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Camilla Hollanti
Professeure, Aalto University Examinatrice

Duong Hieu Phan
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Introduction

This thesis deals with the security of the storage, the access and the maintenance of outsourced
data. The outsourcing of data on distant servers (storage and computations in the “cloud”)
is a growing trend for companies and users alike. It reduces the cost of locally storing and
maintaining the data. Outsourcing also allows to access the data from anywhere and to use
the services of cloud service providers (“Software as a Service”). Moreover, one can archive
large amounts of data, that are rarely accessed and pointless to store locally, for many years.
Unfortunately, cloud storage raises new threats for users. We focus on the three following issues.

First, if a user rarely accesses its data, how can he be sure that it is effectively stored and
that it did not suffer any alterations? Indeed, a distant server can face a hardware problem,
loose some of the data and not notify users that only access their data rarely, or never have.
A malicious server can even delete rarely accessed files to make room for new customers and
increase its profits. The cryptographic schemes that solve this problem are called Proofs of
Retrievability (PoR).

Second, when the user of an encrypted database suspects that his cryptographic key has
been compromised, how can he remotely update its ciphertexts to a fresh key? By remotely,
we mean without downloading and re-uploading the whole database. This process of remotely
rotating cryptographic keys can also be useful to implement access control policies when an
encrypted database is used by a constantly evolving group of clients. For instance, a company
can rotate keys each time an employee leaves. This problem can be dealt with using Updatable
Encryption (UE) schemes.

Third, sometimes it is not the data that is confidential but the way in which it is accessed
Indeed, knowing which patient’s files a doctor accesses or which stock values a trader requests
is clearly problematic. How can a client hide the way he accesses remote data? This question
can be answered by Private Information Retrieval (PIR) schemes.

The goal of this thesis can be summarize in three steps. In step one, we develop modular
security notions and models that closely match the security expectations of real-world solutions
for the three above problems. Then, in step two, we check if existing security definitions are
sufficient, and sometimes also necessary, to provide the security guarantees identified in step
one. Finally, we determine if existing cryptographic schemes reach our security definitions and,
if not, we improve them or propose new constructions that do.

We give an overview of the cryptographic protocols we chose to study.

Proofs of Retrievability

The context of PoRs is the following: a client stores a huge file on a distant server and erases
its local copy. PoRs feature an audit procedure that allows the client to convince himself, using
only a little amount of bandwith, that its file is stored on the server and that it can retrieve it in
full (i.e. that it is not modified or deleted). After a successful audit, the client can perform the
extraction phase of the PoR to retrieve the file. The first formal definition of PoRs was given
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by Juels and Kaliski in 2007 [JK07]. They also propose the first PoR scheme. It is based on
checking the integrity of some sentinel symbols secretly placed by the client before uploading
its file. This scheme has low communication but its drawback is that it is bounded-use only, as
the number of possible verifications depends on the number of sentinels. Shacham and Waters
[SW08] proposed to correct this drawback by appending some authenticator symbols to the file.
Verification consists in checking random linear combinations of file symbols and authenticators.
Then comes a few PoR schemes based on codes. Bowers et al. [BJO09] proposed a double-layer
encoding with the use of an inner code to recover information symbols and an outer code to
correct the remaining erasures. Dodis et al. [DVW09] formalize the verification process as a
request to a code which models the space of possible answers to a challenge. They use Reed-
Solomon codes to design their PoR scheme. In 2013, Paterson et al. [PSU13] laid the foundation
for studying PoR schemes using a coding theoretic framework. Following these ideas, Lavauzelle
and Levy-dit-Vehel [LLDV16] used the local structure of the lifted codes introduced by Guo et
al. [GKS13] to build a PoR scheme, that compares favourably to those presented above with
respect to storage overhead.

Updatable Encryption

UE is a variant of symmetric encryption, introduced by Boneh et al. in 2013 [BLMR13], which
supports key rotation on an outsourced encrypted database while minimizing the bandwith
used. To rotate keys, the client generates a single update token using both the old and the
new key. Then, he sends this token to the server which is able to update all of its ciphertexts
under the new key. Of course, confidentiality of the data must be preserved through all these
steps. Unlike symmetric encryption, UE schemes aim at preserving the confidentiality of the
data in a setting where secret keys and update tokens can leak. In this thesis, we focus on the
ciphertext-independent variant of UE, where the update token is unique and independent of the
ciphertexts. The huge real-life applications of UE explain the recent renewed interest on the
subject [LT18, KLR19, BDGJ20, Jia20, Nis22].

Security notions for UE have evolved a lot since the original proposal of [BLMR13]. Lehmann
and Tackmann [LT18] proposed two CPA security notions where the adversary can adaptively
corrupt keys and tokens. Their IND-ENC notion requires fresh encryptions to be indistinguish-
able and their IND-UPD notion asks the same for updated ciphertexts. Klooß et al. [KLR19] aug-
mented the previous notions with CCA security and integrity protection. Boyd et al. [BDGJ20]
introduced the IND-UE notion which is stronger than previous ones and requires fresh encryp-
tions to be indistinguishable from updated ciphertexts. They also show that a CPA UE scheme
with added ciphertext integrity (CTXT) is CCA.

As for UE constructions in the classical setting, RISE of [LT18], is an updatable variant of
ElGamal where the public key is used in the token. [KLR19] introduced two generic construc-
tions based on encrypt-and-MAC (secure under DDH) and on the Naor-Yung transform (secure
under SXDH). Boyd et al. [BDGJ20] proposed the permutation-based SHINE schemes, that
achieve their stronger detIND-UE-CCA security notion in the ideal cipher model (under DDH).

In the post-quantum setting, Jiang [Jia20] presented the first post-quantum UE scheme
LWEUE (secure under LWE). In [Nis22], Nishimaki introduced RtR, another LWE-based UE
scheme, which is the first ciphertext-independent UE scheme that prevents the adversary from
obtaining the new key from the knowledge of the update token and the old key. Nishimaki
showed that UE schemes with this property have stronger security than those without. These
two LWE-based schemes use homomorphic operations to re-randomize updated ciphertexts
which has two main drawbacks. On one hand, ciphertext noise grows with each key update,
which means that these schemes only support a bounded number of updates. On the other
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hand, using the homomorphic property and the knowledge of the update token, an adversary
can craft ciphertexts of related messages which means that these schemes are not CCA secure
(only randIND-UE-CPA).

Private Information Retrieval

PIR, introduced by Chor et al. in 1995 [CGKS95], allows a client to retrieve an entry of
an outsourced database without revealing its location to the server. A trivial way to do this
consists in retrieving the whole database and reading the desired entry locally. Thus, PIR
protocols try to minimize the bandwith usage, i.e., they require communication sublinear in
the size of the database. There is a huge literature surrounding PIR, starting from the seminal
work of Chor et al. [CGKS95]. PIR comes in different flavors, one- or multi- server, information-
theoretically secure PIR (IT-PIR) [Amb97, CG97, BI01, BIKR02, Yek08, Efr12, AdVS14, DG16]
and computationally secure PIR (cPIR) [KO97, CMS99, KO00, GR05, OI07]. There are many
more variants of PIR such as symmetric PIR [GIKM00] where the client cannot learn any
information about the entries of the database other than the one he requested or batch PIR
[IKOS04, Hen16] whose aim is to amortize the computational cost of the servers over a batch
of queries made by the client. Moreover, the database can be stored on an unique server (1-
server PIR) or on multiple servers (k-server PIR with k > 1). In the k > 1 case, PIR tries to
protect the confidentiality of requests against a coalition of t < k servers. These servers can
be passive (sometimes called honest-but-curious), they only observe the client’s requests to try
to break their confidentiality. Otherwise, servers can be active (also called byzantine), they try
to break confidentiality by not following the protocol. Finally, PIR has a lot of applications
in cryptographic protocols: in private messaging [SCM05, AS16, ACLS18], online anonymity
[MOT+11, KLDF16], targeted advertising [Jue01] and many more.

Constructive Cryptography

We choose to phrase our security definitions in the Constructive Cryptography (CC) model
introduced by Maurer in 2011 [Mau12]. This model aims at asserting the real security of
cryptographic primitives. To do so, it redefines cryptographic protocols as discrete systems
of three types: resources (e.g. channels, keys, servers. . . ), converters (e.g. encryption, hash
functions, signatures. . . ) and distinguishers (systems connecting to a resource and outputting
a bit after interacting with it).

In this model, starting from a basic resource, a converter aims at constructing an enhanced
resource, i.e. one with better security guarantees. An example of constructed resource is a
confidential server, where the data stored by a client is readable by this client only. The only
information that leaks to other parties is its length. This resource does not exist, but it can
be emulated by an insecure server on which the client uses a suitable encryption protocol.
Furthermore, it is then possible to precisely assess the atomic tools (e.g. starting resource and
security notions for the converter) needed to perform a given construction.

The CC framework follows a top-down approach, allowing to get rid of useless details and
hypotheses made in other models. One of the strengths of CC is its “composability”, in the sense
that, if two steps (e.g. integrity and confidentiality) were proven secure in CC, their composition
is also secure. Thus, security proofs are simplified because once a security property of a resource
is proven, it transfers naturally when adding another functionality.
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Contributions

Interactivity in Constructive Cryptography. We extend the CC model so as to handle
interactive protocols. By interactive, we mean any protocol that involves at least two parties
who agree to perform calculations specified by the protocol. We design and construct a so-
called Interactive Server-Memory Resource (ISMR), that is an augmented version of the basic
instantiation of a client-server protocol in CC, namely the Server-Memory Resource of [BM18].
We make this modeling of interactivity possible by proposing new ways of using converters
and simulators. Regarding converters: in addition to their basic features, they can now be
used to modify the number or type of parameters of a query at a given interface. Moreover,
such converters have the ability to transiently deactivate capabilities of an interface. We also
introduce and model what we call semi-honest (commonly named honest-but-curious) interfaces,
in which both converters and simulators can be plugged. This permits us to precisely model
and describe the behavior of semi-honest adversaries, as well as byzantine ones. Using the
flexibility of the CC model equipped with our new tools, we give a composable modeling of PIR
protocols, yielding a unique model that unifies different notions of PIR: information theoretic-
PIR, computational-PIR and one- or multi- server PIR. We then apply our ISMR construction
to UE to obtain the contributions described below.

Composable modeling and security notions for Updatable Encryption. We create
the first composable modeling of UE schemes. Indeed, in the only concurrent work we know
of that considers UE in the CC context [FMM21], the construction proposed is only valid for
particular instantiations of UE schemes. In order to give this generic composable model for
UE, we had to provide and refine new and existing ideas. First, we make good use of the
abstraction permitted by CC, of our new tools to model interactive protocols as well as of the
global event history of [JMM19] to propose a simple modeling of UE, devoid of unnecessary,
and potentially troublesome, details. Second, we improve a proof technique of [CMT13] by
proposing a double hybrid argument to prove our constructions in CC. Our proof technique
is of independent interest since it permits to prove statements about conjunctions of security
notion or security notions with challenges of different types. For example, in the IND-UE
security notion, the challenge can either belong to the message space or to the ciphertext space.
Our double hybrid argument deals with this asymmetry. Last, but not least, we rule out the
tedious commitment problem: an impossibility result that usually arises when dealing with key
exposures in composable frameworks. To do so, we adapt the interval-wise guarantees of [JM20]
to UE by making distinct security statements inside many time intervals. By carefully choosing
both statements and intervals, we are able to circumvent impossibility results and still make
meaningful security statements.

We use our modeling of UE to study its security notions. These notions are numerous and
have constantly evolved since the introduction of UE in 2013. We focus our attention on the
IND-ENC notion of [LT18], IND-UPD of [LT18] and IND-UE of [BDGJ20]. With our modeling, we
identify two meaningful leakage contexts for UE and study the security notions best suited for
both of them. In the unrestricted leakage context, the adversary is allowed to leak outsourced
ciphertexts as he wants. Meanwhile, in the restricted leakage context, the adversary is only
allowed to leak a given ciphertext once between each key update. In both contexts, the adversary
can freely expose cryptographic keys and update tokens and we precise the post-compromise
security guarantees given by each security notions. Furthermore, we show that IND-UE-CPA
security is sufficient, and also necessary, to securely construct a confidential ISMR that hides
the age of ciphertexts in the restricted leakage context; and IND-ENC-CPA + IND-UPD-CPA
security is sufficient, and also necessary, for a secure construction of a confidential ISMR in
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case of unrestricted leakage (where the age of ciphertexts is impossible to protect). By age of
a ciphertext, we mean the number of times it has been updated. We do the same with CCA
security notions when the adversary is allowed to inject arbitrary data. In particular, we show
that the IND-UE security notion of [BDGJ20] is not always strictly stronger than the one of
[LT18], namely IND-ENC + IND-UPD.

New constructions for post-quantum Updatable Encryption. This thesis solves two
open problems in ciphertext-independent post-quantum UE. First, we propose the first post-
quantum UE scheme that supports an unbounded number of key updates. Second, the security
of our UE scheme comes from the hardness of isogeny-based problems, whereas the two prior
post-quantum UE schemes of Jiang [Jia20] and Nishimaki [Nis22] are both based on the Learning
with Errors (LWE) problem [Reg05]. Moreover, we show how to build a CCA secure UE scheme
using group actions. Unfortunately, we do not know how to instantiate this new construction
in the post-quantum setting. Doing so would solve the open problem of building a CCA secure
post-quantum UE scheme. We do so by studying the problem of building UE in the group
action framework. We propose two new generic constructions of UE in this framework.

First, we introduce a new notion of Mappable Effective Group Action (MEGA) and show
that we can build UE from a MEGA by generalizing the SHINE construction of Boyd et al.
[BDGJ20]. We call this first construction GAINE for Group-Action Ideal-cipher Nonce-based
Encryption. As mentioned above, we require our group actions to be mappable. This means
that there exists an invertible and efficient map going from the space of messages to the set of
the group action. Interestingly, apart from being mappable, we require almost nothing from
the group action. In particular, we do not need it to be free or transitive, and the group need
not even be abelian. In this case, we require the group action to be weak pseudorandom, i.e. an
adversary cannot distinguish between many samples that or either of the form (si, g ? si), where
g is a random group element and the elements si are random set elements, or samples of the
form (si, ti) where si and ti are random set elements. Unfortunately, we do not know how to
instantiate GAINE in the post-quantum setting. Indeed, there are currently two cryptographic
group actions that are mappable and believed to be post-quantum. The first one was introduced
by Tang et al. [TDJ+22] and uses alternating trilinear forms, while the second one from Ji et al.
[JQSY19] is based on tensors. These two group actions are not abelian and they were conjectured
to be weak pseudorandom but only over a very small number of samples. A recent attack by
Beullens [Beu22] disproves this conjecture for the trilinear forms group action. Unfortunately,
when working with nonabelian group actions, our security proof for GAINE needs one sample
per ciphertext. Thus, we are not currently able to give a practical post-quantum instantiation
for GAINE. Finding one would solve the problem left open by Jiang [Jia20] at Asiacrypt2020 to
build a CCA post-quantum UE scheme.

Our GAINE construction cannot be instantiated by any group action. Indeed, for the group
action to be mappable and cryptographically secure is not trivial at all. In particular, these
requirements remove the most obvious way to sample elements in the set by using the group
action. Thus, building the invertible map must really depend on the concrete description of the
set and how its elements can be represented.

Isogeny-based group actions are the most studied post-quantum group actions. They have
been more studied than their multivariate counterpart and while there are on-going discussions
regarding the exact level of security reached by these group actions, we can have some confidence
in the fact that the underlying problems are hard. Unfortunately, in the case of the CSIDH
cryptographic group action [CLM+18], it is notoriously hard to sample elements in the set
[BBD+22]. Thus, we cannot really hope to instantiate GAINE with CSIDH or another similar
group action from isogenies. However, we still manage to show how to build UE from the CSIDH
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group action. We circumvent the mappable requirement by using an idea of Moriya et al. for
their SIGAMAL encryption scheme [MOT20]. We obtain an analog of CSIDH by considering
a set made of elements constituted by a curve and a point (and not just a curve). We refine
the idea of Moriya et al. to get a scheme that is updatable. The way we circumvent the issue
that CSIDH is not mappable could be of independent interest as there are numerous examples
of protocols where this proves to be a big obstacle. We extracted an abstract framework of this
idea to identify the algebraic structure required by our new UE scheme. This gave us what we
call a TOGA for Triple Orbital Group Action. As the name suggests, there are three group
actions involved in this scheme, each with a specific role, and we require the three different
operations to interact in a very specific way. We call our generic UE scheme based on this
concept TOGA-UE.

New and improved constructions for code-based Proofs of Retrievability. First, we
show that the security of a code-based PoR of Lavauzelle and Levy-dit-Vehel [LLDV16] was
largely overestimated. In order to fix this scheme, we propose a framework for the design
of secure and efficient PoR schemes based on Locally Correctable Codes (LCC). We give a
first instantiation of our framework using the high rate lifted codes of Guo et al. [GKS13].
This yields an infinite family of good PoRs, that can be seen as a secure generalization of
the [LLDV16] PoR. Our PoR features low communication complexity, small storage overhead
and clear security guarantees. We assert its security by solving a finite geometry problem,
giving an explicit formula for the probability of an adversary to fool the client. More precisely,
we characterize the adversarial corruption patterns that prevent the client from retrieving its
outsourced file. They form what we call d-cover sets of a finite affine space, where the integer
d is a parameter of the code used in the PoR. Here is a definition of these sets.

Definition 0.1 (d-cover sets). Let F be a finite field and m, d be positive integers. We say that
a set S ⊆ Fm is a d-cover set if S verifies the following property:

∀s ∈ S, ∀ line ` ⊆ Fm going through s, |S ∩ `| ≥ d

Or equivalently, for all lines ` ⊆ Fm, |S ∩ `| = 0 or |S ∩ `| ≥ d

We find a lower bound on the number of lines intersecting these d-cover sets and use it to
estimate the security of our scheme. Then, using the local correctability properties of graph
codes [Tan81], we get another instantiation of our framework and derive an analogous formula
for the success probability of the audit. This time, given a graph G and an integer parameter
d, we show that the adversarial erasure patterns that prevent the client from retrieving its
outsourced file correspond to the subgraphs of G of minimum degree d.

Furthermore, using a different approach, we also design a good PoR based on a family of
graph codes called expander codes [Tan81, SS96]. We use expander codes based on graphs
derived from point-line incidence relations of finite affine planes. Høholdt et al. [HJ06, HJ11,
BHPJ13] showed that, when using Reed-Solomon codes as inner codes, these codes have good
dimension and minimum distance over a relatively small alphabet. Moreover, expander codes
possess very efficient unique decoding algorithms [SS96, Zém01]. We take advantage of these
results to design a PoR scheme that extracts the outsourced file in quasi-linear time and features
better concrete parameters than state-of-the-art schemes with respect to storage overhead and
size of the outsourced file. We follow an unbounded-use audit procedure of [JK07, SW08, BM18]
to ensure that the extraction of the outsourced file will succeed with high probability. The
properties of our expander codes yield an audit with communication complexity comparable to
other code-based PoRs.
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Composability of Locally Correctable Codes. Contrary to classical error correcting
codes, LCCs permit to correct a given location of the codeword by only reading a sublinear
number of its symbols. We give a composable modeling of LCCs [KT00] in CC. We obtain an
error-resilient SMR where clients can read symbols with sublinear communication. Doing so, we
show that the failure probability of the local correcter depends not only on the number of cor-
rupted symbols but also on their locations. Computing this exact failure probability, a problem
often overlooked in the literature, is needed to give the security guarantees of our error-resilient
SMR and it may be of independent interest. For instance, in our work on code-based PoRs, we
showed that having a precise understanding of the fail cases of the local correcter was essential
to estimate the security of our schemes. Finally, for the important class of lifted Reed-Solomon
codes [GKS13], we show that this failure probability can be computed in polynomial time in
the length of the lifted code.

Outline of the thesis

In Chapter 1, we introduce the Constructive Cryptography model, together with the translation
of the outsourced storage setting in this model. We then present the syntax and the security
definitions of Proofs of Retrievability, Updatable Encryption and Private Information Retrieval.
We also give the definition and an example of Locally Correctable Code. In Chapter 2, we
present our first results: the post-quantum UE schemes GAINE and TOGA-UE. We detail the
algebraic structure needed to instantiate our schemes, prove their correctness and security and
discuss how to instantiate them in the post-quantum setting. In Chapter 3, we present our
new and improved PoR constructions. First, we propose a framework generalizing the PoR
construction of Lavauzelle and Levy-dit-Vehel [LLDV16] and give a detailed security analysis
of our generalization. We give two instantiations of our framework. The first one is based on
lifted codes and constitutes an improvement over the [LLDV16] PoR, parameters and security
levels can be found in Figs. 3.7 and 3.8. The second one is based on graph codes. Then,
using a different approach, we propose a PoR scheme based on expander codes that features
quasi-linear extraction time and better storage overhead than our previous constructions. We
give parameters in Figs. 3.10 and 3.11. In Chapter 4, we extend the CC model so as to handle
interactive protocols. We introduce an interactive modeling of the outsourced storage setting
in CC. We then use it to give a composable modeling of UE and PIR. As for UE, we compare
the security notions of [LT18] and [BDGJ20], showing which one to use in different real-world
applications. As for PIR, we verify that the security definitions of [CGKS95] give the expected
security guarantees and we propose a unified modeling of computational, information theoretic,
one server and multi-server PIR. Finally, we conclude by pointing out some future prospects
for our work.
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Résumé

Cette thèse concerne la sécurisation du stockage, de l’accès et de la maintenance de données
distantes. De plus en plus d’entreprises et de particuliers ont recours à l’externalisation de leurs
données sur des serveurs distants (stockage et calcul dans le “cloud”) car elle permet notam-
ment de réduire les coûts liés au stockage et à la maintenance de ces données. De plus, cette
externalisation permet d’accéder aux données n’importe où et d’utiliser les services proposés
par les fournisseurs de stockage distant (“Software as a Service”). Enfin, il devient possible
d’archiver des quantités importantes de données, auxquelles on accède rarement, pendant des
années. Malheureusement, le stockage de données sur le cloud fait émerger de nouvelles menaces
pour ses utilisateurs. Nous nous intéressons aux trois problématiques suivantes.

Premièrement, si un utilisateur n’accède que rarement à ses données, comment peut-il être
certain qu’elles sont toujours stockées sur le serveur et qu’elles n’ont pas subies de modifications
? En effet, le serveur pourrait faire face à un problème matériel, perdre une partie des données
et ne pas en informer les utilisateurs qui n’accèdent pas souvent, voire jamais, à leurs données.
Un fournisseur de stockage malveillant pourrait même supprimer des fichiers rarement consultés
pour faire de la place à de nouveaux clients et ainsi accrôıtre ses profits. Les schémas cryp-
tographiques qui apportent une solution à ce problème sont nommés Preuves de Récupérabilité
(PoR pour Proof of Retrievability).

Deuxièmement, quand un utilisateur d’une base de données chiffrée suspecte que ses clés
cryptographiques ont été compromises, comment peut-il mettre à jour ses chiffrés sous une
nouvelle clé à distance ? Par à distance, nous voulons dire sans télécharger puis re-externaliser
l’intégralité de la base de données. Cette procédure de rotation de clés cryptographiques peut
aussi être très utile pour mettre en place des politiques de contrôle d’accès sur une base de
données utilisée par un ensemble de clients en évolution constante. Par exemple, une entreprise
pourrait changer de clé à chaque départ d’un salarié. Ce problème peut être résolu en utilisant
du Chiffrement avec Mise à Jour (UE pour Updatable Encryption).

Troisièmement, il arrive que ce ne soit pas les données elles-mêmes qui soient confidentielles
mais la façon dont on y accède. En effet, savoir à quel dossier médical un médecin accède ou
quel cours d’action un trader consulte est clairement problématique. On peut alors se demander
: comment un utilisateur peut-il cacher la manière dont il accède à ses données distantes ? Les
schémas de Récupération Confidentielle d’Information (PIR pour Private Information Retrieval)
permettent de répondre à cette question.

L’objectif de cette thèse peut être résumé en trois étapes. En premier lieu, nous développons
des notions et des modèles de sécurité modulaires qui correspondent étroitement aux attentes
de sécurité des solutions concrètes pour les trois problèmes ci-dessus. Ensuite, nous vérifions
si les notions de sécurité existantes sont suffisantes, et parfois aussi nécessaires, pour procurer
les garanties de sécurité identifiées précédemment. Enfin, nous déterminons si les schémas
cryptographiques existants atteignent nos notions de sécurité et, si ce n’est pas le cas, nous les
améliorons ou nous proposons de nouveaux schémas qui le font.

Nous donnons maintenant un aperçu des protocoles cryptographiques que nous avons choisi
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d’étudier.

Preuves de Récupérabilité

Le contexte des PoRs est le suivant : un utilisateur envoie un fichier volumineux sur un serveur
distant et efface sa copie locale. Le PoR met à disposition de l’utilisateur une procédure d’audit
qui lui permet de se convaincre, en utilisant le moins de bande passante possible, que son
fichier est toujours présent sur le serveur et qu’il peut le récupérer en intégralité (sans aucune
modification ou suppression). Après un audit réussi, l’utilisateur peut utiliser la procédure
d’extraction du PoR pour récupérer son fichier. La première définition formelle d’un PoR a été
donnée par Juels et Kaliski en 2007 [JK07]. Ils proposèrent également le premier schéma de PoR.
Il consiste à vérifier l’intégrité de symboles sentinelles placés par le client dans son fichier avant
de l’externaliser. Ce schéma utilise peu de bande passante mais le fait qu’il ne peut être utilisé
qu’un nombre borné de fois (dépendant du nombre de sentinelles) constitue un inconvénient
majeur. Shacham et Waters [SW08] ont proposé de corriger cet inconvénient en ajoutant des
symboles d’authentification à la fin du fichier. La phase d’audit consiste alors à vérifier des
combinaisons linéaire aléatoires des symboles du fichier et des symboles d’authentification. Puis,
quelques schémas de PoR basés sur les codes correcteurs d’erreurs ont commencé à apparâıtre.
Bowers et al. [BJO09] ont proposé une double couche d’encodage avec utilisation d’un code
intérieur pour récupérer les symboles d’information et d’un code extérieur pour corriger les
éventuels effacements. Dodis et al. [DVW09] formalisent leur phase d’audit comme une requête
à un code qui modélise l’espace des réponses possibles à un challenge. Ils utilisent des codes
de Reed-Solomon pour construire leur PoR. En 2013, Paterson et al. [PSU13] ont posé les
fondations de l’étude des PoRs dans le cadre de la théorie des codes correcteurs. Suivant leurs
idées, Lavauzelle et Levy-dit-Vehel [LLDV16] ont utilisé les propriétés locales des relèvements de
code de Guo et al. [GKS13] pour constuire un PoR qui nécessite peu de stockage supplémentaire
par rapport aux schémas précédents.

Chiffrement avec Mise à Jour

UE est une variante du chiffrement symétrique, introduite par Boneh et al. en 2013 [BLMR13],
qui permet de mettre à jour une clé cryptographique sur une base de données chiffrée et distante
en minimisant l’utilisation de bande passante. Pour mettre à jour la clé, l’utilisateur génère un
token en utilisant à la fois l’ancienne et la nouvelle clé. Puis, il envoie ce token au serveur qui
peut l’utiliser pour mettre à jour tous les chiffrés qu’il détient sous la nouvelle clé. Bien entendu,
la confidentialité des données doit être préservée durant toutes ces étapes. A la différence du
chiffrement symétrique, les schémas UE cherchent à préserver la confidentialité des données
dans un cadre où les clés et les tokens peuvent être corrompus. Dans cette thèse, nous nous
concentrons sur la variante d’UE dite indépendante des chiffrés, dans laquelle le token est unique
et indépendant des chiffrés. Les applications réelles multiples et cruciales d’UE expliquent le
fort intérêt que ce sujet a généré récemment [LT18, KLR19, BDGJ20, Jia20, Nis22].

Les notions de sécurité d’UE ont beaucoup évolué depuis la proposition originelle de [BLMR13].
Lehmann et Tackmann [LT18] ont proposé deux notions de sécurité CPA (contre les attaques à
clair choisi) où l’adversaire peut choisir de corrompre les clés et les tokens de manière adaptative.
Leur notion de sécurité IND-ENC impose aux nouveaux chiffrés d’être indistinguables les uns
des autres et leur notion IND-UPD demande la même chose pour les chiffrés mis à jour. Klooß
et al. [KLR19] ont amélioré les notions précédentes en ajoutant une variante CCA (contre les
attaques à chiffré choisi) et une protection de l’intégrité. Boyd et al. [BDGJ20] ont introduit
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la notion IND-UE qui est plus forte que les notions précédentes, elle demande que les nouveaux
chiffrés soient indistinguables des chiffrés mis à jour. Ils montrent également qu’un schéma UE
sûr contre les attaques CPA et assurant l’intégrité des chiffrés (CTXT) est également sûr contre
les attaques CCA.

Concernant les constructions d’UE dans le contexte pré-quantique, RISE de [LT18] est une
variante avec mise à jour d’ElGamal où la clé publique est utilisée comme token. [KLR19]
introduit deux constructions génériques basé sur encrypt-and-MAC (sûre sous l’hypothèse DDH)
et sur la transformation de Naor-Yung (sûre sous l’hypothèse SXDH). Boyd et al. [BDGJ20]
proposent les schémas SHINE basés sur l’utilisation d’une permutation, ils atteignent leur notion
de sécurité detIND-UE-CCA dans le modèle du chiffrement idéal (sous l’hypothèse DDH).

Dans le contexte post-quantique, Jiang [Jia20] présente le premier schéma UE post-quantique
appelé LWEUE (sûr sous l’hypothèse LWE). Dans [Nis22], Nishimaki introduit RtR, un autre
schéma basé sur LWE, qui est le premier schéma UE qui empêche un adversaire d’obtenir la
nouvelle clé s’il connâıt déjà l’ancienne clé et le token. Nishimaki prouve également que les
schémas UE possédant cette propriété possède une sécurité supérieure à ceux qui ne la possède
pas. Ces deux schémas basés sur LWE utilisent des opérations homomorphes pour rafrâıchir
l’aléa des chiffrés lors de leur mise à jour. Ceci a deux désavantages : d’une part, le bruit
augmente à chaque mise à jour de chiffré, ce qui signifie que ces schémas n’autorisent qu’un
nombre limité de mises à jour. D’autre part, en utilisant les propriétés homomorphes et la
connaissance du token, un adversaire peut forger des chiffrés de nouveaux messages ce qui
signifie que ces schémas ne sont pas sûrs au sens CCA (seulement au sens randIND-UE-CPA).

Private Information Retrieval

Le PIR, introduit par Chor et al. en 1995 [CGKS95], permet à un client de récupérer une
entrée d’un base de donnée distante sans révéler laquelle au serveur. Une manière triviale
d’y arriver est de récupérer l’intégralité de la base de donnée et de lire l’entrée cherchée lo-
calement. C’est pourquoi les protocoles de PIR essayent de minimiser l’utilisation de bande
passante, i.e., on exige que le protocole possède une complexité de communication sous-linéaire
en la taille de la base de données. Il existe une littérature massive concernant le PIR, qui
commence avec l’article fondateur de Chor et al. [CGKS95]. Le PIR possède de nombreuses
variantes, un seul ou plusieurs serveurs, le PIR sûr au sens de la théorie de l’information (IT-PIR)
[Amb97, CG97, BI01, BIKR02, Yek08, Efr12, AdVS14, DG16] et le PIR sûr au sens calcula-
toire (cPIR) [KO97, CMS99, KO00, GR05, OI07]. On peut également citer le PIR symétrique
[GIKM00] dans lequel le client ne peut pas apprendre d’information concernant les entrées de
la base de données exceptée celle qu’il a demandée au serveur. Dans le cadre du “batch PIR”
[IKOS04, Hen16], l’objectif est d’amortir le coût des calculs effectués par le serveur en traitant
les requêtes du client par lots. Pour les protocoles de PIR à serveurs multiples, le protocole doit
protéger la confidentialité des requêtes du client contre une coalition de plusieurs serveurs. Ces
serveurs peuvent êtres passifs (on dit aussi honnêtes mais curieux), dans ce cas ils se contentent
d’observer les actions du client pour mettre à mal sa confidentialité. Sinon, les serveurs peuvent
être actifs (on dit aussi byzantins), ils essayent alors de briser la confidentialité en ne suivant
pas le protocole. Enfin, le PIR possède de nombreuses applications : dans les systèmes de
messagerie sécurisée [SCM05, AS16, ACLS18], pour assurer l’anonymat [MOT+11, KLDF16],
pour la publicité ciblée [Jue01] et bien plus encore.
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Cryptographie Constructive

Nous avons choisi de donner nos définitions de sécurité dans le modèle Cryptographie Con-
structive (CC) introduit par Maurer en 2011 [Mau12]. Ce modèle a pour objectif d’identifier
la sécurité réelle apportée par les primitives cryptographiques. Pour ce faire, il redéfinit les
protocoles cryptographiques comme des systèmes discrets de trois types : les ressources (e.g.
canaux de communication, clés, serveurs. . . ), les convertisseurs (e.g. chiffrement, fonctions de
hachage, signatures. . . ) et les distingueurs (des systèmes connectés et interagissant avec une
ressource et renvoyant un bit).

Dans ce modèle, partant d’une ressource de départ, un convertisseur a pour but de construire
une ressource améliorée, i.e. avec de meilleures garanties de sécurité. Un exemple d’une telle
ressource est un serveur confidentiel, où les données stockées ne peuvent être lues que par le
client. La seule information parvenant à un adversaire étant la taille de ces données. Cette
ressource n’existe pas, mais elle peut être émulée par un serveur basique sur lequel le client
utilise un protocole de chiffrement adéquat. De plus, il devient alors possible d’identifier les
outils atomiques (e.g. ressource de départ et notions de sécurité des convertisseurs) requis pour
effectuer une construction donnée.

Le modèle CC suit une approche “top-down” qui lui permet de se débarrasser de détails
et d’hypothèses inutiles utilisés dans d’autres modèles. Une des forces de CC est sa “compos-
abilité”, dans le sens où, si deux étapes (e.g. confidentialité et intégrité) sont prouvées sûres
dans CC, leur composition est aussi sûre. Ainsi, les preuves de sécurité se trouvent simplifiées
car dès qu’une propriété d’une ressource est prouvée, elle se transfère naturellement lors de
l’ajout de fonctionnalités supplémentaires.

Contributions

Interactivité dans Cryptographie Constructive. Nous étendons le modèle CC pour le
rendre capable de manipuler les protocoles interactifs. Par interactif, nous entendons les pro-
tocoles qui impliquent au moins deux participants qui se mettent d’accord pour effectuer
des calculs spécifiés par le protocole. Nous concevons et construisons l’Interactive Server-
Memory Resource (ISMR), qui est une version améliorée de l’instanciation basique des proto-
coles client-serveur dans CC, appelée Server-Memory Resource dans [BM18]. Nous rendons cette
modélisation de l’interactivité possible en proposant de nouvelles manières d’utiliser les conver-
tisseurs et les simulateurs. Concernant les convertisseurs : en plus de leurs capacités de base,
ils peuvent maintenant être utilisés pour modifier le nombre de paramètres de leurs requêtes à
une interface donnée. De plus, les convertisseurs ont maintenant le pouvoir de désactiver les
capacités d’une interface. Nous introduisons et modélisons également les interfaces dites semi-
honest, dans lesquelles un convertisseur et un simulateur peuvent être branchés. Cela nous
permet de modéliser et de décrire précisément le comportement des adversaires honnêtes mais
curieux, mais aussi celui des byzantins. En utilisant la flexibilité du modèle CC équipé de nos
nouveaux outils, nous donnons une modélisation composable des protocoles de PIR qui unifie
ses différentes variantes : IT-PIR, cPIR et PIR à un seul ou plusieurs serveurs. Enfin, nous
appliquons notre construction du ISMR à UE pour obtenir les contributions décrites ci-dessous.

Modélisation composable et notions de sécurité du Chiffrement avec Mise à Jour.
Nous proposons la première modélisation composable des schémas UE. En effet, dans le seul
travail concurrent (à notre connaissance), qui considère UE dans le contexte CC [FMM21],
la construction proposée est seulement valide pour des instanciations particulières d’UE. Afin
de donner une modélisation composable et générique pour UE, nous avons dû introduire et
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raffiner des idées nouvelles et préexistantes. Tout d’abord, nous mettons à profit les abstrac-
tions permises par CC, nos nouveaux outils pour modéliser les protocoles interactifs et aussi
le “global event history” de [JMM19] pour proposer une modélisation simple d’UE dénuée de
détails non nécessaires, voire gênants. Ensuite, nous améliorons une technique de preuve de
[CMT13] en proposant un double argument hybride pour prouver la sécurité de nos construc-
tions dans le modèle CC. Notre technique de preuve est intéressante car elle permet de prouver
des énoncés relatifs aux conjonctions de notions de sécurité et aux notions de sécurité avec
des challenges de types différents. Par exemple, pour la notion de sécurité IND-UE, le challenge
peut appartenir soit à l’espace des clairs soit à celui des chiffrés. Notre double argument hybride
permet de gérer cette asymétrie. Enfin, nous écartons l’ennuyeux problème du “commitment” :
un résultat d’impossibilité qui apparâıt quand on s’intéresse aux fuites de clés dans les modèles
composables. Pour ce faire, nous adaptons les garanties de sécurité par intervalles de [JM20]
à UE en proposant des énoncés de sécurité distincts au sein de plusieurs intervalles de temps.
En choisissant soigneusement les énoncés et les intervalles, nous sommes en mesure d’éviter ce
résultat d’impossibilité tout en prouvant des énoncés de sécurité significatifs.

Nous utilisons notre modélisation d’UE pour étudier ses différentes notions de sécurité.
Celles-ci sont nombreuses et en constante évolution depuis l’introduction d’UE en 2013. Nous
nous concentrons sur les notions IND-ENC de [LT18], IND-UPD de [LT18] et IND-UE de [BDGJ20].
Notre modélisation nous permet d’identifier deux contexte de fuite intéressants pour UE et
d’étudier la notion de sécurité la plus adaptée à chacun d’eux. Dans le contexte de fuite sans
restrictions, l’adversaire peut consulter les chiffrés distants comme il l’entend. En revanche, dans
le contexte de fuite restreint, l’adversaire ne peut consulter un chiffré donné qu’une seule fois en-
tre deux mise à jour de la clé. Dans ces deux contextes, l’adversaire peut compromettre les clés
et les tokens librement et nous précisons les garanties de sécurité post-compromission données
par chaque notion de sécurité. En outre, nous montrons que la sécurité IND-UE-CPA est suff-
isante, et aussi nécessaire, pour une construction sûre d’un ISMR confidentiel qui protège l’âge
des chiffrés dans le contexte de fuite restreint; et que la notion IND-ENC-CPA + IND-UPD-CPA
est suffisante, et aussi nécessaire, pour une construction sûre d’un ISMR confidentiel dans le
contexte de fuite sans restrictions (où l’âge des chiffrés est impossible à protéger). Par âge d’un
chiffré, nous entendons le nombre de fois où il a été mis à jour. Nous faisons la même chose
pour les notions de sécurité CCA où l’adversaire est capable d’injecter des données arbitraires
sur le serveur. En particulier, nous montrons que la notion de sécurité IND-UE de [BDGJ20]
n’est pas toujours strictement plus forte que celle de [LT18], à savoir IND-ENC + IND-UPD.

Nouvelles constructions de Chiffrement avec Mise à Jour post-quantique. Cette
thèse résout deux problèmes ouverts concernant l’UE post-quantique où le token est indépendant
des chiffrés. Tout d’abord, nous proposons le premier schéma UE post-quantique qui permette
d’effectuer un nombre illimité de mises à jour de clé. Ensuite, la sécurité de notre schéma repose
sur un problème basé sur les isogénies, alors que les deux seuls schémas UE post-quantique
connus, proposés par Jiang [Jia20] et Nishimaki [Nis22], reposent tous les deux sur la difficulté
du problème Learning with Errors (LWE) [Reg05]. Nous y arrivons en étudiant le problème
consistant à construire des schémas UE dans le cadre des actions de groupe. Nous proposons
deux nouvelles constructions génériques d’UE dans ce cadre. Nous montrons comment utiliser
des actions de groupe pour construire un schéma UE post-quantique atteignant le niveau de
sécurité CCA.

Pour commencer, nous introduisons la nouvelle notion de Mappable Effective Group Action
(MEGA) et nous montrons comment construire un schéma UE avec une MEGA en généralisant
la construction SHINE de Boyd et al. [BDGJ20]. Nous appelons cette première construction
GAINE pour Group-Action Ideal-cipher Nonce-based Encryption. Pour pouvoir effectuer cette
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construction, nous demandons à ce qu’il existe une fonction efficace et inversible allant de
l’espace des messages vers l’ensemble de l’action de groupe. Autrement, nous n’attendons
presque aucune propriété de l’action de groupe. En particulier, nous n’avons pas besoin qu’elle
soit libre ou transitive, et le groupe n’a même pas besoin d’être abélien. Malheureusement,
nous ne pouvons pas encore instancier GAINE dans le contexte post-quantique. Pouvoir le faire
résoudrait le problème ouvert laissé par Jiang à Asiacrypt 2020 [Jia20].

Les actions de groupes utilisant des isogénies sont les actions post-quantiques les plus
étudiées. Bien qu’il existe des discussions en cours sur leur niveau de sécurité exact, nous
pouvons avoir une certaine confiance dans le fait que les problèmes sous-jacents sont difficiles.
Malheureusement, dans le cas de CSIDH [CLM+18], il est notoirement difficile d’échantillonner
des éléments dans l’ensemble sur lequel le groupe agit [BBD+22]. Il est donc pour le moment
impossible d’instancier GAINE avec CSIDH ou toute autre action de groupe similaire utilisant
des isogénies. Toutefois, nous montrons comment il est tout de même possible de construire un
schéma UE en utilisant CSIDH. Nous contournons la nécessité d’échantillonner dans l’ensemble
en peaufinant une idée de Moriya et al. pour leur schéma de chiffrement SIGAMAL [MOT20].
Nous obtenons un analogue de CSIDH en considérant un ensemble constitué d’éléments com-
prenant une courbe et un point (et non juste une courbe). La manière dont nous contournons
cet obstacle est intéressante indépendamment d’UE car ce problème est présent dans de nom-
breux autres protocoles. Nous avons extrait un cadre abstrait de notre idée en identifiant la
structure algébrique requise pour notre nouveau schéma UE. Nous avons obtenu ce que nous
appelons TOGA pour Triple Orbital Groupe Action. Comme le nom le suggère, trois actions
de groupe sont utilisées dans notre schéma, chacune ayant un rôle spécifique et les trois devant
interagir entre elles d’une manière bien spécifique. Nous nommons notre schéma UE générique
reposant sur ce concept TOGA-UE.

Constructions nouvelles et améliorées pour les Preuves de Récupérabilité reposant
sur les codes. Tout d’abord, nous montrons que la sécurité d’un schéma de PoR basé sur
des codes de Lavauzelle et Levy-dit-Vehel [LLDV16] était surestimée. Pour réparer ce schéma,
nous proposons un cadre pour concevoir des schémas de PoR efficaces et sûrs en utilisant des
codes localement corrigibles (LCC). Nous donnons une première instanciation de notre cadre en
utilisant les codes relevés à haut rendement de Guo et al. [GKS13]. Nous obtenons une famille
infinie de bons PoRs, qui peut être vue comme une généralisation sûre du PoR de [LLDV16].
Notre PoR dispose d’une complexité de communication faible, d’un petit surplus de stockage
et de garanties de sécurité claires. Nous estimons sa sécurité en résolvant un problème de
géométrie finie. Plus précisément, nous caractérisons les configurations de corruptions qu’un
adversaire peut introduire pour empêcher le client de récupérer son fichier. Elles forment ce que
nous appelons des ensembles couvrants à l’ordre d d’un espace affine fini, où l’entier d est un
paramètre du code utilisé par le PoR. En voici une définition.

Definition 0.2 (Ensembles couvrants à l’ordre d). Soient F un corps fini et m, d deux entiers
positifs. On dit qu’un sous-ensemble S ⊆ Fm est un ensemble couvrant à l’ordre d si S vérifie
la propriété suivante :

∀s ∈ S, ∀ droite ` ⊆ Fm passant par s, |S ∩ `| ≥ d

Ou de manière équivalente : Pour toute droite ` ⊆ Fm, |S ∩ `| = 0 ou |S ∩ `| ≥ d.

Nous trouvons une borne inférieure concernant le nombre de droites intersectant ces ensem-
bles couvrants à l’ordre d et nous l’utilisons pour estimer la sécurité de notre schéma. Puis, en
utilisant les propriétés locales des codes basés sur les graphes de Tanner [Tan81], nous obtenons
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une nouvelle instanciation de notre cadre et nous estimons encore une fois sa sécurité. Cette fois
ci, étant donnés un graphe G et un entier d, nous montrons que les configurations de corrup-
tions qui permettent à un adversaire d’empêcher le client de récupérer son fichier correspondent
exactement aux sous-graphes de G de degré minimal d.

Par ailleurs, en utilisant une approche différente, nous proposons un PoR efficace basé sur
la famille des codes expanseurs [Tan81, SS96]. Nous utilisons des codes expanseurs reposant
sur des graphes construits à partir des relations d’incidence point-droite dans les espaces affines
finis. Høholdt et al. [HJ06, HJ11, BHPJ13] ont montré que, en utilisant un code de Reed-
Solomon comme code intérieur, ces codes ont une bonne dimension ainsi qu’une bonne distance
minimale tout en ayant un alphabet relativement petit. De plus, les codes expanseurs possèdent
des algorithmes de décodage très efficaces [SS96, Zém01]. Nous tirons parti de ces résultats pour
proposer un schéma de PoR qui récupère le fichier du client en temps quasi-linéaire et qui affiche
des paramètres concrets meilleurs que ceux des schémas de l’état de l’art, notamment en ce qui
concerne la taille des fichiers et le surplus de stockage.

Composabilité des Codes Localement Corrigibles. Contrairement aux codes correcteurs
d’erreurs classiques, les LCCs permettent de corriger un symbole du mot de code en ne lisant
qu’un nombre sous-linéaire de ses symboles. Nous donnons une modélisation composable des
LCCs dans CC. Nous obtenons un SMR résistant aux erreurs où le client peut lire des données
avec une communication sous-linéaire. Ce faisant, nous montrons que la probabilité d’échec
de décodeur local ne dépend pas seulement du nombres de corruptions présentes mais aussi de
leur localisation sur le mot de code. Calculer cette probabilité d’échec, un problème souvent
négligé dans la littérature, est nécessaire pour donner les garanties de sécurité de notre SMR
et il pourrait être intéressant dans d’autres contextes. Par exemple, dans notre travail sur
les PoRs à base de codes, nous avons montré qu’une compréhension précise des cas d’échec
du décodeur local était essentielle pour estimer la sécurité de nos schémas. Pour finir, pour la
classe importante des codes de Reed-Solomon relevés, nous montrons comment cette probabilité
d’échec peut être calculée en temps polynomial en la longueur du code.
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Notations

We explain common notations that are not given anywhere else in this document.

• Given a finite set S, sampling uniformly from S is denoted by
$←− S.

• Given a distribution D on a finite set S, sampling from D is denoted by ← D.
• The set of permutations of a finite set S is denoted by S(S).
• Given an algorithm A and an oracle O, A having access to O is denoted by AO.
• We use PPT to mean that an algorithm is probabilistic and runs in polynomial time.
• We use F to denote finite fields. For example, Fq is the finite field of size q.
• We use | · | to give the length or size of an object.
• Given a vector v := (v1, . . . , vn) for some integer n and a set I ⊆ {1, . . . n}, we use v|I to

denote the vector (vi)i∈I .
• We use log for the logarithm in base 2.
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Chapter 1

Background

In this chapter, we give precise definitions for the protocols and objects we are going to study.
We also present the Constructive Cryptography model in which some of our contributions are
going to be phrased.

1.1 Constructive Cryptography

We build upon the presentation of [JM20] to give a comprehensive and up to date overview of
the CC model.

1.1.1 Global event history

This thesis uses the globally observable events introduced in [JMM19]. Formally, we consider
a global event history E which is a list of event without duplicates. An event is defined by a
name n, and triggering the event n corresponds to the action of appending n to E , denoted by

E +←− En. For short, we use the notation En to say that event n happened. Finally, En ≺ En′
means that the event n precedes n′ in the event history.

1.1.2 Resources, converters and distinguishers

A resource R is a system that interacts, in a black-box manner, at one or more of its interfaces,
by receiving an input at a given interface and subsequently sending an output at the same
interface. For example, one can imagine a Coin resource where a party can send the request
throw at interface I to obtain an output. The nature and the distribution of outputs is given
in the resource’s specification (often given in pseudo-code). Moreover, parties can append
parameters to their requests. We use the notation (request, p) ∈ S to denote that the request
request expects an additional parameter p belonging to a set S. Do note that a resource only
defines the observable behavior of a system and not how it is defined internally. The behavior
of the resource depends on the global event history E and it can append events to it. We use
the notation [R1, . . . ,Rk] to denote the parallel composition of resources. It corresponds to a
new resource and, if R1, . . . ,Rk have disjoint interfaces sets, the interface set of the composed
resource is the union of those.

In CC, converters are used to link resources and reprogram interfaces, thus expressing the
local computations of the parties involved. A converter is plugged in a set of interfaces at
the inside and provides a set of interfaces at the outside. When it receives an input at its
outside interface, the converter uses a bounded number of queries to the inside interface before
computing a value and outputting it at its outside interface.
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A converter π connected to the interface set I of a resource R yields a new resource R′ :=
πIR. The interfaces of R′ inside the set I are the interfaces emulated by π. A protocol can be
modelled as a tuple of converters with pairwise disjoint interface sets.

A distinguisher D is an environment that connects to all interfaces of a resource R and
sends queries to them. D has access to the global event history and can append events that
cannot be added by R. At any point, the distinguisher can end its interaction by outputting a
bit. The advantage of a distinguisher is defined as

∆D(R,S) := |Pr[DE(R) = 1]− Pr[DE(S) = 1]|,

DE meaning that the distinguisher has oracle access to the global event history E .

1.1.3 Specifications

An important concept of CC is the one of specifications. Systems are grouped according to
desired or assumed properties that are relevant to the user, while other properties are ignored
on purpose. A specification S is a set of resources that have the same interface set and share
some properties, for example confidentiality. In order to construct this set of confidential re-
sources, one can use a specification of assumed resources R and a protocol π, and show that the
specification πR satisfies confidentiality. Proving security is thus proving that πR ⊆ S, some-
times written as R π−→ S, and we say that the protocol π constructs the specification S from
the specification R. The composition property of the framework comes from the transitivity of
inclusion. Formally, for specifications R,S and T and protocols π for R and π′ for S, we have

R π−→ S ∧ S π′−→ T ⇒ R π′◦π−−−→ T .
We use the real-world/ideal-world paradigm, and often refer to πR and S as the real and

ideal-world specifications respectively, to understand security statements. Those statements say
that the real-world is ”just as good” as the ideal one, meaning that it does not matter whether
parties interact with an arbitrary element of πR or one of S. This means that the guarantees of
the ideal specification S also apply in the real world where an assumed resource is used together
with the protocol.

Since specifications are set of resources, we can consider the intersection S ∩ T of two
specifications S and T . The resulting specification possesses the guarantees of both S and T .

Remark 1. In this thesis, we use simulators, i.e. converters that translate behaviors of the real
world to the ideal world, to make the achieved security guarantees obvious. For example, one
can model confidential servers as a specification S that only leaks the data length, combined
with an arbitrary simulator σ, and show that πR ⊆ σS. It is then clear that the adversary
cannot learn anything more that the data length.

1.1.4 Relaxations

In order to talk about computational assumptions, post-compromise security or other security
notions, the CC framework relies on relaxations which are mappings from specifications to
larger, and thus weaker, relaxed specifications. The idea of relaxation is that, if we are happy
with constructing specification S in some context, then we are also happy with constructing its
relaxed variant. One common example of this is computational security. Let ε be a function
that maps distinguishers D to the winning probability, in [0, 1], of a modified distinguisher D′

(the reduction) on the underlying computational problem. Formally,
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Definition 1.1. Let ε be a function that maps distinguishers to a value in [0, 1]. Then, for a
resource R, the reduction relaxation Rε is defined as

Rε := {S | ∀D,∆D(R,S) ≤ ε(D)}

This (in fact any) relaxation can be extended to a specification R by defining Rε := ∪R∈RRε.

We use the notation R ≡ R′ to express that the two resources R and R′ are indistinguishable
(the advantage of any distinguisher is 0). The other relaxation that we will use is the interval-
wise relaxation introduced in [JM20, Definition 9]. Given two predicates P1(E) and P2(E) on
the global event history, the interval-wise relaxation R[P1,P2] is the set of all resources that must
behave like R in the time interval starting when P1(E) becomes true and ending when P2(E)
becomes true. Outside this interval, we have no guarantees on how the resources behave.

These two relaxations have nice composition properties, mainly they are compatible together
and with parallel and sequential protocol applications, as shown in [JM20, Theorems 13 & 14].
This means that all the constructions presented in this work can be used in a modular fashion
inside bigger constructions, without needing to write a new security proof.

1.1.5 Server-memory resources

Since we work in the outsourced storage context, we describe its translation in CC. This trans-
lation was given in 2018 by Badertscher and Maurer [BM18].

The key resource is the basic server-memory resource (SMR) denoted by SMRΣ,n where
Σ is a finite alphabet and n ∈ N is the number of data blocks (the memory size). The SMR
specification is given in Fig. 1.1. It is a modeling of basic client-server interactions. Indeed, it
allows a client to read and write data blocks that are encoded as elements of Σ via interface
C. The memory M is originally filled with the special symbol λ /∈ Σ, signifying that it has not
been written yet. These symbols can be overwritten at interface C0 to initialize the memory.
The server can be “honest but curious” by obtaining the entire history of accesses made by the
client, through the log file Hist, and reading the memory at interface SH . The server can also
be intrusive and overwrite data using its interface SI when the resource is set into a special
write mode (e.g. when Intrusion is set to true). This write mode can be toggled by the
distinguisher at the world interface W. Throughout this document, we use the notation P to
denote the set of honest parties {C0,C}. Also, we often use the notation [n] to denote the set
{1, . . . , n}.

For readers unfamiliar with CC, we explain how to read the construction statements of this
model. Lets say that we want to construct an ideal SMR idSMR from a basic SMR using
a converter π := (π1, π2). The ideal SMR has augmented security guarantees, for example
integrity or confidentiality. This construction translates to the following dummy theorem:

Theorem 1.1 (Dummy theorem). Let Σ be a finite alphabet and n ∈ N. The protocol π :=
(π1, π2) constructs the idSMRΣ,n from the basic SMRΣ,n, with respect to the simulator sim
and the pair (honSrv, honSrv). More precisely, for all distinguishers D, we have

∆D(honSrvSπP SMRΣ,n, honSrv
SidSMRΣ,n) = 0

and ∆D(πP SMRΣ,n, sim
SidSMRΣ,n) ≤ ε(D)

First, honSrv denotes a dummy converter that, when plugged in interface S, deactivates
all the capabilities of the adversary. Then, the notation πP denotes that π1 is plugged in
interface C0 and π2 is plugged in interface C. The first condition, called availability, captures
the correctness of the converter π. Indeed, it expresses that the two resources πP SMRΣ,n
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and idSMRΣ,n behave in the exact same way in the absence of an adversary. This rules out
unwanted protocols. For example, one could construct a confidential SMR by deleting the
client’s data and never uploading on the server. This protocol is secure but it does not meet
the availability condition. We will sometimes omit this condition when our schemes are proven
(or are clearly) correct.

The second condition is called security. It is illustrated, and explained, in Fig. 1.2, taken
from [BM18]. This time, the adversary is not impeded by the honSrv converter. The simulator
sim is usually described in the proof of the theorem. Given a distinguisher D, the quantity
ε(D) represents the distance between the ideal (the ideal SMR with the simulator) and real
(the basic SMR with the converter) systems. Often, it is an upper bound of the advantage of a
modified version of D in distinguishing both systems. This modification is due to a reduction
specified in the proof. When using the theorem in a real use case, it is possible to restrict the
class of distinguishers, and thus the range of values taken by ε(D). A common example of this
is to only consider polynomial time distinguishers.

Resource SMRΣ,n

Initialization
Init,Active, Intrusion← false

Hist← [ ]

Interface C0

Input: init

if not Init
for i = 1 to n do

M[i]← λ

Hist← Hist || (0, init)
Init← true

Input: (read, i) ∈ [1, n]
if Init and not Active

Hist← Hist || (0, R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Init and not Active

Hist← Hist || (0, W, i, x)
M[i]← x

Input: initComplete

Active← true

Interface SH
Input: getHist

return Hist
Input: (read, i) ∈ [1, n]

return M[i]

Interface SI
Input: (write, i, x) ∈ [1, n]× Σ

if Intrusion
return M[i]← x

Interface W
Input: startWriteMode

if Active
Intrusion← true

Input: stopWriteMode

if Active
Intrusion← false

Interface C

Input: (read, i) ∈ [1, n]
if Active and not Intrusion

Hist← Hist || (R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Active and not Intrusion

Hist← Hist || (W, i, x)
M[i]← x

Figure 1.1: Description of the basic server-memory resource of [BM18].
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Figure 1.2: Illustration of the construction notion for SMRs. On the left, we have a real SMR
with a protocol for the client. On the right, we have an ideal SMR with stronger security
guarantees. The construction is secure if there exists a simulator that makes these two resources
indistinguishable.

1.2 Proofs of Retrievability

PoRs are cryptographic protocols whose goal is to guarantee that a file stored by a client on a
server remains retrievable in full. PoRs thus involve two parties: a client who owns a file F and
a server on which F is stored. We start by giving an overview of the commonly used security
model for PoRs by Juels and Kaliski [JK07]. We will then highlight its drawbacks and show
how [BM18] corrected them using CC. A PoR scheme is composed of three main procedures:

• An initialization phase. The client encodes his file F with an initialization function
Init(F ) = (F̃ , data). He keeps data (e.g. keys, etc.) for himself, then he sends F̃ to
the server and erases F .
• A verification phase. The client produces a challenge c with a randomized Chall function

and sends it to the server. The latter creates a response r = Resp(F̃ , c) and sends it back
to the client. The client checks if r is correct by running Verif(c, r), which also access
data, and outputs accept if r is considered correct and reject otherwise.
• An extraction phase. If the client has been convinced by the verification phase, he can

use his Extract algorithm to recover his whole file with high probability.

The client wants to use the Verif procedure to be sure that he will be able to retrieve his
file in full by using the Extract procedure. We want to model the fact that, if the server’s
answers to client’s challenges make him look like he owns the file, then the client must be able
to recover it entirely.

Definition 1.2 (ε-adversary). Let P be a PoR system and X be the space of challenges generated
by Chall. An ε-adversary A for P is an algorithm such that, for all files F ,

Pr
x∈X

[Verif(x,A(x)) = false] ≤ ε

The client models the server as an ε-adversary and uses his verification process to maintain
an approximation of ε. Depending on this estimate, the client can decide whether his file is
retrievable or not. We thus define a way to measure PoRs’ security:

Definition 1.3 (PoR security). Let ε, ρ ∈ [0, 1]. A PoR system is said to be (ε, ρ)-sound if, for
all ε-adversaries A and for all files F , we have:

Pr
[
ExtractA = F

]
≥ ρ

where the probability is taken over the internal randomness of ExtractA.
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As pointed out by Badertscher and Maurer in [BM18], this definition has a major drawback
concerning client-side security guarantees. The most important thing for the client, the avail-
ability of his data, is conditioned to the execution of the Extract algorithm which needs to
access the client’s private data and the server’s strategy (as indicated in the above definition).
In practice, no server would reveal its entire state to a client. This problem is addressed in
[BM18] by using CC to propose a definition of PoRs that corrects this drawback. In [BM18],
the authors introduced an ideal abstraction of PoRs in the form of an ideal SMR that sees
the client interface augmented with an audit mechanism. On an audit request, an auditReq

request is first sent to interface SH . If the server answers abort, the audit stops and the resource
outputs reject at interface C. In the case when the server outputs allow, the following audit is
executed. First, the resource checks whether the current memory content is indeed the newest
version that the client wrote to the storage. If a single data block has changed, the audit will
detect this and output reject to the client. In case of a successful audit (returning accept),
this guarantee holds until the server gains write-access to the storage, in which case a new audit
has to reveal whether modifications have been made.

We present the specification of the auditable server-memory resource SMRaudit
Σ,n in Fig. 1.3.

In addition to the advantages we discussed, we believe that this CC based security model is
simpler and more intuitive than the one of ε-adversaries.

Resource SMRaudit
Σ,n

Interface C
Input: audit

if Active and not Intrusion
output auditReq to SH
Let d ∈ {allow, abort} be the result
if d = allow

M′ ← [ ]
for i = 1 to n do

if ∃k, x : Hist[k] = (W, i, x)
k0 ← max{k | ∃x : Hist[k] = (W, i, x)}
Parse Hist[k0] as (W, i, x0)
M′[i]← x0

else
M′[i]← λ

if M′ = M
return accept

else
return reject

else
return reject

Figure 1.3: Description of the auditable server-memory resource of [BM18] (only the differences
with SMR of Fig. 1.1 are shown)

In CC, a PoR scheme is given by a pair of converters por := (porinit, poraudit) where porinit
implements the (write, F ) query that uploads the client’s file F (or an encoded/encrypted
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version of F ) on the SMR, and poraudit implements the audit query that returns either accept
or reject, and the read query that extracts the file F from the SMR. porinit is connected to
interface C0 and poraudit to interface C. A PoR scheme is considered secure if the por converter
constructs SMRaudit from SMR.

1.3 Updatable Encryption

The syntax and security definitions of UE have been in constant evolution since the seminal
paper of Boneh et al. [BLMR13]. We merge the presentations of [LT18, BDGJ20, Jia20, Nis22]
to give up to date and comprehensive definitions for UE.

1.3.1 Syntax and correctness

A UE scheme operates in epochs, where an epoch is an index incremented with each key update.
Let n+ 1 be the maximum number of epochs (this is only for proof purposes).

Definition 1.4. An updatable encryption scheme UE for message space M consists of a tuple
of PPT algorithms (UE.Setup, UE.KeyGen, UE.TokenGen, UE.Enc, UE.Dec, UE.Upd) where:

• UE.Setup(1λ)→ pp: The setup algorithm takes as input the security parameter and outputs
a public parameter pp.
• UE.KeyGen(pp) → ke: The key generation algorithm takes as input the public parameter
pp and outputs an epoch key ke.
• UE.Enc(k,m)→ c: The encryption algorithm takes as input an epoch key k and a message
m and outputs a ciphertext c.
• UE.Dec(k, c)→ m: The encryption algorithm takes as input an epoch key k and a cipher-

text c and outputs a message m or ⊥.
• UE.TokenGen(ke, ke+1) → ∆e+1: The token generation algorithm takes as input two keys

of consecutive epochs e and e + 1 and outputs a token ∆e+1.
• UE.Upd(∆e+1, ce) → ce+1: The update algorithm takes as input a token ∆e+1 and a ci-

phertext ce and outputs a ciphertext ce+1.

Correctness definitions for symmetric encryption can naturally be extended to UE by asking
that updated ciphertexts still decrypt to the plaintexts given to Enc when the original ciphertexts
were first created.

Definition 1.5 (Correctness). For any m ∈M, for 0 ≤ e1 ≤ e2 ≤ n+ 1, it holds that

Pr[UE.Dec(ke2 , ce2) 6= m] ≤ negl(λ)

where pp ← UE.Setup(1λ), ke1 , . . . , ke2 ← UE.KeyGen(pp), ce1 ← UE.Enc(ke1 ,m), and ∆i+1 ←
UE.TokenGen(ki, ki+1), ci+1 ← UE.Upd(∆i+1, ci) for i ∈ [e1, e2 − 1].

1.3.2 Security notions

In previous works, the security of UE is described using security games. We will study the
IND-ENC + IND-UPD security notion of [LT18] as well as the IND-UE notion of [BDGJ20].
First, we give an informal description of the security games for each notion:

• In IND-UE security, when given a plaintext m and a ciphertext c from a previous epoch
encrypting a message of length |m|, the game challenges the adversary with either an
encryption of m or an update of c.
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• In IND-ENC security, when given two plaintexts m0 and m1 of the same length, the game
challenges the adversary with an encryption of one of them.
• In IND-UPD security, when given two old ciphertexts c0 and c1 encrypting two messages

of the same length, the game challenges the adversary with an update of one of them.

Formally, these notions are defined as follows:

Definition 1.6 (xxIND-yy-atk [BDGJ20]). Let UE := (UE.Setup, UE.KeyGen, UE.TokenGen,
UE.Enc, UE.Dec, UE.Upd) be an updatable encryption scheme. The xxIND-yy-atk advantage, for
xx ∈ {det, rand}, yy ∈ {UE,ENC,UPD} and atk ∈ {CPA,CCA} of an adversary A against UE is
given by

AdvxxIND-yy-atk
UE,A (λ) :=

∣∣∣Pr[ExpxxIND-yy-atk-0
UE,A = 1]− Pr[ExpxxIND-yy-atk-1

UE,A = 1]
∣∣∣

where the confidentiality experiment ExpxxIND-yy-atk-b
UE,A is given in Fig. 1.4.

ExpxxIND-yy-atk-b
UE,A (λ)

1. do UE.Setup(1λ)
2. ors← O.{Enc,Upd,Next,Corr}
3. if atk = CCA
4. ors← ors ∪ {O.Dec}
5. CHALL← Aors(1λ)
6. C̃e ← O.Chall(CHALL)

7. b′ ← Aors,O.UpdC̃(C̃e)
8. if K∗ ∩ C∗ 6= ∅ or (xx = det and I∗ ∩ C∗ 6= ∅)
9. twf ← 1

10. if twf = 1
11. b′

$←− {0, 1}
12. return b′

Figure 1.4: Description of the confidentiality experiment ExpxxIND-yy-atk-b
UE,A for scheme UE and

adversaryA, for xx ∈ {det, rand}, yy ∈ {UE,ENC,UPD} and atk ∈ {CPA,CCA}. As in [BDGJ20],
we do not consider nor define randIND-yy-CCA. The oracles are given in Fig. 1.5 and the
respective challenge oracles are given in Fig. 1.6, Fig. 1.7 and Fig. 1.8. Trivial win conditions,
i.e. deciding the value of twf and computing K∗, C∗, I∗ are discussed in Section 1.3.4 and
Section 1.3.5

1.3.3 Ciphertext integrity game: definitions and composition result.

In the ciphertext integrity (CTXT) game, the adversary A is given access to oracles O.Enc,
O.Next, O.Upd and O.Corr. At some point A attempts to provide a ciphertext forgery via the
oracle O.Try defined in Fig. 1.9. A wins the game if its forgery is valid, i.e. if it decrypts to a
message and not ⊥. If A is allowed to ask a single O.Try query, we speak of the INT-CTXTs

notion. If A can send multiple O.Try queries, we speak of the INT-CTXT notion instead.
INT-CTXTs and INT-CTXT are proved to be equivalent in [BDGJ20, Lemma 1]. Thus, we only
define the INT-CTXTs advantage in Definition 1.7.
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Setup(1λ)

1. pp← UE.Setup(1λ)
2. k0 ← UE.KeyGen(pp)
3. ∆0 ←⊥
4. e, c← 0
5. phase, twf ← 0
6. L, L̃, C,K, T ← ∅

O.Enc(M)

1. C ← UE.Enc(ke,M)
2. c← c + 1
3. L ← L ∪ {(c, C, e)}
4. return C

O.Dec(C)

1. if phase = 1 and C ∈ L̃
2. twf ← 1
3. M or ⊥← UE.Dec(ke, C)
4. return M or ⊥

O.Next

1. e← e + 1
2. ke ← UE.KeyGen(pp)
3. ∆e ← UE.TokenGen(ke−1, ke)
4. if phase = 1

5. C̃e ← UE.Upd(∆e, C̃e−1)

O.Upd(Ce−1)

1. if (j, Ce−1, e− 1) /∈ L
2. return ⊥
3. Ce ← UE.Upd(∆e, Ce−1)
4. L ← L ∪ {(j, Ce, e)}
5. return Ce

O.Corr(inp, ê)

1. if ê > e
2. return ⊥
3. if inp = key
4. K ← K ∪ {ê}
5. return kê
6. if inp = token
7. T ← T ∪ {ê}
8. return ∆ê

O.UpdC̃

1. if phase 6= 1
2. return ⊥
3. C ← C ∪ {e}
4. L̃ ← L̃ ∪ {(C̃e, e)}
5. return C̃e

Figure 1.5: Oracles in security games for UE with deterministic updates. Computing the leakage
sets is discussed in Section 1.3.4

O.Chall(M̄, C̄)

1. if phase 6= 1
2. return ⊥
3. phase← 1
4. ẽ← e
5. if (·, C̄, e− 1) /∈ L or |UE.Dec(ke−1, C̄)| 6= |M̄ |
6. return ⊥
7. if b = 0
8. C̃e ← UE.Enc(ke, M̄)
9. else (b = 1)

10. C̃e ← UE.Upd(∆e, C̄)
11. C ← C ∪ {e}
12. L̃ ← L̃ ∪ {(C̃e, e)}
13. return C̃e

Figure 1.6: Challenge oracle for IND-UE games.

29



O.Chall(M̄0, M̄1)

1. if phase 6= 1
2. return ⊥
3. phase← 1
4. ẽ← e
5. if |M̄0| 6= |M̄1|
6. return ⊥
7. C̃e ← UE.Enc(ke, M̄b)
8. C ← C ∪ {e}
9. L̃ ← L̃ ∪ {(C̃e, e)}

10. return C̃e

Figure 1.7: Challenge oracle for IND-ENC games.

O.Chall(C̄0, C̄1)

1. if phase 6= 1
2. return ⊥
3. phase← 1
4. ẽ← e
5. if (·, C̄0, e− 1) /∈ L or (·, C̄1, e− 1) /∈ L or |UE.Dec(ke−1, C̄0)| 6= |UE.Dec(ke−1, C̄1)|
6. return ⊥
7. C̃e ← UE.Upd(∆e, C̄b)
8. C ← C ∪ {e}
9. L̃ ← L̃ ∪ {(C̃e, e)}

10. return C̃e

Figure 1.8: Challenge oracle for IND-UPD games.

O.Try(C̃)

1. if phase = 1
2. return ⊥
3. phase← 1
4. if e ∈ K∗ or C̃ ∈ L∗
5. twf ← 1
6. M or ⊥← UE.Dec(ke, C̃)
7. if M 6=⊥
8. win← 1

Figure 1.9: The oracle O.Try for the INT-CTXTs security notion.
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Definition 1.7 ([BDGJ20]). Let UE = {UE.KeyGen, UE.TokenGen, UE.Enc, UE.Dec, UE.Upd}
be a UE scheme. The INT-CTXTs advantage of an adversary A against UE is defined as

AdvINT-CTXTs

UE,A (λ) := Pr[ExpINT-CTXTs

UE,A = 1]

where the experiment ExpINT-CTXTs

UE,A is given in Fig. 1.10.

ExpINT-CTXTs

UE,A (λ)

1. do UE.Setup(1λ)
2. win← 0
3. AO.Enc,O.Next,O.Upd,O.Corr,O.Try(λ)
4. if twf = 1
5. win← 0
6. return win

Figure 1.10: The INT-CTXTs experiment for UE scheme UE and adversary A. Trivial win
conditions are discussed in Section 1.3.5.

Composition result for CPA, CTXT and CCA security. In [BDGJ20, Theorem 3],
Boyd et al. show the following generic composition result for UE: CPA + CTXT ⇒ CCA. We
will use this result to prove that our new UE scheme GAINE0 can be made detIND-UE-CCA
secure in Chapter 2.

1.3.4 Leakage sets

We follow the bookkeeping technique [LT18, BDGJ20] to maintain the epoch leakage sets.

• C: List of epochs in which the adversary learned an updated version of the challenge
ciphertext (from O.Chall or O.UpdC̃).
• K: List of epochs in which the adversary corrupted the encryption key.
• T : List of epochs in which the adversary corrupted the update token.

The adversary can also learn the values of ciphertexts and their updates.

• L: List of non-challenge ciphertexts (from O.Enc or O.Upd) with entries of the form
(c, C, e), where c is a counter incremented with each O.Enc query.
• L̃: List of updated versions of challenge ciphertext (created by O.Next and returned by
O.UpdC̃), with entries of the form (C̃, e).

1.3.5 Trivial wins

Trivial wins via keys and ciphertexts. The following holds for all security notions. We
consider the extended epoch leakage sets C∗, K∗ and T ∗ inferred from C, K and T . These
extended sets are used to identify trivial wins, i.e. if C∗ ∩K∗ 6= ∅, then there exists an epoch in
which the adversary knows the epoch key and a valid update of the challenge ciphertext. The
challenger computes these sets once the adversary has finished running. Using [LT18], we show
how to compute the extended epoch leakage sets C∗, K∗ and T ∗:
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K∗ ← {e ∈ {0, . . . , n} | CorrK(e) = true}
true← CorrK(e)⇔ (e ∈ K) ∨ (CorrK(e− 1) ∧ e ∈ T ) ∨ (CorrK(e + 1) ∧ e + 1 ∈ T )

T ∗ ← {e ∈ {0, . . . , n} | (e ∈ T ) ∨ (e ∈ K∗ ∧ e− 1 ∈ K∗)}
C∗ ← {e ∈ {0, . . . , n} | ChallEq(e) = true}

true← ChallEq(e)⇔ (e = ẽ) ∨ (e ∈ C) ∨ (ChallEq(e− 1) ∧ e ∈ T ∗) ∨
(ChallEq(e + 1) ∧ e + 1 ∈ T ∗)

Trivial wins via direct updates. The following holds for detIND-yy-atk notions where yy ∈
{UE,UPD} and atk ∈ {CPA,CCA}. Define I as the set of epochs in which the adversary learned
an updated version of the ciphertext given as challenge input (C̄). Furthermore, define I∗ to be
the extended set in which the adversary has inferred information via token corruption. In the
case when the algorithm Upd is deterministic, an updated ciphertext is uniquely determined by
a token and a ciphertext. Thus, the adversary trivially wins if I∗ ∩C∗ 6= ∅. Indeed, there exists
an epoch in which the adversary knows the updated ciphertext of the challenge input C̄ and a
valid challenge-equal ciphertext. Comparing them allows the adversary to win the game.

In [BDGJ20], I is computed by finding an entry in L that contains the challenge input C̄.
Then, note the query identifier c for that entry and scan L for other entries with this identifier
I := {e ∈ {0, . . . , n} | (c, ·, e) ∈ L}. We extend I into I∗:

I∗ ← {e ∈ {0, . . . , n} | ChallInpEq(e) = true}
true← ChallInpEq(e)⇔ (e ∈ I) ∨ (ChallInpEq(e− 1) ∧ e ∈ T ∗)∨

(ChallInpEq(e + 1) ∧ e + 1 ∈ T ∗)

Furthermore, for the IND-UPD notion, the adversary uses two ciphertexts C̄0, C̄1 as challenge
inputs. Thus, we can compute the sets Ib, I∗b where b ∈ {0, 1} first and use I∗ = I∗0 ∪ I∗1 to
check the trivial win condition. Moreover, this trivial win condition does not exist in IND-ENC
as there is no ciphertext in the challenge input of this notion and I∗ = ∅.

Trivial wins via decryptions. The following holds for detIND-yy-CCA notions where yy ∈
{UE,ENC,UPD}. It follows the analysis of [KLR19]. If the adversary knows a challenge cipher-
text (C̃, e0) ∈ L̃ and tokens from epoch e0 + 1 to epoch e, then he can update the challenge
ciphertext to epoch e. By queryingO.Dec on this ciphertext, the adversary learns the underlying
message and wins the game. We consider this to be a trivial win and exclude it by defining L̃∗
to be the extended set of L̃ in which the adversary has learned or inferred information via token
corruption. We give an algorithm of [BDGJ20] to compute L̃∗ during the game in Fig. 1.11.

Trivial wins in ciphertext integrity games. The following applies to UE schemes with
deterministic updates. The adversary can corrupt an epoch key and use it to forge ciphertexts
in this epoch. Thus, we exclude this trivial win by setting twf to 1 when the adversary provides
a forgery in an epoch in K∗.

Next, suppose that the adversary knows a ciphertext (C, e1) ∈ L and tokens from epoch
e1 + 1 to epoch e2. Then, updating C to epoch e2 provides a forgery in epoch e2. We exclude
this trivial wins by defining L∗ to be the extended set of L in which the adversary has learned
or inferred information via token corruption. If O.Try receives a ciphertext of L∗, it sets twf to
1. We give an algorithm of [BDGJ20] to compute L∗ during the game in Fig. 1.12.
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Update L̃∗

1. if O.Chall or O.UpdC̃ happens
2. L̃∗ ← L̃∗ ∪ {(C̃, ·)}
3. if phase = 1 and O.Corr(token, ·) happens
4. for i ∈ T ∗ and (C̃i−1, i− 1) ∈ L̃∗
5. L̃∗ ← L̃∗ ∪ {(C̃i, i)}

Figure 1.11: Update procedure of [BDGJ20] for the list L̃∗.

Update L∗

1. if O.Enc or O.Upd happens
2. L∗ ← L∗ ∪ {(·, C, ·)}
3. if O.Corr(token, ·) happens
4. for i ∈ T ∗
5. for (j, Ci−1, i− 1) ∈ L∗
6. Ci ← UE.Upd(∆i, Ci−1)
7. L∗ ← L∗ ∪ {(j, Ci, i)}

Figure 1.12: Update procedure of [BDGJ20] for list L∗.

1.4 Private Information Retrieval

A PIR scheme involves a client C, who is interested in retrieving the i-th entry of a database M
stored on k ≥ 1 servers S1, . . . ,Sk. The scheme allows the client to retrieve M[i] while hiding the
index i from the servers and using communication which is sublinear in the size of the database
n. In the following, we assume that the entries of databases belong to a finite alphabet Σ. Also,
let Mj be the database stored on the server Sj : it can either be a copy of M or a modified
version of it (e.g. encrypted, encoded, ...). Formally, we have the following definition given by
[CGKS95].

Definition 1.8. A k-server PIR protocol is a triple (Q,A,R) of algorithms such that :

• The client samples a random string s with distribution S, we denote this operation by
s← S. The client can then use the algorithm Q to generate a k-tuple of queries Q(i, s) :=
(q1, . . . , qk) and send each one to the corresponding server.

• Each server Sj computes an answer A(j,Mj , qj) := aj and sends it back to the client.

• The client can recover M[i] by invoking the reconstruction algorithm R(a1, . . ., ak, i, s)

Furthermore, correctness and privacy can be defined in the following manner:

Definition 1.9 (Correctness). For all databases M ∈ Σn, for every index 1 ≤ i ≤ n, we have

R(A(1,M1, q1), . . . ,A(k,Mk, qk), i, s) = M[i]

where (q1, . . . , qk) := Q(i, s) and s← S.

Definition 1.10 (Privacy). Take 1 ≤ t ≤ k, we say that a PIR scheme is t-private if, for
all databases M ∈ Σn, for every index 1 ≤ i ≤ n and for every 1 ≤ j1 ≤ . . . ≤ jt ≤ k, the
joint distribution (qj1 , . . . , qjt) is independent of i, where (q1, . . . , qk) := Q(i, s) and s ← S.
Probabilities are taken over the choices of s.
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Informally, the above definition means that no coalition of at most t servers can learn any
information about i. Definition 1.10 can be relaxed to consider statistically or computationally
secure PIR schemes.

1.5 Locally Correctable Codes

When encoding an outsourced file with a classical error correcting code, a client who wants to
read a single data block needs to read the entire memory in order for him to run the decoding
algorithm of the code to recover (or not) the data block. In this thesis, we show how one can
use LCCs, so that one has to read only a small number of memory positions to recover one data
block. We also use the locality of LCCs to design protocols with low communication complexity
in the outsourced storage context. We now briefly present LCCs, which were formally introduced
by Katz and Trevisan [KT00] in 2000.

Definition 1.11 (Locally correctable code). Let n, r ∈ N, δ ∈ [0, 1], ε : [0, 1]→ [0, 1] and F be
a finite field. A code C ⊆ Fn is said to be (r, δ, ε)-locally correctable if there exists a probabilistic
decoding algorithm A such that,

1. For all c ∈ C, for all i ∈ [1, n] and for all vectors y ∈ Fn with relative Hamming distance
∆(c,y) ≤ δ, we have Pr[Ay(i) = ci] ≥ 1 − ε(δ), where the probability is taken over the
internal randomness of Ay.

2. The algorithm A makes at most r queries to the vector y.

Examples of LCCs include the well-known Hadamard codes (see Ex. 1) and Reed-Muller
codes [Ree54, Mul54]. Codewords of Reed-Muller codes are evaluations of multivariate poly-
nomials of bounded total degree. Unfortunately, their rate tends towards zero as their length
grows. A major breakthrough in the theory of LCCs is the introduction of a high-rate class of
LCCs, called multiplicity codes, by Kopparty et al. [KSY11] in 2011. They generalize Reed-
Muller codes by evaluating multivariate polynomials as well as their partial derivatives up to
some order. Other high-rate constructions are the lifted codes of Guo et al. [GKS13] and the
expander codes of Hemenway et al. [HOW13], both introduced in 2013.

Example 1. Let n ∈ N. We present the Hadamard code of length 2n − 1 over F2. The
coordinates of a codeword are indexed by the non-zero elements of Fn2 . Moreover, each codeword
is of the form (f(u))u∈Fn

2 \{0}, where f is a linear form over Fn2 . Using the fact that f(u + v) =
f(u) + f(v), we get the following local correcter. To correct the symbol at coordinate u ∈
Fn2 \{0}, the local correcter proceeds as follows: with probability 1− 1

2n−1 , it uniformly samples
a coordinate v 6= u and returns f(u + v) − f(v). Otherwise, with probability 1

2n−1 , the local
correcter returns f(u). This local correcter is said to be smooth since it queries coordinates
uniformly. Moreover, let δ < 1/4 and n ≥ 2, one can show that the Hadamard code is a
(2, δ, 2δ)-LCC. See [Lav18, Prop. 2.5] for a proof.

In this thesis, we consider LCCs for erasures and we do not use the estimate of their failure
probability until Section 3.5.
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Chapter 2

New constructions for post-quantum
Updatable Encryption

When protecting the confidentiality of outsourced data, it is reasonable to expect that an
adversary will craft and inject its own data on the remote server during his attack. It is
thus preferable for clients to use UE schemes that are secure against chosen ciphertext attacks
(CCA), since they are tailored for this situation. In fact, we will prove in Chapter 4 that the
weaker RCCA (where R stands for replayable) security notion is sufficient and necessary to
ensure confidentiality against adversarial injections (when the message space is large enough).
However, few UE schemes are known to have this level of security. Klooß et al. [KLR19]
proposed two generic constructions for UE called E&M and NYUE. E&M is based on encrypt-
and-MAC and its security relies on the decisional Diffie-Hellman (DDH) assumption. It is
worth noting that this scheme does not feature malicious updates resistance, i.e. it provides no
security guarantees when the server updates a ciphertext injected by the adversary, a situation
that is likely going to happen when dealing with injections. The NYUE scheme of [KLR19] uses
the Naor-Yung paradigm and its security is based on the symmetric external Diffie-Hellman
(SXDH) assumption. It provides plaintext integrity and RCCA security. Finally, the SHINE
schemes of Boyd et al. [BDGJ20] are CCA secure under the DDH assumption.

Unfortunately, none of these schemes are post-quantum secure since the DDH and SXDH
assumptions do not hold against quantum adversaries. Moreover, only two post-quantum UE
schemes exist, they are due to Jiang [Jia20] and Nishimaki [Nis22]. These two schemes are
not CCA secure (only CPA) and their security relies on the LWE assumption. Moreover, they
only support a bounded number of key updates. The open problem of finding a post-quantum
CCA secure UE scheme was first formally posed by Jiang [Jia20] at Asiacrypt 2020. In this
chapter, we explore how it might be possible to solve this problem by proposing our new GAINE
schemes based on group actions. For now, GAINE has no practical post-quantum instantiations.
Moreover, we also introduce another group action based scheme, called TOGA-UE, which is
post-quantum CPA secure. Our two schemes are also the first post-quantum UE schemes that
support an unbounded number of updates.

Disclaimer. The contents of this chapter are the result of a joint-work with Antonin Leroux.
One of our contribution consists in instantiating our generic TOGA-UE scheme with isogeny-
based objects. Since this part was solely Antonin’s work, as unlike him I am no isogeny specialist,
I chose to leave it out of this document. Instead, I have replaced isogenies with pre-quantum
objects that fit the same role in our construction. I invite the reader interested in isogenies to
consult our paper for more detail on how to use them to instatiate TOGA-UE [LR22].
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2.1 Preliminaries

2.1.1 Cryptographic group actions

In this section, we give a few reminders about group actions and how they can be endowed
with hardness properties for cryptographic use. We use the framework of cryptographic group
actions of Alamati et al. [ADFMP20].

Definition 2.1 (Group Action). Let G be a group for a law written multiplicatively and let S
be a set. A group action of G on S is an operation ? : G× S → S such that

1. (Identity) If 1G is the identity element of G, then for any s ∈ S, we have 1G ? s = s.
2. (Compatibility) For any g, h ∈ G and any s ∈ S, we have (gh) ? s = g ? (h ? s).

We may use the notation (G,S, ?) to denote a group action. We stress that the group actions
used in this thesis do not need to be abelian. A group action (G,S, ?) partitions the set S into
a disjoint union of orbits where the orbit of s ∈ S is the set Orb(s) := {g ? s | g ∈ G} ⊆ S.

Properties of group actions. Our group actions (G,S, ?) can be:

1. Transitive: A group action is transitive if it has a single orbit, i.e., if for any (s1, s2) ∈ S,
there exists g ∈ G such that g ? s1 = s2. We can always obtain a transitive group action
from any group action. Indeed, take s ∈ S, one can easily verify that (G,Orb(s), ?) is a
transitive group action.

2. Free: A group action is free if for all g ∈ G, g = 1G if and only if there exists s ∈ S such
that g ? s = s.

Since we need to define computational assumptions related to group actions, we need a
notion of efficiency.

Definition 2.2 (Effective Group Action [ADFMP20]). We say that (G,S, ?) is an effective
group action (EGA), with respect to a parameter λ, if the following properties are satisfied:

1. The group G is finite and there exist PPT algorithms for:

(a) Membership testing, i.e. to decide if a given bit string represents a valid element in
G.

(b) Equality testing, i.e. to decide if two bit strings represent the same group element in
G.

(c) Sampling, i.e. to sample an element g from a distribution DG on G.
(d) Operation, i.e. to compute gh for any g, h ∈ G.
(e) Inversion, i.e. to compute g−1 for any g ∈ G.

2. The set S is finite and there exist efficient PPT algorithms for:

(a) Membership testing.
(b) Unique representation, i.e. given any arbitrary set element s ∈ S, compute a string

ŝ that canonically represents s.

3. There exists a distinguished element s0 ∈ S, called the origin, such that its bit-string
representation is known.

4. There exists an efficient algorithm that given (some bit-string representations of) any
g ∈ G and any s ∈ S, outputs g ? s.

Definition 2.3 (Group Action Family). We say that GA is a group action family if, for a
security parameter λ, GA(λ) consists of a group action (G,S, ?) where |G|, |S| = poly(λ).
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Expwk-PR-b
GA,A (λ):

1. (G,S, ?)← GA(λ)
2. if b = 0
3. g ← DG
4. O.Sample← π$

g

5. else (b = 1)

6. π
$←− S(S)

7. O.Sample← π$

8. b′ ← AO.Sample(1λ, (G,S, ?))
9. if b′ = b

10. return 1
11. else
12. return 0

Figure 2.1: Weak pseudorandom group action experiment. Recall that DG and DS are dis-
tributions on G and S respectively. For a permutation f ∈ S(S), we use f$ to denote the
randomized oracle that samples s← DS and outputs (s, f(s)).

In the following, let GA be a group action family. We start by defining one-way group
actions:

Definition 2.4 (One-Way Group Action [ADFMP20]). Let (G,S, ?) be GA(λ) for some security
parameter λ. Let DG and DS be distributions on G and S respectively. For s ∈ S, let fs : G→ S
be the function defined by fs : g 7→ g ? s. We say that (G,S, ?) is (DG,DS)-one-way if, for all
PPT adversaries A, we have

Pr[fs(A(s, fs(g))) = fs(g)] ≤ negl(λ)

where s← DS and g ← DG.

Informally, a group action (G,S, ?) is (DG,DS)-one-way if, given a pair of set elements
(s, g ? s) where s← DS and g ← DG, there is no PPT adversary that can recover g. If DS and
DG are uniform distributions, then we simply speak of OW group action.

Then, we define weak pseudorandom group actions:

Definition 2.5 (Weak Pseudorandom Group Action [ADFMP20]). Let (G,S, ?) be GA(λ) for
some security parameter λ. Let DG and DS be distributions on G and S respectively. For g ∈ G,
let πg : S → S be the permutation defined by πg : s 7→ g?s. For a permutation f ∈ S(S), we use
f$ to denote the randomized oracle that, when queried, samples s ← DS and outputs (s, f(s)).
We say that (G,S, ?) is (DG,DS)-weakly pseudorandom if, for all PPT adversaries A, we have

Advwk-PR
GA,A (λ) :=

∣∣∣Pr[Expwk-PR-0
GA,A (λ) = 1]− Pr[Expwk-PR-1

GA,A (λ) = 1]
∣∣∣ ≤ negl(λ)

where Expwk-PR-b
GA,A (λ) is the experiment described in Fig. 2.1.

Informally, a group action (G,S, ?) is (DG,DS)-weakly pseudorandom if there is no PPT
adversary that can distinguish tuples of the form (si, g ? si) from (si, ui) where g ← DG and
each si, ui ← DS . If both distributions are uniform, we omit them and we say that the group
action is weakly pseudorandom.

Finally, we define weak unpredictable group actions:
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Definition 2.6 (Weak Unpredictable Group Action [ADFMP20]). Let (G,S, ?) be GA(λ) for
some security parameter λ. Let DG and DS be distributions on G and S respectively. For g ∈ G,
let πg : S → S be the permutation defined by πg : s 7→ g?s. For a permutation f ∈ S(S), we use
f$ to denote the randomized oracle that, when queried, samples s ← DS and outputs (s, f(s)).
We say that (G,S, ?) is (DG,DS)-weakly unpredictable if, for all PPT adversaries A, we have

Advwk-UP
GA,A (λ) := Pr[Aπ$

g (s∗) = πg(s
∗)] ≤ negl(λ)

where g ← DG and s∗ ← DS. We denote this experiment by Expwk-UP
GA,A .

Informally, (G,S, ?) is (DG,DS)-weakly unpredictable if, given polynomially many tuples of
the form (si, g ? si) where g ← DG and each si ← DS , there is no PPT adversary that can
compute g ? s∗ for a given challenge s∗ ← DS . If both distributions are uniform, we simply
speak of a weakly unpredictable group action.

2.2 Updatable Encryption from group actions

We generalize the SHINE (Secure Homomorphic Ideal-cipher Nonce-based Encryption) scheme
of Boyd et al. [BDGJ20] using the framework of cryptographic group actions of Alamati et
al. [ADFMP20]. SHINE uses message space M := {0, 1}m, nonce space N := {0, 1}v for some
integers m and v, ciphertext space H a cyclic group of order q and it assumes the existence of
a permutation π : {0, 1}m+v → H. SHINE is presented in Fig. 2.2.

Setup(1λ):

1. Choose H, q, π,m, v as above
2. pp← H, q, π,m, v
3. return pp

KeyGen(pp):

1. k
$←− Z∗q .

2. return k.

TokenGen(ke, ke+1):

1. ∆e+1 ← ke+1

ke
2. return ∆e+1

Upd(∆e+1, Ce):

1. Ce+1 ← C
∆e+1
e

2. return Ce+1

Enc(ke,M):

1. N
$←− N .

2. Ce ← (π(N‖M))ke

3. return Ce

Dec(ke, Ce):

1. s← π−1(C
1/ke
e )

2. Parse s as N ′‖M ′
3. return M ′

Figure 2.2: The SHINE scheme of [BDGJ20].

2.2.1 Generalizing SHINE to group actions

Our initial idea is to see exponentiation, the key operation used to encrypt, update and decrypt
ciphertexts in SHINE, as a component of the group action of Z∗q on H. Then, our goal is to
generalize SHINE to group actions and identify the key properties needed to get a secure UE
scheme. Finally, we check if the known post-quantum group actions satisfy our requirements.
If they do, we can instantiate our scheme to get a new post-quantum UE scheme. First, we
introduce the novel mappable EGA (MEGA) definition.
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Definition 2.7 (Mappable EGA). Let (G,S, ?) be an EGA. We say that (G,S, ?) is a mappable
EGA if there exists an efficient bijection π : {0, 1}N → S.

This new notion can be seen as a strengthened hashable group action. Indeed, [ADFMP20]
strengthen the Definition 2.2 of an EGA by replacing the existence of the origin s0 by the
following Hashing to the set axiom:

Definition 2.8 (Hashable EGA [ADFMP20]). Let (G,S, ?) be an OW-EGA. We say that
(G,S, ?) is a hashable OW-EGA if there exists an efficient sampler H : {0, 1}N → S (where N
depends on the security parameter), such that for all PPT adversaries A, we have

Pr[A(i, j) ? H(i) = H(j)] ≤ negl(λ)

where i, j
$←− {0, 1}N .

We show that our OW-MEGA is also a hashable OW-EGA.

Proposition 2.1. Let (G,S, ?) be an OW-MEGA with bijection π. Then, (G,S, ?) is also a
hashable OW-EGA with sampler H := π.

Proof. Keeping the notations of the proposition, let A be an adversary that breaks the Hashing
to the set axiom of the sampler π of (G,S, ?) with probability ε. We build the following adversary
B against the one-way property of (G,S, ?).

1. B receives (s, fs(g)) = (s, g ? s) such that s
$←− S and g

$←− G.
2. B calls A on input (π−1(s), π−1(g ? s)) and let h ∈ G be the value returned by A.
3. B outputs h.

By definition, A returns h such that h ? π(π−1(s)) = π(π−1(g ? s)) with probability ε. This
means that, with probability ε, B outputs h such that h ? s = fs(g) which is exactly breaking
the one-way property of (G,S, ?).

We present our generalization of the SHINE scheme to group actions, which we call GAINE
for Group Action Ideal-cipher Nonce-based Encryption, in Fig. 2.3. Let GA be a MEGA family
and let (G,S, ?) be GA(λ): a MEGA with bijection π : {0, 1}m+v → S, for integers m and v.
Let M := {0, 1}m be the message space and N := {0, 1}v be the nonce space. We use group
elements as keys and set elements as ciphertexts. Encryption, decryption and updates boil
down to a group action computation. Ciphertexts are randomized by adding a random nonce
as input to π.

GAINE is correct, even for non-abelian group actions.

Proposition 2.2 (Correctness of updates). Let ke, ke+1 ∈ G be two keys and Ce := ke ? s for
some s ∈ S. If ∆e+1 := TokenGen(ke, ke+1), then Upd(∆e+1, Ce) = ke+1 ? s.

Proof. By definition of TokenGen, we have ∆e+1 := ke+1k
−1
e . By definition of Upd, we have

Upd(∆e+1, Ce) = ∆e+1 ? Ce = (ke+1k
−1
e ) ? (ke ? s) = ke+1 ? s

where the last equality holds because of the compatibility of the group action (see Definition 2.1)
and because k−1

e is the inverse of ke in the group G.

Proposition 2.3 (Correctness). The GAINE scheme is correct.
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Setup(1λ):

1. (G,S, ?)← GA(λ)
2. Choose π,m, v as above
3. pp← (G,S, ?), π,m, v
4. return pp

KeyGen(pp):

1. k
$←− G.

2. return k.

TokenGen(ke, ke+1):

1. ∆e+1 ← ke+1k
−1
e

2. return ∆e+1

Upd(∆e+1, Ce):

1. Ce+1 ← ∆e+1 ? Ce

2. return Ce+1

Enc(ke,M):

1. N
$←− N .

2. Ce ← ke ? π(N‖M)
3. return Ce

Dec(ke, Ce):

1. s← π−1(k−1
e ? Ce)

2. Parse s as N ′‖M ′
3. return M ′

Figure 2.3: GAINE: our generalization of the SHINE scheme using group actions.

Proof. Let 0 ≤ e1 ≤ e2 ≤ n + 1 be two epochs and let us consider a ciphertext Ce2 updated
through the successive tokens ∆i+1 for i ∈ [e1, e2 − 1] from an initial ciphertext Ce1 that
is the encryption of a message m under the key ke−1 as in Definition 1.5. By definition of
Ce1 := Enc(ke1 ,M), we have Ce1 = ke1 ? π(N‖M) for some random nonce N . By applying
Prop. 2.2 on the updates of Ce1 , we have that Ce2 = ke2 ? π(N‖M). Then, we get

k−1
e2
? Ce2 = k−1

e2
? (ke2 ? π(N‖M)) = 1G ? π(N‖M) = π(N‖M)

where the penultimate equality holds because of the compatibility of the group action and
the last equality holds because of the identity property of the group action. Finally, we have
π−1(k−1

e2
? Ce2) = N‖M and Dec(ke2 , Ce2) returns M .

2.2.2 Security - GAINE is detIND-UE-CPA secure

In Theorem 2.4, we show that GAINE is detIND-UE-CPA in the ideal cipher model, if the group
action is a weakly pseudorandom MEGA. The ideal cipher model, introduced by Shannon
[Sha49] and shown to be equivalent to the random oracle model by Coron et al. [CPS08],
gives all parties access to a permutation chosen randomly from all possible key permutations of
appropriate length. The GAINE scheme acts on the outputs of the permutation with the epoch
key to encrypt, so our reduction can “program” the transformation from permutation outputs
to set elements.

Theorem 2.4 (GAINE is detIND-UE-CPA). Let GAINE be the UE scheme described in Fig. 2.3
for a MEGA family GA. For any ideal cipher model adversary A, there exists a reduction B
such that

AdvdetIND-UE-CPA
GAINE,A (λ) ≤ O(1)(n+ 1)3 ·Advwk-PR

GA,B (λ)

We follow the proof strategy of [BDGJ20] and use their hybrid argument across insulated
regions. In each hybrid, we can embed at one firewall of the insulated region and simulate all
tokens within that insulated region to answer queries to both O.Upd and O.UpdC̃. In GAINE, we
update a ciphertext from epoch e to epoch e+ 1 by computing the action of the group element
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ke+1k
−1
e . Fresh ciphertexts are randomized using a nonce N but updates are deterministic, thus

our reduction will need to provide consistent ciphertexts to the adversary, i.e. the N value must
be consistent.

We give a reduction B which receives a group action (G,S, ?) and an oracle O.Sample that

returns either tuples of the form (si, g ?si) or (si, ui) where g
$←− G and si, ui

$←− S. B will use the
tuples of O.Sample to perfectly simulate the detIND-UE-CPA experiment for GAINE when those
tuples are of the form (si, g ? si) (and a random experiment otherwise). The idea is to embed g
to a well chosen epoch key by using si as randomness and g ? si as ciphertext value. Thus, if we
know an efficient adversary A against the detIND-UE-CPA security of GAINE, using the hybrid
argument of [BDGJ20], B can use A to break the weak pseudorandomness of (G,S, ?).

Proof. Play hybrid games. We partition the non-corrupted key space as follows:{0, . . . , n}\K∗ =
∪(j,fwlj ,fwrj)∈FW{fwlj . . . fwrj}, where fwli and fwri are firewalls of the i-th insulated region. For

b ∈ {0, 1}, define game Gbi as ExpdetIND-UE-CPA-b
GAINE,A except for:

1. The game randomly picks fwli, fwri
$←− {0, . . . , n} and if they are not the i-th firewalls, it

aborts and returns a random bit b′. This loss is upper-bounded by (n+ 1)2.
2. For the challenge (made in epoch ẽ on input (M̄, C̄)), the game returns an updated version

of C̄ if ẽ < fwli and it returns an encryption of M̄ if ẽ > fwri. Finally, if fwli ≤ ẽ ≤ fwri,
the game returns an encryption of M̄ if b = 0 and an updated version of C̄ if b = 1.

3. After A outputs b′, the game returns b′ if twf 6= 1 or some additional trivial win condition
triggers.

If fwli, fwri are the desired values, then G0
1 is ExpdetIND-UE-CPA-0

GAINE,A , i.e. all challenges are
encryptions of M̄ . Let ` be the total number of insulated regions (bounded by n + 1), such
that G1

` is ExpdetIND-UE-CPA-1
GAINE,A , i.e. all challenges are updates of C̄. Let E be the event that fwli

and fwri are the desired values. By definition, for any 1 ≤ i ≤ n + 1 and b ∈ {0, 1}, we have
Pr[Gbi = 1 | ¬E] = 1/2. Then

Pr[G1
` = 1] = Pr[G1

` = 1 | E] · Pr[E] + Pr[G1
` = 1 | ¬E] · Pr[¬E]

= Pr[ExpdetIND-UE-CPA-1
GAINE,A = 1] · 1

(n+ 1)2
+

1

2
· (1− 1

(n+ 1)2
), and

Pr[G0
1 = 1] = Pr[ExpdetIND-UE-CPA-0

GAINE,A = 1] · 1

(n+ 1)2
+

1

2
· (1− 1

(n+ 1)2
)

Thus, we have |Pr[G1
` = 1]− Pr[G0

1 = 1]| = 1
(n+1)2 ·AdvdetIND-UE-CPA

GAINE,A (λ).

Notice that the games G1
i−1 and G0

i behave in the same way: for the challenge query and

O.UpdC̃, in an epoch in the first i − 1 insulated regions, the reduction returns an update of
C̄, otherwise it returns an encryption of M̄ . Thus, for any ` ≤ n + 1, |Pr[G1

` = 1] − Pr[G0
1 =

1]| ≤
∑`

i=1 |Pr[G1
i = 1]− Pr[G0

i = 1]|. In the following, we prove that for any 1 ≤ i ≤ `,
|Pr[G1

i = 1]− Pr[G0
i = 1]| ≤ 2 Advwk-PR

GA,B (λ) for a reduction B.
In hybrid i. Let Ai be an adversary trying to distinguish G0

i from G1
i . For all queries concerning

epochs outside of the i-th insulated region, the responses of both games are the same. Thus, we
assume that Ai asks for at least one challenge ciphertext in an epoch within the i-th insulated
region. This is where we will embed the weak pseudorandom group action samples in our
reduction.

We construct a reduction B, presented in Fig. 2.4, that is playing the weak pseudorandom
group action game (Definition 2.5) and will simulate the responses of queries made by adversary
Ai. Since we do not assume the group action (G,S, ?) to be abelian, we define (

∏n
i=0 gi) ? s :=

(g0g1 . . . gn) ? s for s ∈ S and g0, . . . , gn ∈ G.
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Reduction B playing
Expwk-PR-b∗

GA,B (λ)
1. receive (G,S, ?) and
O.Sample

2. do Setup(1λ)
3. M̄, C̄ ← Aors(λ)
4. phase← 1
5. C̃ẽ ← O.Chall(M̄, C̄)

6. b′ ← Aors,O.UpdC̃(C̃ẽ)
7. twf ← 1 if
8. C∗ ∩ K∗ 6= ∅ or
9. I∗ ∩ C∗ 6= ∅

10. if ABORT occurred or
twf = 1

11. b′
$←− {0, 1}

12. return b′

13. if (i, fwli, fwri) /∈ FW
14. b′

$←− {0, 1}
15. return b′

16. if b′ = b
17. return 0
18. else
19. return 1

Setup(1λ)

1. b
$←− {0, 1}

2. pp← GAINE.Setup(1λ)
3. k0 ← GAINE.KeyGen(pp)
4. ∆0 ←⊥
5. e, c, phase, twf ← 0
6. L, L̃, C,K, T ← ∅
7. fwli, fwri

$←− {0, . . . , n}
8. for j ∈ {0, . . . , fwli − 1}

do
9. kj

$←− G; ∆j ← kjk
−1
j−1

./

10. for j ∈ {fwri + 1, . . . , n}
do

11. kj
$←− G; ∆j ← kjk

−1
j−1

./

12. for j ∈ {fwli + 1, . . . , fwri}
do

13. ∆j
$←− G

O.Enc(M)

1. c← c + 1
2. (inf1, inf2)← O.Sample()
3. π(N‖M)← inf1
4. if e ∈ {0, fwli − 1} ∪
{fwri + 1, . . . , n}

5. Ce ← ke ? inf1
6. else
7. Cfwli ← inf2
8. for j ∈ {fwli + 1, . . . , e}

do
9. Cj ← ∆j ? Cj−1

10. inf ← (inf1, inf2)
11. L ← L ∪ {(c, Ce, e; inf)}
12. return Ce

O.Next

1. e← e + 1

O.Upd(Ce−1)

1. if (c, Ce−1, e− 1; inf) /∈ L
2. return ⊥
3. if e ∈ {1, . . . , fwli − 1} ∪
{fwri + 1, . . . , n}

4. (inf1, inf2)← inf
5. Ce ← ke ? inf1
6. else
7. (inf1, inf2)← inf
8. Cfwli ← inf2
9. for j ∈ {fwli + 1, . . . , e}

do
10. Cj ← ∆j ? Cj−1

11. L ← L ∪ {(c, Ce, e; inf)}
12. return Ce

O.Corr(inp, ê)
1. do

Check(inp, ê; e; fwli, fwri)
2. if inp = key
3. K ← K ∪ {ê}
4. return kê
5. if inp = token
6. T ← T ∪ {ê}
7. return ∆ê

O.Chall(M̄, C̄)

1. if (c, C̄, ẽ− 1; inf) /∈ L
2. return ABORT

3. if b = 0
4. (s, t)← O.Sample()
5. π(N‖M̄)← s
6. C̃fwli ← t
7. else
8. (inf1, inf2)← inf

9. π(N‖M̄)
$←− S

10. C̃fwli ← inf2
11. for j ∈ {0, . . . , fwli − 1}

do
12. C̃j ←

(
∏1
k=j ∆k)(

∏ẽ−1
k=1 ∆−1

k ) ? C̄
//left

13. for j ∈ {fwli + 1, . . . , fwri}
do

14. C̃j ← ∆j ? C̃j−1 //embed

15. for j ∈ {fwri + 1, . . . , n}
do

16. C̃j ← kj ? π(N‖M̄)
//right

17. L̃ ← ∪nj=0{(C̃j , j)
18. return C̃e

O.UpdC̃
1. C ← C ∪ {e}
2. find (C̃e, e) ∈ L̃
3. return C̃e

Figure 2.4: Our reduction B for proof of Theorem 2.4 in hybrid i. inf encodes fixed program-
ming information: it marks two set elements (inf1, inf2) sampled with O.Sample. inf1 is the
randomness used during encryption and inf2 is the ciphertext value in epoch fwli. ors refers
to the set {O.Enc,O.Next,O.Upd,O.Corr}. ./ indicates that ∆0 and ∆fwri+1 are skipped in the
computation. Comments start with //.
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Recall that Ai is an adversary attempting to distinguish G0
i from G1

i . B will try to use
A to break the weak pseudorandomness of the group action (G,S, ?). In Expwk-PR

GA,B (λ), when

O.Sample returns pairs of the form (sj , g ? sj) for g
$←− G and sj

$←− S, B will perfectly simulate

the environment of Ai in Gbi . When O.Sample returns pairs of the form (sj , tj) for sj , tj
$←− S,

B will give random inputs to Ai such that Ai distinguishes G0
i from G1

i with advantage 0. We
explain how our reduction B does this without knowing which O.Sample oracle was provided to
it.

The reduction B receives the oracle O.Sample, takes b
$←− {0, 1} and simulates Gbi . Whenever

the reduction needs to provide an output of π(·) to Ai, it chooses some set value s ∈ S such
that π(·) = s. In this setting, computing π−1 is simply a lookup to this mapping of the ideal
cipher π. We explain our simulation:

Initially,

1. B guesses the values of fwli and fwri.
2. B generates all keys and tokens except for kfwli , . . . , kfwri ,∆fwli ,∆fwri+1. If Ai corrupts

these keys and tokens, this means that the firewall guess is wrong and the reduction
aborts the game using the Check algorithm, of [BDGJ20], presented in Fig. 2.5.

Check(inp, ê; e; fwl, fwr)

1. if ê > e
2. return ⊥
3. if inp = key and ê ∈ {fwl, . . . , fwr}
4. return ABORT

5. if inp = token and ê ∈ {fwl, . . . , fwr + 1}
6. return ABORT

Figure 2.5: Algorithm Check of [BDGJ20] used in our proofs. ê is the epoch in the adversary’s
request and e is the current epoch.

B will operate so as to embed the value g used by O.Sample to the key kfwli and the value
gk−1

fwli−1 to the token ∆fwli . If O.Sample returns uniformly distributed pairs of set elements
instead, all the ciphertexts inside insulated region i will be random set elements (no key or
token could possibly explain these ciphertexts).

To simulate a non-challenge ciphertext that is:

• An O.Enc query in epoch e ∈ {0, . . . fwli−1}∪{fwri+1, . . . , n}: B queries O.Sample to get a
pair (s, t) ∈ S2. B uses s as a random value by programming π(·)← s (so the randomness
will be consistent with calls that Ai makes to O.Upd), computes the ciphertext Ce = ke ?s
(the value of ke is known to B in these epochs) and stores (s, t) in its memory for later
use. To respond to O.Upd queries in these epochs, B computes Ce = ke ? s using the
randomness s generated during the first encryption of the input ciphertext.
• An O.Enc query in epoch e ∈ {fwli, . . . , fwri}: B queries O.Sample to get a pair (s, t) ∈ S2

and programs π(·) ← s. It sets Cfwli = t (so that all ciphertexts will be encrypted under
the key g in epoch fwli if O.Sample returns pairs of the form (sj , g ? sj)) and updates Cfwli

to the right epoch e using its simulated tokens (remember that B does not know the keys
inside the i-th insulated region). To respond to O.Upd queries in these epochs, B uses the
value t (if t = g ? s then the randomness will still be consistent) generated during the first
encryption of the input ciphertext as ciphertext value in epoch fwli and updates t to the
right epoch e using its simulated tokens.
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During the challenge call, the adversary will provide a ciphertext C̄ which was created during
the c-th call to O.Enc. The adversary cannot ask for an update of the c-th encryption in an
epoch e ≥ fwli, as this would trigger the trivial win condition [fwli, fwri] ⊆ I∗ ∩ C∗ 6= ∅.

To simulate challenge-equal ciphertext in an epoch that is:

• To the left of the i-th insulated region: B simulates GAINE.Upd(C̄) using tokens that it
created itself.
• Within the i-th insulated region: B simulates GAINE.Upd(C̄) if b = 1, and simulates
GAINE.Enc(M̄) if b = 0. More precisely, if O.Sample returns pairs of the form (sj , g?sj), B
embeds g to kfwli and gk−1

fwli−1 to ∆fwli . If b = 0, the reduction samples (s, t)← O.Sample(),

gives value s to π(N‖M̄) and t to C̃fwli (we want kfwli = g) since

C̃fwli = GAINE.Enc(M̄) = kfwli ? π(N‖M̄)

If b = 1, assume that C̄ is an update of C̄ec , the output of the c-th O.Enc query. B sampled
(s, t) ← O.Sample() and used s as randomness to create C̄ec and to update it in epochs
e < fwli. The reduction gives value t to C̃fwli (we want ∆fwli = gk−1

fwli−1) since

C̃fwli = GAINE.Upd(C̄) = ∆fwli ? (kfwli−1 ? s)

Furthermore, the reduction uses tokens ∆fwli+1, . . . ,∆fwri to update C̃fwli to simulate all
challenge ciphertexts in epochs within the insulated region.
• To the right of the i-th insulated region: B simulates GAINE.Enc(M̄) using the keys that

it created itself.

Eventually, B receives the output bit b′ from Ai. If b′ = b, then B guesses that O.Sample
returned pairs of the form (sj , g ? sj) (returns 0 to the wk-PR challenger), otherwise, B guesses
that it has seen uniformly chosen pairs of set elements (returns 1). If B receives an oracle
O.Sample that samples pairs of the form (sj , g ? sj), then B perfectly simulates the environment
of Ai in Gbi . If B receives an oracle O.Sample that samples pairs uniformly at random, then B
wins with probability 1/2. Thus,

Advwk-PR
GA,B (λ) =

∣∣∣1/2− Pr[Expwk-PR-0
GA,B = 1]

∣∣∣
=
∣∣1/2− (1/2 Pr[G0

i = 0] + 1/2 Pr[G1
i = 1])

∣∣
=
∣∣1/2− 1/2(1− Pr[G0

i = 1])− 1/2 Pr[G1
i = 1]

∣∣
= 1/2

∣∣Pr[G0
i = 1]− Pr[G1

i = 1]
∣∣

Finally, we get

1

(n+ 1)2
AdvdetIND-UE-CPA

GAINE,A (λ) ≤
∑̀
i=1

|Pr[G1
i = 1]− Pr[G0

i = 1]|

= 2`Advwk-PR
GA,B (λ)

≤ 2(n+ 1) Advwk-PR
GA,B (λ)

and thus AdvdetIND-UE-CPA
GAINE,A (λ) ≤ 2(n+ 1)3 Advwk-PR

GA,B (λ).

That being said, finding a post-quantum instantiation for GAINE0 would make it the first
post-quantum detIND-UE-CCA UE scheme. Indeed, the two LWE-based schemes of Jiang [Jia20]
and Nishimaki [Nis22] are only randIND-UE-CPA secure. Finally, it is also worth noting that
[BDGJ20, Th 2.2, 2.4 & 2.6] showed that detIND-UE-CCA security implies the detIND-ENC-CCA
and detIND-UPD-CCA security of [LT18], so GAINE0 is also CCA secure in the [LT18] sense.
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2.2.3 Post-quantum instantiations of GAINE

After proving the security of GAINE, we look for post-quantum weakly pseudorandom MEGAs
in the literature to instantiate our scheme. A good candidate is the non-abelian group action
of the general linear group on the set of alternating trilinear forms introduced by Tang et al.
[TDJ+22]. Some definitions are in order.

Let Fq be the finite field of order q. A trilinear form φ : Fnq × Fnq × Fnq → Fq is alternating if
φ evaluates to 0 whenever two arguments are equal. Let ATF(n, q) be the set of all alternating
trilinear forms defined over Fnq . The general linear group GL(n, q) acts on ATF(n, q) as follows:
A ∈ GL(n, q) sends φ to A ? φ := φ ◦ A, defined as (φ ◦ A)(u, v, w) := φ(At(u), At(v), At(w)).
This action defines an equivalence relation ∼ on ATF(n, q), namely φ ∼ ψ if only there exists
A ∈ GL(n, q), such that φ = ψ ◦A.

φ ∈ ATF(n, q) can be represented as
∑

1≤i<j<k≤n ci,j,ke
∗
i ∧ e∗j ∧ e∗k, where ci,j,k ∈ Fq, ei is

the i-th standard basis vector, e∗i is the linear form sending u = (u1, . . . , un)t ∈ Fnq to ui, and
∧ denotes the wedge product (see [TDJ+22] for more details). This representation requires(
n
3

)
dlog qe bits.
Concretely, ? can be computed as follows. Let A = (ai,j) ∈ GL(n, q), it sends e∗i ∧ e∗j ∧ e∗k to

∑
1≤r<s<t≤n dr,s,te

∗
r ∧ e∗s ∧ e∗t , where dr,s,t = det

∣∣∣∣∣∣
ai,r ai,s ai,t
aj,r aj,s aj,t
ak,r ak,s ak,t

∣∣∣∣∣∣. For any φ ∈ ATF(n, q), A ? φ

can be obtained by linearly extending the action of A to each term e∗i ∧ e∗j ∧ e∗k.
It is clear that (GL(n, q),ATF(n, q), ?) is an EGA. Indeed, membership testing, equality

testing, sampling, operation and inversion can all be done efficiently in GL(n, q). The group
action is efficiently computable. Membership testing and unique representation in ATF(n, q)
stem from the algorithmic representation given above. Moreover, we can define an invertible map
between binary strings of length

(
n
3

)
dlog qe and elements of ATF(n, q) using this representation.

Thus, (GL(n, q),ATF(n, q), ?) is a MEGA and can be considered to instantiate GAINE.
[TDJ+22, Conjecture 1] states that the alternating trilinear form equivalence problem (ATFE)

is hard and that (GL(n, q),ATF(n, q), ?) is weakly pseudorandom (in the post-quantum setting).
The ATFE problem is the following: given φ, ψ ∈ ATF(n, q), decide if there exists A ∈ GL(n, q)
such that φ = ψ ◦A. See [TDJ+22, Section 4 & 5] for an argumentation on why it is reasonable
to believe in [TDJ+22, Conjecture 1]. The authors conclude that the best attack against ATFE
is in O(q2n/3n2ω log q) where ω is the matrix multiplication exponent.

Another post-quantum weakly pseudorandom MEGA is the general linear group (non-
abelian) action on k-tensors (GLAT) of [JQSY19] for k ≥ 3. For simplicity, we only present
the case when k = 3 since it is the most studied and believed to be hard. A 3-tensor T is a
3-dimensional array with 3 indices (i1, i2, i3) over a finite field Fq where ij ∈ {1, . . . , dj}. The
tensor is said to have order 3 and dimensions (d1, d2, d3) over Fq. The direct product of general
linear groups G :=

∏3
i=1 GL(di, q) acts on the set of 3-tensors via the following action ? that

represents a local change of basis. For A = (A(j))kj=1 ∈ G and a 3-tensor T ,

A ? T := T̂ where T̂i1,i2,i3 :=
∑
l1,l2,l3

 3∏
j=1

A
(j)
ij ,lj

Tl1,l2,l3
[JQSY19] also argues that GLAT is weakly-pseudorandom in the post-quantum setting, we

defer the argumentation to [JQSY19, Section 5]. This gives us a second post-quantum candidate
to instantiate GAINE.

However, neither of those group actions are weak pseudorandom over a large number of
samples. Indeed, in both cases, the set S is a vector space of finite dimension, isomorphic to FN
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for a finite field F and an integer N . Moreover, both actions act linearly on this vector space.
This means that the map fg : s 7→ g ? s is linear. Given enough pairs of the form (s, g ? s) for a
fixed group element g and random set elements s, one can reconstruct fg and evaluate it on any
set element. Since the pairs (s, g ? s) are exactly those of the weak pseudorandom experiment,
we see that these two actions can only be conjectured to be weak pseudorandom over a small
number of samples. Since our security proof for GAINE uses one such sample per ciphertext,
we can only use these two group actions to instantiate GAINE when there are few ciphertexts,
which is unpractical. Moreover, a recent attack by Beullens [Beu22] breaks the ATFE problem
by finding useful graph theoretic invariants.

2.2.4 On the detIND-UE-CCA security of GAINE

In [BDGJ20, sec. 5.1.1], a variant of SHINE with added ciphertext integrity, called SHINE0, is
given by using N‖M‖0t, for some t, as input of the permutation π during encryption and by
checking that the 0 string is still present during decryption (if not ⊥ is returned). This version
of SHINE is shown to be detIND-UE-CCA secure under CDH [BDGJ20, th. 5].

We define GAINE0 (see Fig. 2.6) similarly to SHINE0 and prove that it is detIND-UE-CCA
secure if the group action is weakly unpredictable (see Definition 2.6). Informally, recall that
(G,S, ?) is weakly unpredictable if, given polynomially many tuples of the form (si, g ?si) where

g
$←− G and each si

$←− S, there is no PPT adversary that can compute g ? s∗ for a given

challenge s∗
$←− S. A full proof and precise definitions are given in the following Section 2.2.5

and Section 2.2.6.
This means that finding a post-quantum group action to instantiate GAINE would provide

the first CCA-secure post-quantum UE scheme.

2.2.5 GAINE with zeros: GAINE0

We add ciphertext integrity to GAINE using the technique of [BDGJ20, sec. 5.1.1] for their
SHINE0 scheme. Take message space M = {0, 1}m and nonce space N = {0, 1}v. Let (G,S, ?)
be a MEGA with permutation π : {0, 1}m+v+t → S. The encryption algorithm of GAINE0 feeds
as input to π the concatenation of the message, the random nonce, and a zero string of length
t. The decryption returns ⊥ if the decrypted value does not end with 0t. GAINE0 is defined in
Fig. 2.6.

2.2.6 GAINE0 is INT-CTXTs

We prove the following theorem.

Theorem 2.5 (GAINE0 is INT-CTXTs). Let GAINE0 be the UE scheme described in Fig. 2.6 for
a MEGA family GA. For any ideal cipher model adversary A that makes at most QE encryption
queries before calling O.Try, there exists a reduction B such that

AdvINT-CTXTs

GAINE0,A (λ) ≤ O(1)QE(n+ 1)2 Advwk-UP
GA,B (λ) + negl(λ)

where Advwk-UP
GA,B (λ) is defined in Definition 2.6

Remark 2. Combining the results of [BDGJ20, Theorem 3], which states that a UE scheme
that is CPA and CTXT is also CCA, with our Theorem 2.4 and Theorem 2.5, we have that
GAINE0 is detIND-UE-CCA.

We follow the proof technique of [BDGJ20] and its presentation.
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Setup(1λ):

1. (G,S, ?)← GA(λ)
2. Choose π,m, v, t as above
3. pp← (G,S, ?), π,m, v, t
4. return pp

KeyGen(pp):

1. k
$←− G.

2. return k.

TokenGen(ke, ke+1):

1. ∆e+1 ← ke+1k
−1
e

2. return ∆e+1

Upd(∆e+1, Ce):

1. Ce+1 ← ∆e+1 ? Ce

2. return Ce+1

Enc(ke,M):

1. N
$←− N .

2. Ce ← ke ? π(N‖M‖0t)
3. return Ce

Dec(ke, Ce):

1. s← π−1(k−1
e ? Ce)

2. Parse s as N ′‖M ′‖Z
3. if Z = 0t

4. return M ′

5. else
6. return ⊥

Figure 2.6: GAINE0: our generalization of the SHINE0 scheme using group actions.

Proof method. The challenger of the INT-CTXTs game keeps a list of consistent values for
ciphertexts, i.e., the underlying permutation output. Let C̃ be a forgery attempt sent to O.Try
in epoch ẽ and let c̃ := k−1

ẽ ? C̃ be the underlying permutation output.

1. If c̃ is a new value, since π is a random permutation, then the INT-CTXTs challenger
simulates π−1(c̃) to be a random string. The probability that this string ends by 0t is
negligible, and this carries over to the probability that the adversary wins the INT-CTXTs

game.
2. If c̃ already exists, suppose that this happens with probability p. We construct a reduction
B playing the wk-UP game such that it wins with probability p/(QE(n+ 1)2). B guesses
the location of the firewalls around the challenge epoch, embeds the wk-UP values and
simulates the INT-CTXTs game, using any successfully-forged ciphertext to compute the
group action forgery for its wk-UP challenger.

Proof. The following proof is practically the same as in [BDGJ20], we just replaced exponenti-
ations by group actions and CDH by wk-UP. We give the proof of [BDGJ20] for completeness.

Note that the probability of a random string ends by 0t is 1/2t. In the INT-CTXTs game,
the adversary ultimately sends a forgery C∗ to the O.Try oracle. If the trivial win condition
does not trigger, then C∗ is a new ciphertext to the challenger and there exists an insulated
region around the challenge epoch. We split the proof into two parts on if k−1

e ? C∗ is a new
value to the challenger:

1. If k−1
e ?C∗ is a new value, the random permutation π−1 will pick a random string a as the

output of π−1(k−1
e ? C∗). The probability of a ending with 0t is upper bounded by 1/2t.

2. If k−1
e ? C∗ is an existing value, denote this event as E3, we claim that the probability of

E3 happens is very low. Which means it is hard to provide a valid forgery with a known
permutation value. In other words, without the knowledge of the encryption key, it is
difficult to provide a correct group action. Formally, we prove the following inequality in
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Lemma 2.6 :

Pr[E3] := Pr[k−1
e ? C∗ exists, C∗ is new] ≤ QE(n+ 1)2 Advwk-UP

GA

In order to analyze the security, we define some events:

• E1 := {C∗ is new},
• E2 := {k−1

e ? C∗ is new, C∗ is new},
• Recall E3 := {k−1

e ? C∗ exists, C∗ is new}.

Denote the experiment ExpINT-CTXTs

GAINE0,A to be Exp. We have :

• Pr[Exp = 1 | ¬E1] = 0.
• We proved Pr[Exp = 1 | E2] ≤ 1/2t in part 1.
• Events ¬E1, E2, E3 are disjoint from each other, so Pr[¬E1] + Pr[E2] + Pr[E3] = 1.
• We prove Pr[E3] ≤ QE(n+ 1)2 Advwk-UP

GA in Lemma 2.6.
Applying the above properties, we can compute the INT-CTXTs advantage

AdvINT-CTXTs

GAINE0,A (λ) = Pr[Exp = 1]

= Pr[Exp = 1 | ¬E1] · Pr[¬E1] + Pr[Exp = 1 | E2] · Pr[E2]

+ Pr[Exp = 1 | E3] · Pr[E3]

= Pr[Exp = 1 | E2] · Pr[E2] + Pr[Exp = 1 | E3] · Pr[E3]

≤ Pr[Exp = 1 | E2] + Pr[E3]

≤ 1/2t +QE(n+ 1)2 Advwk-UP
GA

Lemma 2.6. Let GA be the MEGA family used in GAINE0. Let A be an INT-CTXTs adversary
against GAINE0 that asks at most QE queries to O.Enc before it sends its O.Try query. Suppose
that C̃ is a forgery attempt provided by A and that its corresponding permutation value is c̃.
Define E to be the event that c̃ is an existed value but C̃ is a new one. Then, there exists a
reduction B such that

Pr[E] ≤ QE(n+ 1)2 Advwk-UP
GA,B

Proof. Suppose that A is an adversary against INT-CTXTs, and that it can provide a forgery
such that C̃ is a new ciphertext but the underlying permutation value is an existing one with
probability Pr[E]. We give a reduction B, in Fig. 2.7, that wins the wk-UP game with probability
Pr[E]/(QE(n+ 1)2).

B guesses the location of firewalls ( ˆfwl and ˆfwr) around the epoch when O.Try is queried.
Furthermore, it guesses which message (the h-th encryption) will be the underlying message
of the forgery. Then, B receives the wk-UP values (G,S, ?), O.Sample and s∗, where O.Sample

returns tuples of the form (si, g?si) for a fixed g
$←− G and si

$←− S. B embeds g (the group element
used in O.Sample) to k ˆfwl by using the elements sampled by O.Sample as ciphertexts in epoch
ˆfwl. On the h-th encryption, B embeds s∗ to π(N‖M‖0t). When B receives a forgery C̃ for the
h-th encryption in epoch ẽ ∈ { ˆfwl, . . . , ˆfwr}, it can downgrade C̃ to epoch ˆfwl (where it embedded

g to the epoch key). Then, (
∏ ˆfwl+1

e=ẽ ∆−1
e ) ? C̃ = g ? s∗ with probability Pr[E]/(QE(n + 1)2),

which is the advantage of winning the Expwk-UP
GA,B game.
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Reduction B playing
Expwk-UP

GA,B (λ)
1. receive (G,S, ?),
O.Sample and s∗

2. do Setup(1λ)
3. Aors(λ)
4. if ABORT occurred or

twf = 1
5. win← 0
6. else
7. return win

Setup(1λ)

1. pp← GAINE0.Setup(1λ)
2. k0 ← GAINE0.KeyGen(pp)
3. ∆0 ←⊥
4. e, c, phase,win, twf ← 0
5. L∗, C,K, T ← ∅
6. ˆfwl, ˆfwr

$←− {0, . . . , n}
7. h

$←− {1, . . . , QE}
8. for j ∈ {0, . . . , ˆfwl− 1} ∪
{ ˆfwr + 1, . . . , n} do

9. kj
$←− G; ∆j ← kjk

−1
j−1

./

10. for j ∈ { ˆfwl + 1, . . . , ˆfwr}
do

11. ∆j
$←− G

O.Enc(M)

1. c← c + 1
2. if c = h
3. if e < ˆfwl
4. π(N‖M‖0t)← s∗

5. Ce ← ke ? s
∗

6. else

7. return ABORT

8. else
9. (inf1, inf2)← O.Sample()

10. if e ∈ {0, ˆfwl− 1} ∪
{ ˆfwr + 1, . . . , n}

11. π(N‖M‖0t)← inf1
12. Ce ← ke ? inf1
13. else
14. C ˆfwl ← inf2
15. for

j ∈ { ˆfwl + 1, . . . , e} do
16. Cj ← ∆j ? Cj−1

17. inf ← (inf1, inf2)
18. L∗ ← L∗∪{(c, Ce, e; inf)}m
19. return Ce

O.Next
1. e← e + 1

O.Upd(Ce−1)

1. if (c, Ce−1, e− 1; inf) /∈ L∗
2. return ⊥
3. if c = h
4. if e < ˆfwl
5. Ce ← ∆e ? Ce−1

6. else
7. return ABORT

8. else
9. if e ∈ {1, . . . , ˆfwl− 1} ∪
{ ˆfwr + 1, . . . , n}

10. (inf1, inf2)← inf
11. Ce ← ke ? inf1
12. else
13. (inf1, inf2)← inf
14. C ˆfwl ← inf2

15. for
j ∈ { ˆfwl + 1, . . . , e} do

16. Cj ← ∆j ? Cj−1

17. L∗ ← L∗∪{(c, Ce, e; inf)}m
18. return Ce

O.Corr(inp, ê)

1. do Check(inp, ê; e; ˆfwl, ˆfwr)
2. if inp = key
3. K ← K ∪ {ê}
4. return kê
5. if inp = token
6. T ← T ∪ {ê}
7. for i ∈ T ∗ do
8. for

(j, Ci−1, i− 1; inf) ∈ L∗ do
9. Ci ← O.Upd(Ci−1)

10. L∗ ←
L∗ ∪ {(j, Ci, i; inf)}

11. return ∆ê

O.Try(C̃)

1. if phase = 1
2. return ⊥
3. phase← 1
4. if ẽ ∈ K∗ or C̃ ∈ L∗
5. twf ← 1
6. if ẽ /∈ { ˆfwl, . . . , ˆfwr}
7. twf ← 1
8. y ← (

∏ ˆfwl+1
e=ẽ ∆−1

e ) ? C̃

//ẽ ≥ ˆfwl
9. output y to Expwk-UP

GA,B ;
get b

10. win← b

Figure 2.7: Our reduction B for proof of Lemma 2.6. ors refers to the set
{O.Enc,O.Next,O.Upd,O.Corr,O.Try}. ./ indicates that ∆0 and ∆ ˆfwr+1 are skipped in the
computation. m indicates that inf is empty when c = h. Comments start with //.
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2.2.7 Dealing with bad ciphertext expansion

The problematic ciphertext expansion of SHINE0 is reduced to almost nothing in the construc-
tion of OCBSHINE of [BDGJ20, sec. 5.1.3] which is inspired by the authenticated encryption
scheme OCB [RBBK01]. Once again, we can adapt this construction and proof to GAINE0 to
get the OCBGAINE variant. See [BDGJ20, Figure 27 & 28] for more details.

2.3 Updatable Encryption from triple orbital group actions

We acknowledge that the weak pseudorandomness of the two MEGAs used to instantiate GAINE
relies on two non-standard and recent assumptions. A well established source of post-quantum
weak pseudorandom group actions comes from isogeny-based cryptography. However, we cannot
directly instantiate GAINE with isogenies because it is notoriously hard [BBD+22] to hash into
the set of supersingular elliptic curves, which is a necessary requirement to get a MEGA (see
Prop. 2.1). In order to build post-quantum UE from well established assumptions, we present
a new abstract algebraic structure that we call Triple Orbital Group Action (TOGA). This
construction circumvents the need for a MEGA when designing UE from group actions.

Let us start with a quick overview. A TOGA is made of three group actions, each with a
distinct role. The main group action, that we write (A,S, ?A), is our starting point. The main
ingredient to get a TOGA from the simple group action ?A is a congruence relation ∼A. This
relation allows us to derive a second group action (A/ ∼A, S/ ∼S , ?G), called the induced group
action, of the quotient group G := A/ ∼A on the quotient set T := S/ ∼S (see Definition 2.9 for
∼S). Of course, this induced group action is not mappable as we would not need a TOGA to
build UE in this case. This time, we consider messages as group elements of a third group action
(H,S, ?H). For decryption to be possible, we assume that this action is efficiently invertible.
We want ?H to commute with ?A but also that the orbits of ?H are exactly the classes of
equivalences of S/ ∼S , which is what we call to be orbital. For a visualization of the interaction
between the three group actions of a TOGA, see Fig. 2.8.

2.3.1 The algebraic structure

Let us assume that we have a group action (A,S, ?A) for an abelian multiplicative group A and
a set S. We write 1A for the identity element of A. If there exists a congruence relation ∼A on
A (we recall that a congruence on a set with an intern law is an equivalence relation compatible
with the law, i.e., such that if a1 ∼A a2 and b1 ∼A b2 we have a1b1 ∼A a2b2), then we get that
G := A/ ∼A is an abelian group for the law naturally derived from the multiplication in A.

Definition 2.9. Let A be an abelian group and let ∼A be a congruence relation on A. Let S be
a set and let ?A be a group action of A on S. The relation ∼S induced by ∼A and ?A is

s1 ∼S s2 ⇐⇒ ∃a1, a2 ∈ A with a1 ∼A a2 such that a1 ?A s1 = a2 ?A s2

Proposition 2.7. Keeping the notations of Definition 2.9, we have that ∼S is an equivalence
relation and ?A induces a group action ?G of G := A/ ∼A on T := S/ ∼S.

Proof. The relation ∼S is clearly reflexive and symmetric. For transitivity let us take s1, s2, s3 ∈
S with s1 ∼S s2 and s2 ∼S s3, we have a1 ?A s1 = a2 ?A s2 and b2 ?A s2 = b3 ?A s3, thus
a1b2 ?A s1 = a2b3 ?A s3 and a1b2 ∼A a2b3 since ∼A is a congruence. Let us write G = A/ ∼A and
T = S/ ∼S . First, we need to verify that the operation ?A is well-defined on the quotients. To see
that, we need to verify that a1?As1 ∼S a2?As2 when a1 ∼A a2 and s1 ∼S s2. This is true because
we have b1 ∼A b2 such that b1 ?A s1 = b2 ?A s2, and so (a2b1) ?A (a1 ?A s1) = (a1b2) ?A (a2 ?A s2)
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: ?G

: ?H

: ?A

: s ∈ S

: t ∈ T

Figure 2.8: Diagram for a TOGA A,H, S, ?A,∼A, ?H .

with a2b1 ∼A a1b2 because ∼A is a congruence. Then, we need to show that ?A : G × T → T
verifies the usual group action properties from Definition 2.1. First, let us take a ∼A 1A. We
must have a ?A s ∼S s for any s ∈ S, which is clearly the case. Then, for any a1, a2 ∈ A,
s ∈ S, we have the equality (a1a2) ?A s = a1 ?A (a2 ?A s) and this equality remains true when
considering the quotients G,T .

Definition 2.10. Given A,S, ?A,∼A as in Prop. 2.7, the group action ?G of A/ ∼A on S/ ∼S is
called the group action induced by A, ?A,∼A (or induced by A when it is clear from the context)
and (A,S, ?A) is called the main group action.

We obtain a third group action (hence the name of triple group action) by looking at the
classes of equivalence of S. We want to consider these classes as the orbits of a third group
action ?H : H × S → S for another abelian group H. By that we mean that, for any s ∈ S
and h ∈ H, we have s ∼S h ?H s and that, for all s′ ∼S s, there exists h ∈ H with s′ = h ?H s.
Additionally, we need the group action (H,S, ?H) to be free because we will need to invert ?H .
When these constraints are respected we qualify the group action (H,S, ?H) to be orbital.

Finally, we want that ?A and ?H commute and that for any a1, a2 ∈ A such that a1a2 ∼A 1A,
there exists a unique element h(a1, a2) ∈ H such that (a1a2)?A s = h(a1, a2)?H s for any s ∈ S.
With Prop. 2.8, we give a useful reformulation that will prove useful for the correctness of our
scheme.

Proposition 2.8. For any a, b ∈ A with a ∼A b, we have a ?A s = (h(a, c)h(b, c)−1) ?H (b ?A s)
for any c ∈ A with ac ∼A 1A and s ∈ S.

Proof. We have h(a, c) ?H (b ?A s) = (ac) ?A (b ?A s) = (abc) ?A s = (bc) ?A (a ?A s) = h(b, c) ?H
(a ?A s).
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Definition 2.11 (TOGA). When A,H, S, ?A,∼A, ?H satisfy all the above properties we say
that we have a Triple Orbital Group Action (TOGA).

A visualisation of a TOGA is given in Fig. 2.8. We give an example of a (pre-quantum)
TOGA.

Example 2 (Pre-quantum TOGA). Let S := U×V , where U := 〈u〉 is a cyclic (multiplicative)
group of prime order q and V := 〈v〉 is a cyclic (multiplicative) group of order 2n for some
integer n. Take A := (Z/qZ× Z/2nZ,+). A acts on S through

∀(a, b) ∈ A, ∀(x, y) ∈ S, (a, b) ?A (x, y) := (xua, yvb)

one can easily verify that (A,S, ?A) is a group action. We define the following relation ∼A on
A:

∀(a1, b1), (a2, b2) ∈ A, (a1, b1) ∼A (a2, b2)⇔ a1 = a2

one can easily verify that ∼A is a congruence relation on A. We have G := A/ ∼A' (Z/qZ,+).
We recall the equivalence relation ∼S used in TOGA:

∀s1, s2 ∈ S, s1 ∼S s2 ⇔ ∃c1, c2 ∈ A s.t. c1 ∼A c2 and c1 ?A s1 = c2 ?A s2

Thus, for all s1, s2 ∈ S such that s1 := (x1, y1) and s2 := (x2, y2), we have

s1 ∼S s2 ⇔ ∃a ∈ Z/qZ, b1, b2 ∈ Z/2nZ s.t. (a, b1) ?A s1 = (a, b2) ?A s2

⇒ (x1u
a, y1v

b1) = (x2u
a, y2v

b2)

⇒ x1 = x2

Thus T := S/ ∼S' U . Now take H := (Z/2nZ,+) and define h ?H (x, y) := (x, yvh) for all
h ∈ H and (x, y) ∈ S. Clearly ?A and ?H commute, ?H is free and it is efficiently invertible
using the Pohlig-Hellman algorithm for computing discrete logarithms. Moreover, it is also clear
that each equivalence class of S is an orbit of ?H . There remains one condition to check. Take
a1, a2 ∈ A such that a1 + a2 ∼A 1A, i.e. there exists a ∈ Z/qZ and b1, b2 ∈ Z/2nZ such that
a1 = (a, b1), a2 = (−a, b2) and −a2 = (a,−b2). Then,

∀(x, y) ∈ S, (a1 + a2) ?A (x, y) = (x, yvb1+b2) = (b1 + b2) ?H (x, y)

Moreover, b1 + b2 is the unique element of H satisfying the above equality. To conclude, we
showed that A,H, S, ?A,∼A, ?H satisfy Definition 2.11 and is thus a TOGA. Concretely, we
can instantiate this TOGA by finding a prime p = 2n · q + 1, where q is a large prime, taking
S := F∗p, u := g2n and v := gq where g is a generator of S.

Remark 3. Note that A being a group is not really necessary for the UE scheme that we will
introduce below. In fact, we only need that A is a monoid and that the quotient A/ ∼A is a
group. We only assumed that A is a group for simplicity.

2.3.2 Computational model

As for group actions, we define an ETOGA as an Effective TOGA:

Definition 2.12 (ETOGA). A TOGA A,H, S, ?A,∼A, ?H is effective if:

1. The group action (H,S, ?H) is an Effective and Easy Group Action (EEGA):

(a) The group action (H,S, ?H) is a free EGA.
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(b) There is a PPT inversion algorithm InvertH : S2 → {⊥} ∪ H taking two elements
s1, s2 and that outputs either ⊥ when s1 6∼S s2 or the element h ∈ H such that
s1 = h ?H s2.

2. There exists a finite subset A′ ⊂ A such that:

(a) The class of equivalence of A′ form a generating set of G, i.e., G := A′/ ∼A.
(b) There is a PPT algorithm to compute a′ ?A s for any s ∈ S and a′ ∈ A′.
(c) There exists a PPT algorithm ReduceA : A → A′ that takes an element a ∈ A and

outputs a′ ∼A a.
(d) There exists a PPT algorithm to sample from A′ in a distribution statistically close

to the uniform distribution, we write a′
$←− A′ for elements sampled in that manner.

(e) The distribution DG that samples a′
$←− A′ and returns the class of ReduceA(a′) in G

is statistically close to the uniform distribution.

3. There exists a deterministic PPT algorithm ReduceS to compute a canonical representative
for equivalence classes in S/ ∼S.

Remark 4. Note that the ReduceA algorithm may or may not be deterministic. For efficiency,
it is interesting to try to select the element a′ in the class of a that minimizes the computation
cost of a′ ?A s for any s ∈ S.

Note that when a1a2 ∼ 1A, we have h(a1, a2) = InvertH((a1a2) ?A s, s) for any s ∈ S. Thus,
we can define a PPT algorithm to compute h(a1, a2) from InvertH . We abuse notations and
write h for this algorithm.

Since the function ReduceS is deterministic, we can abuse notations and assimilate T :=
S/ ∼S and ReduceS(S) by identifying the elements of T to their canonical representative in S
through ReduceS . Using this, we sometimes apply the action ?A on the elements of T (it suffices
to compose ?A with ReduceS to obtain the canonical representative afterwards).

2.3.3 The Updatable Encryption scheme

Let T OGA be an ETOGA family and let (A,H, S, ?A,∼A, ?H) be T OGA(1λ) for some λ. We
fix a starting element s0 ∈ S, and we also assume the existence of an invertible map ψ :M→ H
where M is the space of the messages. We will use the function ψ to send the messages in the
group H before encrypting them with ?H . Then, decryption will rely on InvertH . This operation
is efficient by definition of an ETOGA. This principle basically solves the problem of needing
our group action ?A to be mappable. The rest of our scheme follows the framework of GAINE
with keys being elements of A ×H and updates being obtained by applying ?A and ?H . The
security relies on the fact that the induced group action (G,T, ?G) is weakly pseudorandom.
Our UE scheme TOGA-UE is given in Fig. 2.9.

Proposition 2.9 (Correctness of updates). Let ke, ke+1 := (ae, he), (ae+1, he+1) be two keys and
Ce := he ?H (ae ?A s) for some s ∈ S. If ∆e+1 := TokenGen(ke, ke+1), then Upd(∆e+1, Ce) =
he+1 ?H (ae+1 ?A s).

Proof. We reuse the notation of TokenGen, we have for ce = ReduceA(a−1
e ae+1). Since ce ∼A

ae+1a
−1
e , we have that ce ?A (ae ?A s

′) = (h(ce, c
−1
e )h(ae+1a

−1
e , c−1

e )−1) ?H ((ae+1a
−1
e ae) ?A s

′)
by Prop. 2.8. The proof is completed by the fact that (ae+1a

−1
e ae) ?A s

′ = ae+1 ?A s
′ and

h(ce, c
−1
e ) = 1H .

Proposition 2.10 (Correctness). The TOGA-UE scheme is correct.
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Setup(1λ):

1. (A,H, S, ?A,∼A, ?H)← T OGA(λ)
2. Choose ψ, s0 as above
3. pp← (A,H, S, ?A,∼A, ?H , ψ, s0)
4. return pp

KeyGen(pp):

1. a′
$←− A′

2. h
$←− H

3. return ReduceA(a′), h

TokenGen(ke, ke+1):

1. (ae, he)← ke
2. (ae+1, he+1)← ke+1

3. ce ← ReduceA(a−1
e ae+1)

4. Compute h = h(a−1
e ae+1, c

−1
e )

5. return ce, hhe+1h
−1
e

Upd(∆e+1, Ce):

1. a, h← ∆e+1

2. return h ?H (a ?A Ce)

Enc(ke,M):

1. r′
$←− A′

2. r ← ReduceA(r′)
3. s = ReduceS(r ?A s0)
4. (ae, he)← ke
5. return (ψ(M)he) ?H (ae ?A s)

Dec(ke, Ce) :

1. (ae, he)← ke
2. be ← ReduceA(a−1

e )
3. h′ ← h(ae, be)
4. s′ ← (heh

′)−1 ?H (be ?A Ce)
5. s← ReduceS(s′)
6. M ′ ← ψ−1(InvertH(s′, s))
7. return M ′

Figure 2.9: TOGA-UE: UE from ETOGA.

Proof. Let e1 ≤ e2 ≤ n+ 1 be two epochs and let us consider a ciphertext ce2 updated through
the successive tokens ∆i+1 for i ∈ [e1, e2−1] from an initial ciphertext ce1 that is the encryption
of a message m under the key ke−1 as in Definition 1.5. Each key ki can be decomposed as
ai, hi ∈ A×H. By definition of ce1 = Enc(ke1 ,m), we have ce1 = (he1ψ(m))?H ae1 ?AReduceS(s1)
for some s1 ∈ S. By applying Prop. 2.9 on s = ψ(m) ?H ReduceS(s1), we have that ce2 =
he2ψ(m) ?A ae2 ?A ReduceS(s1) since ?A and ?H commute. Then, let us take any be2 ∈ A′ such
that ae2be2 ∼A 1A. By definition of h we know that (be2ae2)?Ax = h(be2 , ae2)?H x for any x ∈ S.
Thus, s′ = (he2h(be2 , ae2))−1 ?H be2 ?A ce2 = ψ(M) ?H ReduceS(s1). Then, since the orbits of ?H
are exactly the equivalence classes of S, we have s′ ∼S s1 and so ReduceS(s′) = ReduceS(s1).
Thus, when we compute InvertH(s′,ReduceS(s′)) we obtain ψ(m) and the message is recovered
by applying ψ−1.

2.3.4 Security - TOGA-UE is detIND-UE-CPA secure

Let A,H, S, ?A,∼A, ?H be an ETOGA, fix s0 ∈ S and let (G,T, ?G) be the group action induced
by A (as in Definition 2.10) where G := A/ ∼A and T := S/ ∼S . In Theorem 2.11, we show
that our UE scheme TOGA-UE (described in Fig. 2.9) is detIND-UE-CPA secure if the group

action (G,T, ?G) is weakly pseudorandom. We sample uniformly in T by sampling g
$←− G and

returning the equivalence class of g ? s0 in T .

Theorem 2.11 (TOGA-UE is detIND-UE-CPA). Let TOGA-UE be the UE scheme described in
Fig. 2.9 for an ETOGA family T OGA. We define a group action family GA, where GA(1λ)
is (G,T, ?G), the group action induced by A ∈ T OGA(1λ) (as in Definition 2.10). For any
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adversary A, there exists a reduction B such that

AdvdetIND-UE-CPA
TOGA-UE,A (λ) ≤ O(1)(n+ 1)3 ·Advwk-PR

GA,B (λ)

Proof. The proof uses the same hybrid argument as the one of Theorem 2.4, thus we only point
out the differences between both proofs. Contrary to the proof of Theorem 2.4, we do not need
to use the ideal cipher model. Indeed, in TOGA-UE, randomization of ciphertexts is not done
through the permutation ψ. Thus, we do not need to “program” ψ to get consistent randomness
throughout our reduction.

Our reduction B, given in Fig. 2.10, starts by receiving a group action (G,T, ?G) and an

oracle O.Sample that returns either tuples of the form (ti, g ?G ti) or (ti, ui) where g
$←− G and

ti, ui
$←− T . We use the same hybrid argument over insulated regions as in Theorem 2.4. B will

use the tuples of O.Sample to perfectly simulate the detIND-UE-CPA experiment for TOGA-UE
when those tuples are of the form (ti, g ?G ti). Thus, if we know an efficient adversary A against
the detIND-UE-CPA security of TOGA-UE, using the hybrid argument of Theorem 2.4, B can
use A to break the weak pseudorandomness of (G,T, ?G).

Our reduction B uses the following notations. Given a ciphertext Ce and a token ∆e, we
can downgrade Ce to epoch e− 1 like so:

1. (c, h)← ∆e

2. b← ReduceA(c−1)
3. h′ ← h(b, c)
4. Ce−1 ← (hh′)−1 ?H (b ?A Ce)
5. return Ce−1

For readability, we will use the (abuse of) notation ∆−1
e ? Ce to denote this downgrade.

Similarly, if ∆e := (c, h), we will use the notation ∆e?Ce−1 to denote the update h?H (c?ACe−1).

In TOGA-UE, a ciphertext is of the form Ce := he ?H (ae ?G r) with ke := (ae, he), where

ae
$←− G, he

$←− H and r
$←− T is the randomness used during the first encryption. Reduction

B will try to embed the O.Sample tuples in the i-th insulated region [fwli, fwri]. If (r, s) ←
O.Sample(), B uses r as randomness for new ciphertexts. When updating ciphertext Cfwli−1 :=
hfwli−1 ?H (afwli−1 ?G r) to epoch fwli, B sets Cfwli := hfwli ?H s where hfwli is simulated by B. If
(r, s) is of the form (r, g ?G r), B has embedded g into kfwli := (g, hfwli) and the randomness of
the ciphertext stays consistent because of Prop. 2.9. Else, if (r, s) is a tuple of random elements
of T , the ciphertexts inside the i-th insulated region are all random (there is no consistent key
or randomness linking them).

Recall that a token ∆e+1 := (ce, hhe+1h
−1
e ) where he, he+1 are part of the epoch keys ke and

ke+1 and ce, h are computed by Upd using those keys. When both keys are unknown (like in
the i-th insulated region), ce is uniformly distributed in G by Definition 2.12 item 2e. Recall
that h ∈ H is useful for the correction of updates (see Prop. 2.9) and that it is not independent
of ce. However, he and he+1 are sampled uniformly in H and are not used in the computations
of ce and h. Since he and he+1 are unknown to the adversary in the i-th insulated region,
hhe+1h

−1
e is uniformly distributed in H and reduction B can perfectly simulate tokens inside

the i-th insulated region.
Because of the correctness of updates in TOGA-UE (see Prop. 2.9) and of the observations

above, when O.Sample returns tuples of the form (ti, g?G ti), the reduction B perfectly simulates
the environment of the adversary A and we get a similar result as the one of Theorem 2.4.
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Reduction B playing
Expwk-PR-b∗

GA,B (λ)
1. receive (G,T, ?G) and
O.Sample

2. do Setup(1λ)
3. M̄, C̄ ← Aors(λ)
4. phase← 1
5. C̃ẽ ← O.Chall(M̄, C̄)

6. b′ ← Aors,O.UpdC̃(C̃ẽ)
7. twf ← 1 if
8. C∗ ∩ K∗ 6= ∅ or
9. I∗ ∩ C∗ 6= ∅

10. if ABORT occurred or
twf = 1

11. b′
$←− {0, 1}

12. return b′

13. if (i, fwli, fwri) /∈ FW
14. b′

$←− {0, 1}
15. return b′

16. if b′ = b
17. return 0
18. else
19. return 1

Setup(1λ)

1. b
$←− {0, 1}

2. pp← TOGA-UE.Setup(1λ)
3. k0 ←

TOGA-UE.KeyGen(pp)
4. ∆0 ←⊥
5. e, c, phase, twf ← 0
6. L, L̃, C,K, T ← ∅
7. fwli, fwri

$←− {0, . . . , n}
8. for j ∈ {0, . . . , fwli − 1} ∪
{fwri + 1, . . . , n} do

9. aj
$←− G, hj

$←− H; kj ←
(aj , hj)

10. ∆j ← TOGA-UE.
TokenGen(kj , kj+1)./

11. for j ∈ {fwli + 1, . . . , fwri}
do

12. cj
$←− G, hj

$←− H;
∆j ← (cj , hj)

13. hfwli
$←− H

O.Enc(M)

1. c← c + 1
2. (inf1, inf2)← O.Sample()
3. if e ∈ {0, fwli − 1} ∪
{fwri + 1, . . . , n}

4. (ae, he)← ke
5. Ce ←

(ψ(M)he) ?H (ae ?G inf1)
6. else
7. Cfwli ←

(ψ(M)hfwli) ?H inf2
8. for j ∈ {fwli + 1, . . . , e}

do
9. Cj ← ∆j ? Cj−1

10. inf ← (inf1, inf2,M)
11. L ← L ∪ {(c, Ce, e; inf)}
12. return Ce

O.Next

1. e← e + 1

O.Upd(Ce−1)

1. if (c, Ce−1, e− 1; inf) /∈ L
2. return ⊥
3. if e ∈ {1, . . . , fwli − 1} ∪
{fwri + 1, . . . , n}

4. (inf1, inf2,M)← inf
5. (ae, he)← ke
6. Ce ←

(ψ(M)he) ?H (ae ?G inf1)
7. else
8. (inf1, inf2,M)← inf
9. Cfwli ←

(ψ(M)hfwli) ?H inf2
10. for j ∈ {fwli + 1, . . . , e}

do
11. Cj ← ∆j ? Cj−1

12. L ← L ∪ {(c, Ce, e; inf)}
13. return Ce

O.Corr(inp, ê)
1. do

Check(inp, ê; e; fwli, fwri)
2. if inp = key
3. K ← K ∪ {ê}
4. return kê
5. if inp = token
6. T ← T ∪ {ê}
7. return ∆ê

O.Chall(M̄, C̄)

1. if (c, C̄, ẽ− 1; inf) /∈ L
2. return ABORT

3. if b = 0
4. (s, t)← O.Sample()
5. r ← s
6. C̃fwli ← (ψ(M̄)hfwli) ?H t
7. else
8. (inf1, inf2,M)← inf

9. r
$←− T

10. C̃fwli ←
(ψ(M)hfwli) ?H inf2

11. for j ∈ {0, . . . , fwli − 1}
do

12. C̃j ←
(
∏1
k=j ∆k)(

∏ẽ−1
k=1 ∆−1

k ) ? C̄
//left

13. for j ∈ {fwli + 1, . . . , fwri}
do

14. C̃j ← ∆j ? C̃j−1 //embed

15. for j ∈ {fwri + 1, . . . , n}
do

16. (aj , hj)← kj
17. C̃j ←

(ψ(M̄)hj) ?H (aj ?G r)
//right

18. L̃ ← ∪nj=0{(C̃j , j)
19. return C̃e

O.UpdC̃
1. C ← C ∪ {e}
2. find (C̃e, e) ∈ L̃
3. return C̃e

Figure 2.10: Our reduction B for proof of Theorem 2.11 in hybrid i. inf encodes fixed program-
ming information: it marks two set elements (inf1, inf2) sampled with O.Sample and a plaintext
M . inf1 is the randomness used during encryption, inf2 is used to compute the ciphertext value
in epoch fwli and M is the plaintext. ors refers to the set {O.Enc,O.Next,O.Upd,O.Corr}. ./
indicates that ∆0 and ∆fwri+1 are skipped in the computation. Comments start with //.
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2.3.5 On the CCA security of TOGA-UE

Unlike GAINE, making TOGA-UE CCA secure appears to be hard. Indeed, our construction
has a pretty clear malleability property: let M,M ′ be two distinct messages, under the ψ map
we get two elements h := ψ(M), h′ := ψ(M ′). Then, for any encryption c of the message M ,
we compute h′h−1 ?H c to obtain a valid encryption of M ′. We leave the problem of making
TOGA-UE CCA secure open for future work.

2.3.6 Instantiating TOGA-UE

In our [LR22] paper, we show how to build a post-quantum ETOGA from the CSIDH (Com-
mutative Supersingular Isogeny Diffie–Hellman) group action [CLM+18]. Then, we show how
to instantiate TOGA-UE using this ETOGA. For the readers unfamiliar with isogenies, we can
give a pre-quantum instantiation of TOGA-UE using the ETOGA of Ex. 2.
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Chapter 3

New and improved constructions for
Proofs of Retrievability

We start this chapter by proposing an authentication protocol tailored for code-based applica-
tions in the outsourced storage setting. Then, we present a framework for the design of secure
and efficient PoRs based on LCCs. We study a generalization of a PoR scheme of Lavauzelle
and Levy-dit-Vehel [LLDV16] based on lifted codes in our framework and we give a new security
analysis and new sets of parameters for their scheme. We find out that the security of [LLDV16]
was overestimated and we recommend to use our scheme and our parameters in its place. More-
over, we show that our scheme produces less false positive audits than the [LLDV16] one. An
audit is a false positive when it answers reject whereas the outsourced file is still retrievable in
full. We also give another instantiation of our framework using graph codes.

Then, we use a different approach to design a new PoR scheme based on expander codes.
By exploiting the local properties of these codes, a fast erasure decoder of [SS96, Zém01] and
the excellent properties of point-line incidence graphs [HJ06, HJ11, BHPJ13] we are able to
design a PoR scheme featuring a quasi-linear time extraction phase as well as better concrete
parameters than our previous constructions.

Finally, we conclude this chapter by modeling LCCs in the CC model. In doing so, we
show that understanding the behavior of the local decoder of such codes can be essential. In
particular, we show how an adversary can target specific memory locations by carefully placing
corruptions that make the local decoder more likely to fail on some locations rather than on
others.

3.1 Preliminaries

3.1.1 Message authentication codes in Constructive Cryptography

Our protocols will use message authentication codes (MAC). Thus, we recall the notations along
with a description of the security condition for MAC in the CC model, given in [BM18].

We consider MAC functions f with message space M, tag space T and key space K. The
security condition for MAC function f states that no efficient adversary can win the following
game GMAC better than with negligible probability. In CC, games are represented as resources.

In our case, the game GMAC chooses a secret key sk
$←− K. Then, it acts as a signing oracle

by receiving messages m ∈ M at its interface and responding with fsk(m). At any point, the
adversary can make a forging attempt by providing a message m′ and a tag t′ to the game. The
game is won if and only if fsk(m

′) = t′ and m′ has never been signed by the game before. The
probability of adversary A to win the game is denoted by ΓA(GMAC).
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3.1.2 Lifted Reed-Solomon Codes

We introduce a very interesting class of LCCs, namely the high rate lifted Reed-Solomon (RS)
codes of Guo et al. [GKS13]. In the following, let Fq be the finite field with q elements and m
be a positive integer. The set of affine lines in Fmq is denoted by Lm := {(at+b)t∈Fq | a, b ∈ Fmq }.
RSq[q, d] is the q-ary RS code of length q, minimum distance d and dimension k := q − d+ 1.

Definition 3.1 (Lifted Reed-Solomon Code [GKS13]). Let Fq be a finite field. Let d,m ∈ N∗.
The m-lift of RSq[q, d] is Liftm(RSq[q, d]) := {w ∈ (Fq)q

m | ∀ line ` ⊆ Fmq , w|` ∈ RSq[q, d]}.

As we are using an aSMR, codewords can only be affected by potential erasures. A codeword
of the RS base code RSq[q, d] is the vector of evaluations of a polynomial f of degree strictly
less than k = q − d + 1. Thus, if there are at most d − 1 erasures, we can always recover the
codeword, i.e. the polynomial f , by interpolating on k > deg f points. Therefore, if we want
to correct a coordinate x ∈ Fmq of the Liftm(RSq[q, d]) code, we can pick a random line going
through x and run the aforementioned local decoding algorithm.

3.1.3 Expander codes

We give an overview of the expander codes of Tanner [Tan81] and Sipser and Spielman [SS96].
We follow the presentation of [RZWZ20]. Let G := (V,E) be an undirected d-regular graph
on n vertices. The expansion of G is λ := max{λ2, |λn|}, where λ1 ≥ λ2 ≥ . . . ≥ λn are the
eigenvalues of the adjacency matrix of G. We say that G is a Ramanujan graph if λ ≤ 2

√
d− 1.

Remark 5. For a d-regular graph G on n vertices, we always have λ1 = d. Indeed, every line
of its adjacency matrix A possesses exactly d ones and n−d zeros. Thus, the vector (1, 1, . . . , 1)
is an eigenvector of A associated with eigenvalue d and λ1 ≥ d. Let v = (v1, . . . , vn) be an
eigenvector of A associated with eigenvalue λ. Without loss of generality, we can suppose that
v is such that |vi| ≤ 1, for all i ∈ [1, n] and |vk| = 1 for some k ∈ [1, n]. Let A := (ai,j)1≤i,j≤n.
We have that |λ| = |λvk| = |

∑n
i=1 ak,ivi| ≤

∑n
i=1 |ak,i||vi| ≤

∑n
i=1 |ak,i| = d. Thus, λ1 ≤ d and,

finally, λ1 = d.

The eigenvalue λ1 is relatively uninteresting (see Remark 5) and graph theory focuses more
on the gap between λ1 and the second largest eigenvalue, a small gap meaning that the graph
is well connected. A solid reference on expander graphs is the survey of Hoory et al. [HLW06].

For a vertex v ∈ V , let Γ(v) be the set of vertices adjacent to v. Let C0 ⊆ Fdq be a linear
code, called the inner code. Fix an order on the edges incident to each vertex of G, and let
Γi(v) be the i-th neighbor of v.

Using the graph G and the inner code C0 we can construct a new code, called an expander
code. The expander code C := C(G, C0) is defined as the set of all labelings of the edges of
G that respect the inner code C0. It has length nd/2. More precisely, we have the following
definition.

Definition 3.2 (Expander Code). Let C0 ⊆ Fdq be a linear code, and let G := (V,E) be a

d-regular expander graph on n vertices. The expander code C(G, C0) ⊆ FEq is a linear code of

length nd/2, so that for c ∈ FEq , c ∈ C if and only if, for all v ∈ V ,(
c(v,Γ1(v)), . . . , c(v,Γd(v))

)
∈ C0

One can easily check, by counting constraints, that if C0 has rate R0, then C(G, C0) has rate
at least 2R0 − 1 (see [SS96, Th. 7] for a proof). Moreover, these codes possess some sort of
local correction. Indeed, to correct an edge e incident to a vertex v, one can retrieve the vector
(c(v,Γ1(v)), . . . , c(v,Γq(v))) of labels of edges incident to v and correct it using the decoder of C0.
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We say that an undirected graph G := (L ∪ R,E) is bipartite if, for all vertices v ∈ L, we
have Γ(v) ∩ L = ∅ and, for all vertices v ∈ R, we have Γ(v) ∩ R = ∅. Let G := (V,E) be
an undirected d-regular graph on n vertices with expansion λ. From G, we can construct a
d-regular graph G̃ on 2n vertices with expansion λ in the following way. The double-cover of
G is the bipartite graph G̃ := (L ∪ R, Ẽ) defined as follows; let L and R be two copies of V .
There is an edge between u ∈ L and v ∈ R if and only if (u, v) ∈ E.

3.2 An authentic server-memory resource tailored for code-based
protocols

In this chapter, we focus on schemes based on erasure capabilities of error correcting codes.
Thus, we need a setting where the actions of adversaries only lead to introducing erasures,
instead of errors, in the outsourced data. The SMR security guarantees can be augmented to
provide authenticity by using a suitable protocol. This new SMR is called authentic SMR,
denoted by aSMR, and is introduced in [BM18]. In aSMR, the behavior of the server at
interface SI is weakened as the server cannot modify the content of data blocks but is limited
to either delete or restore previously deleted data blocks. A deleted data block is indicated by
the special symbol ε.

In this thesis, we use a different aSMR specification that the one used in [BM18]. We
modify the restore behavior to only restore data blocks that were deleted after the last client
update of the database. We introduce a version number that tracks the number of said updates
in the history of the aSMR and the client is now allowed to overwrite corrupted data blocks.
Our changes to the aSMR yield substantial improvements for the parameters of our code-based
PoR schemes, we explain why in detail below. The aSMR specification of [BM18] is given in
Fig. 3.1 while our take on the aSMR resource is described in Fig. 3.2.

In [BM18, Sec. 3.1], Badertscher and Maurer present a protocol that constructs an aSMR
using a MAC function, timestamps and a tree structure on the outsourced data. Their con-
struction of the aSMR has the following features:

1. The aSMR of size n with alphabet Σ is constructed from an SMR of size 2n−1, alphabet
Σ× Zq × T and a local memory of constant size for the client. T is the tag space of the
MAC function used.

2. To read or write one memory cell on aSMR, the protocol of [BM18] produces O(log n)
read and write queries to SMR.

This thesis focuses on PoR schemes where the client uploads a very large encoded file to an
outsourced server. In this context, the logarithm of the size of the alphabet Σ is an order of
magnitude smaller than the length of the MAC tags. The aSMR construction of [BM18] is not
suited for this kind of application (even though they propose one such PoR scheme in [BM18,
Sec. 7.1]). Its issues are threefold. First, since the file size is huge, a factor of 2 in the storage
overhead is a big problem. Second, the O(log n) communication complexity for write operations
is of no use to us since we will be working on encoded data and updating a codeword requires
anyway to read a linear number of symbols. Third, the verification phase of PoRs often consists
in probing as few symbols as possible to ensure that the outsourced file is retrievable in full.
Having a O(log n) read communication complexity is a problem in this context.

With these observations, we now present a different protocol that constructs an aSMR with
good features for our context:

1. Our aSMR of size n with alphabet Σ is constructed using an SMR of size n, alphabet
Σ× T and a local memory of constant size for the client.
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aSMRΣ,n resource of [BM18]

The aSMR definition is identical to SMR except for the influence of an adversary at
interface SI and the reaction on writing to a corrupted memory location.

Interface C

Input: (read, i) ∈ [1, n]
if Active and not Intrusion

Hist← Hist || (R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Active and not Intrusion

if M[i] 6= ε
Hist← Hist || (W, i, x)
M[i]← x

else
Hist← Hist || (Fail, i, x)
return ε

Interface SI

Input: (delete, i) ∈ [1, n]
if Intrusion

M[i]← ε

Input: (restore, i) ∈ [1, n]
if Intrusion

if ∃k, x: Hist[k] = (W, i, x)
k0 ← max{k | ∃x: Hist[k] =

(W, i, x)}
Parse Hist[k0] as (W, i, x0)
M[i]← x0

else
M[i]← λ

Figure 3.1: The authentic SMR of [BM18] (only the differences with SMR are shown).

Our aSMRΣ,n resource

The aSMR definition is identical to SMR except for the influence of an adversary at
interface SI and the addition of a version number ctr.

Interface C

Input: (read, i) ∈ [1, n]
if Active and not Intrusion

Hist← Hist || (R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Active and not Intrusion

ctr ← ctr + 1
Hist← Hist || (W, i, x, ctr)
M[i]← x

Interface SI

Input: (delete, i) ∈ [1, n]
if Intrusion

M[i]← ε

Input: (restore, i) ∈ [1, n]
if Intrusion

if ∃k, x: Hist[k] = (W, i, x, ctr)
M[i]← x

Figure 3.2: Our new authentic SMR (only the differences with SMR are shown).
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2. A read request to our aSMR produces only one read request to SMR.
3. A write request to our aSMR produces at most 2n − 1 read and write requests to

SMR.

This way, we minimize the storage overhead and the communication complexity of read
requests on the one hand. On the other hand, the increased communication complexity for
write requests does not matter since our PoR schemes use only one such request. We sketch
our protocol.

In the following, let n be the size of the SMR, fsk(·) be a MAC function with tag space T
and Σ be a finite alphabet. The protocol auth starts with the client choosing a secret key sk for
the MAC function, setting a version number ctr to 0. The main idea is the following: if the i-th
cell is supposed to store the data x ∈ Σ, the protocol will store the pair (x, fsk(x, ctr, i)) ∈ Σ×T
instead. Do note that the version number ctr is incremented with every write request. This
also means that every valid tag needs to be updated with every write request. Intuitively, this
protocol prevents the adversary from:

1. Replacing the data x with y 6= x since this would make the tag invalid.
2. Moving the data stored in location i to location j 6= i since this would make the tag

invalid.
3. Replaying an older value since the version numbers would not match and the tag would

thus be invalid.

Now, we formally describe our protocol. In the following, let n be the size of the SMR,
fsk(·) be a MAC function with tag space T and Σ be a finite alphabet. The client will also
have read and write access to a local memory resource denoted by L. The protocol starts with
the client choosing a secret key sk for the MAC function, setting a version number ctr to 0 and
storing both of them in its local memory L.

The protocol is formally depicted in Fig. 3.4, as a converter authRW to be plugged in the
client’s interface C. The generation of cryptographic keys and the initialization of the local
and outsourced memories are presented in the initialization converter initauth for interface C0,
in Fig. 3.3.

From now on, when we speak of aSMR, we always refer to our specification of it (the one
of Fig. 3.2).

Theorem 3.1. Let k, n ∈ N and let Σ1 := Σ × T for some finite alphabet Σ. The protocol
auth := (initauth, authRW ) described in Fig. 3.3 and Fig. 3.4 constructs the authentic SMR, say
aSMRΣ,n, from SMRΣ1,n and a local memory L of constant size with respect to the simulator
simauth described in Fig. 3.5 and the pair (honSrv, honSrv). More precisely, for all distinguishers
D, we have

∆D(honSrvSauthP [L,SMRΣ1,n], honSrvS aSMRΣ,n) = 0

and ∆D(authP [L,SMRΣ1,n], simS
auth aSMRΣ,n) ≤ ΓDC(GMAC)

Proof. The correctness condition is clear for the auth protocol so we only prove the security
condition. We analyze the behavior of the real and the ideal systems on every possible input at
their interfaces.

Upon init, initComplete at interface C0: Upon the init query, the real system
authP [L,SMRΣ1,n] samples a new MAC key and initializes the version number ctr with the
value 0. Then, it writes the value (λ, fsk(λ, i, ctr)) at location i, for i ∈ [1, n] and λ a fixed
value in Σ. This adds n+ 1 entries to the history which reads (0, init) || (0, W, 1, fsk(λ, 1, 0)) ||
. . . (0, W, n, fsk(λ, n, 0)).
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Converter initauth for interface C0

Interface out
Input: init

sk
$←− K, ctr ← 0

output (write, 1, sk) at interface in of L
output (write, 2, ctr) at interface in of L
output init at interface C0 of SMR
for i = 1 to n do

v ← (λ, fsk(λ, i, ctr))
output (write, i, v) at interface C0 of SMR

Input: (read, i) or (write, i, x)
Defined in the same way as for authRW in Fig. 3.4

Input: initComplete

output initComplete at interface C0 of SMR

Figure 3.3: The initialization protocol initauth for the construction of our aSMR.

Converter authRW for interface C

Interface out

Input: (read, i) ∈ [1, n]
output (read, 1) at interface in of L
Let sk be the result
output (read, 2) at interface in of L
Let ctr be the result
output (read, i) at interface C of SMR
Let (x, tag) be the result
if fsk(x, i, ctr) = tag

return x
else

return ε

Input: (write, i, x) ∈ [1, n]× Σ
output (read, 1) at interface in of L
Let sk be the result
output (read, 2) at interface in of L
Let ctr be the result
ctr ← ctr + 1
v ← (x, fsk(x, i, ctr))
output (write, i, v) at int. C of SMR
for j = 1, . . . , i− 1, i+ 1, . . . , n do

output (read, j) at int. C of SMR
Let (y, tag) be the result
if fsk(y, j, ctr − 1) = tag

v ← (y, fsk(y, j, ctr))
output (write, j, v) at int. C of

SMR
output (write, 2, ctr) at int. in of L

Figure 3.4: The protocol authRW for the construction of our aSMR.
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Simulator simauth

Initialization

sk
$←− K, ctr ← 0

Msim ← (λ, fsk(λ, 1, ctr))‖ . . . ‖(λ, fsk(λ, n, ctr))
Hsim ← (0, init)‖(0, W, 1, (λ, fsk(λ, 1, ctr)))‖ . . . ‖(0, W, n, (λ, fsk(λ, n, ctr)))
pos← |Hsim|+ 1

Interface SH
Input: getHist

UpdateLog
return Hsim

Input: (read, i) ∈ [1, n]
UpdateLog
return Msim[i]

Interface SI (Intrusion = true)

Input: (write, i, (v, tag)) ∈ [1, n]× (Σ× T )
UpdateLog
Msim[i]← (v, tag)
Determine the last entry in Hsim that wrote value (v′, tag′) to location i.
if v = v′ and tag = tag′

output (restore, i) at interface SI of aSMR
else

output (delete, i) at interface SI of aSMR

procedure UpdateLog
output getHist at interface in of aSMR
Let Hist be the returned value
for j = pos to |Hist| do

if Hist[j] = (R, i)
Hsim ← Hsim || (R, i)

else if Hist[j] = (W, i, x, ctr′)
if ctr′ > ctr

ctr ← ctr′

Msim[i]← (x, fsk(x, i, ctr))
Hsim ← Hsim || (W, i, (x, fsk(x, i, ctr)))
for ` = 1 to n, ` 6= i do

Hsim ← Hsim || (R, `)
y, tag ←Msim[`]
if tag = fsk(y, `, ctr − 1)

Msim[`]← (y, fsk(y, `, ctr))
Hsim ← Hsim || (W, `, (y, fsk(y, `, ctr)))

pos← |Hist|+ 1

Figure 3.5: The simulator of the construction of our aSMR.
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In the ideal system simS
auth aSMRΣ,n, the query initializes the memory with the value λ. The

simulator samples a MAC key sk and initializes the version number ctr to 0. Then, it initializes
its simulated history Hsim with n+ 1 entries just like above.

Finally, on entry initComplete both systems deactivate interface C0 and the other client
interfaces become available.

Upon (read, i) at interface C: On this query, authRW reads the i-th memory cell. The
history is thus increased by the value (R, i). Then, the protocol checks the validity of the tag.
If it succeeds, the last value written to this location xi is returned. Otherwise, ε is returned.
In the ideal system, the aSMR directly returns the last value written at location i if this cell’s
content has not been deleted. Otherwise, ε is returned. The simulator emulates this view by
simulating the memory of the real world and sending delete (resp. restore) requests when the
adversary writes values that would fail (resp. pass) the real world check. If this simulation is
perfect, the behavior of the ideal system will be the same as the ideal one. We will discuss this
when we analyze the write requests at interface SI . Additionally, the next time the simulator
is activated, it will update its simulated history Hsim using its procedure UpdateLog. If the
read request (R, i) is the next entry in the history Hist of the aSMR, the simulator increases
its simulated history with the value (R, i) which perfectly matches the real world behavior.

Upon (write, i, x) at interface Ck: On a write request, the protocols start by incrementing
the version number ctr and writing the value x, together with its tag t, to location i. The value
(write, i, (x, t)) is thus appended to the history. Then, they read the content of each other
location (in ascending order) and check their tag. If it is correct, a new tag is computed to
account for the version number increase, and the value is written back together with the new
tag. For j = 1, . . . , i− 1, i+ 1, . . . , n, the history is increased by (k, R, j) || (k, W, j, (xj , tagj)) if
the check succeeds and by (k, R, j) if the check fails.
In the ideal world, on a (write, i, x) request, the i-th memory cell is updated with the value x
and (k, W, i, x, ctr) is appended to the history of aSMR, where ctr is the current version number.
On the entry (k, W, i, x, ctr) of the history, UpdateLog will increase the simulated history and
update its simulated memory with the values listed above, using the version number ctr and its
simulated key sk to check and produce the appropriate tags. Thus, the simulated history and
memory perfectly match the ones of the real world.

Upon getHist at interface SH : In the real system, the output is the history of SMR.
By the above analysis, an inductive argument shows that in the ideal system, the simulated
history Hsim, which is returned upon this query, perfectly emulates the real-world one.

Upon (write, i, (x, tag)) at interface SI : In the real world, an adversarial write request is
a simple replacement of the memory cell i of SMR. If (x, tag) corresponds to the last honest
value written to this cell, then this cell might become valid again1. This is perfectly simulated
in the ideal-world since the simulator can update its simulated memory and parse the history to
check if (x, tag) is indeed the last honest value written to cell i. If it is the case, the simulator
sends a (restore, i) request to aSMR which makes the cell valid again if it should be.
Now, let’s study the case where the pair (x, tag) is not the same as the last honest one written
to this cell. In the real world, the content of the memory cell i is just replaced. In the ideal
world, the simulator sends a (delete, i) request to aSMR and assigns the value (x, tag) to
the i-th cell of its simulated memory. If the pair (x, tag) fails the tag check, the simulation is
perfect since the content of the i-th cell is deemed invalid in both worlds, making subsequent
read requests return ε. However the bad event, denoted by BAD, occurs if the pair (x, tag)
passes the verification (recall that this pair differs from the last honest value written to cell
i). Indeed, in the real world, the check would succeed and the value x would be returned on

1if the version number has not increased
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subsequent read requests. Meanwhile, in the ideal world, the value of cell i would be deleted
and ε would be returned on subsequent read requests. Hence, the real and ideal systems are
identical until event BAD occurs.

Upon (read, i) at interface SH : In the real system, this query returns the value at location
i of SMR. In the ideal system, the value at location i of the simulated memory is returned
instead. The simulator updates its simulated memory on each activation. As we discussed
above, the simulated memory perfectly emulates the real one in all cases. The behavior of both
worlds are thus identical.

We conclude that the real and ideal systems are identical until the BAD event occurs. The
occurrence of BAD implies a successful forgery against the MAC function fsk. We use the same
reduction C as in [BM18] from a distinguisher D to an adversary A := DC against the game
GMAC (defined in Section 3.1.1). C simulates the real system, but evaluates the MAC function
using oracle queries to GMAC. If D issues a write query at interface SI that provokes event
BAD, C issues this value as a forgery to the game. Hence, we conclude by noting that

∆D(authP [L,SMRΣ1,n], simauthS aSMRΣ,n) ≤ PrD(authP [L,SMRΣ1,n
])[BAD]

≤ ΓDC(GMAC)

3.3 A framework for secure and efficient Proofs of Retrievability
from codes with locality

We describe our framework which derives PoR schemes from a given LCC C. In all our PoRs,
the client’s file is encoded as a codeword of C and uploaded to the server. We want to protect
the client from an adversary able to introduce corruptions on the outsourced file. To do so,
we need to describe an audit that probes a few symbols of the outsourced file and accepts if
it thinks that the corruptions can all be corrected. Recall that, in the CC definition, an audit
is considered secure if it only succeeds when the outsourced file is retrievable in full, without
modifications. If we want to derive PoR schemes from an LCC C in CC, we thus need to do the
following three things:

1. Give an extraction procedure that aims at retrieving the outsourced file while correcting
any corruption encountered.

2. Characterize the configurations of corruptions that are uncorrectable by this extraction
procedure.

3. Give an audit procedure that is able to detect those configurations of uncorrectable cor-
ruptions on the outsourced file.

Since a good PoR scheme must have low communication complexity, we want to exploit
the locality of LCCs to design our audit procedure. We choose our extraction procedure as
an iteration of the local correction algorithm of the LCC. This means that our schemes will
try to locally correct any corruption encountered during the extraction. Thus, we need a way
to identify those corruptions. Using the composability of the CC framework, we will place
ourselves in a setting where adversaries can only introduce erasures on the outsourced file. We
can design our PoR schemes with this assumption and we will use our aSMR construction of
Section 3.2 to fulfill it. Our blueprint becomes:

1. Give an extraction procedure that aims at correcting erasures by using the local cor-
rectability of C.
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2. Characterize the configurations of erasures that are uncorrectable by this extraction pro-
cedure.

3. Our audit is the following: try to locally correct a random position of the outsourced file,
if the correction is impossible return reject, else return accept.

In step 2, we identify the configurations of erasures that are unrecoverable when iterating
the local correction of C. We find a lower bound on the number of local correction queries
that would fail if such a configuration of erasures existed. When instantiating our framework
in Section 3.3.1, we shall see that this problem is, in practice, much easier than giving a lower
bound on the minimum size of such a configuration of unrecoverable erasures. In the CC model
of security for PoRs, the advantage of the adversary in breaking the security of the scheme is the
probability that the audit accepts while the file is not retrievable. In our case, our audit consists
in checking if a random local correction query succeeds. Our file is not retrievable if there exists
a configuration of unrecoverable erasures. Thus, the lower bound we computed above is all
we need to assess the security of the PoR. We give a complete proof when instantiating our
framework, see Theorem 3.2 of Section 3.3.1.

More precisely, let C be an erasure code of length n, alphabet Σ and erasure symbol ⊥.
Suppose that C possesses a local erasure decoder L with query space Q ⊆ 2[1,n]. On query
q ∈ Q and input w ∈ (Σ∪{⊥})n such that there exists c ∈ C such that for any i ∈ [1, n], wi 6=⊥
implies wi = ci, L probes the symbols w|q := (wi)i∈q of w and attempts to correct its erasures if
they exist. We can define a global decoder G for C by iterating L until no erasures remain. Let
P be a predicate on ∪ni=0(Σ ∪ {⊥})i, i.e., for w ∈ (Σ ∪ {⊥})n and q ∈ Q, P (w|q) ∈ {true, false}.
Let 0 ≤ ε ≤ 1 and suppose that we have the following property:

∀w ∈ (Σ ∪ {⊥})n, if at least one erasure of w cannot be corrected by G
then Pr

q∈Q
[P (w|q) = false] ≥ 1− ε (3.1)

We define our general PoR scheme por := (porinit, poraudit), where:

1. On input (write, F ), porinit encodes F into a codeword F̃ of C and writes F̃ in the aSMR
memory.

2. On input audit, poraudit samples a query q ∈ Q uniformly. If w is the file stored in
the SMR, poraudit retrieves w|q with read queries. Then, the converter returns accept if
P (w|q) = true and returns reject otherwise.

3. On input (read), the converter poraudit tries to extract the file F using the global decoder
G of C.

Recall that in the CC model of security for PoRs, the advantage of the adversary in breaking
the security of por is the probability that the audit accepts while the file is not retrievable. In
our case, this advantage is upper bounded by ε (see Eq. (3.1)). We believe our security model
for PoRs to be cleaner, simpler and to give clearer security guarantees than the ε-adversary
model.

3.3.1 Instantiation with Lifted Reed-Solomon codes

In this section, we use our PoR framework to design a secure and efficient PoR scheme using
lifted RS erasure codes that can be seen as a generalization of the PoR of [LLDV16]. We call
this scheme lifted RS PoR scheme. We build our PoR for an aSMR, using the composability
of CC, so we only have to deal with potential erasures instead of errors. Using our blueprint,
we need to do the following:
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1. Give a global decoding algorithm for lifted RS codes using their local correctability.
2. Characterize the configurations of erasures that are unrecoverable by this algorithm.
3. Give an audit procedure that is able to detect those configurations of uncorrectable cor-

ruptions on the outsourced file.

We start with the global decoding algorithm. For the lifted RS code Liftm(RSq[q, d]), our
global decoder works as follows. For each erasure, the decoding algorithm corrects it by finding,
if it exists, a line going through the erasure and containing less than d − 1 other erasures (for
example using interpolation as in Section 3.1.2). If one or more erasures have been corrected
during this step, the algorithm tries to correct the remaining erasures using the same method.
Indeed, since some erasures were corrected, there exists lines with less erasures than before.
If, during one iteration, no erasures have been corrected, the algorithm stops and returns the
current vector. We give a pseudo-code description of this algorithm in Fig. 3.6.

Input: The encoded file V with potential erasures
Output: The encoded file F̃ .

repeat
E := ∅
for an erased position x ∈ Fmq do

if there exists a line ` ⊆ Fmq going through x with strictly less than d erasures.
Use the global decoder of RSq[q, d] on the restriction of the file to `.
We have corrected all the erasures on that line, x included.
E = E ∪ {x}
Modify V accordingly.

until E = ∅
return V

Figure 3.6: Our global decoding algorithm for lifted Reed-Solomon codes.

We now study the fail cases of the global decoding algorithm. Let Liftm(RSq[q, d]) be a
lifted RS code. For an erased position s ∈ Fmq to be unrecoverable, it is necessary that each line
going through s possesses at least d erasures. However, it is not sufficient. Indeed, suppose that
there exists a line ` going through s with exactly d erasures. If there exists an erasure position
s′ on the line ` and a line `′ going through s′ with at most d−1 erasures then the symbol erased
at position s′ can be recovered using the RSq[q, d] decoder. Since, s′ lies on `, this means that
` now contains only d− 1 erasures and they all can be corrected, the one at s included.

In order to capture a set of unrecoverable erasures for our global decoding algorithm, we
introduce the following property:

Definition 3.3 (d-cover sets). Let Fq be a finite field and m, d be positive integers. We say that
a set S ⊆ Fmq is a d-cover set if S verifies the following property:

∀s ∈ S, ∀ line ` ⊆ Fmq going through s, |S ∩ `| ≥ d

Or equivalently, for all lines ` ⊆ Fmq , |S ∩ `| = 0 or |S ∩ `| ≥ d

Since the d-cover subsets of Fmq represent the unrecoverable erasure patterns, we want to find
an audit procedure that can detect their existence with high probability and low communication
complexity. We propose the following audit:

1. The client randomly chooses a line ` ⊆ Fmq .
2. The client retrieves the restriction of the outsourced file to the chosen line.
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3. If it contains d or more erasures, reject, if not, accept.

The next step is to determine the probability that this audit detects a set of unrecoverable
erasures if one exists. Let S ⊆ Fmq be a non-empty d-cover set. Then, there exists s ∈ S and,
for each line ` going through s, we have |` ∩ S| ≥ d. We also know that for any line ` ⊆ Fmq ,
either |` ∩ S| = 0 or |` ∩ S| ≥ d.

Recall that L := (qm − 1)/(q − 1) is the number of lines going through a point in Fmq and
that qm−1L is the total number of lines in Fmq . Let ` be the randomly chosen line for the audit
and s be an element of S. We have:

Pr[|` ∩ S| 6= 0] =
L

qm−1L
· 1 +

(
1− 1

qm−1

)
· Pr[|` ∩ S| 6= 0 | s /∈ `]

Let E be the event {|` ∩ S| 6= 0 | s /∈ `}. For each point x ∈ `, there is a unique line (xs)
going through x and s. Since s ∈ S, this line contains at least d erased points in S, one being s.
Since lines in Fmq have q points, the probability that x ∈ S is at least (d− 1)/(q− 1). Moreover,
if at least q− d+ 1 points of ` do not belong to S we immediately know that `∩S = ∅ since, by
definition of S, either |` ∩ S| = 0 or |` ∩ S| ≥ d. Thus, Pr[E] ≥ 1− (1− (d− 1)/(q − 1))q−d+1.

Therefore, Pr[|` ∩ S| 6= 0] ≥ 1−
(

1− 1

qm−1

)(
1− d− 1

q − 1

)q−d+1

.

The calculation we just made is essential. Indeed, since we supposed S 6= ∅, the event
¬{|`∩S| 6= 0} can be interpreted as ‘on probed line `, the audit accepts although the file is not
retrievable‘. In the CC security model for PoR, this is exactly the advantage of the distinguisher,
i.e. the security of the scheme. In other words, we just upper-bounded the security of our PoR
scheme.

We now formally prove the security of our PoR in the CC framework. We quickly describe
the converters lift rs porinit and lift rs poraudit. Both use the encoder and global decoder for lifted
RS codes. On input (read, i), both converters retrieve the whole memory using read requests,
then they call the global decoder on the obtained word (corrupted values ε are replaced with
erasures) and return the i-th symbol of the output if decoding succeeds. On input (write, i, x),
both converters retrieve the whole memory with read requests and decode it like before. If
decoding succeeds, they replace the i-th symbol by x, encode the whole word and store it on
the SMR using write requests.

On input audit, lift rs poraudit chooses a random line ` ⊆ Fmq and retrieves the restriction of
the outsourced file to ` through read requests. If the restriction contains d or more erasures, it
returns reject. If not, it returns accept.

Theorem 3.2. Let d,m, ` ∈ N and Fq be a finite field. The protocol lift rs por := (lift rs porinit,
lift rs poraudit) for the lifted RS code Liftm(RSq[q, d]) of dimension ` constructs the auditable and
authentic SMR, say aSMRaudit

Σ,` , from aSMRΣ,qm, with respect to the simulator simaudit and the
dummy converter honSrv. More precisely, for all distinguishers D making at most r audits, we
have

∆D(honSrvSlift rs porP aSMRΣ,qm , honSrv
S aSMRaudit

Σ,` ) = 0 and

∆D(lift rs porP aSMRΣ,qm , sim
S
audit aSMRaudit

Σ,` ) ≤ r ·
(

1− 1

qm−1

)(
1− d− 1

q − 1

)q−d+1

Proof. Since our scheme is clearly correct (i.e. the client can always retrieve its file when there
is no adversary), we do not prove the availability condition. We prove security by comparing
the behaviors of the audit of the real system (the aSMR with the protocol) with that of the
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ideal one (the aSMRaudit with the simulator). We describe the simulator simauth. It maintains a
simulated memory, emulating the real world memory, using the history of the ideal resource. On
(delete, i), the simulator replaces the i-th entry of its simulated memory by ε. On (restore, i),
the simulator restores the content of the i-th entry of its simulated memory to the last value
written there. The simulator maintains a simulated history using the ideal history of the
aSMRaudit.

If, after a delete request, the set of corrupted locations of the simulated memory contains a
d-cover subset of Fmq , the simulator deletes the whole ideal memory by sending delete requests

to aSMRaudit. Similarly, if after a restore request, the set of corrupted locations of the
simulated memory does not contain a d-cover subset of Fmq , the simulator restores the whole

ideal memory by sending restore requests to aSMRaudit.
On an audit request, the simulator chooses a random line ` ⊆ Fmq , adds the entries (read, i)

for i ∈ ` to its simulated history. Then, if the restriction of its simulated memory to ` contains
strictly less than d corrupted cells, the simulator sends allow to aSMRaudit. Else, it instructs
the aSMRaudit to output reject.

Upon auditReq at interface SH : Recall that d-cover sets are the sets of unrecoverable
erasures for our global decoder of lifted RS codes. Suppose that a subset of the corrupted
cells forms a d-cover set. In order to run the audit, the converter chooses a random line
` ⊆ Fmq , retrieves the restriction of the memory to this line through read requests and adds the
corresponding entries to its simulated history. We showed, see Section 3.3.1, that the probability
that this restriction contains strictly less than d erasures, i.e., that the audit is successful, is
less than (1− 1/qm−1)(1− (d− 1)/(q − 1))q−d+1.

The simulation is perfect unless the following BAD event occurs: having simulated a real
audit, the simulator answers allow (audit should succeed) whereas a d-cover subset of corrupted
cells exists. In that case, the simulator has chosen a restriction of the memory to a line ` that
contains strictly less than d corrupted cells, and has written the corresponding read requests
to its simulated history. Note that the distinguisher has access to the simulated history. Then,
the simulator outputs allow to the ideal resource, that runs the ideal audit. Since there exists
a d-cover set of corrupted memory cells, the file is unretrievable so the ideal audit fails and the
client receives reject. The distinguisher thus observes the following incoherence: reject is
returned while the (simulated) history contains the trace of a valid audit. The adversary knows
that he is interacting with the ideal system. We give a detailed explanation of the BAD event
in Remark 6.

To sum up, the only observable difference from a distinguisher point of view lies in the audit
procedure. The overall distinguishing probability is thus the one of distinguishing a real audit
from a simulated one. As we saw, if the distinguisher runs r audits, this probability is less than
r · (1− 1/qm−1) · (1− (d− 1)/(q − 1))q−d+1, yielding the aforementioned result.

Remark 6. We detail the interactions between the audit requests, the simulator, the distin-
guisher and the ideal resource, during an audit. It is essential to notice that the simulator is
only connected to the interfaces SI and SH of the server, and has no interaction with the client.
As audit is a functionality available at the client’s interface, it follows that an audit request
is not directly treated by the simulator. The following steps are done when the ideal resource
aSMRaudit receives an audit request at the client’s interface C:

1. The resource sends auditReq at interface SH .
2. Via its interface SH , the simulator either responds allow or abort.
3. If allow, the audit is run and the resource sends back to the client either accept or

reject, depending on whether the ideal audit has succeeded or failed.
4. If abort, the ideal resource always sends reject back to the client.
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Thus, in the proof, the simulator cannot directly control the outcome of the ideal audit,
in the sense that it cannot decide whether the ideal resource would send accept or reject

back to the client. On the other hand, as it receives the auditReq request at interface SH , the
simulator can choose to answer abort or allow to the ideal resource. Let us now examine how
the simulator behaves in both cases:

1. The simulator answers abort:
It has received an audit request via auditReq. It then runs a simulation of a real audit
(the one of the protocol) on its simulated memory. In this case, this test fails and the
simulator is convinced that the real audit has to fail too. It thus decides to answer the
ideal resource abort. Consequently, the ideal resource does not run an ideal audit, but
rather answers the client reject. The client is in fact controlled by the distinguisher
in the ideal setting. Looking at the simulated history, it (the distinguisher) believes to
interact with the real resource.

2. The simulator answers allow:
It has received an audit request via auditReq. It then runs a simulation of a real audit
(the one of the protocol) on its simulated memory. In this case, this test succeeds and the
simulator is convinced of the success of the real audit, as it simulated it with success. It
thus sends allow to the ideal resource. The subtlety lies here: the ideal resource receives
allow but it does not imply that it will send accept back to the client. It will run its
ideal audit, and send the outcome of this audit to the client. The point is, when the
simulator sends its answer (here allow) to the ideal resource, it already has simulated
the real audit (here with success), and written the corresponding entries in its simulated
history. Being not connected to the client’s interface, the simulator does not “see” the
result of the ideal audit (accept or reject) sent by the ideal resource to the client. Thus
it cannot a posteriori modify its audit simulation to comply with the response of the
ideal resource. The distinguisher, being connected to server’s and client’s interfaces, has
access to the ideal audit response and, by comparing it to the simulated history, can
see the incoherence; (the trace of the audit in the simulated history corresponds to one
which should succeed). This incoherence never happens in the real resource, thus the
distinguisher has distinguished between the two systems.

3.3.2 Instantiation with graph codes

We give another instantiation of our framework using graph codes. We described these codes
in Section 3.1.3. In the following, let G be a regular graph and let d be the minimum distance
of the inner code C0. Again, using the composability of CC, we only have to deal with potential
erasures. Following our framework, we start by sketching our global decoder. In the following,
we say that an edge is erased when the label of that edge is erased. Similarly, we say that we
correct an edge if we correct the label of that edge.

Assume that we want to correct an erasure on an edge e incident to a vertex v. If v is
incident to less than d − 1 erased edges, we can use the erasure decoding of C0 to correct all
the edges incident to v, e included. Otherwise, v is incident to k > d− 1 erased edges. Pick an
erased edge incident to v. This edge is also incident to a vertex v′ 6= v. If v′ is incident to less
than d− 1 erased edges, we can correct them all and v is now incident to k− 1 erased edges. If
k − 1 ≤ d− 1 we can correct the edge e. Else, we iterate the process on v and its neighbors.

Now, we have to characterize the configurations of erased edges that are unrecoverable for our
decoding algorithm. We claim that these unrecoverable configurations correspond to subgraphs
of G of minimum degree d. Indeed, these are the graph analogues of the d-cover sets for lifted
RS codes. We prove our claim: suppose that the subgraph formed by the unrecoverable edges
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possesses a vertex v incident to less than d−1 unrecoverable edges. Then, by iterating the local
decoding algorithm, we can recover the other edges incident to v so that only these unrecoverable
edges remain erased. Then, since there are less than d− 1 erased edges incident to v and since
the minimum distance of the inner code is d, we can correct all the edges incident to v using
the decoder of the inner code. This is in contradiction with these edges being unrecoverable.

Finally, the audit consists in randomly choosing a vertex v and retrieving the vector w :=
(c(v,Γ1(v)), . . . , c(v,Γq(v))) of labeling of edges incident to v. If w contains d or more erasures, the
audit rejects. Else, it accepts.

The security of the audit depends on the graph G and the minimum distance d of the inner
code C0. The bigger the minimum subgraphs of G with minimum degree d are, the better
the security of the PoR will be. Indeed, let s be the minimum size (number of vertices) of a
subgraph of G with minimum degree d. For a configuration of unrecoverable erasures to exist,
we thus need at least s vertices of G with at least d erased edges. Recall that our audit chooses
a random vertex of G and accepts if and only if this vertex is incident to less than d− 1 erased
edges. Thus, the probability that our audit accepts when there exists an unrecoverable set of
erased edges is less than 1 − s/|V |. In our framework, this is exactly the advantage of the
adversary in breaking the security of our PoR. A similar proof and simulator to the ones of
Theorem 3.2 yield the following theorem:

Theorem 3.3. Let G := (V,E) be a q-regular graph with |V | := n and let C0 ⊆ Fq be a linear
code with minimum distance d and rate R. Let s be the minimum size (number of vertices) of a
subgraph of G with minimum degree d. The protocol graph por := (graph porinit, graph poraudit)
for an expander code C(G, C0) of length nq/2 and rate at least 2R− 1 that:

1. Starts by encoding the file and uploads it to the server.
2. On an audit request, chooses a random vertex v ∈ V and accepts if and only if v is

incident to less than d− 1 erased edges.
3. Extracts the file using the algorithm sketched above.

constructs the auditable and authentic SMR, say aSMRaudit
F,(2R−1)nq/2, from aSMRF,nq/2, with

respect to the simulator simaudit and the dummy converter honSrv. More precisely, for all dis-
tinguishers D making at most r audits, we have

∆D(honSrvSgraph porP aSMRF,nq/2, honSrv
S aSMRaudit

F,(2R−1)nq/2) = 0 and

∆D(graph porP aSMRF,nq/2, sim
S
audit aSMRaudit

F,(2R−1)nq/2) ≤ r ·
(

1− s

n

)
3.3.3 Parameters

The impact of the choice of the lifted RS code on the parameters of our lifted RS PoR scheme
are highlighted in Fig. 3.8. The grey line gives a choice of parameters with a storage overhead
of 13.9% and total communication of 0.01% of the file size. Increasing the length q of the RS
base code decreases the storage overhead and increasing the lifting parameter m increases the
size of the file stored. Exact formulae for the parameters of our scheme is given in Fig. 3.7.

Let us compare our parameters with the ones of [LLDV16]. First, in both schemes, the
client’s file is encoded using a lifted RS code and the audit consists in probing the restriction
of this codeword to a random affine line. In our case, we authenticate the data using our MAC
based authentication protocol (see Section 3.2) whereas [LLDV16] binds data to a specific
location by using an encryption scheme. Let κ be the computational security parameter of both
schemes and Σ be the alphabet of the code. Our scheme stores a code symbol along with a
MAC tag, that is κ + log |Σ| bits, in each memory location of the server whereas [LLDV16]
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stores a ciphertext, that is κ bits, in each memory location. Since log |Σ| � κ (we have κ = 128
and |Σ| = q in Fig. 3.8), our scheme and the one of [LLDV16] have very close storage overhead
and communication complexity. In [LLDV16], the minimum distance of the code d is chosen to
be equal to 2. Using our security analysis of Theorem 3.2, we show that the [LLDV16] scheme
has only 1.44 bits of statistical security, when d = 2, whereas state-of-the-art schemes expect
at least 40. See Fig. 3.8 for our recommended parameters.

A major benefit of our scheme is that our audit produces less “false positives” than the
one of [LLDV16]. For PoRs, a false positive occurs when an audit rejects while the file is still
retrievable. In other words, the client thinks that he lost his file, but it is still retrievable in
full. The number of false positive audits has no influence on the security of the PoR but, in
practice, it is a situation that we absolutely wish to avoid. The audit of [LLDV16] rejects if the
restriction of the file to an affine line does not belong to the RS base code. In other words, if
there is at least one corruption on the line probed by the audit, it deems the file unretrievable. If
the adversary introduces at least one erasure on every line of the space, the audit would always
reject independently of the correction capability (i.e. the minimum distance) of the code. Using
our framework and our authentication protocol, we are able to fix this problem. Indeed, our
audit deems the file unretrievable only if the probed line contains at least d erasures, where
d is the minimum distance of the RS base code. This means that we drastically decrease the
number of false positive audits, making our scheme much more reliable and usable in practice.

For example, suppose that the outsourced file is encoded using a lifted RS code over F2
q with

minimum distance d ≥ 3. Let `1, `2 be two intersecting lines in F2
q . Suppose that an adversary

erases all the file’s symbols at the locations given by `1 and `2 and no other symbols. Of course,
the file is still retrievable since the local decoder can correct all the erasures of `1\`2 by querying
all the lines parallel to `2 (these lines contain only one erasure and d ≥ 3). Then, the local
decoder can correct all the erasures of `2 by querying any line intersecting `2. Unfortunately,
in this situation, the audit of [LLDV16] rejects with probability 1. Indeed, their audit chooses
a random line ` in F2

q and rejects if ` contains at least one erasure. This is always the case here
since, either ` intersects `1 or, ` is parallel to `1 and is thus intersecting `2. This is not the case
with our audit. Indeed, since only two lines of F2

q have d or more erasures, our audit rejects
with probability 2/(q2 + q) since there are q2 + q lines in F2

q .

Exact value Asymptotics

C. storage overhead κ O(1)
S. storage overhead ( 1

R − 1)|F |+ qmκ O(|F |)
C. → S. 2m log q O(|F |)
S. → C. q(κ+ log q) O(|F |1/m)

Figure 3.7: The exact parameters of our scheme. |F | denotes the file size in bits, κ the security
parameter of the MAC, q the field size and m ≥ 2 the lifting parameter. We have Rqm log q =
|F |.

Remark 7. Unfortunately, we are not yet able to propose parameters for our graph code PoR
scheme. Indeed, we need to find regular graphs for which the size of the minimum subgraph of
minimum degree d is as large as possible. This is the MSMD (minimum subgraph of minimum
degree) problem. This problem was introduced by Erdös et al. in 1990 [EFRS90]. In 2011,
Peleg et al. [PSS11] showed that the best known algorithms for this problem are not polynomial
time, even when accepting an approximated solution. They observe that this problem appears
to be difficult since the performance of their algorithms is not far from the best approximation
algorithms for other very hard graph optimization problems like maximum clique, chromatic
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PoR param. Results

m q d
|F | 1

R − 1
comm. C.→ S. comm. S.→ C.

comm./|F | Statistical
(MB) (bits) (bits) Security

2

256

32

0.03 1.056 32 2048 0.0081 2−42

512 0.18 0.631 36 4608 0.0032 2−43

1024 0.93 0.409 40 10240 0.0013 2−44

2048 4.50 0.279 44 22528 0.0006 2−44

4096 21.0 0.195 48 49152 0.0003 2−44

8192 95.7 0.139 52 106496 0.0001 2−44

1024

64

0.79 0.641 40 10240 0.0016 2−88

2048 4.07 0.415 44 22528 0.0007 2−89

4096 19.6 0.282 48 49152 0.0003 2−90

8192 91.1 0.197 52 106496 0.0001 2−90

3 512 32 35.9 3.197 54 4608 10−5 2−43

Figure 3.8: Different choices of lifted Reed-Solomon codes for our PoR scheme.

number or longest path problems.

3.4 Efficient Proofs of Retrievability from expander codes

Our new security analysis of the [LLDV16] PoR scheme has considerably worsened its concrete
parameters, as shown in Fig. 3.8. The motivation of this section is to find a new code-based
PoR scheme able to store very large files (up to hundreds of GB) with low storage overhead.
We also try to make the extraction phase of the PoR as fast as possible.

3.4.1 Minimum distance and decoding of expander codes

We give some useful results, due to Sipser, Spielman and Zémor, about the minimum distance
and fast erasure decoding for expander codes. First, it is known that expander codes constructed
from bipartite graphs have good distance [SS96, Zém01]:

Proposition 3.4. Let C0 ⊆ Fdq be a linear code with relative distance δ, and let G := (L∪R,E)
be a d-regular bipartite expander graph with expansion λ. Then the expander code C(G, C0) has
distance at least δ(δ − λ/d).

Moreover, these codes can be efficiently uniquely decoded up to this fraction of erasures.

Proposition 3.5. Let C0 ⊆ Fdq be a linear code with relative distance δ. Let D(d) be the time
needed to uniquely decode C0 from δ− 1/d erasures. Let G := (L∪R,E) be a d-regular bipartite
expander graph on n vertices with expansion λ. Let ε > 0 and suppose that λ

d <
δ
2 . Then, there

is an algorithm which uniquely decodes the expander code C(G, C0) from up to (1− ε)δ(δ− λ/d)
erasures in time n · D(d)/ε.

We use the algorithm given in [RZWZ20] and we follow their presentation and proof. This
algorithm is well-known and follows from [SS96, Zém01], we describe it in Fig. 3.9. Since
we will use it in the extraction phase of our PoR, we prove its correction and complexity for
completeness. We will need to use the expander mixing lemma.
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Algorithm UniqueDecode

Input: A description of the graph G := (L ∪ R,E) of degree d and of the code C0 ⊆ Σd of
relative minimum distance δ, and z ∈ (Σ ∪ {⊥})E .

Output: The unique c ∈ C(G, C0) so that c agrees with z on all un-erased positions.
1: E1 := {e ∈ E | ze 6=⊥}
2: P0 := {v ∈ R | v is incident to an edge e ∈ E \ E1}
3: P1 := {v ∈ L | v is incident to an edge e ∈ E \ E1}
4: for t = 2, 3, . . . do
5: if Pt−1 = ∅
6: return the fully labeled codeword.

7: Pt ← ∅ and Et ← Et−1.
8: for each vertex v ∈ Pt−1 so that |({v} × Γ(v)) ∩ Et−1| > (1− δ)d do
9: Run C0’s erasure-correction algorithm to assign labels to the edges incident to v.

10: Remove v from Pt−1.
11: For any (v, u) /∈ Et−1, add (v, u) to Et.

12: For each vertex v ∈ Pt−1, for any (v, u) /∈ Et−1, add u to Pt.

Figure 3.9: Unique expander code erasure decoder from up to δ(δ − λ/d)(1− ε) erasures where
λ is the expansion of the graph G and ε > 0.

Theorem 3.6 (Expander Mixing Lemma, see [HLW06]). Suppose that G := (L ∪ R,E) is the
double cover of a d-regular expander graph on n vertices with expansion λ. Then, for any S ⊆ L
and T ⊆ R, ∣∣∣∣E(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T |
where E(S, T ) denotes the set of edges with endpoints in S ∪ T .

First, notice that on any iteration t ≥ 2, Et−1 is the subset of edges that have already been
labeled before this iteration, and Pt−2 ∪Pt−1 is the set of vertices touching an edge in E \Et−1

that is still erased. The following lemma bounds the size of Pt, and thus the number of steps
the algorithm takes before terminating on line 6.

Lemma 3.7 ([RZWZ20]). The following holds:

1. For any t ≥ 1, |Pt+1| ≤ (1− ε)(δ − λ
d )n

2. For any t ≥ 2, |Pt+1| ≤ ( 1
1+ε)

2|Pt|

Proof. For any t ≥ 1, let Bt−1 ⊆ Pt−1 be the subset of vertices v ∈ Pt−1 that are incident to
less than (1− δ)d un-erased edges in Et−1. We have

Pt+1 ⊆ Bt−1 ⊆ Pt−1 (3.2)

since all vertices v ∈ Pt−1 \ Bt−1 are removed from Pt−1 on line 10, and consequently will not
be in Pt+1.

For the first item, we have |P3| ≤ |B1| by (Eq. (3.2)), and that |B1| ≤ (δ − λ/d)(1 − ε)n
since there are at most (1 − ε)δ(δ − λ/d)nd erasures to begin with. Moreover, we have that
|P3| ≥ |P5| ≥ |P7| ≥ . . ., thus |Pt+1| ≤ (1 − ε)(δ − λ/d)n for any even t ≥ 1. Using a similar
technique, one can show that this holds for any odd t ≥ 1.
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For the second item, the expander mixing lemma implies, for t ≥ 2,

δd|Bt−1| ≤ |E(Bt−1, Pt)| ≤
d

n
|Bt−1||Pt|+ λ

√
|Bt−1||Pt|

as any vertex v ∈ Bt−1 has at least δd erased incident edges, and those edges are incident to Pt.
After some rewriting, we have

|Bt−1| ≤
(

λ/d

δ − |Pt|/n

)2

|Pt| ≤
(

1

1 + ε

)2

|Pt|

where the last inequality follows from the assumption that λ/d ≤ δ/2 and from |Pt|/n ≤
(1− ε)(δ − λ/d) by the first item. Using (Eq. (3.2)) we finally get

|Pt+1| ≤ |Bt−1| ≤
(

1

1 + ε

)2

|Pt|

Using the above lemma, we conclude that after O((log n)/ε) iterations, Pt−1 is empty and
the algorithm terminates. Moreover, the amount of work done is at most

D(d) ·
∞∑
t=1

|Pt| = D(d) · n
∞∑
t=1

(
1

1 + ε

)2t

= D(d) · n
ε
,

where D is the complexity of C0’s erasure decoder, which proves Prop. 3.5.

3.4.2 Generic audit for erasure codes

Our scheme will use a generic audit for erasure codes translated in CC by Badertscher and
Maurer in [BM18]. First, we give notation for erasure codes. An (n, k, d) erasure code over a
finite alphabet Σ, with erasure symbol ⊥/∈ Σ, is a pair of algorithms (enc, dec) that satisfy: for
all F ∈ Σk, let F̄ := enc(F ) ∈ Σn and define the set

E := {W ∈ (Σ ∪ {⊥})n | ∀i,Wi ∈ {F̄i,⊥} and at most d− 1 positions of W

are equal to ⊥}

Then, for all W ∈ E, we have dec(W ) = F .

We describe how Badertscher and Maurer implemented the ideas of [JK07, SW08] to con-
struct the aSMRaudit

Σk,1 of Fig. 1.3 from our aSMRΣ,n of Fig. 3.2. Let (enc, dec) be an (n, k, d) era-

sure code and F ∈ Σk be the client’s file. We describe the PoR scheme ecPor := (ecInit, ecAudit)
for erasure codes.

On input init to ecInit, the converter sends init to aSMRΣ,n and computes the encoding
F̄ := enc(F ) ∈ Σn. Then, for each location i ∈ [n], the converter sends (write, i, F̄i) to
aSMRΣ,n.

On input (read, k) to either ecInit or ecAudit, the converter retrieves the whole memory
content via (read, i) requests and obtains for each location, either a symbol vi ∈ Σ or the
erasure symbol ⊥. If vi is returned, set Wi := vi else set Wi :=⊥. If |{i ∈ [n] |Wi =⊥}| > d−1,
the converter outputs ε at its outside interface, otherwise it computes F := dec(W ), and outputs
Fk.

Finally, on input audit to ecAudit, the converter chooses a random subset S ⊆ [n] of size
t and outputs (read, i) to aSMR for each i ∈ S to retrieve the memory content at location i.
If all read instructions for i ∈ S returned a non-erased symbol, the converter outputs accept.
Otherwise, it outputs reject. The integer t is chosen according to the security level we want
to achieve. The security of the scheme is given by:
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Theorem 3.8 ([BM18]). Let n, k, d ∈ N. Let (enc, dec) be an (n, k, d) erasure code for alphabet
Σ and erasure symbol ⊥. Let ρ := 1− d−1

n be the minimum fraction of symbols needed to recover
the file. Then, the above protocol ecPor := (ecInit, ecAudit) that chooses a random subset of size
t during the audit, constructs the aSMRaudit

Σk,1 from the aSMRΣ,n with respect to the simulator

sim (described in the proof). More specifically, for all distinguishers D performing at most q
audits,

∆D(ecPorP aSMRΣ,n, sim
S aSMRaudit

Σk,1 ) ≤ q · ρt

Proof. (sketch [BM18]) We only compare the behaviors of the audit of the real system (the
aSMR with the protocol) and of the ideal one (the aSMRaudit with the simulator). The two
systems behave in the same way in every other case, the reader can refer to [BM18] for a full
proof.

Assume that a fraction α of cells of the real world aSMR have been deleted such that a
β := 1 − α fraction is still available. A standard bound for binomial coefficients ensures that
the probability of selecting a subset of memory locations containing no erased symbol during
the audit is (β·n

|S|
)(

n
|S|
) ≤ β|S|

In the case when decoding would not be possible, i.e. if β < ρ, we see that the probability that
the audit succeeds in the real world is no larger than ρ|S|.

We describe the simulator sim. It maintains a simulated memory, emulating the real world
memory, using the history of the ideal resource. On (delete, i), the simulator replaces the i-th
entry of its simulated memory by ε. On (restore, i), the simulator restores the content of the
i-th entry of its simulated memory to the last value written there. The simulator maintains a
simulated history using the (ideal) history of the aSMRaudit.

If, after a delete request, the simulated memory contains d or more erased locations, the
simulator deletes the whole ideal memory by sending delete requests to aSMRaudit. Similarly,
if after a restore request, the simulated memory contains d − 1 or less erased locations, the
simulator restores the whole ideal memory by sending restore requests to aSMRaudit.

On an audit request, the simulator simulates the random locations probed during the audit
by adding the appropriate read requests to its simulated history and evaluates if the audit
succeeds by checking that none of the simulated locations are deleted. If so, it outputs allow
to instruct the ideal resource to output the right result to the client, and otherwise it instructs
the resource to output reject. The simulation is perfect until the following BAD event occurs :
having simulated a real audit, the simulator answers allow (audit should succeed) whereas d or
more memory locations are currently erased. It is the only case when simulation can differ from
real execution. Thus, the probability of distinguishing can be upper bounded by the probability
that event BAD happens in an execution. As discussed above, this happens with probability no
larger than q · ρ|S| over q audits.

3.4.3 Proofs of Retrievability from expander codes: the general case

Let C0 be a linear code of length d, relative distance δ0 and rate R0. Using the Singleton bound,
we have δ0 ≤ 1 + 1

d −R0. Let G be a d-regular bipartite graph on n vertices with expansion λ.
We are going to instantiate the PoR scheme ecPor := (ecInit, ecAudit) with the expander code
C(G, C0).

In the following, we determine the number t, of edges probed during the audit, needed to
reach a given security level. If we suppose that λ

d <
δ0
2 , using the Singleton bound, we must
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have R0 < 1+ 1
d−

2λ
d . Moreover, if C0 is Maximum Distance Separable, this implication becomes

an equivalence. This is why, from now on, we will suppose that the inner code C0 is MDS.
We took G to be a bipartite expander graph with expansion λ such that λ

d < δ0
2 . Using

Prop. 3.4, the minimum distance δC of C(G, C0) is at least

δ0(δ0 −
λ

d
) >

2λ2

d2

Let ε > 0. If we want to correct a (1 − ε)δC fraction of erasures, the minimum fraction of
valid edges needed to recover our file is

ρ = 1 +
1

nd
− (1− ε)δC ≤ 1 +

1

nd
− (1− ε)2λ2

d2

Let σ be a statistical security parameter and t be the number of edges probed during the
audit. Our scheme is considered secure if ρt ≤ 2−σ. We want to choose t such that t ≥ −σ/ log ρ.

Approximation : If 1
nd − (1− ε)2λ2

d2 ≈ 0, we have

−σ
log ρ

≈ nd2σ

2(1− ε)nλ2 − d

=
d2σ

2(1− ε)λ2 − d
n

Moreover, if G is Ramanujan, we have λ ≤ 2
√
d− 1 and

−σ
log ρ

≈ dσ

8(1− ε)

If G has expansion
√
d instead, we have

−σ
log ρ

≈ dσ

2(1− ε)

Note that our scheme requires the adversary to only introduce erasures (and not errors). We
enforce this using our authentic server-memory resource aSMR. After a successful audit, the
client can extract its file by running the decoder of Prop. 3.5 which runs in time O(n · D(d)/ε),
where D(d) is the complexity of C0’s decoder.

3.4.4 Instantiation with the point-line incidence graph of the plane

Let Γ be the point-line incidence graph of the affine plane over Fq without the vertical lines.
This graph is q-regular, has 2q2 vertices and expansion

√
q (see the work of Tanner [Tan84,

Section 3]). A line of work of Høholdt et al. [HJ06, HJ11, BHPJ13] extensively studies the
application of this graph to coding theory. We have Γ := (V1 ∪ V2, E) where

V1 := {(x, y) | x, y ∈ Fq}, V2 := {(a, b) | a, b ∈ Fq}

and
E := {((x, y), (a, b)) | (x, y) ∈ V1, (a, b) ∈ V2, ax+ b− y = 0}

This graph is an excellent choice for our PoR scheme. Recall that the rate of the inner code
is upper bounded by 1 + 1

d −
2λ
d and the rate of the expander code is lower bounded by 2R0− 1.

Thus, going from expansion 2
√
q − 1 (the expansion of a q-regular Ramanujan graph) to

√
q
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permits us to decrease the storage overhead of our scheme. This comes at the cost of increasing
the number of edges probed during the audit - and thus the communication complexity of our
PoR - by a factor of 4. See Section 3.4.5 for a comparison of the parameters of our PoR using
the graph Γ and a Ramanujan graph.

The graph Γ also has a good ratio between its regularity q and its number of edges q3.
Since we need to probe a number of edges linear in q, this ensures that our PoR scheme has
communication complexity of order cubic root of the size of the outsourced file. This is in line or
even better than other code-based PoR schemes, such as [LLDV16] (which has communication
complexity of order square root of the file size for m = 2). In Section 3.4.5, we will show that,
at a given security level, our PoR scheme stores much larger files than the lifted code-based
PoR scheme of [LLDV16].

Our inner code C0 will be a Reed-Solomon code of rate R0 < 1 + 1
d −

2λ
d . This code is MDS

and thus, we can use the decoder of Prop. 3.5 for our extraction phase. Moreover, because our
inner code is a Reed-Solomon code, we can use the following result of Beelen et al. [BHPJ13].

Let Fq := {α1, α2, . . . , αq}. We use the following labeling (of [BHPJ13]) for the edges of Γ:
if (x, y) ∈ V1, Φ(x,y)(i) := (x, y, αi, y − xαi) and, if (a, b) ∈ V2, Φ(a,b)(i) := (αi, aαi + b, a, b).

When q is a power of 2 or a prime, Beelen et al. [BHPJ13, Theorem 6] showed that when
using this labeling on the graph Γ with a Reed-Solomon code of rate 1/2 < R0 ≤ 1 as inner
code, we obtain an expander code of rate exactly R := R3

0 +R0(1−R0)(2R0 − 1).

3.4.5 Parameters

Let σ be the statistical security parameter (usually σ = 40 in the PoR literature) and κ be
the computational security parameter2 (κ = 128). Set q, a power of 2. Let Γ be the q-regular
point-line incidence graph on the affine plane F2

q . Recall that this graph has 2q2 vertices, q3

edges and expansion λ :=
√
q.

Let the inner code C0 be a Reed-Solomon code of length q and rate R0 = max{kq | k ∈
N and k

q < 1 + 1
q −

2λ
q }. We take R0 to be as big as possible (to reduce the storage overhead

of the PoR) while still having a quasi-linear time decoder for the expander code. Indeed, since
q is a power of 2, C0 can be erasure decoded in time O(q log2 q) thanks to the decoder of Tang
and Lin [TL20].

Our expander code C(Γ, C0) has length q3, rate R := R3
0 +R0(1−R0)(2R0−1) and alphabet

Fq. Let |F | be the size of the outsourced file in bits. It is such that |F | = Rq3 log(q). Using
Prop. 3.5, we get an erasure decoder for C(Γ, C0) (and thus an extraction phase) running in time
O(2q3 log2 q) which is quasi-linear in the input size q3 log q. The storage overhead is given by
1/R − 1, which is the redundancy of the code. The parameters of our PoR scheme and their
asymptotic behavior are given in Fig. 3.10. Even though our PoR has the same asymptotic
behavior than the PoR of [LLDV16], we will show below that we get much better parameters
in practice.

In Fig. 3.11, we give the concrete parameters of our PoR scheme for different values of q. Let
us compare our scheme with our generalization of the PoR of [LLDV16]. For q = 512, Fig. 3.8
gives a lifted code-based PoR with codewords of length q3, maximum file size of 35.9MB and
storage overhead of 319%. In Fig. 3.11, we see that for q = 512 and codeword length q3, our
PoR has maximum file size 124MB, storage overhead of 21%, communication complexity of the
same order of magnitude and a quasi-linear time extraction phase. Overall, our expander code
PoR scheme stores much larger files with lesser storage overhead than our secure generalization
of the [LLDV16] PoR scheme.

2of the MAC used to construct the aSMR
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Exact value Asymptotics (|F | → ∞)

C. storage overhead κ O(1)
S. storage overhead ( 1

R − 1)|F |+ q3κ O(|F |)
comm. C. → S. qσ

2 log(q3) O(|F |
1
3 log |F |)

comm. S. → C. qσ
2 (κ+ log q) O(|F |

1
3 log |F |)

Figure 3.10: The parameters of our scheme when using the point-line incidence graph over
F2
q and a Reed-Solomon code as inner code. |F | denotes the file size in bits, κ the security

parameter of the MAC, σ the statistical security parameter and R the rate of the code. We
have Rq3 log(q) = |F |.

q R0 R 2q2 |F | 1
R − 1 comm./|F |

256 0.878 0.758 131, 072 12MB 0.320 2× 10-4

512 0.913 0.827 524, 288 124MB 0.210 6× 10-5

1024 0.938 0.876 2, 097, 152 1.176GB 0.141 1× 10-5

2048 0.956 0.912 8, 388, 608 10.772GB 0.096 3× 10-6

4096 0.968 0.936 33, 554, 432 96.485GB 0.068 8× 10-7

8192 0.978 0.956 134, 217, 728 854.055GB 0.046 2× 10-7

Figure 3.11: Effective parameters of our PoR using the point-line incidence graph over F2
q for

different values of q and Reed-Solomon codes as inner code. The graph is q-regular with 2q2

vertices. We choose the largest possible rate yielding a quasi-linear time decoder. The statistical
security parameter is 40.

To give some perspective on the impact of the choice of the point-line incidence graph on the
parameters of the PoR, we give the parameters of our scheme using a Ramanujan graph of the
same size with expansion 2

√
q − 1 instead of

√
q. These parameters can be found in Fig. 3.12.

q R0 R |F | 1
R − 1 comm./|F |

256 0.754 0.509 8MB 0.965 1× 10-4

512 0.825 0.651 98MB 0.537 2× 10-5

1024 0.876 0.752 1.009GB 0.330 4× 10-6

2048 0.912 0.824 9.735GB 0.213 1× 10-6

4096 0.938 0.875 90.246GB 0.142 2× 10-7

8192 0.956 0.912 814.614GB 0.097 5× 10-8

Figure 3.12: Effective parameters of our PoR using a q-regular Ramanujan graph with 2q2

vertices and expansion 2
√
q − 1 for different values of q and a Reed-Solomon code as inner

code. The graph is q-regular with 2q2 vertices. We choose the largest possible rate yielding a
quasi-linear time decoder. The statistical security parameter is 40.

3.5 On the composability of locally correctable codes

In the following, we model LCCs in the CC framework. We obtain an error-resilient SMR
where clients can read symbols with sublinear communication. Our SMR can then be used
when modeling any communication channel that relies on the correction capabilities of LCCs.
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3.5.1 aSMR with locally correctable codes

We describe our LCC protocol for the aSMR by specifying the client’s lccinit and lccRW convert-
ers. We denote by (enc, localdec, globaldec) an (r, δ, ε̃)-LCC where enc is the encoder, localdec
is the local decoder and where the global decoder globaldec tolerates up to d − 1 erasures (de-
noted by the symbol ⊥). Let `′ be the length of the code, and ` its dimension. To correct
the i-th symbol of a codeword, the local correcter reads3 r′ ≤ r symbols chosen according to
distribution4 Dr(i).

On input init, the converter lccinit sends init to the resource and computes the encoding
F ′ ← enc(λ`) ∈ Σ`′ , where λ is an arbitrary element of Σ. Finally, the converter stores F ′i at
each address i of the aSMRΣ,`′ , for i ∈ [`′].

Given (read, i) as input, the converter lccRW samples r′ positions according to the distri-
bution Dr(i). For each position ij , 1 ≤ j ≤ r′, it gets - via (read, ij) requests - either a value
vij ∈ Σ or the error symbol ε of the aSMR. If ε has been returned, the converter sets xij ←⊥.
Otherwise, it sets xij ← vij . Having done this for all r′ positions, the converter then computes
x ← localdec(xi1 , . . . , xir′ ) and, if it succeeds, returns the result. If the decoding fails (x =⊥),
it returns ε.

Given (write, i, F ′i ) (where F ′i ∈ Σ) as input, the converter lccRW starts by retrieving the
whole memory via (read, i) requests to aSMR, and obtains either a value vi ∈ Σ or an error ε.
If ε has been returned, the converter sets F̄i ←⊥. Otherwise, it sets F̄i ← vi. If |{i ∈ [`′] | F̄i =⊥
}| ≥ d, the converter returns ε at its outer interface. Otherwise, it computes F ← globaldec(F̄ ),
updates Fi ← F ′i and re-encodes the new memory content F ′ as F̄ ′ ← enc(F ′). Finally, it sends
(write, i, F̄ ′i ) for all i ∈ [`′] to aSMR.

We now have to specify the ideal resource this construction is supposed to achieve, write
an appropriate simulator, and check if the ideal resource equipped with it behaves like the
constructed one, with respect to any distinguisher.

3.5.2 First attempt: aSMR with uniform pollution factor

An intuitive way to define the ideal resource is to let an adversary set a pollution threshold
α on the aSMR. When the client asks to read any memory cell, it fails with probability
α. This follows the definition of LCCs, where the bound on the decoding failure probability is
independent from the considered cell (it only depends on the number of erasures). Unfortunately,
in this setting, it is possible for an adversary to choose the location of the erasures so that the
decoding of some cells fail less (or more) often than others. This permits to distinguish between
the ideal resource and the real aSMR resource with LCC. We give an example of this using
the Hadamard code of length 7.

Example 3. Recall that the coordinates of an Hadamard codeword of length 7 are indexed by
the non-zero elements of F3

2, and that each codeword is of the form (f(u)u∈F3
2\{0}) where f is

a linear form over F3
2. The local decoder proceeds as follows to decode the value of coordinate

u: with probability 3
4 , it uniformly chooses a coordinate v 6= u and returns f(u + v) − f(v)

which, by linearity, is equal to f(u) if the u + v and v coordinates are not erased, and with
probability 1

4 , it returns f(u), which is correct if this coordinate is not erased. One can check
that each coordinate is chosen uniformly by the local decoder. We give an example of erasure
pattern together with the decoding probabilities of each coordinate of the corrupted codeword

3r′ depends on the probabilistic choices of the algorithm.
4This distribution depends on the local decoding algorithm.

83



for this decoder:

Coordinate (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

Value ⊥ ⊥ f(0, 1, 1) f(1, 0, 0) f(1, 0, 1) f(1, 1, 0) f(1, 1, 1)

Failure probability 1/2 1/2 1/4 1/2 1/2 1/2 1/2

To prove the security of a construction in CC, we have to evaluate the probability, for an
adversary having access to the real resource equipped with the protocol, and to the ideal resource
equipped with the simulator, to distinguish between the two resources. In the above example,
the adversary (the distinguisher) can erase coordinates (0, 0, 1) and (0, 1, 0) on both resources.
Then, with read requests, it can estimate the failure probability of the decoder of each resource
on coordinate (0, 1, 1). On the real resource, the decoder fails with probability 1/4, as shown
above. On the ideal resource, due to the introduction of the two erasures by the distinguisher,
the simulator will assign α an upper bound on the decoding failure probability, namely 1/2 here.
This difference in behavior allows the distinguisher to know with which resource it interacts.

Remark 8. It has to be noted that a negative result in the CC model only proves that a
protocol does not construct the targeted ideal resource. The protocol might construct another
ideal resource, or the construction might become secure by adding hypotheses.

To construct a resource that is secure in the CC sense, we give another abstraction of LCCs.

3.5.3 aSMR with independent pollution factors

Starting from an aSMR, the converters described in Section 3.5.1 constructs the resource
aSMR LCC of Fig. 3.13.

Resource aSMR LCCΣ,n

Initialization
Init,Active, Intrusion← false

αi ← 0 for all i; Hist← [ ]
write mode = true

Interface SI
Input: (setPollution, β, i) ∈ [0, 1]× [n]

if Intrusion
αi ← β

Input: (setWriteMode, b) ∈ {true, false}
if Intrusion

write mode← b

Interface C

Input: (read, i) ∈ [n]
if Active and not Intrusion

Z ← Bernoulli(αi)
if Z = 0

Hist← Hist‖(R, i)
return M[i]

else
Hist← Hist‖(Failure, i)
return ε

Input: (write, i, x) ∈ [n]× Σ
if Active and not Intrusion

if write mode
Hist← Hist‖(W, i, x)
M[i] = x

else
Hist← Hist‖(Failure, i, x)
return ε

Figure 3.13: Our aSMR with independent pollution factors (interfaces C0 and SH are the same
as in the aSMR).
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In this new resource, the adversary is given the ability to choose a failure probability αi
independently for each location i, 1 ≤ i ≤ `′, that applies during (read, i) requests. In the
LCC setting, an adversary can freely choose the number and locations of erasures so as to
make decoding failure happen less (or more) often for some coordinates than for others. Each
configuration of erasures comes with its own set of failure probabilities (α1, . . . , α`′); see the
example with the Hadamard code in Ex. 3. This means that the capabilities of our adversary
are stronger than in reality as he can choose any set of failure probabilities, not only the ones
associated to a given configuration of erasures. In the CC language, this means that we have
chosen to use a larger (and thus simpler to describe) specification for our modeling of LCCs.
If one wishes to precisely match the behavior of LCCs, he can weaken our adversary by only
allowing him to choose the failure probabilities (α1, . . . , α`′) from a specific set: the set of failure
probabilities of the LCC’s local decoder on any configuration of erasures.

Additionally, the adversary can control the ability of the client to update the memory
content, by means of a boolean variable write mode. Indeed, when using LCCs, the adversary
can make the global decoding impossible by introducing too many erasures. Thus preventing
the client from updating its outsourced file.

In the following, the passive server (given by the honSrv converter) never puts any nonzero
pollution factor on read requests, and never prevents the clients from updating the memory. In
this setting, we make the following Hypothesis 3.1 and Hypothesis 3.2:

Hypothesis 3.1. There exists a polynomial time algorithm check that, given a partial codeword
(xi1 , . . . , xir′ ) ∈ (Σ ∪ {⊥})r′ and i, returns Success if the local decoder will always succeed in
decoding cell i, and Failure otherwise.

In the above hypothesis, (xi1 , . . . , xir′ ) are the symbols queried by the local decoding algo-
rithm to try to retrieve the i-th symbol of the codeword. It is clear that a deterministic local
decoding algorithm satisfies hypothesis Hypothesis 3.1. This will be the case for all the codes
considered in this thesis.

Remark 9. In the following, we assume that LCCs satisfy Hypothesis 3.1. Thus, we describe an
LCC with the four algorithms (enc, localdec, globaldec, check) where enc is the encoder, localdec
is the local decoder, globaldec is the global decoder and check is the algorithm of Hypothesis 3.1.

Hypothesis 3.2. Given an erasure pattern, it is possible to compute, in polynomial time, the
exact failure probability of the decoder at each coordinate.

We will use these assumptions to make the previous distinguishing strategy not possible
anymore.

Remark 10. Hypothesis 3.2 is fulfilled for any deterministic local decoder that has a polynomial
number of possible queries. Indeed, the probabilities can then be computed by running the local
decoder on each possible query and counting the number of failures. This is the case for the
Hadamard code and we show that it is also true for at least one class of high-rate LCC, namely
the lifted Reed-Solomon codes.

Let Fq be a finite field, m, d ∈ N∗ and consider the lifted Reed-Solomon code Liftm(RSq[q, d]).
There are L := (qm − 1)/(q − 1) lines passing through any point of Fmq . In order to compute
the failure probability of the local decoder on a point x ∈ Fmq , we can compute the ratio of lines
passing through x that have d or more erased points. If we do this for every point of Fmq , we
can compute the exact failure probability of the local decoder on each coordinate of the lifted
code. There are qm−1L distinct lines in Fmq so this computation is polynomial in the length of
the lifted code qm.
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In the following, let ε̃i be the function that associates, to an erasure pattern, the failure
probability of the local decoder on the i-th coordinate. Thanks to our Hypothesis 3.2, all
of these functions are efficiently computable. We now give a more formal description of the
aSMR LCC resource we obtain.

Theorem 3.9. Let `, `′, d, r ∈ N, δ ∈ [0, 1], ε̃ : [0, 1]→ [0, 1] and (ε̃i : (Σ∪{⊥})`′ → [0, 1])1≤i≤`.
Let (enc, localdec, globaldec, check) be an (r, δ, ε̃)-LCC over the alphabet Σ, with error symbol ⊥,
dimension `′, length ` and minimum distance d. The decoding failure probabilities of its decoder
are given by the functions (ε̃i)1≤i≤`. The protocol lcc := (lccinit, lccRW ) described in Section 3.5.1
constructs the authentic SMR with LCC, say aSMR LCCΣ,`, from aSMRΣ,`′ with respect to
the simulator simindLCC, described in Fig. 3.14 and Fig. 3.15, and the pair (honSrv, honSrv).
More precisely, for all distinguishers D, we have

∆D(honSrvSlccP aSMRΣ,`′ , honSrv
S aSMR LCCΣ,`) = 0

and ∆D(lccP aSMRΣ,`′ , simindSLCC aSMR LCCΣ,`) = 0

Proof. We only prove the security condition. The availability condition is plainly satisfied, as
the server never puts erasures on the real resource, and always leaves the probabilities αi to
0 on the ideal resource. To prove the security, we analyze the behavior of each system on all
possible queries at each of their interfaces. The simulator is described in Fig. 3.14 and Fig. 3.15.

Upon init, initComplete queries at interface C0: upon init, the lccinit converter of
the real system lccP aSMRΣ,`′ initializes the aSMR resource and encodes the message λ`. Let
(F ′1, . . . , F

′
`′) be the resulting codeword. The converter then writes this codeword in memory,

which adds `′ entries to the history Hist of aSMR. This initialization phase being done, Hist
is of the form (0, init)‖(0, W, 1, F ′1, 1)‖ . . . ‖(0, W, `′, F ′`′ , `′).
In the ideal system simindSLCC aSMR LCCΣ,`, init initializes the memory with the message λ`

and adds the entry (0, init) to the simulated history. As it is the first entry of the history, the
simulator replaces it by its local simulated list Linit, that contains the above `′ entries. Note
that while the aSMR LCC does not use version numbers in its history, the aSMR does. Thus,
a simulated version number ctr will be updated throughout the simulation and it will be added
to write entries of the simulated history.
Finally, upon initComplete, both systems deactivate their C0 interface. The client’s interface
C is thus active for the remaining of the protocol.

Upon (delete, i) at interface SI : in the real system, this query erases the i-th symbol
of the codeword. This means that the local decoding failure probability is potentially raised
on some coordinates of the stored codeword. Furthermore, if the number of erasures becomes
greater than or equal to d, the corrupted codeword can no longer be decoded by the global
decoder. Thus, the converter will fail subsequent write queries.
In the ideal system, upon (delete, i), the simulator removes the content of address i of its
simulated memory. Then it modifies the reading failure probabilities αj (1 ≤ j ≤ `) with the
failure probabilities of the local decoder according to the functions ε̃j called on its simulated
memory. If the number of erased memory cells exceeds d, the simulator deactivates the write
mode of the client, thus preventing him from modifying the memory content. This way, the
simulator perfectly emulates the consequences of putting an erasure in the real world.

Upon (restore, i) at interface SI : in the real system, this query makes a cell recover its
value before deletion. In the case when the client has not modified the memory content of the
cell during the interval between deletion and restore, the version number of the cell is still valid,
and the local decoding failure probability will potentially decrease on some coordinates of the
stored word. The number of invalid cells can then become strictly less than d, thus allowing
the global decoder to work again.
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In the ideal system, the simulator restores the content of address i of its local simulated memory
with the last written value at this address (found in its simulated history). Then it modifies
the reading failure probabilities αj (1 ≤ j ≤ `) with the failure probability of the local decoder
given by the function ε̃j called on its simulated memory. If the number of invalid memory
cells becomes strictly less than d, the simulator reactivates the write mode of the client, thus
allowing him to modify the memory content. This way, the simulator perfectly emulates the
consequences of attempting to restore a cell in the real world.

Upon (read, i) at interface C: the protocol lccRW chooses r′ ≤ r coordinates (i1, . . . , ir′)
of the codeword according to distribution Dr(i), and reads their content on the server. Thus,
(R, i1)‖ . . . ‖(R, ir′) are added to Hist. The converter then runs the local decoder for coordinate
i, from the r′ results given by the server. The local decoding failure probability, taken over
the random choices of the r′ coordinates according to distribution Dr(i), is given by the ε̃i
function. But, upon each delete or restore request to the ideal system, the simulator updates
the reading failure probabilities αj for all j, with the results of the ε̃j functions. This way, the
reading failure probabilities are the same in the two systems.

Upon (write, i, x) at interface C: by means of read requests, the real system retrieves
the whole memory, thus adding `′ entries (R, j) to its history. Then the converter checks if
the number of invalid coordinates still permits the global decoder to run properly. If not, the
protocol returns an error and stops. If yes, the real system puts the value x at coordinate i,
encodes the modified message and rewrites the whole codeword in memory.
On the ideal resource, the simulator emulates the effect of the (write, i, x) request when it
updates its simulated history (via the function UpdateLog). It starts by adding to its simulated
history the entries corresponding to a read of the whole simulated memory. If, following a
delete request, the number of invalid coordinates in the ideal resource has become too large,
the simulator has then deactivated the possibility to write on the server, thus yielding an error
upon the write request, as in the real world. The ideal resource thus emulates perfectly the
behavior of the real resource upon write requests.

Upon (getHist) at interface SH : in the real system, the output is the history of the
aSMR. In the ideal world, the simulator runs the UpdateLog procedure every time it pro-
cesses a query. This procedure parses the history of the resource. On read entries for location i,
the simulator samples r′ locations according to the distribution Dr(i), the distribution followed
by the real world protocol. If the read request was a success (resp. a failure), the simulator uses
the check algorithm to make sure that the local decoder does not always fail (resp. succeed)
when querying the sampled locations. This ensures that the simulation matches what actually
happened in the real world. If the condition is fulfilled, the sampled locations are added to the
simulated history. If not, new locations are sampled until the condition is met. If the history’s
entry is a successful write, the function UpdateLog increments the version number ctr, cor-
rects the content of the the simulated memory, assigns the value x at coordinate i and writes
the encoding of the modified message in its simulated memory. The corresponding entries are
added to the simulated history. Thus, the simulated history perfectly emulates the real world
history.

Upon (read, i) at interface SH : the real system outputs the content of address i of its
memory. The ideal system outputs the content of address i of its simulated memory. As it uses
the same encoding as the converter upon write requests, and perfectly emulates the delete

and restore requests on the content of its simulated memory, the value output to the server
by the ideal system perfectly emulates the real world view.

Finally, we showed that the real and ideal worlds have the same behavior. It is thus impos-
sible, even for a computationally unbounded adversary, to tell them apart.
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Simulator simindLCC

Initialization

(F1, . . . , F`′)← enc(λ`) , Msim ← F1‖ . . . ‖F`′
Linit ← (0, init)‖(0, W, 1, F1, 1)‖ . . . ‖(0, W, `′, F`′ , `′)
pos← 1, ctr ← `′, L← [ ]

Interface SH

Input: getHist

UpdateLog
return L

Input: (read, i) ∈ [`′]
UpdateLog
return Msim[i]

Interface SI
Input: (delete, i) ∈ [`′]
UpdateLog
Msim[i]← ε
for j = 1 to ` do

output(setPollution, ε̃j(Msim[1], . . . ,Msim[`′]), j) to interface SI of aSMR LCC

e← |{1 ≤ j ≤ `′ |Msim[j] = ε}|
if e ≥ d

output (setWriteMode, false) to interface SI of aSMR LCC

Input: (restore, i) ∈ [`′]
UpdateLog
if ∃k, x : L[k] = (W, i, x, ctr)

Msim[i]← x

for j = 1 to ` do
output(setPollution, ε̃j(Msim[1], . . . ,Msim[`′]), j) to interface SI of aSMR LCC

e← |{1 ≤ j ≤ `′ |Msim[j] = ε}|
if e < d

output (setWriteMode, true) to interface SI of aSMR LCC

Figure 3.14: The simulator used in the construction of the aSMR with independent pollution
factors. The procedure UpdateLog can be found in Fig. 3.15
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Simulator simindLCC (part 2)

procedure UpdateLog
output getHist to in of aSMR LCC
Let Hist be the returned value
for j = pos to |Hist| do

if Hist[j] = (0, init)
L← Linit

else if Hist[j] = (R, i)
(i1, . . . , ir′)← Dr(i)
while check(Msim[i1], . . . ,Msim[ir′ ]) = Failure do

(i1, . . . , ir′)← Dr(i)
for l = 1 to r′ do

L← L‖(R, il)
else if Hist[j] = (Failure, i)

(i1, . . . , ir′)← Dr(i)
while check(Msim[i1], . . . ,Msim[ir′ ]) = Success do

(i1, . . . , ir′)← Dr(i)
for l = 1 to r′ do

L← L‖(R, il)
else if Hist[j] = (op, i, x)

for l = 1 to `′ do
L← L‖(R, l)
xl ←Msim[l]
if xl = ε

xl ←⊥
if op = W

(F1, . . . , F`)← globaldec(x1, . . . , x`′)
Fi ← x
(F̄1, . . . , F̄`′)← enc(F1, . . . , F`)
for l = 1 to `′ do

Msim[l] = F̄l
ctr ← ctr + 1
L← L‖(W, l, F̄l, ctr)

pos← |Hist|+ 1

Figure 3.15: The simulator used in the construction of the aSMR with independent pollution
factors (part 2).
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Chapter 4

Interactivity in Constructive
Cryptography

In this chapter, we extend the CC model so as to handle interactive protocols. By interactive,
we mean any protocol where the honest parties need the agreement of an untrusted party to
deploy the protocol. In the outsourced storage setting, the honest parties usually are a set of
clients and the untrusted party is a distant server. We use our extension of CC to model two
interactive protocols for outsourced storage.

First, we give the first composable modeling of UE. We then use our modeling to compare
the latest security notions for UE. In particular, we show that the IND-UE notion of [BDGJ20] is
not always strictly stronger than the IND-ENC+ IND-UPD notion of [LT18]. We also show that
RCCA is the correct security notion to consider for real-world applications of UE. A concurrent
work of Fabrega et al. [FMM21] proposed a modeling of UE in CC, but it was not composable
as they needed a new proof for each particular UE scheme. Their treatment of interactivity is
quite technical, which makes resources and proofs a lot harder to follow and understand. Our
own treatment of interactivity follows a different approach. Indeed, we believe that resources
should capture and enable the possibility of interactivity while converters should handle the
technical part of how interactions happen in practice.

The modeling of UE of [FMM21] allowed them to consider a new attack vector for UE: the
adversarial control of randomness. They show that it is preferable to use the randomness to
compute the update token, and then use the knowledge of the old key and token to compute
the new key. Indeed, if the adversary controls the randomness, using it to compute the new
key would immediately compromise it. We could include this insight in our modeling of UE by
explicitly modeling randomness sources.

Second, we model PIR protocols. With this modeling, we verify that the security definitions
of [CGKS95] for PIR bring the expected security guarantees. Then, we extend our modeling to
give a composable modeling of PIR that unifies computational PIR, information theoretic PIR,
one server PIR and multi-server PIR.

4.1 Preliminaries

4.1.1 RCCA security for Updatable Encryption

Section 4.3 of this chapter will heavily focus on the different security notions for UE. Recall
that these notions are precisely described in Section 1.3 of Chapter 1. Following [KLR19], we
present a relaxed variant, in the UE context, of CCA security called RCCA (where R stands
for replayable). In differs from the CCA notion in that, on a O.Dec request, the oracle answers
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invalid if the ciphertext decrypts to one of the two messages used in the inputs of the challenge
call. This includes ciphertexts that are not updates of the challenge ciphertext and that do not
come from a game oracle. In particular, this definition of RCCA security holds even for UE
schemes with randomized updates. In the RCCA setting, we make the following additions to
the CCA oracle definitions:

1. For O.Chall, create a variable M and assign it:

(a) the set {M̄0, M̄1} in Fig. 1.7 of the IND-ENC game.
(b) the set {UE.Dec(ke−1, C̄0),UE.Dec(ke−1, C̄1)} in Fig. 1.8 of the IND-UPD game.
(c) the set {M̄,UE.Dec(ke−1, C̄)} in Fig. 1.6 of the IND-UE game.

2. Define a predicate called IsChall that takes as inputs a key k and a ciphertext C and that
is true iff UE.Dec(k,C) ∈ M.

3. For O.Dec(C), if IsChall(ke, C) is false return UE.Dec(ke, C), else return invalid.
4. For O.Upd(Ce−1), we give a full description of this oracle in the randomized update setting

in Fig. 4.1.

O.Upd(Ce−1)

1. Ce ← UE.Upd(∆e, Ce−1)
2. if (j, Ce−1, e− 1) ∈ L
3. L ← L ∪ {(j, Ce, e)}
4. else if IsChall(ke−1, Ce−1)
5. C ← C ∪ {e}
6. return Ce

Figure 4.1: The O.Upd oracle used in the RCCA setting for UE with randomized updates.

4.2 The Interactive Server Memory Resource

In [BM18], Maurer and Badertscher propose an instantiation in CC of the client-server setting
for non-interactive protocols. They notably introduce the basic SMR, where an honest client
can read and write data on an outsourced memory owned by a potentially dishonest server.
We extend their work to interactive protocols in the client-server setting by introducing a
different type of SMR, namely the Interactive Server-Memory Resource (ISMR for short). By
interactive, we mean any protocol where the client sends a query and expects that the server
will perform a given computation upon reception. For example, in UE, the server is expected
to use the Upd(∆e, ·) algorithm on each ciphertext on an update request to epoch e.

One of the main differences with SMR is that, in ISMR, the server is now considered as
semi-honest (through its interface S), since it has to participate in the interactive protocol when
receiving orders from the client. In [BM18], the client was the only party to take part in the
protocol, the role of the server being limited to storing data. In our case, the server agrees to
apply a converter which carries out the computations requested by the client. We gather these
capabilities in a sub-interface of S denoted by S.1. Since the server is only semi-honest, we
have no guarantees about how it will use its remaining capabilities. We gather those under the
sub-interface S.2.

In ISMR, we model interactions by letting the client interact with the server, through
its interface C, according to a boolean value NeedInteraction. The server, through its sub-
interface S.1, is given the capability of checking this boolean to see if it needs to take actions, act
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if necessary and then switch the boolean value back. While ISMR is waiting for an interaction
to end, i.e. as long as NeedInteraction is set to true, the capabilities of the client at its
interface are disabled. Our approach is general enough for ISMR to be used when modeling
all kinds of interactive protocols in the outsourced storage setting. We can model interactive
protocols that are information-theoretically, statistically or computationally secure, multi-client
and multi-server protocols as well as passive or active adversaries. We showcase this by modeling
UE schemes in Section 4.3 and PIR schemes in Section 4.4. A formal description of ISMR is
given in Fig. 4.2. We are able to model all these different protocols by taking advantage of the
power and the flexibility of the CC framework together with our new ISMR. A key point of
our work is to propose new ways to use converters and simulators in CC.

Resource ISMRΣ,n

Initialization Initialization
NeedInteraction← false, M← [ ]

Interface C
Input: (read, i) ∈ [n]

if not NeedInteraction
return M[i]

Input: (write, i, x) ∈ [n]× Σ
if not NeedInteraction

M[i]← x

Input: askInteraction

if not NeedInteraction
NeedInteraction← true

Input: getStatus

return needInteraction

Sub-Interface S.1 of Interface S
Input: (read, i) ∈ [n]

return M[i]
Input: (write, i, x) ∈ [n]× Σ
M[i]← x

Input: interact

if needInteraction
needInteraction← false

Sub-Interface S.2 of Interface S
Input: (leak, i) ∈ [n] // other adversarial capabilities can be added

return M[i]
Input: getStatus

return needInteraction

Figure 4.2: The interactive Server-Memory Resource with finite alphabet Σ and size n. The
sub-interface S.1 guarantees that the server follows a protocol through the application of a
converter. On the contrary, no guarantees are given at the sub-interface S.2.

First, we show how one can use a converter to modify the number and/or the types of
arguments required when sending a query. For example, in PIR, a client wants to retrieve the
i-th entry of a database without revealing i to the server. Thus, the client will not send i directly
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to the server. Instead, the client will perform a computation involving i and some secret and
send the result q to the server where q belongs to some set S. The real resource must account
for this by implementing a query (query, q) ∈ S at the client’s interface. The issue is that
the final goal of the protocol, modeled in the ideal resource, is to retrieve the i-th entry of a
database of size n, which needs to be modeled as a query (query, i) ∈ [1, n]. We bridge the gap
between the real and ideal resources by allowing the client’s converter (used in the real-world)
to reprogram the (query, q) ∈ S query into a (query, i) ∈ [1, n] one. Moreover, we also allow
the converter to increase or decrease the number of arguments of a query. See Section 4.3 for
more details.

Secondly, we show how one can use a converter to disable a capability at an interface. This
is particularly useful when dealing with semi-honest adversaries. Indeed, such an adversary
participates in the protocol by carrying computations for the client. This is modeled by the
application of a converter. For example, in UE schemes, the server is expected to update
ciphertexts for the client. To carry out its computation, the server must be able to retrieve the
update token sent by the client. This is modeled by a (fetchToken, e) query. In UE schemes,
this operation is not considered to be malicious. Thus, we add a (leakToken, e) query to model a
malicious access to the update token (with a different behavior than the (fetchToken, e) query).
Then, we need to disable the (fetchToken, e) query to prevent an adversary from accessing the
update token without querying (leakToken, e). Since our modeling of interactivity allows us to
use converters on semi-honest interfaces, we can use a converter to disable the (fetchToken, e)
query at the outside interface of the server. See Section 4.4 for more details.

To build an ISMR with stronger security guarantees, we will use the construction notion
of [BM18] given in Fig. 1.2. One difference with the work of [BM18] is that, although there is
a protocol plugged in interface S, this interface is only semi-honest and doesn’t belong to the
so-called ”honest parties”. We thus need to plug a simulator at this interface in the ideal world
if we hope to achieve any meaningful construction, as illustrated in Fig. 4.3. One way to see
this is to consider the read capabilities at interfaces C and S when an encryption scheme, such
as UE, is used. Since the client holds the decryption key, the interface C is able to retrieve
the plaintexts corresponding to the ciphertexts stored in memory. This is not true for the
interface S since it does not have access to the key under normal circumstances. Since there is
no encryption in the ideal world, we need a simulator to simulate ciphertexts when S sends read
requests at its interface, as otherwise distinguishing between the two worlds would be trivial.

ISMR

W

protC ≈
prot

S
Stronger
ISMR

W

C

S.1

S.2

sim

S.1

S.2

S

Figure 4.3: The construction notion for ISMR. On the left, the plain ISMR equipped with
a protocol. On the right, the stronger ISMR equipped with a simulator. The construction is
deemed secure if there exists a simulator that makes the two systems indistinguishable.

For the sake of clarity, ISMR will be renamed USMR (for Updatable Server Memory-
Resource) when modeling UE schemes, in Section 4.3. When modeling PIR schemes, ISMR
will be renamed DB (for Database), see Section 4.4. We will also rename NeedInteraction,
askInteraction and interact.
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4.3 A composable treatment of Updatable Encryption

4.3.1 Instantiation of the interactive SMR to Updatable Encryption

We recall that ISMR is renamed USMR in this section. Moreover, at interface S, we also
distinguish between honestly reading the memory - through read requests at sub-interface S.1 -
to update a ciphertext without trying to use this information against the client; and maliciously
reading (we prefer to say leaking) the memory - through leak requests at sub-interface S.2 -
to gain information and try to break the confidentiality guarantees of the client. Sending a
(leak, i) request triggers the event EleakedData,e,`i,i

where e is the number of server updates and `i
is the number of times entry i leaked since the latest update. A full description of USMR is
given in Fig. 4.4.

4.3.2 The updatable key resource

We want to apply a UE scheme to strengthened the client’s security guarantees of USMR.
To do so, we need to model the use of cryptographic keys and update tokens needed by UE
schemes. This is why we introduce an Updatable Key Resource, called UpdKey, whose role is
to model the existence, the operations and the availability of keys as well as update tokens. In
the following, let K be the key space of UE schemes. Given k and k′ two keys in K, the notation
∆ ← T (k, k′) denotes the assignation, to the variable ∆, of a token that updates ciphertexts
encrypted under the key k to ones encrypted under k′.

In UpdKey, the fetchToken request is always accessible at sub-interface S.1, since the
protocol used at this interface will prevent the information it provides to be maliciously used,
whereas the request leakToken at interface S.2 requires that a special event EleakedToken,i has been
triggered before returning the update token to epoch i, which can be used for malicious purposes.
These events are triggered by the environment which, in CC, can be given an interface that is
usually denoted by W for world interface.

This separation between read/leak in USMR and fetchToken/leakToken requests in
UpdKey is important because it allows us to describe the security guarantees of the system
more precisely. Indeed, since the server needs to retrieve the token to update the ciphertexts,
if we consider that this token ”leaked”, it becomes impossible to express the post-compromise
security guarantees brought by UE schemes. This is because if all tokens leak, a single key
exposure compromises the confidentiality of ciphertexts for all subsequent epochs.

4.3.3 An Updatable Encryption protocol

We have to define an updatable encryption protocol for USMR (and UpdKey) and study its
effects. Since we work with CC, we describe our protocol as a pair of converters (uecli, ueser)
where uecli will be plugged in interface C and ueser in sub-interface S.1 of USMR and UpdKey.
A formal description of uecli (resp. ueser) can be found in Fig. 4.6 (resp. Fig. 4.7).

4.3.4 The confidential and updatable SMR

The security guarantees of USMR can be improved by requiring confidentiality for the client’s
data. The resulting resource is called confidential USMR and we will refer to it as cUSMR.
In practice, this means that, on a (leak, i) request at interface S, only the length of M[i] is
returned to the adversary and not the i-th entry itself. The read and write capabilities of
sub-interface S.1 are removed. The resource cUSMR is described in Fig. 4.8.

We will show that the IND-UE security notion of Boyd et al. [BDGJ20] is not always better
than the IND-ENC + IND-UPD notion of [LT18], in that it hides the age of ciphertexts. By
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Resource USMRΣ,n

Initialization
NeedUpdate← false, e← 0
M← [ ], ∀1 ≤ i ≤ n, `i ← 0

Interface C
Input: (read, i) ∈ [n]

if not NeedUpdate
return M[i]

Input: (write, i, x) ∈ [n]× Σ
if not NeedUpdate

M[i]← x

Input: askUpdate

if not NeedUpdate
NeedUpdate← true

Input: getStatus

return needUpdate

Sub-Interface S.1 of Interface S
Input: (read, i) ∈ [n]

return M[i]
Input: (write, i, x) ∈ [n]× Σ
M[i]← x

Input: update

if needUpdate
for i = 1 to n do

`i ← 0

e← e + 1
needUpdate← false

Sub-Interface S.2 of Interface S
Input: (leak, i) ∈ [n]
`i ← `i + 1

E +←− EleakedData,e,`i,i

return M[i]
Input: getStatus

return needUpdate

Figure 4.4: The ISMR viewed as an updatable server-memory resource USMR with finite
alphabet Σ and memory size n. Interface S guarantees that it will endorse an honest behavior,
through the application of a converter, at its sub-interface S.1. However, no such guarantees
are offered at its sub-interface S.2.
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Resource UpdKey

Initialization
e← 1,K← [ ],T← [⊥]

k
$←− K,K← K || k

E +←− Eepoche

Interface C
Input: fetchKey

return K[e]
Input: nextEpoch

ke+1
$←− K

K← K || ke+1

∆e+1 ← T (ke, ke+1)
T← T || ∆e+1

e← e + 1
E +←− Eepoche

return ke+1

Sub-Interface Sub-Interface S.1 of Interface S
Input: (fetchToken, i)

if 2 ≤ i ≤ e
return T[i]

else
return ⊥

Sub-Interface Sub-Interface S.2 of Interface S
Input: (leakKey, i)

if i ≤ e and EleakedKey,i

return K[i]
else

return ⊥
Input: (leakToken, i)

if 2 ≤ i ≤ e and EleakedToken,i

return T[i]
else

return ⊥

Figure 4.5: The updatable key (with its associated token) resource UpdKey. For interface S,
we use the same distinction between its sub-interfaces S.1 and S.2 as in the USMR description.
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Converter uecli

Initialization
k ← fetchKey at interface C of UpdKey

Interface out
Input: (read, i) ∈ [n]
c← (read, i) at interface C of USMR
if c 6=⊥

m← Deck(c)
if m 6=⊥

return m
Input: (write, i, x) ∈ [n]× Σ
c← Enck(x)
Send (write, i, c) at interface C of USMR

Input: askUpdate

u← getStatus at interface C of USMR
if not u

k ← nextEpoch at interface C of UpdKey
Send askUpdate at interface C of USMR

Figure 4.6: The client’s converter uecli for UE scheme (KeyGen,TokenGen,Enc,Dec,Upd) with
decryption error symbol ⊥.

Converter ueser

Initialization
∆←⊥, e← 1

Interface out
Input: update

u← getStatus at interface S of USMR
if u

e← e + 1
∆← (fetchToken, e) at interface S of UpdKey
for i = 1 . . . n do

c← (read, i) at interface S of USMR
Send (write, i,Upd∆(c)) at interface S of USMR

Send update at interface S of USMR

Input: (read, i), (write, i, x), or (fetchToken, e)
return ⊥

Figure 4.7: The server’s converter ueser for UE scheme (KeyGen,TokenGen,Enc,Dec,Upd). Since
the server is semi-honest, the converter monitors the behavior of the requests at sub-interface
S.1. The server guarantees that updates are done correctly (using the UE scheme) through the
update request, and that the requests read, write and fetchToken are only used to update the
ciphertexts and not to gain information to break the confidentiality of the data. These requests
are thus disabled at its interface out but they can still be used internally by the converter.
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Resource cUSMR

Sub-Interface S.1 of Interface S
Input: update

if NeedUpdate
NeedUpdate→ false

Sub-Interface S.2 of Interface S
Input: (leak, i) ∈ [n]

return |M[i]|
Input: getStatus

return NeedUpdate

Figure 4.8: The confidential and updatable server-memory resource cUSMR. Only differences
with USMR are shown.

age, we mean the last epoch in which the ciphertext was freshly written to the database. We
show that this is only true when ciphertexts can leak at most one time per epoch. Indeed, if a
ciphertext can leak at least two times per epoch, the adversary can use its first (resp. second)
leak at the start (resp. end) of each epoch. If the ciphertext has changed between the two leaks,
it must have been rewritten during this epoch and its age is now 0. If it has not changed, then
its age is incremented. We see that in this setting, the age of ciphertexts cannot be protected.

In the rest of this work, we will distinguish between resources that only allow one leak per
ciphertext per epoch, denoted by a 1 in the exponent (e.g. USMR1), and resources that allow
any number of leaks per ciphertext per epoch, denoted by a + in the exponent (e.g. USMR+).
If the number of leaks does not matter we will omit the exponent. We give a detailed description
of both resources in the following paragraphs.

The USMR with unrestricted leakage. In this paragraph, we consider an adversary that
keeps track of all the client’s actions inside a log file Hist. More precisely, on each (read, i),
(write, i, x) or askUpdate queries from the client, for some i and x, the adversary appends
the corresponding entry to its log file Hist. The adversary can access Hist using the getHist

query at interface S.2. These capabilities are formally given in USMR+ of Fig. 4.9.

The USMR with restricted leakage. In USMR1, we consider an adversary that is only
able to leak database entries once per epoch. We enforce this by using the leakage counters `i.
Because of this restriction, the adversary is no longer able to maintain a log file of all client’s
actions like in USMR+. The USMR1 is formally presented in Fig. 4.10.

We use this restriction to model the protection of the age of database entries. Indeed, with
only one leak per entry per epoch, an adversary cannot tell apart fresh entries from old updated
ones. One may wonder why we do not simply track the age of data entries with counters in the
real resource and hide their value in the ideal one. Unfortunately, we cannot provably construct
this ideal resource in a composable manner. Indeed, during the proof, the adversary controls
every interface of the resources. This means that he knows the age of every database entry
in both the real and ideal worlds (since he issues all the write and update requests). The age
being hidden in the ideal world, we have to find a simulator that can emulate the exact age
of every database entries at any time if we want to prevent the adversary from distinguishing
both worlds. Of course, this is impossible and, in order to still produce meaningful composable
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Resource USMR+
Σ,n

Initialization
Hist← [ ]

Interface C
Input: (read, i) ∈ [n]

if not NeedUpdate
Hist← Hist‖(read, i)
return M[i]

Input: (write, i, x) ∈ [n]× Σ
if not NeedUpdate

Hist← Hist‖(write, i, x)
M[i]← x

Input: askUpdate

if not NeedUpdate
Hist← Hist‖(askUpdate)
NeedUpdate← true

Sub-Interface S.2 of Interface S
Input: getHist

return Hist

Figure 4.9: The USMR+ where the adversary maintains a log file of all client’s actions (only
the differences with USMR of Fig. 4.4 are shown).

statements for UE, we choose to introduce the leakage contexts of USMR+ and USMR1 even
though they are unusual in the composable setting.

4.3.5 Handling post-compromise security guarantees

The goal of this section is to give an exact description of the post-compromise security guar-
antees given by UE schemes. Said differently, we want to explain how the security guarantees
evolve after a key exposure. When dealing with situations such as key exposures, composable
frameworks usually stumble on an impossibility result called the commitment problem. This
problem is the following: given a message m, how can an online simulator explain a simulated
ciphertext c, generated without knowledge of m, with a key k such that c decrypts to m under
this key. Thanks to a recent work of Jost et al. [JM20], the CC framework is well equipped
to deal with this impossibility result. This is done through the use of interval-wise security
guarantees. In CC, the interval-wise relaxation describes security guarantees within an inter-
val delimited by predicates on the global event history. For example, we can describe security
guarantees before and after the key leaks to circumvent the commitment problem.

In UE schemes, it is clear that the confidentiality of the user data is lost when an epoch
key leaks. This security loss remains in subsequent epochs if the keys continue to leak or if
successive update tokens leak. However, as soon as we encounter an epoch where neither the
key nor the update token leaks, the confidentiality is restored. This remains true until a future
epoch, where either a key leaks or consecutive update tokens leak until a key is finally exposed.
This is due to the fact that ciphertexts can be upgraded and downgraded with update tokens
to an epoch where a key is exposed.
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Resource USMR1
Σ,n

Interface C
Input: (read, i) ∈ [n]

if not NeedUpdate
return M[i]

Input: (write, i, x) ∈ [n]× Σ
if not NeedUpdate

M[i]← x

Input: askUpdate

if not NeedUpdate
NeedUpdate← true

Sub-Interface S.2 of Interface S
Input: (leak, i) ∈ [n]
`i ← `i + 1
if `i = 1

E +←− EleakedData,e,`i,i

return M[i]

Figure 4.10: The USMR1 where the adversary can only leak entries of the memory once per
epoch (only differences with USMR+ of Fig. 4.9 are shown).

In the epoch timeline, the areas where confidentiality is preserved are called insulated regions.
They have been studied and used in previous works [LT18, KLR19, BDGJ20, Jia20]. We describe
those regions with their extreme left and right epochs. These pairs of epochs are called firewalls.
We recall the definition used in [BDGJ20].

Definition 4.1. An insulated region with firewalls fwl and fwr is a consecutive sequence of
epochs (fwl, . . . , fwr) for which:

1. No key in the sequence of epochs (fwl, . . . , fwr) is corrupted.
2. The tokens ∆fwl and ∆fwr+1 are not corrupted, if they exist.
3. All tokens (∆fwl+1, . . . ,∆fwr) are corrupted.

The set of all firewall pairs is denoted by FW. The set of all insulated regions is denoted by
IR := ∪(fwl,fwr)∈FW{fwl, . . . , fwr}.

The epochs where the confidentiality guarantees do not hold are the ones not found in IR.
The set of firewalls FW can easily be described using predicates on the global event history.
This is done in the following manner.

FW := {(fwl, fwr) |fwl ≤ fwr,

∀e ∈ {fwl, . . . , fwr},¬EleakedKey,e ,

¬EleakedToken,fwl and ¬EleakedToken,fwr+1,

∀e ∈ {fwl + 1, . . . , fwr}, EleakedToken,e}

Remark 11. In 2020, in his “The Direction of Updatable Encryption does not Matter Much”
paper, Jiang [Jia20] initiated the study of the directions of key updates for UE schemes. Recall
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that the update token ∆e+1 is computed by the TokenGen algorithm using the old key ke and
the new key ke+1. Jiang studied these two types of UE schemes (the terminology was later
introduced by Nishimaki [Nis22] in 2022):

1. In UE with forward-leak uni-directional key updates, given the new key ke+1 and the
token ∆e+1, the adversary cannot infer the old key ke. However, given ke and ∆e+1, the
adversary can infer ke+1.

2. In UE with bi-directional key updates, given either the old key or the new key and the
update token, the adversary can recover the other key.

Jiang showed that the security notions of these two settings were equivalent, and concluded
that the directions of updates did not matter much. At the time, all UE schemes belonged to
one of these two settings. However, in is 2022 paper “The Direction of Updatable Encryption
Does Matter”, Nishimaki [Nis22] introduced a third setting:

1. In the backward-leak uni-directional key updates setting, given the old key ke and the token
∆e+1, the adversary cannot infer ke+1. However, given ke+1 and ∆e+1, the adversary can
infer ke.

Nishimaki showed that UE schemes with backward-leak uni-directional key updates have
strictly stronger security that those without. The intuition for this is that, in UE, we need to
protect the latest key since the reason why we update keys is that the current one might have
leaked. When the adversary can learn the new key from the token and old key, we must protect
older keys to prevent newer keys from leaking even if older ciphertexts are deleted. In the setting
of [Nis22], we only need to protect the new key if old ciphertexts are properly deleted. Nishimaki
also proposed RtR, the first UE scheme with backward-leak uni-directional key updates. The
UE schemes we presented in Chapter 2 all feature bi-directional key updates.

The work presented in this chapter was done right after Jiang’s paper but before Nishimaki’s.
Thus, we only consider UE schemes in the bi-directional key updates setting. We could include
Nishimaki’s findings by using its backward-leak uni-directional definitions for leakage sets [Nis22,
Def. 3.4, 3.5, 3.6 & 4.1], confidentiality games [Nis22, Def. 3.7], firewalls [Nis22, Def. 4.2] and
insulated regions [Nis22, Def. 4.3].

We say that the i-th entry of a database M is compromised if an adversary gets an encryption
of M[i] in an epoch e that does not belong to an insulated region. Formally, we introduce the
predicate

Pcompromised,i(E) := ∃e : Eepoche ≺ EleakedData,e,·,i ≺ E
epoch
e+1 ∧

∀(fwl, fwr) ∈ FW,¬(Eepochfwl ≺ Eepoche ≺ Eepochfwr+1)

The right side of the conjunction means ‘the epoch e does not belong to an insulated region‘.
Recall that the event Eepoche is triggered by UpdKey on a nextEpoch request and the event
EleakedData,e,·,i is triggered by USMR on a (leak, i) request.

Then, we introduce the event Einsecj which indicates that the j-th entry of the database is
not confidential. This event can only be triggered by the environment. Now, we can modify our
definition of cUSMR in the following way: on a (leak, j) request, this resource now returns
M[j] if Einsecj has been triggered and |M[j]| otherwise. For 1 ≤ i ≤ n, we introduce the predicate

Ponly,i(E) :=
∧

j∈{1,...,n}\{i}

Einsecj

It formalizes that we do not consider the confidentiality of plaintexts other than the i-th one.
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Following the notation of [JM20], we introduce our main theorem. Let n be the number
of entries stored in the server. Our construction is an intersection of n specifications. For
i ∈ {1, . . . , n}, we assume that an adversary knows every entry of the database except the i-th
one. Then, the i-th specification guarantees the confidentiality of the i-th entry until it trivially
leaks because an adversary gained access to an encryption of this plaintext under an exposed
epoch key.

Theorem 4.1. Let Σ be a finite alphabet and n ∈ N. There exists a sequence of simulators
(σi)1≤i≤n such that the protocol πUE := (uecli, ueser), described in Fig. 4.6 and Fig. 4.7, based
on an IND-UE-CPA secure UE scheme constructs the cUSMR1

Σ,n from the USMR1
Σ,n and

UpdKey

[USMR1
n,UpdKey]

πUE−−→
⋂

1≤i≤n
(σi cUSMR1

n)[Ponly,i(E),Pcompromised,i(E)]:εCPA

where εCPA denotes our reduction, given in Theorem 4.2, from distinguishing between the cUSMR1

with our simulator and the USMR1 with our protocol, to winning the IND-UE-CPA game.

In the above theorem, we can replace (USMR1, cUSMR1, εCPA, IND-UE-CPA) with
(USMR+, cUSMR+, εCPA+ , IND-ENC-CPA+ IND-UPD-CPA) when we deal with unrestricted
leakage. In the context of adversarial injections in the database, we can replace it by (iUSMR1,
ciUSMR1, εRCCA, IND-UE-RCCA) in the restricted leakage setting and by (iUSMR+, ciUSMR+,
εRCCA+ , IND-ENC-RCCA+ IND-UPD-RCCA) when we deal with unrestricted leakage, where the
USMR with injections iUSMR is described in Fig. 4.11. This includes all our results.

Proof. Since we consider an intersection of n specification, we need to prove n constructions.
For i ∈ {1, . . . , n}, we need to prove that there exists a simulator σi such that, in the interval
[Ponly,i(E), Pcompromised,i(E)], the protocol πUE constructs the cUSMR1

Σ,n from the USMR1
Σ,n

and UpdKey with respect to σi. This construction is formalized and proven in Theorem 4.2
of Section 4.3.6 where we give a detailed reduction from breaking our construction to winning
the IND-UE-CPA game.

When replacing (USMR1, cUSMR1, εCPA, IND-UE-CPA) with (USMR+, cUSMR+,
εCPA+ , IND-ENC-CPA + IND-UPD-CPA) in the above theorem, we need two prove n more con-
structions. We formalize and prove these constructions in Theorem 4.4 of Section 4.3.6 where
we give a detailed reduction from breaking our construction to winning the IND-ENC-CPA +
IND-UPD-CPA games. We do the same in the context of adversarial injections in Theorem 4.5
of Section 4.3.6.

4.3.6 Exact security of Updatable Encryption schemes

At most one leak per entry per epoch: the CPA case

In this section, we work with a USMR1 of size n where the attacker can leak entries of the
database at its interface S. This capability allows the distinguisher (which is connected to
every interface of the system) to build an encryption oracle. Indeed, the distinguisher can use
the client’s interface C to write messages of its choice into the database, and then leak the
ciphertexts associated to these messages by sending a leak request at interface S. This fact
motivates the use of a CPA security notion since it is tailored to bring security in the presence
of such an encryption oracle.
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The simulator σk,CPA. Since we are trying to prove our Theorem 4.1, we place ourselves
in the context of this theorem: we take k ∈ {1, . . . , n} and we place ourselves in the interval
[Ponly,k(E), Pcompromised,k(E)] where we do not consider the confidentiality of plaintexts other than
the k-th one. In this case, the simulator σk,CPA works as follows. It simulates the epoch keys
and tokens and, on a (leakKey, i) or (leakToken, i) request, it checks if the event EleakedKey,i

(respectively EleakedToken,i) exists in the Global Event History, and leaks the corresponding epoch key
(respectively token) to the adversary if it is the case, and ⊥ otherwise. On a (leak, k) request,
the simulator forwards it to the ideal resource to get a length ` and returns a fresh encryption
of a random plaintext of length ` under the current epoch key. Finally, on a (leak, i) request,
i 6= k, the simulator forwards it to the ideal resource to get a plaintext x and returns a fresh
encryption of x under the current epoch key.

IND-UE-CPA security is sufficient for a secure construction of cUSMR that hides the
age

The fact that IND-UE-CPA is sufficient to construct cUSMR1 from USMR1 and UpdKey
is expressed in Theorem 4.1 through an intersection of specifications. The following theorem
shows how we construct each of those specifications.

Theorem 4.2. Let Σ be a finite alphabet, n ∈ N and k ∈ {1, . . . , n}. The protocol ue :=
(uecli, ueser) described in Fig. 4.6 and Fig. 4.7 based on a UE scheme constructs the cUSMR1

Σ,n

from the basic USMR1
Σ,n and UpdKey inside the interval [Ponly,k(E), Pcompromised,k(E)], with

respect to the simulator σk,CPA described in Section 4.3.6 and the dummy converter honSrv (that
disables any adversarial behavior). More specifically, we construct reductions such that, for all
distinguishers D in a set of distinguishers D,

∆DE (honSrvSueCcliue
S
ser[USMR1

Σ,n,UpdKey], honSrvS cUSMR1
Σ,n) = 0

∆DE (ueCcliue
S
ser[USMR1

Σ,n,UpdKey], σSk,CPA cUSMR1
Σ,n) ≤

(2q + r) · sup
D′∈D

∆D′E (GIND-UE-CPA
UPD ,GIND-UE-CPA

ENC )

where q (resp. r) is an upper bound on the number of writes (resp. updates) made by the
distinguisher to the memory location k.

The first condition, called availability, checks if the two systems behave in the same way
when no adversary is present. It rules out trivial protocols that would ensure confidentiality
by not writing data in memory for example. In all of this chapter, availability follows from the
correctness of the schemes used. For clarity and conciseness, we will omit it in the proofs.

Proof. Let R := ueCcliue
S
ser[USMR1,UpdKey] be the the real system and I := σSk,CPA cUSMR1

be the ideal system. The two systems behave in the same way except when leaking the content
of M[k]: R leaks an encryption of M[k] while I leaks an encryption of a random plaintext of
length |M[k]|. In order to determine the advantage of a distinguisher in distinguishing R from
I, denoted by ∆D(R, I), we proceed with a sequence of systems. We introduce a hybrid system
S, then we determine the distinguishing advantages ∆D(R,S) and ∆D(S, I), the triangular
inequality allowing us to bound ∆D(R, I) by the sum of those two advantages.

• Let S be a resource that behaves just like R except on query (leak, k) where it leaks an
encryption of a random plaintext of length |M[k]| instead of an encryption of M[k], if M[k]
contains a fresh encryption and not an updated one. This happens if a query (write, k, x) has
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been issued by the client in the current epoch. In the case when M[k] contains an updated
version of a ciphertext, the two resources behave in the exact same way.

Let q be an upper bound on the number of (write, k, .) queries issued to the systems. We
define a hybrid resource Hi that behaves just like R on the first i (write, k, .) queries and like
S afterwards. Then we define a reduction Ci that behaves like Hi except it uses the game
GIND-ENC-CPA
b oracles instead of doing the UE operations by itself and on the i-th (write, k, .)

request (of the form (write, k, x)) it challenges the game with input (x, x̄), with x̄ random of
length |x|, to receive the ciphertext. We have

R ≡ Hq and S ≡ H0

and
Hi ≡ GIND-ENC-CPA

0 Ci ≡ GIND-ENC-CPA
1 Ci+1

Indeed, this can be seen on the following timeline (Table 4.1).

j-th (write, k, .) query j < i j = i j = i+ 1 j > i+ 1

GIND-ENC-CPA
0 Ci Enc(x) Enc(x) Enc(x̄) Enc(x̄)

GIND-ENC-CPA
1 Ci+1 Enc(x) Enc(x) Enc(x̄) Enc(x̄)

Table 4.1: Leakage behavior of both systems for each (write, k, .) request.

Let CI be a reduction that samples i ∈ [1, q] at random and behaves like Ci and define
D′ := DCI . We have,

Pr[D′(GIND-ENC-CPA
0 ) = 1] =

1

q

q∑
i=1

Pr[D(CiG
IND-ENC-CPA
0 ) = 1]

and

Pr[D′(GIND-ENC-CPA
1 ) = 1] =

1

q

q∑
i=1

Pr[D(CiG
IND-ENC-CPA
1 ) = 1]

=
1

q

q−1∑
i=0

Pr[D(CiG
IND-ENC-CPA
0 ) = 1]

Finally, the advantage of the distinguisher in distinguishing system R from S is

∆D(R,S) = ∆D(Hq,H0)

= ∆D(CqG
IND-ENC-CPA
0 ,C0G

IND-ENC-CPA
0 )

= |Pr[D(CqG
IND-ENC-CPA
0 ) = 1]− Pr[D(C0G

IND-ENC-CPA
0 ) = 1]|

= |
q∑
i=1

Pr[D(CiG
IND-ENC-CPA
0 ) = 1]−

q−1∑
i=0

Pr[D(CiG
IND-ENC-CPA
0 ) = 1]|

= q · |Pr[D′(GIND-ENC-CPA
0 ) = 1]− Pr[D′(GIND-ENC-CPA

1 ) = 1]|

= q ·∆D′(GIND-ENC-CPA
0 ,GIND-ENC-CPA

1 )

• Let us consider the systems S and I. By definition, S behaves just like I except on query
(leak, k) where it leaks an updated ciphertext of an encryption of M[k] (instead of a fresh
encryption of a random x̄ of length |M[k]| in the ideal system) if M[k] contains an updated
encryption and not a fresh one. In the case when M[k] contains a fresh ciphertext, the two
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resources behave in the exact same way. Namely, they leak an encryption of a random x̄ of
length |M[k]|.

Let r be an upper bound on the number of update queries issued to the systems. We define
a hybrid resource H′i that behaves just like S on the first i update queries and like I afterwards.
Then we define a reduction C′i that behaves like H′i except it uses the game GIND-UE-CPA

xxx , where
xxx ∈ {ENC,UPD}, oracles instead of doing the UE operations by itself and on the i-th update
computation for the encryption c of M[k], it challenges the game with input (x̄, c) to receive
either a fresh encryption of the random plaintext x̄ (of length M[k]) or the updated version of
the ciphertext c. We have

S ≡ H′r and I ≡ H′0

and
H′i ≡ GIND-UE-CPA

UPD C′i ≡ GIND-UE-CPA
ENC C′i+1

Indeed, this can be seen on the following timeline (Table 4.2)

j-th update query for M[k] j < i j = i j = i+ 1 j > i+ 1

GIND-UE-CPA
UPD C′i Upd(c) Upd(c) Enc(x̄) Enc(x̄)

GIND-UE-CPA
ENC C′i+1 Upd(c) Upd(c) Enc(x̄) Enc(x̄)

Table 4.2: Leakage behavior of both systems for each update request (x̄ is always a random
plaintext of length M[k]).

Let C′I be a reduction that samples i ∈ [1, r] at random and behaves like C′i and define
D′′ := DC′I . We have,

Pr[D′′(GIND-UE-CPA
UPD ) = 1] =

1

r

r∑
i=1

Pr[D(C′iG
IND-UE-CPA
UPD ) = 1]

and

Pr[D′′(GIND-UE-CPA
ENC ) = 1] =

1

r

r−1∑
i=0

Pr[D(C′iG
IND-UE-CPA
UPD ) = 1]

Finally, the advantage of the distinguisher in distinguishing system S from I is

∆D(S, I) = ∆D(H′r,H
′
0)

= ∆D(C′rG
IND-UE-CPA
UPD ,C′0G

IND-UE-CPA
UPD )

= |Pr[D(C′rG
IND-UE-CPA
UPD ) = 1]− Pr[D(C′0G

IND-UE-CPA
UPD ) = 1]|

= |
r∑
i=1

Pr[D(C′iG
IND-UE-CPA
UPD ) = 1]−

r−1∑
i=0

Pr[D(C′iG
IND-UE-CPA
UPD ) = 1]|

= r · |Pr[D′′(GIND-UE-CPA
UPD ) = 1]− Pr[D′′(GIND-UE-CPA

ENC ) = 1]|

= r ·∆D′′(GIND-UE-CPA
UPD ,GIND-UE-CPA

ENC )

• We use the triangular inequality to conclude. Let q be our upper bound on the number of
writes and r be our upper bound on the number of updates. The advantage of the distinguisher
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in distinguishing the real system R from the ideal one I is

∆D(R, I) ≤ ∆D(R,S) + ∆D(S, I)

= q ·∆D′(GIND-ENC-CPA
0 ,GIND-ENC-CPA

1 ) + r ·∆D′′(GIND-UE-CPA
UPD ,GIND-UE-CPA

ENC )

= 2q ·∆D′C′′(GIND-UE-CPA
UPD ,GIND-UE-CPA

ENC ) + r ·∆D′′(GIND-UE-CPA
UPD ,GIND-UE-CPA

ENC )

≤ (2q + r) ·∆D(GIND-UE-CPA
UPD ,GIND-UE-CPA

ENC )1

Where we use the notation ∆D(X,Y) := supD∈D∆D(X,Y) and the reduction C′′ is given
by Boyd et al. in [BDGJ20, Theorem 2.3] to prove the following:

Proposition 4.3. Let UE be a UE scheme. For any IND-ENC-CPA adversary A against UE,
there exists a reduction C′′ such that

∆A(GIND-ENC-CPA
0 ,GIND-ENC-CPA

1 ) ≤ 2 ·∆AC′′(GIND-UE-CPA
ENC ,GIND-UE-CPA

UPD )

Remark 12. We point out that our interval choice, our simulator and our reduction circumvent
the commitment problem. Indeed, when a key exposure makes us leave an insulated region, the
adversary can:

1. decrypt the content of ciphertexts stored at location i 6= k. These ciphertexts are perfectly
simulated since we do not consider the confidentiality of their plaintexts in our interval.
Thus, there is no commitment problem.

2. decrypt the content of the k-th ciphertext before its content has been used to produce
the CPA game challenge. This closes our interval since the k-th plaintext is no longer
confidential.

3. decrypt the content of the k-th ciphertext after its content has been used to produce the
CPA game challenge. This triggers a trivial win condition in the CPA game, the adversary
thus loses the game and our interval closes like above.

IND-UE-CPA security is necessary for a secure construction of cUSMR

Recall that we are working in the context of restricted leakage, where the adversary is only
allowed to leak each entry of the database at most one time per epoch. In order to show that the
IND-UE-CPA security notion is necessary to securely construct the cUSMR1 from a USMR1

and UpdKey using a UE scheme, we are going to use a technique of Coretti et al. in [CMT13].
Keeping our notation, we will start from the real system R := ueCcliue

S
ser[USMR1,UpdKey]

and the ideal one I := σS cUSMR1, where this time an arbitrary simulator σ is used, and
use reductions to construct the resources GIND-UE-CPA

xxx implementing the IND-UE-CPA games.
Formally, we will describe two reductions C0 and C1 such that

C0R ≡ GIND-UE-CPA
ENC , C1R ≡ GIND-UE-CPA

UPD and C0I ≡ C1I.

Let A be an adversary against the IND-UE-CPA security notion. Using the triangular in-
equality, we have

1Since we can also split the games the other way and consider IND-UPD-CPA security first, we can replace
2q + r with min{2q + r, q + 2r}.
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∆A(GIND-UE-CPA
ENC ,GIND-UE-CPA

UPD ) = ∆A(C0R,C1R)

≤ ∆A(C0R,C0I) + ∆A(C0I,C1I)︸ ︷︷ ︸
=0

+ ∆A(C1I,C1R)

= ∆AC0(R, I) + ∆AC1(R, I)

Thus, if a UE scheme securely construct (through a protocol) I from R, then for any dis-
tinguisher D, the distinguishing advantage ∆D(R, I) is ”small” and using the above inequality,
the advantage of any adversary A in distinguishing the IND-UE-CPA games will also be ”small”.
We conclude that, under the above hypothesis, the UE scheme will be IND-UE-CPA secure.

• We are going to describe two reductions C0 and C1 that connect to a [USMR1,UpdKey]
(or cUSMR1) resource and implement the oracles of the GIND-UE-CPA

xxx games. Let n be an
upper bound on the number of encryption queries issued to the games by the adversary. In
the following, we consider resources of memory size n + 1. This is done to have enough space
to store the ciphertexts returned by the encryption oracle as well as the challenge in case the
challenger asks for updates later on. Here is how the reductions implement the game oracles:

- On the i-th O.Enc(x) query: Cb sends (write, i, x) at interface C, then sends (leak, i) at
interface S and outputs the result. Cb also keeps a copy of the result in its own internal
memory.

- On O.Next(): Cb sends askUpdate at interface C and update at interface S.
- On O.Upd(c): Cb checks if c is the challenge or an updated version of it, in which case

it returns ⊥, and if c was present in memory in the previous epoch. Cb can do this by
keeping track of the entries it leaks and, at the end of each epoch, Cb sends (leak, i)
requests for every position i that has not been leaked in the current epoch yet and writes
the results in its own internal memory. If c was not present, it returns ⊥. If it was, let i
be the index where c was written, Cb sends (leak, i) at interface S and outputs the result
(and writes it in its own internal memory).

- OnO.Corr(elt, ê) where elt ∈ {Key,Token}: Cb triggers the event Eleakedelt,ê , sends (fetchelt, ê)
at interface S and outputs the result.

- On O.Chall(m, c): Both reductions check that c was present in memory in the previous
epoch and that its updated version has not been leaked yet in the current epoch. They
also check that m′ := Deck(c) and m have the same length, this can be done with a read

request at interface C. They return ⊥ if it is not the case. Otherwise, let i be the position
where c was written. The reductions then proceed like this:

- C0 sends (write, n + 1,m) at interface C then it sends (leak, n + 1) at interface S
and outputs the result.

- C1 sends (leak, i) at interface S and outputs the result.

- On O.UpdC̃(): Let ib be the position where the challenge is written for Cb. If a challenge
has already been issued, Cb sends (leak, ib) at interface S and returns the result. If not,
it returns ⊥.

Moreover, the reductions have all the information to check for trivial wins. When connected
to the real system R, the reductions Cb exactly implements the games GIND-UE-CPA

xxx since the
system leaks the same encryptions and updates as the ones produce by the game and correctly
implements all of its oracles. Their observable behaviors being the same, we have C0R ≡
GIND-UE-CPA

ENC and C1R ≡ GIND-UE-CPA
UPD .
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Now, if we connect the reductions to the ideal system I, where an arbitrary simulator σ is
used, their behaviors can only differ on the challenge call. When asked for the challenge on the
pair (m, c), reduction C0 writes m at position n+ 1 then it outputs the result of (leak, n+ 1)
meanwhile C1 outputs the result of (leak, i) where i is the position where the ciphertext c was
already written. In the ideal system I, the result of a leak request is always `, the length of
the message stored. Since, letting m′ be the underlying plaintext of c, the reductions checked
that the two messages m and m′ had the same length, the inputs of the simulator σ are the
same and the behaviors are thus identical. In the following epochs, this remains true when the
adversary calls the oracle O.UpdC̃ to get an updated version of the challenge ciphertext. We can
check that we never go beyond the leakage condition, it is never the case that a reduction leaks
the content of a position j at more than one occasion in a given epoch. We conclude that the
systems CbI are indistinguishable from one another. Written differently, we have C0I ≡ C1I
and the theorem is proven in the IND-UE-CPA case.

In the context of restricted leakage, we proved that the IND-UE-CPA security notion for UE
schemes was the correct one to consider if clients want to protect the confidentiality and the
age of the data they store on a remote server in the presence of an adversary only able to leak
the contents of the server at most once per epoch. This use case is realistic since it includes
the common scenario of data breaches: when attackers are able to dump the content of a whole
database and run away with the data. In the context of such an intrusion we showed, through
the use of CC, how to assess the situation, i.e. we are able to describe precisely the remaining
security guarantees for the confidentiality of the content and the age of the data depending on
what keys and tokens are available to the adversaries.

Any number of leaks: the CPA case.

This time, we are proving our theorem 4.1 in the context of unrestricted leakage. Just like
before, let n be the size of the USMR+ and take k ∈ {1, . . . , n}. We place ourselves in a time
interval where we do not consider the confidentiality of messages other than the k-th one. In this
case the simulator σk,CPA+ works as follows. It simulates the epoch keys and tokens and, on a
(leakKey, i) or (leakToken, i) request, it checks if the event EleakedKey,i (respectively EleakedToken,i) exists
in the Global Event History and leaks the corresponding epoch key (respectively token) to the
adversary if it is the case and ⊥ otherwise. The simulator uses the ideal history to know which
entries of the database correspond to fresh encryptions or updated encryptions. Together with
its simulated epoch keys and tokens, this allows the simulator to maintain a simulated memory
(and a simulated history) where fresh encryptions of M[k] (in the real world) are replaced with
fresh encryptions of random plaintexts of length |M[k]| and updated ciphertexts encrypting M[k]
(in the real world) are replaced with updates of ciphertexts of random plaintexts of length |M[k]|.
When i 6= k, the simulated memory and history perfectly match their real-world counterparts.
Finally, on a (leak, i) request, the simulator returns the i-th entry of its simulated memory.

IND-ENC-CPA+IND-UPD-CPA security is sufficient for a secure construction of cUSMR+

The fact that IND-ENC-CPA+IND-UPD-CPA is sufficient to construct cUSMR+ from USMR+

and UpdKey is expressed in Theorem 4.1 through an intersection of specifications. The fol-
lowing theorem shows how we construct each of those specifications.

Theorem 4.4. Let Σ be a finite alphabet, n ∈ N and k ∈ {1, . . . , n}. The protocol ue :=
(uecli, ueser) described in Fig. 4.6 and Fig. 4.7 based on a UE scheme constructs the cUSMR+

Σ,n

from the basic USMR+
Σ,n and UpdKey inside the interval [Ponly,k(E), Pcompromised,k(E)], with
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respect to the simulator σk,CPA+ described in Section 4.3.6. More specifically, we construct
reductions C′ and C′′ such that, for all distinguishers D,

∆DE (ueCcliue
S
ser[USMR+

Σ,n,UpdKey], σSk,CPA+ cUSMR+
Σ,n) ≤

q ·∆DC′E (GIND-ENC-CPA
0 ,GIND-ENC-CPA

1 ) + r ·∆DC′′E (GIND-UPD-CPA
0 ,GIND-UPD-CPA

1 )

where q (resp. r) is an upper bound on the number of writes (resp. updates) made by the
distinguisher to the memory location k.

The proof is very similar to the one detailed in the IND-UE-CPA case. We include it for
completeness.

Proof. Let R := ueCcliue
S
ser[USMR+,UpdKey] be the the real system and I := σSk,CPA+ cUSMR+

be the ideal system. In order to determine the advantage of a distinguisher in distinguishing
R from I, denoted by ∆D(R, I), we proceed with a sequence of systems. We introduce a hy-
brid system S, then we determine the distinguishing advantages ∆D(R,S) and ∆D(S, I), the
triangular inequality allows us to bound ∆D(R, I) by the sum of those two advantages.

• Let S be a resource that behaves just like R when leaking updated ciphertexts and just like
I when leaking fresh encryptions. Concretely, S maintains the same database as R using the
UE scheme and, when S is asked to leak an updated ciphertext it returns it as is but when S
is asked to leak a fresh ciphertext encrypting M[k], it returns an encryption of a random x̄ of
length |M[k]|.

Let q be an upper bound on the number of (write, k, .) queries issued to the systems.
We define a hybrid resource Hi that behaves just like R on the first i (write, k, .) queries
and like S afterwards. Then we define a reduction Ci that behaves like Hi except it uses
the game GIND-ENC-CPA

b oracles instead of doing the UE operations by itself and on the i-th
(write, k, .) request (of the form (write, k, x)) it challenges the game with input (x, x̄) to
receive the ciphertext. We have

R ≡ Hq and S ≡ H0

and

Hi ≡ GIND-ENC-CPA
0 Ci ≡ GIND-ENC-CPA

1 Ci+1

Indeed, this can be seen on the following timeline (Table 4.3)

j-th (write, k, .) query j < i j = i j = i+ 1 j > i+ 1

GIND-ENC-CPA
0 Ci Enc(x) Enc(x) Enc(x̄) Enc(x̄)

GIND-ENC-CPA
1 Ci+1 Enc(x) Enc(x) Enc(x̄) Enc(x̄)

Table 4.3: Leakage behavior of both systems for each (write, k, .) request.

Let CI be a reduction that samples i ∈ [1, q] at random and behaves like Ci and define
D′ := DCI . We have,

Pr[D′(GIND-ENC-CPA
0 ) = 1] =

1

q

q∑
i=1

Pr[D(CiG
IND-ENC-CPA
0 ) = 1]

and
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Pr[D′(GIND-ENC-CPA
1 ) = 1] =

1

q

q∑
i=1

Pr[D(CiG
IND-ENC-CPA
1 ) = 1]

=
1

q

q−1∑
i=0

Pr[D(CiG
IND-ENC-CPA
0 ) = 1]

Finally, the advantage of the distinguisher in distinguishing system R from S is

∆D(R,S) = ∆D(Hq,H0)

= ∆D(CqG
IND-ENC-CPA
0 ,C0G

IND-ENC-CPA
0 )

= |Pr[D(CqG
IND-ENC-CPA
0 ) = 1]− Pr[D(C0G

IND-ENC-CPA
0 ) = 1]|

= |
q∑
i=1

Pr[D(CiG
IND-ENC-CPA
0 ) = 1]−

q−1∑
i=0

Pr[D(CiG
IND-ENC-CPA
0 ) = 1]|

= q · |Pr[D′(GIND-ENC-CPA
0 ) = 1]− Pr[D′(GIND-ENC-CPA

1 ) = 1]|

= q ·∆D′(GIND-ENC-CPA
0 ,GIND-ENC-CPA

1 )

• Let us consider the systems S and I. By definition, S behaves just like I when leaking fresh
encryptions but, when asked to leak what should be an updated ciphertext encrypting M[k], S
returns this updated ciphertext while I simply returns an update of an encryption of a random
x̄ of length |M[k]|.

Let r be an upper bound on the number of update queries issued to the systems. We
define a hybrid resource H′i that behaves just like S on the first i update queries to location k
and like I afterwards. Then we define a reduction C′i that behaves like H′i except it uses the
game GIND-UPD-CPA

b oracles instead of doing the UE operations by itself and on the i-th update
computation for the encryption c of M[k], it challenges the game with input (c, c̄) to receive
either an updated version of c or c̄, the encryption of a random x̄ of length |M[k]|. We have

S ≡ H′r and I ≡ H′0

and

H′i ≡ GIND-UPD-CPA
0 C′i ≡ GIND-UPD-CPA

1 C′i+1

Indeed, this can be seen on the following timeline (Table 4.4)

j-th update query for M[k] j < i j = i j = i+ 1 j > i+ 1

GIND-UPD-CPA
0 C′i Upd(c) Upd(c) Upd(c̄) Upd(c̄)

GIND-UPD-CPA
1 C′i+1 Upd(c) Upd(c) Upd(c̄) Upd(c̄)

Table 4.4: Leakage behavior of both systems for each update request (c̄ is always the encryption
of a random plaintext of length |M[k]|).

Let C′I be a reduction that samples i ∈ [1, r] at random and behaves like C′i and define
D′′ := DC′I . We have,

Pr[D′′(GIND-UPD-CPA
0 ) = 1] =

1

r

r∑
i=1

Pr[D(C′iG
IND-UPD-CPA
0 ) = 1]
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and

Pr[D′′(GIND-UPD-CPA
1 ) = 1] =

1

r

r∑
i=1

Pr[D(C′iG
IND-UPD-CPA
1 ) = 1]

=
1

r

r−1∑
i=0

Pr[D(C′iG
IND-UPD-CPA
0 ) = 1]

Finally, the advantage of the distinguisher in distinguishing system S from I is

∆D(S, I) = ∆D(H′r,H
′
0)

= ∆D(C′rG
IND-UPD-CPA
0 ,C′0G

IND-UPD-CPA
0 )

= |Pr[D(C′rG
IND-UPD-CPA
0 ) = 1]− Pr[D(C′0G

IND-UPD-CPA
0 ) = 1]|

= |
r∑
i=1

Pr[D(C′iG
IND-UPD-CPA
0 ) = 1]−

r−1∑
i=0

Pr[D(C′iG
IND-UPD-CPA
0 ) = 1]|

= r · |Pr[D′′(GIND-UPD-CPA
0 ) = 1]− Pr[D′′(GIND-UPD-CPA

1 ) = 1]|

= r ·∆D′′(GIND-UPD-CPA
0 ,GIND-UPD-CPA

1 )

• We use the triangular inequality to conclude. Let q be our upper bound on the number of
writes and r be our upper bound on the number of updates. The advantage of the distinguisher
in distinguishing the real system R from the ideal one I is

∆D(R, I) ≤ ∆D(R,S) + ∆D(S, I)

= q ·∆D′(GIND-ENC-CPA
0 ,GIND-ENC-CPA

1 ) + r ·∆D′′(GIND-UPD-CPA
0 ,GIND-UPD-CPA

1 )

So IND-ENC-CPA + IND-UPD-CPA is sufficient to securely construct the cUSMR+ in the
unrestricted leakage model, where the age of each database entry is not hidden.

In [BDGJ20] the authors showed that IND-UE-CPA security implied IND-ENC-CPA and
IND-UPD-CPA security. Since we showed that IND-ENC-CPA + IND-UPD-CPA security is suf-
ficient to securely construct the cUSMR+ from the USMR+ equipped with the (uecli, ueser)
converters, we conclude that IND-UE-CPA security cannot be necessary for this secure con-
struction in the unrestricted leakage model. This notion is thus unnecessarily strong in this
setting.

IND-ENC-CPA and IND-UPD-CPA security are necessary for a secure construction of
cUSMR+

We use the same proof technique as in the IND-UE-CPA case. We include the proof for complete-
ness. We show that the IND-ENC-CPA and IND-UPD-CPA security notions are both necessary
to securely construct the cUSMR+ from USMR+ and UpdKey using a UE scheme. Keeping
our notations, we will start from the real system R and the ideal one I, where this time we use
an arbitrary simulator σ, and use reductions to construct the resources GIND-ENC-CPA

b (respec-
tively GIND-UPD-CPA

b ) implementing the IND-ENC-CPA games (respectively the IND-UPD-CPA
games). Formally, we will describe two reductions C0 and C1 such that
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C0R ≡ GIND-ENC-CPA
0 , C1R ≡ GIND-ENC-CPA

1 and C0I ≡ C1I

Let A be an adversary against the IND-ENC-CPA security notion. Using the triangular
inequality, we have

∆A(GIND-ENC-CPA
0 ,GIND-ENC-CPA

1 ) = ∆A(C0R,C1R)

≤ ∆A(C0R,C0I) + ∆A(C0I,C1I)︸ ︷︷ ︸
=0

+∆A(C1I,C1R)

= ∆AC0(R, I) + ∆AC1(R, I)

Thus, if a UE scheme securely construct (through a protocol) I from R, then for any distin-
guisher D, the distinguishing advantage ∆D(R, I) is ”small” and using the above inequality, the
advantage of any adversary A in distinguishing the IND-ENC-CPA games will also be ”small”.
We conclude that, under the above hypothesis, the UE scheme will be IND-ENC-CPA secure. We
do the same thing with different reductions for the IND-UPD-CPA notion to prove our claim.

• We start with the IND-ENC-CPA notion. We are going to describe the two above reductions
C0 and C1. Let n be an upper bound on the number of encryption queries issued to the games
by the adversary. In the following, we consider resources of memory size n+ 1. This is done to
have enough space to store the returned ciphertext (and the challenge ciphertext) in case the
challenger ask for an update later on. Here is how the reductions implement the game oracles:

- On the i-th O.Enc(x) query: Cb sends (write, i, x) at interface C, then sends (leak, i) at
interface S and outputs the result.

- On O.Next(): Cb sends askUpdate at interface C and update at interface S.
- On O.Upd(c): Cb checks if c is the challenge or an updated version of it and if c was

present in memory in the previous epoch. If not, it returns ⊥. If it is, let i be the index
where c was written, Cb sends (leak, i) at interface S and outputs the result.

- OnO.Corr(elt, ê) where elt ∈ {Key,Token}: Cb triggers the event Eleakedelt,ê , sends (fetchelt, ê)
at interface S and outputs the result.

- On O.Chall(m0,m1): If m0 6= m1 and |m0| = |m1|, the reduction Cb sends (write, n +
1,mb) at interface C then it sends (leak, n+ 1) at interface S and outputs the result.

- On O.UpdC̃(): If a challenge has already been issued, Cb sends (leak, n+ 1) at interface
S and returns the result. If not, it returns ⊥.

Moreover, all the oracles variables and lists can be emulated faithfully by the reductions
via internal calculations and memory. When connected to the real system R, the reduction Cb

exactly implements the game GIND-ENC-CPA
b since the system leaks the same encryptions and

updates as the ones produce by the game. Their observable behaviors being the same, we have
CbR ≡ GIND-ENC-CPA

b .
Now, if we connect the reductions to the ideal system I, where an arbitrary simulator σ

is used, their behaviors can only differ on the challenge call. When asked for the challenge,
reduction Cb writes mb at position n+ 1 then it outputs the result of (leak, n+ 1). In the ideal
system I, the result of a leak request on a freshly written entry (which is the case here since we
do not change epoch yet) is always the length of the entry. Since the reductions checked that
|m0| = |m1|, the inputs of the simulator σ are the same and the behaviors are thus identical.
This remains true in the following epochs, when the adversary calls the oracle O.UpdC̃ to get an
updated version of the challenge ciphertext, since the challenge’s plaintext is never rewritten.
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We conclude that the systems CbI are indistinguishable from one another. Written differently,
we have C0I ≡ C1I and the theorem is proven in the IND-ENC-CPA case.

• Since all the oracles, except the O.Chall one, of the IND-UPD-CPA games are the same as the
ones present in the IND-ENC-CPA one, we only need to redefine the reductions for this oracle.
Let C′b be a reduction that behaves exactly like Cb except:

- On O.Chall(c0, c1): If c0 6= c1 and |c0| = |c1|, the reduction C′b checks that both c0 and c1

were present in the previous epoch. If they were, let i0 and i1 be the respective positions
where these ciphertexts were written, C′b sends (leak, ib) at interface S, returns the result
and remembers ib by writing it in its own internal memory. If not, it returns ⊥.

Since we do not need space to write a new ciphertext when the challenge is issued in these
games, we can use a USMR+ and cUSMR+ resources of size n instead of n + 1 like before
(remember that n is an upper bound on the number of calls to the encryption oracle). Since the
challenge is written at position ib, we need to slightly modify the behavior of C′b when emulating
the oracle O.UpdC̃:

- On O.UpdC̃(): If a challenge has already been issued, Cb sends (leak, ib) at interface S
and returns the result. If not, it returns ⊥.

The arguments to show that C′bR ≡ GIND-UPD-CPA
b and C′0I ≡ C′1I remain the same as the

ones used in the IND-ENC-CPA case presented above. The conclusion is also the same, mainly
that

∆A(GIND-UPD-CPA
0 ,GIND-UPD-CPA

1 ) = ∆A(C′0R,C
′
1R)

≤ ∆A(C′0R,C
′
0I) + ∆A(C′0I,C

′
1I)︸ ︷︷ ︸

=0

+∆A(C′1I,C
′
1R)

= ∆AC′0(R, I) + ∆AC′1(R, I)

And the IND-UPD-CPA security notion is also necessary to make this construction secure.

Finally, we showed that, in the context of unrestricted leakage, the IND-ENC-CPA and
IND-UPD-CPA security notions are together necessary and sufficient to construct a cUSMR+

from USMR+ and UpdKey using a UE scheme. This means that, for UE schemes, the
combination of these two notions is the correct one to consider and aim for in this specific
context. In particular, the use of a stronger security notion like IND-UE-CPA does not provide
stronger security guarantees to clients in the setting of unrestricted leakage.

At most one leak per entry per epoch: the CCA case

We now consider updatable server-memory resources where the attacker can inject arbitrary
messages into the database at its sub-interface S.2. Formally, S has access to the (inject, i, x)
request which assigns the value x to the i-th entry of the database M[i]. This USMR with
injections will be denoted by iUSMR, and its confidential variant ciUSMR. The resource
iUSMR is described in Fig. 4.11. The description of resource ciUSMR is the same except for
the return value of (leak, i) requests which is replaced by |M[i]|.

Injections enhance the power of the distinguisher (which is connected to every interface
of the system) in the following manner. Just like before, the distinguisher can use the client
interface C to write messages of its choice into the database and then leak a ciphertext associated
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to this message by sending a leak request at interface S, essentially building an encryption
oracle for itself, which motivated the use of a CPA security notion. In the present case, the
distinguisher can also use injections at interface S to write ciphertexts of its choice directly
into the database then use the read request at interface C to get the message associated to the
injected ciphertext, essentially building a decryption oracle for itself. This new capability of
the distinguisher motivates the use of a CCA security notion since it is tailored to deal with
situations of the sort.

An important result, originally given by Canetti in [CKN03], is that the CCA security is
unnecessarily strict for most applications. We show that it is the case for UE by showing that
the CCA security notion is too strong for constructing the ciUSMR from the iUSMR using a
UE scheme. To see this, suppose that we securely construct a ciUSMR from an iUSMR with
an IND-UE-CCA secure UE scheme Π. We build a new UE scheme Π′ that works just like Π
except it appends a 0 bit at the end of every ciphertext, this bit being ignored when updating
and decrypting ciphertexts. The scheme Π′ is no longer IND-UE-CCA secure since the adversary
can switch the last bit of the challenge to 1 and send it to the decryption oracle to recover
the underlying plaintext. However, the scheme Π′ can still be used for the secure construction
described above. Indeed, we can use a simulator which does the following:

• On (inject, i, c) the simulator replaces the last bit of c with a 0 and injects it at position
i. If the last bit was a 1, the simulator can remember it in case it is asked to leak the
ciphertext.

With this simulator, the observable behaviors of both the real and the ideal systems are the
same as if the scheme Π was used. The construction is thus secure even though the scheme
Π′ was not IND-UE-CCA secure. This proves that IND-UE-CCA security is too strong for this
construction. With this in mind, we focus on studying the weaker RCCA notion of [KLR19]
instead.

Resource iUSMR

Sub-Interface S.2 of interface S
Input: (inject, i, x) ∈ [n]× Σ
M[i]← x

Figure 4.11: The updatable server-memory resource with injections iUSMR. Only differences
with USMR are shown.

Just like before, let n be the size of the iUSMR and take k ∈ {1, . . . , n}. We place ourselves
in a time interval where we do not consider the confidentiality of messages other than the k-th
one. In this case the simulator σk,CCA works as follows. It simulates the epoch keys and tokens
and, on a (leakKey, i) or (leakToken, i) request, it checks if the event EleakedKey,i (respectively

EleakedToken,i) exists in the Global Event History and leaks the corresponding epoch key (respectively
token) to the adversary if it is the case and ⊥ otherwise.

In the context of unrestricted leakage ((c) iUSMR+), the simulator can use the ideal history
to identify the database entries that correspond to fresh encryptions or updated ones. Together
with its simulated epoch keys and tokens, this allows the simulator to maintain a simulated
memory (and a simulated history) where fresh encryptions of M[k] (in the real world) are
replaced with fresh encryptions of random plaintexts of length |M[k]| and updated ciphertexts
encrypting M[k] (in the real world) are replaced with updates of ciphertexts of random plaintexts
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of length |M[k]|. When i 6= k, the simulated memory and history perfectly match their real-
world counterparts since these messages are not confidential.

In the context of restricted leakage ((c) iUSMR1). On a (leak, k) request, the simulator
forwards it to the ideal resource to get a length ` and returns a fresh encryption of a random
plaintext of length ` under the current epoch key. Also, on a (leak, i) request, i 6= k, the
simulator forwards it to the ideal resource to get a plaintext x and returns a fresh encryption
of x under the current epoch key.

In all leakage contexts, on a (leak, i) request, the simulator returns the i-th entry of its
simulated memory. Finally, on an (inject, i, c) request, σk,CCA tries to decrypt c with the
current epoch key to get a message m or a decryption error ⊥. If there is no decryption error,
σk,CCA sends (inject, i,m) to the resource, else it sends (inject, i,⊥) instead. In both cases,
the simulator sets c as the i-th entry of its simulated memory.

IND-UE-RCCA is sufficient for a secure construction of ciUSMR1

Formally, the fact that IND-UE-RCCA is sufficient to construct ciUSMR1 from iUSMR1 and
UpdKey is expressed in Theorem 4.1 through an intersection of specifications. The following
theorem shows how we construct each of those specifications when the message spaceM is large
enough.

Theorem 4.5. Let Σ be a finite alphabet, n ∈ N and k ∈ {1, . . . , n}. The protocol ue :=
(uecli, ueser) described in Fig. 4.6 and Fig. 4.7, based on a UE scheme with message space
M, constructs the ciUSMR1

Σ,n from the basic iUSMR1
Σ,n and UpdKey inside the inter-

val [Ponly,k(E), Pcompromised,k(E)], with respect to the simulator σk,CCA described in Section 4.3.6.
More specifically, we construct reductions such that, for all distinguishers D,

∆DE (ueCcliue
S
ser[iUSMR1

Σ,n,UpdKey], σSk,CCA ciUSMR1
Σ,n) ≤

(2q + r)∆DE (GIND-UE-RCCA
UPD ,GIND-UE-RCCA

ENC ) +
(q + r + 1)s

|M|
where q (resp. r, s) is an upper bound on the number of writes (resp. updates, injections) made
by the distinguisher.

Proof. Let R := ueCcliue
S
ser[iUSMR1,UpdKey] be the the real system and I := σSk,CCA ciUSMR1

be the ideal system, where σCCA is the simulator given in Section 4.3.6. The two systems behave
differently when leaking the content of M[k]: R leaks an encryption of M[k] while I leaks an
encryption of a random plaintext of length |M[k]|. In order to determine the advantage of a
distinguisher in distinguishing R from I, denoted by ∆D(R, I), we proceed with a sequence of
systems.

• Let S be a resource that behaves just like R except on query (leak, k) where it leaks an
encryption of a random plaintext of length |M[k]| instead of an encryption of M[k], if M[k]
contains a fresh encryption and not an updated one. This happens if a query (write, k, x) has
been issued by the client in the current epoch. In the case when M[k] contains an updated
version of a ciphertext, the two resources behave in the exact same way. In other words, S
behaves just like R except when leaking fresh encryptions.

Let q (resp. s) be an upper bound on the number of (write, k, ·) (resp. injection) queries
issued to the systems. We define a hybrid resource Hi that behaves just like R on the first
i (write, k, ·) queries and like S afterwards. Then we define a reduction Ci that behaves like
Hi except it uses the game GIND-ENC-RCCA

b oracles instead of doing the UE operations by itself
except on the i-th (write, k, ·) request (of the form (write, k, x)) it challenges the game with
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input (x, x̄), where x̄ is a random plaintext of length |x|, to receive the ciphertext c̃. On an
(inject, j, c) request, if c 6= c̃, Ci sends c to the game decryption oracle. If the answer is
invalid, it assigns the value x to the j-th database entry M[j]. We have

R ≡ Hq and S ≡ H0

and, if D is a distinguisher, we have

∆D(CiG
IND-ENC-RCCA
0 ,Ci+1G

IND-ENC-RCCA
1 ) ≤ s

|M|

The two systems behave in the same way on write requests. However, a difference in be-
haviors comes up after the i-th (write, k, ·) request and before the i + 1-th one. Indeed, in
this case, the system CiG

IND-ENC-RCCA
0 has issued a challenge on (x, x̄) but Ci+1G

IND-ENC-RCCA
1

has not. This means that, before the i + 1-th (write, k, ·) request, on an (inject, j, c) where
c is an encryption of x̄, the decryption oracle of CiG

IND-ENC-RCCA
0 returns invalid and x is

written at position j. Meanwhile, since there is no challenge yet, the decryption oracle of
Ci+1G

IND-ENC-RCCA
1 returns x̄ and x̄ is written at position j. A (read, j) request then leads to a

distinction of the two systems. Finding such a ciphertext c with s possible injections happens
with probability s/|M|. Moreover, we have

∆D(Hq,CqG
IND-ENC-RCCA
0 ) = ∆D(R,CqG

IND-ENC-RCCA
0 ) ≤ s

|M|

This is due to the fact that, after the challenge is issued on the q-th (write, k, ·) query, the
behavior of the two systems differs after an (inject, j, c) request when c := Enc(x̄), where x̄ was
the random plaintext used by the reduction during the challenge call. The system R returns
x̄ on a subsequent (read, j) request while CqG

IND-ENC-RCCA
0 returns the challenge plaintext x.

Finding such a ciphertext with s injections queries happens with probability s/|M|. We also
point out that

∆D(C0G
IND-ENC-RCCA
0 ,H0) = ∆D(C0G

IND-ENC-RCCA
0 ,S) = 0

This is because we are using C0, and not Cq like above, so no challenge is issued and the
two systems behave in the exact same way.

Now let CI be a reduction that samples i ∈ [1, q] at random and behaves like Ci and define
D′ := DCI . We have,

Pr[D′(GIND-ENC-RCCA
0 ) = 1] =

1

q

q∑
i=1

Pr[D(CiG
IND-ENC-RCCA
0 ) = 1]

and

Pr[D′(GIND-ENC-RCCA
1 ) = 1] =

1

q

q∑
i=1

Pr[D(CiG
IND-ENC-RCCA
1 ) = 1]

≤ s

|M|
+

1

q

q−1∑
i=0

Pr[D(CiG
IND-ENC-RCCA
0 ) = 1]

Finally, the advantage of the distinguisher in distinguishing system R from S is

117



∆D(R,S) = ∆D(Hq,H0)

≤ ∆D(Hq,CqG
IND-ENC-RCCA
0 ) + ∆D(CqG

IND-ENC-RCCA
0 ,C0G

IND-ENC-RCCA
0 )

+ ∆D(C0G
IND-ENC-RCCA
0 ,H0)

≤ ∆D(CqG
IND-ENC-RCCA
0 ,C0G

IND-ENC-RCCA
0 ) +

s

|M|

≤ |Pr[D(CqG
IND-ENC-RCCA
0 ) = 1]− Pr[D(C0G

IND-ENC-RCCA
0 ) = 1]|+ s

|M|

≤ |
q∑
i=1

Pr[D(CiG
IND-ENC-RCCA
0 ) = 1]−

q−1∑
i=0

Pr[D(CiG
IND-ENC-RCCA
0 ) = 1]|+ s

|M|

≤ q · |Pr[D′(GIND-ENC-RCCA
0 ) = 1]− Pr[D′(GIND-ENC-RCCA

1 ) = 1]|+ s(q + 1)

|M|

≤ q ·∆D′(GIND-ENC-RCCA
0 ,GIND-ENC-RCCA

1 ) +
s(q + 1)

|M|

• Let us consider the systems S and I. By definition, S behaves just like I except on query
(leak, k) where it leaks an updated ciphertext of an encryption of M[k] (instead of a fresh
encryption of a random x̄ of length |M[k]| in the ideal system) if M[k] contains an updated
encryption and not a fresh one. In the case when M[k] contains a fresh ciphertext, the two
resources behave in the exact same way. Namely, they leak an encryption of a random x̄ of
length |M[k]|.

Let r (resp. s) be an upper bound on the number of update (resp. injection) queries issued
to the systems. We define a hybrid resource H′i that behaves just like S on the first i update
queries and like I afterwards. Then we define a reduction C′i that behaves like H′i except it uses
the game GIND-UE-RCCA

xxx , where xxx ∈ {ENC,UPD}, oracles instead of doing the UE operations
by itself and on the i-th update computation for the encryption c of M[k], it challenges the
game with input (x̄, c) to receive either a fresh encryption of a random x̄ or the updated version
of c. We have

S ≡ H′r and I ≡ H′0

and, if D is a distinguisher, we have

∆D(C′iG
IND-UE-RCCA
UPD ,C′i+1G

IND-UE-RCCA
ENC ) ≤ s

|M|
The two systems behave in the same way on update requests. However, a difference in

behaviors comes up after the i-th update request of M[k] and before the i+1-th one. Indeed, in
this case, the system C′iG

IND-UE-RCCA
UPD has issued a challenge on (x̄, c) but C′i+1G

IND-UE-RCCA
ENC has

not. This means that, before the i+ 1-th update request of M[k], on an (inject, j, c′) request
where c′ is an encryption of x̄, the decryption oracle of C′iG

IND-UPD-RCCA
0 returns invalid and

x (the underlying plaintext of c) is written at position j. Meanwhile, since there is no challenge
yet, the decryption oracle of C′i+1G

IND-UE-RCCA
ENC returns x̄ and x̄ is written at position j. A

(read, j) request then leads to a distinction of the two systems. Finding such a ciphertext c′

with s possible injections happens with probability s/|M|.
Let C′I be a reduction that samples i ∈ [1, r] at random and behaves like C′i and define
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D′′ := DC′I . We have,

Pr[D′′(GIND-UE-RCCA
UPD ) = 1] =

1

r

r∑
i=1

Pr[D(C′iG
IND-UE-RCCA
UPD ) = 1]

and

Pr[D′′(GIND-UE-RCCA
ENC ) = 1] ≤ s

|M|
+

1

r

r−1∑
i=0

Pr[D(C′iG
IND-UE-RCCA
UPD ) = 1]

This time, since the injection behaviors of both systems are the same, we have

H′r ≡ C′rG
IND-UE-RCCA
UPD and H′0 ≡ C′0G

IND-UE-RCCA
UPD

Finally, the advantage of the distinguisher in distinguishing system S from I is

∆D(S, I) = ∆D(H′r,H
′
0)

= ∆D(C′rG
IND-UE-RCCA
UPD ,C′0G

IND-UE-RCCA
UPD )

= |Pr[D(C′rG
IND-UE-RCCA
UPD ) = 1]− Pr[D(C′0G

IND-UE-RCCA
UPD ) = 1]|

= |
r∑
i=1

Pr[D(C′iG
IND-UE-RCCA
UPD ) = 1]−

r−1∑
i=0

Pr[D(C′iG
IND-UE-RCCA
UPD ) = 1]|

≤ r · |Pr[D′′(GIND-UE-RCCA
UPD ) = 1]− Pr[D′′(GIND-UE-RCCA

ENC ) = 1]|+ rs

|M|

≤ r ·∆D′′(GIND-UE-RCCA
UPD ,GIND-UE-RCCA

ENC ) +
rs

|M|

• We use the triangular inequality to conclude. Let q, r and s be upper bounds on the number of
writes, updates and injections, respectively. The advantage of the distinguisher in distinguishing
the real system R from the ideal one I is

∆D(R, I) ≤ ∆D(R,S) + ∆D(S, I)

≤ q ·∆D′(GIND-ENC-RCCA
0 ,GIND-ENC-RCCA

1 )+

r ·∆D′′(GIND-UE-RCCA
UPD ,GIND-UE-RCCA

ENC ) +
(q + r + 1)s

|M|
≤ 2q ·∆D′C′′(GIND-UE-RCCA

UPD ,GIND-UE-RCCA
ENC )+

r ·∆D′′(GIND-UE-RCCA
UPD ,GIND-UE-RCCA

ENC ) +
(q + r + 1)s

|M|

≤ (2q + r) ·∆D(GIND-UE-RCCA
UPD ,GIND-UE-RCCA

ENC ) +
(q + r + 1)s

|M|

Where we use the notation ∆D(X,Y) := supD∈D∆D(X,Y) and where the reduction C′′ is
a straightforward adaptation, in the RCCA case, of the one given by Boyd et al. in [BDGJ20,
Theorem 2.4] to prove the following in the CCA case:

Proposition 4.6. Let Π be a UE scheme. For any ENC-CCA adversary A against Π, there
exists a reduction C′′ such that

∆A(GENC-CCA
0 ,GENC-CCA

1 ) ≤ 2 ·∆AC′′(GIND-UE-CCA
ENC ,GIND-UE-CCA

UPD )
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IND-UE-RCCA is necessary for a secure construction of ciUSMR1

Proof. We show that the IND-UE-RCCA security notion is necessary to securely construct the
ciUSMR1 from a iUSMR1 using a UE scheme. Keeping our notations, we will start from
the real system R := ueCcliue

S
ser iUSMR1 and the ideal one I := σS ciUSMR1, where this time

an arbitrary simulator σ is used, and use reductions to construct the resources GIND-UE-RCCA
xxx

implementing the IND-UE-RCCA games. Formally, we will describe two reductions C0 and C1

such that

C0R ≡ GIND-UE-RCCA
ENC , C1R ≡ GIND-UE-RCCA

UPD and C0I ≡ C1I

Let A be an adversary against the IND-UE-RCCA security notion. Using the triangular
inequality, we have

∆A(GIND-UE-RCCA
ENC ,GIND-UE-RCCA

UPD ) = ∆A(C0R,C1R)

≤ ∆A(C0R,C0I) + ∆A(C0I,C1I)+

∆A(C1I,C1R)

= ∆AC0(R, I) + ∆AC1(R, I)

•We are going to describe two reductions C0 and C1 that connect to a iUSMR1 (or ciUSMR1)
resource and implement the oracles of the GIND-UE-RCCA

xxx games. Let n (resp. q) be an upper
bound on the number of encryption (resp. decryption) queries issued to the games by the
adversary. In the following, we consider resources of memory size n + q + 1. This is done to
have enough space to store the ciphertexts returned by the encryption oracle, the ciphertexts
sent to the decryption oracle, as well as the challenge plaintext in case the challenger ask for
updates to the update oracle later on. We use the same reductions as in the CPA case, the
only difference being the addition of the decryption oracle. Since its behavior depends on the
challenge oracle, we also describe this oracle below.

- On O.Chall(m0, c1): Both reductions check that c1 was present in memory in the previous
epoch and that its updated version has not been leaked yet in the current epoch. They
also check that m1 := Deck(c1) and m0 have the same length, this can be done with a
read request at interface C. They return ⊥ if it is not the case. Otherwise, the reductions
keep m0 and m1 in memory and let i be the position where c1 was written. The reductions
then proceed like this:

• C0 sends (write, n + q + 1,m0) at interface C then it sends (leak, n + q + 1) at
interface S and outputs the result.

• C1 sends (leak, i) at interface S and outputs the result.

- On the j-th O.Dec(c):
• Before the challenge call, Cb sends an (inject, n+ j, c) request at interface S. Then,

it sends a (read, n+ j) request at interface C to get a result m and returns m.

• After the challenge call, Cb sends the same requests as before to get the result m.
Only this time, if m ∈ {m0,m1} they return invalid and if not they return m.

Moreover, the reductions have all the information to check for trivial wins. When connected
to R, the reductions Cb exactly implements the games GIND-UE-RCCA

xxx . Their observable behaviors
being the same, we have C0R ≡ GIND-UE-RCCA

ENC and C1R ≡ GIND-UE-RCCA
UPD .
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Now, if we connect the reductions to the ideal system I, where an arbitrary simulator σ is
used, their behaviors can only differ on the challenge call. When asked for the challenge on
the pair (m0, c1), reduction C0 writes m0 at position n + q + 1 then it outputs the result of
(leak, n + q + 1) meanwhile C1 outputs the result of (leak, i) where i is the position where
the ciphertext c1 was already written. In the ideal system I, the result of a leak request is
always the length of the message stored. Since, letting m1 be the underlying plaintext of c1,
the reductions checked that the two messages m0 and m1 had the same length, the inputs of
the simulator σ are the same and the behaviors are thus identical. We can check that we never
go beyond the leakage condition, it is never the case that a reduction leaks the content of a
position j at more than one occasion in a given epoch. We conclude that the systems CbI are
indistinguishable from one another. Written differently, we have C0I ≡ C1I and the theorem is
proven in the IND-UE-RCCA case.

In the context of restricted leakage, we proved that the IND-UE-RCCA security notion for UE
schemes is the correct one to consider if clients want to protect the confidentiality and the age of
the data they store on a remote server in the presence of an adversary who can inject arbitrary
data and is only able to leak the contents of the server at most once between each key update.
Very similarly to the CPA case, we can extend these results to the ciUSMR+ construction in
the unrestricted leakage context to prove that the IND-ENC-RCCA + IND-UPD-RCCA notion is
necessary and sufficient for this construction.

4.4 A composable and unified treatment of Private Information
Retrieval

4.4.1 Our modelization of Private Information Retrieval

In this section, the ISMR is renamed DB to model PIR. The resource DB is described in
Fig. 4.12. It has the following interfaces:

• Interface C0: The user (or client) can use this interface to initialize the state of the
database. When the user is done with this interface, he can send the initComplete

request which sets the Active boolean to true. This turns off the interface C0 and
unlocks all the others interfaces of the resource. This interface is useful to model PIR
protocols working on encrypted or encoded data.

• Interface C: The user main interface. We rename askInteraction into (query, q) which
sends a query q to the resource. When the servers all respond, the user can also use
reconstruct to recover their answers.

• Interface S: The interface of the server, who will adopt a semi-honest (also called honest-
but-curious) adversarial behavior. This means that the server accepts to plug a converter
in its interface to handle answer requests (we renamed interact to answer) according
to the PIR protocol. But the server will also try to use the information it has access
to, mainly the requests of the clients (through getQuery requests), the content of the
database (through read requests) and a log file of all honest actions (through getHist),
in order to break the privacy guarantees of the clients.

For simplicity we will present a database that can only process a single query and answer. To
construct a database with multiples queries, one can compose multiple single-use databases in
parallel or parameterize the database with the number of query treated. In order to give security
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guarantees for an unbounded-query database, one has to show that the security guarantees hold
for any number of queries. We also limit the number of clients to one for simplicity but, as most
PIR protocols support an arbitrary number of clients, it is also possible to increase the number
of clients by duplicating the interface C or by letting each client connect to the same interface.
We will give a generalization of DB to multiple servers later on.

Resource DBΣ,n

Initialization
Init, Active← false, M← [ ], Hist← [ ], q ←⊥, a←⊥

Interface C0

Input: (init,M′) ∈ Σn

if not Init
M←M′
Hist← Hist || (0, init)
Init← true

Input: (read, i) ∈ [1, n]
if Init and not Active

Hist← Hist || (0, R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Init and not Active

Hist← Hist || (0, W, i, x)
M[i]← x

Input: initComplete

if Init and not Active
Active← true

Interface C
Input: (query, q′)

if Active
if q =⊥

q ← q′

Hist← Hist || (query, q)
Input: reconstruct

if Active
if a 6=⊥

return a

Interface Interface S
Input: (answer, a′)

if q 6=⊥ and a =⊥
a← a′

Hist← Hist || (answer, a)

Input: (read, i) ∈ [1, n]
return M[i]

Input: getQuery

return q
Input: getHist

return Hist

Figure 4.12: Our ISMR viewed as a basic interactive database DB with size n and alphabet
Σ.

In order to construct a stronger database from the basic DB, one can use a PIR protocol
(Q,A,R) and use converters on interfaces C and S. The client converter is described in Fig. 4.13
and the server converter in Fig. 4.14. Note that the client converter pircli modifies the request
query by changing its parameter to be an index i ∈ [1, n] corresponding to the database entry he
wishes to retrieve. The server converter does the same by modifying the answer request to have
no parameter at all, the converter taking care of computing an answer using the A algorithm of
the PIR protocol. Moreover, the pirser converter makes sure that the answer request produces
well formed answers for the clients but this converter does not alter the behavior of getQuery
and read requests at interface S. This means that those requests can still be used by the server
to gather information and try to find out the index i of interest for the client.

A converter can also be used on interface C0 if the database content needs to be modified
in any way. For example, a converter on C0 can be used to encode the database if the PIR
protocol (Q,A,R) relies on an error correcting code.
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Converter pircli

Initialization
ind←⊥, s←⊥

Interface out
Input: (query, i) ∈ [1, n]

if ind =⊥
s

$←− S
ind← i
q ← Q(ind, s)
output (query, q) at interface C of DB

Input: reconstruct

output reconstruct at interface C of DB
Let a be the result
if a 6=⊥

return R(a, ind, s)

Figure 4.13: Description of the client converter pircli for a PIR protocol (Q,A,R).

Converter pirser

Interface out
Input: answer

output getQuery at interface S of DB
Let q be the result
if q 6=⊥

Retrieve M with read requests at interface S
a← A(M, q)
output (answer, a) at interface S of DB

Figure 4.14: Description of the server converter pirser for a PIR protocol (Q,A,R).
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We introduce a new database resource PrivDB with stronger security guarantees that we
hope to achieve with a PIR protocol. In DB, the adversary had access to the queries via the
getQuery request and had also access to a log file which contained the query, the answer and
the possible requests sent by C0 during the initialization of the resource. In order to ensure
privacy for the client’s queries, the database PrivDB will hide those queries and answers from
the adversary. Since the queries and answers are not available to the adversary in PrivDB
they should be useless to him in the real world and in particular they should not help him get
any information about the index i desired by the user.

Furthermore, we will also require the resource PrivDB to be “correct” in the sense that
when sending the reconstruction request (after a query and an answer), the user gets back
the database record he queried. The resource PrivDB is given in Fig. 4.15.

Resource PrivDBΣ,n

Initialization
Init,Active← false, M← [ ],Hist← [ ], q ←⊥, a←⊥, ind←⊥

Interface C
Input: (query, i) ∈ [1, n]

if Active
if q =⊥

q ← ok

Hist← Hist || (query)
ind← i

Input: reconstruct

if Active
if a 6=⊥

return M[ind]a

Interface S
Input: answer

if Active
if q 6=⊥ and a =⊥

a← ok

Hist← Hist || (answer)

Input: (read, i) ∈ [1, n]
return M[i]

Input: getQuery

return qb

Input: getHist

return Hist

aIf the server has the capability to overwrite data, we have to return the ind-th record of the database
as it was when the answer was computed.

bThe two possible values for q are ⊥ and ok.

Figure 4.15: The private database PrivDB where queries and answers are useless to an adver-
sary (privacy) and where the client gets the item he queried (correctness). Interface C0 remains
unchanged.

The construction is valid if the resource DB with the PIR protocol is indistinguishable
from the resource PrivDB with a simulator. The simulator is here to simulate the real world
behavior from the adversary point of view. The simulator is thus plugged in the S interface,
processing and choosing the return values of each request of the adversary at this interface.
Here, the goal of the simulator is twofold.

First, it has to simulate a real-world history with an ideal one. Recall that the ideal history
does not have any query or answer in it and that the simulator has no way to know which index
i is wanted by the user. The simulation will then be as follows: the simulator will choose an
index i′ uniformly at random and compute a query q and an answer a for this index using the
algorithms Q and A. It will then replace the ideal query and answer of the ideal history with
the simulated query and answer.

The second goal of the simulator is to maintain a simulated database if need be. Indeed,
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since the adversary can read the database using (read, i) requests at interface S and since there
is no protocol on the ideal resource, the simulator has to apply any transformation that the
protocol could have used on the database records. For example, the simulator has to encode the
ideal database content if an error correcting code is used by the real world protocol or encrypt
the database if the protocol has done so in the real world. Then on a (read, i) request to the
ideal resource, the simulator returns the i-th record of the simulated database. The simulator
is given in full detail in Fig. 4.18.

We claim that telling apart the real view from the simulated one is as hard as attacking the
privacy property of the PIR protocol. Indeed, the query observable behavior at interface C is
the same in both worlds and the same holds for answer. For reconstruction the real world
has to match the ideal one where it always returns the database record queried by the user.
This is the case if the PIR protocol is correct. At interface S, the difference between the real
and the simulated history is that the query and answer of the real one are computed using the
index chosen by the client whereas in the simulated history they are computed using a random
index. For a distinguisher to tell if a query and answer pair was computed using the index i
he chose (since it has access to the client interface) or a different index, he would have to learn
some information about the index used in this execution of the PIR protocol (mainly if it was
computed using i or not) thus breaking the privacy property. For the read request available at
the S interface, the simulator knows which protocol was used at the interface C0 to setup the
database (with error correcting codes, encryption, . . . ) and can thus perfectly simulate the real
database by applying the same transformation to the ideal database (which he has access to
thanks to read requests).

We can conclude that if a correct and private PIR protocol is used in the construction,
the advantage of the distinguisher in distinguishing the real world from the ideal world is no
greater than the advantage of an attacker in telling apart a pair (q, a) of the protocol’s query
and answer computed using an index i chosen by the attacker from a pair computed using a
random index.

Theorem 4.7. Let Σ be a finite alphabet and n ∈ N. The protocol pir := (pircli, pirser) described
in Fig. 4.13 and Fig. 4.14 based on a PIR scheme (Q,A,R) constructs the private database
PrivDBΣ,n from the basic database DBΣ,n, with respect to the simulator simQ,A,RPriv as defined
in Fig. 4.18 and the dummy converter honDB (that disables any adversarial behavior). More
specifically, we construct a reduction C such that, for all distinguishers D,

∆D(honDBSpirCclipir
S
ser DBΣ,n, honDB

S PrivDBΣ,n) = 0

and ∆D(pirCclipir
S
ser DBΣ,n, (sim

Q,A,R
Priv )S PrivDBΣ,n) = ∆DC(G0,G1)2

where the privacy games Gb are described in Fig. 4.16.

Proof. We need to find a reduction C such that CG0 ≡ pirCclipir
S
ser DBΣ,n and

CG1 ≡ (simQ,A,RPriv )S PrivDBΣ,n. Then, for all distinguishers D, we will have that the advantage
of D in distinguishing the real system from the ideal one is

∆D(pirCclipir
S
ser DBΣ,n, (sim

Q,A,R
Priv )S PrivDBΣ,n) = ∆D(CG0,CG1)

= ∆DC(G0,G1)

which is the result we are looking for. The reduction C is given in Fig. 4.17.
This reduction, when connected to the game G0, exhibits the exact same behavior as the

real system DB equipped with the protocol, and, when connected to the game G1, exhibits the
exact same behavior as the ideal system PrivDB equipped with the simulator.

2If the PIR protocol is IT-secure, then this advantage is 0 for all distinguishers.
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Game Gb

Initialization
M← [ ], n←⊥

Interface out
Input: (init,M′)

M←M′
n← |M|

Input: (chall, i)

s
$←− S

if b = 0
j ← i

else
j

$←− [n]

q ← Q(j, s)
a← A(M, q)
return (q, a)

Figure 4.16: The privacy games for the PIR protocol (Q,A,R).

Note that the proof is the same whether the PIR protocol is computationally secure or
information-theoretically secure. In the first case, we consider efficient (i.e. polynomial time)
distinguishers while in the other one we consider all possible distinguishers. In both cases, we
construct the same private database PrivDB, with distance (i.e. best distinguishing advantage)
0 with respect to all possible distinguishers in the IT setting and with a non-zero distance, linked
to the underlying computational assumption, with respect to only efficient distinguishers in the
computational setting.

Remark 13. Since the random string s does not leak in any way to the distinguisher or the
curious server (which is accurate since it is known only to the client), the distinguisher cannot
use the reconstruction algorithm R to tell if the query and answer pair he observes really comes
from the index i he chose or not.

The efficiency of the PIR protocol is given by: |q| + |a| for its communication complexity,
and its computational complexity is given by the sum of those of Q, A and R.

4.4.2 Generalization to multiple servers

We present MultDB, a generalization of DB in the multiple server case. For the sake of
simplicity, we put the same database on all servers but it is possible to modify the behavior of
interface C0 to allow the client to modify each database independently. Similarly, we generalize
the converters into mult pircli and mult pirserj in the multiple server setting. Those converters
are described in Fig. 4.20 and Fig. 4.21. The three algorithms Q,A and R are still present and
used in the same way as before.

In the multi-server case, we introduce a threshold t which allows the curious servers to form
a coalition of size at most t in order to share the capabilities of their interfaces. This means
that each server in the coalition can see the histories of the other members as well as read their
memory. The database MultDBn,k,t can be configured by choosing n the size of the database,
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Reduction C

Initialization
Init,Active,Queried,Answered← false

M← [ ],Hist← [ ], q ←⊥, a←⊥, ind←⊥
Interface Interface C0

Input: (init,M′) ∈ Σn

if not Init
M←M′
Hist← Hist || (0, init)
Init← true

Input: (read, i) ∈ [1, n]
if Init and not Active

Hist← Hist || (0, R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Init and not Active

Hist← Hist || (0, W, i, x)
M[i]← x

Input: initComplete

if Init and not Active
Active← true

Send (init,M) at interface out of Gb

Interface C
Input: (query, i)

if Active and not Queried
Queried← true

(q, a)← (chall, i) at interface out of
Gb

ind← i
Hist← Hist || (query, q)

Input: reconstruct

if Active and Answered
return M[ind]

Interface S
Input: answer

if Queried
Answered← true

Hist← Hist || (answer, a)

Input: (read, i) ∈ [1, n]
return M[i]

Input: getQuery

if Queried
return q

else
return ⊥

Input: getHist

return Hist

Figure 4.17: The reduction C connected to a privacy game Gb.
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Simulator simQ,A,RPriv

Initialization
H ← [ ],Msim ← [ ], pos← 1, s←⊥, ind←⊥, q ←⊥, a←⊥

Interface Interface S
Input: answer

Update()
return a

Input: getHist

Update()
return H

Input: getQuery

Update()
return q

Input: (read, i)
Update()
return Msim[i]

procedure Update
M′ ← [(read, i) to PrivDB for i = 1 . . . n]
Msim ← PC0(M′)
Hist← getHist to PrivDB
for j = pos . . . |Hist| do

if Hist[j] = (query)

ind
$←− [1, n]

s
$←− S

q ← Q(ind, s)
H ← H || (query, q)

else if Hist[j] = (answer)
a← A(M, q)
H ← H || (answer, a)

else
H ← H || Hist[j]

pos← pos+ 1

Figure 4.18: The simulator for the protocol composed of (Q,A,R). PC0 denotes the transfor-
mation applied to the memory M by a possible converter plugged in interface C0.
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k the number of servers holding this database (or a modified/distributed version of it) and t the
largest number of malicious servers allowed to cooperate. This resource is described in Fig. 4.19.

We can then define a new resource with better security guarantees than those of MultDB.
Just like in the one server case, the new resource PrivMultDB requires that reconstruct re-
turns the database record desired by the client when he issued its query request. PrivMultDB
also requires that the curious servers Sj do not get to see the queries and answers when using
getHist. This resource is described in Fig. 4.22. For the construction of PrivMultDBn,k,t to
hold, we require the PIR protocol used to be both correct and t-private.

4.4.3 Instantiations in the multi-server case

We give two known examples of PIR schemes that construct PrivMultDB from MultDB.
The first scheme is based on Locally Decodable Codes (LDC). The second uses Shamir’s secret
sharing [Sha79]. The focus of this section is not to explain LDCs or secret sharing but rather
to showcase the power and the flexibility of our construction.

Using Locally Decodable Codes

Given a message m := (m1, . . . ,mn) encoded into a codeword c and an index i ∈ [1, n], an LDC
permits to recover mi while only reading a sublinear number of symbols of m. Formally, LDCs
can be defined by a straightforward adaption of Definition 1.11. We introduce the following
property of LDCs.

Definition 4.2 (Smoothness - informal). We say that a LDC C with locality k is t-smooth if for
every index i and every query q := (q1, . . . , qk) issued by the decoding algorithm, any restrictions
of q to at most t of its coordinates are uniformly distributed.

We can now describe the following PIR protocol. Let C be a t-smooth LDC with locality k,
dimension n and length n′. We need a converter on interface C0 that encodes the database M
and distributes it on the k different servers of MultDBn′,k,t. Let M′ be the encoded database.
Let s be a random string that will be used as a source of randomness in algorithm Q. On
input i and s, the algorithm Q chooses k queries q1, . . . , qk which corresponds to k indices to
be read in the codeword. Each one is sent to the corresponding server. The answer algorithm
returns A(j,M′, qj) := M′[qj ]. The reconstruction algorithm R runs the local decoder on inputs
a1, . . . , ak and i.

We claim that this protocol used on MultDBn′,k,t securely constructs, for all distinguishers,
the private database PrivMultDBn,k,t. Indeed, since the code is t-smooth, the distributions of
the restrictions of the random variables Q(i, ·)j to at most t queries are identical for all i ∈ [n]
since they are in fact all uniform. This means that a coalition of at most t servers gain no
information on i by sharing their queries together. It is thus impossible even for an unbounded
distinguisher to distinguish between real queries and simulated ones if the coalition size is at
most t.

Using Secret-Sharing

Let k be the number of servers, t the desired coalition size threshold, n the size of the database
and i the index of the database record desired by the client. We present a t-private PIR scheme
using the (t, k)-Shamir secret-sharing [Sha79]. The database M is viewed as a matrix with c
columns where c is chosen to be the closest possible integer to

√
n.

The client starts by choosing k non zero evaluation points α1, . . . , αk in a suitable finite
field. On inputs i and s, the algorithm Q determines the column ci where the i-th record lies,
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Resource MultDBΣ,n,k,t

Initialization
Init,Active,Coalition← false

Histj ← [ ], qj ←⊥, aj ←⊥, bj ← false for j = 1 . . . k
M← [ ]

Interface C0

Input: (init,M′) ∈ Σn

if not Init
M←M′
for j = 1 . . . k do

Histj ← Histj || (0, init)

Init← true

Input: (read, i) ∈ [1, n]
if Init and notActive

for j = 1 . . . k do
Histj ← Histj || (0, R, i)

return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Init and not Active

for j = 1 . . . k do
Histj ← Histj || (0, W, i, x)

M[i]← x

Input: initComplete

if Init and not Active
Active← true

Interface C
Input: (query, q′1, . . . , q

′
k)

if Active
if (q1, . . . , qk) = (⊥, . . . ,⊥)

for j = 1 . . . k do
qj ← q′j
Histj ← Histj ||

(query, j, qj)

Input: reconstruct

if Active
if a1 6=⊥ and . . . and ak 6=⊥

return (a1, . . . , ak)

Interface W
Input: (formCoalition, b′1, . . . , b

′
k) ∈ {true,

false}k

if |{1 ≤ j ≤ k | b′j = true}| ≤ t and
not Coalition

(b1, . . . , bk)← (b′1, . . . , b
′
k)

Coalition← true

Interfaces Sj , j ∈ [1, k]

Input: (answer, a)
if Active

if qj 6=⊥ and aj =⊥
aj ← a
Histj ← Histj || (answer, j, aj)

Input: (read, i) ∈ [1, n]
return M[i]

Input: getHist

if Coalition and bj
return Histj

Input: getQuery

if Coalition and bj
return qj

Figure 4.19: The basic database MultDB for k servers where at most t of them can form a
coalition, allowing them to share information together.
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Converter mult pircli

Initialization
ind←⊥, s←⊥

Interface out
Input: (query, i) ∈ [1, n]

if ind =⊥
s

$←− S
ind← i
(q1, . . . , qk)← Q(ind, s)
output (query, q1, . . . , qk) at interface C of MultDB

Input: reconstruct

output reconstruct at interface C of MultDB
Let (a1, . . . , ak) be the result
if a1 6=⊥ and ak 6=⊥

return R(a1, . . . , ak, ind, s)

Figure 4.20: Description of the client converter mult pircli for a PIR protocol (Q,A,R) in the
multi-server setting.

Converter mult pirserj

Interface out
Input: answer

output getQuery at interface Sj of MultDB
Let qj be the result
if qj 6=⊥

Retrieve M with read requests at interface Sj
aj ← A(j,M, qj)
output (answer, aj) at interface Sj of MultDB

Figure 4.21: Description of the server converter mult pirserj for a PIR protocol (Q,A,R) in the
multi-server setting.

131



Resource PrivMultDBΣ,n,k,t

Initialization
Init,Active,Coalition← false

Histj ← [ ], qj ←⊥, aj ←⊥, bj ← false for j = 1 . . . k
M← [ ], ind←⊥

Interface C
Input: (query, i) ∈ [1, n]

if Active
if (q1, . . . , qk) = (⊥, . . . ,⊥)

(q1, . . . , qk)← (ok, . . . , ok)
for j = 1 . . . k do

Histj ← Histj || (query, j)
ind← i

Input: reconstruct

if Active
if a1 6=⊥ and . . . and ak 6=⊥

return M[ind]

Interfaces Sj , j ∈ [1, k]

Input: answer

if Active
if qj 6=⊥ and aj =⊥

aj ← ok

Histj ← Histj || (answer, j)

Input: getHist

if Coalition and bj
return Histj

Input: (read, i) ∈ [1, n]
if Coalition and bj

return M[i]

Interface W

Input: (formCoalition, b′1, . . . , b
′
k) ∈ {true, false}k

if |{1 ≤ j ≤ k | b′j = true}| ≤ t and not Coalition
(b1, . . . , bk)← (b′1, . . . , b

′
k)

Coalition← true

Figure 4.22: The private (and correct) database PrivMultDB with k servers where at most t
of them can form a coalition. The interface C0 remains unchanged.

132



and secret shares component-wise the vector eci (with a 1 in position ci and 0 everywhere else)
into k shares s1, . . . , sk using Shamir secret-sharing. The shares s1, . . . , sk are the output of the
algorithm Q. The evaluation points and the source of randomness needed for these operations
are given in the string s. On inputs M, j, and sj the algorithm A computes the product
aj := Msj and outputs it. Finally, on inputs M, i, a1, . . . , ak, s the algorithm R can compute
the Lagrange interpolation for each component of the aj to reconstruct the secret:

k∑
j=1

aj
∏

i=1,i 6=j

αi
αi − αj

=

k∑
j=1

Msj
∏

i=1,i 6=j

αi
αi − αj

=Meci

The algorithm thus recovers the ci-th column of the database which contains the i-th record,
the one of interest for the client. R returns this record.

Here, the correctness of the PIR protocol directly follows from the correctness of the secret
sharing scheme. The same holds for t-privacy: if a coalition of at most t servers cannot learn
anything about eci from their combined shares then they cannot learn anything about the index
i requested by the client. This protocol thus yields the same construction guarantees as the one
described using a PIR protocol based on LDCs.

4.4.4 The case of Byzantine servers

We can further strengthen the capabilities of PrivMultDB by allowing the servers to send an
ill-formed answer or even to not answer at all after receiving the client’s query. Such a server is
called a Byzantine server. In the following, we introduce a threshold u which is an upper-bound
on the number of Byzantine servers. After receiving the client’s query, a Byzantine server can
choose to assign the special symbol ε to its answer. This symbol means that the answer is
of no use to the client (corresponding to an absence of answer or an ill-formed answer during
the execution of the PIR protocol). The Byzantine servers are designated by the environment
(at interface W). We present the new ByzPrivMultDBΣ,n,k,t,u resource in Fig. 4.23. We
also need to allow at most u Byzantine servers in the real resource MultDB, which defines a
new resource ByzMultDBΣ,n,k,u. The additions needed being the same as the ones made to
PrivMultDB, we also refer to Fig. 4.23 for those. The converters mult pircli and mult pirserj
remain unchanged.

The simulator used in the proof of construction of the new resource ByzPrivMultDB needs
to be slightly modified to account for the aforementioned additions. In particular, the simulator
just forwards the requests badAnswer to interface Sj and, when it simulates the history of the
j-th server, if an entry of the form (answer, j, ε) is present, the simulator does not need to
simulate an answer and can just copy this entry in its simulated history for the j-th server.

Finally, we can relax the definition of correctness for PIR protocols using the aforementioned
threshold u by saying that a PIR protocol is u-correct if the user can recover its desired record
even if at most u servers deviate from the protocol by providing incorrect answers or no answers
at all.

Remark 14. We mention a concurrent and parallel work of Chen-Da Liu-Zhang and Ueli Mau-
rer [LZM20]. They proposed a new way of making security statements in CC about coalitions
of dishonest parties in the context of multiparty computation. They introduce a new type of
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Resource ByzPrivMultDBΣ,n,k,t,u

Initialization
Byzantines← false

cj ← false for j = 1 . . . k

Interface Interface Sj , j ∈ [1, k]

Input: badAnswer

if Byzantines and cj and aj =⊥
if qj 6=⊥

aj ← ε
Histj ← Histj || (answer, j, ε)

Interface Interface W

Input: (formByzantines, c′1, . . . , c
′
k) ∈ {true, false}k

if |{1 ≤ j ≤ k | c′j = true}| ≤ u and not Byzantines
(c1, . . . , ck)← (c′1, . . . , c

′
k)

Byzantines← true

Figure 4.23: The private and Byzantine-resistant database ByzPrivMultDB with k servers
where at most t of them can form a coalition to share information and u of them can endorse
a Byzantine behavior. Only the additions to PrivMultDB appear. The same additions are
made to MultDB to define ByzMultDB.

relaxation, parameterized by the set Z of potentially dishonest parties, allowing to capture the
guarantees for every such dishonest set Z. When modeling multi-server PIR, we consider the
special case in which nothing is guaranteed if Z contains too many parties. Since their secu-
rity definitions rely on relaxations, they do not need to model the ability to form coalitions
inside resources. Instead, the possibility and the impact of coalitions only appear in security
statements (e.g. in construction theorems).

We would advise to use our treatment of interactivity to design resources and to use the
Z-relaxation of [LZM20] to make more general and abstract security statements. This way, one
can design interactive resources devoid of unnecessary and technical details while still making
meaningful security statements. For more details on Z-relaxations, see [LZM20, Sections 2.4 &
2.5].
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Conclusion

We conclude with some future prospects for the works presented in this thesis. In Chapter 2, we
showed that our TOGA-UE scheme has a malleability property which prevents it from being CCA
secure. Hence, it would be interesting to find a transformation that would make TOGA-UE CCA
secure. Moreover, we would like to propose new post-quantum constructions for UE based on
error-correcting codes. In Chapter 3, we presented a framework for deriving PoR schemes from
LCCs. We instantiated our framework using graph codes but we were unable to give concrete
parameters because of the difficulty of the MSMD (Minimum Subgraph of Minimum Degree)
problem. Thus, we are trying to construct regular graphs with large minimum subgraphs of
small minimum degree. However, even if we succeeded, it is unlikely that these graphs have
good properties for coding. Thus, we would like to instantiate our framework with other families
of high-rate LCCs such as the multiplicity codes of Kopparty et al. [KSY11]. Finally, the use of
the CC model made all of our constructions composable. Thus, it would be interesting to find
new applications or existing protocols that use UE, PoRs, LCCs or PIR as a building block.
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sion of graph codes with reed-solomon component codes. In 2013 IEEE Interna-
tional Symposium on Information Theory, pages 1227–1231, 2013.

[BI01] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval:
A unified construction. In Fernando Orejas, Paul G. Spirakis, and Jan van
Leeuwen, editors, Automata, Languages and Programming, 28th International Col-
loquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076
of Lecture Notes in Computer Science, pages 912–926. Springer, 2001.

[BIKR02] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-François Raymond. Break-
ing the o(n1/(2k−1)) barrier for information-theoretic private information retrieval.
In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19
November 2002, Vancouver, BC, Canada, Proceedings, pages 261–270. IEEE Com-
puter Society, 2002.

[BJO09] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and
implementation. In Proceedings of the 2009 ACM Workshop on Cloud Computing
Security, CCSW ’09, pages 43–54, New York, NY, USA, 2009. ACM.

[BLMR13] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key Ho-
momorphic PRFs and Their Applications, pages 410–428. Advances in Cryptology
- CRYPTO 2013. Springer Berlin Heidelberg, 2013.

[BM18] Christian Badertscher and Ueli Maurer. Composable and robust outsourced stor-
age. In Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the
RSA Conference 2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings,
pages 354–373, 2018.

[CG97] Benny Chor and Niv Gilboa. Computationally private information retrieval (ex-
tended abstract). In Frank Thomson Leighton and Peter W. Shor, editors, Proceed-
ings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,
El Paso, Texas, USA, May 4-6, 1997, pages 304–313. ACM, 1997.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-
mation retrieval. In 36th Annual Symposium on Foundations of Computer Science,
Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 41–50. IEEE Computer
Society, 1995.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper B. Nielsen. Relaxing Chosen-Ciphertext
Security, pages 565–582. Advances in Cryptology - CRYPTO 2003. Springer Berlin
Heidelberg, 2003.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
Csidh: an efficient post-quantum commutative group action. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 395–427. Springer, 2018.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private
information retrieval with polylogarithmic communication. In Jacques Stern, ed-
itor, Advances in Cryptology - EUROCRYPT ’99, International Conference on
the Theory and Application of Cryptographic Techniques, Prague, Czech Republic,
May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science,
pages 402–414. Springer, 1999.

138



[CMT13] Sandro Coretti, Ueli Maurer, and Björn Tackmann. Constructing Confidential
Channels from Authenticated Channels-Public-Key Encryption Revisited, pages
134–153. Advances in Cryptology - ASIACRYPT 2013. Springer Berlin Heidelberg,
2013.
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their applications. In László Babai, editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages
262–271. ACM, 2004.

[Jia20] Yao Jiang. The direction of updatable encryption does not matter much. In Shiho
Moriai and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020,
pages 529–558, Cham, 2020. Springer International Publishing.

[JK07] Ari Juels and Burton S. Kaliski, Jr. Pors: Proofs of retrievability for large files.
In Proceedings of the 14th ACM Conference on Computer and Communications
Security, CCS ’07, pages 584–597, New York, NY, USA, 2007. ACM.

[JM20] Daniel Jost and Ueli Maurer. Overcoming Impossibility Results in Composable
Security Using Interval-Wise Guarantees, pages 33–62. Advances in Cryptology -
CRYPTO 2020. Springer International Publishing, 2020.

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A Unified and Composable Take
on Ratcheting, pages 180–210. Theory of Cryptography. Springer International
Publishing, 2019.

[JQSY19] Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear group
action on tensors: A candidate for post-quantum cryptography. In Dennis Hofheinz
and Alon Rosen, editors, Theory of Cryptography, pages 251–281, Cham, 2019.
Springer International Publishing.

[Jue01] Ari Juels. Targeted advertising ... and privacy too. In David Naccache, editor,
Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA Confer-
ence 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings, volume 2020
of Lecture Notes in Computer Science, pages 408–424. Springer, 2001.

[KLDF16] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle: An efficient
communication system with strong anonymity. Proc. Priv. Enhancing Technol.,
2016(2):115–134, 2016.

[KLR19] Michael Klooß, Anja Lehmann, and Andy Rupp. (r)cca secure updatable encryp-
tion with integrity protection. In Y. Ishai and V. Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, pages 68–99, Cham, 2019. Springer Interna-
tional Publishing.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In 38th Annual Sympo-
sium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 364–373. IEEE Computer Society, 1997.

140



[KO00] Eyal Kushilevitz and Rafail Ostrovsky. One-way trapdoor permutations are suf-
ficient for non-trivial single-server private information retrieval. In Bart Preneel,
editor, Advances in Cryptology - EUROCRYPT 2000, International Conference on
the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May
14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer Science, pages
104–121. Springer, 2000.

[KSY11] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with
sublinear-time decoding. In Proceedings of the Forty-third Annual ACM Sympo-
sium on Theory of Computing, STOC ’11, pages 167–176, New York, NY, USA,
2011. ACM.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures
for error-correcting codes. In Proceedings of the Thirty-second Annual ACM Sym-
posium on Theory of Computing, STOC ’00, pages 80–86, New York, NY, USA,
2000. ACM.

[Lav18] Julien Lavauzelle. Codes with locality: constructions and applications to crypto-
graphic protocols. PhD thesis, Université Paris-Saclay (ComUE), 2018. Thèse de
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Résumé :
Cette thèse porte sur la sécurité du stockage, de l’accès et de la
maintenance de données distantes. En effet, le stockage distant
fait émerger de nouvelles menaces pour ses utilisateurs. Nous
nous intéressons aux trois protocoles suivants. Tout d’abord,
les Preuves de Récupérabilité (PoR) permettent à un utili-
sateur qui accède rarement à ses données de vérifier qu’elles
sont bien toujours stockées et intactes sur le serveur. Ensuite,
le Chiffrement avec Mise à Jour (UE) rend possible la rota-
tion de clés potentiellement compromises en utilisant peu de
bande passante. Enfin, la Récupération Privée d’Information
(PIR) rend les requêtes d’un client confidentielles. Le but de
cette thèse peut être résumé en trois étapes. En premier lieu,
nous développons des notions de sécurité modulaires qui ex-
priment les garanties de sécurité attendues par des applica-
tions concrètes. Ensuite, nous vérifions si les définitions de
sécurité existantes sont suffisantes, voire nécessaires, pour ap-
porter nos garanties. Finalement, si les schémas cryptogra-
phiques existants n’atteignent pas nos nouvelles définitions,
nous les améliorons ou proposons de nouveaux schémas qui le
font. Nos définitions de sécurité sont données dans le modèle
Cryptographie Constructive. Voici les contributions de cette
thèse. Nous montrons comment construire des schémas UE

avec des actions de groupe. Tout d’abord, nous proposons le
premier schéma UE post-quantique permettant un nombre illi-
mité de mises à jour. Il s’agit du premier schéma UE post-
quantique dont la sécurité ne repose pas sur des problèmes
de réseaux. Enfin, nous montrons comment il pourrait être
possible d’obtenir le premier schéma d’UE post-quantique
résistant aux attaques à chiffrés choisis. Malheureusement, ce
schéma ne dispose pas d’instanciations pratiques pour le mo-
ment. Pour les PoRs, nous montrons qu’un schéma de La-
vauzelle et Levy-dit-Vehel n’est pas aussi sûr que l’on pou-
vait le croire. Nous proposons un cadre pour concevoir des
PoRs efficaces et sûrs en utilisant des codes localement cor-
rigibles. Avec notre cadre, nous donnons une généralisation
sûre du schéma précédent. De plus, nous utilisons des codes
expanseurs pour construire un PoR avec de meilleurs pa-
ramètres. Nous étendons également CC aux protocoles interac-
tifs qui délèguent des calculs à un adversaire. Nous donnons la
première modélisation composable d’UE en évitant un résultat
d’impossibilité classique. Nous utilisons notre modèle pour
comprendre quelles notions de sécurité d’UE sont adaptées
aux applications concrètes. Concernant le PIR, nous en don-
nons un modèle composable et unifié.

Title : Modeling and construction of interactive cryptographic protocols for outsourced storage

Keywords : Outsourced storage, cryptographic protocols, error correcting codes, updatable encryption, proofs of retrieva-

bility, composable security

Abstract :
This thesis deals with the security of the storage, the access
and the maintenance of outsourced data. Indeed, outsourced
storage raises new threats for users. We focus on the three fol-
lowing protocols. First, Proofs of Retrievability (PoR) allows a
user who rarely accesses its data to be sure that it is stored on
the server and that it did not suffer any alterations. Second,
Updatable Encryption (UE) permits the user of an encrypted
database to rotate its cryptographic keys with low bandwith
usage. Third, Private Information Retrieval (PIR) allows a
user to make the way it accesses outsourced data confidential.
The goal of this thesis can be summarized in three steps. In
step one, we develop modular security notions and models that
closely match the security expectations of real-world solutions
for the three above problems. Then, in step two, we check if
existing security definitions are sufficient, and sometimes also
necessary, to provide the security guarantees identified in step
one. Finally, we determine if existing cryptographic schemes
reach our security definitions and, if not, we improve them or
propose new constructions that do. Our security statements
are phrased in the Constructive Cryptography (CC) model of
Maurer. The contributions made in this thesis are the follo-
wing. We study the problem of building UE in the group ac-

tion framework. First, we propose the first post-quantum UE
scheme that supports an unbounded number of key updates.
Second, our new scheme is the first post-quantum UE scheme
whose security does not rely on lattice-based problems. We
also show how to obtain a post-quantum UE scheme secure
against chosen ciphertexts attacks using group actions. Unfor-
tunately, we do not have any practical instantiation for this
last scheme currently. As for PoRs, we show that the security
of a PoR of Lavauzelle and Levy-dit-Vehel was overestimated.
We propose a framework for the design of secure and efficient
PoR schemes based on Locally Correctable Codes. We use our
framework to give a secure generalization of the previously
mentioned PoR. Furthermore, we use expander codes to de-
sign another PoR scheme with better parameters. We also ex-
tend CC so as to handle interactive protocols which delegate
computations to an adversary. We use it to model UE and
PIR. As for UE, we give the first composable modeling of UE
by circumventing an impossibility result known as the com-
mitment problem. We use this modeling to understand which
security notion for UE is best suited for different real-world
applications. As for PIR, we give a composable and unified
treatment of many PIR variants.
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