/2}

where x−1 is the inverse permutation of x. The fact that P(Cii,x <

Cij,x) ⩽ 8e−c(σ)s
2
xn follows directly from the bound for Ẽj derived in

the proof of Proposition 4 part (ii). To prove P(Cii,x < Cji,x) notice

that C ′
ji,x = C ′

ij,x−1 and that C ′′
ji,x

d
= C ′′

ij,x−1 . On the other hand, notice
that sx = sx−1 (hence sσ,x = sσ,x−1). Arguing as in Lemma 31 it is
easy to see that

P(Cii,x < Cji,x) ⩽ 8e
−c(σ)s2xn.

The bound on P(∃j, s.t Cij,x ∨Cji,x > Cii,x) then follows directly by
the union bound.

7.8 proofs of lemmas 20 and 21

Proof of Lemma 20. By assumption C is diagonally dominant, which
implies that ∃i1 such that Ci1i1 = maxi,jCij (in other words, if the
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largest entry of C is in the i1-th row, then it has to be Ci1i1 , other-
wise it would contradict the diagonal dominance of C). In the first
step of GMWM we select Ci1i1 , assign π(i1) = i1 and erase the i1-th
row and column of C. By erasing the i1-th row and column of C we
obtain a matrix which is itself diagonally dominant. So by iterating
this argument we see ∃ i1, · · · , in ⊂ [n] such that π(ik) = ik, for all k,
so π has to be the identical permutation. This proves that if C is diag-
onally dominant, then Π = Id. By using the contrareciprocal, (7.3.1)
follows.

Proof of Lemma 21. We argue by contradiction. Assume that for some
1 ⩽ k ⩽ r, we have π(ik) ̸= ik (and π−1(ik) ̸= ik). This means that at
some some step j the algorithm selects either C(j)

ikπ(ik)
or C(j)

π−1(ik)π(ik)

as the largest entry, but this contradicts the row-column dominance
of ik. This proves that that if there exists a set of indices Ir ⊂ [n] of
size r such that for all i ∈ Ir, Cii is row-column dominant, then that
set is selected by the algorithm, which implies that π(i) = i for i ∈ Ir,
thus overlap(π, id) ⩾ r. (7.3.3) follows by the contrareciprocal.

7.8.1 Concentration inequalities used in Theorem 19

In this section we provide proofs of Lemma’s 25 and 26 used to prove
Theorem 19.

Proof of Lemma’s 25 and 26. Recall that Bij =
√
1− σ2Aij + σZij.

step 1 . First let us consider the terms of the form ⟨Ai:,Ai:⟩. We
can write

⟨Ai:,Ai:⟩ =
n−1∑
i=1

µig
2
i

where gi are independent standard Gaussian random variables and

µi = 1/n for all i. Observe that ||µ||2 =
√
n−1
n2

. By Lemma 37 we have
for i ∈ [n] and all t > 0

P

(
⟨Ai:,Ai:⟩ ⩽

n− 1

n
− 2

√
t(n− 1)

n2

)
⩽ e−t.

For the choice t = 5 logn we obtain

⟨Ai:,Ai:⟩ ⩾ 1−O

(√
logn
n

)

with probability at least 1− e−5 logn.
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step 2 . Let us consider now terms of the form ⟨Ai:,Zi:⟩. We can
write

⟨Ai:,Zi:⟩ =
1

n

n−1∑
i=1

(gig
′
i) =

1

n
G⊤G ′

where G = (gi)
n−1
i=1 and G ′ = (g ′

i)
n−1
i=1 are i.i.d. standard Gaussian

random variables. We can write

G⊤G ′ = ∥G∥

((
G

∥G∥

)⊤
G ′

)
.

Since G ′ is invariant by rotation ( G∥G∥)
⊤G ′ is independent from G

and has distribution N(0, 1). By Gaussian concentration inequality we
hence have (

G

∥G∥

)⊤
G ′ ⩽ C

√
logn

with probability at least 1− e−5 logn for a suitable choice of C. Simi-
larly, by Lemma 37 we have

∥G∥ ⩽ 2
√
n

with probability at least 1− e−5 logn. Hence with probability at least
1− 2e−5 logn we have

1

n
G⊤G ′ ⩽ 2C

√
logn
n

.

step 3 . The same argument can be used to show that for i ̸= j

P

(
⟨Ai:,Aj:⟩ ⩾ C

√
logn
n

)
⩽ e−5 logn.

conclusion. We can conclude by using the identity

Bij =
√
1− σ2Aij + σZij

and taking the union bound over all indices i ̸= j.
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Lemma 32 (Chernoff bound - multiplicative form). Let X =
∑
i⩽n Xi

where Xi
ind.
∼ B(ρ). Then

P(X ⩽ (1− δ)nρ) ⩽ e−nρδ
2/2

and
P(X ⩾ (1+ δ)nρ) ⩽ e−nρδ

2/3

for all 0 < δ < 1.

Proof. See Mitzenmacher et al., 2005, Theorem 4.5 and Corollary 4.6
.

Lemma 33 (Hoeffding inequality). Let X1, . . . ,Xn
ind.
∼ B(p). Then

P

∣∣∣∣∣∣ 1n
∑
i∈[n]

Xi − p

∣∣∣∣∣∣ ⩾ t
 ⩽ 2 exp(−2nt2).

Proof. See Boucheron et al., 2013, Theorem 2.8.

Lemma 34 (Matrix Bernstein inequality). Let X1, . . . ,Xn be a sequence
of independent zero-mean random matrices of size d1 × d2. Suppose that
||Xi|| ⩽M almost surely, for all i. Then for all positive t,

P(||
∑
i

Xi|| ⩾ t) ⩽ (d1 + d2) exp
(
−

t2

2σ2 + 2M/3t

)
where σ2 = max(||

∑
iE(XiX

∗
i )||, ||

∑
iE(X∗

iXi)||).

Proof. See Tropp, 2012, Theorem 1.6

Lemma 35. Assume that A ∼ SBM(Z,Π). Let E = A− E(A). Then with
probability at least 1−n−Ω(1) the following holds.

1. ||E|| ⩽
√
npmax,

2. ||EW||2F ≲ K
2pmax.

Proof. The first inequality is a classical result used for SBM in the
relatively sparse regime pmax = ω(logn). It can obtained as a conse-
quence of Remark 3.13 in Bandeira et al., 2016. The second inequality
follows from

||EW||2F ⩽ K||EW||2 ⩽ K||E||2||W||2 ≲ K2pmax.

173
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Lemma 36. Assume that A ∼ BiSBM(Z1,Z2,Π), and recall E = A −

E(A). For n1 large enough, the following holds true.

1. P(||E|| ≲
√
n2pmax) ⩾ 1− n

−Ω(1)
1 if n2pmax ≳ logn2 and n2 ⩾

n1.

2. P(||EE⊤ − E(EE⊤)|| ≲ max(logn1,
√
n1n2pmax)) ⩾ 1− n

−Ω(1)
1 .

Moreover, this event implies
∥∥H(EE⊤)

∥∥ ≲ max(logn1,
√
n1n2pmax)).

3. P(||EZ2|| ≲
√
n1n2pmax/L) ⩾ 1− n

−Ω(1)
1 if n2pmax ≳ L logn1

and
√
n1n2pmax

L ≳ logn1.

Proof. 1. The first inequality follows from classical proof techniques.
We first convert E into a square symmetric matrix as follows

Ẽ =

(
0 E

E⊤ 0

)
.

It is easy to verify that
∥∥Ẽ∥∥ = ∥E∥. Since Ẽ is a square symmet-

ric matrix with independent entries, we can use the result of
Remark 3.13 in Bandeira et al., 2016 and obtain with probability
at least 1−n−Ω(1)

1 that∥∥Ẽ∥∥ ≲
√
n2pmax

since n2pmax ≳ log(n1 + n2). This condition is ensured since
n2 ⩾ n1 and n2pmax ≳ logn2.

2. The second inequality follows from the recent work of Cai et al.,
2022. First observe that

||H(EE⊤)|| ⩽ 2||EE⊤ − E(EE⊤)||

since ||H(A)|| ⩽ ||A||+ ||diag(A)|| ⩽ 2||A|| for all square matrices
A and H(EE⊤) = H(EE⊤ − E(EE⊤)). Theorem 4 in Cai et al.,
2022 shows that

E(||EE⊤ − E(EE⊤)||) ≲ max(
√
n1n2pmax, logn1).

It is however more difficult to get a high probability bound from
this last inequality since we can no longer use Talagrand’s in-
equality as in Bandeira et al., 2016. However, we can use the
moments to obtain a tail bound as in Theorem 5 in Cai et al.,
2022. This theorem is stated for matrices with Gaussian entries,
but if instead of Lemma 1we use Lemma 9 of Cai et al., 2022, we
obtain a similar result for bounded sub-Gaussian entries. Since
the variance parameters σR and σC that appear in the state-
ment of Theorem 5 in Cai et al., 2022 satisfy σ2R ⩽ n1pmax and
σ2C ⩽ n2pmax we obtain the result.
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3. The last inequality can be obtained by using the proof tech-
niques in Bandeira et al., 2016 as follows. In order to extend the
concentration result from a matrix Y with independent standard
Gaussian entries to a matrix Xwith symmetric sub-Gaussian en-
tries, the key is to upper bound all the moments of Xij by mo-
ment of Yij. This can be done by using the boundedness of Zij
as in Corollary 3.2, or the sub-Gaussian norm of Xij as in Corol-
lary 3.3 of Bandeira et al., 2016. But in our case, none of these
bounds gives a good result. However, the proof of Theorem 1.1
(and its extensions) only requires control of the moments of the
order logn1. For a Binomial r.v. X with parameters n2/L and
pmax, we have, according to Theorem 1 in Ahle, 2022, for all
c ∈N∗,

E(Xc) ⩽ (n2pmax/L)
cec

2/(2n2pmax/L).

Let X ′ be an independent copy of X. Since n2pmax/L ≳ logn1
by assumption, ec

2/(2n2pmax/L) ⩽ eγc for c ≍ log(n1) and an
absolute constant γ > 0. Hence

E((X−X ′)c) ⩽
∑
i⩽c

(
c

i

)
E(Xi)E(Xc−i) ⩽ 2c(n2pmax/L)

ceγc.

Observe that (2eγ)c ≲ EY2cij = O((2c)c) for every c, so that for
all even c we have

E

(
L(X−X ′)

2eγn2pmax

)c
≲ EY2cij .

We can now use the same argument as in Corollary 3.2 of Ban-
deira et al., 2016 to conclude that the matrix M with indepen-
dent entries generated with the same law as X−X ′ satisfies with
probability at least 1−O(nΩ(1)

1 ) (since
√
n1n2pmax/L ≳ logn1

by assumption)

∥M∥ ⩽
√
n1n2pmax/L.

When the random variables are only centered, we can use the
symmetrization argument of Corollary 3.3 to finally obtain

||EZ⊤
2 || ≲

√
n1n2pmax/L,

with probability at least 1−O(nΩ(1)
1 ).

Remark 28. The second concentration inequality of the above lemma slightly
improves Proposition 1 and Theorem 4 in Ndaoud et al., 2022. The third
concentration could be of independent interest and be applied for example
in multilayer network analysis where matrices with independent Binomial
entries arise naturally as the sum of the adjacency matrices of the layers, see
e.g. Paul et al., 2020; Braun et al., 2021b.
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The following lemma corresponds to (Laurent et al., 2000, Lemma
1.1) and controls the tails of the weighted sums of squares of Gaussian
random variables.

Lemma 37 (Laurent-Massart bound). Let X1, · · · ,Xn be i.i.d standard
Gaussian random variables. Let µ = (µ1, · · · ,µn) be a vector with non-
negative entries and define ζ =

∑n
i=1 µi(X

2
i − 1). Then it holds for all

t ⩾ 0 that

P(ζ ⩾ 2∥µ∥2
√
t+ 2∥µ∥∞t) ⩽ e−t

P(ζ ⩽ −2∥µ∥2
√
t) ⩽ e−t

An immediate corollary now follows.

Corollary 3. Let X1, · · · ,Xn1 and Y1, · · · , Yn2 be two independent sets
of i.i.d standard Gaussian random variables. Let µ = (µ1, · · · ,µn1) and
ν = (ν1, · · · ,νn2) be two vectors with non-negative entries. Define ζ =∑n1
i=1 µiX

2
i and ξ =

∑n2
i=1 νiY

2
i . Then it holds for t ⩾ 0 that

P
(
ζ− ξ ⩾ ∥µ∥1 − ∥ν∥1 + 2(∥µ∥2 + ∥ν∥2)

√
t+ 2∥µ∥∞t) ⩽ 2e−t,

(A.0.1)

P
(
ζ− ξ ⩽ ∥µ∥1 − ∥ν∥1 − 2(∥µ∥2 + ∥ν∥2)

√
t− 2∥ν∥∞t) ⩽ 2e−t.

(A.0.2)

The next lemma give us a distributional equality for terms of the
form ⟨g,Xg⟩ where g is a standard Gaussian vector and X is a permu-
tation matrix.

Lemma 38. Let X ∈ Pn and g = (g1, · · · ,gn) be a standard Gaussian
vector. Then is holds

⟨g,Xg⟩ d=
n∑
i=1

λig
′2
i ,

where λi are the eigenvalues of 12(X+X
T ) and g ′ = (g1, · · · ,gn) is a vector

of independent standard Gaussians. Moreover, if |SX| = sxn for sx ∈ (0, 1],
µ ∈ Rn1 is a vector containing the positive eigenvalues of 12(X+ XT ), and
−ν ∈ Rn2 is a vector containing the negative eigenvalues of 12(X+ XT ),
then

∥µ∥1 − ∥ν∥1 = sxn,
√
n ⩽ ∥µ∥2 + ∥ν∥2 ⩽

√
2n,

∥µ∥∞, ∥ν∥∞ ⩽ 1.

Proof. Notice that ⟨g,Xg⟩ = ⟨g, 12(X + XT )g⟩ and given the symme-
try of the matrix 1

2(X+ XT ) all its eigenvalues are real. Take its SVD
decomposition 1

2(X+XT ) = VΛVT . We have that

⟨g,
1

2
(X+XT )g⟩ = (VTg)TΛVTg

d
=

n∑
i=1

λig
′2
i
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using the rotation invariance of the standard Gaussian vectors. Notice
that

|SX| = Tr(X) = Tr

(
1

2
(X+XT )

)
=

n∑
i=1

λi

which leads to

∥µ∥1 − ∥ν∥1 =
n∑
i=1

λi = |SX| = sxn.

The fact that ∥µ∥∞, ∥ν∥∞ ⩽ 1 follows easily since X is a unitary matrix.
The inequality ∥µ∥2 + ∥ν∥2 ⩾

√
n follows from the fact that ∥µ∥22 +

∥ν∥22 = n. From the latter, we deduce that ∥µ∥2 + ∥ν∥2 ⩽
√
∥µ∥22 +√

n− ∥µ∥22 ⩽ 2
√
n
2 , and the result follows.
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