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Résumé: Cette thèse s’intéresse à l’application de méthodes de dualité topologiqueà des problèmes de l’informatique théorique. Un des objectifs finaux de cette démarcheest l’obtention de résultats en théorie de la complexité, via l’étude d’objets topologiquescaractérisant les différentes classes de complexité. La logique est ce qui est à l’interfaceentre ces deux domaines en apparence très éloignés, plus particulièrement un sous-domaine de la théorie des modèles finis : la logique sur les mots. Il est possible dedonner une description de certaines classes de complexité comme des familles de lan-gages, potentiellement non réguliers, sur un alphabet fini.Très peu de résultats de dualité sont connus pour les fragments de la logique dupremier ordre sur les mots décrits par des langages qui sortent du cadre régulier.Notre contribution est l’étude détaillée d’un tel fragment. Pour un entier k ≥ 1 fixé, nousconsidérons l’algèbre de Boole BΣ1[N u
k ]. Celle-ci correspond au fragment de logiquesur les mots consistant en les combinaisons Booléennes de propositions définies enutilisant un bloc d’au plus k quantificateurs existentiels, les prédicats sur les lettres etles prédicats numériques uniformes d’arité l ∈ {1, ..., k}. Nous fournissons une étudedétaillée de l’espace dual à cette algèbre de Boole, pour tout k ≥ 1, et nous donnonsplusieurs caractérisations de ses points. Dans le cas particulier où k = 1, nous sommescapables de construire une famille d’équations ultrafiltre qui caractérise l’algèbre deBoole BΣ1[N u

1 ].
Mots clefs : Topologie générale, Dualité de Stone, Logique sur les mots, Théoriede la complexité descriptive, Treillis distributifs, Algèbre de Boole, Espace de Vietoris,Coloriages fini, Équations ultrafiltre.
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Abstract: This thesis fits in the area of research that investigates the applicationof topological duality methods to problems that appear in theoretical computer sci-ence. One of the eventual goals of this approach is to derive results in computationalcomplexity theory by studying appropriate topological objects which characterise them.The link which relates these two seemingly separated fields is logic, more precisely asubdomain of finite model theory known as logic on words. It allows for a descriptionof complexity classes as certain families of languages, possibly non-regular, on a finitealphabet.Very few is known about the duality theory relative to fragments of first-order logicon words which lie outside of the scope of regular languages. The contribution of ourwork is a detailed study of such a fragment. Fixing an integer k ≥ 1, we consider theBoolean algebra BΣ1[N u
k ]. It corresponds to the fragment of logic on words consistingin Boolean combinations of sentences defined by using a block of at most k existentialquantifiers, letter predicates and uniform numerical predicates of arity l ∈ {1, ..., k}.We give a detailed study of the dual space of this Boolean algebra, for any k ≥ 1, andprovide several characterisations of its points. In the particular case where k = 1, weare able to construct a family of ultrafilter equations which characterise the Booleanalgebra BΣ1[N u

1 ].
Key words: General topology, Stone duality, Logic on words, Descriptive complexitytheory, Distributive lattices, Boolean algebra, Vietoris hyperspaces, Finite colourings,Ultrafilter equations
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Introduction générale

Cette thèse s’intéresse à l’application de méthodes de dualité topologique à des prob-lèmes de l’informatique théorique. Un des objectifs finaux de cette démarche estl’obtention de résultats en théorie de la complexité, via l’étude d’objets topologiquescaractérisant les différentes classes de complexité. La logique est ce qui est à l’interfaceentre ces deux domaines en apparence très éloignés, plus particulièrement un sous-domaine de la théorie des modèles finis : la logique sur les mots. Il est possible dedonner une description de certaines classes de complexité comme des familles de lan-gages, potentiellement non réguliers, sur un alphabet fini. Cette introduction donne uncompte-rendu historique des travaux effectués dans ce domaine et présente les princi-paux résultats qui ont été démontrés ayant un lien avec cette thèse. Nous présentonsles problématiques qui seront traitées dans les chapitres suivants, et expliquons notrecontribution au domaine.
Théorie de la dualité et méthodes topologiques appliquées à la logique

Les dualités permettent d’exprimer des relations entre deux différents phénomènesmathématiques qui peuvent être perçus, d’une certaine façon, comme équivalents. Leformalisme donné par la théorie des catégories nous donne la définition suivante : unedualité est une équivalence contravariante entre deux catégories. Le simple fait d’étudierune correspondance qui renverse le sens des flèches nous permet d’obtenir deux for-mulations différentes, et pourtant équivalentes, du même problème. Ce phénomèneest répandu en mathématiques, et parfois, la compréhension d’un problème peut êtregrandement facilitée par l’étude de son analogue dual. On observe souvent des du-alités entre les catégories de structures algébriques et les catégories de structurestopologiques. En 1936, M. H. Stone a initié l’étude de la théorie de la dualité dans lecadre de la logique en présentant une dualité entre la catégorie des algèbres de Booleet la catégorie des espaces compacts Hausdorff possédant une base d’ouverts-fermés: les fameux espaces Booléens [67]. Cette dualité porte le nom de dualité de Stone
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2
Booléenne. Celle-ci a d’abord été généralisée par Stone lui-même aux catégories detreillis distributifs bornés. Le pendant dual de cette catégorie est la catégorie dont lesobjets sont les espaces spectraux – c’est-à-dire, les espaces topologiques sobres, quasi-compacts, tels que l’intersection de deux ouverts quasi-compacts est quasi-compacte, etla collection des ouverts quasi-compacts forment une base pour la topologie; et dont lesflèches sont les applications parfaites – c’est-à-dire, les applications continues telles quel’inverse d’un ouvert quasi-compact est un ouvert quasi-compact [68]. Plusieurs exten-sions de la dualité de Stone ont été étudiées depuis. Par exemple, Isbell et Papert [37]donnent une adjonction entre la catégorie dont les objets sont les espaces topologiqueset dont les flèches sont les applications continues, et l’opposé de la catégorie dont lesobjets sont les frames et dont les flèches sont les morphismes de frames. Cette adjonc-tion peut être restreinte afin d’obtenir une dualité entre les espaces sobres et les framesspatiales : voir [38] et [32] pour davantage de détails sur le contexte mathématique de ladualité de Stone et ses généralisations.

Frames spatiales
Treillis distributifs

B.A dualité

Espaces sobres
Espaces spectraux

Espaces Booléens

Plusieurs dualités de type Stone

La dualité de Stone et ses variantes sont fondamentales afin de faire le lien entrel’approche syntactique et l’approche sémantique de la logique. À l’origine, les algèbresde Boole ont été introduites comme un ensemble de règles formalisant le comporte-ment de la logique classique. Cela a permis un traitement algébrique de cette dernière.La théorie de la dualité a ensuite permis de reformuler et repenser les propriétés quiapparaissent en logique en des termes purement topologiques. Ce genre de raison-nement ne se borne pas au cadre de la logique classique : de nombreux autres types delogiques admettent un traitement algébrique, ceci est au coeur de ce que l’on appelle la
logique algébrique abstraite [26].
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Logic Algèbre Espace topologiqueLogique intuitioniste Algèbre de Heyting Espace d’EsakiaLogique modale S4 Algèbre intérieure Espace Booléen partiellement ordonnéLogique classique Algèbre de Boole Espace BooléenLogique pertinente Algèbre pertinente Espace d’UrquhartLogique de Lukasiewicz Algèbre MV Espace de Tychonoff
µ-calcul modal µ-algèbre modale µ-frame modaleLogique de Markov Algèbre d’Aumann Processus de Stone Markov

Figure 1: Différentes logiques et leurs équivalents algébriques et topologiques, voir [24],[75], [46], [35] et [39]
Classes de complexité et problème de séparation

La théorie de la complexité [49], [50], [2] s’attache à la classification des problèmes decalculs et s’intéresse aux liens existant entre les différentes classes ainsi obtenues. Cettethéorie formalise l’intuition que l’on peut avoir de “l’efficacité de calcul" en introduisantdes modèles mathématiques de la notion de calcul, et de la mesure de la quantité deressources nécessaire à la résolution des problèmes, par exemple le temps et l’espacede stockage.Un exemple d’un modèle de calcul abstrait sont les circuits Booléens, un modèlesimplifié des circuits digitaux utilisés dans les ordinateurs modernes [77]. Les classes
de complexité sont alors définies en considérant la taille de ces circuits, c’est-à-dire lenombre de sommets présents dans ceux-ci. Un autre exemple de modèle de calcul sontles machines de Turing, introduites en 1936 [74], qui sont des machines modélisant letraitement de l’information de manière très générale. La théorie de la complexité tentede déterminer les limites pratiques de ces différents modèles de calcul.

Le nom et la classe de complexité associée à chaque problème de décision
ALL tous les problèmes de décision
NP décidable par une machine de Turing non déterministe en temps polynomial
NL décidable par une machine de Turing non déterministe en temps logarithmique
P décidable par une machine de Turing déterministe en temps polynomial
L décidable par une machine de Turing déterministe en temps logarithmique
ACC0 décidable par des circuit booléens de profondeur constante, de taille polynomialedont les portes sont ET, OU, NON, MODULAIRE, de degrés entrants non bornés
AC0 décidable par des circuit booléens de profondeur constante, de taille polynomiale,dont les portes sont ET, OU, NON, de degrés entrants non bornés

Quelques classes de complexité, voir [49] ou [50] pour d’autres exemples.
La théorie de la complexité ainsi définie est un sujet en apparence complètementinscrit dans l’informatique théorique. Toutefois, une approche plus mathématique estpossible. La théorie de la complexité descriptive est une branche de la théorie de lacomplexité et de la théorie des modèles finis [43] dont le but est d’exprimer les classes de
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complexité en utilisant des formules décrivant une logique sur certaines structures finies: la logique sur les mots. Nous présentons l’idée générale brièvement, un traitementplus détaillé sera apporté plus tard dans cette thèse. Pour tout alphabet fini A, nouspouvons voir un mot comme une structure

({0, ..., |w| − 1}, <, (a(·))a∈A),

où a(·) est interprété comme l’ensemble des entiers naturels i tels que la i-ème lettre dumot w est un a, et < est l’ordre usuel sur les entiers. Par exemple, la proposition ∃xa(x)a pour interprétation “il existe une position x dans w telle que la lettre à la position xest un a", ce qui correspond au langage A∗aA∗. Ce lien permet de traduire les résultatsde la théorie de la complexité en terme de résultats de logique sur ces structures finies.Ceci permet de penser de nouvelles méthodes de preuves, et fournit un argumentsupplémentaire en la faveur de la “naturalité" des classes de complexité, dans le sens oùelles ne sont pas purement attachées aux modèles de calculs utilisés pour les définir. En1974, Fagin donne le premier résultat majeur en théorie de la complexité descriptiveen prouvant que la classe de complexité NP peut être caractérisée comme la famillede langages correspondant aux propositions de la logique existentielle du second ordre[25]. Par la suite, Immerman prouve de nombreuses caractérisations de ce type pourd’autres classes de complexité, [36].
Les classes de complexité vues comme des fragments de logique

NP Logique existentielle du second ordre
NL Logique du premier ordre avec un opérateur de clôture transitive
P Logique du premier ordre avec un opérateur de plus petit point fixe
L Logique du premier ordre avec un opérateur de clôture commutative et transitive
ACC0 Logique du premier ordre avec quantificateur modulaire
AC0 Logique du premier ordre

Fragments de logique associés à certaines classes de complexité, voir [36], [70].
Considérant deux classes de complexité C1 et C2, le problème de séparation consisteà dire s’il existe un problème appartenant à C1 mais pas à C2. Le problème de cegenre le plus connu est P ?= NP . La question est de savoir si les machines de Turingnon déterministes polynomiales ont une puissance de calcul analogue aux machines deTuring déterministes polynomiales. Comme nous l’avons vu, beaucoup d’autres classesde complexité existent, et par conséquent, encore plus de problèmes de séparationexistent encore. Toutefois, la plupart de ces questions restent sans réponse aujourd’huiencore. Notons, par exemple, que la classe ACC0 n’a été séparée d’aucune classe endessous de NP .Cela montre combien il reste à découvrir dans ce domaine. Obtenir de nouveauxrésultats, même pour des classes de complexité correspondant à des puissances de
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calcul moindres, pourrait mener à des perspectives intéressantes. Le peu de résultatsde séparation qui ont été démontrés jusqu’à présent reposent essentiellement sur desméthodes purement combinatoires, algorithmiques et probabilistes, [80]. L’ingrédientque nous voulons ajouter provient d’un pan des mathématiques différent : il s’agit de latopologie.
Reconnaissance de langages et équations topologiques

La théorie de la complexité descriptive nous permet de reformuler le problème de sé-paration de la manière suivante : soient deux classes de logique sur les mots L1 et L2,peut-on trouver une formule dans L1 qui n’est pas dans L2 ? L’interprétation d’une for-mule dans une de ces classes de logique correspond à un langage défini sur un alphabetfini A. Ainsi, la question devient la suivante : est-il possible de trouver un langage Lqui appartient à la famille de langages correspondant aux interprétations des formulesdans la classe L1, mais qui n’appartient pas à la famille de langages correspondantaux interprétations des formules dans la classe L2 ? Nous commençons par réduirenotre attention au cas où tous les langages dans les familles que nous considérons sontréguliers.Dans ce cas, la théorie des automates finis [63] ainsi que la théorie des monoïdes finis[51] nous fournissent des outils pour caractériser nos langages : il s’agit de la notionde reconnaissance de langages. Un language L ⊆ A∗ est reconnu par un monoïde
M si il existe P ⊆ M et un morphisme de monoïde h : A∗ → M tel que h−1(P ) = L.Par extension, on dit aussi que M reconnait L. À tout langage L ⊆ A∗, nous pouvonsassocier un monoïde fini ML, que nous appelons le monoïde syntactique de L. Cemonoïde est le plus petit monoïde qui reconnait L : cela signifie que ML reconnait L, etque pour tout monoïde M reconnaissant L, ML est un quotient d’un sous-monoïde de M .Nerode a prouvé qu’un langage est régulier si, et seulement si, son monoïde syntactiqueest fini [48]. Cela fait du monoïde syntactique un outil important pour la reconnaissancede langages, dans la mesure où il nous permet de remplacer un langage par un objetappartenant à la théorie, bien ancrée, des monoïdes finis. En 1965, Schützenbergerprouve qu’un langage régulier est sans-étoile si, et seulement si, son monoïde syntactiqueest apériodique, c’est-à-dire, si chaque élément x dans son monoïde syntactique est telqu’il existe n ≥ 0 tel que xn = xn+1 [64]. Ce résultat nous indique quelque chose de trèsimportant : il devrait y avoir une correspondance, non pas entre chaque monoïde finiet chaque langage régulier, mais plutôt entre certaines familles de monoïdes finis, etcertaines familles de langages réguliers. En 1974, le théorème d’Eilenberg [23] donneun cadre général permettant d’appliquer la stratégie du résultat de Schützenberger enétablissant une correspondance biunivoque entre les variétés de langages régulierset les variétés de monoïdes finis, c’est-à-dire, les classes de monoïdes finis closes parsous-monoïde, quotient de monoïde et produit direct fini. Cette correspondance devientvraiment puissante une fois combinée avec une autre correspondance, démontrée par
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Reiterman [61] en 1982. Le théorème de Reiterman est une variante du théorème desvariétés de Birkhoff en algèbre universelle. Celui-ci dit que toute variété de monoïdefini est caractérisée par un ensemble d’identités profinies. Une identité profinie est uneidentité entre deux mots profinis. La définition précise de mot profini sera donnée dansle Chapitre 1. On peut voir ceux-ci comme des limites de suites de mots finis pour unecertaine métrique, la métrique profinie. Par exemple, on peut montrer que, pour toutmot fini u, la suite (un!)n∈N converge pour la métrique profinie : nous notons uω salimite.

EquationsprofiniesVariétés delangages

Variétés demonoïdes finis

Reiterman Eilenberg

Correspondance d’Eilenberg-Reiterman dans le cas régulier
Les théorèmes d’Eilenberg et Reiterman ont été généralisés dans plusieurs direc-tions durant ces vingt dernières années en assouplissant la notion de variété de langages,cf [40], [55] et [57]. L’outil permettant de généraliser ces résultats à n’importe quel al-gèbre de Boole de langages, réguliers ou non, est la dualité topologique. Celle-ci nouspermet d’obtenir une correspondance biunivoque entre les familles de langages et leurséquations.Ce lien avec la dualité est déjà présent dans le cadre régulier. Pippenger [58] estle premier à caractériser l’ensemble des mots profinis du point de vue de la dualitéde Stone. Il a démontré que le dual de la sous-algèbre de Boole de P(A∗) de tous leslangages réguliers est l’espace des mots profinis, équipé avec la métrique profinie. Dans
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[27], il a été démontré que la combinaison des correspondances Eilenberg-Reitermanest en fait un cas particulier de la correspondance plus générale donnée par la dualité deStone entre sous-algèbre de Boole et espaces quotients. En effet, l’idée de considérerdes équations dans le cadre régulier vient de ce que, si C est une sous-algèbre deBoole de l’algèbre de Boole des langages réguliers sur un alphabet fini A, alors sondual est un quotient de l’espace dual à l’algèbre de Boole des langages réguliers, c’est-à-dire, l’ensemble des mots profinis sur A. Puisqu’il s’agit d’un quotient, cet espaceest obtenu en égalisant des paires d’éléments de l’espace dual, autrement dit des motsprofinis. Plus généralement, si B est un algèbre de Boole de langages, réguliers ounon, il s’agit toujours d’une sous-algèbre de Boole de P(A∗). Le dual de cette dernièreest la compactification de Čech-Stone de l’espace discret A∗, c’est-à-dire, l’ensembledes ultrafiltres de P(A∗), que nous notons β(A∗). B peut ainsi être caractérisée commeun ensemble de paires de points de l’espace dual S(B). Ces paires de points du dualsont les équations que l’on pourrait obtenir via la théorie de Eilenberg-Reiterman. Plusprécisément, pour toute paire d’ultrafiltres γ1, γ2 ∈ β(A∗) une équation γ1 ↔ γ2 estsatisfaite pour un langage L ⊆ A∗ si, et seulement si,

L ∈ γ1 ⇐⇒ L ∈ γ2.

Nous parlons alors d’équations ultrafiltres.
Theorem ([65]). Toute algèbre de Boole de langages peut être définie par un ensembled’équations ultrafiltres de la forme γ1 ↔ γ2, où γ1, γ2 ∈ β(A∗).

Toutefois, la méthode permettant de spécifier de telles équations n’est pas claire,étant donné qu’il n’existe pas de preuve constructive de l’existence des ultrafiltres libres.Il n’existe pas de procédure qui permettrait de construire un ensemble d’équations “pra-tiques" directement à partir d’une algèbre de Boole de langages donnée : le problèmed’appartenance n’est parfois pas décidable. Si l’algèbre de Boole que nous considéronsest close par quotients, alors l’ensemble des équations qu’elle satisfait est un genre decongruence. Pour tout ultrafiltre sur les mots γ ∈ β(A∗) et pour tout mot w ∈ A∗, nousnotons
w.γ := {w−1.L : L ∈ γ} et γ.w := {L.w−1 : L ∈ γ}.

Etant donnés γ1, γ2 ∈ β(A∗), nous disons qu’un langage satisfait l’équation ultrafiltre
γ1 = γ2 s’il satisfait toutes les équations ultrafiltres w.γ1 ↔ w.γ2 et γ1.w ↔ γ2.w, pourtout mot w ∈ A∗. Dans le cas particulier des algèbres de Booles de langages réguliers,un résultat encore plus fort existe.
Theorem ([29], Proposition 1.3). Soit B une algèbre de Booles de langages régulierssur A∗ close par quotients, et soit w1, w2 ∈ Â∗. Si B satisfait l’équation profinie w1 ↔ w2,alors elle satisfait également les équations u.w1 ↔ u.w2 et w1.u ↔ w2.u, pour tout motprofini u ∈ Â∗.
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Etant donné deux mots profinis w1, w2 ∈ Â∗, on dit qu’un langage régulier L satisfaitl’équation profinie w1 = w2 s’il satisfait les équations profinies u.w1 ↔ u.w2 et w1.u ↔

w2.u, pour tout mot profini u ∈ Â∗. L’intérêt majeur de ces notations est de réduire lenombre d’équations nécessaires à la description d’une algèbre de Boole de langages quiest close par quotients.
Fragment existentiel de la logique du premier ordre

Comme nous l’avons mentionné précédemment, la classe de circuits Booléens AC0 cor-respond au fragment de logique sur les mots correspondant aux formules du premierordre écrites en utilisant des prédicats numériques arbitraires. L’ensemble des langagesréguliers appartenant AC0 a été caractérisé par Barrington, Straubing et Therien [4]:ce sont exactement les langages satisfaisant les équations profinies
(uω−1v)ω+1 = (uω−1v)ω,

pour tout u, v ∈ A∗. Ce résultat repose sur un autre résultat prouvé en 1984 par Furst[44], et qui n’admet actuellement aucune preuve purement algébrique. Plus générale-ment, aucune caractérisation topologique de l’algèbre de Boole de langages correspon-dant à AC0 n’est connue. L’étude de la dualité pour ce fragment est une tâche tropcomplexe pour être traitée dans son entièreté dans notre étude.Dans cette thèse, nous nous concentrons sur un fragment significativement pluspetit des formules du premier ordre : le fragment BΣ1[N ], la clôture Booléenne del’ensemble des propositions écrites en utilisant des prédicats numériques arbitraires,et sans alternance de quantificateurs. Aucune caractérisation de son espace dual n’estactuellement connue, et en particulier aucune caractérisation équationnelle n’est disponible.Certains résultats ont toutefois été établis pour des sous-fragments de BΣ1, nous endonnons quelques-uns dans les lignes suivantes. Le cadre régulier a été abondammentétudié, et plusieurs fragments intéressants de BΣ1 ont été caractérisés par des équa-tions profinies. Simon [66] a démontré que BΣ1[<], l’algèbre de Boole des langagesréguliers correspondant aux combinaisons Booléennes de propositions écrites en util-isant le prédicat binaire < et les prédicats sur les lettres est décrit par les équationsprofinies
(uv)ω = (vu)ω and uω = uω+1,

où u, v ∈ A∗. Cela correspond à la variété des monoïdes J-trivaux, que nous notons
J. Un autre exemple est BΣ1[N ] ∩ Reg, l’algèbre de Boole des langages réguliers cor-respondant aux combinaisons Booléennes de propositions écrites en utilisant les prédi-cats numériques arbitraires et les prédicats sur les lettres, qui correspond à la variétéde monoïdes finis que nous notons J ∗ LI ∗ MOD, voir [15] et [45] pour davantage dedétails.Dans le cadre non régulier, des résultats sont encore disponibles à condition de re-
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streindre notre attention aux formules construites en utilisant uniquement des prédicatsnumériques uniformes d’arité un. Dans [30], Gehrke, Petrisan et Reggio étudient lesconséquences, du côté topologique, de la quantification existentielle sur une variablelibre pour une formule donnée. Ils prouvent que, pour toute formule φ(x) avec unevariable libre x, si l’on veut obtenir un reconnaisseur topologique de l’algèbre de Boolede langages modélisant la formule ∃φ(x), il est suffisant de considérer l’espace V(X)×X ,où X est un reconnaisseur topologique de l’algèbre de Boole de langages modélisantla formule φ(x) et V est la construction d’un hyperespace de Vietoris. Toutefois, lereconnaisseur ainsi obtenu n’est, a priori, pas minimal : le reconnaisseur topologiquesyntactique, qui correspond à l’espace dual de l’algèbre de Boole en question, est unsous-espace de V(X) × X . Cette remarque motive le chapitre 2. Enfin, une contribu-tion majeure de Gehrke, Grigorieff et Pin [29], motivant le chapitre 3, est la construc-tion d’une famille d’équations ultrafiltres pour BΣ1[N0,N u

1 ], le fragment existentiel pourlequel nous restreignons notre attention aux prédicats numériques uniformes unaireset aux prédicats nullaires. Bien que ce soit encore très loin de prendre en comptetous les prédicats numériques, il s’agit du premier exemple d’une famille “concrète"d’équations ultrafiltres pour un fragment de logique défini par une famille de langagesnon réguliers. Notons qu’ils ont également réussi, en utilisant ce résultat, à retrouverles équations profinies, déjà connues, obtenues en intersectant cette algèbre de Boolede langages avec l’algèbre de Boole des langages réguliers.
Aperçu de la thèse

Fixons un entier naturel k ≥ 1, et considérons l’algèbre de Boole BΣ1[N u
k ]. Celle-ci correspond au fragment de logique du premier ordre sur les mots constitués descombinaisons Booléennes de propositions définies en utilisant un bloc d’au plus k quan-tificateurs existentiels, les prédicats sur les lettres et les prédicats numériques uniformesd’arité l ∈ {1, ..., k}. Dans cette thèse, notre contribution est une étude de cette algèbrede Boole du point de vue de la dualité topologique. Nous résumons les principauxrésultats contenus dans ce manuscrit.Le chapitre 1 est une introduction auto-contenue du matériel nécessaire à l’étudeultérieure de cette algèbre de Boole. Nous donnons une présentation de la théorie dela dualité topologique pour les algèbres de Boole, et nous détaillons le cas particulierde la dualité entre algèbre modale et hyperespace de Vietoris. Nous donnons ensuiteune introduction à la reconnaissance des langages formels, que nous étendons au cadretopologique, puis nous donnons une introduction à la logique sur les mots. Finalement,nous terminons le chapitre en introduisant la notion d’équation ultrafiltre mentionnéedans cette introduction.Le chapitre 2 s’intéresse à l’algèbre de Boole BΣ1[N u

k ] et son espace dual, que nousnotons Xk. Notre contribution est une étude complète de cet espace dual, car il fautsouligner qu’aucune caractérisation de celui-ci n’était connue en dehors du cas où k = 1.
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Nous donnons plusieurs caractérisations de Xk. La première s’obtient en exploitant ladualité entre algèbres modales et hyperespaces de Vietoris, nous permettant d’identifier
Xk comme un certain sous-espace de l’hyperespace de Vietoris sur β(Nk) à la puissance
Ak. La seconde s’obtient via une approche consistant à considérer les éléments de Xkcomme des “mots généralisés". Nous fixons un coloriage fini de Nk , et nous expliquonscomment il est parfois possible de définir un véritable mot fini correspondant à unélément de V(β(Nk))Ak , du point de vue de ce coloriage. Nous prouvons alors que Xkconsiste exactement en l’ensemble des points de V(β(Nk))Ak qui vérifient cette propriétépour chaque coloriage fini de Nk.Le chapitre 3 traite la question des équations ultrafiltres pour BΣ1[N u

1 ]. Une familled’équations ultrafiltres pour BΣ1[N0,N u
1 ], le fragment obtenu à partir de BΣ1[N u

1 ] enajoutant les prédicats numériques nullaires, a déjà été introduite dans [29]. Notre pre-mière contribution à ce sujet est une présentation plus topologique de ces équationsultrafiltres. Notre approche est fondée sur l’idée qu’il est possible de reformuler leséquations en question via une condition sur les coloriages finis de N. De cette manière,nous arrivons à grandement réduire la quantité de raisonnement combinatoires requisdans [29] pour prouver la correction et la complétude de ces équations. Notre deuxièmecontribution est l’utilisation de cette approche pour trouver une base d’équations ultrafil-tres pour BΣ1[N u
1 ], et la vérification de leur correction et complétude. Nous concluonsla thèse par quelques pistes permettant de poursuivre l’étude pour k ≥ 1.



General introduction

This thesis fits in the area of research that investigates the application of topologi-cal duality methods to problems that appear in theoretical computer science. Morespecifically, our eventual goal is to derive results in computational complexity theoryby studying appropriate topological objects which characterise them. The link whichrelates these two seemingly separated fields is logic, more precisely a subdomain offinite model theory known as logic on words. It allows for a description of complexityclasses as certain families of languages, possibly non-regular, on a finite alphabet.This introduction gives an historical account on the problem, and explains theprogress that have been made prior to this thesis. It introduces the problematic thatwill be treated in the next chapters, and explains our contribution to the domain.
Duality theory and topological methods in logic

Dualities are a way to express the relationship between two different mathematicalphenomenon which can be seen as equivalent, in a certain sense. Through the for-malism of category theory, a straight-forward definition is the following: a duality isa contravariant equivalence between two categories. The simple fact of looking at acorrespondence which reverses arrows is the perspective that allows us to obtain twodifferent, yet equivalent, formulations of the same problem. Dualities are widespread inmathematics, and depending on the problem, one might benefit from an easier under-standing by looking at things on the dual side. Often, a duality is between a categoryof algebraic structures and a category of topological structures. In 1936, M. H. Stoneinitiated duality theory in logic by presenting a duality between the category of Booleanalgebras and the category of compact Hausdorff spaces having a basis of clopen sets,so-called Boolean spaces [67]. This is referred to as Boolean Stone duality. A firstgeneralization has been done by Stone himself, extending his duality to the category ofbounded distributive lattices and lattice homomorphisms. The dual counterpart is thecategory whose objects are spectral spaces, that is topological spaces that are sober,
11
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quasi-compact, such that the intersection of two quasi-compact opens is quasi-compact,and the collection of quasi-compact opens forms a basis for the topology, and whosearrows are perfect maps, that is continuous maps such that the inverse image of a quasi-compact open is quasi-compact [68]. Many other extensions of Stone duality have beenstudied since then. For instance, Isbell and Papert [37] give an adjunction between thecategory of topological spaces with continuous functions and the opposite category offrames with frame homomorphisms. This restricts to a duality between sober spacesand spatial frames: see [38] and [32] for more details on the mathematical context ofStone duality and its generalizations.

Spatial frames
Distributive lattices

B.A duality

Sober spaces
Spectral spaces

Boolean spaces

Figure 2: Some Stone type dualities

Stone’s duality and its variants are central in making the link between syntactical andsemantic approaches to logic. Originally, Boolean algebras were introduced as a set ofrules which formalized the behaviour of classical logic. This allowed for an algebraictreatment of classical logic. Duality theory then enabled the rephrasing of propertiesthat appear in logic in order to think about them in purely topological terms. This kindof reasoning does not only apply to classical logic: many other logics admit an algebraictreatment, this is the heart of abstract algebraic logic [26].
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Logic Algebra Topological spaceIntuitionistic logic Heyting algebra Esakia spaceS4 modal logic Interior algebra Partially ordered Boolean spaceClassical logic Boolean algebra Boolean spaceRelevant logic Relevant algebra Urquhart spaceLukasiewicz logic MV algebra Tychonoff spaceModal µ-calculus Modal µ-algebra Modal µ-frameMarkovan logic Aumann algebra Stone Markov process

Figure 3: Different logics and their algebraic and topological counterparts, see [24], [75],[46], [35] and [39]
Complexity classes and separation problem

Computational complexity theory [49], [50], [2] focuses on putting computational prob-lems in different classes and relating these classes to each other. The theory formalizesthe intuition we have on “computation efficiency" by introducing mathematical modelsof computation and measuring the amount of resources they require to solve problems,for instance time and storage. An example of such models are Boolean circuits, a sim-plified model of the digital circuits used in modern computers [77]. Circuit complexity
classes are defined in terms of circuit size, that is the number of vertices in the circuit.Another example are Turing machines, introduced in 1936 [74], which are machinesmodelling information processing in a very general fashion. Computational complexitytheory attempts to determine the practical limits of these computational models.

The name and the corresponding class of decision problems
ALL all decision problems
NP solvable by a non-deterministic Turing machine in polynomial time
NL solvable by a non-deterministic Turing machine in logarithmic time
P solvable by a deterministic Turing machine in polynomial time
L solvable by a deterministic Turing machine in logarithmic time
ACC0 solvable by a family of constant depth unlimited-faninAND, OR, NOT, MODULAR gates, polynomial-size circuits
AC0 solvable by a family of constant depth unlimited-faninAND, OR, NOT gates, polynomial-size circuits

Figure 4: A few computational complexity classes, for more see [49] or [50].
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Complexity theory defined as such is a topic that seems to purely belong to theo-retical computer science. However, there exists a way to think about it in more mathe-matical terms. Descriptive complexity is a branch of computational complexity theoryand of finite model theory [43] whose purpose is to express complexity classes in termsof formulas for a logic on a finite structure: logic on words. We briefly expose it here,but explain it more in detail in the thesis. For any finite alphabet A, we view a word asa structure

({0, ..., |w| − 1}, <, (a(·))a∈A),

where a(·) is interpreted as the set of integers i such that the i-th letter of w is an a,and < is the usual order on integers. For instance, the sentence ∃xa(x) is interpreted as“there is a position x in w such that the letter in position x is a", which corresponds to thelanguage A∗aA∗. This connection enables to translate results of complexity theory intoresults on the logic of finite structures, facilitating new proof methods and providingadditional evidence that the main complexity classes are somehow “natural" and nottied to the specific abstract machines used to define them. In 1974, Fagin providedthe first major result in descriptive complexity theory by proving that the complexityclass NP is characterised as the family of languages corresponding to sentences ofexistential second-order logic [25]. Following this result, Immerman proved numerouscharacterisations of this kind for other complexity classes [36].
Complexity classes as logic fragments

NP Existential second-order logic
NL First-order logic with a transitive closure operator
P First-order logic with a least fixed point operator
L First-order logic with a commutative, transitive closure operator
ACC0 First-order logic with modular quantifier
AC0 First-order logic

Figure 5: Logic fragments associated to some computational complexity classes, see[36], [70]
Considering two complexity classes C1 and C2, the separation problem in complexitytheory consists in telling whether there exists a problem that belong to C1 and not to C2.The most well-known problem of this kind is known as P ?= NP . It asks whether thenon-deterministic polynomial time Turing machines have more computational powerthan deterministic polynomial time Turing machines. There are plenty of other com-plexity classes, and the question of separation for most of them remains unanswered.Note, for instance, that the class ACC0 has not been separated from anything all theway up to NP .
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This shows how much there is to discover in this field, and enforces the fact thatobtaining results even for classes with a weaker computational power such as Booleancircuits would potentially lead to interesting perspectives. The few separation resultsthat have been proved rely on using combinatorial and probabilistic, as well as algorith-mic methods [80]. The ingredient we want to develop comes from a different area ofmathematics: topology.

Language recognition and topological equations

Descriptive complexity theory allows to rephrase the separation problem as asking, fortwo fixed classes of logic on words L1 and L2, whether it is possible to find a formulain L1 which does not belong to L2. The interpretation of a formula in a logic classcorresponds to a language defined on a finite alphabet A. Therefore, the question nowbecomes whether it is possible to find a language L which belongs to the family oflanguages corresponding to the interpretations of the formulas in the class L1, but notto the family of languages corresponding to the interpretations of the formulas in theclass L2. Let us start by restricting our attention to the case where the families oflanguages we consider only involve regular languages.In that situation, we find tools to characterise our languages in finite automata theory[63] and finite monoid theory [51]: this is the notion of language recognition. A language
L ⊆ A∗ is recognized by a monoid M if there exists P ⊆ M and a monoid morphism
h : A∗ → M such that h−1(P ) = L. By extension, we also say that M recognizes
L. To every language L ⊆ A∗, we can associate a monoid ML, that we refer to asthe syntactic monoid of L. This monoid it is the smallest monoid that recognizes L:that is, ML recognizes L, and for every monoid M that recognizes L, ML is a quotientof a submonoid of M . Nerode proved that a language is regular if, and only if, itssyntactic monoid is finite [48]. This makes the syntactic monoid an important tool instudying recognisable languages, since it allows us to replace the language by an objectof the well-rooted theory of finite monoids. In 1965, Schützenberger proves that aregular language is star-free if, and only if, its syntactic monoid is aperiodic, that is,if every element x in the syntactic monoid is such that there exists n ≥ 0 such that
xn = xn+1 [64]. This results point us toward something important: there should bea correspondence, not between individual finite monoids and individual recognisablelanguages, but between families of finite monoids and families of regular languages.In 1974, Eilenberg’s theorem [23] supplied a general framework in which to apply thestrategy of Schützenberger’s result by stating that varieties of regular languages arein one-to-one correspondence with varieties of finite monoids, that is, classes of finitemonoids closed under taking submonoids, quotient monoids and finite direct products.This correspondence becomes very powerful once it has been combined with anothercorrespondence proved by Reiterman [61] in 1982. Reiterman’s theorem is a variantof Birkhoff’s variety theorem from universal algebra. It states that any variety of finite
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monoids can be characterized by a set of profinite identities. A profinite identity is anidentity between two profinite words. The precise definition of profinite words will begiven in Chapter 1. They can be viewed as limits of sequences of finite words for acertain metric, the profinite metric. For instance, one can show that, for every finiteword u, the sequence (un!)n∈N converges for the profinite metric: we denote by uω itslimit.

ProfiniteequationsVarieties oflanguages

Varieties offinite monoids

Reiterman Eilenberg

Figure 6: Eilenberg-Reiterman correspondence in the regular case
Eilenberg’s and Reiterman’s theorems have been extended several times over thelast twenty years by relaxing the definition of a variety of languages, cf [40], [55] and[57]. The tool that allows for a generalization of this result to any Boolean algebra oflanguages, regular or not, is duality theory. It allows for a one-to-one correspondencebetween families of languages and their equations. This link with duality is alreadypresent in the regular setting. Pippenger [58] was the first to characterize the set ofprofinite words under the light of Stone duality. He proved that the dual of the sub-boolean algebra of P(A∗) consisting in all regular languages is the space of all profinitewords, equipped with the profinite metric. In [27], it was shown that the Eilenberg-Reiterman combination is in fact a special instance of the Stone duality between sub-Boolean algebras and quotient spaces. Indeed, the general mechanism of equations inthe theory of regular languages arises from the fact that, if C is a sub-Boolean algebra
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of the Boolean algebra of regular languages on a given alphabet A, then its dual spaceis a quotient of the dual of the Boolean algebra of regular languages, that is, the setof all profinite words on A. As a quotient, it is given by equating elements in this dualspace, which are profinite words. Now, more generally, if B is a Boolean algebra ofnot necessarily regular languages, it is also a subalgebra of P(A∗). The dual of thelatter is the Čech-Stone compactification of the discrete space A∗, that is, the set of allultrafilters of P(A∗), which we denote by β(A∗). It follows that B may be characterisedby a set of pairs of points of the dual space S(B). These pairs of points of the dualspace are the equations of Eilenberg-Reiterman theory. More precisely, for any twoultrafilters γ1, γ2 ∈ β(A∗) an equation γ1 ↔ γ2 holds of a language L ⊆ A∗ if, and only if,

L ∈ γ1 ⇐⇒ L ∈ γ2.

We refer to these as ultrafilter equations.
Theorem ([65]). Any Boolean algebra of languages can be defined by a set of ultrafilterequations of the form γ1 ↔ γ2, where γ1, γ2 ∈ β(A∗).

However, it is not clear how to specify such equations since there is no constructiveproof of the existence of free ultrafilters. There exists no procedure that would allowfor a way to build practical equational basis out of a given Boolean algebra of languages:membership is sometimes not decidable. If the Boolean algebra we consider is closedunder quotients, then the set of all equations satisfied by it is a kind of congruence. Forany ultrafilter on words γ ∈ β(A∗) and any word w ∈ A∗, set
w.γ := {w−1.L : L ∈ γ} and γ.w := {L.w−1 : L ∈ γ}.

Given γ1, γ2 ∈ β(A∗), we say that a language satisfies the ultrafilter equation γ1 = γ2 if itsatisfies all the ultrafilter equations w.γ1 ↔ w.γ2 and γ1.w ↔ γ2.w, for each word w ∈ A∗.In the particular case of Boolean algebra of regular languages, an even stronger resultis available.
Theorem ([29], Proposition 1.3). Let B be a Boolean algebra of regular languages of A∗closed under quotients and let w1, w2 ∈ Â∗. If B satisfies the profinite equation w1 ↔ w2,then it satisfies the profinite equations u.w1 ↔ u.w2 and u.w1 ↔ w2.u, for each profiniteword u ∈ Â∗.

Given w1, w2 ∈ Â∗, we say that a regular language satisfies the profinite equation
w1 = w2 if it satisfies the profinite equations u.w1 ↔ u.w2 and u.w1 ↔ w2.u, for eachprofinite word u ∈ Â∗. The main interest of these notations is to allow one to producesmaller sets of defining equations for Boolean algebra of languages which are closedunder quotients.
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Existential fragment of first-order logic

As we mentioned previously, the class of Boolean circuits AC0 corresponds to the frag-ment of logic on words corresponding to first-order formulas, with arbitrary numericalpredicates. The set of regular languages which belong to AC0 has been characterisedby Barrington, Straubing and Therien [4]: they are exactly the languages satisfying theprofinite equations
(uω−1v)ω+1 = (uω−1v)ω,

for any u, v ∈ A∗. This result relies on another result proved in 1984 by Furst [44], forwhich no purely algebraic proof is known. More generally, no topological characterisa-tion of the Boolean algebra of languages corresponding to AC0 is known, and providinga duality theoretic treatment for this whole fragment is a task that is too complex to beconducted in our study.In this thesis, we focus on a significantly smaller fragment of first-order formulas:the fragment BΣ1 which is the Boolean closure of the set of sentences written with arbi-trary numerical predicates and without any quantifier alternation. No characterisationof its dual space is currently known, not even mentioning an equational characteri-sation. Some results have however been established for some smaller fragments of
BΣ1[N ] that we summarize now. The regular setting has been abundantly studied, andseveral interesting fragments of BΣ1 have been given a characterisation in terms ofprofinite equations. It has been proven by Simon [66] that BΣ1[<], the Boolean alge-bra of regular languages corresponding to Boolean combinations of sentences writtenby using the binary numerical predicate < and letter predicates is described by theprofinite equations

(uv)ω = (vu)ω and uω = uω+1,

where u, v ∈ A∗. This corresponds to the variety of J-trivial monoids, denoted by J. An-other example is BΣ1[N ]∩Reg, the Boolean algebra of regular languages correspondingto Boolean combinations of sentences written by using any numerical predicate and let-ter predicates, which has been proven to correspond to the variety of finite monoidsdenoted by J ∗ LI ∗ MOD, see [15] and [45] for more details.In the non-regular setting, some results are also available, as long as we restrict ourattention to formulas built by using only uniform numerical predicates of arity one. In[30], Gehrke, Petrisan and Reggio study the topological construction corresponding toadding a layer of existential quantification over one free variable in a formula. Theyprove that, for any formula φ(x) with a free variable x, in order to obtain a topologicalrecognizer for the Boolean algebra of languages which models the formula ∃φ(x), itis enough to consider the space V(X) × X , where X is a topological recognizer ofthe Boolean algebra of languages which models the formula φ(x) and V is the Vietorishyperspace construction. However, this recognizer is a priori not minimal: the syntacticrecognizer, which corresponds to the dual space, is a subspace of V(X)×X . This remark
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is what motivates Chapter 2. Finally, a major contribution of Gehrke, Grigorieff and Pin[29], which motivates Chapter 3, is the construction of a family of ultrafilter equationsfor BΣ1[N0,N u

1 ], the existential fragment where we restrict our attention to only nullarynumerical predicates and unary uniform numerical predicates. Even though this is stillfar from taking into account every numerical predicate, this is the first example of a“concrete" family of ultrafilter equations for a fragment defined by using non-regularlanguages. Note that they were also able to retrieve the profinite equations that hadalready been established for the restriction of this fragment to regular languages.
Overview of the thesis

Fixing an integer k ≥ 1, we consider the Boolean algebra BΣ1[N u
k ]. It correspondsto the fragment of first-order logic on words consisting in Boolean combinations ofsentences defined by using a block of at most k existential quantifiers, letter predicatesand uniform numerical predicates of arity l ∈ {1, ..., k}. Our contribution in this thesisis a duality-theoretic study of this Boolean algebra. We summarize the main resultspresented in this manuscript.Chapter 1 is a self-contained introduction to all of the material required in order toconduct this study. We give a presentation of duality theory for Boolean algebras, andwe detail the particular case of the relationships between modal algebras and Vietorishyperspaces. We then present the notion of formal language recognition, that weextend to the topological setting, and we give an introduction to logic on words. Weconclude the chapter by giving more details on the notion of ultrafilter equations thatwe mentioned in this introduction. Chapter 2 is concerned with the Boolean algebra

BΣ1[N u
k ] and its dual space, that we denote by Xk. Our contribution is a complete studyof this dual space, as it should be noted that a characterisation of Xk was only knownin the case k = 1. We provide several characterisations of Xk. First, by exploiting theduality between modal algebras and Vietoris hyperspaces, we identify Xk as a certainsubspace of the Vietoris hyperspaces on β(Nk) to the power Ak. Second, we follow anapproach that, broadly speaking, relies on us viewing the elements of Xk as “generalizedwords". Fixing a finite colouring of Nk , we explain how it is sometimes possible to definean actual finite word which corresponds to an element in V(β(Nk))Ak , with respect to thisfinite colouring. We prove that Xk consists exactly in the elements of V(β(Nk))Ak thatverify this property for every single finite colouring of Nk. Chapter 3 treats the questionof ultrafilter equations for BΣ1[N u

1 ]. A family of ultrafilter equations for BΣ1[N0,N u
1 ], thefragment obtained from BΣ1[N u

1 ] by adding nullary numerical predicates, has alreadybeen introduced in [29]. Our first contribution is a more topological presentation ofthese ultrafilter equations. Our approach is based on the idea that it is possible toreformulate the ultrafilter equations in question in terms of a certain condition overfinite colourings of N. By doing so, we greatly reduce the amount of combinatoricsrequired in [29] to prove the soundness and completeness of these equation. Our second
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contribution is to use this approach to find a basis of ultrafilter equations for BΣ1[N u

1 ],and check their soundness and completeness. We conclude the thesis with some hintsin order to pursue the study for k ≥ 1.



CHAPTER 1

Duality and formal language theory

This chapter consists in an introduction to the notions of duality theory and formallanguage theory necessary in order to understand the upcoming chapters. While thefollowing sections are not written as a thorough introduction to the domains they treat,the notions are presented in a way that is coherent with our goals, and makes thisdocument self-contained. In particular, most of the proofs are sketched, and we providereferences whenever necessary.
Outline of the chapter: In Section 1.1, we recall definitions for lattice-like structuresand we introduce Stone duality for Boolean algebras, which is the main tool we use allalong the thesis. In Section 1.2, we detail the particular case of the duality betweenmodal algebras and Vietoris hyperspaces, extensively used in Chapter 2, and providea few instances of the correspondence between closed subsets of the dual space of agiven Boolean algebra, and the space of filters of this Boolean algebra. In Section 1.3,we recall the basics on language theory, and introduce language recognition by finitemonoids, which we generalize to the topological setting. In Section 1.4, we present thelink that has been made between language theory and logic by giving an overview oflogic on words. Finally, in Section 1.5, we introduce ultrafilter equations of a Booleanalgebra. For any finite alphabet A, these allow in particular for a description of Booleansubalgebras of P(A∗) in terms of a family of pairs of points in β(A∗), and thus can beused in order to prove separation results for some fragment of logic on words.

1.1 Boolean algebras and Stone duality

In this section, we detail the contravariant category equivalence which exists betweenthe category of Boolean algebras, with Boolean algebra homomorphisms, and a sub-
21
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category of the category of topological spaces, which we refer to as the category ofBoolean spaces. We start by explaining how this correspondence works in the casewhere the Boolean algebra we consider is finite. We then generalize it to arbitraryBoolean algebras, and provide a few examples of this correspondence which will beuseful in the next chapters. The readers interested in a deeper treatment of lattice-likestructures can refer to [20] and [13]. For duality theory, they can refer to [67] and [38].
1.1.1 General duality theory

The theory of lattices lies at the intersection of order theory and universal algebra.From the point of view of order theory, a lattice is a partially ordered set (L,≤) suchthat, for any b, b′ ∈ L, the supremum, which we denote by b∨b′ and the infimum, whichwe denote by b ∧ b′, exist. An example of lattice is given by the set of natural numbers,partially ordered by divisibility, for which the supremum is the least common multiple,and the infimum is the greatest common divisor.A lattice (L,≤) is said to be distributive if ∨ distributes over ∧ and vice versa. It issaid to be bounded if it contains a top element 1 and a bottom element 0. In particular,two elements in a bounded lattice such that their infimum is 0 are said to be disjoint.Finally, for any b ∈ L, a complement of b is an element c of L such that
b∧c = 0 and b∨c = 1.

In the particular case of distributive lattices, a complement of an element, if it exists, isthen unique. We denote it by ¬b.
Definition 1.1. [Boolean algebras] A Boolean algebra is a bounded distributive latticesuch that every element admits a complement. For any Boolean algebras B1, B2, aBoolean algebra homomorphism is a map f : B1 → B2 such that, for any b, b′ ∈ B1,
f(b∧B1 b

′) = f(b) ∧B2 f(b′), f(b∨B1 b
′) = f(b) ∨B2 f(b′) and f(¬b1) = ¬f(b1). In particular,we have that f(0B1) = 0B2 and f(1B1) = 1B2 .We denote by Bool the category for which the objects are Boolean algebras and mor-phisms are Boolean algebra homomorphisms.

The main example of a Boolean algebra is the powerset algebra of a set S, P(S),considered with set-theoretic union, intersection, and complement. An important obser-vation is the following: in order to reconstruct the Boolean algebra P(S), the data of thesingletons {s}, for every s ∈ S, is actually sufficient. In terms of the order, singletonscan be characterized as atoms.
Definition 1.2. An atom of a Boolean algebra B is an element which is minimal amongnon-bottom elements of B.

In particular, any two atoms are disjoint. Every finite Boolean algebra B possessesatoms. In the particular case of the powerset algebra P(S) of a finite set S, the atoms
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are indeed the singletons {s}, for every s ∈ S, and they allow us to recover the fullBoolean algebra.

x ∨ y ∨ z

x ∨ y x ∨ z y ∨ z

x y z

x ∧ y ∧ z

{x, y, z}

{x, y} {x, z} {y, z}

{x} {y} {z}

∅

Figure 7: The powerset algebra on {x, y, z}, where x, y and z are pairwise disjointelements.
This situation remains similar in the context of any finite Boolean algebra.

Proposition 1.3. Any finite Boolean algebra is isomorphic to the powerset algebra
on the set of its atoms.

Proof. This result is folklore. For a proof, see, e.g, [20], Theorem 5.5.
This reasoning still holds for certain infinite Boolean algebras such as powersetalgebras on an infinite set S. However, it does not hold for an arbitrary Booleanalgebra. Anticipating on Section 1.3, let us provide a simple example of an infiniteBoolean algebra that is not of the form P(S), for any set S, stemming from languagetheory. If A is a finite alphabet, and Reg(A∗) is the Boolean algebra of all regularlanguages on A∗, then the atoms of this Boolean algebra are the singletons {w}, for any

w ∈ A∗. The powerset of the set of atoms of Reg(A∗) is P(A∗), and these two Booleanalgebras are not isomorphic, as there are countably many regular languages (everyregular language corresponds to a finite automaton), but uncountably many languages.Even worse, one can construct infinite Boolean algebras which have no atom at all (cf[33], Chapter 16), such as for example the Boolean algebra of clopen sets of the Cantorspace. The major insight of Stone was that, despite all of these facts, it is possible togeneralize the duality introduced in the finitary case to arbitrary Boolean algebras. Inorder to do so, we have to take into account “generalized elements" which are incarnatedby filters. This leads us to introducing a notion which generalizes the one of atom tothe infinite case: the so-called ultrafilters.
Definition 1.4. Fix B a Boolean algebra. A filter F of B is a non-empty subset of Bsatisfying the following properties.

• For every b in F , and every b′ in B such that b ≤ b′, we have that b′ is in F .
• For every b and b′ in F , b ∧ b′ is in F .
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If F is a filter that is not equal to B, we say that F is proper. A filter basis of a filter Fis a non-empty family B ⊆ F such that, for all b′ ∈ F , there exists b ∈ B such that b ≤ b′.

We denote by Filt(B) the set of filters of B. For any set S, we use notation Filt(S) torefer to the set of filters of the powerset algebra P(S), and we abusively refer to thoseas the filters on S.
Example 1.5. We provide the two following examples of filters, which will be oftenused throughout the thesis.

• For any Boolean algebra B, and for any element b ∈ B, the set
↑b := {b′ ∈ B : b ≤ b′}

is a filter in B that we refer to as the principal filter containing b.
• For any set S, the set of all cofinite subsets of S

Cof(S) := {T ⊆ S : T c is finite}

is a filter that we refer to as the Fréchet filter.
The fundamental idea behind Stone’s construction is that, by equipping the set ofall ultrafilters of B with an appropriate topology, it is possible to recover the Booleanalgebra B.

Definition 1.6. An ultrafilter γ of B is a proper filter of B such that, for every b in B,
b or ¬b is in γ. We denote by S(B) the space of all ultrafilters of B, endowed with thetopology generated by the sets of the form

b̂ := {γ ∈ S(B) : b ∈ γ},

for every b in B. We refer to S(B) as the dual space of B.
Remark 1.7. We defined filters and ultrafilters of Boolean algebras since they are ourmain object of study in this thesis, however these notions still make sense in some sim-ilar frameworks. The definition of filter we gave only requires a semi-lattice structurein order to hold, and we can define ultrafilters of a lattice as filters that are maximal forinclusion among proper filters. In the case where the lattice is a Boolean algebra, thisis equivalent to Definition 1.6. In the Boolean case, it is also equivalent to saying that γis a prime filter: a proper filter γ such that, for every b, b′ ∈ B with b ∨ b′ ∈ γ, we have
b ∈ γ or b′ ∈ γ.
Example 1.8. We review Example 1.5 under the light of ultrafilters.

• For any Boolean algebra B, and for any element b ∈ B, the principal filter ↑b is anultrafilter if, and only if, b is an atom of B. We refer to such ultrafilters as principal
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ultrafilters, and to all of the other ultrafilters as free ultrafilters. In particular, if
B is finite, then every ultrafilter is principal, and therefore we recover B entirelywith the data of its ultrafilters, without topology.

• For any infinite set S, Cof(S) is not an ultrafilter: for any subset T of S such that
T and T c are infinite, then neither T nor T c belong to Cof(S).

Remark 1.9. An important result, known as the ultrafilter lemma is that every properfilter is contained in an ultrafilter. This result requires Zorn’s lemma in order to beproved. In particular, for every filter F on a Boolean algebra B,
F =

⋂
α is an ultrafilter

F⊆α

α.

A filter basis B is a non-empty collection of elements of B which does not contain thebottom element and such that, for every b1, b2 ∈ B there exists b ∈ B such that b ≤ b1 ∧b2.A common way to describe an ultrafilter is to define a filter basis, and then to use theultrafilter lemma in order to extend it into one of the (numerous) ultrafilters containingit.
Definition 1.10 (Boolean spaces). A Boolean space is a topological space that is com-pact, Hausdorff, and that possesses a basis of clopen subsets. We denote by Clop(X)the Boolean algebra of clopen subsets of any Boolean space X , equipped with union,intersection and complement of subsets. We denote by BStone the category for whichthe objects are Boolean spaces and the arrows are continuous maps.We are now ready to generalize Proposition 1.3 to arbitrary Boolean algebras.
Theorem 1.11 (Stone duality for Boolean algebras, [67] Theorem 67). There is a con-
travariant equivalence of categories between the category of Boolean algebras and
the category of Boolean spaces.

Proof sketch. We describe the two contravariant functors involved in the duality, thereader can check that they form a contravariant equivalence of categories. The con-travariant functor S : Bool → BStone sends any Boolean algebra B to the Booleanspace S(B), and any Boolean algebra homomorphism h : B → B′ to the continuous map
S(h) : S(B′) → S(B),

which sends every ultrafilter γ of B′ to
S(h)(γ) := h−1(γ) = {b ∈ B : h(b) ∈ γ}.

The contravariant functor Clop : BStone → Bool sends any Boolean space X to theBoolean algebra Clop(X), and any continuous map f : X → Y to the continuous map
Clop(f) : Clop(Y ) → Clop(X), which sends every clopen K of Y to f−1(K).
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In particular, for any Boolean algebra B, the map (̂·) : B → Clop(S(B)) which sendsany element b in B to the clopen subset b̂ is a Boolean isomorphism.

Bool BStone

Boolfin Setfin

S(_)

Clop(_)

At(_)

pro−completion
P(_)

Figure 8: Boolean Stone duality

We summarize these duality-theoretic relationships in Figure 8. At the bottom, wehave the duality at the finite level, between finite Boolean algebras and finite sets. Onthe left is the fact that the category of finite Boolean algebras is a subcategory of thecategory of Boolean algebras. On the right, we use the fact that the category of Booleanspaces is equivalent to the pro-completion of the category of finite sets (see [38] TheoremVI, 2.3), and view the category of finite sets as a subcategory of the pro-completion ofthe category of finite sets. Finally, at the top, we have the duality between Booleanalgebras and Boolean spaces.
Remark 1.12. In order to enforce this geometric perspective, we refer to the ultrafiltersin the dual space as the points of the dual space. This terminology can also be perceivedas analogous to the one used in linear algebra, where the points are linear maps. Denoteby 2 the two element Boolean algebra. For any Boolean algebra B, there is a bijectivecorrespondence between the set of Boolean algebra homomorphisms h : B → 2 andthe set of ultrafilters of B. Indeed, on the one hand, consider the map which associatesto each homomorphism h : B → 2 the ultrafilter γh := h−1({1}). On the other hand,consider the inverse map, which associates to each ultrafilter γ of B the homomorphism
hγ : B → 2, sending b ∈ B to 1 if, and only if, b ∈ γ.

We end the subsection with the existence of coproduct for Boolean algebras andhow they reflect as products on the topological side. We require this result, as the mainBoolean space we are interested in in Chapter 2 corresponds to a subspace of the dualof a coproduct of Boolean algebras, see Proposition 2.3. For a proof of this result andmore information on the categorical treatment of these structures, the reader can referto [38], more specifically 2.12.
Proposition 1.13. The category of Boolean algebras has coproducts. These are dual
to product of Boolean spaces, which are calculated as in the category of topological
spaces.
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1.1.2 The dual space of the powerset algebra

We focus on the duality theory in the particular case where the Boolean algebra weconsider in Theorem 1.11 is the powerset algebra of a given set. Several additionalobservations can be made which will be useful in the next chapters.The inclusion of the category of compact Hausdorff spaces into the category of topo-logical spaces has a left adjoint, that we denote by β, which sends a general topologicalspace to a compact Hausdorff topological space called its Čech-Stone compactification.The Čech-Stone compactification of a space S can be defined by the following uni-versal property: for any compact Hausdorff spaceX and any continuous map f : S → X ,there exists a unique continuous map g : β(S) → X such that the following diagramcommutes.
S β(S)

X

ιS

f
g

For any set S, the Stone dual of the powerset algebra P(S) corresponds to the Čech-
Stone compactification of the discrete space (S, τdisc) (see [38] III, 2.1). Endowing S withthe discrete topology, S can be embedded as a dense subspace of β(S) by consideringthe injective map ιS : S → β(S) which sends any s in S to the principal ultrafilter ↑{s}(we use the abusive notation ↑s).Let us now consider two sets S and T and a map f : S → T . In particular, wecan consider the map ιT ◦ f : S → β(T ). Since β(T ) is compact Hausdorf, by applyingthe universal propery of the Čech-Stone compactification of S, there exists a uniquecontinuous map

βf : β(S) → β(T )

which extends f , and it is defined as follows: for any α ∈ β(S),
βf(α) = {P ⊆ T : f−1(P ) ∈ α}.

We denote by β(S) \ S the closed subset of all free ultrafilters, that we also refer toas the remainder of β(S). We often use the notation ∗S := β(S) \ S.
Lemma 1.14. For any set S, and any ultrafilter α ∈ β(S), we have that α ∈ ∗S if, and
only if, α contains all cofinite sets.

Proof. Fix a set S and an ultrafilter α ∈ β(S). We prove the negation of this equivalence,that is α is a principal ultrafilter if, and only if, there exists a cofinite set which doesnot belong to α. For the left-to-right implication, suppose that α is of the form ↑s forsome s ∈ S. Then the set Qs := S \ {s} is cofinite, and does not belong to α. Forthe right-to-left implication, assume that there is a cofinite set Q of S which does notbelong to α. Then, since α is an ultrafilter, Qc, which is finite, does belong to α. Since
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an ultrafilter which contains a finite set is necessarily principal, we conclude that α isprincipal.

Let us say a few things about clopen subsets of β(S). First, since (̂·) : P(S) →
Clop(β(S)) is bijective, every clopen subset K of β(S) is of the form Q̂, for some Q ⊆ S.We can also prove ([78], Proposition 3.13) that every clopen subset of the remainder isof the form

∗Q := Q̂ \Q := {α ∈ ∗S : Q ∈ α},

for some infinite subset Q of S. We provide a few properties on clopen subsets of theremainder which will make computations in Chapter 2 easier.
Lemma 1.15. For any set S, if Q1 and Q2 are two infinite subsets of S, then the
following statements hold.
(1): ∗Q1 ⊆ ∗Q2 if, and only if, Q1 \Q2 is finite.
(2): ∗Q1 = ∗Q2 if, and only if, the symmetric difference Q1∆Q2 is finite.
(3): ∗Q1 ∩ ∗Q2 is non-empty if, and only if, Q1 ∩Q2 is infinite.

Proof. See [78], Proposition 3.14.
We conclude this section by proving a few topological properties that will be usedregularly in Chapter 2. First, we prove a classical lemma about finite partitions of S.

Lemma 1.16. For any ultrafilter α ∈ β(S), and any finite partition (Q1, ..., Qn) of S
for some n ≥ 1, there exists a unique k ∈ {1, ..., n} such that Qk ∈ α.

Proof. Fix α ∈ β(S), and a finite partition (Q1, ..., Qn) of S, for some n ≥ 1. For theexistence, we proceed by finite induction. In the case n = 1, the result is obvious. If
(Q,Qc) is a partition of S, then since α is an ultrafilter, there is exactly one element in
{Q,Qc} which is in α. Now, fix n ≥ 3 and a finite partition (Q1, ..., Qn) of S. Assume thatwe proved the statement for a finite partition with n− 1 elements. If Q1 is in α, then weare done. Otherwise, Qc

1 is in α, but since we have a finite partition of S, Qc
1 =

⋃n
i=2Qi.By applying the induction hypothesis, there exists k ∈ {2, ..., n} such that Qk ∈ α, whichallows us to conclude. For the unicity, if there existed Qk and Qk′ , with k ̸= k′, both in

α, then their intersection would also be in α. Since we have a finite partition of S, thisintersection is empty, and therefore α cannot be an ultrafilter.
Remark 1.17. Note that the argument used in this proof works for any ultrafilter x in aBoolean algebra B, the assumption made here that B = P(S) is not needed. However,we only use this case later on.

Finally, we prove a technical lemma that holds for any Boolean space, and appearsas a generalization of the fact that these spaces are totally disconnected. Its relevancewill become more clear in Chapter 2, Proposition 2.33.
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Lemma 1.18. Let X be a Boolean space. For any finite family of distinct points
α1, ..., αℓ ∈ X , there exists a family of pairwise disjoint clopen subsets K1, ...,Kℓ of X
such that, for every i ∈ {1, ..., ℓ}, αi ∈ Ki.

Proof. We prove the statement by induction on ℓ ≥ 1. In the case ℓ = 1, the statementis obvious. In the case ℓ = 2, the statement is true since X is a Boolean space, that is,totally disconnected, and compact Hausdorff. Now, assume that the statement holds fora fixed ℓ ≥ 3. Fix α1, ..., αℓ+1 ∈ X a family of ℓ + 1 distinct points. By the inductionhypothesis, there exists a family of ℓ pairwise disjoint clopen subsets K1, ...,Kℓ suchthat, for every i ∈ {1, ..., ℓ}, αi ∈ Ki. Now, as we mentioned for the binary case, any twodistinct points in a Boolean space can be separated by two clopen subsets. Therefore,for every i ∈ {1, ..., ℓ}, we have two clopen subsets Li, Lℓ+1
i which contain, respectively,

αi, and αℓ+1. Now, setting
Rℓ+1 :=

ℓ⋂
i=1

Lℓ+1
i

and, for every i ∈ {1, ..., ℓ},
Ri := Ki ∩ Li,

the family of pairwise disjoint clopen subsets (R1, ..., Rℓ+1) is, by construction, such thatfor every i ∈ {1, ..., ℓ+ 1}, αi ∈ Ri.
Proposition 1.19. Let S be a set. For any finite family of distinct points α1, ..., αℓ ∈
β(S), there exists a family of pairwise disjoint subsets Q1, ..., Qℓ of S such that, for
every i ∈ {1, ..., ℓ}, Qi ∈ αi.
In particular, if C is an infinite subset of β(S), then, for every ℓ ∈ N, there exists
a family Q1, ..., Qℓ of pairwise disjoint subsets of S such that, for every i ∈ {1, ..., ℓ},
C ∩ Q̂i is non-empty.

Proof. This is a direct consequence of Lemma 1.18.
1.2 Modal algebra and the Vietoris functor

In [76], Vietoris introduced a generalization of the notion of Hausdorff metrics on anycompact Hausdorff space: the so-called Vietoris hyperspace of a topological space.
Definition 1.20 (Vietoris hyperspace of a Boolean space [76]). For any Boolean space
X , we denote by V(X) the set of closed subsets of X . We endow it with the topologygenerated by the sets of the form

□K := {C ∈ V(X) : C ⊆ K} and ♢K := {C ∈ V(X) : C ∩K ̸= ∅},

for every clopen subset K of X , and we refer to this topological space as the Vietoris
hyperspace of X .
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We make a few remarks on this construction. First, observe that for any clopensubset K of X ,

♢K = (□Kc)c,

therefore elements of the form ♢K can be replaced by elements of the form (□K ′)c,where K ′ = Kc. Therefore, we may also define V(X) by taking {□K, (□K)c : K ∈
Clop(X)} as a basis. We also note that □ is meet-preserving, while ♢ is join preserving.In particular, the family of the clopen subsets of the form

⟨K,K1, ...,Kn⟩ := □K ∩
n⋂

i=1
♢Ki,

where n ≥ 1 and K,K1, ...,Kn are clopen subsets of X provides a basis for the Vietoristopology.
Remark 1.21. Fix a finite sequence of clopen subsets K,K1, ...,Kn ⊆ X . A simple, yetimportant, observation is that, for every clopen K ′ ⊆ X such that K ⊆ K ′, we have

⟨K,K1, ...,Kn⟩ ⊆ ⟨K ′,K1, ...,Kn⟩.

The same way, for every finite sequence of clopen subsets K ′
1, ...,K

′
n ⊆ X such that, forevery i ∈ {1, ..., n}, Ki ⊆ K ′

i , we have
⟨K,K1, ...,Kn⟩ ⊆ ⟨K,K ′

1, ...,K
′
n⟩.

The Vietoris hyperspace V(X) is defined for any topological space X , replacing thecompact opens of your Definition 2.4.1 with a basis of the topology of X . However,when X is a Boolean space, the Vietoris hyperspace of X is also a Boolean space, see[47], Theorem 4.9. Note that, since it is totally disconnected, it is T1, and thus singletonsare closed (this remark will be of use in Proposition 2.33). Also, note that any clopenof V(X) is a compact space and thus can be written as a finite union of clopens of theform ⟨K,K1, ...,Kn⟩, where n ∈ N and K,K1, ...,Kn are clopen subsets of X .
Remark 1.22. For any Boolean algebra B, any set S and any map f : S → V(S(B))the universal property of Cech-Stone compactification states that f admits a uniquecontinuous extension g : β(S) → V(S(B)), defined by sending any ultrafilter α ∈ β(S) to

g(α) :=
⋂
b∈B

{s∈S : f(s)⊆̂b}∈α

b̂.

This remark will be useful in order to prove Proposition 2.7Considering B the Boolean algebra dual to X , we can understand the Vietoris hy-perspace on X by equipping the set of filters of B with an appropriate topology. Sinceour approach relies on a more topological understanding of problems, we chose toconduct most of our reasoning in terms of closed subsets. However, it should be noted
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that it is only a matter of preference, and that one could formulate all of the resultsfrom Chapter 2 involving closed subsets in terms of filters instead.
Proposition 1.23. Let B be a Boolean algebra and X = S(B) its dual space. The
Vietoris hyperspace of X is homeomorphic to the space of filters of B,

V(X) ≃ Filt(B),

where Filt(B) is endowed with the topology generated by the clopen sets of the form
[b] and [b]c, where for every b ∈ B,

[b] := {F ∈ Filt(B) : b ∈ F}.

Proof. For any Boolean algebra, we give a one-to-one correspondence between the setof its filters and the closed subsets of its dual space, and we prove that this correspon-dence is a homeomorphism. Since we will have a bijection between compact Hausdorffspaces, to prove that we have a homeomorphism it is enough to prove that one of themis continuous. Consider the map φ : Filt(B) → V(S(B)) which sends a filter F to theintersection of the clopens corresponding to the elements of the filter,
φ(F) :=

⋂
b∈F

b̂,

and the map ψ : V(S(B)) → Filt(B) which sends a closed subset C of the dual spaceto the filter of all elements of the Boolean algebra for which the corresponding clopencontains C ,
ψ(C) := {b ∈ B : C ⊆ b̂}.

We prove that these two maps are mutually inverse functions. First, by definition of φand ψ, we obtain for any F ∈ Filt(B) and any C ∈ V(S(B)) that F ⊆ ψ(φ(F)) and that
C ⊆ φ(ψ(C)).We prove that φ(ψ(C)) ⊆ C . In order to do so, we prove the the contrapositive. Let
x be a point that does not belong to C . Since C is a closed subset of β(S), Cc is an opensubset of β(S). As we know that the family of clopen of the form b̂, where b rangesover B, forms a basis of β(S), we can pick b ∈ B such that x ∈ b̂ and b̂ ∩ C is empty.In particular, ¬b is such that C ⊆ ¬̂b, but x /∈ ¬̂b, so that x /∈ φ(ψ(C)) , allowing us toconclude.We prove that ψ(φ(F)) ⊆ F . Let a be any element of the Boolean algebra such that
φ(F) ⊆ â. Then, φ(F) is disjoint from ¬̂a, but φ(F) is an intersection of closed sets.By the formulation of compactness in terms of intersections, this means that thereexist b1, ..., bn ∈ F such that ⋂n

i=1 b̂i ⊆ â. Now, since ·̂ : B → Clop(S(B)) is an injectivehomomomorphism, we have that ⋂n
i=1 bi ⊆ a, and we conclude that a ∈ F .Now, since inverse image preserves Boolean operations, so in order to prove that ψ
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is continuous, it is enough to check that ψ−1([b]) is a clopen subset of V(S(B)), for any
b in B. Since

ψ−1([b]) = {C ∈ V(S(B)) : ψ(C) ∈ [b]}

= {C ∈ V(S(B)) : C ⊆ b̂}

= □b̂,

where b̂ is indeed clopen, we are able to conclude.
For any set S, by applying Proposition 1.23 to the Boolean algebra P(S), we obtainthe following result.

Corollary 1.24. For any set S, the Vietoris hyperspace of the Čech-Stone compacti-
fication of S is homeomorphic to the space of filters on S,

V(β(S)) ≃ Filt(S).

For any Boolean algebra B, we denote by CF the closed subset of S(B) correspondingto a filter F ∈ Filt(B) under this correspondence, and reciprocally, we denote by FCthe filter corresponding to a closed subset C . In the particular case where B = P(S)for some set S, we have that, for any C ∈ V(X),
FC = {Q ⊆ S : ∀α ∈ C,Q ∈ α} =

⋂
α∈C

α

and for any F ∈ Filt(S),
CF = {α ∈ β(S) : F ⊆ α}.

Example 1.25. Fix a set S. We provide different instances of the correspondenceintroduced in Corollary 1.24.
• Fix a subset Q of S. The filter of S corresponding to Q̂, is the principal filtercontaining Q, since

F
Q̂

= {P ⊆ S : Q̂ ⊆ P̂} = {P ⊆ S : Q ⊆ P} = ↑Q.

The closed subset of β(S) corresponding to ↑Q is Q̂, since
C↑Q =

⋂
P ∈↑Q

P̂ =
⋂

Q⊆P

P̂ = Q̂.

• The closed subset of β(S) corresponding to Cof(S), the filter of all of the cofinitesubsets of S is the remainder of S, and vice-versa. Indeed, by Proposition 1.23,we have
CCof(S) := {α ∈ β(S) : ∀Q ∈ Cof(S), Q ∈ α}
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which is equal to ∗S by Lemma 1.14, and

F∗S = {Q ⊆ S : ∗S ⊆ Q̂} = {Q ⊆ S : ∗S ⊆ ∗Q}

which is equal to Cof(S) by Lemma 1.15 (1).More generally, for any subset Q of S, the closed subset of β(S) correspondingto the filter
↑Q ∩ Cof(S) := {P ⊆ S : Q ⊆ P and P c is finite}

is ∗Q and vice-versa. Indeed, by Proposition 1.23, we have
C↑Q∩Cof(S) :=

⋂
Q′∈↑Q∩Cof(S)

Q̂′ =
⋂

Q′∈↑Cof(S)
Q̂′ ∩ Q̂

which is equal to ∗S ∩Q, that is, ∗Q, and
F↑Q∩Cof(S) = {Q′ ⊆ S : ∗Q ⊆ Q̂′}

which is equal to ↑Q ∩ Cof(S) by Lemma 1.15 (1).
We now define a notion of product for two filters of P(S), which will be a majorexample needed in Section 2.4.

Definition 1.26. Fix a set S. We define the P(S2)-product of two filters F1,F2 ∈ Filt(S)as the filter
F1 ⊗ F2 := ↑{P1 × P2 : P1 ∈ F1, P2 ∈ F2} ∈ Filt(S2).

This filter corresponds, by Proposition 1.23, to the closed subset of β(S2)

CF1⊗F2 :=
⋂

P1∈F1
P2∈F2

P̂1 × P2,

which motivates the following definition.
Definition 1.27. Fix a set S. We define the β(S2)-product of two closed subsets C1, C2 ∈
V(β(S)) as

C1 ⊗ C2 :=
⋂

C1⊆P̂1
C2⊆P̂2

P̂1 × P2.

This terminology was implemented in order to avoid confusion with the producttopology. However, since this is the only kind of product that we use in this thesis,we choose to abbreviate it as product. Note that the projections maps π1, π2 : S2 → Scan be lifted into two continuous maps βπ1, βπ2 : β(S2) → β(S), yet these maps are notbijective and thus it is not possible, in general, to retrieve an ultrafilter α ∈ β(S2) byonly looking at its two projections.
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Example 1.28. Fix a set S. We provide different instances of product of closed subsetsof β(S).

• In the case of two clopen subsets, Q̂1, Q̂2 ⊆ β(S), we have
Q̂1 ⊗ Q̂2 =

⋂
Q1⊆P1
Q2⊆P2

P̂1 × P2 = Q̂1 ×Q2.

• In the case where the closed subset is the remainder, we have
∗S ⊗ ∗S =

⋂
F1,F2⊆S

F1,F2 finite
̂(S \ F1) × (S \ F2).

The Vietoris construction can be seen as a functor V : BStone → BStone on thecategory of Boolean spaces and continuous functions. Indeed, if f : X → Y is continu-ous, then so is the continuous map V(f) : V(X) → V(Y ) which sends a closed subset Cof X to f(C). We would like to complete the following commutative diagram.
BA Stone?

S

V

ClopIn order to do so, we need to define a functor M : Bool → Bool which could beseen as the dual of V : BStone → BStone. This functor sends any Boolean algebra towhat is called its corresponding formal modal algebra. We could summarize modalalgebra by saying that, just as Boolean algebras are models of classical logic, modalalgebras provide models of propositional modal logic. The reader intested in a completeintroduction to the framework of modal logic and its uses can refer to [8], and to [41].More specific results about the relationships between Vietoris topology, modal logicand coalgebras are also available. This topic is especially relevant to this thesis, sinceuniversal quantification acts like a box operation in our setting.
Definition 1.29 (Modal algebra). A modal algebra is a pair (B,□) where B is a Booleanalgebra and □ : B → B satisfies the following properties: □1 = 1 and for every b1, b2 in
B, □(b1 ∧ b2) = □b1 ∧ □b2.

For any Boolean algebra B, we denote by MB the free Boolean algebra over theset of formal generators {□b : b ∈ B}, with the following relations: □1 = 1 and forevery b1, b2 in B, □(b1 ∧ b2) = □b1 ∧ □b2. This is the free Boolean algebra over thesemilattice reduct of B. What this means concretely is that MB can be characterizedas the Boolean algebra expansion of B with the property that, for any meet-preservingfunction between Boolean algebras h : B → B′, there is a unique Boolean algebrahomomorphism h̄ : B → B′ which extends h. We could have defined MB in a similar
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fashion by introducing the generators ♢b, for any b ∈ B, with the relations ♢0 = 0 andfor any b1, b2 in B, ♢(b1 ∨ b2) = ♢b1 ∨♢b2. For any b ∈ B, the relation □b = ¬(♢¬b) holds.It is already fairly transparent that this mirrors the topological structure provided bythe Vietoris hyperspace, on the algebraic level.One can use the Vietoris construction in order to understand the dual space of themodal algebra built on a Boolean algebra B.
Proposition 1.30. For any Boolean algebra B, the dual space of MB is homeomorphic
to the Vietoris hyperspace of the dual space of B.

Proof. See [41], Fact 1.
An important notion we will require in Chapter 2 is the notion of content of a closedsubset of β(S). Basically, it consists in only looking at the points in the closed subsetwhich correspond to principal ultrafilters.

Definition 1.31. For any set S, the content of a closed subset C of β(S) is
Cont(C) := C ∩ S.

Note that the content of a closed subset of β(S) may very well be empty in general.

S∗

S

β(S)

C

Q̂

Figure 9: The space of ultrafilters β(S). Clopen subsets must contain elements of S,whilst closed subsets do not need to.
For the reader who would rather prefer to reason in terms of filters, the corre-sponding definition is the following. The content of a filter F ∈ Filt(S), can be definedas the set of elements of S appearing in every set of the filter: that is,

Cont(F) :=
⋂

F =
⋂

Q∈F
Q.
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Example 1.32. We compute the content of the closed subsets introduced in Example1.25. Fix a set S.

• For any Q ⊆ S, the content of the closed subset Q̂ of β(S) is Q̂ ∩ S = Q ∩ S = Q.
• The content of the remainder ∗S is the empty set. This is an example of a closedsubset of β(S) with an empty content, but which is not the empty set. Moregenerally, for any Q ⊆ S, the content of the closed subset ∗Q of β(S) is the emptyset.
• For any closed subsets C1, C2 of β(S), we have that

Cont(C1 ⊗ C2) = (
⋂

C1⊆P̂1
C2⊆P̂2

P̂1 × P2) ∩ S2

=
⋂

C1⊆P̂1
C2⊆P̂2

(P̂1 × P2 ∩ S2)

=
⋂

C1⊆P̂1
C2⊆P̂2

{(s1, s2) ∈ S2 : s1 ∈ P1 and s2 ∈ P2}

= (C1 ∩ S) × (C2 ∩ S)

= Cont(C1) × Cont(C2).

1.3 Formal languages and recognition

In this section, we introduce the basics of formal language theory, and the notion of lan-
guage recognition by finite automata, and its algebraic counterpart via finite monoids.We then explain how it is possible to link it to duality theory from Section 1.1 andfinally provide a few examples of this connection. For a more thorough introductionto automata theory, we recommend [42] and [63], and for the algebraic treatment oflanguage recognition we refer to [71] and [54].Throughout the rest of the thesis, we fix a finite alphabet A, and we refer to theelements of A∗, the free monoid over A, as the finite words on A. We denote by |w| the
length of a finite word w = w0...w|w|−1 ∈ A∗, where for every i ∈ {0, ..., |w| − 1}, wi isin A. Finally, we denote by |w|a the number of occurrences of the letter a in the word
w. A language L is a subset of A∗, and since P(A∗) is a Boolean algebra for union,intersection and complement, these operations are naturally defined on languages. Onelast operation on languages that is extremely useful is the quotient by a word.
Definition 1.33. For any language L ⊆ A∗ and any word v ∈ A∗, we define the left
quotient v−1.L and the right quotient L.v−1 as the languages

v−1.L := {w ∈ A∗ : v.w ∈ L}
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and

L.v−1 := {w ∈ A∗ : w.v ∈ L}.We now introduce the notion of recognition by finite automaton, which plays a majorrole in the comprehension of finite languages.
Definition 1.34. A finite automaton is a tuple A = (Q, δ, I, F ), where• Q is a finite set that we refer to as the set of states of the automaton;

• δ ⊆ Q × A × Q is a relation that we refer to as the transition relation of theautomaton;
• I, F ⊆ Q are referred to as the set of initial states, and the set of final states ofthe automaton, respectively.A word w ∈ A∗ with length n ∈ N>0 is accepted by an automaton A = (Q, δ, I, F ) ifthere exists q0, ...qn ∈ Q, where q0 ∈ I, qn ∈ F and for every i ∈ {0, ..., n−1}, (qi, wi, qi+1) ∈

δ. We say that a language is recognized by an automaton if the automaton accepts everyword in the language. A language L ⊆ A∗ is called regular if there exists a finite automa-ton which recognizes it. We denote by Reg(A∗) the subset of A∗ of all regular languages.The set of all regular languages is a Boolean subalgebra of P(A∗). One can prove thatit is closed under left and right quotients and, that the set {u−1.L.v−1 : u, v ∈ A∗} is finite(see [63] Chapter 1, Section 2).
Example 1.35. If the alphabet we consider is A = {a, b}, then the language A∗aA∗is regular, since it is recognised, for instance, by the automaton where Q = {q0, q1},
δ = {(q0, b, q0), (q0, a, q1), (q1, a, q1), (q1, b, q1)}, I = {q0} and F = {q1}.

q0start q1
a

b a,b

Figure 10: An automaton that recognises the language A∗aA∗, where A = {a, b}.
The algebraic approach to language theory consists in studying a notion of recogni-tion based not on finite automaton, but on finite monoids. This is a very helpful point ofview when studying languages since one can use the many ideas and results availablein monoid theory.

Definition 1.36. A language L ⊆ A∗ is said to be recognised by a monoid homomor-phism h : A∗ → M if there exists a subset P ⊆ M such that
h−1(P ) = L.

More generally, a Boolean algebra of languages is said to be recognized by h if hrecognizes every language in B.
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This notion is equivalent to the notion of recognition by finite automaton that weintroduced initially.

Proposition 1.37. For every language L ⊆ A∗, the following conditions are equivalent.
(1): L is recognized by a finite automaton.
(2): L is recognized by a monoid homomorphism into a finite monoid.

Proof sketch. For (1) implies (2), consider a language L recognized by a finite automaton
A = (Q, δ, I, F ). We define MA as the monoid of binary relations R ⊆ Q2 on Q, wherethe monoid law is the composition of relations and the identity is the identity relation.One can prove that the map h : A∗ → MA which sends any finite word w ∈ A∗ to

{(q, q′) : there exists a path in A labelled w from q to q′}

is a monoid morphism, and that, setting P := {R ⊆ Q2 : R ∩ (I × F ) ̸= ∅} we have that
h−1(P ) = L, which proves that h recognizes L.For (2) implies (1), consider a language L such that there exists a monoid morphism
h : A∗ → M , where M is a finite monoid, which recognizes L. We define an automa-ton AM = (QM , δM , IM , FM ), that recognizes L, as follows. We set QM := M, IM :=
{1M }, FM := h(M) and δM := {(m, a,m.h(a)) : m ∈ M,a ∈ A}. One can now prove thatthis automaton recognizes the language L.

There are infinitely many finite monoids that are able to recognize a given language
L ∈ Reg(A∗). However, there exists a monoid ML which is “minimal" in the followingsense: ML recognizes L, and for every finite monoid M that recognizes L, ML is aquotient of a submonoid of M . We refer to this minimal recognizer as the syntactic
monoid, and to h as the syntactic homomorphism. In particular, a language is recog-nizable if, and only if, its syntactic monoid is finite. Explicitly, the syntactic monoid of alanguage L is the quotient of A∗ under the syntactic congruence ∼L which is definedas follows. For any w,w′ ∈ A∗, w ∼L w

′ if, and only if
∀u, v ∈ A∗, (w ∈ u−1.L.v−1 ⇐⇒ w′ ∈ u−1.L.v−1).

It is now time for us to explain how the framework of duality theory we introducedin Section 1.1 can be related to the theory of language recognition. Fix a language
L ∈ Reg(A∗), and consider the Boolean algebra

BL := ⟨{u−1.L.v−1 : u, v ∈ A∗}⟩BA.

As we mentioned previously, the generating set for this Boolean algebra is finite andthus so is BL. By Proposition 1.3, the embedding BL ↪→ P(A∗) is dual to a surjection
A∗ ↠ At(BL), that is, an equivalence relation on A∗, such that the equivalence class of
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w ∈ A∗ is ⋂

u.w.v∈L

u−1.L.v−1 ∩
⋂

u.w.v /∈L

(u−1.L.v−1)c.

These equivalences classes are exactly the equivalence classes of ∼L, the syntactic con-gruence of L, and thus, correspond to the elements of the syntactic monoid ML of
L. This short argument already justifies the pertinence of looking at recognition from aduality theoretic point of view: discrete duality allowed us to retrieve the notion of recog-nition by finite monoids. Even more interesting: if we enrich the structure on Reg(A∗)with a structure of residuation subalgebra of P(A∗), by considering the operations leftand right quotient by languages, and studied the duality theoretic consequences of thischange, we could directly generalise this argument to Boolean algebras of languages,closed under quotients, that are not necessary regular any more, cf [31].
Remark 1.38. This last observation is what led to the introduction of the formalismof Boolean algebras with an internal monoids, or BiMs. When it comes to study-ing Boolean algebras closed under quotients, BiMs constitute a more pertinent class ofmathematical objects than finite monoids, since they also function in the non-regularsetting, cf [30] and [31]. Many different directions can be followed in order to extendthe tools available for regular languages to more general settings. In [9], the monoidmorphisms are replaced by T -algebras, where T is a monad on a certain category. Theframework of monads can be used to described algebraic approaches to other datastructures than finite words, such as trees for instance. Another example is [17], wherelanguages and their acceptors are replaced by functors between input categories (spec-ifying the type of the languages and of the acceptors) and output categories (specifyingthe type of outputs).

In the more general case of an arbitrary Boolean algebra of languages however, nosupplementary structure on the dual space is available, and therefore the topologicalanalogue for the minimal automaton is simply the dual space. This is the case that willbe at the center of our study in this thesis, which justifies us only paying attention tothe topological structure of the dual space in Chapter 2.
Definition 1.39. A language L ⊆ A∗ is recognized by the continuous map f : β(A∗) → X ,where X is a Boolean space, if there exists a clopen K ⊆ X such that

L̂ = f−1(K).

More generally, a Boolean algebra of languages B is recognized by f if, for every L ∈ B,
L is recognized by f .

We refer to the dual space as the minimal recognizer of the Boolean algebra oflanguages we consider. In the case where the language we consider is regular, X = M
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is a finite monoid and the map f is a monoid homomorphism, Definition 1.39 coincideswith the notion of language recognition by finite monoids.
Example 1.40. We give a few examples of computation of dual spaces for some Booleanalgebras of languages.

• The dual space of Reg(A∗) is the topological space that we denote by Â∗ and referto as the set of profinite words, obtained as the completion of A∗ for the profinitemetric d. We give an overview of this space, for more details on this structure thereader can refer to [?] and [1]. First, we say that a finite monoid M separates twofinite words u, v ∈ A∗ if there exists a monoid homomorphism φ : A∗ → M suchthat φ(u) ̸= φ(v). We then set, for any u, v ∈ A∗,

r(u, v) := min{|M | : M is a finite monoid that separates u and v}

and we define the map d : (A∗)2 → R+ which sends any (u, v) ∈ (A∗)2 to 2−r(u,v),with the conventions min(∅) = +∞ and 2−∞ = 0.A profinite word is simply a Cauchy sequence for the profinite metric, up to equiv-alence of Cauchy sequences, defined as follows: two sequences of finite words
(xn)n∈N and (yn)n∈N are equivalent if limn→+∞ d(xn, yn) = 0. For instance, everyfinite word u ∈ A∗ can be seen as a profinite word, as it corresponds to the con-stant Cauchy sequence with the value u. It is relatively difficult to give concreteexamples of profinite words which are not of this kind. One such example is whatwe denote by uω : for any u ∈ A∗, one can prove that the sequence (un!)n∈N is aCauchy sequence (cf [?], Proposition 2.5), and thus has a limit

uω := lim
n→+∞

un!.

• For any subset P of N, we define the language of all words with length in P ,
LP := {w ∈ A∗ : |w| ∈ P} = | · |−1(P ).

For any subsets P and Q of N, we have
LP ∪ LQ = {w ∈ A∗ : |w| ∈ P or |w| ∈ Q} = LP ∪Q,

LP ∩ LQ = {w ∈ A∗ : |w| ∈ P and |w| ∈ Q} = LP ∩Q,

and
(LP )c = {w ∈ A∗ : |w| /∈ P} = LP c .

The set of languages {LP : P ⊆ N} forms a Boolean algebra that we denote by B|·|.We observe that this Boolean algebra is isomorphic to P(N). Indeed, consider themap φ : B|·| → P(N), which sends any language of the form LP , where P ⊆ N,
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to P , and the map ψ : P(N) → B|·| which sends any P ⊆ N to the language LP .These two maps are Boolean homomorphisms and are each other’s inverse. Weconclude that S(B|·|) = β(N).

• Fix a two letters alphabet A = {a, b}. Let us consider the language called majority,which corresponds to the set of all words which contain more occurrences of theletter a than the letter b,
Maj := {w ∈ A∗ : |w|a > |w|b}.

Considering a single language does not allow for an interesting treatment fortopological recognition: for any language L ⊆ A∗, the Boolean algebra generatedby L is isomorphic to the Boolean algebra {∅, L, Lc, A∗}. Therefore, we consider aBoolean algebra that contains L, and is big enough to provide an interesting dualtheoretic treatment: its closure under left and right quotients. We set
BMaj := ⟨{u−1.Maj.v−1 : u, v ∈ A∗}⟩BA.

One can prove (cf [28], Example 2.9) that BMaj is isomorphic to the Boolean sub-algebra of P(Z)
Bshift := ⟨{Z+ − k : k ∈ Z}⟩BA

and that the dual space of this Boolean algebra is X := Z ∪ {+∞,−∞}, where
+∞ := {K ∈ Bshift : the symmetric difference of K and Z+ is finite}

and
−∞ := {K ∈ Bshift : the symmetric difference of K and Z− is finite, }

endowed with the following topology: a subset U of X is open if, and only if, it iscontained in Z; or it contains +∞ and all but finitely many of the elements of Z+;or it contains −∞ and all but finitely many of the elements of Z−.
1.4 Logic on words

In this section, we fix notations, and introduce the pieces of background required inorder to follow Section 2.2, which treats the consequences of our study from the pointof view of logic on words. The reader can refer to ([70], Chapter II) for a more completeaccount on logic on words, and to [72] and [1] for detailed illustrations of the interactionsbetween logic and formal language theory.Logic on words stems from the following idea: one way to think about a word w isas a relational structure over {0, ..., |w| − 1}, equipped with a unary predicate a(·), for
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every a ∈ A, which allows us to tell whether the letter at a given position of w is an a.
1.4.1 Syntax

We start by introducing the notion of numerical predicate, which will be the buildingblocks in order to define the formulas of logic on words. We then introduce the notionof uniformity, which, roughly speaking, will allow us to make the distinction betweennumerical predicates such that their interpretation takes into account the length of thewords we will consider, and the ones that do not. In the next chapters, we mainly focusour study on uniform numerical predicates.
Definition 1.41 (Numerical predicates). For any k ≥ 0, a k-ary numerical predicate isa map

Rk : N>0 → P(Nk)

such that, for all n ≥ 1, Rk(n) ⊆ {0, ..., n− 1}k. It is said to be uniform if there exists asubset Q ⊆ Nk such that, for all n ≥ 1,
Rk(n) = Q ∩ {0, ..., n− 1}k.

We mention the particular case of 0-ary, or nullary predicates. According to thedefinition of numerical predicate we gave, a nullary predicate is a map N → {0, 1},therefore it corresponds to considering a subset P of N. In particular, a nullary predicateis necessarily uniform.
Example 1.42. We now give a few examples of numerical predicates.

• The unary numerical predicate
prime :

N>0 −→ P(N)
n 7−→ {i ∈ {0, ..., n− 1} : i is prime}

is uniform, since for any n ≥ 1, prime(n) = P ∩ {0, ..., n− 1}, where P is the set ofall prime numbers.
• The binary numerical predicate

≤:
N>0 −→ P(N2)
n 7−→ {(i, j) ∈ {0, ..., n− 1}2 : i ≤ j}

is uniform, since for any n ≥ 1, ≤(n) = I ∩ {0, ..., n− 1}2, where I is the set of allof the couples of positive integers (i, j) such that i ≤ j.
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• The unary numerical predicate

end :
N>0 −→ P(N)
n 7−→ {n− 1}

is a unary non-uniform numerical predicate. Indeed, there exists no subset P ⊆ Nsuch that, for all n ≥ 1, P ∩ {0, ..., n− 1} = {n− 1}.
Following the terminology introduced in [70], we now define the formulas of logicon words.

Definition 1.43. [Syntax of first-order logic on words.] We denote first-order variablesby x, x1, x2, etc. We consider formulas that are recursively built from the followingatomic blocks.
• Letter predicates: for every letter a ∈ A, a letter predicate is denoted by a(·). Forany first-order variable x, a(x) is an atomic formula.
• Numerical predicates: for any k ∈ N, and for any list of k first-order variables
x1, ..., xk , if Rk : N>0 → P(Nk) is a k-ary numerical predicate, then Rk(x1, ..., xk) isan atomic formula.

The closure operations on formulas are the following.
• If φ and ψ are formulas, then any Boolean combination of φ and ψ is a formula.
• If φ is a formula, and x is a variable, then ∃xφ(x) and ∀xφ(x) are formulas.
We say that a variable x occurs freely in a formula if it is not in the scope of aquantifier. In particular, we call quantifier-free formulas the Boolean combinations ofatomic formulas. A sentence is a formula such that none of its variables are free. A

fragment of first-order logic is a subset of the set of all sentences.
1.4.2 Semantics

As we previously announced, the particularity of logic on words is that we considerwords as first-order structures. First, fix k ∈ N. We use the notation ī to refer to theelements (i1, ..., ik) ∈ Nk , and ā to refer to the elements (a1, ..., ak) ∈ Ak. For any finiteword w ∈ A∗, we introduce the notation
|w|k := {̄i ∈ Nk : ∀j ∈ {1, ..., k}, ij < |w|}.

Models of formulas with free variables among x̄ = {x1, ..., xk}, where all the xi aredistinct, are given by elements (w, ī) in
A∗ ⊗ Nk := {(w, ī) ∈ A∗ × Nk : ī ∈ |w|k},
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which we refer to as x̄-structures, one marked position in the word correspondingexactly to one free variable. Note that several variables can mark the same position. Itis important to emphasis that the notation ⊗ used in this context is completely differentfrom the notation used in Definition 1.27 in order to talk about product of closed sub-sets. We define an equivalence relation on formulas by saying that two formulas areequivalent if they have the same models.We now introduce the semantic interpretation of the formulas we defined.
Definition 1.44 (Semantics of logic on words). We define recursively the semantics ofthe formulas built in Definition 1.43. We start with the atomic formulas.

• For any l ∈ {1, ..., k}, and for any letter a ∈ A, the x̄-structure (w, ī) ∈ A∗ ⊗ Nksatisfies a(xil
) if, and only, if wil

= a. In particular, for any ā ∈ Ak , we use thenotation w[̄i] = ā in order to say that the x̄-structure satisfies the formula
k∧

j=1
aj(xj),

that is, for every j ∈ {1, ..., k}, wij = aj .
• For any l ∈ {1, ..., k}, any j1, ..., jl ≤ k, and any l-ary numerical predicate Rl, the
x̄-structure (w, ī) ∈ A∗ ⊗Nk satisfies Rl(xj1 , ..., xjl

) if, and only, if (ij1 , ..., ijl
) belongsto Rl(|w| − 1).

Now, the closure operations on formulas are defined as follows.
• The Boolean operations are interpreted in the usual way.
• For any l ∈ {1, ..., k}, and any i\l := (ij) 1≤j≤k

j ̸=l
∈ Nk−1, given a formula φ(x̄), a

(x̄ \ {xl})-structure (w, ī\l) ∈ A∗ ⊗ Nk−1 satisfies the formula ∃xl φ(x̄) if, and only,if there exist il < |w| such that (w, ī) ∈ A∗ ⊗ Nk satisfies φ(x̄).
Note that the interpretation of nullary predicates P ⊆ N on words is the following:the ∅-structure w satisfies P if, and only if, |w| ∈ P .

Remark 1.45. In particular, if Rk is a k-ary uniform numerical predicate, since thereexists a subset Q ⊆ Nk such that, for all n ≥ 1, Rk(n) = Q ∩ {0, ..., n− 1}k , a x̄-structure
(w, ī) ∈ A∗ ⊗ Nk satisfies Rk(x̄) if, and only if, ī belongs to Q.
Example 1.46. We introduced in Example 1.42 the uniform binary numerical predicate
≤. For any variables x, y, and any letters a, b ∈ A, the quantifier-free formula

φ(x, y) = a(x) ∧ b(y) ∧ ≤(x, y)

corresponds to the set Lφ(x,y) of all elements (w, i, j) in A∗ ⊗N2 such that wi = a,wj = band i ≤ j,
Lφ(x,y) = {(w, i, j) ∈ A∗ ⊗ N2 : w[i, j] = (a, b) and (i, j) ∈ I}.
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Applying a layer of existential quantifiers to this formula leads us to consider the sen-tence

∃x∃y φ(x, y),

which corresponds to the language consisting in all words w ∈ A∗ such that there existtwo positions i, j < |w| such that wi = a,wj = b and i ≤ j, in other words, the language
A∗aA∗bA∗.

For any formula φ on the set of variables x̄ = {x1, ..., xk}, and for any x̄-structures
(w, ī), we use the notation

(w, ī) |= φ(x̄)

to say that (w, ī) satisfies the formula φ. We denote by Lφ the subset of A∗ ⊗ Nk of allthe x̄-structures (w, ī) satisfying the formula φ,
Lφ := {(w, ī) ∈ A∗ ⊗ Nk : (w, ī) |= φ(x̄)}.

Notice that Lφ is a language of finite words on the alphabet A if, and only, if the formula
φ is a sentence. Whenever F is a subset of the set of formulas with free variablesamong x̄, which is closed under the Boolean connectives, the collection {Lφ : φ ∈ F} isa Boolean subalgebra of P(A∗ ⊗Nk). This simple observation is what allows us to applyduality for Boolean algebras to logic fragments, and motivates the approach taken inChapter 2.For any k ≥ 1, we denote by

FO[N u
k ]

the set of languages corresponding to the fragment of first order logic defined byBoolean combinations of first-order sentences built by only using letter predicates, anduniform numerical predicates with arity l ∈ {1, ..., k}. If we want to add nullary predi-cates, then we use the notation FO[N0,N u
k ]. Finally, we use the notation FO[Nk] if weconsider k-ary numerical predicates that are not necessarily uniform.

1.5 Ultrafilter equations

As we announced in the general introduction, the foundation of descriptive complex-ity theory is that it is possible to express computational complexity classes in terms offragments of logic on words. In Section 1.4, we explained how one can describe certainfragments of first-order logic in terms of Boolean subalgebras of P(A∗). Fixing twosuch Boolean algebras B1,B2, proving that they are distinct amounts to constructinga language L ⊆ A∗ which belongs to B1, but not to B2. Let us take the point of viewof duality theory. The dual space S(B) is a topological object canonically associated to
B, however, in general, it happens to be too “big" to constitute a practical descriptionof B. A question that arises naturally is therefore the following: is it possible to intro-
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duce a practical topological object which holds enough information to characterize theBoolean algebra we are interested in? The answer involves introducing the notion of
ultrafilter equation, a well-chosen family of pairs of ultrafilters in the dual space. Themain ingredient we need to use is the fact that any Boolean algebra of languages isa subalgebra of P(A∗). A Boolean algebra of languages B is given by an embedding
B ↪→ P(A∗) and thus the dual map β(A∗) ↠ S(B) is a quotient, given by equating ele-ments in the dual space. The idea would be to find families of pairs of points in the dualspace (ideally, much smaller than S(B)2) that allow for a characterisation of B. Sincethe reasoning applies for any subalgebra of a given Boolean algebra we formalize thereasoning in this setting.
Definition 1.47. For any Boolean space X , a Boolean equivalence relation is an equiv-alence relation E of X such that the quotient space X/E is also a Boolean space.
Definition 1.48. For any Boolean algebra B, any two ultrafilters γ1, γ2 ∈ S(B), and any
b ∈ B, we say that b satisfies the B-equation γ1 ↔ γ2 if, and only if,

b ∈ γ1 ⇐⇒ b ∈ γ2.

Theorem 1.49 (Stone duality for Boolean subalgebras, [65], Theorem 5.1). Let B be a
Boolean algebra, and X its associated dual space. Let us consider the map from
P(B) to P(X2) which sends any subset S of B to

{(x, y) ∈ X : ∀b ∈ S, (b ∈ x ⇐⇒ b ∈ y)}

and the map from P(X2) to P(B) which sends any subset E of X2 to

{b ∈ B : ∀(x, y) ∈ E, (b ∈ x ⇐⇒ b ∈ y)}.

These maps establish a Galois connection whose Galois closed sets are the Boolean
equivalence relations on X and the Boolean subalgebras of B respectively. In partic-
ular, every set of equations over X determines a Boolean subalgebra of B, and every
Boolean subalgebra of B is given by a set of equations over X .

Corollary 1.50. Any Boolean algebra of languages on a finite alphabet A can be
defined by a set of equations of the form γ1 ↔ γ2 where γ1 and γ2 are ultrafilters on
the set of words.

If the Boolean algebra we consider in Theorem 1.49 is closed under quotients, thenthe set of all equations satisfied by it is a kind of congruence. For any ultrafilter onwords γ ∈ β(A∗) and any word w ∈ A∗, set
w.γ := {w−1.L : L ∈ γ} and γ.w := {L.w−1 : L ∈ γ}.
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Fix two ultrafilters γ1 and γ2 in β(A∗). It is a simple computation to check that, ifa Boolean algebra closed under quotients satisfies the equation γ1 ↔ γ2, then it alsosatisfies the equations w.γ1 ↔ w.γ2 and γ1.w ↔ γ2.w, for any word w ∈ A∗. In view ofthis result, it is convenient to introduce the following notation. Given two ultrafilters
γ1 and γ2 in β(A∗), we say that a language satisfies the ultrafilter equation γ1 = γ2 if itsatisfies all the ultrafilter equations w.γ1 ↔ w.γ2 and γ1.w ↔ γ2.w, for all words w ∈ A∗.In the particular case of Boolean algebras of regular languages, an even strongerresult is available. As we explained in Example 1.40, the dual space of Reg(A∗) is Â∗,the set of all profinite words on A∗. Theorem 1.49 applied to Reg(A∗) shows that anyBoolean algebra of regular languages can be defined by a set of equations of the form
u ↔ v, where u and v are profinite words.
Theorem 1.51 ([29], Proposition 1.3). Let B be a Boolean algebra of regular languages
of A∗ closed under quotients and let w1, w2 ∈ Â∗. If B satisfies the profinite equation
w1 ↔ w2, then it satisfies the profinite equations u.w1 ↔ u.w2 and w1.u ↔ w2.u, for
each profinite word u ∈ Â∗.

Given w1, w2 ∈ Â∗, we say that a regular language satisfies the profinite equation
w1 = w2 if it satisfies the profinite equations u.w1 ↔ u.w2 and w1.u ↔ w2.u, for eachprofinite word u ∈ Â∗. The main interest of these notations is to allow one to producesmaller sets of defining equations for Boolean algebra of languages which are closedunder quotients.
Example 1.52. We list a few examples of profinite equations corresponding to frag-ments of first-order logic.

• The fragment FO[<] of first-order logic defined as the set of all sentences writtenby only using letter predicates and the binary numerical predicate < introducedin Example 1.42 is described by the profinite equations
uω = uω+1,

where u ∈ A∗.
• The fragment BΣ1[<] of first-order logic consisting in Boolean combinations ofsentences written by using the binary numerical predicate <, and letter predicatesis described by the profinite equations

(uv)ω = (vu)ω and uω = uω+1,

where u, v ∈ A∗.
• The fragment FO2[<] first-order logic defined as the set of all sentences, writtenby only using letter predicates and the binary numerical predicate < and exactly
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two first-variables is described by the profinite equations

(uv)ω(vu)ω(uv)ω = (uv)ω and uω = uω+1,

where u, v ∈ A∗.
The reader can refer to [51], [53] [12] and [59] for more fragments of logic corre-sponding to families of regular languages, and their description in terms of profiniteequations. We conclude the section by giving an example of ultrafilter equations for aBoolean algebra of non-regular languages.

Example 1.53. The Boolean algebra BMaj that we introduced in Example 1.40 admitsthe basis of ultrafilter equations
µ = µ+ 1,

for every µ ∈ ∗(Z), where
µ+ 1 := {P − 1: P ∈ µ},

see [28], Example 2.21 for a proof.



CHAPTER 2

Duality for the existential fragment of first-order logic on words

This thesis lies at the intersection of formal language theory and duality theoretic meth-ods. The contribution of this chapter is a deepening of the knowledge currently availableon existential quantification for logic on words. More precisely, we provide a charac-terisation of the dual space of the Boolean algebra corresponding to the first-ordersentences built by using uniform numerical predicates of arity k, for a fixed k ∈ N(Theorem 2.14). The consequences of applying one layer of existential quantifier toBoolean algebras of languages defined by formulas with free first-order variables, andtheir counterpart at the level of topological recognisers have already been well studiedin [30]. On the algebraic side, we apply one layer of existential quantifier, while onthe topological side, we take the Vietoris hyperspace. Yet, unlike in the case of finiterecognisers where a minimisation algorithm is available, there exists, at the moment,no well-known procedure which would allow to directly derive the minimal topologicalrecognizer out of a given topological recogniser. Indeed, the minimal topological rec-ognizer corresponds to the dual space of the Boolean algebra in question, and very fewconcrete computations of dual spaces for fragments of logic on words which lie outsideof the regular case are available. This work provides a thorough study in the casewhere the Boolean algebra we quantify over consists of exactly every quantifier-freeformula, and we add one layer of quantification.Apart from being an object of study in itself, another reason which motivates ourinterest in this question is that its answer has an application in computer science, moreprecisely in complexity theory. A result of Immerman [36] establishes strong connec-tions between computational complexity classes and formal language theory: it states, inparticular, that we can associate to most complexity classes a class of formal languages.This is at the foundation of what is now called descriptive complexity theory. There-fore, the problem of separating classes in complexity theory amounts to separating the
49
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corresponding class of languages, and this is where duality theory comes into play. Letus give more details for the case we focus on in this thesis. Fix a finite alphabet A. Onthe complexity theory side, AC0 is a complexity class defined by sequences of Booleancircuits. It is important to note that, in this thesis, we do not define Boolean circuits,neither do we work with them: we only work with their logical counterpart, see [70] fora detailed introduction to the topic. The corresponding class of languages associated to
AC0 is

FO[N ] :=
⋃

k∈N
FO[Nk],

see [70], Theorem IX.2.1, where, for every k ∈ N, FO[Nk] has been defined at the end ofSection 1.4. An approach to describing FO[N ] would be to start by describing smallerfragments, and build on them to eventually characterise this class of languages. Foreach letter a in A, and for each subset P of N, let us introduce the a-content of w,
ca(w) := {i ∈ |w| : wi = a},

and the languages
LP := {w ∈ A∗ : |w| ∈ P}

and
La

P := {w ∈ A∗ : ca(w) ∩ P ̸= ∅}.

It has been proven in [29] that a language L belongs to the Boolean algebra generated bythe languages LP and La
P , where a ranges over A, and P ranges over the subsets of N,if, and only if, L belongs to the class of languages defined by first-order sentences builton nullary predicates and unary uniform numerical predicates, that is FO[N0,N u

1 ]. Acharacterisation of the dual space of this Boolean algebra had already been discoveredin an unpublished paper of Gehrke, Krebs and Pin. This allowed for a description ofthis fragment of first-order logic on words in [29] in terms of ultrafilter equations, thatis, a family of pairs of ultrafilter on words which are sufficient to characterise it. Theidea is the following: a Boolean algebra of languages B is a subalgebra of P(A∗), andthus the canonical embedding provides a continuous quotient map π : β(A∗) ↠ S(B). Bydefinition, π sends an ultrafilter γ ∈ β(A∗) to {L ∈ B : L ∈ γ}. Therefore, an equivalentway to say that B satisfies the ultrafilter equation γ1 ↔ γ2, for a pair (γ1, γ2) ∈ β(A∗)2, isto say that π(γ1) = π(γ2).
Outline of the chapter: Our wish is to get an understanding of a larger fragmentof FO[N ] than FO[N u

1 ], the class of languages defined by first-order sentences built onunary uniform numerical predicates. We denote this larger fragment by Bk. It wouldtake into account the uniform numerical predicates of arity lesser or equal to k, forsome k ≥ 1, but it would not take into account alternation of quantifiers. In section2.1, we set the notations and introduce the Boolean algebra Bk , for any k ≥ 1, and itsdual space Xk , that will be at the center of our study in this chapter. In section 2.2, we
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give a description of Bk from the perspective of logic on words, and in section 2.3 wegive a first characterisation of the dual space Xk in terms of finite colourings of Nk.This characterisation being a bit abstract, we study in section 2.4 the dual space of asubalgebra of Bk that is big enough to give an insight on how to obtain a more concretecharacterisation of Xk.
2.1 General setting

Fix a finite alphabet A. We introduce for any k ≥ 1, and any k-tuple of letters ā ∈ Akthe map cā : A∗ → Pfin(Nk), where Pfin(Nk) is the set of all finite subsets of Nk , whichsends a finite word w to its ā-content,
cā(w) := {̄i ∈ |w|k : w[̄i] = ā}.

Definition 2.1. For any subset Q of Nk , we introduce the languages
L♢ā

Q
:= {w ∈ A∗ : cā(w) ∩Q ̸= ∅}

and
L□ā

Q
:= (L♢ā

Qc
)c = {w ∈ A∗ : cā(w) ⊆ Q}

This notation allows us to keep the intuition of modal algebra, as introduced insection 1.2.
Example 2.2. We provide a few concrete examples of these languages in the casewhere k = 2, which shall be used in order to build an intuition over Bk. Fix two letters
a and b in A.

• Assume that Q is a subset of N2 such that there exist two subsets P and P ′ of Nsuch that Q = P × P ′. In this case, we have that
L♢a,b

P ×P ′
= {w ∈ A∗ | ca,b(w) ∩ (P × P ′) ̸= ∅}

= {w ∈ A∗ | (ca(w) × cb(w)) ∩ (P × P ′) ̸= ∅}

= {w ∈ A∗ | ca(w) ∩ P ̸= ∅} ∩ {w ∈ A∗ | cb(w) ∩ P ′ ̸= ∅}

= L♢a
P

∩ L♢b
P ′
.

• Assume that Q is equal to ∆, the diagonal of N2, in other terms every pair (i, i)with i ∈ N. Then we have
L♢a,a

∆
= {w ∈ A∗ : ca,a(w) ∩ ∆ ̸= ∅}

= {w ∈ A∗ : ∃i ∈ N, wi = a}

= A∗aA∗.
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• Assume that Q is the subset {(i, j) ∈ N2 | i ≤ j}, a similar reasoning allows us toprove that

L♢a,a

{(i,j)∈N2|i≤j}
= L♢a,a

∆
.

• Assume that Q is the subset {(i, i+ 1) | i ∈ N}. Then we have
L♢a,a

{(i,i+1)|i∈N}
= {w ∈ A∗ : ca,a(w) ∩ {(i, i+ 1) | i ∈ N} ≠ ∅}

= {w ∈ A∗ : ∃i ∈ N, w[(i, i+ 1)] = (a, a)}

= A∗aaA∗.

Let Bk be the Boolean subalgebra of P(A∗) generated by the languages L♢ā
Q

, where
ā ranges over Ak , and Q ranges over the subsets of Nk ,

Bk := ⟨{L♢ā
Q

: ā ∈ Ak, Q ⊆ Nk}⟩BA.

The main purpose of this chapter is to understand, and give characterisations of thedual space of the Boolean algebra Bk. We denote by Xk the dual space of Bk.We denote by Vk the Ak-fold power of Vietoris hyperspaces
Vk := V(β(Nk))Ak

.

We consider the function
ck : A∗ → Vk,

which sends a finite word w ∈ A∗ to the following family of clopen subsets,
(ĉā(w))ā∈Ak .

By the universal property of Čech–Stone compactification, there exists a uniquecontinuous map ck : β(A∗) → Vk which extends it. We give a description of the imageof this map: it actually corresponds to the dual space of Bk.
Proposition 2.3. The image of ck is homeomorphic to Xk.

Proof. Let us denote by Mk the Ak-fold copower of MP(Nk), that is the free Booleanalgebra generated by the formal generators ♢āQ, where ā ranges over Ak , and Q rangesover the subsets of Nk. As we mentioned in Proposition 1.30, the dual of MP(Nk) is
V(β(Nk)). As we observed in Proposition 1.13, Boolean Stone duality turns coproductsinto products: the dual space of the Boolean algebra Mk is Vk. We start by defining aBoolean algebra homomorphism hk : Mk → P(A∗) which we will prove to be dual tothe continuous map ck : β(A∗) → Vk. First, fixing ā ∈ Ak , we consider the map

L♢ā
(·)

: P(Nk) → P(A∗)
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which sends any Q ⊆ Nk to the language L♢ā

Q
. This map preserves finite joins: indeed,

L♢ā
∅

= ∅ and, for any Q1, Q2 ⊆ Nk ,
L♢ā

Q1
∪ L♢ā

Q2
= {w ∈ A∗ : cā(w) ∩Q1 ̸= ∅} ∪ {w ∈ A∗ : cā(w) ∩Q2 ̸= ∅}

= {w ∈ A∗ : cā(w) ∩Q1 ̸= ∅ or cā(w) ∩Q2 ̸= ∅}

= {w ∈ A∗ : cā(w) ∩ (Q1 ∪Q2) ̸= ∅}

= L♢ā
(Q1∪Q2)

.

Therefore, this join preserving map extends uniquely to a Boolean algebra homomor-phism
hā : MP(Nk) → P(A∗).

We now define hk : Mk → P(A∗) by using the universal property of the Ak-fold copowerof MP(Nk), that is hk is the unique Boolean algebra homomorphism such that, for any
ā ∈ Ak , and for any Q ⊆ Nk ,

hk(♢āQ) = L♢ā
Q
.

In particular, this equality proves that Im(hk) = Bk , since Mk is the Boolean algebragenerated by the elements of the form ♢āQ, where ā ranges over Ak , and Q rangesover the subsets of Nk. Therefore, we have the following commutative diagram in Bool.
Mk P(A∗)

Bk

hk

Now, by duality, we have the following diagram in Stone.
β(A∗) Vk

Xk

(hk)−1

In order to conclude that Im(ck) = Xk , it is enough to prove that ck is dual to hk ,that is that ck = (hk)−1. Since we consider continuous maps between compact Hausdorfspaces, and A∗ is a dense subspace of β(A∗), we only need to prove that the restrictionof these maps to A∗ are equal. Now, for any word w ∈ A∗, we have by definition
ck(w) = (cā(w))ā∈Ak ,

and since the duality turns coproducts into products,
(hk)−1(w) = ((hā)−1(w))ā∈Ak .
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Finally, for every w ∈ A∗, and every ā ∈ Ak ,

(hā)−1(w) = {̄i ∈ Nk : w ∈ hā(♢ā({̄i}))}

= {̄i ∈ Nk : w ∈ L♢ā
{ī}

}

= {̄i ∈ Nk : cā(w) ∩ {̄i} ≠ ∅}

= {̄i ∈ Nk : w[̄i] = ā}

= cā(w),

and we conclude that ck = (hk)−1, and therefore that Im(ck) = Xk.
2.2 Logical description of Bk

Fix k ≥ 1. In this section, we give a description of the Boolean algebra Bk in the contextof logic on words. The Boolean algebra Bk contains the subalgebra generated by thelanguages La
P , where a ranges over A, and P ranges over the subsets of N. This impliesthat it already encodes at the very least all of the first-order sentences built by usingunary uniform numerical predicates (see [29], Theorem 2.9 for a proof). We will provethat Bk can actually be identified with the Boolean algebra of languages correspondingto formulas which are Boolean combinations of sentences defined by using a block ofat most k existential quantifiers, letter predicates and uniform numerical predicates ofarity l ∈ {1, ..., k}.Fixing a set of free variables x̄ = {x1, ..., xk}, we first express any quantifier-freeformula written by using only a subset of these variables as a normal form whichinvolves exactly all of the free-variables in x̄.

Lemma 2.4. Any quantifier-free formula φ such that the set of its variables {xj1 , ..., xjl
}

is a subset of x̄ can be written as a formula of the form

∨
ā∈Ak

(ā(x̄) ∧Rā(x̄)),

where, for every ā ∈ Ak , ā(x̄) is defined as the conjunction
∧k

j=1 aj(xj), and Rā is a
k-ary numerical predicate.

Proof. We denote by ⇐⇒ the relation of logical equivalence between formulas. Weprove the statement by structural induction on quantifier-free formulas. We start withatomic formulas. For letter predicates, we have that, for any j ∈ {1, ..., k}, and any a ∈ A,
a(xj) ⇐⇒

∨
ā∈Ak

(ā(x̄) ∧ Sā(x̄)),
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where, for every ā ∈ Ak , Sā is the k-ary numerical predicate defined as

Sā :

N>0 −→ P(Nk)

n 7−→

{0, ..., n− 1}k if aj = a

∅ otherwise .

For numerical predicates, we have that, for any l-ary numerical predicate Rl,
Rl(xj1 , ..., xjl

) ⇐⇒
∨

ā∈Ak

(ā(x̄) ∧ T ā
Rl(x̄)),

where, for every ā ∈ Ak , T ā
Rl is TRl , the k-ary numerical predicate defined as

TRl :
N>0 −→ P(Nk)
n 7−→ {(n1, ..., nk) ∈ {0, ..., n− 1}k | (nj1 , ..., njl

) ∈ Rl(n)}
.

To conclude, all we need to do is to prove that formulas of the form ∨
ā∈Ak(ā(x̄)∧Rā(x̄))are closed under Boolean operations. For any formulas φ1(x̄) of the form ∨

ā∈Ak(ā(x̄) ∧
Rā

1(x̄)) and φ2(x̄) of the form ∨
ā∈Ak(ā(x̄) ∧Rā

2(x̄)), we have that
φ1(x̄) ∧ φ2(x̄) ⇐⇒

∨
ā∈Ak

(ā(x̄) ∧ (Rā
1 ∩Rā

2)(x̄)

where, for every ā ∈ Ak , (Rā
1 ∩Rā

2) is the k-ary numerical predicate defined as
Rā

1 ∩Rā
2 :

N>0 −→ P(Nk)
n 7−→ Rā

1(n) ∩Rā
2(n)

,

and
φ(x̄) ∨ ψ(x̄) ⇐⇒

∨
ā∈Ak

(ā(x̄) ∧ (Rā
1 ∪Rā

2)(x̄)).

where, for every ā ∈ Ak , (Rā
1 ∪Rā

2) is defined in an analogous way. Finally, the negationof any atomic formula is equivalent to a disjunction of atomic formulas: for any l-arypredicate Rl, and any free-variables (xj1 , ..., xjl
),

¬Rl(xj1 , ..., xjl
) ⇐⇒ ((Rl)c)(xj1 , ..., xjl

),

where, for every ā ∈ Ak , (Rl)c is the k-ary numerical predicate defined as
(Rl)c :

N>0 −→ P(Nk)
n 7−→ {0, ..., n− 1}k \ TRl(n)

;
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and for any letter a and any j ∈ {1, ..., k},

¬a(xj) ⇐⇒
∨
b∈A
b ̸=a

b(xj).

Therefore, by Lemma 2.4, if we apply one layer of existential quantifier to a quantifier-free formula φ whose set of variables is contained in x̄, we obtain a sentence of theform
∃x1...∃xk

∨
ā∈Ak

(ā(x̄) ∧Rā(x̄))

where, for every ā ∈ Ak , Rā is a k-ary numerical predicate.From now on, we will restrict our attention to uniform numerical predicates. ByRemark 1.45, this means that, for every ā ∈ Ak , considering the k-ary numerical pred-icate Rā is equivalent to considering a subset Qā ⊆ Nk. For every Ak-indexed family
Q = (Qā)ā∈Ak of k-ary numerical predicates, you denote by ψ(Q) the formula

ψ(Q) := ∃x1...∃xk

∨
ā∈Ak

(ā(x̄) ∧Qā(x̄)).

We define BΣ1[N u
k ], the Boolean algebra generated by the languages ψ(Q), where Qranges over all such families.Since the existential quantifier commutes with finite disjunctions, this Boolean alge-bra is generated by the languages corresponding to sentences of the form

∨
ā∈Ak

∃x1...∃xk ā(x̄) ∧Qā(x̄).

Now, note that, for any ā ∈ Ak , and any Qā ⊆ Nk , the sentence
∃x1...∃xk ā(x̄) ∧Qā(x̄)

corresponds to the language of the form
{w ∈ A∗ : ∃ī ∈ Qā ∩ |w|k, w[̄i] = ā} = {w ∈ A∗ : cā(w) ∩Qā ̸= ∅} = L♢ā

Qā
,

and thus BΣ1[N u
k ] is the Boolean algebra generated by the languages ⋃

ā∈Ak L♢ā
Qā

, where
(Qā)ā∈Ak ranges over P (Nk)Ak . We conclude by proving that this Boolean algebraactually coincides with Bk.
Proposition 2.5. For any k ≥ 1, the Boolean algebra BΣ1[N u

k ] is equal to Bk.

Proof. The Boolean algebra BΣ1[N u
k ] is generated by the languages ⋃

ā∈Ak L♢ā
Qā

, where
(Qā)ā∈Ak ranges over P(Nk)Ak , while Bk is generated by the languages L♢ā

Q
, where ā
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ranges over Ak and Q ranges over subsets of Nk. On the one hand, it is clear that
BΣ1[N u

k ] is generated by Boolean combinations of languages of the form L♢ā
Q

. Onthe other hand, fix Q ⊆ Nk and a k-tuple of letters ā ∈ Ak. We define the family ofsubsets (Qb̄)b̄∈Ak , where Qā := Q and, for every b̄ ̸= ā, Qb̄ := ∅. The set L♢ā
Q

is clearlythe set defined by the formula ψ((Qb̄)b̄∈Ak) and we conclude that Bk is isomorphic to
BΣ1[N u

k ].
We define BΣ1[N0,N u

k ], the Boolean algebra generated by the languages ψ(Q),where Q ranges over P (Nk)Ak and by the languages LP , introduced in Definition 1.44,where P ranges over subsets of N.
Corollary 2.6. The Boolean algebra BΣ1[N0,N u

k ] is equal to B0,k , defined as the
Boolean algebra generated by the languages LP and L♢ā

Q
, where P ranges over sub-

sets of N, Q ranges over subsets of Nk and ā ranges over Ak.

Proof. Direct consequence of Proposition 2.5.
Restricting our study to only nullary numerical predicates and to uniform numericalpredicates, a sub-fragments of interest is

BΣ1[N u] :=
⋃

k∈N
BΣ1[N u

k ],

this is why we are interested in studying BΣ1[N u
k ], for a fixed k ∈ N.

2.3 The dual space via finite colourings

In this section, we provide the first elements of study of the dual space Xk , for any
k ≥ 1. We start by explaining how it is possible to make an analogy between elementsof the dual space and finite words. Formalizing this link, and considering a differentbasis of Vk constructed out of the family of all finite colourings of Nk leads us to a firstcharacterisation of Xk. We conclude the section by making this characterisation evenmore precise, in the case k = 1.
2.3.1 Colourings approach

Fix k ≥ 1. We proved in Proposition 2.5 that the Boolean algebra BΣ1[N u
k ] is equalto Bk. We are interested in characterizing the dual space of this Boolean algebra. InSection 2.1, Proposition 2.3, we proved that this dual space, that we denoted by Xk ,is homeomorphic to the image of the continuous map ck : A∗ → Vk , where Vk =

V(β(Nk))Ak . The points of Vk have a behaviour that is, in a way, similar to finite words.Let us explain the idea of this analogy in the case k = 1. A way to encode a finite wordis by following the insight of logic on words: it is equivalent to consider a finite wordand a family of finite disjoint subsets of N, possibly empty for some of them, which
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cover the initial segment {0, ..., n− 1}, for some integer n ≥ 1. Labelling each of thesesubsets with a letter of the alphabet, this amounts to grouping together the positions ofthe word which correspond to the same letter. This is the definition of ca(w), where
a ∈ A and w ∈ A∗. Note that, since V1 is the image of c1, the family c1(w) = (ĉa(w))a∈Ais a point of V1. Now, fix a point −→

C = (Ca)a∈A ∈ V1. If we view an ultrafilter α ∈ β(N)as a generalized position, then just like in the previous situation, we could say that −→
Chas the letter a ∈ A at the generalized position α if, and only if, α ∈ Ca. This reasoningapplies for any k ≥ 1, and for this reason, we refer to points of −→

C ∈ Vk as generalized
words.In the particular case where a point −→

C ∈ Vk is in the subspace Xk , we can make thisanalogy with words even more precise. The following characterisation of Xk is a directconsequence of the universal property of Čech-Stone compactification, and relates −→
Cto the existence of a certain ultrafilter in β(A∗). In particular, if the correspondingultrafilter is trivial, i.e there exists a finite word w ∈ A∗ such that γ = ↑{w}, then forevery ā ∈ Ak , Cā corresponds to the clopen associated to the set of k-tuples of positions

cā(w).
Proposition 2.7. Let k ≥ 1 and let −→

C = (Cā)ā∈Ak be an arbitrary element of Vk. Then
−→
C is in Xk if, and only if, there exists an ultrafilter γ ∈ β(A∗) such that, for every
ā ∈ Ak , and for every Q ⊆ Nk ,

Cā ∈ □ā(Q̂) if, and only if, L□ā
Q

∈ γ;

or, equivalently,
Cā ∈ ♢ā(Q̂) if, and only if, L♢ā

Q
∈ γ.

Proof. By Proposition 2.3, a generalized word −→
C = (Cā)ā∈Ak is in Xk if, and only if, itis in Im(ck), that is if there exists an ultrafilter γ ∈ β(A∗) such that −→

C = ck(γ). Now, bydefinition, −→
C = ck(γ) if, and only if, for every ā ∈ Ak , Cā = cā(γ). We make two moreobservations. On the one hand, by Remark 1.22 we know that

cā(γ) =
⋂

Q⊆Nk

L
□ā

Q
∈γ

Q̂. (2.1)
On the other hand,

Cā =
⋂

Q⊆Nk

Cā⊆Q̂

Q̂ =
⋂

Q⊆Nk

Cā∈□ā(Q̂)

Q̂. (2.2)
We now prove that, for every ā ∈ Ak , Cā = cā(γ) if, and only if,

for every Q ⊆ Nk , (Cā ∈ □ā(Q̂) if, and only if, L□ā
Q

∈ γ),

which will allow us to conclude. Fix ā ∈ Ak. For the right-to-left implication, let us
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assume that, for every Q ⊆ Nk , (Cā ∈ □ā(Q̂) if, and only if, L□ā

Q
∈ γ). In that case, it isclear that the right hand sides of Equation 2.1 and Equation 2.2 are equal, and we obtainthat Cā = cā(γ). For the left-to-right implication, assume that Cā = cā(γ).

• First, for any Q ⊆ Nk , if Cā ∈ □ā(Q̂), this means that Cā is contained in Q̂. Now, byEquation 2.1, the fact that Cā = cā(γ), and compactness of Vk , there exists a finitecollection of subsets of Nk , Q1, ..., Qn, for some n ≥ 1, such that ⋂n
i=1 Q̂i ⊆ Q̂ and,for all i ∈ {1, ..., n}, L□ā

Qi

∈ γ. Now, since γ is a filter, and since the map sendingany subset P of Nk to the language L□ā
P

preserves meets (see Proof of Proposition2.3), we have that L□ā
Q′

∈ γ, where Q′ :=
⋂n

i=1Qi. Also, since Q̂′ ⊆ Q̂, and sincethe map that sends a subset of Nk to its hat is an order-embedding, we have that
Q′ ⊆ Q. Thus L□ā

Q
is also in γ.

• Second, for any Q ⊆ Nk , if L□ā
Q

is in γ, then cā(γ) is contained in Q̂. Since
Cā = cā(γ), then by Equation 2.2, and, again, by compactness of Vk , there existsa finite family of subsets of Nk , Q1, ..., Qn, for some n ≥ 1, such that ⋂n

i=1Qi ⊆ Qand, for every i ∈ {1, ..., n}, Cā ⊆ Q̂i. It follows that Cā is contained in Q̂, whichmeans that Cā is an element of □āQ̂, as required.
Finally,

♢āQ̂ = (□āQ̂c)c and L♢ā
Q

= (L□ā
Qc

)c

thus we conclude that −→
C = (Cā)ā∈Ak is in Xk if, and only if, there exists γ ∈ β(A∗) suchthat, for every ā ∈ Ak and every Q ⊆ Nk ,

Cā ∈ ♢ā(Q̂) if, and only if, L♢ā
Q

∈ γ.

This motivates the following terminology: we refer to points −→
C ∈ Xk as pseudofinite

words. This setting allows us to compute some elementary instances of pseudofinitewords which are not finite.
Example 2.8. In the case where k = 1 and |A| = {a, b}, let us consider the couple ofclosed subsets of β(N)

−→
C = (Ca, Cb) := (β(N), ∗N).

We prove that this is a pseudofinite word by giving a description of an ultrafilter γsatisfying the condition introduced in Proposition 2.7. Intuitively, the ultrafilter whichgives this pseudofinite word will have the letter a at every standard position however,it will also have the letter b at a non-standard position.An ultrafilter γ ∈ β(A∗) satisfying the condition introduced in Proposition 2.7 has tobe such that:
1. {P ⊆ N : L□a

P
∈ γ} = {N};
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2. {P ⊆ N : L□b

P
∈ γ} = Cof(N).

that is
1. L□a

N
∈ γ and, for every S ⊊ N, L□a

S
/∈ γ.

2. For every cofinite subset S of N, L□b
S

∈ γ and, for every non-cofinite subset S of
N, L□b

S
/∈ γ.

Let us reformulate these conditions.
1. L□a

N
is equal to A∗, thus the first condition always holds. We prove that the secondcondition is equivalent to saying that, for every n ∈ N, L♢a

{n}
∈ γ. On the onehand, assume that, for every S ⊊ N, L□a

S
/∈ γ. Then, in particular, for any n ∈ N,

L□a
N\{n}

/∈ γ, which is equivalent to L♢a
{n}

∈ γ. On the other hand, assume that, forevery n ∈ N, L♢a
{n}

∈ γ. For any subset S strictly contained in N, pick n ∈ Sc. Wehave that L♢a
{n}

⊆ L♢a
Sc

= (L□a
S
)c. By upset, this last language is in γ, and thus weconclude that L□a

S
/∈ γ.

2. We prove, in a similar fashion, that saying that, for every cofinite subset S of N,
L□b

S
∈ γ is equivalent to saying that, for every n ∈ N, (L♢b

{n}
)c ∈ γ. We also havethat saying that, for every non-cofinite subset S of N, L□b

S
/∈ γ is equivalent tosaying that, for any infinite subset S of N, L♢b

S
∈ γ.

We conclude that the condition γ ∈ β(A∗) has to satisfy can be rephrased as follows.
1. For every n ∈ N, L♢a

{n}
∈ γ

2. For every n ∈ N, (L♢b
{n}

)c ∈ γ and for every infinite subset S ⊆ N, L♢b
S

∈ γ.
Put in more simple terms, the idea is the following: the ultrafilter γ exists becausefor every length l and every infinite subset S, there exists a finite word satisfying thecondition "every letter up until l is a, and there exists an occurence of b in the subset S.Now, for any n1, ..., nl1 ,m1, ...,ml2 ∈ N, where l1, l2 ≥ 1, and for any finite family ofinfinite subsets S1, ..., Sl, the language

l1⋂
i=1

L♢a
{ni}

∩
l2⋂

i=1
(L♢b

{mi}
)c ∩

l⋂
i=1

L♢b
Si

is non-empty, thus
↑{L♢a

{n}
, (L♢b

{m}
)c, L♢b

S
: n,m ∈ N, S ⊆ N and S infinite}

is a filter and by Stone’s theorem it can be extended into an ultrafilter γ which satisfies,by construction, the condition introduced in Proposition 2.7.
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Another, and potentially more practical, characterisation of Xk , for any k ≥ 1, can bemade by using the terminology of finite colouring. We could summarize this character-isation by saying that a generalized word −→

C is pseudofinite if, and only if, for every finitecolouring, it is possible to construct an actual finite word w ∈ A∗ which is equivalent to
−→
C when we look at it from the perspective of this finite colouring.
Definition 2.9. A finite colouring of Nk is a map q : Nk → I , where I is a finite set, or,equivalently, a finite family of pairwise disjoints subsets of Nk , Q = (Qi)i∈I , such that⋃

i∈I Qi = Nk. A subset Q ⊆ Nk is saturated with respect to a colouring Q if there existsa finite subset J ⊆ I such that Q =
⋃

j∈J Qj .
First, let us define the notion of content of a word on a subset of Nk , that is the set of

k-tuples of letters of w which occur on the given subset. This generalizes the notation
w[̄i], where ī ∈ Nk , introduced in Definition 1.44.
Definition 2.10. For any finite word w ∈ A∗ and any subset Q ⊆ Nk , we define the
content of w on Q as

⟨w,Q⟩ := {ā ∈ Ak : cā(w) ∩Q ̸= ∅}.

More generally, for any finite colouring q : Nk → I of Nk , we define the (color)profile of a finite word w as
⟨w, q⟩ := (⟨w, q−1(i)⟩)i∈I ∈ P(Ak)I ,

that is, the family of contents of w associated to each colour.
Example 2.11. Fix A = {a, b}. In the case k = 2, let us consider q, the three colourscolouring (∆<,∆,∆>) of N2, where

∆< := {(n,m) ∈ N2 : n < m},

∆> := {(n,m) ∈ N2 : n > m},

∆ := {(n, n) ∈ N2 : n ∈ N}

and the finite word w = aabbb.
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1 2 3 4 5 6 7

1

2
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4

5

6

7

aa

aa

bb

bb

bbab bb bb

ab

ab

bb

aa

ab

ab

ab

bb

bbbb

baba ba

ba babaaa

The profile of w for the colouring q is
⟨w, q⟩ = (⟨w,∆<⟩, ⟨w,∆⟩, ⟨w,∆>⟩) = ({aa, bb, ab}, {aa, bb}, {aa, bb, ba}).

In our framework, a natural idea is to extend this notion of (colour) profile to gen-eralized words.
Definition 2.12. For any subset Q of Nk , and any generalized word −→

C = (Ca)ā∈Ak ∈ Vk ,we define the content of −→
C on Q as

⟨
−→
C ,Q⟩ := {ā ∈ Ak : Cā ∩ Q̂ ̸= ∅}.

The colour profile of a generalized word −→
C = (Ca)ā∈Ak ∈ Vk on a finite colouring

q : Nk → I is the map
⟨
−→
C , q⟩ : I → P(Ak)

which sends any i ∈ I to
⟨
−→
C , q⟩(i) := ⟨

−→
C , q−1(i)⟩.

In particular, if the point of Vk we consider is of the form (ĉā(w))ā∈Ak for some finiteword w ∈ A∗, then for any finite colouring q : Nk → I , we have
⟨(ĉā(w))ā∈Ak , q⟩ = ⟨w, q⟩,

which shows that the profile of a generalized word can be seen as an extension ofthe notion of profile of a finite word. Also, notice that for any −→
C ∈ Vk , the map

⟨
−→
C , ·⟩ : P(Nk) → P(Ak) which sends a subset Q to ⟨

−→
C ,Q⟩ is finitely additive: for anyfinite family of subsets Q1, ..., Qn ⊆ Nk ,
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n⋃
i=1

⟨
−→
C ,Qi⟩ =

n⋃
i=1

{ā ∈ Ak : Cā ∩ Q̂i ̸= ∅}

= {ā ∈ Ak : Cā ∩
n⋃

i=1
Q̂i ̸= ∅}

= {ā ∈ Ak : Cā ∩
n̂⋃

i=1
Qi ̸= ∅}

= ⟨
−→
C ,

n⋃
i=1

Qi⟩.

In particular, the map ⟨w, ·⟩ : P(Nk) → P(Ak) which sends a subset Q to ⟨w,Q⟩ is finitelyadditive.
We are now going to use the family of all finite colourings in order to provide adifferent basis for the space Vk.

Lemma 2.13. For any finite colouring q : Nk → I of Nk , we consider the map

⟨·, q⟩ : Vk → P(Ak)I

which sends any −→
C ∈ Vk to ⟨

−→
C , q⟩. We also consider the family of all preimages, for

all of these maps

C := {⟨·, q⟩−1(B̄) : q : Nk → I, where I is a finite set, and B̄ ∈ P(Ak)I}.

The following statements hold.
(1): The inverse image of any point B̄ = (Bi)i∈I ∈ P(Ak)I under ⟨·, q⟩ is clopen in Vk.
In particular, for any finite colouring q : Nk → I of Nk , the map ⟨·, q⟩ is continuous
when P(Ak)I is equipped with the discrete topology.
(2): Any intersection of two elements in C can be written as a finite union of elements
in C. In particular, C is a basis for the topology on Vk.

Proof. (1): Fix q : Nk → I a finite colouring of Nk , and a family of subsets B̄ = (Bi)i∈I ∈
P(Ak)I . Recall that, for any Q ⊆ Nk , the subsets of the form

♢Q = {C ∈ V(β(Nk)) : C ∩ Q̂ ̸= ∅}

are clopen in V(β(Nk)). We can express ⟨·, q⟩−1(B̄) as a finite Boolean combination of
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these clopen subsets:

⟨·, q⟩−1(B̄) = {
−→
C = (Cā)ā∈Ak ∈ Vk : ⟨

−→
C , q⟩ = B̄}

= {
−→
C = (Cā)ā∈Ak ∈ Vk : ∀i ∈ I, ⟨

−→
C , q⟩(i) = Bi}

= {
−→
C = (Cā)ā∈Ak ∈ Vk : ∀i ∈ I, ∀ā ∈ Ak, (Cā ∩ q̂−1(i) ̸= ∅ ⇐⇒ ā ∈ Bi)}

=
⋂
i∈I

(
⋂

ā∈Bi

p−1
ā (♢q̂−1(i)) ∩

⋂
ā/∈Bi

p−1
ā (♢ ̂q−1(i))c),

where, for every ā ∈ Ak , pā : Vk → V(β(Nk)) sends any −→
C = (Cā)ā∈Ak to Cā. Since P(Ak)Iis equipped with the discrete topology, this proves that the map ⟨·, q⟩ is continuous.(2): Fix two finite colourings Q = (Q1, ..., Ql) and Q′ = (Q′

1, ..., Q
′
n) of Nk , where l, n ≥ 1.Fix B̄ = (B1, ..., Bl) ∈ P(Ak)l and B̄′ = (B′

1, ..., B
′
n) ∈ P(Ak)n. First, we define a finitecolouring of Nk which refines both Q and Q′: R = (Ri,j) 1≤i≤l

1≤j≤n
, the finite colouring of

Nk , such that, for every (i, j) ∈ {1, ..., l} × {1, ..., n},
Ri,j := Qi ∩Q′

j .

Finally, we define DB̄,B̄′ ⊆ P(Ak)l.n as follows: D̄ = (Di,j) 1≤i≤l
1≤j≤n

is in DB̄,B̄′ if, and onlyif, for every i ∈ {1, ..., l},
⋃

{Du,v : (u, v) ∈ {1, ..., l} × {1, ..., n} and Ru,v ⊆ Qi} = Bi

and for every j ∈ {1, ..., n},
⋃

{Du,v : (u, v) ∈ {1, ..., l} × {1, ..., n} and Ru,v ⊆ Q′
j} = B′

j .

We now prove that
⟨·,Q⟩−1(B̄) ∩ ⟨·,Q′⟩−1(B̄′) =

⋃
D̄∈DB̄,B̄′

⟨·,R⟩−1(D̄).

For the left-to-right inclusion, fix −→
C ∈ ⟨·,Q⟩−1(B̄) ∩ ⟨·,Q′⟩−1(B̄′). We define D̄−→

C
∈

P(Ak)l.n as follows: set, for any (u, v) ∈ {1, ..., l} × {1, ..., n},
(D̄−→

C
)u,v := ⟨

−→
C ,Ru,v⟩.

By construction, it is clear that −→
C belongs to ⟨·,R⟩−1(D̄−→

C
). All we have left to provein order to conclude is that D̄−→

C
is in DB̄,B̄′ . By definition of D̄−→

C
we have that, for any

i ∈ {1, ..., l}, ⋃
(u,v)∈{1,...,l}×{1,...,n}

Ru,v⊆Qi

(D−→
C

)u,v =
⋃

(u,v)∈{1,...,l}×{1,...,n}
Ru,v⊆Qi

⟨
−→
C ,Ru,v⟩.
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Now, since the map ⟨·,R⟩ : P(Nk) → P(Ak)l.n is finitely additive, this is also equal to

⟨
−→
C ,

⋃
(u,v)∈{1,...,l}×{1,...,n}

Ru,v⊆Qi

Ru,v⟩,

that is, ⟨
−→
C ,Qi⟩ and since −→

C is in ⟨·,Q⟩−1(B̄) we finally obtain that
⋃

(u,v)∈{1,...,l}×{1,...,n}
Ru,v⊆Qi

(D−→
C

)u,v = Bi.

We prove in the exact same way that, for any j ∈ {1, ..., n},
⋃

(u,v)∈{1,...,l}×{1,...,n}
Ru,v⊆Qi

(D−→
C

)u,v = B′
j ,

which ends to prove that D̄−→
C

∈ DB̄,B̄′ and allows us to conclude.For the left-to-right inclusion, fix D̄−→
C

∈ DB̄,B̄′ . For any −→
C ∈ ⟨·,R⟩−1(D̄), we have that,for every i ∈ {1, ..., l},

⟨
−→
C ,Qi⟩ = ⟨

−→
C ,

⋃
(u,v)∈{1,...,l}×{1,...,n}

Ru,v⊆Qi

Ru,v⟩.

Now, since the map ⟨·,R⟩ : P(Nk) → P(Ak)l.n is finitely additive, this is also equal to
⋃

(u,v)∈{1,...,l}×{1,...,n}
Ru,v⊆Qi

⟨
−→
C ,Ru,v⟩

and since D̄ ∈ DB̄,B̄′ , this is equal to
⋃

(u,v)∈{1,...,l}×{1,...,n}
Ru,v⊆Qi

Du,v

which allows us to conclude that ⟨
−→
C ,Qi⟩ = Bi. The exact same reasoning can be con-ducted to prove that ⟨·,R⟩−1(D̄) ⊆ ⟨·,Q′⟩−1(B̄′), which allows us to conclude.Finally, we prove that C is a basis for the topology on Vk. Since Vk has been definedas a product topology, a subbasis S for Vk is given, by definition, by inverse images ofprojections on Vietoris of β(Nk). We already proved in the first part of the Lemma that,for any finite colouring q : Nk → I of Nk , the map ⟨·, q⟩ is continuous with respect to thetopology on Vk. This means that every set in C is open. We only have left to prove thateach subbasic open in S is in the topology generated by C. For this, let ā be an arbitrary

k-tuple of letters of A and Q be an arbitrary subset of Nk giving a generic clopen Q̂of the ā-th copy of β(Nk). We denote by U the inverse image of this clopen under theprojection onto the ā-th coordinate. A point −→
C ∈ Vk is in U if, and only if, Cā ∈ □(Q̂),
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that is, if, and only if, Cā ⊆ Q̂. Now, let us consider the 2-colors coloring q : Nk → {0, 1},where q−1(0) := Q and q−1(1) := Qc. By the preceding chain of equivalences, we havethat −→

C ∈ U if, and only if, ⟨
−→
C , q⟩(0) contains the element ā and ⟨

−→
C , q⟩(1) does not con-tain the element ā. This gives the finite union of sets in C we wanted, which allows usto conclude.

We use this basis for the topology on Vk in order to characterise Xk: the pseudofinitewords −→
C in Vk are exactly the points such that, for each finite colouring q, we canconstruct a concrete finite word wq ∈ A∗ which has the same profile than −→

C on q.
Proposition 2.14. A generalized word −→

C ∈ Vk is pseudofinite if, and only if, for every
finite colouring q of Nk , there exists a finite word wq ∈ A∗ such that the profiles of −→

C

and wq on q coincide. In particular, for any subset Q of Nk which is saturated with
respect to q, we have, for every ā ∈ Ak , that

Cā ∩ Q̂ ̸= ∅ if, and only if, cā(wq) ∩Q ̸= ∅.

Proof. A generalized word −→
C ∈ Vk is pseudofinite if, and only if, it is in Xk. Recall thata Xk is the closure of the image of A∗ under the map ck : A∗ → Vk , which sends a finiteword w ∈ A∗ to (ĉā(w))ā∈Ak . We proved in Lemma 2.13 (2), that the family

C = {⟨·, q⟩−1(B̄) : B̄ ∈ P(Ak)I and q : Nk → I, where I is a finite set}
forms a basis for the topology on Vk. Therefore, the characterization of topologicalclosure by a basis provides the following characterisation of Xk: a generalized word
−→
C ∈ Vk is in Xk if, and only if, for every finite colouring q : Nk → I of Nk , and every
B̄ ∈ P(Ak)I such that ⟨

−→
C , q⟩ = B̄, we have

⟨·, q⟩−1(B̄) ∩ ck(A∗) ̸= ∅.

Note that this last condition is equivalent to saying that there exists a finite word wq suchthat
⟨(ĉā(wq))ā∈Ak , q) = B̄.

We previously observed that the profile of (ĉā(wq))ā∈Ak on q is the profile of wq on q.We conclude that −→
C ∈ Vk is pseudofinite if, and only if, there exists a finite word wqsuch that ⟨

−→
C , q⟩ = ⟨wq, q⟩.The other statement is a direct consequence of the fact that, for any finite word w ∈ A∗,the map ⟨w, ·⟩ : P(Nk) → P(Ak), which sends a subset Q to ⟨w,Q⟩, and for any −→

C ∈ Vk ,the map ⟨
−→
C , ·⟩ : P(Nk) → P(Ak) which sends a subset Q to {ā ∈ Ak : Ca ∩ Q̂ ̸= ∅} arefinitely additive.
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Remark 2.15. In particular, for any pseudofinite word −→

C ∈ Xk , let us consider a finitecolouring q : Nk → I such that one of the colours corresponds to a singleton, that is
q−1(i) = {p̄}

for some i ∈ I and p̄ = (p1, ..., pk) ∈ Nk. In that case, we observe that any word wsatisfying the condition from Proposition 2.14 is necessarily such that
|w| > max{pj : j ∈ {1, ..., k}}

and such that, for any ā ∈ Ak ,
p̄ ∈ Cont(Cā) if, and only if, w[p̄] = ā,

where Cont(Cā) has been introduced in Definition 1.31. Indeed, for any ā ∈ Ak ,
p̄ ∈ Cont(Cā) ⇐⇒ p̄ ∈ Cā ∩ Nk

⇐⇒ ā ∈ {b̄ ∈ Ak : Cb̄ ∩ {p̄} ≠ ∅}

⇐⇒ ā ∈ ⟨w, q⟩(i) by Proposition 2.14
⇐⇒ w[p̄] = ā.

This remark will come handy in the proof of Lemma 2.17.
Example 2.16. In the case k = 1 and |A| = {a, b} let us consider the family of closedsubset of β(N)

−→
C := (β(N), ∅).

Intuitively, this should be a pseudofinite word, that we could see as a generalization ofthe profinite word aω . In practice, we can apply Proposition 2.14: for any finite colouring
q : N → I , where I is a finite set, we set, for every i ∈ I , ni := min(q−1(i)) and

N := max
i∈I

ni.

We consider the word wq := aN . This allows us to prove that this family of closedsubsets is a pseudofinite word. On the one hand, the only letter occuring in wq is a.By construction of N , we have that, for any i ∈ I , ⟨w, q⟩(i) = {a}. On the other hand,
Ca = βN and Cb = ∅. This means that, for any i ∈ I , b /∈ ⟨

−→
C , q⟩(i) and a ∈ ⟨

−→
C , q⟩(i): thus

⟨
−→
C , q⟩(i) = {a}.

2.3.2 Explicit characterisation of X1

In the case where k = 1, it is not too difficult to directly simplify Proposition 2.14 intoa condition that does not require us to look at every finite colouring of Nk. In order
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to do so, we start by proving a necessary condition that holds for every −→

C ∈ Xk. Theintuition is the following. Pseudofinite words share similarities with finite words, but atthe generalized level of ultrafilters. In particular, if −→
C = (Cā)ā∈Ak ∈ Xk , then for any

ā ∈ Ak , the content of Cā, introduced in Definition 1.31, is a subset of Nk. It should bepossible to view the elements of this subset as k-tuples of positions of a concrete word,with a length that is possibly infinite. We formalize this intuition here-below.
Lemma 2.17. Fix −→

C = (Cā)ā∈Ak ∈ Xk a pseudofinite word. Then, the following state-
ments hold.
(1): For any p̄ = (p1, ..., pk) ∈ Nk and any ā = (a1, ..., ak) ∈ Ak , we have that p̄ ∈ Cont(Cā)
if, and only if, for every j ∈ {1, ..., k}, (pj , ..., pj) ∈ Cont(Caj ,...,aj ).
(2): For every a ∈ A, consider the subset of N

CN
a := π1(Cont(Ca,...,a)),

where π1 : Nk → N is the canonical projections on the first coordinate. Then (CN
a )a∈A

is a finite colouring of a downset of N, and, for every ā ∈ Ak ,

Cont(Cā) =
k∏

j=1
CN

aj
.

Proof. (1): Fix p̄ = (p1, ..., pk) ∈ Nk , and ā = (a1, ..., ak) ∈ Ak. To keep the notationsconcise, we set, for every j ∈ {1, ..., k},
p̄j := (pj , ..., pj) and āj := (aj , ..., aj).

We consider the following colouring of Nk into k + 2 colours
Qp̄ := ({p̄}, {p̄1}, ..., {p̄k},Nk \ {p̄, p̄1, ..., p̄k}).

Here, we assume that p̄ is not in {p̄j : j ∈ {1, ..., k}}, but it should be noted that our proofstill works when it is the case and that Qp̄ has only k + 1 colours. Since −→
C is in Xk , byProposition 2.14, we can consider a finite word w ∈ A∗ which has the same profile than

−→
C for the colouring Qp̄. In particular, |w| > max{pj : j ∈ {1, ..., k}}. We now prove thedesired equivalence by using Remark 2.15,

p̄ ∈ Cont(Cā) ⇐⇒ w[p̄] = ā

⇐⇒ ∀j ∈ {1, ..., k}, wpj = aj

⇐⇒ ∀j ∈ {1, ..., k}, w[p̄j ] = āj

⇐⇒ p̄j ∈ Cont(Cāj ).

(2): First, we prove that for any a, b ∈ A distincts, CN
a ∩CN

b is empty. Let us assume that
CN

a ∩ CN
b is non-empty. Pick an element l ∈ CN

a ∩ CN
b , and then pick p̄ ∈ Cont(Ca,...,a)



2.3. The dual space via finite colourings 69
and m̄ ∈ Cont(Cb,...,b) such that p1 = m1 = l. This is possible, since CN

a is the projectionof Ca,...,a on its first coordinate, and the same can be said for CN
b and Cb,...,b. We nowconsider the colouring of Nk into three colors

Qp̄,m̄ := ({p̄}, {m̄},Nk \ {p̄, m̄}).

Since −→
C is in Xk , by Proposition 2.14, we can consider a finite word w ∈ A∗ which hasthe same profile than −→

C for the colouring Qp̄,m̄. In particular, by Remark 2.15, since
p̄ ∈ Cont(Ca,...,a) and m̄ ∈ Cont(Cb,...,b), we have that

w[p̄] = (a, ..., a) and w[m̄] = (b, ..., b).

Now, since p1 = m1, we have that a = b, which allows us to conclude.Finally, we prove that ⋃
a∈AC

N
a is a downset of N. Fix a ∈ A, l ∈ CN

a and consider someelement n < l. We prove that there exists b ∈ A such that n ∈ CN
b . We use the notation

n̄ := (n, ..., n) ∈ Nk. Picking an element p̄ ∈ Ca,...,a with p1 = l, we consider the colouringof Nk into three colors
Qp̄,n̄ := ({p̄}, {n̄},Nk \ {p̄, n̄}).

Since −→
C is in Xk , by Proposition 2.14, we can consider a finite word w ∈ A∗ which hasthe same profile than −→

C for the colouring Qp̄,n̄. In particular, by Remark 2.15, |w| > nand we can set b := wn. We have that n̄ ∈ Cb,...,b, and thus n ∈ CN
b , which allows us toconclude.

This condition is actually sufficient to characterise all pseudofinite words in the case
k = 1.
Proposition 2.18 (Explicit description of X1). A generalized word −→

C = (Ca)a∈A ∈ V1 is
pseudofinite if, and only if, (Cont(Ca))a∈A is a finite colouring of a downset of N.

Proof. The left-to-right implication is exactly Lemma 2.17, with k = 1. For the right-to-left implication, let us consider a generalized word −→
C = (Ca)a∈A ∈ V1 such that

(Cont(Ca))a∈A is a finite colouring of a downset of N. In order to conclude, we provethat −→
C satisfies the condition introduced in Proposition 2.14. Fix a finite colouring

q : N → I of N. We are going to construct a word wq such that the profiles of −→
C and wqcoincide for the colouring q. First, in the case where ⋃

a∈ACont(Ca) is finite, the word
wq such that, for every a ∈ A,

ca(wq) = Cont(Ca)

is finite, and has, by construction, the same profile than −→
C on q. Now, we treat thecase where ⋃

a∈ACont(Ca) is equal to N: we need to make sure that the word wq weconstruct is long enough. Pick n ∈ N such that any colour occurring finitely many
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times does not occur after n, that is,

n > max
⋃
i∈I

q−1(i) finite
q−1(i).

Now, for every colour i ∈ I that occurs, i.e q−1(i) is non-empty, and for every a ∈ Asuch that Cont(Ca) ∩ q−1(i) is non-empty, pick mi,a in that set, and then pick
m > max{mi,a : i ∈ I and a ∈ A such that Cont(Ca) ∩ q−1(i) ̸= ∅}.

Finally, set
l := max(m,n).

We now define wq as the word of length l that has the letter a at the position p < lif, and only if, p ∈ Cont(Ca). Finally, we check that the word wq we constructed hasthe same profile than −→
C for the colouring q. Since l > n, it is clear that wq containsall positions corresponding to a finite colour. For an infinite colour, we make a casedistinction. If a ∈ A is such that Cont(Ca) ∩ q−1(i) is non-empty, then since l > mi,a, wqcontains a position mi,a ∈ Cont(Ca)∩ q−1(i) such that the associated letter is the letter a.Otherwise, if a ∈ A is such that Cont(Ca) ∩ q−1(i) is empty, then for any position p < lin wq , p ∈ Cont(Cb) necessarily implies that b ̸= a. Therefore, the profiles of −→

C and wqcoincide on q, and we conclude that −→
C ∈ X1.

2.4 Projection of Xk on V(β(Nk))

In this section, we take a first step in the direction of giving a more explicit reformulationof Proposition 2.14. This proposition involved a condition that required us to quantifyover every finite colouring of Nk , making it a bit abstract to use in practice. Fix a letter
a ∈ A. We try to characterise the image of Xk under the canonical projection

pa,...,a : Vk → V(β(Nk))

which sends every family of closed subsets −→
C = (Cā)ā∈Ak to Ca,...,a. We fix k = 2,in order to keep lighter notations. We start by explaining how the results from theprevious section can be reformulated in order to characterise the image of pa,a ◦ c2and provide several necessary conditions that have to be satisfied by a closed subset of

V(β(N2)) in order to be in the image of pa,a ◦ c2.
2.4.1 The Boolean algebra Ba,a

2 and the interior operator R

The Boolean algebra Bk we have been studying is generated by the languages L□ā
Q

,where ā ranges over Ak and Q ranges over subsets of Nk. If we fix a letter a ∈ A, thenwe can consider the Boolean subalgebra
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Ba,...a
k := ⟨{L□ā

Q
: Q ⊆ Nk}⟩BA,

We denote by Xa,...,a
k the dual space of Ba,...,a

k . In particular, the canonical embedding
Ba,...,a

k ↪→ Bk induces the continuous quotient map Xk ↠ Xa,...,a
k . We can prove, byapplying the same reasoning than in the proof of Proposition 2.3, that Xa,...,a

k is theimage of the map ca,...,a : β(A∗) → V(β(Nk)), which is the unique continuous extensionof the map which sends a finite word w ∈ A∗ to ̂ca,...,a(w). Obtaining a more explicitcharacterisation of the points of Xa,...,a
k should enable us to get a better understandingof Xk.We proved in Proposition 2.14 a characterisation of Xk , for any k ≥ 1, in terms offinite colourings of Nk. It can be simplified to determine the points in the image of

Xa,...,a
k . In order to keep compact notations, we focus on the particular case k = 2.

Proposition 2.19. For any closed subset C ∈ V(β(N2)), the following conditions are
equivalent.
(1): C is a point of Xa,a

2 .
(2): For every finite colouring Q of N2, there exists a finite word w ∈ A∗ such that, for
every subset Q which is saturated with respect to the colouring Q,

C ∩ Q̂ ̸= ∅ if, and only if, ca,a(w) ∩Q ̸= ∅.

(3): For every finite sequence of subsets Q,Q1, ..., Qℓ of N2, where ℓ ≥ 1, such that
C ⊆ Q̂ and, for every i ∈ {1, ..., ℓ}, C ∩ Q̂i is non-empty, there exists a finite subset
S ⊆ N such that S2 ⊆ Q and, for every i ∈ {1, ..., ℓ}, S2 ∩Qi is non-empty.

Proof. We prove that (1) and (3) are equivalent. Recall that Xa,a
2 is the closure of theimage of A∗ under the map ca,a : A∗ → V(β(N2)), which sends a finite word w ∈ A∗ to

ĉa,a(w). In Definition , we provided a basis for the topology on Vietoris hyperspaces. Inparticular, the family
Da,a

2 := {□a,a(Q̂) ∩
l⋂

i=1
♢a,a(Q̂i) : l ∈ N, Q,Q1, ..., Qℓ ⊆ N2}

forms a basis for the topology on V(β(N2)). By general topology, the characterisationof the points C ∈ Xa,a
2 in terms of this basis is the following: C is in Xa,a

2 if, and onlyif, for every K ∈ Da,a
2 which contains C , there exists a finite word w ∈ A∗ such that

ĉa,a(w) is also in K . This is equivalent to say that, for every finite sequence of subsets
Q,Q1, ..., Qℓ of N2 such that C ⊆ Q̂ and, for every i ∈ {1, ..., l}, C ∩ Q̂i is non-empty,there exists a finite subset S ⊆ N such that S2 ⊆ Q and for every i ∈ {1, ..., l}, S2 ∩Qi isnon-empty.We prove that (1) implies (2). Assume that C ∈ V(β(N2)) is in Xa,a

2 , that is, that thereexists D̄ ∈ X2 such that Da,a = C . Consider a finite colouring q : N2 → I . By Proposition
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2.14, there exists a finite word wq ∈ A∗ such that, for every subset Q ⊆ N2 whichis saturated with respect to q, the profiles of D̄ and wq on Q coincide. Focusing ourattention only on the couple of letters (a, a), this means that wq is such that, C ∩ Q̂ isnon-empty if, and only if, ca,a(w) ∩Q is non-empty.Finally, we prove that (2) implies (3). Fix C ∈ V(β(N2)), and consider a finite sequenceof subsets Q,Q1, ..., Qℓ of N2 such that C ⊆ Q̂ and, for every i ∈ {1, ..., l}, C ∩ Q̂i isnon-empty. Now, consider a finite colouring q : N2 → I such that Q,Q1, ..., Qℓ are allsaturated with respect to q. Then, by applying (2), there exists a finite word w ∈ A∗ suchthat C ⊆ Q̂ if, and only if ca,a(w) ⊆ Q is non-empty, and for every i ∈ {1, ..., l}, C ∩ Q̂iis non-empty if, and only if ca,a(w) ⊆ Qi. In particular, setting S := ca(w), we obtain afinite subset of N such that S2 ⊆ Q and for every i ∈ {1, ..., l}, S2 ∩Qi is non-empty.

In the case k = 1, for any letter a ∈ Awe simply had that Im(ca) = V(β(N)). However,the characterisation is not as simple for k > 1, as we illustrate in the following example.
Example 2.20. We prove that the closed subset ∗(N2) introduced in Section 1.1.2 cannotbelong to Xa,a

2 . In order to do so, we use Proposition 2.19 (2). We consider the colouringof N2 with three colors (Q1, Q2, Q3), where we set
Q1 := {(0, 0)}

Q2 := {0} × (N \ {0})

Q3 := (N \ {0}) × N

.

Note that, by Lemma 1.15, ∗(N2) ∩ Q̂1 is empty, while ∗(N2) ∩ Q̂2 and ∗(N2) ∩ Q̂3 arenon-empty. Let us consider a finite word w ∈ A∗ such that ca,a(w) ∩Q1 is empty, while
ca,a(w) ∩ Q̂2 and ca,a(w) ∩ Q̂3 are non-empty. The first condition imply that w0 cannotbe the letter a. However, any of the two remaining conditions implies that w0 = a: weconclude that there exists no word such that ca,a(w)∩Q1 is empty while ca,a(w)∩Q̂2 and
ca,a(w) ∩ Q̂3 are non-empty. By applying Proposition 2.19 (2), we conclude that ∗(N2)does not belong to Xa,a

2 .
We want to refine the characterisation of Xa,a

2 obtained in Proposition 2.19. Since
Xa,a

2 is contained in V(β(N2)), the points of this dual space can be understood as closedsubsets of β(N2). In order to get started, we determine which of these points correspondto subsets which are clopen. This is relatively straight-forward if we rely on the intuitionwe have built on generalized words. First, if w is a finite word, then the image of thisword under pa,a ◦ c2,
pa,a ◦ c2(w) = pa,a((ĉu,v(w))(u,v)∈A2) = ĉa,a(w),

is clearly in Xa,a
2 . We deduce that, for every finite subset S ⊆ N, the clopen Ŝ2 belongsto Xa,a

2 . Now, let us consider a clopen subset of β(N2) which is not contained in N2. To
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be in Xa,a

2 , this clopen needs to correspond, in a sense, to the set of positions occupiedby the letter a in a word with infinite length.We start by stating the following necessary condition that the content of every closedsubset in Xa,a
2 needs to satisfy. This is a simple consequence of Lemma 2.17, projectedonto the component corresponding to the couple of letters (a, a).

Proposition 2.21. For any C ∈ Xa,a
2 , there exists a subset T ⊆ N such that Cont(C) =

T 2.

Proof. If a closed subset C is in Xa,a
2 , then there exists −→

C = (Ca,b)a,b∈A ∈ X2 such that
C = Ca,a. By applying Lemma 2.17, there exists a subset T ⊆ N such that Cont(C) =
T 2.

We are now ready to characterise clopen subsets in Xa,a
2 .

Proposition 2.22. A clopen K ∈ V(β(N2)) is in Xa,a
2 if, and only if, there exists a

subset T of N such that K = T̂ 2.

Proof. Fix a clopen K ∈ V(β(N2)). We know that there exists Q ⊆ N2 such that K = Q̂.On the one hand, assume that Q̂ is in Xa,a
2 . By applying Proposition 2.21, we know thatthere exists a subset T of N such that Q = T 2. On the other hand, assume that thereexists a subset T ⊆ N such that Q = T 2. We prove, by using Proposition 2.19 (3) that T̂ 2is in Xa,a

2 . Consider a finite family of subsets Q1, ..., Qℓ of N2, where ℓ ≥ 1, such that, forevery i ∈ {1, ..., l}, T̂ 2 ∩ Q̂i is non-empty. Then, for every i ∈ {1, ..., l}, pick an element
(ni,mi) in T 2 ∩Qi. Setting

S := {ni,mi : i ∈ {1, ..., l}},

we have, by construction, that S2 ⊆ T 2 and, for every i ∈ {1, ..., l}, S2 ∩Qi is non-empty.By Remark 1.21 and Proposition 2.19 (3), we conclude that T̂ 2 is in Xa,a
2 .

What is still to be determined is which are the points in Xa,a
2 corresponding to closedsubsets which are not clopen. At this point, we are already able to answer the questionwhen the closed subset we consider is finite.

Definition 2.23. For any subset Q of N2, we define the diagonal of Q as
∆(Q) := {(n, n) ∈ N2 : (n, n) ∈ Q}.

In particular, we use the notation ∆ to refer to the diagonal of N2.
Lemma 2.24. Fix a non-empty closed subset C ∈ Xa,a

2 . For every Q ⊆ N2, if C ∩ Q̂ is
non-empty, then necessarily C ∩ ∆̂(Q) is non-empty.

Proof. Taking the negation of this statement, assume that there exists C ∈ Xa,a
2 and

Q ⊆ N2 such that C ∩ Q̂ is non-empty and C ∩ ∆̂(Q) is empty, that is, that C ⊆ ∆̂(Q)c.
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There cannot exist a finite subset S ⊆ N such that S2 ⊆ ∆(Q)c and S2 ∩Q is non-empty.By Proposition 2.19 (3), C cannot be in Xa,a

2 , which allows us to conclude.
The previous lemma can already be used in order to tell whether some given closedsubsets of β(N2) belong to Xa,a

2 .
Example 2.25. Fix T a finite, non-empty, subset of N and α ∈ ∗N2. Let us consider theclosed subset of β(N2)

C := T̂ 2 ∪ {α}.

We prove that C is not in Xa,a
2 . Let us assume that C ∈ Xa,a

2 . We are going to useProposition 2.19 (3). Fix n ∈ T , and Q ∈ α. Set Q0 := ∆(Q) ∪ T 2, Q1 := {(n, n)} and
Q2 := ∆(Q). By construction, it is clear that C is contained in Q̂0 and that Q̂1 has a non-empty intersection with C . The fact that Q̂2 has a non-empty intersection with C comesfrom Lemma 2.24. Applying Proposition 2.19 (3), there exists a finite subset S ⊆ N suchthat S2 ⊆ Q0, and such that S2 ∩Q1 and S2 ∩Q2 are non-empty. Fix (m,m) in S2 ∩Q2.Since m /∈ T , n and m are not equal. Now, (n,m) is in S2, and thus in Q0, which is notpossible since n ∈ T and m /∈ T . We conclude that C is not in Xa,a

2 .
Proposition 2.26. The finite closed subsets C ∈ Xa,a

2 which are not contained in N2

are exactly those of the form {α}, where α ∈ ∗(N2) is a free ultrafilter such that, for
every Q ⊆ N2, if Q ∈ α, then ∆(Q) ∈ α.

Proof. First, we check that the closed subsets of the form {α}, where α ∈ ∗(N2) is a freeultrafilter as described in the proposition, are indeed in Xa,a
2 . We do so by using thecharacterisation of Proposition 2.19 (3). Consider a finite family of subsets Q,Q1, ..., Qℓ,where ℓ ≥ 1, which all belong to α. By definition of α, ∆(Q),∆(Q1), ...,∆(Qℓ) all belongto α, and thus so does their intersection. Pick a singleton contained in this intersec-tion. It provides a finite set-theoretic square that is contained in each of the subsets

Q,Q1, ..., Qℓ, and allows us to conclude that {α} is in Xa,a
2 .Now, fix C ∈ Xa,a

2 which is not contained in N2, and assume that it is finite. ByProposition 2.21, we now that Cont(C) is a set-theoretic square. Since C is finite, andnot contained in N2, this means that there exists a finite subset T ⊆ N such that
C = T̂ 2 ∪ {α1, ..., αℓ},

for some ℓ ≥ 1 and, for every i ∈ {1, ..., ℓ}, αi ∈ ∗(N2). Let us assume that ℓ ≥ 2. In whatfollows, we construct a finite family of subsets of N2 which do not satisfy Proposition2.19 (3), and thus prove that ℓ is necessarily equal to 1.
• By applying Proposition 1.19, we can construct ℓ pairwise disjoint subsets Q1, ..., Qℓof N2 such that, for every i ∈ {1, ..., ℓ}, Qi ∈ αi. We can assume, without any lossof generality, that for every i ∈ {1, ..., ℓ}, Qi ∩ T 2 is empty. Indeed, for every
i ∈ {1, ..., ℓ}, (Qi \ T 2, T 2, Qc

i ) is a finite partition of N2, thus exactly one of these
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three subsets is in αi. We know that Qc

i /∈ α, and that T 2 /∈ αi, since αi is a freeultrafilter: thus Qi \ T 2 ∈ αi.
• We prove that, for every i ∈ {1, ..., ℓ}, ∆(Qi) ∈ αi. Fix i ∈ {1, ..., l}. Since C ∩ Q̂iis non-empty, then by Lemma 2.24, we also have that C ∩ ∆̂(Qi) is non-empty. Byconstruction, ∆(Qi) has an empty intersection with T 2. Also, as it is contained in
Qi, it has an empty intersection with every Qj with j ∈ {1, ..., ℓ} such that i ̸= j,and it cannot be in the corresponding αj . We conclude that ∆(Qi) ∈ αi.

• We are now ready to apply Proposition 2.19 (3). We consider the subset
Q := T 2 ∪

ℓ⋃
i=1

∆(Qi),

which is, by construction, such that C ⊆ Q̂, and the ℓ disjoint subsets ∆(Q1), ...,∆(Qℓ),which are such that the corresponding clopens all have a non-empty intersectionwith C . By Proposition 2.21 (3), there exists a finite subset S ⊆ N such that
S2 ⊆ Q and, for every i ∈ {1, ..., ℓ}, S2 ∩ ∆(Qi) is non-empty. In particular, pick
(n1, n1) ∈ S2 ∩ ∆(Q1) and (n2, n2) ∈ S2 ∩ ∆(Q2). Since ∆(Q1) and ∆(Q2) are dis-joint, we necessarily have that n1 ̸= n2. Now, (n1, n2) has to belong to S2. This isabsurd, since it cannot belong to T 2, neither to ⋃ℓ

i=1 ∆(Qi).
We conclude that ℓ has to be equal to 1, and by Example 2.25, that T has to be empty.

From now on, we assume that the closed subsets C ∈ V(β(N2)) we consider are notcontained in N2, and infinite. As we know, C is defined by the intersection of all theclopen subsets Q̂ of β(N2) such that C ⊆ Q̂. Let us resort, once again, to the insightobtained by looking at finite words. In the case where C = ĉa,a(w) for a finite word
w ∈ A∗, the subset ca,a(w) is a finite set-theoretic square. In particular, ca,a(w) cannotbe contained in a subset Q of N2 which contains no set-theoretic square. This remarkjustifies the introduction of the following operator on P(N2).
Definition 2.27. For any subset Q of N2, we define the following subset of Q

R(Q) :=
⋃

{S2 : S is finite and S2 ⊆ Q}.

We denote by SQ the subset of Pfin(N) of the finite subsets S ⊆ N such that S2 ⊆ Q.
We first prove that R is an interior operator on P(N2), which will be helpful in orderto understand the structure of the dual space Xa,a

2 .
Lemma 2.28. The map R : P(N2) → P(N2) is an interior operator on P(N2), i.e it is
idempotent, monotone, and for every Q ⊆ N2, R(Q) ⊆ Q. Furthermore, R preserves
finite intersections.
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Proof. The fact that, for every Q ⊆ N2, R(Q) is included in Q is clear by definition. Forthe monotonicity, for any subsets Q ⊆ Q′ ⊆ N2, we have by definition of SQ and SQ′ that

R(Q) =
⋃

{S2 : S ∈ SQ}

⊆
⋃

{S2 : S ∈ SQ′}

= R(Q′).

Finally, we prove the idempotence. For every Q ⊆ N2, by monotonicity, the fact that
R(Q) ⊆ Q implies that R(R(Q)) ⊆ R(Q), which gives one of the two inclusions. For theother inclusion, we want to prove that R(Q) ⊆ R(R(Q)). Fix (n,m) ∈ R(Q). Then thereexists a finite subset S ⊆ N such that n,m ∈ S and S2 ⊆ Q. Since, by definition, R(Q) isthe union of every finite set-theoretic square contained in Q, we have that S2 ⊆ R(Q),and therefore (n,m) ∈ R(R(Q)). The fact that R reserves finite intersections followsfrom the general fact that a system closed under infinite unions corresponds to aninterior operator (see [20], Theorem 7.3).

The interior operator R plays a major role in our study. Fix C ∈ Xa,a
2 . We provethat, in order to define C , it is actually enough to look at the clopen subsets containing

C for which the corresponding subset of N2 is in the image of the operator R.
Proposition 2.29. If C ∈ Xa,a

2 , then for every subset Q ⊆ N2 such that Q̂ contains C ,
R̂(Q) also contains C .

Proof. Fix C ∈ Xa,a
2 , and consider a subset Q of N2 such that C ⊆ Q̂. Consider thecolouring of N2 into three colors

(R(Q), Q \R(Q), Qc).

By applying Proposition 2.19 (2), there exists a finite word w ∈ A∗ such that, in particular,
ca,a(w) ⊆ Q. We want to prove that ca,a(w) ⊆ R(Q), in other words, we want to provethat for any (i1, i2) ∈ ca,a(w), there exists a finite subset S of N such that (i1, i2) ∈ S2and S2 ⊆ Q. Now, fix (i1, i2) ∈ N2 such that w[i1, i2] = (a, a). Then (i1, i2) ∈ Q, andsince wi1 = wi2 = a, we also have that (i1, i1), (i2, i2) and (i2, i1) are in Q. We finally set
S := {i1, i2}, which allows us to conclude.
2.4.2 Thick closed subsets

In this subsection, we construct different examples of closed subsets of β(N2) in orderto build an intuition on a condition that would characterize the points of Xa,a
2 . Our studyeventually leads us to formulate Conjecture 2.40. We start by observing that the twoconditions that we introduced in Proposition 2.21 and Proposition 2.29 are insufficientto characterise Xa,a

2 , as we show in the following example.
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Example 2.30. Consider the family of subsets of N2 obtained by removing finitely manypoints out of the diagonal,

{∆ \ F 2 : F ⊆ N is finite}.

Note that this is a meet-semi lattice in P(N2) that does not contain the empty set: thetop element is ∆ = ∆ \ ∅ and if F1, F2 are two finite subsets of N, then
(∆ \ F 2

1 ) ∩ (∆ \ F 2
2 ) = ∆ \ (F1 ∪ F2)2,

where F1 ∪ F2 is still finite. Now, consider the closed subset of β(N2)

C∆fin
:=

⋂
F ⊆N

F finite
∆̂ \ F 2.

First, we prove that C∆fin
satisfies the properties introduced in Proposition 2.21, andProposition 2.29. For the first property, we start by observing that, for every finitesubset F of N, we have

R(∆ \ F 2) = R(
⋃
i/∈F

{(i, i)}) = ∆ \ F 2.

Now, for all Q ⊆ N2 such that C∆fin
is contained in Q̂, there exists a finite subset F ⊆ Nsuch that

C∆fin
⊆ ∆̂ \ F 2 ⊆ Q̂

and since R is monotone,
∆̂ \ F 2 ⊆ R̂(Q)

which allows us to conclude. For the second property, let us pick an element
(n,m) ∈ Cont(C∆fin

) =
⋂

F ⊆N
F finite

∆ \ F 2.

Then, (n,m) belongs in particular to ∆ \ {n,m}2, which is absurd. We conclude that
Cont(C∆fin

) is the empty set, which is a set-theoretic square.
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Figure 11: ∆ \ F , Q1 and Q2, with F = {2, 4, 7, 10} .

We now prove that C∆fin
does not belong to Xa,a

2 by using Proposition 2.19 (3).Denote by E, respectively O, the set of even, respectively odd, numbers in N. Set
Q1 := ∆ ∩ E2 and Q2 := ∆ ∩ O2, which are disjoint. We know that C∆fin

⊆ ∆̂ and wenotice that C∆fin
∩ Q̂1 and C∆fin

∩ Q̂1 are non-empty. A finite subset S ⊆ N which hasa non-empty intersection with both Q1 and Q2 has at least two elements, since Q1 and
Q2 are disjoint. In particular, it cannot be contained in ∆. By applying Proposition 2.19(3), we conclude that C∆fin

is not in Xa,a
2 .

Building on this last example, we understand that, whenever C ∈ Xa,a
2 is infinite, theclopen subsets Q̂ which contain C all have to be "thick" around the diagonal, in a sensethat we formalize here-below.

Definition 2.31. For any n ∈ N, we set
∆n :=

⋃
i∈N

{i+ k : 0 ≤ k ≤ n}2.

In particular, for n = 0, we obtain the diagonal of N2, ∆0 = ∆.
We say that a clopen K of β(N2) is thin if, and only if, there exists n ∈ N such that

K ∩ N2 ⊆ ∆n.

We say that a clopen is thick if, and only if, it is not thin. More generally, we say that aclosed subset C ∈ V(β(N2)) is thick if C is an intersection of thick clopen subsets.
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Figure 12: ∆3.
Example 2.32. We review the closed subsets of β(N2) we previously mentioned underthe light of Definition 2.31.

• A closed subset C contained in N2 cannot be thick. Indeed, C = Q̂ for somefinite set Q of N2. Setting N := max(π1(Q), π2(Q)), where π1, π2 : N2 → N are thecanonical projections, we have that Q ⊆ ∆N .
• The remainder ∗(N2) of β(N2) is thick. Indeed, as we proved in Lemma 1.15, aclopen subset of β(N2) contains ∗(N2) if, and only if, its content is cofinite. Now, itis clear that a cofinite subset of N2 is thick, which allows us to conclude.
• For any closed subset of β(N) that is not contained in N, the closed subset C ⊗ C ,where ⊗ has been introduced in Definition 1.27 is thick. Indeed, by definition of
C ⊗ C , a clopen subset of β(N) contains C ⊗ C if, and only if, it is of the form P̂ 2,where P ⊆ N is such that C ⊆ P̂ . In particular, since C is not contained in N, sucha subset P is necessarily infinite, which means that P̂ 2 is thick, and, a fortiori,
C ⊗ C too.

• The closed subset C∆fin
introduced in Example C∆fin

is not thick. Indeed, it iscontained in ∆̂, which is thin.
We shall prove that every infinite closed subset in Xa,a

2 is thick.
Proposition 2.33. A closed subset C ∈ Xa,a

2 which is infinite is necessarily thick.

Proof. Fix C ∈ Xa,a
2 which is infinite. Let us assume, by absurd, that C is thin. Then,there exists n ∈ N and Q ⊆ N2 such that

C ⊆ Q̂ ⊆ ∆̂n.

Since C is infinite, then by applying Proposition 1.19, we can construct a family ofpairwise disjoint subsets Q1, ..., Qn+1 of N2 such that, for every i ∈ {1, ..., n+ 1}, C ∩ Q̂i
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is non-empty. Since these subsets are pairwise disjoints, a finite subset S ⊆ N suchthat S2 has a non-empty intersection with every Qi, with i ∈ {1, ..., n + 1}, has at least
n+ 1 elements. In particular, it cannot be contained in Q, since Q ⊆ ∆n. Therefore, byapplying Proposition 2.19 (3), we deduce that C is not in Xa,a

2 , which is absurd: thus Cis thick.
The notion of thickness does not suffice in order to characterise Xa,a

2 . We con-struct an example of a thick closed subset of β(N2), which also satisfies the necessaryconditions introduced in Proposition 2.21 and 2.29, and yet, does not belong to Xa,a
2 .

Example 2.34. Consider the two closed subsets of β(N2)

C1 := (̂2N)2

and
C2 :=

⋂
F ⊆2N+1

F finite
∆̂2N+1

F

where
∆2N+1

F = (∆ ∩ (2N + 1)2) \ F 2,

and set
C := C1 ∪ C2 ∈ V(β(N2)).

By definition, for every Q ⊆ N2, C ⊆ Q̂ if, and only if, C1 ⊆ Q̂ and C2 ⊆ Q̂. This isequivalent to saying that, for every Q ⊆ N2, there exists a finite subset F ⊆ 2N + 1 suchthat
(2N)2 ∪ ∆2N+1

F ⊆ Q.

We prove that C is thick, satisfies the conditions from Proposition 2.29 and Propo-sition 2.21, and yet, does not belong to Xa,a
2 .

• We prove that C is thick. As we observed, every Q ⊆ N2 such that Q̂ contains Chas to contain (2N)2. In particular for every n ∈ N, ∆̂n cannot be contained in Q̂:
C is thick.

• We prove that C satisfies the condition introduced in Proposition 2.29. Fix Q ⊆ N2such that Q̂ contains C . As we mentioned, this is equivalent to saying that thereexists a finite subset F ⊆ 2N + 1 such that C ⊆ ̂(2N)2 ∪ ∆2N+1
F ⊆ Q̂. We want toprove that R̂(Q) contains C . First, observe that

R((2N)2 ∪ ∆2N+1
F ) =

⋃
S⊆2N

S2 ∪
⋃

i∈2N+1\F

{(i, i)} = (2N)2 ∪ ∆2N+1
F .

In particular, since R is monotone, we obtain that the finite subset F ⊆ 2N + 1 issuch that (2N)2 ∪ ∆2N+1
F ⊆ R(Q), which ends to prove that R̂(Q) contains C .



2.4. Projection of Xk on V(β(Nk)) 81
• We prove that C satisfies the condition introduced in Proposition 2.21. This isclear, since Cont(C) = (C1 ∩ N2) ∪ (C2 ∩ N2) = (2N)2.
We now prove that C /∈ Xa,a

2 . Fix a two colours colouring (P1, P2) of 2N + 1 and set
Q := (2N)2 ∪ ((2N + 1)2 ∩ ∆)

Q1 := P 2
1 ∩ ∆

Q2 := P 2
2 ∩ ∆
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Figure 13: Q, Q1 and Q2.
We have that C ⊆ Q̂, and C has a non-empty intersection with both Q̂1 and Q̂2.A subset of N2 intersecting both Q1 and Q2 needs to contain an element (n,m), with

n ̸= m and n,m ∈ 2N + 1. In particular, it cannot be contained in Q. We deduce thatthere exists no finite subset S ⊆ N such that S2 is contained in Q and has a non-emptyintersection with both Q1 and Q2. We conclude, by Proposition 2.19 (3) that C does notbelong to Xa,a
2 .

From Example 2.34, we derive the following insight. For any closed subset C ∈ Xa,a
2that is not included in N2, if we fix a subset Q of N2 such that Q̂ contains C , and aninteger n ∈ N, we need to pay a particular attention to the finite set-theoretic squares

S2 contained in Q ∩ ∆n.
Definition 2.35. For any Q ⊆ N2 and for any n ∈ N, we set

SQ,∆n := {S ∈ SQ : S2 ⊆ ∆n},

where SQ has been introduced in Definition 2.27 In particular,
R(Q) =

⋃
n∈N

⋃
SQ,∆n

S2.
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For a fixed Q ⊆ N2, and a fixed n ∈ N, we now introduce the two following subsetsof SQ,∆n . First, we define TQ,n, consisting of the finite subsets S ⊆ N such that S2 iscontained in Q, and there exists a finite square T 2

S contained in Q which contains S2and is not contained in ∆n

TQ,n := {S ∈ SQ,∆n : ∃T 2
S ⊆ Q such that S ⊆ TS and T 2

S ⊈ ∆n}.

Then, we define UQ,n consisting of the finite subsets S ⊆ N such that S2 is contained in
Q, and every finite square T 2

S contained in Q which contains S2 has to be contained in
∆n,

UQ,n := SQ,∆n \ TQ,n = {S ∈ SQ,∆n : ∀T 2
S ⊆ Q : (S ⊆ TS ⇒ T 2

S ⊆ ∆n)}.

Example 2.36. For more clarity, we illustrate Definition 2.35 on a simple example.Consider the subset of N2

Q = {(1, 1)} ∪ {(2, 2)} ∪ {(1, 4)} ∪ {(4, 1)} ∪ (N \ {1, 2})2.

Notice that this is an union of finite set-theoretic squares, and thus R(Q) = Q. Byapplying Definition 2.35, we obtain that
• SQ,∆0 = {{i} : i ≥ 1};
• SQ,∆1 = {{1}, {2}} ∪ {{i, i+ 1} : i ≥ 3};
• SQ,∆3 = {{1}, {2}, {1, 4}} ∪ {{i, i+ 1, i+ 2, i+ 3} : i ≥ 3}.

Also,
• TQ,∆0 = {{i} : i ̸= 2} and UQ,∆0 = {{2}};
• TQ,∆1 = {{1}} ∪ {{i, i+ 1} : i ≥ 3} and UQ,∆1 = {{2}};
• TQ,∆3 = {{i, i+ 1, i+ 2, i+ 3} : i ≥ 3} and UQ,∆3 = {{1}, {2}, {1, 4}}.
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Figure 14: ⋃
S∈SQ,∆0 S

2, ⋃
S∈TQ,0 S

2 and ⋃
S∈UQ,0 S

2.
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Figure 15: ⋃
S∈SQ,∆1 S

2, ⋃
S∈TQ,1 S

2 and ⋃
S∈UQ,1 S

2.
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Figure 16: ⋃
S∈SQ,∆3 S

2, ⋃
S∈TQ,3 S

2 and ⋃
S∈UQ,3 S

2.
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With these notations in mind, we prove the following statement, which can be un-derstood as a refinement of Proposition 2.29. Considering a clopen Q̂ of β(N2) whichcontains C , it allows us to obtain a clopen contained in R̂(Q) which still contains C byremoving certain infinite families of finite squares out of R(Q).

Definition 2.37. For any Q ⊆ N2 and any n ∈ N, we consider the following subsets of
R(Q):

Rn
bound(Q) := {p̄ ∈ N2 : ∃S ∈ UQ,n, p̄ ∈ S2}

and
Rn

unb(Q) = R(Q) \Rn
bound(Q).

Proposition 2.38. Fix an infinite C ∈ Xa,a
2 and fix Q ⊆ N2 such that Q̂ contains C .

Then, for every n ∈ N,
C ∩ ̂Rn

bound(Q) = ∅,

and, in particular, we have the series of inclusions

C ⊆ ̂Rn
unb(Q) ⊆ R̂(Q) ⊆ Q̂.

Proof. Consider an infinite closed subset C ∈ Xa,a
2 . Fix Q ⊆ N2 such that Q̂ contains C ,and assume, by absurd, that there exists n ∈ N such that

C ∩ ̂Rn
bound(Q) ̸= ∅,

We prove that C cannot satisfy Proposition 2.19 (3). First, recall that, by proposition2.29, C is contained in R̂(Q). Second, recall that, we proved in Proposition 2.33 that Cis thick, and thus C has a non-empty intersection with N̂2 \ ∆n. Note that N2 \ ∆n and
Rn

bound(Q) are disjoints.Now, applying Proposition 2.19 (3), there should exist a finite subset S ⊆ N such that
S2 ⊆ R(Q), S2 ⊈ ∆n and S2 ∩Rn

bound(Q) is non-empty. Pick (i, j) in this intersection. Bydefinition of Rn
bound(Q), (i, j) cannot be contained in a finite set-theoretic square whichis contained in Q but not contained in ∆n. Since S2 is exactly a subset, of this form, andthat (i, j) ∈ S2, we obtain the desired contradiction. We conclude that, for every n ∈ N,

C ∩ ̂Rn
bound(Q) = ∅,

and since C ⊆ R̂(Q) ⊆ Q̂, we conclude that
C ⊆ ̂Rn

unb(Q) ⊆ R̂(Q) ⊆ Q̂.

Example 2.39. Fix a closed subset Ca ∈ V(β(N)), and set Ca,a := Ca ⊗Ca as introducedin Definition 1.27. We prove that Ca,a is in Xa,a
2 by applying Proposition 2.19 (3). Fix a
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finite family of subsets Q,Q1, ..., Qℓ of N2, such that Ca,a ⊆ Q̂ and, for every i ∈ {1, ..., ℓ},
Ca,a ∩Qi is non-empty. By definition of Ca,a, there exists a subset P ⊆ N, with Ca ⊆ P̂ ,such that

Ca,a ⊆ P̂ 2 ⊆ Q̂.

In particular, for every i ∈ {1, ..., ℓ}, P 2 ∩Qi is non-empty: pick (ni,mi) in this intersec-tion. The finite subset S := {ni,mi : i ∈ {1, ..., ℓ}} is, by construction, such that S2 ⊆ Qand, for every i ∈ {1, ..., ℓ}, S2 ∩ Qi is non-empty. By Proposition 2.19 (3), we concludethat Ca,a is in Xa,a
2

This last example allows us to formulate the following conjecture: the infinite closedsubsets in Xa,a
2 consists exactly in the closed subsets of β(N2) which can be written asa product of an infinite closed subset of β(N) with itself.

Conjecture 2.40. An infinite closed subset Ca,a ∈ V(β(N2)) is in Xa,a
2 if, and only if,

there exists an infinite closed subset Ca ∈ V(β(N)) such that Ca,a = Ca ⊗ Ca.

Conclusion of the chapter

In this chapter, we provided a detailed duality theoretic treatment of the Boolean algebraof languages corresponding to Boolean combinations of sentences written by using ablock of k existential quantifiers, letter predicates, and uniform numerical predicates.Several directions can be taken in order to continue this work.First, pursuing the goal of Section 2.4, we still lack a necessary and sufficient condi-tion which would allow for an explicit description of Xa,a
2 . This could be use to obtain adifferent characterisation of X2, and, likely, Xk , which could deepen the understandingwe obtained on it via Proposition 2.14. A natural thing to start with would be checkingwhether Conjecture 2.40 is true.Second, note that, in this thesis, we restricted our attention to subfragments of thefragment BΣ[N ]. This last fragment has been well studied in the case of regular lan-guages, but still admits no satisfying duality-theoretic treatment. Also, it would be in-teresting to understand the duality theory for Boolean algebras obtained by applyinga layer of existential quantifier to an arbitrary subalgebra of the Boolean algebra cor-responding to quantifier-free formulas with k-ary uniform numerical predicates, andletter predicates.Another question that could be asked, and which it is necessary to solve in order tounderstand FO[N ], is how is it possible to take into account alternation of quantifiers.The main ingredient that allows us to conduct our study in this thesis is the fact that ablock of existential quantifier commutes with finite disjunctions. However, it is not clearhow one can rely on our work to think about alternation of universal and existentialquantifiers. Understanding mixed steps of universal and existential quantification is
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a complex problem. We refer to [11] for an approach that tries to aim toward thatdirection, and is based on substitution of formulas and transductions.Finally, we made the assumption at the beginning that all of the numerical predicateswe consider are uniform. One could try to understand whether it would be possible tobuild on our framework in order to think about arbitrary numerical predicates.



CHAPTER 3

Ultrafilter equations for the existential fragment of logic on words

In this chapter, we treat the topic of ultrafilter equations for the existential fragmentof first-order logic on words. Fix an integer k ≥ 1. In the previous chapter, we in-troduced BΣ1[N u
k ], a Boolean algebra corresponding to a certain fragment of logic onwords. This fragment corresponds to Boolean combinations of sentences defined byusing a block of at most k existential quantifiers, letter predicates and uniform numer-ical predicates of arity l ∈ {1, ..., k}. We gave different characterisations of the dualspace associated to this Boolean algebra, see Proposition 2.7 and Proposition 2.14. Aswe mentioned previously, there are few instances of computations of dual spaces cor-responding to fragments of logic defined by languages that lie outside of the scope ofregular languages. There are even less instances of computations of a family of ultrafil-ter equations which characterise a Boolean algebra of this kind. A question we want toinvestigate the answer for in this thesis is whether one could obtain a good descriptionin terms of ultrafilter equations of the existential fragment of first-order logic on words

BΣ1[N ] :=
⋃

k∈N
BΣ1[Nk],

defined by considering numerical predicates of arbitrary arity. Recall that nullary nu-merical predicates are all uniform. An important first step that should be made is toobtain and understand ultrafilter equations for BΣ1[N0,N u
k ] and BΣ1[N u

k ], for any k ≥ 1.An explicit basis of ultrafilter equations for BΣ1[N0,N u
1 ] is already available in [29]. How-ever, the reasoning conducted there does not directly allow for a generalization for thecase k ≥ 2, and therefore an extra step has to be performed in order to understandthe general case. Our contribution is a more topological presentation of the ultrafil-ter equations for BΣ1[N0,N u

1 ]. We reduce the combinatorics that was involved in thereasonings used to prove soundness and completeness in [29] to a bare minimum. In
87
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particular, our approach allows us to exhibit a basis of ultrafilter equations for BΣ1[N u

1 ].The main ingredient we use from the previous chapter is the approach introduced inSection 2.3, which involves finite colourings of N. This allows for a reformulation of theultrafilter equations from [29] in terms of the existence of a finite colouring of N whichsatisfies certain properties.
Outline of the chapter: In Section 3.1, we give a different presentation of theBoolean algebras Bk and B0,k , for any k ≥ 1, taking inspiration from the characterisationof the points of the dual space Xk we provided in Proposition 2.14. In Section 3.2, wedescribe a general family of ultrafilter equations, which will encompass every equationneeded in order to describe B1 and B0,1. We then give a reformulation of this generalfamily of equations in terms of a condition relative to a finite colourings of N. This willsimplify the reasoning which will follow, and in Section 3.3 we use this reformulation inorder to show soundness and completeness for the equations we introduced to describe

B1 and B0,1.
3.1 An alternative presentation for Bk and B0,k

In this section, we give a different presentation of the Boolean algebras Bk and B0,k ,for any k ≥ 1, taking inspiration from the characterisation of the points of the dualspace Xk we provided in Proposition 2.14. This presentation, in terms of languagesassociated to finite colourings of Nk , will greatly simplify the proofs of soundness andcompleteness which will follow, and allow for an enlightening reformulation of theultrafilter equations we will consider.Let us explain this setting in the case where k = 1. Let us look again at the languages
L♢a

Q
, where a ∈ A and Q ⊆ N, introduced at the very beginning of Section 2.1. Insteadof fixing a subset Q of N, a letter a ∈ A, and considering the set of all words such thatthere exists a position i < |w| such that wi = a, we could rather fix a finite colouring of

N, and consider the words such that the content of w on each colour is exactly a givensubset of A. The languages that we obtain this way are related to the notion of profilethat we introduced in Definition 2.12, and we prove that they allow for an alternativedescription of the Boolean algebra B1 and B0,1. This idea can be generalized for any
k ≥ 1, and this motivates the introduction of the languages that we define here-below.In the rest of the chapter, for any k ≥ 1, to mention a finite colouring of Nk with
ℓ ≥ 1 colours, we use the notation Q = (Q1, ..., Qℓ).
Definition 3.1. For any Q ⊆ Nk and any B ⊆ Ak , we consider the language KQ,B of allwords having content B on Q,

KQ,B := {w ∈ A∗ : ⟨w,Q⟩ = B}.

More generally, for any k, ℓ ≥ 1, any finite colouring Q of Nk with ℓ colours, and for
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any family B̄ = (B1, ..., Bℓ) of ℓ subsets of Ak , we consider the language of the wordshaving content on Qj equal to Bj , for every j ∈ {1, ..., ℓ},

KQ,B̄ :=
l⋂

j=1
KQj ,Bj .

Observe that these languages can be seen as the equivalence classes for a certainequivalence relation on A∗. Indeed, for any Q ⊆ Nk , we set
∼Q:= {(w1, w2) ∈ (A∗)2 : ⟨w1, Q⟩ = ⟨w2, Q⟩}.

Now, for any finite word w1 ∈ A∗, setting B := ⟨w1, Q⟩, the equivalence class whichcontains w1 is
[w1]∼Q = {w2 ∈ A∗ : ⟨w1, Q⟩ = ⟨w2, Q⟩} = {w2 ∈ A∗ : ⟨w1, Q⟩ = B} = KQ,B.

Note that this equivalence relation is finitely indexed, since P(Ak) is finite.More generally, for any k, ℓ ≥ 1, and any finite colouring of Nk with ℓ colours Q, weset
∼Q:=

ℓ⋂
j=1

∼Qj ,

and an equivalence class for this relation corresponds to a language of the form KQ,B̄ ,for some B̄ ∈ P(Ak)ℓ. This equivalence relation is also finitely indexed, since P(Ak)ℓis finite. These languages allow for a reformulation of the generators of the Booleanalgebra Bk , for any k ≥ 1, which will greatly simplify our considerations in the upcomingsections.
Proposition 3.2. For any k ≥ 1, the Boolean algebra Bk is generated by the languages
KQ,B̄ , where Q ranges over finite colourings of Nk with ℓ ≥ 1 colours and B̄ ranges
over P(Ak)ℓ.

Proof. We know, by Proposition 2.5 that Bk is generated by the languages L♢ā
Q

where Qranges over subsets of Nk and ā ranges over Ak. First, we prove that these languagescan be expressed as a Boolean combination of languages of the form KQ,B̄ . Let usconsider the two colours colouring (Q,Qc). A finite word w ∈ A∗ is in L♢ā
Q

if, and onlyif, the content of w on Q does contain the k-tuple ā, which allows us to write
L♢ā

Q
=

⋃
ā∈B⊆Ak

B′⊆Ak

(KQ,B ∩KQc,B′) =
⋃

ā∈B⊆Ak

B′⊆Ak

K(Q,Qc),(B,B′)

and allows us to conclude.Now, we fix a finite colouring Q of Nk with ℓ ≥ 1 colours and B̄ ∈ P(Ak)ℓ, and weprove that KQ,B̄ can be written as a Boolean combination of languages of the form L♢ā
Q

.
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First, note that, since

KQ,B̄ =
ℓ⋂

j=1
KQj ,Bj ,

we only need to prove the result for any KQ,B , with Q ⊆ Nk and B ⊆ Ak. Now, we have
KQ,B = {w ∈ A∗ : ⟨w,Q⟩ = B}

= {w ∈ A∗ : {ā ∈ Ak : cā(w) ∩Q ̸= ∅} = B}

= (
⋂

ā∈B

{w ∈ A∗ : cā(w) ∩Q ̸= ∅}) ∩ (
⋂

ā/∈B

{w ∈ A∗ : cā(w) ∩Q = ∅})

=
⋂

ā∈B

L♢ā
Q

∩
⋂

ā/∈B

(L♢ā
Q

)c.

which allows us to conclude.
We give the analogous result for B0,k , for any k ≥ 1.

Corollary 3.3. For any k ≥ 1, the Boolean algebra B0,k is generated by the languages
LP and KQ,B̄ where P ranges over subsets of N, Q ranges over finite colourings of
Nk with ℓ ≥ 1 colours and B̄ ranges over P(Ak)ℓ.

Proof. Direct consequence of Proposition 3.2 and Corollary 2.6.
3.2 A certain family of ultrafilter equations

In this section, we introduce a general family of ultrafilter equations on β(A∗) which willencompass every ultrafilter equation we will require in order to describe B1 and B0,1.We then explain how that it is possible to reformulate these equations into a conditionthat requires the existence of a certain finite colourings of N. This property will be ourmain tool in order to check soundness and completeness in Section 3.3.
3.2.1 General setting

Let us start by defining the family of ultrafilter equations on β(A∗) which will be at thecenter of our study. For any k, n ≥ 1 we use the notation A∗ ⊗ (Nk)n in order to referto A∗ ⊗ (Nk × ...× Nk)︸ ︷︷ ︸
n times

introduced in Section 1.4.2.
Definition 3.4. For any k, n ≥ 1, any finite family of maps p1, ...pn : A∗ ⊗ (Nk)n → Nkand u, v : A∗ ⊗ (Nk)n → A∗, we denote by Ep1,...,pn

u=v the family of ultrafilter equations
βu(ν) ↔ βv(ν),

where ν ranges over all elements of β(A∗ ⊗ (Nk)n) such that
βp1(ν) = ... = βpn(ν).
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The ultrafilter equations we use in order to describe B1 and B0,1 are all particularinstances of the ones introduced in Definition 3.4. Let us provide some intuition behindthese equations. The Boolean algebra B0,1 corresponds to BΣ1[N0,N u

1 ], the Booleanalgebra of languages corresponding to Boolean combinations of sentences written byusing unary uniform numerical predicates, and letter predicates. It has been proven in[29], Theorem 5.16, that BΣ1[N0,N u
1 ] ∩ Reg, the Boolean algebra of regular languagesin BΣ1[N0,N u

1 ] is described by the profinite equations
(xω−1s)(xω−1t) = (xω−1t)(xω−1s) and (xω−1s)2 = xω−1s,

for x, s, t words of the same length. The profinite monoid on A∗ is a compactificationof A∗ which embeds in β(A∗), and thus the ultrafilter equations we want to obtain are,in a sense, a generalization of these profinite equations to the setting of ultrafilters.In general, for any function f : X → K from a set X to a compact Hausdorff space
K , there exists a unique βf : βX → K that is continuous and extends f . Therefore, inorder to define any such continuous function on βX , it suffices to just define it on X .For any k ≥ 1, any finite word w ∈ A∗, any k-tuple of letters ā ∈ Ak and any familyof distinct integers j̄ ∈ |w|k , we define

w(j̄ → ā)

to be the word obtained by replacing, for any m ∈ {1, ..., k}, wjm by am in w. This allowsus to define the map fā : A∗ ⊗ Nk → A∗ as follows: for any (w, j̄) in A∗ ⊗ Nk ,
fā(w, j̄) :=

w(j̄ → ā) if all of the jm, for m ∈ {1, ..., k}, are distinct
w otherwise ,

and its continuous extension βfā : β(A∗ ⊗ Nk) → β(A∗). Following the ideas introducedin Section 2.3, we see elements of β(Nk) as generalized k-tuples of position. In particular,it is not equivalent to consider a generalized word with a k-tuple of positions, that is, anelement of β(A∗ ⊗ Nk), and a generalized word with a generalized k-tuple of positions,that is, an element of β(A∗) × β(Nk). If we want to consider the generalized k-tuple ofpositions associated to ν ∈ β(A∗ ⊗ Nk), we look at the ultrafilter βπ(ν) ∈ β(Nk), where
π : A∗ ⊗ Nk → Nk is the canonical projection.We now introduce the generalization of the profinite equation (xω−1s)(xω−1t) =
(xω−1t)(xω−1s), for x, s, t words of the same length, to the ultrafilter setting.
Definition 3.5. For any a, b ∈ A, we consider the map fa,b : A∗ ⊗N2 → A∗, which sendsany (w, j1, j2) ∈ A∗ ⊗ N2 to

fa,b(w, j1, j2) :=

w((j1, j2) → (a, b)) if j1 ̸= j2

w otherwise .
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We denote by π1, π2 : A∗ ⊗N2 → N the canonical projections on the first and second co-ordinate. Finally, for any a, b ∈ A, we denote by Eab=ba the family of ultrafilter equations
Eπ1,π2

fa,b,fb,a
as in Definition 3.4.

The following equations will be required in order to describe B0,1.
Definition 3.6. For any a, b ∈ A, we consider the map fa,a,b : A∗ ⊗ N3 → A∗, whichsends any (w, j1, j2, j3) ∈ A∗ ⊗ N3 to

fa,a,b(w, j1, j2, j3) :=

w((j1, j2, j3) → (a, a, b)) if j1 ̸= j2 ̸= j3

w otherwise .

We denote by π1, π2, π3 : A∗ ⊗N3 → N the canonical projections on the first, second andthird coordinate. Finally, for any a, b ∈ A, we denote by Eaab=abb the family of ultrafilterequations Eπ1,π2,π3
fa,a,b,fa,b,b

as in Definition 3.4.
Finally, we will need this last set of equations in order to describe B1.

Definition 3.7. For any a ∈ A, we consider the map fa : A∗ ⊗ N → A∗ which sends anyfinite word with a marked position (w, i) to w(i → a), and the map fa.a : A∗ ⊗ N → A∗which sends any finite word with a marked position (w, i) to w(i → a).a.
We denote by π : A∗ ⊗N → N the canonical projection and | · | : A∗ ⊗N → N the mapthat sends (w, i) ∈ A∗ ⊗ N to |w|. Finally, for any a ∈ A, we denote by Ea=a.a the familyof ultrafilter equations Eπ,|·|

fa,fa.a as in Definition 3.4.Our goal in the upcoming sections will be to prove the following results.
Theorem 3.8 ([29], Theorem 4.7). A language L ⊆ A∗ is in B0,1 if, and only if, L
satisfies the families of ultrafilter equations Eab=ba, and Eaab=abb, for every a, b ∈ A.

Theorem 3.9. A language L ⊆ A∗ is in B1 if, and only if, L satisfies the families of
ultrafilter equations Eab=ba, Eaab=abb and Ea=a.a, for every a, b ∈ A.

The first of these two results has been proven in [29]: we briefly describe the ap-proach that was taken. Let us focus on the proof of completeness, as it is the mostdifficult part of the problem. Fix a language L ⊆ A∗. A permutation σ with finite sup-port is said to be compatible with L provided that, for all w ∈ A∗, if the support of σ iscontained in {0, ..., |w| − 1}, then w is in L if, and only if, the word obained by applying
σ to the set of positions of w, and permutting the letters of w accordingly, is in L. Wenow define a binary relation RL on N as follows: iRLj if, and only if, the transposition
(ij) is compatible with L. They observe that, if L satisfies the family of ultrafilter equa-tions (Eab=ba)a,b∈A, then RL contains an equivalence relation of finite index. Let θ be anequivalence relation of finite index contained in RL . They prove that, if L also satisfiesthe family of ultrafilter equations (Eaab=abb)a,b∈A, then there exists n ∈ N such that forall u, v ∈ A∗, if |u| = |v|, and for each θ-equivalence class P , u ∼P v (see Definition
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3.1 ) then u is in L if, and only if, v is in L. The proof of this statement involves thor-ough reasonings about finite structures. This defines an equivalence relation on A∗, andthey conclude the proof by showing that L can be written as a Boolean combination oflanguages defined by using some of the equivalence classes for this relation.Our approach for the proof is different, in the sense that it keeps the combina-toric reasonings to a minimum. We replace the intermediate steps from [29] that wejust described by a complete reformulation of the ultrafilter equation. By using finitecolourings, we are able to obtain a characterisation where ultrafilters do not interveneanymore: this allows to reason, most of the time, with finite words instead of ultrafil-ters on words. The advantage is two-fold: first, we can more easily apply the intuitionwe have on the problem from finite words, and second, we avoid the difficulties thatcan happen whenever conducting proofs relative to ultrafilters. This reformulation wassufficient for us to build enough intuition to come up with Theorem 3.9, and giving astraight-forward proof of both completeness and soundness.
3.2.2 Ultrafilter equations in terms of finite colourings

In this subsection, we present a reformulation of the equations introduced in Definition3.4 in terms of finite colourings. First, we prove a technical lemma that allows for arephrasing of one of the conditions involved in Definition 3.4.
Lemma 3.10. For any k, n ≥ 1, consider an ultrafilter ν ∈ β(A∗ ⊗ (Nk)n) and a family
of n maps p1, ..., pn : A∗ ⊗ (Nk)n → Nk. For any α ∈ β(Nk), the following statements are
equivalent.

1. For every j ∈ {1, ..., n}, βpj(ν) = α.

2. For every Q ∈ α,
⋂n

j=1 p
−1
j (Q) ∈ ν.

Furthermore, these conditions hold for ν with respect to some α if, and only if, for
every finite colouring Q = (Q1, ..., Qℓ) of Nk , where ℓ ≥ 1, we have

ℓ⋃
i=1

n⋂
j=1

p−1
j (Qi) ∈ ν.

Also, for any two finite colourings Q = (Q1, ..., Qℓ) and Q′ = (Q′
1, ..., Q

′
ℓ′) of Nk , where

ℓ, ℓ′ ≥ 1, there exists a finite colouring Q′′ = (Q′′
1, ..., Q

′′
ℓ′′) of Nk , where ℓ′′′ ≥ 1 such that

ℓ⋃
i=1

n⋂
j=1

p−1
j (Qi) ∩

ℓ′⋃
i=1

n⋂
j=1

p−1
j (Q′

i) =
ℓ′′⋃

i=1

n⋂
j=1

p−1
j (Q′′

i ).

Proof. For (1) ìmplies (2), let us assume that, for every j ∈ {1, ..., n}, βpj(ν) = α. Then,for every j ∈ {1, ..., n}, and every Q ∈ α, we have p−1
j (Q) ∈ ν , which implies that⋂n

j=1 p
−1
j (Q) ∈ ν.
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For (2) implies (1), fixing j ∈ {1, ..., n}, we prove that α ⊆ βpj(ν), which is enough toprove that they are equal since ultrafilters are maximal for inclusion. Fix Q ∈ α. By (2)we have that ⋂n

k=1 p
−1
k (Q) ∈ ν , and since ⋂n

k=1 p
−1
k (Q) ⊆ p−1

j (Q), we deduce by the factthat ν is an up-set that p−1
j (Q) ∈ ν , and thus that Q ∈ βpj(ν).We now treat the last assertion. On the one hand assume that there exists α ∈ β(Nk)satisfying (2). Since α is an ultrafilter, for every finite colouring Q = (Q1, ..., Qℓ) of Nk ,where ℓ ≥ 1, there exists k ∈ {1, ..., ℓ} such that Qk ∈ α. Therefore, ⋂n

j=1 p
−1
j (Qk) ∈ ν ,and since

n⋂
j=1

p−1
j (Qk) ⊆

ℓ⋃
i=1

n⋂
j=1

p−1
j (Qi),

we deduce by up-set that this last subset belongs to ν.On the other hand, assume that for every finite colouring Q = (Q1, ..., Qℓ) of Nk , where
ℓ ≥ 1, ⋃ℓ

i=1
⋂n

j=1 p
−1
j (Qi) is in ν. We need to prove the existence of an ultrafilter α ∈ β(Nk)such that (2) holds. We set

α := {Q ⊆ Nk :
n⋂

j=1
p−1

j (Q) ∈ ν}.

We prove that α is an ultrafilter. First, since ν is an ultrafilter, it does not containthe empty set, and thus α does not contain the empty set. Also, since inverse imagepreserves finite intersections and inclusion, we deduce that α is indeed a filter on Nk.Furthermore, for any Q ⊆ Nk , (Q,Qc) is a finite colouring of Nk , thus, by (3),
n⋂

j=1
p−1

j (Q) ∪
n⋂

j=1
p−1

j (Qc) ∈ ν.

This union being disjoint, and ν being an ultrafilter, we deduce that exactly one ele-ment in {
⋂n

j=1 p
−1
j (Q),

⋂n
j=1 p

−1
j (Q)} belongs to ν , in other words exactly one element in

{Q,Qc} is in α.Finally, we prove that
{

ℓ⋃
i=1

n⋂
j=1

p−1
j (Qi) : (Q1, ..., Qℓ) is a finite colouring of Nk, ℓ ≥ 1}

is closed under intersection. Fix (Q1, ..., Qℓ) and (Q′
1, ..., Q

′
ℓ′) two finite colourings of N,for some ℓ, ℓ′ ≥ 1. We consider a finite colouring which refines both Q and Q′: Q′′ =

(Q′′
i,j) 1≤i≤ℓ

1≤j≤ℓ′
, the finite colouring of N, such that, for every (i, j) ∈ {1, ..., ℓ} × {1, ..., ℓ′},

Q′′
i,j := Qi ∩Q′

j .
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We obtain that

⋃
1≤i≤ℓ

1≤j≤ℓ′

n⋂
j=1

p−1
j (Q′′

i,j) =
⋃

1≤i≤ℓ
1≤j≤ℓ′

n⋂
j=1

p−1
j (Qi ∩Q′

j)

=
⋃

1≤i≤ℓ
1≤j≤ℓ′

n⋂
j=1

(p−1
j (Qi) ∩ p−1

j (Q′
j))

=
⋃

1≤i≤ℓ

n⋂
j=1

p−1
j (Qi) ∩

⋃
1≤i≤ℓ′

n⋂
j=1

p−1
j (Q′

i).

We now treat the other condition involved in the definition of the family of ultrafilterequations Ep1,...,pn
u=v from Definition 3.4, that is

L |= (βu(ν) ↔ βv(ν)).

For any set S, and any two subsets T1, T2 of S we denote by T1∆T2 their symmetric
difference, that is the subset of S such that, for any s ∈ S, s /∈ T1∆T2 if, and only if thecondition

s ∈ T1 ⇐⇒ s ∈ T2

holds.
Lemma 3.11. For any set S, any two subsets T1, T2 ⊆ S and any ultrafilter γ ∈ β(S),
the following conditions are equivalent.

1. T1 ∈ γ if, and only if, T2 ∈ γ.

2. (T1∆T2)c ∈ γ.

In particular, for any k, n ≥ 1, consider an ultrafilter ν ∈ β(A∗ ⊗ (Nk)n), two maps
u, v : A∗ ⊗ (Nk)n → A∗, and a language L ⊆ A∗. Then, L satisfies the ultrafilter
equation βu(ν) ↔ βv(ν), if, and only if EL,u,v ∈ ν , where

EL,u,v := {(w, ī1, ..., īn) ∈ A∗ ⊗ (Nk)n : u(w, ī1, ..., īn) ∈ L ⇐⇒ v(w, ī1, ..., īn) ∈ L}.

Proof. Let us assume that T1 ∈ γ if, and only if, T2 ∈ γ. Since γ is closed under finiteintersections, this last statement is equivalent to saying that T1 ∩ T2 ∈ γ or T c
1 ∩ T c

2 ∈ γ,and thus, since γ is an ultrafilter, equivalent to (T1 ∩ T2) ∪ (T c
1 ∩ T c

2 ) ∈ γ. By definition ofthe symmetric difference,
T1∆T2 = ((T1 ∩ T2) ∪ (T c

1 ∩ T c
2 ))c,

thus this is equivalent to saying that (T1∆T2)c ∈ γ.The final statement is a simple application of this result for S = A∗ ⊗ (Nk)n, T1 = u−1(L)
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and T2 = v−1(L).

We are now ready to give a reformulation of the equations of Definition 3.4 in termsof a condition relative to finite colourings of Nk.
Proposition 3.12. For any k, n ≥ 1, any maps p1, ..., pn : A∗ ⊗ (Nk)n → Nk and u, v :
A∗ ⊗ (Nk)n → A∗, a language L ⊆ A∗ satisfies Ep1,...,pn

u=v if, and only if, there exists a
finite colouring Q = (Q1, ..., Qℓ) of Nk for some ℓ ≥ 1 such that

ℓ⋃
i=1

n⋂
j=1

p−1
j (Qi) ⊆ EL,u,v.

Proof. For any language L ⊆ A∗, to satisfy the ultrafilter equation Ep1,...,pn
u=v amounts tothe following condition.

∀ν ∈ β(A∗ ⊗ (Nk)n), [βp1(ν) = ... = βpn(ν) =⇒ (L |= βu(γ) ↔ βv(γ))].

By applying Lemma 3.10 and Lemma 3.11, we can reformulate this condition asfollows.
∀ν ∈ β(A∗⊗(Nk)n), ({

ℓ⋃
i=1

n⋂
j=1

p−1
j (Qi) : (Q1, ..., Qℓ) is a colouring of Nk, ℓ ≥ 1} ⊆ ν =⇒ EL,u,v ∈ ν)

In particular, we know that a filter is the intersection of all of the ultrafilters whichcontain it. Therefore, since Lemma 3.10 allows us to consider the filter
F := ↑{

ℓ⋃
i=1

n⋂
j=1

p−1
j (Qi) : (Q1, ..., Qℓ) is a finite colouring of Nk , ℓ ≥ 1},

we can simplify our condition into EL,u,v ∈ F , that is, there exists a finite colouring
Q = (Q1, ..., Qℓ) of Nk for some ℓ ≥ 1 such that

ℓ⋃
i=1

n⋂
j=1

p−1
j (Qi) ⊆ EL,u,v.

Let us assume that a language L satisfies two families of ultrafilter equations, Ep1,...,pn
u=vand E

p′
1,...,p′

n′
u′=v′ . By applying Proposition 3.12, this is equivalent to assuming the existenceof two finite colourings Q = (Q1, ..., Qℓ) and Q′ = (Q′

1, ..., Q
′
ℓ′), for some ℓ, ℓ′ ≥ 1, suchthat

ℓ⋃
i=1

n⋂
j=1

p−1
j (Qi) ⊆ EL,u,v
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and

ℓ′⋃
i=1

n′⋂
j=1

(p′
j)−1(Q′

i) ⊆ EL,u′,v′ .

Now, considering a common refinement Q′′ = (Q′′
1, ..., Q

′′
ℓ′′) of the two colourings Qand Q′, for some ℓ′′ ≥ 1, we obtain in particular that

ℓ′′⋃
i=1

n⋂
j=1

p−1
j (Q′′

i ) ⊆ EL,u,v

and
ℓ′′⋃

i=1

n⋂
j=1

(p′
j)−1(Q′′

i ) ⊆ EL,u′,v′ .

This allows for a reformulation of the ultrafilter equations introduced in Definition3.5, 3.6 and 3.7.
Corollary 3.13. For any language L ⊆ A∗, the following statements hold.

1. L satisfies Eab=ba and Eaab=abb, for every a, b ∈ A, if, and only if, there exists a
finite colouring Q = (Q1, ..., Qℓ) of N, with ℓ ≥ 1, such that, for every a, b ∈ A,


⋃ℓ

i=1A
∗ ⊗Q2

i ⊆ EL,fa,b,fb,a⋃ℓ
i=1A

∗ ⊗Q3
i ⊆ EL,fa,a,b,fa,b,b

.

2. L satisfies Eab=ba, Eaab=abb and Ea=a.a, for every a, b ∈ A, if, and only if, there exists
a finite colouring Q = (Q1, ..., Qℓ) of N, with ℓ ≥ 1, such that, for every a, b ∈ A,

⋃ℓ
i=1A

∗ ⊗Q2
i ⊆ EL,fa,b,fb,a⋃ℓ

i=1A
∗ ⊗Q3

i ⊆ EL,fa,a,b,fa,b,b⋃ℓ
i=1 LQi ⊗Qi ⊆ EL,fa,fa.a

,

where, for every i ∈ {1, ..., ℓ},

LQi ⊗Qi := {(w, j) ∈ A∗ ⊗ N : j ∈ Qi and |w| ∈ Qi}.

Example 3.14. As a first application of these reformulations in terms of finite colouringof N, we check that the couples of ultrafilters in the family Eab=ba, for every a, b ∈ A areindeed in the kernel of the continuous quotient q : β(A∗) ↠ X1, dual to the canonicalembedding B1 ↪→ P(A∗).Recall that we proved in Proposition 2.7 that the map q sends any ultrafilter γ ∈ β(A∗)
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to the family of closed subsets (Cd(γ))d∈A, where, for every d ∈ A,

Cd(γ) :=
⋂

L
□d

Q
∈γ

Q̂.

Now, fix a, b ∈ A, and consider ν ∈ β(A∗ ⊗N2), such that βπ1(ν) = βπ2(ν): we prove that
βfa,b(ν) and βfb,a(ν) have the same image under q. Fix d ∈ A. First, note that

L□d
Q

∈ βfa,b(ν) ⇐⇒ f−1
a,b (L□d

Q
) ∈ ν

⇐⇒ {(w, j1, j2) ∈ A∗ ⊗ N2 : w((j1, j2) → (a, b)) ∈ L□d
Q

} ∈ ν

⇐⇒ {(w, j1, j2) ∈ A∗ ⊗ N2 : cd(w((j1, j2) → (a, b))) ⊆ Q} ∈ ν.

Now, since βπ1(ν) = βπ2(ν), we use Lemma 3.10 with the colouring (Q,Qc) of N, andwe obtain that
(A∗ ⊗Q2) ∪ (A∗ ⊗ (Qc)2) ∈ γ.

Therefore, by intersection,
{(w, j1, j2) ∈ A∗ ⊗ N2 : cd(w((j1, j2) → (a, b))) ⊆ Q} ∈ ν

is equivalent to
{(w, j1, j2) ∈ A∗ ⊗ N2 : j1, j2 ∈ Q and cd(w((j1, j2) → (a, b))) ⊆ Q}∪

{(w, j1, j2) ∈ A∗ ⊗ N2 : j1, j2 ∈ Qc and cd(w((j1, j2) → (a, b))) ⊆ Qc} ∈ ν.

Finally, observe that, for any j1, j2 ∈ Q,
cd(w((j1, j2) → (a, b))) = cd(w((j1, j2) → (b, a))),

and the same holds for any j1, j2 ∈ Qc. This allows us to prove that, for any d ∈ A,
L□d

Q
∈ βfa,b(ν) ⇐⇒ L□d

Q
∈ βfb,a(ν),

and thus, for every d ∈ A, Cd(βfa,b(ν)) = Cd(βfa,b(ν)) which means that q(βfa,b(ν)) =
q(βfb,a(ν)).

3.3 A topological proof for ultrafilter equations on B0,1 and B1

In this section, we explain how it is possible to use Corollary 3.13 in order to showthat the ultrafilter equations we introduced in Definition 3.6, 3.6 and 3.7 allow for adescription of B0,1 and B1.
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3.3.1 Soundness

We start by proving that the Boolean algebras B0,1 and B1 satisfy the family of equationswe introduced in Section 3.2. The reformulation of these equations we gave in Corollary3.13, combined with the knowledge of the family of generators that we introduced inProposition 3.2 and Corollary 3.3 for the Boolean algebras enables us to check it in astraight-forward fashion.
Proposition 3.15. Let L ⊆ A∗ be a language, then:

1. if L is in B0,1, then L satisfies the ultrafilter equations in the families Eab=ba and
Eaab=abb, for every a, b ∈ A;

2. if L is in B1, then L satisfies the ultrafilter equations in the families Eab=ba,
Eaab=abb and Ea=a.a, for every a, b ∈ A.

The idea behind this proposition is the following. All of the ultrafilter equations weintroduced can be reformulated in terms of a condition that holds for a certain finitecolouring of N. This condition involves some finite words, and some of their positions.We check that the properties hold for finite words, and that this allows for the propertyto transfer at the level of ultrafilters.
Proof. (1): By Corollary 3.3, we know that B0,1 is the Boolean algebra generated bythe languages LP and KQ,B̄ where P ⊆ N, Q is a ℓ colours colouring of N for some
ℓ ≥ 1, and B̄ ∈ P(A)ℓ. Therefore, it is enough to prove that these languages satisfy theultrafilter equations in question. We do so by using the reformulation of these equationsintroduced in Corollary 3.13. Fix P ⊆ N, and a, b ∈ A, and consider the two colourscolouring (P, P c). Fix (w, j1, j2) ∈ A∗ ⊗ P 2. We have that

w((j1, j2) → (a, b)) ∈ LP ⇐⇒ |w((j1, j2) → (a, b))| ∈ P

⇐⇒ |w((j1, j2) → (b, a))| ∈ P

⇐⇒ w((j1, j2) → (b, a)) ∈ LP .

Since the same reasoning holds for any (w, j1, j2) ∈ A∗ ⊗ (P c)2, we have that
(A∗ ⊗ P 2) ∪ (A∗ ⊗ (P c)2) ⊆ EL,fa,b,fb,a

,

and we conclude by Corollary 3.13 that LP satisfies the ultrafilter equation Eab=ba. Weprove, in the exact same way, that LP satisfies the ultrafilter equation Eaab=abb: theargument holds since, for any (w, j1, j2, j3) ∈ A∗ ⊗ N3,
|fa,a,b(w, j1, j2, j3)| = |w| = |fa,b,b(w, j1, j2, j3)|.

Now, fix a finite colouring Q of N with ℓ colours, where ℓ ≥ 1, B̄ ∈ P(A)ℓ and a, b ∈ A.
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Let us start by proving that

ℓ⋃
i=1

A∗ ⊗Q2
i ⊆ EKQ,B̄ ,fa,b,fb,a

.

Fix i ∈ {1, ..., ℓ}. We prove that every (w, j1, j2) ∈ A∗ ⊗Q2
i belongs to EKQ,B̄ ,fa,b,fb,a

. Onthe one hand, notice that, for every i′ ∈ {1, ..., ℓ}, with i ̸= i′, the content of w((j1, j2) →
(a, b)) on Qi′ is the same than the content of w((j1, j2) → (b, a)) on Qi′ : indeed, they areboth equal to the content of w on Qi′ . On the other hand, the content of w((j1, j2) →
(a, b)) on Qi is the same than the content of w((j1, j2) → (b, a)) on Qi: we only switchedthe letters at position j1 and j2, which does not add nor remove any letter out of thecontent on Qi. We deduce that, for every i ∈ {1, ..., ℓ}, A∗ ⊗Q2

i ⊆ EKQ,B̄ ,fa,b,fb,a
, thus

ℓ⋃
i=1

A∗ ⊗Q2
i ⊆ EKQ,B̄ ,fa,b,fb,a

,

and we conclude by Corollary 3.13 that KQ,B̄ satisfies the ultrafilter equation Eab=ba.
The argument is almost exactly the same to prove that KQ,B̄ satisfies the ultrafilterequation Eaab=abb. Fix i ∈ {1, ..., ℓ}. We prove that every (w, j1, j2, j3) ∈ A∗ ⊗Q3

i belongsto EKQ,B̄ ,fa,a,b,fa,b,b
. On the one hand, notice that, for every i′ ∈ {1, ..., ℓ}, with i ̸= i′, thecontent of w((j1, j2, j3) → (a, a, b)) on Qi′ is the same than the content of w((j1, j2, j3) →

(a, b, b)) on Qi′ : indeed, they are both equal to the content of w on Qi′ . On the otherhand, the content of w((j1, j2, j3) → (a, a, b)) on Qi is the same than the content of
w((j1, j2, j3) → (a, b, b)) on Qi: we only replaced the occurrence of a available at theposition j2 ∈ Qi by an occurrence of b, which was already available at the position
j3 ∈ Qi. The letter a is still available at the position j1 ∈ Qi: the content on Qi has notbeen altered. We deduce that

ℓ⋃
i=1

A∗ ⊗Q3
i ⊆ EKQ,B̄ ,fa,a,b,fa,b,b

,

and we conclude by Corollary 3.13 that KQ,B̄ satisfies the ultrafilter equation Eaab=abb.(2): By Corollary 3.3, we know that B1 is the Boolean algebra generated by the languages
KQ,B̄ , where Q is a ℓ colours colouring of N for some l ≥ 1, and B ∈ P(A)ℓ. By (1),we only need to prove that the languages of this form satisfy the ultrafilter equations
Ea=a.a, for every a ∈ A. By Corollary 3.13, we do so by proving that

ℓ⋃
i=1

LQi ⊗Qi ⊆ EKQ,B̄ ,fa,fa.a.

Fix i ∈ {1, ..., ℓ}. We prove that every (w, j) ∈ A∗ ⊗ Qi such that |w| ∈ Qi belongs to
EKQ,B̄ ,fa,fa.a. On the one hand, notice that, for every i′ ∈ {1, ..., ℓ}, with i ̸= i′, the contentof w(j → a) on Qi′ is the same than the content of w(j → a).a on Qi′ , since |w| does
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not belong to Qi′ . On the other hand, the content of w(j → a) on Qi is the same thanthe content of w(j → a).a on Qi: the only difference between these two words is thepresence of one more occurrence of a on a position which belongs to Qi, but since
j ∈ Qi, the letter a is already present in the content of both oh these words on Qi. Wededuce that

ℓ⋃
i=1

LQi ⊗Qi ⊆ EKQ,B̄ ,fa,fa.a,

and we conclude that KQ,B̄ satisfies the ultrafilter equation Ea=a.a.
3.3.2 Completeness for B1

We prove that the languages satisfying the family of ultrafilter equations Eab=ba, Eaab=abband Ea=a.a, for every a, b ∈ A, all belong to B1. In order to do so, we use the presentationof B1 we provided in Proposition 3.2. As explained in Section 3.1, the languages generat-ing B1 are of the form KQ,B̄ , where Q is a finite colouring of N with ℓ colours, for some
ℓ ≥ 1, and B̄ ∈ P(A)ℓ. For a fixed finite colouring Q, the finitely indexed equivalencerelation ∼Q introduced in Section 3.1 gives a finite partition of A∗. We prove that, if alanguage L ⊆ A∗ satisfies all of our ultrafilter equations, then it is possible to find a finitecolouring Q such that L can be written as a finite union of some of the equivalenceclasses for ∼Q.We start by detailing the situation when the colouring in question only has twocolours in the following Lemma. We then generalize the argument to any finite colour-ing of N in Proposition 3.17.
Lemma 3.16. Let L ⊆ A∗ be a language satisfying Eab=ba, Eaab=abb and Ea=a.a, for
every a, b ∈ A. Let us consider a finite colouring Q of N satisfying the condition from
Corollary 3.13 (2), and assume that Q = (Q,Qc) for some Q ⊆ N. Then, for any words
w,w′ ∈ A∗ such that w ∼Q w′ and, for every i ∈ Qc ∩ {0, ...,min(|w|, |w′|) − 1}, wi = w′

i,
we have that

w ∈ L ⇐⇒ w′ ∈ L.

Since the proof is quite technical, we give an overview of our proof method. First,we have to provide some intuition about how we can use the ultrafilter equations werequired in Lemma 3.16. We do so for the ultrafilter equations (Eab=ba)a,b∈A. Let usassume that a language L satisfies Eab=ba, for every a, b ∈ A. Let us consider a finitecolouring Q of N satisfying the condition from Corollary 3.13 (2), and assume that
Q = (Q,Qc) for some Q ⊆ N. Fix two integers i, j ∈ Q and a word w such that
|w| > max(i, j). Since L satisfies, in particular, Ewiwj=wjwi , Corollary 3.13 (2) implies that
(w, i, j) ∈ EL,fwi,wj ,fwj ,wi

, that is, w is in L if, and only if, the word obtained out of w byexchanging wi and wj is in L. We can keep on applying this reasoning to construct aword w′ that is in L if, and only if w is in L and such that:
• w′ and w have the same length;
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• for every i ∈ Qc, wi = w′

i;
• for every a ∈ A, and every i ∈ Q, |w|a = |w′|a.
This is the main idea we use. In Lemma 3.16, in order to prove that w is in L if, andonly if, w′ is in L, we will construct a family of intermediate words v1, ..., vn, for some

n ∈ N. Setting v0 := w and vn+1 := w′, we will prove that, for every i ∈ {0, ..., n}, vi ∈ Lif, and only if, vi+1 ∈ L. These intermediate words will be constructed out of w, usingthe ultrafilter equations we introduced, and will all have the same content than w on Qand on Qc.
Proof. We consider a language L ⊆ A∗ such that there exists Q ⊆ N such that, for every
a, b ∈ A,

(A∗ ⊗Q2) ∪ (A∗ ⊗ (Qc)2) ⊆ EL,fa,b,fb,a
,

(A∗ ⊗Q3) ∪ (A∗ ⊗ (Qc)3) ⊆ EL,fa,a,b,fa,b,b
,

and
(LQ ⊗Q) ∪ (LQc ⊗Qc) ⊆ EL,fa,fa.a.

We consider two finite words w,w′ ∈ A∗ such that w ∼Q w′ and for every i ∈ Qc ∩
{0, ...,min(|w|, |w′|) − 1}, wi = w′

i. We set N := min(|w|, |w′|). We want to prove that wis in L if, and only if, w′ is in L. In order to do so, we start by defining the followingfamilies of endofunctions of A∗.
Mab=ba

E,1,Q := {(f j1,j2
a,b , f j1,j2

b,a ) : j1, j2 ∈ Q ∩ {0, ..., N − 1}, a, b ∈ A},

where, for every j1, j2 ∈ Q∩ {0, ..., N − 1}, and every a, b ∈ A, f j1,j2
a,b : A∗ → A∗ sends anyfinite word v to fa,b(v, j1, j2) if (v, j1, j2) is in A∗ ⊗ N2, and to v otherwise. We define inan analogous way

Maab=abb
E,1,Q := {(f j1,j2,j3

a,a,b , f j1,j2,j3
a,b,b ) : j1, j2, j3 ∈ Q ∩ {0, ..., N − 1}, a, b ∈ A},

Ma=a.a
E,1,Q := {(f j1

a , f
j1
a .a) : j1 ∈ Q ∩ {0, ..., N − 1}, a ∈ A},

and
ME,1,Q := Mab=ba

E,1,Q ∪ Maab=abb
E,1,Q ∪ Ma=a.a

E,1,Q .

Now, let us assume that there exists n ∈ N, that there exists a family of pairs ofmaps (fm, gm)1≤m≤n and a finaly, that there exists a finite sequence of words (vm)1≤m≤n,satisfying the following properties:
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1. v1 = w and vn = w′;
2. m ∈ {1, ..., n}, (fm, gm) ∈ ME,1,Q

3. for every m ∈ {1, ..., n}, fm(vm) = vm;
4. for every m ∈ {1, ..., n − 1}, gm(vm) = vm+1, and
gn(vn) = vn.


(∗)

In particular, if we denote composition of maps by ⃝, we would have that
w′ = (

1
⃝

m=n
gm)(w),

and therefore by Corollary 3.13 (1), we are able to conclude that w is in L if, and only if
w′ is in L. The end of this proof describes how it is possible to construct n, (fm, gm)1≤m≤nand (vm)1≤m≤n, satisfying (∗).We start by treating the case where w and w′ have the same length, that is N . Inthat case, there exists n1, ..., np < N for some p ∈ N such that

Q ∩ {0, ..., N − 1} = {n1, ..., np},

and we consider the finite words w|Q := wn1 ...wnp and w′
|Q := w′

n1 ...w
′
np

. We assumedthat w ∼Q w′, thus we set B := ⟨w,Q⟩ = ⟨w′, Q⟩. Notice that w|Q and w′
|Q are equal if,and only if, w and w′ are equal.First, assume that each letter in B occurs exactly once in w|Q and w′

|Q. In that case,these two words only differ by the order of their letters, and so do w and w′. If w|Q and
w′

|Q are the same word, then we are done. Otherwise, there are at least two distinctletters a, b ∈ B which occur in w|Q and w′
|Q, and yet do not occupy the same positionin both words. We thus consider the unique integers s1, s2 and t1, t2 in {n1, ..., np} suchthat wns1

= wnt1
= a and w′

ns2
= w′

nt2
= b, and we know that (s1, s2) ̸= (t1, t2). Then,

w = fa,b(w, ns1 , nt1) and the word w1 = fb,a(w, ns1 , nt1) is such that the positions of theoccurrences of a in w1 coincide with the one of w′. Since any permutation on a finiteset can be written as a finite product of transpositions, we can iterate this reasoningfinitely many times, and eventually construct a finite family (fm, gm)1≤m≤n ⊆ Mab=ba
E,1,Qand a finite sequence of words (vm)1≤m≤n for some n ∈ N satisfying (∗).Now, assume there exists a letter which occurs strictly more than once in w|Q or w′

|Q,say w|Q without any loss of generality. If, for every a ∈ B, |w|Q|a = |w′
|Q|a, then thesetwo words only differ by the order of appearance of each of their letters. By applying asimilar reasoning to the case where w|Q and w′

|Q have exactly one occurrence of eachletter inA, we can construct a finite family (fm, gm)1≤m≤n ⊆ Mab=ba
E,1,Q and a finite sequenceof words (vm)1≤m≤n, for some n ∈ N satisfying the four conditions we mentioned. Else,there exists a letter a ∈ B such that |w|Q|a ̸= |w′

|Q|a, say |w|Q|a > |w′
|Q|a without any lossof generality. Pick ns1 , ns2 ∈ {n1, ..., np} distincts such that wj1 = wj2 = a. Now, since
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w|Q and w′

|Q have the same length, there exists a letter b ∈ B with |w|Q|b < |w′
|Q|b, and

b ̸= a. Of course, since w ∼Q w′, there exists ns3 ∈ {n1, ..., np} such that wj3 = b. Then,
w = fa,a,b(w, ns1 , ns2 , ns3) and the word w1 := fa,b,b(w, ns1 , ns2 , ns3) satisfies the followingproperties:

• w ∼Q w1;
• for every i ∈ Qc ∩ {0, ..., N − 1}, (w1)i = wi;
• by Corollary 3.13 (2), w is in L if, and only if, w1 is in L;
• |w1|a = |w|a − 1.

We can keep on using this argument, until we obtain a word which brings us back tothe case where |w|Q|a = |w′
|Q|a. By applying this argument to every letter of the alphabet

A, we construct a finite word w′′ ∈ A∗ such that w′′ ∼Q w′, for every i ≤ N , w′′
i = w′

iand, for every a ∈ B, |w′′
Q|a = |w′

|Q|a: this situation has already been treated previously.Finally, let us treat the case where w and w′ do not have the same length.Without any loss of generality, let us assume that |w| < |w′|. We are going to provethe following statement: for any n ∈ {|w|, ..., |w′|}, there exists a finite word v ∈ A∗satisfying the following conditions:
• |v| = n;
• w ∈ L if, and only if, v ∈ L;
• v ∼Q w and, for every i ∈ Qc ∩ {0, ..., n− 1}, w′

i = vi.
Proving this is enough for us to conclude. Indeed, this will mean, in particular, that thereexists a word w′′, with same length than w′, such that, for every i ∈ Qc ∩ {0, ..., |w′|},
w′

i = w′′
i = wi, w′′ ∼Q w ∼Q w′, and w′′ ∈ L if, and only if, w ∈ L, thus if, and only if,

w′ ∈ L. We will then be able to use the reasoning conducted at the very beginning ofthe proof to w′′ and w′, as they have the same length.Let us now prove the statement. For the base case, that is, when n = |w|, we can usethe word w, as it is trivial that it satisfies the condition we require. For the induction step,let us assume that there exists a finite word v with length n ∈ {|w|, ..., |w′|} satisfying theconditions we require. We will use this word to construct a word which also satisfiesthese conditions, and has exactly one more letter than v.Since (Q,Qc) is a colouring of N, we make a case distinction depending on whichcolor |v| belongs to. If Q ∩ {0, ..., |v| − 1} is non-empty, pick an integer m in this subset,and set
a :=

vm if |v| ∈ Q

w′
|v| if |v| ∈ Qc or Q ∩ {0, ..., |v| − 1} = ∅

.
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and

j :=

m if |v| ∈ Q

|v| if |v| ∈ Qc or Q ∩ {0, ..., |v| − 1} = ∅
.

Since (v, j) belongs to (LQ ⊗Q) ∪ (LQc ⊗Qc), we have by Corollary 3.13 (3) that v is in Lif, and only if, v.a is in L. Observe that, by construction, w ∼Q v ∼Q v.a, and for every
i ∈ Qc ∩ {0, ..., n}, w′

i = (v.a)i. This allows us to conclude the induction.
We now generalize the argument to any finite colouring of N.

Proposition 3.17. Let L ⊆ A∗ be a language satisfying Eab=ba, Eaab=abb and Ea=a.a, for
every a, b ∈ A. Let us consider a finite colouring Q of N satisfying the condition from
Corollary 3.13(2). Then, for any words w,w′ ∈ A∗ such that w ∼Q w′, we have

w ∈ L ⇐⇒ w′ ∈ L.

Proof. We consider a language satisfying this property, that is, L ⊆ A∗ such that thereexists a finite colouring Q of N with ℓ colours, where ℓ ≥ 1, such that, for every a, b ∈ A,
ℓ⋃

i=1
A∗ ⊗Q2

i ⊆ EL,fa,b,fb,a
,

ℓ⋃
i=1

A∗ ⊗Q3
i ⊆ EL,fa,a,b,fa,b,b

,

and
ℓ⋃

i=1
LQi ⊗Qi ⊆ EL,fa,fa.a,

by Corollary 3.13 (2). We consider two finite words w,w′ ∈ A∗ such that w ∼Q w′. Wewant to prove that w is in L if, and only if, w′ is in L.We can apply the reasoning we used in Proof 3.3.2 independently to each of thesubsets Q1, ..., Qℓ. More precisely, for every i ∈ {1, ..., ℓ}, we consider ME,1,Qi as intro-duced in Proof 3.3.2 . We can construct ℓ independent integers (ni)1≤i≤ℓ, ℓ independentfamilies of pairs of maps ((f i
m, g

i
m)1≤m≤ni)1≤i≤ℓ and ℓ independent finite sequence ofwords ((vi

m)1≤m≤ni)1≤i≤l satisfying the following properties: for every i ∈ {1, ..., ℓ},1. (vi
1)|Qi

= w|Qi
and (vi

ni
)Qi = w′

Qi
;

2. for every m ∈ {1, ..., ni}, (f i
m, g

i
m) ∈ ME,1,Qi ;3. for every m ∈ {1, ..., ni}, f i

m(vi
m) = vi

m;
4. for every m ∈ {1, ..., ni − 1}, gi

m(vi
m) = vi

m+1, and gi
n(vi

ni
) = vi

ni
.In particular, if we denote composition of maps by ⃝,

w′ = (
ℓ

⃝
i=1

1
⃝

m=ni

gi
m)(w),
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and thus, by Lemma 3.16, w belongs to L if, and only if, w′ belongs to L.

We are now ready to prove that every language L ⊆ A∗ satisfying our equations isnecessarily such that there exists a finite colouring Q of N such that L saturates thefinitely indexed equivalence relation ∼Q, and thus L can be expressed as a Booleancombinations of the generators of B1.
Corollary 3.18. Any language L ⊆ A∗ which satisfies the ultrafilter equations Eab=ba,
Eaab=abb and Ea=a.a, for every a, b ∈ A, is in B1.

Proof. Consider a language L ⊆ A∗ satisfying the equations Eab=ba, Eaab=abb and Ea=a.a,for every a, b ∈ A. By Proposition 3.12, there exists a finite colouring (Q1, ..., Qℓ) of N,for some ℓ ≥ 1, such that, for every a, b ∈ A,
ℓ⋃

i=1
A∗ ⊗Q2

i ⊆ EL,fa,b,fb,a
,

ℓ⋃
i=1

A∗ ⊗Q3
i ⊆ EL,fa,a,b,fa,b,b

and
ℓ⋃

i=1
LQi ⊗Qi ⊆ EL,fa,fa.a.

Fix a word w ∈ L, then there exists a unique B̄ ∈ P(A)ℓ such that w ∈ KQ,B̄ . ByProposition 3.17, for any w′ ∈ KQ,B̄ , we have that w′ ∈ L. More generally, we deducethat the finitely indexed equivalence relation ∼Q on A∗, is saturated by L. Therefore,there exists a finite family B ⊆ P(A)ℓ such that
L =

⋃
B̄∈B

KQ,B̄,

and by Proposition 3.2, we conclude that L is in B1.
3.3.3 Completeness for B0,1

We prove that the the languages satisfying the family of ultrafilter equations Eab=ba,
Eaab=abb for every a, b ∈ A, all belong to B0,1. The idea is similar to the reasoning weprovided to prove Corollary 3.18, the difference being that the equivalence relation thatwe introduced in the previous subsection is now insufficient. Indeed, since we addedthe family of languages LP , for any P ⊆ N, we need to take into account the length ofthe words we consider. This has consequences on the family of ultrafilter equations wewant to look at. For instance, for any a ∈ A, consider a languages L which satisfies thefamily of equations Ea=a.a. This corresponds, informally, to the idea that, if a word wbelongs to L, then it is possible to construct a longer word by adding a certain letter to
w, which will still belong to L. In this sense, the length of a word of L is not relevant, and
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thus we expect that this family of equations will not be required in order to describe B0,1.We begin by providing an analogous for Proposition 3.17 which takes this observationinto account.
Proposition 3.19. Let L ⊆ A∗ be a language satisfying Eab=ba and Eaab=abb, for every
a, b ∈ A. Let us consider a finite colouring Q of N satisfying the condition from
Corollary 3.13 (1). Then, for any words w,w′ ∈ A∗ of same length such that w ∼Q w′,
we have

w ∈ L ⇐⇒ w′ ∈ L.

Proof. The proof uses the exact same method that was used in Proof 3.3.2 and Proof3.3.2, except that we always assume that the length of both words involved is the same.
We are now ready to prove that every language L ⊆ A∗ satisfying Eab=ba and Eaab=abb,for every a, b ∈ A is necessarily such that there exists a finite colouring Q of N such that

L saturates the finitely indexed equivalence relation ∼Q, and thus L can be expressedas a Boolean combinations of the generators of B0,1.
Corollary 3.20. Any language L ⊆ A∗ which satisfies the ultrafilter equations Eab=ba

and Eaab=abb, for every a, b ∈ A, is in B0,1.

Proof. Consider a language L ⊆ A∗ satisfying the equations Eab=ba and Eaab=abb, forevery a, b ∈ A. By Proposition 3.12, there exists a finite colouring (Q1, ..., Qℓ) of N, forsome ℓ ≥ 1, such that, for every a, b ∈ A,
ℓ⋃

i=1
A∗ ⊗Q2

i ⊆ EL,fa,b,fb,a

and
ℓ⋃

i=1
A∗ ⊗Q3

i ⊆ EL,fa,a,b,fa,b,b
.

Fix a word w ∈ L. There exists a unique B̄ ∈ P(A)ℓ such that w ∈ KQ,B̄ . ByProposition 3.19, for any w′ ∈ KQ,B̄ , such that |w| = |w′| we have that w′ ∈ L. Moregenerally, there exists a finite family B ⊆ P(Ak)ℓ such that, if we set
P := {n ∈ N : L ∩An ̸= ∅},

then
L = (

⋃
B̄∈B

KQ,B̄) ∩ (
⋃

n∈P

An).

Finally, since ⋃
n∈P

An = LP ,
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we have that

L = (
⋃

B̄∈B

KQ,B̄) ∩ LP ,

and by Proposition 3.2, we conclude that L is in B0,1.
Conclusion of the chapter

In this chapter, we provided a new method to prove the completeness and the soundnessof the ultrafilter equations that were introduced in [29] for the fragment of first-orderlogic corresponding to sentences written by only using nullary and unary uniform nu-merical predicates. Our method being more general, it allowed us to also formulatemore ultrafilter equations, and these allowed us to characterise the Boolean algebra oflanguages corresponding to sentences written by only using unary uniform numericalpredicates.A lot of the remarks we made in the conclusion of the previous chapter still applyhere. Indeed, a first step in order to get an intuition over the ultrafilter equations fora Boolean algebra is to compute this algebra’s dual space. No work currently availabletreats the topic of ultrafilter equations for the Boolean algebra BΣ1[N u
k ], for a fixed

k ∈ N. This should be the next natural step following this work. We believe thatthe approach that consists in reformulating the equations in terms of a condition thatinvolves considering every finite colouring of Nk , for some k ∈ N could be a goodapproach in order to generalize Corollary 3.18.
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