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Résumé: Cette thése s'intéresse a 'application de méthodes de dualité topologique
a des problémes de l'informatique théorique. Un des objectifs finaux de cette démarche
est I'obtention de résultats en théorie de la complexité, via I'étude d’objets topologiques
caractérisant les différentes classes de complexité. La logique est ce qui est a l'interface
entre ces deux domaines en apparence trés éloignés, plus particulierement un sous-
domaine de la théorie des mode¢les finis : la logique sur les mots. Il est possible de
donner une description de certaines classes de complexité comme des familles de lan-
gages, potentiellement non réguliers, sur un alphabet fini.

Tres peu de résultats de dualité sont connus pour les fragments de la logique du
premier ordre sur les mots décrits par des langages qui sortent du cadre régulier.
Notre contribution est 'étude détaillée d’'un tel fragment. Pour un entier k£ > 1 fixé, nous
considérons l'algébre de Boole BY;[NV}!]. Celle-ci correspond au fragment de logique
sur les mots consistant en les combinaisons Booléennes de propositions définies en
utilisant un bloc d’au plus k quantificateurs existentiels, les prédicats sur les lettres et
les prédicats numériques uniformes d’arité [ € {1,...,k}. Nous fournissons une étude
détaillée de l'espace dual a cette algebre de Boole, pour tout k£ > 1, et nous donnons
plusieurs caractérisations de ses points. Dans le cas particulier ou k£ = 1, nous sommes
capables de construire une famille d’équations ultrafiltre qui caractérise l'algebre de
Boole B[N

Mots clefs : Topologie générale, Dualité de Stone, Logique sur les mots, Théorie
de la complexité descriptive, Treillis distributifs, Algebre de Boole, Espace de Vietoris,
Coloriages fini, Equations ultrafiltre.
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Abstract: This thesis fits in the area of research that investigates the application
of topological duality methods to problems that appear in theoretical computer sci-
ence. One of the eventual goals of this approach is to derive results in computational
complexity theory by studying appropriate topological objects which characterise them.
The link which relates these two seemingly separated fields is logic, more precisely a
subdomain of finite model theory known as logic on words. It allows for a description
of complexity classes as certain families of languages, possibly non-regular, on a finite
alphabet.

Very few is known about the duality theory relative to fragments of first-order logic
on words which lie outside of the scope of regular languages. The contribution of our
work is a detailed study of such a fragment. Fixing an integer k > 1, we consider the
Boolean algebra BX;[N}]. It corresponds to the fragment of logic on words consisting
in Boolean combinations of sentences defined by using a block of at most £ existential
quantifiers, letter predicates and uniform numerical predicates of arity [ € {1,...,k}.
We give a detailed study of the dual space of this Boolean algebra, for any £ > 1, and
provide several characterisations of its points. In the particular case where k = 1, we
are able to construct a family of ultrafilter equations which characterise the Boolean
algebra B3 [N{"].

Key words: General topology, Stone duality, Logic on words, Descriptive complexity
theory, Distributive lattices, Boolean algebra, Vietoris hyperspaces, Finite colourings,
Ultrafilter equations
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Introduction générale

Cette thése s'intéresse a l'application de méthodes de dualité topologique a des prob-
lemes de l'informatique théorique. Un des objectifs finaux de cette démarche est
I'obtention de résultats en théorie de la complexité, via I'étude d’objets topologiques
caractérisant les différentes classes de complexité. La logique est ce qui est a l'interface
entre ces deux domaines en apparence tres éloignés, plus particulierement un sous-
domaine de la théorie des mode¢les finis : la logique sur les mots. Il est possible de
donner une description de certaines classes de complexité comme des familles de lan-
gages, potentiellement non réguliers, sur un alphabet fini. Cette introduction donne un
compte-rendu historique des travaux effectués dans ce domaine et présente les princi-
paux résultats qui ont été démontrés ayant un lien avec cette thése. Nous présentons
les problématiques qui seront traitées dans les chapitres suivants, et expliquons notre
contribution au domaine.

Théorie de la dualité et méthodes topologiques appliquées a la logique

Les dualités permettent d’exprimer des relations entre deux différents phénomeénes
mathématiques qui peuvent étre percgus, d'une certaine fagon, comme équivalents. Le
formalisme donné par la théorie des catégories nous donne la définition suivante : une
dualité est une équivalence contravariante entre deux catégories. Le simple fait d'étudier
une correspondance qui renverse le sens des fleches nous permet d’obtenir deux for-
mulations différentes, et pourtant équivalentes, du méme probléme. Ce phénoméne
est répandu en mathématiques, et parfois, la compréhension d'un probléme peut étre
grandement facilitée par I'étude de son analogue dual. On observe souvent des du-
alités entre les catégories de structures algébriques et les catégories de structures
topologiques. En 1936, M. H. Stone a initié I'étude de la théorie de la dualité dans le
cadre de la logique en présentant une dualité entre la catégorie des algebres de Boole
et la catégorie des espaces compacts Hausdorff possédant une base d’ouverts-fermés
: les fameux espaces Booléens [67]. Cette dualité porte le nom de dualité de Stone
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Booléenne. Celle-ci a d’abord été généralisée par Stone lui-méme aux catégories de
treillis distributifs bornés. Le pendant dual de cette catégorie est la catégorie dont les
objets sont les espaces spectraux — c’est-a-dire, les espaces topologiques sobres, quasi-
compacts, tels que l'intersection de deux ouverts quasi-compacts est quasi-compacte, et
la collection des ouverts quasi-compacts forment une base pour la topologie; et dont les
fleches sont les applications parfaites — c’est-a-dire, les applications continues telles que
I'inverse d'un ouvert quasi-compact est un ouvert quasi-compact [68]. Plusieurs exten-
sions de la dualité de Stone ont été étudiées depuis. Par exemple, Isbell et Papert [37]
donnent une adjonction entre la catégorie dont les objets sont les espaces topologiques
et dont les fleches sont les applications continues, et I'opposé de la catégorie dont les
objets sont les frames et dont les fleches sont les morphismes de frames. Cette adjonc-
tion peut étre restreinte afin d’'obtenir une dualité entre les espaces sobres et les frames
spatiales : voir [38] et [32] pour davantage de détails sur le contexte mathématique de la

dualité de Stone et ses généralisations.

Espaces Booléens

Treillis distributifs

Espaces spectraux

Frames spatiales Espaces sobres

Plusieurs dualités de type Stone

La dualité de Stone et ses variantes sont fondamentales afin de faire le lien entre
approche syntactique et I'approche sémantique de la logique. A l'origine, les algébres
de Boole ont été introduites comme un ensemble de regles formalisant le comporte-
ment de la logique classique. Cela a permis un traitement algébrique de cette derniére.
La théorie de la dualité a ensuite permis de reformuler et repenser les propriétés qui
apparaissent en logique en des termes purement topologiques. Ce genre de raison-
nement ne se borne pas au cadre de la logique classique : de nombreux autres types de
logiques admettent un traitement algébrique, ceci est au coeur de ce que l'on appelle la

logique algébrique abstraite [20].



Logic Algébre Espace topologique
Logique intuitioniste Algebre de Heyting Espace d’Esakia
Logique modale S4 Algébre intérieure | Espace Booléen partiellement ordonné
Logique classique Algebre de Boole Espace Booléen
Logique pertinente Algéebre pertinente Espace d'Urquhart
Logique de Lukasiewicz Algébre MV Espace de Tychonoff
p~calcul modal u-algébre modale p-frame modale
Logique de Markov Algébre d’Aumann Processus de Stone Markov

Figure 1: Différentes logiques et leurs équivalents algébriques et topologiques, voir [24],
[75], [46], [35] et [39]

Classes de complexité et probléme de séparation

La théorie de la complexité [49], [50], [2] s'attache a la classification des problemes de
calculs et s'intéresse aux liens existant entre les différentes classes ainsi obtenues. Cette
théorie formalise l'intuition que l'on peut avoir de “I'efficacité de calcul" en introduisant
des modéeles mathématiques de la notion de calcul, et de la mesure de la quantité de
ressources nécessaire a la résolution des problémes, par exemple le temps et I'espace
de stockage.

Un exemple d'un modele de calcul abstrait sont les circuits Booléens, un modele
simplifié des circuits digitaux utilisés dans les ordinateurs modernes [77]. Les classes
de complexité sont alors définies en considérant la taille de ces circuits, c’est-a-dire le
nombre de sommets présents dans ceux-ci. Un autre exemple de modéle de calcul sont
les machines de Turing, introduites en 1936 [74], qui sont des machines modélisant le
traitement de I'information de maniére tres générale. La théorie de la complexité tente
de déterminer les limites pratiques de ces différents modeles de calcul.

Le nom et la classe de complexité associée a chaque probleme de décision

ALL | tous les problemes de décision

NP décidable par une machine de Turing non déterministe en temps polynomial
NL décidable par une machine de Turing non déterministe en temps logarithmique
P décidable par une machine de Turing déterministe en temps polynomial

L décidable par une machine de Turing déterministe en temps logarithmique
ACCY | décidable par des circuit booléens de profondeur constante, de taille polynomiale

dont les portes sont ET, OU, NON, MODULAIRE, de degrés entrants non bornés

ACP

décidable par des circuit booléens de profondeur constante, de taille polynomiale,

dont les portes sont ET, OU, NON, de degrés entrants non bornés

Quelques classes de complexité, voir [49] ou [S50] pour d’autres exemples.

La théorie de la complexité ainsi définie est un sujet en apparence complétement
inscrit dans l'informatique théorique. Toutefois, une approche plus mathématique est
possible. La théorie de la complexité descriptive est une branche de la théorie de la
complexité et de la théorie des modeles finis [43] dont le but est d’exprimer les classes de



complexité en utilisant des formules décrivant une logique sur certaines structures finies
: la logique sur les mots. Nous présentons l'idée générale briévement, un traitement
plus détaillé sera apporté plus tard dans cette these. Pour tout alphabet fini A, nous

pouvons voir un mot comme une structure

({O) (X3} |w| - 1}7 < (a('))aeA)a

ou a(-) est interprété comme I'ensemble des entiers naturels i tels que la i-eme lettre du
mot w est un q, et < est I'ordre usuel sur les entiers. Par exemple, la proposition Jxa(z)
a pour interprétation “il existe une position x dans w telle que la lettre a la position =
est un a", ce qui correspond au langage A*aA*. Ce lien permet de traduire les résultats
de la théorie de la complexité en terme de résultats de logique sur ces structures finies.
Ceci permet de penser de nouvelles méthodes de preuves, et fournit un argument
supplémentaire en la faveur de la “naturalité” des classes de complexité, dans le sens ou
elles ne sont pas purement attachées aux modeéles de calculs utilisés pour les définir. En
1974, Fagin donne le premier résultat majeur en théorie de la complexité descriptive
en prouvant que la classe de complexité NP peut étre caractérisée comme la famille
de langages correspondant aux propositions de la logique existentielle du second ordre
[25]. Par la suite, Immerman prouve de nombreuses caractérisations de ce type pour

d’autres classes de complexité, [30].

Les classes de complexité vues comme des fragments de logique

NP Logique existentielle du second ordre

NL Logique du premier ordre avec un opérateur de cloture transitive

P Logique du premier ordre avec un opérateur de plus petit point fixe

L Logique du premier ordre avec un opérateur de cldture commutative et transitive
ACCY | Logique du premier ordre avec quantificateur modulaire

ACY | Logique du premier ordre

Fragments de logique associés a certaines classes de complexité, voir [36], [70].

Considérant deux classes de complexité C; et Co, le probléme de séparation consiste
a dire s'il existe un probléme appartenant a C; mais pas a C;. Le probléme de ce
genre le plus connu est P L NP. La question est de savoir si les machines de Turing
non déterministes polynomiales ont une puissance de calcul analogue aux machines de
Turing déterministes polynomiales. Comme nous l'avons vu, beaucoup d’autres classes
de complexité existent, et par conséquent, encore plus de problemes de séparation
existent encore. Toutefois, la plupart de ces questions restent sans réponse aujourd’hui
encore. Notons, par exemple, que la classe ACC? n’a été séparée d’aucune classe en
dessous de NP.

Cela montre combien il reste a découvrir dans ce domaine. Obtenir de nouveaux

résultats, méme pour des classes de complexité correspondant & des puissances de



calcul moindres, pourrait mener a des perspectives intéressantes. Le peu de résultats
de séparation qui ont été démontrés jusqu’'a présent reposent essentiellement sur des
méthodes purement combinatoires, algorithmiques et probabilistes, [80]. Lingrédient
que nous voulons ajouter provient d'un pan des mathématiques différent : il s'agit de la

topologie.

Reconnaissance de langages et équations topologiques

La théorie de la complexité descriptive nous permet de reformuler le probleme de sé-
paration de la maniére suivante : soient deux classes de logique sur les mots £ et Lo,
peut-on trouver une formule dans £; qui n'est pas dans £, ? Linterprétation d'une for-
mule dans une de ces classes de logique correspond a un langage défini sur un alphabet
fini A. Ainsi, la question devient la suivante : est-il possible de trouver un langage L
qui appartient a la famille de langages correspondant aux interprétations des formules
dans la classe £, mais qui n‘appartient pas a la famille de langages correspondant
aux interprétations des formules dans la classe £o ? Nous commengons par réduire
notre attention au cas ou tous les langages dans les familles que nous considérons sont
réguliers.

Dans ce cas, la théorie des automates finis [03] ainsi que la théorie des monoides finis
[51] nous fournissent des outils pour caractériser nos langages : il s'agit de la notion
de reconnaissance de langages. Un language L C A* est reconnu par un monoide
M si il existe P C M et un morphisme de monoide h : A* — M tel que h=!(P) = L.
Par extension, on dit aussi que M reconnait L. A tout langage L C A*, nous pouvons
associer un monoide fini M, que nous appelons le monoide syntactique de L. Ce
monoide est le plus petit monoide qui reconnait L : cela signifie que M reconnait L, et
que pour tout monoide M reconnaissant L, M, est un quotient d'un sous-monoide de M.
Nerode a prouvé qu'un langage est régulier si, et seulement si, son monoide syntactique
est fini [48]. Cela fait du monoide syntactique un outil important pour la reconnaissance
de langages, dans la mesure ou il nous permet de remplacer un langage par un objet
appartenant a la théorie, bien ancrée, des monoides finis. En 1965, Schiitzenberger
prouve qu'un langage régulier est sans-étoile si, et seulement si, son monoide syntactique
est apériodique, c’est-a-dire, si chaque élément x dans son monoide syntactique est tel
qu’il existe n > 0 tel que 2" = 2" *! [64]. Ce résultat nous indique quelque chose de trés
important : il devrait y avoir une correspondance, non pas entre chaque monoide fini
et chaque langage régulier, mais plutot entre certaines familles de monoides finis, et
certaines familles de langages réguliers. En 1974, le théoréme d’Eilenberg [23] donne
un cadre général permettant d’appliquer la stratégie du résultat de Schiitzenberger en
établissant une correspondance biunivoque entre les variétés de langages réguliers
et les variétés de monoides finis, c’est-a-dire, les classes de monoides finis closes par
sous-monoide, quotient de monoide et produit direct fini. Cette correspondance devient

vraiment puissante une fois combinée avec une autre correspondance, démontrée par



Reiterman [61] en 1982. Le théoréme de Reiterman est une variante du théoreme des
variétés de Birkhoff en algébre universelle. Celui-ci dit que toute variété de monoide
fini est caractérisée par un ensemble d’'identités profinies. Une identité profinie est une
identité entre deux mots profinis. La définition précise de mot profini sera donnée dans
le Chapitre[I] On peut voir ceux-ci comme des limites de suites de mots finis pour une
certaine métrique, la métrique profinie. Par exemple, on peut montrer que, pour tout
mot fini u, la suite (u™),cy converge pour la métrique profinie : nous notons u“ sa
limite.

Variétés de
monoides finis

Equations
profinies

Variétés de
langages

Correspondance d’Eilenberg-Reiterman dans le cas régulier

Les théorémes d’Eilenberg et Reiterman ont été généralisés dans plusieurs direc-
tions durant ces vingt derniéres années en assouplissant la notion de variété de langages,
cf [40], [55] et [67]. L'outil permettant de généraliser ces résultats a n‘importe quel al-
gebre de Boole de langages, réguliers ou non, est la dualité topologique. Celle-ci nous
permet d’obtenir une correspondance biunivoque entre les familles de langages et leurs
équations.

Ce lien avec la dualité est déja présent dans le cadre régulier. Pippenger [58] est
le premier a caractériser 'ensemble des mots profinis du point de vue de la dualité
de Stone. Il a démontré que le dual de la sous-algebre de Boole de P(A*) de tous les

langages réguliers est I'espace des mots profinis, équipé avec la métrique profinie. Dans



[27], il a ét¢ démontré que la combinaison des correspondances Eilenberg-Reiterman
est en fait un cas particulier de la correspondance plus générale donnée par la dualité de
Stone entre sous-algébre de Boole et espaces quotients. En effet, 'idée de considérer
des équations dans le cadre régulier vient de ce que, si C est une sous-algébre de
Boole de l'algebre de Boole des langages réguliers sur un alphabet fini A, alors son
dual est un quotient de I'espace dual a l'algébre de Boole des langages réguliers, c’est-
a-dire, 'ensemble des mots profinis sur A. Puisqu’il s'agit d'un quotient, cet espace
est obtenu en égalisant des paires d’éléments de I'espace dual, autrement dit des mots
profinis. Plus généralement, si B est un algébre de Boole de langages, réguliers ou
non, il s'agit toujours d'une sous-algébre de Boole de P(A*). Le dual de cette derniere
est la compactification de Cech-Stone de l'espace discret A*, c’est-a-dire, I'ensemble
des ultrafiltres de P(A*), que nous notons 3(A*). B peut ainsi étre caractérisée comme
un ensemble de paires de points de l'espace dual S(B). Ces paires de points du dual
sont les équations que l'on pourrait obtenir via la théorie de Eilenberg-Reiterman. Plus
précisément, pour toute paire d'ultrafiltres 1,72 € 5(A*) une équation v, > v est
satisfaite pour un langage L C A* si, et seulement si,

Le~y <= L €.

Nous parlons alors d’équations ultrafiltres.

Theorem ([65]). Toute algebre de Boole de langages peut étre définie par un ensemble
d’équations ultrafiltres de la forme ~; > 72, olt 71,72 € B(A*).

Toutefois, la méthode permettant de spécifier de telles équations n’est pas claire,
étant donné qu’il n'existe pas de preuve constructive de I'existence des ultrafiltres libres.
Il n’existe pas de procédure qui permettrait de construire un ensemble d’équations “pra-
tiques” directement a partir d'une algébre de Boole de langages donnée : le probleme
d’appartenance n’est parfois pas décidable. Si I'algebre de Boole que nous considérons
est close par quotients, alors 'ensemble des équations qu’elle satisfait est un genre de
congruence. Pour tout ultrafiltre sur les mots v € 3(A*) et pour tout mot w € A*, nous
notons

wy = {w .L: L€y} etyw:={Lw ' Lecn}.

Etant donnés v1,72 € [(A*), nous disons quun langage satisfait 'équation ultrafiltre
v1 = 7o ¢'il satisfait toutes les équations ultrafiltres w.y; <> w.y et v1.w < ~2.w, pour
tout mot w € A*. Dans le cas particulier des algebres de Booles de langages réguliers,
un résultat encore plus fort existe.

Theorem ([29], Proposition 1.3). Soit B une algébre de Booles de langages réguliers
sur A* close par quotients, et soit wq,wy € A*. Si B satisfait I'équation profinie wy <> wo,
alors elle satisfait également les équations w.w; <> uw.wy et wi.u <> wy.u, pour tout mot
profini u € A*.



Etant donné deux mots profinis wy, ws € A*, on dit qu’'un langage régulier L satisfait
I'équation profinie w; = wq s'il satisfait les équations profinies u.wi +> u.w9 et wi.u +
we.u, pour tout mot profini u € A*. Lintérét majeur de ces notations est de réduire le
nombre d’équations nécessaires a la description d'une algebre de Boole de langages qui

est close par quotients.

Fragment existentiel de la logique du premier ordre

Comme nous I'avons mentionné précédemment, la classe de circuits Booléens AC? cor-
respond au fragment de logique sur les mots correspondant aux formules du premier
ordre écrites en utilisant des prédicats numériques arbitraires. L'ensemble des langages
réguliers appartenant AC? a été caractérisé par Barrington, Straubing et Therien [4]:
ce sont exactement les langages satisfaisant les équations profinies

(uw—lv)w+1 — (uw—lv)w’

pour tout u,v € A*. Ce résultat repose sur un autre résultat prouvé en 1984 par Furst
[44], et qui n"admet actuellement aucune preuve purement algébrique. Plus générale-
ment, aucune caractérisation topologique de l'algébre de Boole de langages correspon-
dant & AC? n’est connue. Létude de la dualité pour ce fragment est une tache trop
complexe pour étre traitée dans son entieéreté dans notre étude.

Dans cette thése, nous nous concentrons sur un fragment significativement plus
petit des formules du premier ordre : le fragment BX;[N], la cloture Booléenne de
I'ensemble des propositions écrites en utilisant des prédicats numériques arbitraires,
et sans alternance de quantificateurs. Aucune caractérisation de son espace dual n’est
actuellement connue, et en particulier aucune caractérisation équationnelle n’est disponible.
Certains résultats ont toutefois été établis pour des sous-fragments de B3;, nous en
donnons quelques-uns dans les lignes suivantes. Le cadre régulier a ét¢ abondamment
étudié, et plusieurs fragments intéressants de B>; ont été caractérisés par des équa-
tions profinies. Simon [66] a démontré que BX;[<], l'algebre de Boole des langages
réguliers correspondant aux combinaisons Booléennes de propositions écrites en util-
isant le prédicat binaire < et les prédicats sur les lettres est décrit par les équations
profinies

(uv)* = (vu)® and u* = vt

ou u,v € A*. Cela correspond a la variété des monoides J-trivaux, que nous notons
J. Un autre exemple est BX;[N] N Reg, 'algébre de Boole des langages réguliers cor-
respondant aux combinaisons Booléennes de propositions écrites en utilisant les prédi-
cats numériques arbitraires et les prédicats sur les lettres, qui correspond a la variété
de monoides finis que nous notons J x LI * MOD, voir [19] et [45] pour davantage de
détails.

Dans le cadre non régulier, des résultats sont encore disponibles a condition de re-



streindre notre attention aux formules construites en utilisant uniquement des prédicats
numériques uniformes d’arité un. Dans [30], Gehrke, Petrisan et Reggio étudient les
conséquences, du coté topologique, de la quantification existentielle sur une variable
libre pour une formule donnée. Ils prouvent que, pour toute formule ¢(z) avec une
variable libre z, si 'on veut obtenir un reconnaisseur topologique de l'algebre de Boole
de langages modélisant la formule Jp(z), il est suffisant de considérer I'espace V(X) x X,
ou X est un reconnaisseur topologique de l'algebre de Boole de langages modélisant
la formule p(z) et V est la construction d'un hyperespace de Vietoris. Toutefois, le
reconnaisseur ainsi obtenu n’est, a priori, pas minimal : le reconnaisseur topologique
syntactique, qui correspond a l'espace dual de l'algéebre de Boole en question, est un
sous-espace de V(X) x X. Cette remarque motive le chapitre 2| Enfin, une contribu-
tion majeure de Gehrke, Grigorieff et Pin [29], motivant le chapitre [3] est la construc-
tion d'une famille d’équations ultrafiltres pour B%; [Ny, N{'], le fragment existentiel pour
lequel nous restreignons notre attention aux prédicats numériques uniformes unaires
et aux prédicats nullaires. Bien que ce soit encore trés loin de prendre en compte
tous les prédicats numériques, il s'agit du premier exemple d'une famille “concrete”
d’équations ultrafiltres pour un fragment de logique défini par une famille de langages
non réguliers. Notons qu'ils ont également réussi, en utilisant ce résultat, a retrouver
les équations profinies, déja connues, obtenues en intersectant cette algébre de Boole

de langages avec l'algebre de Boole des langages réguliers.

Apercu de la these

Fixons un entier naturel & > 1, et considérons l'algeébre de Boole BX;[N}!]. Celle-
ci correspond au fragment de logique du premier ordre sur les mots constitués des
combinaisons Booléennes de propositions définies en utilisant un bloc d’au plus &£ quan-
tificateurs existentiels, les prédicats sur les lettres et les prédicats numériques uniformes
darité [ € {1, ..., k}. Dans cette thése, notre contribution est une étude de cette algebre
de Boole du point de vue de la dualité topologique. Nous résumons les principaux
résultats contenus dans ce manuscrit.

Le chapitre |1 est une introduction auto-contenue du matériel nécessaire a I'¢tude
ultérieure de cette algebre de Boole. Nous donnons une présentation de la théorie de
la dualité topologique pour les algebres de Boole, et nous détaillons le cas particulier
de la dualité entre algebre modale et hyperespace de Vietoris. Nous donnons ensuite
une introduction a la reconnaissance des langages formels, que nous étendons au cadre
topologique, puis nous donnons une introduction a la logique sur les mots. Finalement,
nous terminons le chapitre en introduisant la notion d’équation ultrafiltre mentionnée
dans cette introduction.

Le chapitre [2] s'intéresse a I'algebre de Boole BX;[N}!] et son espace dual, que nous
notons X;. Notre contribution est une étude complete de cet espace dual, car il faut
souligner qu'aucune caractérisation de celui-ci n’était connue en dehors du cas ot k = 1.
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Nous donnons plusieurs caractérisations de X;. La premiére s'obtient en exploitant la
dualité entre algebres modales et hyperespaces de Vietoris, nous permettant d'identifier
X}, comme un certain sous-espace de I'hyperespace de Vietoris sur 5(N¥) & la puissance
AF. La seconde s'obtient via une approche consistant a considérer les éléments de X,
comme des “mots généralisés’. Nous fixons un coloriage fini de N*, et nous expliquons
comment il est parfois possible de définir un véritable mot fini correspondant a un
élément de V(3 (Nk))Ak, du point de vue de ce coloriage. Nous prouvons alors que X,
consiste exactement en 'ensemble des points de V(3(N¥))4" qui vérifient cette propriété
pour chaque coloriage fini de N*.

Le chapitre [3 traite la question des équations ultrafiltres pour BX; [N{]. Une famille
d’équations ultrafiltres pour BX;[Ny, N, le fragment obtenu a partir de BX;[N{'] en
ajoutant les prédicats numériques nullaires, a déja été introduite dans [29]. Notre pre-
miére contribution & ce sujet est une présentation plus topologique de ces équations
ultrafiltres. Notre approche est fondée sur l'idée quil est possible de reformuler les
équations en question via une condition sur les coloriages finis de N. De cette maniére,
nous arrivons a grandement réduire la quantité de raisonnement combinatoires requis
dans [29] pour prouver la correction et la complétude de ces équations. Notre deuxieme
contribution est l'utilisation de cette approche pour trouver une base d’équations ultrafil-
tres pour BX [N}, et la vérification de leur correction et complétude. Nous concluons
la thése par quelques pistes permettant de poursuivre I'étude pour k > 1.



General introduction

This thesis fits in the area of research that investigates the application of topologi-
cal duality methods to problems that appear in theoretical computer science. More
specifically, our eventual goal is to derive results in computational complexity theory
by studying appropriate topological objects which characterise them. The link which
relates these two seemingly separated fields is logic, more precisely a subdomain of
finite model theory known as logic on words. It allows for a description of complexity
classes as certain families of languages, possibly non-regular, on a finite alphabet.

This introduction gives an historical account on the problem, and explains the
progress that have been made prior to this thesis. It introduces the problematic that
will be treated in the next chapters, and explains our contribution to the domain.

Duality theory and topological methods in logic

Dualities are a way to express the relationship between two different mathematical
phenomenon which can be seen as equivalent, in a certain sense. Through the for-
malism of category theory, a straight-forward definition is the following: a duality is
a contravariant equivalence between two categories. The simple fact of looking at a
correspondence which reverses arrows is the perspective that allows us to obtain two
different, yet equivalent, formulations of the same problem. Dualities are widespread in
mathematics, and depending on the problem, one might benefit from an easier under-
standing by looking at things on the dual side. Often, a duality is between a category
of algebraic structures and a category of topological structures. In 1936, M. H. Stone
initiated duality theory in logic by presenting a duality between the category of Boolean
algebras and the category of compact Hausdorff spaces having a basis of clopen sets,
so-called Boolean spaces [67]. This is referred to as Boolean Stone duality. A first
generalization has been done by Stone himself, extending his duality to the category of
bounded distributive lattices and lattice homomorphisms. The dual counterpart is the
category whose objects are spectral spaces, that is topological spaces that are sober,

11
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quasi-compact, such that the intersection of two quasi-compact opens is quasi-compact,
and the collection of quasi-compact opens forms a basis for the topology, and whose
arrows are perfect maps, that is continuous maps such that the inverse image of a quasi-
compact open is quasi-compact [68]. Many other extensions of Stone duality have been
studied since then. For instance, Isbell and Papert [37] give an adjunction between the
category of topological spaces with continuous functions and the opposite category of
frames with frame homomorphisms. This restricts to a duality between sober spaces
and spatial frames: see [38] and [32] for more details on the mathematical context of

Stone duality and its generalizations.

Boolean spaces

T
duality

\

Distributive lattices Spectral spaces

Spatial frames Sober spaces

Figure 2: Some Stone type dualities

Stone’s duality and its variants are central in making the link between syntactical and
semantic approaches to logic. Originally, Boolean algebras were introduced as a set of
rules which formalized the behaviour of classical logic. This allowed for an algebraic
treatment of classical logic. Duality theory then enabled the rephrasing of properties
that appear in logic in order to think about them in purely topological terms. This kind
of reasoning does not only apply to classical logic: many other logics admit an algebraic
treatment, this is the heart of abstract algebraic logic [26].
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Logic

Algebra

Topological space

Intuitionistic logic

Heyting algebra

Esakia space

S4 modal logic

Interior algebra

Partially ordered Boolean space

Classical logic

Boolean algebra

Boolean space

Relevant logic

Relevant algebra

Urquhart space

Lukasiewicz logic

MV algebra

Tychonoff space

Modal p-calculus

Modal p-algebra

Modal p-frame

Markovan logic Aumann algebra Stone Markov process

Figure 3: Different logics and their algebraic and topological counterparts, see [24], [75],
[46], [35] and [39]

Complexity classes and separation problem

Computational complexity theory [49], [B0], [2] focuses on putting computational prob-
lems in different classes and relating these classes to each other. The theory formalizes
the intuition we have on “computation efficiency" by introducing mathematical models
of computation and measuring the amount of resources they require to solve problems,
for instance time and storage. An example of such models are Boolean circuits, a sim-
plified model of the digital circuits used in modern computers [77]. Circuit complexity
classes are defined in terms of circuit size, that is the number of vertices in the circuit.
Another example are Turing machines, introduced in 1936 [74], which are machines
modelling information processing in a very general fashion. Computational complexity

theory attempts to determine the practical limits of these computational models.

The name and the corresponding class of decision problems
ALL | all decision problems

NP solvable by a non-deterministic Turing machine in polynomial time
NL solvable by a non-deterministic Turing machine in logarithmic time
P solvable by a deterministic Turing machine in polynomial time

L solvable by a deterministic Turing machine in logarithmic time
ACCY | solvable by a family of constant depth unlimited-fanin

AND, OR, NOT, MODULAR gates, polynomial-size circuits
ACY solvable by a family of constant depth unlimited-fanin
AND, OR, NOT gates, polynomial-size circuits

Figure 4: A few computational complexity classes, for more see [49] or [50].
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Complexity theory defined as such is a topic that seems to purely belong to theo-
retical computer science. However, there exists a way to think about it in more mathe-
matical terms. Descriptive complexity is a branch of computational complexity theory
and of finite model theory [43] whose purpose is to express complexity classes in terms
of formulas for a logic on a finite structure: logic on words. We briefly expose it here,
but explain it more in detail in the thesis. For any finite alphabet A, we view a word as

a structure
({07 sty |w| - 1}7 < (a(')>a€A)a

where a(-) is interpreted as the set of integers i such that the i-th letter of w is an a,
and < is the usual order on integers. For instance, the sentence Jza(x) is interpreted as
“there is a position x in w such that the letter in position x is ", which corresponds to the
language A*aA*. This connection enables to translate results of complexity theory into
results on the logic of finite structures, facilitating new proof methods and providing
additional evidence that the main complexity classes are somehow “natural” and not
tied to the specific abstract machines used to define them. In 1974, Fagin provided
the first major result in descriptive complexity theory by proving that the complexity
class NP is characterised as the family of languages corresponding to sentences of
existential second-order logic [25]. Following this result, Immerman proved numerous
characterisations of this kind for other complexity classes [36].

Complexity classes as logic fragments

NP Existential second-order logic

NL First-order logic with a transitive closure operator

P First-order logic with a least fixed point operator

L First-order logic with a commutative, transitive closure operator
ACC" | First-order logic with modular quantifier

AC? | First-order logic

Figure 5: Logic fragments associated to some computational complexity classes, see
136], [70]

Considering two complexity classes C; and Cs, the separation problem in complexity
theory consists in telling whether there exists a problem that belong to C; and not to C,.
The most well-known problem of this kind is known as P ~ NP. 1t asks whether the
non-deterministic polynomial time Turing machines have more computational power
than deterministic polynomial time Turing machines. There are plenty of other com-
plexity classes, and the question of separation for most of them remains unanswered.
Note, for instance, that the class ACC® has not been separated from anything all the

way up to NP.
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This shows how much there is to discover in this field, and enforces the fact that
obtaining results even for classes with a weaker computational power such as Boolean
circuits would potentially lead to interesting perspectives. The few separation results
that have been proved rely on using combinatorial and probabilistic, as well as algorith-
mic methods [80]. The ingredient we want to develop comes from a different area of
mathematics: topology.

Language recognition and topological equations

Descriptive complexity theory allows to rephrase the separation problem as asking, for
two fixed classes of logic on words £; and £,, whether it is possible to find a formula
in £; which does not belong to £5. The interpretation of a formula in a logic class
corresponds to a language defined on a finite alphabet A. Therefore, the question now
becomes whether it is possible to find a language L which belongs to the family of
languages corresponding to the interpretations of the formulas in the class £, but not
to the family of languages corresponding to the interpretations of the formulas in the
class £,. Let us start by restricting our attention to the case where the families of
languages we consider only involve regular languages.

In that situation, we find tools to characterise our languages in finite automata theory
[63] and finite monoid theory [61]: this is the notion of language recognition. A language
L C A* is recognized by a monoid M if there exists P C M and a monoid morphism
h : A* — M such that h~1(P) = L. By extension, we also say that M recognizes
L. To every language L. C A*, we can associate a monoid M;, that we refer to as
the syntactic monoid of L. This monoid it is the smallest monoid that recognizes L:
that is, M, recognizes L, and for every monoid M that recognizes L, My, is a quotient
of a submonoid of M. Nerode proved that a language is regular if, and only if, its
syntactic monoid is finite [48]. This makes the syntactic monoid an important tool in
studying recognisable languages, since it allows us to replace the language by an object
of the well-rooted theory of finite monoids. In 1965, Schiitzenberger proves that a
regular language is star-free if, and only if, its syntactic monoid is aperiodic, that is,
if every element z in the syntactic monoid is such that there exists n > 0 such that
x™ = z"t1! [64]. This results point us toward something important: there should be
a correspondence, not between individual finite monoids and individual recognisable
languages, but between families of finite monoids and families of regular languages.
In 1974, Eilenberg’s theorem [23] supplied a general framework in which to apply the
strategy of Schiitzenberger’s result by stating that varieties of regular languages are
in one-to-one correspondence with varieties of finite monoids, that is, classes of finite
monoids closed under taking submonoids, quotient monoids and finite direct products.
This correspondence becomes very powerful once it has been combined with another
correspondence proved by Reiterman [61] in 1982. Reiterman’s theorem is a variant
of Birkhoff’s variety theorem from universal algebra. It states that any variety of finite



16

monoids can be characterized by a set of profinite identities. A profinite identity is an
identity between two profinite words. The precise definition of profinite words will be
given in Chapter [I] They can be viewed as limits of sequences of finite words for a
certain metric, the profinite metric. For instance, one can show that, for every finite
word u, the sequence (u™),en converges for the profinite metric: we denote by u* its

limit.

Varieties of
finite monoids

Profinite
equations

Varieties of
languages

Figure 6: Eilenberg-Reiterman correspondence in the regular case

Eilenberg’s and Reiterman’s theorems have been extended several times over the
last twenty years by relaxing the definition of a variety of languages, cf [40], [55] and
[57]. The tool that allows for a generalization of this result to any Boolean algebra of
languages, regular or not, is duality theory. It allows for a one-to-one correspondence
between families of languages and their equations. This link with duality is already
present in the regular setting. Pippenger [538] was the first to characterize the set of
profinite words under the light of Stone duality. He proved that the dual of the sub-
boolean algebra of P(A*) consisting in all regular languages is the space of all profinite
words, equipped with the profinite metric. In [27], it was shown that the Eilenberg-
Reiterman combination is in fact a special instance of the Stone duality between sub-
Boolean algebras and quotient spaces. Indeed, the general mechanism of equations in
the theory of regular languages arises from the fact that, if C is a sub-Boolean algebra
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of the Boolean algebra of regular languages on a given alphabet A, then its dual space
is a quotient of the dual of the Boolean algebra of regular languages, that is, the set
of all profinite words on A. As a quotient, it is given by equating elements in this dual
space, which are profinite words. Now, more generally, if B is a Boolean algebra of
not necessarily regular languages, it is also a subalgebra of P(A*). The dual of the
latter is the Cech-Stone compactification of the discrete space A*, that is, the set of all
ultrafilters of P(A*), which we denote by 5(A*). It follows that 5 may be characterised
by a set of pairs of points of the dual space S(B). These pairs of points of the dual
space are the equations of Eilenberg-Reiterman theory. More precisely, for any two
ultrafilters ~1,v2 € B(A*) an equation 7; <> 72 holds of a language L C A* if, and only if,

Levy < Lenm.
We refer to these as ultrafilter equations.

Theorem ([65]). Any Boolean algebra of languages can be defined by a set of ultrafilter
equations of the form ~; <> 2, where 71,7, € B(A¥).

However, it is not clear how to specify such equations since there is no constructive
proof of the existence of free ultrafilters. There exists no procedure that would allow
for a way to build practical equational basis out of a given Boolean algebra of languages:
membership is sometimes not decidable. If the Boolean algebra we consider is closed
under quotients, then the set of all equations satisfied by it is a kind of congruence. For
any ultrafilter on words v € §(A*) and any word w € A*, set

woy = {w .L: L€~} and yw:= {Lw™': Len}

Given 71,72 € B(A*), we say that a language satisfies the ultrafilter equation ~; = 9 if it
satisfies all the ultrafilter equations w.vy; <+ w.y2 and ~v;.w < ¥.w, for each word w € A*.
In the particular case of Boolean algebra of regular languages, an even stronger result
is available.

Theorem ([29], Proposition 1.3). Let B be a Boolean algebra of regular languages of A*
closed under quotients and let wq, w9 € A*. If B satisfies the profinite equation w; <> wo,
then it satisfies the profinite equations u.w; <> v.wy and u.w; > wq.u, for each profinite

word u € A*,

Given wi,wy € A*, we say that a regular language satisfies the profinite equation
wy = we if it satisfies the profinite equations u.w; < w.wy and w.wy <> wy.u, for each
profinite word u € A*. The main interest of these notations is to allow one to produce
smaller sets of defining equations for Boolean algebra of languages which are closed

under quotients.



18

Existential fragment of first-order logic

As we mentioned previously, the class of Boolean circuits AC? corresponds to the frag-
ment of logic on words corresponding to first-order formulas, with arbitrary numerical
predicates. The set of regular languages which belong to AC? has been characterised
by Barrington, Straubing and Therien [4]: they are exactly the languages satisfying the
profinite equations

(uw—lv)w+1 — (uw—lv)w’

for any u,v € A*. This result relies on another result proved in 1984 by Furst [44], for
which no purely algebraic proof is known. More generally, no topological characterisa-
tion of the Boolean algebra of languages corresponding to ACY is known, and providing
a duality theoretic treatment for this whole fragment is a task that is too complex to be
conducted in our study.

In this thesis, we focus on a significantly smaller fragment of first-order formulas:
the fragment 5Y; which is the Boolean closure of the set of sentences written with arbi-
trary numerical predicates and without any quantifier alternation. No characterisation
of its dual space is currently known, not even mentioning an equational characteri-
sation. Some results have however been established for some smaller fragments of
BX;[N] that we summarize now. The regular setting has been abundantly studied, and
several interesting fragments of BY; have been given a characterisation in terms of
profinite equations. It has been proven by Simon [66] that B3;[<], the Boolean alge-
bra of regular languages corresponding to Boolean combinations of sentences written
by using the binary numerical predicate < and letter predicates is described by the
profinite equations

(uv)* = (vu)® and u* = vt

where u,v € A*. This corresponds to the variety of J-trivial monoids, denoted by J. An-
other example is BX1[N]N Reg, the Boolean algebra of regular languages corresponding
to Boolean combinations of sentences written by using any numerical predicate and let-
ter predicates, which has been proven to correspond to the variety of finite monoids
denoted by J « LI + MOD, see [15] and [45] for more details.

In the non-regular setting, some results are also available, as long as we restrict our
attention to formulas built by using only uniform numerical predicates of arity one. In
[30], Gehrke, Petrisan and Reggio study the topological construction corresponding to
adding a layer of existential quantification over one free variable in a formula. They
prove that, for any formula ¢(z) with a free variable z, in order to obtain a topological
recognizer for the Boolean algebra of languages which models the formula Jp(z), it
is enough to consider the space V(X) x X, where X is a topological recognizer of
the Boolean algebra of languages which models the formula ¢(x) and V is the Vietoris
hyperspace construction. However, this recognizer is a priori not minimal: the syntactic
recognizer, which corresponds to the dual space, is a subspace of V(X )x X. This remark
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is what motivates Chapter[2] Finally, a major contribution of Gehrke, Grigorieff and Pin
[29], which motivates Chapter (3 is the construction of a family of ultrafilter equations
for B[Ny, NV, the existential fragment where we restrict our attention to only nullary
numerical predicates and unary uniform numerical predicates. Even though this is still
far from taking into account every numerical predicate, this is the first example of a
“concrete” family of ultrafilter equations for a fragment defined by using non-regular
languages. Note that they were also able to retrieve the profinite equations that had
already been established for the restriction of this fragment to regular languages.

Overview of the thesis

Fixing an integer £ > 1, we consider the Boolean algebra BX;[N}]. It corresponds
to the fragment of first-order logic on words consisting in Boolean combinations of
sentences defined by using a block of at most k existential quantifiers, letter predicates
and uniform numerical predicates of arity | € {1,...,k}. Our contribution in this thesis
is a duality-theoretic study of this Boolean algebra. We summarize the main results
presented in this manuscript.

Chapter [I]is a self-contained introduction to all of the material required in order to
conduct this study. We give a presentation of duality theory for Boolean algebras, and
we detail the particular case of the relationships between modal algebras and Vietoris
hyperspaces. We then present the notion of formal language recognition, that we
extend to the topological setting, and we give an introduction to logic on words. We
conclude the chapter by giving more details on the notion of ultrafilter equations that
we mentioned in this introduction. Chapter [2] is concerned with the Boolean algebra
BY1 [N, k“] and its dual space, that we denote by X;. Our contribution is a complete study
of this dual space, as it should be noted that a characterisation of X; was only known
in the case k = 1. We provide several characterisations of Xj. First, by exploiting the
duality between modal algebras and Vietoris hyperspaces, we identify X, as a certain
subspace of the Vietoris hyperspaces on 3(N¥) to the power A*. Second, we follow an
approach that, broadly speaking, relies on us viewing the elements of X}, as “generalized
words". Fixing a finite colouring of N¥, we explain how it is sometimes possible to define
an actual finite word which corresponds to an element in V(3(NF))4", with respect to this
finite colouring. We prove that X; consists exactly in the elements of V(5 (Nk))Ak that
verify this property for every single finite colouring of N*. Chapter treats the question
of ultrafilter equations for B3 [N7]. A family of ultrafilter equations for BX; [Ny, N}*], the
fragment obtained from BX;[A{] by adding nullary numerical predicates, has already
been introduced in [29]. Our first contribution is a more topological presentation of
these ultrafilter equations. Our approach is based on the idea that it is possible to
reformulate the ultrafilter equations in question in terms of a certain condition over
finite colourings of N. By doing so, we greatly reduce the amount of combinatorics
required in [29] to prove the soundness and completeness of these equation. Our second
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contribution is to use this approach to find a basis of ultrafilter equations for B3 [N},
and check their soundness and completeness. We conclude the thesis with some hints

in order to pursue the study for k > 1.



CHAPTER 1

Duality and formal language theory

This chapter consists in an introduction to the notions of duality theory and formal
language theory necessary in order to understand the upcoming chapters. While the
following sections are not written as a thorough introduction to the domains they treat,
the notions are presented in a way that is coherent with our goals, and makes this
document self-contained. In particular, most of the proofs are sketched, and we provide
references whenever necessary.

Outline of the chapter: In Section[I.1} we recall definitions for lattice-like structures
and we introduce Stone duality for Boolean algebras, which is the main tool we use all
along the thesis. In Section [I.2) we detail the particular case of the duality between
modal algebras and Vietoris hyperspaces, extensively used in Chapter [2} and provide
a few instances of the correspondence between closed subsets of the dual space of a
given Boolean algebra, and the space of filters of this Boolean algebra. In Section [1.3]
we recall the basics on language theory, and introduce language recognition by finite
monoids, which we generalize to the topological setting. In Section [I.4 we present the
link that has been made between language theory and logic by giving an overview of
logic on words. Finally, in Section [I.5] we introduce ultrafilter equations of a Boolean
algebra. For any finite alphabet A, these allow in particular for a description of Boolean
subalgebras of P(A*) in terms of a family of pairs of points in 3(A*), and thus can be
used in order to prove separation results for some fragment of logic on words.

1.1 Boolean algebras and Stone duality

In this section, we detail the contravariant category equivalence which exists between
the category of Boolean algebras, with Boolean algebra homomorphisms, and a sub-

21
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category of the category of topological spaces, which we refer to as the category of
Boolean spaces. We start by explaining how this correspondence works in the case
where the Boolean algebra we consider is finite. We then generalize it to arbitrary
Boolean algebras, and provide a few examples of this correspondence which will be
useful in the next chapters. The readers interested in a deeper treatment of lattice-like
structures can refer to [20] and [13]. For duality theory, they can refer to [67] and [3§].

1.1.1 General duality theory

The theory of lattices lies at the intersection of order theory and universal algebra.
From the point of view of order theory, a lattice is a partially ordered set (L, <) such
that, for any b, 0’ € L, the supremum, which we denote by bV’ and the infimum, which
we denote by b AV, exist. An example of lattice is given by the set of natural numbers,
partially ordered by divisibility, for which the supremum is the least common multiple,
and the infimum is the greatest common divisor.

A lattice (L, <) is said to be distributive if v distributes over A and vice versa. It is
said to be bounded if it contains a top element 1 and a bottom element 0. In particular,
two elements in a bounded lattice such that their infimum is 0 are said to be disjoint.
Finally, for any b € L, a complement of b is an element ¢ of L such that

bAc =0 and bve = 1.

In the particular case of distributive lattices, a complement of an element, if it exists, is

then unique. We denote it by —b.

Definition 1.1. [Boolean algebras] A Boolean algebra is a bounded distributive lattice
such that every element admits a complement. For any Boolean algebras By, Bs, a
Boolean algebra homomorphism is a map f : By — By such that, for any b, b’ € By,
fONg V)= f(b) A, f(V), f(bVp, V)= f(b) Vg, f(b') and f(=b1) = =f(b1). In particular,
we have that f(0g,) = 03, and f(15,) = 13,.

We denote by Bool the category for which the objects are Boolean algebras and mor-

phisms are Boolean algebra homomorphisms.

The main example of a Boolean algebra is the powerset algebra of a set S, P(S),
considered with set-theoretic union, intersection, and complement. An important obser-
vation is the following: in order to reconstruct the Boolean algebra P(S), the data of the
singletons {s}, for every s € S, is actually sufficient. In terms of the order, singletons
can be characterized as atoms.

Definition 1.2. An afom of a Boolean algebra B is an element which is minimal among

non-bottom elements of B.

In particular, any two atoms are disjoint. Every finite Boolean algebra B possesses
atoms. In the particular case of the powerset algebra P(S) of a finite set S, the atoms
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are indeed the singletons {s}, for every s € S, and they allow us to recover the full
Boolean algebra.

TVyVz {z,y, 2}
AN AR
tVy azVz yVz {z,y} {z,2} {y, 2}
XX XX
x y z {=}  A{y} {2}
N N

TAYNz 0

Figure 7: The powerset algebra on {z,y,z}, where z,y and z are pairwise disjoint
elements.

This situation remains similar in the context of any finite Boolean algebra.

Proposition 1.3. Any finite Boolean algebra is isomorphic to the powerset algebra
on the set of its atoms.

Proof. This result is folklore. For a proof, see, e.g, [20], Theorem 5.5. O

This reasoning still holds for certain infinite Boolean algebras such as powerset
algebras on an infinite set S. However, it does not hold for an arbitrary Boolean
algebra. Anticipating on Section [I.3} let us provide a simple example of an infinite
Boolean algebra that is not of the form P(S), for any set S, stemming from language
theory. If A is a finite alphabet, and Reg(A*) is the Boolean algebra of all regular
languages on A*, then the atoms of this Boolean algebra are the singletons {w}, for any
w € A*. The powerset of the set of atoms of Reg(A*) is P(A*), and these two Boolean
algebras are not isomorphic, as there are countably many regular languages (every
regular language corresponds to a finite automaton), but uncountably many languages.
Even worse, one can construct infinite Boolean algebras which have no atom at all (cf
[33], Chapter 16), such as for example the Boolean algebra of clopen sets of the Cantor
space. The major insight of Stone was that, despite all of these facts, it is possible to
generalize the duality introduced in the finitary case to arbitrary Boolean algebras. In
order to do so, we have to take into account “generalized elements" which are incarnated
by filters. This leads us to introducing a notion which generalizes the one of atom to
the infinite case: the so-called ultrafilters.

Definition 1.4. Fix B a Boolean algebra. A filter F of B is a non-empty subset of B
satisfying the following properties.

e For every b in F, and every b’ in B such that b < ¥/, we have that V' is in F.

e Foreveryband V' in F, bA b isin F.
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If F is a filter that is not equal to B, we say that F is proper. A filter basis of a filter F
is a non-empty family B C F such that, for all ¥’ € F, there exists b € B such that b < V.

We denote by F'ilt(B) the set of filters of 5. For any set S, we use notation Filt(S) to
refer to the set of filters of the powerset algebra P(S), and we abusively refer to those

as the filters on S.

Example 1.5. We provide the two following examples of filters, which will be often
used throughout the thesis.

e For any Boolean algebra B, and for any element b € B, the set
th:={b eB:b<t}

is a filter in B that we refer to as the principal filter containing b.

e For any set S, the set of all cofinite subsets of S
Cof(S):={T C S: TC is finite}

is a filter that we refer to as the Fréchet filter.

The fundamental idea behind Stone’s construction is that, by equipping the set of
all ultrafilters of B with an appropriate topology, it is possible to recover the Boolean
algebra B.

Definition 1.6. An ulfrafilter ~ of B is a proper filter of B such that, for every b in B,
b or —b is in 7. We denote by S(B) the space of all ultrafilters of 55, endowed with the
topology generated by the sets of the form

b:={ye8(B):benl,

for every b in B. We refer to S(B) as the dual space of 5.

Remark 1.7. We defined filters and ultrafilters of Boolean algebras since they are our
main object of study in this thesis, however these notions still make sense in some sim-
ilar frameworks. The definition of filter we gave only requires a semi-lattice structure
in order to hold, and we can define ultrafilters of a lattice as filters that are maximal for
inclusion among proper filters. In the case where the lattice is a Boolean algebra, this
is equivalent to Definition In the Boolean case, it is also equivalent to saying that ~
is a prime filter: a proper filter v such that, for every b,/ € B with b vV ¥’ € ~, we have
beyord en.

Example 1.8. We review Example [I.5 under the light of ultrafilters.

e For any Boolean algebra B, and for any element b € 15, the principal filter 15 is an
ultrafilter if, and only if, b is an atom of 5. We refer to such ultrafilters as principal
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ultrafilters, and to all of the other ultrafilters as free ultrafilters. In particular, if
B is finite, then every ultrafilter is principal, and therefore we recover B entirely

with the data of its ultrafilters, without topology.

e Por any infinite set S, Cof(S) is not an ultrafilter: for any subset 7" of S such that
T and 7€ are infinite, then neither T nor T belong to Cof(S).

Remark 1.9. An important result, known as the ultrafilter lemma is that every proper
filter is contained in an ultrafilter. This result requires Zorn’s lemma in order to be

proved. In particular, for every filter 7 on a Boolean algebra 5,

F = ﬂ Q.

« is an ultrafilter
FCa

A filter basis B is a non-empty collection of elements of B which does not contain the
bottom element and such that, for every b1, by € B there exists b € B such that b < by Abs.
A common way to describe an ultrafilter is to define a filter basis, and then to use the
ultrafilter lemma in order to extend it into one of the (numerous) ultrafilters containing
it.

Definition 1.10 (Boolean spaces). A Boolean space is a topological space that is com-
pact, Hausdorff, and that possesses a basis of clopen subsets. We denote by Clop(X)
the Boolean algebra of clopen subsets of any Boolean space X, equipped with union,
intersection and complement of subsets. We denote by BStone the category for which
the objects are Boolean spaces and the arrows are continuous maps.

We are now ready to generalize Proposition to arbitrary Boolean algebras.

Theorem 1.11 (Stone duality for Boolean algebras, [67] Theorem 67). There is a con-
travariant equivalence of categories between the category of Boolean algebras and
the category of Boolean spaces.

Proof sketch. We describe the two contravariant functors involved in the duality, the
reader can check that they form a contravariant equivalence of categories. The con-
travariant functor S : Bool — BStone sends any Boolean algebra B to the Boolean
space S(B), and any Boolean algebra homomorphism h : B — B’ to the continuous map

S(h): S(B') — S(B),
which sends every ultrafilter v of B’ to
S(h)(y) :=h~(y) = {b € B: h(b) € 7}.

The contravariant functor Clop : BStone — Bool sends any Boolean space X to the
Boolean algebra Clop(X), and any continuous map f : X — Y to the continuous map
Clop(f) : Clop(Y) — Clop(X), which sends every clopen K of Y to f~!(K). O
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In particular, for any Boolean algebra 5, the map (%) : B — Clop(S(B)) which sends
any element b in B to the clopen subset b is a Boolean isomorphism.

Clop(_)
Bool ¥ BStone
] S() ] )
pro—completion
P()
Booly;, ¢ . Sety;,
At(L)

Figure 8: Boolean Stone duality

We summarize these duality-theoretic relationships in Figure [8| At the bottom, we
have the duality at the finite level, between finite Boolean algebras and finite sets. On
the left is the fact that the category of finite Boolean algebras is a subcategory of the
category of Boolean algebras. On the right, we use the fact that the category of Boolean
spaces is equivalent to the pro-completion of the category of finite sets (see [38] Theorem
VI, 2.3), and view the category of finite sets as a subcategory of the pro-completion of
the category of finite sets. Finally, at the top, we have the duality between Boolean
algebras and Boolean spaces.

Remark 1.12. In order to enforce this geometric perspective, we refer to the ultrafilters
in the dual space as the points of the dual space. This terminology can also be perceived
as analogous to the one used in linear algebra, where the points are linear maps. Denote
by 2 the two element Boolean algebra. For any Boolean algebra B, there is a bijective
correspondence between the set of Boolean algebra homomorphisms & : B — 2 and
the set of ultrafilters of 5. Indeed, on the one hand, consider the map which associates
to each homomorphism & : B — 2 the ultrafilter v, := h=({1}). On the other hand,
consider the inverse map, which associates to each ultrafilter v of 5 the homomorphism
hy : B — 2, sending b € B to 1 if, and only if, b € .

We end the subsection with the existence of coproduct for Boolean algebras and
how they reflect as products on the topological side. We require this result, as the main
Boolean space we are interested in in Chapter 2 corresponds to a subspace of the dual
of a coproduct of Boolean algebras, see Proposition [2.3] For a proof of this result and
more information on the categorical treatment of these structures, the reader can refer
to [38], more specifically 2.12.

Proposition 1.13. The category of Boolean algebras has coproducts. These are dual
to product of Boolean spaces, which are calculated as in the category of topological

spaces.



1.1. Boolean algebras and Stone duality 27

1.1.2 The dual space of the powerset algebra

We focus on the duality theory in the particular case where the Boolean algebra we
consider in Theorem [I.11] is the powerset algebra of a given set. Several additional
observations can be made which will be useful in the next chapters.

The inclusion of the category of compact Hausdorff spaces into the category of topo-
logical spaces has a left adjoint, that we denote by 5, which sends a general topological
space to a compact Hausdorff topological space called its Cech-Stone compactification.

The Cech-Stone compactification of a space S can be defined by the following uni-
versal property: for any compact Hausdorff space X and any continuous map f : 5 — X,
there exists a unique continuous map ¢ : §(S) — X such that the following diagram

commutes.

For any set S, the Stone dual of the powerset algebra P(S) corresponds to the Cech-
Stone compactification of the discrete space (.5, 74;5) (see [38] 111, 2.1). Endowing S with
the discrete topology, S can be embedded as a dense subspace of §(S) by considering
the injective map s : S — 5(5) which sends any s in S to the principal ultrafilter 1{s}
(we use the abusive notation 7s).

Let us now consider two sets S and T and a map f : S — T. In particular, we
can consider the map (o f : S — 3(T). Since §(T) is compact Hausdorf, by applying
the universal propery of the Cech-Stone compactification of S, there exists a unique
continuous map

Bf:B(S) = B(T)

which extends f, and it is defined as follows: for any a € 5(.5),
Bf(e) ={PCT: f(P)€a}.

We denote by 3(S) \ S the closed subset of all free ultrafilters, that we also refer to
as the remainder of 3(S). We often use the notation *S := 3(95) \ S.

Lemma 1.14. For any set S, and any ultrafilter a € 5(S), we have that o € *S if, and
only if, @ contains all cofinite sets.

Proof. Fix a set S and an ultrafilter a € 3(S). We prove the negation of this equivalence,
that is « is a principal ultrafilter if, and only if, there exists a cofinite set which does
not belong to a. For the left-to-right implication, suppose that « is of the form 1s for
some s € S. Then the set Qs := S\ {s} is cofinite, and does not belong to a. For
the right-to-left implication, assume that there is a cofinite set () of S which does not
belong to a. Then, since « is an ultrafilter, Q¢, which is finite, does belong to «. Since
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an ultrafilter which contains a finite set is necessarily principal, we conclude that « is
principal. O

Let us say a few things about clopen subsets of 3(S). First, since (%) : P(S) —
Clop(3(S)) is bijective, every clopen subset K of 3(S) is of the form @, for some Q C S.
We can also prove ([78], Proposition 3.13) that every clopen subset of the remainder is

of the form

*Q::@\Q::{QG*S:QGa},

for some infinite subset ) of S. We provide a few properties on clopen subsets of the

remainder which will make computations in Chapter [2] easier.

Lemma 1.15. For any set S, if Q1 and ()3 are two infinite subsets of S, then the
following statements hold.

(1): *Q1 C *Q2 if, and only if, Q1 \ Q2 is finite.

(2): *Q1 = *Q- if, and only if, the symmetric difference QQ1AQ)- is finite.

(3): *Q1 N *Q4 is non-empty if, and only if, Q1 N Q2 is infinite.

Proof. See [13], Proposition 3.14. O

We conclude this section by proving a few topological properties that will be used
regularly in Chapter 2} First, we prove a classical lemma about finite partitions of S.

Lemma 1.16. For any ultrafilter o € (S), and any finite partition (Q1,...,Qn) of S
for some n > 1, there exists a unique k € {1,...,n} such that Qj, € .

Proof. Fix o € (S5), and a finite partition (Q1,...,Q,) of S, for some n > 1. For the
existence, we proceed by finite induction. In the case n = 1, the result is obvious. If
(Q,Q°) is a partition of S, then since « is an ultrafilter, there is exactly one element in
{Q, Q°} which is in a. Now, fix n > 3 and a finite partition (Q1, ..., Q,) of S. Assume that
we proved the statement for a finite partition with n — 1 elements. If )1 is in «, then we
are done. Otherwise, @ is in a, but since we have a finite partition of S, Q = Ui, Qi.
By applying the induction hypothesis, there exists k € {2,...,n} such that Qj, € a, which
allows us to conclude. For the unicity, if there existed @, and Q,s, with k # &/, both in
«, then their intersection would also be in a. Since we have a finite partition of S, this

intersection is empty, and therefore a cannot be an ultrafilter. O

Remark 1.17. Note that the argument used in this proof works for any ultrafilter x in a
Boolean algebra B, the assumption made here that 5 = P(S) is not needed. However,

we only use this case later on.

Finally, we prove a technical lemma that holds for any Boolean space, and appears
as a generalization of the fact that these spaces are totally disconnected. Its relevance
will become more clear in Chapter [2} Proposition [2.33]
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Lemma 1.18. Let X be a Boolean space. For any finite family of distinct points
at,...,ap € X, there exists a family of pairwise disjoint clopen subsets K1, ..., Ky of X
such that, for every i € {1,....0}, a; € K.

Proof. We prove the statement by induction on ¢ > 1. In the case ¢ = 1, the statement
is obvious. In the case ¢ = 2, the statement is true since X is a Boolean space, that is,
totally disconnected, and compact Hausdorff. Now, assume that the statement holds for
a fixed £ > 3. Fix ayq,...,ap11 € X a family of ¢ 4+ 1 distinct points. By the induction
hypothesis, there exists a family of ¢ pairwise disjoint clopen subsets Ki, ..., K; such
that, for every i € {1, ...,¢}, a; € K;. Now, as we mentioned for the binary case, any two
distinct points in a Boolean space can be separated by two clopen subsets. Therefore,
Lt

for every i € {1, ..., £}, we have two clopen subsets L;, which contain, respectively,

o, and ayy1. Now, setting
¢

— 41
Ropr =) L;
=1

and, for every i € {1,...,¢},
R, :=K;NL;,

the family of pairwise disjoint clopen subsets (Ry, ..., Ry+1) is, by construction, such that
for every i € {1,...,0 + 1}, o;; € R;. O

Proposition 1.19. Let S be a set. For any finite family of distinct points «y,...,ap €
B(S), there exists a family of pairwise disjoint subsets Q1,...,Qy of S such that, for
every i € {1,...,0}, Q; € .

In particular, if C is an infinite subset of 3(S), then, for every ¢ € N, there exists
a family Q1, ...,Q, of pairwise disjoint subsets of S such that, for every i € {1,...,(},
cn @ is non-empty.

Proof. This is a direct consequence of Lemma [1.18 O

1.2 Modal algebra and the Vietoris functor

In [76], Vietoris introduced a generalization of the notion of Hausdorff metrics on any
compact Hausdorff space: the so-called Vietoris hyperspace of a topological space.

Definition 1.20 (Vietoris hyperspace of a Boolean space [76]). For any Boolean space
X, we denote by V(X) the set of closed subsets of X. We endow it with the topology

generated by the sets of the form

OK:={CeV(X):CCK}and 0K :={C e V(X): CnK # 0},

for every clopen subset K of X, and we refer to this topological space as the Vietoris
hyperspace of X.
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We make a few remarks on this construction. First, observe that for any clopen
subset K of X,
OK = (OK°)¢,

therefore elements of the form QK can be replaced by elements of the form (OK')¢,
where K’ = K¢ Therefore, we may also define V(X) by taking {0K, (OK)*: K €
Clop(X)} as a basis. We also note that [J is meet-preserving, while ¢ is join preserving.
In particular, the family of the clopen subsets of the form

n
(K, Ky, ..., K,) :=0KnN () 0K,
i=1
where n > 1 and K, K1, ..., K, are clopen subsets of X provides a basis for the Vietoris
topology.

Remark 1.21. Fix a finite sequence of clopen subsets K, K1, ..., K, C X. A simple, yet
important, observation is that, for every clopen K’ C X such that K C K’, we have

(K,K1,...,K,) C(K' | K1,...,K,).

The same way, for every finite sequence of clopen subsets K1, ..., K], C X such that, for
every i € {1,...,n}, K; C K, we have

(K, K1,...K,) C(K,K!,...K.).

The Vietoris hyperspace V(X) is defined for any topological space X, replacing the
compact opens of your Definition 2.4.1] with a basis of the topology of X. However,
when X is a Boolean space, the Vietoris hyperspace of X is also a Boolean space, see
[47], Theorem 4.9. Note that, since it is totally disconnected, it is 73, and thus singletons
are closed (this remark will be of use in Proposition . Also, note that any clopen
of V(X) is a compact space and thus can be written as a finite union of clopens of the
form (K, Ky, ..., K,,), where n € N and K, K1, ..., K,, are clopen subsets of X.

Remark 1.22. For any Boolean algebra 5, any set S and any map f : S — V(S(B))
the universal property of Cech-Stone compactification states that f admits a unique
continuous extension g : 5(S) — V(S(B)), defined by sending any ultrafilter o € 5(5) to

~

g(a) = ﬂ b.
beB N
{seS: f(s)Cb}ea

This remark will be useful in order to prove Proposition
Considering B the Boolean algebra dual to X, we can understand the Vietoris hy-
perspace on X by equipping the set of filters of B with an appropriate topology. Since

our approach relies on a more topological understanding of problems, we chose to
conduct most of our reasoning in terms of closed subsets. However, it should be noted
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that it is only a matter of preference, and that one could formulate all of the results

from Chapter [2] involving closed subsets in terms of filters instead.

Proposition 1.23. Let B be a Boolean algebra and X = S(B) its dual space. The
Vietoris hyperspace of X is homeomorphic to the space of filters of 15,

V(X) ~ Filt(B),

where Filt(B) is endowed with the topology generated by the clopen sets of the form
[b] and [b]¢, where for every b € B,

[b] := {F € Filt(B): b € F}.

Proof. For any Boolean algebra, we give a one-to-one correspondence between the set
of its filters and the closed subsets of its dual space, and we prove that this correspon-
dence is a homeomorphism. Since we will have a bijection between compact Hausdorff
spaces, to prove that we have a homeomorphism it is enough to prove that one of them
is continuous. Consider the map ¢ : Filt(B) — V(S(B)) which sends a filter F to the
intersection of the clopens corresponding to the elements of the filter,

e(F) = (b,
beF
and the map ¢ : V(S(B)) — Filt(B) which sends a closed subset C' of the dual space
to the filter of all elements of the Boolean algebra for which the corresponding clopen

contains C,
Y(C) :={be B: C Cb}.

We prove that these two maps are mutually inverse functions. First, by definition of ¢
and 1), we obtain for any F € Filt(B) and any C € V(S(B)) that F C ¢ (¢(F)) and that
C C ().

We prove that ¢(¢(C)) C C. In order to do so, we prove the the contrapositive. Let
x be a point that does not belong to C. Since C'is a closed subset of 5(.5), C* is an open
subset of 5(S). As we know that the family of clopen of the form b, where b ranges
over B, forms a basis of 5(5), we can pick b € B such that = € band bN C is empty.
In particular, —b is such that C' C —b, but z ¢ —b, so that = ¢ o(1(C)) , allowing us to
conclude.

We prove that )(p(F)) C F. Let a be any element of the Boolean algebra such that
©(F) C a. Then, p(F) is disjoint from =a, but ¢(F) is an intersection of closed sets.
By the formulation of compactness in terms of intersections, this means that there
exist by,...,b, € F such that N}, b; C a. Now, since =: B — Clop(S(B)) is an injective
homomomorphism, we have that ();.; b; C a, and we conclude that a € F.

Now, since inverse image preserves Boolean operations, so in order to prove that v
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is continuous, it is enough to check that 1~1([b]) is a clopen subset of V(S(B)), for any
b in B. Since

¢ ([B]) = {C e V(S(B)): ¥(C) € [b]}
={C e V(S(B)): C
= Ob,

where b is indeed clopen, we are able to conclude. O

For any set S, by applying Proposition to the Boolean algebra P(S), we obtain

the following result.

Corollary 1.24. For any set S, the Vietoris hyperspace of the Cech-Stone compacti-

fication of S is homeomorphic to the space of filters on S,
V(B(S)) ~ Filt(S).

For any Boolean algebra 5, we denote by Cr the closed subset of S(B) corresponding
to a filter F € F'ilt(B) under this correspondence, and reciprocally, we denote by F¢
the filter corresponding to a closed subset C. In the particular case where B = P(S)

for some set S, we have that, for any C' € V(X),

Fo={Q CS:Vae(C,Qe€a}= ﬂa
aeC

and for any F € Filt(S),
Cr={aecp(S): F Ca}.

Example 1.25. Fix a set S. We provide different instances of the correspondence
introduced in Corollary [1.24]

e Fix a subset ) of S. The filter of S corresponding to @ is the principal filter
containing @), since

Fo={PCS:QCPy={PCS:QCP}=10Q.

The closed subset of 3(S5) corresponding to 1Q is @ since

~

Ciq= () P= [ P=0Q
Pet@ QcP
e The closed subset of 5(.5) corresponding to Cof(S), the filter of all of the cofinite

subsets of S is the remainder of S, and vice-versa. Indeed, by Proposition [1.23]

we have
Ceof(s) = 1{a € B(S): VQ € Cof(S),Q € a}
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which is equal to *S by Lemma [1.14} and
Fes={QCS:"SCQ}={QCS:"SC"Q}

which is equal to Cof(S) by Lemma [1.15 (1).
More generally, for any subset @ of S, the closed subset of 3(S) corresponding
to the filter

TQNCof(S):={P CS:Q C P and P is finite}

is *() and vice-versa. Indeed, by Proposition |1.23, we have

Croncof(s) = N @= [ @naQ
Q'€1QCof (S) Q'e1Cof(5)

which is equal to *S N Q, that is, *Q), and

Froncops) = {Q' € S:7Q C Q'}
which is equal to 1Q N Cof(S) by Lemma [1.15] (1).

We now define a notion of product for two filters of P(S), which will be a major
example needed in Section [2.4]

Definition 1.26. Fix a set S. We define the P(S5?)-product of two filters Fy, F, € Filt(S)
as the filter
F1 @ Fy:=1{Py x Py: P, € F1, P» € F»} € Filt(S?).

This filter corresponds, by Proposition to the closed subset of 3(S?)

—
C]:1®]:2 = ﬂ P1 X Pg,
PieF;
PyeFy

which motivates the following definition.

Definition 1.27. Fix a set S. We define the 5(S5?)-product of two closed subsets Cy, Cs €

V(B(5)) as
Ci@Cy:= () PxP.
c1chy
CaCPy

This terminology was implemented in order to avoid confusion with the product
topology. However, since this is the only kind of product that we use in this thesis,
we choose to abbreviate it as product. Note that the projections maps 71,7 : S — S
can be lifted into two continuous maps 71, 8ma : 3(S?) — B(S9), yet these maps are not
bijective and thus it is not possible, in general, to retrieve an ultrafilter o € 5(S?) by
only looking at its two projections.
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Example 1.28. Fix a set S. We provide different instances of product of closed subsets

of A(S).

e In the case of two clopen subsets, Q1, Q2 C 3 (S), we have

Q1®Qs= (| PrxPy=Q1xQs.
Q1EP;
Q2C Py

e In the case where the closed subset is the remainder, we have

F1,FpCS
Fy,Fy finite

The Vietoris construction can be seen as a functor V : BStone — BStone on the
category of Boolean spaces and continuous functions. Indeed, if f : X — Y is continu-
ous, then so is the continuous map V(f) : V(X) — V(Y) which sends a closed subset C

of X to f(C). We would like to complete the following commutative diagram.

S

SN

2 BA Stone :Dv
N S

Clop

In order to do so, we need to define a functor M : Bool — Bool which could be
seen as the dual of V : BStone — BStone. This functor sends any Boolean algebra to
what is called its corresponding formal modal algebra. We could summarize modal
algebra by saying that, just as Boolean algebras are models of classical logic, modal
algebras provide models of propositional modal logic. The reader intested in a complete
introduction to the framework of modal logic and its uses can refer to [§], and to [41].
More specific results about the relationships between Vietoris topology, modal logic
and coalgebras are also available. This topic is especially relevant to this thesis, since

universal quantification acts like a box operation in our setting.

Definition 1.29 (Modal algebra). A modal algebra is a pair (B,J) where B is a Boolean
algebra and [J : B — B satisfies the following properties: [11 = 1 and for every by, by in
B, D(bl AN bg) = by A Obs.

For any Boolean algebra B, we denote by MB the free Boolean algebra over the
set of formal generators {{Jb: b € B}, with the following relations: (J1 = 1 and for
every by, be in B, O(by A by) = Oby A Obe. This is the free Boolean algebra over the
semilattice reduct of B. What this means concretely is that M B can be characterized
as the Boolean algebra expansion of B with the property that, for any meet-preserving
function between Boolean algebras h : B — B/, there is a unique Boolean algebra
homomorphism h : B — B’ which extends h. We could have defined M5B in a similar
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fashion by introducing the generators (b, for any b € B, with the relations $¢0 = 0 and
for any by, by in B, O(b1 V by) = Oby V Qbe. For any b € B, the relation (b = —()—b) holds.
It is already fairly transparent that this mirrors the topological structure provided by
the Vietoris hyperspace, on the algebraic level.

One can use the Vietoris construction in order to understand the dual space of the

modal algebra built on a Boolean algebra 5.

Proposition 1.30. For any Boolean algebra B, the dual space of M B is homeomorphic
to the Vietoris hyperspace of the dual space of B.

Proof. See [41], Fact 1. O

An important notion we will require in Chapter [2]is the notion of content of a closed
subset of 3(S). Basically, it consists in only looking at the points in the closed subset

which correspond to principal ultrafilters.
Definition 1.31. For any set S, the content of a closed subset C of 5(S) is
Cont(C):=CnNS.

Note that the content of a closed subset of 5(5) may very well be empty in general.

Figure 9: The space of ultrafilters 3(S). Clopen subsets must contain elements of S,
whilst closed subsets do not need to.

For the reader who would rather prefer to reason in terms of filters, the corre-
sponding definition is the following. The content of a filter F € F'ilt(.S), can be defined
as the set of elements of S appearing in every set of the filter: that is,

Cont(F) := ﬂ]-': ﬂ Q.

QeF
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Example 1.32. We compute the content of the closed subsets introduced in Example
1.29] Fix a set S.

e For any Q C S, the content of the closed subset Q of B(S) is QNS=Qns=qQ.

e The content of the remainder *S is the empty set. This is an example of a closed
subset of 3(S) with an empty content, but which is not the empty set. More
generally, for any @Q C S, the content of the closed subset *@ of 5(5) is the empty
set.

e For any closed subsets C, Cy of 5(.S), we have that

Cont(C1 @ Co) = ( [ Prx P)nS>

~
ciCPy
CoC Py

= n (Pl/ﬁgﬂsa)

C16P
CoCPy

= ﬂ {(81,82) € 52: s1 € Pp and sy € PQ}

C1CPy
CoCPy

= (ClﬂS) X (CQQS)
= Cont(Cy) x Cont(Cs).

1.3 Formal languages and recognition

In this section, we introduce the basics of formal language theory, and the notion of lan-
guage recognition by finite automata, and its algebraic counterpart via finite monoids.
We then explain how it is possible to link it to duality theory from Section ['1;1'] and
finally provide a few examples of this connection. For a more thorough introduction
to automata theory, we recommend [42] and [63], and for the algebraic treatment of
language recognition we refer to [71] and [54].

Throughout the rest of the thesis, we fix a finite alphabet A, and we refer to the
elements of A*, the free monoid over A, as the finite words on A. We denote by |w| the
length of a finite word w = wy...wj,|—1 € A%, where for every i € {0,...,[w| — 1}, w; is
in A. Finally, we denote by |w|, the number of occurrences of the letter a in the word
w. A language L is a subset of A*, and since P(A*) is a Boolean algebra for union,
intersection and complement, these operations are naturally defined on languages. One

last operation on languages that is extremely useful is the quotient by a word.

Definition 1.33. For any language L C A* and any word v € A*, we define the left
quotient v—'.L and the right quotient L.v~! as the languages

v ML ={we A*:vaw € L}
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and
Lol :={weA*:wvec L}

We now introduce the notion of recognition by finite automaton, which plays a major
role in the comprehension of finite languages.

Definition 1.34. A finite automaton is a tuple A = (Q, 6, I, F'), where

e () is a finite set that we refer to as the set of states of the automaton;

e 0 C Q@ x Ax(Q is a relation that we refer to as the transition relation of the
automaton;

e [, I' C (@ are referred to as the set of initial states, and the set of final states of
the automaton, respectively.

A word w € A* with length n € Ny is accepted by an automaton A = (Q, 6, I, F) if
there exists qq, ...q, € Q, where qp € I, q, € F and forevery i € {0,...,n—1}, (¢;, w;, gi+1) €
6. We say that a language is recognized by an automaton if the automaton accepts every
word in the language. A language L C A* is called regular if there exists a finite automa-
ton which recognizes it. We denote by Reg(A*) the subset of A* of all regular languages.
The set of all regular languages is a Boolean subalgebra of P(A*). One can prove that
it is closed under left and right quotients and, that the set {u='.L.v~!: u,v € A*} is finite
(see [63] Chapter 1, Section 2).

Example 1.35. If the alphabet we consider is A = {a,b}, then the language A*aA*
is regular, since it is recognised, for instance, by the automaton where Q = {qo,q1},

0= {(QO7b7 q0)7 (q(]aaaql)v (qlaav q1)7 (q17b> Q1)}: I= {QO} and I = {(h}

b a,b
@@

Figure 10: An automaton that recognises the language A*aA*, where A = {a, b}.

The algebraic approach to language theory consists in studying a notion of recogni-
tion based not on finite automaton, but on finite monoids. This is a very helpful point of
view when studying languages since one can use the many ideas and results available
in monoid theory.

Definition 1.36. A language L C A* is said to be recognised by a monoid homomor-
phism h : A* — M if there exists a subset P C M such that

h1(P)=L.

More generally, a Boolean algebra of languages is said to be recognized by h if h
recognizes every language in B.
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This notion is equivalent to the notion of recognition by finite automaton that we
introduced initially.

Proposition 1.37. For every language L C A*, the following conditions are equivalent.
(1): L is recognized by a finite automaton.
(2): L is recognized by a monoid homomorphism into a finite monoid.

Proof sketch. For (1) implies (2), consider a language L recognized by a finite automaton
A=(Q,5,1,F). We define M 4 as the monoid of binary relations R C Q2 on @, where
the monoid law is the composition of relations and the identity is the identity relation.
One can prove that the map i : A* — M4 which sends any finite word w € A* to

{(q,q): there exists a path in A labelled w from q to ¢’}

is a monoid morphism, and that, setting P := {R C Q?: RN (I x F) # ()} we have that
h~1(P) = L, which proves that h recognizes L.
For (2) implies (1), consider a language L such that there exists a monoid morphism
h: A* — M, where M is a finite monoid, which recognizes L. We define an automa-
ton Ay = (Qar, 001, Ing, Far), that recognizes L, as follows. We set Qyy := M, Iy =
{1m}, Fyroi= h(M) and 6pr == {(m,a,m.h(a)): m € M,a € A}. One can now prove that
this automaton recognizes the language L.
O

There are infinitely many finite monoids that are able to recognize a given language
L € Reg(A*). However, there exists a monoid M} which is “minimal” in the following
sense: M recognizes L, and for every finite monoid M that recognizes L, My, is a
quotient of a submonoid of M. We refer to this minimal recognizer as the syntactic
monoid, and to h as the syntactic homomorphism. In particular, a language is recog-
nizable if, and only if, its syntactic monoid is finite. Explicitly, the syntactic monoid of a
language L is the quotient of A* under the syntactic congruence ~ which is defined
as follows. For any w,w’ € A*, w ~, w' if, and only if

Vu,v € A* (weu Lot <= w eut.Lo™t).

It is now time for us to explain how the framework of duality theory we introduced
in Section [I.] can be related to the theory of language recognition. Fix a language

L € Reg(A*), and consider the Boolean algebra
Br = ({u Lot u,v € A*})pa.

As we mentioned previously, the generating set for this Boolean algebra is finite and
thus so is Br. By Proposition the embedding By < P(A*) is dual to a surjection
A* — At(Br), that is, an equivalence relation on A*, such that the equivalence class of
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w e A* is

ﬂ w Lo N ﬂ _lLU

ww.veL ww.v¢L
These equivalences classes are exactly the equivalence classes of ~, the syntactic con-
gruence of L, and thus, correspond to the elements of the syntactic monoid M of
L.

This short argument already justifies the pertinence of looking at recognition from a
duality theoretic point of view: discrete duality allowed us to retrieve the notion of recog-
nition by finite monoids. Even more interesting: if we enrich the structure on Reg(A*)
with a structure of residuation subalgebra of P(A*), by considering the operations left
and right quotient by languages, and studied the duality theoretic consequences of this
change, we could directly generalise this argument to Boolean algebras of languages,

closed under quotients, that are not necessary regular any more, cf [31].

Remark 1.38. This last observation is what led to the introduction of the formalism
of Boolean algebras with an internal monoids, or BiMs. When it comes to study-
ing Boolean algebras closed under quotients, BiMs constitute a more pertinent class of
mathematical objects than finite monoids, since they also function in the non-regular
setting, cf [30] and [31]. Many different directions can be followed in order to extend
the tools available for regular languages to more general settings. In [9], the monoid
morphisms are replaced by T-algebras, where T is a monad on a certain category. The
framework of monads can be used to described algebraic approaches to other data
structures than finite words, such as trees for instance. Another example is [17], where
languages and their acceptors are replaced by functors between input categories (spec-
ifying the type of the languages and of the acceptors) and output categories (specifying
the type of outputs).

In the more general case of an arbitrary Boolean algebra of languages however, no
supplementary structure on the dual space is available, and therefore the topological
analogue for the minimal automaton is simply the dual space. This is the case that will
be at the center of our study in this thesis, which justifies us only paying attention to
the topological structure of the dual space in Chapter [2]

Definition 1.39. A language L C A* is recognized by the continuous map f : S(4*) — X,

where X is a Boolean space, if there exists a clopen K C X such that

More generally, a Boolean algebra of languages B is recognized by f if, for every L € B,
L is recognized by f.

We refer to the dual space as the minimal recognizer of the Boolean algebra of
languages we consider. In the case where the language we consider is regular, X = M
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is a finite monoid and the map f is a monoid homomorphism, Definition [1.39| coincides
with the notion of language recognition by finite monoids.

Example 1.40. We give a few examples of computation of dual spaces for some Boolean

algebras of languages.

e The dual space of Reg(A*) is the topological space that we denote by A* and refer
to as the set of profinite words, obtained as the completion of A* for the profinite
metric d. We give an overview of this space, for more details on this structure the
reader can refer to [?] and [1]. First, we say that a finite monoid M separates two
finite words u,v € A* if there exists a monoid homomorphism ¢ : A* — M such
that p(u) # ¢(v). We then set, for any u,v € A*,

r(u,v) ;== min{|M|: M is a finite monoid that separates v and v}

and we define the map d : (4*)> — R, which sends any (u,v) € (4*)? to 27"(wv),

with the conventions min()) = +o00 and 27°° = 0.

A profinite word is simply a Cauchy sequence for the profinite metric, up to equiv-
alence of Cauchy sequences, defined as follows: two sequences of finite words
(n)nen and (yn)nen are equivalent if lim,, o d(zy,y,) = 0. For instance, every
finite word u € A* can be seen as a profinite word, as it corresponds to the con-
stant Cauchy sequence with the value u. It is relatively difficult to give concrete
examples of profinite words which are not of this kind. One such example is what
we denote by u“: for any u € A* one can prove that the sequence (u”!)neN is a
Cauchy sequence (cf [?], Proposition 2.5), and thus has a limit

. !
v = lim u™.
n—-+o00o

e For any subset P of N, we define the language of all words with length in P,
Lp:={we A%: |w| € P} = |- [7(P).
For any subsets P and () of N, we have
LpULg={weA": |w| € P or |w| €Q} =Lpy,

LpNLg={weA": |w| € Pand |w| € Q} = Lpng,

and
(Lp)={we A*: |lw| ¢ P} = Lpe.

The set of languages {Lp: P C N} forms a Boolean algebra that we denote by By,
We observe that this Boolean algebra is isomorphic to P(N). Indeed, consider the
map ¢ : B, — P(N), which sends any language of the form Lp, where P C N,
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to P, and the map ¢ : P(N) — B|| which sends any P C N to the language Lp.
These two maps are Boolean homomorphisms and are each other’s inverse. We
conclude that S(B),) = B(N).

e Fix a two letters alphabet A = {a,b}. Let us consider the language called majority,
which corresponds to the set of all words which contain more occurrences of the
letter a than the letter b,

Maj :={w e A*: |w|, > |wlp}.

Considering a single language does not allow for an interesting treatment for
topological recognition: for any language L C A*, the Boolean algebra generated
by L is isomorphic to the Boolean algebra {(), L, L, A*}. Therefore, we consider a
Boolean algebra that contains L, and is big enough to provide an interesting dual
theoretic treatment: its closure under left and right quotients. We set

Buaj = ({u " . Majo™: u,0 € A*})pa.

One can prove (cf [28], Example 2.9) that B,/,; is isomorphic to the Boolean sub-
algebra of P(Z)
Bshift = <{Z+ —k: ke Z}>BA

and that the dual space of this Boolean algebra is X := Z U {+00, —oc}, where
+00 := {K € Bgpifi: the symmetric difference of K and 77" is finite}
and
—00 := {K € Bgpifi: the symmetric difference of K and Z~ is finite, }

endowed with the following topology: a subset U of X is open if, and only if, it is
contained in Z; or it contains +o0o and all but finitely many of the elements of Zt;
or it contains —oo and all but finitely many of the elements of Z—.

1.4 Logic on words

In this section, we fix notations, and introduce the pieces of background required in
order to follow Section [2.2] which treats the consequences of our study from the point
of view of logic on words. The reader can refer to ([70], Chapter II) for a more complete
account on logic on words, and to [72] and [1] for detailed illustrations of the interactions
between logic and formal language theory.

Logic on words stems from the following idea: one way to think about a word w is
as a relational structure over {0, ...,|w| — 1}, equipped with a unary predicate a(-), for
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every a € A, which allows us to tell whether the letter at a given position of w is an a.

1.4.1 Syntax

We start by introducing the notion of numerical predicate, which will be the building
blocks in order to define the formulas of logic on words. We then introduce the notion
of uniformity, which, roughly speaking, will allow us to make the distinction between
numerical predicates such that their interpretation takes into account the length of the
words we will consider, and the ones that do not. In the next chapters, we mainly focus
our study on uniform numerical predicates.

Definition 1.41 (Numerical predicates). For any k > 0, a k-ary numerical predicate is
a map
R* :Nyg — P(NF)

such that, for all n > 1, R*(n) C {0,...,n — 1}*. It is said to be uniform if there exists a
subset ( C N* such that, for all n > 1,

RF(n) =QnH{o0,...,n—1}F

We mention the particular case of 0-ary, or nullary predicates. According to the
definition of numerical predicate we gave, a nullary predicate is a map N — {0, 1},
therefore it corresponds to considering a subset P of N. In particular, a nullary predicate

is necessarily uniform.
Example 1.42. We now give a few examples of numerical predicates.

e The unary numerical predicate

N>0 —> P(N)

prime :
n — {i€{0,...,n—1}:1is prime}

is uniform, since for any n > 1, prime(n) = PN{0,...,n — 1}, where P is the set of
all prime numbers.

e The binary numerical predicate

N.g — P(N?)
n — {(i,5) € {0,...,n—1}?:i < j}

is uniform, since for any n > 1, <(n) = ZN {0, ...,n — 1}2, where 7 is the set of all
of the couples of positive integers (i, j) such that i < j.
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e The unary numerical predicate

Nso — P(N)
n — {n-—1}

end :

is a unary non-uniform numerical predicate. Indeed, there exists no subset P C N
such that, foralln > 1, PN {0,...,n —1} ={n —1}.

Following the terminology introduced in [70], we now define the formulas of logic

on words.

Definition 1.43. [Syntax of first-order logic on words.] We denote first-order variables
by x,z1,x9, etc. We consider formulas that are recursively built from the following

atomic blocks.

e Letter predicates: for every letter a € A, a letter predicate is denoted by a(-). For

any first-order variable z, a(x) is an atomic formula.

e Numerical predicates: for any k € N, and for any list of k£ first-order variables
r1,...,xp if R¥ : Nyg — P(NF) is a k-ary numerical predicate, then R*(z1, ..., z}) is

an atomic formula.
The closure operations on formulas are the following.
e If © and v are formulas, then any Boolean combination of ¢ and % is a formula.
e If ¢ is a formula, and z is a variable, then Jz¢(x) and Vxy(x) are formulas.

We say that a variable = occurs freely in a formula if it is not in the scope of a
quantifier. In particular, we call quantifier-free formulas the Boolean combinations of
atomic formulas. A sentfence is a formula such that none of its variables are free. A

fragment of first-order logic is a subset of the set of all sentences.

1.4.2 Semantics

As we previously announced, the particularity of logic on words is that we consider
words as first-order structures. First, fix & € N. We use the notation i to refer to the
elements (i1, ...,7;) € N¥, and a to refer to the elements (a1, ...,a;) € A*. For any finite
word w € A*, we introduce the notation

lw|¥ = {i e N*: Vj € {1, ....k},i; < |w|}.

Models of formulas with free variables among z = {x1,...,x;}, where all the z; are

distinct, are given by elements (w, ) in

A* @ NF .= {(w,i) € A* x N*: { e |w|*},
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which we refer to as z-structures, one marked position in the word corresponding
exactly to one free variable. Note that several variables can mark the same position. It
is important to emphasis that the notation ® used in this context is completely different
from the notation used in Definition [I.27] in order to talk about product of closed sub-
sets. We define an equivalence relation on formulas by saying that two formulas are
equivalent if they have the same models.

We now introduce the semantic interpretation of the formulas we defined.

Definition 1.44 (Semantics of logic on words). We define recursively the semantics of
the formulas built in Definition [1.43l We start with the atomic formulas.

e For any | € {1,....k}, and for any letter a € A, the z-structure (w,i) € A* @ NF
satisfies a(x;,) if, and only, if w;, = a. In particular, for any a € AF, we use the

notation w[i] = a in order to say that the z-structure satisfies the formula

a;(z;),

k
=1

j
that is, for every j € {1,...,k}, w;, = a;.

e For any | € {1,...,k}, any j1,...,5; < k, and any l-ary numerical predicate R, the
z-structure (w,i) € A*@NF satisfies R!(x;,, ..., zj,) if, and only, if (i}, ...,i;) belongs
to R!(Jw| — 1).

Now, the closure operations on formulas are defined as follows.

e The Boolean operations are interpreted in the usual way.

e For any [ € {1,...,k}, and any i\ = (ij)1<i<k € Nk=1, given a formula ¢(z), a
341

( \ {x1})-structure (w,i;) € A* ® NF~! satisfies the formula 3z; ¢(z) if, and only,
if there exist 4; < |w| such that (w,i) € A* ® N* satisfies ¢(Z).

Note that the interpretation of nullary predicates P C N on words is the following:

the (-structure w satisfies P if, and only if, |w| € P.

Remark 1.45. In particular, if R* is a k-ary uniform numerical predicate, since there
exists a subset @ C N* such that, for all n > 1, R¥(n) = Q N {0, ...,n — 1}*, a z-structure
(w,i) € A* @ N satisfies R*(z) if, and only if, i belongs to Q.

Example 1.46. We introduced in Example [I.42] the uniform binary numerical predicate
<. For any variables z,y, and any letters a,b € A, the quantifier-free formula

p(z,y) = a(z) ANb(y) A <(z,y)

corresponds to the set L, of all elements (w,i,j) in A*® N? such that w; = a,w; = b
and i < j,
Loay) = {(w,i,j) € A* @ N*: wli, j] = (a,b) and (i, j) € T}.
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Applying a layer of existential quantifiers to this formula leads us to consider the sen-
tence

Jx3y p(z,y),

which corresponds to the language consisting in all words w € A* such that there exist
two positions ¢, j < |w| such that w; = a,w; = b and 7 < j, in other words, the language
A*aA*bA*.

For any formula ¢ on the set of variables z = {z1, ..., 1}, and for any z-structures

(w, ), we use the notation
(w,9) = o(z)
to say that (w, i) satisfies the formula . We denote by L, the subset of A* @ N* of all

the z-structures (w, i) satisfying the formula ¢,
Ly = {(w,i) € A*@NF: (w,q) | ()}

Notice that L, is a language of finite words on the alphabet A if, and only, if the formula
p is a sentence. Whenever F' is a subset of the set of formulas with free variables
among z, which is closed under the Boolean connectives, the collection {L,: ¢ € F'} is
a Boolean subalgebra of P(A* ® N¥). This simple observation is what allows us to apply
duality for Boolean algebras to logic fragments, and motivates the approach taken in
Chapter [2
For any k£ > 1, we denote by
FO[N]

the set of languages corresponding to the fragment of first order logic defined by
Boolean combinations of first-order sentences built by only using letter predicates, and
uniform numerical predicates with arity [ € {1,...,k}. If we want to add nullary predi-
cates, then we use the notation FO[Ny, N}!]. Finally, we use the notation FO[N}] if we
consider k-ary numerical predicates that are not necessarily uniform.

1.5 Ultrafilter equations

As we announced in the general introduction, the foundation of descriptive complex-
ity theory is that it is possible to express computational complexity classes in terms of
fragments of logic on words. In Section [1.4] we explained how one can describe certain
fragments of first-order logic in terms of Boolean subalgebras of P(A*). Fixing two
such Boolean algebras Bi, B2, proving that they are distinct amounts to constructing
a language L C A* which belongs to B;, but not to B,. Let us take the point of view
of duality theory. The dual space S(B) is a topological object canonically associated to
B, however, in general, it happens to be too “big" to constitute a practical description
of B. A question that arises naturally is therefore the following: is it possible to intro-
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duce a practical topological object which holds enough information to characterize the
Boolean algebra we are interested in? The answer involves introducing the notion of
ultrafilter equation, a well-chosen family of pairs of ultrafilters in the dual space. The
main ingredient we need to use is the fact that any Boolean algebra of languages is
a subalgebra of P(A*). A Boolean algebra of languages B is given by an embedding
B — P(A*) and thus the dual map 5(A*) - S(B) is a quotient, given by equating ele-
ments in the dual space. The idea would be to find families of pairs of points in the dual
space (ideally, much smaller than S(B)?) that allow for a characterisation of B. Since
the reasoning applies for any subalgebra of a given Boolean algebra we formalize the
reasoning in this setting.

Definition 1.47. For any Boolean space X, a Boolean equivalence relation is an equiv-
alence relation £ of X such that the quotient space X/& is also a Boolean space.

Definition 1.48. For any Boolean algebra B, any two ultrafilters v, v, € S(B), and any
b € B, we say that b satisfies the B-equation v, <> s if, and only if,

bey < be .

Theorem 1.49 (Stone duality for Boolean subalgebras, [65], Theorem 5.1). Let B be a
Boolean algebra, and X its associated dual space. Let us consider the map from
P(B) to P(X?) which sends any subset S of B to

{(m,y) e X:Vbe S, (bex<=becy)}
and the map from P(X?) to P(B) which sends any subset E of X? to
{beB:V(x,y) e E,(bex <= bey)}.

These maps establish a Galois connection whose Galois closed sets are the Boolean
equivalence relations on X and the Boolean subalgebras of B respectively. In partic-
ular, every set of equations over X determines a Boolean subalgebra of B, and every

Boolean subalgebra of B is given by a set of equations over X.

Corollary 1.50. Any Boolean algebra of languages on a finite alphabet A can be
defined by a set of equations of the form ~; <+ 2 where v, and ~» are ultrafilters on

the set of words.

If the Boolean algebra we consider in Theorem [1.49is closed under quotients, then
the set of all equations satisfied by it is a kind of congruence. For any ultrafilter on
words v € (A*) and any word w € A*, set

wy:={w.L: L€~} and yw:={Lw': L€y}
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Fix two ultrafilters v; and 75 in §(A*). It is a simple computation to check that, if
a Boolean algebra closed under quotients satisfies the equation +; < 79, then it also
satisfies the equations w.y; <> w.v and ~;.w < y.w, for any word w € A*. In view of
this result, it is convenient to introduce the following notation. Given two ultrafilters
~v1 and 7, in S(A*), we say that a language satisfies the ultrafilter equation v = 9 if it
satisfies all the ultrafilter equations w.y; < w.7v2 and y1.w < ~2.w, for all words w € A*.

In the particular case of Boolean algebras of regular languages, an even stronger
result is available. As we explained in Example m the dual space of Reg(A*) is A*,
the set of all profinite words on A*. Theorem applied to Reg(A*) shows that any
Boolean algebra of regular languages can be defined by a set of equations of the form

u <> v, where u and v are profinite words.

Theorem 1.51 ([29], Proposition 1.3). Let B be a Boolean algebra of regular languages
of A* closed under quotients and let wy,wy € A*. If B satisfies the profinite equation
wy <> wo, then it satisfies the profinite equations u.w; < u.we and wi.u < wq.u, for
each profinite word u € A*.

Given wq,wy € A%, we say that a regular language satisfies the profinite equation
wy = we if it satisfies the profinite equations u.wy < w.wy and wi.u < wy.u, for each
profinite word u € A*. The main interest of these notations is to allow one to produce
smaller sets of defining equations for Boolean algebra of languages which are closed
under quotients.

Example 1.52. We list a few examples of profinite equations corresponding to frag-

ments of first-order logic.

e The fragment FO[<] of first-order logic defined as the set of all sentences written
by only using letter predicates and the binary numerical predicate < introduced
in Example [1.42]is described by the profinite equations

where v € A*.

e The fragment BY;[<]| of first-order logic consisting in Boolean combinations of
sentences written by using the binary numerical predicate <, and letter predicates

is described by the profinite equations

(uv)*” = (vu)® and u* = u¥ ™t

where u,v € A*.

e The fragment FO,[<] first-order logic defined as the set of all sentences, written
by only using letter predicates and the binary numerical predicate < and exactly
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two first-variables is described by the profinite equations
(uv)® (vu)* (w)* = (wv)*” and v = w1,

where u,v € A*.

The reader can refer to [51], [53] [12] and [59] for more fragments of logic corre-
sponding to families of regular languages, and their description in terms of profinite
equations. We conclude the section by giving an example of ultrafilter equations for a

Boolean algebra of non-regular languages.

Example 1.53. The Boolean algebra Bj/,; that we introduced in Example [I.20] admits
the basis of ultrafilter equations

p=p+1,

for every 1 € *(Z), where
pu+1:={P—1:Pe€pu},

see [28], Example 2.21 for a proof.



CHAPTER 2

Duality for the existential fragment of first-order logic on words

This thesis lies at the intersection of formal language theory and duality theoretic meth-
ods. The contribution of this chapter is a deepening of the knowledge currently available
on existential quantification for logic on words. More precisely, we provide a charac-
terisation of the dual space of the Boolean algebra corresponding to the first-order
sentences built by using uniform numerical predicates of arity k, for a fixed £ € N
(Theorem . The consequences of applying one layer of existential quantifier to
Boolean algebras of languages defined by formulas with free first-order variables, and
their counterpart at the level of topological recognisers have already been well studied
in [30]. On the algebraic side, we apply one layer of existential quantifier, while on
the topological side, we take the Vietoris hyperspace. Yet, unlike in the case of finite
recognisers where a minimisation algorithm is available, there exists, at the moment,
no well-known procedure which would allow to directly derive the minimal topological
recognizer out of a given topological recogniser. Indeed, the minimal topological rec-
ognizer corresponds to the dual space of the Boolean algebra in question, and very few
concrete computations of dual spaces for fragments of logic on words which lie outside
of the regular case are available. This work provides a thorough study in the case
where the Boolean algebra we quantify over consists of exactly every quantifier-free
formula, and we add one layer of quantification.

Apart from being an object of study in itself, another reason which motivates our
interest in this question is that its answer has an application in computer science, more
precisely in complexity theory. A result of Immerman [30] establishes strong connec-
tions between computational complexity classes and formal language theory: it states, in
particular, that we can associate to most complexity classes a class of formal languages.
This is at the foundation of what is now called descriptive complexity theory. There-
fore, the problem of separating classes in complexity theory amounts to separating the
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corresponding class of languages, and this is where duality theory comes into play. Let
us give more details for the case we focus on in this thesis. Fix a finite alphabet A. On
the complexity theory side, AC0 is a complexity class defined by sequences of Boolean
circuits. It is important to note that, in this thesis, we do not define Boolean circuits,
neither do we work with them: we only work with their logical counterpart, see [70] for
a detailed introduction to the topic. The corresponding class of languages associated to
ACO is
FO[N] = | J FO[N],
keN

see [70], Theorem IX.2.1, where, for every k € N, FO[N] has been defined at the end of
Section An approach to describing FO[N| would be to start by describing smaller
fragments, and build on them to eventually characterise this class of languages. For

each letter a in A, and for each subset P of N, let us introduce the a-content of w,
co(w) :=={i € |w|: w; = a},

and the languages
Lp:={we A": |w| € P}

and
bi={we A*: co(w)N P £ 0}.

It has been proven in [29] that a language L belongs to the Boolean algebra generated by
the languages Lp and L%, where a ranges over A, and P ranges over the subsets of N,
if, and only if, L belongs to the class of languages defined by first-order sentences built
on nullary predicates and unary uniform numerical predicates, that is FO[Ny, N}']. A
characterisation of the dual space of this Boolean algebra had already been discovered
in an unpublished paper of Gehrke, Krebs and Pin. This allowed for a description of
this fragment of first-order logic on words in [29] in terms of ultrafilter equations, that
is, a family of pairs of ultrafilter on words which are sufficient to characterise it. The
idea is the following: a Boolean algebra of languages B is a subalgebra of P(A*), and
thus the canonical embedding provides a continuous quotient map = : §(A*) - S(B). By
definition, = sends an ultrafilter v € 5(A*) to {L € B: L € v}. Therefore, an equivalent
way to say that B satisfies the ultrafilter equation 71 <+ o, for a pair (y1,72) € B(A*)?, is
to say that 7(vy1) = 7(7y2).

Outline of the chapter: Our wish is to get an understanding of a larger fragment
of FO[N] than FO[N}, the class of languages defined by first-order sentences built on
unary uniform numerical predicates. We denote this larger fragment by B. It would
take into account the uniform numerical predicates of arity lesser or equal to k, for
some k > 1, but it would not take into account alternation of quantifiers. In section
2.1] we set the notations and introduce the Boolean algebra By, for any k > 1, and its
dual space X, that will be at the center of our study in this chapter. In section 2.2} we
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give a description of Bj, from the perspective of logic on words, and in section 2.3 we
give a first characterisation of the dual space X}, in terms of finite colourings of N,
This characterisation being a bit abstract, we study in section [2.4] the dual space of a
subalgebra of B; that is big enough to give an insight on how to obtain a more concrete

characterisation of Xj.

2.1 General setting

Fix a finite alphabet A. We introduce for any k£ > 1, and any k-tuple of letters a € A*
the map ¢; : A* — me(Nk), where me(Nk) is the set of all finite subsets of N¥, which
sends a finite word w to its a-confent,

ca(w) := {i € |w|*: w[i] = a}.
Definition 2.1. For any subset ) of N¥, we introduce the languages
LQaQ ={w e A*: cz(w) NQ # 0}

and
LDaQ = (LOaQC)C ={we A*: czg(w) C Q}

This notation allows us to keep the intuition of modal algebra, as introduced in
section

Example 2.2. We provide a few concrete examples of these languages in the case
where k = 2, which shall be used in order to build an intuition over B;. Fix two letters
a and b in A.

e Assume that @ is a subset of N? such that there exist two subsets P and P’ of N
such that Q = P x P’. In this case, we have that

L ={we A" | cop(w) N (P x P') # 0}

0%y pr
= {w € A" | (ca(w) x ep(w)) N (P x P') # 0}
={we A" |co(w)NP #0}N{w e A* | c(w) N P’ # 0}

:LQ% ﬂLOz};)/.

e Assume that @ is equal to A, the diagonal of N?, in other terms every pair (i,7)
with ¢ € N. Then we have

LOZQ = {'UJ e A*: Cwa(w) NA # @}
={we A*: Ji e Nw; = a}
= A%aA".
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e Assume that @ is the subset {(i,j) € N? | i < j}, a similar reasoning allows us to
prove that
L a,a = LOZ(I

{(i,5)EN2|i<;j}

e Assume that @ is the subset {(i,7 + 1) | i € N}. Then we have

LO‘{LE(;,iJrl)IieN} ={we A": coo(w)N{(i,i +1)|ie N} #0}
={weA": Jie Nyw[(i,i+1)] = (a,a)}

= A*aaA*.

Let By be the Boolean subalgebra of P(A*) generated by the languages L% , where
a ranges over A*, and Q ranges over the subsets of NF,

By = ({Log: a € A*,Q SN} pa.

The main purpose of this chapter is to understand, and give characterisations of the
dual space of the Boolean algebra B;. We denote by X; the dual space of B;.
We denote by Vj, the A¥-fold power of Vietoris hyperspaces

Vi, == V(B(NF)A”,

We consider the function
AT SV

which sends a finite word w € A* to the following family of clopen subsets,

o —

(ca(w))zean-

By the universal property of Cech-Stone compactification, there exists a unique
continuous map c* : f(A*) — V, which extends it. We give a description of the image

of this map: it actually corresponds to the dual space of 5y.
Proposition 2.3. The image of ¢* is homeomorphic to Xj.

Proof. Let us denote by M, the A*-fold copower of M7P(N¥), that is the free Boolean
algebra generated by the formal generators (%(Q), where a ranges over A*, and Q ranges
over the subsets of N*. As we mentioned in Proposition the dual of MP(NF) is
V(B(NF)). As we observed in Proposition Boolean Stone duality turns coproducts
into products: the dual space of the Boolean algebra My is V.. We start by defining a
Boolean algebra homomorphism hy : My — P(A*) which we will prove to be dual to
the continuous map c* : 3(A*) — V;. First, fixing a € A*, we consider the map

Leg - P(NF) — P(A4%)
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which sends any @ C N to the language LO% . This map preserves finite joins: indeed,
Log = and, for any Q1,Q, C NF,

Log ULgs ={w€ A" ca(w) N Q1 # 0} U {w € A™: ca(w) N Qs # 0}
={we A": cag(w) N Q1 # 0 or cag(w) N Q2 # 0}
= {w c A*: Ca(w) N (Ql U QQ) 7& (b}
OEEQ1UQ2)'

Therefore, this join preserving map extends uniquely to a Boolean algebra homomor-
phism
h% . MP(NF) — P(A*).

We now define h;, : M;, — P(A*) by using the universal property of the A*-fold copower
of MP(NF), that is hy, is the unique Boolean algebra homomorphism such that, for any
a € AF, and for any @ C N¥,

he(0°Q) = Lo,

In particular, this equality proves that I'm(hy) = By, since My, is the Boolean algebra
generated by the elements of the form (%Q, where a ranges over A¥, and Q ranges

over the subsets of N¥. Therefore, we have the following commutative diagram in Bool.

My, 44444% P(A¥)

\J

Now, by duality, we have the following diagram in Stone.

(hk) !

\I

In order to conclude that Im(cF) = X, it is enough to prove that c* is dual to hy,

plA") ——

that is that ¢* = (h;)~!. Since we consider continuous maps between compact Hausdorf
spaces, and A* is a dense subspace of 3(A*), we only need to prove that the restriction
of these maps to A* are equal. Now, for any word w € A*, we have by definition

c*(w) = (ca(w))ac ar,

and since the duality turns coproducts into products,

(he)™H(w) = ((h*) ™ (w))zear-
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Finally, for every w € A* and every a € A*,

(h)"H(w) = {i € N*: w € A*(0°({i}))}
:{EGNk: wELo?_ }
= {i e N*: cz(w) N {3} # 0}
= {i e N*: w[i] = a}

- Cﬁ(w>7

and we conclude that c¢* = (h;)~!, and therefore that I'm(c*) = Xj. O

2.2 Logical description of 5;

Fix k£ > 1. In this section, we give a description of the Boolean algebra Bj in the context
of logic on words. The Boolean algebra B, contains the subalgebra generated by the
languages L%, where a ranges over A, and P ranges over the subsets of N. This implies
that it already encodes at the very least all of the first-order sentences built by using
unary uniform numerical predicates (see [29], Theorem 2.9 for a proof). We will prove
that ;, can actually be identified with the Boolean algebra of languages corresponding
to formulas which are Boolean combinations of sentences defined by using a block of
at most k existential quantifiers, letter predicates and uniform numerical predicates of
arity I € {1,...,k}.

Fixing a set of free variables z = {z1,...,x;}, we first express any quantifier-free
formula written by using only a subset of these variables as a normal form which

involves exactly all of the free-variables in Zz.

Lemma 2.4. Any quantifier-free formula ¢ such that the set of its variables {z;,, ..., z;,}

is a subset of x can be written as a formula of the form

\/ (a(@) A R*(2)),

ac Ak

where, for every a € A¥, a(z) is defined as the conjunction /\ﬁf’:1 aj(z;), and R® is a

k-ary numerical predicate.

Proof. We denote by <= the relation of logical equivalence between formulas. We
prove the statement by structural induction on quantifier-free formulas. We start with

atomic formulas. For letter predicates, we have that, for any j € {1,...,k},and any a € A,
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where, for every a € A*, 5% is the k-ary numerical predicate defined as

N.g — P(NF)

S 0o {0,..,n—1}ifa;=a
() otherwise

For numerical predicates, we have that, for any [-ary numerical predicate R’

Rz, .y zj) <= \/ ) NTe (),
ac Ak

where, for every a € A%, T9, is Tri, the k-ary numerical predicate defined as

T
Nop — P(NF)

TRZ . k ! .
n +— {(ni,...,ng) €{0,....,n =1} | (nj,,...,n;) € R'(n)}

To conclude, all we need to do is to prove that formulas of the form \/;c 4x (a(Z) A R%(Z))
are closed under Boolean operations. For any formulas ¢1(Z) of the form \/;¢ 4x(a(Z) A
R{(z)) and ¢2(z) of the form V4« (a(Z) A R$(Z)), we have that

e1(T) A pa(z) <= \/ (a(@) A (R} N R3)(Z)
acAk

where, for every a € A, (R? N RY) is the k-ary numerical predicate defined as

Ra n Ra . N>0 — P(Nk>
b n — R$(n)NRS(n)’
and
p@) V(@) <=\ (a@) A (R U R3)(T)).

ac Ak

where, for every a ¢ A¥, (R9 U R3) is defined in an analogous way. Finally, the negation
of any atomic formula is equivalent to a disjunction of atomic formulas: for any [-ary
predicate R!, and any free-variables (z;,,...,z;,),

ﬂRl(le,...,le) = ((RZ)C)(:cjl,...,:cjl),
where, for every a € A*, (R')° is the k-ary numerical predicate defined as

Nog — P(NF)

RHe ;
2 n o {0,..,n— 1\ Tr(n)
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and for any letter a and any j € {1, ..., k},

—a(z;) <= \/ blz;).
ba

O

Therefore, by Lemmal|2.4] if we apply one layer of existential quantifier to a quantifier-
free formula ¢ whose set of variables is contained in z, we obtain a sentence of the
form

dxq... 3y, \/ (a(z) A R*(2))
acAk

where, for every a € A%, R is a k-ary numerical predicate.

From now on, we will restrict our attention to uniform numerical predicates. By
Remark this means that, for every a € A, considering the k-ary numerical pred-
icate R® is equivalent to considering a subset Q% C N*. For every A*-indexed family
Q = (Q%)zear of k-ary numerical predicates, you denote by ¢(Q) the formula

$(Q) =Ty 3wy, \/ (@(@) A QU2)).

ac Ak

We define BX;[N}!], the Boolean algebra generated by the languages ¢(Q), where Q
ranges over all such families.
Since the existential quantifier commutes with finite disjunctions, this Boolean alge-

bra is generated by the languages corresponding to sentences of the form

\/ Ja1. 3w a(@) A Q).

ac Ak

Now, note that, for any a € A*, and any Q% C N¥, the sentence
3.3z a(Z) A Q%(Z)
corresponds to the language of the form
{wed:TieQ nulf,wi] =a} = {we A" ca(w) N Q" #0} = Loz,

and thus BX; [N}'] is the Boolean algebra generated by the languages (J;c 4+ Lya , where
Qa

(Q%)zeax ranges over P(NF)A*. We conclude by proving that this Boolean algebra
actually coincides with B;.

Proposition 2.5. For any k > 1, the Boolean algebra BX;[N}!] is equal to B.

Proof. The Boolean algebra B3 [N}'] is generated by the languages (Jzc 4+ Lya , where
Qa

(Q")acar ranges over P(Nk)Ak, while Bj, is generated by the languages LOaQ , where a
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ranges over A* and @ ranges over subsets of N*. On the one hand, it is clear that
B3 [N}!] is generated by Boolean combinations of languages of the form L% . On
the other hand, fix Q C N* and a k-tuple of letters a € Ak, We define the family of
subsets (Qi’)geAk , where Q% := ) and, for every b # a, QE := (). The set L% is clearly
the set defined by the formula w((Qg)ge 4+) and we conclude that By, is isomorphic to
B [N O

We define BX;[Ny,NV}!], the Boolean algebra generated by the languages (Q),
where Q ranges over P(Nk)Ak and by the languages L p, introduced in Definition m
where P ranges over subsets of N.

Corollary 2.6. The Boolean algebra BX;[Ny, N}!| is equal to By, defined as the
Boolean algebra generated by the languages Lp and L%, where P ranges over sub-
sets of N, Q ranges over subsets of N* and a ranges over AF.

Proof. Direct consequence of Proposition [2.5] O

Restricting our study to only nullary numerical predicates and to uniform numerical
predicates, a sub-fragments of interest is

le[ u] = U 821[/\/’#],
keN

this is why we are interested in studying 8% [N}/, for a fixed k € N.

2.3 The dual space via finite colourings

In this section, we provide the first elements of study of the dual space X, for any
k > 1. We start by explaining how it is possible to make an analogy between elements
of the dual space and finite words. Formalizing this link, and considering a different
basis of V}, constructed out of the family of all finite colourings of N* leads us to a first
characterisation of X;. We conclude the section by making this characterisation even
more precise, in the case k = 1.

2.3.1 Colourings approach

Fix £ > 1. We proved in Proposition that the Boolean algebra BX;[N}] is equal
to Bi. We are interested in characterizing the dual space of this Boolean algebra. In
Section Proposition we proved that this dual space, that we denoted by X,
is homeomorphic to the image of the continuous map ¢* : A* — V,, where V,, =
V(B (Nk))Ak. The points of V;, have a behaviour that is, in a way, similar to finite words.
Let us explain the idea of this analogy in the case £ = 1. A way to encode a finite word
is by following the insight of logic on words: it is equivalent to consider a finite word
and a family of finite disjoint subsets of N, possibly empty for some of them, which
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cover the initial segment {0, ...,n — 1}, for some integer n > 1. Labelling each of these
subsets with a letter of the alphabet, this amounts to grouping together the positions of
the word which correspond to the same letter. This is the definition of ¢,(w), where
a € A and w € A*. Note that, since V; is the image of ¢!, the family c!(w) = (m)a@;
is a point of V;. Now, fix a point = (Ca)aca € Vi. If we view an ultrafilter a € 5(N)
as a generalized position, then just like in the previous situation, we could say that 8
has the letter a € A at the generalized position « if, and only if, « € C,. This reasoning
applies for any £ > 1, and for this reason, we refer to points of 8 € Vi as generalized
words.

In the particular case where a point 8 € V4 is in the subspace Xj, we can make this
analogy with words even more precise. The following characterisation of X, is a direct
consequence of the universal property of Cech-Stone compactification, and relates 8
to the existence of a certain ultrafilter in §(A*). In particular, if the corresponding
ultrafilter is trivial, i.e there exists a finite word w € A* such that v = t{w}, then for
every a € AF, C; corresponds to the clopen associated to the set of k-tuples of positions

ca(w).

Proposition 2.7. Let k > 1 and let 8 = (C3)zear be an arbitrary element of V. Then
is in X}, if, and only if, there exists an ultrafilter v € $(A*) such that, for every
a € Ak, and for every Q C NF,

Cz € 0%Q) if, and only if, LDaQ €;

or, equivalently,
Cs € 0%(Q) if, and only if, LO% € 7.

Proof. By Proposition a generalized word 8 = (Ca)aear is in Xy, if, and only if, it
is in Im(c*), that is if there exists an ultrafilter v € 3(A*) such that C = c* (). Now, by
definition, = (v) if, and only if, for every a € A*, C; = ca(y). We make two more
observations. On the one hand, by Remark [1.22] we know that

am= (] Q (2.1)
QCNFk
LD% €y
On the other hand,
Cy = Q= [\ @ (2.2)
QCNk QCNk
CaCQ Caena(Q)

We now prove that, for every a € Ak, g = ca(y) if, and only if,
for every Q C N¥, (C; € O%(Q) if, and only if, Leg €7),

which will allow us to conclude. Fix a € A*. For the right-to-left implication, let us
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assume that, for every Q C N¥, (C; € Da(@) if, and only if, LDCZ2 € ~). In that case, it is
clear that the right hand sides of Equation [2.1]and Equation 2.2] are equal, and we obtain
that C3 = cz(7). For the left-to-right implication, assume that Cz = c5 (7).

e First, for any Q C N*, if C; € Da(@), this means that C3 is contained in @ Now, by
Equation the fact that C; = cz(7), and compactness of V;, there exists a finite
collection of subsets of N¥, Q1, ..., Q,,, for some n > 1, such that N, @\Z C @ and,
forall i € {1,...,n}, LDa € 7. Now, since 7 is a filter, and since the map sending
any subset P of N¥ to the language LDa preserves meets (see Proof of Proposition
, we have that LDQQ, € 7, where Q’ = i, Qi Also, since Q’ C Q, and since
the map that sends a subset of N* to its hat is an order-embedding, we have that
Q' C Q. Thus LDaQ is also in ~.

e Second, for any Q C N, if LD% is in 7, then c;(v) is contained in @ Since
Ca = cz(7), then by Equation and, again, by compactness of Vj, there exists
a finite family of subsets of N¥, Q1, ..., Q,, for some n > 1, such that Nie; Qi € Q
and, for every i € {1,...,n}, Cz C @\Z It follows that Cj is contained in @ which
means that Cj; is an element of Da@, as required.

Finally,
0°Q = (0"Q°)" and Lyg = (Lgg, )

thus we conclude that C' = (Ca)zear is in X}, if, and only if, there exists v € 3(A*) such
that, for every a € AF and every QC NF,

Cs € 0%(Q) if, and only if, L% €.

O

This motivates the following terminology: we refer to points 8 € X}, as pseudofinite
words. This setting allows us to compute some elementary instances of pseudofinite
words which are not finite.

Example 2.8. In the case where k£ = 1 and |A| = {a, b}, let us consider the couple of
closed subsets of 5(N)
= (Ca, Gp) := (B(N),"N).

We prove that this is a pseudofinite word by giving a description of an ultrafilter ~
satisfying the condition introduced in Proposition @ Intuitively, the ultrafilter which
gives this pseudofinite word will have the letter a at every standard position however,
it will also have the letter b at a non-standard position.

An ultrafilter v € §(A*) satisfying the condition introduced in Proposition has to
be such that:

1. {PCN: Lgg €7} = {N};
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2. {P CN: LD?D € v} =Cof(N).
that is

1. LD&L € v and, for every S C N, Lgas ¢ 7.

2. For every cofinite subset S of N, LDbS € ~v and, for every non-cofinite subset S of
N, LDbS ¢

Let us reformulate these conditions.

1. L[% is equal to A*, thus the first condition always holds. We prove that the second
condition is equivalent to saying that, for every n € N, LO‘{‘H} € 7. On the one
hand, assume that, for every S C N, ng ¢ ~. Then, in particular, for any n € N,
LDKI\{n} ¢ ~, which is equivalent to Loz{zn} € 7. On the other hand, assume that, for

every n € N, LQ?n} € . For any subset S strictly contained in N, pick n € 5¢. We

have that Lo?n} C Loa, = (Log)“ By upset, this last language is in v, and thus we

conclude that Loa & 7.

2. We prove, in a similar fashion, that saying that, for every cofinite subset S of N,
LDg € v is equivalent to saying that, for every n € N, (Lozfn})C € 7. We also have
that saying that, for every non-cofinite subset S of N, ng ¢ v is equivalent to
saying that, for any infinite subset S of N, Log €.

We conclude that the condition v € §(A*) has to satisfy can be rephrased as follows.
1. For every n € N, Lot{z , €7
2. For every n € N, (LQ? })c € v and for every infinite subset S C N, LO% €.

Put in more simple terms, the idea is the following: the ultrafilter + exists because
for every length [ and every infinite subset S, there exists a finite word satisfying the
condition "every letter up until [ is ¢, and there exists an occurence of b in the subset S.

Now, for any ni,...,n;,,my,...,my, € N, where [;,l; > 1, and for any finite family of

infinite subsets 51, ..., S;, the language

l l2 l
(VEo,, 0oy, )70 () Foy,
=1 =1 i=1
is non-empty, thus
. c ] c e
T{Lo{n}, (LQ?m}) ,LO%. n,m € N, S C N and S infinite}

is a filter and by Stone’s theorem it can be extended into an ultrafilter v which satisfies,

by construction, the condition introduced in Proposition 2.7,
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Another, and potentially more practical, characterisation of X;, for any £ > 1, can be
made by using the terminology of finite colouring. We could summarize this character-
isation by saying that a generalized word 8 is pseudofinite if, and only if, for every finite
colouring, it is possible to construct an actual finite word w € A* which is equivalent to

8 when we look at it from the perspective of this finite colouring.

Definition 2.9. A finite colouring of N¥ is a map ¢ : N* — I, where I is a finite set, or,
equivalently, a finite family of pairwise disjoints subsets of N*, Q = (Q;)scs, such that
Uier Qi = N*. A subset @ C NF is saturated with respect to a colouring Q if there exists
a finite subset J C I such that @ = U;c; @;-

First, let us define the notion of content of a word on a subset of N¥, that is the set of
k-tuples of letters of w which occur on the given subset. This generalizes the notation
wli], where i € N¥, introduced in Definition m

Definition 2.10. For any finite word w € A* and any subset Q C N*, we define the
content of w on () as

(w,Q) = {a e A*: ca(w) N Q # 0}.

More generally, for any finite colouring ¢ : N* — I of N¥, we define the (color)
profile of a finite word w as

<w’Q> = (<w’q_1(i)>)iel € P(Ak)la

that is, the family of contents of w associated to each colour.

Example 2.11. Fix A = {a,b}. In the case k = 2, let us consider ¢, the three colours
colouring (A<, A, A>) of N?, where

A< :={(n,m) € N*: n. < m},

A~ = {(n,m) € N*: n > m},
A :={(n,n) € N*: n € N}

and the finite word w = aabbb.
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The profile of w for the colouring ¢ is
(w,q) = ((w, A%, (w, A), (w, A”)) = ({aa, bb,ab}, {aa, bb}, {aa, bb,ba}).

In our framework, a natural idea is to extend this notion of (colour) profile to gen-
eralized words.

Definition 2.12. For any subset @ of N, and any generalized word 8 = (Ca)aear € Vi
we define the content of 8 on () as

(C,Q)=f{aec A CanQ +0).

The colour profile of a generalized word 8 = (C4)zear € Vi on a finite colouring
q : N¥ — I is the map
(CLq): T —P(AY)

which sends any ¢ € I to

(C,q)(0) == (C,q7 (i)).

In particular, if the point of V;, we consider is of the form (Q(E)) acar for some finite
word w € A*, then for any finite colouring ¢ : N* — I, we have

o —

((ca(w))zear, q) = (w, q),

which shows that the profile of a generalized word can be seen as an extension of
the notion of profile of a finite word. Also, notice that for any 8 € Vi, the map
<8, ) : P(NF) — P(A*) which sends a subset Q to (87Q) is finitely additive: for any
finite family of subsets Q1, ..., Q,, C N¥,



2.3. The dual space via finite colourings 63

(@00 = {ae 45 Can @, £ 0}
1 =1
:{&GAk:CaﬂLnJ@#@}

i=1

—

:{aeAk:CaﬂLnJQi#@}

=1

n

7

i=1
In particular, the map (w, -) : P(N¥) — P(A*) which sends a subset @ to (w, Q) is finitely
additive.

We are now going to use the family of all finite colourings in order to provide a

different basis for the space V.

Lemma 2.13. For any finite colouring q : N* — I of N¥, we consider the map
<7Q> : Vk — P(Ak)l

which sends any 8 eV to <8, q). We also consider the family of all preimages, for

all of these maps
C:={(,q)"'(B): ¢ : N* = I, where I is a finite set, and B € P(A*)!}.

The following statements hold.

(1): The inverse image of any point B = (B;)c; € P(A*)! under (-,q) is clopen in V.
In particular, for any finite colouring q : N¥ — I of N¥, the map (,q) is continuous
when P(A*)! is equipped with the discrete topology.

(2): Any intersection of two elements in C can be written as a finite union of elements
in C. In particular, C is a basis for the topology on V.

Proof. (1): Fix ¢ : N¥ — I a finite colouring of N¥, and a family of subsets B = (B;);cs €
P(Ak)l. Recall that, for any Q C N¥, the subsets of the form

0Q = {C e V(BINM): CNQ # 0}

are clopen in V(B(N¥)). We can express (-,q)~'(B) as a finite Boolean combination of
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these clopen subsets:

()7 (B) = {C = (Ca)acar € Vi: (C.q) = B}
— {C = (Ca)aenr € Vi: Vi€ 1,(Cq)(i) = B;)
—{8 Ca)acar € Vi: Vi e I,Va e A* (Cy ﬂq—l()7é®<:>aeB)}
=N\ ﬂpa O @) N ) 2 (0g~ 1)),
i€l aeB; a¢B;
where, for every a € A¥, p; : Vi — V(B(N¥)) sends any C = a)acak to Ca. Since P(AF)!

is equipped with the discrete topology, this proves that the map (-, ¢) is continuous.

(2): Fix two finite colourings Q = (Q1, ...,Q;) and Q' = (Q}, ..., Q")) of N*, where I,n > 1.
Fix B = (By,...,B;) € P(A")! and B’ = (B}, ..., B) € P(A*)". First, we define a finite
colouring of N* which refines both Q and Q": R = (R,-J)llgji , the finite colouring of
N*, such that, for every (i,5) € {1,...,1} x {1,...,n},

Rm‘ =Q; N Q;

Finally, we define Dy 5, C P(A*)M" as follows: D = (D;;) 1zizi is in Dp g, if, and only

- 1<j<n

if, for every i € {1,...,1},

U{DWJ: (u,v) € {1,..,1} x{1,....,.n} and R,, C Q;} = B;
and for every j € {1,...,n},

H{Dupw: (u,0) €{1,...,1} x {1,...,n} and Ry, C Q}} = Bj.

We now prove that

For the left-to-right inclusion, fix e Q) H(B) N (-, Q)" (B). We define Dz €
P(AF)l as follows: set, for any (u,v) € {1,...,1} x {1,...,n},

= (C', Ru).

By construction, it is clear that c belongs to (-,R)_l(l_)g). All we have left to prove
in order to conclude is that DEz isin D BB By definition of ng we have that, for any
ie{l,..1},

U Dah-= U (C.Ru.

(u,v)e{l,..., 1}x{1,..., n} (u,v)e{1,..., 1yx{1,..., n}
Ry, vCQ; Ru,vCQ;
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Now, since the map (-, R) : P(NF) — P(A¥)!" is finitely additive, this is also equal to

(@ U Ruy),

(u,v)ed{1,..., 1} x{1,..., n}
u,vCQ;

that is, <8, Q:) and since C isin (-, @)~(B) we finally obtain that

U (D&)uw = Bi.
(u,v)e{1,..., 1}x{1,..., n}
Ru,ngi

We prove in the exact same way that, for any j € {1,...,n},

U (DZ)un = Bj,
(u,v)e{1,..., 1}x{1,..., n}
Ru,ngi
which ends to prove that DB € Dy p and allows us to conclude.
For the left-to-right inclusion, fix Da € Dg p- For any Ce (-,R)~Y(D), we have that,

for every i € {1,...,1},

(@,Q)=(C, U Ru).

(u,v)e{1,...,l}x{1,..., n}
0,0 CQ;

Now, since the map (-, R) : P(N¥) — P(A*)!" is finitely additive, this is also equal to

U (C' Ry

(u,0) {1, x {1y}
Ru,ngi

and since D € Dj 3, this is equal to

U Du,v

(u,v)€{1,..., 1}x{1,..., n}
Ru,ngi

which allows us to conclude that (8, Q;) = B;. The exact same reasoning can be con-
ducted to prove that (-,R)~!(D) C (-, @')~1(B’), which allows us to conclude.

Finally, we prove that C is a basis for the topology on Vj. Since V; has been defined
as a product topology, a subbasis S for Vj is given, by definition, by inverse images of
projections on Vietoris of 5(N¥). We already proved in the first part of the Lemma that,
for any finite colouring ¢ : N¥ — I of N¥, the map (-, q) is continuous with respect to the
topology on V. This means that every set in C is open. We only have left to prove that
each subbasic open in S is in the topology generated by C. For this, let a be an arbitrary
k-tuple of letters of A and @ be an arbitrary subset of N* giving a generic clopen @
of the a-th copy of 5(N¥). We denote by U the inverse image of this clopen under the
projection onto the a-th coordinate. A point 8 € Vi is in U if, and only if, C3 € D(@)
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that is, if, and only if, C; C Q Now, let us consider the 2-colors coloring ¢ : N¥ — {0,1},
where ¢71(0) := Q and ¢ !(1) := Q°. By the preceding chain of equivalences, we have
that C' € U if, and only if, (8, ¢)(0) contains the element a and <8, q)(1) does not con-
tain the element a. This gives the finite union of sets in C we wanted, which allows us
to conclude.

O

We use this basis for the topology on V; in order to characterise X;: the pseudofinite
words 8 in V, are exactly the points such that, for each finite colouring ¢, we can
construct a concrete finite word w, € A* which has the same profile than 8 on q.

Proposition 2.14. A generalized word 8 € V. is pseudofinite if, and only if, for every
finite colouring q of N¥, there exists a finite word wy, € A* such that the profiles of 8
and w, on q coincide. In particular, for any subset Q of N* which is saturated with
respect to ¢, we have, for every a € A*, that

CanQ # 0 if, and only if, ca(wy) NQ # 0.

Proof. A generalized word 8 € V;, is pseudofinite if, and only if, it is in Xj. Recall that
a X}, is the closure of the image of A* under the map ¢ : A* — Vj, which sends a finite
word w € A* to (cag(w))zear- We proved in Lemma m (2), that the family

C={(,q)(B): BeP(A")! and ¢: N¥ — I, where I is a finite set}

forms a basis for the topology on V;. Therefore, the characterization of topological
closure by a basis provides the following characterisation of X,: a generalized word
C e Vi, is in X}, if, and only if, for every finite colouring ¢ : N* — I of N*, and every
B € P(A*)! such that <8, q) = B, we have

() TH(B) Nt (A") #0.

Note that this last condition is equivalent to saying that there exists a finite word w, such
that

((calwy))acr. @) = B.

We previously observed that the profile of (c@/(E))ae A+ on g is the profile of w, on g.
We conclude that C' € Vi is pseudofinite if, and only if, there exists a finite word w,
such that <8,q> = (wyq, q).

The other statement is a direct consequence of the fact that, for any finite word w € A*,
the map (w, -) : P(N¥) — P(A*), which sends a subset Q to (w, Q), and for any Ce Vi
the map <8, )+ P(NF) — P(A%) which sends a subset Q to {a € A*: C, N Q # 0} are
finitely additive. O
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Remark 2.15. In particular, for any pseudofinite word 8 € X, let us consider a finite
colouring ¢ : N¥ — I such that one of the colours corresponds to a singleton, that is

¢ (i) = {p}

for some i € I and p = (p1,...,px) € N*. In that case, we observe that any word w
satisfying the condition from Proposition [2.14] is necessarily such that

|lw| > max{p;: j €{1,..,k}}
and such that, for any a € A,
p € Cont(Cy) if, and only if, w(p] = a,
where Cont(C;) has been introduced in Definition Indeed, for any a € AF,

p e Cont(Cy) <= p e CyNNF
—ac{be A" Cyn{p} #£ 0}
<= a € (w, q)(i) by Proposition [2.14]

<= wlp] = a.
This remark will come handy in the proof of Lemma [2.17|

Example 2.16. In the case k¥ = 1 and |A| = {a, b} let us consider the family of closed
subset of G(N)
= ((N),0).

Intuitively, this should be a pseudofinite word, that we could see as a generalization of
the profinite word a“. In practice, we can apply Proposition[2.14} for any finite colouring
q: N — I, where [ is a finite set, we set, for every i € I, n; := min(¢!(i)) and
N = Hz'lealx ;-

We consider the word w, := a”. This allows us to prove that this family of closed
subsets is a pseudofinite word. On the one hand, the only letter occuring in w, is a.
By construction of N, we have that, for any i € I, (w,q)(i) = {a}. On the other hand,
C, = SN and C, = (). This means that, for any i € I, b ¢ <8,q> (i) and a € <8,q> (7): thus
(C.q)(0) = {a}.

2.3.2 Explicit characterisation of X,

In the case where k = 1, it is not too difficult to directly simplify Proposition [2.14] into
a condition that does not require us to look at every finite colouring of N¥. In order
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to do so, we start by proving a necessary condition that holds for every 8 € X. The
intuition is the following. Pseudofinite words share similarities with finite words, but at
the generalized level of ultrafilters. In particular, if 8 = (Ca)zear € X, then for any
a € A*, the content of Cj, introduced in Definition is a subset of N*. It should be
possible to view the elements of this subset as k-tuples of positions of a concrete word,
with a length that is possibly infinite. We formalize this intuition here-below.

Lemma 2.17. Fix C' — (Ca)aear € X a pseudofinite word. Then, the following state-
ments hold.

(1): Forany p = (p1,...,pr) € NFand any a = (a1, ..., a;) € A¥, we have that p € Cont(Cy)
if, and only if, for every j € {1,...,k}, (pj,...,p;) € Cont(Cy,,...a;)-

(2): For every a € A, consider the subset of N

05 =1 (Cont(Cy,...a)),

where m; : N¥ — N is the canonical projections on the first coordinate. Then (CY),ca
is a finite colouring of a downset of N, and, for every a € AF,

k
Cont(Ca) = [[ €3
j=1

Proof. (1): Fix p = (p1,....,px) € N¥, and @ = (ay,...,a) € A¥. To keep the notations
concise, we set, for every j € {1,...,k},

pj = (p]7 7pj) and C;] = (aj, ,Clj)

We consider the following colouring of N* into k + 2 colours

Qp = ({p}, {p'}, - P} NO\ {1, s P,

Here, we assume that § is not in {p/: j € {1, ..., k}}, but it should be noted that our proof
still works when it is the case and that Q; has only £ 4 1 colours. Since 8 is in X}, by
Proposition 2.14} we can consider a finite word w € A* which has the same profile than
8 for the colouring Qp. In particular,

w| > max{p;: j € {1,...,k}}. We now prove the
desired equivalence by using Remark [2.15]

p € Cont(Cy) < wlp] =a
= Vje{l, . k}wy =a;
—Vje{l, .. k}wp]=a
—pie Cont(C;).

(2): First, we prove that for any a,b € A distincts, C}' N C},\I is empty. Let us assume that
CNN G} is non-empty. Pick an element | € CY' N CY, and then pick p € Cont(C,,.. 4)
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and m € Cont(Cy,. p) such that py = m; = [. This is possible, since C’E’ is the projection
of C,,... o on its first coordinate, and the same can be said for C’}}I and Cy,. 5. We now

consider the colouring of N* into three colors

Qpm = ({B}, {m},N*\ {p,m}).

Since 8 is in X}, by Proposition we can consider a finite word w € A* which has
the same profile than 8 for the colouring Qp . In particular, by Remark [2.15, since
p € Cont(C,,.. o) and m € Cont(Cy, . 1), we have that

wlp] = (a,...,a) and w[m] = (b, ..., b).

Now, since p; = m1, we have that a = b, which allows us to conclude.
Finally, we prove that |J,c 4 CY is a downset of N. Fix a € 4, [ € CY\ and consider some
element n < [. We prove that there exists b € A such that n € C}\. We use the notation

n := (n,...,n) € N¥. Picking an element j ¢ C,...« With p; = [, we consider the colouring
of N* into three colors

Qpn = ({p}, {1}, N\ {p,n}).

Since 8 is in X, by Proposition we can consider a finite word w € A* which has
the same profile than 8 for the colouring Q; 5. In particular, by Remark lw| >n
and we can set b := w,. We have that n € C__;, and thus n ¢ CYN, which allows us to
conclude. O

This condition is actually sufficient to characterise all pseudofinite words in the case
k=1.

Proposition 2.18 (Explicit description of X;). A generalized word 8 = (Cq)aca €V is
pseudofinite if, and only if, (Cont(C,))aca is a finite colouring of a downset of N.

Proof. The left-to-right implication is exactly Lemma [2.17] with £ = 1. For the right-
to-left implication, let us consider a generalized word 8 = (Cy)aca € Vi such that
(Cont(Cy))aca is a finite colouring of a downset of N. In order to conclude, we prove
that 8 satisfies the condition introduced in Proposition Fix a finite colouring
g : N = I of N. We are going to construct a word w, such that the profiles of 8 and wy
coincide for the colouring ¢. First, in the case where (J,c 4 Cont(C,) is finite, the word
wq such that, for every a € A4,
co(wq) = Cont(Cy)

is finite, and has, by construction, the same profile than 8 on ¢q. Now, we treat the
case where (J,c4 Cont(C,) is equal to N: we need to make sure that the word w, we
construct is long enough. Pick n € N such that any colour occurring finitely many
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times does not occur after n, that is,

n > max U q ().
iel
q—1(4) finite
Now, for every colour ¢ € I that occurs, i.e qfl(i) is non-empty, and for every a € A
such that Cont(C,) N ¢~1(i) is non-empty, pick m;, in that set, and then pick

m > max{m;q: i € I and a € A such that Cont(C,) N qil(i) # 0}.

Finally, set

[ :== max(m,n).

We now define w, as the word of length [ that has the letter a at the position p < I
if, and only if, p € Cont(C,). Finally, we check that the word w, we constructed has
the same profile than 8 for the colouring ¢. Since | > n, it is clear that w, contains
all positions corresponding to a finite colour. For an infinite colour, we make a case
distinction. If a € A is such that Cont(C,) N ¢~1(4) is non-empty, then since | > m; 4, w,
contains a position m; , € Cont(C,) Mg~ 1(i) such that the associated letter is the letter a.
Otherwise, if a € A is such that Cont(C,) N ¢~ !(i) is empty, then for any position p < I
in wg, p € Cont(Cy) necessarily implies that b # a. Therefore, the profiles of 8 and w,
coincide on ¢, and we conclude that 8 € Xji. O

2.4 Projection of X on V(5(N¥))

In this section, we take a first step in the direction of giving a more explicit reformulation
of Proposition 2.14] This proposition involved a condition that required us to quantify
over every finite colouring of N¥, making it a bit abstract to use in practice. Fix a letter
a € A. We try to characterise the image of X under the canonical projection

Da,...,a * Vie — V(/B(Nk»

which sends every family of closed subsets 8 = (Ca)gear to Cq,. o4 We fix kb = 2,
in order to keep lighter notations. We start by explaining how the results from the
previous section can be reformulated in order to characterise the image of p,, o 2
and provide several necessary conditions that have to be satisfied by a closed subset of

V(B(N?)) in order to be in the image of p, 4 o c%.

2.41 The Boolean algebra 5;“ and the interior operator R

The Boolean algebra B, we have been studying is generated by the languages LD% ,
where a ranges over A* and () ranges over subsets of N¥. If we fix a letter a € A, then
we can consider the Boolean subalgebra
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BZ,...a — ({LDg: QC Nk}>BA7

By " < By induces the continuous quotient map X — X%

We can prove, by
applying the same reasoning than in the proof of Proposition that X, is the
image of the map c,_, : 3(A*) — V(B(NF)), which is the unique continuous extension
of the map which sends a finite word w € A* to ca:a\(w). Obtaining a more explicit
characterisation of the points of X;* should enable us to get a better understanding
of X;.

We proved in Proposition [2.14] a characterisation of X, for any k& > 1, in terms of
finite colourings of N*. It can be simplified to determine the points in the image of

X% In order to keep compact notations, we focus on the particular case k = 2.

Proposition 2.19. For any closed subset C € V(3(N?)), the following conditions are
equivalent.

(1): C is a point of X5

(2): For every finite colouring Q of N?, there exists a finite word w € A* such that, for

every subset () which is saturated with respect to the colouring Q,
CNQ +#0 if, and only if, Caa(w)NQ #0.

(3): For every finite sequence of subsets Q,Q1,...,Q, of N?>, where ¢ > 1, such that
C C @ and, for every i € {1,....,0}, C'N C/Q\Z is non-empty, there exists a finite subset
S C N such that S? C Q and, for every i € {1,....4}, S N Q; is non-empty.

Proof. We prove that (1) and (3) are equivalent. Recall that X;'“ is the closure of the
image of A* under the map c,, : A* — V(8(N?)), which sends a finite word w € A* to
Ca,o(w). In Definition , we provided a basis for the topology on Vietoris hyperspaces. In

particular, the family

l

Dy = {0%(Q) N () 0“*(Q:): L €N, Q, Q1 ..., @ € N}

i=1

forms a basis for the topology on V(3(N?)). By general topology, the characterisation
of the points C' € X5"* in terms of this basis is the following: C is in X3* if, and only
if, for every K € D5 which contains C, there exists a finite word w € A* such that
Cm) is also in K. This is equivalent to say that, for every finite sequence of subsets
Q,Q1,...,Qp of N? such that C C @ and, for every i € {1,...,1l}, C'N @ is non-empty,
there exists a finite subset S C N such that S2 C @ and for every i € {1,...,1}, 52N Q; is
non-empty.

We prove that (1) implies (2). Assume that C € V(8(N?)) is in X5%, that is, that there
exists D € X, such that D, . = C. Consider a finite colouring q : N? — I. By Proposition
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there exists a finite word w, € A* such that, for every subset ) C N2 which
is saturated with respect to ¢, the profiles of D and wy on @ coincide. Focusing our
attention only on the couple of letters (a,a), this means that w, is such that, C' N Q is
non-empty if, and only if, ¢, o(w) N @ is non-empty.

Finally, we prove that (2) implies (3). Fix C € V(3(N?)), and consider a finite sequence
of subsets Q,Q1,...,Q; of N? such that C C Q and, for every i € {1,..,1}, CnN C/Q\Z is
non-empty. Now, consider a finite colouring ¢ : N> — I such that Q,Q1, ..., Q, are all
saturated with respect to g. Then, by applying (2), there exists a finite word w € A* such
that C C @ if, and only if ¢, ,(w) C @ is non-empty, and for every i € {1,...,1}, C'N @\,
is non-empty if, and only if ¢, (w) C Q;. In particular, setting S := ¢,(w), we obtain a
finite subset of N such that S? C @ and for every i € {1, ...,(}, S N Q; is non-empty. [

In the case k = 1, for any letter a € A we simply had that Im(c,) = V(5(N)). However,

the characterisation is not as simple for k& > 1, as we illustrate in the following example.

Example 2.20. We prove that the closed subset *(N?) introduced in Section cannot
belong to X5“. In order to do so, we use Propositionm (2). We consider the colouring
of N2 with three colors (Q1, Q2, Q3), where we set

Q1 :={(0,0)}
Q2 := {0} x (N\ {0})
Qs = (N\ {0}) x N

Note that, by Lemma m *(N2) N Q, is empty, while *(N2) N Q, and *(N?) N Q3 are
non-empty. Let us consider a finite word w € A* such that ¢, ,(w) N Q; is empty, while
Ca,a(w) N 6/2\2 and ¢qq(w) N @\3 are non-empty. The first condition imply that wy cannot
be the letter a. However, any of the two remaining conditions implies that wy = a: we
conclude that there exists no word such that ¢, ,(w) N Q1 is empty while ¢, ,(w)N 672 and
Ca,a(w) N Q3 are non-empty. By applying Proposition m (2), we conclude that *(N?)
does not belong to X5™.

We want to refine the characterisation of X3 obtained in Proposition Since
X5 is contained in V(3(N?)), the points of this dual space can be understood as closed
subsets of 3(N?). In order to get started, we determine which of these points correspond
to subsets which are clopen. This is relatively straight-forward if we rely on the intuition
we have built on generalized words. First, if w is a finite word, then the image of this

word under p, 4 © 2,

— —

Pa,a © 02(w) = pa,a((cu,v(w))(u,v)EAQ) = Cq,a(W),

is clearly in X3". We deduce that, for every finite subset S C N, the clopen 52 belongs
to X3*. Now, let us consider a clopen subset of 3(N?) which is not contained in N2. To
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be in X3, this clopen needs to correspond, in a sense, to the set of positions occupied
by the letter a in a word with infinite length.

We start by stating the following necessary condition that the content of every closed
subset in X5 needs to satisfy. This is a simple consequence of Lemma projected
onto the component corresponding to the couple of letters (a, a).

Proposition 2.21. For any C € X5“, there exists a subset T' C N such that Cont(C) =
T

Proof. If a closed subset C is in X3, then there exists C = (Cap)apea € Xo such that
C = Cq,4- By applying Lemma there exists a subset 7' C N such that Cont(C) =
T2, O

We are now ready to characterise clopen subsets in X5

Proposition 2.22. A clopen K € V(5(N?)) is in X5 if, and only if, there exists a
subset T of N such that K = T2.

Proof. Fix a clopen K € V(8(N2)). We know that there exists Q C N2 such that K = Q.
On the one hand, assume that @ is in X3"“. By applying Proposition we know that
there exists a subset T of N such that Q = 72. On the other hand, assume that there
exists a subset T C N such that Q = T2. We prove, by using Proposition m (3) that T2
is in X5, Consider a finite family of subsets Q1, ..., Q¢ of N?, where ¢ > 1, such that, for
every i € {1,...,1}, TN @\, is non-empty. Then, for every i € {1, ...,1}, pick an element
(ni,m;) in T?2 N Q;. Setting

S = {ni,mi: 1€ {17 7l}}’

we have, by construction, that S? C 72 and, for every i € {1, ...,1}, S N Q; is non-empty.
By Remark and Proposition m (3), we conclude that 72 is in X3 O

What is still to be determined is which are the points in X5** corresponding to closed
subsets which are not clopen. At this point, we are already able to answer the question
when the closed subset we consider is finite.

Definition 2.23. For any subset () of N?, we define the diagonal of Q as

A(Q) == {(n,n) € N*: (n,n) € Q}.
In particular, we use the notation A to refer to the diagonal of NZ.

Lemma 2.24. Fix a non-empty closed subset C' € nga. For every Q C N2, if C' N @ is
non-empty, then necessarily C' N A(Q) is non-empty.

Proof. Taking the negation of this statement, assume that there exists C € X3 and

o — —

Q C N2 such that C N Q is non-empty and C N (Q) is empty, that is, that C C A(Q)°.
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There cannot exist a finite subset S C N such that S? C A(Q)¢ and S$? N Q is non-empty.
By Proposition m (3), C cannot be in X3, which allows us to conclude. O

The previous lemma can already be used in order to tell whether some given closed
subsets of 3(N?) belong to X5

Example 2.25. Fix T a finite, non-empty, subset of N and o € *N2. Let us consider the
closed subset of 3(N?)
C:=T?U{a}.

We prove that C' is not in X5, Let us assume that C € X3. We are going to use
Proposition m (3). Fixn € T, and Q € a. Set Qp := A(Q)UT? Q1 := {(n,n)} and
Q2 := A(Q). By construction, it is clear that C is contained in @\0 and that @\1 has a non-
empty intersection with C. The fact that @\2 has a non-empty intersection with C' comes
from Lemma Applying Proposition [2.19| (3), there exists a finite subset S C N such
that S2 C Qq, and such that S? N @Q; and S% N Q2 are non-empty. Fix (m,m) in S N Q.
Since m ¢ T, n and m are not equal. Now, (n,m) is in S2, and thus in @y, which is not
possible since n € T'and m ¢ T. We conclude that C is not in X35

Proposition 2.26. The finite closed subsets C' € X3* which are not contained in N?
are exactly those of the form {a}, where o € *(Nz) is a free ultrafilter such that, for
every Q C N2, if Q € o, then A(Q) € o

Proof. First, we check that the closed subsets of the form {a}, where a € *(N?) is a free
ultrafilter as described in the proposition, are indeed in X5“. We do so by using the
characterisation of Proposition [2.19| (3). Consider a finite family of subsets Q, Q1, ..., Qu,
where ¢ > 1, which all belong to a. By definition of o, A(Q), A(Q1), ..., A(Q,) all belong
to «, and thus so does their intersection. Pick a singleton contained in this intersec-
tion. It provides a finite set-theoretic square that is contained in each of the subsets
Q,Q1,...,Q and allows us to conclude that {a} is in X5

Now, fix C € Xg * which is not contained in N2, and assume that it is finite. By
Proposition we now that Cont(C) is a set-theoretic square. Since C' is finite, and
not contained in N2, this means that there exists a finite subset 7' C N such that

C= '1/_'\2 U {041, veuy Ozg},

for some ¢ > 1 and, for every i € {1,...,£}, a; € *(N?). Let us assume that ¢ > 2. In what
follows, we construct a finite family of subsets of N?> which do not satisfy Proposition
2.19| (3), and thus prove that ¢ is necessarily equal to 1.

e By applying Proposition [1.19} we can construct ¢ pairwise disjoint subsets Q1, ..., Qy
of N2 such that, for every i € {1,...,4}, Q; € ;. We can assume, without any loss
of generality, that for every i € {1,....,4}, Q; N T? is empty. Indeed, for every
i€ {1,.,¢0}, (Q;\ T T?% Q5) is a finite partition of N2, thus exactly one of these
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three subsets is in «;. We know that Q¢ ¢ «, and that T2 ¢ «;, since «; is a free
ultrafilter: thus Q; \ 72 € «;.

e We prove that, for every i € {1,...,0}, A(Q;) € ay. Fix i € {1,...,1}. Since C' N Q;
is non-empty, then by Lemma we also have that C'N A/(\QZ) is non-empty. By
construction, A(Q;) has an empty intersection with 72. Also, as it is contained in
Qi, it has an empty intersection with every Q; with j € {1,...,¢} such that i # j,
and it cannot be in the corresponding «;. We conclude that A(Q;) € «;.

e We are now ready to apply Proposition m (3). We consider the subset

¢
Q:=T7U|]JA(Q),

i=1
which is, by construction, such that C' C @, and the / disjoint subsets A(Q1), ..., A(Qy),
which are such that the corresponding clopens all have a non-empty intersection
with C. By Proposition m (3), there exists a finite subset S C N such that
S? C Q and, for every i € {1,....,/}, S N A(Q;) is non-empty. In particular, pick
(n1,m1) € S2NA(Q1) and (ng,n2) € S2 N A(Q2). Since A(Q1) and A(Q2) are dis-
joint, we necessarily have that n; # no. Now, (n1,n2) has to belong to S2. This is
absurd, since it cannot belong to T2, neither to U, A(Q;).

We conclude that ¢ has to be equal to 1, and by Example 2.25] that T has to be empty.
O

From now on, we assume that the closed subsets C € V(3(N?)) we consider are not
contained in N2, and infinite. As we know, C is defined by the intersection of all the
clopen subsets Q of B(N?) such that C' C Q Let us resort, once again, to the insight
obtained by looking at finite words. In the case where C' = cm) for a finite word
w € A%, the subset ¢, ,(w) is a finite set-theoretic square. In particular, ¢, ,(w) cannot
be contained in a subset ) of N?> which contains no set-theoretic square. This remark
justifies the introduction of the following operator on P(N?).

Definition 2.27. For any subset Q of N?, we define the following subset of Q
R(Q) = U{SZ: S is finite and S C Q}.

We denote by Sg the subset of Py;,(N) of the finite subsets S C N such that 52 C Q.

We first prove that R is an interior operator on P(N?), which will be helpful in order
to understand the structure of the dual space X3

Lemma 2.28. The map R : P(N?) — P(N?) is an interior operator on P(N?), i.e it is
idempotent, monotone, and for every Q C N2, R(Q) C Q. Furthermore, R preserves
finite intersections.
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Proof. The fact that, for every ) C N2, R(Q) is included in @ is clear by definition. For
the monotonicity, for any subsets Q C Q' C N?, we have by definition of Sg and Sg that

R(Q) =J{5%: 5 € Sp)
CJ{S?: S eS8y}
= R(Q).

Finally, we prove the idempotence. For every Q C N?, by monotonicity, the fact that
R(Q) C Q implies that R(R(Q)) C R(Q), which gives one of the two inclusions. For the
other inclusion, we want to prove that R(Q) C R(R(Q)). Fix (n,m) € R(Q). Then there
exists a finite subset S C N such that n,m € S and S? C Q. Since, by definition, R(Q) is
the union of every finite set-theoretic square contained in ), we have that S C R(Q),
and therefore (n,m) € R(R(Q)). The fact that R reserves finite intersections follows
from the general fact that a system closed under infinite unions corresponds to an
interior operator (see [20], Theorem 7.3). O

The interior operator R plays a major role in our study. Fix C € X3*. We prove
that, in order to define C, it is actually enough to look at the clopen subsets containing
C for which the corresponding subset of N? is in the image of the operator R.

Proposition 2.29. If C € X3, then for every subset Q C N? such that @ contains C,
R(Q) also contains C.

Proof. Fix C € X3 and consider a subset Q of N2 such that C C Q. Consider the
colouring of N? into three colors

(R(Q), @\ R(Q), Q).

By applying Proposition [2.19)(2), there exists a finite word w € A* such that, in particular,
Ca,a(w) C Q. We want to prove that ¢, ,(w) C R(Q), in other words, we want to prove
that for any (i1,42) € caq(w), there exists a finite subset S of N such that (i,i2) € S?
and S? C Q. Now, fix (i1,i2) € N2 such that w[i1,is] = (a,a). Then (i1,i2) € Q, and
since w;, = w;, = a, we also have that (i1,141), (i2,72) and (iz,71) are in Q. We finally set
S :={i1,i2}, which allows us to conclude. O

2.4.2 Thick closed subsets

In this subsection, we construct different examples of closed subsets of 3(N?) in order
to build an intuition on a condition that would characterize the points of X5, Our study
eventually leads us to formulate Conjecture 2.40] We start by observing that the two
conditions that we introduced in Proposition [2.21] and Proposition [2.29 are insufficient

to characterise X;“, as we show in the following example.
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Example 2.30. Consider the family of subsets of N? obtained by removing finitely many
points out of the diagonal,
{A\ F?: F C N is finite}.

Note that this is a meet-semi lattice in P(N?) that does not contain the empty set: the
top element is A = A\ () and if F}, F; are two finite subsets of N, then

(AN F) N (AN FF) = A\ (FLU Bp)?,
where Fy U F, is still finite. Now, consider the closed subset of 3(N2)

Cay = ﬂ A\ F2.
FCN
F finite
First, we prove that Ca fin satisfies the properties introduced in Proposition @ and
Proposition 2.29, For the first property, we start by observing that, for every finite

subset I’ of N, we have

R(AN\F?) = R([J{(i.9)}) = A\ F~.

iEF

Now, for all Q C N? such that Cx i is contained in @ there exists a finite subset F* C N
such that

—

CAfm CA\FQ

IN
Q)

and since R is monotone,
A\ F?2 C R(Q)

which allows us to conclude. For the second property, let us pick an element

(n,m) € Cont(Cp,,,) = ﬂ A\ F?,

FCN
F finite

Then, (n,m) belongs in particular to A\ {n,m}?, which is absurd. We conclude that

Cont(Cx,,,) is the empty set, which is a set-theoretic square.
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10

Figure 11: A\ F, Q1 and Q),, with F' = {2,4,7,10} .

We now prove that Ca,,, does not belong to X3 by using Proposition W (3).
Denote by E, respectively O, the set of even, respectively odd, numbers in N. Set
Q1 := AN E? and Q» := A N O? which are disjoint. We know that Capn C A and we
notice that Ca,,, N Q1 and Ca,,, N Q1 are non-empty. A finite subset S C N which has
a non-empty intersection with both ()1 and ()> has at least two elements, since (); and
Q2 are disjoint. In particular, it cannot be contained in A. By applying Proposition [2.19]
(3), we conclude that Cy,,, is not in X5

Building on this last example, we understand that, whenever C' € X5 is infinite, the
clopen subsets @ which contain C all have to be "thick” around the diagonal, in a sense

that we formalize here-below.

Definition 2.31. For any n € N, we set

A" = J{i+k: 0< k <n}>
1€EN

In particular, for n = 0, we obtain the diagonal of N2, A? = A,
We say that a clopen K of 3(N?) is thin if, and only if, there exists n € N such that
KNN?C A"

We say that a clopen is thick if, and only if, it is not thin. More generally, we say that a
closed subset C' € V(3(N?)) is thick if C is an intersection of thick clopen subsets.
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Figure 12: A3.

Example 2.32. We review the closed subsets of 3(N?) we previously mentioned under
the light of Definition [2.31]

e A closed subset C' contained in N? cannot be thick. Indeed, C = Q for some
finite set Q of N2. Setting N := max(m (Q), m2(Q)), where 71,7 : N> — N are the
canonical projections, we have that Q C AV,

e The remainder *(N?) of 3(N?) is thick. Indeed, as we proved in Lemma a
clopen subset of 3(N?) contains *(N2) if, and only if, its content is cofinite. Now, it

is clear that a cofinite subset of N? is thick, which allows us to conclude.

e For any closed subset of 5(N) that is not contained in N, the closed subset C' @ C,
where ® has been introduced in Definition [1.27] is thick. Indeed, by definition of
C ® C, a clopen subset of §(N) contains C ® C' if, and only if, it is of the form r?,
where P C N is such that C C P.In particular, since C' is not contained in N, such
a subset P is necessarily infinite, which means that 1/3\2 is thick, and, a fortiori,
C ® C too.

e The closed subset Cp,, introduced in Example Cy,, is not thick. Indeed, it is

contained in ﬁ which is thin.

We shall prove that every infinite closed subset in X5 is thick.
Proposition 2.33. A closed subset C' € X5 which is infinite is necessarily thick.

Proof. Fix C € Xg “ which is infinite. Let us assume, by absurd, that C is thin. Then,
there exists n € N and Q C N? such that

—

CCQCcCAn

Since C is infinite, then by applying Proposition [I.I9 we can construct a family of
pairwise disjoint subsets Q1, ..., @, 1 of N? such that, for every i € {1,...n+1}, C'N @
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is non-empty. Since these subsets are pairwise disjoints, a finite subset S C N such
that S? has a non-empty intersection with every Q;, with i € {1,...,n + 1}, has at least
n + 1 elements. In particular, it cannot be contained in @, since () C A™. Therefore, by
applying Proposition m (3), we deduce that C' is not in X35, which is absurd: thus C
is thick. O

The notion of thickness does not suffice in order to characterise X;“. We con-
struct an example of a thick closed subset of 3(N?), which also satisfies the necessary
conditions introduced in Proposition and and yet, does not belong to X5

Example 2.34. Consider the two closed subsets of 3(N?)

Oy == (2N)2
and -
Cy:= (] AP

FC2N+1

F finite
where

AT — (AN (2N +1)%) \ F?,

and set

C :=C,UCy € V(B(N?)).

By definition, for every Q C N2, C C @ if, and only if, C; C @ and Cy C @ This is
equivalent to saying that, for every @ C N?, there exists a finite subset F' C 2N + 1 such
that

(2N)2 U AZTL C Q.

We prove that C is thick, satisfies the conditions from Proposition [2.29 and Propo-
sition and yet, does not belong to X3*°.

e We prove that C is thick. As we observed, every ) C N? such that @ contains C'
has to contain (2N)2. In particular for every n € N, A" cannot be contained in Q:
C is thick.

e We prove that C satisfies the condition introduced in Proposition Fix Q C N?
such that @ contains C'. As we mentioned, this is equi/vient to saying that there
exists a finite subset ' C 2N + 1 such that C C (2N)2 U A%N“ - Q We want to

—

prove that R(Q) contains C. First, observe that

R(eNZUART) = |J SPu U {G9)}=(EN)?uanth
SC2N 1€2N+1\F

In particular, since R is monotone, we obtain that the finite subset F* C 2N + 1 is
such that (2N)2 U A2 C R(Q), which ends to prove that R(Q) contains C.
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e We prove that C satisfies the condition introduced in Proposition 2.21] This is
clear, since Cont(C) = (C; NN?) U (C, N N?) = (2N)2.

We now prove that C' ¢ X5. Fix a two colours colouring (P, P») of 2N + 1 and set

Q:=(2N)2U (2N +1)2NnA)

Q1 Z:PfﬂA
Q2 ::PgﬂA
10 K K K K K
9 [ ]
8 K K K K K
7 ®
6 K K K K K
5 [ ]
4 K K K K K
3 @
2 K K K K K
8

1 2 3 o 5 % 1 % 9 Ao

Figure 13: @, Q1 and Qs.

We have that C' C @ and C' has a non-empty intersection with both @\1 and @\2
A subset of N? intersecting both Q; and Q> needs to contain an element (n,m), with
n # m and n,m € 2N + 1. In particular, it cannot be contained in ). We deduce that
there exists no finite subset S C N such that S? is contained in @ and has a non-empty
intersection with both @)1 and Q2. We conclude, by Proposition (3) that C does not
belong to X5

From Example [2.34 we derive the following insight. For any closed subset C € X5
that is not included in N2, if we fix a subset @ of N? such that @ contains C, and an
integer n € N, we need to pay a particular attention to the finite set-theoretic squares
S? contained in Q N A™.

Definition 2.35. For any Q C N? and for any n € N, we set
SQ,A” = {S S SQZ 52 - An},

where Sg has been introduced in Definition [2.27] In particular,

RQ=U U s

neN SQ,An
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For a fixed Q C N2, and a fixed n € N, we now introduce the two following subsets
of Sg an. First, we define 7, consisting of the finite subsets S C N such that S? is
contained in @), and there exists a finite square Tg contained in @ which contains S?
and is not contained in A"

Tom :=1{S € Sg.an: IT5 C Q such that S C Ts and T3 ¢ A™}.

Then, we define U ,, consisting of the finite subsets S C N such that 5? is contained in
@, and every finite square Tg contained in (Q which contains S? has to be contained in
A",

Ugn = So.an \Ton ={S € Sgan: VT3 C Q: (S C Ts = T3 C A™)}.

Example 2.36. For more clarity, we illustrate Definition 2.35 on a simple example.
Consider the subset of N?

Q={1,1D}u{22}u{1,9}U{4D}UN\{1,2})%

Notice that this is an union of finite set-theoretic squares, and thus R(Q) = Q. By
applying Definition [2.35) we obtain that

o Sgno={{i}:i=1}

o Som ={{1} {2 u{{i,i+1}:i >3}

o Soas = {1} {2 {14 U{{i;i+ 1,0+ 2,0 +3}: i > 3}
Also,

o Tono ={{i}:i# 2} and Ug po = {{2}};

o Tomr = {{UFU{{ii+1}: 7 > 3} and Ug i = {{2}};

o Tons = {{ivi+1,i+2i+3}:i >3} and Ugas = {{1}, {2}, {1,4}}.

10 [ ]

Figure 14: USeSQon S2, USeTQ,O S? and USEUQO s7.
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10 2 @

Figure 15: Jgcs

Q,Al

10

Figure 16: USESQ,AB 52, USeTQ,g 5% and USEMQ;% S

2 2
S2, USeTQ,l S and US@,Q1 S=.
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With these notations in mind, we prove the following statement, which can be un-
derstood as a refinement of Proposition Considering a clopen @ of B(N?) which
contains C, it allows us to obtain a clopen contained in E(a) which still contains C' by
removing certain infinite families of finite squares out of R(Q).

Definition 2.37. For any @ C N? and any n € N, we consider the following subsets of
R(Q):
Ripuna(Q) = {p € N*: 35 € Ugn,p € 5%}

and

an(Q) - R(Q) \ erjlound(Q)'

Proposition 2.38. Fix an infinite C € X5* and fix Q C N2 such that Q contains C.
Then, for every n € N,

—

an Rl?ound(Q) = (2)7

and, in particular, we have the series of inclusions

— — —~

C € B, Q) CR@Q) € Q

Proof. Consider an infinite closed subset C € X5“. Fix Q C N? such that @ contains C,
and assume, by absurd, that there exists n € N such that

—

an Rl?ound(Q) 7é 07

We prove that C' cannot satisfy Proposition 2.19] (3). First, recall that, by proposition

2.29, C' is contained in R/(Q\) Second, recall that, we proved in Proposition that C

is thick, and thus C has a non-empty intersection with N2/\\A”. Note that N2\ A" and
b una(@) are disjoints.

Now, applying Proposition [2.19| (3), there should exist a finite subset S C N such that

S? C R(Q), S ¢ A" and SN Ry, .(Q) is non-empty. Pick (i, j) in this intersection. By

bound
definition of R»

b und(@), (4,7) cannot be contained in a finite set-theoretic square which

is contained in @ but not contained in A”. Since S? is exactly a subset, of this form, and

that (i,7) € S2, we obtain the desired contradiction. We conclude that, for every n € N,

cn R;};nd\(@) =0,

o — ~

and since C C R(Q) C @, we conclude that

CCRL(Q) CREQ) CQ.

O

Example 2.39. Fix a closed subset C, € V((N)), and set C, , := C, ® C, as introduced
in Definition We prove that C, , is in X5 by applying Proposition (3). Fix a
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finite family of subsets Q, Q1, ..., Q; of N?, such that C, , C @ and, for every i € {1, ..., ¢},
Ca,a N Q; is non-empty. By definition of C, ,, there exists a subset P C N, with C;, C P,
such that

Coa CP2CQ.

In particular, for every i € {1,...,¢}, P2NQ; is non-empty: pick (n;, m;) in this intersec-
tion. The finite subset S := {n;,m;: i € {1,...,£}} is, by construction, such that S? C Q
and, for every i € {1,...,/}, S N Q; is non-empty. By Proposition m (3), we conclude
that C, 4 is in X5*

This last example allows us to formulate the following conjecture: the infinite closed
subsets in X5 consists exactly in the closed subsets of 3(N?) which can be written as

a product of an infinite closed subset of §(N) with itself.

Conjecture 2.40. An infinite closed subset C,, € V(B(N?)) is in X3 if, and only if,
there exists an infinite closed subset C, € V(5(N)) such that C, , = C, ® C,.

Conclusion of the chapter

In this chapter, we provided a detailed duality theoretic treatment of the Boolean algebra
of languages corresponding to Boolean combinations of sentences written by using a
block of k existential quantifiers, letter predicates, and uniform numerical predicates.
Several directions can be taken in order to continue this work.

First, pursuing the goal of Section 2.4} we still lack a necessary and sufficient condi-
tion which would allow for an explicit description of X3, This could be use to obtain a
different characterisation of X5, and, likely, X, which could deepen the understanding
we obtained on it via Proposition A natural thing to start with would be checking
whether Conjecture 2.40] is true.

Second, note that, in this thesis, we restricted our attention to subfragments of the
fragment BX[N]. This last fragment has been well studied in the case of regular lan-
guages, but still admits no satisfying duality-theoretic treatment. Also, it would be in-
teresting to understand the duality theory for Boolean algebras obtained by applying
a layer of existential quantifier to an arbitrary subalgebra of the Boolean algebra cor-
responding to quantifier-free formulas with k-ary uniform numerical predicates, and
letter predicates.

Another question that could be asked, and which it is necessary to solve in order to
understand FO[N], is how is it possible to take into account alternation of quantifiers.
The main ingredient that allows us to conduct our study in this thesis is the fact that a
block of existential quantifier commutes with finite disjunctions. However, it is not clear
how one can rely on our work to think about alternation of universal and existential
quantifiers. Understanding mixed steps of universal and existential quantification is
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a complex problem. We refer to [11] for an approach that tries to aim toward that
direction, and is based on substitution of formulas and transductions.

Finally, we made the assumption at the beginning that all of the numerical predicates
we consider are uniform. One could try to understand whether it would be possible to

build on our framework in order to think about arbitrary numerical predicates.



CHAPTER 3

Ultrafilter equations for the existential fragment of logic on words

In this chapter, we treat the topic of ultrafilter equations for the existential fragment
of first-order logic on words. Fix an integer £ > 1. In the previous chapter, we in-
troduced BX;[N}], a Boolean algebra corresponding to a certain fragment of logic on
words. This fragment corresponds to Boolean combinations of sentences defined by
using a block of at most & existential quantifiers, letter predicates and uniform numer-
ical predicates of arity | € {1,...,k}. We gave different characterisations of the dual
space associated to this Boolean algebra, see Proposition [2.7] and Proposition [2.14] As
we mentioned previously, there are few instances of computations of dual spaces cor-
responding to fragments of logic defined by languages that lie outside of the scope of
regular languages. There are even less instances of computations of a family of ultrafil-
ter equations which characterise a Boolean algebra of this kind. A question we want to
investigate the answer for in this thesis is whether one could obtain a good description
in terms of ultrafilter equations of the existential fragment of first-order logic on words

BS1[N] = | BS1INK],

keN

defined by considering numerical predicates of arbitrary arity. Recall that nullary nu-
merical predicates are all uniform. An important first step that should be made is to
obtain and understand ultrafilter equations for BX; [Ny, V] and BX1 [N}, for any k > 1.
An explicit basis of ultrafilter equations for BX; [Ny, N}'] is already available in [29]. How-
ever, the reasoning conducted there does not directly allow for a generalization for the
case k > 2, and therefore an extra step has to be performed in order to understand
the general case. Our contribution is a more topological presentation of the ultrafil-
ter equations for BX[Ny, N{]. We reduce the combinatorics that was involved in the
reasonings used to prove soundness and completeness in [29] to a bare minimum. In

87
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particular, our approach allows us to exhibit a basis of ultrafilter equations for BX{[N}].
The main ingredient we use from the previous chapter is the approach introduced in
Section [2.3] which involves finite colourings of N. This allows for a reformulation of the
ultrafilter equations from [29] in terms of the existence of a finite colouring of N which
satisfies certain properties.

Outline of the chapter: In Section we give a different presentation of the
Boolean algebras By, and By , for any k > 1, taking inspiration from the characterisation
of the points of the dual space X; we provided in Proposition In Section we
describe a general family of ultrafilter equations, which will encompass every equation
needed in order to describe B; and By ;. We then give a reformulation of this general
family of equations in terms of a condition relative to a finite colourings of N. This will
simplify the reasoning which will follow, and in Section [3.3 we use this reformulation in
order to show soundness and completeness for the equations we introduced to describe
Bi and By .

5.1 An alternative presentation for B, and B

In this section, we give a different presentation of the Boolean algebras Bj, and By,
for any k£ > 1, taking inspiration from the characterisation of the points of the dual
space X we provided in Proposition 2.14] This presentation, in terms of languages
associated to finite colourings of N¥, will greatly simplify the proofs of soundness and
completeness which will follow, and allow for an enlightening reformulation of the
ultrafilter equations we will consider.
Let us explain this setting in the case where k£ = 1. Let us look again at the languages
L%, where a € A and Q C N, introduced at the very beginning of Section @ Instead
of fixing a subset ( of N, a letter a € A, and considering the set of all words such that
there exists a position ¢ < |w| such that w; = a, we could rather fix a finite colouring of
N, and consider the words such that the content of w on each colour is exactly a given
subset of A. The languages that we obtain this way are related to the notion of profile
that we introduced in Definition [ﬂ__ﬁl and we prove that they allow for an alternative
description of the Boolean algebra By and By ;. This idea can be generalized for any
k > 1, and this motivates the introduction of the languages that we define here-below.
In the rest of the chapter, for any k& > 1, to mention a finite colouring of N* with

¢ > 1 colours, we use the notation Q = (Q1, ..., Q¢).

Definition 3.1. For any Q C N* and any B C A¥, we consider the language Kg g of all

words having content B on @,
Kgp:={weA*: (w,Q) = B}.

More generally, for any k,¢ > 1, any finite colouring Q of N* with ¢ colours, and for
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any family B = (Bi, ..., By) of £ subsets of AF, we consider the language of the words
having content on Q; equal to By, for every j € {1,...,¢},

I
Kopi=()Kqn;
j=1

Observe that these languages can be seen as the equivalence classes for a certain
equivalence relation on A*. Indeed, for any Q C N¥, we set

~q:= {(w1,ws) € (A*)Qi (w1, Q) = (w2,Q)}.

Now, for any finite word w; € A* setting B := (wj,Q), the equivalence class which

contains wq is
[w1]~Q ={wz € A": (w1, Q) = (w2,Q)} = {wz2 € A™: (w1,Q) = B} = Kq.B.

Note that this equivalence relation is finitely indexed, since P(A¥) is finite.
More generally, for any k£, ¢ > 1, and any finite colouring of N* with ¢ colours Q, we
set

l
~Qo= m ~Q;»
j=1

and an equivalence class for this relation corresponds to a language of the form K 0.5
for some B € P(A*)’. This equivalence relation is also finitely indexed, since P(A*)
is finite. These languages allow for a reformulation of the generators of the Boolean
algebra By, for any k& > 1, which will greatly simplify our considerations in the upcoming
sections.

Proposition 3.2. For any k > 1, the Boolean algebra B, is generated by the languages
Kg , where Q ranges over finite colourings of N* with ¢ > 1 colours and B ranges
over P(AF)L.

Proof. We know, by Proposition @that By, is generated by the languages LOaQ where @)
ranges over subsets of N* and a ranges over AF. First, we prove that these languages
can be expressed as a Boolean combination of languages of the form K, 5. Let us
consider the two colours colouring (Q, Q°). A finite word w € A* is in LOaQ if, and only

if, the content of w on @) does contain the k-tuple a, which allows us to write

Log = U (KosnEes)= U Kooomm)

acBCAk ae BC Ak
B/C Ak B/CAk
and allows us to conclude.
Now, we fix a finite colouring Q of N* with ¢ > 1 colours and B € P(4*)!, and we

prove that K5 p can be written as a Boolean combination of languages of the form L, .
’ Q
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First, note that, since

¢
Kop= ﬂ Kq;.B;,
j=1
we only need to prove the result for any K g, with @ C N* and B C A*. Now, we have

KQJ;Z{IUGA*: <w,Q>:B}
={weA:{ac A cz(w)NQ #0} = B}
:(ﬂ{weA*:cdw)ﬂ@#@})ﬂ(ﬂ{wGA*:ca(w)ﬂQ:@})

acB a¢B
- 7ﬂ LQ% ﬁ _ﬂ (LQ%)C
acB a¢B

which allows us to conclude. O

We give the analogous result for By, for any k > 1.

Corollary 3.3. For any k > 1, the Boolean algebra B ;. is generated by the languages
Lp and K 0.5 where P ranges over subsets of N, Q ranges over finite colourings of
N* with ¢ > 1 colours and B ranges over P(A¥).

Proof. Direct consequence of Proposition [3.2) and Corollary [2.6] O

3.2 A certain family of ultrafilter equations

In this section, we introduce a general family of ultrafilter equations on 5(A*) which will
encompass every ultrafilter equation we will require in order to describe By and By ;.
We then explain how that it is possible to reformulate these equations into a condition
that requires the existence of a certain finite colourings of N. This property will be our

main tool in order to check soundness and completeness in Section [3.3]

3.2.1 General setting

Let us start by defining the family of ultrafilter equations on 5(A*) which will be at the

center of our study. For any k,n > 1 we use the notation A* @ (N¥)" in order to refer

to A* ® (N* x ... x N¥) introduced in Section [1.4.2
N———

n times

Definition 3.4. For any k,n > 1, any finite family of maps p1,...p, : A* ® (NF)* — NF
and u,v : A* ® (NF)* — A*, we denote by £PL:-P» the family of ultrafilter equations

Bu(v) < po(v),

where v ranges over all elements of 3(A* ® (N*)") such that

Bp1(v) = ... = Bpa(v).
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The ultrafilter equations we use in order to describe B; and By are all particular
instances of the ones introduced in Definition [3.4} Let us provide some intuition behind
these equations. The Boolean algebra By corresponds to BY; [Ny, N}, the Boolean
algebra of languages corresponding to Boolean combinations of sentences written by
using unary uniform numerical predicates, and letter predicates. It has been proven in
[29], Theorem 5.16, that BX; [Ny, V] N Reg, the Boolean algebra of regular languages
in B[Ny, N}!] is described by the profinite equations

(7 1s) (27 ) = (27 ) (2 1s) and (27 1s)? = 2@ L5,

for x,s,t words of the same length. The profinite monoid on A* is a compactification
of A* which embeds in §(A*), and thus the ultrafilter equations we want to obtain are,
in a sense, a generalization of these profinite equations to the setting of ultrafilters.

In general, for any function f: X — K from a set X to a compact Hausdorff space
K, there exists a unique Sf : X — K that is continuous and extends f. Therefore, in
order to define any such continuous function on X, it suffices to just define it on X.

For any k > 1, any finite word w € A*, any k-tuple of letters a € A* and any family
of distinct integers j € |w|¥, we define

w(j — a)

to be the word obtained by replacing, for any m € {1, ..., k}, w;,, by a,, in w. This allows
us to define the map f; : A* ® N¥ — A* as follows: for any (w, j) in A* @ N¥,

fa(w,j) :==

_ {w(} — a) if all of the j,,, for m € {1, ..., k}, are distinct

w otherwise

and its continuous extension Bf; : B(A* ® N¥) — 5(A*). Following the ideas introduced
in Section we see elements of 3(N¥) as generalized k-tuples of position. In particular,
it is not equivalent to consider a generalized word with a k-tuple of positions, that is, an
element of 3(A* ® N¥), and a generalized word with a generalized k-tuple of positions,
that is, an element of 3(A*) x §(N¥). If we want to consider the generalized k-tuple of
positions associated to v € 3(A* ® N¥), we look at the ultrafilter f7(v) € 3(N¥), where
7 : A* @ N¥ - N* is the canonical projection.

We now introduce the generalization of the profinite equation (x%~1s)(z*~!t) =
(z*~1t)(2*~1s), for x,s,t words of the same length, to the ultrafilter setting.

Definition 3.5. For any a,b € A, we consider the map f,; : A* ® N> — A*, which sends
any (w, j1,j2) € A* @ N2 to

w((j17j2> — (a>b)) if J 7é J2

w otherwise

fa,b(w7j17j2> = {
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We denote by 71,1 : A* @ N2 — N the canonical projections on the first and second co-
ordinate. Finally, for any a,b € A, we denote by £,,—, the family of ultrafilter equations

E}ral ’b”]%b ,asin Definition

The following equations will be required in order to describe By ;.

Definition 3.6. For any a,b € A, we consider the map f,,p : A* ® N3 — A*, which
sends any (w, j1, j2,j3) € A* @ N3 to

w((j17j27j3) — (aaavl))) if J1 7&]2 7&]3

w otherwise

fa,a,b(w7j17j27j3) = {

We denote by 71, m, m3 : A* ® N> — N the canonical projections on the first, second and
third coordinate. Finally, for any a,b € A, we denote by &,.p—aup the family of ultrafilter

equations 5;:1 ’”j’;f?’b , as in Definition
a,a,brJa,b,

Finally, we will need this last set of equations in order to describe B;.

Definition 3.7. For any a € A, we consider the map f, : A* ® N — A* which sends any
finite word with a marked position (w, ) to w(i — a), and the map f,.a : A* @ N — A*
which sends any finite word with a marked position (w,7) to w(i — a).a.

We denote by 7 : A* @ N — N the canonical projection and || : A* ® N — N the map
that sends (w,i) € A* ® N to |w|. Finally, for any a € A, we denote by &,—,, the family
of ultrafilter equations 5}2[}@_(1 as in Definition

Our goal in the upcoming sections will be to prove the following results.

Theorem 3.8 ([29], Theorem 4.7). A language L C A* is in By, if, and only if, L
satisfies the families of ultrafilter equations E,y—p,, and Egup—ary, fOr every a,b € A.

Theorem 3.9. A language L C A* is in By if, and only if, L satisfies the families of

ultrafilter equations Ep—pa, Eaab—abp ANd Eq—q.q, fOr every a,b € A.

The first of these two results has been proven in [29]: we briefly describe the ap-
proach that was taken. Let us focus on the proof of completeness, as it is the most
difficult part of the problem. Fix a language L C A*. A permutation o with finite sup-
port is said to be compatible with L provided that, for all w € A*, if the support of ¢ is
contained in {0, ..., |w| — 1}, then w is in L if, and only if, the word obained by applying
o to the set of positions of w, and permutting the letters of w accordingly, is in L. We
now define a binary relation R; on N as follows: ¢Ryj if, and only if, the transposition
(1) is compatible with L. They observe that, if L satisfies the family of ultrafilter equa-
tions (Eap=ba)a,pca, then Ry, contains an equivalence relation of finite index. Let 6 be an
equivalence relation of finite index contained in R;, . They prove that, if L also satisfies
the family of ultrafilter equations (E,ap=abb)abca, then there exists n € N such that for
all u,v € A% if |u] = |v|, and for each #-equivalence class P, u ~p v (see Definition
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[3.1]) then w is in L if, and only if, v is in L. The proof of this statement involves thor-
ough reasonings about finite structures. This defines an equivalence relation on A*, and
they conclude the proof by showing that L can be written as a Boolean combination of
languages defined by using some of the equivalence classes for this relation.

Our approach for the proof is different, in the sense that it keeps the combina-
toric reasonings to a minimum. We replace the intermediate steps from [29] that we
just described by a complete reformulation of the ultrafilter equation. By using finite
colourings, we are able to obtain a characterisation where ultrafilters do not intervene
anymore: this allows to reason, most of the time, with finite words instead of ultrafil-
ters on words. The advantage is two-fold: first, we can more easily apply the intuition
we have on the problem from finite words, and second, we avoid the difficulties that
can happen whenever conducting proofs relative to ultrafilters. This reformulation was
sufficient for us to build enough intuition to come up with Theorem [3.9} and giving a
straight-forward proof of both completeness and soundness.

3.2.2 Ultrafilter equations in terms of finite colourings

In this subsection, we present a reformulation of the equations introduced in Definition
[3.4] in terms of finite colourings. First, we prove a technical lemma that allows for a
rephrasing of one of the conditions involved in Definition [3.4]

Lemma 3.10. For any k,n > 1, consider an ultrafilter v € 3(A* ® (N¥)*) and a family
of n maps p1, ..., pn : A*® (NF)" — N*. For any o € 3(N¥), the following statements are
equivalent.

1. For every j € {1,....,n}, Bp;(v) = a.
2. For every Q) € q, ?zlpj’l(Q) € v.

Furthermore, these conditions hold for v with respect to some « if, and only if, for
every finite colouring Q = (Q1, ..., Q) of N¥, where ¢ > 1, we have

Also, for any two finite colourings Q = (Q1,...,Q,) and Q' = (@}, ..., Q) of N¥, where
¢,0' > 1, there exists a finite colouring Q" = (Q}, ..., Q}.) of N¥, where (" > 1 such that

£ n ¢ n " n
UNpt@)nlUNet@)=UNp @)
i=1j=1 i=1j=1 i=1j=1
Proof. For (1) implies (2), let us assume that, for every j € {1,...,n}, 8p;(v) = a. Then,
for every j € {1,..,n}, and every ) € «, we have pj_l(Q) € v, which implies that
i1 pj_l(Q) cv.
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For (2) implies (1), fixing j € {1,...,n}, we prove that o C fp;(v), which is enough to
prove that they are equal since ultrafilters are maximal for inclusion. Fix Q € o. By (2)
we have that NJ_; p; (Q) € v, and since (N}, p,*(Q) C pj_l(Q), we deduce by the fact
that v is an up-set that pj*l(Q) € v, and thus that Q € Sp;(v).

We now treat the last assertion. On the one hand assume that there exists a € 3(NF)
satisfying (2). Since a is an ultrafilter, for every finite colouring Q = (Q1, ..., Q) of NF,
where / > 1, there exists k € {1, ...,/} such that Q € a. Therefore, (j_; pj_l(Qk) €v,

and since
n { n

Nt @r) < U Np @)

j=1 i=1j=1
we deduce by up-set that this last subset belongs to v.

On the other hand, assume that for every finite colouring Q = (Q1, ..., Q) of N*, where
L>1, Ule Nj=1 p;l(Qi) is in v. We need to prove the existence of an ultrafilter o € 3(N¥)
such that (2) holds. We set

a:={Q C N*: ﬁpj_l(Q) € v}.

We prove that « is an ultrafilter. First, since v is an ultrafilter, it does not contain
the empty set, and thus a does not contain the empty set. Also, since inverse image
preserves finite intersections and inclusion, we deduce that « is indeed a filter on N*.
Furthermore, for any Q C N*, (Q, Q°) is a finite colouring of N¥, thus, by (3),

This union being disjoint, and v being an ultrafilter, we deduce that exactly one ele-

ment in {(}_, pj’l(Q), fa pj’l(Q)} belongs to v, in other words exactly one element in

{Q,Q°} is in a.

Finally, we prove that

{ n

{U ﬂ p]-_l(Qi): (Q1,...,Qy) is a finite colouring of N ¢ > 1}
i=1j=1

is closed under intersection. Fix (Q1,...,Q¢) and (Q/, ..., Q) two finite colourings of N,
for some ¢,/ > 1. We consider a finite colouring which refines both Q and Q’: Q" =
(Q7;) 1zi<¢, the finite colouring of N, such that, for every (i,j) € {1,...,£} x {1,...,¢'},

1<5<e

Qi == QiN Q.
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We obtain that

U ﬁp}l(Q;fj): U ﬁpfl(QiﬂQ})

1<i<e j=1 1<i<e j=1
1< < 1<j<e

= U N@H@Q)ne; Q)

1<i<e j=1
1<5<e!

- U Nr'@n U Net@).

1<i<e j=1 1<i<e j=1
O

We now treat the other condition involved in the definition of the family of ultrafilter

equations £PL;-Pr from Definition [3.4} that is

L= (Bu(v) < pu(v)).

For any set S, and any two subsets 77,75 of S we denote by T1 AT, their symmetric
difference, that is the subset of S such that, for any s € S, s ¢ T1AT; if, and only if the
condition

seTi <= seTh

holds.

Lemma 3.11. For any set S, any two subsets T}, T, C S and any ultrafilter v € 5(S5),

the following conditions are equivalent.
1. T1 € v if, and only if, Ts € ~.
2. (TlATQ)C €.

In particular, for any k,n > 1, consider an ultrafilter v € B(A* @ (NF)*), two maps
u,v : A* ® (NF)» — A*, and a language L C A*. Then, L satisfies the ultrafilter
equation fu(v) <+ pv(v), if, and only if Er,,, € v, where

EpLuw = {(w,i1, ..., in) € A* @ (N¥)": u(w, i1, ..., in) € L <= v(w, i1, ..., 0n) € L}.

Proof. Let us assume that 77 € v if, and only if, 75 € ~. Since ~ is closed under finite
intersections, this last statement is equivalent to saying that 71 N7y € v or IT N Ty € 7,
and thus, since ~ is an ultrafilter, equivalent to (71 NT%) U (T¥ NTs) € 7. By definition of

the symmetric difference,
TlATQ = ((Tl N T2) U (Tf N TQC))C,

thus this is equivalent to saying that (77AT3)° € ~.
The final statement is a simple application of this result for S = A* ® (N*)*, Ty = v~ (L)
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and Ty = v 1(L). O

We are now ready to give a reformulation of the equations of Definition [3.4]in terms
of a condition relative to finite colourings of N¥,

Proposition 3.12. For any k,n > 1, any maps p,...,p, : A* ® (N*)» — N* and u,v :
A* ® (NF)" — A*, a language L C A* satisfies EPL;+Pn if, and only if, there exists a
finite colouring Q = (Q1, ..., Q;) of N* for some ¢ > 1 such that

Proof. For any language L C A%, to satisfy the ultrafilter equation £FL;;~P» amounts to

the following condition.

Vv € BA* @ (N*)™), [Bp1(v) = ... = Bpa(v) = (L = Bu(v) ¢ Bo(v))].

By applying Lemma [3.10] and Lemma [3.11] we can reformulate this condition as
follows.

{ n
Vv € B(A*@(NF)), ({U ﬂ pj_l(Qi): (Q1,...,Qy) is a colouring of N*,/ > 1} C v — Epuv €V)
i=1j=1

In particular, we know that a filter is the intersection of all of the ultrafilters which
contain it. Therefore, since Lemma [3.10] allows us to consider the filter

L n
F = T{U ﬂ pj_l(Qi): (Q1,...,Qy) is a finite colouring of N¥, ¢ > 1},
i=1j=1
we can simplify our condition into F; ,, € F, that is, there exists a finite colouring
Q= (Q1,...,Qp) of N* for some ¢ > 1 such that

L_J m p]_l(Qz> g EL,u,v-

O

Let us assume that a language L satisfies two families of ultrafilter equations, EL;Pn
and ES};;ZP"'. By applying Proposition [3.12} this is equivalent to assuming the existence
of two finite colourings Q = (Q1,...,Q,) and Q@' = (Q1,...,Q}), for some ¢,¢' > 1, such

that
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and
o n
U NE)™HQ) S Eruww-
i=1j=1
Now, considering a common refinement Q" = (QY, ..., Q},) of the two colourings Q

and @/, for some ¢’/ > 1, we obtain in particular that

¢ n

U Nr @) S Brue

i=1j=1

and
" n

U ﬂ (p‘/j)il( {L/) c EL,u’,v’~

i=1j=1

This allows for a reformulation of the ultrafilter equations introduced in Definition

3.5 [3.6] and 3.7}

Corollary 3.13. For any language L C A*, the following statements hold.

1. L satisfies Ep—pe and Equp—ary, for every a,b € A, if, and only if, there exists a
finite colouring Q = (Q1, ...,Q¢) of N, with ¢ > 1, such that, for every a,b € A,

0 *
{ =1 A ® Qg g Evaa,bafb,a
Uf:l A* ® QEL3 g Evaa,a,bvfa,b,b

2. L satisfies Eqp—pas Eaap—apy ANd Eq—q.a, for every a, b € A, if, and only if, there exists
a finite colouring Q = (Q1, ...,Qy¢) of N, with ¢ > 1, such that, for every a,b € A,

Uf:l A*® Q12 < Evaa,b:fb,a
Uf:l A* ® Q’? g Evau.,a,bvfa,b,b ’
Ufil LQz ® Ql g EL,fa,faAa

where, for every i € {1,...,(},

LQi R Q; = {(w,]) € A" ®N: j € @Q; and |’LU‘ S QZ}

Example 3.14. As a first application of these reformulations in terms of finite colouring
of N, we check that the couples of ultrafilters in the family £,,—p,, for every a,b € A are
indeed in the kernel of the continuous quotient ¢ : §(A*) — X3, dual to the canonical
embedding B; — P(A%).

Recall that we proved in Proposition [2.7]that the map ¢ sends any ultrafilter v € 3(A4*)
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to the family of closed subsets (C4(7))4ca, Where, for every d € A,

L4 €y
0a)

Now, fix a,b € A, and consider v € 3(A* ® N?), such that 37 (v) = Bma(v): we prove that
Bfap(v) and Bfy o(v) have the same image under ¢. Fix d € A. First, note that

Ly € Bfap(v) = f;(}(LDé) €v
= {(w,j1,52) € A" ®N*: w((j1,52) = (a,b)) € Ly } € v

= {(w,1,52) € A" @ N2 ca(w((j1, j2) = (a,b)) € Q} € 1.

Now, since 87 (v) = Bm2(v), we use Lemma with the colouring (Q, Q°) of N, and
we obtain that
(A"} u(A* @ (Q)) e .

Therefore, by intersection,
{(w, j1,j2) € A* @ N*: cq(w((j1,j2) = (a,b))) CQ} € v

is equivalent to

{(w,j1,42) € A* @N?: j1, 52 € Q and cq(w((j1,52) — (a,b))) € Q}U
{(w,j1,42) € A* @ N?: j1, ja € Q° and cq(w((j1,j2) — (a,b))) C Q°} € v.

Finally, observe that, for any ji, j> € @,
ca(w((J1, j2) = (a,b))) = ca(w((j1, j2) — (b;a))),
and the same holds for any ji, jo € Q°. This allows us to prove that, for any d € A,
Loy € Bfas(v) <= Loy € Bfoalv),

and thus, for every d € A, Cy(Bfap(v)) = Ca(Bfap(v)) which means that ¢(8f,5(v)) =
q(Bfp.a(v)).

3.5 A topological proof for ultrafilter equations on B, ; and 5;

In this section, we explain how it is possible to use Corollary [3.13 in order to show
that the ultrafilter equations we introduced in Definition [3.6] [3.6) and [3.7] allow for a
description of By ; and B;.
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3.3.1 Soundness

We start by proving that the Boolean algebras B, ; and B; satisfy the family of equations
we introduced in Section[3.2 The reformulation of these equations we gave in Corollary
[3.13] combined with the knowledge of the family of generators that we introduced in
Proposition [3.2] and Corollary [3.3] for the Boolean algebras enables us to check it in a

straight-forward fashion.
Proposition 3.15. Let L C A* be a language, then:

1. if L is in By 1, then L satisfies the ultrafilter equations in the families E,,—p, and
5aab:abb’ fOY’ every a, be A;

2. if L is in By, then L satisfies the ultrafilter equations in the families E,p—pq,
gaab:abb and ga:ala; fOI" every a, be A

The idea behind this proposition is the following. All of the ultrafilter equations we
introduced can be reformulated in terms of a condition that holds for a certain finite
colouring of N. This condition involves some finite words, and some of their positions.
We check that the properties hold for finite words, and that this allows for the property
to transfer at the level of ultrafilters.

Proof. (1): By Corollary we know that By ; is the Boolean algebra generated by
the languages Lp and K, 5 where P C N, Q is a ¢ colours colouring of N for some
¢>1,and B € P(A)". Therefore, it is enough to prove that these languages satisfy the
ultrafilter equations in question. We do so by using the reformulation of these equations
introduced in Corollary 3.13] Fix P C N, and a,b € A, and consider the two colours
colouring (P, P¢). Fix (w, j1,j2) € A* @ P2. We have that

w((j1, j2) = (a,)) € Lp <= [w((j1,j2) = (a,b))| € P
> |w((j1,42) = (b,a))| € P

> w((j1,j2) = (b,a)) € Lp.
Since the same reasoning holds for any (w, ji, jo) € A* ® (P€)?, we have that
(A" ® P?) U (A" ® (P°)°) C BLfy . foas

and we conclude by Corollary [3.13] that Lp satisfies the ultrafilter equation &,p—p,. We
prove, in the exact same way, that Lp satisfies the ultrafilter equation &,,p—qp: the
argument holds since, for any (w, ji, jo, j3) € A* ® N3,

| fa,ab(w, 71, J2, 33)| = |w| = | fapp(w, j1, 2, j3)l-

Now, fix a finite colouring Q of N with ¢ colours, where ¢ > 1, B € P(A)! and a,b € A.
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Let us start by proving that

J4

* 2
U A 02y Q’L g EKQvafa,bvfb,a'
i=1

Fix i € {1,...,¢}. We prove that every (w, ji,j2) € A* ® Q7 belongs to Exy gfonfra ON
the one hand, notice that, for every i’ € {1, ..., ¢}, with i # i/, the content of w((j1, j2) —
(a,b)) on @y is the same than the content of w((j1,j2) — (b,a)) on Q;: indeed, they are
both equal to the content of w on Q. On the other hand, the content of w((j1,j2) —
(a,b)) on Q; is the same than the content of w((j1,72) — (b,a)) on Q;: we only switched
the letters at position j; and j5, which does not add nor remove any letter out of the
content on Q;. We deduce that, for every i € {1,...,(}, A* ® Q? C EKy 5. fapfo.qr thus

14

2
U A* ® QZ g EKQyB,fa,b7fb,Ll7
=1

and we conclude by Corollary that Ky 5 satisfies the ultrafilter equation &,,—pq-

The argument is almost exactly the same to prove that K, ; satisfies the ultrafilter
equation E,qp—app- Fix i € {1,...,¢}. We prove that every (w, j1, jo, j3) € A* ® Q3 belongs
10 By 5.fuapifapye ON the one hand, notice that, for every i’ € {1,..., £}, with i # ¢/, the
content of w((j1, j2,73) — (a,a,b)) on Q; is the same than the content of w((j1, jo, j3) —
(a,b,b)) on Q;: indeed, they are both equal to the content of w on @;. On the other
hand, the content of w((j1,J2,j3) — (a,a,b)) on Q; is the same than the content of
w((j1,72,73) — (a,b,b)) on @Q;: we only replaced the occurrence of a available at the
position jo € @Q; by an occurrence of b, which was already available at the position
j3 € Q,;. The letter « is still available at the position j; € @;: the content on (); has not
been altered. We deduce that

¢

Jae)c EK o 5o fasapfaps:

i=1
and we conclude by Corollary @] that K  satisfies the ultrafilter equation Eqap=abb-
(2): By Corollary[3.3] we know that B; is the Boolean algebra generated by the languages
Kg p, where Q is a ¢ colours colouring of N for some [ > 1, and B € P(A). By (1),
we only need to prove that the languages of this form satisfy the ultrafilter equations
Ea=a.a» fOr every a € A. By Corollary [3.13] we do so by proving that

¢
U L. ®Qi C Exy 4 fufaa
i=1
Fix ¢« € {1,...,£}. We prove that every (w,j) € A* ® Q; such that |w| € Q; belongs to
EKQ 5farfaa- On the one hand, notice that, for every i’ € {1,...,0}, with i # ¢/, the content
of w(j — a) on @y is the same than the content of w(j — a).a on @y, since |w| does



3.3. A topological proof for ultrafilter equations on By and B; 101

not belong to ). On the other hand, the content of w(j — a) on Q; is the same than
the content of w(j — a).a on @Q;: the only difference between these two words is the
presence of one more occurrence of a on a position which belongs to @);, but since
Jj € @y, the letter « is already present in the content of both oh these words on @;. We

deduce that ,

U Le. ® Qi € Exy 5 furfuas
i=1

and we conclude that K 0.5 satisfies the ultrafilter equation &,—, ,. O

3.3.2 Completeness for 5,

We prove that the languages satisfying the family of ultrafilter equations E,p—pa, Eaap=abd
and £,—..q, for every a,b € A, all belong to B;. In order to do so, we use the presentation
of B; we provided in Proposition[3.2] As explained in Section[3.1} the languages generat-
ing B; are of the form K 5, where Q is a finite colouring of N with ¢ colours, for some
¢>1,and B € P(A)g. For a fixed finite colouring O, the finitely indexed equivalence
relation ~¢ introduced in Section gives a finite partition of A*. We prove that, if a
language L C A* satisfies all of our ultrafilter equations, then it is possible to find a finite
colouring Q such that L can be written as a finite union of some of the equivalence
classes for ~g.

We start by detailing the situation when the colouring in question only has two
colours in the following Lemma. We then generalize the argument to any finite colour-

ing of N in Proposition

Lemma 3.16. Let L C A* be a language satisfying E.p—pa, Eaab—ary ANd Eq—q.q, for
every a,b € A. Let us consider a finite colouring Q of N satisfying the condition from
Corollary (2), and assume that Q = (Q, Q°) for some Q C N. Then, for any words
w,w’ € A* such that w ~g w’ and, for every i € Q°N {0, ..., min(Jw|, |w’

) — 1} wi = wj,
we have that
we L+« w e L.

Since the proof is quite technical, we give an overview of our proof method. First,
we have to provide some intuition about how we can use the ultrafilter equations we
required in Lemma We do so for the ultrafilter equations (E,p—pa)apca. Let us
assume that a language L satisfies &,,—p., for every a,b € A. Let us consider a finite
colouring @ of N satisfying the condition from Corollary (2), and assume that
Q = (Q,Q°) for some @ C N. Fix two integers i,j € @ and a word w such that
lw| > mazx(i, j). Since L satisfies, in particular, £,u;=w;w,;, Corollary[3.13(2) implies that
(w,4,j) € Ey, Fus iy fuy o that'is, wis in L if, and only if, the word obtained out of w by
exchanging w; and w; is in L. We can keep on applying this reasoning to construct a
word v’ that is in L if, and only if w is in L and such that:

e v’ and w have the same length;
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e for every i € Q°, w; = wi;
e for every a € A, and every i € Q, |w|, = |[W'],.

This is the main idea we use. In Lemma in order to prove that w is in L if, and
only if, w’ is in L, we will construct a family of intermediate words vy, ..., v,, for some
n € N. Setting vy := w and v,,41 := w’, we will prove that, for every i € {0,...,n},v; € L
if, and only if, v;11 € L. These intermediate words will be constructed out of w, using
the ultrafilter equations we introduced, and will all have the same content than w on @
and on Q°.

Proof. We consider a language L C A* such that there exists @) C N such that, for every
a,be A,
(A*® Q%) U (A" ® (Q)*) C EL fy foas

(A* ® QS) U (A* ® (Qc)g) g ELyfa,a,bvfa,b,b’

and
(Lo®Q)U (Lo ® Q°) C ELf, fu.ar

We consider two finite words w,w’ € A* such that w ~g w' and for every i € QN
{0, ...,min(jw|, |[W']) — 1}, w; = w}. We set N := min(Jw|, |w’|). We want to prove that w
is in L if, and only if, v’ is in L. In order to do so, we start by defining the following
families of endofunctions of A*.

METE = {272 f472): j1,d2 € QN {0,...N — 1},a,b € A},

where, for every ji,j2 € @QN{0,..., N —1}, and every a,b € A, glb’j"’ : A* — A* sends any
finite word v to f, (v, j1, j2) if (v,71,72) is in A* ® N?, and to v otherwise. We define in

an analogous way

Mg(,llbzabb — {( J17]2»J3’ 5}1;757]3): J1, 42,93 € QN {0’ N — 1},a,b c A},

a,a,b

ng“él ={( gl,fgl.a): j1€Qn{0,...,N—1},a € A},

and
M - Mab:bauMaabzabbuMa:a.a
£,1,Q - £1,Q £1,Q £1,Q -

Now, let us assume that there exists n € N, that there exists a family of pairs of
maps (fm,9m)1<m<n and a finaly, that there exists a finite sequence of words (v, )1<m<n,
satisfying the following properties:
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1. vy = w and v, = v’;
2. me{1,...,n}, (fm,gm) € Me10
3. for every m € {1,....,n}, fm(vm) = Um;

4. for every m € {1,....n — 1}, gm(vm) = vmy1, and

gn(”n) = Unp.

In particular, if we denote composition of maps by (), we would have that

and therefore by Corollary (1), we are able to conclude that w is in L if, and only if
w’isin L. The end of this proof describes how it is possible to construct n, (fi, gm)1<m<n
and (v )1<m<n, satisfying ().

We start by treating the case where w and w’ have the same length, that is N. In

that case, there exists n1,...,n, < N for some p € N such that

QNA{0,....N =1} = {ni1,...,np},

and we consider the finite words wg := wy, ...w,, and w|’Q 1= W, ..wy, . We assumed
that w ~q w', thus we set B := (w,Q) = (v’, Q). Notice that w)p and w|’Q are equal if,
and only if, w and v’ are equal.

First, assume that each letter in B occurs exactly once in wiQ and w" 0" In that case,
these two words only differ by the order of their letters, and so do w and w’. If w|Q and
w|’Q are the same word, then we are done. Otherwise, there are at least two distinct
letters a,b € B which occur in w)p and w|’Q, and yet do not occupy the same position
in both words. We thus consider the unique integers s;, s and t,t3 in {ny,...,n,} such
that w,, = wp, = a and w%SQ = w;tQ = b, and we know that (s1,s2) # (t1,t2). Then,
w = fap(w,ngs,,ny, ) and the word wy = f, 4(w, ns,, 1y, ) is such that the positions of the
occurrences of a in w; coincide with the one of w’. Since any permutation on a finite
set can be written as a finite product of transpositions, we can iterate this reasoning
finitely many times, and eventually construct a finite family (fp, gm)i1<m<n C Mgbf 22‘1
and a finite sequence of words (v,,)1<m<n for some n € N satisfying ().

Now, assume there exists a letter which occurs strictly more than once in wig or w|’Q,
say w)q without any loss of generality. If, for every a € B, |wigla = |w/gla, then these
two words only differ by the order of appearance of each of their letters. By applying a
similar reasoning to the case where wiQ and w|’ 0 have exactly one occurrence of each
letter in A, we can construct a finite family (f,,, gm)1<m<n C M%blzg)“ and a finite sequence
of words (v, )1<m<n, for some n € N satisfying the four conditions we mentioned. Else,

there exists a letter a € B such that |w|gl, # ]wl’Q

a 8aY |wigls > \w|’Q|a without any loss
of generality. Pick ng, ,ns, € {ni,...,n,} distincts such that w;, = w;, = a. Now, since
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w) and w|’Q have the same length, there exists a letter b € B with |w|g[s < \w|’Q » and

b # a. Of course, since w ~¢ w', there exists ng, € {n,...,n,} such that w;, = b. Then,
W = foap(w,ns Ny, Nsy) and the word wy = fpp(w, ns, , ns,, N, ) satisfies the following

properties:
& W~ Wl
e for every i € Q°N{0,...., N — 1}, (w1); = w;;
e by Corollary (2), w is in L if, and only if, wq is in L;
o |wil, = |wl, — 1.

We can keep on using this argument, until we obtain a word which brings us back to
the case where |w |, = |w|’ Q|a- By applying this argument to every letter of the alphabet

A, we construct a finite word w” € A* such that w” ~g w’, for every i < N, w] = w)}

and, for every a € B, w’é]a = ]w"Q\a: this situation has already been treated previously.
Finally, let us treat the case where w and w’ do not have the same length.
Without any loss of generality, let us assume that |w| < |w’|. We are going to prove
the following statement: for any n € {|w|,...,|w’|}, there exists a finite word v € A*

satisfying the following conditions:
o |v|=n;
e w e Lif, and only if, v € L;
e v ~gw and, for every i € Q°N{0,...,n — 1}, w}, = v;.

Proving this is enough for us to conclude. Indeed, this will mean, in particular, that there

b

wh = w! = w;, W ~g w ~g W, and w” € L if, and only if, w € L, thus if, and only if,

exists a word w”, with same length than w’, such that, for every i € QN {0,..., |w’

w’ € L. We will then be able to use the reasoning conducted at the very beginning of
the proof to w” and w/, as they have the same length.

Let us now prove the statement. For the base case, that is, when n = |w|, we can use

the word w, as it is trivial that it satisfies the condition we require. For the induction step,
let us assume that there exists a finite word v with length n € {|w|, ..., |w'|} satisfying the
conditions we require. We will use this word to construct a word which also satisfies
these conditions, and has exactly one more letter than v.

Since (@, Q°) is a colouring of N, we make a case distinction depending on which
color |v| belongs to. If @ N {0, ..., |v| — 1} is non-empty, pick an integer m in this subset,
and set

- {vm if [v| € Q
© w|’v‘ if [u] € Q°or @QN{0,....[v| -1} =0
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and
, m if jv] € Q
j=
lv| if [v] € Q° or QN {0, ....[v]| =1} =0

Since (v, j) belongs to (Lo ® Q) U (Lge ® Q°), we have by Corollary (3) that v is in L
if, and only if, v.a is in L. Observe that, by construction, w ~g v ~g v.a, and for every

i€ Q°NA{0,...,n},w, = (v.a);. This allows us to conclude the induction. O

We now generalize the argument to any finite colouring of N.

Proposition 3.17. Let L C A* be a language satisfying E.p—par Eaap—apy ANA Eq—q.q, for
every a,b € A. Let us consider a finite colouring Q of N satisfying the condition from
Corollary (2). Then, for any words w,w’ € A* such that w ~g w’, we have

weEL<«w eL.

Proof. We consider a language satisfying this property, that is, L C A* such that there

exists a finite colouring @ of N with ¢ colours, where ¢ > 1, such that, for every a,b € A,

14

U A* ® Q? g ELufa,byfb,a7
i=1

14

U A ® Q? - ELyfa,a,byfa,b,b’
=1

and
¢

U Lg, ®Qi € ELjy fuas
=1

by Corollary (2). We consider two finite words w,w’ € A* such that w ~g w'. We
want to prove that w is in L if, and only if, v’ is in L.

We can apply the reasoning we used in Proof [3.3.2] independently to each of the
subsets (1, ..., Q¢. More precisely, for every i € {1, ...,¢}, we consider Mg o, as intro-
duced in Proof . We can construct ¢ independent integers (n;)1<;<¢, £ independent
families of pairs of maps ((f%,, g%,)1<m<n,)1<i<¢ and ¢ independent finite sequence of
words ((v!,)1<m<n, )1<i<i satisfying the following properties: for every i € {1,...,(},

1. (Ui)|Qi = W, and (U%z)Qz = wbi;

2. for every m € {1,...,n;}, (fi,,9.,) € Mg 1.0

3. for every m € {1,...,n;}, fi,(v%) = v;

i

4. for every m € {1,...,n; — 1}, g}, (v},) = vl 1, and gi (vh,) = vl

In particular, if we denote composition of maps by O,
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and thus, by Lemma w belongs to L if, and only if, w’ belongs to L. O

We are now ready to prove that every language L C A* satisfying our equations is
necessarily such that there exists a finite colouring Q of N such that L saturates the
finitely indexed equivalence relation ~g, and thus L can be expressed as a Boolean
combinations of the generators of 5.

Corollary 3.18. Any language L C A* which satisfies the ultrafilter equations £,p—pq,
Evap=apy and E,—, 4, for every a,b € A, is in By.

Proof. Consider a language L C A* satisfying the equations E.p—pa, Eaap—aby aNd Ei—q.a
for every a,b € A. By Proposition there exists a finite colouring (Q1, ..., Q) of N,
for some ¢ > 1, such that, for every a,b € A,

L

U A* ® Q? g Evaa,b:fb,a’
=1

1
U A* ® Q? g Evaa,a,b7fa,b,b
=1

and ,
ULe ©®Qi CELj, fua-
i=1
Fix a word w € L, then there exists a unique B € P(A)* such that w € Kg - By
Proposition for any v’ € K| 0.5 We have that w’ € L. More generally, we deduce
that the finitely indexed equivalence relation ~o on A%, is saturated by L. Therefore,
there exists a finite family B C P(A)’ such that

L= {J Kgp
Be®
and by Proposition [3.2] we conclude that L is in B;. O

3.53.3 Completeness for 5,

We prove that the the languages satisfying the family of ultrafilter equations &.p—pq,
Eaab=aby for every a,b € A, all belong to By ;. The idea is similar to the reasoning we
provided to prove Corollary the difference being that the equivalence relation that
we introduced in the previous subsection is now insufficient. Indeed, since we added
the family of languages Lp, for any P C N, we need to take into account the length of
the words we consider. This has consequences on the family of ultrafilter equations we
want to look at. For instance, for any a € A, consider a languages L which satisfies the
family of equations &,—,,. This corresponds, informally, to the idea that, if a word w
belongs to L, then it is possible to construct a longer word by adding a certain letter to
w, which will still belong to L. In this sense, the length of a word of L is not relevant, and
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thus we expect that this family of equations will not be required in order to describe B ;.
We begin by providing an analogous for Proposition [3.17] which takes this observation

into account.

Proposition 3.19. Let L C A* be a language satisfying E,p—p, and Eyqp—apy, for every
a,b € A. Let us consider a finite colouring O of N satisfying the condition from
Corollary (1). Then, for any words w,w’ € A* of same length such that w ~g w/,
we have

weL<+=weL.

Proof. The proof uses the exact same method that was used in Proof [3.3.2) and Proof
except that we always assume that the length of both words involved is the same.
O

We are now ready to prove that every language L C A* satisfying E.p—pe and Eqap—abis
for every a,b € A is necessarily such that there exists a finite colouring Q@ of N such that
L saturates the finitely indexed equivalence relation ~¢, and thus L can be expressed
as a Boolean combinations of the generators of By ;.

Corollary 3.20. Any language L C A* which satisfies the ultrafilter equations E,p,—p,

and E,qp=anp, fOr every a,b € A, is in By ;.

Proof. Consider a language L C A* satisfying the equations E,p—p, and Eqap—app, for
every a,b € A. By Proposition there exists a finite colouring (Q1, ..., Q) of N, for
some /¢ > 1, such that, for every a,b € A,

L

UA* ®Q CELy,,p.
=1

and

¢
U A* ® Q? g EL»fa,a,b»fa,b,b’
=1

Fix a word w € L. There exists a unique B € P(A)" such that w € Ky 5. By

Proposition for any w' € K p, such that |w| = |w'| we have that w’ € L. More
generally, there exists a finite family B C P(A*) such that, if we set

P:={neN: LNnA" #0},

then
L=({J Kqp)n(lJ 4"
Be® nep
Finally, since
U A" = Lp,
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we have that
L=(J Kgp)NLp,
BeB

and by Proposition [3.2) we conclude that L is in By ;. O

Conclusion of the chapter

In this chapter, we provided a new method to prove the completeness and the soundness
of the ultrafilter equations that were introduced in [29] for the fragment of first-order
logic corresponding to sentences written by only using nullary and unary uniform nu-
merical predicates. Our method being more general, it allowed us to also formulate
more ultrafilter equations, and these allowed us to characterise the Boolean algebra of
languages corresponding to sentences written by only using unary uniform numerical
predicates.

A lot of the remarks we made in the conclusion of the previous chapter still apply
here. Indeed, a first step in order to get an intuition over the ultrafilter equations for
a Boolean algebra is to compute this algebra’s dual space. No work currently available
treats the topic of ultrafilter equations for the Boolean algebra BX;[N}!], for a fixed
k € N. This should be the next natural step following this work. We believe that
the approach that consists in reformulating the equations in terms of a condition that
involves considering every finite colouring of N*, for some k& € N could be a good
approach in order to generalize Corollary [3.18
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